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Preface

This volume contains the papers presented at PSI 2014: 9th Ershov Informatics Con-
ference held during June 24–27, 2014 in St. Petersburg, Russia.

PSI is the premier international forum in Russia for academic and industrial
researchers, developers, and users working on topics relating to computer, software,
and information sciences. The conference serves to bridge the gaps between different
communities whose research areas are covered by but not limited to foundations of
program and system development and analysis, programming methodology, and
software engineering and information technologies.

The previous eight PSI conferences were held in 1991, 1996, 1999, 2001, 2003,
2006, 2009, and 2011, respectively, and proved to be significant international events.
Traditionally, PSI offers a program of keynote lectures, presentations of contributed
papers, and workshops complemented by a social program reecting the amazing
diversity of the Russian culture and history.

The PSI conference series is dedicated to the memory of the pioneer in theoretical
and system programming research: academician Andrei Petrovich Ershov (1931–
1988). Andrei Ershov graduated from the Moscow State University in 1954. He began
his scientific career under the supervision of Alexandr Lyapunov. After that Andrei
Ershov worked at the Institute of Precise Mechanics and Computing Machinery, and
then became director of the Theoretical Programming Department at the Computing
Center of the USSR Academy of Sciences in Moscow. In 1958 the Department was
reorganized into the Institute of Mathematics of the Siberian Branch of the USSR
Academy of Sciences, and by the initiative of the academician Sergei Sobolev Ershov
was appointed the head of this department, which later became part of the Computing
Center in Novosibirsk Akademgorodok. The first significant project of the Department
was aimed at the development of the ALPHA system, an optimizing compiler for an
extension of Algol 60 implemented on a Soviet computer M-20. Later the researchers
of the Department created the Algibr, Epsilon, Sigma, and Alpha-6 programming
systems for the BESM-6 computers. The list of achievements also include the first
Soviet time-sharing system AIST-0, the multi-language system BETA, research pro-
jects in artificial intelligence and parallel programming, integrated tools for text pro-
cessing and publishing, and many more. A.P. Ershov was a leader and a participant
of these projects. In 1974 he was nominated Distinguished Fellow of the British
Computer Society. In 1981 he received the Silver Core Award for services rendered to
IFIP. Andrei Ershov’s brilliant speeches were always in the focus of public attention.
Especially notable was his lecture on “Aesthetic and Human Factor in Programming”
presented at the AFIPS Spring Joint Computer Conference in 1972.

This edition of the conference attracted 80 submissions from 29 countries. We wish
to thank all their authors for their interest in PSI 2014. Each submission was reviewed
by three experts, at least two of them from the same or closely related discipline as the
authors. The reviewers generally provided high-quality assessment of the papers and



often gave extensive comments to the authors for possible improvement of their
contributions. As a result, the Program Committee has selected for presentation at the
conference 17 high-quality papers as regular talks, 11 papers as short talks, and 2
papers as system and experimental talks. A range of hot topics in computer science and
informatics is covered by five keynote talks given by prominent computer scientists
from various countries.

We wish to express our gratitude to all the persons and organizations who con-
tributed to the conference: the authors of all the papers for their effort in producing the
materials included here; the sponsors for their moral, financial, and organizational
support; the Steering Committee members for their coordination of the conference, the
Program Committee members and the reviewers who did their best to review and select
the papers, and the members of the Organizing Committee for their contribution to the
success of this event and its great cultural program.

The Program Committee work was done using the EasyChair conference manage-
ment system.

December 2015 Andrei Voronkov
Irina Virbitskaite

VI Preface
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The Laws of Concurrent Programming
(Abstract)

Tony Hoare

Microsoft Research Cambridge,
Cambridge, Great Britain

At the beginning of my academic career (1968), I wanted to express the axioms of
sequential computer programming in the form of algebraic equations. But I did not
know how. Instead I formalised the axioms as deduction rules for what became known
as Hoare logic.

I now know how I should have done it as an algebra. Furthermore, I can add a few
neat axioms that extend the algebra to concurrent programming. From the axioms one
can prove the validity of the structural proof rules for Hoare logic, as extended to
concurrency by separation logic. Furthermore, one can prove the deductive rules for an
operational semantics of process algebra, expressed in the style of Milner. In fact, there
is an algebraic time-reversal duality between the two forms of semantic rule. For me,
this was a long-sought unification.



Big Data, Big Systems, Big Challenges:
A Personal Experience

(Extended abstract)

Vadim E. Kotov

Correspondent member of the Russian Academy of Sciences
Sunnyvale, CA, USA
vkotov@sv.cmu.edu

I have been fortunate to work in two remarkable research communities, Akademgor-
odok in Siberia and Silicon Valley in California, and that my professional career
stretched over two very different, yet both exciting epochs of the computer systems and
science evolution: steady accumulation of knowledge and technology in 1960s–1980s
and, then, “Internet Big Bang” and Information Revolution in 1990s–2010s.

In this talk, I track the trends in the development of large computer systems which I
witnessed working first at Hewlett-Packard Laboratories and then at Carnegie-Mellon
University, Silicon Valley Campus. This is not a general survey, I exemplify those
trends by the systems in the analysis or/and design of which I and my colleagues
participated.

The driving force behind the computer system progress is unprecedented
accumulation of complex data and huge global data traffic. “Big Data” is a popular
metaphor labeling the situation. It becomes difficult to process Big Data using traditional
computer systems and applications. “Big Systems” that become the main trend in the
current system architecture are required. They include: powerful data centers using tens
of thousands servers; enterprise IT “systems of systems” consisting of globally
distribute data centers; Grid and Utility Computing; Cloud Computing; Warehouse
Scale Computers, Internet of Things (IoT), and coming exascale supersystems.
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Descriptive Types for Linked Data Resources

Gabriel Ciobanu1, Ross Horne1,2(B), and Vladimiro Sassone3

1 Institute of Computer Science, Romanian Academy, Blvd.
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3 Electronics and Computer Science, University of Southampton, Southampton, UK
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Abstract. This work introduces the notion of descriptive typing. Type
systems are typically prescriptive in the sense that they prescribe a
space of permitted programs. In contrast, descriptive types assigned to
resources in Linked Data provide useful annotations that describe how a
resource may be used. Resources are represented by URIs that have no
internal structure, hence there is no a priori type for a resource. Instead
of raising compile time errors, a descriptive type system raises runtime
warnings with a menu of options that make suggestions to the program-
mer. We introduce a subtype system, algorithmic type system and opera-
tional semantics that work together to characterise how descriptive types
are used. The type system enables RDF Schema inference and several
other modes of inference that are new to Linked Data.

1 Introduction

Linked Data is data published on the Web according to certain principles and stan-
dards. The main principle laid down by Berners-Lee in a note [2] is to use HTTP
URIs to identify resources in data, e.g. res:Andrey Ershov. By using HTTP URIs,
anyone can use the HTTP protocol to look up (dereference) resources that appear
in data in order to obtain more data. All URIs that appear in this paper are real
dereferenceable URIs.

To facilitate interoperability, Web standards are employed. Data is represented
in a simple graph-based format called the Resource Description Framework
(RDF) [7]. In RDF, there is a notion of a type, for example res:Andrey Ershov
may be assigned the type dbp:SovietComputerScientist . RDF Schema [5] provides
some simple mechanisms for organising these types into hierarchies. RDF Schema
also enables the types of resources to be inferred in certain contexts.

If you ask the Linked Data scientist whether there is any link between types
in RDF and type systems, they will explain that there is almost no connection.
Traditionally, type systems are used for static analysis to prescribe a space of
constraints on a system. In contrast, types in RDF change to describe the system
instead of prescribing constraints on the system.
c© Springer-Verlag Berlin Heidelberg 2015
A. Voronkov and I. Virbitskaite (Eds.): PSI 2014, LNCS 8974, pp. 1–25, 2015.
DOI: 10.1007/978-3-662-46823-4 1
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In this work, we provide a better answer to the question of the type-theoretic
nature of types in Linked Data. We distinguish between a prescriptive type sys-
tem and descriptive type system. In a traditional prescriptive type system, if a
program is not well typed, then the program is rejected. In a descriptive type
system1, if a script is not well typed then the script can be executed but warn-
ings are produced at runtime. The warnings present the user of the script with
several options including expanding the type system itself to accommodate the
script. Options can be selected interactively at any point during the execution of
a script. Note that the user of a script is usually the programmer in this setting.

In Sect. 2, we present a motivating example of a scenario where descriptive
typing can be applied to Linked Data to present meaningful warnings to a pro-
grammer that would like to interact with Linked Data.

In Sect. 3, we develop technical prerequisites for our descriptive type system.
In particular, we require a notion of type and a consistent notion of subtyping.
We develop these notions and present supporting results.

In Sect. 4, we continue the technical development of the type system. We
introduce a simple scripting language for dereferencing resources over the Web
and querying Linked Data in a local store. We devise an algorithmic type system
that we use as part of our typing and inference mechanism.

In Sect. 5, we specify the behaviour of scripts using a novel operational seman-
tics. The operational semantics allows us to refine the type system during exe-
cution in response to warnings. The operational semantics also enables us to
formalise the examples in the motivating section. We describe an algorithm for
deriving warnings based on constraints generated by the operational semantics
and algorithmic type system. We conclude with a type reduction result that
proves that, if the type system is sufficiently refined, then the script will run
without unnecessary warnings.

2 Motivation for Descriptive Typing for Linked Data

We illustrate a scenario involving descriptive typing for scripts that interact
with Linked Data. Descriptive typing generates meaningful warnings during the
execution of a script, that can assist programmers without imposing obligations.

Suppose that at some point we would like to obtain data about Andrei
Ershov. Our script firstly dereferences the URI dbp:Andrei Yershov (in Russian
Ershov and Yershov are transliterations of the same Cyrilic characters). From
this we obtain some data including the following triples.

res:Andrei Yershov dbp:birthPlace res:Soviet Union.
res:Andrei Yershov dbp:league res:Kazakhstan Major League.
res:Andrei Yershov rdf:type dbp:IceHockeyPlayer .

1 The idea of descriptive types arose in joint work with Giuseppe Castagna and Gior-
gio Ghelli. Here we instantiate it for our Linked Data scripting language [6]. The
development of descriptive types for the full SPARQL 1.1 specification will be given
in a forthcoming paper by the above authors.

http://dbpedia.org/ontology/Andrei_Yershov
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/Soviet_Union
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/league
http://dbpedia.org/resource/Kazakhstan_Major_League
http://dbpedia.org/resource/Andrei_Yershov
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/IceHockeyPlayer
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In the electronic version of this paper the above URIs are dereferenceable,
allowing the reader to follow the links. The reader familiar with Ershov the
academician will find the above data strange, but the script that performs the
dereferencing has no experience to judge the correctness of the data.

The script then tries to query the data that has just been obtained, as follows:

select $place
where res:Andrei Yershov dbp:birthPlace $place.

The above query uses a property dbp:birthPlace that can relate any person to
any location. The database is aware, due to the DBPedia ontology [3], that
dbp:IceHockeyPlayer is a subtype of dbp:Person. Hence the query is considered
to be well typed. The query produces the result $place �→ res:Soviet Union,
which appears to be correct.

Next the script tries a different query.

select $book
where res:Andrei Yershov free:book.author.works written $book.

Before the query is executed, it is type checked. The type system knows that
the property free:book.author.works written relates authors to books. The type
system also knows, from the data obtained earlier, that res:Andrei Yershov is
an ice hockey player, which is not a subtype of author. The subject of the triple
and the property appear not to match.

In a prescriptive type system the query would be automatically rejected as
being wrong. In contrast, a descriptive type system provides warnings at runtime
with several options to choose from other than outright rejection.

1. Change the type of res:Andrei Yershov so that the resource is both an ice
hockey player and an author.

2. Change the type of the property free:book.author.works written so that ice
hockey players can author books.

3. Change the subtype relations so that ice hockey player is a subtype of author,
hence all ice hockey players are automatically inferred to be authors.

4. Change the data so that a different resource or property is used.

The default option for RDF Schema [14] is to infer that, because the subject
of free:book.author.works written is an author and res:Andrei Yershov appears
as the subject, then res:Andrei Yershov must also be an author. The type of
res:Andrei Yershov would be refined to the following intersection of types.

IntersectionOf(dbp:IceHockeyPlayer , free:book.author)

Academics can have colourful lives, so the above type may appear plausible to
an observer unfamiliar with Ershov’s life. However, this is a case of mistaken
identity. Ershov the academician was never a professional ice hockey player.

The correct way to resolve the above conflict is instead to change the data.
A query to freebase [4] and DBpedia [3] asking resources with name Ershov in
Cyrillic that are book authors reveals that the intended Ershov was identified
by res:Andrey Ershov in DBpedia and free:m.012s3l in freebase.

We return to this example in Sect. 5, after developing the necessary technical
apparatus.

http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/IceHockeyPlayer
http://dbpedia.org/ontology/Person
http://dbpedia.org/resource/Soviet_Union
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author
http://dbpedia.org/resource/Andrey_Ershov
http://rdf.freebase.com/ns/m.012s3l
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3 Types and Subtyping for the Descriptive Type System

In this section, we introduce the types that are used in our type system. We
explain the intuition behind each construct and how they are useful for describing
resources. We also define how types are arranged into a hierarchy by using a
subtype system.

3.1 Types for Classifying Resources

Many type systems are intimately connected to the form of data. For example,
in XML Schema, the lexeme 3 has the type xsd:integer , whereas the lexeme
‘‘Ershov’’ has the type xsd:string . RDF does allow XML Schema datatypes
to appear as objects in triples. Such literals should be typed prescriptively, since
it should be forbidden to add a string to an integer or evaluate an integer using
a regular expression.

Now consider the types of resources. Resources in RDF are represented by a
URI that identifies the resource. The simplest answer is to say that the type of
a resource is xsd:anyURI , in which case a prescriptive type system is sufficient,
as defined in [6].

In this work, we draw inspiration from RDF Schema [5], which concerns types
that classify resources. InRDFSchema, one resource canbe classifiedusing the type
dbp:IceHockeyPlayer, and another using the type yago:SovietComputerScientists .
Both resources are represented as URIs, so there is nothing about the syntax of the
resources that distinguishes their type.

Notice that basic types themselves are also URIs. We use these basic types as
the atomic types of our type system. The full syntax for types is presented in Fig. 1.

Fig. 1. The syntax of descriptive types.

In Fig. 1, there are three type constructors, namely intersection, union, and
property types. There is also a top type owl:Thing that represents the type of
all resources.

Intersection Types. The intersection type constructor is used to combine sev-
eral types. For example, acording to DBpedia, res:Andrey Ershov has several
types, including yago:SovietComputerScientists and yago:FellowsOfTheBritish
ComputerSociety . In this case, the following intersection type can be assigned
to res:Andrey Ershov .

IntersectionOf ( yago:SovietComputerScientists ,
yago:FellowsOfTheBritishComputerSociety )

http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#anyURI
http://dbpedia.org/ontology/IceHockeyPlayer
http://dbpedia.org/class/yago/SovietComputerScientists
http://www.w3.org/2002/07/owl#Thing
http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/SovietComputerScientists
yago:FellowsOfTheBritishComputerSociety
yago:FellowsOfTheBritishComputerSociety
http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/SovietComputerScientists
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
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Intuitively, the resource res:Andrey Ershov is a member of the intersection of
the set of all resources that have the type yago:SovietComputerScientists and
the set of all resources of type yago:FellowsOfTheBritishComputerSociety.

Property Types. The property type is inspired by RDF Schema [5], which enables
the domain and range of a property to be declared. In RDF [7], the basic unit
of data is a triple, such as:

res:Andrei Yershov dbp:birthPlace res:Voskresensk .

The elements of a triple are the subject, property and object respectively. Here
the subject is expected to be of type dbp:Person, the object is expected to be of
type dbp:Settlement , while the property is assigned the following type.

Property(dbp:Person, dbp:Settlement)

In RDF Schema, this type represent two statements: one that declares that the
domain of the property is dbp:Person; and another that declares that the range
of the property is dbp:Settlement .

Union Types. If we inspect the data in DBpedia, we discover that the following
triple also appears.

res:Andrei Yershov dbp:birthPlace res:SovietUnion.

Observe that res:SovietUnion is not a settlement. We can use the union type to
refine the above type so that the range of the property is either a settlement or
a country. The refined type for dbp:birthPlace, involving union, is as follows.

Property(dbp:Person, UnionOf(dbp:Settlement , dbp:Country))

Notice that intersection would not be appropriate above. If we replace UnionOf
with IntersectionOf in the above example, the range of the property is restricted
to resources that are both a settlement and a country (e.g. Singapore), which is
not the intended semantics ofdbp:birthPlace.

Top Type. Intuitively the top type ranges over the set of all resources. If a
resource has no descriptive type information, then it can be assigned the top type.
The resource yago:Random access machine in the Yago dataset [16] has no type
other than owl:Thing.

In Yago the following triple relates Ershov to the random access machine.

yago:Andrei Ershov yago:linksTo yago:Random access machine

The property yago:linksTo is very general, relating any resource to any resource,
as indicated by the property type Property(owl:Thing , owl:Thing).

Notice that the syntax of types is liberally expressive. We can express type
that are both atomic types and property types, allowing multiple uses of one URI.
This design decision accommodates the subjective nature of human knowledge
and data representation, without the system becoming higher order.
A descriptive type system is expected to evolve, hence we do not want to restrict
unforeseeable developments in its evolution.

http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/SovietComputerScientists
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/Voskresensk
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/Settlement
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/Settlement
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/Settlement
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/SovietUnion
http://dbpedia.org/resource/SovietUnion
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/Settlement
http://dbpedia.org/ontology/Country
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/class/yago/Random_access_machine
http://www.w3.org/2002/07/owl#Thing
http://dbpedia.org/class/yago/Andrei_Ershov
http://dbpedia.org/class/yago/linksTo
http://dbpedia.org/class/yago/Random_access_machine
http://dbpedia.org/class/yago/linksTo
http://www.w3.org/2002/07/owl#Thing
http://www.w3.org/2002/07/owl#Thing
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3.2 A Subtype Relation Over Descriptive Types

Types form a lattice defined by a subtype relation. The subtype relation, defined
in Fig. 2, determines when a resource of one type can be used as a resource of
another type. This relation is important for both typing systems and for refining
the type system itself, in response to warnings.

Fig. 2. Axioms and rules of the subtype system.

Axioms. We assume that there are a number of subtype inequalities that relate
atomic types to each other. For example, we may assume that the following
subtype inequalities hold.

dbp:Settlement ≤ dbp:PopulatedPlace dbp:Country ≤ dbp:PopulatedPlace

yago:CitiesAndTownsInMoscowOblast ≤ dbp:Settlement

These inequalities are inspired by the rdfs:subClassOf property fromRDFSchema,
which defines a reflexive transitive relation [14]. We call a subclass relation SC
the set of subtype assumptions. We denote the reflexive transitive closure of SC
as SC∗. Notice that SC is a relation over a finite number of atomic types, hence
SC∗ is efficient to calculate using techniques such as the Dedekind-MacNeille
completion [13].

The relation SC∗ is used in the axiom atoms in Fig. 2. The top axiom states
that every resource is of type owl:Thing .

http://dbpedia.org/ontology/Settlement
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/ontology/Country
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/class/yago/CitiesAndTownsInMoscowOblast
http://dbpedia.org/ontology/Settlement
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2002/07/owl#Thing
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Rules for Union, Intersection and Properties. Suppose that another hint from the
type system leads to the type of the property dbp:birthPlace to be refined further.
The hint suggest that the range of the property should includedbp:Populated-Place.
From the subtype rules, we can derive the following inequality.

� Property( dbp:Person ,

dbp:PopulatedPlace )
≤ Property( dbp:Person ,

UnionOf(dbp:Settlement , dbp:Country))

The proof follows from applying first the property rule, that swaps the direction
of subtyping in each component, generating the following subtype constraint,
and an axiom.

� UnionOf(dbp:Settlement , dbp:Country) ≤ dbp:PopulatedPlace

The above constraint is solved by applying the least upper bound rule and atoms
rule. The least upper bound rule generates two inequalities between atomic types
that were declared to be in SC∗ above. The above subtype inequality between
properties suggests that a property with range dbp:PopulatedPlace can also range
over resources that are settlements or countries.

Now suppose that the following inequality is added to the relation SC.

yago:SovietComputerScientists ≤ dbp:Person

By the left projection rule and the above subtype inequality, we can derive the
following subtype inequality.

� IntersectionOf ( yago:SovietComputerScientists ,
yago:FellowsOfTheBritishComputerSociety )

≤ dbp:Person

The above inequality suggests that Ershov can be treated as a person, although
his type does not explicitly mention the atomic type dbp:Person.

The Cut Rule. A subtype relation is expected to be a transitive relation. To
prove that subtyping is transitive, we include the cut rule in our subtype system
and then show that any subtype inequality that is derived using cut can also be
derived without using cut. In proof theory, this consistency result is known as
cut elimination.

Theorem 1 (Cut elimination). The cut rule can be eliminated from the given
subtype system using an algorithmic procedure.

Proof. The proof works by transforming the derivation tree for a subtype judge-
ment into another derivation tree with the same conclusion. The transformation
is indicated by [[·]]. The symbol πi above a subtype inequality represents a proof
tree with the subtype inequality as its conclusion.

Without loss of generality, assume that the rule applied at the base of the
proof tree is the cut rule. The proof proceeds by induction over the structure of
the proof tree.

http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/Populated-penalty -@M Place
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/Settlement
http://dbpedia.org/ontology/Country
http://dbpedia.org/ontology/Settlement
http://dbpedia.org/ontology/Country
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/class/yago/SovietComputerScientists
http://dbpedia.org/ontology/Person
http://dbpedia.org/class/yago/SovietComputerScientists
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/Person
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Consider the case of cut applied across two axioms for atoms. Since SC*
is transitively closed, if a ≤ b ∈ SC∗ and b ≤ c ∈ SC∗, then we know that
a ≤ c ∈ SC∗. Hence the following transformation simplifies atom axioms.⎡

⎣
⎡
⎣

a ≤ b ∈ SC∗

� a ≤ b

b ≤ c ∈ SC∗

� b ≤ c

� a ≤ c

⎤
⎦
⎤
⎦ −→

a ≤ c ∈ SC∗

� a ≤ c

The above case is a base case for the induction. The other base case is when the
top rule is applied on the right branch of the cut rule. In this case, the cut can
be absorbed by the top type axiom, as follows.

⎡
⎣
⎡
⎣

π
� C ≤ D � D ≤ owl:Thing

� C ≤ owl:Thing

⎤
⎦
⎤
⎦ −→ � C ≤ owl:Thing

The result of the above transformation step is clearly cut free.
Consider the case where the left branch of a cut is another cut rule. The nested

cut rule can be normalised first, as demonstrated by the transformation bellow.
⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

π0

� C ≤ D
π1

� D ≤ E

� C ≤ E
π2

� E ≤ F

� C ≤ F

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦ −→

⎡
⎢⎢⎣

⎡
⎢⎢⎣

⎡
⎣
⎡
⎣

π0

� C ≤ D
π1

� D ≤ E

� C ≤ E

⎤
⎦
⎤
⎦

π2

� E ≤ F

� C ≤ F

⎤
⎥⎥⎦

⎤
⎥⎥⎦

By induction, the resulting nested tree is transformed into a cut free derivation
tree; hence another case applies. This induction step is symmetric when a nested
cut appears on the right branch of a cut.

Consider the case where the least upper bound rule appears on the left branch
of a cut. In this case, the transformation can be applied separately to each of
the premises of the union introduction rule, as demonstrated below.
⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

π0

� C0 ≤ D
π1

� C1 ≤ D

� UnionOf(C0, C1) ≤ D
π2

� D ≤ E

� UnionOf(C0, C1) ≤ E

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

−→

⎡
⎣
⎡
⎣

π0

� C0 ≤ D
π2

� D ≤ E

� C0 ≤ E

⎤
⎦
⎤
⎦
⎡
⎣
⎡
⎣

π1

� C1 ≤ D
π2

� D ≤ E

� C1 ≤ E

⎤
⎦
⎤
⎦

� UnionOf(C0, C1) ≤ E

By induction, the result of the transformation is a cut free proof. The case for
the greatest lower bound is symmetric, with the order of subtyping exchanged
and union exchanged for intersection.

Consider the case of the injection rules. Without loss of generality, consider
the left injection rule. In this case, the cut is pushed up the proof tree, as
demonstrated below.⎡

⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

π0

� C ≤ D

π1

� D ≤ E0

� D ≤ UnionOf(E0, E1)

� C ≤ UnionOf(E0, E1)

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦ −→

⎡
⎣
⎡
⎣

π0

� C ≤ D
π1

� D ≤ E0

� C ≤ E0

⎤
⎦
⎤
⎦

� C ≤ UnionOf(E0, E1)

http://www.w3.org/2002/07/owl#Thing
http://www.w3.org/2002/07/owl#Thing
http://www.w3.org/2002/07/owl#Thing
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By induction, the result is a cut free proof. The cases for right injection, left
projection and right projection are similar.

Consider an injection rule applied on the left of a cut, and least upper bound
rule applied on the right of a cut. This is a principal case of the cut elimination
procedure. Without loss of generality, consider the left projection. The result
of the transformation is that only the left premise of the union introduction
rule is required; the irrelevant branch is removed by the elimination step, as
demonstrated below.

⎡
⎢⎣

⎡
⎢⎣

π0

� C ≤ D0

� C ≤ UnionOf(D0, D1)

π1

� D0 ≤ E

π2

� D1 ≤ E

� UnionOf(D0, D1) ≤ E

� C ≤ E

⎤
⎥⎦

⎤
⎥⎦ −−→

[[
π0

� C ≤ D0

π1

� D0 ≤ E

� C ≤ E

]]

By induction, the result of the transformation is a cut-free proof. The principal
case for intersection is similar to union.

Consider the case of cut applied to two predicate subtype rules. In this case,
the contravariant premises of each subtype rule are cut individually, as follows.
⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

π0

� D0 ≤ C0

π′
0

� D1 ≤ C1

� Property(C0, C1) ≤ Property(D0, D1)

π1

� E0 ≤ D0

π′
1

� D1 ≤ E1

� Property(D0, D1) ≤ Property(E0, E1)

� Property(C0, C1) ≤ Property(E0, E1)

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

−→

⎡
⎣
⎡
⎣

π1

� E0 ≤ D0

π0

� D0 ≤ C0

� E0 ≤ C0

⎤
⎦
⎤
⎦
⎡
⎣
⎡
⎣

π′
0

� E1 ≤ D1

π′
1

� D1 ≤ C1

� E1 ≤ C1

⎤
⎦
⎤
⎦

� Property(C0, C1) ≤ Property(E0, E1)

By induction, each of the new transformations on the right above have a cut-free
proof, so the result of original transformation on the left above has a cut-free proof.

For every cut one of the above cases applies. Furthermore, in each transfor-
mation a finite number of proof trees are considered after a transformation step,
each of which has a smaller depth than the original proof tree; hence by a stan-
dard multiset ordering argument [8] it is easy to see that the procedure terminates.
Therefore, by structural induction on the derivation tree, a cut free derivation tree
with the same conclusion can be constructed for any derivation. ��
Cut elimination proves that the subtype system is transitive. It is straightfor-
ward to prove that the subtype system is reflexive, by structural induction. Also,
the direction of subtyping is preserved (monotonicity) by conjunction and dis-
junction, while the direction of subtyping is reversed (antitonicity) for property
types. Monotonicity and antitonicity can be established by a direct proof.

Proposition 1. For any type � C ≤ C is derivable. Also, if � C0 ≤ D0 and
� C1 ≤ D1 then the following hold:

– � IntersectionOf(C0, C1) ≤ IntersectionOf(D0,D1) is derivable.
– � UnionOf(C0, C1) ≤ UnionOf(D0,D1) is derivable.
– � Property(D0,D1) ≤ Property(C0, C1) is derivable.
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Fig. 3. The syntax of scripts and data.

Theorem 1 and Proposition 1 are sufficient to establish the consistency of the
subtype system.

Our subtype system is closely related to the functional programming language
with intersection and union types presented by Barbanera et al. [1]. Our subtype
system without properties coincides with the subtype system of Barbanera et al.
without implication. Furthermore, properties can be encoded using implication,
so our system is a restriction of the system presented in [1].

4 An Algorithmic Type System for Scripts and Data

We introduce a simple scripting language for interacting with Linked Data. The
language enables resources to be dereferenced and for data to be queried. This
language is a restriction of the scripting language presented in [6]; which is
based on process calculi presented in [9,12]. We keep the language here simple
to maintain the focus on descriptive types.

4.1 The Syntax of a Simple Scripting Language for Linked Data

The syntax of scripts is presented in Fig. 3. Terms in the language are URIs which
are identifiers for resources, or variables of the form $x. RDF triples [7] and triple
patterns are represented as three terms separated by spaces. The where keyword
prefixes a triple pattern. The keyword ok, representing a successfully terminated
script, is dropped in examples. Data is simply one or more triples, representing
an RDF graph.

The keyword from res:Andrei Yershov represents dereferencing the given
resource. The HTTP protocol is used to obtain some data from the URI, and the
data obtained is loaded into a graph local to the script (see [6] for an extensive
discussion of the related from named construct).

The keyword where represents executing a query over the local graph that
was populated by dereferencing resources. The query can execute only if the
data in the local graph matches the pattern. Variables representing resources to
be discovered by the query are bound using the select keyword (see [12] for the
analysis of more expressive query languages based on SPARQL [10,15]).

4.2 An Algorithmic Type System for Scripts and Data

We type scripts for two purposes. Firstly, if the script is correctly typed, then we
can check that it is well typed and execute the script without throwing any
warnings. However, if the script is not well typed, we can use the type system

http://dbpedia.org/resource/Andrei_Yershov
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as the basis of an algorithm for generating warnings. Scripts and data are typed
using the system presented in Fig. 4. There are typing rules for each form of
term, script and data.

Fig. 4. The type system for scripts and data.

Typing Data. To type resources we require a partial function Ty from resources
to types. This represents the current type of resources assumed by the system. We
write Ty(uri) for the current type of the resource, and call Ty the type assump-
tions. The type rule for resources states that a resource can assume any supertype
of its current type. For example Ershov can be a person even though his type is
the intersection of several professions, as illustrated in the previous section.

The type rule for triples assumes that a triple is well typed as long as the
subject and object of a triple can match the type of the property type assumed
by the predicate. Well typed triples are then composed together.

Triples with the reserved URI rdf:type in the property position are treated
differently from other triples. In the RDF type rule, the object is an atomic
type and the subject is a term of the given atomic type. This rule is used to
extract type information from data during inference, and can be viewed as a
type ascription. Further special type ascription rules could be added to extract
more refined types based on OWL [11]; however the rule for atomic types is
sufficient for the examples in this paper.

Typing Scripts. Variables may appear in scripts. The type rule for variables
is similar to the type rule for resources, except that the type of a variable is
drawn from the type environment, which appears on the left of the turnstile in a
judgement. A type environment consists of a set of type assignments of the form

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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$x : C. As standard, a variable is assigned a unique type in a type environment.
Type assumptions are introduced in the type environment using the type rule
for select.

The rule for where is similar to the type rule for triples, except that there is
a continuation script. A script prefixed with from is always well typed as long
as the continuation script is well typed, since we work only with dereferenceable
resources. A prescriptive type system involving data, such as numbers which
cannot be dereferenced as in [6], takes more care at this point. The terminated
script is always well typed.

The Subsumption Rule. Derivation trees in an algorithmic type system are linear
in the size of the syntax. The subsumption rule relaxes the type of a term at any
point in a typing derivation. Since we can apply subsumption repeatedly it could
give rise to type derivations of an unbounded size. By showing that subsumption
can be eliminated, we establish that the type system without subsumption is an
algorithmic type system.

Proposition 2 (Algorithmic Typing). For any type assumption that can be
derived using the type system, we can construct a type derivation with the same
conclusion where the subsumption rule has been eliminated from the derivation
tree.

Proof. There are three similar cases to consider, namely when a subsumption
immediately follows: another subsumption rule; or a type rule for resources, or a
type rule for variables. In each case notice that, by Theorem1, if � C ≤ D and
� D ≤ E, then we can construct a cut-free derivation for � C ≤ E. Hence, in
each of the following, the type derivation of the left can be transformed into the
type derivation on the right.

1.
Env � term : C � C ≤ D

Env � term : D � D ≤ E

Env � term : E

yields
Env � term : C � C ≤ E

Env � term : E

2.
� Ty(uri) ≤ D

Env � uri : D � D ≤ E

Env � uri : E

where Ty(uri) = C yields
� Ty(uri) ≤ E

Env � term : E

3.
� C ≤ D

Env, $x : C � $x : D � D ≤ E

Env, $x : C � $x : E

yields
� C ≤ E

Env, $x : C � $x : E

For other type rules subsumption cannot be applied, so the induction step
follows immediately. Hence, by induction on the structure of a type derivation,
all occurrences of the subsumption rule can be eliminated. ��
Since the type system is algorithmic, we can use it efficiently as the basis for
inference algorithms that we will employ in Sect. 5.

Monotonicity. We define an ordering over type assumptions and subtype assump-
tions. This ordering allows us to refine our type system by enlarging the subtype
assumptions; by enlarging the domain of the type assumptions; and by tighten-
ing the types of resources with respect to the subtype relation. Refinement can be
formalised as follows.
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Definition 1. When we would like to be explicit about the subtype assumptions
SC and type assumptions Ty used in a type judgement Env � script and subtype
judgement � C ≤ D, we use the following notation:

Env �Ty
SC script �SC C ≤ D

We define a refinement relation (Ty′,SC′) ≤ (Ty,SC), such that:

1. SC ⊆ SC′.
2. For all uri such that Ty(uri) = D, there is some C such that Ty′(uri) = C

and �SC′ C ≤ D.

We say that (Ty′,SC′) is a refinement of (Ty,SC).

In a descriptive type system, we give the option to refine the type system in
response to warnings that appear. The following two lemmas are steps towards
establishing soundness of the type system in the presence of refinements of sub-
type and type assumptions. The lemmas establish that anything that is well
typed remains well typed in a refined type system.

Lemma 1. If �SC C ≤ D and SC ⊆ SC′, then �SC′ C ≤ D.

Proof. Observe that only the atom rule uses SC. Also notice that if a ≤ b ∈ SC∗,
and SC ⊆ SC′, then a ≤ b ∈ SC′∗. Hence if the subtype axiom on the left below
holds, then the subtype axiom on the right below holds.

a ≤ b ∈ SC∗

�SC a ≤ b yields
a ≤ b ∈ SC′∗

�SC′ a ≤ b

All other cases do not involve SC, hence the induction steps are immediate.
Hence, by structural induction, the set of subtype assumptions can be enlarged
while preserving the subtype judgements. ��
Lemma 2. The following monotonicity properties hold for scripts and data
respectively.

1. If �Ty
SC script and (Ty′,SC′) ≤ (Ty,SC), then �Ty′

SC′ script.
2. If �Ty

SC data and (Ty′,SC′) ≤ (Ty,SC), then �Ty′

SC′ data.

Proof. For type assumptions, observe that the only rule involving Ty is the
rule for typing resources. Assume that (Ty′,SC′) ≤ (Ty,SC). By definition, if
Ty(uri) = D then Ty′(uri) = C and �SC′ C ≤ D where SC ⊆ SC′. Hence if
�SC D ≤ E, by Lemma 1, �SC′ D ≤ E. Hence, by Theorem 1, we can construct
a cut free proof of �SC′ C ≤ E. Therefore if the type axiom on the left below
holds, then the type axiom on the right also holds.

�SC Ty(uri) ≤ E

Env �Ty
SC uri : E yields

�SC′ Ty′(uri) ≤ E

Env �Ty′

SC′ uri : E
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Consider the type rule for variables. By Lemma1, if �SC C ≤ D then �SC′

C ≤ D. Therefore if the type axiom on the left below holds, then the type axiom
on the right also holds.

�SC C ≤ D

Env, $x : C � $x : D yields
�SC′ C ≤ D

Env, $x : C � $x : D

All other rules do not involve Ty or SC, hence follow immediately. Therefore, by
structural induction, refining the type system preserves well typed scripts and
data. ��

5 An Operational Semantics Aware of Descriptive Types

This section is the high point of this paper. We illustrate how descriptive typing
is fundamentally different from prescriptive typing.

In a prescriptive type system, we only permit the execution of programs that
are well typed. In contrast, in this descriptive type system, if a program is not
well typed, then the program can still be executed. During the execution of an
ill typed program, warnings are generated. At runtime, the program provides
the option to, at any point during the execution of the program, address the
warnings and refine the type system to resolve the warnings.

5.1 The Operational Semantics

The rules of the operational semantics are presented in Fig. 5. The first three
are the operational rules for select, where and from respectively. The fourth
rule is the optional rule that refines the type system in response to warnings. We
quotient data such that the composition of data is associative and commutative.

Configurations. A configuration (script, data,Ty,SC) represents the state that
can change during the execution of a program. It consists of four components:

– The script script that is currently being executed.
– The data data representing triples that are currently stored locally.
– A partial function Ty from resources to types, representing the current type

assumptions about resources.
– A relation over atomic types SC, representing the current subtype assump-

tions.

Type assumptions and subtype assumptions can be changed by the rules of the
operational semantics, since they are part of the runtime state.

Example of a Good Script. We explain the interplay between the operational
rules using a concrete example. Suppose that initially we have a configuration
consisting of:
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Fig. 5. The operational semantics for scripts. Note that, in the from rule, data1 is the
data obtained at runtime by dereferencing the resource uri.

– a script:
from res:Andrey Ershov
select $place : dbp:PopulatedPlace
where res:Andrey Ershov dbp:birthPlace $place

– some data data0 including triples such as the following:

dbp:birthPlace rdfs:domain dbp:Person
dbp:birthPlace rdfs:range dbp:PopulatedPlace
res:SovietUnion rdf:type dbp:PopulatedPlace

– some type assumptions Ty such that:

Ty(dbp:birthPlace) = Property( dbp:Person,
dbp:PopulatedPlace )

Ty(res:Andrey Ershov) = owl:Thing
Ty(res:SovietUnion) = dbp:PopulatedPlace

– an empty set of subtype assumptions.

The above script is not well typed with respect to the type assumptions, since
the strongest type for res:Andrey Ershov is the top type, which is insufficient to
establish that the resource represents a person.

There are several options other than rejecting the ill typed script. We can
inspect the warning, which provides a menu of options to refine the type system
so that the script is well typed. At this stage of execution, there are two reason-
able solutions: either we can refine the type of res:Andrey Ershov , so that he is
of type dbp:Person; or we can refine the type of dbp:birthPlace so that it can
relate any resource to a populated place.

A further option is available. Since these are warnings, we can ignore them
and continue executing the script. Assuming we choose to ignore the warnings
at this stage, we apply the operational rule for from.

http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/birthPlace
http://www.w3.org/2000/01/rdf-schema#domain
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/birthPlace
http://www.w3.org/2000/01/rdf-schema#range
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/resource/SovietUnion
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/resource/Andrey_Ershov
http://www.w3.org/2002/07/owl#Thing
http://dbpedia.org/resource/SovietUnion
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/birthPlace
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The rule involves some new data data1 that is obtained by dereferencing the
resource with URI dbp:Andrey Ershov . This includes triples such as:

res:Andrei Ershov rdf:type yago:FellowsOfTheBritishComputerSociety
res:Andrei Ershov dbp:birthPlace res:SovietUnion

The rule must calculate (Ty′,SC′) such that (Ty′,SC′) ≤ (Ty,SC) and �Ty′

SC′

data1. Again there are several options for resolving the above constraints, pre-
sented below.

1. Refine the type assumptions such that the resource res:Andrey Ershov is
assigned the intersection of yago:FellowsOfTheBritishComputerSociety and
dbp:Person as its type.

2. Refine the type of Ershov to the type yago:FellowsOfTheBritishComputer
Society and refine the type of property dbp:birthPlace such that it is of the
following type:

IntersectionOf( Property( dbp:Person,
dbp:PopulatedPlace ),

Property( yago:FellowsOfTheBritishComputerSociety,
dbp:PopulatedPlace ))

3. Refine the subtype assumptions to SC′ such that it contains the following
subtype inequality:

yago:FellowsOfTheBritishComputerSociety ≤ dbp:Person

The first option above is the default option taken by RDF Schema [5]. It
assumes that, since the domain of the property wasdbp:Person, Ershov must be
a person. The second option above makes the property more accommodating,
so that it can also be used to relate fellows of the British Computer Society to
populated places. The third option is the most general solution, since it allows
any fellow of the British Computer Society to be used as a person in all circum-
stances.

The choice of option is subjective, so is delegated to a human. Suppose that the
programmer selects the third option. This results in the following configuration:

– a script where the leading from keyword has been removed:

select $place : dbp:PopulatedPlace
where res:Andrey Ershov dbp:birthPlace $place

– some data data0 data1 including the new data obtained by dereferencing the
resource dbp:Andrey Ershov ;

– a refined type assumption Ty′, such that:

Ty′(res:Andrey Ershov) = yago:FellowsOfTheBritishComputerSociety

– the refined subtype assumptions SC′ suggested in the third option above.

http://dbpedia.org/ontology/Andrey_Ershov
http://dbpedia.org/resource/Andrei_Ershov
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://dbpedia.org/resource/Andrei_Ershov
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/SovietUnion
http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://dbpedia.org/ontology/Person
yago:FellowsOfTheBritishComputerSociety
yago:FellowsOfTheBritishComputerSociety
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/Andrey_Ershov
http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
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Having resolved the warning we are now in the fortunate situation that the
remainder of the script is also well typed with respect to the new type and
subtype assumptions. Thus we can continue executing without further warnings.

We apply the operational rule for select. This rule dynamically checks that
the following holds.

�Ty′

SC′ res:SovietUnion : dbp:PopulatedPlace

Since the above subtype judgement holds, the substitution is applied to obtain
a configuration with the following script.

where res:Andrey Ershov dbp:birthPlace res:SovietUnion

Finally, since the triple in the where clause matches a triple in the data, we can
apply the operational rule for where. This successfully completes the execution
of the script.

Example of a Bad Script. Now consider the example in the motivating section.
We begin with the following configuration, where the wrong URI has been used
for Ershov:

– the following script:

from res:Andrei Yershov
select $book : free:book
where res:Andrei Yershov free:book.author.works written $book.

– some initial data data0 including triples such as:

free:book.author.works written rdfs:domain free:book.author
free:book.author.works written rdfs:range free:book

– initial type assumptions Ty such that:

Ty(free:book.author.works written) = Property( free:book.author ,
free:book )

– an empty set of subtype assumptions.

The programmer has not yet realised that res:Andrei Yershov represents an
ice hockey player who is not the intended scientist. At runtime, the programmer
initially ignores a menu of warnings that would enable the optional rule to
be applied. One option suggests that the type of res:Andrei Yershov should be
free:book.author; another option suggest refining the type of free:book.author.
works written to the following type.

Property(owl:Thing , free:book)

The programmer decides to ignore the warnings and continue executing the
script. As in the previous example, we apply the from rule. This dereferences
the resource res:Andrei Yershov obtaining some new data data1 including the
following triple.

http://dbpedia.org/resource/SovietUnion
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/SovietUnion
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written
http://www.w3.org/2000/01/rdf-schema#domain
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book.author.works_written
http://www.w3.org/2000/01/rdf-schema#range
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author
free:book.author.works_written
free:book.author.works_written
http://www.w3.org/2002/07/owl#Thing
http://rdf.freebase.com/ns/book
http://dbpedia.org/resource/Andrei_Yershov
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res:Andrei Yershov rdf:type dbp:IceHockeyPlayer

There is only one good option in this case, which that script automatically
selects. It sets a refined type assumption Ty such that the following holds.

Ty′(res:Andrei Yershov) = dbp:IceHockeyPlayer

In the new configuration, there are still warnings that are induced by attempting
to apply the optional rule. The following menu of options is presented to the
programmer.

1. Refine the type assumptions such that the resource res:Andrei Yershov is
assigned the intersection of yago:IceHockeyPlayer and dbp:Person as its type.

2. Refine the type of the property free:book.author.works written such that it is
of the following type.

IntersectionOf( Property( free:book.author ,
free:book ),

Property( dbp:IceHockeyPlayer ,
free:book ))

3. Refine the subtype assumption to SC′ such that it contains the following
subtype inequality.

dbp:IceHockeyPlayer ≤ free:book.author

The three options are similar to the options in the previous examples. The dif-
ference is that the programmer should be suspicious. The first option above may
be plausible, but the programmer will be asking whether Ershov was really both
an author and a professional ice hockey player. The second option above, which
allows all ice hockey players to author books, is highly questionable. It certainly
does not make sense to take the third option above and make every ice hockey
player a book author.

A further reason to be alarmed is that, if the programmer attempts to ignore
the strange warnings, then the script cannot be executed further. There is no
resource that can be selected that enables the where clause to be matched.

Given the evidence, the programmer can conclude that there was a mismatch
between the query and the resource dereferenced. The solution is therefore to
change the scripts. By inspecting the data it is clear that the resource represents
the wrong Ershov, hence the programmer decides to change all appearances of
the troublesome resource.

5.2 Calculating the Options in Warnings Algorithmically

The optional operational rule and the operational rule for from are specified
declaratively in the operational semantics. These rules permit any refined type
system that satisfies the constraints to be chosen. We can algorithmically gen-
erate a menu of good solutions that fix some types while maximising others.

Firstly, we explain how the algorithm can be applied to generate the options
in the examples above. Secondly, we present the generalised algorithm.

http://dbpedia.org/resource/Andrei_Yershov
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/IceHockeyPlayer
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/IceHockeyPlayer
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/class/yago/IceHockeyPlayer
http://dbpedia.org/ontology/Person
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author


Descriptive Types for Linked Data Resources 19

Example Constraints. Consider a system of constraints from the running exam-
ples. Assume that SC is empty and we have that Ty is such that:

Ty(res:Andrei Yershov) = dbp:IceHockeyPlayer
Ty(free:book.author.works written) = Property( free:book.author ,

free:book )

The aim is to calculate Ty′ and SC′ such that (Ty′,SC′) ≤ (Ty,SC) and the
following type assumption holds.

�Ty′

SC′
select$book : free:book
where res:Andrei Yershov free:book.author.works written $book.

We then unfold the algorithmic type system, using type variables X and Y for
types that could take several values, as follows.

� Ty′(res:Andrei Yershov) ≤ X

� res:Andrei Yershov : X

� Ty′(free:book.author.works written) ≤ Property(X, Y )

� free:book.author.works written : Property(X, Y )

� free:book ≤ Y

$book : free:book � $book : Y

$book : free:book � where res:Andrei Yershov free:book.author.works written $book

� select$book : free:book where res:Andrei Yershov free:book.author.works written $book

From the above we generate the following constraints on Ty′, where X and Y
are variables for types that must be solved.

Ty′(res:Andrei Yershov) ≤ X free:book ≤ Y

Ty′(free:book.author.works written) ≤ Property(X,Y )

Also, since (Ty′,SC′) ≤ (Ty,SC), we have the following constraints and SC
⊆ SC′.

Ty′(res:Andrei Yershov) ≤ dbp:IceHockeyPlayer

Ty′(free:book.author.works written) ≤ Property(free:book.author , free:book)

From the above, we can generate the following scheme for upper bounds on Ty′.

Ty′(res:Andrei Yershov) ≤ IntersectionOf(dbp:IceHockeyPlayer , X)

Ty′(free:book.author.works written) ≤ IntersectionOf(
Property(free:book.author , free:book) ,
Property(X, free:book) )

We use these upper bounds to generate the options that appear in warnings.

Maximise Type of Property. To generate the first option Ty1, we maximise the
type of properties by ensuring that Ty(free:book.author.works written) is equal
to the upper bound on the property. This yields the following type inequality.

Property(free:book.author , free:book) ≤ IntersectionOf(
Property(free:book.author , free:book) ,
Property(X, free:book) )

http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author.works_written
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book
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We use the cut-free subtype system to analyse the above constraints. We apply
the greatest lower bound rule, then the property rule to obtain the constraint
X ≤ free:book.author . From this constraint we derive the most general solution
X �→ free:book.author . Thereby we obtain a refined type system such that.

Ty1(res:Andrei Yershov) = IntersectionOf(dbp:IceHockeyPlayer , free:book.author)

The above is exactly what RDF Schema would infer [14].

Maximise Type of Subject/Object. To generate the second option Ty2, we max-
imise the type of the subject be setting Ty(res:Andrei Yershov) to be equal to
the upper bound on the resource. This yields the following type inequality.

dbp:IceHockeyPlayer ≤ IntersectionOf(dbp:IceHockeyPlayer ,X)

As in the previous example, we unfold the rules of the algorithmic type system
to derive the constraint dbp:IceHockeyPlayer ≤ X. We then maximise the type
of the property with respect to this constraint, yielding the most general solution
X �→ dbp:IceHockeyPlayer . Thereby we obtain a refined type system such that.

Ty2(free:book.author.works written) = IntersectionOf(
Property(free:book.author , free:book) ,
Property(dbp:IceHockeyPlayer , free:book) )

Extend the Subtype Relation. The final option is to add subtype assumptions to
the type system. We can calculate these subtype assumptions algorithmically,
by calculating the conditions under which the above two options are equal.

Let Ty1 = Ty2 if and only if (Ty1,SC) ≤ (Ty2,SC) and (Ty2,SC) ≤
(Ty1,SC). Now Ty1 = Ty2 if and only if the following equalities hold.

dbp:IceHockeyPlayer = IntersectionOf(dbp:IceHockeyPlayer , free:book.author)

Property( free:book.author ,
free:book )

=
IntersectionOf(
Property(free:book.author , free:book) ,
Property(dbp:IceHockeyPlayer , free:book) )

By using the cut-free subtype system, we can calculate that the above equalities
hold only if the following subtype inequality holds.

dbp:IceHockeyPlayer ≤ free:author

Thus, if we include the above constraint in SC′, then the original Ty satisfies
the necessary constraints to enable the optional rule.

Note that the above algorithm does not always find a suitable set of con-
straints. For example, if we attempt to apply the optional rule before executing
from in the above example of a bad script, we are led to the constraint.

owl:Thing ≤ free:book.author

The above inequality cannot be induced by extending the set of subtype assump-
tion, so there is no solution to modifying SC. This is a positive feature since, in
an open world of knowledge like the Web, it makes no sense to state that every
resource is an author.

http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book.author
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author
http://dbpedia.org/resource/Andrei_Yershov
http://dbpedia.org/ontology/IceHockeyPlayer
http://dbpedia.org/ontology/IceHockeyPlayer
http://dbpedia.org/ontology/IceHockeyPlayer
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book
http://dbpedia.org/ontology/IceHockeyPlayer
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/book
http://dbpedia.org/ontology/IceHockeyPlayer
http://rdf.freebase.com/ns/author
http://www.w3.org/2002/07/owl#Thing
http://rdf.freebase.com/ns/book.author
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Summary. The general algorithm works as follows.

1. We use the algorithmic type system and the constraint (Ty′,SC′) ≤ (Ty,SC)
to generate a scheme for upper bounds on Ty′.

2. We generate the first option by, for every property, setting the type in Ty
to be equal to the upper bound on constraints. We then solve the system of
equalities using unification to obtain a suitable unifier. This is used to obtain
solution Ty1.

3. We generate the second option by, for every subject and object, setting the
type in Ty to be equal to the upper bound on constraints. Again we solve the
system of constraints using unification to obtain Ty2.

4. We set Ty1 = Ty2 and solve the system of equalities to obtain a set of subtype
inequalities over atomic types. If there is a solution, we extend SC with these
constraints and fix Ty.

The second point above generates classes for resources as expected by RDF
Schema [5]; hence RDF Schema is sound with respect to our descriptive type
system. The third and fourth points above provide alternative, more general
modes of inference. Thus the above algorithm extends RDF Schema inference.

If there is a solution to the fourth point above with an empty set of subtype
inequalities, then the script can be typed without refining the type system. In
this case, the constraints could be solved efficiently, using techniques in [17].
Further analysis of the above algorithm is future work.

5.3 Subject Reduction

There are two reasons why a system is well-typed. Either a priori the script
was well typed before changing the type system, or at some point during the
execution the programmer acted to resolve the warnings. In either case, once
the script is well typed it can be executed to completion without generating any
warnings other than unavoidable warnings that occur from reading data from
the Web.

The following proposition characterises the guarantees after choosing to resolve
a warning. In particular, as long as the data is kept well typed, then after choos-
ing to resolving warnings the script is also well typed, with respect to the refined
type system.

Proposition 3. If �Ty
SC data and the optional rule is applied, such that

(script, data,Ty,SC) −→ (script, data,Ty′,SC′),

then �Ty′

SC′ script and �Ty′

SC′ data.

Proof. Assume that �Ty
SC data and (script, data,Ty,SC) −→ (script, data,Ty′,

SC′) due to the optional rule. Hence it must be the case that (Ty′,SC′) ≤
(Ty,SC) and �Ty′

SC′ script. Hence, by Lemma 2, �Ty′

SC′ data holds, as required.
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We require the following substitution lemma. It states that if we assume that a
variable is of a certain type, then we can substitute the variable for a resource
of that type and preserve typing.

Lemma 3. Assume that � uri : C. Then the following statements hold:

1. If Env, $x : C � script, then Env � script
{
uri/$x

}
.

2. If Env, $x : C � term : D, then Env � term
{
uri/$x

}
: D.

Proof. Assume that � uri : C. The proof proceeds by structural induction on the
type derivation tree.

Consider the case of the type rule for variables, where the variable equals $x.
In this case, the type tree on the left can be transformed into the type tree on
the right.

� C ≤ D

Env, $x : C � $x : D yields
� uri : C � C ≤ D

Env � uri : D

Hence, by Proposition 2, Env � uri : D holds in the algorithmic type system and
clearly $x

{
uri/$x

}
= uri as required. All other cases for terms are trivial.

Consider the case of the select rule. Assume that Env, $x : C � select $y : D
script holds. If $x = $y, then $x does not appear free in select $x : D, hence
Env � select $x : D script as required. If $x 
= $y, then, by the induction
hypothesis, if Env, $x : C, $y : D � script holds then Env, $y : D � script

{
uri/$x

}
holds. Hence the proof tree on the left below can be transformed into the proof
tree on the right below.

Env, $x : C, $y : D � script

Env, $x : C � select $y : D script yields

Env, $y : D � script
{
uri/x
}

Env � select $y : D script
{
uri/x
}

Furthermore, since $x 
= $y, by the standard definition of substitution the fol-
lowing holds as required.

select $y : D script
{
uri/x

}
= (select $y : D script)

{
uri/x

}

The cases for other rules follow immediately by induction. ��
We also require the following result, the proof of which is straightforward.

Lemma 4. Assume that data0 ≡ data1. If � data0 then � data1.

The property that a well typed script will not raise unnecessary warnings, is
formulated as the following subject reduction result.

Theorem 2 (Subject reduction). If �Ty
SC script and �Ty

SC data, then if

(script, data,Ty,SC) −→ (
script′, data′,Ty′,SC′) ,

then �Ty′

SC′ script′ and �Ty′

SC′ data′.
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Proof. The proof is by case analysis, over each operational rule.
Consider the operational rule for select. Assume that the following hold.

� select $x : C script � data � uri : C

The above holds only if $x : C � script, by the type rule for select. By Lemma 3,
since $x : C � script and � uri : C, it holds that � script

{
uri/x

}
. Therefore the

select rule preserves types.
Consider the operational rule for where. Assume that the following type

assumption holds.

� where term0 term1 term2 script � term0 term1 term2 data

The above holds only if � script holds, hence the operational rule for where
preserves well typed scripts.

Consider the operational rule for from. Assume that the following assump-
tions hold.

�Ty
SC from uri script �Ty

SC data0 �Ty′

SC′ data1 (Ty′,SC′) ≤ (Ty,SC)

The first assumption above holds only if �Ty
SC script holds, by the type rule for

from. Since (Ty′,SC′) ≤ (Ty,SC), by Lemma 2, �Ty′

SC′ script holds. By Lemma 2
again, �Ty′

SC′ data0 holds. Hence �Ty′

SC′ data0 data1 holds. Therefore the from rule
preserves types.

Consider the case of the optional operational rule. For some initial configu-
ration (script, data,Ty,SC), we assume that �Ty

SC data. The result then follows
from Proposition 3. ��

6 Conclusion

The descriptive type system introduced in this work formalises the interplay
between runtime schema inference and scripting languages that interact with
Linked Data. The system formalises how to build RDF Schema inference into
scripts at runtime. The system also permits new inference mechanisms that refine
the types assigned to properties and extend the subtype relation.

We bring a number of type theoretic results to the table. We establish the con-
sistency of subtyping through a cut elimination result (Theorem1). We are able
to tightly integrate RDF schema with executable scripts that dereference and
query Linked Data. This is formalised by a type system that we prove is algorith-
mic (Proposition 2), hence suitable for inference. We specify the runtime behav-
iour of scripts using an operational semantics, and prove a subject reduction
result (Theorem 2) that proves that well typed scripts do not raise unnecessary
warnings.

We also provide an algorithm for solving systems of constraints to generate
warnings at runtime. This suggests a line of future work to investigate the opti-
mality of the algorithm presented. The descriptive type system can be employed
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in expressive scripting languages [12], and extract more type information based
on RDF Schema and OWL from data. This descriptive type system can coexist
with a prescriptive type system for simple data types as presented in [6].

A subjective question is the following. At what point does the programmer
stop ignoring the warnings and become suspicious? Many programmers are likely
to ignore warnings until the script stops working. At this point, they will inspect
the warnings and, based on their subjective human judgement, decide whether
suggestions are consistent or conflicting. Most programmers will be happy to let
fellows of the British Computer Society be people, but will have second thoughts
about letting all ice hockey players be authors. The Web is an open world of
subjective knowledge. Our descriptive type system assists subjective decisions
that keep data and schema information consistent.
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25 Years of Model Checking
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Abstract. Model Checking is an automatic verification technique for
large state transition systems. It was originally developed for reason-
ing about finite-state concurrent systems. The technique has been used
successfully to debug complex computer hardware, communication pro-
tocols, and software. It is beginning to be used for analyzing cyber-
physical, biological, and financial systems as well. The major challenge
for the technique is a phenomenon called the State Explosion Problem.
This issue is impossible to avoid in the worst case; but, by using sophis-
ticated data structures and clever search algorithms, it is now possible
to verify state transition systems with an astronomical number of states.
In this paper, we will briefly review the development of Model Checking
over the past 32 years, with an emphasis on model checking stochastic
hybrid systems.

1 Model Checking and State Explosion Problem

Model Checking, as a framework consisting of powerful techniques for verifying
finite-state systems, was independently developed by Clarke and Emerson [22]
and by Queille and Sifakis [52] in the early 1980s. Over the last few decades,
it has been successfully applied to numerous theoretical and practical problems
[17,20,36,37,45,63], such as verification of sequential circuit designs, commu-
nication protocols, software device drivers, security algorithms, cyber-physical
systems, and biological systems. There are several major factors contributing to
its success. Primarily, Model Checking is fully automated. Unlike deductive rea-
soning using theorem provers, this ‘push-button’ method neither requires proofs
nor experts to check whether a finite-state model satisfies given system specifi-
cations. Besides verification of correctness, it permits bug detection as well. If a
property does not hold, a model checker can return a diagnostic counterexample
denoting an actual execution of the given system model leading to an error state.
Such counterexamples can then help detect subtle bugs. Finally, from a practical
aspect, Model Checking also works with partial specifications, which allows the
separation of system design and development from verification and debugging.

Typically, a model checker has three basic components: a modeling formalism
adopted to encode a state machine representing the system to be verified, a spec-
ification language based on Temporal Logics [51], and a verification algorithm
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which employs an exhaustive searching of the entire state space to determine
whether the specification holds or not. Because of the exhaustive search, when
being applied to complex systems, all model checkers face an unavoidable prob-
lem in the worst case. The number of global states of a complex system can be
enormous. Given n processes, each having m states, their asynchronous compo-
sition may have mn states which is exponential in both the number of processes
and the number of states per process. In Model Checking, we refer to this as the
State Explosion Problem. Great strides have been made on this problem over the
past 32 years for various types of real-world systems. In the following sections,
we discuss major breakthroughs that have been made during the development
of Model Checking, and then briefly review the work adopting these techniques
for the analysis of stochastic hybrid systems, especially for probabilistic hybrid
automata.

2 Major Breakthroughs

2.1 Symbolic Model Checking with OBDDs

In the original implementation of the first model checking algorithm [22], the
transition system has an explicit representation using the adjacency lists. Such
an enumerative representation is feasible for concurrent systems with small num-
bers of processes and states per process, but not adequate for very large transi-
tion systems. In the fall of 1987, McMillan made a fundamental breakthrough. He
realized that by reformulating the original model checking procedure in a sym-
bolic way where sets of states and sets of transitions are represented rather than
individual states and transitions, Model Checking could be used to verify larger
systems with more than 1020 states [18]. The new symbolic representation was
based on Bryant’s ordered binary decision diagrams (OBDDs) [14]. In this sym-
bolic approach, the state graphs, which need to be constructed in the explicit
model checking procedure, are described by Boolean formulas represented by
OBDDs. Model Checking algorithms can then work directly on these OBDDs.
Since OBDD-based algorithms are set-based, they cannot directly implement the
depth-first search, and thus the property automaton should also be represented
symbolically.

Since then, various refinements of the OBDD-based algorithms [10,16,35,54]
have pushed the size of state space count up to more than 10120 [16]. The most
widely used symbolic model checkers SMV [46], NuSMV [19], and VIS [13] are
based on these ideas.

2.2 Partial Order Reduction

As mentioned in Sect. 1, the size of the parallel composition of n processes in a
concurrent system may be exponential in n. Verifying a property of such a system
requires inspecting all states of the underlying transition system. That is, n! dis-
tinct orderings of the interleaved executions of n states need to be considered in
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the setting where there are no synchronizations between the individual processes.
This is even more serious for software verification than for hardware verification,
as software tends to be less structured than hardware. One of the most success-
ful techniques for dealing with asynchronous systems is partial order reduction.
Since the effect of concurrent actions is often independent of their ordering, this
method aims at decreasing the number of possible orderings, and thus reducing
the state space of the transition system that needs to be analyzed for checking
properties. Intuitively, if executing two events in either order results in the same
result, they are independent of each other. In this case, it is possible to avoid
exploring certain paths in the state transition system.

Partial order reduction crucially relies on two assumptions. One is that all
processes are fully asynchronous. The other is that the property to be checked
does not involve the intermediate states. When coping with realistic systems
where the processes may communicate and thus depend on one another, this
approach attempts to identify path fragments of the full transition system, which
only differ in the order of the concurrently executed activities. In this way, the
analysis of state space can be restricted to one (or a few) representatives of every
possible interleaving.

Godefroid, Peled, and Valmari have developed the concepts of incorporating
partial order reduction with Model Checking independently in the early 1990’s.
Valmari’s stubborn sets [60], Godefroid’s persistent sets [33], and Peled’s ample
sets [49] differ on the actual details but contain many similar ideas. The SPIN
model checker, developed by Holzmann [39], uses the ample-set reduction to
great advantage.

2.3 Bounded Model Checking

AlthoughSymbolicModelChecking(SMC)withOBDDshassuccessfully improved
the scalability and is still widely used, OBDDs have multiple problems which
restrict the size of models that can be checked with this method. Since the order-
ing of variables has to be identical for each path from the root of an OBDD to a
leaf node, finding a space-efficient ordering is critical for this technique. Unfor-
tunately, it is quite difficult, sometimes impossible, to find an order resulting in
a small OBDD. Consider the formula for the middle output bit of a combina-
tional multiplier for two n-bit numbers. It can be proved that, for all variable
orderings, the size of the OBDD for this formula is exponential in n.

To further conquer the state explosion problem, Biere et al. proposed the
Bounded Model Checking (BMC) using Boolean satisfiability (SAT) solvers [9].
The basic idea for BMC is quite straightforward. Given a finite-state transition
system, a temporal logic property and a bound k (we assume k ≥ 1), BMC gen-
erates a propositional logical formula whose satisfiability implies the existence
of a counterexample of length k, and then passes this formula to a SAT solver.
This formula encodes the constraints on initial states, the transition relations
for k steps, and the negation of the given property. When the formula is unsat-
isfiable (no counterexample found), we can either increase the bound k until
either a counterexample is found, or k reaches the upper bound on how much
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the transition relation would need to be unwound for the completeness, or stop
if resource constraints are exceeded. As an industrial-strength model checking
technique, BMC has been observed to surpass SMC with OBDDs in fast detec-
tion of counterexamples of minimal length, in saving memory, and by avoiding
performing costly dynamic reordering. With a fast SAT solver, BMC can handle
designs that are order-of-magnitude larger than those handled by OBDD-based
model checkers.

As an efficient way of detecting subtle counterexamples, BMC is quite useful
in debugging. In order to prove correctness when no counterexamples are found
using BMC, an upper bound on steps to reach all reachable states needs to
be determined. It has been shown that the diameter (i.e., the longest shortest
path between any two states) of the state-transition system could be used as
an upper bound [9]. But, it appears to be computationally difficult to compute
the diameter when the state-transition system is given implicitly. Other ways for
making BMC complete are based on induction [55], cube enlargement [47], Craig
interpolants [48], and circuit co-factoring [32]. This problem remains a topic of
active research.

An interesting variation of the original BMC is to adopt a Satisfiability Mod-
ulo Theories (SMT) solver instead of a SAT solver [24,59]. SMT encodings in
model checking have several advantages. The SMT encodings offers more power-
ful specification language. They use (unquantified) first-order formulas instead
of Boolean formulas, and use more natural and compact encodings, as there is no
need to convert high level constraints into Boolean logic formulas. These SMT
encodings also make the BMC work the same for finite and infinite state systems.
Above all, high level of automation has not been sacrificed for the above advan-
tages. CBMC is a widely used Bounded model checker for ANSI-C and C++
programs [42], having supports for SMT solvers such as Z3 [27], and Yices [28].

2.4 Counterexample-Guided Abstraction Refinement

When the model state space is enormous, or even infinite, it is infeasible to
conduct an exhaustive search of the entire space. Another method of coping
with the state explosion problem is to abstract away irrelevant details, accord-
ing to the property under consideration, from the concrete state transition
system when constructing the model. We call this approach abstraction. This
simplification incurs information loss. Depending on the method used to con-
trol the information loss, abstraction techniques can be distinguished into either
over-approximation or under-approximation techniques. The over-approximation
methods enrich the behavior of the system by releasing constraints. They estab-
lish a relationship between the abstract model and the original system so that
the correctness of the former implies the correctness of the latter. The downside
is that they admit false negatives, where there are properties which hold in the
original system but fail in the abstract model. Therefore, a counterexample found
in the abstract system may not be a feasible execution in the original system.
These counterexamples are called spurious. Conversely, the under-approximation
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techniques, which admit false positives, obtain the abstraction by removing irrel-
evant behavior from the system so that a specification violation at the abstract
level implies a violation of the original system.

The counterexample-guided abstraction refinement (CEGAR) technique [21]
integrates an over-approximation technique - existential abstraction [23] - and
SMC into a unified, and automatic framework. It starts verification against uni-
versal properties with an imprecise abstraction, and iteratively refines it accord-
ing to the returned spurious counterexamples. When a counterexample is found,
its feasibility with regard to the original system needs to be checked first. If
the violation is feasible, this counterexample is reported as a witness for a bug.
Otherwise, a proof of infeasibility is used to refine the abstraction. The pro-
cedure then repeats these steps until either a real counterexample is reported,
or there is no new counterexamples returned. When the property holds on the
abstract model, by the Property Preservation Theorem [23], it is guaranteed for
the property to be correct in the concrete systems. CEGAR is used in many
software model checkers including the SLAM project [6] at Microsoft.

3 Model Checking and Stochastic Hybrid Systems

Stochastic hybrid systems (SHSs) are a class of dynamical systems that involve
the interaction of discrete, continuous, and stochastic dynamics. Due to the
generality, SHSs have been widely used in distinct areas, including biological
systems, cyber-physical systems, and finance [12]. To describe uncertainties, ran-
domness has been added to hybrid systems in a number of ways. A wealth of
models has been promoted over the last decade. One class of models combines
deterministic flows with probabilistic transitions. When state changes forced
by continuous dynamics involve discrete random events, we refer to them as
probabilistic hybrid automata (PHAs) [56]. PHAs are akin to Markov decision
processes (MDPs) [8], which determine both the discrete and continuous suc-
cessor states. When state changes involve continuous random events as well,
we call them stochastic hybrid automata (SHAs) [29]. Some models allow that
state changes may happen spontaneously, such as piecewise deterministic Markov
processes (PDMPs) [26], which are similar to continuous-time Markov chains
(CTMCs) [58]. Other models replace deterministic flows with stochastic ones,
such as stochastic differential equations (SDEs) [5] and stochastic hybrid pro-
grams (SHPs) [50], where the random perturbation affects the dynamics contin-
uously. When all such ingredients have been covered, there are models such as
the general stochastic hybrid systems (GSHSs) [15,40].

The popularity of SHSs in real-world applications plays an important role
as the motivation for putting a significant research effort into the foundations,
analysis and control methods for this class of systems. Among various problems,
one of the elementary questions for the quantitative analysis of SHSs is the
probabilistic reachability problem. There are two main reasons why it catches
researchers’ attention. Primarily, it is motivated by the fact that most temporal
properties can be reduced to reachability problems due to the very expressive
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hybrid modeling framework. Moreover, probabilistic state reachability is a hard
and challenging problem which is undecidable in general. Intuitively, this class
of problems is to compute the probability of reaching a certain set of states.
The set may represent a set of certain unsafe states which should be avoided or
visited only with some small probability, or dually, a set of good states which
should be visited frequently.

Over the last decade, research efforts concerning SHSs are rapidly increas-
ing. At the same time, Model Checking methods and tools for probabilistic sys-
tems, such as PRISM [44], MRMC [41], and Ymer [65], have been proposed and
designed. Results related to the analysis and verification of SHSs are still limited.
For instance, analysis approaches for GSHSs are often based on Monte-Carlo sim-
ulation [11,53]. Considering the hardness of dealing with the general class, efforts
have been mainly placed on different subclasses [1–3,29,30,34,50,56,62,66,67].

For a decidable subclass which is called probabilistic initialized rectangu-
lar automata (PIRAs), Sproston offered a model checking procedure against
the probabilistic branching time logic (PBTL) [56]. The procedure first trans-
lates PIRA to a probabilistic timed automaton (PTA), then constructs a finite-
state probabilistic region graph for the PTA, and employs existing PBTL Model
Checking techniques. For probabilistic rectangular automata (PRAs) which are
less restricted than PIRAs, Sproston proposed a semi-decidable model checking
procedure via using a forward search through the reachable state space [57].

For a more expressive class of models - probabilistic hybrid automata (PHAs),
Zhang et al. abstracted the original PHA to a probabilistic automaton (PA),
and then used the established Model Checking methods for the abstracting
model [66]. Hahn et al. also discussed an abstraction-based method where the
given PHA was translated into a n-player stochastic game using two different
abstraction techniques [34]. All abstractions obtained by these methods are over-
approximations, which means that the estimated maximum probability for a
safety property on the abstracted model is no less than the one on the original
model. Another method proposed is a SMT-based bounded Model Checking pro-
cedure [30]. We will discuss these methods in detail in the following subsections.

A similar class of models, which is widely used in the control theory, is called
discrete-time stochastic hybrid systems (DTSHSs) [4]. Akin to PHAs, DTSHSs
comprise nondeterministic as well as discrete probabilistic choices of state tran-
sitions. Unlike PHAs, DTSHSs are sampled at discrete time points, use control
inputs to model nondeterminism, do not have an explicit notion of symbolic
transition guards, and support a more general concept of randomness which can
describe discretized stochastic differential equations. With regard to the system
analysis, the control problem concerned can be understood as to find an optimal
control policy that minimizes the probability of reaching unsafe states. A back-
ward recursive procedure, which uses dynamic programming, was then proposed
to solve the problem [1,4]. Another approach to a very similar problem as above,
where a DTSHS model doesn’t have nondeterministic control inputs, was pre-
sented in [2]. Compared to former method, the latter approach exploits the grid
to construct a discrete-time Markov chain (DTMC), and then employs standard
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model checking procedures for it. This approach then had been used in [3] as an
analysis procedure for the probabilistic reachability problems in the product of a
DTSHS and a Büchi automaton representing a linear temporal property. Zuliani
et al. also mentioned a simulation-based method for model checking DTSHSs
against bounded temporal properties [67]. We refer to this method as Statistical
Model Checking (StatMC). The main idea of StatMC is to generate enough sim-
ulations of the system, record the checking result returned from a trace checker
from each simulation, and then use statistical testing and estimation methods
to determine, with a predefined degree of confidence, whether the system sat-
isfies the property. Although this statistical model checking procedure does not
belong to the class of exhaustive state-space exploration methods, it usually
returns results faster than the exhaustive search with a predefined arbitrarily
small error bound on the estimated probability.

In [29], as an extension of PHAs, stochastic hybrid automata (SHAs) allow con-
tinuous probability distributions in the discrete state transitions. With respect to
the verification procedure, a given SHA is firstly over-approximated by a PHA via
discretizing continuous distributions into discrete ones with the help of additional
uncountable nondeterminism. As mentioned, this over-approximation preserves
safety properties. For the second step, the verification procedure introduced in
[66] is exploited to model check the over-approximating PHA.

Another interesting work is about stochastic hybrid programs (SHPs) intro-
duced in [50]. This formalism is quite expressive with regard to randomness:
it takes stochastic differential equations, discrete probabilistic branching, and
random assignments to real-valued variables into account. To specify system
properties, Platzer proposed a logic called stochastic differential dynamic logic,
and then suggested a proof calculus to verify logical properties of SHPs.

Among these different models and methods mentioned above, of particu-
lar interest for this paper are PHAs. In the remainder of this section, we will
review two kinds of interesting techniques - abstraction-based, and BMC-based
methods - proposed for probabilistic reachability and safety analysis for PHAs.

3.1 Probabilistic Hybrid Automata

Before going into the details of model checking algorithms, we recall the defini-
tions of PHAs as given in [56].

Definition 1. (Probabilistic Hybrid Automata) A probabilistic hybrid automa-
ton H is a tuple (M , m̄, k, 〈Postm〉m∈M , Cmds) where

– M := {m1,m2, · · · ,mn} is a finite set of control modes.
– m̄ ⊆ M is the set of initial modes.
– k is the dimension of the automaton, i.e. the number of system variables.
– 〈Postm〉m∈M indicates continuous-time behaviors on each mode.
– Cmds is a finite set of probabilistic guarded commands of the following form:

g → p1 : u1 + · · · + pn : un,
where g is a predicate representing a transition guard, and pi and ui are the
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corresponding transition probability and updating function for the ith proba-
bilistic choice respectively (1 ≤ i ≤ n).

The semantics of a probabilistic hybrid automaton is a probabilistic automa-
ton [56] which is formally defined as follows.

Definition 2. (Semantics of Probabilistic Hybrid Automata) The semantics
of a probabilistic hybrid automaton H is a probabilistic automaton PA [[H]] =
(S, s̄, Act, T ), where

– S = M × R
k denotes the (possibly uncountable) set of states.

– s̄ = (m̄, 0, · · · , 0) is the set of initial states.
– Act = R≥0 � Cmds describes the transition relation. Note that, � denotes

the disjoint union.
– T : for each s ∈ S, it may have two types of transitions. The first one is from

command g → p1 : u1 + · · · + pn : un by u(s) when g is fulfilled. The
second one is from time t by Postm(s, t).

3.2 Abstraction-Based Methods

Zhang et al. presented an abstraction-based method for verifying safety proper-
ties in probabilistic hybrid automata (PHAs) [66]. The main underlying idea is to
compute finite probabilistic automata (PAs) via abstractions for PHAs, and then
estimate the reachability probabilities of the over-approximating PAs with the
help of existing methods. In detail, the verification procedure works as follows. To
construct a safe over-approximation for a given PHA, the method first considers
a non-probabilistic hybrid automaton (HA) obtained by replacing probabilistic
choices with nondeterministic ones. Then, this classical HA is abstracted into a
finite-state abstraction, where PHAVer [31] can be employed. As the final step
of the abstraction, the finite-state abstraction is decorated with probabilities via
techniques known for Markov decision processes [25,38], resulting in a proba-
bilistic finite-state automaton. Figure 1 illustrates the entire abstraction process
for an example PHA. After building a safe over-approximation, the probabil-
ity of reaching unsafe states in the probabilistic abstraction is estimated using
value iteration [8]. Since it is computing over-approximations, the abstraction
preserves the safety property: if the probability of reaching unsafe state regions
in the abstracting probabilistic automaton is bounded by p, this is also the
case in the original probabilistic hybrid automaton. In other words, p is a safe
upper bound for the reachability probability of the original model, and if a
safety property holds in the abstraction, it holds also in the concrete system.
Otherwise, refinement of the abstraction is required to obtain a potentially more
precise upper bound. The realization of this refinement depends on the exploited
abstraction technique. For example, PHAVer computes polyhedra to cover the
continuous state-space for each discrete location. Refinement can be done by
reducing the maximal widths of these polyhedra.

To estimate the maximum/minimum probability of reaching a certain state
region, Hahn et al. proposed another abstraction-based approach [34]. This app-
roach considers two different abstraction methods - a game-based approach [43]
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and an environment abstraction [61]. Both methods abstract a given PHA by an
n-player stochastic game, and allow us to obtain both lower and upper bounds
for quantitative properties. In a bit more detail, the semantics of a PHA is firstly
expressed as a (stochastic) 2-player game, where one player represents the con-
troller and the other the environment. Both abstraction methods represent the
obtained abstraction as a separate player in the game resulting in a 3-player
stochastic game. Then, with the first method, this 3-player game is reduced to
a 2-player stochastic game. The second method makes this new player collab-
orate with the player representing the environment in the PHA. By adjusting
the strategy of the player denoting the abstraction to maximize (or minimize)
the probability of reaching the target states, the upper (or lower) bound on the
optimal reachability probability for the original automaton can be obtained from
the abstraction. This approach establishes a verification as well as falsification
procedure for probabilistic safety properties.

3.3 BMC-Based Methods

Fränzle et al. presented an fully symbolic analyzing method of probabilistic
bounded reachability problems of PHAs without resorting to over-approximation
by intermediate finite-state abstractions [30]. When reasoning about PHAs, the
authors use the SMT solving as a basis, and extends it by defining a novel ran-
domized quantification over discrete variables. This method saves virtues of the
SMT-based Bounded Model Checking, and harvests its recent advances in ana-
lyzing general hybrid systems. This new framework is referred to as Stochastic
Satisfiability Modulo Theories (SSMT). In detail, an SSMT formula Φ can be
defined in this format: Φ = Q1x1 ∈ dom(x1) · · · Qnxn ∈ dom(xn): φ, where
φ is a quantifier-free SMT formula. Q1x1 ∈ dom(x1) · · · Qnxn ∈ dom(xn) is
the prefix of Φ, binding variables xi to the quantifier Qi. Note that not every
variable occurring in φ has to be bound by a quantifier. In the framework of
SSMT, a quantifier Qi is either a classical existential quantifier, denoted as ∃, or
a newly introduced randomized quantifier, denoted as

R

di
, where di is a finite

discrete probability distribution over dom(xi). The notation di is usually a list
〈(v1, p1), · · · , (vm, pm)〉, where pj is the probability of assigning xi to vi. The
semantics of an SSMT problem is defined by the maximum probability of sat-
isfaction, which is designed for computing the maximal reachability probability.
Formally, the maximum probability of satisfaction Pr(Φ) of an SSMT formula
Φ is defined recursively as follows.

– Pr(φ) = 1 if φ is satisfiable, and 0 otherwise;
– Pr(∃xi ∈ dom(xi) · · · Qnxn ∈ dom(xn) : φ) = maxv∈dom(xi) Pr(Qi+1xi+1 ∈

dom(xi+1) · · · Qnxn ∈ dom(xn) : φ[v/xi]); and
– Pr(

R

di
xi ∈ dom(xi) · · · Qnxn ∈ dom(xn) : φ) =

∑
(v,p)∈dom(xi)

p · Pr(Qi+1

xi+1 ∈ dom(xi+1) · · · Qnxn ∈ dom(xn) : φ[v/xi]).

To analyze PHAs, the probabilistic bounded reachability problems need to
be encoded in SSMT formulas. The construction procedure contains two steps.
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Fig. 1. Abstraction steps for a probabilistic hybrid automaton for the thermostat
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First of all, akin to the SMT-based BMC, an SMT formula is used to express
all runs of the given PHA of the given length k, ignoring both nondetermin-
istic and probabilistic transitions. Quantification is then added to encode the
missing nondeterministic and probabilistic choices. Existential quantifiers reflect
nondeterministic choices and randomized quantifiers describe probabilistic tran-
sitions. With this encoding, the step-bounded reachability analysis of proba-
bilistic hybrid automata is reduced to calculating the maximum probability of
satisfaction of an SSMT formula. To compute the maximum satisfaction prob-
ability, an algorithm, which was discussed in [30], consists of three layers - a
theory solver, an SMT solver, and an SSMT solver. The first two solvers are the
same as the corresponding parts in widely used SMT solvers, such as Z3 [27],
and CVC4 [7]. The last SSMT layer is an extension of the SMT layer to cope
with existential and randomized quantification.

Another BMC-based approach to the falsification of safety properties was
promoted by Wimmer et al. [64]. Although the stochastic models that they
consider are discrete-time Markov chains (DTMCs), DTMCs are quite similar to
PHAs except that the former do not support nondeterminism. Also, its analysis
technique is closely related to the one in [30]. It works as follows. First of all, the
given safety property is reduced to a state reachability one through removing
edges from the given DTMC. Then, it encodes the behavior of the given DTMC
with length k and the reachability property as an SAT formula as the case
for SAT-based BMC. During this step, probabilistic transitions are treated as
nondeterministic ones, and the transition probability matrix of the given DTMC
is stored in order to be able to track the transition probabilities between states
in the near future. Thereafter, the Boolean formula with the depth-bound k
is solved by a SAT solver. If the formula is satisfiable, the returned satisfying
assignment is used to extract a system execution of length k. The probability of
this execution is computed according to the preserved probability matrix. After
adding a clause representing the negation of the last returned assignment, the
SAT solver is called again to find another execution reaching the target states.
These steps are repeated until the SAT solver returns “unsat” for a modified
formula for length k. Then, it generates a new Boolean formula for depth step k+
1, and calls the SAT again. The overall procedure terminates if the accumulated
probability of all collected system runs reaching the given unsafe states exceeds
a given threshold, which is used to falsify the safety property. To reduce the
number of calls to the SAT solver, the authors propose some optimizations. The
most important one tries to detect loops in executions reaching the target states
in order to achieve infinitely many runs from one solver invocation.

4 Conclusion and Future Work

Model Checking has proved to be a highly successful technology. Over the last
32 years, we have witnessed enormous progress on improving performance, on
enhancing scalability, and on expanding applications in the area of Model Check-
ing. The progress has increased our knowledge, but also opened many questions
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and research directions. Efforts are still needed to further conquer the state explo-
sion problem in Software Model Checking. More effective model checking algo-
rithms are required for real-time and hybrid systems, and are badly in need for
even more complex systems, such as stochastic hybrid systems. Moreover, there
are various directions, including combining model checking and static analy-
sis, compositional model checking of complex systems, symmetry reduction and
parameterized model checking, integrating model checking and theorem prov-
ing, interpreting long and complicated counterexamples, extending CEGAR for
probabilistic systems, and scaling up even more!
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I have been fortunate to work in two remarkable research communities, Akademgor-
odok in Siberia and Silicon Valley in California, and that my professional career
stretched over two very different, yet both exciting epochs of the computer systems and
science evolution: steady accumulation of knowledge and technology in 1960s–1980s
and, then, “Internet Big Bang” and Information Revolution in 1990s–2010s.

In this talk, I track the trends in the development of large computer systems which I
witnessed working first at Hewlett-Packard Laboratories and then at Carnegie-Mellon
University, Silicon Valley Campus. This is not a general survey, I exemplify those trends
by the systems in the analysis or/and design of which I and my colleagues participated.

The driving force behind the computer system progress is unprecedented accu-
mulation of complex data and huge global data traffic. “Big Data” is a popular meta-
phor labeling the situation. It becomes difficult to process Big Data using traditional
computer systems and applications. “Big Systems” that become the main trend in the
current system architecture are required. They include: powerful data centers using tens
of thousands servers; enterprise IT “systems of systems” consisting of globally dis-
tribute data centers; Grid and Utility Computing; Cloud Computing; Warehouse Scale
Computers, Internet of Things (IoT), and coming exascale supersystems.

Large Enterprise Systems. Actually, the story of Big Data and Big Systems began
much earlier when enterprise IT systems started to have problems processing data they
created. I was involved in several projects that analyzed the ways to improve the
situation. For example, globalization and just-in-time delivery created in 1990s flood of
packages shipped by Federal Express and the company’s centralized IT system was not
able to process scanned data in time. The solution was in found in a two-level dis-
tributed architecture combining small number of large data centers with large number
of web-based local facilities. Or, some companies had distributed IT infrastructure that
grew up several decades with no real planning. They started to have bottlenecks and
low end-to-end performance. New, best-of-breed processors and large storage did not
improve situation. Main reason for bad performance: bad allocation of data, applica-
tions, and resources: 90 % of time spent in the system was dedicated to moving data
around, not actually manipulating data. Conclusion: systems should be designed in a
systematic way as communication structures: federations of uniformed, well-defined
components efficiently communicating and collaborating with each other.
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New Software Paradigms. They emerged as results of those efforts. They include
service-oriented architecture, autonomous, and multi-agent computing. In service-
centric software organization, the basic programming entity is service, a well-defined
procedure that does not depend on the state of other services. The services interact with
each other by exchanging service requests and service results. The main challenge in
such distributed dynamic systems is resource allocation and the related service
placement. To overcome growing complexity of management for large-scale distrib-
uted systems, autonomous and multi-agent architecture replaces the centralized man-
agement by distributed self-management provided by autonomic agents that interact to
manage collectively. At Hewlett-Packard Labs, we analyzed several distributed man-
agement algorithms: Random/Round Robin Load Distribution (pushes load from an
overloaded server to a randomly or round robin chosen); Simple Greedy (pushes load
on to the least loaded neighbor); Ant-based (a decentralized version of Ant Colony
Optimization); Broadcast of Local Eligibility (modified highly scalable algorithm for
coordination of mobile robots). They provide increased servers’ utilization and reduced
the overall network traffic, but differ in speed and accuracy.

Data Centers. Growing complexity of IT systems and their management pushed the
creation of large Data Centers that concentrate large number of servers, vast storage
capacity, scalability, and special processing frameworks and applications. Utility
computing packages computing resources into metered services. Grid is a large net-
work of data centers which provides computing resources that are shared and utilized
for solving large complex tasks. Cloud Computing outsources users’ local data and
applications to remote servers with accessing them via internet. Users get: continuous
access to their data/apps from any location at any time; ability to use the vast storage
and powerful servers; automatic backup of data and applications in case of disaster.
Virtualization allows users to access a heterogeneous computing infrastructure as if it
were a single, logically unified resource.

Big Data Challenges. Four V’s characterize the main Big Data challenges:

Volume: *200 billions emails every day; in 2012, daily internet traffic was 40 peta-
bytes; Facebook generates daily more than 25 terabytes data, Twitter - 12 terabytes. In
2009, the world total data was 1 zetabyte (1021); it is doubling every 18 months; in
2020 it will be 40 zetabyte.

Variety: Complexity of data also growing, 90 % is unstructured data: images, video
clips, musical composition, financial documents, sensor signals, barcodes, …. Their
sizes vary significantly: DVD – 5 gigabytes, email – several kilobytes, barcode – 128
bytes (< 6 % of total volume in gigabytes, yet 99 % of the number of circulating files).

Value: Big Data has value if it possible to extract “Smart Data”, information that
actually makes sense (now it is only 3 %). Methods of converting “raw data” into
sensible information:
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• Data-mining (recognition of correlations, trends, hidden relationships and
associations);

• Data analytics (discovery of unknown patterns, confirmation or refutation of
hypotheses);

• Machine learning (computers acquire new knowledge on their own, without direct
programming);

• Visualization (captures the hidden relationship between a non-quantitative and
unstructured data – 70–80 % of all data; Studies show that the brain processes
images 60,000x faster than text).

Velocity: Big Data should provide the right information to the right persons at the right
time enabling real-time decision-making.

HANA and Hadoop. Big Data distributed among storage in a data center or in mul-
tiple data centers requires new type of database software organization and parallel
frameworks for running applications. Currently, SAP HANA and Apache Hadoop are
intended to help.

There are two scenarios for working online with data: OLTP (Online Transaction
Processing) and OLAP (Online Analytical Processing) Traditional OLTP data bases are
row-oriented, SAP HANA is column-oriented in-memory data base (HANA works for
OLTP too, but its main advantages is in OLAP). Due to this, HANA allows users to
perform quickly complex analytical queries both with structured and unstructured data.

Hadoop is programming framework that takes care about scalability and file
allocation instead of programmer. Hadoop is derived from MapReduce developed by
Google. Programming model of MapReduce is inspired by the map and reduce
functions of Lisp: map applies to its arguments a given unary operation, reduce
combines its arguments using a binary operation, thus convolving the arguments into
one output value. Using these operations, Hadoop allocate data and distributes their
processing among large number of servers and is highly scalable. Hadoop has also
built-in fault tolerance mechanisms in case of server failures.

Graph 500. To address performance of concurrent search, optimization, and clustering
of Big Data, new benchmarks are needed to replace FLOPs used in scientific com-
putations or Transactions-Per-Minutes used in OLTP. Benchmark Graph 500 is based
on breadth-first search in a large undirected graph (visit a node, then visit neighboring
nodes) and measures performance in TEPS (traversed edges per second). The bench-
mark has two kernels: graph generator with compressor into sparse structures and
parallel breadth-first search of random nodes. Six possible scales of generated graphs
are defined: from toy (226 nodes, 17 GB of RAM) to huge (242 nodes, 1.1 PB of RAM).
For example, IBM Sequoia in Lawrence Livermore Laboratory with 98,304 nodes,
1,572,864 cores (scale: 240) reached performance of 15363 GigaTEPS on Graph 500
benchmark.

Future of Data Centers. Data centers evolve both in the number and performance of
servers. Data centers of early 2000 s were built of COTS (Commercial Off-The-Shelf)
computers, switches, and racks. Around 2010, they had custom servers and switches
built of commercial chips. By 2020, custom servers and switches will be built of
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custom systems-on-chip. Exascale systems will likely have 100,000 nodes and will
require super-efficient interconnection, such as high-radix (1000?) photonic switches
with narrow channels combined into routing fabrics (over low radix with broad
channels). Message passing will simplify programming (over shared memory).
Warehouse Scale Computers will become data centers in a computer with millions of
1000-core chips that runs a large variety of applications that will require new algo-
rithms with many different levels of scalable paralellization.

Internet of Things. Those Big Systems will process Big Data produced by “Internet of
Things” in which all objects and people on the Earth will be equipped with wireless
identifiers to be inventoried and managed by computers. Prediction: within next six
years 25–50 billion of “things” could be connected to *10 billion mobile phones and
PCs. Embedded computers already are becoming a key component of all kinds of
complex cyber-physical systems. The current examples are Smart Homes, Smart
(electrical) Grid, driverless cars, and, of course, exploding use of robots.

As computer systems play more and more important role in our life, can we trust
them? System dependability should guarantee their availability (readiness for service),
reliability (continuity of uninterrupted service), safety (no catastrophic consequences
for users), integrity (no unforeseen changes), and maintainability (ability to quickly
repair and modify). NASA-sponsored the High-Dependability Computing Program
(HDCP), in which I participated as Director of Engineering, was an example of efforts
to improve system dependability.

What is Ahead? Radically new technologies (nano- bio-)?. Quantum computers that
will be many orders of magnitude faster? DNA computers that can store billions of
times more data and process them many times faster? The future will show. The future
has always been smarter than the present.
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Abstract. Deadlocks remain one of the biggest threats to concurrent pro-
gramming. Usually, the best programmers can expect is dynamic deadlock
detection, which is only a palliative. Object-oriented programs, with their rich
reference structure and the resulting presence of aliasing, raise additional
problems. The technique developed in this paper relies on the “alias calculus” to
offer a completely static and completely automatic analysis of concurrent object-
oriented programs. The discussion illustrates the technique by applying it to two
versions of the “dining philosophers” program, of which it proves that the first is
deadlock-free and the second deadlock-prone.

1 Overview

Deadlock is, along with data races, one of the two curses of concurrent programming.
Although other dangers — priority inversion, starvation, livelock — await concurrent
programmers, these two are the most formidable. The goal of the technique presented
here is to avoid deadlock entirely through static analysis, so that any program that could
cause deadlock will be rejected at compile time. No implementation is available and the
description is preliminary, leaving several problems open.

The general approach is applicable to any concurrency model, but its detailed
application relies on SCOOP (Simple Concurrent Object-Oriented Programming) [3, 4,
7–9], a minimal concurrent extension to an OO language, retaining the usual modes of
reasoning about sequential programs. One of the distinctive properties of SCOOP is
that the model removes the risk of data races, but deadlocks are still possible. The goal
of the approach described here is to remove deadlocks too, statically.

In today’s practice, the best concurrent programmers may usually hope for is
dynamic deadlock detection: if at run time the system runs into a deadlock, a watchdog
will discover the situation and trigger an exception. Such a technique is preferable to
letting the execution get stuck forever, but it is still unsatisfactory: the time of program
execution is too late for detection. We should aim for static prevention through a
technique that will analyze the program text and identify possible run-time deadlocks.
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Like many interesting problems in programming, static deadlock detection is
undecidable, so the best we can expect is an over-approximation: a technique that will
flag all programs that might deadlock — meaning it is sound — but might occasionally
flag one that won’t. The technique should be as precise as possible, meaning that the
number of such false alarms is minimal. In fact an unsound technique may be of
interest too, if it detects many — but not all — deadlock risks. The technique described
here is intended to be sound, but no proof of soundness is available.

The approach relies on two key ideas. The first idea is that deadlock prevention
means finding out if there is any set of processors whose hold sets and wait sets are
mutually non-disjoint. The second idea is that in an object-oriented context, with
references and hence possible aliasing, we can compute these sets by applying alias
analysis to get a model of the processors associated with concurrent objects, and hence
of their hold and wait sets. The key supporting tool in this step is the alias calculus,
a technique developed by the author and colleagues for fully automatic alias analysis.
Section 7 is a hands-on application of the resulting technique to two programs
implementing solutions to the well-known “dining philosophers” problem; the analysis
proves that the first version — the standard SCOOP solution of this problem — is
deadlock-free, and that the second version, specifically contrived to cause potential
deadlocks, can indeed result in a deadlocked execution.

The discussion begins with a general formalization of the deadlock condition,
applicable to any concurrency framework (Sect. 2). Based on this model, a general
strategy is possible for detecting deadlock statically; the principle is that deadlock may
arise if the “hold sets” and “wait sets” of a set of processors are not pair-wise disjoint.
This strategy is the topic of Sect. 3. After a short reminder on SCOOP in Sect. 4, Sect. 5
shows how to produce a deadlock in SCOOP; the design of the model makes such a
situation rare, but not impossible. Section 6 refines the general deadlock detection
technique of Sect. 3 to the specific case of SCOOP, showing the crucial role of alias
analysis, as permitted by the alias calculus. Section 7 shows the application to an
important and representative example problem: dining philosophers, in the case of two
components. Section 8 lists the limitations of the present state of the work and the goals
of its future development.

Although the literature on deadlock prevention and detection is huge, there is (to
my knowledge) no precedent for an approach that, as presented here, permits static
deadlock analysis for concurrent object-oriented programs by relying on alias analysis.
This is the reason for the restricted nature of the bibliography.

2 General Deadlock Condition

Deadlock is, as mentioned above, only one of two major risks in traditional concurrent
programming. It is closely connected to the other one, data races. A data race arises
when two concurrent program elements access and modify data in an order that violates
their individual assumptions; for example, if each tries to book a flight by first finding a
seat then booking it, some interleavings of these operations will cause both to believe
they have obtained a given seat. The remedy is to obtain exclusive access to a resource
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for as long as needed; but then, if concurrent elements share more than one resource
and they obtain exclusive access through locking, the possibility of deadlock looms:
the execution might run into a standstill because every element is trying to obtain a
resource that one of the others has locked. In the flight example, one client might try to
lock the seat list then the reservation list, and the other might try to lock them in the
reverse order, bringing them to an endless “deadly embrace”, as deadlocks are also
called. This analysis indicates the close connection between the two plagues: to avoid
data races, programmers lock resources; but the ability of multiple clients to lock
multiple resources may lead to deadlock.

The two problems are, however, of a different nature. One may blame data races on
the low level of abstraction of the usual concurrent programming techniques (such as
threading libraries with synchronizaation through semaphores); the SCOOP model
removes the risk of data races by requiring program elements to obtain exclusive access
before using any shared resource. The key mechanism (Sect. 4) is the SCOOP idiom
for reserving several resources at once, moving the task of data race avoidance from the
programmer to the SCOOP implementation. As a consequence, many deadlock cases
disappear naturally. But, as we will see in detail, deadlock does remain possible, and is
a harder problem to eliminate statically.

Ignoring SCOOP for the moment, we will now study under what general conditions
deadlock can arise. The term “processor” will denote (as in SCOOP but without loss of
generality) a mechanism able to execute sequential computations. Concurrency arises
when more than one processor is at work. Processors can be of different kinds, hard-
ware or software; a typical example is a thread as provided by modern operating
systems.

The deadlock scheme considered here is the “Coffman deadlock”, which assumes
that two or more processors need exclusive access to two or more shared resources, and
all seek to obtain it through locking. Deadlock arises if at some time during execution
these processors become involved in a cycle, such that every one of them is seeking to
lock a resource that is held by the next processor in the cycle. This is the usual informal
definition, which we may formalize (without making the cycle explicit) as follows.
There is a set P of processors and a set R of resources, both finite. For each processor
p, at any execution time t, there are two disjoint sets of resources:

• H (p), the hold (or “has”) set, containing resources that p has locked and not yet
unlocked, and to which, as a result, it has exclusive access.

• W (p), the wait (or “want”) set, containing resources that p is trying, unsuccessfully
so far, to lock.

(To avoid ambiguity, we may make the time explicit, writing Wt (p) and Wt (p).)
Deadlock arises between the processors in P when every one of them wants

something that another has:
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To get the usual cycle based presentation it suffices to start from an arbitrary
processor p and follow the successive p’ of the condition. Since P is finite the sequence
is cyclic.

It is also useful to state the reverse condition, deadlock-freedom:

This condition holds in particular when W (p) is empty, that is to say, p is progressing
normally and not waiting for any resource. It also holds if every processor only ever
needs one resource at a time, formally expressed as in
that case, if the deadlock condition held, the cyclic sequence obtained by the above
construction would consist of processors for which neither H nor W is empty, which
contradicts this assumption.

3 Deadlock Prevention Strategy

The preceding analysis leads to a general strategy for statically detecting possible
deadlocks. The strategy as presented here applies to any concurrency model; the next
section will describe its application to the specific case of SCOOP.

Two observations are necessary to evaluate programs for their susceptibility to the
deadlock condition. First, the condition refers to processors; but processors may only
be known at run time. We need to transpose the reasoning to what we can analyze
statically: positions in the program text. It suffices to extend the notations H (p) and
W (p) to p denoting a program position; they denote the run-time hold and wait sets of
any processor whose execution reaches position p.

The second observation is that it is only necessary to evaluate the condition at
“locking positions”: program points that contain an instruction that tries to lock a
resource. Locking positions mark where deadlock can occur.

The general strategy, then, is to develop techniques for:

1. Estimating the H and W sets of any locking position. (The technique may be more
general, and yield these sets for any program position.)

2. Estimating, for every locking position lp1, the set of its “simultaneous” positions:
all locking positions lp2 such that during execution a processor may reach lp1 and
another lp2 at the same time. Note that lp1 and lp2 may be the same position if
several processors execute the same code.

3. Computing for every simultaneous pair [lp1, lp2].

The progress condition holds if this intersection is empty for at least one pair.
For the first two steps, the strategy “estimates” the result since it may not be

possible to determine them exactly. As noted in Sect. 1, an estimation should normally
be an over-approximation, as accurate as possible.

The implementation of these two steps, and the precision of the estimation, depend
on the concurrency model. We now come to the application to a specific model,
SCOOP.
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4 SCOOP Basics

The SCOOP model simplifies the framework developed above. “Processor” is a central
notion in SCOOP, and is general enough to subsume the concept of resource.

SCOOP closely connects the concurrency architecture with the object-oriented
architecture of a system, through the rule that every object has an associated processor,
its handler, which is responsible for all operations on the object (all calls of the form
x�r (…) where r is attached to the object). The result is a partitioning of the object space
into a number of regions, each associated with a handling processor:

Objects

OA OB

B

A Region

CD

A

x
Region boundary

Client
(“calls” relation)

In the figure, the object OA has a field x, attached (at a particular time during exe-
cution) to an object OB in another region. A call x.r (…) issued by the processor of
region A(handler of OA) will be executed by the processor of region B (handler of
OB).

Such a call applied to a separate object is (in the case of a procedure, rather than a
function) asynchronous: it does not block the A processor. To reflect this property, a
variable such as x that may represent objects in another region must be declared
separate. But x.r (…) is only permitted if the processor executing this operation has
obtained exclusive access to the object. The basic way to achieve exclusive access is
through a procedure call with x as argument. More generally, a routine with header

will guarantee exclusive access to the separate arguments for the duration of the
execution of r’s body. A call r (a, b, …) may as a consequence have to wait until it has
obtained exclusive access to the objects attached to a, b, …. This is how SCOOP gets
rid of data races: if you need a resource, or any number of resources, you must first
obtain exclusive access to them; so a program element cannot invalidate another’s
assumption by messing up with shared resources.

If at the time of such a call one of the actual arguments, for example a, is already
accessible under exclusive access, perhaps because a is a formal argument of the
routine in which the call appears, this exclusive access is transferred to r, under “lock
passing”, for the duration of its execution.

As an example of simultaneous reservation of multiple resources, the following
code implements the “dining philosophers” scheme. Two classes are involved, FORK
and PHILOSOPHER. All we need from a fork is the ability to help us eat:
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The creation procedure (constructor) make of class PHILOSOPHER gives a phi-
losopher a left and a right forks, represented as separate objects. The procedure live
capture a philosopher’s behavior:

The key element is the highlighted call eat (left, right) which, by virtue of the basic
SCOOP processor reservation mechanism, obtains exclusive access to the two forks.
No other synchronization operation is necessary. The classical problems of securing
multiple resources without risking deadlock or starvation are no longer the application
programmer’s business; the SCOOP implementation handles them.

To set everything going we may use — in the illustrative case of two philosophers
and two forks — the following “root” class. (The class text is supporting code, with no
particularly deep concepts, but needed for the example analysis of the next sections):

50 B. Meyer



The creation instructions for the philosophers reverse the “left” and “right” role for
the two forks. It would not be possible to merge the creation procedure make with
execute since it needs to perform calls such as p1.live on attached targets, requiring
exclusive access to the corresponding objects; so we first need the creation instructions
in make to create these objects, then execute to work on them.

In the version above, make does call execute, so that creating a meal object
(create m.make) is enough to trigger a full system execution. As a result, execute is
secret (private), as specified by feature {NONE}. It would also be possible to separate
the two parts, removing the call to execute in make and declaring execute public.

The illustrated constructs are the main components of the SCOOP concurrency
model. They suffice for the rest of the presentation, but for completeness it is useful to
list the other properties which together with them make up all of SCOOP:

• A separate call on a query (function or attribute, returning a result), as in the
assignment y : = x.f (…) is, unlike a call to a procedure, synchronous: since the
execution needs the value, it will wait until f has terminated. Waiting on the result of
a query is the SCOOP mechanism for re-synchronizing after an asynchronous call.

• A routine precondition of the form require x.some_condition, where x is a
separate formal argument of the routine, will cause the execution of the routine’s
body to wait until the condition is satisfied. This is the SCOOP mechanism for
condition synchronization.
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• To work on separate targets, a program element must have exclusive access to them.
The usual way to obtain it is to pass the targets as arguments to a routine, as in
execute (phil1, phil2). If execute is not available separately from make, it is
possible to avoid writing execute altogether and replace the call execute (phil1,
phil2) by the “inline separate” construct

with the same effect of guaranteeing exclusive access to phil1 and phil2 under the
local names p1 and p2. Inline separate avoids the writing of wrapper routines for the
sole purpose of performing simple operations on separate targets. The rest of the
discussion will use explicit wrapping, with no loss of generality since object res-
ervation and access has the same semantics with inline separate as with wrapping.

5 Deadlock in SCOOP

To discuss deadlock in the SCOOP context, we do not need to distinguish between
processors and resources as in the general model introduced at the beginning of this
discussion. As illustrated by philosophers and forks, the notion of processor covers
resources as well. A resource is an object; exclusive access to it means exclusive access
to its handling processor. This unification of concepts significantly simplifies the
problem.

In the practice of SCOOP programming, many deadlock risks disappear thanks to
SCOOP’s signature mechanism of reserving several separate targets at once by passing
them as arguments to a routine (or, equivalently, using an inline separate). The most
common case of deadlock other approaches arises when p and q both want to reserve
rand s, but attempt to lock them in reverse order, ending up with p having r and
wanting s while q has s and wants r. In SCOOP they will both execute some_routine
(r, s); each will proceed when it gets both. No deadlock is possible. (In addition the
SCOOP implementation guarantees fairness.)

