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Abstract. In model checking, abstractions can cause spurious results,
which need to be verified in the concrete system to gain conclusive results.
Verification based on multi-valued model checking can distinguish con-
clusive and inconclusive results, while increasing precision over tradi-
tional two-valued over- and under-abstractions. This paper describes the
theory and implementation of multi-valued model checking for Promela
specifications. We believe our tool Bonsai is the first four-valued model
checker capable of multi-valued verification of parallel models, i.e. con-
sisting of multiple concurrent processes. A novel aspect is the ability to
only partially abstract a model, keeping parts of it concrete.

1 Introduction

The ubiquitous problem of state space explosion, i.e. a combinatorial blow-up of
behaviour, is a central theme in the verification of systems. While abstraction
can reduce the impact of state space explosion, it can also introduce spurious
results [5]. By combining over- and under-abstraction, it is possible to identify
abstract behaviour which is guaranteed to match the concrete behaviour of the
system. This can be implemented using three-valued semantics [2,15]: properties
can be either true, false, or unknown; any result which would have been spurious
in the over- or under-abstraction is represented by the unknown value.

An elegant way to model abstract transitions is to use a four-valued logic [1].
The truth values of the logic form a bilattice [8], the elements of which are in
both a truth ordering and an orthogonal information ordering. Operations of
the logic map to operations over the truth ordering, while abstractions of the
system can be mapped to operations over the information ordering. An added
benefit of this strong relation between the logic and truth ordering is a natural
definition of existing temporal logics in terms of lattice operations [3,16]. These
definitions can be reused for other multi-valued logics [11], conceivably resulting
from new abstraction or modelling techniques.

Techniques based on a four-valued logic have been successfully used in sym-
bolic trajectory evaluation for verification of logical circuits [17], and abstract
model checking of software [13]. In this paper we are interested in applying the
multi-valued approach to concurrent software systems, for which to our knowl-
edge there are no tools available at this point. We generalise the abstraction
technique used in [12] to use operations in the information ordering of the bilat-
tice, and implement this technique in a tool for concurrent processes.
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Since we prefer to extend on existing work, we focus on concurrent Promela
models as used by the SPIN [14] model checker. For these models we implement
four-valued abstraction, combining two-valued over- and three-valued under-
abstraction, in a tool called Bonsai. Abstractions are constructed using predicate
abstraction [9], which is a special case of abstract interpretation [6].

The implementation is written in Java, and based on the SpinJa model
checker [7] and the SMTInterpol satisfiability solver [4]. The two-valued seman-
tics of the SpinJa model checker can be reused by decomposing the four-valued
model checking problem into two, classical, two-valued problems [11] using the
satisfiability solver for abstraction. This method can be extended to model check
other higher-valued logics.

The paper is structured as follows. Section 2 gives an introduction to multi-
valued model checking; it shows the four-valued logic used in our abstraction,
a method for constructing the multi-valued abstraction, and the decomposition
applied by our tool. In Sect. 3 we detail the implementation and show that the
decomposed problems can share results: it is not required to calculate two com-
pletely separate abstractions to get a multi-valued result. Section 4 demonstrates
the tools effectiveness at some typical examples for abstraction, while in Sect. 5
we conclude and consider future applications.

The long term goal of this tool is to investigate four-valued and other higher-
valued logics for concurrent processes. Specifically logics which separately model
steerable and unsteerable non-determinism can prove to be interesting: results
of multi-valued abstract verification could be combined with runtime steering to
guarantee correct execution of software for which verification would otherwise
have been intractable.

2 Multi-valued Model Checking

2.1 Preliminaries

A lattice is a partially ordered (�) set, in which any two elements have a least
upper bound (supremum or join), and a greatest lower bound (infimum or meet).
By induction, a non-empty finite lattice has a join and meet for each subset of
elements. Therefore, the set as a whole is bounded, and has a greatest element
(top or �), and least element (bottom or ⊥).

Lattices can be used to define quasi-boolean algebras which can be applied
when verifying temporal properties. Model checking typically uses classical
boolean logic: transitions between states either exist (are true) or do not exist
(are false); and atomic propositions used by temporal properties either hold for
a state (are true) or do not hold (are false). It is customary to only draw true
transitions in a state space graph; missing transitions are assumed to be false.

