
Elisabeth Oswald
Marc Fischlin (Eds.)

 123

LN
CS

 9
05

7

34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques
Sofia, Bulgaria, April 26–30, 2015, Proceedings, Part II

Advances in Cryptology –
EUROCRYPT 2015

Lecture Notes in Computer Science 9057

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Elisabeth Oswald · Marc Fischlin (Eds.)

Advances in Cryptology –
EUROCRYPT 2015
34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Sofia, Bulgaria, April 26–30, 2015
Proceedings, Part II

ABC

Editors
Elisabeth Oswald
University of Bristol
Bristol
UK

Marc Fischlin
Technische Universität Darmstadt
Darmstadt
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-46802-9 ISBN 978-3-662-46803-6 (eBook)
DOI 10.1007/978-3-662-46803-6

Library of Congress Control Number: 2015935614

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Heidelberg New York Dordrecht London
c© International Association for Cryptologic Research 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

Eurocrypt 2015, the 34th annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, was held during April 26–30, 2015, in Sofia, Bul-
garia, and sponsored by the International Association for Cryptologic Research (IACR).
Responsible for the local organization were Svetla Nikova, from Katholieke Universiteit
Leuven, and Dimitar Jetchev, from EPFL. They were supported by a Local Organizing
Committee consisting of Tsonka Baicheva (Institute of Mathematics and Informatics,
BAS), Violeta Ducheva (SANS), and Georgi Sharkov (ESI Center Eastern Europe). We
are indebted to them for their support.

To accommodate the request by IACR to showcase as many high-quality submis-
sions as possible, the program was organized in two tracks. These tracks ran in parallel
with the exception of invited talks, the single best paper, and two papers with honor-
able mention. Following a popular convention in contemporary cryptography, one track
was labeled R and featured results more closely related to ‘real’ world cryptography,
whereas the second track was labeled I and featured results in a more abstract or ‘ideal’
world.

A total of 194 submissions were considered during the review process, many were
of high quality. As usual, all reviews were conducted double-blind and we excluded
Program Committee members from discussing submissions for which they had a pos-
sible conflict of interest. To account for a desire (by authors and the wider community
alike) to maintain the high standard of publications, we allowed for longer submissions
such that essential elements of proofs or other form of evidence could be included in
the body of the submissions (appendices were not scrutinized by reviewers). Further-
more, a more focused review process was used that consisted of two rounds. In the
first round of reviews we solicited three independent reviews per submission. After a
short discussion phase among the 38 Program Committee members, just over half of
the submissions were retained for the second round. Authors of these retained papers
were given the opportunity to comment on the reviews so far. After extensive delibera-
tions in a second round, we accepted 57 papers. The revised versions of these papers are
included in these two volume proceedings, organized topically within their respective
track.

The review process would have been impossible without the hard work of the Pro-
gram Committee members and over 210 external reviewers, whose effort we would like
to commend here. It has been an honor to work with everyone. The process was enabled
by the Web Submission and Review Software written by Shai Halevi and the server was
hosted by IACR. We would like to thank Shai for setting up the service on the server
and for helping us whenever needed.

The Program Committee decided to honor one submission with the Best Paper
Award this year. This submission was “Cryptanalysis of the Multilinear Map over the
Integers” authored by Junghee Cheo, Kyoohyung Han, Changmin Lee, Hansol Ryu, and

VI Preface

Damien Stehlé. The two runners-up to the award, “Robust Authenticated-Encryption:
AEZ and the Problem that it Solves” (by Viet Tung Hoang, Ted Krovetz, and Phillip
Rogaway) and “On the behaviors of affine equivalent Sboxes regarding differential and
linear attacks” (by Anne Canteaut and Joëlle Roué) received Honorable Mentions and
hence also invitations for the Journal of Cryptology.

In addition to the contributed talks, we had three invited speakers: Kristin Lauter,
Tal Rabin, and Vincent Rijmen. We would like to thank them for accepting our invi-
tation and thank everyone (speakers, session chairs, and rump session chair) for their
contribution to the program of Eurocrypt 2015.

April 2015 Elisabeth Oswald
Marc Fischlin

EUROCRYPT 2015

The 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Track I

Sofia, Bulgaria, April 26–30, 2015

General Chairs

Svetla Nikova Katholieke Universiteit Leuven, Belgium
Dimitar Jetchev École Polytechnique Fédérale de Lausanne,

Switzerland

Program Co-chairs

Elisabeth Oswald University of Bristol, UK
Marc Fischlin Technische Universität Darmstadt, Germany

Program Commitee

Masayuki Abe NTT, Japan
Gilles Barthe IMDEA, Spain
Lejla Batina Radboud University Nijmegen, The Netherlands
Alex Biryukov University of Luxembourg, Luxembourg
Alexandra Boldyreva Georgia Institute of Technology, USA
Jan Camenisch IBM Research – Zurich, Switzerland
Anne Canteaut Inria, France
Liqun Chen HP Laboratories, UK
Chen-Mou Cheng National Taiwan University, Taiwan
Marten van Dijk University of Connecticut, USA
Jens Groth University College London, UK
Tetsu Iwata Nagoya University, Japan
Marc Joye Technicolor, USA
Charanjit Jutla IBM Research, USA
Eike Kiltz Ruhr-Universität Bochum, Germany
Markulf Kohlweiss Microsoft Research, UK
Gregor Leander Ruhr-Universität Bochum, Germany
Benoît Libert ENS Lyon, France
Yehuda Lindell Bar-Ilan University, Israel
Stefan Mangard Graz University of Technology, Austria
Steve Myers Indiana University, USA
Gregory Neven IBM Research – Zurich, Switzerland

VIII EUROCRYPT 2015

Kaisa Nyberg Aalto University, Finland
Kenneth G. Paterson Royal Holloway, University of London, UK
David Pointcheval École Normale Supérieure Paris, France
Manoj Prabhakaran University of Illinois at Urbana–Champaign, USA
Emmanuel Prouff ANSSI, France
Christian Rechberger Technical University of Denmark, Denmark
Pankaj Rohatgi Cryptography Research Inc., USA
Alon Rosen Herzliya Interdisciplinary Center, Herzliya, Israel
Alessandra Scafuro University of California, Los Angeles, USA
Christian Schaffner University of Amsterdam, The Netherlands
Dominique Schröder Saarland University, Germany
Martijn Stam University of Bristol, UK
François-Xavier Standaert Université catholique de Louvain, Belgium
Douglas Stebila Queensland University of Technology, Australia
Frederik Vercauteren Katholieke Universiteit Leuven, Belgium
Bogdan Warinschi University of Bristol, UK

External Reviewers

Divesh Aggarwal
Shweta Agrawal
Martin Albrecht
Hiroaki Anada
Prabhanjan Ananth
Elena Andreeva
Benny Applebaum
Srinivasan Arunachalam
Gilad Asharov
Nuttapong Attrapadung
Saikrishna Badrinarayanan
Rachid El Bansarkhani
Manuel Barbosa
Lynn Batten
Amos Beimel
Sonia Belaid
Josh Benaloh
Florian Bergsma
Sanjay Bhattacherjee
Nir Bitansky
Cèline Blondeau
Andrej Bogdanov
Niek Bouman
Colin Boyd
Elette Boyle
Zvika Brakerski

Luís T.A.N. Brandão
Billy Bob Brumley
Christina Brzuska
Claude Carlet
Angelo De Caro
Ignacio Cascudo
David Cash
Andrea Cerulli
Pyrros Chaidos
Yun-An Chang
Jie Chen
Baudoin Collard
Geoffroy Couteau
Edouard Cuvelier
Joan Daemen
Vizár Damian
Jean-Paul Degabriele
Patrick Derbez
David Derler
Christoph Dobraunig
Nico Döttling
Manu Drijvers
Maria Dubovitskaya
Orr Dunkelman
Francois Dupressoir
Stefan Dziembowski

Markus Dürmuth
Robert Enderlein
Chun-I Fan
Edvard Fargerholm
Pooya Farshim
Feng-Hao Liu
Matthieu Finiasz
Dario Fiore
Rob Fitzpatrick
Robert Fitzpatrick
Nils Fleischhacker
Jean-Pierre Flori
Pierre-Alain Fouque
Thomas Fuhr
Eiichiro Fujisaki
Benjamin Fuller
Tommaso Gagliardoni
Steven Galbraith
Nicolas Gama
Praveen Gauravaram
Ran Gelles
Rosario Gennaro
Henri Gilbert
Sergey Gorbunov
Matthew Green
Vincent Grosso

EUROCRYPT 2015 IX

Johann Groszschädl
Sylvain Guilley
Shai Halevi
Michael Hamburg
Mike Hamburg
Fabrice Ben Hamouda
Christian Hanser
Ryan Henry
Jens Hermans
Javier Herranz
Ryo Hiromasa
Shoichi Hirose
Yan Huang
Yuval Ishai
Cess Jansen
Thomas Johansson
Anthony Journault
Antoine Joux
Ali El Kaafarani
Saqib Kakvi
Akshay Kamath
Bhavana Kanukurthi
Carmen Kempka
Dmitry Khovratovich
Dakshita Khurana
Susumu Kiyoshima
Stefan Koelbl
François Koeune
Vlad Kolesnikov
Anna Krasnova
Stephan Krenn
Po-Chun Kuo
Fabien Laguillaumie
Adeline Langlois
Martin M. Laurisden
Jooyoung Lee
Anja Lehmann
Tancrède Lepoint
Reynald Lercier
Gaëtan Leurent
Anthony Leverrier
Huijia Lin
Steve Lu
Atul Luykx
Giulio Malavolta
Mark Marson

Dan Martin
Christian Matt
Ueli Maurer
Ingo von Maurich
Matthew McKague
Marcel Medwed
Florian Mendel
Bart Mennink
Arno Mittelbach
Payman Mohassel
Mridul Nandi
María Naya-Plasencia
Phong Nguyen
Ryo Nishimaki
Kobbi Nissim
Adam O’Neill
Wakaha Ogata
Miyako Ohkubo
Olya Ohrimenko
Tatsuaki Okamoto
Jiaxin Pan
Omkant Pandey
Omer Paneth
Saurabh Panjwani
Louiza Papachristodolou
Anat Paskin-Cherniavsky
Rafael Pass
Chris Peikert
Ludovic Perret
Léo Perrin
Thomas Peters
Christophe Petit
Duong Hieu Phan
Krzysztof Pietrzak
Benny Pinkas
Jérôme Plût
Christopher Portmann
Romain Poussier
Ignacio Cascudo Pueyo
Ivan Pustogarov
Bertram Pöttering
Max Rabkin
Carla Rafols
Somindu Ramanna
Jothi Rangasamy
Alfredo Rial

Vincent Rijmen
Ben Riva
Matthieu Rivain
Thomas Roche
Mike Rosulek
Ron Rothblum
Yannis Rouselakis
Arnab Roy
Atri Rudra
Kai Samelin
Palash Sarkar
Benedikt Schmidt
Peter Scholl
Peter Schwabe
Gil Segev
Nicolas Sendrier
Yannick Seurin
Abhi Shelat
Adam Shull
Jamie Sikora
Mark Simkin
Daniel Slamanig
Hadi Soleimany
Juarj Somorovsky
Florian Speelman
Damien Stehlé
John Steinberger
Noah

Stephens-Davidowitz
Marc Stevens
Pierre-Yves Strub
Stefano Tessaro
Susan Thomson
Mehdi Tibouchi
Tyge Tiessen
Pei-Yih Ting
Elmar Tischhauser
Mike Tunstall
Dominique Unruh
Vinod Vaikuntanathan
Kerem Varici
Vesselin Velichkov
Muthuramakrishnan
Venkitasubramaniam
Daniele Venturi
Nicolas Veyrat-Charvillon

X EUROCRYPT 2015

Ivan Visconti
David Wagner
Hoeteck Wee
Erich Wenger
Cyrille Wielding

David Wu
Keita Xagawa
Bo-Yin Yang
Shang-Yi Yang
Kazuki Yoneyama

Mark Zhandry
Vassilis Zikas

Contents – Part II, Track I

Signatures

Universal Signature Aggregators. 3
Susan Hohenberger, Venkata Koppula, and Brent Waters

Fully Structure-Preserving Signatures and Shrinking Commitments. 35
Masayuki Abe, Markulf Kohlweiss, Miyako Ohkubo,
and Mehdi Tibouchi

Zero-Knowledge Proofs

Disjunctions for Hash Proof Systems: New Constructions
and Applications. 69

Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Quasi-Adaptive NIZK for Linear Subspaces Revisited 101
Eike Kiltz and Hoeteck Wee

Leakage-Resilient Cryptography

Leakage-Resilient Circuits Revisited – Optimal Number of Computing
Components Without Leak-Free Hardware. 131

Dana Dachman-Soled, Feng-Hao Liu, and Hong-Sheng Zhou

Noisy Leakage Revisited . 159
Stefan Dziembowski, Sebastian Faust, and Maciej Skorski

Garbled Circuits

Privacy-Free Garbled Circuits with Applications to Efficient
Zero-Knowledge . 191

Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi

Two Halves Make a Whole: Reducing Data Transfer in Garbled Circuits
Using Half Gates . 220

Samee Zahur, Mike Rosulek, and David Evans

Crypto Currencies

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 253
Jens Groth and Markulf Kohlweiss

The Bitcoin Backbone Protocol: Analysis and Applications 281
Juan Garay, Aggelos Kiayias, and Nikos Leonardos

Secret Sharing

Linear Secret Sharing Schemes from Error Correcting Codes
and Universal Hash Functions . 313

Ronald Cramer, Ivan Bjerre Damgård, Nico Döttling,
Serge Fehr, and Gabriele Spini

Function Secret Sharing. 337
Elette Boyle, Niv Gilboa, and Yuval Ishai

Outsourcing Computations

Cluster Computing in Zero Knowledge . 371
Alessandro Chiesa, Eran Tromer, and Madars Virza

Hosting Services on an Untrusted Cloud . 404
Dan Boneh, Divya Gupta, Ilya Mironov, and Amit Sahai

Obfuscation and E-Voting

How to Obfuscate Programs Directly . 439
Joe Zimmerman

End-to-End Verifiable Elections in the Standard Model. 468
Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang

Multi-party Computations

Cryptographic Agents: Towards a Unified Theory of Computing
on Encrypted Data . 501

Shashank Agrawal, Shweta Agrawal, and Manoj Prabhakaran

Executable Proofs, Input-Size Hiding Secure Computation
and a New Ideal World . 532

Melissa Chase, Rafail Ostrovsky, and Ivan Visconti

XII Contents – Part II, Track I

Encryption

Semantically Secure Order-Revealing Encryption: Multi-input Functional
Encryption Without Obfuscation. 563

Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai,
Mark Zhandry, and Joe Zimmerman

Improved Dual System ABE in Prime-Order Groups via Predicate
Encodings . 595

Jie Chen, Romain Gay, and Hoeteck Wee

Resistant Protocols

Resisting Randomness Subversion: Fast Deterministic and Hedged
Public-Key Encryption in the Standard Model . 627

Mihir Bellare and Viet Tung Hoang

Cryptographic Reverse Firewalls . 657
Ilya Mironov and Noah Stephens-Davidowitz

Key Exchange

Mind the Gap: Modular Machine-Checked Proofs of One-Round
Key Exchange Protocols . 689

Gilles Barthe, Juan Manuel Crespo, Yassine Lakhnech,
and Benedikt Schmidt

Authenticated Key Exchange from Ideal Lattices . 719
Jiang Zhang, Zhenfeng Zhang, Jintai Ding, Michael Snook,
and Özgür Dagdelen

Quantum Cryptography

Non-Interactive Zero-Knowledge Proofs in the Quantum Random
Oracle Model . 755

Dominique Unruh

Privacy Amplification in the Isolated Qubits Model 785
Yi-Kai Liu

Discrete Logarithms

Generic Hardness of the Multiple Discrete Logarithm Problem 817
Aaram Yun

Author Index . 837

Contents – Part II, Track I XIII

Contents – Part I, Track R

Best Paper

Cryptanalysis of the Multilinear Map over the Integers 3
Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu,
and Damien Stehlé

Honorable Mentions

Robust Authenticated-Encryption AEZ and the Problem That It Solves. 15
Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway

On the Behaviors of Affine Equivalent Sboxes Regarding Differential
and Linear Attacks . 45

Anne Canteaut and Joëlle Roué

Random Number Generators

A Provable-Security Analysis of Intel’s Secure Key RNG 77
Thomas Shrimpton and R. Seth Terashima

A Formal Treatment of Backdoored Pseudorandom Generators 101
Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev,
Ari Juels, and Thomas Ristenpart

Number Field Sieve

Improving NFS for the Discrete Logarithm Problem in Non-prime
Finite Fields . 129

Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic,
and François Morain

The Multiple Number Field Sieve with Conjugation and Generalized
Joux-Lercier Methods . 156

Cécile Pierrot

Algorithmic Cryptanalysis

Better Algorithms for LWE and LWR. 173
Alexandre Duc, Florian Tramèr, and Serge Vaudenay

On Computing Nearest Neighbors with Applications to Decoding
of Binary Linear Codes . 203

Alexander May and Ilya Ozerov

Symmetric Cryptanalysis I

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions
with Applications to PRINCE and PRIDE . 231

Itai Dinur

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis
of Robin, iSCREAM and Zorro . 254

Gregor Leander, Brice Minaud, and Sondre Rønjom

Symmetric Cryptanalysis II

Structural Evaluation by Generalized Integral Property 287
Yosuke Todo

Cryptanalysis of SP Networks with Partial Non-Linear Layers 315
Achiya Bar-On, Itai Dinur, Orr Dunkelman, Virginie Lallemand,
Nathan Keller, and Boaz Tsaban

Hash Functions

The Sum Can Be Weaker Than Each Part . 345
Gaëtan Leurent and Lei Wang

SPHINCS: Practical Stateless Hash-Based Signatures 368
Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider,
Peter Schwabe, and Zooko Wilcox-O’Hearn

Evaluating Implementations

Making Masking Security Proofs Concrete: Or How to Evaluate the Security
of Any Leaking Device . 401

Alexandre Duc, Sebastian Faust, and François-Xavier Standaert

Ciphers for MPC and FHE. 430
Martin R. Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner

XVI Contents – Part I, Track R

Masking

Verified Proofs of Higher-Order Masking . 457
Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, and Pierre-Yves Strub

Inner Product Masking Revisited . 486
Josep Balasch, Sebastian Faust, and Benedikt Gierlichs

Fully Homomorphic Encryption I

Fully Homomophic Encryption over the Integers Revisited 513
Jung Hee Cheon and Damien Stehlé

(Batch) Fully Homomorphic Encryption over Integers for Non-Binary
Message Spaces . 537

Koji Nuida and Kaoru Kurosawa

Related-Key Attacks

KDM-CCA Security from RKA Secure Authenticated Encryption 559
Xianhui Lu, Bao Li, and Dingding Jia

On the Provable Security of the Iterated Even-Mansour Cipher Against
Related-Key and Chosen-Key Attacks . 584

Benoît Cogliati and Yannick Seurin

Fully Homomorphic Encryption II

FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second . . . 617
Léo Ducas and Daniele Micciancio

Bootstrapping for HElib . 641
Shai Halevi and Victor Shoup

Efficient Two-Party Protocols

More Efficient Oblivious Transfer Extensions with Security
for Malicious Adversaries . 673

Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner

How to Efficiently Evaluate RAM Programs with Malicious Security 702
Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek

Contents – Part I, Track R XVII

Symmetric Cryptanalysis III

Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-Reduced
Keccak Sponge Function . 733

Itai Dinur, Paweł Morawiecki, Josef Pieprzyk, Marian Srebrny,
and Michał Straus

Twisted Polynomials and Forgery Attacks on GCM 762
Mohamed Ahmed Abdelraheem, Peter Beelen, Andrey Bogdanov,
and Elmar Tischhauser

Lattices

Quadratic Time, Linear Space Algorithms for Gram-Schmidt
Orthogonalization and Gaussian Sampling in Structured Lattices 789

Vadim Lyubashevsky and Thomas Prest

Author Index . 817

XVIII Contents – Part I, Track R

Signatures

Universal Signature Aggregators

Susan Hohenberger1(B), Venkata Koppula2, and Brent Waters2

1 Johns Hopkins University, Baltimore, USA
susan@cs.jhu.edu

2 University of Texas at Austin, Austin, USA
{kvenkata,bwaters}@cs.utexas.edu

Abstract. We introduce the concept of universal signature aggregators.
In a universal signature aggregator system, a third party, using a set of
common reference parameters, can aggregate a collection of signatures
produced from any set of signing algorithms (subject to a chosen length
constraint) into one short signature whose length is independent of the
number of signatures aggregated. In prior aggregation works, signatures
can only be aggregated if all signers use the same signing algorithm
(e.g., BLS) and shared parameters. A universal aggregator can aggre-
gate across schemes even in various algebraic settings (e.g., BLS, RSA,
ECDSA), thus creating novel opportunities for compressing authentica-
tion overhead. It is especially compelling that existing public key infras-
tructures can be used and that the signers do not have to alter their
behavior to enable aggregation of their signatures.

We provide multiple constructions and proofs of universal signature
aggregators based on indistinguishability obfuscation and other support-
ing primitives. We detail our techniques as well as the tradeoffs in features
and security of our solutions.

1 Introduction

An aggregate signature system, as introduced by Boneh, Gentry, Lynn and
Shacham [13], allows a party to bundle a set of signatures together into a single
short cryptographic signature. Aggregate signatures are motivated by applica-
tions where one needs to simultaneously verify several signatures from differ-
ent users on different messages in environments with communication or storage
resource constraints. For example, Boneh et al. [13] proposed applying aggregate
signatures to Secure BGP [34] path authentication; later this idea was empiri-
cally evaluated by Zhao et al. [45].

S. Hohenberger—Supported by the National Science Foundation CNS-1228443 and
CNS-1414023; the Defense Advanced Research Projects Agency (DARPA) and the
Air Force Research Laboratory (AFRL) under contract FA8750-11-C-0080, the Office
of Naval Research under contract N00014-14-1-0333, and a Microsoft Faculty Fel-
lowship.
B. Waters—Supported by NSF CNS-1228599 and CNS-1414082, DARPA through
the U.S. Office of Naval Research under Contract N00014-11-1-0382, a Google Fac-
ulty Research Award, an Alfred P. Sloan Fellowship, a Microsoft Faculty Fellowship,
and a Packard Foundation Fellowship.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 3–34, 2015.
DOI: 10.1007/978-3-662-46803-6 1

4 S. Hohenberger et al.

Over the past several years many solutions to aggregate signatures [1,5,11,
13,18,20,22,31,36,37,39,43] have been proposed that have explored tradeoffs
regarding computational cost, security models, features (e.g. identity-based),
limitations (e.g. sequential signing), and cryptographic assumptions. However,
all of these constructions have one thing in common in that they require all
signers to adopt a common signature system and shared parameters.

In practice, the common scheme and parameter requirements can be a large
barrier to adoption. Existing users will already have established signing keys
and algorithms which are entrenched in an existing public key infrastructure.
The overhead of changing and re-certifying one’s public keys may very well
overwhelm the perceived benefit of creating signatures that can be aggregated
by a third party. Indeed the original signer might not even be incentivized to
allow aggregation in the first place when the benefits fall to the aggregating party
or verifier of the signatures. Furthermore, even if a user moved from one signature
system to an aggregate signature system, all previously created signatures would
be unaggregatable.1

Universal Signature Aggregators. We introduce the concept of universal signa-
ture aggregators. In a universal signature aggregator system, a third party, using
a set of common reference parameters, can aggregate a collection of signatures
produced from any set of signing algorithms (subject to a chosen length con-
straint) into one short signature whose length is independent of the number
of signatures aggregated. A verifier can use the common parameters to verify
the aggregate signature. The system will be secure in the sense that it is hard
to produce an aggregate signature on a verification algorithm, verification key,
message tuple, (Verify,VK,m), unless the holder of the corresponding secret key
produced a signature on m. Signers in the system need not do anything special
to allow aggregation; indeed they could be unaware of the existence of such a
system.

Our central challenge is to create a way to compress many signatures of
varying types into one short object. Prior solutions required all signatures to
reside in a common (often bilinear) group, where it was possible to leverage
homomorphic properties of the group structure. Here we are afforded no such
luxury as signatures will reside in different groups or even be based on a scheme
with no algebraic structure.

Our approach will be to overcome these limitations by applying the tool of
program obfuscation. At the highest level, a trusted setup routine will produce
a pair of a global signature verification key for a universal signature aggregator
and a shared obfuscated program. The job of the obfuscated program will be
to take as input tuples of the form (Verify,VK,m, σ) that respectively represent
verification algorithm, verification key, message and signature 4-tuples. The pro-
gram will first verify using algorithm Verify and key VK that σ is a signature
on m. If this check passes, it will produce a signature using a master secret key
1 Integrating “special property”cryptography into existing keys is relatively unex-

plored, but has been considered in ring signatures [9] and deniable encryption [44].

Universal Signature Aggregators 5

on the message Msg = (Verify,VK,m) — essentially transforming the arbitrary
signature into one of an aggregatable form.

At first glance it might appear that obfuscation provides an open and close
solution to our problem. Indeed, if we heuristically model the obfuscated pro-
gram as an oracle to the program, the analysis is relatively straightforward.
However, as noted by Hada [27] such a definition is impossible to achieve for
any functionality. Our goal is to create probably secure constructions under a
realizable definition of obfuscation — ideally indistinguishability obfuscation.

Achieving provable security under indistinguishability obfuscation (and with-
out knowledge assumptions 2) presents significant challenges. The primary tech-
nical challenge is how to design a construction and corresponding reduction that
can extract a forgery on an arbitrary input signature scheme from an attacker
that forges on the aggregate. We emphasize that without an oracle interface
or knowledge assumption a reduction is not afforded the opportunity to simply
“look at” the input signatures.

Universally Aggregating Unique Signatures. We begin by exploring how to uni-
versally aggregate unique signatures — a unique signature system [25] is one
where there is at most one signature that will verify per message. Notably, RSA
based full domain hash [6,7] are unique signatures that form the basis of the
widely deployed PKCS#1 standard [33]. As evidence of the wide scale deploy-
ment, Heninger et al. [28] performed an Internet-wide scan of machines respond-
ing on the TLS and SSH ports for IPv4 space and reported 3.9 million distinct
RSA keys compared to only 1.9 thousand DSA keys.

Our construction will be parameterized by four polynomial functions over the
security parameter: �ver(λ), �vk(λ),�msg(λ), �sig(λ). These respectively represent
a bound on the size of verification circuits, verification keys, length of messages
signed and size of signatures that are aggregated. While we are interested in
signatures of arbitrary length messages, in practice almost all signature schemes
will apply the “hash and sign” paradigm where a longer message is first hashed
down to a fixed size hash value (dependent on the security parameter). The core
signature scheme then signs this value.

In our first construction (Sect. 4), the UniversalSetup first chooses an RSA
modulus N and exponent e ← Z

∗
φ(N). Next, it chooses a puncturable PRF [15,

16,35,44] key K for a function F that takes inputs of the form (Verify,VK,m) ∈
{0, 1}�ver × {0, 1}�vk × {0, 1}�msg (i.e., 3-tuples representing a verification circuit,
verification key and message). The puncturable PRF will output into ZN .

Finally, the setup will publish (indistinguishability) obfuscations of two pro-
grams. The first isTransformN,K . This program takes as input a 4-tupleVerify,VK,
m,σ. It thencomputesVerify(VK,m, σ),whichverifies thesignatureunderthealgo-
rithm. If the signature verifies, the program outputs F (K,Verify,VK,m) ∈ ZN .
This is a “transformed signature” where the obfuscated program maps the original
2 A different direction is to attempt to build universal aggregation from succinct argu-

ments of knowledge (SNARKs)[10]. We aim to achieve our goals without applying
knowledge assumptions.

6 S. Hohenberger et al.

signature into one overZN . The secondprogram isTransform-ImageN,K,e. On input
(Verify,VK,m), it computes F (K,Verify,VK,m)e (mod N).

One can now aggregate a sequence of signatures (Verifyi,VKi,mi, σi) by
transforming each one as3 si = TransformN,K(Verifyi,VKi,mi, σi) and then
aggregating into one element of ZN as σagg =

∏
i si. To verify an aggregate

signature, σagg, on (Verifyi,VKi,mi) compute ti = Transform-ImageN,K(Verifyi,

VKi, mi) and test whether σe
agg

?=
∏

i ti. 4 Essentially the Transform program
maps an arbitrary signature to an RSA FullDomain hash type signature on the
“message” (Verifyi,VKi,mi).

We prove selective security where the attacker declares before seeing the
public parameters a message m∗ that they will forge on.5 Our security argument
is centered around an alternative program Transform-Reject which is programmed
to behave the same as Transform except on input y = (Verify∗,VK∗,m∗) on which
it always outputs ⊥ even if it is given a valid signature on m∗. It also uses a
PRF key that is punctured at y.

Security follows from two primary arguments about the program. We first
establish that if an attack algorithm, Att, is successful when given Transform, it
must be almost as successful when given Transform-Reject; otherwise, the under-
lying unique signature scheme is broken. Suppose that there is an attacker, Att,
with a non-negligible difference in advantage between these two games, then we
can build a reduction algorithm that extracts the unique signature on m∗ in a
bit by bit fashion. The reduction algorithm runs as the challenger in the aggre-
gate signature game and receives a challenge verification key from the challenger
in the standard signature security game. It runs to the point in the security
game where the input public key and parameters are established and saves the
state of the game (including the state of Att). Then for each bit of the signa-
ture it performs the following process multiple times.6 It runs a third program
TransformAlty,j . This program runs as Transform, but rejects if the j-th bit of
the input signature is 1. For each j, it runs the experiment multiple times with
fresh randomness. If the measured advantage of the attacker drops when using
TransformAlty,j then it guesses that the j-th bit of the signature is 1; otherwise it
guesses that it is 0. It compiles all of these guesses together to output a forgery.
(The amount of rewinding needed depends on the difference in advantage. In
addition, our actual analysis addresses other technical details.)

3 We slightly abuse notation in the introduction for ease of exposition by using the
names Transform and Transform-Image to refer both to the obfuscated and unobfus-
cated forms of the program. In the main body, we are careful about these distinctions.

4 We require in verification that no 3-tuples are repeated. I.e., for all i �= j,
(Verifyi, VKi, mi,) �= (Verifyj , VKj , mj).

5 The usual complexity leveraging arguments for adaptive security can be applied here
if we are willing to make sub-exponential hardness assumptions.

6 In a nutshell, uniqueness is necessary in this construction, because, among other
things, our proof extracts the signature bit-by-bit, and so we don’t want the signature
to “change” during the extraction process.

Universal Signature Aggregators 7

Since signatures are unique, the program TransformAlty,j is functionally equiv-
alent to Transform if the j-th bit of the unique signature on m∗ is 0 and thus
by indistinguishability obfuscation the attacker’s advantage should be negligibly
close in these two cases. Similarly, TransformAlty,j is functionally equivalent to
Transform-Reject if the j-th signature bit is 1 and again by indistinguishability
obfuscation the advantage should be close to that of Transform-Reject.

After we have established that the advantage when given Transform-Reject is
close to that of Transform, we show that an attacker that can win when given
Transform-Reject will either break indistinguishability obfuscation, the punctured
PRF’s security or the RSA assumption and roughly follows [32] using punctured
programming [44] techniques. The main proof innovation is combining a rewind-
ing argument with indistinguishability obfuscation to extract a unique signature.

We show a variation of this idea in the full version [30] that is a universal
aggregator of unique signatures, but where we avoid using the RSA assump-
tion. (Indistinguishability obfuscation and punctured PRFs are still used.) The
tradeoff is that there is an a priori bound n on the number of signatures that
can be aggregated. In the construction, the parameters will grow polynomially
with n, but the size of the signatures is independent of n. We conjecture that in
our main construction the RSA-type transformed signature can be replaced by
a BLS [14] type signature (as in [32]), but do not formally show this.

Universal Aggregation of Arbitrary Signatures Using VBB Obfuscation. While
covering unique signatures achieves progress, we want to push toward our central
goal of aggregating arbitrary signatures. Our next step is to show that a tweak to
the previous construction gives us a universal aggregator of arbitrary signatures
under a specific virtual black box (VBB) assumption. This appears in Sect. 5.

It might first seem that a solution proven under a VBB assumption is not
better than the oracle heuristic outlined earlier. However, achieving a VBB proof
provides both a sounder justification and is more technically challenging than
the oracle heuristic. First, modeling an obfuscated program as an oracle is a
heuristic — a piece of code is clearly a different object than an oracle. In contrast,
a VBB assumption could be true for many functionalities even though there
exists certain functionalities for which it cannot hold [3].7

Proving our construction secure under a VBB definition presents an inter-
esting technical barrier. A natural proof methodology is to first say that an
obfuscator for a given circuit cannot be more successful than a simulator with
oracle access to the same circuit using VBB. And then making further hybrid
security arguments leveraging the fact that the simulator has oracle access. The
7 An iO obfuscator can serve as a candidate for whatever functionalities are possible

to VBB obfuscate via the “best possible” obfuscation argument of Goldwasser and
Rothblum [26]. So if the functionalities we consider could be VBB obfuscated, any
iO candidate for them would suffice, e.g., [21]. However, there does not exist any
clean conjecture of what functionalities can be VBB obfuscated. Recent works [2,17]
suggest that most “natural” functionalities can be VBB obfuscated; however, it is
currently unknown how to turn this intuition into a precise statement.

8 S. Hohenberger et al.

primary problem with this strategy is that while the universal aggregator secu-
rity game gives the attacker access to a signing oracle, there is no place to “put”
this signing oracle when applying the VBB security game.

We overcome this obstacle by introducing a new technique that we call “oracle
assimilation” which we believe might be of independent interest. In our construc-
tion, the Transform-VBB program behaves in almost the same way as Transform
before except an extra mode bit is added to the input. If this mode bit b is set
to 1, it indicates normal input and the Transform-VBB program operates roughly
as described above. If the mode bit is set to 0, it indicates query input and the
program outputs a rejecting ⊥ on all inputs of this type. The query type input
is only used in the proof and not in the construction.

Our proof of security proceeds by a sequence of games. In the initial security
game, all query inputs output a rejecting ⊥. The proof (in a couple of steps) then
moves to a game where the query inputs will take a form of (a,m) and output a
signature on m under the challenge input secret signing key if PRG(a) = α for
some value α chosen by the game, but hidden from the attacker. We can argue
this change is indiscernable to the attacker by obfuscator and pseudorandom
generator security. At this point the security game will use the query interface
of the obfuscated program to answer signing queries and we can say that the
signing oracle was “assimilated” into the obfuscated program. Next, we can use
VBB security to argue that there must exist a simulator with oracle access to
the program that outputs 1 with probability close to the same probability that
the attacker wins. Now that the input signing algorithm is accessed by an oracle
we can use its security to argue that the game is indistinguishable from when
the circuit refuses to transform on m∗, the challenge message.8 Finally, we use
VBB again to reason about the attack algorithm’s advantage when given this
second circuit that will not transform on m∗. From here, the proof follows as in
the unique signature case.

Stepping back, the main innovation for this proof is to use punctured pro-
gramming techniques to subliminally assimilate the signing oracle for one scheme
into the obfuscated program, then use the VBB interface to execute the proof.
We expect that this technique will be useful in other contexts. One interesting
view is that we could apply either this VBB argument for arbitrary signatures or
the previous iO argument for unique signatures to this single construction. So a
user with any signature scheme would get VBB based security and if a user had
a unique signature scheme, she would get the added benefit of iO based security.

Aggregating Arbitrary Signatures Using Indistinguishability Obfuscation. Finally,
we return to our goal of aggregating arbitrary signatures using indistinguishabil-
ity obfuscation. Our primary challenge again is how to extract an input forgery
from the attacker in a proof. The previous two methods used the structure of a
unique signature and an oracle interface, neither of which is available to us now.
8 The proof in the main body proves selective security; however, we show how a

minor transformation of the construction using admissible hash functions [12] gives
adaptive security in the full version [30].

Universal Signature Aggregators 9

We overview the main solution ideas and our proof approach. At a high level,
we devise a means for being able to extract and check the validity of a single
signature (from the aggregate) of our choice in the proof without the adversary
being able to know which one we are “looking at”. Thus, we build our confidence
in the validity of all the signatures by being able to check any given one of them.
We call this an “enforce all by one” technique.

To do this, we first use additively (or singly) homomorphic encryption to
combine the encryptions of several signatures together into one object t. Then
we will have an obfuscated program generate a PRF-type signature component
s on a message representing ciphertext tag t along with tuples {Verifyi,VKi,mi}
if the input contains valid signatures on each message. The output aggregate
signature is σagg = (t, s). Although the homomorphic ciphertext t will not be
large enough to contain all of the input signatures, in the proof it can be used to
remember one of the input signatures and thus provide us with an opportunity
to extract a forgery on the input signature. The difficulty is in using iO to ensure
that an attacker can only output a verifying σagg = (t, s) on a ciphertext “tag”
t that contains a proper forgery in the proof.

Diving in further, the setup algorithm will be parameterized by a polynominal
n(·) that gives an a-priori bound on the number of signatures that can be verified.
The size of the parameters will grow polynomially with n, but the signature
size will be independent of it. The setup algorithm will output n ciphertexts
{counti ← HE.enc(pk, 0)}i=1,...n each of which is an encryption of 0.

The universal aggregation algorithm takes input {Verifyi,VKi,mi, σi}. It
then computes t = Σicounti ·σi. Next it will input t and the tuples {Verifyi,VKi,
mi, σi} to an obfuscated program AggSign which will evaluate and output a punc-
tured PRF on t and {Verifyi,VKi,mi} if the input signatures verify. (We will
return shortly to where the obfuscated program comes from.)

We use a sequence of hybrids proof, where the first step of the hybrid is to
guess an index j (incurring a 1/n loss) where the forgery occurs. Next, we change
countj to be an encryption of 1. This causes an honestly computed value t to be
an encryption of the j-th signature that we will eventually use for extraction.

The challenge at this point is to come up with a formulation of the program
AggSign for which we can prove security using indistinguishability arguments.
We provide two approaches. In the first one (see Sect. 6), we allow AggSign to
be created by a Universal Sampler (also called a Universal Parameters Scheme)
as defined by Hofheinz et al. [29]. A Universal Sampler is allowed to adaptively
sample from an arbitrary (efficiently computable) distribution. In this case we
sample from an obfuscation of the AggSignt program that is parameterized to
only work with a given tag value t. As noted in [29], Universal Samplers are
realizable in the random oracle model from indistinguishability obfuscation. So
this solution will exist in the random oracle model as well. An advantage of
Universal Samplers is that they can define the AggSignt program adaptively.

We propose a second variation of this solution in [30] that does not need
the random oracle heuristic. Instead, it applies complexity leveraging requiring
sub-exponential hardness of some underlying computational assumptions.

10 S. Hohenberger et al.

1.1 Summary of Our Results

Our results are summarized in the following table. The first column labels the
construction. The remaining columns indicate: type of signatures that can be
aggregated, selective or adaptive security, standard or random oracle model
proofs, whether the aggregator is bounded or not, and finally, the cryptographic
assumptions used in the security proof. In our assumptions, we prefix them
with “subexp” to indicate if sub-exponential hardness is required for complex-
ity leveraging. Since PRFs, PRGs, and (selectively-secure) puncturable PRFs
are constructible from one-way functions, we list OWF as the assumption. UPS
stands for a universal parameters scheme [29] (implied by iO in the random
oracle model), HE stands for singly homomorphic encryption, iO stands for
indistinguishability obfuscation, and VBB stands for virtual black-box obfus-
cation, where we assume that VBB holds only for a certain limited family of
circuits.

Construction Type Selective/
Adaptive

RO Bounded
Aggregator

Assumptions

Sect. 4 Unique Selective No No iO, RSA, OWF

Sect. 5 Arbitrary Selective9 No No iO, RSA, VBB, OWF

Sect. 6 Arbitrary Adaptive Yes Yes iO, UPS, HE, OWF

Full version [30] Arbitrary Selective No Yes subexp-iO, HE,
subexp-OWF

Organization. In Sect. 2, we provide background material. In Sect. 3, we give our
security definition of universal signature aggregators. In Sect. 4, we show our first
construction, based on indistinguishability obfuscation. Section 5 contains our
construction based on VBB obfuscation. In Sect. 6, we describe a construction
on indistinguishability obfuscation, but in the random oracle model. A variety
of alternate constructions are included in the full version [30].

In all of our constructions, we prove security via a sequence of games argu-
ment. Our core proof ideas are mostly captured in the hybrid structure itself.
For space reasons, we chose to include the hybrids here and defer the supporting
claims to the full version [30].

2 Preliminaries

2.1 Notations

For any set X , x ← X denotes a uniformly random element drawn from X .
Given integers �ckt, �inp, �out, let C[�ckt, �inp, �out] denote the set of circuits that
can be represented using �ckt bits, take �inp bits as input, and output �out bits.

9 In [30], we modify this construction to achieve adaptive security without any addi-
tional assumptions.

Universal Signature Aggregators 11

2.2 Admissible Hash Functions

We recall the notion of admissible hash functions due to Boneh and Boyen [12].
Here we state a simplified definition from [32].

Definition 1. Let l, n and θ be efficiently computable univariate polynomials,
h : {0, 1}l(λ) → {0, 1}n(λ) be an efficiently computable function, and AdmSample
a PPT algorithm that takes as input 1λ and an integer q, and outputs u ∈
{0, 1,⊥}n(λ). For any u ∈ {0, 1,⊥}n(λ), define Pu : {0, 1}l(λ) → {0, 1} as follows:
Pu(x) = 0 if for all 1 ≤ j ≤ n(λ), h(x)j �= uj, else Pu(x) = 1 (where uj denotes
the jth bit of u).

We say that (h,AdmSample) is θ-admissible if the following condition holds:
For any efficiently computable polynomial Q, for all x1, . . . , xQ(λ) and x∗ ∈

{0, 1}l(λ), where x∗ /∈ {xi}i,

Pr[(∀i ≤ Q(λ), Pu(xi) = 1) ∧ Pu(x∗) = 0] ≥ 1
θ(Q(λ))

where the probability is taken over u ← AdmSample(1λ, Q(λ)).

Theorem 1 (Admissible Hash Function Family [12], simplified proof
in [20]). For any efficiently computable polynomial l, there exist efficiently
computable polynomials n, θ such that there exist θ-admissible function families
mapping l bits to n bits.

2.3 Signature Schemes

A signature scheme S with message space M(λ), signature key space SK(λ) and
verification key space VK(λ) consists of the standard algorithms: key generation
Gen(1λ) → (VK,SK), signing Sign(SK,m) → σ and verification Verify(VK,m, σ)
→ {0, 1}. It is said to be correct if: For all λ ∈ N, (SK,VK) ← Gen(1λ), messages
m ∈ M(λ), it holds that Verify(VK,m,Sign(SK,m)) = 1.

Security [24] is based on a game between an adversary A and a challenger.
(Setup Phase) Challenger chooses (SK,VK) ← Gen(1λ). (Signing Phase)
A sends signature query mi ∈ M and receives σi ← Sign(SK,mi). (Forgery
Phase) A outputs a message m and signature σ. A wins if m was not queried
during the Signing Phase and Verify(VK,m, σ) = 1. Let AdvA(λ) = Pr[A wins].

Definition 2 (Signature Security [24]). A signature scheme S=(Gen,Sign,
Verify) is existentially unforgeable under a chosen message attack if for all PPT
adversaries A, AdvA(λ) is negligible in λ.

Definition 3 (Unique Signatures [25]). A signature scheme S = (Gen,Sign,
Verify) is said to be unique if for all tuples (VK,m, σ1, σ2), either

σ1 = σ2 or Verify(VK,m, σ1) = 0 or Verify(VK,m, σ2) = 0.

In this work, we will be considering signature schemes where the messages,
signatures and verification keys have bounded length, and the verification algo-
rithm is deterministic. In practice, most signature schemes use a collision resis-
tant hash function to compress an arbitrary length message to bounded length.
We will be dealing with these ‘post-hash’ messages.

12 S. Hohenberger et al.

Definition 4 ((�vk, �msg, �sig)-bounded length signature scheme). Let �vk,
�msg and �sig be fixed polynomials. A signature scheme S = (Gen,Sign,Verify)
is said to be (�vk, �msg, �sig)-bounded length if all verification keys output by
Gen(1λ) have length at most �vk(λ), Sign takes as input messages of length at
most �msg(λ) and outputs signatures of length bounded by �sig(λ).

Since the verification keys, messages and signatures have bounded length, we
can view Verify as a circuit with three inputs- verification key VK, message m
and signature σ. We assume every circuit can be represented as a binary string.

Definition 5 ((�ver, �vk, �msg, �sig)-length qualified signature scheme). Let
�ver, �vk, �msg, �sig be fixed polynomials. A (�vk, �msg, �sig)-bounded length signa-
ture scheme S = (Gen,Sign,Verify) is said to be (�ver, �vk, �msg, �sig)-length
qualified if the verification circuit Verify and signing circuit Sign can be repre-
sented as a binary string of length at most �ver(λ) bits.

Abusing notation, we say that a tuple (Verify,VK,m, σ) is a (�ver, �vk, �msg,
�sig)-length qualified tuple if Verify is a circuit that can be represented using
�ver(λ) bits, and VK,m, σ are of length at most �vk(λ), �msg(λ) and �sig(λ)
respectively. Similarly, a tuple (Verify, VK, m) is (�ver, �vk, �msg)-length qualified
if Verify, VK and m have length at most �ver(λ), �vk(λ) and �vk(λ) respectively.

2.4 Additively Homomorphic Encryption

In this work, we will be using encryption schemes which allow us to perform
additive operations on ciphertexts. Many encryptions schemes [8,19,23,38,40,41]
have the ‘additive homomorphism’ property. We will now define the syntax and
security definition for an additively homomorphic encryption scheme.

Let p be a prime10. An additively homomorphic encryption scheme HE with
message space Fp and ciphertext space CHE consists of the standard algorithms:
HE.setup(1λ) → (pk, sk), HE.enc(pk,m) → ct, HE.dec(sk, ct) → element in Fp or
⊥, HE.add(pk, ct1, ct2) → ct.

For simplicity of notation, we will represent HE.add(pk, ct1, ct2) as ct1 + ct2.

Correctness. Let p be any prime and q any polynomial in λ. For any λ ∈ N,
(pk, sk) ← HE.setup(1λ), q messages m1, . . . ,mq ∈ Fp, the following must hold:

HE.dec(sk,HE.enc(m1) + . . . + HE.enc(mq)) = m1 + . . . + mq.

Given an encryption ct of message m ∈ Fp and a plaintext a ∈ Fp, HE.add
can compute an encryption of m ·a efficiently. Let a · ct represent this operation.

For space reasons, we omit the usual IND-CPA security game.
10 The prime p is a property of the encryption scheme.

Universal Signature Aggregators 13

2.5 Obfuscation

We recall the definition of indistinguishability obfuscation from [21,44].

Definition 6. (Indistinguishability Obfuscation) Let C = {Cλ}λ∈N be a family
of polynomial-size circuits. Let iO be a uniform PPT algorithm that takes as
input the security parameter λ, a circuit C ∈ Cλ and outputs a circuit C ′. iO is
called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C ′(x) = C(x) where C ′ ← iO(1λ, C).

– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher B = (Samp,D), there exists a negligible function negl(·) such
that the following holds: if for all security parameters λ ∈ N,Pr[∀x,C0(x) =
C1(x) : (C0;C1;σ) ← Samp(1λ)] > 1 − negl(λ), then

| Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ) ← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ) ← Samp(1λ)]| ≤ negl(λ).

In a recent work, [21] showed how indistinguishability obfuscators can be con-
structed for the circuit class P/poly. We remark that (Samp,D) are two algo-
rithms that pass state, which can be viewed equivalently as a single stateful
algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

A stronger notion of obfuscation is called virtual black box obfuscation [4].

Definition 7 (Virtual Black-Box Obfuscator). Let C = {Cλ}λ∈N be a fam-
ily of polynomial-size circuits. Let O be a PPT algorithm that takes as input the
security parameter λ, a circuit C ∈ Cλ and outputs a circuit C ′. O is called a
virtual black-box obfuscator for a circuit class {Cλ}λ∈N if it satisfies the following:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C ′(x) = C(x) where C ′ ← O(1λ, C).

– (Virtual Black-Box) For every (non-uniform) PPT algorithm A, there exists
a PPT simulator S such that, for all C ∈ Cλ,

Pr[A(O(1λ, C)) = 1] − Pr[SC(1λ, 1|C|) = 1] ≤ negl(λ)

For simplicity of notation, we will drop the dependence of iO and O on 1λ.

2.6 Puncturable Pseudorandom Functions

The notion of constrained PRFs was introduced in [15,16,35]. Punctured PRFs,
first termed by [44] are a special class of constrained PRFs.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is
an additional key space Kp and three polynomial time algorithms F.setup, F.eval
and F.puncture as follows:

14 S. Hohenberger et al.

– F.setup(1λ) is a randomized algorithm that takes the security parameter λ
as input and outputs a description of the key space K, the punctured key
space Kp and the PRF F .

– F.puncture(K,x) is a randomized algorithm that takes as input a PRF key
K ∈ K and x ∈ X , and outputs a key K{x} ∈ Kp.

– F.eval(K{x}, x′) is a deterministic algorithm that takes as input a punc-
tured key K{x} ∈ Kp and x′ ∈ X . Let K ∈ K, x ∈ X and K{x} ←
F.puncture(K,x). For correctness, we need the following property:

F.eval(K{x}, x′) =

{
F (K,x′) if x �= x′

⊥ otherwise

In this work, we only need selectively secure puncturable PRFs. The selective
security game between the challenger and the adversary A consists of:

Challenge Phase. A sends a challenge x∗ ∈ X . The challenger chooses uniformly
at random a PRF key K ← K and a bit b ← {0, 1}. It computes K{x∗} ←
F.puncture(K,x∗). If b = 0, the challenger sets y = F (K,x∗), else y ← Y. It
sends K{x∗}, y to A.

Guess. A outputs a guess b′ of b.

A wins if b = b′. The advantage of A is defined to be AdvF
A(λ) = Pr[A wins].

Definition 8. The PRF F is a selectively secure puncturable PRF if for all
probabilistic polynomial time adversaries A, AdvF

A(λ) is negligible in λ.

2.7 Universal Parameters

In a recent work, Hofheinz et al. [29] introduced the notion of universal param-
eters. A universal parameters scheme U , parameterized by polynomials �ckt, �inp
and �out, consists of algorithms UniversalGen and InduceGen defined below.

– UniversalGen(1λ) takes as input the security parameter λ and outputs the
universal parameters U .

– InduceGen(U, d) takes as input the universal parameters U and a circuit d of
size at most �ckt bits. The circuit d takes as input �inp bits and outputs �out
bits. As described in the security property, these �out bits output ‘look’ like
the �out bits output by circuit d on uniformly random input.

In this work, we will be using a universal parameter scheme that is adap-
tively secure in the random oracle model. In order to define adaptive security for
universal parameters, let us first define the notion of an admissible adversary A.

An admissible adversary A is defined to be an efficient interactive Turing
Machine that outputs one bit, with the following input/output behavior:

– A takes as input security parameter λ and a universal parameter U .
– A can send a random oracle query (RO, x), and receives the output of the

random oracle on input x.

Universal Signature Aggregators 15

– A can send a message of the form (params, d) where d ∈ C[�ckt, �inp, �out].
Upon sending this message, A must honestly compute pd = InduceGen(U, d),
making use of any additional random oracle queries, and A appends (d, pd)
to an auxiliary tape.

Let SimUGen and SimRO be PPT algorithms. Consider two experiments:
RealA(1λ):

1. The random oracle RO is implemented by assigning random outputs to each
unique query made to RO.

2. U ← UniversalGenRO(1λ).
3. A(1λ, U) is executed, where every message of the form (RO, x) receives the

response RO(x).
4. Upon termination of A, the output of the experiment is the final output of

the execution of A.

IdealASimUGen,SimRO(1λ):

1. A truly random function F that maps �ckt bits to �out bits is implemented
by assigning random �out-bit outputs to each unique query made to F .
Throughout this experiment, a Parameters Oracle O is implemented as fol-
lows: On input d, where d ∈ C[�ckt, �inp, �out], O outputs d(F (d)).

2. (U, τ) ← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the
Parameters Oracle O.

3. A(1λ, U) and SimRO(τ) begin simultaneous execution.
- Whenever A sends a message of the form (RO, x), this is forwarded to
SimRO, which produces a response to be sent back to A.

- SimRO can make any number of queries to the Parameter Oracle O.
- Finally, after A sends any message of the form (params, d), the auxiliary

tape of A is examined until an entry of the form (d, pd) is added to it. At
this point, if pd is not equal to d(F (d)), then experiment aborts, resulting
in an Honest Parameter Violation.

4. Upon termination of A, the output of the experiment is the final output of
the execution of A.

Definition 9. A universal parameters scheme U = (UniversalGen, InduceGen),
parameterized by polynomials �ckt, �inp and �out, is said to be adaptively secure
in the random oracle model if there exist PPT algorithms SimUGen and SimRO
such that for all PPT adversaries A, the following hold:

Pr[IdealASimUGen,SimRO(1λ) aborts] = 0.11

|Pr[RealA(1λ) = 1] − Pr[IdealASimUGen,SimRO(1λ) = 1]| ≤ negl(λ)

Hofheinz et al. [29] construct a universal parameters scheme that is adaptively
secure in the random oracle model assuming an indistinguishability obfuscator,
a selectively secure puncturable PRF and an injective one way function.

16 S. Hohenberger et al.

2.8 RSA Assumption

Assumption 1 (RSA [42]) Let λ be the security parameter. Let N = pq be
the RSA modulus, where p, q are randomly chosen, distinct, λ-bit primes. Let e be
a randomly chosen positive integer less than and relatively prime to φ(N) = (p−
1)(q − 1) and y ← ZN . For any PPT algorithm A, Pr[x ← A(N, e, y)and xe =
y] ≤ negl(λ).

3 Universal Signature Aggregators

In this section, we define the notion of universal signature aggregators. Let �ver,
�vk, �msg, �sig be polynomials. Given any security parameter λ, �ver(λ) represents
a bound on the size of verification circuits, �vk(λ) represents a bound on the size
of verification key, �msg(λ) is a bound on the length of messages signed and
�sig(λ) is a bound on the size of signatures. For simplicity of notation, we will
drop the dependence on λ when the context is clear.

A universal signature aggregator (�ver, �vk, �msg, �sig)-UniversalSigAgg consists
of three algorithms UniversalSetup, UniversalAgg and UniversalVerify defined as:

– UniversalSetup(1λ) is a randomized algorithm that takes as input security
parameter λ and outputs public parameters PP.

– UniversalAgg(PP,{(Verifyi,VKi,mi, σi)}t
i=1) is a deterministic algorithm that

takes as input security parameter λ, public parameters PP and t tuples
(Verifyi,VKi,mi, σi) (for some arbitrary t) where each tuple is (�ver, �vk,
�msg, �sig)-length qualified. It outputs an aggregate signature σagg whose
length is polynomial in λ, but independent of t.

– UniversalVerify(PP, {(Verifyi,VKi,mi)}t
i=1, σagg) is a deterministic algorithm

that takes as input security parameter λ, public parameters PP, t tuples
(Verifyi,VKi,mi) that are (�ver, �vk, �msg)-length qualified, and an aggre-
gated signature σagg. It outputs either 0 or 1.

For our constructions, we will assume that all verification circuits have �ver
bit representation, all verification keys have length �vk, all messages signed have
length �msg and the corresponding signatures have length �sig.

Correctness. Let {(Verifyi,VKi,mi, σi)}t
i=1 be any t distinct tuples that are

(�ver, �vk, �msg, �sig)-length qualified and for all i ≤ t, Verifyi(VKi,mi, σi) =
1. For all λ ∈ N, PP ← UniversalSetup(1λ) and σagg ← UniversalAgg(1λ, PP,
{(Verifyi,VKi,mi, σi)}i), UniversalVerify(PP, {(Verifyi,VKi,mi)}i, σagg) = 1.

3.1 Security of Universal Signature Aggregators

We turn to the formal security definition for universal signature aggregators.
Let S = (S.Gen,S.Sign,S.Verify) be a secure (�ver, �vk, �msg, �sig)-length

qualified signature scheme. Consider the following security game between an
adversary A and the challenger.

ExpA,S(λ):

Universal Signature Aggregators 17

– Setup Phase Challenger chooses (SK,VK) ← S.Gen(1λ), computes PP ←
UniversalSetup(1λ) and sends PP,VK to A.

– Signing Phase A sends signing query xi, and receives σi ← S.Sign(SK, xi).
– Forgery A finally outputs t tuples (Verifyi,VKi,mi) and an aggregated

forgery σagg.

A wins if there exists i∗ ∈ [t] such that Verifyi∗ = S.Verify, VKi∗ = VK,
message mi∗ was not queried during the signing phase and UniversalVerify(PP,
{(Verifyi,VKi,mi)}, σagg) = 1. Let AdvA,S(λ) = Pr[A wins ExpA,S(λ)].

Definition 10. Let S be a (�ver, �vk, �msg, �sig)- length qualified secure signature
scheme. A universal signature aggregator (�ver, �vk, �msg, �sig)-UniversalSigAgg is
secure with respect to scheme S if for all PPT adversaries A, AdvA,S(λ) is
negligible in λ.

We can also define a weaker selective notion where the adversary A chooses the
message m corresponding to (S.Verify,VK) before receiving the public parameters
PP. More formally, the selective experiment ExpselA,S(λ) is defined as:

ExpselA,S(λ):

– A sends a message m to the challenger.
– Setup Phase Challenger computes (SK,VK) ← S.Gen(1λ) and PP ←

UniversalSetup(1λ) and sends PP,VK to A.
– Signing Phase A sends signing query xi �= m, and gets σi ← S.Sign(SK, xi).
– Forgery A finally outputs t tuples (Verifyi,VKi,mi) and an aggregated

forgery σagg.

A wins if there exists an i∗ ∈ [t] such that Verifyi∗ = S.Verify, VKi∗ = VK,
mi∗ = m andUniversalVerify(PP, {(Verifyi,VKi,mi)}, σagg) = 1. LetAdvselA,S(λ) =
Pr[A wins ExpselA,S(λ)].

Definition 11. Let S be a (�ver, �vk, �msg, �sig)- length qualified secure signature
scheme. A universal signature aggregator (�ver, �vk, �msg,�sig)- UniversalSigAgg
is selectively secure with respect to scheme S if for all PPT adversaries A,
AdvselA,S(λ) is negligible in λ.

In certain situations, it may be possible that the number of signatures to
be aggregated is known in advance. In such a scenario, we can use bounded
universal signature aggregators (defined below).

Definition 12. An n-bounded universal signature aggregator scheme (�ver, �vk,
�msg, �sig)-UniversalSigAgg = (UniversalSetup, UniversalAgg, UniversalVerify) is a
universal signature aggregator in which UniversalSetup takes an additional input
1n. The public parameters output by UniversalSetup have size bounded by some
polynomial in λ and n. However, the aggregated signature has size bounded by a
polynomial in λ, but is independent of n.

18 S. Hohenberger et al.

4 Universally Aggregating Unique Signatures

We will now describe our scheme (�ver, �vk, �msg, �sig)-UniversalSigAgg. Let iO be
a secure indistinguishability obfuscation scheme, F a puncturable PRF with key
space K, punctured key space Kp, domain X = {0, 1}�ver × {0, 1}�vk × {0, 1}�msg

and range Y = Z
∗
N for some randomly chosen RSA modulus N , and algo-

rithms F.setup, F.puncture, F.eval. Our scheme consists of the three algorithms
UniversalSetup, UniversalAgg and UniversalVerify.

UniversalSetup(1λ) UniversalSetup chooses an RSA modulus N and e ← Z
∗
φ(N).

Next, it chooses a PRF key K ← F.setup(1λ) and computes obfuscations of the
programs TransformN,K

12 and Transform-ImageN,K,e
13 defined below. It sets the

public parameters PP = (iO(TransformN,K), iO(Transform-ImageN,K,e), N, e).

TransformN,K :

Inputs: Verify′ ∈ {0, 1}�ver , VK′ ∈ {0, 1}�vk , m′ ∈ {0, 1}�msg , σ′ ∈ {0, 1}�sig .

Constants : RSA modulus N ∈ N, K ∈ K.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

Transform-ImageN,K,e :

Inputs: Verify′ ∈ {0, 1}�ver , VK′ ∈ {0, 1}�vk , m′ ∈ {0, 1}�msg .
Constants : RSA modulus N ∈ N, K ∈ K, e ∈ Zφ(N).

Let w = F (K,Verify′||VK′||m′). Output we (mod N).

UniversalAgg(PP, {(Verifyi,VKi,Mi, σi)}n
i=1): Let PP = (P1, P2, N, e). It first

checks if the n tuples are distinct. If not, it outputs ⊥. Else, it computes ti =
P1(Verifyi,VKi,mi, σi) for each i ≤ n. If ti =⊥ for some i, then UniversalAgg
outputs ⊥, else it outputs σagg =

∏
i ti (mod N).

UniversalVerify(PP, {(Verifyi,VKi,Mi)}n
i=1, σagg): Let PP = (P1, P2, N, e). It

first checks if all n tuples are distinct. If not, it outputs 0. Else, it computes,
for all i ≤ n, si = P2(Verifyi,VKi,mi). If (

∏
i si) = σe

agg (mod N), it outputs 1,
else 0.
12 Padded to be of the same size as TransformAlt and Transform-Reject.
13 Padded to be of the same size as Transform-Image-1.

Universal Signature Aggregators 19

Correctness: Let {(Verifyi,VKi,mi, σi)}n
i=1 be n tuples such that they are all

distinct and Verifyi(VKi,mi, σi) = 1 for all i ≤ n. Fix any λ ∈ N, PP ←
UniversalSetup(1λ), (σagg) ← UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}). Then,

σe
agg =(

∏
Transform(Verifyi,VKi,mi, σi))e (mod N)

=(
∏

F (K,Verifyi||VKi||mi))e (mod N)

=(
∏

F (K,Verifyi||VKi||mi)e) (mod N)

=(
∏

Transform-ImageN,K,e(Verifyi,VKi,mi)) (mod N)

Also, note that the size of the aggregated signature (σagg ∈ Z
∗
N) depends only

on the security parameter λ, but not on the number of signatures aggregated.

4.1 Proof of Security

In this subsection, we will show that our construction from Sect. 4 is selectively
secure with respect to secure unique signature schemes.

Theorem 2. Assuming iO is a secure indistinguishability obfuscator, F is a
selectively secure puncturable PRF and RSA is secure, for all (�ver, �vk, �msg, �sig)-
length qualified secure unique signatures S, the universal signature aggregator
(�ver, �vk, �msg, �sig)-UniversalSigAgg is selectively secure with respect to S.

Let S = (S.Gen,S.Sign,S.Verify) be a secure (�ver, �vk, �msg, �sig)-length qual-
ified unique signature scheme, and Att a PPT adversary. To prove this theorem,
we define a sequence of experiments Game 0-Game 3, where Game 0 = ExpselAtt,S .

Sequence of Games

Game 0: This game corresponds to ExpselAtt,S . The adversary Att first sends mes-
sage m, and then receives the verification key and public parameters for the
aggregator. Next, Att makes signing queries, and finally submits the forgery.

1. Att sends message m.
2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z

∗
φ(N),

K ← F.setup(1λ) and setPP= (iO(TransformN,K), iO(Transform-ImageN,K,e),
N, e). Send PP, VK to Att.

3. For each sign query xi �= m, run σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n]

such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(
PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 1: This game is like the previous one, except that the program Transform is
replaced by Transform-Reject14 which outputs ⊥ if the input tuple is (S.Verify,VK,
m,σ). Also, it uses a PRF key punctured at y = S.Verify||VK||m.
14 Padded appropriately to be of the same size as Transform and TransformAlt.

20 S. Hohenberger et al.

2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z
∗
φ(N),

K ← F.setup(1λ).
Set y = S.Verify||VK||m, compute punctured key K{y} ← F.puncture(K, y)
and PP = (iO(Transform-Rejecty,N,K{y}), iO(Transform-ImageN,K,e), N, e).
Send PP, VK to Att.

Transform-Rejecty,N,K{y} :

Inputs: Verify′ ∈ {0, 1}�ver , VK′ ∈ {0, 1}�vk , m′ ∈ {0, 1}�msg , σ′ ∈ {0, 1}�sig .

Constants : y ∈ {0, 1}�ver × {0, 1}�vk × {0, 1}�msg , RSA modulus N ∈ N,

K{y} ∈ Kp.

if Verify′(VK′,m′, σ′) = 0 then output ⊥.
else if Verify′||VK′||m′ = y then output ⊥.
else output F.eval(K{y},Verify′||VK′||m′).
end if

Game 2: This game is like previous one, except that the program Transform-Image
is replaced by Transform-Image-115. It uses a PRF key punctured at y =
S.Verify||VK||m. For input y, it outputs a hardwired constant z. In this game,
z is set to be F (K, y)e.

2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z
∗
φ(N)

and K ← F.setup(1λ).
Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y), w = F (K, y),
z = we (mod N).
Set PP = (iO(Transform-Rejecty,N,K{y}), iO(Transform-Image-1y,N,K{y},z,e),
N , e) and send PP, VK to Att.

Transform-Image-1y,N,K{y},z,e :

Inputs: Verify′ ∈ {0, 1}�ver ,VK′ ∈ {0, 1}�vk ,m′ ∈ {0, 1}�msg .
Constants: y ∈ {0, 1}�ver × {0, 1}�vk × {0, 1}�msg , RSA modulus
N ∈ N, K{y} ∈ Kp, z ∈ Z

∗
N , e ∈ Z

∗
φ(N).

if Verify′||VK′||m′ = y then output z.
else

Let w = F.eval(K{y},Verify′||VK′||m′).
Output we.

end if

15 Padded appropriately to be of the same size as Transform-Image.

Universal Signature Aggregators 21

Game 3: In this game, the challenger chooses z at random.

2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z
∗
φ(N)

and K ← F.setup(1λ).
Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y) and z ← Z

∗
N .

Set PP = (iO(Transform-Rejecty,N,K{y}), iO(Transform-Image-1y,N,K{y},z,e),
N, e) and send PP, VK to Att.

Analysis. Let Advj
Att denote the advantage of adversary Att in Game j. We will

state the claims here; the proofs can be found in the full version [30].

Lemma 1. Assuming iO is a secure indistinguishability obfuscator and S is a
secure (�ver, �vk, �msg, �sig)-length qualified unique signature scheme, for any PPT
adversary Att, Adv0Att − Adv1Att ≤ negl(λ).

Claim 1. Assuming iO is a secure indistinguishability obfuscator, for any PPT
adversary Att, Adv1Att − Adv2Att ≤ negl(λ).

Claim 2. Assuming F is a selectively secure puncturable PRF, for any PPT
adversary Att, Adv2Att − Adv3Att ≤ negl(λ).

Claim 3. Assuming RSA is secure, for any PPT adversary Att, Adv3Att≤negl(λ).

Using the above claims, it follows that any PPT adversary has negligible
advantage in Game 0, assuming iO is a secure indistinguishability obfuscator, F is
a selectively secure puncturable PRF and the RSA assumption holds. Therefore,
the construction in Sect. 4 is selectively secure with respect to all secure unique
signature schemes.

5 Universal Aggregation of Arbitrary Signatures Using
VBB Obfuscation

In this section, we will describe our construction based on virtual black box
obfuscation. The construction is similar to the one in Sect. 4, the only difference
being in program Transform-VBB, which now takes some additional inputs and
has additional constants hardwired. The additional inputs/constants are used
for “oracle assimilation” (see Sect. 1 for a discussion on this technical issue).

We assume signing algorithms (corresponding to schemes whose signatures
need to be aggregated) use at most �rnd random bits to compute signatures,
for some polynomial �rnd. We use a pseudorandom generator PRG : {0, 1}� ←
{0, 1}2� (where � is some polynomial in λ), a (standard) PRF F̃ with key space
K̃, domain X̃ and range Ỹ = {0, 1}�rnd and a puncturable PRF F as in Sect. 4.

22 S. Hohenberger et al.

Transform-VBBN,K :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}�,Verify′ ∈ {0, 1}�ver , VK′ ∈ {0, 1}�vk ,
m′ ∈ {0, 1}�msg , σ′ ∈ {0, 1}�sig .
Constants : RSA modulus N ∈ N, K ∈ K.

if b = 0 then
Output ⊥.

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if
Our universal signature aggregator consists of the three algorithms:

UniversalSetup, UniversalAgg and UniversalVerify described below.

UniversalSetup(1λ). UniversalSetup first chooses random primes p, q ∈ Θ(2λ), sets
the RSA modulus N = pq. It chooses e ← Z

∗
φ(N), PRF key K ← F.setup(1λ)

as in Sect. 4. It computes obfuscations of the programs Transform-VBBN,K
16

and Transform-ImageN,K,e
17, where Transform-VBBN,K is defined below, while

Transform-ImageN,K,e is the same as in Sect. 4. It sets the public parameters to
be PP = (O(Transform-VBBN,K), O(Transform-ImageN,K,e), N , e).

UniversalAgg(PP, {(Verifyi,VKi,Mi, σi)}n
i=1): Let PP = (P1, P2, N, e). It first

checks that all the n tuples are distinct. If not, it outputs ⊥. Else, it computes
ti = P1(1, 0�,Verifyi,VKi,mi, σi) 18 for each i ≤ n. If ti =⊥ for some i, then
UniversalAgg outputs ⊥, else it outputs σagg =

∏
i ti (mod N).

UniversalVerify(PP, {(Verifyi,VKi,Mi)}n
i=1, σagg): Let PP = (P1, P2, N, e). It

first checks that the n tuples are distinct. If not, it outputs 0. Else, it com-
putes for i ≤ n, si = P2(Verifyi,VKi,mi). If (

∏
i si) = σe

agg (mod N), it outputs
1, else 0.

5.1 Proof of Security

We will now prove that the construction in Sect. 5 is selectively secure with
respect to all secure signature schemes. The proof involves a sequence of inter-
mediate hybrid experiments, which are described below.

Theorem 3. Assuming O is a secure virtual black-box obfuscator for a class of
circuits C (defined in [30]), F is a selectively secure puncturable PRF, F̃ is a
secure PRF, PRG is a secure pseudorandom generator and RSA is secure, for all
(�ver, �vk, �msg, �sig)-length qualified signature schemes S, the universal signature
aggregator (�ver, �vk, �msg, �sig)-UniversalSigAgg is selectively secure w.r.t. S.
16 Padded appropriately to be of the same size as Transform-VBB-1, Transform-VBB-2,

Transform-VBB-3 defined later in this section.
17 Padded appropriately to be of the same size as Transform-Image-1 as in Sect. 4.
18 The input a = 0� will not be used by the program, since the mode b = 1.

Universal Signature Aggregators 23

It may appear odd that the above theorem statement includes assumptions on
primitives (e.g., PRG and the standard PRF) which are not used in the protocol
itself. However, re-writing the theorem statement to omit these assumptions
would require a different proof from the one we are now able to provide.

Sequence of Games

Game 0: This game corresponds to ExpselAtt,S .

1. Att sends message m.
2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z

∗
φ(N),

K ← F.setup(1λ).SetPP= (O(Transform-VBBN,K),O(Transform-ImageN,K,e),
N , e). Send PP, VK to Att.

3. For each signing query xi �= m, compute σi ← S.Sign(SK, xi) and send σi to
Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n]
such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify(
PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 1: In this game, the challenger uses pseudorandomly generated strings as
randomness for the signature queries.

2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z
∗
φ(N),

K ← F.setup(1λ). Choose standard PRF key K̃ ← F̃ .setup(1λ). Set PP =
(O(Transform-VBBN,K),O(Transform-ImageN,K,e), N, e). Send PP, VK to
Att.

3. For each signing query xi �= m, choose r ← {0, 1}�sig , compute ri = F (K̃, r),
σi = S.Sign(SK, xi; ri) and send σi to Att.

Game 2: In this game, the challenger uses the program Transform-VBB-1 instead
of Transform-VBB. Unlike Transform-VBB, Transform-VBB-1 uses the input a
to check if PRG(a) is equal to the hardwired α. If the ‘mode’ bit is 0 and
PRG(a) = α, then the program outputs the verification key VK and a signature
on the desired message.

2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z
∗
φ(N),

K ← F.setup(1λ). Choose PRF key K̃ ← F̃ .setup(1λ), α ← {0, 1}2�. Let
Transform-VBB-119 be the circuit defined below.
Set PP =(O(Transform-VBB-1N,K,α,SK,K̃), O(Transform-ImageN,K,e), N, e).
Send PP, VK to Att.

19 Padded appropriately to be of the same size as Transform-VBB, Transform-VBB-2
and Transform-VBB-3.

24 S. Hohenberger et al.

Transform-VBB-1N,K,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}�,Verify′ ∈ {0, 1}�ver , VK′ ∈ {0, 1}�vk ,
m′ ∈ {0, 1}�msg , σ′ ∈ {0, 1}�sig .
Constants : RSA modulus N ∈ N, K ∈ K,
α ∈ {0, 1}2�, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a) �= α then output ⊥.
else output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then output ⊥.
else output F (K,Verify′||VK′||m′).
end if

Game 3: Now, α is a pseudorandom string; i.e. α = PRG(a), where a ← {0, 1}�.

2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z
∗
φ(N),

K ← F.setup(1λ). Choose a ← {0, 1}� and set α = PRG(a). Choose PRF
key K̃ ← F̃ .setup(1λ). Set PP =(O(Transform-VBB-1N,K,α,SK,K̃),
O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.

Transform-VBB-2y,N,K,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}�,Verify′ ∈ {0, 1}�ver , VK′ ∈ {0, 1}�vk ,
m′ ∈ {0, 1}�msg , σ′ ∈ {0, 1}�sig .
Constants : y ∈ {0, 1}�ver × {0, 1}�vk × {0, 1}�msg ,RSA modulus
N ∈ N, K ∈ K, α ∈ {0, 1}2�, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a) �= α then output ⊥.
else output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then output ⊥.
else if Verify′||VK′||m′ = y then output ⊥.
else output F (K,Verify′||VK′||m′).
end if

Game 4: This experiment is similar to the previous one, except that the chal-
lenger uses Transform-VBB-2 instead of Transform-VBB-1.

2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z
∗
φ(N),

K ← F.setup(1λ). Choose a ← {0, 1}� and set α = PRG(a). Choose K̃ ←
F̃ .setup(1λ). Let Transform-VBB-220 be the circuit defined below.

20 Padded appropriately to be of the same size as Transform-VBB, Transform-VBB-1
and Transform-VBB-3.

Universal Signature Aggregators 25

Set y = S.Verify||VK||m, parametersPP=(O(Transform-VBB-2y,N,K,α,SK,K̃),
O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.

Game 5: In this experiment, the challenger uses a key punctured at y instead
of the master PRF key.

2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z
∗
φ(N),

K ← F.setup(1λ). Choose a ← {0, 1}� and set α = PRG(a). Choose K̃ ←
F̃ .setup(1λ). Set y = S.Verify||VK||m,
compute K{y} ←F.puncture(K, y) and z = F (K, y)e. LetTransform-VBB-321

be the circuit defined next, while Transform-Image-122,e) is the same as
Sect. 4.1 Set PP =(O(Transform-VBB-3y,N,K{y},α,SK,K̃),

O(Transform-Image-1y,N,K{y},z,e). Send PP, VK to Att.

Transform-VBB-3y,N,K{y},α,SK,K̃ :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}�,Verify′ ∈ {0, 1}�ver , VK′ ∈ {0, 1}�vk ,
m′ ∈ {0, 1}�msg , σ′ ∈ {0, 1}�sig .
Constants : y ∈ {0, 1}�ver ×{0, 1}�vk ×{0, 1}�msg , RSA modulus N ∈ N,
K{y} ∈ Kp, α ∈ {0, 1}2�, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a) �= α then output ⊥.
else output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then output ⊥.
else if Verify′||VK′||m′ = y then output ⊥.
else output F.eval(K{y},Verify′||VK′||m′).
end if

Game 6: Here the challenger chooses a uniformly random z ← Z
∗
N .

2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z
∗
φ(N),

K ← F.setup(1λ). Choose a ← {0, 1}� and set α = PRG(a). Choose K̃ ←
F̃ .setup(1λ). Set y = S.Verify||VK||m, compute K{y} ← F.puncture(K, y)
and z ← Z

∗
N . Set PP =(O(Transform-VBB-3y,N,K{y},α,SK,K̃),

O(Transform-Image-1y,N,K{y},z,e),e). Send PP, VK to Att.

Analysis. We will now show that if a PPT adversary has non negligible advan-
tage in Game i, then it has non-negligible advantage in the next game. Some of
the proofs are very similar to the corresponding ones in Sect. 4.1, and hence we
21 Padded appropriately to be of the same size as Transform-VBB, Transform-VBB-1

and Transform-VBB-2.
22 Padded appropriately to be of the same size as Transform-Image-1.

26 S. Hohenberger et al.

skip them in this section. Due to limited space, the remaining proofs, including
those using the technique of “oracle assimilation”, are given in [30]).

Let Advj
Att denote the advantage of adversary Att in Game j.

Claim 4. Assuming F̃ is a secure PRF, for any PPT adversary Att, Adv0Att −
Adv1Att ≤ negl(λ).

Claim 5. Assuming O is a secure indistinguishability obfuscator, for any PPT
adversary Att, Adv1Att − Adv2Att ≤ negl(λ).

Claim 6. Assuming PRG is a secure pseudorandom generator, for any PPT
adversary Att, Adv2Att − Adv3Att ≤ negl(λ).

Lemma 2. Assuming O is a secure virtual black box obfuscator for a class of
circuits C (defined in [30]), F̃ is a secure pseudorandom function, PRG is a
secure pseudorandom generator and S is a (�ver, �vk, �msg, �sig)-length qualified
secure signature scheme, Adv3Att − Adv4Att ≤ negl(λ).

Claim 7. Assuming O is a secure indistinguishability obfuscator, for any PPT
adversary Att, Adv4Att − Adv5Att ≤ negl(λ).

Claim 8. Assuming F is a selectively secure puncturable PRF, for any PPT
adversary Att, Adv5Att − Adv6Att ≤ negl(λ).

Claim 9. Assuming RSA is secure, for any PPT adversaryAtt,Adv6Att ≤ negl(λ).

The proof of these last three claims are similar to the corresponding proofs
of claims in the previous section.

Using the above claims, we can conclude that any PPT adversary has at
most negligible advantage in Game 0, assuming O is a secure virtual black-box
obfuscator for circuit family C, F is a selectively secure puncturable PRF, F̃ is
a secure (standard) PRF, PRG is a secure pseudorandom generator, and RSA is
secure. Therefore, the construction described in Sect. 5 is selectively secure with
respect to all secure length-qualified signature schemes.

6 Universal Aggregation of Arbitrary Signatures from iO
in the Random Oracle Model

Next, we describe our n-bounded scheme (�ver, �vk, �msg, �sig)-UniversalSigAgg.
By n-bounded, we mean that at most n signatures can be aggregated.

We will use a secure (�ckt, �inp, �out) universal parameters scheme U =
(UniversalGen, InduceGen) (where the parameters �ckt, �inp and �out will be spec-
ified later), an additively homomorphic encryption scheme (HE.setup,HE.enc,
HE.dec,HE.add) with message space Fp for some prime p > 2�sig and cipher-
text space CHE. We will assume each ct ∈ CHE can be represented using �ct bits.
Finally, we will also use a one-way function f : {0, 1}� → {0, 1}2� and a secure
indistinguishability obfuscator iO.

Our construction consists of three algorithms UniversalSetup, UniversalAgg
and UniversalVerify described as follows.

Universal Signature Aggregators 27

UniversalSetup(1λ, 1n). Let (pk, sk) ← HE.setup(1λ). It computes n ciphertexts
cti ← HE.enc(pk, 0) and U ← UniversalGen(1λ). It sets the public parameters
PP = (pk, ct1, . . . , ctn, U). Let us assume PP can be represented using �pp bits.

AggSetupt,PP,{Verifyi,VKi,mi}i
:

Inputs: Security parameter 1λ, r ∈ {0, 1}�inp .
Constants: t ∈ CHE, PP = (pk, ct1, . . . , ctn, U) ∈ {0, 1}�pp ,
{Verifyi,VKi,mi}i ∈ ({0, 1}�ver × {0, 1}�vk × {0, 1}�msg)n.

1. Choose s ← {0, 1}� using r.
2. Compute Cagg ← iO(AggSigns,t,PP,{Verifyi,VKi,mi}i

), where
AggSign is the circuit described below.

AggSigns,t,PP,{Verifyi,VKi,mi}i
:

Inputs: σ1, . . . , σn, where σi ∈ {0, 1}�sig .
Constants: s ∈ {0, 1}�, t ∈ CHE, PP = (pk, ct1, . . . , ctn, U),
{Verifyi,VKi,mi}i.

if ∃i such that Verifyi(VKi,mi, σi) = 0 then
Output ⊥.

end if
if t �= σ1 · ct1 + . . . + σn · ctn then

Output ⊥.
end if
Output s.

3. Compute s̃ = f(s).
4. Output (Cagg, s̃).

UniversalAgg(PP = (pk, ct1, . . . , ctn, U), {Verifyi,VKi,Mi, σi}n
i=1). We will view

each signature σi as an integer in [0, 2�sig − 1].
The universal aggregator first checks if all n tuples are distinct. If not, it

outputs ⊥. Else, it computes t = σ1 · ct1 + . . . + σn · ctn.23

Let AggSetup be the (randomized) algorithm (defined above) that takes as
input security parameter λ, and outputs a program Cagg and s̃ ∈ {0, 1}2�. It uses
�inp bits of randomness and outputs �out bits. Let C-AggSetupt,PP,{Verifyi,VKi,mi}i

∈ {0, 1}�ckt be the canonical description of AggSetupt,PP,{Verifyi,VKi,mi}i
. We will

23 Recall we are using an additively homomorphic encryption scheme. For simplicity of
notation, we use ct1+ct2 to represent HE.add(PP, ct1, ct2). Also, we can use the addi-
tive homomorphism property to perform multiplications with plaintext elements. If
σ ∈ Fp is a plaintext and ct is a ciphertext, then σ · ct represents the multiplication,
which can be computed using HE.add.

28 S. Hohenberger et al.

assume that given C-AggSetupt,PP,{Verifyi,VKi,mi}i
, one can efficiently extract the

hardwired constants t, PP and the n tuples {Verifyi,VKi,mi}i.
Let C̃ = C-AggSetupt,PP,{Verifyi,VKi,mi}i

. The aggregator algorithm first com-
putes (Cagg, s̃) = InduceGen(U, C̃). Next, it computes s = Cagg(σ1, . . . , σn) and
outputs σagg = (t, s).

UniversalVerify(PP = (pk, ct1, . . . , ctn, U), {Verifyi,VKi,Mi}n
i=1, σagg = (t, s′)).

The verification algorithm first checks if all n tuples are distinct. If not, it out-
puts 0. Else, let C-AggSetup be the canonical description of AggSetup as defined
above. It computes (Cagg, s̃) = InduceGen(U, C-AggSetupt,PP,{Verifyi,VKi,mi}i

). If
s̃ = f(s′), output 1, else output 0.

Correctness follows from the fact that InduceGen is a deterministic algorithm.

6.1 Proof of Security

Theorem 4. Assuming iO is a secure indistinguishability obfuscator,
(UniversalGen, InduceGen) is a secure universal parameters scheme in the random
oracle model, HE is a secure additively homomorphic encryption scheme and f
is a secure one-way function, for all (�ver, �vk, �msg, �sig)-length qualified secure
signature schemes S, the bounded universal signature aggregator described in
Section 6 is adaptively secure in the random oracle model with respect to S.

We first describe a sequence of intermediate experiments Game 0, . . . ,Game 5,
where Game 0 is the adaptive security game in random oracle model. From
Game 3 onwards, the challenger starts simulating the universal parameters and
the responses to random oracle queries. In order to do so, the challenger imple-
ments a parameter oracle O, and the simulation algorithms are allowed to make
random oracle queries to O. Let us assume the simulator algorithms SimUGen
and SimRO makes at most qpar calls to the Parameters Oracle.

Sequence of Games

Game 0: In this game, the challenger first sends PP,VK to the adversary Att.
Att then makes polynomially many signature and random oracle queries. Finally,
Att outputs forgery σagg and n tuples {Verifyi,VKi,mi}i.

1. Choose (SK,VK) ← S.Gen(1λ), (pk, sk) ← HE.setup(1λ) and
U ← UniversalGen(1λ). Compute cti ← HE.enc(pk, 0) for all i ∈ [n] and set
PP = (pk, ct1, . . . , ctn, U). Send PP,VK to Att.

2. For each signature query xi, compute σi = S.Sign(SK, xi), send σi to Att.
3. For each random oracle query yi, check if yi has already been queried.

If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}�RO , send αi to Att and add (yi, αi) to table.

4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i.
Att wins if

Universal Signature Aggregators 29

(a) ∃i∗ such that Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i

) = (C, s̃).

Game 1: This game is exactly similar to the previous one, except that the chal-
lenger guesses a position i∗ ∈ [n], and the attacker wins only if the forgery
verifies, and the i∗th tuple corresponds to S.Verify,VK.

1. Choose i∗ ← [n]. Choose (SK,VK) ← S.Gen(1λ), (pk, sk) ← HE.setup(1λ)
and U ← UniversalGen(1λ). Compute cti ← HE.enc(pk, 0) and set PP =
(pk, ct1, . . . , ctn, U). Send PP,VK to Att.

4. Att wins if
(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i

) = (C, s̃).

Game 2: In this game, the challenger modifies the public parameters PP. Instead
of outputting n encryptions of 0, the challenger outputs an encryption of 1 at
position i∗.

1. Choose i∗ ← [n]. Choose (SK,VK) ← S.Gen(1λ), (pk, sk) ← HE.setup(1λ)
and U ← UniversalGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i �= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U). Send PP,VK to Att.

Game 3. In this game, the challenger ‘simulates’ both the universal parame-
ters U and the responses to random oracle queries. Let SimUGen and SimRO
be the simulation algorithms corresponding to the universal parameters scheme
(UniversalGen, InduceGen). The challenger also implements the Parameters Ora-
cle O. O takes as input a circuit d ∈ C[�ckt, �inp, �out]. If d has already been
queried, O returns the same response. Else, it chooses r ← {0, 1}�inp , out-
puts d(r), and adds (d, d(r)) to its table T . Though the parameters oracle O
is described in the Setup Phase, it is used in all the later phases as well.

1. Choose i∗ ← [n]. Choose (SK,VK) ← S.Gen(1λ), (pk, sk) ← HE.setup(1λ).
Compute U ← SimUGen(1λ) and ciphertexts cti ← HE.enc(pk, 0) for all i ∈
[n], i �= i∗. Let cti∗ ← HE.enc(pk, 1). Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.
- For the ith query d ∈ C[�ckt, �inp, �out], check if T contains an entry for d.
- If T contains an entry of the form (d, δ), output δ.
- Else choose r ← {0, 1}�inp and output d(r). Add (d, d(r)) to T .

Send PP,VK to Att.
4. For each random oracle query yi, output SimRO(yi).
5. Finally, Att sends a forgery σagg and n tuples {Verifyi,VKi,mi}i.

Let O-Queriesi denote the set of first i queries to O. Att wins if

30 S. Hohenberger et al.

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i

) = (C, s̃).

Recall from Section 6 that C-AggSetupt,PP,{Verifyi,VKi,mi} ∈ {0, 1}�ckt allows
efficient extraction of t, PP and (Verifyi,VKi,mi) for all i ≤ n. Without loss of
generality, we can assume that if Att outputs σagg = (t∗, s∗) as forgery, along with
n tuples {Verifyi,VKi,mi}i, then the circuit C-AggSetupt∗,PP,{Verifyi,VKi,mi}i

was
sent as query to the Parameters Oracle O. We will now define games Game 4-j-a
and Game 4-j-b for j ≤ qpar. Let us first define some notations. Given a canonical
circuit C-AggSetupt,PP,{Verifyi,VKi,mi}i

, call it (i∗, sk)-rejecting if Verifyi∗(VKi∗ ,
mi∗ , HE.dec(sk, t)) = 0. Let Reject-ckt be a circuit of size same as AggSign that
outputs ⊥ for all inputs.

Game 4-j-a

1. Choose i∗ ← [n].
Choose (SK,VK) ← S.Gen(1λ), (pk, sk) ← HE.setup(1λ).
Compute U ← SimUGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i �= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.
- For the ith query d ∈ C[�ckt, �inp, �out], check if T contains an entry

corresponding to d.
- If T contains an entry of the form (d, δ), output δ.
- Else if i ≤ j and d = C-AggSetupt,PP,{Verifyi,VKi,mi} is (i∗, sk)-rejecting,

output iO(Reject-ckt) and f(s) for s ← {0, 1}�.
- Else, choose r ← {0, 1}�inp and output d(r). Add (d, d(r)) to T .

Send PP,VK to Att.

Game 4-j-b

5. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i.
Att wins if
(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) (C-AggSetupt∗,PP,{Verifyi,VKi,mi} is not (i∗, sk)-rejecting) or

(C-AggSetupt∗,PP,{Verifyi,VKi,mi} /∈ O-Queriesj),
(d) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i

) = (C, s̃).

Game 5. This game is exactly Game 4-qpar-b.

5. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i.
Att wins if
(a) Verifyi∗ = S.Verify and VKi∗ = VK,

Universal Signature Aggregators 31

(b) mi∗ was not queried during the signing phase,
(c) S.Verify(VK,mi∗ ,HE.dec(sk, t∗)) = 1,
(d) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i

) = (C, s̃).

Analysis. Let Advj
Att denote the advantage of Att in Game j. Due to space

constraints, we state the claims here and the proofs can be found in [30].

Claim 10. For any adversary Att, Adv1Att = Adv0Att/n.

Claim 11. Assuming (HE.setup,HE.enc,HE.dec) is a secure additively homo-
morphic encryption scheme, for any PPT adversary Att, Adv1Att − Adv2Att ≤
negl(λ).

Claim 12. Assuming (UniversalGen, InduceGen) is a secure (�ckt, �inp, �out) uni-
versal parameters scheme, for any PPT adversary Att, Adv2Att−Adv3Att ≤ negl(λ).

Claim 13. Assuming iO is a secure indistinguishability obfuscator, for any j ≤
qpar, for any PPT adversary Att, Adv4-(j−1)-b

Att − Adv4-j-aAtt ≤ negl(λ).

Claim 14. Assuming f is a secure one way function, for any j ≤ qpar, for any
PPT adversary Att, Adv4-j-aAtt − Adv4-j-bAtt ≤ negl(λ).

Claim 15. Assuming S is a (�ver, �vk, �msg, �sig)-length qualified secure signa-
ture scheme, for any adversary Att, Adv5Att ≤ negl(λ).

Using the above claims, it follows that any PPT adversary has negligible
advantage in Game 0, assuming the universal parameters scheme is secure, HE
is a secure additively homomorphic encryption scheme and f is a secure one-way
function. Therefore, the universal signature aggregator in Section 6 is adaptively
secure (in the random oracle model) w.r.t. all secure signature schemes.

References

1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new
definitions, constructions and applications. In: Proceedings of the 17th ACM Con-
ference on Computer and Communications Security, pp. 473–484 (2010)

2. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

5. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007)

32 S. Hohenberger et al.

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

7. Bellare, M., Rogaway, P.: The exact security of digital signatures - How to sign
with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.
1070, pp. 399–416. Springer, Heidelberg (1996)

8. Benaloh, J.D.C.: Verifiable Secret-ballot Elections. Ph.D. thesis, Yale University
(1987)

9. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. J. Cryptol. 22(1), 114–138 (2008)

10. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: STOC, pp. 111–120 (2013)

11. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS, pp. 276–285 (2007)

12. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

13. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer,
Heidelberg (2003)

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

15. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

16. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

17. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

18. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy
verification from trapdoor permutations - (extended abstract). In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg
(2012)

19. Damg̊ard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364.
Springer, Heidelberg (2003)

20. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

22. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Dodis, Y., Kiayias,
A., Malkin, T., Yung, M. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer,
Heidelberg (2006)

Universal Signature Aggregators 33

23. Goldwasser, S., Micali, S.: Probabilistic encryption. Jour. of Computer and System
Science 28(2), 270–299 (1984)

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

25. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent (extended abstract). In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 228–245. Springer, Heidelberg (1993)

26. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

27. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)

28. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your ps and
qs: Detection of widespread weak keys in network devices. In: USENIX Security
Symposium, pp. 205–220 (2012)

29. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal parameters. Cryptology ePrint Archive, Report
2014/507 (2014). http://eprint.iacr.org/

30. Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. Cryp-
tology ePrint Archive, Report 2014/745 (2014). http://eprint.iacr.org/

31. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

32. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

33. Kaliski, B., Staddon, J.: PKCS #1: RSA Cryptography Specifications Version 2.0.
In: RFC Editor, United States (1998)

34. Kent, S., Lynn, C., Mikkelson, J., Seo, K.: Secure border gateway protocol (s-bgp).
IEEE Journal on Selected Areas in Communications 18, 103–116 (2000)

35. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: ACM Conference on Computer and Com-
munications Security, pp. 669–684 (2013)

36. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

37. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

38. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: Proceedings of the 5th ACM Conference on Computer and Communications
Security, CCS 1998, pp. 59–66 (1998)

39. Neven, G.: Efficient sequential aggregate signed data. IEEE Transactions on Infor-
mation Theory 57(3), 1803–1815 (2011)

40. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

41. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

42. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

http://eprint.iacr.org/
http://eprint.iacr.org/

34 S. Hohenberger et al.

43. Rückert, M., Schröder, D.: Aggregate and verifiably encrypted signatures from mul-
tilinear maps without random oracles. In: Park, J.H., Chen, H.-H., Atiquzzaman,
M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 750–759.
Springer, Heidelberg (2009)

44. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

45. Zhao, M., Smith, S.W., Nicol, D.M.: Aggregated path authentication for efficient
BGP security. In: ACM Conference on Computer and Communications Security,
pp. 128–138 (2005)

Fully Structure-Preserving Signatures
and Shrinking Commitments

Masayuki Abe1(B), Markulf Kohlweiss2,
Miyako Ohkubo3, and Mehdi Tibouchi1

1 Secure Platform Laboratories, NTT, Tokyo, Japan
{abe.masayuki,tibouchi.mehdi}@lab.ntt.co.jp

2 Microsoft Research, Cambridge, UK
markulf@microsoft.com

3 Security Fundamentals Laboratory, NSR, NICT, Tokyo, Japan
m.ohkubo@nict.go.jp

Abstract. Structure-preserving signatures are schemes in which public
keys, messages, and signatures are all collections of source group
elements of some bilinear groups. In this paper, we introduce fully
structure-preserving signature schemes, with the additional requirement
that even secret keys should be group elements. This new type of
structure-preserving signatures allows for efficient non-interactive proofs
of knowledge of the secret key and is useful in designing cryptographic
protocols with strong security guarantees based on the simulation para-
digm where the simulator has to extract the secret keys on-line. To gain
efficiency, we construct shrinking structure-preserving trapdoor commit-
ments. This is by itself an important primitive and of independent inter-
est as it appears to contradict a known impossibility result. We argue
that a relaxed binding property lets us circumvent the impossibility result
while still retaining the usefulness of the primitive in important applica-
tions as mentioned above.

Keywords: Structure-preserving signatures · Secret key extraction ·
Structure-preserving commitments

1 Introduction

In pairing-based cryptography, cryptographic primitives are often designed to
have algorithms in which messages and public materials consist only of source
group elements and correctness can be proved using pairing-product equations to
allow smooth coupling with other primitives. This interest in so called structure-
preserving primitives [3] led to the study of algebraic algorithms with many
positive but also negative results [1,2,4–7,11,18,34].

In structure-preserving signature schemes, all components but secret keys are
group elements. This raises a natural question: “Can secret keys consist entirely
of source group elements as well?” Having messages and signatures in the same
group prevents us from relying on the one-wayness of exponentiation (or of
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 35–65, 2015.
DOI: 10.1007/978-3-662-46803-6 2

36 M. Abe et al.

the isomorphism from one source group to the other in the case of asymmetric
bilinear groups) to blend messages into signatures, and it is a major difficulty in
designing structure-preserving signatures. In existing schemes, this is overcome
by having secret keys in the exponent. Thus, it is quite unclear how messages
and secret keys can blend into signatures if even secret keys are group elements.

Besides the above question being a fascinating fundamental question in its
own right, it is connected to practical protocol design since group secret keys
combined with the Groth-Sahai proof system [31] allow straight-line (i.e., no
rewinding) extraction of the secret keys when necessary. While there are solutions
in the random oracle model, e.g. [19,26], secret key extraction without random
oracles is currently prohibitively expensive. Meiklejohn [35] demonstrates how to
extract a secret key in the exponent using the Groth-Sahai proofs. It requires bit-
by-bit decomposition of secret x, and the proof consists of 20 log2 x + 18 group
elements. For instance, applying it to a structure-preserving signature scheme [2]
whose secret key consists of 4 + 2� scalar values for signing messages of � group
elements, proving secret keys for signing 10 group elements at 128-bit security,
requires more than 61,000 group elements.

Our contribution. This paper contains one main result and one important by-
product that is of independent interest. First, we present a fully structure-
preserving signature (FSPS) scheme all of whose components, including secret
keys, consist of source group elements of bilinear groups. This result demon-
strates that the paradigm of structure-preserving cryptography can be extended
to cover private key material. The security against adaptive chosen message
attacks is proved based on static (i.e., not q-type) assumptions. Its secret key
consists only of four group elements, and a witness indistinguishable proof of
knowledge about the secret key consists of 18 group elements (see Section 5.3).
These are huge savings compared to the current solution mentioned above.

A price to pay is the signature size O(
√

�) for messages consisting of � ele-
ments. A precise performance analysis shows that this remains relatively prac-
tical for short messages, e.g., a signature consists of 23 elements for messages
of 9 elements (see Table 1). We show a non-trivial trade-off between the size
of verification keys and signatures that implies that an order of

√
� elements in

signatures is inherent, at least for the type of modular constructions considered
in this paper.

The investigation of efficient instantiations lead us to our second contribu-
tion: a shrinking structure-preserving trapdoor commitment scheme (SPTC). We
present an SPTC scheme that produces constant-size commitments consisting
of a single group element regardless of the message size. In addition to being
an important primitive in itself, it is a remarkable construction in light of the
well-known impossibility result [8] stating that SPTC schemes that yield shorter
commitments than messages cannot be binding (or collision resistant, equiva-
lently). We get around the impossibility by making two exclusive relaxations
in the requirements. One is to weaken the security from collision resistance to
what we call chosen-message target collision resistance (CM-TCR). In the proof
of impossibility in [8], it is essential that the adversary finding a collision knows

Fully Structure-Preserving Signatures and Shrinking Commitments 37

the randomness used to create the commitment. In CMTCR, it is still the adver-
sary who chooses the messages to commit to, but it is the challenger who creates
the target commitment from the given message. Therefore the random coins used
for the target are hidden from the adversary.

Despite the first relaxation, it is still not easy to achieve CMTCR security.
As a stepping stone we make the second relaxation and allow the commitment
function to take exponents as input while mapping it to group elements for ver-
ification. The resulting scheme is no longer structure-preserving but does pre-
serve the group structure with respect to verification. As we require a bijection γ
between the message space for commitment and that for verification, we call such
schemes γ-binding commitments. Finding a concrete construction satisfying the
shrinking property is another challenge. There are commitment schemes whose
messages can be scalar values in a bilinear group setting, e.g. [3,22,31,33,38],
but none are γ-binding and shrinking. We present a concrete scheme whose com-
mitment consists of a single group element and achieves collision resistance. We
then use the shrinking γ-binding commitments to compress verification keys of a
(not necessarily fully) structure-preserving partially one-time signature scheme
(POS), and prove that it constitutes a shrinking SPTC with the CMTCR prop-
erty.

Related work. At least one FSPS scheme already exists [2] but with constraints
on both security and usability. Namely, it only meets the weak security guar-
antee (unforgeable against extended random message attacks), and the sign-
ing function takes messages of the form (Gm, Fm, Um) that essentially requires
knowledge of m [14,32]. Nevertheless, the UF-XRMA-secure FSPS scheme is a
reasonable starting point and we overcome its shortcomings by combining it with
structure-preserving trapdoor commitments or one-time structure-preserving sig-
natures.

Regarding SPTC, the study by Abe et al.[8], is an important piece of con-
text. It presents a concrete attack against all shrinking SPTC schemes. In fact,
all existing SPTCs, e.g. [3], are rather expanding. The way we circumvent the
impossibility, namely the γ-binding property, resembles the F -unforgeability
notion [13] for signature schemes.

The use of trapdoor commitments and chameleon hashing has also been
explored in the construction of on-line off-line signatures [21,25]. The work of
Even, Goldreich, and Micali already formed the basis for the generic construction
of SPS [2]. In addition, Catalano et al. [21], and Mohassel [37] observed an
interesting relationship between one-time signatures and chameleon hashing.

We discuss potential applications of FSPS in the context of efficient secret
key extraction from concrete to more high-level as follows.
Public-key infrastructure. On the very applied side, the question is connected
with the timely problem of public-key infrastructures. Few protocols have been
designed with the goal of being secure against adversarial keys, and few real-
world certificate authorities validate that registrees provide valid public keys or
prove knowledge of the corresponding secret keys. The availability of schemes

38 M. Abe et al.

with efficient non-interactive proofs-of-knowledge of secret key possession can
only improve this situation. In the provable security literature, this knowledge
of secret key solution to rogue-key attacks appeared early on in the study of
multi-signatures by Micali et al. [36, Problem 4 and Fix 4].
Protocol design in strong security model. More generally, these obstacles to secret
key extraction have hindered modular composable protocol design. Camenisch
et al. [19] developed a framework for practical universally composable (UC) zero-
knowledge proofs, in which they identify proofs-of-knowledge of exponents as
a major bottleneck. Dubovitskaya [24] constructed unlinkable redactable signa-
tures and anonymous credentials that are UC-secure. Their construction requires
proofs-of-knowledge of the signing key of a structure-preserving signature scheme,
which in turn, as studied by Chase et al. [23], is an instance of a general trans-
formation for making signature schemes simulatable [10]. Given these exam-
ples, we conjecture that fully structure-preserving signature schemes help build
UC-secure privacy preserving protocols.
Strengthening privacy in group and ring signatures. In classical group and ring
signatures, e.g. [15,17,30,39], the goal of the adversary against privacy is to dis-
tinguish signatures from two honest members whose keys are actually generated
and registered by the challenger. The attack game aborts if either of the targets
is a corrupted member registered with an adversarially generated key. Instead of
excluding such corrupt members from the scope of security, stronger privacy in
the presence of adversarial keys can be guaranteed, if the challenger can extract
the secret key to create group or ring signatures on their behalf. Such a model is
meaningful when some keys are generated incorrectly, e.g., because of multiple
potentially flawed implementations, but their owners nevertheless use them with
the correct signing algorithm.

Other applications of FSPS are settings in which the signing keys need to
be verifiably encrypted, for instance when extending delegatable anonymous
credential systems [12,23,27] with all-or-nothing non-transferability [20].

Organization. After recalling preliminaries and existing building blocks in
Sections 2 and 3 we give constructions of shrinking SPTC and FSPS schemes
in Sections 4 and 5. We refer to [9] for variations of our FSPS constructions
obtained by replacing some building blocks in our construction.

2 Preliminaries

2.1 Notations

By |X| we denote the size of X (in some implicit unit). In particular, if X consists
of group elements of some groups, it counts the number of elements in X. For
x representing an object, x denotes an ordered set of x and is understood as
x = (x1, . . . , xn) for some positive integer n that is limited by a polynomial in
the security parameter. The size n will be implicit if it is not very important in
the context. By y ← A(x), we denote that algorithm A takes x as input and

Fully Structure-Preserving Signatures and Shrinking Commitments 39

outputs y. When it is clear from the context, we abuse notation like y ← A(x)
to denote repetition of execution yi ← A(xi) for xi ∈ x and yi ∈ y.

2.2 Bilinear Groups

Let G be a generator of bilinear groups that takes security parameter 1λ as input
and outputs Λ := (p,G1,G2,GT , e,G, G̃), where p is a λ-bit prime, G1,G2,GT

are groups of prime order p with efficiently computable group operations, mem-
bership tests, and bilinear mapping e : G1 × G2 → GT . Elements G and G̃
are default random generators of G1, G2, and e(G, G̃) generates GT . We use
the multiplicative notation for group operations in G1, G2, and GT . The pairing
operation e satisfies that ∀A ∈ G1,

∀B ∈ G2,
∀x, y ∈ Z : e(Ax, By) = e(A,B)xy.

An equation of the form
∏

i

∏
j e(Ai, Bj)aij = 1 for constants aij ∈ Zp, and con-

stants or variables Ai ∈ G1, Bj ∈ G2 is called a pairing product equation (PPE).
By G

∗
1, we denote G1 \ 1G1 , and similar for G

∗
2 and Z

∗
p.

Throughout the paper, we work over asymmetric bilinear groups (so-called
Type-III setting [28]) where no efficient isomorphisms exist between G1 and G2.
Some building blocks in our construction rely on the double pairing assump-
tion [3].

Assumption 1 (Double Pairing Assumption: DBP). The double pairing
assumption holds in G2 relative to G if, for all probabilistic polynomial-time
algorithms A, probability

Pr

⎡

⎣
Λ ← G(1λ);
G̃z ← G

∗
2;

(Z,R) ← A(Λ, G̃z)
:

(Z,R) ∈ G
∗
1 × G

∗
1,∧

1 = e(Z, G̃z) e(R, G̃)

⎤

⎦ (1)

is negligible in security parameter λ.

The DBP assumption in G1 is defined by swapping G1 and G2 in the above
definition. Note that the DBP assumption (in G1 and G2) is implied by the
Decision Diffie-Hellman assumption (in G1 and G2, respectively) which is often
assumed in Type-III setting.

We also use a building block that requires more assumptions such as DDH2,
XDLIN1, and co-CDH that we refer to [2] for definitions.

2.3 Digital Signatures

In this section we recall definitions of digital signatures, one-time signatures
and their security notions. On top of the standard notions, we define structure-
preserving and fully structure-reserving signatures.

Definition 2 (Digital Signature Scheme). A digital signature scheme is
a set of algorithms {Setup,Key,Sign,Vrf}. Setup(1λ) → gk is a setup func-
tion that, given a security parameter λ, generates common parameter gk, which
defines message space M. Key(gk) → (vk, sk) is a key generation algorithm that

40 M. Abe et al.

takes common parameter gk and generates a verification key vk and a signing key
sk. Sign(sk,m) → σ is a signature generation algorithm that computes a signa-
ture σ for input message m ∈ M by using signing key sk. Vrf(vk,m, σ) → 1/0 is
a verification algorithm that outputs 1 for acceptance or 0 for rejection according
to the input.

For correctness, it must hold that, for any legitimately generated gk, vk, and
sk and for any message m ∈ M, 1 = Vrf(vk,m,Sign(sk,m)). A key pair (vk, sk)
is correct if it is in the output distribution of the key generation function Key.

Definition 3 (Unforgeability against Adaptive Chosen-Message
Attacks). A signature scheme, SIG = {Setup,Key,Sign,Vrf}, is unforgeable
against adaptive chosen message attacks (UF-CMA) if the following advantage
function is negligible against any polynomial-time adversary A.

Advuf-cma
SIG,A (λ) := Pr

⎡

⎣
gk ← Setup(1λ),
(vk, sk) ← Key(gk),
(σ†,m†) ← AOsk (vk)

∣
∣
∣
∣
∣
∣

m† �∈ Qm ∧
1 = Vrf(vk,m†, σ†)

⎤

⎦ , (2)

where Osk is an oracle that, given m, executes σ ← Sign(sk,m), records m to
Qm, and returns σ.

A non-adaptive chosen message attack is defined by letting adversary A com-
mit to the messages to query before seeing vk. (A is given gk that defines the
message space.) Existential unforgeability against non-adaptive chosen message
attack is denoted by UF-NACMA.

A one-time signature scheme is a digital signature scheme with the limitation
that a verification key has to be used only once to retain security. Unforgeability
against one-time chosen message attacks is defined as in Definition 3 by restrict-
ing the game to answer only a single signing oracle request.

Definition 4 (Structure-Preserving Signature Scheme). A digital signa-
ture scheme is called structure-preserving with respect to bilinear group generator
G if the following conditions are all satisfied. 1) Common parameter gk consists
of a group description Λ generated by G and constants aij in Zp. 2) Verification
key vk consists of group elements in G1 and G2 other than gk. 3) Messages and
signatures consist of group elements in G1 and G2. 4) Verification algorithm Vrf
consists only of evaluating membership in G1 and G2 and relations described by
paring product equations.

When messages consist of both source groups, G1 and G2, they are called
bilateral. They are unilateral, otherwise.

The notion of structure-preserving cryptography requires public components to
be group elements. We extend it so that private components consist of group
elements as well.

Definition 5 (Fully Structure-Preserving Signature Schemes). A
structure-preserving signature scheme is fully structure-preserving if the fol-
lowing additional conditions are also satisfied. 5) Signing key sk (other than

Fully Structure-Preserving Signatures and Shrinking Commitments 41

included vk) consists of group elements in G1 and G2. 6) Correctness of sk
with respect to vk can be verified by evaluating membership in G1 and G2 and
relations described by pairing product equations.

Once conditions 5 and 6 are satisfied, one can construct proof of knowledge
about the secret keys by using the Groth-Sahai proof system, which allows one
to extract a correct secret key corresponding to the verification key. It is however
important to note that there could exist more than one correct secret key for
a verification key and they may yield signatures in different distributions. One
might need stronger extractability that allows to extract the secret key for a
particular distribution of signatures. It is indeed the case for the group signature
application mentioned in Section 1.

3 Building Blocks

3.1 Common Setup Function

Building blocks in this paper are defined with individual setup functions. As
we work over bilinear groups, an output from a setup function should include a
description of bilinear groups Λ. Some random generators specific to the building
block may be included as well. Other parameters such as message spaces, are
also defined there.

The individual setup functions will be merged into a common setup function,
denoted as Setup, when the building blocks are used together in constructing
upper-level schemes. By gk ← Setup(1λ), we mean that Setup takes security
parameter λ and generates a common parameter gk. This formulation is useful to
share some domains in the building blocks. For instance, we require the message
space of a signature scheme to match the key spaces of another signature scheme.
Due to the interdependence between building blocks, it is inherent that Setup is
constructed from individual setup algorithms in a non-blackbox manner. Suppose
that two building blocks, say A and B, are used together. We say that A and B
have common setup function Setup if gk ← Setup(1λ) can be simulated whichever
of gkA ← A.Setup(1λ) or gkB ← B.Setup(1λ) is given, and both gkA and gkB can
be recovered from gk in polynomial time. In the rest of the paper, we abuse this
property and give common parameter gk to individual functions of A and B.

3.2 Partially One-Time Signatures

When only a part of a verification key of one-time signatures must be updated
for every signing, i.e., the remaining part of the verification key can be used an
unbounded number of times, the scheme is called partially one-time [2,16].

Definition 6 (Partially One-Time Signature Scheme). A partially one-
time signature scheme is a set of algorithms POS = {Setup,Key,Ovk,Sign,Vrf}
that:

42 M. Abe et al.

Setup(1λ) → gk: A setup function that, given a security parameter λ, gener-
ates common parameter gk, which defines message space M.

Key(gk) → (vk, sk): A long-term key generation function that takes gk and
outputs a long-term key pair (vk, sk).

Ovk(gk) → (ovk, osk): A one-time key generation function that takes gk and
outputs a one-time key pair (ovk, osk).

Sign(sk, osk,m) → σ: A signing function that takes sk, osk and a message m
as inputs and issues a signature σ.

Vrf(vk, ovk,m, σ) → 1/0: A verification function that outputs 1 or 0 according
to the validity of the input.

For any gk ← Setup(1λ), (vk, sk) ← Key(gk), m ∈ M, and (ovk, osk) ←
Ovk(gk), σ ← Sign(sk, osk,m), it must hold that 1 ← Vrf(vk, ovk,m, σ).

Definition 7 (One-Time Chosen-Message Attack for POS). A partially
one-time signature scheme, POS = {Setup,Key,Ovk,Sign,Vrf}, is unforgeable
against non-adaptive partial one-time chosen message attacks (OT-NACMA), if
advantage function Advot-nacma

POS,A (λ) defined by probability

Pr

⎡

⎣
gk ← Setup(1λ),
(vk, sk) ← Key(gk),
(ovk†, σ†,m†) ← AOsk (vk)

∣
∣
∣
∣
∣
∣

ovk† ∈ Qmv ∧ (ovk†,m†) �∈ Qmv ∧
1 = Vrf(vk, ovk†,m†, σ†)

⎤

⎦ (3)

is negligible against any polynomial-time adversary A. Here Osk is an oracle
that, given m ∈ M, executes (ovk, osk) ← Ovk(gk), σ ← Sign(sk, osk,m),
records (ovk,m) to Qmv, and returns (σ, ovk). When Osk allows A to separately
access Ovk and Sign, it is called an adaptive partial one-time chosen message
attack (OT-CMA).

Obviously, OT-CMA security implies OT-NACMA security. The following con-
struction taken from [2] with trivial modifications for optimality is OT-CMA
secure under the DBP assumption in G1.

[Partially One-time Signature Scheme: POS]

Setup(1λ): Run gk := (p,G1,G2,GT , e,G, G̃) ← G(1λ). Set message space M
to G

�
2 for preliminary-fixed positive integer �.

Key(gk): Take generators G and G̃ from gk. Choose wz randomly from Z
∗
p,

and compute Gz := Gwz . For i = 1, . . . , �, uniformly choose χi from Zp

and compute Gi := Gχi . Output vk := (Gz, G1, . . . , G�) ∈ G
�+1
1 and sk :=

(χ1, . . . , χ� , wz).

Ovk(gk): Choose a ← Zp and output ovk = A := Ga, and osk := a.

Sign(sk, osk,m): Parse m into (M̃1, · · · , M̃�) ∈ G
�
2. Take a and wz from osk

and sk, respectively. Choose ζ randomly from Z
∗
p and compute the signature

as (Z̃, R̃) where Z̃ = G̃ζ , R̃ = G̃a−ζ wz
∏�

i=1 M̃−χi

i .

Vrf(vk, ovk,m, σ): Parse σ as (Z̃, R̃) ∈ G
2
2, m as (M̃1, . . . , M̃�) ∈ G

�
2, and

ovk as A. Return 1, if e(A, G̃) = e(Gz, Z̃) e(G, R̃)
∏�

i=1 e(Gi, M̃i) holds.
Return 0, otherwise.

Fully Structure-Preserving Signatures and Shrinking Commitments 43

3.3 xRMA-Secure Fully Structure-Preserving Signature Scheme

We follow the notion of extended random message attacks and take a concrete
scheme from [2].

Definition 8 (Unforgeability against Extended Random Message
Attacks). A signature scheme, xSIG = {Setup,Key,Sign,Vrf}, is unforgeable
against extended random message attacks (UF-XRMA) with respect to message
sampler SampleM if probability

Advuf-xrma
xSIG,A(λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

gk ← Setup(1λ),
(vk, sk) ← Key(gk),
m ← SampleM(gk;ω),
σ ← Sign(sk,m),
(σ†,m†) ← A(vk,σ,m, ω)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

m† �∈ m ∧
1 = Vrf(vk,m†, σ†)

⎤

⎥
⎥
⎥
⎥
⎦

(4)

is negligible against any polynomial-time adversary A. Here ω is a uniformly
chosen randomness.

[xRMA-secure Signature Scheme: xSIG]

Setup(1λ): Run (p,G1,G2,GT , e,G, G̃) ← G(1λ). For some fixed � ≥ 1,
choose u1, · · · , u� ,
, δ randomly from Z

∗
p and compute F1 := G�,

F2 := Gδ, F̃1 := G̃�, F̃2 := G̃δ, Ui := Gui , and Ũi := G̃ui . Output
gk := (p,G1,G2,GT , e,G, G̃, F1, F2, F̃1, F̃2, {Ui, Ũi}�

i=1). This constitutes
the message space M = {(M̃11, M̃12, M̃13), . . . , (M̃�1, M̃�2, M̃�3) | ∀i,∃ mi ∈
Zp s.t. (M̃i1, M̃i2, M̃i3) = (F̃mi

1 , F̃mi
2 , Ũmi

i)}.

Key(gk): On input gk , choose τ1, τ2, τ3, ρ, a, b, α from Zp, and compute

Ṽ1 := G̃b, Ṽ2 := G̃a, Ṽ3 := G̃ba, Ṽ4 := G̃τ1+aτ2 ,

Ṽ5 := Ṽ b
4 , Ṽ6 := G̃τ3 , V7 := Gρ, Ṽ8 := G̃αb/ρ, (5)

K1 := Gα, K2 := Gb, K3 := Gτ1 , K4 := Gτ2 .

(For completeness of description, pick Ṽ8 uniformly from G2 if ρ = 0.) Output
vk := (gk, Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, V7, Ṽ8) and sk := (vk ,K1,K2,K3,K4).

Sign(sk ,M): Parse message M into {(M̃11, M̃12, M̃13), · · · , (M̃�1, M̃�2, M̃�3)} ∈
M. Select r1, r2, z ← Zp, set r := r1 + r2, compute

S̃0 := (Ṽ6

�∏

i=1

M̃i3)r1 , S1 := K1K3
r, S2 := K4

rG−z, (6)

S3 := K2
z, S4 := K2

r2 , and S5 := Gr1 .

Output σ := (S̃0, . . . , S5) ∈ G2 × G
5
1.

44 M. Abe et al.

Vrf(vk ,M, σ): Output 1 if the following relations hold:

e(S5, Ṽ6

�∏

i=1

M̃i3) = e(G, S̃0),

e(S1, Ṽ1)e(S2, Ṽ3)e(S3, Ṽ2) = e(S4, Ṽ4)e(S5, Ṽ5)e(V7, Ṽ8), (7)

e(F1, M̃i3) = e(Ui, M̃i1), e(F2, M̃i3) = e(Ui, M̃i2) for i = 1, · · · , �.

Output 0, otherwise.

The above scheme comes with trivial modifications from the original in [2].
First it is extended to sign random messages consisting of � ≥ 1 message blocks,
and second it takes randomness from Zp rather than Z

∗
p in the key generation.

Those changes do not essentially affect to the security that we recall below.

Theorem 9 ([2]). If the DDH2, XDLIN1, and co-CDH assumptions hold, then
the above xSIG is UF-XRMAwith respect to the message sampler that returns
aux = mi for every random message block (F̃mi

1 , F̃mi
2 , Ũmi

i).

Theorem 10. The above xSIG is fully structure-preserving.

Proof. By inspection, it is clear that vk (modulo group description in gk), sk ,
M , and σ consist of source group elements, and xSIG.Vrf consists of evaluating
PPEs.

Next we show that the following PPEs are satisfied if and only if the verifi-
cation key and the secret key is in the correct distribution.

e(K2, G̃) = e(G, Ṽ1), e(G, Ṽ3) = e(K2, Ṽ2), e(K1, Ṽ1) = e(V7, Ṽ8),

e(K2, Ṽ4) = e(G, Ṽ5), e(K3, G̃) e(K4, Ṽ2) = e(G, Ṽ4).
(8)

Showing correctly generated keys satisfy the above relations is trivial. We argue
the other direction as follows. The independent variables that define a key pair
are a, b, α, τ1, τ2, τ3 and ρ. They are uniquely determined by Ṽ2, Ṽ1, K1,
K3, K4, Ṽ6, and V7, respectively. We verify that the remaining Ṽ3, Ṽ4, Ṽ5, Ṽ8,
and K2 are in the support of the correct distribution if the above relations
are satisfied. The first equation is e(K2, G̃) = e(G, G̃)b that defines K2 = Gb.
The second equation is e(G, Ṽ3) = e(G, G̃)ba that defines Ṽ3 = G̃ba. The third
equation is e(G, G̃)αb = e(G, Ṽ8)ρ that defines Ṽ8 = G̃αb/ρ for ρ �= 0. If ρ = 0,
Ṽ8 can be an arbitrary value as prescribed in the key generation. The fourth
equation is e(G, Ṽ4)b = e(G, Ṽ5) that defines Ṽ5 = Ṽ b

4 . The last equation is
e(G, G̃)τ1+aτ2 = e(G, Ṽ4) that defines Ṽ4 = G̃τ1+aτ2 as prescribed. 	

4 Trapdoor Commitment Schemes

4.1 Definitions

We adopt the following standard syntax for trapdoor commitment schemes.

Fully Structure-Preserving Signatures and Shrinking Commitments 45

Definition 11 (Trapdoor Commitment Scheme). A trapdoor commitment
scheme TC is a tuple of polynomial-time algorithms TC = {Setup,Key,Com,Vrf,
SimCom,Equiv} that:

Setup(1λ) → gk: A common-parameter generation algorithm that takes secu-
rity parameter λ and outputs a common parameter, gk. It determines the
message space M, the commitment space C, and opening space I.

Key(gk) → (ck, tk): A key generation algorithm that takes gk as input and
outputs a commitment key, ck, and a trapdoor key, tk.

Com(ck,m) → (com, open): A commitment algorithm that takes ck and mes-
sage m ∈ M and outputs a commitment, com ∈ C, and an opening infor-
mation, open ∈ I.

Vrf(ck, com,m, open) → 1/0: A verification algorithm that takes ck, com, m,
and open as input, and outputs 1 or 0 representing acceptance or rejection,
respectively.

SimCom(gk) → (com, ek): A sampling algorithm that takes common parame-
ter gk and outputs commitment com and equivocation key ek.

Equiv(m, ek, tk) → open: An algorithm that takes ck, ek, tk and m ∈ M as
input, and returns open.

It is correct if, for all λ ∈ N, gk ← Setup(1λ), (ck, tk) ← Key(gk), m ← M,
(com, open) ← Com(ck,m), it holds that 1 = Vrf(ck, com,m, open). Further-
more, it is statistical trapdoor if, for any gk ∈ Setup(1λ), (ck, tk) ∈ Key(gk),
m ∈ M, (com, open) ← Com(ck,m), (com′, ek) ← SimCom(gk); open′ ←
Equiv(m, ek, tk), two distributions (ck,m, com, open) and (ck,m, com′, open′)
are statistically close.

Definition 12 (Structure-Preserving Trapdoor Commitment Scheme).
A trapdoor commitment scheme is structure-preserving relative to group gener-
ator G if its gk includes a description of bilinear groups generated by G and
its commitment keys, messages, commitments, and opening information consist
only of source group elements, and the verification function consists only of eval-
uating group membership and relations described by pairing product equations.

We say that a commitment scheme is shrinking if |com| ≤ |m| where equality
holds only for the case of |m| = 1.

Trapdoor commitments should be hiding and binding. Since the hiding prop-
erty follows from the statistical trapdoor property and is not important for our
purpose, we focus on the binding property in the rest of this paper.

The standard binding property requires that it is infeasible for any polynomial-
time adversary to find two distinct messages and openings for a single commitment
value com. It is also referred to as collision resistance. A weaker notion known as
target collision resistance asks the adversary to find a collision on a given message.
We here introduce a weaker binding notion that lies between collision resistance
and target collision resistance. This new notion, which we call chosen-message
target collision resistance (CMTCR), allows the adversary to choose the message
but it is committed to by the challenger. Thus, the adversary does not know the
randomness used to create the target commitment.

46 M. Abe et al.

Definition 13 (Chosen-Message Target Collision Resistance). For a
trapdoor commitment scheme, TC, let Ock denote an oracle that, given m ∈
M, executes (com, open) ← Com(ck,m), records (com,m) to Q, and returns
(com, open). We say TC is chosen-message target collision resistant if advantage
Advcmtcr

TC,A(λ) defined by

Pr

⎡

⎣
gk ← Setup(1λ),
(ck, tk) ← Key(gk),
(com†,m†, open†) ← AOck (ck)

∣
∣
∣
∣
∣
∣

com† ∈ Q ∧ (com†,m†) /∈ Q∧
1 = Vrf(ck, com†,m†, open†)

⎤

⎦ (9)

is negligible in security parameter λ for any polynomial-time adversary A.

4.2 γ-Binding Commitment Scheme

This section presents a new primitive we call a γ-binding commitment scheme
(TCγ). It has a special property that the message space Mcom for creating
a commitment and the space Mver for verification differ and there exists an
efficiently computable bijection γ : Mcom → Mver that computes messages for
verification from those for committing. The formal definition is as follows.

Definition 14 (γ-Binding Commitment Scheme). A γ-binding commit-
ment scheme is a set of algorithms TCγ = {Setup,Key,Com,Vrf,SimCom,Equiv}
that:

Setup(1λ) → gk: A setup function that, given a security parameter λ, gener-
ates common parameter gk, which defines message spaces; Mcom for com-
mitment generation and Mver for verification, and an efficiently computable
bijection γ : Mcom → Mver. It also determines the commitment space C,
and the opening space I.

Key(gk) → (ck, tk): A key generation algorithm that takes gk and outputs a
public commitment key, ck, and a trapdoor key, tk.

Com(ck,m) → (com, open): A commitment algorithm that takes ck and mes-
sage m ∈ Mcom and outputs a commitment, com ∈ C, and an opening
information, open ∈ I.

Vrf(ck, com,M, open) → 1/0: A verification algorithm that takes ck, com, M ∈
Mver, and open as inputs, and outputs 1 or 0 representing acceptance or rejec-
tion, respectively.

SimCom(gk) → (com, ek): A sampling algorithm that takes common parame-
ter gk and outputs commitment com and equivocation key ek.

Equiv(M, ek, tk) → open: An algorithm that takes ck, ek, tk, and M ∈ Mver

as input and returns open.

Correctness, statistical trapdoor, and shrinking property are defined as well as
Definition 11.

Fully Structure-Preserving Signatures and Shrinking Commitments 47

We say that a γ-binding commitment scheme is structure-preserving with
respect to verification if ck, com, open, and Mver consist of source group ele-
ments of bilinear groups and the verification function consists only of evaluating
group membership and pairing product equations.

Next we formally define the security notions, γ-target collision resistance
and γ-collision resistance. As well as ordinary notions of collision resistance,
γ-collision resistance implies γ-target collision resistance.

Definition 15 (γ-Target Collision Resistance). For a γ-binding commit-
ment scheme, TCγ, let com and open denote vectors of commitment and open-
ings produced by Com for uniformly sampled messages m. We say TCγ is γ-target
collision resistant if advantage function Advtcr

TCγ,A(λ) defined by

Pr

⎡

⎣
gk ← Setup(1λ), (ck, tk) ← Key(gk),
m ← Mcom, (com,open) ← Com(ck,m),
(com,M, open) ← A(ck,m, com,open)

∣
∣
∣
∣
∣
∣

com ∈ com ∧ M �∈ γ(m)∧
1 = Vrf(ck, com,M, open)

⎤

⎦

is negligible in security parameter λ for any polynomial-time adversary A.

Definition 16 (γ-Collision Resistance). A γ-binding commitment scheme,
TCγ, is γ-collision resistant if advantage Advcr

TCγ,A(λ) defined by

Pr

⎡

⎣gk ← Setup(1λ), (ck, tk) ← Key(gk),
(com,M1, open1,M2, open2) ← A(ck)

∣
∣
∣
∣
∣
∣

M1 �= M2∧
1 = Vrf(ck, com,M1, open1)∧
1 = Vrf(ck, com,M2, open2)

⎤

⎦

is negligible in security parameter λ for any polynomial-time adversary A.

Now we present a concrete scheme for a structure-preserving γ-binding trap-
door commitment scheme for γ : Zp → G1. For our purpose, we only require
target collision resistance but the concrete construction satisfies the stronger
notion.

[γ-Binding Trapdoor Commitment Scheme: TCγ]

Setup(1λ): Run G(1λ) and obtain gk := (p,G1,G2,GT , e,G, G̃). It defines
message spaces Mcom := Z

�
p, Mver := G

�
1 for fixed � ≥ 1 and bijection

γ : Z�
p → G

�
1 by γ(m1, . . . ,m�) = (Gm1 , . . . , Gm�). Output gk.

Key(gk): For i = 1, . . . , �, choose ρi ← Z
∗
p and compute X̃i := G̃ρi . Output

ck := (gk, X̃1, . . . , X̃�) and tk := (gk, ρ1, . . . , ρ�).

Com(ck,m): Parse m into (m1, · · · ,m�) ∈ Z
�
p. Choose ζ ← Z

∗
p and compute

G̃u := G̃ζ
∏�

i=1 X̃mi
i and R := Gζ . Output com := G̃u and open := R.

Vrf(ck, com,M, open): Parse ck = (gk, X̃1, . . . , X̃�), open = R, M = (M1, . . . ,
M�) ∈ G

�
1, and com = G̃u, respectively. Take generators (G, G̃) from gk.

Return 1 if

e(G, G̃u) = e(R, G̃)
�∏

i=1

e(Mi, X̃i) (10)

48 M. Abe et al.

holds. Return 0, otherwise.

SimCom(gk): Choose ωu ∈ Z
∗
p. Compute G̃u := G̃ωu and output com := G̃u

and ek := ωu.

Equiv(M, ek, tk): Parse tk = (gk, ρ1, . . . , ρ�), ek = ωu, and M = (M1, . . . ,M�).
Compute R := Gωu

∏�
i=1 M−ρi

i . Then output open := R.

Theorem 17. TCγ is correct, statistical trapdoor, and structure-preserving with
respect to verification. It is γ-collision resistant if the DBP assumption holds.

Proof. Correctness is verified as e(R, G̃)
∏�

i=1 e(Mi, X̃i) = e(Gζ , G̃)
∏�

i=1 e(Gmi ,

X̃i) = e(G, G̃ζ) e(G,
∏�

i=1 X̃mi
i) = e(G, G̃u). To see if it is statistically trapdoor,

observe that SimCom outputs G̃u uniformly over G
∗
2 whereas that from Com

distributes statistically close to uniform over G2. Then R from Equiv is the one
that is uniquely determined by the verification equation since it satisfies

e(R, G̃)
�∏

i=1

e(Mi, X̃i) = e(Gωu

�∏

i=1

M−xi
i , G̃)

�∏

i=1

e(Mi, G̃
xi) = e(G, G̃u).

Finally, it is obviously structure-preserving with respect to verification due to
verification equation (10).

Next we prove the γ-collision resistance. Let A be an adversary that breaks
the CR security of TCγ. We show algorithm B that attacks the DBP with black-
box access to A. Given an instance (e,G1,G2, G, G̃, G̃z) of the DBP, algorithm
B sets up key ck as follows. Set gk := (p,G1,G2,GT , e,G, G̃). For i = 1, . . . , �,
choose ξi, ϕi ← (Z∗

p)
2 and set X̃i := (G̃z)ξi G̃ϕi . Then give ck := (gk, X̃1, . . . , X̃�)

to A.
Suppose that A outputs (G̃u, R1,M1, R2,M2) that passes the verification as

required. B then outputs (Z�, R�) where

R� :=
R1

R2

�∏

i=1

(
M1i

M2i

)ϕi

, and Z� :=
�∏

i=1

(
M1i

M2i

)ξi

, (11)

as the answer to the DBP. This completes the description of B.
We first verify that the simulated ck is correctly distributed. In the key

generation, gk is set legitimately to the given output of G. Each simulated X̃i

distributes uniformly over G2, whereas the real one distributes uniformly over
G

∗
2. Thus, the simulated ck is statistically close to the real one.

We then argue that the resulting (Z�, R�) is a valid answer to the given
instance of the DBP. Since the output from A satisfies the verification equation,
we have

Fully Structure-Preserving Signatures and Shrinking Commitments 49

1 = e

(
R1

R2
, G̃

) �∏

i=1

e

(
M1i

M2i
, (G̃z)ξiG̃ϕi

)

(12)

= e

(
�∏

i=1

(
M1i

M2i

)ξi

, G̃�
z

)

e

(
R1

R2

�∏

i=1

(
M1i

M2i

)ϕi

, G̃

)

= e(Z�, G̃�
z) e(R�, G̃).

(13)

Observe that every ξi is independent of the view of A as it is information
theoretically hidden into X̃i. Since a valid output from A satisfies M1 �= M2,
there exists index i� ∈ {1, . . . , �} that M1i� �= M2i� . Thus Z� follows the distri-
bution of (M1i/M2i)ξi at i = i�. Since M1i�/M2i� �= 1 and ξi� is uniform over
Z

∗
p, we conclude that Z� = 1 occurs only with negligible probability.

Thus, B breaks the DBP assumption with almost the same probability and
running time of A breaking the γ-collision resistance of TCγ. 	

4.3 Structure-Preserving Shrinking Trapdoor Commitment Scheme

Let POS be a partially one-time signature scheme. Let Mpos be the message space
of POS defined with respect to gk. We denote the key spaces as Kvk

pos, Ksk
pos, Kovk

pos ,
and Kosk

pos in a self-explanatory manner. Let γsk : Ksk
pos → Kvk

pos and γosk : Kosk
pos →

Kovk
pos be efficiently computable bijections. Let γ be γ = γsk × γ

(1)
osk × · · · × γ

(k)
osk.

Let TCγ be a γ-binding trapdoor commitment scheme for such γ. It is assumed
that POS and TCγ have a common setup function, Setup, that outputs gk based
on POS.Setup and TCγ.Setup, as mentioned in Section 3.1. (When instantiated
from POS in Section 3.2 and TCγ from Section 4.2, Setup is as simple as running
gk ← G(1λ)). Using these building blocks, we construct an SPTC scheme, TC,
achieving CMTCR security as follows.

[Trapdoor Commitment Scheme: TC]

Setup(1λ): It the same as the common setup function for POS and TCγ. The
relevant message spaces are set as Mcom

gbc := Ksk
pos × (Kosk

pos)
k, Mver

gbc := Kvk
pos ×

(Kovk
pos)k, and M := (Mpos)k for some integer k > 0.

Key(gk): Run (ckgbc, tkgbc) ← TCγ.Key(gk). Output ck := ckgbc and tk :=
tkgbc. It is assumed that gk is included in ck. The message space for TC is
set to M := (Mpos)k.

Com(ck,M): Parse ck := ckgbc and M := (M (1), · · · ,M (k)) ∈ (Mpos)k. Take
gk from ck. Run (vkpos, skpos) ← POS.Key(gk). Execute (ovk

(i)
pos, osk

(i)
pos) ←

POS.Ovk(gk) and σ
(i)
pos := POS.Sign(skpos, osk

(i)
pos,M (i)) for i = 1, . . . , k.

Then run (comgbc, opengbc) ← TCγ.Com(ckgbc, (skpos, osk
(1)
pos, · · · , osk

(k)
pos)).

Output com := comgbc and open := (opengbc, vkpos, ovk
(1)
pos, · · · , ovk

(k)
pos , σ

(1)
pos,

· · · , σ
(k)
pos).

50 M. Abe et al.

Vrf(ck, com,M, open): Parse com = comgbc, M = (M (1), · · · ,M (k)) ∈
(Mpos)k and open = (opengbc, vkpos, ovk

(1)
pos, · · · , ovk

(k)
pos , σ

(1)
pos, · · · , σ

(k)
pos). Exe-

cute b0 ← TCγ.Vrf(ckgbc, comgbc, (vkpos, ovk
(1)
pos, · · · , ovk

(k)
pos), opengbc), and

bi ← POS.Vrf(vkpos, ovk
(i)
pos,M (i), σ

(i)
pos) for i = 1, . . . , k. Output 1 if bi = 1 for

all i = 0, . . . , k. Output 0, otherwise.

SimCom(gk): Take gkgbc from gk and run (comgbc, ekgbc) ←
TCγ.SimCom(gkgbc) and output com := comgbc and ek := (comgbc, ekgbc).

Equiv(M, ek, tk): The same as TC.Com except that, TCγ.Com is replaced
by opengbc ← TCγ.Equiv((vkpos, ovk

(1)
pos, · · · , ovk

(k)
pos), ekgbc, tkgbc) and comgbc

included in ek.

Theorem 18. The commitment scheme TC described above is CMTCR if POS
is OT-NACMA, and TCγ is γ-target collision resistant.

Proof. We follow the game transition framework. Let Game 0 be the CMTCR
game launched by adversary A. By com† = com†

gbc, open† = (open†
gbc, vk†

pos,

ovk†
pos

(1)
, · · · , ovk†

pos
(k)

, σ†
pos

(1)
, · · · , σ†

pos
(k)) and M† = (M†(1), · · · ,M†(k)), we

denote the collision A outputs.
In Game 1, abort if (vk†

pos, ovk†
pos

(1)
, · · · , ovk†

pos
(k)) differs from any of

(vkpos, ovk
(1)
pos, · · · , ovk

(k)
pos) observed by the signing oracle. We show that this

occurs only if TCγ is broken by constructing adversary B attacking the γ-
target collision resistance of TCγ. Adversary B is given ckgbc and qs ref-
erence commitments comgbc and opening opengbc for random messages of
the form (skpos, osk

(1)
pos, . . . , osk

(k)
pos). Each message is uniquely mapped to

(vkpos, ovk
(1)
pos, . . . , ovk

(k)
pos) by bijection γ. Adversary B invokes A with ck := ckgbc

as input. For every commitment query M , adversary B takes a fresh sample
(skpos, osk

(1)
pos, . . . , osk

(k)
pos) with its commitment comgbc and opening opengbc, and

compute σ
(j)
pos ← POS.Sign(skpos, osk

(j)
pos,M (j)) for j = 1, . . . , k. It then returns

com := comgbc and open := (opengbc, vkpos, ovk
(1)
pos, · · · , ovk

(k)
pos , σ

(1)
pos, · · · , σ

(k)
pos). If

A eventually outputs a collision, B outputs com�
gbc := com†

gbc, open�
gbc := open†

gbc

and M� := (vk†
pos, ovk†

pos
(1)

, · · · , ovk†
pos

(k)). This completes the description of B.
The simulated commitments and openings distribute the same as the real

ones since every osk
(j)
pos is sampled legitimately by the challenger and the com-

mitment generation procedure is the genuine one. Furthermore, the output of
B is a valid collision against TCγ since A must have chosen com†(= com†

gbc)
from once used commitments and M� is fresh due to the condition of abort.
Accordingly, we have |Pr[Game 0] − Pr[Game 1]| ≤ Advtcr

TCγ,B(λ).
We then argue that A wins in Game 1 only if POS is broken. Let C be

an adversary attacking the OT-NACMA property of POS. Given vk�
pos from

outside, C first flips a coin i† ← {1, . . . , qs}. It then takes gk from vk�
pos and

executes (ckgbc, tkgbc) ← TCγ.Key(gk). Then it invokes A with input ck :=
ckgbc. Given j-th query for j �= i†, C runs the legitimate procedure of TC.Com

Fully Structure-Preserving Signatures and Shrinking Commitments 51

and returns obtained (open, com). For the i†-th query M = (M (1), . . . ,M (k)),
C makes a query M (j) to the signing oracle of POS and obtains ovk

(j)
pos and

σ
(j)
pos for j = 1, . . . , k. C then computes (comgbc, ekgbc) ← TCγ.SimCom(gk) and

opengbc ← TCγ.Equiv((vk�
pos, ovkpos

(1), · · · , ovkpos
(k)), ekgbc, tkgbc) and outputs

com := comgbc and open := (opengbc, vk�
pos, ovk

(1)
pos, · · · , ovk

(k)
pos , σ

(1)
pos, · · · , σ

(k)
pos).

On receiving a collision from A, C aborts if vk†
pos �= vk�

pos. Otherwise, find i�

that M†(i�) �= M (i�) (such an index must exist since M† differs from any queried
messages) and outputs ovk�

pos := ovk†
pos

(i�) and M� := M†(i�). This completes
the description of C. The simulated signatures are statistically close to the real
ones due to the statistical trapdoor property of TCγ.SimCom and TCγ.Equiv.
Aborting event vk†

pos �= vk�
pos does not occur with probability 1/qs. Thus, we

have 1
qs

Pr[Game 1] − εsim ≤ Advot-nacma
POS,C (λ), where εsim is the statistical loss by

TCγ.SimCom and TCγ.Equiv.
All in all, we have

Advcmtcr
TC,A(λ) ≤ Advtcr

TCγ,B(λ) + qs · Advot-nacma
POS,C (λ) + εsim,

which proves the statement. 	

The following is immediate from the construction. In particular, Correctness

holds due to the correctness of TCγ and POS and the existence of a bijection
from the secret keys of POS to the verification keys.

Theorem 19. Above TC is a structure-preserving trapdoor commitment scheme
if TCγ is structure-preserving with respect to verification, and POS is structure-
preserving.

5 Fully Structure-Preserving Signatures

We argue that constructing an FSPS requires a different approach than those for
all known constructions of SPSs. The verification equations of existing structure-
preserving constant-size signatures on message vectors (Gm1 , . . . , Gmn) involve
pairings such as

∏
e(Gxi , Gmi), where Gxi is a public key element and Gmi is

a message element. The message is squashed into a signature element, say S, in
such a form that S := A ·∏n

i=1 Gmixi where xi is a signing key component and A
is computed from inputs other than the message. Such a structure requires either
mi or xi to be detected to the signing algorithm. In FSPS, however, neither is
given to the signing function.

Our starting point is the FSPS scheme in Section 3.3. The following sections
present constructions that upgrade the security to UF-CMA by incorporating
one-time signatures or trapdoor commitments.

5.1 Warm-Up: Based on One-Time Signatures

Our first approach is to take xi from randomness instead of the signing key. That
is, xi works as a random one-time key and Gxi is regarded as a one-time public

52 M. Abe et al.

key, which is then authenticated by an FSPS that is secure against extended
random message attacks. This results in a combination of a weaker signature
scheme with OTS, which is well known as a method for upgrading the security
of the underlying signature scheme. This in fact can be seen as a special case of
the construction of SPS by Abe et al. [2]. We nevertheless work out the scheme
in detail to discuss our motivation for our main scheme and settle a basis for
comparison. Let OTS and xSIG be a one-time and an ordinary signature scheme
that have common setup function Setup. We construct FSP1 as follows.

[Signature Scheme: FSP1]

Setup(1λ): It is the same as Setup for OTS and xSIG. It outputs gk←Setup(1λ),
and sets Mxsig := Kvk

ots and M := Mots.

Key(gk): Run (vk xsig, sk xsig) ← xSIG.Key(gk). (It is assumed that gk is included
in vk xsig and sk xsig.) Output (vk, sk) := (vk xsig, sk xsig).

Sign(sk,M): Take sk xsig and gk from sk. Compute (ovkots, oskots) ←
OTS.Key(gk), σxsig ← xSIG.Sign(sk xsig, ovkots), σots ← OTS.Sign(oskots,M).
Output σ := (σxsig, σots, ovkots)

Vrf(vk,M, σ): : Take vk xsig and (σxsig, σots, ovkots) from the input. Output 1
if 1 = OTS.Vrf(vkots,M, σots) and 1 = xSIG.Vrf(vk xsig, vkots, σxsig). Output 0,
otherwise.

Theorem 20. If OTS is a UF-NACMA secure SPS and xSIG is a UF-XRMA
secure FSPS, then FSP1 is a UF-CMA secure FSPS scheme.

Proof. Since the syntactical consistency and correctness are trivial from the con-
struction, we only show that the scheme is fully structure-preserving. The public
component of FSP1 is (vk, σ,M) = (vk xsig, (σxsig, σots, ovkots),M), which consists
of public components of xSIG.Key and the OTS. Also, the signing key of FSP1
consists of sk xsig. Thus, both public and private components of FSP1 consist of
group elements since xSIG is FSPS and the OTS is SPS. Furthermore, FSP1.Vrf
evaluates OTS.Vrf and xSIG.Vrf that evaluate PPEs. Thus, FSP1 is FSPS.

We next prove the UF-CMA security of FSP1 by following the standard
game transition technique. Let A be an adversary against FSP1. By Pr[Game i]
we denote probability that A eventually outputs a valid forgery as defined in
Definition 3. Let Game 0 be the UF-CMA game that A is playing. By definition,
Pr[Game 0] = Advuf-cma

FSP1,A(λ). Let (σ†,m†) be a forgery A outputs. Let σ† :=
(σ†

xsig, σ
†
ots, vk†

ots).
In Game 1, abort the game if (σ†,m†) is a valid forgery and vk†

ots is never used
by the signing oracle. We show that this event occurs only if the UF-XRMA secu-
rity of xSIG is broken. Let B be an adversary against xSIG launching an XRMA
attack. B is given (vk xsig, (σ

(1)
xsig, vk

(1)
ots , ω

(1)), . . . , (σ(qs)
xsig , vk

(qs)
ots , ω(qs))) where ω(j) is

the randomness used to generate vk
(j)
ots with OTS.Key. B first obtains sk

(j)
ots from

ω(j) by executing OTS.Key by itself. Then it invokes A with input vk := vk xsig.
On receiving m(j) for signing, B computes σ

(j)
ots ← OTS.Sign(skots,m(j)) and

Fully Structure-Preserving Signatures and Shrinking Commitments 53

returns σ(j) := (σ(j)
xsig, σ

(j)
ots , vk

(j)
ots). When A outputs forgery σ† := (σ†

xsig, σ
†
ots, vk†

ots),

B outputs σ�
xsig := σ†

xsig and m� := vk†
ots. This is a valid forgery since vk†

ots �= vk
(j)
ots .

Thus, we have |Pr[Game 0] − Pr[Game 1]| ≤ Advuf-xrma
xSIG,B (λ).

Next we show that A wins Game 1 only if OTS is broken. Let C be an
adversary attacking OTS with NACMA. Given gk from outside, C first flips a
coin i† ← {1, . . . , qs}. It then executes (vk, sk) ← FSP1.Key(gk). Given m(j) for
j �= i†, C runs σ(j) ← FSP1.Sign(sk,m(j)) and returns σ(j) to A. For j = i†, C
forwards m(i†) to the signing oracle of OTS and receive σ

(i†)
ots and vk

(i†)
ots . Then B

executes σ
(i†)
xsig ← xSIG.Sign(sk xsig, vk

(i†)
ots) and returns σ(i†) := (σ(i†)

xsig , σ
(i†)
ots , vk

(i†)
ots)

to A. When A outputs forgery σ† := (σ†
xsig, σ

†
ots, vk†

ots) and m†, C aborts if vk†
ots �=

vk
(i†)
ots . Otherwise, C outputs σ�

xsig := σ†
ots and m� := m†. This is a valid forgery

since m† �= m(i†). Thus, we have 1
qs

Pr[Game 1] ≤ Advuf-nacma
OTS,C (λ).

In total, we have

Advuf-cma
FSP1,A(λ) ≤ Advuf-xrma

xSIG,B (λ) + qs · Advuf-nacma
OTS,C (λ),

which proves the statement. 	

Though the above reduction involves a loss factor of qs, it will vanish if OTS

is based on a random-self reducible problem like SDP.
The above construction requires Kvk

ots to match Mxsig. When they are instan-
tiated with the concrete schemes from previous sections (using the POS in
Section 3.2 as OTS by swapping G1 and G2, and using xSIG in Section 3.3),
the space adjustment is done as follows.

Setup: It runs xSIG.Setup and sets (F1, F̃1) as default generators (G, G̃) for
OTS. It also provide extra generators (F2, U1, . . . , U�+2) to OTS for the fol-
lowing procedures to work.

OTS.Key: It runs POS.Key and POS.Ovk in sequence and set vkots := (vkpos,
ovkpos). The key spaces are adjusted as follows.

– POS.Key On top of the legitimate procedure with G := F1 to obtain
(Gwz , Gχ1 , . . . , Gχ�), it computes the extended part as Gi2 := Fχi

2 Gi3 :=
Uχi

i for i = 1, . . . , �, and Gz2 := Fwz
2 , Gz3 := Uwz

�+1, and include all of
them to vkpos.

– POS.Ovk On top of legitimate procedure with G := F1 that computes
A := Ga, it computes extra parts A2 := F a

2 and A3 := Ua
�+2 and includes

them to ovkpos.

Then those extended vkpos and ovkpos constitute a message ((Gz, Gz2, Gz3), (G1,
G12, G13), . . . , (G�, G�2, G�3), (A,A2, A3)) given to xSIG to sign.

54 M. Abe et al.

Below, we present a summary of the resulting instantiation of FSP1.

Common Parameter (G, G̃, F1, F2, F̃1, F̃2, {Ui, Ũi}�+2
i=1)

Public-key (Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, V7, Ṽ8)

Secret-key (K1,K2,K3,K4)

Message (M1, . . . ,M�)

Signature (S̃0, S1, . . . , S5, Ã, Ã2, Ã3, G̃z, G̃z2, G̃z3, {G̃i, G̃i2, G̃i3}�
i=1,

Z,R)

Verification PPEs e(G, Ã) = e(Z, G̃z) e(R, G̃)
∏�

i=1 e(Mi, G̃i),

e(S5, Ṽ6 Ã3 G̃z3

∏�
i=1 G̃i3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),

e(F1, Ã3) = e(U�+2, Ã), e(F2, Ã3) = e(U�+2, Ã2)

e(F1, G̃z3) = e(U�+1, G̃z), e(F2, G̃z3) = e(U�+1, G̃z2)

For i = 1, . . . , �:

e(F1, G̃i3) = e(Ui, G̃i), e(F2, G̃i3) = e(Ui, G̃i2)

Motivation for Improvement. Since an SPS is an OTS, construction FSP1 can
be seen as a generic conversion from any SPS to an FSPS. In exchange for
the generality, the construction has several shortcomings when instantiated with
current building blocks.

– (O(|m|)-size signatures) The resulting signature σ includes the one-time ver-
ification key ovkots, which is linear in the size of messages in all current
instantiations of OTS.

– (Factor 3 expansion in xSIG) As shown above, the message space of xSIG
must cover ovkots, which is linear in the size of the message. Even worse, the
currently known instantiation of xSIG suffers from an expansion factor of
μ = 3 for messages. That is, to sign a message consisting of a group element,
say Gx, it requires to represent the message with two more extra elements F x

2

and Ux
i for given bases F2 and Ui. Thus, the size of ovkots will actually be μ

times larger than the one-time verification key that OTS originally requires.

The above shortcomings amplify each other. Finding an instantiation of xSIG
with a smaller expansion factor is one direction of improvement. We leave it as
an interesting open problem and focus on a generic approach in the next section.

5.2 Main Construction Based on Shrinking Trapdoor Commitments

Our idea is to avoid signing any components whose size grows to that of mes-
sages directly with xSIG. We achieve this by committing to the message using a
shrinking commitment scheme and signing the commitment with xSIG. Again,

Fully Structure-Preserving Signatures and Shrinking Commitments 55

combining a trapdoor commitment scheme (or a chameleon hash) and a signa-
ture scheme to achieve such an improvement is ultimately a known approach.
What is important here is the security required from each building block. We
show that chosen-message target collision resistance is sufficient for TC to reach
UF-CMA in combination with an XRMA-secure signature scheme.

Let xSIG be a UF-XRMA secure FSPS scheme and TC be a CMTCR secure
trapdoor commitment scheme with common setup function Setup. We construct
our FSPS scheme FSP2 from xSIG and TC as follows.

[Signature Scheme: FSP2]

Setup(1λ): Run common setup gk ← Setup(1λ) and output gk. Set the mes-
sage spaces Mxsig := Ctc and M := Mtc.

Key(gk): Run (vk xsig, sk xsig) ← xSIG.Key(gk), and (cktc, tktc) ← TC.Key(gk).
Set vk := (vk xsig, cktc), sk := sk xsig. Output (vk, sk)

Sign(sk,M): Parse sk into sk xsig. Run (comtc, opentc) ← TC.Com(cktc,M)
and σxsig ← xSIG.Sign(sk xsig, comtc). Output σ := (σxsig, opentc, comtc)

Vrf(vk,M, σ): Parse vk = (vk xsig, cktc) and σ = (σxsig, opentc, comtc). Output
1 if 1 = TC.Vrf(cktc, comtc,M, opentc) and 1 = xSIG.Vrf(vk xsig, comtc, σxsig).
Output 0, otherwise.

Theorem 21. If TC is a CMTCR secure SPTC, and xSIG is a UF-XRMA
secure FSPS relative to TC.SimCom as a message sampler, then FSP2 is a
UF-CMA FSPS.

Proof. Correctness holds trivially from those of the underlying TC and xSIG.
Regarding the full structure-preserving property, observe that sk consists of sk xsig,
which that are source group elements since xSIG is fully structure-preserving. The
same is true for public components, i.e., public keys, messages, and signatures.
The verification only evaluates verification functions of these underlying building
blocks, which evaluate PPEs. Thus, FSP2 is FSPS.

We next prove the security property. Let A be an adversary against FSP2.
Let Game 0 be the UF-CMA game that A is playing. By definition, Pr[Game 0] =
Advuf-cma

FSP2,A(λ). Let (σ†,m†) be a forgery A outputs. Let σ† := (σ†
xsig, open†

tc, com
†
tc).

In Game 1, abort the game if (σ†,m†) is a valid forgery and com†
tc is never

viewed by the signing oracle. We show that this event occurs only if the UF-XRMA
security of xSIG is broken. Let B be an adversary against xSIG launching an
XRMA attack. The message sampler for XRMA is TC.SimCom. That is, the chal-
lenger samples random messages by (comtc, ektc) ← TC.SimCom(gk;ω) with ran-
dom coin ω and gives comtc and ω with signature σxsig on comtc as a message.
Let sample(j) be the j-th sample, i.e., sample(j) := (com(j)

tc , ω(j), σ
(j)
xsig). Given

(vk xsig, sample(1), . . . , sample(qs)) as input, B runs as follows. It first takes gk from
vk xsig and recovers every ek

(j)
tc from ω(j) by (comtc, ektc) ← TC.SimCom(gk;ω).

It then runs (cktc, tktc) ← TC.Key(gk) and invokes A with input vk :=
(vk xsig, cktc). Given the j-th signing query m(j) from A, it executes open

(j)
tc ←

56 M. Abe et al.

TC.Equiv(m(j), tktc, ek
(j)
tc ,) and returns σ := (σ(j)

xsig, open
(j)
tc , com

(j)
tc) to A. If A

eventually outputs a forgery, σ† = (σ†
xsig, open†

tc, com
†
tc) and m†, it outputs σ�

xsig :=
σ†
xsig and m� := com†

tc as a forgery with respect to xSIG.
Correctness of the above reduction holds from statistically close distribution

of simulated com
(j)
tc , and open

(j)
tc . The output (σ�

xsig,m
�) is also a valid forgery

since com†
tc differs from any com

(j)
tc . Letting εsim denote the statistical distance,

we have |Pr[Game 0] − Pr[Game 1]| ≤ Advuf-xrma
xSIG,B (λ) + εsim.

Now we claim that A winning in Game 1 occurs only if the CMTCR security
of TC is broken. The reduction from successful A in Game 1 to adversary C that
breaks TC is straightforward. Given cktc, C runs (vk xsig, sk xsig) ← xSIG.Key(gk)
and invokes A with vk := (vk xsig, cktc). Then, given message m(j), forward it
to the oracle of TC and obtain (com(j)

tc , open
(j)
tc). Then sign com

(j)
tc using sk xsig

to obtain σ
(j)
xsig and return (σ(j)

xsig, open
(j)
tc , com

(j)
tc) to A. Given a forged signature

(σ†
xsig, open†

tc, com
†
tc) and m†, output open�

tc := open†
tc and m� := m†. It is a valid

forgery since m† �= m(j) for all j. We thus have Pr[Game 1] = Advcmtcr
TC,C (λ).

By summing up the differences, we have

Advuf-cma
FSP2,A(λ) ≤ Advuf-xrma

xSIG,B (λ) + Advcmtcr
TC,C (λ) + εsim, (14)

which proves the statement. 	

To instantiate this construction with the building blocks from previous sec-

tions, we again need to duplicate comgbc = G̃u = G̃ζ
∏�

i=1 X̃mi
i to a triple with

respect to bases G̃ = F̃2, F̃3 and Ũ1 as follows. To be able to do so without
holding the discrete logarithms of the X̃i’s, we need to duplicate X̃ to the same
set of bases as well. Details are shown below.

Setup: It runs xSIG.Setup and sets (F1, F̃1) as default generators (G, G̃) for
TCγ with extra generators (F2, U1) as well.

TCγ.Key: On top of the legitimate procedure with G := F̃1 to obtain X̃i :=
Gρi , additionally compute X̃i2 := F̃ ρi

2 and X̃i3 := Ũρi

1 for i = 1, . . . , � and
include them to ckgbc.

TCγ.Com: On top of the legitimate procedure that computes G̃u = G̃ζ
∏�

i=1

X̃mi
i for G̃ := F̃1, compute G̃u2 := F̃ ζ

2

∏�
i=1 X̃mi

i1 and G̃u3 := Ũ ζ
1

∏�
i=1 X̃mi

i3

and include them to comgbc.

TCγ.SimCom: Compute the above extra components as G̃u2 := F̃ωu
2 , and

G̃u3 := Uωu
1 .

The result is an extended commitment comgbc = (G̃u, G̃u2, G̃u3) that matches
to the message space of xSIG with � = 1. Note that the duplicated keys have no
effect on the security of POS nor TCγ since they can be easily simulated when
the discrete-logs of the extra bases to the original base G̃ are known.

Fully Structure-Preserving Signatures and Shrinking Commitments 57

We summarize the instantiation of FSP2 in the following. Let k = � �
�pos

 and
�gbc = 1 + k + �pos.

Common Parameter (G, G̃, F1, F2, F̃1, F̃2, U1, Ũ1)

Public-key (Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, V7, Ṽ8, {X̃i, X̃i2, X̃i3}�gbc
i=1)

Secret-key (K1, K2, K3, K4)

Message (M̃1, . . . , M̃�)

Signature (S̃0, . . . , S5, G̃u, G̃u2, G̃u3, R, Gz, G1, . . . , G�pos , {Ai, Z̃i, R̃i}k
i=1)

Verification PPEs Let (N1, . . . , N�gbc) := (Gz, G1, . . . , G�pos , A1, . . . , Ak).

For j = 1, . . . , k:

e(Aj , G̃) = e(Gz, Z̃j) e(G, R̃j)
∏�pos

i=1 e(Gi, M̃(j−1)�pos+i),

e(G, G̃u) = e(R, G̃)
∏�gbc

i=1 e(Ni, X̃i)

e(S5, Ṽ6 G̃u3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),

e(F1, G̃u3) = e(U1, G̃u), e(F2, G̃u3) = e(U1, G̃u2).

5.3 Efficiency

In this section, we assess the efficiency of FSP1 and FSP2 instantiated as described
in Section 5.1 and 5.2.

Signature Size and Number of PPEs. Here we assess the sizes of a key and a
signature for unilateral messages consisting of � group elements. By |vkx| for
x ∈ {ots, xsig}, we denote the number of group elements in vkx except for those
in |gk|. By the term #PPEx we denote the number of pairing product equations
in the corresponding building block x. Table 1 summarizes the comparison with
signature length for some concrete message lengths.

Table 1. Size of secret keys, verification keys, signatures, and number of PPEs in
verification for unilateral messages of size �

Scheme |sk| |vk| |σ| #PPE

� � = 1 4 9 25 100

FSP1 4 18 + 2 � 14 + 3 � 17 26 41 89 314 7 + 2�

FSP2 4 19 + 6 �√�� 11 + 4 �√�� 15 19 23 31 51 5 + �√��

– FSP1. According to the descriptions in Section 3.2 and Section 3.3, we have
the following parameters for the building blocks.

58 M. Abe et al.

• OTS: |vkots| = |vkpos| + |ovkpos| = � + 2, |σots| = 2, and #PPEots = 1.
• xSIG: |sk xsig| = 4, |vk xsig| = 8, and #PPExsig = 2 + 2 |vkots|.

The common setup function for these building blocks generates bases
(G, G̃, F1, F2, F̃1, F̃2, {Ui, Ũi}�xsig

i=1) for �xsig = |vkots| to allow xSIG to sign vkots.
(Note that vkots consists only of group elements from G1, which xSIG can
sign.) Taking the message expansion factor μ = 3 into account, we obtain
the following for FSP1:

|gk| = 6 + 2 |vkots|
|sk| = |sk xsig| = 4

|vk| = |gk| + |vk xsig| = 18 + 2�

|σ| = |σxsig| + |σots| + μ |vkots| = 14 + 3�

#PPE = #PPExsig + #PPEots = 7 + 2 �

– FSP2. The underlying components are xSIG, TCγ and POS. Since POS is
repeatedly used in FSP2, its message size �pos can be set independently from
the input message size �. The parameters for these underlying components
are:

• POS: |vkpos| = �pos + 1, |ovkpos| = 1, |σpos| = 2, and #PPEpos = 1.
• TCγ: |ckgbc| = |vkpos|+��/�pos·|ovkpos| = 1+��/�pos+�pos, |comgbc| = 1,

and |opengbc| = 1.
• xSIG: |sk xsig| = 4, |vk xsig| = 8, and #PPExsig = 2 + 2 |comgbc|.

As well as the previous case, the common setup function outputs gk including
bases (G, G̃, F1, F2, F̃1, F̃2, {Ui, Ũi}�xsig

i=1) for �xsig = |comgbc| to allow xSIG to
sign comgbc. Based on these parameters, the following evaluation is obtained
for FSP2:

|sk| = |sk xsig| = 4

|vk| = |gk| + |vk xsig| + |ckgbc| = 19 + 3 ��/�pos + 3 �pos = 19 + 6 �
√

�
|σ| = |σxsig| + |opengbc| + |σpos| + μ|comgbc| + |vkpos| + ��/�pos · |ovkpos|

= 11 + 3 ��/�pos + �pos = 11 + 4 �
√

�
#PPE = #PPExsig + #PPEgbc + ��/�pos · #PPEpos

= 5 + ��/�pos = 5 + �
√

�

Fully Structure-Preserving Signatures and Shrinking Commitments 59

The last equality in each evaluation is obtained at the optimal setting; �pos =
��/�pos = �√�.

Proof Size for Knowing a Secret Key. Next we assess the cost for proving one’s
knowledge of a secret key for FSP1 and FSP2 with the Groth-Sahai proof as a
non-interactive witness indistinguishable proof (NIWIPoK) or a zero-knowledge
proof (NIZKPoK). Results are summarized in Table 2. In either scheme, a secret
key comes only from xSIG, which is of the form (K1,K2,K3,K4).

– NIWIPoK: Relations to prove are in (8) that we recall as

e(K2, G̃) = e(G, Ṽ1), e(G, Ṽ3) = e(K2, Ṽ2), e(K1, Ṽ1) = e(V7, Ṽ8),

e(K2, Ṽ4) = e(G, Ṽ5), e(K3, G̃) e(K4, Ṽ2) = e(G, Ṽ4),
(15)

These are linear relations in G1 when proved with the Groth-Sahai proofs.
Underlined variables are the witnesses the prover commits to. According to
[31], committing to a group element in G1 (or G2) requires 2 elements in G1

(or G2, respectively). Proving a linear relation with a PPE yields a proof
consisting of 2 group elements in G2. Thus, with 4 witnesses, and 5 linear
relations, the resulting proof (i.e. commitments and proofs for all relations)
consists of 4 × 2 + 5 × 2 = 18 group elements (8 in G1 and 10 in G2).

