
Backtrack-Based and Window-Oriented
Optimistic Failure Recovery in Distributed

Stream Processing

Qiming Chen(&), Meichun Hsu, and Malu Castellanos

HP Labs, Palo Alto, CA, USA
{qiming.chen,meichun.hsu,Castellanos.malu}@hp.com

Abstract. Support transaction property and fault-tolerance is the key to applying
stream processing to industry-scale applications; however the corresponding
latency overhead must be minimized for accommodating real-time analytics. This
issue has been studied in various contexts. In this work we develop the backtrack
failure recovery mechanism to allow a task to roll forward without waiting for
acknowledgement from its downstream target tasks in the failure-free case, but to
request its upstream source tasks to resend the missing tuples only during failure
recovery which is the rare case thus has limited impact on the overall perfor-
mance. For further reduced latency we extend our solution in another dimension
by applying the notion of optimistic checkpointing to stream processing, and
propose the Continued stream processing with Window-based Checkpoint and
Recovery (CWCR) approach, allowing a task to emit results tuple by tuple
continuously but checkpoint in batch, and acknowledge, only once per window
(e.g. time window). We also tackle the hard problems found in implementing a
transactional layer on-top of an existing stream processing platform. We have
implemented the proposed mechanisms on Fontainebleau, the distributed stream
analytics infrastructure we built on top of the open-sourced Storm platform. Our
experiment results reveal the novelty of the proposed technologies and the fea-
sibility to support fault-tolerance with minimal latency overhead for real-time
stream processing.

Keywords: Stream processing � Failure recovery � Dataflow transaction �
Pessimistic checkpointing � Optimistic checkpointing

1 Introduction

To apply stream processing to industry-scale applications, ensuring transaction prop-
erty and fault-tolerance is the key issue. A stream processing application is modeled as
a continued dataflow process - streaming process, where the parallel and distributed
tasks are chained in a graph-structure with each task transforming a stream to a new
stream. The transaction property guarantees the streaming data, called tuples, to be
processed in the order of their generation in every dataflow path, with each tuple
processed once and only once, under the notion of eventual consistency [3, 15, 17, 18].

© Springer-Verlag Berlin Heidelberg 2015
M. Castellanos et al. (Eds.): BIRTE 2013 and 2014, LNBIP 206, pp. 38–64, 2015.
DOI: 10.1007/978-3-662-46839-5_4

1.1 Prior Art

There exist multiple lineages of transactional stream processing. The first thread of
work is characterized by applying the database transaction semantics to unbounded
data stream with the concept of snapshot isolation [2, 4, 6, 7, 10], namely, to split a
stream into a sequence of bounded chunks and handle each chunk in a transaction
boundary. In this way, processing a sequence of data chunks generates a sequence of
state snapshots. However, this mechanism only cares about the state oriented trans-
action boundary without addressing failure recovery.

The second thread is originated from reliable dataflow based on message logging and
resending for failure recovery. One current approach, represented by Storm’s “trans-
actional topology” [18], treats the whole stream processing topology as a single oper-
ation thus suffers from the loss of intermediate results in the occurrence of failures.
Another limitation of this approach is the ignorance of the states of data buffered in tasks.

The third thread is based on checkpointing and forward tracking where a task, T,
checkpoints each output tuple, t, before emitting it, then T waits for the target tasks
(recipients) to confirm (by acknowledgement - ACK), the success of processing t,
before emitting the next output tuple; if T does not receive the ACK after a timeout
(e.g. in case the target task fails, it takes a while to be restored), T will resend t, again
and again, until being acknowledged [14, 15, 17]. Although the “once and only once”
semantics can be enforced by ignoring duplicate tuples, waiting for ACK and keeping
resending on the per tuple basis cause extremely high latency.

The forth thread is the variation of the above approach; it is also based on
checkpointing and message resending, but characterized by “backward tracking”,
namely, allowing a task to process tuples continuously without waiting for acknowl-
edgements and without resending tuples in the failure-free case, but to request (with the
ASK message) the source tasks to resend the missing tuples only when it is restored
from a failure which is a rare case thus has limited impact on the overall performance.
Our experience shows that compared with forward tracking, the backward tracking
approach can reduce the overall latency of stream processing significantly. However, it
still suffers from the overhead of per-tuple checkpointing.

The fifth thread, referred to as optimistic checkpointing, also focuses on reducing
the latency in failure free case [13, 19]. Unlike per-tuple based pessimistic check-
pointing [16, 19], optimistic checkpointing allows messages to be checkpointed
occasionally in batch. However, in general distributed computing, the use of this
mechanism may cause uncontrolled task rollbacks known as the domino effects [19].

1.2 Proposed Approach

In the context of graph-structured, distributed stream processing, the checkpoint based
failure recovery approaches discussed so far are in general limited to pessimistic and
forward tracking ones. In this work we take the initial step to combine optimistic
checkpointing and backward tracking failure recovery, which allows us to gain the
benefits of both for low-latency, real-time stream processing.

With the backtrack failure recovery mechanism, a task does not wait for ACK and
re-emit output on the per-tuple basis, but requests the missing tuples from its upstream

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 39

source tasks only in failure recovery which is the rare case thus has limited impact on
the overall performance.

For further reduced latency we extend our solution in another dimension – instead of
per-tuple based pessimistic checkpoint protocol, we adopt the optimistic checkpoint pro-
tocol under the criterion of eventual consistency [3, 15], which allows the checkpoints to
be made occasionally in batch and asynchronously with tuple processing and emitting. We
solve the uncontrollable rollback problem found in the context of instant consistency of
global state, by associating checkpoint boundary with the window semantics of stream
processing to provide the commonly observable and semantically meaningful synchroni-
zation point of task rollbacks.We propose theContinued stream processing withWindow-
based Checkpoint and Recovery (CWCR) approach, under which the stream processing
results are emitted tuple by tuple continuously (thus different from batch processing), but
checkpointed once per-window (typically time-window). Since the failure recovery is
confined in the commonly observable window boundaries, the so called domino effect in
chained rollbacks can be avoided even in the situation of failure in failure.

To implement the proposed transaction layer on-top of an existing stream pro-
cessing platform we need to deal with the hard problem on how to keep track the input/
output messaging channels in order to realize re-messaging during failure recovery.
Since common to the modern component-based distributed infrastructures, the data
routing between tasks is handled by separate system components inaccessible to
individual tasks, making it trivial for tasks to track. Our solution is characterized by
tracking physical messaging channels logically, for that we introduce the notions of
virtual channel, task alias and messageId-set in reasoning, recording and communi-
cating the channel information. We also provide a designated messaging hub, sepa-
rated from the regular dataflow channel, for signaling ACK/ASK messages and for
resending tuples, in order to avoid interrupting the regular order of data flow.

We have implemented the proposed mechanisms on Fontainebleau, the distributed
stream analytics infrastructure we develop on top of the open-sourced Storm platform.
Our experiments reveal the novelty and value of these mechanisms. The combination
of optimistic checkpointing and backtrack recovery significantly reduces the latency of
transactional stream processing thus making it feasible for real-time applications; and
the virtual channel mechanism allows us to handle failure recovery correctly in the
elastic stream processing infrastructure.

The rest of this paper is organized as follows: Sect. 2 outlines the concept of graph-
structured distributed streaming process and out platform; Sect. 3 describes backtrack
failure recovery; Sect. 4 discusses Continued stream processing with Window-based
Checkpoint and Recovery (CWCR); Sect. 5 discusses how to track messaging channels
intelligently; Sect. 6 illustrates the experiment results; Sect. 7 concludes.