Unfortunately, even though deadlock will not normally arise in proper use of
SCOOP, it remains a distinct theoretical possibility. It is in fact easy to construct
examples of programs that may deadlock, such as the following variant of the dining
philosophers solution. The correct eating procedure in PHILOSOPHER, repeated here
for convenience, is
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Now consider the following:

and replace the key call eat (left, right) in procedure live by eat_bad (left) (or
eat_bad (right)).

The need for procedure pick_second comes from the assumptions of the dining
philosophers problem: if we replaced the second instruction of eat_bad with just
pick_one (opposite (f)), no deadlock would arise, but we would violate the basic
condition that a philosopher requires access to both forks at once. The first argument of
pick_second serves to maintain hold on the first fork.

If this scheme seems convoluted it is precisely because deadlock does not naturally
arise in ordinary SCOOP style. With this version, however, classic dining-philosophers
deadlock is possible, with a run-time scenario such as this: eat_bad for phil1 executes
pick_one (fork1); eat_bad for phil2 executes pick_one (fork2); then the first eat_-
bad tries to execute pick_second (fork1, fork2) and waits because phil2 holds fork2;
but the second processor is also stuck, trying to execute pick_second (fork2, fork1)
while phil1 holds fork1.
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At this stage the deadlock condition of Sect. 2 holds. Identifying each processor by
the program name of an object it handles:

• H (phil1) = {fork1)
• W (phil1) = {fork2}
• H (phil2) = {fork2}
• W (phil2) = {fork1}
• Hence both and .

6 The SCOOP Deadlock Detection Rule

To apply the strategy of Sect. 3, we must:

• Find which pairs of locking positions are “simultaneous” (that is to say, might be
executed concurrently).

• For every such pair [lp, lp’ ] compute the hold and wait sets of lp and lp’.
• Find out if all the intersections H (lp) ∩ W (lp’) are non-empty.

In the SCOOP context, a locking position in SCOOP is a call r (a, b, …) to a
routine with separate arguments. (As noted, we ignore inline separate instructions,
which can be handled in the same way.)

We can define instruction simultaneity thanks to the following auxiliary concepts.
Two instructions in the same routine are “siblings” if their closest enclosing Com-
pounds are the same or nested within one another. (In i1; if c then i2 i3 else i4 end i5,
all instructions are siblings except for the pairs i2, i4 and i3, i4.) In addition, a routine
appearing in a loop is its own sibling. The “dependents” of a routine r, or a call to that
routine, are r itself and all the routines that it may call directly or indirectly. A qualified
call x.r (…) is “separate” if its target x is separate. Then two instructions i1 and i2 are
simultaneous if i1 is in a dependent of a separate call c, and i2 is in a dependent of a
sibling of c. For example in

both i1 and i2 are simultaneous with all the instructions of r, s and their dependents.
Now the hold and wait sets. For an entity x in the program (formal argument, local

variable, attribute) let <x> be the handler of the object attached to x. The notation
generalizes to lists: <l> is the set of handlers of all the elements of a list l. Let Current
denote the current object (“this”). Then:
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The call c (like any instruction in the same routine) holds the handler of the current
object and the handlers of all the formal arguments of the enclosing routine. To
proceed, c requires exclusive access to the handlers of actual arguments. This property
applies both to a synchronous call, such as an unqualified call r (Actuals), for which
the execution will not proceed until it has executed the body of r, and to an asyn-
chronous call of the form sep.r (Actuals) for which the execution does not need to
wait for r to complete or even to start, but does need to obtain exclusive access to the
arguments.

The W rule ignores lock passing. To avoid the loss of generality, we may ficti-
tiously extend the formal argument list of a routine with the separate arguments of its
callers, although a more direct technique is desirable. The example discussed below
does not involve lock passing.

To apply these rules, we need a way to determine the handler <s> of any separate
entity s. More precisely, since the goal is to determine whether intersections of pro-
cessor sets are empty, we need to determine whether <s> and <t> can be the same for
two entities. This will be the case if t is aliased to s, or to s.x where x is a non-separate
field of s (so that s.x has the same handler as s). This observation highlights alias
analysis as the core task of deadlock analysis in an object-oriented concurrency
framework.

Previous work [2, 5] has introduced an alias calculus. The calculus is a set of rules
for computing statically, at any program point in the context of an object-oriented
language with references, the alias relation: the set of pairs of expressions that may, be
aliased when execution reaches that point. (Two expressions denoting references are
aliased if they are attached to the same object.)

The rules of the alias calculus give, for every kind c of construct in the pro-
gramming language and any alias relation ar, the value of ar » c: the alias relation that
will hold after execution of c if r held before. For example, ar » (c1; c2) =
(ar » c1) » c2). The reader may consult [2] for the full list of rules. (As may be
expected, the alias relation computed by these rules is usually an over-approximation of
the aliasing that may actually exist at execution time.) The present discussion assumes
that we do have the alias calculus at our disposal. For the purpose of alias analysis, we
add s.x to the aliases of s for all non-separate x.

In this framework, the above rule for computing the hold and wait sets becomes:

where aliases (e) is the set of expressions possibly aliased to e at the given
program position. In this formulation, the H and W sets contain program expressions
rather than the actual processors; the expressions act as proxies for these processors.
Such an abstraction is necessary in any case since the processors only become known at
execution time.
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Deadlock analysis then reduces to the following steps.

7 Example Application

The following scenario illustrates deadlock analysis on the two-dining-philosophers
example presented earlier.

The alias relations at each stage, resulting from the alias calculus, are assumed to
come from automatic alias analysis.

In expressing these relations, we need the concept of negative variable, introduced
in [6] to handle the changes of coordinates that characterize object-oriented pro-
gramming. To understand this notion assume that a is aliased to b:

O1
a
b

x

O2

The alias relation is, in the notation of [5], , meaning that it contains the pair
[a, b]and the symmetric pair [b, a] (an alias relation is symmetric). Also, a and b are
their own aliases, but for economy we never explicitly include pairs [x, x] in an alias
relation, keeping it irreflexive by convention.

At this point the program executes a qualified call x.r (…). The routine rmay change
the aliasing situation; but to determine these changes we cannot apply the alias calculus
rules to the original relation since a and b are fields of the original object O1 and
mean nothing for the target object O2. The relation of interest is , equal by
distributivity to . Here x’, the “negation” of x, represents a back-reference to
the caller as illustrated below. This reference need not exist in the implementation but is
necessary for the alias computation. If ar is the alias relation obtained by the alias
calculus at the end of the body of ar, then the result for the caller is x.ar, where any x’
will cancel itself out with x since xτ.x’ = Current and Current.e = e for any e.

O1
a
b

x

O2

x’
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Let us now consider the deadlock analysis of the preceding section to the two
versions of the dining philosopher program. In the first version, the relevant simulta-
neous pair is the call eat (left, right), paired with itself (since it is in a loop), in the
routine live. Prior to aliasing, the hold and wait sets, seen from the philosopher
object, are:

• H = {Current}
• W = {left, right}

Considering both calls to live, the reference structure is the following:

The top node is the root object, of type MEAL; the middle nodes are philosopher
objects; the bottom nodes are fork objects. Through alias completion we get:

• H = {Current, p1’.phil1, p1’.p1}
• W = {left, right, p1’.fork1, p2’.fork2}

The intersection of these sets is empty: no deadlock. Now consider the version
using eat_bad (left) instead of eat (left, right). The sets at the point of the call to
pick_secondin eat_bad are, at the PHILOSOPHER level and prior to alias
completion:

• H = {Current, f}
• W = {left, right}

The reference structure is the same as above, plus aliasing of f to left:

Alias completion yields:

• H = {Current,, p1’.phil1, p1’.p1, f, left, p1’.fork1, p2’.fork2}
• W = {left, right, p1’.fork1, p2’.fork2, f}
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Since W now includes f, aliased to left, the intersection is not empty, revealing the
possibility of a deadlock.

8 Conclusion and Perspectives

The limitations of this work are clear: the technique is not modular; it has not been
proved sound; its precision (avoidance of false alarms) is unknown; and it is not yet
implemented.

The approach, however, seems promising. The reliance on aliasing seems to open
the way for a realistic approach to static deadlock detection, applicable to modern
object-oriented programs regardless of the complexity of their run-time object and
reference structure.

The next step is to remedy the current limitations and make the approach fully
applicable in a practical verification environment [7]. The goal is worth the effort:
unleashing the full power of concurrent programming by removing an obstacle that, for
decades, has been a nightmare.
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Abstract. In this paper we present a novel transformation technique
which, given a program defined on any data-type, automatically derives
conversion functions for data of that type to and from well-partitioned
join-lists. Using these conversion functions we employ existing program
transformation techniques in order to redefine the given program into an
implicitly parallel one defined in terms of well-partitioned data.

1 Introduction

The development of parallel software is inherently more difficult than that of
sequential software and developers can have problems thinking in a parallel set-
ting [16]. As the limitations of single-core processor speeds are reached, the
developer has no choice but to reach for parallel implementations to obtain the
required performance increases.

There are many existing automated parallelization techniques [2,3,8–11,17–
19], which, while powerful, require that their inputs are defined using a cons-
list. This is an unreasonable burden to place upon a developer as it may not be
intuitive to define their program in terms of a cons-list. In order to remove this
burden, this paper presents an automatic transformation for programs which
automatically partitions the data they are defined on and uses distillation [7]
to redefine these programs into implicitly parallel ones defined on the resulting
well-partitioned data.

The remainder of this paper is structured as follows: Sect. 2 details the lan-
guage used throughout this paper. Section 3 details the transformation which
converts a given program into one defined on well-partitioned data. Section 4
presents an example program, whose data is well-partitioned using our technique
and an implicitly parallel program automatically derived on this well-partitioned
data. Section 5 presents a summary of related work and compares our techniques
with this work. Section 6 presents our conclusions and plans for further work.

2 Language

We use a standard Haskell-like higher-order functional language throughout this
paper, with the usual cons-list notations, where data-types are defined as shown

c© Springer-Verlag Berlin Heidelberg 2015
A. Voronkov and I. Virbitskaite (Eds.): PSI 2014, LNCS 8974, pp. 59–66, 2015.
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Fig. 1. Data-type definition

in Fig. 1. Within this language, a data-type T can be defined with the construc-
tors c1, . . . , cm. Polymorphism is supported via the use of type variables, α. We
use (e :: t) to denote an expression e of type t.

Within this language, join-lists are defined as shown in Fig. 2. The language
has some useful built-in functions: split which takes a cons-list and splits it in
half returning a tuple containing the left and right halves and fst which takes a
tuple and returns its first element. The function removeAllτ , given a sequence
of types, removes all occurrences of the type τ from the given sequence.

Fig. 2. join-List data-type definition

3 Automatically Partitioning Data

There are many parallelization techniques which make use of well-partitioned
data [1,2,8–11,13,17,18]. These can be restrictive and often require that input
programs are defined on data that can be easily well-partitioned, however this
may not always be intuitive. To solve this, we define a transformation technique
that allows for the automatic partitioning of any data. An overview of this
technique is shown in Fig. 3. The technique is combined with distillation in order
to automatically convert a program into one defined on well-partitioned data.
The technique consists of four steps:

1. Given a program defined on a data-type, τ , define a corresponding data-type,
τ ′, instances of which contain the non-inductive components from data of
type τ .

2. Derive a partitioning function, partitionτ , which allows data of type τ to be
converted into a well-partitioned join-list containing data of type τ ′.

3. Derive a rebuilding function, rebuildτ , which converts a join-list containing
data of type τ ′ into data of type τ .

4. Distill a program equivalent to the given program which is defined on a well-
partitioned join-list.

Using these four steps, we can automatically convert a given program into
an equivalent program defined on well-partitioned data.
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Fig. 3. Data partitioning functions

Fig. 4. Transformation rule for defining τ ′ using τ

3.1 Defining Partitioned Data-Types

To partition data of a given instantiated data-type, τ = T T1 . . . Tk, we first
define a corresponding data-type, τ ′, according to the rules shown in Fig. 4. In
some cases it may not make sense to parallelize the processing of all data in
a given program. To allow for this, we allow the developer to specify a set of
parallelizable-types, γ, instances of which will be evaluated in parallel.

Given a program defined on a data-type, τ , N is applied to τ as follows:

– If τ is a parallelizable-type, its data must be well-partitioned and is therefore
replaced by JList τ ′.

– If τ is not a parallelizable-type, it is replaced by τ ′ as it may contain data
that must be well-partitioned.

When replacing τ with either τ ′ or JList τ ′, τ ′ is defined as shown in Fig. 4.
For each constructor, c, in the definition of τ , a new constructor, c′, is added to
τ ′. If τ is a parallelizable-type then any inductive components c contains are not
added to c′. N is applied to each component of c′.
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3.2 Converting Data to and From Join-Lists

To partition data of a given type, τ , we define a partitioning function, partitionτ

as follows:

– If τ is a parallelizable-type, data of type τ is converted to a cons-list containing
data of type τ ′, which is then well-partitioned into a join-list.

– If τ is not a parallelizable-type, data of type τ is converted to data of type τ ′,
the components of which are also well-partitioned where necessary.

In order to convert a well-partitioned join-list back into its original form, we
also define a rebuilding function, rebuildτ , the definition of which is simply the
inverse of partitionτ .

3.3 Distilling Programs on Well-Partitioned Data

Distillation [7] is a powerful fold/unfold based program transformation technique
which eliminates intermediate data-structures from higher-order functional pro-
grams. It is capable of obtaining a super-linear increase in efficiency.

Given a sequential program, f , defined on a type, τ , we first define partitionτ

and rebuildτ . Once these have been defined, we can convert f into an equiva-
lent program, fwp, defined on well-partitioned data. Applying distillation to
f ◦ rebuildτ , results in the automatic derivation of fwp. A high level overview of
this process is presented in Fig. 5.

Fig. 5. Distillation of programs on well-partitioned data

As fwp is defined on a well-partitioned join-list and f is defined on data of
type τ , we must also generate the correct input for fwp by applying partitionτ

to the input of f .
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4 Example Parallelization Using Well-Partitioned Data

Consider a function, sumList, which calculates the sum of a List of numbers:

sumList = λxs.case xs of
Nil → 0
Cons x xs → x + sumList xs

As the input to sumList is of type (List Int), the first step in the paral-
lelization process is to define List′ according to the rules shown in Fig. 4, where
γ = {List Int}, as shown below:

data List′ ::= Nil′

| Cons′ Int

The second step is to define both partition(List Int) and rebuild(List Int) as
follows:

partition(List Int) = partition ◦ flatten(List Int)

flatten(List Int) = λxs.case xs of
Nil → [Nil′]
Cons x1 x2 → [Cons′ x1] ++ flatten(List Int) x2

rebuild(List Int) = fst ◦ unflatten(List Int) ◦ rebuild

unflatten(List Int) = λxs.case xs of
(x : xs) → case x of

Nil′ → (Nil, xs)
Cons′ x1 → case unflatten(List Int) xs of

(x2, xs2) → (Cons x1 x2, xs2)

Following the definition of rebuild(List Int), we compose this with the original
function, sumList ◦ rebuild(List Int), and apply distillation to this composition.
This allows sumList to be automatically redefined into an equivalent program,
sumListwp, defined in terms of a join-list containing instances of List′, resulting
in the following implicitly parallel definition:

sumListwp = λx.case x of
Singleton x → case x of

Nil′ → 0
Join l r → let l′ = sumList′wp l

r′ = sumListwp r
in l′ r′
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sumList′wp = λx n.case x of
Singleton x → case x of

Nil′ → n
Cons′ x → x + n

Join l r → let l′ = sumList′wp l
r′ = sumList′wp r n

in l′ r′

By making distillation aware of the definition of the + operator, it can derive
the necessary associativity that allows for each child of a Join to be evaluated in
parallel. It is worth noting that in the case of the above program, when evaluating
the left child of a Join we create a partial application which can be evaluated
in parallel with the evaluation of the right child. This partial application is
equivalent to (λr.l + r), where r is the result of the evaluation of the right
operand. In a parallel environment the full evaluation of this partial application
must be forced to ensure that the left operand has been evaluated and that
parallel processes have roughly the same amount of work.

As both children are roughly equal in size, each parallel process created will
have a roughly equal amount of work to do. In contrast, with respect to the orig-
inal sumList defined on cons-lists, if the processing of both x and sumList xs
are performed in parallel, one process will have one element of the list to eval-
uate, while the other will have the remainder of the list to evaluate, which is
undesirable.

5 Related Work

There are many existing works that aim to resolve the same problem that our
transformation does: mapping potentially poorly-partitioned data into a form
that can be efficiently parallelized. Some work, such as list-homomorphisms and
their derivative works [1,8–11,17,18] simply assume that they will use data that
is well-partitioned. These techniques require that their inputs are defined using a
cons-list, which can then be easily well-partitioned [3,5,6,19]. Restricting devel-
opers to implement their programs in these forms is an unrealistic burden.

Chin et al.’s [2] work on parallelization via context-preservation also makes
use of join-lists as part of its parallelization process. This technique is only
applicable to programs defined in the form of list-paramorphisms [14]. While
this allows for quite a broad class of program to be parallelized, it is not realistic
to force developers to define their functions in this form.

An important limitation of these techniques is that they are only applicable
to lists, excluding the large class of programs that are defined on trees. One
approach to parallelizing trees is that of Morihata et al.’s [15] generalization
of the third homomorphism theorem [4] to trees. This approach makes use of
zippers [12] to model the path from the root of a tree to an arbitrary leaf.
While this is an interesting approach to partitioning the data contained within
a binary-tree, the partitioning technique is quite complicated. It also presents
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no concrete methodology for generating zippers from binary-trees and assumes
that the developer has provided such a function.

6 Conclusion

In this paper, we have presented a novel data-type transformation which allows
for a given program to be automatically redefined into one defined on well-
partitioned data. Our research is focused on automatically converting programs
defined on any data-type into equivalent parallel versions defined on well-
partitioned data in the form of join-lists. The presented data-type transfor-
mation is a significant component of that automatic parallelization system.

At a high level, by combining the outputs of the presented data-type transfor-
mation with an explicit parallelization transformation which parallelizes expres-
sions operating on join-lists it is possible to automatically redefine a given
sequential program defined on any data-type into an explicitly parallel one
defined on well-partitioned join-lists.

While the presented data-type transformation is defined using join-lists,
which appear to be the standard partitionable data-type used in automated
parallelization systems [1,8–11,17,18], it is possible that join-lists are not the
ideal data-structures to be used as part of such systems. As the data contained
in a join-list is placed only at the leaves, it is possible that parallel processes
evaluating the nodes of a join-list will spend much of their time waiting on the
results of the parallel processes evaluating their subtrees. Further research is
required to determine if there is a data structure which provides better parallel
performance in general.

Where existing automated parallelization techniques are restrictive with
respect to the form of their input programs and the types they are defined
on, a parallelization technique defined using the presented data-type transfor-
mation should hold no such restrictions. To the best of the authors knowledge
this is the first automatic data-type transformation system that will derive a
well-partitioned representation of any given data-type and will redefine a given
program into one defined in terms of such well-partitioned data.
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Abstract. We describe the Lingva tool for generating and proving com-
plex program properties using the recently introduced symbol elimina-
tion method. We present implementation details and report on a large
number of experiments using academic benchmarks and open-source soft-
ware programs. Our experiments show that Lingva can automatically
generate quantified invariants, possibly with alternation of quantifiers,
over integers and arrays. Moreover, Lingva can be used to prove pro-
gram properties expressing the intended behavior of programs.

1 Introduction

Safety verification of programs is a challenging task especially for programs with
complex flow and, in particular, with loops or recursion. For such programs one
needs additional information, in the form of loop invariants, pre- and postcon-
ditions, or interpolants, that express properties to hold at certain intermediate
points of the program.

In this paper we present an automated tool for generating program prop-
erties, in particular loop invariants. Our tool, called Lingva, is based on the
symbol elimination method of [9]. It requires no preliminary knowledge about
program behavior, and uses symbol elimination in first-order theorem proving
to automatically derive complex properties, as follows. Suppose we are given a
loop L over scalar and array variables. Symbol elimination first extends the loop
language L to a richer language L′ by additional function and predicate sym-
bols, such as loop counters or predicates expressing update properties of arrays
at different loop iterations. Next, we derive a set P of first-order loop properties
expressed in L′. The derived properties hold at any loop iteration, however they
contain symbols that are not in L and hence cannot yet be used as loop invari-
ants. Therefore, in the next step of symbol elimination, logical consequences of
P are derived by eliminating the symbols from L′ \ L using first-order theo-
rem proving. As a result, first-order loop invariants in L are inferred as logical
consequences of P .

This work was partially supported by Swedish VR grant D0497701 and the Austrian
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Fig. 1. The overall workflow of Lingva.

First implementation of symbol elimination was already described in [8], by
using the first-order theorem prover Vampire [10]. This implementation had how-
ever various limitations: it required user-guidance for program parsing, imple-
mented tedious translation of programs into a collection of first-order properties,
had limited support for the first-order theory of arrays and the generated set of
invariants could not yet be used in the context of software verification. In this
paper we address these limitations and describe Lingva tool for generating loop
invariants (Sect. 2). In addition to invariant generation, Lingva can also be used
for proving program properties, in particular for proving program annotations
from the generated set of invariants.

We evaluated Lingva on a large number of problems taken from recent
research papers and open-source programs (Sect. 3). Our experiments addressed
two evaluation criteria: (i) scalability, that is for how many programs Lingva suc-
cessfully generated invariants; and (ii) expressiveness, that is can safety program
annotation be automatically proved from the invariants generated by Lingva.
The invariants inferred by Lingva are quantified properties over arrays and inte-
gers. Unlike [3,5,7,11], our invariants can express properties with quantifier alter-
nations over the array content and exploit reasoning in the full first-order theory
of arrays and integer arithmetic. In addition, in our experiments, program anno-
tations were successfully proved by Lingva for all loops with nested conditionals.
While other techniques, such as [1,6,13,14], can handle more general programs,
we note that Lingva is fully automatic and requires no user guidance in the form
of invariant templates, interpolants or apriori defined program properties.

2 Lingva: Tool Description

The general workflow of Lingva is summarized in Fig. 1 and detailed below. Lingva
is a collection of C++ programs, glued together by Python scripts. Our implemen-
tation is available at: www.complang.tuwien.ac.at/ioan/lingva.html. Lingva can
be done by executing the command: Lingva problem.c, where problem.c is a
C/C++ program with loops. As a result, Lingva returns problem.c annotated
with loop invariants.

When compared to initial implementation from [8], the preprocessing part
and the code annotation and conversion parts of post processing are new features.

http://www.complang.tuwien.ac.at/ioan/lingva.html
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Further, Lingva extends that approach by more sophisticated path analysis
methods and built-in support for reasoning in the first-order theory of arrays.
These features allows Lingva to handle a programs with multiple loops and nested
conditionals and derive quantified invariants that could not yet be obtained by [8],
as arrays and integers, and their axiomatisation, were not yet supported as built-in
theories in [8].

Preprocessing. Input programs of Lingva are first parsed using the Clang/LLVM
infrastructure [12] and the abstract syntax tree (AST) of the input is cre-
ated. Although Lingva front-end can parse arbitrary C/C++ programs, program
analysis in the next step has implemented support for a restricted programming
model, as follows. We only handle program loops with sequencing, assignments,
and nested conditionals. Nested loops, recursive or procedure calls are thus not
yet supported. Further, we only treat integers and arrays. Also we restrict pro-
gram tests and assignments over integers to linear arithmetic expressions. If these
restrictions are not met, Lingva terminates with an error message that provides
information on the violation of the programming model.

After the AST construction, each program loop is analysed by default by
Lingva. However, the user can also specify which loop or set of loops should
be analysed by calling Lingva with the option -f fn.loopNr. Where fn is the
name of the input’s C/C++ function block and loopNr gives the loop number
of interest within fn.

Example 1. Consider Fig. 2(a). It is written in C/C++ and contains multiple
loops, each loop being annotated with a natural number starting from 0. For sim-
plicity, we only show and describe Lingva on the kth loop of Fig. 2(a); analysing
the other loops can be done in a similar manner. The kth loop of Fig. 2(a) takes
two integer arrays aa and cc and creates an integer array bb such that each
element in bb describes an array position at which the elements of aa and cc
are equal. This loop is the Partition Init program from Sect. 3. For running
Lingva only on this loop, one should execute the command: Lingva problem.c
-f main.k

Program Analysis. Program loops are next translated into a collection of
first-order properties capturing the program behavior. These properties are for-
mulated using the TPTP syntax [15]. Note that in TPTP, symbols starting with
capital letters denote logical variables which are universally (!) or existentially
(?) quantified. In the rest of the paper, we illustrate Lingva using the TPTP
notation.

During program analysis, we extend the loop language with additional func-
tion and predicate symbols, as follows. For each loop, we use an extra integer
constant n ≥ 0 denoting the number of loop iterations and introduce an extra
predicate iter(X) expressing that the logical variable X is a valid loop iteration,
that is 0 ≤ X < n. Loop variables thus become functions of loop iterations,
that is a loop variable v becomes the function v(X) such that iter(X) holds and
v(X) denotes the value of v at the Xth loop iteration. For each loop variable v,
we respectively denote by v0 and v its initial and final values. Finally, for each
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Fig. 2. Program analysis with Lingva on the Partition Init program of Table 2.

array variable we introduce so-called update predicates describing at which loop
iteration and array position the array was updated. For example, for an array bb
we write updbb(X,Y,Z) denoting that at loop iteration X the array was updated
at position Y by the value Z.

For each loop, we next apply path and (scalar and array) variable analysis
in order to collect valid loop properties in the extended loop language. Within
path analysis, loops are translated into their guarded assignment representations
and the values of program variables are computed using let-in and if-then-else
formulas and terms. Unlike [8], the use of let-in formulas (let...in) and if-
then-else terms (ite t) allow us to easily express the transition relations of
programs. Further, (i) we determine the set of scalar and array program variables,
(ii) compute monotonicity properties of scalars by relating their values to the
increasing number of loop iterations, (iii) classify arrays into constant or updated
arrays, and (iv) collect update array properties. As a result, for each program
loop a set of valid loop properties is derived in the extended loop language.

Example 2. Consider the kth loop of Fig. 2(a). A partial set of first-order prop-
erties generated by Lingva in the extended loop language is given in Fig. 2(b).
Properties 1 and 2 are derived during path analysis. They express the value of the
scalar b during the program path exhibiting the then-branch of the conditional
within the loop and, respectively, the loop condition. Properties 8 and 9 are
derived during scalar analysis. They state that the values of a are monotonically
increasing at every loop iteration; moreover, these values are exactly defined as
functions of loop iterations and the initial value a0 of a. Properties 17 and 18
are inferred during array analysis, and express respectively, the initial and final
values of the array bb.

Symbol Elimination. Within symbol elimination, for each loop we derive loop
invariants. For doing so, we rely on Vampire [10] and compute logical con-
sequences of the properties derived during program analysis. To this end, we
first load the built-in theories of integers and arrays. Properties with let-in and
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Fig. 3. Invariants and annotated code corresponding to Fig. 2(a).

if-then-else expressions are then translated into first-order properties with no let-
in and if-then-else terms. Unlike the initial work from [8], Lingva supports now
reasoning in the first-order theories of arrays and uses arrays as built-in data
types. By using the theory axiomatisations of arrays and integers arithmetic
within first-order theorem proving, Lingva implements theory-specific reason-
ing and simplification rules which allows to generate logically stronger invari-
ants than [8] and to prove that some of the generated invariants are redundant
(as explained in the post processing step of Lingva).

Next, we collect the additional function and predicate symbols introduced in
the program analysis step of Lingva and specify them to be eliminated by the
saturation algorithm of Vampire; to this end the approach of [9] is used. As a
result, loop invariants are inferred. Symbol elimination within Lingva is run with
a 5 s default time limit. This time limit was chosen based on our experiments
with Lingva: invariants of interests could be generated by Lingva within a 5 s
time limit in all examples we tried. The user may however specify a different
time limit to be used by Lingva for symbol elimination.

Example 3. The partial result of symbol elimination on Fig. 2(b) is given in
Fig. 3(c). The generated invariants are listed as typed first-order formulas (tff)
in TPTP. The invariants inv3 and inv10 state that at every array position
b0+X0 at which the initial array bb0 was changed, the elements of aa and cc at
position bb(b0 + X0) are equal; recall that b0 is the initial value of b. Note that
the generated invariants have skolem functions introduced: sk1(X0) denotes a
skolem function of X0.

Post Processing. Some of the loop invariants generated by symbol elimination
are redundant, that is they are implied by other invariants. In the post processing
part of Lingva, we try to minimize the set of invariants by eliminating redundant
ones. As proving first-order invariants redundant is undecidable, minimization
in Lingva is performed using four different proving stratgies, with a 20 s default
time limit for each of the strategy. The chosen strategies and their time limit
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Table 1. Overview of experimental results obtained by Lingva.

Program � loops � analysed loops Average � Average �

invariants minimized invariants

Academic 41 41 213 80

benchmarks [4,8,14]

Open source 1151 150 198 62

archiving benchmarks

were carefully selected based on our experiments, and they involve theory-specific
simplifcation rules as well as special literal and selection functions within first-
order reasoning.

After invariant minimization, Lingva converts the minimized set of invariants
in the ACSL annotation language of the Frama-C framework [2]. The input
program of Lingva is then annotated with these invariants and returned. The use
of the ACSL syntax in Lingva, allows one to integrate the invariants generated
by Lingva in the overall verification framework of Frama-C, formally annotate
program loops with their invariants, and verify the correctness of the annotated
program using Frama-C.

Example 4. Fig. 3(d) shows the kth loop of Fig. 2(a) annotated with its partial
set of minimized invariants generated by symbol elimination.

Fig. 4. Program with assertion.

Proving Program Properties. In addition
to the default workflow given in Fig. 1, Lingva
can be used not only for generating but also for
proving properties. That is, given a program
loop with user-annotated properties, such as
postconditions, one can use Lingva to prove
these properties as follows: (i) first, loop invari-
ants are generated as described above, (ii) sec-
ond, Lingva tries to prove the user-annotated
property from the set of generated invariants. For proving program properties in
the combined first-order theories of integers and arrays, Lingva uses Vampire.

Example 5. Consider the simplified program given in Fig. 4.

Note that the loop between lines 2–5 corresponds to the kth loop of Fig. 2(a).
The code between lines 6–8 specifies a user-given safety assertion, corresponding
to the first-order property ∀j : 0 ≤ j < b =⇒ aa[bb[j]] = cc[bb[j]]. This safety
assertion can be proved from the invariants generated by Lingva (see Table 2).

3 Experiments with Lingva

We evaluated Lingva on examples taken from academic research papers on invari-
ant generation [4,8,14] as well as from open source archiving packages. Our results



Lingva: Generating and Proving Program Properties 73

Table 2. Experimental results of Lingva on some academic benchmarks with condi-
tionals.

were obtained using a Lenovo W520 laptop with 8 GB of RAM and Intel Core i7
processor. All experimental results are also available on the Lingva homepage.

Table 1 summarizes our experiments. The first column lists the number of
examples from each benchmark suite. The second column gives the number of
problems that could be analysed by Lingva; for all these problems invariants
have been generated. The third column shows the average number of generated
invariants, whereas the fourth column lists the average number of invariants
after minimization. Note that minimizing invariants in the post processing part
of Lingva considerably decreases the number of invariants, that is 63 % in the
case of academic examples and by 69 % for open source problems. In the sequel,
we detail our results on each benchmark set.

Academic Benchmarks. Tables 2 and 3 describe the results of Lingva on pro-
gram loops from [4,8,14], with and without conditionals. All these examples
were already annotated with properties to be proven. Due to the page limit, we
only list some representative examples. The first column of both tables shows the
programs with their origins. The second column gives the number of generated
invariants after the minimization step of Lingva. The third column states the
program annotation to be proven for each program. Finally, the fourth column
lists the invariants generated by Lingva which were used in proving the prop-
erty of column three (similarly to Example 3). Tables 2 and 3 show that Lingva
succeeded to generate complex quantified invariants over integers and arrays,
some of these invariants using alternation of quantifiers1. We are not aware of
any other tool that is able to generate invariants with quantifier alternations.
We further note that all user-provided annotations were proved by Lingva, in
essentially no time, by using (some of) the generated invariants.

Open Source Benchmarks. We evaluated Lingva on open source examples
taken from archiving software, such as GZip, BZip, and Tar. All together we
used 1151 program loops, out of which only 150 could be analysed by Lingva,

1 De-skolemising skolem functions give invariants with quantifier alternations.
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Table 3. Experimental results of Lingva on some academic benchmarks without con-
ditionals.

as given in Table 1. The reason why Lingva failed on the other 1001 loops was that
these programs contained nested loops, implemented abrupt termination, bitwise
operations, used pointer arithmetic or procedure calls. We believe that extend-
ing and combining Lingva with more sophisticated program analysis methods,
such as [6,7,14], would enable us to handle more general programs then we
currently do.

The 150 loops on which Lingva has been successfully evaluated implemented
array copy, initialization, shift and partition operations, similarly to the ones
reported in our experiments with academic benchmarks. For these examples,
Lingva generated quantified invariants, some with alternations of quantifiers,
over integers and arrays. We were also interested to see the behavior of Lingva
on these examples when it comes to proving program properties. To this end, we
manually annotated these loops with properties expressing the intended behav-
ior of the programs and used Lingva to prove these properties from the set of
generated invariants. In all these 150 examples, the intended program behavior
was proved by Lingva in essentially no time, underlining the strength of Lingva
for generating complex invariants in a fully automated manner.

4 Conclusion

We described the Lingva tool for automatically generating and proving program
properties. We reported on implementation details and presented experimental



Lingva: Generating and Proving Program Properties 75

results on academic and open-source benchmarks. Our experiments show that
Lingva can generate quantified invariants, possibly with quantifier alternations,
in a fully automated manner. Moreover, the generated invariants are strong
enough to prove program annotations expressing the intended behavior of pro-
grams. Further work includes extending our approach in order to better integrate
theory-specific reasoning engines for improving invariant minimization.
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Abstract. The Function Blocks Architecture of the IEC 61499 standard is an
executable component model for distributed embedded control systems combining
block-diagrams and state machines. The standard aims at the portability of control
applications that is however hampered by ambiguities in its execution semantics
descriptions. In recent years several execution models have been implemented in
different software tools that generate mutually incompatible code.

This paper proposes a general approach to neutralizing these semantic ambi-
guities by formal description of the IEC 61499 in abstract state machines (ASM).
The model embodies all known execution semantics of function blocks. The ASM
model is further translated to the input format of the SMV model-checker which is
used to verify formally properties of applications. In this way the proposed veri-
fication framework enables the portability checking of component-based control
applications across different implementation platforms compliant with the IEC
61499 standard.

The paper first discusses different existing execution semantics of function
blocks and the portability issues across different IEC 61499 tools. Then a modular
formal model of function blocks’ operational semantics in ASM is introduced and
exemplified in the paper by the cyclic execution semantics case for a composite
function block. Subsequently, the SMV model is generated and model-checking is
illustrated for a simple test case.

Keywords: Formal semantics � Model checking � Formal verification �
Abstract state machines � IEC 61499

1 Introduction

The IEC 61499 [1, 2] is an international standard that introduces an open reference
architecture for distributed process measurement and control systems that is an
important class of embedded systems with a strong legacy background. The standard is
often nicknamed as the function block architecture after its main design artifact that is
an event-activated function block. If one would abstract out of unnecessary details, the
standard introduces quite an elegant model of distributed application that is a network
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of function blocks connected via control and data flows. The control flow is modeled
using the concept of event that is emitted from an output of one function block and can
be received at one or several inputs of other function blocks.

This mechanism, however, has been interpreted differently by the implementers due
to some ambiguities in the norm’s text [3]. As a result, several semantic interpretations
appeared. Even though the semantics gap has been tightened in the second edition of
the standard in 2012, there are already a number of tools on the market reflecting the
semantics ambiguities, for which portability is an important goal.

The portability of a function block application A between platforms that comply
with execution semantics s1 and s2 can be defined as equivalence of the behavior
B(A,s1) = B(A,s2). However, brute force check of the equivalence can have prohibitive
complexity. Instead, one can apply model-checking of A’s model under semantic s,
M(A,s), against the comprehensive set of requirements R (functional and non-func-
tional, including safety and liveness). Denoting the set of model-checking results as C
(M(A,s),R), we define the application A to be portable between semantics s1 and s2 if
the model-checking gives equivalent results, i.e.:

P A; s1; s2ð Þ¼D C MðA; s1Þ;Rð Þ ¼ C M A; s2ð Þ;Rð Þ

In this paper we introduce a way of modeling function blocks that simplifies
parameterization of the execution semantics, i.e. generation of model M(A,s) for any
known semantics s. The modeling is based on the Abstract State Machines (ASM), and
SMV is assumed as a tool implementing model-checking C(M(A,s),R). An example of
applying model-checking to the model created in the way proposed in this paper was
presented in [4] therefore it is omitted in this paper.

2 Related Facts

2.1 Function Blocks

In IEC 61499, the basic design construct is called function block (FB). Each FB
consists of a graphical event-data interface and a set of executable functional specifi-
cations (algorithms), represented as a state machine (in basic FB), or as a network of
other FB instances (composite FB), or as a set of services (service interface FB). FBs
can be interconnected into a network using event and data connections to specify the
entire control application. Execution of an individual FB in the network is triggered by
the events it receives. This well-defined event-data interface and the encapsulation of
local data and control algorithms make each FB a reusable functional unit of software.

There are several approaches to defining formal models of function blocks, e.g.
[5–7]. In this paper, for the sake of brevity we present only informal examples of function
blocks and systems built thereof. For example, the basic FB (BFB) ALU in Fig. 1 is
designed to perform arithmetic operations of addition and subtraction, depending on its
input events. As seen from Fig. 1, a basic FB is defined by signal interface (left hand
side) and also its internal state machine (called Execution Control Chart, or ECC) on the
right hand side, and definition of the three algorithms (executed in the ECC states)
beneath the diagram. It also has an internal variable n initialized to the value 13.
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A function block application is a network of FBs connected by event and data links.
As an example, let us consider an application that consists of two ALU function blocks
interacting with each other (Fig. 2). This example, of course, is not comprehensively
covering all FB artefacts and is used for illustrative purposes [24].

The application consists of two instances of the arithmetic-logic unit (ALU) BFB type
connected in closed-loop (outputs of one BFB are connected to the inputs of other BFB).
Following the firing of the initt input of alu1 (Fig. 2) (emitted by hardware interface), the
application enters an infinite sequence of computations consisting of alternating arithmetic
operations addition and subtraction. Moreover, the input parameters are chosen such that
the variables do not change, i.e. when one FB adds a certain number, the second one
subtracts it, so, as a result, the state space of the system is limited.

A composite function block (CFB) is defined by a signal interface and internal
network of function block instances similar to the application in Fig. 2. The existing
execution models of FB systems differ in the disciplines of FB execution scheduling
and the ways of events and data passing between the FBs. For example, in the cyclic
execution model, each FB in an application is invoked once between the update of
environment variables, and its place in the order of invocations is predefined. Contrary,
in the sequential model, the order of invocations is fully determined by the order of
events arriving at the inputs of function blocks [3].

Fig. 1. The basic FB ALU: interface (left), ECC diagram (right), algorithms (bottom row).

Fig. 2. FB system of two ALUs designed in the ISaGRAF development environment [8]
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2.2 Abstract State Machines

The Abstract State Machine (ASM) paradigm was introduced by Yuri Gurevich in
1988 [9] with basic definitions presented in [10] by the same author. The ASM
methodologies are practical in modeling and analyzing different sizes of systems and
have been applied in different research areas such as programing languages [11, 12],
hardware and software architectures [13], algorithm verification and network protocols
[14, 15]. ASM’s have also been successfully used in representing semantics of pro-
gramming languages such as Prolog [16], C [17] and Java [18].

In this research we use ASM (in the form of functions changes’ rules) to represent
mathematically the execution semantics of function blocks in SMV. In particular, we
consider in detail one of the execution models that is the cyclic execution semantics.

2.3 Formal Modeling of IEC 61499 and Cross-Platform Portability

Formal modeling of IEC 61499 has more than a decade long history [19]. There are
two basic approaches to formal modeling of FB systems using: (1) a direct represen-
tation of FB in a language supported by a model-checking tool, such as SMV; and (2)
modeling of FB using an intermediate formal model and its subsequent translation to a
language supported by a tool. The main disadvantage of the (seldom) works in the first
direction, such as [20, 21], is the lack of a systematic approach to constructing models
of FB. In particular, there is no comprehensive pass-through formalization of FB
models. Methods of constructing them do not reflect the system hierarchy, composite
FB, algorithms and execution of FB models.

The most widely reported in the literature are the works representing the second
approach. For example, [22] presents a method using net condition/event systems
(NCES) as the intermediate representation and [23] presents a method of modeling
NCES in SMV. Of the other papers on modeling IEC 61499 FB for the purpose of
verification [7, 24, 25] can be noted. The main drawbacks of the majority of these
works are limitations of model-checkers, suffering from insufficient performance or
limited support of arithmetic operations. From that perspective, the SMV approach
promises some breakthroughs. It should also be noted that the SMV system has been
used quite successfully in industry, e.g. in the verification of the Function Blocks of
the IEC 61131-3 standard [26].

Some of the authors of this paper have addressed the portability of FB applications
by suggesting semantic-robust design patterns [27] and analyzing the consequences of
semantic differences for portability [28]. However, the approach proposed in this paper
has the potential for becoming the backend of portability certification based on formal
methods.

3 Modular Formalism for FB Operational Semantics

In this section, a modular formalism for FB operational semantics definition is pro-
posed. The formalism follows the ASM approach (further referred to as Distributed
ASM – FB model, or DASM-FB) and has the following characteristic features:
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1. System’s state is modelled using state variables and their state functions;
2. The model is composed of modules with asynchronous behavior with respect to

each other;
3. There can be shared variables in the modules;
4. Behaviour of modules are deterministic;
5. Explicit production rules are used to represent an abstract state machine (ASM)

program;
6. There are special restrictions on executing the distributed ASM.

In the definition of DASM-FB, the following notations will be used. Let ZA :
A! Dom Að Þ be a function assigning values from a domain to the objects of A (ZA is
also called a function of values), then ZA½ � denotes a set of all possible such functions.
Following the concept and notation of ASM, we introduce the update operator for the
functions of values, denoting it by  . This operator can be defined as follows:

ZAðaÞ  b, ðZAnða; xÞÞ [ ða; bÞ; ð1Þ

where a 2 A; b; x 2 Dom Að Þ; ZA � A� DomðAÞ. Here the symbol ‘, ’ means “by
definition”.

A model of a FB system in DASM-FB is a linearly ordered set of asynchronously
working (synchronous) modules:

W ¼ M1;M2; . . .;Mn
� � ð2Þ

Each module M j 2 W is defined as a tuple (for simplicity the index j (module’s
number) is omitted in the subscript indices).

Mj ¼ V ; ðDom viÞð Þvi2V ; Tvið Þvi2V ; Pvið Þvi2V ; Z0
vi

� �
vi2V

� �
; ð3Þ

where V ¼ v1; v2; . . .; vmf g is a set of module’s state variables. Dom við Þ denotes the
domain of values for variable vi 2 V . Tvi is a function of updating the values of state
variable vi 2 V . This function can be represented in a global variant or in a local one. In
the first case, the function is defined as

TG
vi :

Y
vk2V

Zvk½ � ! Zvi½ � ð4Þ

Since not all variables have influence on the change of other variables, then the
global function is redundant and can be reduced to the following local variant:

TL
vi :

Y
vk2HðviÞ Zvk½ � ! Zvi½ �; ð5Þ

where HðviÞ ¼ vi1 ; vi2 ; . . .; viq
� 	

is a (linearly ordered) set of variables vij 2 V ; j ¼ 1; q
that the variable vi 2 V depend on. Expression (6) is a rule for updating the value
function of the variable vi 2 V . Z0

vi is a function of initial value of variable vi 2 V .
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Pvi , Zvi við Þ  Tvi Zvi1 ; Zvi2 ; . . .; Zviq

� �
ð6Þ

The execution of module Mj consists in the simultaneous (synchronous) execution
of all rules from pvið Þvi2V . A system’s state is determined by the state variables that are
included in all modules of W as well as by their values: S ¼ Q

vk2VS Zvk , where VS ¼Sn
i¼1 V

i is a set of variables of the system. For definiteness, this set must be linearly
ordered.

As it is known, in the theory of distributed ASM the module execution order is not
defined, only restrictions on this order are given [10]. DASM-FB module execution
order may be arbitrary but with only restriction – in a run of DASM-FB the executions
of modules that do not change the current state are not permitted. To support this
requirement the following implementation schemes are suggested:

1. To execute a module whose input data are changed that in turn can influence the
change of the module’s current state. From the set Vi of the Mi variables one can
pick out variables shared with other modules Vi

COM ¼ Vi TS
i6¼j V

j. Then, from

those variables we select the following sets: Vi
RD � Vi

COM is a set of variables which
influence the change of the current state when executing the module Mi; and Vi

WR �
Vi
COM that is a set of variables which the module Mi changes at its execution.

Let us use the following denotation: Zi
RDcurr

is an ordered set of current values of
variables from Vi

RD: Z
i
RDold

is an ordered set of values of variables from Vi
RD in the

previous run. Then the triggering condition for DASM-FB module is formally
defined as

Zi
RDcurr

6¼ Zi
RDold

� �
ð7Þ

2. After execution of the Mi module one can execute those modules whose variables
directly depend on the variables of the Mi, that are, modules from the set
MSUCC ¼ MjjVi

WR \Vj
RD 6¼ ;; j ¼ 1;N

� 	
. This is an obvious consequence of the

principle of the global state change locality at executing a module. Obviously,
DASM-FBmodules must be “robust” in the sense of insensitivity to the order of other
modules invocation. Taking into account the robustness of modules one can assume
“transactional” principle of DASM-FB module execution according to which a
module is executed not only once (like in ASM) but possible repeatedly - until a fixed
point, i.e. until the re-execution of the module would not lead to changes in the state
variables localized in the module. This principle would not affect the final result of
entire FB system execution though it may be convenient in software implementation
of the system.
DASM-FB can be used to describe the semantics of FB systems functioning in
accordance with different execution models where the execution unit is one function
block (for example, these are cyclic and synchronous execution models).

The rules of changing variable’s value functions (represented in DASM-FB
only in general terms) will be implemented using production rules. In the simplest
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case, one production rule will correspond to one rule of the function’s value change.
A production rule is denoted as

Pm
t : c) a; ð8Þ

where Pm
t is an identifier of the rule (or group of rules), c is a rule application

condition, a are the actions executed on a change of the corresponding variable. The
indices in the rule identifier are: t - the name of the variable to change, and m - a
modifier of the rule’s identifier bearing additional information about the rule.

The modifier is expressed in forms of B;C;D or B;C, where B is a number of
the rule in the ordered set of rules related to value change of the variable t, C is an
identifier of a module, where the rule is localized; D is an identifier of an execution
model. The left hand side conditions of rules related to value change of the same
variable are mutually exclusive, so rules’ collisions on writing do not occur,
therefore, the order of the rules in DASM-FB is not essential. For brevity of
representation of the same type of rules we use the rules’ parameterization and
group the parameterized rules as a set.

One can arrange the use of the variable change rules into lists according their
priority, e.g.: \p1 : c1 ) a1; p2 : c2 ) a2; . . .pn : cn ) an [ . The priority rules’
lists can be easily transformed to a non-priority group as follows:

\p1 : c1 ) a1; p2 : c2 ^ �c1 ) a2; . . .pn : cn ^ �c1 ^ �c2 ^ . . . ^ cn�1 ) an [

4 Model of a Composite Function Block in the Cyclic
Execution Semantics

In order to apply formal methods for establishing the portability of function block
applications across different execution semantics, one shall define a comprehensive
model of the FB architecture in the DASM-FB.

(a) (b)

Fig. 3. Structures of composite FB operational models for (a) cyclic and (b) two-stage
synchronous execution models.
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In this section, we present a formal model of a composite function block which can
also give idea about formal model of FB applications (since applications are FB net-
works same as the internals of composite FBs) and of modeling the interface part of
basic FBs. A more comprehensive formal model of basic FBs is presented in [4].
Figure 3 shows the functional structure of the operational models of composite FB for
cyclic and synchronous execution models. Here bfb1; . . .; bfbn are basic FB models,
cfb1; . . .; cfbm are composite FB models, disp is a dispatcher model. Figure 3 shows
only those inputs, outputs, and connections that affect FB execution order. In the cyclic
execution model (Fig. 3(a)) when FB receives the start signal a the following actions
are performed: (1) the movement of signals from inputs of the composite FB module to
input variables of component FB, (2) launching all the component FB by the dis-
patcher, (3) the movement of signals between component FB and transmission signals
from outputs of component FB to outputs of the composite FB module, (4) generate
finish signal b.

Figure 3(b) shows a two-stage synchronous execution model. The sequence of
actions in accordance to the two-stage synchronous execution model is as follows:

Stage 1: on receiving starting signal a: (1) the movement of signals from inputs of the
composite FB module to input variables of component FB, (2) launching
the first execution phase in all component FB, (3) waiting for completion of
the stage 1 execution of all component FB and (4) generate finish signal b.

Stage 2: on receiving starting signal l: (5) launching the stage 2 execution in all
component composite FB, (6) waiting for completion of the stage 2 exe-
cution in all component composite FB, (7) the movement of signals between
component FB and transmission signals from outputs of component FB to
outputs of the composite FB module and (8) generate finish signal w. In the
rest of the paper we will only use cyclic execution semantics.

4.1 Schema Definition

A (DASM-FB) model of a composite function block (MCFB) can be represented
formally as follows:

MC
C ¼ SyntC; Sem

C
C

� �
; ð9Þ

where SyntC is a syntactic and SemC
C is a semantic part of the definition.

The syntactic part of the definition is a tuple SyntC ¼ Interface;ð
FB;EvConn;DataConnÞ, where Interface is an interface of composite FB (similar to
the interface of basic FB [4]); FB ¼ fb1; fb2; . . .; fbNFBf g is a set of component FBs
belonging to the composite FB, fbi ¼ Interfacei; fbtið Þ; i 2 1;NFB½ �, where Interfacei ¼
EIi;EOi;VIi;VOið Þ is an interface of ith component FB. This interface includes: EIi and
EOi – sets of event input and event output variables; VIi and VOi- sets of input and
output variables, respectively. fbti is a type of ith component FB. EvConn �
EI [SNFB

i¼1 EO
i

� �� EO [SNFB
i¼1 EI

i
� �

is a set of event connections, DataConn �
VI [SNFB

i¼1 VO
i

� ��SNFB
i¼1 VI

i [SNFB
i¼1 VO

i � VO is a set of data connections.
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At that, the following constraint has to be satisfied for data connections:
8 p; tð Þ; q; uð Þ 2 EvConn½ t ¼ uð Þ ! p ¼ qð Þ�. In other words, one cannot connect more
than one data output to a data input. When using event connections such topological
restriction is not imposed on the structure because the use of E_SPLIT and E_MERGE
FB for splitting and merging events is implied.

The semantic part of MCFB definition is given by:

Semc
c ¼ VRTC

C ; T
C
C ;D

C
C

� �
; ð10Þ

where VRTC
C is a set of variables and conditions of run-time; TC

C is a set of MCFB
transition functions; DC

C is a scheduler which defines an execution order of component
FB within its parent composite FB according to the cyclic execution model. The set of
variables and conditions of run-time is determined by a tuple: VRTC

C ¼
VIB;VOB;FBDC;x; #; a; bð Þ, where VIB, VOB, a, and b have the same meaning as in

the model of basic FB (MBFB) [4]; x,
V

eokj 2
S

i
EOi ZEOi eokj

� �
is a condition of ter-

mination of signal transfer from component FB’ event outputs inside composite FB;
#,

V
eij2EI ZEI eij

� �
is a condition of existence of signals at FB event inputs; FBDC ¼

fbd1; fbd2; . . .; fbdNFBf g is a set of additional (semantic) descriptions of component FB
included in the composite FB, FB$FBDC, fbdi ¼ ai; bið Þ, where ai is a starting flag
for ith component FB; bi is a finish flag for ith component FB. MCFB transition
functions are defined as a tuple

TC ¼ tEI ; tEIið Þi¼1;NFB
; tEOið Þi¼1;NFB

; tEO; tVI ; tVOB
� �

; ð11Þ

where tEI : ZEI½ � � Za½ � ! ZEI½ � is a function for resetting the event input variables of
the MCFB (as a result of signals transfer from its inputs), tEIi : Za½ � � [NFB

i¼1 ZEOi


 ��
ZEI½ � ! ZEIi½ � is a function for setting the event input variables of i-th component FB,
tEOi : ZEOi½ � ! ZEOi½ � is a function for resetting the event output variables of i-th
component FB, tEO : [NFB

i¼1 ZEOi


 �� ZEI½ � ! ZEO½ � is a function for setting the event
output variables of the MCFB (as a result of signals transfer to its outputs), tVI :
Za½ � � ZVIB½ � � ZEI½ � ! ZVI½ � is a function of changing the MCFB input variables (as a
result of data sampling) and tVOB :

SNFB
i¼1 ZVOi


 �� ZEI½ � � SNFB
i¼1 ZEOi


 �! ZVOB½ � is a
function of changing the output buffers (as a result of data issuing).

4.2 Model Dynamics Definition

The following summarizes the rules of composite FB functioning within a typical
sequential execution model, in which the selection of an active FB is determined as a
function of the execution completion of other FB. An example of this execution model
type is the cyclic execution model. All actions related to signal and data transfer between
component FB as well as an environment is considered to be performed in a tick.

Besides, unlike the basic FB, in this case data sampling enabled by active event
inputs of composite FB is carried out simultaneously. It is so-called “synchronous data
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sampling”. Nevertheless, this does not deny the possibility of using other modes of
selection and processing of input signals including the priority ones.

There is no need in starting signal a for the transfer of signals to outputs of
composite FB. Here the signal/data transfer uses “hot potato” principle according to
which signals/data are passed on as soon as they appear. It should be noted that these
options are an optional part and may vary. At the same time for the transfer of signals/
data from inputs inside composite FB the signal a is required.

The function of signal transfer to event inputs of jth component FB can be defined
as follows:

fpC;C;1EI j ½k� : ZaðaÞ ^ V
eim;

ðeim;ei jkÞ2EvConn

ZEIðeimÞ _ V
eoxn2EOx;

ðeoxn;eiikÞ2EvConn

ZEOxðeoxnÞ )

) ZEI jðei jkÞ  truejei jk 2 EI jg; j ¼ 1;NFB

ð12Þ

where eijk is k
th event input variable of jth component FB. In accordance with this rule

an event input variable of component FB is set to “1” if there is at least one event input
variable of MCFB valued to “1”(“true”) which is connected to this event input variable
of component FB. Similarly one can define the function tEO of signal transfer to MCFB
event outputs:

fpC;C;1EO ½k� : ZaðaÞ ^ V
eim;

ðeim;eokÞ2EvConn

ZEIðeimÞ _ V
eoxn2EOx;

ðeoxn;eokÞ2EvConn

ZEOxðeoxnÞ )

) ZEOðeokÞ  truejeok 2 EOg
ð13Þ

The function tVI of data sampling can be defined by means of the following set of
rules:

fpC;C;1VI ½m� : ZaðaÞ ^ V
eik2EI;

ðeik ;vimÞ2IW

ZEIðeikÞ ) ZVIðvimÞ  ZVIBðvibmÞjvim 2 VIg ð14Þ

The function tVOB of data issuing can be given by the following set of rules:

fpC;C;1VOB ½k� : V
ðeok ;vobmÞ2OW

ðZaðaÞ ^ V
eij2EI;

ðeij;eokÞ2EvConn

ZEIðeijÞ _ V
eoxn2EOx;

ðeoxn;eokÞ2EvConn

ZEOxðeoxnÞÞ )

) ZVOBðvobmÞ  ZVOðreprVoðvomÞÞjvobm 2 VOBg
ð15Þ

Here, the argument of function ZVO is not an output variable from VO but its
representative. The purpose of this substitution is to minimize the number of variables
in common model without loss of correctness. The function of resetting the signal
sources can be represented by the following rules:
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fpC;C;1EI j½ � : Za að Þ ^ ZEI eij
� �) ZEI eij

� � falsejeij 2 EIg ð16Þ

pC;C;1EOj k½ � : ZEOj eojk
� �) ZEOj eojk

� � falsejeojk 2 EOj
n o

; j ¼ 1;NFB ð17Þ

4.3 Model of Scheduler

The scheduler for the cyclic execution model is defined as a tuple:

DC ¼ ðVC
D ; T

C
D ; Z

C;0
D Þ; ð18Þ

where VC
D is a set of scheduler’s variables, TC

D is a set of transition functions of the
scheduler, ZC;0

D is a set of initial values functions of the scheduler. We assume that the
scheduler is executed asynchronously with the parent FB. The set of variables of the
“cyclic” scheduler is defined as follows:

VC
D ¼ a; b; aið Þi¼1;NFB

; bið Þi¼1;NFB

� �
; ð19Þ

where a is a flag for launching the subsystem (i.e. controlled FB network) from the
upper level, b is a flag indicating the termination of the execution of controlled FB
network as a whole, aið Þi¼1;NFB

are output flags for separately launching the component
FB included in the controlled FB network, bið Þi¼1;NFB

are input flags indicating the
termination of the execution of component FB in the controlled FB network. The initial
values of all flags are “false” (or “0”).

The transition functions of the “cyclic” scheduler are defined as follows:

TC
D ¼ ta; tb; taið Þi¼1;NFB

; tbi
� �

i¼1;NFB

� �
; ð20Þ

where ta : Za½ � � ZEOi½ � � ZEI½ � ! Za½ � is a function for resetting the starting flag of

MCFB, tb : ZbNFB

h i
� ZEOi½ � ! Zb


 �
is a function for setting the finish flag of MCFB,

ta1 : Za½ � � ZEOi½ � � ZEI½ � ! Za1½ � and tai : Zbi�1

 �� ZEOi½ � � ZEI½ � ! Zai½ �; i ¼ 2;NFB

are functions for setting the flags ai, tbi : Zbi

 �� ZEOi½ � ! Zbi


 �
; i ¼ 1;NFB are func-

tions for resetting the flags bi. The functioning of “cyclic” scheduler of an intermediate
level is determined by the following rules:

pD;C;1a1 : Za að Þ ^ x ^ #) Za1 a1ð Þ  true ð21Þ

pD;C;2ai i½ � : Zbi�1 bi�1ð Þ ^ x ^ �#) Zai aið Þ  trueji ¼ 2;NFB

n o
ð22Þ

pD;C;1bi
i½ � : Zbi bið Þ ^ x) Zbi bið Þ  falseji ¼ 1;NFB

n o
ð23Þ
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pD;C;1b1
: ZbNFB âNFBð Þ ^ x) Zb bð Þ  true ð24Þ

pD;C;1a : Za að Þ ^ x ^ �#) Za að Þ  false ð25Þ

It should be noted that the number i determines the FB execution order assigned
statically. Unlike an intermediate level scheduler, the upper level scheduler (the main
scheduler) is independent of the other schedulers. At that, once the upper level
scheduler executes the last FB in the execution list, it starts executing the first FB of the
list. This process is repeated cyclically. The model of the upper level scheduler is
defined similarly to the model of an intermediate level scheduler, but flags a and b as
well as functions for their modification are not used. The set of the upper level
scheduler functioning rules contains rules:

pD;C;2ai i½ �; pD;C;1bi
i½ � and a special rule pD;C;3ai i½ � : ZbNFB bNFB

� � ^ x) Za1 a1ð Þ  true.

4.4 Implementation of DASM-FB in SMV

There are two basic approaches to developing SMV-based models of FB using the
formal model of FB described in the previous sections.

The first approach uses the concept of modules in SMV and simultaneous local
changes of variables in each module, by using the next statement of SMV. This
approach is more intuitive, as it supports a hierarchical design and allows one to one
mapping of function blocks to the hierarchy of modules SMV. In addition, it allows the
use of composite verification methods supported in the SMV.

The second approach is based on the possibility of direct global transitions
description using TRANS and INIT statements in SMV. Due to the complex imple-
mentation of TRANS and INIT based approach, in this paper only the first approach is
presented.

In this approach all the variables of the FB model are divided into two parts: (1) a
set of internal variables, which are localized in the FB, and (2) external variables that
are located outside the module. Figure 4 presents the variables used in a Composite FB
model (CFBM), and their relationships, solid circles denote actual variables, and

Fig. 4. Variables in Composite FB model.
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dashed ones indicate parameters. Relationship of real variables and parameters are
shown by dashed bidirectional arrows, while solid arrows represent signal and data
transfer.

For formal matching of MBFB and MCFB functioning using the accepted buffering
scheme it is necessary to use an operation of identification of variables used in
neighboring FB modules. Let us introduce function reprVI allowing to determine
representatives of input variables of component FB in MCFB:

reprvi :
[NFB

i¼1
VIi [

[NFB

i¼1
VOi

As can be seen from the definition, input variables of component FB are identified
with input variables of the composite FB itself or output variables of internal com-
ponent FB.

Let us introduce function reprVO defining representatives of MCFB’ output
variables.

reprVO : VO!
[NFB

i¼1
VOi

Output variables of composite FB are identified with output variables of component
FB. Thereby, we can assume that physically the output variables of composite FB do
not exist. There exist the following one-to-one mapping between variables of ith
component FB and the corresponding module x:

EIi $ EIx;EOi $ EOx;VOi $ VOBx;
[

vi2VIi reprVIðviÞ $ VIBx:

5 Example: Modeling of a Simple FB Application

In this section, the “Two ALU” FB application from Fig. 2 will be modeled using the
proposed modeling method. The corresponding SMV module alu is defined as follows
(rules presented in [4]):

MODULE alu(initt, sum, diff, d1_, d2_, inito, cnf, res_,
alpha, beta).

We create two instances of the ‘alu’ module for the composite block as below.
VAR alu1: process alu (initt1, add1, sub1, res2Buf, vc1,

inito1, cnf1, res1Buf, alpha1, beta1);
VAR alu2: process alu (initt2, add2, sub2, res1Buf, vc2,

inito2, cnf2, res2Buf, alpha2, beta2);

The main part of the composite block execution is the scheduler which follows the
cyclic execution semantics. The scheduler SMV module is quite small and mainly acts
to schedule which instance of the BFB in the composite FB is presently executing
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according to the cyclic execution semantics, the rules for which were presented in
Sect. 4.3:

The scheduler is instantiated in SMV as follows:

VAR disp: process schedulerSynch (alpha1, alpha2, beta1,
beta2, omega, v);

Properties of model of a system under investigation are expressed using temporal
logics LTL or CTL. An example of such a CTL property in SMV is SPEC EF alu2.beta
(with true result) that means alu2 module is terminated at least once.

6 Conclusions

The modeling method presented in this paper enables certification of applications
portability using formal verification. It should be noted that the paper presents in detail
only one model for the cyclic execution semantics of function blocks. Other execution
models, for example, synchronous execution model, can be achieved by simply
changing the scheduler, which we plan to present in future works.
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Abstract. Disjoint AND-decomposition of a boolean formula means its
representation as a conjunction of two (or several) formulas having dis-
joint sets of variables. We show that deciding AND-decomposability is
intractable in general for boolean formulas given in CNF or DNF and
prove tractability of computing AND-decompositions of boolean formu-
las given in positive DNF, Full DNF, and ANF. The results follow from
tractability of multilinear polynomial factorization over the finite field of
order 2, for which we provide a polytime factorization algorithm based
on identity testing for partial derivatives of multilinear polynomials.

1 Introduction

Decomposition of boolean functions is an important research topic having a long
history and a wide range of applications. Among other application fields such as
game and graph theory, it has attracted the most attention in the logic circuit
synthesis. Decomposition is related to the algorithmic complexity and practical
issues of implementation of electronic circuits, their size, time delay, and power
consumption. The report [11] contains an extensive survey of decomposition
methods till the mid–1990’s. The results of the next fifteen years of research are
presented in [2–5,7,8,15].

Typically one is interested in decompositions of the form F = F1 � . . . �
Fk where � ∈ {OR, AND, XOR}. Bi-decomposition is the most important
case of decomposition of boolean functions. Even though it may not be stated
explicitly, this case is considered in many papers: [1–4,8,9] and [5, Ch. 3–
6]. Bi-decomposition has the form: F (X) = π(F1(Σ1,Δ), F2(Σ2,Δ)), where
π ∈ {OR, AND, XOR}, Δ ⊆ X, and {Σ1, Σ2} is a partition of the variables
X\Δ. As a rule, a decomposition into more than two components can be obtained
by iterative computation of bi-decomposition. If Δ = ∅ then decomposition is
called disjoint and considered as optimal for many reasons.

Bioch [2] studied computational properties of modular decompositions based
on a generalization of Shannon’s Expansion. A set of variables A is called

An extended version of the paper containing proofs is available from http://persons.
iis.nsk.su/files/persons/pages/and-decomp-full.pdf.
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modular set of a boolean function F (X) if F can be represented as F (X) =
H(G(A), B), where {A,B} is a partition of X and H,G are some boolean
functions. The function G(A) is called component of F and a modular decompo-
sition is obtained from iterative decomposition into such components. It is shown
that in general it is coNP-complete to decide whether a subset of variables is
modular, however for monotone functions in DNF this problem is tractable.

We note that a function may have a modular or bi-decomposition, but may
not be AND-decomposable, since this form of decomposition requires represen-
tation of a function strictly as a conjunction. Thus, AND–decomposition can be
viewed as a special case of modular and bi-decomposition. Our results demon-
strate that deciding even this special case of decomposability is coNP-complete
for formulas given in CNF and DNF. On the other hand, we show tractability of
computing AND-decompositions of formulas given in the forms: positive DNF,
Full DNF, and ANF. It is not obvious, whether the technique used by Bioch
for positive DNF is applicable to these cases of AND-decomposition. We note
however that in our Lemma 1, the idea of computing decomposition components
resembles the final step of constructing components in [2, Sect. 2.9].

Approaches to decomposition of boolean functions can be classified into logic
and algebraic. The first are based on equivalent transformations of formulas
in propositional logic. The second ones consider boolean functions as algebraic
objects with the corresponding transformation rules. The most elaborated rep-
resentation is polynomials, usually over finite fields, among which F2 (the Galois
field of order 2) is the best known. Shpilka and Volkovich [14] noted the strong
connection between polynomial factorization and polynomial identity testing
(i.e. testing equality to the zero polynomial). It follows from their results that a
multilinear polynomial over F2 can be factored in time that is cubic in the size
of the polynomial (given as a symbol sequence). We provide a factorization algo-
rithm for multilinear polynomials over F2 which runs in cubic time and is based
on identity testing for partial derivatives of a product of polynomials obtained
from the input one. We note however that while staying in the cubic time com-
plexity, the same can be achieved without computing the product explicitly, thus
contributing to efficiency of factorization of large input polynomials.

In our work, we follow the logic approach to decomposition, but show that
tractability of multilinear polynomial factorization over F2 gives polytime decom-
position algorithms for boolean functions in positive DNF and Full DNF.

2 Preliminaries

2.1 Basic Facts About AND-Decomposability

Let us introduce some conventions and notations. For a boolean formula ϕ, we
denote the set of its variables by var (ϕ). If Σ is a set of propositional variables
and var (ϕ) ⊆ Σ, then we say that the formula ϕ is over variables Σ (or over Σ,
for short); taut(Σ) denotes a valid formula over Σ. We call ϕ positive if it does
not contain negative literals. If ξ and ξ′ are clauses (or conjuncts, respectively),
then the notation ξ′ ⊆ ξ means that ξ′ is a subclause (subconjunct) of ξ, i.e. ξ′ is
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given by a non-empty subset of literals from ξ. If ϕ is in DNF, then a conjunct ξ of
ϕ is called redundant in ϕ if there exists another conjunct ξ′ of ϕ such that ξ′ ⊆ ξ.

We now define the main property of boolean formulas studied in this paper,
the definition is adopted from [12], where it is given in a general form.

Definition 1 (Decomposability). A boolean formula ϕ is called disjointly
AND–decomposable (or decomposable, for short) if it is equivalent to the con-
junction ψ1 ∧ ψ2 of some formulas ψ1 and ψ2 such that:

1. var (ψ1) ∪ var (ψ2) = var (ϕ);
2. var (ψ1) ∩ var (ψ2) = ∅;
3. var (ψi) �= ∅, for i = 1, 2.

The formulas ψ1 and ψ2 are called decomposition components of ϕ. We say
that ϕ is decomposable with a variable partition {Σ1, Σ2} if ϕ has some decom-
position components ψ1 and ψ2 over the variables Σ1 and Σ2, respectively.

Note that a similar definition could be given for OR–decomposability, i.e. for
decomposition into the disjunction of ψ1 and ψ2. Clearly, a formula ϕ is AND–
decomposable iff ¬ϕ is OR–decomposable.

Observe that Definition 1 is formulated with the two components ψ1 and ψ2,
which in turn can be decomposable formulas. Since at each decomposition step,
the variable sets of the components must be proper subsets of the variables of
the original formula ϕ, the decomposition process necessarily stops and gives
formulas which are non-decomposable. The obtained formulas define some par-
tition of var (ϕ) and the fact below (which follows from a property of a large
class of logical calculi shown in [12]) says that this variable partition is unique.

Fact 1 (Uniqueness of Decompositions - Corollary of Theorem 1 in
[12]). If a boolean formula ϕ is decomposable, then there is a unique partition
{π1, . . . , πn} of var (ϕ), 2 � n, such that ϕ is equivalent to

∧{ψi | var (ψi) =
πi, i = 1, . . . , n}, where each formula ψi is not decomposable.

This means that any possible algorithm1 for decomposing a formula into com-
ponents could be applied iteratively to obtain from a given ϕ some formulas ψi,
i = 1, . . . , n, which are non-decomposable and uniquely define a partition of the
variables of ϕ.

2.2 The Computational Problems Considered in the Paper

In the text, we omit subtleties related to efficient encoding of input sets of vari-
ables and boolean formulas (given in CNF, DNF, or ANF) assuming their stan-
dard representation as symbol sequences. The complexity of each computational
problem below will be defined wrt the size of the input formula.

∅Dec For a given boolean formula ϕ, decide whether ϕ is decomposable.

1 Existence and complexity of decomposition algorithms in various logics have been
studied in [6,10,12,13].
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∅DecPart For a given boolean formula ϕ and a partition {Σ1, Σ2} of var (ϕ),
decide whether ϕ is decomposable with this partition.

It turns out that the problem ∅Dec for formulas in DNF is closely related to
the problem of multilinear polynomial factorization (DecF2) which we formulate
below. The connection is in particular due to the fact that taking a conjunction
of two formulas in DNF is quite similar to taking a product of two multivariate
polynomials. We recall that a multivariate polynomial F is linear (multilinear)
if the degree of each variable in F is 1. We denote a finite field of order 2 by
F2 and say that a polynomial is over the field F2 if it has coefficients from F2.
A polynomial F is called factorable over F2 if F = G1 ·G2, where G1 and G2 are
non-constant polynomials over F2. The following important observation shows
further connection between polynomial factorization and the problem ∅Dec:

Fact 2 (Factoring over F2). If a multilinear polynomial F is factorable over
F2, then its factors do not have variables in common.

Clearly, if some factors G1 and G2 of F have a common variable then the poly-
nomial G1 ·G2 is not linear and thus, is not equal to F in the ring of polynomials
over F2.

DecF2 Given a non-constantmultilinear polynomial F over F2, decide whether
F is factorable over F2.

3 Main Results

First, we formulate the hardness result on decomposition of formulas given in the
Conjunctive Normal Form and then proceed to formulas in full DNF, positive
DNF, and ANF. We note that decomposition itself is conceptually closer to
the CNF representation, since it gives a conjunction of formulas. The situation
with positive DNF and full DNF is more complicated, because decomposable
formulas in DNF have a cartesian structure which can be recognized in polytime,
but the proof of this fact relies on polynomial factorization over F2.

Theorem 1 (Complexity for CNF). For boolean formulas given in CNF,

1. the problem ∅DecPart is coNP–complete;
2. the problem ∅Dec is coNP–hard and is in PNP .

Recall that the Algebraic Normal Form of a boolean formula (ANF) can be
viewed as a multilinear polynomial over F2. Due to Fact 2, the notion of decom-
posability for formulas in ANF can be defined in terms of polynomial factorability
over F2. For this reason, we use the terminology of polynomials when talking
about algebraic results further in this section. We start with the complexity of
decomposition for formulas in Full DNF (i.e. formulas given by the set of their
satisfying assignments) and then formulate results on positive DNF and poly-
nomial factorization over F2. Interestingly, the latter problem is related also to
decomposition of formulas in Full DNF, even though such formulas contain neg-
ative literals. The proof of the theorem below uses the trick that negative literals
can be encoded as “fresh” variables giving a positive DNF.
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Theorem 2 (Complexity for Full DNF). For boolean formulas in Full DNF,

1. the problem ∅DecPart is in P ;
2. the problem ∅Dec is reducible to DecF2 and hence is in P .

In each of the cases, the corresponding decomposition components can be
computed in polynomial time.

It turns out that for a positive formula ϕ in DNF without redundant conjuncts,
decomposability is equivalent to factorability over F2 of the multilinear polyno-
mial corresponding to ϕ. The polynomial is obtained as the sum of monomials
(products of variables) corresponding to the conjuncts of ϕ. Observe that the
positive formula ϕ = x ∨ (x ∧ y) ∨ z with the redundant conjunct x ∧ y is equiv-
alent to (x ∨ z) ∧ taut({y}) and thus, decomposable. However, the polynomial
x + xy + z corresponding to ϕ is non-factorable. Also note that if a polynomial
has a factor with the constant monomial, e.g. xy + y = (x + 1) · y, then the
corresponding boolean formula in DNF contains a redundant conjunct.

Theorem 3 (Decomposition of Positive DNF and Factorization). For
positive boolean formulas in DNF without redundant conjuncts, the problem ∅Dec
is equivalent to DecF2.

We formulate the main result on formulas given in DNF in the following corollary
which is a consequence of Theorems 3 and 4, and the constructions from the proof
of Theorem 1 given in the extended version of the paper.

Corollary 1 (Complexity for DNF).

1. For formulas in DNF, the problem ∅DecPart is coNP-complete;
2. for positive boolean formulas in DNF, the problem ∅Dec is in P and the

corresponding decomposition components can be computed in polynomial time.

We now turn to tractability of the problem DecF2, to which the decomposition
problems in Theorem 2 and Corollary 1 are reduced. Originally, tractability of
DecF2 is a consequence of the results from [14], where the authors provide two
solutions to polynomial decomposition over an arbitrary finite field F. The first
one is a decomposition algorithm, which has a subroutine for computing a justifi-
cation assignment for an input polynomial, and relies on a procedure for identity
testing in F. It is proved that the complexity of this algorithm is O(n3 · d · IT ),
where n is the number of variables, d is the maximal individual degree of vari-
ables in the input polynomial, and IT is the complexity of identity testing in F.
It follows that this gives a decomposition algorithm of quartic complexity for
factoring multilinear polynomials over the field F2. The second solution pro-
posed by the authors is a decomposition algorithm which constructs for every
variable of an input polynomial f , a combination f · f1 − f2 · f3 of four polyno-
mials, where each fi is a “copy” of f under a renaming of some variables. Every
combination is tested for equality to the zero polynomial. It can be seen that
this gives an algorithm of cubic complexity for factoring multilinear polynomials
over F2.
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In Theorem 4 below, we provide a solution to factorization of multilinear poly-
nomials over F2, which is different from the both algorithms proposed in [14].
The only common feature between the approaches is application of identity test-
ing, which seems to be inevitable in factorization. Our solution is based on
computation of partial derivatives of polynomials obtained from the input one
and gives an algorithm of cubic complexity. More precisely, the product f1 · f2
is computed, where fi are polynomials obtained from the input, and then for
each variable x, the partial derivative of f1 · f2 is tested for equality to zero. In
particular, our algorithm operates polynomials which are smaller than the ones
considered in [14]. Moreover, we note in the extended version of the paper that
the same can be achieved without computing the product f1 ·f2 explicitly, which
is particularly important on large inputs. We present the factorization algorithm
as the theorem below to follow the complexity oriented style of exposition used
in this paper.

Theorem 4 (Tractability of Linear Polynomial Factorization over F2).
The problem DecF2 is in P and for any factorable multilinear polynomial, its factors
can be computed in polynomial time.

Proof. Let F be a non-constant multilinear polynomial over F2. We will describe
a number of important properties which hold if F is factorable over F2. Based
on these properties, we will derive a polynomial procedure for partitioning the
variables of F into disjoints sets Σ1 and Σ2 such that if F is factorable, then it
must have factors which are polynomials having these sets of variables. Having
obtained Σ1 and Σ2, it suffices to check whether F is indeed factorable wrt this
partition: if the answer is “no”, then F is non-factorable, otherwise we obtain the
corresponding factors. Checking whether F is factorable wrt a variable partition
can be done efficiently due the following fact:

Lemma 1 (Factorization Under a Given Variable Partition). In the
notations above, for i = 1, 2, let Si be the set of monomials obtained by restrict-
ing every monomial of F onto Σi (for instance, if F = xy + y and Σ1 = {x},
then S1 = {x, 1}). Let Fi be the polynomial consisting of the monomials of Si for
i = 1, 2. Then F is factorable into some polynomials with the sets of variables
Σ1 and Σ2 iff F = F1 · F2.

Proof of the lemma. The “if” direction is obvious, since for i = 1, 2, each Fi

necessarily contains all the variables from Σi. Now assume that F has a fac-
torization F = G1 · G2 which corresponds to the partition Σ1, Σ2. Then every
monomial of F is a product of some monomials from G1, G2, i.e. it either con-
tains variables of both Σ1 and Σ2, or only from Σi for some i = 1, 2 iff G3−i

contains the constant monomial. This means that Si is the set of monomials of
Gi for i = 1, 2, i.e. Fi = Gi. �
Let us proceed to properties of factorable polynomials. Let Fx=v be the polyno-
mial obtained from F by setting x equal to v. Note that ∂F

∂x = Fx=1 + Fx=0.
First of all, note that if some variable x is contained in every monomial

of F , then F is either non-factorable (in case F = x), or trivially factorable,
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i.e. F = x · ∂F
∂x . We further assume that there is no such variable in F . We also

assume that F �= x + 1, i.e. F contains at least two variables2.
Let F be a polynomial over the set of variables {x, x1, . . . , xn}. If F is fac-

torable, then it can be represented as

F = (x · Q + R) · H, where

– the polynomials Q,R, and H do not contain x;
– Q and R do not have variables with H in common;
– R is a non-empty polynomial (since F is not trivially factorable);
– the left-hand side of this product is a non-factorable polynomial.

Then we have Fx=0 = R · H and also ∂F
∂x = Q · H. Obviously, the both

polynomials can be computed in polynomial time. Let y be a variable of F
different from x and consider the following derivative of the product of these
polynomials:

∂
∂y (Q · R · H2) = ∂Q

∂y RH2 + Q ∂
∂y (RH2) = ∂Q

∂y RH2 + ∂R
∂y QH2 + 2∂H

∂y QRH.

Since in F2 for all z it holds that 2z = z + z = 0, we have:

∂
∂y (Q · R · H2) = H2 ·

(
∂Q
∂y R + ∂R

∂y Q
)

= H2 · ∂
∂y (Q · R) .

It follows that in case y is a variable from H, we have ∂
∂y (Q · R) = 0 and thus,

∂
∂y (Q · R · H2) = 0. Let us now show the opposite, assume that the variable y
does not belong to H and prove that the derivative is not equal to zero.

Since y does not belong to H, in general, Q and R have the form

Q = Ay + B, R = Cy + D,

for some polynomials A,B,C,D not containing y. Then Q · R = ACy2 + (AD +
BC)y + BD and hence, ∂

∂y (Q · R) = AD + BC.
Thus, we need to show that AD + BC �= 0. Assume the contrapositive, i.e.

that AD + BC = 0. Note that AD and BC can not be zero, because otherwise
at least one of the following holds: A = B = 0, A = C = 0, D = B = 0, or
D = C = 0. The first two conditions are clearly not the case, since we have
assumed that x and y are not contained in H, while the latter conditions yield
that F is trivially factorable (wrt the variable y or x, respectively). From this
we obtain that AD + BC = 0 holds iff AD = BC (since we are in F2).

Let B = f1 · . . . · fm and C = g1 · . . . · gn be the (unique) factorizations of B
and C into non-factorable polynomials. We have AD = f1 · . . . · fm · g1 · . . . · gn,
thus this may assume that A = f1 · . . . · fk · g1 · . . . · gl for some 0 � k � m and
0 � l � n (when k = l = 0, we assume that A = 1). The polynomials B,C,D
can be represented in the same form. Let us denote for some polynomials U, V

2 We note that besides the factors of the form x and x+1, there is a number of other
simple cases of factorization that can be recognized easily.
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by (U, V ) the greatest common divisor of U and V . Then A = (A,B) · (A,C),
B = (A,B) · (D,B), similarly for C and D, and we obtain

x · Q + R = x · (Ay + B) + (Cy + D) =

= x · ((A,B)(A,C)y + (A,B)(D,B)) + ((A,C)(D,C)y + (D,B)(D,C)) =

= ((A,B)x + (D,C))((A,C)y + (D,B)),

which is a contradiction, because we have assumed that x·Q+R is non-factorable.
We have obtained a procedure for partitioning the variables of F into disjoint
sets Σ1 and Σ2 in the following way. Having chosen some initial variable x from
F , we first assign Σ1 = {x}, Σ2 = ∅ and compute the polynomial Q · R · H2

(which equals ∂F
∂x · Fx=0). Then for every variable y from F (distinct from x),

we compute the derivative ∂
∂y (Q · R · H2). If it equals to zero, we put y into Σ2,

otherwise we put y into Σ1. If at the end we have Σ2 = ∅, then the polynomial
F is non-factorable. Otherwise it remains to apply Lemma1 to verify whether
the obtained sets Σ1 and Σ2 indeed correspond to a factorization of F . If the
answer is “no”, then F is non-factorable, otherwise the polynomials F1 and F2

defined in Lemma 1 are the required factors. �
If n is the size of the input polynomial as a symbol sequence, then it takes O(n2)
steps to compute the polynomial G = Q · R · H2 and test whether the derivative
∂G
∂y equals zero for a variable y (since identity testing is trivial in F2). As we must
verify this for every variable y �= x, we have a procedure that computes a candidate
variable partition in O(n3) steps. Then it takes O(n2) time to verify by Lemma 1
whether this partition indeed corresponds to factors of F .

4 Conclusions

We have noted that decomposability is intractable in general for boolean formu-
las given in CNF or DNF. On the other hand, we have shown the existence of
polytime algorithms for computing decomposition components of positive formu-
las in DNF and formulas given in Full DNF, and the Algebraic Normal Form. We
believe that the tractability result on positive DNF can contribute to improving
efficiency of existing model counting techniques, while the result on Full DNF
can be applied in optimization of boolean functions given by lookup tables.
Since AND–decomposability and OR-decomposability are the dual notions, our
results are also applicable to the latter case. The factorization algorithm for mul-
tivariate polynomials over F2 given in this paper can be used to implement an
efficient solution to disjoint AND-decomposition of formulas in DNF and ANF.
It is an open question whether the algorithm can be used for obtaining decom-
positions of boolean formulas with a non-empty shared set of variables between
the components. Further research questions include implementation of the poly-
time decomposition algorithms and their evaluation on industrial benchmarks
for boolean circuits.
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Abstract. The paper presents a multi-agent approach for ontology pop-
ulation based on natural language semantic analysis. In this multi-agent
model, agents of two main kinds interact: information agents correspond
to meaningful units of the information being retrieved, and rule agents
implement population rules of a given ontology and a semantic-syntactic
model of a language.

1 Introduction

At present, ontological knowledge bases are a good solution for storing infor-
mation from large quantity of documents, and automatic ontology population is
necessary.

A multi-agent approach to automatic data processing and ontology popu-
lation has the following advantages: (1) agents speed up process because they
work in parallel; (2) they use data resources effectively, exactly what and when
it is necessary; (3) agents can resolve ambiguities by competition. When we con-
sequently process data, we have to examine analyzing rules sequentially in order
to find an appropriate rule for each given data item. The multi-agent approach
allows to avoid such search.

A multi-agent approach for information retrieval from heterogeneous data
sources for ontology population is widespread. In particular, it is used for natural
language processing [1,2,6,9] and web processing [3–5]. Agents in these works
have different behaviors. Usually in web processing, agents are high-level entities
that manage rather data flows, using standard algorithm for knowledge retrieval,
than data itself. In natural language processing, agents are either associated with
conventional linguistic levels (morphological, syntactic, semantic) or targeted
to recognize specific linguistic phenomena such as ellipsis, anaphora, parataxis,
homonymy. These agents do not use ontological knowledge substantially. Thus
they are computing processes which may speed up information retrieval due to
their parallel work but they do not affect the retrieval qualitatively.
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Unlike all the above works, our approach uses two kinds of agents, collec-
tively possessing complete information about both data being investigated and
a domain-specific ontology. The agents of one kind can analyze ontological (and
linguistic) features. They do not use data directly, but they process information
provided by agents of the other kind. The latter agents are the most close to the
ones from [8], which represent some words from a text.

The idea of our multi-agent approach is that a set of different data items is
aggregated into an agent considered as an ontology instance of an object or a
relation. This process is assisted by special support agents corresponding to the
ontology population rules, which are defined formally. At the beginning, objects
and relations significant for the ontology are recognized preliminary in given
data, a text in particular. In the latter case, we call these objects lexical objects
(they correspond to vocabulary terms) and instance and relation agents (they
correspond to ontology concepts and relations). Let us call the latter information
agents. Preliminary analysis evaluates some attributes of information agents. The
non-evaluated objects of relations and attributes of information agents can be
specified as a result of communication between information agents and support
rule agents. In the process of interaction, the agents establish a correspondence
between concepts and relations of the ontology and text units, and thus complete
the ontology with specific instances of concepts and relationships.

This paper presents a multi-agent approach for natural language processing
which is specialization of the approach for unstructured data processing [7]. We
also introduce ways for processing ontology relations and collecting information
for resolving data ambiguity. The properties of the obtained multi-agent algo-
rithm remain the same. We give formal descriptions of information and rule
agents intended for text analysis.

2 Agent Model

An outline of the approach and the multi-agent system follows. There is an
ontology of a subject domain, a set of rules for completing it, a semantic-syntactic
model of a sublanguage of the subject domain and a text to extract information
for the ontology. The preliminary phase of text processing is executed by an
external module of lexical analysis based on a vocabulary of the subject domain.
This module constructs (1) a terminological cover, consisting of lexical objects
which are tagged terms from the text, and (2) a segment cover which depicts
structure partitions and a genre of the given text. The terminological cover
is a basis for an object cover which is an ordered set of lexical objects and
instance agents corresponding to ontology concepts. Lexical objects from the
terminological cover are used for evaluating some attributes of instance and
relation agents. The rule agents implement language processing and ontology
population rules. According to data received from instance agents, they generate
new attribute values of the instances and relations, send the obtained result to all
agents interested in it, or generate new instance or relation agents. Eventually,
the information agents assign values to all their attributes that can be evaluated
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with the information from the text, and the system stops. A special controller
agent keeps track of system stopping. At the termination moment, the instance
agents have accumulated all possible values for each of their attributes. The
next stage of the data analysis is to resolve information ambiguities expressed
by multiple values of instance agents’ attributes. This topic is out of scope of
the paper. Formal definitions of covers and agents follow.

An object cover OC of a text is a set of levels. Each level l ∈ OC is a triple
l = (id; idx;Obj), where

– id is a unique level identifier;
– idx is a text index of the level;
– Obj is a set of lexical objects and instance agents starting from position idx.

This cover is ordered by positions and elements of Obj are ordered by their
length. The object cover allows us to deal with homonymy and ambiguity: if this
set is one-element then there is no competition for the corresponding word in
the text, no homonymy. This cover is also used for checking adjacency.

A segment cover SC is a set of segments. Each s ∈ SC is a triple s =
(id; idx; tp), where

– id is a unique segment identifier;
– idx is a text indexes (left and right) of the segment;
– tp is a type (for example, standard segments are a sentence, a paragraph, a

clause; segments special for an article genre are a title, a list of authors, an
annotation, a bibliography, etc.).

This cover restricts a scope of rule agents. Also rule agents use a segment cover
for identifying a degree of text proximity of instance agents.

A set of lexical objects LO consists of vocabulary terms from the given text.
Each L ∈ LO is presented by a tuple L = (id; trm;Cls;MCh;SA;Pos), where

– id is a unique object identifier;
– trm is a term from a vocabulary;
– Cls is a set of vocabulary semantic classes of the term;
– MCh is a set of morphological characters;
– SA is a set of semantic attributes;
– Pos = (t, l, s) is a position in the text, where t is the text indexes of the most

left and right word of the term, l is an identifier of a level including the term,
and s is a set of identifiers of segments including the term.

A set of instance agents IA corresponds to ontological instances. Each I ∈ IA
is a tuple I = (id;Cl;RO;Atr;Rel;SS;Pos), where

– id is a unique agent identifier;
– Cl is an ontological class of the agent;
– RO is a set of rule agents that use data included in this instance agent as an

argument;
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– Atr =
⋃

j∈[1..k](aj , ROj , vj , posj) is a set of attributes of the agent, where for
each j ∈ [1..k] (1) aj is a name of the agent attribute; (2) every rule agent in
set of rule agents ROj requires the value of attribute aj to get the result; (3)
each value vj can be a set of identifiers of lexical objects or instance agents; (4)
posj is a set of closed natural intervals corresponding to the attribute position
in the input text;

– Rel is a set of possible relations of the agent; for every (r, ir) ∈ Rel: ir is a
set of instance identifiers of relation agent r which include this agent;

– SS is a semantic structure of the agent which is a tree consisting of agents
and lexical objects used for its creating and completing of its attributes; a
special base lexical object or instance agent is the root of this tree;

– Pos = (t, l, s) is a position in the text, where t is text indexes of the most
left and right attributes, l is an identifier of the base level, and s is a set of
identifiers of segments including the base.

A set of relation agents RlA corresponds to binary ontological relations. Each
Rl ∈ RlA is a tuple Rl = (id;Cl; IR(C1, C2);RO), where

– id is a unique agent identifier;
– R is an ontological relation of the agent;
– IR(C1, C2) =

⋃
i∈[1..k]((o1, o2)i, Atri, posi) is a set of relation instances, where

for each i ∈ [1..k] (1) relation objects o1 and o2 is an identifier of an instance
agent belonging to a predefined ontological classes C1 and C2 respectively;
(2) every relation attribute (a, v, pos) ∈ Atri with name a has an identifier
of a lexical object as attribute value v and text position pos; (3) posi =
(Poso1∪Poso2)

⋃
(∪(a,v,pos)∈Atripos) is a set of natural intervals corresponding

to the agent position in the input data; relation instance is evaluated iff at
least two relation objects are evaluated;

– RO is a set of rule agents that use this relation agent as an argument.

Let us define the set of rule agents RA, where each R ∈ RA is a tuple
R = (id;Args;make res(args), result), where

– id is a unique agent identifier;
– Args = ∪(arg1(Cl1), ..., args(Cls)) is a set of argument vectors, where for each
i ∈ [1..s]: argi is a set of argument values determined by the corresponding
instance or relation agents from ontological class Cli or lexical objects from
semantical class Cli; each value from argi is (1) an attribute value provided
with the identifier of an instance agent, or (2) an identifier of an instance
agent, or (3) an identifier of an instance of a relation agent;

– make res(args) is a function computing the result from vector args ∈ Args;
– result is the result of function make res(args) which can be (1) empty, if

the argument vector is inconsistent; (2) values of some attributes with their
positions for some instance agents and/or (3) tuples of values of some objects
and attributes with their positions for some relation agents and/or (4) new
information agents (they must differ from other agents by their classes and
values of attributes).
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A structure of a rule agent for natural language processing is the same as
for a standard rule agent [7]. But function make res(arg) has specialities. First,
they concern conformity of arguments and their vectors.

– Restrictions on an argument: (1) semantical restrictions; (2) morphological
restrictions on the base; (3) restrictions on the argument’s segment.

– Restrictions on an argument vector: (1) segments: values of the vector ele-
ments are in the same segment; (2) adjacency of arguments: (a) inclusion,
(b) intersection, (c) the most close text positions, (d) separated by a given
sign, (e) separated by negligible words and signs, (f) not separated by other
arguments of the vector; (3) relative positions of arguments: (a) any posi-
tion, (b) strong preposition, (c) weak preposition, (d) strong postposition,
(e) weak postposition; (4) semantic-syntactic matching: consistency of argu-
ments’ bases of an instance argument or arguments themselves of a lexical
argument w.r.t. the given semantic-syntactic model of terms; (5) semantic
matching: consistency of instance arguments w.r.t. the given ontology.

Second, a rule agent can deal with semantically homogenous groups. It uses
the following types of binding semantically homogenous arguments into a group.
Arguments can be (1) separated by a given sign; (2) separated by negligible
words and signs; (3) not separated by any other arguments.

Third, a rule agent also has specific regulations for making the result. If an
argument vector (or at least one of its arguments) does not satisfy the restrictions
used by the rule agent then the result of make res is empty. In the other case the
argument vector is stored in special set Success for further forming homogenous
groups if necessary. When the result includes a value of the attribute of an
instance agent then we update the semantic structure of this agent. In this update
its base lexical object can be changed. Let the result be a new instance agent.
The base of this agent is the argument specified by the rule. Other arguments
are included into the semantical structure of the new agent.

In the next section we give a brief overview of interactions of the above
information and rule agents.

3 Multi-agent Algorithm for Text Analysis

Multi-agent system MDA for text analysis includes information agents sets,
a rule agents set, and an agent-controller. The result of agent interactions by
protocols below is text analysis, when the information agents determine the
possible values of their attributes and objects from a given text. All agents
execute their protocols in parallel. That is, all agents act in parallel until it
happens that none of the rule agents can proceed. This termination event is
determined by the controller agent. We use an original algorithm for termination
detection which is based on activity counting. The system is dynamic because
rule agents can create new information agents.

The agents are connected by duplex channels. The controller agent is con-
nected with all agents, instance agents are connected with their relation agents,
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and all information agents are connected with their rule agents. Messages are
transmitted instantly via a reliable medium and stored in channels until being
read.

Let IA = {I1, ..., In, ...} be an instance agents set, RlA = {Rl1, ..., Rlm, ...}
be a relation agents set, and RA = {R1, ..., Rs}, be a rule agents set. Let Ii be
a protocol of actions of instance agent Ii, Rlj be a protocol of actions of relation
agent Rlj , and Rk, be the protocol of actions of rule agent Rk, C be the protocol
of actions of an agent-controller C. Then multi-agent data analysis algorithm
MDA can be presented in pseudocode as follows:

MDA::
parallel {I1} ...{In} ...{Rl1} ...{Rlm} ...{R1} ...{Rs} {C}
Here the parallel operator means that all execution flows (threads) in the

set of braces are working in parallel. Brief descriptions of the protocols follow.
Let further C be the controller agent; R,Rij be rule agents; I be an instance
agent; A be an information agent; mess be a message (special for every kind of
agents); Input be a set of incoming messages. For the simplicity, we suggest that
rule agents produce results with at most one attribute per an instance agent
and/or at most one instance of a relation per a relation agent. This case could
be easily generalized for multiple results.

An informal description of the instance agent protocol. In the first phase of
its activities the instance agent sends evaluated data to all rule agents interested
in this data. The agent processes the received data by updating its attributes and
relations, sending their fresh values to rule agents interested in. Every change of
the activity is reported to the controller agent. The instance agent terminates if
it receives the stop message from the controller agent.

Protocol of instance agents
I::
1. send |RO| + 1 to C;
2. forall R ∈ RO send id to R;
3. forall ai ∈ Atr
4. if ai �= ∅ then { send |ROi| to C;
5. forall Rij ∈ ROi send ai to Rij;}
6. send −1 to C;
7. while (true){
8. if Input �= ∅ then {
9. mess = get mess(Input);
10. if mess.name = C then break;
11. if mess.name ∈ Rel then upd Rel(mess.name, mess.id);
12. if mess.name = ai then {
13. upd(ai, mess.val);
14. send |ROi| to C;
15. forall Rij ∈ ROi send ai to Rij; }
16. send −1 to C; } }
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An informal description of the relation agent protocol. In the first phase of
its activities the relation agent sends evaluated data to all rule agents interested
in this data and instance agents involved in this data. The agent processes the
received data by updating instances of its objects and attributes, sending iden-
tifiers of these fresh instances to instance agents included into evaluated tuples
of data. Every change of the activity is reported to the controller agent. The
relation agent terminates if it receives the stop message from the controller.

Protocol of relation agents
Rl::
1. send 1 to C;
2. forall iri ∈ IR
3. if evaluated(iri) then {
4. send |RO| + |Obji| to C;
5. forall R ∈ RO send (id, iri) to R;
6. forall I ∈ Obji send (id, iri) to I;
7. send −1 to C;
8. while (true){
9. if Input �= ∅ then {
10. mess = get mess(Input);
11. if mess.name = C then break;
12. upd Rel(mess.id, mess.value);
13. i = mess.id
14. send |RO| + |Obji| to C;
15. forall R ∈ RO send (id, i) to R;
16. forall I ∈ Obji send (id, i) to I;
17. send −1 to C; }}

An informal description of the rule agent protocol. It has two parallel subpro-
cesses: processing incoming data from information agents (ProcInput) and
producing the outcoming result (ProcResult). Processing incoming data includes
(1) forming argument vectors, and (2) sending argument vectors or an indication
of termination to ProcResult. Producing the outcoming result includes (1) check-
ing conformity of arguments and argument vectors, (2) processing semantically
homogenous groups (if necessary), (3) making the result, which can include new
attribute values for some information agents and/or new information agents, and
(4) determining agents for sending new values to. New information agents start
immediately with data given them by the rule agent at birth. Every change of the
activity is reported to the controller agent. The rule agent terminates if it receives
the stop message from the controller agent.

Protocol of rule agents
R ::
SendList: set of Instance Agents = ∅;

1. parallel
2. { ProcInputR; ProcResultR; }
ProcInputR ::
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args: set of vectors of Argument;
1. while (true) {
2. if Input �= ∅ then {
3. mess = get mess(Input);
4. if mess.name = C then {
5. send ‘stop’ to ProcResultR;
6. break; }
7. if mess.name = A then {
8. args = make arg(mess.value, A);
9. if (args �= ∅) send ( args ) to ProcResultR;
10. send |args| − 1 to C; }}}
ProcResultR ::
arg: vector of Argument∪{‘stop’};

1. while (true) {
2. if Input �= ∅ then {
3. arg = get mess(Input);
4. if arg = ‘stop’ then break;
5. (result, SendList) = make res(arg);
6. if result �= ∅ then {
7. start new information agents;
8. send |SendList| to C;
9. forall A ∈ SendList send result(A) to A;}
10. send −1 to C; }}

The main job of the controller agent is to sequentially calculate other agents’
activities. If all agents are inactive, the agent sends them the stop message.

Protocol of agent-controller C
C ::
Act: integer;
Input: set of integer;

1. Act = 0;
2. while( Input = ∅ ) { }
3. while(true){
4. if( Input �= ∅ ) then Act = Act + get mess(Input);
5. if( Input = ∅ and Act = 0 ) then break; }
6. send STOP to all;

The following proposition is a straight consequence of Proposition 1 from [7]:

Proposition 1. Multi-agent system MDA terminates and the agent-controller
determines the termination moment correctly.

4 Conclusion

The proposed approach aims at taking advantage of the agent-based approach to
knowledge representation and processing. Thus, using the agent-based technol-
ogy allows to avoid unnecessary information retrieval, since at any given time,
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only information required for an agent is being searched for. Furthermore, due
to the agents work in parallel, the speed of data processing increases.

Note that this paper presents only a basic formal model of agents’ interaction
that implements a model of the first stage of data analysis, which does not handle
specific problems related to ambiguity of an input text. The ambiguities could
be resolved by selecting the most appropriate value of every instance attribute
from the values obtained at the previous stage. This selection can be made by
more powerful agents able to work cooperatively, to compete, etc.
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Abstract. Application development for modern high-performance sys-
tems with many cores, i.e., comprising multiple Graphics Processing
Units (GPUs) and multi-core CPUs, currently exploits low-level pro-
gramming approaches like CUDA and OpenCL, which leads to com-
plex, lengthy and error-prone programs. In this paper, we advocate a
high-level programming approach for such systems, which relies on the
following two main principles: (a) the model is based on the current
OpenCL standard, such that programs remain portable across various
many-core systems, independently of the vendor, and all low-level code
optimizations can be applied; (b) the model extends OpenCL with three
high-level features which simplify many-core programming and are auto-
matically translated by the system into OpenCL code. The high-level
features of our programming model are as follows: (1) memory man-
agement is simplified and automated using parallel container data types
(vectors and matrices); (2) a data (re)distribution mechanism supports
data partitioning and generates automatic data movements between mul-
tiple GPUs; (3) computations are precisely and concisely expressed using
parallel algorithmic patterns (skeletons). The well-defined skeletons allow
for semantics-preserving transformations of SkelCL programs which can
be applied in the process of program development, as well as in the
compilation and optimization phase. We demonstrate how our program-
ming model and its implementation are used to express several parallel
applications, and we report first experimental results on evaluating our
approach in terms of program size and target performance.

1 Introduction

Modern computer systems become increasingly many-core as they comprise, in
addition to multi-core CPUs, also Graphics Processing Units (GPUs), Intel Xeon
Phi Coprocessors, FPGA, etc. with hundreds and thousands of cores.

The application programming for many-core systems is currently quite com-
plex and error-prone. As the most prominent example, GPUs are programmed
using explicit, low-level programming approaches CUDA [17] and OpenCL [13].
Even on a system with one GPU, the programmer is required to explicitly man-
age GPU’s memory, including memory (de)allocations and data transfers, and
also to explicitly describe parallelism in the application.

c© Springer-Verlag Berlin Heidelberg 2015
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For multi-GPU systems, CUDA and OpenCL make programs even more com-
plex, as codes must explicitly implement data exchanges between the GPUs,
as well as disjoint management of individual GPU’s memories, with low-level
pointer arithmetics and offset calculations.

In this paper, we address these main challenges of the contemporary many-
core programming, and we present the SkelCL (Skeleton Computing Language) –
our high-level approach to program many-core systems with multiple GPUs.

The SkelCL programming model extends the standard OpenCL approach
with the following high-level mechanisms:

(1) parallel container data types: data containers (e.g., vectors and matrices)
that are automatically managed on GPUs’ memories in the system;

(2) data (re)distributions: a mechanism for specifying suitable data distributions
among the GPUs in the application program and automatic runtime data
re-distribution when necessary;

(3) parallel skeletons: pre-implemented high-level patterns of parallel computa-
tion and communication, customizable to express application-specific paral-
lelism and combinable to larger application codes.

The high-level, formally defined programming model of SkelCL allows for
semantics-preserving transformations of programs for many-cores. Transforma-
tions can be used in the process of high-level program development and in opti-
mizing the implementation of SkelCL programs.

The remainder of the paper is structured as follows. In Sect. 2 we describe
our high-level programming model and we illustrate its use for several example
applications in Sect. 3. Section 4 discusses using transformations for optimizing
skeleton programs, and Sect. 5 presents our current SkelCL library implementa-
tion. Section 6 reports experimental evaluation of our approach regarding pro-
gram size and performance. We compare to related work and conclude in Sect. 7.

2 SkelCL: Programming Model and Library

In this section, we first explain our main design principles for a high-level pro-
gramming model. We present the high-level features of the SkelCL model and
illustrate them using well-known use cases of parallel algorithms.

2.1 SkeCL as Extension of OpenCL

We develop our SkelCL [21] programming model as an extension of the standard
OpenCL programming model [13], which is currently the most popular approach
to programming heterogeneous systems with various accelerators, independently
of the vendor. At the same time, SkelCL aims at overcoming the problematic
aspects of OpenCL which make its use complicated and error-prone for the
application developer.
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In developing SkelCL, we follow two major principles:
First, we take the existing OpenCL standard as the basis for our approach.

SkelCL inherits all advantageous properties of OpenCL, including its portability
across different heterogeneous parallel systems and low-lev code optimization
possibilities. Moreover, this allows the application developers to remain in the
familiar programming environment, develop portable programs for various many-
core systems of different vendors, and apply the proven best practices of OpenCL
program development and optimization.

Second, our model extends OpenCL gradually: the program developer can
either design the program from the initial algorithm at a high level of abstraction
while some low-level parts are expressed in OpenCL, or the developer can decide
to start from an existing OpenCL program and to replace some parts of the
program in a step-by-step manner by corresponding high-level constructs. In
both cases, the main benefit of using SkelCL is a simplified software development,
which results in a shorter, better structured high-level code and, therefore, the
overall maintainability is greatly improved.

SkelCL is designed to be fully compatible with OpenCL: arbitrary parts
of a SkelCL code can be written or rewritten in OpenCL, without influencing
program’s correctness. While the main OpenCL program is executed sequentially
on the CPU – called the host – time-intensive computations are offloaded to
parallel processors – called devices. In this paper, we focus on systems comprising
multiple GPUs as accelerators, therefore, we use the terms CPU and GPU, rather
than more general OpenCL terms host and device.