The classical boolean logic used to verify properties can be described in the
more general framework of lattice theory: a lattice consisting of two elements,
with true being the supremum, and false being the infimum. The boolean con-
junction and disjunction operations map respectively to the meet (�) and join
(�) of lattice theory.
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In multi-valued model checking, instead of classical boolean logic, more gen-
eral quasi-boolean logics can be used. The truth values of a quasi-boolean logic
are the elements of a finite distributive lattice. Conjunction and disjunction
map to meet (�) and join (�) respectively, while negation (∼) needs to adhere
to De Morgan’s laws and the law of double negation. Distributivity of the lattice
ensures that the meet and join distribute over each other, similar to conjunction
and disjunction in classical boolean logic.

The strong relation between boolean operations and lattice operations ensures
that the verification of temporal properties remains the same for different quasi-
boolean logics. Classical definitions of temporal properties can easily be trans-
lated to lattice operations, and are then applicable to the more general class of
quasi-boolean logics instead of just classical boolean logic.

2.2 A Lattice for Under- and Over-Abstraction

We can use a quasi-boolean logic, based on a lattice, to model both under-
and over-abstraction at the same time. The interlaced bilattice [8] used for this
purpose in [12] not only defines the required truth ordering of the logic, but
also an orthogonal information ordering; see Fig. 1a. As a consequence of this
additional ordering, the � and ⊥ elements should not be interpreted as the top
and bottom of the logic: they are used to model the top and bottom of the
information ordering.

One way to characterise the additional two truth values is to interpret bottom
(⊥) as neither true nor false, and top (�) as both true and false. In other words,
the elements of the information ordering can be seen as sets, which can contain
an item for truth (t) and an item for falsity (f). Truth values no longer map to a
single items of the set {t, f}, as is the case for classical logic, but to its subsets.
This allows for values which contain none (⊥) or both (�) of the elements in
{t, f}, as can be seen in Fig. 1b.

We can apply this interpretation to the atomic propositions and transitions
of a transition system, and by extension to temporal properties evaluated over
this system. Each of these concepts can be modelled using the same four-valued

Fig. 1. Multi-valued lattice for under- and over-abstraction
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logic, but this does not mean that all truth values are meaningful for every
context. Depending on the context, some values should not occur.

Atomic propositions can be true (t), false (f) or unknown (⊥). The unknown
value for a proposition is represented as the absence of knowledge by using the
bottom element of the information ordering (⊥). It can be used to express a
loss of information due to abstraction: we conclude neither true nor false for an
atomic proposition which has been assigned this value. Conversely, the value top
(�) will never be assigned to a proposition, since atomic propositions cannot be
both true and false at the same time.

Transitions can be may transitions (⊥), must transitions (�), both (t), or
neither (f). This requires a more general definition of may and must transitions
than is used by modal transition systems which only recognise must transitions
as a subset of may transitions (e.g. [10]). We define may transitions as those
transitions that are at least not false (i.e. of value ⊥ or t), and must transitions
as those transitions that are at least true (i.e. of value � or t). The use of the top
(�) value allows us to express that for a set of states, some states are reachable
while others are not.

By extension of the atomic propositions and transitions of the system we
can evaluate temporal properties over the system. Temporal properties use the
same values as atomic propositions: true (t), false (f) or unknown (⊥). Similar
to atomic propositions they express a property of a state: the reachability of
behaviour from said state. Even though transitions can take on the value top
(�), this value should never result in a temporal property of the same value: a
temporal property cannot be both true and false at the same time.

Note that while bottom and top behave similarly in the logic, i.e. when only
using operations on the truth ordering, they are not interchangeable when taking
into account operations on the information ordering, which we will be using when
constructing abstractions. It is however possible to obtain a similar construction
if also the operations used for the abstraction method are interchanged.

2.3 Multi-valued Abstraction

Using the notion of an information ordering, it is no longer necessary to sep-
arately reason about under- and over-abstraction. It is possible to use a single
generic multi-valued method of abstraction which captures both types of abstrac-
tion using operations on the information ordering. For this purpose we will be
using the meet (⊗) and join (⊕) operations on the information ordering. See
Fig. 1b for an overview of the operations on the truth and information ordering.

Assume we have defined equivalence classes over a set of concrete states
of a Kripke structure, e.g. using predicates. Figure 2a shows a concrete example
system: source states are on the left and destination states on the right. The lines
are used to indicate how predicates divide the concrete states into equivalence
classes. An abstract state is formed by those concrete states which have the
same evaluation for all predicates. To complete the abstraction we want to lift
the transitions between concrete states to transitions between abstract states.