2 Distributed Stream Processing Infrastructure

2.1 Graph Structured Streaming Process

A stream is an unbounded sequence of events, or tuples. Logically a stream processing
operation is a continuous operation to apply to the input stream tuple by tuple to derive

40 Q. Chen et al.

a new output stream. In a distributed stream processing infrastructure, a logical
operation may have multiple instances running in parallel, called tasks. A graph-
structured streaming process is a continuous dataflow process constructed with dis-
tributed tasks over multiple server nodes. A task runs cycle by cycle; in each cycle it
processes an input tuple, updates the execution state and emits the resulting tuples.
Tuples transmitted between tasks are carried in messages,

Let us observe a streaming process example for matrix manipulation based event
analysis. In this streaming process, the source tuples are streamed out, with second-
based timestamps, from “matrix spout” with each contains 3 equal-sized float matrices
generated randomly in size and content (the application background is the sensor
readings from oil wells). The tuples first flow to the tasks of operation “tran” for
transformation, then to “gemm” (general matrix multiplication) and “trmm” (transpose
and multiplication) with “fields-grouping” on different hash keys; the outputs of
“gemm” tasks are distributed to “ana” (analysis) tasks with “all-groupuing”, and the
outputs of “trmm” tasks are distributed to “agg” (aggregation) tasks with “fields-
grouping”. The logical operations, links and grouping types are illustrated in Fig. 1 and
specified below.

BlueTopologyBuilder builder = new BlueTopologyBuilder();
builder.setSpout(“matrix_spout”, matrix_spout, 1);
builder.setBolt(“tran”, tran, 4).shuffleGrouping(“matrix_spout”);
builder.setBolt(“gemm”, gemm, 2).fieldsGrouping(“tran”, new Fields(“site”, “seg”));
builder.setBolt(“ana”, ana, 2).allGrouping(“gemm”);
builder.setBolt(“trmm”, trmm, 2).fieldsGrouping(“tran”, new Fields(“site”));
builder.setBolt(“agg”, agg, 2).fieldsGrouping(“trmm”, new Fields(“site”));

Physically, each operation has more than one task instances. Given a pair of source
and target operations, say trans and gemm, the tuples transmitted between their tasks
are grouped with the same criteria defined on the operation level, as illustrated in Fig. 2.
The possible input and output channels of a task can be extracted from the streaming
process topology statically, but the actual channels used in distributing an emitted tuple
are resolved dynamically during execution according to the grouping type, tuple
content (e.g. fields hash value) and loading balance.

agg

ana gemm

trmm

tran
matrix
spout

Shuffle

fields [site, seg]

fields [site]

all

fields [site]

sens

Fig. 1. A logical streaming process

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 41

2.2 Distributed Stream Processing Platform

We have developed a parallel, distributed and elastic stream analytics platform, with
code name Fontainebleau, for executing continuous, real-time streaming processes.
Our platform is built on top of Storm – an open sourced data stream processing system.

Architecturally Fontainebleau is characterized by the concept of open-station. In
stream processing, data flow through stationed operators. Although the operators are
defined with application logic, many of them have common execution patterns in I/O,
blocking, data grouping, etc., as well as common functionalities such as the transac-
tional control to be discussed in this report, which can be considered as their “meta-
properties” and categorized for providing unified system support. This treatment allows
us to ensure the operational semantics, to optimize the execution, as well as to ease
user’s effort for dealing with these properties manually which can lead to fragile code,
disappointing performance and incorrect results. With the above motivation we
introduce the notion of open-station as the container of a stream operator, that provides
canonical system support but open for plugging in application logic. In the OO pro-
gramming context, an open-station is provided with the open-executor coded by
invoking certain abstract methods to be implemented by users based on their appli-
cation logic.

We treat transaction enforcement with failure recoverability as a kind of task
execution pattern, and provide the corresponding open stations hierarchy for supporting
it automatically and systematically. The basic transactional station is defined as an
abstract class BasicCkStation with several major system methods:

• prepare – invoked when the task is initially setup or restored from a failure,
therefore the recovery() method discussed below is invoked, when necessary, inside
the prepare() method.

• execute – invoked cycle by cycle for per-tuple processing, checkpointing,
acknowledging, emitting, etc.

• recovery – invoked for recovery, including rolling back to the last checkpoint, re-
emit output to the right target tasks at the downstream, and re-acquire the latest
input from the source task at the upstream, etc.

• outputFields – used to specify the fields of the output tuples.

fields [site]

fields [site, seg]

fields[site]

trmm.5

trmm.4

gemm.7

gemm.6

ana.1

agg.2

agg.3

tran.1
0

tran.11

tran.8

tran.9

all

sens shuffle

spout

Fig. 2. A physical streaming process where an operation is instantiated as multiple tasks

42 Q. Chen et al.

These methods invoke certain abstract methods which will be implemented based on
application specific semantics (e.g. setup initial state, processing a tuple) and resource
specific properties (e.g. the specific checkpoint engine based on files or databases). In
order to create a transactional operation (tasks are instances of operations), the user only
needs to define a corresponding class that extends the abstract BasicCkStation class, and
implement the above abstract methods (and any inherited abstract methods).

With the open station architecture, the checkpointing and failure recovery are
completely transparent to users as they only need to care about how to process each
tuple for their applications.

2.3 Backtrack Based Failure Recovery

The checkpointing based failure recovery in stream processing is typically character-
ized by forward tracking or ACK-based, i.e. a task cannot emit the next tuple until the
successful processing of the last emitted tuple is acknowledged; and if such ACK is not
received in timeout the task must resend the last tuple again and again, until being
acknowledged. Although the “once and only once” semantics can be enforced by
ignoring duplicate tuples, waiting for ACK and re-emitting output on the per tuple basis
causes extremely high latency.

For enhanced overall performance, we stick on the backtrack or ASK-based
recovery approach, where a task does not wait for acknowledgement before moving
forward; instead, acknowledging is asynchronous to task executing and only used to
remove the buffered tuples already processed by the target tasks.

Specifically, a task keeps an emitted tuple in a pool until there is no need to resend
it for failure recovery; the task can determine the fan-out of an emitted tuple based on
the topology, and detect whether that tuple is fully processed (thus fully acknowledged)
by all the target tasks it was distributed to. A fully acknowledged tuple can be removed
from the message pool. Since acknowledgement is only used to trigger the removal of
the acknowledged tuple and all the tuple prior to that tuple, any ACK is allowed to
be lost.

During failure recovery, the reestablished task tells each source task the last tuple it
has seen, and asks the source task to resend the next one; and if not received after
timeout it would ask again and again. Since failures are rare, such backtrack process
has limited impact on the overall performance.

2.4 Separated Message Hub for Recovery

A hard problem in supporting message resending on top of an existing stream pro-
cessing platform is how to ensure the order of regular tuple delivery not interrupted by
the task recovery process, when there lacks the accessible message re-sorting facility
[14, 15, 17]. Because the recovered task with multiple source tasks may receive more
than one resent tuples, and besides the one really missing, the others, may have been
delivered and queued but not yet taken by the task; in that case, appending the resent

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 43

tuple to the queue would interrupt the order of the queued tuples. We solve this
problem in the following way.

• A second massaging hub, separated from the regular dataflow channel, is provided
for a task, for signaling ACK/ASK and resending tuples (Fig. 3).

• When a task T is restored from a failure, it first requests and processes the resent
tuples from all input channels, before going to the normal execution loop. In this
way, if a resent tuple has been put in the input queue of T previously but not yet
taken by T, that tuple can be identified as duplicate one and ignored in the normal
execution loop.

