
Automatically Partitioning Data to Facilitate
the Parallelization of Functional Programs

Michael Dever(B) and G.W. Hamilton

Dublin City University, Dublin 9, Ireland
{mdever,hamilton}@computing.dcu.ie

Abstract. In this paper we present a novel transformation technique
which, given a program defined on any data-type, automatically derives
conversion functions for data of that type to and from well-partitioned
join-lists. Using these conversion functions we employ existing program
transformation techniques in order to redefine the given program into an
implicitly parallel one defined in terms of well-partitioned data.

1 Introduction

The development of parallel software is inherently more difficult than that of
sequential software and developers can have problems thinking in a parallel set-
ting [16]. As the limitations of single-core processor speeds are reached, the
developer has no choice but to reach for parallel implementations to obtain the
required performance increases.

There are many existing automated parallelization techniques [2,3,8–11,17–
19], which, while powerful, require that their inputs are defined using a cons-
list. This is an unreasonable burden to place upon a developer as it may not be
intuitive to define their program in terms of a cons-list. In order to remove this
burden, this paper presents an automatic transformation for programs which
automatically partitions the data they are defined on and uses distillation [7]
to redefine these programs into implicitly parallel ones defined on the resulting
well-partitioned data.

The remainder of this paper is structured as follows: Sect. 2 details the lan-
guage used throughout this paper. Section 3 details the transformation which
converts a given program into one defined on well-partitioned data. Section 4
presents an example program, whose data is well-partitioned using our technique
and an implicitly parallel program automatically derived on this well-partitioned
data. Section 5 presents a summary of related work and compares our techniques
with this work. Section 6 presents our conclusions and plans for further work.

2 Language

We use a standard Haskell-like higher-order functional language throughout this
paper, with the usual cons-list notations, where data-types are defined as shown

c© Springer-Verlag Berlin Heidelberg 2015
A. Voronkov and I. Virbitskaite (Eds.): PSI 2014, LNCS 8974, pp. 59–66, 2015.
DOI: 10.1007/978-3-662-46823-4 5



60 M. Dever and G.W. Hamilton

Fig. 1. Data-type definition

in Fig. 1. Within this language, a data-type T can be defined with the construc-
tors c1, . . . , cm. Polymorphism is supported via the use of type variables, α. We
use (e :: t) to denote an expression e of type t.

Within this language, join-lists are defined as shown in Fig. 2. The language
has some useful built-in functions: split which takes a cons-list and splits it in
half returning a tuple containing the left and right halves and fst which takes a
tuple and returns its first element. The function removeAllτ , given a sequence
of types, removes all occurrences of the type τ from the given sequence.

Fig. 2. join-List data-type definition

3 Automatically Partitioning Data

There are many parallelization techniques which make use of well-partitioned
data [1,2,8–11,13,17,18]. These can be restrictive and often require that input
programs are defined on data that can be easily well-partitioned, however this
may not always be intuitive. To solve this, we define a transformation technique
that allows for the automatic partitioning of any data. An overview of this
technique is shown in Fig. 3. The technique is combined with distillation in order
to automatically convert a program into one defined on well-partitioned data.
The technique consists of four steps:

1. Given a program defined on a data-type, τ , define a corresponding data-type,
τ ′, instances of which contain the non-inductive components from data of
type τ .

2. Derive a partitioning function, partitionτ , which allows data of type τ to be
converted into a well-partitioned join-list containing data of type τ ′.

3. Derive a rebuilding function, rebuildτ , which converts a join-list containing
data of type τ ′ into data of type τ .

4. Distill a program equivalent to the given program which is defined on a well-
partitioned join-list.

Using these four steps, we can automatically convert a given program into
an equivalent program defined on well-partitioned data.



Automatically Partitioning Data to Facilitate 61

Fig. 3. Data partitioning functions

Fig. 4. Transformation rule for defining τ ′ using τ

3.1 Defining Partitioned Data-Types

To partition data of a given instantiated data-type, τ = T T1 . . . Tk, we first
define a corresponding data-type, τ ′, according to the rules shown in Fig. 4. In
some cases it may not make sense to parallelize the processing of all data in
a given program. To allow for this, we allow the developer to specify a set of
parallelizable-types, γ, instances of which will be evaluated in parallel.