– NIZKPoK: The above witness-indistinguishable proof is turned into zero-
knowledge in the following manner. First, the prover commits to public-key
elements V7 and G and proves relations

W = V7 and V = G. (16)

Committing to W and V costs 2 × 2 = 4 group elements in G1, and proving
elations in (16) as multiscalar multiplication equations requires 2 × 2 = 4
scalar values in Zp. The prover also proves relations:

e(K2, G̃) = e(V , Ṽ1), e(V , Ṽ3) = e(K2, Ṽ2), e(K1, Ṽ1) = e(W, Ṽ8),

e(K2, Ṽ4) = e(V , Ṽ5), e(K3, G̃)e(K4, Ṽ2) = e(V , Ṽ4).
(17)

Since all witnesses in (17) belong to G1, the cost for proving the relations
is unchanged from that for (15). Thus the total cost is 18 + 4 = 22 group
elements (12 in G1 and 10 in G2) and 4 scalar values in Zp.

Proof Size for Knowing a Valid Signature. Here we assess the cost for proving
possession of a valid signature using the Groth-Sahai proofs as NIWIPoK. The
result is summarized in Table 2.

60 M. Abe et al.

Table 2. Number of group elements in the Groth-Sahai proofs for possession of a
secret key and a signature for unilateral messages of size � with the optimal parameter
setting. For ZK, proofs actually include a small number of elements in Zp ignored here.

Scheme WI (sk) ZK (sk) WI (σ) ZK (σ)

FSP1 18 22 54 + 10� 56 + 10�

FSP2 18 22 44 + 16�√�� 46 + 16�√��

– Case of FSP1. According to the descriptions in Section 5.1, a valid signature
satisfies the following relations.

e(G, Ã) = e(Z, G̃z) e(R, G̃)

�∏

i=1

e(Mi, G̃i), e(S5, Ṽ6 Ã3 G̃z3

�∏

i=1

G̃i3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),

e(F1, Ã3) = e(U�+2, Ã), e(F2, Ã3) = e(U�+2, Ã2), e(F1, G̃z3) = e(U�+1, G̃z),

e(F2, G̃z3) = e(U�+1, G̃z2), e(F1, G̃i3) = e(Ui, G̃i), e(F2, G̃i3) = e(Ui, G̃i2)

for i = 1, . . . , � for the last two relations. There are 7 underlined witnesses in
G1 and 1+3(�+2) in G2. Committing to these witnesses requires 14 elements
in G1 and 14 + 6� elements in G2. The first two relations involve witnesses
in both groups whose proofs require 2× 4 elements in G1 and G2. The third
relation has witnesses only in G1. Its proof consists of 2 elements in G2.
The remaining 4 + 2� relations have witnesses only in G2, and each of their
proof costs 2 elements in G1. In total the proofs and commitments consist of
14+4×2+2×(4+2�) = 30+4� elements in G1 and 14+6�+4×2+2 = 24+6�
elements in G2, which sum up to 54 + 10� group elements.

– Case of FSP2. As described in Section 5.2, a valid signature satisfies the
following relations:

e(Aj , G̃) = e(Gz, Z̃j) e(G, R̃j)
�pos∏

i=1

e(Gi, M̃(j−1)�pos+i) (for j = 1, . . . , k),

e(G, G̃u) = e(R, G̃)
�gbc∏

i=1

e(Ni, X̃i), e(S5, Ṽ6 G̃u3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),

e(F1, G̃u3) = e(U1, G̃u), e(F2, G̃u3) = e(U1, G̃u2).

where (N1, . . . , N�gbc) is actually (Gz, G1, . . . , G�pos , A1, . . . , Ak) that are also
witnesses. Thus we do not need to count the cost for committing to Ni. We
consider �gbc = k = �√�. A signature consists of 4 + 2�√� elements in
G1 and 7 + 2�√� elements in G2. Thus committing to the signature costs

Fully Structure-Preserving Signatures and Shrinking Commitments 61

2(4+2�√�) and 2(7+2�√�) elements in G1 and G2, respectively. The first
three relations (indeed �√� + 2 relations) that came from POS and TCγ
involve witnesses in both groups. Hence proofs for them cost 4(�√� + 2)
elements in G1 and G2, respectively. The remaining three relations that
came from xSIG involves witnesses for either of G1 or G2. Proofs for those
relations costs 2 group elements in G2 and 2 × 2 group elements in G1. In
total the proofs and commitments consists of 2(4+2�√�)+4(�√�+2)+4 =
20 + 8�√� and 2(7 + 2�√�) + 4(�√� + 2) + 2 = 24 + 8�√� in G1 and G2,
respectively. They sum up to 44 + 16�√� group elements in total.

For either scheme, proving in zero-knowledge is possible only by additionally
committing to V7 and proving the correctness. It adds 2 elements in G1 for the
commitment of V7 and 2 Zp elements as a proof.

5.4 Lower Bound on Signature Size and Verification Key Size

The signatures of our concrete FSPSs consist of Ω(
√

�) group elements when
signing �-element messages. This may seem disappointing compared to previous
constructions of SPS, which have generally achieved constant-size signatures,
but we argue that, at least for our modular constructions of FSPS, the

√
� factor

is unavoidable. This is a consequence of the following new trade-off between
signature and verification key size for arbitrary (possibly one-time) SPS schemes.

Theorem 22. Consider a (possibly one-time) SPS scheme on messages in G
�
2

in the asymmetric (Type III) bilinear group setting. Let κ be the number of
verification key elements and σ the number of group elements in signatures. If
the scheme is existentially unforgeable in a model in which the adversary has
access to a valid signature on a known message and the scheme has an algebraic
signing algorithm, we have κ + σ ≥ √

�.

Proof. Denote by (M1, . . . ,M�) ∈ G
�
2 the message vector, by (U1, . . . , Uκ1 , V1, . . . ,

Vκ2) ∈ G
κ1
1 ×G

κ2
2 (κ1+κ2 = κ) the verification key elements, and by (R1, . . . , Rσ1 ,

S1, . . . , Sσ2) ∈ G
σ1
1 ×G

σ2
2 (σ1 +σ2 = σ) the signature elements. The correspond-

ing discrete logarithms are written in lowercase letters.
Each verification equation of the scheme can be expressed as a bilinear rela-

tion between the discrete logarithms of the group elements in G1 (namely the
Ui’s and Ri’s) on the one hand, and those of the elements in G2 (namely the
Mi’s, Vi’s and Si’s) on the other. The i-th pairing product equation can thus be
written in matrix form as:

XT EiY = 0, (18)

where X and Y are the column vectors given by

X = (r1, . . . , rσ1 , u1, . . . , uκ1 , 1)T , and

Y = (m1, . . . ,m�, s1, . . . , sσ2 , v1, . . . , vκ2 , 1)T ,

and Ei is a public (κ1 + σ1 + 1) × (� + κ2 + σ2 + 1) matrix over Zp.

62 M. Abe et al.

Now fix a valid message-signature pair (M1, . . . ,M�, R1, . . . , Rσ1 , S1, . . . , Sσ2),
and suppose that there exists a non-zero tuple (m∗

1, . . . ,m
∗
�) ∈ Z

�
p such that

Ei(m∗
1, . . . ,m

∗
� , 0, . . . , 0)T = 0

for all i. Then, it is clear from the shape (18) of the corresponding verification
equations that (R1, . . . , Rσ1 , S1, . . . , Sσ2) is still a valid signature on the distinct
message vector (M1G̃

m∗
1 , . . . ,M�G̃

m∗
�), which contradicts existential unforgeabil-

ity.
Therefore, by denoting by n as the number of verification equations, the

linear map Z
�
p → Z

n(κ1+σ1+1)
p mapping (m1, . . . ,m�) to the concatenation of all

vectors Ei(m1, . . . ,m�, 0, . . . , 0)T must be injective. In particular, we have:

� ≤ n · (κ1 + σ1 + 1) ≤ n · (κ + σ) ,

where the second inequality comes from the fact that we must have σ2 ≥ 1;
otherwise, the algebraic signing algorithm would output signatures that cannot
depend on the message.

Finally, an argument similar to [6, Theorem 5] shows that we must have
n ≤ σ (after removing possibly redundant verification equations). Indeed, if it
were not the case, the quadratic system satisfied by the discrete logarithms of
the signature elements would be overdetermined, and a generic message would
not admit any valid signature at all. We thus obtain � ≤ σ · (κ + σ) ≤ (κ + σ)2,
which concludes the proof. 	

As a result, we immediately see that an FSPS scheme obtained from con-
struction FSP1 must have signatures of more than

√
� elements. This is because

all signatures include as a subset including both the verification key and signa-
ture of a structure-preserving OTS scheme signing �-element messages. Similarly,
the following result holds with the same proof as above:

Theorem 23. Consider a structure-preserving commitment scheme on mes-
sages in G

�
2 in the asymmetric (Type III) bilinear group setting. Assume that the

commitment key consists of elements in G2, and let χ be the number of elements
in commitments and o the number of group elements in the opening information.
If the scheme is collision resistant and has an algebraic commitment algorithm,
we have χ + o ≥ √

�.

This shows that an FSPS scheme obtained from construction FSP2 must also
have signatures of more than

√
� elements, at least when the underlying trapdoor

commitment scheme has its key elements on the same side as the resulting sig-
nature, which seems necessary with our approach based on TCγ (in particular,
this holds for the instantiation above and all the variants in [9]).

Fully Structure-Preserving Signatures and Shrinking Commitments 63

References

1. Abe, M., Camenisch, J., Dowsley, R., Dubovitskaya, M.: On the impossibility
of structure-preserving deterministic primitives. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 713–738. Springer, Heidelberg (2014)

2. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. Journal of Cryptology
(2014). doi:10.1007/s00145-014-9196-7

4. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

5. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)

6. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures
from type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014)

7. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

8. Abe, M., Haralambiev, K.: Group to group commitments do not shrink. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
301–317. Springer, Heidelberg (2012)

9. Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-preserving
signatures and shrinking commitments. IACR ePrint Archive, Report 2015/076
(2015). http://eprint.iacr.org

10. Abe, M., Ohkubo, M.: A framework for universally composable non-committing
blind signatures. IJACT 2(3), 229–249 (2012)

11. Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.:
Strongly-optimal structure preserving signatures from type II pairings: synthesis
and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376.
Springer, Heidelberg (2015)

12. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

13. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

14. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 273–289. Springer, Heidelberg (2004)

15. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005)

16. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

http://dx.doi.org/10.1007/s00145-014-9196-7
http://eprint.iacr.org

64 M. Abe et al.

17. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. J. Cryptology 22(1), 114–138 (2009)

18. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011)

19. Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally com-
posable zero-knowledge protocols. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 449–467. Springer, Heidelberg (2011)

20. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

21. Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/on-line signa-
tures: theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008)

22. Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive realization
in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 179–196. Springer, Heidelberg (2009)

23. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
New definitions and delegatable anonymous credentials. 2013 IEEE 27th Computer
Security Foundations Symposium (2014)

24. Dubovitskaya, M.: Cryptographic Protocols for Privacy-Preserving Access Control
in Databases (2014)

25. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptology
9(1), 35–67 (1996)

26. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 152–168. Springer, Heidelberg (2005)

27. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011)

28. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

29. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

30. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

31. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM Journal of Computing 41(5), 1193–1232 (2012)

32. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer,
Heidelberg (1998)

33. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (2010)

34. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)

35. Meiklejohn, S.: An extension of the Groth-Sahai proof system. In Brown University
Masters thesis (2009)

Fully Structure-Preserving Signatures and Shrinking Commitments 65

36. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: ACM CCS 2001, 245–254 (2001)

37. Mohassel, P.: One-time signatures and chameleon hash functions. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer,
Heidelberg (2011)

38. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

39. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

Zero-Knowledge Proofs

Disjunctions for Hash Proof Systems:
New Constructions and Applications

Michel Abdalla(B), Fabrice Benhamouda(B), and David Pointcheval(B)

ENS, CNRS, INRIA, and PSL,
École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France

{michel.abdalla,fabrice.benhamouda,david.pointcheval}@ens.fr

Abstract. Hash Proof Systems were first introduced by Cramer and
Shoup (Eurocrypt’02) as a tool to construct efficient chosen-ciphertext-
secure encryption schemes. Since then, they have found many other
applications, including password authenticated key exchange, oblivious
transfer, and zero-knowledge arguments. One of the aspects that makes
hash proof systems so interesting and powerful is that they can be seen
as implicit proofs of membership for certain languages. As a result, by
extending the family of languages that they can handle, one often obtains
new applications or new ways to understand existing schemes. In this
paper, we show how to construct hash proof systems for the disjunc-
tion of languages defined generically over cyclic, bilinear, and multilinear
groups. Among other applications, this enables us to construct the most
efficient one-time simulation-sound (quasi-adaptive) non-interactive zero-
knowledge arguments for linear languages over cyclic groups, the first
one-round group password-authenticated key exchange without random
oracles, the most efficient threshold structure-preserving chosen-
ciphertext-secure encryption scheme, and the most efficient one-round
password authenticated key exchange in the UC framework.

Keywords: Hash proof system · Non-interactive zero-knowledge proof ·
Group password authenticated key exchange · Threshold encryption ·
Linearly homomorphic signature · Structure preserving primitive

1 Introduction

Hash Proof Systems or Smooth Projective Hash Functions (SPHFs), which can
be seen as a kind of implicit designated-verifier proofs of membership [4,7], were
originally introduced by Cramer and Shoup [12] as a way to build efficient chosen-
ciphertext-secure (IND-CCA) encryption schemes. Informally speaking, SPHFs
are families of pairs of functions (Hash,ProjHash) defined on a language L ⊂ X .
These functions are indexed by a pair of associated keys (hk, hp), where the hash-
ing key hk and the projection key hp can be seen as the private and public keys,
respectively. When computed on a word C ∈ L , both functions should lead to
the same result: Hash(hk,L , C) with the hashing key and ProjHash(hp,L , C, w)
with the projection key and a witness w that C ∈ L . Of course, if C �∈ L , such a
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 69–100, 2015.
DOI: 10.1007/978-3-662-46803-6 3

70 M. Abdalla et al.

witness does not exist, and the smoothness property states that Hash(hk,L , C)
is independent of hp. As a consequence, the value Hash(hk,L , C) cannot be
guessed even with the knowledge of hp.

Since their introduction, SPHFs have been used in various applications,
including Password Authenticated Key Exchange (PAKE) [23,16,24], Oblivious
Transfer [22,1], One-Time Relatively-Sound Non-Interactive Zero-Knowledge
Arguments [19], Zero-Knowledge Arguments [6], and Trapdoor Smooth Projec-
tive Hash Functions (TSPHFs) [6]. An SPHF for a language L also directly
leads to a witness encryption scheme [15] for the same language L : encrypting
a message m for a word C consists in generating an hashing key hk and a pro-
jection key hp and outputting hp together with m masked with the hash value
Hash(hk,L , C) of C under hk. If we know a witness w for C, we can compute
this hash value from hp, while if C /∈ L , this hash value statistically masks the
message.

As explained in [6], various variants of SPHFs have been proposed over the
years, depending on whether the projection key hp is allowed to depend on C
and whether the smoothness holds even when C is chosen after having seen
hp. For witness encryption, for example, the weakest notion (hp depends on C)
is sufficient, while for encryption schemes and one-round PAKE, the strongest
notion (hp does not depend on C and C may be chosen after hp in the smoothness
property) is required. In this article, we focus on the strongest notion of SPHF,
also called KV-SPHF in [6], since it has more applications. However, most parts
of the paper could be adapted to use the weaker GL-SPHF notion.

Expressiveness of SPHFs. Due to the wide range of applications of SPHFs,
one may wonder what kind of languages can be handled by SPHFs. First, since
SPHF implies statistical witness encryption, it is important to remark that it
is impossible to construct SPHF for any NP language, unless the polynomial
hierarchy collapses [15]. Nevertheless, as the many different applications show,
the class of languages supported by SPHFs can be very rich.

Diverse Groups and Diverse Vector Spaces. In [12], Cramer and Shoup showed
that SPHFs can handle any language based on what they call a diverse group.
Most, if not all, constructions of SPHF are based on diverse groups. However,
in the context of languages over cyclic groups, bilinear groups or even multilin-
ear groups, diverse groups may appear slightly too generic. That is why, in [6],
Benhamouda et al. introduced a generic framework (later called diverse vector
space) encompassing most known SPHFs based over these kinds of groups. It can
be seen as particular diverse groups with more mathematical structure, namely
using vector spaces instead of groups. In this article, we are mainly interested
on SPHFs based on diverse vector spaces.

Operations on SPHFs. In order to enrich the class of languages that can be han-
dled by SPHFs, Abdalla, Chevalier, and Pointcheval [4] showed how to build
SPHFs for languages that can be described in terms of disjunctions and con-
junctions of simpler languages for which SPHFs are known to exist. Let L1 and
L2 be two such languages. In the particular case of conjunctions, when given

Disjunctions for Hash Proof Systems: New Constructions and Applications 71

SPHFs for L1 and L2, they showed how to build an SPHF for the conjunction
L = L1 × L2, so that a word C = (C1, C2) ∈ L if and only if C1 ∈ L1 and
C2 ∈ L2. Note that this definition is a generalization of the “classical” conjunc-
tion: C1 ∈ L if and only if C1 ∈ L1 and C1 ∈ L2, which we can get by setting
C1 = C2.

In the case of disjunctions, when given SPHFs for L1 and L2, Abdalla et al.
showed how to build an SPHF for language L = (L1 ×X2)∪ (X1 ×L2), so that
C = (C1, C2) ∈ L if and only if C1 ∈ L1 or C2 ∈ L2. In particular, a witness
for C = (C1, C2) ∈ L can be either a witness w1 for C1 ∈ L1 or a witness w2

for C2 ∈ L2. As for conjunctions, by setting C1 = C2, one gets the “classical”
disjunction: C = (C1, C1) ∈ L if and only if C1 ∈ L1 or C1 ∈ L2.

Unfortunately, while the conjunction of two strong SPHFs in [4] yields a
strong SPHF, the same is not true for disjunctions, where the projection key hp
necessarily depends on C. And this greatly limits its applications1.

1.1 Results

Disjunction of SPHFs. Our first main result is to show how to construct
the disjunction of two SPHFs for two languages based on diverse vector spaces.
Essentially, the only requirement for the construction is that it is possible to
compute a pairing between an element of the first language L1 and an element of
the second language L2. Concretely, if we have a bilinear map e : G1×G2 → GT

where G1, G2 and GT are cyclic groups of some prime order p (we say that
(p,G1,G2,GT , e) is a bilinear group), and if L1 is defined over G1 and L2 over
G2, then our construction provides an SPHF for the disjunction of L1 and L2.
Furthermore, this disjunction can be repeated multiple times, if multilinear maps
are available. The only limitation is that the complexity of our constructions
grows exponentially with the number of repetitions, therefore limiting the total
number of disjunctions that we can compute.

Application: Constant-Size NIZK and One-Time Simulation-Sound
NIZK. First, we show how to use disjunctions of SPHFs to create efficient non-
interactive zero-knowledge arguments (NIZK) and even one-time simulation-sound
NIZK, i.e., NIZK in which a dishonest (polynomial-time) prover cannot produce
a valid proof of a false statement, even when seeing one simulated proof on a
statement of its choice (which may be false). The proof size consists of only two
group elements, even for the one-time simulation-sound version, assuming the lan-
guage we are interested in can be handled by an SPHF over some group G1, where
(p,G1,G2,GT) is an asymmetric bilinear group, and assuming DDH is hard in
G2. The languages handled roughly consist of languages defined by “linear” equa-
tions over G1, such as the DDH language, the language of valid Cramer-Shoup [11]
ciphertexts and many other useful languages as shown in [6,20].
1 A reader familiar with [17] may wonder why the methods in [17] cannot be applied

to provide a form of disjunction, given that SPHFs exist for languages of quadratic
pairing equations over commitments [6]. Unfortunately, this technique would not
yield a real SPHF, since additional commitments would be required.

72 M. Abdalla et al.

Our NIZK is slightly different from a usual NIZK, since the common reference
string depends on the language. Jutla and Roy called them quasi-adaptive NIZK
in [20], and showed that they can replace NIZK in several applications.

Our one-time simulation-sound NIZK yields a very efficient structure-
preserving threshold IND-CCA encryption scheme, with the shortest ciphertext
size so far. Threshold means the decryption key can be shared between parties
and a ciphertext can be decrypted if and only if enough parties provide a partial
decryption of it using their key share, while structure-preserving means it can
be used in particular with Groth-Sahai NIZK [18] or our new NIZK construc-
tion. In addition, this new encryption can be used in the one-round password
authenticated key exchange (PAKE) scheme in the UC model in [6] to obtain an
improvement of up to 30% in the communication complexity, under the same
assumptions.

Other Applications. Another important application is the first one-round
group password authenticated key exchange (GPAKE) with n players, assuming
the existence of a (n−1)-multilinear map and the hardness of the n-linear assump-
tion n-Lin without random oracles2. This was an open problem. We remark,
however, that our construction only works for small values of n since the overall
complexity of the protocol and the gap in the security reduction grows expo-
nentially in n. We note, however, that the tripartite PAKE which only requires
pairings is reasonably efficient since it consists of flows with 61 group elements
for each user (5 for the Cramer-Shoup ciphertext and 56 for the projection key).

A second application is a new construction for TSPHF, which supports slightly
more languages than the original one, but which is slightly less efficient. A TSPHF
(Trapdoor Smooth Projective Hash Function [6]) is a variant of an SPHF with
a full-fledged zero-knowledge flavor: there exists a trapdoor for computing the
hash value of any word C ∈ X when only given C and the projection key hp.

Finally, the unforgeability of the one-time linearly homomorphic structure-
preserving signature scheme of Libert et al. [25] can be explained by the smooth-
ness of some underlying SPHF, which can be seen as the disjunction of two SPHFs.
This new way of seeing their signature scheme directly shows how to extend it
to other assumptions, such as SXDH, κ-Lin, or even any MDDH assumption [13]
secure in bilinear groups.

Pseudo-Random Projective Hash Functions (PrPHFs) and More Effi-
cient Applications. For our NIZK and our new TSPHF, the construction essen-
tially consists in the disjunction of an SPHF for the language in which we are
interested, and another SPHF for a language which is used to provide extra fea-
tures (zero-knowledge and “public verifiability” for our NIZK and trapdoor for
our TSPHF). This second language L2 is supposed to be a hard subset member-

2 At the time the first version of this paper was made public [2], the multilinear map
construction by Coron et al. [10] seemed to be a plausible candidate. However, as
recently shown by Cheon et al. [9], this is no longer the case. Unfortunately, no
current candidate multilinear map construction is known to work for our framework
for n ≥ 3.

Disjunctions for Hash Proof Systems: New Constructions and Applications 73

ship one, i.e., it is hard to distinguish a random word C2 ∈ L2 from a random
word C2 ∈ X2 \ L2.

To get more efficient applications, we introduce the notion of pseudo-random
projective hash functions (PrPHFs) which are particular SPHFs over trivial lan-
guages, i.e., languages L = X , where all words are in the language. Of course,
smoothness becomes trivial, in this case. That is why PrPHFs are supposed
to have another property called pseudo-randomness, which ensures that if the
parameters of the language L and the word C are chosen at random, given a
projection key hp (and no witness for C), the hash value H of C appears random.

We then show that we can replace the second hard subset membership lan-
guage in our NIZK and our TSPHF by a trivial language with a PrPHF, assuming
a certain property over the first language L1 (which is almost always verified).
This conversion yields slightly shorter proofs (for our NIZK and our one-time
simulation-sound NIZK) or slightly shorter projection keys (for our TSPHF).

Related Work. Until now, the most efficient NIZK for similar languages was the
one of Jutla and Roy [21], and the most efficient one-time simulation-sound NIZK
was the unbounded simulation-sound NIZK of Libert et al. [26]. Even though all
these constructions have constant-size proofs, our second NIZK is slightly more
efficient for κ-linear assumptions, with κ ≥ 2, while our one-time simulation-
sound NIZK is about ten times shorter. Moreover, our construction might be
simpler to understand due to its modularity. We provide a detailed comparison
in Section 7.3.

1.2 Organization

In the next section, we give the high level intuition for all our constructions
and their applications. Then, after recalling some preliminaries in Section 3,
we give the details of our construction of disjunctions of SPHFs in Section 4,
which is one of our main contributions. We then show how to build efficient
NIZK and one-time simulation-sound NIZK from it in Section 5. After that, we
introduce the notion of PrPHF in Section 6 and show in Section 7 how this can
improve some of our previous applications. These last two sections are much
more technical: although the underlying ideas are similar to the ones in previous
sections, the proofs are more complex. Due to lack of space, details of our two
other applications, namely one-round GPAKE and TSPHF, are presented in the
full version, but an overview is available in Section 2.3.

2 Overview of Our Constructions

2.1 Disjunction of Languages

Intuition. From a very high point of view, the generic framework [6] enables
us to construct an SPHF for any language L which is a subspace of the vector
space of all words X .

74 M. Abdalla et al.

It is therefore possible to do the conjunction of two languages L1 and L2

supported by this generic framework by remarking that L1 × L2 is a subspace
of the vector space X1 × X2. This construction of conjunctions is an “algebraic”
version of the conjunction proposed in [4].

Unfortunately, the same approach cannot be directly applied to the case of
disjunctions, because (L1 × X2) ∪ (X1 × L2) is not a subspace of X1 × X2, and
the subspace generated by the former union of sets is X1 ×X2. In this article, we
solve this issue by observing that, instead of using X = X1 ×X2, we can consider
the tensor product of X1 and X2: X = X1 ⊗ X2. Then the disjunction of L1 and
L2 can be seen as the subspace L of X generated by: L1 ⊗ X2 and X1 ⊗ L2.
Notice that (L1 ⊗ X2) ∪ (X1 ⊗ L2) is not a subspace and so L is much larger
than this union of sets. But we can prove that if C1 ⊗ C2 ∈ L , then C1 ∈ L1 or
C2 ∈ L2.

Before providing more details about these constructions, let us first briefly
recall the main ideas of the generic framework for constructing SPHFs.

Generic Framework for SPHFs. The generic framework for SPHFs in [6] uses
a common formalization for cyclic groups, bilinear groups, and even multilinear
groups3 (of prime order p), called graded rings4.

Basically, graded rings enable us to use a ring structure over these groups:
the addition and the multiplication of two elements u and v, denoted u + v and
u • v, respectively, correspond to the addition and the multiplication of their
discrete logarithms. For example, if g is a generator of a cyclic group G, and a
and b are two scalars in Zp, a + b = a + b, a • b = a · b (because the “discrete
logarithm” of a scalar is the scalar itself), ga + gb = ga+b, and ga • gb = ga·b

T ,
with gT a generator of another cyclic group GT of order p.

Of course, computing ga • gb = ga·b
T requires a bilinear map e : G×G → GT ,

if the discrete logarithms of ga and gb are not known. And if such a bilinear map
exists, we can compute ga•gb as e(ga, gb). For a similar reason, the multiplication
of three group elements via • would require a trilinear map. Therefore, graded
rings can be seen as the ring Zp with some limitations on the multiplication. Here,
to avoid technicalities, the group of each element is implicit, and we suppose that
above constraints on the multiplications are satisfied. Formal details are left to
the following sections.

From a high level point of view, in this framework, we suppose there exists
a map θ from the set of words X to a vector space X̂ of dimension n, together
with a subspace L̂ of X̂ , generated by a family of vectors (Γi)

k
i=1, such that

C ∈ L if and only if θ(C) ∈ L̂ . When the function θ is clear from context, we
often write Ĉ := θ(C).

3 In this work, we need a multilinear map for which DDH, κ-Lin, or any MDDH assump-
tion [13] hold in the multilinear groups. Unfortunately, as explained in Footnote 2, no
current candidate multilinear map construction is known to work for our framework.

4 Graded rings were named after graded encodings systems [14] and are unrelated to
the mathematical notion of graded rings.

Disjunctions for Hash Proof Systems: New Constructions and Applications 75

A witness for a word C ∈ L is a vector λ = (λi)
k
i=1 so that Ĉ = θ(C) =

∑k
i=1 λi•Γi. In other words, it consists of the coefficients of a linear combination

of (Γi)
k
i=1 equal to Ĉ.

Then, a hashing key hk is just a random linear form hk := α ∈ X̂ ∗ (X̂ ∗ being
the dual vector space of X̂ , i.e., the vector space of linear maps from X̂ to Zp),
and the associated projection key is the vector of its values on Γ1, . . . ,Γk:

hp := γ = (γi)
k
i=1 = (α(Γi))

k
i=1.

The hash value of a word C is then H := α(Ĉ). If λ is a witness for C ∈ L ,
then the latter can also be computed as:

H = α(Ĉ) = α

(
k∑

i=1

λi • Γi

)

=
k∑

i=1

λi • α(Γi) =
k∑

i=1

λi • γi,

which only depends on the witness λ and the projection key hp. The smoothness
comes from the fact that, if C /∈ L , then Ĉ /∈ L̂ and Ĉ is linearly independent
from (Γi)

k
i=1. Hence, α(Ĉ) looks random even given hp = (α(Γi))

k
i=1.

For a reader familiar with [12], the generic framework is similar to a diverse
group, but with more structure: a vector space instead of a simple group. When
θ is the identity function, (X ∗,X ,L ,Zp) is a diverse group. We remark, however,
that one does not need to know diverse groups to understand our paper.

Example 1 (SPHF for DDH). Let us illustrate this framework for the DDH
language: let g, h be two generators of a cyclic group G of prime order p, let
X = G

2 and L = {(gr, hr)ᵀ ∈ X | r ∈ Zp}. We set X̂ = X , L̂ = L and θ

the identify function so that C = Ĉ = (u, v)ᵀ. L̂ is generated by the column
vector Γ1 = (g, h)ᵀ. The witness for C = (gr, hr)ᵀ is λ1 = r. The hashing key
hk = α

$← X̂ ∗ can be represented by a row vector α = (α1, α2) ∈ Z
1×2
p and

hp = γ1 = α(Γ1) = α • Γ1 = gα1 · hα2

H = α(Ĉ) = α • Ĉ = uα1 · vα2 = γ1 • r = γr
1 .

This is exactly the original SPHF of Cramer and Shoup for the DDH language
in [12].

Remark on the Notation of Vectors (Transposition) and Link with [13].
Compared to [6], in this paper, we transposed all the vectors and matrices:
elements of X are now column vectors, while hashing keys (elements of X ∗)
are row vectors. This seems more natural and makes our notation closer to the
one of Escala et al. [13].

Warm up: Conjunction of Languages. As a warm up, let us first construct
the conjunction L = L1×L2 of two languages L1 ⊂ X1 and L2 ⊂ X2 supported

76 M. Abdalla et al.

by the generic framework, in a more algebraic way than the one in [4]. We can
just set:

X̂ := X̂1 × X̂2 n := n1 + n2

L̂ := L̂1 × L̂2 k := k1 + k2

θ((C1, C2)) = Ĉ :=
(

θ1(C1)
θ2(C2)

)

(Γi)
k
i=1 :=

((
Γ

(1)
i

0

)k1

i=1

,

(
0

Γ
(2)
i

)k2

i=1

)

This is what is implicitly done in all conjunctions of SPHFs in [6], for example.

Example 2 (SPHF for Conjunction of DDH). Let g1, h1, g2, h2 be four generators
of a cyclic group G of prime order p. Let X1 = X2 = G

2 and Li = {(gri
i , hri

i)ᵀ ∈
Xi | ri ∈ Zp} for i = 1, 2. We set X̂i = Xi, L̂i = Li and θi the identify function
so that Ci = Ĉi = (ui, vi)

ᵀ, for i = 1, 2. L̂i is generated by the column vector
Γ

(i)
1 = (gi, hi)

ᵀ. The witness for Ci = (gri
i , hri

i)ᵀ is λ
(i)
1 = ri. Then, the SPHF

for the conjunction of L1 and L2 is defined by:

X̂ := X̂1 × X̂2 = G
4 n = 4 k = 2

L̂ := L̂1 × L̂2 = {(gr1
1 , hr1

1 , gr2
2 , hr2

2)ᵀ | r1, r2 ∈ Zp}
Γ1 := (g1, h1, 1, 1)ᵀ ∈ G

4 Γ2 := (1, 1, g2, h2)
ᵀ ∈ G

4

θ(C) := Ĉ := (u1, v1, u2, v2)
ᵀ ∈ G

4 for C = (C1, C2) = ((u1, v1)
ᵀ
, (u2, v2)

ᵀ)

The hashing key hk = α
$← X̂ ∗ can be represented by a row vector α =

(α1, α2, α3, α4) ∈ Z
1×4
p and

hp =
(

γ1
γ2

)

=
(

α • Γ1

α • Γ2

)

=
(

gα1
1 · hα2

1

gα3
2 · hα4

2

)

H = α(Ĉ) = α • Ĉ = uα1
1 · vα2

1 · uα3
2 · vα4

2 = γ1 • r1 + γ2 • r2 = γr1
1 · γr2

2 .

Disjunction of Languages. We first remark we cannot naively extend the
previous construction by choosing X̂ = X̂1 ×X̂2 and L̂ = (L̂1 ×X̂2)∪ (X̂1 ×L̂2),
because, in this case L̂ is not a subspace, and the subspace generated by L̂ is
X̂1 × X̂2. That is why we use tensor products of vector spaces instead of direct
product of vector spaces. Concretely, we set

X̂ := X̂1 ⊗ X̂2 n := n1n2

L̂ := 〈(L̂1 ⊗ X̂2) ∪ (X̂1 ⊗ L̂2)〉 k := k1n2 + n1k2

θ(C) = Ĉ := Ĉ1 ⊗ Ĉ2

where the notation 〈V 〉 is the vector space generated by V . The vectors Γi are
described in detail in the core of the paper. This construction works since, if
Ĉ1 ⊗ Ĉ2 ∈ L̂ then, thanks to properties of the tensor product, Ĉ1 ∈ L̂1 or
Ĉ2 ∈ L̂2.

Disjunctions for Hash Proof Systems: New Constructions and Applications 77

It is important to remark that computing a tensor product implies computing
a multiplication. So if Ĉ1 in X̂1 and Ĉ2 in X̂2 are over some cyclic groups G1 and
G2, we need a bilinear map e : G1 × G2 → GT to actually be able to compute
Ĉ1⊗Ĉ2. More generally, doing the disjunction of K languages over cyclic groups
requires a K-way multilinear map. This can be seen in the following example
and we formally deal with this technicality in the core of the paper.

Example 3 (SPHF for Disjunction of DDH). Let us use the same notation as
in Example 2, except that this time (p,G1,G2,GT , e) is an asymmetric bilinear
group (e is a bilinear map: G1 × G2 → GT), g1, h1 are generators of G1, g2, h2

are generators of G2, and Xi = X̂i = G
2
i (instead of G2) for i = 1, 2.

The disjunction of L1 and L2 is defined by

X̂ := X̂1 ⊗ X̂2 = G
4
T n := 4

L̂ := 〈(L̂1 ⊗ X̂2) ∪ (X̂1 ⊗ L̂2)〉 k := 4

Γ1 :=
(

g1
h1

)

⊗
(

1 ∈ Zp

0 ∈ Zp

)

=

⎛

⎜
⎜
⎝

g11
g01
h1
1

h0
1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

g1
1
h1

1

⎞

⎟
⎟
⎠ ∈ G

4
1

Γ2 :=
(

g1
h1

)

⊗
(

0 ∈ Zp

1 ∈ Zp

)

=

⎛

⎜
⎜
⎝

g01
g11
h0
1

h1
1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1
g1
1
h1

⎞

⎟
⎟
⎠ ∈ G

4
1

Γ3 :=
(

1 ∈ Zp

0 ∈ Zp

)

⊗
(

g2
h2

)

=

⎛

⎜
⎜
⎝

g12
h1
2

g02
h0
2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

g2
h2

1
1

⎞

⎟
⎟
⎠ ∈ G

4
2

Γ4 :=
(

0 ∈ Zp

1 ∈ Zp

)

⊗
(

g2
h2

)

=

⎛

⎜
⎜
⎝

g02
h0
2

g12
h1
2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1
1
g2
h2

⎞

⎟
⎟
⎠ ∈ G

4
2

θ(C) = Ĉ := Ĉ1 ⊗ Ĉ2 = (u1 • u2, u1 • v2, v1 • u2, v1 • v2)ᵀ

= (e(u1, u2), e(u1, v2), e(v1, u2), e(v1, v2))ᵀ ∈ G
4
T ,

for C = (C1, C2) = ((u1, v1), (u2, v2)). The generating family of L̂ we used here
is (Γ1,Γ2,Γ3,Γ4). As seen after, if we know the witness r1 for C1, we can use Γ1

and Γ2 to compute the hash value of C = (C1, C2), while if we know the witness
r2 for C2, we can use Γ3 and Γ4 to compute the hash value of C. Obviously
this generating family is not free, since L̂ has dimension 3 and this family has
cardinality 4.

The witnesses λ for a word C = (C1, C2) are
{

(r1 • u2, r1 • v2, 0, 0) if (u1, v1) = (gr1 , hr1) (i.e., if r1 is a witness for C1)
(0, 0, r2 • u1, r2 • v1) if (u2, v2) = (gr2 , hr2) (i.e., if r2 is a witness for C2),

78 M. Abdalla et al.

the hashing key hk = α
$← X̂ ∗ can be represented by a row vector α =

(α1, α2, α3, α4) ∈ Z
1×4
p and

hp = (γ1, γ2, γ3, γ4)ᵀ = (gα1
1 · hα3

1 , gα2
1 · hα4

1 , gα1
2 · hα2

2 , gα3
2 · hα4

2)ᵀ ∈ G
2
1 × G

2
2

H = α(Ĉ) = Ĉ • α = e(u1, u2)α1 · e(u1, v2)α2 · e(v1, u2)α3 · e(v1, v2)α4

=

{
r1 • u2 • γ1 + r1 • v2 • γ2 = e(γ1, u2)r1e(γ2, v2)r1 , if (u1, v1) = (gr1

1 , hr1
1)

r2 • u1 • γ3 + r2 • v1 • γ4 = e(u1, γ3)r2e(v1, γ4)r2 , if (u2, v2) = (gr2
2 , hr2

2)

The last equalities, which show the way the projection hashing works, explain
the choice of the generating family (Γi)i.

2.2 Main Application: One-Time Simulation-Sound NIZK
Arguments

The language of the NIZK is L1, while L2 is a hard subset membership language
used to build the NIZK. For the sake of simplicity, we suppose that L2 = L̂2,
X2 = X̂2, and θ2 is the identity function. We will consider the SPHF of the
disjunction of L1 and L2, so we need to suppose that it is possible to build
it. For this high level overview, let us just suppose that (p,G1,G2,GT , e) is a
bilinear group and that L1 is defined over G1, L2 over G2. If DDH holds in G2,
L2 can just be the DDH language in G2 recalled in Example 1.

The common reference string is a projection key hp for the disjunction of L1

and L2, while the trapdoor (to simulate proofs) is the hashing key. Essentially,
a proof π = (πi2)i2

for a statement C1 is just a vector of the hash values of
(C1,e2,i2) where (e2,i2)i2

are the scalar vectors of the canonical base of X̂2.
These hash values are πi2 = α(Ĉ1 ⊗ e2,i2), and can also be computed from the
projection key hp and a witness for Ĉ1.

The basic idea is that a valid proof for a word C1 ∈ L1 enables us to compute
the hash value H ′ of (C1, C2) for any word C2 ∈ X̂2, by linearly combining
elements of the proof, since any word C2 can be written as a linear combination
of (e2,i2)i2

:

H ′ :=
∑

i2

πi2 • C2,i2 =
∑

i2

α(Ĉ1 ⊗ (C2,i2 • e2,i2)) = α(Ĉ1 ⊗ C2),

if C2 =
∑

i2
C2,i2 • e1,i2 . Hence, for any word C2 ∈ L2 for which we know a

witness, we can compute the hash value of (C1, C2), either using a valid proof
for C1 (as H ′ above), or directly using the witness of C2 and the projection key
hp (as for any SPHF for a disjunction).

To check a proof, we basically check that for any word C2 ∈ L2, these two
ways of computing the hash value of (C1, C2) yields the same result. Thanks to
the linearity of the language L2, it is sufficient to make this test for a family
of words C2 which generate L2, such as the words Γ

(2)
j (for j = 1, . . . , k2). We

recall that the witness for Γ
(2)
j is the column vector (0, . . . , 0, 1, 0, . . . , 0)ᵀ ∈ Z

k2
p ,

where the j-th coordinate is 1.

Disjunctions for Hash Proof Systems: New Constructions and Applications 79

The trapdoor, i.e., the hashing key, clearly enables us to simulate any proof,
and the resulting proofs are perfectly indistinguishable from normal ones, hence
the perfect zero-knowledge property. Moreover, the soundness comes from the
fact that a proof for a word C1 /∈ L1 can be used to break the hard subset
membership in L2.

More precisely, let us consider a soundness adversary which takes as input
the projection key hp and which outputs a word C1 /∈ L1 and a valid proof π for
C1. On the one hand, such a valid proof enables us to compute the hash value H ′

of (C1, C2) for any word C2 ∈ L2, by linearly combining elements of the proofs
(as seen above), and the validity of the proof ensures the resulting value H ′ is
correct if C2 ∈ L2. On the other hand, we can also compute a hash value H of
(C1, C2) for any C2 ∈ X2 using the hashing key hk. Then, if C2 ∈ L2, necessarily
H = H ′, while if C2 /∈ L2, the smoothness ensures that H looks completely
random when given only hp. Since H ′ does not depend on hk but only on hp, it
is different from H with overwhelming probability. Therefore, we can use such
an adversary to solve the hard subset membership problem in L2 (namely, the
DDH in G2 in the example below).

Example 4 (NIZK for DDH in G1, assuming DDH in G2). Using the SPHF in
Example 3, the proof for a word C1 = (u1 = gr

1, v1 = hr
1) ∈ G

2
1 is the vector

π = (π1, π2) ∈ G
2
1 where: π1 is the hash value of (C1, (1, 0)ᵀ) ∈ G

2
1 × Z

2
p and π2

is the hash value of (C1, (0, 1)ᵀ) ∈ G
2
1 × Z

2
p. Concretely we have:

π1 = γ1 • r = γr
1 ∈ G1 π2 = γ2 • r = γr

2 ∈ G1.

This proof is valid if and only if:

e(π1, g2) · e(π2, h2) = π1 • g2 + π2 • h2
?= u1 • γ3 + v1 • γ4 = e(u1, γ3) · e(v1, γ4).

This check can be done using the common reference string hp = (γ1, γ2, γ3, γ4).
Finally, to simulate a proof for C1 = (u1, v1) without knowing any witness

for C1 but knowing the trapdoor hk = α = (α1, α2, α3, α4) ∈ Z
1×4
p , we compute

π1 and π2 as follows:

π1 := u1 • α1 + v1 • α3 = uα1
1 · vα3

1 π2 := u1 • α2 + v1 • α4 = uα2
1 · vα4

1 .

To get a one-time simulation-sound NIZK, we replace the SPHF over L1 by
a stronger kind of SPHF for which, roughly speaking, the hash value of a word
C /∈ L1 appears random even if we are given the projection key hp and the hash
value of another word C ∈ X1 of our choice. We show that it is always possible
to transform a normal SPHF into this stronger variant, assuming the existence
of collision-resistant hash functions5.
5 Actually, the use of collision-resistant hash functions could be avoided, but that

would make the construction much less efficient.

80 M. Abdalla et al.

2.3 Other Applications

TSPHF. A TSPHF is an extension of an SPHF, with an additional CRS and
an associated trapdoor, where the latter provides a way to efficiently compute
the hash value of any word C knowing only the projection key hp. Since hp now
needs to contain enough information to compute the hash value of any word in X ,
the smoothness property of TSPHFs is no longer statistical but computational.
As shown in [6], TSPHFs can be used to construct two-round zero-knowledge
protocols and the most efficient one-round PAKE in the standard model.

TSPHF is a direct application of disjunctions of SPHFs: as for NIZK, the
language we are interested in is L1, while L2 is a hard subset membership lan-
guage. The common reference string contains a word C2 ∈ L2, and the trapdoor
is just a witness w2 for this word. The hash value of some C1 ∈ X1, is the hash
value of (C1, C2) for the disjunction of L1 and L2, which can be computed in
two or three ways: using hk, or using hp and w1 (classical projection hashing —
possible only when C1 ∈ L1 and w1 is a witness for it), or using hp and w2

(trapdoor). The smoothness comes from the hard subset membership property
of L2 (which says that this common reference string is indistinguishable from
a word C2 /∈ L2) and the fact that when C2 /∈ L2, the hash value of (C1, C2)
appears random by smoothness when C1 /∈ L1, given only hp.

The resulting TSPHF is slightly less efficient than the construction in [6]: if
L2 corresponds to the DDH language (Example 1), the projection key contains
less than twice more elements than the original construction. But it has the
advantage of handling more languages, since contrary to the original construc-
tion, there is no need to have a trapdoor Tcrs for crs which enables us to compute
the discrete logarithms of all entries of Γ1 (a property called witness-samplability
in [20])6.

One-Time Linearly Homomorphic Structure-Preserving Signature. We
can obtain the one-time linearly homomorphic structure-preserving signature
scheme of messages in G

n1
1 of Libert et al. [25] and extend it to work under

any hard-subset membership language assumption, such as the DDH language
in Example 1 but also DLin or any MDDH assumption [13] as seen later (instead
of just DLin as in the original paper). The construction is very similar to our
NIZK construction.

Let L2 = L̂2 ⊂ X2 = X̂2 be a hard membership language and X1 = X̂1 = G
n1
1

(the language L1 = L̂1 will be defined later). The secret key is the hashing
key hk = α of the SPHF of the disjunction of L1 and L2 (notice that it does
not depend on the language L̂1 but only on X̂1), while the public key is the
associated projection key when L1 = L̂1 = {0}. The signature of a message
M ∈ X̂1 = G

n1
1 is the vector of the hash values of (M ,e2,i2) where (e2,i2)i2

6 However, due to the definition of computational smoothness of TSPHF in [6], it is
still required to have such a trapdoor Tcrs enabling to check whether a word C1

is in L1 or not. It may be possible to change definitions to avoid that, but in all
applications we are aware of, this is never a problem.

Disjunctions for Hash Proof Systems: New Constructions and Applications 81

are the scalar vectors of the canonical base of X̂2. It can be computed using the
secret key hk. Actually, this corresponds to the NIZK proof of M (computed
using the trapdoor hk), in our NIZK scheme above. Checking the signature can
be done by checking the validity of the proof using the projection key hp when
L̂1 = {0}.

Finally, to prove the one-time unforgeability, we just need to remark that
knowing signatures of M1, . . . ,Mn ∈ X̂1 actually can be seen as knowing a
projection key hp′ associated to hk when L̂1 is the subspace generated by Γ1 :=
M1, . . . ,Γn := Mn. Therefore, generating a signature of a message M linearly
independent of these messages means generating an NIZK proof for a statement
M /∈ L̂1, which has been shown to be hard thanks to the smoothness property
of the SPHF and the hard subset membership property of L2.

One-Round GPAKE. A one-round group password-based authenticated key
exchange (GPAKE) is a protocol enabling n users sharing a password pw to
establish a common secret key sk in only one round: just by sending one flow. For
such protocols, online dictionary attacks, which consist in guessing the password
of an honest user and running honestly the protocol with this guessed password,
are unavoidable. As a result, the best security that one can hope for is to limit
the adversary to at most one password guess per interaction with an honest
party. In order to capture this intuition, the formal security model of Abdalla
et al. [3], which is recalled in the full version, essentially guarantees that, in a
secure GPAKE scheme, no adversary having at most q interactions with honest
parties can win with probability higher than q/N , where N is the number of
possible passwords. Here, winning means distinguishing a real key (generated
by an honest user following the protocol, controlled by the challenger) from a
random key sk.

Our construction is a non-trivial extension of the one-round PAKE of
Benhamouda et al. in [6], which is an efficient instantiation of the Katz-
Vaikuntanathan framework [24]. Basically, a user Ui (1 ≤ i ≤ n) sends an
extractable commitment Ci (i.e., an encryption for some public key ek in the
common reference string) of his password pw together with a projection key hpi

for the disjunction of n− 1 languages of valid commitments of pw (words in this
disjunction are tuple Ci = (Cj)j �=i of n − 1 commitments where at least one of
them is a valid commitment of pw). Each partner Uj of this user Ui can compute
the hash value Hi of the tuple Ci, with hpi, just by additionally knowing the
witness (the random coins) of his commitment Cj onto pw, while Ui uses hki.
The resulting secret key K is just the XOR of all these hash values (one per
hashing key, i.e., one per user): sk = H1 xor · · · xor Hn.

At a first glance, one may wonder why our construction relies on a disjunction
and not on a conjunction: intuitively, as a user, we would like that every other
user commits to the same password as ours. Unfortunately, in this case, nobody
would be able to compute the hash value of the expected conjunction, except
for the user who generated the hashing key. This is because this computation
would require the knowledge of all the witnesses and there is no way for a user
to know the witness for a commitment of another user. However, by relying

82 M. Abdalla et al.

on a disjunction, each user is only required to know the witness for his own
commitment.

To understand why this is a secure solution, please note that the challenger
(in the security game) can make dummy commitments for the honest players he
controls. Then, if no corrupted user (controlled by the adversary) commits to a
correct password, the tuple of the n−1 other commitments would not be a valid
word in the disjunction language (no commitment would be valid) for any of the
honest users. Hence, the hash value would appear random to the adversary. The
complete proof is a very delicate extension of the proof of the one-round PAKE
of Katz and Vaikuntanathan in [24], and may be of independent interest.

Due to recent results by Cheon et al. [9], currently no concrete instantiation
of our GPAKE is known for n ≥ 4 (see Footnote 2 on page 72). For n = 3, our
scheme only relies on bilinear groups and is practical

2.4 Pseudo-Random Projective Hash Functions and More Efficient
Applications

Pseudo-Random Projective Hash Functions. As already explained in
Section 1.1, for our (one-time simulation-sound) NIZK and our TSPHF, the sec-
ond language L2 is used to provide extra features. Security properties come from
its hard subset membership property. However, hard subset membership comes
at a cost: the dimension k2 of L̂2 has to be at least 1 to be non-trivial, and so the
dimension n2 of X̂2 is at least 2, otherwise L̂2 = X̂2. This makes the projection
key of the disjunction of L1 and L2 of size k1n2 + n1k2 ≥ 2k1 + n1.

Intuitively, what we would like is to be able to have a language L2 where
n2 = k2 = 1. Such a language would clearly not be hard subset membership,
and the smoothness property of SPHF would be completely trivial, since X̂2 \L̂2

would be empty. That is why we introduce the notion of pseudo-randomness
which says that the hash value of a word C2 chosen at random in X2 (and for
implicit languages parameters crs2 chosen at random), the hash value of C2 looks
random, given only the projection key.

Under DDH in G2, we can simply choose crs2 = g2 a random generator in G2,
X2 = X̂2 = L2 = L̂2 = G2, and θ2 the identity function. The witness for a word
C2 ∈ G2 is just its discrete logarithm in base g2, and so L̂2 is seen as generated
by the vector Γ

(2)
1 = (g2). An hashing key hk is just a random scalar α ∈ Zp, the

associated projection key is hp = gα
2 . Finally the hash value is H = Cα

2 . It can
also be computed using hp if we know the discrete logarithm of C2. The DDH
assumption says that if g2, hp = gα

2 , C2 are chosen uniformly at random in G2,
it is hard to distinguish H = Cα

2 from a random group element H ∈ G2; hence
the pseudo-randomness.

Mixed Pseudo-Randomness. In all our applications, we are not really inter-
ested in the SPHF on L2 but in the SPHF on the disjunction L of L1 and L2.
Of course, this SPHF would be smooth, but that property is again trivial, since
all words (C1, C2) are in L . We therefore again need a stronger property called
mixed pseudo-randomness which roughly says that if hk is a random hashing key,

Disjunctions for Hash Proof Systems: New Constructions and Applications 83

if C1 /∈ L1 and if C2 is chosen at random, the hash value of (C1, C2) ∈ L appears
random to any polynomial-time adversary, even given access to the projection
key hp.

The proof of this property is quite technical and requires that it is possible
to generate parameters of L1 so that we know the discrete logarithm of the
generators (Γ (1)

i1
)
i1

of L̂1. This last property is verified by most languages in
which we are interested.

Applications. Using the mixed pseudo-randomness property, we easily get more
efficient NIZK and TSPHF, just by replacing L2 by a language L2 with a pseudo-
random Projective Hash Function. Getting a more efficient one-time simulation-
sound NIZK is slightly more complex and is only detailed in the core of the
paper. The resulting TSPHF construction actually corresponds to the original
construction in [6]. But seeing it as a disjunction of an SPHF for the language
we are interested in and of a pseudo-random projective hash function sheds new
light on the construction and make it easier to understand, in our opinion.

3 Preliminaries

3.1 Notation

As usual, all the players and the algorithms will be possibly probabilistic and
stateful. Namely, adversaries can keep a state , during the different phases, and
we denote by $← the outcome of a probabilistic algorithm or the sampling from
a uniform distribution. The statement y

$← A(x; r) denotes the operation of
running A with input x and random tape r and storing the result in y. For the
sake of clarity, we will sometimes omit the random tape r in A(x; r).

The qualities of adversaries will be measured by their successes and advan-
tages in certain experiments Expsec or Expsec−b (between the cases b = 0 and
b = 1), denoted Succsec(A,K) and Advsec(A,K) respectively, where K is the secu-
rity parameter. Formal definition of all of this and of statistical distance can be
found in the full version.

3.2 Definition of SPHF

Let (Lcrs)crs be a family of NP languages indexed by crs with witness relation
Rcrs, namely Lcrs = {x ∈ Xcrs | ∃w, Rcrs(x,w) = 1}, where (Xcrs)crs is a family
set. The value crs is generated by a polynomial-time algorithm Setupcrs taking
as input the unary representation of the security parameter K, and is usually a
common reference string. The description of the underlying group or graded ring
is implicit and not part of crs. We suppose that membership in Xcrs and Rcrs can
be checked in polynomial time (in K).

Finally, we suppose that Setupcrs also outputs a trapdoor Tcrs associated to crs.
This trapdoor is empty ⊥ in most cases, but for some applications (namely NIZK
constructions from Section 7), we require that Tcrs contains enough information
to decide whether a word C ∈ X is in L or not (or slightly more information).

84 M. Abdalla et al.

We notice that for most, if not all, languages (we are interested in), it is easy to
make Setupcrs output such a trapdoor, without changing the distribution of crs.
In the sequel, crs is often dropped to simplify notation.

An SPHF over (Lcrs) is defined by four polynomial-time algorithms:

– HashKG(crs) generates a hashing key hk;
– ProjKG(hk, crs) derives a projection key hp from hk;
– Hash(hk, crs, C) outputs the hash value from the hashing key, for any crs and

for any word C ∈ X ;
– ProjHash(hp, crs, C, w) outputs the hash value from the projection key hp,

and the witness w, for a word C ∈ Lcrs (i.e., Rcrs(C,w) = 1).

The set of hash values is called the range and is denoted Π. It is often a cyclic
group. We always suppose that its size is super-polynomial in the security param-
eter K so that the probability to guess correctly a uniform hash value is negligible.

An SPHF has to satisfy two properties:

– Perfect correctness. For any crs and any word C ∈ Lcrs with witness w
(i.e., such that Rcrs(C,w) = 1), for any hk

$← HashKG(crs) and for hp ←
ProjKG(hk, crs), Hash(hk, crs, C) = ProjHash(hp, crs, C, w);

– Perfect smoothness. The hash value of a word outside the language looks
completely random. More precisely, an SPHF is 0-smooth or perfectly smooth
if for any crs and any C /∈ Lcrs, the following two distributions are identical:
{

(hp,H) | hk $← HashKG(crs); hp ← ProjKG(hk, crs);H ← Hash(hk, crs, C)
}

{
(hp,H) | hk $← HashKG(crs); hp ← ProjKG(hk, crs);H $← Π

}
.

As shown in the full version, this definition of SPHF actually corresponds to
a strong version of KV-SPHF [6] with perfect smoothness7. In particular, it is
stronger than the definition of SPHF given in [12], where the smoothness is not
perfect and is actually defined only for random elements C ∈ X \ Lcrs. This is
also slightly stronger than the 1-universal hash proof systems also defined in [12],
since the hash value is supposed to look completely random and not just having
some minimal entropy.

We restrict ourselves to this very strong form of SPHFs for the sake of sim-
plicity and because most applications we consider require KV-SPHF. However,
the construction of disjunctions of SPHFs can still easily be extended to weaker
forms of SPHFs.

3.3 Hard Subset Membership Languages

A family of languages (Lcrs ⊆ Xcrs)crs is said to be a hard subset membership
family of languages, if it is hard to distinguish between a word randomly drawn
7 The reader familiar with [6] may remark that in our definition, there is no parameter
aux in addition to crs. This parameter is indeed useless in the context of KV-SPHFs
(contrary to GL-SPHFs), as it can be included in the word C.

Disjunctions for Hash Proof Systems: New Constructions and Applications 85

from inside Lcrs from a word randomly drawn from outside Lcrs (i.e., from
Xcrs \ Lcrs). This definition implicitly assumes the existence of a distribution
over Xcrs and a way to sample efficiently words from Lcrs and from Xcrs \ Lcrs.
This property is formally defined in the full version.

3.4 Bilinear Groups, Graded Rings and Assumptions

All our concrete constructions are based on bilinear groups, which are extensions
of cyclic groups. Even though groups should be generated by an appropriate
setup algorithm taking the security parameter as input, our definitions below
use fixed groups for simplicity.

Cyclic Groups and Bilinear Groups. (p,G, g) denotes a (multiplicative)
cyclic group G of order p and of generator g. When (p,G1, g1), (p,G2, g2), and
(p,GT , gT) are three cyclic groups, (p,G1,G2,GT , e, g1, g2) or (p,G1,G2,GT , e)
is called a bilinear group if e : G1 ×G2 → GT is a bilinear map (called a pairing)
efficiently computable and such that e(g1, g2) = gT is a generator of GT . It is
called a symmetric bilinear group if G1 = G2 = G. In this case, we denote it
(p,G,GT , e) and we suppose g = g1 = g2. Otherwise, if G1 �= G2, it is called an
asymmetric bilinear group.

Graded Rings. To understand the constructions in the article, it is sufficient
to see a graded ring as a way to use ring operations (+, •) over cyclic groups,
bilinear groups, or even multilinear groups, as explained at the beginning of
Section 2.1. In the sequel, we will often consider two multiplicatively compatible
sub-graded rings G1 and G2 of some graded ring G: this basically means that it is
possible to compute the product • of any element of G1 with any element of G2,
and the result is in G. Concretely, as a first approach, it is possible to consider
that G is a bilinear group (p,G1,G2,GT , e), and that G1 and G2 corresponds
to G1 and G2: if u1 ∈ G1 and u2 ∈ G2, u1 • u2 = e(u1, u2). General and formal
definitions are given in the full version.

Assumptions. The assumption we use the most is the SXDH assumption The
SXDH assumption over a bilinear group (p,G1,G2,GT , e, g1, g2) says the DDH
assumption holds both in (p,G1, g1) and (p,G2, g2), where the DDH assumption
is defined as follows:

Definition 5 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-
Hellman assumption says that, in a cyclic group (p,G, g), when we are given
(ga, gb, gc) for unknown random a, b

$← Zp, it is hard to decide whether c =
ab mod p (a DH tuple) or c

$← Zp (a random tuple).

We also propose constructions under weaker assumptions than SXDH or DDH,
namely κ-Lin, defined as follows:

Definition 6 (κ-Lin). The κ-Linear assumption says that, in a cyclic group
(p,G, g) , when we are given (ga1 , . . . , gaκ , ga1b1 , . . . , gaκbκ , gc) for unknown
a1, . . . , aκ, b1, . . . , bκ

$← Zp, it is hard to decide whether c = b1 + · · · + bκ (a
κ-Lin tuple) or c

$← Zp (a random tuple).

86 M. Abdalla et al.

The 1-Lin assumption is exactly DDH. One advantage of κ-Lin with κ ≥ 2
is that it can hold even in symmetric bilinear groups (where G1 = G2) while
DDH or SXDH do not. 2-Lin is also denoted DLin, and κ-Lin often means κ-Lin
in G1 and in G2. Actually, our constructions can easily be tweaked to support
any MDDH assumption [13]. MDDH assumptions generalize κ-Lin assumptions.

4 Smooth Projective Hash Functions for Disjunctions

4.1 Generic Framework and Diverse Vector Spaces

Let us now recall the generic framework for SPHFs. We have already seen the
main ideas of this framework in Section 2.1. These ideas were stated in term
of generic vector space. Even though using generic vector spaces facilitates the
explanation of high level ideas, it is better to use an explicit basis when it comes
to details. As already explained in Section 2.1 on page 75, compared to [6], all
vectors and matrices are transposed.

Let G be a graded ring. We now set X̂ = Gn, so that any vector Ĉ ∈ X̂
is a n-dimensional column vector. We denote by (ei)

n
i=1 the canonical basis of

X̂ . The dual space of X̂ is isomorphic8 to Z
1×n
p , and the hashing key α ∈ X̂ ∗

corresponds to the row vector α = (αi)
n
i=1, with αi = α(ei). We denote by Γ the

matrix with columns (Γi)
k
i=1, where the family (Γi) generates the subspace L̂

of X̂ . Finally, we assume that for each coordinate of the vector θ(C) ∈ Gn, the
group in which it is (called the index of the coordinate, in the formal description
of graded rings in the full version) is independent of C.

We suppose that, a word C ∈ X is in L if and only if there exists λ ∈ Gk

such that Ĉ := θ(C) = Γ • λ. We also assume the latter equality holds if and
only if it would hold by only looking at the discrete logarithms (and not at the
groups or indexes of entries or coordinates)9. In addition, we suppose that λ
can be computed easily from any witness w for C; and in the sequel we often
simply consider that w = λ. By analogy with diverse groups [12], as explained in
Section 2.1, we say that a tuple V = (X ,L ,R,G, n, k, Γ, θ) satisfying the above
properties is a diverse vector space.

A summary of diverse vector spaces and the construction of SPHF over them
can be found in Fig. 1. It is straightforward to see (and this is proven in [6])
that any SPHF defined by a discrete vector space V as in Fig. 1 is correct and
smooth.

4.2 Disjunctions of SPHFs

As explained in Section 2.1, an SPHF for the disjunction of two languages L1 and
L2 roughly consists in doing the tensor product of their related vector spaces X̂1

and X̂2. However, our vector spaces are not classical vector spaces, since they are

8 Here we consider X̂ as Z
n
p , for the sake of simplicity.

9 Formal requirements can be found in the full version.

Disjunctions for Hash Proof Systems: New Constructions and Applications 87

Fig. 1. Diverse Vector Space and Smooth Projective Hash Function (SPHF)

over graded rings. In particular, multiplication of scalars is not always possible,
and so tensor product may not be always possible either. That is why we first
need to introduce the notion of tensor product of vector spaces over graded rings,
before giving the detailed construction of disjunctions of SPHFs.

Tensor Product of Vector Spaces over Graded Rings. Let us very briefly
recall notations for tensor product and adapt them to vector spaces over graded
rings. LetG1 andG2 be two multiplicatively compatible sub-graded rings ofG. Let
V1 be a n1-dimensional vector space over G1 and V2 be a n2-dimensional vector
space over G2. Let (e1,i)

n1
i=1 and (e2,i)

n2
i=1 be bases of V1 and V2 respectively. Then

the tensor product V of V1 and V2, denoted V = V1 ⊗ V2 is the n1n2-dimensional
vector space over G generated by the free family (e1,i ⊗ e2,j)i=1,...,n1

j=1,...,n2

. The

operator ⊗ is bilinear, and if u =
∑n1

i=1 ui • e1,i and v =
∑n2

j=1 vj • e2,j , then:

u ⊗ v =
n1∑

i=1

n2∑

j=1

(ui • vj) • (e1,i ⊗ e2,j).

88 M. Abdalla et al.

More generally, we can define the tensor product of two matrices M ∈ Gk×m
1

and M ′ ∈ Gk′×m′
2 , T = M ⊗ M ′ ∈ Gkk′×mm′

by

T(i−1)k′+i′,(j−1)m′+j′ = Mi,j • M ′
i′,j′ for

{
i = 1, . . . , k, i′ = 1, . . . , k′,
j = 1, . . . ,m, j′ = 1, . . . , m′.

And if M ∈ Gk×m
1 , M ′ ∈ Gk′×m′

2 , N ∈ Gm×n
1 and N ′ ∈ Gm′×n′

2 , and if M • N
and M ′ • N ′ are well-defined (i.e., index of coefficients are “coherent”), then we
have

(M ⊗ M ′) • (N ⊗ N ′) = (M • N) ⊗ (M ′ • N ′).

Finally, this definition can be extended to more than 2 vector spaces.

Disjunctions of SPHFs. In Fig. 2, we show the construction of the disjunction
of two diverse vector spaces, over two multiplicatively sub-graded rings G1 and
G2 of some graded ring G. In applications, we will often have G1 = G1 and
G2 = G2 where (p,G1,G2,GT , e, g1, g2) is a bilinear group.

Fig. 2. Disjunction of Diverse Vector Spaces

Let us explain this construction. First, the rows of Γ generate the following
subspace of X̂ = G1×n = X̂1 ⊗ X̂2:

L̂ = 〈(L̂1 ⊗ X̂2) ∪ (X̂1 ⊗ L̂2)〉,

Disjunctions for Hash Proof Systems: New Constructions and Applications 89

where X̂1 = Gn1
1 , X̂2 = Gn2

2 , L̂1 is the subspace of X̂1 generated by the rows
of Γ (1) and L̂2 is the subspace of X̂2 generated by the rows of Γ (2). So this
construction corresponds exactly to the one sketched in the Section 2.1.

Then, we need to prove that V is really a diverse vector space, namely that
C ∈ L if and only if θ(C) ∈ L̂ . Clearly, if C = (C1, C2) ∈ L , then Ĉ1 ∈ L̂1

or Ĉ2 ∈ L̂2 and so Ĉ = Ĉ1 ⊗ Ĉ2 ∈ L̂ . Now, let us prove the converse. Let
C = (C1, C2) /∈ L . So, Ĉ1 /∈ L̂1 and Ĉ2 /∈ L̂2. Let H1 and H2 be supplementary
vector spaces of L̂1 and L̂2 (in X̂1 and X̂2, respectively). Then X̂1 is the direct
sum of L̂1 and H1, while X̂2 is the direct sum of L̂2 and H2. Therefore, L̂1 ⊗X̂2

is the direct sum of L̂1 ⊗ L̂2 and L̂1 ⊗ H2, while X̂1 ⊗ L̂2 is the direct sum of
L̂1 ⊗ L̂2 and H1 ⊗ L̂2. So finally, L̂ is the direct sum of L̂1 ⊗ L̂2, L̂1 ⊗H2 and
H1 ⊗ L̂2; and H1 ⊗ H2 is a supplementary of L̂ . Since 0 �= Ĉ1 ⊗ Ĉ2 ∈ H1 ⊗ H2,
θ(C) = Ĉ1 ⊗ Ĉ2 /∈ L̂ .

Besides showing the correctness of the construction, this proof helps to better
understand the structure of L̂ . In particular, it shows that L̂ has dimension
l1l2 +(n1 − l1)l2 + l1(n2 − l2) = l1n2 +n1l2 − l1l2, if L̂1 has dimension l1 and L̂2

has dimension l2. If the rows of Γ (1) and Γ (2) are linearly independent, l1 = k1
and l2 = k2, L̂ has dimension k1n2+n1k2−k1k2, which is less than k1n2+n1k2,
the number of rows of Γ . Therefore the rows of Γ are never linearly independent.
Actually, this last result can directly be proven by remarking that if Ĉ1 ∈ L̂1 and
Ĉ2 ∈ L̂2, then Ĉ1 ⊗ Ĉ2 ∈ (L̂1 ⊗ X̂2) ∩ (X̂1 ⊗ L̂2). For the sake of completeness,
detailed and concrete equations are detailed in the full version.

5 One-Time Simulation-Sound NIZK from Disjunctions of
SPHFs

In this section, we present our construction of NIZK and one-time simulation-
sound NIZK from disjunctions of SPHFs. The latter requires the use of a new
notion: 2-smooth projective hash functions. We suppose the reader is familiar
with NIZK and one-time simulation-sound NIZK. Formal definitions can be found
in the full version.

5.1 NIZK from Disjunctions of SPHFs

Construction. In Fig. 3, we show how to construct a NIZK for any family of lan-
guagesL1 such that there exist two diverse vector spaces V1 = (X1,L1,R1,G1, n1,
k1, Γ

(1), θ1) and V2 = (X2,L2,R2,G2, n2, k2, Γ
(2), θ2) over two multiplicatively-

compatible sub-graded rings G1 and G2 of some graded ring G, such that the sec-
ond diverse vector space corresponds to a hard subset membership language. In
particular, this construction works for any diverse vector space V1 where G1 = G1

is a cyclic group of some bilinear group (p,G1,G2,GT , e), where SXDH holds, by
using as V2 the discrete vector space for DDH over G2 (Example 1).

90 M. Abdalla et al.

Fig. 3. NIZK from Disjunctions of Diverse Spaces

The proof π of a word C1 can just be seen as the hash values of rows10 of
Ĉ1 ⊗ Idn2 . Let us now show that our NIZK is complete, zero-knowledge and
sound.

Completeness. If the proof π has been generated correctly, the left hand side
of the verification equation (Eq. (1)) is equal to

γ(1) • (λ1 ⊗ Idn2) • Γ (2) = (α • (Γ (1) ⊗ Idn2)) • (λ1 ⊗ Idn2) • (Id1 ⊗ Γ (2))

= α • (Γ (1) ⊗ Idn2) • ((λ1 • Id1) ⊗ (Idn2 • Γ (2)))

= α • (Γ (1) ⊗ Idn2) • (λ1 ⊗ Γ (2))

= α • ((Γ (1) • λ1) ⊗ (Idn2 • Γ (2))),

while the right hand side is always equal to:

γ(2)•(Ĉ1⊗Idk2) = α•(Idn1 ⊗Γ (2))•(Ĉ1⊗Idk2) = α•((Idn1 •Ĉ1)⊗(Γ (2)•Idk2)),

which is the same as the left hand side, since Γ (1)•λ1 = Idn1•Ĉ1 and Idn2•Γ (2) =
Γ (2) • Idk2 . Hence the completeness. Another way to see it, is that the row i2
of the right hand side is the hash value of “(Ĉ1, Γ

(2) • e2,i2)” computed using
the witness λ2 = e2,i2 , while the row i2 of the left hand side is this hash value
computed using the witness λ1.

Zero-Knowledge. The (perfect) unbounded zero-knowledge property comes
from the fact that the normal proof π for C1 ∈ L1 with witness λ1 is:

γ(1)•(λ1⊗ Idn2) = α•(Γ (1)⊗ Idn2)•(λ1⊗ Idn2) = α•((Γ (1)•λ1)⊗(Idn2 • Idn2)),

10 This is not quite accurate, since rows of Ĉ1 ⊗ Idn1 are not words in X but in X̂ . But
to give intuition, we will often make this abuse of notation.

Disjunctions for Hash Proof Systems: New Constructions and Applications 91

which is equal to the simulated proof for C1, as Ĉ1 = Γ (1) •λ1 and Idn2 • Idn2 =
Idn2 .

Soundness. It remains to prove the soundness property, under the hard subset
membership of L2. We just need to show that if the adversary is able to generate
a valid proof π for a word C1 /∈ L1, then we can use π to check if a word C2 is
in L2 or not. More precisely, let C2 ∈ X2, let H be the hash value of (C1, C2)
computed using hk, and let us define H ′ := π • Ĉ2.

On the one hand, if C2 ∈ L2, there exists a witness λ2 such that Ĉ2 =
Γ (2) • λ2 and so, thanks to (1):

H ′ = π • Γ (2) • λ2 = γ(2) • (Ĉ1 ⊗ Idk2) • λ2 = γ(2) • (Ĉ1 ⊗ λ2) = H,

the last equality coming from the correctness of the SPHF and the fact the last-
but-one expression is just the hash value of (C1, C2) computed using ProjHash
and witness λ2.

On the other hand, if C2 /∈ L2, then (C1, C2) /∈ L . So H looks completely
random by smoothness and the probability that H ′ = H is at most 1/|Π|.
Toward One-Time Simulation Soundness. The previous proof does not
work anymore if the adversary is allowed to get even one single simulated proof of
a word C1 /∈ L1. Indeed, in this case, the smoothness does not hold anymore, in
the above proof of soundness. That is why we need a stronger form of smoothness
for SPHF, called 2-smoothness.

5.2 2-Smooth Projective Hash Functions

Definition. In order to define the notion of 2-smoothness, let us first introduce
the notion of tag-SPHF. A tag-SPHF is similar to an SPHF except that Hash and
ProjHash now take a new input, called a tag tag ∈ Tags. Similarly a tag diverse
vector space is a diverse vector space where the function θ also takes as input a
tag tag ∈ Zp. The vector λ is now allowed to depend on tag, but the matrix Γ
is independent of tag.

A 2-smooth SPHF is a tag-SPHF for which the hash value of a word C ∈ X
for a tag tag looks random even if we have access to the hash value of another
word C ′ ∈ X for a different tag tag′ �= tag. Formally, a tag-SPHF is perfectly
2-smooth, if for any crs, any C ′ ∈ X , any distinct tags tag, tag′, and any C /∈ Lcrs,
the following two distributions are identical:
{

(hp,H ′,H)
∣
∣
∣
∣

hk
$← HashKG(crs); hp ← ProjKG(hk, crs);

H ′ ← Hash(hk, crs, (C ′, tag′)); H ← Hash(hk, crs, (C, tag))

}

{

(hp,H ′,H)

∣
∣
∣
∣
∣

hk
$← HashKG(crs); hp ← ProjKG(hk, crs);

H ′ ← Hash(hk, crs, (C ′, tag′)); H
$← Π

}

.

A weaker (statistical instead of perfect) definition is proposed in the full ver-
sion. The 2-smoothness property is similar to the 2-universality property in [12].

92 M. Abdalla et al.

There are however two minor differences, the first being the existence of an
explicit tag, and the second being that the hash value of a word outside the lan-
guage is supposed to be uniformly random instead of just having some entropy.
This slightly simplifies its usage in our constructions, in our opinion.

Canonical Construction from Diverse Vector Spaces. Let V =
(X ,L ,R,G, n, k, Γ, θ) be a diverse vector space. If we set ñ = 2n, k̃ = 2k,
and:

Γ̃ =
(

Γ 0
0 Γ

)

λ̃ =
(

λ
tag • λ

)

θ̃(C, tag) =
(

Ĉ

tag • Ĉ

)

,

where λ̃ is the witness for a word C ∈ L and a tag tag, then Ṽ = (X ,L ,R,G, ñ,
k̃, Γ̃ , θ̃) is a 2-smooth diverse vector space. It is clear that C ∈ L if and only if
˜̂C = θ̃(C, tag) is a linear combination of rows of Γ .

To prove the 2-smoothness property, let C ′ ∈ X and C ∈ X \L , and let tag′

and tag be two distinct tags. We have

˜̂C ′ =
(

Ĉ ′

tag′ • Ĉ ′

)

and ˜̂C =
(

Ĉ

tag • Ĉ

)

.

We just need to prove that ˜̂C is not in the subspace generated by the rows of
Γ and ˜̂C′, or in other words that it is not in L̂ ′ = 〈L̂ ∪ { ˜̂C ′}〉. Indeed, in that
case, H ′ could just be seen as a part of the projection key for the language L̂ ′,
and by smoothness, we get that H looks uniformly random.

So it remains to prove that linear independence of ˜̂C. By contradiction, let
us suppose there exists λ̃ ∈ Z

2k
p and μ such that:

˜̂C =
(

Ĉ

tag • Ĉ

)

= Γ̃ • λ̃ + ˜̂C ′ • μ =
(

Γ 0
0 Γ

)

• λ̃ +
(

Ĉ ′

tag′ • Ĉ ′

)

• μ.

Therefore ˜̂C + μ • ˜̂C ′ and tag • ˜̂C + tag′ • μ • ˜̂C ′ are both linear combination of
rows of Γ , and so is

tag′ • (˜̂C + μ • ˜̂C ′) + (tag • ˜̂C + tag′ • μ • ˜̂C ′) = (tag′ − tag) • ˜̂C.

As tag′ − tag �= 0, this implies that ˜̂C is also a linear combination of rows of Γ ,
hence C ∈ L , which is not the case.

5.3 One-Time Simulation-Sound Zero-Knowledge Arguments from
SPHF

Let us now replace the first diverse vector space by its canonical 2-smooth version
in the NIZK construction of Section 5.1. The resulting construction is a one-time
simulation-sound NIZK, if Ĉ1 is computed as θ1(C1, tag) where tag is the hash
value of (C1,
) under some collision-resistant hash function H: tag = H((C1,
)).

Disjunctions for Hash Proof Systems: New Constructions and Applications 93

Completeness and perfect zero-knowledge can be proven the same way. It
remains to prove the one-time simulation soundness. The proof is similar to the
one in Section 5.1, except for the final step: proving that the hash value H of
(C1, C2) with tag tag = H((C1,
)) looks random even if the adversary sees a
simulated NIZK π′ for a word C ′

1 ∈ X1 and label
′.
We first remark that the tag tag′ can be supposed distinct from the tag tag

for the NIZK π created by the adversary, thanks to the collision-resistance of H.
We recall that π′ is the hash values of the rows of Ĉ ′

1⊗ Idn2 . So to prove that the
hash value of (C1, C2) with tag tag looks random even with access to π′, we just
need to remark that Ĉ1 ⊗ Ĉ2 is linearly independent of rows of Γ and Ĉ ′

1 ⊗ Idn2 .
The proof is similar to the proof of 2-smoothness.

Remark 7. It would be easy to extend this construction to handle N -time
simulation-sound NIZK, for any constant N . The NIZK CRS σ size would just be
N times larger compared to the NIZK construction of Section 5.1, and the proof
size would remain constant.

5.4 Concrete Instantiation

If V1 is a diverse vector space over G1 and V2 is the diverse vector space for DDH
in G2, where (p,G1,G2,GT , e, g1, g2) is a bilinear group where DDH is hard in
G2, then we get a NIZK and a one-time simulation sound NIZK whose proof is
composed of only n2 = 2 group elements in G1.

More generally, we can use as V2, any diverse vector space from any MDDH
assumption [13]. Under κ-Lin, we get a proof consisting of only n2 = κ+1 group
elements. Details can be found in the full version.

Languages handled are exactly languages for which there exists such a diverse
vector space V1 over G1. That corresponds to languages handled by Jutla and
Roy NIZK [20], which they call linear subspaces (assuming θ is the identity func-
tion), if we forget the fact that in [20], it is supposed that crs can be generated in
such a way that discrete logarithms of Γ is known (that is what they call witness-
samplable languages). That encompasses DDH, κ-Lin, and languages of ElGamal,
Cramer-Shoup or similar ciphertexts whose plaintexts verify some linear system
of equations, as already shown in [6]. Concrete comparison with previous work
can be found in Section 7.3.

5.5 Application: Threshold Cramer-Shoup-like Encryption Scheme

The Cramer-Shoup public-key encryption scheme [11] is one of the most efficient
IND-CCA encryption schemes with a proof of security in the standard model.
We remark here that, if we replace the last part of a Cramer-Shoup ciphertext
(the 2-universal projective hash proof) by a one-time simulation-sound NIZK
on the DDH language, we can obtain an IND-CCA scheme supporting efficient
threshold decryption. Intuitively, this comes from the fact that the resulting
scheme becomes “publicly verifiable”, in the sense that, after verifying the NIZK

94 M. Abdalla et al.

(which is publicly verifiable), one can obtain the underlying message via “simple”
algebraic operations which can easily be “distributed”.

Previous one-time simulation-sound NIZK were quite inefficient and the result-
ing scheme would have been very inefficient compared to direct constructions of
threshold IND-CCA encryption schemes. However, in our case, our new one-time
simulation-sound NIZK based on disjunctions of SPHF only adds one group ele-
ment to the ciphertext (compared to original Cramer-Shoup encryption scheme;
see the full version for details). In addition, both the encryption and the decryp-
tion algorithms only require to perform operations in the first group G1. A
detailed comparison is given in Section 7.4, where we also introduce a more
efficient version of that threshold encryption scheme, for which the ciphertexts
have the same size as the ciphertexts of the original Cramer-Shoup encryption
scheme.

6 Pseudo-Random Projective Hash Functions and
Disjunctions

In this section, we sometimes make explicit use of crs (or crs1, or crs2), the lan-
guage parameters of the diverse vector space V (respectively of V1, and V2), to
provide clearer definitions. We recall that we suppose there exists an algorithm
Setupcrs which can generate crs together with a trapdoor Tcrs. Contrary to con-
struction in previous sections, where Tcrs =⊥, the security of the constructions
in this section will depend on some properties of Tcrs.

6.1 Pseudo-Randomness

Definition. An SPHF is said to be pseudo-random, if the hash value of a random
word C in Lcrs looks random to an adversary only knowing the projection key hp
and ignoring the hashing key hk and a witness for the word C. More precisely, this
property is defined by the experiments Expps-rnd-b depicted in Fig. 4. Contrary
to smoothness, this property is computational. A projective hashing function
which is pseudo-random is called a PrPHF. A PrPHF is not necessarily smooth.

Link with Hard Subset Membership Languages. It is easy to see that
an SPHF over a hard subset membership family of languages is pseudo-random.
This yields a way to create PrPHF under DDH using Example 1. However, this
is inefficient since, in this case X has dimension 2, while we would prefer to
have X of dimension 1. Actually, since for hard subset membership languages,
Lcrs �= X , any SPHF based on diverse vector space for these languages is such
that X has dimension at least 2. More generally, as shown in 5.4, for a hard subset
membership language based on κ-Lin, X = G

1×(κ+1) and Lcrs has dimension κ.
That is why, we introduce another way to construct PrPHF, still based on diverse
vector spaces, but not using hard subset membership languages.

Disjunctions for Hash Proof Systems: New Constructions and Applications 95

Fig. 4. Experiments Expps-rnd-b and Expmixed-ps-rnd-b for pseudo-randomness and mixed
pseudo-randomness

6.2 Canonical PrPHF under κ-Lin

Let us construct a diverse vector space (X ,L ,R,G, n, k, Γ, θ) which yields a
pseudo-random SPHF under κ-Lin in the cyclic group G.

We set X = Lcrs = {⊥} and X̂ = L̂crs = G
κ. For DDH = 1-Lin, we get a

PrPHF with X of dimension 1, which is the best we can do using diverse vector
spaces. Even though the resulting projective hash function will be smooth, the
smoothness property is completely trivial, since Lcrs \ X is empty, and does
not imply the pseudo-randomness property. We will therefore need to manually
prove the pseudo-randomness.

The “language” is defined by crs = (ζ1, . . . , ζκ) $← G
κ and the PrPHF by:

Γ :=

⎛

⎜
⎜
⎜
⎝

ζ1 0 . . . 0
0 ζ2 . . . 0
...

...
. . .

...
0 0 . . . ζκ

⎞

⎟
⎟
⎟
⎠

∈ G
κ×κ λ :=

⎛

⎜
⎜
⎜
⎝

ζ̂1
ζ̂2
...

ζ̂κ

⎞

⎟
⎟
⎟
⎠

∈ Z
κ
p θ(⊥) :=

⎛

⎜
⎜
⎜
⎝

g
g
...
g

⎞

⎟
⎟
⎟
⎠

∈ G
κ

hk := α
$← Z

1×κ
p hp := (γ1, . . . , γκ)ᵀ = (ζα1

1 , . . . , ζακ
κ)ᵀ ∈ G

κ

H :=
n∏

i=1

gαi = g
∑n

i=1 αi =
n∏

i=1

γ ζ̂i

i =: H ′,

where λ is the witness for C =⊥, with ζi = g1/ζ̂i . The pseudo-randomness
directly comes from the hardness of κ-Lin.

6.3 Disjunction of an SPHF and a PrPHF

Let V1 = (X1,L1,R1,G1, n1, k1, Γ
(1), θ1) and V2 = (X2,L2,R2,G2, n2, k2, Γ

(2),
θ2) be two diverse vector spaces over two multiplicatively sub-graded rings G1

and G2 of some graded ring G. Let V = (X ,L ,G, n, k, Γ, θ) be the vector space
corresponding to the disjunction of the two previous languages. We have already
seen that this vector space corresponds to a smooth projective hash function.

96 M. Abdalla et al.

But, if the second language is the canonical PrPHF under κ-Lin, the smooth-
ness brings nothing, since X = L . Therefore, we need to prove a stronger prop-
erty called mixed pseudo-randomness.

Definition of Mixed Pseudo-Randomness. The resulting SPHF is said mixed
pseudo-random, if the hash value of a word C = (C1, C2) looks random to the
adversary, when C1 /∈ L1 is chosen by the adversary, while C2 is chosen at ran-
dom in L2. More precisely, the mixed pseudo-randomness property is defined by
the experiments Expmixed-ps-rnd-b depicted in Fig. 4.

Proof of Mixed Pseudo-Randomness. The proof of mixed pseudo-
randomness is actually close to the one for computational soundness of trapdoor
smooth projective functions in [6]. It requires that Tcrs1 contains enough informa-
tion to be able to compute the discrete logarithm of elements of Γ (1), denoted
L(Γ (1)).

The proof reduces the pseudo-randomness property to the mixed pseudo-
randomness property. The detailed proof is quite technical and can be found in
the full version. Basically, we choose a random hashing key ε and we randomize
it using a basis of the kernel of L(Γ (1)) and projection keys given by the pseudo-
randomness game (for some fixed word C2, using an hybrid method). Then we
show how to compute from that, a valid projection key hp for the language of the
disjunction together with a hash value H of (C1, C2), for C1 /∈ L1. This value
H is the correct hash value, if the hash values of C2, given by the challenger of
the hybrid pseudo-randomness game, were valid; and it is a random value, other-
wise. That proves that an adversary able to break the mixed pseudo-randomness
property also breaks the pseudo-randomness property.

7 One-Time Simulation-Sound NIZK from Disjunctions of
an SPHF and a PrPHF

7.1 NIZK from Disjunctions of an SPHF and a PrPHF

The construction is identical to the one in Section 5.1, except that the second
diverse vector space V2 is just supposed to be a PrPHF, and no more supposed
to be related to a hard subset membership language L2. However, we suppose
that the disjunction of V1 and V2 yields a mixed pseudo-random SPHF, which is
the case if Tcrs contains enough information to compute the discrete logarithm
of elements of Γ (1).

Completeness and zero-knowledge can be proven exactly in the same way.
It remains therefore to prove the soundness property, under the mixed pseudo-
randomness. The proof is very similar to the one in Section 5.1: if π is a proof
of some word C1 /∈ L1, then it is possible to compute the hash value of any
word (C1, C2) with C2 ∈ L2 as H ′ := Ĉ2 • π. This comes from the fact that if
C2 ∈ L2, then there exists λ2 such that Ĉ2 = λ2 • Γ (2), hence:

H ′ = λ2 • Γ (2) • π = λ2 • (Ĉ1 ⊗ Idk2) • γ(2) = (Ĉ1 ⊗ λ2) • γ(2),

Disjunctions for Hash Proof Systems: New Constructions and Applications 97

which is the hash value of (C1, C2) computed using ProjHash and witness λ2. But
the mixed pseudo-randomness property ensures that this value looks uniformly
random when C2 is chosen randomly in L2. That proves the soundness property.

7.2 One-Time Simulation-Sound NIZK

Unfortunately, for the one-time simulation-sound variant, this is not as easy:
the construction in Section 5.3 seems difficult (if at all possible) to prove sound.
The main problem is that the security proof of mixed pseudo-randomness is
not statistical, so we do not know hk = α, but only some representation of
α, which does not allow computing the proof π′ of a word C ′

1 for a tag tagC′
1
.

Directly adapting the proof with a 2-smooth V1 would require to choose from
the beginning π′ (as is chosen hp from the beginning), but that is not possible
since C ′

1 and tag′ (the tag for C ′
1) are not known at the beginning of the game.

Our solution is to use the tag bit-by-bit. So we just need to guess which bit
is different between tagC1

and tagC′
1
. This idea is inspired from [8]. Details can

be found in the full version.

7.3 Concrete Instantiation and Comparison with Previous Work

If V1 is a diverse vector space over G1 (for which Tcrs1 gives enough information
to compute the discrete logarithm of Γ (1)) and V2 is the canonical PrPHF under
DDH in Section 6.2, where (p,G1,G2,GT , e) is a bilinear group where DDH is
hard in G2, then we get an NIZK and a one-time simulation sound NIZK whose
proof is composed of only n2 = 1 group element in G1. More generally, if V2 is
canonical PrPHF under κ-Lin, then the proof consists of only κ group elements,
one less than our first construction in Section 5.4. However, this encompasses
slightly fewer languages than this first construction, due to the restriction on
L1 and Tcrs1 . More precisely, our NIZK handles the same languages as Jutla-Roy
NIZK in [20,21].

Table 1 compares NIZK for linear subspaces as Jutla and Roy call it in [20],
i.e., any language over G1 (first group of some bilinear group) for which there
exists a diverse vector space V1 (assuming θ is the identity function and a witness
is λ ∈ Z

k
p). Some of the entries of this table were derived from [21] and from [26].

The DDH (in G2) variant requires asymmetric bilinear groups, while the κ-Lin
variant for κ ≥ 2 could work on symmetric bilinear groups.

First of all, as far as we know, our one-time simulation-sound NIZK is the
most efficient such NIZK with a constant-size proof: the single-theorem relatively-
sound construction of Libert et al. [26] is weaker than our one-time simulation-
sound NIZK and requires at least one group element more in the proof, while
their universal simulation-sound construction is much more inefficient. A direct
application of our construction is our efficient structure-preserving threshold
IND-CCA encryption scheme, under DDH.

Second, the DLin version of our NIZK in Section 5.1 is similar to the one
by Libert et al. [26], but our DLin version of our NIZK in Section 7.1 is more

98 M. Abdalla et al.

Table 1. Comparison of NIZK for linear subspaces

DDH (in G2) DLin (in G1 = G2 = G)

WS Proof |π| Pairings Proof |π| Pairings

Groth-Sahai [18] n + 2k 2n(k + 2) 2n + 3k 3n(k + 3)
Jutla-Roy [20] � n − k (n − k)(k + 2) 2n − 2k 2(n − k)(k + 2)
Libert et al. [26] 3 2n + 4
Libert et al. [26] RSS 4 2n + 6
Libert et al. [26] USS 20 2n + 30
Jutla-Roy[21] � 1 n + 1 2 2(n + 2)
§5.1 2 n + 2 3 2n + 3
§7.1 � 1 n + 1 2 2n + 2
§5.3 OTSS 2 2n + 2 3 4n + 3
§7.2 OTSS � 1 νn + 2 2 2νn + 2

– full table with CRS sizes in the full version;
– n = n1, k = k1, and ν = 2K; pairings: number of pairings required to verify the proof;
– sizes | · | are measured in term of group elements (G1 and G2, or G if the bilinear group is

symmetric). Generators g1 ∈ G1 and g2 ∈ G2 (for DDH in G2) or g ∈ G (for DLin) are not
counted in the CRS;

– OTSS : one-time simulation-soundness; RSS : single-theorem relative simulation-soundness [19]
(weaker than OTSS); USS : universal simulation-soundness (stronger than OTSS);

– WS: witness-samplability in [20], generation of crs so that Tcrs1 enables us to compute the
discrete logarithms of Γ1. This slightly restricts the set of languages which can be handled.

efficient (the proof has 2 group elements instead of 3). Furthermore, the ideas of
the constructions in [26] seem quite different.

Third, our NIZK in Section 7.1 is similar to the one by Jutla and Roy in [21]
for DDH. However, in our opinion, our construction seems to be more modular
and simpler to understand. In addition, under κ-Lin, with κ ≥ 2, our construction
is slightly more efficient in terms of CRS size and verification time.

7.4 Application: Threshold Cramer-Shoup-like Encryption Scheme
(Variant)

In the construction of Section 5.5, we can replace the previous one-time simulation-
soundNIZK by this newNIZK. This yields a threshold encryption where the cipher-
text size only consists of 4 group elements as the original Cramer-Shoup encryption
scheme, at the expense of having a public key size linear in the security parameter.

Our two schemes are threshold and structure-preserving [5]: they are “com-
patible” with Groth-Sahai NIZK, in the sense that we can do a Groth-Sahai
NIZK to prove that we know the plaintext of a ciphertext for our encryption
schemes. In addition, normal decryption does not require any pairings, which
still are very costly, compared to exponentiations. A detailed comparison with
existing efficient IND-CCA encryption schemes based on cyclic or bilinear groups
is given in the full version. To summarize, to the best of our knowledge, our two
constructions are the most efficient threshold and structure-preserving IND-CCA
encryption schemes.

Disjunctions for Hash Proof Systems: New Constructions and Applications 99

Acknowledgments. We would like to thank Jens Groth and the anonymous reviewers
for detailed comments on a previous version of this paper. This work was supported in
part by the French ANR-12-INSE-0014 SIMPATIC Project, the CFM Foundation, the
European Commission through the FP7-ICT-2011-EU-Brazil Program under Contract
288349 SecFuNet, and the European Research Council under the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 –
CryptoCloud).

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013)

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof systems:
New constructions and applications. Cryptology ePrint Archive, Report 2014/483
(2014). http://eprint.iacr.org/2014/483

3. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-based group
key exchange in a constant number of rounds. In: Yung, M., Dodis, Y., Kiayias, A.,
Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg
(2006)

4. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for condi-
tionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 671–689. Springer, Heidelberg (2009)

5. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

6. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013)

7. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving proto-
cols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 94–111. Springer, Heidelberg (2012)

8. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

9. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. Cryptology ePrint Archive, Report 2014/906 (2014). http://
eprint.iacr.org/2014/906

10. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

http://eprint.iacr.org/2014/483
http://eprint.iacr.org/2014/906
http://eprint.iacr.org/2014/906

100 M. Abdalla et al.

13. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

14. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

15. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applica-
tions. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 467–476. ACM Press, June 2013

16. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). http://eprint.iacr.org/2003/032.ps.gz

17. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

18. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

19. Jutla, C., Roy, A.: Relatively-sound NIZKs and password-based key-exchange. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
485–503. Springer, Heidelberg (2012)

20. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

21. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014)

22. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer,
Heidelberg (2005)

23. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

24. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

25. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)

26. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014)

http://eprint.iacr.org/2003/032.ps.gz

Quasi-Adaptive NIZK
for Linear Subspaces Revisited

Eike Kiltz1(B) and Hoeteck Wee2

1 Ruhr-Universität Bochum, Bochum, Germany
eike.kiltz@rub.de

2 ENS, France, Paris
wee@di.ens.fr

Abstract. Non-interactive zero-knowledge (NIZK) proofs for algebraic
relations in a group, such as the Groth-Sahai proofs, are an extremely
powerful tool in pairing-based cryptography. A series of recent works
focused on obtaining very efficient NIZK proofs for linear spaces in a
weaker quasi-adaptive model. We revisit recent quasi-adaptive NIZK
constructions, providing clean, simple, and improved constructions via
a conceptually different approach inspired by recent developments in
identity-based encryption. We then extend our techniques also to
linearly homomorphic structure-preserving signatures, an object both
of independent interest and with many applications.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs for efficiently proving algebraic
relations in a group [14,35,37,38] have had a profound impact on pairing-
based cryptography, notably in (i) improving the concrete efficiency of non-
interactive cryptography schemes like group signatures [36], (ii) realizing stronger
security guarantees in applications like anonymous credentials [9,10,33], and (iii)
minimizing interaction in secure computation and two-party protocols [31,44].

A recent fruitful line of works has focused in obtaining very efficient NIZK
proofs for proving membership in a linear subspace over a group, which is an
important subset of the algebraic relations supported by the Groth-Sahai NIZK
[38]. For linear subspaces, the Groth-Sahai proofs were linear in the dimensions
of the (sub)space. The first substantial improvement was obtained by Jutla and
Roy [42] in a weaker quasi-adaptive model, where the CRS may depend on the
linear subspace, and the soundness guarantee is computational but adaptive.
In addition, they used quasi-adaptive NIZK (QANIZK) for linear subspaces to

E. Kiltz—Supported by a Sofja Kovalevskaja Award of the Alexander von Humboldt
Foundation, the German Israel Foundation, and ERC Project ERCC (FP7/615074).
H. Wee—CNRS, INRIA and Columbia University. Partially supported by the
Alexander vonHumboldt Foundation, NSFAwardCNS-1445424,ANR-14-CE28-0003
(ProjectEnBid) andERCProjectCryptoCloud (FP7/2007-2013GrantAgreementno.
339563).

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 101–128, 2015.
DOI: 10.1007/978-3-662-46803-6 4

102 E. Kiltz and H. Wee

obtain improved KDM-CCA2-secure encryption as well as CCA2-secure IBE
scheme with short, publicly verifiable ciphertexts [18,19]. Further efficiency
improvements were subsequently obtained in [1,43,48], leading to constant-size
proofs, independent of the dimensions of space and subspace; several of these
constructions also realized stronger notions of soundness like one-time simulation
soundness and unbounded simulation soundness [27,51], which in turn enable
new applications.

1.1 Our Results and Techniques: QANIZK

We present clean, simple, and improved constructions of QANIZK protocols
via a conceptually novel approach. Previous constructions use fairly distinct
techniques, resulting in a large family of schemes with incomparable efficiency
and security guarantees. We obtain a family of schemes that simultaneously
match – and in many settings, improve upon – the efficiency, assumptions, and
security guarantees of all of the previous constructions. Figure 1 summarizes
the efficiency of our constructions. Like the earliest Jutla-Roy scheme [42], our
schemes are fully explicit and simple to describe: the prover and verifier carry out
simple matrix-vector products in the exponent, and both correctness and zero-
knowledge follow readily from one simple equation. Furthermore, our schemes
have a natural derivation from a symmetric-key setting, and the derivation even
extends to a modular and intuitive proof of security. Finally, in all but the
settings with unbounded security, we obtain a qualitative improvement in the
underlying assumptions from decisional to computational (search) assumptions;
specifically, security relies on a natural computational analogue of the decisional
k-Lin assumption.

Our constructions and techniques are inspired by recent developments in
obtaining adaptively secure identity-based encryption schemes, notably the use
of pairing groups to “compile” a symmetric-key primitive into an asymmetric-key
primitive [13,23,54], and the dual system encryption methodology for achieving
adaptive security against unbounded collusions [46,52]. We then extend our
techniques to linearly homomorphic structure-preserving signatures [47,48], an
object both of independent interest and with many applications.

Overview of Our Constructions. Fix a pairing group (G1,G2,GT) with
e : G1 × G2 → GT . We present a very simple non-interactive argument system
for linear subspaces over G1 as defined by a matrix1 [M]1 := gM1 ∈ G

n×t
1 (n > t)

and captured by the language:

LM =
{

[y]1 ∈ G
n
1 : ∃ x ∈ Z

t
q s.t. y = Mx

}
.

The starting point of our construction is a hash proof system [26] for the
language, which is essentially a symmetric-key analogue of NIZK with a
1 We use implicit representation notation for group elements, as explained in

Section 2.1.

Quasi-Adaptive NIZK for Linear Subspaces Revisited 103

designated verifier. Namely, we pick a secret hash key K ←r Z
n×(k+1)
q known to

the verifier (k ≥ 1 is a parameter of the security assumption) and publish the
projection [P]1 := [M�K]1 in the CRS. The proof is given by [π]1 := [x�P]1,
and verification works by checking whether π

?= y�K. Completeness and perfect
zero-knowledge follow readily from the fact that for all y = Mx and P = M�K:

x�P = x�(M�K) = y�K.

Next, observe that if y is outside the span of M, then y�K is completely random
given M�K; this is the case even if such a y is adaptively chosen after seeing
M�K. Thus, the construction achieves statistical adaptive soundness: namely, a
computationally unbounded cheating prover, upon seeing P, still cannot produce
a vector outside LM along with an accepting proof.

To achieve public verifiability, we carry out the hash proof system in G1

and publish a “partial commitment” to K in G2 as given by [A]2, [KA]2, where
the choice of A ∈ Z

(k+1)×k
q is defined by the security assumption. Instead of

checking whether π
?= y�K as before, anyone can now publicly check whether

πA ?= y�KA via a pairing. As [A]2, [KA]2 leaks additional information about
the secret hash key K, we can only prove computational adaptive soundness. In
particular, we rely on the Dk-KerMDH Assumption [49], which stipulates that
given a random [A]2 drawn from a matrix distribution Dk, it is hard to find
a non-zero [s]1 ∈ G

k+1
1 such that s�A = 0; this is implied by the Dk-MDDH

Assumption [30], a generalization of the k-Lin Assumption.2 Therefore, for any
([y]1, [π]1) produced by an efficient adversary,

πA = y�KA =⇒ (π−y�K)A = 0
using assumption

=⇒ π−y�K = 0 =⇒ π = y�K,

upon which we are back in the symmetric-key setting, with a little more
work to account for the leakage from KA. Moreover, adaptive security in
the symmetric-key setting (which is easy to analyze via a purely information-
theoretic argument) carries over to adaptive security in the public-key setting.

Two Simple Extensions. We extend this simple construction in two simple
ways:

– First, we show that we can use A with the bottom row deleted, which saves
one element to obtain proofs of size k, albeit at the cost of a more intricate
security reduction and a restriction to witness-sampleable (WS) distributions
for [M]1 [42]. The latter means that we are given an explicit description of
M in the security reduction, which we need to program the CRS as with
prior works [1,43] that achieve the same proof size. In the case k = 1, the
proof consists of 1 element and the CRS only contains n+ t group elements,
which seems optimal.

2 That is, Dk-MDDH ⇒ Dk-KerMDH; for the specific linear distribution Dk = Lk

we have k-Lin := Lk-MDDH ⇒ Lk-KerMDH =: k-KerLin. We refer the reader to
Section 2.2 for a more detailed treatment of the assumptions.

104 E. Kiltz and H. Wee

Soundness WS? Assumption Proof CRS
GS08 [38] AS 2-Lin (G2) 2n + 3t 6
LPJY14 [48] AS 2-KerLin (G2) 3 2n + 3t + 3
ABP14 [1] AS k-Lin (G2) k + 1 kn + (k + 1)t + k
Πas (Fig 4) AS Dk-KerMDH (G2) � k + 1 kn + (k + 1)t + RE(A)
JR13 [42] AS yes k-KerLin (G2) k(n − t) 2kt(n − t) + k + 1
JR14 [43] AS yes k-Lin (G2) k kn + kt + k2

ABP14 [1] AS yes k-Lin (G2) k kn + kt + k

Π′
as (Fig 5) AS yes Dk-KerMDH (G2) � k kn + kt + RE(A) �

ABP14 [1] OTSS k-Lin (G2) k + 1 2kn + 2(k + 1)t + k
Πot-ss (Fig 6) OTSS Dk-KerMDH (G2) � k + 1 2kn + 2(k + 1)t + RE(A)
ABP14 [1] OTSS yes k-Lin (G2) k 2λ(kn + (k + 1)t) + k

Π′
ot-ss (Fig 9) OTSS yes Dk-KerMDH (G2) � k 2λ(kn + (k + 1)t) + RE(A) �

CCS09 [18] USS 2-Lin (G2,G2) 2n + 6t + 52 18
LPJY14 [48] USS yes 2-Lin (G1,G2) 20 2n + 3t + 3λ + 10
Πuss (Fig 7) USS yes Dk-MDDH (G1,G2) �2k + 2 � kn + 4(k + t + 1)k + 2RE(A) �

Fig. 1. QANIZK for linear subspaces of Zn
q of dimension t and tag-space T = {0, 1}λ.

For the soundness column we use AS for adaptive soundness, OTSS for one-time
simulation soundness, and USS for unbounded simulation soundness. WS stands for
witness sampleability [42] and slightly restricts the class of languages, cf. Section 3.2.
We omit the generators for the group when computing the CRS size. RE(A) and
RE(A) depend on the assumption and denote the number of group elements needed
to represent [A] and [A] (the top k rows of [A]), respectively. In case of k-Lin, we
have RE(A) = k and RE(A) = k − 1. Recall that k-Lin is a special case of Dk-
MDDH (decisional assumptions) and k-KerLin is a special case of Dk-KerMDH (search
assumptions), for Dk = Lk, the linear distribution. In all settings, we improve upon
either the assumption (c.f. Figure 3), the CRS size, or # pairings used in verification
(which can be further reduced using randomized verification), as indicated by a �.

– Second, we show how to achieve one-time simulation soundness, by replacing
K with 2-wise independent hash function K0 + τK1 where τ is a tag, and
we publish [A]2, [K0A]2, [K1A]2 for public verification. A single simulated
proof reveals only an evaluation of the hash function at a single point, while
its evaluation at every other point remains hidden, upon which we are back
in the setting of standard adaptive soundness.

Unbounded Simulation-Soundness. To achieve unbounded simulation-
soundness, we move from a 2-wise independent hash function to an affine
pseudo-random MAC (or, a randomized PRF) [13,25,29], which guarantees
pseudorandomness at a single point even upon giving out evaluations for
polynomially many other points. Here, we require a decisional assumption over
G1. Our construction may also be viewed as an instantiation of the dual system
encryption methodology, whereas prior constructions in [47,48] rely on the
random partitioning technique in [12,53]. This allows us to immediately bypass
two of the main limitations of random partitioning: long public parameters and
a polynomial-time but inefficient security reduction.

Quasi-Adaptive NIZK for Linear Subspaces Revisited 105

1.2 Extension: Linearly Homomorphic Structure Preserving
Signatures

Linearly homomorphic signatures (LHS) [15,28,40] are signatures where the
messages consist of vectors over group G1 such that from any set of signatures
on [mi]1 ∈ G

n
1 , one can efficiently derives a signature σ on any element message

[m]1 := [
∑

ωimi]1 in the span of m1, . . . ,mq. For security, one requires that
it is infeasible to produce a signature on a message outside of the span of
all previously signed messages. In recent years, LHS have drawn considerable
attentions from the community with a wide range of constructions under
different assumptions [6–8,16,17,20,32,34]. Linearly homomorphic structure
preserving signatures (LHSPS) [47] have the additional property that signatures
and public keys are all elements of the groups G1,G2,GT . This is a useful
property when combined with other algebraic tools such as Groth-Sahai NIZK
systems. Applications beyond the algebraic compatibility include IND-CCA1-
secure encryption with publicly verifiable ciphertexts and verifiable computation
for encrypted cloud storage [4,47], non-malleable trapdoor commitments to
group elements [47] and QANIZK [48]. The first constructions of LHSPS were
given in [21,47].

We show how to extend our QANIZK techniques to LHSPS. Concretely, for
our one-time secure LHSPS, we define a signature σ on message [m]1 ∈ G

n
1 as

σ = [m�K]1,

and publish [A]2, [KA]2 for verification. Security follows by the same argument
as in our QANIZK construction. Our construction can also be seen as a
generalization of a 2-KerLin based scheme from [47] to Dk-KerMDH. Similarly,
the construction of unbounded simulation-sound QANIZK gives rise to a fully
secure LHSPS scheme. In the latter, the signatures on previously signed messages
([mi]1)1≤i≤q reveal M�K to the adversary, where M = (m1, . . . ,mq). The
winning condition of LHSPS is to produce a valid signature on a message
outside of the language LM, which corresponds to breaking simulation-soundness
in the QANIZK. Here, we do have to address an additional complication
arising from the fact that the LHSPS adversary is allowed to have previously
requested signatures for the challenge tag. Our constructions improve upon
the efficiency of the prior schemes; see Figure 2. Moreover, our techniques
also offer two qualitative advantages over those in [48]: first, they immediately
yield fully randomizable linearly homomorphic signatures, which means they are
strongly context-hiding [4,7], and second, we completely eliminate the additional
restriction that adversary only query linearly independent vectors on each tag
[47, §2.1].

In fact, our constructions follow a more general and natural (in hindsight)
methodology for constructing LHSPS from any QANIZK: the signing key is the
simulation trapdoor; a signature on [m]1 is a simulated proof on the vector
[m]1; verifying a signature is the same as verifying a proof. The proof of LHSPS
security uses the honest prover to simulate signatures. When a LHSPS adversary
requests signatures on ([mi]1)1≤i≤q, it gets QANIZK proofs for the vectors lying

106 E. Kiltz and H. Wee

Security Restrictions on adv.Assumption signaturepk
LPJY13 [47, §3.1]: OT none 2-KerLin (G2) 3 2n + 3
LPJY14 [48, §D]: OT none Lk-KerMDH (G2) k + 1 kn + 2k − 1
LHSPSot (Fig 10) OT none Dk-KerMDH (G2) k + 1 kn + RE(Dk)
LPJY13 [47, §3.2]: full indep. 2-KerLin (G1 = G2) 4 2n + λ + 5
LPJY13 [47, §B.2]:full, randindep., targeting 2-Lin (G1 = G2) 15 2n + λ + 7
LHSPSfull (Fig 8) full, randtargeting Dk-MDDH (G1,G2)2k + 2 kn + 4(k + 1)k + 2RE(Dk)

Fig. 2. Linearly homomorphic structure-preserving signatures for M = G
n
1 and tag-

space T = {0, 1}λ. In the security column, OT stands for one-time security and full
for full security; rand stands for full randomizability. The restrictions column describes
the restrictions required on the adversary. An independent adversary is restricted to
querying linearly independent vectors on each tag; a targeting adversary is required
to provide a certificate that its output vector is outside the span of previous queried
messages.

in the span of the matrix M := (m1, . . . ,mq). Soundness for QANIZK tells us
that it is infeasible to produce an accepting proof for a vector outside the span
of M; this means that it is infeasible to produce a valid signature for a vector
outside the span of ([mi]1)1≤i≤q. For the above construction to work, we require
that proof verification does not depend on M, which is indeed satisfied by all of
our QANIZK protocols. The main qualitative difference between QANIZK and
LHSPS security is that in QANIZK, the entire M is fixed in advance, whereas
in signatures, the corresponding matrix is chosen adaptively and incrementally
row by row. This means that QANIZK proof techniques that require WS and
that program an explicit description of M into the CRS (which is the case for
the QANIZK schemes with the shortest proofs) do not yield LHSPS schemes.

1.3 Discussion

Comparison with Previous Approaches. We briefly outline previous
approaches for obtaining constant-size QANIZK proofs for linear subspaces. The
constructions in [1,43] both derive their basic QANIZK with adaptive soundness
from a more general framework: a switching lemma in [43] and hash proof system
for disjunctions in [1]. Both frameworks seem inherently limited to decisional
assumptions, whereas our constructions enable the use of computational search
assumptions. Moreover, the switching lemma framework appears to be limited
to applications where the adversary’s winning condition is efficiently checkable,
and therefore seems unlikely to extend beyond WS distributions or to LHSPS
even in the one-time setting. On the other hand, these more general frameworks
could enable other new applications.

Previous QANIZK constructions achieving one-time simulation-soundness as
well as the weaker notion of single-theorem relatively soundness [41] proceed
by combining a basic adaptively secure QANIZK scheme with either a hash
proof system [42,43,48] or some strengthening thereof [1]. Our approach for
one-time simulation-soundness by replacing a single key with the output of a
2-wise independent hash function is arguably simpler and more natural.

The constructions of Libert et al. in [48] used LHSPS in the constructions of
QANIZK. Interestingly, while this prior work [48] used LHSPS to build QANIZK,

Quasi-Adaptive NIZK for Linear Subspaces Revisited 107

we reverse the connection in this work, and as a result, obtained even more
efficient QANIZK and LHSPS. Their basic QANIZK with adaptive soundness
builds upon on an existing one-time structure-preserving signature in [2,3]. Their
QANIZK scheme with unbounded simulation-soundness as well as the fully
secure LHSPS in [47] relies on Waters’ random partitioning technique [12,53],
which originated in the context of adaptively secure IBE; the final QANIZK
scheme is fairly complex, require a long CRS, an inefficient security reduction,
and in addition the use of Groth-Sahai NIWI proofs. Our schemes for unbounded
simulation-soundness and full security rely on the more powerful dual system
encryption methodology [52] for building adaptively secure IBE, and are largely
self-contained.

Other Related Work. The idea of compiling symmetric to asymmetric
cryptography also appeared in several prior works. In 1989, Bellare and
Goldwasser [11] gave a transformation from a message authentication code
(originally, a PRF) and a NIZK to a signature scheme; interestingly, their
transformation requires NIZK as a building block, whereas NIZK is the target
of our compiler. To the best of our knowledge, the first works to explicitly point
out that we can directly compile a symmetric primitive into an asymmetric one
in pairing groups came from the literature on attribute-based and identity-based
encryption [5,13,24,54]. These latter works can be viewed as an instantiation of
the dual system encryption methodology [46,52]. In the specific case of (H)IBE,
they can also be viewed as an algebraic MAC plus a Groth-Sahai NIZK [13].

Perspective. As noted at the beginning of the introduction, Groth-Sahai NIZK
have been widely used in many cryptographic applications in recent years.
We presented a conceptually different yet very simple approach for building
NIZK with extremely short proofs for linear subspaces, and also to improve
one of the applications. We are optimistic that our approach will yield concrete
improvements to many constructions that currently rely on Groth-Sahai proofs.

2 Definitions

Notation. If x ∈ Bn, then |x| denotes the length n of the vector. Further,
x ←r B denotes the process of sampling an element x from set B uniformly at
random. If A ∈ Z

n×k
q is a matrix with n > k, then A ∈ Z

k×k
q denotes the upper

square matrix of A and then A ∈ Z
(n−k)×k
q denotes the remaining n− k rows of

A. We use span() to denote the column span of a matrix.

2.1 Pairing Groups

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description PG = (G1,G2,GT , q, g1, g2, e) of asymmetric pairing
groups where G1, G2, GT are cyclic groups of order q for a λ-bit prime q, g1 and

108 E. Kiltz and H. Wee

g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently
computable (non-degenerate) bilinear map. Define gT := e(g1, g2), which is a
generator in GT .

We use implicit representation of group elements as introduced in [30]. For
s ∈ {1, 2, T} and a ∈ Zq, define [a]s = ga

s ∈ Gs as the implicit representation of
a in Gs. More generally, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the

implicit representation of A in Gs:

[A]s :=

⎛

⎝
ga11

s ... ga1m
s

gan1
s ... ganm

s

⎞

⎠ ∈ G
n×m
s

We will always use this implicit notation of elements in Gs, i.e., we let
[a]s ∈ Gs be an element in Gs. Note that from [a]s ∈ Gs it is generally hard to
compute the value a (discrete logarithm problem in Gs). Further, from [b]T ∈ GT

it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion
problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zq, one can efficiently
compute [ax]s ∈ Gs. Further, given [a]1, [a]2 one can efficiently compute [ab]T
using the pairing e. For two matrices A,B with matching dimensions define
e([A]1, [B]2) := [AB]T ∈ GT .

2.2 Matrix Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) and the
Kernel Diffie-Hellman assumptions [30,49].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix
distribution if it outputs matrices in Z

(k+1)×k
q of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A ←r Dk form an
invertible matrix. The Dk-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A ←r Dk, w ←r Z

k
q and

u ←r Z
k+1
q .

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let
Dk be a matrix distribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries A,

Advmddh
Dk,GGen(A) := | Pr[A(G, [A]s, [Aw]s) = 1] − Pr[A(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G ←r GGen(1λ), A ←r Dk,w ←r Z
k
q ,u ←r

Z
k+1
q .

The Kernel-Diffie-Hellman assumption Dk-KerMDH [49] is a natural compu-
tational analogue of the Dk-MDDH Assumption.

Quasi-Adaptive NIZK for Linear Subspaces Revisited 109

Definition 3 (Dk-Kernel Diffie-Hellman Assumption Dk-KerMDH). Let
Dk be a matrix distribution and s ∈ {1, 2}. We say that the Dk-Kernel Diffie-
Hellman (Dk-KerMDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries A,

Advkmdh
Dk,GGen(A) := Pr[c�A = 0 ∧ c 	= 0 | [c]3−s ←r A(G, [A]s)] = negl(λ),

where the probability is taken over G ←r GGen(1λ), A ←r Dk.

Note that we can use a non-zero vector in the kernel of A to test membership
in the column space of A. This means that the Dk-KerMDH assumption is a
relaxation of the Dk-MDDH assumption, as captured in the following lemma
from [49].

Lemma 1. For any matrix distribution Dk, Dk-MDDH ⇒ Dk-KerMDH.

For each k ≥ 1, [30,49] specify distributions Lk, SCk, Uk (and others)
such that the corresponding Dk-MDDH and Dk-KerMDH assumptions are
generically secure in bilinear groups and form a hierarchy of increasingly weaker
assumptions.

SCk : A =

⎛

⎜
⎜
⎝

1 0 0 ... 0
a 1 0 ... 0
0 a 1 0
0 0 a 0

.

.

.
. . .

. . .
0 0 0 ... a

⎞

⎟
⎟
⎠ , Lk : A=

⎛

⎜
⎜
⎝

1 1 1 ... 1
a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 0

.

.

.
. . .

. . .
0 0 0 ... ak

⎞

⎟
⎟
⎠ , Uk : A =

(a1,1 ... a1,k

.

.

.
. . .

.

.

.
ak+1,1 ... ak+1,k

)

,

where a, ai, ai,j ← Zq. We define Link := Lk-MDDH (k-Linear Assumption of [39])
and KerLink := Lk-KerMDH. Note that KerLin2 = SDP (Simultaneous Double Pairing
Assumption of [22]). The relations between the different assumptions for Dk = Lk are
as follows:

DDH 2-Lin 3-Lin . . .

1-KerLin 2-KerLin 3-KerLin . . . CDH

SDP

‖

Fig. 3. The relation between k-KerLin and k-Lin

2.3 Quasi-Adaptive Non-Interactive Zero-Knowledge

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is allowed
to depend on the specific language for which proofs have to be generated [42]. The
common reference string crs is generated in a specific way and contains a fixed part
par, produced by an algorithm Genpar, and a language-dependent part crsl. However,
for the zero-knowledge property there should be a single simulator for the entire class
of languages.

For public parameters par produced by Genpar, let Dpar be a probability distribution
over a collection of relations R = {Rρ} parametrized by a string ρ with an associated
language Lρ = {y : ∃x s.t. Rρ(y, x) = 1}.

We now give a formal definition of QANIZK for Dpar in its tag-based variant.

110 E. Kiltz and H. Wee

Definition 4 (Quasi-Adaptive Non-Interactive Zero Knowledge Argument).
A Quasi-adaptive Non-Interactive Zero Knowledege Argument (QANIZK) Π for a
language distribution Dpar consists of five PPT algorithms Π = (Genpar,Gencrs,Prove,
Simπ,Verify):
– The probabilistic key generation algorithm Genpar(λ) returns the public parameters

par.
– The probabilistic algorithm Gencrs(par, ρ) returns a common reference string crs and

a trapdoor trap. We assume that crs implicitly contains par and ρ and that it defines
a tag-space T . (This is the classical QANIZK setting.) If T is not specified then
T = {ε} and tags can be ignored in all algorithms.

– The probabilistic proving algorithm Prove(crs, τ, x, y) returns a proof π with respect
to tag τ ∈ T .

– The deterministic verification algorithm Verify(crs, τ, y, π) returns 1 or 0, where 1
means that π is a valid proof of y ∈ Lρ.

– The probabilistic proving algorithm Simπ(crs, trap, τ, y) returns a proof π for some
y (not necessarily in Lρ) with respect to tag τ ∈ T .

We require that the algorithms satisfy the following properties:

(Perfect completeness). For all λ, all par output by Genpar(λ), all ρ output by Dpar,
all (x, y) with Rρ(y, x) = 1, all τ ∈ T , we have

Pr

[

Verify(crs, τ, y, π) = 1

∣
∣
∣
∣
|(crs, trap) ←r Gencrs(par, ρ)
π ←r Prove(crs, τ, x, y)

]

= 1.

(Perfect zero-knowledge). For all λ, all par output by Genpar(λ), all ρ output by
Dpar, all (crs, trap) output by Gencrs(par, ρ), all (x, y) with Rρ(y, x) = 1, all τ ∈ T ,
the distributions

Prove(crs, τ, x, y) and Simπ(crs, trap, τ, y)

are the same (where the coin tosses are taken over Prove, Simπ).
(Computational adaptive soundness). For all PPT adversaries A, Advas

Π (A) :=

Pr

⎡

⎣ y� �∈ Lρ

∧Verify(crs, τ�, y�, π�) = 1

∣
∣
∣
∣
∣
∣

par ←r Genpar(λ); ρ ←r Dpar

(crs, trap) ←r Simcrs(par, ρ)
(τ�, y�, π�) ←r A(par, crs, ρ)

⎤

⎦

is negligible.

Note that our formalization of perfect knowledge is similar to that of composable
zero knowledge in [38] and requires indistinguishability even for adversaries that get
access to (crs, trap). In particular, the formalization implies composability (namely,
the adversary may see multiple proofs for many adaptively chosen instances in the
language). We also consider simulation soundness [27,51], which is a strengthening of
adaptive soundness, and stipulates that an adversary cannot prove a false statement,
even if it can see simulated proofs for instances y of its choice.

Definition 5 (Simulation Soundness). A QANIZK system Π is said to be
(unbounded) simulation-sound if for all PPT adversaries A, Advuss

Π (A) :=

Pr

⎡

⎣ y� �∈ Lρ ∧ τ� �∈ Qtags

∧Verify(crs, τ�, y�, π�) = 1

∣
∣
∣
∣
∣
∣

par ←r Genpar(λ); ρ ←r Dpar

(crs, trap) ←r Simcrs(par, ρ)

(τ�, y�, π�) ←r AProveO(·,·)(par, crs, ρ)

⎤

⎦

Quasi-Adaptive NIZK for Linear Subspaces Revisited 111

is negligible, where ProveO(τ, y) returns Simπ(crs, trap, τ, y) and adds τ to the set
Qtags. Π is said to be one-time simulation-sound with corresponding advantage function
Advot-ss

Π (A), if A is restricted to make at most one query to the oracle ProveO.

We remark that a QANIZK with exponential tag-space can be transformed into a
classical QANIZK with T = {ε} using a one-time signature scheme or a MAC. Other
security properties remain the same.

2.4 Linearly Homomorphic Structure-Preserving Signatures

We now define syntax and security of a linearly homomorphic structure-preserving
signature (LHSPS) scheme [15,32,47], where the signatures are fully randomizable and
also strongly context-hiding [4,7]. We assume the existence of Genpar(λ), a probabilistic
key generation algorithm that returns public parameters par containing the description
of a group G.

Definition 6 (Linearly Homomorphic Structure-Preserving Signature). A
linearly homomorphic structure-preserving signature (LHSPS) scheme LHSPS consists
of four PPT algorithms LHSPS = (Gen, Sign, SignDerive,Verify) with the following
properties.
– The probabilistic key generation algorithm Gen(par) returns the (master) pub-

lic/secret key (pk, sk), where pk ∈ G
npk for some npk ∈ poly(λ). We assume that

pk implicitly defines a message space M = G
n, for some n ∈ poly(λ), and a tag

space T .
– The probabilistic signing algorithm Sign(sk, τ, [m]) returns a signature σ ∈ G

nσ on
message [m] ∈ G

n with respect to tag τ .
– The probabilistic signature derivation algorithm SignDerive(pk, τ, (ωi, σi)1≤i≤�)

returns a signature σ ∈ G
nσ on the vector [

∑
ωimi], where ωi ∈ Zq and σi is

a valid signature on [mi] with respect to tag τ .
– The deterministic verification algorithm Verify(pk, τ, [m], σ) returns 1 or 0, where

1 means that σ is a valid signature in [m].
We require that for all λ ∈ N, all pairs (pk, sk) generated by Gen(par), all tags τ ∈ T ,
the following holds:

(Perfect correctness.) for all messages [m] ∈ G
n, all σ generated by Sign(sk, τ, [m])

we have
Ver(pk, τ, [m], σ) = 1.

(Full randomizability.) for all messages [m1], . . . , [m�] ∈ G
n, all ω1, . . . , ω� ∈ Zq,

for all σ1, . . . , σ� where σi ← Sign(sk, τ, [mi]), the distributions

Sign(sk, τ, [
∑

ωimi]) and SignDerive(pk, τ, (ωi, σi)1≤i≤�)

are the same.

Note that our requirement of full randomizability implies strongly context hiding as
considered in [4,7]. We now define security for LHSPS schemes.

Definition 7. To an adversary A and LHSPS we associate the advantage function
Advufcma

LHSPS(A) :=

Pr

[
m∗ �∈ span(Mτ∗)
∧Verify(pk, τ∗, [m∗], σ∗) = 1

∣
∣
∣
∣
(pk, sk) ←r Gen(par)

(τ∗, [m∗], σ∗) ←r ASignO(·,·)(pk)

]

,

112 E. Kiltz and H. Wee

where SignO(τ, [m]) runs σ ←r Sign(sk, τ, [m]), appends the vector m (as a new
column) to the matrix Mτ (initialized with 0) and returns σ to A.

Note that the winning condition m∗ �∈ span(Mτ∗) may not be efficiently verifiable.
We will also consider security against a restricted class of “targeting adveraries” [47]
which provide a certificate c∗ for m∗ �∈ span(Mτ∗).

Definition 8. To an adversary A and LHSPS we associate the advantage function
Advufcma−t

LHSPS (A) :=

Pr

[
c∗�m∗ �= 0 ∧ c∗�Mτ∗ = 0
∧Verify(pk, τ∗, [m∗], σ∗) = 1

∣
∣
∣
∣
(pk, sk) ←r Gen(par)

(τ∗, [m∗], σ∗, [c∗]) ←r ASignO(·,·)(pk)

]

,

where SignO(τ, [m]) runs σ ←r Sign(sk, τ, [m]), appends the vector m (as a new
column) to the matrix Mτ (initialized with 0) and returns σ to A.

Observe that c∗�m∗ �= 0 ∧ c∗�Mτ∗ = 0 (which we can check via the pairing) implies
m∗ �∈ span(Mτ∗).

3 Quasi-Adaptive Zero Knowledge for Linear Spaces

In this section we will describe a number of Quasi-Adaptive Zero Knowledge Proofs for
linear spaces. From now on and for the rest of this paper we will use Genpar = GGen.
That is, Genpar(1

λ) returns par = PG, where PG = (G1,G2,GT , q, g1, g2, e) is a pairing
group. The probability distribution Dpar returns a matrix ρ = [M]1 ∈ G

n×t
1 , for integers

n > t. Given par and ρ, the language LM is defined as

LM =
{

[y]1 ∈ G
n
1 : ∃ x ∈ Z

t
q s.t. y = Mx

}
.

Lemma 2 (core lemma for adaptive soundness). Let n, t, k be integers. For any

M ∈ Z
n×t
q ,A ∈ Z

(k+1)×k
q and any (possibly unbounded) adversary A,

Pr

[

y /∈ span(M) ∧ z� = y�K

∣
∣
∣
∣
K ←r Z

n×(k+1)
q

(z,y) ←r A(M�K,KA)

]

≤ 1

q

Pr

[
y /∈ span(M) ∧ τ �= τ̂

∧ z� = y�(K0 + τ̂K1)

∣
∣
∣
∣
K0,K1 ←r Z

n×(k+1)
q ;

(z,y, τ) ←r AO(·)(M�K0,M
�K1,K0A,K1A)

]

≤ 1

q
,

where O(τ̂) may only be called one time and returns K0 + τ̂K1.

Proof. To prove the first equation of the lemma, fix M ∈ Z
n×t
q ,A ∈ Z

(k+1)×k
q , and fix a

non-zero vector â /∈ span(A). Then, for any y /∈ span(M), the following distributions

(M�K,KA,y�Kâ) and (M�K,KA, u) (1)

are the same, where K ←r Z
n×(k+1)
q , u ←r Zq. By a standard argument (e.g. complexity

leveraging3), this means that the two distributions are the same even if y /∈ span(M)
is adaptively chosen after seeing (M�K,KA). Therefore, for any adversary A, we have

Pr
K←rZ

n×(k+1)
q

[y /∈ span(M) ∧ z�â = y�Kâ | (z,y) ←r A(M�K,KA)] ≤ 1/q

3 Using complexity leveraging, we can transform any adaptive distinguisher into a
non-adaptive one with an exponential loss in the distinguishing advantage. If the
optimal non-adaptive distinguishing advantage is 0 as is the case for two identical
distributions, then the optimal adaptive distinguishing advantage must also be 0.

Quasi-Adaptive NIZK for Linear Subspaces Revisited 113

since y�Kâ is uniformly random from the adversary’s view-point. The lemma then
follows from the fact that z� = y�K implies z�â = y�Kâ.

To prove the second equation of the lemma, observe that (K0+τK1,K0+ τ̂K1) are
pairwise-independent, so we can essentially give away K0 + τK1 to A and still carry
out the preceding proof with K0 + τ̂K1 in place of K. More formally, for any τ �= τ̂
and any y /∈ span(M), the following distributions

(M�K0,M
�K1,K0A,K1A,K0 + τK1,y

�(K0 + τ̂K1)â)

and (M�K0,M
�K1,K0A,K1A,K0 + τK1, u)

are the same, where K0,K1 ←r Z
n×(k+1)
q , u ←r Zq. Upon eliminating the terms

involving K0 + τK1, the preceding claim follows from the fact that the following
distributions

(M�K1,K1A, (τ̂ − τ)y�K1â) and (M�K1,K1A, u)

are the same, where K1 ←r Z
n×(k+1)
q , u ←r Zq, as considered earlier in (1). The proof

then proceeds as before.

3.1 Simple QANIZK with Adaptive Soundness

Let Dk be any matrix distribution from Definition 1. Consider protocol Πas from
Figure 4.

Gen(par, [M]1 ∈ G
n×t
1):

A ←r Dk;K ←r Z
n×(k+1)
q

P := M�K;C := KA
crs := ([P]1, [C]2, [A]2)
Return (crs, trap = K)

Prove(crs, [y]1,x): // y = Mx

Return π := (
[
x�P

]
1
) ∈ G

k+1
1

Sim(crs, trap = K, [y]1):

Return π := (
[
y�K

]
1
)

Verify(crs, [y]1, π):

Check: e(π, [A]2) = e(
[
y�]

1
, [C]2)

Fig. 4. QANIZK Πas with adaptive soundness under Dk-KerMDH Assumption

Theorem 1. Protocol Πas from Figure 4 is a Quasi-adaptive Non-Interactive Zero
Knowledege Argument. Furthermore, under the Dk-KerMDH Assumption in G2, it has
adaptive soundness.

Proof. Perfect completeness and perfect zero-knowledge follow readily from the fact
that for all y = Mx and P = M�K:

x�P = x�(M�K) = y�K.

We proceed to establish adaptive soundness based on the Dk-KerMDH assumption. We
will show that for all adversaries A, there exists an adversary B with T(A) ≈ T(B)
and

Advas
Πas

(A) ≤ Advkmdh
Dk,GGen(B) + 1/q. (2)

114 E. Kiltz and H. Wee

Adversary B(PG, [A]2 ∈ G
(k+1)×k
2) generates [M]1 ←r Dpar, and the rest of the CRS

as in the real scheme by picking K ∈ Z
n×(k+1)
q and computing

crs = ([P]1 =
[
M�K

]

1
∈ G

t×k
1 , [C]2 = [K · A]2 ∈ G

n×k
2 , [A]2 ∈ G

(k+1)×k
2).

Next, B runs A on crs and obtains a proof π = [z�]1 ∈ G
1×k
1 and [y]1 ∈ G

n
1 satisfying

y �∈ span(M) and z� · A = y� · C = y�K · A with probability Advas
Πas

(A). Finally, B
returns [s]1 computed as

s� = z� − y�K.

Clearly, s�A = 0 and Pr[s = 0] ≤ 1/q by Lemma 2. This proves equation (2).

3.2 More Efficient QANIZK with Adaptive Soundness for WS
Distributions

Recall that we are considering a probability distribution Dpar that outputs a matrix
[M]1 ∈ G

n×t
1 . Such distributions are called witness sampleable (WS) [42] if there exist

an efficiently sampleable distribution D′
par that outputs M′ ∈ Z

n×t
q such that [M′]1

has the same distribution as [M]1. Note that this slightly restricts the set of languages
which can be handled. Whereas the techniques used in QANIZK protocols for WS
distributions pose no restrictions for most applications, are not applicable to structure-
preserving signatures (for the latter, [M]1 is chosen adaptively by an adversary).

In Figure 5 we give an efficiency improvement of Πas from Figure 4 which only
works for WS distributions.

Gen(par, [M]1 ∈ G
n×t
1):

A ←r Dk;K ←r Z
n×k
q

P := M�K;C := KĀ
crs := ([P]1, [C]2, [Ā]2)
Return (crs, trap = K)

Prove(crs, [y]1,x): // y = Mx

Return π :=
[
x�P

]
1

∈ G
1×k
1

Simπ(crs, trap = K, [y]1):

Return π :=
[
y�K

]
1

Verify(crs, [y]1, π):

Check: e(π,
[
Ā
]
2
) = e(

[
y�]

1
, [C]2)

Fig. 5. More efficient QANIZK Π′
as with adaptive soundness for WS distributions under

Dk-KerMDH Assumption. Recall that A ∈ Z
k×k
q denotes the upper square matrix of

A ∈ Z
(k+1)×k
q .

Theorem 2. Protocol Π′
as from Figure 5 is a Quasi-adaptive Non-Interactive Zero

Knowledege Argument. Suppose in addition that Dpar is a witness sampleable distri-
bution. Then, under the Dk-KerMDH Assumption in G2, the protocol has adaptive
soundness.

Proof. Perfect completeness and perfect zero-knowledge follow readily from the fact
that for all y = Mx and P = M�K:

x�P = x�(M�K) = y�K.

Quasi-Adaptive NIZK for Linear Subspaces Revisited 115

We proceed to establish adaptive soundness based on the Dk-KerMDH assumption. We
will show that for all adversaries A, there exists an adversary B with T(A) ≈ T(B)
and

Advas
Π′

as
(A) ≤ Advkmdh

Dk,GGen(B) + 1/q. (3)

Adversary B(PG, [A]2 ∈ G
(k+1)×k
2) generates M ←r D′

par. (The latter algorithm

exists since Dpar is witness sampleable.) Let M⊥ ∈ Z
n×(n−t)
q be a basis for the kernel

of M�, that is, M⊥ is a full-rank matrix such that M�M⊥ = 0. Next, it picks K′ ∈
Z

n×k
q ,R ∈ Z

(n−t−1)×(k+1)
q and defines

A′ :=

(
A

R · A
)

∈ Z
(k+n−t)×k
q .

Let TA′ ∈ Z
(n−t)×k
q be such that TA′A′ = A′. By implicitly defining K = K′ +

M⊥TA′ , B can compute

[C]2 = [KA]2 = [(K′ + M⊥TA′)A]2 = [K′A
′
+ M⊥A′]2 = [(K′‖M⊥) · A′]2

[P]1 = [M�K]1 = [M�K′]1.

(The way we program the CRS is similar to that in [43, Theorem 13].)
Next, B runs A on crs := ([P]1, [C]2, [Ā]2) and obtains a proof π = [z�]1 ∈ G

1×k
1

and [y]1 ∈ G
n
1 satisfying y�M⊥ �= 0 and

z� · A = y� · C. (4)

By the definitions of C and A′,

z�A = (z�‖0)A′ = y� · C = y�(K′‖M⊥) · A′

such that [c]1 with
c� = ((z� − y�K′)‖ − y�M⊥) �= 0

satisfies c�A′ = 0. From c� = (c�
1 ‖c�

2) ∈ Z
1×(k+1)
q × Z

1×(n−t−1)
q we will now extract

a solution s to the Dk-KerMDH problem. Define s� = c�
1 + c�

2 R such that s�A =
c�
1 A + c�

2 RA = c�A′ = 0. Since c �= 0 and matrix R only leaks through A′ as RA,

Pr
R←rZ

(n−t−1)×(k+1)
q

[c�
1 + c�

2 R = 0 | RA] ≤ 1/q.

This proves equation (3).

3.3 Simple QANIZK with Adaptive One-Time Simulation
Soundness

Protocol Πot-ss from Figure 6 with one-time simulation soundness is based on Πas from
Figure 4 with the hash key K replaced by the 2-wise independent hash function h(τ) :=
K0 + τK1. This allows arguing for one-time simulation soundness. We remark that the
protocol can be easily extending to 	-time simulation soundness by using the 	-wise
independent hash function h(τ) =

∑�
i=0 τ iKi. The size of crs would grow with 	, but

the proof size remains the same.

116 E. Kiltz and H. Wee

Gen(par, [M]1 ∈ G
n×t
1):

A ←r Dk;K0,K1 ←r Z
n×(k+1)
q

(P0,P1) := (M�K0,M
�K1)

(C0,C1) := (K0A,K1A)
crs := ([P0]1, [P1]1, [C0]2, [C1]2, [A]2)
Return (crs, trap = (K0,K1))
//crs defines tag-space T = Zq

Prove(crs, τ, [y]1,x): // y = Mx

Return π :=
[
x�(P0 + τP1)

]
1

∈ G
k+1
1

Simπ(crs, trap = (K0,K1), τ, [y]1):

Return π :=
[
y�(K0 + τK1)

]
1

Verify(crs, τ, [y]1, π):

Check: e(π, [A]2) = e(
[
y�]

1
, [C0 + τC1]2)

Fig. 6. QANIZK Πot-ss protocol with adaptive one-time simulation-soundness under
Dk-KerMDH Assumption

Theorem 3. Protocol Πot-ss from Figure 6 is a Quasi-adaptive Non-Interactive Zero
Knowledege Argument. Furthermore, under the Dk-KerMDH Assumption in G2, it has
adaptive one-time simulation soundness.

The proof of Theorem 3 is the same as that for Theorem 1 instantiated with the second
part of Lemma 2.

Proof. Perfect completeness and perfect zero-knowledge follow readily from the fact
that for all y = Mx and (P0,P1) = (M�K0,M

�K1) and all τ :

x�(P0 + τP1) = x�(M�K0 + τM�K1) = y�(K0 + τK1).

We proceed to establish adaptive soundness based on the Dk-KerMDH assumption. We
will show that for all adversaries A, there exists an adversary B with T(A) ≈ T(B)
and

Advot-ss
Πot-ss(A) ≤ Advkmdh

Dk,GGen(B) + 1/q. (5)

Adversary B(PG, [A]2 ∈ G
(k+1)×k
2) generates [M]1 ←r Dpar, and the rest of the CRS

as in the real scheme by picking K0,K1 ∈ Z
n×(k+1)
q and computing crs as before.

Next, B runs A on crs, simulates Simπ once using (K0,K1), and obtains a tag τ ,
a proof π = [z�]1 ∈ G

1×k
1 and [y]1 ∈ G

n
1 satisfying y �∈ span(M) and z� · A =

y� · (C0 + τC1) = y�(K0 + τK1) · A. Finally, B returns [s]1 computed as

s� = z� − y�(K0 + τK1).

Clearly, s�A = 0 and Pr[s = 0] ≤ 1/q by the second part of Lemma 2. This proves
equation (5).

4 QANIZK with Unbounded Simulation Soundness for
WS Distributions

In this section, we present a QANIZK with unbounded simulation soundness. For
unbounded simulation-soundness, we can no longer rely on information-theoretic
techniques for the core lemma (Lemma 2) as in the previous section. Instead,
we introduce a computational variant of the core lemma based on the Dk-MDDH
assumption in G1, which we will use again for the fully secure LHSPS in Section 5.

Quasi-Adaptive NIZK for Linear Subspaces Revisited 117

4.1 Computational Core Lemma

In the computational core lemma, instead of giving out zero/one copy of K0 + τK1 to
the adversary as in Lemma 2, we give out unbounded copies of

([r�B�(K0 + τK1)]1, [r
�B�]1) ∈ (G

1×(k+1)
1)2 (6)

where B ←r Dk,K0,K1 ←r Z
(k+1)×(k+1)
q are fixed and a fresh r ←r Z

k
q is

chosen for each sample. Under the Dk-MDDH assumption in G1 w.r.t. the matrix
B, this essentially yields a pseudorandom MAC (or randomized PRF) [13,23,25,29].
Note that we can verify these pairs given (K0,K1). As before, we then publish
[A]2, [K0A]2, [K1A]2 for public verification. For completeness, we use the fact that
for all A,B, r,K0,K1:

e([r�B�(K0 + τK1)]1, [A]2) = e([r�B�]1, [K0A + τK1A]2). (7)

The computational core lemma says that random samples in (6) are pseudorandom
subject to the preceding verification equation, in the sense that the first component
hides any vector in the kernel of A. The construction and proof strategy build upon
those used in recent Dk-MDDH-based fully secure IBE schemes in [13,23], which in
turn build upon earlier dual system IBE schemes in [24,45,50,52].

Lemma 3 (computational core lemma for unbounded adaptive soundness).
For all adversaries A, there exists an adversary B with T(A) ≈ T(B) and

Pr

⎡

⎢
⎢
⎢
⎢
⎣

τ∗ /∈ Qtags

∧ b′ = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A,B ←r Dk

K0,K1 ←r Z
(k+1)×(k+1)
q

(P0,P1) := (B�K0,B
�K1)

pk := ([P0]1, [P1]1, [B]1,K0A,K1A,A)

b ←r {0, 1}; b′ ←r AOb(·),O∗(·)(pk)

⎤

⎥
⎥
⎥
⎥
⎦

≤ 1

2
+ 2Q · Advmddh

Dk,GGen(B) + Q/q,

where
– Ob(τ) returns (

[
bμa⊥ + r�(P0 + τP1)

]
1
,
[
r�B�]

1
) ∈ (G

1×(k+1)
1)2 with μ ←r

Zq, r ←r Z
k
q and adds τ to Qtags. Here, a⊥ �= 0 satisfies a⊥A = 0.

– O∗(τ∗) returns K0 + τ∗K1. A only gets a single call τ∗ to O∗.
– Q is the number of queries A makes to Ob.

Proof. We proceed via a series of games. For i = 0, 1, . . . , Q, in Game i, we answer the
first i queries to Ob using O0, and the last Q − i queries using O1. Let Advi denote
the probability that A wins the game, that is, τ∗ /∈ Qtags ∧ b′ = b. It suffices to show
that for all i = 0, 1, . . . , Q − 1,

|Advi − Advi+1| ≤ 2Advmddh
Dk,GGen(B) + 1/q.

The main difference between Game i and Game i + 1 is that we answer the i’th query
τ to Ob using O0 in Game i and O1 in Game i + 1, where Ob returns:

([
bμa⊥ + r�B�(K0 + τK1)

]

1
,
[
r�B�]

1

)
, where μ ←r Zq, r ←r Z

k
q .

118 E. Kiltz and H. Wee

Using the MDDH assumption twice, we may switch [Br]1 with [w]1 ←r G
k+1
1 and then

reverse the switch. Then, we just need to bound the advantage of A in an experiment
where we answer the i’th query τ to Ob with

([
bμa⊥ + w�(K0 + τK1)

]

1
,
[
w�]

1

)
, where μ ←r Zq,w ←r Z

k+1
q ;

and the remaining q−1 queries are handled using the normal O0, O1 as before. We may
then proceed via an information-theoretic argument (similar to that used in Lemma 2)
to bound the advantage for this experiment. Specifically, it suffices to show that for all
A,B ← Dk, with probability 1 − 1/q over w ←r Z

k+1
q : for all τ �= τ∗, the following

distributions

(pk,w�(K0 + τK1),K0 + τ∗K1) and (pk, μa⊥ + w�(K0 + τK1),K0 + τ∗K1) (8)

are the same, where K0,K1 ←r Z
(k+1)×(k+1)
q . (As in Lemma 2, we may use complexity

leveraging to handle adaptive choices of τ, τ∗.) The quantities in the distributions above
correspond to the answers for the i’th query to Ob and the query to O∗; moreover, given
pk, we can compute a⊥ and simulate the remaining q − 1 queries to O0 and O1. Upon
eliminating the terms involving K0 + τ∗K1, it suffices to show that with probability
1 − 1/q over w ←r Z

k+1
q , the following distributions

((τ − τ∗)w�K1,K1A,B�K1) and (μa⊥ + (τ − τ∗)w�K1,K1A,B�K1)

where K1 ←r Z
(k+1)×(k+1)
q are the same. To establish the last statement, let us sample

K1 as K′ + μ′b⊥�
a⊥ where K′ ←r Z

(k+1)×(k+1)
q , μ′ ←r Zq and b⊥ �= 0 satisfies

b⊥B = 0. Observe that (K1A,B�K1) = (K′A,B�K′) and that with probability
1 − 1/q over w, we have b⊥w �= 0. Fix such a w, and the last statement follows from
the fact that for all μ, the following distributions

((τ − τ∗)μ′w�b⊥�
a⊥) and (μa⊥ + (τ − τ∗)μ′w�b⊥�

a⊥)

are the same, where μ′ ←r Zq.

4.2 Our QANIZK Construction

Our protocol Πuss with unbounded simulation soundness for witness sampleable
distributions (c.f. Section 3.2) is given in Figure 7. We basically combine Πas with the
pseudorandom MAC given in the computational core lemma. The (simulated) proofs,
instead of being [y�K]1 as in Πas, are now given by

(
[
y�K + r�B�(K0 + τK1)

]
1
,
[
r�B�]

1
)

Roughly speaking, the pseudo-random MAC allows us to hide partial information about
K across all the simulated proofs, upon which we can use an information-theoretic
argument as before.

The WS requirement basically means that we may assume that we know an explicit
representation of the matrix M in the proof of security. For the protocol in Section 3.2,
we need an explicit representation of M⊥ (a basis for the kernel of M) in the proof
of security. For the protocol in this section, it suffices to know [M⊥]2, with which we
can efficiently verify the winning condition for (simulation) soundness; the latter is
necessary in order to build a distinguisher for the pseudorandom MAC.

Quasi-Adaptive NIZK for Linear Subspaces Revisited 119

Gen(par, [M]1 ∈ G
n×t
1):

A,B ←r Dk

K ←r Z
n×(k+1)
q ;

K0,K1 ←r Z
(k+1)×(k+1)
q

P := M�K;C := KA
(C0,C1) := (K0A,K1A)
(P0,P1) := (B�K0,B

�K1)
crs := ([P]1, [C]2, [A]2, [B]1,
[C0]2, [C1]2, [P0]1, [P1]1)
trap := K
Return (crs, trap)
//crs defines tag-space T = Zq

Prove(crs, τ, [y]1,x): // y = Mx

r ←r Z
k
q

π := (
[
x�P + r�(P0 + τP1)

]
1
,
[
r�B�]

1
)

Return π

Verify(crs, τ, [y]1, π):

Parse π = (π1, π2)
Check: e(π1, [A]2) = e([y�]1, [C]2) ·
e(π2, [C0 + τC1]2)

Simπ(crs, trap = K, τ, [y]1):

r ←r Z
k
q

Return π :=
(
[
y�K + r�(P0 + τP1)

]
1
,
[
r�B�]

1
)

Fig. 7. QANIZK Πuss protocol with (adaptive) unbounded simulation-soundness for
WS distributions under Dk-MDDH Assumption

Theorem 4. Protocol Πuss from Figure 7 is a Quasi-adaptive Non-Interactive Zero
Knowledege Argument. Suppose in addition that Dpar is a witness sampleable distribu-
tion. Then, under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption in
G2, the protocol has adaptive unbounded simulation soundness.

Proof. Perfect completeness and perfect zero-knowledge follow readily from the fact
that for all y = Mx and P = M�K:

x�P = x�(M�K) = y�K,

along with (7).
We proceed to establish adaptive unbounded simulation soundness. We will show

that for any adversary A that makes at most Q queries to Simπ, there exists adversaries
B0, B1 with T(A) ≈ T(B0) ≈ T(B1) and

Advuss
Πuss

(A) ≤ Advkmdh
Dk,GGen(B0) + 2Q · Advmddh

Dk,GGen(B1) + (Q + 1)/q. (9)

We proceed via a series of games and we use Advi to denote the advantage of A in
Game i.

Game 0. This is the real experiment from Definition 5.

Game 1. Switch Verify to Verify∗:
Verify∗(crs, τ, [y]1, π):

Parse π = (π1, π2)
Check: π1 = [y]�1K + π2(K0 + τK1)

To bound |Adv0 − Adv1|, it suffices to bound the probability that A produces
([y]1, π1, π2) that passes Verify but not Verify∗. We may rewrite the verification
equation in Verify as

e(π1, [A]2) = e([y]�1K, [A]2) · e(π2(K0 + τK1), [A]2)

⇐⇒ e(π1 − [y]�1K + π2(K0 + τK1), [A]2) = 0

120 E. Kiltz and H. Wee

Observe that for any ([y]1, π1, π2) that passes Verify but not Verify∗, the value

π1 − [y]�1K + π2(K0 + τK1) ∈ G
1×(k+1)
1

is a non-zero vector in the kernel of A, which is hard to sample under the
D-KerMDH assumption. This means that

|Adv0 − Adv1| ≤ Advkmdh
Dk,GGen(B0).

Game 2. Let a⊥ be an element from the kernel of A. Switch Simπ to Sim∗
π where

Sim∗
π(crs, trap = K, τ, [y]1): // adds μa⊥

r ←r Z
k
q ; μ ←r Zq

Return π := (
[
y�K + μa⊥ + r�(P0 + τP1)

]
1
,
[
r�B�]

1
)

It follows readily from Lemma 3 and the fact that we can efficiently verify the
winning condition for A that

|Adv1 − Adv2| ≤ 2QAdvmddh
Dk,GGen(B1) + Q/q.

Basically, we pick K ourselves and proceed as follows:
– when A makes a query (τ, [y]1) and τ �= τ∗, query Ob at τ to simulate either

Simπ or Sim∗
π, where b = 0 corresponds to Simπ and b = 1 to Sim∗

π;
– when A makes a query (τ, [y]1) and τ = τ∗, pick r ← Z

k
q , return

(
[
y�K + r�(P0 + τP1)

]
1
,
[
r�B�]

1
);

– we query O∗ at τ∗ to simulate Verify∗.
The winning condition of A can be efficiently verified because Dpar is a witness
sampleable distribution: given [y]1 and M ∈ Z

n×t
q we can verify [y]1 ∈ LM ⇔

[y�]1M
⊥ �= [0]1.

Game 3. Switch K ←r Z
n×(k+1)
q in Gen to K := K′ + ua⊥, where K′ ←r

Z
n×(k+1)
q ,u ←r Z

n
q .

We will bound the advantage of the adversary A in Game 3 via an information-theoretic
argument. We first look at what the adversary’s view together with K′ leaks about u:

– C = (K′ + ua⊥)A = K′A completely hides u;
– P = M�(K′ + ua⊥) leaks M�u;
– the output of Sim∗

π completely hides u, since y�(K′ + ua⊥) + μa⊥ is identically
distributed to y�K′ + μa⊥ (namely, y�u is masked by μ ←r Zq).

To convince Verify∗ to accept a proof (π1, π2) on y∗, the adversary must correctly
compute

y∗�
(K′ + ua⊥)

and thus (y∗)�u ∈ Zq. Given M�u, for any adaptively chosen y∗ not in the span of
M, we have that (y∗)�u is uniformly random over Zq from the adversary’s view-point.
Therefore, Adv3 ≤ 1/q.

5 Linearly Homomorphic Structure-Preserving
Signatures

We show how to extend our QANIZK techniques to LHSPS (linearly homomorphic
structure-preserving signature), via a general methodology outlined in Section 1.2.

Quasi-Adaptive NIZK for Linear Subspaces Revisited 121

The simplest example of our techniques as applied to the QANIZK protocol Πas from
Figure 4 yields a one-time LHSPS, presented in Section A.2. Next, we modify the
QANIZK protocol Πuss from Figure 7 into a fully secure LHSPS: we use sk = trap and
define a signature on [m]1 as the “simulated proof” Simπ(trap, [m]1). We only achieve
security against targeting adversaries (c.f. Definition 8), namely adversaries for which
the winning condition is efficiently verifiable; the latter is necessary in order to build a
distinguisher for the pseudorandom MAC in the security proof.

Gen(par):

A,B ←r Dk;K ←r Z
n×(k+1)
q

K0,K1 ←r Z
(k+1)×(k+1)
q

C := KA ∈ Z
n×k
q

(C0,C1) := (K0A,K1A)
(P0,P1) := (B�K0,B

�K1)
sk := K
pk := ([C0]2, [C1]2, [P0]1, [P1]1,
[C]2, [A]2, [B]1)
Return (pk, sk)

Sign(pk, sk, τ, [m]1):

r ←r Z
k
q ;

σ :=
([
m�K + r�(P0 + τP1)

]
1
,
[
r�B�]

1

)

Return σ ∈ (G
1×(k+1)
1)2

SignDerive(pk, τ, (ωi, σi)1≤i≤�):

r ←r Z
k
q ;

Parse σi = ([si], [ti])

σ := (
[
r�(P0 + τP1) +

∑�
i=1 ωisi

]

1
,

[
r�B� +

∑�
i=1 ωiti

]

1
)

Return σ ∈ (G
1×(k+1)
1)2

Verify(pk, τ, [m]1, σ):

Parse σ = (σ1, σ2)
Check:
e(σ1, [A]2) = e([m�]1, [C]2) · e(σ2, [C0 + τC1]2)

Fig. 8. Linearly homomorphic structure-preserving signature LHSPSfull with message-
space M = G

n
1 and tag-space T = Zq

Theorem 5. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption
in G2, LHSPSfull from Figure 8 is a linearly homomorphic structure-preserving signature
scheme secure against targeting adversaries.

The proof is similar to that in Theorem 4, with a complication and an additional
1/(Q + 1) factor security loss arising from the fact that the adversary is allowed to
have previously requested signatures for the challenge tag τ∗.

Proof. Perfect correctness and full randomizability are straight-forward. We proceed
to establish security against targeting adversaries. We will show that for any adversary
A that makes at most Q signing queries, there exists adversaries B0, B1 with T(A) ≈
T(B0) ≈ T(B1) and

Advufcma−t
LHSPSfull

(A) ≤ (Q + 1)(Advkmdh
Dk,GGen(B0) + 2QAdvmddh

Dk,GGen(B1) +
Q + 1

q
). (10)

We proceed via a series of games and we use Advi to denote the advantage of A in
Game i.

122 E. Kiltz and H. Wee

Game 0. This is the real experiment from Definition 8.

Game 1. Suppose the adversary makes at most Q queries to SignO with tags
τ1, . . . , τQ. In addition, we define τQ+1 := τ∗. Now, pick i∗ ←r [Q+1] and abort if
i∗ is not the smallest index i for which τ∗ = τi. In the rest of the proof, we focus
on the case we do not abort, which means that τ∗ = τi∗ and τ1, . . . , τi∗−1 are all
different from τ∗. This means that given τ , SignO can check whether τ∗ equals τ :
for the rest i∗ − 1 queries, answer NO, and starting from the i∗’th query, we know
τ∗. It is easy to see that

Adv1 ≥ 1

Q + 1
Adv0.

Game 2. Switch Verify to Verify∗:
Verify∗(pk, τ, [m]1, σ):

Parse σ = (σ1, σ2)
Check: σ1 = [m]�1K + σ2(K0 + τK1)

As in the proof of Theorem 4, observe that for any ([m]1, σ1, σ2) that passes Verify
but not Verify∗, the value

σ1 − [m]�1K − σ2(K0 + τK1) ∈ G
1×(k+1)
1

is a non-zero vector in the kernel of A, which is hard to sample under the
D-KerMDH assumption. This means that

|Adv1 − Adv2| ≤ Advkmdh
Dk,GGen(B0).

Game 3. Switch Sign to Sign∗ where

Sign∗(pk, sk, τ, [m]1): // adds μa⊥ for τ �= τ∗

r ←r Z
k
q ; μ ←r Zq

if τ = τ∗, μ := 0
Return σ := (

[
m�K + μa⊥ + r�(P0 + τP1)

]
1
,
[
r�B�]

1
)

As in the proof of Theorem 4, it follows readily from Lemma 3 and the fact that
the adversary is targeting that

|Adv2 − Adv3| ≤ 2QAdvmddh
Dk,GGen(B1) + Q/q

Basically, we pick K ourselves and use Ob to simulate either Sign or Sign∗ for
τ �= τ∗; compute the signature directly to simulate Sign or Sign∗ for τ = τ∗; and
O∗ to simulate Verify∗. The winning condition of A can be efficiently verified since
A is a targeting adversary.

Game 4. Switch K ←r Z
n×(k+1)
q in Gen to K := K′ + ua⊥, where K′ ←r

Z
n×(k+1)
q ,u ←r Z

n
q .

We will bound the advantage of the adversary in Game 4 via an information-theoretic
argument, similar to that in Theorem 4. We first look at what the adversary’s view
together with K′ leaks about u:

– C = (K′ + ua⊥)A = K′A completely hides u;

Quasi-Adaptive NIZK for Linear Subspaces Revisited 123

– the output of SignO∗ on (m, τ) for τ �= τ∗ completely hides u, since m�(K′ +
ua⊥) + μa⊥ is identically distributed to m�K′ + μa⊥ (namely, m�u is masked by
μ ←r Zq).

– the output of SignO∗ on τ∗ leaks M�
τ∗(K′ + ua⊥), which is captured by M�

τ∗u;
To convince Verify∗ to accept a signature (σ1, σ2) on m∗, the adversary must correctly
compute

m∗�
(K′ + ua⊥)

and thus (m∗)�u ∈ Zq. Given M�
τ∗u, for any adaptively chosen m∗ not in the span

of Mτ∗ , we have that (m∗)�u is uniformly random over Zq from the adversary’s view-
point. Therefore, Adv4 ≤ 1/q.

Acknowledgments. We thank Fabrice Benhamouda and Olivier Blazy for helpful
discussions on prior works and the reviewers for detailed and constructive feedback.

A Appendix

A.1 More Efficient QANIZK with One-Time Simulation Soundness
for WS Distributions

In Figure 9 we give a one-time simulation-sound QANIZK for WS distributions. It is
a variant of Πot-ss from Figure 9 with shorter proofs as with Π′

as. The result is inspired
by the prior construction in [1]. Recall that in Πot-ss, we replaced K in Πas with a
2-wise independent hash function K0 + τK1, which serves also as a one-time MAC.
Unfortunately, we cannot apply the same modification to Π′

as. Roughly speaking, in the
proof of security for Π′

as, we need to program K. In the setting for one-time simulation
soundness, we would need to program K0 + τ∗K1, which we cannot do since τ∗ is
adaptively chosen.

Instead, we replace K in Π′
as with a different 2-wise independent hash function

τ �→
∑�

i=1
Ki,τi

as in Lamport’s one-time signature. As in the security proof for Lamport’s one-time
signature, we would guess i′ ←r [λ], b′ ←r {0, 1} so that τ∗

i′ �= τi′ and τ∗
i′ = b′ (such a

(i′, b′) exists since τ �= τ∗) and then program Ki′,b′ .

Theorem 6. The protocol from Figure 9 is a Quasi-adaptive Non-Interactive Zero
Knowledege Argument. Suppose in addition that Dpar is a witness sampleable distri-
bution. Then, under the Dk-KerMDH Assumption in G2, the protocol has adaptive
one-time simulation soundness.

The proof is similar to that for Theorem 2, along with ideas from the security proof
for Lamport’s one-time signature scheme.

Proof. Perfect completeness and perfect zero-knowledge are straight-forward as before.
We proceed to establish adaptive soundness based on the Dk-KerMDH assumption. We
will show that for all adversaries A, there exists an adversary B with T(A) ≈ T(B)
and

Advot-ss
Π′

ot-ss
(A) ≤ 1

2λ
(Advkmdh

Dk,GGen(B) + 1/q).

B begins by choosing i′ ←r [λ], b′ ←r {0, 1} and abort later if it is not the case that
τ∗

i′ �= τi′ and τ∗
i′ = b′. B then selects (Ki,b)1≤i≤�,0≤b≤1) as follows:

124 E. Kiltz and H. Wee

Gen(par, [M]1 ∈ G
n×t
1):

A ←r Dk;
Ki,b ←r Z

n×k
q , i = 1, . . . , λ, b = 0, 1

Pi,b := M�Ki,b;Ci,b := Ki,bĀ
crs := ([Pi,b]1, [Ci,b]2, [Ā]2)
Return (crs, trap = (Ki,b)1≤i≤�,0≤b≤1)
//crs defines tag-space T = {0, 1}λ

Prove(crs, τ, [y]1,x): // y = Mx

Return π :=
[
x� ∑�

i=1 Pi,τi

]

1

Simπ(crs, trap = (K)i,b, τ, [y]1):

Return π :=
[
y� ∑�

i=1 Ki,τi

]

1

Verify(crs, τ, [y]1, π):

Check: e(π,
[
Ā
]
2
) =

e(
[
y�]

1
,
[∑�

i=1 Ci,τi

]

2
)

Fig. 9. QANIZK Π′
ot-ss protocol with adaptive one-time simulation-soundness for WS

distributions under Dk-KerMDH Assumption

– if (i, b) �= (i′, b′), pick Ki,b ←r Z
n×k
q ;

– if (i, b) = (i′, b′), pick K′ ←r Z
n×k
q and implicitly define Ki′,b′ = K′ +M⊥TA′ (as

in the proof of Theorem 2). This yields [Ci′,b′]2 = [(K′‖M⊥) · A′]2.

Suppose τ∗
i′ �= τi′ and τ∗

i′ = b′, which happens with probability 1
2λ

. Then, B can simulate
Simπ on τ since it knows (Ki,τi)1≤i≤λ explicitly. In addition, upon obtaining from A
an accepting proof π = [z�]1 ∈ G

1×k
1 for τ∗ and [y]1 ∈ G

n
1 satisfying y�M⊥ �= 0, we

have
(z� −

∑

i�=i′ Ki,τ∗
i
) · A = y� · Ci′,b′ = y�(K′‖M⊥) · A′.

We may then proceed as in Theorem 2 to extract a solution to the Dk-KerMDH problem.

A.2 One-Time Linearly Homomorphic Structure-Preserving
Signatures

We now modify the QANIZK protocol Πas from Figure 4 into a one-time structure-
preserving linearly homomorphic signature scheme. One-time basically means that the
tag space is a singleton set, upon which we may omit the tag from the signature
algorithms. Following the general methodology outlined in Section 1.2, we use sk = trap
and define a signature on [m]1 as the “simulated proof” Simπ(trap, [m]1). The scheme
can also be seen as a generalization of the one-time LHSPS scheme from [47] from
Dk = L2 to arbitrary matrix distributions. It serves as a warm-up for our unbounded
construction in the next section.

Theorem 7. Under the Dk-KerMDH Assumption in G2, LHSPSot from Figure 10 is a
one-time linearly homomorphic structure-preserving signature scheme.

The proof of Theorem 7 is essentially the same as the one of Theorem 1 with the
difference that [P]1 = [M�K]1 from crs of Πas is being constructed adaptively “on
the fly”, where M = (m1, . . . ,mq) ∈ Z

n×q
q and [mi]1 ∈ Z

n
q is the message of the i-th

signing query. (This adaptivity is also the reason why one cannot use the more efficient
QANIZK protocol Π′

as from Figure 5.)