For this designated messaging hub each task has a distinguish socket address (SA)
and an address-book of its source and target tasks; the SA is carried with its output
tuples for the recipient task to ACK/ASK through that messaging hub. Due to the
change of SA when a task is restored from a failure (in that case the task may even be
launched to another machine node), and due to the unavailability of the SA in the first
correspondence, a Home Locator Registry (HLR) service is provided.

Checkpoint based failure recovery requires a task to know exactly the messaging
channel and record it before emitting a tuple. For now we assume this requirement is
satisfied. We will present our channel resolution mechanism later in Sect. 5.

3 Pessimistic Checkpointing with Backtrack Recovery

In stream processing, the typical checkpointing protocol is pessimistic where every
output message (carrying resulting tuple) of a task is checkpointed before sent.
Recovery based on pessimistic checkpointing is relatively simple since for each input
channel only one possible missing tuple is concerned.

As mentioned above, for enhanced overall performance, we stick on the back-
tracking based failure recovery, where a task continuously emits resulting tuples
without waiting for ACKs, but requests the missing tuples only after reestablished from
a failure (by ASK message) from its source tasks. In this section we discuss pessimistic
checkpointing incorporated with the backtracking based failure recovery.

Task Execution. A task runs cycle by cycle continuously for processing input tuple by
tuple. The tuples transmitted via a dataflow channel are sequenced and identified by the
seq#, and guaranteed to be processed in order; a received tuple, t, with seq# earlier than

task1

data channel
 (Emit)

task2

signal channel
(ACK/ASK/Resend)

queue

Fig. 3. Secondary messaging hub for ACK/ASK and resend

44 Q. Chen et al.

the expected will be ignored; later than the expected (“jumped”) will trigger the
resending of the missing ones to be processed before t. This ensures each tuple to
be processed once and only once and in the right order. After the tuple is processed, the
resulting state, the input message-id, the output messages (holding tuples), etc., are
checkpointed (serialized and persisted to file); the transaction is “committed”,
acknowledged and the output messages are emitted. The algorithm of execution() is
outlined in Fig. 4.

Task Recovery. Supported by the underlying Storm platform, a failed task instance is
re-initiated on an available machine node by loading the serialized operation class to
the node and creating an instance over there.

As shown in Fig. 5, recovery a failed task is a triple-folds problem:

• restore its execution state from checkpoint,
• request the possible missing input, again and again until received
• re-emit the last output tuple; in case that tuple has not been lost, as a duplicate tuple

it will be ignored by recipient tasks.

When the recovering task has multiple source tasks, it cannot determine where the
missing tuple came from, therefore it has to ask each source task to resend the possible
next tuple wrt the latest tuple it received and recorded in its input-map that is a part of

out ordered duplicated check
order

de-queue

ask & proc re-
sent missing input

Process
input tuple &
derive output

checkpoint

ack

recording output
channel & seq#

recording input
channel & seq#

Ignore but

reasoning output
channel

Emit keep out-
tuples until acked

in order

execution

Fig. 4. Task execution with pessimistic checkpointing

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 45

the checkpoint content. The resent tuples are processed first before the restored task
entering the regular data processing loop. If a resent tuple has already transmitted to the
input queue, then the queued tuple will be identified as duplicated and ignored.

Due to the disk access overhead of per-tuple checkpointing and the messaging
overhead in acknowledging each tuple, the pessimistic protocol is inefficient in the
failure-free case; even if incorporated with the backtrack recovery. As a result, it cannot
satisfy the latency requirement for real-time stream processing. To make transactional
stream processing a feasible and acceptable technique we need to explore another kind
of checkpointing protocol – the optimistic checkpointing protocol.

4 Optimistic Checkpointing with Backtrack Recovery

4.1 Concept and Problem

In the modern computing environment, failures are infrequent and the overall perfor-
mance is primarily contributed by the failure-free performance, which has motivated us
to investigate the failure recovery mechanism based on optimistic checkpointing.

Unlike the pessimistic checkpointing mechanism with which the checkpointing is
synchronized with the per-tuple processing, the optimistic checkpointing mechanism is
characterized by checkpointing occasionally and asynchronously with the per-tuple pro-
cessing. Under this mechanism, a task checkpoints once after processing multiple tuples,
while still emits result tuple by tuple continuously. As a result, the failure-free performance

Initiate new
dynamic state

ask & proc re-sent
input tuples

re-emit latest
output tuples

restore
latest state

recovery
latest dynamic

initiate
static state

first-time
initiating recoverying

check
status

execution

initiating

Fig. 5. Task initiate/recovery with pessimistic checkpointing

46 Q. Chen et al.

can be significantly improved due to reduced disk access, and the real-time feature can be
retained since the per-tuple processing is not blocked by checkpointing.

However, when a task is restored from a failure with its state being rolled back to
the last checkpoint, the effects of processing multiple tuples would be lost and should
be redone; for that the task would request its source tasks to resend multiple tuples
emitted since then. These resent tuples are processed in advance, before the restored
task goes to the regular per-tuple processing loop, towards the “eventual consistency”
[3, 11].

It is worth noting the difference between optimistic checkpointing and batch pro-
cessing. With optimistic checkpointing, although the output tuples of a task is
checkpointed in batch, they are emitted tuple by tuple continuously in real-time stream
processing.

The notion of optimistic checkpointing was previously studied in the context of
general distributed systems where the instant consistency of globally state is of the
primary concern [16, 19]. In that case rolling back a task may cause any other task to
rollback until a consistent global state has been reached; if without a commonly
observable and semantically meaningful synchronization point for “cutting off” roll-
back propagation, it may eventually lead to the domino effect – an uncontrolled
propagation of task rollbacks.

The concept of synchronization point for rollback propagation can be explained by
the following example. Assume a pair of source and target tasks TA and TB checkpoint
their states/messages per 100 input tuples respectively, and out of one input tuple TA
derives 4 output tuples and sends them to TB. As mentioned before a checkpoint state
includes the information about input/output messages and computation results. Con-
sidering the following situation after TA and TB start running simultaneously:

(a) After TB processed 100 input tuples received from TA since TB’s last checkpoint, it
persists its state into a new checkpoint pb. By then, however, TA only processed 25
input tuples since its last checkpoint, with the result not being checkpointed. In
this case, we say that the checkpoint pb is an unstable checkpoint since it is not
supported by the checkpoint history of TA.

(b) Assume that TB failed after processing some tuples since point (a), it is restored
and rolled back to pb and tends to request TA to re-send the missing tuples. In case
TA also failed and lost the un-checkpointed history of output tuples since its last
checkpoint, TA cannot identify the tuples requested by TB.

(c) As a result, both TA and TB must further rollback to a possible common syn-
chronized point. Such rollback propagation is uncontrolled; in the worst case, both
tasks have to roll back to the very beginning.

It can be seen from the above example that in order to apply optimistic check-
pointing to the failure recovery of stream processing, in addition to adopting the notion
of “eventual consistency” [3, 11], it is necessary to provide a commonly observable and
semantically meaningful synchronization point to avoid uncontrolled rollback propa-
gation. We solve this problem by incorporating the concept of synchronization point
with the window semantics of stream processing.

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 47

4.2 Window Semantics of Stream Processing

Although a data stream is unbounded, very often applications require those infinite data
to be analyzed granularly. Particularly, when the stream operation involves the
aggregation of multiple events, for semantic reason the input data must be punctuated
into bounded chunks. This has motivated us to execute such operation epoch by epoch
to process the stream data chunk by chunk, and this has given us the fitted framework
for identify the synchronization points for optimistic checkpointing.