Bonsai: Cutting Models Down to Size 365

Fig. 2. Abstraction with individual abstract states

Our abstraction method to lift transitions starts by applying an induction
hypothesis. It is assumed that we are able to correctly express the behaviour
of the abstract destination states; therefore, we can replace any transition to a
concrete state by a transition to the abstract state it belongs to. The results
are shown in Fig. 2b. The induction hypothesis ensures that we do not have to
differentiate between constituent states of the abstract destination state, and
any possible loss of information is caused solely by the abstraction of behaviour
for the abstract destination state.

To complete the induction hypothesis, we need to determine the behaviour
of the abstract source state. For this purpose we calculate the consensus of the
concrete source states on the reachability of specific abstract destinations; we
do this by using the meet of the information ordering (⊗). Stated differently,
since we will lose the ability to differentiate between concrete source states for a
given abstract source state, the best we can do is to describe the behaviour they
agree on. In the example of Fig. 2b each abstract destination state is reachable
(t) by one concrete source state, and unreachable (f, not drawn) by the other.
This gives us the value bottom (t ⊗ f = ⊥) for each abstract destination state,
as can be seen in Fig. 2c above.

Fig. 3. Abstraction with a set of abstract states

This method in itself would be sufficient to create a multi-valued abstract
model, a model containing aspects of both under- and over-abstraction, but
we can do better. To increase precision we can merge abstract states by using
the meet operator of the information ordering (⊗). Take two or more abstract
destination states that have different valuations for one or more properties and
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combine their valuations using the meet operator. The result is a merged abstract
state with the value bottom (⊥) for any predicate the original abstract states did
not agree on. It models the possibility of these predicates being either true or
false: their actual value is unknown.

Using these merged abstract states, we can model the reachability of sets of
abstract states. While concrete source states might not agree on the reachability
of individual abstract destination states, they could still agree on the reachabil-
ity of a set of abstract destination states. We create sets by merging abstract
states, with the provision that the resulting sets are limited to a cartesian prod-
uct of predicate values by construction. Transitions to merged abstract states
model whether any individual abstract state in the set is reachable, but without
specifying which particular states are reachable.

To calculate the correct value of a transition from a concrete state to a set of
abstract states, we combine the information of the states in the set using the join
operator of the information ordering (⊕). Since we are interested in the reacha-
bility of the set of abstract states as a whole, we want to aggregate the knowledge
we have for reachability of the individual abstract states. This can be contrasted
to the meet operator of the information ordering (⊗) which calculates the consen-
sus. In Fig. 3b it can be seen how this gives us the value top (t⊕ f = �), since the
merged abstract state contains both reachable and unreachable abstract states.

The behaviour of abstract source states is calculated in the usual manner,
using the meet operator (⊗). This also applies to sets of abstract source states,
since we cannot distinguish between abstract source states in a set any more
than we can distinguish between concrete states in an abstract state. The best
we can do is to describe the behaviour the abstract source states in the set agree
on. Figure 3c shows how this results in top (� ⊕ � = �) for the case of a single
abstract source state as used in the example.

We can generalise the abstraction method by considering individual abstract
states as sets containing just one abstract state. The resulting generic method con-
structs a multi-valued abstract system with transitions between sets of abstract
states.

The generic method can be summarised as follows. Start by calculating the
reachability of abstract destination states from concrete source states. Subse-
quently use the join operator (⊕) to aggregate all transitions to members of the
abstract destination set. Finally use the meet operator (⊗) to reach consensus
for all concrete states contained by members of the abstract source set. Repeat
the last two steps for other abstract source and destination sets.

2.4 Multi-valued Through Classical Model Checking

A multi-valued model checking problem can be reduced to multiple classical
model checking problems [11]. This is done by identifying the join-irreducible
elements J in the lattice of truth values. (Join-irreducible elements are those
elements, except for the bottom element, which cannot be expressed as the join
of two other elements.) The multi-valued model checking problem for a temporal
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property can then be split into |J | classical model checking problems. For an LTL
property ϕ, a trace π, and the partial lattice ordering �, this gives the following
identity:

[ϕ]π =
⊔

j∈J

(j � ([ϕ]π � j))

All truth values can be expressed as a combination of join operations on join-
irreducible elements, or more precisely as a join of those join-irreducible elements
which are smaller than or equal to that specific truth value. The expression
[ϕ]π � j is either true or false, ensuring that j � ([ϕ]π � j) is either j or false.
The end result is a join over a join-irreducible value smaller than or equal to
[ϕ]π and false otherwise, and since false has no influence on the join operation,
we get [ϕ]π.

