
A Multiple Query Optimization Scheme
for Change Point Detection on Stream

Processing System

[Position Paper]

Masahiro Oke and Hideyuki Kawashima(&)

University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Japan
oke@kde.cs.tsukuba.ac.jp, kawasima@cs.tsukuba.ac.jp

Abstract. To accelerate simultaneous execution of multiple change point
detection (CPD) queries, this paper proposes to apply the multiple query opti-
mization scheme which has been studied in DBMS or DSMS. We propose to
share a part of steps of CPD procedures, and we propose an algorithm for the
sharing. The result of experiments showed that our proposal reduces more than
80 % internal steps and achieved 5 times performance improvement. To the best
of our knowledge, this is the first work that applies the multiple query optimi-
zation scheme for CPD.

Keywords: Change point detection � Multiple query optimization

1 Introduction

A variety of techniques are used to detect malware. Data stream management systems
are effective tools for the problem. For example, TCP syn flood detection is realized
group-by-aggregate continuous query as shown in [5]. It should be noted that new
types of malware appear every day, and [1] people do not accept to be infected by
malware. Therefore new malware detection techniques will be developed continually
beyond relational operators. To detect malware, a signature based detection method is
used as a basic method. This method does not perform if a signature is not yet created
when malware arrives.

Machine learning techniques or data mining techniques are sometimes adopted for
such malware. For example, an incident analysis system NICTER [1] uses change point
detection technique (CPD) [2] to detect malware in real-time using its dark net traffic
generated by more than 160,000 unused IP addresses. CPD is an outlier detection
technique for time series data based on autoregressive model with the concept of
discounting. CPD requires 6 parameters to be executed. The parameters are deeply
related to detection accuracy as other machine learning techniques. Choosing a single
parameter set that shows the best accuracy is desirable. Such a choice is impossible
without predicting the future. Therefore, multiple parameter sets should be chosen and

© Springer-Verlag Berlin Heidelberg 2015
M. Castellanos et al. (Eds.): BIRTE 2013 and 2014, LNBIP 206, pp. 150–158, 2015.
DOI: 10.1007/978-3-662-46839-5_10



multiple CPD should run simultaneously to improve the accuracy of malware detec-
tion. We are developing Falcon, yet another DSMS which provides not only relational
operators but also data mining operators including CPD.

On running Falcon, we found a serious performance issue when running N pro-
cesses. To accelerate simultaneous execution of multiple CPD procedures, this paper
proposes a multiple query optimization scheme for CPD. For relational database sys-
tem, a variety of multiple query optimization (MQO) techniques have been studied
such as sharing common sub-expressions [3]. On the other hand, our proposal is
dedicated for CPD, and it shares internal steps in CPD, which is different from usual
MQO. To the best of our knowledge, this is the first work that describes MQO for CPD.

The rest of this paper is organized as follows. Section 2 describes CPD in detail.
Section 3 proposes an efficient computation scheme for multiple CPD operations.
Section 4 evaluates our proposal techniques. Finally Sect. 5 concludes this paper.

2 Related Work: Change Point Detection

2.1 CPD (Change Point Detection)

Change point detection is an outlier detection technique for time series data proposed
by Takeuchi and Yamanishi [2]. CPD can detect points that change dramatically on
time series data. An incident analysis system NICTER [1] uses CPD to detect occur-
rences of malware over network packets arrived at its dark net consisting of more than
160,000 nodes. CPD uses an auto-regressive (AR) model as a time series model.
Roughly saying, CPD is constituted of 4 steps as shown in Fig. 1. They are (step 1 and
3) learning probability density and (step 2 and 4) scoring and moving averages of
scores. The learning algorithms used in step 1 and 3 are referred to as sequential
discounting AR model learning (SDAR). SDAR can deal with non-stationary time
series data. Traditional learning algorithms on AR model are batch processing, while
SDAR is an online learning algorithm that executes learning processes with the arrival
of new data. Therefore its learning cost is less than batch processing scheme.