2.2 Parallel Container Data Types

The first aspect of traditional OpenCL programming which complicates appli-
cation development is that the programmer is required to explicitly manage
GPU’s memory (including memory (de)allocations, and data transfers to/from
the system’s main memory). In our high-level programming model, we aim at
making collections of data (containers) automatically accessible to all GPUs in
the target system and at providing an easy-to-use interface for the application
developer. SkelCL provides the application developer with two container classes
– vector and matrix – which are transparently accessible by both, the CPU and
the GPUs. The vector abstracts a one-dimensional contiguous memory area, and
the matrix provides a convenient access to a two-dimensional memory area.

In a SkelCL program, a vector object is created and filled with data as in the
following example (matrices are created and filled analogously):

Vector<int> vec(size);

for (int i = 0; i < vec.size(); ++i){ vec[i] = i; }

The main advantage of the parallel container data types in SkelCL as com-
pared with the corresponding data types in OpenCL is that the necessary data
transfers between the memories of the CPU and GPUs are performed by the
system implicitly, as explained further in the implementation section.
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2.3 Data (Re-)Distributions

To achieve scalability of applications on systems comprising multiple GPUs, it
is crucial to decide how the application’s data are distributed across all available
GPUs. Applications often require different distributions for their computational
steps. Distributing and re-distributing data between GPUs in OpenCL is cum-
bersome because data transfers have to be managed manually and performed
via the (host) CPU. Therefore, it is important for a high-level programming
model to allow both for describing the data distribution and for changing the
distribution at runtime, such that the system takes care of the necessary data
movements.

SkelCL offers the programmer a distribution mechanism that describes how a
particular container is distributed among the available GPUs. The programmer
can abstract from explicitly managing memory ranges which are spread or shared
among multiple GPUs: the programmer can work with a distributed container
as a self-contained entity.

Fig. 1. Distributions of a matrix in SkelCL (without single).

SkelCL currently offers four kinds of distribution: single, copy, block, and
overlap. Figure 1 shows how a matrix can be distributed on a system with two
GPUs. The single distribution (omitted in the figure) means that matrix whole
data is stored on a single GPU (the first GPU if not specified otherwise). The
copy distribution in Fig. 1 copies matrix data to each available GPU. By the
block distribution, each GPU stores a contiguous, disjoint chunk of the matrix.
The overlap distribution splits the matrix into one chunk for each GPU; in
addition, each chunk contains a number of continuous rows from the neigh-
boring chunks. Figure 1c illustrates the overlap distribution: GPU 0 receives the
top chunk ranging from the top row to the middle, while GPU 1 receives the
second chunk ranging from the middle row to the bottom.

2.4 Patterns of Parallelism (Skeletons)

While the concrete operations performed in an application are (of course)
application-specific, the general structure of parallelization often follows com-
mon parallel patterns that are reused in different applications. For example,
operations can be performed for every entry of an input vector, which is the
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well-known map pattern of data-parallel programming, or two vectors are com-
bined element-wise into an output vector, which is again the common zip pattern
of parallelism.

SkelCL extends OpenCL by introducing such high-level programming pat-
terns, called algorithmic skeletons [10]. Formally, a skeleton is a higher-order
function that executes one or more user-defined (so-called customizing) func-
tions in a pre-defined parallel manner, while hiding the details of parallelism
and communication from the user. We show here for brevity the definitions of
some basic skeletons on a vector data type. We do this semi-formally, with v, vl
and vr denoting vectors with elements vi, vli and vri where 0 < i ≤ n, corre-
spondingly:

– The map skeleton applies a unary customizing function f to each element of
an input vector v, i.e.:

map f [v1, v2, . . . , vn] = [f(v1), f(v2), . . . , f(vn)]

– The zip skeleton operates on two vectors vl and vr, applying a binary cus-
tomizing operator ⊕ pairwise:

zip (⊕) [vl1, vl2, . . . , vln] [vr1, vr2, . . . , vrn] =
[vl1 ⊕ vr1, vl2 ⊕ vr2, . . . , vln ⊕ vrn]

– The reduce skeleton computes a scalar value from a vector using a binary
associative operator ⊕, i.e.:

red (⊕) [v1, v2, . . . , vn] = v1 ⊕ v2 ⊕ · · · ⊕ vn

These basic skeletons can be composed to express more complex algorithms. For
example, the dot product of two vectors a and b of length d is defined as:

dotProduct(a, b) =
d∑

k=1

ak · bk (1)

which can be easily expressed using our basic skeletons zip and reduce, cus-
tomized by multiplication and addition, correspondingly:

dotProduct(a, b) = red (+) ( zip (·) a b ) (2)

As an example of a non-basic skeleton, we present here the allpairs skeleton.
All-pairs computations occur in a variety of applications, ranging from pairwise
Manhattan distance computations in bioinformatics [6] to N-Body simulations
in physics [4]. These applications follow a common computation scheme: for
two sets of entities, the same computation is performed for all pairs of entities
from the first set combined with entities from the second set. We represent
entities as d-dimensional vectors, and sets of entities as corresponding matrices.
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The allpairs skeleton with a customizing binary operation ⊕ on vectors is defined
as follows:

allpairs(⊕)

⎛
⎜⎝

⎡
⎢⎣

a1,1 · · · a1,d

...
...

an,1 · · · an,d

⎤
⎥⎦ ,

⎡
⎢⎣

b1,1 · · · b1,d
...

...
bm,1 · · · bm,d

⎤
⎥⎦

⎞
⎟⎠ def=

⎡
⎢⎣

c1,1 · · · c1,m
...

...
cn,1 · · · cn,m

⎤
⎥⎦ ,

with entries ci,j computed as follows: ci,j = [ai,1 · · · ai,d] ⊕ [bj,1 · · · bj,d].
Let us consider a first simple example application which can be expressed by

customizing the allpairs skeleton with a particular function ⊕. The Manhattan
distance (or L1 distance) is defined for two vectors, v and w, of equal length d:

ManDist(v, w) =
d∑

k=1

|vk − wk| (3)

In [6], the so-called Pairwise Manhattan Distance (PMD) is studied as a funda-
mental operation in hierarchical clustering for data analysis. PMD is obtained
by computing the Manhattan distance for every pair of rows of a given matrix.
This computation for arbitrary matrix A can be expressed using the allpairs
skeleton customized with the Manhattan distance defined in (3):

PMD(A) = allpairs(ManDist) (A,A) (4)

3 Programming in SkelCL

In original OpenCL, computations are expressed as kernels which are executed
in a parallel manner on a GPU: the application developer must explicitly specify
how many instances of a kernel are launched. In addition, kernels usually take
pointers to GPU memory as input and contain program code for reading/writing
single data items from/to it. These pointers have to be used carefully, because
no boundary checks are performed by OpenCL.

The programming model of SkelCL differs from OpenCL: rather than writ-
ing low-level kernels, the application developer customizes suitable skeletons by
providing application-specific functions which are often much simpler than ker-
nels as they specify an operation on basic data items rather than containers.
Skeletons are created as objects by providing customizing functions which, for
technical reasons, must not be recursive and may only contain OpenCL C (not
C++) code.

3.1 Example: Dot Product of Vectors

Equation (2) expresses the dot product of two vectors as a composition of two
skeletons, zip and reduce. In SkelCL, a zip skeleton object customized by multi-
plication is created and then used as follows:
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1 skelcl : :init(); /* initialize SkelCL */

2 /* create skeleton objects: */

3 Zip <float > mult(

4 "float mult(float x,float y) {return x*y;}");

5 Reduce <float > sum (

6 "float func(float x,float y) {return x+y;}");

7 /* create input vectors and fill with data: */

8 Vector <float > A(SIZE); fillVector(A);

9 Vector <float > B(SIZE); fillVector(B);

10 /* execute skeleton objects: */

11 Vector <float > C = sum( mult(A,B) );

Listing 1.1. A SkelCL code for computing the dot product of two vectors

Zip<float> mult("float func(float x,float y){ return x*y;}");

resultVector = mult( leftVector, rightVector );

The necessary reduce skeleton customized by addition is created similarly as an
object and then called as follows:

Reduce<float> sum("float func(float x,float y){ return x+y;}");

result = sum( inputVector );

These definitions lead directly to the SkelCL code for dot product shown in
Listing 1.1 (8 lines of code plus comments). The OpenCL-based implementation
of dot product provided by NVIDIA [17] requires 68 lines (kernel function: 9 lines,
host program: 59 lines), i.e., it is significantly longer than our SkelCL code.

3.2 Example: Matrix Multiplication

Matrix multiplication is a basic linear algebra operation, which is a building
block of many scientific applications. An n × d matrix A is multiplied by a
d × m matrix B, producing an n × m matrix C = A × B whose element Ci,j

is computed as the dot product of the ith row of A with jth column of B. The
matrix multiplication can be expressed using the allpairs skeleton introduced in
Sect. 2.4 as follows:

A × B = allpairs(dotProduct)
(
A,BT

)
(5)

where BT is the transpose of matrix B.
Listing 1.2 shows the SkelCL program for computing matrix multiplication

using the allpairs skeleton; the code follows directly from the skeleton formula-
tion (5). In the first line, the SkelCL library is initialized. Skeletons are imple-
mented as classes in SkelCL and customized by instantiating a new object, like
in line 2. The Allpairs class is implemented as a template class specified with
the data type of matrices involved in the computation (float). This way the
implementation can ensure the type correctness by checking the types of the
arguments when the skeleton is executed in line 10. The customizing function –
specified as a string (lines 3–7) – is passed to the constructor. SkelCL defines cus-
tom data types (float vector t in line 3) for representing vectors in the code of
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the customizing function. Helper functions are used for accessing elements from
the row of matrix A and the column of matrix B (line 6). The transpose of matrix
B required by the definition (5) is implicitly performed by accessing elements
from the columns of B using the helper function getElementFromCol. After ini-
tializing the two input matrices (line 8 and 9), the calculation is performed in
line 10.

4 Transformation Rules for Optimization

Our approach is based on formally defined algorithmic skeletons. This allows
for systematically applying semantics-preserving transformations to SkelCL pro-
grams with the goal of their optimization. In this section, we briefly illustrate
two types of transformation rules: specialization rules and (de)composition rules.

4.1 Specialization Rule: Optimizing the Allpairs Skeleton

Specialization rules enable optimizations of skeleton implementations using addi-
tional, application-specific semantical information. We illustrate specialization
for our allpairs skeleton and the matrix multiplication example. If the customiz-
ing function f of the allpairs skeleton can be expressed as a sequential compo-
sition (denoted with ◦) of zip and reduce customized with a binary operator �
and a binary, associative operator ⊕.:

f = reduce (⊕) ◦ zip (�) (6)

then an optimized implementation of the allpairs skeleton for multiple GPUs
can be automatically derived as described in detail in [20].

By expressing the customizing function of the allpairs skeleton as a zip-reduce
composition, we provide additional semantical information about the memory
access pattern of the customizing function to the skeleton implementation, thus
allowing for improving the performance. The particular optimization using (6)
takes into account the OpenCL programming model that organizes work-items
(i.e., threads executing a kernel) in work-groups which share the same GPU
local memory. By loading data needed by multiple work-items of the same work-
group into the fast local memory, we can avoid repetitive accesses to the slow

1 s k e l c l : : i n i t ( ) ;

2 A l l pa i r s<f loat> mm(
3 ” f l o a t func ( f l o a t v e c t o r t ar , f l o a t v e c t o r bc ) {\
4 f l o a t c = 0.0 f ;\
5 f o r ( i n t i = 0; i < l e n g t h ( ar ) ; ++i ) {\
6 c += getElementFromRow( ar , i ) ∗ getElementFromCol ( bc , i ) ;}\
7 re turn c ; }” ) ;
8 Matrix<f loat> A(n , k ) ; f i l l (A) ;

9 Matrix<f loat> B(k , m) ; f i l l (B) ;

10 Matrix<f loat> C = mm(A, B) ;

Listing 1.2. Matrix multiplication in SkelCL using the allpairs skeleton.
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1 skelcl : :init();
2 Zip <float > mult(

3 "float func(float x, float y) { return x*y; }");

4 Reduce <float > sum_up(

5 "float func(float x, float y) { return x+y; }");

6 Allpairs <float > mm(sum_up , mult);

7 Matrix <float > A(n, d); fill(A);

8 Matrix <float > B(d, m); fill(B);

9 Matrix <float > C = mm(A, B);

Listing 1.3. Matrix multiplication in SkelCL using the specialized allpairs skeleton.

global memory. The semantical information of the zip-reduce pattern allows the
implementation to load chunks of both involved vectors into the small local
memory and reduce them there, before processing the next chunks. That means
that the two skeletons zip and reduce are not executed one after the other, but
rather the optimized implementation interleaves these two steps. This results in
a significant performance gain, as described in Sect. 6.

For the Pairwise Manhattan Distance, we can express the customizing function
as a zip-reduce composition, using the binary operator a�b = |a−b| as customiz-
ing function for zip, and addition as customizing function for the reduce skeleton:

ManDist(a, b) =
n∑

i=1

|ai − bi| = (reduce (+) ◦ zip (�)) [a1 · · · an] [b1 · · · bn]

Similarly, as already demonstrated by (2), dot product (which is the cus-
tomizing function of allpairs for matrix multiplication) can be expressed as a
zip-reduce composition. The corresponding optimized SkelCL code is shown in
Listing 1.3. In lines 2 and 3, the zip skeleton is defined using multiplication as
customizing function and in lines 4 and 5, the reduce skeleton is customized with
addition. These two customized skeletons are passed to the allpairs skeleton on
its creation in line 6. This triggers our specialization rule and an optimized
implementation is generated. In line 9, the skeleton is executed taking two input
matrices and producing the output matrix.

Currently, SkelCL implements such customization of the allpairs skeleton by
a combination of the zip and reduce skeleton as a special case. Therefore, the
allpairs skeleton in Listing 1.3 accepts a zip and reduce skeleton as customizing
functions instead of a string as shown earlier in Listing 1.2. We plan to gener-
alize this in the future and allow arbitrary skeletons to be used as customizing
functions of other skeletons – of course when the types match.

4.2 Composition Rules: Optimizing Scan and Reduce

In this section we present examples of composition rules which allow the appli-
cation programmer to systematically apply transformations to SkelCL programs
with the goal of optimization.
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Our examples involve the scan skeleton (a. k. a. prefix-sum) which yields an
output vector with each element obtained by applying a binary associative oper-
ator ⊕ to the elements of the input vector up to the current element’s index:

scan (⊕) [v1, v2, . . . , vn] = [v1, v1 ⊕ v2, . . . , v1 ⊕ v2 ⊕ · · · ⊕ vn]

The scan skeleton has been well studied and used in many parallel applica-
tions [5].

– Scan-Reduce Composition: This rule allows for a composition of scan
followed by reduction to be expressed as a single reduction operating on pairs
of values. For arbitrary binary, associative operators ⊕ and ⊗, such that ⊗
distributes over ⊕, it holds:

red(⊕) ◦ scan(⊗) = π1 ◦ red (〈⊕,⊗〉) ◦ map pair (7)

where function pair, π1 and operator 〈⊕,⊗〉 are defined as follows:

pair a
def= (a, a), (8)

π1 (a, b) def= a, (9)

(s1, r1) 〈⊕,⊗〉 (s2, r2)
def= (s1⊕(r1⊗s2) , r1⊗r2) (10)

– Scan-Scan Composition: This rule allows to replace two repetitive scan
skeletons by a single one.
For associative operators ⊕ and ⊗, where ⊗ distributes over ⊕,

scan (⊕) ◦ scan (⊗) = mapπ1 ◦ scan (〈⊕,⊗〉) ◦ map pair (11)

Besides composing skeletons together, it also sometimes pays off to decompose
them, for example to split a reduction into multiple steps (so-called decomposi-
tion rule). The motivation, proof of correctness and a discussion of the perfor-
mance benefits of the composition and decomposition rules can be found in [11].

5 Implementation of SkelCL

SkelCL is implemented as a C++ library which generates valid OpenCL code
from SkelCL programs. The customizing functions provided by the applica-
tion developer is combined with skeleton-specific OpenCL code to generate an
OpenCL kernel function, which is eventually executed on a GPU. A customized
skeleton can be executed on both single- and multi-GPU systems. In case of a
multi-GPU system, the calculation specified by a skeleton is performed auto-
matically on all GPUs available in the system.

Skeletons operate on container data types (in particular vectors and matrices)
which alleviate the memory management of GPUs. The SkelCL implementation
namely ensures that data is copied automatically to and from GPUs, instead of
manually performing data transfers as required in OpenCL. Before performing a
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GPU 1
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Fig. 2. Data distributions used for a system with two GPUs: matrices A and C are
block distributed, matrix B is copy distributed.

computation on container types, the SkelCL system ensures that all input con-
tainers’ data is available on all participating GPUs. This may result in implicit
(automatic) data transfers from the CPU to GPU memory, which in OpenCL
would require explicit programming. Similarly, before any data is accessed on
the CPU, the implementation of SkelCL ensures that this data on the CPU is
up-to-date by performing necessary data transfers implicitly and automatically.

For multi-GPU systems, the application developer can use the distributions
directives of SkelCL introduced in Sect. 2.3 to specify how data is distributed
across the GPUs in the system. If no distribution is set explicitly then every skele-
ton implementation selects a suitable default distribution for its input and out-
put containers. Containers’ distributions can be changed at runtime: this implies
data exchanges between multiple GPUs and the CPU, which are performed by
the SkelCL implementation implicitly. Implementing such data transfers in the
standard OpenCL is a cumbersome task: data has to be downloaded to the CPU
before it is uploaded to the GPUs, including the corresponding length and offset
calculations; this results in a lot of low-level code which becomes completely
hidden when using SkelCL.

For example, two SkelCL distributions are used in our multi-GPU implemen-
tation of the allpairs skeleton, as shown in Fig. 2: Matrix B is copy distributed,
i.e., it is copied entirely to all GPUs in the system. Matrix A and C are block
distributed, i.e., they are row-divided into as many equally-sized blocks as GPUs
are available; each block is copied to its corresponding GPU. Following these dis-
tributions, each GPU computes one block of the result matrix C. In the example
with two GPUs shown in Fig. 2, the first two rows of C are computed by GPU 1
and the last two rows by GPU 2. The allpairs skeleton uses these distributions by
default; therefore, no changes to the already discussed SkelCL codes for matrix
multiplication are necessary for using multiple GPUs.

The object-oriented design of SkelCL allows the developers to extend it easily:
e.g., in order to add a new skeleton to SkelCL, a new class with the skeleton’s
implementation has to be provided, while all existing classes and concepts/data
containers and data distributions) can be freely reused.
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6 Experimental Evaluation

We use matrix multiplication as an example to evaluate our SkelCL implementa-
tions regarding programming effort and performance. We compare the following
six implementations of the matrix multiplication:

1. the OpenCL implementation from [14] without optimizations,
2. the optimized OpenCL implementation from [14] using GPU local memory,
3. the optimized BLAS implementation by AMD [2] written in OpenCL,
4. the optimized BLAS implementation by NVIDIA [16] written in CUDA,
5. the SkelCL implementation using the generic allpairs skeleton (Listing 1.2),
6. the SkelCL implementation optimized using specialization (Listing 1.3).

6.1 Programming Effort

As the simplest criterion for estimating the programming effort, we use the pro-
gram size in lines of code (LoC). Figure 3 shows the number of LoCs required
for each of the six implementations. We did not count those LoCs which are not
relevant for parallelization and are similar in all six implementations, like initial-
izing the input matrices with data and checking the result for correctness. For
every implementation, we distinguish between CPU code and GPU code. For the
OpenCL implementations, the GPU code is the kernel definition; the CPU code
includes the initialization of OpenCL, memory allocations, explicit data trans-
fer operations, and management of the execution of the kernel. For the BLAS
implementations, the CPU code contains the initialization of the corresponding
BLAS library, memory allocations, as well as a library call for performing the
matrix multiplication; no definition of GPU code is necessary, as the GPU code
is defined inside the library function calls. For the generic allpairs skeleton (List-
ing 1.2), we count lines 1–2 and 8–10 as the CPU code, and the definition of
the customizing function in lines 3–7 as the GPU code. For the allpairs skeleton
customized with zip-reduce (Listing 1.3), lines 3 and 5 are the GPU code, while
all other lines constitute the CPU code.
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Fig. 3. Programming effort (Lines of Code) of all compared implementations.
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Fig. 4. Runtime of different matrix multiplication implementations on a NVIDIA sys-
tem for different sizes for the matrices.

As expected, both skeleton-based implementations are clearly the shortest
due to using high-level constructs, with 10 and 9 LoCs, correspondingly. The
next shortest implementation is the cuBLAS implementation with 65 LoCs –
7 times longer than the SkelCL implementations. The other implementations
require even 9 times more LoCs than the SkelCL implementation. Besides their
length, the other implementations require the application developer to perform
many low-level, error-prone tasks, like dealing with pointers or offset calcula-
tions. Furthermore, the skeleton-based implementations are more general, as
they can be used for arbitrary allpairs computations, while the OpenCL and
CUDA implementations perform matrix multiplication only.

6.2 Performance Experiments

We performed our performance experiments with the six different implementa-
tions of matrix multiplication on a test system using a host PC with a quad-core
CPU (Intel Xeon E5520, 2.26 GHz) and 12 GB of memory, connected to a Tesla
S1070 computing system equipped with 4 Tesla GPUs. Its dedicated 16 GB of
memory (4 GB per GPU) is accessed with up to 408 GB/s (102 GB/s per GPU).
Each GPU comprises 240 streaming processor cores running at 1.44 GHz. In all
experiments, we include the time of data transfers to/from the GPU, i.e. the
measured runtime consists of: (1) uploading the input matrices to the GPU;
(2) performing the actual matrix multiplication; (3) downloading the computed
result matrix.

Using one GPU. Figure 4 shows the runtime in seconds of all six implemen-
tations for different sizes of the matrices (note that for readability reasons, all
charts are scaled differently). Clearly, the unoptimized OpenCL- and SkelCL-
based implementations are the slowest, because both do not use the fast GPU
local memory, in contrast to all other implementations. The SkelCL implementa-
tion optimized with specialization rule performs between 5.0 and 6.8 times faster
than the implementation using the generic allpairs skeleton, but is 33 % slower
on 16384 × 16384 matrices than the optimized OpenCL implementation using
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Fig. 5. Runtime of the allpairs based implementations using multiple GPUs.

local memory. However, the latter implementation works only for square matri-
ces and, therefore, omits many conditional statements and boundary checks. Not
surprisingly, cuBLAS by NVIDIA is the fastest of all implementations, as it is
manually tuned for NVIDIA GPUs using CUDA. The clBLAS implementation
by AMD using OpenCL is apparently well optimized for AMD GPUs but per-
forms poorly on other hardware. Our optimized allpairs skeleton implementation
outperforms the clBLAS implementation for all matrix sizes tested.

Using multiple GPUs. Figure 5 shows the runtime behavior of both implementa-
tions using the allpairs skeleton on up to four GPUs of our multi-GPU system.
The other four implementations (OpenCL and CUDA) are not able to han-
dle multiple GPUs and would have to be specially rewritten for such systems.
We observe a good scalability of our skeleton-based implementations, achieving
speedups between 3.09 and 3.93 when using four GPUs.

7 Conclusion and Related Work

This paper presents the SkelCL high-level programming model for multi-GPU
systems and its implementation as a library. SkelCL is built on top of the
OpenCL standard which provides familiar programming environment for appli-
cation developers, portability across various many-core platforms of different
vendors, and proven best practices of OpenCL programming and optimization.
Our SkelCL approach significantly raises OpenCL’s low level of abstraction: it
offers parallel patterns to express computations, parallel container data types
for simplified memory management and a data (re)distribution mechanism to
improve scalability in systems with multiple GPUs. Our data dustributions can
be viewed as instances of covers [15,19] which define a general framework for
reasoning about possible distributions of data. Semantic-preserving transforma-
tion rules allows for systematically optimizing SkelCL programs. The SkelCL
library is available as open source software from http://skelcl.uni-muenster.de.

There are other approaches to simplify GPU programming. SkePU [8] and
Muesli [9] are fairly similar to SkelCL, but greatly differ in their focus and

http://skelcl.uni-muenster.de
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implementation, as discussed in [21]. There exist wrappers for OpenCL or CUDA
as well as convenient libraries for GPU Computing, most popular of them are
Thrust [12] and Bolt [3]. Compiler-based approaches similar to the popular Open-
MP [18] includeOpenACC [1] andOmpSs-OpenCL [7]. While reducing boilerplate
in GPU-targeted applications, these approaches do not simplify the programming
process by introducing high-level abstractions as done in SkelCL.
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MONICA projects. We would like to thank the anonymous reviewers for their valu-
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Abstract. The present paper shows how the idea of equality satura-
tion can be used to build an inductive prover for a non-total first-order
lazy functional language. We adapt equality saturation approach to a
functional language by using transformations borrowed from supercom-
pilation. A special transformation called merging by bisimilarity is used
to perform proof by induction of equivalence between nodes of the E-
graph. Equalities proved this way are just added to the E-graph. We
also experimentally compare our prover with HOSC and HipSpec.

1 Introduction

Equality saturation [18] is a method of program transformation that uses a
compact representation of multiple versions of the program being transformed.
This representation is based on E-graphs (graphs whose nodes are joined into
equivalence classes [4,14]) and allows us to represent a set of equivalent pro-
grams, consuming exponentially less memory than representing it as a plain set.
Equality saturation consists in enlarging this set of programs by applying cer-
tain axioms to the E-graph until there’s no axiom to apply or the limit of axiom
applications is reached. The axioms are applied non-destructively, i.e. they only
add information to the E-graph (by adding nodes, edges and equivalences).

Equality saturation has several applications. It can be used for program opti-
mization – in this case after the process of equality saturation is finished, a single
program should be extracted from the E-graph. It can also be used for proving
program equivalence (e.g. for translation validation [17]) – in this case program
extraction is not needed.

In the original papers equality saturation is applied to imperative languages.
In this paper we describe how equality saturation can be applied to the task
of proving equivalence of functions written in a lazy functional language. This
task is important for proving algebraic properties like monadic laws or some
laws concerning natural numbers and lists. Since such properties require proof
by induction, we introduce a special transformation called merging by bisimi-
larity which essentially proves by induction that two terms are equivalent. This
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transformation may be applied repeatedly, which gives an effect of discovering
and proving lemmas needed for the main goal.

The main contributions of this paper are: (1) we apply the equality saturation
approach to a lazy functional language; (2) we propose to merge classes of the
E-graph even if they represent functions equal only up to argument permutation;
(3) we articulate the merging by bisimilarity transformation.

The paper is organized as follows. In Sect. 2 we briefly describe equality
saturation and how functional programs and their sets can be represented by
E-graphs. Then in Sect. 3 we discuss basic transformations which we apply to
the E-graph. Section 4 deals with the merging by bisimilarity transformation.
In Sect. 5 we present experimental evaluation of our prover. Section 6 discusses
related work and Sect. 7 concludes the paper.

The source code of our experimental prover can be found on GitHub [1].

2 Programs and E-graphs

An E-graph is a graph enriched with information about equivalence of its nodes
by means of splitting them into equivalence classes. In our case, an E-graph
essentially represents a set of (possibly recursive) terms and a set of equali-
ties on them, closed under reflexivity, transitivity and symmetry. If we use the
congruence closure Algorithm [14], then the set of equalities will also be closed
under congruence. The E-graph representation is very efficient and often used
for solving the problem of term equivalence.

If we have some axioms about our terms, we can also apply them to the
E-graph, thus deducing new equalities from the ones already present in E-graph
(which in its turn may lead to more axiom application opportunities). This is
what equality saturation basically is. So, the process of solving the problem of
function/program equivalence using equality saturation is as follows:

1. Convert both function definitions to E-graphs and put both of them into a
single E-graph.

2. Transform the E-graph using some axioms (transformations) until the target
terms are in the same equivalence class or no more axioms are applicable.
This process is called saturation.

In pure equality saturation approach axioms are applied non-destructively and
result only in adding new nodes and edges, and merging of equivalence classes,
but in our prover we apply some axioms destructively, removing some nodes and
edges. This makes the result of the saturation dependent on the order of axiom
application, so we restrict it to breadth-first order. This deviation is essential for
performance reasons.

In this paper we will use a lazy first-order subset of Haskell. To illustrate
how programs are mapped into graphs, let’s consider the program in Fig. 1a.
This program can be naturally represented as a graph, as shown in Fig. 1b.
Each node represents a basic language construct (pattern matching, constructor,
variable, or explicit substitution – we’ll explain them in Sect. 2.1). If a node
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Fig. 1. A program and its graph representation

corresponds to some named function, its name is written in the top part of it.
Some nodes are introduced to split complex expressions into basic constructs
and don’t correspond to any named functions. Recursion is simply represented
by cycles. Some nodes are shared (in this example these are the variable x and
the constructor T). Sharing is very important since it is one of the things that
enable compactness of the representation.

Some of the edges are labeled with renamings. Actually, all edges are labeled
with renamings, but identity renamings are not drawn. These renamings are
very important – without them we would need different nodes for each variable,
and we couldn’t merge nodes representing the same function modulo renaming,
which would increase space consumption (such functions often appear during
transformation). Merging up to renaming will be discussed in Sect. 2.2.

Note also that we use two methods of representing function calls. If all the
arguments are distinct variables, then we can simply use a renaming (the function
odd is called this way). If the arguments are more complex, then we use explicit
substitution which is very similar to function call but has more fine-grained
reduction rules. We can use explicit substitutions even if the arguments are
distinct variables, but it’s more expensive than using renamings (and actually
we have an axiom to transform such explicit substitutions to renamings). Note
that we require an explicit substitution to bind all variables of the expression
being substituted.

The same way graphs naturally correspond to programs, E-graphs naturally
correspond to programs with multiple function definitions. Consider the follow-
ing “nondeterministic” program:

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
odd n = case n of { Z → F; S m → even m }
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odd n = not (even n)
even n = not (odd n)

This program contains multiple definitions of the functions even and odd, but
all the definitions are actually equivalent. This program can also be represented
as a graph, but there will be multiple nodes corresponding to functions even and
odd. If we add the information that nodes corresponding to the same function
are in the same equivalence class, we get an E-graph. We won’t show here a
picture of this E-graph to save space, and will use “nondeterministic” programs
to describe E-graphs from here on.

E-graphs are also useful for representing compactly sets of equivalent pro-
grams. Indeed, we can extract individual programs from an E-graph by choosing
a single node for each equivalent class, or in other words, a single definition for
each function. However, we cannot pick the definitions arbitrarily. For example,
the following program isn’t equivalent to the one above:

not b = case b of { T → F; F → T }

odd n = not (even n)
even n = not (odd n)

This problem should be taken into account not only when performing program
extraction, but also during certain complex transformations like merging by
bisimilarity which we will discuss in Sect. 4.

2.1 Node Labels

In this section we’ll discuss how node labels correspond to language constructs.
First of all, each node of an E-graph is a member of some equivalence class.

We will use symbols f, g, h, . . . to denote nodes as well as corresponding func-
tions. Each node has a label L(f) and a set of input variables V (f) (in the
implementation variables are numbered, but in this paper we treat them as
named). V (f) may decrease with graph evolution, and it should be kept up to
date because we need V (f) to perform some transformations (keeping it up to
date is beyond the scope of this paper). Each edge of an E-graph is labeled with
an injective renaming, its domain being the set of input variables of the edge’s
destination node. We will use the notation f = L → θ1g1, . . . , θngn to describe
a node f with a label L and outgoing edges with renamings θi and destinations
gi. We will write f ∼= g to denote that f and g are from the same equivalence
class.

There are only four kinds of node labels:

– f = x. (Variable/identity function). We use the convention that the identity
function always takes the variable x, and if we need some other variable, we
adjust it with a renaming. Code example: f x = x



Inductive Prover Based on Equality Saturation 131

– f = subst(x1, . . . , xn) → ξh, θ1g1, . . . , θngn. (Explicit substitution/function
call/let expression). An explicit substitution substitutes values θigi for the
variables xi in ξh. We require it to bind all the variables of ξh. Explicit
substitution nodes usually correspond to function calls:

f x y = h (g1 x) (g2 y) (g3 x y)

They may also correspond to non-recursive let expressions, or lambda abstrac-
tions immediately applied to the required number of arguments:

f x y = let { u = g1 x; v = g2 y; w = g3 x y } in h u v w
= (λ u v w . h u v w) (g1 x) (g2 y) (g3 x y)

But to describe E-graph transformations we will use the following non-standard
(but hopefully more readable) postfix notation:

f x y = h u v w { u = g1 x, v = g2 y, w = g3 x y }
– f = C → θ1g1, . . . , θngn. (Constructor). Code example:

f x y = C (g1 x) (g2 y) (g3 x y)

– f = caseof(C1x1, . . . , Cnxn) → ξh, θ1g1, . . . , θngn. (Pattern matching). This
label is parametrized with a list of patterns, each pattern is a constructor
name and a list of variables. The corresponding case bodies (θigi) don’t have
to use all the variables from the pattern. ξh represents the expression being
scrutinized. Code example:

f x y = case h x of
S n → g1 y n
Z → g2 x

We will also need an operation of adjusting a node with a renaming. Consider
a node f = L → θ1g1, . . . , θngn and a renaming ξ. Suppose, we want to create
a function f ′ = ξf (f ′ is f with parameters renamed). Then we can adjust
outgoing edges of f with ξ (unless f = x in which case it doesn’t have outgoing
edges). We will use the following notation for this operation:

f ′ = ξ(L → θ1g1, . . . , θngn)

The operation is defined as follows:

ξ(C → θ1g1, . . . , θngn) = C → (ξ ◦ θ1)g1, . . . , (ξ ◦ θn)gn
ξ(subst(. . .) → ζh, θ1g1, . . . , θngn) =

subst(. . .) → ζh, (ξ ◦ θ1)g1, . . . , (ξ ◦ θn)gn
ξ(caseof(. . .) → ζh, θ1g1, . . . , θngn) =

caseof(. . .) → (ξ ◦ ζ)h, (ξ′
1 ◦ θ1)g1, . . . , (ξ′

n ◦ θn)gn

In the last case each ξ′
i maps the variables bound by ith pattern to themselves

and works as ξ on all the other variables.
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2.2 Merging

One of the basic operations of the E-graph is merging of equivalence classes.
Usually it is done after applying axioms that result in adding new equalities
between nodes. In the case of simple equalities like f = g we should simply merge
the corresponding equivalence classes. But we also want to merge functions which
are equal only up to some renaming, so should take into account equalities of
the form f = θg where θ is some non-identity renaming. In this case we should
first adjust renamings on edges so that the equation becomes of the form f = g
and then proceed as usual.

Consider the equation f = θg. Let’s assume that g is not a variable node (x)
and it’s not in the same equivalence class with a variable node (otherwise we
can rewrite the equation as g = θ−1f , and if they both were equal to a variable
node then our E-graph would be self-contradictory). Now for each node h in the
same equivalence class with g (including g) we should perform the following:

1. Adjust the outgoing edges of h with θ using previously described node adjust-
ment operation.

2. For each edge incoming into h replace its renaming, say, ξ, with a renaming
ξ ◦ θ−1

After the adjustment the equation becomes f = g and we can merge the equiv-
alence classes.

Note that this procedure works if f and g aren’t in the same equivalence
classes. If they are then the equation looks like f = θf and should be modelled
with an explicit substitution.

3 Axioms

3.1 Congruence

The most common cause of equivalence class merging is equivalence by congru-
ence, that is if we know that a = f(b), c = f(d) and b = d, then we can infer
that a = c. Note that usually this kind of merging is not explicitly formulated as
an axiom, but we prefer to do it explicitly for uniformity. Also, in our case the
axiom should also take into account that we want to detect equivalences up to
some renaming. Here is the axiom written as an inference rule, we will later refer
to it as (cong):

f = L → θ1h1, . . . , θnhn ∃ξ : g = ξ(L → θ1k1, . . . , θnkn) ∀i hi
∼= ki

g = ξf

It says that if we have a node f and a node g that is equivalent to f adjusted
with some renaming ξ, then we can add the equality g = ξf to the E-graph. This
axiom is advantageous to apply as early as possible since it results in merging of
equivalence classes, which reduces duplication and gives more opportunities for
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applying axioms. Also note that to make the search for the appropriate ξ faster,
it is beneficial to represent nodes in normal form:

f = ζ(L → θ1g1, . . . , θngn)

Where θi are as close to identity renamings as possible, so to find ξ we should
just compare the ζ’s.

3.2 Semantics of Explicit Substitutions

In this and the next sections we will write axioms in a less strict but more
human-readable form. A rewriting rule E1 �→ E2 means that if we have a node
f1 representing the expression E1, then we can add an equality f1 = f2 to the
E-graph where f2 is the node representing E2 (which should also be added to
the E-graph unless it’s already there). We use the compact postfix notation
to express explicit substitutions. We use letters e, f, g, h, . . . to represent nodes
whose structure doesn’t matter. We sometimes write them applied to variables
they use (f x y), but if variables don’t really matter, we omit them. Note that
the presented rules can be generalized to the case when pattern matchings have
arbitrary number of branches and functions take arbitrary number of arguments,
we just use minimal illustrative examples for the sake of readability.

In Fig. 2 four axioms of explicit substitutions are shown. All of them basically
describe how to evaluate a node if it is an explicit substitution. The answer is
to push the substitution down (the last three rules) until we reach a variable
where we can just perform the actual substitution (the first rule, (subst-id)).
The appropriate rule depends on the node we choose as the leftmost child of our
substitution node – there are four kinds of nodes, so there are four rules.

Fig. 2. Axioms of explicit substitutions

Usually substitution in the body of a function is performed as an indivisible
operation, but this kind of transformation would be too global for an E-graph,
so we use explicit substitutions to break it down.

There are two more rather technical but nonetheless important axioms con-
cerning substitution. The first one is elimination of unused variable bindings:

(subst-unused) f x y {x = g, y = h, z = k} �→ f x y {x = g, y = h}
When this axiom is applied destructively (i.e. the original node is removed), it
considerably simplifies the E-graph. This axiom is the reason why we need the
information about used variables in every node.
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The second axiom is conversion from a substitution that substitutes variables
for variables to a renaming:

(subst-to-renaming) f x y {x = y, y = z} �→ f y z

Note though that application of this axiom results in merging of the equivalence
classes corresponding to the node representing the substitution and the node f ,
so if they are already in the same class, this axiom is inapplicable. We also apply
this axiom destructively.

3.3 Semantics of Pattern Matching

The axioms concerning pattern matching are shown in Fig. 3. The first of them,
(case-of-constr), is essentially a reduction rule: if the scrutinee is an expression
starting with a constructor, then we just substitute appropriate subexpressions
into the corresponding case branch.

Fig. 3. Axioms of pattern matching

The next two axioms came from supercompilation [16,19]. They tell us what
to do when we get stuck during computation because of missing information
(i.e. a variable). The axiom (case-of-case-of) says that if we have a pattern match-
ing that scrutinizes the result of another pattern matching, then we can pull the
inner pattern matching out. The axiom (case-of-id) is responsible for positive
information propagation: if a case branch uses the variable being scrutinized,
then it can be replaced with its reconstruction in terms of the pattern variables.

3.4 Axioms Applied Destructively

We apply some transformations destructively, i.e. remove the original nodes and
edges that triggered the transformation. It is a necessary deviation from pure equ-
ality saturation. The transformations we apply destructively are (subst-id), (subst-
unused), (subst-to-renaming), and (case-of-constr). We have tried to switch on
and off their destructivity. Turned out that non-destructive (case-of-constr) leads
to a lot of failures on our test suite due to timeouts, but helps to pass an addi-
tional test. Non-destructive (subst-unused) has a similar effect. Non-destructivity
of (subst-id) and (subst-to-renaming) doesn’t impede the ability of our tool to



Inductive Prover Based on Equality Saturation 135

pass tests from our test suite but when either of them is non-destructive, our tool
becomes about 15 % slower. We also tried to make all the mentioned transforma-
tions non-destructive which rendered our tool unusable.

4 Merging by Bisimilarity

The axiom of congruence can merge two functions into one equivalence class if
they have the same tree representation. But if their definitions involve separate
(but equal) cycles, then the congruence axiom becomes useless. Consider the
following two functions:

f = S f; g = S g

If they aren’t in the same equivalence class in the first place, none of the already
mentioned axioms can help us equate them. Here we need some transformation
that is aware of recursion.

The general idea of the transformation is to find two bisimilar subgraphs
growing from the two given nodes from different equivalence classes and merge
these equivalence classes if the subgraphs have been found. Note though that not
every subgraph is suitable. Consider the following nondeterministic program:

f x = C; g x = D
f x = f (f x); g x = g (g x)

The functions f and g are different but they both are idempotent, so we have
two equal closed subgraphs “defining” the functions:

f x = f (f x); g x = g (g x)

Of course, we cannot use subgraphs like these to decide whether two functions
are equal, because they don’t really define the functions, they just state that
they have the property of idempotence. So we need a condition that guarantees
that there is (semantically) only one function satisfying the subgraph.

In our implementation we require all the recursive calls of a subgraph to be
either guarded or structural (we use the same algorithm as in Agda and Foetus [2]).
These syntactic conditions are usually used in total languages, but they can nev-
ertheless be used in languages with bottoms. Merging by bisimilarity is actually
a special case of proving term equivalence by induction (in the case of structural-
ity condition) and by coinduction (in the case of of guardedness condition). Of
course, this method of ensuring uniqueness may reject some subgraphs having a
single fixed point, because the problem is undecidable in general. Note also that
this is not the only possible method of ensuring uniqueness. For example, we could
use ticks [11,15]. Tick transformations could be encoded as axioms for equality
saturation.

4.1 Algorithm Description

In this subsection we’ll describe the algorithm we use to figure out if two nodes
suspected of being equal have two bisimilar subgraphs growing from them and
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Fig. 4. Merging by bisimilarity

meeting the uniqueness condition. First of all, the problem of finding two bisim-
ilar subgraphs is a variation of the subgraph bisimulation problem which is
NP-complete [5]. The merging by bisimilarity algorithm that we use in our
implementation is outlined in Fig. 4. It checks (using the function bisimilar?)
if there are two bisimilar subgraphs meeting the uniqueness condition, and if
there are, merges the equivalence classes of the nodes. Checking for bisimilarity
essentially consists in simultaneous depth-first traversal of the E-graph from the
given nodes. Actually this process resembles supercompilation.

The function bisimilar? works as follows. If the two nodes are equal, then
they are bisimilar and we return true. If we encounter a previously visited pair
of nodes (up to ∼=), we check if the uniqueness condition holds, and if it does, we
return true (this case corresponds to folding in supercompilation) and otherwise
we stop trying and return false (this case doesn’t guarantee that there’s no
bisimulation, but we do it for efficiency). Then we check if the two nodes are at
least compatible (again, for efficiency reasons, we could do without it in theory).
That means that there are no nodes equal to them that have incompatible labels,
like different constructors or a constructor and a pattern matching on a variable.
If the labels are compatible, we go on and check all pairs of nodes equivalent to
the original ones. If there is a pair of nodes such that their children are bisimilar,
then the original pair is bisimilar.

Note that in our description of the algorithm we ignored the question of
renamings. We did it for the sake of brevity, and actually (since we want to
merge nodes even if they are equal only up to some renaming) we should take
them into account which complicates the real implementation a little bit.
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5 Experimental Evaluation

We’ve used a set of simple equations to evaluate our prover and compare it to
similar tools. The results are shown in Table 1. We gave each tool 5 min to prove
each equation. Wall-clock time in seconds is given for successful runs.

The tests can be found in our repository [1], for some of them we gave human-
readable equations in the second column – note though that real equations are
often a bit more complex because we have to make sure that they hold in a non-
total language. The tests are divided into two groups: the upper group (kmp-eq
and all the tests above it) consists of equations which can be proved simply by
driving, and the rest of the tests need something more complex.

The tools we used in our benchmarking are:

– graphsc. It is our prover described in this paper.
– hosc. HOSC is a supercompiler designed for program analysis, including the

problem of function equivalence [8]. It uses the following technique: first super-
compile left hand side and right hand side separately and then syntactically
compare the residual programs [10,13].

– hl hosc. Higher-level version of HOSC [9,11]. It can use lemmas which are
also proved by supercompilation.

– hipspec. HipSpec [3] is an inductive prover for Haskell which can generate
conjectures by testing, prove them using an SMT-solver, and then use them
as lemmas to prove the goal and other conjectures. Since HipSpec assumes
totality, it is not fair to compare other tools to pure HipSpec (the column
“hipspec (total)”), so we also used a trick to encode programs operating on
data with bottoms as total programs by adding additional bottom constructor
to each data type. The results of HipSpec on these adjusted tests are shown
in the column “hipspec (bot)”.

Overall, there is no clear winner among the tested tools. Some conclusions
may be drawn from the results:

– First of all, HipSpec in total mode proves most of the equalities, which is
expected. Most of the equalities it doesn’t prove involve infinite data structures
which aren’t fully supported (yet).

– HipSpec is much less powerful on tests adjusted with bottoms. Indeed, partial
equalities are often a bit trickier to prove than their total counterparts. It is
also possible that this particular approach of reducing a partial problem to a
total one and then using a total prover is not very efficient.

– Graphsc and HipSpec don’t work very well on examples that need deep driving
like the KMP-test (kmp-eq). In the case of Graphsc it is concerned with its
breadth-first approach to transformation.

– Graphsc cannot solve tasks that need nontrivial generalizations.
– HOSC is very fast for this task. This seems to be due to depth-first nature of

traditional supercompilers. HipSpec sometimes is very fast, and sometimes it
gets lost in proving irrelevant conjectures. Our tool seems to be somewhere in
the middle.
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Table 1. Comparison of different tools on the test set
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6 Related Work

Our work is based on the method of equality saturation, originally proposed by
Tate et al. [18]. Their implementation, named Peggy, was designed to transform
programs in low-level imperative languages (Java bytecode and LLVM), although
internally Peggy uses a functional representation. In our work we transform lazy
functional programs, so we don’t have to deal with encoding imperative opera-
tions in functional representation, which makes everything much easier. Another
difference is that in our representation nodes correspond to functions, not just
first-order values, moreover we merge equivalence classes corresponding to func-
tions equal up to parameter permutation, which considerably reduces space con-
sumption. We also articulate the merging by bisimilarity transformation which
plays a very important role, making our tool essentially an inductive prover.
Note that Peggy have a similar (but simpler) transformation that can merge
θ-nodes, but it doesn’t seem to be published anywhere.

Initially our work arose from analyzing differences between overgraph super-
compilation [6] and equality saturation, overgraph supercompilation being a
variety of multi-result supercompilation with a flavor of equality saturation. Multi-
result supercompilation was put forward by Klyuchnikov and Romanenko [12],
and its idea is to produce multiple residual programs by exploring multiple trans-
formation paths in decision-making points. Multi-result supercompilation was
proposed mainly to aid higher-level supercompilation. Higher-level supercompi-
lation is a broad term denoting systems that use supercompilation as a primi-
tive operation, in particular supercompilers that can invent lemmas, prove them
with another (lower-level) supercompiler, and use them in the process of super-
compilation. Examples of higher-level supercompilation are distillation, proposed
by Hamilton [7], and two-level supercompilation, proposed by Klyuchnikov and
Romanenko [9,11]. We perform something similar to higher-level supercompila-
tion, but instead of descending to lower levels when we think that we need a lemma,
we start with the zeroth level and then prove more and more equalities, possibly
using previously proven ones, thus gradually increasing the level.

Inductive provers use induction to prove propositions. Some inductive provers
can automatically discover lemmas needed to prove the target proposition, and
prove them as well. Sometimes this is done in a top-down manner, by conjectur-
ing lemmas when the proof gets stuck or some heuristic says so. Some provers
work in a bottom-up manner, for example HipSpec [3] uses theory exploration
to discover lemmas. For this purpose it invokes QuickSpec, which generates all
terms up to some depth, splits them into equivalence classes by random testing,
and then transforms them into a set of conjectures. Then these conjectures can
be proved and used as lemmas. As to our tool, we use something intermediate
between the two approaches: instead of using arbitrary terms, we use the terms
represented by equivalence classes of the E-graph (i.e. generated by transforming
the initial term) and then try to prove them equal pairwise, discarding unfruitful
pairs by comparing perfect tree prefixes that have been built in the E-graph so
far, instead of testing.
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HipSpec uses external SMT-solvers to prove propositions, while we maintain
our own E-graph (recall that similar structures are an essential part of SMT-
solvers since they are used to solve the congruence closure problem). Hence, our
approach is less modular, but, on the bright side, this shared E-graph can be
used for other purposes, like optimization.

7 Conclusion

In this paper we’ve shown how an inductive prover for a non-total first-order lazy
language can be constructed on top of the ideas of equality saturation. The key
ingredient is merging by bisimilarity which enables proof by induction. Another
feature that we consider extremely important is the ability to merge equivalence
classes even if they represent functions equal only up to some renaming.

Of course our prover has some deficiencies:

– It is limited to propositions about function equivalence, and it is not obvious
how to add support for implications.

– Our prover lacks proper generalizations. We have an experimental flag that
enables arbitrary generalizations, but it usually leads to combinatorial explo-
sion of the E-graph.

– We don’t support higher-order functions internally and need to perform
defunctionalization if the input program contains them.

– Our internal representation is untyped, and for this reason we cannot prove
some natural equalities.

Besides mitigating the above problems, another possible area of application
may be optimization of functional program. Equality saturation has already
been successfully applied to imperative program optimization, so some results
in the functional field are to be expected. And even merging by bisimilarity may
be of some use since it is known that using lemmas may lead to superlinear
performance improvement.
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Abstract. The open maps approach has recently been successfully app-
lied to structure and unify a wide range of behavior equivalences for con-
currency. In this paper, we will prove that timed history preserving (thp-)
bisimulation can be captured by an open maps based bisimilarity and
its logical counterpart — path bisimilarity, when timed causal trees are
chosen as the model category. In particular, we will construct a category
of timed causal trees and a subcategory of causal timed words, for which
notions of open maps and paths will be developed. Then we will define the
open maps based bisimilarity and the path bisimilarity and will establish
that the obtained bisimilaries coincide with thp-bisimulation.

1 Introduction

There are confusingly many models for concurrency and too many equivalences
on them. It is a common practice to compare models on the basis of two antago-
nistic views on bisimulation semantics: interleaving – true concurrency. Interleav-
ing models “reduce” concurrency to non-determinism and allow us to represent
processes as trees. In contrast, true concurrent models use concurrency as a prim-
itive notion extracted from partial orders, but they are not so handy and have
no obvious syntactic description. In order to reconcile these views, Darondeau
and Degano have recast partial ordering semantics in the framework of trees and
have introduced causal trees which keep the treelike structure of the interleaving
models and the descriptive power of the true concurrent models.

The category theory has been successfully used to structure models for con-
currency and behavioral equivalences on them. In particular, much effort has
been made in relating the models by adjunctions whose adjoints give transla-
tions of one model into another (see [3,8,13] among others). In addition, several
categorical approaches to the matter have appeared in the literature as a result
of attempts to explain apparent differences and to unify the extensive amount
of behavioral equivalences. Two of them were initiated by Joyal, Nielsen, and
Winskel in [8] where they have proposed abstract ways of capturing the notion
of behavioral equivalence through open maps based bisimilarity and its logical
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counterpart — path bisimilarity. These bisimilarities make possible a uniform
definition of behavioral equivalences over different models ranging from interleav-
ing models to partial order ones [1,3,10,13]. On the interleaving models abstract
bisimilarity readily corresponds to interleaving bisimulation, but on the true con-
current models it leads to strong history preserving bisimulation. However, on
causal trees it directly characterizes history preserving bisimulation.

Last years, various models and equivalences have been extended with real-
time characteristics in order to handle quantitative aspects of system behaviors.
Some part of the theory of untimed systems has been lifted to the real-time
setting. In [6,11], an open maps based characterization is provided for interleav-
ing bisimulation on timed transition systems and for partial order equivalences
on timed event structures. The same approach was used in [5] to prove that a
timed delay equivalence is indeed an equivalence relation for timed automates.
In [12] it was shown how several categorical (open maps, path bisimilarity and
coalgebraic) approaches to an abstract characterization of bisimulation relate to
each other and to the behavioural equivalences for timed transition systems. But
one model has not been developed in this direction: the causal trees.

The aim of the paper is to extend the causal trees to a new model with real-
time characteristics — timed causal trees — and to provide open maps based and
path bisimilarity based characterizations for a thp-bisimulation in their settings.
Such characterizations and path assertions from [8] will allow us to construct
the characteristic logics for the bisimulation under consideration.

2 Timed Causal Trees

In this section, we represent a timed extension of causal trees [2] and define their
behavior. Causal trees are some variant of synchronization trees with labels that
supply information about which transitions are causally dependent on each other.
In [3], Fröschle and Lasote proved that causal trees are more basic than event
structures since they capture causality without a notion of event, and they are
more expressive than the latter, because their possible runs can be freely speci-
fied in terms of a tree. In contrast, event structures and their sets of runs adhere
to certain axioms that express characteristics of independent events. We will
define timed causal trees as generalizations of causal trees [2] and as a variant of
timed transition systems [6] supplemented with the causality relation. A timed
transition system is a finite transition system with a finite set of real-valued
clocks. The clocks can be reset to 0 (independently of each other) with the tran-
sitions of the systems, and keep track of the time elapsed since the last reset. The
transitions put certain constraints on the clock values: a transition may be taken
only if the current values of the clocks satisfy the associated constraints. This
model can capture several interesting aspects of real-time systems: qualitative
and quantitative features.

To start with, let us introduce some auxiliary notions and notations. Let R
be the set of non-negative reals, N be the set of positive integers, and Σ be a
finite alphabet of actions. A causal timed word (over Σ) is a finite sequence of
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the form αn = (σ1, d1,K1) . . . (σn, dn,Kn), where n ≥ 0, σi is an action from Σ,
di ∈ R is the time of execution of σi relative to the starting time s.t. di ≤ di+1

(1 ≤ i < n), and Ki ⊆ {j ∈ N | j < i} is a set of causes s.t. if k ∈ Ki then
Kk ⊆ Ki (i = 1, . . . , n). We consider a finite set V of clock variables. A clock
valuation over V is a mapping ν : V → R which assigns time values to the clock
variables. Define (ν + c)(x) := ν(x) + c for all x ∈ V and c ∈ R. For a subset λ
of clock variables, we write ν[λ → 0](x) := 0, if x ∈ λ, and ν[λ → 0](x) := ν(x),
otherwise. Given a set V , we define the set Δ(V ) of clock constraints by the
following grammar: δ: := c # x | x + c # y | δ ∧ δ, where # ∈ {≤, <,≥, >,=},
c ∈ R and x, y ∈ V . We say that δ is satisfied by ν if the expression δ[ν(x)/x]1

evaluates to true. A clock constraint δ defines a subset of Rm (m = |V |) denoted
as ‖δ‖V . A clock valuation ν defines a point in Rm denoted as ‖ν‖V . So, the
clock constraint δ is satisfied by ν iff ‖ν‖V ∈ ‖δ‖V .

According to [6], a timed transition system is a tuple (S, s0, Σ, V, T ), where
S is a set of states with the initial state s0, V is a set of clock variables, T ⊆
S × Σ × Δ(V ) × 2V × S is a set of transitions. We write s

σ→
δ, λ

s′ to denote

a transition (s, σ, δ, λ, s′). We extend this notation to possibly empty strings of
labels v = σ1 . . . σn and p = (δ1, λ1) . . . (δn, λn) writing s

v→
p

s′ to indicate

that s
σ1−→

δ1, λ1
s1 . . . sn−1

σn−→
δn, λn

s′ for some s1, . . . , sn−1 ∈ S.

A timed synchronization tree is an acyclic timed transition system without
backwards branching, for which every state is potentially reachable, i.e. for all
s ∈ S there are v = σ1 . . . σn and p = (δ1, λ1) . . . (δn, λn) s.t. s0

v−→
p

s.

We are now prepared to consider the definition of timed causal trees.

Definition 1. A timed causal tree T C (over Σ) is a tuple (S, s0, Σ, V , T ,
<), where (S, s0, Σ, V, T ) is a timed synchronization tree and <⊆ T × T is a
strict order, called the causal dependency relation, such that if (s, σ, δ, λ, s′) <

(s′′, σ′, δ′, λ′, s′′′) then s′ v−→
p

s′′ for some strings of labels v and p.

Intuitively, this condition reflects a natural property of causality: if one transi-
tion is a cause of another transition, then the first transition must have hap-
pened before the second one. We say that two transitions (s, σ, δ, λ, s′) and
(s′′, σ′, δ′, λ′, s′′′), appeared on the same branch, are concurrent iff they are not
identical and not related by <.

Definition 2. Let T C = (S, s0, Σ, V, T,<) be a timed causal tree. A configu-
ration of T C is a pair 〈s, ν〉, where s ∈ S and ν is a clock valuation over V .
A configuration 〈s0, ν0〉 of T C, where ν0 is the constant 0 function, is called initial.

A run (inducing α = (σ1, d1,K1) . . . (σn, dn,Kn)) in T C is a sequence γ =
〈s0, ν0〉 σ1→

d1,K1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉 σn→

dn,Kn

〈sn, νn〉 s.t. for all 0 < i ≤ n there

is a transition si−1
σi→

δi, λi

si with ‖νi−1 + (di − di−1)‖V ∈ ‖δi‖V and νi =

(νi−1+(di−di−1))[λi → 0] and Ki = {j ∈ N | j ≤ i−1 and (sj−1, σj , δj , λj , sj) <

1 δ[y/x] is the substitution of y for x in δ.
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(si−1, σi, δi, λi, si)}. Here, 〈s0, ν0〉 is the initial configuration and d0 = 0. We use
Runs(T C) to denote the set of runs of T C. We say a run γ can be extended to
some run γ′ in T C iff γ is a prefix of γ′.

Example 1. To illustrate the concepts, consider the timed causal tree T C (see
Fig. 1) which has four states s0 (the initial state), s1, s2 and s3, three actions a,
b and c, and two clock variables x and y. Three transitions, t1, t2 and t3 depicted
between the states are labeled by actions, clock constraints and subsets of clocks.
For instance, t1 is labelled by an action a, a clock constraint x ≤ 1 and a subset
{y} of clock variables. Moreover, t1 is a cause for t2. Clearly, 〈s0, ν0〉 a→

1,∅
〈s1, ν1〉

b→
1,{1}

〈s2, ν1〉 with ν1(x) = 1 and ν1(y) = 0 is the run inducing (a, 1, ∅) (b, 1, {1}).

Fig. 1. Some examples of timed causal trees.

3 Timed History Preserving Bisimulation

In this section we define a timed extension of history preserving bisimulation [4]
(or thp-bisimulation) in the setting of the model under consideration. Informally,
two timed causal trees are bisimilar iff their behavior can be bisimulated while
preserving the causal dependencies between their transitions.

Let T C1 and T C2 be timed causal trees. Runs γ1 ∈ Runs(T C1) and γ2 ∈
Runs(T C2) are synchronous iff they induce the same causal timed word. Let
SRuns(T C1, T C2) be the set of synchronous runs of T C1 and T C2. A relation
B ⊆ SRuns(T C1, T C2) is called prefix-closed iff (γ1, γ2) ∈ B implies (γ′

1, γ
′
2) ∈

B for all prefixes γ′
1 and γ′

2 of γ1 and γ2 respectively, such that (γ′
1, γ

′
2) ∈

SRuns(T C1, T C2). Following [3], we assume a thp-bisimulation to be prefix-
closed, since this restriction has no effect on the induced equivalence.

Definition 3. Let T C1 and T C2 be timed causal trees. Then, a thp-bisimulation
between T C1 and T C2 is a prefix-closed relation B ⊆ SRuns(T C1, T C2) such that
the pair of initial runs belongs to B and for all (γ1, γ2) ∈ B, where both γ1 and γ2
induce αn, the following holds: whenever γi (i = 1, 2) can be extended to the run
γ′

i inducing α′
n+1 = αn(σ, d,K) in T Ci, γ3−i can also be extended to some run

γ′
3−i inducing α′

n+1 in T C3−i and(γ′
1, γ′

2) ∈ B. T C1 and T C2 are thp-bisimilar
iff there is a thp-bisimulation between them.
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Example 2. To illustrate the concept, we consider three timed causal trees, T C,
T C′ and T C′′, shown in Fig. 1. Clearly, T C and T C′ are thp-bisimilar, but T C
and T C′′ are not, because in T C′′ there exists a run inducing (a, 1, ∅) which can
not be extended by an occurrence of (c, 3, ∅), but in T C we have the unique run
inducing (a, 1, ∅) which can be extended to the run inducing (a, 1, ∅)(c, 3, ∅).

4 Elements of Category Theory

The concept of an open map (open morphism) appears in the paper by Joyal and
Moerdijk [7], where a concept of a subcategory of open maps of a (pre)topos is
defined. As reported in [8,9], the open map approach provides general concepts
of bisimilarity for any categorical model of computations.

First, a category M whose objects represent models of computations has to
be identified. A morphism m : X → Y in M should intuitively be thought of as
a simulation of the object X in the object Y . Then, inside the category M, we
choose a subcategory of ‘path objects’ and ‘path extension’ morphisms between
them. The path subcategory is denoted by P. Given a path object P in P and a
model object X in M, a path is a morphism p : P → X in M.

Second, we identify morphisms m : X −→ Y which have the following path-
lifting property: whenever f : P1 → P2 in P, p : P1 → X and q : P2 → Y in M,
and m ◦ p = q ◦ f , there exists a morphism h : P2 → X in M s.t. p = h ◦ f and
q = m ◦ h. If the morphism m has this property, we will say it is P-open.

Third, an abstract notion of bisimilarity is introduced. Two objects X and

Y in M are said to be P-bisimilar if there exists a span X
m←− Z

m′
−→ Y with a

common object Z of P-open morphisms.

5 Open Maps Characterization

In this section, the category of timed causal trees and its subcategory are intro-
duced and the open maps based characterization of thp-bisimilarity is given.

Definition 4. Given timed causal trees T C = (S, s0, Σ, V, T,<) and T ′ =
(S′, s′

0, Σ, V ′, T ′, <′), a pair (μ, η) is a morphism between them if μ : S →
S′ is a mapping between the states and η : V ′ → V is a mapping between
the clock variables, s.t. for each run γ = 〈s0, ν0〉 σ1→

d1,K1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉

σn→
dn,Kn

〈sn, νn〉 in T C, there exist K ′
1, . . ., K ′

n s.t. K ′
i ⊆ Ki for all 1 ≤ i ≤ n

and γ′ = 〈μ(s0), η−1(ν0)〉 σ1→
d1,K′

1

〈μ(s1), η−1(ν1)〉 . . . 〈μ(sn−1), η−1(νn−1)〉 σn→
dn,K′

n

〈μ(sn), η−1(νn)〉 is a run in T C′ called the (μ, η)-image of γ.2

Timed causal trees and morphisms between them form a category of timed causal
trees, TCT, in which the composition of two morphisms (μ, η) : T C → T C′ and

2 Here η−1(νi)(x
′) := νi(η(x′)) for all x′ ∈ V ′ and 0 ≤ i ≤ n.
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(μ′, η′) : T C′ → T C′′ is defined as (μ′, η′) ◦ (μ, η) := (μ′ ◦ μ, η ◦ η′), and the
identity morphism is the pair of the identity functions. Following the standards
of [8], a category of causal timed words has to be constructed.

Definition 5. The full subcategory P of TCT contains the objects T αn = (Sαn ,
0, Σ, V αn , Tαn , <αn), corresponding to a causal timed word αn = (σ1, d1,K1)
. . . (σn, dn,Kn) of the form 0 σ1→

δ1,λ1
1 . . . (n−1) σn→

δn,λn

n, where Sαn = {0, . . . , n}
with 0 as the initial state, V αn consists of 2n subsets of {1, . . . , n}, Tαn =

{
(i −

1, σi, δi, λi, i) | i = 1 . . . n, λi = {x ∈ V αn | i ∈ x}, δi = ∧
x∈V αn

(x = di −dI(i,x))
}
,

where I(i, x) := max{k ∈ x ∪ {0} | k < i},3 d0 := 0, and (i − 1, σi, δi, λi, i) <αn

(j − 1, σj , δj , λj , j) ⇐⇒ i < j and i ∈ Kj; and morphisms between them.

A morphism (μ, η) : T αn → T α′
m in P shows how the causal timed word

α′
m can extend the causal timed word αn: by additional transitions and/or

by increased concurrency. Thus, (μ, η) : T αn → T α′
m is a morphism in P for

αn = (σ1, d1,K1) . . . (σn, dn,Kn) and α′
m = (σ′

1, d
′
1,K

′
1) . . . (σ′

m, d′
m,K ′

m) if and
only if n ≤ m and for all 1 ≤ i ≤ n σi = σ′

i, di = d′
i and K ′

i ⊆ Ki.
The only purpose of this seemingly complex construction of P is that it allows

us to represent the category of causal timed words with extensions inside TCT,
and to identify the runs in T C with morphisms from the objects of P to T C.

Lemma 1. Let T C be an object of TCT, αn = (σ1, d1,K1) . . . (σn, dn,Kn) be a
causal timed word and T αn be an object of P. Then,

(i) there is a unique run γαn
inducing αn in T αn , and the set of runs in T αn

consists of all prefixes of γαn
,

(ii) for all runs γ inducing αn in T C and for all α′
n = (σ1, d1,K

′
1) . . . (σn, dn,K ′

n)
such that K ′

i ⊆ Ki (1 ≤ i ≤ n), there is a unique morphism (μ, η) : T α′
n →

T C such that γ is the (μ, η)-image of the run in T α′
n , inducing α′

n.

Next, we provide a behavioural characterization of P-open morphisms.

Theorem 1. Let T C, T C′ be the objects of TCT. A morphism (μ, η) : T C →
T C′ in TCT is P-open iff for any run γ inducing αn in T C, the (μ, η)-image of
γ is a run inducing the same causal timed word and whenever the (μ, η)-image of
γ can be extended to a run γ inducing αn(σ, d,K) in T C′, γ can also be extended
to some run γ′ in T C such that γ is the (μ, η)-image of γ′.

Proof. (⇒) Assume (μ, η) to be a P-open morphism. Take an arbitrary run γ
in T C inducing αn. Denote (μ, η)-image of γ as γ′. Clearly, γ′ induces α′

n s.t.
there is the only morphism (q, ηq) : T αn → T α′

n . Due to Lemma 1(i), there are
unique runs r inducing αn in T αn and r′ inducing α′

n in T α′
n . By Lemma 1(ii),

there are unique morphisms (p, ηp) : T αn → T C and (f, ηf ) : T α′
n → T C′

s.t. γ is the (p, ηp)-image of r and γ′ is the (f, ηf )-image of r′. It is easy to
see (μ, η) ◦ (p, ηp) = (f, ηf ) ◦ (q, ηq). Since (μ, η) is a P-open morphism, there

3 The number returned by I(i, x) is the last state before i at which x was reset.
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is a morphism (h, ηh) : T α′
n → T C such that (μ, η) ◦ (h, ηh) = (f, ηf ) and

(h, ηh) ◦ (q, ηq) = (p, ηp). Hence, γ is a (h, ηh)-image of r′ and αn = α′
n.

Now suppose that γ′ can be extended to a run γ′ inducing α′′
n+1 = αn(σ, d,K)

in T C′. Again by Lemma 1, we have a unique run r′′ inducing α′′
n+1 in T α′′

n+1 ,
and a unique morphism (f ′, ηf ′) : T α′′

n+1 → T C′ s.t. γ′ is the (f ′, ηf ′)-image of
r′′. Due to the construction of T αn and T α′′

n+1 there exists the only morphism
(g, ηg) : T αn → T α′′

n+1 s.t. the prefix of r′′ inducing αn is the (g, ηg)-image of r.
Hence, (μ, η) ◦ (p, ηp) = (f ′, ηf ′) ◦ (g, ηg). Since (μ, η) is a P-open morphism,
there is a morphism (l, ηl) : T α′′

n+1 → T C such that (μ, η) ◦ (l, ηl) = (f ′, ηf ′) and
(l, ηl)◦ (g, ηg) = (p, ηp). This implies that γ can be extended to the (l, ηl)-image
of r′′ and γ′ is the (μ, η)-image of the (l, ηl)-image of r′′.

(⇐) Assume that we have morphisms (f, ηf ) : T αn → T α′
m in P and (p, ηp) :

T αn → T C and (q, ηq) : T α′
m → T C′ in TCT such that (μ, η) ◦ (p, ηp) = (q, ηq) ◦

(f, ηf ). Consider the proof of the case when m = n+1 and α′
m = αn(σ, d,K) (the

proofs of the other cases are similar). According to Lemma 1(i), there are unique
runs r inducing αn in T αn and r′ inducing α′

n+1 in T α′
n+1 , and the (f, ηf )-image of

r is a prefix of r′. Define γ as the (p, ηp)-image of r, γ′ as the (q, ηq)-image of the
(f, ηf )-image of r, and γ′ as the (q, ηq)-image of r′. Clearly, γ′ is a prefix of γ′.
Since (μ, η) ◦ (p, ηp) = (q, ηq) ◦ (f, ηf ), we get that γ′ is the (μ, η)-image of γ. By
the assumptions of the theorem, γ can be extended to some run γ s.t. both γ and
γ′ induce the same causal timed word αn+1 and γ′ is the (μ, η)-image of γ. Since γ′

is the (q, ηq)-image of r′, there is a unique morphism (h, ηh) : T α′
n+1 → T C s.t. γ

is the (h, ηh)-image of r′ by Lemma 1(ii). The commutativity properties required
by P-openness follow from the properties listed above. ♦
Now the coincidence of P-bisimilarity and thp-bisimilarity is established.

Theorem 2. T C1 and T C2 from TCT are P-bisimilar iff they are thp-bisimilar.

Proof. (⇒) Assume that T C1 and T C2 are P-bisimilar with a span of P-open

maps: T C1
(μ1,η1)←− T C (μ2,η2)−→ T C2. Define B as follows: (γ1, γ2) ∈ B ⇐⇒ there is

a run γ in T C such that γi is the (μi, ηi)-image of γ (i = 1, 2). Due to Theorem 1,
it is routine to check that B satisfies the required properties of Definition 3.

(⇐) Assume T C1 and T C2 to be thp-bisimilar with the relation B as defined
in Definition refdefspshpbis and T Ci = (Si, si

0, Σ, Vi, Ti, <i) (i = 1, 2). We
construct a span of P-open maps with a vertex T Cx induced by B in the following
way. The states of T Cx will be pairs of runs from B with the pair of initial runs as
the initial state. The clock variables of T Cx will be the disjoint union of V1 and
V2. Next, for all pairs of runs (γ1

n, γ2
n) inducing αn = (σ1, d1,K1) . . . (σn, dn,Kn)

from B (n > 0), there will be an incoming transition in T Cx from the pair of runs
(γ1

n−1, γ2
n−1) inducing αn−1 from B, which are prefixes of γ1

n and γ2
n respectively,

of the form σn→
δ,λ

, where γi
n−1 ends in 〈si

n−1, ν
i
n−1〉 and γi

n ends in 〈si
n, νi

n〉 (i = 1, 2),

δ = ∧
x∈Vi,i=1,2

(x = νi
n−1(x)+(dn −dn−1)); and λ = {x ∈ Vi | i = 1, 2, νi

n(x) = 0}.

Finally, we define the causal dependency relation <x as follows: a pair of runs
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(γ1
n, γ2

n) from B, inducing αn = (σ1, d1,K1) . . . (σn, dn,Kn), is a cause of a pair
of runs (γ′1

m, γ′2
m) from B, inducing α′

m = (σ′
1, d

′
1,K

′
1) . . . (σ′

m, d′
m,K ′

m), if and
only if γi

n is a prefix of γ′i
m for all i = 1, 2 and n ∈ K ′

m.
For i = 1, 2, define the mappings (μi, ηi) : T Cx → T Ci as follows: μi((γ1

n,
γ2

n)) = si
n, where si

n is the last state of γi
n, and ηi is the injection function. By

construction, (μi, ηi) is a morphism, and openness follows from Theorem1. ♦

6 Path Bisimilarity

To obtain a logic characteristic of bisimulation induced by open maps, Joyal,
Nielsen, and Winskel [8] have proposed a second category-theoretic characteri-
zation of bisimulation — path bisimilarity.

Let M be a category of models, let P be a small category of path objects,
where P is a subcategory of M, let I be a common initial object4 of P and M.

Definition 6. Two objects X1 and X2 of M are called path-P-bisimilar iff there
is a set R of pairs of paths (p1, p2) with common domain P , so p1 : P → X1 is
a path in X1 and p2 : P → X2 is a path in X2, such that

(o) (i1, i2) ∈ R, where i1 : I → X1 and i2 : I → X2 are the unique paths starting
in the initial object, and for all (p1, p2) ∈ R and for all m : P → Q, where
m is in P, holds

(i) if there exists q1 : Q → X1 with q1 ◦ m = p1 then there exists q2 : Q → X2

with q2 ◦ m = p2 and (q1, q2) ∈ R and
(ii) if there exists q2 : Q → X2 with q2 ◦ m = p2 then there exists q1 : Q → X1

with q1 ◦ m = p1 and (q1, q2) ∈ R.

Two objects X1 and X2 are strong path-P-bisimilar iff they are path-P-bisimilar
and the set R further satisfies:

(iii) if (q1, q2) ∈ R, with q1 : Q → X1 and q2 : Q → X2 and m : P → Q, where
m is in P, then (q1 ◦ m, q2 ◦ m) ∈ R.

Theorem 3. P-bisimilarity, path-P-bisimilarity, strong path-P-bisimilarity all
coincide with thp-equivalence.

Proof. According to Theorem 2, thp-equivalence coincides with P-bisimilarity.
The fact that P-bisimilarity implies (strong) path-P-bisimilarity follows from
Lemma 16 [8]. Hence, it is sufficient to show that if T C1 and T C2 are path-P-
bisimilar then they are thp-equivalent. Suppose that R is a path-P-bisimulation
between T C1 and T C2. Define a relation B as follows:

(
γ1, γ2

) ∈ B ⇐⇒ there is(
(μ1, η1), (μ2, η2)

) ∈ R s.t. (μi, ηi) : T α → T Ci and γi is (μi, ηi)-image of γα (i =
1, 2) where γα is the run inducing α in T α. Using Lemma 1 and properties of the
path-P-bisimulation R it is easy to check that B is indeed a thp-bisimulation. ♦

4 In our case the initial object I is the timed causal tree ({s0}, s0, Σ, ∅, ∅, ∅).
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7 Conclusion

In this paper, we have represented and investigated a timed variant of causal
trees. In particular, we have integrated it into Winskel and Nielsen’s framework
and have shown that thp-bisimulation has an open map based and path bisim-
ilarity based characterizations when timed causal trees are taken as the model
category. This result proves that thp-bisimulation is a bisimilarity for causality
while strong thp-bisimulation remains a bisimilarity for true concurrency.

The model under consideration has some advantages. For instance, it has a
treelike structure and possesses a global partial order of causal dependency on
transitions. Hence, the timed causal trees are a basic convenient semantic model
for timed CCS. However, we think that timed causal trees also can be used in
other fields of concurrency. We plan to continue our work in order to investigate
this area and to examine how our model relates to the other concurrent models.
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Abstract. A new security concept called process opacity is formalized
and studied. For processes which are process opaque with respect to
a given predicate over processes, an intruder cannot learn validity of
this predicate for any subsequent state of computation. We discuss dif-
ferent extensions of this concept as well as its properties. We put some
restrictions on predicates in such a way that we obtain decidable security
properties.

Keywords: Process opacity · Process algebras · Information flow ·
Security

1 Introduction

Many security properties are based on non-interference (see [GM82]) which
assumes an absence of any information flow between private and public systems
activities. More precisely, systems are considered to be secure if from observa-
tions of their public activities no information about private activities can be
deduced. This approach has found many reformulations for different formalisms,
computational models and nature or “quality” of observations. Opacity is a gen-
eral security property (see [BKR04,BKMR06]) and many security properties can
be viewed as its special cases (see, for example, [Gru07]). A predicate is opaque if
for any trace of a system for which the predicate holds there exists another trace
for which the predicate does not hold and the both traces are indistinguishable
for an observer (which is expressed by an observation function). This means that
the observer (intruder) cannot say whether the predicate holds or does not hold
for a trace which has been performed. Opacity is widely studied also in a process
algebra framework and it represents a generalization of many traditional security
properties for process algebras (see, for example, [Gru12a,Gru12b,Gru10]).

The aim of this paper is to extend the concept opacity in such a way that
instead of process’s traces we focus on properties of reachable states. Hence
we assume an intruder who is not primarily interested whether some sequence
of actions performed by a process has some given property but we consider
an intruder who wants to discover whether this process reaches a state which
satisfied some given (classified) predicate. It turns out that in this way we can
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capture some new security flaws. The resulting property, called process opacity,
is undecidable. Hence we somehow restrict it to obtain a still meaningful but
(polynomial time) decidable property. We study properties of process opacity as
well as how this notion can be used for description of other information flow based
security properties. Since our plan is to elaborate techniques for description of
timing attacks and to verify systems security against them, we have decided to
work with a timed process algebra which can be used for description of timing
behavior of systems. We do not consider value-passing algebra since we focus on
actions and not on communicated values. Considering also values and possible
security types of variables would bring new challenges and we leave it for a
further work.

The paper is organized as follows. In Sect. 2 we describe the timed process
algebra TPA which will be used as a basic formalism. In Sect. 3 we present
opacity and in the next section process opacity is defined and studied. Section 5
contains discussion and plans for a future work.

2 Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on
Milner’s CCS but the special time action t which expresses elapsing of (discrete)
time is added. The presented language is a slight simplification of Timed Secu-
rity Process Algebra introduced in [FGM00]. We omit an explicit idling operator
ι used in tSPA and instead of this we allow implicit idling of processes. Hence
processes can perform either “enforced idling” by performing t actions which are
explicitly expressed in their descriptions or “voluntary idling” (i.e. for example,
the process a.Nil can perform t action since it is not contained the process spec-
ification). But in the both cases internal communications have priority to action
t in the parallel composition. Moreover we do not divide actions into private and
public ones as it is in tSPA. TPA differs also from the tCryptoSPA (see [GM04]).
TPA does not use value passing and strictly preserves time determinacy in case
of choice operator + what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbols
A not containing symbols τ and t, and such that for every a ∈ A there exists
a ∈ A and a = a. We define Act = A ∪ {τ}, At = A ∪ {t}, Actt = Act ∪ {t}. We
assume that a, b, . . . range over A, u, v, . . . range over Act, and x, y . . . range
over Actt. Assume the signature Σ =

⋃
n∈{0,1,2} Σn, where

Σ0 = {Nil}
Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M | M ⊆ A}
Σ2 = {|,+}

with the agreement to write unary action operators in prefix form, the unary
operators [S], \M in postfix form, and the rest of operators in infix form. Rela-
beling functions, S : Actt → Actt are such that S(a) = S(ā) for a ∈ A,S(τ) = τ
and S(t) = t.
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The set of TPA terms over the signature Σ is defined by the following BNF
notation:

P : := X | op(P1, P2, . . . Pn) | μXP

where X ∈ V ar, V ar is a set of process variables, P, P1, . . . Pn are TPA terms,
μX− is the binding construct, op ∈ Σ.

The set of CCS terms consists of TPA terms without t action. We will use
an usual definition of opened and closed terms where μX is the only binding
operator. Closed terms which are t-guarded (each occurrence of X is within
some subterm t.A i.e. between any two t actions only finitely many non timed
actions can be performed) are called TPA processes.

We give a structural operational semantics of terms by means of labeled
transition systems. The set of terms represents a set of states, labels are actions
from Actt. The transition relation → is a subset of TPA×Actt×TPA. We write
P

x→ P ′ instead of (P, x, P ′) ∈ → and P � x→ if there is no P ′ such that P
x→ P ′.

The meaning of the expression P
x→ P ′ is that the term P can evolve to P ′ by

performing action x, by P
x→ we will denote that there exists a term P ′ such

that P
x→ P ′. We define the transition relation as the least relation satisfying

the inference rules for CCS plus the following inference rules:

Nil
t→ Nil

A1
u.P

t→ u.P
A2

P
t→ P ′, Q t→ Q′, P | Q � τ→

P | Q
t→ P ′ | Q′

Pa
P

t→ P ′, Q t→ Q′

P + Q
t→ P ′ + Q′

S

Here we mention the rules that are new with respect to CCS. Axioms A1, A2
allow arbitrary idling. Concurrent processes can idle only if there is no possibility
of an internal communication (Pa). A run of time is deterministic (S) i.e. per-
forming of t action does not lead to the choice between summands of +. In the
definition of the labeled transition system we have used negative premises (see
Pa). In general this may lead to problems, for example with consistency of the
defined system. We avoid these dangers by making derivations of τ independent
of derivations of t. For an explanation and details see [Gro90].

For s = x1.x2. . . . .xn, xi ∈ Actt we write P
s→ instead of P

x1→x2→ · · · xn→ and
we say that s is a trace of P . The set of all traces of P will be denoted by Tr(P ).
By ε we will denote the empty sequence of actions, by Succ(P ) we will denote the
set of all successors of P i.e. Succ(P ) = {P ′|P s→ P ′, s ∈ Actt∗}. If set Succ(P )
is finite we say that P is finite state process. We define modified transitions x⇒M

which “hide” actions from M . Formally, we will write P
x⇒M P ′ for M ⊆ Actt

iff P
s1→ x→ s2→ P ′ for s1, s2 ∈ M� and P

s⇒M instead of P
x1⇒M

x2⇒M · · · xn⇒M . We
will write P

x⇒M if there exists P ′ such that P
x⇒M P ′. We will write P

x̂⇒M P ′

instead of P
ε⇒M P ′ if x ∈ M . Note that x⇒M is defined for arbitrary action

but in definitions of security properties we will use it for actions (or sequence
of actions) not belonging to M . We can the extend the definition of ⇒M for
sequences of actions similarly to s→. We conclude this section with definitions
M-bisimulation and weak timed trace equivalence.



154 D.P. Gruska

Definition 1. Let (TPA,Actt,→) be a labelled transition system (LTS). A rela-
tion � ⊆ TPA × TPA is called a M-bisimulation if it is symmetric and it sat-
isfies the following condition: if (P,Q) ∈ � and P

x→ P ′, x ∈ Actt then there
exists a process Q′ such that Q

x̂⇒M Q′ and (P ′, Q′) ∈ �. Two processes P,Q
are M-bisimilar, abbreviated P ≈M Q, if there exists a M-bisimulation relating
P and Q.

Definition 2. The set of weak timed traces of process P is defined as Trw(P ) =
{s ∈ (A ∪ {t})�|∃P ′.P s⇒{τ} P ′}. Two process P and Q are weakly timed trace
equivalent (P �w Q) iff Trw(P ) = Trw(Q).

3 Information Flow

In this section we will present motivations for new concepts which will be intro-
duced in the next section. First we define an absence-of-information-flow prop-
erty - Strong Nondeterministic Non-Interference (SNNI, for short, see [FGM00]).
Suppose that all actions are divided into two groups, namely public (low level)
actions L and private (high level) actions H. It is assumed that L ∪ H = A.
Process P has SNNI property (we will write P ∈ SNNI) if P \ H behaves
like P for which all high level actions are hidden (by action τ) for an observer.
To express this hiding we introduce hiding operator P/M,M ⊆ A, for which it
holds if P

a→ P ′ then P/M
a→ P ′/M whenever a �∈ M ∪ M̄ and P/M

τ→ P ′/M
whenever a ∈ M ∪ M̄ . Formal definition of SNNI follows.

Definition 3. Let P ∈ TPA. We say that P has SNNI property, and we write
P ∈ SNNI iff P \ H �w P/H.

SNNI property assumes an intruder who tries to learn whether a private action
was performed by a given process while (s)he can observe only public ones. If
this cannot be done then the process has SNNI property. Now we generalize
this idea. We do not divide actions into public and private ones at the system
description level but we use a more general concept of observation and opacity.
This concept was exploited in [BKR04] and [BKMR06] in a framework of Petri
Nets and transition systems, respectively. Here we will work with its translation
to a process algebra framework as it is done in [Gru07].

First we assume an observation function i.e. a function O : Actt� → Θ�,
where Θ is a set of elements called observables. Now suppose that we have some
security property. This might be an execution of one or more classified actions, an
execution of actions in a particular classified order which should be kept hidden,
etc. Suppose that this property is expressed by a predicate φ over sequences. We
would like to know whether an observer can deduce the validity of the property
φ just by observing sequences of actions from Actt� performed by system of
interest. The observer cannot deduce the validity of φ if there are two sequences
w,w′ ∈ Actt� such that φ(w),¬φ(w′) and the sequences cannot be distinguished
by the observer i.e. obs(w) = obs(w′). We formalize this concept by the notion
of opacity.
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Definition 4 (Opacity). Given process P , a predicate φ over Actt� is opaque
w.r.t. the observation function O if for every sequence w, w ∈ Tr(P ) such that
φ(w) holds and O(w) �= ε, there exists a sequence w′, w′ ∈ Tr(P ) such that
¬φ(w′) holds and O(w) = O(w′). The set of processes for which the predicate φ

is opaque with respect to O will be denoted by Opφ
O.

Example 1. Let us consider the processes P1 = h.l.Nil, P2 = h.l.Nil+ l.Nil and
P3 = l.h.Nil. Clearly P1 �∈ SNNI and P2, P3 ∈ SNNI.

The most interesting case is that of P3. The process is considered to be secure by
SNNI property despite the fact that after performing public action l only private
action h can be performed. On the other side this property can be captured by
opacity. Note that SNNI as well as many other trace based security properties
can be viewed as special cases of opacity (see, for example, [Gru07]).

Example 2. Letus consider theprocessP = l.Nil+l.h1.Nil+l.h2.Nil+l.(h1.Nil+
h2.Nil). Clearly P ∈ SNNI. Suppose that we are interested in private property
φ defined as “process cannot perform both private actions h1 and h2” (note that
this is the property of processes not traces). Clearly, by performing public action l
we cannot say that whether process reaches a state satisfying the property hence
P should be considered to be safe with respect to φ. Let us consider the process
P ′ = l.Nil + l.h1.Nil + l.h2.Nil. After performing l this process always reaches
a state which has the property φ and hence it cannot be considered as safe with
respect to φ but, we stress, these two processes cannot be distinguished by any
opacity property since the “safety” property is not a property of traces. This
motivates us to a new security concept.

4 Process Opacity

Let us assume that an intruder tries to discover whether a given process reaches
a state with some given property expressed by a (total) predicate. This property
might be process deadlock, capability to execute only traces with time length
less then n, capability to perform at the same time actions form a given set,
incapacity to idle (to perform t action) etc. We do not put any restrictions on
such the predicate but we only assume that it is consistent with some suitable
behaviorial equivalence. The formal definition of this follows.

Definition 5. We say that the predicate φ over processes is consistent with
respect to relation ∼= if whenever P ∼= P ′ then φ(P ) ⇔ φ(P ′).

As consistency relation ∼= we could take bisimulation (≈∅), weak bisimulation
(≈{τ}) or any other suitable equivalence. We suppose that the intruder can only
observe some activities performed by the process. We use a modified concept of
observation functions to express what could be observed (motivated also by SNNI
property). We suppose that there is a set of public actions which can be observed
and a set of hidden (not necessarily private) actions. To model observations we
exploit the relation s⇒M . Now formal definition of process opacity, which is
inspired by opacity, follows.
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Definition 6 (Process Opacity). Given processP , a predicateφ over processes
is process opaque w.r.t. the set M if whenever P

s⇒M P ′ for s ∈ (Actt \ M)∗

and φ(P ′) holds then there exists P ′′ such that P
s⇒M P ′′ and ¬φ(P ′′) holds.

The set of processes for which the predicate φ is process opaque w.r.t. to the M
will be denoted by POpφ

M .

Example 3. Let M = {h1, h2} and let the property φ states that a process
cannot perform both actions h1 and h2. Then P ∈ POpφ

M but P ′ �∈ POpφ
M

where P, P ′ are taken from Example 2. Recall that these two processes could
not be distinguished by opacity.

Note that if P ∼= P ′ then P ∈ POpφ
M ⇔ P ′ ∈ POpφ

M whenever φ is consistent
with respect to ∼= and ∼= is such that it a subset of the trace equivalence (defined
as �w but insted of s⇒{τ} we use s⇒∅). Process opacity is the monotonic property
with respect to the set of invisible actions M , anti-monotonic with respect to the
strength of predicates over processes and undecidable in general, as it is stated
in the following propositions.

Proposition 1. POpφ
M1

⊆ POpφ
M2

for M1 ⊆ M2 and POpφ1
M ⊆ POpφ2

M if φ2

implies φ1.

Proof. Suppose that there exists P such that P ∈ POpφ
M1

but P �∈ POpφ
M2

. That
means that there exists s such that P

s⇒M2 P ′ such that φ(P ′) holds but there is
no P ′′ such that P

s⇒M2 P ′′ and φ(P ′′) does not hold. Without loss of generality
we can assume that s|M2 = ε i.e. s does not contain actions from M2. We know

that there exist s′, s′′ such that s′|Actt\M2 = s, P
s′
→ P ′ and s′′ ∈ (Actt \ M1)∗

such that s′|Actt\M1 = s′′. We have P
s′′
⇒M1 P ′. But hence there should exists

P ′′′ such that P
s′′
⇒M1 P ′′′ for which φ(P ′′′) does not hold what contradicts our

assumption since also P
s′′
⇒M2 P ′ and P

s′′
⇒M2 P ′′′ as well as since M1 ⊆ M2.

Now let P ∈ POpφ1
M and P

s⇒M P ′ such that φ2(P ′) holds. Then also φ1(P ′)
holds and hence there exist P ′′ such that P

s⇒M P ′′ and ¬φ1(P ′′) holds. Then
also ¬φ2(P ′′) holds what means that P ∈ POpφ2

M .

Proposition 2. Process opacity is undecidable in general.

Proof. Clearly process opacity is undecidable if the corresponding predicate over
processes is undecidable itself. But it could be undecidable even for simple decid-
able predicates. Let φ holds for processes which can perform an action. And let
M = At. Then the question P ∈ POpφ

M corresponds to the halting problem for
Turing machines (due to the universal power of TPA which results from the uni-
versal power of CCS which is its subcalculus). Note that by similar arguments
undecidability of opacity has been proved (see [BKR04,BKMR06]).

To obtain a decidable variant of process opacity we put some restriction on
process predicates. First we model predicates by special processes called tests.
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For now we assume that action τ is not visible for an intruder, i.e. τ ∈ M .
The tests communicate with processes and produce

√
action if correspond-

ing predicates hold for the processes. In the subsequent proposition we show
how to exploit this idea to express process opacity by means of appropriate
M-bisimulation.

Definition 7. We say that the process Tφ is the test representing predicate φ if
φ(P ) holds iff (P |Tφ)\At ≈t

√
.Nil where

√
is a new action indicating a passing

of the test. If Tφ is the finite state process we say that φ is the finitely definable
predicate.

Proposition 3. Let us extend the set of actions by actions with upper indexes
1 and 2, respectively and let us introduce a new action k. Suppose that relabeling
functions f1 and f2 map actions from A to A1 and to A2, respectively. Let
B = μX.(

∑
li∈A\M (l1i .l

2
i .X + k̄.k̄.Nil). Then P ∈ POpφ

M iff

(P [f1]|P [f2]|B|k.Tφ[f1]|k.T¬φ[f2]) ≈M∪{t}
√

1.
√

2.Nil +
√

2.
√

1.Nil +
√

2.Nil.

Proof. Sketch. The auxiliary process B produces visible actions for each copy
of P or produces k actions which start validations of φ and ¬φ, respectively, by
corresponding tests. Then if process passes the test for validity of φ it has to
pass also the test for validity of ¬φ (ordering is not important) or can pass only
the test of validity of ¬φ or none. Note that time behaviour is checked by tests.
This is the reason why we can use ≈M∪{t} instead of ≈M .

Now, thanks to the above introduced construction, we can obtain a variant of
decidable process opacity. Actually, a limitation to finite states tests is practically
insignificant since the most of (if not all) practically important properties can
be described by them.

Proposition 4. Let φ and ¬φ are finitely definable predicates. Then process opac-
ity property POpφ

M is decidable in time O((n.m.|A|)3) for finite state processes,
where n and m are numbers of states of P and the maximum of numbers of
states of tests corresponding to φ and ¬φ.

Proof. According to Proposition 3 it is enough to prove that ≈M∪{t} can be
decided in time O((n.m.|A|)3). This can be done by slight modification of the
proof of complexity results for weak bisimulation (see [KS83]).

The definition of process opacity of predicate φ is asymmetric in the sense that if
φ(P ′) does not hold than it is not required that there exists another process for
which it holds (in general POpφ

M �= POp¬φ
M ). This means that process opacity

says something to an intruder who tries to detect only validity of φ (if it is process
opaque, than validity cannot be detected) but nothing about its non-validity i.e.
it says nothing about predicate ¬φ. Hence we define a strong variant of process
opacity.



158 D.P. Gruska

Definition 8 (Strong Process Opacity). Given process P , a predicate φ

over processes is process opaque w.r.t. the set M if whenever P
s⇒M P ′

1 for
s ∈ (Actt \ M)∗ and φ(P ′

1) holds then there exists P ′′
1 such that P

s⇒M P ′′
1 and

¬φ(P ′′
1 ) holds. Moreover, whenever P

s′
⇒M P ′

2 for s′ ∈ (Actt \ M)∗ and ¬φ(P ′
2)

holds then there exists P ′′
2 such that P

s′
⇒M P ′′

2 and φ(P ′′
2 ) holds. The set of

processes for which the predicate φ is strongly process opaque w.r.t. the M will
be denoted by SPOpφ

M .

For strong process opacity we could formulate similar properties as those ones
which hold for process opacity (see Proposition 1–3). But instead of that we clar-
ify, by the following two lemmas, the relationship between strong process opacity
and process opacity. Note that from computational point of view predicates φ
and ¬φ could be different.

Lemma 1. SPOpφ
M ⊆ POpφ

M for every φ. Moreover, there exist φ and M such
that SPOpφ

M ⊂ POpφ
M .

Proof. The first part clearly follows from definitions of process opacity and strong
process opacity. Now let as assume process P = h.l.l.Nil + l.Nil and a property
(φ) that process can perform an action. Then we have P ∈ POpφ

{h} but P �∈
SPOpφ

{h}.

Lemma 2. SPOpφ
M = SPOp¬φ

M and SPOpφ
M = POpφ ∩ POp¬φ

M for every φ
and M .

Proof. The proof clearly follows from definitions of process opacity and strong
process opacity.

If we have a process which does not belong to SOpφ
M for some φ and M then

this means that the process could be jeopardized by an attacker who can learn
validity of the secrete property expressed by φ. The presented framework allows
us also to distinguish various types of attacks. For example, it can identify timing
attacks which represent a powerful tool for “breaking” “unbreakable” systems,
algorithms, protocols, etc. To describe them we could exploit time sensitive pred-
icates, i.e. predicates for which there exist processes P, P ′ such that P ≈{t} P ′

and φ(P )∧¬φ(P ′) holds. That means, that validity of φ depends on time behav-
iour of processes since for two processes, which differ only in time behaviour, the
predicate has different values. But timing attacks might be more subtle and also
time aspects of executions might be of importance. So we formulate sensitivity
for timing attacks more generally in terms of process opacity but the same can
be done also for strong process opacity.

Definition 9. We say that process P could be jeopardized by a timing attack on
validity of φ w.r.t the set M , t �∈ M iff P ∈ POpφ

M∪{t} but P �∈ POpφ
M .
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Example 4. Let us assume (no time sensitive) predicate φ which is valid if process
can perform an action b. Let P = t.a.b.Nil + a.Nil. P ∈ POpφ

{t} but P �∈ POpφ
∅

and hence it could be jeopardized by attackers who see all actions including
elapsing of time. For attackers who do not see elapsing of time the process is
secure.

5 Discussion and Further Work

We have presented the new security properties called process opacity and strong
process opacity and we have formalized them in the timed process algebra set-
ting. They can be used to model different security properties than traditional
ones. Moreover, by careful choice of processes expressing predicates we can obtain
properties which can be effectively checked. We can model security with respect
to limited time length of an attack, with a limited number of attempts to per-
form an attack and so on. The presented approach allows us to exploit also
process algebras enriched by operators expressing other “parameters” (space,
distribution, networking architecture, processor, power consumption and so on).
In this way also other types of attacks, which exploit information flow through
various covert channels, can be described. We plan to study more sophisticated
observational functions as well as compositional properties of process opacity so
that bottom-up design of secure processes would be possible. In the future we
also plan to further elaborate the technique which has been used for expressing
timing attacks as well as to enrich the presented framework by value-passing
features.
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[BKMR06] Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised
to transition systems. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A.,
Schneider, S. (eds.) FAST 2005. LNCS, vol. 3866, pp. 81–95. Springer,
Heidelberg (2006)

[FGM00] Focardi, R., Gorrieri, R., Martinelli, F.: Information flow analysis in a
discrete-time process algebra. In: Proceedings of 13th Computer Security
Foundation Workshop. IEEE Computer Society Press (2000)

[GM04] Gorrieri, R., Martinelli, F.: A simple framework for real-time cryptographic
protocol analysis with compositional proof rules. Sci. Comput. Program.
50(1–3), 23–49 (2004)

[GM82] Goguen, J.A., Meseguer, J.: Security policies and security Models. In: Pro-
ceedings of IEEE Symposium on Security and Privacy (1982)

[Gro90] Groote, J.F.: Transition system specifications with negative premises. In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp.
332–341. Springer, Heidelberg (1990)



160 D.P. Gruska

[Gru12a] Gruska, D.P.: Informational analysis of security and integrity. Fundamenta
Informaticae 120(3–4), 295–309 (2012)

[Gru12b] Test based security: Concurrency, Specification and Verification CS&P
2012, Berlin, vol. 1 (2012)

[Gru10] Gruska, D.P.: Process algebra contexts and security properties. Funda-
menta Informaticae 102(1), 63–76 (2010)

[Gru07] Gruska, D.P.: Observation based system security. Fundamenta Informati-
cae 79(3–4), 335–346 (2007)

[KS83] Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and
three problems of equivalence. In: Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing, ACM (1983)



A Proof-Based Method for Modelling
Timed Systems

Alexei Iliasov(B) and Jeremy Bryans

Newcastle University, Newcastle, UK
alexei.iliasov@ncl.ac.uk

Abstract. We present a novel method for reasoning about time in state-
based proof-oriented formalisms. The method builds on a non-classical
model of time, the Leibnizian model, in which time is a relative property
determined by the observations of an evolving subject, rather than one
of the fundamental dimensions. It proves to be remarkably effective in
the context of the Event-B formalism. We illustrate the method with a
machine-checked proof of Fischer’s algorithm that, to our knowledge, is
simpler than other proofs available in the literature.

1 Introduction

Many systems require not only the demonstration of functional correctness but
also a solid argument for the ability of a system to deliver its services in a
timely manner. This is especially true for safety-critical embedded systems where
formal modelling is already applied with some success. However, at the moment,
the question of capturing time requirements in a real-life formal design is still
largely open.

The concept of time features prominently in the field of formal verification
and there is a large number of dedicated notations and semantics [2,7,16,19].
Notably, most of them are based on the Newtonian model where an absolute
time frame determines the time coordinate of all the entities in a universe.

In this paper we present a method for modelling timed systems that makes
use of the Leibnizian model of time [11]. In this model, time is not a funda-
mental dimension but rather a concept arising due to changes in an observed
entity. Whereas in the Newtonian model, an entity in the past and an entity in
the present are distinguished by consulting a common reference frame, in the
Leibnizian model they are different only if some observer is able and willing to
tell them apart.

The dichotomy of the Leibnizian model, in which two separate entities are
necessary to define the notion of time, suggests that all the time-related prop-
erties may be isolated in the observer part leaving the part being observed to
deal with functional properties. This has important practical implications: the
formulation of timing constraints does not have to be notationally tied with the
description of behaviour and so that existing methods, semantics and tools may
be employed in specifying functional properties. The symmetry between observer
c© Springer-Verlag Berlin Heidelberg 2015
A. Voronkov and I. Virbitskaite (Eds.): PSI 2014, LNCS 8974, pp. 161–176, 2015.
DOI: 10.1007/978-3-662-46823-4 14
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and an entity observes means that an observer may also be specified using an
un-timed modelling notation. The concept of time arises when two models are
combined in a certain way. Crucially, with the Leibnizian model, existing mod-
elling notations and tools may be used without any adaptations, as demonstrate
in our case study.

We use the Event-B notation [4], and show how these ideas may be embedded
within that. One closely related work is that of Abadi and Lamport [2] which
shows that timing constraints may be expressed directly in TLA without syn-
tactic or semantic extensions. Previous work on modelling time in B uses a clock
variable which records the current value of a clock, and an operation is given
to advance time [8]. This approach is taken up again for Event B in [9]. In [13]
the concept of time is embedded into the B notation itself. Time is modelled
by equipping a machine with a clock and assuming that an event execution is
not instantaneous. Timed automata [5] offers a formal framework for specifying
real-time properties by enriching the state of an automata with a number real-
valued clocks. The UPPAAL [7] tool offers support for automated verification of
timed automata. Timed process algebras have been researched extensively and
there is a large variety of notations and semantics. Timed extensions of CSP [19]
and CCS [16] are two notable examples. In particular, the elegance of the Timed
CSP language was one motivating factor for this work.

Fischer’s algorithm is a stock verification problem that has been verified
in one way or another using almost every applicable formalism such as timed
CSP [19], TLA [2] and timed automata [7]. Of particular relevance to our app-
roach are simulation-based techniques such as [12,14], although taking this app-
roach leads to considerable complexity in the resultant proofs.

The paper is structured as follows. Section 2 is a brief introduction to the
concepts and structures of the Leibnizian model of time. Section 3 describes a
modelling notation, Event-B, employed in the definition of an observed object
of our case study. In Sect. 4 we apply the discussed technique to prove Fischer’s
mutual exclusion algorithm, and we discuss conclusions in Sect. 5.

2 Leibnizian Time Model

Our ambition is to offer a technique to specify and verify time constraints in
large-scale formal designs. Such designs are necessarily constructed in a mod-
ular, incremental way using formal refinement and typically employ theorem
proving as a verification technology [6]. Industrial application of formal meth-
ods requires mature and scalable tools thus often rendering new notations and
logics impractical. The proposed technique attempts to introduce discplined and
systematic treatment of time into proof-oriented model-based notations such as
B, Z and VDM, not otherwise equipped for dealing with time.

The rest of the section defines essential concepts of our approach to introduc-
ing time reasoning using the Leibnizian time model. For brevity, we omit proofs
but these are available in the Appendix or the B model [1].

A fundamental concept is that of a process, which we define to be a transition
system.
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Definition 1 (Process). A process P is a tuple (αP, p, ιP) where αP is a set
of process states, p ⊂ αP× αP is a transition relation and ιP ⊆ αP is the set of
initial states.

Time appears when we put together two processes and let them interact in a
certain way. The nature of the interaction is what intuitively may be regarded
as an observation of one process by another.

Definition 2 (Observation Connection). An observation connection between
processes C and S is a relation ϕ ⊆ αS × αC.

A timed system is formed by a pair of processes where one process, an observer,
is said to observe another process, a subject. In the definition above, C is an
observer and S is a subject.

Definition 3 (Timed System). An observer process C, a subject process S
and an observation connection ϕ define a timed system C · ϕ · S.
The following timed system interpretation gives a precise meaning to the observa-
tional power of an observer. It defines valid, in the sense of our timing approach,
transitions of a Cartesian product of two transition systems.

Definition 4 (Interpretation of a Timed System). Given a timed system
C · ϕ · S where S = (αS, s, ιS) and C = (αC, c, ιC), its interpretation is a process

I(C · ϕ · S) ≡ (ϕ, τ(C · ϕ · S), (ιS × ιC) ∩ ϕ)

such that (ιS × ιC) ∩ ϕ �= ∅ (existence of initialisation) and every mapping
(u �→ t) �→ (u′ �→ t′) ∈ (αS × αC) × (αS × αC) of transition relation τ(C · ϕ · S)
satisfies the following properties:

(a) u �→ u′ ∈ s (a valid transition of a subject process),
(b) t �→ t′ ∈ c (a valid transition of an observer process),
(c) u �→ t, u′ �→ t′ ∈ ϕ (subject and observer transitions are in synchrony).

One may regard an observer as a historian with a preconceived notion of subject
process behaviour. An observer would not tolerate a subject that does not follow
a certain plan or timetable.

The following two definitions address the ability of a program to progress
towards and reach a specific point in its lifetime, that is, ensuring that “eventu-
ally some good thing will happen” [2].

It may happen that a proof of some properties is solely due to a mismatch
between observer and subject processes resulting in an empty interpretation with
no state transitions. To ensure that this is not the case, and that proofs are not
vacuously true, it is sufficient to exhibit an initialisation of the timed system.

Definition 5 (Consistency). A timed system C · ϕ · S is consistent if it holds
that ∃x, y · x �→ y ∈ ιS × ιC ∧ x �→ y ∈ ϕ.
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When an observer may reject certain subject states one may not reason about
liveness of a timed system on the basis of the liveness of a subject alone. In
abstract models, to assist with liveness proofs, it is useful to ensure that an
observer is prepared to accept any execution of a subject process. Then one
knows a priori that something happens in a subject process for every point of
time defined by an observer.

Definition 6 (Strictness). A timed system A = (αC, c, ιC) · ϕ · (αS, s, ιS) is
strict if for every u �→ t ∈ αS× αC and t �→ t′ ∈ c there exists some u′ such that
u′ �→ t′ ∈ τ(A) and ιC ⊆ ϕ[ιS].1

Notice that structure τ ′(A) = (αC×αS, τ(A), αC×αS) defines a new process as a
product of two simpler processes. Also, observation connection ϕ of a strict timed
system defines a simulation relation between subject and observer processes.