Quasi-Adaptive NIZK for Linear Subspaces Revisited 125

Gen(par):

A ←r Dk;K ←r Z
n×(k+1)
q

C := KA ∈ Z
n×k
q

sk := K
pk := ([C]2, [A]2)
Return (pk, sk)

Sign(pk, sk, [m]1):

σ :=
[
m�K

]
1

Return σ ∈ G
1×(k+1)
1

SignDerive(pk, (ωi, σi)1≤i≤�):

σ :=
∑�

i=1 ωiσi

Return σ ∈ G
1×(k+1)
1

Verify(pk, [m]1, σ):

Check: e(σ, [A]2) = e([m�]1, [C]2)

Fig. 10. One-time linearly homomorphic structure-preserving signature LHSPSot with
message-space M = G

n
1

Proof. Perfect correctness and full randomizability are straight-forward. We proceed
to establish security based on the Dk-KerMDH assumption. We will show that for all
adversaries A, there exists an adversary B with T(A) ≈ T(B) and

Advufcma
LHSPSot(A) ≤ Advkmdh

Dk,GGen(B) + 1/q. (11)

Adversary B(PG, [A]2 ∈ G
(k+1)×k
2) generates pk as in the real scheme by picking K ∈

Z
n×(k+1)
q . Next, B runs A on pk, answers signing queries on messages [m1]1, . . . , [mQ]1

as in the real scheme using K, and obtains a signature σ = [z�]1 ∈ G
1×k
1 on [m∗]1 ∈ G

n
1

such that m∗ /∈ span(M), where M = (m1, . . . ,mQ) ∈ Z
n×Q
q . Finally, B returns [s]1

computed as
s� = z� − m∗�

K.

As before in Theorem 7, s�A = 0 and Pr[s = 0] ≤ 1/q by Lemma 2, since the signing
queries only leak M�K. This proves equation (11).

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof
systems: New constructions and applications. In: Eurocrypt, Also, Cryptology
ePrint Archive, Report 2014/483 (2015)

2. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: Generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

3. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: Tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

4. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 1–20. Springer, Heidelberg (2012)

5. Attrapadung, N.: Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577.
Springer, Heidelberg (2014)

126 E. Kiltz and H. Wee

6. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the
standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

7. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

8. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

9. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

10. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and
noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 356–374. Springer, Heidelberg (2008)

11. Bellare, Mihir, Goldwasser, Shafi: New Paradigms for Digital Signatures and
Message Authentication Based on Non-interactive Zero Knowledge Proofs. In:
Brassard, Gilles (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer,
Heidelberg (1990)

12. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified
proof and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)

13. Blazy, O., Kiltz, E., Pan, J.: (hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014)

14. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press,
May 1988

15. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

16. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

17. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011)

18. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

19. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

20. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)

21. Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups:
New homomorphic primitives and applications. In: Asiacrypt, pp. 193–212 (2014)

Quasi-Adaptive NIZK for Linear Subspaces Revisited 127

22. Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization
in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 179–196. Springer, Heidelberg (2009)

23. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Eurocrypt (2015). To appear

24. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 435–460. Springer, Heidelberg (2013)

25. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, p. 13. Springer, Heidelberg (1998)

26. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002)

27. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust
non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, p. 566. Springer, Heidelberg (2001)

28. Desmedt, Y.: Computer security by redefining what a computer is. In: New Security
Paradigms Workshop (NSPW) (1993)

29. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012)

30. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

31. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally
composable string commitments with adaptive security. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg
(2011)

32. Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

33. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011)

34. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 142–160. Springer, Heidelberg (2010)

35. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

36. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

37. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

38. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

128 E. Kiltz and H. Wee

39. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

40. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, p. 244. Springer, Heidelberg
(2002)

41. Jutla, C., Roy, A.: Relatively-sound NIZKs and password-based key-exchange.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 485–503. Springer, Heidelberg (2012)

42. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

43. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014)

44. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

45. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

46. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

47. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)

48. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014)

49. Morillo, P., Ràfols, C., Villar, J.L.: Matrix computational assumptions in
multilinear groups. Manuscript (2015)

50. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

51. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press,
October 1999

52. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

53. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

54. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

Leakage-Resilient Cryptography

Leakage-Resilient Circuits Revisited – Optimal
Number of Computing Components Without

Leak-Free Hardware

Dana Dachman-Soled1(B), Feng-Hao Liu1, and Hong-Sheng Zhou2

1 University of Maryland, College Park, USA
danadach@ece.umd.edu, fenghao@cs.umd.edu

2 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. Side channel attacks – attacks that exploit implementation-
dependent information of a cryptosystem – have been shown to be highly
detrimental, and the cryptographic community has recently focused on
developing techniques for securing implementations against such attacks.
An important model called Only Computation Leaks (OCL) [Micali and
Reyzin, TCC ’04] and its stronger variants were proposed to model a
broad class of leakage attacks (a type of side-channel attack). These
models allow for unbounded, arbitrary leakage as long as (1) informa-
tion in each leakage observation is bounded, and (2) different parts of
the computation leak independently. Various results and techniques have
been developed for these models and we continue this line of research in
the current work.

We address the problem of compiling any circuit into a circuit secure
against OCL attacks. In order to leverage the OCL assumption, the
resulting circuit will be split into components, where at any point in time
only a single component is active. Optimally, we would like to output a
circuit that has only one component, and no part of the computation
needs to be leak-free. However, this task is impossible due to the result
of Barak et al. [JACM ’12]. The current state-of-the-art constructions
achieve either two components with additional leak-free hardware, or
many components without leak-free hardware.

In this work, we show how to achieve the best of both worlds: We con-
struct two-component OCL schemes without relying on leak-free com-
ponents. Our approach is general and modular – we develop generic
techniques to remove the hardware component from hardware-based
constructions, when the functionality provided by the hardware satis-
fies some properties. Our techniques use universal deniable encryption
(recently constructed by Sahai and Water [STOC ’14] using indistin-
guishable obfuscation) and non-committing encryption in a novel way.
Then, we observe that the functionalities of the hardware used in previ-
ous two-component constructions of Juma and Vahlis [Crypto ’10], and
Dziembowski and Faust [TCC ’12] satisfy the required properties.

The techniques developed in this paper have deep connections with
adaptively secure and leakage tolerant multi-party computation (MPC).
Our constructions immediately yield adaptively secure and leakage tol-
erant MPC protocols for any no-input randomized functionality in the

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 131–158, 2015.
DOI: 10.1007/978-3-662-46803-6 5

132 D. Dachman-Soled et al.

semi-honest model. The result holds in the CRS model, without
pre-processing. Our results also have implications to two-party leakage
tolerant computation for arbitrary functionalities, which we obtain by
combining our constructions with a recent result of Bitansky, Dachman-
Soled, and Lin [Crypto ’14].

1 Introduction

Side-channel attacks are attacks that exploit implementation-dependent infor-
mation of a cryptosystem. Passive side-channel attacks, or leakage attacks, such
as timing attacks, power analysis attacks, acoustic attacks, and more [1,6,28,33,
39,40], have proven highly detrimental. Indeed, it has been shown that leakage
attacks can be used to recover the entire secret key in common implementations
of the RSA [29], AES [48] and DES [38] cryptosystems. These attacks are not just
theoretical, and can be launched in complex, real-life settings, e.g. Boneh and
Brumley [12] launched a practical network-based timing attack on SSL-enabled
web servers.

In recent years, the cryptographic community has been devoted to develop-
ing adversarial models for side-channel attacks and constructing provably secure
cryptosystems in these models. An important framework of this approach is to
construct efficient compilers which take any circuit C (which may have a secret
s hardcoded) and convert it to a new circuit C̃ that is secure against leakage
attacks, where the adversarial model allows the attacker to adaptively choose
inputs x and observe outputs y = C̃(x) as well as adaptively obtaining leak-
age functions �(C̃) on the state of the circuit. Unfortunately, achieving security
against adversaries who obtain even a single bit of arbitrary leakage is impossible
since it implies virtual black box obfuscation, which was ruled out by the work
of Barak et al. [4,5]1.

Thus, the community turned to study reasonable ways to restrict the leakage
function � the adversary may leak on the internal state of the circuit. An impor-
tant restricted class of leakage attacks was suggested by Micali and Reyzin [42],
called the only computation leaks (OCL) model. In this model, throughout the
computation, devices can have active states and inactive states, and at any
point in time, information can only be leaked on the currently active state. This
assumption is meant to capture a large class of attacks such as timing attacks,
power analysis attacks and acoustic attacks, which only leak information on data
this is currently being computed on.

Subsequently, various works have constructed so-called OCL compilers, which
take any circuit C as input and convert it onto a new circuit C̃ such that C̃ is not
only functionally equivalent, but also secure against OCL attacks. The way these
compilers work is by splitting the computation into components, where during
any time period only a single component is active. Specifically, consider an n-
component circuit C̃ = {C̃1, . . . , C̃n}. At time period i where some component
C̃j is active, the adversary may obtain some leakage �i(C̃j) for some bounded

1 This argument was explicitly stated in the work [32].

Leakage-Resilient Circuits Revisited 133

output length function �i he chose. We say the scheme secure against continual
OCL attacks if the adversary may run the circuit many times and obtain an
unbounded total amount of leakage, as long as its leakage per time period is
bounded. As noted previously, due to the impossibility result of Barak et al. [4],
the minimal number of components required is two.

The first OCL compiler constructions were by Juma and Vahlis [37] and Gold-
wasser and Rothblum [31]. Both of these constructions require a secure hardware
component to achieve security against OCL attacks; the construction of [37]
requires only two components, and that of [31] requires many. Subsequently,
Dziembowski and Faust [24] presented an alternative two-component OCL con-
struction which achieves information-theoretic security, but also requires secure
hardware. Although these works had argued that the hardware functionalities
required are simple and independent of the circuit C,2 it is still unsatisfactory
if we need additional trusted assumptions on top of the existing one (the OCL
assumption), especially when they are not necessary.

To date, the only known OCL compiler which does not require secure hard-
ware is the information-theoretic construction of Goldwasser and Rothblum [32].
However, their OCL scheme requires a large number of OCL components3. We
note that in works concurrent with this work [16,21,27], indirect constructions
of 2-component OCL via leakage tolerant computation were constructed by
applying Theorem 1 of [10], which shows an equivalence between 2-party leak-
age tolerant computation and 2-componenet OCL. For direct constructions, the
state-of-the art previous to this work was to either rely on secure hardware to
achieve OCL with optimal number of components, or to achieve OCL without
secure hardware, but with a large number of components. A major open question
left along this line is:

Can we construct two-component OCL compilers without relying on secure
hardware?

Beyond the fact that the question of optimal component OCL is of theoretical
interest, OCL with minimal components has implications for the strength of
the adversary we can tolerate, the hardware required by the OCL scheme, and
for settings such as leakage-tolerant two-party computation. We discuss some of
these implications below:

Strength of adversary. Instead of characterizing a result as an OCL result,
OCL results can be alternatively described as a class of leakage functions
(out of all possible functions) that we provide security for. It is not hard
to see that the fewer OCL components are, the larger the class of leakage
functions we can handle.

2 This is to avoid the trivial solution that the hardware does all the computation of
C.

3 The original result of [32] requires |C| components, where |C| is the size of the origi-
nal circuit. It was shown by [10] that the “ciphertext bank” of [32] can be combined
with the construction of [24] to achieve an OCL compiler without secure hardware.
The number of components required by this modification is a large constant, approx-
imated by [10] as 20.

134 D. Dachman-Soled et al.

Hardware. Although OCL is an attractive assumption, it is not always
clear whether the assumption holds universally under all environments. For
example, the cold boot attacks by Halderman et al. [33] that showed mem-
ory can be leaky even if they are not active4. In order to implement an
OCL scheme, we need an underlying hardware design that supports the
OCL feature. The more components we need, the harder the design can be.
Moreover, the overhead becomes larger with the number of components, so
a large number of components, even though it is a constant such as twenty
in the work [10], may be prohibitive.
Leakage tolerant computation. As will be discussed in the sequel, two-
component OCL without hardware has implications for leakage tolerant two-
party computation. Loosely speaking, this is two-party secure computation
where, in addition to corrupting parties, the adversary may ask for leakage
on honest parties.

Model in This Paper. In the literature, there are several strengthening OCL
models, such as OCL+ or a closely related model LDS (leaky distributed system)
proposed by Bitansky et al. [7]5. Unlike the OCL assumption where the adversary
can only get leakage of components that follow a particular order (the order
of activation), OCL+ and LDS allow the adversary to leak component of an
arbitrary order he likes. In these models, the adversary cannot leak on joint
states of components, which is similar to the concept of split-state leakage (c.f.
see the work of [34,41] for further discussions). These models capture some
memory attacks (such as some cold boot attacks [33]) beyond the traditional
OCL model, as long as the leakage does not apply on joint states and are bounded
per time period. Since the restrictions are weaker, it is easier to design hardware
that achieves the requirements. Thus security guaranteed by these models is
stronger.

It is not hard to see that the scheme JV [37] also achieves the notion of
security under these models. It was observed [10] that the previous schemes
GR [32] and DF [24] also achieve these stronger security notions. We remark
that the above motivations for minimizing the number of components also hold
for the OCL+ and LDS settings. Throughout the whole paper, we consider the
stronger OCL+ model where the adversary can leak on any arbitrary order of
the component. To avoid unnecessary complications, we will still call our model
OCL, but the reader should keep in mind that the leakage can be obtained on
any order of the components.
4 Some cold boot attacks can be captured by some strengthened OCL models as

discussed later; yet we have the same motivation for reducing the number of com-
ponents – the less the components, the more plausible the assumption can be.

5 Bitansky et al. [7] showed that an LDS scheme is also an OCL+ scheme; on the
other hand, one can construct an LDS scheme from an OCL+ scheme using non-
committing encryption. Therefore, the two models are essentially equivalent.

Leakage-Resilient Circuits Revisited 135

1.1 Our Results

In this work, we answer the question above affirmatively. We present two con-
structions of two-component OCL compilers from different assumptions. We take
a modular approach with the following steps:

– First we establish a technique of how to get rid of hardware used in an OCL
scheme – that is, given any secure hardware-based OCL scheme, suppose
there exists a two-party protocol that realizes the functionality provided by
the hardware with some strong property (defined later), then we can replace
the hardware with the two-party protocol, resulting in a secure OCL scheme
without hardware. The result can be summarized (informally) as Theorem 1.

– Then we consider how to construct a protocol that meets the requirements
above. We show that under the existence of universal deniable encryption
schemes (which can be constructed from indistinguishable obfuscation by
Sahai and Waters [47]) and non-committing encryption schemes [15], for
any simple randomized functionality that takes no inputs, we can construct
a protocol that achieves the goal (the strong property). The result can be
summarized (informally) as Theorem 2.

– Finally, we look into the two currently known two-component hardware-
based schemes with hardware, i.e. the JV scheme [37] and the DF scheme [24].
We observe that in both cases, the functionalities of the hardwares in both
bases are “simple” in the sense that they can be expressed as no-input
two-party randomized functionalities. Therefore, we can apply the theorems
above to achieve two-component schemes that do not require secure hard-
ware, by simply replacing the hardwares of JV or DF with the corresponding
two-party protocols. We summarize the results as Corollary 3.

Our results are general and can be viewed as a design paradigm for OCL schemes:
we can first construct a scheme that uses some simple hardware, which is presum-
ably much easier to construct and to analyze. Then we can apply the generic tool
to get rid of the hardware while preserving security. We state the two informal
theorems below.

Theorem 1 (Hardware replacement theorem (Informal)). Let ΛF be
some two-component OCL scheme with secure hardware implementing some two-
party functionality F . Assume there exists a two-party protocol ρ that realizes F
(with some strong oblivious property), then there exists a two-component OCL
scheme Λ′ without hardware.

Theorem 2 (Two-party protocol for simple hardware (Informal)).
Assume the existence of universal deniable encryption schemes andnon-committing
encryption schemes, then for any no-input two-party randomized functionality F ,
there exists a two-party protocol ρ that realizes F with the strong oblivious property.

By applying the theorems above to the hardware-based constructions of JV [37]
and DF [24], we achieve the following corollary.

136 D. Dachman-Soled et al.

Corollary 3 Assume the existence of universal deniable encryption schemes
and non-committing encryption schemes. Then we achieve:

(JV + Theorems 1, 2). If there further exists a fully homomorphic encryp-
tion (with cipher refreshing) that is secure against 2O(�(λ)) adversaries, the
there exists a two-component OCL scheme that is O(�) continual leakage
resilient, where λ is the security parameter.
(DF + Theorems 1, 2). There exists a two-component OCL scheme that
is � continual leakage resilient, for �(λ) = m(λ)/10,m(λ) = ω(log(λ)), where
λ is the security parameter.
Furthermore, both constructions do not require secure hardware.

We remark that our results rely on the existence of universal deniable encryp-
tion. This can be constructed from indistinguishable obfuscation for general cir-
cuits by Sahai and Waters [47]. Indistinguishable obfuscation for general circuits
was constructed in the breakthrough result of Garg et al. [26] and followup
work [2,3,11,30,45]; please refer to [49,50] for more applications of indistin-
guishable obfuscation. Our constructions use universal deniable encryption in a
black-box way, so they do not depend on a particular construction of universal
deniable encryption nor indistinguishable obfuscation. Our results can be under-
stood without the context of indistinguishable obfuscation, so we do not further
discuss the notion to avoid digression.

1.2 Connections with Multi-Party Computation

Our results have deep connections with multi-party computation (MPC) con-
structions that achieve different levels of security. In particular, we consider
MPC for the following two classes of functionalities.

No-Input Randomized Functionalities. The strong oblivions simulation
property in Theorem 2 actually implies a stronger notion of adaptive secu-
rity (against semi-honest corruption), called corruption-oblivious simulation by
Bitansky et al. [8]. As shown in the work [8], such notion also implies leakage
tolerance (against semi-honest corruptions). We will further discuss the strong
oblivious property after Definition 3.

Thus, as an implication of the theorem, for any two-party no-input random-
ized functionalities, we are able to construct a two-party protocol (in the CRS
model) that is simultaneously leakage tolerant, and adaptively secure (against
semi-honest corruptions). In Section 5, we show how to generalize the construc-
tion to the setting of N -party no-input randomized functionalities.

Moreover, our protocols can implement randomized functionalities beyond
“adaptively well-formed” ones according to Canetti et al. [18] – the functionali-
ties do not need to leak its internal randomness to the adversary when all parties
are corrupted. Additionally our protocols only need two rounds. To our knowl-
edge, these are the first constructions that achieve adaptive security beyond the
well-formed constraints; they are also the first constant-round protocols that are

Leakage-Resilient Circuits Revisited 137

adaptively secure and leakage tolerant (against semi-honest corruptions) for this
class of functionalities. We further elaborate on this in Remark 3.

General Two-Party Functionalities. Weobservethatboththetwo-component
constructions (JV-based and DF-based) are in fact of so-called strong OCL compil-
ers (as introduced by Bitansky et al. [10]), where a strong OCL compiler is an OCL
compiler with some enhanced simulation properties. Leveraging a recent result of
Bitanksy et al. [10], which shows an equivalence between two-component strong
OCLand two-party leakage tolerant computation in the input-independentprepro-
cessing model (when no parties are corrupted), we obtain the following corollary:

Corollary 4 (Informal) Assume the existence of universal deniable encryp-
tion schemes and non-committing encryption schemes, Then for every func-
tion f , there exists a two-party leakage tolerant protocol which UC-emulates f
in the input-indepdendent preprocessing model when no parties are corrupted.

Wenote that constructionsof leakage tolerant2-party computation secureunder
semi-honest corruptionswere presented in the concurrentworks of [16,21,27].Very
recently, itwas shownthatbasedon standardcryptographic assumptions, the equiv-
alence between two-component strong OCL and two-party leakage tolerant com-
putation in the input-independent preprocessingmodel canbe extended to the case
where one or both parties are actively corrupted [9]. Combining this resultwith our
two-component strong OCL constructions, we then obtain, for every function f , a
two-party leakage tolerant protocolwhichUC-emulates f in the input-independent
preprocessing model under static, active corruption of parties.

1.3 Techniques

In this section, we highlight some of our techniques to achieve our two main
theorems.

Hardware Replacement Theorem. Let ΛF be some secure hardware-based
two-component OCL scheme where the hardware implements some functionality
F . Similar to the spirit of the Universal Composability framework [13,14], our
goal is to replace the hardware by a two-party protocol ρ while preserving OCL
security.6 Clearly the theorem cannot work with any arbitrary two-party proto-
col – we argue that the protocol ρ at least needs to be somewhat leakage resilient
to the OCL leakage (independent leakage on each party), since the replacement
theorem should also work for the trivial case where F is a secure hardware that
computes the circuit we want to protect.

In this work, we identified a strong oblivious simulation property that cap-
tures the spirit of the corruption-oblivious simulation defined by Bitansky
et al. [8] in a compact and simple way. Then we show suppose ρ realizes F
with such strong oblivious simulation, then we can replace the hardware by the
protocol ρ while preserving the security. We note that since the syntaxes of
6 We do not use the term of “composability” to avoid confusion since OCL schemes,

through related, are different from protocols in syntax and many other properties.

138 D. Dachman-Soled et al.

OCL compilers and leakage tolerant protocols are quite different, it is not clear
whether the hardware replacement theorem can be implied by the composition
theorem by Bitansky et al. [8].

Informally, the strong oblivious simulation requires that there exist inde-
pendent simulators (Str,S1,S2) such that the simulator Str can generate an
indistinguishable transcript τ , and for b = {1, 2}, Sb(xb, yb, τ) can generate an
indistinguishable view (or state) of the party Pb, where x1, x2, y1, y2 are the
inputs/outputs to the ideal functionality, i.e. (y1, y2) ← F(x1, x2). This means,
any leakage function g on Pb’s state can be simulated by g(Sb(xb, yb, τ)). There-
fore, any leakage attack at the state of party Pb (the real world) can be translated
to a leakage attack at the input/output of the party Pb in the ideal world. Using
the idea, we can further show that any OCL leakage attack at the scheme Λρ (a
scheme where we replace the hardware functionality by ρ) can be translated to
an OCL leakage attack at the scheme ΛF . Thus, the security of Λρ is guaranteed
by the security of ΛF .

Constructing Protocols for Simple Functionalities. The next part of our
main contribution is to construct protocols that achieve the strong oblivious sim-
ulation property. We note that this property is very strong that we do not know
how to construct protocols for general functionalities. However, for a restricted
but still very useful class of functionalities – no-input randomized functionali-
ties, we show how to construct protocols that achieve the strong obvious simu-
lation property, using deniable encryptions (recently constructed by Sahai and
Waters [47] with indistinguishable obfuscation). Then we observe that the “sim-
ple” hardwares used in the literature [24,37] can be captured by such class.

We use a (universal) deniable encryption and a receiver non-committing
encryption as our building blocks. Informally, a deniable encryption allows a
sender to come up with a message and randomness that explain a ciphertext.
That is, given any ciphertext c∗ and a message m, the sender can come up
with (indistinguishable) randomness r such that Enc(m; r) = c∗; a receiver non-
committing encryption allows a simulator to first generate a pair of simulated
public-key and ciphertext (without knowing what the underlying message was),
and later to come up with consistent random coins that explain the key gen-
eration, and decrypt the ciphertext to an arbitrary message m. By combining
the two in a novel way, we show how to design protocols that achieve the strong
oblivious simulation for no-input randomized functionalities. We give further
overviews in Section 3.

1.4 Related Work

In this section, we compare our two-component OCL compilers with previous
results from the literature. OCL compilers which require secure hardware were
constructed by [24,31,37]. These OCL compilers all require two components; the
compiler of [24] is information theoretic; the compiler of [31] relies on the DDH
assumption and the compiler of [37] requires fully homomorphic encryption with
a ciphertext refreshing property. An OCL compiler which does not require secure

Leakage-Resilient Circuits Revisited 139

hardware was first constructed by [32]; moreover, theire construction is informa-
tion theoretic. The compiler of [32] is described as requiring O(|C|) components,
where |C| is the size of the underlying circuit. However, it was shown in [10]
how to combine techniques from [32] and [24] to achieve an OCL compiler with-
out secure hardware and a large constant number of components, approximated
by [10] as 20.

In the following table, we present a comparison of the assumptions, num-
ber of components and leakage rates achieved by best known previous work
[10,24,32,37], as well our JV-based and DF-based schemes. Let � be some param-
eter. The following table presents parameters for different schemes in order to
construct an OCL compiler that tolerates �-bit leakage per time.

Table 1. Comparison of various OCL schemes in the literature

w corresponds to the length of the FHE ciphertext, |C| corresponds to the size of
the underlying circuit. NCE stands for non-committing encryption. We note that the
ciphertext length w must be at least as large as �; otherwise it is easy to break the
FHE scheme in time 2�. The constant of O(1) depends on the best algorithm of matrix
multiplication. Both constants are greater than 1.37 under the best known algorithm
by Williams [51].

We remark that even though the leakage rate of the previous constant-
component constructions depends on the circuit size |C|, there is a generic way
to get rid of the dependency by using FHE. We can first encrypt the circuit
C (keep it public) by the FHE, and then apply the OCL compiler only on the
decryption circuit, which has size λ (can be re-parameterized as the security
parameter) and is independent of the circuit C. This idea is generic and can be
applied to all OCL constructions. We only state one example in the last row of
the table, but note that the rates for other constructions can be also improved
in this way.

Alternative Leakage on Computation Models and Compilers in These
Models. Ishai et al. [35] suggested a leakage model which captures wire probing
attacks where the adversary may leak the value of individual wires during the
computation. Note that the OCL model subsumes this model. Additional mod-
els for leakage on computation were introduced by [19], and [25] . These mod-
els allow unbounded-length “noisy” leakage (leakage that does not reduce the

140 D. Dachman-Soled et al.

entropy of the circuit’s secret state by too much) and leakage under restricted
classes of leakage functions (such as AC0 leakage), respectively. Compilers for
the wire probing model were constructed by [35]; compilers for the noisy leakage
model were constructed by [23,25]; compilers for restricted classes of leakage
functions were constructed by [25,43,44,46].

2 Two-Component OCL Schemes and Hardware
Replacement Theorem

A two-component OCL scheme for a (private) circuit C(·), consists of an efficient
compiler Comp and a two-party protocol Π = (P1, P2). To compute C(·) in a
leakage-resilient way, the circuit is compiled ahead of time by Comp(C(·)) that
produces a public parameter pp, and initial states (intl1, intl2) for each party.
This compilation is done “in the dark” without any leakage. Afterwards, the
public parameter pp will be given to the two parties and the adversary (at all
time), and then, the parties can compute together y = C(x) for any input x by
running the protocol Π for an arbitrary polynomial number of inputs.

Below we provide the formal definition and security requirements of OCL
schemes. Here the adversaries are allowed to continually leak on the internal
state during each iteration. As discussed in the introduction, here we consider a
stronger adversary that he can leak on any arbitrary order of the components.
Additionally, we consider a further stronger security notion where we require the
simulator to be oblivious of the leakage queries from the adversaries.

Definition 1. Two-component OCL schemes] We say that Λ = (Comp,Π =
〈P1, P2〉) is a continual, two-component OCL scheme if it satisfies the following
properties.

Initialization: For every security parameter λ ∈ N, polynomial-sized circuit
family C = {Cλ}λ∈N, the compiler Comp(1λ, Cλ) runs in time poly(λ) and
outputs a public parameter pp and 2 initial states intl1, intl2. Note that pp
will be kept the same during all evaluations, and given to all parties.

Unbounded-time evaluation: The evaluation procedure invokes the protocol
Π between the components P1(pp, intl1), P2(pp, intl2), which interact in an
arbitrary polynomial number of iterations: In the ith iteration, P1 receives an
input xi ∈ {0, 1}|Cλ| and P2 produces an output yi

7. At the end of the eval-
uation, an update procedure is carried out, producing the new initial states
for the next iteration; then all information other than the new initial states
are erased. Note that pp will not be erased and will be reused in the next
iteration.
For each component b ∈ {1, 2}, denote by intli,b the initial states of compo-
nent b at the onset of the ith iteration (in the first iteration, intl1,b = intlb),
and evli,b the random coins tossed and messages exchanged by each Pb during
the ith iteration, including its state during the update phase.

7 It is without loss of generality that P1 receives inputs and P2 produces an output.
We can always achieve this by sending one more round of message.

Leakage-Resilient Circuits Revisited 141

Correctness with adaptive input selection: For every λ ∈ N, polynomial-
sized circuit family C = {Cλ}λ∈N, auxiliary input z ∈ {0, 1}poly(λ), and ppt
adversary A, in the following real experiment RealA(1λ, Cλ, z) where A ini-
tiates an arbitrary number of evaluations with adaptively chosen inputs, it
holds that with all but negligible probability, the outputs of all evaluations are
correct.
We say that an OCL scheme has perfect correctness if the above holds with
probability 1.

2.1 Security Model

We now describe the security experiments of OCL schemes. A scheme Λ is
said to be �-leakage-resilient with oblivious simulation if there is a simulator
S, such that, for every λ ∈ N, polynomial-sized family C, and auxiliary input
z ∈ {0, 1}poly(λ), the views of the adversary in the following real and ideal exper-
iments are indistinguishable. In the real world, the adversary has the power of
obtaining leakage independently from each component in honest OCL evalua-
tions over inputs chosen adaptively by the adversary, whereas in the ideal world,
it obtains leakage from states of the components simulated by an oblivious sim-
ulator, given oracle access to the circuit Cλ(·). More formally,

Experiment RealA(1λ, Cλ, z): The adversary A(1λ, |Cλ|, z) proceeds as fol-
lows:

1. The initial states (pp, intl1, intl2) ← Comp(1λ, Cλ) are sampled.
2. A gets the public parameter pp and launches �-bounded leakage attacks on

an unbounded polynomial number of evaluations of its choice. In the ith

iteration, A works as follows:
(a) A submits an input xi ∈ {0, 1}|Cλ|, which is evaluated on Cλ by resum-

ing the protocol execution of Π between the components P1(pp, intli,1),
P2(pp, intli,2) with input xi to the first component P1.

(b) A launches an �-bounded leakage attack on the ith evaluation. It issues
leakage queries
(G1,b1 , G2,b2 , . . . ,), where each bk ∈ {1, 2} to the two components (adap-
tively), and obtain leakage answers of all queries, i.e., Gk,bk

(intli,bk
,

evli,bk
), as long as the total amount of leakage on each component in

this iteration is smaller than �(λ) bits. Denote Li ∈ {0, 1}≤� be the
leakage observed in the ith round.

(c) A obtains the output of the evaluation, which is the output of P2.

Denote view�
A(1λ, Cλ, z) = (pp, x1, y1, L1, x2, y2, L2, . . . ,) as the view of A in

the above experiment.

Experiment IdealS,A(1λ, Cλ, z): In the ideal experiment, the simulator
SA(1λ,|Cλ|,z),Cλ(·) gets oracle access to the adversary A and oracle access to the
circuit Cλ(·). His task is to produce an indistinguishable view of the adversary.

Furthermore, we say the simulator is oblivious, if it uses the following strategy
to interact with the adversary: let the adversary A(1λ, |Cλ|, z) participate in the

142 D. Dachman-Soled et al.

same experiment as above. The simulator at the beginning generates a public
parameter p̃p and gives it to the adversary A. Then at each round i, the simulator
works as follows.

(a) Let xi be the input A submits in this iteration, and yi = Cλ(xi) be the
answer obtained by the oracle query. S(1λ, i, xi, yi; wi) is invoked, producing
simulated states (ĩntli,1, ĩntli,2, ẽvli,1, ẽvli,2), where wi is the fresh random
coins tossed for the simulation in iteration i and wi = w1, · · · , wi is all the
random coins that have been tossed for simulation in the first i iterations.

(b) Let (G1,b1 , G2,b2 , . . . ,) where bk ∈ {1, 2}, be the leakage queries A makes
(perhaps in an adaptive way) in this round. Then S returns Gk,bk

(ĩntli,bk
,

ẽvli,bk
) for all these queries, as long as the total amount of leakage on each

component in this iteration is smaller than �(λ) bits.
(c) S sends yi to the adversary.

Denote ṽiew
�

S,A(1λ, Cλ, z) as the (simulated) view of A in the above experiment.

Definition 2 (Continual�-leakage-resilience with oblivious simulation).
We say that a continual OCL scheme OCL is continually �-leakage-resilient

with oblivious simulation if there is a ppt simulator S, such that, for every ppt
adversary A, every polynomial-sized circuit family C, the following two ensembles
are indistinguishable.

{view�
A(1λ, Cλ, z)}λ∈N,Cλ∈C,z∈{0,1}poly(λ)

{ṽiew�

S,A(1λ, Cλ, z)}λ∈N,Cλ∈C,z∈{0,1}poly(λ)

F-hybrid OCL schemes. A two-component OCL scheme may use subroutines
during its execution. Let F denote a two-party functionality. We say a two-
component OCL scheme Λ = (Comp,Π = 〈P1, P2〉) is an F-hybrid OCL scheme
if Λ completes its execution by calling F (probably multiple times). Often we
write it as ΛF = (Comp,ΠF). If the OCL scheme Λ calls F at a round i,
and let (x1, x2) be the values provided by P1, P2 and (y1, y2) be the values F
returns to P1, P2 respectively, then the states evli,1, evli,2 will include (x1, y1)
and (x2, y2), respectively. The adversary can obtain leakage of (x1, y1), (x2, y2)
(perhaps adaptively but not jointly) via (adaptive) leakage queries.

Usually, we can think of F as some hardware that generates messages securely,
i.e. there is no leakage on the internal states.Wenext consider how to replace suchF
with a two-party protocol. Intuitively, suppose there is a two-party protocol ρ that
“realizes” F , then we have a two-component OCL scheme where we can replace the
calls toF by running the protocolρ.Wedenote the scheme asΛ′ = (Comp,Πρ).We
also consider the case where ρ realizes F in a setting that a common reference string
(CRS) crs is always available. In this case, we can combine the CRS generation into
the compilation: Comp may generate a certain pubic parameter pp, and we can
simply augment Comp into Comp′ that generates pp′ = pp||crs. This is denoted as
Λ′ = (Comp′,Πρ).

However, standard simulation based security is not sufficient for the argument
of the hardware replacement as above because the simulation (of ρ) could be

Leakage-Resilient Circuits Revisited 143

a joint simulation for both participants. This is inconsistent with the security
requirement of OCL scheme where the emulation for one component is oblivious
to the emulation of the other component. In the following, we define a stronger
version of realization, and prove that if ρ realizes F in this sense, then we can
replace F with ρ and the OCL scheme remains secure. The definition we present
is a compact and simplified version that captures the notion of “security under
adaptive corruptions with a corruption-oblivious simulator” defined by [8]. We
consider the semi-honest case only.

Definition 3 (Strong oblivious simulation for protocols). Let crs ←
CRS.Gen(1λ), and let π = (P1, P2) be a two-party protocol using such common ref-
erence string crs. Let F be a two-input (perhaps randomized) ideal functionality.We
say π realizes the functionality F with strong oblivious simulation, if there exists a
ppt simulator S = (S1,S2,Str) for all (non-uniform) ppt adversary A such that
the following distributions are computationally indistinguishable:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

crs ← CRS.Gen(1λ);
(x1, x2) ← A(crs);

(r1, r2) ← Uλ × Uλ;
τ = 〈P1(crs, x1; r1), P2(crs, x2; r2)〉

: (crs, x1, r1, τ, x2, r2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

crs ← CRS.Gen(1λ);
(x1, x2) ← A(crs);

(y1, y2) ← F(x1, x2);
τ̃ ← Str(crs);

r̃1 ← S1(crs, x1, y1, τ̃);
r̃2 ← S2(crs, x2, y2, τ̃)
: (crs, x1, r̃1, τ̃ , x2, r̃2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that r1, r2 are the random coins of the parties, and τ is the transcript
(i.e. message exchanges) by running the protocol 〈P1(crs, x1; r1), P2(crs, x2; r2)〉.
Remark 1. The notion above is related to the notion of security under adaptive
corruptions with a corruption-oblivious simulator defined by Bitansky et al. [8].
We elaborate further below.

Our notion implies adaptive security where the simulator uses a universal
strategy that is independent of the order of corruption, i.e. S1 and S2 sim-
ulate independently (with a joint transcript τ̃ that is independent of the
inputs/outputs). In contrast, in the adaptive security case, the simulator is
allowed to see the already corrupted party’s input/output, i.e. if the adver-
sary first corrupts P1 and then P2, then the simulator can see both (x1, y1)
and (x2, y2) when simulating the view of P2. Known constructions of adap-
tively secure two party computation for all functionalities, such as [18], do
not admit such simulators.
Following the approach of [8], our notion implies a strong notion of leakage
tolerant two-party computation in the semi-honest setting where any t-bit
leakage function in the real world can be translated to a t-bit leakage function
in the ideal world. There is no prior bound on t. Moreover, if the leakage
function in the real world does not leak on the joint states, then the ideal
leakage function does not, either.

144 D. Dachman-Soled et al.

Theorem 5 (OCL hardware replacement theorem). Let F be some two-
party functionality, and ΛF = (Comp,ΠF) be an F-hybrid two-component OCL
scheme that is �-leakage-resilient with oblivious simulation. Suppose there exists
a two-party protocol ρ using a common reference string crs, that realizes F with
strong oblivious simulation as Definition 3. Then there exists a two-component
OCL scheme Λ′ = (Comp′,Πρ) that is �-leakage-resilient with oblivious simula-
tion.

The intuition of the proof of Theorem 5 is the following: The two-component
OCL scheme Λ′ will simply replace each call to the ideal functionality F with
an execution of the two-party protocol ρ, where each component plays the part
of one of the parties in ρ. To obtain an oblivious simulator for the composed
execution Λ′, we must reconstruct the entire state of each component. Note that
the state of each component in Λ′ simply consists of its state in Λ, concatenated
with its state in ρ. Thus, a natural approach is to reconstruct each party’s state
by concatenating the output of the simulator Ŝ for Λ and the output of the
simulator S̃ for ρ. Indeed, this approach does in fact work since the only shared
information between the component’s simulated state in Λ and its simulated
state in ρ is the input/output of the ideal functionality F . Therefore, conditioned
on the input/output of F , each component’s state in ρ can be reconstructed
entirely independently of its state in Λ. We note that the bound in Λ′ inherits
from the underlying scheme Λ. By the security of the protocol ρ as discussed
above, any leakage to the evaluation states of ρ can be translated to leakage of
the input/output of F . For this part we do not need a prior bound. We defer
the formal proof to the full version of this paper [22].

Remark 2. Very recently, Bitansky et al. [10] defined a notion of strong two-
component OCL schemes. They showed this notion has implications to two-
party leakage tolerant protocols as discussed in the introduction. We note that
the previous schemes [24,37] satisfy this stronger notion, and a similar hardware
replacement theorem can be achieved. Please refer to the full version of this
paper [22] for more details.

3 How to Implement Simple Functionalities

In this section, we construct two-party protocols to realize functionalities that
provided by hardware components in previous schemes (with strong oblivious
simulation). However, the requirement is very strong as we discussed in the
previous section, and it is not clear how to construct protocols for general func-
tionalities. Fortunately, the functionalities used in the previous constructions
by Juma and Vahlis, and by Dziembowski and Faust [24,37] (and in all the
other known constructions) are “simple”. We show how to construct protocols
for certain simple functionalities.

Leakage-Resilient Circuits Revisited 145

3.1 Ideal Functionality

Here we define a functionality FΔ
sampling which samples correlated randomness

(according to some distributions) for both parties without taking any inputs.
This functionality captures the hardwares used in the previous schemes of Juma-
Vahlis and Dziembowski-Faust.

The ideal functionality FΔ
sampling is parametrized by an efficiently samplable

distribution Δ that outputs correlated random coins (γ1, γ2) ← Δ(1λ).

Functionality FΔ
sampling

FΔ
sampling, parameterized with a distribution Δ, a variable done with

initial value 0, running with parties (P1, P2) and an adversary A,
operates as follows:

• Upon receiving request from Pi, if done = 0, then sample
(γ1, γ2) ← Δ(1λ), and set done := 1. Return γi to party Pi, and
ignore future request from Pi.

Fig. 1. The ideal functionality for sampling correlated randomness

3.2 Building Blocks

In this section, we present two building blocks for our construction – receiver
non-committing encryption, and universal deniable encryption transformation.
Basically, a receiver non-committing public key encryption allows a simulator
to first generate a pair of simulated public-key and ciphertext (without knowing
what the underlying message was), and later to come up with consistent random
coins that explain the key generation, and decrypt the ciphertext to an arbitrary
message m. This notion is weaker than standard non-committing public key
encryption [15], which can be constructed from trapdoor simulatable public key
encryption [20], which in turn can be instantiated under standard assumptions
such as CDH, RSA, DDH, LWE and factoring Blum integers.

Universal Deniable Encryption is a new notion proposed by Sahai and
Waters [47]. Here we paraphrase the ideas as Definition 5: given any encryption
scheme E = {Gen,Enc,Dec}, there is a one-time setup UniGen that takes input
the encryption algorithm E.Enc and generates two programs Cencrypt, Cexplain, an
encryption program and an explanation program. The one-time setup is gener-
ated by some trusted party.

Basically, the encryption program Cencrypt takes inputs a public key pk and a
message m, outputs a ciphertext. The explanation program Cexplain takes inputs
a public key pk, a ciphertext c, and a message m outputs random coins r to
“explain” that c is an encryption of m. That is, running the encryption program
with input pk,m and randomness r, it will output c, i.e. c = Cencrypt(pk,m; r).
The security requires that (1) the distribution of {Cencrypt(pk,m)} is statistically

146 D. Dachman-Soled et al.

close to that of {E.Enc(pk,m)}. In other words, using Cencrypt is essentially the
same as using the encryption algorithm. (2) It is computationally hard to distin-
guish the real random coins from the explained random coins (by Cexplain). Note
that since Cencrypt, Cexplain can be generated without knowing any secret informa-
tion, the semantic security of E preserves even given these two programs.

Actually, the universal deniable encryption in the work of Sahai and Waters [47]
is more general: it allows Cencrypt, Cexplain to take public keys from different encryp-
tion schemes. In our application, this slightly restricted version already suffices. So
for clarity of exposition, we present this simpler version.

Definition 4 (Receiver non-committing encryption [17,36]). A one-
sided non-committing encryption scheme (for the receiver) consists of a tuple
(NCGen,NCEnc,NCDec,NCSim) such that (NCGen,NCEnc,NCDec) is an encryp-
tion scheme and NCSim = (NCSim1,NCSim2) is a tuple of two simulation algo-
rithms. On input 1λ, NCSim1(1λ) outputs a simulated public key p̃k and a
simulated ciphertext c̃; on inputs a simulated public key, p̃k, a simulated cipher-
text c̃, and a message m, NCSim2(p̃k, c̃,m) outputs random coins σ̃ (for the key
generation, NCGen). We say the scheme is secure if for all messages m, the
following two distributions are indistinguishable:

the view of honest decryptor in a normal encryption of m:

{(pk, c, σ) : (pk, sk) ← NCGen(σ), c ← NCEnc(pk,m)} ,

simulated view of an encryption of m:
{

(p̃k, c̃, σ̃) : (p̃k, c̃) ← NCSim1(1λ), σ̃ ← NCSim2(p̃k, c̃,m)
}

.

Definition 5 (Universal deniable encryption transformation for an
encryption scheme). Let E =
{Gen,Enc,Dec} be a (bit) encryption scheme. A universal deniable encryption
transformation for E is a ppt algorithm UniGen that takes input security parame-
ter 1λ, an encryption circuit that implements the encryption algorithm E.Enc(1λ,
·; ·) and outputs two programs Cencrypt, Cexplain with the following syntax: let pk
be a public key, m be a message, c be a ciphertext.

– Cencrypt takes inputs pk,m, random coins r, and Cencrypt(pk,m; r) outputs a
ciphertext c;

– Cexplain takes inputs pk, c,m, random coins v̄, and Cexplain(pk, c,m; v̄) outputs
a string r.

Leakage-Resilient Circuits Revisited 147

We say the transformation is secure if:

(a) For all pk ∈ E.Gen(1λ), messages m ∈ {0, 1}, and any Cencrypt ∈ UniGen(1λ),
the following two distributions are statistically close: {Cencrypt(pk,m)} ≈
{E.Enc(pk,m)}. Note that the circuit Cencrypt and the encryption algorithm
E.Enc might have different spaces for random coins, but the distributions can
still be statistically close.

(b) For any message m ∈ {0, 1}, the following two distributions are computa-
tionally indistinguishable:

{(Cencrypt, Cexplain, pk, c, r)} ≈ {(Cencrypt, Cexplain, pk, c, r
′)},

where (Cencrypt, Cexplain) ← UniGen(1λ), pk ← E.Gen(1λ), r ← Upoly(λ), c =
Cencrypt(pk,m; r), r′ ← Cexplain(pk, c,m), and Upoly(λ) denotes the uniform
distribution over a polynomial number of bits.

Theorem 6 ([47]). Assume there exist indistinguishable obfuscation for gen-
eral circuits and one way functions. Then there exists a secure universal deniable
encryption transformation for any encryption scheme.

As pointed out in the introduction, our constructions only use universal deni-
able encryption and non-committing encryption in a black-box way. We do not
explicitly use indistinguishable obfuscation so we do not present the syntax here.

3.3 Our Construction

Now we are ready to describe our protocol. Let E = {NCGen,NCEnc,NCDec,
NCSim} be a receiver non-committing encryption, Δ be the (efficiently sam-
plable) distribution that the ideal functionality wants to sample, and UniGen is
a secure universal deniable encryption transformation. First we consider a bit
encryption E′ = {Gen,Enc,Dec} that works as follows:

– E′.Gen(1λ): run (pk, sk) ← E.NCGen(1λ). Output (pk, sk) as the public and
secret keys.

Fig. 2. A protocol for Fsampling

148 D. Dachman-Soled et al.

– E′.Enc(1λ, pk, b): sample (γ1, γ2) ← Δ(1λ). Then output c ← (γ1,E.NCEnc
(pk, γ2||b)) as the ciphertext. The random coins of this process consist of
the randomness used for sampling Δ, and that for encryption algorithm
E.NCEnc.

– E′.Dec(1λ, sk, c): parse c = (c1, c2). Run γ2||b := E.NCDec(sk, c2), and out-
put b.

The CRS sampling. Let C be a circuit that implements E′.Enc(1λ). The sam-
pling algorithm runs
(Cencrypt, Cexplain) ← UniGen(C), and outputs crs = (Cencrypt, Cexplain) as the CRS.

The protocol. The parties upon receiving crs = (Cencrypt, Cexplain) do the fol-
lowing:

– P2 first samples a random string r2 and runs (pk, sk) ← E.NCGen(1λ; r2) and
sends pk to P1.

– P1 then samples a random string r1, and runs (γ1, c2) ← Cencrypt(pk, 0; r1).
Then P1 locally outputs γ1 and then sends c2 to P2.

– P2 runs γ2||0 := E.NCDec(sk, c2) and then outputs γ2.

The transcript of the protocol is (pk, c2).
Here it is important that P1 does not directly use E′.Enc to generate the

ciphertext. Suppose he used E′.Enc directly, then his random coins r1 must con-
tain information about the underlying message of c2 = E.Enc(pk, γ2||0). We argue
that it is impossible to satisfy our security requirement as follows.

Let us recall the security definition (Definition 3): to prove security, we need
to construct a simulator S = (Str,S1,S2) such that we require S1 to simulate
the view of P1 without knowing γ2, and similarly S2 to simulate the view of P2

without knowing γ1. Therefore, a secure protocol cannot allow one to derive γ2
from P1’s random coins r1; otherwise, it is impossible for S1 (who does not know
γ2) to simulate such view of P1.

To tackle such challenge, we use the universal deniable encryption transfor-
mation as Definition 5: to generate ciphertext of E′, we use the program Cencrypt.
Note that even if the randomness spaces for Cencrypt and E′.Enc are different, the
output distributions are statistically close, so using Cencrypt is essentially the same
as using E′.Enc. More importantly, by the property of randomness explainability
and the security of E, we can argue that the random coins r1 (of the program
Cencrypt) is only linked to the ciphertext (γ1, c2), but not the message γ2 under c2.
More formally, we can argue that (r1, γ1, c2) is indistinguishable from (r̃1, γ1, c̃2),
where c̃2 is a simulated ciphertext that does not contain information about γ2,
and r̃1 is explained randomness by Cexplain.

Using the ideas above, we are able to establish the following theorem:

Theorem 7. Assume that E is a secure receiver non-committing encryption, Δ
is an efficiently samplable distribution, and UniGen is a secure universal deniable
transformation for the encryption scheme E′ defined as above. Then the proto-
col described above realizes FΔ

sampling with strong oblivious simulation, using the
common reference string crs.

Leakage-Resilient Circuits Revisited 149

Before proving the theorem, we give an interesting remarks about implica-
tions of our protocols to adaptive security in the MPC setting.

Remark 3. The protocol above allows us to realize randomized functionalities
beyond “adaptively well-formed” ones as discussed in the introduction. Recall
that for an adaptively well-formed randomized functionality, the adversary gets
the random coins of the functionality when all parties are corrupted. We go
beyond this restriction. In our protocol above, the sampling is done in the Cencrypt,
and we can simply use the Cexplain to reconstruct the randomness. Essentially
this gives the ideal functionality a way to erase the internal randomness after
generating the outputs!

For further exposition, we take the example from the work [18, Section 3.3].
Consider the randomized functionality that outputs a value N to both P1 and
P2 where N = p · q and p, q are randomly chosen (large) primes. To handle the
case that all parties are corrupted without revealing the random coins of the
functionality (i.e. p, q) to the adversary, essentially we need to be able to sample
the domain {N |N = pq} (or a domain that is computationally indistinguishable
from it) without knowing p or q. The work [18] explicitly pointed out that this
task may be possible, though the paper did not know how to do it.

In this paper, we show that this task is exactly what universal deniable
encryption can achieve! In our protocol above, by using Cencrypt and some random
coins r, P1 is able to sample N without knowing the (p, q). Then the simulator
in the ideal world, via Cexplain can come up with consistent and indistinguishable
random coins r′ that explains that N is computed based on Cencrypt and r′, even
though the simulator is not able to learn such p, q.

How is this possible? For readers who are familiar with the Sahai-Waters
instantiation [47], we further elaborate on how things work with their concrete
scheme: recall that Cencrypt is an obfuscated circuit that contains some keys
of (three) puncturable pseudo-random functions, say one of them is F1(K1, ·)
(consistent with the notation in [47]). When a user inputs some random coins
r, if r does not hit some hidden trigger (the hitting probability is negligible),
then the program will use u = F1(K1, r) as the random coins to sample N .
Since the whole process (i.e. the key K1 and the computation of u) is inside the
obfuscation (i.e. Cencrypt), thus the user can only obtain the output N without
learning the underlying coins u (that may contain information about p, q).

Proof. To prove the theorem, we need to construct a simulator S = (Str,S1,S2)
such that the distribution of the real experiment Real = (crs, r1, τ, r2) is indistin-
guishable from that of the simulation experiment Ideal = (crs, r̃1, τ̃ , r̃2) accord-
ing to Definition 3.

Now, we describe the simulators. Let (γ1, γ2) be the output of the func-
tionality FΔ

sampling, NCSim = (NCSim1,NCSim2) be the simulator(s) of the non-
committing encryption scheme E, crs = (Cencrypt, Cexplain) be the CRS sampled
as described above.

Str(crs) samples (p̃k, c̃2) ← NCSim1(1λ) and then outputs τ̃ = (p̃k, c̃2).

150 D. Dachman-Soled et al.

S1(crs, τ̃ , γ1) runs r̃1 ← Cexplain(p̃k, (γ1, c̃2), 0). That is, S1 interprets (γ1, c̃2)
as a ciphertext of the scheme E′, and uses Cexplain to explain the randomness
(for a ciphertext E′.Enc(pk, 0)).
S2(crs, τ̃ , γ2) runs r̃2 ← NCSim2(p̃k, c̃2, γ2||0). That is, S2 uses the simulator
of the non-committing encryption to generate random coins that decrypt c̃2
to γ2||0.
Then we will establish the following claim, and the proof of the theorem

follows directly from the claim.

Claim. The following two distributions are computationally indistinguishable:
Real = (crs, r1, τ, r2) ≈ Ideal = (crs, r̃1, τ̃ , r̃2), where the experiments are
sampled as the protocol and the simulation described above. Recall that r2 is
P2’s randomness that generates pk, and r1 is P1’s randomness that is used for
Cencrypt(pk, 0).

Proof. To prove the claim, we consider the following hybrids:

The Real experiment. Real = (crs, r1, τ = (pk, c2), r2): recall that in the real
experiment, the transcript τ = (pk, c2) is generated as follows. pk is generated
by P2, and c2 is one part of a ciphertext of E′ generated by P1, i.e. (γ1, c2) =
Cencrypt(pk, 0; r1).

Hybrid 1. H1 =
(
crs, r̃1, τ =

(
pk, c2

)
, r2

)
: this experiment is the same as the

real experiment except instead of outputting r1 as the randomness of P1, we
use r̃1 ← Cexplain(pk, (γ1, c2), 0). More precisely, H1 first samples (crs, r1, τ, r2) as
the experiment Real (then γ1, c2 are defined), and replaces the r1 with r̃1 as
described.

Hybrid 2. H2 =
(
crs, r̃1, τ

′ =
(
pk, c2

)
, r2

)
: this experiment is the same as H1

except it does not use Cencrypt(pk, 0) to generate the transcript. Instead, it sam-
ples E′.Enc(pk, 0) as follows: first it samples (γ1, γ2) ← Δ(1λ), and then generates
c2 ← E.Enc(pk, γ2). Then the experiment generates r̃1 ← Cexplain(pk, (γ1, c2), 0)
as H1. Basically, this experiment runs E′.Enc on its own to replace Cencrypt(pk, 0).

Hybrid 3. H3 =
(
crs, r̃1, τ̃ =

(
p̃k, c̃2

)
, r̃2

)
: this experiment is the same as H2

except it runs (p̃k, c̃2) ← NCSim1(1λ) to generate the transcript. Finally, it
runs r̃2 ← NCSim2(p̃k, c̃2, γ2) to explain the randomness of P2. Note that this
experiment is identical to the simulation experiment Ideal.

Then we prove the adjacent hybrids are computationally indistinguishable
by the following claims:

Claim. Real ≈ H1.

This is by the security of the universal deniable encryption transformation (prop-
erty (b) of Definition 5). Suppose there exists a ppt distinguisher D that can dis-
tinguish Real from H1 (with non-negligible probability), then we can construct
a ppt distinguisher D′ that breaks the property (b) as follows: D′ takes input
(Cencrypt, Cexplain, pk, (γ∗, c∗), r∗) where Cencrypt, Cexplain are generated as the uni-
versal deniable encryption transformation setup, (i.e. UniGen(E′.Enc(1λ, ·, ·))),

Leakage-Resilient Circuits Revisited 151

(γ∗, c∗) ← Cencrypt(pk, 0), and r∗ is either the one that generated (γ∗, c∗) or
sampled by Cexplain(pk, (γ∗, c∗), 0).

Then D′ interprets crs = (Cencrypt, Cexplain), samples a random string r2, and
runs D(crs, r∗, (pk, c∗), r2) and outputs whatever D outputs. Suppose r∗ is dis-
tributed according to the former, then the input to D is distributed identical to
Real. On the other hand, suppose r∗ is distributed as the latter, then the input
to D is distributed identical to H1. Thus suppose D can distinguish Real from
H1, D′ break security of the property (b).

Then we are going to show:

Claim. H1 ≈ H2.

This is by the security property (a) ofDefinition 5),which says that {Cencrypt(pk, 0)}
is statistically close to {E′.Enc(pk, 0)}. The only difference between H1 and H2 is
the generation of the (γ1, c2). In H1 it was generated by Cencrypt(pk, 0), and in H2 it
was generated byE′.Enc(pk, 0). By the property (a), we know that the distributions
of generating (γ1, c2) in both ways are statistically close. Thus H1 is statistically
close to H2.

Then we are going to show:

Claim. H2 ≈ H3.

This is by the security of the non-committing encryption E (as Definition 4).
That is, suppose there exists a ppt distinguisher that can distinguish H2 from
H3 (with non-negligible probability), then there exists a ppt distinguisher D′

that breaks the non-committing encryption E as follows:
D′ first samples (γ1, γ2) ← Δ(1λ) and sets m = γ2||0.
D′ takes input (pk∗, c∗, σ∗) (from the challenger), which is distributed accord-
ing to either the honest view of encryption of m or the simulated view as
Definition 4.
It samples crs = (Cencrypt, Cexplain) ← UniGen(C) where C is an encryption
circuit of E′. This step is independent of the input.
It generates r̃1 ← Cexplain(pk∗, (γ1, c∗), 0).
It runs D(crs, r̃1, (pk∗, c∗), σ∗), and outputs whatever D outputs.
It is clear that if the input(pk∗, c∗, σ∗) isdistributedas thehonestviewofencryp-

tion of m, then (crs, r̃1, (pk∗, c∗), σ∗) is distributed identicalyl to H2. On the other
hand, if that is distributed as the simulated view, then (crs, r̃1, (pk∗, c∗), σ∗) is dis-
tributed identically to H3. Thus, suppose D distinguishes H2 from H3 with a non-
negligible probability,D′ breaks the receiver non-committing encryption schemeE.
This completes the proof of the claimx.

Finally, we observe that the experiment H3 is identical to the experiment
Ideal output by the simulator. Thus by Claims 3.3, 3.3, 3.3, we prove Claim 3.3,
i.e. Real ≈ Ideal. This completes the proof of Theorem 7.

4 Hardwares in JV and DF Schemes

In this section, we present concretely how to express the hardwares in the pre-
vious hardware-based schemes of Juma and Vahlis [37] and Dziembowski and

152 D. Dachman-Soled et al.

Faust [24] as the ideal functionality FΔ
sampling. Thus, we can instantiate the

hardware of the JV (resp. DF) two-component OCL scheme with the two-party
protocol in Theorem 7 and apply Theorem 5 to obtain the first two-component
OCL schemes without secure hardware.

4.1 Sampling Distribution for the Juma-Vahlis Compiler

We define the sampling distribution ΔJV for functionality FΔJV

sampling that pro-
vided by the trusted hardware of the Juma-Vahlis compiler (a description of
the compiler can be found in the full version of this paper [22]). Let FHE =
FHE.{Gen,Enc,Dec,Eval} be a fully homomorphic encryption scheme with the
additional cipher refreshing properties required by the JV construction. The
distribution ΔJV(1λ) is defined as follows:

– Sample (pk, sk) ← Gen(1λ); and then sample ct0 ← Encpk(0) and ct′0 ←
Encpk(0).

– Output (γ1, γ2), where γ1 = (pk, ct0, ct′0), adn γ2 = (pk, sk).

Juma and Vahlis [37] showed that assuming FHE is a fully homomorphic
encryption (with cipher refreshing) that is secure against 2O(�(λ)) adversaries,
then there exists a two-component OCL scheme in the FΔJV

sampling hybrid world
that is O(�)-leakage resilient. We denote the scheme as ΛF

JV = (CompJV,Π
F
JV)

where F = FΔJV

sampling. By our Theorem 7, we can realize the functionality that
provided by the trusted hardware with a protocol ϕJV with strong oblivious
simulation. Leveraging our OCL Hardware Replacement Theorem (Theorem 5),
we can obtain an OCL scheme Λ′

JV = (Comp′
JV,Π

ϕJV

JV) that does not require any
secure hardware. Formally, we obtain the following theorem:

Theorem 8. Assume there exist a secure receiver non-committing encryption
scheme and a secure universal deniable encryption transformation for any
encryption scheme,8 and FHE is a fully homomorphic encryption (with cipher
refreshing) that is secure against 2O(�(λ)) adversaries. Then Λ′

JV is O(�)-leakage
resilient, where λ is security parameter.

4.2 Sampling Distribution for the Dziembowski-Faust Compiler

Here we define the distribution ΔDF for functionality FΔDF

sampling that provided by
the trusted hardware of the Dziembowski-Faust compiler. In the initialization
stage of the DF compiler, a private circuit C is compiled. Afterwards, in each
evaluation when P1 obtains an input x, the parties then jointly compute the
universal boolean circuit U(·, ·) on the underlying input (C, x), and eventually
P2 returns output y = C(x). Please refer to the full version of this paper [22] for
a description of the DF compiler9. Let F2 be binary field, and each share used in
8 This can be implied by the existence of indistinguishable obfuscation and one-way

functions (Theorem 6).
9 Our presentation of the DF scheme adapts from the simplified version of the DF

scheme presented in the work [9].

Leakage-Resilient Circuits Revisited 153

DF compiler be of length m. Note that the length m is related to the amount of
leakage that can be tolerated as described in the following theorem statement.
Let On

b be the uniform distribution on (L,R) ∈ F
n×n
2 conditioned on 〈L,R〉 = b.

Without loss of generality, assume the universal boolean circuit U(·, ·) consists
of T number of NAND gates, labeled with a set G = {1, . . . , T}. The distribution
ΔDF(1λ) is defined as follows:

– For g ∈ G, sample vectors (L′
g||L′′

g , R′
g||R′′

g) ← O2m2

0 ;
for j ≤ |C|, sample vectors (A′

j ||A′′
j , B′

j ||B′′
j) ← O2m

0 ,
– Output (γ1, γ2), where γ1 =

({L′
g||L′′

g}g∈G, {A′
j ||A′′

j }j≤|C|
)

and γ2 =
({R′

g||R′′
g}g∈G, {B′

j ||B′′
j }j≤|C|

)
.

Dziembowski and Faust [24] showed that (without any cryptographic assump-
tion) there exists a two-component OCL scheme in the FΔDF

sampling hybrid world,
denoted as ΛF

DF = (CompDF,Π
F
DF) where F = FΔDF

sampling. By our Theorem 7, we
can realize the functionality that provided by the hardware with a protocol ϕDF

with strong oblivious simulation. Leveraging our OCL Hardware Replacement
Theorem (Theorem 5), we can obtain an OCL scheme Λ′

DF = (Comp′
DF,Π

ϕDF

DF)
that does not require any secure hardware. Formally, we obtain the following
theorem:

Theorem 9. Assume there exist a secure receiver non-committing encryption
scheme and a secure universal deniable encryption transformation for
any encryption scheme. Then Λ′

DF is �-leakage resilient for �(λ) = m(λ)/10,
m(λ) = ω(log(λ)), where λ is the security parameter.

5 Extension: Multi-component OCL Schemes

In this section, we discuss some extensions of our main results. First we note that
the hardware replacement theorem (Theorem 5) also holds for any N -component
OCL schemes. Even if we have two-component constructions (in this paper), still
potentially, there can be other more-component constructions that are more
efficient or achieve better leakage rate. As we emphasize before, this can be
viewed as a general design paradigm of OCL constructions. The definition of
N -component OCL can be found in the work of Bitansky et al. [10], and the
corresponding hybrid schemes can be defined analogously. A natural extension of
strong oblivious simulation (Definition 3) for N -party protocols can be defined
as follow:

Definition 6 (Strong oblivious simulation for N-party protocols). Let
crs ← CRS.Gen(1λ), and let π = (P1, . . . , PN) be an N -party protocol using such
common reference string crs. Let F be an N -input (perhaps randomized) ideal
functionality. We say π realizes the functionality F with strong oblivious simula-
tion, if there exists a ppt simulator S = (S1, . . . ,SN ,Str) for all (non-uniform)

154 D. Dachman-Soled et al.

ppt adversary A such that the following distributions are computationally indis-
tinguishable:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

crs ← CRS.Gen(1λ);
(x1, . . . , xN) ← A(crs);
(r1, . . . , rN) ← (Uλ)N ;

τ = 〈P1(crs, x1; r1), . . . , PN (crs, xN ; rN)〉
: (crs, {xi, ri}i∈[N], τ)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

≈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

crs ← CRS.Gen(1λ);
(x1, . . . , xN) ← A(crs);

(y1, . . . , yN) ← F(x1, . . . , xN);
τ̃ ← Str(crs);

∀i ∈ [N], r̃i ← Si(crs, xi, yi, τ̃);
: (crs, {xi, r̃i}i∈[N], τ̃)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

Note that ri’s are the random coins of the parties, and τ is the transcript
(i.e. message exchanges) by running the N -party protocol .

A similar OCL hardware replacement theorem can be obtained for
N -component OCL scheme. Since the proof is essentially the same as that of
Theorem 5, we only state the theorem but omit the proof.

Theorem 10 (N-component OCL hardware replacement theorem). Let
F be some N -party functionality, and ΛF = (Comp,ΠF) be a F-hybrid N -
component OCL scheme that is �-leakage-resilient with oblivious simulation.
Suppose there exists an N -party protocol ρ using a common reference string
crs, that realizes F with strong oblivious simulation as above. Then there exists
an N -component OCL scheme Λ′ = (Comp′,Πρ) that is �-leakage-resilient with
oblivious simulation.

Our construction in Section 3.3 can be extended to any N -output FΔ
sampling

functionality for any N -output distribution Δ. Let E = {NCGen,NCEnc,NCDec,
NCSim} be a receiver non-committing encryption, Δ be an N -output distribution
that the ideal functionality wants to sample, and UniGen is a secure universal
deniable encryption transformation. Similarly we consider a bit encryption E′ =
{Gen,Enc,Dec} that works as follows:

– E′.Gen(1λ): run (pk2, sk2, . . . , pkN , skN) ← E.NCGen(1λ) (running the gen-
eration N − 1 times. Here we deliberately start the index with 2.). Set the
public key to be pk = (pk2, . . . , pkN), and sk = (sk2, . . . , skN).

– E′.Enc(1λ, pk, b): sample (γ1, . . . , γN) ← Δ(1λ). Then output

c ← (γ1,E.NCEnc(pk2, γ2||b), . . . ,E.NCEnc(pkN , γN ||b))

as the ciphertext. The random coins of this process consist of the randomness
used for sampling Δ, and that for encryption algorithm E.NCEnc.

– E′.Dec(1λ, sk, c): parse c = (γ1, c2, . . . , cN). Run γ2||b := E.NCDec(sk, c2),
and output b.

The CRS sampling. Let C be a circuit that implements E′.Enc(1λ). The sampling
algorithm runs (Cencrypt, Cexplain)←UniGen(C), and outputs crs=(Cencrypt, Cexplain)
as the CRS.

Leakage-Resilient Circuits Revisited 155

The protocol. The parties upon receiving crs = (Cencrypt, Cexplain) do the following:

– For i ∈ [N] \ {1}, Pi first samples a random string ri and runs (pki, ski) ←
E.NCGen(1λ; ri) and sends pki to P1.

– P1 then samples a random string r1, and runs (γ1, c2, . . . , cN) ← Cencrypt(pk, 0;
r1). Then P1 locally outputs γ1 and then sends ci to Pi for all i ∈ [N] \ {1}.

– For i ∈ [N] \ {1}, Pi runs γi||0 := E.NCDec(ski, ci) and then outputs γi.

The analysis of the protocol is essentially the same the previous one. For
succinctness of presentation, we only state the theorem below, but omit the
details to avoid repetition.

Theorem 11. Assume that E is a secure receiver non-committing encryption,
Δ is an efficiently samplable N -output distribution, and UniGen is a secure uni-
versal deniable transformation for the encryption scheme E′ defined as above.
Then the N -party protocol described above realizes FΔ

sampling with strong oblivi-
ous simulation, using the common reference string crs.

Similar to the two-party case, the connection between the above protocol and
MPC was already discussed in the introduction and Definition 3. We restate
the implication: for any N -party randomized functionality (even beyond the
adaptively well-formed ones [18]; the discussions in Remark 3 also apply to the
N -party setting), we are able to construct a protocol that is adaptively secure
and leakage tolerance, using the above construction.

Acknowledgments. We thank Dov Gordon and Adam O’Neill for many insightful
discussions at the early stage of this work. We also thank Nir Bitansky and Rachel Lin
for sharing the draft of paper [9].

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 29–45. Springer, Heidelberg (2003)

2. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoiding
barrington’s theorem. Cryptology ePrint Archive, Report 2014/222 (2014). http://
eprint.iacr.org/2014/222

3. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. Journal of the ACM
59(2), 6 (2012)

6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

http://eprint.iacr.org/2014/222
http://eprint.iacr.org/2014/222

156 D. Dachman-Soled et al.

7. Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T., Rothblum, G.N.:
Program obfuscation with leaky hardware. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 722–739. Springer, Heidelberg (2011)

8. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

9. Bitansky, N., Dachman-Soled, D., Lin, H.: Personal communication (2014)
10. Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with

input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg (2014)

11. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 1–25. Springer, Heidelberg (2014)

12. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks
48(5), 701–716 (2005)

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

15. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May 1996

16. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. IACR Cryptology ePrint Archive,
2014:845 (2014)

17. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005)

18. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

19. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to
counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

20. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)

21. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multi-party computation in constant rounds. IACR Cryptology ePrint Archive,
2014:858 (2014)

22. Dachman-Soled, D., Liu, F.-H., Zhou, H.-S.: Leakage-resilient circuits revisited -
optimal number of computing components without leak-free hardware. Cryptology
ePrint Archive, Report 2014/856 (2014). http://eprint.iacr.org/

23. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

24. Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational
assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247.
Springer, Heidelberg (2012)

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/

Leakage-Resilient Circuits Revisited 157

25. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

27. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. IACR Cryptology ePrint Archive, 2014:844 (2014)

28. Genkin, D., Pipman, I., Tromer, E.: Get your hands off my laptop: physical side-
channel key-extraction attacks on PCs. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 242–260. Springer, Heidelberg (2014)

29. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 444–461. Springer, Heidelberg (2014)

30. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014). http://eprint.iacr.org/2014/309

31. Goldwasser, S., Rothblum, G.N.: Securing computation against continuous leak-
age. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer,
Heidelberg (2010)

32. Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leakage. In:
53rd FOCS, pp. 31–40. IEEE Computer Society Press, October 2012

33. Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calan-
drino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold
boot attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60
(2008)

34. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011)

35. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

36. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: intro-
ducing concurrency, removing erasures (extended abstract). In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000)

37. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg
(2010)

38. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. Journal of Computer Security 8(2/3), 141–158 (2000)

39. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

40. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

41. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 517–532. Springer, Heidelberg (2012)

42. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

http://eprint.iacr.org/2014/309

158 D. Dachman-Soled et al.

43. Miles, E.: Iterated group products and leakage resilience against NC1. In: Naor,
M. (ed.) ITCS 2014, pp. 261–268. ACM, January 2014

44. Miles, E., Viola, E.: Shielding circuits with groups. In: Boneh, D., Roughgarden,
T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 251–260. ACM Press, June 2013

45. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

46. Rothblum, G.N.: How to compute under AC0 leakage without secure hardware. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552–569.
Springer, Heidelberg (2012)

47. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

48. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on aes, and counter-
measures. J. Cryptology 23(1), 37–71 (2010)

49. Waters, B.: CS 395T Special Topic: Obfuscation in Cryptography (2014). http://
www.cs.utexas.edu/∼bwaters/classes/CS395T-Fall-14/outline.html

50. Waters, B.: How to use indistinguishability obfuscation. In: Visions of
Cryptography, (2014). http://www.cs.utexas.edu/∼bwaters/presentations/files/
how-to-use-IO.ppt

51. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In:
Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 887–898. ACM Press, May
2012

http://www.cs.utexas.edu/~bwaters/classes/CS395T-Fall-14/outline.html
http://www.cs.utexas.edu/~bwaters/classes/CS395T-Fall-14/outline.html
http://www.cs.utexas.edu/~bwaters/presentations/files/how-to-use-IO.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/how-to-use-IO.ppt

Noisy Leakage Revisited

Stefan Dziembowski1(B), Sebastian Faust2,3, and Maciej Skorski1

1 Warsaw University, Warszawa, Poland
stefan@dziembowski.net

2 EPFL Lausanne, Lausanne, Switzerland
sebastian.faust@gmail.com

3 Ruhr-University Bochum, Bochum, Germany
m.skorski@mimuw.edu.pl

Abstract. Physical side-channel leakages are an important threat for
cryptographic implementations. One of the most prominent countermea-
sures against such leakage attacks is the use of a masking scheme. A
masking scheme conceals the sensitive information by randomizing inter-
mediate values thereby making the physical leakage independent of the
secret. An important practical leakage model to analyze the security of
a masking scheme is the so-called noisy leakage model of Prouff and
Rivain (Eurocrypt’13). Unfortunately, security proofs in the noisy leak-
age model require a technically involved information theoretic argument.
Very recently, Duc et al. (Eurocrypt’14) showed that security in the prob-
ing model of Ishai et al. (Crypto’03) implies security in the noisy leakage
model. Unfortunately, the reduction to the probing model is non-tight
and requires a rather counter-intuitive growth of the amount of noise,
i.e., the Prouff-Rivain bias parameter decreases proportional to the size
of the set X of the elements that are leaking (e.g., if the leaking ele-
ments are bytes, then |X | = 256). The main contribution of our work
is to eliminate this non-optimality in the reduction by introducing an
alternative leakage model, that we call the average probing model. We
show a tight reduction between the noisy leakage model and the much
simpler average random probing model; in fact, we show that these two
models are essentially equivalent. We demonstrate the potential of this
equivalence by two applications:

– We show security of the additive masking scheme used in many pre-
vious works for a constant bias parameter.

– We show that the compiler of Ishai et al. (Crypto’03) is secure in
the average probing model (assuming a simple leak free component).
This results into security with an optimal bias parameter of the noisy
leakage for the ISW construction.

S. Dziembowski and M. Skorski—Supported by the WELCOME/2010-4/2 grant
founded within the framework of the EU Innovative Economy (National Cohesion
Strategy) Operational Programme.
S. Faust—Received funding from the Marie Curie IEF/FP7 project GAPS, grant
number: 626467.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 159–188, 2015.
DOI: 10.1007/978-3-662-46803-6 6

160 S. Dziembowski et al.

1 Introduction

Side-channel attacks break cryptographic implementations by exploiting physi-
cal observations of, e.g., the power consumption [18] or running time [17] of a
cryptographic device. One of the most well-studied and widely used side-channel
attacks are power analysis techniques (see, e.g., [18,13,3,20] and many more).
In a power analysis attack the adversary exploits the instantaneous power con-
sumption of a physical cryptographic device, e.g., of a smart card, with the goal
to extract sensitive information and breaking the cryptographic implementation.
One of the most prominent countermeasures against power analysis attacks are
masking schemes [2,13]. The basic idea of a masking scheme is to secretly share
all sensitive information, including the secret key and all intermediate values
that depend on it, thereby making the leakage independent of the secret data.
The most prominent masking scheme is the Boolean masking: a secret bit X is
encoded by random bits (X1, . . . , Xn) such that X = X1 ⊕ . . .⊕Xn. It is easy to
extend the Boolean masking to work over larger fields X with |X | > 1. In this
case the shares Xi are random elements in X and ⊕ denotes addition in X .

Amplifying Noise with Masking. As physical measurements are inherently
noisy, one main challenge for a side-channel adversary is to isolate the relevant
sensitive information from the noise in the measurement. Indeed, an attack is
more likely to succeed if the adversary obtains less noisy measurements. More-
over, in practice noise can be relatively easily amplified using practical tech-
niques [3,5,20,2], where one particular example to amplify noise is the masking
countermeasure. The fact that masking amplifies noise in measurements was
first formally studied in the the pioneering work of Chari et al. [2]. In particu-
lar, their main result considers shares Xi of the binary field and shows that if
the adversary observes a noisy version ν(Xi) for each share Xi, he will need an
exponential number (in n) of measurements to recover the secret bit X.

Noisy Leakage Models for Masking. The noisy leakage model of Chari et
al. assumes a specific noise model, where the noise χ is assumed to be sampled
from a Gaussian distribution and the adversary obtains X + χ as the noisy
leakage. The recent work of Prouff and Rivain [25] generalizes the definition
of noise by introducing the concept of a noisy leakage function ν(.). Informally
speaking, a function ν(.) is δ-noisy if the statistical distance between the uniform
distribution X and the conditional distribution X|ν(X) is bounded by some
parameter δ ∈ [0, 1]. To give a better understanding of the Prouff-Rivain noise
model, consider the example when δ is close to 0. In this case the function ν
is assumed to be very noisy, i.e., the leakage is non-informative as the noise
dominates the signal. On the other extreme, when δ is close to 1 then the noisy
component of the leakage ν(.) is close to deterministic.

The way in which Prouff and Rivain model the noisy leakage has two impor-
tant advantages over the work of Chari et al.: first, the noise is neither assumed
to be sampled from some fixed Gaussian distribution nor is it required to be

Noisy Leakage Revisited 161

of an additive nature. Instead, in [25] any type of noisy leakage is allowed as
long as it satisfies the proposed statistical measure. Second, the noisy leakage
model of [25] provides a meaningful and natural interpretation of what it means
to obtain noisy leakage from values of larger sets (e.g., leakage from a byte).
For instance, ν(.) may take as input a byte X and first computes the Hamming
weight of X before perturbing the result by a noisy component.

While the model of Prouff and Rivain provides a first good approximation
of physical side-channel leakage, which is generally applicable in practice, it is
very involved to work in. In particular, in [25] the authors prove the security of
the masking scheme of [14] against noisy leakage by going through a technical
information theoretic argument. This situation is unsatisfying as proving the
security of new masking schemes requires to redo the involved analysis of Prouff
and Rivain.

Leakage Reductions. The recent work of Duc, Dziembowski and Faust [7]
reconsiders the notion of noisy leakages. Their main result is a simple reduction
from the noisy leakage model to the much simpler and cleaner random prob-
ing model. The ε-random probing model – first introduced by Ishai et al. [14] –
considers only a single simple noisy leakage function ϕ, where ϕ(X) = X with
probability ε, and ⊥ otherwise. Notice that in case when ϕ outputs ⊥ the adver-
sary learns nothing about the underlying secret value X. The consequence of
this reduction are twofold: first, it significantly simplifies security proofs in the
noisy leakage model as one only needs to analyze the security of the masking
scheme in the random probing model. Second, Duc et al. [7] show by a simple
Chernoff argument that any scheme that is secure in the t-probing model of
Ishai, Sahai and Wagner [14] is secure in the random probing model, which by
their reduction also implies security in the noisy leakage model of Prouff and
Rivain. Recall that in the t-probing model the leakage is bounded to t-bits and
hence eventually the noisy leakage is reduced to the much simpler and cleaner
deterministic bounded leakage model.

While Duc et al. [7] provide a first step towards a better understanding of
the noisy leakage model, one main drawback of their analysis is the fact that
the reduction between the noisy leakage model and the random probing model
is not tight. More precisely, when one extends the Boolean masking to work
over larger fields, i.e., when the shares Xi of the encoding are from a larger
field X with |X | > 1, then ε-random probing security implies “only” δ := ε/|X |
noisy resilience in the Prouff-Rivain model. Recall that in the Prouff-Rivain noise
model a smaller value for δ results into a weaker result as the leakage is required
to be “more noisy”. For instance, consider the situation where the shares Xi of
the encoding (X1, . . . , Xn) are bytes or words as it would be the case on many
standard hardware architectures. In this case, as an artefact of the proof the
requirement on the noise needs to take into account an additional factor of 28

or 232 in order to compensate for the 1/|X | loss.
The main contribution of our work is to eliminate this unnatural loss in the

reduction by developing a tight characterization of the noisy leakage model of

162 S. Dziembowski et al.

Prouff and Rivain. Our main new technique to achieve this goal is to show a
tight (up to a constant 2) equivalence between the noisy leakage model and a
new leakage model that we call the average probing model.

We emphasize that the equivalence between these two models allows us to sig-
nificantly improve the formally verifiable security guarantees of common masking
schemes (see below) when the noisy component of the leakage is small. Moreover,
our improved reduction is of particular importance for applications that work
with fields of super-polynomial size, e.g, when we use blinding in a discrete-log
based scheme. In this case, the reduction of Duc et al. looses a factor that is
super-polynomial in the security parameter and hence results into meaningless
security guarantees due to requiring almost uniform noise.

1.1 Our Contribution

The main contribution of our work is to introduce a new noisy leakage model
that we name the ε-average probing model that provides a much tighter (and
essentially optimal) equivalence to the leakage model of Prouff and Rivain. Our
approach is in spirit of the recent work of Duc et al. [7] who show that t-probing
security implies security in the noisy leakage model. In contrast to [7], however,
our reduction does not result in the 1/|X | loss that occurs in the reduction of
Duc et al. We demonstrate how to use the new leakage model by two applications
that result due to the tightness of the reduction to the noisy leakage model to
significantly improved security statements compared to earlier works; namely, we
show that using the natural noise model of Prouff and Rivain [25] the additive
masking is secure with a δ-noise parameter that is independent of the size of
the underlying field. As a second important application, we show that masking
schemes based on the ISW construction [14] are secure in the average probing
model (under the assumption of a leak-free component). Our analysis results
in an asymptotically optimal δ-noise parameter for the ISW construction as
for asymptotically higher values of δ the ISW construction can be broken. We
provide more details on our contributions below. A summary of our contributions
are given in Figure 2 and Figure 1.

The ε-average Probing Model. The definition of the ε-average probing model,
described formally in Section 5, can be viewed as a relaxation of the definition
of the random probing model of Ishai et al. [14] and Duc et al. [7] . Intuitively,
it comes from a different interpretation of an informal statement “probability of
ϕ(x) �= ⊥ is equal to ε” (where ϕ is the leakage function). Recall that in [7] it
was required that it holds for every x ∈ X , and the randomness in the probabil-
ity came only from the internal random choices1 made by ϕ. In contrast, in the
ε-average probing model we require that P (ϕ(X) �= ⊥) is equal to ε when the
probability is taken also over X. This seemingly small change has huge impli-
cations. In particular, it allows us to show a tight (up to a factor 2) equivalence
between our new probing model and the model of [25]. This, in turn, permits
1 In the sequel we will often make this internal randomness of ϕ explicit.

Noisy Leakage Revisited 163

ε-random probing δ-noisy leakage
ε-average probing
(this work)

δ := ε
|X|

ε := 2δ

δ := ε

Fig. 1. The figure illustrates the connection between the noisy leakage model of [25],
the ε-random probing model of [14] and the new average probing model introduced in
this work. As shown in the figure, the average probing model is equivalent to the noisy
leakage model.

us to obtain much better parameters for the security of additive masking. We
elaborate on these points below.

New Characterization of Noisy Leakage Functions. We show that the
leakage model of Prouff-Rivain is essentially equivalent to the average probing
model described above. More concretely, we show (cf. Lemma 7) that every ε-
noisy adversary can be perfectly simulated by an ε-average-probing adversary.
We also show the reduction in the other direction (cf. Lemma 8), namely that
every ε-average-probing adversary can be perfectly simulated by a 2ε-noisy adver-
sary. This means that instead of analyzing security against noisy leakage (in the
[25] sense) one can use the ε-average-probing model. Moreover, we show two
important applications of the average probing model that improve the earlier
works of [25,7] when δ is large (i.e., the noise component is rather small com-
pared to the sensitive information). A summary of known reductions between
leakage models is given in Figure 1.

Application to Masking Function. As a first application of our new tech-
niques we show that the additive masking function used in many works [2,14,
28,4] is secure for a δ-noise parameter which is independent of the size of the
underlying field. Security of the encoding function here means that if the adver-
sary obtains a noisy version ν(Xi) of each share Xi of an encoding (X1, . . . , Xn)
he cannot distinguish between an encoding of any two messages. While earlier
works showed feasibility with weak bounds [25,7], i.e., when δ < 1

c|X | for some
constant c < 1/2, we are able for the first time to show security of the additive
masking function for a constant δ < 1/16 – in particular, δ is independent of X .

Our result also can be viewed as an answer to a question raised in the orig-
inal work of Chari et al. [2]. In this work (Section 3.7) the authors ask for an
extension of the security analysis when leakage is not on bits but from bytes.
Unfortunately [2] does not precisely define what “noisy leakage of a byte value”
means (e.g., noisy version of each byte share, noisy HW, do we use bit-strings
or decimals to represent bytes,...). We believe that a very appealing noise model
for bytes is given by the noisy leakage model of Prouff and Rivain [25]. Using the
Prouff-Rivain interpretation of a noisy leakage from a byte value, we can provide
an answer to the question of Chari et al. [2], namely, we show that security of the
encoding can be achieved for a constant δ-noise parameter (which is optimal for
the model of [25]). We remark that a constant δ-noise parameter in the model

164 S. Dziembowski et al.

of [25] does not imply that we can show security for a constant noise level in
the common leakage model of additive Gaussian noise with a constant standard
deviation. For instance, if the leakage from the byte is the Hamming weight per-
turbed by additive Gaussian noise with a constant standard deviation, it is easy
to see that the encoding cannot achieve a strong distance-based security notion
when the underlying field size grows. In particular, for the additive Gaussian
noise and the Hamming weight leakage function the standard deviation of the
noise distribution has to grow at least logarithmically with the size of the field
in order to achieve security.

Application to Masked Computation. While our improvement of the δ-noise
parameter for the encoding scheme provides a first indication of the usefulness
of the average probing model, we provide a second – practically more relevant –
application of the average probing model. Consider the situation where a side-
channel adversary attacks a masked implementation of an AES. Of course, in this
setting the adversary can target any intermediate value of the computation (e.g.,
the masked input of an AES S-Box), and hence clearly it does not suffice to only
analyze the security of the encoding scheme. Recent works, [25,7] overcome this
restriction and provide the first security analysis of masked computation in the
noisy leakagemodel; in particular, [25,7] show security of the ISW-construction [14]
in the noisy leakage model. Unfortunately, in both cases the requirement on the δ-
noise parameter is rather strong: δ decreases linearly with the size of the field |X |
and the security parameter n (cf. Figure 2). While the loss in the security param-
eter is necessary (i.e., one can show easy attacks if the noise is independent of n),
there is no fundamental reason why δ has to decrease linearly with the size of the
field. We prove that indeed the later loss is unnecessary and show that the ISW
construction is secure for noise levels that only depend on the necessary factor
n – leading to an asymptotically optimal noise rate for the ISW construction. To
achieve this goal, we apply the framework of reconstructors introduced by Faust
et al. [10].Quite surprisingly,while at first sight proofs in the averageprobingmodel
seem more involved as the leakage can implicitly depend on all intermediate val-
ues (which is in contrast to the much simpler random probing model), the notion
of reconstructors allows for a rather simple security proof. Hence, our analysis of
the ISW construction can be seen as a basic tool box for proving security of differ-
ent masking schemes against noisy leakages with tight security bounds. We notice
that – similar to the work of Prouff and Rivain [25] – our analysis requires simple
leak free components.We leave it as an important direction for futureworkwhether
this assumption can be eliminated.

Adaptive Noisy Leakages. In our proofs we assume that the leakage functions
are chosen adaptively, i.e. if the adversary attacks a sequence X1, . . . , X� of
variables, then his choice of the leakage function ϕi that will be applied to Xi

depends on the leakage information that he obtained from X1, . . . , Xi−1. This is
in contrast with the proofs in [25,7]. We believe that in our case assuming the
adaptiveness of the adversary makes particular sense, since the adversary in our

Noisy Leakage Revisited 165

Author Proof technique Noise for Encoding Noise for any computation Leak-free gates

Prouff/Rivain [25] Direct analysis O(1/
√|X |) O(1/d|X |) yes

Duc et al. [7] Random probing O(1/|X |) O(1/d|X |) no
Our work Average probing O(1/16) O(1/d) yes

Fig. 2. The second column shows the proof technique with which the results are
achieved. The third column shows the noise rate that is required for security of encod-
ing. The fourth column shows the noise rate for arbitrary computation. The last column
shows under which assumption we can achieve security for arbitrary computation.

model has a much bigger choice of leakage functions than in [7] (where his only
choice was the ε parameter and clearly the best choice for him is to take the
maximal ε he was allowed to). On a technical level, the only price for going to
the adaptive case is that instead of relying on the Chernoff’s bound we need to
use the theory of martingales and the Azuma-Hoeffding inequality.

Additional Facts About the [25] Leakage Model. We also show some
simple facts about the [25] leakage model. Although they are not directly needed
for our main technical result we believe that they help in understanding this
model (this is why we placed it relatively early in the paper, in Section 4), and
provide an additional justification why the Prouff-Rivain model is natural. In
particular, we show an alternative (but equivalent) definition of the [25] leakage
in spirit of the definition of semantic security, and show by a simple hybrid
argument how the amount of noise needs to grow when the adversary obtains
multiple noisy measurements of the same value X.

1.2 Other Related Works

Masking and Leakage Resilient Circuits. A large body of work has pro-
posed various masking schemes and studies their security in different security
models (see, e.g., [13,1,24,31,28,4]). The already mentioned t-probing model has
been considered in the work of Rivain and Prouff [28], who show how to extend
the work of Ishai et al. to larger fields and propose efficiency improvements. With
the emerge of leakage resilient cryptography several works have proposed new
security models and alternative masking schemes [10,29,15,11,8,12]. The main
difference between these security models and the noisy leakage model is that
these works typically put a quantitative bound on the amount of leakage – so-
called “bounded leakages”. While from a theoretical point of view the bounded
leakage model offers a beautiful abstraction to analyze the security of crypto-
graphic schemes with weak secrets, it has been questioned [30,19,25] whether
it models physical leakages in an appropriate way. For instance, a power mea-
surement can typically not be described by a few bits of information but instead
requires megabytes if not even gigabytes of information for its description. The
noisy leakage model studied in our work more realistically models practical side-
channel leakages.

166 S. Dziembowski et al.

Noisy Leakage Models. The work of Faust et al. [10] also considers circuit com-
pilers for noisy leakages. Specifically, they propose a construction with security
in the binomial noise model, where each value on a wire is flipped independently
with probability p ∈ (0, 1/2). Besides these works on circuit compilers, several
works consider noisy leakages for concrete cryptographic schemes [9,23,16]. Typ-
ically, the noise model considered in these works is significantly more general than
the noise model that is considered for masking schemes. In particular, no strong
assumption about the independency of the noise is made.

2 Preliminaries

We start with some standard definitions and lemmas about the statistical dis-
tance. If A is a set then U ← A denotes a random variable sampled uniformly
from A. Recall that if A and B are random variables over the same set A then
the statistical distance between A and B is denoted as Δ(A;B), and defined as
Δ(A;B) := 1

2

∑
a∈A |P (A = a) − P (B = a) |. It is easy to see that Δ(A;B) can

be also defined in the following alternative ways:

Δ(A;B) =
∑

a∈A
max(0,P (A = a) − P (B = a)) (1)

= 1 −
∑

a∈A
min(P (A = a) ,P (B = a)) (2)

=
∑

a:P(A=a)≥P(B=a)

P (A = a) − P (B = a) . (3)

Moreover, Δ satisfies the triangle inequality, i.e. for every A,B and C we have
Δ(A;B) ≤ Δ(A;C)+Δ(C;B). If X ,Y are some events then by Δ((A|X) ; (B|Y))
we will mean the distance between variables A′ and B′, distributed according to
the conditional distributions PA|X and PB|Y . If X is an event of probability 1
then we also write Δ(A ; (B|Y)) instead of Δ((A|X) ; (B|Y)). If C is a random
variable then by Δ(A ; (B|C)) we mean

∑
c P (C = c) · Δ(A ; (B|(C = c))).

If A,B, and C are random variables and X is an event then Δ((B;C) | A)
denotes Δ((BA); (CA)) (where AB denotes the joint distribution of A and B)
and Δ((B;C) | A,X) denotes Δ((BA)|X ; (CA)|X). It is easy to see that it is
equal to Δ((B;C) | A,X) =

∑
a P (A = a|X) · Δ((B|A = a,X) ; (C|A = a,X)).

If Δ(A;B) ≤ ε then we say that A and B are ε-close. The “ d= ” symbol denotes
the equality of distributions, i.e., A

d=B if and only if Δ(A;B) = 0. For A
distributed over A by d(A) we will mean the distance of A from the uniform
distribution over A, i.e. Δ(A;U), where U ← A. This notation extended to the
conditional case in the natural way, e.g. d(A|X) := Δ((A|X);U). The following
lemma was proven in [22] (Lemma 1)2.

2 In [22] it was shown for the quasi-groups, but we do not need this generalization in
our paper.

Noisy Leakage Revisited 167

Lemma 1 ([22]). For any two independent random variables A and B over
an additive finite group we have d(A + B) ≤ 2d(A)d(B)

It is easy to see that the constant 2 in the lemma above cannot be replaced by
a smaller number, at least as long as we quantify over all finite groups. To see
why, consider the group (Zn

2 ,⊕), where n > 1 and (x1, . . . , xn) ⊕ (y1, . . . , yn) =
(x1 + y1, . . . , xn + yn). Let A and B be uniformly distributed over the set of all
elements x ∈ Zn

2 such that x0 = 0. Then it is easy to verify that d(A) = d(B) =
d(A + B) = 1/2, and hence d(A + B)/(d(A)d(B)) = 2.

The following lemmata are standard information theoretic facts whose proofs
are omitted.

Lemma 2. For any two independent random variables A and B over an addi-
tive finite group we have

d(A + B) ≤ d(A)

Lemma 3. For any random variables A,B and C that takes values over some
set C, and any event W we have

d(A|B,W) ≤
∑

c∈C
d(A|B,C = c,W) · P (C = c|W)

3 Previous Noisy Leakage Models

In this section we review the most relevant noisy leakage models that have been
used to analyze the security of masking schemes. For the lack of space we do not
cover several other models used in the literature and refer the reader for some
important references to the introduction.

Noisy Model of Prouff and Rivain. As discussed in the introduction the
noisy model of Prouff and Rivain [25] is a generalization of the model of Chari
et al. [2]. In particular, it introduces the notion of a noisy leakage function which
is formally defined below.

Definition 1 ([25]). We say that a function ν : X × R → Y is δ-noisy if

Δ((ν(X,R); ν(X ′, R)) | X) ≤ δ (4)

where X and X ′ are uniform over X and R is uniform over R.

Some explanations are needed here, since the definition from [25] may appear
different from Definition 1 at first sight. First, to make the notation consistent
with the rest of this paper, we decided to keep the internal randomness of ν
explicit. Secondly, instead of having a bound on “Δ((ν(X,R); ν(X ′, R)) | X)”
(as in Definition 1)) in the work of [25] the authors impose an upper bound on
“Δ(X; (X|ν(X,R)))” (cf. Eq. (2) in [25]). This is not a problem since as shown

168 S. Dziembowski et al.

by Duc et al. [7] both definitions are equivalent. Finally, the definition in [25] uses
as the distance measure the Euclidean norm, while we follow [7] and use the total
variation. We refer the reader to [7] for further motivation on this choice and only
emphasize here that it corresponds to the maximum distinguishing advantage of
the best possible adversary. This intuitively matches with our understanding of
security and is standard in cryptographic research.

Let us now define a notion of an adversary that adaptively attacks a sequence
of field elements using the noisy functions. For δ ≥ 0 a δ-noisy adversary on X �

(or on X if � = 1) is a machine A that, for i = 1, . . . , � plays the following game
against an oracle that knows (x1, . . . , x�) ∈ X �.

1. A specifies a δi-noisy function νi : X × R → Y such that δi ≤ δ.
2. A receives νi(xi, Ri), where each Ri is sampled uniformly at random from R.

At the end of the execution A outputs a value that we denote outA(x1, . . . , x�).
We say that A is non-adaptive if he has to specify the functions ν1, . . . , ν� in
advance. If A works in polynomial time and the noise functions specified by A
are efficiently decidable then we say that A is poly-time-noisy [7].

Random Probing Model. The following model has been introduced in [14]
and used in [7]. Here, we follow the formalism of [7]. We start with the following
definition.

Definition 2 ([7]). A function ϕ : X × R → X ∪ {⊥} is an ε-identity if for
every x and r we have that either ϕ(x, r) = x or ϕ(x, r) = ⊥ and

for every x P
R←R

(ϕ(x,R) �= ⊥) = ε.

For ε ≤ 1 an ε-probing adversary on X � (or on X if � = 1) is a machine A
that, for i = 1, . . . , � plays the following game against an oracle that knows
(x1, . . . , x�) ∈ X �:

1. A specifies an εi-identity function ϕi : X × R → X ∪ {⊥} where each εi ≤ ε.
2. A receives ϕi(xi, Ri), where each Ri is sampled uniformly at random from R.

At the end of the execution A outputs a value that we denote outA(x1, . . . , x�).
We say that A in non-adaptive if he has to specify the functions ϕ1, . . . , ϕ� in
advance.

4 Useful Facts About the Prouff and Rivain Noise Model

In this section we show some basic facts about the noise model of [25] that, to
the best of our knowledge, have not been shown before. We do it because, first
of all, we believe that they are of general interests, and may be useful in some
future work in the noisy leakage model. Secondly, we think that they may serve
as an additional justification why Prouff-Rivain noisy leakage model is natural.
This is in particular the case with Lemma 4 below, that essentially provides
an alternative and very intuitive interpretation of the [25] noise definition. The
proofs are deferred to the full version of this paper.

Noisy Leakage Revisited 169

Lemma 4. For every δ-noisy function ν : X × R → Y we have

2δ ≥ Δ((ν(X0); ν(X1)) | X0,X1) ≥ δ,

where X0,X1 are two independent uniform random variables distributed over X .

Let us now argue why this lemma is interesting, by showing a natural interpre-
tation of the “Δ((ν(X0); ν(X1)) | X0,X1)” formula. To this end, consider the
following game played by any adversary A:

1. X0,X1 are chosen uniform at random from X and sent to the adversary,
2. the adversary receives ν(Xb) for a random b ← {0, 1},
3. the adversary has to guess b (if he does it correctly then we say that he won

the game).

Note that this game can be essentially summarized as “A has to distinguish
noisy leakage from two random elements X0 and X1”, and of course it closely
resembles a “random message attack” used in defining security of the encryption
schemes. Using Lemma 4 it is easy to show the following lemma, which upper
bounds the success probability of an adversary in the above game.

Lemma 5. The probability of any A winning the game above is upper-bounded
by Δ((ν(X0); ν(X1)) | X0,X1)/2 + 1/2.

When considering noisy leakage it is also natural to ask how this notion behaves
when the adversary obtains several independent noisy leakage information from
the same given element. It turns out that the characterization of noise shown in
Lemma 4 is also useful to prove that the success probability of the adversary only
increases linearly with the number of measurements. The proof is by a simple
hybrid argument.

Lemma 6. Let ν1, . . . , νn : X → Y be such that for every i and X0,X1 ← X
we have Δ((νi(X0); νi(X1)) | X0,X1) ≤ δ. Then

Δ((ν1(X0), . . . , νn(X0)); (ν1(X1), . . . , νn(X1)) | X0,X1) ≤ nδ.

5 Epsilon-Average Probing Model

The main contribution of [7] is a reduction from the noisy leakage to the probing
model (cf. Lemma 2 of [7]). Although their reduction suffices for improving the
results of [25], it suffers from one important weakness which is a significant
loss in the error parameter. Namely, in order to “simulate” a δ-noisy function
(defined over set X), they need an ε-random probing function with ε = δ · |X |,
a consequence of this being that in order to hope for any security one needs to
assume that δ < 1/ |X |.

It is relatively straightforward to see that this loss is inherent for this reduc-
tion (i.e. Lemma 2 of [7] cannot be improved using better proof techniques). To

170 S. Dziembowski et al.

see why it is the case, consider the following noisy function (let x0 be some fixed
element of X , and let α ∈ [0, 1]):

ν(x) :=
{

x0 with probability α if x = x0

⊥ otherwise.

The following calculation shows that ν defined above is approximately 2α/ |X |-
noisy for large X (let X,X ′ and R be uniformly random):

Δ((ν(X); ν(X ′)) | X) =
1

|X |

⎛

⎝Δ(ν(x0); ν(X ′)) +
∑

x�=x0

Δ(ν(x,R); ν(X ′, R))

⎞

⎠

=
1

|X |
(

α − α

|X | +
(|X | − 1) · α

|X |
)

=
2α

|X |
(

1 − 1
|X |

)

≈ 2α/ |X | .

On the other hand it is clear that to simulate ν any probing function ϕ on
input x0 needs to output x0 with probability at least α. Hence the |X |−1 factor
in the security loss is unavoidable.

Our main insight is that this problem can be bypassed by slightly relaxing
the definition of the “random probing”. Recall that in Definition 2 we had a
universal quantifier over all x’s from X . In particular, this meant that the probing
probability of ϕ had to depend on the “worst-case” (over all x ∈ X) behavior of
the noisy function ν. This was particularly visible in the example above, where
the “worst case” was x = x0 (and the reduction could not take into account that
such x occurs with very low probability). Instead, our new definition will look
at the average x ∈ X . In other words: it will be possible that ϕ outputs ⊥ with
a different probability for each x, and the only thing that we will require is that
the probability (over both X and R) of receiving ⊥ is high. A formal definition
follows.

Definition 3. A function ϕ : X × R → X ∪ {⊥} is an ε-average-identity if for
every x ∈ X and every r ∈ R we have that either ϕ(x, r) = x or ϕ(x, r) = ⊥ and

P
X←X
R←R

(ϕ(X,R) �= ⊥) = ε. (5)

Typically in our applications an adversary will obtain not only ϕ(X,R) but also
the randomness R. One way to interpret this situation is as follows: (a) the
adversary chooses a set of functions {ϕ(·, r) : X → X ∪ {⊥}}r∈R (such that (5)
holds), then (b) a function ϕ(·, r) is chosen randomly from this set, and finally (c)
he learns this function together with ϕ(x, r). Observe that it is enough to restrict
ourselves to deterministic functions ϕ(·, r) since anyway a clever adversary will
always prefer to make the whole randomness explicit (i.e. to encode it into r),
as later he learns it for free.

Noisy Leakage Revisited 171

We will later show (cf. Lemma 7) that the relaxation from Definition 3 allows
us to get rid of the |X |−1 factor in the reduction from noisy to probing leakage.
Moreover we show that Lemma 7 is essentially optimal, by proving a reduction in
the opposite direction (Lemma 8), that looses only factor 2 in the error parame-
ter. Altogether these lemmas provide an alternative but (essentially) equivalent
definition of the [25] noise that may be easier to reason about. As an evidence
to support this belief we show how Lemma 7 can be used to obtain better error
parameters (that do not deepened on |X |) for the additive masking scheme and
how it can be used to reason about the ISW masking scheme. This is done in
Section 6.

We are now ready to define the ε-average probing adversaries (analogously
to the ε-probing adversaries in Section 3). Let � be some natural parameter and
X be a finite set. For ε ≤ 1 an ε-average-probing adversary on X � (or on X if
� = 1) is a randomized machine A that for i = 1, . . . , � plays the following game
against an oracle that knows (x1, . . . , x�) ∈ X � :

1. A specifies an εi-average-identity function ϕi, where each εi is at most ε.
2. A receives (ϕi(xi, Ri), Ri), where each Ri is sampled uniformly at random

from R.

At the end of the execution A outputs a value that we denote outA(x1, . . . , x�).
We say that A in non-adaptive if he has to specify the functions ϕ1, . . . , ϕ� in
advance.

5.1 Connection to the Noisy Leakage

In this section we show a reduction form the δ-noisy model to the δ-average-
probing (Lemma 7) and vice versa (Lemma 8), establishing an equivalence
between these two models (except of the factor 2 loss in the second reduction).
Applications of this equivalence are discussed further in Section 6.

Lemma 7. For any δ let A be a δ-noisy adversary on some X �. Then there
exists a δ-average-probing adversary S on X � such that for every (x1, . . . , x�) ∈
X � we have

outA(x1, . . . , x�)
d= outS(x1, . . . , x�). (6)

Moreover if A is non-adaptive then so is S, and if the noise functions issued by
A are poly-time-decidable then S works in polynomial time.

Proof. Let the ν1, . . . , ν� be the functions chosen by A. Each νi is δ′
i-noisy (for

some δ′
i ≤ δ). Clearly we can assume that A simply outputs all the values

ν1(x1, R
1
ν), . . . , ν�(x�, R�

ν) that it receives (where the Rν
i ’s are uniform over Rν

and independent). We construct an adversary S that for each νi chooses a δ′
i-

average-identity function ϕi, receives (ϕ(xi, R
ϕ
i), Rϕ

i) from the oracle (where
Rϕ

i is uniform over Rϕ), and computes a value out i that is distributed identi-
cally to νi(xi, R

ν
i). Since these experiments are independent for each i it suffices

to consider each i separately. To ease the notation we drop the subscript i in
xi, νi, R

ν
i , Rϕ

i , out i and ϕi. We also assume that δi = δ.

172 S. Dziembowski et al.

Hence, what we have to show is that for every δ-noisy function ν : X ×Rν →
Y there exists a randomized machine S that (1) specifies a δ-average-identity
function ϕ : X ×Rϕ → Y, and (2) after receiving (ϕ(x,Rϕ), Rϕ) outputs outS(x)
such that for every x we have

ν(x,Rν) d= outS(x), (7)

for Rν ← Rν and Rϕ ← Rϕ. We now show how to construct such S. The set Rϕ

from which the function ϕ draws its random inputs will be defined as a product of
X and the set Rν of random inputs of ν, i.e: Rϕ := X ×Rν . Informally speaking
this random input will be used to sample “offline” (i.e. independently of the
“real” x) a value y according to the distribution ν(X ′, Rν) (where X ′ ← X and
Rν ← Rν).3 (One can think of such y as a “guess” of the noise value, performed
by someone who has no idea about the “real” x.) More precisely the adversary
S constructs the function ϕ : X ×Rϕ → X ∪{⊥} in the following way. On input
(x, (x′, rν)) the function computes y = ν(x′, rν), and then it outputs4

ϕ(x, (x′, rν)) :=

{
⊥ with probability min

(
1, P(ν(x,Rν)=y)

P(ν(X,Rν)=y)

)

x otherwise,
(8)

Informally, w = ⊥ indicates that the function ϕ (whose input is the “real” x) is
happywith the value y thatwas sampled “off-line”.Toget some intuitions about (8)
consider twoextremecases.First suppose thatP (ν(x,Rν)=y) ≥ P (ν(X,Rν)=y).
This means that the value y is at least as likely to happen with the “real” x as it is
with a uniformly random X (i.e. when it is sampled “off-line”). Hence intuitively ϕ
is “happy” with this y and wants to communicate to the adversary a message “just
output y”, which is technically done by outputting ⊥.

Now, consider the other extreme case, i.e.: P (ν(x,Rν) = y) = 0. Here, in
some sense, the value of y is “totally wrong”, i.e., it is never going to occur
as a noise value for this particular x. Hence the function ϕ sends a message
“wrong y, please resample the noise using x”, which is technically done by out-
putting x. The cases when 0 < P (ν(x,Rν) = y) < P (ν(X,Rν) = y) are some-
where in between these two extremes and hence ϕ can either output ⊥ or x with
probability depending on the ratio P (ν(x,Rν) = y) /P (ν(X,Rν) = y).

Now, let (w, (x′, rν)) be the value that S receives from the oracle. Since
w = ⊥ indicates that y sampled from (x′, rν) is “correct for the real x” in this

3 We could also assume that the random input of ϕ is simply Y that is distributed
according to ν(X ′, Rν), this, however, would lead to more complicated definitions, as
in this case we would need to consider randomized functions that take non-uniform
random inputs.

4 A careful reader may notice that ϕ defined this way is randomized, which seemingly
contradicts the definition of the average-identity (where it is required to be deter-
ministic). This is not a problem since we can always extend Rϕ to include also the
“internal” randomness needed to compute ϕ. We decided to keep this additional
randomness implicit, for the sake of the clarity of the proof (cf. also remarks after
Definition 3).

Noisy Leakage Revisited 173

case simply S outputs y. Otherwise w = x. In this case the adversary S outputs
a value z according to the distribution in which every z ∈ Y has probability5

max
(

0,
P (ν(x,Rν) = z) − P (ν(X,Rν) = z)

Δ(ν(x,Rν); ν(X,Rν))

)

. (9)

This distribution is chosen in such a way that it will “compensate” the fact that
y’s chosen “off-line” have sometimes lower probability than they should have in
the “real” distribution.

We first show that S is δ-average-probing, i.e. that the expected probability
of not receiving ⊥ in the above experiment is equal to δ, more formally:

P (ϕ(X, (X ′, Rν)) �= ⊥) = δ (10)

(where the variables X,X ′ and Rν are uniform and independent). We have

P (ϕ(X, (X ′, Rν)) = ⊥)

=
∑

x∈X
P (X = x) · P (ϕ(x, (X ′, Rν)) = ⊥)

=
∑

x∈X
P (X = x) ·

∑

y∈Y
P (ν(X ′, Rν) = y)P (ϕ(x, (X ′, Rν)) = ⊥ | ν(X ′, Rν) = y)

=
∑

x∈X
P (X = x) ·

∑

y∈Y
P (ν(X ′, Rν) = y) · min

(

1,
P (ν(x,Rν) = y)
P (ν(X ′, Rν) = y)

)

=
∑

x∈X
y∈Y

P (X = x) · P (ν(X ′, Rν) = y) · min
(

1,
P (ν(x,Rν) = y)
P (ν(X ′, Rν) = y)

)

=
∑

x∈X
y∈Y

min
(
P (X = x) · P (ν(X ′, Rν) = y) , P (X = x) · P (ν(x,Rν) = y)

)

=
∑

x∈X
y∈Y

min
(
P ((X, ν(X ′, Rν)) = (x, y)) , P ((X, ν(X,Rν)) = (x, y))

)
(11)

= 1 − Δ((X, ν(X ′, Rν)); (X, ν(X,Rν))) = 1 − δ (12)

where in (11) we used the independence of the variables, and (12) follows from
Eq. (2). What remains is to show (7). Take some x ∈ X and y ∈ Y. We have

P (outS(x) = y) = (13)
P (ϕ(x, (X ′, Rν)) = ⊥ ∧ outS(x) = y)+ (14)
P (ϕ(x, (X ′, Rν)) �= ⊥ ∧ outS(x) = y) (15)

5 Eq. (9) defines a probability distribution, since the values in (9) are clearly non-
negative and they sum up to 1 (when the sum is computed over all z ∈ Y),
which follows from the fact that

∑
z∈Y max(0,P (ν(x, Rν) = z)−P (ν(X, Rν) = z)) =

Δ(ν(x, Rν); ν(X, Rν)) (cf. (1)).

174 S. Dziembowski et al.

It is easy to see that (14) is equal to

P (ϕ(x, (X ′, Rν)) = ⊥ ∧ ν(X ′, Rν) = y)
P (ν(X ′, Rν) = y) · P (ϕ(x, (X ′, Rν)) = ⊥ | ν(X ′, Rν) = y)

= P (ν(X ′, Rν) = y) · P (ϕ(x, (X ′, Rν)) = ⊥ | ν(X ′, Rν) = y)

= P (ν(X ′, Rν) = y) · min
(

1,
P (ν(x,Rν) = y)
P (ν(X,Rν) = y)

)

= min
(

P (ν(X ′, Rν) = y) ,
P (ν(X ′, Rν) = y) · P (ν(x,Rν) = y)

P (ν(X,Rν) = y)

)

which, since (X,Rν) and (X ′, Rν) have identical distributions is equal to

min (P (ν(X ′, Rν) = y) ,P (ν(x,Rν) = y)) .

On the other hand (15) is equal to the product of

P (ϕ(x, (X ′, Rν)) �= ⊥) (16)

and
P (outS(x) = y | ϕ(x, (X ′, Rν)) �= ⊥) . (17)

Clearly (16) is equal to
∑

z∈Y
P (ν(X ′, Rν) = z) · P (ϕ(x, (X ′, Rν)) �= ⊥ | P (ν(X ′, Rν) = z))

=
∑

z∈Y
P (ν(X ′, Rν) = z) ·

(

1 − min
(

1,
P (ν(x,Rν) = z)
P (ν(X,Rν) = z)

))

=
∑

z∈Y
P (ν(X ′, Rν) = z) · max

(

0,
P (ν(X,Rν) = z) − P (ν(x,Rν) = z)

P (ν(X,Rν) = z)

)

(18)

=
∑

z∈Y
(max (0,P (ν(X,Rν) = z) − P (ν(x,Rν) = z))) (19)

= Δ(ν(x,Rν); ν(X,Rν)), (20)

where in (18) we used the fact that for any 0 ≤ c ≤ 1 we have 1 − min(1, c) =
max(0, 1 − c), in (19) we used (X,Rν) and (X ′,Rν) are identically distributed,
and in (20) we used Eq. (1). In turn, from the construction of S it is clear that
Eq. (17) is equal to

max
(

0,
P (ν(x,Rν) = y) − P (ν(X,Rν) = y)

Δ(ν(x,Rν); ν(X,Rν))

)

. (21)

Since (15) is equal to the product of (20) and (21), thus it is equal to

max (0,P (ν(x,Rν) = y) − P (ν(X,Rν) = y)) ,

Noisy Leakage Revisited 175

and therefore (13) is equal to

=(14)
︷ ︸︸ ︷
min (P (ν(X ′, Rν) = y) ,P (ν(x,Rν) = y)) (22)

+

=(15)
︷ ︸︸ ︷
max (0,P (ν(x,Rν) = y) − P (ν(X,Rν) = y))

= P (ν(x,Rν) = y) , (23)

where (23) comes from a simple calculation6. In this way we have shown that

P (outS(x) = y) = P (ν(x,Rν) = y) ,

which implies (7). This finishes the proof of (6). It is also clear from the construc-
tion of S that if A is non-adaptive then so is S, and that S works in polynomial
time provided the noise functions issued by A are poly-time-decidable. �

The opposite direction, namely the reduction from the average probing leak-
age model to the noisy leakage model is given in the lemma below. For space
limitations the proof is referred to the full version of this paper.

Lemma 8. For any ε let A be a ε-average-probing adversary on some X �. Then
there exists a 2ε-noisy adversary S on X � such that for a every (x1, . . . , x�) ∈ X �

we have
A(x1, . . . , x�)

d= S(x1, . . . , x�). (24)

6 Applications of the Average Probing Model

In this section, we present some applications of the average probing model and
the reduction to the noisy leakage model of Prouff and Rivain. We first show
in Section 6.1 that the standard additive masking function used in numerous
works [26,28,14,4] as a building block for masked computation is secure in the
ε-average probing model. As a second application, we prove in Section 6.2 that
the masking scheme of ISW (or rather its extension to larger fields by Rivain
and Prouff [28]) is secure in the average probing model using leak-free gates
similar to [25,10]. We emphasize that in both cases we can achieve security with
significantly improved δ-noise parameter – in particular, in contrast to earlier
works [25,7] we improve the δ parameter by a factor |X |.

6.1 Security of the Additive Masking

In this section we show the security of the additive masking scheme over a finite
group in the average probing model. Let n be a natural number and (X ,+) be

6 More precisely we use the fact that for every two real numbers A and B we
have min(A, B) + max(0, A − B) = A, with A := P (ν(x, Rν) = y) and B :=
P (ν(x, Rν) = y).

176 S. Dziembowski et al.

a finite group. Define an encoding function Encn
X : X → X n and a decoding

function Decn
X : X n → X as follows. Let

Encn
X (x) = (X1, . . . , Xn), (25)

where (X1, . . . , Xn−1) ← X n−1 and Xn := x − (X1 + · · · + Xn−1) and let
Decn

X (X1, . . . , Xn) = X1 + · · · + Xn.

Proof of Security. Before we show the security of the encoding scheme, we
provide some technical lemmata for the average probing model. The main techni-
cal challenge we are facing when applying the average probing model to masking
schemes is the fact that average probing leakage reveals non-trivial information
about X to an adversary even in the case when ϕ(X,R) = ⊥, which was not
the case in the random probing model. This is because ϕ(x,R) = ⊥ may be
more likely for some x’s than for the other (as an example think of ϕ defined
identically to ν in the example at the beginning of Section 5). This technicality
makes security proofs in the average probing model more involved than security
proofs in the random probing model. Fortunately, in this paper we develop a set
of tools that enables us to deal with this technicality of the model. We start by
giving some technical lemmata, whose proofs appears in the full version of this
paper.

Lemma 9. Let X and R be random variables with uniform distribution over
X and R, respectively. For any ε-average-identity function ϕ we have

d(X | ϕ(X,R) = ⊥, R) = ε.

The problem with Lemma 9 above is that it only gives information about the
expected value (over r ← R) of d(X | ϕ(X,R) = ⊥, R = r). Hence, for certain
r’s this value can be very large – or in other words ϕ(X,R) = ⊥ and R = r can
reveal some significant information about X. We deal with this problem by using
a Markov-style argument: if the expected value of some term is small, then with
good probability this term is small. More precisely, let ϕ be an ε-average-identity
function, and for every ξ ∈ [0, 1] define a function f : R → [0, 1] as

f(r) := d(X|ϕ(X, r) = ⊥, R = r).

and let7

Probeξ
ϕ(x, r) :=

{
? if ϕ(x, r) = ⊥ and f(r) ≤ ε/ξ
x otherwise.

In some sense Probeξ
ϕ is more “generous” to the adversary than ϕ since it outputs

x also in cases when ϕ outputs ⊥. Clearly ϕ(x, r) can be easily computed from
(Probeξ

ϕ(x, r), r), and hence any adversary that learns (Probeξ
ϕ(X, R), R) is at

least as powerful as an adversary that learns (ϕ(X,R), R)). We will use this fact
later. First, we show some useful properties of Probeξ

ϕ(x, r).

7 The “?” symbol is used in a similar way as “⊥”. We chosen to use “?” in order to
avoid confusion in the notation.

Noisy Leakage Revisited 177

Lemma 10. Let ϕ be an ε-average-identity function. For every ξ ∈ [0, 1] we
have that

∀
r

d(X|Probeξ
ϕ(X, r) = ?, R = r) ≤ ε/ξ (26)

and
P

(
Probeξ

ϕ(X,R) �= ?
)

≤ ξ + ε. (27)

The next lemma shows that if we obtain � times the value ? from Probeξ
ϕ(Xi),

then the distance of X1 + . . .+X� decreases exponentially, and exhibits the first
step to show the security of the encoding function.

Lemma 11. Let ϕ1, . . . , ϕ� be ε-average-identity functions. Suppose X is an
additive group. Let (X1, . . . , X�) ← X � and (R1, . . . , R�) ← R� be uniform and
independent random variables and set X := X1 + · · · + X�. Then for every
(r1, . . . , r�) we have

d(X | ∀�
i=1Probeξ

ϕ(Xi, ri) = ?, R1 = r1, . . . , R� = r�) ≤ (2ε/ξ)�, (28)

and hence

d(X | ∀�
i=1Probeξ

ϕ(Xi, Ri) = ?, R1, . . . , R�) ≤ (2ε/ξ)�. (29)

The above already shows that conditioned on the auxiliary information the dis-
tance of X from uniform decreases exponentially in �. We start by showing how to
translate this into showing security of the encoding scheme (Encn

X ,Decn
X), when

X is uniform. Later (cf. Corollary 1) we show how to translate this result into one
where x is chosen by the adversary, which is the standard indistinguishability-
based security definition of leakage resilient encoding schemes. Notice that the
lemma below is fully adaptive, i.e., we allow the adversary to obtain ϕi(Xi, Ri)
and only afterwards he has to decide on which noisy leakage function ϕi+1 he
wants to observe. As such strengthening of the model comes essentially without
any additional loss in the parameters (i.e., it comes for free) using the theory of
martingales and Azuma inequality, we chose to present the most general version
of the fully adaptive adversary below.

Lemma 12. For every ε, λ, ξ ∈ [0, 1] and an ε-average-probing adversary A on
X � and a uniform X ← X we have

d(X|outA(Encn
X (X))) ≤ (2ε/ξ)�(1−ξ−ε−λ)n	 + e−2λ2n. (30)

Before we present the proof let us state the basic facts from the theory of mar-
tingales (more on this subject can be found, e.g., in [6]). Recall that a sequence
Y0, Y1, . . . of random variables is a submartingale with respect to a sequence
W0,W1, . . . of random variables if every Yi is a function of W0, . . . ,Wi−1 and
E (Yi|W0, . . . ,Wi−1) ≥ Yi−1 for every i. The sequence {Xi = Yi − Yi−1}i≥1 is
called a submartingale difference sequence (w.r.t. W0,W1, . . .). A submartingale
Y0, Y1, . . . satisfies the bounded difference condition with parameters A and B if
for every i it is the case that Xi ∈ [A,B]. We have the following fact (see, e.g.,
[6], Section 5.3)

178 S. Dziembowski et al.

Lemma 13 (Azuma-Hoeffding inequality). Let Y0, Y1, . . . be a submartin-
gale (w.r.t. some other sequence) satisfying the bounded difference condition with
parameters A and B. Then for any t > 0 we have

P (Yn < Y0 − t) ≤ exp
(

− 2t2

n(B − A)2

)

.

We are now ready for the proof of the lemma.

Proof (of Lemma 12). Let (X1, . . . , Xn) = Encn
X (X). Since X is uniform thus

X1, . . . , Xn are independent. Let ϕ1, . . . , ϕn be functions specified by A. Since
A is ε-average-probing thus each ϕi is an εi-average identity, where εi ≤ ε. Let,
for each i, the function Probeξ

ϕi
: X × R → X ∪ {?} be defined as above. To

simplify notation for each i let Wi = Probeξ
ϕi

(Xi, Ri) (where Ri ← R). For each
i = 1, . . . , n define a variable Yi as

Yi :=
{

1 if Wi = ?
0 otherwise.

Since the adversary is adaptive, thus his choice of each ϕi can depend on the
values W1, . . . ,Wi−1. On the other hand, no matter how he behaves, from Lemma
10 we are guaranteed that P (Wi = ?) ≥ 1−ξ−ε and hence E (Yi|W1, . . . ,Wi−1) ≥
1 − ξ − ε. Define Y ′

i as Yi − (1 − ξ − ε). Obviously then E (Y ′
i |W1, . . . ,Wi−1) ≥

0. Hence Y ′
0 , Y

′
1 , . . . is a submartingale difference sequence w.r.t. W0,W1,

Moreover for each i we have

−(1 − ξ − ε) ≤ Y ′
i ≤ 1 − (1 − ξ − ε).

Hence, if for every j = 0, . . . , n we let Zj :=
∑j

i=1 Y ′
i then Z0, . . . , Zn is a

submartingale8 w.r.t. W0,W1, . . . satisfying bounded difference condition with
parameters −(1 − ξ − ε) and 1 − (1 − ξ − ε). Therefore from Azuma-Hoeffding
inequality (Lemma 13) we get that

P (Zn < −λn) ≤ exp
(

−2(λn)2

n

)

= exp
(−2λ2n

)
.

Of course
∑n

i=1 Yi = Zn + n(1 − ξ − ε). Therefore

exp
(−2λ2n

) ≥ P

(
n∑

i=1

Yi < −λn + n(1 − ξ − ε)

)

= P

(
n∑

i=1

Yi < n(1 − ξ − ε − λ)

)

(31)

8 It is easy to see that if the adversary was non-adaptive then we could also use
Chernoff inequality, instead of the Azuma-Hoeffding inequality and martingales.

Noisy Leakage Revisited 179

For every set I ⊆ {1, . . . , n} such that |I| ≥ n(1 − ξ − ε − λ) let WI denote the
event defined as a following conjunction of events:

WI :=

⎛

⎝
∧

j∈I
Probeξ

ϕj
(Xj , rj) = ?

⎞

⎠ ∧
⎛

⎝
∧

j �∈I
Probeξ

ϕ(Xj , rj) �= ?

⎞

⎠

And let: W :=
∨

I:|I|≥n(1−ξ−ε−λ) WI . From (31) we clearly have

P (W) ≥ 1 − e−2λ2n. (32)

Suppose that WI occurred for some I and let m = |I|. Denote XI := Xi1 + · · ·+
Xim

. By Lemma 11 we have

(2ε/ξ)�n(1−ξ−ε−λ)	

≥ d(XI |Ri1 , . . . , Rim
,WI)

≥ d(XI |ϕi1(Xi1 , Ri1), . . . , ϕim
(Xim

, Rim
), Ri1 , . . . , Rim

,WI) (33)
≥ d(XI |ϕ1(X1, R1), . . . , ϕm(Xn, Rn), R1, . . . , Rn,WI) (34)
≥ d(X|ϕ1(X1, R1), . . . , ϕn(Xn, Rn), R1, . . . , Rn,WI). (35)

where (33) comes from the fact that, as observed in Section 5, ϕ(x, r) is a function
of (Probeξ

ϕ(x, r), r). Eq. (34) holds because obviously for i �∈ I the value of
(ϕi(Xi, Ri), Ri) does not bring any additional information about XI . Eq. (35)
holds because of Lemma 2 with A := XI and B equal to the sum of all Xi’s
with indices not in I. We now have that

d(X|ϕ1(X1, R1), . . . , ϕn(Xn, Rn), R1, . . . , Rn,W)

≤
∑

I:|I|≥n(1−ξ−ε−λ)

d(X|ϕ1(X1, R1), . . . , ϕn(Xn, Rn), R1, . . . , Rn,WI) · P (WI)

≤ (2ε/ξ)�n(1−ξ−ε−λ)	 ·
≤1

︷ ︸︸ ︷∑

I
P

(WI)
, (36)

where the first inequality comes from the fact that the events WI are pair-
wise disjoint and hence we can use Lemma 3 (interpreting C as a variable that
indicates which WI occurred). We therefore obtain that

d(X|outA(Encn
X (X)),W) ≤ (2ε/ξ)�n(1−ξ−ε−λ)	. (37)

We now have

d(X|outA(Encn
X (X))) ≤ d(X|outA(Encn

X (X)),W) + P (¬W)

≤ (2ε/ξ)�n(1−ξ−ε−λ)	 + e−2λ2n,

where in the last inequality we used (37) and (32). This finishes the proof. �

180 S. Dziembowski et al.

Of course, in practice it makes more sense to have the security even if the
adversary picks up the encoded element x himself. This is shown in the corollary
below. The price is that the error parameter get multiplied by the group size
(and a constant). What is important is that this factor simply multiplies the
total error, which is much better than in [25,7], where ε was multiplied by |X |.
As a consequence, even for very large fields this error can be made negligible
by increasing n (which was not the case in [25,7]). The following is a simple
consequence of Lemma 12 (the formal derivation of this corollary appears in the
extended version of this paper).

Corollary 1. For every ε, λ, ξ ∈ [0, 1] and an ε-average-probing adversary (or
equivalently: ε-noisy adversary) A on X � the information that A receives about
any encoded element x can be “simulated” without access to x, up to a small
error. More precisely there exists a random variable Y such that for every x ∈ X
we have

Δ(outA(Encn
X (x)) ; Y) ≤ 2 |X | ·

(
(2ε/ξ)�(1−ξ−ε−λ)(n−1)	 + e−2λ2(n−1)

)
(38)

Moreover for any x0, x1 ∈ X we have

Δ(outA(Encn
X (x0)) ; outA(Encn

X (x1)))

≤ 4 |X | ·
(
(2ε/ξ)�(1−ξ−ε−λ)(n−1)	 + e−2λ2(n−1)

)
, (39)

and in particular (by setting ξ =
√

ε and λ = 1/2) we have

Δ(outA(Encn
X (x0)) ; outA(Encn

X (x1)))

≤ 4 |X | ·
(
(4ε)�(1/4−√

ε/2−ε/2)(n−1)	 + e−(n−1)/2
)

. (40)

Moreover fixing ε = 1/16 we get that this last term is at most

4 |X | ·
(
e−0.13·(n−1) + e−(n−1)/2

)
≤ 8 |X | · e−0.13·(n−1).

From Eq. (39) in the above corollary it is easy to see that with increasing number
of shares n and a decreasing ε (i.e., more noise) the statistical distance decreases.
We notice that the second term of the addition, i.e., e−2λ2(n−1) only gets neg-
ligible if n increases, and in particular will dominate the first term when ε is
negligible. While the same additional error term appeared in the work of Duc
et al. [7] (due to the use of a Chernoff bound), the result of Prouff and Rivain [25]
did not had this additional error term. We emphasize, however, that this addi-
tional error term only becomes relevant when we consider very small values for
the δ-bias of the Prouff-Rivain model, i.e., for very noisy leakage functions. In
the full version of this paper we show how to eliminate this additional error term
using an alternative argument.

Finally, we emphasize that for the noise level in the last part of Corollary
1 (ε = 1/16) neither the work of Prouff and Rivain [25], nor the work of Duc
et al. [7] gives meaningful bounds unless the field is of a constant size.

Noisy Leakage Revisited 181

6.2 Security of the ISW Compiler with Leak-Free Gates

As a second application, we demonstrate that also more complicated masked com-
putation can be proven secure in the average probing model. To this end, we show
that the ISW compiler (or rather its extension to larger fields by Prouff and
Rivain [25]), which has been widely used as building block for masking schemes
[25,4,7] is secure in the average probing model assuming leak-free gates. As our
reduction from the average probing model to the noisy leakage model of Prouff
and Rivain is tight, we improve the noise rate of the work of Prouff and Rivain
and Duc et al. [25,7] significantly – in particular, we are able to eliminate the fac-
tor |X | from the bounds in [7,25]. We note that compared to the recent work of Duc
et al. [7] our analysis of the ISW compiler has one important drawback, namely,
that we rely on the assumption that certain parts of the computation are leak-free.
We will discuss this assumption in more detail below.

The Original Circuit Γ . Following the description of [14], we model compu-
tation as an arithmetic circuit Γ carrying values from an (arbitrary) finite field
X on their wires and using the following gates to carry out computation in X :

– +,−, and ·, which compute, respectively, the sum, difference, and product
in X , of their two inputs,

– the “coin flip” gate coin, which has no inputs and produces a random inde-
pendently chosen element of X ,

– and for every α ∈ X , the constant gate constα, which has no inputs and
simply outputs α.

Fanout in Γ is handled by a special copy gate that takes as input a single value
and outputs two copies. Circuits that only contain the above types of gates are
called stateless.

Ishai et al. also consider the notion of stateful circuits. In addition to the gates
described above, stateful circuits also contain memory gates, each of which has
a single incoming and a single outgoing wire. Memory gates maintain state: at
any round, a memory gate sends its current state down its outgoing wire and
updates it according to the value of its incoming wire. The state of all memory
gates at clock cycle i is denoted by mi−1, with m0 denoting the initial state. For
instance, the state m0 of an AES circuit may be its secret key.

The computation of a stateful circuit is performed in several rounds i =
1, 2, In each of the rounds the circuit will take some public input x, its
current internal state mi−1 and produces an output y and potentially updates
its state to mi. The evaluation of the circuit proceeds in a straightforward way:
when all the input wires of a given gate are known, then the value on the output
wire can be computed naturally, i.e., for a multiplication gate with inputs a, b
the output wire becomes c = a · b. An execution of the circuit Γ with state mi−1

on input x is denoted by (y,mi) ← Γ (mi−1, x). The values that are carried on
the wires of the circuit when run on input (mi−1, x) conditioned on the output
being (y,mi) are denoted by the random variable WΓ ((mi−1, x)|(y,mi)).

182 S. Dziembowski et al.

The Protected Circuit Γ ′. The compiler takes as input the description of
the circuit Γ and outputs Γ ′. The main building block of Γ ′ is the encoding
scheme Encn

X . The initial state m0 is represented in Γ ′ in encoded form, i.e.,
as M0 ← Encn

X (m0). Notice that if m0 consists of multiple field elements, then
we apply the encoding function to each element of m0 individually. Next, we
consider the wires that connect individual gates. In Γ ′ such wires are represented
by wire bundles that carry the value of the wire in encoded form. The main
difficulty to compile Γ into Γ ′ is to describe how to transform the gates, i.e.,
the basic operations described in the last paragraph. For each gate in Γ we have
a a sub-circuit – so-called gadget – that represents the computation in Γ ′ and
carries out the computation in encoded form. For instance, for a multiplication
operation in Γ that takes as input two field elements a, b and outputs c = a · b,
in Γ ′ we use a gadget that takes as input two encodings of a (resp.) b and
outputs an encoding of c. We emphasize that the computation in the gadgets
uses the standard operations defined above and additionally a leak-free gate
O. We now provide some details about the most important algorithm of Γ ′ –
the multiplication gadget Mult. The remaining operations, i.e., in particular the
addition gadget is done as in the work of Faust et al. (see Figure 3 in [10]) and
omitted for space reasons.

The construction of Mult is essentially the construction of Faust et al. [10]
from Eurocrypt 2010 (which is essentially the transformation of ISW with leak-
free gates) for AC0 leakage functions. In particular, we use their leak-free gate
O, which sample from Encn

X (0), i.e., X ← O(1n), where X is a random encoding
of 0. We refer to the motivation of this leak-free component to the work of [10] or
the work of Prouff and Rivain [25]. The later uses a similar component for their
security proof in the noisy leakage model. We only notice that the computation
of O(1n) can be implemented in a very simple way, namely, sample random field
elements X1, . . . , Xn−1 uniformly at random and compute Xn = −X1 − . . . −
Xn−1. The output of O(1n) is (X1, . . . , Xn).

For some finite field X the multiplication gadget Mult takes as input two vec-
tors A ← Encn

X (a) and B ← Encn
X (b), and produces C ← Encn

X (c), where c = a·b.
To this end it performs the operations shown in Figure 3. To make the algorithm
easier to read, we use small letters to denote elements in X . Vectors over X will
be denoted by capital letters, and matrices are denoted with a “hat” symbol.

The basic property that we require from the protected circuit Γ ′ is correct-
ness. That is, we want that for any input x and any initial state m0 the circuit Γ
and Γ ′ with initial state M0 ← Encn

X (m0) produce the same output distribution.
In addition to correctness, Γ ′ shall be secure against certain classes of leakages,
which we discuss next.

Security Definition. Informally, security means that an adversary that obtains
leakage from the execution of the protected circuit shall not have any advantage
over an adversary that attacks the original circuit with just black-box access. To
describe this formally, we use the standard simulation-based paradigm. We start
by introducing some different types of adversaries. In the following, we assume

Noisy Leakage Revisited 183

The multiplication gadget Mult

1. Compute the n × n matrix T̂ = (ai · bj)i,j∈[n], where ai, bj are the elements of
the vector A and B, respectively.

2. Compute the n × n matrix Ŝ where the i-th column of Ŝ is sampled as Si ←
O(1n).

3. Compute Û = T̂ + Ŝ using matrix addition.
4. Sum the values in each row of Û , i.e., for each i ∈ [n] compute qi =

∑
j ui,j ,

where qi denotes the i-th element of the vector Q.
5. Sample O ← O(1n) and compute the output as C = Q + O.

Fig. 3. The multiplication operation takes as input (A, B) and produces the encoding
C of ab. The leak-free component O(1n) samples from the distribution EncnX (0) and
can be implemented as described in the text above.

that the adversary chooses his leakage functions in each round non-adaptively.
This can be extended to the adaptive case by making the description of the
model more involved and we omit details for space reasons.

A black-box circuit adversary A is a machine that interacts with a circuit Γ

via the input and output interface. We denote by out
(

A
bb

�Γ (m0)
)

the out-

put of A after interacting with Γ whose initial memory state is m0. A δ-noisy
circuit adversary A is an adversary that has the following additional ability:
after each ith round, A obtains some partial information about the internal
state of the computation via the noisy leakage functions. More precisely: let
WΓ ′((x,Mi−1)|(y,Mi)) be the random variable denoting the values on the wires
of Γ ′(M0) in the ith round when run on input x and outputting y. Then A
plays the role of a δ-noisy adversary in a game against WΓ ′((x,Mi−1)|(y,Mi))
(cf. Section 3), namely: he chooses a sequence {νi : X × R → Y}�

i=1 of functions
such that every νi is δi-noisy for some δi ≤ δ and he receives ν1(V1), . . . , ν�(V�),
where Vi denotes a random variable that is part of the wire assignment
WΓ ′((x,Mi−1)|(y,Mi)). The adversary can repeat this process multiple times
for chosen inputs x and we denote the output of A at the end of this experiment

by out
(

A
noisy

� Γ ′(M0)
)

.

We can also replace, in the above definition, the “δ-noisy adversary” with
the “ε-average probing adversary”. In this case, after each ith round A chooses
a sequence (ε1, . . . , ε�) such that each εi ≤ ε and he learns ϕ1(V1), . . . , ϕ�(V�),

where each ϕi is the εi-average identity function. Let out
(

A
avg

� Γ ′(M0)
)

denote

the output of such A after interacting with Γ whose initial memory state is M0.
We are now ready to define security of a transformed circuit Γ ′.

Definition 4. Consider a stateful circuit Γ and its transformation Γ ′ (over
some field X) and a randomized encoding function Encn

X . We say that Γ ′ is a
(δ, γ)-noise resilient implementation of a circuit Γ w.r.t. Encn

X if for every δ-
noisy circuit adversary A there exists a black-box circuit adversary S such that

184 S. Dziembowski et al.

for every m ∈ X � (for � ∈ N), we have:

Δ

(

out
(

S
bb
�Γ (m)

)

; out
(

A
noisy

� Γ ′(Encn
X (m))

))

≤ γ. (41)

The definition of Γ ′ being a (ε, γ)-average-probing resilient implementation of
a circuit Γ is identical to the one above, except that we let A be an ε-average-
probing circuit adversary A and Equation 41 is replaced with:

Δ

(

out
(

S
bb

�Γ (m)
)

; out
(

A
avg

� Γ ′(Encn
X (m))

))

≤ γ.

In all cases above we will say that Γ ′ is an implementation of Γ with efficient
simulation if the simulator S works in time polynomial in Γ ′ · |X | as long as A is
poly-time and the noise functions specified by A are efficiently decidable, which
will be the case for all our results.

Security of Γ ′ Against Noisy Leakages. In contrast to Section 6.1, where
we show the security of the additive encoding function in the average probing
model, the security analysis of computation is more involved. The reason is that
now we have multiple intermediate values that may depend in some predictable
way on each other. Intuitively, noise will cancel out the sensitive information
in the intermediate values if the sensitive information does not influence too
many other intermediate values in the computation, and hence its value is not
leaked too many times with independent noise. A similar approach was already
exploited in the analysis of Duc et al. [7] – though there the situation was
considerably simpler as in the ε-probing model the leakage is independent of
most of the computation (i.e., large parts of the computation do not leak at all!).
In contrast in the average probing model considered in this work, the leakage
depends implicitly on all intermediate values as even in the case when the leakage
function outputs ⊥ the adversary may learn non-trivial information about the
value probed.

To overcome these difficulties we use the framework of reconstructors intro-
duced by Faust et al. [10] to argue about the security of masked gadgets. Infor-
mally, we give a simulator that just has leakage access to the inputs and outputs
of the gadget and from that can simulate the entire leakage from the intermediate
values of the gadget. We say that a simulation is good if the simulated leakage
is indistinguishable from the real leakage of the intermediate values, when the
leakage is assumed to be an ε-average probing leakage function. Moreover, we
will require the simulator to be from some restricted class of functions. This is
important since eventually we want to reduce the security of the protected cir-
cuit to the security of the underlying encoding scheme. We here strongly rely on
the formalization given in [10] who consider such restricted simulators to achieve
security against noisy leakages (albeit in a different noise model).

At a very informal level, we show that the internal values of a gadget can
be simulated by a function REC that takes as input X (which is an encoded

Noisy Leakage Revisited 185

input of the gadget) and returns two types of values to simulate the internals
of the gadget: (i) either constant values that are independent of the input X,
or (ii) values that depend in a very restricted way on REC’s input, namely for
an input X they have the form cX + C, where c and C are constants in X
and X n respectively. Now, clearly (i) does not reveal any sensitive information
about X (since it is independent of relevant information), and (ii) can essentially
be reduced to just (multiple) noisy leakages from the encoding. As the security
proof is very similar to [10], and in our work the circuit compiler is merely an
application to show how to carry out security proofs of masked computation
in the average probing model, we refer the reader to the full version of [10] for
further details on the formalization of reconstructors.

To formalize the above informal description of what an admissible simula-
tor REC shall look like, we recall the definition of the function class LOCAL(�)
introduced by [10]. Function ins LOCAL(�) depend only in a very restricted way
on their inputs, and are hence useful to simulate noisy leakage without revealing
too much sensitive information. For some �, n, t, k ∈ N, a function f : X tn → X k

with inputs X(1), . . . , X(t) ∈ X n is said to be in LOCAL(�) if the following holds
for each i ∈ [1, t]:

For any fixed t − 1 inputs X(1), . . . , X(i−1),X(i+1), . . . , X(t), all but at most
n� output values (from X) of the function f(X(1), . . . , X(t)) (as a function
of X(i)) are constant (i.e., do not depend on X(i)); the remaining outputs
are computed as cX(i) + C, for some constant C ∈ X n and c ∈ X .

The identity function, for instance, is in LOCAL(1), while a function that outputs
� copies of its inputs is in LOCAL(�).

We now give a formal definition of efficient simulators (aka reconstructors) tai-
lored to our setting of ε average probing leakage functions and for the masked
multiplication operation. It is straightforward to generalize the notion to arbi-
trary masked computation. We then show that the multiplication gadget satis-
fies the notion. Given that the multiplication gadget is reconstructible, Faust et
al. [10] show that security according to Definition 4 can be achieved (cf. Theorem 1
below).

Definition 5 ((ε, γ, �)-reconstructors [10]). Let Mult be the masked multipli-
cation with encoded inputs X := (A,B) and encoded outputs Y := C. We say
that a pair of strings (X,Y) is plausible for Mult if Mult might output Y on
input X, i.e., if Pr[Mult(X) = Y] > 0.

Consider a distribution RECMult over the functions whose input is a plausible
pair (X,Y), and whose output is an assignment to the wires of Mult. Define
RECMult(X,Y) as the distribution obtained by sampling a function RMult from
RECMult and computing RMult(X,Y). Such a distribution is called a (ε, γ, �)-
reconstructor for Mult if for any plausible (X,Y) and any ε-average probing
adversary A, the following two distributions are γ-close:

– outA(WMult(X|Y)),
– outA(RECMult(X,Y)).

186 S. Dziembowski et al.

If the support of the distribution RECMult is in some set of functions LOCAL(�),
we say that Mult is (ε, γ, �)-reconstructible.

Besides the reconstructibility property, we also require that the gadgets of Γ ′ are
re-randomizing. We only state it in an informal way here and refer the reader to
Definition 3 in [10]. Informally, we say that the masked multiplication operation
is re-randomizing if the output of the multiplication is distributed as Encn

X (c)
for c = a · b even given the input encoding A := Encn

X (a) and B := Encn
X (b).

It is easy to see that the masked multiplication Mult is re-randomizing. What
is more challenging to prove is the fact that Mult is (ε, γ, �)-reconstructible, which
is shown in the lemma below. The proof of the lemma is very similar to the proof
of Lemma 9 in [10], and is deferred to the full version of the paper. To simply
notation the lemma below uses the particular parameter setting of Eq. (40)
from Corollary 1. It is easy to generalize the lemma for other settings of the
parameters.

Lemma 14. Let n be the security parameter and X be some finite field. Let ε
be a function in n defining the noise parameter of the average probing model.
The Mult operation is (ε, γ, 2n)-reconstructible for:

γ := 4 |X |n ·
(
(4(n + 1)ε)�(1/4−

√
((n+1)ε/2−(n+1)ε/2)(n−1)	 + e−(n−1)/2

)
.

Given the above lemma we are now ready to apply the framework of Faust
et al. [10] and prove that Γ ′ is secure according to Definition 4. The proof is
straightforward and merely puts the different parameters together.

Theorem 1. Let n > 1 be the security parameter. Let Γ be an arbitrary stateful
arithmetic circuit over some field X . Let Γ ′ be the circuit that results from the
transformation procedure described above. Let q be the number of observations,
then Γ ′ is a (δ, γ)-noise resilient implementation of Γ (with efficient simulation),
where

γ = 4 |X | q |Γ | (n + 3) ·
(
(4(n + 1)δ)�(1/4−

√
((n+1)δ/2−(n+1)δ/2)(n−1)	+e−(n−1)/2

)

For concreteness, when we plug-in for δ := (24n)−1 we get for n > 4:

γ := 4 |X | q |Γ | (n + 3) · exp(−n/12) (42)

We notice that the number of measurements/observations (i.e., the number of
times the adversary can apply a noisy leakage attack on the implementation Γ ′)
was ignored in the work of [7]. In case we do not consider multiple measurements,
we can eliminate the factor q from the above bound. Moreover, if we compare
the above concrete bound from Eq. (42) with the bound that was achieved by
Duc et al. (see Theorem 1 in [7]), then we see that we improve the noise level
not only by a factor |X | but also the constant is increased from 1/28 to 1/24
in our work while achieving (asymptotically for large n) the same bound on the
statistical distance.

Acknowledgments. We thank the anonymous reviewers of Eurocrypt 2015 for improv-
ing the presentation of our result.

Noisy Leakage Revisited 187

References

1. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In:
Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83.
Springer, Heidelberg (2004)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

3. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

4. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014)

5. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) [21], pp. 95–109

6. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press (2009)

7. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

8. Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational
assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247.
Springer, Heidelberg (2012)

9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography in the standard
model. IACR Cryptology ePrint Archive, 2008:240 (2008)

10. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

11. Goldwasser, S., Rothblum, G.N.: Securing computation against continuous leakage.
In: Rabin, T. (ed.) [27], pp. 59–79

12. Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leakage. In:
FOCS, pp. 31–40. IEEE Computer Society (2012)

13. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

14. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

15. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In:
Rabin, T. (ed.) [27], pp. 41–58

16. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

17. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

188 S. Dziembowski et al.

19. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. J. Cryptographic Engineering 1(1), 5–27 (2011)

20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York,
Inc., Secaucus (2007)

21. Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer,
Heidelberg (2010)

22. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer,
Heidelberg (2007)

23. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

24. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis
resistant description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

25. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013)

26. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

27. Rabin, T. (ed.): CRYPTO 2010. LNCS, vol. 6223. Springer, Heidelberg (2010)
28. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,

S., Standaert, F.-X. (eds.) [21], pp. 413–427
29. Rothblum, G.N.: How to compute under AC0 leakage without secure hardware. In:

Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552–569.
Springer, Heidelberg (2012)

30. Standaert, F.-X., Pereira, O., Yu, Y., Yung, M., Oswald, E.: Leakage resilient
cryptography in practice. In: Towards Hardware Intrinsic Security Foundation and
Practice (book chapter) (2010)

31. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010)

Garbled Circuits

Privacy-Free Garbled Circuits
with Applications to Efficient Zero-Knowledge

Tore Kasper Frederiksen(B), Jesper Buus Nielsen(B),
and Claudio Orlandi(B)

Department of Computer Science, Aarhus University, Aarhus, Denmark
{jot2re,jbn,orlandi}@cs.au.dk

Abstract. In the last few years garbled circuits (GC) have been
elevated from being merely a component in Yao’s protocol for secure two-
party computation, to a cryptographic primitive in its own right, follow-
ing the growing number of applications that use GCs. Zero-Knowledge
(ZK) protocols is one of these examples: In a recent paper Jawurek
et al. [JKO13] showed that GCs can be used to construct efficient ZK
proofs for unstructured languages. In this work we show that due to
the property of this particular scenario (i.e., one of the parties knows
all the secret input bits, and therefore all intermediate values in the
computation), we can construct more efficient garbling schemes specif-
ically tailored to this goal. As a highlight of our result, in one of our
constructions only one ciphertext per gate needs to be communicated
and XOR gates never require any cryptographic operations. In addition
to making a step forward towards more practical ZK, we believe that
our contribution is also interesting from a conceptual point of view: in
the terminology of Bellare et al. [BHR12] our garbling schemes achieve
authenticity, but no privacy nor obliviousness, therefore representing the
first natural separation between those notions.

1 Introduction

A garbled circuit (GC) is a cryptographic tool that allows one to evaluate
“encrypted” circuits on “encrypted” inputs. Garbled circuits were introduced
by Yao in the 80’s in the context of secure two-party computation [Yao86], and
they owe their name to Beaver et al. [BMR90].

Since then, garbled circuits have been used in a number of different contexts
such as two- and multi-party secure computation [Yao86,GMW87], verifiable

Partially supported by the European Research Commission Starting Grant 279447
and the Danish National Research Foundation and The National Science Founda-
tion of China (grant 61361136003) for the Sino-Danish Center for the Theory of
Interactive Computation and from the Center for Research in Foundations of Elec-
tronic Markets (CFEM), supported by the Danish Strategic Research Council. Tore
is supported by Danish Council for Independent Research Starting Grant 10-081612.
The research leading to these results has received funding from the European Union
Seventh Framework Programme ([FP7/2007-2013]) under grant agreement number
ICT-609611 (PRACTICE).

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 191–219, 2015.
DOI: 10.1007/978-3-662-46803-6 7

192 T.K. Frederiksen et al.

outsourcing of computation [GGP10], key-dependent message security [BHHI10],
efficient zero-knowledge [JKO13], functional encryption [SS10] etc. However, it
is not until recently that a formal treatment of garbled circuits appeared in
the literature. The first proof of security of Yao’s celebrated protocol for two-
party computation, to the best of our knowledge, only appeared a few years ago
in [LP09], and it is not until [BHR12] that garbled circuits were elevated from
a technique to be used in other protocols, to a cryptographic primitive in their
own right.

Different applications of GC often use different properties of the garbling
scheme: In some applications we need GCs to protect the privacy of encrypted
inputs, in others we need GCs to hide partial information about the encrypted
function, while in yet others we ask GCs to ensure that even a malicious evaluator
cannot tamper with the output of the GC. In their foundational work, Bellare
et al. [BHR12] formally defined the different security properties that different
applications require from GCs, showed separations between them, and showed
that the original garbling scheme proposed by Yao satisfies all of the above
properties. This raises a natural question:

Can we construct garbling schemes tailored to specific applications,
which are more efficient than Yao’s original construction?

In this work we give the first such example, namely a garbling scheme which
only satisfies authenticity (in the terminology of Bellare et al.) but not privacy :
One of the main properties of Yao’s garbling scheme is that the circuit evaluator
cannot learn the values associated to the internal wires during the evaluation of
the garbled circuit. This implies that the evaluation of each garbled gate must
be oblivious (it must be the same for each input combination). In this work
we give up on this property and we construct a scheme where the evaluator
learns the values associated which each wire in the circuit, and explicitly uses
this knowledge to perform non-oblivious garbled gate evaluation. This allows
us to significantly reduce the size of a garbled circuit and the computational
overhead for the circuit constructor. We show that this does not have any impact
on authenticity, i.e., the only thing that a malicious evaluator can do with a
garbled input and a garbled circuit is to use them in the intended way, that is
to evaluate the garbled circuit on the garbled input and produce the (correct)
garbled output.

Our new garbling schemes can be immediately plugged-in in Jawurek
et al. [JKO13] efficient zero-knowledge protocol for non-algebraic languages, and
therefore we believe that our results have both practical and conceptual value.
It is an interesting future direction to investigate which other applications could
benefit significantly from our new garbling scheme (natural candidates include
verifiable outsourcing of computation, functional encryption etc.).

1.1 Other Garbling Schemes

Since the introduction of GCs by Yao, a number of optimizations have been
proposed to increase their efficiency. Some of the most significant optimiza-

Privacy-Free Garbled Circuits with Applications 193

tions include point-and-permute [Rog91,MNPS04] (which reduces the work of
the circuit evaluator from 4 to 1 decryption per garbled gate) the row-reduction
technique [NPS99,PSSW09] (which reduces the number of ciphertexts per gar-
bled gate, by fixing some of them to be constant values), the free-XOR and
fleXOR techniques [KS08,KMR14] (which allows to garble/evaluate XOR gates
using none/less cryptographic operations). In [BHR12,BHKR13] efficient gar-
bling schemes, which only use one call to a block-cipher for each row in a gar-
bled gate, are presented. Information theoretic garbling schemes can efficiently
be constructed [IK02,Kol05,KK12] for low-depth circuits. All these techniques
lead to very efficient garbling schemes that are used today in practical imple-
mentation of secure two-party computation. Our optimization is conceptually
different from all of the above, as our schemes are not “general purpose” since
they do not satisfy privacy.

LEGO GCs [NO09,FJN+13] are different from Yao GCs as they allow one to
generate garbled gates independently of each other and then, at a later time, to
solder them together into a functional garbled circuit. LEGO GCs can be used
for secure two-party computation in the presence of active corruptions.

The size of garbled input in Yao-style GCs grows linearly in the security
parameter. In [AIKW13] a garbling scheme where the garbled input grows only
by a constant factor is presented at the price of using public-key primitives
(traditional GCs only use symmetric key operations). Traditional GCs only work
on Boolean circuits, while [AIK11] presents a way of garbling arithmetic circuits
directly.

All previously discussed garbling schemes are one-time, meaning that no
security is guaranteed against an adversary that receives the garbling of two
different inputs for the same garbled circuit. A recent line of work considers
reusable garbled circuits [GKP+13] and their (asymptotic) overhead [GGH+13].
While the concept of reusable garbled circuits has numerous applications in
establishing important theoretical feasibility result, their use of heavy crypto
machinery makes them (still) far from being practical. Finally, there exist gar-
bling schemes tailored for other models of computation [KW13] including RAM
programs [LO13,GHL+14].

Independently from us Ishai and Wee [IW14] defined the notion of partial
garbling : like us, they noticed that in some applications one of the parties con-
trols all the inputs and therefore it is possible to construct garbling schemes
which are more efficient than traditional ones. However they develop this obser-
vation in a very different direction compared to us: the two works use different
abstraction models (garbling schemes vs. randomized encodings), are useful for
different tasks, and use completely different techniques.

Finally, Zahur et al. [ZRE15] extended our work to the two-party case,
demonstrating that it is possible to combine (in a very clever way) two privacy-
free garbling schemes – where each party knows all of the inputs for one of the
two garblings – into a garbling scheme which guarantees privacy and is more
efficient than existing ones, in terms of communication complexity.

194 T.K. Frederiksen et al.

1.2 Our Contributions

We propose some novel garbling schemes which satisfy authenticity only and are
more efficient than general purpose garbling schemes1:

Privacy Free GRR1 with cheap XOR: In this garbling scheme we only
send one ciphertext for each encrypted gate (both XOR and non-XOR).
The circuit evaluator uses 3 calls to a Key Derivation Function (KDF) for
each non-XOR gate, and none for each XOR gate (so from a computational
point of view XOR gates are free). The scheme combines the row reduction
technique with non-oblivious gate evaluation.

Privacy Free GRR2 with free-XOR: In this garbling scheme we send two
ciphertexts for each encrypted non-XOR gate, and XOR gates are “for free”.
The circuit evaluator uses 3 calls to a KDF for each non-XOR gate (and none
for XOR gates). The scheme is similar to GRR1, but using the free-XOR
technique reduces the degrees of freedom we have in choosing the output
keys and therefore require higher communication complexity for non-XOR
gates.

Privacy Free fleXOR: In this garbling scheme we combine either our GRR1
or GRR2 scheme with the fleXOR technique of [KMR14]. The cost of non-
XOR gates is unchanged from the previous scheme, i.e. one or two ciphertexts
per gate respectively, but now the cost of XOR gate depends on the struc-
ture of the circuit: XOR gates require no cryptographic operations, while for
communication, depending on the circuit structure, XOR gates require com-
munication of 2, 1 or 0 ciphertexts. Also note that our fleXOR variant, being
tailored for privacy-free garbled circuits, performs better than the original.

Furthermore, we present a formal generalization of garbling schemes with gates
with arbitrary fan-in and show how to construct each of our privacy-free schemes
in such a setting. It turns our that all types of our privacy-free garbled gates
yield even more significant improvements in computation (and in some settings
also communication) over general garbled garbles when fan-in is larger than two.

1.3 Overview of Our Schemes

In a nutshell, our garbling schemes work as follows: Consider a NAND gate, with
associate input keys L0, L1, R0, R1 for the left and right wire respectively, and
output keys O0, O1. The circuit constructor needs to provide the evaluator with
a cryptographic gadget that, on input La, Rb, outputs the corresponding output
key Oa∧̄b. Remember that our goal is not privacy, but only authenticity, meaning
that the evaluator is allowed to learn a and b but even a corrupted evaluator
should not learn O1−(a∧̄b). In particular, this means that the evaluator should
learn O0 if and only if (iff) he holds both L1 and R1. This can be ensured by
encrypting O0 under both L1 and R1.
1 The naming convention here follows [PSSW09], where GRR stands for garbled row
reductions.

Privacy-Free Garbled Circuits with Applications 195

On the other hand, it is enough that one of the inputs is 0 for the output to
be 1, so it “should be enough” to hold L0 or R0 to learn O1. In standard Yao GCs
we do not want the evaluator to learn which of the three possible combinations
of input keys he owns (nor the output of the gate) and therefore we encrypt O1

under all the three possibilities in the same way as we encrypt the 0 key. But if
the evaluator is allowed to know which bits keys correspond to, we can simply
encrypt O1 separately under L0 and R0, thus saving one encryption.

Note that, using the row-reduction technique, we can instead derive O0 as
O0 = KDF(L1, R1) and therefore we can remove one ciphertext from the garbled
table. We now have two-choices:

– If we want to be compatible with the free-XOR technique the value O1 is
already determined by O0 and the global difference Δ, and thus no more
row-reduction is possible.

– Alternatively we can decide to give up on free-XOR and derive O1 as O1 =
KDF(L0), thus removing yet another ciphertext from the garbled table, that
now contains only the ciphertext C = O1 ⊕ KDF(R0).

“Almost” free-XOR. If we choose the second path, we need an efficient way
of garbling the XOR gates: we do so by defining the output keys O0 and O1

respectively as O0 = L0 ⊕ R0 and O1 = L0 ⊕ R1. Of course, it might be that at
evaluation time the evaluator holds L1 instead of L0, and thus we provide him
with an “advice” to compute the correct output key in this case. It turns out
that it suffices to reveal the value C = L0⊕R0⊕L1⊕R1. Due to the symmetry of
the XOR gate, now the evaluator can always derive the correct output key. Note
that now XOR gates do not require any cryptographic operation but only the
communication of a k-bit string (k being the security parameter), and therefore
are “almost” for free.

The paranoid reader might now worry on whether revealing the XOR of all
input keys affects the security of our scheme, and the impatient reader might not
want to wait for the formal proof, which appears later in the paper: Intuitively
revealing C does not represent a problem because, if it did, then the free-XOR
technique would be insecure as well: In (standard) free-XOR the value C is
always 0, as L0 ⊕ L1 = R0 ⊕ R1, and therefore known to the adversary already.

Privacy free fleXOR. Finally we combine our technique with the recent fleXOR
garbling scheme [KMR14]. A central concept in fleXOR is to look, for each wire,
at the XOR between the two keys associated to that wire, or the offset of that
wire. While in freeXOR the offset is a constant for the whole circuit (therefore
fixing half of the keys in the circuit), in fleXOR wires are ordered in a way to
maximize the number of offsets which are the same, while at the same time
leaving the circuit garbler the ability to choose freely the output keys for the
non-XOR gates.

The fleXOR wire ordering induces a partitioning of the wires for each XOR
gates. In particular, each XOR gates is assigned a parameter t which denotes
how many input wires have offset different than the output wire. Then a 0-XOR

196 T.K. Frederiksen et al.

gate can be garbled exactly like in free-XOR, while for t-XORs (with t > 0)
the garbler sends t ciphertexts to the evaluator, which are used to “adjust” the
offsets of those input wires. In the privacy-free case, exploiting non-oblivious gate
evaluation, we can simply reveal the XOR of the offsets instead, exactly like in
our GRR1 scheme. So, while the original fleXOR requires the garbler and the
evaluator to perform 2t and t calls respectively to the KDF, we do not require
any cryptographic operations for fleXOR gates.

Garbling XORs. To conclude this technical introduction, we would like to present
the reader with a recap of the different ways in which XOR gates are garbled in
this paper. Like before, let L0, L1, R0, R1, and O0, O1 be the keys for the left,
right and output wire, and let ΔL,ΔR and ΔO be their differences, the offsets
associated to the wires. Now, the “baseline” garbling of a XOR gate is done as
follows: the garbler sets O0 = L0 ⊕R0, then computes and send to the evaluator
the following values:

CL = ΔL ⊕ ΔO and CR = ΔR ⊕ ΔO

Now, on input keys La, Rb, the evaluator retrieves

Oa⊕b = La ⊕ Rb ⊕ a · CL ⊕ b · CR

The baseline garbling transmits 2 ciphertexts, but in most cases we can do
better.

GRR1: In this case the garbler can freely choose both ΔO, which is set to
be equal to ΔL (so that O1 = L1 ⊕ R0) and therefore we do not need to
communicate CL, saving one ciphertexts w.r.t. the baseline.

free-XOR: Here it holds that ΔL = ΔR = ΔO, therefore both CL = CR = 0
and no ciphertexts need to be transfered.

fleXOR: a t-XOR gate is garbled like in the baseline garbling when t = 2, like
in GRR1 when t = 1 and like free-XOR when t = 0.

1.4 Efficiency Improvements

Our garbling schemes offer different performances in terms of communication
and computation overhead. It is natural to ask which one is the most efficient
one. Like most interesting questions, the answer is not as simple as one might
want, and to answer which garbling scheme offers the best performances one
must define the price of communication vs. computation. The ultimate answer
depends on the actual hardware setting (CPU, network) on which the protocol
is to be run and can only be determined empirically.

In Table 1 and Table 2 we benchmark our garbling scheme against the best
previous garbling schemes, on a number of circuits that we believe relevant for
the zero-knowledge application that we have in mind e.g., proving “I know a
secret x s.t., y = SHA(x)” for a y known to both the prover and the verifier.

Privacy-Free Garbled Circuits with Applications 197

Table 1. Comparison with other garbling schemes on some circuit examples
from [ST12] in terms of communication complexity. The fleXOR scheme used is based
on GRR1 and thus a “safe” topological ordering is assumed (see [KMR14]). The num-
ber in each cell shows the amortized number of ciphertext per gate that need to be
sent. We ignore the inversion gates, as they can be pulled inside other kind of gates.
The “Saving” column is computed against the previously best solution.

Communication

(amortized # of ciphertexts per gate)

Circuit
of Gates Private Privacy-free

Saving
AND XOR GRR2 free-XOR fleXOR GRR1 free-XOR fleXOR

DES 18124 1340 2.0 2.79 1.89 1.0 1.86 0.96 49%

AES 6800 25124 2.0 0.64 0.72 1.0 0.43 0.51 33%

SHA-1 37300 24166 2.0 1.82 1.39 1.0 1.21 0.78 44%

SHA-256 90825 42029 2.0 2.05 1.56 1.0 1.37 0.87 44%

Table 2. Comparison with other garbling schemes on some circuit examples
from [ST12] in terms of computational overhead. The fleXOR scheme used is based
on a “safe” topological ordering (see [KMR14]). The number in each cell shows the
amortized number of calls to a KDF per gate that the constructor/evaluator need to
perform. (The evaluator always performs 1 KDF evaluation for non-free gates.) Note
that we do not count the non cryptographic operations in this table (polynomial inter-
polation in GRR2, XOR of strings in all others). The “Saving” column is computed
against the previously best solution.