Fig. 1. Steps for CPD

A Multiple Query Optimization Scheme for Change Point Detection 151



2.2 SDAR (Sequentially Discounting Auto Regressive)

The SDAR algorithm shown in step 1 and 3 in Fig. 1 is a learning algorithm of AR
model with discounting and online learning features. The discounting feature decreases
the effect of a t-step previous value. The effect is modified to ð1� RÞ � t, however the
range of R is between 0 to 1. Input parameters of SDAR algorithm are R (discounting
ratio), l̂(mean), Cj(auto covariance), x̂j and R̂(covariance). All of the five parameters
should be provided by a user before starting the SDAR algorithm. We explain five
steps of SDAR shown in Fig. 2.

First, on reading a new data object xt, SDAR executes the following computations
shown as [SDAR-1] and [SDAR-2] in Fig. 2.

l̂ ¼ 1� Rð Þl̂þ Rxt

Cj ¼ 1� Rð ÞCj þ Rðxt � l̂Þðxt�j � l̂ÞT

Then we write a Yule-Walker equation as follows.

XK

t�1
xiCj�i ¼ Cj

By solving the equation, we obtain x1. . .xK . This is [SDAR-3] in Fig. 2. Using
them, we obtain x̂t and R̂ as follows. They are [SDAR-4] and [SDAR-5] in Fig. 2.

x̂t ¼
XK

i¼1
x̂i xt�i � l̂ð Þ þ l̂

R̂ ¼ 1� Rð ÞR̂þ Rðxt � x̂tÞðxt � x̂tÞT

3 Multiple Query Optimization for CPD

3.1 Problem on CPD: Influence of Parameters to Detection Accuracy

CPD has 3 kinds of parameters for input: discounting parameter R, AR model order
K and moving time T. CPD requires 6 parameters: aR, aK , aT , bR, bK and bT , which
will be explained in Sect. 3.2. Parameters aR, aK and aT are for 1st stage learning which

Fig. 2. Steps of SDAR

152 M. Oke and H. Kawashima



is shown as CPD-1 and CPD-2 in Fig. 1. On the other hand, bR, bK and bT are for 2nd

stage learning which is shown as CPD-3 and CPD-4 in Fig. 2. It should be noted that
CPD-1 and CPD-3 are the same, and CPD-2 and CPD-4 are the same, which is the
reason why CPD is referred to as 2 step stage learning. Figure 3 shows the effect of
parameter sets to detection accuracy for CPD. In Fig. 3, horizontal axis shows time.
Left vertical axis shows frequency (the number of accesses) shown by blue graph
which locates on the upper side and changes frequently. Right vertical axis shows CPD
score shown by brown graph which locates on the lower side and changes infrequently.
In the left one, CPD score is responded by outlier accesses. On the other hand, in the
right one, CPD score does not show any response with regard to frequency. Left
parameter set is appropriate while right parameter set is inappropriate.

If our motivating applications are for stored database, then we can tune parameters
and can find out the best parameter set. Streaming applications, however, does not take
such a chance. Therefore, to reduce false negatives, multiple parameter sets should be
tried simultaneously. Discounting parameter R decreases influence of past data.
Therefore if R is small, CPD score is greatly affected by past data. AR model order
K expresses the number of data used for learning. If we set K large, an AR model learns
from more data. However, it should be noted that larger K does not directly mean better
model in the viewpoint of Akaike Information Criterion. Moving time T is used to
make outlier scores smoothly and to compute change point score. If T is large, then
change detection is for long duration. If T is small, then it is for short duration.
Parameters should be set appropriately for each malware. Since malware can be
unknown, many types of parameter sets should be carefully tuned.

3.2 Coping with Many Runs: Multiple Query Optimization for CPD

As described above, to detect malware appropriately, multiple CPD procedures should
be executed simultaneously. Let’s think about a situation that we execute many CPD
runs each of which has an identical parameter set. Then the amount of computation
should be large. It naturally incurs performance degradation such as long latency. Such
a long latency is not desired since delay of malware detection may increase damage to
internal network by the intrusion.