Watching is the observation of a timed system with another observer. Infor-
mally, an external observer makes a record of observations using its own time-
keeping device.

Definition 7 (Watching). Watching ξ(C · ϕ · S)T,ω of a timed system A =
C · ϕ · S is a process ξ(A)T,ω = (ϕ;ω,L[τ(T · ω · τ ′(A))], ιT) where T · ω · τ(A)
is strict, ω is total and functional; projection L removes states of process C:
L[X] = {((a, b), {c}) �→ (a, c) | ((a, b), {c}) ∈ X}. Also, L[ιA × ιT] ∩ ω �= ∅.2

A watching is itself a transition system hence it may be possible to replace a
timed system with its watching. One reason to do this is to separate the proof
of logical properties relevant to timing constraints from the proof of how these
properties may be expressed in a specific, implementation-oriented form, e.g.,
hard real-time constraints.

As a methodological principle, whenever possible, we insist that an observer
C of an observed timed system is tasked with the definition of event orderings
or, at a coarse granularity level, a form of scheduling policy, and just strong to
proof relevant properties. Then the consideration of delays, deadlines, durations
and the like may be isolated in the observer defining the watching of the original
system thus allowing a modeller to reuse the core of proof when considering
differing physical, be that discrete, dense or continuous.

An animation is a watching satisfying certain conditions. Let B(X) denote
the existence lower and upper bounds in X w.r.t. the relation ≺ of process
Y = (αY,≺): B(X) ≡ X ⊆ αY ∧ (∃l, u · l, u ∈ αY ∧ (∀p · p ∈ X ⇒ l ≺ p ≺ u)).

Definition 8 (Animation of Timed System). An animation of C · ϕ · S is
a watching ξ(C · ϕ · S)T,ω such that T is monotone and every bounded subset of
αT maps to a finite sequence of subject actions.

Animation may be seen as physical device iterating through the steps of a timed
system. For such a device to exist, the time flow of the animated timed system
must be compatible with physical time.
1 Notation f [X] defines a relation image: f [X] = {z | y ∈ X ∩ dom(f) ∧ z = f(y)}.
2 f ; g is a forward relational composition: f ; g = {a �→ b | a �→ e ∈ f ∧ e �→ b ∈ g}.
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2.1 Realisability

If the aim of a development is a piece of software or hardware to be deployed in
physical reality, it is necessary to check, at the level of a concrete design, that the
following realisability conditions are respected by an observer process: (1) time
advance is monotonic, and (2) an infinite number of subject steps corresponds
to an infinite number of observer steps. These conditions, often embedded into
the definition a timed language, e.g., [19], allow one to avoid design pitfalls
such as Zeno behaviour. Existence of animation (Definition 8) is a criterion of
realisability.

The following is one sufficient condition of realisability.

Theorem 1 (Criterion of Realisability, 1). A timed system is realisable if
it admits an animation based on a strict partial order with a countable alphabet.

Realisability may also be demonstrated by exhibiting an animator process with
a fixed granularity of time increments. Some Timed CSP semantics [10] rely on
a similar approach while an alternative, taken in [19], is to prove the so-called
finite variability condition - an equivalent of the property expressed in Definition 8.
The granularity technique is applied when an observer alphabet may not be made
countable, i.e., it is essential to use a dense order as the time model.

Theorem 2 (Criterion of Realisability, 2). Let T = (αT,≺, ιT) be a metric
space with metric d and ≺ is monotonic and irreflexive; T animates system
C · ϕ · S,S = (αS, s, ιS) with animation connection ω if (ϕ;ω)[ιS] �= ∅ and there
exists δ such that for any s1 �→ s2 ∈ s it holds that δ ≺ dH((ϕ;ω)(s1), (ϕ;ω)(s2))
where dH is the Hausdorff distance3.

2.2 Refinement

Refinement is an indispensable tool in the construction of large models. For
brevity, we only consider the forward simulation criterion of refinement [18].
The section defines the verification conditions necessary to establish forward
simulation between two timed systems.

Definition 9 (Forward Simulation). B is a forward simulation of A if there
exists relation l ⊆ αB × αA such that ιB ⊆ l−1[ιA] and l−1;B ⊆ A; l−1 where
ιA and ιB are sets of initial states of A and B.

We write A �l B if B is a forward a simulation of A w.r.t. simulation relation l.
An important precursor to the definition of timed refinement is the following
explicit form of the transition relation of an interpretation of a timed system.

Lemma 1. Given C = (αC, c, ιC) and S = (αS, s, ιS), process (αS×αC, (s ‖ c)∩
(ϕ × ϕ), (ιS × ιC) ∩ ϕ) is the least constrained interpretation of timed system
C · ϕ · S4.
3 dH(A, B) = max{supx∈A infy∈B d(x, y), supx∈B infy∈A d(x, y)}.
4 a ‖ b = {(x �→ i) �→ (y �→ j) | x �→ y ∈ a ∧ i �→ j ∈ b} (parallel product).



166 A. Iliasov and J. Bryans

Fig. 1. Timed refinement diagrams.

Lemma 1, stating that any observation is contained in (s ‖ c) ∩ (ϕ × ϕ), leads to
the crucial decomposability property of timed refinement: to prove refinement of
a timed system one may separately consider refinement of observer and subject
processes. The part that makes this work is the synchrony condition requiring
to prove that a concrete state projected into some abstract states is observed at
a time similar to when the abstract state is observed. Similar condition appears,
for instance, in the definition of timed automata simulation [15].

Definition 10 (Forward Simulation of Timed Systems). Let C = (αC, c,
ιC), S = (αS, s, ιS), T = (αT, t, ιT), U = (αU, u, ιU), a ⊆ αU × αS and r ⊆
αT × αC. If the following conditions are satisfied:

(a) U �a S (simulation of subjects w.r.t. relation a ⊆ αU × αS),
(b) T �r C (simulation of observers w.r.t. relation r ⊆ αT × αC),
(c) a−1;ω; r ⊆ ϕ (synchrony condition),

then it holds that T · ω · U �l C · ϕ · S with l = (a ‖ r) ∩ (ω × ϕ).

The diagrams in Fig. 1 illustrate the structures employed in timed refinement.
The first diagram depicts (s ‖ c) ∩ (ϕ × ϕ) (commutes only in the case of a strict
time system, see Definition 6). The second diagram shows a simulation of A
by B and, according to Definition 9, it weakly commutes with l−1;B ⊆ A; l−1

(each l arc is doubled to help explain the third diagram). The third diagram
is a fusion of the first two where A and B are instantiated by respective timed
transitions (linked by observation connections ϕ and ω) and l is replaced with
(a ‖ r) ∩ (ω × ϕ).

It must be the case that the conditions of Definition 10 and the identified
simulation relation l satisfy Definition 9 of forward simulation.

Theorem 3. Forward simulation of timed systems is sound.

It is often necessary to consider an untimed model in a timed context. The
following is a trivial extension of this kind where an untimed processed defines
a (trivial) timed system by observing itself.

Definition 11 (Timed Extension). A timed extension S̄ of a process S is a
timed system S · id(S) · S.
A timed refinement of an untimed process is used to introduce time reasoning
within an untimed development.
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Definition 12 (Timed Refinement of an Untimed Process). For some
process S and timed systemT ·ω ·U it is said that S is refined byT ·ω ·U, S �a T ·ω ·U
if it holds that the timed extension of S is refined by T · ω ·U: S̄ �a ‖ (ω−1;a) T · ω ·U.

From our experience in using this framework, it is best to start with the specifi-
cation of an untimed system (subject) deliberately making an effort to not intro-
duce any timing or time-related ordering constraints into the model. Assuming
the modelled problem requires modelling time, then either some verification con-
ditions will be not expressible in the alphabet of the subject process or there will
unprovable verification conditions. For the former case, one needs to couple the
subject specification with a suitable observer model. A good starting point is to
postulate the desired property in the observer model and later have it refined
into a realisable time model.

For the latter, however, it is more suitable to refine an untimed (or, implicitly
timed, as per Definition 11) with a timed model. This naturally introduces time
as a form of scheduling policy enabling verification of stronger properties. We
illustrate this technique in Sect. 4.

3 Background

To describe the subject process behaviour of the case study system we apply
Event-B modelling language [4]. We choose Event-B mainly for our previous
experience and the maturity of its modelling toolkit [17] which has allowed us
to express both subject and observer in the same development and use the
built-in automated provers and proof environment to construct all the proofs.
Event-B does not allow one to define a product of two machines. Hence, for
the modelling of observer process, we have to resort to specifying observer state
transitions and observation connection in the algebraic style. Section 3.2 presents
some fundamental constructs used in such definitions.

3.1 Event-B

Event-B is a state-based formal development method for the realisation of correct-
by-construction information systems. The general form of an Event-B model (or
machine) is shown in Fig. 2. A machine encapsulates a state space, defined by
machine variables, and provides transitions on the state, as described by machine
events. An event Ei is characterised by a list of parameters pi, a state predicate
Gu called an event guard, and a next-state relation Si.

The INVARIANT clause defines the properties of a system, expressed as state
predicates, that must be preserved during the system lifetime. The states defined
by an invariant are called the safe states of a system. A correct model is proven
to never leave its safe states. Data types s, constants c and relevant axioms are
defined in a separate component called a context, and included into a machine
with the SEES clause.

The consistency of a machine as well as the correctness of refinement steps is
demonstrated by discharging relevant proof obligations which, collectively, define
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MACHINE M
SEES Context
VARIABLES v
INVARIANT I(c, s, v)
INITIALISATION SI(c, s, v )
EVENTS

Ei = any pi where Gi(c, s, pi, v) then Si(c, s, pi, v,v ) end
END

Fig. 2. Event-B model structure.

the Event-B proof semantics [4]. The Rodin Platform [17], a tool supporting
Event-B, is an integrated environment that automatically generates necessary
proof obligations and providers a number of automated provers and solvers along
with an interactive proof environment.

An Event-B machine defines a state transition system. Let Ω = {v | I(c, s, v)}
be the (safe) states of a machine where v and I(c, s, v) are the variables and the
invariant of a machine. The relational form of an event e is [e]R ≡ {v �→ v′ |
∃p · (Ge(c, s, p, v) ∧ Se(c, s, p, v, v′))}.

Definition 13 (Event-B Transition System). A machine defines a tran-
sition system (Ω, f, ω0) where f : Ω → P(Ω) is defined as f = (

⋃
e[e]R);

the set of initial states ω0 ⊆ Ω is defined by the initialisation predicate SI :
ω0 = {v′ | SI(c, s, v′)}.
The cornerstone of Event-B development method is refinement – the process of
transforming an abstract specification by gradually introducing implementation
details while preserving correctness. A number of refinement proof obligations
implement the forward simulation criterion of refinement [4].

3.2 Observer Modelling

One important class of observers are those able to reason about duration of
subject’s actions. A suitable characterisation of such an observer is an ordered
abelian group. clock observer.

Definition 14 (Additive Clock). An additive clock C is a process defined by
group (αC,≺, ∗, e) where ∗ is a commutative binary operation and ≺ is a linear
order. Element e ∈ αC is the left and right unit of ∗.
To reason about time intervals we make use of some simple topological properties
of the additive clock structure.

The relation � is a reflexive closure of ≺ and is defined as �=≺ ∪ id(αC).
Also, [[P (ω)]] stands for the set of all time points projected from states defined
by predicate P (ω): [[P (ω)]] ≡ ϕ[{ω | P (ω)}].
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Notice that + and ≺ induce a metric space on C. The distance d between
some points i, j ∈ αC is taken to be d(i, j) = max{i−j, j−i} where max{a, b} =
a when b � a and max{a, b} = b otherwise. The diameter diam(A) of a set A is
defined as diam(A) = sup{d(i, j) | i, j ∈ A}.

Relations ≺ and � may be lifted to sets in the following manner: A 
 B ⇔
∀i, j · i ∈ A ∧ j ∈ B ⇒ i 
 j, where 
 ∈ {≺,�}.

A set A is said to be not bigger than some value r ∈ αC, written as A � r, if
it is covered by a closed set of diameter r: A � r ⇔ ∃U ·diam(U) � r∧A ⊆ cl(U).
Symmetrically, a set is not smaller than r if it contains a closed set of diameter
r: A � r ⇔ ∃U · r � diam(U) ∧ cl(U) ⊆ A. Here cl(S) is a closure of S defined
as the intersection of all closed sets containing set S.

Operators � and � define set measure where all points of some set of a given
diameter are guaranteed to be a within or outside of the measured set without
having to clarify whether the set is open, closed or neither.

4 Case Study: Fischer’s Algorithm

As a case study we consider the problem of mutual exclusion: the regulation
of competition among several processes for a shared resource that should be
accessed by only one process at a time. In particular, we study Fischer’s timing-
based algorithm of mutual exclusion [2,19] that requires a single shared variable
and uses execution speed constraints to ensure that a shared resource is only
ever in the exclusive possession of a single process. To prove the correctness of
the timed model we use an Event-B model to define an untimed, abstract mutual
exclusion model that trivially possesses the desired properties. We proceed to
demonstrate that a timed model realising Fischer’s algorithm is a correct imple-
mentation of the abstract mutual exclusion. We achieve this by constructing
subject and observer of the protocol and use our technique to link the two and
construct a formal proof of correctness. We address only the basic case where,
once a single process has entered the critical section, the system terminates. Fol-
lowing [2,19] we observe that the complete algorithm can be then be constructed
in a straightforward manner.

In the remainder of this section, we give a formal definition of mutual exclu-
sion (Sect. 4.1) as an abstract Event-B model, then outline Fischer’s algorithm
(Sect. 4.2). We define the subject and observer models (Sects. 4.3 and 4.4) then
show the verification procedure (Sect. 4.5.)

4.1 Mutual Exclusion

We assume an entity external to the system keeping a track shared resource
ownership. Let cs be the current owner of the critical section – a process number
from 1 to n. Then value 0 denotes that the resource has no owner. The sole event
of the model is the claiming of critical section ownership:

enter = any p where p ∈ 1 .. n ∧ cs = 0 then cs := p end
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1 : if (x = 0) :
w1 : wait(≤ δi);
2 : x := i;
w2 : wait(≥ εi);
3 : if (x = i) :
4 : // critical section

Fig. 3. Pseudo code of Fischer’s algorithm (process i)

The model succinctly defines our verification goal. At this point, the for-
mulation of the mutual exclusion property relies on an centralised supervisor
implementing check cs = 0. Fischer’s algorithm removes the supervisor and
makes the system completely distributed.

4.2 Fischer’s Algorithm

Fischer’s algorithm uses a single n + 1 valued shared variable to implement
mutual exclusion of n concurrent processes. A process may read the value of the
shared variable and write its name into it (i.e., process i writes value i). The
algorithm places constraints on the time delays for these actions. This permits
an arrangement of test and update operations where at most one process may
ever acquire the shared resource. The pseudo code for Fischer’s algorithm is
given in Fig. 3.

If process i discovers that the shared variable x has not been updated by
another process (line 1), it waits for up to δi time units and then writes its name
into x (line 2). It then waits again for no more then εi time units; this ascertains
that the value of x has stabilised: any process that could have seen x = 0 in its
history by this time must have written its name into x. We shall prove that the
algorithm is correct for any delays εi, δj such that ∀i, j · εi > δj .

4.3 Subject Model

The algorithm correctness is established by demonstrating a timed refinement
relation w.r.t. the abstract model of mutual exclusion. A pair of new variables
is introduced: x ∈ 0 .. n is the shared variable of the algorithm and function
s ∈ 1 .. n → 1 .. 4 denotes the current execution stage of a process. Initially, all
the process are at stage 1 (that is, prior to executing line 1 of the algorithm in
Fig. 3), and x is initialised to 0.

The abstract statement cs = 0, saying that the shared resource is free, trans-
lates into a concrete statement over s that no process has obtained the resource.

(∀p · p ∈ 1 .. n ⇒ s(p) �= 4) ⇒ cs = 0 (1)

Symmetrically, the abstract condition cs = p, meaning that process p is the
resource owner, is formulated as

∀p · p ∈ 1 .. n ∧ s(p) = 4 ⇒ cs = p (2)
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read = any p where p ∈ 1 .. n ∧ s(p) = 1 ∧ x = 0 then s(p) := 2 end
write = any p where p ∈ 1 .. n ∧ s(p) = 2 then x := p s(p) := 3 end
enter = any p where p ∈ 1 .. n ∧ s(p) = 3 ∧ x = p then s(p) := 4 end

Fig. 4. Event-B implementation of Fischer’s algorithm (an excerpt).

which states that when a shared resource is owned by a process (i.e., s(p) = 4)
then the name of the process agrees with the value of the abstract variable cs.
These two conditions, called gluing invariants, provide a formal link between the
states of the abstract model and its implementation by our model of Fischer’s
algorithm. Our proof technique is a case of data refinement, specifically forward
simulation, which is an intrinsic part of the Event-B method.

The gluing invariants allow us to make certain observations about the model
we are constructing. An event of the concrete model where a process claims the
resource ownership (by setting s(p) = 4) must refine abstract event enter (see
Stage 3 below) or it would violate Condition 2. The guard of enter demands
that the critical section is free (predicate cs = 0). Consequently, the concrete
behaviour implementing enter would have to establish that (1) holds, i.e., that
there is no other process for which s(p) = 4. The following are the stages (events)
of the model.

Stage 1: test for x = 0. A process starts and reads the shared variable x (Fig. 4,
event read). If x contains the name of another process then the current process
may not progress. If x contains no other process name the process updates s(p)
to indicate the progression to the next stage.

Stage 2: write process name into x. A process writes its name into shared variable
x (Fig. 4, event write), and advances to stage 3.

Stage 3: test for x = p. A process checks if x still contains its name. If this is
the case, then the process enters the critical section (Fig. 4, event enter). This
event refines abstract event enter.

Stage 4: critical section. When a process reaches this point the system termi-
nates.

The model is proven convergent – it is guaranteed to terminate. This is
formally shown by proving that 4 ∗n−∑

p∈1 .. n s(p) is a valid model variant [3].

4.4 Observer Model

To define the timing constraints of the algorithm we use an additive clock
observer (Definition 14). The observer model C is defined as (αC,≺) with the
usual +, 0 and − symbols for an additive operation closed on αC, a zero of ‘+’
and an inverse element operator.

Recall that the subject process state space is defined by variables x ∈ 0 .. n, s ∈
1 .. n → 1 .. 4. The observation connection (Definition 2) guarantees that the
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causality of computational steps of a subject is preserved in an observer. The
following condition restates this property for Fischer’s algorithm:

∀p · p ∈ 1 .. n ⇒ [[s(p) = 1]] � [[s(p) = 2]] � [[s(p) = 3]] � [[s(p) = 4]]. (3)

From the definition of the algorithm, while a process is at stage 2, any two time
points projected from this state are no more than δ(p) units apart. We formally
record this requirement by adding an axiom to the observer model stating that
set [[s(p) = 2]] is not bigger than δ(p) (delay w1 in Fig. 3):

∀p · p ∈ 1 .. n ⇒ [[s(p) = 2]] � δ(p). (4)

A process must spend at least ε(p) time units at stage 3. Thus, the set projected
from state s(p) = 3 is not smaller than ε(p) (delay w2 in Fig. 3):

∀p · p ∈ 1 .. n ⇒ [[s(p) = 3]] � ε(p). (5)

A process may not discover that shared variable x is 0 if another process has
already written its name into x. Whenever a process at stage 1 observes x = 0 it
may not be the case that another process has updated x, i.e., is at stage 3 or 4.
Because of (3), it is enough to state that x = 0 is not observed after some process
has advanced to stage 3:

∀p · p ∈ 1 .. n ∧ [[x = 0]] � [[s(p) = 3]]. (6)

Finally, it is required that every ε is larger than any δ:

∀p, q · p, q ∈ 1 .. n ⇒ δ(p) ≺ ε(q). (7)

Conditions 4–7 completely define the observer model.
For brevity, we omit the proof of consistency (see model in [1] for more

details) and notice that due to the finite alphabet of the obser, realisability is
trivially established with criterion of Definition 1. We also omit the trivial details
of how this observer refines the implicit observer of the abstract mutex model.

4.5 Verification Using the Observation Model

To understand where observation process comes into the view, it is instructive
to start by seeing why the untimed model of Fischer’s algorithm is not a valid
implementation of mutual exclusion. The Event-B toolkit [17] generates proof
obligations for the demonstration of refinement between abstract and concrete
models. In our example, there are proof obligations that cannot be discharged.

The first one is concerned with the satisfaction of gluing invariant (2) by
event enter. The condition requires that upon entering the critical section, the
only process that may already be in the critical section is the current process5:

p ∈ 1 .. n ∧ s(p) = 3 ∧ x = p ∧ d ∈ 1 .. n ∧ (s �− {p �→ 4})(d) = 4 � p = d. (8)

The second condition is a guard strengthening proof obligation for event enter:
p ∈ 1 .. n ∧ s(p) = 3 ∧ x = p ∧ d ∈ 1 .. n � s(d) �= 4 (9)

5 Operator �− is defined as f �− g = {x �→ y | (x �→ y ∈ f ∧ x /∈ dom(g)) ∨ x �→ y ∈ g}.
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The condition requires that on entering a critical section no process is already
in the critical section. The similarity of the two undischarged conditions suggests
the following, more general invariant condition:

∀p · p ∈ 1 .. n ∧ s(p) = 3 ∧ x = p ⇒ ¬(∃r · r ∈ 1 .. n ∧ r �= p ∧ s(r) = 4) (10)

The invariant states that when a process is about to enter the critical section
there does not exists another process that is already in the critical section.
This invariant trivially establishes (8) and (9). There remains one open proof
obligation concerned with establishing the condition of (10) by event write:

p ∈ 1 .. n ∧ s(p) = 2 ∧ r ∈ 1 .. n ∧ s(r) = 4 ∧ r �= p � ⊥ (11)

We shall prove, with the help of the observer model, that it is impossible,
due to timing constraints of the algorithm, to observe any two processes in such
states. Diagram in Fig. 5 illustrates how the contradiction arises.

To do the proof we need to strengthen the state model with the model of
the observer. We do this by placing the definition of the observer model into
an Event-B context : a component housing declarations of constants and axioms.
The following lemma shows how to transition from reasoning about states to
reasoning about times when these states are observed.

Lemma 2 (Point Merge). Let W and Pi be non-empty subject process states
such that W = {v | W (v)}, Pi = {v | Pi(v)} where W (v) and Pi(v) are predicates
over subject process state space and it holds that W ⇒ ∧

i Pi. Then there exist
time points ti ∈ [[Pi]] ∩ [[W ]] such that ∀i, j · ti = tj.

Using this lemma we relate the process states described in Condition 11 to the
states of the observer and derive a set of hypotheses speaking about the timing
constraints of the processes. The following three predicates describe the situation
in the hypothesis of Condition 11.

W = (∃i, j, q · i, j ∈ 1 .. n ∧ i �= j ∧ q ∈ 1 .. n → 1 .. 4 ∧ q(i) = 2 ∧ q(j) = 4)
P1 = (∃i, q · i ∈ 1 .. n ∧ q ∈ 1 .. n → 1 .. 4 ∧ q(i) = 2)
P2 = (∃j, q · j ∈ 1 .. n ∧ q ∈ 1 .. n → 1 .. 4 ∧ q(j) = 4)

Predicate W describes the overall the state encoded in the hypothesis while P1

and P2 are specific projections focusing on processes p and r so that W ⇒ P1∧P2.
It is trivial to prove that predicates W , P1 and P2 characterise non-empty states
(as required by Lemma 2) by instantiating q with s, i with p and j with r in the
context of Condition 11. Instantiating Lemma 2 with W , P1 and P2 we derive
the existence of two time points G and F such that

G, F ∈ αC G ∈ [[P1]] F ∈ [[P2]] G = F

Point G is some time when process p is at stage 2 and C is time when process
r is at stage 4. We shall follow the syntactic convention of the observer model
and use [[s(p) = 2]] and [[s(r) = 4]] in the place of [[P1]] and [[P1]].

The new hypotheses enable us to formally identify the contradiction and
prove Condition 11. The following is the new form of Condition 11.
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Fig. 5. Contradiction: when r is in the critical section, p may not be at stage 2.

G, F ∈ αC ∧ G ∈ [[s(p) = 2]] ∧ F ∈ [[s(r) = 4]] ∧ G = F � ⊥ (12)

with the obvious definitions of s, p and r implied. To construct the proof we
involve a helper time point B with some specific properties, as shown in the
diagram on Fig. 5. The following lemmata justify the existence and properties
of B. The first lemma states that B is some time point at which process r is at
stage 4. The value of B is selected in such a way that there are at least ε(r) time
units separating it from C.

Lemma 3 (Existence of B). There exists a point B such that B ∈ [[s(r) = 3]]
and B + ε(r) � F .

We also insist that at time B, process p is at stage 2 (see Fig. 5). From this it
is concluded that the distance between B and G, which are both time points of
process p’s stage 2, is not more that δ(p).

Lemma 4 (Position of B). It holds that G � B + δ(p).

The lemmata give us two new hypotheses for Condition 12.

· · · ∧ B + ε(r) � C ∧ G � B + δ(p) � ⊥

Since G = C we have that B + ε(r) � B + δ(p) or ε(r) � δ(p). This statement
contradicts Condition 4 of the observer model. The contradiction proves Con-
ditions 11–12. We thus have proven the last open proof obligation and demon-
strated a refinement relation between Fischer’s algorithm and the abstract mutex
model. This concludes the proof of the algorithm correctness.

A complete model and detailed proofs may be found in the Event-B devel-
opment of the algorithm [1].

5 Conclusion

We have presented a method for modelling time in an untimed formalism using
the Leibnizian, relativistic, view, rather than the classical Newtonian, absolutist,
view. We believe that this a novel approach that has not been explored so far, at
least in application to information systems and formal modelling. The method
is compatible with the Newtonian view of time, since a model can include an
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Newtonian clock. We have found the approach to be a more natural way to
include time properties in state-based models: it requires no extension of the
Event-B language, and the uses only existing tools and first-order logic. We
have been able to demonstrate a machine checked proof of Fischer’s algorithm,
which, in our opinion, is simpler than anything we have seen in the literature.

The proof of Fischer’s protocol is quite general and spans across a wide class
of observers. In particular, it embeds proofs for an observer operating in either
a discrete or a dense time domain, despite the fact that continuous numbers are
not supported in Event-B.

Initial investigations suggest that this method is valuable for a variety of
case studies. Possible method extensions include widening the class of observer
models (e.g., cyclic time for looping models) and models of observations (e.g.,
a single observer and multiple subjects) and see if they present any practical
advantages.
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Abstract. Distillation is a fully automatic program transformation that
can yield superlinear program speedups. Bisimulation is a key to the
proof that distillation is correct, i.e., preserves semantics. However the
proof, based on observational equivalence, is insensitive to program run-
ning times. This paper shows how distillation can give superlinear speed-
ups on some “old chestnut” programs well-known from the early program
transformation literature: naive reverse, factorial sum, and Fibonacci.

1 Introduction

Distillation, supercompilation, and partial evaluation are automatic program
transformations (see [7–9,14–16]). A main goal of all three is to transform a
program into an improved program. Partial evaluation has been fairly well auto-
mated [9]. In some respects supercompilation, deforestation and distillation
(Turchin, Sørensen, Wadler, Hamilton [6–9,14,16,17]) can make deeper trans-
formations on program control structure. A well-known example is that defor-
estation can transform a multipass program into a single pass algorithm [16,17],
a feat beyond the reach of current partial evaluators.

1.1 Goal: Extend Automatic Superlinear Program Speedup

Program optimisations by hand (Burstall-Darlington and many others [1]) some-
times yield superlinear program speedups. Transformation can make substantial
improvements, for instance changing a program running in time O(n2) or even
O(2n) into one running in time O(n). Familiar examples include naive programs
for list reversal, sum of factorials, and the Fibonacci function. A goal for many
years now has been how to obtain such effects by well-automated methods.

Classical compiler optimisations are a model of automation, though the pro-
gram speedups they give are limited. Many have been proven correct using bisim-
ulation, e.g., [12] by Lacey et al. This has led to some practical automation of
compiler correctness proofs.

However it has been proven (see [9,14]) that partial evaluation, deforestation
and supercompilation (as well as classical compiler optimisations) are all limited
c© Springer-Verlag Berlin Heidelberg 2015
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to at most program speedups by linear constant factors. One reason for such
limited optimisation speedups is that the bisimulations of [12] all involve one-
to-one relations between the control points of the original program and the
compiler-optimised program.

In contrast, distillation [6,7]) can yield superlinear asymptotic speedups:
this refinement of supercompilation can sometimes transform a program into
a semantically equivalent but asymptotically faster equivalent.

1.2 Bisimulation and Program Transformation

Correctness of transformation can be proven using bisimulation [7,8,12] to relate
computations by the original and the transformed programs. A question:

How can a program running in time O(n2) (or even time O(2n)) be
bisimilar to a program running in time O(n)?

This puzzling question was the starting point of this work. It was clear at once
that 1-1 relations between program control points would not suffice to explain
the phenomenon. A challenge to overcome: the system structure and techniques
used in distillation as in [6–8] are complex, and hard to reason about globally.

This paper’s approach to better understanding cause-and-effect in distillation
is to simplify distillation as much as possible, while maintaining its capacity for
superlinear speedups. We will describe current work on such questions, partly
theoretical and partly computer experiments.

2 A Language, Observational Equivalence, and Labeled
Transition Systems

Our approach is to simplify the general distillation techniques of [6–8], so its
essence can be seen in a more limited context, to see what is happening abstractly.
A clearer understanding of cause-and-effect could show how automatically to
achieve superlinear speedup on a wider range of programs.

2.1 Source Language Syntax

Data: let Σ be an uninterpreted signature for constructors, and let TΣ be the set
of all well-formed trees over Σ, finite or infinite. Our examples use as constructors
0-ary 0, unary 1+ (successor), and binary constructors +, ∗, ::. The net effect of
a program is to compute a (mathematical, partial) function f : (TΣ)n ⇀ TΣ .

Programs are first-order, built from variables x, constructors c, function calls,
and case. Calls and constructor applications must have all their arguments, i.e.,
full arities. Semantics [[prog]] : (TΣ)n ⇀ TΣ is call-by-value, omitted for brevity
and because of familiarity.



Asymptotic Speedups, Bisimulation and Distillation (Work in Progress) 179

prog ::= e where Δ
Δ ::= f1 x1 . . . xn = e1 . . . fm x1 . . . xp = em Function definitions
e ::= x | c e1 . . . ek | call | case Expression
call ::= f e1 . . . en Function call
case ::= case e of p1 ⇒ e1 | . . . | pk ⇒ ek Case expression
p ::= c x1 . . . xk Case pattern

Free variables are allowed only in the e part of program e where Δ. All other
variables must be bound, either by function parameters or in case patterns.

Definition 1. Denote by timep(x) ∈ N ∪ {∞} the running time of program p
on input x, e.g., the number of steps used in computing [[p]](x).

Goal: automatically transform program p into program p′ such that [[p]] = [[p′]],
but timep′ < timep asymptotically, i.e., in the limit as input size grows.

2.2 Observational Equivalence and Labeled Transition Systems

For appropriate definitions of context C[] and evaluation ⇓:

Definition 2 (Observational Equivalence). Programs p1, p2 are observatio-
nally equivalent, written p1 � p2, if and only if they have the same termination
behaviour in all closing contexts, i.e., p1 � p2 iff ∀C[] . C[p1]⇓ iff C[p2]⇓.

Distillation transforms a program p1 into an observationally equivalent pro-
gram p2. (Two central references: Milner and Gordon [5,13].) Observational
equivalence implies semantic equivalence, i.e., p1 � p2 implies [[p1]] = [[p2]].

A limitation of observational equivalence Unfortunately (from this paper’s per-
spective), observational equivalence p � p′ tells us nothing whatsoever about the
comparative running times of the programs involved. For instance, for each of
our selection of “old chestnut” programs, the original program is observation-
ally equivalent to its optimised version. We will attempt to clarify such relations
between running times in the distillation framework.

Definition 3 (Labeled Transition Systems). A labeled transition system
(LTS for short) is a tuple t = (S, s0,→, Act) where S is a set of states. s0 ∈ S
is the root state, 0 is the end-of-action state, and Act is a set of actions α. The
transition relation is → ⊆ S ×Act×S. Notation: as usual we write a transition
(s, α, s′) in → as s

α−→ s′.

Definition 4 (Simulation). Binary relation R ⊆ S1 × S2 is a simulation of
LTS t1 = (S1, s

1
0,→1, Act) by LTS t2 = (S2, s

2
0,→2, Act) if (s10, s

2
0) ∈ R, and for

every pair (s1, s2) ∈ R and α ∈ Act, s′
1 ∈ S1:

if s1
α→ s′

1 then ∃s′
2 ∈ S2 . s2

α→ s′
2 ∧ (s′

1, s
′
2) ∈ R

Definition 5 (Bisimulation). A bisimulation ∼ is a binary relation R such
that both R and its inverse R−1 are simulations.
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Using an LTS as a program’s abstract syntax. Represent a variable x by a
transition s

x→ 0; represent c e1 . . . ek where c is a constructor by transitions
s

c→ 0, s
#1−→ s1, . . . , s

#k−→ sk, where si is the root of the LTS representation
of expression ei; represent case e0 of p1 ⇒ e1 | . . . | pk ⇒ ek by transitions
s

case−→ s0, s
p1−→ s1, . . . , s

pk−→ sk; and represent a function call f e1 . . . en by
transitions s

call−→ s0, s
x1−→ s1, . . . , s

xn−→ sn where Δ contains function definition
f x1 . . . xn = e0.

2.3 Example: “Naive Reverse” Program Representation as an LTS

Source program nrev:

nr input where
nr xs = case xs of nil => nil | (:: y ys) => (ap (nr ys) (:: y nil))
ap us vs = case us of nil => vs | (:: w ws) => (:: w (ap ws vs))
The LTS representation of naive reverse program is a transition set containing

{2 call→ 10, 2 xs→ 1, 1
input→ 0, 10 case→ 3, 10 nil→ 4, 10

::(y,ys)→ 9, 3 xs→ 0, 4 nil→ 0, . . .}

Short form of the LTS for naive reverse (root state 2, nr code start 10, and ap
code start 17). For readability we abbreviate the LTS by omitting end-of-action
state 0 and variable transitions to 0, and bundling together transitions from a
single state.

(2 -> (call 10 (input))) ; root = 2: call nr(input)
(10 -> (case xs ((nil).4) ((:: y ys).9))) ; start"nr"
(4 -> (nil))
(9 -> (call 17 (6 8)) ; call ap(nr(ys),...)
(6 -> (call 10 (ys))) ; call nr(ys)
(8 -> (:: y 4))
(17 -> (case us ((nil).vs) ((:: u us1).16)))) ; start "ap"
(16 -> (:: u 15)
(15 -> (call 17 (us1 vs)) ; call ap(ws,vs)

An Example of Optimisation: The program above runs in time O(n2). It
can, as is well known, be improved to run in time O(n). Distillation does this
automatically, yielding the following LTS with root state 3 and rev code start 10.
Effect: the nested loop in nr has been replaced by an accumulating parameter.

; Reverse with an accumulating parameter
(3 -> (call 10 (us 2)))
(2 -> (nil))
(10 -> (case xs ((nil) . acc) ((:: x xs1) . 9)))
(9 -> (call 10 (xs1 8)))
(8 -> (:: x acc))
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The distilled version in source language format.

rev us nil where rev xs acc =
case xs of nil => acc | (:: x xs1) => rev xs1 (:: x acc)

Are These Programs Bisimilar? There is no obvious bisimilarity relation
between runtime states of nr and rev, e.g., because of different loop structures
and numbers of variables. In the next section we will see that the result of
driving a distilled program is always bisimilar to the result of driving the original
program.

3 Distillation: A Simplified Version

Following the pattern of Turchin, Sørensen and Hamilton, the first step is driving.

3.1 Driving

Distillation and supercompilation of program p = e where Δ both begin with
an operation called driving. The result is an LTS D[[p]], usually infinite, with no
function calls and with no free variables other than those of p.

If p is closed, then driving will evaluate it completely, yielding as result an
LTS for the value [[p]]. Further, given an LTS for a program p with free variables,
the driver will:

– compute as much as can seen to be computable;
– expand all function calls and
– yield as output a call-free LTS D[[p]] equivalent to program p. (The output

may be infinite if the input program has loops.)

D[[p]] will consist entirely of constructors, together with case expressions whose
tests could not be resolved at driving time. This is a (usually infinite) LTS to
compute the function [[p]] (of values of p’s free variables). Another perspective:
D[[p]] is essentially a “glorified decision tree” to compute [[p]] without calls. Input
is tested and decomposed by case, and output is built by constructors.

Although D[[p]] may be infinite it is executable, given initial values of any free
variables. This can be realised in a lazy language, where only a finite portion of
the LTS is looked at in any terminating run.

Correctness of distillation: Theorem 3.10 in [7] shows that for any p, p′,

D[[p]] ∼ D[[p′]] implies p � p′

Bottom line: if two programs p, p′ have bisimilar driven versions D[[p]] and D[[p′]],
then the programs are observationally equivalent.

3.2 A Driver for the Call-by-Value Language

The driving algorithm below transforms a program into a call-free output LTS
(possibly infinite). It is essentially an extended semantics: an expression evaluator
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that also allows free variables in the input (transitions to 0 are generated in the
output LTS for these variables); and case expressions that may be applied to
a non-constructor value (if so, residual case transitions are generated in the
output LTS).

Relations to the Drivers of [6–8]: We do not use silent transitions at all, and
so do not need weak bisimulation. Our LTS states have no internal structure,
i.e., they are not expressions as in [6–8], and have no syntactic information
about the program from which it was generated, beyond function parameters
and case pattern variables. (Embedding, generalisation, well-quasi-orders etc.
are not discussed here, as this paper’s points can be made without them.)

Another difference: the following constructs its output LTS “one state at a
time”: it explicitly allocates new states for constructors and for case expressions
with unresolvable tests.1

One effect is an “instrumentation”. For instance if p is closed, then the driven
output LTS D[[p]] will have one state for every constructor operation performed
while computing [[p]], so D[[ ]] yields some intensional information about its pro-
gram argument’s running time.

Our language is call-by-value, so environments map variables into states,
rather than into expressions as in [6,7]. Types used in the driver:

D : Expression → LTS
D′ : Expression → LTS → Environment → FcnEnv → LTS
θ ∈ Environment = V ariable → State
Δ ∈ FcnEnv = FunctionName → V ariable∗ → Expression

Variable t ranges over LTS’s, and s ranges over states. For brevity, function
environment argument Δ in the definition of D′ is elided since it is never changed.

1. D[[e where Δ]] = D′[[e]] ∅ {} Δ

2. D′[[x]] t θ =
{

t with root θx if x ∈ dom(θ) else
t ∪ {s x→ 0} where s is a new root state

3. D′[[c e1 . . . ek]] t0 θ = let t1 = D′[[e1]] t0 θ, . . . , tk = D′[[ek]] tk−1 θ in tk ∪{s c→
0, s

#1−→ root(t1), . . . , s
#k−→ root(tk)} where s is a new root state

4. D′[[f e1 . . . en]] t0 θ = let t1 = D′[[e1]] t0 θ, . . . , tk = D′[[ek]] tk−1 θ in
D′[[ef ]] tn {x1 �→ root(t1), . . . , xn �→ root(tn)} where (f x1 . . . xn = ef ) ∈ Δ

5. D′[[case e0 of p1 ⇒ e1| . . . |pn ⇒ en]] t θ = let t0 = D′[[e0]] t θ in

if t0 � s0
c→ 0, s0

#1−→ s1, . . . , s0
#k−→ sk and pi = c x1 . . . xk

then
D′[[ei]] t0 (θ ∪ {x1 �→ s1, . . . , xk �→ sk})

else

1 To avoid non-termination of the program transformer itself, we assume the input
does not contain nonproductive loops such as f 0 where f x = f x.
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let t1 = D′[[e1]] t0 θ , . . . , tn = D′[[en]] tn−1 θ in
tn ∪ {s case−→ root(t0), s

p1−→ root(t1), . . . , s
pn−→ root(tn)}

where s is a new root state

4 Some Speedup Principles and Examples

4.1 On Sources of Speedup by Distillation

Speedups can be obtained for all our well-known “old chestnut” programs p as
follows (where ps is p applied to known values s of its free variables):

1. Drive: construct LTSdriven = D[[ps]] from ps. (This is finite if ps terminates.)
2. Remove “dead code” from LTSdriven: These are any states that are unreach-

able from its root.
3. Merge any bisimilar states in LTSdriven.

Step 2 must be done after constructing LTSdriven. Step 3 can be done either after
or during driving: Elide adding a new state and transitions s

a1→ s1, . . . , s
an→ sn

to LTSdriven if an already-existing LTS state has the same transitions.
Two points: First, in traditional compiler construction, dead code elimina-

tion is very familiar; whereas merging bisimilar states is a form of code folding
not often seen (exception: the “rewinding” by Debois [2]). Distillation accom-
plishes the effect of both optimisations, and in some cases more sophisticated
transformations.

Second, the distiller obtains superlinear speedup for all three programs by
introducing accumulating parameters.

4.2 Overview of the “Old Chestnut” Examples

Our goal is to relate the efficiencies of a program p and its distilled version p′. The
transformation sequence involves the possibly infinite object D[[p]] = LTSdriven.

The following experimental results get around this problem by computing
D[[ps]] for fixed input values s. The idea is to drive a version ps of p applied to
known values s of its free variables. Assuming that ps terminates, this will yield
a finite LTS whose structure can be examined.

Let n be the input size (e.g., a list length or number value). Then

1. The naive reverse algorithm nrev runs in quadratic time, while its distilled
version runs in linear time. Nonetheless, their driven versions are (strongly)
bisimilar, and so observationally equivalent.

Explanation of speedup: D[[nrev(a1a2...an)]] has O(n2) states, including
states for the computation of the reverse of every suffix of (a1a2 . . . an).
Among these, at the end of execution only O(n) states are live, for the reverse
of all of (a1a2 . . . an).

2. The naive program to compute Factorial sum (sumfac(n) = 0! + 1! + . . . n!)
has running time O(n2) and allocates O(n2) heap cells, due to repeated
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recomputation of 0!, 1!, 2!, . . .; but the distilled version is linear-time. The two
are (again) observationally equivalent since their driven versions are bisimi-
lar. The driven naive Factorial sum LTS has O(n2) states, but among these,
only O(n) are live at the end of execution.

This example is interesting because both source and transformed programs
are purely tail recursive, and so typical of compiler intermediate code.

3. A more extreme example: the obvious program fib for the Fibonacci func-
tion takes exponential time and will fill up the heap with exponentially many
memory cells. On the other hand, the distilled version of Fibonacci uses an
accumulator and runs in linear time (counting +, ∗ as constant-time opera-
tions). Even so, the two LTS’s are bisimilar.

In contrast to the examples above, the driven program D[[fibn]] has O(1.7n)
states, all of which are live. Here speedup source number 3 (Sect. 4.1) comes
into play: there are only O(n) states that are distinct with respect to bisim-
ulation.

The experiments were carried out in scheme. The first step was parsing: to
transform the input program from the form of Sect. 2.1 into an LTS, which for
clarity we will call LTSin. The driver as implemented realises the one of Sect. 3.2
(except that it works on LTSin rather than program p). LTSout is the name of
the distiller’s output.

5 Conclusions

In spite of many remaining open questions, we hope the material above, particu-
larly Sects. 3 and 4, clarifies the way that distillation yields superlinear program
speedup.

The question “how can an O(n2) program or O(2n) program be bisimilar to
an O(n) program?” has been answered: It is not the runtime state transitions of
the two programs that are bisimilar; but rather their driven versions. Further, the
numbers of states in their driven versions trace the number of cons’s performed,
and so reflect the two programs’ relative running times.
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Abstract. The paper describes the design and implementation of a cer-
tifying supercompiler TT Lite SC, which takes an input program and
produces a residual program and a proof of the fact that the residual
program is equivalent to the input one. As far as we can judge from the
literature, this is the first implementation of a certifying supercompiler
for a non-trivial higher-order functional language. The proofs generated
by TT Lite SC can be verified by a type checker which is independent
from TT Lite SC and is not based on supercompilation. This is essential
in cases where the reliability of results obtained by supercompilation is
of fundamental importance. Currently, the proofs can be either verified
by the type-checker built into TT Lite, or converted into Agda programs
and checked by the Agda system. The main technical contribution is a
simple but intricate interplay of supercompilation and type theory.

1 Introduction

Supercompilation [1,2] is a program manipulation technique that was originally
introduced by V. Turchin in terms of the programming language Refal (a first-
order applicative functional language) [3], for which reason the first supercom-
pilers were designed and developed for the language Refal [4].

Roughly speaking, the existing supercompilers can be divided into two large
groups: “optimizing” supercompilers that try to make programs more efficient,
and “analyzing” supercompilers that are meant for revealing and proving some
hidden properties of programs, in order to make programs more suitable for
subsequent analysis and/or verification.

The main idea behind the program analysis by supercompilation is that
supercompilation “normalizes” and “trivializes” the structure of programs by
removing modularity and levels of abstraction (carefully elaborated by the pro-
grammer). Thus, although the transformed program becomes less human-friendly,
it may be more convenient for automatic analysis.

Examples of using supercompilation for the purposes of analysis and verifica-
tion are: verification of protocols [5,6], proving the equivalence of programs [7],
contract checking (e.g. the verification of monadic laws) [8], problem solving in
Prolog style by inverse computation [9], proving the correctness of optimizations
(verifying improvement lemmas) [10], proving the productivity of corecursive
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functions [11]. It should be noted that the use of supercompilation for analysis
and verification is based on the assumption:

The supercompiler we use preserves the semantics of programs.

In the following we will silently assume that this requirement is satisfied1.
At this point we are faced with the problem of correctness of supercompi-

lation itself, which has a number of aspects. A non-trivial supercompiler is a
sophisticated construction, whose proof of correctness is bound to be messy and
cumbersome, involving as it does several areas of computer science. (For example,
the proof of correctness of the supercompiler HOSC takes more than 30 pages
[12].) Such a proof may contain some bugs and overlooks. Even if the proof is per-
fect, the implementation of the supercompiler may be buggy. The correctness of
the implementation can be verified by means of formal methods. However, even
the verification of a “toy” supercompiler is technically involved [13].

As we have seen, ensuring the correctness of a supercompiler is a difficult
task. But, what we are really interested in is the correctness of the results of
supercompilation. Thus we suggest the following solution.

Let the supercompiler produce a pair: a residual program, and a proof of
the fact that this residual program is equivalent to the original program. The
essential point is that the proof must be verifiable with a proof checker that is not
based on supercompilation and is (very!) much simpler than the supercompiler.

The advantages of such certifying supercompilation are the following.

– The supercompiler can be written in a feature-rich programming language
(comfortable for the programmer), even if programs in this language are not
amenable to formal verification.

– The implementation of the supercompiler can be buggy, and yet its results
can be verified and relied upon.

– The supercompiler can be allowed to apply incorrect techniques, or, more
exactly, some techniques that are only correct under certain conditions that
the supercompiler is unable to check. In this case, some results of supercom-
pilation may be incorrect, but it is possible to filter them out later.

A certifying supercompiler, in general, has to deal with two languages: the
programs transformed by the supercompiler are written in the subject language,
while the proof language is used for formulating the proofs generated by the
supercompiler. The problem is that the proof language and the subject lan-
guage must be consistent with each other in some subtle respects. For example,
the functions in the subject language may be partial (as in Haskell), but total
in the proof language (as in Coq [14] or Agda [15]). And semantic differences of
that kind may cause a lot of trouble.

The above problem can be circumvented if the subject language of the super-
compiler is also used as its proof language! Needless to say, in this case the subject
language must have sufficient expressive power2.
1 Note that some supercompilers are not semantics-preserving, changing as they do

termination properties and/or error handling behavior of programs.
2 Note, however, that the implementation language of the supercompiler does not need

to coincide with either the subject language or the proof language.
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The purpose of the present work is to show the feasibility and usefulness of
certifying supercompilation. To this end, we have developed and implemented
TT Lite [16], a proof-of-concept supercompiler for Martin-Löf’s type theory (TT
for short) [17]. The choice of TT as the subject+proof language was motivated
as follows.

– The language of type theory is sufficiently feature-rich and interesting. (It
provides inductive data types, higher-order functions and dependent types.)

– The type theory is easy to extend and can be implemented in a simple, mod-
ular way.

– Programs and proofs can be written in the same language.
– The typability of programs is decidable, and type checking can be easily imple-

mented.

To our knowledge, the supercompiler described in the present work is the
first one capable of producing residual programs together with proofs of their
correctness. It is essential that these proofs can be verified by a type checker that
is not based on supercompilation and is independent from the supercompiler.

The general idea that a certifying program transformation system can use
Martin-Löf’s type theory both for representing programs and for representing
proofs of correctness was put forward by Albert Pardo and Sylvia da Rosa [18].
We have shown that this idea can be implemented and does work in the case of
program transformations performed by supercompilation.

The TT Lite project3 comprises 2 parts: TT Lite Core, which is a minimalistic
implementation of the language of type theory (a type-checker, an interpreter
and REPL), and TT Lite SC, which is a supercompiler. The results produced by
TT Lite SC are verified by the type checker implemented in TT Lite Core. TT
Lite Core does not depend on TT Lite SC and is not based on supercompilation4.

TT Lite Core implements the collection of constructs and data types that
can be usually found in textbooks on type theory: dependent functions, pairs,
sums, products, natural numbers, lists, propositional equality, the empty (bot-
tom) type and the unit (top) type. Also the site of the project contains a tuto-
rial on programming in the TT Lite language with (a lot of) examples taken
from [19,20].

While [16] contains full technical information about TT Lite in detail, this
paper describes a small subset of TT Lite and can be regarded as a gentle, step-
by-step introduction to [16]. In this paper we limit ourselves to the language
which only contains dependent functions, natural numbers and identity (we use
the abbreviation ΠNI for this subset of TT Lite). This allows us to present
and explain the fundamental principles of our certifying supercompiler without
going into too much technical detail.

3 https://github.com/ilya-klyuchnikov/ttlite.
4 This design is similar to that of Coq [14] The numerous and sophisticated Coq

“tactics” generate proofs written in Coq’s Core language, which are then verified
by a relatively small type checker. Thus, occasional errors in the implementation of
tactics do not undermine the reliability of proofs produced by tactics.

https://github.com/ilya-klyuchnikov/ttlite
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Fig. 1. Proving the associativity of addition via normalization by supercompilation.

2 TT Lite SC in Action

TT Lite SC implements a supercompiler which can be called by programs writ-
ten in the TT Lite input language by means of a built-in construct sc. (This
supercompiler, as well as TT Lite Core, however, is implemented in Scala, rather
than in the TT Lite language.) The supercompiler takes as input an expression
(with free variables) in the TT Lite language and returns a pair: an output
expression and a proof that the output expression is equivalent to the input one.
The proof is also written in the TT Lite language and certifies that two expres-
sions are extensionally equivalent, which means that, if we assign some values to
the free variables appearing in the expressions, the evaluation of the expressions
will produce the same result.

Both the output expression and the proof produced by the supercompiler are
first-class values and can be further manipulated by the program that has called
the supercompiler. Technically, the input expression is converted (reflected) to
an AST, which is then processed by the supercompiler written in Scala. The
result of supercompilation is then reified into values of the TT Lite language.

Let us consider the example in Fig. 1 illustrating the use of TT Lite SC for
proving the equivalence of two expressions [7].

As in Haskell and Agda [15], the types of defined expressions do not have to
be specified explicitly. However, type declarations make programs more under-
standable and easier to debug.

Lines 1–2 define the function of addition for natural numbers. Line 3 declares
(assumes) 3 free variables $x, $y and $z whose type is Nat. By convention, the
names of free variables start with $. Lines 4–5 define two expressions whose
equivalence is to be proved.

Now we come to the most interesting point: line 6 calls the built-in function
sc, which takes as input the expression in1 and returns its supercompiled version
out1 along with the proof pr1 for the fact that in1 and out1 are extensionally
equivalent (i.e., given $x, $y and $z, in1 and out1 return the same value). Line
7 does the same for in2, out2 and pr2.
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p ::= (def |dec)∗ program
def ::= id = e; | id : e; id = e; optionally typed definition
dec ::= id : e; declaration (assumption)
e ::= x variable

| c built-in constant
| b(x : e). e(x) built-in binder
| e1 e2 application
| elim et em ei ed elimination
| (e) parenthesized expression

Fig. 2. TT Lite: syntax

Lines 8–9 formally state that pr1 is indeed a proof of the equivalence of in1
and out1, having as it does the appropriate type, and this fact is verified by the
type checker built into TT Lite Core. Lines 10–11 do the same for in2, out2
and pr2.

And now, the final stroke! Lines 12–13 verify that out1 and out2 are “propo-
sitionally equivalent” or, in simpler words, they are just textually the same.
Hence, by transitivity (lines 14–15), in1 is extensionally equivalent to in2. And
this proof has been automatically found by supercompilation and verified by type
checking [7]. The function proof by trans is coded in the TT Lite language in
the file examples/id.tt.

3 TT Lite: Syntax and Semantics

In the following, the reader is assumed to be familiar with the basics of program-
ming in Martin-Löf’s type theory [19,20].

TT Lite Core provides a modular and extensible implementation of type
theory. Technically speaking, it deals with a monomorphic version of type theory
with intensional equality and universes.

TT Lite SC is based on TT Lite Core and makes heavy use of the expression
evaluator (normalizer) and type checker provided by TT Lite Core. Hence, before
looking into the internals of the supercompiler, we have to consider the details
of how normalization and type checking are implemented in TT Lite Core.

The Syntax of the TT Lite language is shown in Fig. 2. A program is a
list of declarations and definitions. A definition (as in Haskell) can be of two
kinds: with or without an explicit type declaration. There is also a possibility
to declare the type of an identifier without defining its value (quite similar to
module parameters in Agda), in which case the identifier must start with $.

A TT Lite expression is either a variable, a built-in constant, a binder5, an
application, an application of an eliminator [22] or an expression enclosed in
parentheses. This syntax should be familiar to functional programmers: vari-
ables and applications have usual meaning, binders are a generalization of λ-
abstractions, eliminators are a “cross-breed” of case and fold.
5 See [21, Sect. 1.2] describing abstract binding trees.
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In general, an eliminator in the TT Lite language has the form elimet em ei ed

where et is the type of the values that are to be eliminated, em is a “motive” [22],
ei correspond to the cases that can be encountered when eliminating a value,
and ed is an expression that produces values to be eliminated6.

The typing and normalization rules implemented in the ΠNI subset of TT
Lite can be found in Fig. 3. Essentially, they correspond to the rules described
in [19,20], but have been refactored, in order to be closer to their actual imple-
mentation in TT Lite.

The typing and normalization rules are formulated with respect to a context
Γ , where Γ is a list of pairs of two kinds: x := e binds a variable to an expression
defining its value, while x : T binds a variable to a type. By tradition, we divide
the rules into 3 categories: formation (F ), introduction (I) and elimination (E)
rules. A rule of the form Γ � e : T means that e has the type T in the context
Γ , while [[e]]Γ = e′ means that e′ is the result of normalizing e in the context Γ .

Our rules mainly differ from the corresponding ones in [19,20] in that subex-
pressions are explicitly normalized in the process of type checking. It should be
also noted that these expressions, in general, may contain free variables. If a TT
Lite expression is well-typed, the normalization of this expression is guaranteed
to terminate. So, any function definable in the TT Lite language is total by con-
struction. Figure 4 gives a definition of the neutral variable [22] of an expression.
Essentially, a neutral variable is the one that prevents an elimination step from
being performed7.

4 TT Lite SC: Supercompilation

The implementation of TT Lite SC is based on the MRSC Toolkit [23], which
builds graphs of configurations [3] by repeatedly applying a number of graph
rewrite rules. The nodes of a partially constructed graph are classified as either
complete or incomplete. The supercompiler selects an incomplete node, declares
it to be the current one, and turns it into a complete node by applying to it the
rules specified by the programmer. The process starts with a graph containing
a single (initial) configuration and stops when all nodes become complete8.

Figure 5 schematically depicts the graph building operations that can be
performed by the MRSC Toolkit. (Incomplete nodes are shown as dashed circles,
the current node is inside a rounded box.) These operations are applied to the
current node (which, by definition, is incomplete). The operation unfold adds
child nodes to the current node. This node becomes complete, while the new
nodes are declared to be incomplete. The operation fold adds a “folding” edge
from the current node to one of its parents, and the node becomes complete.
The operation stop just declares the current node to be complete, and does
nothing else.
6 By the way, application is essentially an eliminator for functional values.
7 Recall that application is also a special case of eliminator.
8 Or the graph is declared by the whistle to be “dangerous” (in this case the super-

compiler just discards the graph), but this feature is not used by TT Lite SC.
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(v) Γ, x : T � x : [[T ]]Γ ([[v]]) [[x]]Γ, x:=t = t (U) Un : Un+1

(ΠF )
Γ � A : Um Γ, x : [[A]]Γ � B(x) : Un

Γ � Π(x : A). B(x) : Umax(m,n)

(ΠI)
Γ � A : Um Γ, x : [[A]]Γ � t(x) : B(x)

Γ � λ(x : A). t(x) : [[Π(x : A). B(x)]]Γ

(ΠE)
Γ � f : Π(x : A). B(x) Γ � t : A

Γ � f t : [[B(x)]]Γ,x:=[[t]]Γ

([[ΠF ]]) [[Π(x : A). B(x)]]Γ = Π(x : [[A]]Γ ). [[B(x)]]Γ

([[ΠI]]) [[λ(x : A). t(x)]]Γ = λ(x : [[A]]Γ ). [[t(x)]]Γ

([[ΠE]]) [[f t]]Γ = �[[f ]]Γ [[t]]Γ �Γ (�ΠE�) �(λ(x : A).t(x))u�Γ = [[t(x)]]Γ,x:=[[u]]Γ

(NF )
Γ � N : U0

(NI1)
Γ � 0 : N

(NI2)
Γ � n : N

Γ � Succ n : N

(NE)

Γ � m : [[Π(x : N). Uk]]Γ Γ � f0 : [[m 0]]Γ
Γ � fs : [[Π(x : N) (y : m x). m (Succ x)]]Γ Γ � n : N

Γ � elim N m f0 fs n : [[m n]]Γ

([[NI2]]) [[Succ n]]Γ = Succ [[n]]Γ

([[NE]]) [[elim N m f0 fs n]]Γ = �elim N [[m]]Γ [[f0]]Γ [[fs]]Γ [[n]]Γ �Γ

(�NE1�) �elim N m f0 fs 0�Γ = [[f0]]Γ

(�NE2�) �elim N m f0 fs (Succ n)�Γ = [[fs n (elim N m f0 fs n)]]Γ

(IF )
Γ � A : Um Γ � t1 : [[A]]Γ Γ � t2 : [[A]]Γ

Γ � I A t1 t2 : Um

(II)
Γ � A : Um Γ � t : [[A]]Γ
Γ � Refl A t : [[I A t t]]Γ

(IE)

Γ � I A t1 t2 : Uk Γ � m : [[Π(x : A) (y : A) (z : I A x y). Uk]]Γ
Γ � f : [[Π(x : A). m x x (Refl A x)]]Γ Γ � eq : [[I A t1 t2]]Γ

elim (I A t1 t2) m f eq : [[m t1 t2 eq]]Γ

([[IF ]]) [[I A t1 t2]]Γ = I [[A]]Γ [[t1]]Γ [[t2]]Γ

([[II]]) [[Refl A t]]Γ = Refl [[A]]Γ [[t]]Γ

([[IE]]) [[elim (I A t1 t2) m f eq]]Γ = �elim [[I A t1 t1]]Γ [[m]]Γ [[p]]Γ [[eq]]Γ �Γ

(�IE�) �elim (I A t1 t2) m f (Refl A t3)�Γ = [[f t3]]Γ

Fig. 3. TT Lite: rules

nv(x e) = x nv(elim N m f0 fs e) = nv(e)
nv(e1 e2) = nv(e1) nv(elim (I A t1 t2) m f x)= x
nv(elim N m f0 fs x)= x nv(elim (I A t1 t2) m f e)= nv(e)

Fig. 4. Finding the neutral variable of a term
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Unfold−−−−−→ Fold−−−→

Stop−−−→

Fig. 5. Basic operations of MRSC

The MRSC toolkit allows the nodes and edges of a graph to hold arbitrary
information. Information in a node is called a configuration. In the case of TT
Lite SC, a configuration is a pair consisting of a term (expression) and a context.
Schematically, a graph node will be depicted as follows:

�

�

�

�

t | Γ . We use two
kind of edge labels (I and E) in TT Lite SC. The first kind corresponds to
the decomposition of a constructor, while the second kind corresponds to case
analysis and (in general case) primitive recursion performed by an eliminator. In
the case of recursive eliminators (such as N, List) the label also holds information
to be used for finding possible foldings.

We use the following notation for depicting nodes and transitions between
nodes:

An unfolding edge is schematically represented by a right arrow, and a fold-
ing edge by a left arrow. (a) represents a decomposition. (b) corresponds to
case analysis performed by an eliminator. If the eliminator is a recursive one,
the edge label contains a recursive term r, otherwise this position is occupied by
the dummy placeholder •. (c) represents a folding edge. (d) represents a complete
node without child nodes. Sometimes, nodes will be denoted by greek letters.
For example, a folding edge from β to α will be depicted as a ← β.

The rules used by TT Lite SC for building graphs of configurations are pre-
sented in Fig. 6(a). In simple cases, the left part of a rule is a pattern that
specifies the structure of the nodes the rule is applicable to. But, sometimes
a rule has the form of an inference rule with a number of premises (“guarded
pattern matching” in programmer’s terms). The rules are ordered.

Let us consider rules of various kinds in more details.
There are two kinds of rules for building graphs of configurations: type-specific

and general ones. Type-specific rules determine how driving [24] is performed for
constructions introduced by a specific type. General rules do not correspond to a
specific type and ensure the finiteness of graphs of configurations. In this paper we
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Fig. 6. Supercompilation rules

present all general rules of TT Lite SC and the driving rules for the ΠNI subset9.
Rules Fold, Stop and Default are general ones. Rules (NI ′

2) and (NE′) are driving
rules for N. All other driving rules can be found in [16].

Rules (NI ′
2) and (NE′) add new nodes to the graph by applying the MRSC

operation Unfold. Any driving rule in TT Lite SC can be classified as either a
decomposition or a case analysis by means of an eliminator.

From the perspective of the type theory, decomposition corresponds to for-
mation and introduction rules. The essence of decomposition is simple: we take
a construct to pieces (which become the new nodes) and label the edges with
some information (about the construct that has been decomposed). In the case
of the ΠNI subset there is only one decomposition rule: (NI ′

2).
Note that, in general, for each formation and introduction rule there exists

a corresponding decomposition rule, provided that the corresponding value has
some internal structure. However, in the case of the type N, the constructs N

and 0 have no internal structure.

9 In this paper the identity type is only used for constructing proofs of correctness.
Thus, for brevity, we do not discuss here driving rules for identity.
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Decomposition is not performed for binders Π and λ. The reason is that in
this case we could be unable to generate a proof of correctness of decomposition,
because the core type theory does not provide means for dealing with extensional
equality.

When the supercompiler encounters an expression with a neutral variable, it
considers all instantiations of this variable that are allowed by its type. Then,
for each possible instantiation, the supercompiler adds a child node and labels
the corresponding edge with some information about this instantiation.

When dealing with eliminators for recursive types (such as N and List), we
record the expression corresponding to the “previous step of elimination”10 in
the edge label. For example, for the expression elim N m f0 fs (Succ y), the
expression corresponding to the previous step of elimination is elim N m f0 fs y.
In the case of the subset ΠNI, the only rule for case analysis is (NE′), which
considers two possible instantiations of the neutral variable y of the type N:
0 and Succ y. Note that by putting an instantiation in the context and then
normalizing the expression, we perform positive information propagation: the key
step of supercompilation. Storing “the previous step of eliminator” is crucial for
folding and code generation, since the only way to introduce recursive functions
in TT Lite is via eliminators.

A technical note should be done here: in TT Lite SC we generate new vari-
ables for instantiations and put them into context. So, in TT Lite SC, given a
neutral variable y of type N, the child configuration corresponding to the case
y = Succ y1 is

�

�

�

�

|[c|]Γ,y:=Succ y1 | Γ, y1 : N , where y1 is a fresh variable of the
type N. However, in this specific case we can avoid the generation of a new vari-
able by reusing the variable y and not extending the context (since y is already
in the context). This small trick allows us to make presentation of code gen-
eration and proof generation rules (given in the next sections) shorter and less
cumbersome.

Note that the information stored on the edge label is enough for generat-
ing both the residual program and the proof of correctness (in a straightfor-
ward way).

Another special case is the application of a neutral variable. Since a neutral
variable is bound to have a functional type, we cannot enumerate all its possible
instantiations. In such situation, most supercompilers (e.g. HOSC [25]) perform
a decomposition of the application, but, to keep the supercompiler simple, we
prefer not to decompose such applications.

General rules (Fold, Stop, Default) are the core of TT Lite SC. In short,
general rules ensure the finiteness of graphs of configurations. This is achieved
either by folding the current expression to a previously encountered one or by
stopping the development of the current branch of the graph.

In the rule Fold, anc(β) is a set of ancestor nodes of the current node β and
c is an expression in the node β. The rule itself is very simple. Suppose that
the current node has an ancestor node whose “previous step of elimination” in
the outgoing edge is (literally) the same as the current term. Then the rule Fold
10 = “recursive call” of the same eliminator.



196 I. Klyuchnikov and S. Romanenko

is applicable, and the current configuration can be folded to the parent one. In
the residual program this folding will give rise to a function defined by primitive
recursion.

Folding in TT Lite SC differs from that in traditional supercompilers. Namely,
most supercompilers perform folding when the current expression is a renaming
of some expression in the history. However, since TT Lite SC has to encode
recursion by means of eliminators, the mixture of folding and renaming would
create some technical problems. So, we prefer to separate them.

If no folding/driving rule is applicable, the rule Default is applied. (This rule
is the last and has the lowest priority.) In this case, the current node becomes
complete and the building of the current branch of the graph is stopped.

In general, the process of repeatedly applying driving rules, together with
the rules Fold and Default, may never terminate. Thus, in order to ensure termi-
nation, we use the rule Stop, whose priority is higher than that of the unfolding
rules and the rule Default. In this supercompiler we use a very simple termina-
tion criterion: the building of the current branch stops if its depth exceeds some
threshold n. Note that, in the case of TT Lite SC, the expressions appearing
in the nodes of the graph are self-contained, so that they can be just output into
the residual program.

Since the graph of configurations is finitely branching, and all branches have
finite depth, the graph of configurations cannot be infinite. Therefore, the process
of graph building eventually terminates.

The generation of the residual program corresponding to a completed graph
of configurations is performed by recursive descent. The function that imple-
ments the residualization algorithm is defined in Fig. 6(b). A call to this func-
tion has the form C[α]ρ, where α is the current node, and ρ is an environment
(mapping of nodes to variables) to “tie the knot” on “folding” edges. The initial
call to the function C has the form C[root]{}, where root is the root node of the
graph of configurations.

The function C performs pattern matching against the edges going out of
the current node. (In the rules, the patterns are enclosed into square brackets.)
We use the following conventions: the current node is α, α.e is an expression in
the node α, tp(α) is the type of the expression appearing in the node α. If e | Γ
is the configuration in the node α, and Γ � e : T , then tp(α) = T . In the last
rule (corresponding to a case analysis of a neutral var of type N) v is a fresh
variable.

Note that rules for construction of a graph of configurations take into account
that residualization facilities of C are limited (by eliminators) and produce a
graph that can be residualized by C.

5 Proof Generation

The function that implements the proof generator is defined in Fig. 6(c). A call
to this function has the form P[α]ρ,φ, where α is the current node, while ρ and φ
are two environments. ρ is used for folding in residual programs (when encoding
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recursion), while φ is used for folding in proofs (when encoding proofs by induc-
tion). Technically, φ binds some nodes to corresponding inductive hypotheses.
The initial call to the function P has the form P[root]{},{}, where root is the
root node of the graph of configurations.

Generated proofs are based on the use of propositional equality (i.e. syntactic
identity of normalized expressions), functional composition and induction.

– The residual expression corresponding to a childless node is the same as the
one appearing in this node. Hence, the proof amounts to the use of reflexivity
of equality (i.e. is a call to Refl).

– The proofs corresponding to decompositions of configurations exploit the con-
gruence of equality: the whole proof is constructed by combining subproofs
(demonstrating that the arguments of constructors are equal) with the aid of
the combinator cong defined in Fig. 6(d) ([16] uses more congruence combi-
nators).

– The proofs corresponding to eliminators are by structural induction. The
motive of a new eliminator is now a proof. When specifying a motive of elim-
inator, C[α]ρ is used in the same way as during code generation (using the
same environment ρ). But, when generating subproofs for recursive elimina-
tors, C[α]ρ is used to extend the environment ρ. Also φ is extended, to bind
the current node to a subproof (inductive hypothesis).

Note that the same graph of configurations is used both for generating the
residual program and for generating the proof. If TT Lite SC would have been
implemented in “direct” style (without explicit graphs of configurations) like
in [26], such reuse would be problematic, which would produce a negative effect
on the modularity of our design.

Despite the fact that the rules for P are compact, they are technically
involved since there is an intricate use of two “folding contexts” ρ and φ. Another
technically interesting point is that code generation function C is used as a “type
inferencer” when constructing a motive for proof term encoded via eliminators.

6 Example

Let us consider supercompilation of the expression in2 from the Fig. 1 (which
is plus (plus $x $y) $z). The graph of configurations for this expression is
shown in Fig. 7. The generated code is shown in Fig. 8. The proof that in2
and out2 are equivalent is not shown here because of the lack of space (but
can be found at the project website). The project site contains more examples
of certifying supercompilation. In particular, TT Lite SC is capable of proving
most equivalences of expressions that have been presented in the paper [7] (and
proved by HOSC). The difference from HOSC, however, is that TT Lite SC
generates explicit proofs, which can be verified by type checking.

7 Related Work

One of the ideas exploited by TT Lite SC is that of supercompilation by eval-
uation. As was shown in [26], supercompilation can be based on an evaluator
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Fig. 7. Example: graph of configurations and “graph of residualization”

Fig. 8. Example: residual expression (out2)

which tries to reduce an open term to head normal form. Unfortunately, if the
subject language is not a total one (as in the case of Haskell), the evaluation
may not terminate. For this reason, Bolingbroke and Peyton Jones had to equip
their evaluator with a termination check (“local whistle”), which may interfere
with global termination check in subtle ways. Hence, the evaluator had to be
fused, to some extent, with other parts of their supercompiler.

In the case of TT Lite SC, the totality of the subject language has allowed
us to greatly simplify and modularize the structure and implementation of our
supercompiler. In particular, since the evaluation of all expressions, including
expressions with free variables, terminates, the evaluator is trivialized into a
standard normalizer, so that TT Lite SC just reuses the interpreter provided by
TT Lite Core. Thus, the supercompiler knows nothing about the internals of the
evaluator, using it as a “black box”.

Another point, where we exploit the totality of the subject language, is case
analysis. Since a function returns a result for any input, all possible instantiations
of a neutral variable can be found by just examining the type of this variable.
Note that supercompilers dealing with partial functions usually find instantia-
tions of a variable by taking into account how this variable is actually used in
the program. Technically, this means that driving has to be implemented as a
combination of case analysis and variable instantiation. TT Lite SC, however,
completely decouples case analysis from variable instantiation.

Since our goal was to investigate whether certifying supercompilation is pos-
sible in principle, we tried to keep our proof-of-concept certifying supercompiler
as simple and comprehensible as possible. And, indeed, the ingredients of our
supercompiler for the ΠNI subset fit on half a page! And yet, this is a supercom-
piler for a non-trivial language (of Martin-Löf’s type theory), which is powerful
enough in order to be able to prove most term equivalences from [7].

In some application areas, however, TT Lite SC is inferior even to “näıve” par-
tial evaluators. In particular, it fails to pass the classical KMP test [24]. The reason
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is that, in residual programs produced by TT Lite SC, all loops and recursive func-
tions has to be encoded in terms of eliminators. Thus, TT Lite SC can only fold a
configuration to “the previous step of an eliminator”. This is a restricted form of
folding, which is not sufficient in the case of the KMP test. We could generalize our
graph building rules to allow TT Lite SC to use more complicated forms of fold-
ing. However, in this case, residual programs would be difficult to express in terms
of eliminators and, as a consequence, the generation of correctness proofs, cor-
responding to residual programs, would become more technically involved. This
problem needs to be further investigated.

8 Conclusions

We have developed and implemented a certifying supercompiler TT Lite SC,
which takes an input program and produces a residual program paired with a
proof of the fact that the residual program is equivalent to the input one. As
far as we can judge from the literature, this is the first implementation of a
certifying supercompiler for a non-trivial higher-order functional language.

A proof generated by TT Lite SC can be verified by a type checker of TT
Lite Core which is independent from TT Lite SC and is not based on super-
compilation. This is essential in cases where the reliability of results obtained by
supercompilation is of fundamental importance. For example, when supercompi-
lation is used for purposes of program analysis and verification. Some “technical”
details in the design of TT Lite SC are also of interest.

– The subject language of the supercompiler is a total, statically typed, higher-
order functional language. Namely, this is the language of Martin-Löf’s type
theory (in its monomorphic version).

– The proof language is the same as the subject language of the supercompiler.
– Recursive functions in the subject language are written in a well-structured

way, by means of “eliminators”. An eliminator for an inductively defined data
type performs both the case analysis and recursive calls.

– Driving is type-directed.
– There is an intricate interplay of supercompilation, type theory and limitations

imposed by usage of eliminators.
– TT Lite programs (including proofs produced by supercompilation) can be

exported into Agda and checked by Agda system.
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Abstract. We develop the theory of index sets in the context of com-
putable analysis considering classes of effectively open sets and com-
putable real-valued functions. First, we construct principal computable
numberings for effectively open sets and computable real-valued func-
tions. Then, we calculate the complexity of index sets for important
problems such as root realisability, set equivalence and inclusion, func-
tion equivalence which naturally arise in continuous constraint solving.
Using developed techniques we give a direct proof of the generalised Rice-
Shapiro theorem for effectively open sets of Euclidean spaces and present
an analogue of Rice’s theorem for computable real-valued functions. We
illustrate how index sets can be used to estimate complexity of contin-
uous constraints in the settings of the Kleene-Mostowski arithmetical
hierarchy.

1 Introduction

The present research is motivated by rapidly increasing interest in solvability and
satisfiability of continuous constraints which naturally arise in program analysis,
formalisations of safety-critical systems evolving in real time and real spaces. Our
goal is to develop an appropriate logical framework which allows one to apply the
classical recursion theory methods, originally developed for purely discrete data,
to make formal reasoning about continuous data. In the previous work [10–14]
we already established strong interconnection between Σ–definability and com-
putability in real analysis. In [9] it has been illustrated how ΣK-constraints can
be used for analysing reachability problems of switched controlled systems.

In this paper we propose to consider the theory of index sets as a promising
candidate for merging classical recursion theory and computable analysis. There
are several reasons for doing this. One of them is that the theory of index sets
provides methods for encoding problems in an effective way by natural num-
bers, i.e., generate the corresponding index sets which can be used for analysing
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their complexity in the settings of the Kleene-Mostowski arithmetical hierarchy.
Another reason is that the theory of index sets has been already successfully
employed in many areas in Mathematics and Computer Science. In recursion
theory index sets have been applied to get both new results and new elegant
proofs of classical theorems such as the Post’s theorem, the density theorem
[7,17,18]. In computable model theory recent advancements are closely related
to index sets [4,5]. In Computer Science the Rice-Shapiro theorem provides sim-
ple description of effectively enumerable properties of program languages.

In this paper we initiate the study of the theory of index sets for computable
analysis starting with index sets for classes of effectively open subsets of Euclid-
ian spaces and strongly computable real-valued functions. In order to develop
a uniform framework we use the notions of effectively enumerable space and
effectively open subset recalled in Sect. 2. Previously, in [8,11] we have shown
that the class of effectively enumerable spaces contains the computable metric
spaces, the weakly effective ω–continuous domains as proper natural subclasses.
Furthermore, for every effectively enumerable space which admits structurisa-
tion, e.g. a computable metric space, its effectively open subsets coincide with the
sets which are Σ–definable without equality. This makes effectively enumerable
spaces suitable for our purposes.

In Sect. 2 one of the important theorems is Theorem 3 that provides char-
acterisation of strong computability in terms of effectively open sets. We use
this result for constructing principal computable numberings of the strongly
computable real-valued functions. Then, in Sect. 3 we introduce index sets for
classes of effectively open subsets of Euclidian spaces and strongly computable
real-valued functions. We prove a series of results on Π0

2 -completeness of several
problems such as set equality, set inclusion, root realizability. One of the main
theorems here is Theorem 6 which is an analog of Rice’s theorem for strongly
computable real-valued functions.

In Sect. 4 we prove a generalisation of the Rice-Shapiro theorem which pro-
vides simple description of effectively enumerable properties of effectively open
sets of Euclidian spaces. It is worth noting that in the domain theoretical frame-
work various versions of the theorem were proposed in pioneer papers [6,19]. In
Sect. 5 we prove that index sets for computably closed, computably compact sets
are Σ0

3 -complete. We also show that the index set for any class of computable
compact sets is Π0

2–hard. There results help to reveal origins of undecidability
of many non-trivial problems in computable analysis.

In Sect. 6 we investigate an application of methods developed in this paper
to hybrid systems. It is well-known that the most important problems such
as reachability, safety, liveness are undecidable for relatively general classes of
hybrid systems. In [3] it was proven that for wide classes of dynamical systems
reachability sets are not computable in the sense of computable analysis. The
next natural question is whether there exist properties of hybrid systems that
can be decided by limit decision procedures. In this paper we give an answer for
a general class of hybrid systems. The main result of this section is Theorem 14
which shows that for any non-trivial property there is no 0′–computable, i.e.,
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limit computable decision procedure for classes of general hybrid systems. This
gives understanding of roots of undecidability for many problems in the gen-
eral theory of hybrid systems, in particular, in analysis of invariants and safety
properties.

2 Basic Definitions and Notions

In order to consider all Euclidean spaces and continuous real-valued functions
in the same settings we recall the notion of effectively enumerable topological
space. Let (X, τ, ν) be a topological space, where X is a non-empty set, τ∗ ⊆ 2X

is a base of the topology τ and ν : ω → τ∗ is a numbering.

Definition 1 [11]. A topological space (X, τ, ν) is effectively enumerable if the
following conditions hold.

1. There exists a computable function g : ω × ω × ω → ω such that

ν(i) ∩ ν(j) =
⋃
n∈ω

ν(g(i, j, n)).

2. The set {i|ν(i) �= ∅} is computably enumerable.

It is worth noting that Euclidean spaces and continuous real functions belong
to the class of effectively enumerable topological spaces. In this paper we study
the complexity of classes of effectively open sets which can be considered as
continuous analogs of computable enumerable sets over natural numbers.

Definition 2 [11]. Let X be an effectively enumerable topological space. A set
A ⊆ X is effectively open if there exists a computable function h : ω → ω
such that

A =
⋃
n∈ω

ν(h(n)).

The complement of an effectively open set is called co-effectively closed.
Let OX denote the set of all open subsets of X and Oe

X denote the set of all
effectively open subsets of X. We recall that for A,B ∈ OIRn , A is way-below
B, i.e., A � B, if there exists a compact K such that A ⊂ K ⊂ B.

A numbering α : ω → Oe
X is called computable if there exists a computable

function H : ω × ω → ω such that α(k) =
⋃

n∈ω ν(H(k, n)). A computable
numbering α is called principal if any computable numbering is computably
reducible to α [7].

Theorem 1. For every effectively enumerable topological space X there exists a
principal computable numbering of Oe

X .

Proof. Define α(e) =
⋃

n∈ω ν(ϕe(n)) =
⋃{ν(k)|k ∈ πe}. It is easy to see that α

is a computable numbering of Oe
X . To show that α is principal we assume that

F : ω → Oe
X is a computable numbering of Oe

X . By definition, there exists a
computable function H such that F (k) =

⋃
n∈ω νH(k, n). For some computable

function β : ω → ω, H(x, y) = ϕβ(x)(y). Therefore, F (k) = α(β(k)).
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Within this paper we use closed interconnection between effective openness and
Σ–definability on effectively enumerable topological spaces admitting positive
predicate structurisation [8]. The real numbers and the continuous real functions
are examples of such spaces. It turns out that the following properties of Σ–
definability provide elegant techniques to calculate the arithmetical complexity
of index sets for classes over Euclidean spaces.

Theorem 2 [10,13]. There is an algorithm which by a Σ–formula without equal-
ity Φ produces an effective sequence of quantifier free formulas without equality
{ϕi}i∈ω such that HF(IR) |= (∀y ∈ [a, b])Φ(x̄) ↔ HF(IR) |= ∨

i∈ω ϕi(a, b, x̄).
There is an algorithm which by an effective sequence of quantifier free formu-
las without equality {ψi}i∈ω produces a Σ–formula without equality Ψ such that
HF(IR) |= ∨

i∈ω ψi(x̄) ↔ HF(IR) |= Ψ(x̄).

The following proposition is a natural corollary of the previous theorem.

Proposition 1. A subset of IRn is effectively open if and only if it is Σ–definable
without equality.

Since there is a universal Σ–predicate [13] we can define a numbering αΣ of Σ–
definable subsets in a natural way. It is easy to see that α and αΣ are equivalent
over any Euclidean space. Now we introduce the notion of strongly computable
function over effectively enumerable topological spaces based on the well-known
definition of enumeration operator.

Definition 3 [17]. A function Γe : P(ω) → P(ω) is called enumeration operator
if Γe(A) = B ↔ B = {j|∃i c(i, j) ∈ We, Di ⊆ A}, where We is the e-th
computably enumerable set, and Di is the i-th finite set.

Let X = (X, τ, α) be an effectively enumerable topological space and IR =
(IR, λ, β), where β is a computable numbering of the open intervals with rational
endpoints, ∅ and IR. Let us denote Ax = {i ∈ ω|x ∈ α(i)}, By = {j ∈ ω|y ∈
β(j)}.

Definition 4. A partial function F : X → IR is called strongly computable if
there exists an enumeration operator Γe : P(ω) → P(ω) such that, for every
x ∈ X,

(1) for every finite set D ⊆ Γe(Ax) either
⋂

k∈D β(k) = ∅ or

(∃m ∈ Γe(Ax))β(m) �
⋂

k∈D

β(k),

(2) if x ∈ dom(F ) then Γe(Ax) = BF (x),
(3) if x �∈ dom(F ) then

⋂
j∈ω{β(j)|j ∈ Γe(Ax)} is not a singleton.

The following theorem establishes a close relation between strongly computable-
functions and effectively open sets. Below we use the interval domain IIR =
{[a, b] ⊆ IR | a, b ∈ IR, a ≤ b} ∪ {⊥} , the ω-continuous domain I∗

IR = IIR ∪ {�},
where x � � for every x ∈ IIR, the standard notations U(x) � {y|(x, y) ∈ U},
for a binary relation U ⊆ X × Y , and O[a,b] � {x ∈ I∗

IR|[a, b] � x}.
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Theorem 3. Let (X, τ, α) be an effectively enumerable topological space and
f : X → IR be a partial function. The following assertions are equivalent.

1. The function f is strongly computable.
2. There exists a total computable function F : X → I∗

IR such that
(a) F (x) = {f(x)} for x ∈ dom(f);
(b) F (x) �= {y} for x�∈dom(f) and any y ∈ IR.

3. There exist two effectively open sets U, V ⊆ X × IR such that
(a) for all x ∈ X, U(x) is closed downward and V (x) is closed upward;
(b) if x ∈ domf then U(x) = {y|y < f(x)} and V (x) = {y|y > f(x)};
(c) if x�∈domf then the IR \ (U(x) ∪ V (x)) is not a singleton.

Proof. 1 → 2). Let Γe be a enumeration operator that defines f . Denote

Ax � {[q1, q2]|(∃m)β(m) = (q1, q2) ∧ (∃k)((∀s ∈ Dk) x ∈ α(s) ∧ c(k, m) ∈ We)}.

Define

F (x) =

⎧
⎨
⎩

⊥, if Ax = ∅⋂
Ax, if Ax �= ∅ and

⋂
Ax �= ∅

�, if Ax �= ∅ and
⋂

Ax = ∅.

It is clear that F−1(�) and F−1(O[a,b]) are effectively open sets (uniformly
in a < b, a, b ∈ Q). This means that F is an effectively continuous function,
therefore F is computable [11].
2 → 3). Define

U(x) =
{{z|z ∈ IR and z < F (x)} if F (x) ∈ IIR

IR if F (x) = �,

and

V (x) =
{{z|z ∈ IR and z > F (x)} if F (x) ∈ IIR

IR if F (x) = �.

Then, U = {(x, a)|a ∈ U(x)} and V = {(x, a)|a ∈ V (x)}. It is easy to see that
U and V are open and satisfy the conditions (a) − (c).
3 → 1). Let U, V ⊆ X × IR be effectively open sets satisfying the conditions
(a) − (c). It is clear, that U and V are representable in the following way.

U =
⋃
i∈ω

[αhU (i) × (g1(i), g2(i))] ;V =
⋃
i∈ω

[αhV (i) × (g3(i), g4(i))]

for some computable functions hV , hU : ω → ω and gj : ω → Q for 1 ≤ j ≤ 4.
Define

We = {c(k,m)|Dk = {c(hU (i), hV (j))} ∧ (∃r1 ∈ Q)(∃r2 ∈ Q)
(β(m) = (r1, r2) ∧ r1 < g2(i) ∧ r2 > g3(j))}.

The function Γe is a required enumeration operator.
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From the theorem it follows that for total functions f : X → IR computabil-
ity [11] and strong computability coincide. For an effectively enumerable space
X we denote the set of partial strongly computablefunction f : X → IR as
CFRX . A numbering γ : ω → CFRX is called computable if the sequence of
functions {γ(n)}n∈ω is uniformly computable.

Theorem 4. For every effectively enumerable space X there exists a principal
computable numbering of CFRX .

Proof. Let us fix β a principal computable numbering of the set of pairs of
effectively open subsets of X × IR. The existence of such numbering follows from
Theorem 1. Let β(n) = (Ũn, Ṽn). We can effectively construct a new pair which
satisfy Condition 3 of Theorem 3. Indeed, put

Un � {(x, r)|(∃r1)(r1 > r ∧ (x, r1) ∈ Ũn)},

Vn � {(x, r)|(∃r1)(r1 < r ∧ (x, r1) ∈ Ṽn)}.

From Theorem 3 it follows that Vn, Un define a partial strongly computablefunc-
tion f : X → IR such that f(x) = y ↔ Un(x) ∪ Vn(x) = IR \ {y}. Put γ(n) = f .
By construction, γ is a required numbering.

3 Index Sets and Arithmetical Complexity over the Reals

Now we focus on calculating the complexity of index subsets for classes of effec-
tively open subsets of Euclidean spaces and strongly computablereal-valued func-
tions. We consider (Oe

IRn , α) and (CFRX , γ), where α is a principal computable
numbering of the effectively open subsets of the Euclidean space IRn and γ is
a principal computable numbering of the strongly computablereal-valued func-
tions over X. Below we use notation We for the computably enumerable set with
Gödel number e.

Definition 5 [17,18]. The set Ix(K) = {n|α(n) ∈ K} is called index set for
the class K = {A|A ∈ Oe

IR}.
In the similar way we define index sets for classes of strongly computable real-
valued functions. In order to calculate the complexity of index sets we use the
Kleene-Mostowski arithmetical hierarchy which classifies certain sets of the nat-
ural numbers based on the complexity of formulas defining them [17,18]. Below
we recall the notion of multiple m-reducibility [7] that is one of the central
concepts in the classical theory of computability and introduce the notion of
multiple hm-reducibility.

Definition 6. Let A, B, C, D ⊆ ω. The pair (A,B) is multiple hm-reducible
to (C,D), denoted by (A,B) ≤hm (C,D), if there exists a computable function
f : ω → ω such that

x ∈ A → f(x) ∈ C and x ∈ B → f(x) ∈ D.
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The pair (A,B) is multiple m-reducible to (C,D), denoted by (A,B) ≤m (C,D),
if there exists a computable function f : ω → ω such that

x ∈ A ↔ f(x) ∈ C and x ∈ B ↔ f(x) ∈ D.

The function f is called reduction function.

Let A = ω \ A. It is easy to see that A ≤m B if and only if (A,A) ≤hm (B,B).

Definition 7. Let Γ be a class of arithmetical complexity. A set A ⊆ ω is called
Γ–hard if B ≤m A for any B ∈ Γ . A set A is called Γ–complete if A ∈ Γ and
A is Γ–hard.

Let ⊥X denote the function which is undefined everywhere, TotX � {f |f ∈
CFRX and total}.

Theorem 5. Let K be a non-empty class of strongly computablereal-valued func-
tions such that ⊥ �∈ K. Then Ix(K) is Π0

2 -hard.

The proof of the theorem is based on the following lemmas, for short ⊥X � ⊥.

Lemma 1. Suppose A ∈ Π0
2 , f ∈ CFRX and f �= ⊥. Then the following holds:

(A,A) ≤m (Ix({f}), Ix({⊥})).

Proof. It is sufficient to show that the pair of Π0
2–complete set {n|Wn is infinite}

and its complement is multiple pm–reducible to the pair (Ix({f}), Ix({⊥})). For
that we construct a reduction function g : ω → ω. From Theorem 3 it follows
that there exist effectively open sets U, V such that f(x) = y ↔ U(x) ∪ V (x) =
IR \ {y}. Define

Φ1(x, y) � (∃m ∈ Wn)(∃z ∈ U(x))
(

y < z − 1
m + 1

)
∨ (U(x, y) ∧ V (x, y)),

Φ2(x, y) � (∃m ∈ Wn)(∃z ∈ V (x))
(

y > z +
1

m + 1

)
∨ (U(x, y) ∧ V (x, y)).

The formulas define effectively open sets Ũ and Ṽ satisfying Conditions 3 of
Theorem 3. Put g(n) to be equal to the minimal index of the strongly computable
function definable by Ũ and Ṽ . If Wn is infinite then γ(g(n))(x) = f(x), i.e.,
g(n) ∈ Ix({f}). If Wn is finite then γ(g(n)) = ⊥, i.e., g(n) ∈ Ix({⊥}). So, g is
a required reduction function.

Lemma 2. Suppose K ⊆ CFRX , f ∈ K and f �= ⊥. Then the following holds:

(Ix({f}), Ix({⊥})) ≤hm (K,K), where K = CFRX \ K.

Proof. Obviously, g � id is a reduction function.

Proof. (Theorem 5) It follows from Lemmas 1 and 2.
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Below we prove an analog of Rice’s theorem for strongly computable real functions.

Theorem 6 (Generalised Rice Theorem). The index set for K ⊆ CFRX

is Δ0
2 if and only if K is empty or coincides with CFRX .

Proof. Assume K is non-empty and ⊥ �∈ K. From Theorem 5 it follows that
Ix(K) is Π0

2–hard. Therefore, Ix(K) �∈ Σ0
2 . Assume K �= CFRX and ⊥ ∈ K.

Then, ⊥ �∈ K. From Theorem 5 it follows that Ix(K) is Π0
2–hard. Therefore,

Ix(K) �∈ Σ0
2 .

Theorem 7. For any non-empty effectively open set A ⊆ IRn the index set
Ix(A) = Ix({B|B ∈ Oe

IRn and B = A} is Π0
2–complete.

Proof. Let A ∈ Oe
IRn . For proof simplicity we assume n = 1. First, we prove that

Ix(A) ∈ Π0
2 . We fix a computable numbering ν of all compact intervals with

rational endpoints. Then

n ∈ Ix(A) ↔ (∀m) (ν(m) ⊆ α(n) ↔ ν(m) ⊆ A) .

By Theorem 1, the sets α(n) and A are Σ–definable. So, Ix(A) ∈ Π0
2 . In order to

prove Π0
2–completeness we show that Π0

2 -complete set {n|Wn is infinite} is m–
reducible to Ix(A). For that we define a reduction function g : ω → ω using the
following observation. By Theorem 2 and Proposition 1 there exists an effective
sequence of quantifier free formulas {Qi}i∈ω such that x ∈ A ↔ HF(IR) |=∨

i∈ω Qi(x). Without loss of generality we assume that

1. Every formula Qi defines a non-empty interval Ii;
2. If Ii ∩ Ij �= ∅ then there exists Ik such that Ik ⊃ Ii ∩ Ij .

Let Jn = {i|(∃k ∈ Wn)k ≥ i}. Define Φn(x) �
∨

i∈Jn
Qi(x). Put g(n) to be

equal to the minimal index of the effectively open set defined by Φn. If Wn is
infinite then α(g(n)) = A, i.e., g(n) ∈ Ix(A). If Wn is finite then α(g(n)) �= A,
i.e., g(n) �∈ Ix(A). Therefore, Ix(A) is Π0

2 -complete.

Proposition 2. The index set Ix(TotIR) is Π0
2–complete.

Proof. Let us prove that Ix(TotIR) ∈ Π0
2 . We fix a computable numbering ν of

all compact intervals with rational endpoints. Then to say that ν(i) ⊆ dom f we
write that

∧
n∈ω

(∃y1 ∈ Q)(∃y2 ∈ Q)(∀x ∈ ν(i))((|y1 − y2| <
1
n

∧

(x, y1) ∈ V ∧ (x, y2) ∈ U) ∧ ¬((∀x ∈ ν(i))(∃ y)(x, y) ∈ U ∩ V )).

This has the form (∀)Π0
2 ∧ Π0

1 . It is easy to note that

n ∈ Ix(TotIR) ↔ (∀m)ν(m) ⊆ dom f.

By the previous observation, this has the form (∀)Π0
2 ∧ Π0

1 . Since Π0
2 ⊇ Π0

1

and the intersection of Π0
2–relations is Π0

2 , the index set Ix(TotIR) is Π0
2 . From

Theorem 5 it follows that Ix(TotIR) is Π0
2 -complete.
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Proposition 3. For any non-empty co-effectively closed set A the index set

Ix(ZeroA) = Ix({f |f ∈ TotIR and f−1(0) = A})

is Π0
2–complete.

Proof. To say that n ∈ Ix(ZeroA) we write that n ∈ Ix(TotIR) and

(∀m)(∀x ∈ ν(m))
(
x �∈ A ↔ (x, 0) ∈ Vβ(n) ∨ (x, 0) ∈ Uβ(n)

)
,

where Vβ(n) and Uβ(n) are the corresponding epigraph and hypograph of γ(n).
This has the form Π0

2 ∧ (∀)Σ0
1 . Therefore, Ix(ZeroA) ∈ Π0

2 . From Theorem 5 it
follows that Ix(ZeroA) is Π0

2 -complete.

By analogy, one can prove the following theorems.

Theorem 8. For the total strongly computablereal functions, the problems of
function equivalence is Π0

2–complete.
For the effectively open subsets of a Euclidean space, the problem of set equiva-
lence and the problem of set inclusion are Π0

2–complete.

Theorem 9. The index set Ix({⊥IR}) is Π0
3–hard.

4 The Rice-Shapiro Theorem Revisited

In this section we give a direct proof of the generalised Rice-Shapiro over Euclid-
ean spaces.

Proposition 4. Let K ⊆ Oe
IRn . If there exists A ∈ K such that B �� A for

every B ∈ K then Ix(K) is Π0
2–hard.

Proof. Similar to Theorem 7.

Corollary 1. Let K ⊆ Oe
IRn contain a non-empty set which is minimal by inclu-

sion. Then Ix(K) is Π0
2–hard.

Theorem 10 (Generalised Rice-Shapiro). Let K ⊆ Oe
IRn . The index set

Ix(K) is computably enumerable if and only if there is a computable sequence
{Kn}n∈ω of computable compact sets such that K = {A|∃nA ⊃ Kn}.

Proof. (→) For proof simplicity we assume n = 1. Let us fix a computable
numbering ν of all compact intervals with rational endpoints. Below we use the
notation Int([q1, q2]) = (q1, q2). We define the family of computably enumerable
sets K̂ in the following way: W ∈ K̂ � (∃A ∈ K)

(
A =

⋃
j∈W Int(ν(j))

)
.

The family has the following properties.

1. K̂ is non-empty and Ix(K̂) is computably enumerable. Indeed, if A is effec-
tively open, then there exists Wm such that A =

⋃
j∈Wm

Int(ν(j)). So, K̂ �= ∅.
In order to prove computably enumerability let us note that there exists a Σ–
formula Φh(m) which defines A. Then m ∈ Ix(K̂) ↔ h(m) ∈ Ix(K), i.e.,
Ix(K̂) is computably enumerable.



210 M. Korovina and O. Kudinov

2. For every A ∈ K there exists W ∈ K̂ such that A =
⋃

i∈W Int(ν(i)). Indeed,
put W = {n|ν(n) ⊆ A}.

From the properties it follows that the family K is monotone, i.e., if A ∈ K,
B ∈ Oe

IR and B ⊇ A, then B ∈ K. From Property (2) it follows that A =⋃
i∈W Int(ν(i)) for some W ∈ K̂. Then B =

⋃
i∈W1

Int(ν(i)) for a computably
enumerable set W1 ⊇ W . From Property (1) and the classical Rice-Shapiro
theorem [17] it follows that W1 ∈ K̂, so B ∈ K. Since Ix(K̂) is computably
enumerable, by the classical Rice-Shapiro theorem there exists a computable
sequence of finite sets {Dn}n∈ω such that Dn ∈ K̂ and W ∈ K̂ ↔ ∃nW ⊇ Dn.
So, from one point all sets of the type Ln =

⋃
i∈Dn

Int(ν(i)) and all their
extensions are in K. From another point, if A ∈ K, then A =

⋃
i∈W Int(ν(i))

for some W ⊇ Dn. So, A ⊇ Ln. It means that K is the set of all extensions of the
sets Ln. It follows from Proposition 4 that since K is computably enumerable
any Ln is not of the type A : ∀B ∈ KB �� A. So, for every Ln there exists Lm

such that Lm � Ln. Put Ln =
⋃

i∈Dn
ν(i). The sequence {Ln}n∈ω is required.

Indeed, A ∈ K ↔ ∃nA ⊇ Ln ↔ ∃mLm � Ln ⊆ A ↔ Km ⊆ A.
←) Suppose {Kn}n∈ω is a computable sequence of computable compact sets

such that K = {A|∃nA ⊃ K}. Then m ∈ Ix(K) ↔ ∃n∀x ∈ Kn Φg(m)(x),
where g is computable function such that α = g(αΣ). By Theorem 2 we can
eliminate the universal quantifiers bounded by the computable compacts. So,
m ∈ Ix(K) ↔ Ψ(m), where Ψ is a Σ–formula. So, Ix(K) is computably enu-
merable.

Corollary 2. For every non-trivial K ⊂ Oe
IRn if Ix(K) is computably enumer-

able then it is Σ0
1–hard.

Proof. Without loss of generality we assume that (α, β) ∈ K. Let W be a com-
putably enumerable set. Put

ΦF (n) �
{∅, n �∈ W

x ∈ (α, β), n ∈ W.

So, n ∈ W ↔ F (n) ∈ Ix(K). It means that any computably enumerable set,
e.g. a creative set, is m–reducible to K. So, Ix(K) is Σ0

1–hard.

Corollary 3. The index set for K ⊂ Oe
IRn is computable if and only if K is

empty or coincides with Oe
IRn .

5 Index Sets for Computable Closed and Compact Sets

In this section we calculate the complexity of the index sets of the computable
closed and compact sets of Euclidean spaces. For the definitions we refer to [1].
Denote

CO = {A|A ⊆ IRn is co − effectively closed},

C = {A|A ⊆ IRn is computable closed},

K = {A|A ⊆ IRn is computable compact}.
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Below for proof simplicity we consider n = 1. Suppose that the set CO is indexed
by the numbering αco : ω → CO defined as follows: αco(n) = IR \ α(n).

Theorem 11. The index set for the computable closed sets of a Euclidean space
is Σ0

3–complete.

Proof. First, we show that Ix(C) ∈ Σ0
3 . By definition, a closed set A is com-

putable if and only if it is co-effectively closed and its distance function dA is
computable [1]. In other words A is a computable closed set if and only if it is
co-effectively closed and there exists k ∈ ω such that γ(k) = f , where f is a
total computable function f : IR → IR satisfying the following conditions:

(1) f ≥ 0;
(2) f ≤ dA on IR \ A;
(3) f ≥ dA on IR \ A;
(4) f = 0 on A.

We have e ∈ Ix(C) iff e ∈ Ix(CO) and

(∃k) (γ(k) ∈ TotIR ∧ γ(k) ≥ 0 ∧ ((∀x)x �∈ Ae → γ(k)(x) ≤ dAe
(x)) ∧

((∀x)x �∈ Ae → γ(k)(x) ≥ dAe
(x)) ∧ ((∀x) γ(k)(x) > 0 → x �∈ Ae) ) .

From Theorems 3 and 8 it follows that the first conjunct and the second conjunct
have the form Π0

2 . Now we calculate the complexity of the rest of conjuncts.
First, we note that IR \ A has the form IR \ Ae =

⋃
n∈ω In, where In is an

open interval with rational endpoints. It is easy to see that In =
⋃

m∈ω Km n,
where Km, n is a compact interval with rational endpoints and {Km, n}m, n∈ω is
a computable sequence of computable compact intervals. Therefore, a formula
(∀x)(x �∈ Ae → Θ(x)) is equivalent to the formula

∧
m, n∈ω(∀x ∈ Km, n)Θ(x).

So, Condition (2), i.e., the third conjunct is equivalent to the formula
∧

m, n∈ω

∧
a, b∈Q

(∀x ∈ Km, n)([a, b] ⊆ B(x, γ(k)(x)) → [a, b] ⊆ IR \ Ae),

where B(x, y) is an open ball with the center x and the radius y. We rewrite
∧

m, n∈ω

∧
a, b∈Q

(∀x ∈ Km, n)([a, b] �⊆ B(x, γ(k)(x)) ∨ Ψa,b),

where Ψa,b is a Π0
1 -sentence. From Theorem 2 it follows that the first and the sec-

ond disjuncts are Π0
1 . Therefore, Condition (2) is Π0

1 .
Condition (3), i.e., the fourth conjunct is equivalent to the following formula:

∧
m, n∈ω

((∀x ∈ Km, n)¬Ψ(x, e, k),

where Ψ(x, e, k) � ∀y(d(y, x) ≤ γ(k)(k) → y �∈ Ae) which is rewritable as

(∃a ∈ Q)(∃b ∈ Q)(∃c ∈ Q)(x ∈ (a, b) ∧ c > sup
z∈[a,b]

γ(k)(z) ∧

(∀y ∈ [a − c, b + c]) y �∈ Ae).
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From Theorem 2 it follows that the second conjunct and the third conjunct in
the formula above are equivalent to Σ–formulas. Therefore, Condition (3) is Π0

1 .
Condition (4), i.e., the fifth conjunct is equivalent to the formula

∧
Km⊆{y|γ(k)(y)>0}

(∀x ∈ Km)x �∈ Ae.

By analogy, Conditions (4) is Π0
2 . So, the relation e ∈ Ix(C) has the form

Σ0
3 . It is worth noting that Σ0

3 -completeness of Ix(C) follows from the fact that
Σ0

3 -complete set R = {n|Wn is computable} is m-reducible to Ix(C). Indeed,
if we define Aβ(n) = ω \ Wn then n ∈ R ↔ β(n) ∈ Ix(C). Therefore, Ix(C) is
Σ0

3–complete.

Theorem 12. The index set for the computable compact sets of a Euclidean
space is Σ0

3–complete.

Proof. First, we show that Ix(K) ∈ Σ0
3 . We have e ∈ Ix(K) iff e ∈ Ix(C) and

Ae is bounded. To say that Ae is bounded we write that

(∃c ∈ Q)(∃r ∈ Q)(∃n ∈ ω) (r > |c| → r ∈ In) ,

where IR\Ae =
⋃

n∈ω In and In is an open interval with rational endpoints. This
has the form Σ0

3 ∧ (∃)Π0
2 . The intersection of Σ0

3 relations is Σ0
3 , so Ix(K) ∈ Σ0

3 .
It is worth noting that Σ0

3–completeness of Ix(K) follows from the fact that
Σ0

3 -complete set R = {n|Wn is computable} is m-reducible to Ix(K). Indeed, if
we define Aβ(n) = {x|x =

∑
i∈ω

2ai

3i : ai = 0 if i ∈ Wn and ai = 1 if i �∈ Wn}
then n ∈ R ↔ β(n) ∈ Ix(K). Therefore, Ix(K) is Σ0

3–complete.

Theorem 13. For any non-empty K ⊆ K the index set Ix(X) is Π0
2 -hard.

Proof. Let us fix A ∈ K. Without loss of generality we assume that A ⊆ [0, 1].
We define a computable sequence of co-effectively closed sets as follows:

A0 � A;An � A
⋃
k≥n

[2k, 2k + 1].

It is easy to see that for every n > 0, the set An is not compact, i.e., An �∈ K
and A =

⋂
n∈ω An. Now we show that {n|Wn is infinite} ≤m Ix(K). Define

Bn =
⋂

m∈Wn

Am.