For example, if the stream contains time-series data with timestamps (e.g. per
second), and an operation aims to deliver time-window (e.g. per minute) based
aggregation, then the execution of this operation on an infinite stream is made in a
sequence of epochs, one on each stream chunks falling in that time-window. In general,
given an operator, O, over an infinite stream of relation tuples S with a criterion # for
cutting S into an unbounded sequence of chunks,

\S0; S1; . . .; Si. . .[

where Si denotes the i-th “chunk” of the stream according to the chunking-criterion #.
The semantics of applying O to the unbounded stream S lies in

O ðSÞ !\O ðS0Þ; . . .OðSiÞ; . . .[

which continuously generates an unbounded sequence of results, one on each chunk of
the stream data.

The paces of dataflow wrt timestamps can be different at different operators; for
instance, an operation for hourly aggregation has a larger pace then the operation for
per-minute aggregation.

Punctuating input stream into chunks based on a window-boundary is a template
behavior common to many stream operations, thus we consider it as a kind of meta-
property of stream operations and support it systematically. To handle window
boundary in a task, a base unit, τ (e.g. 1 min or 1 tuple) is required, and the following
three variables are defined:

• wdelta: the window size by τ, e.g. 1 min, or 100 tuples;
• wcurrent: the current window sequence number; e.g. 1 for the window of minute 1, 2

for the window of minute 2, … etc.;
• wceiling: the starting sequence number of the next window by number of τ; e.g. 2 for

the window of minute 2; 201 for the window of 200–300 tuples.

Then several functions are defined on each input tuple t to determine whether t is
within or beyond the current window, e.g.

• fwcurrent (t): returns the wcurrent; e.g. if t contains timestamp 100 (by second), the
current window number (by minute) for t is 2.

• fwnext(t): returns a boolean for detecting whether t belongs to the next window, and
updates wcurrent and wceiling as appropriate.

48 Q. Chen et al.

4.3 Window-Based Checkpoint and Recovery

Aiming to support failure recovery by optimistic checkpointing, we incorporate the
notion of synchronization point with the window semantics of stream processing, and
propose the protocol of Continued stream processing with Window-based Checkpoint
(CWCR), which allows a task to process data and emit results continuously on the per-
tuple basis, but checkpoints state on the per-window basis.

With CWCR, the checkpointing is made once per-window (typically time-window)
asynchronously with per-tuple execution. When a task T is re-established from a failure
in a window boundary w, its last checkpointed state is restored; and the tuples
T received from the beginning of w up to the most recent ones, from all input channels,
are requested and resent to T. These resent tuples are processed in the recovery phase
before T goes to the regular stream processing loop.

Compared with the pessimistic checkpointing approach, the benefit gained from
CWCR consists in the enhanced overall performance by avoiding the overhead of per-
tuple checkpointing in the absence of failures.

4.4 CWCR Synchronization Point

To describe CWCR more formally, let us denote a checkpoint of task T by ST ; denote
the input messageIds (mids) and the output messages contained in ST by lST and rST
respectively; and denote the checkpoint history of T by gST . Further, given a pair of
source and target tasks A and B, the messages from A to B in rSA and gSA are denoted
by rSA!B and gSA!B respectively; the input mids to B from A in lSB and gSB are
denoted by lSB A and gSB A respectively. Based on these notations we define the
following concepts.

• Checkpoint History: the sequence of checkpoints of task T is referred to as T’s
checkpoint history.

• Stable Checkpoint: a checkpoint is stable if it can be reproduced from the
checkpoint history of its upstream neighbors. More precisely, the checkpoint of task
B. SB, is stable wrt a source task A iff all the messages identified by lSB A are
contained (denoted by ∝) in gSA!B, i.e.

lSB!A / gSA!B:

SB is stable iff SB is stable wrt all its source tasks.
• Backtrack Recoverability: given a pair of source and target tasks A and B, task

B is backtrack recoverable from a failure wrt task A, if since B’s last checkpoint, all
the input tuples from A can be resent by A, even if in the case that A also fails.

Then we compare the task recoverability wrt pessimistic and optimistic checkpointing.

Recoverability Rule with Pessimistic Checkpointing
With pessimistic checkpointing a task is backtrack recoverable if every input tuple is
checkpointed by the corresponding source task before emitting.

A task with pessimistic checkpointing follows the above rule by first checkpointing
and then emitting each output tuple, which ensures that the missing tuple during a

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 49

failure can always be found and resent, even if the source task also fails. This is the
strong criterion for recoverability.

With optimistic checkpointing, the above strong recoverability rule cannot be
followed because the output tuples of a task are emitted continuously but checkpointed
only occasionally; therefore we need to find a relaxed recoverability rule.

Intuitively, if task is reestablished from a failure and rolled back to its last
checkpoint say p, to guarantee that the each missing tuple since p can be figured out
and resent by the corresponding source task even if that source task also fails, p must be
a stable checkpoint. This forms the basis of the following rule.

Recoverability Rule with Optimistic Checkpointing
With optimistic checkpointing a task B is backtrack recoverable iff B’s checkpoints are
stable, i.e. for each source task A of B, lSB AagSA!B.

Ensure checkpoint stability is the key to avoid the domino effects in optimistic
checkpoint based task recover. With CWCR we incorporate this with the window based
chunking criterion. Specifically, for time series data, we provide a timestamp attribute for
the stream tuples, and use a time window, such as per minute time window, as the basic
checkpoint interval (although the concept of window is not limited to time window).

For example, given a pair of source and target tasks TA and TB, if the checkpoint
interval of TA is wdelta and that of TB is N � wdelta where N is an integer, then the
checkpoint of TB is stable wrt TA. For instance, if the checkpoint interval of TA is per
minute (60 s), and that of TB is 1 min (60 s), 10 min (600 s) or 1 h (3600 s), then TB’s
checkpoint is stable wrt TA; otherwise if TB ’s checkpoint interval is 90 s, it is not stable
wrt to TA, and in that case if TB rollback to its latest checkpoint and requests TA to
resend the missing messages, there is no guarantee for TA to identify and find them.

Based on these concepts we provide the algorithms for CWCR based failure
recovery algorithms.

4.5 CWCR Algorithms

Overview. With the CWCR mechanism, a task, T, runs cycle by cycle to process
stream data tuple by tuple. In each cycle before reaching a window boundary T takes an
input tuple, records the mid, processes the tuple, records and emits the output tuples,
but without checkpoint and acknowledgement. When a window boundary is reached,
the task T checkpoints the current state, the latest seq# of all input channels, and all the
output tuples as a single checkpoint; then T acknowledges each source task only once
(per window) with the latest seq# in the corresponding input channel.

During failure recovery, a task T rolls back to the last checkpoint (at the end of the
last window), then it sends one message to each source task, say Ts, asking for all the
tuples Ts emitted to T since then in the current window boundary, then Ts would resend
T these tuples in a single message through the signal messaging hub that is separate
from the dataflow channel as explained above. In case T does not receive the resent
tuple it would ask again, and again until receives. Then T will reprocess all the resent
tuples first, before going to the regular stream processing cycles. Later the input tuples
duplicated with the resent ones will be ignored.

50 Q. Chen et al.

A checkpoint contains information about

• the task-id, topology-id, number of tuples processed,
• the checkpoint window boundary - wcurrent;wceiling;
• the latest seq# of all input/output channels (kept in MapsMi andMo) from which the

latest input/output mids in those channels can be derived),
• the current (final) computation state wrt the current window
• the output tuples emitted in the current window.