The identity above allows us to evaluate inequalities over [ϕ]π and combine
the results, instead of determining [ϕ]π directly. To calculate [ϕ]π � j, the cut
operator ⇑ is introduced [11] to syntactically distribute the inequality over the
temporal property (after which it can be evaluated using classical model checking
over a modified model):

[ϕ ⇑ j]π = [ϕ]π � j

We assume LTL formulas to be in release positive normal form (PNF):

ϕn = true | false | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2 | ϕ1 R ϕ2

This ensures only atomic propositions can be negated, and allows for a simple
reduction. (The implicit universal quantification of an LTL formula could com-
plicate this reduction [11], was it not for the fact that we check for language
emptiness using the negated LTL formula. That is, we apply the reduction to
the negated LTL formula in PNF.)

true ⇑ j = t � j false ⇑ j = f � j

p ⇑ j = p � j ¬p ⇑ j = ¬p � j

(ϕ ∧ ψ) ⇑ j = (ϕ ⇑ j) ∧ (ψ ⇑ j) (ϕ ∨ ψ) ⇑ j = (ϕ ⇑ j) ∨ (ψ ⇑ j)
(ϕ U ψ) ⇑ j = (ϕ ⇑ j) U�j (ψ ⇑ j) (ϕ R ψ) ⇑ j = (ϕ ⇑ j) R�j (ψ ⇑ j)

This reduction leaves us with some inequalities over j, and the operators X�j ,
U�j and R�j . The values of t � j and f � j can be put directly into the property,
while the inequalities p � j and ¬p � j will need to be encoded into the model.
The semantics of the X�j , U�j and R�j operators are identical to their LTL
counterparts for a classical boolean logic by only considering transitions with a
value v � j to be true. Keeping only those transitions in the model allows us to
use the classical X, U and R operators.

In general, we can evaluate the reduced property ϕ ⇑ j for each j ∈ J sepa-
rately, by creating an appropriate transition system for each j ∈ J respectively.
Instead of evaluating ϕ over multi-valued paths, we evaluate ϕ ⇑ j over classical
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paths, by only modelling whether literals and transitions are � j. This is suf-
ficient to evaluate the inequalities and X�j , U�j and R�j operators introduced
by the reduction.

3 Implementation

The theory presented above can be used to implement a multi-valued model
checker by decomposing problems into multiple classical model checking prob-
lems. We implement our multi-valued model checker Bonsai on top of the SpinJa
model checker [7], and use the SMTInterpol satisfiability solver [4] to construct
the decomposition.

3.1 Modifications to SpinJa

To abstract a Promela model with Bonsai, predicates can be added directly to
the Promela specification by using the special type pred. These predicates are
then automatically used during the subsequent abstraction process. For exam-
ple, to add the predicate x < 4 to the specification, we write pred x < 4 in
the declaration list of either the specification itself, or one of its processes. By
allowing declarations in both the specification and its processes, predicates can
be made either global for the whole specification or local to a specific process
type; this allows predicates to reference both global and local variables without
breaking scoping rules. Note that a local predicate can reference global variables.

The version of the SpinJa model checker we use, has been slightly modi-
fied to parse predicates in a similar way to standard variables. In the original
implementation, variables are stored by the SpinJa parser in a VariableStore;
this design is copied to store predicates in a PredicateStore. Predicates in the
PredicateStore can reference variables in the VariableStore, but do not yet have
a variable associated with them for storing the actual value of the predicate. The
PredicateStore simply acts as a bookkeeping device for keeping track of which
predicates have been added to the specification. Together with the introduction
of the pred type, this is the only required modification to the SpinJa model
checker.

3.2 Overview of the Abstraction

Parsing a specification with the modified SpinJa model checker, creates a promela
model containing multiple automata. These automata are object-based represen-
tations of the processes as defined in the Promela specification. Since automata are
a type of program graph, we can use them to create abstract program graphs: one
abstract automata for each concrete automata of the specification. Together they
form an abstract model of the specification with respect to the given predicates.