Since {Bn}n∈ω is a computable sequence of co-effectively closed sets, there exists
a computable function F : ω → ω such that Bn = αco(F (n)). We have the
following equivalences: Wn is infinite ↔ Bn ∈ K ↔ F (n) ∈ Ix(K). Therefore,
Ix(K) is Π0

2–hard.

Corollary 4. For any K ⊆ K the index set Ix(X) �∈ Δ0
2.
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6 An Application to Hybrid Systems

In this section we use the techniques developed above to show that there are
no limit computable decision procedures for analysis of non-trivial properties
of classes of general hybrid systems. To illustrate we use the models of hybrid
systems proposed by Nerode, Kohn in [15], called switched controlled systems.
A hybrid system is a system which consists of a continuous plant that is disturbed
by the external world and controlled by a program implemented on a sequential
automaton. In the Nerode–Kohn modeling a hybrid system is represented by a
continuous device given by a collection of dynamical systems parameterised by
a control set along with a control automaton for switching among them.

The control automaton has input data (the set of sensor measurements) and
the output data (the set of control laws). The control automaton is modeled by
three units. The first unit converts each measurement into input symbols of an
internal control automaton. The second unit is the internal control automaton,
which has a symbolic representation of a measurement as input and produces
a symbolic representation of the next control law to be imposed on the plant
as output. The internal control automaton, in practice, is a finite state automa-
ton with finite input and output alphabets. The third unit converts these out-
put symbols representing control laws into the actual control laws imposed on
the plant. The plant interacts with the control automata at discrete times ti,
where the time sequence {ti}i∈ω satisfies realizability requirements. At time ti
the control automaton gets sensor data, computes the next control law, and
imposes it on the plant. The plant will continue using this control law until the
next interaction at time ti+1. Below we recall the definition of SHS from [9].

The specification SHS = 〈TS,X,U,D, Init,F , Conv1, A,Conv2〉 of a hybrid
system consists of:

• TS = {ti}i∈ω is an effective sequence of rational numbers which encodes
the times of communication of the external world, the plant and the control
automata and satisfies realizability requirements.

• X ⊆ IRn is a plant state space.
• U ⊆ IRk is a set of control parameters.
• D ⊆ C(IR) is a set of acceptable disturbances.
• F ∈ F is a function modeling the behaviour of the plant, where F = {F |F :
D × U × X × IR+ → X} is a set of strongly computable functions.

• Conv1 : D × X → ω is a weakly computable function [11]. At the time of
communication this function converts measurements, presented by F , and
the representation of external world f into finite words which are input words
of the internal control automata.

• A : ω → ω is a Σ-definable function. The internal control automata, in prac-
tice, is a finite state automata with finite input and finite output alphabets.
So, it is naturally modeled by Σ-definable function which has a symbolic rep-
resentation of measurements as input and produces a symbolic representation
of the next control law as output.
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• Conv2 : ω → U is a computable function. This function converts finite words
representing control laws into control laws imposed on the plant.

• Init = InitU × InitX is a computable compact set of initial conditions.

Definition 8. The behaviour of a hybrid system is defined by a function H :
D × X × IR+ → X if for any external disturbance f ∈ D and an initial state
x ∈ InitX the function H(f, x, ·) : IR+ → X defines the trajectory of the hybrid
system.

Definition 9. An operator T : F × CO → [D × IRn × IR+ → IR] is called tuner
if for total F ∈ F and computable compact InitX ⊆ IRn

T (F, InitX)(f, x, t) = H(f, x, t) for x ∈ InitX.

Informally, the tuner T defines the behaviour of the hybrid system by given
plant and initial states. Let us fix T . A non-trivial property of HS is associated
with K ⊆ [D × X × IR+ → X] such that T−1(K) �= ∅ and T−1(K) �= ∅, where
K = [D × X × IR+ → X] \ K.

Lemma 3 [18]. For A ⊂ ω, χ(A) is limit computable if and only if A ∈ Δ0
2.

Theorem 14. For any non-trivial property (non-trivial class K) of HS there is
no limit computable decision procedure that recognises whether T (γ(k), αco) ∈ K,
i.e., the hybrid system satisfies the property.

Proof. Suppose contrary. There are two possible cases.
Case 1. For some fixed Init, there exist F1 and F2 such that T (F1, Init) ∈ K and
T (F2, Init) �∈ K. By assumption and Lemma 3, Ix({F |T (F, Init) ∈ K}) ∈ Δ0

2.
This contradicts to Theorem 6.

Case 2. For some fixed F, There exist Init1 and Init2 such that T (F, Init1) ∈
K and T (F, Init2) �∈ K. Then, by assumption and Lemma 3, it follows that
Ix({Init|T (F, Init) ∈ K} ∈ Δ0

2. This contradicts to Theorem 13.

7 Conclusion

In this paper we have shown how to construct the principal computable number-
ings of the effectively open subsets of Euclidean spaces. Our principal computable
numberings satisfy similar properties as the Kleene numbering of computably
enumerable sets in the classical computability theory. However, the situation
is different for principal computable numberings of the strongly computable
real-valued functions. Our results show that for strongly computable real-valued
functions any non-trivial property is not limit decidable while for recursive func-
tions there are limit decidable properties, for example, the halting problem. We
believe that our results help to understand hardness of properties of continuous
constraints.
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Abstract. Labelled weighted transition systems (LWSs) are transition
systems labelled with actions and real numbers. The numbers represent
the costs of the corresponding actions in terms of resources. Recursive
Weighted Logic (RWL) is a multimodal logic that expresses qualitative
and quantitative properties of LWSs. It is endowed with simultaneous
recursive equations, which specify the weakest properties satisfied by the
recursive variables. We demonstrate that RWL is sufficiently expressive
to characterize weighted-bisimilarity of LWSs. In addition, we prove that
the logic is decidable, i.e., the satisfiability problem for RWL can be
algorithmically solved.

Keywords: Labelled weighted transition system · Maximal fixed point ·
Hennessy-Milner property · Satisfiability

1 Introduction

The industrial practice has revealed lately the importance of model-driven and
component-based development (MDD), in particular within the area of embed-
ded systems. A key challenge is to handle the growing complexity of systems,
while meeting requirements on correctness, predictability, performance and also
resource-cost constraints. In this respect MDD is seen as a valuable approach, as
it allows early design-space exploration and verification and may be used as the
basis for systematic and unambiguous testing of a final product. However, for
embedded systems, verification should not only address functional properties but
also properties related to resource constraints. Within the area of model check-
ing a number of state-machine based modelling formalisms have emerged, which
allow for such quantitative aspects to be expressed, especially time-constraints.
In particular the formalisms of timed automata [AD90], and the extensions to
weighted timed automata [BFH+01,ATP01] allow for such constraints to be
modelled and efficiently analyzed.

Motivated by the needs from embedded systems, we consider Recursive
Weighted Logic (RWL), which is an extension of weighted modal logic [LM13]
with maximal fixed point (and without negation), for labelled weighted transition
systems (LWS). It allows us to specify and reason about not only the qualitative
behaviour of a system but also its quantitative consumption of resources, and to
c© Springer-Verlag Berlin Heidelberg 2015
A. Voronkov and I. Virbitskaite (Eds.): PSI 2014, LNCS 8974, pp. 216–231, 2015.
DOI: 10.1007/978-3-662-46823-4 18
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encode recursive properties. Our notion of weighted transition systems is more
than a simple instance of weighted automata [DKV09], since we also study infinite
and infinitely branching systems.

RWL is a multimodal logic defined for a semantics based on LWSs. It is
endowed with modal operators that predicate about both the action and the
values of transition labels. While in an LWS we can have real-valued labels,
the modalities only encodes rational values. Often we need to characterize a
transition using an infinite convergent sequences of rationals that approximate
the real resource. The logic is also endowed with maximal fixed points defined by
simultaneous recursive equations [Lar90,CKS92,CS93]. They specify the weakest
properties satisfied by the recursive variables.

In the non-quantitative case, the modal μ-calculus [Koz82] allows for encod-
ing both LTL and CTL. Moreover, the modal μ-calculus is obtained by extending
a simple modal logic – the Hennessy Milner Logic (HML) [HM80] having a
modality for each action of the underlying transition system – with the ability to
define properties recursively. In particular, it was shown that HML is adequate
in the sense that it completely characterizes bisimilarity between image-finite
labelled transition systems (LTS), i.e. two LTSs are bisimilar if and only if they
satisfy the same HML properties [Sti99,SR11].

As a first result, we demonstrate that RWL is adequate with respect to
weighted bisimilarity between labelled weighted transition systems, i.e. RWL is
sufficiently expressive to characterize weighted-bisimilarity of LWSs.

Secondly, we prove decidability of satisfiablity for RWL. Concretely, we present
a model construction algorithm, which constructs an LWS for a given RWL for-
mula (provided that the formula is not a contradiction, i.e., without any model).

To encode various resource-constrains in RWL, we use resource-variables,
similar to the clock-variables used in timed logics [ACD93,HNSY92,AILS07].
These variables can be reset, meaning that we can consider, in various states,
interpretations that will map certain variable to zero. This is useful in encoding
various interesting scenarios. Nevertheless, in order to prove the decidability of
our logic and to be able to have the finite model property, we restrict our atten-
tion to only one variable for each type of resources. This bounds the expressive-
ness of our logic while it guarantees its decidability.

The remainder of this paper is organized as follows: the next section is ded-
icated to the presentation of the notion of labelled weighted transition system;
in Sect. 3, we introduce RWL with its syntax and semantics; Sect. 4 is dedicated
to the Hennessy-Milner property of RWL; in Sect. 5 we prove the decidability of
the satisfiability problem for RWL and we propose an algorithm to solve it. We
also present a conclusive section where we summarize the results and describe
future research directions.

2 Labelled Weighted Transition Systems

An labelled weighted transition system (LWS) is a transition system that has
the transitions labelled both with real numbers and actions - as represented in
Fig. 1. The numbers are interpreted as the costs of the corresponding actions
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in terms of resources, e.g., energy consumption/production. Our intention is to
remain as general as possible and for this reason we impose no restriction on the
labels: they can be any real number, possibly negative. If the transition has a
positive label, the system gains resources; negative labels encode consumption
of resources.

Definition 1 (Labelled Weighted Transition System). An labelled weighted
transition system is a tuple

W = (M,Σ,K, θ)

where M is a non-empty set of states, Σ a non-empty set of actions, K =
{x1, . . . , xk} is the finite set of (k types of) resource-variables and θ : M × (Σ ×
R

k) → 2M is the labelled transition function.

For simplicity, hereafter we use a vector of real numbers instead of the function
from the set of the resources K to real numbers, i.e., for f : K → R defined as
f(ei) = ri for all i = 1, . . . , k, we write u = (r1, . . . , rk) ∈ R

k instead. On the
other hand, for a vector of real numbers u ∈ R

k, u(ei) denotes the i-th number
of the vector u, which represent the cost of the resource ei during the transition.

Instead of m′ ∈ θ(m,a, u) we write m
u−→a m′. For r ∈ R we write r = u(xi)

to denote that r is the i-th number of the vector u.
An LWS is said to be image-finite if for each state and each action a with

weight u, there are finitely many outgoing a-transitions with weight u.

Fig. 1. Labelled weighted transition system

Example 1. Figure 1 represent the LWS W = (M,Σ,K, θ), where M = {m0,m1,

m2}, Σ = {a, b}, K = {x} and θ defined as follows: m0
3−→a m1, m0

−2−−→b m2

and m1
−5−−→a m2. W has three states m0,m1,m2, one kind of resource x and

two actions a, b. The state m0 has two transitions - one a-transition which costs
“3” units of x to m1 and one b-transition which costs “−2” units of x to m2. At
m0 the variable valuation l assigns “1” to x, which is the initial amount of the
resource x at the state m0. If the system does an a-transition from m0 to m1,
the amount of the resource x increases with “3” units and becomes “4”, which
is the sum of the initial amount “1” and the value of the transition “3” - that
the system gains by doing the a-transition. �

The concept of weighted bisimulation is a relation between the states of a given
LWS that equates states with identical (action- and weighted-) behaviors.
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Definition 2 (Weighted Bisimulation). Given an LWS W = (M,Σ,K, θ), a
weighted bisimulation is an equivalence relation R ⊆ M ×M such that whenever
(m,m′) ∈ R,

– if m
u−→a m1, then there exists m′

1 ∈ M s.t. m′ u−→a m′
1 and (m1,m

′
1) ∈ R;

– if m′ u−→a m′
1, then there exists m1 ∈ M s.t. m

u−→a m1 and (m1,m
′
1) ∈ R.

If there exists a weighted bisimulation relation R such that (m,m′) ∈ R, we say
that m and m′ are bisimilar, denoted by m ∼ m′.

As for the other types of bisimulation, the previous definition can be extended to
define the weighted bisimulation between distinct LWSs by considering bisim-
ulation relations on their disjoint union. Weighted bisimilarity is the largest
weighted bisimulation relation; if Wi = (Mi, Σi,Ki, θi), mi ∈ Mi for i = 1, 2 and
m1 and m2 are bisimilar, we write (m1,W1) ∼ (m2,W2). Example 2 shows the
role of the weighted bisimilarity.

Example 2. In Fig. 2, W1 = (M1, Σ1,K1, θ1) is an LWS with five states, where
M1 = {m0,m1,m2,m3,m4}, Σ1 = {a, b, c, d}, K1 = {x} and θ1 is defined as:
m0

3−→a m1, m0
−2−−→b m2, m1

0−→d m2, m1
3−→c m3, m2

0−→c m1 and m2
3−→c m4.

It is easy to see that m3 ∼ m4 because neither of them can perform any
transition. Besides, m1 ∼ m2 because both of them can do a c-transition with
cost 3 to some states which are bisimular (m3 and m4), and a d-action transition
with cost 0 to each other. m0 is not bisimular to any states in W1.

W2 = (M2, Σ2,K2, θ2) is anLWSwith three states, whereM2 = {m′
0,m

′
1,m

′
2},

Σ2 = Σ1, K2 = K1 and θ2 is defined as: m′
0

3−→a m′
1, m′

0
−2−−→b m′

1, m′
1

0−→d m′
1 and

m′
1

3−→c m′
2.

We can see that: (m0,W1) ∼ (m′
0,W2), (m1,W1) ∼ (m′

1,W2), (m2,W1) ∼
(m′

1,W2), (m3,W1) ∼ (m′
2,W2), (m4,W1) ∼ (m′

2,W2).
Notice that (m′′

0 ,W3) �∼ (m′
0,W2), because (m′′

1 ,W3) �∼ (m′
1,W2). Besides,

m′′
1 �∼ m′′

2 , because m′′
1 can do a d-action with weight −1 while m′′

2 cannot and
m′′

2 can do a d-action with weight 1 while m′′
1 cannot. �

Fig. 2. Weighted bisimulation
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3 Recursive Weighted Logic

In this section we introduce a multimodal logic that encodes properties of LWSs
called Recursive Weighted Logic (RWL). Our logic is endowed, in addition to the
classic boolean operators (except negation), with a class of modalities of arity
0 called state modalities of type x �� r for ��∈ {≤,≥, <,>}, r ∈ Q and x ∈ K,
which predicates about the value of the resource x available at the current state;
a class of modalities of arity 1, named transition modalities, of type [x �� r]a or
〈x �� r〉a, for ��∈ {≤,≥, <,>}, r ∈ Q, a ∈ Σ and x ∈ K, which approximates
the transition labels; a class of modalities of arity 1, named reset modalities,
of type x in, which are inspired by timed logics [ACD93,HNSY92,LLW95] and
refer to the fact that the resource x is interpreted to zero at the current state;
and a class of recursive (formula) variables, X ∈ X .

Hereafter, we fix a set Σ of actions and a set of K of resource variables and
for simplicity, we omit them in the description of LWSs and RWL.

Firstly we define the basic formulas of RWL and their semantics. Based
on them, we will eventually introduce the recursive definitions - the maximal
equation blocks - which extend the semantics of the basic formulas.

Definition 3 (Syntax of Basic Formulas). For arbitrary r ∈ Q, a ∈ Σ,
x ∈ K and �� ∈ {≤,≥, <,>}, let

L : φ := � | ⊥ | x �� r | φ ∧ φ | φ ∨ φ | [x �� r]aφ | 〈x �� r〉aφ | x in φ | X.

Before looking at the semantics for the basic formulas, we define the notion of
variable valuation and extended states.

Definition 4 (Variable Valuation). A variable valuation is a function l :
K → R that assigns a real numbers to all the resource variables in K.

A variable valuation assigns positive or negative values to resource-variables. The
label is interpreted as the amount of resources available or required (depending
of whether the number is positive or negative) in a given state of the system.
We denote by L the class of variable valuations. If l is a resource valuation and
x ∈ K, s ∈ R we denote by l[x �→ s] the resource valuation that associates the
same values as l to all variables except x, to which it associates the value s, i.e.,
for any y ∈ V,

l[x �→ s](y) =
{

s, y = x
l(y), otherwise

A pair (m, l) is called extended state of a given LWS W = (M,K, θ), where
m ∈ M and l ∈ L. Transitions between extended states are defined by:

(m, l) −→a (m′, l′) iff m
u−→a m′ and l′ = l + u.

Given an LWS W = (M,K, θ) and a class of variable valuation L, the LWS-
semantics of RWL basic formulas is defined by the satisfiability relation, over an
extended state (m, l) and an environment ρ which maps each recursive formula
variables to subsets of M × L, inductively as follows.
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W, (m, l), ρ |= � – always,
W, (m, l), ρ |= ⊥ – never,
W, (m, l), ρ |= x �� r iff l(x) �� r,
W, (m, l), ρ |= φ ∧ ψ iff W, (m, l), ρ |= φ and W, (m, l), ρ |= ψ,
W, (m, l), ρ |= φ ∨ ψ iff W, (m, l), ρ |= φ or W, (m, l), ρ |= ψ,
W, (m, l), ρ |= [x �� r]aφ iff for arbitrary (m′, l′) ∈ M × L such that (m, l) −→a

(m′, l′) and l′ − l �� r, we have W, (m′, l′), ρ |= φ,
W, (m, l), ρ |= 〈x �� r〉aφ iff exists (m′, l′) ∈ M × L such that (m, l) −→a (m′, l′),
l′ − l �� r and W, (m′, l′), ρ |= φ,
W, (m, l), ρ |= x in φ iff W, (m, l[x �→ 0]), ρ |= φ,
W, (m, l), ρ |= X iff m ∈ ρ(X).

Definition 5 (Maximal Equation Blocks). Let X = {X1, . . . , Xn} be a set
of recursive variables. A maximal equation block B is a list of (mutually recur-
sive) equations:

X1 = φ1

...
Xn = φn

in which Xi are pairwise-distinct over X and φi are basic formulas over X , for
all i = 1, . . . , n.

Each maximal equation block B defines an environment for the recursive formula
variables X1, . . . , Xn, which is the weakest property that the variables satisfy.
We say that an arbitrary formula φ is closed with respect to a maximal equation
block B if all the recursive formula variables appearing in φ are defined in B by
some of its equations. If all the formulas φi that appear in the right hand side
of some equation in B are closed with respect to B, we say that B is closed.

Given an environment ρ and Υ = 〈Υ1, . . . , Υn〉 ∈ (2M×L)n, let

ρΥ = ρ[X1 �→ Υ1, . . . , Xn �→ Υn]

be the environment obtained from ρ by updating the binding of Xi to Υi.
Given a maximal equation block B and an environment ρ, consider the function

fρ
B : (2M×L)n −→ (2M×L)n

defined as follows:
fρ

B(Υ ) = 〈[[φ1]]ρΥ , . . . , [[φn]]ρΥ 〉,
where [[φ]]ρ = {(m, l) ∈ M × L | W, (m, l), ρ |= φ}.

Observe that (2M×L)n forms a complete lattice with the ordering, join and
meet operations defined as the point-wise extensions of the set-theoretic inclu-
sion, union and intersection, respectively. Moreover, for any maximal equation
block B and environment ρ, fρ

B is monotonic with respect to the order of the
lattice and therefore, according to the Tarski fixed point theorem [Tar55], it
has a greatest fixed point that we denote by νX.fρ

B . This fixed point can be
characterized as follows:

νX.fρ
B =

⋃
{Υ | Υ ⊆ fρ

B(Υ )}.
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When the transition system is finite-state fρ
B is continuous, and the fixed

points also have an iterative characterization given as follows. Let

f0 = 〈M × L, . . . ,M × L〉,
fi+1 = fρ

B(fi).

Then, νX.fρ
B =

⋂∞
i=0 fi.

Consequently, a maximal equation block defines an environment that satisfies
all its equations, i.e., [[B]]ρ = νX.fρ

B .
When B is closed, i.e. there is no free recursive formula variable in B, it is

not difficult to see that for any ρ and ρ′, [[B]]ρ = [[B]]ρ′. So, we just take ρ = 0
and write [[B]] instead of [[B]]0. In the rest of the paper we will only discuss this
kind of equation blocks. (For those that are not closed, we only need to have the
initial environment which maps the free variables to subsets of the state set.)

Now we are ready to define the general semantics of RWL: for an arbitrary
LWS W = (M, θ) with m ∈ M , an arbitrary variable valuation l ∈ L and
arbitrary RWL-formula φ closed w.r.t. a maximal equation block B,

W, (m, l) |=B φ iff W, (m, l), [[B]] |= φ.

The symbol |=B is interpreted as satisfiability for the block B. Whenever it
is not the case that W, (m, l) |=B φ, we write W, (m, l) �|= Bφ. We say that a
formula φ is B-satisfiable if there exists at least one LWS that satisfies it for the
block B in one of its states under at least one variable valuation; φ is a B-validity
if it is satisfied in all states of any LWS under any variable valuation - in this
case we write |=B φ.

To exemplify the expressiveness of RWL, we propose the following example
of a bank transaction system with recursively-defined properties.

Example 3. Consider a models of a bank transaction scenarios that involves two
basic actions w (withdraw) and d (deposit). The specifications of the system are
as follows:

1. The system is in a safe range, i.e., the amount of resource x is always above 0;
2. The system is never deadlocked, i.e. it should always do an w-action or a

d-action;
3. There is at least one w-action in three steps;
4. Every w-action consumes at least 3 units of resource x and every d-action

produces at most 2 units of resource x.

In our logic the above mentioned requirements can be encoded as follows,
where [a]φ =

∧
x∈K([x ≥ 0]aφ ∧ [x ≤ 0]aφ) and 〈a〉φ =

∨
x∈K(〈x ≥ 0〉aφ ∨

〈x ≤ 0〉aφ), for a = w, d:

X = (x ≥ 0) ∧ [w]X ∧ [d]X,
Y = (〈w〉� ∨ 〈d〉�) ∧ [w]Y ∧ [d]Y,
Z = [d][d][d]⊥ ∧ [w]Z ∧ [d]Z,
W = [x > −3]w⊥ ∧ [w]W ∧ [d]W,
D = [x ≤ 0]d⊥ ∧ [x > 2]d⊥ ∧ [w]D ∧ [d]D.
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4 Hennessy-Milner Property

The standard theory of fixed points tells us that if f is a monotone function on
a lattice, we can construct the greatest fixed point of f by repeatedly applying
f on the largest element to form a decreasing chain whose limit is the greatest
fixed point [Tar55]. The stages of this iteration ναX.f can be defined as follows:

ν0X.f = �
νβ+1X.f = f{νβX.f/X}

νλX.f =
∧

β<λ νβX.f

where
∧

is the countable conjunction.
We use this characterization to prove that RWL satisfies the Hennessy-Milner

property for LWSs. To do this we firstly define a non-recursive version of RWL
in which we allow countable conjunctions.

Definition 6 (Weighted Modal Logic with Countable Conjunction).
For arbitrary r ∈ Q, a ∈ Σ, x ∈ K, ��∈ {≤,≥, <,>} and I a finite or countable
set of indexes, let Lc be the set of the formulas inductively defined as follows:

φc := � | ⊥ | x �� r |
∧

i∈I
φc

i | φc ∨ φc | [x �� r]aφc | 〈x �� r〉aφc | x in φc.

Excepting the infinite conjunction, the semantics of the above logic is defined
similarly to that of RWL with no environment. In addition,

W, (m, l) |= ∧
i∈I φc

i iff for any i ∈ I, W, (m, l) |= φc
i .

We first demonstrate that Lc satisfies the Hennessy-Milner property.

Lemma 1. Let W = (M,K, θ) be an image-finite labelled weighted transition
system. Then, for any m,m′ ∈ M :

m ∼ m′ iff ∀φc ∈ Lc and l ∈ L,we have W, (m, l) |= φc ⇔ W, (m′, l) |= φc.

Proof. “=⇒”: Induction on φc. The cases �, ⊥ and φc ∨ ψc are easy.

– Case x �� r: W, (m, l) |= x �� r implies l(x) �� r, which implies W, (m′, l) |=
x �� r. Hence, W, (m, l) |= x �� r implies W, (m′, l) |= x �� r.

Similarly W, (m′, l) |= x �� r implies W, (m, l) |= x �� r.
– Case

∧
i∈I φc

i : W, (m, l) |= ∧
i∈I φc

i implies for any i ∈ I, W, (m, l) |= φc
i .

By inductive hypothesis, for any i ∈ I, W, (m′, l) |= φc
i , which implies

W, (m′, l) |= ∧
i∈I φc

i . Hence, W, (m, l) |= ∧
i∈I φc

i implies W, (m′, l) |=∧
i∈I φc

i .
Similarly W, (m′, l) |= ∧

i∈I φc
i implies W, (m, l) |= ∧

i∈I φc
i .

– Case [x �� r]aφc: W, (m, l) |= [x �� r]aφc implies for any (m1, l1) ∈ M × L
s.t. (m, l) −→a (m1, l1) and l1 − l �� r, W, (m1, l1) |= φc. (m, l) −→a (m1, l1)
implies m

u−→a m1 and l1 = l + u. Since m ∼ m′, for any m′
1 ∈ M s.t.

m′ u−→a m′
1, there exists m1 ∈ M s.t. m

u−→a m1 and m1 ∼ m′
1. By inductive

hypothesis, W, (m′
1, l1) |= φc. So for any (m′

1, l1) ∈ M s.t. (m′, l) −→a (m′
1, l1)

and l1 − l �� r, W, (m′
1, l1) |= φc. Then W, (m′, l) |= [x �� r]aφc. Hence,

W, (m, l) |= [x �� r]aφc implies W, (m′, l) |= [x �� r]aφc.
Similarly W, (m′, l) |= [x �� r]aφc implies W, (m, l) |= [x �� r]aφc.
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– Case 〈x �� r〉aφc: W, (m, l) |= 〈x �� r〉aφc implies there exists (m1, l1) ∈
M × L s.t. (m, l) −→a (m1, l1), l1 − l �� r and W, (m1, l1) |= φc. (m, l) −→a

(m1, l1) implies m
u−→a m1 and l1 = l + u. Since m ∼ m′, there exists m′

1

s.t. m′ u−→a m′
1 and m1 ∼ m′

1. By inductive hypothesis, W, (m′
1, l1) |= φc. So

we have that there exists (m′
1, l1) ∈ M × L s.t. (m′, l) −→a (m′

1, l1), l1 − l ��
r and W, (m′

1, l1) |= φc, which implies W, (m′, l) |= 〈x �� r〉aφc. Hence,
W, (m, l) |= 〈x �� r〉aφc implies W, (m′, l) |= 〈x �� r〉aφc.

Similarly W, (m′, l) |= 〈x �� r〉aφc implies W, (m, l) |= 〈x �� r〉aφc.
– Case x in φc: W, (m, l) |= x in φc implies W, (m, l[x �→ 0]) |= φc. By

inductive hypothesis, W, (m′, l[x �→ 0]) |= φc. Hence, W, (m, l) |= x in φc

implies W, (m′, l) |= x in φc.
Similarly W, (m′, l) |= x in φc implies W, (m, l) |= x in φc.

“⇐=”: Let R = {(m,m′) | ∀φc ∈ Lc,W, (m, l) |= φ ⇔ W, (m′, l) |= φ}. We
prove that R is a weighted bisimulation relation.
∗ If m

u−→a m1:
If there exists no m′

1 ∈ M s.t m′ u−→a m′
1, W, (m′, l) |= [x �� r]a⊥ for any

x ∈ K and r ∈ Q s.t. u(x) �� r. Then W, (m, l) |= [x �� r]a⊥ since (m,m′) ∈ R,
which contradicts the premise.

Suppose F = {m′
i | m′ u−→a m′

i} and (m1,m
′
i) �∈ R for any i, i.e. for any

i, there exists li and φi s.t. W, (m1, li) |= φi and W, (m′
i, li) �|= φi. For every

x ∈ K(φi), introduce xi. Let φ′
i = φi{xi/x} for every φi. Let l′(xi) = li(x) for

any i and xi. We have: W, (m1, l
′) |= ∧

i φi and W, (m′
i, l

′) �|= φ′
i for all i. Then

W, (m, l) |= [a]
∧

i φ′
i and W, (m′, l) �|= [a]

∧
φ′

i - contradiction. Hence, there

exists m′
1 ∈ M s.t. m′ u−→a m′

1 and m1 ∼ m′
1.

∗ If m′ u−→a m′
1: similar as above. �

We previously noticed that every maximal fixed point in RWL can be translated
into a formula in weighted modal logic with countable conjunction. Hence, the
previous lemma ensures that RWL enjoys the Hennessy-Milner property as well.

Theorem 1 (Hennessy-Milner Theorem). Let W = (M,K, θ) be an image-
finite labelled weighted transition system. Then, for any m,m′ ∈ M :

m ∼ m′ iff

for any equation block B, any φ closed w.r.t. B and any l ∈ L,

W, (m, l) |=B φ ⇔ W, (m′, l) |=B φ.

Notice that in Example 2 we have already seen that (m′′
1 ,W3) �∼ (m′

1,W2). There
exists, however, a RWL formula that distinguishes them. This is [x ≥ 0]d⊥.

5 Satisfiability of Recursive Weighted Logic

In this section we prove that it is decidable whether a given formula φ which is
closed w.r.t. a maximal equation block B of RWL is satisfiable. We also present
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a decision procedure for the satisfiability problem of RWL. The results rely on
a syntactic characterization of satisfiability that involves a notion of mutually-
consistent sets.

Before going through the formal definitions, we consider the property in
Example 3. Since we require that after any transition X,Y,Z,W,D still hold,
X,Y,Z,W,D will hold in all the states. Let’s start from the state m0, where
X,Y,Z,W,D hold and the label of x is 0. m0 needs to do a d-action with weight
at most 2 to a state m1, since it cannot do any w-action with weight at most −3
to a state where x ≥ 0 still holds. For m1, the label of x can be 1, 2 or some value
in the interval (1, 2). If m0 does a d-transition with weight less than 1, after the
next step there will be no next movement (no d-transition because of the con-
straint stated in Z and no w-transition because of the constraint stated in W ).
And we can also find out the transitions of m1 and so on so forth. In this way,
we can construct a finite model for the required properties. This is only a very
informal discussion. We will see how to construct the model in the following.

Consider an arbitrary formula φ ∈ L which is closed w.r.t. a maximal equa-
tion block B. In this context we define the following notions:

– For any x ∈ K, let RB
φ (x) ⊆ Q be the set of all r ∈ Q such that r is in the label

of some state or transition modality of type x �� r, 〈x �� r〉a or [x �� r]a that
appears in the syntax of φ or B. Let QB

φ (x) be the largest interval centred in
zero that contains RB

φ (x). If RB
φ (x) = ∅, then QB

φ (x) = ∅.
– Let ΣB

φ be the set of all actions a ∈ Σ such that a appears in some transition
modality of type 〈x �� r〉a or [x �� r]a in φ or B.

– We denoted by GB
φ (x) the granularity of φ, defined as the least common

denominator of the elements of RB
φ (x).

– Let IB
φ (x) be the set of all rationals of type p

GB
φ (x)

in QB
φ (x), for p ∈ Z. Let

ΛB
φ (x) = {{q} | q ∈ IB

φ (x)} ∪ {(q, q +
1

GB
φ (x)

) | q, q +
1

GB
φ (x)

∈ IB
φ (x)}

∪{(−∞,minIB
φ (xi))} ∪ {(maxIB

φ (xi),+∞)}.

– Let RB
φ = {δ = (δ1, . . . , δk) | δi ∈ ΛB

φ (xi), where K = {x1, .., xk}}. For r ∈ R,
we write r ∈ δ(xj) to denote that r ∈ δj , for arbitrary j ∈ {1, . . . , k}.

– The modal depth of φ, denoted by md(φ,B), is defined inductively by

md(φ, B) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if φ = �, φ = ⊥ or φ = x �� r
max{md(ψ, B), md(ψ′, B)}, if φ = ψ ∧ ψ′ or φ = ψ ∨ ψ′

md(ψ, B) + 1, if φ = [x �� r]aψ or φ = 〈x �� r〉aψ
md(ψ, B), if φ = x in ψ
md(B)(X), if φ = X and X = ψ ∈ B
0, if φ = X and X 	∈ B

md(B) = (md(ψ1, B − {X1 = ψ1}), . . . , md(ψn, B − {Xn = ψn}))

Observe that RB
φ (x), ΣB

φ , IB
φ (x) and RB

φ are all finite (or empty). These sets
will be used to construct the Fischer-Ladner closure of a given formula.
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At this point we can start our model construction. We fix a formula φ0 ∈ L
that is closed w.r.t. a given maximal equation block B and, supposing that the
formula admits a model, we construct a model for it. Let

L[φ0, B] = {φ ∈ L | IB
φ (x) ⊆ IB

φ0
(x) for any x ∈ K, md(φ, B) ≤ md(φ0, B), ΣB

φ ⊆ ΣB
φ0

}.

To construct the model we will use as states sets of tuples of type (φ, δ) ∈
L[φ0, B]×RB

φ0
, which are required to be maximal in a precise way. The intuition

is that a state Γ ⊆ L[φ0, B] × RB
φ0

shall satisfy the formula φ in our model
with the variable valuation l, whenever (φ, (δ1, .., δk)) ∈ Γ and l(xj) ∈ δj , j =
1, ..k. Our construction is inspired from the region construction proposed in
[LLW95] for timed automata, which adapts of the classical filtration-based model
construction used in modal logics [HKT01,Wal00].

Let Ω[φ0, B] ⊆ L[φ0, B] × RB
φ0

. Since L[φ0, B] and RB
φ0

are finite, Ω[φ0, B]
is finite.

Definition 7. For any Γ ⊆ Ω[φ0, B], Γ is said to be maximal iff:

1. For any δ ∈ RB
φ0

, (�, δ) ∈ Γ , (⊥, δ) �∈ Γ ;
2. (x �� r, δ) ∈ Γ iff for any w ∈ R s.t. w ∈ δ(x), w �� r;
3. (φ ∧ ψ, δ) ∈ Γ implies (φ, δ) ∈ Γ and (ψ, δ) ∈ Γ ; (φ ∨ ψ, δ) ∈ Γ implies

(φ, δ) ∈ Γ or (ψ, δ) ∈ Γ ;
4. (〈x < r〉aφ, δ) ∈ Γ implies (〈x ≤ r〉aφ, δ) ∈ Γ ; (〈x > r〉aφ, δ) ∈ Γ implies

(〈x ≥ r〉aφ, δ) ∈ Γ ;
5. (〈x ≤ r〉aφ, δ) ∈ Γ implies (〈x < r + s〉aφ, δ) ∈ Γ ; (〈x ≥ r〉aφ, δ) ∈ Γ implies

(〈x > r − s〉aφ, δ) ∈ Γ , for s > 0;
6. (x in φ, δ) ∈ Γ implies (φ, δ[x �→ 0]) ∈ Γ ;
7. (X, δ) ∈ Γ implies (φ, δ) ∈ Γ , for X = φ ∈ B.

The maximal subsets of Ω[φ0, B] will be used as states in our model and for
this reason we have to guarantee that their mutual relations allow us to do the
construction. This is what the next lemma states.

Lemma 2. For arbitrary Γ, Γ ′ ∈ Ω[φ0, B] and r, s ∈ Q with s > 0,

1. If [([x ≤ r]aφ, δ) ∈ Γ implies (φ, δ′) ∈ Γ ′] and there exist w,w′ ∈ R s.t.
w ∈ δ(x), w′ ∈ δ′(x) and w′ − w ≤ r, then [([x ≤ r + s]aφ, δ) ∈ Γ implies
(φ, δ′) ∈ Γ ′];

2. If [([x ≥ r]aφ, δ) ∈ Γ implies (φ, δ′) ∈ Γ ′] and there exist w,w′ ∈ R s.t.
w ∈ δ(x), w′ ∈ δ′(x) and w′ − w ≥ r, then [([x ≥ r − s]aφ, δ) ∈ Γ implies
(φ, δ′) ∈ Γ ′];

3. If r ≤ inf{t ∈ Q | ([x ≤ t]aφ, δ) ∈ Γ implies (φ, δ′) ∈ Γ and there existw,
w′ ∈ R s.t. w ∈ δ(x), w′ ∈ δ′(x) and w′ − w ≤ t}, then

([x ≤ r]aφ, δ) ∈ Γ implies (φ, δ′′) ∈ Γ ′,

for any δ′′ s.t. there exist w,w′′ ∈ R with w ∈ δ(x), w′′ ∈ δ′′(x) and w′′−w ≤ r;
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4. If r ≥ sup{t ∈ Q | ([x ≥ t]aφ, δ) ∈ Γ implies (φ, δ′) ∈ Γ and there exist w,
w′ ∈ R s.t. w ∈ δ(x), w′ ∈ δ′(x) and w′ − w ≥ t}, then

([x ≥ r]aφ, δ) ∈ Γ implies (φ, δ′′) ∈ Γ ′,

for any δ′′ s.t. there exist w,w′′ ∈ R with w ∈ δ(x), w′′ ∈ δ′′(x) and w′′−w ≤ r.

Proof. 1. From Definition 7, we have that ([x ≤ r + s]aφ, δ) ∈ Γ implies ([x ≤
r]aφ, δ) ∈ Γ . So ([x ≤ r + s]aφ, δ) ∈ Γ implies (φ, δ′) ∈ Γ ′. Similarly for 2.

3. It is a direct consequence of case 1 when we consider the infimum. Similarly
for 4. �

Notice that sup and inf above might be irrationals and cannot be used to index
modalities. Nevertheless, they are limits of some monotone sequences of ratio-
nals.

The following definition establishes the framework on which we will define
our model.

Definition 8. Let C ⊆ 2Ω[φ0,B]. C is said to be mutually-consistent if whenever
Γ ∈ C:

[∀Γ ′, Γ u−→a Γ ′ and u(x) �� r ⇒ (φ, δ) ∈ Γ ′] implies ([x �� r]aφ, δ − u) ∈ Γ.

We say that Γ is consistent if it belongs to some mutually-consistent set.

Lemma 3. Let φ ∈ L be a formula closed w.r.t. a maximal equation block B.
Then φ is satisfiable iff there exist Γ ∈ Ω[φ0, B] and δ ∈ RB

φ s.t. Γ is consistent
and (φ, δ) ∈ Γ .

Proof. (=⇒): Suppose φ is satisfied in the LWS W = (M,Σ,K, θ). We construct

C = {Γ ∈ Ω[φ0, B] | ∃m ∈ M and l ∈ δ,W, (m, l) |=B ψ for all (ψ, δ) ∈ Γ}.

It is not difficult to verify that C is a mutually-consistent set.
(⇐=): Let C be a mutually-consistent set. We construct an LWS W =

(M,Σ,K, θ), where: M = C, and the transition relation Γ
u−→a Γ ′ is defined

whenever

u(x) = sup{r ∈ Q | ([x ≥ r]aφ, δ) ∈ Γ implies (φ, δ′) ∈ Γ ′, with δ′(x) − δ(x) ≥ r}
= inf{r ∈ Q | ([x ≤ r]aφ, δ) ∈ Γ implies (φ, δ′) ∈ Γ ′, with δ′(x) − δ(x) ≤ r} ∈ R.

Let ρ(X) = {Γ | (X, δ) ∈ Γ} for X ∈ X . With this construction we can
prove the following implication by a simple induction on the structure of φ,
where Γ ∈ M and l ∈ δ:

(φ, δ) ∈ Γ implies W, Γ, l, ρ |= φ.

We prove that ρ is a fixed point of B under the assumption that X = φX ∈ B:
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Γ ∈ ρ(X) implies (X, δ) ∈ Γ by the construction of ρ, which implies (φX , δ) ∈
Γ . Then, by the implication we just proved above, W, Γ, l, ρ |= φX .

Thus ρ is a fixed point of B. Since [[B]] is the maximal fixed point, ρ ⊆ [[B]]. So
for any (ψ, δ) ∈ Γ ∈ C, we have W, Γ, l, vρ |= ψ with l ∈ δ. Then W, Γ, l, [[B]] |=
ψ because ρ ⊆ [[B]].

Hence, (ψ, δ) ∈ Γ ∈ C implies W, Γ, l |=B ψ with l ∈ δ. �

The above lemma allows us to conclude the finite model construction.

Theorem 2 (Finite Model Property). For any satisfiable RWL formula
φ closed w.r.t. a maximal equation block B, there exists a finite LWS W =
(M,Σ,K, θ) and a variable valuation l such that W,m, l |=B φ for some m ∈ M .

Lemma 3 and Theorem 2 provide a decision procedure for the satisfiability prob-
lem of RWL. Given a RWL formula φ0 closed w.r.t. a maximal equation block B,
the algorithm constructs the model with Σ = ΣB

φ0
:

W = (M,Σ,K, θ).

If φ0 is satisfiable, then it is contained in some consistent set. Hence, φ0 will
be satisfied at some state m of W. If φ0 is not satisfiable, then the attempt to
construct a model will fail; in this case the algorithm will halt and report the
failure.

We start with a superset of the set of states of W, then repeatedly delete
states when we discover some inconsistency. This will give a sequence of approx-
imations

W0 ⊇ W1 ⊇ W2 ⊇ . . .

converging to W.
The domains Mi, i = 0, 1, 2, . . ., of these structures are defined below and

they are s.t.
M0 ⊇ M1 ⊇ M2 ⊇ . . . .

The transition relation for Wi are defined as follows: Γ
u−→a Γ ′ whenever

u(x) = sup{r ∈ Q | ([x ≥ r]aφ, δ) ∈ Γ implies (φ, δ′) ∈ Γ ′, with δ′(x) − δ(x) ≥ r}
= inf{r ∈ Q | ([x ≤ r]aφ, δ) ∈ Γ implies (φ, δ′) ∈ Γ ′, with δ′(x) − δ(x) ≤ r} ∈ R.

Here is the algorithm for constructing the domains Mi of Wi.

Algorithm

Step 1: Construct M0 = Ω[φ0, B].
Step 2: Repeat the following for i = 0, 1, 2, . . . until no more states are deleted.
Find a formula [x �� r]aφ ∈ L[φ0, B] and a state Γ ∈ Mi violating the property

[∀Γ ′, Γ u−→a Γ ′ and u(x) �� r ⇒ (φ, δ) ∈ Γ ′]
implies [([x �� r]aφ, δ′) ∈ Γ and δ′ = δ − u].

Pick such an [x �� r]aφ and Γ . Delete Γ from Mi to get Mi+1. �
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Step 2 can be justified intuitively as follows. To say that Γ violates the
above mentioned condition, means that Γ requires an a-transition at cost u to
some state that does not satisfy φ; however, the left-hand side of the condition
above guarantees that all the outcomes of an a-transition at cost u satisfy φ.
This demonstrates that Γ cannot be in M , since every state Γ in M satisfies ψ,
whenever (ψ, δ) ∈ Γ .

The algorithm must terminate, since there are only finitely many states ini-
tially, and at least one state must be deleted during each iteration of step 2 in
order to continue. Then φ is satisfiable if and only if, upon termination there
exists Γ ∈ M such that (φ, δ) ∈ Γ . Obviously, M is a mutually-consistent set
upon termination. The correctness of this algorithm follows from Lemma 3. The
⇐ direction of the proof guarantees that all formulas in any Γ ∈ M are satisfi-
able. The ⇒ direction of the proof guarantees that all satisfiable Γ will not be
deleted from M .

The finite model property also supported by the above algorithm demon-
strates the decidability of the B-satisfiability problem for RWL.

Theorem 3 (Decidability of B-satisfiability). For an arbitrary maximal
equation block B, the B-satisfiability problem for RWL is decidable.

6 Conclusion

In this paper we develop a recursive version of the weighted modal logic [LM13]
that we call Recursive Weighted Logic (RWL). It uses a semantics based on
labelled weighted transition systems (LWSs). This type of transition systems
describes systems where the computations have some costs that must be paid in
terms of the resources available in its states: positive transitions means that the
system gains some resources during the transition, while negative ones represent
resource consumption.

RWL encodes qualitative and quantitative properties of LWSs. With respect
to the weighted logics studied before, RWL has recursive variables that allow us
to encode circular properties. These features reflect concrete requirements from
applications where liveness and safeness properties including cost information
are essential.

We first prove that RWL enjoys the Hennessy-Milner property and it is
consequently appropriate for describing LWSs up to bisimilarity. This result
is particularly interesting because it shows that the Hennessy-Milner property
can be satisfied in the absence of negation.

Our second major result is the decidability of the satisfiability problem for
RWL which derives directly from our model construction. This is a novel con-
struction that we design for RWL, which also provides a satisfiability-checking
algorithm. We will discuss the complexity in a future paper.

For future work we consider to extend RWL. The current version only allows
one variable for each type of resource in the syntax of the logic. This repre-
sents an important expressiveness restriction, but a necessary one if we want
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the satisfiability problem to be decidable. Nevertheless, we believe that one can
adapt our model construction to the extended case, where we will not get a finite
model any more, but one with certain types of regularity that will be properly
described by some concept of weighted automata.
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Abstract. Supercompilation is a method of transforming programs to
obtain equivalent programs that perform fewer computation steps and
allocates less memory. A transformed program defines new functions
that are combinations of functions from the original program, but the
datatypes in the transformed program is a subset of the datatypes defined
in the original program. We will change this by extending supercompi-
lation to create new datatypes.

We do this by creating new constructors that combine several con-
structors from the original program in a way reminiscent of how super-
compilation combines several functions to create new functions.

1 Introduction

The concept of supercompilation was introduced by Turchin [17,18] and the idea
and method has been developed further by many others including [3–5,7,8,15,16].

Supercompilation has been used for fusion, i.e., combining functions with
the aim of eliminating construction of intermediate data structures, tupling, i.e.,
combining functions with the aim of avoiding multiple traversals over the same
data structure, and for theorem proving by composing a function with functions
that define pre and post conditions. In this paper, we extend supercompilation
to transform not only functions but also datatypes, using a form of constructor
specialisation [2,12].

In Sect. 2, we define a small functional language and in Sect. 3, we sketch
traditional supercompilation for this language using unfolding, folding and special-
casing. In Sect. 4, we extend this supercompilation method to create new data-
types and constructors by modifying and extending the rules for unfolding, folding
and special-casing. In Sect. 5, we show some examples of transformations and in
Sect. 6, we discuss the results and future work.

2 A Simple Functional Language

To keep the presentation simple, we define a minimal functional language. The
syntax of the language (which is a subset of Haskell syntax) is shown in Fig. 1.

tid represents type identifiers, fid represents function identifiers, vid variable
identifiers and cid constructor identifiers. Constructor identifiers and type names
are written with initial upper-case letters while function and variable identifiers
are written with initial lower-case letters.
c© Springer-Verlag Berlin Heidelberg 2015
A. Voronkov and I. Virbitskaite (Eds.): PSI 2014, LNCS 8974, pp. 232–247, 2015.
DOI: 10.1007/978-3-662-46823-4 19
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Fig. 1. A first-order functional language

A program is a list of type declarations and function definitions. A type
declaration is if the form data t = cs, where t is a type name and cs is a list
of constructor declarations each of the form c te, where te is a type expression.

A function is defined by one or more rules of the form f p = e, where p is
a pattern and e an expression. We assume linear patterns: No variable identifier
can occur more than once in a pattern. Rules can not overlap: If there are two
rules f p1 = e1 and f p2 = e2, then p1 and p2 can not be unified. Types are
not declared for functions or variables, but we assume type inference is done to
identify types, so programs are well typed and we can determine the type of any
variable. We allow unspecified (externally defined) type names in type expres-
sions. Values of externally defined types can be copied, passed as arguments and
returned as results, but not deconstructed through pattern matching.

A value is any expression that is built only from constructors and tuples.
Running a program consists of calling a function with arguments that are values
and then evaluating this call to a value, which can fail due to nontermination or
lack of a matching rule. We will describe evaluation more formally below.

A simple example program that defines a list type (using an externally defined
integer element type) and a list-append function is shown below.

data List = Nil | Cons (Int, List)

append (Nil, ys) = ys

append (Cons (x, xs), ys) = Cons (x, append (xs, ys))

2.1 Evaluation

Evaluation of an expression in a program is done as a series of function applica-
tion steps and continues until no further such steps are possible. If this results
in a value, this is the result of the evaluation. If not, the result is considered
undefined. We do not specify the order of evaluation but note that the order
of evaluation can at most affect termination but not the final result (if such is
obtained), as the language is purely functional.

We first need a few auxiliary definitions and functions:
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A substitution is a set of bindings of variables to expressions. A single binding
is written as x\e, where x is a variable and e is an expression. A substitution
is written as a list of bindings inside square brackets, i.e., [x1\e1, . . . , xn\en].
We assume that all the variables bound in a substitution are different and that
they do not occur in the expressions, i.e., xi = xj ⇒ i = j and that no xi

occurs in any ej . This means that the substitution is idempotent, so the order
of bindings does not matter. We can combine two non-overlapping substitutions
by the operator +.

We apply substitutions to expressions in the standard way, so we omit a for-
mal definition here. Since patterns are (syntactically) a subset of expressions, we
can also apply substitutions to patterns as long as all bindings in the substitu-
tion binds variables to patterns. Such a substitution can, in fact, be applied to
both patterns and expressions.

We obtain substitutions by matching a pattern to an expression. Matching
either fails (indicated by the special result value Fail) or produces a substitution
that binds the variables in the pattern to expressions. We extend the + operation
on substitutions to include Fail, so Θ + Fail = Fail + Θ = Fail. p � e matches
a pattern p to an expression e using the following rules:

C � C = [] (C p) � (C e) = p � e
(p1, . . . , pn) � (e1, . . . , en) = (p1 � e1) + · · · + (pn � en)
x � e = [x\e] p � e = Fail, otherwise

We assume that no variable occurs more than once in p (by the linear-pattern
restriction) and that no variable in p occurs in e. This ensures that any produced
substitution is valid.

A function application step is replacing a function call with the body of a
matching function rule. More precisely, if we have a function call f e1, a rule
f p = e2 and p � e1 = Θ �= Fail, then f e1 is replaced by e2Θ. If p shares
variables with e1, the matching would not produce a valid substitution, so in
this case we rename variables in the function rule first. Since function rules do
not overlap, a function call can not match more than one rule, though it may
match none. Evaluation of an expression is done by repeated use of the function
application step until no calls remain or no rules match any remaining call. If
no calls remain, evaluation is successful, but if calls remain and no rules match
any of these calls, the result is considered undefined. There is also a possibility
of nontermination through applying an infinite number of application steps.

3 Supercompilation

In this section, we will present a simple form of positive supercompilation for the
language presented above. Supercompilation of a program is done in a number
of transformation steps that build a new program from the original. We will use
the following variables during the transformation:

– The original program P0 as a list of datatype declarations and a list of function
definitions.
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– A transformed program P1 in the same form.
– A list of function definitions Fs that defines each function that will eventually

be defined in P1 in terms of functions from P0. All functions defined in Fs are
defined by one rule only.

– A current function definition F that is being transformed.

P0 will remain unchanged during the transformation.
Initially, the transformed program P1 will contain the list of datatype decla-

rations copied from P0 and an empty list of function definitions. Fs will initially
contain a list of definitions that describe the desired transformation by defining
new functions in terms of the functions and datatypes in the original program.
For example, if P0 is the program shown at the end of Sect. 2, Fs may contain
the definition

append3 (xs, ys, zs) = append (append (xs, ys), zs)

that defines a new function append3 in terms of the append function in P0.
The transformation is supposed to make the new program P1 a self-contained

and optimised implementation of the functions declared in Fs, in this instance
append3.

During transformation, F will contain a function definition that is originally
taken from Fs and rewritten so it contains no calls to the functions defined in
P0, at which point it can be added to the transformed program P1. Some of the
steps that rewrite F may add more definitions to Fs, which will later be copied
to F for transformation. We can sketch the transformation method as follows:

P1 : = the data declarations from P0

Fs : = the function definitions to be transformed
while there are definitions in Fs not defined in P1

Pick F from Fs
Rewrite the right-hand side of F until it calls only functions defined in Fs
Add F to P1

where we note that the step “rewrite the right-hand side of F” can add definitions
to Fs.

3.1 Transformation Steps

The “rewrite the right-hand side of F” part of the transformation will use unfold-
ing, folding and special-casing steps, which we describe below.

Unfolding. Unfolding a call f e, where f is defined in P0, is the same as func-
tion application as defined in Sect. 2.1 with the following restriction: We unfold
only if no function call in e is duplicated or discarded by the unfolding, since dis-
carding function calls during unfolding may change termination behaviour of the
transformed program (under some evaluation orders) and duplicating function
calls may have adverse effects on its runtime.
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Folding. Folding is a way of replacing an expression e0 in F by a call to a
function defined in Fs. More formally:

Assume Fs defines a function by the single rule f p = e2 where p is a pattern
that does not share variables with e0. If there are shared variables, the definition
can be renamed as described in Sect. 2.1 to avoid name overlap.

If there exists an expression e1 such that p � e1 = Θ �= Fail and e2Θ = e0,
then e0 can be replaced by the call f (e1).

If we want to fold an expression e0 to a call and there is no suitable function
in Fs, we add a definition of a suitable function extracted from e0 to Fs before
folding. The name of this extracted function can not already be in use in Fs or P0.

Folding is close to but not quite the inverse of unfolding, as folding uses a
function definition in Fs and unfolding uses a function definition in P0.

If folding is not done carefully, we risk making circular definitions such as
f x = f x. In general, a folding step must be preceded by at least one unfolding
step.

Special-Casing. Special-casing is a way of splitting a function rule into several
special-case rules. In other words, given a list of substitutions Θ1, . . . , Θn, a rule
f p = e is split into the rules f (pΘ1) = (eΘ1), . . . , f (pΘn) = (eΘn). Note that
we apply substitutions to both expressions and patterns, so we require that each
Θi binds variables to expressions that are also valid as patterns, i.e., expressions
not containing function calls.

We construct the substitutions in the following way: We select a variable
x occurring in the pattern p. x must have a type t declared by a datatype
declaration

data t = C1| · · · |Cn

If Ci is of the form ci, then Θi is the substitution [x\ci]. If Ci is of the form
ci t, then Θi is the substitution [x\ci Q(t)], where Q maps a type expression
to a pattern by replacing all type names by distinct variables. Basically, we
construct substitutions that correspond to the possible top-level constructors of
the value of x. The special-cased rules do not overlap, so the requirement of
non-overlapping rules is preserved.

For example, given the list datatype shown in Sect. 2 and the definition F :
append3 (xs, ys, zs) = append (append (xs, ys), zs), we can special-case F to

append3 (Nil, ys, zs) = append (append (Nil, ys), zs)

append3 (Cons (q, qs), ys, zs) = append (append (Cons (q, qs), ys), zs)

using the substitutions Θ1 = [x\Nil] and Θ2 = [x\Cons(q, qs)].

3.2 A Supercompilation Strategy

There are often cases where several of the transformation rules can apply or
where a transformation rule can be applied in different ways. A supercompiler
must, hence, have a strategy for which rules to apply and how. We will use the
following simple strategy:
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1. If a rule in F contains a function call f e, where f is defined in P0, e does not
contain any function calls, and the call to f can not be unfolded because no
rules match, we special-case the rule in F on a variable x in e. If the selected
call to f can now be unfolded in all the special-cased rules, we continue to step
2 below, otherwise we repeatedly special-case those rules where the selected
call to f can not be unfolded until no such remain, i.e., when all calls to f
can be unfolded.

2. Then, all calls f e, where the requirements for unfolding described in Sect. 3.1
are observed, are unfolded.

3. When no further such unfolding can be applied to F , configurations (see
below) in F are folded against new or previous definitions in Fs until no calls
to the original program P0 remain in the modified F .

4. Add the modified F to P1. If there are definitions in Fs not defined in P1,
pick one of these as a new F and repeat from step 1. If all definitions in
Fs are defined in P1, the transformation is complete, and P1 contains the
transformed program.

Note that, in steps 1 and 2, F can only contain calls to functions defined in P0

and at the end of step 3, the modified F contains only calls to functions defined
in Fs.

A configuration is an expression that is a candidate for folding. Often, a
configuration consists of the entire right-hand side of a rule in F (excepting con-
structor applications outside function calls), but sometimes a right-hand side is
split into several nested configurations that are folded individually. Splitting an
expression into several nested configurations is an instance of generalisation and
is often required to ensure termination of supercompilation. Nontermination can
happen both in step 2 above, as an infinite chain of unfoldings, or by repeating
the iteration over steps 1–4 above indefinitely, as an infinite sequence of defini-
tions are added to Fs. We will not in this paper discuss how potentially infinite
chains of unfoldings or definitions are detected (for that, see [14]), but only note
that detection of a potentially infinite chain of unfoldings will trigger a folding
step and a potential infinite chain of definitions will trigger generalisation. Nor
will we discuss how it is decided how to split a right-hand side into multiple
configurations: We will simply make splits that work for the examples.

3.3 Example of Supercompilation

We start with P0 being the program at the end of Sect. 2 and add the initial defi-
nition append3 (xs, ys, zs) = append (append (xs, ys), zs) to Fs. The initial
F will, hence, also be this definition. We rewrite this F using the following steps:

1. We apply special-casing to the rules for append3 as shown in Sect. 3.1. This
yields the following new F :

append3 (Nil, ys, zs) = append (append (Nil, ys), zs)

append3 (Cons (q, qs), ys, zs) = append (append (Cons (q, qs), ys), zs)

2. We unfold three times using the definition of append in P0, which changes F to
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append3 (Nil, ys, zs) = append (ys, zs)

append3 (Cons (q, qs), ys, zs) = Cons (q, append (append (qs, ys), zs))

3. We fold the call append (append (xs, ys), zs) with the definition of append3

in Fs:

append3 (Nil, ys, zs) = append (ys, zs)

append3 (Cons (q, qs), ys, zs) = Cons (q, append3 (qs, ys, zs))

4. The first rule still contains a call to a function from P0, so we fold this
using the definition append2 (ys, zs) = append (ys, zs), which we add to
Fs. Since F now contains no calls to functions in P0, we can add F to P1 and
copy the rule for append2 to F . We omit the (rather trivial) transformation
steps for this rule.

5. After adding the rules for append2 to the program, we are done. The resulting
P1 is

data List = Nil | Cons (Elem, List)

append3 (Nil, ys, zs) = append2 (ys, zs)

append3 (Cons (q, qs), ys, zs) = Cons (q, append3(qs, ys, zs)

append2 (Nil, ys) = ys

append2 (Cons (x, xs), ys) = Cons (x, append2 (xs, ys))

4 Supercompiling for Datatypes

We now extend the supercompilation method described in Sect. 3 to transform
datatypes as well as functions. We add to the transformation state a list of
definitions Cs that define constructors for P1 in terms of constructors from P0,
analogously to how Fs defines functions in P1 in terms of functions in P0: Each
new constructor, optionally applied to a tuple of variables, is defined by an
expression built only from variables from this tuple and constructors in the
original program. For example, Cs may contain the definitions Nil2 = Nil and
Cons2 (x,y,z) = Cons (x, Cons (y, z).

Instead of copying all datatype declarations from P0 to P1, as we did in Sect. 3,
we start P1 with empty declarations for renamed versions of the datatypes
declared in P0 and add constructors to these during the transformation: Whenever
a constructor definition c p = e is added to Cs, we add c to the declaration of the
renamed type of e with argument types determined by the types of the variables
in p. So, if we rename List from P0 to List2 in P1, the Cs shown above would
yield the following datatype definition in P1: data List2 = Nil2 | Cons2 (Int, Int,

List2).
Sometimes, we want to leave some datatypes unchanged. In that case, we just

copy the definitions of these to P1 and make trivial definitions (with left-hand
side equal to right-hand side) of these in Cs.
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4.1 Modified Transformation Steps

The unfold rule from Sect. 3 is unchanged, but we change folding and special-
casing:

Folding. In addition to folding an expression e0 to a function definition in Fs,
as described in Sect. 3.1, we can now also fold e0 to a constructor definition in
Cs by a completely analogous process: Assume Cs defines a constructor c p = e2.
If there exists an expression e1 such that p � e1 = Θ �= Fail and e2Θ = e0, then
e0 can be replaced by the constructor application c (e1).

If there is no suitable constructor definition in Cs, we can add one, and at
the same time add the constructor to the relevant datatype declaration in P1,
as described above.

Special-Casing. The original rule for special-casing is modified as follows: We
use two different substitutions for the left-hand and right-hand sides of the func-
tion rule we special-case: The left-hand substitution ΘL binds variables to left-
hand sides of definitions in Cs and the right-hand substitution ΘR binds variables
to the corresponding right-hand sides of these definitions.

For example, the Cs shown above can yield the following two pairs of substi-
tutions:

1. ΘL1 = [x\Nil2] and ΘR1 = [x\Nil]
2. ΘL2 = [x\Cons2(p, q, r)] and ΘR2 = [x\Cons(p, Cons(q, r))]
Note that we have renamed variables in the second definition in Cs to avoid
overlap between variables in the domain and range of ΘL2. Applying these sub-
stitutions to a definition f x = append (x, x) yields the following special-cased
definition

f Nil2 = append (Nil, Nil)

f (Cons2 (p, q, r)) = append (Cons (p, Cons (q, r)), Cons (p, Cons (q, r)))

4.2 A Modified Strategy

The strategy described in Sect. 3.2 is modified as follows:

1. Special-casing now uses the extended rule for special-casing.
2. Unfolding is unchanged.
3. Folding is changed in the following way: There are now two forms of config-

urations:
i. Configurations with function applications at their roots and which are

built from both function calls and constructor/tuple applications. These
are folded against definitions in Fs as described in Sect. 3.1.

ii. Configurations built entirely from constructor and tuple applications.
These are folded against definitions in Cs, as described in Sect. 4.1.
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Whenever folding causes a new constructor definition c p = e to be added to
Cs, any function definition for a function f in P1 that was special-cased on
the type of c is no longer complete, as there is no case for c. A simple way to
remedy this is to remove the definition of f from P1, so a new definition with
rules for all constructors will be added later.1

Just as generalisation may be required when folding function configurations,
generalisation may be required when folding constructor configurations. We will
not address this further in this paper, except by noting that folding may involve
choice of how to split a right-hand side of a rule into configurations.

A thing to note is that the output type of P1 can be changed to a new,
transformed type. In order to get output in the original type, a translation based
on recursive application of the definitions in Cs must be applied to the output
from P1.

5 Examples

We now show a few examples of supercompilation of datatypes.

5.1 Combinator Reduction

Below is an interpreter for combinator reduction using the combinators K and
S that have the reduction rules (K x) y → x and ((S x) y) z → (x z) (y z):

data SK = S | K | Ap (SK, SK)

run K = K

run S = S

run (Ap (K, x)) = Ap (K, run x)

run (Ap (S, x)) = Ap (S, run x)

run (Ap (Ap (K, x), y)) = run x

run (Ap (Ap (S, x), y)) = Ap (Ap (S, run x), run y)

run (Ap (Ap (Ap (K, x), y), z)) = run (Ap (x, z))

run (Ap (Ap (Ap (S, x), y), z)) = run (Ap (Ap (x, z), Ap (y, z)))

run (Ap (Ap (Ap (Ap (p, q), x), y), z)) =

run (Ap (run (Ap (Ap (Ap (p, q), x), y)), z))

The interpreter is somewhat complicated by the requirement of non-overlapping
rules.

We now want to add another combinator I = (S K) K to the language, so
we define in Cs constructors for a new datatype SKI:

K1 = K

S1 = S

I = Ap (Ap (S, K), K)

Ap1 (x, y) = Ap (x, y)

1 As an optimisation, the already transformed rules can be cached, so they do not
need to be transformed once again.
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Note that this gives a choice of how to fold the expression Ap (Ap (S, K), K):
We can either fold it to I or to Ap1 (Ap1 (S1, K1), K1) by splitting into
single-constructor configurations that are folded individually. It is up to the
supercompilation strategy to choose which of these to use. We will use the fol-
lowing strategy: All occurrences of Ap (Ap (S, K), K) are folded to I, but all
other constructor configurations are split into single-constructor configurations.

We initialise P1 to include the following datatype declaration:

data SKI = S1 | K1 | I | Ap1 (SKI, SKI)

We want to modify run, so we start Fs with the definition run1 e = run e,
which is copied to F . We then special-case this rule on the possible forms of e:

run1 K1 = run K

run1 S1 = run S

run1 I = run (Ap (Ap (S, K), K))

run1 (Ap1 (x, y)) = run (Ap (x, y))

The last rule can not be unfolded, so we special-case this on the value of x. We
need to special-case a couple of times more to ensure that unfolding is possible
in all rules:

run1 K1 = run K

run1 S1 = run S

run1 I = run (Ap (Ap (S, K), K))

run1 (Ap1 (K1, y)) = run (Ap (K, y))

run1 (Ap1 (S1, y)) = run (Ap (S, y))

run1 (Ap1 (I, y)) = run (Ap (Ap (Ap (S, K), K), y))

run1 (Ap1 (Ap1 (K1, q), y)) = run (Ap (Ap (K, q), y))

run1 (Ap1 (Ap1 (S1, q), y)) = run (Ap (Ap (S, q), y))

run1 (Ap1 (Ap1 (I, q), y)) = run (Ap (Ap (Ap (Ap (S, K), K), q), y))

run1 (Ap1 (Ap1 (Ap1 (K1, b), q), y)) = run (Ap (Ap (Ap (K, b), q), y))

run1 (Ap1 (Ap1 (Ap1 (S1, b), q), y)) = run (Ap (Ap (Ap (S, b), q), y))

run1 (Ap1 (Ap1 (Ap1 (I, b), q), y)) =

run (Ap (Ap (Ap (Ap (Ap (S, K), K), b), q), y))

run1 (Ap1 (Ap1 (Ap1 (Ap1 (c, d), b), q), y)) =

run (Ap (Ap (Ap (Ap (c, d), b), q), y))

At this point, all the calls to run can be (and are) unfolded, in some cases
repeatedly:

run1 K1 = K

run1 S1 = S

run1 I = Ap (Ap (S, K), K)

run1 (Ap1 (K1, y)) = Ap (K, run y)

run1 (Ap1 (S1, y)) = Ap (S, run y)

run1 (Ap1 (I, y)) = run y

run1 (Ap1 (Ap1 (K1, q), y)) = run q

run1 (Ap1 (Ap1 (S1, q), y)) = Ap (Ap (S, run q), run y)

run1 (Ap1 (Ap1 (I, q), y)) = run (Ap (q, y))
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run1 (Ap1 (Ap1 (Ap1 (K1, b), q), y)) = run (Ap (b, y))

run1 (Ap1 (Ap1 (Ap1 (S1, b), q), y)) = run (Ap (Ap (b, y), Ap (q, y)))

run1 (Ap1 (Ap1 (Ap1 (I, b), q), y)) = run (Ap (Ap (b, q), y))

run1 (Ap1 (Ap1 (Ap1 (Ap1 (c, d), b), q), y)) =

run (Ap (run (Ap (Ap (Ap (c, d), b), q)), y))

We can now fold using the definitions in Cs and Fs:

run1 K1 = K1

run1 S1 = S1

run1 I = I

run1 (Ap1 (K1, y)) = Ap1 (K1, run y)

run1 (Ap1 (S1, y)) = Ap1 (S1, run y)

run1 (Ap1 (I, y)) = run1 y

run1 (Ap1 (Ap1 (K1, q), y)) = run1 q

run1 (Ap1 (Ap1 (S1, q), y)) = Ap1 (Ap1 (S1, run q), run y)

run1 (Ap1 (Ap1 (I, q), y)) = run1 (Ap1 (q, y))

run1 (Ap1 (Ap1 (Ap1 (K1, b), q), y)) = run1 (Ap1 (b, y))

run1 (Ap1 (Ap1 (Ap1 (S1, b), q), y)) = run1 (Ap1 (Ap1 (b, y), Ap1 (q, y)))

run1 (Ap1 (Ap1 (Ap1 (I, b), q), y)) = run1 (Ap1 (Ap1 (b, q), y))

run1 (Ap1 (Ap1 (Ap1 (Ap1 (c, d), b), q), y)) =

run1 (Ap1 (run1 (Ap1 (Ap1 (Ap1 (c, d), b), q)), y))

These rules are added to P1, and since nothing was added to Fs or Cs, we are
done. The resulting program (which includes the declaration of the SKI datatype
from above) is a natural extension of the original interpreter to include the I
combinator with the reduction rule I x → x.

5.2 A Lambda-Calculus Reducer

The example above did not add new constructors to any datatype during the
transformation, so we will now show an, admittedly somewhat contrived, exam-
ple that does that. We first define a datatype for lambda expressions that uses
De Bruijn indexes [1] instead of named variables and two mutually recursive
datatypes to represent closures and environments:

data expr = Lam expr | App (expr, expr) | Var index

data index = Z | S index

data closure = C (expr, env)

data env = Em | Bind (closure, env)

Since an environment is just a list of closures, we can use the same datatype for a
stack of closures. The lambda reducer is based on Krivine’s abstract machine [10]:

run e = do (e, Em, Em)

do (Lam e, r, Em) = C (e, r)

do (Lam e, r, Bind (c, s)) = do (e, Bind (c, r), s)

do (App (f, e), r, s) = do (f, r, Bind (C (e, r), s))

do (Var i, r, s) = look (i, r, s)

look (Z, Bind (C (e, r1), r), s) = do (e, r1, s)

look (S i, Bind (c, r), s) = look (i, r, s)
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We will now specialise the reducer to expressions of the form f (λx.x x), where
f is an unknown expression. We do this by initialising Fs (and F ) with the
definition

run1 f = run (App(f, Lam (Var Z, Var Z)))

We only want to specialise closures, so we copy the other datatypes unchanged to
P1 while creating an empty datatype definition for a renamed closure datatype
called closure1.

Our strategy for folding will be to specialise the closure-building constructor
C with respect to its expression argument. We start by unfolding the call to run
a couple of times:

run1 f = do (f, Em, Bind (C (Lam (App (Var Z, Var Z)), Em), Em))

We now fold to the definition run1 f = do1(f, Em, Bind(C1 Em, Em)), which
adds the following definitions to Fs and Cs, respectively:

do1 (f, r, s) = do (f, r, s)

C1 r = C (Lam (App (Var Z, Var Z)), r)

We now transform the definition of do1 by special-casing and unfolding:

do1 (Lam e, r, Em) = C (e, r)

do1 (Lam e, r, Bind (c, s)) = do (e, Bind (c, r), s)

do1 (App (f, e), r, s) = do (f, r, Bind (C (e, r), s))

do1 (Var i, r, s) = look (i, r, s)

We fold this to

do1 (Lam e, r, Em) = C2 (e, r)

do1 (Lam e, r, Bind (c, s)) = do1 (e, Bind (c, r), s)

do1 (App (f, e), r, s) = do1 (f, r, Bind (C2 (e, r), s))

do1 (Var i, r, s) = look1 (i, r, s)

while adding the definitions

look1 (i, r, s) = look (i, r, s)

C2 (e, r) = C (e, r)

While transforming the definition for look1, we special-case on the new closure
constructors:

look1 (Z, Bind (C1 r1, r), s) = do (Lam (App (Var Z, Var Z)), r1, s)

look1 (Z, Bind (C2 (e, r1), r), s) = do (e, r1, s)

look1 (S i, Bind (c, r), s) = look (i, r, s)

We fold this to

look1 (Z, Bind (C1 r1, r), s) = do2 (r1, s)

look1 (Z, Bind (C2 (e, r1), r), s) = do1 (e, r1, s)

look1 (S i, Bind (c, r), s) = look1 (i, r, s)
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which adds the definition do2 (r, s) = do (Lam (App (Var Z, Var Z)), r, s)
to Fs. We transform do2 by special-casing on the stack s and unfolding:

do2 (r, Em) = C (Lam (App (Var Z, Var Z)), r)

do2 (r, Bind (c, s1)) = look (Z, Bind (c, r), Bind (C (Var Z, Bind (c, r)), s1))

We fold this to

do2 (r, Em) = C1 r

do2 (r, Bind (c, s1)) = look1 (Z, Bind (c, r), Bind (C3 (Bind (c, r)), s1))

which adds the definition C3 r = C (Var Z, r) to Cs. Since this adds more con-
structors to the new closure datatype, the definition of look1 in the transformed
program is incomplete, so we must remove this and redo the transformation. The
redone transformation recreates the rules for look1 shown above2 and adds one
more special case:

look1 (Z, Bind (C3 r1, r), s) = do (Var Z, r1, s)

which transforms to

look1 (Z, Bind (C3 r1, r), s) = look1 (Z, r1, s)

Since the transformed program is now complete with respect to all definitions
in Fs and Cs, we are done and end up with the following transformed program
(omitting the unchanged datatype definitions):

datatype closure1 = C1 env | C2 (exp, env) | C3 env

run1 f = do1(f, Em, Bind(C1 Em, Em))

do1 (Lam e, r, Em) = C2 (e, r)

do1 (Lam e, r, Bind (c, s)) = do1 (e, Bind (c, r), s)

do1 (App (f, e), r, s) = do1 (f, r, Bind (C2 (e, r), s))

do1 (Var i, r, s) = look1 (i, r, s)

do2 (r, Em) = C1 r

do2 (r, Bind (c, s)) = look1 (Z, Bind (c, r), Bind (C3 (Bind (c, r)), s))

look1 (Z, Bind (C1 r1, r), s) = do2 (r1, s)

look1 (Z, Bind (C2 (e, r1), r), s) = do1 (e, r1, s)

look1 (Z, Bind (C3 r1, r), s) = look1 (Z, r1, s)

look1 (S i, Bind (c, r), s) = look1 (i, r, s)

Note that the result of run1 is of type closure1. If we want to see the result of
evaluation in terms of the original type closure, we must apply the definitions
in Cs:

2 If a cache of transformed rules is used, they can just be copied from this.
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C1 r = C (Lam (App (Var Z, Var Z)), r)

C2 (e, r) = C (e, r)

C3 r = C (Var Z, r)

to all occurrences of the new constructors in the output of the transformed
program.

6 Conclusion

The suggested method overcomes a current limitation of supercompilation: Data-
types are unchanged by supercompilation. We do this by combining groups of
constructor applications to single constructor applications in a way that is analo-
gous to how supercompilation combines groups of function calls to single function
calls.

Supercompilation for datatypes can reduce the number of constructor appli-
cations and destructions in the transformed program compared to normal super-
compilation. For example, normal supercompilation can not achieve an effect
similar to the optimised extension of the SK-combinator reducer to include the
I combinator.

One issue with the method is that a transformed function definition does not
have the same type as the original. For example, the input and output of the
SKI-reducer are of a different type than the input and output of the SK-reducer.
This may not be a problem if the new type (as in this example) is completely
specified before the transformation, so the user of the transformed program
knows the meaning of the new constructors, but if the transformation invents
new constructors, these need to be related to the original.

The constructor definitions in Cs can be used to translate input and output
of the transformed program from and to the original types, so the transformed
program can be used in a context that uses and expects the original types. But
in some cases it can be an advantage to use the transformed types without
translation. For example, the SKI reducer is not useful unless the I combinator
is used in the input, and it is natural to expect the I combinator in the output.

Consider, also, two programs p and q running as a pipeline: The output of
p becomes the input to q. If p is supercompiled, the definitions in Cs for the
output type of p can be used to transform q. In essence, q is specialised to the
transformed output type of p. For example, assume p is a translator from a high-
level language into an abstract machine M having a set of small instructions
defined by a datatype. Transforming p can transform the abstract machine-
code datatype into a new datatype where each constructor corresponds to a
sequence of instructions from the original abstract machine. If q is an interpreter
for M , transforming q with respect to the definitions of the modified datatype
will construct an interpreter for this modified abstract machine. Essentially, a
new abstract machine is “invented” by the supercompilation process. This is
analogous to the process used in [9] to “invent” a Prolog abstract machine.
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6.1 Future Work

The method described in this paper has not been implemented in an actual
supercompiler, so this remains to do. There is also a need for a more formal
definition of the relation between the original and the transformed program,
including a formal correctness criterion.

A limitation of the described method is that each original datatype is trans-
formed into a single new datatype. It can happen that some specialised con-
structors can only occur in some contexts within the transformed program, so
it might be advantageous to split the single transformed datatype into two or
more disjoint datatypes. This can avoid special-casing a function on constructors
that can not actually ever occur as arguments to this function. Avoiding this
can lead to shorter transformed programs. The analogous issue for constructor
specialisation is discussed in [13] and partially solved in [2]. Not that the trans-
formation described in [6], though called “constructor specialisation”, does not
specialise constructors, but functions to constructor patterns. Hence, it is not
directly related to the constructor specialisations described in [2,13], but rather
to specialisation of functions to partially static structures [11] or to traditional
supercompilation [3–5,7,8,15–18].
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Abstract. Java is extended in version eight by lambda expressions and
functional interfaces, where functional interfaces are interfaces with one
method. Functional interfaces represent the types of lambda expressions.
The type inference mechanism will be extended, such that the types of
the parameters of lambda expressions can be inferred. But types of com-
plete lambda expressions will still not be inferable. In this paper we give
a type inference algorithm for complete lambda expressions. This means
that fields, local variables, as well as parameters and return types of
lambda expressions do not have to be typed explicitly.

We therefore define for a core of Java 8 an abstract syntax and formal-
ize the functional interfaces. Finally, we give the type inference algorithm.

Keywords: Java · Language design · Type system · Type inference

1 Introduction

In the Project lambda1 a new version (version 8) of Java has been developed. The
most important goal is to introduce programming patterns that allow modeling
code as data [1]. The version includes the new features lambda expressions, func-
tional interfaces as target types, method and constructor references and default
methods. An essential enhancement is the introduction of lambda expressions.
The following example from [1] illustrates lambda expressions.

Example 1.
(int x, int y) -> x + y

() -> 42

(String s) -> System.out.println(s);

The first expression takes two integer arguments, named x and y, and returns
their sum. The second takes no arguments and returns the integer 42, while the
third takes a string and prints it to the console, returning nothing.

In Java 8 lambda expressions have no explicit types. Instead, they are type-
checked using target types taken from syntactic context. Functional interfaces,
interfaces with only one abstract method, are used as target types. Target types
of the above examples could be
1 http://openjdk.java.net/projects/lambda.
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interface intOp { int op (int x, int y); }
interface retInt { int ret (); }
interface stringVoid { void put (String s); }
The reason for this construction is that Java’s library contains many interfaces
that merely serve to specify callbacks. Lambda expressions implement such inter-
faces. This is a very convenient abbreviation for an anonymous inner class, which
needed to be used in Java until version 7. E.g. in Java 8 it is possible to write:
Callable<String> c = () -> "done";

This approach has, however, some disadvantages, the first is the type of the
lambda expression is deduced from the context. In the above example
Callable<String>. But in another context the same lambda expression might get
a completely different type, e.g. PrivilegedAction<String> a = () -> "done";

Secondly, types can be deduced from the context but the lambda expression
itself has no explicit type. This means for a declaration c = () -> "done"; no
type can be inferred.

Third, types cannot even be deduced for all contexts. E.g. for

Object o = ()− > {System.out.println(“hi”); };

no type can be determined, as Object is no functional interface.
In this paper we present an approach where all lambda expressions have

unambiguous types that are inferred automatically. This approach solves all
highlighted problems, by the three following steps:

1. We collect all correct deducible functional interfaces for a lambda expression
in an equivalence class.

2. We introduce a canonical functional interface as a representative of each
equivalence class, which is defined as the explicit type of the lambda expres-
sion.

3. We give a type inference algorithm that determines the respective canonical
interfaces.

Beyond circumventing the mentioned restrictions of target types the algo-
rithm also allows us to write Java 8 programs without any type declarations.
All types are determined by the type inference algorithm. Let us consider the
following example:

interface Fun1<R,T1> { R apply(T1 arg1); }
interface Fun2<R,T1,T2> { R apply(T1 arg1, T2 arg2); }

class Matrix extends Vector<Vector<Integer>> {
Fun1<Fun1<Matrix, Fun2<Matrix, Matrix,Matrix>>, Matrix>

op = (m) -> (f) -> f.apply(this, m); }
op takes first a matrix resulting in a function. This function takes another func-
tion which has as arguments two matrices and returns another matrix. The
resulting type Fun1<Fun1<Matrix, Fun2<Matrix,Matrix,Matrix>>, Matrix> is not
obvious.



250 M. Plümicke

source := class∗
class := Class(type, [ extends( type ), ]fielddecl∗)
fielddecl := Field( [type, ]var [, expr] )
block := Block( stmt∗ )
stmt := block | Return( expr ) | While( bexpr , stmt ) | LocalVarDecl( [type, ]var )

| If( bexpr , stmt [, stmt ] ) | EmptyStmt | stmtexpr
lambdaexpr := Lambda( ((var [: type]))∗, (stmt | expr) )

stmtexpr := Assign( vexpr, expr ) | MethodCall( iexpr , apply, expr∗ ) | New( type )
vexpr := LocalVar( var ) | InstVar( iexpr , var )
iexpr := vexpr | stmtexpr | Cast( type, iexpr ) | this | super
expr := lambdaexpr | iexp | bexp | sexp3

Fig. 1. The abstract syntax of a core of Java 8

E.g. Fun1<Fun1<aapp, Fun2<a3, Vector<? extends Vector<Integer>>, a2>>, am>

is also a correct type. We will see in Sect. 3 that both types are not principal. Our
type inference algorithm would allow to leave out the type and determine principal
types, automatically.

In [2] we have presented for an earlier version of Java with lambda expressions
[3] that we have called Javaλ, a type inference algorithm. This algorithm has been
oriented at [4]. The main problem of [4] is that the results are well-typings2,
which are not contained in the Java type system.

The new algorithm, presented in this paper, solves this problem, as its result
is a set of typed Java programs. This is done by replacing the function MATCH,
SIMPLIFY and CONSISTENT by our type unification [5].

This improvement is supported by the property, that real function types,
included in Javaλ, becomes in Java 8 functional interfaces FunN [6].3

The paper is structured as follows. In Sect. 2 we define the abstract syntax
for a core of Java 8 and present a formal definition for the inferred functional
interfaces. In Sect. 3 we give the type inference algorithm. In Sect. 4 we consider
related work. Finally, in Sect. 5 we close with a summary and an outlook.

2 The Language

2.1 Abstract Syntax

The language (Fig. 1) we treat in this paper is an abstract representation of a
core of Java 8. The new feature is the lambda expressions. A lambda expression
is an anonymous function and consists of optionally typed parameters and either
a statement or an expression.

2 A well-typing is a conditional type for an expression, where the conditions are given
by a set of consistent coercions (constraints).

3 sexp and bexp stands for simple and boolean expressions, which are expressions of
the base types int and boolean, respectively.
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For the purpose of this paper we reduce Java 8 by omitting exceptions and
without loss of generality by omitting method declarations and overloading.

The concrete syntax in this paper of the lambda expressions is oriented at [1].
The optional type annotations [type ] are the types, which can be inferred by

our type inference algorithm.

2.2 Canonical Representatives of Functional Interfaces

In this section we introduce a collection of standard functional interfaces into
Java 8, which can simulate function types.

First, we define the equivalence of two functional interfaces.

Definition 1 (Equivalent functional interfaces). Two functional interfaces
are equivalent (in sign: ∼fi) if for its single methods holds:

– The number of arguments are equal and its types are either equal or if they
are functional interfaces, they are equivalent

– The result types are equal or if they are functional interfaces, they are equiv-
alent

Lemma 1. The relation ∼fi is an equivalence relation.

Finally, we will introduce the following collection of interfaces into Java 8.

Definition 2 (Interface FunN). The language Java 8 is extended for all N by

interface FunN < R, T1 , . . . , TN > { R apply(T1 arg1 , . . . , TN argN); }
This leads directly to the following theorem.

Theorem 1 (Canonical representative). For each functional interface there
is an unique N, such that an instance of FunN is an equivalent functional inter-
face. This instance is called canonical representative of the equivalence class of
functional interfaces.

Example 2. The canonical representative of the compatible types of the lambda
expression () -> "done" from the introduction is Fun0<String>.

3 Type Inference

The base of many type inference algorithms is the algorithm W that was pre-
sented by Damas and Milner [7]. The fundamental idea of the algorithm is to
determine types by type term unification [8]. In [9] we have presented a type
inference algorithm for Java5.0 which is based on W and our type unification
algorithm for Java5.0 types [5]. In [2] we have presented a type inference algo-
rithm for Javaλ which is based on the type inference algorithm that was presented
by Fuh and Mishra [4] for a λ–calculus with subtyping. Our contribution in this
paper is a new type inference algorithm, which is an improvement of [2]: First,
the well-typings from [4] are replaced by Java types. Secondly, the algorithm
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is adapted to Java 8’s type system extended by the functional interfaces FunN.
Finally, our type unification [5] replaces three unwieldy functions.

The type inference algorithm for core Java 8 determines for each declared
field respectively its defining expression a principal type.

First, we define the argument and result types of TYPE and SOLVE:

Set of type assumptions TypeAssumptions: contains two different forms of
elements:
v : θ: Assumptions for fields or local variables of the actual class.
τ.v : θ: Assumptions for fields of the class τ .

Set of Java classes, expressions and statements Class, Expr, Stmt: con-
tains respectively all core Java 8 elements as defined in Fig. 1.

Set of constraints ConstraintsSet: contains pairs of types ty1 � ty2, and
ty1

.= ty2, which declares the conditions that ty1 must be a subtype of ty2
respectively ty1 must be equal to ty2.

Additionally, there are the sets TClass, TExpr and TStmt, which means that in
the respective Java elements all expressions and statements are type annotated.

In the following we define the functions TYPE and SOLVE. F inally, we
give the whole algorithm TI. We present the algorithms in a functional style.

The Function TYPE. The function TYPE inserts type annotations, widely
type variables as placeholders, in the Java class and determines a set of type
constraints.

TYPE: TypeAssumptions × Class → TClass × ConstraintsSet
TYPE(Ass,Class( τ, extends( τ ′ ), fdecls ) ) = let

fdecls = [Field( f1, lexpr1 ), . . . ,Field( fn, lexprn )]4

ftypeass= { this.fi : ai | ai fresh type variables }
∪ { this : τ, super : τ ′ } ∪ { visible types fields of τ ′ }

AssAll = Ass ∪ ftypeass
Forall 1� i�n : (lexpit : rtyFi, ConSFi) = TYPEExpr(AssAll, lexpri )

fdeclst = [Field( a1, f1, lexpr1t : rtyF1 ), . . . ,Field( an, fn, lexprnt
: rtyFn )]

in(Class( τ, extends( τ ′ ), fdeclst ), (
⋃
i

ConSFi ∪ { (rtyFi � ai) | 1� i�n }))

The function TYPEExpr is given as:

TYPEExpr: TypeAssumptions × Expr → TExpr × ConstraintsSet
TYPEExpr(Ass, Lambda( (x1, . . . , xN ), expr|stmt ) ) =
let AssArgs = {xi : ai | ai fresh type variables }

(exprt : rty, ConS) = TYPEExpr(Ass ∪ AssArgs, expr )
| (stmtt : rty, ConS) = TYPEStmt(Ass ∪ AssArgs, stmt )
in (Lambda( (x1 :a1, . . . , xN :aN ), exprt :rty|stmtt :rty ) :FunN <a, a1, . . . , aN>,

ConS) ∪ { rty � a) }),where a is a fresh type variable
4 We assume without loss of generality that all fields are declared typeless and that
all fields are initialized by expressions.
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TYPEExpr(Ass,Assign( ve, e ) ) =
let (et : rty2, ConS2) = TYPEExpr(Ass, e )

(vet : rty1, ConS1) = TYPEExpr(Ass, ve )
in (Assign( vet : rty1, et : rty2 ) : rty1, ConS1 ∪ ConS2 ∪ { (rty2 � rty1) })

TYPEExpr(Ass,MethodCall( re, apply, (e1, . . . , en) ) ) =
let (ret : rty, ConS) = TYPEExpr(Ass, re )

(eit : rtyi, ConSi) = TYPEExpr(Ass, ei ),∀1� i�n

in (MethodCall( ret : rty, apply, (e1t :rty1, . . . , ent
:rtyn) ) :a,

(ConS ∪ ⋃
i ConSi) ∪ { rty

.= FunN <a, a1, . . . , aN> }
∪ { rtyi � ai | 1� i�N }

where a1, . . . , aN and a are fresh type variables

TYPEExpr(Ass, LocalVar( v ) ) = let (v : θ) ∈ Ass in (LocalVar( v ) : θ, ∅)

TYPEExpr(Ass, InstVar( re, v ) ) =

let(rty, ConS) = TYPEExpr(Ass, re )
in (InstVar( re : rty, v ) : θ̃, ConS ∪ { { (rty .= τ) } }),where τ.v : θ ∈ Ass

and θ̃ = θ, if τ = ass( this )5, otherwise θ̃ = fresh( θ )6

We omit the remaining cases of TYPEExpr for New, Cast, This and Super
and the TYPEStmt rules. These are given analogously.

Example 3. We consider again the method op of the class Matrix from the intro-
duction.

class Matrix extends Vector<Vector<Integer>> {
op = (m) -> (f) -> f.apply(this, m);

}

In TYPE the function TYPEExpr is called with the arguments:
AssAll = { this.op : aop, this : Matrix, super : Vector<Vector<Integer>> }
lexpr1 = Lam( m, Lam( f,MCall( LoVar( f ), apply, ( this, LoVar( m ) ) ) ) ).

The result consists of the typed lambda expression:
lexpr1t =

Lam( m : am,
Lam( f : af ,

MCall( LoVar( f ) : af ,
apply, ( this : Matrix,

LoVar( m ) : am ) ) : a3 ) : Fun1<aapp, af> ) : Fun1<aλf , am>

and the set of constraints:
{(Fun1<aλf , am> � aop), (Fun1<aapp, af> � aλf ), (af

.= Fun2<a3, a1, a2>),
(Matrix � a1), (am � a2), (a3 � aapp) }.

5 The function ass( this ) gives the type assumption of the actual class.
6 The function fresh refreshes the type variables.
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The Function SOLVE. The function SOLVE determines the solutions of the
set of constraints. In SOLVE the type unification TUnify from [5] is called.
There are two cases of results of the type unification. Either the results are
in solved form, which means that all instances of the remaining type variables
are correct solutions. Otherwise, besides the solutions there are remaining con-
straints of the form aR a′, where a and a′ are type variables. In this case all
instances of type variables are correct, if they fulfill these constraints.

SOLVE: ConstraintsSet → ConstraintsSet
SOLVE( ConS ) = let subs = TUnify(ConS ) in

if (there are σ ∈ subs in solved form) then
{ c ∈ subs | c is in solved form }

if (there are σ ∈ subs, which has the form
{ v R v′ | v, v′ are type vars } ∪ { v

.= θ | v is a type var }) then
{ c ∈ subs | c has the given form }

else fail

Finally, both functions TYPE and SOLVE are combined to the type infer-
ence algorithm by the function TI.

The Type Inference Algorithm TI. The type inference algorithm for Java 8
TI calls first the function TYPE. The function TYPE inserts type annotations,
widely type variables as placeholders, in the Java class and determines a set of
type constraints. Secondly, the function SOLVE solves the type constraints by
type unification. Finally, the set of substitutions, which are results of SOLVE,
are applied to the type annotated Java class. The result of TI is a set of pairs
of a remaining set of constraints and a typed Java 8 class.

TI: TypeAssumptions × Class → { (Constraints, TClass) }
TI(Ass,Class( τ, extends( τ ′ ), fdecls ) ) =
let (Class( τ, extends( τ ′ ), fdeclst ), ConS) =

TYPE(Ass,Class( τ, extends( τ ′ ), fdecls ) )
{ (cs1, σ1), . . . , (csn, σn) } = SOLVE(ConS )

in { (csi, σi(Class( τ, extends( τ ′ ), fdeclst ) ))| 1� i�n }

The result of TI is a set of typed Java 8 classes with constraints. As Java allows
only a restricted form of type constraints (bounded type parameters), either this
mechanisms must be extended such any constraint of csi could be given, or the
elements of csi must be set equal, which means that the result is less general.

Example 4. We continue Example 3. The set of constraints was given as:

ConS = { (Fun1<aλf , am> � aop), (Fun1<aapp, af> � aλf ),
(af

.= Fun2<a3, a1, a2>), (Matrix � a1), (am � a2), (a3 � aapp) }
With step 4 of TUnify we get:
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{{aop
.= Fun1<aλf , am>, aλf

.= Fun1<aapp , af>, af
.= Fun2<a3, a1, a2>,

a1
.= X, am � a2, a3 � aapp } | Matrix is a subtype of X }

With step 5 (subst) and step 6 of TUnify we get:

{ ( { am � a2, a3 � aapp},
{ aop

.= Fun1<Fun1<aapp , Fun2<a3,X , a2>>, am>,
aλf

.= Fun1<aapp , Fun2<a3,X , a2>>,
af

.= Fun2<a3,X , a2>, a1
.= X})} | Matrix is a subtype of X }

The results of SOLVE applied to the result program of TYPE gives the result
set:

{ class Matrix extends Vector<Vector<Integer>> {
<a2, aapp, am extends a2, a3 extends aapp>7

Fun1<Fun1<aapp, Fun2<a3, X ,a2>>, am>

op = (m) -> (f) -> f.apply(this, m); } | Matrix is a subtype of X }

If we compare this result with the example in the introduction we see that the
types are more general.

4 Related Work

The programming language Scala [10] allows functional programming features.
In addition to Java, Scala allows real function types as in our Javaλ [2], currying
and pattern-matching.

Scala contains, however, a type-inference system. But in comparison to our
approach, the type-inference system is restricted to local type inference. For
complete lambda expressions and recursive methods, it is not possible to infer
the complete types.

In C# (e.g. [11]) lambda expressions are also included. Function types are
given as delegates. A delegate defines a type that encapsulates a method with
argument types and a return type. A delegate plays the role of functional inter-
faces in Java 8. In C# there is no type inference.

In C++11 [12] there are also lambda expressions. There is a possibility to
leave out type declarations by using the predefined keyword auto. In some cases
then the types can be inferred automatically.

5 Conclusion and Future Work

We have presented a type inference algorithm for a core of Java 8 that allows to
write Java programs without any type annotation. The types are determined by
the type inference algorithm.

7 The constraints are here given as bounded type variables for fields, which is in
original Java only allowed for methods.
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This extension simplifies Java programming as complex and confusing type
annotations with functional interfaces and wildcards are not longer necessary.

The central point is the treatment of lambda expressions. Here, for lambda
expressions a canonical representative functional interface is inferred that is
equivalent to all other compatible target types of the lambda expression.

The canonical representative fits into Java 8 smoothly. In original Java 8,
lambda expressions have no explicit type. Now the lambda expressions have
the canonical representatives as types. In Java 8, for a lambda expression the
type checker must check if it is compatible to the context type. Now the type
checker must check if the inferred type of the lambda expression is equivalent to
the context type. This check is normally much easier, as the argument and the
result types of the lambda expression are already determined.

In future work, we plan to extend the principal type property from expres-
sions to Java methods in the sense of [13].

Furthermore we develop an IDE, which supports the user by automatic type
inference, similar as we have introduced it for Java5.0 [14].
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Abstract. We describe pretty-printing combinators with choice which
provide optimal document layout in polynomial time. Bottom-up tree
rewriting and dynamic programming (BURS) is used to calculate a set
of possible layouts for a given output width. We also present the results of
suggested approach evaluation and discuss its application for the imple-
mentation of pretty-printers.

Keywords: Pretty-printing · Combinators · Bottom-up rewriting
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1 Introduction

Pretty-printing is a transformation which provides a human-readable text from
some internal program representation (for example, AST). The need for pretty-
printing arises in a wide variety of applications, for example IDEs [7], reengi-
neering tools [9] etc. In its utter form pretty-printer has to implement a reverse
transformation to parsing, i.e. to generate text which can further be edited and
parsed back.

The general requirement for pretty-printer to provide human-readable text
decomposes into many additional requirements most of which are hard to for-
malize. For example, the resulting text must be observable (not too wide and
not too long), it should reflect the structure of a program, it has to respect the
coding style conventions for a given project, etc. As a result, pretty-printers,
which try to fulfill these requirements, become hard to implement, maintain and
reason about.

In the realm of functional programming the natural approach to pretty-
printing is pretty-printing combinators: source representation of a program is
transformed into a structured document using relatively small set of construc-
tors. Then, this document is interpreted by a pretty-printing algorithm providing
string representation.

c© Springer-Verlag Berlin Heidelberg 2015
A. Voronkov and I. Virbitskaite (Eds.): PSI 2014, LNCS 8974, pp. 257–265, 2015.
DOI: 10.1007/978-3-662-46823-4 21
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The mainstream set of pretty-printer combinators originates from the works
of Wadler [15] and Hughes [6], who in turn referred to the approach developed
by Oppen [11]. The basic document constructors in this approach1 are:

– atomic string which is printed as is;
– separator ;
– sequential composition of two documents;
– scoping.

The definitive characteristic of this approach is the interpretation of sepa-
rators: all separators within a given scope can coherently be turned into either
spaces or newline symbols by a pretty-printing algorithm. The choice for sepa-
rators is determined by the requirement to respect given line width using as few
lines as possible (hence optimality property).

The original Oppen’s algorithm is essentially imperative; it works in a time
linear on an input program length and provides optimal result. Pretty-printer
combinators of Wadler and Hughes use backtracking and therefore less efficient;
in addition Hughes’ combinators do not provide optimality. More elaborated
versions with linear-time optimal implementation are presented in [4,10,12,13].
However, these works contribute more to functional programming than to pretty-
printing as such since all of them provide more advanced functional implemen-
tations of the same approach.

The problem with mainstream pretty-printer combinators is their weak
expressivity. They treat pretty-printing programs too uniformly which sometimes
can result in undesirable (or even incorrect) output. For example, if we pretty-
print Python programs, then we have to handle printing two operators on the
same line essentially differently since in this case additional separator character
(“;”) is required. However, mainstream pretty-printer combinators do not pro-
vide any means to specify such a behavior. Another example is layout-based syn-
tax which is generally cannot be generated by mainstream pretty-printers since
they treat vertical and horizontal spaces uniformly. It is impossible for main-
stream pretty-printer combinators to adopt various project-specific layouts —
they always generate text in a single hardcoded style. While some of these prob-
lems can be handled with other approaches [14] the resulting solutions utilize
much more advanced machinery then a small set of high-order functions.

The aforementioned deficiencies can be alleviated if the set of pretty-printing
primitives is extended by the notion of choice between various layouts. Thus,
instead of making it possible to freely break line at arbitrary space, we may
describe different variants of layouts and let pretty-printing algorithm choose
the best one. The ability to choose between different layouts gives rise to the
ability to support various code styles since each of them can be expressed as a
set of patterns to choose from.

Pretty-printing frameworks with choice are already considered in the lit-
erature; however, none of them are optimal and efficient at the same time.
1 The sets of combinators suggested by Hughes and Wadler slightly differ in details;

however both of them share a similar relevant properties.
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Pretty-printers described in [8,9] make use of the “ALT” operator which gives an
opportunity to express non-trivial layout variations. However, provided imple-
mentation does not deliver optimal layout because the choice is based on the
first document fitting in the given width. In contrast, pretty-printer combina-
tors described in [2] have no lack in expressiveness and generate optimal layout
but proposed algorithm has exponential complexity. Though authors later [3]
discuss some heuristic, this doesn’t change the worst-case behavior.

The contribution of this paper is optimal and polynomial-time re-implement-
ation of combinators with choice described in [2]. We utilize bottom-up tree
rewriting and dynamic programming (BURS) [1,5] to provide an optimal pretty-
printing algorithm which has linear complexity on the number of nodes in the
document, polynomial on the width of output and exponential only on the doc-
ument tree degree (which we consider a constant). Our implementation does not
make use of lazy evaluation and can be natively expressed in both strict and
non-strict languages.

2 Pretty-Printing Combinators with Choice

Pretty-printer combinators with choice were introduced in [2]; the implementa-
tion we refer to (and compare with) is a part of Utrecht Tools Library2 (there
are some negligible differences between published and implemented versions).

(a) Format shape (b) Beside composition (c) Above com-
position

Fig. 1. Format primitives

Output text in this approach is built from blocks shaped as rectangles with
possibly incomplete last line (Fig. 1a). In Haskell implementation blocks are rep-
resented by the values of type Format:

data Format = Elem {height :: Int

, lastLineWidth :: Int

, width :: Int

, txtstr :: Int → String → String

}
The first three fields specify the geometric properties of the block; the last one

is a content-generation function which is needed to provide a linear-time block-
to-text conversion in a functional settings. The first integer argument of txtstr
is an indentation of the whole block (so blocks can be moved right horizontally).
2 http://www.cs.uu.nl/wiki/HUT/WebHome.

http://www.cs.uu.nl/wiki/HUT/WebHome.
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Table 1. Format and document manipulation primitives

s2fmt : : String → Format

indentFmt : : Int → Format → Format

aboveFmt : : Format → Format → Format

besideFmt : : Format → Format → Format

text : : String → Doc

indent : : Int → Doc → Doc

beside : : Doc → Doc → Doc

above : : Doc → Doc → Doc

There are four primitives working with formats (see Table 1, left column).
Function s2fmt creates a single-line Format from an atomic string; indentFmt
moves the whole block right by a given number of positions. Two composi-
tion primitives besideFmt and aboveFmt combine two layouts as shown on the
Fig. 1b, 1c.

The next notion in the framework is document. We may consider document
as a set of various layouts for the same text. Documents are represented by
the values of type Doc which we leave abstract by now. The right column in the
Table 1 shows four primitives for documents which are dual for those for formats.

In addition there is fifth operator for documents:

choice :: Doc → Doc → Doc

which denotes the union of two sets of layouts. Note that choice is the only
primitive which can produce multi-variant layouts from the single-variant argu-
ments.

From an end-user perspective, first, the document is created by means of
these five combinators. Then, the document can be rendered using the function

pretty :: Int → Doc → String

which takes the output width and the document and provides optimal layout.
The original implementation essentially relies on lazy evaluation. In [2] Doc

data type is represented as a (lazy) list of all possible layouts for a given width.
This list is sorted so “better” layouts come first. In the case of “beside” or
“above” document composition the complexity of the new document construc-
tion is O (n × m) where n and m are lengths of the first and the second layout
lists. The new document also has length O (n × m).

The document rendering function just takes the head of the document layouts
list. So, at the moment of rendering we need only its first element. Due to lazy
evaluation this may reduce the overall complexity. However, the implementation
of beside combinator in [2] triggers the full calculation of its both parameters
which compromises the benefits of lazy evaluation. Thus, the calculation of layout
in [2] has the worst-case exponential complexity on the number of combinators
used to construct the document. We do not see any way to avoid this drawback
while preserving list-based representation.

Despite a poor worst-case behavior optimal pretty-printing combinators with
choice can be used in many practical cases.
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3 Bottom-Up Rewrite Systems

Bottom-up rewrite systems (BURS) [1] is a dynamic programming framework
initially developed in the context of research on instruction selection problem for
machine code generation. The core notion of BURS is a weighted regular tree
grammar [5] i.e. a grammar with the following two kinds of rules:

N : α [c] and N : α (K1, . . . ,Kn) [c]

Here N,Ki are nonterminals, α — terminal, c — cost functions (one per rule,
see below). Similar to the ordinary “linear” (or “word”) grammar we distinguish
certain starting nonterminal S and say that terminal-labeled tree is derivable in
the given grammar if it can be constructed from a single node labeled by S using
repetitive substitutions. Each substitution replaces (arbitrary) leaf labeled by a
nonterminal N with a tree α (K1, . . . ,Kn) if there is a rule N : α (K1, . . . ,Kn)
in the grammar. The cost functions are used to calculate the overall cost of a
certain derivation. Each cost function can depend on the terminal label (α) and
derivation costs for each subtree.

In the context of BURS we are interested in (arbitrary) least-cost derivation
of a certain tree provided by a certain grammar. This derivation can be found
by a two-pass algorithm.

The first pass (labeling) traverses the subject tree bottom-up and calculates
for each its node the set of all triplets (K, R, c), where K — nonterminal from
which the subtree rooted at the given node can be derived, R — the first rule
of the minimal derivation from K, c — the cost of this derivation. The labeling
process is performed as follows:

– for each leaf node labeled by a terminal α we add into the set for this node a
triplet (K, R, c (α)) for each rule R = K : α [c];

– for an intermediate node labeled by a terminal α with immediate successors
v1, . . . , vn we add into the set for this node a triplet (K, R, c(α, c1, . . . , cn)) for
each rule R = K : α (K1, . . . ,Kn) [c] such that there is a triplet (Ki, Ri, ci)
in the labeling for the node vi; if there are different suitable rules for the same
nonterminal K then we choose that delivering minimal cost.

The second pass (reduce) is a top-down traversal which makes use of the
constructed labeling. The first rule of minimal derivation is that from the triplet
(S, R, c) for the root node (if there is no such a triplet, then there is no derivation
from S). This rule unambiguously determines nonterminals Ki for each direct
subtree of the root node and the process repeats.