Computation

(amortized # of encryptions per gate for garbler/evaluator)

Circuit
of Gates Private Privacy-free

Saving
AND XOR GRR2 free-XOR fleXOR -

DES 18124 1340 4.0/1.0 3.72/0.93 3.78/0.96 2.79/0.93 25%/0%

AES 6800 25124 4.0/1.0 0.85/0.21 1.44/0.51 0.64/0.21 25%/0%

SHA-1 37300 24166 4.0/1.0 2.43/0.61 2.78/0.78 1.82/0.61 25%/0%

SHA-256 90825 42029 4.0/1.0 2.73/0.68 3.11/0.87 2.05/0.68 25%/0%

The circuits used are due to Smart and Tillich and are publicly available
[ST12]. Note however that the numbers in our tables depend on the actual cir-
cuits being used, meaning that it might be possible to find different circuits that
compute the same functions but that are more favorable to one or another gar-
bling scheme. Finding such circuits requires non-trivial heuristics and manual
work (e.g., [BP12]), as there is evidence that finding such circuits is computa-
tionally hard [Fin14,KMR14].

Still, no previous garbling scheme performs better than all of our proposed
schemes, therefore while the actual saving factor might change, one of our
schemes will always outperforms the rest.

198 T.K. Frederiksen et al.

2 Preliminaries and Definitions

To keep the paper self-contained, we include the definitions for garbling schemes
from [BHR12,BHKR13] in this section.

2.1 Notation

Let N = {1, 2, . . . } be the natural numbers, excluding 0. We write [x, y] (with
x < y ∈ N) for {x, x + 1, . . . , y} and [x] for [1, x]. We use | · | as a shorthand for
the cardinality of a set or amount of bits in a string. If S is a set we use x ∈R S
to denote that x is a uniformly random sampled element from S. We let poly(·)
denote any polynomial of the argument.

Regarding variable names we let k ∈ N be the security parameter and call a
function negl : N → R

+ negligible if for a big enough k it holds that negl(k) <
1/poly(k). In general we use negl(·) to denote any negligible function.

We let L ⊂ {0, 1}∗ be an arbitrary language in NP and ML be the language
verification function, i.e., for all y ∈ L there exists a string x ∈ {0, 1}poly(|y|)

s.t. ML(x, y) = accept and for all y �∈ L and x ∈ {0, 1}∗ we have ML(x, y) =
reject.

2.2 Defining Our Garbling Scheme

We start by considering a plain description of a Boolean circuit with a single
output bit, consisting of Boolean gates having arbitrary fan-in. This can be used
to compute a Boolean function. The description is closely related to the ones
in [BHR12,JKO13], but generalized to support gates with arbitrary fan-in along
with non-oblivious gate evaluation.

Let f be a description of such a circuit, taking n ∈ N bits as input and
consisting of q ∈ N internal gates. We let r = n+q be the number of wires in the
circuit and specifically define inputWires = [n], Wires = [n+q], outputWire = n+q
and Gates = [n + 1, n + q], where inputWires represent the set of input wires,
outputWire represents the output wire, Gates represents the set of Boolean gates
of arbitrary fan-in and Wires the set of all wires in the circuit.

Next we let I be a function mapping each element of Gates to an integer
describing the fan-in of that gate, i.e., I : Gates → N. We let W be a function
mapping an element of Gates, along with an integer i (representing a gate’s i’th
input wire) to an element in Wires. When calling W on some g ∈ Gates we
require that the i’th input wire is in [I(g)], otherwise we return ⊥. Thus, the
signature for the method is W : Gates × N → {Wires\outputWire}∗ ∪ {⊥}. We
further require that W (g, i) < W (g, i+1) < g for all g ∈ Gates and i ∈ [I(g)−1]
in order to avoid circularities in the circuit description.

Finally, we let G be a function taking as input an element of Gates along with
an array of bits and returning a single bit or ⊥. That is, G : Gates × {0, 1}∗ →
{0, 1}∪{⊥}. Specifically G is a description of the functionality of each gate in the
circuit along with a short-circuit features such that ⊥ is returned if the amount
of elements in the binary input vector is not equal to the integer returned by I

Privacy-Free Garbled Circuits with Applications 199

when queried on the same gate index. More formally G
(
g, {bi}i∈[I(g)]

) ∈ {0, 1}
for all g ∈ Gates, bi ∈ {0, 1} and ⊥ otherwise. Sometimes we abuse notation and
simply write G(g, b) if g ∈ Gates and b ∈ {0, 1}m when I(g) = m. We also say
G(g, ·) = NAND or G(g, ·) = XOR if the truth table constructed from G is the
truth table of a NAND, respectively, XOR gate.

Finally we combine all these functions and variables in f by letting f =
(n, q, I,W,G). However, we sometimes abuse notation and view f as a black box
Boolean function, i.e., f : {0, 1}n → {0, 1}.

With this plain description of a Boolean circuit in hand we define a verifiable
projective garbling scheme by a tuple

G = (Gb,En,De,Ev, ev,Ve)

such that:

– Gb(1k, f) → (F, e, d) is the garbling function, a randomized algorithm that
takes as input a security parameter 1k and a description of a Boolean function
(n, q, I,W,G) ← f under the constraint that n = poly(k), n ≥ k and |f | =
poly(k). The function outputs a triple (F, e, d) representing a garbled circuit
(F), input encoding information (e) and output decoding information (d).

– En(e, x) → X is the encoding function, a deterministic function that uses the
input encoding information e to map an input x to a garbled input X. We
say a scheme is projective if e =

({
X0

i ,X1
i

}
i∈[n]

)
and the garbled input

X is simply {Xxi
i }i∈[n]. In this paper we are only interested in projective

schemes and therefore we do not use the En function explicitly.
– Ev(F,X, x) → Z is the evaluation function, a deterministic functionality

that produces an encoded output Z by evaluating a garbled circuit F on an
encoded input X. We assume that for fixed F , the evaluation can output at
most two values Z0 and Z1.

– De(d, Z) → z is the decoding function, a deterministic functionality that,
using the string d, decodes the encoded output Z into a plaintext bit, z. We
are only interested in whether z = 1 (e.g., the NP relation accepts in the ZK
setting), therefore we let d = Z1 and De(d, Z) outputs z = 1 if Z

?= Z1 and
z = 0 otherwise.

– ev(f, x) → b is the plaintext evaluation function, a deterministic functional-
ity that evaluates the plain function described by f on some input x, i.e.,
ev(f, x) = f(x).

– Ve(F, f, e) → b is the verification function, a deterministic functionality that
on input a garbled circuit F , a description of a Boolean function f and
the input encoding information e =

{
X0

i ,X1
i

}
i∈[n]

outputs 1 if the garbled
circuit F computes the functionality f . Otherwise the functionality outputs
0.

We now list a number of properties that we require from a garbling scheme
and refer to [BHR12,JKO13] for a detailed explanation of these definitions.

The following definition says that a correct evaluation of a correct garbling
gives the right output.

200 T.K. Frederiksen et al.

Definition 1 (Correctness). Let G be a verifiable projective garbling scheme
described as above. We say that G enjoys correctness if for all n = poly(k), f :
{0, 1}n → {0, 1} and all x ∈ {0, 1}n s.t. f(x) = 1 the following probability

Pr
(
Ev

(
F, {Xxi

i }i∈[n] , x
)

�= Z1 :
(
F,

{
X0

i ,X1
i

}
i∈[n]

, Z1
)

← Gb
(
1k, f

))

is negligible in k.

The following definition says that from a correct garbling of an input and a
function outputting 0 on that input, you cannot find the decoding information
for output 1, i.e., Z1.

Definition 2 (Authenticity). Let G be a verifiable projective garbling scheme
described as above. We say that G enjoys authenticity if for all n = poly(k), f :
{0, 1}n → {0, 1} and all inputs x ∈ {0, 1}n s.t. f(x) = 0 and for any probabilistic
polynomial time (PPT) A, the following probability:

Pr
(
A

(
f, x, F, {Xxi

i }i∈[n]

)
= Z1 :

(
F,

{
X0

i ,X1
i

}
i∈[n]

, Z1
)

← Gb
(
1k, f

))

is negligible in k.

The following definition says that there is a unique garbled outputs corre-
sponding to the output value 1, and that this unique value can be efficiently
extracted given all the input labels. This holds also for maliciously generated
circuits, as long as they pass the verification procedure. This implies that the
garbled output value Z1 leaks no information about the original input x except
for the fact that f(x) = 1.

Definition 3 (Verifiability). Let G be a verifiable projective garbling scheme
described as above. We say that G enjoys verifiability if for all n = poly(k), f :
{0, 1}n → {0, 1} and all x ∈ {0, 1}n with f(x) = 1 and for all PPT A there
exists an expected polynomial time algorithm Ext such that

Pr
(
Ext

(
F,

{
X0

i ,X1
i

}
i∈[n]

)
= Ev

(
F, {Xxi

i }i∈[n] , x
))

> 1 − negl(k)

when Ve
(
F, f,

{
X0

i ,X1
i

}
i∈[n]

)
= 1 and

(
F,

{
X0

i ,X1
i

}
i∈[n]

)
← A(1k, f) .

Finally, combining these definitions we get a definition of a secure verifiable,
projective and privacy-free garbling scheme.

Definition 4 (Privacy-free Garbling Scheme). Let G be a verifiable pro-
jective garbling scheme described as above. If this scheme enjoys correctness,
authenticity and verifiability in accordance with Def. 1, Def. 2 and Def. 3 respec-
tively, then G is a secure privacy-free garbling scheme.

Privacy-Free Garbled Circuits with Applications 201

2.3 Key Derivation Function

We are going to use a “compressing” key derivation function KDF : {0, 1}∗ →
{0, 1}k mapping an arbitrary binary string to a pseudorandom string of k bits.
The applications of the function will be of the form K = KDF (K1, . . . ,Km; id)
for some m ∈ N, where Ki ∈ {0, 1}k is a wire key and id ∈ {0, 1}∗ is a unique
label or tweak.

We need a notion of security where the adversary cannot compute the output
of the key derivation function except if he can do so trivially because he knows the
entire input. Specifically we let keys be fresh uniformly random values, derived
or linear combinations of other keys, and id be publicly known. We require that
the adversary cannot guess a key derived from at least one uniformly random
key, “uncompromised” derived key or linear combination of keys where at least
one is “uncompromised”. An uncompromised derived key is one that was derived
from at least one uniformly random key, uncompromised derived key or linear
combination where at least one key in the combination was uncompromised.
We allow the adversary to compromise keys by leaking them and construct new
keys through linear combinations or key derivations. Furthermore, we call a
(potential) key compromised if the leaked keys allow to determine the key, in
which case the adversary can trivially compute it. More precisely:

Definition 5 (Game KDF). Let A be any PPT adversary and consider the
following game:

Initialize: Let ID ← ∅ be a set of identifiers used by the adversary and let
LEAK ← ∅ be the set of identifiers that should be leaked.

Query: Let A make an arbitrary amount of calls, in any combination, to the
following methods:
Fresh key: If A outputs (fresh key, id �∈ ID), then sample Kid ∈R {0, 1}k

and store (id,Kid) and let ID ← ID ∪ {id}.
Linear: If A outputs (linear, id0 �∈ ID, id1, . . . , idm) where idi ∈ ID for

all i ∈ [m], then compute Kid0 ← ⊕m
i=1 Kidi

, store (id0,Kid0), and let
ID ← ID ∪ {id0}.

Derive: If A outputs (derive, id0 �∈ ID, id1, . . . , idm) where idi ∈ ID for all
i ∈ [m], then compute Kid0 ← KDF(Kid1 , . . . ,Kidm

; id0), store (id0,Kid0)
and let ID ← ID ∪ {id0}.

Leak: If A outputs (leak, id ∈ ID) set LEAK = LEAK ∪ {id}.
End: When A outputs (end) then return the set {Ki}i∈LEAK to A.
Guess: When A outputs (guess, id∗,K∗) for id∗ ∈ ID, then the adversary wins

if K∗ = Kid∗ and id∗ was not compromised, i.e., if id∗ �∈ COMP, see below.

We define the set COMP of IDs of compromised keys iteratively as follows: Define
a linear system LIN over formal variables Xid and cid for id ∈ ID. For each linear
query (linear, id0, id1, . . . , idm) add the equation ⊕m

i=1Xidi
= Xid0 to LIN. For

each leakage command (leak, id ∈ ID), add the equation Xid = cid to LIN. In
the following we call an identifier id∗ determined in LIN if the linear system LIN
allows to write Xid∗ as a linear combination of the variables cid for id ∈ ID.

202 T.K. Frederiksen et al.

We use Det(LIN) to denote the set of identifiers that are determined in LIN. We
call id∗ derivable in LIN if there was a command (derive, id∗, id1, . . . , idm) and
idi ∈ Det(LIN) for each i ∈ [m]. We use Der(LIN) to denote the set of identifiers
that are derivable in LIN. We define an extension LIN′ = Ext(LIN) by letting
LIN′ be LIN but with the equation Xid∗ = cid∗ added for each id∗ ∈ Der(LIN).
Define LIN0 = LIN and LINi+1 = Ext(LINi). There are finitely many variables,
so this has a fixed index j such that LINj+1 = Ext(LINj). We let COMP = LINj.

We use GuessKDF,A(1k) to denote the probability that A wins the game. Using
this game we define the notion of a secure key derivation function.

Definition 6 (Secure Key Derivation Function). We say that a KDF(·)
is secure if the advantage of any PPT adversary A playing the KDF game is
negligible in k, i.e.

GuessKDF,A(1k) ≤ negl(k)

for some negligible function negl(·).
It can be proven using standard techniques that a (non-programmable, non-

extractable) random oracle is a secure KDF in the above sense. More precisely:

Theorem 1. If KDF(·) is modeled by a non-programmable, non- extractable ran-
dom oracle with k bits output then for any PPT A it holds that GuessKDF,A(1k) ≤
negl(k) for some negligible function negl(·).
The proof appears in the full version [FNO14].

We leave as future work the investigation of which exact computational
assumptions are required for implementing our different garbling schemes: while
it is clear that the freeXOR and fleXOR variant require strong notion of security
(security under related-key attack and a flavor of circular security), it seems that
the GRR1 variant could be instantiated using standard security notions.

3 Our Privacy-Free Garbling Schemes

In this section we present our novel garbling schemes. Our schemes support gates
with arbitrary fan-in, but as a warm-up we first present the garbling schemes for
gates with fan-in 2 using GRR1 or GRR2 with free-XOR. Both allow to garble
every Boolean gate with fan-in 2 using only 3 calls to the KDF for non-XOR
gates and require no calls to the KDF for XOR gates.

Our first scheme has communication complexity of k bits per gate while our
second garbling scheme is compatible with “free-XOR”, but requires communi-
cation complexity of 2k bits for non-XOR gates.

Afterwards we present our two schemes for gates with arbitrary fan-in and
in Section 4 a scheme that supports the recent fleXOR approach [KMR14].

Privacy-Free Garbled Circuits with Applications 203

Table 3. Exact performances of our privacy-free garbling scheme. The “Garb.” and
“Eval.” column state the number of calls to a KDF required for garbling and evaluation
respectively, as a function of the gate fan-in m. The column “Size” states the number
of bits added to the garbled circuit for each gate. We only report the fleXOR variant
based on “Safe” wire ordering.

Garb. Eval. Size

GRR1
NAND m + 1 1 k(m − 1)

XOR 0 0 k(m − 1)

Free-XOR
NAND m + 1 1 km

XOR 0 0 0

FleXOR
NAND m + 1 1 k(m − 1)

t-XOR 0 0 kt

3.1 Warm-Up

To simplify notation and give the intuition of our scheme we here only describe
how to garble/evaluate a single NAND or XOR gate. We call the input keys to
the left wire of a gate L0, L1, the input keys to the right wire R0, R1 and the
output keys O0, O1. All these values are elements of {0, 1}k.

Again we point out that in contrast with general garbled circuits, in our case
if the circuit evaluator has two keys La, Rb, he knows the corresponding bits a, b.

First consider a NAND gate with GRR1:

Garbling a GRR1 NAND Gate: Let O0 = KDF
(
L1, R1

)
and O1 =

KDF
(
L0

)
. Compute C = KDF

(
R0

) ⊕ O1 and output C.
Evaluating a GRR1 NAND Gate: To evaluate on input La, Rb, if a = b = 1

then output O0 = KDF
(
L1, R1

)
otherwise, if a = 0 compute O1 = KDF

(
L0

)
.

Otherwise, if b = 0 compute O1 = C ⊕ KDF
(
R0

)
.

It should be clear that the scheme is correct. The intuition of authenticity is
that if the evaluator only knows one input key for each wire, he can only learn
one output key unless he can guess the output of KDF on an input he does not
know. Next consider a XOR gate:

Garbling a GRR1 XOR Gate: Let O0 = L0 ⊕R0 along with O1 = L0 ⊕R1.
Finally output C = L0 ⊕ L1 ⊕ R0 ⊕ R1.

Evaluating a GRR1 XOR Gate: On input La, Rb if a = 0 then output
Oa⊕b = La ⊕ Rb. Otherwise compute and return Oa⊕b = C ⊕ La ⊕ Rb.

Again, it should be clear that the scheme is correct. The authenticity intu-
itively follows from the fact that the evaluator can only learn the XOR of two
unknown keys which will not help decrypting the next gate.

Now consider how to achieve the same, while allowing support for free-XOR
gates (and in turn GRR2). In this scheme there is a global difference Δ s.t., for
all wires w in a garbled circuit, the key pair X0

w,X1
w satisfies X0

w ⊕ X1
w = Δ.

Garbling a GRR2 NAND Gate: Let O0 = KDF
(
L1, R1

)
. This defines O1 =

O0 ⊕Δ as well. Let CL = KDF
(
L0

)⊕O1 and CR = KDF
(
R0

)⊕O1. Finally
output {CL, CR}.

204 T.K. Frederiksen et al.

Evaluating a GRR2 NAND Gate: To evaluate on input La, Rb, if a = b = 1
then output O0 = KDF

(
L1, R1

)
otherwise, if a = 0 output O1 = KDF

(
L0

)⊕
CL otherwise output O1 = KDF(R0) ⊕ CR.

Next consider a XOR gate:

Garbling a free-XOR Gate: Let O0 = L0 ⊕ R0. This defines O1 = O0 ⊕ Δ
as well. Output nothing.

Evaluating a free-XOR Gate: On input La, Rb, output Oa⊕b = La ⊕ Rb.

Again correctness should be clear and authenticity for NAND gates follow from
the same argument as for GRR1 NAND gates, whereas authenticity follows from
the security of free-XOR, i.e. that it is hard to learn Δ, unless one is given both
keys on some wire.

3.2 Generalization Intuition

We now consider how our approaches generalizes to gates with arbitrary fan-in.

NAND gates. Consider a NAND gate with fan-in m, call this gate g. Recall that
for this gate the output bit bg = 0 should occur exactly if all the input bits are
equal to 1, b1 = b2 = . . . = bm = 1. This means that we can define the output
key representing bit 0 directly from these: If we denote the key on input wire i
by Xbi

i , then the output 0-key is computed as

X0
g = KDF

(
X1

1 ,X1
2 , . . . , X1

m

)
.

Now, if we are not using a free-XOR scheme we define the 1-output key to be
X1

g = KDF
(
X0

1

)
. Then the entries in the garbled computation table is as follows:

{
Ci = X1

g ⊕ KDF
(
X0

i

)}m

i=2
.

When we are using a free-XOR scheme we have another entry in the garbled
computation table since the output key X1

g needs to meet the constraint X1
g =

X0
g ⊕Δ and thus we cannot define it to simply be KDF

(
X0

1

)
. However, similarly

to the scheme above that does not use free-XOR we use the KDF applied to the
first input key (which we have not used to hide anything in the scheme above)
to hide X1

g . We let the rest of the table remain as before and thus the whole
garbled computation table is computed as follows:

{
Ci = X1

g ⊕ KDF
(
X0

i

)}m

i=1
.

We describe the evaluation: Call the input keys X
b′
1

1 ,X
b′
2

2 , . . . , X
b′
m

m . If b′
i = 1

for all i ∈ [m] then the output is X0
g = KDF

(
X1

1 ,X1
2 , . . . , X1

m

)
. Otherwise find

the first value of i for which b′
i �= 1 and output X1

g = Ci ⊕ KDF
(
X0

i

)
, except if

i = 1 and we do not use a free-XOR garbling scheme, in which case the output
is X1

g = KDF
(
X0

1

)
.

Privacy-Free Garbled Circuits with Applications 205

XOR gates. To garble XOR gates (when we are not using the free-XOR method),
we define the output 0-key from information based on all the input 0-keys.
Specifically as

X0
g = X0

1 ⊕ X0
2 ⊕ · · · ⊕ X0

m =
m⊕

i=1

X0
i .

In a similar manner we define the output 1-key from information based on the
first input 1-key and all the other input 0-keys, that is

X1
g = X1

1 ⊕ X0
2 ⊕ · · · ⊕ X0

m−1 ⊕ X0
m = X1

1 ⊕
(

m⊕

i=2

X0
i

)

.

Let bi, for all i ∈ [m] be the input bits at evaluation time and bg = b1⊕. . .⊕bm be
the output of that gate. It might be the case that b1 �= 1 or that there are other
j s.t., bj = 1. So we let the garbled computation table consist of information
which makes it possible for the evaluator to compute the right output key in any
such situation. Specifically we define the table as the following set:

{
Ci = X0

i ⊕ X1
i ⊕ X0

1 ⊕ X1
1

}m

i=2
.

It is clear that, for any j �= 1
⎛

⎝
⊕

i∈[m]

Xbi
i

⎞

⎠ ⊕ Cj = Xb1⊕1
1 ⊕ X

bj⊕1
j

⊕

j �=i>2

Xbi
i

Thus by XORing all the Ci’s for which bi = 1 we obtain
⎛

⎝
⊕

i∈[m]

Xbi
i

⎞

⎠ ⊕
(

⊕

i:bi=1

Ci

)

= Xb1⊕...⊕bm
1 ⊕

(
⊕

i:bi=0

X0
i

)

⊕
(

⊕

i:bi=1

X1⊕1
i

)

= Xbg
g

Other gates. It is easy to see that our garbling scheme can be applied also to few
other kind of gates such as AND, (N)OR, XNOR etc., also in the case of high
fan-in (by using a different partitioning of the inputs and relabeling the outputs)
but it cannot be used in for generic, “unstructured” gates of high fan-in.

Using high fan-in gates. Note that our garbling scheme is favorable for gates
with high fan-in, since the complexity shown in Table 3 (both in terms of com-
munication and computational complexity) only grows linearly with the gate
fan-in, while a straightforward use of standard garbled circuit leads in a expo-
nential blow-up in the gate fan-in. Even when comparing the garbling of a gate
with fan-in m to a circuit implementing the same functionality (e.g., a tree of
fan-in 2 NANDs to implement a NAND with fan-in m) our scheme is still favor-
able. Depending on the garbling scheme we can save a factor 2-3 in terms of
computation for the garbler and also save in communication. In addition, the
evaluator has an overhead of log(m) when evaluating the circuit (versus a single
call to the KDF in our case).

206 T.K. Frederiksen et al.

3.3 Formal Specification

We describe our gate garbling schemes in the same notation as [BHR12], but
with some changes in order to reflect that we only require privacy, only assume
one bit output and that we support gates of arbitrary fan-in. The specification
of the garbling scheme is given in Fig. 1 and the realizations for individual gate
garbling is given in Fig. 2 and Fig. 3, depending on whether or not one uses
free-XOR or GRR1.

To enhance understanding we describe each step of these procedures.

The Garbling Scheme. The first method, Gb, constructs a garbled circuit, F ,
along with information, e, to encode a binary string as garbled input to this
garbled circuit and information, d, to check if the output of an evaluation of the
garbled circuit has the semantic value 1. The method takes as input a security
parameter 1k and a description of the Boolean function to be computed, f . The
format of the function description should be in accordance with the description
given in Section 2.2, and thus can be viewed directly as a Boolean circuit. In
step 1 the algorithm chooses two keys for each of the n input bits to f , in
accordance with the specific type of garbling scheme used. These are the 0-,
respectively, 1-input keys. Step 2 involves iteratively constructing each of the q
garbled gates of the circuit, along with the two output keys needed for each of
these gates. It is done by first using I to decide the fan-in of a given gate, then
using G to find the specific functionality of the given gate. Finally the input
keys for that gate (which have already been constructed) are loaded using W
and all the information is passed to the gate garbling method Garb. In step 3
the garbled circuit, F , is set to include all the information of f along with the
garbled computation table returned by Garb in the previous step for all the gates
in the circuit. These tables are called P . Furthermore, the encoding information
e is set to be the two keys for each input wire and the decoding information d
is set to be the output 1-key of the final gate in the circuit. In the last step, the
garbled circuit F , the input encoding information, e, and decoding information,
d, is returned.

The second method, En, constructs an ordered set of input keys to a garbled
circuit, X. It takes as input the encoding information e (along with a binary
string x of length n) representing the input to the garbled circuit. In the first
step the method parses e as n ordered pairs of keys. In step 2 the functionality
returns an ordered subset of the keys. In particular if the i’th bit of x is 0 then
the i’th element in the ordered set is the i’th 0-key, otherwise it is the i’th 1-key.

The third method, De, evaluates whether some value, Z, is equal to the
output 1-key of a garbled circuit, d. It takes as input the decoding information
of a garbled circuit, d, along with a potential output key, Z. The method only
has one step which checks if d = Z and returns 1 if that is true, otherwise it
returns 0.

The fourth method, Ev, evaluates a garbled circuit, F , and returns the output
key of the final gate as a result of this evaluation, Z. It takes as input a garbled
circuit F , and an ordered set of input keys, X, along with a binary vector x

Privacy-Free Garbled Circuits with Applications 207

Gb
(
1k, f

)→ (F, e, d)
1. Set (n, q, I, W, G) ← f and

{
X0

i , X1
i

}
i∈[n]

← InKeys(n, k).

2. For each g ∈ [n + 1, n + q] set m = I(g) and define G′ : {0, 1}m →
{0, 1} s.t. G′(i) = G(g, i) for all i ∈ {0, 1}m and set

{(
X0

g , X1
g

)
, P [g]

} ←
Garb

(
g, G′,

{
X0

W (g,i), X
1
W (g,i)

}

i∈[m]

)
.

3. Set F ← (n, q, I, W, G, P), e ← {X0
i , X1

i

}
i∈[n]

and d ← X1
n+q.

4. Finally return (F, e, d).
En(e, x) → X

1. Set
{
X0

i , X1
i

}
i∈[n]

← e.

2. Then set X ← {Xxi
i }i∈[n] and return X.

De(d, Z) → b
1. If d = Z then output 1 otherwise output 0.

Ev(F, X, x) → Z
1. Set (n, q, I, W, G, P) ← F and for all i ∈ [n] set wi = xi and define Q =

{wi}i∈[n].

2. For each g ∈ [n+1, n+q] let m = I(g) and add wg = G
(
g,
{
wW (g,i)

}
i∈[m]

)

to the set Q.
3. Now for each g ∈ [n+1, n+q] let m = I(g) and define G′ : {0, 1}m → {0, 1}

s.t. G′(i) = G(g, i) and w′ ∈ {0, 1}m s.t. w′
i = wW (g,i) for all i ∈ [m] and

set Xg ← Eval
(
g, G′, w′,

{
XW (g,i)

}
i∈[m]

, P [g]
)
.

4. Return Xn+q.
ev(f, x) → b

1. Set (n, q, I, W, G) ← f and for all i ∈ [n] set wi = xi and define Q ←
{wi}i∈[n].

2. For each g ∈ [n+1, n+q] let m = I(g) and add wg = G
(
g,
{
wW (g,i)

}
i∈[m]

)

to the set Q.
3. Finally return wn+q.

Ve(F, f, e) → b
1. Set (n, q, I, W, G, P) ← F , (n′, q′, I ′, W ′, G′) ← f and

{
X0

i , X1
i

}
i∈[n]

← e.

2. If n �= n′, q �= q′, I �= I ′, W �= W ′ or G �= G′ output 0.
3. For each g ∈ [n + 1, n + q] let m = I(g) and define G′ : {0, 1}m → {0, 1}

s.t. G′(i) = G(g, i) for all i ∈ {0, 1}m and set
{(

X0
g , X1

g

)
, P̄ [g]

} ←
Garb

(
g, G′,

{
X0

W (g,i), X
1
W (g,i)

}

i∈[m]

)
.

4. If for any g ∈ [n+1, n+ q] we have P̄ [g] �= P [q] output 0, otherwise output
1.

Fig. 1. Privacy-free Garbling

where the i’th bit represents the semantic value of the i’th input key. In step 1
the method parses the information stored in the garbled circuit F and defines
an ordered set of bits, Q, which represents the bits on each each wire in the
garbled circuit. Initially this set only includes the bits of the input wires. Step
2 iteratively evaluates the garbled circuit one gate at a time. It first finds the
fan-in of a given gate using I and then evaluates the gate in plain using the set Q
along with the gate description G. After evaluating the gate in plain it updates

208 T.K. Frederiksen et al.

Q to contain the output bit of the given gate. Thus at the end Q contains the
expected bit on each wire given the garbled circuit F and the binary input x.
In step 3 the method proceeds to evaluate each garbled gate iteratively. Again
it uses I to learn the fan-in for a given gate, it uses G to decode the specific
functionality of the gate and the elements of Q to find the semantic meaning of
the keys supposed to be input to the garbled gate. Using this information, along
with the garbled computation table of the gate, P , it calls Eval to evaluate the
garbled gate and stores the output key which the method returns. Finally in
step 4 it returns the output key of the final gate in the garbled circuit.

The fifth method, ev, evaluates the Boolean functionality f in plain using a
binary input vector x. It returns a bit being the value f(x). In Step 1 it parses the
functionality f and constructs a set Q which represents the bit on each wire in
the circuit. Initially this set only contains the bits on the input wires, exactly as
specified by x. In step 2 it iteratively evaluates each gate of the functionality. It
does so by first learning the fan-in of the give gate using I and then using G with
the given gate index and bits already stored in Q. It updates the set Q with the
result. Finally it returns the result of evaluating the final gate in the circuit.

The sixth and last method, Ve, checks whether a garbled circuit, F , evaluates
the same as some plain circuit, f , given both pairs of input keys for all wires
of the garbled circuit, e. The method returns either 1 (for accept) or 0 (for
reject). It takes as input a garbled circuit F , a plain description of the circuit
functionality f along with the ordered set of input keys, e. In the first step it
parses the garbled circuit F and the plain function description f . Step 2 is a
sanity check which verifies that the “meta” data of F and f is the same, i.e.,
same amount of input bits, n, the same amount of gates q, each with the same
fan-in I, using the same wires, W , and computing the same functionality, G.
If any of these checks fail the method outputs reject. Then step 3 iteratively
constructs a new garbled circuit using Garb in the same manner as in Gb, based
on the information in f . Finally in step 4 the method checks equality of each
garbled computation table given in F with each of the tables generated in the
previous step. If any are not equal then the method outputs reject, otherwise it
outputs accept.

Gate Garbling. All of our garbling schemes have two methods: Garb and Eval.
The first constructs a garbled gate, g̃, and two keys,

(
X0

g ,X1
g

)
. It takes as input

a nonce, g (gate ID), a function mapping a binary vector to a bit, G′, along
with a pair of input keys for each input wire to the gate. The second method
reconstructs a single output key. It takes as input a nonce, g (gate ID), a function
mapping a binary vector to a bit, G′, a binary vector describing the bits on the
input wires to the gate, w′, an ordered set of input keys {Xi}i∈[m] along with
an ordered set which is the garbled computation table g̃.2 Two concrete schemes
are shown in Fig. 2 and Fig. 3.
2 Note that, as it is described, the running time of Eval depends on the particular input

used. To prevent leakage of the input based on timing attacks, any implementation of
Eval would need to take appropriate countermeasures, and ensure that the running
time does not depend on the input used.

Privacy-Free Garbled Circuits with Applications 209

InKeys(n, k) → {X0
i , X1

i

}
i∈[n]

1. For each i ∈ [n] sample uniformly random X0
i , X1

i ∈R {0, 1}k and return
the set

{
X0

i , X1
i

}
i∈[n]

.

Garb
(
g, G′,

{(
X0

i , X1
i

)}
i∈[m]

)
→ {(X0

g , X1
g

)
, g̃
}

1. If G′(·) = NAND
do as follows:
(a) Let X0

g = KDF
(
X1

1 , X1
2 , . . . , X1

m; (key, g, 0)
)

and X1
g =

KDF
(
X0

1 ; (key, g, 1)
)
.

(b) Next let Ci = X1
g ⊕ KDF

(
X0

i ; (inte, g, i)
)

for all i ∈ [2, m] and set
g̃ = {Ci}m

i=2.
(c) Return

{(
X0

g , X1
g

)
, g̃
}
.

2. If instead G′(·) = XOR do as follows:

(a) Let X0
g =
⊕m

i=1 X0
i and X1

g = X1
1 ⊕ (⊕m

i=2 X0
i

)
.

(b) Next let Ci = X0
1 ⊕X1

1 ⊕X0
i ⊕X1

i for all i ∈ [2, m] and set g̃ = {Ci}m
i=2.

(c) Return
{(

X0
g , X1

g

)
, g̃
}
.

Eval
(
g, G′, w′, {Xi}i∈[m] , g̃

)
→ {Xg}

1. If G′(·) = NAND do as follows:

(a) If w′ = 1m then set Xg = KDF (X1, X2, . . . , Xm; (key, g, 0)). If instead
w′

1 = 0 then set Xg = KDF (X1; (key, g, 1)). Otherwise find the
first i ∈ [2, m] s.t. w′

i = 0, parse {Ci}m
i=2 ← g̃ and set Xg =

Ci ⊕ KDF (Xi; (inte, g, i)).
(b) Return Xg.

2. If instead G′(·) = XOR do as follows:

(a) Parse {Ci}m
i=2 ← g̃.

(b) Let S be the set of i ∈ {2, m} for which it is true that w′
i = 1.

(c) Return Xg =
(⊕

i∈[m] Xi

)
⊕ (⊕i∈S Ci

)
.

Fig. 2. Garbling GRR1 - Without free-XOR

3.4 Security

The scheme presented in Fig. 1 composed with Fig. 2 and Fig. 3 respectively are
clearly correct. In fact, any correctly generated scheme evaluates to the correct
output key with probability 1. From this it also follows that the schemes have
verifiability, as we verify by regenerating each garbled gate, and hence a verified
garbled gate is correctly generated. This takes care of the demands of correctness
(Def. 1) and verifiability (Def. 3) of a secure privacy-free garbling scheme, as
defined in Def. 4. What remains is authenticity (Def. 2): In the following we
reduce this to the security of the KDF used.

Theorem 2. If the KDF used in the garbling scheme of Fig. 1 composed with
Fig. 2 is secure according to Def. 6, then the composed scheme enjoys authenticity
according to Def. 2.

Proof. For notational convenience we are going to focus on the case with fan-in
2. The proof idea generalizes immediately.

210 T.K. Frederiksen et al.

InKeys(n, k) → {X0
i , X1

i

}
i∈[n]

1. Sample a uniformly random difference Δ ∈ {0, 1}k.
2. Then for each i ∈ [n] sample uniformly random X0

i ∈R {0, 1}k and return
the set

{
X0

i , X0
i ⊕ Δ

}
i∈[n]

.

Garb
(
g, G′,

{(
X0

i , X1
i

)}
i∈[m]

)
→ {(X0

g , X1
g

)
, g̃
}

1. Set Δ = X0
1 ⊕ X1

1 .
2. If G′(·) = NAND do as follows:

(a) Let X0
g = KDF

(
X1

1 , X1
2 , . . . , X1

m; (key, g, 0)
)

and X1
g = X0

g ⊕ Δ.
(b) Next let Ci = X1

g ⊕ KDF
(
X0

i ; (inte, g, i)
)

for all i ∈ [m] and set
g̃ = {Ci}m

i=1.
(c) Return

{(
X0

g , X1
g

)
, g̃
}
.

3. If instead G′(·) = XOR set X0
g =

⊕m
i=1 X0

i , X1
g = X0

g ⊕ Δ and return{(
X0

g , X1
g

)
, ⊥}.

Eval
(
g, G′, w′, {Xi}i∈[m], g̃

)→ {Xg}
1. If G′(·) = NAND do as follows: If w′ = 1m then set Xg =

KDF (X1, X2, . . . , Xm; (key, g, 0)). Otherwise find the first i ∈ [m] s.t.
w′

i = 0, parse {Ci}m
i=1 ← g̃ and compute and return Xg = Ci ⊕

KDF (Xi; (inte, g, i)).
2. If instead G′(·) = XOR return Xg =

⊕m
i=1 Xi.

Fig. 3. Garbling GRR2 - With free-XOR

A NAND gate with input keys L0, L1 for the left wire and R0, R1 for the
right wire and gate identifier g is garbled as follows:

O1 ← KDF(L0; (key, g, 1)) , (1)

O0 ← KDF(L1, R1; (key, g, 0)) , (2)

A ← KDF(R0; (inte, g)) , (3)

C ← A ⊕ O1(with label (garb, g)) . (4)

The output keys are (O0, O1). The garbled gate is just C.
An XOR gate with input keys L0, L1 for the left wire and R0, R1 for the right

wire and gate identifier g is garbled as follows:

O0 ← L0 ⊕ R0 (with label (key, g, 0)) , (5)

O1 ← L0 ⊕ R1 (with label (key, g, 1)) , (6)

C ← L0 ⊕ L1 ⊕ R0 ⊕ R1 (with label (garb, g)) . (7)

The output keys are (O0, O1). The garbled gate is just C.
Besides this, the circuit garbling just consist of reusing the appropriate output

keys as input keys to later gates. A garbled circuit F consists of, amongst other,
a garbled gate for each of the q internal wires, P = (Cn+1, . . . , Cn+q), in an order
in which they can be evaluated. For each garbled gate Ci, let L0

i and L1
i be the

corresponding keys on the left input wire, let R0
i and R1

i be the corresponding
keys on the right input wire, and let O0

i and O1
i be the output keys.

Privacy-Free Garbled Circuits with Applications 211

We can assume without loss of generality that the last gate is the output
gate. For a garbled input X =

{(
X0

i ,X1
i

)}n

i=1
and a plaintext input x ∈ {0, 1}n,

let Xx = {Xxi
i }i∈[n] be the garbled version of x. For i = n + 1, . . . , n + q,

let wi be the bit we get by computing plaintext gate number i on the bits
for its input wires, that is wi = G(i, {W (i, 1),W (i, 2)}) in accordance with
Fig. 1. This defines a plaintext evaluation w = (w1, . . . , wn, wn+1, . . . , wn+q).
For i = n + 1, . . . , n + q, let Ki = Owi

i . This defines a garbled evaluation
Kx = (K1, . . . ,Kn,Kn+1, . . . ,Kn+q). The scheme is constructed such that from
a correct garbled circuit F and Xx one can efficiently compute Kx, which in
particular allows one to compute Kn+q = O

f(x)
n+q . We have to prove that from a

randomly generated P and Xx one cannot also efficiently compute O
1−f(x)
n+q . For

this, it is sufficient to prove that one cannot efficiently compute
(
i, O1−wi

i

)
for

any i ∈ [n + q] with non-negligible probability.
We do the proof by a simple reduction to the game KDF in Def. 5. It is easy

to see that the garbling and the keys learned by the evaluator in the scheme can
be computed by queries to the game KDF in such a way that all the keys O1−wi

i

are uncompromised. In more detail, the reduction runs as follows:

Input keys: For each i ∈ [n] and b ∈ {0, 1}, output (fresh key, (key, i, b))
to define a fresh random key Xb

i ∈R {0, 1}k. Then for each i ∈ [n], out-
put (leak, (key, i, xi)) to add Xxi

i to the set of values to leak. Let Xx =
{Xxi

i }ni=1. Now for each input wire, both keys are defined in the game KDF.
Internal gates: Iteratively go through all the gates. Specifically for each i ∈

[n + 1, q] we do as follows, depending on whether or not gate i is a NAND
or XOR gate:
NAND gate: Call the plaintext value on the left input wire li = wW (i,1),

call the plaintext value on the right input wire ri = wW (i,2), and call
the plaintext value on the output wire wi. Call the keys on these wires(
L0
i , L

1
i

)
,

(
R0

i , R
1
i

)
and

(
O0

i , O
1
i

)
respectively. Thus

(
L0
i , L

1
i

)
=(

X0
W (i,1),X

1
W (i,1)

)
,

(
R0

i , R
1
i

)
=

(
X0

W (i,2),X
1
W (i,2)

)
and

(
O0

i , O
1
i

)
=

(
X0

i ,X1
i

)
. The first four of these keys are defined in the game KDF and

we are given Lli
i and Rri

i before our guess. We should define
(
O0

i , O
1
i

)
in

the game and make sure we learn Owi
i before our guess. We use derive-

commands to define O1
i = KDF

(
L0
i ; (key, i, 1)

)
, O0

i =
KDF

(
L1
i , R

1
i ; (key, i, 0)

)
, and Ai = KDF

(
R0

i ; (inte, i)
)
. Then we use a

linear-command to define Ci = Ai ⊕O1
i (with label (garb, i)). Then we

add Ci to the set of values to leak by outputting (leak, (garb, i)). This
is a correct garbling, so when we are later given Lli

i and Rri
i , we can use

them to compute Owi
i by computing the garbled gate on (Lli

i , Rri
i).

XOR gate: We proceed as for NAND gates, except for the specific com-
mands issued: We use linear-commands to define O0

i = L0
i ⊕R0

i (under
identifier (key, i, 0)), O1

i = L1
i ⊕ R0

i (under identifier (key, i, 1)) and
Ci = L0

i ⊕ L1
i ⊕ R0

i ⊕ R1
i (under identifier (garb, i)). Then we add Ci to

the set of values to leak by outputting (leak, (garb, i)). This is a correct

212 T.K. Frederiksen et al.

garbling, so we later use it to compute Owi
i by computing the garbled

gate on (Lli
i , Rri

i).
End: After having handled all the gates, we issue the end-command and learn

the input keys Ki = Xxi
i for i ∈ [n], along with the garbled gates Ci for

i ∈ [n+1;n+q]. Using these we can evaluate the garbled circuit and thus learn
the value Ki = Owi

i for all i ∈ [n+1; q]. We then give Kx = {Ki, . . . ,Kn+q}
to the adversary.

Guess: If the adversary outputs
(
i, O1−wi

i

)
for any i ∈ [n + q], then we output

(guess, (key, i, 1 − wi) , O1−wi
i).

It is clear that we win the guessing game exactly when (key, i, 1 − wi) is
uncompromised and O1−wi

i is the correct “other” key for wire i supplied by the
adversary – we call Owi

i the known key and we call O1−wi
i the other key. We call

a key Ob
i compromised if the label (key, i, b) is compromised as defined by the

KDF game. We call gate Ci compromised if the other key O1−wi
i is compromised

as defined by the KDF game.
It is sufficient to prove that (key, i, 1 − wi) is uncompromised for all i. It

is clear that whether (key, i, 1 − wi) is uncompromised does not depend on the
strategy of the adversary, only the structure of the circuit, the nature of our
garbling scheme and the input x. Hence, if for a fixed circuit and fixed input
x some (key, i, 1 − wi) is sometimes compromised, then it is always compro-
mised. Hence, if any (key, i, 1−wi) can be compromised, then there exists a first
gate j such that before executing the commands corresponding to gate j, no
identifier (key, i, 1 − wi) was compromised, and after executing the commands
corresponding to gate j, some identifier (key, i, 1 − wi) is compromised, where
i ≤ j. Consider this gate Cj . Furthermore, among the commands executed for
gate j there is a first command that leads to a compromise of a gate. We call this
command patient zero. We first show that patient zero is not a key derivation
command. Then we show that it is not a linear command followed by a leak
command. And then we are done.

Assume first that patient zero is a key derivation command. We use several
times that a key derivation command, when it is the last command to have
been executed, cannot compromise any other key than its output key. When
patient zero is a key derivation command, then gate j must be a NAND gate, as
there are no key derivation commands in XOR gates. Recall that we issue the
key derivation commands (1), (2) and (3), as part of a NAND gate, and then
we leak Cj . Assume that lj = 0. In that case O1

j = KDF
(
L0
j ; (key, j, 1)

)
is a

known key and hence cannot be a compromised other key. We can also assume
that L1

j is uncompromised (as it is an other key and we are at patient zero),
and hence the other output key O0

j = KDF
(
L1
j , R

1
j ; (key, j, 0)

)
will clearly be

uncompromised after executing the command. Assume then that rj = 0. In that
case the other output key is again O0

j = KDF
(
L1
j , R

1
j ; (key, j, 0)

)
, and now R1

j

is uncompromised. The command Aj = KDF
(
R0

j ; (inte, j)
)

can therefore never
be the patient zero compromising an output key, as Aj is not an output key.

Before we prove that patient zero cannot be a linear command we change
the system that we analyze by replacing the processing of all NAND gates by

Privacy-Free Garbled Circuits with Applications 213

the following commands: First we execute (fresh key, (key, j, 0)), (fresh key,
(key, j, 1)) and (fresh key, (inte, j)) to define the values O0

j , O1
j and Aj respec-

tively. Then we compute Cj = Aj ⊕ O1
j , and leak Cj by issuing the commands

(linear, (garb, j), (inte, j), (key, j, 0)) and (leak, (garb, j)) in that order. In
addition we leak O

wj

j . If rj = 0 such that R0
j is a known key, then we also leak

Aj . So, we essentially skip all key derivation commands and simulate their effect
on the system by leaking the produced known keys. Since we could compute
O

wj

j before the change, it was compromised before the change. It is also com-
promised after the change, as we now leak it. Similarly for Aj . Hence, the set
of compromised identifiers is the same before and after the introduced changes,
at least right after the gate has been handled. As a consequence, we have not
changed whether or not some other key later gets compromised.3 Furthermore,
notice that since we have already showed that patient zero could not be a key
derivation command this change does not affect the adversary’s advantage. We
therefore just have to prove that in the modified system, no other key gets com-
promised. Since there are no key derivation commands left, this is simple linear
algebra.

Assume that patient zero is Cj = Aj ⊕ O1
j . Since Aj is a fresh key and only

occurs in this equation, if Aj is uncompromised, adding this equation cannot
change whether an output key is compromised or not.4 Hence it must be the
case that Aj is compromised. Since Aj is fresh and occurs in no other equa-
tion, this can only have happened because we leaked it earlier. Hence R0

j is a
known key. So, lj = 0 and hence wj = 1. Therefore O1

j is a known key and
hence already compromised. Hence Cj = Aj ⊕ O1

j will compromise Aj , but
since Aj occurs in no other equation, this does not further change the sta-
tus of any variable. We can therefore assume in the following that we pro-
cess all NAND gates, with index i, as follows: Call (fresh key, (key, i, 0)),
(fresh key, (key, i, 1)) and (leak, (key, i, wi)) to first define the key O0

i , O1
i

and then leak Owi
i . This does not change whether or not there will be a patient

zero. We can even make further changes. We once and for all create a global key
Δ through the call (fresh key, delta). Then we execute each NAND gate as
follows: Call (fresh key, (key, i, 0)), (linear, (key, i, 1), (key, i, 0), delta) and
(leak, (key, i, wi)) to define the key O0

i and O1
i respectively and leak Owi

i . Simi-
larly we can create the input keys X0

i and X1
i = X0

i ⊕Δ by calling (fresh key,
(key, i, 0)) and (linear, (key, i, 1), (key, i, 0), delta) respectively for i ∈ [n].
This will only add equations to the system, and hence if there was a patient
3 Note that if eventually an other key gets compromised, then the introduced changes
will have an effect. When we use key derivation commands, one compromised other
key leads to many compromised other keys. When we use fresh key commands, a
compromised other key might not have an avalanche effect. However, we are proving
that the number of compromised other keys is 0, and hence using one system or the
other is equally good.

4 If O1
j is uncompromised then Aj goes from uncompromised to compromised, but Aj

is not an output key, and clearly no other key than Aj can change status by this
equation.

214 T.K. Frederiksen et al.

zero in the system before the change there will also be a patient zero in the
system after the change.

Assume then that patient zero is a linear command from an XOR gate, again
with index j. We process such a gate as follows: Compute O0

j ← L0
j ⊕ R0

j (with
label (key, j, 0)), O1

j ← L1
j⊕R0

j (with label (key, j, 1)) and Cj ← L0
j⊕L1

j⊕R0
j⊕R1

j

(with label (garb, j)) using the linear command, and leak Cj using the leak
command. Notice that L0

j ⊕ L1
j ⊕ R0

j ⊕ R1
j = Δ ⊕ Δ = 0. Hence leaking Cj does

not change the status of any key. We can therefore assume that we process XOR
gates as follows: Compute O0

j ← L0
j ⊕ R0

j and O1
j ← L1

j ⊕ R0
j using the linear

command.
After all the changes to the system, we now “garble” as follows: First call

Δ ← (fresh key, delta) Then for each input key, i ∈ [n], do:

X0
i ← (fresh key, (key, i, 0)) ,

X1
i ← (linear, (key, i, 1), (key, i, 0), delta) ,

Xxi
i ← (leak, (key, i, xi)) .

For each NAND gate, with index i, do:

O0
i ← (fresh key, (key, i, 0)) ,

O1
i ← (linear, (key, i, 1), (key, i, 0), delta) ,

Owi
i ← (leak, (key, i, wi)) .

Finally, for each XOR gate, with index i, do:

O0
i ← (linear, (key, i, 0), (key, li, 0), (key, ri, 0)) ,

O1
i ← (linear, (key, i, 0), (key, li, 0), (key, ri, 1)) ,

Owi
i ← (leak, (key, i, wi)) .

It is then fairly straight-forward to see that there are no compromised other key.
In particular, it is trivial to see that if an other key would be compromised in
this system, then the free-XOR scheme from [KS08] would trivially be insecure,
as the system of equations created by the free-XOR scheme is a super set of the
system created by the above commands. We therefore refer to [KS08] for the
details of why the free-XOR trick is secure.

Notice that we can use a subset of this proof to prove security of our free-
XOR privacy-free garbling scheme, since the free-XOR already implements the
global difference Δ. Specifically we have the following theorem: �
Theorem 3. If the KDF used in the garbling scheme of Fig. 1 composed with
Fig. 3 is secure according to Def. 6, then the composed scheme enjoys authenticity
according to Def. 2.

Privacy-Free Garbled Circuits with Applications 215

Gb
(
1k, f, L)→ (F, e, d)

1. Set (n, q, I, W, G) ← f and
{

X0
i , X1

i , {Δi}i∈[L]

}

i∈[n]
← InKeys(n, k, L).

2. For each g ∈ [n + 1, n + q] set m = I(g) and define G′ : {0, 1}m →
{0, 1} s.t. G′(i) = G(g, i) for all i ∈ {0, 1}m and set

{(
X0

g , X1
g

)
, P [g]

} ←
Garb

(
g, G′, L,

{
X0

W (g,i), X
1
W (g,i)

}

i∈[m]
, ΔL(g)

)
.

3. Set F ← (n, q, I, W, G, L, P), e ← {X0
i , X1

i

}
i∈[n]

and d ← X1
n+q.

4. Finally return (F, e, d).
En(e, x) → X

Like in Fig. 1.
De(d, Z) → b

Like in Fig. 1.
Ev(F, X, x) → Z

1. Set (n, q, I, W, G, L, P) ← F and for all i ∈ [n] set wi = xi and define
Q = {wi}i∈[n].

2. For each g ∈ [n+1, n+q] let m = I(g) and add wg = G
(
g,
{
wW (g,i)

}
i∈[m]

)

to the set Q.
3. Now for each g ∈ [n+1, n+q] let m = I(g) and define G′ : {0, 1}m → {0, 1}

s.t. G′(i) = G(g, i) and w′ ∈ {0, 1}m s.t. w′
i = wW (g,i) for all i ∈ [m] and

set Xg ← Eval
(
g, G′, L, w′,

{
XW (g,i)

}
i∈[m]

, P [g]
)
.

4. Return Xn+q.
ev(f, x) → b

Like in Fig. 1.
Ve(F, f, e) → b

1. Set (n, q, I, W, G, L, P) ← F , (n′, q′, I ′, W ′, G′) ← f and
{
X0

i , X1
i

}
i∈[n]

←
e.

2. If n �= n′, q �= q′, I �= I ′, W �= W ′ or G �= G′ output 0.
3. For each g ∈ [n + 1, n + q] let m = I(g) and define G′ : {0, 1}m → {0, 1}

s.t. G′(i) = G(g, i) for all i ∈ {0, 1}m and set
{(

X0
g , X1

g

)
, P̄ [g]

} ←
Garb

(
g, G′, L,

{
X0

W (g,i), X
1
W (g,i)

}

i∈[m]
, ΔL(g)

)
.

4. If for any g ∈ [n+1, n+ q] we have P̄ [g] �= P [q] output 0, otherwise output
1.

Fig. 4. Privacy-free FleXOR Garbling

4 Privacy-Free FleXOR

In [KMR14] Kolesnikov et al. introduced a generalization and optimization of the
free-XOR approach which allows to weaken the security assumption needed for
free-XOR and/or limit the amount of ciphertexts used to garble non-XOR gates.
In their schemes (only considering fan-in 2 gates) non-XOR gates are constructed
exactly as one would in a regular garbling scheme, but XOR gates are constructed
differently and, depending on a wire ordering of the circuit, consists of either 0,
1 or 2 ciphertexts. When the garbling scheme used implements aggressive row
reduction (i.e., GRR1) this yields an overall smaller size for most garbled circuits
compared the size of garbled circuits constructed using the free-XOR approach.

216 T.K. Frederiksen et al.

InKeys(n, k, L) →
{(

X0
i , X1

i

)
i∈[n]

, {Δi}i∈[L]

}

1. For each i ∈ [L] sample uniformly random differences Δi ∈ {0, 1}k.
2. Then for each i ∈ [n] sample uniformly random X0

i ∈R {0, 1}k and return

the set
{(

X0
i , X0

i ⊕ ΔL(i)

)
i∈[n]

, {Δi}i∈[L]

}
.

Garb
(
g, G′, L,

{(
X0

i , X1
i

)}
i∈[m]

, ΔL(g)

)
→ {(X0

g , X1
g

)
, g̃
}

1. If G′(·) = NAND do garbling as described in Fig. 2 if L is safe, otherwise
as described in Fig. 3.

2. If instead G′(·) = XOR do as follows:

(a) Let T be the set of integers i ∈ [m] for which L(i) �= L(g).
(b) Let X0

g =
⊕m

i=1 X0
i and X1

g = X0
g ⊕ ΔL(g).

(c) Next let Ci = ΔL(g) ⊕ ΔL(i) for all i ∈ T and set g̃ = {Ci}i∈T .
(d) Return

{(
X0

g , X1
g

)
, g̃
}
.

Eval
(
g, G′, L, w′, {Xi}i∈[m] , g̃

)
→ {Xg}

1. If G′(·) = NAND do evaluation as described in Fig. 2 if L is safe, otherwise
as described in Fig. 3.

2. If instead G′(·) = XOR do as follows:
(a) Let T be the set of integers i ∈ [m] for which L(i) �= L(g) and parse

{Ci}i∈T ← g̃.
(b) Parse {Ci}i∈T ← g̃.
(c) Let S be the subset of T for which it is true that w′

i = 1.

(d) Return Xg =
(⊕

i∈[m] Xi

)
⊕ (⊕i∈S Ci

)
.

Fig. 5. Garbling - Using fleXOR

Here we propose a variant of fleXOR which combines their ideas with non-
oblivious gate evaluation, leading to a significant improvements in terms of com-
putation complexity. Before we can describe our privacy-free fleXOR construction
we need a few definitions. These are taken almost verbatim from [KMR14]. We
assume familiarity with their construction and direct the reader to their paper if
that is not the case.

Definition 7 (Wire Ordering). A wire ordering for a Boolean circuit f is a
function L that assigns an integer to each wire in f . Without loss of generality,
we assume that im(L) = {1, . . . , L} for some integer L, and we denote |L| = L.

We say a wire ordering L is safe if:

– For each non-XOR gate with output wire i, and each wire j where there
exists a directed path in the circuit that contains wire j before wire i, we
have L(i) > L(j).

– For each value � ∈ im(L), there is at most one non-XOR gate whose output
wire i satisfies L(i) = �.

We say that a topological ordering of gates in a circuit f is safety-respecting
of L if for every non-XOR gate g with output wire i, g appears earlier in the
ordering than any other gate g′ with output wire i′ satisfying L(i) = L(i′).

Privacy-Free Garbled Circuits with Applications 217

Formal Description. We describe the privacy-free fleXOR protocol for gates of
fan-in m in Fig. 4 and Fig. 5. Notice that the description in Fig. 4 is essentially
the same as the one for the general privacy-free scheme we described in Fig. 1,
except for the fact that we include the wire ordering L needed in order for the
garbling scheme to know which Δ’s should be used for which wires. Regarding
the specificities of the garbling, described in Fig. 5, see that the garbling of
NAND gates is exactly the same as in Fig. 2 and Fig. 3, depending on whether
or not the wire ordering is safe. That is, the scheme first checks whether or not
a gate is an XOR or NAND gate. If it is a NAND gate then the garbling is the
same as in Fig. 2 if L is safe, and the same as in Fig. 3 if L is not safe.

Regarding XOR gates, we garble them essentially as in Fig. 2 but, since the
offsets of the wires are chosen during the InKeys procedure, the Garb procedure
can only define the 0-key corresponding to the output wire. Then, as in Fig. 2, the
Garb procedure computes and outputs the XOR of the offsets between the inputs
and output wire, but only for the wires that belong to the set T , that is those for
which L(i) �= L(g), which means that the Δ used for the 1-key on wire i is different
from the Δ used on the output wire of the gate g. This in turn means that we must
associate a ciphertext in order to “adjust” the key on wire i.

Regarding evaluation: for NAND gates the scheme again does the same as in
Fig. 2 and Fig. 3 depending on whether or not the wire ordering is safe or not,
respectively. For XOR gates the scheme first defines (in step a) the set of input
wires for which L(i) �= L(g), T , and parses the garbled gate g̃ to its ciphertexts,
{Ci}i∈T . Then in step c the scheme identifies the subset S ⊂ T of the input wires
for which it is true that the input value for wire i is equal to 1 and finally, in step
d it computes the output key by XORing all input keys and the adjustments for
all the wires belonging to the set S.

Security. Like for our other privacy-free garbling schemes, correctness and veri-
fiability follows relatively straightforwards from the constructions. The proof of
authenticity follows from the one for the scheme in Fig. 2 (since the fleXOR vari-
ant is a generalization of the schemes described in Fig. 2, for which some input
wires happen to the same offset as the output wire) and from the assumption
on the wire ordering. We refer to [KMR14] for more details.

Acknowledgments. We would like to thank Payman Mohassel and Benny Pinkas
(for useful discussions), the authors of [KMR14] (for sharing with us an early copy of
their manuscript and the result of their “safe ordering” heuristics that were used for
compiling Table 1 and 2), and Helene Flyvholm Haag (for valuable editorial comments).

References

[AIK11] Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic cir-
cuits. In: FOCS, pp. 120–129 (2011)

[AIKW13] Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions
with constant online rate or how to compress garbled circuits keys. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 166–184. Springer, Heidelberg (2013)

218 T.K. Frederiksen et al.

[BHHI10] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent
message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 423–444. Springer, Heidelberg (2010)

[BHKR13] Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling
from a fixed-key blockcipher. In: IEEE Symposium on Security and Privacy,
pp. 478–492. IEEE Computer Society (2013). http://eprint.iacr.org/2013/
426

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
ACM Conference on Computer and Communications Security, pp. 784–796
(2012). http://eprint.iacr.org/2012/265

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: STOC, pp. 503–513 (1990)

[BP12] Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-Box. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT,
vol. 376, pp. 287–298. Springer, Heidelberg (2012)

[Fin14] Find, M.G.: On the complexity of computing two nonlinearity measures.
In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin, N.K. (eds.) CSR
2014. LNCS, vol. 8476, pp. 167–175. Springer, Heidelberg (2014)

[FJN+13] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi,
C.: MiniLEGO: efficient secure two-party computation from general
assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013)

[FNO14] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits
with applications to efficient zero-knowledge. IACR Cryptology ePrint
Arch. 2014, 598 (2014)

[GGH+13] Gentry, C., Gorbunov, S., Halevi, S., Vaikuntanathan, V., Vinayagamurthy,
D.: How to compress (reusable) garbled circuits. IACR Cryptology ePrint
Arch. 2013, 687 (2013)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.:
Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In: STOC,
pp. 555–564 (2013)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC,
pp. 218–229 (1987)

[IK02] Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via
perfect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales,
R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS,
vol. 2380, pp. 244–256. Springer, Heidelberg (2002)

[IW14] Ishai, Y., Wee, H.: Partial garbling schemes and their applications.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014).
http://eprint.iacr.org/2014/995

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: ACM Con-
ference on Computer and Communications Security, pp. 955–966 (2013)

http://eprint.iacr.org/2013/426
http://eprint.iacr.org/2013/426
http://eprint.iacr.org/2012/265
http://eprint.iacr.org/2014/995

Privacy-Free Garbled Circuits with Applications 219

[KK12] Kolesnikov, V., Kumaresan, R.: Improved secure two-party computation
via information-theoretic garbled circuits. In: Visconti, I., De Prisco, R.
(eds.) SCN 2012. LNCS, vol. 7485, pp. 205–221. Springer, Heidelberg (2012)

[KMR14] Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling
for XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 440–457. Springer,
Heidelberg (2014)

[Kol05] Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-
party computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788,
pp. 136–155. Springer, Heidelberg (2005)

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 486–498. Springer, Heidelberg (2008)

[KW13] Kamara, S., Wei, L.: Garbled circuits via structured encryption. In:
Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862,
pp. 177–188. Springer, Heidelberg (2013)

[LO13] Lu, S., Ostrovsky, R.: How to garble ram programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734.
Springer, Heidelberg (2013)

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptology 22(2), 161–188 (2009)

[MNPS04] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party
computation system. In: USENIX Security Symposium, pp. 287–302 (2004)

[NO09] Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer,
Heidelberg (2009)

[NPS99] Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mech-
anism design. In: ACM Conference on Electronic Commerce, pp. 129–139
(1999)

[PSSW09] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party
computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 250–267. Springer, Heidelberg (2009)

[Rog91] Rogaway, P.: The round complexity of secure protocols. Ph.D thesis,
Massachusetts Institute of Technology (1991)

[SS10] Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with
public keys. In: ACM Conference on Computer and Communications Secu-
rity, pp. 463–472 (2010)

[ST12] Smart, N., Tillich, S.: Circuits of basic functions suitable for MPC and FHE
(2012). http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: FOCS, pp. 162–167 (1986)

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: reducing data
transfer in garbled circuits using half gates. In: These proceedings (2015).
http://eprint.iacr.org/2014/756

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
http://eprint.iacr.org/2014/756

Two Halves Make a Whole

Reducing Data Transfer in Garbled Circuits
Using Half Gates

Samee Zahur1(B), Mike Rosulek2, and David Evans1

1 University of Virginia, Charlottesville, USA
{samee,evans}@virginia.edu

2 Oregon State University, Corvallis, OR, USA
rosulekm@eecs.oregonstate.edu

http://MightBeEvil.com/halfgates

Abstract. The well-known classical constructions of garbled circuits
use four ciphertexts per gate, although various methods have been pro-
posed to reduce this cost. The best previously known methods for opti-
mizing AND gates (two ciphertexts; Pinkas et al., ASIACRYPT 2009)
and XOR gates (zero ciphertexts; Kolesnikov and Schneider, ICALP
2008) were incompatible, so most implementations used the best known
method compatible with free-XOR gates (three ciphertexts; Kolesnikov
and Schneider, ICALP 2008). In this work we show how to simultane-
ously garble AND gates using two ciphertexts and XOR gates using zero
ciphertexts, resulting in smaller garbled circuits than any prior scheme.
The main idea behind our construction is to break an AND gate into
two half-gates — AND gates for which one party knows one input. Each
half-gate can be garbled with a single ciphertext, so our construction
uses two ciphertexts for each AND gate while being compatible with
free-XOR gates. The price for the reduction in size is that the evaluator
must perform two cryptographic operations per AND gate, rather than
one as in previous schemes. We experimentally demonstrate that our
garbling scheme leads to an overall decrease in time (up to 25%), band-
width (up to 33%), and energy use (up to 20%) over several benchmark
applications. We show that our construction is optimal for a large class of
garbling schemes encompassing all known practical garbling techniques.

1 Introduction

Yao’s garbled circuit technique remains one of the most promising and actively
studied methods for secure multi-party computation. The first implementation
of secure two-party computation (2PC) [26] used Yao’s basic garbled circuit
approach, and it remains the primary (but not only) paradigm for the many 2PC
implementations that have been developed over the past ten years [10,12,14,21,
25,28]. Because the generation and execution of gates benefits from advances in
processor speed (in particular, hardware support for cryptographic operations) as
well as the increasing availability of large numbers of cores, the computation time
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 220–250, 2015.
DOI: 10.1007/978-3-662-46803-6 8

Two Halves Make a Whole 221

and cost for garbled circuit protocols has dropped dramatically. Thus, the main
bottleneck for 2PC protocols is network bandwidth which is predominantly due
to the transmission of garbled gates. Many optimizations in 2PC have focused on
reducing the size of the garbled circuits themselves [19,20,27] and reducing the
number of circuits required (in the case of malicious security) [6,15,22,24,29].
Our work reduces the overall size of garbled circuits by reducing the amount of
data that needs to be transferred for each garbled gate.

1.1 Background

We assume some familiarity with garbled circuit constructions (for a compre-
hensive treatment of Yao’s classical construction see Lindell and Pinkas [23]). In
a garbled gate, each wire of the (Boolean) circuit is associated with two random
strings/keys called wire labels which encode true and false. In the “classical”
construction of garbled circuits, the sender provides a garbled truth table for
each gate, where each combination of input wire labels is used to encrypt the
appropriate output wire label. Hence, there are four “ciphertexts” per gate —
one for each input combination to the gate — and the evaluator who only knows
one label for each input wire can only open one of them. In general, we will
measure the size of a garbled gate in units of such “ciphertexts.”

We now give a brief history of work reducing the data needed to transmit a
garbled gate, summarized in Table 1. In the point-and-permute optimization,
introduced by Beaver, Micali and Rogaway [3], a select bit is appended to each
wire label, so that the two labels on each wire have opposite select bits. The
association between select bits and logical truth values is random and secret,
but the garbled truth table can be arranged by these public select bits. While
the result is still four ciphertexts per gate, the ciphertexts no longer need to
be from a CPA-secure encryption scheme (and this indeed leads to a reduction
in concrete size). Rather, they can be of the form H(A‖B) ⊕ C, where A, B,

Table 1. Optimizations of garbled circuits. Size is number of “ciphertexts” (multiples
of k bits)

size per gate calls to H per gate

generator evaluator

technique XOR AND XOR AND XOR AND

classical [31] 4 4 4 4 4 4
point-permute [3] 4 4 4 4 1 1
row reduction (GRR3) [27] 3 3 4 4 1 1
row reduction (GRR2) [28] 2 2 4 4 1 1
free XOR + GRR3 [20] 0 3 0 4 0 1
fleXOR [19] {0, 1, 2} 2 {0, 2, 4} 4 {0, 1, 2} 1

half gates [this work] 0 2 0 4 0 2

222 S. Zahur et al.

and C are wire labels, and H is a hash function or key-derivation function.
Further, instead of trying all four ciphertexts, the evaluator can simply select
the appropriate one based on the select bits of visible wire labels.

Naor, Pinkas and Sumner introduced garbled row-reduction as a way to
reduce the number of ciphertexts per gate [27]. Instead of choosing random wire
labels for each wire, one of the wire labels is chosen as H(A‖B), where A and
B are labels of the input wires. Thus, one of the four ciphertexts in each gate
(say, the first one) will always be the all-zeroes string and does not need to
be sent. We call this method GRR3 since only three ciphertexts need to be
transmitted for each gate. Going even further, Pinkas et al. [28] describe a way,
which we denote GRR2, to further reduce each gate to 2 ciphertexts, applying
a polynomial interpolation at each gate.

Kolesnikov and Schneider [20] introduced the free-XOR technique. The idea
is to choose all wire labels of the form (A,A⊕R), where R is secret and common
to all wires. An evaluator who has one of (A,A ⊕ R) and one of (B,B ⊕ R), can
perform the XOR operation simply by XORing the two wire labels. The result
will be either C or C ⊕ R (where C = A ⊕ B), which correctly represents the
result. Hence, no ciphertexts are required at all for an XOR gate. This technique
is compatible with GRR3 for AND gates, but not GRR2. The reason is that the
GRR2 technique chooses both output wire labels of a gate as fixed pseudorandom
functions of the input wire labels. Hence, it is not possible to guarantee that the
output wire labels are of the form (C,C ⊕ R) for some pre-specified R.

Kolesnikov, Mohassel, and Rosulek [19] proposed a generalization of free-
XOR caled fleXOR. In fleXOR, an XOR gate can be garbled using 0, 1, or 2
ciphertexts, depending on structural and combinatorial properties of the circuit.
However, fleXOR can be made compatible with GRR2 applied to the AND gates.
For circuits with many AND gates, this method results in smaller circuits than
with free-XOR (while the construction can actually collapse to free-XOR in other
cases).

1.2 Our Contributions

Half-gates. We present a method for garbling AND gates that requires only two
ciphertexts. However, unlike the GRR2 method, our method is compatible with
free-XOR. That is, our method can guarantee that the output wires of an AND
gate are indeed of the form (C,C ⊕ R), when the input wires are also of this
form.

The main insight is to employ what we call half-gates: AND gates for which
one party knows one of the inputs. We show how to garble generator half-gates
and evaluator half-gates using one ciphertext each, in a way that is compatible
with free-XOR. We then show how an AND gate can be written as a combination
of XORs and two half-gates of opposite orientations. Hence, the resulting AND
gate uses only two ciphertexts in combination with free-XOR. We prove the
security of our scheme in Section 4.

For all circuits, our half-gate technique leads to smaller garbled circuits than
all previous methods (i.e., our row of Table 1 dominates all other rows). For many

Two Halves Make a Whole 223

Table 2. Optimizations of privacy-free garbled circuits. Size is number of cipher-
texts (multiples of k bits). The three prior schemes are from Frederiksen, Nielsen, and
Orlandi [8].

size per gate calls to H per gate

sender receiver

technique XOR AND XOR AND XOR AND

row reduction (GRR1) 1 1 0 3 0 1
free XOR + GRR2 0 2 0 3 0 1
fleXOR {0, 1, 2} 1 0 3 0 1

half gates [this work] 0 1 0 2 0 1

circuits (i.e., those for which free-XOR previously gave the smallest garbled
circuits), our work gives a 33% reduction in garbled circuit size (and thus a
similar reduction in cost for most protocols that rely on garbled circuits). This
leads to reductions in overall latency (up to 25% in our benchmarks), as well as
energy (which is the primary concern for data centers as well as mobile devices)
since the extra computation required to compute the hash function twice is more
than offset by the energy savings of reduced bandwidth. We provide experimental
results in Section 5.

Privacy-free garbling. Frederiksen, Nielsen, and Orlandi [8] showed that garbling
schemes that satisfy only the authenticity security property (i.e., not the privacy
property) can be significantly smaller than their fully-secure counterparts. These
privacy-free schemes are useful in settings where the evaluator knows the entire
(cleartext) input to the garbled circuit, as in the highly efficient zero-knowledge
proof protocol of Jawurek, Kerschbaum and Orlandi [18].

Table 2 summarizes the three privacy-free garbling schemes introduced by
Frederiksen, Nielsen, and Orlandi [8], which are adaptations of fully-secure
schemes. Their GRR1 construction garbles all gates at a cost of one ciphertext
each. Their free-XOR adaptation garbles AND gates at a cost of two ciphertexts
each (with XOR gates free). Their fleXOR adaptation garbles AND gates using
one ciphertext each, with XOR gates costing 0, 1, or 2 ciphertexts each.

In Section 6, we show that our approach with half-gates also gives a sim-
ilar improvement in this setting. We can simply garble all AND gates using
our evaluator half-gate. In this setting, the evaluator knows both inputs to all
gates, but we only need to take advantage of its knowledge of one of the inputs
to reduce the size of garbled AND gates to one ciphertext. Overall, we achieve
a privacy-free garbled circuit containing one ciphertext per AND gate, and no
ciphertexts for XOR gates. As for standard grabled circuits, our half-gates app-
roach is strictly better than all previous constructions. For example, we reduce
the size of a privacy-free garbled circuit for AES by 50%.

224 S. Zahur et al.

Optimality. For prior garbling schemes that we described above, it was always
possible to reduce the size of garbled AND gates by one ciphertext by sacrificing
compatibility with free-XOR. Given that we can now garble AND gates with
two ciphertexts in a way that is compatible with free-XOR, one might wonder
whether it is possible to garble an AND gate with just one ciphertext, in a way
that is incompatible with free-XOR.

In Section 7, we show that in a reasonable model that captures all existing
techniques, it is not possible to garble an AND gate (with privacy) using just
one ciphertext, even if compatibility with free-XOR is sacrificed. Hence, our
construction gives optimally-sized garbled circuits, among garbling schemes
whose gate-by-gate operations fall within our model.

To show optimality, we introduce a new methodology for stating and proving
such quantitative lower bounds on the size of garbled gates. We observe that
all existing techniques for practical garbling (including our own) are linear in a
certain sense. We formalize these techniques in a linear class of garbling schemes,
and show that these schemes require two ciphertexts for a single AND gate.
These lower bounds suggest that any practical improvement over our scheme
will require a dramatically different approach to garbled circuits in general.

2 Preliminaries

We use the garbling schemes abstraction introduced by Bellare, Hoang, and
Rogaway [5]. Roughly speaking, a garbling scheme consist of the following algo-
rithms:1

Gb: On input 1k and a boolean circuit f , outputs (F, e, d), where F is a garbled
circuit, e is encoding information, and d is decoding information.

En: On input (e, x), where e is as above and x is an input suitable for f , outputs
a garbled input X.

Ev: On input (F,X) as above, outputs a garbled output Y .
De: On input (d, Y) as above, outputs a plain output y.

The correctness property is that, if (F, e, d) ← Gb(1k, f) then for all x:

De(d,Ev(F,En(e, x))) = f(x)

Additionally, several security properties are described:

Privacy (prv.simS): Intuitively, the collection (F,X, d) should not reveal any
more information about x than f(x). More concretely, there must exist a
simulator S that takes input (1k, f, f(x)) and whose output is indistinguish-
able from (F,X, d) generated the usual way.

1 The formalization of [5] allows for garbling of any form of computation. Here we
specialize the notation for garbling circuits, as this is all that is required in our
work.

Two Halves Make a Whole 225

Obliviousness (obv.simS): Intuitively, (F,X) should reveal no information
about x. More concretely, there must exist a simulator S that takes input
(1k, f) and whose output is indistinguishable from (F,X) generated the usual
way.

Authenticity (aut): Given input (F,X) alone, no adversary should be able
to produce Ỹ �= Ev(F,X) such that De(d, Ỹ) �= ⊥, except with negligible
probability.

A garbling scheme may satisfy any combination of these security properties. See
Bellare, Hoang, and Rogaway [5] for the complete treatment of garbling schemes
and further relations among the security properties.

3 Half-Gates Garbling Scheme

First, we give a high-level and self-contained overview of our construction of
half-gates, which form the basis of our improved garbling schemes. Then, we
present the details more formally.

3.1 Approach

Recall that a half-gate is a garbled AND gate for which one of the parties knows
one of the inputs (in the clear). Let’s say we want to compute the gate c = a∧ b.
We are in the free-XOR setting, so let (A,A ⊕ R) and (B,B ⊕ R) denote the
input wire labels to this gate, and (C,C ⊕ R) denote the output wire labels,
with A, B, and C each encoding false. R is the free-XOR offset common to all
wires. Finally, H will denote a hash (or key derivation) function.

We describe how to construct half-gates for two cases: when the garbled-
circuit generator knows one of the inputs, and when the evaluator knows one of
the inputs.

Generator half-gate. We consider the case of an AND gate c = a ∧ b, where a
and b are intermediate wires in the circuit and the generator somehow knows in
advance what the value a will be. Conceptually, when a = 0, the generator will
garble a unary gate that always outputs false; when a = 1, the generator will
garble a unary identity gate. This idea was also used implicitly by Kolesnikov and
Schneider [20, Fig. 2], in the context of programming components of a universal
circuit.

Hence, the generator produces the two ciphertexts:

H(B) ⊕ C

H(B ⊕ R) ⊕ C ⊕ aR

These are then suitably permuted according to the select bits of B. The evaluator
takes a hash of its wire label for B and decrypts the appropriate ciphertext. If
a = 0, it obtains output wire label C in both values of b. If a = 1, the evaluator
obtains either C or C ⊕R, depending on the bit b. Intuitively, the evaluator will

226 S. Zahur et al.

never know both B and B ⊕ R, hence the other ciphertext appears completely
random.

Next, we eliminate one of the ciphertexts by applying a standard idea of
garbled row-reduction [27]. Instead of choosing C uniformly, we choose C so
that the first of the two ciphertexts is the all-zeroes ciphertext (we choose C as
H(B), H(B ⊕ R), or H(B ⊕ R) ⊕ R, depending on the select bits and the value
a). As such, the first ciphertext does not actually need to be sent; in the case
where the evaluator would have decrypted the first ciphertext, it infers it to be
the all-zeroes string. Overall, this garbled half-gate consists of one ciphertext (k
bits). The generator calls H twice; the evaluator calls H once.

Evaluator half-gate. We now consider the case of an AND gate c = a ∧ b, where
a and b are intermediate wires in the circuit and the evaluator will somehow
already know the value of a at the time of evaluation.

We exploit the fact that the evaluator can behave differently based on the
truth value of a. Intuitively, when a = 0 the evaluator should always obtain
output wire label C; when a = 1, it is enough for the evaluator to obtain Δ =
C ⊕ B. It can then XOR Δ with the other wire label (either B or B ⊕ R) to
obtain either C or C ⊕ R appropriately.

Hence, the generator provides the two ciphertexts:

H(A) ⊕ C

H(A ⊕ R) ⊕ C ⊕ B

The ciphertexts do not have to be permuted here. They can be arranged accord-
ing to the truth value of a as shown here, since the evaluator already knows a.
If a = 0, the evaluator uses wire label A to decrypt the first ciphertext. If a = 1,
the evaluator uses wire label A ⊕ R to decrypt the second ciphertext and XORs
the result with the wire label for b.

Again, we can remove the first ciphertext using garbled row-reduction. We
choose C = H(A) so that the first ciphertext becomes all-zeroes and is not sent.
Overall, the cost of this garbled half-gate is the same as above: it consists of one
ciphertext (k bits). The generator calls H twice; the evaluator calls H once.

Two halves make a whole. Now consider the case where we want to garble an
AND gate c = a ∧ b where both inputs are secret. Consider:

c = a ∧ b

= a ∧ (r ⊕ r ⊕ b)
= (a ∧ r) ⊕ (a ∧ (r ⊕ b))

Suppose the generator chooses a uniformly random bit r. In that case, the first
AND gate (a∧r) can be garbled with a generator-half-gate. If we further arrange
for the evaluator to learn the value r ⊕ b, then the second AND gate (a∧ (r ⊕ b))
can be garbled with an evaluator-half-gate. Leaking this extra bit r ⊕ b to the

Two Halves Make a Whole 227

evaluator is safe, as it carries no information about the sensitive value b. The
remaining XOR is free, and the total cost is two ciphertexts.

We can actually convey r ⊕ b to the evaluator without any overhead. The
generator will choose r to be the select bit of the false wire label on wire b. For
security, select bits of wires are chosen (pseudo)randomly already. Then when
a particular value b is on that wire, the evaluator will hold a wire label whose
select bit is b ⊕ r.

Thus, we garble a (full) AND gate with two ciphertexts, taking the XOR of
two half-gates. The generator calls H four times; the evaluator calls H twice.

3.2 Details of Our Scheme

We now give a formal description of our garbling scheme, following the basic
approach outlined above.

Notation and concepts. For a boolean circuit f , we associate each wire in the
circuit with a numeric index. We let Inputs(f), Outputs(f), and XorGates(f)
denote the set of wire indices of the input wires, output wires, xor gate output
wires, respectively, in f . We abuse notation slightly and extend these functions
as Inputs(F̂),Outputs(F̂) and XorGates(F̂), where F̂ is a garbled version of f .
We use vi to denote the single-bit plaintext value of the ith wire in a circuit,
when the input is understood from context. For non-input wires, we also refer
to the ith gate to mean the logic gate whose output wire has index i.

Our garbling scheme follows standard paradigms of the free-XOR & point-
and-permute optimizations. We use W 0

i ,W 1
i ∈ {0, 1}k to denote the wire labels

for false and true, respectively, on the ith wire. Here, and throughout the
paper, k denotes the scheme’s security parameter. For each wire label W , its
least significant bit lsbW is reserved as a select bit that is used as in the point-
and-permute technique. For the ith wire, define pi = lsbW 0

i . This value, which
we call the permute bit of the wire, is a secret known only to the generator.
Intuitively, when the evaulator holds a wire label for wire i whose select bit is
si, that wire label is W si⊕pi

i , corresponding to truth value vi = si ⊕ pi. In the
context of evaluating a garbled circuit, we typically omit the superscript from
the wire label notation and write just Wi to indicate the fact that the evaluator
indeed does not know vi.

The value R ∈ {0, 1}k−11 is a circuit-global, randomly chosen free-XOR
offset; hence, W 0

i ⊕ W 1
i = R holds for each i in the circuit. We have lsbR = 1

so that lsbW 0
i �= lsbW 1

i and complementary wires have opposite select bits.
Frequently, we will omit ∧ and just juxtapose two symbols to indicate logical

AND. So ab = a ∧ b. When a is a single bit and R is a long string, we write aR
to mean R when a = 1 and 0|R| when a = 0. We write sequences or tuples with
a ‘hat’; for example, F̂ = (F1, F2, . . .) or X̂ = (X1,X2, . . .).

Finally, we will use H : {0, 1}k × Z 	→ {0, 1}k to indicate a hash-function
suitable for use in garbled circuits (see Section 4 for suitability criteria). In
informal discussions, we will often shorten H(W b

i , j) to just H(W b
i), and it will

228 S. Zahur et al.

Computes: fG(va, pb) :=
(va ⊕ αa)(pb ⊕ αb) ⊕ αc

Before GRR and permutation:

H(W 0
a) ⊕ fG(0, pb)R ⊕ W 0

Gc

H(W 1
a) ⊕ fG(1, pb)R ⊕ W 0

Gc

After GRR and permutation:

TGc ← H(W 0
a) ⊕ H(W 1

a) ⊕ (pb ⊕ αb)R
W 0

Gc ← H(W pa
a) ⊕ fG(pa, pb)R

Generator sends TGc

(a) Generator half-gate: va known to gen-
erator.

Computes: fE(va, vb ⊕ pb) :=
(va ⊕ αa)(vb ⊕ pb)

Before GRR:

H(W
pb
b) ⊕ W 0

Ec

H(W
pb⊕1
b) ⊕ W 0

Ec ⊕ W αa
a

After GRR (permutation not needed):

TEc ← H(W 0
b) ⊕ H(W 1

b) ⊕ W αa
a

W 0
Ec ← H(W pb

b)

Generator sends TEc

(b) Evaluator half-gate: vb ⊕ pb known
to evaluator.

Fig. 1. The construction of a non-free binary gate for computing (va, vb) �→ (va ⊕
αa)(vb ⊕ αb) ⊕ αc, where αa, αb, αc determines the type of the gate. After the two
half-gates are evaluated, output label is obtained by computing Wc = WGc ⊕ WEc

be implicitly understood that we are using unique, but public, j for different
groups of calls to H. In the formal descriptions, the value of j is always explicit.

Arbitrary gates. The approach just described can be used to garble any gate
whose truth table contains an odd number of ones (e.g., AND, NAND, OR,
NOR, etc.). All such gates can be expressed as the form

(va, vb) 	→ (αa ⊕ va) ∧ (αb ⊕ vb) ⊕ αc

for constants αa, αb, αc. For example, setting all to 0 results in an AND gate;
setting all to 1 results in an OR gate. These α values need not (but can) be
secret. We describe the general construction of these gates in Figure 1. We note
that the evaluator’s logic does not depend on the α values.

Following the description in Section 3.1, we garble each gate using a com-
position of two half-gates. Conceptually, W b

Gi and W b
Ei denote the output wire

labels for these two half-gates (generator-side and evaluator-side, respectively)
that comprise the ith gate. The final logical output wire label for the ith gate is
then set to be W 0

i = W 0
Gi ⊕ W 0

Ei. Similarly, we use TGi and TEi to denote the
single garbled row transmitted for each half gate used in the ith gate.

The first rows of Figure 1 show the function being computed by each half gate.
In (a), generator knows pb while in (b) the evaluator knows vb ⊕pb = lsbWb. The
second rows show the two ciphertexts of each half-gate, before they are permuted
according to their select bits (in case of (a)) and before garbled row reduction
(GRR) is applied. Here, we have expanded W

f(x,pb)
Gc to W 0

Gc ⊕f(x, pb)R to make
the row reduction clearer in the next step. The third rows show the final result.

Two Halves Make a Whole 229

The complete scheme. The full garbling procedure for an entire circuit is shown
in Figure 2. The scheme works for any binary gate, but for simplicity of discussion
and proof we assume all gates are either AND or XOR.

Fig. 2. Our complete garbling scheme. NextIndex is a stateful procedure that simply
increments an internal counter.

4 Security

We now prove the security of our scheme, using the prv.simS and obv.simS secu-
rity definitions of Bellare, Hoang, and Rogaway [5]. The scheme shown in Figure 2
does not provide authenticity, simply because authenticity is not required in
many use cases including semi-honest Yao’s circuits. However, there are well-
known, standard modifications to the decoding procedure that can add authen-
ticity, which we describe separately in Section 4.3. Finally, since we only consider

230 S. Zahur et al.

circuits with just AND and XOR gates, everything about the function f is pub-
lic and we do not define a separate function Φ(f) to extract public information
about f .

4.1 Circular Correlation Robustness for Naturally Derived Keys

We first describe the security property required of the hash/key-derivation func-
tion H. Roughly speaking, we can use either a circular-correlation-robust hash
function, as defined by Choi et al. [7], or a Davis-Meyer construction in the ideal
random permutation model [4]. Note that a result of using half gates is we need
arguably simpler single-key functions instead of the previously proposed dual-
key ones. So, we first present the single-key analogs of these two definitions.
Then we define a weaker notion of security that is satisfied by both these classes
of hash functions. Functions satisfying this new notion of security will be said to
have circular correlation robustness for naturally derived keys. Finally we show
that our garbling scheme is secure given any hash function that satisfies this
new, weaker notion of security.

Circular correlation robustness. We revisit the definition of circular correlation
robustness. The definition is the same as the one introduced in [7], except that
we are able to simplify the notation for H that takes only one wire label / key.
Given a hash function H, we define two oracles:

– CircR(x, i, b) = H(x ⊕ R, i) ⊕ bR, where R ∈ {0, 1}k−11
– Rand(x, i, b): random function with k-bit output.

Definition 1. Say that a sequence of oracle queries of the form (x, i, b) is legal
if the same value of (x, i) is never queried with different values of b. Then H is
circular correlation robust if, for all all polynomial-time adversaries A making
legal queries,

∣
∣
∣
∣Pr

R
[ACircR(1k) = 1] − Pr

Rand
[ARand(1k) = 1]

∣
∣
∣
∣ is negligible.

The restriction to legal queries prevents the adversary from trivially finding
R. Note that for the single-key version here we do not need an extra parameter
a to produce values of the form H(x ⊕ aR, i) ⊕ bR, since the definitions in Choi
et al. [7] would have made it illegal to use a = 0 anyway.

Finally, we emphasize that the adversary is allowed unrestricted access to H.
Thus, modeling H as a random oracle, the adversary has oracle access to H in
addition to the oracle in the experiment. In the standard model, the adversary
is allowed to depend arbitrarily on H.

Constructions from ideal permutations. Bellare et al. [4] construct a gate-level
cipher in the ideal random permutation model. In this model, all parties have
access to a randomly chosen permutation π : {0, 1}k → {0, 1}k and its inverse
π−1. This is meant to model a setting where a garbling scheme is based on AES

Two Halves Make a Whole 231

with a (public) fixed key, which can be implemented very efficiently with AES-NI
instructions.

Bellare et al. [4] do not abstract a concrete security property that their hash
function must satisfy. Instead, they describe how to construct their hash func-
tion, and prove security of the entire garbling scheme directly from the underly-
ing assumption of a random permutation. Our ultimate abstraction (robustness
for naturally derived keys) can be seen as a formalization of the properties of H
actually used in their proofs.

We first describe the hash function of [4], altered for our single-key setting:

Definition 2. For a random permutation π : {0, 1}k 	→ {0, 1}k, we define the
hash function Hπ(x, i) to be π(K) ⊕ K where K = 2x ⊕ i.

For concreteness, 2x refers to doubling in GF(2k). However, there are many
alternative ways of constructing Hπ from π, which do not affect our proof. We
refer the reader to Bellare et al. [4] for these alternate constructions and how
they affect the exact constants on the security bounds. We also point out that
in the following, the adversary is assumed to have access to π and π−1.

Our abstraction. We now define a security notion that is satisfied by both of the
above constructions.

Definition 3. Say that a sequence of queries of the form (x, i, b) to an oracle
O are natural if they satisfy the following:

– for the qth query, we have i = q.
– b ∈ {0, 1}
– x is naturally derived, meaning that it is obtained from one of these opera-

tions:
• x � {0, 1}k

• x ← x1 ⊕ x2, where x1 and x2 are naturally derived
• x ← H(x1, i), where x1 is naturally derived and i ∈ Z

• x ← O(x1, i, b) where x1 is naturally derived.

Then H is circular correlation robust for natural keys if, for all all polynomial-
time adversaries A making natural queries,

∣
∣
∣
∣Pr

R
[ACircR(1k) = 1] − Pr

Rand
[ARand(1k) = 1]

∣
∣
∣
∣ is negligible.

Note that these restrictions only apply when querying O — the adversary is
still allowed to make unrestricted queries to H directly (and π, π−1 in the ideal
permutation model). While it is a weak notion of security (since the adversary
is very restricted), it turns out to be enough to prove security of our garbling
scheme (Section 4.2).

232 S. Zahur et al.

Achieving the definition. While it is evident that circular correlation robust-
ness against naturally derived keys is a restricted version of circular correlation
robustness defined in Definition 1, it may not be as obvious that the Hπ ideal
permutation construction satisfies this notion.

Intuitively, the purpose of the naturally-derived restrictions is to make it
unlikely that the adversary can ever query O with both (x, i, b) and (x′, i′, b′)
where 2x ⊕ i = 2x′ ⊕ i′ even though (x, i) �= (x′, i′). That would have created a
problem in the case where O uses Hπ. This would in turn invoke π(2x⊕2R⊕i) =
π(2x′ ⊕ 2R ⊕ i′). If the adversary uses b �= b′ then the responses to these queries
reveal R.

The proof that the Hπ construction achieves our definition in the ideal per-
mutation model basically follows directly from the security proofs in Bellare
et al. [4]. There, the bulk of the proofs are devoted to bounding the probability
of the adversary making a query of the above form. They use only the fact that
wire labels in their constructions are naturally derived, in our terminology (or,
at least, the obvious generalization of naturally-derived to the two-key setting).

Following their proofs, one can work out the advantage of an adversary that
makes q queries to the oracle O and Q queries to π, π−1, in our security game.
The advantage comes out to be O((qQ + q2)/2k). The quadratic terms in that
expression come from the birthday bounds of hash functions with k-bit output.
We did not derive the exact constants since, in practice, much larger constants
are likely to arise when π is replaced by a concrete function (e.g. AES). In any
case, it is negligible in k, and therefore satisfies our notion of security.

4.2 Proof of Privacy and Obliviousness

The first thing to note is that we can easily rewrite the scheme in Figure 2 such
that it only uses R through the oracle CircR. In particular, we can rewrite the
assignments to TGi and TEi as:

TGi ← H(W 0
a , j) ⊕ CircR(W 0

a , j, pb)
TEi ← H(W 0

b , j′) ⊕ CircR(W 0
b , j′, 0) ⊕ W 0

a

Moreover, observe that we are only ever invoking CircR with naturally derived
keys, assuming NextIndex returns sequential integers. This is partly why we did
not write the assignments to W 0

Gi and W 0
Ei in Figure 2 more naturally using

if statements conditioned on pa and pb — we did not want to repeat j values
between oracle calls. Second, we no longer need to explicitly use R anywhere in
Gb outside of the oracle (W 1

i values are no longer needed).

Theorem 1. Our scheme satisfies the security notion of obv.simS and prv.simS
with any H that has correlation robustness for naturally derived keys.

Proof. The proof for obv.simS is identical to that of prv.simS , except that the
simulator does not receive ŷ and does not need to compute d̂. So we will only
provide the proof for prv.simS . To prove indistinguishability between the simu-
lator (Figure 3) and the real protocol (Figure 1) we use the following chain of
hybrids:

Two Halves Make a Whole 233

Fig. 3. The simulator for prv.simS security, and the hybrids used in the proof

234 S. Zahur et al.

1. S ≡ GRand
1 : Both generate uniformly random values for each of the compo-

nents in (F̂ , X̂, d̂), and are therefore identically distributed. More concretely,
G1 uses x̂ to determine a truth value vi on each wire (via evalWires). Yet these
truth values v̂ are used only as a superscript for W v

i . We could have obtained
the same result if we had named these variables W 0

i for all i instead of W vi
i .

In Figure 3, G1 does not include the boxed statements.
2. GRand

1 ≈ GCircR
1 : We have just changed the oracle O from Rand to CircR. These

two hybrids are indistinguishable simply by our assumption about the hash
function.

3. GCircR
1 ≡ GCircR

2 : In Figure 3, we obtain G2 by adding the boxed statements
to G1. We let the variable R in G2 refer to the R of the oracle CircR.
The only difference between these two is that G2 computes some extra values
that are never used (they will be used in G3). We couldn’t compute these
earlier since we couldn’t use R while performing the previous step of the
hybrid.

4. GCircR
2 ≡ G3: G3 induces identical distributions on all of the variables (W 0

i ,
W 1

i , TGi, and TEi), but does so without explicitly having to compute vi for
non-input wires. For example, instead of randomly sampling W vi

i and then
setting W vi

i ← W vi
i ⊕R, G3 randomly samples W 0

i and then sets W 1
i ← W 0

i ⊕
R. The algebraic relationships between each variable are still unchanged. We
have also expanded the oracle calls in SimAnd3 to correspond to O = CircR.

Finally, G3 computes (F̂ , X̂, d̂) as (F̂ , ê, d̂) ← Gb(1k, f); X̂ ← En(ê, x). This is
precisely how these values are computed in the real interaction in the prv.simS
game. This completes our proof.

4.3 Obtaining Authenticity

In the aut security game defined by Bellare et al. [5], an adversary is given (F̂ , X̂).
It is necessary to show that the adversary cannot produce Ỹ �= Ev(F̂ , X̂) such
that De(d̂, Ỹ) �= ⊥, except with negligible probability. This is clearly not the
case for the scheme as we present it in Figure 2; in fact, De never returns ⊥.

To achieve authenticity, we modify the scheme as described in Figure 4.

Theorem 2. Our modified scheme (Figure 4) satisfies the security notion of aut
with any H that has correlation robustness for naturally derived keys.

Proof (Proof Sketch). Consider an interaction in which we run the prv.sim-
simulator S (with the change described in Figure 4) to generate (F̂ , X̂, d̂). We
give (F̂ , X̂) to the adversary and use d̂ to run De and check whether the adver-
sary succeeded in violating authenticity. In order to do so, the adversary would
have to guess a value h that was chosen in the final loop of S. But these values
are independent of the adversary’s view, so this can happen with probability
at most 1/2k. The rest of the proof follows an identical sequence of hybrids
as the proof of Theorem 1. Eventually, we reach an interaction that is identi-
cal to the aut game played against the adversary. By the indistinguishability of

Two Halves Make a Whole 235

Fig. 4. Changes to our scheme required to achieve authenticity

the hybrids, the adversary’s success probability must be negligible. Note that
the changes we have made to the scheme and simulator still allow the steps in
the proof to retain naturally derived accesses to the oracles.

5 Performance Comparison

We evaluate the performance of our scheme in comparison to previous garbling
schemes using both analytical and experimental measurements.

Table 3 shows computations of the raw garbled circuit size in our scheme,
calculated for several circuit designs. The table is derived from the one provided
with fleXOR [19]; the circuits were obtained from [11,30]. Our technique out-
performs all previous garbling schemes in this metric, achieving the expected
maximum of 33% gain for most circuits. There are some AND-intensive circuits
(e.g., the DES circuit used here) for which the previous fleXOR technique already
does well, but we manage to improve a little upon that as well.

We selected a smaller, well-studied set of benchmark circuits for experimental
evaluation. The aim here was to understand the cost tradeoffs for our scheme
more clearly, in the context of a secure two-party computation protocol. In our
scheme the evaluator performs one extra hash operation per gate while reducing
network usage. Therefore, it is possible that we end up paying more in terms of
computational resources, such as energy used.

Table 3. Comparison of garbled circuit size, for selected circuits of interest. Size
measured in average number of ciphertexts per gate.

circuit GRR2 [28] free-XOR [20] fleXOR [19] this work ↓%

DES 2.0 2.79 1.89 1.86 1%
AES 2.0 0.64 0.72 0.42 33%

SHA-1 2.0 1.82 1.39 1.21 12%
SHA-256 2.0 2.05 1.56 1.37 12%

Hamming distance 2.0 0.50 0.50 0.33 33%
minimum in set 2.0 0.87 0.87 0.58 33%

32 × 32 fast mult 2.0 0.90 0.94 0.60 33%
1024-bit millionaires 2.0 1.00 1.00 0.67 33%

236 S. Zahur et al.

Table 4. Resource usage for three common programs. Edit distance refers to the
Levenstein distance between two 200-byte strings. AES refers to 1 block of encryption
and key expansion, iterated 10 times. Set intersection is performed on set of 1024,
32-bit integers, iterated 10 times. Each of these 3 jobs were in turn executed 5 times
and measured separately, and the numbers are averages over these 5 runs. Whole
denotes experimental setup using free-XOR with GRR2, while Half denotes a setup
using our half-gates construction.

Time (s) Bandwidth (MB) Energy (kJ)

Benchmark Whole Half ↓% Whole Half ↓% Whole Half ↓%

Edit distance [14] 17.8 13.2 25.7% 200.4 133.6 33.3% 1.13 0.89 21.0%
AES [14] 18.2 17.0 7.0% 115.6 77.1 33.3% 1.25 1.18 5.3%
Set intersection [13] 37.0 29.7 19.7% 324.5 219.9 32.2% 2.41 2.03 15.5%

Table 4 shows our measurements. Details of our experimental setup are pro-
vided below. We see that our scheme significantly reduces the total time and
energy used by the evaluator in every test of the protocol. In our tests, we
found that our scheme actually increased the power usage (i.e., higher wattage),
but the increase was more than offset by the reduced runtime (i.e., lower total
energy). It is conceivable that a very slow evaluator connected to a very fast
LAN may not enjoy the same reduction in energy usage, but we did not have
the equipment to run such a test and such a scenario seems unlikely to occur in
practice. If the two parties have symmetric computational power, however, our
protocol should always be better since the computational bottleneck would be
the generator, who is performing four calls to H per AND gate in all schemes.

Experimental Setup. The experiments were performed using the Obliv-C sys-
tem [32], where we hooked into the protocol execution to implement our own
garbling scheme. This allowed us to easily reuse the exact same benchmark pro-
grams for both schemes. We executed Yao’s standard semi-honest protocol for
2PC, with a security of 80-bit keys, and compared our scheme to Free-XOR with
GRR3 AND gates. In both experimental setups, we used pipelining optimiza-
tions [14] and instantiated the H hash function in the garbling scheme using
the fixed-key AES construction of [4] (described in Section 4). All measurements
(time, network and energy) include the time for performing oblivious transfers
and output sharing (which are not affected by the garbling scheme), hence the
overall reductions support the argument that bulk of the bandwidth and com-
putation is due to the garbled circuit execution.

The compilation was done using GCC 4.8.2, linked with libgcrypt 1.6.1 (older
versions are much slower). We executed the protocol between an Intel Core i7-
2600S at 2.8 GHz, running Ubuntu 14.04, and an i7-2600 at 3.4 GHz running
Ubuntu 13.10, connected over a LAN. Energy consumption was measured by
using an electrical meter plugged in to the wall power outlet for one of the
machines — the power meter had an USB interface that allowed us to mea-
sure power only for the duration of the job. For all jobs we report the average

Two Halves Make a Whole 237

(time/energy) measurement over five runs, which was more than enough for
obtaining statistically significant results (at p < 0.05).

6 Privacy-Free Garbling

Jawurek, Kerschbaum, and Orlandi [18] described an elegant and practical zero-
knowledge protocol based on garbled circuits. It allows a prover to prove state-
ments of the form “∃x : C(x) = 1”, at a cost of just one garbled circuit for C.

In their protocol, the garbled circuit is evaluated by a prover who knows the
entire input to the garbled circuit and the truth value along each wire. Hence,
only the authenticity property of garbled circuits is required, and not the privacy
property (in the terminology of Bellare et al. [5]). We call a garbling scheme
privacy-free if it only satisfies the authenticity property. Frederiksen, Nielsen,
and Orlandi [8] showed that privacy-free garbled circuits can be significantly
smaller than their full-fledged counterparts.

Very roughly speaking, removing the privacy requirement saves one cipher-
text per gate. Frederiksen et al. [8] adapt three garbling schemes to the privacy-
free setting: GRR2, free-XOR, and fleXOR. Mirroring the situation with
full-fledged garbled circuits, they showed how to garble an AND gate using
just one ciphertext (i.e., GRR1), but in a way that is incompatible with free-
XOR. When using free-XOR, it was necessary to garble AND gates using two
ciphertexts.

Our approach using half-gates can also give a direct improvement in this
privacy-free setting. Namely, one can garble a circuit with free-XOR gates, and
garble AND gates using our evaluator-half-gate construction. In this setting, the
evaluator knows both inputs to every AND gate, though our half-gate only takes
advantage of the evaluator’s knowledge of one input. Overall, we can perform
privacy-free garbling at a cost of only one ciphertext per AND gate, and no
cost for XOR gates. Interestingly, our construction of privacy-free garbling also
results in less overall computation than the previous schemes — only two calls
to H instead of three.

A summary of our results for privacy-free garbling is given in Table 5. As
before, our best improvements in this setting are on circuits for which free-
XOR was previously the best approach. Here, the relative improvement is more

Table 5. Comparison of privacy-free garbled circuit size, for selected circuits of
interest. Previous constructions and their statistics are from Frederiksen, Nielsen, and
Orlandi [8]. Size measured in average number of ciphertexts per gate.

circuit GRR1 free-XOR fleXOR this work ↓%

DES 1.0 1.86 0.96 0.93 3%
AES 1.0 0.43 0.51 0.21 50%

SHA-1 1.0 1.21 0.78 0.61 22%
SHA-256 1.0 1.37 0.87 0.68 22%

238 S. Zahur et al.

dramatic: we cut the size of the garbled circuit in half. Concretely, using the
protocol of Jawurek, Kerschbaum, and Orlandi [18], it is possible to prove in
zero knowledge a statement of the form “I know k such that AES(k,m) = c”
(for public m, c) by sending only 108 kilobytes of garbled circuit (using 128-bit
wire labels; for 80-bit wire labels, the garbled circuit is 68 kilobytes).

7 Lower Bounds on Garbled Circuits

This section introduces a methodology for reasoning about lower bounds on the
size of garbled gates and shows that our construction is size-optimal for a large
class of garbling schemes, which encompasses all known practical techniques.

When thinking about the size of garbled gates, instead of thinking about free-
XOR compatibility, it turns out to be more instructive to think about the degrees
of freedom available for choosing a gate’s output wire labels. In the classical
scheme that uses four ciphertexts, both output wire labels can be arbitrary; there
are two degrees of freedom. In the GRR3 scheme that uses three ciphertexts,
one of the output wire labels is fixed as soon as the input wire labels are fixed
(since one output wire label is a hash of some input wire labels). Hence there is
just one degree of freedom, for choosing the other wire label, and this is typically
exploited to ensure free-XOR compatibility. In the GRR2 scheme that uses two
ciphertexts, both output wire labels are fixed as soon as the input wire labels
are fixed; there are no degrees of freedom. In our construction also, there are no
degrees of freedom on the output wire labels. One is chosen as a hash of input
wire labels, and, furthermore, the two output wire labels must have the same
offset as one of the input wires.

7.1 Basic Methodology

There are many techniques that fall under the category of garbling schemes. We
wish to focus on techniques based on (fast, practical) symmetric-key primitives
only. Hence, in this section we model parties as computationally unbounded
entities that can make polynomially many queries to a random oracle. This is
the standard setting (initiated by Impagliazzo and Rudich [17]) for proving lower
bounds about Minicrypt.2

We wish to prove lower bounds relating to concrete efficiency; for example,
prove that it is possible to garble an AND-gate with 2k bits of ciphertext but not
with k bits. We say that a garbling scheme has ideal security if no adversary of
the above form (computationally unbounded, with bounded queries to a random
oracle) has advantage better than poly(k)/2k (rather than negligible) in the

2 Minicrypt is one of Impagliazzo’s hypothetical worlds [16] in which one-way functions
exist but no stronger cryptography (in particular, public-key cryptography) exists.
Since a random oracle models an ideal one-way function, we can model a world
without cryptography beyond one-way functions as a world with computationally-
unbounded entities that have access to a random oracle.

Two Halves Make a Whole 239

security games, where k is the security parameter and output length of the
random oracle.

To see why it makes sense to restrict to ideal security in our setting, consider a
garbling scheme where, with security parameter k, we apply our “two-ciphertext”
construction for AND gates but with a k/2-bit random oracle. The resulting gar-
bled gate is then only k bits, and indeed, no adversary has better than negligible
advantage in the appropriate security games. However, it is possible to achieve
advantage poly(k)/2k/2.

Intuitively, a random oracle with security parameter (output length) k is an
object that gives security poly(k)/2k. We wish to consider only garbling schemes
which do not “cheat” the size of the garbled gates by artificially degrading the
security parameter of the random oracle relative to the security parameter of
the garbling scheme.

Still, consider a garbling scheme that on security parameter k instantiates
an ideally secure garbling scheme on security parameter k −O(log k). The result
yields security poly(k)/2k−O(log k) = poly(k)/2k, satisfying our ideal security
definition as well. Hence, even with our model one cannot prove a clean lower
bound of the form “2k bits are required for an AND gate.” Rather, one must
prove something like “2k − O(log k) bits are required for an AND gate.”3 The
special case we consider below, however, is already restricted to schemes whose
gates are an integer multiple of k bits.

7.2 Linear Garbling Schemes

We first observe that, to the best of our knowledge, all techniques for practical gar-
bling schemes share certain features. Roughly speaking, the Gb and Ev procedures
use only linear operations apart from queries to the random oracle (in this setting,
we assume a random-oracle instantiation of the scheme), and choosing which lin-
ear operation to apply based on select bits of given wire labels (in the case of Ev)
or on the association of select bits to true/false (in the case of Gb).

For example:

– In the classical garbling scheme, ciphertexts that comprise the garbled gate
are all formed by taking an XOR of oracle responses with wire labels. Simi-
larly, in most other schemes the garbled gate consists of values of the form
H(A‖B) ⊕ C, H(A) ⊕ C, where A, B, and C are wire labels. The select bits
and permute bits are used to decide which linear operations to apply (which
ciphertext to decrypt in Ev).

– When using GRR3 row-reduction, one output wire label is chosen as
H(A‖B), hence linearly in the sense described above. Then behavior in Ev
depends on the select bits of the given wire labels (i.e., whether to decrypt
a ciphertext or simply take a hash of the input wire labels as the output),
but in each case the resulting behavior is linear.

3 Indeed, constructions that use the point-and-permute optimization degrade (by just
one bit) the security of the underlying block cipher / hash function by using the
least significant bit in a structured way.

240 S. Zahur et al.

– In the GRR2 construction [28], generating and evaluating a gate involves
interpolating polynomials that pass through points of the form (t,H(A‖B)).
Since the values t are fixed, interpolation is a linear operation on outputs of
H. Both the garbled gate itself and the output wire labels are the result of
such interpolation. In Gb, the choice of which points to interpolate (hence,
the choice of which linear operation to perform) depends on the assocation
of select bits to true/false.

– In our scheme, Ev performs an additional XOR depending on the select bits
of wire labels.

– When using free-XOR, wire labels are chosen subject to a linear relation
A0 ⊕ A1 = B0 ⊕ B1.

We also observe the following properties common to existing garbling techniques:

– When garbling a circuit, the gates are processed in topological order. At
the time a gate is processed, the labels of its input wires have already been
determined, but the output wire labels may be determined as a result of
garbling this gate.

– When restricted to operate on a single gate, the queries to the random
oracle are made statically. That is, neither Ev nor Gb ever use the result of
an oracle query to determine a future oracle query. For many schemes, this
property is not true when garbling a larger circuit (an oracle query is used
to determine an output wire label, which is then used to determine another
oracle query in a downstream gate).

We argue that restrictions of this form capture all existing practical
approaches for garbled circuits. Of course, we exclude techniques based
on specific algebraic assumptions (e.g., [1,2]) or more exotic tools like multi-
linear maps (e.g., [9]) which are arguably impractical and already ruled out by
restricting our focus to Minicrypt.

The model. We formalize the observations above as follows. We restrict our
focus to garbling schemes that garble a single AND gate. We say that a garbling
scheme is linear if its procedures have the following form:

Gb: Parameterized by integers m, r, q and vectors A0, A1, B0, B1, {Ca,b,0 |
a, b ∈ {0, 1}}, {Ca,b,1 | a, b ∈ {0, 1}}, and {G(i)

a,b | a, b ∈ {0, 1}, i ∈ [m]}.
Each vector is of length r + q, with entries in GF (2k).
1. For i ∈ [r], choose Ri ← GF (2k).
2. Make q distinct queries to the random oracle (which can be chosen as

a deterministic function of the Ri values). Let Q1, . . . , Qq denote the
responses to these queries. Define S = (R1, . . . , Rr, Q1, . . . , Qq). These
are the values on which the algorithm acts linearly.

3. Choose random permute bits a, b ← {0, 1} for the two input wires.
4. For i ∈ {0, 1}, compute Ai = 〈Ai,S〉; Bi = 〈Bi,S〉; Ci = 〈Ca,b,i,S〉.

Then (A0‖0, A1‖1) and (B0‖0, B1‖1) are taken as the input wire labels
to the gate (i.e., the subscripts denote the public select bits), with Aa

Two Halves Make a Whole 241

and Bb corresponding to false. (C0, C1) are the output wire labels with
C1 corresponding to true.

5. For i ∈ [m], compute Gi = 〈G(i)
a,b,S〉. The values G1, . . . , Gm comprise

the garbled circuit.
En: On input xa, xb ∈ {0, 1}, set α = xa ⊕ a and β = xb ⊕ b, where a and b are

the permute bits chosen above. Output Aα‖α and Bβ‖β.
Ev: Parameterized by integer q and vectors {V α,β | α, β ∈ {0, 1}}, where each

vector is of length q + m + 2.
1. The input are wire labels Aα‖α,Bβ‖β, tagged with their corresponding

select bits, and the garbled circuit G1, . . . , Gm.
2. Make q distinct queries to the random oracle (which can be cho-

sen as a deterministic function of the input wire labels). Let
Q′

1, . . . , Q
′
q denote the responses to these queries, and define T =

(Aα, Bβ , Q′
1, . . . , Q

′
q, G1, . . . , Gm). These are the values on which Ev acts

linearly.
3. Output the inner product 〈V α,β ,T 〉.

In Appendix A we show how well-known previous practical garbling schemes
are linear in the above sense.

Limitations. We emphasize that our linear model of garbling schemes is most
meaningful when garbling a single atomic gate. This is due to the issue regard-
ing adaptive queries to the random oracle that happen when combining several
garbled gates in a larger circuit.

For example, the best known way to garble an N -input AND gate is to
garble it as a circuit of N − 1, 2-input AND gates, for a total cost of 2N − 2
ciphertexts. But garbling in this way results in adaptive oracle queries, and the
resulting scheme is not covered by our current model.

We suspect that it may be possible to augment our proof techniques for larger
garbled circuits while accounting for adaptive oracle queries, but we leave this
investigation to future work.

7.3 Lower Bound

Theorem 3. Every ideally secure garbling scheme for AND gates that is linear
in the above sense must have m ≥ 2. That is, the garbled gate consists of at least
2k bits.

Proof. From the correctness of the scheme, we must have C(a⊕α)∧(b⊕β) =
〈V α,β ,T 〉. Let us divide the vector T into a public and private part:

– The public part T pub of T consists of the wire labels and oracle responses.
Without loss of generality, the oracle queries made by Ev are a subset of
the queries made by Gb. Any query made by Ev but not Gb will have an
answer that is independent of all the activity of Gb. As such, correctness
is violated if this oracle response is actually used in the evaluator’s inner

242 S. Zahur et al.

product. Hence the public portion of T is linear function of S, and that
linear function depends only on α, β, and not the secret permute bits a, b.
We write T pub = Mα,β × S�.

– The private part T prv of T consists of the garbled circuit components Gi.
These are a linear function of S that can depend on the secret permute bits
a, b. In particular, let Ga,b denote the matrix whose rows are G

(1)
a,b, . . . ,G

(m)
a,b .

Then T prv = Ga,b ×S�. Our goal is to show that Ga,b must have at least 2
rows.

Let us also divide V α,β into a public and private portion, in an analogous
way. We may thus rewrite the correctness condition as follows:

〈Ca,b,(a⊕α)∧(b⊕β),S〉 = C(a⊕α)∧(b⊕β) = 〈V α,β ,T 〉
= 〈V pub

α,β ,T pub〉 + 〈V prv
α,β ,T prv〉

= 〈V pub
α,β ,Mα,β × S�〉 + 〈V prv

α,β ,Ga,b × S�〉
= 〈Zα,β ,S〉 + 〈V prv

α,β × Ga,b,S〉

where Zα,β = V pub
α,β × Mα,β is a vector that depends only on α, β.

Now, the vector S is uniformly distributed. For this correctness probability
to hold with probability 1 (or even noticeable probability) over the choice of S,
we must have the following equality of vectors:

Ca,b,(a⊕α)∧(b⊕β) = Zα,β + V prv
α,β × Ga,b

Claim: Matrices {Ga,b | a, b ∈ {0, 1}} are all distinct. Fix some permute bits
a, b, then by the correctness condition, the values {Zα,β + V prv

α,β × Ga,b} form
a multi-set in which one element has multiplicity 3 and the other element has
multiplicity 1. The element of multiplicity 1 is associated with a unique pair
α, β. Changing the permute bits (and thus changing Ga,b) must change which
α, β is associated with the multiplicity-1 element. Hence the matrices Ga,b must
be distinct.

Claim: Vectors {Zα,β | α, β ∈ {0, 1}} are pairwise linearly independent. To
see why, suppose to the contrary that (by symmetry) Z0,1 = σZ0,0 for some
scalar σ. Then consider an adversary given input wire labels corresponding to
α = β = 0. Instead of computing 〈V 0,0,T 〉 as instructed, she can compute
σ·〈V pub

0,0 ,T pub〉+〈V prv
0,1 ,T prv〉 = 〈V 0,1,T 〉. The result will reveal what the output

of the garbled circuit would be if she had instead had input wires α = 0, β = 1.
For an AND gate, this is a violation of the privacy property (the output changes
if and only if Aα encodes true).4

Claim: Vectors {V prv
α,β | α, β ∈ {0, 1}} are all distinct. To see why, consider the

example of V prv
0,0 and V prv

0,1 . With select bits either (0, 0) or (0, 1), and permute

4 Note that this scenario does not violate security for an XOR gate. No matter what
inputs the evaluator holds, she already knows that flipping one input bit always flips
the output.

Two Halves Make a Whole 243

bits (0, 0), the garbled gate should evaluate to false. Hence:

Z0,0 + V prv
0,0 × G0,0 = C0,0,0

Z0,1 + V prv
0,1 × G0,0 = C0,0,0

=⇒ (Z0,0 − Z0,1) + (V prv
0,0 − V prv

0,1)G0,0 = 0

Since Z0,0 −Z0,1 is nonzero, V prv
0,0 −V prv

0,1 must also be nonzero. More generally,
for any two elements of {V prv

α,β | α, β ∈ {0, 1}}, one can choose permute bits a, b
that cause those two input combinations to give the same output to the garbled
gate.5

We now prove the theorem. Consider two choices of select bits (α, β) ∈ {(0, 0),
(0, 1)}, and two choices of permute bits (a, b) ∈ {(0, 0), (0, 1)}. For all such
combinations, the garbled gate must evaluate to false. Hence, we have:

C0,0,0 = Z0,0 + V prv
0,0 × G0,0 (a)

C0,0,0 = Z0,1 + V prv
0,1 × G0,0 (b)

C0,1,0 = Z0,0 + V prv
0,0 × G0,1 (c)

C0,1,0 = Z0,1 + V prv
0,1 × G0,1 (d)

If we combine these four equations as (a)-(b)-(c)+(d), we obtain:

0 = 0 + (V prv
0,0 − V prv

0,1) × G0,0 − (V prv
0,0 − V prv

0,1) × G0,1

= (V prv
0,0 − V prv

0,1) × (G0,0 − G0,1)

We see that V prv
0,0 − V prv

0,1 is a nonzero vector in the left kernel of the nonzero
matrix G0,0 − G0,1. This implies that G0,0 − G0,1 must have at least 2 rows.
Hence, each Ga,b has at least 2 rows, and garbled gates consist of at least 2k
bits, as desired.

Discussion. Let us define the parity of a binary boolean gate as the number of
1s in its truth table. XOR, for instance, has even parity, while AND has odd
parity. The proof of Theorem 3 applies to any odd-parity gate. We frequently
used the facts that (a) the gate has one output with multiplicity 3 and another
with multiplicity 1, and (b) depending on the permute bits, the output with
multiplicity 1 could be associated with any of the 4 possible input combinations.

We are currently unable to prove a lower bound for completely arbitrary
garbling schemes. As such, we cannot rule out the possibility of garbling an AND
gate with only k bits. Yet, our lower bound shows that if such a method exists,
then it must use (expensive) public-key primitives or be significantly non-linear

5 This is another step of the proof that does not apply to XOR gates. Consider input
wires with select bits (0, 0) or (0, 1). There is no choice of permute bits that could
cause an XOR gate to give the same output for both.

244 S. Zahur et al.

in how it uses wire labels and outputs from the random oracle. Any non-linearity
outside our model would represent an entirely new technical approach for garbled
circuits.

What about the privacy-free setting? In arguing that the Ga,b matrices were
distinct, we did not use the privacy property of the scheme. Privacy was only
used to establish the other claims. Hence, for privacy-free garbled circuits we
still have that the Ga,b matrices are distinct. As such, these cannot all be the
empty matrix; they must contain at least one row. So for privacy-free garbling
on an AND gate, we must have m ≥ 1 (as in our construction); in other words,
the garbled gate must contain at least k bits.

Availability

The source code for our half gates implementation and the benchmarks used in
this paper is available under an open source license at http://MightBeEvil.com/
halfgates.

Acknowledgments. We thank Jonathan Dorn for providing the energy usage meter-
ing apparatus for our experiments and helping us use it. Mike Rosulek was supported
by NSF Award 1149647. David Evans and Samee Zahur were supported by NSF Award
1111781.

References

1. Applebaum, B.: Garbling XOR gates “For Free” in the standard model. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
52nd Symposium on Foundations of Computer Science (2011)

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
22nd Symposium on Theory of Computing (1990)

4. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 34th IEEE Symposium on Security and Privacy (2013)

5. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: 19th
ACM Conference on Computer and Communications Security (2012)

6. Brandão, L.T.A.N.: Secure two-party computation with reusable bit-commitments,
via a cut-and-choose with forge-and-lose technique. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 441–463. Springer, Heidelberg
(2013)

7. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-
XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53.
Springer, Heidelberg (2012)

8. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: EUROCRYPT (2014)

http://MightBeEvil.com/halfgates
http://MightBeEvil.com/halfgates

Two Halves Make a Whole 245

9. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: 45th ACM STOC
(2013)

10. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY:
tool for automating secure two-party computations. In: 17th ACM Conference on
Computer and Communications Security (2010)

11. Henecka, W., Schneider, T.: Memory efficient secure function evaluation. https://
code.google.com/p/me-sfe/

12. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: 19th ACM Conference on Computer and Communications Security
(2012)

13. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: 19th Network and Distributed System Security Sym-
posium (2012)

14. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: 20th USENIX Security Symposium (2011)

15. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013)

16. Impagliazzo, R.: A personal view of average-case complexity. In: 10th Structure in
Complexity Theory Conference (1995)

17. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, Heidelberg (1990)

18. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: ACM CCS 13 (2013)

19. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates
that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014)

20. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

21. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: 21st USENIX Security Symposium (2012)

22. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013)

23. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. Journal of Cryptology 22(2) (2009)

24. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011)

25. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

https://code.google.com/p/me-sfe/
https://code.google.com/p/me-sfe/

246 S. Zahur et al.

26. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computa-
tion system. In: 13th USENIX Security Symposium (2004)

27. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: 1st ACM Conference on Electronic Commerce (1999)

28. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

29. shelat, A., Shen, C.: Two-output secure computation with malicious adversaries. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer,
Heidelberg (2011)

30. Tillich, S., Smart, N.: Circuits of basic functions suitable for MPC and FHE.
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

31. Yao, A.C.C.: How to generate and exchange secrets. In: 27th FOCS (1986)
32. Zahur, S.: Obliv-C: A lightweight compiler for data-oblivious computation (2014).

https://github.com/samee/obliv-c

A Linear Garbling Schemes

In this section we show that all existing garbling schemes are linear in the sense
of Section 7.2. We show only the garbling procedure for AND gates, and use
the notation of Section 7: (A0, A1) and (B0, B1) are the input wire labels, and
(C0, C1) are the output wire labels. Bits a and b are secret so that Aa and Bb

encode false. C0 always encodes false.

Classical garbling: In a “classical” garbled circuit (with point-and-permute)
optimization, the four ciphertexts comprising a garbled gate have the form
H(A‖B) ⊕ C, where the choice of C0 or C1 depends on the association between
select bits and truth values. Below is an example of the linear operation of the
scheme’s operations. Highlighted entries are the positions that will vary based
on a, b in Gb, or α, β in Ev.

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
https://github.com/samee/obliv-c

Two Halves Make a Whole 247

Gb :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

A1

B0

B1

C0

C1

G1

G2

G3

G4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

A1

B0

B1

C0

C1

H(A0‖B0)
H(A0‖B1)
H(A1‖B0)
H(A1‖B1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for a = b = 0

Ev : C =
[
0 0 1 0 1 0 0

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Aα

Bβ

H(Aα‖Bβ)
G1

G2

G3

G4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for α = 0, β = 1

Row-reduction (GRR3). The row-reduction optimization of [27] sets one of the
output wire labels to be H(A‖B), so that one of the ciphertexts is no longer
required (it becomes the all-zeroes string). Modifying the example from above,
we have:

Gb :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

A1

B0

B1

C0

C1

G2

G3

G4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

A1

B0

B1

C
H(A0‖B0)
H(A0‖B1)
H(A1‖B0)
H(A1‖B1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for a = b = 0

Ev : C =
[
0 0 1 1 0 0

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Aα

Bβ

H(Aα‖Bβ)
G2

G3

G4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

for α = 0, β = 1

Ev : C =
[
0 0 1 0 0 0

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Aα

Bβ

H(Aα‖Bβ)
G2

G3

G4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

for α = β = 0

248 S. Zahur et al.

In this example, output wire label C0 is chosen as H(A0‖B0) because input
combination A0, B0 should lead to the false wire label in this case (a = b = 0).
The other output wire label C1 is chosen randomly. In the case that a = b = 1,
the two darkly shaded rows would be exchanged (and the three rows below would
be changed accordingly).

In Ev, we compute the output wire label as H(Aα‖Bβ) directly, when α =
β = 0. In other cases, we compute H(Aβ‖Bβ) and use it to unmask one of the
3 ciphertexts.

Free-XOR + GRR3. In the free-XOR optimization [20], all wire label pairs are
chosen as (X,X ⊕ R), where R is common to all wires. To achieve this, Gb is
modified (from the previous example) as follows:

Gb :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

A1

B0

B1

C0

C1

G2

G3

G4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 1 0 1 0
0 0 1 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

B0

R
H(A0‖B0)
H(A0‖B1)
H(A1‖B0)
H(A1‖B1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for a = b = 0

Advanced row-reduction (GRR2). The garbled row-reduction optimization of
[28] results in only 2 ciphertexts per AND gate. The idea is the following. For
simplicity, assume a = b = 0, so that A0, B0 represent false. Then the evalua-
tor should be able to obtain C0 if he obtains any of {K1 = H(A0‖B0),K2 =
H(A0‖B1),K3 = H(A1‖B0)}, and obtain C1 if he obtains K4 = H(A1‖B1).

We let P denote the unique degree-3 polynomial (over GF (2k)) passing
through points {(1,K1), (2,K2), (3,K3)}. We then let Q denote the unique
degree-3 polynomial passing through points {(4,K4), (5, P (5)), (6, P (6))}.
We give out values P (5) and P (6). Then if the evaluator who has
input wire labels Aα, Bβ interpolates a polynomial through {(2α + β +
1,H(Aα‖Bβ)), (5, P (5)), (6, P (6))}, she will obtain either P or Q depending on
the logic of the AND gate. Hence, we can set output wire labels C0 = P (0) and
C1 = Q(0).

Let Vx,y,z denote the 3×3 Vandermonde matrix that evaluates a polynomial-
coefficient vector on points x, y, and z. Then V −1

x,y,z is the matrix that interpolates
a polynomial’s coefficients given its value at points x, y, and z. Hence, we have:

Two Halves Make a Whole 249

Gb :

⎡

⎣
C0

P5

P6

⎤

⎦ = V0,5,6 × V −1
1,2,3 ×

⎡

⎣
H(A0‖B0)
H(A0‖B1)
H(A1‖B0)

⎤

⎦ for a = b = 0

[
C1

]
=

[
1 0 0

] × V −1
4,5,6 ×

⎡

⎣
H(A1‖B1)

P5

P6

⎤

⎦

Ev : C =
[
1 0 0

] × V −1
2α+β+1,5,6 ×

⎡

⎣
H(Aα‖Bβ)

P5

P6

⎤

⎦

For different choices of a, b, different corresponding Vandermonde matrices are
used in Gb.

For simplicity in Gb, we have written C1 as a linear function of P5, P6. Clearly
the linear operations compose, but we have not written out the tedious full
expression for C1 in terms of the H(Aα‖Bβ) values.

Our scheme. In our scheme, the output wires of an AND gate will be H(A0) ⊕
H(B0) and H(A0)⊕H(B0)⊕R. The first (sender)half-gate is garbled as H(A0)⊕
H(A1)⊕ bR. The second (receiver)half-gate is garbled as H(B0)⊕H(B1)⊕A0 ⊕
aR.

Gb :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

A1

B0

B1

C0

C1

G1

G2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 ab 1 0 1 0
0 0 1 − ab 1 0 1 0
0 0 b 1 1 0 0
1 0 a 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

B0

R
H(A0)
H(A1)
H(B0)
H(B1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ev : C =
[
β 0 1 1 α β

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Aα

Bβ

H(Aα)
H(Bβ)

G1

G2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

We can show the correctness of the scheme as follows. Recall that the result of
evaluation should be γ = (α ⊕ a) ∧ (β ⊕ b). Since we are working in a field of
characteristic 2, we have:

250 S. Zahur et al.

[
β 0 1 1 α β

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Aα

Bβ

H(Aα)
H(Bβ)

G1

G2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎜
⎝

β [1 0 α 0 0 0 0]
+ [0 0 0 1 − α α 0 0]
+ [0 0 0 0 0 1 − β β]
+ α [0 0 b 1 1 0 0]
+ β [1 0 a 0 0 1 1]

⎞

⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

B0

R
H(A0)
H(A1)
H(B0)
H(B1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
0 0 αβ + αb + βa 1 0 1 0

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

B0

R
H(A0)
H(A1)
H(B0)
H(B1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
0 0 (α + a)(β + b)

︸ ︷︷ ︸
γ

+ab 1 0 1 0
]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

B0

R
H(A0)
H(A1)
H(B0)
H(B1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Cγ

Crypto Currencies

One-Out-of-Many Proofs:
Or How to Leak a Secret and Spend a Coin

Jens Groth1(B) and Markulf Kohlweiss2

1 University College London, London, UK
j.groth@ucl.ac.uk

2 Microsoft Research, Cambridge, UK

Abstract. We construct a 3-move public coin special honest verifier
zero-knowledge proof, a so-called Sigma-protocol, for a list of commit-
ments having at least one commitment that opens to 0. It is not required
for the prover to know openings of the other commitments. The proof
system is efficient, in particular in terms of communication requiring only
the transmission of a logarithmic number of commitments.

We use our proof system to instantiate both ring signatures and zero-
coin, a novel mechanism for bitcoin privacy. We use our Sigma-protocol
as a (linkable) ad-hoc group identification scheme where the users have
public keys that are commitments and demonstrate knowledge of an
opening for one of the commitments to unlinkably identify themselves
(once) as belonging to the group. Applying the Fiat-Shamir transform
on the group identification scheme gives rise to ring signatures, applying
it to the linkable group identification scheme gives rise to zerocoin.

Our ring signatures are very small compared to other ring signature
schemes and we only assume the users’ secret keys to be the discrete
logarithms of single group elements so the setup is quite realistic. Sim-
ilarly, compared with the original zerocoin protocol we only rely on a
weak cryptographic assumption and do not require a trusted setup.

A third application of our Sigma protocol is an efficient proof of
membership of a secret committed value belonging to a public list of
values.

Keywords: Sigma-protocol · Zero-knowledge · Disjunctive proof · Ring
signature · Zerocoin · Membership proof

1 Introduction

A large fraction of deployed cryptographic schemes rely either on cryptographic
hash-functions or the discrete logarithm assumption for their security. As a
consequence their underlying mathematical structures, compression functions
and cyclic prime-order groups respectively, has undergone a lot of cryptanalytic

J. Groth—The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 307937.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 253–280, 2015.
DOI: 10.1007/978-3-662-46803-6 9

254 J. Groth and M. Kohlweiss

scrutiny. This makes them attractive building-blocks for peer-to-peer applica-
tions that operate in a world in which no-one is trusted and everyone is poten-
tially malicious. We revisit two such applications, ring signatures and zerocoin,
and show how to construct both of them using a Σ-protocol that relies only
on the security of a homomorphic commitment scheme. When instantiated with
Pedersen commitments it is computationally sound, relying only on the discrete
logarithm assumption. This results in very efficient instantiations under a weak
cryptographic assumption for both ring signatures and zerocoin and reveals a
striking connection between the two schemes.

Σ-protocols are 3-move interactive protocols that allow a prover to convince a
verifier that a statement is true. The prover sends an initial message, the verifier
responds with a random challenge, and the prover sends a response. At the end
of the interaction, the verifier looks at the transcript and decides whether to
accept or reject the proof that the statement is true. A Σ-protocol should be
complete, sound and zero-knowledge in the following sense:

Complete: If the prover knows a witness w for the statement u then she should
be able to convince the verifier.

Special sound: If the prover does not know a witness w for the statement, she
should not be able to convince the verifier. This is formalized as saying that
if the prover can answer several different challenges satisfactorily, then it is
possible to extract a witness from the accepting transcripts.

Special honest verifier zero-knowledge: The Σ-protocol should not reveal
anything about the prover’s witness. This is formalized as saying that given
any verifier challenge it is possible to simulate a protocol transcript.

Σ-protocols are widely used. When working in cyclic prime-order groups or
RSA-type groups there are very efficient Σ-protocols such as the identification
schemes of Schnorr [Sch91] and Guillou-Quisquater [GQ88]. An advantage of Σ-
protocols is that they are easy to make non-interactive by using the Fiat-Shamir
heuristic [FS86] where a cryptographic hash-function is used to compute the
challenge instead of having an online verifier. It can be argued in the random
oracle model [BR93] where the hash-function is modeled as a truly random
function that this gives us secure non-interactive zero-knowledge proofs. This
makes Σ-protocols very useful in the construction of digital signature schemes
and encryption schemes, which are non-interactive in nature.

1.1 Our Contribution

It is well-known that there are efficient Σ-protocols with linear complexity for
NP-complete languages such as circuit satisfiability. We consider statements con-
sisting of N commitments c0, . . . , cN−1. The prover’s claim is that she knows an
opening of one of the commitments c� to the value 0. Our main contribution is a
new Σ-protocol for this type of statement that has logarithmic communication
complexity.

Our construction works for any additively homomorphic non-interactive com-
mitment scheme (see Sect. 2.1) over Zq, where q is a large prime. Examples of

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 255

such commitment schemes include Pedersen commitments [Ped91] and variants
of ElGamal encryption [ElG85] where the message is encoded as an exponent.
These commitment schemes specify a commitment key ck, which in the case of
Pedersen commitments specifies a prime-order group G and two group elements
g, h. Given a value m ∈ Zq and perhaps some randomness r ∈ Zq it is then
possible to compute a commitment, which in the case of Pedersen commitments
is computed as c = gmhr.

Given a commitment key ck and a statement of the form (c0, . . . , cN−1) the
prover who knows an opening (0, r) of one of the commitments c� = Comck(m; r)
with m = 0 can use our Σ-protocol to convince the verifier of having this knowl-
edge. Our Σ-protocol has perfect completeness, i.e., the verifier can always con-
vince the verifier when she has a witness (0, r). It has (log N + 1)-special sound-
ness, which means given log N + 1 accepting transcripts for the statement with
distinct challenges x0, . . . , xlog N from the verifier, it is possible to compute an
opening (0, r) of one of the commitments. Finally, it has special honest verifier
zero-knowledge such that for any given challenge x from the verifier it is possible
to simulate a transcript without knowing an opening of any of the commitments.
When instantiated with the Pedersen commitment scheme our Σ-protocol has
perfect special honest verifier zero-knowledge, since the Pedersen commitment
scheme is perfectly hiding.

Our Σ-protocol requires the prover to send 4 log N commitments and 3 log N+
1 elements in Zq. When instantiated with Pedersen commitments the prover has
to compute roughly N log N exponentiations and the verifier has to compute
roughly N exponentiations. Multi-exponentiation techniques and batching tech-
niques can be used to reduce the computational cost.

If the prover knows the openings of all the commitments its computation
can be faster and is determined by the cost of approximately 3N log N multi-
plications in Zq and making 4 log N commitments. This is a huge improvement
over existing protocols in the literature like those employed by [DMV13] for
rate-limited function evaluation.

Another example where the prover knows the openings is in a membership
proof. Here the prover has a commitment c and wants to prove knowledge of an
opening to a value u that belongs to a list L = {λ0, . . . , λN−1}. This can be done
by forming commitments c0 = c · Comck(−λ0), . . . , cN−1 = c · Comck(−λN−1)
and proving knowledge of an opening of one of the commitments to 0. Due to
the special structure of the commitments c0, . . . , cN−1 this only costs 2N log N
multiplications in Zq for the prover and 2N multiplications in Zq for the verifier.
This is an improvement over the membership proofs of Bayer and Groth [BG13]
that use O(N log2 N) multiplications for both the prover and verifier.1

1.2 Applications to Ring Signatures and Zerocoin

Ring signatures enable a signer to include herself in an ad-hoc group, a ring,
and sign a message as a user in the ring without disclosing which one of them
1 Bayer and Groth’s technique also yields a non-membership proof with the same

complexity. Our techniques do not provide non-membership proofs.

256 J. Groth and M. Kohlweiss

is the signer. A ring signature scheme can for instance be used by a whistle
blower that wants to assure the recipient that the message has been signed by
a knowledgeable source, e.g., an employee of a company laundering money, yet
at the same time wishes to remain anonymous, such that the company does not
fire her when she tells the world about their misdeeds.

Our Σ-protocol gives rise to a natural ad-hoc group identification scheme. All
users have a commitment that they know how to open to 0. When a user wants
to identify herself as a member of an ad-hoc group, she forms the statement
consisting of the commitments c0, . . . , cN−1 of the users in the group and uses
the Σ-protocol to prove she knows an opening of one of the commitments.

By applying the Fiat-Shamir heuristic, i.e., by computing the challenge as
a hash of the initial message and the message to be signed, we can convert the
group identification scheme into a ring signature scheme. The ring signature
scheme inherits the properties of the Σ-protocol. Completeness implies that it
is possible for users in the ring to sign messages since they know an opening of
one of the commitments to 0. Special soundness implies that ring signatures can
only be generated by somebody in the ring, since they imply knowledge of an
opening of at least one of the commitments to 0. Special honest verifier zero-
knowledge implies that one cannot tell which commitment the signer can open,
so the signer remains anonymous within the ring.

Specifying the ring in a ring signature may in the worst case require linear
communication but can be amortized over many ring signatures when the same
ring is used repeatedly or the ring can be specified indirectly, e.g., by saying the
ring is all employees of a particular company. Decreasing the cost of ring signa-
tures has therefore received attention in the cryptographic literature (see related
work in Sect. 1.3). Our construction gives rise to a communication-efficient ring
signature scheme, where the signature size grows logarithmically in the number
of users in the ring. If we use the Pedersen commitment scheme, the ring sig-
nature only relies on the discrete logarithm assumption in the random oracle
model. Furthermore, the users’ keys are just single group elements for which the
users know the discrete logarithms. This makes it easy to make ring signatures
on top of a pre-existing setup in an organization that has a PKI where users
have been assigned public keys consisting of group elements of which they know
the discrete logarithms.

Zerocoin, also known as decentralized e-cash, enables users to generate their
own coins. Coins become valuable once they are accepted on a public bulletin
board. These coins can then be anonymously spent by their respective owners
without disclosing which coin they are spending. To prevent double spending
a secret serial number is revealed during the spending protocol. Zerocoin was
proposed as an add on, or decentralized mix, to provide strong anonymity guar-
antees for bitcoin.

Our Σ-protocol gives rise to a natural one-time ad-hoc group identification
scheme. Each user has a commitment ci to a secret random serial number S that
only she knows the opening of. When a user wants to identify herself as a mem-
ber of an ad-hoc group, she reveals her serial-number S and forms a statement

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 257

for the Σ-protocol consisting of the commitments c0 · Comck(S)−1, . . . , cN−1 ·
Comck(S)−1 and proves that she knows an opening to zero for one of these com-
mitments. To enforce the one-time property, the verifier accepts the proof only
if S has not previously been recorded. By applying the Fiat-Shamir heuristic to
this adapted identification scheme one obtains a zerocoin protocol. An important
benefit of our construction is that in contrast to existing zerocoin instantiations
it does not rely on a trusted setup process assuming the commitment param-
eters ck have been generated in a way that is publicly verifiable and excludes
trapdoors, e.g., using hash functions.

1.3 Related Work

There has been a significant amount of research on efficient zero-knowledge
proofs. An important early work in this direction was by Kilian [Kil92] that
used probabilistically checkable proofs and hash-trees to create an interactive
argument for circuit satisfiability with polylogarithmic communication complex-
ity. Kilian’s argument has computational soundness; if we require unconditional
soundness the communication complexity grows linearly in the witness size as is
for instance the case in Ishai et al. [IKOS09]. Using fully homomorphic encryption
it is possible to get unconditionally sound proofs of size |w|+poly(λ) [GGI+14],
where w is the witness and λ is the security parameter, although this comes at
a huge computational cost. There has also been works targeting specifically the
discrete logarithm setting such as Cramer and Damg̊ard [CD98] getting linear
communication complexity and Groth [Gro09] that gives computationally sound
arguments for circuit satisfiability with communication that is proportional to
the square root of the circuit size. Our Σ-protocol is much more efficient than
these works since it is fine-tuned for a specific language.

Our Σ-protocol can be used to prove that one out of many commitments
can be opened to 0, which can be seen as a large disjunctive statement. Cramer,
Damg̊ard and Schoenmakers [CDS94] gave a general method to construct Σ-
protocols for disjunctive statements. Their technique leads to a Σ-protocol with
linear communication complexity. There has been works on related types of
statements to the one we consider, i.e., proving something about one out of
N elements [Gro09,CGS07,BDD07] that could be potentially be used to get a
square root complexity although we are not aware of this actually having been
done.

Bayer and Groth [BG13] give logarithmic size arguments for proving mem-
bership in a list, i.e., having values λ0, . . . , λN−1 and commitment c to a value
λ� in the list. This can be seen as a dual to our type of disjunctive statement, we
in contrast have many commitments c0, . . . , cN−1 but just a single value λ� = 0
and want to prove one of the commitments c� contains this value. The member-
ship proofs of Bayer and Groth rely on an efficient proof of correct polynomial
evaluation in a a secret committed value.

The strategy both here and in [BG13] is to construct polynomials of degree
log N in a random challenge chosen by the verifier. In both cases, we can see the
constructed polynomials as arising from a weighted sum or product (with weights

258 J. Groth and M. Kohlweiss

depending on the statement) over the vertices of a hypercube of dimension log N
but the papers differ in the weights at the vertices of the hypercube and how
they are used. In [BG13] the weights are the coefficients of the polynomial P
and the vertices in the hypercube contain N powers ui of a point u where the
polynomial is evaluated. In our paper the weights are the commitments and the
hypercube has a single non-zero vertex corresponding to the commitment (out
of N) that we are interested in. The correct evaluation of the hypercube is built
and verified using polynomials of degree log N in a challenge x.

Ring signatures were introduced by Rivest, Shamir and Tauman [RST01]
and Bender, Katz and Morselli [BKM09] provide rigorous security definitions for
ring signatures and generic constructions based on trapdoor permutations. The
idea of using Σ-protocol for anonymous identification within a group has been
proposed before, see e.g. [CDS94,Cam97], and has found use in the constructions
of ring signatures based on non-interactive zero-knowledge proofs in the random
oracle model or using pairings. Courtois [Cou01] constructs a ring signature
scheme based on a Σ-protocol for the MinRank problem. Abe et al. [AOS04]
use disjunctive proofs to demonstrate possession of one out of N secret keys to
construct ring signatures. The instantiation of their scheme based on the discrete
logarithm assumption and using the same group for all users is similar to our
ring signature except their Σ-protocol based on techniques from [CDS94] give
signatures that grow linearly in the size of the ring. Herranz and Sáez [HS03]
also give a linear size ring signature based on the discrete logarithm problem
in the random oracle model. There are also several pairing-based constructions
of ring signatures including [BGLS03,CWLY06,SW07,Boy07,CGS07]. The most
efficient without random oracles is by Chandran, Groth and Sahai [CGS07] who
exhibit square root size ring signatures using pairing based non-interactive zero-
knowledge proofs.

The smallest ring signatures are by Dodis et al. [DKNS04] who use accu-
mulators based on the strong RSA assumption [CL02] to get ring signatures
consisting of a constant number of group elements in the random oracle model.
Their construction, however, requires a setup that includes an RSA modulus,
which may not be readily available. Furthermore, since RSA moduli have to be
of size λ3

polylogλ bits to resist factorization attacks they end up with ring signa-
tures where the size has cubic growth in the security parameter. Nguyen [Ngu05]
also give constant size ring signatures in the random oracle model, but requires a
linear size public key and relies on pairing-based cryptography, which also leads
to a ring signature size of λ3

polylogλ bits. In contrast, our construction is based on
the discrete logarithm assumption and if we use elliptic curve groups with group
elements of size O(λ) bits, we end up with an asymptotic quasilinear complexity
of O(λ log N) = O(λ log λ) bits for our ring signatures when the ring size N is
polynomial in the security parameter.

Zerocoin was introduced by Miers et al. [MGGR13]. Their construction is
in the random oracle model and uses an accumulator based on the strong
RSA assumption together with cut-and-choose techniques to prove group rep-
resentations in the exponent. The cut-and-choose technique results in their

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 259

proofs of spending having quintic growth in the security parameter. Danezis
et al. [DFKP13] show how to efficiently construct zerocoin using succinct argu-
ments of knowledge (SNARKs). Ben-Sasson et al. [BSCG+14] extend zerocoin
with secret balances to build a SNARK-based alternative currency. All known
zerocoin constructions rely on a common reference string with a specific proba-
bility distribution, except for the original zerocoin protocol when used together
with the techniques of Sander [San99] to construct theoretically efficient RSA
UFOs2

While existing constructions are constant in the number of coins on the
bulletin board, RSA accumulator based zerocoin proofs consist of ∼ 50, 000
bytes, compared with 32(7 log N + 1) bytes in our construction using 256-bit
elliptic curve groups. This means that for all practical purposes the logarithmic
size will be preferable. The constant size of SNARK based constructions, usually
below a dozen group elements, is hard to beat, and indeed these constructions
pay for this by having to rely on knowledge of exponent assumptions.

2 Preliminaries

We write y = A(x; r) when the algorithm A on input x and randomness r,
outputs y. We write y ← A(x) for the process of picking randomness r at random
and setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from a set S.

All algorithms in our schemes get a security parameter λ ∈ N as input written
in unary 1λ. The intuition is that the higher the security parameter, the greater
security we get.

Given two functions f, g : N → [0,1] we write f(λ) ≈ g(λ) if |f(λ) − g(λ)| =
λ−ω(1). We say f is negligible if f(λ) ≈ 0 and that f is overwhelming if f(λ) ≈ 1.

2.1 Homomorphic Commitment Schemes

A non-interactive commitment scheme allows a sender to construct a commit-
ment to a value. The sender may later open the commitment and reveal the
value. The receiver of the commitment can then verify the opening and check
that indeed it was this particular value that was committed in the first place. A
commitment scheme must be hiding and binding. Hiding means that the com-
mitment does not reveal the committed value. Binding means that the sender
cannot open the commitment to two different values.

Formally, a non-interactive commitment scheme is a pair of probabilistic poly-
nomial time algorithms (G,Com). The setup algorithm ck ← G(1λ) generates a

2 An RSA UFO is a large integer generated in a specific way from a source of uniformly
random bits such that there is overwhelming probability that there are two large
random primes that cannot be split from each other in a factorization of the integer.
Known constructions of RSA UFOs yield integers much larger than standard RSA
moduli, so in practice protocols built on RSA UFOs are inefficient.

260 J. Groth and M. Kohlweiss

commitment key ck. The commitment key specifies a message space Mck, a ran-
domness space Rck and a commitment space Cck. The commitment algorithm
combined with the commitment key specifies a function Comck : Mck × Rck →
Cck. Given a message m ∈ Mck the sender picks uniformly at random r ← Rck

and computes the commitment c = Comck(m; r).

Definition 1 (Hiding). A non-interactive commitment scheme (G,Com) is
hiding if a commitment does not reveal the value. For all probabilistic polynomial
time stateful adversaries A

Pr
[
ck ← G(1λ); (m0,m1) ← A(ck); b ← {0, 1}; c ← Comck(mb) : A(c) = b

]
≈ 1

2
,

where A outputs m0,m1 ∈ Mck. If the probability is exactly 1
2 we say the com-

mitment scheme is perfectly hiding.

Definition 2 (Binding). A non-interactive commitment scheme (G,Com) is
binding if a commitment can only be opened to one value. For all probabilistic
polynomial time adversaries A

Pr
[

ck ← G(1λ)
(m0, r0,m1, r1) ← A(ck) :

m0 �= m1

Comck(m0; r0) = Comck(m1; r1)

]

≈ 0,

where A outputs m0,m1 ∈ Mck and r0, r1 ∈ Rck. If the probability is exactly 0
we say the commitment scheme is perfectly binding.

Definition 3 (Strongly binding). A non-interactive commitment scheme
(G,Com) is strongly binding if a commitment can only be opened in one way,
i.e., not even the randomness can change. For all probabilistic polynomial time
adversaries A

Pr
[

ck ← G(1λ)
(m0, r0,m1, r1) ← A(ck) :

(m0, r0) �= (m1, r1)
Comck(m0; r0) = Comck(m1; r1)

]

≈ 0,

where A outputs m0,m1 ∈ Mck and r0, r1 ∈ Rck.

We will focus on the case where the message and randomness spaces are Zq

for a prime q > 2λ specified in the commitment key ck. Furthermore, we require
the commitment scheme to be homomorphic, which means that the commitment
space is also a group (written multiplicatively) and we have for all well-formed
commitment keys ck and m0,m1 ∈ Mck and r0, r1 ∈ Rck that

Comck(m0; r0) · Comck(m1; r1) = Comck(m0 + m1; r0 + r1).

Pedersen commitments. The Pedersen commitment scheme [Ped91] is a natural
example of a homomorphic commitment scheme with the desired properties. The
key generation algorithm G outputs a description of a cyclic group G of prime
order q and random generators g, h. The commitment key is ck = (G, q, g, h).
To commit to m ∈ Zq the committer picks randomness r ∈ Zq and computes
Comck(m; r) = gmhr. The commitment scheme is perfectly hiding and compu-
tationally strongly binding under the discrete logarithm assumption.

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 261

2.2 Σ-Protocols

A Σ-protocol is a special type of 3-move interactive proof system that allows a
prover to convince a verifier that a statement is true. The prover sends an initial
message to the verifier, the verifier picks a random public coin challenge x ←
{0, 1}λ, and the prover responds to the challenge. Finally the verifier checks the
transcript of the interaction and decides whether the proof should be accepted
or rejected.

We assume the existence of a probabilistic polynomial time setup algorithm
G that generates a common reference string ck that is available to all parties. In
this paper the common reference string will be a public key ck for a homomorphic
non-interactive commitment scheme. It is worth noting that such keys may be
set up using prime order groups based on the discrete logarithm problem, which
makes it possible to sample them from uniformly random bits. So at the cost of
a small overhead stemming from the use of uniformly random bits, we could set
our schemes up in the common random string model.

Let R be a polynomial time decidable ternary relation, we call w a witness
for a statement u if (ck, u, w) ∈ R. We define the CRS-dependent language

Lck = {u | ∃w : (ck, u, w) ∈ R}

as the set of statements u that have a witness w in the relation R.
A Σ-protocol for R is a triple of probabilistic polynomial time stateful inter-

active algorithms (G,P,V). The following run of a Σ-protocol describes the
interaction of the algorithms

ck ← G(1λ): Generates the common reference string.
a ← P(ck, u, w): Given (ck, u, w) ∈ R the prover generates an initial message a.
x ← {0, 1}λ: The verifier’s challenge x is chosen uniformly at random.
z ← P(x): The prover responds to the challenge x.
b ← V(ck, u, a, x, z): The verifier algorithm, which will always be deterministic

in this paper, returns 1 if accepting the proof and 0 if rejecting the proof.

The triple (G,P,V) is called a Σ-protocol for R if it is complete, special sound
and special honest verifier zero-knowledge as defined below.

Definition 4 (Perfect completeness). (G,P,V) is perfectly complete if for
all λ ∈ N, ck ← G(1λ) and (u,w) such that (ck, u, w) ∈ R

Pr
[
a ← P(ck, u, w);x ← {0, 1}λ; z ← P(x) : V(ck, u, a, x, z) = 1

]
= 1.

A Σ-protocol should be a proof of knowledge; a prover should only be able to
respond to a random challenge if the prover “knows” a witness for the statement
u. We define this in the form of special soundness, which says that given responses
to a number of different challenges it is possible to compute a witness for the
statement.

262 J. Groth and M. Kohlweiss

Definition 5 (n-special soundness). (G,P,V) is n-special sound if there is an
efficient extraction algorithm X that can compute the witness given n accepting
transcripts with the same initial message. Formally, for all probabilistic polyno-
mial time adversaries A

Pr
[

ck ← G(1λ); (u, a, x1, z1, . . . , xn, zn) ← A(ck)
w ← X (ck, u, a, x1, z1, . . . , xn, zn) : (ck, u, w) ∈ R

]

≈ 1,

where A outputs distinct x1, . . . , xn ∈ {0, 1}λ and for all i ∈ {1, . . . , n} the
transcript is accepting, i.e., V(ck, u, a, xi, zi) = 1.

We say the proof is perfect n-special sound if the probability is exactly 1.

A non-standard requirement that many Σ-protocols satisfy is that responses
are unique, or at least quasi unique, i.e. given an accepting proof an adver-
sary cannot find a new valid response for the challenge in the proof. This
non-malleability property is important to achieve simulation soundness [Fis05,
FKMV12].

Definition 6 (Quasi unique response). (G,P,V) has quasi unique responses
if for all probabilistic polynomial time adversaries A

Pr
[

ck ← G(1λ)
(u, a, x, z, z′) ← A(ck) :

z �= z′

V(ck, u, a, x, z) = V(ck, u, a, x, z′) = 1

]

≈ 1.

A Σ-protocol is zero-knowledge if it does not leak information about the
witness beyond what can be inferred from the truth of the statement. We will
present Σ-protocols that are special honest verifier zero-knowledge in the sense
that if the verifier’s challenge is known in advance, then it is possible to simulate
the entire argument without knowing the witness.

Definition 7 (Special honest verifier zero-knowledge (SHVZK)).
(G,P,V) is special honest verifier zero knowledge if there exists a probabilistic
polynomial time simulator S such that for all interactive probabilistic polynomial
time adversaries A

Pr
[
ck ← G(1λ); (u,w, x) ← A(ck); a ← P(ck, u, w); z ← P(x) : A(a, z) = 1

]

≈ Pr
[
ck ← G(1λ); (u,w, x) ← A(ck); (a, z) ← S(ck, u, x) : A(a, z) = 1

]
,

where A outputs (u,w, x) such that (ck, u, w) ∈ R and x ∈ {0, 1}λ.
The Σ-protocol is said to be perfect special honest verifier zero-knowledge if

the two probabilities are exactly equal to each other.

In real life applications, special honest verifier zero-knowledge may not suffice
since a malicious verifier may give non-random challenges. However, it is easy
to convert an SHVZK argument into a full zero-knowledge argument secure
against arbitrary verifiers in the common reference string model using standard
techniques (see e.g. [Dam00]). The conversion can be very efficient and only incur

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 263

a small additive overhead, so we will in the paper without loss of generality just
focus on building efficient SHVZK arguments.

For our application to ring signatures and zerocoin we do not need full zero-
knowledge. It suffices to have have witness-indistinguishability, which is implied
by perfect special honest verifier zero-knowledge. A Σ-protocol is witness indis-
tinguishable if it is infeasible to distinguish which of several possible witnesses
the prover uses.

Definition 8 (Witness-indistinguishability). (G,P,V) is witness indistin-
guishable if for all interactive polynomial time adversaries A

Pr
[

ck ← G(1λ); (u,w0, w1) ← A(ck); b ← {0, 1}
a ← P(ck, u, wb);x ← A(a); z ← P(x) : A(z) = b

]

≈ 1
2
,

where A outputs (u,w0, w1) such that (ck, u, w0) ∈ R and (ck, u, w1) ∈ R and
x ∈ {0, 1}λ.

The Σ-protocol is perfectly witness-indistinguishable if the probability is
exactly half.

Theorem 1 ([CDS94]). A perfect SHVZK Σ-protocol is perfectly witness-
indistinguishable.

Proof. Perfect special honest verifier zero-knowledge implies the existence of a
simulator that for any x ∈ {0, 1}λ simulates (a, z) that is perfectly indistinguish-
able from a real proof. This means that conditioned on any particular x ∈ {0, 1}λ,
two different witnesses w0 and w1 both lead to proofs with the same probability
distribution as the simulation. This implies that conditioned on a, x we get the
same probability distribution of the response z regardless of which witness was
used. Moreover, the perfect special honest verifier zero-knowledge property also
guarantees that the initial messages a are distributed identically regardless of
the witness used. 	

2.3 Σ-Protocol for Commitment to 0 or 1

We will now give a well-known example of a Σ-protocol for knowledge of a
committed value being 0 or 1, which will be useful later. Let ck be a commitment
key for a homomorphic commitment scheme as described in Sect. 2.1 and let R
be the relation consisting of commitments to 0 or 1, with the witnesses being
openings of the commitment, i.e.,

R =
{(

ck, c, (m, r)
) | c = Comck(m; r) and m ∈ {0, 1} and r ∈ Zq

}
.

Fig. 1 gives a Σ-protocol (G,P,V) for R, where G is the key generation algorithm
for the commitment scheme, and where P,V are running on ck ← G(1λ), m ∈
{0, 1} and r ∈ Zq.

Theorem 2. The Σ-protocol in Fig. 1 for commitment to m ∈ {0, 1} is perfectly
complete, perfect 2-special sound and perfect SHVZK.

264 J. Groth and M. Kohlweiss

P(ck, c, (m, r)) V(ck, c)

a, s, t ← Zq ca, cb

ca = Comck(a; s)
�

cb = Comck(am; t) x ← {0, 1}λ�
Accept if and only if

f = mx + a f, za, zb ca, cb ∈ Cck, f, za, zb ∈ Zq

za = rx + s
�

cxca = Comck(f ; za)
zb = r(x − f) + t cx−fcb = Comck(0; zb)

Fig. 1. Σ-protocol for commitment to m ∈ {0, 1}

Proof. By the homomorphic property of the commitment scheme cx−fcb is a
commitment to m(x − f) + am = m(1 − m)x − ma + am = x(1 − m)m, which
is 0 if m ∈ {0, 1}. With this in mind, it is straightforward to verify that the
Σ-protocol is perfectly complete.

We will now show that the Σ-protocol is perfect 2-special sound. Given
responses f, za, zb and f ′, z′

a, z′
b to two different challenges x and x′ on the same

initial commitments ca, cb we get by combining the verification equations that
cx−x′

= Comck(f − f ′; za − z′
a) and cx−f−x′+f ′

= Comck(0; zb − z′
b). Defining

m = f−f ′

x−x′ and r = za−z′
a

x−x′ we extract an opening of c = Comck(m; r). Further-
more, since cx−x′+f ′−f = c(1−m)(x−x′) = Comck(m(1 − m)(x − x′); r(1 − m)(x −
x′)) = Comck(0; zb − z′

b) we either get a breach of the binding property of the
commitment scheme (in which case the opening of c can be modified into an
opening to m ∈ {0, 1}) or we have m(1 − m) = 0, which implies m ∈ {0, 1}.

Finally, let us prove that the protocol is perfect special honest verifier zero-
knowledge. The simulator given ck, c and x first chooses f, za, zb ← Zq. It then
computes ca = c−xComck(f ; za) and cb = cf−xComck(0; zb). Both in a real proof
and in the simulation this gives independent and uniformly random f, za, zb ∈ Zq.
Conditioned on these values and x the verification equations uniquely determine
ca, cb in both real proofs and simulated proofs. This shows that real proofs and
simulated proofs have identical probability distributions. 	

3 Σ-Protocol for One Out of N Commitments
Containing 0

We will now give a Σ-protocol for knowledge of one out of N commitments
c0, . . . , cN−1 being a commitment to 0. More precisely, we will give a Σ-protocol
for the relation

R =
{

(
ck, (c0, . . . , cN−1), (�, r)

) ∣
∣
∣

c0, . . . , cN−1 ∈ Cck and � ∈ {0, . . . , N − 1}
and r ∈ Zq and c� = Comck(0; r)

}

.

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 265

To explain the idea behind the Σ-protocol let us for simplicity assume the
commitment scheme is perfectly binding such that each commitment has a
unique committed value. Saying that one of the commitments contains 0 is
equivalent to saying there exists an index � such that

∏N−1
i=0 cδi�

i is a commitment
to 0, where δi� is Kronecker’s delta, i.e., δ�� = 1 and δi� = 0 for i �= �. We can
always copy some commitments in the statement, so let us without loss of gen-
erality assume N = 2n. Writing i = i1 . . . in and � = �1 . . . �n in binary, we have

δi� =
∏n

j=1 δij�j
so we can reformulate what we want to prove as

∏N−1
i=0 c

∏n
j=1 δij�j

i

being a commitment to 0.
The prover will start by making commitments c�1 , . . . , c�n

to the bits
�1, . . . , �n. She then engages in n parallel Σ-protocols as described in Sect. 2.3 to
demonstrate knowledge of openings of these commitments to values �j ∈ {0, 1}.
In the Σ-protocols for �j ∈ {0, 1} the prover reveals f1, . . . , fn of the form
fj = �jx + aj . Let fj,1 = fj = �jx + aj = δ1�j

x + aj and fj,0 = x − fj =
(1 − �j)x − aj = δ0�j

x − aj . Then we have for each i that the product
∏n

j=1 fj,ij

is a polynomial of the form

pi(x) =
n∏

j=1

(δij�j
x) +

n−1∑

k=0

pi,kxk = δi�x
n +

n−1∑

k=0

pi,kxk. (1)

The idea is now that the prover in the initial message will send commit-
ments cd0 , . . . , cdn−1 that will be used to cancel out the low order coefficients
corresponding to x0, . . . , xn−1. Meanwhile the high order coefficient for xn will
guarantee the commitment c� can be opened to 0. More precisely, the verifier
will at the end check that

N−1∏

i=0

c
∏n

j=1 fj,ij

i ·
n−1∏

k=0

c−xk

dk

is a commitment to 0, which by the Schwartz-Zippel lemma has negligible prob-
ability of being true unless indeed c� is a commitment to 0.

Fig. 2 gives the full Σ-protocol (G,P,V) for R with G being the key gener-
ation algorithm for the commitment scheme and P,V running on ck ← G(1λ),
c0, . . . , cN−1 ∈ Cck, � ∈ {0, . . . , N − 1} and r ∈ Zq such that c� = Comck(0; r).
Without loss of generality we assume N = 2n.

Theorem 3. The Σ-protocol in Fig. 2 for knowledge of one out of N commit-
ments opening to 0 is perfectly complete. It is (perfect) (n + 1)-special sound
if the commitment scheme is (perfectly) binding. It is (perfect) special honest
verifier zero-knowledge if the commitment scheme is (perfectly) hiding.

Proof. To see that the Σ-protocol is complete observe that
∏n

j=1 fj,ij
is a poly-

nomial in the challenge x of the form pi(x) = δi�x
n +

∑n−1
k=0 pi,kxk. When c� is a

commitment to 0 we therefore get that c
∏n

j=1 fj,�j

� in the verification equation is
a commitment to 0, while the other commitments ci get raised to polynomials

266 J. Groth and M. Kohlweiss

P(ck, (c0, . . . , cN−1), (�, r)) V(ck, (c0, . . . , cN−1)))

For j = 1, . . . , n
rj , aj , sj , tj , ρk ← Zq

c�j
= Comck(�j ; rj)

caj
= Comck(aj ; sj) c�1 , ca1 , cb1 , cd0 , . . . ,

cbj
= Comck(�jaj ; tj) c�n

, can
, cbn

, cdn−1 Accept if and only if
cdk

=
∏

i c
pi,k

i Comck(0; ρk)
�

c�1 , . . . , cdn−1 ∈ Cck

using k = j − 1 f1, . . . , zd ∈ Zq

and pi,k from (1) x ← {0, 1}λ For all j ∈ {1, . . . , n}�
cx
�j

caj
= Comck(fj ; zaj

)
For j = 1, . . . , n f1, za1 , zb1 , . . . , c

x−fj

�j
cbj

= Comck(0; zbj
)

fj = �jx + aj fn, zan
, zbn

, zd

∏
i c
∏n

j=1 fj,ij

i · ∏n−1
k=0 c−xk

dk

zaj
= rjx + sj

�
= Comck(0; zd)

zbj
= rj(x − fj) + tj using fj,1 = fj

zd = rxn − ∑n−1
k=0 ρkxk and fj,0 = x − fj

Fig. 2. Σ-protocol for commitment to m = 0 in list c0, . . . , cN−1

of degree n − 1 in x as c
∏n

j=1 fj,ij

i in the verification equation. With this in mind
straightforward verification shows that the Σ-protocol is perfectly complete.