As mentioned above, a task, as an iteratively executed program for processing
stream data tuple by tuple, is provided with two major methods: the prepare() method
for instantiating the system facilities and the initial state, and the execute() for pro-
cessing an input tuple in the main stream processing loop. Failure recovery, recovery(),
is handled in prepare() since after a failed task restored it will experience the prepare()
phase first. There exist other functions for interpreting the ACK for removing the
pooled tuples no longer needed, and ASK for resending tuples.

out ordered duplicatedcheck
order

de-queue

ask & proc re-
sent missing input

tuples

Process
input tuple &
derive output

Checkpoint
by window

ack last tuple
in last window in
all input channels

recording output
channel & seq#

recording input
channel & seq#

Ignore (not
ack)

reasoning output
channel

Emit
output

keep out-
tuples until acked

in order

execution

Process the
current tuple

YNext
window

in order

N

Fig. 6. Task execution with CWCR

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 51

Task Execution. The algorithm of execute() is illustrated in Fig. 6 with the following
major steps.

• Resolve t’s message id (mid), channel (c) and seq# (kcurr) of t, which may be virtual
(described later) (line 1).

• Compare t’s seq# (kcurre) and the expected seq# (klast þ 1); if t is duplicate (with
smaller seq# than expected) it will not be processed again, i.e. ignored; if t is
“jumped” (with seq# larger than expected), the missing tuples between the expected
one and t will be requested, resent and processed first before moving to t (line 2–8).

• Update Mi with the current input channel and seq# (line 9).
• Given an input tuple t, fwnext tð Þ is applied to check whether t falls into the next

window boundary, and if true, the task T makes a single checkpoint for the state of
the entire data processing in the current window, then T acknowledges each source
task only once with the latest seq# in the corresponding input channel (line 10–18).

• Processing t and generating output tuples Lout (line 19).
• For each resulting tuple tout in Lout, resolve its midout that may be virtual, embed

midout in tout, compose the carrying message mout, and append mout to the list of
output messages Lout msg (line 21–26).

• Emitting the output tuples (line 27).
• Pooling the output tuples (line 28), aiming to resend upon request. The pooled tuples

will be removed upon acknowledgement on the per-channel basis where an ACK
with seq# k causes the garbage collection of all the pooled tuples with seq# ≤ k.

• Advance execution cycle# (line 30).

52 Q. Chen et al.

Task Recovery. Supported by the underlying infrastructure, a failed task instance can
be re-initiated on an available machine node by loading the serialized task class to the
selected node and new an instance over there.

The algorithm of recovery(), as illustrated in Fig. 7, includes the following steps.

• The state Sck of task T is restored from the checkpoint of last window (line 1).
• T sends one RESEND request to each source task in all the possible input channels

Ci, asking for resending inputs starting from the first tuple (by seq#) of the current
window; then T processes the resent tuples channel by channel sequentially before
going to the normal execution loop (line 2–10).

In each source task, say Ts, upon receipt the above request, gets the latest, not yet
emitted output seq#, th, and resends to T all the output tuples with seq# up to th in a
single message from the dedicated signal messaging hub.

4.6 Failure in Failure

Recovering backwards chained failures is a recursive process, and we need a boundary
condition – the event source S that feeds data stream to a streaming process topology,
must be reliable, i.e. when requested, S can re-send the current tuple (wrt pessimistic

Initiate new
dynamic state

ask & proc re-sent
input tuples in current

window up to the
current high water mark

restore last
window state

Rollback to
last window

initiate
static state

first-time
initiating recoverying

check
status

execution

Initiate/restore task

Fig. 7. Task recovery with CWCR handled in prepare()

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 53

checkpoint) or the tuples in the current window (wrt optimistic checkpoint) to the
topology.

With pessimistic checkpointing, given a chained source and target tasks A and B, if
B fails and restored, B would keep asking A to resent the last tuple; if A also fails, it will
recover itself first, and after re-established it can always find and resend the requested
tuple by B since any emitted tuple is checkpointed.

With optimistic checkpointing, the re-messaging in recovering single point failure
and chained failures are different although the eventual results are consistent. Refer to
Fig. 8, let us consider event source S and chained tasks A, B, C; in window1 all the tasks
processed 5 tuples, and in window2 A processed input s6; s7; s8 from S and output
a6; a7; a8. . . etc. Assume task B fails after processing a6; a7; a8 and emitting b6; b7; b8,
task B would ask A to resend the tuples in window2 starting from a6. In case A does not
fail, A would resend them.

However, if task A also fails before resending, the following would happen.

• Task A must recover itself first by asking S to resend the tuples in window2,
eventually S re-emits s6; s7; s8 to A for processing.

• As a result of A’s recovery, A has already re-emitted a6; a7; a8 to B through the
regular data channel, which is recorded with A, but kept in B’s in-queue without
being processed before B receives and processes the resent tuples explicitly
requested.

• Then in processing B’s resend request, A would identify these already emitted tuples
and resend them through the signal/resend channel. B will process the resent tuples
and later ignored the previously re-emitted tuples.

• Since before B’s failure, B might have emitted b6; b7; b8 to task C, the same tuples
emitted after failure recovery would be ignored by C.

The above system behavior allows us to deal with failure-in-failure correctly. Since
this situation is very rare, the overhead in additional messaging is insignificant.

In summary, compared with the pessimistic checkpointing based recovery
approach, CWCR allows a task to checkpoint and acknowledge only once per window
rather than on the per-tuple basis, but needs to process more resent tuples during failure
recovery (although in each channel the resent tuples are carried by a single message),
which constitute a beneficial performance trade-off in environments where failures are
infrequent and failure-free performance is of primary concern. Further, under CWCR a
task still emits output tuple by tuple continuously; therefore the latency requirement for
real-time stream processing is retained. Since CWCR relies on window boundaries to
synchronize the checkpoints of chained tasks to avoid the so called domino effects,
therefore making the rollback propagation well controlled.

CBAS
..s8, s7, s6

..a8, a7, a6 ..b8, b7, b6

Fig. 8. Recover chained failures

54 Q. Chen et al.

5 Tracking Message Channels Intelligently

5.1 The Messaging Channel Tracking Problem

In order to build a transaction layer on top of an existing parallel and distributed stream
processing framework like Storm, rather than re-develop a new underlying framework
from scratch, we have to solve some specific problems.

In a streaming process topology, a dataflow channel, or messaging channel, is
identified by a pair of source and target tasks; a tuple is carried by a message and
identified by the message-id (mid) composed with the channel and the corresponding
sequence number. Supporting failure recovery based on checkpointing states and
resending messages requires every task, when sending or receiving a message, to rec-
ognize the messaging channel; and specifically, to record the message-id before sending
a message, in order to resend the right message to the right target task if the previously
sent message is missing.

The challenge is, however, common to the modern component based distributed
dataflow infrastructures, the data routing between tasks is handled by separate system
components inaccessible to individual tasks. For example, in a Map-Reduce platform,
passing a resulted tuple from a Map task, Mtask; to a Reduce task, Rtask; is handled by
the platform but unknown to Mtask before emitting. More generally, with a distributed
stream processing infrastructure such as Storm, when a task emits an output tuple, the
destination depends on the grouping type, the current system state or the data content,
which is unknown to the task thus cannot be record by it before emitting, resulting the
following messaging channel paradox.

• If a task T failed after it emitted an output tuple t to a target task T1, when T is
restored, it would re-emit t anyway; however, under certain grouping criterion such
as shuffle-grouping, the re-emitted tuple may go to a different target task, say T2,
since T2 never seen t, it cannot determine whether t is duplicate and ignorable.