To perform labeling we potentially need to try each rule of the grammar for
each node of the tree; given the fixed grammar this results in O (|R|) complexity,
where |R| is the number of rules (the size of the set of triples is limited by the
number of nonterminals which in turn is not greater than the number of rules).
Reduce is linear as well.
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4 Pretty-Printing via BURS

The reduction of the optimal pretty-printing problem to a BURS is based on the
following observations. Let w be the output width. Since the approach in question
deals with formats (rectangular boxes of a certain shape, see Sect. 2), the rendered
text is in turn always shaped as a box. Let parameters of this box are n, k, h, where
n — its width, k ≤ n — the length of its last line, h — its height. Under these
considerations an optimal rendering is that with the minimal h over all pairs (n, k)
such that k ≤ n ≤ w. So for a fixed width w we may try to render the text as no
more than w2 boxes and then simply choose the best one.

The document for pretty-printing can be considered as a tree built of primi-
tives text, indent, beside, above, and choice. The main question is whether
the rendering can be done compositionally by the tree structure (i.e. by reusing
renderings for the subtrees of each node). It can be done if we memoize for each
node and each pair (n, k), where k ≤ n ≤ w, the minimal h such that the sub-
tree rooted at that node can be rendered as a box with parameters n, k and h.
Having optimal renderings for each possible box shape for each subtree of some
node we can in turn calculate optimal rendering for each possible box shape for
the node itself et cetera. For each node of the tree we thus need to calculate
no more then w2 renderings which means that (under the assumption that w is
fixed) the number of renderings is linear on the number of nodes in the tree.

Once all these renderings are calculated in a bottom-up manner we may
then reconstruct the optimal one by a top-down traversal. For the root of the
tree we choose the rendering with the minimal height. This choice immediately
provides us with the renderings for immediate subtrees et cetera. Note that
generally speaking the optimal rendering for a tree is not necessarily combined
from optimal renderings for its subtrees.

These considerations boil down to the following BURS specification. Given
output width w we introduce a family of nonterminals T k

n for all k ≤ n ≤ w.
We are going to define a BURS grammar in such a way that a derivation of cost
h of some document tree from the nonterminal T k

n corresponds to the optimal
rendering of that document into a box with parameters n, k and h. Once we have
a grammar with this property the labeling stage will calculate all (interesting)
renderings while reduce stage will provide the optimal one.

The grammar in question can be constructed by the case analysis:

1. For a terminal node [text s]3 we have two cases:
– if |s| ≤ w (where |s| is the length of the string s) we introduce the single rule

T
|s|
|s| : [text s] with cost 1; for all other k, n �= |s| we have T k

n : [text s]
with cost ∞;

– if |s| > w then we have T k
n : [text s] with cost ∞ for all k, n.

Indeed, a (single-line) string of length |s| can only be rendered as a box with
parameters |s| (width), |s| (length of the last line) and 1 (height). All other
renderings are not possible — hence “∞” cost.

3 We use square brackets to denote multi-symbol terminals.
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2. For a node [indent m] we introduce two sets of rules:
(a) T k+m

n+m : [indent m] (T k
n ) with identity cost function for each n and k such

that n + m ≤ w and k ≤ n;
(b) T k

n : [indent m] (T i
j ) with cost ∞ for all other cases.

Clearly, shifting a box with parameters n, k and h by m positions to the
right transforms it into the box with parameters n + m, k + m, h. This box
represents an admissible rendering if n + m ≤ w (and hence k + m ≤ w).

3. For a node [above] we have the rule T k2
max(n1,n2)

: [above] (T k1
n1

, T k2
n2

) with the
cost function which sums the costs of both subtree derivations for each k1 ≤
n1 ≤ w and k2 ≤ n2 ≤ w. Indeed, when we combine boxes with parameters
n1, k1, h1 and n2, k2, h2 we obtain the box with parameters max(n1, n2), k2,
h1 + h2. Vertical combination of two admissible boxes is always admissible.

4. For a node [beside] we have the rule T k1+k2
max (n1, k1+n2)

: [beside] (T k1
n1

, T k2
n2

)
for each combination of n1, n2, k1, k2 such that k1 + k2 ≤ max (n1, k1 +
n2) ≤ w. The cost function for these rules calculates the sum of costs for
subtree derivations minus 1. This can be validated by elementary geometric
considerations.

5. Finally, for [choice] we have the rule T k
n : [choice](T k

n , T k
n ) for all k ≤ n ≤ w.

The cost function is minimum between two derivations for subtrees. Clearly,
between two layouts with the same shape but different height we have to
choose the shortest one.

To complete the construction we have to provide rules for the starting non-
terminal S. We can either add a rule S : r with identity cost function for each
right-hand side r of each rule constructed so far or introduce a chain rule S : T k

n

with identity cost function for each nonterminal T k
n (the latter requires a trivial

extension of BURS description presented in Sect. 3).
The number of nonterminals in the constructed grammar is O (w2); the num-

ber of rules, however, is O (w4) since there are nodes of degree 2 in the tree. So
our BURS implementation of the optimal pretty-printer works in linear time on
the number of nodes in the document tree for fixed width; the complexity on
width is of fourth degree. Clearly, given reduction can be scaled to document
construction primitives of arbitrary degree at the cost of exponential growth.

5 Implementation and Evaluation

We implemented our approach in Haskell as a pretty-printing combinator library4

Our implementation borrows some basic underlying types and functions from the
original library [2] with top-level types and combinators re-implemented.

In our implementation we do not follow BURS reduction literally; we do not
make any use of BURS grammar, sets of nonterminals or standard algorithm.
Instead, we calculate for each node of the document a map from pairs of integers
(n, k) to the best (“shortest”) format with the parameters n and k (if any). Thus,
an entry (n, k) in the map corresponds to the cost of optimal derivation from T k

n

4 http://github.com/anlun/polynomialPPCombinators.

http://github.com/anlun/polynomialPPCombinators
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Table 2. Time of layout calculation (in seconds)

and the first rule for that derivation. At the top level we choose the least-cost
element from the map.

Since we are interested in the worst-case behavior we evaluate our implemen-
tation on the number of artificial automatically-generated documents. Given a
tree of type Ast, we then generate a document in a bottom-up manner. For each
intermediate node we combine its subtrees’ layouts both vertically and horizon-
tally and generate a choice between them in the following manner:

data Ast = T String | N String Ast Ast

astToDoc (T s) = text s

astToDoc (N s l r) = make beside ‘choice ‘ make above where

make f = foldl f (text s) (map astToDoc [l , r ] )

The results of comparison of our implementation against the original one are
shown on the Table 2. Here “Height” stands for the height of the initial tree,
“Nodes” — for the number of nodes in the generated document, “W” — for
the output width. For each width the left sub-column shows the running time
of the original implementation, while the right — of ours (in seconds). We can
see that starting from some combination of width/number of nodes the original
implementation was not able to calculate the layout. Table entries like show
the time when a stack overflow occurred.

Our implementation sometimes does not demonstrate linear behavior (as it
is expected since the number of nodes is virtually quadrupled from line to line).
We performed additional experiments and found that this phenomenon is due to
the irregular sparsity of calculated layouts for the larger widths. In other words,
for a small tree the number of non-empty entries in the layout maps is far below
the upper bound. As the tree grows this number also grows non-linearly until
the upper bound is reached.

6 Conclusions and Future Work

Despite our approach is better in asymptotic sense, the constant factor of w4

makes it still unusable in a direct form for large widths. Several ways to reduce
this factor may be considered as directions for future research. For example, we
may try to factorize output width into smaller number of values or to perform
auxiliary heuristic search to prevent too many layouts from being considered.

On the other hand, the presented approach has an interesting “relocation”
property: if we once calculated layouts for some tree, then we can instantly
pretty-print it in arbitrary context (e.g. from arbitrary position or as a subtree
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of arbitrary tree). This property opens some perspectives for incremental pretty-
printing in the context of IDEs.

Another issue which we have to mention is a conversion from AST into docu-
ments. Generally speaking the direct conversion might provide a document of an
exponential size since at each node we might try to choose from various compo-
sitions (“beside” or “above”) of layouts of its descendants. While this does not
compromise our approach, it still has practical impact. To cope with this issue
an additional level of memoization is needed to prevent shared document nodes
from being processed several times. The original set of combinators [2] seem to
face the same problem.
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Abstract. In this paper we consider the scalability issues of a classical
data structure used for multidimensional indexing: the R-Tree. This data
structure allows for an efficient retrieval of records in low-dimensional
spaces and is de facto standard of the industry. Following the design
guidelines of the GiST model we have implemented a prototype which
supports concurrent (parallel) access and provides read committed isola-
tion level. Using our prototype we study the impact of threads and cores
on the performance of the system. In order to do this, we evaluate it in
several scenarios which may occur during the course of DBMS operation.

Keywords: Threads · Scalability · Databases · Multidimensional
indexing · In-memory index · R-Tree · GiST · Experimental evaluation

1 Introduction

R-Tree is a de facto standard of the database industry for multidimensional
indexing: PostgreSQL, Oracle, Informix, SQLite and MySQL follow this app-
roach [1]. However, the problem of efficient multidimensional indexing is very
far from being solved. Moreover, the problem becomes challenging when one
considers it in a transactional environment. This means that, inter alia, a pro-
grammer should provide [2]:

– A concurrency control mechanism to ensure the integrity of a data structure
during multithreaded access. The index must preserve its internal structure,
i.e. broken links or dangling pointers must not appear.

– Some guarantees for the outcome of conflicting operations. These guarantees
are specific to the area of databases and are defined by the specified isolation
level.

Performance and correctness of parallel access are not the only important char-
acteristics. This access should also be scalable, e.g. the performance of such system
should benefit from the addition of new processing elements (processors, cores).

This work is partially supported by Russian Foundation for Basic Research grant
12-07-31050.
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The goal of this paper is to explore the scalability issues of such system and
to study the effect of adding more cores in a variety of scenarios. We consider a
multidimensional indexing system in a transactional environment.

This work uses a prototype implementation of transactional, in-memory, mul-
tidimensional indexing system based on R-Tree and the GiST model [3]. This
system is the follow-up of the ACM SIGMOD Contest 2012, where initial ver-
sion was created. It was ranked 5th on the public (preliminary) tests1. Detailed
description of the system can be found in the report [4].

2 Considered Problems

The considered question is “How does plugging more cores and threads into a
system affect its performance?”. Intuitively, working with an index in parallel
should bring benefits, e.g. decrease index construction time. However this may
not be the case due to implementation-specific software issues (latch interference,
node splits, etc.) or hardware limitations.

We have considered the following scenarios which we deem the most impor-
tant for the evaluation:

1. Index construction. During this scenario we measure the time it takes to
construct the index.

2. Query execution: an update intensive workload. This scenario includes a big
portion of queries with update statements. Such queries may trigger conflicts
and eventually lead to formation of queues of waiting transactions, which may
adversely affect query performance.

3. Query execution: a select intensive workload. In this scenario the selection
operations constitute a substantional fraction of all operations.

These scenarios are considered for several synthetic datasets. We consider
low-dimensional data because it is a well-known fact that R-Tree performs poorly
with high-dimensional data [5] and thus is not used with it.

Also, it is necessary to mention that our problem formulation involves in-
memory index. This approach, contrary to disk-based one doesn’t keep transient
index data on a hard drive. This type of systems is becoming increasingly popular
due to the vast amounts of cheap memory being available and it is believed that
these systems will dominate the OLTP market soon [6,7].

3 The Prototype

In order to explore the problem stated in the previous section we have decided
to empirically evaluate these scenarios. One might think that such a popular
data structure must have a variety of implementations which could be reused.
Unfortunately, existing open-source systems are not suitable due to the following
reasons:
1 http://web.archive.org/web/20120424201336/http://wwwdb.inf.tu-dresden.de/

sigmod2012contest/leaderboard/ last accessed: 26/04/2014.

http://web.archive.org/web/20120424201336/
http://wwwdb.inf.tu-dresden.de/sigmod2012contest/leaderboard/
http://wwwdb.inf.tu-dresden.de/sigmod2012contest/leaderboard/


268 K. Smirnov et al.

1. They don’t have any support for concurrency [8,9] and thus, are not suitable
for our purposes at all.

2. They are tuned for disk I/O [10]. This also diverges from our goals, because
in-memory systems behave differently from disk-based ones.

The general reason of such unsuitability is the disparity in system purposes.
For example, the system [8] is dedicated to evaluation of clustering techniques
(and access methods, including R-Tree) and this problem considerably differs
from ours. To the best of our knowledge there is no study or prototype which
considers scalability issues and impact of concurrency on R-Tree. Thus, we had
to implement our own prototype. Our system follows classical design guidelines
and contains several high-level features:

– An R-Tree data structure, which is built upon GiST [3], a popular template
index structure which allows to “abstract” various tree data structures.

– We used a mechanism adapted from [2] with locks, latches and Node Sequence
Numbers. Also we provided deadlock resolution mechanism. Eventually, we
ensured the read committed isolation level. Details see in [4].

– Our prototype is designed for in-memory indexing.
– Currently our prototype lacks logging and recovery components.
– In our implementation we don’t delete records, instead, we mark them as

“deleted” and take this into account during the processing. This kind of
processing (called logical deletion) is a widely-used approach for handling
deletions in database systems [2].

We validated our implementation in two ways:

– First, we used public third-party unit-tests, provided by [11]. We also had
extended this test set with our own cases. These unit-tests ensured correctness
of an isolation level (read committed) and other implementation issues.

– An evaluation of our prototype with industrial systems PostgreSQL and
Berkeley DB was presented in the reference [12]. This evaluation showed that
the system’s performance is comparable to the industrial ones.

More details of the system and algorithms can be found in the report [4].

4 Experiments

Benchmark and Parameters. In our evaluations we used the benchmark
suite, which allows us to specify a variety of parameters constituting the data
(data type, distribution, number of dimensions) and queries (query distributions
and their parameters). We used our custom benchmark suite [4], because of lack
of the standard multidimensional transactional indexing benchmarks and the
general inapplicability of the analogues.

The workload parameters were the following: uniform data distribution, 4
dimensions, integer (8 bytes) datatype used. R-tree parameters were: plain
R-Tree with 32 fan-out with Guttman Quadratic split algorithm [13].
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Experimental Setup. Our hardware and software setup was the following:
hardware — 2 x Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz (32 cores total),
120 GB RAM; software — Linux Ubuntu 3.13.0-30-generic x86 64, GCC 4.8.2.

Measurements. In our work we simulate addition of a processing element via
addition of a new thread and a core. To evaluate the scalability of R-Tree-based
multidimensional transactional index we used the following metrics [14]:

– Speed up, i.e. the performance improvement gained by adding extra processing
elements (in our case a core and a thread).

– Scale up, i.e. the ability to handle the larger tasks by increasing the degree of
parallelism (in our case we both increase the size of the task and number of
cores). More precisely, we are going to study data scale up.

We built our charts using 95% confidence intervals. Now, lets describe the con-
sidered scenarios and their respective parameters.

Index Construction Phase. We have explored the impact of parallelism on
the index construction time. The first considered metric was data scale up. In
order to study it we conducted a series of experiments in which we increased
both the data size and number of threads. The Figs. 1 and 2 show the data scale
up during the index construction.
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Fig. 1. Data scale up of our system
(small number of working threads).
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Fig. 2. Data scale up of our system
(large number of working threads).

As we can see from Fig. 2, we get almost no scale up from using a lot of threads.
However, we get more promising results from the experiment described on Fig. 1.
The second considered metric was the speed up. The Fig. 3 shows the speed up
which may be achieved by increasing the number of working threads participating
in index construction. In the next experiments we use 512 MB index, 4 dimensions,
uniform data distribution. Dataset sizes are relatively small since our goal is to
obtain credible numerical results in a reasonable amount of time.
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Fig. 3. Speed up of our system during index construction phase.

With a fair degree of certainty we can assert that increasing the number
of working threads will decrease the index construction time. This tendency
will manifest itself until we increase the number of working threads to 10–12.
Then, index construction time stabilizes despite the fact that the system has
idle hardware processing elements.

Query Execution Phase. We also considered two query execution modes: up-
date intensive and select intensive. The parameters for update intensive are:
20 % range, 40 % update, 20 % insert, 20 % delete. Select intensive is as follows:
85 % range, 5 % update, 5 % insert, 5 % delete.

We have to mention that we don’t consider wildcard queries, i.e. queries
which request all values for one attribute. Also, unlike our previous study [12],
here a sorted output is not required.

The considered scenarios describe two extremes of possible situations encoun-
tered in DBMS during the course of operation. The first one (update intensive)
may be less prone to scale up due to the amount of locks and the second one
should scale more easily.

The Fig. 4 shows the performance of update intensive and select intensive
workloads. Both series of experiments show growth of the system throughput
while increasing the number of working threads up to 18–20. Increasing it fur-
ther slows growth down significantly. Update intensive workload is characterized
by slower growth. Select intensive workload demonstrates larger relative errors.
The latter fact makes the analysis considerably harder. This behavior can be
explained by considering it as the result of intensive use of XLatch (rwlock).
Then, select intensive workload shows almost linear increase in performance and
demonstrates relatively smaller error bars.
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Fig. 4. Performance of our system during query execution phase.

5 Conclusions

In this paper we have evaluated the scalability of the multidimensional transac-
tional index based on R-Tree. First, we have developed and implemented a novel
transactional isolation algorithm based on the one proposed in [2]. The pro-
posed algorithm ensures the read committed isolation level [4]. Next, we have
studied the scalability of R-Tree in a transactional environment. We have exam-
ined both index construction and query execution scenarios. The results show
the lack of scalability on index construction, we do not gain any scalability past
10-12 working threads. This may happen due to lock or latch contention. How-
ever, during the query execution mode we benefit from any additional cores
up to 18-20 threads. Also, we can see that the amount of updates negatively
impacts the scalability potential of the aforementioned index. The applicability
of the observed behaviour to an arbitrary R-Tree-based system is the matter for
further inquires.

Acknowledgements. We would like to thank organizers of ACM SIGMOD Program-
ming Contest’12 for providing a base for benchmark, data generator and unit tests.
This work is partially supported by Russian Foundation for Basic Research grant
12-07-31050.
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Abstract. Diagramming tools range from manual free-form drawing
tools to pre-programmed notation specific tools for UML or SDL, and
further to fully programmatic tools like Pic or TikZ. In such tools, the
diagrams are the end product, not available for further use, unaware
of relations between diagrams or the ability to express one diagram as
a function of another. We propose a new kind of tool based on pro-
grammable active diagrams, where diagrams are active entities to be
operated upon and connected to systems they depict. Our tool, Skeblle,
implements this approach for box-line diagrams. In Skeblle, every dia-
gram drawn by a user is backed by a graph, and both the diagram and
the underlying graph can be manipulated manually or with a command
language. Manipulations of the graph are reflected in the diagram and
vice versa, and the graph can link real systems to diagram nodes via
urls. In combination, these facilities give us a novel tool that feels like a
simple diagramming tool, but is capable of creating diagrams that bet-
ter capture the domain they represent. Diagrams can change to reflect
changes in systems they depict, and may be operated upon to compute
related diagrams.

We describe how Skeblle may be used to draw software deployment
and architecture diagrams, explain distributed protocols, and visualize
chemical reactions. We show that Skeblle makes it simple to compute
diagrams to illustrate differences in system states due to component fail-
ures, data flows, and chemical interactions.

Keywords: Software architecture · Software visualization · Graph
drawing · Graph rewriting · MDA · Model-based diagrams

1 Introduction

Graphs as an underlying model for simple diagrams of systems have been implicit
in tools such as structured graphics applications like Idraw [19] and Visio [2],
programmatic tools like Pic [14], as well as domain specific tools for ER dia-
grams or UML. More recently, Graphviz [7] and derived systems like Plan-
tUML [4] have made graphs the basis of diagrams, while Graph transformation
tools Groove [9], GrGen [12] and others [13] encourage users to compute graphs
and render them visually. While diagramming tools like Visio leave the graphs
c© Springer-Verlag Berlin Heidelberg 2015
A. Voronkov and I. Virbitskaite (Eds.): PSI 2014, LNCS 8974, pp. 273–287, 2015.
DOI: 10.1007/978-3-662-46823-4 23
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implicit and inaccessible to users, graph transformation tools require the users
to understand formalisms like rewrite rules before they can use the tool suc-
cessfully. Furthermore, designers of transformation tools do not put a premium
on visual appearance of graphs. In our work with diagramming various software
systems, we found neither alternative entirely comfortable to use.

For example, suppose we wish to illustrate failure handling of a system span-
ning two data centers. In such a system, the subsystems in each data center are
identical, except that some components might be “cold” in one while being “hot”
in another. In case of failover from one data center to another, the components
switch their states. A diagram for such a system has a great deal of structure: it
consists of a pair of sub diagrams, one for each data center, such that normally
the diagram for one data center should be “the same as the other, except for ...”,
while after a failure, the respective component states shown in the sub diagrams
will be reversed. An ordinary diagramming tool cannot model such structure at
all, while the level of effort needed to use graph transformation tools for simple
models like these is not easy to justify.

Thus we were led toward “programmable active diagrams”, an approach that
combines diagrams with structural models of the system being depicted. In this
approach, a user draws a diagram, and the tool automatically generates an asso-
ciated model that “backs” diagram. When needed, the user can start thinking in
terms of the underlying model and manipulate it, while the tool reflects changes
to the model in the diagram. Visual aspects of a diagram are also treated with
a similar mix of manual and programming options. A user starts by specifying
visual properties manually as in an ordinary drawing tool, but internally visual
specifications are captured using markup attached to the underlying model. This
markup can be edited manually or programmatically to affect the diagram. In
Skeblle, we have implemented the active diagrams approach for box and line
diagrams backed by graph models. The model graph is manipulated with graph
operators, and markup is used to describe graph structure as well as visualization
styles attached to nodes and edges.

Besides creating the diagrams, we are interested in using the diagrams to
interact with the systems they represent. Our tool, Skeblle1, allows diagrams to
be connected to live systems via urls. Data fetched by querying the urls can be
used to affect the represented systems. Skeblle enables rich visual presentations
using the full power of Javascript and browsers. We are also interested in Skeblle
being comfortable to use. Given the considerable familiarity of web tools like
Firebug [15], we have given Skeblle a similar interface. Taken together, these
facilities make for a novel tool that takes diagramming in a new direction.

The contributions of this work are as follows:

– We present a new approach, programmable active diagrams, that makes visu-
alization tools more useful. In this approach, diagrams are not just structured
pixels, but are backed by a model that captures aspects of the domain that
the diagram represents. The underlying model is revealed by the tool and may

1 A portmanteau of Sketch and Bubble.
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be operated upon to yield new diagrams. The operators are carefully chosen
for the domain at hand and suffice for most uses, and may be extended as
needed.

– Existing visual tools for working with graphs have relied on declarative or
logical languages. We show that a simple imperative language can be very
effective as a high level tool for working with graphs. We complement this
language with declarative markup for visual appearance.

– Our technique of creating a tool that feels as light as a manual diagramming
tool while being backed by a formal model appears to be novel. To the best
of our knowledge, existing systems do not combine these two aspects.

– We present a new application of the bidirectional visual and textual interfaces
developed in web browser debuggers like Firebug [15], as discussed in Sect. 2.
This is a powerful interface model that should find more applications.

In the rest of the paper, we begin by describing the tool interface (Sect. 2), fol-
lowed by a series of case studies, each illustrating an interesting use of high level
graph operations (Sect. 3, 4, 5 and 6). These cases give evidence that the “pro-
grammable active diagrams” approach gives a powerful versatile tool. Next we
look at design considerations (Sect. 7), with details of graph operations (Sect. 8)
and visual customization (Sect. 9) via markup and our simple layout mecha-
nism. Finally (Sect. 10) we show how the ability to link diagrams to external
data sources, and arbitrary customization with javascript lets the tool con-
nect with live systems. We close with a discussion of related work and possible
futures.

2 Skeblle and its User Interface

Skeblle is implemented as a client side Javascript program. Its interface is in
part inspired by Firebug [15], a web development tool for understanding and
manipulating structure and behavior of web pages.

The Skeblle interface (Fig. 1) offers three ways to create and manipulate dia-
grams. At the top left is a drawing board with a conventional direct manipulation
interface, where a user can create, delete, and move nodes and edges. The top
right is a command shell – an unusual feature for a drawing tool. The command
shell proves to be an extremely fast way to create diagrams and manipulate it
with high level graph operators. Details of the operators are discussed in Sect. 8.
The bottom two areas show two aspects of the same diagram in stylized JSON,
used as a markup language: the left area is a description of the graph, while the
right area contains markup for visual aspects. The structure markup is analogous
to HTML while visual is analogous to CSS, as discussed in Sect. 9.

We show case studies of usage of Skeblle in the following sections, and con-
sider details of the command language (Sect. 8) and markup languages (Sect. 9)
afterward. We also provide some layout assistance, discussed in Sect. 9. The case
studies illustrate how the command language enables easy, high-level manipula-
tion of diagrams.
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Fig. 1. Skeblle interface: DrawingBoard, Command Shell, and Markup areas

3 Case I: Request Flow in a Deployment Diagram

In this section, we show how Skeblle can model logical structures in a diagram.
Our example, Fig. 2, is the deployment architecture of a typical website where
users upload text, image, and video data. Such systems have a logical structure.
There are nodes such as traffic splitters that serve to segregate different kinds
of traffic, frontend systems that render web pages, middle tiers that multiplex
various backend systems, and a number of different storage systems depending
on media they store. Skeblle provides several ways in which this structure can
be captured in the diagram.

Construction: During diagram construction, Skeblle users combine use of com-
mands and manual controls. We start by creating a graph (command ‘cg’). Given
the context of a graph, the following commands create the nodes (command ‘cn’),
associate the types “external” and “service” with them, and lays them out in
two columns (command ‘lc’).

cg sitedeployment
cn external Users,Api
cn service Frontend,MiddleTier,Moderation,Search
lc service,external

Using commands provides a far faster way to initially create the graphs. Fine
adjustments of layout are then done manually. Further columns and nodes
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eventually get us the complete graph in Fig. 2. The types capture related groups of
nodes, and find use in operators that govern layout and other graph manipulations.

Visual Appearance: We use type labels to associate styles with the nodes. For
an example, see Sect. 9. In addition, we can manually change the appearance.
In these diagrams, we distinguish the shape MiddleTier node since it plays a
significant role in the system. All storage nodes are squares, while the rest are
left as circles.

Diagram Explanation: Diagrams like these are understood by looking at slices
of the diagram, for instance, moving left to right column by column, or by fol-
lowing the flow of particular requests. Skeblle shines in this use, since we can
show interesting slices, and create urls that point to diagram of the different
slices. We use high-level graph operations for this purpose. We show one exam-
ple, a project operation that highlights the request flow for video content. The
commands are as follows:

sn videorequest Users,Splitter,Proxy,VideoConverter,VideoStore
hp videorequest url videorequest

The first command ‘sn’ (subgraph of nodes) creates a subgraph called “video-
request”, and the second command (‘hp’) projects out the relevant graph. See
Sect. 8 for details. The last command, ‘url’ creates the url http://<siteurl>/
diagram/sitedeployment/videorequest that we can use to refer to the current
diagram. Other such diagrams that highlight different aspects of the system are
equally simple to construct (Fig. 3).

Fig. 2. Deployment of a user generated
content website.

Fig. 3. Understanding video request
flow.

4 Case II: BCP and Failure Handling

In our second example, we discuss the use of high level operators in constructing
and displaying diagrams, and the power of customizing the tool using Javascript
to add new facilities.

Our example is another diagram of the website in Sect. 3. This diagram
concentrates on another aspect of the system that deals with failure manage-
ment. Such sites have systems that are replicated in two data centers, both of
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which serve read traffic, while one, called a “master”, serves traffic that cre-
ates, updates, or deletes content. Here we use Skeblle in a manner similar to the
Sect. 3.

Construction: We construct the left hand side graph in Fig. 4, and construct
the right side (Fig. 5) with a copy operator:

cg failover
cn external Users
cn edge WVip,RVip
cn store DB
cn service MiddleTier

We adjust the nodes, then draw the edges by hand, and next we copy the graph
with a high level operator:

sn master WVip,RVip,DB,MiddleTier
hcp slave master

With this command, we first create a group of nodes that constitute the master,
and copy the group to create the slave system diagram.

Explaining Diagrams: To show the master and slave states, we can use the
knowledge of structure from the copy operation. The following commands lead
to the diagram in Fig. 5.

scm nonmaster master
hp nonmaster
url failedstate

The scm “complement” command subtracts the master from the entire graph.
Next we project the complement to create the diagram. Once created the current
state of the diagram can be referred to with a url as before: http://<skebllesite>/
diagram/failover/failedstate

5 Case III: Chemical Reactions

Any situation where node-edge graphs are useful is fair game for Skeblle. In this
example, we see a rather different application, where the figures are customized
to show chemical reactions. In this particular case, there are many custom tools
that can be used for diagramming, for instance, Chemtube [1]. We included this
example to show that Skeblle can be nearly as useful without much effort.

In our example, we show stages in the reaction

CH4 + 2O2 −→ CO2 + 2H2O

In the first figure, Fig. 6, we see the initial state. As heat increases the bonds
break to give us Fig. 7, and later the reaction completes to yield Fig. 8. For these
diagrams, Skeblle is used as follows.



Skeblle: A New Kind of Diagramming Tool 279

Fig. 4. Master read/write, slave read-
only

Fig. 5. Master failed, slave becomes
master

Visual Appearance: We use type labels to associate styles with elements of the
graphs as discussed in Sect. 9. We customize these for appearance of the atoms.
Once the style is available, we can create nodes with types and apply the style
as follows

cn -n 4 oatom O
sty oxy oatom

cn creates 4 nodes of type oatom with label O, while sty associates nodes of
type oatom with style oxy. In turn, the style oxy is defined in JGSS.

Deriving New Graphs: The chemical reaction example involves significant
graph changes. Graphs in the first diagram are split to get the second diagram:

hs ch4,o21,o22

where the operator split (hs) splits the graphs mentioned. It turns out that for
the third diagram, we ended up defining a new operator, cstar, for “create star”.

cstar O1,h1,h2
cstar O2,h3,h4
cstar C,O3,O4
cstar C,O3,O4

We have since found many uses for the cstar operator, which joins the first node
to the other nodes.

6 Case IV: Routing Protocols for Wireless Sensor
Networks

Our last case illustrating routing protocols hinges on another interesting use
of a high-level operator, the quotient [5]. A quotient operator takes a graph,
collapses the graph to a single representative node, and changes edges leading out
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Fig. 6. Methane and oxygen molecules before the reaction

Fig. 7. Atoms after bonds break in
methane and oxygen molecules

Fig. 8. New bonds formation giving in
carbon dioxide and water

of the graph to the new representative node. In many applications that involve
hierarchical structures, the quotient operation provides a useful transformation.

Our example is a protocol called LEACH [10] – low energy adaptive cluster-
ing hierarchy protocol – for use with wireless sensors. If sensor nodes near one
another all communicate with a base station, they send similar and so redundant
data while expending energy. The LEACH protocol reduces such transmission by
limiting base station communication to “cluster heads”, special nodes that rep-
resent other nodes in a neighborhood and aggregate their data. The “headship”
rotates among cluster members so that no particular sensor bears the energy
cost of communication.

The Skeblle figures illustrate states in this protocol. In the first diagram
(Fig. 9), all nodes are their own cluster. The second diagram is created using the
star operators

cstar 2, 3-8

The last diagram is created by the quotient operator, followed by a star

hq A 2-8
hq B 9-12
...
cstar SINK, A-F
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Fig. 9. Network with nodes arranged in random

These diagrams are, of course, static. However, the underlying Javascript libraries
can be used to program such diagrams to show further protocol states, relying on
the regularity inherent in these graphs (Figs. 10 and 11).

Fig. 10. Cluster formation Fig. 11. Quotient graph on clusters

7 Design of Skeblle

In this section, we motivate the design at a high level, and in subsequent sections
discuss some aspects in depth.

The basic elements of Skeblle, the combination of diagramming and a com-
mand language for manipulating the underlying model, are intrinsic to the pro-
grammable active diagram approach. The need to connect the diagrams to the
underlying systems naturally suggests a web browser as the platform. Browsers
suffice for diagramming, given libraries like JSXGraph [8].

The remaining questions center around what graph operators to choose, and
how to describe the graphs and their appearance.

To describe graphs we use markup languages in analogy with HTML and
CSS, and allow users to edit either the graph or the markup, following the app-
roach of tools like Firebug [15]. The next design question is what markup to use.
In principle, one should use a standard such as GraphML [6], but for implemen-
tation simplicity, we use stylized JSON.
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The choice of graph operators in Skeblle was guided by applications. CRUD
operations on individual nodes and edges as well as subgraphs arose in many
cases, while operations such as quotient graphs arise due to the hierarchical
nature of many systems. We are still exploring what is possible with Skeblle, and
eventually hope to discover a more principled approach for choosing operators.

8 Graph Operations in Skeblle

Graph operations in Skeblle are available either manually, via the command line
scripting language, or directly as a library in Javascript. It is much faster to
create and operate on graphs via the command line, while operations like layout
and label editing are simpler via the UI – with Skeblle, the user may choose
whichever feels convenient. Skeblle offers simple but effective layout assistance
that makes command line usage pleasant. In this section we will discuss graph
operations, leaving layout for Sect. 9.

8.1 Nodes, Edges, and Types

The simplest of operations create and delete nodes, edges and their types in
the context of a particular graph. The command cg <graphname> creates a
graph, dg <graphname> deletes it, and ct <graphname> makes it the current
graph for subsequent commands. A graph name also doubles as a namespace for
subsequent names.

Command Typename Entityname Notes

cn frontend abc,pqr,.. Nodes with labels abc, pqr

cn memcache [a-n] Nodes a through n

cn sensor 1-10 Nodes 1 through 10

ce request abc=>pqr,... Edge from abc to pqr

ce request (x,y)abc=>pqr Edges x and y from abc to pqr

Having created a graph, we can now create and delete nodes and edges with
commands like cn or ce. Node names can be specified in various ways, either
explicit list of labels or generic labels as in the following table. Node and Edge
commands take optional type names used to address groups of nodes and edges.
Type names identify kinds of nodes depicted in various systems in our exam-
ples. For instance, “memcache” nodes are servers that represent caches in a web
application, while “sensor” type nodes represent sensors in a wireless sensor net-
work. Edge operations take explicit specification via label pairs, and can also
take optional types. In our example, edge types are the edges that indicate the
processing of a request in a web site. Along similar lines, we can specify deletions
and updates:
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dn frontend – Delete all frontend nodes
un memcache a=>a1 – Update node label a to a1 if type memcache

Commands for deletions and updates are especially useful when modifying sets
of nodes. For individual nodes, it is expected that users will manually change
nodes as in common drawing tools.

8.2 Derived Graphs and High-level Operators

As discussed in Sect. 7, we have chosen graph operators based on experience. The
simplest high level operations define subgraphs, and other operations operate on
these derived graphs. The commands can also define virtual subgraphs, whose
nodes and edges need not be defined. Such virtual subgraphs are useful in high
level operations as discussed below. Once named, the subgraphs can be used
in commands that operate on graphs. The following high level operators are
available. All high level operators can be seen either as queries or as modifiers.
When used as a query, these operators change the visualization of the graph,
and used as a mutator they alter graphs.

Command Graphname Entitynames Definition

sn/svn edge abc,pqr Subgraph by Node set

se/sve bridge a=>b,m=>n Subgraph by Edge set

sp/svp flow a=>b=>c Subgraph by path

– Project (hp) separates a graph into a subgraph and its complement. As a
query, it highlights a subgraph, and grays out the complement. The meaning
of highlight and gray are defined in GSS as discussed below. As a mutator, it
deletes the complement.

– Quotient (hq) as a query visually replaces groups of nodes by a single quotient
node, and collapses any edges. As a mutator, it deletes nodes and replaces
them by the quotient node.

– Split (hs) removes edges between the graphs mentioned, either hiding them
or actually modifying a graph.

– Join (hj) takes a set of virtual edges that do not actually exist and adds or
displays them.

Query/mutate Graphs Definition

hp/hmp g1 g2 Project subgraphs

hq/hmq g1 g2 Quotient by subgraphs

hs/hms g1 Split subgraph

hj/hmj g1 Join subgraph
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Lastly, we have a simple mutating operation, copy:
hcp copygraph origgraph

Copy (hcp) takes a graph and makes a copy, renaming the node labels with an
instance number (See Sect. 4).

9 Visual Aspects: Layout and Markup

Our approach to layout is very simple. By default, given a command like cn
edge WVip, RVip, we divide the drawing board into a 2×2 grid, and place the
two nodes randomly into the grid cells with disjoint rows and columns. As more
nodes get added, the grid expands to create more rows and columns. A sample
is shown in Fig. 12. At any time, a user may adjust the layout, and the users
adjustments will be remembered even as other nodes are added. Surprisingly,
this simple approach is not too bad in actual use.

We provide for further support by allowing a user to divide the drawing area
into rows and columns, adjust their sizes, and within each subarea, we place
nodes randomly without row-column overlap. An example appears in Fig. 13. We
expect to support layout algorithms and as well as style tabular layouts
in the future.

Fig. 12. Default layout: pseudo ran-
dom with disjoint rows and columns

Fig. 13. Layout from command lc

[a,b,c][d,e][f,g,h,j]

{"Nodes -List":[

{ "Node0":[

{"label":"FRONTEND"},

{"type":"server"},

{"urls":"http :// front .."}

]}

]}

{ "Edges -List":[

{ "Edge0":[

{"startNode":"Node0"},

{"endNode":"Node1"},

{ "type":"request"},

]}

]}

Listing 1.1. Graph markup

{"Node -Type -List":[

{"server":[

{"shape":"circle"},

{"size":"10"},

{"color":"brown"},

]}

]}

{"Edge -Type -List":[

{"request":[

{"width":"2"},

{"color":"red"},

{"dash":"0"},

]}

]}

Listing 1.2. Styles
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As discussed in Sect. 7, we used stylized JSON for markup. Listing 1.1 shows
markup for Fig. 2 in Sect. 3. A user can directly modify markup via Skeblle
interface (Fig. 1), and such modifications will be mirrored in the diagram.

The markup for a Skeblle diagram are sufficient to describe a diagram, and
is used as the notation for persisting diagrams to disk.

10 Connecting Skeblle to Live systems

The nodes and edges of a Skeblle diagram can hold references to external resources
using urls. The architecture diagram from Sect. 3 is actually connected to real
servers, whose statistics are available from the diagram, as shown in Fig. 14.
Besides this simple use case, we can add Javascript code that fetches data using
URLs, and can combine that data with the graph operations.

Fig. 14. Deployment diagram connected to servers

11 Related Work

Current industrial tools for diagramming like Visio [2] are intended for manual
use, although they include support for style sheets, templates, and scripting
languages. Tools like TikZ [3] and Pic [14] and Graphviz [7] are languages for
diagramming. Skeblle takes inspiration from these tools, but forges a distinct
path: an imperative, high level command language for drawing graphs, combined
with declarative markup for visualization, and a bidirectional editing system.

Tools like Matplotlib [11] are also programmatic diagram tools, but with a
focus on viewing existing data. Others like [17,18] require explicit programs that
generate diagrams from underlying data. Skeblle can be used for viewing existing
models, but it is more common to create a diagram first, either manually or by
commands, implicitly generating an underlying model from the diagram.

Bidirectional editing in Skeblle and feel of the Skeblle interface is inspired by
similar tools in web browsers, especially Firebug [15]. From HTML and CSS we
take the idea of separating structure and appearance, but others graph tools also
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use similar ideas. Graph markups like GraphML [6], an interchange language for
tools and GSS [16] for layout of RDF graphs, are in use. At present, we use
ad-hoc stylized-JSON as markup for simplicity, but in time Skeblle will move to
a standard markup.

Our other major inspiration comes from the world of Graph Rewriting, espe-
cially tools like Groove [9], GrGen [12] and others [13]. We tried to use some of
these tools and found that while the tools have enormous power, we needed a
system that could be used as a simple drawing tool, and when needed manipulate
the drawing formally. Skeblle is, to our knowledge, unique in this capability.

12 Conclusion

Structured diagramming tools are simple to use, but the diagrams become pix-
els and the connection to the domain is lost. On the other hand, tools based on
formalisms like graph rewriting excel at graph manipulation, but require consid-
erable investment. Programmable active diagrams is an approach that marries
the simplicity of a diagramming tool to the manipulation power of a powerful
formalism, as shown in Skeblle.

The Skeblle implementation builds on interface design ideas that evolved with
Web tools, but are rarely seen outside this context. We have shown that ideas
from web tools like bidirectional edit are convenient in other contexts. We add
to this set of ideas the notion of an imperative language in the tradition of Unix
languages like Pic. The resulting tool has proven convenient to use, although the
idea of a command line driven diagramming tool sounds strange at first glance.

In conclusion, we believe that future toolmakers will benefit from these ideas:
web style interfaces for tools, marriage of command line and manual manipula-
tion, and diagrams that are both easy to create and backed by formal models.

Acknowledgments. We thank our colleagues at Yahoo for their support of this work,
and the JSXGraph [8] team for their library.
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Abstract. Launchbury defines a natural semantics for lazy evaluation
and proposes an alternative version which introduces indirections, elimi-
nates blackholes and does not update closures. Equivalence of both seman-
tics is not straightforward. In this paper we focus on the introduction of
indirections during β-reduction and study how the heaps, i.e., the sets of
bindings, obtained with this kind of evaluation do relate with the heaps
produced by substitution. As a heap represents the context of evaluation
for a term, we first define an equivalence that identifies terms with the
same meaning under a given context. This notion of context equivalence
is extended to heaps. Finally, we define a relation between heap/term pairs
to establish the equivalence between Launchbury’s alternative natural
semantics and its corresponding version without indirections.

1 Motivation

More than twenty years have elapsed since Launchbury first presented in [9]
a natural semantics for lazy evaluation (call-by-need), a key contribution to
the semantic foundation for non-strict functional programming languages like
Haskell or Clean. Throughout these years, Launchbury’s semantics has been cited
frequently and has inspired many further works as well as several extensions like
in [2,8,10,13,17,20]. The success of Lanchbury’s proposal resides in its simplicity.
Expressions are evaluated with respect to a context, which is represented by a
heap of bindings, that is, (variable, expression) pairs. This heap is explicitly
managed to make possible the sharing of bindings, thus, modeling laziness.

In order to prove that this lazy (operational) semantics is correct and compu-
tationally adequate with respect to a standard denotational semantics, Launch-
bury introduces some variations in the operational semantics. On the one hand,
the update of bindings with their computed values is an operational notion with-
out counterpart in the standard denotational semantics, so that the alternative
natural semantics does no longer update bindings and becomes a call-by-name
semantics. On the other hand, functional application is modeled denotationally
by extending the environment with a variable bound to a value. This new vari-
able represents the formal parameter of the function, while the value corresponds
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to the actual argument. For a closer approach to this mechanism, in the alter-
native semantics applications are carried out by introducing indirections, i.e.,
variables bound to variables, instead of by performing the β-reduction through
substitution. Besides, the denotation “undefined” indicates that there is no value
associated to the expression being evaluated, but there is no indication of the
reason for that. By contrast, in the operational semantics there are two possi-
bilities for not reaching a value: either the reduction gets blocked if no rule is
applicable, or the reduction never stops. The first case occurs in the original
semantics when reducing self-references (blackhole). The rules in the alternative
semantics guarantee that reductions never reach a blackhole.

Alas, the proof of the equivalence of the natural semantics and its alternative
version is detailed nowhere, and a simple induction turns out to be insufficient.
The context-heap semantics is too sensitive to the changes introduced by the
alternative rules. Intuitively, both reduction systems should lead to the same
results. However, this cannot be directly established since final values may con-
tain free variables that are dependent on the context of evaluation, which is
represented by the heap of bindings. The lack of update leads to the duplication
of bindings, but is awkward to prove that duplicated bindings, as well as indirec-
tions, do not add relevant information to the context. Therefore, our challenge is
to establish a way of relating the heaps and values obtained with each reduction
system, and to prove that the semantics are equivalent, so that any reduction of
a term in one of the systems has its counterpart in the other. To facilitate this
task we consider separately the no updating and the introduction of indirections.

In this paper we investigate the effect of introducing indirections in a setting
without updates, and we analyze the similarities and differences between the
reductions proofs obtained with and without indirections. Indirections have also
been used in [8] to model communication channels between processes.

Wewant to identify terms up toα-conversion, but dealingwithα-equated terms
usually implies the use of Barendregt’s variable convention [3] to avoid the renam-
ing of bound variables. However, the use of the variable convention is sometimes
dubious and may lead to faulty results (as it is shown by Urban et al. in [18]). More-
over, we intend to formalize our results with the help of some proof assistant like
Coq [4] or Isabelle [11]. Looking for a binding system susceptible of formalization,
we have chosen a locally nameless representation (as presented by Charguéraud
in [6]). This is a mixed notation where bound variable names are replaced by de
Bruijn indices [7], while free variables preserve their names. This is suitable in our
case because context heaps collect free variables whose names we are interested
in preserving in order to identify them more easily. A locally nameless version of
Launchbury’s natural semantics has been presented by the authors in [14,15].

Others are revisiting Launchbury’s semantics too. For instance, Breitner has
formally proven in [5] the correctness of the natural semantics by using Isabelle’s
nominal package [19], and presently he is working on the formalization of the
adequacy. While Breitner is exclusively interested in formalizing the proofs, we
have a broader objective: To analyze the effect of introducing indirections in the
context heaps, and the correspondence between heap/value pairs obtained with
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x ∈ Var
e ∈ Exp ::= x | λx.e | (e x) |

let {xi = ei}n
i=1 in e

(a) Named representation

x ∈ Id i, j ∈ N

v ∈ Var ::= bvar i j | fvar x
t ∈ LNExp ::= v | abs t | app t v |

let {ti}n
i=1 in t

(b) Locally nameless representation

Fig. 1. Extended λ-calculus

update and those produced without update. Furthermore, we want to prove the
equivalence of the two operational semantics.

The main contributions of the present work are:

1. An equivalence relation to identify heaps that define the same free variables
but whose corresponding closures may differ on undefined free variables;

2. A preorder that relates two heaps whenever the first can be transformed into
the second by eliminating indirections;

3. An extension of the previous preorder relation for heap/term pairs expressing
that two terms are equivalent if they have the same structure and their free
variables, defined in the context of the respective heaps, are the same except
for some indirections.

4. An equivalence theorem for Launchbury’s alternative semantics and a version
without indirections (and without update and blackholes).

The paper is structured as follows: In the next section we give a locally name-
less version of Launchbury’s semantics and its alternative rules. In Sect. 3 we
define equivalence and preorder relations on terms, heaps and also on heap/term
pairs. We include a number of interesting results concerning these relations and,
finally, we prove the equivalence of Launchbury’s alternative semantics and an
intermediate semantics without update, without blackholes and without indirec-
tions. In the last section we draw conclusions and outline our future work.

2 A Locally Nameless Representation

The language described in [9] is a normalized lambda calculus extended with
recursive local declarations. The abstract syntax, in the named representation,
appears in Fig. 1a. Normalization is achieved in two steps. First an α-conversion
is performed so that all bound variables have distinct names. In a second phase, it
is ensured that arguments for applications are restricted to be variables. These
static transformations make more explicit the sharing of closures and, thus,
simplify the definition of the reduction rules.

Since there are two name binders, i.e., λ-abstraction and let-declaration, a
quotient structure respect to α-equivalence is required. We avoid this by employ-
ing a locally nameless representation [6]. As mentioned above, our locally name-
less representation has already been presented in [14,15]. Here we give only a
brief overview avoiding those technicalities that are not essential to the contri-
butions of the present work.
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abs

let

abs abs app

bvar bvar bvar bvar

0 0 0 0 01 0 1

Fig. 2. Syntactic tree for a locally nameless term

2.1 Locally Nameless Syntax

The locally nameless version of the abstract syntax is shown in Fig. 1b. Bound
variables and free variables are distinguished. Since let-declarations are multi-
binders, we have followed Charguéraud [6] and bound variables are represented
with two natural numbers: the first number is a de Bruijn index that counts
how many binders (abstraction or let) have been passed through in the syn-
tactic tree to reach the corresponding binder for the variable, while the second
refers to the position of the variable inside that binder. Abstractions are seen as
multi-binders that bind one variable, so that the second number should be zero.

Example 1. Let e ∈ Exp be a λ-expression given in the named representation:
e ≡ λz.let {x1 = λy1.y1, x2 = λy2.y2} in (z x2). The corresponding locally
nameless term t ∈ LNExp is:
t ≡ abs (let {abs (bvar 0 0), abs (bvar 0 0)} in app (bvar 1 0) (bvar 0 1)).
Notice that x1 and x2 denote α-equivalent expressions in e. This is more clearly
seen in t, where both expressions are represented with syntactically equal terms.
The syntactic tree corresponding to t is shown in Fig. 2. ��
This locally nameless syntax allows to build terms that have no corresponding
named expression in Exp. For instance, when bound variables indices are out
of range. Those terms in LNExp that do match expressions in Exp are called
locally-closed, written lc t.

In the following, a list like {ti}n
i=1 is represented as t, with length |t| = n.

Later on, we use [t : t] to represent a list with head t and tail t; the empty list
is represented as [ ], a unitary list as [t], and ++ stands for list concatenation.

We denote by fv(t) the set of free variables of a term t. A name x ∈ Id is
fresh in a term t ∈ LNExp, written fresh x in t, if x does not belong to the set
of free variables of t, i.e., x /∈ fv(t). Similarly, for a list of names, fresh x in t
if x /∈ fv(t), where x represents a list of pairwise-distinct names in Id . We say
that two terms have the same structure, written t ∼S t′, if they differ only in
the names of their free variables.
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Since there is no danger of name capture, substitution of variable names is
trivial in the locally nameless representation. We write t[y/x] for replacing the
occurrences of x by y in the term t.

A variable opening operation is needed to manipulate locally nameless terms.
This operation turns the outermost bound variables into free variables. The
opening of a term t ∈ LNExp with a list of names x ⊆ Id is denoted by tx.
For simplicity, we write tx for the variable opening with a unitary list [x]. We
illustrate this concept and its use with an example:

Example 2. Let t ≡ abs (let bvar 0 1, bvar 1 0 in app (abs bvar 2 0) (bvar 0 1)).
Hence, the body of the abstraction is:

u ≡ let bvar 0 1, bvar 1 0 in app (abs bvar 2 0 ) (bvar 0 1).

But then in u the bound variables referring to the outermost abstraction of t
(shown squared) point to nowhere. The opening of u with variable x replaces
with x the bound variables referring to an hypothetical binder with body u:
ux = let bvar 0 1, fvar x in app (abs fvar x) (bvar 0 1) . ��
Inversely to variable opening, there is an operation to transform free names into
bound variables. The variable closing of a term is represented by \xt, where x is
the list of names to be bound (recall that the names in x are distinct).

Example 3. We close the term obtained by opening u in Example 2.
Let t ≡ let bvar 0 1, fvar x in app (abs fvar x) (bvar 0 1), then
\xt = let bvar 0 1, bvar 1 0 in app (abs bvar 2 0) (bvar 0 1) . ��
Notice that in the last example the closed term coincides with u, the body of the
abstraction in Example 2 that was opened with x, although this is not always
the case. Only under some conditions variable closing and variable opening are
inverse operations: If the variables are fresh in t, then \x(tx) = t; and if the term
is locally closed, then (\xt)x = t.

2.2 Locally Nameless Semantics

In the natural semantics defined by Launchbury [9] judgements are of the form
Γ : t ⇓ Δ : w, that is, the term t in the context of the heap Γ reduces to the
value w in the context of the (modified) heap Δ. Values (w ∈ Val) are terms in
weak-head-normal-form (whnf ) and heaps are collections of bindings, i.e., pairs
(variable, term). A binding (fvar x, t) with x ∈ Id and t ∈ LNExp is represented
by x 	→ t. In the following, we represent a heap {xi 	→ ti}n

i=1 as (x 	→ t), with
|x| = |t| = n. The set of the locally-nameless-heaps is denoted as LNHeap.

The domain of a heap Γ , written dom(Γ ), collects the set of names defined
in the heap, so that dom(x 	→ t) = x. By contrast, the function names returns
the set of all names that appear in a heap, i.e., the names occurring either in
the domain or in the terms on the right-hand side of the bindings. This is used
to define a freshness predicate for heaps: fresh x in Γ

def= x /∈ names(Γ ).
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LNLam
{ok Γ} {lc (abs t)}

Γ : abs t ⇓ Γ : abs t

LNVar
Γ : t ⇓ Δ : w {x /∈ dom(Γ ) ∪ dom(Δ)}
(Γ, x t) : fvar x ⇓ (Δ, x w) : w

LNApp
Γ : t ⇓ Θ : abs u Θ : ux ⇓ Δ : w {x /∈ dom(Γ ) ⇒ x /∈ dom(Δ)}

Γ : app t (fvar x) ⇓ Δ : w

LNLet

∀x|t| /∈ L ⊆ Id .[(Γ, x t
x
) : tx ⇓ (x ++z sx) : wx

∧ \x(sx) = s ∧ \x(wx) = w]

{y|t| /∈ L}
Γ : let t in t ⇓ (y ++z sy) : wy

Fig. 3. Natural semantics with locally nameless representation

ALNVar
(Γ, x t) : t ⇓ Δ : w

(Γ, x t) : fvar x ⇓ Δ : w

ALNApp

Γ : t ⇓ Θ : abs u
∀y /∈ L ⊆ Id .[(Θ, y fvar x) : uy ⇓ ([y : z] sy) : wy

∧ \y(sy) = s ∧ \y(wy) = w]
{x /∈ dom(Γ ) ⇒ x /∈ [z : z]} {z /∈ L}
Γ : app t (fvar x) ⇓ ([z : z] sz) : wz

Fig. 4. Alternative rules with locally nameless representation

In a well-formed heap names are defined at most once and terms are locally
closed. We write ok Γ to indicate that a heap is well-formed.

Figure 3 shows our locally nameless representation of the rules for the natural
semantics for lazy evaluation. For clarity, in the rules we put in braces the side-
conditions to better distinguish them from the judgements.

To prove the computational adequacy of the natural semantics with respect
to a standard denotational semantics, Launchbury introduces alternative rules
for variables and applications, whose locally nameless version is shown in Fig. 4.
Observe that the ALNVar rule does not longer update the binding for the
variable being evaluated, namely x. Besides, the binding for x does not disappear
from the heap where the term bound to x is to be evaluated; therefore, any
further reference to x leads to an infinite reduction. The effect of ALNApp is
the addition of an indirection y 	→ fvar x instead of performing the β-reduction
by substitution, as in ux in LNApp.

In the rules LNLet and ALNApp we use cofinite quantification, which is
an alternative to “exists-fresh” quantification that provides stronger induction
and inversion principles [1]. In LNLet the notation x|t| /∈ L indicates that x is
a list of length |t| of (distinct) names not belonging to the finite set L. Hence,
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although there are not explicit freshness side-conditions in the rules, the finite
set L represents somehow the names that should be avoided during a reduction
proof. Among infinite possible combinations for x, the set of names y is chosen
for the reduction. The list z represents the rest of names defined in the heap
which is obtained after the reduction. Notice how variable opening is used to
express that the final heap and value may depend on the names that have been
chosen. For instance, in LNLet, wx indicates that it depends on the names x,
but there is a common basis w . Moreover, it is required that this basis does not
contain occurrences of x; this is expressed by \x(wx) = w. A detailed explanation
of these semantic rules can be found in [14–16].

In the following, the natural semantics (rules in Fig. 3) is referred as NS, and
the alternative semantics (rules LNLam, LNLet and those in Fig. 4) as ANS.
We write ⇓A for reductions in ANS. Launchbury proves in [9] the correctness of
NS with respect to a standard denotational semantics, and a similar result for
ANS is easily obtained (as the authors of this paper have done in [12]). Therefore,
NS and ANS are “denotationally” equivalent in the sense that if an expression
is reducible (in some heap context) by both semantics then the obtained values
have the same denotation. But this is insufficient for our purposes, because we
want to ensure that if for some (heap : term) pair a reduction exists in any
of the semantics, then there must exist a reduction in the other too and the
final heaps must be related. The changes in ANS might seem to involve no
serious difficulties to prove the latter result. Unfortunately things are not so
easy. On the one hand, the alternative rule for variables transforms the original
call-by-need semantics into a call-by-name semantics because bindings are not
updated and computed values are no longer shared. Moreover, in the original
semantics the reduction of a self-reference gets blocked (blackhole), while in the
alternative semantics self-references yield infinite reductions. On the other hand,
the addition of indirections complicates the task of comparing the (heap : value)
pairs obtained by each reduction system, as one may need to follow a chain
of indirections to get the term bound to a variable. We deal separately with
each modification and introduce two intermediate semantics: (1) the No-update
Natural Semantics (NNS) with the rules of NS (Fig. 3) except for the variable
rule, that corresponds to the one in the alternative version, i.e., ALNVar in
Fig. 4; and (2) the Indirection Natural Semantics (INS) with the rules of NS but
for the application rule, that corresponds to the alternative ALNApp rule in
Fig. 4. We use ⇓N to represent reductions of NNS and ⇓I for those of INS.

The following table summarizes the characteristics of the four natural seman-
tics defined above:
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It is guaranteed that the judgements produced by the locally nameless rules
given in Figs. 3, 4 involve only well-formed heaps and locally closed terms. Fur-
thermore, the reduction systems corresponding to these rules verify a number
of interesting properties proved in [15]. We include here some new results that
comprehend the alternative rules. In the four reduction systems, definitions are
not lost during reduction, i.e., heaps only can grow with new names. But in
the case of non updating (NNS and ANS) the bindings in the initial heap are
preserved during the whole reduction:

Lemma 1. Γ : t ⇓K Δ : w ⇒ Γ ⊆ Δ, where ⇓K represents ⇓N and ⇓A.

During reduction, names might be added to the heap by the rules LNLet and
ALNApp. However, there is no “spontaneous generation” of names, i.e., any
name occurring in a final (heap : value) pair must either appear already in the
initial (heap : term) pair or be defined in the final heap. The freshness of the
names introduced by the rules LNLet and ALNApp is determined as follows:

Lemma 2. 1. Γ : t ⇓N Δ : w ∧ x ∈ dom(Δ) − dom(Γ ) ⇒ fresh x in Γ.
2. Γ : t ⇓A Δ : w ∧ x ∈ dom(Δ) − dom(Γ ) ⇒ fresh x in (Γ : t).

The following renaming lemma ensures that the evaluation of a term is inde-
pendent of the names chosen during the reduction process. Further, any name
defined in the context heap can be replaced by a fresh one without changing the
meaning of the terms evaluated in that context. In fact, reductions for (heap :
term) pairs are unique up to α-conversion of the names defined in the heap.

Lemma 3. (Renaming)

1. Γ : t ⇓K Δ : w∧fresh y in Γ,Δ, t, w ⇒ Γ [y/x] : t[y/x] ⇓K Δ[y/x] : w[y/x].
2. Γ : t ⇓K Δ : w ∧ fresh y in Γ,Δ, t, w ∧ x /∈ dom(Γ ) ∧ x ∈ dom(Δ)

⇒ Γ : t ⇓K Δ[y/x] : w[y/x],

where Γ [y/x] indicates that name substitution is done in the left and right hand
sides of the heap Γ , and ⇓K represents ⇓, ⇓A, ⇓I , and ⇓N .

Detailed proofs are given in [15], and also in [16] that is an extended version of
the present paper including detailed proofs for all the lemmas and propositions.

3 Indirections

The aim in this section is to prove the equivalence of NNS and ANS. After the
evaluation of a term in a given context, each semantics yields a different binding
heap. It is necessary to analyze their differences, which lie in the indirections
introduced by ANS. An indirection is a binding of the form x 	→ fvar y, that
is, it just redirects to another variable name. The set of indirections of a heap Γ
is denoted by Ind(Γ ).
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Example 4. Let us evaluate t ≡ let abs (bvar 0 0) in app (abs s) (bvar 0 0),
where s ≡ let abs (bvar 0 0), app (bvar 0 0) (bvar 1 0) in abs (bvar 0 0), in
the empty context Γ = ∅:

Γ : t ⇓N {x0 	→ abs (bvar 0 0), x1 	→ abs (bvar 0 0), x2 	→ app (fvar x1) (fvar x0)}
: abs (bvar 0 0)

Γ : t ⇓A {x0 	→ abs (bvar 0 0), x1 	→ abs (bvar 0 0), x2 	→ app (fvar x1) (fvar y),
y 	→ (fvar x0)} : abs (bvar 0 0)

The value produced is the same in both cases. Yet, when comparing the final heap
in ⇓A with that in ⇓N , we observe that there is an extra indirection, y 	→ fvar x0.
This indirection corresponds to the binding introduced by ALNApp to reduce
the application in the term t. ��
The previous example gives a hint of how to establish a relation between the
heaps that are obtained with NNS and those produced by ANS. Two heaps
are related if one can be obtained from the other by eliminating some indirec-
tions. For this purpose we define how to remove indirections from a heap, while
preserving the evaluation context represented by that heap.

(∅, x 	→ fvar y) � x = ∅
((Γ, z 	→ t), x 	→ fvar y) � x = ((Γ, x 	→ fvar y) � x, z 	→ t[y/x])

This is generalized to remove a sequence of indirections from a heap:

Γ � [ ] = Γ Γ � [x : x] = (Γ � x) � x

3.1 Context Equivalence

The meaning of a term depends on the meaning of its free variables. However,
if a free variable is not defined in the context of evaluation of a term, then the
name of this free variable is irrelevant. Therefore, we consider that two terms are
equivalent in a given context if they only differ in the names of the free variables
that do not belong to the context.

Definition 1. Let V ⊆ Id, and t, t′ ∈ LNExp. We say that t and t′ are context-
equivalent in V , written t ≈V t′, when

ce-bvar
(bvar i j) ≈V (bvar i j)

ce-fvar
x, x′ /∈ V ∨ x = x′

(fvar x) ≈V (fvar x′)

ce-abs
t ≈V t′

(abs t) ≈V (abs t′)
ce-app

t ≈V t′ v ≈V v′

(app t v) ≈V (app t′ v′)

ce-let
|t| = |t′| t ≈V t′ t ≈V t′

(let t in t) ≈V (let t′ in t′)

Fixed the set of names V , ≈V is an equivalence relation on LNExp.
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Proposition 1.
ce ref t ≈V t
ce sym t ≈V t′ ⇒ t′ ≈V t
ce trans t ≈V t′ ∧ t′ ≈V t′′ ⇒ t ≈V t′′

Based on this equivalence on terms, we define a family of relations on heaps,
where heaps are equivalent when they have the same domain and corresponding
closures differ only in the free variables not defined in a given context:

Definition 2. Let V ⊆ Id, and Γ, Γ ′ ∈ LNHeap. We say that Γ and Γ ′ are
heap-context-equivalent in V , written Γ ≈V Γ ′, when

hce-empty ∅ ≈V ∅ hce-cons
Γ ≈V Γ ′ t ≈V t′ lc t x /∈ dom(Γ )

(Γ, x 	→ t) ≈V (Γ ′, x 	→ t′)

The relations defined above are equivalences on well-formed heaps.

Proposition 2.
hce ref ok Γ ⇒ Γ ≈V Γ
hce sym Γ ≈V Γ ′ ⇒ Γ ′ ≈V Γ
hce trans Γ ≈V Γ ′ ∧ Γ ′ ≈V Γ ′′ ⇒ Γ ≈V Γ ′′

Moreover, if two heaps are heap-context-equivalent, then both are well-formed,
have the same domain, and have the same indirections.

There is an alternative characterization for heap-context-equivalence which
expresses that heaps are context-equivalent whenever they are well-formed, have
the same domain, and each pair of corresponding bound terms is context-
equivalent.

Lemma 4. Γ ≈V Γ ′ ⇔
ok Γ ∧ ok Γ ′ ∧ dom(Γ ) = dom(Γ ′)∧ (x 	→ t ∈ Γ ∧ x 	→ t′ ∈ Γ ′ ⇒ t ≈V t′).

Considering context-equivalence on heaps, we are particularly interested in the
case where the context coincides with the domain of the heaps:

Definition 3. Let Γ, Γ ′ ∈ LNHeap. We say that Γ and Γ ′ are heap-equivalent,
written Γ ≈ Γ ′, if they are heap-context-equivalent in dom(Γ ), i.e., Γ ≈dom(Γ ) Γ ′.

The following lemmas establish the uniqueness (up to permutation) of the set
of indirections that sets up the equivalence of two heaps. First, we have that
the order in which two indirections are removed from a heap can be exchanged,
producing equivalent heaps.

Lemma 5. ok Γ ∧ x, y ∈ Ind(Γ ) ∧ x �= y ⇒ Γ � [x, y] ≈ Γ � [y, x].

Next, the previous result is generalized so that any permutation of a sequence
of indirections produces equivalent heaps. Moreover, if equivalent heaps are
obtained by removing different sequences of indirections, then these must be
the same up to permutation.

Lemma 6. ok Γ ∧ x, y ⊆ Ind(Γ ) ⇒ (Γ � x ≈ Γ � y ⇔ y ∈ S(x)),
where S(x) denotes the set of all permutations of x.
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3.2 Indirection Relation

Coming back to the idea of Example 4, where a heap can be obtained from
another by removing some indirections, we define the following relation on heaps:

Definition 4. Let Γ, Γ ′ ∈ LNHeap. We say that Γ is indirection-related to Γ ′,
written Γ �I Γ ′, when

ir-he
Γ ≈ Γ ′

Γ �I Γ ′ ir-ir
ok Γ Γ � x �I Γ ′ x ∈ Ind(Γ )

Γ �I Γ ′

There is an alternative characterization for the relation �I which expresses that
a heap is indirection-related to another whenever the later can be obtained from
the former by removing a sequence of indirections.

Proposition 3. Γ �I Γ ′ ⇔ ok Γ ∧ ∃ x ⊆ Ind(Γ ) . Γ � x ≈ Γ ′.

By Lemma 6, the sequence of indirections is unique up to permutations, and it
corresponds to the difference between the domains of the related heaps.

Corollary 1. Γ �I Γ ′ ⇒ Γ � (dom(Γ ) − dom(Γ ′)) ≈ Γ ′.1

The indirection-relation is a preorder on the set of well-formed heaps.

Proposition 4.

ir ref ok Γ ⇒ Γ �I Γ
ir trans Γ �I Γ ′ ∧ Γ ′ �I Γ ′′ ⇒ Γ �I Γ ′′

We extend Definition 4 to (heap : term) pairs. Again we use cofinite quantification
instead of adding freshness conditions on the new name z.

Definition 5. Let Γ, Γ ′ ∈ LNHeap, and t, t′ ∈ LNExp. We say that (Γ : t) is
indirection-related to (Γ ′ : t′), written (Γ : t) �I (Γ ′ : t′), when

ir-ht
∀z /∈ L ⊆ Id .(Γ, z 	→ t) �I (Γ ′, z 	→ t′)

(Γ : t) �I (Γ ′ : t′)

We illustrate these definitions with an example.

Example 5. Let us consider the following heap and term:

Γ = {x0 	→ fvar x1, x1 	→ abs (bvar 0 0), x2 	→ abs (app (fvar x0) (bvar 0 0)),
y0 	→ fvar x2}

t = abs (app (fvar x0) bvar 0 0)

The (heap : term) pairs related with (Γ : t) are obtained by removing the
sequences of indirections [ ], [y0], [x0], and [x0, y0]:

1 Since the ordering of indirections is irrelevant, dom(Γ ) − dom(Γ ′) represents any
sequence with the names defined in Γ but undefined in Γ ′.
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(a) {x0 	→ fvar x1, x1 	→ abs (bvar 0 0), x2 	→ abs (app (fvar x0) (bvar 0 0)),
y0 	→ fvar x2}

: abs (app (fvar x0) (bvar 0 0))
(b) {x0 	→ fvar x1, x1 	→ abs (bvar 0 0), x2 	→ abs (app (fvar x0) (bvar 0 0))}

: abs (app (fvar x0) (bvar 0 0))
(c) {x1 	→ abs (bvar 0 0), x2 	→ abs (app (fvar x1) (bvar 0 0)), y0 	→ fvar x2}

: abs (app (fvar x1) (bvar 0 0))
(d) {x1 	→ abs (bvar 0 0), x2 	→ abs (app (fvar x1) (bvar 0 0))}

: abs (app (fvar x1) (bvar 0 0)) ��

Notice that in Example 4 the (heap : term) pair obtained with ANS is indirection-
related to the pair obtained with NNS by removing the indirection y 	→ fvar x.

Now we are ready to establish the equivalence between ANS and NNS in the
sense that if a reduction proof can be obtained with ANS for some term in a
given context heap, then there must exist a reduction proof in NNS for the same
(heap : term) pair such that the final (heap : value) is indirection-related to the
final (heap : value) obtained with ANS, and vice versa.

Theorem 1 (Equivalence ANS-NNS).

1. Γ : t ⇓A ΔA : wA ⇒
∃ΔN ∈ LNHeap .∃wN ∈ Val . Γ : t ⇓N ΔN : wN ∧ (ΔA : wA) �I (ΔN : wN ).

2. Γ : t ⇓N ΔN : wN ⇒
∃ΔA ∈ LNHeap .∃wA ∈ Val .∃x ⊆ dom(ΔN ) − dom(Γ ) .∃y ⊆ Id .
|x| = |y| ∧ Γ : t ⇓A ΔA : wA ∧ (ΔA : wA) �I (ΔN [y/x] : wN [y/x]).

Notice that in the second part of the theorem, i.e., from NNS to ANS, a renaming
may be needed. This renaming only affects the names that are added to the
heap during the reduction process. This is due to the fact that in NNS names
occurring in the evaluation term (that is t in the theorem) may disappear during
the evaluation and, consequently, they may be chosen on some application of the
rule LNLet and added to the final heap. This cannot happen in ANS due to
the introduction of indirections (see Lemma 2).

To prove this theorem by rule induction, a generalization is needed. Instead
of evaluating the same term in the same initial heap, we consider indirection-
related initial (heap : term) pairs:

Proposition 5. (ΓA : tA) �I (ΓN : tN )

1. ∀x /∈ L ⊆ Id .[ΓA : tA ⇓A (ΓA, x 	→ sA
x) : wA

x ∧ \x(sAx) = sA ∧ \x(wA
x) = wA]

⇒ ∃y /∈ L . ∃sN ⊂ LNExp . ∃wN ∈ LNVal .
ΓN : tN ⇓N (ΓN , z 	→ sN

z) : wN
z ∧ \z(sNz) = sN ∧ \z(wN

z) = wN ∧ z ⊆ y ∧
((ΓA, y 	→ sA

y) : wA
y) �I ((ΓN , z 	→ sN

z) : wN
z)

2. ∀x /∈ L⊆ Id .[ΓN : tN ⇓N(ΓN , x 	→ sN
x) : wN

x ∧ \x(sNx) = sN ∧ \x(wN
x) = wN ]

⇒ ∃z /∈ L . ∃sA ⊂ LNExp . ∃wA ∈ LNVal .
ΓA : tA ⇓A (ΓA, y 	→ sA

y) : wA
y ∧ \y(sAy) = sA ∧ \y(wA

y) = wA ∧ z ⊆ y ∧
((ΓA, y 	→ sA

y) : wA
y) �I ((ΓN , z 	→ sN

z) : wN
z)
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NATURAL SEMANTICS (NS)
Indirections: No
Update: Yes

INDIRECTED NAT. SEM. (INS)
Indirections: Yes
Update: Yes

NO-UPDATED NAT. SEM. (NNS)
Indirections: No
Update: No

ALTERNATIVE NAT. SEM. (ANS)
Indirections: Yes

Update: No

I

GU

Fig. 5. The relations between the semantics

Once more, cofinite quantification replaces freshness conditions. For instance,
in the second part of the proposition it is required that the names introduced
during the reduction for NNS do not collide with names that are already defined
in the initial heap for ANS. The cofinite quantification expresses that if there is
an infinite number of “similar” reduction proofs for (ΓN : tN ), each introducing
alternative names in the heap, one can chose a reduction proof such that the
new bindings do not interfere with (ΓA : tA).

Since there is update neither in ANS nor in NNS (Lemma1), a final heap can
be expressed as the initial heap plus some set of bindings, such as (ΓA, x 	→ sA

x).
In this case, x represents the list of new names, i.e., those that have been added
during the reduction of local declarations, as well as the indirections introduced
by the alternative application rule. Since the terms bound to these new names
are dependent on x, they are represented as sA

x. Similarly for the final value
wA

x. The proposition indicates that it is possible to construct reductions for
NNS whose set of new defined names is a subset of the set of new names of the
corresponding ANS reduction (NNS only adds new names with the rule LNLet).
Detailed proofs of the theorem and the proposition are given in [16].

4 Conclusions and Future Work

Launchbury natural semantics (NS) has turned out to be too much sensitive
to the changes introduced by the alternative semantics (ANS), i.e., indirections
and no-update. These changes should lead to the same values, but this cannot
be directly established since values may contain free variables which are depen-
dent on the context of evaluation, represented by the heap. And, precisely, the
changes introduced by the ANS do affect deeply the heaps. In fact, the equiva-
lence of the values produced by the NS and the ANS is based on their correctness
with respect to a denotational semantics. Although indirections and duplicated
bindings (consequence of not updating) do not add new information to the heap,
it is not straightforward to prove it formally.

Since the variations introduced by Launchbury in the ANS do affect two
rules, i.e. the variable rule (no-update) and the application rule (indirections),
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we have defined two intermediate semantics to deal separately with the effect of
each modification: The NNS (without update) and the INS (with indirections).
A schema of the semantics and how to relate them is included in Fig. 5.

In this paper we have compared NNS with ANS, that is, substitution vs.
indirections. We have started by defining an equivalence ≈ such that two heaps
are considered equivalent when they have the same domain and the correspond-
ing closures may differ only in the free variables not defined in the heaps. We
have used this equivalence to define a preorder �I expressing that a heap can be
transformed into another by eliminating indirections. Furthermore, the relation
has been extended to (heap : terms) pairs, expressing that two terms can be
considered equivalent when they have the same structure and their free vari-
ables (only those defined in the context of the corresponding heap) are the same
except for some indirections. We have used this extended relation to establish
the equivalence between NNS and ANS (Theorem 1).

At present we are working on the equivalence of NS and NNS, which will close
the path from NS to ANS. In order to compare NS with NNS, that is, update vs.
no-update, new relations on heaps and terms have to be defined. No updating
the bindings in the heap corresponds to a call-by-name strategy, and implies the
duplication of evaluation work, that leads to the generation of duplicated bind-
ings. More precisely, duplicated bindings come from several evaluations of the
same let-declarations, so that they form groups of equivalent bindings. There-
fore, we first define a preorder �G that relates two heaps whenever the first can
be transformed into the second by eliminating duplicated groups of bindings.
Afterwards, we define a relation ∼U that establishes when a heap is an updated
version of another heap. Finally, both relations must be combined to obtain the
group-update relation �GU that, extended for (heap : terms), will allow us to
formulate an equivalence theorem for NS and NNS, similar to Theorem1.

Although the relations �I and �GU are sufficient for proving the equivalence
of NS and ANS, it would be interesting to complete the picture by comparing
NS with INS, and then INS with ANS. For the first step, we have to define a
preorder similar to �I , but taking into account that extra indirections may now
be updated, thus leading to “redundant” bindings. For the second step, some
version of the group-update relation is needed. Dashed lines indicate future work.

We have used a locally nameless representation to avoid problems with the
α-equivalence, while keeping a readable formalization of the syntax and seman-
tics. This representation allow us to deal with heaps in a convenient and easy
way, avoiding the problems that arise when using the de Bruijn notation (indexes
do change when bindings are introduced in or eliminated from heaps; moreover,
the formalization becomes unreadable). We have also introduced cofinite quan-
tification (in the style of [1]) in the evaluation rules that introduce fresh names,
namely the rule for local declarations (LNLet) and for the alternative applica-
tion (ALNApp). Moreover, this representation is more amenable to formaliza-
tion in proof assistants. In fact we have started to implement the semantic rules
given in Sect. 2.2 using Coq [4], with the intention of obtaining a formal checking of
our proofs.



302 L. Sánchez-Gil et al.

Acknowledgments. This work is partially supported by the projects: TIN2012-39391-
C04-04 and S2009/TIC-1465.

References
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Abstract. Formal modelling and verification of variability concepts in
product families has been the subject of extensive study in the literature
on Software Product Lines. In recent years, we have laid the basis for
the use of modal specifications and branching-time temporal logics for
the specification and analysis of behavioural variability in product family
definitions. A critical point in this formalization is the lack of a possibility
to model an adequate representation of the data that may need to be
described when considering real systems. To this aim, we now extend
the modelling and verification environment that we have developed for
specifications interpreted over Modal Transition Systems, by adding the
possibility to include data in the specifications. In concert with this,
we also extend the variability-specific modal logic and the associated
special-purpose model checker VMC. As a result, it offers the possibility
to efficiently verify formulas over possibly infinite-state systems by using
the on-the-fly bounded model-checking algorithms implemented in the
model checker. We illustrate our approach by means of a simple yet
intuitive example: a bike-sharing system.

1 Introduction

Product Line Engineering (PLE) is a paradigm for the development of a variety
of products from a common product platform. Its aim is to lower the production
costs of individual products by letting them share an overall reference model
of a product family, while allowing them to differ with respect to specific fea-
tures to serve, e.g., different markets. Software Product Line Engineering (SPLE)
has translated this paradigm into a software engineering approach aimed at the
development, in a cost-effective way, of a variety of software-intensive prod-
ucts that share an overall reference model, i.e., that together form a product
family [34]. Usually, the commonality and variability of a product family are
defined in terms of features, and managing variability is about identifying vari-
ation points in a common family design to encode exactly those combinations
of features that lead to valid products. The actual configuration of the products
during application engineering then boils down to selecting desired options in
the variability model.
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Since many software-intensive systems are embedded, distributed and safety-
critical, there is a need for rigour and formal modelling and verification (tools).
Our contribution to make the development of product families more rigorous
consists of an ongoing research effort to elaborate a suitable formal modelling
structure to describe behavioural product variability, together with a temporal
logic that can be interpreted over that structure [3,4]. We opted for Modal Tran-
sition Systems (MTSs) [1,29], which were recognized in [22,28,30] as a useful
formal method to describe in a compact way the possible operational behaviour
of all products of a product family and in [26] to generate component-level MTSs
from system level specifications. The most closely related approach is based on
Featured Transition Systems (FTSs) [16], where actions are labelled with fea-
tures and an associated feature model expresses feature constraints. A detailed
comparison is given in [4]. We moreover defined an action-based branching-time
CTL-like temporal modal logic over MTSs and we developed efficient algorithms
to derive valid products from families and to model check properties over prod-
ucts and families alike. We implemented these algorithms in an experimental
tool: the Variability Model Checker (VMC) [6,8,9]. Our approach thus differs
from the more widespread use of LTL model checking MTSs [13,20].

A critical point in the formalization by means of MTSs is the lack of a
possibility to model an adequate representation of the data that may need to be
described when considering real systems. To this aim, in this paper we extend
the modelling and verification environment we developed so far by adding the
possibility to include data in the specifications. In concert with this, we also
extend the logic and the tool. As a result, VMC offers the possibility to efficiently
verify properties over possibly infinite-state systems by means of explicit-state
on-the-fly bounded model checking. We illustrate our approach by means of a
simple yet intuitive example: a bike-sharing system.

2 Background

Definition 1. A Labelled Transition System (LTS) is a 4-tuple (Q,A, q, δ), with
set Q of states, set A of actions, initial state q ∈ Q, and transition relation
δ ⊆ Q×A×Q; we may write q

a−→ q′ if (q, a, q′) ∈ δ.

An MTS is an LTS which distinguishes between may and must transitions.

Definition 2. A Modal Transition System (MTS) is a 5-tuple (Q,A, q, δ�, δ�)
such that (Q,A, q, δ� ∪ δ�) is an LTS and δ� ⊆ δ�. An MTS distinguishes
the may transition relation δ�, expressing admissible transitions, and the must
transition relation δ�, expressing necessary transitions; we may write q

a−→� q′

for (q, a, q′) ∈ δ� and q
a−→� q′ for (q, a, q′) ∈ δ�.

The inclusion δ� ⊆ δ� formalizes that necessary transitions are also admis-
sible. Graphically, an MTS is a directed edge-labelled graph where nodes model
states and action-labelled edges model transitions: solid edges are necessary ones
(i.e., δ�) and dotted edges are admissible but not necessary ones (i.e., δ� \ δ�).
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A full path is a path that cannot be extended further, i.e., it is infinite or
it ends in a state without outgoing transitions. A must path is a full path that
consists of only must transitions, i.e., it consists of only solid edges.

An MTS can provide an abstract description of the set of (valid) products
of a product family, defining both the behaviour that is common to all prod-
ucts and the behaviour that varies among different products. This requires an
interpretation of the requirements of a product family and its constraints with
respect to certain features as may and must transitions labelled with actions,
and a temporal ordering among these transitions. The idea is that the family’s
products are the ordinary LTSs that can be obtained by resolving the variability
modelled through admissible (may) but not necessary (must) transitions (i.e., the
aforementioned dotted edges). Resolving variability then boils down to deciding
for each particular optional behaviour whether it is to be included in a specific
product LTS, whereas all mandatory behaviour is included by definition.1 This
thus differs from the usual notion of MTS refinement [1,22,35].

Definition 3. Let F = (Q,A, q, δ�, δ�) be an MTS. The set {Pi = (Qi, A, q, δi) |
i > 0} of derived product LTSs of F is obtained from F by considering each pair
of Qi ⊆ Q and δi ⊆ δ� ∪ δ� to be defined such that:

1. every q ∈ Qi is reachable in Pi from q via transitions from δi and
2. there exists no (q, a, q′) ∈ δ� \ δi such that q ∈ Qi.

2.1 A Modal Process Algebra

Rather than directly specifying the behaviour of a complex system in an MTS, it
is often convenient to describe it in an abstract high-level language interpreted
over MTSs. We consider a process algebra in which the parallel composition
operator is parametrized by a set of actions to be synchronized, which contrasts
the recent approaches in [7,24,31]. A system can then be defined inductively by
composition, with the additional distinction between may and must actions.

Definition 4. Let A be a set of actions, let a ∈ A and let L ⊆ A. Processes
are built from terms and actions according to the abstract syntax:

N ::= [P ] T ::= nil | K | A.T | T + T
P ::= K | P /L/P A ::= a | a(may)

where [P ] denotes the complete system and K is a process identifier from the set

of process definitions of the form K
def
= T .

If L = ∅, then we may also write P //P . The set {M,N, . . .} of systems is
denoted by N and the set {P,Q, . . .} of processes is denoted by P.

A process can thus be one of the following:
1 Actually, each product moreover needs to satisfy assumptions of coherence and con-

sistency and variability constraints of the form alternative, excludes, and requires [9].
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nil : a terminated process that has finished execution;
K : a process identifier that is used for modelling recursive sequential processes;
A.P : a process that can execute action A and then behave as P ;
P +Q : a process that can non-deterministically choose to behave as P or as Q;
P /L/Q : a process formed by the parallel composition of P and Q that can

synchronize on actions in L and interleave other actions.

Note that we distinguish between must actions a and may but not must actions
a(may). Each action type is treated differently in the rules of the SOS semantics.

Definition 5. The operational semantics of a system N ∈ N is given over the
MTS (N ,A, N, δ�, δ�), where δ� and δ� are defined as the least relations that
satisfy the set of axioms and transition rules in Figs. 1 and 2.

As usual, inference rules are defined in terms of a (possibly empty) set of premises
(above the line) and a conclusion (below the line). The reduction relation is
defined in SOS style (i.e., by induction on the structure of the terms denoting a
process) modulo the structural congruence relation ≡⊆ P × P defined in Fig. 2.
Considering terms up to a structural congruence allows identifying different ways
of denoting the same process and the expansion of recursive process definitions.

Note that when restricted to must actions (i.e., LTSs) the rules for non-deter-
ministic choice and parallel composition collapse onto the standard ones [33]. As
is common for MTSs, synchronizing a(may) with a results in a(may) [1,35].

Fig. 1. The SOS semantics of the modal process algebra, with a, � ∈ A

Fig. 2. Structural congruence relation ≡ ⊆ P × P
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3 Dealing with Data

A critical point in the approach presented so far is the lack of a possibility to
model an adequate representation of the data that may need to be described
when considering realistic systems. We present a case study to makes this clear.

3.1 Case Study: Bike-Sharing Systems

An increasing number of cities worldwide are adopting fully automated public
bike-sharing systems (BSS) as a green urban mode of transportation [17]. The
concept is simple and their benefits multiple, including the reduction of vehic-
ular traffic (congestion), pollution, and energy consumption. A BSS consists
of parking stations distributed over a city, typically in close proximity to other
public transportation hubs such as subway and tram stations. (Subscribed) users
may rent an available bike from one of the stations, use it for a while and then
drop it off at any (other) station. BSS offer a number of challenging run-time
optimization problems aimed at improving the efficiency and user satisfaction.
A primary example is balancing the load between the different stations, e.g., by
using incentive (reward) schemes that may change the behaviour of users but
also by efficient (dynamic) redistribution of bikes between stations.

A side-study of the EU FP7 project QUANTICOL (http://www.quanticol.
eu) concerns the quantitative analysis of BSS seen as so-called Collective Adap-
tive Systems (CAS). The design of CAS must be supported by a powerful and
well-founded framework for quantitative modelling and analysis. CAS consist
of a large number of spatially distributed entities, which may be competing for
shared resources even when collaborating to reach common goals. The nature
of CAS, together with the importance of the societal goals they address, mean
that it is imperative to carry out thorough analyses of their design to investigate
all aspects of their behaviour before they are put into operation. In the context
of QUANTICOL, we collaborate with “PisaMo S.p.A. azienda per la mobilità
pisana”, an in-house public mobility company of the Municipality of Pisa. They
recently introduced the public BSS CicloPi in the city of Pisa, which currently
consists of some 150 bikes and 15 stations and thus forms a perfect test case for
our research and an interesting benchmark for the QUANTICOL project.

Inspired by [23], we consider a BSS with N stations and a fleet of M bikes.
Each station i has a capacity Ki. The dynamic behaviour of the system is then:

1. Users arrive at station i.
2. If a user arrives at a station and there is no available bike, then (s)he leaves

the system.
3. Otherwise, (s)he takes a bike and chooses station j to return the bike.
4. When (s)he arrives at station j, if there are less than Kj bikes in this station,

(s)he returns the bike and leaves the system.
5. If the station is full the user chooses another station, say k, and goes there.
6. A redistribution activity of bikes may be asked and may possibly be satisfied.
7. The user rides like this again until (s)he can return the bike.

http://www.quanticol.eu
http://www.quanticol.eu
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This list contains a mix of a kind of static constraints defining the differences
in configuration (features), like the optional possibility to have a redistribution
mechanism in our BSS, between products as well as more operational constraints
defining the behaviour of products through admitted sequences (temporal order-
ings) of actions or operations implementing features according to certain values.

4 Value-Passing Modelling and Verification Environment

We now extend the modelling and verification environment of Sect. 2 to handle
data. First, we extend the modal process algebra of Sect. 2.1 with values and
parameters.

4.1 A Value-Passing Modal Process Algebra

Definition 6. Let A be a set of actions, let a ∈ A and let L ⊆ A. Processes
are built from terms and actions according to the abstract syntax:

N ::= [P ]
P ::= K(e) | P /L/P

where [P ] denotes a closed system and K(e) is a process identifier from the set

of process definitions of the form K (v)
def
= T , and

T ::= nil | K(e) | A.T | T + T | [e �� e]T
A ::= a(e) | a(may, e) | a(?v) | a(may, ?v)
e ::= v | int | e ± e

where ��∈ {<,≤,=, �=,≥, >} is a comparison relation, v is a variable, int is an
integer, and ± ∈ {+,−,×,÷} is an arithmetic operation.

Also the semantics of this value-passing modal process algebra is given over
MTSs, but we only provide the SOS rules for the must actions (in Fig. 3); the
others follow straightforwardly from those in Fig. 1. In the structural congruence
relation ≡⊆ P × P defined in Fig. 2, the addition of value passing is reflected
by replacing P ≡ P [Q/K ] iff K

def= Q with P ≡ P [Q[e/v]/K(e)] iff K(v) def= Q.
Note that the sys rule implies that we assume a closed-world semantics, i.e.,

a system cannot evolve on input actions of the form a(?v).
The intuition of parallel composition is that both partners must fully and

deterministically agree on the actual parameter values for the synchronization
to occur. The rules in Fig. 3 refer to the case of just two parameters. In general,
e.g., a(X, 2).nil and a(3, Y ).nil can synchronize and perform the action a(3, 2).

4.2 A Value-Passing Logic to Express Variability

We define value-passing v-ACTL, an action-based branching-time temporal logic
for variability in the style of (action-based) CTL [15,18] and Hennessy–Milner
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Fig. 3. The SOS semantics of the value-passing modal process algebra, with a ∈ A

Logic (HML) with Until defined in [19,27]. Next to the operators of propositional
logic, v-ACTL contains the classical box and, by duality, diamond modal opera-
tors from HML, the existential and universal path quantifiers and next operator
from CTL and the (action-based) F and, by duality, G operators from ACTL, as
well as the (action-based) Until and Weak until operators U and W drawn from
those firstly introduced in [18] and elaborated in [32]. For the box, diamond and F
operators, v-ACTL also contains a deontic interpretation that takes the modal-
ity (or ‘deonticity’) of the transitions (may or must) into account. In the SPLE
context, these deontic interpretations allow to suitably capture behavioural prop-
erties over MTSs that are inherited by all its product LTSs. More on this and on
deontic logic [2] below. v-ACTL defines action formulas (denoted by ψ), state for-
mulas (denoted by φ), and path formulas (denoted by π).

Definition 7. Action formulas are built over a set A of actions, where a ∈ A:

ψ ::= true | a | a(e) | ¬ψ | ψ ∧ ψ

Action formulas are thus Boolean compositions of actions. As usual, false abbre-
viates ¬true, ψ ∨ ψ′ abbreviates ¬(¬ψ ∧ ¬ψ′) and ψ=⇒ψ′ abbreviates ¬ψ ∨ ψ′.

Definition 8. Let a, b ∈ A. The satisfaction of formula ψ by a(e), denoted by
a(e) |= ψ, is defined as:

a(e) |= true always holds a(e) |= b(e′) iff a = b and e = e′

a(e) |= b iff a = b a(e) |= ¬ψ iff a(e) �|= ψ
a(e) |= b(∗) iff a = b a(e) |= ψ ∧ ψ′ iff a(e) |= ψ and a(e) |= ψ′

Definition 9. The syntax of v-ACTL is:

φ ::= true | ¬φ | φ ∧ φ | [ψ]φ | [ψ]� φ | E π | Aπ | μY.φ(Y ) | ν Y.φ(Y )
π ::= [φ {ψ}U {ψ′} φ′] | [φ {ψ}U φ′] | [φ {ψ}W {ψ′} φ′] | [φ {ψ}W φ′] |

X {ψ} φ | F φ | F� φ | F {ψ}φ | F� {ψ}φ

where Y is a propositional variable and φ(Y ) is syntactically monotone in Y .
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The least and greatest fixed-point operators μ and ν provide a semantics for
recursion, used for “finite looping” and “looping” (or “liveness” and “safety”),
respectively. It is well known that the path formulas (e.g., the Until and F and G
operators) can be derived from the least and greatest fixed-point operators. We
however prefer to represent some of them explicitly to make their understanding
simpler. The intuitive interpretation of the remaining nonstandard operators is:

[ψ]φ : in all next states reachable by a may transition executing an action
satisfying ψ, φ holds.

[ψ]� φ : in all next states reachable by a must transition executing an action
satisfying ψ, φ holds.

X{ψ}φ : in the next state of the path, reached by an action satisfyingψ, φ holds.
F φ : there exists a future state in which φ holds.
F� φ : there exists a future state in which φ holds and all transitions until that

state are must transitions.
F {ψ} φ : there exists a future state, reached by an action satisfying ψ, in which

φ holds.
F� {ψ} φ : there exists a future state, reached by an action satisfying ψ, in

which φ holds and all transitions until that state are must transitions.
φ {ψ}U {ψ′} φ′ : in a future state (reached by an action satisfying ψ′), φ′ holds,

while φ holds from the current state until that state is reached and all actions
executed in the meantime along the path satisfy ψ.

φ {ψ}W {ψ′} φ′ : either φ {ψ}U {ψ′} φ′ or φ holds from the current state
onwards and all actions executed along the path satisfy ψ.

The semantics of v-ACTL is interpreted over MTSs. Let path(q) denote the set
of all full paths from a state q. Moreover, for a path σ = q1a1(e1)q2a2(e2)q3 · · · ,
we denote its ith state (i.e., qi) by σ(i) and its ith action (i.e., ai(ei) ) by σ{i}.

Definition 10. Let (Q,A, q, δ�, δ�) be an MTS, with q ∈ Q and σ ∈ path(q).
The satisfaction relation |= of v-ACTL is defined as:

q |= true always holds

q |= ¬ φ iff q �|= φ

q |= φ ∧ φ′ iff q |= φ and q |= φ′

q |= [ψ] φ iff ∀ q′ ∈ Q such that q
a(e)−−→� q′ and a(e) |= ψ, we have q′ |= φ

q |= [ψ]� φ iff ∀ q′ ∈ Q such that q
a(e)−−→� q′ and a(e) |= ψ, we have q′ |= φ

q |= E π iff ∃ σ′ ∈ path(q) : σ′ |= π

q |= A π iff ∀ σ′ ∈ path(q) : σ′ |= π

q |= μ Y.φ(Y ) iff
∨

i≥0 φi(false)

q |= ν Y. φ(Y ) iff
∧

i≥0 φi(true)

q |= X {ψ} φ iff σ{1} |= ψ and σ(2) |= φ

q |= F φ iff ∃ j ≥ 1: σ(j) |= φ

q |= F � φ iff ∃ j ≥ 1: σ(j) |= φ and ∀ 1 ≤ i < j : (σ(i), σ{i}, σ(i + 1)) ∈ δ�

q |= F {ψ} φ iff ∃ j ≥ 1: σ{j} |= ψ and σ(j + 1) |= φ
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q |= F � {ψ} φ iff ∃ j ≥ 1: σ{j} |= ψ and σ(j + 1) |= φ,

and ∀ 1 ≤ i ≤ j : (σ(i), σ{i}, σ(i + 1)) ∈ δ�

σ |= φ {ψ} U {ψ′} φ′ iff ∃ j ≥ 1: σ(j) |= φ′, σ{j} |= ψ′, and σ(j + 1) |= φ′,

and ∀ 1 ≤ i < j : σ(i) |= φ and σ{i} |= ψ
σ |= φ {ψ} W {ψ′} φ′ iff σ |= φ {ψ} U {ψ′} φ′ or ∀j ≥1: σ(j) |= φ and σ{j} |= ψ

〈ψ〉φ abbreviates ¬ [ψ]¬φ: a next state exists, reachable by a may transition
executing an action satisfying ψ, in which φ holds; 〈ψ〉� φ abbreviates ¬ [ψ]� ¬φ:
a next state exists, reachable by a must transition executing an action satisfying
ψ, in which φ holds; Gφ abbreviates ¬F ¬φ: the path is a full path on which φ
holds in all states; AGφ abbreviates ¬EF ¬φ: in all states on all paths, φ holds.

v-ACTL thus interprets some classical modal and temporal operators in a
deontic way by considering the modalities of the transitions of an MTS. Deontic
logic formalises notions like violation, obligation, permission, and prohibition [2].

4.3 Model Checking Value-Passing Modal Specifications

The modelling and verification environment described so far has been imple-
mented in the Variability Model Checker (VMC) [6,8,9], which is freely usable
online (http://fmt.isti.cnr.it/vmc/). VMC accepts as input a model specified
in the value-passing modal process algebra presented in Sect. 4.1 and it allows
to verify properties expressed in the value-passing v-ACTL logic presented in
Sect. 4.2.

We are unaware of other model-checking tools for MTSs that support value
passing. MTSA [20] is a prototype, built on top of the LTS Analyser LTSA, for
the analysis of MTSs specified in an extension of the process algebra FSP (Finite
State Processes). MTSA allows 3-valued FLTL (Fluent LTL) model checking of
MTSs by reducing the verification to two FLTL model-checking runs on LTSs.

VMC is the most recent product of a family of model checkers we developed
at ISTI–CNR over the past two decades, including UMC [5] and CMC [21].
Each allows the efficient verification by means of explicit-state on-the-fly model
checking of functional properties expressed in a specific action- and state-based
branching-time temporal logic derived from the family of logics based on CTL [15],
including ACTL [18]. The on-the-fly nature of this family of model checkers
means that in general not the whole state space needs to be generated and
explored. This feature improves performance and allows to deal with infinite-
state systems.

In the case of infinite-state systems, a bounded model-checking approach is
adopted, i.e., the evaluation is started by assuming a certain value as a maximum
depth of the evaluation. If the evaluation of a formula reaches a result within
the requested depth, then the result holds for the whole system; otherwise the
maximum depth is increased and the evaluation is retried (preserving all useful
partial results already found). This approach, initially introduced in UMC [5] to
address infinite state spaces, happens to be quite useful also for another reason:
by setting a small initial maximum depth and a small automatic increment of

http://fmt.isti.cnr.it/vmc/
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this bound at each re-evaluation failure, once a result is finally found then we
also have a reasonable (almost minimal) explanation for it.

On the basis of the algorithms presented in [5], on-the-fly model checking
v-ACTL formulas (without fixed points) over MTSs can be achieved in a com-
plexity that is linear w.r.t. the size of the state space. It is beyond the scope
of this paper to give detailed descriptions of the model-checking algorithms and
architecture underlying this family of model checkers (for which we refer to [5]).

5 Modelling and Analyzing the Case Study

We first specify the behaviour of a family of bike-sharing stations in the value-
passing modal process algebra, taking into account the possibility of having a
dynamic redistribution scheme as an optional feature of the BSS. Without loss
of generality, we assume a bike-sharing station with 2 as its maximum capacity:

Station(X) = request.StationBikeRequested(X)
StationBikeRequested(Y) =

[Y<1] ( nobike.Station(Y) +
redistribute(may).Station(Y+2) ) +

[Y>0] givebike.Station(Y-1)

net BSS = Station(2)

From this specification of a family of bike-sharing stations, VMC generates the
MTS depicted in Fig. 4(a) and its possible products depicted in Figs. 4(b)–(c).

If we want also user behaviour, we might specify the following family of BSS:

User = request.(givebike.User + nobike.User + redistribute.User)

net BSS = Station(2) /request,givebike,nobike,redistribute/ User

Due to the synchronous parallel composition, this specification of course results
in the same family MTS and product LTSs depicted in Fig. 4.

To illustrate what kind of variability analyses can be performed with the
extended value-passing modelling and verification environment introduced in
Sect. 4, we now present a few properties and the result of model checking them
with VMC against the above family of BSS (i.e., on the MTS depicted in
Fig. 4(a) ):2

Eventually it must occur that no more bike is available: EF� {nobike} true.
This formula obviously is true.

It is always the case that eventually it must occur that no bike is available:
AGEF� {nobike} true. Also this formula is obviously true.

2 In VMC, ¬, ∨, ∧, [ ]�, μ, ν, and F � are written as not, or, and, []#, min, max, and
F#, respectively, whereas ‘* ’ can be used as ‘don’t care’ symbol for parameter values.
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Fig. 4. (a)–(c) A family MTS and its product LTSs generated by VMC

It is possible for a user to request and receive a bike for three times in a row:
〈request〉 〈givebike〉 〈request〉 〈givebike〉 〈request〉 〈givebike〉 true. This formula
is of course false.

Formulas without negation and only composed from false, true and the oper-
ators ∧, ∨, [ ], 〈 〉�, μ, ν, EF�, EF�{}, AF�, AF�{} and AG that are valid for
a family MTS are valid for all its product LTSs [4]. Dually, formulas without
negation and only composed from false, true and the operators ∧, ∨, 〈 〉, μ, ν,
EF and EF{} that are false for a family MTS are false for all its product LTSs.

As a final example, we model a possibly infinite number of users that take
a bike from station I to station J . Initially, station I has N bikes, which it
gives (when available) to a requesting user or accepts from a returning user.
If the station receives more than M bikes, the exceeding N − M bikes are
distributed to station J . Station I must accept all bikes distributed by other
stations or returned by a user (possibly for redistribution). It could easily be
extended to N stations and K groups of users that take a bike from one station to
another.

Station(I,N,J,M) =
request(I).

( [N=0] nobike(I).Station(I,N,J,M) +
[N>0] givebike(I).Station(I,N-1,J,M) ) +

return(I).Station(I,N+1,J,M) +
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redistribute(may,?FROM,?TO,?K).
( [TO = I] Station(I,N+K,J,M) +

[TO /= I] Station(I,N,J,M) ) +
[N > M] redistribute(may,I,J,N-M).Station(I,M,J,M)

-- two stations:
net STATIONS =

Station(s1,2,s2,2) /redistribute/ Station(s2,2,s1,2)

Users(I,J) =
request(I).

( givebike(I).return(J).Users(I,J) +
nobike(I).Users(I,J) )

-- one or two groups of users
net USERS = Users(s1,s2) -- // Users(s2,s1)

net BSS = STATIONS /request,givebike,nobike,return/ USERS

From this specification of a family of bike-sharing stations, VMC generates the
MTS with 18 states depicted in Fig. 5 in case of a BSS with only one user group
(i.e., net USERS = Users(s1,s2) ); in case of a BSS with two user groups (i.e.,
net USERS = Users(s1,s2) // Users(s2,s1) ) the MTS has 224 states.3

For the family of BSS with one user group, we present some properties and the
result of model checking them with VMC (i.e., on the MTS depicted in Fig. 5):

Eventually it must occur that station 1 has no bikes: EF� {nobike(s1)} true.
This formula is of course true.

Eventually it may occur that station 2 has no more bikes: EF {nobike(s2)} true.
This formula however is false. (Note that it is true in case of two user groups.)

For all products, if redistribution is implemented, then it is always the case that
eventually station 1 gives the user a bike: (¬EF {redistribute(*,s1,*)}true)
∨(AGEF {givebike(s1)} true). This formula is actually true for all products
(LTS) of the family (MTS in Fig. 5). However, it does not make much sense
to verify this formula over the MTS, since it is not expressed in the specific
fragment of v-ACTL that has the characteristic that any formula expressed
in it and which is true for the MTS, is also true for all its products (cf. [9]).

3 In VMC, text or code can be commented out by prefixing it with --.
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Fig. 5. A family MTS of a BSS with 2 stations and 1 group of users generated by VMC

6 Conclusions and Future Work

In this paper we have presented some of the recent developments concerning our
ongoing research effort to elaborate a rigorous modelling and verification envi-
ronment for behavioural variability analyses of product families. These develop-
ments, which concern the extension of both the input language of VMC and its
logic to be able to deal with (integer) value-passing, stem from the fact that we
realized that a major limitation for applying our approach to realistic case stud-
ies from industry is the lack of a possibility to model an adequate representation
of the data that may need to be described.

This paper is only a first contribution to removing this limitation as it
defines an extension of the environment that can deal with data in the form
of integer value-passing. In particular, VMC now accepts models specified in a
value-passing modal process algebra and allows explicit-state on-the-fly model
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checking of properties expressed in a value-passing action-based branching-time
modal temporal logic.

It thus remains to extend the data handling in VMC to more than just
integers. to this aim, we might turn to the mCRL2 toolset (http://www.mcrl2.
org) for inspiration, since it allows to model actions parametrized with user-
defined abstract datatypes and to verify formulas in the modal μ-calculus, thus
allowing to quantify over data [25]. Moreover, also mCRL2 is recently being used
for product family analysis [10–12].

In this paper we furthermore illustrated the new features of VMC by means
of simple yet intuitive examples from a case study on bike-sharing systems orig-
inating from the EU FP7 project QUANTICOL (http://www.quanticol.eu).

In the future, we intend to further investigate the application of the mod-
elling and verification environment presented in this paper to the behavioural
analysis of product families, such as the preservation of properties from fami-
lies to their products, in particular in the presence of the complex constraints
that usually exist between the various features that can be distinguished in a
product family. A promising starting point could be the results on generalized
model checking [14].

We also intend to address the scalability of our approach, which is of utmost
importance for any variability analysis technique to be succesful in SPLE, since
a product family’s variability is exponential in the number of available features.

Acknowledgments. We thank Marco Bertini from PisaMo S.p.A. for generously
sharing with us his knowledge on bike-sharing systems in general and CicloPi in par-
ticular.
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Abstract. Program specialization is an effective tool for transforming
interpreters to compilers. We present the first steps in the construction
of a specialization tool chain for JavaScript programs. We report on an
application of this tool chain in a case study that transforms a realistic
interpreter implemented in JavaScript to a compiler.

The difference to previous work on compiling with program spe-
cialization is threefold. First, the interpreter has not been written with
specialization in mind. Second, instead of specializing the interpreter,
we transform it into a generating extension, which replaces parts of the
interpreter’s code by a corresponding code generator. Third, the imple-
mentation language of the interpreter is not a restricted toy language,
but full JavaScript.

1 Introduction

Program specialization [10,14] is an effective tool for transforming interpreters
into compilers. A program specializer may be applied to a program where the
input can be partitioned into static and dynamic arguments. Static and dynamic
are the prime examples for binding times: The static parts are known before the
dynamic parts. Applying the specializer transforms the program such that all
computations that solely depend on the static parts are executed and code is
generated for the rest. The resulting residual program accepts the dynamic parts
and computes the same results as the original program on all arguments.