A simple way is using advanced hardware such as many-core, FPGA or GPGPU
that provide massively parallel computations. This is a promising approach. However,
it requires additional power and money cost. This paper adopts a different approach.
It is multiple query optimization that shares computations.

Fig. 3. Appropriate parameter set (left) and inappropriate one (right)

A Multiple Query Optimization Scheme for Change Point Detection 153



Moving time T is used for smoothing outlier score and computing change point
score. Discounting parameter R and AR order K are used for the computation of SDAR
algorithm. Discounting parameter R is only used for computation the mean l in SDAR
algorithm. Obviously, these parameters can be same. The inputs of the second stage
learning are generated by the output of the first stage learning, and they are usually
different. Therefore, it is difficult to share the computation of the second stage learning.

We denote discounting parameter, AR model order and moving time T of the first
stage learning are denoted as aR, aK and aT respectively. Similarity, we denote the
inputs of second SDAR as bR, bK and bT .

3.2.1 Sharing Multiple CPDs in Four Patterns

There are six parameters for CPD. Parameter aR and aK are used for CPD-1 (SDAR).
Parameter aT is used for CPD-2. Parameter bR and bK are used for CPD-3(SDAR).
Parameter bT is used for CPD-4. Depending on situation, we propose to share com-
putations in four patterns as shown in Fig. 4. Assume we have two users, user 1 and
user 2 who issue CPD queries. In naïve case, an input (xt) is routed to inputs of two
CPDs, CPD-1s. Even if parameters are the same, four steps (CPD-1, CPD-2, CPD-3,
and CPD-4) are executed for each user. It should be noted that shared CPDs should
form of tree. It is because all of child nodes must have the same input computation
value from a parent. Our proposal reduces the execution cost by sharing computations
as follows:

Pattern 1: Sharing CPD-1 if aR and aK are the same.
Pattern 2: Sharing CPD-1, 2 if aR, aK and aT are the same.
Pattern 3: Sharing CPD-1, 2, 3 if aR, aK , aT , bR and bK are the same.
Pattern 4: Sharing CPD-1, 2, 3, 4 if aR, aK , aT , bR, bK and bT are the same.

3.2.2 Sharing Multiple SDARs

As shown in Fig. 2, SDAR algorithm is constituted of five steps. They are SDAR-1,
SDAR-2, SDAR-3, SDAR-4, and SDAR-5. SDAR-1 uses only discounting parameter
(aR for CPD-1 or bR for CPD-3). The rest of steps use both discounting parameter and
AR order (aK for CPD-1 or bR for CPD-3). Therefore, if discounting parameter is the
same for two queries, then we share the computation to improve performance. We
show additional sharing patterns in Fig. 4: pattern-1’ and pattern-3’.

Pattern 1’: Sharing SDAR-1 in CPD-1 if aR are the same.
Pattern 3’: Sharing CPD-1, 2 and SDAR-1 in CPD-3 if aR, aK , aT , bR are the same.

3.2.3 Choosing the Sharing Parameters

To improve the performance, the larger sharing is the better. Therefore our policy to
choose sharing patterns is as follows.

154 M. Oke and H. Kawashima



Step 5 of algorithm 1 is important. When we have N queries, step 5 executes scan
operation over K queries to find the same values in a cluster. Therefore its time
complexity is O(N) for N queries (where N is the sum of queries in all of clusters) in a
step. Since we have six parameters, total scan cost becomes 6 N.

4 Evaluation

Our experimental environment is as follows. OS: Ubuntu 10.04 LTS, CPU: Intel(R)
Xeon(R) CPU E5640, 2.60 GHz, 4 cores, RAM 16 GB.