• If a task T failed and restored, the current input tuple may be missing, thus T,
according to its records, would request each of its source tasks to resend its latest
tuple; however, if a source task is unable to record its output channels before
emitting every tuple, there is no way for it to know how to find the right tuple and
resent it to the right target task.

Our solution to these problems is characterized by tracking the physical messaging
channel logically by reasoning; for that we introduce the notions of virtual channel,
task alias and messageId-set, and use them in reasoning, tracking and communicating
the channel information logically.

As mentioned previously, we ensure the regular order of data delivery not to be
interrupted by the failure recovery process by providing a designated messaging hub
that is separated from the regular dataflow channel, for signaling ACK/ASK and
resending tuples.

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 55

5.2 Basic Notations

We first define the following notations.

• A topology-wise unique task# is assigned to each task by the underlying
infrastructure.

• A taskId is composed by an operationId (name) and a task#, as operationId.task#;
e.g. “agg.2” identifies a task of operation named “agg”.

• A message channel is identified by the source and target taskIds, denoted by
srcTaskId^targetTaskId; e.g. a message channel from task tran.8 to gemm.6 is
expressed as tran.8^gemm.6.

• A messageId, or mid, is identified by a channel and the message sequence number,
say seq#, via that channel, as channel-seq#, i.e. srcTaskId^targetTaskId-seq#; for
instance, “tran.8^gemm.6-134” identifies the 134th tuple sent via the channel
from “tran.8” to “gemm.6”.

A tuple transmitted through a messaging channel is identified by the messge-id
(or mid).

5.3 MessageId-Set and Virtual MessageId

We consider two kinds of “logical message identifiers”, one for a set of recipients,
another for a virtual recipient.

When an emitted tuple is delivered to multiple recipients through multiple message
channels, we allow the tuple to be identified by a mid-set. A mid-set contains multiple
individual mids with the same source task but with different target tasks. On each
recipient side, from the mid-set the target task picks up the mid with target taskId
matching its own taskId, and records the corresponding input channel and seq#. This
matched mid will be used for identifying both ACK and ASK messages. In the other
words, mid-sets are recorded in the source task only with the output tuples to be sent; in
the target task, only the matched single mid is recorded and used. A task identifies the
buffered tuple matching the mid carried by an ACK or ASK message based on the set-
membership relationship (as mentioned above, the tuple matches an ACK message will
be garbage-collected, and the tuple matches an ASK message will be resent during
failure recovery). A resent tuple is always identified by a single, matched mid.

Further we introduce the notions of task alias and virtual mid to resolve the
destination of message sending with “fields-grouping”, (or hash partition). In this case
an output tuple only goes to one instance task of the given target operation which is
determined by the routing component based on a unique number yield from the hash
and modulo functions; the sending task has no knowledge about the physical desti-
nation before emitting a tuple but can calculate that number, and can treat that number
as the alias of the corresponding target task ID, and use the alias as the target task to
create a virtual mid. A virtual mid is directly recorded and used in both the sending and
receiving tasks.

Below we illustrate how to use these notions to resolve the messaging channels wrt
the typical grouping types.

56 Q. Chen et al.

All-Grouping. With “all-grouping”, a tuple emitted by a task, e.g. gemm.6, is dis-
tributed to all tasks of the recipient operation (e.g. ana.11, ana.12), since there is
only one emitted tuple but multiple physical output channels, we use mid-set to identify
the emitted tuple. For instance, a tuple sent from gemm.6 to ana.11 and ana.12 is
identified by

{gemm.6^ana.11-96, gemm.6^ana.12-96}

On the sender site (e.g. gemm.6), this mid-set is recorded and checkpointed; in
each recipient task (e.g. ana.11) only the single mid matching itself (e.g. gem-
m.6^ana.11-96) will be extracted, recorded and used in ACK and in ASK mes-
sages. In the sender task (e.g. gemm.6) the match of an ACK or ASK message
identified by a single mid, and a kept tuple identified by a mid-set, is determined by set
membership. For example, the ACK or ASK message with mid gemm.6^ana.11-
96 or gemm.6^ana.12-96 matches the tuple identified by {gemm.6^ana.11-
96, gemm.6^ana.12-96}.

Fields-Grouping. With “fields-grouping”, the tuples output from the source task are
hash-partitioned to multiple target tasks, with one tuple going to one destination task;
this is similar to have the Map results sent to the Reduce nodes. With the underlying
streaming platform (common to most other platforms), the target task ID is mapped
from the hash partition index, a, calculated based on the selected key fields list, keyList,
over the number of k tasks of the target operation, as

a = keyList.hashcode() % k

On the source task, although it is impossible to figure out the physical target task
and record the physical mid before emitting a tuple, it is possible to compute the above
hash partition index, and use it as the task alias for identifying the target task. A task
alias is denoted by

operationName.a@

such as gemm.1@, where a is the hash partition index.
In the example topology shown in Fig. 1, the output tuples of task “trans.9” to

tasks “gemm.6” and “gemm.7” are under “fields-grouping” with 2 hash-partitioned
index values 0 and 1, these values, 0 and 1, are used to create aliases of the recipient
tasks. Then the target tasks “gemm.6” and “gemm.7” can be represented by aliases
“gemm.0@” and “gemm.1@” without ambiguity. Although the task alias (gemm.1@)
is different from the real target taskId (gemm.6), it is unique and all tuples sent to
gemm.6 will bear the same target task alias under the given field-grouping.

Then an output tuple, say, from task trans.9 to gemm.6 under “fields-grouping”
is identified by the virtual mid where the target taskId gemm.6 is replaced the alias
“gemm.1@”

trans.9^gemm.1@-35

A virtual mid, such as trans.9^gemm.1@-2, is directly recorded at both source
and target tasks and used in both ACK and ASK messages. There is no need to resolve
the mapping between a task-alias and its actual task-Id.

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 57

In case an operation has two or more target operations, such as in the above
example, the operation “trans” has 2 target operations, “gemm” and “trmm”, an output
tuple can be identified by a mid-set containing virtual-mids; for instance, an output
tuple from task “trans.9” is identified by the following mid-set

{trans.9^trmm.0@-30, trans.9^gemm.1@-35}

Indicating that the tuple is the 30th tuple sent from “trans.9” to a trmm task, and
the 35th a gemm task. The recipient task with the recorded alias trmm.0@, can extract
the matched virtual-mid trans.9^trmm.0@-30 based on the match of operation
name “trmm”, for recording the seq# 30 for that virtual channel.

Global-Grouping. With global-grouping, tuples emitted from a source task are routed
to the same instance task of the target operation; and the selection of the recipient task
is made by a separate routing component outside of the source task. Our goal is for the
source task to record the messaging channel before each tuple is emitted. For this
purpose we do not need to know what the exact task is, but create a single alias to
represent the recipient task. In this case, all tuples go to the same recipient task that is
represented by the same alias; the latest seq# is recoded on both the sender and
receiving sides.

Direct-Grouping. With direct grouping, a tuple is emitted using the emitDirect API
with the physical taskId (more exactly, task#) as one of the parameter. For channel
specific recovery we extend the Topology Builder to turn all other grouping types to
direct grouping where for each emitted tuple, the destination task is selected on-the-fly
based on load balancing, i.e. the one currently with least load (i.e. least seq#) is chosen.

Shuffle-Grouping. Shuffle grouping is a popular grouping type. As mentioned above it
is converted to direct grouping where a tuple is emitted to a designated task selected
based on load balancing, i.e. the channel with least seq# is selected.