This abstraction is done in two passes. Before we create the completed
abstract model, we traverse the automata created by SpinJa one transition at
a time. Transitions not influenced by abstraction (e.g. goto’s) are copied directly
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Fig. 4. An overview of the implementation

into the abstract model, but other transitions (e.g. assignments) require pre-
processing to create a term transition containing the metadata required for static
analysis and abstraction. These term transitions are stored in a separate term
model, which is a kind of scaffolding over the still incomplete abstract model.

The term model has additional facilities for static analysis. In some cases it
is useful to not abstract away from all concrete actions and variables of the orig-
inal specification; for example, we might want to keep variables when they are
part of the control flow. Static analysis can be used to determine which concrete
variables, used by term transitions, need to be kept in the abstract automaton.
Only after static analysis of the term transitions, do we add the actual variables
to the abstract model for tracking concrete variables and predicates. To differen-
tiate between them, all variable names in the abstract model have a prefix with
their type. Predicates additionally have a unique number and a short descriptive
string as a part of their name.

Using the term model we can generate the final over- and under-abstractions
of the specification, which correspond to the two join-irreducible elements of
the four-valued logic. For every term transition in the automaton, we generate
two decision diagrams: one diagram for each abstraction. The diagrams are then
encoded as transitions in an abstract model using only standard Promela if-
statements and assignments. Together with the transitions already present, this
completes the abstract model. For an overview see Fig. 4.

The resulting two abstract models, one for each join-irreducible element, can
be compiled and verified using the default SpinJa tool stack. Each partial result
indicates whether the multi-valued result is larger or equal to one of the join-
irreducible elements. By combining them, we get a multi-valued result of the
complete model checking problem.

3.3 Constructing SMT Terms for Transitions

Promela transitions consist of one or more actions, and each action can be
modelled using two terms: a guard term, and an effect term. See Fig. 5 for
an example of an effect term being constructed from code: type definitions are
shown for completeness. The guard term indicates whether the action is enabled,
while the effect term models the relation between source and destination states.
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Fig. 5. Constructing an effect term

Even though only the first action in a transition is allowed to block, we cannot
ignore the guard terms of the other actions. It depends on whether we are going
to model the actions of a transition separately, or as one big abstract action;
we might need the guard terms to detect blocking of subsequent actions in the
transition, and report an error. The end result for a transition is a list of term
actions, each containing a guard and effect term for the corresponding action.

To create terms for the individual actions we make use of the theories sup-
ported by the SMT solver, in this case the theory of integers. There is, however,
no support for arrays in the solver we use, therefore any array encountered in
the specification needs to be backed by separate term variables for each index;
these are combined using an if-then-else construction based on the index term
to model an array. At the same time we assume abstractions over indices may
be unwanted, and keep track of any terms used as an index. One can argue that
indices are at times part of the control flow of the program, i.e. a defining part
of the program graph, and do not need be abstracted. Static analysis can then
be applied to do a form of taint analysis: any variable used in an assignment to
a concrete variable, also needs to be a concrete variable.

Using concrete values in a term can cause difficulties when abstracting tran-
sitions using the SMT solver. Concrete variables can store a large range of
values; enumerating all of them in the SMT solver can make the abstraction
intractable. As a first step, we ensure that assignments to concrete variables are
never abstracted; such assignments are handled by concrete transitions, since we
can assume that all referenced variables are also concrete. This assumption is
guaranteed by the taint analysis, since concrete information cannot be created
from abstract information.

Mixing concrete and abstract information is only allowed in specific cases.
Either all variables used in a predicate are concrete, making the solution trivial
since we can simply evaluate the predicate at runtime; or we require the concrete
parts of the predicate to be somehow in a bounded domain, making the solution
tractable. This is specifically the case when using a concrete value as the index
of an array.

When constructing term transitions with concrete indices, we keep track of
the possible range of these indices. This ensures that the SMT solver is bounded
when enumerating all possible values of the index. This bound is over the com-
plete expression which is used as an index, and can also be used to detect out-of-
bound conditions. Note that the use of concrete indices is useful when predicates
reference specific indices in an array, but should only be used for small arrays,
lest the abstraction would become intractable.
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3.4 Abstracting SMT Terms Using Predicates

Given a list of term actions for a concrete transition, we want to generate an
over- and under-abstraction of this transition. Each term action contains a guard
and effect term. Since a guard is a simple boolean expression, we can easily
over- and under-approximate this guard using the SMT solver. This leaves the
effect term, for which we effectively want the following results: for the over-
abstraction, we want to over-approximate the post-image of each abstract pre-
state; and for the under-abstraction, we want to under-approximate the pre-
image of each abstract post-state. While the over-approximation poses no prob-
lems, since over-approximation is a natural operation for an SMT solver, the
under-approximation is not that straight forward.