Considering the arguments of an interpreter, its program-text argument is
static whereas its program-input argument is dynamic. Specializing the inter-
preter translates the program text into a residual program in the implementation
language of the interpreter, thus performing some kind of compilation. The qual-
ity of compilation depends on the structure of the interpreter. If it keeps static
and dynamic data nicely apart, then the specializer can perform many compu-
tations statically. Some styles of interpreters are known to specialize badly [15].

Related Work. The Futamura projections have been the main inspiration for
pushing the state of the art in program specialization and for building compilers
and compiler generators [9]. However, they require a self-applicable specializer
to start with and much effort has been invested in constructing such specializers,
but mostly for relatively small and clean languages, e.g., [4,5,16]. Jørgensen’s
thesis presents a number of examples [17]. Recent work applies these ideas to
c© Springer-Verlag Berlin Heidelberg 2015
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generating JIT compilers [3]. For various reasons, later work on more realistic
languages has taken up the cogen approach, which essentially shortcuts two steps
in the Futamura projections [2,6,13].

Applying the cogen approach directly maps a program (to be specialized)
into a so-called generating extension. This generating extension is a specializer
tailored to specialize just this one program. It accepts the static arguments and
returns the corresponding residual program. Using this approach greatly sim-
plifies the specialization for typed languages and it speeds up the specialization
because static computations are guaranteed to run natively at full speed. The
cogen approach is also very suitable for an experiment like ours because new
ideas can be tested by transforming existing programs instead of implementing
a full-blown specializer.

The ultimate goal of our work is to obtain a cogen-based program specializa-
tion system for JavaScript. The present investigation is a first step in this direction.
It presents a case study, in which part of a sophisticated interpreter is manually
turned into a compiler, that is, the generating extension of the interpreter. Our
subject is the JSFlow JavaScript interpreter. It is written in JavaScript with the
extra twist that it performs low-level information-flow control at run time. It has
been developed by Hedin, Sabelfeld, and others [11,12], who report that “Com-
pared to a fully JITed JavaScript engine, JSFlow is slower by two orders of mag-
nitude”. So, the ultimate goal is to see how this slowdown can be amended.

Contribution. Our case study investigates the potential of specialization in
a realistic JavaScript program, obtains a preliminary toolbox for writing gen-
erating extensions, identifies the specialization techniques needed for obtaining
satisfactory results, and explores the requirements for automatizing our man-
ual transformation. Ideally, we would be able to state the requirements for a
binding-time analysis, a static analysis that classifies all program parts as either
static or dynamic, the results of which guide an automatic transformation from
program to generating extension (i.e., from interpreter to compiler).

Our main result is that an offline approach to transforming the interpreter
is successful and yields a speedup between 1.1 and 1.8. This small number is
nevertheless remarkable because the architecture of the interpreter is not cho-
sen with specialization in mind. Our experiments further indicate that a pure
offline approach, where the generating extension just executes instructions from
a binding-time analysis, is unlikely to give satisfactory results so that a hybrid
approach that integrates offline with online techniques is called for. Encourag-
ingly, inspection of the residual code for example programs indicates that there
is scope for further improvements using online techniques.

The concrete outcome of this work is a compiler for a subset of JavaScript
based on JSFlow. The subset comprises all expressions and statements, but
it does not handle built-in objects, yet. The compiler transforms a JavaScript
program into an instrumented program that performs information-flow control.
Technically, it inlines a reference monitor. A further outcome is a JavaScript
library for various code generation and specialization tasks. The functions of
this library are reusable building blocks for generating extensions.
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Fig. 1. Architecture of the JSFlow interpreter.

2 Architecture of the JSFlow Interpreter

Figure 1 gives a rough overview of the architecture of the JSFlow interpreter.
After parsing the source code into an abstract syntax tree (AST), a monitor takes
control. It pushes the root node of the AST on a worklist, the manipulation of
which implements all control structures of the interpreted language. The monitor
repeatedly pulls the top entry from the worklist, acts on it, checks the current
information-flow state after the action, and continues as long as the state does
not indicate a violation of the information-flow policy. A worklist entry may be
a node of the syntax tree or a function inside the interpreter. A worklist action
puts new entries on the worklist according to the required control flow.

The other main datastructure of the interpreter is the value stack. It con-
tains intermediate results during the evaluation of expressions. These results
are represented by value objects. A value object is a pair of a raw value and
an information-flow label. Thus, each manipulation of a value in the interpreter
entails repeated wrapping and unwrapping of the value objects involved along
with the corresponding manipulation of the information-flow labels.

3 Specializing the JSFlow Interpreter

The first task in any application of specialization is to figure out the binding-time
assumptions of the datastructures in the program. In specializing an interpreter,
the traditional division of binding times states that the source program is static
and that all run-time data is dynamic.

In JSFlow the AST is static as it only depends on the source programs. Like-
wise, the initial worklist is static. However, as the worklist is used to implement
control structures, it is a datastructure under dynamic control and thus it can-
not remain static! Unfortunately, if the worklist is not static, then the dispatch
on the nodes of the syntax tree cannot be static either. But that means that the
execution component cannot be specialized, either!

The textbook solution to this problem is program point specialization [14].
While the worklist is under dynamic control, it only assumes finitely many different



Towards Specializing JavaScript Programs 323

function unaryExpression(node ,wl,vs) {

var ip = wl.top();

ip.then(node.argument );

ip.then(unarytbl[node.operator ]);

}

function unaryMinus(wl,vs) {

var ref = vs.pop();

var n = conversion.ToNumber(GetValue(ref ));

n.value = -n.value;

vs.push(n);

}

Fig. 2. Interpreting unary operations.

static shapes after discarding the dynamic values. Program point specialization
creates a mutually recursive set of residual functions indexed by these static shapes.
However, this solution is not applicable in our context. First, the worklist may con-
tain functions, so we would have to modify the interpreter to use a standardized
function representation that admits comparison. Second, the resulting set of func-
tions would look artificial as it would contain many very short functions.

The solution is to change the meaning of the worklist from scheduling inter-
pretation to scheduling specialization. This change enables us to regard the work-
list as static, so that the syntax dispatch can be static.

The second important datastructure is the value stack. Initially, we consider
the value stack as dynamic as it is truly under dynamic control, but this assump-
tion results in atrocious, inefficient code.

3.1 Specializing Unary Operations

Figure 2 contains the interpreter’s implementation of unary operations. As this
code only manipulates static data, it remains unchanged in the compiler! The
use of ip requires some explanation: its then method installs a queue interface
on top of the worklist such that the “tasks” are executed in the order in which
they are added. The unarytbl dispatches on the particular operator.

The function unaryMinus is a potential target of this dispatch. As it handles
the dynamic value stack, it needs to be changed. It even turns out that all
instructions of unaryMinus need to be executed at run time because they all
depend on the value on top of the value stack.

3.2 Generating Code for Expressions and Assignments

Initially, we take a very simple approach to code generation, which is encap-
sulated in a module GEN that we developed. Its named method sets a stub for
subsequent name generation and returns the module for chaining. Figure 3 con-
tains the code-generating variant of unaryMinus. Calling this code generator in
the context of translating the expression -(42) yields the (last four lines of the)
code in Fig. 4.
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function unaryMinus(wl,vs) {

var ref = GEN.named("ref").Expr("^d^.pop()", vs);

var n = GEN.named("n").

Expr("conversion.ToNumber(GetValue (^d^))", ref);

GEN.Stmt("^d^.value = -^d^. value;", n, n);

GEN.Stmt("^d^.push(^d^);", vs, n);

}

Fig. 3. Compiling unary minus.

// generated code for literal 42

var v_res_0_ = new Value(42,bot);

vs.push(v_res_0_ );

// generated code for unary minus

var v_ref_1_ = vs.pop();

var v_n_2_ = conversion.ToNumber(GetValue(v_ref_1_ ));

v_n_2_.value = -v_n_2_.value;

vs.push(v_n_2_ );

Fig. 4. Compiled code for -(42).

This approach to code generation works by supplying template strings with
holes indicated by ^s^ and ^d^ for static and dynamic data, respectively. For
expressions, the GEN.Expr function generates a fresh variable binding, instan-
tiates the template from the remaining arguments, and returns the name of
the fresh variable that stands for the result of the generated computation. For
assignments, GEN.Stmt just instantiates the template.

This simple principle can be applied (almost) throughout the interpreter and
leads to executable code. However, the quality of this code is quite bad and it
results in almost no speedup.

3.3 Making the Value Stack Static

The first improvement is to make the value stack partially static [18]. That
means that the stack manipulation is to happen at specialization time, but the
actual values on the stack are run-time values, i.e., dynamic. The interesting
point about this change in bining time is that the revised generating extension
is closer to the original than before!

Figure 5 contains the revised code. Instead of generating code for push and
pop, the code creates a stack and also performs the push and pop operations
at compile time. The generated code improves substantially by this change as
shown in Fig. 6.

However, there is a catch. The value stack is actually needed at run time for
evaluating some kinds of expressions. As an example, consider the conditional
expression (b?e1:e2), where depending on the value of b the result is either the
value of e1 or the value of e2.
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function unaryMinus(wl,vs) {

var ref = vs.pop();

var n = GEN.named("n").

Expr("conversion.ToNumber(GetValue (^d^))", ref);

GEN.Stmt("^d^.value = -^d^. value;", n, n);

vs.push(n);

}

Fig. 5. Compiling unary minus with partially static stack.

var v_res_4_ = new Value(42,bot);

var v_n_5_ = conversion.ToNumber(GetValue(v_res_4_ ));

v_n_5_.value = -v_n_5_.value;

Fig. 6. Compiled code for -(42).

Figure 7 contains the gist of the implementation of the conditional expres-
sion. It reads the evaluated condition from the top of the value stack into lb.
Because lb.value is dynamic, code must be generated for both branches of the
conditional. Compiling each branch leaves a separate entry on top of the stack,
but the expected effect is to leave just one entry for the result of the conditional.

One way to fix this problem is to improve binding times with “The Trick” [8].
As the end of each branch, we pop its value from the specialization-time stack
and push it on the run-time stack. After specializing both branches, we pop the
run-time stack and push its top on the compile-time stack as shown in Fig. 8.

The implemented code generator elides the run-time stack entirely by repre-
senting its top-level entry by a new variable. This choice renders the generated
push operation an assignment to the variable and eliminates the dynamic pop
operation entirely: The code generator just pushes the new variable after process-
ing the conditional. Figure 9 shows a code fragment generated in this manner.

3.4 Making Values Static

A closer look at Fig. 6 reveals that this code still contains some churn. JavaScript’s
object dereference operation returns a Reference object instead of the derefer-
enced value. For that reason, an operation first has to obtain the underlying value
by invoking GetValue. For non-Reference arguments, GetValue is the identity.
In consequence, the GetValue operation in Fig. 6 may be elided as its argument
is certainly not a Reference object.

Unlike the value stack, value objects cannot simply be allocated statically.
The main reason is that there are different types of objects on the value stack
and inter-converting them between a static and a dynamic representation (as for
the value stack) is much more involved.

For this reason, we adopt a new strategy to represent specialization-time
knowledge about data. Instead of keeping static values objects, we maintain
known properties of dynamic values. This approach is dual to the usual partially
static values and might be dubbed smart dynamic values.
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function conditionalExpressionChoose(wl,vs) {

var ip = wl.top();

var lval = GetValue(vs.pop ());

var lb = conversion.ToBoolean(lval);

if (lb.value) {

ip.then(this.node.consequent );

} else {

ip.then(this.node.alternate );

}

}

Fig. 7. Interpreting conditional expressions (simplified).

function conditionalExpressionChoose(wl,vs) {

var ip = wl.top();

var lval = GetValue_s(vs.pop ());

var lb = conversion.ToBoolean_s(lval);

GEN.If (lb.value);

ip.then(this.node.consequent );

ip.then(function () { var v = vs.pop();

GEN.Stmt("^d^.push(^d^)", vs , v);})

ip.then(GEN.Else);

ip.then(this.node.alternate );

ip.then(function () { var v = vs.pop();

GEN.Stmt("^d^.push(^d^)", vs , v);})

ip.then(GEN.Endif );

ip.then(function () { var r = GEN.Expr("^d^.pop()", vs);

vs.push(r);});

}

Fig. 8. Compiling conditional expressions.

Each value object is created dynamic from the start and represented by a
variable like all other dynamic values. However, when it is created, the properties
of the value are stored with the variable. For example, it is known that the
variable contains a value object at run time and its components are also recorded.

By exploiting this extra information, the GetValue function can be adapted
to statically check whether its argument is definitively not a Reference object.
This check effectively elides many occurrences of GetValue in the generated
code. In particular, it can be elided from Fig. 6.

Similar exploitation of the properties of a value object enables a specializing
version of conversion.ToNumber, which is the identity on numbers like 42.
Taking all these optimization steps together, the compiled code for -(42) boils
down to just two statements.

var v__7_ = new Value (42, bot);

v__7_.value = -v__7_.value;

It is possible to get down to just one line:

var v__7_ = new Value(-42, bot);
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var v_temp_10_;

if(v_lb_8_.value) {

var v_res_11_ = new Value(42, bot);

v_temp_10_ = v_res_11_;

} else {

var v_res_12_ = new Value("a string", bot);

v_temp_10_ = v_res_12_;

}

var v_val_13_ = GetValue(v_temp_10_ );

Fig. 9. Generated code fragment for conditional expression b?42:’a string’.

It requires replacing the assignment n.value = -n.value in unaryMinus (Fig. 2)
by the construction of a new value as follows.

var t = new Value (-n.value , n.label );

vs.push(t);

3.5 Variables and the Environment

In the current approach, the environment structure is dynamic so that all variable
accesses are handled at run time. The code generated for, say, n-1 looks like this:

var v_temp_66_ = env.

GetIdentifierReference(v_c_42_.lexicalEnv ,‘‘n’’);

var v_temp_67_ = GetValue(v_temp_66_ );

var v__71_ = conversion.ToNumber(v_temp_67_ );

var v__73_ = v__71_.value - 1;

The motivation is twofold. First, the representation of the lexicalEnv pro-
vides the mutable object structure needed for variables at run time. Second, the
interpreter also handles the notorious with statement, which pushes an arbitrary
(run-time) object on top of the environment. That means, the environment struc-
ture is only static most of the time, but with intermittent dynamic sections.

3.6 Function Expressions

A JavaScript function expression creates a function object in the interpreter.
Hence, the compiled code also creates a function object. The invocation of a func-
tion object happens via its Call method. In the interpreter, the method fetches
the AST of the function body and recursively invokes the interpreter loop with a
new worklist instance etc. In contrast, the compiled code should contain a suitably
specialized Call method that does not refer to the AST, anymore.

For that reason, the transformed interpreter equips the function object with
a Call s method that generates a specialized Call method for a function object.
The code generator for a function expression needs to be extended (with respect
to the interpreter) with an assignment that overwrites the generic Call method
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with the result of invoking Call s. Code generation for the corresponding call
expression constructs the argument object from the argument list and invokes
the Call method of the function object.

3.7 Control Structures

Code generation for loops required the most invasive changes to the interpreter.
To understand why requires a look at the implementation of control structures
in JSFlow using the while statement as an example.

Initially, each looping statement gathers the labels attached to it. The labels
serve as marks for break and continue statements occurring in the loop’s body.
These statements are implemented by setting a flag in the result of the statement.
The outer execution loop in the monitor checks this flag and unwinds the worklist
down to the first entry that wants to process the flag. This intent is indicated
by an annotation of the worklist entry.

The second subtask of the looping statement is to process breaks and
continues that are signalled by the execution loop. Next, it schedules the exe-
cution of the loop test and the potential execution of the loop body.

If the loop test yields true, then the third subtask schedules another execution
of the loop body followed by the second subtask.

In principle, a specializer could generate code from this pattern. However, it
would require to specialize each iteration of the execution loop in the monitor
with respect to its current worklist, an instance of program point specializa-
tion [14]. This approach is theoretically more pleasing, but it has a number of
drawbacks. First, specialization with respect to the worklist requires to com-
pare different worklists. Unfortunately, this comparison is expensive because it
involves comparison of fragments of the AST, but on top of that the worklist
also contains functions created on the fly by function expressions, which can-
not be reliably compared. Second, the specialization would result in many small
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mutually recursive functions, each corresponding to the compilation of a worklist
entry. Many of these functions are called only once and aggressive inlining would
be required to assemble them back together to larger, more efficient functions.
Third, specialization with respect to the worklist also requires to specialize with
respect to the current configuration of the value stack, which potentially leads
to a further explosion of specialized variants of the worklist entry functions.

Hence, we decided to shortcut this mechanism for the time being and to
generate a suitably labeled while(true) loop for all control structures. All exits
from the loop are implemented via generated break statements. Explicit break
and continue statements are copied to the generated code.

The third subtask above is modified for code generation. The loop test com-
piles to a conditional statement that executes the loop body in the true-branch
and performs a break in the other. The second subtask is not rescheduled, as
the code generation for the loop only needs to happen once and for all.

This approach works mutatis mutandis for all looping statements as well as
for the switch statement. One problem of the latter is that cases fall through
unless they are terminated with a break, continue, or return statement. The
current implementation does not detect whether the transition from one case to
the next is dead. Therefore, it generates duplicate code for consecutive cases.

4 Results

This section reports the results from running the JSFlow interpreter (version
1.0.0) on selected micro benchmarks and comparing it with the code generated
by two versions of our compiler.

All programs were run on node.js1 version v0.10.20 on an Apple MacBook
with intel Core 2 Duo 2.26 GHz processor and 2 GB RAM.

This section considers four micro benchmark programs shown in Listings 1.1
(While), 1.2 (Collatz), 1.3 (NestedFor), and 1.4 (Power). The programs While
and Collatz are run with different values of x, Power is run with different values
of n, and NestedFor is run with different ranges for i and j.

Table 1. Execution times for execution environment setup

Setup Interpreter Compiler Compiled code

Time/ms 151 156 145

To interpret a program, to compile a program, and to run a compiled program
all requires a pre-execution setup that consists of reading a number of utility
modules from the local disk. The execution time for this setup is different for
the interpreter, the compiler, and the residual program because they depend on
different sets of modules. Essentially, the compiler needs to load all interpreter
1 http://nodejs.org/.

http://nodejs.org/
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dependencies and a code-generating module, whereas the residual program only
needs a subset of the interpreter modules. Table 1 shows these setup times in
milliseconds. They are not included in the timings reported subsequently.

In the following, the execution time of the interpreter is measured without the
setup time and without reading the source file. The execution time of the com-
piler is measured without setup and without reading the source, but it includes
creating the output file and writing the generated code. The execution time of
a residual program is measured without the setup time.

4.1 Benchmark Results

When specializing an interpreter, we hope that the residual program runs faster
than the interpretation of the source program. To determine the speedup from
specialization, we run four different JavaScript source programs on the inter-
preter, we compile them, and run the residual programs to measure the execution
time for each step.

The compiler and the residual programs run in two modes. In dynamic-stack
mode, the entire manipulation of the value stack is done at run time with residual
code as shown in Fig. 4. In static-stack mode, the value stack is manipulated
at compile time as much as possible as explained in Sect. 3.3. In addition, the
static value optimization is also applied (Sect. 3.4). The difference between these
numbers indicates the effectiveness of the static-stack optimization.

Table 2 shows the execution time of a single iteration (compilation) for each
program. It demonstrates that the compile times are up to 20 % slower than the
execution of one iteration in the interpreter. There is no discernible difference in
compile time between the dynamic-stack and the static-stack modes.

Table 2. Execution time (in ms) for one iteration.

Benchmark Interpreter Compiler (Dynamic stack) Compiler (Static stack)

While 15 15 15

Collatz 16 18 18

NestedFor 17 18 18

Power 20 26 26

Table 3. Number of source code lines for each benchmark.

Benchmark Source RP ORP Improvement ORP/Source

While 7 110 94 17% 13.4

Collatz 10 194 135 43% 13.5

NestedFor 6 233 181 28% 30.2

Power 6 325 266 22% 44.3
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Table 3 shows the size of the benchmark programs, residual programs (RP),
and optimized residual programs (ORP) measured in the number of lines. As
the compiler in dynamic stack mode generates code for many push and pop
operations, the unoptimized programs are on average (geometric mean) 26 %
longer than the optimized ones. Compilation expands the program by a factor
of 22.2 (geometric mean). The Power benchmark expands by a factor 44 because
it contains a compiled function.

Benchmark While. Table 4 shows execution times for the While benchmark in
Listing 1.1. The first column contains the number of loop iterations. Column (Int)
shows the execution time of the unmodified interpreter. Column (RP) shows the
execution time of the residual program with dynamic stack. The nexts columns
show the speedup = interpreter/RP of the residual program and the amortized
speedup (A Speedup) = interpreter/(compile time + RP). Column OPR contains
the run time for the Optimized Residual Program compiled with static value
stack. The seventh and eighth columns contain the corresponding speedup and
amortized speedup. Compile times for computing the amortized speedup are
taken from Table 2.

Benchmark Collatz. Table 5 presents the execution times for the Collatz
benchmark (Listing 1.2). Unfortunately, modifying the input x only indirectly
affects the number n of loop iterations, which determines the run time. The
columns of the table are analogous to Table 4.

Benchmark NestedFor. Table 6 presents the measurements for Listing 1.3.
The columns are the same as before, only in this case we are varying the number
of inner and outer iterations.

Benchmark Power. This program (Listing 1.4) takes a base number and a
positive integer as an exponent and calculates the power. Instead of using loops,
this program uses recursion to calculate the power of a number.

To obtain the execution times in Table 7, the base number b = 2 is fixed but
the exponent n varies for different measurments. The columns in the table are
analogous to the previous tables.

Table 4. Execution times for While (milliseconds).

n Int RP Speedup A Speedup ORP Speedup A Speedup

10 19 8 2.37 0.82 6 3.16 0.90

102 46 29 1.58 1.04 25 1.84 1.15

103 177 132 1.34 1.21 116 1.53 1.36

104 1174 932 1.26 1.24 810 1.45 1.42

105 11081 8865 1.25 1.25 7650 1.45 1.45

106 111930 90266 1.24 1.24 79890 1.40 1.40
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Table 5. Execution times for Collatz (milliseconds).

x n Int RP Speedup A Speedup ORP Speedup A Speedup

10 6 20 8 2.5 0.76 6 3.33 0.83

102 25 31 15 2.06 0.93 14 2.21 0.96

103 111 64 36 1.77 1.18 34 1.88 1.23

105 128 67 38 1.76 1.17 36 1.86 1.24

106 152 75 45 1.66 1.19 42 1.78 1.25

4.2 Analysis

The results from the four micro benchmarks indicate a speedup between 1.1 and
1.6 (geometric mean: 1.28) for the programs compiled with dynamic stack. After
the stack optimization, the speedup ranges between 1.1 and 1.8 (geometric mean:
1.36). This change indicates that the stack optimization speeds up program
by about 6 %. As expected, the amortized speedup converges against the raw
speedup. All programs exhibit an amortized speedup greater than 1 after about
100 iterations, which indicates the break-even point of compilation.

5 Assessment

The positive message is that we successfully applied program specialization tech-
niques to transform a realistic interpreter into a compiler. We achieve a moderate
speedup by a factor of at most 1.8, which is only a small improvement on the
100 fold slowdown incurred by using the interpreter (cf. introduction). However,
there is a lot of scope for improvement.

The code generated by running the interpreter transformed to a generating
extension is still far from optimal. In particular, much more information could
be propagated at specialization time (compile time). The propagation of the
structure of values (Sect. 3.4) is just a first step. In many places, the interpreter
checks the type of the arguments of an operation, which generates lengthy code
fragments. By propagating type information, these checks could be elided.

Another point is to shift handling of the environment to compile time as
much as possible. However, it must be possible to switch between a compile-time
version and a run-time version, in case the with statement occurs in a program.
There are proposals how to handle such situations in the literature [19,20].

Right now, it is not clear if program point specialization is required beyond
the trivial instances where the Call method is specialized. However, the current
strategy for handling function objects relies on handling the environment at run
time. It probably must be revised when using compile time environments.

A main design goal of the transformation strategy is to keep the changes to
the underlying interpreter as small as possible. In many cases, we succeeded in
doing so. For example, the final compiler function for unaryMinus (not shown)
looks almost identical to the interpreter code in Fig. 2. In other places, we were
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Table 6. Execution times for NestedFor (milliseconds)

j i Int RP Speedup A Speedup ORP Speedup A Speedup

10 102 67 37 1.82 1.20 36 1.86 1.24

102 103 1574 1202 1.31 1.18 1280 1.23 1.21

103 104 147327 123804 1.19 1.17 118812 1.24 1.24

Table 7. Execution times for Power

n Int RP Speedup A Speedup ORP Speedup A Speedup

10 48 25 1.92 0.94 24 2.00 0.96

102 143 112 1.28 1.02 111 1.27 1.03

103 990 900 1.10 1.06 885 1.12 1.09

less successful. For example, it would be interesting to investigate whether pro-
gram point specialization would enable to dismiss the shortcuts for implementing
control structures (Sect. 3.7).

One technique to keep the source code of a generating extension close to
the original program is to use overloading [1]. In JavaScript, we might employ
proxies to achieve similar goals, but unfortunately the proxy API only applies
to objects, not to primitve values and their operations.

6 Conclusion

We successfully built a program specialization toolchain for constructing gener-
ating extensions in JavaScript. This toolchain enabled us to transform an exist-
ing JavaScript interpreter into a compiler. While the compiler realizes a modest
speedup, there is still a lot of potential for future improvements. We regard it as
a first step to evaluate the use of program specialization in such a task. The final
goal of our work is to obtain a low-overhead compiler, where the generated code
could be fed directy into eval and executed. For that reason, we are interested
in good amortized speedup.

Thanks to Daniel Hedin and Andrei Sabelfeld for giving us access to the
JSFlow implementation and for discussions. Further thanks to Javed Sarwar for
his work on transforming the interpreter, for building the testing infrastructure,
and for performing measurements.
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Abstract. Implementing string transformation routines, such as enco-
ders, decoders, and sanitizers, correctly and efficiently is a difficult and
error prone task. Such routines are often used in security critical settings,
process large amounts of data, and must work efficiently and correctly.
We introduce a new declarative language called Bex that builds on ele-
ments of regular expressions, symbolic automata and transducers, and
enables a compilation scheme into C, C# or JavaScript that avoids many
of the potential sources of errors that arise when such routines are imple-
mented directly. The approach allows correctness analysis using symbolic
automata theory that is not possible at the level of the generated code.
Moreover, the case studies show that the generated code consistently
outperforms hand-optimized code.

1 Introduction

Recent focus on string analysis is motivated by the fact that strings play a cen-
tral role in all aspects of web programming. As soon as you visit a web page or
read a file, several encoders, decoders and sanitizers launch for different purposes.
Some coders are related to data integrity and format, such as UTF8 encoding and
decoding that translates between standard text file representation (UTF8) and
standard runtime memory representation (UTF16) of Unicode characters. Other
encoders, called sanitizers, are used to prevent cross-site scripting (XSS) attacks;
typical examples are Html encoder and Css encoder. While for such coders, basic
functional correctness criteria is often vital for security, it may be notoriously
difficult to implement them correctly or even reason about such correctness cri-
teria [3,13]. One reason behind this difficulty is the subtle semantics resulting
from a combinaton of arithmetic with automata theory. Individual characters are
represented by integers and operations over characters often involve arithmetic
operations such as bit-shifting and modulo arithmetic. Automata theory, on the
other hand, is used overs strings (sequences of characters) to check for possi-
ble input or output patterns that may cause security vulnerabilities. Encoding
related security vulnerabilities have been exploited for example through over-
encoding [18,20], double-encoding [19], and XSS attacks. Some recent work has
studied sanitizer correctness by utilizing automata techniques [6,16,17], includ-
ing Bek [13] that our current work builds on.

Here we introduce a language called Bex. The main features of Bex that make
it more expressive and succinct than Bek are: (1) regex lookahead for pattern
c© Springer-Verlag Berlin Heidelberg 2015
A. Voronkov and I. Virbitskaite (Eds.): PSI 2014, LNCS 8974, pp. 335–350, 2015.
DOI: 10.1007/978-3-662-46823-4 27
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matching that removes the burden of having to explicitly encode state machines;
(2) default rules to specify what happens when a normal rule fails. In contrast,
Bek supports only single-character guards and construction of default rules is
then trivial by using the disjunction of all the negated guards from a given state
as the guard of the default rule from that state.

Example 1. Consider the following Bex program B. B decodes two-digit html
decimal encodings. The first rule, with pattern P0 = "&#00;", states that
the null character must not be decoded. The second rule, with pattern P1 =
"&#[0--9]{2};", is the normal decoding case. The third rule, with pattern
P2 = "&#$", uses the end-anchor $ so it applies only if the match occurs at
the end of the input. The fourth rule is a default rule, it applies only when no
other rule applies and it always reads a single character while a normal rules
read k characters at a time with k being the length of the matched input.

program B { "&#00;" ==> "&#00;";
"&#\d\d;" ==> [(10*(x2-48))+(x3-48)];
"&#$" ==> "&#";
else ==> [x0]; }

Consider the input u = "&&#00;&#38;&#". No pattern matches initially, both
P0 and P1 match from position 1, P1 matches from position 6, and P2 matches
from position 11. For the overlapping case, Pi has priority over Pj for i < j. So

B(u) = "&" + "&#00;" + [(10∗(‘3’−48))+(‘8’−48)] + "&#" = "&&#00;&&#"

where the ASCII character codes are ‘&’ = 38, ‘3’ = 51 and ‘8’ = 56. �

Bek programs were originally compiled into symbolic finite transducers or SFTs [13].
Unlike sanitizers, a direct representation of decoders with SFTs is highly imprac-
tical due to state space explosion [24]. Even when registers are added to Bek and
symbolic transducers with registers (STs) are being used, direct representation
with Bek and STs is still very cumbersome and error prone, as illustrated by the
representation of HTMLdecode (corresponding to B) in [24, Fig. 7]. The need to read
several characters at once without storing them in registers and without introduc-
ing intermediate states, motivated the introduction of extended symbolic finite
transducers (ESFTs) [8], that add support for lookahead. However, unlike in the
classical case where lookahead can effectively be eliminated [26, Theorem 2.17],
analysis of ESFTs does not reduce to analysis of SFTs and requires, for decidabil-
ity, further restriction to the Cartesian case [7] where guards are conjunctions of
unary predicates. Regexes such as P1 in Example 1 naturally give rise to Carte-
sian guards, e.g., P1 represents the guard λx̄.(x0 = ‘&’ ∧ x1 = ‘#’ ∧ ‘0’ ≤ x2 ≤
‘9’ ∧ ‘0’ ≤ x3 ≤ ‘9’ ∧ x4 = ‘;’). The guard is Cartesian because it has the
form λx̄.

∧|x̄|
i=1 ϕi(xi).

Cartesian ESFTs are still a powerful extension of SFTs because outputs may
depend on multiple variables and use nonunary functions. For example, the sec-
ond rule of B in Example 1 has the output function λx̄.[10 ∗ (x2 − 48) + x3 − 48].
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The main difficulty with Bex is how to efficiently deal with default rules.
A naive implementation of the semantics of bex, e.g., by using a regex match-
ing library, is far too inefficient. For example, the full version of HtmlDecode
requires 280 rules. One approach would be to eliminate default rules by adding
more normal rules in an attempt to transform Bex programs to ESFTs. For
example, we could add the rule "&[^#&]" ==> [‘&’,x1] to cover the case when
the matched subsequence starts with & but is not followed by # or &. Continuing
this transformation quickly leads to an explosion of cases and requires interme-
diate states, obfuscating the semantics and defeating the purpose of the concise
declarative style of Bex.

Instead, we provide here a novel compilation scheme from Bex programs to
an intermediate form called symbolic rollback transducers SRTs that are subse-
quently compiled into STs. SRTs use lookback to avoid state space explosion.
For example, an SRT may treat the pattern "&#\d{6};" of an html decoder
using nine transitions rather than 100 k transitions required by an SFT; once it
successfully matches the pattern it refers back to the characters in the matched
input, similar to k-SLTs [5]. SRTs incorporate the notion of rollback in form of
rollback -transitions not present in STs [24], ESFTs [8] or k-SLTs [5], to accom-
modate default or exceptional behavior.

To summarize, this paper makes the following contributions:

– Bex : a new declarative language for specifying string coders;
– SRTs: a variant of ESFTs with the capability of rewinding the input tape;
– Algorithm for compiling bex programs into SRTs.

As a key component the algorithm makes use of the recent algorithm for mini-
mizing SFAs [9].

2 Symbolic Automata

In this section we introduce the basic concepts of symbolic automata that we are
using in this paper. A key role is played by symbolic representation of alphabets
as effective Boolean algebras. An effective Boolean algebra A has components
(D, Ψ, [[ ]],⊥,�,∨,∧,¬). D is a nonempty r.e. (recursively enumerable) set of
domain elements. Ψ is an r.e. set of predicates closed under the Boolean connec-
tives and ⊥,� ∈ Ψ. The denotation function [[ ]] : Ψ → 2D is r.e. and is such that,
[[⊥]] = ∅, [[�]] = D, for all ϕ,ψ ∈ Ψ, [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]],
and [[¬ϕ]] = D \ [[ϕ]]. For ϕ ∈ Ψ, we write IsSat(ϕ) when [[ϕ]] = ∅ and say
that ϕ is satisfiable. The intuition is that A is represented programmatically as
an API with corresponding methods implementing the components. We use the
following symbolic alphabets.

2k is the powerset algebra with domain {n | 0 ≤ n < 2k}. Case k = 0 is trivial
and is denoted 1. For k > 0, a predicate in Ψ2k is a BDD of depth k.1

1 The variable order of the BDD is the reverse bit order of the binary representation
of a number, thus, the most significant bit has the lowest ordinal.
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The Boolean operations are the BDD operations. The denotation [[β]] is the
set of all n, 0 ≤ n < 2k, whose binary representation is a solution of β.

U We let U def= 216 denote the basic Unicode alphabet. We use standard regex
character class notation to describe predicates in ΨU . For example [[A]] =
[[\x41]] = {65}, [[01]] = {48, 49}, and [[[\0-\xFF]]] = {n | 0 ≤ n ≤ 255}.

We use the following construct for alphabet extensions. Given a domain D
we write D′ for an injective renaming of all elements in D, D′ = {a′ | a ∈ D}.
Similarly for D′′. One concrete definition of D′ is D ×{1} and of D′′ is D ×{2}.
In particular, D′ ∩ D′′ = ∅.

Definition 1. The disjoint union A+B of two effective Boolean algebras A and
B, is the effective Boolean algebra (D′

A ∪D′′
B, ΨA × ΨB, [[ ]],⊥,�,∨,∧,¬) where,

[[〈α, β〉]] def= [[α]]′A ∪ [[β]]′′B, 〈α, β〉 � 〈α1, β1〉 def= 〈α �A α1, β �B β1〉, (� ∈ {∨,∧})
¬〈α, β〉 def= 〈¬Aα,¬Bβ〉, ⊥ def= 〈⊥A,⊥B〉, � def= 〈�A,�B〉.

It is straightforward to prove that A+B is still an effective Boolean algebra.
Observe that the implementation of A+B is trivial given the implementations
of A and B, e.g., extension of A with a new element can be defined as A+1.

Given a word u ∈ D∗
A we write u′ for the word [u|′0, u|′1, . . . , u|′|u|−1] in D∗

A+B.
Similarly for the second subdomain.

Definition 2. A symbolic finite automaton (SFA) M is a tuple (A, Q, q0, F,Δ)
where A is an effective Boolean algebra, called the alphabet, Q is a finite set
of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
Δ ⊆ Q × ΨA × Q is a finite set of moves or transitions. Elements of DA are
called characters and finite sequences of characters are called words. �
A word w of length |w|, is denoted by [a0, a1, . . . , a|w|−1] where all the ai are
characters. Given a position i < |w|, w|i denotes the i’th character ai of w. The
empty word is []. Given two words u and v, u.v denotes their concatenation. In
particular, u.[] = [].u = u.

A move ρ = (p, ϕ, q) from p to q is also denoted by p
ϕ−→ q where p is the

source state Src(ρ), q is the target state Tgt(ρ), and ϕ is the guard or predicate
of the move Grd(ρ). A move is feasible if its guard is satisfiable. In the following
let M = (A, Q, q0, F,Δ) be a fixed SFA.

Definition 3. A word w ∈ D∗
A, is accepted at state q of M , w ∈ Lq(M), if

there exists a set of moves {qi
ϕi−→qi+1}i<k ⊆ Δ where k = |w|, q0 = q, qk ∈ F ,

and w|i ∈ [[ϕi]] for i < k. The language of M is L(M) def= Lq0(M).

For q ∈ Q, we use the definitions

Δ(q) def= {ρ ∈ Δ | Src(ρ) = q}, Δ−1(q) def= {ρ ∈ Δ | Tgt(ρ) = q}.

A state q of M is a deadend when Lq(M) = ∅. A deadend-move is a move
whose target is a deadend. A state q of M is partial if ¬∨{Grd(ρ) | ρ ∈ Δ(q)} is
satisfiable. A move is feasible if the guard of the move is satisfiable. The following
terminology is used to characterize various subclasses of SFAs.
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– M is deterministic: for all p
ϕ−→ q, p

ϕ′
−→ q′ ∈ Δ, if IsSat(ϕ ∧ ϕ′) then q = q′.

– M is partial (incomplete): there is a partial state.
– M is clean: all moves are feasible and all states are reachable from q0,
– M is trim: M is clean and has no deadend-moves,
– M is normalized : forall p, q ∈ Q, there is at most one move from p to q.
– M is minimal : M is deterministic, trim, and normalized, and forall p, q ∈ Q,

p = q if and only if Lp(M) = Lq(M).
– M is a prefix acceptor if M is minimal, M has a single final state qfM and

either ΔM (qfM ) = ∅, or ΔM (qfM ) = {qfM
�−→ qfM}, and all paths from q0M to

qfM without passing through qfM have a fixed length K, the length of M .

Regexes used here range over the Unicode alphabet U and support character
classes, the syntax and the semantics is the same as in C# or JavaScript.2 Given
a regex P we write ^P for P prepended with the start anchor. We write L(P )
for the regular language over DU accepted by P . Given a regular language L,
we write SFAmin(L) for a minimal SFA accepting L.

Anonymous functions. We write Λ(D → R) for some well-defined effective rep-
resentation of functions, or λ-terms, with domain D and range R. A λ-term
f ∈ Λ(D →R) denotes the mathematical function f : D → R.

Let the alphabet A be fixed and let D stand for DA and let Ψ stand for ΨA.
We let Dk def= {w ∈ D∗ | |w| = k}.3 We write Λ for

⋃
m>0,n≥0 Λ(Dm →Dn), i.e.,

Λ is the set of λ-terms denoting functions from nonempty fixed length words to
fixed length words (the range may be {[]}). Given f ∈ Λ, let �(f) denote the
input rank m of f ∈ Λ(Dm →Dn).

Example 2. Consider A = U . Let h ∈ Λ(D →D) be λx.(x < 10 ? x+48 : x+55).
Then h encodes every nibble (value in {0, . . . , 15}) as the corresponding hexadec-
imal (ASCII) digit,4 e.g., h(11) = ‘B’ and h(7) = ‘7’. Let f ∈ Λ(D1 →D2)
be λx.[h(x|0 � 4), h(x|0 & 15)] (� is shift-right and & is bitwise-and). Then
f encodes every single-byte-word as a word of two hexadecimal digits, e.g.,
f("K") = f([4B16]) = [h(4B16 � 4),h(4B16 & 15)] = [‘4’, ‘B’] = "4B". �

3 Symbolic Rollback Transducers

Symbolic transducers (STs) are a generalization of symbolic finite transducers
or SFTs; STs were originally introduced in [24]. An ST may use registers in
addition to a finite set Q of states. In general, registers can hold arbitrary values
and the use of registers is unrestricted. Here we introduce another extension of

2 Regular Expression Language - Quick Reference: http://msdn.microsoft.com/en-us/
library/az24scfc.aspx.

3 Observe that D0 = {[]} and D1 = {[a] | a ∈ D}.
4 No semantic distinction is made between characters and their numeric codes. Thus
‘0’, ‘\x30’, and 48 all denote number 48.

http://msdn.microsoft.com/en-us/library/az24scfc.aspx.
http://msdn.microsoft.com/en-us/library/az24scfc.aspx.
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α β · · · rest of input tape · · ·
↑
q

Fig. 1. Intuition behind a snapshot 〈α, q, β〉 of an SRT.

SFTs called SRTs that do not allow explicit use of registers but allow lookback
and rollback of input. SRTs have three kinds of transitions, defined below.

To formally define the semantics of transitions we introduce the notion of a
snapshot s, that is a triple 〈α, q, β〉 ∈ S = D∗ × Q ×D∗ with argument store α,
state q and buffer β. We say current character for the first character of the buffer
if it is nonempty, else for the first character in the rest of the input. The unread
portion of the input tape is not part of the snapshot. The idea behind the concept
of a snapshot is illustrated in Fig. 1. The buffer is intended to be a prepending
to the rest of the input; the semantics enforces that the buffer must be empty
before any more characters are read from the rest of the input.

An input-transition p
ϕ−→q ∈ Q × Ψ × Q has the following semantics. From

source state p it reads and enqueues the current character a into the argument
store, provided that a ∈ [[ϕ]], and enters the target state q, formally:

[[p
ϕ−→ q]] def= {〈α, p, []〉 [a]/[]−−−→ 〈α.[a], q, []〉 | a ∈ [[ϕ]], α ∈ D∗} ∪

{〈α, p, [a].β〉 []/[]−−→ 〈α.[a], q, β〉 | a ∈ [[ϕ]], α, β ∈ D∗}

An output-transition p
f�→ q ∈ Q × Λ × Q has the following semantics. From

state p it consumes the argument store α outputs the word f(α) and enters
state q. The transition is enabled when the length of α matches the arity of f .

[[p
f�→ q]] def= {〈α, p, β〉 []/f(α)−−−−→ 〈[], q, β〉 | β ∈ D∗, α ∈ D�(f)}

A rollback-transition p
ϕ��� q has the following semantics. From state p, if the

current character a ∈ [[ϕ]], it “rewinds the input tape” by pushing the current
character and the argument store (back) into the buffer, and enters state q.

[[p
ϕ��� q]] def= {〈α, p, []〉 [a]/[]−−−→ 〈[], q, α.[a]〉 | a ∈ [[ϕ]], α ∈ D∗} ∪

{〈α, p, [a].β〉 []/[]−−→ 〈[], q, α.[a].β〉 | a ∈ [[ϕ]], α, β ∈ D∗}
The idea is that a rollback-transition is taken when a normal input sequence
cannot be completed, the target state q is then an “exception handling” state.

Definition 4. A Symbolic Rollback Transducer (SRT) is a tuple (A, Q, q0, F,Δ),
where A, Q, q0, and F are as in Definition 2, and Δ is a finite set of transitions
as defined above. �

The semantics of an SRT B is defined using a transducer (s0,S,T) that is the
unwinding of B, where s0 is the initial snapshot 〈[], q0, []〉 of B, S is the set
D∗ × Q × D∗ and T ⊆ S × D∗ × D∗ × S is the set

⋃
ρ∈Δ[[ρ]].
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The relation s
u/v−−→→ t for s, t ∈ S and u, v ∈ D∗ is defined as the least relation

such that s0
[]/[]−−→→ s0 and if s

u/v−−→→ s1 and s1
u1/v1−−−−→ t ∈ T then s

u.u1/v.v1−−−−−−→→ t. The
transduction of B is now defined as the following function from D∗ to 2D

∗
.

TB(u) def= {v | ∃q ∈ F 〈[], q0, []〉 u/v−−→→ 〈[], q, []〉}
As a minimal requirement, we want the transition relation T to be well-founded

in the following sense: there is no infinite chain {si
[]/vi−−−→ si+1}i<ω in T. For exam-

ple, if there is a rollback-transition p
���� p then T is not well-founded, because

〈[], p, [a]〉 []/[]−−→ 〈[], p, [a]〉 ∈ T. A sufficient condition to ensure well-foundedness
of T is that the SRT is not ill-defined :

Definition 5. An SRT is ill-defined if there exists a path of states (qi)i≤n and
states p1 and p2 such that, p1 ��� q0, (for 0 ≤ i < n) qi −→ qi+1, and qn ��� p2.
The SRT is well-defined otherwise. �

In a well-defined SRT, any two rollback-transitions must be separated by at least

one output-transition. For example, if p
���� p then the SRT is ill-defined. An

output-state is a state that has an outgoing output-transition.

Definition 6. An SRT B is deterministic if every output-state has exactly one
outgoing transition and for every other state q, all transitions from q have mutu-
ally disjoint guards. B is single-valued if, for all u, |TB(u)| ≤ 1. �

Proposition 1. Every deterministic SRT is single-valued.

Proof. Determinism implies that for any snapshot and current character there
can be at most one resulting snapshot. Thus, for any given u ∈ D∗, there can

be at most one path {si
ui/vi−−−→ si+1}i<n such that u = u0.u1. · · · .un−1. Thus,

either TB(u) = ∅ or TB(u) = {v0.v1. · · · .vn−1}. �

We treat a deterministic SRT B as a partial function and we write B(u) = v for
TB(u) = {v}.

Example 3. Let f be defined as in Example 2. Let B be the SRT

(U , {q0, q1}, q0, {q0}, {q0
[\0-\xFF]−−−−−−→ q1, q1

f�→ q0)}
Since there are no rollback-transitions the buffer is never used. We have

〈[], q0, []〉 "o"/[]−−−→ 〈"o", q1, []〉 []/"6F"−−−−→ 〈[], q0, []〉 "k"/[]−−−→ 〈"k", q1, []〉 []/"6B"−−−−→ 〈[], q0, []〉

Thus 〈[], q0, []〉 "ok"/"6F6B"−−−−−−−→→ 〈[], q0, []〉, so B("ok") = "6F6B". �

End anchors. Given an alphabet A, in order to detect the end of the input string
over DA, we can lift A to A+1 and lift all u ∈ D∗

A to u′.[0′′] ∈ D∗
A+1 where the
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character 0′′ ∈ DA+1 is used only as the last input character. Such end-of-input
character can then be used to trigger a final output-transition that empties the
store (when the store is nonempty).

4 Bex

The alphabet is fixed to U here, D stands for DU . A bex program consist of a
nonempty sequence of pattern rules (Pı =⇒ fı)0≤ı<k and a default output fd,
where all Pı are regexes, called patterns, and all fı and fd are output expressions
such that the following well-formdness criteria hold.

– SFAmin(L(^Pı)) is a prefix acceptor of some length Kı > 0.
– fı ∈ Λ and �(fı) = Kı.
– fd is undefined or fd ∈ Λ and �(fd) = 1.

The first well-formdness condition ensures that all patterns have fixed lengths.
The second condition ensures that the output functions are in scope: depend
only on the characters matched by the pattern. The third condition ensures that
the default output function only depends on one character (the current one).

The formal semantics of bex programs is as follows. The intent is to support
straightforward specification of how typical encoders and decoders work in prac-
tice. Given a word u and indices i and j, 0 ≤ i ≤ j < |u|, we write u[i..] for the
suffix [u|i, . . . , u||u|−1] and u[i..j] for the subsequence [u|i, . . . , u|j ] of u.

Definition 7. Given a bex program B = ((Pı =⇒ fı)0≤ı<k, fd). The denotation
of B, B, is a (partial) function from D∗

U to D∗
U . Let u ∈ D∗

U be the input
sequence. Let n := 0 and v := []. Let Mı = SFAmin(L(^Pı)) and let Kı be the
length of Mı. Repeat the following until n = |u|:
1. Let I = {ı | u[n..] ∈ L(Mı)}.
2. If I = ∅ let ı = min{i ∈ I | Ki = min{Kj | j ∈ I}} and (m, f) = (Kı, fı)
3. If I = ∅ let (m, f) = (1, fd).
4. Let v := v + f(u[n..n + m − 1]) and n := n + m.

Then B(u) = v. (B(u) is undefined if fd is used but is undefined). �

Example 1 is a simplified version of an Html decoder. Its purpose is to illustrate
the use and the semantics of typical pattern rules and the default rule. It is used
as a running example in the rest of the paper. In the next section we describe
an algorithm that converts a bex program into an equivalent SRT.

5 Bex to SRT Compiler

The purpose of the bex to SRT compiler is, given a well-formed bex program
B = ((Pı =⇒ fı)0≤i<k, fd) as input, to generate a well-defined deterministic
SRT that is equivalent to B. We assume that the default output fd is defined.
The case when fd is undefined amounts to a trivial modification of the compiler.
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The compiler works in two main phases. First, all the patterns of the rules
are combined into a single pattern automaton N that is then minimized. The
alphabet of N is U2 def= U+U . The first subuniverse U ′ serves the purpose of the
Unicode alphabet, while the second subuniverse U ′′ serves the purpose of bex
rule identifiers.

Second, the pattern automaton N is (essentially) extended with output-
transitions and rollback-transitions to form the final SRT. It follows from mini-
mality of N and the construction of the additional transitions that the resulting
SRT is well-defined and deterministic and preserves the semantics of the original
bex program.

The alphabet of the generated SRT is going to be U + 1. The new element
0′′ ∈ DU+1 is used as the end-of-input symbol of words. Observe that DU+1 =
D′

U ∪ {0′′}. The main correctness theorem is the following.

Theorem 1. Given a bex program B, SRT(B) is a well-defined deterministic
SRT such that, for all u, v ∈ D∗

U , B(u) = v iff TSRT(B)(u
′.[0′′]) = {v′.[0′′]}.

Proof. Formal proof is by induction over the length of computations, relating
the points in Definition 7 to the constructs below and by using basic properties of

SRT(B):

q0

qf

q0$

0’’

q1

&

default_in

[0’’]

q2

#

q2$

0’’

q3

0

q4

[1-9]

"&#".[0’’]

q9

0

q6

[1-9][0-9]

q10

;

q7

;

"&#00;"[(10*(x2-48))+(x3-48)]

default_out

[x0]

Fig. 2. Sample SRT with rollback-transitions.
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N and SFAs operations. The construction of the SFA N itself uses an algorithm
for minimizing SFAs [9]. �

Detailed descriptions of the compilation phases are given below. The following
example illustrates a small but realistic example.

Example 4. Consider the bex program B in Example 1. Figure 2 shows the gen-
erated SRT(B). The rollback-transitions have a guard (not shown) that is the
complement of the disjunction of all the guards from all other transitions from

the source state. E.g., q2
〈[^0-9],⊥〉

��� defaultin and q1
〈[^#],�〉

��� defaultin �

5.1 Pattern Automaton Construction

1. Let E := ∅; E is computed as the set of all pattern ids having end anchors.
2. For ı = 0, . . . , k − 1:

(a) Let Mı = SFAmin(L(^Pı)). (Recall that Mı is a prefix acceptor.)
Let Kı be the length of Mı.
If ΔMı

(qfMı
) = ∅ then E := E ∪ {ı}.

(b) Let qı be a new state not it QMı
. Lift Mı into Nı:

Nı = (U2 , QMı
∪ {qı}, q0Mı

, {qı},Δ),

where Δ = {p
〈ϕ,⊥〉−−−−→ q | p

ϕ−→ q ∈ ΔMı
, p = qfMı

} ∪ {qfMı

〈⊥,̂ı〉−−−→ qı}
3. Let

N := SFAmin(
⋃
ı

L(Nı)).

N has a single final state, say FN = {qfN}, and ΔN (qfN ) = ∅. A move p
〈⊥,β〉−−−→

qfN is a final move; let ı = min[[β]], the state p is ı-final.
4. Cleanup:

(a) If a state p is ı-final but ı /∈ E then delete all non-final moves from p.
(b) Remove unreachable states from N .

Cleanup removes unreachable cases: shorter patterns override longer ones (for
the overlapping cases) and for patterns of the same length the ones with smaller
id have priority (see Definition 7.2). The following are key properties of N .

Proposition 2. For all w ∈ D∗
U2 the following statements are equivalent:

– w ∈ L(N)
– for some u ∈ D∗

U and ı ∈ DU , w = u′.[ı′′] and w ∈ L(Nı)
– for some u ∈ D∗

U and ı ∈ DU , w = u′.[ı′′] and u ∈ L(Mı) and |u| = Kı

Proposition 3. If q0N
v−→→ q and q

〈⊥,ψ〉−−−−→ qfN ∈ ΔN then for all ı ∈ [[ψ]], |v| = Kı.

Proof. Fix ı, j ∈ [[ψ]]. Then v+ı(2), v+j(2) ∈ L(N). So, by Proposition 2, v = u(1)

for some u ∈ D∗
U such that u ∈ L(Mı) ∩ L(Mj) and |u| = Kı = Kj. �
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The purpose of N is going to be that N is used to construct a control flow graph
of the SRT. N takes care of selecting the correct rule for a given input.

Example 5. Consider the bex program B in Example 1. The SFAs N0, N1, N2

and N are as follows:5

In N the overlapping patterns are reflected in the final move q10
〈[],[\0\x01]〉−−−−−−−−→ qfN

where [[[\0\x01]]] = {0, 1}. E = {2}. If the end anchor was removed from P2

then E would be empty and the cleanup step would delete the moves from q2 to
q3 and q4. Then the states {q3, q4, q6, q7, q9, q10} would become unreachable. �

5.2 Compute Normal Transitions

We will now use N as a starting point for constructing an SRT SRT(B) from B.
We lift functions f over the universe DU implicitly to functions over the

universe DU+1 by lifting elements in DU to elements in the first subuniverse D′
U

of DU+1. Let Δin be the following set of input-transitions.

Δin = {p
〈ϕ,⊥〉−−−−→ q | p

〈ϕ,⊥〉−−−−→ q ∈ ΔN}

In other words, all nonfinal moves of N become input-transitions. Let Δout be
the following set of output-transitions, where q0 = q0N ,

Δout = {p
fı�→ q0 | p

〈⊥,β〉−−−→ qfN ∈ ΔN , ı = min[[β]], ı /∈ E}

In other words, if a state p is ı-final and the pattern Pı is not a suffix pattern
of the input (ı /∈ E) then, upon reaching the state p, the input store contains a
word s of length Kı matching the pattern Pı. The output function f ı is applied
to the matched word s committing to the output word f ı(s). The process is
repeated from the initial state q0.

5 Predicates in ΨU are denoted by regex character classes, or individual characters.
The predicate ⊥ is denoted by the empty character class [].
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5.3 Compute Ending Transitions

When a regex pattern Pı ends with an end anchor ($ or \z) then this is reflected
in N by the fact that there is a state p that is ı-final and ı ∈ E . This means that
the match must end with the end-of-input character 0′′ because all valid input
words have the form u′.[0′′] for u ∈ D∗

U . There are new output states pı
$ for all

ı ∈ E , with the following input-transitions leading to them.

Δin$ = {p
〈⊥,�〉−−−−→ pı

$ | p
〈⊥,β〉−−−→ qfN ∈ ΔN , ı = min[[β]], ı ∈ E}

There are output-transitions from each pı
$ that apply the corresponding final

output function to the final stored input word in each case, append the ending
character 0′′, so that all output words are also 0′′-terminated, and transition to
the final state qf = qfN of the SRT.

Δout$ = {pı
$

λx.(fı(x).[0
′′])�−−−−−−−−−→ qf | p

〈⊥,β〉−−−→ qfN ∈ ΔN , ı = min[[β]], ı ∈ E}

There are also transitions from the initial state q0 = q0N leading to the final state
(upon end of input), where q0$ is a new output state:

Δ0 = {q0
〈⊥,�〉−−−−→ q0$

λx.[0′′]�−−−−→ qf}

There are no transitions outgoing from the final state qf.

5.4 Compute Default Transitions

The default behavior kicks in from a state p when the current character does
not match any of the possible guards of the outgoing input-transitions from p.
Formally, let G(p) be the disjunction of all the guards from transitions exiting
from p. Here p is an input state that is a non-output state and not qf.

G(p) def=
∨

{ϕ | ∃q(p
ϕ−→ q ∈ Δin ∪ Δin$ ∪ Δ0)}, γp

def= ¬G(p).

Predicate γp describes all characters that break all possible patterns at state p.
If γp is satisfiable then, for all current characters in [[γp]], roll back the input
tape back to the position before the match was started, then apply the default
function to the first character in the input tape (it cannot be 0′′ because the input
store is nonempty when p = q0 and 0′′ /∈ [[γq0 ]]), and finally continue the process
from state q0 and the next input position. This corresponds to Definition 7.3.
Formally, the following transitions are added to capture this default behavior.

Δdefault = {p
γp��� defaultin | p is an input state, [[γp]] = ∅}

∪{defaultin
�−→ defaultout

fd�−→ q0}
where defaultin and defaultout are fixed new states. Observe that the well-
definedness criterion (see Definition 5) is trivially satisfied. Let Q be the set
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of all states that occur in the transitions. The final result of the compilation is
the SRT:

SRT(B) def= (U + 1, Q, q0, {qf},Δin ∪ Δout ∪ Δin$ ∪ Δout$ ∪ Δ0 ∪ Δdefault)

Moreover, a well-defined SRT can be further translated into an equivalent
ST without rollback-transitions by performing a symbolic partial evaluation of
the default cases. Generation of C# or JavaScript code is straightforward from
either well-defined deterministic SRTs or deterministic STs.

6 Implementation and Experiments

The bex language and the algorithm for generating symbolic transducers from
bex programs has been implemented and is available in an online toolkit and
tutorial [4]. The tutorial includes several samples, such as base64 encoding and
decoding, allows online editing, and enables JavaScript generation from the bex
programs. The generated JavaScript can also be directly executed online.

We have built a prototype implementation of the compiler. In a final phase
the compiler converts the generated SRT into an ST without rollback-transitions.
It does so by symbolically forward executing the rollback-cases and by optimiz-
ing the generated code through a combination of SFA techniques and SMTlib
representation of terms using Z3 [10,27]. Z3 terms are used to simplify arithmetic
expressions and to prune unsatisfiable predicates. The STs are then converted
into either C# or JavaScript implementations.

We have applied this technique to a variety of different encoders and decoders
such as: Utf16Encoder and Decoder, Base32Encoder and Decoder, Base64Enco-
der and Decoder, CssEncoder, JavaScriptEncoder, JsonEncoder, and HtmlEn-
coder and Decoder. They all fall into a category of string transformation routines
that can be very naturally expressed and analyzed in bex.

So far our largest case study is a bex program for the complete version of
HtmlDecode that uses over 280 rules. The full bex program is less than 300
lines of code including comments. The large number of rules is due to many
special cases of patterns such as "&lt;" =⇒ "<" and "&le;" =⇒ "\u2264" in
addition to rules that decode numeric (decimal or hexadecimal) encodings of
characters. The resulting minimal pattern automaton N has in this case 920
states and the generated C# code is just shy of 20 k lines of code (with sparsely
generated code). The end-to-end compilation time was around 8 s that includes
preprocessing as well as some analysis of the generated code. A key factor here
was an efficient minimization algorithm of SFAs [9]. The minimization algorithm
is used repeatedly in the loop where the SFAs Ni are being constructed during
the pattern automaton construction phase of the bex compiler. For the alphabet
algebra we use U2 for most parts, but for dealing with λ-terms and satisfiability
checking of linear arithmetic formulas in the final phases of the compiler we use
SMT2lib representation of terms and Z3 [27].

We compared the running time of the bex generated HtmlDecoder in C#
against the hand-optimized HtmlDecoder in the. NET System.Net.WebUtility
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library. As input to both decoders we used maximally encoded input (with
hexadecimal encoding of all non-ASCII) texts over various parts of the Unicode
alphabet. In this experiment, the bex coder outperformed the System coder by
2 times on average.

7 Related Work

Symbolic finite transducers (SFTs) and the Bek language were originally intro-
duced in [13] and formally studied in [24]. SFTs were also extended to STs
in [24] to allow the use of registers for increased expressive power. A common
usage pattern that often occurs in the context of string decoders is that of a
finite window of characters that are grouped and processed together. For such
a class of problems, SFTs are too weak, while STs sacrifice analyzability. Two
related formalisms have been proposed to address this issue, ESFTs [8] and k-
SLTs [5]. The former uses bounded lookahead and reads several characters at
once, while the latter uses bounded lookback and reads one character at a time.
Further properties of ESFTs are studied in [7].

The formalism of SRTs is in spirit related to k-SLTs, because output-
transitions refer to earlier characters as a form of lookback. However, once an
output happens (is “committed”), there is no way to refer back to those input char-
acters that were used, in later transitions; this is similar to the sematic of ESFTs.
The aspect that is new in SRTs, is the notion of a rollback -transition that allows
the input tape to be rewound or rolled back conditionally. As we demonstrated
with bex, this aspect greatly simplifies the task of programming typical encoders
and decoders, HtmlDecoder being a perfect example, where default rules are used
extensively when pattern matching fails.

Automata over infinite alphabets have received a lot of interest [21], starting
with the work on register automata [14]. A different line of work on automata with
infinite alphabets called lattice automata, originates from verification of symbolic
communicating machines [11]. Streaming transducers [1] provide a recent symbolic
extension of finite transducers. Extended Finite Automata, or XFAs, is a succinct
representation of DFAs that use registers, are introduced in [22] for network packet
inspection. XFAs support only finite alphabets. History-based finite automata [15]
are another extension of DFAs that have been introduced for encoding regular
expressions in the context of network intrusion detection systems. Finite state
transducers have been used for dynamic and static analysis to validate sanitiza-
tion functions in web applications [17,25].

Symbolic transductions can also be considered over infinite strings. For finite
alphabets, a study of transformations of infinite strings is proposed in [2]. Yet a
different extension is symbolic transductions over trees [23].

We use the SMT solver Z3 [10] for incrementally solving and simplifying con-
straints in the process of composing predicates that arise during bex compilation.
Similar applications of SMT techniques have been introduced in the context of
symbolic execution of programs by using path conditions [12].
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1 Introduction

The concurrent functional language Erlang [1] has a number of distinguishing
features, like dynamic typing, concurrency via asynchronous message passing
or hot code loading, that make it especially appropriate for distributed, fault-
tolerant, soft real-time applications. The success of Erlang is witnessed by the
increasing number of its industrial applications. For instance, Erlang has been
used to implement Facebook’s chat back-end, the mobile application Whatsapp
or Twitterfall—a service to view trends and patterns from Twitter—, to name
a few. The success of the language, however, also requires the development of
powerful testing and verification techniques.

Symbolic execution is at the core of many program analysis and transforma-
tion techniques, like partial evaluation, test-case generation or model checking.
In this paper, we introduce a symbolic execution technique for Erlang. We dis-
cuss how both an overapproximation and an underapproximation of the concrete
semantics can be obtained. We illustrate our approach through some examples.
To the best of our knowledge, this is the first attempt to formalize symbolic
execution in the context of this language, where previous approaches have only
considered exploring different schedulings but have not dealt with symbolic data.
More details can be found in the companion technical report [17].

2 Erlang Syntax

In this section, we present the basic syntax of a significant subset of Erlang. In
particular, we consider a slightly simplified version of the language where some
features are excluded (basically, we do not consider modules, exceptions, records,
binaries, monitors, ports or process links, most of which are not difficult to deal
with but would encumber the notations and definitions of this paper). Never-
theless, this is still a large subset of Erlang and covers its main distinguishing
features, like pattern matching, higher-order functions, process creation, message
sending and receiving, etc.

This work has been partially supported by the Spanish Ministerio de Economı́a
y Competitividad (Secretaŕıa de Estado de Investigación, Desarrollo e Innovación)
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Program � pgm ::= f(Xn) → e. | pgm pgm

Exp � e ::= bv | [e1|e2] | {en} | X | e(en) (n ≥ 0)
| case e of cl end | e1 ! e2 | receive cl end
| p = e | e1, e2

BasicValue � bv ::= a | n | p | [ ] | { }
Value � v ::= bv | [v1|v2] | {vn} (n > 0)

Pattern � p ::= bv | X | [p1|p2] | {pn} (n > 0)
Clauses � cl ::= p1 when g1 → e1; . . . ; pn when gn → en (n > 0)

where a ∈ Atom, n ∈ Number, p ∈ Pid, X ∈ Var, g ∈ Guard

Fig. 1. Erlang syntax rules

The syntax of the language can be found in Fig. 1. We denote by on the
sequence of syntactic objects o1, . . . , on. Programs are sequences of function def-
initions, where each function f/n is defined by a rule f(X1, . . . , Xn) → e. with
X1, . . . , Xn distinct variables and the body of the function, e, an expression that
might include basic values, lists, tuples, variables, function applications, case
expressions, message sending and receiving, pattern matching and sequences.

Besides the functions defined in the program, we consider some of the usual
built-in functions (logical and relational operators, arithmetic operators, etc.),
together with the functions self, that returns the pid of the current process, and
spawn, that is used to create new processes. E.g., spawn(foo, [a, 42]) creates a new
process that starts calling the function foo(a, 42) and returns the new (fresh) pid
assigned to this process. Only the concurrent actions have side effects. We assume
that guards can only contain calls to built-in functions without side effects.

Example 1. Consider the program in Fig. 2 which follows a very simple client-
server scheme. Here, the first process is called with start(N), where N is the
maximum number of requests accepted by the server. Then, it creates a client
(a new concurrent process) and starts the server. A client request just includes
its own pid and the request number. If the request number is smaller than N ,
the server answers “ok”; otherwise, it answers “last” and terminates. The client
keeps asking the server with increasing numbers until it gets the reply “last”.

We do not consider I/O in this paper. Therefore, input parameters must be
provided through the initial function.

3 Concrete Semantics

The semantics of Erlang is informally described, e.g., in [1]. The past years have
witnessed an increasing number of works aimed at defining a formal semantics
for the language. Some of the first attempts were done by Huch [9] and, more
extensively, by Fredlund [6]. More recent approaches focus on the definition of
the distributed aspects of the Erlang semantics, like [4]; this semantics was later
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start(N) → S = self(), C = spawn(client, [1, S]), server(N).

server(N) → receive
{Pid,M} when M < N → Pid ! ok, server(N);
{Pid,M} when M >= N → Pid ! last

end.

client(N,Pid) → Pid ! {self(), N},
receive Atom → case Atom of

ok → client(N + 1, P id);
last → ok

end
end.

Fig. 2. Simple client-server example in Erlang

refined in [15] and [14], where some assumptions on the future of the language
design are proposed. Other approaches have formalized the semantics of Erlang
by defining its semantics in the framework of rewriting logic [10,11].

Unfortunately, there is no commonly accepted semantics and, moreover, most
of the above papers only cover part of the language semantics (e.g., [4,14,15]
are mainly oriented towards the concurrent features of the language). Therefore,
we have recently introduced a semantics for a subset of Erlang in [16]. In the
following, we present a more elegant and general version of this semantics that
follows some of the ideas in [14].

Erlang follows a leftmost innermost operational semantics. Following, e.g.,
[6,9], every expression C[e] can be decomposed into a context C[ ] with a (single)
hole and a subexpression e where the next reduction can take place:

C :: = [] | C, e | case C of cl end | C ! e | v ! C | p = C | C(e1, . . . , en)
| f(v1, . . . , vi, C, ei+2, . . . , en) | op(v1, . . . , vi, C, ei+2, . . . , en)
| [v1, . . . , vi, C|e] | {v1, . . . , vi, C, ei+2, . . . , en}

An Erlang process is denoted by a tuple 〈p; e; q〉, where p is a the process identi-
fier, e is the expression to be evaluated, and q is the process mailbox. An Erlang
system is a pair (Π,Q), where Π is a pool of processes and Q is the system
mailbox (analogous to the ether in the semantics of [14]). We assume no order
in Π since it is not relevant to our purposes (i.e., we will be interested in explor-
ing all possible schedulings within symbolic execution). For implementing actual
scheduling policies, an ordering would be required. The system mailbox Q is a
set of triples (p,p′, q), where q is a list of messages (values) sent from the process
with pid p to the process with pid p′. The system mailbox is needed to correctly
model a multi-node distributed system (see the discussion in [14]). Basically,
Erlang only requires that the messages sent directly between two processes must
arrive in the same order. However, if the messages follow different paths, say one
message is sent directly from p to p′′, while another message is sent from p to p′′

via p′, then there is no guarantee regarding which message arrives first to p′′.
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(seq)
(〈p;C[v, e]; q〉 & Π, Q)

τ→ (〈p;C[e]; q〉 & Π, Q)

(self)
(〈p;C[self()]; q〉 & Π, Q)

τ→ (〈p;C[p]; q〉 & Π, Q)

(builtin)
eval(op(vn)) = v

(〈p;C[op(vn)]; q〉 & Π, Q)
τ→ (〈p;C[v]; q〉 & Π, Q)

(fun)
f(Xn) → e. ∈ pgm

(〈p;C[f(vn)]; q〉 & Π, Q)
τ→ (〈p;C[ê{Xn �→ vn}]; q〉 & Π, Q)

(match)
∃σ. pσ = v

(〈p;C[p = v]; q〉 & Π, Q)
τ→ (〈p; (C[v])σ; q〉 & Π, Q)

(case)
match(v , cl) = (e, σ)

(〈p;C[case v of cl end]; q〉 & Π, Q)
τ→ (〈p; (C[e])σ; q〉 & Π, Q)

(receive)
matchrec(q, cl) = (e, σ, q′)

(〈p;C[receive cl end]; q〉 & Π, Q)
τ→ (〈p; (C[e])σ; q′〉 & Π, Q)

(spawn)
p′ is a fresh pid

(〈p;C[spawn(f, vn)]; q〉 & Π, Q)
τ→ (〈p;C[p′]; q〉 & 〈p′, f(vn), [ ]〉 & Π, Q)

(send)
v1 = p′ ∈ Pid ∧ add msg(p, p′, v2, Q) = Q′

(〈p;C[v1 ! v2]; q〉 & Π, Q)
τ→ (〈p;C[v2]; q〉 & Π, Q′)

(sched)
(p, p′) ∈ sched(Π, Q) ∧ delivery(p, p′, Π, Q) = (Π′, Q′)

(Π, Q)
α→ (Π′, Q′)

Fig. 3. Concrete semantics

The operational semantics is defined by the labelled transition relation →
shown in Fig. 3. Here, we use the notation 〈p; e; q〉 & Π to denote an arbitrary
pool of processes that contains the process 〈p; e; q〉. The initial system has the
form (〈p0; e; [ ]〉, [ ]). Most rules are self-explanatory. Let us just explain the more
involved ones:

In rule builtin, we assume a function eval that evaluates all built-in’s without
side effects (i.e., arithmetic or relational expressions, etc.).

In rule fun, we assume that the program pgm is a global parameter of the tran-
sition system. Moreover, we let ê denote a copy of e with local variables renamed
with fresh names. The notation {Xn �→ vn} denotes a substitution binding vari-
ables X1, . . . , Xn to values v1, . . . , vn. The application of a substitution σ to an
expression e is denoted by eσ.

In rule case, we assume an auxiliary function match that takes a value v and
the clauses p1 when g1 → e1; . . . ; pn when gn → en and returns a pair (ei, σ) if i
is the smaller number such that piσ = v and eval(giσ) = true.

The case of rule receive uses a similar auxiliary function matchrec that takes
a mailbox queue q and the clauses cl, determines the first message v such that
match(v, cl) = (e, σ), and returns (e, σ, q′), where q′ is obtained from q by delet-
ing message v.

In rule send, the message is stored in the system mailbox, together with the
source and target pids, using the auxiliary function add msg , whose definition is
straightforward. Note that the message is not actually delivered to the process
with pid p′ until the sched rule is applied (see below).
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Finally, rule sched uses the auxiliary function sched to model a particular
scheduling policy. Basically, it selects two pids (p,p′) from Π (source and target
processes, which might be the same) such that (p,p′, q) ∈ Q and q is not empty.
Then, function delivery moves the first message of q to the local mailbox of the
process with pid p′, thus returning a new pair (Π ′,Q′).

Observe that all rules are labeled with τ except for the last one. This is
explained by the fact that we are interested in a particular type of computations
that we call normalized computations. In the following, given a state s, we denote
by s↓τ the state that results from s by only applying transitions labeled with
τ until no more transitions labeled with τ are possible, i.e., if s ≡ s0

τ→ s1
τ→

. . .
τ→ sn 	 τ→, then s↓τ= sn.

Definition 1 (Normalized Computation). Let s0 be the initial system. Then,
we say that a computation is normalized if it has the form
s0

τ ∗→ s0↓τ α→ s1
τ ∗→ s1↓τ α→ s2

τ ∗→ s2↓τ α→ s3 . . .

In the following, we only consider normalized computations in order to reduce
the search space.

Example 2. Consider again the program of Ex. 1. A computation with this pro-
gram is shown in Fig. 4, where the expression selected for reduction is underlined.

(〈p0; start(1); [ ]〉, [ ])
τ→ (〈p0;S = self(), C = spawn(client, [1, S]), server(1); [ ]〉, [ ])
τ→ (〈p0;S = p0, C = spawn(client, [1, S]), server(1); [ ]〉, [ ])
τ→ (〈p0; p0, C = spawn(client, [1, p0]), server(1); [ ]〉, [ ])
τ→ (〈p0;C = spawn(client, [1, p0]), server(1); [ ]〉, [ ])
τ→ (〈p0;C = p1, server(1); [ ]〉 & 〈p1; client(1, p0); [ ]〉, [ ])
· · ·
τ→ (〈p0; receive . . . end; [ ]〉 & 〈p1; receive . . . end; [ ]〉, [(p1, p0, [{p1, 1}])])
α→ (〈p0; receive . . . end; [{p1, 1}]〉 & 〈p1; receive . . . end; [ ]〉, [(p1, p0, [ ])])
τ→ (〈p0; p1 ! last; [ ]〉 & 〈p1; receive . . . end; [ ]〉, [(p1, p0, [ ])])
τ→ (〈p0; last; [ ]〉 & 〈p1; receive . . . end; [ ]〉, [(p1, p0, [ ]), (p0, p1, [last])])
α→ (〈p0; last; [ ]〉 & 〈p1; receive . . . end; [last]〉, [(p1, p0, [ ]), (p0, p1, [ ])])
τ→ (〈p0; last; [ ]〉 & 〈p1; case last of . . . end; [ ]〉, [(p1, p0, [ ]), (p0, p1, [ ])])
τ→ (〈p0; last; [ ]〉 & 〈p1; ok; [ ]〉, [(p1, p0, [ ]), (p0, p1, [ ])])

Fig. 4. Computation for the program of example 1

4 Symbolic Execution Semantics

In this section, we introduce a symbolic execution semantics for Erlang. Firstly,
one could consider the semantics in Fig. 3 and just define a function sched that
returns all feasible combinations of processes in the considered system. This is
useful to explore all possible schedulings and detect errors (e.g., deadlocks) that
only occur in a particular scheduling. This is the aim, e.g., of the model checker
McErlang [7]. Basically, McErlang is today a mature tool that combines the use
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of random test cases (using, e.g., a tool like QuickCheck [2]) with a semantics
that explores possible schedulings.

Here, we plan to also cope with missing input data (analogously to the tool
Java Pathfinder [12] for model checking of Java bytecode). Our symbolic systems
are now triples of the form (Π,Q, C), where the new element C is the so called path
constraint (initialized to true). Loosely speaking, C contains some constraints on
the symbolic values that represent the missing input data, such that the system
(Π,Q) is reachable (using the concrete semantics) when the input data in the
initial system satisfies the constraint C.

(seq)
(〈p;C[p, e]; q〉 & Π, Q, C) τ→ (〈p;C[e]; q〉 & Π, Q, C)

(self)
(〈p;C[self()]; q〉 & Π, Q, C) τ→ (〈p;C[p]; q〉 & Π, Q, C)

(builtin1)
eval(op(vn)) = v

(〈p;C[op(vn)]; q〉 & Π, Q, C) τ→ (〈p;C[v]; q〉 & Π, Q, C)

(builtin2)
∃i. pi is not a value, X is a fresh variable

(〈p;C[op(pn)]; q〉 & Π, Q, C) τ→ (〈p;C[X]; q〉 & Π, Q, C ∧ (X = op(pn))

(fun)
f(Xn) → e. ∈ pgm

(〈p;C[f(pn)]; q〉 & Π, Q, C) τ→ (〈p;C[ê{Xn �→ pn}]; q〉 & Π, Q, C)

(match)
∃σ. p1σ = p2σ

(〈p;C[p1 = p2]; q〉 & Π, Q, C) τ→ (〈p; (C[p2])σ; q〉 & Π, Q, C)

(case)
(e, σ, C′) ∈ unify(C, p, cl), C′′ = σ̂ ∧ C′

(〈p;C[case p of cl end]; q〉 & Π, Q, C) τ→ (〈p; (C[e])σ; q〉 & Π, Q, C ∧ C′′)

(receive)
(e, σ, q′, C′) ∈ unifyrec(C, q, cl), C′′ = σ̂ ∧ C′

(〈p;C[receive cl end]; q〉 & Π, Q, C) τ→ (〈p; (C[e])σ; q′〉 & Π, Q, C ∧ C′′)

(spawn)
p′ is a fresh pid

(〈p;C[spawn(f, pn)]; q〉 & Π, Q, C) τ→ (〈p;C[p′]; q〉 & 〈p′, f(pn), [ ]〉 & Π, Q, C)

(send)
v = p′ ∈ Pid ∧ add msg(p, p′, p, Q) = Q′

(〈p;C[v ! p]; q〉 & Π, Q, C) τ→ (〈p;C[p]; q〉 & Π, Q′, C)

(sched)
(p, p′) ∈ sched(Π, Q) ∧ delivery(p, p′, Π, Q) = (Π′, Q′)

(Π, Q, C) α→ (Π′, Q′, C)

Fig. 5. Symbolic execution

An Overapproximation. First, we consider that symbolic execution must over-
approximate the concrete semantics. This is useful, e.g., in the context of partial
evaluation or when a property that holds for all states must be verified. The
symbolic execution semantics is shown in Fig. 5. Let us briefly explain the main
differences w.r.t. the concrete semantics:

Rule builtin considers now two cases: builtin1, which is equivalent to the pre-
vious rule in the concrete semantics, and builtin2 that considers the case when
some argument is not a value. In the latter case, the built in function cannot
be evaluated and we reduce it to a fresh variable and add the corresponding
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constraint to the system. E.g., given the expression 3+Y , we reduce it to a fresh
variable X and add the constraint X = 3 + Y to the system constraint.

Rule fun remains unchanged. Applications of the form X(p1, . . . , pn) are not
considered since it would involve calling every function and built-in of the pro-
gram to keep the symbolic execution complete, which is not acceptable. If such
an expression is reached, we give up and stop symbolic execution with a failure.

Rule match is similar to the original rule in the concrete semantics but
replaces matching with unification. Analogously, rules case and receive mainly
replaces the auxiliary functions match and matchrev with unify and unifyrev
where unification replaces matching as follows. Function unify takes a constraint
C, a pattern p and the clauses p1 when g1 → e1; . . . ; pn when gn → en and returns
a triple (ei, σ, C′) for each i such that piσ = pσ (i.e., σ is a unifier of pi and p) and
C ⇒ ¬giσ cannot be proved (i.e., the unsatisfiability of giσ cannot be proved);
here, C′ is the constraint C ∧ giσ (when giσ is different from true). Function
unifyrec proceeds analogously. Note that we also add the computed unifier to
the path constraint (where σ̂ denotes the equational representation of a substi-
tution σ). This will be required in the next section. The new functions return
a set since the pattern might unify with more than one clause whose guard is
also satisfiable. Note that this strategy is complete but typically not sound since
(besides the limitations of the constraint solver) we might follow several paths
while the original, concrete semantics only considers the first clause even if a
value matches several clauses.

Rule spawn, analogously to the case of rule fun, does not consider an expres-
sion like spawn(X, [pn]), which will be considered a failure. A similar situation
happens with rule send. Here, we consider the case where the message is a pattern
and, thus, might be a variable. However, we do not consider that the pid of the
target process is a variable, since it would involve broadcasting the message to
all processes to keep the symbolic execution complete, which is not acceptable.

Finally, rule sched just considers a scheduling function sched that returns all
possible combinations in order to explore all feasible schedulings.

We assume that the system constraint is checked for unsatisfiability at every
step. When unsatisfiability cannot be proved we continue with the symbolic
execution (which is complete, but a potential source of unsoundness).

As in the previous case, only normalized symbolic executions are considered.

Example 3. Consider again the program of Ex. 1. Now, Fig. 6 shows a normalized
symbolic execution starting with an unknown number K of maximum requests.

An Underapproximation. So far, we have put the emphasis on completeness (i.e.,
producing an overapproximation of the original Erlang computations). For this
purpose, we had to take a number of decisions that make the resulting search
space too huge to scale to real world Erlang applications with thousands or
millions of processes. Moreover, there are a number of situations in which we
have to give up (i.e., variable applications, process spawning with an unknown
function or sending a message to an unknown pid) because dealing with them is
simply intractable.
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(〈p0; start(K); [ ]〉, [ ], true)
τ→ (〈p0;S = self(), C = spawn(client, [1, S]), server(K); [ ]〉, [ ], true)

. . .
α→ (〈p0; receive . . . end; [{p1, 1}]〉 & 〈p1; receive . . . end; [ ]〉, [(p1, p0, [ ])], true)
τ→ (〈p0; p1 ! ok, server(K); [ ]〉 & 〈p1; receive . . . end; [ ]〉, [(p1, p0, [ ])], 1 < K)
τ→ (〈p0; ok, server(K); [ ]〉 & 〈p1; receive . . . end; [ ]〉, [(p1, p0, [ ]), (p0, p1, [ok])], 1 < K)
τ→ (〈p0; receive . . . end; [ ]〉 & 〈p1; receive . . . end; [ ]〉, [(p1, p0, [ ]), (p0, p1, [ok])], 1 < K)
. . .

Fig. 6. Partial symbolic execution for the program of example 1

As an alternative, we propose in this section a sound symbolic execution that
computes an underapproximation of the concrete semantics. This is useful for
many applications (like test case generation or model checking), and it is often
more scalable and avoids false positives. Here, we follow the approach of [8,13]
to so called concolic execution and consider the following scheme:

Processes are slightly extended as follows: 〈p, ec, es, q〉, where p is a pid, ec is a
concrete expression, es is a symbolic expression, and q is the mailbox queue. The
symbolic expression is only used to compute the corresponding path constraint.

Now, one starts the execution with a random test input data and execute
the program using basically the symbolic execution semantics of Fig. 5 using an
initial system like 〈p0, start(1), start(K), [ ], true〉.

Then, when the computation terminates, we produce a sequence of the form
E0, E1, E2, . . . , En where each Ei is either a constraint Ci (associated to the i-th
computation step) or the symbol α denoting one application of the sched rule.
We now traverse this sequence starting from the last element and either negate
a constraint or consider alternative schedulings, depending on the type of the
considered element. In the case of a negated constraint, we use a constraint
solver to produce a new set of input data. Either way, a new concolic execution
is considered and the process starts again. Usually, backtracking can be used to
explore all possibilities.

If the algorithm terminates and the constraint solver is always able to gen-
erate a new set of input data, concolic execution is both sound and complete;
otherwise, it is only sound (an underapproximation). Termination can be ensured
using, e.g., a maximum depth for symbolic execution.

Example 4. Consider again the program of Example 1 and the initial call start(1).
The initial system is thus (〈p0, start(1), start(K), [ ]〉, [ ], true). Here, we would
basically perform the same computation shown in Example 2 but using the rules
of Fig. 5 to also obtain the following sequence of constraints and scheduling
steps: (α, 1 >= K) (only the constraints relevant to the symbolic input data,
K, have to be considered). Now, by negating the constraint 1 >= K, we produce
a new value, e.g., K = 5, and consider a new symbolic execution starting from
the system (〈p0, start(5), start(K), [ ]〉, [ ], true). Finally, one should consider
alternative schedulings (because we reach a symbol α) but no alternative exists.
Therefore, we conclude that executing start(1) and start(5) is sufficient to cover
all possible execution paths for the source program.
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5 Discussion

In this paper, we have introduced a high-level concrete semantics for the func-
tional and concurrent language Erlang, and have explored the definition of an
associated symbolic execution technique. We proposed both an overapproxi-
mation and an underapproximation—based on a variant of symbolic execution
called concolic execution—. In principle, it seems that the underapproximation
will be more practical and scalable in order to design a tool for model checking
and/or test case generation. We are only aware of the approach of [3] to symbolic
execution in Erlang, though no formalization is introduced in this paper (it is
only explained informally). Hence we think that our approach is a promising
step towards defining a practical symbolic execution technique for Erlang, which
can be used in different contexts like model checking or test case generation.
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Abstract. In model checking, abstractions can cause spurious results,
which need to be verified in the concrete system to gain conclusive results.
Verification based on multi-valued model checking can distinguish con-
clusive and inconclusive results, while increasing precision over tradi-
tional two-valued over- and under-abstractions. This paper describes the
theory and implementation of multi-valued model checking for Promela
specifications. We believe our tool Bonsai is the first four-valued model
checker capable of multi-valued verification of parallel models, i.e. con-
sisting of multiple concurrent processes. A novel aspect is the ability to
only partially abstract a model, keeping parts of it concrete.

1 Introduction

The ubiquitous problem of state space explosion, i.e. a combinatorial blow-up of
behaviour, is a central theme in the verification of systems. While abstraction
can reduce the impact of state space explosion, it can also introduce spurious
results [5]. By combining over- and under-abstraction, it is possible to identify
abstract behaviour which is guaranteed to match the concrete behaviour of the
system. This can be implemented using three-valued semantics [2,15]: properties
can be either true, false, or unknown; any result which would have been spurious
in the over- or under-abstraction is represented by the unknown value.

An elegant way to model abstract transitions is to use a four-valued logic [1].
The truth values of the logic form a bilattice [8], the elements of which are in
both a truth ordering and an orthogonal information ordering. Operations of
the logic map to operations over the truth ordering, while abstractions of the
system can be mapped to operations over the information ordering. An added
benefit of this strong relation between the logic and truth ordering is a natural
definition of existing temporal logics in terms of lattice operations [3,16]. These
definitions can be reused for other multi-valued logics [11], conceivably resulting
from new abstraction or modelling techniques.

Techniques based on a four-valued logic have been successfully used in sym-
bolic trajectory evaluation for verification of logical circuits [17], and abstract
model checking of software [13]. In this paper we are interested in applying the
multi-valued approach to concurrent software systems, for which to our knowl-
edge there are no tools available at this point. We generalise the abstraction
technique used in [12] to use operations in the information ordering of the bilat-
tice, and implement this technique in a tool for concurrent processes.
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DOI: 10.1007/978-3-662-46823-4 29
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Since we prefer to extend on existing work, we focus on concurrent Promela
models as used by the SPIN [14] model checker. For these models we implement
four-valued abstraction, combining two-valued over- and three-valued under-
abstraction, in a tool called Bonsai. Abstractions are constructed using predicate
abstraction [9], which is a special case of abstract interpretation [6].

The implementation is written in Java, and based on the SpinJa model
checker [7] and the SMTInterpol satisfiability solver [4]. The two-valued seman-
tics of the SpinJa model checker can be reused by decomposing the four-valued
model checking problem into two, classical, two-valued problems [11] using the
satisfiability solver for abstraction. This method can be extended to model check
other higher-valued logics.

The paper is structured as follows. Section 2 gives an introduction to multi-
valued model checking; it shows the four-valued logic used in our abstraction,
a method for constructing the multi-valued abstraction, and the decomposition
applied by our tool. In Sect. 3 we detail the implementation and show that the
decomposed problems can share results: it is not required to calculate two com-
pletely separate abstractions to get a multi-valued result. Section 4 demonstrates
the tools effectiveness at some typical examples for abstraction, while in Sect. 5
we conclude and consider future applications.

The long term goal of this tool is to investigate four-valued and other higher-
valued logics for concurrent processes. Specifically logics which separately model
steerable and unsteerable non-determinism can prove to be interesting: results
of multi-valued abstract verification could be combined with runtime steering to
guarantee correct execution of software for which verification would otherwise
have been intractable.

2 Multi-valued Model Checking

2.1 Preliminaries

A lattice is a partially ordered (�) set, in which any two elements have a least
upper bound (supremum or join), and a greatest lower bound (infimum or meet).
By induction, a non-empty finite lattice has a join and meet for each subset of
elements. Therefore, the set as a whole is bounded, and has a greatest element
(top or �), and least element (bottom or ⊥).

Lattices can be used to define quasi-boolean algebras which can be applied
when verifying temporal properties. Model checking typically uses classical
boolean logic: transitions between states either exist (are true) or do not exist
(are false); and atomic propositions used by temporal properties either hold for
a state (are true) or do not hold (are false). It is customary to only draw true
transitions in a state space graph; missing transitions are assumed to be false.

The classical boolean logic used to verify properties can be described in the
more general framework of lattice theory: a lattice consisting of two elements,
with true being the supremum, and false being the infimum. The boolean con-
junction and disjunction operations map respectively to the meet (�) and join
(�) of lattice theory.
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In multi-valued model checking, instead of classical boolean logic, more gen-
eral quasi-boolean logics can be used. The truth values of a quasi-boolean logic
are the elements of a finite distributive lattice. Conjunction and disjunction
map to meet (�) and join (�) respectively, while negation (∼) needs to adhere
to De Morgan’s laws and the law of double negation. Distributivity of the lattice
ensures that the meet and join distribute over each other, similar to conjunction
and disjunction in classical boolean logic.

The strong relation between boolean operations and lattice operations ensures
that the verification of temporal properties remains the same for different quasi-
boolean logics. Classical definitions of temporal properties can easily be trans-
lated to lattice operations, and are then applicable to the more general class of
quasi-boolean logics instead of just classical boolean logic.

2.2 A Lattice for Under- and Over-Abstraction

We can use a quasi-boolean logic, based on a lattice, to model both under-
and over-abstraction at the same time. The interlaced bilattice [8] used for this
purpose in [12] not only defines the required truth ordering of the logic, but
also an orthogonal information ordering; see Fig. 1a. As a consequence of this
additional ordering, the � and ⊥ elements should not be interpreted as the top
and bottom of the logic: they are used to model the top and bottom of the
information ordering.

One way to characterise the additional two truth values is to interpret bottom
(⊥) as neither true nor false, and top (�) as both true and false. In other words,
the elements of the information ordering can be seen as sets, which can contain
an item for truth (t) and an item for falsity (f). Truth values no longer map to a
single items of the set {t, f}, as is the case for classical logic, but to its subsets.
This allows for values which contain none (⊥) or both (�) of the elements in
{t, f}, as can be seen in Fig. 1b.

We can apply this interpretation to the atomic propositions and transitions
of a transition system, and by extension to temporal properties evaluated over
this system. Each of these concepts can be modelled using the same four-valued

Fig. 1. Multi-valued lattice for under- and over-abstraction
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logic, but this does not mean that all truth values are meaningful for every
context. Depending on the context, some values should not occur.

Atomic propositions can be true (t), false (f) or unknown (⊥). The unknown
value for a proposition is represented as the absence of knowledge by using the
bottom element of the information ordering (⊥). It can be used to express a
loss of information due to abstraction: we conclude neither true nor false for an
atomic proposition which has been assigned this value. Conversely, the value top
(�) will never be assigned to a proposition, since atomic propositions cannot be
both true and false at the same time.

Transitions can be may transitions (⊥), must transitions (�), both (t), or
neither (f). This requires a more general definition of may and must transitions
than is used by modal transition systems which only recognise must transitions
as a subset of may transitions (e.g. [10]). We define may transitions as those
transitions that are at least not false (i.e. of value ⊥ or t), and must transitions
as those transitions that are at least true (i.e. of value � or t). The use of the top
(�) value allows us to express that for a set of states, some states are reachable
while others are not.

By extension of the atomic propositions and transitions of the system we
can evaluate temporal properties over the system. Temporal properties use the
same values as atomic propositions: true (t), false (f) or unknown (⊥). Similar
to atomic propositions they express a property of a state: the reachability of
behaviour from said state. Even though transitions can take on the value top
(�), this value should never result in a temporal property of the same value: a
temporal property cannot be both true and false at the same time.

Note that while bottom and top behave similarly in the logic, i.e. when only
using operations on the truth ordering, they are not interchangeable when taking
into account operations on the information ordering, which we will be using when
constructing abstractions. It is however possible to obtain a similar construction
if also the operations used for the abstraction method are interchanged.

2.3 Multi-valued Abstraction

Using the notion of an information ordering, it is no longer necessary to sep-
arately reason about under- and over-abstraction. It is possible to use a single
generic multi-valued method of abstraction which captures both types of abstrac-
tion using operations on the information ordering. For this purpose we will be
using the meet (⊗) and join (⊕) operations on the information ordering. See
Fig. 1b for an overview of the operations on the truth and information ordering.

Assume we have defined equivalence classes over a set of concrete states
of a Kripke structure, e.g. using predicates. Figure 2a shows a concrete example
system: source states are on the left and destination states on the right. The lines
are used to indicate how predicates divide the concrete states into equivalence
classes. An abstract state is formed by those concrete states which have the
same evaluation for all predicates. To complete the abstraction we want to lift
the transitions between concrete states to transitions between abstract states.
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Fig. 2. Abstraction with individual abstract states

Our abstraction method to lift transitions starts by applying an induction
hypothesis. It is assumed that we are able to correctly express the behaviour
of the abstract destination states; therefore, we can replace any transition to a
concrete state by a transition to the abstract state it belongs to. The results
are shown in Fig. 2b. The induction hypothesis ensures that we do not have to
differentiate between constituent states of the abstract destination state, and
any possible loss of information is caused solely by the abstraction of behaviour
for the abstract destination state.

To complete the induction hypothesis, we need to determine the behaviour
of the abstract source state. For this purpose we calculate the consensus of the
concrete source states on the reachability of specific abstract destinations; we
do this by using the meet of the information ordering (⊗). Stated differently,
since we will lose the ability to differentiate between concrete source states for a
given abstract source state, the best we can do is to describe the behaviour they
agree on. In the example of Fig. 2b each abstract destination state is reachable
(t) by one concrete source state, and unreachable (f, not drawn) by the other.
This gives us the value bottom (t ⊗ f = ⊥) for each abstract destination state,
as can be seen in Fig. 2c above.

Fig. 3. Abstraction with a set of abstract states

This method in itself would be sufficient to create a multi-valued abstract
model, a model containing aspects of both under- and over-abstraction, but
we can do better. To increase precision we can merge abstract states by using
the meet operator of the information ordering (⊗). Take two or more abstract
destination states that have different valuations for one or more properties and
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combine their valuations using the meet operator. The result is a merged abstract
state with the value bottom (⊥) for any predicate the original abstract states did
not agree on. It models the possibility of these predicates being either true or
false: their actual value is unknown.

Using these merged abstract states, we can model the reachability of sets of
abstract states. While concrete source states might not agree on the reachability
of individual abstract destination states, they could still agree on the reachabil-
ity of a set of abstract destination states. We create sets by merging abstract
states, with the provision that the resulting sets are limited to a cartesian prod-
uct of predicate values by construction. Transitions to merged abstract states
model whether any individual abstract state in the set is reachable, but without
specifying which particular states are reachable.

To calculate the correct value of a transition from a concrete state to a set of
abstract states, we combine the information of the states in the set using the join
operator of the information ordering (⊕). Since we are interested in the reacha-
bility of the set of abstract states as a whole, we want to aggregate the knowledge
we have for reachability of the individual abstract states. This can be contrasted
to the meet operator of the information ordering (⊗) which calculates the consen-
sus. In Fig. 3b it can be seen how this gives us the value top (t⊕ f = �), since the
merged abstract state contains both reachable and unreachable abstract states.

The behaviour of abstract source states is calculated in the usual manner,
using the meet operator (⊗). This also applies to sets of abstract source states,
since we cannot distinguish between abstract source states in a set any more
than we can distinguish between concrete states in an abstract state. The best
we can do is to describe the behaviour the abstract source states in the set agree
on. Figure 3c shows how this results in top (� ⊕ � = �) for the case of a single
abstract source state as used in the example.

We can generalise the abstraction method by considering individual abstract
states as sets containing just one abstract state. The resulting generic method con-
structs a multi-valued abstract system with transitions between sets of abstract
states.

The generic method can be summarised as follows. Start by calculating the
reachability of abstract destination states from concrete source states. Subse-
quently use the join operator (⊕) to aggregate all transitions to members of the
abstract destination set. Finally use the meet operator (⊗) to reach consensus
for all concrete states contained by members of the abstract source set. Repeat
the last two steps for other abstract source and destination sets.

2.4 Multi-valued Through Classical Model Checking

A multi-valued model checking problem can be reduced to multiple classical
model checking problems [11]. This is done by identifying the join-irreducible
elements J in the lattice of truth values. (Join-irreducible elements are those
elements, except for the bottom element, which cannot be expressed as the join
of two other elements.) The multi-valued model checking problem for a temporal
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property can then be split into |J | classical model checking problems. For an LTL
property ϕ, a trace π, and the partial lattice ordering �, this gives the following
identity:

[ϕ]π =
⊔
j∈J

(j � ([ϕ]π � j))

All truth values can be expressed as a combination of join operations on join-
irreducible elements, or more precisely as a join of those join-irreducible elements
which are smaller than or equal to that specific truth value. The expression
[ϕ]π � j is either true or false, ensuring that j � ([ϕ]π � j) is either j or false.
The end result is a join over a join-irreducible value smaller than or equal to
[ϕ]π and false otherwise, and since false has no influence on the join operation,
we get [ϕ]π.

The identity above allows us to evaluate inequalities over [ϕ]π and combine
the results, instead of determining [ϕ]π directly. To calculate [ϕ]π � j, the cut
operator ⇑ is introduced [11] to syntactically distribute the inequality over the
temporal property (after which it can be evaluated using classical model checking
over a modified model):

[ϕ ⇑ j]π = [ϕ]π � j

We assume LTL formulas to be in release positive normal form (PNF):

ϕn = true | false | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2 | ϕ1 R ϕ2

This ensures only atomic propositions can be negated, and allows for a simple
reduction. (The implicit universal quantification of an LTL formula could com-
plicate this reduction [11], was it not for the fact that we check for language
emptiness using the negated LTL formula. That is, we apply the reduction to
the negated LTL formula in PNF.)

true ⇑ j = t � j false ⇑ j = f � j

p ⇑ j = p � j ¬p ⇑ j = ¬p � j

(ϕ ∧ ψ) ⇑ j = (ϕ ⇑ j) ∧ (ψ ⇑ j) (ϕ ∨ ψ) ⇑ j = (ϕ ⇑ j) ∨ (ψ ⇑ j)
(ϕ U ψ) ⇑ j = (ϕ ⇑ j) U�j (ψ ⇑ j) (ϕ R ψ) ⇑ j = (ϕ ⇑ j) R�j (ψ ⇑ j)

This reduction leaves us with some inequalities over j, and the operators X�j ,
U�j and R�j . The values of t � j and f � j can be put directly into the property,
while the inequalities p � j and ¬p � j will need to be encoded into the model.
The semantics of the X�j , U�j and R�j operators are identical to their LTL
counterparts for a classical boolean logic by only considering transitions with a
value v � j to be true. Keeping only those transitions in the model allows us to
use the classical X, U and R operators.

In general, we can evaluate the reduced property ϕ ⇑ j for each j ∈ J sepa-
rately, by creating an appropriate transition system for each j ∈ J respectively.
Instead of evaluating ϕ over multi-valued paths, we evaluate ϕ ⇑ j over classical
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paths, by only modelling whether literals and transitions are � j. This is suf-
ficient to evaluate the inequalities and X�j , U�j and R�j operators introduced
by the reduction.

3 Implementation

The theory presented above can be used to implement a multi-valued model
checker by decomposing problems into multiple classical model checking prob-
lems. We implement our multi-valued model checker Bonsai on top of the SpinJa
model checker [7], and use the SMTInterpol satisfiability solver [4] to construct
the decomposition.

3.1 Modifications to SpinJa

To abstract a Promela model with Bonsai, predicates can be added directly to
the Promela specification by using the special type pred. These predicates are
then automatically used during the subsequent abstraction process. For exam-
ple, to add the predicate x < 4 to the specification, we write pred x < 4 in
the declaration list of either the specification itself, or one of its processes. By
allowing declarations in both the specification and its processes, predicates can
be made either global for the whole specification or local to a specific process
type; this allows predicates to reference both global and local variables without
breaking scoping rules. Note that a local predicate can reference global variables.

The version of the SpinJa model checker we use, has been slightly modi-
fied to parse predicates in a similar way to standard variables. In the original
implementation, variables are stored by the SpinJa parser in a VariableStore;
this design is copied to store predicates in a PredicateStore. Predicates in the
PredicateStore can reference variables in the VariableStore, but do not yet have
a variable associated with them for storing the actual value of the predicate. The
PredicateStore simply acts as a bookkeeping device for keeping track of which
predicates have been added to the specification. Together with the introduction
of the pred type, this is the only required modification to the SpinJa model
checker.

3.2 Overview of the Abstraction

Parsing a specification with the modified SpinJa model checker, creates a promela
model containing multiple automata. These automata are object-based represen-
tations of the processes as defined in the Promela specification. Since automata are
a type of program graph, we can use them to create abstract program graphs: one
abstract automata for each concrete automata of the specification. Together they
form an abstract model of the specification with respect to the given predicates.

This abstraction is done in two passes. Before we create the completed
abstract model, we traverse the automata created by SpinJa one transition at
a time. Transitions not influenced by abstraction (e.g. goto’s) are copied directly



Bonsai: Cutting Models Down to Size 369

Fig. 4. An overview of the implementation

into the abstract model, but other transitions (e.g. assignments) require pre-
processing to create a term transition containing the metadata required for static
analysis and abstraction. These term transitions are stored in a separate term
model, which is a kind of scaffolding over the still incomplete abstract model.

The term model has additional facilities for static analysis. In some cases it
is useful to not abstract away from all concrete actions and variables of the orig-
inal specification; for example, we might want to keep variables when they are
part of the control flow. Static analysis can be used to determine which concrete
variables, used by term transitions, need to be kept in the abstract automaton.
Only after static analysis of the term transitions, do we add the actual variables
to the abstract model for tracking concrete variables and predicates. To differen-
tiate between them, all variable names in the abstract model have a prefix with
their type. Predicates additionally have a unique number and a short descriptive
string as a part of their name.

Using the term model we can generate the final over- and under-abstractions
of the specification, which correspond to the two join-irreducible elements of
the four-valued logic. For every term transition in the automaton, we generate
two decision diagrams: one diagram for each abstraction. The diagrams are then
encoded as transitions in an abstract model using only standard Promela if-
statements and assignments. Together with the transitions already present, this
completes the abstract model. For an overview see Fig. 4.

The resulting two abstract models, one for each join-irreducible element, can
be compiled and verified using the default SpinJa tool stack. Each partial result
indicates whether the multi-valued result is larger or equal to one of the join-
irreducible elements. By combining them, we get a multi-valued result of the
complete model checking problem.

3.3 Constructing SMT Terms for Transitions

Promela transitions consist of one or more actions, and each action can be
modelled using two terms: a guard term, and an effect term. See Fig. 5 for
an example of an effect term being constructed from code: type definitions are
shown for completeness. The guard term indicates whether the action is enabled,
while the effect term models the relation between source and destination states.
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Fig. 5. Constructing an effect term

Even though only the first action in a transition is allowed to block, we cannot
ignore the guard terms of the other actions. It depends on whether we are going
to model the actions of a transition separately, or as one big abstract action;
we might need the guard terms to detect blocking of subsequent actions in the
transition, and report an error. The end result for a transition is a list of term
actions, each containing a guard and effect term for the corresponding action.

To create terms for the individual actions we make use of the theories sup-
ported by the SMT solver, in this case the theory of integers. There is, however,
no support for arrays in the solver we use, therefore any array encountered in
the specification needs to be backed by separate term variables for each index;
these are combined using an if-then-else construction based on the index term
to model an array. At the same time we assume abstractions over indices may
be unwanted, and keep track of any terms used as an index. One can argue that
indices are at times part of the control flow of the program, i.e. a defining part
of the program graph, and do not need be abstracted. Static analysis can then
be applied to do a form of taint analysis: any variable used in an assignment to
a concrete variable, also needs to be a concrete variable.

Using concrete values in a term can cause difficulties when abstracting tran-
sitions using the SMT solver. Concrete variables can store a large range of
values; enumerating all of them in the SMT solver can make the abstraction
intractable. As a first step, we ensure that assignments to concrete variables are
never abstracted; such assignments are handled by concrete transitions, since we
can assume that all referenced variables are also concrete. This assumption is
guaranteed by the taint analysis, since concrete information cannot be created
from abstract information.

Mixing concrete and abstract information is only allowed in specific cases.
Either all variables used in a predicate are concrete, making the solution trivial
since we can simply evaluate the predicate at runtime; or we require the concrete
parts of the predicate to be somehow in a bounded domain, making the solution
tractable. This is specifically the case when using a concrete value as the index
of an array.

When constructing term transitions with concrete indices, we keep track of
the possible range of these indices. This ensures that the SMT solver is bounded
when enumerating all possible values of the index. This bound is over the com-
plete expression which is used as an index, and can also be used to detect out-of-
bound conditions. Note that the use of concrete indices is useful when predicates
reference specific indices in an array, but should only be used for small arrays,
lest the abstraction would become intractable.
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3.4 Abstracting SMT Terms Using Predicates

Given a list of term actions for a concrete transition, we want to generate an
over- and under-abstraction of this transition. Each term action contains a guard
and effect term. Since a guard is a simple boolean expression, we can easily
over- and under-approximate this guard using the SMT solver. This leaves the
effect term, for which we effectively want the following results: for the over-
abstraction, we want to over-approximate the post-image of each abstract pre-
state; and for the under-abstraction, we want to under-approximate the pre-
image of each abstract post-state. While the over-approximation poses no prob-
lems, since over-approximation is a natural operation for an SMT solver, the
under-approximation is not that straight forward.