We will now show how to convert an adversary with probability ε of breaking
(n + 1)-soundness, into an adversary with approximately the same runtime that
has probability ε of breaking the binding property of the commitment scheme.

Suppose the adversary creates n + 1 accepting responses
f
(0)
1 , . . . , z

(0)
d , . . . , f

(n)
1 , . . . , z

(n)
d to n + 1 different challenges x(0), . . . , x(n)

on the same initial message c�1 , . . . , cdn−1 .
The 2-special soundness of the Σ-protocol from Sect. 2.3 gives us openings of

c�1 , . . . , c�n
of the form c�j

= Comck(�j ; rj) with �j ∈ {0, 1}. From the verification
equations it is then easy to get openings of caj

= Comck(aj ; sj). Unless the
adversary breaks the binding property of the commitment scheme, it must hold
for all challenges that f

(0)
j = �jx

(0)+aj , . . . , f
(n)
j = �jx

(n)+aj for all j = 1, . . . , n.
The form of the fj ’s gives us that fj,1 = �jx + aj and fj,0 = (1 − �j)x − aj .

For i �= � we therefore get that
∏n

j=1 fj,ij
is a degree n− 1 polynomial pi(x) and

for i = � it is a polynomial of the form p�(x) = xn + This means we can
rewrite the last verification as

cxn

� ·
n−1∏

k=0

cxk

∗k
= Comck(0; zd)

for some fixed c∗0 , . . . , c∗n−1 that can be computed from commitments in the
statement and the initial message.

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 267

Observe that the vectors (1, x(e), . . . , (x(e))n) can be viewed as rows in a Van-
dermonde matrix and since x(0), . . . , x(n) are all different the matrix is invertible
and we can therefore find a linear combination (α0, . . . , αn) of the rows that gives
us the vector (0, . . . , 0, 1). Combining the n + 1 accepting verification equations
we therefore get

c� =
n∏

e=0

(

c
(x(e))n

� ·
n−1∏

k=0

c
(x(e))k

∗k

)αe

= Comck(0;
n∑

e=0

αez
(e)
d).

This gives us an extracted opening of c� to 0 with randomness r =
∑n

e=0 αez
(e)
d .

Finally, let us describe a special honest verifier zero-knowledge simula-
tor that is given a challenge x ∈ {0, 1}λ. It starts by picking the elements
of the response uniformly at random as f1, . . . , zd ← Zq. It then chooses
c�1 , . . . , c�n

, cd1 , . . . , cdn−1 ← Comck(0) as random commitments to 0. Finally,
it computes caj

= c−x
�j

Comck(fj ; zaj
) and cbj

= cx−f
�j

Comck(0; zbj
) to finish the

simulation of the proofs that c�1 , . . . , c�n
contain 0 and cd0 =

∏N−1
i=0 c

∏n
j=1 fj,ij

i ·
∏n−1

k=1 c−xk

dk
·Comck(0;−zd) to satisfy the last verification equation. It returns the

simulated initial message and response (c�1 , . . . , cdn−1 , f1, . . . , zd).
We will now argue that an adversary that distinguishes the simulation from

a real argument with ε advantage can be turned into an adversary that breaks
the hiding property of the commitment scheme with ε

2n−1 advantage. First,
we observe that in both real proofs and simulated proofs f1, . . . , zd are uni-
formly random in Zq. Furthermore, the verification equations uniquely deter-
mine ca1 , cb1 , . . . , can

, cbn
and cd0 conditioned on f1, . . . , zd and c�1 , . . . , cdn−1

both in real and in simulated proofs. The adversary’s advantage of ε must
therefore come from being able to distinguish real and simulated commitments
c�1 , . . . , c�n

, cd1 , . . . , cdn−1 . A standard hybrid argument gives us a ε
2n−1 advan-

tage in breaking the hiding property of the commitment scheme. 	

We state in the following two lemmas a couple of additional properties that

will be useful later.

Lemma 1. If the commitment scheme is strongly binding, the Σ-protocol in
Fig. 2 has quasi unique responses.

Lemma 2. For each possible initial message in the Σ-protocol in Fig. 2 there
is negligible probability that it will be chosen by the SHVZK simulator.

Proof. The simulator picks c�1 as a random commitment to 0. We will now argue
that c�1 has negligible probability of matching a fixed value c. We have by the
hiding and binding properties

Pr
[
ck ← G(1λ); c ← Comck(0); c�1 ← Comck(0) : c�1 = c

]

≈Pr
[
ck ← G(1λ); c ← Comck(0); c�1 ← Comck(1) : c�1 = c

]
≈ 0.

�

268 J. Groth and M. Kohlweiss

Efficiency. The prover sends 4 log N commitments and 3 log N +1 field elements.
With N being polynomial in the security parameter the prover therefore only
sends O(log λ) commitments and field elements. If we use the Pedersen commit-
ment scheme in an elliptic curve based group where the group elements are of
size O(λ) bits the total communication cost is just O(λ log λ) bits.

If we are using the Pedersen commitment scheme the prover’s cost is
dominated by n multi-exponentiations of N group elements when computing
cd0 , . . . , cdn−1 . Using multi-exponentiation techniques [Lim00] we can reduce the
cost of computing cd0 , . . . , cdn−1 to roughly N single exponentiations. Computing
the commitments is more efficient than this once pre-computation techniques are
factored in; and the polynomial coefficients pi,k can be computed by fast poly-
nomial multiplication techniques, which will have significantly smaller cost than
the exponentiations because they are done over Zq.

The verifier’s computation is dominated by the multi-exponentiation
∏N−1

i=0 c
∏n

j=1 fj,ij

i . If we are using Pedersen commitments this can be done at
a cost that is not much higher than N

log N single exponentiations.

When prover knows openings of all commitments. If the prover knows open-
ings of all commitments c0, . . . , cN−1 she can reduce her computation signifi-
cantly. Observe that if ci = Comck(mi; γi) then cdk

=
∏N−1

i=0 c
pi,k

i Comck(0; ρk) =
Comck(dk, φk + ρk) where d0, φ0, . . . , dn−1, φn−1 are coefficients in the two
polynomials

d(x) =
n−1∑

k=0

dkxk =
N−1∑

i=0

mipi(x) φ(x) =
n−1∑

k=0

φkxk =
N−1∑

i=0

γipi(x) − γ�x
n,

where the latter holds because pi(x) = δi�x
n +

∑n−1
k=0 pi,kxk, so p�(x) is the only

polynomial with a non-zero coefficient for xn.
The two polynomials d(x) and φ(x) can be efficiently computed using

Lagrange interpolation. Picks n distinct elements ω1, . . . , ωn ∈ Zq and evaluate
d(ω1), φ(ω1), . . . , d(ωn), φ(ωn) from which the coefficients d0, φ0, . . . , dn−1, φn−1

can be computed in time depending only on n = log N .
We will now show that given ω ∈ Zq it is possible to compute both d(ω) and

φ(ω) using 3N multiplications in Zq. Each fj,0 and fj,1 is a degree 1 polyno-
mial in x and we can compute all fj,0(ω), fj,1(ω) for j = 1, . . . , n using a few
modular additions for each of them. Now, pi(ω) =

∏n
j=1 fj,ij

(ω), so we can view
p0(ω), . . . , pN−1(ω) as leaves on a binary tree, where the root is

∏n
j=1 fj,0(ω) and

for each parent at level j − 1 we let the left child be the same as the parent and
the right child be the parent multiplied by fj,1(ω)

fj,0(ω) . The leaves can be computed
using roughly N = 2n multiplications, which gives us p0(ω), . . . , pN−1(ω). Com-
puting the sums d(ω) =

∑N−1
i=0 mipi(ω) and φ(ω) =

∑N−1
i=0 γipi(ω) − γ�ω

n costs
an additional 2N multiplications, for a total of 3N + o(N) multiplications to
compute d(ω), φ(ω). Doing this for n distinct elements ω1, . . . , ωn costs roughly
3N log N multiplications. Once we have the evaluations in the n elements, we can
at moderate cost compute d0, φ0, . . . , dn−1, φn−1 using Lagrange interpolation.

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 269

The prover’s computation when she knows the openings of all the commitments
is therefore determined by the cost of approximately 3N log N multiplications
in Zq and making 4 log N commitments.

Membership proof. The Σ-protocol in Fig. 2 can be used to construct a mem-
bership proof. We are given a commitment c and a set of values λ0, . . . , λN−1

and want to prove that we know an opening of the commitment c to one of
the values λ�. This can be done using our 1-out-of-N Σ-protocol by defining
c0 = c · Comck(−λ0; 0), . . . , cN−1 = c · Comck(−λN−1; 0) and proving there is a
c� with an opening to 0.

From the prover’s perspective this is a case where all the commitments have
known openings (λ�−λi, γ�) of commitment ci. Observe that all the commitments
have the same randomness, which implies φ(x) = 0 and reduces the computation
to 2N log N multiplications for the prover. To see that φ(x) = 0 recall that
φ(x) = γ�

∑N−1
i=0 pi(x) − γ�x

n and

N−1∑

i=0

pi(x) =
N−1∑

i=0

n∏

j=1

fj,ij
(x) =

n∏

j=1

(fj,0(x) + fj,1(x)) =
n∏

j=1

x = xn.

The verifier is also very efficient, he can compute the product

N−1∏

i=0

c
∏n

j=1 fj,ij

i =
N−1∏

i=0

(c · Comck(−λi; 0))pi(x)

= c
∑N−1

i=0 pi(x) · Comck

(−
N−1∑

i=0

λipi(x); 0
)

= cxn · Comck

(−
N−1∑

i=0

λipi(x); 0
)

using 2N multiplications, which dominates the computation for large N .
This efficiency compares favorably with the membership proof in Bayer and

Groth [BG13]. They prove membership by demonstrating the committed value is
a root in the polynomial P (u) =

∏N−1
i=0 (u−λi), but the initial step of computing

the coefficients of the polynomial requires O(N log2 N) multiplications (and only
if the modulus q is of a form suitable for using the Fast Fourier Transform).

Bayer and Groth’s method also gives rise to a non-membership proof: prove
that the polynomial P (u) does not evaluate to 0 to show the committed value
u does not belong to the list. Our Σ-protocol does not appear to yield a non-
membership proof.

4 Ring Signature

Ring signatures allow users to sign messages on behalf of ad-hoc groups that
include themselves. The ad-hoc groups are called rings and contain public keys

270 J. Groth and M. Kohlweiss

for the signer and the other users that the signer has chosen to include to include.
We formally define ring-signatures in the following section.

Our Σ-protocol for one out of N commitments containing 0 can be used as
an ad-hoc group identification scheme. Each user has a commitment to 0 with
the private key being the randomness used. To identify yourself as a member of a
group you prove that you know the opening of one of the commitments to 0. We
can use the Fiat-Shamir heuristic to transform the ad-hoc group identification
scheme into a ring signature scheme.

4.1 Definitions

A ring signature scheme consists of a quadruple of PPT algorithms
(Setup,KGen,Sign,Vfy) for generating a common key available to all users, gen-
erating keys for users, signing messages and verifying ring signatures.

pp ← Setup(1λ): Generates and outputs public parameters pp available to all
users.

(vk, sk) ← KGen(pp): Generates a public verification key vk and a private sign-
ing key sk.

σ ← Signpp,sk(M,R): Outputs a signature σ on the message M ∈ {0, 1}∗ with
respect to the ring R = (vk1, . . . , vkN). We require that there is a vk ∈ R
such that (vk, sk) is a valid key pair output by KGen(pp).

b ← Vfypp(M,R, σ): Verifies a purported ring signature σ on a message M with
respect to the ring of public keys R. It outputs 1 if accepting and 0 if rejecting
the ring signature.

The quadruple (Setup,KGen,Sign,Vfy) is a ring signature scheme with per-
fect anonymity if it is correct, unforgeable and anonymous as defined below.

Definition 9 (Perfect correctness). We require that a user can sign any
message on behalf of a ring where she is a member. A ring signature scheme
(Setup,KGen,Sign,Vfy) has perfect correctness if for all adversaries A

Pr
[

pp ← Setup(1λ); (vk, sk) ← KGen(pp)
(M,R) ← A(pp, vk, sk);σ ← Signpp,sk(M,R) :

Vfypp(M,R, σ) = 1
or vk /∈ R

]

= 1.

Definition 10 (Unforgeability). A ring signature scheme (Setup,KGen,
Sign,Vfy) is unforgeable (with respect to insider corruption) if it is infeasible
to forge a ring signature on a message without controlling one of the members
in the ring. Formally, it is unforgeable when for all probabilistic polynomial time
adversaries A

Pr
[
pp ← Setup(1λ); (M, R, σ) ← AVKGen,Sign,Corrupt(pp) : Vfypp(M, R, σ) = 1

]
≈ 0,

– VKGen on the ith query picks randomness ri, runs (vki, ski) ← KGen(pp; ri)
and returns vki.

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 271

– Sign(i,M,R) returns σ ← Signpp,ski
(M,R), provided (vki, ski) has been gen-

erated by VKGen and vki ∈ R.
– Corrupt(i) returns ri (from which ski can be computed) provided (vki, ski)

has been generated by VKGen.
– A outputs (M,R, σ) such that Sign has not been queried with (∗,M,R) and R

only contains keys vki generated by VKGen where i has not been corrupted.

Definition 11 (Perfect anonymity). A ring signature scheme
(Setup,KGen,Sign,Vfy) has perfect anonymity, if a signature on a mes-
sage M under a ring R and key vki0 looks exactly the same as a signature on
the message M under the ring R and key vki1 . This means that the signer’s
key is hidden among all the honestly generated keys in the ring. Formally, we
require that for any adversary A

Pr
[

pp ← Setup(1λ); (M, i0, i1, R) ← AKGen(pp)(pp)
b ← {0, 1};σ ← Signpp,skib

(M,R) : A(σ) = b

]

=
1
2
,

where A chooses i0, i1 such that (vki0 , ski0), (vki1 , ski1) have been generated by
the key generation oracle KGen(pp) and vki0 , vki1 ∈ R.

We remark that perfect anonymity implies anonymity against full key exposure,
which is the strongest definition of anonymity of ring signatures in [BKM09].

4.2 Construction

An additively homomorphic commitment perfectly hiding scheme (G,Com) as
defined in Sect. 2.1 and the Σ-protocol (G,P,V) in Fig. 2 for one out of N
commitments being a commitment to 0 can be combined to build an ad-hoc
group identification scheme. We generate a commitment key as setup and let
the users’ verification keys be commitments to 0. In order to identify herself as
a member of an ad-hoc group with N members, the user uses the Σ-protocol
to prove that she knows an opening of one of the commitments. If her com-
mitment is among the commitments in the ad-hoc group the correctness of the
Σ-protocol guarantees that she manages to identify herself as a member. If on
the other hand her commitment is not among the commitments in the group,
then the (�log N + 1)-special soundness of the Σ-protocol guarantees that she
has negligible chance of answering a challenge and being accepted. Finally, the
special honest verifier zero-knowledge property of the Σ-protocol implies that
it is witness-indistinguishable, i.e., even a malicious verifier cannot tell which
commitment opening it is that she knows how to open.

We will use the Fiat-Shamir heuristic to make the ad-hoc group identification
scheme non-interactive. Let H be a hash-function generator such that H ←
H(1λ) returns a hash-function H : {0, 1}∗ → {0, 1}λ. By computing the challenge
x in the Σ-protocol using the hash function on the initial message in the Σ-
protocol and the message to be signed, we get a transformation of the ad-hoc
group identification protocol to a ring signature scheme. Modeling the hash-
function H as a random oracle allows us to give a heuristic proof that the ring
signature scheme is unforgeable. The ring signature scheme is described in Fig. 3

272 J. Groth and M. Kohlweiss

Setup(1λ)
ck ← G(1λ)
H ← H(1λ)
Return pp = (ck,H)

KGen(pp)
r ← Zq

c = Comck(0; r)
Return (vk, sk) = (c, r)

Signpp,sk(M,R)
Parse R = (c0, . . . , cN−1)
with c� = Comck(0; sk)

a ← P(ck,R, (�, sk))
x = H(ck,M,R, a)
z ← P(x)

Return σ = (a, z)

Vfypp(M,R, σ)
Parse R = (c0, . . . , cN−1)
Parse σ = (a, z)

x = H(ck,M,R, a)

Return V(ck,R, a, x, z)

Fig. 3. Ring signature based on Σ-protocol (G, P, V) for 1-out-of-N commitments con-
taining 0

Theorem 4. The scheme (Setup,KGen,Sign,Vfy) is a ring signature scheme
with perfect correctness. It has perfect anonymity if the commitment scheme is
perfectly hiding. It is unforgeable in the random oracle model if the commitment
scheme is perfectly hiding and computationally binding.

Proof. Perfect correctness follows from the perfect completeness of the
Σ-protocol. Perfect anonymity follows from the perfect witness indistinguisha-
bility of the Σ-protocol, which guarantees that it is impossible to distinguish
which secret key has been used to generate the ring signature.

To see that the ring signature scheme is unforgeable we will rely on the (n+1)-
special soundness of the Σ-protocol in Fig. 2 and model the hash-function H as
a random oracle. Consider a polynomial time adversary A that makes at most
qV (λ), qS(λ) and qH(λ) queries to VKGen,Sign and the random oracle, respec-
tively, and for infinitely many λ ∈ N has at least 1

p(λ) probability of breaking
the unforgeability property for a positive polynomial p. We will show that it can
be used to construct a polynomial time attack that breaks the binding property
of the commitment scheme with approximately 1

2qV (λ)p(λ) chance on infinitely
many λ ∈ N. We will without loss of generality assume the adversary checks that
it has made a successful forgery, which simplifies the proof since it guarantees
the adversary does at some point call the random oracle on a query (ck,M,R, a)
corresponding to the forged ring signature.

Given the public parameters we first pick at random j ∈ {1, . . . , qV } and set
vkj = Comck(1; rj) for rj ← Zq. Our goal is to run A using this key for user j
and hoping to use rewinding to get n + 1 forgeries with a ring R that includes
vkj . The (n+1)-soundness of the SHVZK argument may permit extraction of an
opening of some vki to (0, ri). By the perfect hiding property of the commitment
scheme, with probability 1

qV
we have i = j giving us a breach of the commitment

scheme’s binding property.
Let us now give more details of how the attack works. Whenever A queries

VKGen we run as in a real ring signature scheme, except on the jth query

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 273

where we return vkj . If A ever queries Corrupt(j) we abort (type I). If A queries
Sign(j,M,R) we pick x ← {0, 1}λ at random and use the special honest verifier
zero-knowledge simulator to simulate the proof (a, z). We then program the ran-
dom oracle H(·) to have H(ck,M,R, a) = x, except if (ck,M,R, a) has already
been queried before in which case we abort (type II).

In the end, A tries to create a forged ring signature with uncorrupted users
in the ring and where the signature does not come from the signing oracle. If
A fails to create a forgery we halt. Otherwise, we get a successful forged ring
signature σ = (a, z) on M using ring R coming from a random oracle query
H(ck,M,R, a) used to get a challenge x(0). We now rewind the adversary to the
point where it made the query H(ck,M,R, a) used in the forged signature and
give it random answers to the oracle query until it has produced n additional
forged ring signatures with challenges x(1), . . . , x(n) using the same query. As
above, in each rewinding, if the simulation of a signature leads to reuse of a
query to the oracle we abort (type II). Furthermore, if the number of rewindings
exceed 2p(λ)n we halt.

If the adversary after rewinding gave us answers to a total of n + 1 distinct
challenges, we can now use the (n+1)-special soundness property to either break
the binding property of the commitment scheme or to get an opening (0, ri) of
some vki = Comck(0; ri). With probability 1

qV
we have vki = vkj , giving us a

breach of the binding property of the commitment scheme.
Let us analyze the attack described above. A useful starting point is running

the real unforgeability experiment, i.e., instead of picking vkj = Comck(1; rj)
we pick vkj = Comck(0; rj) as a correctly generated key and answer all queries
honestly (so we do not have type I or II aborts). Let us consider some λ ∈ N

where A has at least 1
p(λ) chance of creating a successful forgery. Observe that

an adversary that has probability γ of using a specific random oracle query
in a successful forgery will be rewound n = γ · n

γ times on average on this
query to sample n additional forgeries. The probability of the attack entering
the rewinding stage and exceeding 2p(λ)n rewindings will therefore be at most

1
2p(λ) , since otherwise we would exceed the expected number of rewindings. This
means we have at least 1

p(λ) − 1
2p(λ) = 1

2p(λ) chance of getting n + 1 successful
forgeries using a specific oracle query (ck,M,R, a).

Switching to simulation of ring signatures instead of giving real ring signa-
tures may result in type II aborts when the simulation accidentally results in
an oracle query H(ck,M,R, a) that has been used before, but with a different
challenge. However, Lemma 2 tells us that the simulator has negligible probabil-
ity of colliding with another oracle query: the probability of a single simulation
hitting a specific oracle query is a negligible function ν(λ) and with a maximum
of qS(λ) signing queries in each run of the adversary, and a total of qH(λ)+qS(λ)
random oracle queries in each run of the adversary we get an upper bound of
(2p(λ)n + 1)qS(λ)(qH(λ) + qS(λ)ν(λ) for the probability of running into a type
II abort.

Another problem that can arise is a collision in the n + 1 challenges we get
after rewinding. With a maximum of qS(λ)+qH(λ) queries to the random oracle

274 J. Groth and M. Kohlweiss

in each run of A we get a total risk of 2((1+2p(λ)n)(qS(λ)+qH(λ)))2

2λ of having a colli-
sion in any random oracle outputs. Avoiding type II aborts and collisions leaves
us with 1

2p(λ)−(2p(λ)n+1)qS(λ)(qH(λ)+qS(λ)ν(λ)− 2((1+2p(λ)n)(qS(λ)+qH(λ)))2

2λ ≈
1

2p(λ) chance of being able to use (n + 1)-special soundness to break the com-
mitment scheme or extract an opening (0, ri) of some vki in the ring of a ring
signature forgery.

If we extract an opening (0, ri) of some vki in the ring of a ring signature
forgery there is 1

qV (λ) chance that i = j. If i = j we observe as a part of this being
a successful forgery, the adversary never queried Corrupt(j), so we do not have
any type I aborts. Since the commitment scheme is perfectly hiding, the switch to
using vkj = Comck(1; r′

j) does not change the success probability of the attack.
But now an opening of vki = vkj to vki = Comck(0; ri) corresponds to a breach
of the binding property of the commitment scheme. So for infinitely many λ ∈ N

our attack has close to or higher than 1
2qV (λ)p(λ) chance of breaking the binding

property of the commitment scheme. The attack runs in polynomial time since
it will make at most 1 + 2p(λ)n runs of the polynomial time adversary A. 	

Instantiation with Pedersen commitments. The Pedersen commitment scheme
is a natural candidate for the commitment scheme. When our ring signature
scheme is instantiated with the Pedersen commitment scheme, the public keys
are of the form c = hr, i.e., they are single group elements and the corresponding
secret keys are the discrete logarithms.

The instantiation with Pedersen commitments requires a simple setup that is
realistic in many settings. Consider any organization where a standard group G

is used for all users and their secret keys are discrete logarithms of public group
elements. The ring signature easily fits on top of this setup.

The ring signature scheme yields small signatures. The signature size is log-
arithmic in the number of ring members and instantiated over a compact group
where elements have size O(λ) it is O(λ log N) = O(λ log λ) bits. This compares
favorably with all previous ring signature schemes.

The signer computes log N multi-exponentiations of N elements to generate
a ring signature and the verifier uses a multi-exponentiation of N elements to
verify a ring signature. However, when the same ring is used many times or
there is significant overlap between different rings, the cost of verification can
be reduced to O(N) multiplications in Zq by batching the verification of many
signatures.

5 Zerocoin

Zerocoin enables users to generate their own coins which become valuable by
public consensus by being included on a bulletin board. These coins can then
be spent anonymously with double spending being prevented by a secret serial
number encoded in each coin which is revealed during the spend protocol.

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 275

5.1 Definition

A zerocoin scheme consists of a quadruple of PPT algorithms
(Setup,Mint,Spend,Vfy) for generating a common setup available to all
users, generating coins, generating proofs that a coin was spend to pay for a
transaction and verifying proofs of spending.

– pp ← Setup(1λ). Generates public parameters available to all users.
– (c, skc) ← Mint(pp). Mints a coin c together with a key skc used to authorize

its spending.
– (π, S) ← Spendpp,skc(M, c,C). On input some transaction string M ∈ {0, 1}∗

and an arbitrary set of coins C containing c, the algorithm outputs a proof
π and a serial number S. We require that skc is a valid key for coin c as
produced by Mint(pp) and that c ∈ C.

– b ← Vfypp(M,S,C, π). Verifies a purported proof π of a spend transaction
with string M of a coin with serial number S from the set of coins C.

The transaction string M in the call to Spend is intended, e.g., for the identity
of the transaction recipient, or the terms of a contract.

The quadruple (Setup,Mint,Spend,Vfy) is a zerocoin scheme with perfect
anonymity if it is correct, balanced and anonymous as defined next.

Definition 12 (Perfect correctness). We require that a user can spend any
coin with respect to any set of coins. A zerocoin scheme (Setup,Mint,Spend,Vfy)
has perfect correctness if for all adversaries A

Pr

⎡

⎣
pp ← Setup(1λ); (c, skc) ← Mint(pp)
(M,C) ← A(pp, c, skc)
(π, S) ← Spendpp,skc(M, c,C ∪ {c})

: Vfypp(M,S,C ∪ {c}, π) = 1

⎤

⎦ = 1.

Our balance definition is a strengthening of the original zero-coin definition.
As for ring signature unforgeability, we allow for Corrupt queries that give the
adversary access to the randomness of coins.

Definition 13 (Balance). A zerocoin scheme (Setup,Mint,Spend,Vfy) is bal-
anced (with respect to insider corruption) if an adversary cannot spend more
coins than he controls. Formally, it is balanced when for all probabilistic polyno-
mial time adversaries A

Pr

[
pp ← Setup(1λ)

(c̃1, . . . , c̃m, S1, . . . , Sm, Sm+1) ← ACoinGen,Spend,Corrupt(pp)
: ∀i.Vfypp(Si) = 1

]

≈ 0,

– CoinGen on query number i selects randomness ri, runs (ci, skci) ←
Mint(pp; ri) and returns ci after adding ci to a set C.

– Spend(i,M,C) returns (π, S) ← Spendpp,skci
(M, ci, C), provided (ci, skci)

has been generated by CoinGen and was not leaked using Corrupt(i). The
oracle records (M,S,C, π) in a set T .

– Corrupt(i) provided (ci, skci) has been generated by CoinGen runs (π, S) ←
Spendpp,skci

(“ ”, ci, {ci}) to determine the serial number of the coin and then
returns ri (from which skci can be computed). The oracle removes any tuple
matching the pattern (∗, S, ∗, ∗) from T and records (∗, S, ∗, ∗) in T .

276 J. Groth and M. Kohlweiss

– A outputs c̃1, . . . , c̃m,S1, . . . ,Sm,Sm+1 such that Si = (Mi, Si, Ci, πi), Ci ⊂
C ∪ {c̃1, . . . , c̃m}, no Si matches a pattern in T , and all Si are distinct.

Definition 14 (Perfect anonymity). (Setup,Mint,Spend,Vfy) has perfect
anonymity if a proof of spending with transaction string M for a set of coins
C and coin ci0 looks exactly the same as a proof of spending with transaction
string M for the set C and coin ci1 . This means that the spender’s coin is hidden
among all the honestly generated coins in the set. Formally, we require that for
any adversary A

Pr
[

pp ← Setup(1λ); (M, i0, i1, C) ← AMint(pp)(pp)
b ← {0, 1}; (π, S) ← Spendpp,skcib

(M, c,C) : A(π, S) = b

]

=
1
2
,

where A chooses i0, i1 such that (ci0 , skci0), (ci1 , skci1) have been generated by
the minting oracle Mint(pp) and ci0 , ci1 ∈ C.

5.2 Construction

While a ring-signature scheme can be constructed from an ad-hoc group identifi-
cation scheme using the Fiat-Shamir heuristic, a zerocoin scheme can be obtained
from a linkable ad-hoc group identification scheme. In particular, almost the same
construction can be used to construct zerocoin schemes from a Σ-protocol for
1-out-of-N commitments containing 0. Instead of public keys that are commit-
ments to 0 we now employ coins that are commitments to serial numbers. We
homomorphically subtract a serial number S from all coins used in a statement
by multiplying them with Comck(S; 0)−1 before computing the proof, such that
the commitment with this serial number turns into a commitment to 0. The
zerocoin scheme is described in Fig. 4.

Setup(1λ)

ck ← G(1λ)

H ← H(1λ)
Return pp = (ck, H)

Mint(pp)

r ← Zq

S ← Zq

c ← Comck(S; r)
skc ← (r, S)
Return (c, skc)

Spendpp,skc(M, c, C)

Parse C = (c0, . . . , cN−1)
and skc = (r, S)
with c� = c = Comck(S; r)

c′
i ← ci · Comck(S; 0)−1

a ← P(ck, (c′
0, . . . , c

′
N−1), (�, r))

x = H(ck, M, S, C, a)
z ← P(x)

Return π = (a, z) and S

Vfypp(M, S, C, π)

Parse C = (c0, . . . , cN−1)
Parse π = (a, z)

c′
i ← ci · Comck(S; 0)−1

x = H(ck, M, S, C, a)

Return
V(ck, (c′

0, . . . , c
′
N−1), a, x, z)

Fig. 4. Zerocoin protocol based on Σ-protocol (G, P, V) for 1-out-of-N commitments
containing 0

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 277

Theorem 5. The scheme (Setup,Mint,Spend,Vfy) is a zerocoin scheme with
perfect correctness. It has perfect anonymity if the commitment scheme is per-
fectly hiding. It is balanced in the random oracle model if the commitment scheme
is perfectly hiding and strongly binding.

Proof. Perfect correctness follows from the perfect completeness of the
Σ-protocol. Perfect anonymity follows from the perfect witness indistinguisha-
bility of the Σ-protocol, which guarantees that it is impossible to distinguish
which coin has been used to generate a proof of spending.

To see that the zerocoin scheme is balanced we will rely on the (n+1)-special
soundness of the Σ-protocol and model the hash-function H as a random oracle.
We will show that a zerocoin adversary A, which for a positive polynomial p and
an infinite number of λ ∈ N has more than 1

p(λ) chance of forging more spending
proofs than controlled coins can be used to construct an attack on the strong
binding property of the commitment scheme.

Given the public parameters pp we start by forwarding them to A. We simu-
late the random oracle and the CoinGen, and Corrupt oracles honestly. We use
the SHVZK simulator and the random oracle programmability to answer Spend
queries with fresh random serial numbers. If this fails because the pre-image is
already in the oracle list we abort with “Error 1”. Finally A outputs m coins
(c̃1, . . . , c̃m) and m + 1 valid spending proofs (S1, . . . ,Sm,Sm+1). We will for
simplicity assume in the proof that A checks that all its spendings are valid such
that for each spent coin the random oracle has been queried on H(ck,M, S,C, a).

For each 1 ≤ i ≤ m + 1 we do the following. We find the first entry on
the oracle list where A asked (ck,Mi, Si, Ci, ai) to the random oracle; if we
created the entry ourselves during the simulation of a Spend query we abort
with “Error 2”. We then simulate a fresh copy of A identically up to the point
where the above query was asked and answer with a different uniformly random
value from the oracle. We repeat this process until we obtain ni = �log |Ci| + 1
proofs with the same ai. If the total number of rewindings exceeds 2p(λ)

∑m+1
i=1 ni

we halt. Since the expected number of rewindings for each query is ni, we have
at least 1

2p(λ) chance of getting the desired number of proofs for each i before
running out of time.

If we end up with a collision in the oracle answers such that for any query
i there are two rewindings that yield the same uniformly random challenge x
we abort. However, since we run in polynomial time such collisions happen with
negligible probability, so let us analyze the case where we have ni + 1 distinct
challenges for each proof. We can now use the (ni + 1)-special soundness prop-
erty to break the binding property of the commitment scheme or to get an
opening Comck(0; r) for one of the commitments in the statement, which trans-
lates into an opening Comck(Si; r) for one of the commitments in Ci.

Let us now consider the probability of “Error 1” and “Error 2”. “Error 1”
occurs if A already queried (ck,M, S,C, a) before the simulation of a spend query
but this happens with negligible probability. “Error 2” occurs if the adversary
finds a different answer to a challenge than we used in the simulation, since a
successful attack on the balance property implies one of the spending proofs Si

278 J. Groth and M. Kohlweiss

does not match with a pattern in T . By Lemma 1 this happens with negligible
probability. We will now proceed under the assumption that such errors did not
happen.

Consider the serial numbers of coins in C. As commitments are perfectly hid-
ing and as we revealed freshly sampled random serial numbers in the simulation
of Spend an attacker that uses an honest coin to win the game will with high
probability also use a different serial number. In case of corrupted coins he is
forced by the rules of the security game to always use a different serial number.
This yields a break of the binding property of the commitment scheme.

From now on we assume that A did not use an honest coin. Then there are m
different adversary controlled coins and thus commitments but m + 1 verifying
proofs with distinct serial numbers. By extracting from all m + 1 proofs we are
guaranteed that one commitment is opened twice to different serial numbers,
which yields a break of the binding property of the commitment scheme. �

Further applications. One-out-of-many proofs are compatible with extended
Pedersen commitments, where there is one commitment for a vector of values.
They can thus also be employed in the construction of decentralized anonymous
credentials [GGM14] and zero-cash protocols [BSCG+14].

References

[AOS04] Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of
keys. IEICE Transactions, 87-A(1), 131–140 (2004)

[BDD07] Brands, S., Demuynck, L., De Decker, B.: A Practical System for Globally
Revoking the Unlinkable Pseudonyms of Unknown Users. In: Pieprzyk,
J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586,
pp. 400–415. Springer, Heidelberg (2007)

[BG13] Bayer, S., Groth, J.: Zero-Knowledge Argument for Polynomial Evaluation
with Application to Blacklists. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg
(2013)

[BGLS03] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably
encrypted signatures from bilinear maps. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

[BKM09] Bender, A.: Katz, Jonathan, Morselli, Ruggero: Ring signatures: Stronger
definitions, and constructions without random oracles. Journal of Cryp-
tology 22(1), 114–138 (2009)

[Boy07] Boyen, X.: Mesh Signatures. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: ACM CCS, pp. 62–73 (1993)

[BSCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: Decentralized anonymous payments from bitcoin. In:
IEEE Symposium on Security and Privacy (2014)

[Cam97] Camenisch, J.L.: Efficient and Generalized Group Signatures. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer,
Heidelberg (1997)

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin 279

[CD98] Cramer, R., Damg̊ard, I.B.: Zero-Knowledge Proofs for Finite Field Arith-
metic or: Can Zero-Knowledge Be for Free? In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg
(1998)

[CDS94] Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of Partial Knowledge
and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg
(1994)

[CGS07] Chandran, N., Groth, J., Sahai, A.: Ring Signatures of Sub-linear Size
Without Random Oracles. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer,
Heidelberg (2007)

[CL02] Camenisch, J.L., Lysyanskaya, A.: Dynamic Accumulators and Applica-
tion to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

[Cou01] Courtois, N.T.: Efficient Zero-Knowledge Authentication Based on a Lin-
ear Algebra Problem MinRank. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 402–421. Springer, Heidelberg (2001)

[CWLY06] Chow, S.S.M., Wei, V.K.-W., Liu, J.K., Yuen, T.H.: Ring signatures with-
out random oracles. In: ASIACCS, pp. 297–302 (2006)

[Dam00] Damg̊ard, I.B.: Efficient Concurrent Zero-Knowledge in the Auxiliary
String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 418–430. Springer, Heidelberg (2000)

[DFKP13] Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio coin: build-
ing zerocoin from a succinct pairing-based proof system. In: PETShop at
CCS (2013)

[DKNS04] Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification
in Ad Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

[DMV13] Dagdelen, Ö., Mohassel, P., Venturi, D.: Rate-Limited Secure Function
Evaluation: Definitions and Constructions. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 461–478. Springer, Heidelberg
(2013)

[ElG85] ElGamal, T.: A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory 31(4),
469–472 (1985)

[Fis05] Fischlin, M.: Communication-Efficient Non-interactive Proofs of Knowl-
edge with Online Extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 152–168. Springer, Heidelberg (2005)

[FKMV12] Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the Non-
malleability of the Fiat-Shamir Transform. In: Galbraith, S., Nandi, M.
(eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer,
Heidelberg (2012)

[FS86] Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[GGI+14] Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.: Using
fully homomorphic hybrid encryption to minimize non-interative zero-
knowledge proofs. Journal of Cryptology, pp. 1–24 (2014)

280 J. Groth and M. Kohlweiss

[GGM14] Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials.
In: 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23–26, 2013 (2014)

[GQ88] Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol
Fitted to Security Microprocessor Minimizing Both Transmission and
Memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330,
pp. 123–128. Springer, Heidelberg (1988)

[Gro09] Groth, J.: Linear Algebra with Sub-linear Zero-Knowledge Arguments. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer,
Heidelberg (2009)

[HS03] Herranz, J., Sáez, G.: Forking Lemmas for Ring Signature Schemes. In:
Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904,
pp. 266–279. Springer, Heidelberg (2003)

[IKOS09] Ishai, Y.: Kushilevitz, Eyal, Ostrovsky, Rafail, Sahai, Amit: Zero-
knowledge proofs from secure multiparty computation. SIAM Journal on
Computing 39(3), 1121–1152 (2009)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
STOC, pp. 723–732 (1992)

[Lim00] Lim, C.H.: Efficient multi-exponentiation and application to batch verifi-
cation of digital signatures (2000). Manuscript available at http://dasan.
sejong.ac.kr/chlim/pub/multi exp.ps

[MGGR13] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous
distributed e-cash from bitcoin. In: IEEE Symposium on Security and
Privacy (2013)

[Ngu05] Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer,
Heidelberg (2005)

[Ped91] Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Veri-
fiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 129–140. Springer, Heidelberg (1992)

[RST01] Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer,
Heidelberg (2001)

[San99] Sander, T.: Efficient Accumulators without Trapdoor Extended Abstract.
In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 252–262. Springer, Heidelberg (1999)

[Sch91] Schnorr, C.-P.: Efficient signature generation by smart cards. Journal of
Cryptology 4(3), 161–174 (1991)

[SW07] Shacham, H., Waters, B.: Efficient Ring Signatures Without Random
Oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 166–180. Springer, Heidelberg (2007)

http://dasan.sejong.ac.kr/ chlim/pub/multi_exp.ps
http://dasan.sejong.ac.kr/ chlim/pub/multi_exp.ps

The Bitcoin Backbone Protocol:
Analysis and Applications

Juan Garay1, Aggelos Kiayias2(B), and Nikos Leonardos3

1 Yahoo Labs, Sunnyvale, CA, USA
garay@yahoo-inc.com

2 Department of Informatics and Telecommunications,
University of Athens, Athens, Greece

aggelos@di.uoa.gr
3 LIAFA, Université Paris Diderot–Paris 7, Paris, France

nikos.leonardos@gmail.com

Abstract. Bitcoin is the first and most popular decentralized cryptocur-
rency to date. In this work, we extract and analyze the core of the Bitcoin
protocol, which we term the Bitcoin backbone, and prove two of its fun-
damental properties which we call common prefix and chain quality in
the static setting where the number of players remains fixed. Our proofs
hinge on appropriate and novel assumptions on the “hashing power” of
the adversary relative to network synchronicity; we show our results to
be tight under high synchronization.

Next, we propose and analyze applications that can be built “on top”
of the backbone protocol, specifically focusing on Byzantine agreement
(BA) and on the notion of a public transaction ledger. Regarding BA, we
observe that Nakamoto’s suggestion falls short of solving it, and present
a simple alternative which works assuming that the adversary’s hashing
power is bounded by 1/3. The public transaction ledger captures the
essence of Bitcoin’s operation as a cryptocurrency, in the sense that it
guarantees the liveness and persistence of committed transactions. Based
on this notion we describe and analyze the Bitcoin system as well as a
more elaborate BA protocol, proving them secure assuming high net-
work synchronicity and that the adversary’s hashing power is strictly
less than 1/2, while the adversarial bound needed for security decreases
as the network desynchronizes.

1 Introduction

Bitcoin, introduced in [29], is a decentralized payment system that is based on
maintaining a public transaction ledger in a distributed manner. The ledger
is maintained by anonymous participants (“players”) called miners, executing

A. Kiayias and N. Leonardos—Research supported by ERC project CODAMODA.
N. Leonardos—Work completed while at the National and Kapodistrian University
of Athens.
The full version of this paper can be found at the Cryptology ePrint Archive [22].

International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 281–310, 2015.
DOI: 10.1007/978-3-662-46803-6 10

282 J. Garay et al.

a protocol that maintains and extends a distributed data structure called the
blockchain. The protocol requires from miners to solve a “proof of work” (POW,
aka “cryptographic puzzle” — see, e.g., [4,16,24,38]), which essentially amounts
to brute-forcing a hash inequality based on SHA-256, in order to generate new
blocks for the blockchain. The blocks that comprise the blockchain contain sets of
transactions that are generated at will by owners of bitcoins, who issue transac-
tions that credit any entity of their choice who accepts payments in bitcoin. Pay-
ers broadcast transactions and miners include the transactions they receive into
the blocks they generate. Miners are rewarded for maintaining the blockchain
by receiving bitcoins; it is in this manner bitcoins are created and distributed
among the miners who are the first recipients of newly minted bitcoins.

An important concern in Bitcoin (or any e-payment system for that matter) is
the prevention of double-spending attacks. Specifically, in the context of Bitcoin, a
double-spending attack can occur when the attacker initially credits an account,
receives service or goods by the account holder, but then manages to reorganize
the transaction ledger so that the transaction that credits the account holder is
reverted. In this way, the attacker keeps her bitcoin while receiving services and
thus she is able to spend it again somewhere else.

In [29], Nakamoto provides an initial set of arguments of why the Bitcoin sys-
tem will prevent double-spending attacks. Specifically, he argues that if a payee
waits for the transaction that gives her credit to advance into the blockchain a
number of k blocks, then the probability that an attacker can build an alter-
native blockchain that “reorganizes” the public blockchain (which contains the
credit transaction) drops exponentially with k. Nakamoto argues this by model-
ing the attacker and the set of honest players as two competing actors perform-
ing a random walk moving toward a single direction with probabilistic steps. He
demonstrates that the k blocks the payee waits are enough to ensure a negligible
(in k) probability of the attacker catching up with the honest players.

Nevertheless, the above analysis can be easily seen to be oversimplified: in
particular, it does not account for the fact that in Bitcoin’s decentralized setting
the attacker may attempt to introduce disagreement between the honest miners,
thus splitting their hashing power on different POW instances. Nakamoto himself
appeared to recognize the relevance of agreement in the context of Bitcoin, argu-
ing in a forum post [30] that actually “Bitcoin’s basic concept” of building and
exchanging a blockchain is capable of solving Byzantine agreement (BA) [27,36]
in the presence of an actively malicious adversary.1 However a thorough anal-
ysis establishing the exact security properties of the Bitcoin system has yet to
appear.
1 In [30] Nakamoto refers to the problem as “Byzantine Generals,” which is often

used to refer to the single-source version of the problem, while in fact he is referring
to the case where every party has an input value (Byzantine agreement). In the
cryptographic setting, the problems are not equivalent in terms of the number of
tolerated misbehaving parties t (t < n vs. t < n/2, respectively).

The Bitcoin Backbone Protocol: Analysis and Applications 283

Our Results. In this paper we extract, formally describe, and analyze the core of
the Bitcoin protocol. We call this protocol the Bitcoin backbone, as we describe it
in a way that is versatile and extensible and can be used to solve other problems as
well — not just the problem of maintaining a public transaction ledger. The Bit-
coin backbone protocol is executed by players that build a blockchain following
the Bitcoin source code [31] and allows a set of players to maintain a blockchain
in a distributed fashion. The protocol is parameterized by three external func-
tions V (·), I(·), R(·) which we call the input validation predicate, the input con-
tribution function, and the chain reading function, respectively. At a high level,
V (·) determines the proper structure of the information that is stored into the
blockchain, I(·) specifies how the contents of the blocks are formed by the play-
ers, and R(·) determines how a blockchain is supposed to be interpreted in the
context of the application. Note that the structure, contents, and interpretation
of the blockchain are not important for the description of the backbone proto-
col and are left to be specified by the three external functions above, which are
application-specific (we provide examples of these functions in Section 5).

We analyze the Bitcoin backbone protocol in a static setting when the par-
ticipants operate in a synchronous communication network (more details below
and in Section 2) in the presence of an adversary that controls a subset of the
players. We assume that the protocol is executed by a fixed number n of players;
note, however, that this number is not necessarily known to the protocol par-
ticipants. The players themselves cannot authenticate each other and therefore
there is no way to know the source of a message; we capture this by allowing
the adversary to “spoof” the source address of any message that is delivered.
We assume that messages are eventually delivered and all parties in the net-
work are able to synchronize in the course of a “round.” The notion of round
is not important for the description of the backbone protocol (which can also
be executed in a loose and asynchronous fashion in the same way that Bitcoin
works), however, it is important in terms of Bitcoin’s inherent computational
assumption regarding the players’ ability to produce POWs.

Specifically, we assume that in a single round, all parties involved are allowed
the same number of queries to a cryptographic hash function, as well as to
communicate with the other participants. The hash function is modeled as a
random oracle [6]. For simplicity we assume a “flat model,” where all parties
have the same quota of hashing queries per round, say q; the non-flat model
where parties have differing hashing power capabilities can be easily captured by
clustering the flat-model parties into larger virtual entities that are comprised by
more than one flat-model player. In fact “mining pools” in Bitcoin can be thought
of such aggregations of flat-model players. The adversary itself represents such
pool as it controls t < n players; for this reason, the adversary’s quota per
round is t · q hashing queries. Note that in this setting, the fact t < n/2 directly
corresponds to the adversary controlling strictly less than half of the system’s
total “hashing power” that all players collectively harness, thus, we will use terms
such as “honest majority” and “(1/2)-bounded adversary” interchangeably.

284 J. Garay et al.

In our analysis of the Bitcoin backbone protocol we formalize and prove
two fundamental properties it possesses. The properties are quantified by three
parameters γ, β and f ; γ and β roughly correspond to the collective hashing
power per round of the honest players and the adversary, respectively, while f
represents the expected number of POWs that may be found per round by the
Bitcoin network participants as a whole.

The common prefix property. We prove that if γ > λβ for some λ ∈ [1,∞)
that satisfies λ2 −fλ+1 ≥ 0, then the blockchains maintained by the honest
players will possess a large common prefix. More specifically, if two honest
parties “prune” (i.e., cut off) k blocks from the end of their local chains, the
probability that the resulting pruned chains will not be mutual prefixes of
each other drops exponentially in k (see Definition 2 for the precise formu-
lation). Provided that f is very close to 0 this enables us to choose λ very
close to 1 and thus establish the common prefix property as long as an honest
majority of participants in the flat-model setting is guaranteed (equivalently,
when the adversary controls strictly less than 50% of the hashing power).
On the other hand, when the network “desynchronizes” and f gets closer to
1, achieving a common prefix requires λ → φ, where φ is the golden ratio,
which in turn suggests much stricter bounds on the adversarial behavior (in
fact, the upper bound on the adversary for our analysis approaches 0).
The chain-quality property. We prove that if γ > λβ, for some λ ∈ [1,∞),
then the ratio of blocks in the chain of any honest player that are contributed
by honest players is at least (1 − 1

λ). Again observe that if λ is close to 1,
we obtain that the blockchain maintained by honest players is guaranteed
to have few, but still some, blocks contributed by honest players; a higher
λ would be necessary to guarantee bigger percentages of blocks contributed
by honest players in the blockchain. We also observe that this result is basi-
cally tight, i.e., that the adversary is capable of following a strategy (that
deviates from the strategy of honest players) that enables the introduction
of that many blocks in the blockchain, under a favorable (for the adversary)
assumption on the propagation of adversarial blocks in the network.
While the above two security properties may seem rather abstract since they

refer to properties of the data structure that is maintained distributively by
the parties, we demonstrate that they are in fact quite powerful and show that
the Bitcoin backbone protocol armed with the above properties can be used
as a basis for solving other problems, including the problem of distributively
maintaining a “robust” public transaction ledger. In Figure 1 we show how the
two properties imply the properties of the applications that are explained below.

Byzantine agreement for (1/3)-bounded adversaries. As a first application, we
show how a randomized BA protocol can be built on top of the Bitcoin back-
bone protocol more or less directly, and based solely on the POW assumption.
We instantiate the V (·), I(·), R(·) functions so that parties form blockchains and
act according to the following rules: each party i attempts to insert its own
input vi ∈ {0, 1} into the blockchain; a blockchain is valid only if blocks con-
tain elements in {0, 1}; the protocol terminates when the blockchain has reached

The Bitcoin Backbone Protocol: Analysis and Applications 285

Fig. 1. An overview of the backbone protocol’s applications: Nakamoto’s BA protocol
Πnak

BA , our BA protocols Π
1/3
BA and Π

1/2
BA , and the public ledger protocol ΠPL. All properties

must be satisfied with overwhelming probability. In each box we state the name of the
property as well as the maximum ratio of the adversarial hashing power that we can
prove the protocol withstands (based on the corresponding backbone property). The
value ε stands for a negligible quantity.

a sufficient length; and, the blockchain is read by the honest parties by prun-
ing k elements from its end and returning the majority bit appearing in the
resulting blockchain’s prefix. We show how the common prefix property and the
chain-quality property of the backbone protocol ensure Agreement and Validity
(BA’s basic properties; see Section 2) with high probability, thus turning the
Bitcoin backbone protocol into a probabilistic BA protocol.

Observe that for the above protocol to work the chain-quality property should
ensure that a majority of blocks in the blockchain originate from the honest play-
ers (otherwise Validity is lost). Our chain quality property enables this with over-
whelming probability assuming the adversarial power is bounded by 1/3. This
approach is different from Nakamoto’s proposal [30] for BA, which, as we also
show, only guarantees Validity with overwhelming probability if the adversary
has a negligible amount of hashing power. On the positive side, we stress that
Nakamoto’s protocol fails gracefully when the adversarial power gets close to 50%
as Validity can be shown with constant probability (but not overwhelming).

Public transaction ledgers and BA for honest majority. Next, we focus on how a
“robust public transaction ledger” can be built on top of the Bitcoin backbone.
We instantiate the V (·), I(·), R(·) functions so that parties form blockchains and
act according to the following rules: each party (which in this context is called
a “miner”) receives a set S of transactions on its input tape and attempts to
insert those in its blockchain, omitting any transactions in S that are already
included in it. (A Bitcoin transaction is, for example, a statement of the type
“account A credits account B a z number of bitcoins,” which is signed using the
secret key that corresponds to account A’s Bitcoin address; each account has a
unique Bitcoin address.) Reading a blockchain, on the other hand, amounts to

286 J. Garay et al.

returning the total sequence of transactions that is contained in the blockchain
of the miner (and note that miners may disagree about the chain they report).

We show how the common prefix property and the chain-quality property
ensure two properties needed by the ledger, which we call Persistence and Live-
ness, assuming an honest majority and arbitrary adversarial behavior. Persis-
tence states that once a transaction goes more than k blocks “deep” into the
blockchain of one honest player, then it will be included in every honest player’s
blockchain with overwhelming probability, and it will be assigned a permanent
position in the ledger. On the other hand, Liveness says that all transactions
originating from honest account holders will eventually end up at a depth more
than k blocks in an honest player’s blockchain, and hence the adversary cannot
perform a selective denial of service attack against honest account holders. For
both properties to hold we require an honest majority (i.e., that the adversary’s
hashing power is strictly less than 50%) assuming high network synchronicity
(i.e., that the expected number of POW solutions per round satisfies2 f → 0). If
this is violated, Persistence requires stricter bounds on adversarial hashing power
in order to be preserved following the bounds of the common prefix property.

In the context of Bitcoin, our analysis implies that the Bitcoin backbone
provides an operational transaction ledger under the assumptions: (i) the adver-
sary controls less than half of the total hashing power, and (ii) the network
synchronizes much faster relative to the POW solution rate, (iii) digital signa-
tures cannot be forged. On the other hand, when the network desynchronizes
our results cannot support that the ledger is maintained by assuming an hon-
est majority. This negative result is consistent with the experimental analysis
provided by Decker and Wattenhoffer [15], who predicted a drop below 50% in
the required adversarial bound for any setting when information propagation is
problematic. Our result also provides some justification for the “slow” rate of
10-minute increments used in Bitcoin block generation. Specifically, information
propagation in the Bitcoin network is on the order of seconds3 so the ratio (essen-
tially f) of this time window over the average 10-minute period is reasonably
close to “small” and thus transaction persistence can be shown for roughly an
honest majority. On the other hand, cryptocurrencies including Litecoin, Prime-
coin and others, reacting to the demand to offer faster transaction processing,
opted for a faster response rate (some as small as 1 minute), which results in
more precarious situations, e.g., f > 0.1, which is far from being “negligible” and
thus cannot support our analysis that a common prefix would be guaranteed by
merely assuming an honest majority. We finally note that the Persistence and
Liveness properties we put forth and prove should not be interpreted as proofs
that all Bitcoin’s objectives are met. In particular, they do not guarantee that
miners are properly incentivized to carry out the backbone protocol, and they
can only offer guarantees in a setting of an honest majority amongst a fixed
number of players as opposed to a setting where there is an ever changing pop-
2 Note that we use the notation f → 0 to mean that “f is close to 0” since f will be

a constant in our analysis.
3 See, for example, http://bitcoinstats.com/network/propagation/.

http://bitcoinstats.com/network/propagation/

The Bitcoin Backbone Protocol: Analysis and Applications 287

ulation of parties acting rationally; see related work below as well as Section 6
for further discussion.

Finally, we present a BA protocol assuming an honest majority, by suitably
exploiting the properties of the robust transaction ledger above. The protocol
substitutes Bitcoin’s transactions with a type of transactions that are themselves
based on POWs, and hence uses POWs in two distinct ways: for the mainte-
nance of the ledger and for the generation of the transactions. We show that
the ledger’s Persistence implies Agreement, and that Liveness implies Validity,
because assuming the ledger is maintained for long enough, a majority of trans-
actions originating from the honest parties will be included (despite the fact that
honest parties may control a minority of blocks in the blockchain). The protocol
requires special care in the way it employs POWs since the adversary should be
incapable of “shifting” work between the two POW tasks that it faces in each
round. To solve this problem, we introduce a special strategy for POW-based
protocol composition which we call “2-for-1 POWs.”

Related Work. Realizing a digital currency with a centralized entity but while
achieving strong privacy was proposed early on by Chaum in [13]. A number
of other works improved various aspects of this concept, however the approach
remained centralized. Nakamoto [29] proposed the first decentralized currency
system based on POWs while relaxing the anonymity property of the payment
system to mere pseudonymity. This work was followed by a multitude of other
related proposals including Litecoin4, Primecoin [26], and Zerocash [8], to men-
tion a few. Our analysis of the Bitcoin backbone covers all these works as well,
since they are based on exactly the same protocol.

It is interesting to juxtapose our positive results to the results of Eyal and
Sirer [17], who introduce an attack strategy called “selfish mining” that shows
how the number of blocks contributed to the blockchain by an adversary can
exceed the percentage of the hashing power the adversary possesses. Their results
are consistent and complementary to ours. The crux of the issue is (in our ter-
minology) in terms of the chain-quality property, as its formulation is quite per-
missive: in particular we show that if the adversary controls a suitably bounded
amount of hashing power, then it is also suitably bounded in terms of the number
of blocks it has managed to insert in the blockchain that honest players maintain.
Specifically, recall that we prove that if the hashing power of the adversary sat-
isfies β < 1

λγ (where γ roughly corresponds to the hashing power of the honest
players), then the adversary may control at most a 1

λ percentage of the blocks
in the chain. For instance, if the adversary controls up to 1/3 of the hashing
power (i.e., λ = 2), then it will provably control less than 50% of the blocks in
the honest players’ blockchain. As it can be easily seen, this does not guarantee
that the rate of a party’s hashing power translates to an equal rate of rewards
(recall that in Bitcoin the rewards are linearly proportional to the number of
blocks that a party contributes in the chain). We define as ideal chain quality
the property that for any coalition of parties (following any mining strategy) the
percentage of blocks in the blockchain is exactly proportional to their collective
4 http://www.litecoin.com.

http://www.litecoin.com

288 J. Garay et al.

hashing power. The chain quality property that we prove is not ideal and the
results of [17] show that in fact there is a strategy that magnifies the percentage
of a malicious coalition. Still, their mining attack does much worse than our
bound. To close the gap, in the full version of the paper [22] we sketch a sim-
ple selfish mining strategy that matches our upper bound and hence our chain
quality result is tight in our model5 assuming the number of honest parties is
large.

Byzantine agreement (BA, aka distributed consensus) [27,36] considers a set
of n parties connected by reliable and authenticated pair-wise communication
links and with possible conflicting initial inputs that wish to agree on a com-
mon output in the presence of the disruptive (even malicious) behavior of some
of them. The problem has received a considerable amount of attention under
various models. In this paper we are interested in randomized solutions to the
problem (e.g., [7,11,18,20,25,37])6 as in the particular setting we are in, deter-
ministic BA algorithms are not possible. In more detail, we consider BA in the
anonymous synchronous setting, i.e., when processors do not have identifiers and
cannot correlate messages to their sources, even across rounds. This model for
BA was considered by Okun, who classified it as “anonymous model without
port awareness,” and proved the aforementioned impossibility result, that deter-
ministic algorithms are impossible for even a single failure [33,34]. In addition,
Okun showed that probabilistic BA is feasible by suitably adapting Ben-Or’s
protocol [7] for the standard, non-anonymous setting (cf. [34])7; the protocol,
however, takes exponentially many rounds. It turns out that by additionally
assuming that the parties are “port-aware” (i.e., they can correlate messages
to sources across rounds), deterministic protocols are possible and some more
efficient solutions were proposed in [35].

The anonymous synchronous setting was also considered by Aspnes et al. [2]
who pointed to the potential usefulness of proofs of work (e.g., [4,16,24,38])
as an identity assignment tool, in such a way that the number of identities
assigned to the honest and adversarial parties can be made proportional to their
aggregate computational power, respectively. For example, by assuming that the
adversary’s computational power is less than 50%, one of the algorithms in [2]
results in a number of adversarial identities less than half of that obtained by
the honest parties. By running this procedure in a pre-processing stage, it is
then suggested that a standard authenticated BA protocol could be run. Such
5 Our model allows the unfavorable event of adversarial messages winning all head-

to-head races in terms of delivery with honestly generated messages in any given
round.

6 We remark that, in contrast to the approach used in typical randomized solutions
to the problem, where achieving BA is reduced to (the construction of) a shared
random coin, the probabilistic aspect here stems from the parties’ likelihood of being
able to provide proofs of work. In addition, as our analysis relies on the random
oracle model [6], we are interested in computational/cryptographic solutions to the
problem.

7 Hence, BA in this setting shares a similar profile with BA in the asynchronous
setting [19].

The Bitcoin Backbone Protocol: Analysis and Applications 289

protocols, however, would require the establishment of a consistent PKI (as well
as of digital signatures), details of which are not laid out in [2].

In contrast, and as mentioned above, building on our analysis of the Bitcoin
backbone protocol, we propose two BA protocols solely based on POWs that
operate in O(k) rounds with error probability e−Ω(k). The protocols solve BA
with overwhelming probability under the assumption that the adversary controls
less than 1/3 and 1/2 of the computational power, respectively.

The connection between Bitcoin and probabilistic BA was also considered by
Miller and LaViola in [28] where they take a different approach compared to ours,
by not formalizing how Bitcoin works, but rather only focusing on Nakamoto’s
suggestion for BA [30] as a standalone protocol. As we observe here, and also
recognized in [28], Nakamoto’s protocol does not quite solve BA since it does not
satisfy Validity with overwhelming probability. The exact repercussions of this
fact are left open in [28], while with our analysis, we provide explicit answers
regarding the transaction ledger’s actual properties and the level of security that
the backbone realization can offer.

Finally, related to the anonymous setting, the feasibility of secure compu-
tation without authenticated links was considered by Barak et al. in [5] in a
more extreme model where all messages sent by the parties are controlled by the
adversary and can be tampered with and modified (i.e., not only source addresses
can be “spoofed,” but also messages’ contents can be altered and messages may
not be delivered). It is shown in [5] that it is possible to limit the adversary so
that all he can do is to partition the network into disjoint sets, where in each
set the computation is secure, and also independent of the computation in the
other sets. Evidently, in such system, one cannot hope to build a global ledger.

Organization of the Paper. The rest of the paper is organized as follows. In
Section 2 we present our model within which we formally express the Bitcoin
backbone protocol and prove its basic properties. The backbone protocol builds
“blockchains” based on a cryptographic hash function; we introduce notation for
this data structure as well as the backbone protocol itself in Section 3, followed
by its analysis in Section 4. Section 5 is dedicated to applications. In the full
version we analyze two simple POW-based BA protocols: Nakamoto’s attempt
to BA and our protocol tolerating 1/3 adversarial power. We present the robust
public ledger application (Bitcoin’s essential task — Section 5.1) and our BA
protocol for 1/2 adversarial power (Section 5.2). Due to space limitations, some
of the detailed constructions, various useful remarks, and proofs, can be found
in the full version of this paper [22].

2 Model and Definitions

We describe our protocols in a standard multiparty synchronous communica-
tion setting (e.g., Canetti’s formulation of “real world” execution [12]) with the
relaxation that the underlying communication graph is not fully connected and
messages are delivered through a “diffusion” mechanism that reflects Bitcoin’s
peer-to-peer structure. Our adversarial model in the network is “adaptive,”

290 J. Garay et al.

meaning that the adversary is allowed to take control of parties on the fly, and
“rushing,” meaning that in any given round the adversary gets to see all honest
players’ messages before deciding his strategy, and, furthermore, also allows the
adversary to change the source information on every message. Note that the
adversary cannot change the contents of the messages nor prevent them from
being delivered. Effectively, this parallels communication over TCP/IP in the
Internet where messages between parties are delivered reliably, but nevertheless
malicious parties may “spoof” the source of a message they transmit and make it
appear as originating from an arbitrary party (including another honest party)
in the view of the receiver. This aspect of the communication model, where
processors cannot correlate messages to their sources, even across arounds, was
considered by Okun [33], who classified it as “anonymous model without port
awareness.” In this setting we use Broadcast as the message transmission
command that captures the “send-to-all” functionality allowed by our commu-
nication model. Note that an adversarial sender may abuse Broadcast and
attempt to confuse honest parties by sending and delivering inconsistent mes-
sages to them.

The parties’ inputs are provided by the environment Z which also receives
the parties’ outputs. Parties that receive no input from the environment remain
inactive, in the sense that they will not act when their turn comes in each round.
The environment may provide input to a party at any round and may also modify
that input from round to round. We denote by Input() the input tape of each
party.

In each round, parties are able to read their input tape Input() and com-
munication tape Receive(), perform some computation that will be suitably
restricted (see below) and issue8 a Broadcast message that is guaranteed to
be delivered to all parties in the beginning of the next round. As stated above
the adversary can do multiple broadcasts per round and in fact deliver to each
honest party a different message or even multiple messages.

The term {viewP
Π,A,Z(κ, z)}κ∈N,z∈{0,1}∗ denotes the random variable ensem-

ble describing the view of party P after the completion of an execution with envi-
ronment Z, running protocol Π, and adversary A, on auxiliary input z ∈ {0, 1}∗.
We often drop the parameters κ and z and simply refer to the ensemble by
viewP

Π,A,Z if the meaning is clear from the context. If n parties P1, . . . , Pn exe-
cute Π, the concatenation of the view of all parties 〈viewPi

Π,A,Z〉i=1,...,n is denoted
by viewΠ,A,Z . With foresight, we note that, in contrast to the standard setting
where parties are aware of the number of parties executing the protocol, we are
interested in protocols Π that do not make explicit use of the number of parties
n or their identities. Further, note that because of the unauthenticated nature of
the communication model the parties may never be certain about the number of
participants in a protocol execution. Nonetheless note that the number of parties
is fixed during the course of the protocol execution.
8 For simplicity, we assume that the broadcast operation is atomic and hence the

corruption of a party may not happen while the operation is taking place (cf. [21,23]).

The Bitcoin Backbone Protocol: Analysis and Applications 291

In order to capture the parties’ limited ability to produce POWs, we assume
that all parties may have access to an oracle H(·) and allowed to perform a
number of queries q per round, where q is a function of the security parame-
ter κ; we refer to such parties as q-bounded. Note that this is a “flat-model”
interpretation of the parties’ computation power, where all parties are assumed
equal. In the real world, different honest parties may have different “hashing
power;” nevertheless, our flat-model does not sacrifice generality since one can
imagine that real honest parties are simply clusters of some arbitrary number
of honest flat-model parties. The adversary A is allowed to perform t · q queries
per round, where t ≤ n is the number of corrupted parties. The environment
Z, on the other hand, is not permitted any queries to H(·). The rationale for
this is that we would like to bound the “CPU power” [29] of the adversary to
be proportionate to the number of parties it controls while making it infeasible
for them to be aided by external sources or by transferring the hashing power
potentially invested in concurrent or previous protocol executions. It follows that
in our analysis we will focus on the “standalone” setting, where a single protocol
instance is executed in isolation.

We refer to the above restrictions on the environment, the parties and the
adversary as the q-bounded synchronous setting. The view of the parties partici-
pating in the protocol will be denoted by view

P,H(·)
Π,A,Z(κ, q, z) and the concatena-

tion of all parties’ views by view
H(·)
Π,A,Z(κ, q, z).

In our theorems we will be concerned with properties of protocols Π in the q-
bounded synchronous setting. Such properties will be defined as predicates over
the random variable view

H(·)
Π,A,Z(κ, q, z) by quantifying over all possible adver-

saries A and environments Z. Note that all our protocols will only satisfy prop-
erties with a small probability of error in κ as well as in a parameter k that
can be freely selected in {1, . . . , κ}. The probability space is determined by the
oracle H(·) as well as any random choices made by the protocol itself (if any).
Further details about the model are given in [22].

Byzantine Agreement. As a simple illustration of the formulation above we
define the properties of a Byzantine agreement (BA) protocol.

Definition 1. A protocol Π solves BA in the q-bounded synchronous setting
provided it satisfies the following two properties:

Agreement. There is a round after which all honest parties return the same
output if queried by the environment.
Validity. The output returned by an honest party P equals the input of some
party P ′ that is honest at the round P ’s output is produced.

We note that in our protocols, the participants are capable of detecting
agreement and furthermore they can also detect whether other parties detect
agreement, thus termination can be easily achieved by all honest parties. The
formulation of Validity above is intended to capture security/correctness against
adaptive adversaries. The notion (specifically, the requirement that the output
value be one of the honest parties’ inputs) has also been called “Strong Valid-
ity” [32], but the distinction is only important in the case of non-binary inputs.

292 J. Garay et al.

In either case, it is known that in the synchronous cryptographic setting the
problem has a solution if and only if n > |V |t, where V is the input/decision
domain [20]. Our POW-based protocols work for both versions of the problem.

3 The Bitcoin Backbone Protocol

We start by introducing blockchain notation. Let G(·),H(·) be cryptographic
hash functions with output in {0, 1}κ. A block is any triple of the form B =
〈s, x, ctr〉 where s ∈ {0, 1}κ, x ∈ {0, 1}∗, ctr ∈ N are such that satisfy predicate
validblockD

q (B) defined as (H(ctr,G(s, x)) < D) ∧ (ctr ≤ q).
The parameter D ∈ N is also called the block’s difficulty level. The parameter

q ∈ N is a bound that in the Bitcoin implementation determines the size of
the register ctr; in our treatment we allow this to be arbitrary, and use it to
denote the maximum allowed number of hash queries in a round. We do this
for convenience and our analysis applies in a straightforward manner to the case
that ctr is restricted to the range 0 ≤ ctr < 232 and q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block
is the head of the chain, denoted head(C). Note that the empty string ε is also a
chain; by convention we set head(ε) = ε. A chain C with head(C) = 〈s′, x′, ctr′〉
can be extended to a longer chain by appending a valid block B = 〈s, x, ctr〉
that satisfies s = H(ctr′, G(s′, x′)). In case C = ε, by convention any valid block
of the form 〈s, x, ctr〉 may extend it. In either case we have an extended chain
Cnew = CB that satisfies head(Cnew) = B.

The length of a chain len(C) is its number of blocks. Given a chain C that has
length len(C) = n > 0 we can define a vector xC = 〈x1, . . . , xn〉 that contains
all the x-values that are stored in the chain such that xi is the value of the i-th
block.

Consider a chain C of length m and any nonnegative integer k. We denote
by C�k the chain resulting from the “pruning” the k rightmost blocks. Note that
for k ≥ len(C), C�k = ε. If C1 is a prefix of C2 we write C1
 C2.

We note that Bitcoin uses chains of variable difficulty, i.e., the value D may
change across different blocks within the same chain according to some rule that
is determined by the x values stored in the chain9. This is done to account for
the fact that the number of parties (and hence the total hashing power of the
system) is variable from round to round (as opposed to the unknown but fixed
number of parties n we assume). See Section 6 for further discussion. We are
now ready to describe the protocol.

3.1 The Backbone Protocol

The Bitcoin backbone protocol is executed by an arbitrary number of parties
over an unauthenticated network. For concreteness, we assume that the num-
ber of parties running the protocol is n; however, parties need not be aware of
9 In Bitcoin every 2016 blocks the difficulty is recalibrated according to the time-

stamps stored in the blocks so that the block generation rate remains at approxi-
mately 10 minutes per block.

The Bitcoin Backbone Protocol: Analysis and Applications 293

Fig. 2. Overview of the basic operation of the Bitcoin backbone protocol. Miner
M1 receives from the environment a Read instruction that results in the applica-
tion of the R(·) function on the contents of its chain which are equal to the vector
〈x1, x2, x3, x4, x5〉. Miner M2 receives from the environment an Insert instruction and
uses the function I(·) to determine the value y5 that it subsequently successfully inserts
in its local block chain by solving a proof of work; this results in a broadcast of the
newly extended chain. Finally miner M3 receives the newly extended chain and vali-
dates it both structurally as well as using the input validation predicate V (·). M3 will
adopt this chain if M3 deems it better than its local chain as specified by the backbone
protocol. Note that the joint view of M1, M2, M3 is inconsistent but there is agreement
on the prefix 〈x1, x2, x3〉.

this number when they execute the protocol. As mentioned in Section 2, com-
munication over the network is achieved by utilizing a send-to-all Broadcast
functionality that is available to all parties (and maybe abused by the adversary
in the sense of delivering different messages to different parties). Each party
maintains a blockchain, as defined above. Each party’s chain may be different,
but, as we will prove, under certain well-defined conditions, the chains of honest
parties will share a large common prefix. (Figure 2 depicts the local view of each
party as well as the shared portion of their chains.)

In the protocol description we intentionally avoid specifying the type of values
that parties try to insert in the chain, the type of chain validation they perform
(beyond checking for its structural properties with respect to the hash functions
G(·),H(·)), and the way they interpret the chain. These functions are handled
by the external functions V (·), I(·), R(·) which are specified by the application
that runs “on top” of the backbone protocol.

294 J. Garay et al.

Chain Validation. The first algorithm, called validate performs a validation of
the structural properties of a given chain C. It is given as input the values q and
D, as well as a hash function H(·). It is parameterized by a predicate V (·), called
the input validation predicate. For each block of the chain, the algorithm checks
that the proof of work is properly solved, that the counter ctr does not exceed
q and that the hash of the previous block is properly included in the block. It
further collects all the inputs from the chain’s blocks and assembles them into a
vector xC . If all blocks verify and V (xC) is true then the chain is valid; otherwise
it is rejected. Note that we purposely leave the predicate V (·) undetermined.

Algorithm 1 The chain validation predicate, parameterized by q,D, the hash
functions G(·),H(·), and the input validation predicate V (·). The input is C.

1: function validate(C)
2: b ← V (xC) ∧ (C �= ε)
3: if b = True then � The chain is non-empty and meaningful w.r.t. V (·)
4: 〈s, x, ctr〉 ← head(C)
5: s′ ← H(ctr, G(s, x))
6: repeat
7: 〈s, x, ctr〉 ← head(C)
8: if validblockDq (〈s, x, ctr〉) ∧ (H(ctr, G(s, x)) = s′) then
9: s′ ← s � Retain hash value

10: C ← C�1 � Remove the head from C
11: else
12: b ← False
13: end if
14: until (C = ε) ∨ (b = False)
15: end if
16: return (b)
17: end function

Chain Comparison. The objective of the second algorithm, called maxvalid,
is to find the “best possible” chain when given a set of chains. The algorithm
is straightforward and is parameterized by a max(·) function that applies some
ordering in the space of chains. The most important aspect is the chains’ length,
in which case max(C1, C2) will return the longest of the two. In case len(C1) =
len(C2), some other characteristic can be used to break the tie. In our case,
max(·, ·) will always return the first operand10; alternatively, other options exist,
such as lexicographic order or picking a chain at random. The analysis we will
perform will essentially be independent of the tie-breaking rule11.
10 Note that the way we deploy maxvalid, amounts to parties always giving preference

to their local chain as opposed to any incoming chain. This is consistent with cur-
rent Bitcoin operation; however, some debate about alternate tie-breaking rules has
ensued in Bitcoin forums, e.g., see [14].

11 It is worth to point out that the behavior of maxvalid(·) is associated with some
stability aspects of the backbone protocol and currently there are proposals to modify

The Bitcoin Backbone Protocol: Analysis and Applications 295

Algorithm 2 The function that finds the “best” chain, parameterized by func-
tion max(·). The input is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp ← ε
3: for i = 1 to k do
4: if validate(Ci) then
5: temp ← max(C, temp)
6: end if
7: end for
8: return temp
9: end function

Algorithm 3 The proof of work function, parameterized by q, D and hash
functions H(·), G(·). The input is (x, C).

1: function pow(x, C)
2: if C = ε then � Determine proof of work instance
3: s ← 0
4: else
5: 〈s′, x′, ctr′〉 ← head(C)
6: s ← H(ctr′, G(s′, x′))
7: end if
8: ctr ← 1
9: B ← ε

10: h ← G(s, x)
11: while (ctr ≤ q) do
12: if (H(ctr, h) < D) then � Proof of work succeeded
13: B ← 〈s, x, ctr〉
14: break
15: end if
16: ctr ← ctr + 1
17: end while
18: C ← CB � Extend chain
19: return C
20: end function

Proof of Work. The third algorithm, called pow, is the main “workhorse” of
the backbone protocol. It takes as input a chain and attempts to extend it via
solving a proof of work. This algorithm is parameterized by two hash functions
H(·), G(·) (which in our analysis will be modeled as random oracles)12, as well

it (e.g., by randomizing it — cf. [17]). It is an interesting question whether any
improvement in our results can be achieved by randomizing the maxvalid operation.

12 In reality the same hash function (SHA-256) instantiates both G and H; however,
it is notationally more convenient to consider them as distinct.

296 J. Garay et al.

as two positive integers q,D; q represents the number of times the algorithm is
going to attempt to brute-force the hash function inequality that determines the
POW instance, and D determines the “difficulty” of the POW. The algorithm
works as follows. Given a chain C and a value x to be inserted in the chain,
it hashes these values to obtain h and initializes a counter ctr. Subsequently,
it increments ctr and checks to see whether H(ctr, h) ≤ D; if a suitable ctr is
found then the algorithm succeeds in solving the POW and extends chain C by
one block inserting x as well as ctr (which serves as the POW). If no suitable ctr
is found, the algorithm simply returns the chain unaltered. (See Algorithm 3.)

The Backbone Protocol. Given the three algorithms above, we are now ready
to describe the Bitcoin backbone protocol. This is the protocol that is executed
by the miners and which is assumed to run “indefinitely” (our security analysis
will apply when the total running time is polynomial in κ). It is parameterized
by two functions, the input contribution function I(·) and the chain reading
function R(·), which is applied to the values stored in the chain.

Each miner maintains a local chain C, attempting to extend it by invoking
the POW algorithm pow described above. Prior to updating the chain, the miner
checks its communication tape Receive() to see whether a “better” chain has
been received. This is done using the maxvalid function, depending on which the
local chain is substituted.

The value that the miner attempts to insert in the chain is determined by
function I(·). The input to I(·) is the state st, the current chain C, the contents
of the miner’s input tape Input() (recall that they can be written by the envi-
ronment Z at the beginning of any round) and communication tape Receive(),
as well as the current round number round. The protocol expects two types of
entries in the input tape, Read and (Insert, value); other inputs are ignored.

We purposely leave the functions I(·), R(·) undetermined in the description
of the backbone protocol, as their specifics will vary according to the application.
One may choose, for example, I(·) to be as simple as copying the contents of
the Insert input symbols from Input() into x and keeping st = ε, or performing
a complex operation parsing C and maintaining old inputs in st. We provide
explicit examples of I(·) and R(·) in Section 5. When the input x is determined,
the protocol attempts to insert it into the chain C by invoking pow. In case
the local chain C is modified during the above steps, the protocol transmits
(“broadcasts”) the new chain to the other parties. Finally, in case a Read symbol
is present in the communication tape, the protocol applies function R(·) to its
current chain and writes the result onto the output tape Output(). This way,
the round ends and a new round begins, continuing indefinitely.

3.2 (Desired) Properties of the Backbone Protocol

We next define the two main properties of the backbone protocol that we will
prove. The first property is called the common prefix property and is parameter-
ized by a value k ∈ N. It considers an arbitrary environment and adversary in
the q-bounded setting, and it holds as long as any two honest parties’ chains are
different only in its most recent k blocks.

The Bitcoin Backbone Protocol: Analysis and Applications 297

Algorithm 4 The Bitcoin backbone protocol, parameterized by the input con-
tribution function I(·) and the chain reading function R(·).
1: C ← ε
2: st ← ε
3: round ← 0
4: while True do
5: C̃ ← maxvalid(C, any chain C′ found in Receive())
6: 〈st, x〉 ← I(st, C̃, round, Input(),Receive()) � Determine the x-value.
7: Cnew ← pow(x, C̃)
8: if C �= Cnew then
9: C ← Cnew

10: Broadcast(C)
11: end if
12: round ← round + 1
13: if Input() contains Read then
14: write R(xC) to Output()
15: end if
16: end while

Definition 2 (Common Prefix Property). The common prefix property
Qcp with parameter k ∈ N states that for any pair of honest players P1, P2

maintaining the chains C1, C2 in view
H(·)
Π,A,Z(κ, q, z), it holds that

C�k
1
 C2 and C�k

2
 C1.

The second property, which we call the chain quality property, aims at express-
ing the number of honest-player contributions that are contained in a sufficiently
long and continuous part of an honest player’s chain. Specifically, for parameters
k ∈ N and μ ∈ (0, 1), the rate of adversarial input contributions in a continuous
part of an honest party’s chain is bounded by μ. This is intended to capture
that at any moment that an honest player looks at a sufficiently long part of its
blockchain, that part will be of sufficient “quality,” i.e., the number of adversarial
blocks present in that portion of the chain will be suitably bounded.

Definition 3 (Chain Quality Property). The chain quality property Qcq

with parameters μ ∈ R and 	 ∈ N states that for any honest party P with chain
C in view

H(·)
Π,A,Z(κ, q, z), it holds that for any 	 consecutive blocks of C the ratio

of adversarial blocks is at most μ.

It is easy to see that any set of, say, h honest parties, obtain as many blocks
as their proportion of the total hashing power, i.e., h/n. We say that a protocol
Π satisfies ideal chain quality if this is the case for adversarial parties as well, i.e.,
μ = t/n with respect to those parties. The ideal chain quality is not achieved by
the Bitcoin backbone protocol (see [22]).

298 J. Garay et al.

4 Analysis of the Bitcoin Backbone

We now proceed to the analysis of the protocol presented in the previous section.
Let {0, 1}κ be the range of H(·). Each party tries to provide a POW by issuing
queries to H(·), which succeed with probability p = D/2κ, where D is the difficulty
level. By the properties of the random oracle H(·), any collection of queries will be
treated as a collection of independent Bernoulli trials with success probability p. In
order to support this we will assume that the function I(·) (which determines the
input of the players that is to be inserted in the blockchain) ensures (at least with
overwhelming probability) that the inputs are unique. There are two simple ways
to enforce this: either have I(·) add a sufficiently long random nonce to x, or, in
case parties have unique identities, it may be parameterized by it and introduce
it as part of x. In either case, this value will be ignored by the other functions
V (·), R(·) as it need not be useful in the application. It is easy to see that if a κ-
long nonce is used the output will be unique except for probability at most q2 ·2−κ

where q is the total number of queries submitted to the random oracle; we will
ignore this small term in our analysis.

Definitions and Preliminary Lemmas. Recall that n is the number of par-
ties, t of which can be corrupted by the adversary. We introduce the following
parameters for notational convenience:

α = pq(n − t), β = pqt, γ = α − α2, f = α + β.

The first parameter, α, reflects the hashing power of the honest parties. It is
an upper bound on the expected number of solutions that the honest parties
compute in one round. Similarly, β, is the expected number of solutions that the
corrupted parties compute in one round. Notice the asymmetry that while the
honest parties will not compute more than one solution per round, a corrupted
party may use all its q queries and potentially compute more than one solution.
The parameter γ will serve as a lower bound on the following two probabilities.
The first one is that at least one honest party computes a solution in a round:

1 − (1 − p)q(n−t) ≥ 1 − e−α ≥ γ;

we will call such round a successful round. The second one is the probability that
exactly one honest party does so; we will call such round a uniquely successful
round. We lower bound the probability of such a round by the probability that
out of q(n − t) coin tosses exactly one comes up heads. Thus, the probability is
at least:

(n − t)qp(1 − p)q(n−t)−1 ≥ α(1 − α + p) ≥ γ.

The ratio α/β = (n − t)/t will be of interest for the analysis. When α is
small (as it will be when f is small), then γ ≈ α and we will be justified to
concentrate on the ratio γ/β. To understand how well γ estimates the probability
of a uniquely successful round, call it γ′, we observe the following upper bound:

The Bitcoin Backbone Protocol: Analysis and Applications 299

γ′ = (n − t)(1 − (1 − p)q)(1 − p)q(n−t−1) ≤ (n − t)pqe−α+pq

≤ α(1 − α + pq + (α − pq)2/2) = α − α2(1 − 1
n−t) + α3

2 (1 − 1
n−t)

2,

where we use Bernoulli’s inequality (see [22]). From this it follows that γ′ ≤
α − α2 + α3/2 + O(1/(n − t)).

The following definition will be crucial in the analysis of the common-prefix
property.

Definition 4 (Uniform rounds). We call a round uniform if, at that round,
every honest party invokes the pow(·) algorithm with a chain of the same length
(i.e., len(C̃) at line 7 of Algorithm 4 is the same for all honest parties).

We will call a query of a party successful if it submits a pair (ctr, h) such that
H(ctr, h) ≤ D. Without loss of generality, let P1, . . . , Pt be the set of corrupted
parties (knowledge of this set will not be used in any argument). For each round
i, j ∈ [q], and k ∈ [t], we define Boolean random variables Xi and Zijk ∈ {0, 1}
as follows. If at round i an honest party obtains a POW, then Xi = 1, otherwise
Xi = 0. Regarding the adversary, if at round i, the j-th query of the k-th
corrupted party is successful, then Zijk = 1, otherwise Zijk = 0. Further, if
Xi = 1, we call i a successful round. If a round is uniform (Def. 4) and uniquely
successful, we say it is a uniquely successful uniform round.

Next, we will prove two preliminary lemmas that will be helpful in our analy-
sis. The first one states that, at any round, the length of any honest party’s chain
will be at least as large as the number of successful rounds. As a consequence,
the chain of honest parties will grow at least at the rate of successful rounds.
The second lemma is a simple application of Chernoff bounds and states that,
with high probability, the honest parties will have, at any round, at least λ as
many successful rounds as the adversary has. The usefulness of this lemma will
be in showing that honest parties will be building a blockchain at a rate the
adversary will find it hard to overcome.

Lemma 1. Suppose that at round r the chain of an honest party is of length 	.
Then, after round s ≥ r, the chain of any honest party will have length at least
	 +

∑s
i=r Xi.

Lemma 2. Assume γ ≥ (1+δ)λβ for some δ ∈ (0, 1) and λ ≥ 1. The probability
that during s rounds the number of successful rounds exceeds by a factor (1+ δ

2)λ
the number of solutions computed by the adversary is at least 1 − e−Ω(δ2s).

We are now ready for the treatment of the protocol’s properties outlined in
Section 3.2.

The Common-Prefix Property. This property is established in Theorem 1,
whose main argument is in turn given in Lemma 4. We start with a lemma leading
to that argument. The lemma will be used to argue that uniform rounds favor
the honest parties. Informally, the idea is that a uniquely successful uniform
round forces an adversary trying to make honest parties’ chains “diverge” to

300 J. Garay et al.

produce POWs. In the second lemma we take advantage of this, to show that if
the adversary has appropriately bounded computational power, then there will
be enough uniquely successful uniform rounds to prevent him from mounting a
successful attack on the common-prefix property.

Lemma 3. Consider a uniquely successful uniform round where the honest par-
ties have chains of length 	 − 1. Then, in any subsequent round, there can be at
most one chain C where the 	-th block was contributed by an honest party.

Note that in order for the common-prefix property to be violated at round r,
at least two honest parties should have chains C1 and C2 such that C�k

1 � C2 or
C�k
2 � C1. Therefore, the existence of many blocks computed at uniform rounds

forces the adversary to provide as many blocks of its own. We need to show
that, with high probability the adversary will fail to collect as many solutions
by round r.

We say that two chains diverge at a given round, if the last block of their
common prefix was computed before that round.

Our main lemma below asserts the following. Suppose the protocol is halted
at round r and two honest parties have distinct chains C1 and C2. Then, for s
large enough, the probability that C1 and C2 diverge at round r − s is negligible.
The idea of the proof is to upper bound the number of (valid) broadcasts that
the adversary can perform during these last s rounds. Note that they are in the
order of βs in expectation. The crucial observation here is that if at a given
round the adversary is silent, then a uniform round follows. Therefore we expect
about (1 − β)s uniform rounds, and consequently γ(1 − β)s uniquely-successful
uniform rounds. Recalling Lemma 3, the adversary needs to collect γ(1 − β)s
POWs. Thus, in the lemma’s condition we choose the relation between β and
γ suitably so that the adversary is incapable of accomplishing this task, except
with probability exponentially decreasing in s.

Lemma 4. Assume f < 1 and γ ≥ (1+δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1
such that λ2−fλ−1 ≥ 0. Suppose C1 and C2 are the chains of two honest parties
at round r. Then, for any s ≤ r, the probability that C1 and C2 diverge at round
r − s is at most e−Ω(δ3s).

The above lemma is almost what we need, except that it refers to number
of rounds instead of number of blocks. In order to obtain the common-prefix
property we should use the properties of the blockchains of the parties themselves
as the sole measure of divergence. The next theorem establishes the connection.

Theorem 1. Assume f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and
λ ≥ 1 such that λ2 − fλ − 1 ≥ 0. Let S be the set of the chains of the honest
parties at a given round of the backbone protocol. Then the probability that S does
not satisfy the common-prefix property with parameter k is at most e−Ω(δ3k).

The Bitcoin Backbone Protocol: Analysis and Applications 301

The Chain-Quality Property. We now turn to the chain-quality property
(Definition 3), which the theorem below establishes for a suitable bound on the
number of blocks introduced by the adversary. In [22] we argue that the theorem
is tight via a “selfish mining”-type strategy.

Theorem 2. Assume f < 1 and γ ≥ (1 + δ)λβ for some δ ∈ (0, 1). Suppose
C belongs to an honest party and consider any 	 consecutive blocks of C. The
probability that the adversary has contributed more than (1− δ

3) 1
λ	 of these blocks

is less than e−Ω(δ2�).

From the above theorem, it follows immediately that the chain quality is
satisfied with parameter μ = 1

λ for any segment length 	 and probability that
drops exponentially in 	.

5 Applications

We now show how the Bitcoin backbone protocol armed with the above proper-
ties can be used as a basis for solving other problems. We start with Byzantine
agreement, as suggested by Nakamoto in a forum post [30]13. Having defined the
backbone protocol, this attempt is quite straightforward, and, at a high level,
amounts to parties inserting their input values into blocks, and the validation
predicate requiring that all valid chains contain the same input value, after run-
ning the protocol for a given number of rounds (alternatively, chains acquiring a
certain length). However, we observe that Nakamoto’s suggestion falls short of
satisfying Definition 1, as Validity cannot be guaranteed with high probability,
and present an alternative approach solving BA with an error that decreases
exponentially in the length of the chain. Besides a change in the decision func-
tion, the most important difference is that parties build chains where they insist
on inserting their local inputs, which results in a chain that contains inputs
contributed by all parties. As long as the majority of blocks are contributed by
honest parties one can derive Validity; this happens however provided that the
adversary’s power is bounded by 1/3. Due to space limitations, these protocols
are presented in [22].

Next, we focus on how a “robust public transaction ledger,” Bitcoin’s essen-
tial task, can be built on top of the backbone protocol, followed by a more elab-
orate POW-based BA protocol assuming an honest majority. (Recall Figure 1.)

5.1 Robust Public Transaction Ledgers

A public transaction ledger is defined with respect to a set of valid ledgers L and
a set of valid transactions T , each one possessing an efficient membership test.
A ledger x ∈ L is a vector of sequences of transactions tx ∈ T . Each transaction
tx may be associated with one or more accounts, denoted a1, a2, . . . (Here we

13 We note that Nakamoto’s description is quite informal. Here we make the most
plausible interpretation of it in our framework.

302 J. Garay et al.

will be treating transactions and accounts rather abstractly; see [22] for more
concrete, Bitcoin-like notions.)

The backbone protocol parties, called miners in the context of this section,
process sequences of transactions of the form x = tx1 . . . txe that are supposed
to be incorporated into their local chain C. The input inserted at each block
of the chain C is the sequence x of transactions. Thus, a ledger is a vector of
transaction sequences 〈x1, . . . , xm〉, and a chain C of length m contains the ledger
xC = 〈x1, . . . , xm〉 if the input of the j-th block in C is xj .

The description and properties of the ledger protocol will be expressed rela-
tive to an oracle Txgen which will control a set of accounts by creating them and
issuing transactions on their behalf. In an execution of the backbone protocol,
the environment Z as well as the miners will have access to Txgen. Specifically,
Txgen is a stateful oracle that responds to two types of queries (which we pur-
posely only describe at a high level):

GenAccount(1κ): It generates an account a.
IssueTrans(1κ, t̃x): It returns a transaction tx provided that t̃x is some suit-
ably formed string, or ⊥.
We also consider a symmetric relation on T , denoted by C(·, ·), which indi-

cates when two transactions tx1, tx2 are conflicting. Valid ledgers x ∈ L can
never contain two conflicting transactions. We call oracle Txgen unambiguous if
it holds that for all PPT A, the probability that ATxgen produces a transaction
tx′ such that C(tx′, tx) = 1, for tx issued by Txgen, is negligible in κ.

Finally, a transaction tx is called neutral if C(tx, tx′) = 0 for any other
transaction tx′. The presence of neutral transactions in the ledger can be helpful
for a variety of purposes, as we will see next and in the BA protocol that we
build on top of the ledger. For convenience we will assume that a single random
nonce ρ ∈ {0, 1}κ is also a valid transaction. Nonces will be neutral transactions
and may be included in the ledger for the sole purpose of ensuring independence
between the POW instances solved by the honest parties.

Next, we determine the three functions V (·), I(·), R(·) that will turn the
backbone protocol into ΠPL, a protocol realizing a public transaction ledger.

We now introduce two essential properties for a protocol maintaning a public
transaction ledger: (i) Persistence and (ii) Liveness. In a nutshell, Persistence
states that once an honest player reports a transaction “deep enough” in the
ledger, then all other honest players will report it indefinitely whenever they are
asked, and at exactly the same position in the ledger (essentially, this means
that all honest players agree on all the transactions that took place and in what
order). In a more concrete Bitcoin-like setting (see [22]), Persistence is essential
to ensure that credits are final and that they happened at a certain “time” in
the system’s timeline (which is implicitly defined by the ledger itself).

Note that Persistence is useful but not enough to ensure that the ledger
makes progress, i.e., that transactions are eventually inserted in a chain. This
is captured by the Liveness property, which states that as long as a transac-
tion comes from an honest account holder and is provided by the environment
to all honest players, then it will be inserted into the honest players’ ledgers,

The Bitcoin Backbone Protocol: Analysis and Applications 303

Input validation
predicate V (·)

V (〈x1, . . . , xm〉) is true if and only if the vector 〈x1, . . . , xm〉
is a valid ledger, i.e., 〈x1, . . . , xm〉 ∈ L.

Chain reading func-
tion R(·)

If V (〈x1, . . . , xm〉) = True, the value R(xC) is equal to
〈x1, . . . , xm〉; undefined otherwise.

Input contribution
function I(·)

I(st, C, round, Input()) operates as follows: if the input tape
contains (Insert, v), it parses v as a sequence of transac-
tions and retains the largest subsequence x′ � v that is valid
with respect to xC (and whose transactions are not already
included in xC). Finally, x = tx0x

′ where tx0 is a neutral
random nonce transaction.

Fig. 3. The public transaction ledger protocol ΠPL, built on the Bitcoin backbone

assuming the environment keeps providing it as an input for a sufficient number
of rounds14.

Definition 5. A protocol Π implements a robust public transaction ledger in
the q-bounded synchronous setting if it satisfies the following two properties:

Persistence: Parameterized by k ∈ N (the “depth” parameter), if in a certain
round an honest player reports a ledger that contains a transaction tx in a
block more than k blocks away from the end of the ledger, then tx will always
be reported in the same position in the ledger by any honest player from this
round on.
Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parame-
ters, resp.), provided that a transaction either (i) issued by Txgen, or (ii) is
neutral, is given as input to all honest players continuously for u consecutive
rounds, then there exists an honest party who will report this transaction at
a block more than k blocks from the end of the ledger.

We prove the two properties separately, starting with Persistence. The proof
is based on the common prefix property of the backbone protocol (recall Defini-
tion 2 and Theorem 1).

Lemma 5 (Persistence). Suppose f < 1 and γ ≥ (1 + δ)λβ, for some real
δ ∈ (0, 1) and λ ≥ 1 such that λ2 −fλ−1 ≥ 0. Protocol ΠPL satisfies Persistence
with probability 1 − e−Ω(δ3k), where k is the depth parameter.

We next prove Liveness, which is based on the chain-quality property (recall
Definition 3 and Theorem 2).

14 Observe that here we take the view that new transactions are available to all honest
players and the way they are propagated is handled by the environment that feeds
the backbone protocol. While this makes sense in the honest/malicious cryptographic
model, it has been challenged in a model where all players are rational [3]. Analysis
of the backbone protocol in a setting where transaction propagation is governed by
rational players is beyond the scope of our paper.

304 J. Garay et al.

Lemma 6 (Liveness). Assume f < 1 and γ ≥ (1 + δ)λβ, for some δ ∈
(0, 1), λ ∈ [1,∞) and let k ∈ N. Further, assume oracle Txgen is unambiguous.
Then protocol ΠPL satisfies Liveness with wait time u = 2k/(1 − δ)γ and depth
parameter k with probability at least 1 − e−Ω(δ2k).

In [22] we show how to instantiate the public transaction ledger for Bitcoin,
by defining the specific sets of accounts, transactions and valid ledgers.

5.2 Byzantine Agreement for Honest Majority

We now use the public transaction ledger formulation to achieve POW-based
BA for an honest majority by properly instantiating the notion of a transaction,
thus improving on the simple BA protocol tolerating a (1/3)-bounded adversary
presented in the full version [22].

Here we consider a set of valid ledgers L that contain sequences of transac-
tions of the form 〈nonce, v, ctr〉, and satisfy the predicate:

(H1(ctr,G(nonce, v)) < D) ∧ (ctr ≤ q), (1)
where H1(·), G(·) are two hash functions as in the definition of the backbone
protocol, and v ∈ {0, 1} is a party’s input. (Recall that D is the difficulty level
and q determines how many calls to H1(·) a party is allowed to make per round.)
To distinguish the oracles, in this section we will use H0(·) to refer to the oracle
used in the backbone protocol.

For the ledger we consider in this section, there will be no accounts and all
transactions will be neutral — i.e., the conflict predicate C(·, ·) will be false for
all pairs of transactions.

We first provide a high level description of the BA protocol assuming parties
have q queries per round to each oracle H0(·),H1(·). We then show how to use
a single oracle H(·) to achieve the combined functionality of both of them while
only using q queries per round.

At a high level, the protocol, Π
1/2
BA, works as follows:

Operation: In each round, parties run two protocols in parallel. The first
protocol is protocol ΠPL (Fig. 3), which maintains the transaction ledger
and requires q queries to the oracle H0(·). The second process is a “trans-
action production” protocol Πtx, which continuously generates transactions
satisfying predicate (1).15 The protocol makes q queries to the H1(·) oracle.
Termination: When the ledger reaches 2k blocks, a party prunes the last
k blocks, collects all the unique POW transactions that are present in the
ledger and returns the majority bit from the bits occuring in these trans-
actions (note that uniqueness takes also the nonce of each transaction into
account).

As described, protocol Π
1/2
BA does not conform to the q-bounded setting since

parties require q queries to oracle H0(·) and q queries to oracle H1(·) to perform
the computation of a single round (the setting imposes a bound of q queries to

15 See [22] for detailed specification.

The Bitcoin Backbone Protocol: Analysis and Applications 305

a single oracle for all parties). Note that a näıve simulation of H0(·),H1(·) by a
single oracle H(·) in the (2q)-bounded setting (e.g., by setting Hb(x) = H(b, x))
would violate the restriction imposed on each oracle individually, since nothing
would prevent the adversary, for example, from querying H0(·) 2q times. Next, we
show how we can combine the two protocols into a single protocol that utilizes at
most q queries to a single random oracle in a way that the adversary will remain
q-bounded for each oracle. This transformation, explained below, completes the
description of Π

1/2
BA.

2-for-1 POWs. We now tackle the problem of how to turn a protocol operation
that uses two separate POW subprocedures involving two distinct and indepen-
dent oracles H0(·),H1(·) into a protocol that utilizes a single oracle H(·) for a
total number of q queries per round. Our transformation is general and works
for any pair of protocols that utilize H0(·),H1(·), provided that certain condi-
tions are met (which are satisfied by protocol Π

1/2
BA above). In more detail, we

consider two protocols Π0,Π1 that utilize a POW step as shown in Algorithm 5
in Figure 4.

Algorithm 5 POW-based protocol
fragment of Πb, b ∈ {0, 1} parame-
terized by q, D and hash functions
Hb(·), G(·), b ∈ {0, 1}. The value wb is
determined from the protocol’s context.
1: . . . � Value wb is determined
2: ctr ← 1
3: B ← ε
4: hb ← G(wb)
5: while (ctr ≤ q) do
6: if (H(ctr, hb) < D) then
7: Bb ← 〈wb, ctr〉
8: break
9: end if

10: ctr ← ctr + 1
11: end while
12: . . . � The POW B is exploited here

Algorithm 6 The double proof of work
function, parameterized by q, D and
hash functions H(·), G(·) that substi-
tutes steps 2-11 of two POW-based pro-
tocols.

1: function double-pow(w0, w1)
2: B0, B1 ← ε
3: ctr ← 1
4: h ← 〈G(w0), G(w1)〉
5: while (ctr ≤ q) do
6: u ← H(ctr, h)
7: if (u < D) ∧ (B0 = ε) then
8: B0 ← 〈w0, ctr, G(w1)〉
9: end if

10: if ([u]R < D) ∧ (B1 = ε) then
11: B1 ← 〈w1, ctr, G(w0)〉
12: end if
13: ctr ← ctr + 1
14: end while
15: return 〈B0, B1〉
16: end function

Fig. 4. The 2-for-1 POW transformation

In order to achieve composition of the two protocols Π0,Π1 in the q-bounded
setting with access to a single oracle H(·), we will substitute steps 2-11 in both
protocols with a call to a new function, double-pow, defined below. First, observe
that in Πb, b ∈ {0, 1}, the POW steps 2-11 operate with input wb and produce

306 J. Garay et al.

output in Bb if the POW succeeds. The probability of obtaining a solution is
D · 2−κ.

The modification consists in changing the structure of the POWs from pairs
of the form (w, ctr) to triples of the form (w, ctr, label), where label is a κ-bit
string that is neutral from the point of view of the proof. This will further require
the modification of the verification step for POWs in both protocols Π0,Π1 in
the following manner.

Any verification step in Π0 of a POW 〈w0, ctr〉 which is of the form H(ctr,
G(w0)) < D, will now operate with a POW of the form 〈w0, ctr, label〉 and
will verify the relation

H(ctr, 〈G(w0), label〉) < D.

Similarly for Π1: it will now verify the relation

[H(ctr, 〈label,G(w1)〉)]R < D,

where [a]R denotes the reverse of the bitstring a.
This parallel composition strategy in the form of function double-pow is shown

in Algorithm 6. Either or both the solutions it returns, B0, B1, may be empty if
no solution is found.

Protocol Π
1/2
BA will employ double-pow, which will substitute the individual

POW operation of the two underlying protocols Π0,Π1 as defined in lines 2-11
of Algorithm 5. The correctness of the above composition strategy follows from
the following simple observation.

Lemma 7. Consider a uniform random variable U over the integers in [0, 2κ)
and an integer D such that D = 2t for some positive integer t < κ/2. Then,
the events (U < D) and ([U]R < D) are independent and they both occur with
probability D · 2−κ.

Theorem 3. Assume f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and
λ ≥ 1 such that λ2 − fλ − 1 ≥ 0. Protocol Π

1/2
BA solves BA in O(k) rounds with

probability at least 1 − e−Ω(δ3k).

6 Summary and Directions for Future Work

In this paper we presented a formal treatment of the Bitcoin backbone, the pro-
tocol used at the core of Bitcoin’s transaction ledger. We expressed and proved
two properties of the backbone protocol — “common prefix” and “chain qual-
ity” — and showed how they can be used as foundations for designing Byzantine
agreement and robust public transaction ledger protocols. Our results show that
an honest majority among the (equally equipped) participants suffices, assum-
ing the network synchronizes much faster than the proof of work rate (f → 0
in our notation) and the proper inputs (e.g., transactions) are available to the

The Bitcoin Backbone Protocol: Analysis and Applications 307

honest majority16, while the bound on the adversary for honest parties to reach
agreement degenerates as f gets larger.

While these are encouraging results, we have demonstrated deviations that
are of concern for the proper operation of Bitcoin. Importantly, we show that as
the network ceases to synchronize fast enough compared to the proof-of-work rate
(i.e., the worst-case time that takes honest players to “hear” each other becomes
substantial compared to the time it takes to solve a proof of work), the honest
majority property ceases to hold and the bound offered by our analysis that is
required to obtain a robust transaction ledger approaches 0 as f approaches 1.
Note that the effects of bad synchronization is in the maintenance of the common
prefix property, which is the critical property for showing agreement.

A second important concern is regarding the chain quality property, where
our results show that if an adversary controls a hashing power corresponding to
β then the ratio of the blocks it can contribute to the blockchain is bounded but
can be strictly bigger than β. When β gets close to 1/2, our bounds show that
the honest players’ contributions approach 0 in our security model.

The above caveats in the two basic properties of the backbone have repercus-
sions on the Persistence and Liveness properties of the Bitcoin ledger. Firstly,
they illustrate that fast information propagation amongst honest players is essen-
tial for transaction persistence. Secondly, they show that transaction liveness
becomes more fragile as the adversarial power gets close to 1/2. Note that we
achieve Liveness for any adversarial bound less than 1/2 but we do not assume
any upper bound on the number of transactions that may be inserted in a block17;
it is obvious that the fewer blocks the honest miners get into the blockchain the
harder may be for a transaction to get through. Furthermore, the fact that chain
quality demonstrably fails to preserve a one-to-one correspondence between a
party’s hashing power and the ratio of its contributions to the ledger point to
the fact that Bitcoin’s rewarding mechanism is not incentive compatible (cf.
[17]). Assuming the hashing power of the honest parties γ exceeds the adver-
sary’s hashing power β by a factor λ, we show that the adversary’s contributions
to the ledger are bounded by 1/λ — a result we show to be tight in our rushing
adversary model. In this way our results flesh out the incentive compatibility
problems of the Bitcoin backbone, but (on a more positive note) they also point
to the fact that honest hashing-power majority is sufficient to maintain the public
ledger (under favorable network conditions), and hence suggest that the Bitcoin
protocol can work as long as the majority of the miners want it to work (without
taking into account the rationality of their decision).

The above observations apply to the setting where the number of participants
is fixed. In the dynamic setting (where the number of parties running the protocol
may change from round to round), given the flat model that we consider, the

16 Our formalization is a way to formally express what perhaps was Nakamoto’s intu-
ition when he wrote about Bitcoin that “it takes advantage of the nature of infor-
mation being easy to spread but hard to stifle” [31].

17 In the current Bitcoin implementation there is an upper bound of 1MB for blocks,
hence the number transactions per block is limited.

308 J. Garay et al.

difficulty D of the blockchain may be calibrated according to the number of
players n that are active in the system. If D is set by an omniscient trusted
party then the analysis carries in a straightforward way but otherwise, if D is
somehow calculated by the parties themselves, the adversary can try to exploit
its calculation. Note that in this case the maxvalid function would need to take
the difficulty’s variability into account and thus choose the “most difficult” chain
(as opposed to the longest). Comparing chains based on difficulty is simply done
by computing the length of a chain by counting blocks proportionally to how
difficult they are (for example, a block whose difficulty is two times larger than
a given difficulty value would contribute twice as much in “length”).

Interesting open questions include the security analysis of the Bitcoin back-
bone protocol in a rational setting as opposed to honest/malicious, in the dynamic
setting where the parties themselves attempt to recalibrate the difficulty based
on some metric (e.g., the time that has passed during the generation of a certain
number of blocks), and in a concurrent/universal composition setting as opposed
to standalone. Furthermore, the substitution of the random oracle assumption
with a suitable computational assumption, as well as the development of back-
bone modifications that improve its characteristics in terms of common prefix and
chain quality. In terms of the ledger application, transaction processing times (i.e.,
reducing the wait time parameter u in the Liveness property) is also an interesting
question with implications to practice (since real world payment systems benefit
greatly from fast transaction confirmation and verification). In all these cases, our
work offers a formal foundation that allows analyzing the security properties of
“tweaks” on the backbone protocol (such as the randomization rule of [17] or the
“GHOST” rule in [39] used in ethereum18) towards meeting the above goals.

Another set of interesting directions include the development of other appli-
cations that may be built on top of the backbone protocol such as secure multi-
party computation with properties such as fairness and guaranteed output deliv-
ery (current works in this direction, e.g., [1,9,10], assume an idealized version of
the Bitcoin system).

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Secure multi-
party computations on bitcoin. IEEE Security and Privacy (2014)

2. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged
Byzantine impostors. Technical Report YALEU/DCS/TR-1332, Yale University
Department of Computer Science (July 2005)

3. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On bitcoin and red balloons. In:
Faltings, B., Leyton-Brown, K., Ipeirotis, P. (eds.) EC, pp. 56–73. ACM (2012)

4. Back, A.: Hashcash (1997). http://www.cypherspace.org/hashcash
5. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without

authentication. J. Cryptology 24(4), 720–760 (2011)

18 https://www.ethereum.org/

http://www.cypherspace.org/hashcash
https://www.ethereum.org/

The Bitcoin Backbone Protocol: Analysis and Applications 309

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: CCS 1993, Proceedings of the 1st ACM Conference on
Computer and Communications Security, Fairfax, Virginia, USA, November 3–5,
pp. 62–73 (1993)

7. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.)
PODC, pp. 27–30. ACM (1983)

8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. IACR Cryptology
ePrint Archive 2014, 349 (2014)

9. Bentov, I., Kumaresan, R.: How to Use Bitcoin to Design Fair Protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014)

10. Bentov, I., Kumaresan, R.: How to use bitcoin to incentivize correct computations.
ACM CCS 2014, (2014)

11. Berman, P., Garay, J.A.: Randomized distributed agreement revisited. In: Digest of
Papers: FTCS-23, The Twenty-Third Annual International Symposium on Fault-
Tolerant Computing, Toulouse, France, June 22–24, pp. 412–419. IEEE Computer
Society (1993)

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

13. Chaum, D.: Blind signatures for untraceable payments, pp. 199–203 (1982)
14. Cunicula. Why doesn’t bitcoin use a tiebreaking rule when comparing chains of

equal length? (2013) https://bitcointalk.org/index.php?topic=355644.0
15. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:

P2P, pp. 1–10. IEEE (2013)
16. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brickell,

E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)
17. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:

Financial Cryptography (2014)
18. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzan-

tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)
19. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus

with one faulty process. J. ACM 32(2), 374–382 (1985)
20. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential

consensus. In: Borowsky, E., Rajsbaum, S. (eds.) PODC, pp. 211–220. ACM (2003)
21. Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.: Adaptively secure broadcast,

revisited. In: Gavoille, C., Fraigniaud, P., (eds.) Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose,
CA, USA, June 6–8, pp. 179–186. ACM (2011)

22. Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis
and Applications. IACR Cryptology ePrint Archive 2014, 765 (2014)

23. Hirt, M., Zikas, V.: Adaptively Secure Broadcast. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010)

24. Juels, A., Brainard, J.G.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: NDSS. The Internet Society (1999)

25. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agree-
ment. Journal of Computer and System Sciences 75(2), 91–112 (2009)

26. King, S.: Primecoin: Cryptocurrency with prime number proof-of-work (July 2013).
http://primecoin.io/bin/primecoin-paper.pdf

https://bitcointalk.org/index.php?topic=355644.0
http://primecoin.io/bin/primecoin-paper.pdf

310 J. Garay et al.

27. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

28. Miller, A., LaViola, J.J.: Anonymous byzantine consensus from moderately-hard
puzzles: A model for bitcoin. University of Central Florida. Tech Report, CS-TR-
14-01 (April 2014)

29. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. (2008)
http://bitcoin.org/bitcoin.pdf

30. Nakamoto, S.: The proof-of-work chain is a solution to the byzantine generals’
problem. The Cryptography Mailing List (November 2008). https://www.
mail-archive.com/cryptography@metzdowd.com/msg09997.html

31. Nakamoto, S.: Bitcoin open source implementation of p2p currency (February
2009). http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source

32. Neiger, G.: Distributed consensus revisited. Inf. Process. Lett. 49(4), 195–201
(1994)

33. Okun, M.: Agreement Among Unacquainted Byzantine Generals. In: Fraigniaud,
P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 499–500. Springer, Heidelberg (2005)

34. Okun, M.: Distributed computing among unacquainted processors in the presence
of byzantine distributed computing among unacquainted processors in the presence
of byzantine failures. Ph.D. Thesis Hebrew University of Jerusalem (2005)

35. Okun, M., Barak, A.: Efficient algorithms for anonymous byzantine agreement.
Theor. Comp. Sys. 42(2), 222–238 (2008)

36. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

37. Rabin, M.O.: Randomized byzantine generals. In: FOCS, pp. 403–409. IEEE
Computer Society (1983)

38. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA (1996)

39. Sompolinsky, Y., Zohar, A.: Accelerating bitcoin’s transaction processing. fast
money grows on trees, not chains. IACR Cryptology ePrint Archive, 2013:881
(2013)

http://bitcoin.org/bitcoin.pdf
https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source

Secret Sharing

Linear Secret Sharing Schemes from Error
Correcting Codes and Universal Hash Functions

Ronald Cramer1,2(B), Ivan Bjerre Damg̊ard3,
Nico Döttling3, Serge Fehr1, and Gabriele Spini1,2,4

1 CWI, Amsterdam, Netherlands
{Ronald.Cramer,Serge.Fehr}@cwi.nl

2 Mathematical Institute, Leiden University, Leiden, Netherlands
cramer@math.leidenuniv.nl

3 Department of Computer Science, Aarhus University, Aarhus C, Denmark
{ivan,nico.doettling}@cs.au.dk

4 Institut de Mathématiques de Bordeaux, University of Bordeaux,
UMR 5251 Talence, France

G.Spini@cwi.nl

Abstract. We present a novel method for constructing linear secret
sharing schemes (LSSS) from linear error correcting codes and linear
universal hash functions in a blackbox way. The main advantage of this
new construction is that the privacy property of the resulting secret
sharing scheme essentially becomes independent of the code we use, only
depending on its rate. This allows us to fully harness the algorithmic
properties of recent code constructions such as efficient encoding and
decoding or efficient list-decoding. Choosing the error correcting codes
and universal hash functions involved carefully, we obtain solutions to
the following open problems:

– A linear near-threshold secret sharing scheme with both linear time
sharing and reconstruction algorithms and large secrets (i.e. secrets
of size Ω(n)). Thus, the computational overhead per shared bit in
this scheme is constant.

– An efficiently reconstructible robust secret sharing scheme for n/3 ≤
t < (1−ε)·n/2 corrupted players (for any constant ε > 0) with shares
of optimal size O(1 + λ/n) and secrets of size Ω(n + λ), where λ is
the security parameter.

Keywords: Linear Secret Sharing Schemes · Linear Time Sharing ·
Robust Secret Sharing

I.B. Damg̊ard—The authors acknowledge support from the Danish National
Research Foundation and The National Science Foundation of China (under the
grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Com-
putation, within which part of this work was performed; and also from the CFEM
research center (supported by the Danish Strategic Research Council) within which
part of this work was performed.
N. Döttling—Supported by European Research Commission Starting Grant no.
279447.
G. Spini—Supported by the Algant-Doc doctoral program.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 313–336, 2015.
DOI: 10.1007/978-3-662-46803-6 11

314 R. Cramer et al.

1 Introduction

Linear secret sharing schemes (LSSS) are the central building block for informat-
ion-theoretically secure cryptographic primitives such as multiparty computa-
tion, robust secret sharing, as well as for two-party primitives via the so-called
MPC-in-the-head paradigm [16,18]. Naturally, the computational efficiency of
the LSSS directly influences the efficiency of the implied primitive, so it is inter-
esting to construct schemes where both sharing a secret and reconstruction is as
efficient as possible.

It is well known that there is a natural correspondence between linear codes
and LSSS [4,21]. Since there is a rich body of literature about codes with efficient
encoding and decoding, one might hope that this would lead to very efficient
secret sharing schemes, ideally with linear time (in the number of players) to
share and reconstruct a secret. However, for applications, one typically needs an
LSSS where both the privacy and reconstruction thresholds are constant frac-
tions of the number of players. If we try to reach this goal using the standard
method for going from codes to LSSSs, we will need (a family of) codes where
both the code itself and its dual are (asymptotically) good codes. But unfortu-
nately, the known codes that are efficiently (linear time) en- and decodable have
very bad dual codes. Therefore it was previously an open problem to construct
LSSSs with linear time sharing and reconstruction.

In this paper, we suggest a new paradigm for constructing LSSSs based on
linear codes and linear universal hash functions. The main advantage of this
approach is that it gives us a good privacy threshold no matter which code we
start from. We can therefore use the full power of the known constructions of
linear codes with efficient encoding and (list) decoding. We also suggest several
applications of the technique. We remark however that there is no obvious way
to obtain multiplicative secret sharing schemes via our construction paradigm.
But constructions of general MPC protocols such as [4,6] require multiplicative
secret sharing schemes. Thus, we consider it an interesting open problem to
extend our construction paradigm to multiplicative secret sharing schemes.

A paradigm for building LSSS. First we note that any LSSS can be seen as being
derived from a linear code C of length n and a linear function h : F

k �→ F
�. We

obtain an LSSS as follows: to share a secret s ∈ F
� we choose at random x ∈ F

k

subject to h(x) = s, encode x in C, and give each entry in the resulting codeword
to a player, where in the most general case, each player may receive more than
one value.

We can now say which player subsets can reconstruct the secret and which
sets have no information: Let A be a player subset and let ΠA : F

k �→ F
|A|

be the linear mapping that on input x outputs the shares given to A when x
is the randomness used in the LSSS. Then A can reconstruct the secret if and
only if dim(h(ker(ΠA))) = 0, and A has no information on the secret if and only
if dim(h(ker(ΠA))) = �, i.e., h is surjective on ker(ΠA). This characterisation
was first given in Theorem 10 of [4], which we have rephrased here to match
our notation (see also Lemma 3 below). It was noted already in [4] that the

Linear Secret Sharing Schemes from Error Correcting Codes 315

privacy threshold can be estimated via the dual distance, but that this bound
is not sharp. Nevertheless, previous works have often established privacy for
LSSS schemes from the dual distance. A notable exception of this is [2], where
large privacy of certain secret sharing schemes is established via a field descent
technique, but the dual distance of the corresponding code is merely constant.
Thus [2] uses the characterization of [4] in its full generality, however for a very
special class of codes. As we shall see, the dual distance bound is generally very
far from being sharp, and there is great potential in avoiding the dual distance
approach.

We now explain our construction of an LSSS from a code C, such that some
constant fraction of the players can reconstruct and any set smaller than some
(other) constant fraction has no information. Reconstruction is easy to handle:
if we have at least r shares, then we can compute the secret if C allows decoding
from n − r erasures, and r can be Θ(n) if C is (asymptotically) good. However,
it much less clear what we can say about privacy in general (e.g., if C has a bad
dual distance).

Our main idea for solving this is to notice that a player set A has partial
information on x from its shares, namely x must be in some subspace defined by
the shares known to A. Now, suppose we choose h at random from a universal
family of linear hash functions. It is well known that such a random function
acts as a good randomness extractor, so we may hope that A has little or no
information on h(x), at least if A is small enough.

In the following, we show how this intuition can be formalised. It turns out
that because the hash functions are linear and the partially unknown string
resides in a subspace, things are even better than what the general theory of
extractors would predict: fix any small enough corrupted set A and choose h at
random from the family. Then with very high probability, the h we have chosen
will satisfy that h(x) is uniform in the view of the adversary. We can then
simply apply a union bound over all the desired privacy sets to conclude that a
random choice of h yields an LSSS with privacy threshold a constant fraction of
the number of players. For constant rate (family of) codes, this fraction can be
chosen as a constant arbitrarily close to the rate.

We emphasise that the random choice of h only needs to be done once and for
all when the LSSS is set up. Then, with overwhelming probability, the LSSS we
have constructed has perfect privacy and reconstruction as required for an LSSS.
If we were willing to spend a very long (exponential) time in the set-up phase we
could verify that a candidate h indeed gives us privacy for all the desired player
sets, and this way remove the probabilistic aspect from the construction.

1.1 Applications

Linear time LSSS Clearly, for any linear secret sharing scheme a secret can be
shared using a quadratic amount (in the number of players) of field operations.
In the light of the above mentioned linear time encodable codes, the question
arises whether secret sharing schemes with a linear time sharing phase can be
constructed. Recently, Druk and Ishai [9] provided a construction of a linear

316 R. Cramer et al.

time near-threshold linear secret sharing scheme. For a near-threshold scheme,
one can choose the (relative) privacy and reconstruction thresholds as arbitrar-
ily close constants. Their main tool for this construction is a family of linear
time encodable linear codes with good distance and good dual distance. Their
construction of linear secret sharing schemes follows Massey’s blueprint [21], i.e.
exploiting the dual distance to establish privacy. The codes constructed in [9]
are not known to be linear time erasure decodable. While their construction
allows to compute shares in linear time, reconstruction is more expensive for
their scheme, i.e. it requires quadratic time with preprocessing. However more
importantly, the secret space of their scheme is limited to a constant number of
bits. But this means that in their scheme the computational overhead per shared
bit is linear, rather than constant.

Following the paradigm sketched in the last paragraph, we obtain a linear
time near-threshold LSSS with secrets of size Ω(n). In particular, the compu-
tational overhead per shared bit in this scheme is constant. Just like in the
scheme of Druk and Ishai [9], we can choose the (relative) privacy and recon-
struction thresholds as arbitrarily close constants. Our construction uses the
following ideas. First, we construct a linear secret sharing scheme where sharing
and reconstruction of random secrets can be performed in linear time. We do this
by plugging a linear time computable linear hash function and linear time en-
and decodable code C into our basic construction. We can then choose a random
x and compute a (random) secret s = h(x) and a share vector c by encoding
x in C. Note that this can be done without having to invert the hash function
which would be too inefficient with known constructions.

We bootstrap this into a standard secret sharing scheme by the following
trick. To share a given secret s, first compute a random secret s′ together with
corresponding shares c. We can now use s′ to one-time-pad encrypt s, i.e. com-
pute a ciphertext y = s + s′. To distribute y to the players, we disperse y, i.e.
we encode y using a linear time encodable erasure correcting code and share
the codeword symbols among the players. Note that we have effectively shared
y non-privately, but this is not a problem as y is not private anyway. Thus, the
overall overhead to share the secret s is linear. To reconstruct, we can use lin-
ear time erasure correction algorithms (provided by the codes). Therefore, both
sharing and reconstruction can be performed in linear time.

Linear time UC commitments. In a commitment scheme, a prover commits to
a bit string towards a verifier who does not learn the string at commitment
time, yet the prover is committed to his choice and can later reveal it to the
verifier in a convincing way. Universally composable (UC) commitments provide
the strongest possible security for commitments schemes, guaranteeing secu-
rity in any context. Until recently, we only knew UC commitments based on
expensive public-key primitives. In [8] (see also [10]), Damg̊ard et al. propose
a general scheme that constructs UC commitments with small amortised over-
head from any sufficiently good LSSS, assuming a once-and-for-all preprocessing
phase where some oblivious transfers are executed. They show how to get UC
commitments with linear complexity for the verifier (linear in the size of the

Linear Secret Sharing Schemes from Error Correcting Codes 317

string committed to), but left it as an open problem to get linear complexity
also for the prover. This problem was solved very recently by Cascudo et al. in
[1] using a new construction of a non-threshold LSSS and a new variant of the
MPC-in-the-head paradigm.

Our results can be used to give an alternative and simpler solution: since the
efficiency of the original construction in [8] is inherited directly from the under-
lying LSSS, we immediately get linear complexity for both parties by simply
plugging in our linear time LSSS. It is also interesting to note that if our scheme
can be made multiplicative, then this and another result from [8] would imme-
diately imply non-interactive UC Zero-Knowledge proofs with linear complexity
for both prover and verifier.

Robust secret sharing with constant size shares. A robust secret sharing scheme
is a secret sharing scheme with the additional property that reconstruction of
the secret is possible (and, ideally, computationally feasible) even if some of the
shares are incorrect. More concretely, a robust secret sharing scheme satisfies
standard t-privacy as well as robust-reconstructability, where the latter means
that given all n shares, the secret can be reconstructed even if t of them come
from dishonest players and may be incorrect. In this work, we consider robust
secret sharing in the setting of a non-rushing adversary; this means that the
dishonest players have to announce their incorrect shares before getting to see
the shares of the honest players.

If t < n/3 then standard error correction provides robustness for free. On
the other extreme, if t ≥ n/2 then robust secret sharing is not possible. Thus,
the interesting range is n/3 ≤ t < n/2. Here, robust secret sharing is possible,
but we have to allow a small error probability of 2−λ, and additional “checking
data” needs to be appended to the actual shares. The goal is to optimize the
tradeoff between error probability and the increase in share size.

Cramer, Damg̊ard and Fehr [5] gave a construction of a robust secret sharing
scheme based on so-called Algebraic Manipulation Detection (AMD) codes (even
though the terms robust secret sharing and AMD codes were not used there).
Roughly speaking, an AMD code enables to detect certain manipulations —
namely algebraic manipulations — of encoded messages. The robust secret shar-
ing scheme then simply works by sharing an AMD encoding of the secret (using
a standard linear secret sharing scheme), and the robust reconstruction is by
going through all sets of possibly honest players, reconstruct from their shares,
and verify correctness of the reconstructed AMD encoding. By making the AMD
codeword large enough, resulting in an overhead in the share size of O(λ + n),
this procedure finds the correct secret except with probability 2−λ. An obvious
downside of this scheme is that the robust reconstruction procedure is not effi-
cient, as there is an exponential number of sets of possibly honest players to be
considered.

In [3], based on very different techniques, Cevallos, Fehr, Ostrovsky and
Rabani proposed a robust secret sharing scheme, with similar parameters: over-
head O(λ + n log n) for an error probability of 2−λ, but which offers an efficient
robust reconstruction. Both these schemes work for any fraction t/n < 1

2 , and

318 R. Cramer et al.

neither becomes significantly better in terms of this error probability versus the
size of the checking data if we bound t/n away from 1

2 by a small constant.
Based on our new paradigm for building LSSSs, we construct a new robust

secret sharing scheme. Our construction works when t/n is bounded away from
1
2 by an arbitrary small positive constant. In this regime, we can consider ramp
schemes, for which there is a gap between the privacy threshold t and the stan-
dard reconstruction threshold r, while still allowing for robust reconstruction in
the presence of t faulty shares. In ramp schemes, the (actual) shares may be
smaller than the secret (by a factor r − t). In our construction, we can addi-
tionally reduce the size of the checking data per share; this is in contrast to the
above mentioned constructions when generalized to ramp schemes where the size
of the checking data stays O(λ).

Our construction can be seen as an efficient variant of the approach from [5].
We will secret share an AMD codeword, but this time using our construction
of LSSS from above and choosing the underlying code C to be one that allows
efficient list decoding. This means that we can consider the contributed shares as
a codeword with errors and apply the list decoding algorithm. This will return
a small (i.e., polynomial size) list of possible code words from C, each of these
will suggest a possible AMD codeword. Thus, we only have a small number of
candidates to check for correctness of the AMD encoding. This not only provides
efficiency of the reconstruction (in contrast to the scheme of [5]), but also allows
better parameters: using a highly list-decodable code as underlying code in our
construction, we obtain that for every constant τ < 1

2 there exists a robust secret
sharing scheme for threshold t = τn that supports secrets of size linear in n + λ
and has shares of size O(1 + λ/n), i.e. the size of the shares actually decreases
in n.

2 Preliminaries

We will assume basic concepts from linear algebra such as linear maps and their
kernels. For any prime power q, we will denote the finite field with q elements by
Fq. We will denote vectors x with boldface letters. We will also consider vectors
whose components are vectors, e.g. a vector x ∈ (Fm

q)n whose components are
F

m
q vectors. For a set A ⊆ {1, . . . , n} we will use ΠA : (Fm

q)n → (Fm
q)|A| to

denote the projection onto the components in A. For a vector x ∈ (Fm
q)n and a

set A ⊆ {1, . . . , n} we will also use the notation xA = ΠA(x).

2.1 Probability

The binary entropy function H : [0, 1/2] → [0, 1] is given by H(0) := 0 and
H(x) := −x · log(x) − (1 − x) · log(1 − x) for x ∈ (0, 1/2]. For 0 ≤ t/n ≤ 1/2
we can upper bound binomial coefficients by

(
n
t

) ≤ 2H(t/n)·n, for a proof see e.g.
[22]. We will also use the Markov inequality (see also [22]).

Linear Secret Sharing Schemes from Error Correcting Codes 319

Lemma 1 (Markov Inequality). Let X be a non-negative random variable
defined on R for which E[X] exists. Then it holds for every x > 0 that

Pr[X ≥ x] ≤ E[X]
x

.

Corollary 1. Let X be a random variable with finite support X ⊆ R which
assumes its minimum at x0 and its second smallest value at x1 > x0. Then it
holds that

E[X] ≥ x0 + (x1 − x0) · Pr[X �= x0].

Proof. The expectation E[X] exists as X has a finite support. Since X assumes
its minimum at x0 it holds that X−x0 is non-negative. By the Markov inequality
it holds that

Pr[X �= x0] = Pr[X ≥ x1] = Pr[X − x0 ≥ x1 − x0] ≤ E[X] − x0

x1 − x0
,

as E[X − x0] = E[X] − x0 by linearity of expectation. Thus the claim follows.

2.2 Universal Hashing

Universal hash functions are a central tool in information-theoretically secure
cryptography.

Definition 1 (Universal Hash Functions). Let X and Y be finite sets. A
family H of functions X → Y is called family of universal hash functions if it
holds for all distinct x, x′ ∈ X that

Pr
H←$H

[H(x) = H(x′)] ≤ 1
|Y| ,

where H is chosen uniformly from H.

For families H of Fq-linear functions, meaning that both X and Y are Fq-vector
spaces and each h ∈ H is a Fq-linear function, the condition of Definition 1 can
be rephrased as follows: H is a family of universal hash functions if and only if
for all x ∈ X \ {0}

Pr
H←$H

[H(x) = 0] ≤ 1
|Y| .

We then naturally refer to H as a family of Fq-linear universal hash functions.
There are various efficient families of linear universal hash functions, such

random matrices or random Toeplitz matrices (see e.g. [20]). Ishai et al. [16]
constructed a linear time computable family of linear universal hash functions,
c.f. Section 5.

320 R. Cramer et al.

2.3 Error Correcting Codes

We assume basic concepts from coding theory. Error correcting codes are used to
encode messages in such a way that the encoding is resilient against certain types
of errors. Formally, a Fq-linear error correcting code C of length n and dimension
k is a k-dimensional subspace of F

n
q . We say that C is an m−folded code, if C is a

k-dimensional subspace of (Fm
q)n. This basically means that the alphabet of C is

F
m
q rather than Fq. An m-folded code C of length n can be naturally interpreted

as a code of length m · n. In this view, the possible error patterns in a folded
code are burst errors rather than symbol errors. The rate R of an m-folded [n, k]
code is defined by R = k

mn , i.e. 1/R is the factor by which the code expands
messages. We will denote distinguished encoding and decoding algorithms1 for
a linear code C by C.Encode and C.Decode. We will denote the (generalized)
Hamming distance for vectors x,y ∈ (Fm

q)n by d(x,y) = |{i | xi �= yi}|, i.e.
d(x,y) counts in how many blocks xi,yi ∈ F

m
q the vectors x and y differ.

2.4 Secret Sharing Schemes

A secret sharing scheme allows a dealer to distribute a secret to n players in
such a way that the players of any large enough set of players can jointly recon-
struct the secret from their shares, whereas small coalitions of players have no
information on the secret. A secret sharing scheme is called linear, if any linear
combination of valid share vectors results in a valid share vector of the linear
combination applied to the respective secrets. This is summarized in the follow-
ing definition.

Definition 2. Let Fq be a finite field, and let l, m and t < r ≤ n be posi-
tive integers. A linear secret sharing scheme LSSS consists of two algorithms
LSSS.Share(·) and LSSS.Reconstruct(·). For every s ∈ F

l
q, LSSS.Share(s) outputs

a vector of shares c = (c1, . . . , cn) ∈ (Fm
q)n. We require the following three

properties.

– t-privacy: for all s, s′ ∈ F
l
q and every A ∈ {1, . . . , n} of size |A| = t, the

restrictions cA and c′
A of c = LSSS.Share(s) and c′ = LSSS.Share(s′) to the

coordinates in A have the same probability distribution.
– r-reconstructability: for every s ∈ F

l
q and every Q ∈ {1, . . . , n} of size |Q| =

r, it holds for c = LSSS.Share(s) that LSSS.Reconstruct(c̃) = s, where c̃ is a
vector with c̃Q = cQ and c̃Q̄ only contains erasure symbols, i.e. c̃Q̄ = ⊥|Q̄|.

– Linearity: If c1 and c2 are respective sharings of s1 and s2, then αc1 + βc2
is a sharing of αs1 + βs2.

We emphasize that we do not require r = t + 1; secret sharing schemes with
r > t+1 are sometimes referred to as ramp schemes. We may use this terminology
sometimes to emphasize that we allow r > t+1. For schemes with r = t+1, it is
well known that the size of the secret cannot be bigger than the size of a share,
1 such as linear time algorithms for these tasks

Linear Secret Sharing Schemes from Error Correcting Codes 321

i.e., l ≤ m. For a ramp schemes, this generalizes to l ≤ (r − t) · m. The rate of a
secret sharing scheme is given by ρ = l

mn . Using this terminology, the above can
be expressed as follows. For any n-player ramp scheme that satisfies τn-privacy
and σn-reconstructability, the rate of the scheme can be at most ρ ≤ σ − τ .

3 Subspace Surjectivity of Linear Universal Hash
Functions

In this section, we provide a general theorem about universal hash functions.
The theorem states that if we fix an r-dimensional subspace V of F

k
q , then a

randomly chosen linear universal hash function H from a family which maps F
k
q

to F
l
q is surjective on V , except with probability q−(r−l). By saying that H is

surjective on V , we mean that H(V) = F
l
q.

This theorem can be interpreted in information theoretic terms. We can iden-
tify a subspace V with the uniform distribution v on V and consider v as a linear
source of randomness. Since V has dimension l, the q-ary min-entropy of v is at
least l. From this point of view, the theorem states that universal hash functions
are good extractors for linear sources, i.e. they extract such sources perfectly,
except with probability q−(r−l). Perfect extraction in this context means that
H(v) is exactly the uniform distribution. The leftover hash lemma [15] states
that universal hash functions yield good extractors for sources with a sufficient
amount of min-entropy. We can actually establish a weaker version of this theo-
rem based on the leftover hash lemma. However, the parameters obtained by our
theorem are tighter than parameters obtainable by the leftover hash lemma. The
best probability of failure obtainable via the leftover hash lemma is q−(r−l)/2,
which is worse than the bound given in the theorem.

Theorem 1. Let H be a family of linear universal hash functions F
k
q → F

l
q.

Further let V be a subspace of F
k
q of dimension at least r. Let H ←$ H be chosen

uniformly at random and then fixed. Then it holds that H(V) = F
l
q (i.e. H is

surjective on V), except with probability q−(r−l) over the choice of H.

Proof. For any linear function h ∈ H, it holds that h(V) = F
l
q if and only if

dim(V ∩ ker(h)) = dim(V)− l, which is equivalent to |V ∩ ker(h)| = |V |
ql . Now, let

H ←$ H and define the random variable X = |V ∩ ker(H)| (depending on H). By
the above it holds that H is surjective on V if and only if X = |V |/ql. For each
v ∈ V , define the random variable

Xv =

{
1 if H(v) = 0
0 otherwise

Clearly, it holds that X =
∑

v∈V Xv. Since X0 = 1, we have that X = 1 +
∑

v∈V \{0} Xv. Moreover, X assumes its minimum at x0 = |V |
ql and its second

322 R. Cramer et al.

smallest value at x1 = |V |
ql−1 . We will now compute the expectation of X. For

each v ∈ V \{0} it holds that

E[Xv] = Pr
H←$H

[H(v) = 0] ≤ q−l,

as H is a family of universal hash functions. By linearity of expectation, it holds
that

E[X] = 1 +
∑

v∈V \{0}
E[Xv] = 1 +

|V | − 1
ql

.

By Corollary 1 and the fact that |V | ≥ qr it holds that

Pr
[

X �= |V |
ql

]

≤
1 + |V |−1

ql − |V |
ql

|V |
ql−1 − |V |

ql

=
ql − 1

|V | · (q − 1)

≤ ql

|V | ≤ q−(r−l).

Consequently, it holds that H(V) = F
l
q, except with probability q−(k−l).

Given a collection V of at most r-dimensional subspaces of F
k, taking a union

bound over all V ∈ V and applying Theorem 1 yields that it holds for all V ∈ V
that H(V) = F

l
q, except with probability |V| · q−(r−l). This is summarized in

Corollary 2.

Corollary 2. Let H be a family of linear universal hash functions F
k
q → F

l
q and

V be a collection of subspaces of F
k
q , each of dimension at least r. Let H ←$ H

be chosen uniformly at random and then fixed. Then it holds for all V ∈ V that
H(V) = F

l
q (i.e. H is surjective on V), except with probability |V| · q−(r−l) over

the choice of H.

4 Linear Secret Sharing Schemes from Codes and
Universal Hash Functions

In this section, we will provide our basic LSSS construction. In the following
sections, we will provide applications based on this scheme. The scheme LSSSC,h

is defined by an m-folded Fq-linear code C and an Fq-linear surjective function h.
A secret s is shared by first sampling a random preimage x of s under the function
h, and then encoding x using the (folded) code C, obtaining a share vector
c ∈ (Fm

q)n. Each share ci is a vector in F
m
q . Notice that we can efficienly sample

a preimage x of s under the function h by using basic linear algebra, since the
function h is linear. More specifically, we can sample such an x by first computing
any preimage x1 of s and then randomize x1 by adding a uniformly random

Linear Secret Sharing Schemes from Error Correcting Codes 323

x2 ←$ ker(h) to x1, i.e. setting x ← x1+x2. Though this sharing algorithm Share
is efficient, it still involves a rather costly inversion of h, which has overhead
O(n3) when implemented naively. Thus, even if both h and C.Encode can be
computed super-efficiently (e.g. in linear time), Share does not achieve the same
efficiency.

In order to take full advantage of super-efficient h and C.Encode, we will
provide an alternative sharing algorithm ShareRandom which computes both h
and ShareRandom only in forward direction. Thus, if both h and C.Encode are
super-efficient, then so is ShareRandom. However, ShareRandom only generates
shares for randomly chosen secrets. In Section 5 we show how a secret sharing
scheme with super-efficient random sharing algorithm can be bootstrapped into
a secret sharing scheme with super-efficient standard sharing algorithm Share.
We will now provide our construction.

Construction 1. Let C be an m-folded Fq-linear [n, k] code with encoding and
decoding procedures C.Encode and C.Decode and let h : F

k
q → F

l
q be a surjective

Fq-linear function. The secret sharing scheme LSSSC,h is given by the following
sharing and reconstruction procedures.

Share(s):
x ←$ h−1(s)
c ← C.Encode(x)
Output share vector c

Reconstruct(c̃):
x ← C.Decode(c̃)
If x = ⊥

Output ⊥
s ← h(x)
Output s

ShareRandom():

x ←$ F
k
q

c ← C.Encode(x)
s ← h(x)
Output secret s

and share vector c

First observe that the linearity of LSSSC,h follows straightforwardly from the
linearity of the code C and the function h. Moreover, all reconstruction properties
of LSSSC,h follow from corresponding properties of the code C.

Lemma 2. Let C be an m-folded Fq-linear [n, k] code and h : F
k
q → F

l
q be a sur-

jective Fq-linear function. Secrets are elements of F
l
q, whereas (single) shares are

elements of F
m
q . Assume that C.Decode can correct n−r erasures. Then LSSSC,h

is an n-player LSSS which fulfills the linearity and r-reconstructability proper-
ties. Moreover, ShareRandom implements the same functionality as choosing s
at random, computing c ← Share(s) and outputting (s, c).

Proof. First notice that since h is surjective, the sharing algorithm Share can
compute a share vector c for every message s ∈ F

l
q. The Fq-linearity property

follows directly from the Fq-linearity if C and h. If r shares are given, we can
assemble a vector c̃ that has at most n − r erasures. Consequently, C.Decode(c̃)
will recover the correct x and we can compute the secret s = h(x). To see

324 R. Cramer et al.

that ShareRandom computes the same functionality as choosing s uniformly at
random and computing c ← Share(s), notice that the x computed by Share(s)
can be written as x = x1 + x2, where x1 is a vector uniquely determined by
s in an l-dimensional subspace W of F

k
q with h(W) = F

l
q and x2 is chosen

uniformly at random from ker(h). Thus if s is chosen uniformly at random, then
x is also distributed uniformly at random in F

k
q , just as the x computed by

ShareRandom(). The claim follows.

We will now determine under which conditions LSSSC,h fulfills the privacy
property. In the first step, we first derive a general condition on the function h
which is actually a necessary and sufficient requirement. In the second step, we
will show that this requirement is met with overwhelming probability when the
function h is chosen randomly from a family of universal hash functions. To sim-
plify the analysis, we will identify the linear function h : F

k
q → F

l
q with another

linear function Φ : C → F
l
q. This is always possible as C is a k-dimensional

Fq-vectorspace and thus isomorphic to F
k
q . In fact, we can basically define the

function Φ by Φ(c) = h(C.Decode(c)) for all c ∈ C. We will denote projections
of shares to a subset A of players by ΠA : C → (Fm

q)|A|.

Lemma 3. A set A ⊆ {1, . . . , n} has privacy if and only if Φ(ker(ΠA)) = F
l
q,

where ker(ΠA) = {x ∈ C | ΠA(x) = 0}.
Proof. First assume that Φ(ker(ΠA)) = F

l
q. Fix a subspace W ⊆ ker(ΠA) of

dimension l such that Φ(W) = F
l
q. As W ∩ ker(Φ) = {0}, it holds that C =

W ⊕ ker(Φ), i.e. we can write every c ∈ C as c = cs + cr, for unique cs ∈ W and
cr ∈ ker(Φ). Now, let c = Share(s). As c ∈ C, we can write c as

c = cs + cr,

where cs ∈ W is a unique vector such that Φ(cs) = s and cr is chosen uniformly
at random from ker(Φ). Now, it holds that

ΠA(c) = ΠA(cs + cr) = ΠA(cs) + ΠA(cr) = ΠA(cr),

as cs ∈ W ⊆ ker(ΠA). Thus, ΠA(c) = ΠA(cr) is distributed independently of s
and we can conclude that privacy holds.

For the converse direction, assume that Φ(ker(ΠA)) � F
l
q, i.e. there exists

an s∗ ∈ F
l
q\Φ(ker(ΠA)). We will now show that if c = Share(0) and c∗ =

Share(s∗), then the projections ΠA(c) and ΠA(c∗) can always be distinguished.
We claim that ΠA(c∗) /∈ ΠA(ker(Φ)). To see this, assume towards contradiction
that ΠA(c∗) ∈ ΠA(ker(Φ)). Then there exists a h ∈ ker(Φ) such that ΠA(c∗) =
ΠA(h). Since ΠA is linear, it holds that ΠA(c∗ − h) = 0 and consequently
c∗ − h ∈ ker(ΠA). From this, however follows

Φ(c∗) = Φ(c∗ − h) ∈ Φ(ker(ΠA)),

ash ∈ ker(Φ). This however contradicts s∗ = Φ(c∗) /∈ Φ(ker(ΠA)) and we conclude
that it must hold that ΠA(c∗) /∈ ΠA(ker(Φ)). Finally, notice that c ∈ ker(Φ) as

Linear Secret Sharing Schemes from Error Correcting Codes 325

c = Share(0).Thus it holds thatΠA(c) ∈ ΠA(ker(Φ)).We can therefore easily (and
perfectly) distinguish ΠA(c) from ΠA(c∗) by checking whether it is in ΠA(ker(Φ)).
This contradicts the privacy property and we can conclude the proof.

We will now use the characterization of Lemma 3 and Corollary 2 to show
that if we instantiate h with a randomly chosen linear universal hash function,
then we obtain a good linear secret sharing scheme.

Lemma 4. Let C be a m-folded Fq-linear [n, k] code and let H be a family of Fq-
linear universal hash functions F

k
q → F

l
q. Let R = k

mn be the rate of C, let ρ = l
nm

and let τ > 0 and η > 0 be constants. Given that R ≥ ρ+η+τ+H(τ)/(m·log(q)),
then there exists a h ∈ H such that LSSSC,h has τn-privacy. Moreover, such a
function h can be chosen randomly with success-probability 1 − q−ηnm.

Proof. Let Ψ : C → F
k
q be the isomorphism that corresponds to the function

C.Decode(·). For each set A ⊆ {1, . . . , n} of size at most t = τn, it holds that
ker(ΠA) ⊆ C is a subspace of dimension at least k − mt, as C has dimension
k and the image of ΠA has dimension at most mt. Thus, Ψ(ker(ΠA)) ⊆ F

k
q

also has dimension at least k − mt, as Ψ is an isomorphism. Consequently V =
{Ψ(ker(ΠA)) | A ∈ {1, . . . , n}, |A| = t} is a collection of subspaces of dimension
at least k − mt. Moreover, as A is taken over all subsets of {1, . . . , n} of size t,
it holds that

|V| ≤
(

n

t

)

≤ 2H(t/n)·n = 2H(τ)·n = q
H(τ)

m log(q) ·mn.

By Lemma 3, LSSSC,h has privacy for all A with |A| ≤ t if it holds h(V) = F
l
q

for each V ∈ V. By Corollary 2, it holds for all V ∈ V that H(V) = F
l
q, except

with probability

|V| · q−(k−mt−l) ≤ q−(k−mt−l− H(τ)
m log(q) ·mn) = q−(R−ρ−τ− H(τ)

m log(q))·mn ≤ q−ηmn,

over the choice of H ←$ H, as R ≥ ρ + η + τ + H(τ)/(m · log(q)). Thus, LSSSC,H

has t-privacy, except with probability q−ηmn over the choice of H ←$ H. This
concludes the proof.

Remark 1. It can be seen rather easily that the function H in Lemma 4 must
either be chosen randomly or depending on the code C, i.e. for any fixed function
h we can find a code C∗ such that LSSSC∗,h does not provide any privacy. Thus, to
obtain a construction that is oblivious of the specific code we use, randomization
is strictly necessary.

5 Linear Time Sharing and Reconstruction

As our first application, we will show how to construct a linear secret sharing
scheme with linear time sharing and reconstruction phase. Choosing a linear
time encodable code C and a linear time computable function h yields that the
sharing procedure ShareRandom of Construction 1 is also linear time computable.

326 R. Cramer et al.

This is, in turn, not true for the sharing procedure Share of Construction 1. We
circumvent this issue by providing a sharing algorithm that first computes shares
of a random secret s′ using ShareRandom, then uses s′ to one-time-pad encrypt
the actual secret s. The ciphertext s + s′ is then distributed by applying a
standard information dispersal technique, i.e. we encode s + s′ using an erasure
correcting code and append the codeword symbols to the shares. This basically
results in a doubling of the share size. This technique bears resemblance to
the construction of Krawczyk [19]. However, while in [19] information dispersal
is applied to reduce the share size (using a computationally secure encryption
scheme), we use this technique to salvage the linear time computability of the
(non-random) sharing algorithm.

We will start by providing an instantiation of Construction 1 with linear
time random sharing and reconstruction algorithms. Moreover, the scheme we
provide will be near -threshold. We need both a family of linear time computable
universal hash functions and linear time en- and decodable codes. Ishai et al. [17]
construct a family of F2-linear universal hash functions which can be computed
in linear time. This result has recently been generalized by Druk and Ishai [9]
to any finite field, but the binary case of [17] is sufficient for our application.

Theorem 2 (Ishai et al. [17]). For every l < k, there exists a family F2-
linear universal hash functions H mapping F

k
2 to F

l
2 which can be computed in

time linear in k.

There is a large corpus of work dealing with linear time encodable codes,
starting with the seminal work of Spielman [24]. To the best of our knowledge,
the currently best known parameters can be obtained using a family of codes by
Guruswami and Indyk [11].

Theorem 3 (Guruswami-Indyk [11]). For every rate R and every suffi-
ciently small ε (depending on R) there exists an infinite family of m-folded F2-
linear codes {Cn} of rate R, where m = O

(
log(1/ε)

ε4R

)
, such that the codes from

the family can be encoded in linear time and also decoded in linear time from an
1 − R − ε fraction of erasures.

We will now instantiate the the linear secret sharing scheme LSSSC,h of Con-
struction 1 with the codes from Theorem 3 and universal hash functions from
Theorem 2.

Lemma 5. For all constants 0 < τ < σ < 1 and every rate ρ < σ−τ there exists
an infinite family of F2-linear secret schemes {LSSS1n} with τn-privacy, σn-
reconstructability and rate ρ. The shares of LSSS1n have size m bits, where m > 0
is a constant. Furthermore, LSSS1n.ShareRandom and LSSS1n.Reconstruct can be
computed in linear time. Moreover, such a scheme LSSS1n can be constructed
randomly with success-probability 1−2−ηmn (for some constant η > 0 depending
on τ , σ and ρ).

Proof. We will instantiate the linear secret sharing scheme LSSSC,h from Con-
struction 1 with a linear code Cn from the family {Cn} of F2-linear codes from

Linear Secret Sharing Schemes from Error Correcting Codes 327

Theorem 3 and a function h from the family H of F2-linear universal hash func-
tions from Theorem 2. We now show how to choose the parameters for this
instantiation.

By Lemma 4, in order to obtain a secret sharing scheme with τn privacy, we
need to select an m-folded code Cn from the above family of length n and rate R
such that R ≥ ρ+η + τ +H(τ)/m for an arbitrarily small constant η. Moreover,
as by Lemma 2 we ne need to be able to correct a 1 − σ fraction of erasures
to have σn reconstruction, we need to choose Cn such that 1 − σ ≤ 1 − R − ε,
equivalently R ≤ σ − ε. Both constraints together yield

σ − τ − ρ ≥ ε + η +
H(τ)

m
. (1)

Since σ > τ and σ−τ > ρ, the left hand side of Inequality 1 is a constant greater
than 0. It is clear from Theorem 3 that we can choose the folding parameter m
as an arbitrarily large constant, thereby also decreasing ε. Consequently, the
terms ε and H(τ)

m become arbitrarily small and we can choose a sufficiently small
η > 0 such that the inequality is satisfied. Setting R = σ−ε we found admissible
constants R,m, η, ε > 0 such that R ≥ ρ+η+τ +H(τ)/m. Now let Cn be a code
of length n from the above family that matches these constants. By Theorem 3
such a code exists for all constants R,m, ε > 0. Now let H be a the family of
universal hash functions from 2 mapping F

Rmn
2 to F

ρmn
2 obtained by Theorem

2. By Lemma 4, choosing the universal hash function H randomly from H yields
that LSSSC,H has τ privacy, except with probability 2−ηmn.

Notice that the computational overhead per shared bit in LSSS1n is constant for
ShareRandom. We will now bootstrap the scheme LSSS1n given by Lemma 5 into a
secret sharing scheme with linear time sharing and reconstruction algorithms.

Construction 2. Let C′ be a (folded) Fq-linear [n, l] code with encoding and
decoding procedures C′.Encode and C′.Decode and let LSSS1 be a Fq-linear
secret sharing scheme with a sharing procedure LSSS1.ShareRandom() for ran-
dom secrets. The secret sharing scheme LSSS2 is given by the following sharing
and reconstruction procedures.

Share(s):
(s′, c) ← LSSS1.ShareRandom()
d ← C′.Encode(s′ + s)
Parse c = (c1, . . . , cn)

and d = (d1, . . . ,dn)
Output z = ((c1,d1), . . . , (cn,dn))

Reconstruct(z̃):

Parse z̃ = ((c̃1, d̃1), . . . , (c̃n, d̃n))
c̃ ← (c̃1, . . . , c̃n)

d̃ ← (d̃1, . . . , d̃n)
s′ ← LSSS1.Reconstruct(c̃)

y ← C′.Decode(d̃)
If s′ = ⊥ or y = ⊥

Output ⊥
Otherwise

Output y − s′

328 R. Cramer et al.

Lemma 6. Assume that LSSS1 provides t-privacy and r-reconstructability, and
LSSS1.ShareRandom is linear time computable. Assume further that C′ is lin-
ear time encodable and that C′.Decode can decode from r-erasures. Then LSSS2

also has t-privacy and r-reconstructability and LSSS2.Share is linear time com-
putable. Furthermore, if both LSSS1.Reconstruct and C′.Decode are linear time
computable, then LSSS2.Reconstruct is also linear time computable.

Proof. Linear time computability of LSSS2.Share and LSSS2.Reconstruct follows
straightforwardly from the linear time computability of LSSS1.ShareRandom and
C′.Encode as well as LSSS1.Reconstruct and C′.Decode respectively.

To see that LSSS2 has r-reconstructability, observe that LSSS1.Reconstruct(c̃)
recovers s′ from t as long as c̃ contains at most r erasures. Likewise, C′.Decode(d̃)
recovers x = s+s′ from d̃ as long as d̃ contains at most r erasures. r-reconstruct-
ability of LSSS2 follows.

To see that LSSS2 has t-privacy, let z = ((c1,d1), . . . , (cn,dn)) be a vector
of shares generated by LSSS2.Share(s). For any A ⊆ {1, . . . , n} of size at most
t, it holds by the t-privacy of LSSS1 that s′ is distributed uniformly at random
given the shares cA. Thus, the (cA, s+ s′) is distributed independently of s. But
the same holds for (cA,dA), as dA can be computed from s + s′. Consequently,
t-privacy of LSSS2 follows.

Finally, plugging the linear secret sharing scheme LSSS1n obtained in Lemma
5 into Construction 2, we obtain the main result for this section. For the sake
of simplicity, as code C′ in Construction 2 we can choose the same code C as in
Lemma 5 and match its rate to the rate of LSSS1n. We conclude the following
theorem.

Theorem 4. For all constants 0 < τ < σ < 1 and every rate ρ < σ − τ there
exists an infinite family of F2-linear secret scheme {LSSS2n} with τn-privacy,
σn-reconstructability and rate ρ. The shares of LSSS2n have size m, where m > 0
is a constant. LSSS2n.Share and LSSS2n.Reconstruct can be computed in linear
time. Moreover, such a scheme LSSS2n can be constructed randomly with success-
probability 1 − 2−ηmn (for some constant η > 0 depending on τ , σ and ρ).

6 Robust Secret Sharing with Constant Size Shares

In this section, we show how our generic construction of LSSSs from codes gives
rise to new robust secret sharing schemes, i.e., to schemes where the secret can
be correctly reconstructed even if some of the shares provided are incorrect.

The idea behind our new scheme is to instantiate Construction 1 with a
highly list-decodable code C. When confronted with the task of reconstructing
the secret in the presence of faulty shares, this allows us to narrow down the list
of candidate secrets to a small set. To single out the right secret, we will precode
it using an AMD code, as introduced in [7]. Informally, an AMD code is a (key-
less) code that is resilient towards certain — namely algebraic — manipulations.

Linear Secret Sharing Schemes from Error Correcting Codes 329

This construction is similar to the construction of Cramer, Damg̊ard and
Fehr [5]. However, the fact that our construction allows us to use a list-decodable
code (whereas [5] uses standard Shamir secret sharing [23]) makes our scheme
computationally efficient, in contrast to the robust reconstruction procedure of
[5], which involves a brute-force search over all subsets of size t. Furthermore,
in the regime we consider, namely when t/n is bounded away from 1

2 , we get
better parameters than previous work.

6.1 Formal Definitions and Building Blocks

We start by formalizing the notion of a robust secret sharing scheme.

Definition 3. A linear secret sharing scheme LSSS is (t, δ)-robust if there exists
an additional algorithm LSSS.RobustReconstruct with the property that for every
secret s and for every subset A ⊂ {1, . . . , n} of size |A| = t, the following holds.
If c = LSSS.Share(s), and c̃ is such that c̃Ā = cĀ and c̃A only depends on cA,
then LSSS.RobustReconstruct(c̃) = s except with probability δ.

In the range n/3 ≤ t < n/2, robust secret sharing is only possible if we allow
a non-zero error probability δ, and we append some additional “checking data”
to the actual shares. The goal is to optimize the trade-off between this overhead
in the share size and δ. As outlined above, our construction is based on using a
list-decodable code in our general construction of LSSS from codes.

Definition 4. An m-folded Fq-linear [n, k] code C is said to be (t, �)-list decod-
able if there exists an efficient algorithm C.ListDecode such that for any codeword
c ∈ C and any error pattern e ∈ (Fm

q)n of weight at most t, C.ListDecode(c + e)
produces a list of all elements x ∈ F

k
q with d(C.Encode(x), c + e) ≤ t. Further-

more, the size of the list is at most �.

We will now state two results for highly list-decodable codes. The first one
is due to Guruswami and Rudra [12] as well as Guruswami and Wang [13] and
states that m-folded Reed Solomon codes are highly list-decodable. The second
result, due to Guruswami and Xing [14], states that certain m-folded algebraic
geometric codes are highly list-decodable.

Theorem 5 (List-decodability of Folded Reed Solomon Codes [12,13]).
For any rate 0 < R < 1 and ε > 0, any large enough integer m > 0 (depending
on R and ε) and for any integer n > 0 there exist a prime power q = q(n) = O(n)
and an m-folded Fq-linear code C of length n and rate R, such that C is efficiently
(τn, �)-list decodable with τ = 1 − R − ε and � = poly(n). The list decoder has
runtime poly(n,m).

Theorem 6 (List-decodability of Folded Algebraic Geometric Codes
[14]). For any rate 0 < R < 1 and ε > 0, and for any large enough integer
m > 0 (depending on R and ε) there exist a constant prime power q and an
infinite family of m-folded Fq-linear codes {Cn}, such that the rate of Cn is R,
and Cn is efficiently (τn, �)-list decodable with τ = 1 − R − ε and � = poly(n).
The list decoder has runtime poly(n,m).

330 R. Cramer et al.

Notice that in both constructions the runtime of the list decoder is polyno-
mial in both the code length n and the folding parameter m. This means that
we can choose the folding parameter super constant and still have efficient list
decodability. Additionally, we make use of AMD codes (restricting ourselves to
Fq-linear spaces for simplicity).

Definition 5 (Algebraic Manipulation Detection Codes [7]). Let q be a
prime-power, l > k be integers and δ > 0. A (qk, ql, δ)-AMD code AMD consists
of a probabilistic encoding algorithm AMD.Encode : F

k
q → F

l
q and a (determin-

istic) decoding algorithm AMD.Decode : F
l
q → F

k
q � {⊥}, such that the following

holds for every x ∈ F
l
q.

– Correctness: AMD.Decode(AMD.Encode(x)) = x with probability 1.
– Manipulation detection: for every offset Δ ∈ F

l
q, and for c generated as

c ← AMD.Encode(x), it holds that AMD.Decode(c + Δ) ∈ {⊥,x} except
with probability at most δ.

A simple example AMD code is given by AMD.Encode : F
k
q → F

k
q × F

k
q × F

k
q ,

s �→ (s, r, sr), where r is uniformly random from F
k
q , and the multiplication sr

is given by fixing an isomorphism of Fq-vector spaces F
k
q → Fqk , and with the

obvious decoding: checking the multiplicative relation. It is not hard to show
that this AMD code has error probability δ = q−k. In our construction, we use
a slightly more sophisticated AMD code, due to [7], given by

AMD.Encode : F
d
q → F

d
q × Fq × Fq, s �→

(

s, r, rd+2 +
d∑

i=1

sir
i

)

where r is uniformly random from F
k
q , char(Fq) � d + 2, and with the obvious

decoding. This construction gives rise to the following claim.

Lemma 7 ([7]). For any prime power q and integers l > 2κ > 0, there exists
a

(
ql−2κ, ql, (l − 2κ + 1)/qκ

)
-AMD code.

6.2 The Construction

In order to have a modular exposition, we first introduce the notion of a list
reconstructible secret sharing scheme. In a nutshell, list reconstructible secret
sharing is a weak version of robust secret sharing. Instead of requiring recon-
struction of the correct secret (in the presence of faulty shares), we merely require
reconstruction of a short list of possible candidates of which one is the correct
secret. In addition to that, we require some linearity property.

Definition 6. We say that a linear secret sharing scheme LSSS is (t, �)-list
reconstructible, if there exists an efficient algorithm LSSS.ListReconstruct(), such

Linear Secret Sharing Schemes from Error Correcting Codes 331

that for all e of weight at most t, the following holds. LSSS.ListReconstruct(e)
outputs a list of length � containing 0, and for any secret s and its share vector
c we have

LSSS.ListReconstruct(c + e) = s + LSSS.ListReconstruct(e)
= {s + w | w ∈ LSSS.ListReconstruct(e)},

We now show that, not very surprisingly, using a list-decodable code in Con-
struction 1 results in a list reconstructable secret sharing scheme.

Lemma 8. Let C be an m-folded Fq-linear [n, k] code and h : F
k
q → F

l
q an

Fq-linear function, and let LSSSC,h be the linear secret sharing scheme result-
ing from Construction 1. If C is (t, �)-list-decodable then LSSSC,h is (t, �)-list
reconstructible.

Proof. ListReconstruct simply works by running C.ListDecode and applying h
to all the elements in the list output by C.ListDecode. In order to show that
Definition 6 is satisfied, due to the linearity of h it is sufficient to show that

C.ListDecode(c + e) = m + C.ListDecode(e) ,

for any m ∈ F
k
q , c = C.Encode(m), and any error vector e of weight at most t.

First of all, the bound on the size of the list, and that it contains 0, are
obvious. For any w ∈ C.ListDecode(e), we have that d(C.Encode(w), e) ≤ t. By
linearity, it holds that

C.Encode(m + w) = c + C.Encode(w).

Therefore,
C.Encode(m + w) − (c + e) = C.Encode(w) − e

from which follows that

d(C.Encode(m + w), c + e) = d(C.Encode(w), e) ≤ t,

i.e. m+w ∈ C.ListDecode(c+e). Similarly, for any w ∈ C.ListDecode(c+e), we
have that

C.Encode(w − m) = C.Encode(w) − c,

and consequently

e − C.Encode(w − m) = (c + e) − C.Encode(w).

This proves that the two lists, C.ListDecode(c + e) and m + C.ListDecode(e),
contain exactly the same elements, which was to be proven.

Instantiating the above with the list decodable codes from Theorem 5 and
Theorem 6 respectively yields the following Lemma.

332 R. Cramer et al.

Lemma 9. For any τ < 1
2 , any τ < σ < 1−τ , any ρ < σ−τ and any sufficiently

large m > 0 we have that:

– For every integer n > 0 there exists a q = O(n) and an n-player Fq-
linear secret sharing scheme LSSSn with τn-privacy, σn-reconstruction and
(τn, poly(n))-list reconstruction. Furthermore, the rate of LSSSn is ρ and the
shares of LSSSn are elements of F

m
q . The list reconstruction algorithm has

runtime poly(n,m).
– There exists a constant prime power q and an infinite family of Fq-linear

secret sharing schemes {LSSSn}, such that LSSSn is an n-player scheme with
τn-privacy, σn-reconstruction and (τn, poly(n))-list reconstruction. Further-
more, the rate of LSSSn is ρ and the shares of LSSSn are elements of F

m
q .

The list reconstruction algorithm has runtime poly(n,m).

Proof. We will instantiate the scheme LSSSC,h from Construction 1 enhanced to
a list-reconstructible scheme by Lemma 8 with either the codes from Theorem 5
or Theorem 6 respectively and a suitable family H of universal hash functions.

By Lemma 4, in order to obtain a secret sharing scheme with τn privacy and
rate ρ, we need to select an m-folded code C from one of the above families with
rate R such that

R ≥ ρ + η + τ +
H(τ)

m log(q)
for an arbitrarily small constant η. To get list reconstructability, we need to be
able to list-decode a τ fraction of errors. Thus, we need to choose the constants
R and ε for the above families such that τ ≤ 1 − R − ε, which is equivalent to
R ≤ 1 − τ − ε. Together, these two constraints yield a new constraint

1 − 2τ − ρ ≥ ε + η +
H(τ)

m log(q)
. (2)

The left-hand side of Inequality 2 is a constant greater than 0, as ρ < σ − τ <
1 − 2τ and 1− 2τ > 0, as τ < 1

2 . Thus, we can fulfill the constraints by choosing
sufficiently small constants ε > 0 and η > 0 and an m greater than a sufficiently
large constant and setting R = 1 − τ − ε.