We can calculate an under-approximation of a guard term, by negating the
term, over-approximating it, and negating the result. For the effect term we want
to under-approximate the pre-image of a specific abstract post-state; however,
the pre-image is defined only implicitly by the combination of the effect term
and the abstract post-state. As can be seen in Fig. 6, negating the effect term
does not give the desired result, and negating the post-state only works when
the effect relation is total.

One solution is to ensure that the effect relation is total by extending it,
and to rely on an under-approximation of the guard term to filter out unwanted
transitions. Then we could safely negate the post-state to calculate the required
under-approximation of pre-states; however, this use of a guard in combination
with a total function allows for a better solution. When trying to under-abstract
the effect relation, we have the guarantee that all enabled concrete states have
outgoing transitions: the under-approximated guard term reduces the domain of
the effect relation to only enabled states and ensures it is total over this domain.
In addition we only abstract individual deterministic transitions. We can use
these facts to our advantage.

As a consequence of the above, the over- and under-abstraction can share
results of the SMT solver. We start by over-approximating the effect func-
tion, which can be done using a single allSAT call to the SMT solver. This
result can be shared between both abstractions. Next we respectively over- and
under-approximate the guard and subsequently remove these pre-states from the
over-approximation of the effect function. This gives us the two-valued over- and
under-abstraction of the transition.

Fig. 6. Under-abstraction by over-approximation
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For an over-abstraction, the result can be used as-is to generate abstract
transitions. A transition is created for each possible post-state. Pre-states related
to this post-state can be identified using boolean conjunctions; their disjunction
is the first action of the transition, and will act as a guard. The post-state can be
constructed using a series of assignments, which will change the pre-state into
the requested post-state; together with the guard action, these assign actions
complete the transition. The construction of multiple transitions, allows the
model checker to non-deterministically explore all possible post-states during
verification.

For an under-abstraction, the result needs some additional processing. All
post-states reachable from a given pre-state are flattened into a single new post-
state. This is done by combining the predicate values of these post-states: if
the post-states agree on the value of a predicate, that value is used; but if they
disagree, the unknown value is used. This creates the most precise must transition
for a fully specified pre-state, since we only abstract individual deterministic
transitions. To include under-specified pre-states, we flatten sets of existing pre-
states to form new pre-states, while we flatten their respective post-states to
form a new post-state. By relating these new states, we can handle any possible
pre-state in the under-abstraction. This results in a deterministic transition for
each pre-state with outgoing transitions.

Since the method above already supports partial relations, we can further
increase precision by also taking into account the guard term when abstract-
ing the effect relation. We can actually ignore any concrete pre-state, which is
not part of the guard. For an over-abstraction, the guard term can reduce the
number of post-states reachable from a pre-state: removing impossible concrete
transitions can reduce the number of may-transitions. For an under-abstraction,
the guard term can reduce the number of post-states used by the flattening oper-
ations: preventing disagreement on predicate values can increase the amount of
information in states after must-transitions.

3.5 Storing SMT Results in Decision Diagrams

After abstracting the SMT terms, we need to store the results in some way. We
also require support for different kinds of operations on these results, like the
flattening operation described above. For this purpose we use a multi-valued
decision diagram, allowing storage of predicate values and bounded concrete
values. Predicate values are multi-valued: they can be true, false or unknown.
Concrete values need to be part of some, preferably small, domain; this is not
only to prevent large enumerations by the SMT solver, but also to allow tractable
negation of a result, e.g. for under-approximation. Finally we allow for the value
skip, which is used to optimise assignments when predicate values are the same
for both the pre- and post-state.