Fig. 4. Naïve computation and sharing computations for multiple runs

A Multiple Query Optimization Scheme for Change Point Detection 155



4.1 Performance Improvement by Number of Operators

We first investigated how much of micro operators can be reduced by using our
proposal. Micro operator means a part of CPD or SDAR denoted as CPD-x or SDAR-x
in the above. We tried three kinds of parameter sets. In the first parameter set, each
parameter can be shared by all the queries. In the second parameter set, parameter
values are provided randomly. In the third parameter set, parameter values are provided
in the grid style, which requires additional explanation. Let’s assume we have integer
parameter x and y. Since both parameters can take infinite types, we should pick up
some representative parameter sets. If we sample two points for each parameter, the
number of parameter sets becomes 4 (= 2 × 2). Figure 5 shows x and y take 1 and 2
respectively, and parameter sets become {1,1}, {1,2}, {2,1}, and {2.2}. Grid style
sampling is often used as a parameter set selection policy. The result of multiple runs
are summarized using aggregation technique such as majority voting.

We show the result of experiments in Table 1. Parameter pattern used for the
experiment was uniform, 3 random pattern sets, and 3 grid style sets. Applying multiple
runs with different parameter sets and aggregating result is common in data mining [4].
However, to the best of our knowledge, appropriate tuning method for parameter sets is
not yet matured. Obviously uniform dataset provides dramatic performance though
such a case does not happen in the real. In random cases, performance gain is deeply
related to types of random values. As types increase, performance gain reduces. In grid
style cases, performance gain is also related to N (number of sampling values). As N
increases, performance gain increases. Our proposal is especially effective for grid style
policies.

Fig. 5. Parameter sampling in grid style ({1,1}, {1,2}, {2,1}, and {2.2})

Table 1. Reduction of operators by sharing techniques

Parameter pattern #
Queries

Naïve (#
operators)

Sharing (#
operators)

Performance gain
(reduction ratio)

Uniform 64 384 6 98.4 %
Random (2 values) 64 384 101 73.7 %
Random (10 values) 64 384 315 18.0 %
Random (100 values) 64 384 366 4.7 %
Grid style (N = 2) 64 384 126 67.2 %
Grid style (N = 4) 4096 24576 5460 77.7 %
Grid style (N = 8) 262144 1572864 299592 80.1 %

156 M. Oke and H. Kawashima



It should be noted that that “performance gain” does not mean execution time.
It means the number of reduced micro operators.

4.2 Performance Improvement in Execution Time

To measure the performance in execution time, we prepared a dataset. It is a data
sequence generated by the following AR model.

xt ¼ 0:6xt�1 � 0:5xt�2 þ et ð1Þ

In the equation, et is a Gaussian random variable with mean 0 and variance 1. This
dataset consists of 10000 records. Change points occur at times
1000� k þ 1ðk ¼ 1; . . .; 9Þ.

We consider a situation that we apply 100 CPDs simultaneously to the dataset. We
measure execution time for both our proposal and naïve policy. Here we explain the
meaning of symbols in Table 2. aK and bK expresses AR order. aT and bT express
averaging time. aR and bR express discounting parameters.

4.3 Result

Table 2 shows the result of experiments. “Shared CPD-1” denotes a case that shares
multiple CPDs when aR; aK ; aT are the same can be shared. “Shared SDAR-1” denotes
a case when only aR can be shared. We chose 10 patterns of parameter sets as shown in
the Table 2.

We found that AR order is an important factor for performance. Experiment 10
shows that “shared CPD-1” is 5 times faster than “naïve”, which is the best perfor-
mance improvement. In this case, AR-order aK is set to 10, which is the highest in
parameter sets. An interesting case is experiment 8 which achieves at most 1.92 times

Table 2. Execution time of naive, shared CPD-1 and shared SDAR-1.