– Using the folded RS codes provided by Theorem 5 in Construction 1, we
can conclude that for every n > 0 there exist a prime power q = O(n)
and an n-player Fq-linear secret sharing scheme LSSSC,h with τn-privacy,
σn-reconstruction, rate ρ, shares from F

m
q and which is (τn, poly(n))-list

reconstructible. Here, we use a linear universal hash function h chosen from
a family H of Fq-linear universal hash functions which maps F

Rmn
q to F

ρmn
q .

– Using the folded AG codes provided by Theorem 6 in Construction 1, we can
conclude that there exists a constant prime power q and an infinite family
of Fq-linear secret sharing schemes {LSSSn}, such that LSSSn is an n-player
Fq-linear secret sharing scheme LSSSC,h with τn-privacy, σn-reconstruction,
rate ρ, shares from F

m
q and which is (τn, poly(n))-list reconstructible. Here,

we use a linear universal hash function h chosen from a family H of Fq-linear
universal hash functions which maps F

Rmn
q to F

ρmn
q .

Linear Secret Sharing Schemes from Error Correcting Codes 333

This concludes the proof.

Construction 3. Let LSSS1 be an n-player linear secret sharing scheme with
secret space F

l
q, and say that it has t-privacy and r-reconstructability, as well

as (t, �)-list reconstructability. Let further AMD be a (qk, ql, δ)-AMD code. We
define the secret sharing scheme LSSS3, having message space F

k
q and share

spaces equal to those of LSSS1, by the following sharing and reconstruction pro-
cedures:

Share(s):
z ← AMD.Encode(s)
c ← LSSS1.Share(z)
Output c = (c1, . . . cn)

RobustReconstruct(c̃):
L ← LSSS1.ListReconstruct(c̃)
For z̄ ∈ L:

s̄ ← AMD.Decode(z̄)
If s̄ �= ⊥

Output s̄
Output ⊥

Lemma 10. The scheme LSSS3 given above is a (t, �δ)-robust linear secret shar-
ing scheme with t-privacy and r-reconstructability.

As for efficiency, the running time of Share is equal to the sum of the running
times of AMD.Encode and LSSS1.Share; the running time of RobustReconstruct
is equal to he sum of the running time of LSSS1.ListReconstruct and � times the
running time of AMD.Decode.

Proof. The fact that LSSS3 has t-privacy and r-reconstruction follows imme-
diately from the t-privacy and r-reconstruction of LSSS1. We will now show
that LSSS3 can correctly reconstruct a secret from n shares where up to t are
incorrect, except with probability at most �δ. Let c = LSSS3.Share(s) for some
adversarially chosen secret s. Assume the adversary A corrupts a set A of players,
where |A| ≤ t. Thus the corrupted share vector c̃ can be written as

c̃ = c + e,

where e is an additive error with support A. Since A computes c̃A from cA, which
is independent of z = AMD.Encode(s) by the t-privacy of LSSS1, e is independent
of z (given s). We will consider the error-probability of RobustReconstruct, i.e.
the probability that RobustReconstruct(c̃) outputs something different from s.

Consider the list E = LSSS1.ListReconstruct(e). As the weight of e is at most
t, it holds that 0 ∈ E and

L = LSSS1.ListReconstruct(c̃) = z + E,

and thus in particular that z ∈ L. Moreover, as the error e is independent of z,
it also holds that E is independent of z. Hence, it holds for each r ∈ E that r is
independent of z. By the AMD property it thus holds for each r ∈ E\{0} that

Pr[AMD.Decode(z + r) �= ⊥] ≤ δ.

334 R. Cramer et al.

A union bound yields that

Pr[∃r ∈ E\{0} : AMD.Decode(z + r) �= ⊥] ≤ �δ.

Doing a change of variable, namely setting z̄ = z+r, such that the quantification
over r ∈ E\{0} becomes a quantification over z̄ ∈ z + E\{0} = L\{z}, gives us

Pr[∃z̄ ∈ L\{z} : AMD.Decode(z̄) �= ⊥] ≤ �δ.

Thus, every z̄ ∈ L\{z} will be rejected by AMD.Decode, except with prob-
ability �δ. Furthermore, z ∈ L will be accepted. Therefore, we can conclude
that LSSS3.RobustReconstruct(c̃) = s, except with probability �δ. Consequently,
LSSS3 is (t, �δ)-robust, which concludes the proof.

We will now state our main result for this section.

Theorem 7. For any τ < 1
2 , any τ < σ < 1− τ , any ρ < σ − τ and any integer

λ > 0 (the security parameter), we have that:

– For every n > 0 there exists an efficient n-player (τn, 2−λ)-robust secret
sharing scheme LSSS with τn-privacy, σn-reconstructability and with rate ρ.
The shares have size Θ(log(n)+λ/n) and the secret has size Θ(n·log(n)+λ).

– There exists an infinite family {LSSSn} of efficient n-player (τn, 2−λ)-robust
secret sharing schemes with τn-privacy, σn-reconstructability and with rate
ρ. The shares have size Θ(1 + λ/n) and the secret has size Θ(n + λ).

We emphasize that even for non-robust ramp schemes, the rate ρ cannot be
bigger than σ − τ .

Proof. We shall instantiate Construction 3 with the list reconstructible secret
sharing schemes provided by Lemma 9 and the AMD code given by Lemma 7.
Let LSSS be an n-player Fq-linear secret sharing scheme (from one of the two
families in Lemma 9) with τn-privacy, σn-reconstructability and (τn, poly(n))-
list reconstructability, shares in F

m
q and rate ρ′ with ρ < ρ′ < σ − τ . Recall that

both constructions in Lemma 9 allow us to choose the parameter m arbitrarily
large.

Now, we consider a (qρ′mn−2κ, qρ′mn, δ′)-AMD code AMD, as provided by
Lemma 7, with δ′ = (ρ′mn − 2κ + 1)/qκ, where κ is to be determined later. By
Theorem 7, this gives (τn, δ)-robustness for

δ ≤ poly(n) · δ′ ≤ poly(n)
ρ′mn

qκ
=

m · poly(n)
qκ

.

Setting κ = λ/ log(q) + log(m · poly(n)) gives δ ≤ 2−λ. Finally, the rate of the
scheme is given by

ρ′mn − 2κ

mn
= ρ′ − 2

λ

mn log(q)
− 2 · log(poly(n))

mn
− 2

log(m)
mn

.

Linear Secret Sharing Schemes from Error Correcting Codes 335

By choosing the parameter m large enough, i.e. m = Ω(1 + λ/(n · log(q))),
this becomes bigger than ρ. Finally, for the first family provided in Lemma 9,
such an LSSS exists for every length n and we have q = O(n). Thus we can
choose the parameter m as m = Θ(1 + λ/(n · log(n)) and the shares for this
instantiation have size m · log(q) = Θ(log(n) + λ/n), whereas the secret has size
ρmn · log(q) = Θ(n · log(n) + λ). The second family provided by Lemma 9 is an
infinite family for a constant q. Thus, for this instantiation the shares have size
m · log(q) = Θ(1 + λ/n), whereas the secret has size ρmn · log(q) = Θ(n + λ).
This concludes the proof.

Acknowledgments. We would like to thank the anonymous reviewers of Eurocrypt
2015 for their helpful comments on this work. We would also like to thank Ignacio
Cascudo and Irene Giacomelli for helpful discussions and comments.

References

1. Cascudo, I., Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B., Trifiletti, R.:
Additively homomorphic uc commitments with optimal computational overhead
(2014) (manuscript)

2. Cascudo, I., Chen, H., Cramer, R., Xing, C.: Asymptotically Good Ideal Linear
Secret Sharing with Strong Multiplication over Any Fixed Finite Field. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 466–486. Springer, Heidelberg (2009)

3. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-Secure Robust
Secret Sharing with Compact Shares. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012)

4. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure
Computation from Random Error Correcting Codes. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007)

5. Cramer, R., Damg̊ard, I.B., Fehr, S.: On the Cost of Reconstructing a Secret,
or VSS with Optimal Reconstruction Phase. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 503–523. Springer, Heidelberg (2001)

6. Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General Secure Multi-party Computa-
tion from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

7. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of Algebraic
Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer,
Heidelberg (2008)

8. Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact vss and effi-
cient homomorphic uc commitments. Cryptology ePrint Archive, Report 2014/370
(2014) (to appear in AsiaCrypt 2014)

9. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the gilbert-varshamov
bound and their cryptographic applications. In: ITCS, pp. 169–182 (2014)

10. Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the Complexity of UC Com-
mitments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 677–694. Springer, Heidelberg (2014)

11. Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-
optimal rate. IEEE Transactions on Information Theory 51(10), 3393–3400 (2005)

336 R. Cramer et al.

12. Guruswami, V., Rudra, A.: Explicit capacity-achieving list-decodable codes. In:
STOC, pp. 1–10 (2006)

13. Guruswami, V., Wang, C.: Linear-algebraic list decoding for variants of reed-
solomon codes. IEEE Transactions on Information Theory 59(6), 3257–3268 (2013)

14. Guruswami, V., Xing, C.: Optimal rate list decoding of folded algebraic-geometric
codes over constant-sized alphabets. In: SODA, pp. 1858–1866 (2014)

15. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: Proceedings of the 21st Annual ACM Sympo-
sium on Theory of Computing, Seattle, Washigton, USA, May 14–17, pp. 12–24
(1989)

16. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11–13, pp. 21–30 (2007)

17. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: STOC, pp. 433–442 (2008)

18. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Trans-
fer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

19. Krawczyk, H.: Secret Sharing Made Short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994)

20. Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal
hashing. In: Proceedings: Fifth Annual Structure in Complexity Theory Confer-
ence, Universitat Politècnica de Catalunya, Barcelona, Spain, July 8–11, p. 90
(1990)

21. Massey, J.L.: Some applications of coding theory in cryptography. In: Codes and
Ciphers: Cryptography and Coding IV, pp. 33–47 (1995)

22. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York (2005)

23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
24. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. In:

Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Com-
puting, Las Vegas, Nevada, USA, 29 May-1 June, pp. 388–397 (1995)

Function Secret Sharing

Elette Boyle1(B), Niv Gilboa2, and Yuval Ishai1

1 Computer Science Department, Technion, Haifa, Israel
eboyle@alum.mit.edu, yuvali@cs.technion.ac.il

2 Department of Communication Systems Engineering, Ben Gurion University,
Beersheba, Israel

gilboan@bgu.ac.il

Abstract. Motivated by the goal of securely searching and updating dis-
tributed data, we introduce and study the notion of function secret shar-
ing (FSS). This new notion is a natural generalization of distributed point
functions (DPF), a primitive that was recently introduced by Gilboa and
Ishai (Eurocrypt 2014). Given a positive integer p ≥ 2 and a class F of
functions f : {0, 1}n → G, where G is an Abelian group, a p-party FSS
scheme for F allows one to split each f ∈ F into p succinctly described
functions fi : {0, 1}n → G, 1 ≤ i ≤ p, such that: (1)

∑p
i=1 fi = f , and

(2) any strict subset of the fi hides f . Thus, an FSS for F can be thought
of as method for succinctly performing an “additive secret sharing” of
functions from F . The original definition of DPF coincides with a two-
party FSS for the class of point functions, namely the class of functions
that have a nonzero output on at most one input.

We present two types of results. First, we obtain efficiency improve-
ments and extensions of the original DPF construction. Then, we ini-
tiate a systematic study of general FSS, providing some constructions
and establishing relations with other cryptographic primitives. More con-
cretely, we obtain the following main results:

– Improved DPF. We present an improved (two-party) DPF con-
struction from a pseudorandom generator (PRG), reducing the length
of the key describing each fi from O(λ · nlog2 3) to O(λn), where λ
is the PRG seed length.

– Multi-party DPF. We present the first nontrivial construction of
a p-party DPF for p ≥ 3, obtaining a near-quadratic improvement
over a naive construction that additively shares the truth-table of f .
This constrcution too can be based on any PRG.

– FSS for simple functions. We present efficient PRG-based FSS
constructions for natural function classes that extend point func-
tions, including interval functions and partial matching functions.

– A study of general FSS. We show several relations between
general FSS and other cryptographic primitives. These include a
construction of general FSS via obfuscation, an indication for the

Research supported by the European Union’s Tenth Framework Programme
(FP10/2010-2016) under grant agreement no. 259426 ERC-CaC. The first and third
authors were additionally supported by ISF grants 1361/10 and 1709/14 and BSF
grant 2012378.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 337–367, 2015.
DOI: 10.1007/978-3-662-46803-6 12

338 E. Boyle et al.

implausibility of constructing general FSS from weak cryptographic
assumptions such as the existence of one-way functions, a complete-
ness result, and a relation with pseudorandom functions.

1 Introduction

A secret sharing scheme [44] allows a dealer to randomly split a secret s into p
shares, such that certain subsets of the shares can be used to reconstruct the
secret and others reveal nothing about it. The simplest type of secret sharing is
additive secret sharing, where the secret is an element of an Abelian group G,
it can be reconstructed by adding all p shares, and every subset of p − 1 shares
reveals nothing about the secret. A useful feature of this secret sharing scheme
is that it is homomorphic in the sense that if p parties hold shares of many
secrets, they can locally compute shares of the sum of all secrets. This feature of
additive secret sharing (more generally, linear secret sharing) is useful for many
cryptographic applications.

In this work we study the following natural extension of additive secret shar-
ing. Suppose we are given a class F of efficiently computable and succinctly
described functions f : {0, 1}n → G. Is it possible to split an arbitrary f ∈ F
into p functions f1, . . . , fp such that: (1) f(x) =

∑p
i=1 fi(x) (on every input x),

(2) each fi is described by a short key ki that enables its efficient evaluation,
yet (3) any strict subset of the keys completely hides f? We refer to a solution
to this problem as a function secret sharing (FSS) scheme for F .

If one insists on perfectly hiding f , then it can be shown that, even for very
simple classes F , the best possible solution is to additively share the truth-
table representation of f , whose shares consist of 2n group elements. But if
one considers the computational notion of hiding, then there are no apparent
limitations to what can be done for polynomial-time computable f . The power
of such computationally hiding FSS schemes is the main question considered in
this work.

We note that other types of secret sharing of functions have been considered
in the literature, mostly in the context of threshold cryptography (cf. [16,18]).
However, these other notions either apply only to very specific function classes
that enjoy homomorphism properties compatible with the secret sharing, or
alternatively they do not require an additive (or homomorphic) representation
of the output which is essential for the applications we consider.

A useful instance of FSS, recently introduced by Gilboa and Ishai [26], is
a distributed point function (DPF). A DPF can be viewed as a 2-party FSS
for the function class F consisting of all point functions, namely all functions
f : {0, 1}n → G that evaluate to 0 on all but at most one input. For x ∈ {0, 1}n

and y ∈ G, we denote by fx,y the point function that evaluates to y on input x
and to 0 on all other inputs. The main result of [26] was an efficient construction
of a DPF from any pseudorandom generator (PRG), or equivalently any one-way

Function Secret Sharing 339

function [34].1 More concretely, given a PRG with seed length λ, the length of
each key ki is O(λ · nlog2 3).

The DPF problem was motivated in [26] by applications to improving the
communication and computation complexity of 2-server private information
retrieval (PIR) [14,15,38] and related problems, as well as by the complexity
theoretic problem of worst-case to average-case reductions. To further motivate
the questions considered in this work, we discuss two typical application scenar-
ios for DPF and the benefits that could be gained by extending DPF to more
general instances of FSS.

Multi-server PIR and secure keyword search. Suppose that each of p
servers holds a database D of m keywords wj ∈ {0, 1}n. A client wants to count
the number of occurrences of a given keyword w without revealing w to any
strict subset of the servers. Letting G = Zm+1 and f = fw,1, the client splits
f into p additive shares and sends to server i the key ki describing fi. Server
i computes and sends back to the client

∑
wj∈D fi(wj). The client can find the

number of matches by adding the p group elements received from the servers.
In this application, FSS for other classes F can be used to accommodate richer
types of search queries, such as counting the number of keywords that lie in an
interval, satisfy a fuzzy match criterion, etc. We note that by using standard
randomized sketching techniques, one can obtain similar solutions that do not
only count the number of matches but also return the payloads associated with
a bounded number of matches (see, e.g., [41]).

Incremental secret sharing. Suppose that we want to collect statistics
about web usage of mobile devices without compromising the privacy of individ-
ual users, and while allowing fast collection of real-time aggregate usage data.
A natural solution is to maintain a large secret-shared array of group elements
between p servers, where each entry in the array is initialized to 0 and is incre-
mented whenever the corresponding web site is visited. A client who visits URL
u can now secret-share the point function f = fu,1, and each server i updates
its shared entry of each URL uj by locally adding fi(uj) to this share. The end
result is that only position uj in the shared array is incremented, while no collu-
sions involving strict subsets of servers learn which entry was incremented.2 Here
too, applying general FSS can allow for more general “attribute-based” writing
patterns, such as secretly incrementing all entries whose public attributes sat-
isfy some secret predicate. The above incremental secret sharing primitive can
be used to obtain low-communication solutions to the problem of private infor-
mation storage [40], the “writing” analogue of PIR.

1 The construction from [26] is described for the special case where G = Z
m
2 , but it

can be easily extended to the case of a general Abelian G.
2 Handling malicious clients who may try to tamper with this process is beyond the

scope of this work; we note, however, that due to the succinctness and simple struc-
ture of FSS shares one could employ general techniques for secure multiparty com-
putation for this purpose without a major toll on efficiency.

340 E. Boyle et al.

1.1 Our Contribution

In this work we improve and extend the work of [26], presenting two types of
results. First, we improve the efficiency of the previous DPF construction and
obtain the first nontrivial p-party DPF constructions for p ≥ 3. Second, we
initiate a systematic study of general FSS, providing some constructions and
establishing relations with other cryptographic primitives. More concretely, we
obtain the following main results:

Improved DPF. We present an improved (two-party) DPF construction from
one-way functions, reducing the length of the key describing each fi from O(λ ·
nlog2 3) to O(λn), where λ is a security parameter (that can be thought of as
the seed length of a PRG) and n is the input and output length. We also obtain
a similar improvement in the evaluation time. This improvement can have rele-
vance to the practical efficiency of 2-server PIR and related primitives.

Multi-party DPF. We provide the first nontrivial construction of a p-party
DPF for p ≥ 3, obtaining a near-quadratic improvement over a naive construc-
tion that additively shares the truth-table of f . This construction too can be
based on the (necessary) assumption that a one-way function exists. More con-
cretely, letting N = 2n denote the input domain size and λ a PRG seed length,
the length of each DPF key ki is O(λ · 2p/2 · N1/2). Improving the asymptotic
dependence on N (without relying on stronger assumptions) is one of the main
questions left open by this work. For p ≥ 3, our p-party DPF implies the first
p-server, (p−1)-private PIR protocols with sublinear query length and constant
answer length, as well as the first (p−1)-private sublinear-communication storage
schemes in the model of [40].

FSS for simple functions. We present efficient PRG-based FSS construc-
tions for natural function classes that go beyond point functions. These include
interval functions and instances of partial matching functions. As illustrated
above, such extensions can be used to support more general search queries or
selection criteria.

A study of general FSS. We initiate a study of general FSS by showing
several relations between FSS and other primitives. In particular, we obtain the
following results:

– We observe that FSS for general polynomial-time computable functions can
be obtained from an ideal obfuscation and one-way functions. This implies
(using [2]) a provable construction in the generic multilinear map model,
as well as a heuristic construction using existing candidates. Furthermore,
building on a recent work of Canetti et al. [13], we obtain a similar result
based on Indistinguishability Obfuscation (iO) with sub-exponential security.

– Complementing the above, we give evidence against the possibility of con-
structing general FSS from weak cryptographic assumptions such as the
existence of one-way functions or even oblivious transfer. We do this by
showing that general FSS implies low-communication protocols for secure

Function Secret Sharing 341

two-party computation that rely on a reusable source of correlated random-
ness (that can be realized via one-time offline preprocessing). Currently all
known approaches for obtaining such protocols rely on fully homomorphic
encryption or related primitives. We show that a similar “barrier” applies
even to FSS for the complexity class AC0. This should be contrasted with
our PRG-based positive results, which apply to strict sub-classes of AC0.

– We prove the following completeness result: assuming the hardness of LWE,
there is a class F of functions in NC1 such that an efficient FSS for F implies
an efficient FSS for arbitrary polynomial-time computable functions.

– We show that in an FSS scheme for any “sufficiently rich” function class F
(which covers point functions as a special case), each share fi must define a
pseudorandom function. Note that this is not a-priori clear from the security
definition, which only requires that the shares hide f .

1.2 Related Work

In this section we discuss alternative approaches for tackling the motivating
applications for DPF and FSS discussed above. Compared to our PRG-based
constructions, all of these approaches have significant limitations in efficiency or
security.

Information-theoretic multi-server PIR. The notion of p-party DPF
roughly corresponds to a p-server PIR protocol with 1-bit answers and computa-
tional privacy against any p−1 servers. In this setting, insisting on information-
theoretic privacy implies that the length of the query sent to each server must
be linear in the database size [5,45]. This barrier can be overcome by either
settling for a lower privacy threshold t < p − 1 or allowing for longer answers.
(The latter relaxation is not suitable for applications that involve “writing,”
and results in PIR? protocols that have poor information rate when applied
to databases with long records.) Even with the above relaxations, the asymp-
totic communication complexity of the best known information-theoretic PIR
protocols [4,6,15,19,21,47] is worse than that of DPF-based protocols.

Single-server PIR. Single-server, computationally-private PIR protocols [12,
38,39] can achieve similar communication complexity to DPF-based 2-server
protocols, and moreover they have the advantages of requiring only one server
and not being vulnerable to colluding servers. However, they are not suitable
for applications that involve writing, they cannot support constant-size answers,
and they do not extend to the richer type of queries supported by our PRG-based
FSS constructions (except when using fully homomorphic encryption, discussed
below). Perhaps most importantly, single-server PIR protocols make an intensive
(and in some sense inherent [20]) use of public-key cryptography, compared to
our PRG-based constructions for DPF and simple instances of FSS. Thus, the
computational overhead on the server side, which typically forms the practical
efficiency bottleneck, can be much lower in DPF-based protocols.

FHE and TFHE. Fully homomorphic encryption (FHE) [23] can be used to
accommodate the richer query types implied by general FSS. However, the other

342 E. Boyle et al.

limitations of PIR discussed above apply also to FHE-based protocols, and more-
over the concrete computational cost of current implementations is even worse.
Constructions of a threshold variant of FHE (TFHE) from [1] can be used to
realize a relaxed form of FSS, where the output of the function f is secret-shared
in a more redundant way that nevertheless still supports homomorphic additions
and allows for efficient decoding of the output from the shares without the knowl-
edge of a secret key. However, TFHE is a stronger primitive than standard FHE
and its implementations are even less efficient. We note that our barriers for
general FSS from weak assumptions do not apply to FHE-based constructions,
leaving open the possibility of realizing our general notion of FSS from FHE or
specific assumptions such as LWE.

Oblivious RAM. Oblivious RAM (ORAM) [31] allows a client to efficiently
access data stored on a remote server while hiding the contents of the data and
the locations being accessed. However, despite the superficial similarity to the
PIR scenario considered here, ORAM addresses a very different problem. In
particular, ORAM requires that the client “own” the data and does not directly
apply in the case where the data to be accessed comes from other sources, nor
does it scale efficiently in the case of read and write operations by many clients
who do not trust each other.

Organization. In Sect. 2 we formally define our notion of FSS and discuss
several variants and relaxations of this notion. In Sect. 3 we describe new PRG-
based constructions of DPF schemes and FSS schemes for simple function classes,
as well as a general FSS construction via general-purpose obfuscation. Finally,
in Sect. 4 we relate the FSS primitive to other cryptographic primitives and
present some barriers to basing general FSS on weak primitives such as a one-
way function.

2 Function Secret Sharing

We now formally define our notion of a function secret sharing (FSS) scheme.
Recall that, unlike “standard” secret sharing for individual elements, we begin
with the description of a function f that we wish to share among parties. The
FSS scheme provides a means to split this function into separate keys, where
each party’s key enables him to efficiently generate a standard secret share of
the evaluation f(x), and yet each key individually does not reveal information
about which function f has been shared.

Note that FSS schemes can differ in the underlying procedure for recovering
f(x) from the parties’ key-computed shares (including the number of shares),
and also in the relevant function class F for which correctness and security are
supported. In what follows, we present a general version of this definition, allow-
ing arbitrary output decoding procedures; however, in this work we focus on the
setting in which the output decoder is a fixed linear function of parties’ output
shares. Namely, decoding will correspond to taking the sum of the output shares
over an Abelian group structure. We discuss this choice of decoding structures
below.

Function Secret Sharing 343

Definition 1 (Output Decoder). A p-party share output decoder DEC is
a tuple (S1, . . . , Sp, R,Dec) specifying: share spaces S1, . . . , Sp for each of the p
parties; output space R; and a decoder function Dec : S1 × · · · × Sp → R taking
parties’ shares to an output.

We define the p-party additive output decoder for an Abelian group G to
be the tuple DEC = ((G, · · · ,G),G,Dec+), where Dec+(g1, . . . , gp) =

∑p
i=1 gi

computes the sum of elements w.r.t. the group operator of G.

Remark 1 (Modeling Function Families). We model a function family F as an
infinite collection of bit strings f (“functions”), together with efficient procedures
IdentifyDomain and Evaluate, such that the procedure Df ← IdentifyDomain(1λ, f)
interprets from the string f its corresponding input domain space, and y ←
Evaluate(f, x), for any input x ∈ Df , defines the “output” of f at x. By conven-
tion, we assume the description of f includes also the input length and output
length of f . We refer the reader to e.g. [36] for a complete formal description of
this model.

For simplicity of notation, in this work we will refer to the domain Df of f
without making explicit reference to the corresponding call to IdentifyDomain,
and will denote an evaluation Evaluate(f, x) by shorthand notation “f(x).”

Definition 2 (Function Secret Sharing). For p ∈ N, T ⊆ [p], a p-party, T -
secure function secret sharing (FSS) scheme with respect to share output decoder
DEC = (S1, . . . , Sp, R,Dec) and function class F is a pair of PPT algorithms
(Gen,Eval) with the following syntax:

– Gen(1λ, f): On input the security parameter 1λ and function description f ∈
F , the key generation algorithm outputs p keys, (k1, . . . , kp).

– Eval(i, ki, x): On input a party index i, key ki (which we assume to encode
the input and output domains D,R of the shared function) and input string
x ∈ D, the evaluation algorithm outputs a value yi ∈ Si, corresponding to
this party’s share of f(x).

satisfying the following correctness and secrecy requirements:

– Correctness: For all f ∈ F , x ∈ Df ,

Pr
[
(k1, . . . , kp) ← Gen(1λ, f)

: Dec
(
Eval(1, k1, x), . . . ,Eval(p, kp, x)

)
= f(x)

]
= 1.

– Security: Consider the following indistinguishability challenge experiment
for corrupted parties T ⊂ [p]:
1: The adversary outputs (f0, f1, ,) ← A(1λ), where f0, f1 ∈ F with Df0 =

Df1 .
2: The challenger samples b ← {0, 1} and (k1, . . . , kp) ← Gen(1λ, fb).
3: The adversary outputs a guess b′ ← A((ki)i∈T , ,), given the keys for

corrupted T .

344 E. Boyle et al.

Denote by Adv(1λ,A) := Pr[b = b′] − 1/2 as the advantage of A in guessing
b in the above experiment, where probability is taken over the randomness of
the challenger and of A. We say the scheme (Gen,Eval) is T -secure if there
exists a negligible function ν such that for all non-uniform PPT adversaries
A, it holds that Adv(1λ,A) ≤ ν(λ).

Unless otherwise specified, we naturally interpret the output domain of the func-
tion f as an Abelian group G (in particular, {0, 1}n is interpreted as an Abelian
group with respect to the xor group operator ⊕), and DEC is the corresponding
additive output decoder as specified in Definition 1.

Remark 2. A few remarks about our definition.

1. (Adversary Structure). We say an FSS scheme is t-secure for threshold t < p
if it is T -secure for all T ⊂ [p] of size |T | ≤ t. By default, when not otherwise
specified, “secure FSS” will refer to (p−1)-security, in which any strict subset
of parties may be corrupted.

2. (Variable Output Domains). For simplicity, we take the convention that all
functions within a class F share the same output domain (i.e., f : Df → R
for shared R). We may also extend in a straightforward way to the set-
ting in which each function f has a possibly different output domain Rf .
The corresponding security will be required to hold with respect to pairs of
functions f0, f1 ∈ F with both matching domains (Df0 = Df1) and ranges
(Rf0 = Rf1).

3. (Simulation-Based Security). Our game-based security definition mirrors that
of semantic security, where the shares of corrupted parties play the role of an
“encryption” of f . As with semantic security, our game-based indistinguisha-
bility security definition can equivalently be expressed as a simulation-based
definition, where one must be able to simulate the distribution of corrupted
parties’ shares without knowledge of the shared function f (cf. [28,32]).

Output Decoding Schemes. The FSS definition above is presented with respect
to an arbitrary choice of output decoding function Dec. Based on the structure
of the chosen decoding process, the corresponding FSS scheme will have very
different properties. For example, more complex decoding procedures Dec open
the possibility of achieving FSS for more general classes of functions F , but
place limits on the applicability of the resulting scheme. Many choices for the
structure of the output decoding function yield uninteresting notions, as we now
discuss.

Arbitrary Reconstruction. Consider, for example, the FSS notion as defined,
but with no restriction on the reconstruction procedure for parties’ output
shares. Such wide freedom will render the notion non-meaningful, as it gives
rise to trivial constructions. Indeed, for any efficient function family F , one can
generate FSS keys for a secret function f ∈ F simply by sharing a description of
f interpreted as a string, using a standard secret sharing scheme. The evaluation
procedure on any input x will simply output x together with the party’s share

Function Secret Sharing 345

of f , and the decoding procedure Dec will first reconstruct the description of f ,
and then compute and output the value f(x).

This construction satisfies correctness and security as specified above (indeed,
each party’s key individually reveals no information on f). But, the scheme
clearly leaves much to be desired in terms of utility: From just one evaluation,
the entire function f is revealed to whichever party receives and reconstructs
these output shares. At such point, the whole notion of function secret sharing
becomes moot.

“Function-Private” Output Shares. Instead, from a function secret sharing
scheme, one would hope that parties’ output shares (resulting from executing
Eval) for input x do not reveal more about the secret function f than is necessary
to determine f(x). That is, we may impose a “function privacy” requirement on
the reconstruction scheme, requiring that pairs of parties’ output shares for each
input x can be simulated given just the corresponding outputs f(x).

This requirement is both natural and beneficial, but by itself still allows for
undesired constructions. For example, given a secret function f , take one FSS key
to be a garbled circuit of f , and the second key as the information that enables
translating inputs x to garbled input labels. This provides a straightforward
function-private solution for one output evaluation, and can easily be extended
to the many-output case by adding shared secret randomness to the parties’
keys.3 Yet this construction (and thus definition) is unsatisfying: although the
output shares now hide f , their size is massive—for every output, comparable
to a copy of f itself.

Succinct, Function-Private Output Shares. We thus further restrict the
scheme, demanding additionally that output shares be succinct: i.e., comparable
in size to the function output. This definition already captures a strong, inter-
esting primitive. For example, as shown in Section 4.2, achieving such an FSS
scheme for general functions implies a form of communication-efficient secure
multi-party computation that is currently only achievable using advanced cryp-
tographic machinery (i.e., fully homomorphic encryption or reusable garbled
circuits). However, there is one final property that enables an important class of
applications, but which is not yet guaranteed: a notion of share compressibility.

Let us explore this property. Recall that one of the exciting application
regimes of distributed point functions (DPF) [26] was enabling communication-
efficient secure (2-server) Private Information Retrieval (PIR). Intuitively, to
privately recover an item xi from a database held by both servers, one can gen-
erate and distribute a pair of DPF keys encoding a point function fi whose only
nonzero output is at secret location i. Each server then responds with a single
element, computed as the weighted sum of each data item xj with the server’s
output share of the evaluation fi(xj). Correctness of the DPF scheme implies
that the xor of the two servers’ replies is precisely the desired data item xi,
3 Namely, for each new x, the parties will first use their shared randomness to coor-

dinately rerandomize the garbled circuit of f and input labels, respectively.

346 E. Boyle et al.

while security guarantees the servers learn nothing about the index i. But most
importantly, the linear structure of the DPF reconstruction enabled the output
shares pertaining to all the different elements of the database to be compressed
into a single short response.

On the other hand, consider, for example, the PIR scenario but where the
servers instead hold shares of the function fi with respect to a bitwise AND recon-
struction of output shares in the place of xor/addition. Recovery of the requested
data item xi now implies computing set intersection—and thus requires commu-
nication complexity equal to the size of the database [37]! In extending the DPF
notion to more general FSS primitives, we wish to preserve and extend this class
of applications. We thus maintain the crucial property that output shares can
be combined and compressed in a meaningful way. To do so, we remain in stride
with the linearity of output share decoding.

Our setting: Linear share decoding. In this work, we focus purely on the set-
ting of FSS where the output decoder is a linear function of parties’ shares:
specifically, the additive output decoder as in Definition 1. This clean, intuitive
structure in fact provides the desired properties discussed above: Linearity of
reconstruction provides convenient share compressibility. Output shares must
themselves be elements of the function output space, immediately guaranteeing
share succinctness. And as we show in Section 4.1, the linear reconstruction in
conjunction with basic key security directly implies function privacy.

We hence restrict our attention to this setting, and unless otherwise specified
will implicitly take an “FSS scheme” to be one with a linear reconstruction
procedure DEC defined above.

2.1 Preliminaries

In this work, we make use of several cryptographic tools. For formal definitions
of the notions of computational indistinguishability, pseudorandom generators,
and pseudorandom functions, we refer the reader to [28]. For fully homomorphic
encryption definitions and constructions, see, e.g., [10,23,25]. And, for program
obfuscation, see virtual black-box [3], indistinguishability obfuscation (iO) [3,22],
and probabilistic iO [13].

3 New Constructions

In the following section, we present several new constructions of FSS schemes
for various function families.

We begin in Section 3.1 by showing two new constructions for the family of
point functions. The first is a two-key construction that significantly reduces the
key size and computational complexity compared to all previous constructions.
The second is the first p-key construction, secure against coalitions of up to p−1
key holders, with key size a square root of what a trivial construction achieves.

Function Secret Sharing 347

In Section 3.2, we go beyond the family of point functions in several ways. We
identify general low-level transformations that modify an existing FSS scheme
into one for a modified function class. We combine some of these general trans-
formations, in addition to existing FSS schemes, to yield constructions for more
expressive function families. In addition, we extend the previous results for point
functions to include the family of interval functions with minimal overhead.

In Section 3.3, we show that FSS for general efficient functionalities is implied
by certain forms of program obfuscation (namely, virtual black-box or sub-
exponentially secure indistinguishability obfuscation).

3.1 Point Functions

Definition 3. For a, b ∈ {0, 1}n, the point function Pa,b : {0, 1}n → {0, 1}m is
defined by Pa,b(a) = b and Pa,b(a′) = 0m for all a′
= a.

We begin by describing a construction for the class of two-party point func-
tions Pa,b(x) : {0, 1}n → {0, 1}m. The scheme we show, (Gen•,Eval•), reduces
the key size and the computational complexity compared to the construction of
distributed point functions in [26], from O(λnlog 3) to O(λn), making use of a
pseudorandom generator with seed length λ. (Gen•,Eval•) are given by Algo-
rithms 1 and 2.

At a high level, the scheme works as follows. Each party’s key, k0 and k1,
defines a binary tree of depth n with a pseudo-random string at each node (the
strings are the S||T ’s defined in lines 9 and 10 of Algorithm 2). The binary
trees defined by k0 and k1 are identical except for the path from the root to the
target point a = a1, . . . , an. On this path, the strings in the two trees are chosen
pseudo-randomly and independently of each other.

Eval•(β, kβ , x) traverses a path in the tree that kβ defines from the root
to x = x1, . . . , xn, computing the strings along the path. At each node with
string Sβ

0 [i]||Sβ
1 [i]||T β

0 [i]||T β
1 [i], Eval• computes the corresponding strings for its

xith child (left or right) by expanding either the left or right seed Sβ
xi

[i] using
the pseudo-random generator G(Sβ

xi
[i]), and adding in “correction” strings cs, ct

(from the key kβ) to the corresponding “s” and “t” portions of the expanded
output, as dictated by the bit T β

xi
[i].

The function of Gen•(1λ, a, b) is to ensure the correct creation of the two trees.
Specifically, it ensures that at the exact point that a prefix of x diverges from
the path to a, Eval•(0, k0, x) and Eval•(1, k1, x) compute the same strings S, T .
(Then, for any path continuing from this point, the values will always remain
equal). For prefixes that diverge at the root (i.e., a1
= x1), each key includes
the same string since lines 2, 3 sets S1

¬a1
[1] = S0

¬a1
[1] and T 1

¬a1
[1] = T 0

¬a1
[1]

(superscript here is party id). Any other location of diverging prefixes is resolved
by setting the correct strings cs, ct in lines 6-9 of Algorithm 1.

Gen• has a negligble probability of failure (expressed by setting w ← 0),
which is a result of generating equal random values for S0

an
[n] = S1

an
[n]. It is

always possible to run Gen• again if it fails. In Algorithm 5 we show how to
obtain a scheme without any error.

348 E. Boyle et al.

Intuitively, security holds for (Gen•,Eval•) because all information related to
the point function fa,b is encoded in the strings cs, ct, masked by pseudorandom
strings whose seeds appear only in the other party’s key. Note that the original
values S, T in lines 2,3 are completely independent of the point function.

Due to space limitations, we refer the reader to the full version of this work
for a complete proof of correctness and security of (Gen•,Eval•).

Notation 1. We use the following notational conventions in Algorithms 1 and
2. Superscripts denote the party id, and are used for strings appearing in the tree
defined by this party’s key. Square brackets denote the depth of a node in the tree,
ranging from 1 to n. One or two binary-valued subscripts are used to distinguish
between strings that are associated with a specific node in the tree (e.g., to be
used when continuing to the left or right from this node). For example Sβ

α[i] is
in the tree defined by party β’s key kβ at depth i, and is one of two strings (the
other is Sβ

¬α[i]) at a specific node in the tree.

Algorithm 1. Gen•(1λ, a, b)

1: Let G : {0, 1}λ −→ {0, 1}max{2λ+2,m} be a PRG.
2: Choose three random seeds S0

a1 [1], S1
a1 [1], S0

¬a1 [1] ∈ {0, 1}λ and set S1
¬a1 [1] ←

S0
¬a1 [1].

3: Choose four random bits T β
α [1], for α, β ∈ {0, 1}, subject to T 0

a1 [1] �= T 1
a1 [1] and

T 0
¬a1 [1] = T 1

¬a1 [1].
4: for i = 1 to n − 1 do
5: Let G(Sβ

ai
[i]) = sβ

0 ||sβ
1 ||tβ

0 ||tβ
1 , where sβ

α ∈ {0, 1}λ, tβ
α ∈ {0, 1} for α, β ∈ {0, 1}.

6: Randomly choose cs0,ai+1 , cs1,ai+1 ∈ {0, 1}λ.

7: Randomly choose cs0,¬ai+1 , cs1,¬ai+1 ∈ {0, 1}λ subject to
⊕1

β=0(csβ,¬ai+1 ⊕
sβ

¬ai+1) = 0.

8: Randomly choose ct0,ai+1 , ct1,ai+1 ∈ {0, 1} subject to
⊕1

β=0(ctβ,ai+1 ⊕ tβ
ai+1) =

1.
9: Randomly choose ct0,¬ai+1 , ct1,¬ai+1 ∈ {0, 1} subject to

⊕1
β=0(ctβ,¬ai+1 ⊕

tβ
¬ai+1) = 0.

10: Set CWβ [i] ← csβ,0||csβ,1||ctβ,0||ctβ,1 for β = 0, 1.
11: Set Sβ

α[i + 1] ← sβ
α ⊕ csτ,α for τ = T β

ai
[i] and α, β ∈ {0, 1}.

12: Set T β
α [i + 1] ← tβ

α ⊕ ctτ,α for τ = T β
ai

[i] and α, β ∈ {0, 1}.
13: end for
14: if G(S0

an
[n]) �= G(S1

an
[n]) then

15: Set w ← (G(S0
an

[n]) + G(S1
an

[n]))−1 · b with arithmetic over F2m .
16: else
17: Set w ← 0.
18: end if
19: Set kβ ← ((Sβ

0 [1], Sβ
1 [1], T β

0 [1], T β
1 [1]), (CW0[1], CW1[1], . . . , CW0[n − 1], CW1[n −

1]), w).
20: Return (k0, k1).

Function Secret Sharing 349

Algorithm 2. Eval•(β, kβ , x)

1: Let G : {0, 1}λ −→ {0, 1}max{2λ+2,m} be a PRG.
2: Let the binary representation of x be x = x1, . . . , xn.
3: Parse kβ as kβ = ((Sβ

0 [1], Sβ
1 [1], T β

0 [1], T β
1 [1]), (CW0[1], CW1[1], . . . , CW0[n −

1], CW1[n − 1]), w).
4: Set S ← Sβ

x1 [1].
5: Set T ← T β

x1 [1].
6: for i = 2 to n do
7: Parse G(S) as G(S) = s0||s1||t0||t1.
8: Parse CWT [i − 1] as CWT [i − 1] = csT,0||csT,1||ctT,0||ctT,1.
9: Set S ← sxi ⊕ csT,xi .

10: Set T ← txi ⊕ ctT,xi .
11: end for
12: Return G(S) · w with arithmetic over F2m .

A p-party protocol. For some applications, one may wish to share a function
f among several parties. In this setting, there is an additional challenge in main-
taining security against collusions of corrupted parties. Note that for any family
of functions F : {0, 1}n → {0, 1}m, we can trivially support secret sharing of F
across p parties with security against coalitions of up to p−1 keys, with key size
2n · m. Indeed, this amounts to simply secret sharing the entire evaluation table
of the function f among parties as a string: Gen(1λ, f) chooses p random strings
k1, . . . , kp ∈ {0, 1}2n·m such that

⊕p
i=1 ki[x] = f(x) for all x ∈ {0, 1}n.

We now present a scheme (Genp0 ,Evalp0) sharing a DPF Pa,b : {0, 1}n →
{0, 1}m, secure against any coalition of at most p − 1 key holders, and with
key length O(2n/2 · 2p/2 · m). For a constant number of parties p ∈ O(1), this
corresponds to a square root of the key length in the trivial solution. At a
high level, the scheme (Genp0 ,Evalp0) works as follows. Consider the 2n-entry
evaluation table of the secret function fa,b as a 2n/2 × 2n/2 grid4, where rows
and columns are indexed by the first and second n/2 bits of the input. The
algorithm Genp0 generates the following values: For each row γ′ ∈ {0, 1}n/2 in
this table, it samples 2p−1 random λ-bit strings sγ′,1, . . . , sγ′,2p−1 ∈ {0, 1}λ to be
used as seeds for a pseudorandom generator (PRG) G. In addition, it generates
2p−1 total (not per row) “correction words” cw1, . . . , cw2p−1 ∈ ({0, 1}m)2

n/2
,

as a function of the strings sγ′,� and the secret function Pa,b. Each party i
receives as its key the collection of all 2p−1 correction words and some subset of
the PRG seeds. The algorithm Evalp0 , given a party’s key and input x, parses
x = (γ′, δ′) ∈ {0, 1}n/2 × {0, 1}n/2, takes its set of PRG seeds corresponding
to the row γ′, expands each via G to a vector ({0, 1}m)2

n/2
which matches the

form of a row in the function evaluation table, takes the exclusive-or of all the
expanded vectors together with the corresponding subset of correction words
4 The dimensions of the table in the algorithm are slightly different, which results in

reducing the key size by a factor of 2p/2.

350 E. Boyle et al.

(i.e. the subset of {cwj : j ∈ [2p−1]} for which its key contained the jth row-γ′

seed sγ′,j), and outputs the (δ′)th component of this row vector. Collectively,
this description corresponds to Step 6 of Algorithm 4.

The subset of seeds, and the generation of the correction words is chosen by
Genp0 so as to ensure the following properties:

1. For each row γ′ not equal to the special row γ, and for each of the 2p−1

PRG seeds sγ′,j corresponding to this row, it will hold that the number of
parties holding sγ′,j in their key is even. Thus, during the evaluation phase,
all contributions from G(sγ′,j) and from its corresponding jth correction
word cwj will cancel out, leaving the desired 0 evaluation.

2. For the special row γ, each sγ,j will appear in an odd number of parties’
keys. This means there will be exactly one copy of each G(sγ,j) and each
cwj remaining in the combined evaluation xor from all parties. Further, for
each party i, there is at least one seed sγ,j (in our construction, exactly one)
for which party i is the only party given sγ,j . This will be important for
security, as G(sγ,j) for the uncorrupted party will serve as a mask to hide
information on Pa,b in the correction words.

3. Given any p − 1 keys, Case (1) and (2) are indistinguishable.
4. The correction words cwj , j ∈ [2p−1] are chosen randomly subject to the

constraint
⊕2p−1

j=1 (cwj ⊕ G(sγ,j)) = eδ · b, where eδ denotes the unit vector
whose δth component is equal to 1. From Property (2), this constraint exactly
yields the required correctness guarantee. And, since the cwj are random up
to this condition, then even given any (2p−1 − 1) of the seeds sγ,j (but with
one missing), the distribution of these seeds together with all the cwj ’s is
computationally indistinguishable from random.

We now proceed to describe the scheme with these properties.
Given natural numbers p and q, it is readily apparent that for exactly qp−1

of the sequences of length p over the set {0, . . . , q −1} the sum of the p elements
modulo q is 0 and for exactly qp−1 of these sequences the sum of all the elements
modulo q is 1. (One way to deduce this statement is that given any choice of the
first p − 1 elements in {0, . . . , q − 1} there is a single choice for the last element
that makes the sum of the whole sequence 1 and a single choice that makes the
sum 0). For the special case of q = 2 we introduce the following useful notation.

Notation 2. Given p ∈ N, let Ep and Op denote subsets of binary arrays of
size p × 2p−1. Let Ep denote the set of all arrays such that the columns of each
array are all the p-bit strings with an even number of 1 bits and let Op denote
the set of all arrays such that the columns of each array are all the p-bit strings
with an odd number of 1 bits. We use A ∈R Ep (or A ∈R Op) to denote that A
is randomly sampled from Ep (Op). We use ea · b to denote a vector of length
2|a| with b in location a and 0 in all other locations.

We present the p-party FSS scheme for point functions (Genp0 ,Evalp0) in
Algorithms 3 and 4.

Function Secret Sharing 351

Algorithm 3. Genp0(1λ, a, b)

1: Let G : {0, 1}λ −→ {0, 1}mμ be a PRG (μ is defined in line 2).
2: Let μ ← 	2n/2 · 2(p−1)/2
 and let ν ← 	2n/μ
.
3: Regard a as a pair a = (γ, δ), γ ∈ [ν], δ ∈ [μ].
4: Choose ν arrays A1, . . . , Aν , s.t. Aγ ∈R Op and Aγ′ ∈R Ep for all γ′ �= γ.
5: Choose randomly and independently ν · 2p−1 seeds s1,1, . . . , sν,2p−1 ∈ {0, 1}λ.

6: Choose 2p−1 random strings cw1, . . . , cw2p−1 ∈ {0, 1}mμ s.t.
⊕2p−1

j=1 (cwj ⊕
G(sγ,j)) = eδ · b.

7: Set σi,γ′ ← (sγ′,1·Aγ′ [i, 1])|| . . . ||(sγ′,2p−1 ·Aγ′ [i, 2p−1]) for all 1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν.
8: Set σi = σi,1|| . . . ||σi,ν for 1 ≤ i ≤ p.
9: Let ki = (σi||cw1|| . . . ||cw2p−1) for 1 ≤ i ≤ p.

10: Return (k1, . . . , kp).

Algorithm 4. Evalp0(i, ki, x)

1: Let G : {0, 1}λ −→ {0, 1}mμ be a PRG (μ is defined in line 2).
2: Let μ ← 	2n/2 · 2(p−1)/2
 and let ν ← 	2n/μ
.
3: Regard x as a pair x = (γ′, δ′), γ′ ∈ [ν], δ′ ∈ [μ].
4: Parse ki as ki = (σi, cw1, . . . , cw2p−1).
5: Parse σi as σi = s1,1|| . . . ||s1,2p−1 || . . . ||sν,2p−1 .
6: Let yi ←⊕1≤j≤2p−1,

sγ′,j �=0

(cwj ⊕ G(sγ′,j)).

7: Return yi[δ
′].

We informally argue that (Genp0 ,Evalp0) is an FSS scheme for point func-
tions. The scheme is correct because of the following. If Genp0(ki, x) outputs
(k1, . . . , kp) then

⊕p
i=1 Eval

p0(i, ki, x) =
⊕p

i=1 yi[δ′]. If γ′
= γ then Aγ′ ∈ Ep

and hence each of the terms cwj ⊕ G(sγ′,j) appears an even number of times
in

⊕p
i=1 yi, therefore canceling out and ensuring that

⊕p
i=1 y = 0. However,

if γ′ = γ then
⊕p

i=1 yi =
∑2p−1

j=1 cwj ⊕ G(sγ′,j). By the definition of the cor-
rection words cw1, . . . , cw2p−1 we have that

⊕p
i=1 yi[δ′] = 0 if δ′
= δ while⊕p

i=1 yi[δ′] = b if δ′ = δ, i.e. if x = a.
The scheme (Genp0 ,Evalp0) is secret because each subset of at most p − 1

keys ki includes p−1 strings σi = σi,1, . . . , σi,ν . The distribution of seeds in σi,γ′

reflects the distribution of 1 bits in the i-th row of Aγ′ . However, any p− 1 rows
of Aγ′ are distributed identically, regardless of whether Aγ′ is sampled randomly
from Ep or it is sampled randomly from Op. Therefore, the view of the strings
σi does not give any information on γ. In addition, cw1, . . . , cw2p−1 are masked
by

⊕2p−1

j=1 G(sγ,j) and there is at least one seed sγ,j which is not included in any
of the keys in the subset. Therefore, all the correction words together cannot be
distinguished from random strings of the appropriate length.

The length of a key ki that Genp0 outputs is a sum of the length of σi, which
is νλ · 2p−1 and the length of the correction words, which is μm · 2p−1. The key
size is therefore O(2n/22(p−1)/2(λ + m)).

352 E. Boyle et al.

3.2 Supporting New Function Classes

In Sections 3.2, 3.2, and 3.2, we (1) present general transformations for obtaining
FSS for new function classes from existing ones, (2) provide an extension of
the improved DPF construction from the previous section to support the more
general class of interval functions with minimal increase in key size, and (3)
extend further to the case of many parties, where security is required to hold
against coalitions of parties.

General Transformations. We begin by describing a number of general trans-
formations to convert one or more existing function secret sharing schemes into
a new FSS scheme supporting a modified class of functions. The important met-
rics to maintain are the key size and computation time of the modified scheme,
as a function of the original(s). Slightly abusing notation, we denote by size(F)
and time(F) the corresponding values for the key size and computation time for
the FSS scheme for F (where the FSS scheme being referred to is clear from
context).

Due to space constraints, we provide here only a brief summary of the relevant
closure properties, and defer their corresponding constructions and proofs to the
full version of the paper.

1. Including the Zero Function: F → F ∪ {0}.
For any FSS scheme for class F , there exists a FSS scheme for the class F
together with the all 0s function, 0(x) = 0 ∀x. It holds that size(F ∪ {0}) =
size(F), time(F ∪ {0}) = time(F).

2. Pre-composition with Arbitrary Function: (F , g) → F ◦ g.
For any FSS scheme for function class F = {f : G1 → G}, and arbitrary
fixed public function g : G2 → G1, there exists an FSS scheme for class
F ◦ g := {f ◦ g : G2 → G|f ∈ F}, (where functions in F ◦ g are described
as the pair (f, g)). The resulting key size is equal to |g| + size(F), and the
computation time is |g| + time(F).

This transformation extends to the case where the choice of function g may
be made dependent on the secret function f , as long as the corresponding
distribution of g is computationally indistinguishable from one independent
of f . For example, g may consist of an encryption of some portion of f ;
indeed, such an approach can be used to bootstrap an FSS scheme for NC1

to one supporting all P/poly, making use of fully homomorphic encryption
(see Section 4.3).

3. Post-composition with Linear Function: (F , L) → L ◦ F .
For any FSS for function class F = {f : G1 → G} and for any fixed linear
function L : G → G0, there exists a FSS scheme for class L◦F := {L◦f |f ∈
F} of functions from G → G0 (where functions (L◦f) ∈ L◦F are described
by the pair (L, f)). The resulting scheme satisfies size(L ◦F) = size(F)+ |L|
and time(L ◦ F) = time(F) + |L|.

4. Linear Combination of FSSes: (F ,G) → F + G.
Given FSS schemes for families F ,G taking G1 → G, there exists an FSS

Function Secret Sharing 353

scheme for class F + G := {f ⊕ g|f ∈ F , g ∈ G}, with key size equal to
size(F +G) = size(F)+size(G) and evaluation time time(F +G) = time(F)+
time(G).

5. Union of Function Families: (F1,F2) → F1 ∪ F2.
Given FSS schemes for families F ,G, there exists an FSS scheme for the class
F∪G, with key size and time complexities as in Transformation 4 (combining
with Transformation 1).

6. FSS for Small Function Classes: Arbitrary F , with time(F) ∼ |F|,
but short keys. For any class of functions F with some canonical index-
ing, and a DPF (i.e., FSS for class of point functions) with domain
size |F|, there exists an FSS scheme for F with computation time
O (|F| · time(DPF) · maxf∈F |f |) and key size size(DPF).

We describe useful function classes supported via combinations of the above
transformations.

1. NC0 functions
For each constant depth d ∈ N and input/output bit-lengths n,m, by Transfor-
mation 6, we obtain an FSS scheme supporting the class Cd of depth-d boolean
circuits with input {0, 1}n, output {0, 1}m, and fan-in 2. The important observa-
tion is that we may secret share the entire circuit C by independently sharing m

separate 1-bit-output sub-circuits (which each has O(n2d

) possibilities) instead

of separately treating all possible mO(n2d
) values for all of C.

Plugging in the state-of-the-art DPF instantiations (as given in Section 3.1),
the resulting (server-side) runtime of the scheme is time(Cd) ∈ O(λn2d

m), and
the key size is O(λm log n), where λ is the seed length for the underlying pseu-
dorandom generator, and the hidden constants include a factor of 2d.

2. Constant-conjunction search queries
As a consequence of Transformation 6, together with the best known DPF instan-
tiations (given in Section 3.1) with key size O(λn) for domain size 2n and PRG
seed length λ, we obtain an FSS scheme for the class Match� of data-matching
functions, for a constant number of data entries �, where each of which may take
one of polynomially many |G1| ∈ nO(1) possible values. That is, for canonical
nonzero element g ∈ G,

Match� =
{

fS,v : Gn
1 → G

}

S⊂[n],
|S|≤�,

v∈G
�
1

s.t. fS,v(x) =

{
g if xi = vi ∀i ∈ S

0 else
.

Indeed, the class Match� contains
(
n
�

)|G1|� ∈ O(n�|G1|�) different functions.
Thus, for N := (n|G1|)�, we obtain a FSS scheme supporting Match� with
evaluation time O(λN log N) and key size O(λ log N). For the case of |G1| ∈
O(1), these correspond to runtime O(λn�� log n) and key size O(λ� log n).

354 E. Boyle et al.

3. Interval functions: Black-box from DPF
The class of interval functions consists of those functions fa,b which output a
fixed element g ∈ G precisely for inputs x that lie within the interval a < x < b,
and 0 ∈ G otherwise.

F int
n =

{
f(a,b) : {0, 1}n → G

}

0≤a
≤b<2n

, where f(a,b)(x) =

{
g a < x < b

0 else
.

Lemma 1. Based on any DPF (i.e., FSS scheme for the class of multi-bit point
functions) with key size s, there exists an FSS scheme for family F int

n , with key
sizes O(sn).

Intuitively, we express the condition x < a as the disjunction of (up to)
n mutually inconsistent exact prefix-matching conditions, such that an element
x is less than a precisely if it contains exactly one the prefixes. (Viewing the
target value a as a path down a binary tree, this amounts to the sequence of
(up to) n prefixes that agree with a up to some level i, but then continue to
0 at level i + 1 whereas a continues to 1). We thus attain the desired FSS as
a linear combination of n DPFs, each acting on a prefix of the input x (using
Transformations 2 and 4).

Two-Key FSS for Comparison and Interval Functions. We show efficient
constructions of FSS for the family F<

n of all comparison functions from {0, 1}n

to some finite group G. The class of comparison functions consists of those
functions fa,g which output a fixed element g ∈ G for inputs x that lie within
the interval 0 ≤ x < a, and 0 ∈ G otherwise.

F<
n =

{
fa,g : {0, 1}n → G

}

0≤a<2n
, where fa,g(x) =

{
g x < a

0 else
.

Note that (by Transformation 4 above), supporting comparison functions also
directly yields FSS for interval functions, with a factor of 2 overhead. We describe
a two-key construction which is a natural extension of the two-party DPF con-
struction in Algorithms 1 and 2. The key size of this construction is larger by an
additive factor of n log |G| compared to the key size of the DPF construction.

The scheme for comparison functions has a similar structure to the scheme
for DPF. Again, each of the keys k0, k1 generated by Gen<(1λ, a, g) represents
a binary tree of depth n, and Eval<(β, kβ , x) traverses the tree defined by kβ to
the leaf x = x1, . . . , xn.

However, there are several key differences between the scheme for compari-
son functions and the DPF scheme. First, the objects in each node of the tree
are group elements, generalizing the approach in the DPF scheme. In addition,
similarly to the DPF scheme, when the path to x diverges from the path to a,
if x ≥ a then the sum of the two group elements generated by Eval<(0, k0, x)
and Eval<(1, k1, x) is 0 for any node from the point of divergence to the leaf.

Function Secret Sharing 355

However, if x < a then the sum of the two group elements in every node is g.
Finally, the current Gen algorithm returns correct keys with probability 1.

Notation 3. Let G be an abelian group with group operation + (while ⊕ denotes
the exclusive-or of bits), let 0 ∈ G denote the identity element, let g ∈ G and
let −g denote the inverse of g in the group. Let ea · g denote a sequence of 2|a|

elements in G such that the element at location a is g and all other elements
in the sequence are the identity element. We assume that the length of ea is
determined by the domain of a.

Notation 4. Let G be a group, let g ∈ G and let b ∈ −1, 0, 1. We denote by g · b
a group element that is the identity unit 0 if b = 0, is equal to g if b = 1 and is
equal to −g if b = −1. Let ca · g be a sequence in of 2|a| elements with g in every
location a′ such that a′ < a and 0 in every other location. We assume that the
length of ca · g is determined by the domain of a.

Notation 5. Let Ep,q (Op,q) be the set of all p × qp−1 arrays over the set
{0, . . . , q − 1} such that the sum of elements in every column is 0 modulo q
(1 modulo q) and every column appears exactly once in the array.

We prove the correctness and security of (Gen<,Eval<) via the following
sequence of claims. Due to space limitations, we omit proofs of these claims, and
refer the reader to the full version of this paper.

Lemma 2. For every n ∈ N, every a, x ∈ {0, 1}n, every finite abelian group G,
every g ∈ G and every i, 1 ≤ i ≤ n,

1. If (x1, . . . , xi) = (a1, . . . , ai) then for β = 0, 1, the values Sβ and T β that
Eval<(β, kβ , x) computes are equal to the values Sβ

ai
[i] and T β

ai
[i] (respec-

tively) that Gen<(1λ, a, g) computes; in addition, T 0 ⊕ T 1 = 1.
2. If (x1, . . . , xi)
= (a1, . . . , ai) then S0 = S1 and T 0 = T 1.

Building atop Lemma 2, we arrive at the desired correctness guarantee:

Proposition 1 (Correctness). For every n ∈ N, every a, x ∈ {0, 1}n, every
finite abelian group G and every g ∈ G, if (k0, k1) ← Gen<(1λ, a, g) then
Eval<(0, k0, x) ⊕ Eval<(1, k1, x) = f<

a,g(x).

Theorem 6. For every n ∈ N, a ∈ {0, 1}n, every security parameter λ ∈ N

and every finite abelian group G, (Gen<,Eval<) is a two-key FSS scheme for the
family of comparison functions from {0, 1}n to G, with key size O(n(λ+log |G|)).

We remark that, via a simple transformation, the constructed FSS for com-
parison functions also directly yields an FSS scheme for point functions over a
general abelian group G.

Corollary 1. For every n ∈ N, every security parameter λ ∈ N and every finite
abelian group G there exists a two-key scheme for the family of point functions
from {0, 1}n to G, without errors and with key size O(n(λ + log |G|)).

356 E. Boyle et al.

Algorithm 5. Gen<(1λ, a, g)

1: Let G : {0, 1}λ −→ {0, 1}2λ+2 log |G|+2 be a PRG.
2: Choose three random seeds S0

a1 [1], S1
a1 [1], S0

¬a1 [1] ∈ {0, 1}λ and set S1
¬a1 [1] ←

S0
¬a1 [1].

3: Choose random bits T β
α [1], α, β ∈ {0, 1}, subject to T 0

a1 [1] �= T 1
a1 [1] and T 0

¬a1 [1] =
T 1

¬a1 [1].
4: Choose random elements V β

α [1] ∈ G, α, β ∈ {0, 1}, subject to V 0
a1 [1]+(−V 1

a1 [1]) = 0
and V 0

¬a1 [1] + (−V 1
¬a1 [1]) = g · a1.

5: for i = 1 to n − 1 do
6: Let G(Sβ

ai
[i]) = sβ

0 ||sβ
1 ||tβ

0 ||tβ
1 ||vβ

0 ||vβ
1 , where sβ

α ∈ {0, 1}λ, tβ
α ∈ {0, 1} and vβ

α ∈
G for α, β = 0, 1.

7: Randomly choose cs0,ai+1 , cs1,ai+1 ∈ {0, 1}λ.

8: Randomly choose cs0,¬ai+1 , cs1,¬ai+1 ∈ {0, 1}λ s.t.
⊕1

β=0(csβ,¬ai+1 ⊕sβ
¬ai+1) =

0.
9: Randomly choose ct0,ai+1 , ct1,ai+1 ∈ {0, 1} s.t.

⊕1
β=0(ctβ,ai+1 ⊕ tβ

ai+1) = 1.

10: Randomly choose ct0,¬ai+1 , ct1,¬ai+1 ∈ {0, 1} s.t.
⊕1

β=0(ctβ,¬ai+1 ⊕tβ
¬ai+1) = 0.

11: Randomly choose cv0,ai+1 , cv1,ai+1 ∈ G s.t.
∑1

β=0(cvτ,ai+1 + vβ
ai+1) · (−1)β = 0,

for τ = T β
ai

[i].
12: Randomly choose cv0,¬ai+1 , cv1,¬ai+1 ∈ G s.t.

∑1
β=0(cvτ,¬ai+1 + vβ

¬ai+1) ·
(−1)β = g · ai+1, for τ = T β

¬ai
[i].

13: Set CWβ [i] ← csβ,0||csβ,1||ctβ,0||ctβ,1||cvβ,0||cvβ,1 for β = 0, 1.
14: Set Sβ

α[i + 1] ← sβ
α ⊕ csτ,α for τ = T β

ai
[i] and α, β ∈ {0, 1}.

15: Set T β
α [i + 1] ← tβ

α ⊕ ctτ,α for τ = T β
ai

[i] and α, β ∈ {0, 1}.
16: end for
17: Set kβ ← ((Sβ

0 [1], Sβ
1 [1], T β

0 [1], T β
1 [1], V β

0 [1], V β
1 [1]), (CW0[1], CW1[1], . . . , CW0[n −

1], CW1[n − 1])).
18: Return (k0, k1).

Algorithm 6. Eval<(β, kβ , x)

1: Let G : {0, 1}λ −→ {0, 1}2λ+2 log |G|+2 be a PRG.
2: Let the binary representation of x be x = x1, . . . , xn.
3: Let kβ = ((Sβ

0 [1], Sβ
1 [1], T β

0 [1], T β
1 [1], V β

0 [1], V β
1 [1]), (CW0[1], CW1[1], . . . , CW0[n −

1], CW1[n − 1])).
4: Set Sβ ← Sβ

x1 [1].
5: Set T β ← T β

x1 [1].
6: Set V β ← V β

x1 [1].
7: for i = 2 to n do
8: Parse G(Sβ) as G(Sβ) = s0||s1||t0||t1||v0||v1.
9: Let CWT β [i − 1] = csT β ,0||csT β ,1||ctT β ,0||ctT β ,1||cvT β ,0||cvT β ,1.

10: Set Sβ ← sxi ⊕ csT β ,xi
.

11: Set T β ← txi ⊕ ctT β ,xi
.

12: Set V β ← V β + (vxi + cvT β ,xi
).

13: end for
14: Return V β · (−1)β .

Function Secret Sharing 357

Proof. A point function is a linear combination of two comparison functions.
Specifically, Pa,g(x) = f<

a+1(x)+(−f<
a (x)), where −f<

a (x) is the inverse of f<
a (x)

in G. The corollary follows from Theorem 6 and the linear combination of FSS
schemes in Section 3.2.

Extending to the Many-Party Setting. We construct a scheme for the
family of comparison functions from {0, 1}n to an abelian group G that is secure
against coalitions of all but one of the keys. The scheme, defined in Algorithms
7 and 8, has a similar structure to Algorithms 3 and 4.

There are several differences between the current scheme and the DPF scheme.
The scheme for comparison functions is over G and the choice of arrays Aγ′ is
from the sets Ep,q and Op,q, for q = |G|, instead of choosing the arrays from
Ep or Op. The correction words, cw1, . . . , cwν , are chosen in a different way in
line 6 of Algorithm 7 and additional group elements, v1, . . . , vν , are used in line
7 of Algorithm 7 and line 6 of Algorithm 8. The reason for the differences in
cw1, . . . , cwν and v1, . . . , vν is that f<

a,g(x) = g for any x < a, while Pa,b(x) = 0
for any x < a.

Theorem 7. For every security parameter λ ∈ N, every n, p ∈ N, every abelian
group G, |G| = q, every a, x ∈ {0, 1}n and every g ∈ G, the pair of algo-
rithms (Genp,Evalp) is an FSS scheme for the family of all comparison func-
tions from {0, 1}n to G, such that Gen outputs p keys (k1, . . . , kp), the scheme
is secure against any coalition of at most p − 1 keys and the key size is O(2n/2 ·
q(p−1)/2 log q).

Corollary 2. For any abelian group G = G1 × . . . ×Gr, such that |Gi| = qi for
i = 1, . . . , r, there exists an FSS scheme for the family of comparison functions
from {0, 1}n to G that generates p keys and is secure against coalitions of up to
p − 1 keys with key size O(2n/2 · q(p−1)/2

∑p
i=1 log qi). This result is obtained by

running (Genp,Evalp) separately on each component Gi.

Proposition 2 (Correctness). For every security parameter λ ∈ N, every
n, p ∈ N, every abelian group G, every a, x ∈ {0, 1}n and every g ∈ G, if
(k1, . . . , kp) ← Genp(1λ, a, g) then

∑p
i=1 Eval

p(i, ki, x) = f<
a,g(x).

3.3 General FSS from Obfuscation

In this section, we provide general positive constructions of FSS based on program
obfuscation. We first obtain FSS schemes for P/poly given access to a program
obfuscator that satisfies a virtual black-box (VBB) notion of security [3]. We then
build on top of recent advances in indistinguishability obfuscation (iO) [3,22] to
demonstrate a similar conclusion from iO with sub-exponential hardness.

In particular, building atop recent candidate obfuscation constructions, these
provide us with heuristic constructions of FSS for any efficiently computable
function class of choice. Further, it yields provably secure solutions within ide-
alized models, for which secure constructions of VBB obfuscation have been

358 E. Boyle et al.

Algorithm 7. Genp(1λ, a, g)

1: Let G : {0, 1}λ −→ G
μ be a PRG (μ is defined in line 2).

2: Let μ ← 	2n/2 · q(p−1)/2
 and let ν ← 	2n/μ
.
3: Regard a as a pair a = (γ, δ), γ ∈ {0, 1}ν , δ ∈ {0, 1}μ.
4: Choose ν random arrays A1, . . . , Aν , s.t. Aγ ∈ Op,q and Aγ′ ∈ Ep,q for all γ′ �= γ.
5: Choose ν · qp−1 random seeds s1,1, . . . , sν,qp−1 ∈ {0, 1}λ.

6: Randomly choose cw1, . . . , cwqp−1 ∈ G
μ s.t.

∑qp−1

j=1 (cwj + G(sγ,j)) = cδ.
7: Select v1, . . . , vp ∈ G

ν randomly s.t.
∑p

i=1 vi = cγ · g.
8: If Aγ′ [i, j] �= 0 set σi,γ′,j ← (sγ′,j , Aγ′ [i, j]), otherwise σi,γ′,j ← (0, 0), for all

1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν, 1 ≤ j ≤ qp−1.
9: Set σi,γ′ ← (σi,γ′,1|| . . . ||σi,γ′,qp−1), for all 1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν.

10: Set σi = σi,1|| . . . ||σi,ν for 1 ≤ i ≤ p.
11: Let ki = (σi, vi, cw1, . . . , cwqp−1) for 1 ≤ i ≤ p.
12: Return (k1, . . . , kp).

Algorithm 8. Evalp(i, ki, x)

1: Let G : {0, 1}λ −→ G
μ be a PRG (μ is defined in line 2).

2: Let μ ← 	2n/2 · q(p−1)/2
 and let ν ← 	2n/μ
.
3: Regard x as a pair x = (γ′, δ′), γ′ ∈ {0, 1}ν , δ′ ∈ {0, 1}μ.
4: Parse ki as ki = (σi, vi, cw1, . . . , cwqp−1).
5: Parse σi as σi = (s1,1, A1[i, 1])|| . . . ||(s1,qp−1 , A1[i, q

p−1])|| . . . ||(sν,qp−1 , Aν [ν, qp−1]).
6: Let yi ← vi[γ

′] +
∑

1≤j≤qp−1

Aγ′ [i,j] �=0

Aγ′ [i, j] · (cwj + G(sγ′,j)).

7: Return yi[δ
′].

constructed [2,9], e.g. in the generic multilinear map model, or in settings with
secure hardware.

For purposes of space limits, we describe only the high-level intuition and
defer complete constructions and proofs of security to the full version.

General FSS from Virtual Black Box (VBB) Obfuscation

Proposition 3. Assume the existence of an ideal virtual black-box obfuscation
oracle for P/poly, and the existence of one-way functions. Then there exists an
FSS scheme supporting P/poly.

Intuitively, the FSS construction works by obfuscating (1) a pseudorandom
function (PRF) Fs for one party, and (2) (C − Fs) for the desired circuit C for
the second party. The VBB property enables a party’s key to be simulated given
black-box access to the underlying program, which can in turn be simulated (by
the security of the PRF) by a truly random sequence of outputs.

General FSS From Sub-Exponential iO. Our construction relies on a recent
work of Canetti et al. [13] which demonstrates that sub-exponential iO implies

Function Secret Sharing 359

a notion of probabilistic iO (piO). Loosely, piO converts a randomized program
into a deterministic obfuscated program, and provides the guarantee that it
is hard to distinguish obfuscations of two (randomized) circuits whose output
distributions at each input are computationally indistinguishable, possibly in the
presence of auxiliary input. We refer the reader to [13] for a full definition.

Theorem 8. Assume the existence of sub-exponentially secure indistinguisha-
bility obfuscation and sub-exponentially secure one-way functions. Then there
exists an FSS scheme supporting P/poly.

The construction makes use of a piO-obfuscated (randomized) program P
that takes as input x, samples a random value R, and outputs encryptions of the
values R and f(x) − R for the secret function f , under two different hardcoded
public keys (i.e., EncpkA

(R) and EncpkB
(f(x) − R)), as described in Figure 1.

Recall that while this program P is randomized, its piO-obfuscation P̃ is a
deterministic circuit. A party’s FSS key for f ∈ F will consist of this obfuscated
program P̃ , together with one of the secret keys skA or skB . To evaluate his
FSS share on an input x, the party runs P̃ (x), and decrypts his corresponding
output. We remark that (sub-exponentially) secure public-key encryption (PKE)
is implied by (sub-exponentially) secure indistinguishability obfuscation together
with (sub-exponentially) secure one-way functions [43].

Program FSSf,pkA,pkB

Hardcoded: f ∈ F , public keys pkA, pkB .
Input: x ∈ {0, 1}n. Randomness: R, rA, rB .

1. Encrypt R under pkA, as ŷA ← EncpkA
(R; rA).

2. Encrypt f(x) − R under pkB , as ŷB ← EncpkB
(f(x) − R; rB).

3. Output (ŷA, ŷB).

Fig. 1. Real program obfuscated in Gen(1λ, f)

Correctness of the scheme follows by the correctness of the encryption and
the piO: since the original program P outputs value pairs (ŷA, ŷB) for which
DecskA

(ŷA)+DecskB
(ŷB) = f(x), the same property (which is efficiently testable

given auxiliary input skA, skB) must hold for the outputs of P̃ . By the security
of the PKE, a party learns nothing from the second encrypted output, and thus
his own decrypted shares (either R or f(x) − R) appear indistinguishable from
random values. This is formalized in the proof by replacing the obfuscated pro-
gram P̃ with an obfuscation of a fake program which instead outputs EncpkA

(R)
and EncpkB

(R′) for a second independent random value R′.

4 Relation to Other Primitives

In this section, we explore the relation between FSS and other cryptographic
primitives. We first demonstrate in Section 4.1 that once the supported function

360 E. Boyle et al.

class F becomes reasonably rich, each share of function f ∈ F must be a pseudo-
random function. This holds in particular for the special case of point functions.
We next provide evidence in Section 4.2 that achieving FSS for certain function
classes (beginning as low as AC0) is likely to require cryptographic tools heavier
than one-way functions or even oblivious transfer. This is done by showing that
such FSS schemes imply low-communication general secure computation proto-
cols that rely on reusable preprocessing. Such protocols are currently only achiev-
able using stronger cryptographic primitives, namely somewhat-homomorphic
encryption or reusable garbled circuits. Finally, in Section 4.3 we show that,
assuming fully homomorphic encryption (FHE) with decryption in NC1 (as is
the case for nearly all existing constructions, e.g. [8,10,25]), FSS for general
functions is implied by the existence of FSS for NC1.

4.1 Key Functions Are Pseudorandom Functions

Parties’ keys in the FSS each define their own function, taking inputs x to output
shares Eval(b, kb, x). This function serves as one piece of the secret function being
shared. A natural question is: what can we say about these functions? Can they
have any sort of structure? Or, does the security property of the FSS together
with the linearity of the output decoding procedure directly enforce a particular
structure on the output share functions themselves?

We show that, in fact, if the supported class F is sufficiently rich, in the
sense that it “efficiently spans” the whole function space, then it must be that
the parties’ output share functions Eval(b, kb, x) themselves are pseudorandom
functions (PRFs). We formalize this condition on F as “poly-spanning.”

Definition 4. A family of functions F = {f : Gn → Gm} is said to be poly-
spanning if for each polynomial p(n) there exists a polynomial q(n) and effi-
cient procedure P : ({0, 1}n × {0, 1}m)p(n) → Fq(n) mapping p(n) pairs
of input-output assignments to a collection of q(n) functions from F , with
P

(
(xi, yi)i∈[p(n)]

)
= (fj)j∈[q(n)] such that the function f ′ :=

∑
j∈[q(n)] fj sat-

isfies f ′(xi) = yi for every i ∈ [p(n)].

Remark 3 (Examples of poly-spanning function families).

– Multi-bit Point Functions. The class of functions {fx∗,y∗} over x∗ ∈
{0, 1}n, y∗ ∈ {0, 1}m where fx∗,y∗(x) = y∗ if x = x∗ and 0 otherwise.
Indeed, the desired procedure P is simply given by P

(
(xi, yi)i∈[p(n)]

)
=

(fxi,yi
)i∈[p(n)].

– Comparison Functions. The class of comparison functions F≤
n . Indeed,

the desired procedure P is given as follows:
1: Initialize S ← ∅.
2: Sort inputs x1, . . . , xp(n) ∈ [2n] as x′

1 ≤ . . . ≤ x′
p(n). Denote their outputs

as y′
i.

3: for i = p(n) to 1 do
4: if y′

i
= y′
i+1 (where y′

p(n)+1 := 0) then

Function Secret Sharing 361

5: Include the new function f≤
x′

i
(to flip the output of the sum):

S ← S ∪ {f≤
x′

i
}

6: end if
7: end for
8: return S

We now introduce notation for the output share function that we study.

Definition 5. Let (Gen,Eval) be an FSS scheme w.r.t. function class F . Then
for each f ∈ F and b ∈ {0, 1}, we denote by OutputSharef,b the function family
{Eval(b, kb, ·)}kb

defined by sampling and evaluation procedures:

– Sample: Outputs a key kb, where (k0, k1) ← Gen(1λ, f).
– Evaluate: On input x, computes Eval(b, kb, x).

Theorem 9. Let (Gen,Eval) be a FSS scheme (as per Definition 2) w.r.t. a
poly-spanning function class F . Then for every f ∈ F and every b ∈ {0, 1}, the
function family OutputSharef,b as given in Definition 5 is a PRF family (against
nonuniform adversaries).

Proof. Intuitively, we first show that oracle access to a randomly sampled party
key function OutputSharef,b (over the randomness of Gen) must be computation-
ally indistinguishable from oracle access to the distribution (OutputSharef,b +∑

i∈S fi) for any fixed polynomial-size subset S of functions fi ∈ F in the sup-
ported function class. Then, we show that if F is poly-spanning, then for any
possible PRF distinguishing adversary A, we can fool this A, guaranteeing that
he cannot succeed in distinguishing from a random function, with an appropriate
carefully tailored choice of functions {fi}i∈S ⊂ F .

We defer the full proof of Theorem 9 to the full version of this paper.

4.2 Barriers Toward FSS for Expressive Function Classes

We now turn to exploring likely barriers in constructing FSS for certain function
classes based on lightweight cryptographic tools. Our results in this section take
the following form: Assume there exists FSS for a class of functions containing
F ◦Dec, where F is some function class and Dec corresponds to the complexity of
decryption of a symmetric-key encryption scheme. Then there exists a particular
form of highly communication-efficient secure computation for functions in F ,
which is currently only known to exist based on F-homomorphic encryption5 or
reusable garbled circuits for F . In particular:

– At the high end, FSS for P/poly implies a form of secure computation whose
only known constructions rely on fully homomorphic encryption or reusable
garbled circuits for P/poly. We conclude that FSS for P/poly is likely to
require heavy cryptographic machinery.

5 That is, semantically secure encryption supporting compact homomorphic evaluation
of the function class F .

362 E. Boyle et al.

– At the low end, FSS for AC0 in combination with any symmetric-key encryp-
tion scheme with decryption in AC0 together imply a form of secure compu-
tation only currently known to exist based on existence of AC0-homomorphic
encryption or reusable garbled circuits for AC0.

In particular, symmetric-key encryption with decryption in AC0 is implied
by sub-exponential hardness of Learning Parity with Noise (LPN) [7]. How-
ever, despite significant efforts in the cryptographic community, it is unknown
even how to build from this assumption collision resistant hashing, much
less stronger primitives like homomorphic encryption that imply them [35].
Indeed, all proposed constructions to date of homomorphic encryption and
reusable garbled circuits (even for the restricted class AC0), such as those
from [10,11,33], rely on Learning With Errors (LWE) [42] or similar lattice-
based assumptions; a construction under weaker or significantly different
assumptions such as LPN would be considered a major result. We conclude
that FSS for AC0 is unlikely to be achieved based on sub-exponential LPN
(or any weaker) assumption alone.

We contrast this conclusion with our construction of FSS for various strict
subclasses of AC0 in Section 3.2 based on one-way functions.

We now formalize the above discussion. Concretely, we demonstrate that
FSS for a function class F ◦ Dec (formally defined below) yields a construction
of exceedingly communication-efficient (semi-honest) secure multiparty compu-
tation (MPC) in the preprocessing model, for the function class F . That is, given
an offline setup phase independent of parties’ inputs, the parties A,B can reuse
this setup to achieve secure evaluation of a fixed f ∈ F on arbitrarily many
input pairs (xA

1 , xB
1), (xA

2 , xB
2), . . . in the online phase with communication that

depends only on the size of the inputs and outputs of f , and not on the size
of f itself. To date, the only other known approaches to achieving MPC with
this efficiency feature (even when allowing reusable preprocessing) rely on strong
cryptographic tools: either fully homomorphic encryption for F (as in [1,23]) or
reusable garbled circuits for F (as in [33].6)

Intuitively, the FSS enables communication efficiency as follows. Suppose we
wish to achieve secure computation of a function f ∈ F . In the offline phase,
the parties A,B will each receive7 a secret key skA, skB for the symmetric key
encryption scheme, and FSS keys of a function f̂sk ∈ F◦Dec that depends on both
skA and skB . This function f̂sk will take as input a pair of ciphertexts (x̂A, x̂B),
decrypts each with respect to the corresponding hardcoded secret key skA or skB ,
and then evaluates the function f on the resulting values. In the online phase,
6 Loosely, the offline phase will result in one party receiving a reusable garbled circuit

of f and the second will receive the information to generate garbled input labels; the
offline phase will only require communication on order the size of the garbled input
and output labels, and not the size of f itself.

7 For simplicity, we treat the offline setup phase as correlated randomness generated
and given to the two parties by some trusted source; in practice, this can be imple-
mented by running a standard MPC protocol between the two parties to securely
generate these values.

Function Secret Sharing 363

for each desired input pair (xA
i , xB

i), the parties exchange encryptions of their
private inputs under their respective secret keys. They then use their FSS keys to
compute output shares of f̂sk evaluated on input this pair of ciphertexts (x̂A

i , x̂B
i).

Finally, the computed output shares are exchanged, and the value of f̂sk(x̂A
i , x̂B

i)
is reconstructed. By the correctness of the FSS scheme and the choice of f̂sk, this
will exactly allow the parties to compute the desired value f(xA

i , fB
i). And by

the security of the FSS and the encryption scheme, no additional information
on the inputs will be revealed.

We now formalize these intuitions.

Remark 4 (MPC Security). Recall that MPC security is defined with respect to
the real/ideal world paradigm. Very loosely, for every PPT adversary A in a real-
world execution of the protocol, there exists a PPT simulator in the ideal-world
execution (receiving only the function output(s)) who can consistently simulate
the experiment output. We refer the reader to e.g. [30,46] for a formal definition.

Definition 6 (Communication-Efficient Online MPC for F). It is said
that communication-efficient online MPC for the function class F exists if for
any f ∈ F , there exists a distribution of correlated randomness (DA,DB), poly-
nomial p, and a two-party protocol Π in the correlated randomness model such
that, for any � ∈ N, and any sequence of (possibly adaptively chosen) inputs
(xA

1 , xB
1), . . . , (xA

� , xB
�), the protocol Π achieves secure evaluation of f on the

input pairs in the semi-honest model, with (online) communication complexity
O

(∑�
i=1

(|xA
i | + |xB

i | + |f(xA
i , xB

i)|) · p(λ)
)
, where λ is the security parameter.

In particular, the online communication complexity is independent of the size of
the description of f .

Definition 7. For a given symmetric encryption scheme (Gen,Enc,Dec) and
function class F , we define the function class F ◦Dec := {f ◦ (DecskA

×DecskB
) :

f ∈ F , skA, skB ∈ Supp(Gen(1k))}.
Theorem 10. Assume the existence of symmetric-key encryption with decryp-
tion Dec, and FSS for F ◦ Dec (as in Definition 7). Then there exists
communication-efficient online MPC for the class F , as in Definition 6.

Due to space limitations, we defer the proof of Theorem 10 to the full version
of this paper.

Remark 5. We note that the proof of Theorem 10 does not rely directly on the
linearity of the output decoding procedure of the FSS scheme. Rather, the same
result holds identically for any output decoding function that still guarantees
function privacy (to preserve security of the MPC) and succinctness (to maintain
communication efficiency in the online phase).

We now address the implications of Theorem 10 to two specific function
classes F ◦ Dec.

364 E. Boyle et al.

Corollary 3 (FSS for P/poly). Assuming FSS for P/poly, there exists
communication-efficient online MPC for all P/poly.

Proof. By Theorem 9, FSS for P/poly implies the existence of pseudorandom
functions, which thus implies secure symmetric-key encryption with decryption
in P/poly. The corollary hence follows directly from Theorem 10.

Corollary 4 (FSS for AC0). Assuming FSS for AC0 and sub-exponential
hardness of LPN, there exists communication-efficient online MPC for AC0.

Proof. Follows from Theorem 10 and [7].

4.3 Bootstrapping with Fully Homomorphic Encryption

We show that FSS schemes enjoy a convenient bootstrapping property, when
paired with fully homomorphic encryption (FHE). Namely, assuming the exis-
tence of FHE with decryption in NC1 (as is the case for essentially all existing
constructions, e.g. [8,10,25]), then any FSS scheme supporting the class NC1

directly implies an FSS for the class of all circuits, where the FSS key size grows
with the size of the circuit being secret shared.8

Proposition 4. Assuming the existence of fully homomorphic encryption with
perfect correctness and decryption in NC1, and FSS for NC1, then there exists
a secure FSS scheme for P/poly.

Proof. Intuitively, the new FSS construction will work by sampling FSS keys in
the underlying NC1-supported scheme for the FHE decryption function Decsk for
random, secret sk, and additionally providing an encryption Ĉ of a description
of the desired circuit C ∈ P/poly. To evaluate, the parties first homomorphically
evaluate C on their input x using Ĉ, and then use this evaluated ciphertext as
the input to the FSS for Decsk.

We defer the full proof of Proposition 4 to the full version of this paper.

Acknowledgments. We thank Nir Bitansky and Vinod Vaikuntanathan for helpful
discussions and for pointing out the relevance of [13].

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

8 Note that this growth in key size is necessary, as the size of the two parties’ keys
together with the complexity of the Eval′ must match or exceed the circuit descrip-
tion size; thus circuits of arbitrary polynomial size cannot be supported by a fixed
polynomial size key and Eval algorithm.

Function Secret Sharing 365

2. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

4. Barkol, O., Ishai, Y., Weinreb, E.: On Locally Decodable Codes, Self-Correctable
Codes, and t-Private PIR. Algorithmica 58(4), 831–859 (2010)

5. Beigel, R., Fortnow, L., Gasarch, W.I.: A tight lower bound for restricted PIR
protocols. Computational Complexity 15(1), 82–91 (2006)

6. Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and private infor-
mation retrieval. In: IEEE Conference on Computational Complexity 2012, pp.
258–268 (2012)

7. Bogdanov, A., Lee, C.H.: On the depth complexity of homomorphic encryption
schemes. Electronic Colloquium on Computational Complexity (ECCC) 2012/157
(2012)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012, pp. 309–325 (2012)

9. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

10. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS
2014, pp. 1–12 (2014)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS 2011, pp. 97–106 (2011)

12. Cachin, C., Micali, S., Stadler, M.A.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

13. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of Probabilistic
Circuits and Applications. Cryptology ePrint Archive, Report 2014/882 (2014)

14. Chor, B., Gilboa, N.: Computationally private information retrieval. In: STOC
1997, pp. 304–313 (1997)

15. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
Journal of the ACM (JACM) 45(6), 965–981 (1998)

16. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: STOC 1994, pp. 522–533 (1994)

17. Desmedt, Y.G.: Society and group oriented cryptography: a new concept. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer,
Heidelberg (1988)

18. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

19. Dvir, Z., Gopi, S.: 2-Server PIR with sub-polynomial communication. Electronic
Colloquium on Computational Complexity (ECCC) 21, 94 (2014)

20. Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private informa-
tion retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000)

21. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: STOC
2009, pp. 39–44 (2009)

22. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49 (2013)

366 E. Boyle et al.

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178 (2009)

24. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005)

25. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

26. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
640–658. Springer, Heidelberg (2014)

27. Goldreich, O.: A Note on Computational Indistinguishability. Inf. Process. Lett.
34(6), 277–281 (1990)

28. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press (2000)

29. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM (JACM) 33(4), 792–807 (1986)

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229
(1987)

31. Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on Oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

32. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

33. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC 2013, pp.
555–564 (2013)

34. Hastad, J., Impagliazzo, R., Levin, L., Luby, M.: A Pseudorandom Generator from
any One-way Function. SIAM J. Comput. 28(4), 1364–1396 (1999)

35. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient conditions for collision-resistant
hashing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 445–456. Springer,
Heidelberg (2005)

36. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007)

37. Kalyanasundaram, B., Schnitger, G.: The Probabilistic Communication Complex-
ity of Set Intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

38. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: FOCS 1997, pp. 364–373 (1997)

39. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005)

40. Ostrovsky, R., Shoup, V.: Private information storage. In: STOC 1997, pp.
294–303. ACM (1997)

41. Ostrovsky, R., Skeith III, W.E.: Private Searching on Streaming Data. J. Cryptol-
ogy 20(4), 397–430 (2007)

42. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93 (2005)

Function Secret Sharing 367

43. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC 2014, pp. 475–484 (2014)

44. Shamir, A.: How to Share a Secret. CACM 22(11), 612–613 (1979)
45. Wehner, S., de Wolf, R.: Improved lower bounds for locally decodable codes and pri-

vate information retrieval. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1424–1436. Springer,
Heidelberg (2005)

46. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS
1982, pp. 160–164 (1982)

47. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
STOC 2007, pp. 266–274 (2007)

Outsourcing Computations

Cluster Computing in Zero Knowledge

Alessandro Chiesa1(B), Eran Tromer3, and Madars Virza2

1 ETH Zurich, Zürich, Switzerland
alessandro.chiesa@inf.ethz.ch

2 MIT, Cambridge, USA
madars@csail.mit.edu

3 Tel Aviv University, Tel Aviv, Israel
tromer@cs.tau.ac.il

Abstract. Large computations, when amenable to distributed parallel
execution, are often executed on computer clusters, for scalability and
cost reasons. Such computations are used in many applications, includ-
ing, to name but a few, machine learning, webgraph mining, and statis-
tical machine translation. Oftentimes, though, the input data is private
and only the result of the computation can be published. Zero-knowledge
proofs would allow, in such settings, to verify correctness of the output
without leaking (additional) information about the input.

In this work, we investigate theoretical and practical aspects of zero-
knowledge proofs for cluster computations. We design, build, and evaluate
zero-knowledge proof systems for which: (i) a proof attests to the cor-
rect execution of a cluster computation; and (ii) generating the proof is
itself a cluster computation that is similar in structure and complexity
to the original one. Concretely, we focus on MapReduce, an elegant and
popular form of cluster computing.

Previous zero-knowledge proof systems can in principle prove a
MapReduce computation’s correctness, via a monolithic NP statement
that reasons about all mappers, all reducers, and shuffling. However, it
is not clear how to generate the proof for such monolithic statements
via parallel execution by a distributed system. Our work demonstrates,
by theory and implementation, that proof generation can be similar in
structure and complexity to the original cluster computation.

Our main technique is a bootstrapping theorem for succinct non-inter-
active arguments of knowledge (SNARKs) that shows how, via recursive
proof composition and Proof-Carrying Data, it is possible to transform
any SNARK into a distributed SNARK forMapReduce which proves, piece-
wise and in a distributed way, the correctness of every step in the original
MapReduce computation as well as their global consistency.

Keywords: Computationally-sound proofs · Proof-carrying data · Zero
knowledge · Cluster computing · MapReduce

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 371–403, 2015.
DOI: 10.1007/978-3-662-46803-6 13

372 A. Chiesa et al.

1 Introduction

We study theoretical and concrete aspects of zero-knowledge proofs for cluster
computations, seeking proofs for which: (i) the output of the cluster computation
carries a zero-knowledge proof of its correctness; and (ii) generating a proof is
itself a cluster computation that is similar in structure and complexity to the
original one.

1.1 Motivation

Consider the following motivating example. A server owns a private database �,
and a client wishes to learn � := F (�) for a public function F , selected either by
himself or someone else. A (hiding) commitment cm to � is known publicly. For
example, � may be a database containing genetic data, and F may be a machine-
learning algorithm that uses the genetic data to compute a classifier �. On the
one hand, the client seeks integrity of computation: he wants to ensure that the
server reports the correct output � (because the classifier � may be used for
critical medical decisions). On the other hand, the server seeks confidentiality
of his own input: he is willing to disclose � to the client, but no additional
information about � beyond � (because the genetic data � may contain sensitive
personal information).
Zero-knowledge proofs. Achieving the combination of the aforementioned
security requirements seems paradoxical; after all, the client does not have the
input �, and the server is not willing to share it. Nevertheless, cryptography
offers a powerful tool that is able to do just that: zero-knowledge proofs [48].
More precisely, the server, acting as the prover, attempts to convince the client,
acting as the verifier, that the following NP statement is true: “there exists �̃

such that � = F (�̃) and �̃ is a decommitment of cm”. Indeed: (a) the proof
system’s soundness property addresses the client’s integrity concern, because
it guarantees that, if the NP statement is false, the prover cannot convince
the verifier (with high probability);1 and (b) the proof system’s zero-knowledge
property addresses the server’s confidentiality concern, because it guarantees
that, if the NP statement is true, the prover can convince the verifier without
leaking any information about � (beyond was is leaked by the output �).
Cluster computations. When F is amenable to parallel execution by a dis-
tributed system, it is often desirable, for scalability and cost reasons, to compute
� := F (�) on a computer cluster. A computer cluster consists of nodes (e.g.,
commodity machines) connected via a network, and each node performs local
computations as coordinated via messages with other nodes. Thus, to compute
F (�), a cluster may break � down into chunks and use these to assign sub-tasks
to different nodes; the results of these sub-tasks may require further computa-
tion, so that nodes further coordinate, deduce more sub-tasks, and so on, until
1 Sometimes a property stronger than soundness is required: proof of knowledge [4,48],

which guarantees that, whenever the client is convinced, not only can he deduce that
a witness exists, but also that the prover knows one such witness.

Cluster Computing in Zero Knowledge 373

the final result � can be collected. Parallel execution by a distributed system is
possible in many settings, including the aforementioned one of running machine-
learning algorithms on private genetic data. Indeed, “cloud” service providers
do offer users distributed programming interfaces (e.g., Amazon’s “EMR” and
Rackspace’s “Big Data”, both of which use the Hadoop framework).
The problem: how to do cluster computing in zero knowledge? In
principle, any zero-knowledge proof system for NP can be used to express an
NP statement that captures F ’s correct execution. However, while F may have
been efficient to execute on a computer cluster, the process of generating a proof
attesting to its correctness may not be. Suppose, for example, that the NP state-
ment to be proved must be expressed as an instance of circuit satisfiability. Then,
one would have to construct a single circuit that expresses the correctness of the
computation of every node in the cluster, as well as the correctness of communi-
cation among them. Proving the satisfiability of the resulting monolithic circuit
via off-the-shelf zero-knowledge proof systems is a computation that looks noth-
ing like the original one and, moreover, may not be suitable for efficient execution
on a cluster. Ideally, the proving process should be a distributed computation
that is similar to the original one, in that the complexity of producing the proof
is not much larger than that of the original computation and, likewise, has a
cluster-friendly communication structure. In sum: To what extent can one effi-
ciently perform cluster computing in zero knowledge?

1.2 Our Focus: MapReduce

Cluster computing is a hypernym that encompasses numerous forms of dis-
tributed computing, as determined by the cluster’s architecture (i.e., its pro-
gramming model and its execution framework). Indeed, a cluster’s architecture
often depends on the class of envisioned applications (e.g., indexing the World
Wide Web, performing astrophysical N -body simulations, executing machine-
learning algorithms on genetic data, and so on).

In this work, we focus on a concrete, yet elegant and powerful, distributed
architecture: MapReduce [35]. We review MapReduce later (in Section 2), and
now only say that MapReduce can express many useful computations, including
ones used for machine learning [26,67,82], graph mining and processing [52,58],
statistical machine translation [20,38,57,70], document similarity [56], and bioin-
formatics [54,71]. For concreteness, we specialize to MapReduce the question
raised in Section 1.1:

Can one obtain zero-knowledge proofs attesting to the correctness of
MapReduce computations, in which the proving process is itself dis-
tributed and can be efficiently expressed via MapReduce computations?

1.3 Our Contributions

In this paper we present two main results, both contributing to the feasibility of
cluster computing in zero knowledge.

374 A. Chiesa et al.

1. MapReduce in zero knowledge. Under knowledge-of-exponent assump-
tions [5,31,50], we construct a zero-knowledge proof system in which: (i) a
proof attests to the correct execution of a MapReduce computation; and
(ii) generating a proof consists of MapReduce computations with similar
complexity as the original one. Moreover, the proof system is succinct and
non-interactive, i.e., is a zk-SNARK [12,15,44].

2. A working prototype. We design, build, and evaluate a working prototype
for the aforementioned construction.

At the heart of our construction (and implementation) lies a new bootstrap-
ping theorem for zk-SNARKs. Informally:

Assuming collision-resistant hashing, there is an efficient transforma-
tion that takes as input a zk-SNARK (even one with expensive pre-
processing) and outputs a distributed zk-SNARK for MapReduce, i.e., a
zk-SNARK for MapReduce where the prover can be efficiently imple-
mented via MapReduce.

The transformation consists of the following two steps.

– Step I: use a given (non-distributed) zk-SNARK to obtain a proof-carrying
data (PCD) system [24,25], a cryptographic primitive that enforces local
invariants, the compliance predicates, in distributed computations.

– Step II: use the PCD system on a specially-crafted predicate to obtain a
distributed zk-SNARK for MapReduce.

The theory for the first step is due to [13]; a special case was implemented in [8],
and our implementation generalizes it to support the MapReduce application.
The second step is novel and is an example of using “compliance engineering”
to conduct and prove correctness of non-trivial distributed computations. From
an implementation standpoint, both steps require significant and careful engi-
neering, as we explain later.

1.4 Prior Work

zk-SNARKs. We study zero-knowledge proofs [48] that are non-interactive
[16,17,66]. Specifically, we study non-interactive zero-knowledge proofs that are
succinct, i.e., short and easy to verify [63]; these are known as zk-SNARKs [12,
15,44].

There are many zk-SNARK constructions in the literature, with different prop-
erties in efficiency and supported languages. In preprocessing zk-SNARKs, the
complexity of the setup of public parameters grows with the size of the computa-
tion being proved [3,7,9,15,30,33,39,43,49,53,59–61,69,81,83]; in fully-succinct
zk-SNARKs, that complexity is independent of computation size [8,11–14,32,36,
47,63,64,79]. Working prototypes have been achieved both for preprocessing
zk-SNARKs [7,9,30,53,69,83] and for fully-succinct ones [8]. Several works have
also explored more in depth various applications of zk-SNARKs [6,21,23,34,41].

Cluster Computing in Zero Knowledge 375

Prior work has not sought (or achieved) distributed zk-SNARKs for
MapReduce. Of course, non-distributed zk-SNARKs for MapReduce (i.e., where
the prover is not amenable to parallel distributed execution) can be achieved,
trivially, via any zk-SNARK for NP: (a) express (the correctness of) the
MapReduce computation via a suitable NP statement; then (b) prove satisfi-
ability of that NP statement by using the zk-SNARK.
Proof-carrying data. Proof-Carrying Data (PCD) [24,25] is a framework for
enforcing local invariants in distributed computations; it is captured via a cryp-
tographic primitive called PCD system. Proof-Carrying Data covers, as special
examples, incrementally-verifiable computation [79] and targeted malleability
[19]. Its role in bootstrapping zk-SNARKs was shown in [13], and an implemen-
tation of it was achieved in [8].
Outsourcing MapReduce computations. Braun et al. [21] construct (and
implement) an interactive protocol for verifiably outsourcing MapReduce compu-
tations to untrusted servers. While interacting with the prover, the client has to
perform himself the MapReduce shuffling phase; hence, their protocol is neither
succinct nor zero knowledge. (In particular, their protocol is not a zk-SNARK
and, a fortiori, nor a distributed zk-SNARK.)
Other works on outsourcing computations. Numerous works [2,10,18,21,
22,27–29,40,42,46,51,68,73–78,80] seek to verifiably outsource various classes
of computation to untrusted powerful servers, e.g., in order to leverage cheaper
cycles or storage. Some of these works have achieved working prototypes of their
protocols.

Verifiable outsourcing of computations is not our goal. Rather, we study the-
oretical and practical aspects of zero-knowledge proofs for cluster computations.
Zero-knowledge proofs are useful even when applied to relatively-small compu-
tations, and even with high overheads (e.g., see [65] for a recent example).2

1.5 Summary of Challenges and Techniques

Our construction (and implementation) rely on a new bootstrapping theorem for
zk-SNARKs: any zk-SNARK can be transformed into a distributed zk-SNARK
for MapReduce. The transformation is done in two steps, as follows.

From the zk-SNARK to a Multi-predicate PCD System The trans-
formation’s first step uses the given zk-SNARK to construct a PCD system
[24,25], a cryptographic primitive that enforces a given local invariant, known
as the compliance predicate, in distributed computations. Such a transformation
was described by [13], following [79] and [24]. It was implemented by [8], and

2 In this paper’s setting, the client does not have the server’s input, and so cannot
conduct the computation on his own. It is thus not meaningful to compare “efficiency
of outsourced computation at the server” and “efficiency of native execution at the
client”, since the latter was never an option.

376 A. Chiesa et al.

used for obtaining scalable zero-knowledge proofs for random-access machine
executions.

These prior works are constrained to enforcing a single compliance predicate
at all nodes in the distributed computation. However, in MapReduce computa-
tions (as in many others), different nodes are subject to different requirements.
In principle one can create a single compliance predicate expressing the disjunc-
tion of all these requirements; but the resulting predicate is large (its size is the
sum of each requirement’s size) and entails a large cost in proving time.

We thus extend [8] to define, construct, and implement a multi-predicate PCD
system, where different nodes may be subject to different compliance predicates,
and yet the cost of producing the proof, at each node, depends merely on the
compliance predicate to which this particular node is subject. The presence of
multiple compliance predicates complicates the construction of the arithmetic
circuits for performing recursive proof composition, as these must now verify a
zk-SNARK proof relative to one out of a (potentially large) number of compli-
ance predicates, each with its own verification key, at a cost that is essentially
independent of the predicates that are not locally relevant.

Additional restrictions in the prior works, which we also relax, are that node
arity (the number of input messages to a node) was fixed, and that a node’s
input lengths had to equal its output length. While not fundamental, these
limitations cause sizable overheads in heterogenous distributed computations
(of which MapReduce is an example).

From a Multi-predicate PCD System to a Distributed zk-SNARK for
MapReduce The transformation’s second step uses the aforementioned multi-
predicate PCD system to construct a distributed zk-SNARK for MapReduce.

For each individual map node or reduce node, correctness of the local com-
putation is independent of other computations; so it is fairly straightforward
to distill local “map” and “reduce” compliance predicates. However, the shuf-
fle phase of the MapReduce computation is a global computation that involves
all of the mappers’ outputs. We wish to ensure globally correct shuffling, while
only enforcing (via the PCD system) the preservation of a compliance predicate,
locally at each node. (Of course, one could always consider a big shuffler node
that takes all the shuffled messages as inputs, but doing so would prevent the
proof generation from being distributed.)

We thus show how to decompose correct shuffling into a collection of simple
local predicates, while preserving zero knowledge (which introduces subtleties).
Roughly, we show that there is a parallel distributed algorithm to simultaneously
compute, for each unique key k, a proof attesting that the list of values associated
to k in the output of the shuffling process contains all the those values, and only
those, that were paired with k by some mapper.

Subsequently, we use the map and reduce compliance predicates, along with
those used to prove correct shuffling, and obtain a collection of compliance predi-
cates with the property that any distributed computation that is complaint with
these corresponds to a correct MapReduce computation.

Cluster Computing in Zero Knowledge 377

Note how the extensions to basic PCD, mentioned in Section 1.5, come into
play. First, we specify multiple compliance predicate, for the different stages of
the computation, and only pay for the applicable one at every point. Second,
because MapReduce computation has a communication pattern that is input-
dependent and not very homogenous, we require PCD to support (directly and
thus more efficiently) flexible communication patterns, with variable node arity
and varying input and output message lengths.

2 Preliminaries

We give notations and definitions needed for this paper’s technical discussions.
We denote by λ the security parameter. We write f = Oλ(g) to mean that

there is c > 0 such that f = O(λcg). We write |a| to denote the number of
bits needed to store a (whether a be a vector, a circuit, and so on). Finally, to
simplify notation, we do not make explicit adversaries’ auxiliary inputs.

2.1 Commitments

A commitment scheme is a pair COMM = (COMM.Gen,COMM.Ver) with the
following syntax:
– COMM.Gen(z) → (cm, trp). On input data z, the commitment generator
COMM.Gen probabilistically samples a commitment cm of z and a correspond-
ing trapdoor trp.

– COMM.Ver(z, cm, trp) → b. On input data z, commitment cm, and trapdoor
trp, the commitment verifier COMM.Ver outputs b = 1 if cm is a valid com-
mitment of z with respect to the trapdoor trp (and b = 0 otherwise).

The scheme COMM satisfies the natural completeness, (computational) binding,
and (statistical) hiding properties. We assume that cm does not even leak |z|,
and thus |cm| is a fixed polynomial in the security parameter.

2.2 Merkle Trees

We use Merkle trees [62] (based on some collision-resistant function) as non-
hiding succinct commitments to lists of values, in the familiar way. A Merkle-
tree scheme is a tuple MERKLE = (MERKLE.GetRoot,MERKLE.GetPath,)
MERKLE.CheckPath with the following syntax:
– MERKLE.GetRoot(z) → rt. Given list z = (zi)n

i=1, the root generator
MERKLE.GetRoot deterministically computes a root rt of the Merkle tree with
the list z at its leaves.

– MERKLE.GetPath(z, i) → ap. Given input list z and index i, the authentication
path generator MERKLE.GetPath deterministically computes the authentica-
tion path ap for zi.

– MERKLE.CheckPath(rt, i, zi, ap) → b. Given root rt, input data zi, index i, and
authentication path ap, the path checker MERKLE.CheckPath outputs b = 1 if
ap is a valid path for zi as the i-th leaf in a Merkle tree with root rt.

The scheme MERKLE satisfies the natural completeness and (computational)
binding properties.

378 A. Chiesa et al.

2.3 MapReduce

Overview of MapReduce MapReduce is a programming model for describing
data-parallel computations to be run on computer clusters [35]. A MapReduce
job consists of two functions, Map and Reduce, and an input, �, which is a list
of key-value pairs; executing the job results into an output, �, which also is a
list of key-value pairs. Computing � requires three phases: (i) Map phase: the
function Map is separately invoked on each key-value pair in the list �; each such
invocation produces an intermediate sub-list of key-value pairs. (ii) Shuffle phase:
all the intermediate sub-lists of key-value pairs are jointly shuffled so that pairs
that share the same key are gathered together into groups. (iii) Reduce phase: the
function Reduce is separately invoked on each group of key-value pairs; each such
invocation produces an output key-value pair; all these pairs are concatenated
(in some order) to form �.

Naturally, efficiently computing the three phases on a computer cluster requires
a suitable framework to assign computers toMap tasks, implement the distributed
shuffle of intermediate key-value pairs, assign computers to Reduce tasks, and col-
lect the various outputs; this is typically orchestrated by a master node. For now,
we focus on the definition of the programming model and not the details of a frame-
work that implements it.

Notation for MapReduce We introduce notation that enables us to discuss
MapReduce in more detail.
Keys,values,andrecords. First,wediscuss thedataassociatedtoaMapReduce
job. The main “unit of data” is a record, which is a pair (k, v) where k is its key and v
is its value. We distinguish between different kinds of records, depending on which
phase they belong to: input records are of phase 1 and lie in K1 × V1; intermediate
records are of phase 2 and lie in K2 × V2; and output records are of phase 3 lie in
K3 × V3.
MapReduce pairs. Next, we discuss the functions associated to a MapReduce
job. A MapReduce pair is a pair (Map,Reduce) where Map : K1×V1 → (K2×V2)∗

is its Map function and Reduce : K2 × (V2)∗ → (K3 × V3) is its Reduce function;
both must run in polynomial time. In other words, on input a phase-1 record
(k1, v1) ∈ (K1 × V1), Map outputs a list of phase-2 records

(
(k2

i , v
2
i)

)
i

∈ (K2 ×
V2)∗. Instead, on input a phase-2 key k2 ∈ K2 and a list of phase-2 values
(v2

i)i ∈ (V2)∗, Reduce outputs a phase-3 record (k3, v3) ∈ (K3 × V3).
MapReduce executions. Finally, we discuss how functions operate on data
so to execute a MapReduce job. Given a MapReduce pair (Map,Reduce) and
an input � ∈ (K1 × V1)∗, the output of the execution of (Map,Reduce) on �,
denoted [Map,Reduce](�), is the result � ∈ (K3×V3)∗ of the following (abstract)
computation.
1. Map step. For each i ∈ {1, . . . , |�|}, letting (k1

i , v
1
i) be the i-th phase-1 record

in �, compute the list of phase-2 records
(
(k2

i,j , v
2
i,j)

)
j

:= Map(k1
i , v

1
i). This

step produces a list of intermediate records � =
(
(k2

i,j , v
2
i,j)

)
i,j

.

Cluster Computing in Zero Knowledge 379

2. Shuffle step. Shuffle the list � so that records with the same key are grouped
together. This step induces, for each unique key k2 appearing in �, a corre-
sponding list v2 of values paired with k2.

3. Reduce step. For each unique phase-2 key k2 in � and its corresponding list
of phase-2 values v2, compute the phase-3 record (k3, v3) = Reduce(k2,v2).
The output � equals the concatenation of all of these phase-3 records.

We note that MapReduce jobs enjoy certain “symmetries” (which simplify the
task of execution on clusters): the order of records in � or in � is irrelevant.3 In
terms of complexity measures, we say that the execution of (Map,Reduce) on �

is (m, r, p)-bounded if each individual execution of Map takes at most m time,
each individual execution of Reduce takes at most r time, and |�| ·m+ |�| · r ≤ p
(where � := [Map,Reduce](�)).4

The MapReduce language. We express, via a suitable language, the notion
of “correct” MapReduce executions:

Definition 1. For a MapReduce pair (Map,Reduce), the language L(Map,Reduce)

consists of the tuples (�,�) for which � = [Map,Reduce](�).5

In this work, we consider the setting where an input � is not known to the user,
but only its commitment cm is (as � is private). Thus, we work with a related
relation, RCOMM

(Map,Reduce), derived from L(Map,Reduce) and a commitment scheme
COMM = (COMM.Gen,COMM.Ver) (using the syntax introduced in Section 2.1).
In contrast to L(Map,Reduce), instances in RCOMM

(Map,Reduce) contain cm instead of �,
and witnesses are extended to contain decommitment information (i.e., the input
and commitment trapdoor). More precisely, we define the relation RCOMM

(Map,Reduce)
as follows.

Definition 2. For a MapReduce pair (Map,Reduce) and commitment scheme
COMM, the relation RCOMM

(Map,Reduce) consists of instance-witness pairs
(
(cm,�),

(�, trp)
)
such that COMM.Ver(�, cm, trp) = 1 and (�,�) ∈ L(Map,Reduce).

MapReduce sequences. A single MapReduce execution is at times insufficient
to run an algorithm. In such cases, instead of a single MapReduce pair, we
consider a MapReduce sequence S: a list

(
(Ii,Mapi,Reducei)

)d

i=1
such that, for

each i, Ii ⊆ {0, . . . , i − 1} and (Mapi,Reducei) is a MapReduce pair. We call d
the depth of S. The output of the execution of S on an input �, denoted S(�), is
the result � obtained as follows: (1) set �(0) := �; (2) for i = 1, . . . , d, compute
�
(i) := [Mapi,Reducei](�(i)) where �(i) is the concatenation of all �(j) with j ∈ Ii;

(3) output � := �
(d).In terms of complexity measures, similarly to above, we say

that the execution of S on � is (m, r, p)-bounded if each individual execution of
3 One only considers Map and Reduce functions that do not introduce asymmetries

(by, e.g., leveraging the order of elements in a list).
4 For simplicity, we ignore the cost of shuffling because it is typically on the order of

the input and output sizes [45].
5 Due to symmetry, (�,�) ∈ L(Map,Reduce) if and only if

(
π(�), π′(�)

) ∈ L(Map,Reduce) for
any two permutations π and π′ (of records).

380 A. Chiesa et al.

any Mapi takes at most m time, each individual execution of any Reducei takes
at most r time, and

∑d
i=1(|�(i−1)| · m + |�(i)| · r) ≤ p.

Family of MapReduce sequences. A family of MapReduce sequences is
a family (SN)N∈N where each SN is a MapReduce sequence

(
(IN,i,MapN,i,

ReduceN,i)
)dN

i=1
.

3 Definition of Distributed zk-SNARKs for MapReduce

We (informally) define non-distributed zk-SNARKs for MapReduce, and then
distributed zk-SNARKs for MapReduce. Throughout, we assume familiarity with
the notations and definitions for MapReduce introduced in Section 2.3.

3.1 Non-distributed zk-SNARKs for MapReduce

A (non-distributed) zk-SNARK for MapReduce is a zk-SNARK for proving knowl-
edge of witnesses in RCOMM

(Map,Reduce), for a user-specified MapReduce pair (Map,

Reduce) and a fixed choice of commitment scheme COMM. That is, it is a crypto-
graphic primitive that provides short and easy-to-verify non-interactive
zero-knowledge proofs of knowledge for the relation RCOMM

(Map,Reduce). Concretely, the
primitive consists of a tuple (COMM,MR.KeyGen,MR.Prove,MR.Verify) with the
following syntax.

– MR.KeyGen(1λ,Map,Reduce) → (pk, vk). On input a security parameter λ
(presented in unary) and a MapReduce pair (Map,Reduce), the key generator
MR.KeyGen probabilistically samples a proving key pk and a verification key
vk. We assume, without loss of generality, that pk contains (a description of)
the MapReduce pair (Map,Reduce).

The keys pk and vk are published as public parameters and can be used, any num-
ber of times, to prove/verify knowledge of witnesses in the relation RCOMM

(Map,Reduce),
as follows.

– MR.Prove(pk, cm,�,�, trp) → πMR. On input a proving key pk, instance (cm,�),
and witness (�, trp), the prover MR.Prove outputs a proof πMR for the state-
ment “there is (�, trp) such that

(
(cm,�), (�, trp)

) ∈ RCOMM
(Map,Reduce)”.

– MR.Verify(vk, cm,�, πMR) → b. On input a verification key vk, commitment
cm, output �, and proof πMR, the verifier MR.Verify outputs b = 1 if he is
convinced that there is (�, trp) such that

(
(cm,�), (�, trp)

) ∈ RCOMM
(Map,Reduce).

As in other zk-SNARKs, the above tuple satisfies (variants of) the properties of
completeness, succinctness, (computational) proof of knowledge, and (statistical)
zero knowledge; we describe these in the full version. Here we recall succinctness:
an honestly-generated proof πMR has Oλ(1) bits, and MR.Verify(vk, cm,�, πMR)
runs in time Oλ(|�|).
Costs of key generation. The above implies that (pk, vk) is generated in
time Oλ(1) · poly(|Map| + |Reduce|), that |pk| = Oλ(1) · poly(|Map| + |Reduce|),

Cluster Computing in Zero Knowledge 381

and that |vk| = Oλ(1) (since MR.Verify runs in time Oλ(|�|) for any �). These
key-generation costs are between those of a preprocessing zk-SNARK (where
key generation costs as much as the entire computation being proved) and a
fully-succinct zk-SNARK (where key generation costs only a fixed polynomial in
λ), because they do not depend on the number of mappers and reducers in the
MapReduce computation.

One could strengthen the definition above to require “full succinctness”, i.e.,
to further require that key generation depends polynomially on the security
parameter only (and, in particular, that the MapReduce pair is not hard-coded
into the keys). The results presented in this paper extend to achieve this stronger
definition.

3.2 Distributed zk-SNARKs for MapReduce

A distributed zk-SNARK for MapReduce is a zk-SNARK for MapReduce where
the prover consists of few MapReduce computations whose overall complexity
is similar to the MapReduce computation being proved. More precisely, when
producing proofs for the relation RCOMM

(Map,Reduce), MR.Prove(pk, ·, ·, ·, ·) is a family of
MapReduce sequences that is (Map,Reduce)-faithful, a property defined below.

Definition 3. Given a MapReduce pair (Map,Reduce), a family of MapReduce
sequences (SN)N∈N is (Map,Reduce)-faithful if, for all N ∈ N and

(
(cm,�),

(�, trp)
) ∈ RCOMM

(Map,Reduce) with |�| + |�| ≤ N :
– the depth of SN is logarithmic in N , i.e., dN = O(log N); and
– SN has a linear overhead compared to (Map,Reduce), i.e., for all m, r, p ∈ N, if
� is (m, r, p)-bounded then the execution of SN on (cm,�,�, trp) is (Oλ(m), Oλ

(r), Oλ(p))-bounded.

4 Definition of Multi-predicate PCD

Proof-carrying data (PCD) [24,25] is a cryptographic primitive that encapsu-
lates the security guarantees achievable via recursive composition of proofs. Since
recursive proof composition naturally involves multiple (physical or virtual) par-
ties, PCD is phrased in the language of a distributed computation among com-
puting nodes, who perform local computations, based on local data and input
messages, and then produce output messages. Given a compliance predicate Π
to express local checks, the goal of PCD is to ensure that any given message msg
in the distributed computation is Π-compliant, i.e., is consistent with a history
in which each node’s local computation satisfies Π. This formulation covers, as
special cases, incrementally-verifiable computation [79] and targeted malleability
[19].
Extending PCD to multiple predicates. The definition of PCD naturally
generalizes to compliance with respect to a vector Π of compliance predicates
(rather than a single predicate). Namely, a msg is Π-compliant if it is consistent
with a history in which each node’s local computation satisfies some predicate Π

382 A. Chiesa et al.

in the vector Π. Moreover, a message msg comprises two parts: the type, which
records what kind of node output msg, and the payload, which is the rest.

The above multi-predicate PCD can be “simulated” via a single-predicate
PCD, by folding all the predicates in the vector Π into a single predicate Π� that
(a) reasons about which predicate in Π to use at a give node, and (b) enforces
a message’s type and payload separation. However, this simulation incurs a sig-
nificant overhead: the size of Π� is the sum of the sizes of all the predicates
in Π, and this cost is incurred at every node regardless of which predicate is
actually used to check compliance at a node. In contrast, in our construction of
multi-predicate PCD (see Section 6), we incur, at each node, only the cost of
the predicate that is actually used to check compliance.
Implications for MapReduce. As we discuss in Section 5, reducing the
correctness of MapReduce computations to compliance of distributed computa-
tions involves multiple predicates that perform checks with different semantics:
a predicate for mapper nodes, a predicate for reducer nodes, and various other
predicates for other nodes that reason about shuffling. These predicates have
different sizes and, thus, it is crucial to leverage the flexibility offered by multi-
predicate PCD (so to then obtain a distributed zk-SNARK for MapReduce).

Next, we define distributed-computation transcripts (our formal notion of dis-
tributed computations), compliance of a transcript T with respect to a given
vector Π of compliance predicates, and multi-predicate PCD.

Transcripts. A (distributed-computation) transcript is a tuple T = (G,TYPE,
LOC,PAYLOAD), where:
– G = (V,E) is a directed acyclic graph with node set V and edge set E ⊆ V ×V ;
– TYPE: V → N are node labels;
– LOC: V → {0, 1}∗ are (another kind of) node labels; and
– PAYLOAD: E → {0, 1}∗ are edge labels.
The message of an edge (u, v) ∈ E is the pair MSG(u, v) := (TYPE(u),PAYLOAD
(u, v)). The outputs of the transcript T, denoted OUTS(T), is the set of messages
MSG(ũ, ṽ) where (ũ, ṽ) ∈ E and ṽ is a sink. Typically, we denote a message by
msg, and its type and payload by msg.type and msg.payload.
Compliant transcripts and messages. A compliance predicate Π is a func-
tion with a type, denoted type(Π). Given a vector Π of compliance predicates,
we say that:
– a transcript T = (G,LOC,TYPE,PAYLOAD) is Π-compliant, denoted

Π(T)
= OK, if:

(i) for each v ∈ V , TYPE(v) = 0 if and only if v is a source; and
(ii) for each non-source v ∈ V and each w ∈ children(v), there is Π ∈ Π

with TYPE(v) = type(Π) such that
Π

(
MSG(v, w),LOC(v),

(
MSG(u, v)

)
u∈parents(v)

)
accepts.

– a message msg is Π-compliant if there is a transcript T such that Π(T) = OK
and msg ∈ OUTS(T).

Cluster Computing in Zero Knowledge 383

A transcript T thus represents a distributed computation, in the following sense.
For each node v ∈ V , the function LOC specifies the local data used at v; and, for
each edge (u, v) ∈ E, the function MSG specifies the message sent from node u
to node v. A node v with parent nodes parents(v) and children nodes children(v)
uses the local data LOC(v) and the input messages

(
MSG(u, v)

)
u∈parents(v)

to
compute the output message MSG(v, w) for each child w ∈ children(v). As for
the function TYPE, it assigns to each node v ∈ V a quantity that determines the
type of every message output by v; this quantity also determines which compli-
ance predicates can be used to verify compliance of those messages (specifically,
the type of the predicate and message must equal).
Multi-predicate PCD systems. A multi-predicate PCD system is a triple of
polynomial-time algorithms (G,P,V), called key generator, prover, and verifier.
The key generator G is given as input a vector of predicates Π, and outputs a
proving key pk and a verification key vk; these keys allow anyone to prove/verify
that a message msg is Π-compliant. This is achieved by attaching a short and
easy-to-verify proof to each message: given pk, input messages msgin with proofs
πin, local data loc, and an output message msg (allegedly, Π-compliant), the
prover P computes a new proof π to attach to msg; the verifier V(vk,msg, π)
checks that msg is Π-compliant. The triple (G,P,V) must satisfy complete-
ness, succinctness, (computational) proof of knowledge, and (statistical) zero
knowledge; we describe these in the full version. Here we recall succinctness:
an honestly-generated proof π has Oλ(1) bits, and V(vk,msg, π) runs in time
Oλ(|msg|).

5 Step II: from Multi-predicate PCD to Distributed
zk-SNARKs

We discuss Step II of our bootstrapping theorem: constructing a distributed
zk-SNARK for MapReduce from a multi-predicate PCD system. This step itself
consists of two main parts.
– Compliance engineering (Section 5.1): a reduction from the correctness of

MapReduce computations to a question about the compliance of distributed
computations with respect to a certain vector ΠMR of predicates.

– Construction of the proof system (Section 5.2): suitably invoke the multi-
predicate PCD system on the vector ΠMR in order to construct a distributed
zk-SNARK for MapReduce.

5.1 Compliance Engineering for MapReduce

We show how, given any MapReduce pair (Map,Reduce), one can efficiently
construct a vector ΠMR of compliance predicates for which “suitable” ΠMR-
compliant transcripts correspond to instance-witness pairs in the relation
RCOMM

(Map,Reduce). First, we clarify what “suitable” means, via the following defi-
nition.

384 A. Chiesa et al.

Definition 4. For an instance (cm,�), a transcript T is (cm,�)-compatible if
OUTS(T) contains a message with type 1 and payload (cm, |�|) and, for each
i ∈ {1, . . . , |�|}, a message with type 2 and payload (cm,�i).

Next, via the following theorem, we show how one can translate a question of
the form

“Given an instance (cm,�), is there a witness (�, trp) such that(
(cm,�), (�, trp)

)
is in RCOMM

(Map,Reduce)?”
to a question of the form

“Given an instance (cm,�), is there a ΠMR-compliant (cm,�)-compatible
transcript T?”

More precisely:

Theorem 1. There exists a commitment scheme COMM such that, for every
MapReduce pair (Map,Reduce), there exist a vector ΠMR of compliance predi-
cates and two algorithms Eval,Ext satisfying the following properties.
– Efficiency.

• The vector ΠMR consists of 7 predicates, with the following sizes:
|ΠMR[1]| = Oλ(|Map|), |ΠMR[2]| = Oλ(|Reduce|), and

|ΠMR[3]|, . . . , |ΠMR[7]| = Oλ(1),
where, above, |·| denotes per-input running time of the underlying algorithm.

• The algorithm Eval is (Map,Reduce)-faithful.
• The algorithm Ext is linear time.

– Completeness. For any instance (cm,�), if there is (�, trp) such that
(
(cm,�),

(�, trp)
)

is in RCOMM
(Map,Reduce), then there is a ΠMR-compliant (cm,�)-compatible

transcriptT; moreover, Eval(cm,�,�, trp) outputs OUTS(T) by dynamically gen-
erating T “node by node”.

– Proof of knowledge. For any instance (cm,�), if there is a ΠMR-compliant
(cm,�)-compatible transcript T, then Ext(T) outputs (�, trp) such that

(
(cm,�),

(�, trp)
)

is in RCOMM
(Map,Reduce).

We now sketch a proof of the theorem. Recall proof of knowledge: we must
construct a vector ΠMR of predicates with the property that, given (cm,�), if
there is a distributed-computation transcript T that is both ΠMR-compliant and
(cm,�)-compatible, then we can find (�, trp) for which COMM.Ver(�, cm, trp) = 1
and � = [Map,Reduce](�). Intuitively, we achieve proof of knowledge by engi-
neering the predicates in ΠMR so that the transcript T is forced to encode within
it a history of a correct MapReduce execution. Technically, the main challenge
is that we are restricted to local checks: each predicate only sees input and
output messages of a single node; in contrast, correct execution of a MapReduce
computation (also) involves global properties, such as correct shuffling.

We introduce our approach in steps, by first describing two “failed attempts”.
For simplicity, we focus on the (artificial) case where each mapper outputs a
single phase-2 record; later, we explain how this restriction can be lifted.

Cluster Computing in Zero Knowledge 385

Failed Attempt #1 It is natural to begin by designing two predicates ΠMap
exe

and ΠReduce
exe that simply capture the correct execution of a mapper and reduce

node, respectively, as in Figure 2.
Now suppose that we see a (ΠMap

exe ,ΠReduce
exe)-compliant message msg. What

can we deduce about the history of computations that led to msg? If msg.type =
type(ΠMap

exe), then msg was output by a node at which the predicate ΠMap
exe was

checked; conversely, if msg.type = type(ΠReduce
exe), then msg was output by a

node at which the predicate ΠReduce
exe was checked. Suppose, for example, that

msg.type = type(ΠReduce
exe). By construction of ΠReduce

exe , we deduce that:
(i) msg.payload is a phase-3 record (k3, v3), and (ii) there is a list of input mes-
sages msgin whose payloads contain phase-2 records

(
(k2

j , v
2
j)

)
j

that all share
the same key and, moreover, result in (k3, v3) when given as input to Reduce.
However, as soon as we try to “dig further into the past”, to see what properties
each phase-2 record (k2

j , v
2
j) satisfies, we run into issues not addressed by the

above construction of ΠMap
exe and ΠReduce

exe . Namely,
– Issue I: How can we ascertain that each phase-2 record (k2

i , v
2
i) was the correct

output of some mapper node?
– Issue II: Even if so, where did that mapper obtain its input phase-1 record?

Failed Attempt #2 We augment ΠMap
exe and ΠReduce

exe to address these issues.
Roughly, we address Issue I by inspecting message types: ΠMap

exe ensures that
its input messages have type 0 (i.e., are not output by previous nodes); while
ΠReduce

exe ensures that they have type type(ΠMap
exe). As for Issue II, we augment all

messages with a commitment cm to the (overall) input � and extend ΠMap
exe to

authenticate the phase-1 record it receives. We now describe these ideas.
First, we describe the commitment scheme COMM that we use to create cm.

Essentially, COMM consists of (i) a Merkle-tree followed by a commitment to
the resulting root, and also (ii) a commitment to the size of the committed data.
See Figure 1 for more details; we denote the underlying commitment scheme by
COMM′ and the Merkle-tree scheme by MERKLE (and use notation introduced
in Section 2.1 and Section 2.2).

Fig. 1. Choice of commitment scheme COMM (obtained from MERKLE and COMM′)

COMM.Gen(z) COMM.Ver(z, cm, trp)

1. Compute rt := MERKLE.GetRoot(z).
2. Compute n := |z|.
3. Compute (cmrt, traprt) ← COMM′.Gen(rt).
4. Compute (cmn, trapn) ← COMM′.Gen(n).
5. Set cm := (cmrt, cmn).
6. Set trp := (traprt, trapn).
7. Output (cm, trp).

1. Compute rt := MERKLE.GetRoot(z).
2. Compute n := |z|.
3. Parse cm as a pair (cmrt, cmn).
4. Parse trp as a pair (traprt, trapn).
5. Check that COMM′.Ver(rt, cmrt, traprt) = 1.
6. Check that COMM′.Ver(n, cmn, trapn) = 1.
7. Output 1 if the above checks succeeded (else, 0).

Next, in Figure 3, we describe the two (updated) predicates ΠMap
exe and ΠReduce

exe .
Now suppose that we see a (ΠMap

exe ,ΠReduce
exe)-compliant message msg with

msg.type = type(ΠReduce
exe). By (the new) construction of ΠReduce

exe , we know that

386 A. Chiesa et al.

msg.payload = (cm, k3, v3), where cm is a commitment and (k3, v3) is a phase-3
record; moreover, we also know that there is a list of messages msgin such that:
(i) for each j, msgin[j].type = type(ΠMap

exe) and msgin[j].payload = (cm, k2, v2
j),

where (k2, v2
j) is a phase-2 record; (ii) (k3, v3) = Reduce(k2, (v2

j)j). In turn, each
message msgin[j] is (ΠMap

exe ,ΠReduce
exe)-compliant and, by (the new) construction of

ΠMap
exe , we know that (k2, v2

j) is the result of running Map on some phase-1 record
authenticated with respect to cm.

Overall, each (ΠMap
exe ,ΠReduce

exe)-compliant message msg with msg.type =
type(ΠReduce

exe) and msg.payload = (cm, k3, v3) is the result of applying Reduce
to some phase-2 records sharing the same key, each of which is in turn the result
of applying Map to some phase-1 record authenticated relative to cm. However,
these guarantees are not enough to imply a correct MapReduce computation, as
we still need to tackle the following issue.

– Issue III: How do we ascertain the correctness of the shuffling phase? Namely,
how do we ascertain that each list of phase-2 records (received by a particular
reducer node) contains all the records having that same key?

Indeed, in principle, some phase-2 records may have been duplicated, dropped,
or sent to the wrong reducer node (e.g., to different reducer nodes even if sharing
the same key).

Our Approach Unlike previous ones, the above issue is conceptually more
complex: tackling it requires ensuring correct shuffling, which is a global com-
putation involving all of the phase-2 (all the mappers’ outputs); in contrast, we
are restricted to only perform local checks encoded in compliance predicates.
Nevertheless, we show how we can further extend ΠMap

exe and ΠReduce
exe , and also

introduce other compliance predicates, to ensure correct shuffling in a distributed
way.
Further extending ΠMap

exe and ΠReduce
exe . Roughly, we extend ΠMap

exe to store, in
the output message, the index i relative to which the phase-1 record, contained
in the input message, was authenticated. Subsequently, when receiving several
input messages, ΠReduce

exe verifies that all the indices contained in them are dis-
tinct. This additional check prevents duplicate messages from being sent to the
same reduce node. However, the check does not prevent the same message from
being sent to two different reducer nodes, a message from being dropped alto-
gether, or messages with the same key from being sent to two different reducer
nodes. Additional “distributed bookkeeping” is required.

We thus further extend ΠReduce
exe to store in its output message two addi-

tional pieces of information: the phase-2 key k2 shared among its input messages
and the number din of these input messages. More precisely, only commitments
cmk2 , cmdin to these are stored, to not violate zero knowledge (by storing infor-
mation about the internals of the computation in final outputs of the distributed
computation). As we now explain, other compliance predicates use the underly-
ing values k2, din; for now, in Figure 4, we summarize the changes to ΠMap

exe and
ΠReduce

exe (highlighted in blue).

Cluster Computing in Zero Knowledge 387

ΠMap
exe (msg, loc,msgin)

1. Parse msgin[1].payload as a phase-1 record

(k1, v1).
2. Parse msg.payload as a phase-2 record

(k2, v2).

3. Check that
(
(k2, v2)

)
= Map(k1, v1).

ΠReduce
exe (msg, loc,msgin)

1. Parse each msgin[j].payload as a phase-2

record (k2
j , v2

j).
2. Parse msg.payload as a phase-3 record

(k3, v3).

3. Check that all the k2
j ’s are equal, and let

v2 := (v2
j)j

4. Check that (k3, v3) = Reduce(k2
1, v2).

Fig. 2. Summary of the construction of ΠMap
exe and ΠReduce

exe for “Failed attempt #1” (see
Section 5.1)

ΠMap
exe (msg, loc,msgin)

1. Check that msgin[1].type = 0.
2. Parse msgin[1].payload as a tuple

(cm, i, k1, v1) where:
– cm is a commitment (for the scheme

COMM);
– i is an index;
– (k1, v1) is a phase-1 record.

3. Parse msg.payload as a tuple (cm′, k2, v2)
where:
– cm′ is a commitment (for the scheme

COMM);

– (k2, v2) is a phase-2 record.
4. Parse loc as a tuple (rt, M, trprt, trpM , ap)

where:
– rt is a commitment (for the scheme

MERKLE);
– M is a positive integer;
– trprt, trpM are trapdoors (for the scheme

COMM);
– ap is an authentication path (for the

scheme MERKLE).
5. Parse cm as a pair (cmrt, cmM) where

both components are commitments for the
scheme COMM′.

6. Check that COMM′.Ver(rt, cmrt, trprt) = 1.
7. Check that COMM′.Ver(M, cmM , trpM) =

1.
8. Check that 0 ≤ i < M .
9. Check that

MERKLE.CheckPath
(
rt, i, (k1, v1), ap

)
= 1.

10. Check that cm′ = cm.
11. Check that

(
(k2, v2)

)
= Map(k1, v1).

ΠReduce
exe (msg, loc,msgin)

1. Check that msgin[j].type = type(ΠMap
exe) for

each j.
2. Parse each msgin[j].payload as a tuple

(cm′
j , k2

j , v2
j) where:

– cm′
j is a commitment (for the scheme

COMM);

– (k2
j , v2

j) is a phase-2 record.

3. Parse msg.payload as a tuple (cm′′, k3, v3)
where:
– cm′′ is a commitment (for the scheme

COMM);

– (k3, v3) is a phase-3 record.
4. Check that cm′′ = cm′

j for each j.

5. Check that all the k2
i’s are equal, and let

v2 := (v2
i)i.

6. Check that (k3, v3) = Reduce(k2
1, v2).

Fig. 3. Summary of the construction of ΠMap
exe and ΠReduce

exe for “Failed attempt #2”

We now explain how we leverage, and verify, the messages’ new information
maintained by ΠMap

exe and ΠReduce
exe . At high level, we introduce new compliance

predicates, called ΠMap
fmt , ΠReduce

fmt , ΠMap
sum , ΠReduce

sum , and Πfin, for checking two main
distributed computations: a tree-like distributed computation that aggregates
information stored by all the messages output by mapper nodes, and another
tree-like distributed computation that aggregates information stored by all the
messages output by reducer nodes. By comparing the final outputs of these two
tree-like distributed computations, we can check if correct shuffling occurred.

388 A. Chiesa et al.

Fig. 4. Summary of the construction of ΠMap
exe and ΠReduce

exe for “Our approach” (see
Section 5.1). The text that is highlighted in blue denotes the differences from the
construction in Figure 3.

Aggregating mappers’ outputs. We describe each of these tree-like dis-
tributed computations, starting with the one for messages output by mapper
nodes. Each message output by a mapper node has a payload that looks like
(cm, i, k2, v2). We use, for each such message, a node to reformat the message
into a new with payload (cm, a⊥, a�, b, c) where a⊥ = a� = i and b = c = 1.
Afterwards, we use a tree of nodes to aggregate all the resulting messages into a
final single one, by pairwise transforming two input messages (cm, a⊥

1 , a�
1 , b1, c2)

and (cm, a⊥
2 , a�

2 , b2, c2) into the new message (cm, a⊥
1 , a�

2 , b1 + b2, c1 + c2), pro-
vided that a�

1 < a⊥
2 . Intuitively, the second and third components of a message

denote the least and largest index seen so far, the fourth component counts the
number of mappers, and the fifth counts the number of mapper outputs. If M
denotes the number of mappers, the final message, output by the “root node”
has payload (cm, 1,M,M,M). If, however, some messages are either duplicated
or dropped, then at least one node will not satisfy its compliance predicate. We
realize this idea by designing two new compliance predicates, ΠMap

fmt and ΠMap
sum ,

respectively for enforcing the reformatting and aggregation of mapper nodes’
output messages.
Aggregating reducers’ outputs. We now turn to the tree-like distributed
computation to aggregate outputs of reducer nodes. Each message output by
a reducer node has a payload that looks like (cm, k3, v3, cmk2 , cmdin). Similarly
to (but not exactly equal to) above, we use a node to reformat the message

Cluster Computing in Zero Knowledge 389

into a new with payload (cm, a⊥, a�, b, c) where a⊥ = a� = k2, b = 1 c = din
(note that the values k2 and din can be obtained by receiving decommitment
information as part of the node’s local data loc). Afterwards, again similarly
to above, we use a tree of nodes to aggregate all the resulting messages into a
final single one, by pairwise transforming two input messages (cm, a⊥

1 , a�
1 , b1, c1)

and (cm, a⊥
2 , a�

2 , b2, c2) into a new message (cm, a⊥
1 , a�

2 , b1 + b2, c1 + c2), pro-
vided that a�

1 < a⊥
2 . The final message, output by the root node, looks like

(cm, k2
min, k

2
max, R,M), where k2

min and k2
max are respectively the least and largest

keys encountered, R is the total number of reducer nodes, and M is the total
number of inputs received by reducer nodes. Again, we concretely realize the
above strategy by designing two new predicates, ΠReduce

fmt and ΠReduce
sum , respec-

tively for enforcing the reformatting and aggregation of reducer nodes’ output
messages; both take Oλ(1) to execute.
Consistency between aggregations. After both aggregations have taken
place, we are left with two messages msgMap

sum and msgReducesum , respectively with
payloads (cm, 1,M,M,M) and (cm, k2

min, k
2
max, R,M), resulting in an output

message msgfin with payload (cm, R). A simple predicate Πfin performs consis-
tency checks, such as ensuring that the value of M is actually equal between the
two messages (and consistency with the commitment cmM stored in cm). The
message msgfin that the two messages msgMap

sum and msgReducesum have been success-
fully compared, which demonstrates that the outputs of all M mapper nodes
were correctly shuffled to R reducer nodes. (We exclude M from msgfin, for
zero-knowledge reasons.)

Throughout,we leveragemessage types to enforce communication flowbetween
nodes subject to different compliance predicates.
From sketch to proof. The above sketches how the Eval algorithm produces a
suitable graph of nodes, culminating in the transcript’s output, as stated in The-
orem 1. It skims over many details, some of which are provided in the full version.
For example, above we have not explained how to handle the case where a mapper
node (or even a reducer node) outputs more than one record. Moreover, not only
do we work out the details of a solution, but we also bring the solution to efficient
implementations of arithmetic circuits for each of the seven compliance predicates.

5.2 Construction of Distributed zk-SNARKs for MapReduce

Wegive the construction of our distributed zk-SNARK forMapReduce, by describ-
ing its key generator MR.KeyGen, prover MR.Prove, and verifier MR.Verify. (We
describe the commitment scheme COMM in Figure 1.)
The key generator MR.KeyGen(1λ,Map,Reduce) → (pk, vk). On input a
security parameter λ (presented in unary) and a MapReduce pair (Map,Reduce),
the key generator MR.KeyGen computes a key pair (pk, vk) as follows.
1. Use Theorem 1 to deduce, from (Map,Reduce), the vector ΠMR of compliance

predicates.
2. Use the PCD key generator G to compute a PCD key pair for ΠMR: (pk, vk) :=

G(1λ,ΠMR).

390 A. Chiesa et al.

3. Set pk := (Map,Reduce, pk) and vk := (vk); output (pk, vk).
The prover MR.Prove(pk, cm,�,�, trp) → πMR. On input a proving key pk,
an instance (cm,�), and a witness (�, trp), the prover MR.Prove computes a non-
interactive proof πMR for the statement “I know (�, trp) such that

(
(cm,�), (�, trp)

)

∈ RCOMM
(Map,Reduce)” as follows. By Theorem 1, we know that there is a ΠMR-compliant

(cm,�)-compatible transcript T and, moreover, that OUTS(T) can be obtained
via a (Map,Reduce)-faithful evaluator Eval, which takes as input the the instance
(cm,�) and its witness (�, trp). Thus, the proverMR.Prove computes πMR by recur-
sively invoking the PCD prover P on T, following Eval as it computes new nodes of
T, by providing to P, at each node, the relevant input messages and their proofs,
local data, and output message. At the end of this process, itself (Map,Reduce)-
faithful,MR.Prove sets πMR equal to the concatenation of the proofs of all messages
in OUTS(T).
The verifier MR.Verify(vk, cm,�, πMR) → b. On input a verification key vk,
commitment cm, output �, and proof πMR, the verifier MR.Verify computes a deci-
sion bit b as follows.
1. Parse vk as a PCD verification key vk.
2. Use the instance (cm,�) to construct the following output messages (recall Def-

inition 4):

msg0

{
.type := 1
.payload := (cm, |�|) and, for each i ∈ {1, . . . , |�|},

msgi

{
.type := 2
.payload := (cm,�i)

.

3. Parse πMR a vector of PCD proofs (π0, π1, . . . , π| |).
4. For each i ∈ {0, 1, . . . , |�|}, check that the i-th output message is ΠMR-comp-

liant: V(vk,msgi, πi) = 1.
5. If all the above steps succeeded, output b := 1; otherwise output b := 0.
Indeed, if MR.Verify outputs 1, then we know that the prover that produced
πMR knows a ΠMR-compliant (cm,�)-compatible transcript T (by the proof-of-
knowledge property of the PCD system), and thus also knows a witness (�, trp) for
the instance (cm,�) (by Theorem 1).

As seen above, the combination of compliance engineering and PCD systems pro-
vides a powerful tool for constructing zero-knowledge proofs for distributed com-
putations: compliance engineering allows us to express the desired properties as
the compliance of distributed computations, while PCD systems allow us to prove,
in a distributed way (and in zero knowledge), the compliance of such distributed
computations.

Turning to security, we recall that, when invoking a PCD system to produce
proofs along a distributed computation, proof of knowledge is achieved by
recursively extracting “past proofs” from known ones. This process is technically
quite delicate, and a formal treatment of it is in [13]. Here we only note that the dis-
tributed computations considered in this paper are shallow (of logarithmic depth)
and are thus easily amenable to recursive proof extraction.

Cluster Computing in Zero Knowledge 391

6 Step I: Construction ofMulti-predicate PCD

We discuss Step I of our bootstrapping theorem: constructing multi-predicate
PCD from (preprocessing) zk-SNARKs. As in [8], we consider compliance predi-
catesΠ expressed asF-arithmetic circuits, whereF is a certain field of cryptograph-

ically-large prime size (determined by the underlying zk-SNARK). Throughout
this section, Fn denotes the field of size n, and we assume familiarity with finite
fields (and, for background on these, see [55]).

6.1 Arithmetic Circuits and Preprocessing zk-SNARKs

Arithmetic circuits. As mentioned, we work with circuits that are arithmetic,
rather than boolean. Given a finite field F, an F-arithmetic circuit takes inputs
that are elements in F, and its gates output elements in F; the circuits we consider
only have bilinear gates. The circuit satisfaction problem of an F-arithmetic circuit
C : Fn×F

h → F
l is defined by the relationRC = {(x, a) ∈ F

n×F
h : C(x, a) = 0l}.

Preprocessing zk-SNARKs. As in [9], a preprocessing zk-SNARK [13,15] for
F-arithmetic circuit satisfiability is a triple of polynomial-time algorithms (G,P,
V), called key generator, prover, and verifier. The key generator G, given a security
parameter λ and an F-arithmetic circuit C : Fn × F

h → F
l, samples a proving

key pk and a verification key vk; these are the proof system’s public parameters,
and are generated only once per circuit. After that, anyone can use pk to generate
non-interactive proofs of knowledge for witnesses in the relation RC , and anyone
can use the vk to check these proofs. Namely, given pk and any (x, a) ∈ RC , the
honest prover P (pk, x, a) produces a proof π for the statement “there is a such that
(x, a) ∈ RC”; the verifier V (vk, x, π) checks that π is a convincing proof for this
statement. A proof π is a (computational) proof of knowledge, and a (statistical)
zero-knowledge proof. The succinctness property requires that π has length Oλ(1)
and V runs in time Oλ(|x|).

6.2 Review of the [8] Construction

For efficiency reasons, Ben-Sasson et al. [8] construct a PCD system via two (pre-
processing) zk-SNARKs, (Gα, Pα, Vα) and (Gβ , Pβ , Vβ), that satisfy the follow-
ing. For two primes qα and qβ : (a) (Gα, Pα, Vα) proves/verifies satisfiability of
Fqβ

-arithmetic circuits, while Vα is an Fqα
-arithmetic circuit; instead, (b) (Gβ ,

Pβ , Vβ) proves/verifies satisfiability of Fqα
-arithmetic circuits, while Vβ is an Fqβ

-
arithmetic circuit. This property is achieved by instantiating the two zk-SNARKs
via a PCD-friendly 2-cycle of elliptic curves (see [8] for details on how to obtain
these), and facilitates recursive proof composition.

Specifically, the core of the PCD system construction is the design of two PCD
circuits: Cpcd,α over the field Fqβ

and Cpcd,β over the field Fqα
. For a given compli-

ance predicate Π, the two circuits work roughly as follows.

392 A. Chiesa et al.

– Cpcd,α: given input xα = msg and witness aα = (loc,msgin,πin), use Vβ to ver-
ify that each input message msgin[j] has a valid proof πin[j], and check that Π
accepts the output message msg, local data loc, and input messages msgin.

– Cpcd,β : given input xβ = msg and witness aβ = (πα), uses Vα to verify that the
message msg has a valid proof πα.

The aforementioned property ensures that fields “match up”: Cpcd,α is defined over
the same field as Vβ , and similarly for Cpcd,β and Vα. (Such field matching is not
possible when using a single elliptic curve.) The two PCD circuits are used as fol-
lows: Pα proves satisfiability of Cpcd,α, and the resulting proof πα attests to the
compliance ofmsg; andPβ proves the satisfiability ofCpcd,β , and the resulting proof
πβ provides a “translation” of πα so that πβ can in turn be used as part of a witness
to Cpcd,α. We refer to Cpcd,α as the compliance circuit, and Cpcd,β as the translation
circuit.

The above description omits several details (relevant to later discussions): to
reduce the size of the PCD circuits Cpcd,α and Cpcd,β , [8] additionally use hashing,
pre-computation, and hardcoding. First, the input xα to Cpcd,α is H(bits(vkβ)‖
bits(msg)), where H is a collision-resistant function mapping {0, 1}-vectors to Fqβ

-
vectors, vkβ is the verification key for Cpcd,β , and msg is the output message to be
checked by Π. This ensures that xα’s length equals H’s output length, which only
depends on λ. However, H’s output is an Fqβ

-vector, and thus cannot be passed as
input to Cpcd,β , which is an Fqα

-arithmetic circuit. This issue is addressed via two
“repacking circuits” that map information content from elements in Fqβ

to ones in
Fqα

and back, respectively. Second, a zk-SNARK verifier V can be viewed as two
functions, i.e., an “offline” function V offline (given the verification key vk, compute a
processed verification key pvk) and an “online” function V online (given pvk, an input
x, and proof π, compute the decision bit); the tradeoff between V and V online can
be exploited. Finally, vkα, the verification key for Cpcd,α, is hardcoded in Cpcd,β .
See [8] for more details.

From the point of view of this paper, the construction of [8] in insufficient,
because: (i) it supports a single compliance predicate at a time, while our set-
ting calls for multiple ones; and (ii) it requires the compliance predicate to be
“rigid” (i.e., accept a fixed number of messages and have input lengths equal out-
put length), while our setting calls for “flexible” predicates.

6.3 Overview of Our Construction

We overview the construction of our PCD system, which extends [8]’s so to achieve
native (and thus more efficient) support for multiple compliance predicates, vari-
able message arity, and varying message lengths.

At high level, our construction consists of the following two parts.
– Part 1: given a vector of compliance predicates Π, construct a vector Cpcd of

PCD circuits. Roughly, for each Π[i] in Π, we construct two circuits, Cpcd,α,i

and Cpcd,β,i, tasked with recursive proof composition relative to Π[i].
– Part 2: construct the PCD generator, prover, and verifier. Roughly, the PCD

generator G produces a zk-SNARK key pair for each circuit in Cpcd; the PCD
prover P, to prove compliance relative to Π[i], produces a zk-SNARK proof of

Cluster Computing in Zero Knowledge 393

satisfiability for Cpcd,α,i and then uses it to produce one for Cpcd,β,i; the PCD
verifier V verifies a zk-SNARK proof by using the appropriate verification key.

Below, we elaborate on these two parts. We also note that the above separation is
only conceptual, because the two parts are procedurally entangled (due to hard-
coding of certain values).
Part 1: the PCD circuits. For each compliance predicate Π[i] in Π, we con-
struct two PCD circuits: a compliance circuit Cpcd,α,i, tasked with checking com-
pliance with Π[i]; and a translation circuit Cpcd,β,i, tasked with checking proofs
attesting to the satisfiability of Cpcd,α,i.

The design of Cpcd,β,i is similar to [8]’s translation circuit. Namely, Cpcd,β,i pro-
vides a way to translate a zk-SNARK proof relative to the verification key vkα[i]
(generated for Cpcd,α,i and hardcoded in Cpcd,β,i) to one relative to the verification
key vkβ [i] (generated for Cpcd,β,i); the translation has the only goal of matching
fields up.

The design of Cpcd,α,i extends [8]’s compliance circuit, so to take into account
the fact that input messages may carry proofs relative to different verification keys
(depending on which compliance predicate was used to reason about their compli-
ance). So,while the inputxα to [8]’s compliance circuitwasH(bits(vkβ)‖bits(msg)),
we now take the input to Cpcd,α,i to be H(bits(rt)‖bits(msg)) where rt is the root of
the Merkle tree whose leaves consist of the vector vkβ .6 The circuit Cpcd,α,i then
receives, as part of the witness, an authentication path for the verification key
required of each input message, and checks this authentication path against rt.
Additional details of the construction (e.g., checking that the type of the output
message equals type(Π[i])) are discussed later.
Part 2: the PCD generator, prover, and verifier. Next, we outline below
the PCD generator, prover, and verifier.

– The PCD generator G, given a vector Π of compliance predicates, works as fol-
lows.
1. For each i, construct:

(a) the compliance circuit Cpcd,α,i and generate a zk-SNARK key pair
(pkα[i], vkα[i]) for it, and then

(b) the translation circuit Cpcd,β,i (hardcoding vkα[i]) and generate a
zk-SNARK key pair (pkβ [i], vkβ [i]) for it.

2. Compute rt, the root of the Merkle tree whose leaves consist of the vector vkβ .
3. Output the key pair (pk, vk), where pk := (pkα, vkα,pkβ , vkβ , rt) and vk =

(vkβ , rt).
– The PCD prover P, given a proving key pk, output message msg, local data loc,

and input messages msgin with proofs πin, works as follows.
1. Parse pk as a tuple (pkα, vkα,pkβ , vkβ , rt).
2. Let i� be the index of the compliance predicate Π[i�] in Π that is satisfied

by (msg, loc,msgin).

6 Merely taking xα to be H(bits(vkβ)‖bits(msg)) would cause Cpcd,α,i’s to be linear,
instead of logarithmic, in the number of predicates.

394 A. Chiesa et al.

3. Construct a vector ap of authentication paths, where each ap[j] is the authen-
tication path, relative to the root rt, for the leaf vkβ [πin[j].idx].

4. Use rt, (msg, loc,msgin), and ap to construct an input xα and a witness aα

for Cpcd,α,i.
5. Use pkα[i�] to generate a zk-SNARK proof πα attesting that the compliance

circuit Cpcd,α,i accepts (xα, aα).
6. Use rt and msg to construct an input xβ and a witness aβ for Cpcd,β,i.
7. Use pkβ [i�] to generate a zk-SNARK proof πβ attesting that the translation

circuit Cpcd,β,i accepts (xβ , aβ).
8. Output the proof π, where π.idx := i� and π.proof := πβ .

– The PCD verifier V, given a verification key vk, a message msg, and a proof π,
works as follows.
1. Parse vk as a tuple (vkβ , rt).
2. Set i� := π.idx and πβ := π.proof.
3. Use rt and msg to construct the input xβ for Cpcd,β,i� .
4. Use vkβ [i�] to check that πβ is a valid zk-SNARK proof for xβ .

6.4 Details of Our Construction

We provide more details about the construction of our PCD system.
Representation of a compliance predicate. The choice of representation of
a compliance predicate (e.g., whether the predicate is expressed via a machine or a
circuit) does not impact the main ideas behind the construction of multi-predicate
PCD (see Section 6.3). Yet, some efficiency optimizations depend on this choice,
and so henceforth we make it explicit: a compliance predicate Π is represented as
an arithmetic circuit. As in [8], this choice is not arbitrary but, rather, is inherited
from the “native” model of computation supported by the underlying zk-SNARK.
Notation for predicates as circuits. Arithmetic circuits are a “rigid” compu-
tation model, so we introduce additional notation to support a detailed
description of our construction. To each F-arithmetic compliance predicate Π, we
associate several quantities: (i) outlen(Π), the payload length of an output mes-
sage; (ii) loclen(Π), the length of local data; (iii)max-arity(Π), the maximum num-
ber of input messages; and (iv) inlen(Π), the vector for which inlen(Π)[j] is the
payload length for the j-th input message. As for the type of a message (which
is merely an integer), it will suffice to use a single element of F to represent it.
Moreover, in order for Π (which is a circuit) to “know” the number d ∈ {0, . . . ,
max-arity(Π)} of input messages, we let Π receive d explicitly (encoded as a single
field element).

In sum, if we view Π as a function, we can write that, for some l ∈ N,

Π : F(1+outlen(Π)) × F
loclen(Π) × F

∑max-arity(Π)
j=1 (1+inlen(Π)[j]) × F → F

l.
Indeed, Π receives an output message msg of length (1+outlen(Π)); local data loc
of length loclen(Π); max-arity(Π) input messages, where the j-th input message
has length (1+ inlen(Π)[j]); and the arity d. For notational convenience, we write
Π(msg, loc,msgin, d) even when msgin contains less than max-arity(Π) messages
(and assume that msgin is extended with arbitrary padding to the correct length).

Cluster Computing in Zero Knowledge 395

Ingredients. In addition to the two (preprocessing) zk-SNARKs (Gα, Pα, Vα)
and (Gβ , Pβ , Vβ) (see Section 6.2), in the construction we make use of certain arith-
metic circuits that we now describe. All all of these circuits are discussed in [8] in
more detail, so here we review them only at high level.

We use nα andnβ to denote the size (number of field elements) of an input to the
PCD circuits Cpcd,α,i and Cpcd,β,i (for any i), respectively; these two sizes are fixed,
and they equal nα := dH,α and nβ := �nα·�log rα	

log rβ� �, where dH,α is the number of
elements output by the collision-resistant function H; nβ is the number of elements
in Frβ

needed to encode nα elements in Frα
. We use bitsα to denote a function

that, given an input y in F
�
rα

(for some �), outputs y’s binary representation; the
corresponding Frα

-arithmetic circuit is denoted Cbits,α and has � · �log rα� gates.
We use the following circuits. An Frα

-arithmetic circuit CS,α→β implementing
Sα→β : Fnα

rα
→ F

nβ ·�log rβ	
rα , the re-packing function from Frα

to Frβ
; and an Frβ

-
arithmetic circuit CS,α←β implementing Sα←β : Fnβ

rβ → F
nα·�log rα	
rβ , the inverse

of Sα→β . An Frβ
-arithmetic circuit Conline

V,α implementing V online
α for inputs of nα

elements in Frα
(an input xα ∈ F

nα
rα

is given to Conline
V,α as a string of nα · �log rα�

elements in Frβ
, each carrying a bit of xα). An Frα

-arithmetic circuit CV,β imple-
menting Vβ for inputs of nβ elements in Frβ

(an input xβ ∈ F
nβ
rβ is given to CV,β

as a string of nβ · �log rβ� elements in Frα
, each carrying a bit of xβ).

Moreover, for a given compliance predicate Π, we use various Frα
-arithmetic

circuits forhashing:Cout
H,α implements a collision-resistant functionHout

α : {0, 1}mout
H,α

→ F
dH,α
rα , and C in

H,α is a vector such that each C in
H,α[j] implements a collision-

resistant function H in
α [j] : {0, 1}mH,α,j → F

dH,α
rα ; parameters are such that mout

H,α =
(dH,α + 1 + outlen(Π)) · �log rα� and mH,α,j = (dH,α + 1 + inlen(Π)[j]) · �log rα�.

Finally, we use an Frα
-arithmetic circuit for verification of Merkle-tree authen-

tication paths: CCheckPath,α,p implements the function MERKLE.CheckPath (see
Section 2.2) for paths of length �log p�.
Construction of the PCD circuits. In Figure 5 we provide pseudocode for
MakePCDCircuitA and MakePCDCircuitB, the two functions that we use to con-
struct the compliance and translation PCD circuits (i.e., Cpcd,α,i and Cpcd,β,i).
Construction of the PCD generator, prover, and verifier. In Figure 6 we
provide pseudocode for the PCD generator G, prover P, and verifier V. The con-
struction works for a vector Π of Frα

-arithmetic compliance predicates Π. 7 For
convenience, we export i�, the index of the predicate with respect to which com-
pliance is proved, to P’s interface.
7 For comparison, [8] consider the following special case: Π = (Π), inlen(Π)[j] =
outlen(Π) for all j, and d = max-arity(Π). Also note that, in this case, there are only
two message types (namely, 0 and type(Π)), which is why [8] do not discuss message
types, and instead only distinguish between messages that are “base case” or not.

396 A. Chiesa et al.

MakePCDCircuitA(C in
H,α, Cout

H,α, CS,α→β , CV,β , CCheckPath,α,p, Π)

Set:
– the input size nα := dH,α; and
– the witness size hα := (1 + outlen(Π)) + loclen(Π) + 1 +
∑max-arity(Π)

j=1 ((1 + inlen(Π)[j]) + |π| + |vkβ(nβ)| + �ap + 1).

Output the Frα -arithmetic circuit Cpcd,α that, given input xα ∈ F
nα
rα

and witness aα ∈ F
hα
rα

,
works as follows:
1. Parse the witness aα as (msg, loc,msgin, d, vkβ , rt, ap, πin, bres).
2. Check that msg.type = type(Π).
3. Check that 0 ≤ d ≤ max-arity(Π).
4. For j = 1, . . . , d:

(a) Compute σvk,β,j := Cbits,α(vkβ [j]).
(b) Check that CCheckPath,α,p(rt, πin[j].idx, σvk,β,j , ap[j]) = bres[j].

(c) Compute xin,α,j := C in
H,α[j](Cbits,α(rt‖msgin[j].type‖msgin[j].payload)) ∈ F

nα
rα

.

(d) Compute xin,β,j := CS,α→β(xin,α,j) ∈ F
nβ ·�log rβ�
rα .

(e) Check that CV,β

(
vkβ [j], xin,β,j , πin[j].proof

)
= bres[j].

(f) Check that bres[j] ∈ {0, 1} and msgin[j].type · (1 − bres[j]) = 0 (that is, either msgin[j] is
a base-case message or its proof verified).

5. Check that xα = Cout
H,α(Cbits,α(rt‖msg.type‖msg.payload)).

6. Check that Π(msg, loc,msgin, d) accepts.

MakePCDCircuitB(pvkα, CS,α←β , Conline
V,α)

Set:

– the input size nβ :=
⌈

nα·�log rα�
	log rβ

⌉
; and

– the witness size hβ := |πα|.
Output the Frβ

-arithmetic circuit Cpcd,β that, given input xβ ∈ F
nβ
rβ

and witness aβ ∈ F
hβ
rβ

,

works as follows:
1. Parse the witness aβ as a zk-SNARK proof πα.

2. Compute xα := CS,α←β(xβ) ∈ F
nα·�log rα�
rβ

.

3. Check that Conline
V,α

(
pvkα, xα, πα

)
= 1.

Fig. 5. Construction of PCD circuits for our multi-predicate PCD system

7 Implementation

Our system. We built a system that implements our constructions. First, we
implemented multi-predicate PCD, providing interfaces for the PCD generatorG,
prover P, and verifier V; this realizes Step I (see Section 6). Next, we used multi-
predicate PCD to implement a distributed zk-SNARK for MapReduce, providing
interfaces for the zk-SNARK generator MR.KeyGen, proverMR.Prove, and verifier
MR.Verify; this realizes Step II (see Section 5).

The prover in our implementation is itself a MapReduce computation, cur-
rently running on an ad-hocMapReduce implementation; integrationwithHadoop
[1], an open-source MapReduce framework, is ongoing.
Integration with libsnark. We have integrated our code with libsnark [72],
a C++ library for zk-SNARKs.

Cluster Computing in Zero Knowledge 397

Fig. 6. Construction of a multi-predicate PCD system

398 A. Chiesa et al.

Our multi-predicate PCD provides an alternative to the single-predicate PCD
that was already part of libsnark. In fact, we have harmonized the two PCD inter-
faces: the object classes for a compliance predicate, messages, and local data are
shared across the two. In terms of concrete parameter choices, our multi-predicate
PCD uses the two zk-SNARKs (based on PCD-friendly 2-cycles of elliptic curves)
that are also used in the single-predicate PCD.

Our distributed zk-SNARK for MapReduce provides an additional choice of
proof system in libsnark. A MapReduce pair (Map,Reduce) can be specified via
the same “constraint formalism”used throughout libsnark (i.e., rank-1 constraint
systems), thereby facilitating the re-using and sharing of useful constraint systems.
Prototypical MapReduce example: word counting. For evaluation pur-
poses (see Section 8), we wrote a MapReduce pair (Map,Reduce) that implements
the prototypical MapReduce application of word counting [35], whose goal is to
count the number of occurrences of each word in a text (or a collection of texts).
Word counting can be cast in the MapReduce framework, e.g., as follows. Each
input record (k1, v1) represents a slice of, say, 100 words of the document: the key
k1 is the position of the slice in the document, and the value v1 is the list of words
in the slice. The mapper Mapwordcount, when invoked on an input record (k1, v1),
emits a list of intermediate records

(
(k2

1, v
2
1), . . . , (k

2
� , v

2
�)

)
, with � ≤ 100, denoting

that the word k2
i appears v2

i times among the words in the slice v1. The reducer
Reducewordcount, when invoked on a particular word k2 and the vector of counts v2

for k2, emits the output record (k3, v3) = (k2,
∑

i v2[i]), which reports the total
number of occurrences of k2 in the collection of input records.