The diagrams we use are refined in multiple steps: we start by creating a
generic decision diagram, which works for any type of value. It supports simple
operations like union and intersection of diagrams. This is subsequently extended
to a bounded term diagram by storing terms and their bounds at each node.
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Operations requiring multi-valued term information, like the flatten operation,
are implemented at this level. Relations between sets of states are stored by
creating nested term diagrams, which split the diagram into one outer and mul-
tiple inner diagrams: for each state in the outer diagram it contains an inner
diagram containing related states. Finally we use assign diagrams to optimise
the encoding of the diagram into actual transitions of the model; for example,
values which do not change can be skipped when implementing a transition.

4 Experimental Results

We use two mutual exclusion algorithms to demonstrate our implementation:
Lamport’s bakery algorithm, and Fischer’s algorithm. Both algorithms use
shared memory, and have potentially very large state spaces; they respectively
model ticket numbers and discrete time, which can have domains of arbitrary
size. These algorithms make typical examples for demonstrating the strengths
of abstraction.

In Lamport’s bakery algorithm, a process intending to enter its critical section
picks a ticket number higher than any of the numbers used by other processes.
It then waits until its number is the smallest of the waiting processes before
starting its critical section. Due to concurrency, multiple processes can pick the
same number, in which case the process id’s are used as a tie-breaker.

For Fischer’s algorithm, a single shared variable is used to keep track of
reservations. A process reads the variable, and if it is zero, overwrites it with its
own id. It then reads the variable for a second time, and can enter its critical
section if its identity is still contained by the variable. Since concurrent processes
can overwrite each others values, there is a timing constraint. It is required that
after writing, a process waits a specified time before reading. This wait period
needs to be longer than the time between reading zero and writing an id.

The abstractions used, map ticket numbers and discrete time values to smaller
bounded domains. Enough information is retained to model check the algorithm.
For Lamport’s bakery algorithm, it is sufficient to map the relative ordering of
ticket numbers, instead of their absolute values. Similarly, for Fischer’s algorithm
it is sufficient to keep track of remaining wait time, instead of absolute values of
the clock and timers.

The concrete state spaces can be made arbitrarily large by increasing the
maximum value for tickets or time after which the algorithm halts. In contrast,
the abstract state space has a fixed size, irrespective of these values. In our tests
we demonstrate this effect by varying the maximum value, and showing its effect
on the running time.

Tests are performed on a 2.66 GHz Intel Core 2 Duo, with 4 GB of RAM.
The Java virtual machine is given 2 GB of heap space. Parameters for the SpinJa
model checker are -m1000000 for the search depth and -DNOREDUCE to pre-
vent partial order reduction. For the cases of more than 214 ticket numbers or
clock ticks, we use -m10000000 to increase the depth by a factor of 10 for the con-
crete model. During compilation we use -o3 to disable statement merging. Source
code and model are available at http://www.cs.vu.nl/∼sjj.vijzelaar/spinja/.

http://www.cs.vu.nl/~sjj.vijzelaar/spinja/
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Abstracting the algorithms give typical examples of collapsing a large state
space, an effect which shows clearly in the results (Tables 1 and 2). Parsing and
compiling of the abstract model takes significantly longer than for the concrete
model, since parsing for the abstract model includes the construction of two
abstract models. Any performance lost during construction, however, is easily
gained during model checking. The state spaces of the concrete models grow
with each increase of the model bounds. In the case of Fischer’s algorithm, this
even causes the model checker to run out of memory for more than 215 clock
ticks; the abstract model has no such problem.

Table 1. Verifying Lamport’s bakery algorithm (seconds)

Parse Compile Model checking (numbers)

212 214 216 218

Abstract 12.35 5.81 0.33

Concrete 0.39 1.36 1.64 5.85 23.85 121.61

Table 2. Verifying Fischer’s algorithm (seconds)

Parse Compile Model checking (ticks)

212 213 214 215

Abstract 30.41 8.20 1.47

Concrete 0.36 1.85 11.16 22.58 50.01 108.08

5 Conclusion

This paper gives an overview of the theory required to implement multi-valued
verification on top of a classical two-valued model checker. We have used this
theory to implement four-valued abstract verification using the SpinJa model
checker and SMTInterpol satisfiability solver. By doing so, we can now leverage
the strength of the Promela language in modelling concurrent processes, and
explore the benefits of multi-valued model checking in this context.

As far as we know, this tool is the first to implement multi-valued model
checking of a quasi-boolean logic for concurrent processes. Additionally our
model checker has the ability to apply abstraction to only parts of the con-
crete model. We want to apply these strengths to future research in the areas of
runtime verification and execution steering.
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