Given a program defined on a data-type, τ , N is applied to τ as follows:

– If τ is a parallelizable-type, its data must be well-partitioned and is therefore
replaced by JList τ ′.

– If τ is not a parallelizable-type, it is replaced by τ ′ as it may contain data
that must be well-partitioned.

When replacing τ with either τ ′ or JList τ ′, τ ′ is defined as shown in Fig. 4.
For each constructor, c, in the definition of τ , a new constructor, c′, is added to
τ ′. If τ is a parallelizable-type then any inductive components c contains are not
added to c′. N is applied to each component of c′.



62 M. Dever and G.W. Hamilton

3.2 Converting Data to and From Join-Lists

To partition data of a given type, τ , we define a partitioning function, partitionτ

as follows:

– If τ is a parallelizable-type, data of type τ is converted to a cons-list containing
data of type τ ′, which is then well-partitioned into a join-list.

– If τ is not a parallelizable-type, data of type τ is converted to data of type τ ′,
the components of which are also well-partitioned where necessary.

In order to convert a well-partitioned join-list back into its original form, we
also define a rebuilding function, rebuildτ , the definition of which is simply the
inverse of partitionτ .

3.3 Distilling Programs on Well-Partitioned Data

Distillation [7] is a powerful fold/unfold based program transformation technique
which eliminates intermediate data-structures from higher-order functional pro-
grams. It is capable of obtaining a super-linear increase in efficiency.

Given a sequential program, f , defined on a type, τ , we first define partitionτ

and rebuildτ . Once these have been defined, we can convert f into an equiva-
lent program, fwp, defined on well-partitioned data. Applying distillation to
f ◦ rebuildτ , results in the automatic derivation of fwp. A high level overview of
this process is presented in Fig. 5.

Fig. 5. Distillation of programs on well-partitioned data

As fwp is defined on a well-partitioned join-list and f is defined on data of
type τ , we must also generate the correct input for fwp by applying partitionτ

to the input of f .



Automatically Partitioning Data to Facilitate 63

4 Example Parallelization Using Well-Partitioned Data

Consider a function, sumList, which calculates the sum of a List of numbers:

sumList = λxs.case xs of
Nil → 0
Cons x xs → x + sumList xs

As the input to sumList is of type (List Int), the first step in the paral-
lelization process is to define List′ according to the rules shown in Fig. 4, where
γ = {List Int}, as shown below:

data List′ ::= Nil′

| Cons′ Int

The second step is to define both partition(List Int) and rebuild(List Int) as
follows:

partition(List Int) = partition ◦ flatten(List Int)

flatten(List Int) = λxs.case xs of
Nil → [Nil′]
Cons x1 x2 → [Cons′ x1] ++ flatten(List Int) x2

rebuild(List Int) = fst ◦ unflatten(List Int) ◦ rebuild

unflatten(List Int) = λxs.case xs of
(x : xs) → case x of

Nil′ → (Nil, xs)
Cons′ x1 → case unflatten(List Int) xs of

(x2, xs2) → (Cons x1 x2, xs2)

Following the definition of rebuild(List Int), we compose this with the original
function, sumList ◦ rebuild(List Int), and apply distillation to this composition.
This allows sumList to be automatically redefined into an equivalent program,
sumListwp, defined in terms of a join-list containing instances of List′, resulting
in the following implicitly parallel definition:

sumListwp = λx.case x of
Singleton x → case x of

Nil′ → 0
Join l r → let l′ = sumList′wp l

r′ = sumListwp r
in l′ r′



64 M. Dever and G.W. Hamilton

sumList′wp = λx n.case x of
Singleton x → case x of

Nil′ → n
Cons′ x → x + n

Join l r → let l′ = sumList′wp l
r′ = sumList′wp r n

in l′ r′

By making distillation aware of the definition of the + operator, it can derive
the necessary associativity that allows for each child of a Join to be evaluated in
parallel. It is worth noting that in the case of the above program, when evaluating
the left child of a Join we create a partial application which can be evaluated
in parallel with the evaluation of the right child. This partial application is
equivalent to (λr.l + r), where r is the result of the evaluation of the right
operand. In a parallel environment the full evaluation of this partial application
must be forced to ensure that the left operand has been evaluated and that
parallel processes have roughly the same amount of work.