ID Parameters Execution time (s) Performance gain
(times)

aR aK aT bR bK bT Naive Shared
CPD-1

Shared
SDAR-1

Shared
CPD-1

Shared
SDAR-1

1 .02 2 5 .02 3 5 2.92 1.77 2.84 1.65 1.03

2 .02 4 5 .02 3 5 3.65 1.77 3.58 2.06 1.01

3 .02 2 5 .02 4 5 3.29 2.17 3.22 1.52 1.02

4 .005 2 5 .02 4 5 2.91 1.76 2.82 1.65 1.03

5 .02 2 5 .005 3 5 2.89 1.77 2.82 1.64 1.03

6 .02 2 7 .02 7 5 3.00 1.87 2.88 1.60 1.03

7 .02 1 5 .02 1 5 1.96 1.11 1.88 1.78 1.04

8 .02 10 10 .02 10 10 11.2 5.84 11.1 1.92 1.01

9 .02 1 10 .02 10 10 6.66 5.80 6.61 1.15 1.01

10 .02 10 10 .02 1 10 6.68 1.34 6.57 5.00 1.02

A Multiple Query Optimization Scheme for Change Point Detection 157



improvement though AR-order aK is 10. The reason may be because of latter
part. Since second AR-order bK is also set to 10 in experiment 8. Our experimental
condition does not execute sharing in the latter part, and therefore larger bK incurs
performance degradation indicated as the worst execution times which are 11.2 s for
Naïve, 5.84 s for shared-CPD1, and 11.1 sec for shared-SDAR-1 respectively.

Another observation is small improvement gained by sharing SDAR-1. Perfor-
mance improvement by SDAR-1 is at most 4 %, which is negligible when comparing
with CPD-1.

5 Conclusions and Future Work

This paper proposed to incorporate a multiple query optimization scheme for change
point detection. We found 6 sharing patterns for CPD. The result of experiments
showed that our scheme reduces 80.1 % of operators when parameter setting policy is
grid style (N = 8), and achieves 5 times performance improvement compared with
naïve approach. This paper concludes that our scheme for CPD is effective for at least
synthetic datasets.

There are some future works. First future work is investigating the degree of
effectiveness using real datasets including packet streams including malware. Second
future work is reducing the cost to decide whether sharing or not. Our current algorithm
shown in Algorithm 1 takes O(N), which is too large then N is enormous.

Acknowledgement. This work is supported by KAKENHI(#24500106).

References

1. I, D., Yoshioka, K., Eto, M., Yamagata, M., Nishino, E., Takeuchi, J., Ohkouchi, K., Nakao,
K.: An incident analysis system NICTER and its analysis engines based on data mining
techniques. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol.
5506, pp. 579–586. Springer, Heidelberg (2009)

2. Takeuchi, J., Yamanishi, K.: A unifying framework for detecting outliers and change points
from time series. IEEE Trans. Know. Data Eng. 18(4), 482–492 (2006)

3. Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive continuous
queries over streams. In: Proceedings of ACM SIGMOD, pp. 49–60 (2002)

4. Li, H., Sun, J.: Majority voting combination of multiple case-based reasoning for financial
distress prediction. Expert Syst. Appl. 36(3), 4363–4373 (2009)

5. Srivastava, D., Golab, L., Greer, R., Johnson, T., Seidel, J., Shkapenyuk, V., Spatscheck, O.,
Yates, J.: Enabling real time data analysis. Keynote Proc. VLDB Endowment (PVLDB) 3(1),
1–2 (2010)

158 M. Oke and H. Kawashima


	A Multiple Query Optimization Scheme for Change Point Detection on Stream Processing System
	Abstract
	1 Introduction
	2 Related Work: Change Point Detection
	2.1 CPD (Change Point Detection)
	2.2 SDAR (Sequentially Discounting Auto Regressive)

	3 Multiple Query Optimization for CPD
	3.1 Problem on CPD: Influence of Parameters to Detection Accuracy
	3.2 Coping with Many Runs: Multiple Query Optimization for CPD
	3.2.1 Sharing Multiple CPDs in Four Patterns
	3.2.2 Sharing Multiple SDARs
	3.2.3 Choosing the Sharing Parameters


	4 Evaluation
	4.1 Performance Improvement by Number of Operators
	4.2 Performance Improvement in Execution Time
	4.3 Result

	5 Conclusions and Future Work
	Acknowledgement
	References