8 Evaluation

We evaluated our system by using it to execute the MapReduce application of word
counting (see Section 7).
Experimental results. We ran our system on the word counting example, on
our benchmarking system. Each of the reported times is relative to a commodity
compute node with a 3.40 GHz Intel Core i7-4770 CPU and 16 GB of RAM avail-
able and utilizing all 4 cores. We chose the immortal introduction of Diffie and
Hellman’s pioneering paper “New directions in cryptography” [37], divided into
slices of 100 words each, as the input to the MapReduce computation.

By analyzing our system’s components, we deduced a cost model of the prover’s
runtime as a function of M , the number of slices the document was divided into,
and R, the number of distinct words in the document:

M · (
cost(ΠMap

exe) + cost(ΠMap
fmt) + 2 · cost(ΠMap

sum)
)

+ R · (cost(ΠReduce
exe) +

cost(ΠReduce
fmt) + 2 · cost(ΠReduce

sum)
)

+ cost(Πfin).

The above costs have the following meaning, and the following measured values on
our reference node: cost(ΠMap

exe) ≈ 9.3 s is the cost of proving execution of a mapper
node; cost(ΠReduce

exe) ≈ 45.2 s is the cost of proving execution of a reducer node;
cost(ΠMap

fmt) ≈ 13.6 s and cost(ΠMap
sum) ≈ 14.2 s, as well as cost(ΠReduce

fmt) ≈ 13.8 s

Cluster Computing in Zero Knowledge 399

and cost(ΠReduce
sum) ≈ 14.3 s denote the individual costs in proving the correctness

of aggregation of mapper nodes’ outputs and reducer nodes’ inputs, respectively;
and cost(Πfin) ≈ 14.3 s is the cost of producing the final proof.
Extrapolating the cost model. Our cost model accurately characterizes the
prover’s runtime for the word counting example. When changing the input, the
costs change as follows: (a) the costs of ΠMap

fmt and ΠMap
sum remain fixed for all

MapReduce computations; (b) the costs of ΠReduce
fmt , ΠReduce

sum and Πfin remain sta-
ble as they only exhibit a slight dependency on the length of k2, but do not other-
wise depend on the specific MapReduce computation; (c) the cost of ΠMap

exe changes
depending on Nmax, the maximum number of mapper outputs, andMap’s running
time. The cost of ΠReduce

exe is dominated by the cost incurred by performing dmax
in

proof verifications, each costing ≈ 90,000 gates.

References

1. Apache Hadoop
2. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient veri-

fication via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163.
Springer, Heidelberg (2010)

3. Backes, M., Fiore, D., Reischuk, R.M.: Nearly practical and privacy-preserving
proofs on authenticated data (2014)

4. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

5. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004)

6. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.:
Zerocash: decentralized anonymous payments from bitcoin. In: SP 2014 (2014)

7. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013)

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles
of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). http://eprint.iacr.org/2014/595

9. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: USENIX Security 2014 (2014).
http://eprint.iacr.org/2013/879

10. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

11. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. ePrint 2014/580 (2014)

12. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
2012 (2012)

http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879

400 A. Chiesa et al.

13. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. In: STOC 2013 (2013)

14. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012)

15. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)

16. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge.
SIAM J. Comp. (1991)

17. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions. In: STOC 1988 (1988)

18. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using mul-
tiple provers. ePrint 2014/846 (2014)

19. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: ITCS 2012 (2012)

20. Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language models in
machine translation. In: EMNLP-CoNLL 2007 (2007)

21. Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.: Verifying
computations with state. In: SOSP 2013 (2013)

22. Canetti, R., Riva, B., Rothblum, G.N.: Two protocols for delegation of computation.
In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 37–61. Springer, Heidelberg
(2012)

23. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Succinct malleable
NIZKs and an application to compact shuffles. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 100–119. Springer, Heidelberg (2013)

24. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: ICS 2010 (2010)

25. Chiesa, A., Tromer, E.: Proof-carrying data: Secure computation on untrusted plat-
forms (high-level description). The Next Wave: The National Security Agency’s
review of emerging technologies (2012)

26. Chu, C., Kim, S.K., Lin, Y., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: MapRe-
duce for machine learning on multicore. In: NIPS 2004 (2006)

27. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully
homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
483–501. Springer, Heidelberg (2010)

28. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: ITCS 2012 (2012)

29. Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive
proofs. In: Proceedings of the VLDB Endowment (2011)

30. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno,
B., Zahur, S.: Geppetto: Versatile verifiable computation. ePrint 2014/976 (2014)

31. Damg̊ard, I.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992)

32. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low commu-
nication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer,
Heidelberg (2012)

33. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with appli-
cations to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014)

Cluster Computing in Zero Knowledge 401

34. Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio coin: building zerocoin
from a succinct pairing-based proof system. In: PETShop 2013 (2013)

35. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI 2014 (2004)

36. Di Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability assump-
tion. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol.
5028, pp. 175–185. Springer, Heidelberg (2008)

37. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on Inf. Theory
(1976)

38. Dyer, C., Cordova, A., Mont, A., Lin, J.: Fast, easy, and cheap: construction of sta-
tistical machine translation models with MapReduce. In: StatMT 2008 (2008)

39. Fauzi, P., Lipmaa, H., Zhang, B.: Efficient modular NIZK arguments from shift and
product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol.
8257, pp. 92–121. Springer, Heidelberg (2013)

40. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. ePrint 2012/281 (2012)

41. Fredrikson, M., Livshits, B.: Zø: an optimizing distributing zero-knowledge compiler.
In: USENIX Security 2014 (2014)

42. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

43. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and suc-
cinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

44. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In: STOC 2011 (2011)

45. Goel, A., Munagala, K.: Complexity measures for Map-Reduce, and comparison to
parallel computing. ArXiv abs/1211.6526 (2012)

46. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: STOC 2008 (2008)

47. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection
problem from designated verifier CS-proofs. ePrint 2011/456 (2011)

48. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comp. (1989)

49. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

50. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer,
Heidelberg (1998)

51. Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009)

52. Kang, U., Chau, D.H., Faloutsos, C.: Pegasus: mining billion-scale graphs in the
cloud. In: ICASSP 2012 (2012)

53. Kosba, A.E., Papadopoulos, D., Papamanthou, C., Sayed, M.F., Shi, E.,
Triandopoulos, N.: TRUESET: faster verifiable set computations. In: USENIX
Security 2014 (2014)

54. Langmead, B., Schatz, M.C., Lin, J., Pop, M., Salzberg, S.: Searching for SNPs with
cloud computing. Genome Biology (2009)

55. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, second (edn.)
(1997)

402 A. Chiesa et al.

56. Lin, J.: Brute force and indexed approaches to pairwise document similarity com-
parisons with mapreduce. In: SIGIR 2009 (2009)

57. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and
Claypool Publishers (2010)

58. Lin, J., Schatz, M.C.: Design patterns for efficient graph algorithms in mapreduce.
In: MLG 2010 (2010)

59. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189.
Springer, Heidelberg (2012)

60. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs
and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013)

61. Lipmaa, H.: Efficient NIZK arguments via parallel verification of benes networks. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 416–434. Springer,
Heidelberg (2014)

62. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

63. Micali, S.: Computationally sound proofs. SIAM J. Comp. (2000)
64. Mie, T.: Polylogarithmic two-round argument systems. Journal of Mathematical

Cryptology (2008)
65. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed

e-cash from bitcoin. In: SP 2013 (2013)
66. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen

ciphertext attacks. In: STOC 1990 (1990)
67. Panda, B., Herbach, J., Basu, S., Bayardo, R.J.: PLANET: massively parallel learn-

ing of tree ensembles with MapReduce. In: Proceedings of the VLDB Endowment
(2009)

68. Paneth, O., Rothblum, G.N.: Publicly verifiable non-interactive arguments for del-
egating computation. ePrint 2014/981 (2014)

69. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifiable
computation. In: Oakland 2013 (2013)

70. Pino, J., Waite, A., Byrne, W.: Simple and efficient model filtering in statistical
machine translation. Prague Bulletin of Mathematical Linguistics (2012)

71. Schatz, M.C.: CloudBurst: highly sensitive read mapping with MapReduce. Bioin-
formatics (2009)

72. SCIPR Lab. libsnark: a C++ library for zkSNARK proofs
73. Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional verifica-

tion of remote computations. In: HotOS 2011 (2011)
74. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the

conflict between generality and plausibility in verified computation. In: EuroSys
2013 (2013)

75. Setty, S., McPherson, M., Blumberg, A.J., Walfish, M.: Making argument systems
for outsourced computation practical (sometimes). In: NDSS 2012 (2012)

76. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking proof-
based verified computation a few steps closer to practicality. In: USENIX Security
2012 (2012)

77. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 71–89. Springer,
Heidelberg (2013)

78. Thaler, J., Roberts, M., Mitzenmacher, M., Pfister, H.: Verifiable computation with
massively parallel interactive proofs. CoRR (2012)

Cluster Computing in Zero Knowledge 403

79. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008)

80. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for interactive
verifiable computation. In: Oakland 2013 (2013)

81. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. ePrint 2014/674 (2014)

82. Wolfe, J., Haghighi, A., Klein, D.: Fully distributed EM for very large datasets. In:
ICML 2008 (2008)

83. Zhang, Y., Papamanthou, C., Katz, J.: Alitheia: towards practical verifiable graph
processing. In: CCS 2014 (2014)

Hosting Services on an Untrusted Cloud

Dan Boneh1(B), Divya Gupta2, Ilya Mironov3, and Amit Sahai2

1 Stanford University, Stanford, CA, USA
dabo@cs.stanford.edu

2 UCLA and Center for Encrypted Functionalities, Los Angeles, CA, USA
{divyag,asahai}@cs.ucla.edu

3 Google, Mountain View, CA, USA
mironov@gmail.com

Abstract. We consider a scenario where a service provider has created a
software service S and desires to outsource the execution of this service
to an untrusted cloud. The software service contains secrets that the
provider would like to keep hidden from the cloud. For example, the
software might contain a secret database, and the service could allow
users to make queries to different slices of this database depending on
the user’s identity.

This setting presents significant challenges not present in previous
works on outsourcing or secure computation. Because secrets in the soft-
ware itself must be protected against an adversary that has full control
over the cloud that is executing this software, our notion implies indis-
tinguishability obfuscation. Furthermore, we seek to protect knowledge
of the software S to the maximum extent possible even if the cloud can
collude with several corrupted users.

In this work, we provide the first formalizations of security for this set-
ting, yielding our definition of a secure cloud service scheme. We provide
constructions of secure cloud service schemes assuming indistinguishabil-
ity obfuscation, one-way functions, and non-interactive zero-knowledge
proofs.

At the heart of our paper are novel techniques to allow parties to
simultaneously authenticate and securely communicate with an obfus-
cated program, while hiding this authentication and communication from
the entity in possession of the obfuscated program.

D. Boneh—Supported by NSF and DARPA.
D. Gupta and A. Sahai—Research supported in part from a DARPA/ONR PRO-
CEED award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the Defense Advanced Research Projects
Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389.
The views expressed are those of the author and do not reflect the official policy or
position of the Department of Defense, the NSF, or the U.S. Government.
I. Mironov—Work done in Microsoft Research.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 404–436, 2015.
DOI: 10.1007/978-3-662-46803-6 14

Hosting Services on an Untrusted Cloud 405

1 Introduction

Consider a service provider that has created some software service S that he
wants to make accessible to a collection of users. However, the service provider
is computationally weak and wants to outsource the computation of S to an
untrusted cloud. Nevertheless, the software is greatly valuable and he does not
want the cloud to learn what secrets are embedded in the software S. There
are many concrete examples of such a scenario; for example, the software could
contain a secret database, and the service could allow users to make queries to
different slices of this database depending on the user’s identity.

At first glance, such a scenario seems like a perfect application of obfuscation
and can be thought to be solved as follows: The provider could obfuscate the
software O(S) and send this directly to the cloud. Now, the cloud could receive
an input (id, x) directly from a user with identity id, and respond with the
computed output O(S)(id, x) = S(id, x). Secure obfuscation would ensure that
the cloud would never learn the secrets built inside the software, except for what
is efficiently revealed by the input-output behavior of the software. But this
approach does not provide any privacy to the users. In such a setting, the cloud
will be able to learn the inputs x and the outputs S(id, x) of the multitude of
users which use this service. This is clearly undesirable in most applications.
Worse still, the cloud will be able to query the software on arbitrary inputs
and identities of its choice. In our scheme, we want to guarantee input and
output privacy for the users. Moreover, we want that only a user who pays for
and subscribes to the service is able to access the functionality that the service
provides for that particular user.

Ideally, we would like that, first, a user with identity id performs some simple
one-time set-up interaction with the service provider to obtain a key Kid. This key
Kid would also serve as authentication information for the user. Later, in order
to run the software on input x of his choice, he would encrypt x to EncKid

(x) and
send it to the cloud. The cloud would run the software to obtain an encryption
of S(id, x), which is sent back to the user while still in encrypted form. Finally,
the user can decrypt in order to obtain its output.

Let us step back and specify a bit more precisely the security properties we
desire from such a secure cloud service.

1. Security against malicious cloud. In our setting, if the cloud is the only
malicious party, then we require that it cannot learn anything about the
nature of the computation except a bound on the running time. In particular,
it learns nothing about the code of the software or the input/output of users.

2. Security against malicious clients. If a collection of users is malicious,
they cannot learn anything beyond what is learnable via specific input/output
that the malicious users see. Furthermore, if a client is not authenticated by
the service provider, it cannot learn anything at all.

3. Security against a malicious cloud and clients. Moreover, even when
a malicious cloud colludes with a collection of malicious users, the adversary

406 D. Boneh et al.

cannot learn anything beyond the functionality provided to the malicious
users. That is, the adversary does not learn anything about the input/output
of the honest users or the slice of service provided to them. More precisely,
consider two software services S and S′ which are functionally equivalent
when restricted to corrupt users. Then the adversary cannot distinguish
between the instantiations of the scheme with S and S′.

4. Efficiency. Since the service provider and the users are computationally
weak parties, we want to make their online computation highly efficient.
The interaction in the set-up phase between the provider and a user should
be independent of the complexity of the service being provided. For the
provider, only its one-time encoding of the software service should depend
polynomially on the complexity of the software. The work of the client in
encrypting his inputs should only depend polynomially on the size of his
inputs and a security parameter. And finally, the running time of the encoded
software on the cloud should be bounded by a fixed polynomial of the running
time of the software.

Note that since the scheme is for the benefit of the service provider, who could
choose to provide whatever service it desires, we assume that the service provider
itself is uncompromised.

We call a scheme that satisfies the above listed properties, a Secure Cloud
Service Scheme (SCSS). In this work, we provide the first construction of a
secure cloud service scheme, based on indistinguishability obfuscation, one-way
functions, and non-interactive zero-knowledge proofs. At the heart of our paper
are novel techniques to allow parties to simultaneously authenticate and securely
communicate with an obfuscated program, while hiding this authentication and
communication from the entity in possession of the obfuscated program.

Relationships to Other Models. At first glance, the setting we consider may
seem similar to notions considered in earlier works. However, as we describe
below, there are substantial gaps between these notions and our setting. As an
initial observation, we note that a secure cloud service scheme is fundamentally
about protecting secrets within software run by a single entity (the cloud), and
therefore is intimately tied to obfuscation. Indeed, our definition of a secure
cloud service scheme immediately implies indistinguishability obfuscation. Thus,
our notion is separated from notions that do not imply obfuscation. We now
elaborate further, comparing our setting to two prominent previously considered
notions.

◦ Delegation of Computation. A widely studied topic in cryptography is
secure delegation or outsourcing of computation (e.g., [7,11,14,16]), where
a single user wishes to delegate a computation to the cloud. The most sig-
nificant difference between delegation and our scheme is that in delegation
the role of the provider and the user is combined into a single entity. In con-
trast, in our setting the entity that decides the function S is the provider,
and this entity is completely separate from the entities (users) that receive

Hosting Services on an Untrusted Cloud 407

outputs. Indeed, a user should learn nothing about the function being com-
puted by the cloud beyond what the specific input/output pairs that the
user sees. Moreover, the vast majority of delegation notions in literature do
not require any kind of obfuscation.

Furthermore, we consider a setting where multiple unique users have
access to a different slice of service on the cloud (based on their identities),
whereas in standard formulations of delegation, only one computation is out-
sourced from client to the cloud. There is a recent work on delegation that
does consider multiple users: the work of [8] on outsourcing RAM computa-
tions goes beyond the standard setting of delegation to consider a multi-user
setting. But as pointed out by the authors themselves, in this setting, the
cloud can learn arbitrary information about the description of the software.
Their notion of privacy only guarantees that the cloud learns nothing about
the inputs and outputs of the users, but not about the nature of the com-
putation – which is the focus of our work. Moreover, in their setting, no
security is promised in the case of a collusion between a malicious cloud and
a malicious client. The primary technical contributions of our work revolve
around guaranteeing security in this challenging setting.

◦ Multi-Input Functional Encryption (MIFE). Recently, the work of [10]
introduced the extremely general notion of multi-input functional encryption
(MIFE), whose setting can capture a vast range of scenarios. Nevertheless,
MIFE does not directly apply to our scenario: In our setting, there are an
unbounded number of possible clients, each of which gets a unique encryp-
tion key that is used to prepare its input for the cloud. MIFE has been
defined with respect to a fixed number of possible encryption keys [10], but
even if it were extended to an unbounded number of encryption keys, each
function evaluation key in an MIFE would necessarily be bound to a fixed
number of encryption keys. This would lead to a combinatorial explosion of
exponentially many function evaluation keys needed for the cloud.

Alternatively, one could try to build a secure cloud service scheme by
“jury-rigging” MIFE to nevertheless apply to our scenario. Fundamentally,
because MIFE does imply indistinguishability obfuscation [10], this must be
possible. But, as far we know, the only way to use MIFE to build a secure
cloud service scheme is by essentially carrying out our entire construction,
but replacing our use of indistinguishability obfuscation with calls to MIFE.
At a very high level, the key challenges in applying MIFE to our setting
arise from the IND-definition of MIFE security [10], which largely mirrors
the definition of indistinguishability obfuscation security. We elaborate on
these challenges below, when we discuss our techniques.

1.1 Our Results

In this work, we formalize the notion of secure cloud service scheme (Section 3)
and give the first scheme which achieves this notion. In our formal notion, we
consider potential collusions involving the cloud and up to k corrupt users, where

408 D. Boneh et al.

k is a bound fixed in advance. (Note again that even with a single corrupt user,
our notion implies indistinguishability obfuscation.) We then give a protocol
which implements a secure cloud service scheme. More formally,

Theorem 1. Assuming the existence of indistinguishability obfuscation, statis-
tically simulation-sound non-interactive zero-knowledge proof systems and one-
way functions, for any bound k on the number of corrupt users that is poly-
nomially related to the security parameter, there exists a secure cloud service
scheme.

Note that we only require a bound on the number of corrupt clients, and not
on the total number of users in the system. Our scheme provides an exponential
space of possible identities for users. We note that the need to bound the number
of corrupt users when using indistinguishability obfuscation is related to several
other such bounds that are needed in other applications of indistinguishability
obfuscation, such as the number of adversarial ciphertexts in functional encryp-
tion [6] and multi-input functional encryption [10] schemes. We consider the
removal of such a bound using indistinguishability obfuscation to be a major
open problem posed by our work.

Furthermore, we also consider the case when the software service takes two
inputs: one from the user and other from the cloud. We call this setting a secure
cloud service scheme with cloud inputs. This setting presents an interesting
technical challenge because it opens up exponential number of possible functions
that could have been provided to a client. We resolve this issue using a technically
interesting sequence of 2� hybrids, where � is the length of the cloud’s input (see
Our Techniques below for further details). To prove security, we need to assume
sub-exponential hardness of indistinguishability obfuscation. More formally, we
have the following result.

Theorem 2. Assuming the existence of sub-exponentially hard indistinguisha-
bility obfuscation, statistically simulation-sound non-interactive zero-knowledge
proof systems and sub-exponentially hard one-way functions, for any bound k on
the number of corrupt users that is polynomially related to the security parame-
ter, there exists a secure cloud service scheme with cloud inputs.

1.2 Our Techniques

Since a secure cloud service scheme implies indistinguishability obfuscation (iO),
let us begin by considering how we may apply obfuscation to solve our problem,
and use this to identify the technical obstacles that we will face.

The central goal of a secure cloud service scheme is to hide the nature of the
service software S from the cloud. Thus, we would certainly use iO to obfuscate
the software S before providing it to the cloud. However, as we have already
mentioned, this is not enough, as we also want to provide privacy to honest users.
Our scheme must also give a user the ability to encrypt its input x in such a way

Hosting Services on an Untrusted Cloud 409

that the cloud cannot decrypt it, but the obfuscated software can. After choosing
a public key PK and decryption key SK for a public-key encryption scheme,
we could provide PK to the user, and build SK into the obfuscated software to
decrypt inputs. Finally, each user should obtain its output in encrypted form, so
that the cloud cannot decrypt it. In particular, each user can choose a secret key
Kid, and then to issue a query, it can create the ciphertext c = EncPK(x,Kid).
Thus, we need to build a program Ŝ that does the following: It takes as input
the user id id and a ciphertext c. It then decrypts c using SK to yield (x,Kid).
It then computes the output y = S(id, x). Finally, it outputs the ciphertext
d = Enc(Kid, y). The user can decrypt this to obtain y. The cloud should obtain
an obfuscated version of this software Ŝ.

At first glance, it may appear that this scheme would already be secure, at
least if given an “ideal obfuscation” akin to Virtual Black-Box obfuscation [1].
However, this is not true. In particular, there is a malleability attack that arises:
Consider the scenario where the cloud can malleate the ciphertext sent by the
user, which contains his input x and key Kid, to an encryption of x and K∗,
where K∗ is maliciously chosen by the cloud. If this were possible, the cloud
could use its knowledge of K∗ to decrypt the output d = Enc(Kid, y) produced
by the obfuscated version of Ŝ. But this is not all. Another problem we have not
yet handled is authentication: a malicious user could pretend to have a different
identity id than the one that it is actually given, thereby obtaining outputs
from S that it is not allowed to access. We must address both the malleability
concern and the authentication concern, but also do this in a way that works
with indistinguishability obfuscation, not just an ideal obfuscation.

Indeed, once we constrain ourselves to only using indistinguishability obfus-
cation, additional concerns arise. Here, we will describe the two most prominent
issues, and describe how we deal with them.

Recall that our security notion requires that if an adversary corrupts the
cloud and a user id∗, then the view of the adversary is indistinguishable for any
two softwares S and S′ such that S(id∗, x) = S′(id∗, x) for all possible inputs x.
However, S and S′ could differ completely on inputs for several other identities
id. Ideally, in our proof, we would like to use the security of iO while making
the change from S to S′ in the obfuscated program. In order to use the security
of iO, the two programs being obfuscated must be equivalent for all inputs, and
not just the inputs of the malicious client with identity id∗. However, we are
given no such guarantee for S and S′. So in our proof of security, we have to
construct a hybrid (indistinguishable from real execution on S) in which S can
only be invoked for the malicious client identity id∗. Since we have functional
equivalence for this client, we will then be able to make the switch from Ŝ to
Ŝ′ by security of iO. We stress that the requirement to make this switch is that
there does not exist any input to the obfuscated program which give different
outputs for Ŝ and Ŝ′. It does not suffice to ensure that a differing input cannot
be computed efficiently. To achieve this, in this hybrid, we must ensure that
there does not exist any valid authentication for all the honest users. Thus,
since no honest user can actually get a useful output from Ŝ or Ŝ′, they will be

410 D. Boneh et al.

functionally equivalent. In contrast, all the malicious users should still be able
to get authenticated and obtain outputs from the cloud; otherwise the adversary
would notice that something is wrong. We achieve this using a carefully designed
authentication scheme that we describe next.

At a high level, we require the following: Let k be the bound on the number
of malicious clients. The authentication scheme should be such that in the “fake
mode” it is possible to authenticate the k corrupt user identities and there does
not exist (even information-theoretically) any valid authentication for any other
identity. We achieve this notion by leveraging k-cover-free sets of [4,13] where
there are a super-polynomial number of sets over a polynomial sized universe
such that the union of any k sets does not cover any other set. We use these sets
along with length doubling PRGs to build our authentication scheme.

Another problem that arises with the use of indistinguishability obfuscation
concerns how outputs are encrypted within Ŝ. The output of the obfuscated
program is a ciphertext which encrypts the actual output of the software. We
are guaranteed that the outputs of S and S′ are identical for the corrupt clients,
but we still need to ensure that the corresponding encryptions are also identical
(in order to apply the security of iO.) We ensure this by using an encryption
scheme which satisfies the following: If two obfuscated programs using S and S′,
respectively, are given a ciphertext as input, then if S and S′ produce the same
output, then the obfuscated programs will produce identical encryptions as out-
put. In particular, our scheme works as follows: the user sends a pseudo-random
function (PRF) key Kid and the program outputs y = PRF(Kid, r) ⊕ S(x, id),
where the r value is computed using another PRF applied to the ciphertext c
itself. Thus we ensure that for identical ciphertexts as inputs, both programs
produce the same r, and hence the same y. This method allows us to switch S to
S′, but the new challenge then becomes how to argue the security of this encryp-
tion scheme. To accomplish this, we use the punctured programming paradigm
of [18] to build a careful sequence of hybrids using punctured PRF keys to argue
security.

We need several other technical ideas to make the security proof work. Please
see our protocol in Section 4 and proof in Section 4.1 for details.

When considering the case where the cloud can also provide an input to the
computation, the analysis becomes significantly more complex because of a new
attack: The cloud can take an input from an honest party, and then try to vary
the cloud’s own input, and observe the impact this has on the output of the
computation. Recall that in our proof of security, in one hybrid, we will need
to “cut off” honest parties from the computation – but we need to do this in
a way that is indistinguishable from the cloud’s point of view. But an honest
party that has been cut off will no longer have an output that can depend on the
cloud’s input. If the cloud can detect this, the proof of security fails. In order to
deal with this, we must change the way that our encryption of the output works,
in order to include the cloud input in the computation of the r value. But once
we do this, the punctured programming methods of [18] become problematic.
To deal with this issue, we create a sequence of exponentially many hybrids,

Hosting Services on an Untrusted Cloud 411

where we puncture out exactly one possible cloud input at a time. This lets us
avoid a situation where the direct punctured programming approach would have
required an exponential amount of puncturing, which would cause the programs
being obfuscated to blow up to an exponential size.

2 Prelims

Let λ be the security parameter. Below, we describe the primitives used in our
scheme.

2.1 Public Key Encryption Scheme

A public key encryption scheme pke over a message space M = Mλ consists
of three algorithms PKGen,PKEnc,PKDec. The algorithm PKGen takes security
parameter 1λ and outputs the public key pk and secret key sk. The algorithm
PKEnc takes public key pk and a message μ ∈ M as input and outputs the
ciphertext c that encrypts μ. The algorithm PKDec takes the secret key sk and
ciphertext c and outputs a message μ.

A public key encryption scheme pke is said to be correct if for all messages
μ ∈ M:

Pr[(pk, sk) ← PKGen(1λ);PKDec(sk,PKEnc(pk, μ;u)) �= μ] � negl(λ)

A public key encryption scheme pke is said to be IND-CPA secure if for all
PPT adversaries A following holds:

Pr
[

b = b′
∣
∣
∣
∣
(pk, sk) ← PKGen(1λ); (μ0, μ1, st) ← A(1λ, pk);
b

$← {0, 1}; c = PKEnc(pk, μb;u); b′ ← A(c, st)

]

� 1
2

+ negl(λ)

2.2 Indistinguishability Obfuscation

The definition below is from [6]; there it is called a “family-indistinguishable
obfuscator”, however they show that this notion follows immediately from their
standard definition of indistinguishability obfuscator using a non-uniform argu-
ment.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT
machine iO is called an indistinguishability obfuscator for acircuit class {Cλ} if
the following conditions are satisfied:

◦ For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

412 D. Boneh et al.

◦ For any (not necessarily uniform) PPT adversaries Samp, D, there exists a
negligible function α such that the following holds: if Pr[∀x,C0(x) = C1(x) :
(C0, C1, σ) ← Samp(1λ)] > 1 − α(λ), then we have:

∣
∣
∣ Pr

[
D(σ, iO(λ,C0)) = 1 : (C0, C1, σ) ← Samp(1λ)

]

−Pr
[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ) ← Samp(1λ)

]∣∣
∣ ≤ α(λ)

In this paper, we will make use of such indistinguishability obfuscators for
all polynomial-size circuits:

Definition 2 (Indistinguishability Obfuscator for P/poly). A uniform
PPT machine iO is called an indistinguishability obfuscator for P/poly if the
following holds: Let Cλ be the class of circuits of size at most λ. Then iO is an
indistinguishability obfuscator for the class {Cλ}.

Such indistinguishability obfuscators for all polynomial-size circuits were con-
structed under novel algebraic hardness assumptions in [6].

2.3 Puncturable PRF

Puncturable PRFs are a simple types of constrained PRFs [2,3,12]. These are
PRFs that can be defined on all bit strings of a certain length, except for any
polynomial-size set of inputs. Following definition has been taken verbatim from
[18].

Definition 3. A puncturable family of PRFs F is given by a triple of turing
machines PRFKeyF,PunctureF,EvalF, and a pair of computable functions n(·)
and m(·), satisfying the following conditions.

◦ Functionality preserved under puncturing. For every PPT adversary
A such that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ)

where x /∈ S, we have that:

Pr
[
EvalF(K, x) = EvalF(KS , x) : K ← PRFKeyF(1

λ), KS = PunctureF(K, S)
]

= 1

◦ Pseudorandom at punctured points. For every PPT adversary (A1,A2)
such that A1(1λ) outputs a set S ⊆ {0, 1}n(λ) and state st, consider an
experiment where K ← PRFKeyF(1λ) and KS = PunctureF(K,S). Then we
have

∣
∣
∣Pr
[A2(σ, KS , S,EvalF(K, S)) = 1

]− Pr
[A2(st, KS , S, Um(λ)·|S|) = 1

]∣∣
∣ = negl(λ)

Hosting Services on an Untrusted Cloud 413

where EvalF(K,S) denotes the concatenation of EvalF(K,x1)), . . . ,
EvalF(K,xk)) where S = {x1, . . . , xk} is the enumeration of the ele-
ments of S in lexicographic order, negl(·) is a negligible function, and U�

denotes the uniform distribution over � bits.

For ease of notation, we write PRF(K,x) to represent EvalF(K,x). We also
represent the punctured key PunctureF(K,S) by K(S).

The GGM tree-based construction of PRFs [9] from one-way functions are
easily seen to yield puncturable PRFs, as recently observed by [2,3,12]. Thus we
have:

Theorem 3. [2,3,9,12] If one-way functions exist, then for all efficiently com-
putable functions n(λ) and m(λ), there exists a puncturable PRF family that
maps n(λ) bits to m(λ) bits.

2.4 Statistical Simulation-Sound Non-Interactive Zero-Knowledge

This primitive was introduced in [6] and was constructed from standard NIZKs
using a commitment scheme. A statistically simulation-sound NIZK proof sys-
tem for a relation R consists of three algorithms: NIZKSetup, NIZKProve, and
NIZKVerify and satisfies the following properties.

Perfect completeness. An honest prover holding a valid witness can always con-
vince an honest verifier. Formally,

Pr
[

NIZKVerify(crs, x, π) = 1
∣
∣
∣
∣
crs ← NIZKSetup(1λ); (x,w) ∈ R;
π ← NIZKProve(crs, x, w)

]

= 1

Statistical soundness. A proof system is sound if it is infeasible to convince an
honest verifier when the statement is false. Formally, for all (even unbounded)
adversaries A,

Pr
[

NIZKVerify(crs, x, π) = 1
∣
∣
∣
∣
crs ← NIZKSetup(1λ);
(x, π) ← A(crs);x /∈ L

]

� negl(λ)

Computational zero-knowledge [5]. A proof system is zero-knowledge if a proof
does not reveal anything beyond the validity of the statement. In particular,
it does not reveal anything about the witness used by an honest prover. We
say that a non-interactive proof system is zero-knowledge if there exists a PPT
simulator S = (S1,S2) such that S1 outputs a simulated CRS and a trapdoor τ
for proving x and S2 produces a simulated proof which is indistinguishable from
an honest proof. Formally, for all PPT adversaries A, for all x ∈ L such w is
witness, following holds.

414 D. Boneh et al.

Pr
[

A(crs, x, π) = 1
∣
∣
∣
∣
crs ← NIZKSetup(1λ);
π ← NIZKProve(crs, x, w)

]

≈

Pr
[

A(crs, x, π) = 1
∣
∣
∣
∣
(crs, τ) ← S1(1λ, x);
π ← S2(crs, τ, x)

]

Statistical simulation-soundness. A proof system is said to be statistical simu-
lation sound if is infeasible to convince an honest verifier when the statement
is false even when the adversary is provided with a simulated proof (of a pos-
sibly false statement.) Formally, for all (even unbounded) adversaries A, for all
statements x, following holds.

Pr
[

NIZKVerify(crs, x′, π′) = 1
∣
∣
∣
∣
(crs, τ) ← S1(1λ, x);π ← S2(crs, τ, x);
(x′, π′) ← A(crs, x, π);x′ /∈ L

]

� negl(λ)

2.5 Cover-Free Set Systems and Authentication Schemes

The authentication system we will use in our scheme will crucially use the notion
of a cover-free set systems. Such systems were considered and build in [4,13].
Our definitions and constructions are inspired by those in [13].

Definition 4 (k-cover-free set system). Let U be the universe and n:=|U |.
A family of sets T = {T1, . . . , TN}, where each Ti ⊆ U is a k-cover-free set
family if for all T1, . . . , Tk ∈ T and T ∈ T such that T �= Ti for all i ∈ [k]
following holds: T \ ∪i∈[k] Ti �= ∅.

[13] constructed such a set system using Reed-Solomon codes. We define these
next. Let Fq be a finite field of size q. Let Fq,k denote the set of polynomials on
Fq of degree at most k.

Definition 5 (Reed-Solomon code). Let x1, . . . , xn ∈ Fq be distinct
and k > 0. The (n, k)q-Reed-Solomon code is given by the subspace
{〈f(x1), . . . , f(xn)〉 | f ∈ Fq,k}.

It is well-known that any two distinct polynomials of degree at most k can
agree on at most k points.

Construction of k-cover-free sets. Let Fq = {x1, . . . , xq} be a finite field of
size q. We will set q in terms of security parameter λ and k later. Let universe
be U = Fq × Fq. Define d:= q−1

k . The k-cover-free set system is as follows: T =
{Tf | f ∈ Fq,d}, where Tf = {〈x1, f(x1)〉, . . . 〈xq, f(xq)〉} ⊂ U .

Note that N := |T | = qd+1. For example, by putting q = k log λ, we get
N = λω(1). In our scheme, we will set q = kλ to obtain N � 2λ.

Hosting Services on an Untrusted Cloud 415

Claim. The set system T is k-cover-free.

Proof. Note that each set Tf is a (q, d)q-Reed-Solomon code. As pointed out
earlier, any two distinct Reed-Solomon codes of degree d can agree on at most
d points. Hence, |Ti ∩ Tj | � d for all Ti, Tj ∈ T . Using this we get, for any
T, T1, . . . , Tk ∈ T such that T �= Ti for all i ∈ [k],

∣
∣T \ ∪i∈[k]Ti

∣
∣ � q − kd = 1

Authentication Scheme Based on k-Cover-Free Sets. At a high level,
there is an honest authenticator H who posses a secret authentication key ask
and announces the public verification key avk. There are (possibly unbounded)
polynomial number of users and each user has an identity. We want to design
a primitive such that H can authenticate a user depending on his identity. The
authentication tid can be publicly verified using the public verification key.

Let PRG : Y → Z be a pseudorandom generator. with Y = {0, 1}λ and
Z = {0, 1}2λ. Let the number of corrupted users be bounded by k. Let Fq =
{x1, . . . , xq} be a finite field with q � kλ. In the scheme below we will use the
k-cover-free sets described above. Let d = q−1

k . Let T be the family of cover-free
sets over the universe F

2
q such that each set is indexed by an element in F

d+1
q .

The authentication schemes has three algorithms AuthGen, AuthProve and
Authverify described as follows.

◦ Setup: The algorithm AuthGen(1λ) works follows: For all i, j ∈ [q], picks
sij

$← Y . Set ask = {sij}i,j∈[q] and avk = {PRG(sij)}i,j∈[q] = {zij}i,j∈[q].
Returns (avk, ask). The keys will also contain the set-system T . We assume
this implicitly, and omit writing it.

◦ Authentication: The algorithm AuthProve(ask, id) works as follows for a user
id. Interpret id as a polynomial in Fq,d for d = q−1

k , i.e., id ∈ F
d+1
q . Let Tid

be the corresponding set in T . For all i ∈ [q], if id(xi) = xj for some j ∈ [q],
then set yi = sij . It returns tid = {yi} for all i ∈ [q].

◦ Verification: The algorithm Authverify(avk, id, tid) works as follows: Interpret
id as a polynomial in Fq,d for d = q−1

k , i.e., id ∈ F
d+1
q . Let Tid be the

corresponding set in T . Let tid = {y1, . . . , yq}. For all i ∈ [q], if id(xi) = xj

for some j ∈ [q], then check whether PRG(yi) = zij . Accept tid if and only if
all the checks pass.

The security properties this scheme satisfies are as follows:
Correctness. Honestly generated authentications always verify under the veri-
fication key. Formally, for any id, following holds.

Pr[Authverify(avk, id, tid) = 1 | (avk, ask) ← AuthGen(1λ); tid ← AuthProve(ask, id)] = 1

k-Unforgeability. Given authentication of any k users {id1, . . . , idk}, for any
PPT adversary A, it is infeasible to compute tid∗ for any id∗ �= idi for all i ∈ [k].

416 D. Boneh et al.

More formally, we have that for PPT adversary A and any set of at most k
corrupt ids I such that |I| � k, following holds.

Pr

⎡

⎣ id∗ /∈ I ∧
Authverify(avk, id∗, tid∗) = 1

∣
∣
∣
∣
∣
∣

(ask, avk) ← AuthGen(1λ);
tidi ← AuthProve(ask, idi)∀idi ∈ I;
(id∗, tid∗) ← A(avk, {idi, tidi}idi∈I)

⎤

⎦ � negl(λ)

Our scheme satisfies unforgeability as follows: Since T is a k-cover-free
set system, there exists an element in Tid∗ which is not present in ∪idi∈ITidi .
Hence, we can use an adversary A who breaks unforgeability to break the
pseudorandomness of PRG.

Fake Setup: In our hybrids, we will also use a fake algorithm of setup. Consider
a scenario where a PPT adversary A controls k corrupt users with identities
id1, . . . , idk, without loss of generality. The fake setup algorithm we describe
below will generate keys (ask, avk) such that it is only possible to authenticate
the corrupt users and there does not exist any authentication which verifies under
avk for honest users. Moreover, these two settings should be indistinguishable to
the adversary. Below, we describe this setup procedure and then state and prove
the security property.

The algorithm FakeAuthGen(1λ, id1, . . . , idk) works follows: For each i ∈ [k],
interpret idi as a polynomial in Fq,d for d = q−1

k , i.e., idi ∈ F
d+1
q . Let Tidi be the

corresponding set in T . Define T ∗ = ∪iTidi . Recall that the universe is F
2
q.

Start with ask = ∅. For all i, j ∈ [q], if (xi, xj) ∈ T ∗, pick sij
$← Y and add

(i, j, sij) to ask. For all i, j ∈ [q], if (xi, xj) ∈ T ∗, set zij = PRG(sij) else set
zij

$← Z. Define avk = {PRG(sij)}i,j∈[q]. Return (avk, ask).
Let I = {id1, . . . , idk}. The security properties of algorithm FakeAuthGen are:

◦ Correct authentication for all id ∈ I: It is easy to see that for any corrupt
user id ∈ I, AuthProve will produce a tid which will verify under avk.

◦ No authentication for all id /∈ I: For any id /∈ I, by property of k-cover-free
sets, there exists a (xi, xj) ∈ Tid such that (xi, xj) /∈ T ∗. Moreover, a random
element z

$← Z does not lie in im(PRG) with probability 1 − negl(λ). Hence,
with probability 1 − negl(λ), zij has no pre-image under PRG. This ensures
that no tid can verify under avk using algorithm Authverify.

◦ Indistinguishability: This implies that any PPT adversary given avk and tid
for all corrupt users cannot distinguish between real setup and fake setup.
More formally, we have that for any PPT adversary A, and any set of at
most k corrupt ids I = {idi}i∈[k], following holds.

Hosting Services on an Untrusted Cloud 417

Pr

⎡

⎣A(avk, {tidi}i∈[k]) = 1

∣
∣
∣
∣
∣
∣

(ask, avk) ← AuthGen(1λ);
tidi ← AuthProve(ask, idi)
∀i ∈ [k]

⎤

⎦ ≈

Pr

⎡

⎣A(avk, {tidi}i∈[k]) = 1

∣
∣
∣
∣
∣
∣

(ask, avk) ← AuthGen(1λ, I);
tidi ← AuthProve(ask, idi)
∀i ∈ [k]

⎤

⎦

We can prove this via a sequence of q2 −|T ∗| hybrids. In the first hybrid, we
use the algorithm AuthGen to produce the keys. In each subsequent hybrid,
we pick a new i, j such that (xi, xj) /∈ T ∗ and change zij to a random element
in Z instead of PRG(sij . Indistinguishability of any two consecutive hybrids
can be reduced to the pseudorandomness of PRG.

3 Secure Cloud Service Scheme (SCSS) Model

In this section, we first describe the setting of the secure cloud service, followed
by various algorithms associated with the scheme and finally the desired security
properties.

In this setting, we have three parties: The provider, who owns a program
P , the cloud, where the program is hosted, and arbitrary many collection of
users. At a very high level, the provider wants to hosts the program P on a
cloud. Additionally, it wants to authenticate users who pay for the service. This
authentication should allow a legitimate user to access the program hosted on
the cloud and compute output on inputs of his choice. To be useful, we require
the scheme to satisfy the following efficiency properties:

Weak Client. The amount of work done by the client should depend only on
the size of the input and the security parameter and should be completely
independent of the running time of the program P . In other words, the client
should perform significantly less work than executing the program himself.
This implies that both the initial set up phase with the provider and the
subsequent encoding of inputs to the cloud are both highly efficient.

Delegation. The one-time work done by the provider in hosting the program
should be bounded by a fixed polynomial in the program size. But, hence-
forth, we can assume that the work load of the provider in authenticating
users only depends on the security parameter.

Polynomial Slowdown. The running time of the cloud on encoded program
is bounded by a fixed polynomial in the running time of the actual program.

Next, we describe the different procedures associated with the scheme for-
mally.

Definition 6 (Secure Cloud Service Scheme (SCSS)). A secure cloud
service scheme consists of following procedures SCSS = (SCSS.prog,SCSS.auth,
SCSS.inp,SCSS.eval):

418 D. Boneh et al.

◦ (P̃ , σ) ← SCSS.prog(1λ, P, k): Takes as input security parameter λ, program
P and a bound k on the number of corrupt users and returns encoded program
P̃ and a secret σ to be useful in authentication.

◦ authid ← SCSS.auth(id, σ): Takes the identity of a client and the secret σ and
produces an authentication authid for the client.

◦ (x̃, α) ← SCSS.inp(1λ, authid, x): Takes as input the security parameter,
authentication for the identity and the input x to produce encoded input x̃. It
also outputs α which is used by the client later to decode the output obtained.

◦ ỹ ← SCSS.eval(P̃ , x̃): Takes as input encoded program and encoded input
and produces encoded output. This can be later decoded by the client using α
produced in the previous phase.

In our scheme, the provider will run the procedure SCSS.prog to obtain the
encoded program P̃ and the secret σ. It will then send P̃ to the cloud. Later, it
will authenticate users using σ. A user with identity id who has a authentication
authid, will encode his input x using procedure SCSS.inp to produce encoded
input x̃ and secret α. He will send x̃ to the cloud. The cloud will evaluate the
encoded program P̃ on encoded input x̃ and return encoded output ỹ to the
user. The user can now decode the output using α.

Security Properties. Our scheme is for the benefit of the provider and hence
we assume that the provider is uncompromised. The various security properties
desired are as follows:

Definition 7 (Untrusted Cloud Security). Let SCSS be the secure cloud
service scheme as described above. This scheme satisfies untrusted cloud security
if the following holds. We consider an adversary who corrupts the cloud as well
as k clients I ′ = {id′

1, . . . , id
′
k}. Consider two programs P and P ′ such that

P (id′
i, x) = P ′(id′

i, x) for all i ∈ [k] and all inputs x. Let m(λ) be an efficiently
computable polynomial. For any m honest users identities I = {id1, . . . , idm}
such that I ∩ I ′ = ∅ and for any sequence of pairs of inputs for honest users
{(x1, x

′
1), . . . , (xm, x′

m)}, consider the following two experiments:
The experiment Real(1λ) is as follows:

1. (P̃ , σ) ← SCSS.prog(1λ, P, k).
2. For all i ∈ [m], authidi ← SCSS.auth(idi, σ).
3. For all i ∈ [m], (x̃i, αi) ← SCSS.inp(1λ, idi, authidi , xi).
4. For all j ∈ [k], authid′

j
← SCSS.auth(id′

j , σ).
5. Output (P̃ , {authid′

j
}j∈[k], {x̃i}i∈[m]).

The experiment Real′(1λ) is as follows:

1. (P̃ ′, σ) ← SCSS.prog(1λ, P ′, k).
2. For all i ∈ [m], authidi ← SCSS.auth(idi, σ).
3. For all i ∈ [m], (x̃′

i, αi) ← SCSS.inp(1λ, idi, authidi , x
′
i).

4. For all j ∈ [k], authid′
j
← SCSS.auth(id′

j , σ).
5. Output (P̃ ′, {authid′

j
}j∈[k], {x̃′

i}i∈[m]).

Hosting Services on an Untrusted Cloud 419

Then we have,
Real(1λ) ≈c Real′(1λ)

Remark: In the above definition, the only difference between two experiments
is that Real uses the program P and honest users inputs {x1, . . . , xm} and Real′

uses program P ′ and honest users inputs {x′
1, . . . , x

′
m}. Note that no relationship

is required to exist between the set of inputs {x1, . . . , xm} and the set of inputs
{x′

1, . . . , x
′
m}.

Definition 8 (Untrusted Client Security). Let SCSS be the secure cloud
service scheme as described above. This scheme satisfies untrusted client secu-
rity if the following holds. Let A be a PPT adversary who corrupts at most k
clients I ′ = {id′

1, . . . , id
′
k}. Consider any program P . Let n(λ) be an efficiently

computable polynomial. Consider the following two experiments:
The experiment Real(1λ) is as follows:

1. (P̃ , σ) ← SCSS.prog(1λ, P, k).
2. For all i ∈ [k], authid′

i
← SCSS.auth(id′

i, σ). Send {authid′
i
}i∈[k] to A.

3. For each i ∈ [n],
◦ A (adaptively) sends an encoding x̃i using identity id.
◦ Run SCSS.eval(P̃ , x̃i) to compute ỹi. Send this to A.

4. Output ({authid′
i
}i∈[k], {ỹi}i∈[n]).

We require that there The definition requires that there exist two procedures
decode and response. Based on these procedures, we define SimP (1λ) w.r.t. an
oracle for the program P . Below, dummy is any program of the same size as P .

1. (d̃ummy, σ) ← SCSS.prog(1λ, dummy, k).
2. For all i ∈ [k], authid′

i
← SCSS.auth(id′

i, σ). Send {authid′
i
}i∈[k] to A.

3. For each i ∈ [n],
◦ A (adaptively) sends an encoding x̃i using some identity id.
◦ If id /∈ I ′ set ỹ = ⊥. Otherwise, run decode(σ, x̃i) which either out-

puts (xi, τi) or ⊥. If it outputs ⊥, set ỹ = ⊥. Else, the simulator sends
(id, xi) to the oracle and obtains yi = P (id, xi). Finally, it computes
ỹi ← response(yi, τi, σ). Send ỹi to A.

4. Output ({authid′
i
}i∈[k], {ỹi}i∈[n]).

Then we have,
Real(1λ) ≈c SimP (1λ)

Intuitively, the above security definition says that a collection of corrupt
clients do not learn anything beyond the program’s output w.r.t. to their iden-
tities on certain inputs of their choice. Moreover, it says that if a client is not
authenticated, it learns nothing.

We describe a scheme which is a secure cloud service scheme in Section 4 and
prove its security in Section 4.1.

420 D. Boneh et al.

3.1 Additional Properties

We believe our scheme can also be modified to achieve some additional properties
which are not the focus of this work. We use this section to mention them below.

Verifiability. In the above scenario, where the cloud outputs ỹ intended for the
client, we may also want to add verifiability, where the client is sure that the
received output ỹ is indeed the correct output of the computation. We stress that
verifiability is not the focus of this work. The scheme we present in Section 4
can be augmented with known techniques to get verifiability. One such method
is to use one-time MACs as suggested in [8].

Persistent Memory. An interesting setting to consider is the one where the the
cloud also holds a user-specific persistent memory that maintains state across
different invocations of the service by the user. In this setting we must ensure
that for each invocation of the functionality by a user, there only exists one valid
state for the persistent memory that can be used for computing the user’s output
and the next state for the persistent memory. Such a result would only require
the assumptions present in Theorem 2, and would not require any complexity
leveraging. We believe that techniques developed in this paper along with those
in [8] should be helpful to realize this setting as well.

3.2 Secure Cloud Service Scheme with Cloud Inputs

Here we consider a more general scenario, where the program takes two inputs:
one from the user and another from the cloud.

This setting is technically more challenging since the cloud can use any input
in each invocation of the program. In particular, it allows users to access super-
polynomially potentially different functionalities on the cloud based on cloud’s
input.

Notationally, this scheme is same as the previous scheme except that the
procedure SCSS.eval(P̃ , x̃, z) → ỹ takes additional input z from the cloud. The
efficiency and security requirements for this scheme are essentially the same as
the simple scheme without the cloud inputs.

There is absolutely no change required in Definition 7. This is because it
talks about the view of a malicious cloud. There is a minor change in untrusted
client security (Definition 8). The oracle on query (id, xi), returns P (id′

i, xi, zi),
where z1, . . . , zn are arbitrarily chosen choice for cloud’s inputs. Note that the
security guarantee for an honest cloud is captured in this definition.

We provide a scheme which is secure cloud service scheme with cloud inputs
in Section 5.

4 Our Secure Cloud Service Scheme

In this section, we describe our scheme for hosting on the cloud. We have three
different parties: The provider who owns the program, the cloud where the

Hosting Services on an Untrusted Cloud 421

program is hosted, and the users. Recall that we assume that the provider of the
service is honest.

Let λ be the security parameter. Note that the number of users can be any
(unbounded) polynomial in λ. Let k be the bound on the number of corrupt
users. In our security game, we allow the cloud as well as any subset of users to
be controlled by the adversary as long as the number of such users is at most k.

In order to describe our construction, we first recall the primitives and their
notation that we use in our protocol. Let T be a k-cover-free set system using a
finite field Fq and polynomials of degee d = (q − 1)/k described in Section 2.5.
Let (AuthGen,AuthProve,Authverify) be the authentication scheme based on this
k-cover-free set system. As mentioned before, we will use q = kλ, so that
the number of sets/users is at least 2λ. We will interpret the user’s identity
id as the coefficients of a polynomial over Fq of degree at most d. Let the length
of the identity be �id:=(d+1) lg q and length of the authentication be �auth. Note
that in our scheme �auth = 2λq.

Let pke = (PKGen,PKEnc,PKDec) be public key encryption scheme which
accepts messages of length �e = (�id+�in+�auth+�kout+1) and returns ciphertexts
of length �c. Here �in is the length of the input of the user and �kout is the length
of the key for PRF2 described below.

Let (NIZKSetup,NIZKProve,NIZKVerify) be the statistical simulation-sound
non-interactive zero-knowledge proof system with simulator (S1,S2). In our
scheme we use the two-key paradigm along with statistically simulation-sound
non-interactive zero-knowledge for non-malleability inspired from [6,15,17].

We will make use of two different family of puncturable PRFs. a) PRF1(K, ·)
that accepts inputs of length (�id + �c) and returns strings of length �r. b)
PRF2(Kid, ·) that accepts inputs of length �r and returns strings of length �out,
where �out is the length of the output of program. Such PRFs exist by Theorem 3.

Now we describe our scheme.
Consider an honest provider H who holds a program F which he wants to

hosts on the cloud C. Also, there will be a collection of users who will interact
with the provider to obtain authentication which will enable them to run the
program stored on the cloud. We first describe the procedure SCSS.prog(1λ,F, k)
run by the provider.

1. Chooses PRF key K at random for PRF1.
2. Picks (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Picks (avk, ask) ← AuthGen(1λ) with respect to k-cover-free set system T

and pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
4. Picks crs ← NIZKSetup(1λ).
5. Creates an indistinguishability obfuscation Pcomp = iO(Compute), where

Compute is the program described in Figure 1.

Here F̃ = Pcomp and σ = (ask, pk1, pk2, crs,K). Note that K is not used by
the honest provider in any of the future steps, but we include it as part of secret
for completion. This would be useful in proving untrusted client security later.

422 D. Boneh et al.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key
avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate

length strings. If id �= id′, output ⊥ and end.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r) ⊕ F(id, x)) and end.
6. Output y = ⊥ and end.

Fig. 1. Program Compute

Next, we describe the procedure SCSS.auth(id, σ = (ask, pk1, pk2, crs)), where
a user sends his id to the provider for authentication. The provider sends back
authid = (tid, pk1, pk2, crs), where tid = AuthProve(ask, id). We also describe this
interaction in Figure 2.

Provider and User

Inputs: Let the user’s identity be id. The provider has two public keys
pk1, pk2, common reference string crs and secret key ask for authenti-
cation.

1. The user sends his identity id to the provider.
2. The provider computes tid ← AuthProve(ask, id) and sends

authid = (tid, pk1, pk2, crs) to the user.

Fig. 2. Authentication phase between the provider and the user

Finally, we describe the procedures SCSS.inp and SCSS.eval. This interaction
between the user and the cloud is also described in Figure 3.

Procedure SCSS.inp(1λ, authid = (tid, pk1, pk2, crs), x): The user chooses a key
Kid,out for PRF2. Let m = (id||x||tid||Kid,out||0). It then computes c1 =
PKEnc(pk1,m; r1), c2 = PKEnc(pk2,m; r2) and a SSS-NIZK proof π for

∃m, t1, t2 s.t. (c1 = PKEnc(pk1,m; t1) ∧ c2 = PKEnc(pk2,m; t2))

It outputs x̃ = (id, c = (c1, c2, π)) and α = Kid,out.
Procedure SCSS.eval(F̃ = Pcomp, x̃): Run F̃ on x̃ to obtain ỹ. The user parses ỹ
as ỹ1, ỹ2 and computes y = PRF2(α, ỹ1) ⊕ ỹ2.

Hosting Services on an Untrusted Cloud 423

User and Cloud

Inputs: Let the user’s identity be id. Let the user’s input to the
function be x. An authenticated user has the authentication authid =
(tid, pk1, pk2, crs) obtained from the provider. The cloud has obfus-
cated program Pcomp. The user encodes his input for the cloud using
SCSS.inp(1λ, authid, x) as follows:

1. Pick a key Kid,out for PRF2. Set flag = 0.
2. Let m = (id||x||tid||Kid,out||flag). Compute c1 =

PKEnc(pk1, m; r1),
c2 = PKEnc(pk2, m; r2) and a SSS-NIZK proof
π = NIZKProve(crs, stmt, (m, r1, r2)), where stmt is

∃m, t1, t2 s.t. (c1 = PKEnc(pk1, m; t1) ∧ c2 = PKEnc(pk2, m; t2))

3. x̃ = (id, c = (c1, c2, π)) and α = Kid,out.

The cloud runs the program Pcomp on the input x̃ and obtains output
ỹ. It sends ỹ to the user.
The user parses ỹ as ỹ1, ỹ2 and computes y = PRF2(α, ỹ1) ⊕ ỹ2.

Fig. 3. Encoding and evaluation phase between an authenticated user and the cloud

4.1 Security Proof

In this section, we give a proof overview for Theorem 1 for the scheme described
above.

Untrusted Client Security. In our scheme, the secret information σ created
after running the procedure SCSS.prog is σ = (ask, pk1, pk2, crs,K). Hence, on
obtaining a encoded x̃ from the adversary the decode procedure can work iden-
tically to the program Compute to extract an input x, authentication tid, a key
Kid,out, and flag from x̃. If flag = 1, it gives y = 0 to response procedure. Else, if
authentication tid verifies using avk, it sends the (id, x) to the oracle implement-
ing P and obtains y which is sent to response. The response procedure finally
encodes the output y using τ = Kid,out and K ∈ σ and sends it to the corrupt
client. if flag = 0 and tid is invalid, send ⊥ to the client. This is exactly what the
obfuscated program would have done. Hence, the real and simulated experiments
are indistinguishable as is required by this security property.

To prove security against unauthenticated clients, we need to prove the
following: Any PPT malicious client id who has not done the set up phase
to obtain authid should not be able to learn the output of F on any input
using interaction with the honest cloud. Note that in our scheme F is invoked
only if the authentication extracted by the program verifies under avk. Hence,
the security will follow from the k-unforgeability property of our scheme (see
Section 2.5).

424 D. Boneh et al.

Untrusted Cloud Security. Consider a PPT adversary A who controls the
cloud and a collection of at most k users. Let F and G be two functions such that
F and G are functionally equivalent for corrupt users. Then, we will prove that
A can not distinguish between the cases when the provider uses the function F
or G. We will prove this via a sequence of hybrids. Below, we first give a high
level overview of these hybrids.

Let m be the number of honest users in the scheme. Without loss of generality,
let their identities be id1, . . . , idm and inputs be x1, . . . , xm. In the first sequence
of hybrids, we will change the interaction of the honest users with the cloud such
that all honest user queries will use flag = 1 and input 0�in . This will ensure that
in the final hybrid of this sequence, function F is not being invoked for any of
the honest users.

In the next sequence of hybrids, we will change the output of the procedure
AuthGen such that there does not exist any valid authentication for honest users.
Now, we can be absolutely certain that the program does not invoke the func-
tion F on any of the honest ids. We also know that the functions F and G are
functionally equivalent for all the corrupt ids. At this point, we can rely on the
indistinguishability of obfuscations of program Compute using F and program
Compute using G.

Finally, we can reverse the sequence of all the hybrids used so far so that
the final hybrid is the real execution with G with honest user inputs x′

1, . . . , x
′
m.

Overview of Hybrids. Below we describe the important steps in the hybrid
arguments. For detailed and formal security proof, refer to the full version. We
denote changes between subsequent hybrids using underlined font.

Each hybrid below is an experiment that takes as input 1λ. The final output
of each hybrid experiment is the output produced by the adversary when it
terminates. Moreover, in each of these hybrids, note that the adversary also
receives authentication identities for all the corrupt users.

The first hybrid Hyb0 is the real execution with F.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and

pseudorandom generator PRG.
4. Pick crs ← NIZKSetup(1λ).
5. Let Pcomp = iO(Compute).
6. On receiving a corrupt user’s identity id, return the authentication as

in real execution. That is, compute tid ← AuthProve(ask, id) and send
(tid, pk1, pk2, crs) to the user.

7. Authentication for honest users and queries of honest users are also computed
as in real execution. See Figure 3 for details.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Hosting Services on an Untrusted Cloud 425

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key
avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate

length strings. If id �= id′, output ⊥ and end.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r) ⊕ F(id, x)) and end.
6. Output y = ⊥ and end.

Fig. 4. Program Compute

Next we describe the first sequence of hybrids Hyb1:1, . . . ,Hyb1:6, . . . ,
Hybm:1, . . . ,Hybm:6. In the sub-sequence of hybrids Hybi:1, . . . ,Hybi:6, we only
change the behavior of the honest user idi. All the other honest users idj such
that j �= i behave identically as in Hybi−1:6. Hence, we omit their behavior from
the description of the hybrids for ease of notation.

Also, we denote idi by id∗.
Let Hyb0:6 = Hyb0.

Hybi:1. This is same as Hybi−1:6. We use this hybrid as a way to write how the
user id∗ behaves in the real execution explicitly. This would make it easier to
describe the changes next.

It is obvious that the output of the adversary in Hybi−1:6 and Hybi:1 is iden-
tical.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and

PRG.
4. On receiving a corrupt user’s identity id, return the authentication as

in real execution. That is, compute tid ← AuthProve(ask, id) and send
(tid, pk1, pk2, crs) to the user.

5. Set tid∗ = AuthGen(ask, id∗).
6. Set flag∗ = 0.
7. Choose a random PRF key Kid∗,out for PRF2.
8. Let x∗ be the input. Let m∗

1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and
m∗

2 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗).
9. Compute c∗

1, c
∗
2 as follows: c∗

1 = PKEnc(pk1,m∗
1; r1), c∗

2 = PKEnc(pk2,m∗
2; r2).

10. Pick crs ← NIZKSetup(1λ).
11. Compute π∗ = NIZKProve(crs, stmt, (m∗

1, r1, r2)).

426 D. Boneh et al.

12. Set c∗ = (c∗
1, c

∗
2, π

∗).
13. Let r∗ = PRF1(K, (id∗, c∗)).
14. Let y∗ = (r∗,PRF2(Kid∗,out, r

∗) ⊕ F(id∗, x∗)).
15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key
avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id �= id′, output

⊥.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r) ⊕ F(id, x)) and end.
6. Output y = ⊥ and end.

Fig. 5. Program Compute

Hybi:2. We modify the Compute program as follows. First, we add the constants
id∗, c∗, y∗ to the program and add an if statement that outputs y∗ if the input is
(id∗, c∗). Now, because the “if” statement is in place, we know that PRF1(K, ·)
cannot be evaluated at (id∗, c∗) within the program. Hence, we can safely punc-
ture key K at this point. By construction, the Compute program in this hybrid is
functionally equivalent to the Compute program in the previous hybrid. Hence,
indistinguishability follows by the iO security.

Next, the value r∗ is chosen randomly (at the beginning), instead of as the
output of PRF1(K, (id∗, c∗)). The indistinguishability of two hybrids follows by
pseudorandomness property of the punctured PRF PRF1.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and

PRG.
4. On receiving a corrupt user’s identity id, return the authentication as

in real execution. That is, compute tid ← AuthProve(ask, id) and send
(tid, pk1, pk2, crs).

5. Set tid∗ = AuthGen(ask, id∗).
6. Set flag∗ = 0.
7. Let r∗ be chosen randomly.

Hosting Services on an Untrusted Cloud 427

8. Choose a random PRF key Kid∗,out for PRF2.
9. Let x∗ be the input. Let m∗

1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and
m∗

2 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗).
10. Compute c∗

1, c
∗
2 as follows: c∗

1 = PKEnc(pk1,m∗
1; r1), c∗

2 = PKEnc(pk2,m∗
2; r2).

11. Pick crs ← NIZKSetup(1λ).
12. Compute π∗ = NIZKProve(crs, stmt, (m∗

1, r1, r2)).
13. Set c∗ = (c∗

1, c
∗
2, π

∗).
14. Let y∗ = (r∗,PRF2(Kid∗,out, r

∗) ⊕ F(id∗, x∗)).
15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key
K({(id∗, c∗)}), verification key avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.
2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id �= id′, output

⊥.
4. Compute r = PRF1(K, (id, c)).
5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r) ⊕ F(id, x)) and end.
7. Output y = ⊥ and end.

Fig. 6. Program Compute

Hybi:3. In this sequence of hybrids, first, instead of generating crs honestly, we
generate it using the simulator S1 and also simulate the proof π∗ using S2. The
two hybrids are indistinguishable by computational zero-knowledge property of
NIZK used.

Next, using a sequence of hybrids, using the two-key switching technique
we change both m∗

1 and m∗
2 to include a punctured key Kid∗,out({r∗}) instead

of original key Kid∗,out. In these hybrids we will be relying on iO as well as
IND − CPA security of public key encryption scheme pke. For details, refer to
the full version.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and

PRG.

428 D. Boneh et al.

4. On receiving a corrupt user’s identity id, return the authentication as
in real execution. That is, compute tid ← AuthProve(ask, id) and send
(tid, pk1, pk2, crs).

5. Set tid∗ = AuthGen(ask, id∗).
6. Set flag∗ = 0.
7. Let r∗ be chosen randomly.
8. Choose a random PRF key Kid∗,out for PRF2.
9. Let x∗ be the input. Let m∗

1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and
m∗

2 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗).
10. Compute c∗

1, c
∗
2 as follows: c∗

1 = PKEnc(pk1,m∗
1; r1), c∗

2 = PKEnc(pk2,m∗
2; r2).

11. Pick (crs, τ) ← S1(1λ, stmt).
12. Compute π∗ = S2(crs, τ, stmt).
13. Set c∗ = (c∗

1, c
∗
2, π

∗).
14. Let y∗ = (r∗,PRF2(Kid∗,out, r

∗) ⊕ F(id∗, x∗)).
15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key
K({(id∗, c∗)}), verification key avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.
2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id �= id′, output

⊥.
4. Compute r = PRF1(K, (id, c)).
5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r) ⊕ F(id, x)) and end.
7. Output y = ⊥ and end.

Fig. 7. Program Compute

Hybi:4. Here, first we change the value of y∗ = (r∗, u∗) where u∗ is a uni-
formly random string of appropriate length. By pseudorandomness property of
punctured key Kid∗,out({r∗}), PRF2(Kid∗,out, r

∗) is indistinguishable from random
string.

Then, we change the value of y∗ to (r∗,PRF2(Kid∗,out, r
∗)). Again indistin-

guishability follows from pseudorandomness property of punctured key.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).

Hosting Services on an Untrusted Cloud 429

3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and
PRG.

4. On receiving a corrupt user’s identity id, return the authentication as
in real execution. That is, compute tid ← AuthProve(ask, id) and send
(tid, pk1, pk2, crs).

5. Set tid∗ = AuthGen(ask, id∗).
6. Set flag∗ = 0.
7. Let r∗ be chosen randomly.
8. Choose a random PRF key Kid∗,out for PRF2.
9. Let x∗ be the input. Let m∗

1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and m∗
2 =

(id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗).
10. Compute c∗

1, c
∗
2 as follows: c∗

1 = PKEnc(pk1,m∗
1; r1), c∗

2 = PKEnc(pk2,m∗
2; r2).

11. Pick (crs, τ) ← S1(1λ, stmt).
12. Compute π∗ = S2(crs, τ, stmt).
13. Set c∗ = (c∗

1, c
∗
2, π

∗).
14. Let y∗ = (r∗,PRF2(Kid∗,out, r

∗)).
15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key
K({(id∗, c∗)}), verification key avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.
2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id �= id′, output

⊥.
4. Compute r = PRF1(K, (id, c)).
5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r) ⊕ F(id, x)) and end.
7. Output y = ⊥ and end.

Fig. 8. Program Compute

Hybi:5. In this hybrid, we change the value of flag∗ to 1 instead of 0 and tid∗ to
be a random string of appropriate length. We also set x∗ = 0�in . We also change
back the key Kid∗,out used in m∗

1 and m∗
2 to the original unpunctured key.

The indistinguishability follows via a sequence of hybrids using the two-key
switching techniques. Note that here we crucially use that the fact that the
program in the previous hybrid does not use x∗ in computing the output on
input c∗. Moreover, because of the initial “if” condition, there is no check on

430 D. Boneh et al.

flag∗ or tid∗ . Hence, while switching keys for decryption, functional equivalence
follows in a straight-forward manner.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and

PRG.
4. On receiving a corrupt user’s identity id, return the authentication as

in real execution. That is, compute tid ← AuthProve(ask, id) and send
(tid, pk1, pk2, crs).

5. Pick tid∗ to be a uniformly random string of appropriate length.
6. Set flag∗ = 1.
7. Let r∗ be chosen randomly.
8. Choose a random PRF key Kid∗,out for PRF2.
9. Set x∗ = 0�in . Let m∗

1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and m∗
2 =

(id∗||x∗||tid∗ ||Kid∗,out||flag∗).
10. Compute c∗

1, c
∗
2 as follows: c∗

1 = PKEnc(pk1,m∗
1; r1), c∗

2 = PKEnc(pk2,m∗
2; r2).

11. Pick (crs, τ) ← S1(1λ, stmt).
12. Compute π∗ = S2(crs, τ, stmt).
13. Set c∗ = (c∗

1, c
∗
2, π

∗).
14. Let y∗ = (r∗,PRF2(Kid∗,out, r

∗)).
15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key
K({(id∗, c∗)}), verification key avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.
2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate

length strings. If id �= id′, output ⊥ and end.
4. Compute r = PRF1(K, (id, c)).
5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r) ⊕ F(id, x)) and end.
7. Output y = ⊥ and end.

Fig. 9. Program Compute

Hosting Services on an Untrusted Cloud 431

Hybi:6. In this sequence of hybrids, we revert back some of the changes we
made. First, we again start generating the crs and the proof π∗ honestly. The
indistinguishability follows from the computational zero-knowledge property of
the NIZK used.

Next, we set r∗ = PRF1(K, (id∗, c∗)) instead of random. The indistinguisha-
bility follows from the pseudorandomness property of the punctured PRF PRF1.

Finally, we remove the initial “if” condition and the constants (id∗, c∗, y∗),
and un-puncture the key K. The indistinguishability follows from the security
of iO.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and

PRG.
4. On receiving a corrupt user’s identity id, return the authentication as

in real execution. That is, compute tid ← AuthProve(ask, id) and send
(tid, pk1, pk2, crs).

5. Pick tid∗ to be a uniformly random string of appropriate length.
6. Set flag∗ = 1.
7. Choose a random PRF key Kid∗,out for PRF2.
8. Set x∗ = 0�in . Let m∗

1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and
m∗

2 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗).
9. Compute c∗

1, c
∗
2 as follows: c∗

1 = PKEnc(pk1,m∗
1; r1), c∗

2 = PKEnc(pk2,m∗
2; r2).

10. Pick crs ← NIZKSetup(1λ).
11. Compute π∗ = NIZKProve(crs, stmt, (m∗

1, r1, r2)).
12. Set c∗ = (c∗

1, c
∗
2, π

∗).
13. Let r∗ = PRF1(K, (id∗, c∗)).
14. Let y∗ = (r∗,PRF2(Kid∗,out, r

∗)).
15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

In this sequence of hybrids described above, we have shown that the view of
the adversary is indistinguishable in the following two scenarios: 1) The honest
user encodes his actual input x with flag = 0 and a valid authentication tid, and
obtains output according to the function F on (id, x). 2) The honest user encodes
0�in with flag = 1 and uniformly random tid, and receives encoding of 0 as output
(without invoking the function F.)

Below we write the final hybrid obtained above as Hyb1 as follows:

Hyb1: This hybrid is same as Hybm:6. In the hybrid Hybm:6, all the user queries
will have flag = 1, tid will be a random string, and input will be 0�

in. Hence, the
program Compute will not invoke the function F for any of the honest users.

The underlined statement summarizes the main difference between Hyb0 and
Hyb1. Since the program being obfuscated does not change between Hyb0 and
Hyb1, we omit its description from here.

432 D. Boneh et al.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key
avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id �= id′, output

⊥.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r) ⊕ F(id, x)) and end.
6. Output y = ⊥ and end.

Fig. 10. Program Compute

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Pick (avk, ask) ← AuthGen(1λ) with respect to cover-free set system T and

PRG.
4. Pick crs ← NIZKSetup(1λ).
5. Let Pcomp = iO(Compute).
6. On receiving a corrupt user’s identity id, return the authentication as

in real execution. That is, compute tid ← AuthProve(ask, id) and send
(tid, pk1, pk2, crs) to the user.

7. For each of the honest users, tid is set to a random string of appropriate
length, flag is set to 1 and input is set to 0�in . Ciphertexts (c1, c2) and
proof π are generated honestly.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Hyb2: We change the setup phase of authentication scheme to use FakeAuthGen
instead of AuthGen. Let I denote the set of corrupt user identities. Note that
|I| � k and set system T used in our scheme is a k-cover-free set system.

The two hybrids are indistinguishable by security properties of FakeAuthGen
(see Section 2.5). Note that both hybrids do not depend on ask and need only
the valid authentications for corrupt users.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Pick (avk, ask) ← FakeAuthGen(1λ, I) w.r.t. cover-free set system T and

PRG.
4. Pick crs ← NIZKSetup(1λ).
5. Let Pcomp = iO(Compute).
6. On receiving a corrupt user’s identity id, return the authentication as

in real execution. That is, compute tid ← AuthProve(ask, id) and send

Hosting Services on an Untrusted Cloud 433

(tid, pk1, pk2, crs). As noted before, AuthProve still returns valid authenti-
cation for all users in I.

7. For each of the honest users, tid is set to a random string of appropriate
length and flag is set to 1. Ciphertexts (c1, c2) and proof π is generated as
in real execution.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Hyb3: This is the most important hybrid, where we change the program from F
to F. The two hybrids are indistinguishable by security of iO. Note that in both
hybrids the function is invoked iff the authentication of the user verifies under
avk. In the both hybrids, this can happen only for corrupt users as there is no
valid authentication for honest users. Finally, recall that the functions F and G
are equivalent for corrupt users.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Pick (avk, ask) ← FakeAuthGen(1λ, I) w.r.t. cover-free set system T and

PRG.
4. Pick crs ← NIZKSetup(1λ).
5. Let Pcomp = iO(Compute).
6. On receiving a corrupt user’s identity id, return the authentication as

in real execution. That is, compute tid ← AuthProve(ask, id) and send
(tid, pk1, pk2, crs).

7. For each of the honest users, tid is set to a random string of appropriate
length and flag is set to 1. Ciphertexts (c1, c2) and proof π is generated as
in real execution.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key
avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate

length strings. If id �= id′, output ⊥ and end.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output

y = (r,PRF2(Kid,out, r) ⊕ G(id, x)) and end.
6. Output y = ⊥ and end.

Fig. 11. Program Compute

434 D. Boneh et al.

Finally, using a similar sequence of hybrids we can move from Hyb3 to a
hybrid which corresponds to real execution using G and honest party inputs
x′
1, . . . , x

′
m.

5 Our Secure Cloud Service Scheme with Cloud Inputs

In this section, we describe our modified scheme for service hosting on the cloud
with cloud inputs. As before, we have three different parties: The provider who
owns the service, the cloud where the service is hosted, and the users. Recall
that we assume that the provider of the service is honest.

As before, let λ be the security parameter. Let k be the bound on the number
of corrupt users.

Let T be a k-cover-free set system using a finite field Fq and polynomials of
degee d = (q − 1)/k and (AuthGen,AuthProve,Authverify) be the authentication
scheme w.r.t. T as described in Section 2.5. As mentioned before, we use q = kλ,
so that the number of sets/users is at least 2λ. We interpret the user’s identity
id as the coefficients of a polynomial over Fq of degree at most d. Let the length
of the identity be �id:=(d+1) lg q and length of the authentication be �auth. Note
that in our scheme �auth = 2λq.

Let pke = (PKGen,PKEnc,PKDec) be public key encryption scheme which
accepts messages of length �e = (�id+�in+�auth+�kout+1) and returns ciphertexts
of length �c. Here �in is the length of the input of the user and �kout is the length
of the key for PRF2 described below.

Let (NIZKSetup,NIZKProve,NIZKVerify) be the statistical simulation-sound
non-interactive zero-knowledge proof system with simulator (S1,S2). In our
scheme we use the two-key paradigm along with statistically simulation-sound
non-interactive zero-knowledge for non-malleability inspired from [6,15,17].

We will make use of two different family of puncturable PRFs. a) PRF1(K, ·)
that accepts inputs of length (�id + �c + �z) and returns strings of length �r �
(�id + �c + �z) + λ. Here �z is the length of the cloud’s input z. b) PRF2(Kid, ·)
that accepts inputs of length �r and returns strings of length �out, where �out is
the length of the output of program. Such PRFs exist by Theorem 3.

We put a lower bound on the length of output of PRF1 because in the proof
we would require that a random string of length �r does not lie in the image of
PRF1(K, ·).

Scheme Description. Consider an honest provider H who holds a function F
which he wants to hosts on the cloud C. Also, there will be a collection of users
who will interact with the provider to obtain authentication which will enable
them to run the program stored on the cloud. The provider does the following:
1. Chooses PRF key K at random for PRF1.
2. Picks (pk1, sk1) ← PKGen(1λ), (pk2, sk2) ← PKGen(1λ).
3. Picks (avk, ask) ← AuthGen(1λ) with respect to k-cover-free set system T

and pseudorandom generator PRG.

Hosting Services on an Untrusted Cloud 435

4. Picks crs ← NIZKSetup(1λ).
5. Creates an indistinguishability obfuscation Pcomp = iO(Compute), where

Compute is the same program as in Figure 1 with the following change:
It takes an additional input z from the cloud along with identity id and
ciphertext c = (c1, c2, π) from the user. And while computing the output in
Step 5 when flag = 0 and user is authenticated as y = (r,PRF2(Kid,out, r) ⊕
F(id, x, z)) (using the cloud input z).
Here F̃ = Pcomp and σ = (ask, pk1, pk2, crs).

Next, we describe the procedures SCSS.auth, SCSS.inp and SCSS.eval.
Procedure SCSS.auth: It takes as input user’s id and secret state of the service
provider σ = (ask, pk1, pk2, crs)). The provider computes tid = AuthProve(ask, id)
and sends back authid = (tid, pk1, pk2, crs).
Procedure SCSS.inp(1λ, authid = (tid, pk1, pk2, crs), x): The user chooses a key
Kid,out for PRF2. Let m = (id||x||tid||Kid,out||0). It then computes c1 =
PKEnc(pk1,m; r1), c2 = PKEnc(pk2,m; r2) and a SSS-NIZK proof π for

∃m, t1, t2 s.t. (c1 = PKEnc(pk1,m; t1) ∧ c2 = PKEnc(pk2,m; t2))

It outputs x̃ = (id, c = (c1, c2, π)) and α = Kid,out.
Procedure SCSS.eval(F̃ = Pcomp, x̃, z): Let the cloud’s input be z. Run F̃ on
(x̃, z) to obtain ỹ. The user parses ỹ as ỹ1, ỹ2 and computes y = PRF2(α, ỹ1)⊕ ỹ2.

Security Proof. For a formal proof that our scheme satisfies Theorem 2 i.e. it
is a secure cloud service scheme with cloud inputs please refer to our full version.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

2. Boneh, D., Waters, B.: Constrained Pseudorandom Functions and Their Applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

3. Boyle, E., Goldwasser, S., Ivan, I.: Functional Signatures and Pseudorandom Func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

4. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel Journal of Mathematics 51(1–2), 79–89 (1985)

5. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

6. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

7. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

436 D. Boneh et al.

8. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private ram com-
putation. Cryptology ePrint Archive, Report 2014/148 (2014). http://eprint.iacr.
org/

9. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS, pp. 464–479 (1984)

10. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input Functional Encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

11. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: STOC, pp. 113–122 (2008)

12. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: CCS, pp. 669–684 (2013)

13. Kumar, R., Rajagopalan, S., Sahai, A.: Coding Constructions for Blacklisting Prob-
lems without Computational Assumptions. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)

14. Micali, S.: CS proofs (extended abstracts). In: 35th Annual Symposium on Foun-
dations of Computer Science, Santa Fe, New Mexico, USA, November 20-22, pp.
436–453 (1994)

15. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC, pp. 427–437 (1990)

16. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: SP, pp. 238–252 (2013)

17. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

18. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/

Obfuscation and E-Voting

How to Obfuscate Programs Directly

Joe Zimmerman(B)

Stanford University, Stanford, USA
jzim@cs.stanford.edu

Abstract. We propose a new way to obfuscate programs, via composite-
order multilinear maps. Our construction operates directly on straight-
line programs (arithmetic circuits), rather than converting them to
matrix branching programs as in other known approaches. This yields
considerable efficiency improvements. For an NC1 circuit of size s and
depth d, with n inputs, we require only O(d2s2 + n2) multilinear map
operations to evaluate the obfuscated circuit—as compared with other
known approaches, for which the number of operations is exponential
in d. We prove virtual black-box (VBB) security for our construction in
a generic model of multilinear maps of hidden composite order, extend-
ing previous models for the prime-order setting.

Our scheme works either with “noisy” multilinear maps, which can
only evaluate expressions of degree λc for pre-specified constant c; or with
“clean” multilinear maps, which can evaluate arbitrary expressions. With
“noisy” maps, our new obfuscator applies only to NC1 circuits, requiring
the additional assumption of FHE in order to bootstrap to P/poly (as in
other obfuscation constructions). From “clean” multilinear maps, on the
other hand (whose existence is still open), we present the first approach
that would achieve obfuscation for P/poly directly, without FHE.

Our construction is efficient enough that if “clean” multilinear maps
were known, then general-purpose program obfuscation could become
implementable in practice. Our results demonstrate that the question
of “clean” multilinear maps is not a technicality, but a central open
problem.

1 Introduction

Program obfuscation is the task of making code “unintelligible”, so that the
obfuscated code reveals nothing about the implementation beyond its function-
ality. Obfuscation has many practical applications, such as intellectual property
protection and software watermarking, as well as applications to basic crypto-
graphic primitives [DH76,BGI+01].

The theoretical study of obfuscation was initiated by Barak, Goldreich,
Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01]. In that work, the
authors also showed that general-purpose program obfuscation could not achieve
the natural definition of virtual black-box security (VBB), which led many to sus-
pect that a useful general-purpose obfuscator was impossible. This view changed
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 439–467, 2015.
DOI: 10.1007/978-3-662-46803-6 15

440 J. Zimmerman

with the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b],
who proposed a general-purpose obfuscator based on the powerful primitive of
multilinear maps [BS03], as constructed by Garg, Gentry, and Halevi [GGH13a],
Coron, Lepoint, and Tibouchi [CLT13], and Gentry, Gorbunov, and
Halevi [GGH14].

For their general-purpose obfuscator, Garg et al. [GGH+13b] proved the
weaker notion of indistinguishability obfuscation (iO) [BGI+01] in a generic
model of encoded matrices. Subsequently it has been shown that in a generic
model of multilinear maps, general-purpose obfuscation can even achieve VBB
security [BR14,BGK+14], and that iO can be based on a single, instance-
independent security assumption [GLSW14]. Sahai and Waters have also shown
that even the weaker notion of iO has many cryptographic applications, via the
technique of “punctured programs” [SW14]. Since then, obfuscation has become
an extremely active area of study, and many other applications and complexity-
theoretic implications have been explored; see [AGIS14] for an overview.

Even with known constructions and applications, however, general-purpose
obfuscation is currently not feasible to implement in practice. The works of
Ananth et al. [AGIS14] and Sahai and Zhandry [SZ14] investigate the question
of optimizing obfuscation, and obtain significant improvements for some specific
cases, but much work remains to be done. One major source of inefficiency is
that in all previously known constructions, including those of [AGIS14,SZ14],
obfuscation requires converting the input circuit to a matrix branching program,
which incurs a considerable cost in performance.

1.1 Our Results

In this work, we propose a new way to construct obfuscation, which operates
directly on straight-line programs (i.e., arithmetic circuits, Section 2.3), without
converting them to matrix branching programs. The evaluation of an obfuscated
circuit mirrors the structure of the original circuit.

Our construction is based on asymmetric composite-order multilinear maps
[BS03,GGH13a,CLT13,GGH14]. It can operate either with “noisy” multilinear
maps (such as the CLT construction), or with “clean” maps, for which there is
still no known candidate. In the case of “noisy” multilinear maps, our construc-
tion (like others) is limited to NC1, and requires FHE to bootstrap to P/poly.
With “clean” multilinear maps, on the other hand, we show that we would be able
to obfuscate P/poly directly, without the prohibitively expensive bootstrapping
step via FHE. Indeed, if we knew how to construct “clean” multilinear maps,
then our results in this work would immediately yield obfuscation for P/poly,
with parameters that could be feasible in practice.

In addition to qualitatively new results, our techniques yield considerable
performance improvements even for “noisy” multilinear maps. For instance, for
circuits of size s and depth d with n inputs, we require only O(d2s2 +n2) multilin-
ear map elements and operations. All other known approaches require a number
exponential in the circuit’s depth, since every sub-circuit with fanout greater than
1 must be duplicated before converting the circuit to a matrix branching program.

How to Obfuscate Programs Directly 441

Remark 1 (Cryptanalysis of CLT). For some time, it was believed that the
CLT construction [CLT13], together with the modifications of [GLW14, App. B],
provided a secure instantiation of a composite-order multilinear map. The obfus-
cation construction we develop in this work depends fundamentally on the
composite-order setting, for which CLT has been the natural candidate instan-
tiation.

However, subsequent to this work, there has been significant progress in the
cryptanalysis of the CLT multilinear map. Generalizing the “zeroizing” attack
of [GGH13a], Cheon, Han, Lee, Ryu, and Stehlé [CHL+14] have shown that given
public encodings of a certain form, it is possible to factor the CLT modulus and
thereby break the scheme. Further cryptanalysis showed that it does not help
to rule out encodings of this particular form; variants of the Cheon et al. attack
can be executed under much weaker hypotheses [GHMS14,BWZ14,CLT14].

In light of these attacks, it is not clear that composite-order multilinear
maps can currently be instantiated. We are optimistic that new candidates
will be discovered in the future, perhaps as variants of other known construc-
tions [GGH13a,GGH14], and we await the development of suitable multilinear
maps.

Perspective: towards implementable obfuscation. Currently, general-purpose
obfuscation is not feasible to implement in practice. There have been two main
obstacles to its implementation. The first is that, in known (“noisy”) multilinear
maps such as the GGH and CLT schemes, the noise—and hence the parameters—
grow with the degree of the polynomial being computed over encoded elements;
this limits us to NC1 circuits, because the degree of a circuit may increase expo-
nentially with its depth. The second obstacle is that, prior to this work, obfusca-
tion required converting the input circuit to a matrix branching program, whose
size in general is also exponential in the depth of the original circuit.

This work removes the second obstacle. In our construction, the number
of multilinear map operations is polynomial in the circuit size; it is only the
degree of multilinearity (and hence the noise growth in “noisy” multilinear maps)
that restricts our construction to NC1. If we could construct “clean” multilinear
maps, then our results would immediately yield obfuscation for P/poly, with
parameters that could be feasible in practice. In our view, our results indicate
that constructing “clean” multilinear maps is one of the most fundamental open
problems in cryptography.

Succinctness and keyed circuits. Our new approach is particularly effective for
obfuscating keyed circuit families (C(·,y))y∈{0,1}m (Section 2.4), in which the
circuit’s structure C is public, and one only needs to hide a short secret key
y ∈ {0, 1}m embedded in the circuit—as is common in many cryptographic
applications. For example, for a keyed circuit C : {0, 1}n × {0, 1}m → {0, 1} of
size s and depth d (with n inputs and key length m), our obfuscation consists
of only O(m+n2) ring elements in the multilinear map, and evaluation requires
O(s + n2) ring operations, with multilinearity degree O(2d + n2).

442 J. Zimmerman

Table 1. Performance for general (unkeyed) circuits of input length n, size s, and
depth d. We always have n, s < O(2d), since the gates have fanin two; and in most
applications we have n, s � 2d. For moderately “narrow” circuits with s < O(dn) and
d > 2 lg n, for example, we have O(d2s2 + n2) = O(d4n2) = o(2dn). We present the
cost here in terms of ring elements and ring operations. The concrete cost in bits and
bit operations depends on the multilinear map (Section 2.8). For “clean” maps (whose
existence is still open), the cost is just poly(λ). For “noisy” maps, the cost depends
on the instantiation; e.g., for the CLT map [CLT13], the reader should multiply each

row’s obfuscation size and evaluation time by O(deg2+ε′
) · poly(λ), where deg is the

corresponding multilinearity degree from the first column, and ε′ is a small constant
determined by the choice of the Θ parameter in composite-order CLT [GLW14, App. B].

Degree of
multilinearity

Obfuscation size
(# ring elements)

Evaluation time
(# ring operations)

Via Barrington
[BR14,BGK+14]

O(4dn + n2) O(4dn + n2) O(4dn + n2)

[AGIS14] O(2dn + n2) O(8dn + n2) O(8dn + n2)

[AGIS14] + [Gie01] O(2(1+ε)dn + n2) O(2(1+ε)d42/εn + n2) O(2(1+ε)d42/εn + n2)

This work O(2dn + n2) O(d2s2 + n2) O(d2s2 + n2)

For keyed circuits, we also define succinct obfuscation (Section 2.10), in which
the obfuscation overhead size depends only on the input length n and the secret
key length m, and is independent of the circuit size. Using our new techniques,
along with the assumption that factoring is hard on average, we show that
“clean” multilinear maps would imply succinct obfuscation for all of P/poly.

Of course, we can regard every circuit family as keyed, by viewing the original
circuit as the secret key input to the universal circuit. In this case, succinctness
means that the obfuscation overhead size depends only on the size of the part
of the original circuit that the obfuscation needs to hide (as well as on the input
length). However, the keyed model is especially natural, and we expect that in
most applications it will find more use than general-purpose obfuscation.

New design spaces. When the obfuscator converts every circuit C to a matrix
branching program, as in previously known approaches, it usually does not help
to optimize the design of C itself. The depth of C determines the size of the
resulting branching program,1 but apart from that, every design strategy results
in the same procedure to evaluate the obfuscated circuit O(C), and the same
performance—namely, a series of matrix multiplications of encoded elements in
the multilinear map.

By contrast, with our new techniques, the obfuscated program’s evaluation
mirrors the structure of the original arithmetic circuit. If these circuits are natu-
rally keyed, as in most cryptographic applications, then the performance changes
considerably with the design strategy, and we expose a rich new design space.
1 In some cases, for Boolean formulas, the size of the branching program may depend

on the formula’s size [AGIS14].

How to Obfuscate Programs Directly 443

The execution of any machine—say, a Turing machine or RAM—can be con-
verted to a circuit with overhead at most polylogarithmic,2 as long as the
machine is already oblivious (Section 2.2)—i.e., its control flow does not depend
on its input data. This means that any tools for designing efficient oblivious
algorithms now apply to program obfuscation.

For example, to specialize our new construction to Boolean formulas, we use
an efficient oblivious stack [HS66,PF79,MZ14] to evaluate the formulas in postfix
order, and we rely on the Fast Fourier Transform (FFT) to reduce the degree of
the resulting computation (see the full version [Zim14] for details). We believe
that these applications are only the beginning, and we hope that this work
will encourage further study of obfuscating specific, keyed circuit families. This
goal is closely related to the design of efficient oblivious algorithms for specific
problems, which is of independent interest in secure multi-party computation
and other areas of cryptography. More broadly, while the existence of general-
purpose obfuscation is an important theoretical result, we believe that its role
in applications is actually quite limited; it is analogous to running all of our
programs on a universal Turing machine.

VBB security in the generic model. Since obfuscation is such a powerful primitive,
historically it has been difficult to prove constructions secure based on simple, fal-
sifiable assumptions. In the first candidate construction for general-purpose obfus-
cation [GGH+13b], Garg et al. prove indistinguishability obfuscation (iO) based
on a meta-assumption which roughly asserts that the scheme is secure, which they
validate in a generic model of generic (encoded) matrices. Brakerski and Rothblum
[BR14] and Barak et al. [BGK+14] develop these results further, showing how
to extend the obfuscation paradigm of [GGH+13b] to achieve the much stronger
definition of virtual black-box (VBB) security in a very natural generic model of
multilinear maps, similar to the generic group model [Sho97]. In this work, we
also prove VBB security, in a generic model similar to that of [BR14,BGK+14],
adapted to the setting of (hidden) composite order.

As observed by Brakerski and Rothblum [BR14], it is not clear how we should
interpret a proof of VBB in a generic model, since we know that VBB security
in the standard model is impossible for general circuit families [BGI+01]. How-
ever, as far as we know, it may be possible to achieve VBB obfuscation for
many specific classes of circuits, even if not for the pathological examples in the
negative results of [BGI+01]. We also do not know any (unconditional) nega-
tive results for iO, and a proof of VBB in the generic model also implies iO
in the generic model. Thus, it is plausible that our construction achieves iO
for all circuits (or some intermediate definition, such as differing-inputs obfus-
cation [BGI+01,ABG+13,BCP14]), and a generic-model VBB proof serves as
evidence of this as well.

More generally, a generic-model VBB proof shows that a scheme resists a
wide class of “algebraic” attacks, and that any attack that breaks VBB security
2 For instance, in some models there is overhead involved in decomposing word oper-

ations into bits.

444 J. Zimmerman

must exploit some property of the concrete instantiation of multilinear maps.3

As in the random oracle model, we know that no real primitive can actually
instantiate the generic model in all cases [CGH98], and we view the negative
result for VBB as another example of that paradigm. In this work, as in other
works that rely on generic models [GGH+13b,BR14,BGK+14], we believe that
a generic-model proof provides strong heuristic evidence that the corresponding
(meta-)assumptions usually hold in the standard model. Of course, it would
be even better to prove our construction secure based on a single (instance-
independent) falsifiable assumption, as in the work of Gentry et al. [GLW14,
GLSW14,GGHZ14]. We leave this as an important open problem for future
work.

Extensions. We observe that our techniques can be naturally extended to func-
tional encryption [O’N10,BSW11] (as well as its generalization, multi-input func-
tional encryption [GGG+14]), enabling direct constructions that do not require
the full machinery of obfuscation and NIZK proofs, and hence avoid their con-
siderable performance cost. We now outline one approach to this extension; we
leave the full development for future work. First we note that in our obfusca-
tion construction, we give out an obfuscated keyed circuit, O(C(·,y)), which
acts much like the functional decryption key fC(·,y) in a functional encryption
scheme. The evaluator can select arbitrary inputs x ∈ {0, 1}n of her choice, and
use the obfuscated circuit to learn C(x,y). In functional encryption, however,
the evaluator has an additional ability: she can “defer” the evaluation of C(x,y),
by running ctx ← Enc(pk,x); then, roughly speaking, an adversary who obtains
the value ctx learns nothing about x, except those outputs C(x,y) for which the
adversary has the corresponding keys fC(·,y). So, to generalize our obfuscation
construction to functional encryption, we need to enable the evaluator to “defer”
an input x in this fashion. Since our construction already represents each input
bit x1, . . . , xn ∈ x as an encoded element in the multilinear map, this amounts
to generating poly(λ) additional encoded elements, of which we can use a subset
to “blind” an encoded input x, constructing the ciphertext for the functional
encryption scheme.

Another natural extension of our construction is to obfuscate circuits with
multi-bit output,4 C : {0, 1}n × {0, 1}m → {0, 1}� for � > 1. We defer the full
details of this extension to the full version [Zim14]. At a high level, since our
evaluation of an obfuscated circuit follows the structure of the original circuit,
we can also reuse intermediate results for gates with fanout > 1, and we need
not repeat the entire computation for each bit of the output (as we would in
approaches based on Barrington’s theorem). We remark that this extension is
especially apt for algorithms such as block ciphers, which maintain and update
3 Indeed, the negative result of [BGI+01] for VBB in the standard model is based on

an attack in which an obfuscated circuit is evaluated on its own bit representation,
which of course depends fundamentally on the concrete instantiation of multilinear
maps.

4 For simplicity, we restrict our discussion here to keyed circuit families (Section 2.4),
as discussed above.

How to Obfuscate Programs Directly 445

a small “working state” and read off a (multi-bit) output from that state at the
end of the computation.

1.2 Our Techniques

We now give an overview of our techniques, and explain how they relate to other
known approaches. To keep the presentation simple, we describe our techniques
in terms of keyed arithmetic circuit families C : {0, 1}n × {0, 1}m → {0, 1}, as
described in Section 2.4. (We note that we can obtain keyed circuit families
from various other machine models, including general Boolean circuits, by stan-
dard universal-program transformations; we defer the formal details to the full
version [Zim14].)

Known approaches. All known constructions of general program obfuscation
(including this work) are based on multilinear maps [BS03,GGH13a,CLT13,
GGH14]. Multilinear maps, also known as graded multilinear maps or graded
encodings [GGH13a,CLT13,GGH14], are a generalization of bilinear maps such
as pairings over elliptic curves [Mil04,MOV93,Jou00,BF01]. Roughly speaking, a
multilinear map lets us take a scalar x and produce an encoded version, x̂ = [x]S ,
where S ⊆ U is a multi-set, called an index set, that indicates the level of the
encoding x̂ in a given hierarchy (namely, the subsets of U ordered by inclu-
sion).5 Elements can be added within the same index set, [x]S + [y]S = [x + y]S ;
and elements can be multiplied, [x]S · [y]T = [xy]ST , as long as the resulting
index set ST is still contained in U . Finally, elements encoded at U itself can be
zero-tested, to determine whether they encode the scalar 0.

Intuitively, multilinear maps seem like a perfect fit for program obfuscation. If
we give out encoded versions of the secret key input y ∈ {0, 1}m, then the evalu-
ator can encode x ∈ {0, 1}m himself, use the multilinear map’s arithmetic opera-
tions to evaluate C on the encoded elements, and zero-test the result to determine
the output C(x,y) ∈ {0, 1}. Unfortunately, unless we are extremely careful, the
adversary can also evaluate other circuits C ′(x,y) �= C(x,y) on the encoded
inputs—such as the circuit C ′ that ignores the input x and leaks a bit of the
secret key y. Previously known approaches [GGH+13b,BR14,BGK+14,AGIS14,
GLSW14] solve this problem by “garbling” the program C(·,y), converting it to
a randomized matrix branching program via Kilian’s protocol [Kil88].

Structure of our scheme. In our construction, we do not convert the circuit C(·,y)
to a matrix branching program. Rather, evaluation of the obfuscated circuit
O(C(·,y)) follows the structure of the original circuit C, perfoming C’s opera-
tions on encoded versions of x,y in the multilinear map (as depicted in Figure 1).
To make sure the adversary evaluates the correct circuit, we make essential use of
composite-order multilinear maps such as the CLT scheme [CLT13]. We encode
scalars in ZN for a composite modulus N = NevNchk, and we view ZN as a direct
5 We describe here the case of asymmetric multilinear maps, since this is the one

relevant to our constructions in this work.

446 J. Zimmerman

product of the two rings ZNev ,ZNchk , defined by the Chinese Remainder Theorem.
To emphasize this intuition, we write [x1, x2]S to refer to an encoding, at index
set S of the value x ∈ ZN such that x ≡ x1 (mod Nev) and x ≡ x2 (mod Nchk).
Evidently the multilinear map operations (+,×) operate componentwise on these
pairs, and a value is zero only if both components are zero.

Now, in our construction, the second component of the direct product (ZNchk)
serves as a kind of “checksum” for the adversary’s evaluation. When the adver-
sary aims to learn the value of some other circuit C ′(x1, . . . , xn, y1, . . . , ym), he
will be forced to evaluate the same polynomial in parallel (in the second com-
ponent), on the uniformly random values α1, . . . , αn, β1, . . . , βm, as depicted in
Figure 1. At the end of this procedure, we also provide a “check” encoding Ĉ∗,
whose ZNchk component is the precomputed value C(α1, . . . , αn, β1, . . . , βm). The
structure of our scheme ensures (roughly speaking) that the adversary can only
perform a zero-test by subtracting off a multiple of this encoding Ĉ∗. (For more
details, we refer the reader to Construction 1.)

This design ensures that the adversary will learn nothing from evaluating
the wrong circuit. Regardless of the inputs x,y, if the adversary evaluates an
incorrect expression C ′ �≡ C, the result will not match our precomputed value
C(α1, . . . , αn, β1, . . . , βm) modulo Nchk, and hence the final subtraction will pro-
duce a nonzero value modulo N = NevNchk (so that the multilinear map’s
zero-test operation always returns “nonzero”). In essence, we have forced the
adversary to run the Schwartz-Zippel identity-testing algorithm on his own cho-
sen expression C ′, in parallel (componentwise) with its actual evaluation on
x1, . . . , xn, y1, . . . , ym.

Enforcing consistency: index sets with multiplicity. In addition to making sure
the adversary cannot evaluate the wrong circuit C ′ �= C, we must also defend
against “mix-and-match” attacks, in which the adversary evaluates the correct
circuit C, but uses inconsistent values of input bits at different points in the
evaluation. Since we do not convert every circuit to a branching program, it is
not clear how to solve this problem with the index set constraint techniques
of [BR14,BGK+14]. In our model, the adversary must be allowed plenty of
flexibility in constructing his chosen query (since the honest evaluation follows
the structure of the original circuit C, which is arbitrary), and yet the adversary
must be able to complete all (and only) the consistent evaluations to the top-level
index set U .

Instead, we propose the following approach, depicted in Figure 1. We encode
each input bit (x̂1,0, x̂1,1, x̂2,0, x̂2,1, . . .) at its own singleton index set (X1,0,X1,1,
X2,0,X2,1, . . .). The adversary can evaluate whatever expressions he chooses, and
the associated index sets will track the degree of the expression in each variable.
Then, we give out “interlocking” elements ẑi,b whose index sets contain X

deg(xi)
i,1−b

for each bit choice b ∈ {0, 1} (where deg(xi) is the degree of the variable xi in the
actual circuit C). By design of the index sets (Section 3), the adversary is forced
to incorporate these elements ẑi,b into any monomial that reaches the top level
U ; but their index sets prevent the adversary from making any input-inconsistent
choices within a given monomial.

How to Obfuscate Programs Directly 447

Eval: O(C)(x1 = 0,x2 = 1, . . . , xn, y1, . . . , ym)

[C(x1, . . . , xn, y1, . . . , ym), C(α1, . . . , αn, β1, . . . , βm)]
Y deg(y)

∏
i X

deg(xi)
i,xi

x̂1,0 = [0, α1]X1,0

û1,0 = [1, 1]X1,0

x̂1,1 = [1, α1]X1,1

û1,1 = [1, 1]X1,1

x̂2,0 = [0, α2]X2,0

û2,0 = [1, 1]X2,0

x̂2,1 = [1, α2]X2,1

û2,1 = [1, 1]X2,1

. . .
ŷ1 = [y1, β1]Y ŷm = [ym, βm]Y

v̂ = [1, 1]Y

. . .

[1, α1 + α2]X1,0X2,1 [y1, α2β1]X2,1Y

.

.

.

O(+):

x̂1,0û2,1 + x̂2,1û1,0

O(×):

x̂2,1 · ŷ1

Fig. 1. The first step of our evaluation procedure, for an obfuscated (keyed) arithmetic
circuit. First, we use the bits of the input string x (e.g., x1 = 1, x2 = 0, . . ., xn) to select
the relevant input encodings x̂1,1, x̂2,0, . . . , x̂n. We then run C directly on the encodings
x̂1,1, x̂2,0, . . . , ŷ1, . . . , ŷm, implementing C’s arithmetic operations via the multilinear
map, and multiplying by encodings of 1 to make index sets match. (Here deg(xi) is the
degree of C, as a multivariate polynomial, in the variable xi; and similarly deg(y) is
the total degree of C in the variables y1, . . . , ym.)

Enforcing separability: componentwise blinding factors. Our “interlocking”
elements ẑi,b also contain additional blinding factors: δi,b, in the evaluation com-
ponent; and γi,b, in the “check” component (see Section 3 for details). Intu-
itively, we need the factors γi,b to make sure that even if the adversary submits
a “mixed” query that refers to more than one input string x, the parts of the
adversary’s query that refer to different input strings are separated, each scal-
ing a different γ monomial, so that they cannot cancel each other and thus the
simulator can answer the zero-test query by addressing each consistent input
independently.6 The values δi,b are needed in the general case of arithmetic
circuits (rather than just Boolean circuits), since there we may have integer
outputs C(x,y) �= C(x′,y) such that neither C(x,y) nor C(x′,y) is zero, and
the adversary still should not be allowed to learn whether some specific linear
combination of C(x,y) and C(x′,y) is zero. Together with the design of the

6 In this respect, the γ values in our construction play the same role as the scalar
blinding factors in some other obfuscators (e.g., the α factors in [BGK+14]).

448 J. Zimmerman

index sets described above, these blinding factors let us decompose the adver-
sary’s queries into independent subqueries each consistent with one input string
x ∈ {0, 1}n, which is essential for the construction of an efficient simulator in
the VBB security proof.

Enforcing sequentiality: straddling sets and commitments. In order to achieve
virtual black-box (VBB) security (in the generic model), our construction must
also address the following subtle issue, raised in [BR14,BGK+14]. Roughly
speaking, an efficient simulator in the generic model must examine the arith-
metic expression z that the adversary evaluates via the multilinear map opera-
tions, and determine whether z would evaluate to zero in the real scheme. The
simulator must make this decision based only on the information it receives from
its own oracle C(·,y), which means that if the expression z includes terms from
superpolynomially many possible inputs x, then the simulator cannot necessarily
answer the query efficiently.

We solve this problem by adapting an elegant technique of Barak et al.
[BGK+14]. In that work, the authors describe a tool called straddling sets. A
straddling set system consists of two partitions S0,S1 of the set [n], each consist-
ing of O(n) subsets. The subsets are arranged so that once we choose a set from
(say) the partition S0, we have committed to S0, and we cannot complete this
set to form a full partition of [n] except by adding all (and only) the remaining
sets in the partition S0. The construction of [BGK+14] associates a straddling
set system to each input bit i ∈ {1, . . . , n}, for a total of O(n2) sets among all
n partitions, and the index set of each encoded matrix includes a set from each
of two different straddling set systems, indicating which of the corresponding
two input bits the matrix selects (in the matrix branching program). Our use of
straddling sets in this work is similar to their use in [BGK+14], with some adap-
tations to restrict which of our terms induce which straddling-set dependencies.
We defer the full details to Section 3.

1.3 Related Work

As discussed above, our work builds on earlier constructions of program obfus-
cation [GGH+13b,CV13,BR14,BGK+14,AGIS14,GLSW14], but our new tech-
niques differ in multiple ways—most notably, we obfuscate circuits directly,
without converting them to branching programs.

The work of Gentry et al. [GLSW14] constructs indistinguishability obfusca-
tion (iO) from composite-order multilinear maps. In that work, extending the
techniques of [GLW14], the authors show that iO can be based on a single,
falsifiable assumption, independent of the particular circuit to be obfuscated.
Previously it was only known how to prove iO in generic models of multilinear
maps [GGH+13b,BR14,BGK+14], or from meta-assumptions that quantify over
many circuits [PST14]. In [GLSW14], the emphasis is on the new assumption;
the main construction is based on the standard paradigm of converting circuits to
branching programs, as in [GGH+13b,BR14,BGK+14]. By contrast, our work
proposes a new kind of construction, which avoids branching programs entirely;

How to Obfuscate Programs Directly 449

while our security proof is given in a generic model similar to that of [BGK+14].
Thus, our work is largely orthogonal to that of [GLSW14]. As discussed above,
we believe it may be possible to adapt our construction to base security on a
single falsifiable assumption, as in [GLSW14], and we leave this as an important
open problem for future work.

Our work is also complementary to that of Ananth et al. [AGIS14]. In that
work, the authors give an obfuscation construction that is still based on matrix
branching programs, as in [GGH+13b,BR14,BGK+14], but constructs those
branching programs much more efficiently when the programs to be obfuscated
are given as Boolean formulas. A key observation in [AGIS14] is that in order to
evaluate a Boolean formula φ efficiently, we can simply test whether two specific
vertices are connected in a directed graph related to φ. As the authors observe,
this graph connectivity computation can be written as matrix multiplication,
and thus it is well-suited to known approaches via matrix branching programs.
More broadly, however, the graph connectivity computation is well-suited to
program obfuscation in general—because the structure of matrix multiplication
is independent of the input data (Section 2.2), and because it has relatively
low degree as an arithmetic circuit. Indeed, the new obfuscator we develop in
this work could also be run on the connectivity algorithms of [AGIS14]; and,
as we show in the full version [Zim14, §4], for some parameter settings this
would yield even better performance than running our obfuscator on a program
that evaluates the formula φ directly (i.e., without converting it to a graph
connectivity problem). The techniques we develop in this work expose a rich
space of design choices for the computations that are input to the obfuscator,
and the connectivity computation of [AGIS14] is an interesting example of one
such design.

In concurrent and independent work, Applebaum and Brakerski [AB15]
describe an obfuscator that is very similar to the simplified iO version of our con-
struction [Zim14, Appendix A]. The construction of Applebaum and Brakerski
only achieves the weaker notion of (generic-model) iO, rather than (generic-
model) VBB security as we achieve in our main construction [Zim14, §3]. Apple-
baum and Brakerski also give an extension that provides robustness in the
stronger setting of low-level zero-test operations (see Remark 3 below), at the
cost of n additional components in the composite-order encodings. We note that
our construction in this work can also be extended to be robust in this stronger
setting, at the cost of only 2 additional components, via the generic transfor-
mation of [BWZ14]. (Indeed, the zero-immunizing transformation of [BWZ14]
applies to any scheme secure in the generic model of composite-order multilinear
maps, and thus also improves the construction of Applebaum and Brakerski.)

2 Preliminaries

2.1 Conventions

For integers n, a, b, we denote by [n] the set {1, . . . , n}, and by [a, b] the set
{a, . . . , b}. For a finite set S, we write Uniform(S) to mean the probability

450 J. Zimmerman

distribution that is uniform over the elements of S. For integers a, b, we write
Primes[a, b] to mean the set of all prime numbers in [a, b], and we overload this
notation to refer to the distribution Uniform(Primes[a, b]). Following standard
conventions of cryptography, we also define a variable λ, called the security
parameter. We define a negligible function to be a function ε(λ) that is o(1/λc)
for every c > 0, and we write negl(λ) to denote a negligible function of λ.

2.2 Oblivious Computation and the “Mux” Operation

A program is considered data-oblivious, or oblivious, if the sequence of primitive
operations performed, as well as the identities of their operands (e.g., registers
or memory locations in a RAM) is a deterministic function solely of the input
length, and does not depend on the input. To make a program oblivious, there
are many standard techniques. We now describe one such technique, known as
“arithmetization” or “multiplexing” (abbreviated “mux”), which is involved in
various compiler optimizations and static analyses of programs. The idea is very
simple: whenever a program would call for input-dependent control flow, such as
“ if x then y ← z; else y ← w; ”, we remove the conditional, and replace every
assignment statement in both branches with an arithmetized version: “ y ←
x · z + (1 − x) · w ”, also denoted “ y ← mux(x, z, w) ”.

2.3 Straight-Line Programs (Arithmetic Circuits)

In our obfuscation construction, we will find it natural to work with the compu-
tational model of straight-line programs over the integers. We say a straight-line
program P : Zn → Z computes a Boolean function f : {0, 1}n → {0, 1} if for all
x ∈ {0, 1}n, we have f(x) = 1 ⇔ P (x) �= 0. When the context is clear, we abuse
notation to write P (x) : {0, 1}n → {0, 1} to denote the Boolean function f that
P computes. We note that straight-line programs are naturally identified with
arithmetic circuits (fanin two, unbounded fanout). In this work, we will view
straight-line programs and arithmetic circuits interchangeably.

The model of straight-line programs is extremely general. The execution of
any machine—say, a Turing machine or RAM—can be expressed as a straight-
line program over Z, with overhead at most polylogarithmic,7 provided that
the machine is oblivious (Section 2.2). We also note that an arithmetic circuit
C : {0, 1}n → {0, 1} can be expressed as a formal multivariate polynomial
in Z[x1, . . . , xn] (perhaps after duplicating gates to account for fanout), and
we will identify circuits with their corresponding polynomials. Although the
multivariate polynomial for a given circuit C may be of exponential size, it can
still be evaluated efficiently, and we can perform algebraic substitutions on it.
We define the degree of an arithmetic circuit C in each input variable as the
degree of its corresponding polynomial in that variable, and similarly for the
total degree. Given a Boolean circuit C, evidently we can convert it into an
7 For instance, in some models there is overhead involved in decomposing word oper-

ations into bits.

How to Obfuscate Programs Directly 451

arithmetic circuit C ′ that computes the same function, with at most a constant
factor overhead both in size and in depth. For the formal details, we refer the
reader to the full version [Zim14].

2.4 Keyed Programs

In many cryptographic applications of obfuscation, we do not depend on hiding
the entire structure of the obfuscated program from the adversary, but rather
only need to hide a short secret key embedded in the program. We can formalize
this notion as follows.

Definition 2.1 (Keyed Circuit Family). Let C : {0, 1}n × {0, 1}m → {0, 1}
be an arithmetic circuit of size s and depth d, and for each y ∈ {0, 1}m, define
the function fy(x) = C(x,y) for all inputs x ∈ {0, 1}n. If (Cy)y∈{0,1}m is a
family of arithmetic circuits such that each Cy computes fy, then we say that
(Cy)y∈{0,1}m is a keyed circuit family, of size s and depth d, corresponding to
the universal circuit C.

The model of “keyed” programs is especially natural for obfuscation, and
we expect that in most cryptographic applications, it will find more use than
general-purpose obfuscation. For theoretical purposes, however, we would still
like to construct general-purpose obfuscation for large classes of circuits such as
NC1 or P/poly, for which the obfuscation must hide everything except the size
of the circuit to be obfuscated. Thus, we make use of standard transformations
from general circuit families to keyed circuit families, in which the secret key
is the entire circuit to be obfuscated, and C is a universal circuit; we defer the
formal details to the full version [Zim14]. We emphasize that these universal-
circuit transformations are mainly for theoretical purposes. In practice, a much
better approach would be to design, for each desired cryptographic application
of obfuscation, a family of circuits that is already keyed with respect to the
particular secret that needs to be hidden.

2.5 Composite-Order Multilinear Maps

Multilinear maps [BS03], also known as graded multilinear maps or graded
encodings [GGH13a,CLT13,GGH14], are a generalization of bilinear maps such
as pairings over elliptic curves [Mil04,MOV93,Jou00,BF01]. Intuitively, a multi-
linear map lets us take scalars x, y and produce corresponding encodings x̂, ŷ at
any level of a given hierarchy, so that we can still perform arithmetic operations
(e.g., x+ y, xy) on the encoded representations, and yet it is hard to recover the
original scalars x, y from encodings x̂, ŷ. For example, in a symmetric bilinear
map e : G × G → GT (where g generates G, and e(g, g) generates GT), a scalar
x ∈ Z can be encoded in G as gx, or encoded in GT as e(g, g)x. The levels of the
hierarchy here are G and GT , and the hierarchy’s structure enforces constraints
on the arithmetic operations that we can perform. For instance, via the group
operation we can compute gx+y (an encoding of x+y) from gx and gy (encodings

452 J. Zimmerman

of x and y), but to obtain an encoding of xy, we must increase the level in the
hierarchy from G to GT , by computing the pairing e(gx, gy) = e(g, g)xy.

In the case of symmetric bilinear maps, this hierarchical structure can be
identified with the integers 0, 1, 2 as indices, where the index 0 represents scalars,
1 represents elements of G, and 2 represents elements of GT . Elements at the
same index can be added together, while elements at arbitrary indices can be
multiplied, but their indices add. For asymmetric bilinear maps, the more natural
analogy is that of a subset lattice: specifically, a map e : G1 × G2 → GT is
identified with the subset lattice ∅ ⊆ {A},{B} ⊆ {A,B}, where ∅ corresponds
to scalars, {A} to G1, {B} to G2, and {A,B} to GT .

More generally, in the case of asymmetric multilinear maps, it is standard
to work with general subset lattices, where the sets may contain elements with
multiplicity. By convention, we will say that these sets are made up of formal
symbols, denoted by capital letters (A,B,C), which serve the same role as formal
variables in polynomials. Formally, we state the following definitions.

Definition 2.2 (Formal Symbol). A formal symbol is a bit string in {0, 1}∗,
and distinct variables denote distinct bit strings. A fresh formal symbol is any bit
string in {0, 1}∗ that has not already been assigned to another formal symbol.

Definition 2.3 (Index Sets). An index set is a multi-set of formal symbols
called indices. The multiplicity of each index is written in binary, and so the
degree of an set may be up to exponential in the size of its representation. By con-
vention, for index sets we use set notation and product notation interchangeably,
so that A3BC2 represents {A,A,A,B,C,C}, and A3BC2 ∪ ABC = A4B2C3.

Definition 2.4 (Composite-Order Multilinear Map ([BS03,GGH13a,
CLT13,GLW14], adapted)). A composite-order multilinear map supports
the following operations. Each operation (CM.Setup, CM.Add, CM.Mult,
CM.ZeroTest, CM.Encode) is implemented by an efficient randomized algorithm.

– The setup procedure receives as input an index set U (Definition 2.3), which
we refer to as the “top-level index set”, as well as the security parameter λ (in
unary), and an integer k indicating the number of components to generate
for the modulus. It produces public parameters pp, secret parameters sp, and
integers N1, . . . , Nk as follows:

CM.Setup(U , 1λ, k) → (pp, sp, N1, . . . , Nk)

Each integer N1, . . . , Nk is a product of poly(λ) primes, and each of these
k · poly(λ) primes is drawn independently from Primes[2λ, 2λ+1]. We also
define N =

∏
i∈[k] Ni, the overall modulus.8

8 We remark here that our construction does not rely on the individual moduli
N1, . . . , Nk being composite, but we present the model in this full generality since it
may be required in the chosen concrete instantiation, such as in the CLT multilinear
map [CLT13].

How to Obfuscate Programs Directly 453

– For each index set S ⊆ U , and each scalar x ∈ ZN , there is a set of strings
[x]S ⊆ {0, 1}∗, i.e., the set of all valid encodings of x at index set S. 9 From
here on, we will abuse notation to write [x]S to stand for any element of [x]S
(i.e., any valid encoding of x at the index set S).

– Elements at the same index set S ⊆ U can be added, with the result also
encoded at S:

CM.Add(pp, [x]S , [y]S) → [x + y]S

– Elements at two index sets S1,S2 can be multiplied, with the result encoded
at the union of the two sets, as long as their union is still contained in U :

CM.Mult(pp, [x]S1 , [y]S2) →
{

[xy]S1∪S2 if S1 ∪ S2 ⊆ U
⊥ otherwise

– Elements at the top level U can be zero-tested:

CM.ZeroTest(pp, [x]S) →
{

“zero” if S = U and x = 0 ∈ ZN

“nonzero” otherwise

– Using the secret parameters, one can generate a representation of a given
scalar x ∈ Z at any index set S ⊆ U :

CM.Encode(sp, x, S) → [x]S

– For the trivial index set S = ∅, we specify that the valid encodings [x]∅ are
just the integers congruent to x modulo N . (So, for instance, we can perform
subtraction via CM.Add, by scalar multiplication with −1.)

By convention (and by analogy to the setting of symmetric multilinear maps),
we refer to the total degree of U as the degree of multilinearity of the map.
When the context is clear, we also abuse notation to write, for encodings â, b̂,
the expression â + b̂ to mean CM.Add(CM.pp, â, b̂); the expression âb̂ to mean
CM.Mult(CM.pp, â, b̂); and likewise for other arithmetic expressions.

Features of composite order. By analogy to composite-order bilinear groups
[BGN05], we would expect that composite-order multilinear maps would be sig-
nificantly more powerful than their traditional prime-order analogs. Intuitively,
this power is due to the fact that by encoding integers in ZN for composite
N = N1 · · · Nk, we implicitly encode a direct product, ZN1 ×. . .×ZNk

, as defined
by the Chinese Remainder Theorem. Each of the k components can be used to
store useful information, on which the ring operations act componentwise, and
a value will pass the multilinear map’s zero-test only if it encodes zero in every
9 To be precise, we define [x]S = {χ ∈ {0, 1}∗ : CM.IsEncoding(pp, χ, x, S)}, where the

predicate CM.IsEncoding is specified by the concrete instantiation of the multilinear
map. The predicate CM.IsEncoding need not be efficiently decidable—and indeed,
for the security of the multilinear map, it should not be.

454 J. Zimmerman

component (i.e., modulo every Ni). Without knowing the factorization, however,
the adversary cannot easily eliminate one component of an encoded value with-
out eliminating them all. To better express this intuitive view, we introduce the
following notation.

Remark 2 (Notation for Encodings of Direct Products). We use the notation
[x1, x2, . . . , xk]S to refer to an encoding, at index set S, of the value x ∈ ZN

such that x ≡ xi (mod Ni) for each i ∈ [k] (as determined by the Chinese
Remainder Theorem).

2.6 The Generic Multilinear Map Model

To define security for composite-order multilinear maps, we will operate in
a generic model of composite-order multilinear maps, which generalizes exist-
ing generic models for the prime-order case [GGH+13b,BR14,BGK+14]. This
generic model is similar to the generic group model [Sho97]: intuitively, in the
generic model, the only thing an adversary can do with ring elements is to apply
the multilinear map operations.

More precisely, we say a scheme that uses multilinear maps is “secure in the
generic model” if, for any concrete adversary breaking the real scheme, there is a
generic adversary breaking a modified scheme in which the encoded ring elements
are replaced by “handles” (concretely, fresh nonces), which the generic-model
adversary can supply to a stateful oracle M (which performs the corresponding
ring operations and zero-tests internally). For the complete exposition and formal
definitions, we refer the reader to the full version [Zim14].

Remark 3 (Unique Encodings and Zero-Testing). In this work, as in [BGK+14],
our generic model allows the adversary to zero-test only at the top-level index
set U . In candidate multilinear maps based on noisy encodings (e.g., [GGH13a,
GGH14]), no weaknesses are known that would permit zero-testing outside U .
However, if in the future we discover multilinear maps for which this operation is
possible—for instance, if elements have unique encodings—then our obfuscation
construction would need to be modified for this setting. For such a modification,
we refer the reader to the work of Boneh, Wu, and Zimmerman [BWZ14, §3], in
which the authors show a generic transformation for composite-order multilinear
maps that prevents the adversary from constructing nontrivial encodings of zero
outside the top-level index set U .

2.7 “Noisy” and “Clean” Multilinear Maps

The abstract definition of multilinear maps (Definition 2.4) is very natural, but
we still do not know whether it can be instantiated. The breakthrough work
of Garg et al. [GGH13a] showed the first candidate construction of an approx-
imate or “noisy” variant of multilinear maps, in which the representation of
each encoded ring element includes a random error term. When ring elements
are added or multiplied, the resulting error term increases; eventually, the noise

How to Obfuscate Programs Directly 455

overwhelms the signal, and the zero-testing procedure no longer recovers the cor-
rect answer. Thus, unlike the “clean” multilinear maps of Definition 2.4, known
“noisy” multilinear maps include an a priori restriction of the number and types
of operations that can be performed.

In known multilinear map constructions [GGH13a,CLT13,GGH14], the noise
restriction behaves as follows. Each encoded ring element carries a noise bound.
The result of a fresh encoding operation (via CM.Encode) has a noise bound of
2f(λ) (for some polynomial f pre-specified at setup); CM.Add results in a noise
bound that grows with the sum of the bounds of its operands; and CM.Mult
results in a noise bound that grows with the product. When the noise bound
reaches 2g(λ) (again for a pre-specified polynomial g), the zero-test operation
always outputs ⊥.

For our purposes in this work, we will model the noise restriction as stating
that the multilinear map can only compute arithmetic expressions of polyno-
mial degree (for a polynomial fixed at setup time)—or, equivalently, that the
multiplicities of indices in the top-level index set U are presented in unary.

Definition 2.7 (“Noisy” Composite-Order Multilinear Map). A noisy
composite-order multilinear map is defined as in Definition 2.4, except that the
top-level index set U has its multiplicities presented in unary.

We note that Definition 2.7 considers only the noise growth due to multipli-
cation operations, and disregards that of addition operations.10 Technically, in
order to instantiate this definition with the CLT multilinear map [CLT13], we
would also need to specify that the ring operations may fail for computations
with many additions and very few multiplications. However, our main theorems
are unaffected by this restriction. In a broader sense, we also find that this simple
definition in terms of multilinearity degree is more natural, and is better suited
to other potential approaches to multilinear maps that may not incorporate noise
terms in the same way as the approaches currently known.

2.8 Instantiation of Composite-Order Multilinear Maps

As discussed above in Remark 1, until very recently it was believed that the
CLT scheme [CLT13] provided a secure instantiation of “noisy” composite-order
multilinear maps. For completeness, we now briefly recount the structure of the
CLT scheme. Fix a top-level index set U = Au1

1 · · · Au�

� , where A1, . . . , A� are
formal symbols. The CLT scheme generates an “inner” modulus N = p1 . . . ps

and an “outer” modulus Nouter = P1 . . . , Ps (for s = poly (λ,
∑

i ui)), where

10 More precisely, fix an arithmetic expression C of depth d and total degree r, and
suppose we evaluate C on freshly encoded ring elements. The number of monomials in
the expansion of C is at most 2dr, so the noise bound of the resulting term is at most
2dr · (2f(λ))r, and we will remain under the noise limit as long as (d+ f(λ))r < g(λ).
In most cases of interest, we have d � r—in fact, if a constant fraction of the layers
of C consist of multiplication gates, then d = O(lg r)—and thus we can approximate
the noise bound simply in terms of the degree.

456 J. Zimmerman

p1, . . . , ps, P1, . . . , Ps are primes of bit-length poly (λ,
∑

i ui), and each Pi is much
larger than pi. For a more comprehensive exposition, we refer the reader to the
full version [Zim14].

In order to use the CLT scheme as a composite-order multilinear map with
inner modulus N = N1 · · · Nk, setting the parameters requires some care, since
the scheme must remain secure even when the adversary sees encodings that
are zero in one or more of the subrings (ZN1 , . . . ,ZNk

). Gentry et al. [GLW14]
investigate this question, and conclude that if each modulus N1, . . . , Nk is a
product of many (i.e., poly(λ)) of the primes among p1, . . . , ps, then the scheme
resists obvious attacks along these lines. For the full analysis, we refer the reader
to [GLW14, Appendix B].

Possible approaches for clean maps. While we know of some candidate strate-
gies to instantiate “noisy” multilinear maps, instantiation of “clean” multi-
linear maps remains a central open problem. Current techniques for “noisy”
maps [GGH13a,CLT13,GGH14] depend crucially on the noise to hide the
encoded elements. Even if it is possible to extend these techniques, and thereby
reduce the noise below quadratic in the multilinearity degree, it seems very
unlikely that the noise can be made only polylogarithmic in the degree, as would
be required for “clean” maps. However, the current approach via encodings with
random noise is not necessarily the only possible route. The theory of bilinear
maps [Mil04,MOV93,Jou00,BF01] does not incorporate noise terms at all, but
rather relies on algebraic properties of pairings over elliptic curves. We believe
that the most promising route to constructing “clean” multilinear maps is via
structures that generalize these properties, such as abelian varieties. Some con-
ditional negative results were presented by Boneh and Silverberg [BS03], but in
general, the problem remains wide open.

2.9 Program Obfuscation

Our definition of VBB obfuscation is similar to the one studied in [BGK+14]. It
is stronger than the original definition [BGI+01], in that we allow the adversary
to output a string of arbitrary length, rather than just a single bit. In addition,
the definition is parameterized over an ideal functionality (represented by a
stateful oracle M), to which both the obfuscator and the adversary have access.
If M were the empty oracle, we would recover the usual definition of (strong)
VBB obfuscation. In our setting, however, as in that of [BGK+14], the oracle
M corresponds to our generic model of composite-order multilinear maps.

Definition 2.8 (Virtual Black-Box Obfuscation in an Idealized Model
([BGI+01,BGK+14])). Let C = (Cλ)λ∈N be a family of Boolean circuits, and
let M be a stateful oracle (possibly randomized). We say that a PPT machine O
is a virtual black-box obfuscator for C in the M-idealized model, if the following
conditions are satisfied.

How to Obfuscate Programs Directly 457

– Correctness: There is a negligible function ε such that for all λ ∈ N, every
circuit C ∈ Cλ, every input x to C, and all possible random coins for M, we
have

Pr[(OM(1λ, C))(x) �= C(x)] < ε(λ) .

– Virtual Black-Box: For every PPT adversary A, there is a PPT simulator
S such that for every PPT distinguisher D, there is a negligible function ε
such that for all C ∈ Cλ, we have

∣
∣
∣Pr[D(AM(OM(1λ, C))) = 1] − Pr[D(SC(1λ, 1|C|)) = 1]

∣
∣
∣ < ε(λ) ,

where the probability is over the coins of D,A,S,O, and M.

We extend Definition 2.8 in the standard way to entire circuit classes such as
NC1 and P/poly; we defer the formal details to the full version [Zim14]. We also
note that since we require the obfuscator O to be efficient, the output of O is a
circuit of size poly(λ), and thus the polynomial slowdown property of [BGI+01]
is immediate from the definition.

2.10 Keyed and Succinct Obfuscation

As discussed in Section 2.4, the model of “keyed” programs is especially natural
for program obfuscation. We now state a modified definition of VBB obfuscation,
suited to this setting.

Definition 2.9 (Keyed Virtual Black-Box Obfuscation). Fix a family of
arithmetic circuits C = (Cλ)λ∈N (Section 2.3). For a stateful oracle M (possibly
randomized), we say a pair of PPT algorithms (O, O.Eval) is a keyed virtual
black-box obfuscator for C in the M-idealized model, if the following conditions
are satisfied.

– Correctness: There is a negligible function ε such that the following holds. Fix
λ ∈ N and an arithmetic circuit C ∈ Cλ, where C : {0, 1}n×{0, 1}m → {0, 1}.
Then for every input x ∈ {0, 1}n and key y ∈ {0, 1}m, and all possible
random coins for M, we have

Pr[C̃y ← OM(C,y) ; O.EvalM(C̃y, C,x) �= C(x,y)] < ε(λ) ,

where the probability is over the coins of O.
– Virtual Black-Box: For every PPT adversary A, there is a PPT simulator S

such that for all PPT distinguishers D, and all (C, n,m) ∈ C, we have
∣
∣
∣Pr[D(AM(OM(C,y)) = 1] − Pr[D(SC(·,y)(C)) = 1]

∣
∣
∣ < negl(|C|) ,

where the probability is over the coins of D,A,S,O, and M.

458 J. Zimmerman

Intuitively, the definition of keyed program obfuscation separates the question
of the public (“universal”) circuit parameters from the size of the secret part of
the circuit, which is to be obfuscated. It now makes sense to discuss succinct
program obfuscation, in which the obfuscation size is independent of the public
part of the circuit, and depends only on the secret key (and on the security
parameter).

Definition 2.10 (Succinct Virtual Black-Box Obfuscation) The defini-
tion is the same as Definition 2.9, with the following additional requirement.

– Succinctness: There exists a polynomial f such that for all (C, n,m) ∈ C and
all y ∈ {0, 1}m, we have |OM(C,y)| ≤ f(n,m, λ).

We also extend Definition 2.10 in the standard way to the classes P/poly and
NC1, just as in Definition 2.8.

2.11 Straddling Sets

Our obfuscator uses the multilinear map’s index sets to enforce constraints on
the adversary’s evaluation. This requires careful design of the indices for each
element. To simplify the presentation of our design, we now discuss some simple
combinatorial properties that we use in our security proof.

An important building block is the notion of straddling sets, as described by
Barak et al. [BGK+14]. Roughly speaking, an n-straddling set system consists
of two partitions S0,S1 of the set {1, . . . , n}, such that once we choose a set from
(say) S0, we have committed to S0, and we cannot complete this set to form a
full partition of {1, . . . , n} except by adding all (and only) the remaining sets in
the partition S0. In fact, we require the following slightly stronger property.

Definition 2.11 (Straddling Set Systems ([BGK+14], adapted)) For
n ∈ N, an n-straddling set system over a set S consists of two partitions of
S, S0 = (S0,1, . . . , S0,n) and S1 = (S1,1, . . . , S1,n) with the following property.
Fix T ⊆ S, and let T0, T1 be subsequences of S0,1, . . . , S0,n, S1,1, . . . , S1,n such
that each of T0, T1 is a partition of T , and T0 �= T1 (i.e., they are not the same
subsequence). Then each of T0, T1 is one of the original partitions S0,S1, and
T = S.

We note that the simple construction of straddling sets in [BGK+14] already
satisfies our stronger definition. We defer the details to the full version [Zim14].

3 Construction

We now present our main obfuscation construction (Construction 1), which acts
on keyed circuits (Section 2.4) as depicted in Figure 1. (We note that we can
obtain keyed circuit families from various other machine models, including gen-
eral Boolean circuits, by the transformations of Section 2.4.)

How to Obfuscate Programs Directly 459

Construction 1 (Construction of Virtual Black-Box Obfuscation). Let
CM = (CM.Setup, CM.Add, CM.Mult, CM.ZeroTest, CM.Encode) be a composite-
order multilinear map (Definition 2.4). Fix an input (C,y), where y ∈ {0, 1}m,
and C : {0, 1}n × {0, 1}m → {0, 1} is an arithmetic circuit (representing the
keyed circuit Cy, as in Section 2.4). Let d be the depth of the circuit C; let
deg(y) be the total degree of C in all of the variables y1, . . . , ym; and for each
i ∈ [n] let deg(xi) be the degree of C in the variable xi. For a security parameter
λ ∈ N (represented in unary), the obfuscation procedure O(1λ, C,y) operates as
follows.

O(1λ, C,y):

1. For each i ∈ [n], let (Si,b,1, . . . , Si,b,n)b∈{0,1} be an n-straddling set sys-
tem (Definition 2.11) over a set Si of (2n−1) fresh formal symbols. For each
b ∈ {0, 1} and i ∈ [n], define BitCommiti,b = Si,b,i. For each b1, b2 ∈ {0, 1}
and i1, i2 ∈ [n] such that i1 < i2, define BitFilli1,i2,b1,b2 = Si1,b1,i2Si2,b2,i1 .

2. Construct the following index set of fresh formal symbols as the top-level
index set:

U = Y deg(y)
∏

i∈[n]

(Xi,0Xi,1)deg(xi)ZiWiSi

3. Run (CM.pp,CM.sp, Nev, Nchk) ← CM.Setup(U , 1d+λ, 2), indicating a secu-
rity parameter of d + λ for the multilinear map, and a modulus that decom-
poses into two factors N = NevNchk.

4. For each i ∈ [n], generate uniformly random values αi, γi,0, γi,1 ← Z
∗
Nchk

and δi,0, δi,1 ← Z
∗
Nev

. For each j ∈ [m], generate a uniformly random value
βj ← Z

∗
Nchk

.
5. Compute the check value C∗ = C(α1, . . . , αn, β1, . . . , βm) ∈ ZNchk .
6. Using CM.Encode(CM.sp, ·), for i ∈ [n], j ∈ [m], and b ∈ {0, 1}, generate the

following encoded ring elements (using the notation of Remark 2):

x̂i,b = [b, αi]Xi,b
ûi,b = [1, 1]Xi,b

ŷj = [yj , βj]Y v̂ = [1, 1]Y

ẑi,b = [δi,b, γi,b]Xdeg(xi)
i,1−b ZiWi BitCommiti,b

ŵi,b = [0, γi,b]Wi BitCommiti,b

Ĉ∗ = [0, C∗]Y deg(y)
∏

i∈[n](Xi,0Xi,1)deg(xi)Zi

For b1, b2 ∈ {0, 1} and each i1, i2 ∈ [n] such that i1 < i2, generate the
following encoded ring elements (using the notation of Remark 2):

ŝi1,i2,b1,b2 = [1, 1]BitFilli1,i2,b1,b2

For notational convenience, for each i2 < i1 ∈ [n], we also define ŝi2,i1,b2,b1 =
ŝi1,i2,b1,b2 . We refer to the elements ûi,b, v̂, ŝi1,i2,b1,b2 as unit encodings, since
they each encode 1 ∈ ZN , and they are incorporated solely for their effect
on the index sets.

460 J. Zimmerman

7. Output the values above, along with the public parameters of the multilinear
map:

O(1λ, C,y) =
(
CM.pp, (x̂i,b, ûi,b, ẑi,b, ŵi,b)i,b, (ŷj)j , v̂, Ĉ∗,

(ŝi1,i2,b1,b2)i1<i2∈[n],b1,b2

)

To evaluate the obfuscated program C̃y = O(1λ, C,y) on an input x =
x1 · · · xn ∈ {0, 1}n, the evaluation procedure O.Eval(C̃y, C,x) operates as fol-
lows.

O.Eval(C̃y, C,x):

1. Using the procedures CM.Add(CM.pp, ·, ·) and CM.Mult(CM.pp, ·, ·), along
with the unit encodings (ûi,xi

, v̂), evaluate the circuit C on the encoded
inputs x̂1,x1 , . . . , x̂n,xn

, ŷ1, . . . , ŷm. In other words, substitute the values
x̂1,x1 , . . . , ŷm for the corresponding input wires x1,x1 , . . . , ym; and, for each
gate in the circuit, substitute one of the following operations:

– For a multiplication gate, on operands [a]S , [b]T , output CM.Mult(CM.pp,
[a]S , [b]T) = [ab]ST .

– For an addition gate, we cannot substitute an invocation of CM.Add
(since the index sets of the encoded operands need not match), so instead
we substitute the following procedure (Figure 1, box “O(+)”). Suppose
the input values to the addition gate are the encoded elements [a]S , [b]T
for index sets S, T ⊆ U . Using CM.Mult, multiply each term [a]S , [b]T
by the powers of unit encodings (ûi,xi

, v̂) that are minimally necessary
to raise the index set to S ∪ T for both resulting elements. Then, using
CM.Add, output the sum of the two elements.

We note that the result of this procedure, for each sub-circuit of C, will be an
encoding whose index set consists of factors corresponding to each input vari-
able (Xi,b, Y , resp., for x̂i,b, ŷj), raised to the power of the degree of the given
sub-circuit in those variables. Thus in particular, at the end of the evalua-
tion, the final term will be encoded at the index set Y deg(y)

∏
i∈[n] X

deg(xi)
i,xi

.
We denote this final term Ĉ as follows:

Ĉ = [C(x1, . . . , xn, y1, . . . , ym), C(α1, . . . , αn, β1, . . . , βm)]
Y deg(y)

∏
i X

deg(xi)
i,xi

(We remark that while we present simple algorithms here for clarity, there
are many natural optimizations; for details, we refer the reader to the full
version [Zim14, §4].)

2. Using the procedures CM.Add, CM.Mult, compute the unit encoding σ̂ =∏
i1<i2∈[n] ŝi1,i2,xi1 ,xi2

, and compute the following encoded element:

z =

⎛

⎝Ĉ
∏

i∈[n]

ẑi,xi
− Ĉ∗ ∏

i∈[n]

ŵi,xi

⎞

⎠ · σ̂

How to Obfuscate Programs Directly 461

3. Run CM.ZeroTest(CM.pp, z). If it outputs “zero”, output 0; if “nonzero”,
output 1.

The correctness of Construction 1 is straightforward from the definitions of
the multilinear map operations, and we defer the proof to the full version [Zim14].

Succinctness. In Construction 1, we instantiate the multilinear map with a secu-
rity parameter of d + λ, rather than λ. As detailed in the full version [Zim14],
this term reflects the bound from the Schwartz-Zippel identity testing algorithm.
This is somewhat unsatisfying, since it prevents us from constructing succinct
obfuscation (Definition 2.10), and intuitively it does not seem necessary to prove
security. Indeed, it turns out that if we assume the hardness of factoring, then we
can eliminate the extra term, by using a computational analog of the Schwartz-
Zippel lemma (generalizing an elegant result of Boneh and Lipton [BL96]). We
defer the details of this modification and its proof to the full version [Zim14];
here we just state the modified (“succinct”) version of the construction.

Construction 2 [Virtual Black-Box Obfuscation (Succinct Version)]
Proceed as in Construction 1, except in step 3, provide 1λ as the security param-
eter to CM.Setup, rather than 1d+λ.

Remark 4 (Indistinguishability Obfuscation) Our main result shows that Con-
struction 1 achieves VBB obfuscation in the generic model of composite-order
multilinear maps. However, we note that if we only need the weaker notion of
indistinguishability obfuscation [BGI+01], then we can obtain better parameters
by eliminating some of the encodings; notably, we avoid the O(n2) cost of the
straddling-set encodings. For continuity, we defer the details of this modification
to the full version [Zim14, Appendix A].

3.1 Main Theorems

We now state our main theorems, which show that our construction achieves
VBB obfuscation in a generic model of composite-order multilinear maps.
For space reasons, we defer the proofs of the main theorems to the full ver-
sion [Zim14].

Our construction can be based either on “noisy” or on “clean” multilinear
maps. Since we operate on circuits directly, unlike previous approaches which
first convert them to branching programs, there is no inherent reason that our
construction cannot be applied directly to all polynomial-size circuits. Indeed,
assuming “clean” maps, we are able to prove VBB obfuscation for P/poly (in
the generic model) directly, without the additional assumption of FHE as in
the work of Garg et al. [GGH+13b]. Moreover, under the additional assumption
that factoring integers is hard on average, we are also able to show that our
construction (in its succinct variant, Construction 2) achieves succinct VBB
obfuscation (Definition 2.10) for P/poly.

462 J. Zimmerman

Theorem 3.2. Suppose that factoring is hard on average. Then Construction 2
achieves succinct virtual black-box obfuscation for P/poly in the generic model
of clean composite-order multilinear maps.

For completeness, we also prove the non-succinct version of Theorem 3.2,
since there we do not assume the hardness of factoring.11

Theorem 3.3. Construction 1 (composed with a universal circuit simulation)
achieves virtual black-box obfuscation for P/poly in the generic model of clean
composite-order multilinear maps.

Of course, it is still unknown how one might construct “clean” multilinear
maps, and thus we prove separately that we achieve obfuscation for NC1 given
only “noisy” maps. As usual, we are unable to construct obfuscation for poly-size
circuits directly from “noisy” maps, since the noise growth still increases with the
degree (which is potentially exponential in the circuit depth). Still, we note that
our construction is somewhat more general than the theorem suggests: even with
“noisy” maps, our construction also works for arithmetic circuits whose depth is
superlogarithmic but whose degree remains polynomial.

Theorem 3.4. Construction 1 (composed with a universal circuit simulation)
achieves virtual black-box obfuscation for NC1 in the generic model of noisy
composite-order multilinear maps.

In the “noisy” case, we do not prove the corresponding theorem for succinct
obfuscation, since in our definition (and in all known instantiations), the rep-
resentation size of a ring element in a “noisy” multilinear map grows with the
degree of multilinearity required. However, we remark that the analogous theo-
rem would hold in the case of “noisy” multilinear maps whose representation size
was nevertheless independent of the noise bound—the existence of such maps is
also unknown.

4 Performance Analysis

We now discuss the asymptotic efficiency of our main construction. We give only
a very brief summary here; for more details, we encourage the reader to follow
the exposition in the full version [Zim14, §4].

First, we establish the basic performance parameters. It turns out that the
time to evaluate an obfuscated circuit is dominated by the “raising” operations
for addition gates, in which we multiply elements by unit encodings in order
to make the index sets match. This fact dictates the overall optimization strat-
egy; in the full version [Zim14] we give the details of two approaches (“cross-
multiplication” and “pre-mixing”), which reduce this evaluation cost with
11 We remark that this distinction is nontrivial: as far as we know, the existence of

composite-order multilinear maps does not necessitate the hardness of factoring, even
though the concrete instantiation via the CLT scheme [CLT13] would be trivially
broken if factoring were easy.

How to Obfuscate Programs Directly 463

different tradeoffs. Using the “cross-multiplication” optimization, for a keyed
arithmetic circuit C : {0, 1}n × {0, 1}m → {0, 1} of size s and depth d, we find
that the multilinearity degree required is O(2d + n2), the (keyed) obfuscation
size is O(m + n2) ring elements, and the evaluation time is O(s + n2) ring oper-
ations.12 In particular, the number of ring elements depends only on the secret
part of the circuit, i.e., the key y ∈ {0, 1}m. Moreover, excluding the O(n2)
operations that arise from straddling sets, the number of ring operations is pro-
portional to the circuit size—reflecting the fact that our evaluation algorithm
follows C’s structure directly.

We also specialize our performance analysis to standard settings (both keyed
and unkeyed), to provide a more direct comparison with other known approaches.
For instance, for balanced Boolean formulas (unkeyed NC1 circuits of depth d,
with input length n bits), the multilinearity degree is only Θ(2dn + n2), and
we require only Θ(2dn + n2) ring elements and operations—as compared with
the standard approach via Barrington’s theorem [GGH+13b,BR14,BGK+14],
for which all three metrics are Θ(4dn + n2); or the parameterized approach
of [AGIS14,Gie01], for which the degree is Θ(2(1+ε)dn + n2) and the other two
parameters are Θ(2(1+ε)d42/εn + n2).

More generally, since our new obfuscator’s evaluation mirrors the struc-
ture of the original circuit, we find that our techniques expose a rich new
design space of algorithms that can be input to the obfuscator. For example,
to specialize our construction to Boolean formulas, we use an efficient oblivious
stack [HS66,PF79,MZ14] to evaluate the formulas in postfix order, and we rely
on the Fast Fourier Transform (FFT) to reduce the degree of the resulting com-
putation (as detailed in the full version [Zim14]). We feel that these applications
are only the beginning, and we hope that this work will encourage further study
of obfuscating specific, keyed circuit families.

5 Conclusions and Open Problems

We have proposed a new way to obfuscate programs, using composite-order
multilinear maps. Our construction operates directly on straight-line programs
(arithmetic circuits), rather than converting them to matrix branching programs,
and thereby achieves considerable improvements in efficiency, as well as exposing
a rich new design space of oblivious algorithms to serve as input to the obfusca-
tor. Our results also yield the first known obfuscator (for keyed circuit families)

12 We present the cost here in terms of ring elements and ring operations. The concrete
cost in bits and bit operations depends on the multilinear map (Section 2.8). For
“clean” maps (whose existence is still open), the cost is just poly(λ). For “noisy”
maps, the cost depends on the instantiation; e.g., for the CLT map [CLT13], the

reader should multiply every obfuscation size and evaluation time by O(deg2+ε′
) ·

poly(λ), where deg is the multilinearity degree required, and ε′ is a small constant
determined by the choice of the Θ parameter in composite-order CLT [GLW14,
App. B].

464 J. Zimmerman

in which the number of ring elements depends only on the lengths of the input
and of the secret key.

Our results in this work highlight a number of open problems for further
study. For one, our construction relies on the fact that the multilinear map has
(hidden) composite order, in order to implement encodings of direct products
via the Chinese Remainder Theorem. It is natural to wonder whether this prop-
erty can be emulated using standard prime-order multilinear maps [GGH13a],
via composite-to-prime-order transformations. While such transformations are
known in some settings [GLW14,HHH+14], we are not aware of any transforma-
tions for asymmetric multilinear maps, in which we use index sets from arbitrary
subset lattices with multiplicity (Section 2.5). We leave this as an interesting
open problem for future work.

Another compelling line of research concerns the security assumptions
and the applicability of the generic model. As Brakerski and Rothblum
observe [BR14], no multilinear map can possibly instantiate the generic model
perfectly, since we are able to use the generic model to construct VBB obfusca-
tion, which we know is impossible for general circuit families [BGI+01]. More-
over, our results in this work highlight the fact that there are simple concrete
examples of differences between the generic model and its instantiation via the
CLT scheme—for instance, in one optimization based on the Fast Fourier Trans-
form (detailed in the full version [Zim14, §4]), our computation is valid for CLT
encodings but cannot be implemented in the generic model. While this par-
ticular difference is fortuitous, we are led to consider whether there are other
algebraic properties that hold in the CLT scheme—and may, in fact, be com-
patible with concrete security assumptions, such as that of [GLW14]—yet which
may indicate fundamental weaknesses in the generic model as it is used here and
in [GGH+13b,BR14,BGK+14]. On the positive side, it would also be useful to
avoid relying on the generic model entirely, instead proving iO for our construc-
tion based on concrete, instance-independent assumptions [GLW14,GLSW14].
We leave this as another important problem for future work.

The central open problem: “clean” multilinear maps. This work eliminates a key
obstacle to implementing obfuscation in practice. Since we no longer depend on
converting circuits to branching programs, our construction is efficient enough that
if “clean” multilinear maps were known, then general-purpose obfuscation could
become implementable in practice. Our results demonstrate that the question of
“clean” multilinear maps is not a technicality, but a fundamental open problem.

Acknowledgments. The author is grateful to Dan Boneh, Amit Sahai, and David
J. Wu for many helpful comments and discussions. This work was supported by an NSF
Graduate Research Fellowship, the DARPA PROCEED program, a grant from ONR,
and an IARPA project provided via DoI/NBC. Opinions, findings and conclusions
or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of DARPA or IARPA.

How to Obfuscate Programs Directly 465

References

[AB15] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. Cryptology ePrint Archive, Report 2015/025 (2015).
http://eprint.iacr.org/

[ABG+13] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689 (2013). http://eprint.iacr.org/

[AGIS14] Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation:
Avoiding Barrington’s theorem (2014). http://eprint.iacr.org/

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014)

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014)

[BGN05] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on cipher-
texts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341.
Springer, Heidelberg (2005)

[BL96] Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their appli-
cation to cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 283–297. Springer, Heidelberg (1996)

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[BS03] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemporary Mathematics 324(1) (2003)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011)

[BWZ14] Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps
against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930
(2014). http://eprint.iacr.org/

[CGH98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited (preliminary version). In: STOC (1998)

[CHL+14] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehle, D.: Cryptanalysis of the
multilinear map over the integers. Cryptology ePrint Archive, Report
2014/906 (2014). http://eprint.iacr.org/

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

466 J. Zimmerman

[CLT14] Coron, J-S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate
fixes of multilinear maps over the integers. Cryptology ePrint Archive,
Report 2014/975 (2014). http://eprint.iacr.org/

[CV13] Canetti, R., Vaikuntanathan, V.: Obfuscating branching programs
using black-box pseudo-free groups. Cryptology ePrint Archive, Report
2013/500 (2013). http://eprint.iacr.org/

[DH76] Diffie, W., Hellman, M.E.: Multiuser cryptographic techniques. In: AFIPS
National Computer Conference (1976)

[GGG+14] Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H.,
Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 578–602. Springer, Heidelberg (2014)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS (2013)

[GGH14] Gentry, C., Gorbunov, S., Halevi, S.: Graded multilinear maps from lat-
tices. Cryptology ePrint Archive, Report 2014/645 (2014). http://eprint.
iacr.org/

[GGHZ14] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based
encryption from multilinear maps. Cryptology ePrint Archive, Report
2014/622 (2014). http://eprint.iacr.org/

[GHMS14] Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes:
Cryptanalyzing multilinear maps without encodings of zero. Cryptology
ePrint Archive, Report 2014/929 (2014). http://eprint.iacr.org/

[Gie01] Giel, O.: Branching program size is almost linear in formula size. J. Com-
put. Syst. Sci. 63(2) (2001)

[GLSW14] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. Cryptology
ePrint Archive, Report 2014/309 (2014). http://eprint.iacr.org/

[GLW14] Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance inde-
pendent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

[HHH+14] Herold, G., Hesse, J., Hofheinz, D., Ráfols, C., Rupp, A.: Polynomial
spaces: a new framework for composite-to-prime-order transformations.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol.
8616, pp. 261–279. Springer, Heidelberg (2014)

[HS66] Hennie, F.C., Stearns, R.E.: Two-tape simulation of multitape Turing
machines. J. ACM 13(4) (1966)

[Jou00] Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: ANTS,
ANTS-IV, Springer-Verlag, London, UK (2000)

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: STOC (1988)
[Mil04] Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of

Cryptology 17(4) (2004)
[MOV93] Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve loga-

rithms to logarithms in a finite field. IEEE Transactions on Information
Theory 39(5) (1993)

[MZ14] John, C.: Mitchell and Joe Zimmerman. Data-oblivious data structures.
In: STACS (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

How to Obfuscate Programs Directly 467

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010). http://eprint.iacr.org/

[PF79] Pippenger, N., Fischer, M.J.: Relations among complexity measures. J.
ACM 26(2) (1979)

[PST14] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer,
Heidelberg (2014)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: STOC (2014)

[SZ14] Sahai, A., Zhandry, M.: Obfuscating low-rank matrix branching programs.
Cryptology ePrint Archive, Report 2014/773 (2014). http://eprint.iacr.
org/

[Zim14] Zimmerman, J.: How to obfuscate programs directly. Cryptology ePrint
Archive, Report 2014/776 (2014). http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

End-to-End Verifiable Elections
in the Standard Model

Aggelos Kiayias(B), Thomas Zacharias, and Bingsheng Zhang

Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, Athens, Greece

{aggelos,bzhang,thzacharias}@di.uoa.gr

Abstract. We present the cryptographic implementation of “DEMOS”,
a new e-voting system that is end-to-end verifiable in the standard model,
i.e., without any additional “setup” assumption or access to a random
oracle (RO). Previously known end-to-end verifiable e-voting systems
required such additional assumptions (specifically, either the existence
of a “randomness beacon” or were only shown secure in the RO model).
In order to analyze our scheme, we also provide a modeling of end-to-
end verifiability as well as privacy and receipt-freeness that encompasses
previous definitions in the form of two concise attack games.

Our scheme satisfies end-to-end verifiability information theoretically
in the standard model and privacy/receipt-freeness under a computa-
tional assumption (subexponential Decisional Diffie Helman). In our con-
struction, we utilize a number of techniques used for the first time in the
context of e-voting schemes that include utilizing randomness from bit-
fixing sources, zero-knowledge proofs with imperfect verifier randomness
and complexity leveraging.

1 Introduction

In an end-to-end (E2E) verifiable election system, voters have the ability to
verify that their vote was properly cast, recorded and tallied into the election
result. Intuitively, the security property that an E2E verifiable election intends
to capture is the ability of the voters to detect a malicious election authority that
tries to misrepresent the election outcome. E2E verifiability is a strong level of
security for election systems that has been widely accepted as a fundamental
requirement for their adoption, see e.g., [38].

In more details, E2E verifiability mandates that the voter can obtain a receipt
at the end of the ballot casting procedure that can allow her to verify that her
vote was (i) cast as intended, (ii) recorded as cast, and (iii) tallied as recorded.
Furthermore, any external third party should be able to verify that the election

A. Kiayias—Research was supported by ERC project CODAMODA.
A. Kiayias, T. Zacharias and B. Zhang—Research was supported by project FINER,
Greek Secretariat of Research and Technology funded under action “ARISTEIA 1.”

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 468–498, 2015.
DOI: 10.1007/978-3-662-46803-6 16

End-to-End Verifiable Elections in the Standard Model 469

procedure is executed properly. In fact, it is imperative that the receipts in an
E2E system are delegatable i.e., the voter may delegate the task of verifiability
to any interested third party, for instance an international organization of the
voters’ choosing that aggregates the task of verification. This requirement, as
well as the fact that it should be infeasible for the voter to use her receipt as a
proof of the way she voted (this is necessary to deter vote-selling/buying), make
the design of end-to-end verifiable systems a challenging problem.

All known e-voting systems that offer E2E verifiability provide it under some
setup assumption or in the random oracle (RO) model. Notably, E2E verifiability
can be argued (note that it is never formally proven before) for Helios [1] in the
RO model while for Remotegrity1 [43] in the model where a trusted party (a
“randomness beacon”) provides a stream of unbiased and unpredictable random
coins. More general approaches for defining auditable multiparty computation
(MPC) have recently been proposed [3] and also rely on a setup assumption such
as a CRS.

A critical shortcoming of using setup assumptions for establishing E2E veri-
fiability in e-voting is the fact that the voters will be required to make a “leap
of faith” and accept the setup assumption in order to accept the election result.
This can be an unfortunate state of affairs: since the election authority (EA)
cannot unequivocally convince the voters that the election is correct, then the
election outcome can be always subject to dispute.

Our Results. Motivated by the above, we design a new e-voting system that
we can prove E2E verifiable information theoretically in the standard model,
i.e., without any setup assumption except the existence of a bulletin board (BB)
which provides a consistent view of the election transcript. Our result is further
strengthened by the fact that we make the absolute minimal assumptions on the
computation capabilities of the voters: voters are merely modeled as finite state
transducers and thus are incapable of performing any cryptographic operation
during ballot-casting (note the auditing stage after the election would require
the capability of cryptographic operations but they can be performed at any
time, in the post-election stage).

To accomodate the analysis of our system we provide a model for E2E ver-
ifiability and voter privacy/receipt-freeness. Our model for E2E verifiability is
inspired from input-indistinguishable computation of Micali, Pass and Rosen
[35] since in their setting they are also faced with proving security for multi-
party computation in the standard model (note however they do not deal with
E2E verifiability/auditability in their setting). In our modeling, the election sys-
tem involves three types of entities, the voters V1, . . . , Vn, the election authority
(EA), and the bulletin board (BB) whose only role is to provide storage for the
election transcript for the purpose of verification. Voters submit their votes by
engaging in the ballot casting protocol to the EA and they are not allowed to
1 Note that Remotegrity itself is only a “front-end” type of system. It will be E2E

verifiable if combined with Scantegrity-II [14] as suggested by the authors of the
paper.

470 A. Kiayias et al.

interact with each other. Our definition of end-to-end verifiability considers a
very powerful adversary that is computationally unbounded and completely con-
trols the EA. On the other hand, BB is completely passive and is only writeable
by the EA and readable by anyone. The definition is satisfied, if and only if
the adversary is incapable of evading being detected when it manipulates the
election result as long as a number of voters perform the verifiability procedure
honestly. Voter privacy on the other hand, considers an adversary that has full
access to all the the voters’ receipts, views of the ballot casting protocol as well
as it may control of a number of malicious voters. For any election tally, the
adversary should be incapable of distinguishing the way honest voters vote.

Our construction cherry picks ideas put forth in previous works, specifically,
code-voting and double ballots from [12,13], but also introduces a number of
novel elements that enable us to prove E2E verifiability in the standard model.
In order to achieve verifiability, our system utilizes a novel ZK proof for candi-
date encoding correctness and collects coins from the voters to form the challenge
(specifically, a single random coin per voter). Given that the majority of vot-
ers cannot be assumed to be properly following the protocol, the sequence of
voter contributed randomness is a particularly “weak source” that cannot be
used for arguing the integrity of the election in a direct way — as we argue it
is a very weak source akin to adaptive bit-fixing sources [34]. We then show
(i) how it is possible to perform our ZK proof with a verifier that has imperfect
randomness (just a min-entropy source), (ii) how to produce a (sufficiently long)
sequence of min-entropy challenge from the random bits contributed by the vot-
ers. The tools that are important in our construction include a generalization
of the Schwartz-Zippel lemma [41,44] for imperfect randomness and a suitable
strategy for dividing the coins of the voters so that the entropy is not lost due to
the adversarial strategy of the EA (who also controls a number of voters). Using
these techniques we design a novel ZK protocol and we prove unconditionally
end-to-end verifiability for our scheme. For voter privacy, we utilize complexity
leveraging to construct a simulator that is capable of reducing a voter privacy
attack to a subexponential DDH distinguisher and hence our system offers pri-
vacy and receipt-freeness under a computational assumption.

In summary, our e-voting system is the first construction achieving the prop-
erties E2E verifiability and voter privacy/receipt-freeness in the standard model.
Furthermore, we prove E2E verifiability information theoretically assuming the
voters are computationally restricted transducers that hence are incapable of per-
forming any cryptographic operation during ballot casting. The only assumptions
we make are subexponential Decisional Diffie Hellman assumption (for voter
privacy/receipt-freeness) and a consistent bulletin board board. We remark that
a consistent bulletin board can be easily seen to be a tight condition since without
it, it is easy to verify that E2E verifiability of the election cannot be achieved: by
controlling the BB, an adversarial EA can distribute voters to their own separate
“islands” where within each one the voters will have their own verifiable view
of an election result that can be - in reality - completely skewed. Implementing
a consistent bulletin board is beyond our scope, however we note that it can be

End-to-End Verifiable Elections in the Standard Model 471

achieved in the standard model using Byzantine agrement (BA) (for BA, see e.g.,
[24]) by assuming secure channels between any pair of parties. In fact, recently,
it is shown that one can achieve BA efficiently even without secure channels in a
completely anonymous setting [25] hence removing the requirement for pairwise
secure channels (but note that this latter work relies on proofs of work modeled
in the RO model).

Why Previously Known Techniques Do Not Work. To motivate further
our approach it is worth-while to emphasize in which way previous works fail to
attain end-to-end verifiability in the standard model. Helios, culminates a long
line of previous schemes that employ homomorphic type of voting [17,21] and
utilizes the Benaloh challenge [5] as the fundamental mechanism to attain verifi-
ability. Helios by design requires the voter to utilize a voter supporting device to
prepare a ciphertext and after an indeterminate number of trials, the voter will
cast the produced ciphertext. Such ciphertexts are to be homomorphically tallied
and thus they should be accompanied by a proof of proper computation. While
such proofs are easy to construct based on e.g., [19], they can only be argued
interactively (which is insufficient in our setting since a corrupt EA together
with a corrupt voter may cook up a malformed proof that is indistinguishable
from a proper one) or using a NIZK [10]. This latter approach is taken in Helios
where a RO-based NIZK is utilized. In case the RO is dropped in favor of a
standard model NIZK, security would be impossible in our model as NIZK’s
require a common reference string (CRS) and this is unavailable in the standard
model; if the CRS is setup by the EA then in case it is malicious it will know
and exploit the trapdoor; on the other hand, the voters are not interacting with
each other and hence cannot setup the CRS by employing an MPC protocol. It
follows that obtaining E2E verifiability in the standard model is impossible to
overcome for Helios or any other similar scheme. On the other hand, in the case
of Remotegrity/Scantegrity n coins need to be obtained from the randomness
beacon in order to prove the result correct. It is easy to verify that the system
is insecure in terms of end-to-end verifiability in case the randomness beacon is
biased. As before, the only parties active are the EA and the voters who cannot
implement a randomness beacon that is required in the construction. In light of
the above our construction offers a new paradigm in e-voting design: the ran-
domness for the verification of the election can be collected distributively from
the voters. Given that such randomness is by nature very weak (humans are very
bad “randomness generators” and even worse malicious voters may collaborate
with the election authority to cancel the honest voters’ random bits) we show
how suitable cryptographic techniques that deal with imperfect randomness can
be employed to prove security.

Distributing the Election Authority. In our security model, we consider the
EA as a single entity that is malicious in the verifiability game and honest in
the privacy game. In practice one may want to distribute the EA to a number
of “trustees” that collectively implement the EA functionality to improve the
resiliency of the privacy property. While this is not a prime focus of our work

472 A. Kiayias et al.

(which centers on verifiability), it is feasible to design an efficient threshold
protocol for implementing the EA. Note that our notion of voter privacy and
receipt freeness can be easily extended to allow corrupted sub-authorities.