We can calculate an under-approximation of a guard term, by negating the
term, over-approximating it, and negating the result. For the effect term we want
to under-approximate the pre-image of a specific abstract post-state; however,
the pre-image is defined only implicitly by the combination of the effect term
and the abstract post-state. As can be seen in Fig. 6, negating the effect term
does not give the desired result, and negating the post-state only works when
the effect relation is total.

One solution is to ensure that the effect relation is total by extending it,
and to rely on an under-approximation of the guard term to filter out unwanted
transitions. Then we could safely negate the post-state to calculate the required
under-approximation of pre-states; however, this use of a guard in combination
with a total function allows for a better solution. When trying to under-abstract
the effect relation, we have the guarantee that all enabled concrete states have
outgoing transitions: the under-approximated guard term reduces the domain of
the effect relation to only enabled states and ensures it is total over this domain.
In addition we only abstract individual deterministic transitions. We can use
these facts to our advantage.

As a consequence of the above, the over- and under-abstraction can share
results of the SMT solver. We start by over-approximating the effect func-
tion, which can be done using a single allSAT call to the SMT solver. This
result can be shared between both abstractions. Next we respectively over- and
under-approximate the guard and subsequently remove these pre-states from the
over-approximation of the effect function. This gives us the two-valued over- and
under-abstraction of the transition.

Fig. 6. Under-abstraction by over-approximation
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For an over-abstraction, the result can be used as-is to generate abstract
transitions. A transition is created for each possible post-state. Pre-states related
to this post-state can be identified using boolean conjunctions; their disjunction
is the first action of the transition, and will act as a guard. The post-state can be
constructed using a series of assignments, which will change the pre-state into
the requested post-state; together with the guard action, these assign actions
complete the transition. The construction of multiple transitions, allows the
model checker to non-deterministically explore all possible post-states during
verification.

For an under-abstraction, the result needs some additional processing. All
post-states reachable from a given pre-state are flattened into a single new post-
state. This is done by combining the predicate values of these post-states: if
the post-states agree on the value of a predicate, that value is used; but if they
disagree, the unknown value is used. This creates the most precise must transition
for a fully specified pre-state, since we only abstract individual deterministic
transitions. To include under-specified pre-states, we flatten sets of existing pre-
states to form new pre-states, while we flatten their respective post-states to
form a new post-state. By relating these new states, we can handle any possible
pre-state in the under-abstraction. This results in a deterministic transition for
each pre-state with outgoing transitions.

Since the method above already supports partial relations, we can further
increase precision by also taking into account the guard term when abstract-
ing the effect relation. We can actually ignore any concrete pre-state, which is
not part of the guard. For an over-abstraction, the guard term can reduce the
number of post-states reachable from a pre-state: removing impossible concrete
transitions can reduce the number of may-transitions. For an under-abstraction,
the guard term can reduce the number of post-states used by the flattening oper-
ations: preventing disagreement on predicate values can increase the amount of
information in states after must-transitions.

3.5 Storing SMT Results in Decision Diagrams

After abstracting the SMT terms, we need to store the results in some way. We
also require support for different kinds of operations on these results, like the
flattening operation described above. For this purpose we use a multi-valued
decision diagram, allowing storage of predicate values and bounded concrete
values. Predicate values are multi-valued: they can be true, false or unknown.
Concrete values need to be part of some, preferably small, domain; this is not
only to prevent large enumerations by the SMT solver, but also to allow tractable
negation of a result, e.g. for under-approximation. Finally we allow for the value
skip, which is used to optimise assignments when predicate values are the same
for both the pre- and post-state.

The diagrams we use are refined in multiple steps: we start by creating a
generic decision diagram, which works for any type of value. It supports simple
operations like union and intersection of diagrams. This is subsequently extended
to a bounded term diagram by storing terms and their bounds at each node.



Bonsai: Cutting Models Down to Size 373

Operations requiring multi-valued term information, like the flatten operation,
are implemented at this level. Relations between sets of states are stored by
creating nested term diagrams, which split the diagram into one outer and mul-
tiple inner diagrams: for each state in the outer diagram it contains an inner
diagram containing related states. Finally we use assign diagrams to optimise
the encoding of the diagram into actual transitions of the model; for example,
values which do not change can be skipped when implementing a transition.

4 Experimental Results

We use two mutual exclusion algorithms to demonstrate our implementation:
Lamport’s bakery algorithm, and Fischer’s algorithm. Both algorithms use
shared memory, and have potentially very large state spaces; they respectively
model ticket numbers and discrete time, which can have domains of arbitrary
size. These algorithms make typical examples for demonstrating the strengths
of abstraction.

In Lamport’s bakery algorithm, a process intending to enter its critical section
picks a ticket number higher than any of the numbers used by other processes.
It then waits until its number is the smallest of the waiting processes before
starting its critical section. Due to concurrency, multiple processes can pick the
same number, in which case the process id’s are used as a tie-breaker.

For Fischer’s algorithm, a single shared variable is used to keep track of
reservations. A process reads the variable, and if it is zero, overwrites it with its
own id. It then reads the variable for a second time, and can enter its critical
section if its identity is still contained by the variable. Since concurrent processes
can overwrite each others values, there is a timing constraint. It is required that
after writing, a process waits a specified time before reading. This wait period
needs to be longer than the time between reading zero and writing an id.

The abstractions used, map ticket numbers and discrete time values to smaller
bounded domains. Enough information is retained to model check the algorithm.
For Lamport’s bakery algorithm, it is sufficient to map the relative ordering of
ticket numbers, instead of their absolute values. Similarly, for Fischer’s algorithm
it is sufficient to keep track of remaining wait time, instead of absolute values of
the clock and timers.

The concrete state spaces can be made arbitrarily large by increasing the
maximum value for tickets or time after which the algorithm halts. In contrast,
the abstract state space has a fixed size, irrespective of these values. In our tests
we demonstrate this effect by varying the maximum value, and showing its effect
on the running time.

Tests are performed on a 2.66 GHz Intel Core 2 Duo, with 4 GB of RAM.
The Java virtual machine is given 2 GB of heap space. Parameters for the SpinJa
model checker are -m1000000 for the search depth and -DNOREDUCE to pre-
vent partial order reduction. For the cases of more than 214 ticket numbers or
clock ticks, we use -m10000000 to increase the depth by a factor of 10 for the con-
crete model. During compilation we use -o3 to disable statement merging. Source
code and model are available at http://www.cs.vu.nl/∼sjj.vijzelaar/spinja/.

http://www.cs.vu.nl/~sjj.vijzelaar/spinja/
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Abstracting the algorithms give typical examples of collapsing a large state
space, an effect which shows clearly in the results (Tables 1 and 2). Parsing and
compiling of the abstract model takes significantly longer than for the concrete
model, since parsing for the abstract model includes the construction of two
abstract models. Any performance lost during construction, however, is easily
gained during model checking. The state spaces of the concrete models grow
with each increase of the model bounds. In the case of Fischer’s algorithm, this
even causes the model checker to run out of memory for more than 215 clock
ticks; the abstract model has no such problem.

Table 1. Verifying Lamport’s bakery algorithm (seconds)

Parse Compile Model checking (numbers)

212 214 216 218

Abstract 12.35 5.81 0.33

Concrete 0.39 1.36 1.64 5.85 23.85 121.61

Table 2. Verifying Fischer’s algorithm (seconds)

Parse Compile Model checking (ticks)

212 213 214 215

Abstract 30.41 8.20 1.47

Concrete 0.36 1.85 11.16 22.58 50.01 108.08

5 Conclusion

This paper gives an overview of the theory required to implement multi-valued
verification on top of a classical two-valued model checker. We have used this
theory to implement four-valued abstract verification using the SpinJa model
checker and SMTInterpol satisfiability solver. By doing so, we can now leverage
the strength of the Promela language in modelling concurrent processes, and
explore the benefits of multi-valued model checking in this context.

As far as we know, this tool is the first to implement multi-valued model
checking of a quasi-boolean logic for concurrent processes. Additionally our
model checker has the ability to apply abstraction to only parts of the con-
crete model. We want to apply these strengths to future research in the areas of
runtime verification and execution steering.
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Abstract. The intention of the note is towards a framework for devel-
oping, studying and comparing observational semantics in the setting
of a real-time true concurrent model. In particular, we introduce trace
and bisimulation equivalences based on interleaving, step and causal net
semantics in the setting of Petri nets with strong timing, i.e. Petri nets
whose transitions are labeled with time firing intervals, can fire only if
their lower time bounds are attained, and are forced to fire when their
upper time bounds are reached. We deal with the relationships between
the equivalences showing the discriminating power of the approaches of
the linear-time – branching-time and interleaving – partial order spectra.
This allows studying in complete detail the timing behaviour in addition
to the degrees of relative concurrency and nondeterminism of processes.

1 Introduction

In the core of every theory of systems lies a notion of equivalence between sys-
tems: it indicates which particular aspects of systems behaviors are considered
to be observable. In concurrency theory, a variety of observational equivalences
have been promoted, and the relationships between them have been quite well-
understood.

In order to investigate the performance of systems (e.g. the maximal time
used for the execution of certain activities and average waiting time for certain
requests), many time extensions have been defined for a non-interleaving model
of Petri nets. On the other hand, there are few mentions of a fusion of timing
and partial order semantics, in the Petri net literature. In [6], processes of timed
Petri nets (under the asap hypothesis) have been defined by an algebra of the
so-called weighted pomsets. The paper [5] has provided and compared timed
step sequence and timed process semantics for timed Petri nets. A method to
compute all valid timings for a causal net process of a time Petri net has been
put forward in [1]. Branching processes (unfoldings) of time Petri nets have been
constructed in [4].
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To the best of our knowledge, the incorporation of timing into equivalence
notions on Petri nets is even less advanced. In this regard, the paper [2] is
a welcome exception, where the testing approach has been extended to Petri
nets with associating clocks to tokens and time intervals to arcs from places to
transitions. Also, it is worth mentioning the paper [3] that compares different
subclasses of timed Petri nets with strong timing semantics on the base of timed
interleaving language and bisimulation equivalences.

The intention of the note is towards developing, studying and comparing
trace and bisimulation equivalences based on interleaving, step, and partial order
(causal net) semantics in the setting of Petri nets with strong timing (elementary
net systems whose transitions are labeled with time firing intervals, can fire only
if their lower time bounds are attained, and are forced to fire when their upper
time bounds are reached).

2 Time Petri Nets

In this section, we define some terminology concerning time Petri nets which
were introduced in [1] and extend elementary net systems with timing constraints
(time intervals) on the firings of transitions.

The domain T of time values is the set of natural numbers. We denote by
[τ1, τ2] the closed interval between two time values τ1, τ2 ∈ T. Infinity is allowed
at the upper bounds of invervals. Let Interv be the set of all such intervals. We
use Act to denote an alphabet of actions.

Definition 1. A (labeled over Act) time Petri net is a tuple T N = ((P , T , F ,
M0, L), D), where (P, T, F,M0, L) is a Petri net with a set P of places, a set T
of transitions (P ∩ T = ∅), a flow relation F ⊆ (P × T ) ∪ (T × P ), an initial
marking ∅ �= M0 ⊆ P , a labeling function L : T → Act, and D : T → Interv is
a static timing function associating with each transition a time interval.

For x ∈ P ∪ T , let •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} be the preset
and postset of x, respectively. For X ⊆ P ∪ T , define •X =

⋃
x∈X

•x and X• =⋃
x∈X x•. For a transition t ∈ T , the boundaries of the interval D(t) ∈ Interv are

called the earliest firing time Eft and latest firing time Lft of t.
A marking M of T N is any subset of P . A transition t is enabled at a marking

M if •t ⊆ M (all its input places have tokens in M), otherwise the transition
is disabled. Let En(M) be the set of transitions enabled at M . We call a non-
empty subset U ⊆ T a step enabled at a marking M , if (∀t ∈ U � t ∈ En(M))
and (∀t �= t′ ∈ U � •t ∩ •t′ = ∅).

Consider the behavior of the time Petri net T N . A state of T N is a triple
(M, I,GT ), where M is a marking, I : En(M) −→ T is a dynamic timing
function, and GT ∈ T is a global time moment. The initial state of T N is a
triple S0 = (M0, I0, GT0), where M0 is an initial marking, I0(t) = 0, for all
t ∈ En(M0), and GT0 = 0.

A step U ⊆ T enabled at a marking M is fireable from a state S = (M, I,GT )
after a delay time θ ∈ T if (∀t ∈ U � Eft(t) ≤ I(t) + θ) and (∀t′ ∈ En(M) �
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I(t′) + θ ≤ Lft(t′)). Let Contact(S) = {t ∈ U | U is a step fireable from a state
S = (M, I,GT ) after some delay time θ ∈ T and (M \ •t) ∩ t• �= ∅)}.

The firing of a step U fireable from a state S = (M, I,GT ) after a delay time
θ leads to the new state S′ = (M ′, I ′, GT ′) given as follows:

(i) M ′ = (M \ •U) ∪ U•,

(ii) ∀t′ ∈ T � I ′(t′) =

⎧
⎨
⎩

I(t′) + θ, if t′ ∈ En(M \ •U),
0, if t′ ∈ En(M ′) \ En(M \ •U),
undefined, otherwise,

(iii) GT ′ = GT + θ.

In this case, we write S
(U,θ)−→ S′, and, moreover, S

(A,θ)−→ S′, if A = L(U) =∑
t∈U L(t). A finite or infinite sequence of the form: S = S0 (U1,θ1)−→ S1 (U2,θ2)−→ S2

. . ., is a step firing sequence of T N from the state S. Then, (U1, θ1) (U2, θ2) . . .
is called a step firing schedule of T N from S. The sequence is an interleaving
firing schedule of T N from S, if |Ui| = 1, for all i ≥ 1. Define the step (inter-
leaving) language of T N as follows: Ls(i)(T N ) = {(A1, θ1) . . . (Ak, θk) | (U1, θ1)
. . . (Uk, θk) is a step (interleaving) firing schedule of T N from the initial state
S0, and Ak = L(Uk) (k ≥ 0)}.

A state S of T N is reachable if it appears in some step firing sequence of T N
from the initial state S0. Let RS(T N ) denote the set of all reachable states of
T N . We call T N T -restricted if •t �= ∅ �= t• for all transitions t ∈ T ; contact-free
if Contact(S) = ∅ for all S ∈ RS(T N ); time-progressive if for every infinite step
firing schedule (U1, θ1) (U2, θ2) (U3, θ3) . . . of T N from some S ∈ RS(T N ),
the series θ1 + θ2 + θ3 + . . . diverges. In what follows, we will consider only
T -restricted, contact-free and time-progressive time Petri nets.

Example 1. Figure 1 shows a time Petri net T N . Both σ = ({t1, t3}, 3) and σ′ =
({t1, t3}, 3)({t2}, 2)({t1, t3}, 2)({t4, t5}, 2) are step firing schedules of T N from

S0 = (M0, I0, GT0), where M0 = {p1, p2}, I0(t) =
{

0, if t ∈ {t1, t3},
undefined, otherwise,

and GT0 = 0. Furthermore, σ̂ = ({t2}, 2)({t1, t3}, 2)({t4, t5}, 2) is a step firing
schedule of T N from S = (M, I,GT ), where M = {p3, p4}, GT = 3, and

T N :

p1 p2

t1, a [2, 3]
t2, a

[2, 4]

t3, b [2, 4]

p3 p4

t4, c [1, 2] t5, d [2, 2]

p5 p6

Fig. 1. An example of a time Petri net
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I(t) =
{

0, if t ∈ {t2, t4, t5}
undefined, otherwise. It is easy to see that T N is really T -

restricted, contact-free and time-progressive.

3 Time Process Semantics

First, consider definitions related to time partial orders.

Definition 2. A (labeled over Act) time partial order is a tuple η = (X,≺, λ, τ)
consisting of a set X; a transitive, irreflexive relation ≺; a labeling function
λ : X → Act; and a timing function τ : X → T such that e ≺ e′ ⇒ τ(e) ≤ τ(e′).
As usual, we write x � y for x ≺ y or x = y. Often ≺ is called a strict partial
order, while � is a partial order, i.e. a reflexive, antisymmetric and transitive
relation.

Time partial order sets over Act, η = (X,≺, λ, τ) and η′ = (X ′,≺′, λ′, τ ′), are
isomorphic (denoted η ∼ η′) iff there is a bijective mapping β : X → X ′ such
that (i) x ≺ y ⇐⇒ β(x) ≺′ β(y), for all x, y ∈ X; (ii) λ(x) = λ′(β(x)) and
τ(x) = τ ′(β(x)), for all x ∈ X. The isomorphic class of a time partial order over
Act, η, is called a time pomset over Act and denoted as pom(η).

Next, define the concept of a time causal net.

Definition 3. A (labeled over Act) time causal net is a finitary, acyclic net
TN = (B,E,G, l, τ) with a set B of conditions, a set E of events, a flow relation
G ⊆ (B × E) ∪ (E × B) such that {e | (e, b) ∈ G} = {e | (b, e) ∈ G} = E, and,
for any b ∈ B, |{e | (e, b) ∈ G}| = |{e | (b, e) ∈ G}| ≤ 1, a labeling function
l : E → Act, and a time function τ : E → T such that e G+ e′ ⇒ τ(e) ≤ τ(e′).
Let τ(TN) = sup{τ(e) | e ∈ E}.
Time causal nets over Act, TN = (B, E, G, l, τ) and TN ′ = (B′, E′, G′, l′,
τ ′), are isomorphic (denoted TN � TN ′) iff there exists a bijective mapping
β : B ∪ E → B′ ∪ E′ such that (i) β(B) = B′ and β(E) = E′; (ii) x G y ⇐⇒
β(x) G′ β(y), for all x, y ∈ B ∪ E; (iii) l(e) = l′(β(e)) and τ(e) = τ ′(β(e)), for
all e ∈ E.

Specify additional notions and notations for a time causal net TN . Let •x =
{y | (y, x) ∈ G} and x• = {y | (x, y) ∈ G}, for x ∈ B ∪ E; •X =

⋃
x∈X

•x and
X• =

⋃
x∈X x•, for X ⊆ B ∪ E; and •TN = {b ∈ B | •b = ∅}, TN• = {b ∈

B | b• = ∅}. Also, ≺= G+ and �= G∗. For a downward-closed (w.r.t. �) subset
E′ ⊆ E, define the set Cut(E′) = (E′• ∪ •TN)\•E′. A downward-closed subset
E′ ⊆ E is called timely sound if τ(e′) ≤ τ(e), for all e′ ∈ E′ and e ∈ E \ E′.
Clearly, η(TN) = (E,≺ ∩(E × E), l, τ) is a time partial order. For x, x′ ∈ B∪E,
x � x′ ⇐⇒ ¬((x ≺ x′) ∨ (x′ ≺ x) ∨ (x = x′)) (concurrency). A subset
∅ �= E′ ⊆ E is a step of TN iff e � e′ and τ(e) = τ(e′), for all e, e′ ∈ E′. In
this case, let τ(E′) = τ(e) for some e ∈ E′. An s-linearization of a time causal
net TN is a finite or infinite sequence ρ = V1V2 . . . of steps of TN , such that
every event of TN is included in the sequence exactly once, and both causal and
time orders are preserved: (ei ≺ ej ∨ τ(ei) < τ(ej)) ⇒ i < j, for all ei ∈ Vi
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and ej ∈ Vj (i, j ≥ 1). An s-linearization ρ of TN is called an i-linearization of
TN , if |Vi| = 1, for all i ≥ 1. For an s-linearization ρ = V1V2 . . . of TN , define
Ek

ρ =
⋃

1≤i≤k Vi (k ≥ 0). Clearly, Ek
ρ is a downward-closed subset of E.

Given time causal nets TN = (B,E,G, l, τ), T̂N = (B̂, Ê, Ĝ, l̂, τ̂) and TN ′ =
(B′, E′, G′, l′, τ ′), TN is a prefix of TN ′ (denoted TN −→ TN ′) if B ⊆ B′, E is a
finite, downward-closed and timely sound subset of E′, G = G′ ∩(×E∪E × B),
l = l′ |E , and τ = τ ′ |E ; T̂N is a suffix of TN ′ w.r.t. TN if Ê = E′ \ E,
B̂ = B′ \ B ∪ TN•, Ĝ = G′ ∩ (B̂ × Ê ∪ Ê × B̂), l̂ = l′ |Ê , and τ̂ = τ ′ |Ê . We

write TN
T̂N−→ TN ′ iff TN −→ TN ′ and T̂N is a suffix of TN ′ w.r.t. TN .

We are now ready to define the notion of a time process of T N enabled at
some marking.

Definition 4. Given a time Petri net T N = (P, T, F, M0, L, D) with its
marking M , a pair π = (TN,ϕ) with a time causal net TN = (B, E, G, l, τ)
and a mapping ϕ : B ∪ E → P ∪ T is a time process of T N enabled at M iff
the following conditions hold:

– ϕ(B) ⊆ P , ϕ(E) ⊆ T ,
– the restriction of ϕ to •e is a bijection between •e and •ϕ(e) and the restriction

of ϕ to e• is a bijection between e• and ϕ(e)•, for all e ∈ E,
– the restriction of ϕ to •TN is a bijection between •TN and M ,
– l(e) = L(ϕ(e)), for all e ∈ E.

We use EN (T N ) (EN (T N ,M)) to denote the set of time processes of T N
enabled at the initial marking M0 (a marking M).

Given a time process π = (TN,ϕ) ∈ EN (T N ,M), a state S = (M, I,GT )
of T N , and a subset B′ ⊆ BTN , the latest global time moment when tokens
appear in all input places of the transition t ∈ En(ϕ(B′)) is defined as follows:

TOEπ,S(B′, t) = max
(
{τTN (•b) | b ∈ B′

[t] \ •TN} ∪ {GT}
)
,

where B′
[t] = {b ∈ B′ | ϕTN (b) ∈ •t}, GT = GT − I(t), if B′

[t] ⊆ •TN , and
GT = GT , otherwise. Notice that the above is an extension of the definition of
TOE(·, ·) from [1] to the case of time processes of T N enabled at an arbitrary
marking and not only at the initial one.

Definition 5. A time process π = (TN,ϕ) ∈ EN (T N ,M) is fireable from a
state S iff for all e ∈ E it holds:

(i) τ(e) ≥ GT ,
(ii) τ(e) ≥ TOEπ,S(•e, ϕ(e)) + Eft(ϕ(e)),
(iii) ∀t ∈ En(ϕ(Ce)) � τ(e) ≤ TOEπ,S(Ce, t) + Lft(t),

where Ce = Cut(Earlier(e) = {e′ ∈ E | τ(e′) < τ(e)}).

The time process π0 = (TN0 = (B0, ∅, ∅, ∅, ∅), ϕ0) of T N fireable from
the initial state is called the initial time process of T N . We use FI(T N )
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(FI(T N , S)) to denote the set of time processes of T N fireable from the ini-
tial state (a state S ∈ RS(T N )). The pomset language of T N is given by
Lpom(T N ) = {pom(η(TN)) | π = (TN,ϕ) ∈ FI(T N )}.

We now intend to realize for a time Petri net the relationships between its
firing schedules from reachable states and its time processes fireable from the
states. For π = (TN,ϕ) ∈ FI(T N , S), define the function FSπ,S which maps
any s-linearization ρ = V1V2 . . . of TN to the sequence of the form: FSπ,S(ρ) =
(ϕ(V1), τ(V1) − GT ) (ϕ(V2), τ(V2) − τ(V1)) . . ..

Lemma 1. – Given π = (TN,ϕ) ∈ FI(T N , S = (M, I,GT )) and an s(i)-
linearization ρ = V1V2 . . . of TN , FSπ,S(ρ) is a step (interleaving) firing
schedule of T N from the state S.

– For any step (interleaving) firing schedule σ of T N from a state S ∈ RS(T N ),
there is a unique (up to an isomorphism) time process π = (TN,ϕ) ∈
FI(T N , S) such that FSπ,S(ρ) = σ, where ρ is an s(i)-linearization of TN .

Notice that the items of the Lemma are extensions of Theorems 19 and 21 from
[1] to the cases of s-linearizations on time processes of T N fireable from arbitrary
reachable states and step firing schedules of T N from the states.

For π = (TN,ϕ), π′ = (TN ′, ϕ′) ∈ FI(T N ), we write π
π̂=(T̂N,ϕ̂)−→ π′ iff

TN
T̂N−→ TN ′, ϕ = ϕ′|B∪E , and ϕ̂ = ϕ′|B̂∪Ê .

Theorem 1. If π = (TN,ϕ), π′ = (TN ′, ϕ′) ∈ FI(T N ) such that π
π̂−→ π′,

then π̂ = (T̂N, ϕ̂) ∈ FI(T N , S = (M, I,GT )), where M = ϕ(TN•), I(t) ={
τ(TN) − TOEπ,S0(TN•, t), if t ∈ En(M)
undefined, otherwise, and GT = τ(TN).

From now on, we write π
u−→ π′ iff π

π̂−→ π′ and u = pom(η(T̂N)).

Example 2. The time causal net TN ′ = (B′, E′, G′, l′, τ ′) is depicted in
Fig. 2, where the net elements are accompanied by their names, and the values
of the functions l′ and τ ′ are indicated nearby the events. Define the time causal
nets TN = (B, E, G, l, τ), with B = {b1, . . . , b4}, E = {e1, e3}, G = G′ ∩
(B × E ∪ E × B)}, l = l′ |E , τ = τ ′ |E , and T̂N = (B̂, Ê, Ĝ, l̂, τ̂), with
B̂ = B′\B∪{b3, b4}, Ê = E′\E, Ĝ = G′∩(B̂ × Ê∪Ê × B̂), l̂ = l′ |Ê , τ̂ = τ ′ |Ê .

TN :
b2

b1

e3, b

3

e1, a

3

b4

b3

e2, a

5 b8

b7

e7, b

7

e6, a

7

b10

b9

e5, d

9

e4, c

9

b6

b5

Fig. 2. An example of a time causal net
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It is easy to see that TN is a prefix of TN ′, T̂N is a suffix of TN ′ w.r.t. TN ,

and, moreover, TN
T̂N−→ TN ′.

Define a mapping ϕ′ from the time causal net TN ′ to the time Petri net
T N (see Fig. 1) as follows: ϕ′(bi) = pi (1 ≤ i ≤ 6), ϕ′(bi) = pi−6 (7 ≤ i ≤ 10),
and ϕ′(ei) = ti (1 ≤ i ≤ 5), ϕ′(e6) = t1, ϕ′(e7) = t3. Next, for the time causal
nets TN and T̂N , set ϕ = ϕ′ |E∪B and ϕ̂ = ϕ′ |Ê∪B̂ , respectively. Obviously,
π′ = (TN ′, ϕ′) and π = (TN,ϕ) are time processes of T N enabled at M0.

Take S = (M, I,GT ) as specified in Example 1, B̃ = {b3, b4}, and t2 ∈
En(ϕ′(B̃)). Calculate TOEπ′,S(B̃, t2) = max

(
{τTN ′(•b) | b ∈ B̃[t2] \ •TN ′} ∪

{GT}
)

= max
(
{τ ′(e1) = 3, τ ′(e3) = 3} ∪ {3}

)
= 3.

It is not difficult to check that π′ = (TN ′, ϕ′), π = (TN,ϕ) ∈ FI(T N ). For
the s-linearization ρ = {e1, e3} {e2} {e6, e7} {e4, e5} of TN ′, we get FSπ′,S0(ρ) =
σ′ = ({t1, t3}, 3) ({t2}, 2) ({t1, t3}, 2) ({t4, t5}, 2) (see Example 1), in support

of Lemma 1. Furthermore, we can write π
π̂=(T̂N,ϕ̂)−→ π′ because TN

T̂N−→ TN ′,
ϕ = ϕ′ |E∪B and ϕ̂ = ϕ′ |Ê∪B̂ . Then, π̂ ∈ FI(T N , S), due to Theorem 1.

4 Hierarchy of Equivalences

We start with defining interleaving, step and partial order equivalences for time
Petri nets.

Definition 6. Time Petri nets T N and T N ′ labeled over Act are:

– interleaving (step) trace equivalent (denoted T N ≡i(s) T N ′) iff Li(s)(T N ) =
Li(s)(T N ′),

– interleaving (step) bisimilar (denoted T N↔−i(s)T N ′) iff there is a relation
R ⊆ RS(T N ) × RS(T N ′) such that (S0, S

′
0) ∈ R (S0 and S′

0 are the initial
states of T N and T N ′, respectively) and for all (S, S′) ∈ R it holds:

• if S
ω−→ S1 with ω ∈ (Act × T)∗ (with ω ∈ (NAct × T)∗) in T N , then

S′ ω−→ S′
1 in T N ′ and (S1, S

′
1) ∈ R,

• and vice versa,
– pom-trace equivalent (denoted T N ≡pom T N ′) iff Lpom(T N ) = Lpom(T N ′),
– pom-bisimulation equivalent (denoted T N↔−pomT N ′) if there is a relation

R ⊆ FI(T N ) × FI(T N ′) such that (π0, π
′
0) ∈ R (π0 and π′

0 are the initial
time processes of T N and T N ′, respectively) and for all (π, π′) ∈ R it holds:

• if π
u−→ π1 (u is a time pomset over Act) in T N , then π′ u−→ π′

1 in T N ′

and (π1, π
′
1) ∈ R,

• and vice versa.

Finally, we state the relationships between the equivalences.

Theorem 2. Let ↔,�∈ {≡,↔−} and , ∗ ∈ {i, s, pom}. Then,

T N ↔� T N ′ ⇒ T N �∗ T N ′

iff there is a directed path from ↔� to �∗ in Fig. 1.



Comparing Semantics Under Strong Timing of Petri Nets 383

pom

≡pom

s

≡s

i

≡i

Fig. 3. A hierarchy of equivalences

a [0, 0] b [0, 0]

b [0, 0] a [0, 5]

b [0, 5]

T N 1 :

a [0, 0] b [0, 0]

b [0, 0] a [0, 5]

T N 2 :

a [0, 5] b [0, 0]

T N 3 :

a [0, 5] b [0, 0]
b [0, 5]

a [0, 5]

T N 4 :

Fig. 4. Examples of equivalent and non-equivalent time Petri nets

Proof. ‘⇐’ All the implications in Fig. 1 follow from the Definitions, Lemma and
Theorems given above.

‘⇒’ We now demonstrate that it is impossible to draw any arrow from one
equivalence to the other such that there is no directed path from the first equiv-
alence to the second one in the graph in Fig. 3. For this purpose, we contemplate
the time Petri nets depicted in Fig. 4. It is easy to see that T N 1 and T N 2

are ≡pom–equivalent but not ↔−i–equivalent because in T N 2, for example, the
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execution of an action a after time moment 5 is always possible from the state
reachable by the execution of an action b after time moment 0 but it is not the
case in T N 1. Next, T N 2 and T N 3 are ↔−i–equivalent but not ≡s–equivalent
because, for example, in T N 3 the execution of the step consisting of an action a
and b from the initial state after time moment 0 is possible but it is not the case
in T N 2. Finally, T N 3 and T N 4 are ↔−s–equivalent but not ≡pom–equivalent
because, for example, there is a time process of T N 4 fireable from the initial
state where the execution of an action b at time moment 0 causally precedes the
execution of an action a at time moment 5 but it is not the case in T N 3.

References

1. Aura, T., Lilius, J.: Time processes for time Petri nets. In: Azéma, P., Balbo, G.
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Abstract. The probabilistic generalization of formal concept analysis,
as well as it’s comparison to standard formal analysis is presented. Con-
struction is resistant to noise in the data and give one an opportunity to
consider contexts with negation (object-attribute relation which allows
both attribute presence and it’s absence). This generalization is obtained
from the notion of formal concepts with its definition as fixed points of
implications, when implications, possibly with negations, are replaced
by probabilistic laws. We prove such fixed points (based on the prob-
abilistic implications) to be consistent and wherefore determine correct
probabilistic formal concepts. In the end, the demonstration for the prob-
abilistic formal concepts formation is given together with noise resistance
example.

Keywords: Formal concept analysis · Probability · Data mining · Asso-
ciation rules · Noise

1 Introduction

In the formal concept analysis (FCA) [1,2], formal concepts are used as classifi-
cation units. The main task of FCA consists in construction of a complete lattice
of formal concepts. But FCA induces a potentially dreadful combinatorial com-
plexity and the structures obtained even from small-sized datasets can become
prohibitively huge. Noise in data constitutes a primary factor of complication as
it favors the existence of many similar but distinct concepts, which may exces-
sively inflate the lattice with superfluous information that significantly impaired
readability. Hence, the translation of empirical data into clean and relatively
readable structures remains the most important problem. There are some works
where concepts formation considered in the presence of noise [3,4]. But all these
papers base on the complete lattice of formal concepts.

In this paper we consider the problem: is it possible to construct the clean and
relatively readable structure of idealized or refined concepts directly without the
construction of complete lattice of formal concepts. If we consider the complete
lattice of formal concepts as a “photo” of data, then the structure of “idealized”
concepts may be considered as a “picture” of data.

c© Springer-Verlag Berlin Heidelberg 2015
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For solution of this problem we introduce the probabilistic generalization
of formal concepts. The first step was made in [5,6], where the probabilistic
generalization of the formal concepts without negations was developed. Here we
introduce the probabilistic generalization of the formal concepts with negations
for many-valued contexts. For that purpose we utilize, as in [5,6], the definition
of a formal concept in terms of fix-points of implications. Then we define a
probability measure and generalize implications into probabilistic implications,
so that they minimize the intent of concepts and eliminate random attributes.
After that we define a probabilistic formal concept as a fix-point of probabilistic
implications. For that purpose we prove the consistency of these fixed points.
Resulting fixed points don’t directly depend on data and are defined in pure
probabilistic terms and thus produce a “picture” of data. At the end of paper
the results of the experiment that illustrate the formation of probabilistic formal
concepts are presented.

2 Formal Concept Analysis

Here we give a short review of the formal concept analysis. For details we refer to
[1,2]. FCA examines the set of objects G, which have properties from a fixed set
M . We say that “the object g has the property m” by using a relation I ⊆ G×M .

Definition 1. Formal context is a triple (G,M, I), where G and M are sets of
the arbitrary nature and I ⊆ G × M is a binary relation.

On the formal context (or simply context) we define the operation ′ as follows:

Definition 2. A ⊆ G, B ⊆ M , g ∈ G. Then:

1. A′ = {m ∈ M | ∀g ∈ A, (g,m) ∈ I}
2. B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}
3. g′ = {g}′ = {m ∈ M | (g,m) ∈ I}
Definition 3. Pair (A,B) is called a formal concept, if B expresses all common
features for objects in A, and A - objects that have all attributes from B. In other
words, A′ = B and B′ = A.

Here and further we delve a bit into the theory of FCA [1,2,7], but only just as
much as it is necessary for the design of construction, proposed in the article.

Lemma 1. Suppose A1 ⊆ A2 ⊆ G,B1 ⊆ B2 ⊆ M . Then

1. A′
2 ⊆ A′

1, B
′
2 ⊆ B′

1

2. A ⊆ A′′, B ⊆ B′′

3. (A,B) - concept ⇒ B′′ = B.

In fact, usually objects are not formed from attributes in a completely arbi-
trary manner. Attributes form numerous relationships, which can be described
in terms of implications. In definitions below B,C are subsets of attributes ⊆ M .
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Definition 4. Implication is a pair (B,C) which we write as B → C. Implica-
tion B → C is true on K = (G,M, I), if ∀g ∈ G(B � g′ or C ⊆ g′). The set of
all true implications will be denoted as Imp(K).

Definition 5. Implication B → C is called a non-trivial on K, if C � B
and B′ �= ∅. The set of all non-trivial truth implications on K we denote as
ntImp(K).

Definition 6. For any set of implications L we can construct the operator of
direct inference fL that add conclusions of all implications to the set-operand

fL(X) = X ∪ {C | B ⊆ X, B → C ∈ ntImp(K)}
Successively applying the operator of direct inference to any set X, we are grad-
ually approaching it’s closure [1,6].

Definition 7. Operator clL, closing the set X relative to the operator of direct
inference is clL(X) = f∞

L (X).

Theorem 1. For any set B ⊆ M the following is accomplished [2]:

1. fImp(K)(B) = B ⇔ B′′ = B;
2. If B′ �= ∅, then fntImp(K)(B) = B ⇔ B′′ = B.

3 Many-Valued Contexts. Formulae on Binary Contexts

Definitions of the previous section present in a set-theoretical notions about
attributes and objects. In variety of practical problems this hardly limits the
space of possible models and reality interpretations, and sometimes as well -
results [6,8]. This is a case for combinations of attributes and reasoning in terms
of implications [8].

There are several different approaches to extend the I relation. Some classic
examples can be found in [7,8]. In this chapter we enrich contexts, providing for
each pair (g,m) the degree of belonging the attribute to the object.

We extend context I relation with value-dependent component. Let each
attribute m has its own domain Vm. To describe the degree of belonging the
attribute to object we need to know the value v ∈ Vm of the attribute m on
object g. For such value we assume that (g,m, v) ∈ I.

Definition 8. Let G - set of objects and M - set of attributes, and each attribute
has a set of possible attribute values Vm. Many-valued context K is a triple

(G,M, {Im : G → Vm | m ∈ M})

In fact Im(g) maps the object g to value of the attribute m on g. It is not difficult
to envision how the many-valued contexts and ordinary contexts are connected.
Each attribute with its specific value can be considered as a new independent
attribute. That is, for each attribute m, consider the set of pairs (m, v) where
m ∈ M and v ∈ Vm. Relation of the object g to take quality v on m attribute
can now be described as (g, (m, v)) ∈ I.
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Definition 9. As a nominally scaled context of K = (G,M, {Im}) we call
K∗ = (G,M∗,∪I∗

m), where M∗ = {(m, v) | m ∈ M,v ∈ Vm}, and I∗
m =

{(g, (m, v)) | Im(g) = v}. For brevity, we say that g ∈ G has the attribute
mv, if Im(g) = v or, equivalently, (m, v) ∈ g′ within the K∗.

All constructions naturally transeferred to the nominally scaled K∗, as well
as statements and theorems, which are presented in classic analysis of formal
concepts. Particularly we can talk about formal concepts, defined on many-
valued contexts. It is enough to replace occurrences of m by mv in the relevant
cases. Further referring to the classic’s structures on K, we mean exactly the
same constructions relative to K∗. For example,

Definition 10. Formal concept on many-valued context K is a pair (A,B),
where A ⊆ G, B ⊆ M∗, such that (A,B) - formal concept for K∗.

It is natural to consider the proposed structure in the simplest case. In this case,
each attribute we interpret in the form of predicate, identifying the a value of 1
with presence of corresponding attribute and 0 - with its absence.

Definition 11. Binary context is amany-valued context, where ∀m(Vm = {0, 1}).
Here and further m and m stay for (m, 1) and (m, 0) respectively.

Our immediate task is to build on an arbitrary binary context of a formal system
based on the first-order logic.

Definition 12. For a binary contextK = (G,M) define a signature σ = (R,F, ρ):

1. Set of predicates R - precisely the set of all Im, stating the presence of the
corresponding attribute or its negation;

2. Empty set of functional symbols F = ∅ (and so does ρ);

All notions, such as atom, term, letter, formula and so on, are determined
in a classical manner of formal systems. Formula of defined signature operates
with logical connectives &, ∨,→,¬ and predicates. We denote the resulting sets
of atoms, letters, formulae and sentences as At(K), Lit(K), For(K), Sen(K),
respectively.

Basic set D = {g} together with the predicates forms a model, futher labelled
with Kg. The fact of truth of the formula Φ on the model of an object g we denote
as follows: g � Φ ⇔ Kg � Φ. GΦ ⊆ G = {g ∈ G | g � Φ} is called the support for
Φ. If GΦ = G, then Φ - contextual tautology.

Lemma 2. Note that G¬Φ = G \ GΦ, GΦ&Ψ = GΦ ∩ GΨ , GΦ∨Ψ = GΦ ∪ GΨ .

4 Probability and Rules on the Context

Now we need the definition of probability on binary context.
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Definition 13. Consider probability measure μ on the set G in the Kolmogorov
meaning, so G can be interpreted as a set of elementary events. Let us introduce
the contextual probability measure:

ν : For(K) → [0, 1], ν(Φ) = μ(GΦ) = μ({g | g � Φ})

Definition 14. By statistically insignificant objects (subsets) we call g ∈ G
(A ⊂ G) such that μ(g) = 0 (μ(A) = 0). Formula Φ is called a ν-consistent, if
ν(Φ) > 0. Formula Φ is called an almost tautology, if ν(Φ) = 1.

Proposition 1. Context measure ν has the following properties:

1. If Φ - is a classical tautology, then Φ – contextual tautology, ν(Φ) = 1;
2. If ¬(Φ&Ψ) is almost a tautology on K, then ν(Φ ∨ Ψ) = ν(Φ) + ν(Ψ);
3. ν(Φ&Ψ) ≤ ν(Φ).

� 1. Φ - is generally valid, so it is true on any model. In particular, ∀g ∈
G(Kg � Φ), so � Φ. Therefore ν(Φ) = μ({g | g � Φ}) = μ(G) = 1.

2. Remember that ν(Φ ∨ Ψ) = μ(GΦ∨Ψ ) = μ(GΦ ∪ GΨ ). Inclusion-exclusion
principle asserts μ(GΦ ∪ GΨ ) = μ(GΦ) + μ(GΨ ) − μ(GΦ ∩ GΨ ). The last one is
zero due to the fact of ¬(Φ&Ψ) is almost a tautology: μ(GΦ ∩GΨ ) = μ(GΦ&Ψ ) =
ν(Φ&Ψ) = 0. At last, ν(Φ ∨ Ψ) = μ(GΦ) + μ(GΨ ) = ν(Φ) + ν(Ψ).

3. GΦ&Ψ = GΦ ∩ GΨ ⊆ GΦ; due to the axioms of measure: ν(Φ&Ψ) =
μ(GΦ&Ψ ) ≤ μ(GΦ) = ν(Φ). ��

In this section, we always assume that L = Lit(K), K - binary context and
ν - contextual measure on it. We follow the way proposed in [9–11].

Definition 15. For the set of letters M ⊆ L we construct the composition:
&M = &

P∈M
P . For the case of M = ∅ let & M = 1. Similarly, we construct the

negation: ¬M = {¬P | P ∈ M}.
Formulae of the form of simple conjunctions F = mi1&mi2 . . .& mik have one
property that interlinks formulae structure and derivation operator of the classical
FCA. In fact, the carrier GF coincides with {mij}′. In this sense, we can identify
the set of letters with their representation in the form of a set of attributes {mij}.

Moreover, the formula mi1 & mi2 . . . & mik → m = & {mij} → m describes
the same process as the implication on the context in classical sense, ({mij}, {m}).
According to this it is natural to define a class of implications similar to the FCA,
but inside the class of formulae. We call them as rules.

Definition 16

1. Rule is the formula R = (H1&H2 . . . &Hk ⇒ T ), where T,Hi ∈ L, T /∈
{H1,H2, . . . Hk}.

2. For the rule R under head(R) we mean the set {H1,H2 . . . ,Hk}, and tail(R) =
T . If head(R1) = head(R2) and tail(R1) = tail(R2), then R1 = R2.

3. The length of the rule is a power of its premise: len(R) = |head(R)|.



390 E.E. Vityaev and V.V. Martinovich

Definition 17. The probability of the rule R is the value

η(R) = ν(tail(R)|head(R)) =
ν(&head(R)&tail(R))

ν(&head(R))

The rule is global if the expression in the denominator equals to one. If the
expression in the denominator is zero, the probability of rule remains undefined.

Definition 18. Rule R1 is a sub-rule of R2, or R1 is more general then R2, if
head(R1) ⊂ head(R2) and tail(R1) = tail(R2). This fact we denote as R1 � R2.

Definition 19. The rule R1 is a generalization of the rule R2, i.e. R1 � R2,
when R1 � R2 or R1 = R2.

Definition 20. The rule R1 is a refinement of the rule R2, R1 > R2, if R2 � R1

and η(R1) > η(R2).

Theorem 2. Let R is a non-global rule on the context K with measure ν.

1. Probability of R is less or equal of the probability of corresponding implication:

η(R) ≤ ν(head(R) → tail(R))

2. R is almost a tautology if ⇔ η(R) = ν(R) = 1.

� Let H = &head(R), T = tail(R) and consider the difference ν(H)(η(R) −
ν(H → T )). Note that H → T = T∨¬H = (T&H)∨¬H, while (T&H)&¬H = 0.
Hence, by lemma 4, ν(H → T ) = ν(T&H) + ν(¬H). Thus the difference can be
transformed as

ν(H)(η(R) − ν(H → T )) = ν(H&T ) − ν(H&T )ν(H) − ν(¬H)ν(H) =
ν(H&T )ν(¬H) − ν(H)ν(¬H) = −ν(H&¬T )ν(¬H) ≤ 0

Further, equality to 0 is achieved only if ν(H&¬T ) = 0. However, this is
equivalent to the ν(H&T ) = ν(H)−ν(H&¬T ) = ν(H) and η(R) = ν(H&T )

ν(H) = 1.
Here we conclude that R is almost a tautology. ��
Corollary 1. If the measure μ does not permit insignificant objects, then the
set of almost tautologies turns into a set of tautologies, and η(R) = 1 ⇔ R -
contextual tautology.

Definition 21. R is a probability law, if it is a refinement of every of its sub-
rule, i.e. (R′ � R) ⇒ (R > R′).

Now we prove some technical points we need to continue our working with the
rules.

Lemma 3. If addition of the letter H into the premise of the rule R reduces it’s
probability, η(&head(R) & H ⇒ tail(R)) < η(R), then ¬H increases it.
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Lemma 4. For any rule R there exists its generalization R′ such that R′ is
probabilistic law, and ν(R′) ≥ ν(R).

� Consider the set Π = {A | ν(A) ≥ ν(R), A � R}. So as R ∈ Π, then Π �= ∅.
Hence, there is a minimal element in the sense of relation �, call it S = min Π.
Condition 2 of the lemma holds for S by construction of Π.

Suppose S is not a law, i.e. here exists sub-rule S′, such that ν(S′) ≥ ν(S)
and S′ � S, given S � R we conclude that S′ � R. From the other side,
ν(S′) ≥ ν(S) ≥ ν(R), where it follows that S′ ∈ Π, contradicting the minimality
of S. ��

5 Refinement Theorem

Now we apply the proposed in [10,12] technics to defined rules.

Definition 22. Pseudo rule is a formula R = ((P1& . . . &Pk) & ¬(N1& . . . &Ns)
⇒ T ); for pseudo rule R, head(R) = (P1& . . . &Pk) & ¬(N1& . . . &Ns) and
tail(R) = T ; letters Pi we call the positive part of the premise and letters Nj we
call the negative part; probability of the pseudo rule R is the value

η(R) = ν(tail(R)|head(R)) =
ν(&head(R) & tail(R))

ν(&head(R))

Theorem 3. (about refinement) Let S = ((&A)&¬(&B)) ⇒ T ) be a pseudo
rule, R = ((&A) ⇒ T ) the corresponding rule without negative part and moreover
η(S) > η(R). Then for R there is refinement rule R′ > R formed with the help
of the negative part of pseudo rule S.

� For brevity, we denote A = &A, B = &B. Let us write the probability of
pseudo rule S as:

η(S) = ν(T | A & ¬B) = ν(T | A & (¬B1 ∨ . . . ∨ ¬Bm)) (1)

Next we represent the disjunction as disjunction of conjunctions:

¬B1 ∨ . . . ∨ ¬Bm =
i=(1,...,1,0)∨
i=(0,...,0)

(Bi1
1 & . . . & Bim

m )

where 0 in multi-index indicates the presence of negation, and 1 - its absence. All
multi-indices are included in a lexicographic order except for the last (1, . . . , 1),
which corresponds to the conjunction B1 & . . . & Bm.

Then the conditional probability (1) can be rewritten as

η(S) = ν(T | i=(1,...,1,0)∨
i=(0,...,0)

(A & Bi1
1 & . . . & Bim

m )) (2)

Suppose the theorem’s statement is false and any generalization R′ � R, formed
via appending some subset from {B1, . . . , Bm} to premise, will fail as a refine-
ment. This means that all inequalities like ν(T |A & Bi1

1 & . . . & Bim
m ) ≤ ν(T | A)
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are true, if corresponding probabilities are defined. Since ν(A &¬B) �= 0, there
is at least one multi-index (i1, . . . , im), for which it is true. Then

ν(T &A & Bi1
1 & . . . & Bim

m ) ≤ ν(T | A)ν(A & Bi1
1 & . . . & Bim

m );

ν(T | i=(1,...,1,0)∨
i=(0,...,0)

(A & Bi1
1 & . . . & Bim

m )) =
ν(∨ T & A & Bi1

1 & . . . & Bim
m )

ν(∨ A & Bi1
1 & . . . & Bim

m )
=

∑
ν(T &A & Bi1

1 & . . . & Bim
m )∑

ν(A & Bi1
1 & . . . & Bim

m )
≤ ν(T | A)

∑
ν(A & Bi1

1 & . . . & Bim
m )∑

ν(A & Bi1
1 & . . . & Bim

m )
= ν(T | A);

The last, according to (2), means that η(S) ≤ η(R) – is a contradiction with
the theorem premise. So, our assumption is false and for one of the rules we have
ν(T | A & Bi1

1 & . . . & Bim
m ) > ν(T | A). ��

6 Semantic Probabilistic Inference

We define another key concept for this work - the ratio of semantic probabilistic
inference on the set of rules [10,11,13].

Definition 23. The rule R is semantically probabilistic inferred from the rule
R′, R′ � R if: R, R′ - probabilistic laws, len(R) = len(R′) + 1, R > R′.

Definition 24. Probabilistic law R is the strongest, if ∀R′ ¬(R � R′).

Definition 25. Semantic Probabilistic Inference (SPI) is a sequence of rules
R0 � R1 � R2 . . . � Rm, such that: len(R0) = 0, Rm – the strongest
probabilistic law.

In other words, SPI requires the procedure of inference from start to finish.

Definition 26. A maximal specific law for the predicate T is called as the
strongest probabilistic law, if it has the maximal conditional probability among
all the other strongest probabilistic laws with the conclusion T .

The set of maximal specific laws on the context K we denote as MSRK or MSR,
if there is no ambiguity. Designation MSR(T ) stays for those subsets from MSR
for which the conclusion is T .

Lemma 5. For any rule R with tail(R) = T , which probability is defined, there
always exists a maximal specific law W with the same conclusion T , such that
η(R′) ≥ η(R).

� By lemma 4 there is a generalization R′ for the rule R which is a probabilistic
law. But for R′ there exists the strongest probabilistic law R′′ such that η(R′′) ≥
η(R′). For R′′, there is a maximum of the set of the strongest probabilistic laws,
i.e. maximal specific law R′′′ and η(R′′′) ≥ η(R′′) ≥ η(R′) ≥ η(R). W = R′′′ still
has same tail(W ) = T and so it is the sough for. ��



Probabilistic Formal Concepts with Negation 393

7 Classes of Rules

In [10,14] classes of rules presented. They are used to justify the correctness of
the semantic probabilistic inference. Slightly modifying these definitions, we will
receive the comparable results.

Definition 27. R ∈ M1(T ) ⇔ ((∅ ⇒ T ) � R ⇒ R > (∅ ⇒ T ))

Definition 28. R ∈ M2(T ) ⇔ R ∈ M1(T ) and (∀R′ ∈ M1(T ))[R � R′ ⇒
η(R′) ≤ η(R)]

Definition 29. M1 =
⋃

T∈Lit(K)

M1(T ); M2 =
⋃

T∈Lit(K)

M2(T )

In other words, class M1 requires rules to be meaningful, thus enable them to
make sense compared with the unconditional approval of T . Class M2 requires
that the rule can not be more specific (no matter how we have expanded the
rule R, we can never improve the estimation of its probability). We have the
following relationship:

Proposition 2. MSR ⊂ M2 ⊂ M1.

� The second inclusion is obvious. Let R ∈ MSR. There is some SPI for R accord-
ing to definition 27, starting with the unconditional rule R′ = ∅ ⇒ tail(R). If the
premise of R is not empty, then ∅ ⇒ tail(R) � R and from the chain of semantic
probabilistic inference relations it follows that R > R′ and R ∈ M1. If the premise
R is empty, then the last is automatically fulfilled.

Consider R � R′ ∈ M1 and assume that η(R′) > η(R). Lemma 5 implies
that there exists S ∈ MSR : η(S) ≥ η(R′) > η(R). This contradicts the maximal
specificity of R and therefore η(R′) ≤ η(R). Hence R ∈ M2. ��
Definition 30. As a system of the rules we will call any Π ⊆ M2.

To investigate the formal concept of the binary context of K in the spirit of
the approach indicated in [5,6], it is sufficient to understand the structure of
corresponding prediction operator’s fixed points on the nominally scaled context
K∗. Here we aim to study the fixed points for the probabilistic operator of
prediction on K, accounting the availability of negations in the formulae of a
special kind. Let L ⊂ Lit(K) be a arbitrary set of letters from context formal
system.

The definition is completely similar to deterministic one (compare with defe-
nition 6). We strictly follows the generelization idea and the only difference will
be the nature of used implications: they are turned in probabilistic entities.

Definition 31. Operator of direct predictions on the system Π works as follows:

PrΠ(L) = L ∪ {T | ∃R ∈ Π : head(R) ⊆ L, tail(R) = T}
so PrΠ adds conclusions of all the implications, the premise of which is contained
in L and fullfilled on it, to the operand.

Definition 32. Closure of a set of letters L is the smallest fixed point of operator
of direct prediction: PRΠ(L) = Pr∞

Π (L).
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8 Consistency Theorem

The correctness for construction proposed in the previous section needs to be
proven, as in [10,14,15]. Correctness here is understood in two senses: in prob-
abilistic and logical. We show that both they are satisfied.

Definition 33. Set of letters L is called compatible, if & L – ν-consistent on K.

In fact, the set is compatible when there is a set of statistically significant objects
of GK , on which the formula & L is fulfilled. On“normal” probability contexts
K (with no more than countable set of objects G, each of which is statistically
significant), the compatible sets L will be those sets (and with them also the
corresponding sets of attributes L from MK∗) for which L′ �= ∅.

Object can not have both m ∈ MK∗ and m ∈ MK∗ simultaniously. It can
either possess or lack any attribute accordingly to binary context defenition.
Such attribute combinations looks very suspecious and leads to known logical
problems, consistency of attribute sets is a desirable property here.

Definition 34. Set of letters L – consistent, if it does not contain any atom T
simultaneously with its negation ¬T .

Proposition 3. If L – compatible, then L – consistent.

� Otherwise ∃T : T ∈ L and ¬T ∈ L, so ν(&L) ≤ ν(T & ¬T ) = 0. ��
Let Π be any rule system and Pr be according prediction operator PrΠ . We
first show that the direct prediction retains the property of compatibility.

Theorem 4. (Compatibility) If L is compatible, then Pr(L) is also compatible.

� The proof is easy to obtain by looking at the refinement theorem. Consider
all rules that contribute to the formation of the direct prediction based on L:

T = {R ∈ Π | head(R) ⊆ L}. We enumerate all the elements of T in an
arbitrary manner, T = {T1, . . . Tm}, and consider the sequence of sets Ui =
Ui−1 ∪ {tail(Ti)}, U0 = L. We show that each Ui is compatible.

U0 = L is obviously compatible by the premise of the theorem.
Let Ui is compatible. For brevity, let U = Ui,W = Ui+1, R = Ri+1 and

T = tail(R),H = head(R), N = U \ H. Suppose that W is inconsistent, i.e.
ν(&W ) = 0. Similarly to the refinement theorem, consider pseudo rule F =
(&H & ¬(&N)) ⇒ T . There are two cases:

1. case: ν(&head(F )) �= 0. Then the probability of F is defined and

η(F ) =
ν(&H & ¬(&N) & T )

ν(&H & ¬(&N))
=

ν(&H & T ) − ν(&H & (&N) & T )
ν(&H) − ν(&H & (&N))

=

ν(&H & T ) − ν(&W )
ν(&H) − ν(&U)

=
ν(&H & T )

ν(&H) − ν(&U)
>

ν(&H & T )
ν(&H)

= η(R) > 0.

According to the refinement theorem, there is a rule S such that S > R,
which contradicts that the R is non-refineable (i.e., the fact that R ∈ M2).
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2. case: ν(&head(F )) = 0. Then

ν(&head(F )) = ν(&H & ¬(&N)) = 0 ⇒ ν(&H & ¬(&N) & T ) = 0;

0 = ν(&H & (&N) & T ) = ν(&H & T ) − ν(&H & ¬(&N) & T ) = ν(&H & T ).

The last means that η(R) = 0, which contradicts R ∈ M1 (0 = η(R) >
η(∅ ⇒ T ) ≥ 0). ��

Corollary 2. If L – compatible, then PR(L) – also compatible.

Corollary 3. If L is compatible, then PR(L) – consistent.

9 About Incompatible Sets

The situation is quite clear for compatible sets. Direct prediction on the com-
patible set L and the closure of this set are compatible and consistent.

Let’s try to understand the structure of incompatible sets L. We will start
with a fairly trivial statement, which is the opposite to the compatibility theorem.

Proposition 4. If L – incompatible, then PR(L) – is also incompatible.

� Assuming compatibility PR(L) we find that any subset, and in particular L,
is compatible. ��
Somewhat more difficult is the question of the inconsistency of such closures.
For a more detailed study of the structure of incompatible systems of letters we
need the following concept.

Definition 35. We say that M is ν-maximal in L, M ⊆
ν

L, when M is maximal

by inclusion subset of L and M is compatible.

Definition 36. System of rules Π is called complete, if MSR ⊂ Π.

The following discussion focuses only on complete systems of rules. Requirement
of completeness can be slightly relaxed, as it can be seen from the theorem below,
but we restrict ourselves to the most specific rules in this article. This means we
consider only PR = PRΠ operators, where Π is complete system. It should be
noted, that according to proposition 2 the system containing M2 are complete.

Theorem 5. Let M ⊆
ν

L. Then M ∪ ¬(L \ M) ⊆ PR(M).

� Let x belong to the left side of the formula. Case x ∈ M is obvious. Here
x ∈ PR(M) according to the definition of the closure.

Now let x ∈ L \ M . By definition, ν-maximal subsets of the set M ∪ {x}
is incompatible (otherwise obtain a new maximal set by inclusion). This means
that

ν(&M & x) = 0;
ν(&M & ¬x) = ν(&M) − ν(&M & x) = ν(&M);
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Let R = (&M ⇒ ¬x). From the relations above it is easy to calculate the
probability of rule R:

η(R) =
ν(&M & ¬x)

ν(&M)
= 1;

Lemma 11 asserts there is a rule S ∈ MSR ⊂ Π, which is MSR-rule with con-
clusion equal ¬x, so that for S is fulfilled ν(S) ≥ 1. Thus, the rule S inevitably
add ¬x into direct prediction of Pr(L). ��
Theorem 6. Consider M ⊆

ν
L, N ⊆

ν
L and M �= N . Then

1. ∃x : x ∈ PR(M) and ¬x ∈ PR(N);
2. PR(M) ⊇ PR(M ∩ N) ⊆ PR(N) and PR(M) �= PR(N).

� 1. M �= N means, that ∃x ∈ M \ N (indeed M ⊂ N would be contrary to the
maximality of M). x ∈ M ⇒ PR(M) and similarly to Theorem 6 ¬x ∈ PR(N).

2. PR(N) – is compatible and consistent, and ¬x ∈ PR(N); it means x �∈
PR(N) and x ∈ PR(M)\PR(N). Then, M ∩N ⊂ M , so PR(M ∩N) ⊆ PR(M).

��
The last two theorems conclude that there exists an injective mapping from ν-
maximal subsets of L to fixed points set, each completely covering the entire set
of atoms in L (containing them or their negations).

Inconsistency and compatibility of fixed points for compatible sets proved in
section above. For incompatible sets following theorem tends to be an answer.

Theorem 7. If L is incompatible, then PR(L) – inconsistent.

� Find ν-maximal subset of L and denote it as M . M �= L, otherwise L would
have been compatible. Therefore, there exists x ∈ L \ M . Set {x} is extended
to a maximal compatible N ⊆

ν
L. By construction, x ∈ N \ M ⇒ M �= N . By

Theorem 6, there exists y, such that y ∈ PR(M) and ¬y ∈ PR(N):

M ⊆ L

N ⊆ L

}
⇒ y ∈ PR(M) ⊆ PR(L)

¬y ∈ PR(N) ⊆ PR(L)

}
⇒ PR(L) - contradictory. �

10 Probabilistic Formal Concepts

The fixed points of PR operator are rather interesting and promising. However,
the purpose for their consideration was the motive of introduction of the prob-
abilistic analogous of formal concepts. Using the idea of Theorem1, it is easy
to offer as candidates [5,6] for inclusion in intent of such concepts. We mean
exactly the fixed points of PR.

Selection for concept extent is a bit more complicated. But since all the sets
of letters, such that PR(M) = B, have a real connection to the closure, it is
logical to propose to collect all objects falling under them. That is:
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Definition 37. By probabilistic formal concept on K we denote (A,B), such
that:

PR(B) = B, A =
⋃

PR(C)=B

GC

To distinguish probabilistic concepts from the usual ones in the sense of the
context of K∗, the last ones we call strict formal concepts. Our selection justified
by the following statement, relating probabilistic and strict formal concepts on
the same context.

Theorem 8. Let K be a binary context.

1. If (A,B) is strict concept on K, then there is a probabilistic concept (N,M)
such that A ⊆ N , and B ⊆ M .

2. If (N,M) is the probabilistic concept on K, then there is a set of strict notions
C, such that

∀(A,B) ∈ C (PR(B) = M),

N =
⋃

(A,B)∈C
A.

� Suppose S = {S | PR(S) = M}.
1. Let M = PR(B). Then B ∈ S and A = GB ⊆ ⋃

S
GS = N . Hence (A,B) is

desired.
2. On S we make a set of strict concepts C = {(S′′′, S′′) | S ∈ S}. From

lemma 1 it is easy to understand that B′′′ = B′, that is C = {(S′, S′′) | S ∈ S}
and all (A,B) ∈ C - are strict concepts. Hence N =

⋃
S

S′ =
⋃

(A,B)∈C
A It should

be added that M ∈ S and hence C �= ∅. ��

Probabilistic concept is like cluster unifying set of poorly distinguishable strict
concepts in terms of a system of rules Π.

11 Probabilistic Concepts Search

In this section we restrict ourselves to the case of finite context K. From the last
one, we can drop out statistically insignificant objects without loss of generality.

Assume that the system of rules Π on context K has already been found
by one of the algorithms, for example [11,13]. Probabilistic concept definition
implies the following search procedure.

1. On step k = 1 we generate the set C(1) = {PR(head(R)) | R ∈ Π}.
2. On step k > 1 in case of C(k−1) = ∅ algorithm finishes its execution and

output a list of detected probability concepts.
3. Else on step k > 1 the set A = {g ∈ G | PR(g′ ∩ B) = B} is calculated for

each B ∈ C(k−1). If A �= ∅, pair (A,B) is added to list of found concepts.
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4. The set C(k) = {PR(B ∪ C) | B,C ∈ C(k−1),PR(B ∪ C) �∈ C(k−1)} is
generated.

5. Let k := k + 1 and go to step 2.

Finally, we present one of many examples. Real example can be found in [16].
In [17] there is experiment for analyzing of postal envelopes digits. The data
contains 12 digits (2 options for each “6” and “9”). The context is based on 24
attributes, each of which has 7 values (for different shapes in the relevant sector
of the digit partition). Set G consists of 360 objects (30 copies of each digit) with
gap in information (each digit misses one randomly deleted attribute), which are
mixed, plus negative sample of 1050 objects with random attributes. There is no
attribute that designate which digit is the object representing. On these data,
73458 rules was found. Then the all fixed points were computed using set of all
rules, which turn up just 14. From them, 12 digits were exactly our numbers,
and for each of “6” and “9” were still two fixed points containing an extra space
in the features that distinguishes 2 options of those digits (“6” and “9” are not
mixed up due to fixing top-bottom orientation while coding procedure).

12 Conclusion

Negations (and, in general, the values for attributes) in formal contexts, produce
a much more expressive system of concepts. This provides such properties (in
some sense) as correctness and completeness to proposed method.

Our considerations and algorithm allows us to find consistent probabilistic
concepts, and, at the same time, do not lose strict concepts. Moreover, the pro-
posed method preserves a binary noise - the random binary noise imposed into
the values of attributes don’t change the set of concepts [5,6].

The concept of fixed points may be rather natural applied for formalization of
classtering [17]. Therefore, the fix point theory and probabilistic formal concepts
may be used for the new Data Mining method development.
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Abstract. Linux kernel modules operate in an event-driven environ-
ment. Static verification of such software has to take into consideration
all feasible scenarios of interaction between modules and their environ-
ment. The paper presents a new method for modeling the environment
which allows to automatically generate an environment model for a par-
ticular kernel module on the base of analysis of module source code and a
set of specifications describing patterns of possible interactions. In spec-
ifications one can describe both generic patterns that are widespread in
the Linux kernel and detailed patterns specific for a particular subsys-
tem. This drastically reduces a specification size and thus helps to verify
more modules with less efforts. The suggested method was implemented
in Linux Driver Verification Tools and was successfully used for static
verification of modules from almost all Linux kernel subsystems.

Keywords: Operating system kernel · Kernel module · Software qual-
ity · Static verification · Environment model

1 Introduction

The Linux kernel is a base for various operating systems. Depending on their
utilization and on underlying hardware these operating systems require specific
sets of features to be supported by the kernel. Usually the Linux kernel provides
just some common functions, e.g. memory and process management. To extend
kernel functionality with new features one can dynamically load corresponding
modules into the kernel.

The Linux kernel is shipped with a large set of modules for specific device
drivers, file systems, network protocols, etc. Subsets of modules available for
loading depend on a system architecture and a kernel configuration. For instance
on architecture x86 64 in configuration allmodconfig current versions of the
Linux kernel contain about 4 thousand modules.

Linux kernel modules operate in the same address space and have the same
level of privileges as the kernel itself. But by a number of reasons they have
much less quality in comparison with the rest of the kernel [1]. About a half of all
typical bugs in modules are caused by incorrect usage of the Linux kernel API [2].
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The given paper focuses on this sort of bugs and suggests to find them with help
of static verification, since this technique allows to analyze all possible execution
paths, even hard-to-reproduce ones.

Modern static verifiers [3–7] already can check middle-sized programs. So
they can be applied for Linux kernel modules that usually have a size of about
several thousand lines of code. It was shown that static verifiers need rather
accurate environment models for checking programs [8]. Without these models
the tools can produce a large number of false alarms because they assume that
some infeasible scenarios of interaction are possible. Also environment models
should not omit scenarios that may happen in practice. Otherwise static verifiers
can miss actual bugs.

The rest of the paper is organized as follows. In Sect. 2 we consider typical
scenarios of interaction between Linux kernel modules and their environment.
In Sect. 3 we present a method which allows to define a specification of the
environment in the formal notation of π-processes. The main contribution is that
this method introduces pattern specifications that allow to describe scenarios of
interaction between modules from different subsystems and their environment
in a compact form. This drastically reduces a specification size and thus helps
to verify more modules with less efforts. A method implementation is outlined
in Sect. 4. Section 5 presents experimental results. Related work is considered in
Sect. 6. Section 7 makes a conclusion.

2 Environment of Linux Kernel Modules

Linux kernel modules operate in an event-driven environment which is reflected
in Fig. 1. For simplicity hereinafter we suggest that each module interacts with
user-space applications and with hardware only through the so-called kernel core.
Below we consider a lifecycle of a typical Linux kernel module.

Fig. 1. Interaction of Linux kernel modules with their environment.

Figure 2 presents snippets of the USB CDC Phonet module from Linux ker-
nel 3.2 (original source code was simplified). One can see that this module does
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Fig. 2. Snippents of the USB CDC Phonet module.

not have function main. Instead it registers via macro module init (line 26) ini-
tialization function usbpn init (defined at line 24) that is called in loading the
module. On initialization and further during its operation the module registers
callbacks that are invoked by the kernel core to handle such events as interrupts,
system calls and internal kernel events. This can be achieved in different ways.

On initialization of variable usbpn driver (lines 21–23), callbacks usbpn
probe and usbpn disconnect are assigned to fields probe and disconnect of
structure usb driver. In function usbpn init this variable address is passed to
function usb register (line 24) that registers callbacks in the kernel core. Call-
backs usbpn open and usbpn close are registered similarly (lines 3–5). But dur-
ing callback usbpn probe execution an address of variable usbpn ops is assigned
to field netdev ops of variable dev (line 10) where usbpn ops holds pointers to
considered callbacks. That variable is passed to function register netdev (line
14) registering those callbacks.

Deregistration of callbacks is performed as follows. Callbacks usbpn open and
usbpn close are deregistered in function usbpn disconnect (line 19), callbacks
usbpn probe and usbpn disconnect — in function usbpn exit (line 25).
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Below we call a group of callbacks whose pointers assigned to fields of the
same structure as a callback group. Corresponding structure types will be referred
to as a group types. Therefore there are two callback groups of types usb driver
and net device ops in Fig. 2.

Modules interact with their environment in conformance with a strict con-
tract which imposes restrictions on possible interaction scenarios. For instance,
for the USB CDC Phonet module (Fig. 2) the kernel core calls initialization
function usbpn init at module loading. Then the module tries to register the
callback group of type usb driver via function usb register. This function
returns 0 if the kernel core successfully registers callbacks and an error code oth-
erwise. In the same way, function usbpn init returns 0 if it succeeds to initialize
the module and an error code otherwise.

If function usbpn init succeeded, the kernel core can invoke callback usbpn
probe to initialize one or more USB CDC Phonet devices. During device initial-
ization the module initializes a spinlock with help of function spin lock init
(line 11) and tries to register the callback group of type net device ops. After
successful registration the kernel core becomes able to call callback usbpn open.
Callbacks from group of type net device ops use the initialized spinlock. So a
callbacks invocation order does matter. If one will invoke callbacks from group of
type net device ops before callback usbpn probe succeeded he or she will catch
a false alarm in verification of correct initialization of spinlocks before usage.

Usually the kernel core invokes callbacks in parallel. So it can simultaneously
initialize several USB CDC Phonet devices with callback usbpn probe or open
several network devices for a given USB CDC Phonet device.

The kernel core can invoke callback usbpn close only if callback usbpn open
returns 0. Callback usbpn disconnect can be invoked just after callback
usbpn probe returns 0 and if either callback usbpn open was not called at all
or all opened network devices were closed. Function usbpn exit can be called
by the kernel core after function usbpn init returns 0 and if either callback
usbpn probe callback was not invoked or all USB CDC Phonet devices were
disconnected.

It is worthwhile to mention that the kernel core passes pointers to the same
objects (resources) as parameters to callbacks of the same group. For instance,
callback usbpn probe stores all necessary information on initialization of a par-
ticular USB CDC Phonet device to its parameter intf that will be later passed
to callback usbpn disconnect.

Analysis of source code of wide range of Linux kernel subsystems shows
that callbacks from groups of the same type are usually invoked similarly for
different modules. So we say that corresponding callbacks have the same roles.
In the example above callbacks usbpn probe and usbpn disconnect has roles
usb driver.probe and usb driver.disconnect respectively. This observation
will be used in a method for modeling environment suggested below.

3 Environment Modeling

Environment models required for static verification of Linux kernel modules
should be complete and correct. Completeness means that models should contain
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all interaction scenarios possible in the real environment. If an environment
model is incomplete, static verifiers may miss actual bugs. Correctness means
that environment models should not contain scenarios which are impossible in
the real environment. If an environment model is incorrect the tools may report
false alarms.

π-calculus [9,10] suits well to specify environment models, since it allows
to describe arbitrary high-parallel systems completely and correctly in terms
of message passing and parallel composition of processes. Below we propose the
environment modeling method based on π-calculus which allows to reduce efforts
required for development of environment models.

3.1 Definitions

In π-calculus [9,10] we have processes, operations of parallel composition, syn-
chronous communication between processes through channels, creation of fresh
channels, replication of processes and nondeterminism. Each channel has a name
also called label α ∈ A.

We use definitions from [9] with a polyadic extension described in [10] where
labels have vectors of labels as parameters, denoted by x .

Processes are described in the following manner:

P ::= P |Q(parallel composition) | !P (replication)

| (να)P (new label creation) | N(x)

where N(x) ::= 0 | K1(x ) + · · · + Kn(x) | [x = v]K(x)

– 0 is an empty process;
– K1(x ) + · · · + Kn(x ) is a choice of

• α(yi).Ki(x,yi) - receiving vector of input parameters yi over channel α;
• α(x).Ki(x) - sending vector x over channel α;
• τ.Ki(x) - a silent action;

– [x = v]K(x) is a match. The process behaves like K(x) if x and v are equal,
and otherwise like 0.

For convenience we add operator [x �= v] which is the same as [x = v], but
it tests inequality.

3.2 π-Model for Kernel Module and Environment

A Linux kernel module and its environment can be considered as a parallel
composition of processes in π-calculus. We suppose that there is process Pfcall

which has the same behavior as implementation in C language for all callbacks
of the kernel module. Process Pfcall receives requesting callback invocation mes-
sages f(reti, fi, ctxi, paramsi), where reti is a channel name for a response, fi

is a callback function, ctxi is a calling context and paramsi are callback func-
tion parameters. As far as callbacks can be executed in parallel, process Pfcall
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is replicated for each call. On function return Pfcall replies with return value
reti(result).

Hence the kernel module can be seen as a composition:

Moduleπ ::= Pinit|Pexit|!Pfcall

Processes Pinit and Pexit represent module initialization and exit functions
correspondingly. They are not replicated as far as these functions cannot be
called simultaneously by the environment. These processes receive messages
init(ret) and exit(ret), and send ret(x), ret().

The environment is represented as a composition:

Envπ ::= Pgi
. . . |Pvi

. . . |Pmodule|Pai
. . .

where processes Pgi
represent kernel core functions g1(ret1, params1), . . . ,

gl(retl, paramsl) and Pvi
represent global variables with setvi

(x), getvi
(x). These

processes model functions and variables of the environment which can be used
by the kernel module during initialization, exit and execution of callbacks.

An active part of the environment modeling interaction scenarios with the
kernel module includes main process Pmodule calling initialization and exit func-
tions and a set of Pai

processes calling callbacks of the module.
The environment model is not required to be equivalent to the real environ-

ment of a particular kernel version. On the contrary, the model should allow as
many interaction scenarios as possible within the contract between the environ-
ment and the module.

The environment model is divided into parts according to group types. The
first group is a special group modeling initialization and exit of the module as a
parallel composition: Pmodule|Ptrymoduleget. Pmodule starts interaction with the
module:

Pmodule ::= (νret)L0
L0 ::= init(ret).ret(r).[r = 0]L1
L1 ::= mstop.exit(ret).ret.0

Process L0 sends init message to the module. The module performs initial-
ization, e.g. it registers callback groups. If initialization is successful, L0 sends 0
to channel ret, and continues as L1. Otherwise, init sends an error code and
execution is finished. The environment interacts with the module until message
exit. On receiving it the module deregisteres callback groups.

Ptrymoduleget is an auxiliary process specifying the module cannot be unloaded,
i.e. the environment cannot call exit function. The process acquiring the module
sends tmg message and receives tmgret(true) answer in case of success. mstop is
required for disabling all acquirements when unloading the module.

Ptrymoduleget ::= M0

M0 ::= tmg.tmgret(true).M1 + mstop.MD
MD ::= mstop.MD + tmg.tmgret(false).MD
For each i ≥ 1 we define the process:
Mi ::= tmg.tmgret(true).Mi+1 + mput.mputret.Mi−1
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3.3 Group Type Specifications

We define a group type specification as a π-process parametrized with callback
roles of the group type. The process should model actions performed at calling
registration/deregistration functions and should invoke callbacks with certain
roles according to the contract.

In the example in Fig. 2 function usb register is called with a pointer to
variable usbpn driver of type usb driver, containing pointers to callbacks
usbpn probe and usbpn disconnect with roles usb driver.probe and usb
driver.disconnect.

Fig. 3. Example of Pusb driver modeling callback group of type usb driver.

For each callback group a registration function model creates instances of
group processes parametrized by callback roles (Fig. 3). The number of created
instances depends on resources the group is operating with. For instance, if group
file operations is operating with file resources a separate instance for each file
may be created.

A usb driver specification has parameters probe and disconnect for roles
usb driver.probe and usb driver.disconnect. In the example for each reg-
istered callback group we create one instance of process and a new resource
intf which is initialized with initialize. Then this resource is passed to callbacks
usbpn probe and usbpn disconnect as a parameter.

Pusb driver is defined as follows (we use Si to denote notes shown in Fig. 3).
Pusb driver ::= S0
S0 ::=!(νintf, νret)register(deregister, probe, disconnect).S1
S1 ::= deregister.0 + tmg.〈S2〉tmgret(r).〈S3〉([r = true]S4 + [r = false]S1)
S4 ::= initialize(intf).S5
S5 ::= f(ret, probe, intf).〈S6〉ret(r).〈S7〉([r = 0]S8 + [r �= 0]S9)
S8 ::= f(ret, disconnect, intf).〈S10〉ret.S9
S9 ::= mput.S1

Semantics of π-process interactions allow to define both dependencies between
groups and dependencies with initialization and exit functions. In the example in
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Fig. 3 the module cannot be unloaded after the process came to state S4 where
it is ready to call callbacks usbpn probe and then usbpn disconnect. For the
environment it means that we cannot call the exit function in process Pmodule.
Process Ptrymoduleget stores the number of module acquirements. Before calling
any callbacks process Pusb driver sends tmg. In case of success it goes to process
S4. Otherwise, if the module is unloading (r = false), it goes to S1 and waits for
deregistration.

3.4 Group Pattern Specifications

We analyzed a plenty of Linux kernel modules and found that there are similar
restrictions for different roles of different group types. For example, in Fig. 4
we have callback group 2430 driver of type platform driver. It has two roles
platform driver.probe and platform driver.remove. The roles are the same
as usb driver.probe and usb driver.disconnect of group type usb driver.
The groups are operating with different resources of types usb interface and
platform device in the same manner. We say that two group types have the
same group pattern specification in case of correspondence between roles and
resources, i.e. contracts for the groups are equivalent.

Fig. 4. Example of platform driver group type from drivers/usb/musb/omap2430.c.

We define a group pattern specification as a pair of a group pattern and a para-
metrized π-process. The group pattern is defined as abstract roles and an abstract
resource type, which describe a set of concrete roles and a set of concrete resource
types. In the example we have two abstract roles probe describing concrete roles
platform driver.probe and usb driver.probe, and disconnect describing con-
crete roles platform driver.remove and usb driver.disconnect. The abstract
resource type represents a set of concrete resource types. Usually it is determined
by resources used in callbacks with abstract roles. Abstract resources are usually
passed as parameters. In the example the abstract resource is passed as a first
parameter to functions with abstract roles probe and disconnect.

For group pattern specifications we have π-processes parametrized by abstract
roles, abstract resource types, registration and deregistration functions. Abstract
roles may be set as optional, in this case a callback with a concrete role may be
absent.

For the example, behaviormaybe described by the process similar toPusb driver

with addition of registration and deregistration functions for groups contain-
ing callbacks for abstract roles probe and disconnect. Abstract resource intf is
described as a first parameter of callbacks.
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The presented specification pattern describes callback groups of such types
as usb driver, platform driver, sdio driver, pcmcia driver, etc. (see source
code of Linux kernel version 3.12). Note, that these group types can have addi-
tional roles, e.g. suspend and resume. If a group has callbacks with roles which
are not matched by the group pattern then it is not applicable.

3.5 Method for Environment Modeling

With help of π-processes it is possible to describe precise models of the Linux
kernel modules environment. In practice development of precise models for all
group types takes too much time. Moreover, the majority of bugs in modules can
be found with less precise models. That is why we propose a method for modeling
the kernel modules environment that provides means to specify patterns which
are applicable to many group types. Also the method still allows to define a
specific model for a particular group to meet requirements on completeness and
correctness.

An individual environment model is constructed for each kernel module. It is
composed of π-processes that model an active piece of the environment for each
callback group identified in the module.

The method for modeling the environment consists of three steps. On the
first step the environment model developer defines a kernel activity specification
(TS, PS,DS,KS), where

1. TS is a map from a group type to a group type specification;
2. PS is a set of group pattern specifications;
3. DS is a default group specification;
4. KS is a set of kernel core specifications.

Group type specifications describe precise models of group types. Where it is
possible group pattern specifications are used to describe sets of callback groups
of corresponding types. The default group specification describes a process that
invokes callbacks in an arbitrary order. Kernel core specifications contain descrip-
tions of kernel core functions and additional processes shared between group
specifications, e.g. Ptrymoduleget.

On the second step a π-model of the environment is constructed for a par-
ticular kernel module. First of all, source code of the kernel module is analyzed
to identify callback groups used in it. For each callback group extracted infor-
mation includes callback roles, each with an associated callback function if it is
identified, registration/deregistration functions if present and concrete resource
types.

For each callback group either a precise group type specification is found or
the most relevant group pattern specification is searched for.

To select a group pattern abstract roles are matched with concrete ones,
abstract resources are matched with concrete resources passed as parameters
to registration functions or to callbacks with abstract roles. Each non-optional
abstract role in the specification should have a corresponding concrete role.
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Among all matching patterns a pattern having the largest set of abstract roles
is chosen. The pattern is applied to callback groups of the kernel module by
replacing abstract roles with concrete ones, and replacing abstract resource types
by concrete ones. If a relevant group pattern specification is not found then the
default group specification is applied.

Finally, all π-processes of each callback group identified in the module are
combined by parallel composition with the kernel core specification KS into a
π-model of the module environment.

On the third step the π-model of the environment is translated into the
input format of static verifiers (see the next Section for details).

4 Driver Environment Generator

The suggested approach was implemented as a part of Linux Driver Verifica-
tion (LDV) Tools [11]. LDV Tools allow to check that Linux kernel modules do
not violate rules of correct usage of the Linux kernel API.

LDV Tools prepare a verification task on the basis of kernel module source code
and apply various reachability static C verification tools - static verifiers. Cur-
rently LDV Tools support the following static verifiers: CPAchecker [3], BLAST
[4,5], CBMC [6] and UFO [7] based on Counter-Example Guided Abstraction
Refinement (CEGAR) and Bounded Model Checking (BMC). These tools proved
their efficiency on annual competitions on software verification [12].

Environment model generation is one of the most important operations which
is performed during verification task preparation. Driver Environment Generator
(DEG) prepares an environment model for a given Linux kernel module according
to the suggested method. The first step requires manual development of the
kernel activity specification which is used by DEG during following steps.

The second step of the method is implemented in DEG as preliminary source
code analysis of the kernel module. The aim of the analysis is to determine partic-
ular callback groups defined in the module. To perform such analysis DEG uses
another LDV Tools component called C Instrumentation Framework (CIF) [13]
which allows C source code querying. Currently CIF supports queries to get
information on function calls, macro expansions, global variable declarations,
including structure initialization, parameters passed to registration functions
and macros. On the third step of the method DEG generates a C program from
the π-model, because of this is an input language for the most of static verifiers.
DEG implements approach described in detail in [14].

On practice DEG cannot generate precise models for all kernel modules
because of restrictions of preliminary source code analysis and specific require-
ments of static verifiers. The most important issues are the following:

1. Not all callback groups can be extracted correctly with CIF from module
source code. For instance, currently the analysis misses dynamically assigned
callbacks.
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2. If extracted data does not allow to accurately define a π-process on the base
of specifications and data obtained from module source code, DEG adapts
specifications when it is possible. DEG can add default registration or function
stubs for missed roles heuristically.

3. The majority of static verifiers can analyze only sequential C code, yet original
environment models are parallel in the notation of π-calculus. The restriction
is dramatically important, since it requires translation of parallel π-models
into sequential source code. To do this DEG uses a method for translating
π-models into sequential C program described in detail in [14]. This method
throws off simultaneous execution of callbacks. Thus, it reduces completeness
of environment models. As consequence sequential models does not allow to
find specific bugs like race conditions.

4. All static verifiers need an entry point function as a starting point of analysis.
Function main is an example of entry point in user-space programs.

5. Most of static verifiers based on BMC need significantly accurate models
with minimum uninitialized variables. This obstacle increases manual work
for specifying kernel core functions in DEG specifications and also makes
application of group pattern specifications less effective (less callback groups
are matched with callback pattern specifications). That is why currently LDV
Tools yield better results for CEGAR based static verifiers like CPAchecker
or BLAST.

6. Most of static verifiers have restricted support of function pointers. If DEG
extracts a function name for a concrete role instead of a function pointer, it
replaces a corresponding parameter of the process by that function name. In
this case generated code becomes much more friendly for static verifiers.

7. Static verifiers have restricted support of pointer arithmetic. The issue carries
great weight for code generation since without lists or other dynamically
allocated structures it is too hard to describe in C code all feasible scenarios
from π-models. DEG does not support replication of processes from π-models
while an approach in [14] suggested to store a state of process instances
in a list. Nevertheless, several process instances can be defined manually in
specifications.

Although considered issues currently does not allow to generate precise envi-
ronment models for Linux kernel modules, experimental results demonstrate that
models are already sufficiently precise.

5 Experimental Results

In this paper we present results of verification of Linux kernel 3.13-rc1 modules
(3289 modules on architecture x86-64 in configuration allmodconfig). DEG
was able to successfully generate environment models for 2972 modules (approx-
imately 80 % of the total number of modules). It failed on the rest 317 modules
mostly because of lacks of callback groups which DEG tool can extract with
preliminary source code analysis.
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Table 1. Actual bugs and false alarms yielded by the BLAST static verifier.

Mutexes Clocks Spinlocks Atomic memory

allocation

Actual bugs 6 3 1 2

False alarms not because of DEG 8 9 11 0

False alarms because of DEG 17 32 6 7

Preliminary analysis 1 10 1 1

Kernel core specification 16 5 5 6

Unknown handler roles 0 17 0 0

5.1 Model Correctness

To evaluate correctness of generated environment models we verified all modules
against rules which specify how to use correctly mutexes, clocks, spinlocks and
memory allocation in atomic context. Table 1 shows the number of false alarms
and actual bugs yielded for them by the BLAST static verifier [5].

The first three lines show the total number of actual bugs, false alarms not
due to incorrect environment models and false alarms due to incorrect environ-
ment models respectively. Last three lines present distribution of false alarms by
reasons of incorrect environment model generation. The first reason represents
the cases where preliminary source code analysis extracted less data than DEG
needed for accurate matching of π-process parameters. The second reason is
incompleteness of kernel core specifications, i.e. new kernel core functions are to
be specified. And false alarms from the last category need improvements in DEG
to better determine group types and callback roles after source code analysis for
several particular cases.

Overall, the number of false alarms because of incorrect models is minuscule
in comparison with the number of all verified modules (0.5 %). The data shows
that correctness of generated environment models is good enough, although the
current implementation still misses some features.

5.2 Model Completeness

To evaluate completeness of generated environment models we checked whether
already fixed bugs can be found by LDV Tools. For the benchmark we had
chosen 34 different bugs from a wide range of Linux kernel subsystems. LDV
Tools found 15 bugs, while environment model incompleteness caused missing
of 8 bugs (24 %). A reason for missing 4 bugs is that environment models do not
model interaction between several modules (currently we model only interaction
of modules with the kernel core). 2 bugs were missed because of preliminary
source code analysis cannot extract information on dynamically assigned call-
backs. Last 2 of 8 bugs were missed due to lack of specifications. The rest 11
bugs were missed because of issues in the BLAST static verifier and in rule
specifications as well as exhaustion of memory or time limits.
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5.3 Callback Pattern Matching

The kernel activity specification used in evaluation consists of 7 group pattern
specifications, 8 group type specifications for callback group types and the default
specification.

Table 2 shows how many callback groups and corresponding group types are
presented in Linux kernel 3.13-rc1 and how they were matched. The data demon-
strates that group pattern specifications matched a lot of callback groups and
group types.

Table 2. Matching of callback groups and group types with DEG specifications.

Matched with Callback groups Group types

Group type specifications 818 8

Group pattern specifications 5678 297

Default group specification 9876 434

Total 16372 739

An average size of a group type specification is 140 lines in XML nota-
tion. A size of group pattern specifications and the default group specification is
about 1500 lines in total. It means that specification of all 731 imprecisely speci-
fied group types can be estimated in 102 thousand lines. Therefore the proposed
method allowed to reduce the total specification size approximately in 68 times.

6 Related Work

Existing approaches for modeling environment of kernel modules significantly dif-
fer by required efforts and theirs means to specify precise models. For the Linux
kernel there are two approaches implemented in DDVerify [15] and Avinux [16].

DDVerify requires manual development of environment models. It allows to
specify models with any precision, since all possible C expressions are available,
yet this approach requires a lot of effort. In DDVerify only 4 group types were
specified for Linux kernel 2.6.19. Developed models highly depended on kernel
headers, that complicates migration to next versions of the Linux kernel.

The developers used state variables to define an order and parameters for
callback invocations. Models for registration functions transfer pointers to call-
backs into state variables. Callback invocations were implemented via function
pointers. This makes environment model code complicated for CEGAR based
static verifiers. Model precision allowed to effectively apply just BMC based
static verifiers like CBMC [6]. Environment models developed for DDVerify are
fully covered by environment models specified in LDV Tools.

Avinux extracts some information on callbacks by analysis of modules source
code. It does not impose any restrictions on an invocation order of callbacks and
provides only initialization of their parameters.
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SDV [17] was developed for verification of Windows device drivers. The Win-
dows driver developers who want to check their drivers with SDV have to write
annotations for driver callbacks manually. In contrast to Linux where we could
not force the community to annotate drivers it is convenient for Windows.

7 Conclusion

The paper proposed a new method for generating environment models for Linux
kernel modules on the base of specifications that describe patterns of possible
scenarios of interaction between modules and their environment. The approach
allowed to achieve sufficient level of model correctness and completeness mini-
mizing the total specification size by two orders of magnitude at the same time.
As a result it aided to perform large-scale verification of Linux kernel modules
with static verifiers that require precise environment models.
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16. Post, H., Küchlin, W.: Integrated static analysis for linux device driver verification.
In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 518–537. Springer,
Heidelberg (2007)

17. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C.,
Ondrusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device
drivers. SIGOPS Oper. Syst. Rev. 40(4), 73–85 (2006)



Author Index

Bal, Henri 361
Bodin, Eugene 102
Boulytchev, Dmitri 257
Bryans, Jeremy 161
Bushin, Dmitry 376

Cherednik, Kirill 266
Chernishev, George 266
Ciobanu, Gabriel 1
Clarke, Edmund M. 26

Dever, Michael 59
Dragan, Ioan 67
Dubinin, Victor 76

Emelyanov, Pavel 92
Erokhin, George 266

Fedotovsky, Pavel 266
Fokkink, Wan 361

Garanina, Natalia 102
Gnesi, Stefania 304
Gorlatch, Sergei 111
Grechanik, Sergei 127
Gribovskaya, Nataliya S. 142
Gruska, Damas P. 151

Hamilton, G.W. 59, 177
Hidalgo-Herrero, Mercedes 288
Horne, Ross 1

Iliasov, Alexei 161

Jones, Neil D. 177

Khoroshilov, Alexey 400
Klyuchnikov, Ilya 186
Korovina, Margarita 201
Kotov, Vadim E. 41
Kovács, Laura 67
Kudinov, Oleg 201

Larsen, Kim Guldstrand 216

Mardare, Radu 216
Martinovich, V.V. 385
Mazzanti, Franco 304
Meyer, Bertrand 45
Mogensen, Torben Ægidius 232
Mutilin, Vadim 400

Novikov, Evgeny 400

Ortega-Mallén, Yolanda 288

Pang, Cheng 76
Patil, Sandeep 76
Plümicke, Martin 248
Podkopaev, Anton 257
Ponomaryov, Denis 92

Romanenko, Sergei 186

Sánchez-Gil, Lidia 288
Sane, Aamod 273
Sassone, Vladimiro 1
Sidorova, Elena 102
Smirnov, Kirill 266
Steuwer, Michel 111
Sunkara, Vinodh Kumar 273

ter Beek, Maurice H. 304
Thiemann, Peter 320

Veanes, Margus 335
Verstoep, Kees 361
Vidal, Germán 351
Vijzelaar, Stefan 361
Virbitskaite, Irina 376
Vityaev, E.E. 385
Vyatkin, Valeriy 76

Wang, Qinsi 26

Xue, Bingtian 216
Zakharov, Ilja 400


	Preface
	Organization
	The Laws of Concurrent Programming
	Big Data, Big Systems, Big Challenges:A Personal Experience
	Contents
	Descriptive Types for Linked Data Resources
	1 Introduction
	2 Motivation for Descriptive Typing for Linked Data
	3 Types and Subtyping for the Descriptive Type System
	3.1 Types for Classifying Resources
	3.2 A Subtype Relation Over Descriptive Types

	4 An Algorithmic Type System for Scripts and Data
	4.1 The Syntax of a Simple Scripting Language for Linked Data
	4.2 An Algorithmic Type System for Scripts and Data

	5 An Operational Semantics Aware of Descriptive Types
	5.1 The Operational Semantics
	5.2 Calculating the Options in Warnings Algorithmically
	5.3 Subject Reduction

	6 Conclusion
	References

	25 Years of Model Checking
	1 Model Checking and State Explosion Problem
	2 Major Breakthroughs
	2.1 Symbolic Model Checking with OBDDs
	2.2 Partial Order Reduction
	2.3 Bounded Model Checking
	2.4 Counterexample-Guided Abstraction Refinement

	3 Model Checking and Stochastic Hybrid Systems
	3.1 Probabilistic Hybrid Automata
	3.2 Abstraction-Based Methods
	3.3 BMC-Based Methods

	4 Conclusion and Future Work
	References

	Big Data, Big Systems, Big Challenges: A Personal Experience
	An Automatic Technique for Static Deadlock Prevention
	Abstract
	1 Overview
	2 General Deadlock Condition
	3 Deadlock Prevention Strategy
	4 SCOOP Basics
	5 Deadlock in SCOOP
	6 The SCOOP Deadlock Detection Rule
	7 Example Application
	8 Conclusion and Perspectives
	Acknowledgments
	References

	Automatically Partitioning Data to Facilitate the Parallelization of Functional Programs
	1 Introduction
	2 Language
	3 Automatically Partitioning Data
	3.1 Defining Partitioned Data-Types
	3.2 Converting Data to and From Join-Lists
	3.3 Distilling Programs on Well-Partitioned Data

	4 Example Parallelization Using Well-Partitioned Data
	5 Related Work
	6 Conclusion
	References

	Lingva: Generating and Proving Program Properties Using Symbol Elimination
	1 Introduction
	2 Lingva: Tool Description
	3 Experiments with Lingva
	4 Conclusion
	References

	Neutralizing Semantic Ambiguities of Function Block Architecture by Modeling with ASM
	Abstract
	1 Introduction
	2 Related Facts
	2.1 Function Blocks
	2.2 Abstract State Machines
	2.3 Formal Modeling of IEC 61499 and Cross-Platform Portability

	3 Modular Formalism for FB Operational Semantics
	4 Model of a Composite Function Block in the Cyclic Execution Semantics
	4.1 Schema Definition
	4.2 Model Dynamics Definition
	4.3 Model of Scheduler
	4.4 Implementation of DASM-FB in SMV

	5 Example: Modeling of a Simple FB Application
	6 Conclusions
	References

	On Tractability of Disjoint AND-Decomposition of Boolean Formulas
	1 Introduction
	2 Preliminaries
	2.1 Basic Facts About AND-Decomposability
	2.2 The Computational Problems Considered in the Paper

	3 Main Results
	4 Conclusions
	References

	A Multi-agent Text Analysis Based on Ontology of Subject Domain
	1 Introduction
	2 Agent Model
	3 Multi-agent Algorithm for Text Analysis
	4 Conclusion
	References

	Towards High-Level Programming for Systems with Many Cores
	1 Introduction
	2 SkelCL: Programming Model and Library
	2.1 SkeCL as Extension of OpenCL
	2.2 Parallel Container Data Types
	2.3 Data (Re-)Distributions
	2.4 Patterns of Parallelism (Skeletons)

	3 Programming in SkelCL
	3.1 Example: Dot Product of Vectors
	3.2 Example: Matrix Multiplication

	4 Transformation Rules for Optimization
	4.1 Specialization Rule: Optimizing the Allpairs Skeleton
	4.2 Composition Rules: Optimizing Scan and Reduce

	5 Implementation of SkelCL
	6 Experimental Evaluation
	6.1 Programming Effort
	6.2 Performance Experiments

	7 Conclusion and Related Work
	References

	Inductive Prover Based on Equality Saturation for a Lazy Functional Language
	1 Introduction
	2 Programs and E-graphs
	2.1 Node Labels
	2.2 Merging

	3 Axioms
	3.1 Congruence
	3.2 Semantics of Explicit Substitutions
	3.3 Semantics of Pattern Matching
	3.4 Axioms Applied Destructively

	4 Merging by Bisimilarity
	4.1 Algorithm Description

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	Timed History Preserving Bisimulation and Open Maps
	1 Introduction
	2 Timed Causal Trees
	3 Timed History Preserving Bisimulation
	4 Elements of Category Theory
	5 Open Maps Characterization
	6 Path Bisimilarity
	7 Conclusion
	References

	Process Opacity for Timed Process Algebra
	1 Introduction
	2 Timed Process Algebra
	3 Information Flow
	4 Process Opacity
	5 Discussion and Further Work
	References

	A Proof-Based Method for Modelling Timed Systems
	1 Introduction
	2 Leibnizian Time Model
	2.1 Realisability
	2.2 Refinement

	3 Background
	3.1 Event-B
	3.2 Observer Modelling

	4 Case Study: Fischer's Algorithm
	4.1 Mutual Exclusion
	4.2 Fischer's Algorithm
	4.3 Subject Model
	4.4 Observer Model
	4.5 Verification Using the Observation Model

	5 Conclusion
	References

	Asymptotic Speedups, Bisimulation and Distillation (Work in Progress)
	1 Introduction
	1.1 Goal: Extend Automatic Superlinear Program Speedup
	1.2 Bisimulation and Program Transformation

	2 A Language, Observational Equivalence, and Labeled Transition Systems 
	2.1 Source Language Syntax
	2.2 Observational Equivalence and Labeled Transition Systems
	2.3 Example: ``Naive Reverse'' Program Representation as an LTS

	3 Distillation: A Simplified Version
	3.1 Driving
	3.2 A Driver for the Call-by-Value Language

	4 Some Speedup Principles and Examples
	4.1 On Sources of Speedup by Distillation
	4.2 Overview of the ``Old Chestnut'' Examples

	5 Conclusions
	References

	Certifying Supercompilation for Martin-Löf's Type Theory
	1 Introduction
	2 TT Lite SC in Action
	3 TT Lite: Syntax and Semantics
	4 TT Lite SC: Supercompilation
	5 Proof Generation
	6 Example
	7 Related Work
	8 Conclusions
	References

	Index Sets as a Measure of Continuous Constraint Complexity
	1 Introduction
	2 Basic Definitions and Notions
	3 Index Sets and Arithmetical Complexity over the Reals
	4 The Rice-Shapiro Theorem Revisited
	5 Index Sets for Computable Closed and Compact Sets
	6 An Application to Hybrid Systems
	7 Conclusion
	References

	Decidability and Expressiveness of Recursive Weighted Logic
	1 Introduction
	2 Labelled Weighted Transition Systems
	3 Recursive Weighted Logic
	4 Hennessy-Milner Property
	5 Satisfiability of Recursive Weighted Logic
	6 Conclusion
	References

	Supercompilation for Datatypes
	1 Introduction
	2 A Simple Functional Language
	2.1 Evaluation

	3 Supercompilation
	3.1 Transformation Steps
	3.2 A Supercompilation Strategy
	3.3 Example of Supercompilation

	4 Supercompiling for Datatypes
	4.1 Modified Transformation Steps
	4.2 A Modified Strategy

	5 Examples
	5.1 Combinator Reduction
	5.2 A Lambda-Calculus Reducer

	6 Conclusion
	6.1 Future Work

	References

	More Type Inference in Java 8
	1 Introduction
	2 The Language
	2.1 Abstract Syntax
	2.2 Canonical Representatives of Functional Interfaces

	3 Type Inference
	4 Related Work
	5 Conclusion and Future Work
	References

	Polynomial-Time Optimal Pretty-Printing Combinators with Choice
	1 Introduction
	2 Pretty-Printing Combinators with Choice
	3 Bottom-Up Rewrite Systems
	4 Pretty-Printing via BURS
	5 Implementation and Evaluation
	6 Conclusions and Future Work
	References

	The Study of Multidimensional R-Tree-Based Index Scalability in Multicore Environment
	1 Introduction
	2 Considered Problems
	3 The Prototype
	4 Experiments
	5 Conclusions
	References

	Skeblle: A New Kind of Diagramming Tool with Programmable Active Diagrams
	1 Introduction
	2 Skeblle and its User Interface
	3 Case I: Request Flow in a Deployment Diagram
	4 Case II: BCP and Failure Handling
	5 Case III: Chemical Reactions
	6 Case IV: Routing Protocols for Wireless Sensor Networks
	7 Design of Skeblle
	8 Graph Operations in Skeblle
	8.1 Nodes, Edges, and Types
	8.2 Derived Graphs and High-level Operators

	9 Visual Aspects: Layout and Markup
	10 Connecting Skeblle to Live systems
	11 Related Work
	12 Conclusion
	References

	The Role of Indirections in Lazy Natural Semantics
	1 Motivation
	2 A Locally Nameless Representation
	2.1 Locally Nameless Syntax
	2.2 Locally Nameless Semantics

	3 Indirections
	3.1 Context Equivalence
	3.2 Indirection Relation

	4 Conclusions and Future Work
	References

	Model Checking Value-Passing Modal Specifications
	1 Introduction
	2 Background
	2.1 A Modal Process Algebra

	3 Dealing with Data
	3.1 Case Study: Bike-Sharing Systems

	4 Value-Passing Modelling and Verification Environment
	4.1 A Value-Passing Modal Process Algebra
	4.2 A Value-Passing Logic to Express Variability
	4.3 Model Checking Value-Passing Modal Specifications

	5 Modelling and Analyzing the Case Study
	6 Conclusions and Future Work
	References

	Towards Specializing JavaScript Programs
	1 Introduction
	2 Architecture of the JSFlow Interpreter
	3 Specializing the JSFlow Interpreter
	3.1 Specializing Unary Operations
	3.2 Generating Code for Expressions and Assignments
	3.3 Making the Value Stack Static
	3.4 Making Values Static
	3.5 Variables and the Environment
	3.6 Function Expressions
	3.7 Control Structures

	4 Results
	4.1 Benchmark Results
	4.2 Analysis

	5 Assessment
	6 Conclusion
	References

	Symbolic String Transformations with Regular Lookahead and Rollback
	1 Introduction
	2 Symbolic Automata
	3 Symbolic Rollback Transducers
	4 Bex
	5 Bex to SRT Compiler
	5.1 Pattern Automaton Construction
	5.2 Compute Normal Transitions
	5.3 Compute Ending Transitions
	5.4 Compute Default Transitions

	6 Implementation and Experiments
	7 Related Work
	References

	Towards Symbolic Execution in Erlang
	1 Introduction
	2 Erlang Syntax
	3 Concrete Semantics
	4 Symbolic Execution Semantics
	5 Discussion
	References

	Bonsai: Cutting Models Down to Size
	1 Introduction
	2 Multi-valued Model Checking
	2.1 Preliminaries
	2.2 A Lattice for Under- and Over-Abstraction
	2.3 Multi-valued Abstraction
	2.4 Multi-valued Through Classical Model Checking

	3 Implementation
	3.1 Modifications to SpinJa
	3.2 Overview of the Abstraction
	3.3 Constructing SMT Terms for Transitions
	3.4 Abstracting SMT Terms Using Predicates
	3.5 Storing SMT Results in Decision Diagrams

	4 Experimental Results
	5 Conclusion
	References

	Comparing Semantics Under Strong Timing of Petri Nets
	1 Introduction
	2 Time Petri Nets
	3 Time Process Semantics
	4 Hierarchy of Equivalences
	References

	Probabilistic Formal Concepts with Negation
	1 Introduction
	2 Formal Concept Analysis
	3 Many-Valued Contexts. Formulae on Binary Contexts
	4 Probability and Rules on the Context
	5 Refinement Theorem
	6 Semantic Probabilistic Inference
	7 Classes of Rules
	8 Consistency Theorem
	9 About Incompatible Sets
	10 Probabilistic Formal Concepts
	11 Probabilistic Concepts Search
	12 Conclusion
	References

	Modeling Environment for Static Verification of Linux Kernel Modules
	1 Introduction
	2 Environment of Linux Kernel Modules
	3 Environment Modeling
	3.1 Definitions
	3.2 -Model for Kernel Module and Environment
	3.3 Group Type Specifications
	3.4 Group Pattern Specifications
	3.5 Method for Environment Modeling

	4 Driver Environment Generator
	5 Experimental Results
	5.1 Model Correctness
	5.2 Model Completeness
	5.3 Callback Pattern Matching

	6 Related Work
	7 Conclusion
	References

	Author Index