As both children are roughly equal in size, each parallel process created will
have a roughly equal amount of work to do. In contrast, with respect to the orig-
inal sumList defined on cons-lists, if the processing of both x and sumList xs
are performed in parallel, one process will have one element of the list to eval-
uate, while the other will have the remainder of the list to evaluate, which is
undesirable.

5 Related Work

There are many existing works that aim to resolve the same problem that our
transformation does: mapping potentially poorly-partitioned data into a form
that can be efficiently parallelized. Some work, such as list-homomorphisms and
their derivative works [1,8–11,17,18] simply assume that they will use data that
is well-partitioned. These techniques require that their inputs are defined using a
cons-list, which can then be easily well-partitioned [3,5,6,19]. Restricting devel-
opers to implement their programs in these forms is an unrealistic burden.

Chin et al.’s [2] work on parallelization via context-preservation also makes
use of join-lists as part of its parallelization process. This technique is only
applicable to programs defined in the form of list-paramorphisms [14]. While
this allows for quite a broad class of program to be parallelized, it is not realistic
to force developers to define their functions in this form.

An important limitation of these techniques is that they are only applicable
to lists, excluding the large class of programs that are defined on trees. One
approach to parallelizing trees is that of Morihata et al.’s [15] generalization
of the third homomorphism theorem [4] to trees. This approach makes use of
zippers [12] to model the path from the root of a tree to an arbitrary leaf.
While this is an interesting approach to partitioning the data contained within
a binary-tree, the partitioning technique is quite complicated. It also presents



Automatically Partitioning Data to Facilitate 65

no concrete methodology for generating zippers from binary-trees and assumes
that the developer has provided such a function.

6 Conclusion

In this paper, we have presented a novel data-type transformation which allows
for a given program to be automatically redefined into one defined on well-
partitioned data. Our research is focused on automatically converting programs
defined on any data-type into equivalent parallel versions defined on well-
partitioned data in the form of join-lists. The presented data-type transfor-
mation is a significant component of that automatic parallelization system.

At a high level, by combining the outputs of the presented data-type transfor-
mation with an explicit parallelization transformation which parallelizes expres-
sions operating on join-lists it is possible to automatically redefine a given
sequential program defined on any data-type into an explicitly parallel one
defined on well-partitioned join-lists.

While the presented data-type transformation is defined using join-lists,
which appear to be the standard partitionable data-type used in automated
parallelization systems [1,8–11,17,18], it is possible that join-lists are not the
ideal data-structures to be used as part of such systems. As the data contained
in a join-list is placed only at the leaves, it is possible that parallel processes
evaluating the nodes of a join-list will spend much of their time waiting on the
results of the parallel processes evaluating their subtrees. Further research is
required to determine if there is a data structure which provides better parallel
performance in general.

Where existing automated parallelization techniques are restrictive with
respect to the form of their input programs and the types they are defined
on, a parallelization technique defined using the presented data-type transfor-
mation should hold no such restrictions. To the best of the authors knowledge
this is the first automatic data-type transformation system that will derive a
well-partitioned representation of any given data-type and will redefine a given
program into one defined in terms of such well-partitioned data.

Acknowledgements. This work was supported, in part, by Science Foundation
Ireland grant 10/CE2/I303 1 to Lero - the Irish Software Engineering Research Centre.