In summary, the combination of mid-set and virtual mid allows us to track the
messaging channels of a task with multiple grouping criteria: for “all-grouping”
the concept of mid-set is adopted; for “fields-grouping”, task-alias and virtual-mid are
used. We support “direct-grouping” systematically (rather than letting user to decide)
based on load-balancing. Further we convert all other grouping types, which are ran-
dom by nature, to our system-supported direct grouping.

5.4 System Support for Channel Tracking

For guiding channel resolution, we extract the topology information from the streaming
process definition, and create the task specific meta-data objects: Task-Input-Context,
TIC, and Task-Output-Context, TOC, for specifying input and output channels, grouping
types, etc. Multiple TIC and TOC objects are associated with a task.

A task, T, has a list of TIC objects; with each specifying the input context of one
source task of T; it comprises the following:

• task ID of source task Ts, that is the key field of TIC;
• operation ID (name) of source operation Os, of that Ts is an instance;

58 Q. Chen et al.

• grouping type (shuffle, field, … etc.);
• channel;
• stream ID (abstract dataflow between the source operation Os, and the operation of

this task);

A task, T, has a list of TOC objects; with each specifying the output context of one
target operation (with one or more target task instances) of T; it comprises the
following:

• operation ID (name) of target operation, Ot, that is the key field of TOC;
• grouping type (shuffle, field, … etc.);
• key indices (int []) indicating the key fields of output tuples for hash partitioning in

the field-grouping case;
• channel list comprising the channels from this task to all the tasks of the target

operation, Ot.
• stream ID (abstract dataflow between the operation of this task and the target

operation Ot.

While the TIC list and the TOC list provide static grouping information, the actual
input and output < channel, seq# > are recorded in the HashMaps, inChannelBook and
outChannelBook, of each task. Note that the seq# is the latest (largest) sequence number.

Tracking Output Channel in Sending Task. A single tuple emitted from a task may
go to one or more target tasks. Using TOC, these target messaging channels can be
traced operation by operation. The messaging channels and seq#s are represented with
either actual or virtual, either single or set, mids, and recorded in the outChannelBook
of the task.

For re-sending a tuple upon request (through a separate messaging channel) the task
selects the buffered tuple with the tuple’s mid matching the requested mid, or the
tuple’s mid-set containing the requested mid; but resend the tuple with the single,
logically matched mid.

Tracking Input Channel in Recipient Task. When an input tuple is received, its mid
or mid-set is extracted and an individual mid (possibly virtual) that logically matches
the recipient task is singled out, that single mid is recorded in the inChannelBook, and
used in ACK and ASK messages.

During failure-recovery, the restored task, T, would ask each source task to resend
the possible next tuple wrt the latest one recorded in T’s inputChannelBook, thus need
to compose a mid for the requested tuple guided by its TIC and inChannelBook.

6 Experiments

We have built the Fontainebleau platform and provided the failure recovery capability
described in the previous sections. In this section we briefly overview our experimental
results. Our testing environment include 4 Linux servers with gcc version 4.1.2
20080704 (Red Hat 4.1.2–50), 32G RAM, 400G disk and 8 Quad-Core AMD Opteron
Processor 2354 (2200.082 MHz, 512 KB cache). One server holds the coordinator

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 59

daemon, others hold workers daemons, each worker supervises several worker pro-
cesses, and each worker process handles one or more tasks. The experiments are
designed on the streaming process example shown in Fig. 1 with simulated data stream.
However, in these experiments we focus on the performance of one task in the
streaming process topology, because our goal is to check the latency ratios of (a)
checkpointing versus non-checkpointing, (b) ASK-based versus ACK-based recovery,
and (c) optimistic versus pessimistic checkpointing. In these cases the overall perfor-
mance of multiple parallel tasks with overlapping disk-writes, etc., cannot give clear
measures for the above ratios.

In the streaming process example shown in Fig. 1, the heaviest computation is
conducted by tasks of operations “gemm” and “trmm” which are similar so let us focus
on “gemm”. It is the abbreviation for “General Matrix Multiply (GEMM)”, a subroutine
in the Basic Linear Algebra Subprograms (BLAS) that calculates the new value of
matrix C based on the matrix-product of matrices A and B, and the old value of matrix
C, as

C = alpha*AB + beta*C

where alpha and beta are scalar coefficients. GEMM is often tuned by High Perfor-
mance Computing (HPC) vendors to run as fast as possible, because it is the building
block for so many other routines. It is also the most important routine in the LINPACK
benchmark. For this reason, implementations of fast BLAS library typically focus on
GEMM performance first. Our experiment results presented in this section is based on
the gemm task.

6.1 Latency Overhead of Checkpointing

Let us first exam the impact of checkpointing to the performance of the streaming
process involving GEMM operations. For this reason we focus on the performance
ratio with and without checkpointing, particularly the turning point on the size of input
matrices where checkpointing shows significant impact to the performance before it,
and insignificant impact after it. As in the tuple by tuple stream processing the overall
latency is nearly proportional to the number of input tuples, and we measure the
performance ratio with and without checkpointing, the impact of the number of input
tuples, say from 1 K to 1 M, is not significant.

In our testing, each original input tuple has 3 two-dimensional N × N matrices of
float values, and we measure the above ratio wrt N. Our results shown in Fig. 9 indicate
that when the matrix dimension size N is smaller than 600, checkpointing has visible
impact to the latency of the stream processing; after the matrix dimension size N
overpasses 600, that impact becomes insignificant, since in that case the latency is
dominated by the computation complexity.

60 Q. Chen et al.

6.2 ASK Versus ACK Based Recovery (Pessimistic)

In this experiment we compared the performance of the ASK-based transactional
stream processing with the ACK based one, under pessimistic checkpointing. In our
testing, the failure rate is set to 0.1 %. The matrix dimension size is fixed to 20. We
measure the latency of a “gemm” task wrt its input tuples (a partition of tuples input to
all “gemm” tasks) ranging from 1000 to 10000.

With the ACK based approach, a task does not move on to emit the next tuple until
the success of processing the current tuple has been confirmed by the ACKs from all
target tasks; otherwise the tuple will be re-sent after timeout. Such latency overhead is
incurred during processing each tuple. However, under the proposed ASK based
approach, a task does not wait for the acknowledgement to move forward as the
acknowledgement is handled asynchronously to the task execution. In this case the
corresponding latency overhead is only incurred during failure recovery which is rare.
As a result, the ASK based approach can effectively improve the overall performance.
Our comparison result shown in Fig. 10 has verified this observation.

6.3 Optimistic Versus Pessimistic Checkpointing

In this experiment we compare the performance of optimistic and pessimistic check-
pointing with the backtrack-based failure recovery mechanism. In our testing, the
tuples are timestamped by seconds and the window boundary is set to 1 min with each
containing approximately 100 tuples except the last window that contains less tuples;

Latency Ratio with and without checkpoint

0

1

2

3

4

5

10 50 100 200 400 600 800

matrix size

ra
tio

Fig. 9. Latency ration with and without checkpoint

Latency Ratio: ASK vs. ACK based Recovery w
Pessimistic Checkpoint

0

200

400

600

800

1000 5000 7500 10000

of tuples

se
c

ACK ASK

Fig. 10. Performance comparison of ASK and ACK based recovery mechanisms with pessimistic
checkpointing

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 61

the matrix dimension size is fixed to 20; and the failure rate is set to 0.1 %. The latency
is measured on one “gemm” task with the input tuples (a partition of tuples input to all
“gemm” tasks) ranging from 1000 to 10000. With pessimistic checkpointing, the output
tuples must be persisted and acknowledged one by one (although asynchronous with
execution), which incurs the performance penalty from both disk access and message
delivery. With optimistic checkpointing, a task checkpoints, and is acknowledged, only
once per window. Although the latency overhead incurred during failure recovery is
higher, failures are rare thus the overall performance can be significantly enhanced. Our
comparison result shown in Fig. 11 has verified this observation.