References

1. Blelloch, G.E.: Scans as primitive operations. IEEE Trans. Comput. 38(11), 1526–
1538 (1989)

2. Chin, W.-N., Khoo, S.-C., Hu, Z., Takeichi, M.: Deriving parallel codes via invari-
ants. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 75–94. Springer,
Heidelberg (2000)

3. Chin, W.N., Takano, A., Hu, Z., Chin, W., Takano, A., Hu, Z.: Parallelization via
context preservation. In: IEEE International Conference on Computer Languages,
IEEE CS Press, pp. 153–162 (1998)



66 M. Dever and G.W. Hamilton

4. Gibbons, J.: The third homomorphism theorem. J. Funct. Program. 6(4), 657–665
(1996). Earlier version appeared in Jay, C.B., (ed.), Computing: The Australian
Theory Seminar, Sydney, pp. 62–69, December 1994

5. Gorlatch, S.: Systematic efficient parallelization of scan and other list homomor-
phisms. In: Fraigniaud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.) Euro-Par
1996. LNCS, vol. 1124, pp. 401–408. Springer, Heidelberg (1996)

6. Gorlatch, S.: Systematic extraction and implementation of divide-and-conquer par-
allelism. In: Kuchen, H., Swierstra, S.D. (eds.) PLILP 1996. LNCS, vol. 1140, pp.
274–288. Springer, Heidelberg (1996)

7. Hamilton, G., Jones, N.: Distillation and labelled transition systems. In: Proceed-
ings of the ACM Workshop on Partial Evaluation and Program Manipulation, pp.
15–24, January 2012

8. Hu, Z., Iwasaki, H., Takechi, M.: Formal derivation of efficient parallel programs
by construction of list homomorphisms. ACM Trans. Program. Lang. Syst. 19(3),
444–461 (1997)

9. Hu, Z., Takeichi, M., Chin, W.-N.: Parallelization in calculational forms. In: Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL 1998, pp. 316–328, ACM, New York (1998)

10. Hu, Z., Takeichi, M., Iwasaki, H.: Diffusion: calculating efficient parallel programs.
In: 1999 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, pp. 85–94(1999)

11. Hu, Z., Yokoyama, T., Takeichi, M.: Program optimizations and transformations
in calculation form. In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005.
LNCS, vol. 4143, pp. 144–168. Springer, Heidelberg (2006)

12. Huet, G.: The zipper. J. Funct. Program. 7(5), 549–554 (1997)
13. Iwasaki, H., Hu, Z.: A new parallel skeleton for general accumulative computations.

Int. J. Parallel Prog. 32, 389–414 (2004)
14. Meertens, L.: Paramorphisms. Formal Aspects Comput. 4(5), 413–424 (1992)
15. Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: The third homomorphism the-

orem on trees: downward & upward lead to divide-and-conquer. In: Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of program-
ming languages, POPL 1909, pp. 177–185. ACM, New York (2009)

16. Skillicorn, D.: Foundations of Parallel Programming. Cambridge International
Series on Parallel Computation. Cambridge University Press, Cambridge (2005)

17. Skillicorn, D.B.: Architecture-independent parallel computation. Computer 23, 38–
50 (1990)

18. Skillicorn, D.B.: The bird-meertens formalism as a parallel model. In: Kowalik,
J.S., Grandinetti, L. (eds.) Software for Parallel Computation. NATO ASI Series
F, vol. 106, pp. 120–133. Springer, Heidelberg (1993)

19. Teo, Y.M., Chin, W.-N., Tan, S.H.: Deriving efficient parallel programs for complex
recurrences. In: Proceedings of the Second International Symposium on Parallel
symbolic computation, PASCO 1997, pp. 101–110. ACM, New York (1997)


	Automatically Partitioning Data to Facilitate the Parallelization of Functional Programs
	1 Introduction
	2 Language
	3 Automatically Partitioning Data
	3.1 Defining Partitioned Data-Types
	3.2 Converting Data to and From Join-Lists
	3.3 Distilling Programs on Well-Partitioned Data

	4 Example Parallelization Using Well-Partitioned Data
	5 Related Work
	6 Conclusion
	References