The performance comparison of optimistic and pessimistic checkpointing strongly
depends on the computation complexity. The “gemm” tasks in our testing stream
processing topology are computation-heavy compared with many event processing
tasks thus the computation time contributes to a big portion of the elapse time, and the
performance gain with the optimistic checkpoint mechanism is not very sharp. When
the tasks are computation-lighter and the disk access cost for checkpoining is more
dominated, the benefit of optimistic checkpointing becomes tremendous.

7 Conclusions

Fault-tolerance is the key requirement for applying stream processing to industry-scale
and mission-critical applications; however the overhead for supporting fault-tolerance
must be minimized to accommodate real-time analytics. This issue has been studied
from various angles. The snapshot isolation model studied in the context of database
transaction cares about stepwise state consistency but not failure recovery; the instant
consistency of global state studied in the context of general distributed computing is
too rigid for stream processing that is essentially based on eventual consistency. The
checkpoint based failure handling is generally based on pessimistic checkpoining and
forward tracking, i.e. a task checkpoints every output tuple before emitting, and waits
for acknowledgement before rolling forward to emit the next one. The latency incurred
by those approaches is too high to deal with real-time stream processing.

In this work we have taken an initial step to make transactional stream processing
feasible to real-time stream processing. We integrated the optimistic checkpointing

Pessimistic vs. Optimistic Checkpoint in
ASK based Recovery

0

100

200

300

400

1000 5000 7500 10000

of tuples

se
c

Pessimistic Optimistic

Fig. 11. Performance comparison of optimistic and pessimistic chepointing based recovery
mechanisms

62 Q. Chen et al.

mechanism with the backtrack-based failure recovery mechanism for the combined
benefits. With the proposed Continued stream processing with Window-based
Checkpoint and Recovery (CWCR) approach, we allow a task to checkpoint and
acknowledge only once per window but continuously emit tuples in real-time stream
processing. We also incorporated the inter-tasks checkpoint synchronization with the
window semantics of stream processing, to eliminate the possibility of uncontrolled
rollbacks. To implement these mechanisms on top of an existing stream processing
platform where message routing is handled by separate system components inacces-
sible to individual tasks, we track physical messaging channels logically with the
notions of virtual channel, task alias and messageId-set. To ensure the regular order of
data flows not to be interrupted by the failure recovery process, we provided a task with
the designated messaging hub, separated from the regular dataflow channel, for sig-
naling ACK/ASK messages and for resending tuples,

We have implemented these mechanisms on Fontainebleau, the distributed stream
analytics infrastructure we develop by extending the open sourced Storm platform. Our
experiment results reveal the novelty of the proposed technologies, and most signifi-
cantly, the feasibility to support fault-tolerance with minimized overhead for real-time
stream processing.

References

1. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations
and query execution. VLDB J 15(2), 121–142 (2006)

2. Abadi, D.J., et al.: The design of the Borealis stream processing engine. In: CIDR (2005)
3. Balazinska, M., Balakrishnan, H., Madden, S., Stonebraker, M.: Fault-Tolerance in the

Borealis distributed stream processing system. In: SIGMOD 2005 (2005)
4. Botan, I., Fischer, P.M., Kossmann, D., Tatbu, N.: Transactional stream processing. In:

EDBT 2012 (2012)
5. Johnson, D.B., Zwaenepoel, W.: Recovery in distributed systems using optimistic message

logging and checkpointing. J. Algorithms 11, 462–491 (1990)
6. Chen, Q., Hsu, M., Zeller, H.: Experience in continuous analytics as a service. In: EDBT

2011 (2011)
7. Chen, Q., Hsu, M.: Experience in extending query engine for continuous analytics. In: Bach

Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 190–
202. Springer, Heidelberg (2010)

8. Chen, Q., Hsu, M.: Query engine net for streaming analytics. In: Proceedings of 19th
International Conference on Cooperative Information Systems (CoopIS) (2011)

9. DeWitt, D.J., Paulson, E., Robinson, E., Naughton, J., Royalty, J., Shankar, S., Krioukov,
A.: Clustera: an integrated computation and data management system. In: VLDB 2008
(2008)

10. Franklin, M.J., et al.: Continuous analytics: rethinking query processing in a network-effect
world. In: CIDR 2009 (2009)

11. Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S., Doo, M.C.: SPADE: the system S declarative
stream processing engine. In: ACM SIGMOD 2008 (2008)

12. Hwang, J.-H., Balazinska, M., et al.: High-availability algorithms for distributed stream
processing. In: Proceedings of ICDE 2005, Washington, DC, USA (2005)

Backtrack-Based and Window-Oriented Optimistic Failure Recovery 63

13. Johnson, D.B., Zwaenepoel, W.: Recovery in distributed systems using optimistic message
logging and checkpointing. J. Algorithms 11, 462–491 (1990)

14. Li, J., Karp, A.: Access control for the services oriented architecture. In: ACMWorkshop on
Secure Web Services (2007)

15. Shah, M.A., Hellerstein, J.M., Brewer, E.: Highly available, fault-tolerant, parallel datafows.
In: Proceedings of SIGMOD, New York, USA (2004)

16. Prasad Sistla, A., Welch, J.L.: Efficient distributed recovery using message logging. In:
Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing
(1989)

17. Stiegler, M., Li, J., Kambatla, K., Karp, A.: Clusterken: A Reliable Object-Based Messaging
Framework to Support Data Center Processing, HPL-2011–44 (2011)

18. Tweeter, Transactional topologies (2012). https://github.com/nathanmarz/storm/wiki/
Transactional-topologies

19. Wang, Y.M., Fuchs, W.K.: Optimistic message logging for independent checkpointing in
message-passing systems. In: IEEE Symposium on Reliable Distribution System, pp. 147–154
(1992)

64 Q. Chen et al.

https://github.com/nathanmarz/storm/wiki/Transactional-topologies
https://github.com/nathanmarz/storm/wiki/Transactional-topologies

	Backtrack-Based and Window-Oriented Optimistic Failure Recovery in Distributed Stream Processing
	Abstract
	1 Introduction
	1.1 Prior Art
	1.2 Proposed Approach

	2 Distributed Stream Processing Infrastructure
	2.1 Graph Structured Streaming Process
	2.2 Distributed Stream Processing Platform
	2.3 Backtrack Based Failure Recovery
	2.4 Separated Message Hub for Recovery

	3 Pessimistic Checkpointing with Backtrack Recovery
	4 Optimistic Checkpointing with Backtrack Recovery
	4.1 Concept and Problem
	4.2 Window Semantics of Stream Processing
	4.3 Window-Based Checkpoint and Recovery
	4.4 CWCR Synchronization Point
	4.5 CWCR Algorithms
	4.6 Failure in Failure

	5 Tracking Message Channels Intelligently
	5.1 The Messaging Channel Tracking Problem
	5.2 Basic Notations
	5.3 MessageId-Set and Virtual MessageId
	5.4 System Support for Channel Tracking

	6 Experiments
	6.1 Latency Overhead of Checkpointing
	6.2 ASK Versus ACK Based Recovery (Pessimistic)
	6.3 Optimistic Versus Pessimistic Checkpointing

	7 Conclusions
	References