Other Required Properties of Election Systems. Our work by no means
solves the complete set of desired requirements that are needed in an election
system. Our voter-privacy definition implies receipt-freeness, i.e., provided that
the voter receives the voter secret-key over an untappable channel2, the voter
cannot convince any third party about the way she voted. Nevertheless, this
does not imply coercion resistance as the voter may still be forced to divulge the
voter secret prior to her ballot-casting (this does not violate voter privacy - it
just prevents the voter from actually using the system and enables the adversary
to vote on the voter’s behalf). There are techniques that can be used to increase
coercion resistance for internet-voting (e.g., those of [16,28] and others) and
they are compatible with our construction. We leave the integration of these
techniques with information theoretic E2E verifiability for future work. Similarly,
usability aspects are not within our current scope; nevertheless, we stress that
we have implemented our scheme for 1-out-of-m elections and we have used it
in real-world experiments3.

Related Work. In [11], Chaum suggested for the first time that anonymous
communication can lead to voting systems with individual verifiability, i.e., the
voters can verify that their votes were counted correctly. In [40], Sako and Kil-
lian introduce explicitly the notion of universal verifiability, that is, the ability
for anyone to verify that the election result derives from the cast votes. Univer-
sal verifiability is also defined by Juels, Catalano and Jakobsson in [28] in the
computational model assuming a trusted setup. Kremer, Ryan and Smyth [30]
introduced symbolic definitions for individual and universal verifiability in the
context of applied pi calculus. A formal definition of universal verifiability is also
provided by Chevallier-Mames et al. in [15].

End-to-end verifiability in the sense of cast-as-intended, recorded-as-cast,
tallied-as-recorded was an outcome of the works of Chaum [13] and Neff [37].
The novelty was the generation of receipts that could be used for simple voter
verification while achieving privacy. The term of E2E verifiability (more pre-
cisely, E2E integrity) also appeared in [18]. Marneffe, Pereira and Quisquater
presented an ideal-world definition for election systems in [22] without explicitly
considering verifiability as a property of the ideal world. In [38], Popoveniuc
et al. proposed a definition of E2E verifiability via a list of properties.

Küsters, Truderung and Vogt [31] introduced symbolic and computational
definitions of verifiability parameterized by a goal and an adversarial environ-
ment. In [33], the same authors showed that individual verifiability and universal

2 An untappable channel enables the voter to deny the information that was transmit-
ted in it. Physically distributing voter’s secrets or using non-committing encryption
[4] achieves untappability.

3 For more information check our web-site http://www.demos-voting.org

http://www.demos-voting.org

End-to-End Verifiable Elections in the Standard Model 473

verifiability are not sufficient to guarantee the “global” verifiability of an e-voting
system. A number of other e-voting systems in the cryptographic setting that
do not explicitly deal with E2E verifiability include [7,17,20,21].

Benaloh and Fischer [17] provided a computational definition of privacy as
the property that any coalition of malicious voters cannot distinguish between
any two vote assignments coming from a subset of honest voters that have the
same partial tally. Receipt-freeness has been first studied by Benaloh and Tuin-
stra [6] and described as the property of an e-voting system to generate fake
voter transcripts that are indistinguishable from genuine transcripts. Following
this logic, in our voter privacy/receipt-freenes definition, we require simulation-
based indistiguishability of the views of the voters when they engage in the
ballot-casting stage. Chevallier-Mames et al. [15] introduced definitions for uncon-
ditional of privacy and receipt-freeness and showed incompatibility results of
universal verifiability with each of these two properties.

Formal definitions for privacy and receipt-freeness have been proposed in the
context of applied pi calculus [23] and the universal composability model [26,36].
Küsters, Truderung and Vogt [32], mention that simulation-based definitions are
often too strong to show security for reasonable e-voting systems, due to their
“yes or no” nature (the real and ideal setting are either indistinguishable or
not). In [33], they measure the level of privacy of an e-voting system w.r.t. to
the observation power the adversary has in a protocol run, via a definition which
is close to the Dolev-Yao model.

In [8], Bernhard et al. proposed a game-based notion of ballot privacy and
study the privacy of Helios. In their model, an adversary that chooses a fixed
vote E, cannot distinguish a bulletin board that contains ballots for real votes
from a bulletin board that contains ballots for E. Their definition was extended
by Bernhard, Pereira and Warinschi [9] by allowing the adversary to statically
corrupt election authorities. Both these definitions, although they imply a strong
inditinguishability property, do not consider receipt-freeness. We note that our
game-based definition captures both privacy and receipt-freeness while restricted
to a single EA (and it can easily be extended by including a set of trustees that
the adversary may corrupt).

As we have mentioned previously, modelling coercion resistance is out of the
scope of this work. We refer the reader to [23,28,32,42] for formal definitions of
coercion resistance in the cryptographic, symbolic and universal composability
model.

Organization. In Section 2, we introduce the syntax and define the correctness,
E2E verifibiality and voter privacy/receipt freeness of an e-voting system. In
Section 3, we present at length the construction of our e-voting system, including
a detailed description of all tools that are applied. In Section 4, we prove the
E2E verifibiality and voter privacy/receipt freeness of our e-voting system in the
security framework of Section 2.

474 A. Kiayias et al.

2 E-voting Systems

2.1 Preliminaries

We use λ as the security parameter. Associated with an e-voting system, we also
consider two other parameters, the number of voters n and number of candidates
m which are both thought as polynomial functions of λ. Let Π be an e-voting
system, where P = {P1, ..., Pm} is the set of candidates and V = {V1, ..., Vn} is
the set of voters. We denote by U ⊆ 2P the collection of subsets of candidates
that the voters are allowed to choose to vote for (which may include a “blank”
option too). The candidate selection U� of voter V� is an element in U .

Let P∗ be the set of vectors of candidate selections of arbitrary length. Let f
be the election evaluation function from P∗ to the set Zm

+ so that f(U1, . . . ,Un)
is equal to an m-vector whose i-th location is equal to the number of times Pi

was chosen in the candidate selections U1, . . . ,Un.
The entities involved in an e-voting system Π, are the voters V1, . . . , V�, the

election authority (EA) and the Bulletin Board (BB).

2.2 Syntax and Correctness

An e-voting system Π is a quintuple of algorithms and protocols 〈Setup,Cast,
Tally, Result,Verify〉 specified as follows:

– The algorithm Setup(1λ,P,V,U) is executed by the EA and generates a
master secret key msk, Π’s public parameters Pub (which include P,V,U)
and the voters’ secrets s1, . . . , sn. EA has a state, st which is initialized as
msk. In addition, it posts an initial public transcript τ = Pub on the BB.

– The interactive protocol Cast is between three parties, the voter V�, the
BB and the EA. V� has input (Pub, s�,U�), EA has input msk and BB has
input τ . EA updates its state st and BB updates the public transcript τ .
Upon successful termination, the voter V� receives a receipt α�. We denote
by view� the view of the voter V� in the protocol Cast.

– The interactive protocol Tally with common input Pub is executed by the
EA and the BB on inputs msk, τ respectively. Upon successful termination,
the BB updates the public transcript τ .

– The algorithm Result(τ) outputs the result Rτ for the election or returns
⊥ in case such result is undefined.

– The algorithm Verify(τ, α) outputs a value in {0, 1}, where α is a voter
receipt (that corresponds to the voter’s output from the Cast protocol).

Remark. In many election systems, the EA is implemented by more than a
single authority. This means that Setup might be a protocol executed by those
parties (as opposed to a standalone algorithm). However, from the point of view
of E2E verifiability (where the system is considered malicious as a whole) this
is completely immaterial. Hence, for simplicity in the syntax above we consider
EA a single entity. In our construction the EA may also be distributed. We defer
the details for how this may be done to the full version of the paper.

End-to-End Verifiable Elections in the Standard Model 475

Definition 1 (Correctness). The e-voting system Π has (perfect) correct-
ness, if for any honest execution of Π that results in a public transcript τ
where the voters V1, . . . , Vn cast votes for options U1, . . . ,Un and received receipts
α1, . . . , αn, it holds that

Result(τ) = f(U1, . . . ,Un) and ∧n
�=1 (Verify(τ, α�) = 1).

2.3 E2E Verifiability

In order to define E2E verifiability formally, we introduce a suitable notation;
given that candidate selections are elements of a set of m choices, we may encode
them as m-bit strings, where the bit in the i-th position is 1 if and only if
candidate Pi is selected. Further, we may aggregate the election results as the
list with the number of votes each candidate has received, thus the output of
the Result algorithm is a vector in Z

m
+ . In this case, a result is feasible if and

only if the sum of all its coordinates is no greater than the number of voters.
In our formalization of the E2E verifiability, we postulate the existence of

a vote extractor algorithm E (not necessarily running in polynomial-time) that
explains the election transcript: namely, it receives input of the form (τ,A) where
τ is an election transcript and A = {α�}�∈Ṽ is a set of Cast protocol receipts. By
Ṽ, we denote the set of honest voters that voted successfully. Given such input,
E will compute n − |Ṽ| vectors 〈U�〉V�∈V\Ṽ in {0, 1}m (which correspond to the
choices of all the voters outside of Ṽ) that can be either a candidate selection
if the voter has voted adversarially or a zero vector if the voter has not voted
successfully; E returns the symbol ⊥ in case such values cannot be defined. In the
special case where all voters are honest and have voted successfully (i.e., Ṽ = V),
E returns no value (outputs the empty set). The purpose of the E algorithm will
be to capture the setting when the election transcript τ contains (in potentially
encoded form) a set of well-formed actual votes.

Using the above notion, we will be capable to express the actual result
encoded in an election transcript. Next, we want to formally express a measure
of deviation from the actual election result (as such deviation is the objective
of the adversary in an E2E verifiability attack). Some preliminary notions will
be needed. In order to express formally the deviation the adversary aims at,
it is natural to equip the space of results with a metric. We use the metric
derived by the 1-norm, ‖ · ‖1 scaled to half, i.e., d1 : Z

m
+ × Z

m
+ −→ R with

d1(w,w′) = 1
2 · ‖w−w′‖1 = 1

2 ·∑n
i=1 |wi −w′

i| where wi, w
′
i is the i-th coordinate

of w,w′ respectively.
Consider R ∈ Z

m
+ be the election results that correspond to the true voter

intent of n voters, and R′ ∈ Z
m
+ be the published election results. Denote by

max(U), the maximum cardinality of an element in U . Two encodings of candi-
date selections are within max(U) distance, so intuitively, if the adversary wants
to present R′ as the result of the election, it may do that by manipulating the
votes of at least d1(R,R′)/max(U) voters.

476 A. Kiayias et al.

We define next the E2E Verifiability game, GA,E,d,θ
E2E−Int, between the adversary

A and a challenger C using a voter extractor E , that takes as input the security
parameter, λ, the number of candidates, m and the number of voters, n.

Overview of the game GA,E,d,θ
E2E−Ver(1

λ,m, n). The attack game is parameter-
ized by d, which is the deviation amount (according to the metric d1(·, ·)) that
the adversary wants to achieve and θ, the minimum number of voters that A
must allow to vote honestly and terminate successfully. The adversary starts by
selecting the voter and candidate identities for given parameters n,m. It also
determines the allowed ways to vote as described by the set U . The adversary
fully controls the EA. The adversary manages the Cast protocol executions
where it assumes the role of the EA. For each voter, the adversary may choose
to corrupt it or to allow the challenger to play on its behalf. In the second case,
the adversary provides the candidate selection that the honest voter will use in
the Cast protocol. The adversary completes the execution of EA which results
to the complete election transcript published in the BB. The adversary will win
the game provided that all θ honest voters that completed the Cast protocol
successfully will also audit the result successfully but the deviation of the tally
is at least d; the adversary will also win in case the extractor fails to produce
the candidate selection of the dishonest voters (but θ honest voters still verify
correctly). The attack game is specified in detail in Figure 1.

Definition 2 (E2E-Verifiability). Let 0 < ε < 1 and n,m, d, θ ∈ N with
d > 0 and 0 < θ ≤ n. The election protocol Π w.r.t. the election function f
achieves E2E verifiability with error ε, for a number of at least θ honest successful
voters and tally deviation d if there exists a (not necessarily polynomial-time)
vote-extractor E such that for any adversary A:

Pr[GA,E,d,θ
E2E−Ver(1

λ,m, n) = 1] ≤ ε.

In plain words, Definition 2 suggests that an E2E verifiable e-voting system,
provides an “official explanation” of adversarial votes via the vote extractor E ,
such that if at least θ voters verify the result, then any adversary that attempts
to manipulate the election tally (that includes the honest votes and the official
explanation of the adversarial votes) by a shift of d votes will get caught except
from some (supposedly small) probability ε.

Remark. In the only previous works [31,33] where end-to-end verifiability was
considered at a “global level” as we do here, it was expressed with respect to a
set of “good” runs γ of the e-voting protocol in the sense that a judge could test
whether the protocol operated within the set γ. Even though sufficiently expres-
sive, this formulation has the disadvantage that the set γ remains undetermined
and thus the level of verifiability that is offered by the definition hinges on the
proper definition of γ which may not be simple. Using our language the notion
of a good run becomes explicit: a run of the e-voting protocol is good provided
that the extractor E produces votes for the malicious voters which if they are

End-to-End Verifiable Elections in the Standard Model 477

E2E Verifiability Game GA,E,d,θ
E2E−Ver(1

λ, m, n)

1. A chooses a list of candidates P = {P1, ..., Pm}, a set of voters V = {V1, ..., Vn}
and the set of allowed candidate selections U . It provides C with the sets P, V, U
along with information Pub and voter credentials {s�}�∈[n]. Throughout the
game, C plays the role of the BB.

2. The adversary A and the challenger C engages in an interaction where A
schedules the Cast protocols of all voters. For each voter V�, A can either
completely control the voter or allow C to operate on their behalf, in which case
A provides a candidate selection U� to C. Then, C engages with the adversary
A in the Cast protocol so that A plays the role of EA. Provided the protocol
terminates successfully, C obtains the receipt α� on behalf of V�.

Let Ṽ be the set of honest voters (i.e., those controlled by C) that terminated
successfully.

3. Finally, A posts the election transcript τ to the BB.

The game returns a bit which is 1 if and only if the following conditions hold true:

(i). |Ṽ| ≥ θ, (i.e., at least θ honest voters terminated).
(ii). ∀� ∈ [n] : if V� ∈ Ṽ, then Verify(τ, α�) = 1 (i.e., the voters in Ṽ verify their

ballot successfully).

and either one of the following two conditions:

(iii-a). If ⊥ �= 〈U�〉V�∈V\Ṽ ← E(τ, {α�}V�∈Ṽ),
then

d1(Result(τ), f(〈U1, . . . , Un〉)) ≥ d.

(iii-b). ⊥ ← E(τ, {α�}V�∈Ṽ).

Fig. 1. The E2E Verifiability Game between the challenger C and the adversary A
using the vote extractor E

added to the votes of the honest voters they produce a result that does not
deviate from the published result according to the d1(·, ·) metric. Note that our
vote extractor may require super-polynomial time (in the same way that the set
of good runs γ may have a membership test of super-polynomial complexity).
We remark that the use of a super-polynomial extractor to define properly the
inputs of the malicious participants and hence the soundness of a multiparty
protocol is not novel to our work. For example see, Micali, Pass and Rosen [35]
where they used a similar construct to prove security of their general multiparty
computation protocol.

2.4 Voter Privacy (including Receipt-Freeness)

The definition of voter privacy concerns the actions that may be taken by the
adversary to break the privacy and learn some information about the candidate
selections of the honest voters. We specify the goal of the adversary in a very
general way. In particular, for an attack against voter privacy to succeed, we ask

478 A. Kiayias et al.

that there is an election result, for which the adversary is capable of distinguish-
ing how the honest voters voted while it has access to (i) the actual receipts that
the voters obtained after ballot-casting as well as (ii) a set of protocol views that
are consistent with all the honest voters’ views in the Cast protocol instances
they participated (and the adversary has observed).

Observe that any system that is secure against such an attack scenario would
possess also “receipt-freeness”, i.e., voters cannot prove how they voted by show-
ing the receipt they obtain from the Cast protocol or even presenting their view
in the Cast protocol. Given that in the privacy definition we allow the adver-
sary to observe the view of the voter in the Cast protocol, we need to allow the
voter to be able to “lie” about her view in this protocol (otherwise an attack
could be trivially mounted). Note that this would require the voter input to
the Cast protocol to be delivered via an untappable channel; in particular, the
adversary should not have any side-channel information about the voter’s secrets
s1, . . . , sn.

We formally define the voter privacy of an election via a Voter Privacy/
Receipt-freeness game, denoted by GA,S

t-priv, that is played between an adversary
A and a challenger C, that takes as input the security parameter, λ, the number
of voters, n, and the number of candidates, m, as described in Figure 2 and
returns 1 or 0 depending on whether the adversary wins. An important feature
of the game is the existence of an efficient “voter simulator” S that provides a
simulated view of the voter in the Cast protocol. Intuitively, this simulator cap-
tures the way the voter can lie about her candidate selection in the Cast protocol
in case she is coerced to present her view after she completes the ballot-casting
procedure.

Overview of the Game GA,S
t-priv(1

λ, n,m). The adversary starts by selecting the
voters and candidates for given parameters n,m. It also determines the allowed
ways to vote. The challenger flips a coin b (that will change its behavior during
the course of the game) and will perform the Setup protocol. Subsequently,
the adversary will schedule all Cast protocols selecting which voters it prefers
to corrupt and which ones it prefers to allow to vote honestly. The adversary
is allowed to corrupt at most t voters. The voters that remain uncorrupted
are operated by the challenger and they are given two candidate selections to
choose. The challenger will select which of the two candidate selections the voter
will use in the Cast protocol according to the bit b. The adversary will also
receive the receipt that is obtained by each voter as well as either the actual
view of each voter during the Cast protocol, if b = 0, or a simulated view, if
b = 1 (this addresses the receipt-freeness aspect). Upon completion of ballot-
casting, the challenger executes the Tally protocol and posts the election result.
Subsequently the adversary will attempt to guess b. The attack is successful
provided that the adversary has corrupted up to t voters, the election tally is
the same with respect to the two alternatives provided for each honest voter by
the adversary and the adversary manages to guess the challenger’s bit b. The
game is presented in more detail in figure 2.

End-to-End Verifiable Elections in the Standard Model 479

Voter Privacy/Receipt-freeness Game GA,S
t-priv(1

λ, n, m)

1. A on input 1λ, n, m, chooses a list of candidates P = {P1, ..., Pm}, a set of vot-
ers V = {V1, ..., Vn}, and the set of allowed candidate selections U . It provides
C the sets P, V, and U .

2. C flips a coin b ∈ {0, 1} and performs the Setup protocol on input (1λ, P, V, U)
to obtain msk, s1, . . . , sn, Pub; it provides A with Pub.

3. The adversary A and the challenger C engage in an interaction where A sched-
ules the Cast protocols of all voters which may run concurrently. For each
voter V� ∈ V, the adversary chooses whether V� is corrupted:

– If V� is corrupted, then C provides s� to A, and then they engage in a
Cast protocol where A plays the role of V� and C plays the role of EA
and BB.

– If V� is not corrupted, A provides two candidate selections 〈U0
� , U1

� 〉 to
the challenger C. C operates on V�’s behalf, using Ub

� as the V�’s input.
The adversary A is allowed to observe the network trace of the Cast
protocol where C plays the roles of V�, EA, and BB. When the Cast
protocol terminates, the challenger C provides to A: (i) the receipt α�

that V� obtains from the protocol, and (ii) if b = 0, the current view of
the internal state of the voter V�, view�, that the challenger obtains from
the Cast execution, or if b = 1, a simulated view of the internal state of
V� produced by S(view�).

4. C performs the Tally protocol playing the role of EA and BB. A is allowed to
observe the network trace of that protocol.

5. Finally, A using all information collected above (including the contents of the
BB) outputs a bit b∗.

Denote the set of corrupted voters as Vcorr and the set of honest voters as Ṽ =
V \ Vcorr. The game returns a bit which is 1 if and only if the following hold true:

(i). b = b∗ (i.e., the adversary guesses b correctly).
(ii). |Vcorr| ≤ t (i.e., the number of corrupted voters is bounded by t).
(iii). f(〈U0

� 〉V�∈Ṽ) = f(〈U1
� 〉V�∈Ṽ) (i.e., the election result w.r.t. the set of voters

Ṽ does not leak b).

Fig. 2. The Voter-privacy/Receipt-freeness game

Definition 3 (Voter Privacy/Receipt-Freeness). Let n,m ∈ N. The e-
voting system Π w.r.t. the election function f achieves voter privacy/receipt-
freeness for at most t corrupted voters, if there is a PPT voter simulator S such
that for any PPT adversary A:

∣
∣
∣Pr[GA,S

t-priv(1
λ, n,m) = 1] − 1/2

∣
∣
∣ = negl(λ).

480 A. Kiayias et al.

3 Presentation of Our e-Voting System

Our system has three stages, setup, ballot-casting and tallying, that parallel
the operation of a Σ protocol. During setup stage, the EA produces a series of
commitments and pre-audit data that correspond to a first move of a Σ protocol
that will establish the validity of the commitments. During ballot-casting, voters
engage with the EA in a protocol that will result in the recording of their votes,
as well as in the submission of a random coin flip that will be used to produce
the challenge for the Σ protocol. Voters will receive a receipt as their local
output from the ballot-casting protocol that can be used for auditing the election
result. In the third and final stage, the EA produces the tally of the election and
completes the Σ protocol by publishing openings to commitments as well as
other necessary information needed for verification. The verification step can
take place at any time after the completion of the process using a collection of
at least one receipt from the ballot-casting stage.

In our system, the voter implementation during the ballot-casting stage is
expressed as a probabilistic transducer (see e.g., [27]) with a communication tape
that has a number of states polynomial in the number of candidates m (and inde-
pendent to other parameters such as n, λ). Given that such a machine is severely
limited in the computational sense, in order to achieve ballot casting we utilize a
code-voting approach (cf. [12]): the EA corresponds vote-codes to commitments
posted in the BB, and voters cast their vote by simply sending to the EA the
vote-code that they prefer. The commitments have an additive homomorphic
property, hence it is possible to tally the result by homomorphically processing
them and opening the resulting “tally commitment”. The proof that we use in
order to ensure verifiability is a conjunction of a cut-and-choose proof with a Σ
proof that a committed value belongs to a set. The challenge needed for the Σ
proof will be extracted by applying a suitable extraction mechanism to the coin
flips of the voter transducers that are collected by the EA.

In Sections 3.1, 3.2, 3.3 and 3.4, we provide a detailed description of the
tools that we apply for the construction of our system, i.e., (i) the homomor-
phic commitment scheme, (ii) a generalization of the Schwartz-Zippel lemma
for imperfect randomness, (iii) the Σ protocol and (iv) the challenge extraction
mechanism, respectively. We describe our e-voting system in Section 3.5 and
prove its correctness in Section 3.6. For the better understanding of our system,
we provide a toy example in Section 3.7.

3.1 Perfectly Binding Commitment

To achieve integrity against computationally unbounded adversaries, we have
to use a perfectly binding commitment scheme. Moreover, our system requires
such a commitment scheme to be additively homomorphic to facilitate the tally
and audit process. In this work, we instantiate the commitment scheme with
lifted ElGamal over elliptic curves. We use elliptic curve domain parameters
Param := (p, a, b, g, q), generated by the curve generator G(1λ), consisting of a
prime p that specify the finite field Fp, two elements a, b ∈ Fp that specify an

End-to-End Verifiable Elections in the Standard Model 481

elliptic curve E(Fp) defined by the equation: E : y2 = x3 + ax + b (mod p) ,
a base point g = (xg, yg) on E(Fp), and a prime q which is the order of g. We
denote the cyclic group generated by g as G, and it is assumed that the DDH
assumption holds over G. More specifically, our commitment scheme consists of
the following algorithms:

– Gen(Param, 1λ): picks x ← Zq, sets h := gx, and outputs ck := (Param, h).
– Comck(m; r): outputs c := (gr, gmhr).
– Verck(c;m; r): outputs accept if c = (gr, gmhr); otherwise, outputs reject.

It is obvious that the above commitment scheme is perfectly binding and
computationally hiding under the DDH assumption, i.e. for any PPT adversary
A, we have that the advantage

Advhide(A) :=
∣
∣
∣
∣Pr

[
Param ← G(1λ); ck ← Zq : A(Param, ck); b ← {0, 1} ;
r ← Zq : A(Comck(mb; r)) = b

]

− 1/2
∣
∣
∣
∣

is negligible in λ. The commitment scheme is additively homomorphic. Namely,

Comck(m1; r1) · Comck(m2; r2) = Comck(m1 + m2; r1 + r2).

3.2 Schwartz-Zippel (min-entropy variant)

We need a min-entropy variant of the Schwartz-Zippel lemma, to check the
equality of two univariate polynomials f1, f2, i.e. test f1(x) − f2(x) = 0 for
random x

D← Zq. The probability that the test passes is at most max(d1,d2)
2κ if

f1 �= f2, where di is the degree of fi for i ∈ {1, 2}. We state the following lemma
without proof (a proof will be provided in the full version).

Lemma 1 (min-entropy Schwartz-Zippel). Let f(x) be a non-zero uni-
variate polynomial of degree d over Zq. Let D be a probability distribution on
Zq such that H∞(D) ≥ κ. The probability of f(x) = 0 for a randomly chosen

x
D← Zq is at most d

2κ .

3.3 A Σ Protocol for Candidate Encoding Correctness

In order to present the Σ protocol with clarity, we outline some necessary excerpts
of the description of our system that will be explained in detail in Section 3.5.

Let N = n+1, where n is the number of voters. Each voter is given a ballot that
consists of two equivalent parts that contain a list of m vote-codes corresponding
to the list candidates {P1, . . . , Pm}. The voter will flip a coin to choose the part
she is going to use for voting. At the Setup phase, each ballot is posted to the
BB in committed form. Namely, it consists of two sets of commitments E

(a)
�,j for

a ∈ {0, 1} , � = 1, . . . , n, j = 1, . . . ,m, and each set commits to a permutation of
the encoded candidates, where candidate Pj is encoded as N j−1.

We emphasize that it is not necessary to prove that each set of the commit-
ments commits to a permutation of the encoded candidates

{
N0, . . . , Nm−1

}
in an

482 A. Kiayias et al.

1-out-of-m election. This is due to two facts: (i) EA will open one of the two sets of
commitments according to the corresponding voter’s coin a� (the set that corre-
sponds to the unused ballot part); therefore, a malicious EA will be caught with
probability 1/2 by each honest voter if any of the committed sets is not a permu-
tation of the encoded candidates or is an inconsistent permutation of the encoded
candidates w.r.t. the one on the voter’s ballot. (ii) Even if we ensure that the set
of the commitments commits to a permutation of the encoded candidates, it does
not imply that the permutation is consistent to the one on the voter’s ballot. In an
1-out-of-m election, only one of the commitments will be used for tally, and thus
proving that the set of the commitments commits to an unknown permutation of
the encoded candidates can only provide the guarantee that the tallied commit-
ment commits to an encoded candidate. Note that this guarantee is important;
otherwise, given that we perform homomorphic tallying, it may be feasible for a
cheating EA to introduce a large deviation to the actual tally result via a single
inconsistent ballot; for instance, EA may commit to for some j ∈ [m]. Hence, we
want the EA to show that each commitment commits to one of N j−1 for j ∈ [m].
4 We can formalize the correctness of a single commitment problem as follows.
Given commitments E, the prover wants to convince the verifier that he knows
r ∈ Zq such that E = Comck(N i; r) and i ∈ [0,m − 1]. Let i, r be the prover’s
private input, and w.l.o.g. we assume m is a perfect power of 2. For general cases,
say 2e−1 ≥ m ≥ 2e, we can show the conjunction i ∈ [0, 2e]∧ (i+2e −m) ∈ [0, 2e].
Our Σ Protocol is described in Fig. 3.

Theorem 1. Let N > 0 be a public integer. Given common input E ∈ G × G,
the protocol described in Fig. 3 is a Σ protocol for knowledge of i ∈ N, r ∈ Zq

such that E = Comck(N i; r), i ∈ [0,m − 1] that is perfectly complete, statisti-
cally sound with soundness error 2−κ+1+log log m when the verifier’s challenge has
min-entropy κ and computationally zero-knowledge with distinguishing advantage
Advzk(A) ≤ log m · Advhide(A) for any PPT adversary A.

Proof. It is straightforward to check that protocol in Fig. 3 achieves perfect
completeness.

In terms of statistical soundness, the protocol verifies two facts. Namely, (i)
{Bj}j∈[0,log m−1] commits to either 0 or 1, and (ii) E commits to N

∑log m−1
j=0 bj2

j

=
N i, where bj is the opening of Bj . To check the first fact, for each committed bj

the protocol builds the degree 1 polynomial

g1(X) = (1 − bj)(bjX + t) + c0 = (1 − bj)bjX + c′
0

for some c0 and c′
0. By min-entropy Schwartz-Zippel Lemma 1, if H∞(ρ) ≥ κ

and g1(ρ) = 0, the probability Pr[(1 − bj)bj �= 0] ≤ 2−κ. Hence, with at least

4 For efficiency, EA is only required to show the commitments that are used for tally
commit to valid encoded candidates. On the other hand, since EA cannot predicate
which commitments are going to be used for tally before the election, she has to prepare
all the Σ protocols in the Setup phase; whereas she is only required to complete those
Σ protocols for the commitment that will be tallied in the Tally phase.

End-to-End Verifiable Elections in the Standard Model 483

P (i, r):
Define bj such that i =

∑log m−1
j=0 bj2

j . Pick
– tj , zj , yj , rj , wj , fj ← Zq for j ∈ [0, log m − 1].

Compute the following commitments:
– For j ∈ [0, log m − 1],

• Bj = Comck(bj ; rj); Tj = Comck(tj ; zj);
• Yj = Comck((1 − bj)tj ; yj);
• Wj = Comck(wj ; fj).

Define Aj , aj , r
′
j such that Aj = BN2j −1

j · Comck(1; 0) = Comck(aj ; r
′
j), for j ∈

[0, log m−1]. Define {βj , γj}log m
j=0 such that

∏log m−1
j=0 (ajX+wj) =

∑log m
j=0 βjX

j

and
∏log m−1

j=0 (r′
jX + fj) =

∑log m
j=0 γjX

j . (Note that for efficiency reasons, the

prover needs to choose the {rj}log m−1
j=0 such that γlog m = r in previous step.)

– For j ∈ [0, log m − 1], Dj = Comck(βj ; γj).

Return φ1 = {Bj , Tj , Yj , Wj , Dj}log m−1
j=0 and

stateφ = {tj , zj , yj , rj , bj , wj , fj}log m−1
j=0 .

P → V : Send φ1.

V → P : Send ρ ← Zq.

P (stateφ): Compute the following answers:
– For j ∈ [0, log m − 1],

• t′
j = bjρ + tj , z

′
j = rjρ + zj , y

′
j = −yj − rjt

′
j ;

• w′
j = ajρ + wj , f

′
j = r′

jρ + fj ;

Set φ2 =
{
t′
j , z

′
j , y

′
j , w

′
j , f

′
j

}log m−1

j=0
.

P → V : send φ2

V (E, φ1, ρ, φ2): Accept the proof (i.e. output accept) if and only if
– For j ∈ [0, log m − 1],

• Bρ
j · Tj = Comck(t

′
j , z

′
j),

• (Comck(1; 0)/Bj)
t′
j /Yj = Comck(0; y′

j);
• Aρ

j · Wj = Comck(w
′
j , f

′
j);

– Eρlog m∏log m−1
j=0 Dρj

j = Comck(
∏log m−1

j=0 w′
j ;
∏log m−1

j=0 f ′
j);

Fig. 3. The Σ Protocol for Ballot Correctness

1−2−κ probability (1−bj)bj = 0, which implies bj ∈ {0, 1}. To check the second

fact, the protocol first computes Aj = BN2j −1
j · Comck(1; 0) homomorphically.

Let aj be the opening of Aj . It is easy to see that aj = N2j

if bj = 1, aj = 1
if bj = 0, thus it holds that aj = bjN

2j

+ 1 − bj = N bj2
j

. So that the protocol
just needs to verify that E commits to the product of aj ’s. The verifier checks
equality between two degree log m polynomials

g2(X) =
log m−1∏

j=0

(ajX + wj) =
log m∑

j=0

βjX
j and g′

2(X) = uX log m +
log m−1∑

j=0

β∗
j Xj

484 A. Kiayias et al.

where u is the opening of E and β∗
j which is the opening of Dj and is provided

by the (potentially malicious) prover. By min-entropy Schwartz-Zippel lemma, if
H∞(ρ) ≥ κ and g2(ρ) = g′

2(ρ), the probability Pr[u = βlog m] ≥ 1− log m
2κ . Hence,

we have u = N
∑log m−1

j=0 bj2
j

with at least 1− log m
2κ probability conditioned on the

fact (i). Given that all b0, . . . , blog m−1 need to be shown in {0, 1} the entire proof
is statistically sound with probability (1−2−κ)log m(1− log m

2κ) ≥ 1−log m·2−κ+1.
Our protocol satisfies special soundness, i.e. there exists an extractor that

can extract i ∈ N, r ∈ Zq if the prover is able to complete the protocol twice
with the same φ1 but two distinct challenges (we omit the construction of the
extractor).

To show special honest verifier zero-knowledge property, we now construct
a simulator that on input ρ̂ ∈ Zq can output a transcript that is indistinguish-
able from the real one. The simulator randomly picks b0, . . . , blog m−1 ← {0, 1}
and generates

{
tj , zj , yj , rj , Bj , Tj , Yj , t

′
j , z

′
j , y

′
j , wj , fj ,Wj , w

′
j , f

′
j

}log m−1

j=0
accord-

ing to the protocol description. It then generates {Dj}log m−1
j=1 according to the

protocol and set

D0 = Comck(
log m−1∏

j=0

w′
j ;

log m−1∏

j=0

f ′
j)/(Eρ̂log m

log m−1∏

j=1

Dρ̂j

j) .

Subsequentely, the simulator sets φ̂1 = {Bj , Tj , Yj ,Wj ,Dj}log m−1
j=0 and φ̂2 =

{
t′j , z

′
j , y

′
j , w

′
j , f

′
j

}log m−1

j=0
, and it outputs (φ̂1, ρ̂, φ̂2). First of all, it is obvious

that all the verification equations hold. Secondly, the distribution of all the vari-
ables in φ̂2 are uniformly random, which is identical to that of a real transcript.
Moreover, if the adversary can distinguish the simulated φ̂1 from that of a real
transcript, she must be able to distinguish at least one of the fake {Bj}log m−1

j=0 .
By hybrid argument, we have for any PPT adversary A, the advantage to dis-
tinguish the simulated proof is Advzk(A) ≤ log m · Advhide(A). ��

3.4 Producing the Verifier’s Challenges

The main difficulty in our setting is that we would like to extract the challenge
of the Σ protocol from the voters’ coins a = 〈a1, . . . , an〉 ∈ {0, 1}n using a
deterministic algorithm. Recall that some of the voters might be malicious and
colluding with the EA, so the entropy of the voters’ coins is only contributed
by the honest voters while the malicious voters’ coins can depend on the hon-
est ones. Note that the voters’ coins should be ordered by their serial numbers,
rather than their submission order. This is because in the latter case, the adver-
sary can schedule the Cast protocols of all voters at will and as a result reduce
the min-entropy of a to be at most log θ where θ is the number of honest voters.
Such level of entropy is insufficient to provide a sufficiently small verifiability
error (that ideally drops exponentially with θ). For all the uncast ballots, we
set their corresponding coins to 0 by default; therefore, a is always an n-bit

End-to-End Verifiable Elections in the Standard Model 485

source, regardless of the number of voters that complete the Cast protocol. We
observe that the voters’ coins a is a weaker source compared to a non-oblivious
bit-fixing source [29], as the adversary is able to choose which bit(s) to fix during
the coin flipping (source generation) process. On the other hand, if we restrict
the adversary A in our verifiability game from being capable of scheduling Cast
protocols freely and all voters have to submit their votes sequentially accord-
ing to a pre-determined order in the ballot casting stage, the source a can be
viewed as an adaptive bit-fixing source [34]; in such case, we can employ the
deterministic extractor construction framework from [29] which applies a deter-
ministic low influence function on segments of the source. The majority function
is proven to be an optimal low influence function thus in this way we obtain a
deterministic extractor that generates the challenge. However, this adversarial
setting is not realistic in practice as ballot casting might be scheduled adver-
sarially. Nevertheless, we emphasise that even using a non-oblivious bit-fixing
source, Kamp and Zuckerman showed that at most n/� bits can be extracted
when � out of n bits are fixed [29]. This result implies that if a deterministic
extractor is used to generate Θ(λ) random bits, then this will restrict the per-
centage of corrupted voters to be below Θ(1

λ) which might also be not a realistic
expectation in practice. An alternative approach may use a condenser as opposed
to an extractor. Randomized condensers with a small/constant seed space have
been put forth see e.g. [2,39]; using such a tool one may iterate over all possi-
ble seeds and thus be assured that one of the seeds will allow the condenser to
produce a sufficiently random challenge. For instance, Barak et al. [2] proposed
a basic 2-bit seed condenser con : {0, 1}n → ({0, 1}n/3)4 such that for every
δ-source X with 0 < δ < 0.9, at least one of the 4 output blocks of con(X) is
a (δ + Ω(δ2))-source. Based on the composing lemma (Lemma 5.5 [2]), we can
iteratively apply the condenser to achieve any desired constant rate. Given a
c-coin condenser Con : {0, 1}n �→ ({0, 1}�)c, in order to produce a good chal-
lenge, by definition, it should hold that c ·� > n, which means that the condenser
will produce c blocks, one of which is guaranteed to be sufficiently random. How-
ever as we observe below, we can utilize ZK amplification to obtain essentially
the same result as with a c-coin condenser while sacrificing very little entropy
from the weak source. We explain our technique next.

Let {0, 1}�Σ be the challenge space, where �Σ = �log q� and q is the order of
the underlying group used in the Σ protocol. Assume n/k ≤ �Σ for some k ∈ Z

+.
We evenly partition the voters’ coins a into k blocks, denoted by a1, . . . ,ak. For
each block ai, the EA should prove the correctness of the ballots using a separate
Σ protocol with ai as its challenge. The verifier only accepts the EA’s proof if all
the Σ protocols are valid. The theorem below shows that the soundness error of
this k-times repeated Σ protocol drops exponentially with θ − k(log log m + 1).

486 A. Kiayias et al.

Theorem 2. Denote a = (a1, . . . ,ak), and suppose H∞(a) = θ. For all adver-
sarial prover A, we have that

ε(m, n, k, θ) = Pr

⎡

⎣
ck ← Gen(Param, 1λ); (E, x, r, {φ1,i}k

i=1) ← A(Param, ck);

{φ2,i}k
i=1 ← A(a1, . . . , ak) : Verck(E; x; r) = accept ∧

x �∈ {N0, . . . , Nm−1
} ∧ ∀i ∈ [k], V (E, φ1,i, ai, φ2,i) = accept

⎤

⎦

≤ 2k log log m−θ+k.

Proof. See full version of this paper. ��

3.5 Description of our e-Voting System

The description of our e-voting system follows the syntax in Section 2.2. For sim-
plicity, we present our system for 1-out-of-m elections, i.e. U = {{P1}, . . . , {Pm}}.
The commitment scheme and the Σ-protocol that are applied in our system, are
the ones presented at length in sections 3.1 and 3.3 respectively.

Setup(1λ,P = {P1, . . . , Pm} ,V = {V1, . . . , Vn} ,U = {{P1}, . . . , {Pm}}). Let
(Gen,Com,Ver) be the PPT algorithms that constitute the perfectly binding,
computationally hiding and additively homomorphic commitment scheme pre-
sented in Section 3.1. The EA runs Gen(Param, 1λ) to generate the commitment
key ck. Then, for � ∈ [n], EA executes the following steps:

(i). It selects a unique label for the �-th double ballot denoted by tag�.
(ii). It selects random permutations π

(0)
� , π

(1)
� over [m]. The use of π

(0)
� (reps.

π
(1)
�) is to shuffle the order that the (vote-code, candidate) pairs in the

part s
(0)
� (resp. s

(1)
�) of the double ballot s� will be posted on the BB (in

committed form), in order to support privacy.
(iii). For j ∈ [m], it selects unique vote-codes C

(0)
�,j , C

(1)
�,j ← Zq, where q is the

size of the group of the commitment scheme5. The vote-code C
(0)
�,j (resp.

C
(1)
�,j) is the one that will be associated with candidate Pj in part s

(0)
� (resp.

s
(1)
�) of s�.

(iv). For a ∈ {0, 1}, it prepares the ballot part s
(a)
� =

{(
Pj , C

(a)
�,j

)}

j∈[m]
and

generates the ballot

s� =
(
tag�, s

(0)
� , s

(1)
�

)
.

(v). For j ∈ [m], it computes j′ = π
(a)
� (j) and

5 For simplicity in presentation, we commit to the vote-codes using the homomorphic
commitment scheme of Section 3.1. We stress that since no arithmetic operations
are executed in the vote-code commitments, we could use more efficient commitment
schemes and in this case vote-codes may be drawn from a domain that is smaller
than Zq resulting in a more “user-friendly” interface.

End-to-End Verifiable Elections in the Standard Model 487

– For a ∈ {0, 1} (where a indicates the part s
(a)
� of s�), it chooses ran-

domness t
(a)
�,j′ ← Zq and computes the vote-code commitment for C

(a)
�,j′ :

U
(a)
�,j′ = Comck

(
C

(a)
�,j′ ; t

(a)
�,j′

)
.

– For a ∈ {0, 1}, it chooses randomness r
(a)
�,j′ ← Zq and computes the

encoded candidate commitment for Pj′ :

E
(a)
�,j′ = Comck

(
(n + 1)j′−1; r(a)�,j′

)
,

where (n + 1)j′−1 is the encoding of candidate Pj′ . This encoding is
selected to ensure the correctness of our system, as we show in Theorem
3.

– For a ∈ {0, 1}, EA prepares pre-audit data φ
(a)
1,�,j′ to be used for

verifying that E
(a)
�,j′ is a commitment to a valid encoding from the

set
{
(n + 1)0, . . . , (n + 1)m−1

}
at the verification phase. In addition,

it maintains prover state state(a)φ,�,j′ . Both φ
(a)
1,�,j′ and state(a)φ,�,j′ are

described in the Σ-protocol shown in Figure 3 (first move) of
Section 3.3.

(vi). Pub� =
(

tag�,
{

(U (a)
�,j′ , E

(a)
�,j′ , φ

(a)
1,�,j′)

}a∈{0,1}

j∈[m]

)

is the public information

w.r.t. s�. It is indexed by tag� and contains the ballot information for
both parts in committed form, as well as the respective pre-audit data.
The information that refers to the (vote-code, candidate) pair (C(a)

�,j′ , Pj′)

is tabulated in the j-th location of the part that is associated with s
(a)
� .

The public information that EA generates is

Pub = (ck,P,U , {Pub�}�∈[n]) .

The secret key of EA is

msk = {Pub�, s�,msk�, stateφ,�}�∈[n] ,

where we denote msk� =
{

(C(a)
�,j , t

(a)
�,j , π

(a)
� (j) = j′, r(a)�,j)

}a∈{0,1}

j∈[m]
and stateφ,� =

{
state(a)φ,�,j′

}a∈{0,1}

j∈[m]
.

The Cast protocol. On input (Pub, s�,U�), voter V� flips a coin a� ← {0, 1} and
picks part s

(a�)
� to vote and part s

(a�)
� for audit. Let Pj�

be the candidate that
V� is going to vote for, i.e., U� = {Pj�

}. Then, V� selects to submit C
(a�)
�,j�

, which

is the vote-code that corresponds to Pj�
in part s

(a�)
� . Next, V� casts the vote

ψ� =
(
tag�, a�, C

(a�)
�,j�

)
. The EA receives the vote and updates its state st by

appending ψ�. The receipt α� of V� is the vote ψ� and the part s
(1−a�)
� used for

audit.

488 A. Kiayias et al.

The Tally(Pub) protocol. Let Ṽ be the set of the voters that have voted suc-
cessfully.

– For each V� ∈ Ṽ, the EA uses (tag�, a�) from ψ� to recover the respective audit
information s

(1−a�)
� from s�. Then, it sends to BB the list

{
(ψ�, s

(1−a�)
�)

}

V�∈Ṽ
.

It also opens all the vote-code commitments,
{

U
(a)
�,j

}a∈{0,1}

�∈[n],j∈[m]
, by sending

the list of pairs
{

(C(a)
�,j , t

(a)
�,j)

}a∈{0,1}

�∈[n],j∈[m]
to the BB.

– The EA, for every ψ� corresponding to a V� ∈ Ṽ:
(i). locates the decommitted vote-code C� that matches the cast vote-code

C
(a�)
�,j�

. Then, it marks the vote-code C
(a�)
�,j′

�
as ‘voted’ and adds the corre-

sponding commitment E
(a�)
�,j′

�
into the set Etally (initially empty). Recall

that j′
� = π

(a�)
� (j�).

(ii). adds all the commitments {E
(1−a�)
�,j }j∈[m] that correspond to the vote-

codes in s
(1−a�)
� into the set Eopen (initially empty).

When finalised, Etally includes the collection of votes that will be counted
(homomorphically) and Eopen includes the information that will be used for
verifying ballot correctness. After this happens, EA posts to the BB the list
of marked vote-codes along with Etally and Eopen.

– The EA produces and posts to the BB all the verifier’s challenges {ρE}E∈Etally

of the Σ-protocols for the validity of the commitments in Etally, as deter-
mined in Figure 3 (second move). The extraction of the challenges is done via
the randomness contributed by the voters’ coin-flips. The extraction method
that is used is described in Section 3.4.

– The EA prepares and posts to the BB all the post-audit data {φ2,E}E∈Etally

of the Σ-protocols for verifying the validity of the commitments in Etally, as
determined in Figure 3 (third move). Thus, for each commitment in Etally

there is a triple of pre-audit data, challenge and post-audit data that form
a complete Σ proof of a valid commitment to some encoded candidate.

– EA performs homomorphic tally by computing Esum =
∏

E∈Etally
E and

preparing (T,R) as the opening of Esum. The additive homomorphic property
implies that T is the election result encoded in the number system with base
N = n + 1 and it is committed under randomness R, which is the sum of
all the randomness used for the commitments in Etally. Next, EA opens all
the commitments in Eopen. Let Open be the set of these openings. Finally,
it sends Open, Esum and (T,R) to the BB.

– In the end of the process, BB contains the list of the marked vote-codes, as
well as

Pub,
{

(C(a)
�,j , t

(a)
�,j)

}a∈{0,1}

�∈[n],j∈[m]
,
(
Etally, Esum, (T,R)

)
,

(Open,Eopen), {ρE}E∈Etally
, {φ2,E}E∈Etally

.

End-to-End Verifiable Elections in the Standard Model 489

Result(τ). The election result Rτ is derived by the following decoding algo-
rithm:

Set X ← T ;
For j = 1, . . . , m:
• xj ← X mod (n + 1);
• X ← (X − xj)/(n + 1);
Return 〈x1, . . . , xm〉;

The correctness of the algorithm (and our system) is shown in Theorem 3.

Verify(τ, α). Initially, α is parsed as
(
tag, a, C, s(1−a)

)
. The algorithm returns

1 only if the following checks are valid:

(i). All committed information in τ is associated with n ballots indexed under
different tags and no two vote-codes under the same tag are marked as
‘voted’.

(ii). Let Ĉ be a vote-code that appears in part ŝ(â) of some ballot and has been
marked as ‘voted’ . Then, only the committed information for the other
part ŝ(1−â) of this ballot has been opened.

(iii). All the complete Σ proofs that are associated with commitments in Etally

are valid.
(iv). Esum =

∏
E∈Etally

E.
(v). All the openings of the commitments are valid.
(vi). tag equals some tag� in τ for some � ∈ [n] and it holds that a = a�.
(vii). The vote-code that is marked as ‘voted’ and is associated to tag� is C

where � is as in item (vi).
(viii). The correspondence of candidate encodings to vote-codes revealed in the

opening of the commitments {(U (1−a�)
�,j , E

(1−a�)
�,j)}j∈[m] where � is as in

item (vi), is equal to the one defined in s(1−a).

3.6 Correctness of Our e-Voting System

We prove the correctness of our system in the following theorem. In the remaining
of the paper, we assume that n · (n + 1)m−1 < q.

Theorem 3. Let q be the size of the group for the commitment scheme described
in Section 3.1 and assume that n · (n + 1)m−1 < q. Then, the e-voting system
described in Section 3.5 has perfect correctness.

Proof. See full version of the paper. ��

3.7 Example of Our e-Voting System

For the better understanding of our e-voting system, we provide a toy example
of a referendum where P1 = YES, P2 = NO are the candidates and V consists of

490 A. Kiayias et al.

three voters V1, V2, V3. Our goal is to familiarize the reader with the functionality
of our system so, for simplicity, we deviate from the description in Section 3.5
by not including Σ-protocol proofs.

EA generates the vote-codes for the ballots s1,s2 and s3 of V1, V2 and V3 as

(C(0)
1,1 = 27935, C(0)

1,2 = 75218, C(1)
1,1 = 84439, C(1)

1,2 = 77396),

(C(0)
2,1 = 58729, C(0)

2,2 = 45343, C(1)
2,1 = 14582, C(1)

2,2 = 93484),

(C(0)
3,1 = 52658, C(0)

3,2 = 65864, C(1)
3,1 = 84373, C(1)

3,2 = 49251)

respectively. The double ballots s1, s2, s3 are labelled by the tags 101, 102, 103
respectively and are formed as follows:

101
27935 YES
75218 NO

84439 YES
77396 NO

102
58729 YES
45343 NO

14582 YES
93484 NO

103
52658 YES
65864 NO

84373 YES
49251 NO

EA prepares the commitments to each vote-code and the encoding of the
candidate that they correspond. The commitment for YES (resp. NO) is a com-
mitment to (3 + 1)0 = 1 (resp. (3 + 1)1 = 4). Next, it chooses whether the
commitments of the vote-code and candidate pairs are going to be ordered in
the BB as they are in the ballot part, or swapped. For example, assume that
for the ballot s1, EA chooses to leave the order in ballot part (0) intact and to
swap the pairs in ballot part (1). Then, the information posted in the BB for s1
would have the following form:

101

Comck(27935; t(0)1,1) Comck(1; r(0)1,1)
Comck(75218; t(0)1,2) Comck(4; r(0)1,2)

Comck(77396; t(1)1,2) Comck(4; r(1)1,2)
Comck(84439; t(1)1,1) Comck(1; r(1)1,1)

Suppose that V1 votes for NO using ballot part (1), V2 votes for YES using
ballot part (1) and V3 votes for YES using ballot part (0). Then, the votes cast by
V1, V2 and V3 are (101, 1, 77396), (102, 1, 14582) and (103, 0, 52568) respectively.
The receipts that the voters receive are

(101,1,77396)

27935 YES
75218 NO

(102, 1, 14582)

58729 YES
45343 NO

(103, 0, 52568)

84373 YES
49251 NO

The coins that V1, V2 and V3 have flipped, are a1 = 1, a2 = 1 and a3 = 0
respectively. Hence, we get internal randomness, (1, 1, 0), of 3 bits (which would

End-to-End Verifiable Elections in the Standard Model 491

be the “weak source” of randomness used for the extraction of the challenge of
the Σ protocols). After the voting ends, EA opens the vote-code commitments,
marks the cast vote-codes 77396, 14582 and 52658 and includes the corresponding
encoded candidate commitments Comck(4; r(1)1,2), Comck(1; r(1)2,1) and Comck(1; r(0)3,1)
in the tally set. Next, EA performs homomorphic tally, by computing the product
of the above encoded candidate commitments as

Esum = Comck(4; r(1)1,2)·Comck(1; r(1)2,1)·Comck(1; r(0)3,1) = Comck(6; r(1)1,2+r
(1)
2,1+r

(0)
3,1).

Then, EA publishes Esum, along with the opening of Esum at value (6; r(1)1,2 +

r
(1)
2,1 + r

(0)
3,1). The result is derived by computing x1 = 6 mod 4 = 2 and x2 =

((6 − x1)/4) mod 4 = 1, which is interpreted as two votes for YES and one for
NO.

In the verification phase, the EA opens the commitments in the ballot parts
that the voters selected for auditing. For example, V1 would check the consistency
of her receipt with audit information in the BB, as illustrated below

101

27935 YES (1, r
(0)
1,1) Comck(1; r(0)1,1)

75218 NO (4, r
(0)
1,2) Comck(4; r(0)1,2)

77396 VOTED Comck(4; r(1)1,2)
84439 Comck(1; r(1)1,1)

Encodings

YES 1
NO 4

Observe that, as we will prove, the cut-and-choose verification that V1 per-
forms, does not reveal her vote even to a party that obtains her receipt. This
is because the cast vote-code alone does not leak any information about the
associated candidate, while the entirely opened auditing part only serves as a
check that the correspondence of the vote-codes and candidates in this part has
not been tampered with. Therefore, V1 can delegate the task of verification to a
third party, without compromising her privacy.

4 Security of Our e-Voting System

In this section, we prove the security of our system in the definitional framework
presented in Sections 2.4 and 2.3.

4.1 E2E Verifiability of Our e-Voting System

We prove that our e-voting system achieves E2E verifiability information the-
oretically in the standard model. We follow the notation in Figure 1 and the
description in 3.5.

492 A. Kiayias et al.

Theorem 4. Let n be the number of all voters and m be the number of can-
didates. Let q be the size of the group for the commitment scheme described in
Section 3.1. The e-voting system described in 3.5 achieves E2E verifiability infor-
mation theoretically with error (1/2)d + ε(m,n, �n/�log q��, θ − 1)), where θ is
the number of honest successful voters, d is the tally deviation that the adversary
wants to achieve and ε(m,n, �n/�log q��, θ − 1) is the soundness error of the Σ
protocol performed by the EA given in Theorem 2.

Proof. Without loss of generality (w.l.o.g.), we assume that in any adversarial
execution as described in the E2E verifiability game GA,E,d,θ

E2E−Ver(1
λ,m, n), exactly

n ballots are tabulated on τ under n different tags vote-codes are marked as
‘voted’ correspond to different tags (if such deviations happen the transcript is
immediately rejected). In the same spirit, we assume there is no double ballot
that both parts have been opened and that all double ballots for honest voters
in Ṽ are well-formed, otherwise they would not engage in the Cast protocol.
Finally, we recall that the adversary cannot modify the history of the transcript
since it does not have control over the BB. As a first step, we construct a vote
extractor E for our system as follows:

Construction of the vote extractor. E has input τ and the set of receipts {α�}V�∈Ṽ ,
where Ṽ is the set of the honest voters that voted successfully. Let t ≤ |Ṽ| be
the number of different tags that appear in {α�}V�∈Ṽ

6. If Result(τ) = ⊥ (i.e.,
the transcript is not meaningful), then E outputs ⊥. Otherwise, E (arbitrarily)
arranges the voters in V\Ṽ and the tags not included in {α�}V�∈Ṽ as 〈V E

� 〉�∈[n−|Ṽ|]
and 〈tagE

� 〉�∈[n−t] respectively. Next, for every � ∈ [n − |Ṽ|]:
1. If there is no marked as ‘voted’ vote-code that is associated with tagE

� , then
E sets UE

� = ∅ (encoded as the zero vector) which is interpreted as an abort
for voter V E

� .
2. If there is a ‘voted’ vote-code C

(a)
�,j that is associated with tagE

� , then E
brute-force opens the respective encoded candidate commitment E

(a)
�,j to a

value Open� (recall the commitment is perfectly binding). If Open� is a valid
encoding (i.e. Open� ∈ {(n + 1)0, (n + 1)1, . . . , (n + 1)m−1}) of a candidate
PE

� , then E sets UE
� = {PE

� }. Otherwise, it outputs ⊥.

Finally, E outputs 〈UE
� 〉V E

� ∈V\Ṽ . Note that if t < |Ṽ|, then the remaining tags
tagE

n−|Ṽ|+1
, . . . , tagE

n−t are ignored by E .

Based on the above vote extractor, we will prove the E2E verifiability of our
scheme. Assume an adversary A that wins the game GA,E,d,θ

E2E−Ver(1
λ,m, n). Namely,

A breaks E2E verifiability by allowing at least θ honest successful voters and

6 This implies that the ballot audit for all voters in Ṽ focuses on a list of t tabu-
lated ballots on the BB. Thus, an adversary may inject |Ṽ| − t ballots for candidate
selections of its choice that will be counted in the final tally as if they were honest.

End-to-End Verifiable Elections in the Standard Model 493

achieving tally deviation d. Since there is at least one honest voter that per-
forms verification (θ > 0), w.l.o.g. we assume that A always outputs meaningful
transcripts.

Let F be the event that there exists a committed value in τ which is marked
to be counted and invalid (i.e., it is in Etally but it is not a commitment to
some candidate encoding). Since condition (i) of GA,E,d,θ

E2E−Ver(1
λ,m, n) holds, we

have that there are at least θ honest voters. However, the soundness error of the
Σ- protocol is going to be affected by the fact that the invalid commitment is
in a specific ballot part. The min entropy of all the coins given the fact that
the adversary knows the coin of the invalid commitment in order to win, is
at least the min entropy of all the coins minus 1 bit (i.e., the entropy of that
bit). Therefore, by applying Theorem 2 for min entropy equal to θ − 1, we have
that each Σ protocol has soundness error ε(m,n, �n/�log q��, θ − 1). Hence, the
probability that a committed value is invalid while verification accepts is no
more than ε(m,n, �n/�log q��, θ − 1). Since there is at least one honest voter
that verifies, we conclude that

Pr[GA,E,d,θ
E2E−Ver(1

λ,m, n) = 1 ∧ F] ≤ ε(m,n, �n/�log q��, θ − 1). (1)

Assume that F does not occur. Thus, all marked committed values in Etally

correspond to a valid candidate encoding. This implies that (a) the maximum
deviation per marked commitment that A may achieve is 1 (the vote is counted
for a candidate other than the intended one) and (b) E does not output ⊥
(it returns a vector 〈UE

� 〉V E
� ∈V\Ṽ), so A wins because (i),(ii) and (iii-a) hold.

The auditor can verify that Esum is equal to the homomorphic commitment∏
E∈Etally

E. Due to the perfect binding of the commitment scheme, the tally
f(〈UE

� 〉V E
� ∈V\Ṽ) that E estimates as non-honest votes, is correctly included in

the adversarial result that derives from the opening (T,R) of Esum. Thus, the
deviation from the intended result that A achieves, derives only by miscounting
the honest votes. This may be achieved by A in two different possible ways:

1. Modification attacks: modify the committed information as compared
with the one in an honest voter’s ballot (e.g., alter the vote-code and can-
didate correspondence). The deviation achieved by this type of attack is at
most 1.

2. Clash attacks: instruct r honest voters whose ballots are indexed under the
same tag to vote so that the votes of any r − 1 out of these r voters are all
different than some fixed r−1 committed votes that are ignored by E (either
cast by corrupted voters or initially injected in τ by A). All r voters verify
the correct counting of their votes by auditing the same information on the
BB and hence miss the injected votes that produce the tally deviation. The
deviation achieved by this type of attack is r − 1.

In the case where all ballot information is committed consistently on the BB
without being deleted or replaced, the adversary can only perform a combination
of these two attacks on the honest voters. Indeed, if all honestly cast votes are

494 A. Kiayias et al.

in one-to-one correspondence with the correct encoded candidate commitments,
then the perfect binding property ensures that the opening of the homomorphic
tally matches the intended result.

Let Ṽ1, . . . , Ṽt be the partition of Ṽ s.t. each of these subsets consists of
honest voters that their receipts (hence their ballots) are indexed under the
same tag. These subsets are created adaptively, according to the strategy of A,
under the constraint that |Ṽ| ≥ θ. Note that there are |Ṽ| − t ignored tags in
vote extraction, while

∑
i∈[t](|Ṽi| − 1) = |Ṽ| − t. This implies that the adversary

can perform clash attacks in all these subsets, with maximum possible deviation.
We will prove that given that F does not occur, the success probability of A is
no more than (1/2)d, whatever its strategy might be.

We observe that in order for A to win, all voters in Vi must have the same
receipt, or else inconsistencies will cause verification to fail. To achieve this,
A must instruct the voters from the same subset to vote so that they all cast
the same vote-code (otherwise two marked vote-codes under the same tag should
appear) and create the corresponding audit ballot part identically for each audit-
ing voter. In detail, in order for A to win, the following must hold for each Ṽi,
i ∈ [t]:

1. There is a representative vote-code Ci that appears in part (a) of all the
double ballots of the voters in Ṽi. The voters must select this part to vote
by casting Ci. Therefore, the coin-flippings of the auditing voters must be
consistent, in the sense that they correspond to ballot parts that contain
a consistent vote-code. There can be at most 2 consistent coin-flips (i.e.,
either all coins are flipped to 0 or all coins are flipped to 1). Thus, the
probability of consistent coin-flipping in Ṽi is at most 2/2|Ṽ|i = (1/2)|Ṽ|i−1.
In addition, the ballot parts that will be used for auditing must contain the
same information, up to a permutation of the vote-code and candidate pairs.

2. If A wants to achieve |Ṽi| deviation exploiting the voters in Vi, then it must
perform a modification attack in at least one voter V in Ṽi. This is because if
all voters’ ballots are consistent to the corresponding committed information
in τ , then by performing only a clash attack in Ṽi, A can achieve deviation
by at most |Ṽi| − 1, as described above. However, the modification comes
with a loss of 1/2 success probability, since A must also guess which is the
part that V is going to use for voting. Indeed, if V chooses to audit the
modified part of the ballot, then she will detect the attack. Therefore, all
voters in Vi must perform a consistent coin-flip that agrees with the coin-
flip of V . It is straightforward that in case of a single modification attack
this event happens with 1/2 · (1/2)|Ṽi|−1 = (1/2)|Ṽi| probability. Moreover,
in case Ṽi ≥ 2, performing two modification attacks does not lead to any
improvement in terms of probability or maximum deviation.

We note that the above arguments hold trivially, if Ṽi is a singleton. Let X
be the set of subsets from {Ṽ1, . . . , Ṽt} that A performs clash attacks and Y the
collection that A performs a modification attack on at least one voter in each of
the subsets. According to the previous arguments, we have the following cases:

End-to-End Verifiable Elections in the Standard Model 495

(i) for each Vi ∈ X\Y the maximum deviation is |Ṽi|−1, (ii) for each Vi ∈ Y\X
the maximum deviation is 1, (iii) for each Vi ∈ X∩Y the maximum deviation is
|Ṽi| and (iv) for each Vi ∈

{
Ṽ1, . . . , Ṽt

}
\ (X ∪ Y) the maximum deviation is 0.

For brevity, let x = |X| and y = |Y|. Therefore, we have that the tally deviation
from the intended result that A achieves is at most

∑

Vi∈X\Y
(|Ṽi| − 1) +

∑

Vi∈Y\X
1 +

∑

Vi∈X∩Y

|Ṽi| =
∑

Vi∈X

|Ṽi| − x + y ≤ |Ṽ| − x + y.

We will now upper bound the success probability of A. Since {Ṽ1, . . . , Ṽt} is
a partition of Ṽ, we have that A must not be detected by all the voters in all of
these subsets. So,

Pr[GA,E,d,θ
E2E−Ver(1

λ,m, n) = 1|¬F] ≤
∏

Vi∈Y

(1/2)|Ṽi| ·
∏

Vi∈{Ṽ1,...,Ṽt}\Y
(1/2)|Ṽi|−1 =

= (1/2)
∑

Vi∈Y |Ṽi|+
∑

Vi∈{Ṽ1,...,Ṽt}\Y(|Ṽi|−1) =

= (1/2)|Ṽ|−(t−y) ≤ (1/2)|Ṽ|−x+y,

because x ≤ t. In order for A to win, it must hold that |Ṽ|−x+y ≥ d (condition
(iii-a) holds), therefore

Pr[GA,E,d,θ
E2E−Ver(1

λ,m, n) = 1 ∧ ¬F] ≤ Pr[GA,E,d,θ
E2E−Ver(1

λ,m, n) = 1|¬F] ≤ (1/2)d.
(2)

By adding (1),(2) we conclude that

Pr[GA,E,d,θ
E2E−Ver(1

λ,m, n) = 1] ≤ (1/2)d + ε(m,n, �n/�log q��, θ − 1). ��
Remark 1. Note that if the number of honest voters satisfies the bound θ =
Ω(n log log m/ log q + λ), then the overall soundness error of the repeated Σ
protocol will be sufficiently small. For instance, in an election where there are
n = 1000 voters and m = 40 candidates we can use a group with at least 500 bit
prime order q. Assuming a number of θ = 50 honest voters (5% of total) we can
divide the 1000 voter’s coins into two challenges with 500 bits each (i.e. k = 2).
With these parameters the above theorem will have a verifiability error that is at
most 2−43 +(1/2)d where d is the tally deviation. We remark that in this setting
no deterministic extractor would be able to provide sufficient entropy and hence
our ZK amplification technique is crucial.

4.2 Voter Privacy/Receipt Freeness of Our e-Voting System

In order to show our scheme satisfies privacy, we utilize complexity leveraging.
Specifically, the system security parameter is configured such that breaking the
hiding property of the underlying commitment scheme is much harder than

496 A. Kiayias et al.

guessing the challenge of the Σ protocol; therefore, we can simulate the protocol’s
view by guessing the proof challenges without breaking the hiding property of
the commitment scheme. Due to this proof technique, the number of corrupted
voters t should be polynomially related to the security parameter λ in a certain
way; while the total number of voters n can be any function that is poly(λ) (as
long as the correctness requirement is fulfilled, cf. theorem 3). We emphasize
that given a specific n, our system can support privacy for any desired number
of adversarial voters t < n (as long as a suitably large security parameter λ is
used).

Theorem 5. Assume there exists a constant c, 0 < c < 1 such that for any 2λc

-
time adversary A, the advantage of breaking the hiding property of the commit-
ment scheme is Advhide(A) = negl(λ). Let t = λc′

for some constant c′ < c. For
any constant m ∈ N and n = poly(λ), the e-voting system described in Section
3.5 achieves voter privacy/receipt-freeness for at most t corrupted voters.

Proof. See full version of the paper. ��

References

1. Adida, B.: Helios: Web-based open-audit voting. In: USENIX Security (2008)
2. Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating inde-

pendence: New constructions of condensers, ramsey graphs, dispersers, and extrac-
tors. J. ACM 57(4), 20:1–20:52 (2010)

3. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party com-
putation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
175–196. Springer, Heidelberg (2014)

4. Beaver, D.: Plug and play encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 75–89. Springer, Heidelberg (1997)

5. Benaloh, J.: Simple verifiable elections. USENIX (2006)
6. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended

abstract). In STOC (1994)
7. Benaloh, J.C., Yung, M.: Distributing the power of a government to enhance the

privacy of voters (extended abstract). In: PODC (1986)
8. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting helios

for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011)

9. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the fiat-shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC (1988)

11. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

12. Chaum, D.: Surevote: technical overview. In: Proceedings of the Workshop on
Trustworthy Elections, WOTE (2001)

13. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security &
Privacy 2(1), 38–47 (2004)

End-to-End Verifiable Elections in the Standard Model 497

14. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan,
P.Y.A., Shen, E., Sherman, A.T., Vora, P.L.: Scantegrity II: end-to-end verifiability
by voters of optical scan elections through confirmation codes. IEEE TIFS 4(4),
611–627 (2009)

15. Chevallier-Mames, B., Fouque, P.-A., Pointcheval, D., Stern, J., Traoré, J.: On
some incompatible properties of voting schemes. In: Chaum, D., Jakobsson, M.,
Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards
Trustworthy Elections. LNCS, vol. 6000, pp. 191–199. Springer, Heidelberg (2010)

16. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: IEEE Symposium on Security and Privacy (2008)

17. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure elec-
tion scheme (extended abstract). In: FOCS (1985)

18. United States Election Assistance Commission. Voluntary voting systems guide-
lines (2005)

19. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

20. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority secret-
ballot elections with linear work. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

21. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. ETT 8(5), 481–490 (1997)

22. de Marneffe, O., Pereira, O., Quisquater, J.-J.: Simulation-Based analysis of E2E
voting systems. In: Frontiers of Electronic Voting (2007)

23. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. of Computer Security 17(4), 435–487 (2009)

24. Dolev, D., Fischer, M.J., Rob Fowler, T., Lynch, N.A., Raymond Strong, H.: An
efficient algorithm for byzantine agreement without authentication. Information
and Control 52, 257–274 (1982)

25. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, pp. 281–310. Springer, Heidelberg (2015)

26. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol.
3089, pp. 46–60. Springer, Heidelberg (2004)

27. Gurari, E.M.: Introduction to the theory of computation. Computer Science Press
(1989)

28. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections.
IACR Cryptology ePrint Archive 2002, 165 (2002)

29. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM J. Comput. 36(5), 1231–1247 (2006)

30. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389–404. Springer, Heidelberg (2010)

31. Küsters, R., Truderung, T., Vogt, A.: Accountability: Definition and relationship
to verifiability. IACR Cryptology ePrint Archive 2010, 236 (2010)

32. Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-
resistance and its applications. In: CSF, pp. 122–136 (2010)

33. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance:
new insights from a case study. In: IEEE Symposium on Security and Privacy, pp.
538–553. IEEE Computer Society (2011)

498 A. Kiayias et al.

34. Lichtenstein, D., Linial, N., Saks, M.E.: Imperfect random sources and discrete
controlled processes. In: STOC, pp. 169–177 (1987)

35. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: FOCS,
pp. 367–378. IEEE Computer Society (2006)

36. Moran, T., Naor, M.: Receipt-Free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006)

37. Andrew Neff, C.: Practical high certainty intent verification for encrypted votes.
Votehere, Inc., whitepaper (2004)

38. Popoveniuc, S., Kelsey, J., Regenscheid, A., Voral, P.: Performance requirements
for end-to-end verifiable elections. EVT/WOTE (2010)

39. Raz, R.: Extractors with weak random seeds. STOC (2005)
40. Sako, K., Kilian, J.: Receipt-Free mix-type voting scheme. In: Guillou, L.C.,

Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

41. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

42. Unruh, D., Müller-Quade, J.: Universally composable incoercibility. IACR Cryp-
tology ePrint Archive 2009, 520 (2009)

43. Zagórski, F., Carback, R.T., Chaum, D., Clark, J., Essex, A., Vora, P.L.:
Remotegrity: design and use of an end-to-end verifiable remote voting system.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 441–457. Springer, Heidelberg (2013)

44. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
EUROSAM 1979. LNCS, pp. 216–226. Springer, Heidelberg (1979)

Multi-Party Computations

Cryptographic Agents: Towards a Unified
Theory of Computing on Encrypted Data

Shashank Agrawal1(B), Shweta Agrawal2, and Manoj Prabhakaran1

1 University of Illinois Urbana-Champaign, Champaign, USA
{sagrawl2,mmp}@illinois.edu

2 Indian Institute of Technology Delhi, Delhi, India
shweta@cse.iitd.ac.in

Abstract. We provide a new framework of cryptographic agents that
unifies various modern “cryptographic objects” — identity-based encryp-
tion, fully-homomorphic encryption, functional encryption, and various
forms of obfuscation – similar to how the Universal Composition frame-
work unifies various multi-party computation tasks like commitment,
coin-tossing and zero-knowledge proofs. These cryptographic objects can
all be cleanly modeled as “schemata” in our framework.

Highlights of our framework include the following:

– We use a new indistinguishability preserving (IND-PRE) definition of
security that interpolates indistinguishability and simulation style
definitions, which (often) sidesteps the known impossibilities for the
latter. IND-PRE-security is parameterized by the choice of the “test”
family, such that by choosing different test families, one can obtain
different levels of security for the same primitive (including various
standard definitions in the literature).

– We present a notion of reduction from one schema to another and
a powerful composition theorem with respect to IND-PRE security.
We show that obfuscation is a “complete” schema under this notion,
under standard cryptographic assumptions. We also provide a stricter
notion of reduction (Δ-reduction) that composes even when security
is only with respect to certain restricted test families of importance.

– Last but not the least, our framework can be used to model abstrac-
tions like the generic group model and the random oracle model,
letting one translate a general class of constructions in these heuris-
tic models to constructions based on standard model assumptions.

We also illustrate how our framework can be applied to specific primi-
tives like obfuscation and functional encryption. We relate our definitions
to existing definitions and also give new constructions and reductions
between different primitives.

S. Agrawal and M. Prabhakaran—Research supported in part by NSF grant 1228856.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 501–531, 2015.
DOI: 10.1007/978-3-662-46803-6 17

502 S. Agrawal et al.

1 Introduction

Over the last decade or so, thanks to remarkable breakthroughs in crypto-
graphic techniques, a wave of “cryptographic objects” — identity-based encryp-
tion, fully-homomorphic encryption, functional encryption, and most recently,
various forms of obfuscation — have opened up exciting new possibilities for com-
puting on encrypted data. Initial foundational results on this front consisted of
strong impossibility results. Breakthrough constructions, as they emerged, often
used specialized security definitions which avoided such impossibility results.
However, as these objects and their constructions have become numerous and
complex, often building on each other, the connections among these disparate
cryptographic objects — and among their disparate security definitions — have
become increasingly confusing.

A case in point is functional encryption (FE) [80]. FE comes in numerous
flavors — public key or symmetric [80,83], with or without function hiding [1,
22], public or private index [24], bounded or unbounded key [61,63,79]. Each
flavor has several candidate security definitions — indistinguishability based
[21,80], adaptive simulation based [24], non-adaptive simulation [76], unbounded
simulation [6], fully-adaptive security [72], black-box/non black-box simulation
[14] to name a few. In addition, FE can be constructed from obfuscation [52]
and can be used to construct property preserving encryption [77], each of which
have numerous security definitions of their own [10,18,66]. It is unclear how
these definitions relate, particularly as primitives are composed, resulting in a
landscape cluttered with similar yet different definitions, of different yet similar
primitives.

The goal of this work is to provide a clean and unifying framework for
diverse cryptographic objects and their various security definitions, equipped
with powerful reductions and composition theorems. In our framework, security
is parametrized by a family of “test” functions — by choosing the appropriate
family, we are able to place known security definitions for a given object on the
same canvas, enabling comparative analysis. Our framework is general enough
to model abstractions like the generic group model, letting one translate a gen-
eral class of constructions in these heuristic models to constructions based on
standard model assumptions.

Why A Framework? A unifying framework like ours has significant potential
for affecting the future course of development of the theory and practice of
cryptographic objects. The most obvious impact is on the definitional aspects –
both positive and negative results crucially hinge on the specifics of the definition.
Our framework allows one to systematically explore different definitions obtained
by instantiating each component in the framework differently. We can not only
“rediscover” existing definitions in this way, but also discover new definitions,
both stronger and weaker than the ones in the literature. As an example, we
obtain a new notion of “adaptive differing-inputs obfuscation” that leads to
significant simplifications in constructions using “differing-inputs obfuscation”.

Cryptographic Agents: Towards a Unified Theory 503

The framework offers a means to identify what is common to a variety of
objects, to compare them against each other by reducing one to another, to
build one from the other by using our composition theorems. In addition, one
may more easily identify intermediate objects of appropriate functionality and
security that can be used as part of a larger construction. Another important
contribution of the framework is the ability to model computational assumptions
suitable for these constructions at an appropriate level of abstraction 1.

Why a New Framework? One might wonder if an existing framework for
secure multi-party computation (MPC) — like the Universal Composition (UC)
framework — cannot be used, or repurposed, to handle cryptographic objects as
well. While certain elements of these frameworks (like the real/ideal paradigm)
are indeed relevant beyond MPC, there are several differences between MPC
and cryptographic objects which complicates this approach (which indeed was
the starting point for our framework). Firstly, there is a strict syntactic require-
ment on schemes implementing cryptographic objects — namely, that they are
non-interactive — which is absent for MPC protocols; indeed, MPC frameworks
typically do not impose any constraints on the number of rounds, let alone
rule out interaction. Secondly, and more importantly, the security definition
in general-purpose MPC frameworks typically follow a simulation paradigm2.
Unfortunately, such a strong security requirement is well-known to be unrealiz-
able — e.g., the “virtual black-box” definition of obfuscation is unrealizable [10].
To be relevant, it is very important that a framework for modeling obfuscation
and other objects admits weaker security definitions.

Finally, a simple framework for cryptographic objects need not model various
subtleties of protocol execution in a network that the MPC frameworks model.
These considerations lead us to a bare-bones framework, which can model the
basic security requirements of cryptographic objects (but little else).

Cryptographic Agents Framework. Our unifying framework, called the
Cryptographic Agents framework models one or more (possibly randomized, state-
ful) objects that interact with each other, so that a user with access to their codes
can only learn what it can learn from the output of these objects. As a running
example, functional encryption schemes could be considered as consisting of
“message agents” and “key agents.”

1 cf. in secure multi-party computation, the existence of a semi-honest OT protocol is
a more appropriate assumption that the existence of an enhanced trapdoor one-way
permutation

2 One exception to this is the “input-indistinguishable computation” framework of
Micali, Pass and Rosen for secure function evaluation of deterministic functions
[74]. Unfortunately, this framework heavily relies on interactivity of protocols (an
“implicit input” is defined by a transcript; but when a party interacts with an object
it received, there is no well-defined transcript), and is unsuitable for modeling cryp-
tographic objects.

504 S. Agrawal et al.

B

Test
Ideal
User

O E

Test
Ideal
User

Honest Real User

Fig. 1. The ideal world (on the left) and the real world with an honest user

To formalize the security requirement, we use a real-ideal paradigm, but at
the same time rely on an indistinguishability notion (rather than a simulation-
based security notion). We informally describe the framework below.

– Ideal Execution. The ideal world consists of two (adversarially designed)
entities — a User and a Test — who can freely interact with each other.
(See the left-hand side of Figure 1.) User is given access, via handles, to a
collection of “agents” (interactive Turing Machines), maintained by B (a
“blackbox”). User and Test are both allowed to add agents to the collection
maintained by B, but the class of agents that they can add are restricted by
a schema.3 The User can feed inputs to these agents, and also allow a set of
them to interact with each other, in a “session.” At the end of this interaction,
the user obtains all the outputs from the session, and also additional handles
to the agents with updated states.
Example: In a schema capturing public-key functional encryption, there
are two kinds of agents – “message agents” and “key agents.” A message
agent simply sends out (i.e., copies into its communication tape) an inbuilt
message, every time it is invoked. A key agent reads a message from its
incoming communication tape, applies an inbuilt function to it, and copies
the result to its output tape. The user can add only message agents to the
collection maintained by B; Test can add key agents as well. Note that the
outputs that the user receives from a session involving a message agent and
a key agent is the output produced by the key agent (the message agent
produces no output; it only communicates its message to the key agent). 4

– Real Execution. The real execution also consists of two entities, the (real-
world) user (or an adversary Adv) and Test. The latter is in fact the same
as in the ideal world. But in the real world, when Test requests adding an
agent to the collection of agents, the user is handed a cryptographically

3 Here, a schema is analogous to a functionality in UC security. Thus different prim-
itives like functional encryption and fully-homomorphic encryption are specified by
different schemata.

4 For functional encryption, neither inputs to agents nor their states are relevant, as
the message and key agents have all the relevant information built in. However,
obfuscation is most directly modeled by non-interactive agents that take an input,
and modeling fully homomorphic encryption requires agents that maintain state.

Cryptographic Agents: Towards a Unified Theory 505

generated object – a “cryptographic agent” – instead of a handle to this
agent. The correctness requirement is that an honest user should be able to
perform all the operations any User can in the ideal world (i.e., add new
agents to the collection, and execute a session of agents, and thereby update
their states) using an “execution” operation applied to the cryptographic
agents. In Figure 1, O indicates the algorithm for encoding, and E indicates
a procedure that applies an algorithm for session executions, as requested by
the User. (However, an adversarial user Adv in the real world may analyze
the cryptographic agents in anyway it wants.)

– Security Definition. We define IND-PRE (for indistinguishability preserv-
ing) security, which requires that if a Test is such that a certain piece of
information about it (modeled as an input bit) remains hidden from every
user in the ideal world, then that information should stay hidden from every
user that interacts with Test in the real world as well. Note that we do not
require that the view in the real world can be simulated in the ideal world.
In the real world we require all entities to be computationally bounded. But
in the ideal world, we may consider users that are computationally bounded
or unbounded (possibly with a limit on the number of sessions it can invoke).
Another variable in our definition is the family of tests: by default, we con-
sider Tests that are PPT; but we may consider Tests from a family Γ , in
which case the resulting security definition is termed Γ -IND-PRE security.
These choices allow us to model different levels of security, which translate
to various natural notions of security for specific schemata.

Our Contributions. Our main contribution is a new model of cryptographic
computation, that unifies and extends primitives for computing on encrypted
data such as obfuscation, functional encryption, fully homomorphic encryption,
property preserving encryption, and such others. One can consider our frame-
work analogous to the now-standard approach in secure multi-party computation
(MPC) (e.g., following [39,58]) that uses a common paradigm to abstract the secu-
rity guarantees in a variety of different tasks like commitments, zero-knowledge
proofs, coin-flipping, oblivious-transfer, etc. While we anticipate several refine-
ments and extensions to the framework presented here, we consider that, thanks
to its simplicity, the current model already provides important insight about the
“right” security notions for the primitives we capture, and opens up a wealth of
new questions and connections for further investigation.

The list of technical results in this paper could be viewed in two parts: contri-
butions to the foundational aspects of cryptographic objects, and contributions
to specific objects of interest (mainly, obfuscation, functional encryption and
assumptions related to (bi/multi-linear) groups). Some of our specific contribu-
tions to the foundational aspects of this area are as follows.

– We first define a general framework of cryptographic agents that can be
instantiated for different primitives using different schemata. The resulting
security definition, called Γ -IND-PRE-security is parameterized by a test
family Γ .

506 S. Agrawal et al.

For natural choices of Γ , these definitions tend to be not only stronger
than standard definitions, but also easier to work with in larger constructions
(see next). For some schemata, like obfuscation and functional encryption,
choosing Γ to be the family of all PPT tests can lead to definitions that are
known to be impossible to realize. But more restricted test families can be
used to capture existing definitions (with candidate constructions) exactly:
we identify Δ, Δdet and Δ∗ (defined later) as important test families that do
this for obfuscation and/or functional encryption.

Δ-IND-PRE-security is of particular interest, because for each of the
example primitives we consider in this paper — obfuscation, functional encryp-
tion, fully-homomorphic encryption and property-preserving encryption — Δ-
IND-PRE-security for the corresponding schema implies the standard security
definitions (that are not known to be impossible to realize) in the literature,
and yet, is not known to be impossible to realize.

– We present a notion of reduction from one schema to another5, and a compo-
sition theorem. This provides a modular means to build and analyze secure
schemes for a complicated schema based on those for simpler schemata. Fur-
ther, reduction provides a way to study, in abstract, relative complexity of
different schemata: e.g., general purpose obfuscation turns out to be a “com-
plete” schema under this notion.

– The notion of reduction mentioned above composes for Γppt-IND-PRE-security
where Γppt is the class of all probabilistic polynomial time (PPT) tests. Unfor-
tunately, obfuscation (and hence, any other complete schema) can be shown
to be unrealizable under this definition. Hence, we present a more struc-
tured notion of reduction, called Δ-reduction, that composes with respect
to Δ-IND-PRE-security as well.

These basic results have several important implications to specific primitives
of interest. In this paper, we initiate the study of a few such primitives in our
framework (and leave others to future work).

– Functional Encryption. Our framework provides a unified method to cap-
ture all variants of FE using just a few basic schemata by employing different
test families. For concreteness, below we focus on public-key FE.

• Defining FE With and Without Function-Hiding. Function-hiding
(public-key) FE had proved difficult to define satisfactorily [1,22,23].
The IND-PRE framework provides a way to obtain a natural and gen-
eral definition of this primitive. We present a simple schema Σfh-fe to
capture the security guarantees of function-hiding FE; a similar schema
Σfe captures FE without function-hiding.

5 Our reduction uses a simulation-based security requirement. Thus, among other
things, it also provides a means for capturing simulation-based security definition:
we say that a scheme Π is a Γ -SIM-secure scheme for a schema Σ if Π reduces Σ
to the null-schema.

Cryptographic Agents: Towards a Unified Theory 507

• Hierarchy of Security Requirements. By using different test families,
we obtain a hierarchy of security notions for FE (with and without
function-hiding), Δdet-IND-PRE ⇐ Δ-IND-PRE ⇐ IND-PRE ⇐ SIM (see
Footnote 5). Of these, Δdet-IND-PRE security for FE without function-
hiding is equivalent to the standard notion of security used currently
[21,80]. The strongest one, SIM security, is impossible for general func-
tion families [6,14,24].

• Constructions. We present new constructions for Δ-IND-PRE secure FE
(both with and without function hiding) for all polynomial-time com-
putable functions. We also present an IND-PRE secure FE for the inner
product functionality. Two of these constructions are in the form of reduc-
tions (a Δ-reduction to an obfuscation schema, and a (standard) reduc-
tion to a “bilinear generic group” schema, which are described below).
Also, the first two constructions crucially rely on Δ-IND-PRE-security of
obfuscation (i.e., adaptive differing-inputs obfuscation), thereby consid-
erably simplifying the constructions and the analysis compared to those
in recent work [8,28] which use (non-adaptive) differing-inputs obfusca-
tion.

– Obfuscation. We study in detail, the various notions of obfuscation in the
literature, and relate them to Γ -IND-PRE-security for various test families Γ .
Our strongest definition of this form, which considers the family of all PPT
tests, turns out to be impossible. Our definition is conceptually “weaker”
than the virtual black-box simulation definition (in that it does not require
a simulator), but the impossibility result of Barak et al. [10] continues to
apply to this definition. To circumvent the impossibility, we identify three
test families, Δ, Δ∗ and Δdet, such that Δdet-IND-PRE-security is equivalent
to indistinguishability obfuscation, Δ∗-IND-PRE-security is equivalent to dif-
fering inputs obfuscation, and Δ-IND-PRE-security implies both the above.
We state a new definition for the security of obfuscation – adaptive differing-
inputs obfuscation – which is equivalent Δ-IND-PRE-security. Informally, it
is the same as differing inputs obfuscation, but an adversary is allowed to
interact with the “sampler” (which samples two circuits one of which will
be obfuscated and presented to the adversary as a challenge), even after it
receives the obfuscation. Such a notion was independently introduced in [7].

– Using the Generic Group in the Standard Model. One can model
random oracles and the generic group model as schemata. An assumption
that such a schema has an IND-PRE-secure scheme is a standard model
assumption, and to the best of our knowledge, not ruled out by the techniques
in the literature. This is because, IND-PRE-security captures only certain
indistinguishability guarantees of the generic group model, albeit in a broad
manner (by considering arbitrary tests). Indeed, for random oracles, such an
assumption is implied by (for instance) virtual black-box secure obfuscation
of point-functions, a primitive that has plausible candidates in the literature.
The generic group schema (as well as its bilinear version) is a highly versa-
tile resource used in several constructions, including that of cryptographic
objects that can be modeled as schemata. Such constructions can be consid-

508 S. Agrawal et al.

ered as reductions to the generic group schema. Combined with our compo-
sition theorem, this creates a recipe for standard model constructions under
a strong, but simple to state, computational assumption.

We give such an example for obtaining a standard model function-hiding
public-key FE scheme for inner-product predicates (for which a satisfactory
general security definition has also been lacking).

– Other Primitives. Our model is extremely flexible, and can easily capture
most cryptographic objects for which an indistinguishability security notion
is required. This includes witness encryption, functional witness encryption,
fully homomorphic encryption (FHE), property-preserving encryption (PPE)
etc. We discuss a couple of them – FHE and PPE – to illustrate this. We
can model FHE using (stateful) cryptographic agents. The resulting security
definition, even with the test family Δdet, implies the standard definition in
the literature, with the additional requirement that a ciphertext does not
reveal how it was formed, even given the decryption key. For PPE, we show
that an Δdet-IND-PRE secure scheme for the PPE schema is in fact equivalent
to a scheme that satisfies the standard definition of security for PPE.

Related Work. Here, we provide a short (non exhaustive) summary of related
work on the objects that are studied in this paper.

Program Obfuscation. Program Obfuscation is the task of garbling a given pro-
gram so that the input-output behavior is retained, but everything else about
the program is hidden. The formal study of program obfuscation was initiated
by Barak et al. [10] who showed that the strongest possible notion of security,
called virtual black box security was impossible to achieve for general circuits. To
address this, they defined weaker notions of security, such as indistinguishabil-
ity obfuscation (denoted by I-Obf), which states that for two equivalent circuits
C0 and C1, their obfuscations should be computationally indistinguishable. A
related but stronger security notion defined by [10] was that of differing input
obfuscation (denoted by DI-Obf), which further requires that an adversary who
can distinguish between C0 and C1 can be used to extract an input on which the
two circuits differ.

Despite these weakenings, the area of program obfuscation was plagued by
impossibilities [62,67,71] for a long time, with few positive results, often for very
specialized classes of functions [38,40,42,43,68,86]. This state of affairs, however,
has improved significantly in recent times. We now have program obfuscators
for complex functionalities such as conjunctions [32], d-CNF formulas [33], cir-
cuits [34,44,52] and even Turing machines [8], in weaker models of computation
such as the generic graded encoding scheme model [8,32–34], the generic colored
matrix model [52] and the idealized pseudo free group model [44].

These constructions are proven secure under different notions of security:
virtual black box, I-Obf, DI-Obf. Alongside, several new applications have been
developed for IP-Obf [81] and DI-Obf [8,28]. There is a growing research effort
in exploring alternate notions of obfuscation [19,54].

Cryptographic Agents: Towards a Unified Theory 509

Functional Encryption. Functional encryption generalizes public key encryption
to allow fine grained access control on encrypted data. In functional encryp-
tion, a user can be provided with a secret key corresponding to a function f ,
denoted by SKf . Given SKf and ciphertext CTx = Encrypt(x), the user may run
the decryption procedure to learn f(x). Security of the system guarantees that
nothing beyond f(x) can be learned from CTx and SKf . Functional encryption
systems traditionally focused on restricted classes of functions such as the iden-
tity function [3,4,21,27,46,47,56,82], membership checking [26], boolean formu-
las [16,65,70], inner product functions [5,69,70] and more recently, even regular
languages [85]. Recent times saw constructions for more general classes of func-
tions: Gorbunov et al. [64] and Garg et al. [53] provided the first constructions
for an important subclass of FE called “public index FE” for all circuits, Gold-
wasser et al. [61] constructed succinct simulation-secure single-key FE scheme
for all circuits, Garg et al. [52] constructed multi-key FE schemes for all cir-
cuits while Goldwasser et al. and Ananth et al. [8,60] constructed FE for Turing
machines.

Fully homomorphic encryption. Fully homomorphic encryption allows a user to
evaluate a circuit C on encrypted messages {CTi = Encrypt(xi)}i∈[n] so that
Decrypt

(
C(CT1, . . . ,CTn)

)
= C(x1, . . . , xn). Since the first breakthrough con-

struction by Gentry [55], extensive research effort has been focused on providing
improvements [30,31,35–37,49,57].

2 Preliminaries

To formalize the model of cryptographic agents, we shall use the standard notion
of probabilistic interactive Turing Machines (ITM) with some modifications (see
below). To avoid cumbersome formalism, we keep the description somewhat infor-
mal, but it is straightforward to fully formalize our model. We shall also not
attempt to define the model in its most generality, for the sake of clarity.

In our case an ITM has separate tapes for input, output, incoming commu-
nication, outgoing communication, randomness and work-space.

Definition 1 (Agents and Family of Agents). An agent is an interactive
Turing Machine, with the following modifications:

– There is a special read-only parameter tape, which always consists of a secu-
rity parameter κ, and possibly other parameters.

– There is an a priori restriction on the size of all the tapes other than the ran-
domness tape (including input, communication and work tapes), as a func-
tion of the security parameter.

– There is a special blocking state such that if the machine enters such a state,
it remains there if the input tape is empty. Similarly, there are blocking states
which let the machine block if any combination of the communication tape
and the input tape is empty.

510 S. Agrawal et al.

An agent family is a maximal set of agents with the same program (i.e., state
space and transition functions), but possibly different contents in their parameter
tapes. We also allow an agent family to be the empty set ∅.

We can allow non-uniform agents by allowing an additional advice tape. Our
framework and basic results work in the uniform and non-uniform model equally
well.

Note that an agent who enters a blocking state can move out of it if its
configuration is changed by adding a message to its input tape and/or commu-
nication tape. However, if the agent enters a halting state, it will not move out
of that state. An agent who never enters a blocking state is called a non-reactive
agent. An agent who never reads or writes from a communication tape is called
a non-interactive agent.

Definition 2 (Session). A session maps a finite ordered set of agents, their
configurations and inputs, to outputs and (updated) configurations of the same
agents, as follows. The agents are initialized with the given inputs on their input
tapes, and then executed together until they are deadlocked.6 The result of apply-
ing the session is defined as the collection of outputs and configurations of the
agents when the session terminates (if it terminates; if not, the result is left
undefined).

We shall be restricting ourselves to collections of agents such that sessions involv-
ing them are guaranteed to terminate. Note that we have defined a session to
have only an initial set of inputs, so that the outcome of a session is well-defined
(without the need to specify how further inputs would be chosen).

Next we define an important notion in our framework, namely that of an
ideal agent schema, or simply, a schema. A schema plays the same role as a
functionality does in the Universal Composition framework for secure multi-
party computation. That is, it specifies what is legitimate for a user to do in a
system. A schema defines the families of agents that a “user” and a “test” (or
authority) are allowed to create.

Definition 3 (Ideal Agent Schema). A (well-behaved) ideal agent schema
Σ = (Pauth,Puser) (or simply schema) is a pair of agent families, such that there
is a polynomial poly such that for any session of agents belonging to Pauth∪Puser

(with any inputs and any configurations, with the same security parameter κ),
the session terminates within poly(κ, t) steps, where t is the number of agents
in the session.
6 More precisely, the first agent is executed till it enters a blocking or halting state,

and then the second and so forth, in a round-robin fashion, until all the agents
remain in blocking or halting states for a full round. After each execution of an
agent, the contents of its outgoing communication tape are interpreted as an ordered
sequence of messages to each of the other agents in the session (some or all of them
possibly being empty messages), and copied over to the respective agents’ incoming
communication tapes.

Cryptographic Agents: Towards a Unified Theory 511

Other Notation. If X and Y are a family of binary random variables (one for
each value of κ), we write X ≈ Y if there is a negligible function negl such that
|Pr[X = 1]−Pr[Y = 1]| ≤ negl(κ). For two systems M and M ′, we say M � M ′

if the two systems are indistinguishable to an interactive PPT distinguisher.

3 Defining Cryptographic Agents

In this section we define what it means for a cryptographic agent scheme to
securely implement a given ideal agent schema. Intuitively, the security notion
is of indistinguishability preservation: if two executions using an ideal schema
are indistinguishable, we require them to remain indistinguishable when imple-
mented using a cryptographic agent scheme. While it consists of several standard
elements of security definitions, indistinguishability preservation as defined here
is novel, and potentially of broader interest.

Ideal World. The ideal system for a schema Σ consists of two parties Test
and User and a fixed third party B[Σ] (for “black-box”). All three parties are
probabilistic polynomial time (PPT) ITMs, and have a security parameter κ
built-in. We shall explicitly refer to their random-tapes as r, s and t. Test receives
a “secret bit” b as input and User produces an output bit b′. The interaction
between User, Test and B[Σ] can be summarized as follows:

– Uploading agents. Let Σ = (Pauth,Puser) where we associate Ptest :=
Pauth ∪ Puser with Test and Puser with User. Test and User can, at any point,
choose an agent from its agent family and send it to B[Σ]. More precisely,
User can send a string to B[Σ], and B[Σ] will instantiate an agent Puser, with
the given string (along with its own security parameter) as the contents of
the parameter tape, and all other tapes being empty. Similarly, Test can send
a string and a bit indicating whether it is a parameter for Pauth or Puser, and
it is used to instantiate an agent Pauth or Puser, accordingly 7. Whenever an
agent is instantiated, B[Σ] sends a unique handle (a serial number) for that
agent to User; the handle also indicates whether the agent belongs to Pauth

or Puser.
– Request for Session Execution. At any point in time, User may request

an execution of a session, by sending an ordered tuple of handles (h1, . . . , ht)
(from among all the handles obtained thus far from B[Σ]) to specify the con-
figurations of the agents in the session, along with their inputs. B[Σ] reports
back the outputs from the session, and also gives new handles corresponding

7 In fact, for convenience, we allow Test and User to specify multiple agents in a single
message to B[Σ].

512 S. Agrawal et al.

to the configurations of the agents when the session terminated.8 If an agent
halts in a session, no new handle is given for that agent.

Observe that only User receives any output from B[Σ]; the communication
between Test and B[Σ] is one-way. (See Figure 1.)

We define the random variable ideal〈Test(b) | Σ | User〉 to be the output of
User in an execution of the above system, when Test gets b as input. We write
ideal〈Test | Σ | User〉 in the case when the input to Test is a uniformly random
bit. We also define Time〈Test | Σ | User〉 as the maximum number of steps taken
by Test (with a random input), B[Σ] and User in total.

Definition 4. We say that Test is hiding w.r.t. Σ if ∀ PPT party User,

ideal〈Test(0) | Σ | User〉 ≈ ideal〈Test(1) | Σ | User〉.

When the schema is understood, we shall refer to the property of being hiding
w.r.t. a schema as simply being ideal-hiding.

Real World. A cryptographic scheme (or simply scheme) consists of a pair
of (possibly stateful and randomized) programs (O, E), where O is an encoding
procedure for agents in Ptest and E is an execution procedure. The real world
execution for a scheme (O, E) consists of Test, a user that we shall generally
denote as Adv and the encoder O. (E features as part of an honest user in the
real world execution: see Figure 1.) Test remains the same as in the ideal world,
except that instead of sending an agent to B[Σ], it sends it to the encoder O. In
turn, O encodes this agent and sends the resulting cryptographic agent to Adv.

We define the random variable real〈Test(b) | O | Adv〉 to be the output
of Adv in an execution of the above system, when Test gets b as input; as
before, we omit b from the notation to indicate a random bit. Also, as before,
Time〈Test | O | User〉 is the maximum number of steps taken by Test (with a
random input), O and User in total.

Definition 5. We say that Test is hiding w.r.t. O if ∀ PPT party Adv,

real〈Test(0) | O | Adv〉 ≈ real〈Test(1) | O | Adv〉.

Note that real〈Test | O | Adv〉 = real〈Test ◦ O | ∅ | Adv〉 where ∅ stands for
the null implementation. Thus, instead of saying Test is hiding w.r.t. O, we shall
sometimes say Test ◦ O is hiding (w.r.t. ∅). Also, when O is understood, we may
simply say that Test is real-hiding.
8 Note that if the same handle appears more than once in the tuple (h1, . . . , ht), it

is interpreted as multiple agents with the same configuration (but possibly different
inputs). Also note that after a session, the old handles for the agents are not inval-
idated; so a User can access a configuration of an agent any number of times, by
using the same handle.

Cryptographic Agents: Towards a Unified Theory 513

Syntactic Requirements on (O, E). (O, E) may or may not use a “setup”
phase. In the latter case we call it a setup-free cryptographic agent scheme, and
O is required to be a memory-less program that takes an agent P ∈ Ptest as input
and outputs a cryptographic agent that is sent to Adv. If the scheme has a setup
phase, O consists of a triplet of memory-less programs (Osetup,Oauth,Ouser): in
the real world execution, first Osetup is run to generate a secret-public key pair
(MSK,MPK);9 MPK is sent to Adv. Subsequently, when O receives an agent
P ∈ Pauth it will invoke Oauth(P,MSK), and when it receives an agent P ∈ Puser,
it will invoke Ouser(P,MPK), to obtain a cryptographic agent that is then sent
to Adv.

E is required to be memoryless as well, except that when it gives a handle to
a User, it can record a string against that handle, and later when User requests a
session execution, E can access the string recorded for each handle in the session.
There is a compactness requirement that the size of this string is a priori bounded
(note that the state space of the ideal agents are also a priori bounded). If there
is a setup phase, E can also access MPK each time it is invoked.

IND-PRE Security. Now we are ready to present the security definition of
a cryptographic agent scheme (O, E) implementing a schema Σ. Below, the
honest real-world user, corresponding to an ideal-world user User, is defined as
the composite program E ◦ User as shown in Figure 1.

Definition 6. A cryptographic agent scheme Π = (O, E) is said to be a Γ -
IND-PRE-secure scheme for a schema Σ if the following conditions hold.

– Correctness. ∀ PPT User and ∀ Test ∈ Γ , ideal〈Test | Σ | User〉 ≈
real〈Test | O | E ◦ User〉. If equality holds, (O, E) is said to have perfect
correctness.

– Efficiency. There exists a polynomial poly such that, ∀ PPT User, ∀Test ∈ Γ ,

Time〈Test | O | E ◦ User〉 ≤ poly(Time〈Test | Σ | User〉, κ).

– Indistinguishability Preservation. ∀Test ∈ Γ ,

Test is hiding w.r.t. Σ ⇒ Test is hiding w.r.t. O.

When Γ is the family of all PPT tests – denoted by Γppt, we simply say that Π
is an IND-PRE-secure scheme for Σ.

4 Reductions and Compositions

A fundamental question regarding (secure) computational models is that of
reduction: which tasks can be reduced to which others. In the context of crypto-
graphic agents, we ask which schemata can be reduced to which other schemata.
9 For “master” secret and public-keys, following the terminology in some of our exam-

ples.

514 S. Agrawal et al.

B[Σ]

Test Adv

S

(a)

B[Σ∗]

O E

Test
Ideal
User

Honest Real User

(b)

O∗ E∗

O E

Test
Ideal
User

Honest Real User

(c)

Fig. 2. (O, E) in (b) is a reduction from schema Σ to Σ∗. The security requirement
is that no adversary Adv in the system (a) can distinguish that execution from an
execution of the system in (b) (with Adv taking the place of honest real user). The
correctness requirement is that the ideal User in (b) behaves the same as the ideal User
interacting directly with B[Σ] (as in Figure 1(a)). (c) shows the composition of the
hybrid scheme (O, E)Σ∗

with a scheme (O∗, E∗) that IND-PRE-securely implements
Σ∗.

We shall use a strong simulation-based notion of reduction. While a simulation-
based security notion for general cryptographic agents or even just obfuscations
(i.e., virtual black-box obfuscation) is too strong to exist, it is indeed possible
to meet a simulation-based notion for reductions between schemata. This is
analogous to the situation in Universally Composable security, where sweeping
impossibility results exist for UC secure realizations in the plain model, but there
is a rich structure of UC secure reductions among functionalities.

A hybrid scheme (O, E)Σ∗
is a cryptographic agent scheme in which O and

E have access to B[Σ∗], as shown in Figure 2 (in the middle), where Σ∗ =
(P∗

auth,P∗
user). If O has a setup phase, we require that Ouser uploads agents only

in P∗
user (but Oauth can upload any agent in P∗

auth ∪ P∗
user). In general, the honest

user would be replaced by an adversarial user Adv. Note that the output bit of
Adv in such a system is given by the random variable ideal〈Test◦O | Σ∗ | Adv〉,
where Test ◦ O denotes the combination of Test and O as in Figure 2.

Definition 7 (Reduction). We say that a (hybrid) cryptographic agent scheme
Π = (O, E) reduces Σ to Σ∗ with respect to Γ , if there exists a PPT simulator
S such that ∀ PPT User,

1. Correctness: ∀Test ∈ Γppt, ideal〈Test | Σ | User〉 ≈ ideal〈Test◦O | Σ∗ | E ◦
User〉.

2. Simulation: ∀Test ∈ Γ , ideal〈Test | Σ | S ◦ User〉 ≈ ideal〈Test ◦
O | Σ∗ | User〉.

If Γ = Γppt, we simply say Π reduces Σ to Σ∗. If there exists a scheme that
reduces Σ to Σ∗, then we say Σ reduces to Σ∗. (Note that correctness is required
for all PPT Test, and not just in Γ .)

Cryptographic Agents: Towards a Unified Theory 515

Figure 2 illustrates a reduction. It also shows how such a reduction can be
composed with an IND-PRE-secure scheme for Σ∗. Below, we shall use (O′, E ′) =
(O ◦ O∗, E∗ ◦ E) to denote the composed scheme in Figure 2(c).10

Theorem 1 (Composition). For any two schemata, Σ and Σ∗, if (O, E)
reduces Σ to Σ∗ and (O∗, E∗) is an IND-PRE secure scheme for Σ∗, then (O ◦
O∗, E∗ ◦ E) is an IND-PRE secure scheme for Σ.

Proof sketch: Let (O′, E ′) = (O ◦ O∗, E∗ ◦ E). Also, let Test′ = Test ◦ O and
User′ = E ◦ User. To show correctness, note that for any User, we have

real〈Test | O′ | E ′ ◦ User〉 = real〈Test′ | O∗ | E∗ ◦ User′〉
(a)≈ ideal〈Test′ | Σ∗ | User′〉
= ideal〈Test ◦ O | Σ∗ | E ◦ User〉
(b)≈ ideal〈Test | Σ | User〉

where (a) follows from the correctness guarantee of IND-PRE security of (O∗, E∗),
and (b) follows from the correctness guarantee of (O, E) being a reduction of Σ
to Σ∗. (The other equalities are by regrouping the components in the system.)

It remains to prove that for all PPT Test, if Test is hiding w.r.t. Σ then
Test is hiding w.r.t. O′.

Firstly, we argue that Test is hiding w.r.t. Σ ⇒ Test′ is hiding w.r.t. Σ∗.
Suppose Test′ is not hiding w.r.t. Σ∗. This implies that there is some User
such that ideal〈Test′(0) | Σ∗ | User〉 ≈ ideal〈Test′(1) | Σ∗ | User〉. But, by
security of the reduction (O, E) of Σ to Σ∗, ideal〈Test′(b) | Σ∗ | User〉 ≈
ideal〈Test(b) | Σ | S ◦User〉, for b = 0, 1. Then, ideal〈Test(0) | Σ | S ◦User〉 ≈
ideal〈Test(1) | Σ | S ◦User〉, showing that Test is not hiding w.r.t. Σ. Thus we
have,

Test is hiding w.r.t. Σ ⇒ Test′ is hiding w.r.t. Σ∗

⇒ Test′ is hiding w.r.t. O∗

⇒ Test is hiding w.r.t. O′,

where the second implication is due to the fact that (O∗, E∗) is an IND-PRE
secure implementation of Σ∗, and the last implication follows by observing that
for any Adv, we have real〈Test′ | O∗ | Adv〉 = real〈Test | O′ | Adv〉 (by
regrouping the components). �

Note that in the above proof, we invoked the security guarantee of (O∗, E∗)
only with respect to tests of the form Test ◦ O. Let Γ ◦ O = {Test ◦ O|Test ∈ Γ}.
Then we have the following generalization.
10 If (O, E) and (O∗, E∗) have a setup phase, then it is implied that O′

auth = Oauth◦O∗
auth,

O′
user = Ouser◦O∗

user; invoking O′
setup invokes both Osetup and O∗

setup, and may in addition
invoke O∗

auth or O∗
user.

516 S. Agrawal et al.

Theorem 2 (Generalized Composition). For any two schemata, Σ and
Σ∗, if (O, E) reduces Σ to Σ∗ and (O∗, E∗) is a (Γ ◦O)-IND-PRE secure scheme
for Σ∗, then (O ◦ O∗, E∗ ◦ E) is a Γ -IND-PRE secure scheme for Σ.

Theorem 3 (Transitivity of Reduction). For any three schemata,
Σ1,Σ2,Σ3, if Σ1 reduces to Σ2 and Σ2 reduces to Σ3, then Σ1 reduces to
Σ3.

Proof sketch: If Π1 = (O1, E1) and Π2 = (O2, E2) are schemes that carry out
the reduction of Σ1 to Σ2 and that of Σ2 to Σ3, respectively, we claim that the
scheme Π = (O1 ◦ O2, E2 ◦ E1) is a reduction of Σ1 to Σ3. The correctness of
this reduction follows from the correctness of the given reductions. Further, if
S1 and S2 are the simulators associated with the two reductions, we can define
a simulator S for the composed reduction as S2 ◦ S1. �

5 Restricted Test Families: Δ, Δ∗ and Δdet

In order to capture various notions of security, we define various correspond-
ing families of test functions. For some schemata of interest, such as obfusca-
tion, there exist no IND-PRE secure schemes (see the full version [2] for details).
Restricted test families are also useful to bypass these impossibilities.

We remark that one could define test families specifically adapted to the exist-
ing security definitions of various primitives, but our goal is to provide general
test families that apply meaningfully to all primitives, and also, would support a
composable notion of reduction. Towards this we propose the following sub-class
of PPT tests, called Δ. Intuitively Δ is a set of tests that reveal everything about
the agents it sends to the user except for one bit b. This exactly captures indis-
tinguishability style definitions such as indistinguishability obfuscation, differing
inputs obfuscation, indistinguishability style FE and such others.

We formalize this intuition as follows: for Test ∈ Δ, each time Test sends an
agent to B[Σ], it picks two agents (P0, P1). Both the agents are sent to User, and
Pb is sent to B[Σ] (where b is the secret bit input to Test). Except for selecting
the agent to be sent to B[Σ], Test is oblivious to the bit b. It will be convenient
to represent Test(b) (for b ∈ {0, 1}) as D◦ c◦ s(b), where D is a PPT party which
communicates with User, and outputs pairs of the form (P0, P1) to c; c sends
both the agents to User, and also forwards them to s; s(b) forwards Pb to B[Σ]
(and sends nothing to User).

As we shall see, for both obfuscation and functional encryption, Δ-IND-PRE-
security is indeed stronger than all the standard indistinguishability based secu-
rity definitions in the literature.

But a drawback of restricting to a strict subset of all PPT tests is that the
composition theorems (Theorem 1 and Theorem 3) do not hold any more. This
is because, these composition theorems crucially relied on being able to define
Test′ = Test ◦ O as a member of the test family, where O was defined by the

Cryptographic Agents: Towards a Unified Theory 517

B

O

s

c

D

Adv

(a)

B

s

H

c

D

Adv

(b)

B

s

H

c

D

K

Adv

(c)

B

s

c

H

c

D

Adv

(d)

Fig. 3. Illustration of Δ and the extra requirements on Δ-reduction. (a) illustrates
the structure of a test in Δ; the double-arrows indicate messages consisting of a pair
of agents. The first condition on H is that (a) and (b) are indistinguishable to Adv:
i.e., H can mimic the message from O without knowing the input bit to s. The second
condition is that (c) and (d) are indistinguishable: i.e., K should be able to simulate
the pairs of agents produced by H, based only on the input to H (copied by c to Adv)
and the messages from H to Adv.

reduction (see Theorem 2). Nevertheless, as we shall see, analogous composition
theorems do exist for Δ, if we enhance the definition of a reduction. At a high-
level, we shall require O to have some natural additional properties that would
let us convert Test ◦ O back to a test in Δ, if Test itself belongs to Δ.

Combining Machines: Some Notation. Before defining Δ-reduction and
proving the related composition theorems, it will be convenient to introduce
some additional notation. Note that the machines c and s above, as well as the
program O, have three communication ports (in addition to the secret bit that
s receives): in terms of Figure 3, there is an input port below, an output port
above and another output port on the right, to communicate with User. (D is
also similar, except that it has no input port below, and on the right, it can
interact with User by sending and receiving messages.) For such machines, we
use M1 ◦ M2 to denote connecting the output port above M1 to the input port
of M2. The message from M1 ◦ M2 to User is defined to consist of the pair of
messages from M1 and M2 (formatted into a single message).

We shall also consider adding machines to the right of such a machine. Specif-
ically, we use M / K to denote modifying M using a machine K that takes as
input the messages output by M to User (i.e., to its right), and to each such
message may append an additional message of its own. Recall that for two sys-
tems M and M ′, we say M � M ′ if the two systems are indistinguishable to an
interactive PPT distinguisher. Using this notation, we define Δ-reduction.

Definition 8 (Δ-Reduction). We say that a (hybrid) obfuscated agent scheme
Π = (O, E) Δ-reduces Σ to Σ∗ if

1. Π reduces Σ to Σ∗ with respect to Δ (as in Definition 7), and
2. there exists PPT H and K such that

(a) for all D such that D◦c◦s is hiding w.r.t. Σ, D◦c◦s(b)◦O � D◦c◦H◦s(b),
for b ∈ {0, 1};

518 S. Agrawal et al.

(b) c ◦ H ◦ c � c ◦ H / K.

If there exists a scheme that Δ-reduces Σ to Σ∗, then we say Σ Δ-reduces to
Σ∗.

Informally, condition (a) allows us to move O “below” s(b): note that H will
need to send any messages O used to send to User, without knowing b. Condition
(b) requires that sending a copy of the pairs of agents output by H (by adding c
“above” H) is “safe”: it can be simulated by K, which only sees the pair of agents
that are given as input to H. Δ-reduction allows us to extend the composition
theorem to Δ-IND-PRE security. We prove the following theorems in the full
version of this paper [2].

Theorem 4 (Δ-Composition). For any two schemata, Σ and Σ∗, if (O, E)
Δ-reduces Σ to Σ∗ and (O∗, E∗) is a Δ-IND-PRE secure implementation of Σ∗,
then (O ◦ O∗, E∗ ◦ E) is a Δ-IND-PRE secure implementation of Σ.

Theorem 5 (Transitivity of Δ-Reduction). For any three schemata, Σ1,
Σ2, Σ3, if Σ1 Δ-reduces to Σ2 and Σ2 Δ-reduces to Σ3, then Σ1 Δ-reduces to
Σ3.

Other Restricted Test Families. We define two more restricted test families,
Δ∗ and Δdet, which are of great interest for the obfuscation and functional
encryption schemata. Both of these are subsets of Δ.

The family Δdet simply consists of all deterministic tests in Δ. Equivalently,
Δdet is the class of all tests of the form D ◦ c ◦ s, where D is a deterministic
polynomial time party which communicates with User, and outputs pairs of the
form (P0, P1) to c.

The family Δ∗ consists of all tests in Δ which do not read any messages
from User. Equivalently, Δ∗ is the class of all tests of the form D ◦ c ◦ s, where
D is a PPT party which may send messages to User but does not accept any
messages from User, and outputs pairs of the form (P0, P1) to c. As stated in
the full version [2], the composition theorem for Δ, Theorem 4, extends to Δ∗

as well.

6 Generic Group Schema

Our framework provides a method to convert a certain class of constructions —
i.e., secure schemes for primitives that can be modeled as schemata — that are
proven secure in heuristic models like the random oracle model [15] or the (bilin-
ear) generic group model [73,84], into secure constructions in the standard model.

To be concrete, we consider the case of the generic group model. There are
two important observations we make:

Cryptographic Agents: Towards a Unified Theory 519

– Proving that a cryptographic scheme for a given schema Σ is secure in the
generic group model typically amounts to a reduction from Σ to a “generic
group schema” Σgg.

– The assumption that there is an IND-PRE-secure scheme Πgg for Σgg is a
standard-model assumption (that does not appear to be ruled out by known
results or techniques).

Combined using the composition theorem (Theorem 1), these two observations
yield a standard model construction for an IND-PRE-secure scheme for Σ.

Above, the generic group schema Σgg is defined in a natural way: the agents
(all in Puser, with Pauth = ∅) are parametrized by elements of a large (say cyclic)
group, and interact with each other to carry out group operations; the only
output the agents produce for a user is the result of checking equality with
another agent.

We formally state the assumption mentioned above:

Assumption 1 (Γ -Generic Group Agent Assumption). There exists a Γ -
IND-PRE-secure scheme for the generic group schema Σgg.

Similarly, we put forward the Γ -Bilinear Generic Group Agent Assumption,
where Σgg is replaced by Σbgg which has three groups (two source groups and
a target group), and allows the bilinear pairing operation as well.

The most useful form of these assumptions (required by the composition
theorem when used with the standard reduction) is when Γ is the set of all PPT
tests. However, weaker forms of this assumption (like Δ-GGA assumption, or
Δ∗-GGA assumption) are also useful, if a given construction could be viewed as
a stronger form of reduction (like Δ-reduction).

While this assumption may appear too strong at first sight – given the impos-
sibility results surrounding the generic group model – we argue that it is plausible.
Firstly, observe that primitives that can be captured as schemata are somewhat
restricted: primitives like zero knowledge that involve simulation based security,
CCA secure encryption or non-committing encryption and such others do not
have an interpretation as a secure schema. Secondly, IND-PRE security is weaker
than simulation based security, and its achievability is not easily ruled out (see
discussion in Section 10). Also we note that such an assumption already exists
in the context of another popular idealized model: the random oracle model
(ROM). Specifically, consider a natural definition of the random oracle schema,
Σro, in which the agents encode elements in a large set and interact with each
other to carry out equality checks. Then, a Δdet-IND-PRE-secure scheme for Σro

is equivalent to a point obfuscation scheme, which hides everything about the
input except the output. The assumption that such a scheme exists is widely con-
sidered plausible, and has been the subject of prior research [38,40,42,86]. This
fits into a broader theme of research that attempts to capture several features of
the random oracle using standard model assumptions (e.g., [13,20]). The GGA
assumption above can be seen as a similar approach to the generic group model,

520 S. Agrawal et al.

that captures only some of the security guarantees of the generic group model
so that it becomes a plausible assumption in the standard model, yet is general
enough to be of use in a broad class of applications.

One may wonder if we could use an even stronger assumption, by replacing
the (bilinear) generic group schema Σgg or Σbgg by a multi-linear generic group
schema Σmgg, which permits black box computation of multilinear map oper-
ations [25,51]. Interestingly, this assumption is provably false if we consider Γ
to be Γppt, since there exists a reduction of obfuscation schema Σobf to Σmgg

[9,34], and we have seen that there is no IND-PRE-secure scheme for Σobf. On
the other hand, for Γ being Δ or Δ∗, say, it remains a plausible assumption.
Indeed, as mentioned earlier, Pass et al. introduced a computational assumption
on multi-linear maps – called “semantic security” – and showed that the secu-
rity of candidate constructions for indistinguishability obfuscation (aftersome
modifications) can be based on semantically secure multi-linear groups [78]. We
note that their assumption can be stated similar to Assumption 1, but using a
multi-linear map schema and an appropriate test-family.

Falsifiability. Note that the above assumption as stated is not necessarily
falsifiable, since there is no easy way to check that a given PPT test is hiding.
However, it becomes falsifiable if instead of IND-PRE security, we used a modified
notion of security IND-PRE′, which requires that every test which is efficiently
provably ideal-hiding is real-hiding. We note that IND-PRE′ security suffices for
all practical purposes as a security guarantee, and also suffices for the compo-
sition theorem. With this notion, to falsify the assumption, the adversary can
(and must) provide a proof that a test is ideal-hiding and also exhibit a real
world adversary who breaks its hiding when using the scheme.

7 Obfuscation Schema

In this section we define and study the obfuscation schema Σobf. In the obfus-
cation schema, agents are deterministic, non-interactive and non-reactive: such
an agent behaves as a simple Turing machine, that reads an input, produces an
output and halts.

Definition. Below, we formally define the obfuscation schema. If F is a family
of deterministic, non-interactive and non-reactive agents, we define

Σobf(F) := (∅,F).

That is, in the ideal execution User obtains handles for computing F . We shall
consider setup-free, IND-PRE secure implementations (O, E) of Σobf(F).

A special case of Σobf(F) corresponds to the case when F is the class of all
functions that can be computed within a certain amount of time. More precisely,
we can define the agent family Us (for universal computation) to consist of agents
of the following form: the parameter tape, which is at most s(κ) bits long is taken
to contain (in addition to κ) the description of an arbitrary binary circuit C; on

Cryptographic Agents: Towards a Unified Theory 521

input x, Us will compute and output C(x) (padding or truncating x as necessary).
We define the “general” obfuscation schema

Σobf := (∅,Pobf
user) := Σobf(Us),

for a given polynomial s. Here we have omitted s from the notation Σobf and
Pobf
user for simplicity, but it is to be understood that whenever we refer to Σobf

some polynomial s is implied.

Completeness of Obfuscation. We show that Σobf is a complete schema with
respect to schematic reduction (Definition 7). That is, every schema (including
possibly randomized, interactive, and stateful agents) can be reduced to Σobf.
We stress that this does not yield an IND-PRE-secure scheme for every schema
(using composition), since there does not exist an IND-PRE-secure scheme for
Σobf, as described in the full version [2]. However, if there is, say, a hardware-
based IND-PRE secure implementation of Σobf, then this implementation can
be used in a modular way to build an IND-PRE secure schema for any general
functionality.

The reduction uses only standard cryptographic primitives: CCA secure
public-key encryption and digital signatures. We present the full construction
and proof in [2].

Relation to Existing Notions of Obfuscation. By using the test-families
Δdet and Δ∗ in our framework, we can recover the notions of indistinguishabil-
ity obfuscation and differing inputs obfuscation [10,11] exactly. We prove the
following in the full version [2].

Lemma 1. A set-up free Δdet-IND-PRE-secure scheme for Σobf (with perfect
correctness) exists if and only if there exists an indistinguishability obfuscator.

Lemma 2. A set-up free Δ∗-IND-PRE-secure scheme for Σobf (with perfect cor-
rectness) exists if and only if there exists a differing-inputs obfuscator.

A Δ-IND-PRE secure scheme for Σobf is a stronger notion than the above two
notions of obfuscations (because Δ is a superset of Δdet as well as Δ∗). One can
give a definition of obfuscation in the traditional style, which exactly corresponds
to this stronger notion. In the full version [2] we do exactly this, and term
this adaptive differing inputs obfuscation. Independently, in [59] an equivalent
definition appeared under the name of strong differing inputs obfuscation. Also,
we note that we can model Virtual Grey-Box Obfuscation [17] in our framework,
using an appropriate test-family and a statistical notion of hiding in Definition 4.
This relies on an equivalence proven in [18] who give an indistinguishability based
security definition for VGB security.

522 S. Agrawal et al.

8 Functional Encryption

In this section, we present a schema Σfe for Functional Encryption. Although all
variants of FE can 11 be captured as schemata secure against different families of
test programs, we focus on adaptive secure, indistinguishability-based, public-key
FE (with and without function-hiding). In Section 8.1 we introduce the schema
Σfe for FE without function-hiding, and in Section 8.2 we introduce the schema
Σfh-fe for function-hiding FE.

8.1 Functional Encryption Without Function Hiding

Public-key FE without function-hiding is the most well-studied variant of FE.
Definition. For a circuit family C = {Cκ} and a message space X = {Xκ}, we
define the schema Σfe = (Pfe

auth,Pfe
user) as follows:

– Pfe
user: An agent Px ∈ Pfe

user simply sends x to the first agent in the session,
where x ∈ X is a parameter of the agent, and halts. We will often refer to
such an agent as a message agent.

– Pfe
auth: An agent PC ∈ Pfe

auth, when invoked with input 0, outputs C (where
C ∈ C is a parameter of the agent) and halts. If invoked with input 1, it
reads a message x̃ from its incoming communication tape, writes C(x̃) on
its output tape and halts. We will often refer to such an agent as a function
agent.

Reducing Functional Encryption to Obfuscation. In a sequence of recent
results [1,8,28,29,52,59], it was shown how to obtain various flavors of FE
from various flavors of obfuscation. We investigate this connection in terms of
schematic reducibility: can Σfe be reduced to Σobf? For this reduction to trans-
late to an IND-PRE-secure scheme for Σfe, we will need an IND-PRE-secure
scheme for Σobf, and a composition theorem.

Our main result in this section is a Δ-reduction of Σfe to Σobf. Then, com-
bined with a Δ-IND-PRE secure implementation of Σobf, we obtain a Δ-IND-PRE
secure implementation of Σfe, thanks to Theorem 4. 12

Before explaining our reduction, we compare it with the results in [8,28,52].
At a high-level, these works could be seen as giving “(Γfe, Γobf)-reductions”
from Σfe to Σobf for some pair of test families Γfe and Γobf, such that
when it is composed with a Γobf-IND-PRE-secure scheme for Σobf one gets
a Γfe-IND-PRE-secure scheme for Σfe. For example, in [52], Γobf = Δdet

11 Simulation-based definitions can be captured in terms of reduction to the null
schema.

12 Given a Δ∗-IND-PRE secure implementation of Σobf, we could obtain a Δ∗-IND-PRE
secure implementation of Σfe using the same reduction. This follows from the fact
that the composition theorem for Δ, Theorem 4, extends to Δ∗ as well. See the full
version [2] for details.

Cryptographic Agents: Towards a Unified Theory 523

(corresponding to indistinguishability obfuscation); there Γfe is a test-family that
captures selective-secure functional encryption. We do not define such (Γfe, Γobf)-
reductions formally in this work, as they are specific to the test-families used in
[8,28,52]. Instead, we propose Δ-IND-PRE-security as a natural security notion
for both obfuscation and functional encryption schemata, and provide a simpler
Δ-reduction from Σfe to Σobf.

Our Construction. We shall use a simple and natural functional encryption
scheme: the key for a function f is simply a description of f with a signature
on it; a ciphertext of a message m is an obfuscation of a program which when
given as input a signed description of a function f , returns f(m) if the signature
verifies (and ⊥ otherwise). Essentially the same construction was used in [28] as
well, but they rely on “functional signatures” in which it is possible to derive keys
for signing only messages satisfying an arbitrary relation. In our construction,
we need only a standard digital signature scheme.

Below we describe our construction more formally, as a reduction from Σfe

to Σobf and prove that it is in fact a Δ-reduction. Let Σfe = (Pfe
auth,Pfe

user) and
Σobf = (∅,Pobf

user). We shall only describe O = (Osetup,Oauth,Ouser); E is naturally
defined, and correctness is verified easily.

– Osetup picks a pair of signing and verification keys (SK,VK) for the signature
scheme as (MSK,MPK).

– Oauth, when given a function agent Pf ∈ Pfe
auth, outputs (f, σ) to be sent to

E , where f is the parameter of Pf and σ is a signature on it.
– Ouser, when given an agent Pm ∈ Pfe

user as input, uploads an agent Pm,MPK ∈
Pobf
user to B[Σobf], which behaves as follows: on input (f, σ) Pm,MPK verifies

that σ is a valid signature on f with respect to the signature verification key
MPK; if so, it outputs f(m), and else ⊥.

In the full version [2] we show that this is indeed a Δ reduction from Σfe to
Σobf.

Relation with Known Definitions. We examine the relation between
IND-PRE-secure Functional Encryption with standard notions of security, such
as indistinguishability based security. Firstly, we show that Δdet-IND-PRE-secure
is equivalent to indistinguishability secure FE.

Lemma 3. ∃ a Δdet-IND-PRE-secure scheme for Σfe iff ∃ an indistinguishabil-
ity secure FE scheme.

Note that an IND-PRE security implies Δdet-IND-PRE security (for any
schema). On the other hand, we show a strict separation between IND-PRE
and Δdet-IND-PRE security for FE.

Lemma 4. ∃ a Δdet-IND-PRE secure scheme for Σfe which is not an IND-PRE
secure scheme for Σfe.

We prove these results in the full version [2].

524 S. Agrawal et al.

8.2 Function-Hiding Functional Encryption

Now we turn our attention to function-hiding FE (with public-keys). This a sig-
nificantly more challenging problem, both in terms of construction and even in
terms of definition [1,22,23]. The difficulty in definition stems from the public-
key nature of the encryption which allows the adversary to evaluate the function
encoded in a key on arbitrary inputs of its choice: hence a security definition can-
not insist on indistinguishability between two arbitrary functions. In prior work,
this is often handled by restricting the security definition to involve functions
that are chosen from a restricted class of distributions, such that the adversary’s
queries cannot reveal anything about the functions so chosen. The definition aris-
ing from our framework naturally generalizes this, as the security requirement
applies to all hiding tests and thereby removes the need of specifying ad hoc
restrictions. We only need to specify a schema for function-hiding FE, and the
rest of the security definition follows from the framework.

The definition of the schema corresponding to function-hiding FE, Σfh-fe =
(Pfh-fe

auth ,Pfh-fe
user), is identical to that of Σfe, except that a function agent PC ∈

Pfh-fe
auth does not take any input, but always reads an input x from its commu-

nication tape and outputs C(x). That is, the function agents do not reveal the
function now.

Constructions. We present two constructions for function-hiding FE – an
IND-PRE-secure scheme for the class of inner-product predicates, and a Δ-
IND-PRE-secure scheme for all function families.

– The first construction is in fact an information-theoretic reduction of the
schema Σfh-fe(IP) (where IP denotes the class of inner-product predicates)
to the schema Σbgg. Thus under the assumption that there is an IND-PRE
secure scheme for Σbgg, we obtain a scheme for Σfh-fe, using Theorem 1.
This construction is essentially the same as a construction in the recent
work of [1], which was presented in the generic group model. Intuitively,
the simulation based proof in [1] may be interpreted as a simulation based
reduction from Σfh-fe(IP) to Σgg satisfying Definition 7.

– The second construction is for general function-hiding FE: a Δ-IND-PRE-
secure scheme for Σfh-fe, based on the assumption that a Δ-secure scheme
for Σobf exists. We mention that this construction is not a Δ-reduction. It
relies on applying a signature to an obfuscation, and hence our framework
cannot be used to model this as a black-box reduction (indeed, we cannot
model the unforgeability requirement of signatures in our framework).

Further details of these constructions and their proofs are given in the full
version [2].

Cryptographic Agents: Towards a Unified Theory 525

9 Fully Homomorphic Encryption

In this section, we present a cryptographic agent schema Σfhe for Fully Homo-
morphic Encryption (FHE). This schema consists of reactive agents (i.e., agents
which maintain state across invocations). For a message space X = {X}κ and a
circuit family F = {F}κ, we define the schema Pfhe = (Pfhe

test ,Pfhe
user) as follows:

– An agent PMsg ∈ Pfhe
user is specified as follows: Its parameter tape consists

of an initial value x. When invoked with an input C on its input tape, it
reads a set of messages x2, x3, . . . , xt from its communication tapes. Then it
computes C(x1, .., xt) where x1 is its own value (either read from the work-
tape, or if the work-tape is empty, from its parameter tape). Then it updates
its work-tape with this value. When invoked without an input, it sends its
message to the first program in the session.

– An agent PDec ∈ Pfhe
auth is defined as follows: when executed with an agent

PMsg it reads from its communication tape a single message from PMsg and
outputs it.13

In the full version [2] we show that a semantically secure FHE scheme Sfhe =
(Setup,Encrypt,Decrypt,Eval) can be naturally constructed from a Δdet-IND-PRE
secure scheme for Σfhe.

Other Examples. Several examples that we have not discussed, such as witness
encryption and other flavors of FE, can also be naturally modeled as schemata.
We present one more example — namely, property preserving encryption — in
the full version [2], and leave the others to future work on these objects.

10 On Bypassing Impossibilities

An important aspect of our framework is that it provides a clean mechanism
to tune the level of security for each primitive to a “sweet spot.” The goal of
such a definition is that it should imply prevalent achievable definitions while
bypassing known impossibilities. The tuning is done by defining the family of
tests, Γ with respect to which IND-PRE security is required. Below we discuss
a few schemata and the definitions we recommend for them, based on what is
known to be impossible.

Obfuscation. As we show in Section 7, an IND-PRE-secure scheme for Σobf

cannot exist. The impossibility proof relies on the fact that the test can upload
an agent with (long) secrets in them. However, this argument stops applying
when we restrict ourselves to tests in Δ: a test in Δ has the structure D ◦ c ◦ s

13 Note that there is no parameter to a Pauth agent as there is only one of its kind.
However, we can allow a single schema to capture multiple FHE schemes with inde-
pendent keys, in which case an index for the key would be the parameter for Pauth

agents.

526 S. Agrawal et al.

and c will reveal the agent to User. Note that then there could be at most one
bit of uncertainty as to which agent was uploaded.

We point out that Δ-IND-PRE-security is much stronger than the prevalent
notions of indistinguishability obfuscation and differing inputs obfuscation, intro-
duced by Barak et al. [10]. Indeed, to the best of our knowledge, it would be the
strongest definition of obfuscation known that can plausibly exist for all func-
tions. We also observe that Δ-IND-PRE-secure obfuscation 14 is easier to use in
constructions than differing-inputs obfuscation, as exemplified by our construc-
tions in the full version [2].

Functional Encryption. Public-key function-hiding FE, as modeled by Σfh-fe,
is a stronger primitive than obfuscation (for the same class of functions), as
the latter can be easily reduced to the former. This means that there is no
IND-PRE-secure scheme for Σfh-fe for general functions. We again consider Δ-
IND-PRE security as a sweet-spot for defining function-hiding functional encryp-
tion. Indeed, prior to this definition, arguably there was no satisfactory definition
for this primitive. Standard indistinguishability based definitional approaches
(which typically specify an explicit test that is ideal-hiding) run into the prob-
lem that if the user is allowed to evaluate a given function on any inputs of its
choice, there is no one natural ideal-hiding test. Prior works have proposed dif-
ferent approaches to this problem: by restricting to only a specific test [22,23], or
using a relaxed simulation-based definition [1,45]. Δ-IND-PRE security implies
the definitions of Boneh et al. [22,23], but is in general incomparable with the
simulation-based definitions in [1,45]. These latter definitions can be seen as
using a test in the ideal world that allows the adversary to learn more informa-
tion than in the real world. Our definition does not suffer from such information
leakage.

For non-function-hiding FE (captured by the schema Σfe) too, there are
many known impossibility results, when simulation-based security definitions
are used [6,14,24]. At a high-level, these impossibilities followed a “compression”
argument – the decryption of the challenge CT with the queried keys comprise
a pseudorandom string R, but the adversary’s key queries and challenge mes-
sage are sequenced in such a way that to simulate its view, the simulator must
somehow compress R significantly. These arguments do not apply to IND-PRE-
security simply for the reason that there is no simulator implied by it. We do
not have any candidate constructions for IND-PRE-secure scheme for Σfe, for
general functions, but we leave open the possibility that it exists. We do however,
provide a construction for a Δ-IND-PRE-secure scheme for Σfe, assuming one
for Σobf.

Generic Group and Random Oracle. It is well known that a proof of secu-
rity in the generic group or the random oracle model provides only a heuristic
security guarantee. Several works have shown that these oracles are “uninstan-
tiable,” and further there are uninstantiable primitives that can be implemented
in the models with such oracles [12,41,48,50,75]. These results do not contradict

14 or equivalently, adaptive differing-inputs obfuscation

Cryptographic Agents: Towards a Unified Theory 527

Assumption 1, however, because the primitives in question, like non-commiting
encryptions, zero-knowledge proofs and even signature schemes, do not fit into
our framework of schemata. In other words, despite its generality, schemata can
be used to model only certain kind of primitives, which seem insufficient to imply
such separations between the generic group model and the standard model. As
such, we propose Assumption 1, with Γ = Γppt, the family of all PPT tests, as
an assumption worthy of investigation. However, the weaker assumption, with
Γ = Δ suffices for our construction in the full version [2], if we settle for Δ-
IND-PRE security for the resulting scheme.

References

1. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A.,
Prabhakaran, M., Sahai, A.: On the practical security of inner product functional
encryption. To appear in PKC (2015)

2. Agrawal, S., Agrawal, S., Prabhakaran, M.: Cryptographic agents: Towards a uni-
fied theory of computing on encrypted data. Cryptology ePrint Archive, Report
2014/480 (2014). http://eprint.iacr.org/

3. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

4. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010)

5. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

6. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

7. Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro, S.,
Wilson, D.A.: On the relationship between functional encryption, obfuscation,
and fully homomorphic encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol.
8308, pp. 65–84. Springer, Heidelberg (2013)

8. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfus-
cation and applications. Cryptology ePrint Archive (2013)

9. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

10. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

11. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), May 2012

12. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

13. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 398–415. Springer, Heidelberg (2013)

http://eprint.iacr.org/

528 S. Agrawal et al.

14. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility
results, impossibility results and the quest for a general definition. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Heidelberg (2013)

15. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the First Annual Conference on Computer
and Communications Security. ACM, November 1993

16. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

17. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010)

18. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014)

19. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: Indistinguishability obfusca-
tion vs. auxiliary-input extractable functions: One must fall. Cryptology ePrint
Archive, Report 2013/641 (2013). http://eprint.iacr.org/

20. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable
hash and one-way functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 524–541. Springer, Heidelberg (2009)

21. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Hei-
delberg (2001)

22. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer,
Heidelberg (2013)

23. Boneh, D., Raghunathan, A., Segev, G.: Function-Private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013)

24. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and chal-
lenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer,
Heidelberg (2011)

25. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography.
IACR Cryptology ePrint Archive (2002)

26. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

27. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (with-
out random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 290–307. Springer, Heidelberg (2006)

28. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

29. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

30. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

http://eprint.iacr.org/

Cryptographic Agents: Towards a Unified Theory 529

31. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS (2012)

32. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer,
Heidelberg (2013)

33. Brakerski, Z., Rothblum, G.N.: Black-box obfuscation for d-cnfs. In: ITCS (2014)
34. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via

generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

35. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

36. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS (2011)

37. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS
(2014)

38. Canetti, R.: Towards realizing random oracles: hash functions that hide all par-
tial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 455–469. Springer, Heidelberg (1997)

39. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, FOCS 2001 (2001)

40. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008)

41. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: STOC (1998)

42. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions (preliminary version). In: Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing, STOC 1998 (1998)

43. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane member-
ship. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer,
Heidelberg (2010)

44. Canetti, R., Vaikuntanathan, V.: Obfuscating branching programs using black-
box pseudo-free groups. Cryptology ePrint Archive, Report 2013/500 (2013).
http://eprint.iacr.org/

45. Caro, A.D., Iovino, V.: On the power of rewinding simulators in functional encryp-
tion. Cryptology ePrint Archive, Report 2013/752 (2013). http://eprint.iacr.org/

46. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to dele-
gate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 523–552. Springer, Heidelberg (2010)

47. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA Int. Conf., pp. 360–363 (2001)

48. Dent, A.W.: Adapting the weaknesses of the random oracle model to the
generic group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 100–109. Springer, Heidelberg (2002)

49. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

50. Fischlin, M.: A note on security proofs in the generic model. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 458–469. Springer, Heidelberg (2000)

http://eprint.iacr.org/
http://eprint.iacr.org/

530 S. Agrawal et al.

51. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

52. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits.
In: FOCS (2013)

53. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

54. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input (2014)

55. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

56. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

57. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92.
Springer, Heidelberg (2013)

58. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In:
STOC (1987)

59. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

60. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg
(2013)

61. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In: STOC,
pp. 555–564 (2013)

62. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

63. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Canetti, R., Safavi-Naini, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

64. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for cir-
cuits. In: STOC (2013)

65. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

66. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)

67. Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic pur-
poses. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 214–232. Springer,
Heidelberg (2007)

68. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely
obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 233–252. Springer, Heidelberg (2007)

Cryptographic Agents: Towards a Unified Theory 531

69. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

70. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: attribute-based encryption and (hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

71. Lynn, B.Y.S., Prabhakaran, M., Sahai, A.: Positive results and techniques for
obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 20–39. Springer, Heidelberg (2004)

72. Matt, C., Maurer, U.: A constructive approach to functional encryption. Cryptol-
ogy ePrint Archive, Report 2013/559 (2013). http://eprint.iacr.org/

73. Maurer, U.: Abstract models of computation in cryptography. In: IMA Int. Conf.
(2005)

74. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: FOCS
(2006)

75. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

76. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010). http://eprint.iacr.org/

77. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 375–391. Springer, Heidelberg (2012)

78. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

79. Sahai, A., Seyalioglu, H.: Worry-free encryption: Functional encryption with pub-
lic keys. In: CCS (2010)

80. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

81. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable
encryption, and more. In: Crypto (2013)

82. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

83. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidel-
berg (2009)

84. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

85. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

86. Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/

Executable Proofs, Input-Size Hiding Secure
Computation and a New Ideal World

Melissa Chase1(B), Rafail Ostrovsky2, and Ivan Visconti3

1 Microsoft Research, Redmond, USA
melissac@microsoft.com

2 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

3 University of Salerno, Fisciano, Italy
visconti@unisa.it

Abstract. In STOC 1987, Goldreich, Micali and Wigderson [GMW87]
proved a fundamental result: it is possible to securely evaluate any func-
tion. Their security formulation consisted of transforming a real-world
adversary into an ideal-world one and became a de facto standard for
assessing security of protocols.

In this work we propose a new approach for the ideal world. Our
new definition preserves the unconditional security of ideal-world execu-
tions and follows the spirit of the real/ideal world paradigm. Moreover
we show that our definition is equivalent to that of [GMW87] when the
input size is public, thus it is a strict generalization of [GMW87].

In addition, we prove that our new formulation is useful by showing
that it allows the construction of protocols for input-size hiding secure
two-party computation for any two-party functionality under standard
assumptions and secure against malicious adversaries. More precisely we
show that in our model, in addition to securely evaluating every two-
party functionality, one can also protect the input-size privacy of one of
the two players. Such an input-size hiding property is not implied by the
standard definitions for two-party computation and is not satisfied by
known constructions for secure computation. This positively answers a
question posed by [LNO13] and [CV12]. Finally, we show that obtaining
such a security notion under a more standard definition (one with a more
traditional ideal world) would imply a scheme for “proofs of polynomial
work”, a primitive that seems unlikely to exist under standard assump-
tions.

Along the way, we will introduce the notion of “executable proof”,
which will be used in our ideal-world formulation and may be of inde-
pendent interest.

Keywords: Secure computation · Ideal world · Input-size hiding · Proofs
of work · FHE · PCP of proximity

1 Introduction

Goldreich, Micali and Wigderson proved in [GMW87] that secure computation
is possible for any function, as long as there is a majority of honest players. They
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 532–560, 2015.
DOI: 10.1007/978-3-662-46803-6 18

Executable Proofs, Input-Size Hiding Secure Computation 533

provided a compiler that on input a circuit computing the function produces a
protocol that parties can run to obtain the correct output without revealing any
additional information.

Following this result, a long line of works ([GMW87],[GL91],[MR92],[Bea92],
[Can05]) developed what is now considered the de facto standard for proving
security of a protocol. This notion, which we will refer to as the real/ideal-
world paradigm, consists of showing that for any attack that can be carried
out by a real-world adversary A during the execution of the protocol there is
a corresponding attack which could be carried out by the ideal-world adversary
Sim. Since the setting where Sim works is secure by definition, the real-world
protocol must be secure against A.

We note that for general functionalities, the real/ideal world is the only way
we know to meaningfully capture security against arbitrarily malicious adver-
saries. In what follows, we will use secure to mean secure against malicious
parties, unless otherwise stated, and we will focus, as in [GMW87] on the stand-
alone setting.

Beyond the standard real/ideal-world definition. The real/ideal-world paradigm
has long been the main measure to evaluate what can and can not be securely
computed. The difficulties (and sometimes impossibilities) of proving security
under the traditional real/ideal-world formulation have been considered an inher-
ent price to pay for a solid security notion. This has motivated a variety of
alternative definitions circumventing such difficulties/impossibilities by explic-
itly decreasing the security guaranteed by the standard real/ideal world defi-
nition. Examples of weaker security notions are those involving trusted third
parties, set-up assumptions, superpolynomial-time simulation and so on. This
motivates the following question:

Open problem 1: Are there other ways of defining the ideal/real world which
would capture all the desirable properties mentioned above, but which might allow
us to circumvent some difficulties and impossibilities of the traditional defini-
tion?

1.1 A Case Study: Hiding the Input Size

In 2003 Micali, Rabin and Kilian [MRK03] identified an important limitation of
the traditional real/ideal-world paradigm. They noticed that in the real world
there are interesting cases where a player would like to protect the size of his
input. This seems increasingly relevant in today’s world of big data: one might
imagine settings where the number or sensor readings, the size of the customer
database, the quantity of user profiles collected, or the total amount of informa-
tion stored in an advertising database might be considered extremely private or
confidential information.

[MRK03] models input-size hiding by saying that the protocol must hide the
party’s input in a setting where there is no fixed upper bound on the size of the
input: although of course honest parties will run on polynomial-length inputs,
there is no limit on what those polynomials may be. This guarantees that nothing

534 M. Chase et al.

is revealed about the input size, and has the additional advantage that it requires
protocols where parties’ efficiency does not depend on an upper bound, but only
on the size of their actual input and the complexity of the functionality for that
input.1 As discussed by [MRK03], known previous results do not allow one to
obtain such security (e.g., the [GMW87] compiler inherently reveals the size of
the input).

Previous work on input-size hiding. Micali et al. explored the case of a player P0

holding a set Φ of polynomial but unrestricted size (i.e., not upperbounded by
any fixed polynomial) and another player P1 holding an element x. Their function
f always outputs x to P0 and outputs 1 to P1 if x ∈ Φ and 0 otherwise. They
gave a game-based solution called “Zero-Knowledge Sets” (ZK sets or ZKS), but
achieving standard simulation-based security remained an open problem.

There have been a few other works in this direction. [IP07] studied the eval-
uation of branching programs as another interesting application of input-size
hiding secure computation. Their solution to the above problem in the setting
of secure two-party computation (2PC) is round efficient, however it does not
provide input-size hiding by the above definition (the length of the program that
corresponds to the input of P0 is bounded), and they do not achieve simulation-
based security. More recently, [ACT11] focused on achieving input-size hiding
set intersection and obtained an efficient scheme. Their solution only addresses
semi-honest adversaries, and security is proved in the random oracle model.
[CV12] proposed a construction that satisfies a modified real/ideal-world defi-
nition specifically for the set membership functionality studied in [MRK03]; we
will discuss below some of the challenges in extending this to cover general func-
tionalities. The importance in practice of input-size hiding secure computation
was considered in [CFT13] where the authors presented an efficient protocol for
size and position hiding private substring matching2.

Very recently, [LNO13] discussed the case of general functionalities, but again
their constructions are limited to the case of semi-honest adversaries. This leads
to the obvious question:

Open problem 2: Is it possible to construct input-size hiding protocols for gen-
eral functionalities that are secure against malicious adversaries, or is revealing
the size of players’ inputs inherent in any general 2PC that achieves security
against malicious adversaries?

Our variant of input-size hiding. Lindell et al. [LNO13] also provide a gen-
eral definition of input-size hiding secure computation, essentially extending the
1 It also has advantages in terms of concrete security in that it results in protocols

where the efficiency of the simulator depends only on the complexity of the adversary
(and not on some assumed upper bound on its input size).

2 In this type of protocol the first party could for instance run on input a digitized
genome while the second party could run on input a set of DNA markers. The goal
in such an use of the protocol is to securely check whether the genome matches
the markers, without revealing any additional information, not even the number of
markers.

Executable Proofs, Input-Size Hiding Secure Computation 535

real/ideal-world paradigm in the natural way, and a classification of different
types of input-size hiding. Here we will focus on the case where the output
size is fixed, and where only one party wants to hide the size of his input. For
example, consider the setting where one party wants to run a set of proprietary
computations on each element of another party’s large private database, and
obtain some aggregate results. If the computations can be described in fixed size
but the size of the database is private, then our results apply.

As noted by Ishai and Paskin in [IP07] and formally proven in [LNO13] there
exist some interesting functionalities for which two-sided input-size hiding is not
possible, and similar cases where it is impossible to hide the size of the players’
output. Thus, given that we want to achieve results for general functionalities,
we restrict ourselves to the one-sided input-size hiding, fixed output-size setting.

We stress that in this work we do not aim to construct protocols for func-
tionalities that work on superpolynomial-sized inputs but only protocols that
work for any polynomial-sized input, without a fixed polynomial upper bound
on the possible input size.

1.2 Limitations of the Real/Ideal-World Paradigm in the Input-Size
Hiding Setting

Why input-size hiding secure 2PC is so tough to achieve. We first begin by
recalling the [LNO13] semi-honest input-size hiding protocol, again restricting
to the case where only one party’s input size is hidden (say P0) and where the
output size is fixed and known. The protocol proceeds roughly as follows: First P1

generates an FHE key pair and sends the public key along with an encryption
of his input x1 to P0. Then P0 uses his input x0 and the FHE evaluation to
evaluate f(x0, x1). He sends the result back to P1, who decrypts and outputs
the result.3 The result is secure in the semi-honest model as long as the FHE is
semantically secure and circuit private.

We can immediately see that this protocol is not secure against a malicious
P �
0 , since there is no guarantee that the ciphertexts that P �

0 returns corresponds
to f(x0, ·) for some valid x0. Instead P �

0 could return an incorrect ciphertext to
influence P1’s output or to choose his input conditioned on x1. More fundamen-
tally, if we consider the real/ideal-world paradigm (which as we noted above is
the only way we know to accurately capture security against malicious adver-
saries for general functionalities), we see that the simulator needs to be able to
extract an input x0 to send to the functionality.

Traditionally, this problem is solved by requiring that the malicious party
includes a proof of knowledge (PoK) of his input. In the input-size hiding setting,
we could imagine using an input-size hiding PoK where the proof does not reveal
the size of the witness (although as we will discuss later, these are not so easy

3 For simplicity we consider the case where only P1 receives output, but similar issues
occur in the setting where only P0 receives output, or where both parties receive
input.

536 M. Chase et al.

to achieve). The simulator could then extract from this PoK and send the result
to the functionality.

However, here we run into trouble: Recall that the protocol cannot fix any
polynomial upper bound on the length of the prover’s input (otherwise it would
not really be input-size hiding). Now, suppose that an adversary P �

0 decides
to run the protocol using a superpolynomial-length input. Note that using a
superpolynomial-length input does not necessarily mean that the adversary must
be superpolynomial; it may be that the adversary is working with a compact rep-
resentation a much longer input. And suppose that the adversary can find a way
to efficiently run the protocol and generate a proof given only this short repre-
sentation. Then finding a corresponding polynomial-time ideal-world adversary
will be impossible: this ideal adversary would have to send the functionality an
equivalent input (of superpolynomial size!) and this would require superpolyno-
mial time. (Concretely think of the set membership function; if the set Φ chosen
by P �

0 consists of all k-bit strings such that the last bit is 0, then P �
0 has in

mind an input of exponential size, and thus efficiently extracting this input will
be impossible. Notice that P �

0 could still be efficient because it is possible to
represent that huge set as a small circuit.)

We could of course simply assume that we can design a PoK or more gener-
ally a protocol which an honest party can run on any polynomial-sized input, but
for which no polynomial-time adversary can execute the protocol on any super-
polynomial input. However, we argue that this seems inherently non-standard:
essentially, we would be assuming an object which is easy on any polynomial-
sized input but becomes computationally infeasible as soon as the input is even
slightly superpolynomial. This is therefore the inherent major difficulty. Even if
P �
0 is guaranteed to be efficient (polynomial time), we have no way of guaran-

teeing that the input that P �
0 is implicitly using is of polynomial size.

Formalizing the limitation of the real/ideal-world definition w.r.t. hiding the
input size. Lindell et al. [LNO13] conjectured that their construction (which
is shown to be secure against semi-honest adversaries) could be augmented with
a “proof of work” in order to be secure against malicious adversaries; essentially
the idea was to solve the problem described above by requiring the adversary
to prove that the size of his input is polynomial. Unfortunately currently there
is no candidate construction for proofs of work under standard assumptions;
moreover, as we just mentioned, non-standard assumptions seem inherent, in
that a proof of work makes an assumption on the abilities of a polynomial-time
adversary on a problem instance that is only guaranteed to be superpolynomial
(rather than exponential). This prompts the following question.

Open problem 3: is it possible to achieve input-size hiding secure 2PC for
all functionalities in the traditional real/ideal world without relying on proofs of
work?

In Section 2.1, we formalize this notion of proofs of work, which we refer
to as a proof of polynomial work or PPW. On the positive side, this seems
to capture the intuition for what [LNO13] use in their proposed extension to
security against malicious adversaries. On the other hand, as we have discussed,

Executable Proofs, Input-Size Hiding Secure Computation 537

these proofs of work seem inherently to require non-standard assumptions. This
then presents the next open question:

Open problem 4: How can we meaningfully define input-size hiding secure
2PC if we are interested in constructions under standard assumptions?

1.3 A New Ideal World

Given the above limitations, we take a step back and consider what we need from
our security definition. The traditional real/ideal-world paradigm has three key
features: 1) In the ideal world it is clear from inspection what functionality
is provided and what an adversary can learn or influence. Indeed, players are
simply required to send their inputs to a trusted functionality F that will then
evaluate the function and distribute the outputs to the players. This guarantees
that even if P0 is corrupted4: a) the output is correct and consistent with some
valid input x0, b) P0’s choice of input x0 cannot depend on P1’s input x1, and
c) P0 cannot cause a selective failure, i.e. P0 cannot cause the protocol to fail
conditioned on the input chosen by P1. 2) In the ideal world, security holds
unconditionally. Again, this is important because we want it to be obvious that
the ideal world provides the desired security. 3) The ideal world is efficient (i.e.,
the ideal functionality F and the ideal adversary Sim are polynomial time). This
is crucial when we want to use secure computation as a part of a larger protocol:
if a protocol achieves a real/ideal-world definition, then we can argue that we
could replace it with F and Sim. However if F and Sim are inefficient, then
the resulting game will not be polynomial time, and any reductions to standard
hardness assumptions will fail.

Our key observation then is that in order to enforce these properties the
functionality does not actually need to receive P0’s input x0. Instead it only
needs a) to ensure that x0 is fixed and independent of x1, and b) an efficient
way to compute f(x0, x1) consistently with x0.

The new ideal world. This leads to the following relaxation of the ideal world.
Instead of requiring P0 to send his input directly, we instead require P0 to send an
implicit representation of his input. The only requirement on this representation
is that it must uniquely define the party’s true input x0.5 We will use Rep(x0) to
denote some implicit representation corresponding to x0. (Our ideal world will
take the specification of this representation as a parameter; the definition will
require that there exist a valid representation under which the real and ideal
worlds are identical.)

Then in order to allow the functionality to compute P1’s output, the ideal
P0 will also send a circuit C describing how to compute the output given any
input x1 from P1. Finally, we require that this circuit C on input x1 produce not
4 We use corrupt P0 as an example: clearly the analogous properties also hold if P1 is

corrupt.
5 For our ideal world to be realizable, it must hold that any polynomial-sized input

has a polynomial-sized representation.

538 M. Chase et al.

only the output f(x0, x1), but also some evidence that this output is correctly
computed according to x1 and the input defined by Rep(x0). Intuitively, because
P0 sends Rep(x0), this guarantees that x0 is fixed and independent of x1, and
because C provides evidence that its output is correct, we are guaranteed that
(if the evidence is valid), the output provided to P1 is indeed f(x0, x1). Finally,
we note that the only way for P0 to cause a selective failure is for C(x1) to
output invalid evidence - in all other cases the functionality will send to P1 a
valid output.

That leaves two issues to resolve: 1) how to formalize this “evidence”, and
2) what happens if C(x1) produces evidence that is invalid.

Executable proofs. Ignoring the implicit input for a moment, we might consider
an ideal world which works as follows: F receives from one of the parties P0 not
only the input x0 but also a circuit C. Then, instead of computing the output
directly, F , having obtained input x1 from P1, runs C(x1) to obtain (y, w), where
w is an NP witness for the statement y = f(x0, x1). F verifies w and outputs y
to P1 iff the verification succeeds.6 Clearly this is equivalent to the traditional
notion of security because the NP witness unconditionally guarantees that F
produces the correct output.

Now, what if we want F to be able to verify statements which may not be
in NP? 7

We might want to consider cases where, rather than an NP-witness, F is
given some other kind of proof. As long as the proof is unconditionally sound
and efficiently verifiable we still have a meaningful notion of security. If we want
to consider more general languages, we might imagine providing F with a PCP
to verify instead of an NP witness. Because PCPs are unconditionally sound,
this would still satisfy the first property. However, even if they can be verified
efficiently, the PCPs for the language could still be exponentially long while as
argued above, we want our ideal parties and F to run in polynomial time, so
it might be impossible for the ideal party to output an entire PCP. Thus we
introduce the notion of an “executable proof”. This is a new concept of proof
that has similarities with classical proofs, interactive proofs and PCPs. However
executable proofs differ from the above concepts since they focus on a giving to
a verifier the capability of checking the veracity of a statement (potentially not
in NP) by running a circuit (i.e., an executable proof) locally.

In particular we will make use of executable PCPs. An executable PCP is
a circuit which on input i produces the ith bit of a PCP (i.e., a circuit repre-
sentation of a PCP). Given a description of such a circuit, F can run the PCP
6 Addressing the case where verification fails is somewhat more subtle. See below for

more discussion.
7 For example in the context of input-size hiding protocols, as discussed above, we

might consider the case where F is given only a compact representation of x0 while
the actual x0 may be of superpolynomial length. In this case it may be that verifying
f(x0, x1) = y given only x1 and the representation of x0 is not in NP. (Note that in
this case a witness that includes the explicit x0 would have superpolynomial length,
and so would not be a valid NP witness.)

Executable Proofs, Input-Size Hiding Secure Computation 539

verifier to unconditionally verify the statement. If the circuit representation is
polynomial sized, this verification is efficient.

The nice point here compared to just using a witness for the statement is
that the description of the executable PCP can be much shorter than a standard
witness (it essentially depends on the complexity of describing the given witness);
this will play a fundamental role in our constructions.

Ideal Errors. We solve the second issue by slightly modifying the notion of
real/ideal-world executions. In the ideal world F will verify the proof π and then
complete the protocol only if the proof was accepting. If π failed in convincing
F , then F will send P1 a special message “ideal error”, indicating that the ideal
input was invalid. Finally, our definition for secure computation will require
that the real-world execution never produce this “ideal error” as output of P1.8

This guarantees that in any secure realization any real world adversary must
have a corresponding ideal world adversary who causes this error to occur in
the output of the ideal P1 only with negligible probability. (This is because any
ideal world execution in which the ideal honest player P1 outputs such an error
with non-negligible probability would be instantly distinguishable from the real
world where such an output for P1 cannot appear by definition).

We stress that the flow of data follows the standard notion of the real/ideal
paradigm where players send data to F first, and then F performs a computation
and sends outputs (waiting for the approval of A for fairness reasons) to players.
By the unconditional soundness of the proof given by π, it is clear that the
adversary is committed to an input and the output is consistent with that input
(as long as “ideal error” does not occur). And finally, our ideal adversary runs in
polynomial time, and the implicit input and the circuit C are produced by the
ideal adversary; this means that F will also run in polynomial time9. Thus, our
new formulation has all the desirable properties mentioned above. As a sanity
check, we note that our definition is equivalent to the traditional real/ideal-world
definition in the case where the input lengths are fixed known polynomials.

1.4 Constructing Input-Size Hiding Under the New Definition

Finally, we show that our new definition is realizable. We show a protocol that
satisfies our input-size hiding secure 2PC and that builds on top of several
recent advanced tools, and follows the outline from the semi-honest construction
of [LNO13] described above. Roughly, we will use fully homomorphic encryption
(FHE) as in [LNO13] so that the adversary P0 can evaluate the function given
only an encryption of P1’s input, which will give privacy for P1. To guarantee
8 Technically we can guarantee this by requiring that the real execution replaces any

“ideal error” in its output by ⊥.
9 To see this note that a polynomial time adversary must produce polynomial sized

circuits for the ideal input and the circuit C, F ’s operation consists of evaluating
the circuit C and running a polynomial time verification algorithm on the proof
produced by C, and polynomial sized circuits can always be evaluated in polynomial
time and produce polynomial length output.

540 M. Chase et al.

that the adversary P0 must behave correctly we will require that P0 commit to
(via an input-size hiding commitment) and prove knowledge of his input before
receiving the ciphertext from P1. However, in designing this proof of knowledge,
we are faced with the issue discussed above of extracting a potentially very long
input from a short proof of knowledge. To address this we will use a special
proof of knowledge introduced by [CV12] called a “universal argument of quasi
knowledge” (UAQK) that has short communication complexity and provides a
(non-black box) extractor that outputs a short “implicit” representation of the
witness. Therefore the issue of efficiently extracting from an adversary that has
in mind a very large input is solved by extracting a small implicit representation
of this input. Looking ahead to the proof, it is this implicit represent that will be
used as Rep in the ideal world. After applying the FHE evaluation to compute
an encryption of f(x0, x1), P0 is required to give a UAQK to prove knowledge
of a PCP of proximity proving that her work on ciphertexts was done correctly.
With a PCP of proximity, a verifier can verify the proof while accessing only
selected bits of the statement and proof. Again looking ahead, the simulator will
use the code of an adversary P0 and the extractor of the UAQK to generate
a circuit which can output single bits of the PCP of proximity; such a circuit
is used to instantiate the executable PCP in the ideal world. Here the use of
PCPs of proximity is critical since they allow us to verify proofs by reading only
small parts of statements and proofs. (This allows the functionality to verify
correctness of the claimed output given only an implicit representation of P0’s
input.)

Concretely, our protocol can be instantiated by assuming FHE and CRHFs,
this proves that our notion can be achieved under standard assumptions, avoiding
random oracles [BR93,CGH98], non-black-box extraction assumptions [Dam92]
(see [Nao03] about their non-falsifiability), superpolynomial-time simulation,
and proofs of work.

1.5 Short Summary of Our Results

In this work we embark on the challenging task of defining and achieving input-
size hiding security against malicious adversaries under a simulation-based defini-
tion, following the spirit of [GMW87]. In Section 2.2 we give a new definition of an
ideal world that has all the desirable properties of the real/ideal paradigm men-
tioned above, and allows us to capture input-size hiding, thus answering the last
open question. We pair this result with another contribution: in Section 2.1 we
show that achieving input-size hiding secure 2PC under the standard real/ideal-
world formulation implies the existence of proofs of work. This solves the third
problem and gives evidence of the power of our new formulation. Finally, in
order to show that our size definition is realizable under standard assumptions,
in Section 3 we provide a construction which can be instantiated under FHE
and CRHFs. Thus we also provide a solution to the second open problem. All
together these results provide an answer to our first question: a demonstration
of how considering a modified security model can still give meaningful security

Executable Proofs, Input-Size Hiding Secure Computation 541

while allowing us to circumvent impossibility results inherent in the traditional
definitions.

1.6 Discussion

Other variations on the ideal world. One obvious alternative would be to simply
allow for an unbounded functionality F : F could then extract the entire (poten-
tially exponentially long) input from the implicit input C, and then compute the
appropriate output. However, our aim here is a definition giving guarantees as
close as possible to standard secure 2PC and, as mentioned above, one crucial
property of secure 2PC is that the functionality is efficient.

We compare our variation of the ideal world with the simulation-with-aborts
definition used for fairness issues. Simulation-with-aborts is a simple variation
of [GMW87] and must be used in light of an impossibility result. However it intro-
duces a security weakness in the ideal world that is reflected in the real world.
While our variation is somewhat less straightforward, it can be used to achieve
a stronger security notion under standard assumptions. Our variation applied to
the simulation-with-aborts definition, does not introduce any additional security
drawback that can be reflected in real-world protocols. Moreover, it allows us to
capture input-size hiding, and as we will see, it has the indisputable benefit that
it can be realized under standard assumptions.

Timing attacks: input-size hiding is relevant also in practice. While input-size
hiding computation may be theoretically interesting, one might ask whether it
makes sense in practice. As already pointed out in [IP07,CV12], any protocol
may be vulnerable to a basic timing attack in which an adversary can guess the
size of the honest player’s input purely based on the time he takes to perform
each computation.

We note, however, that there are many practical scenarios where such attacks
are not applicable. Indeed, in order to mount such an attack the adversary needs
to be able to accurately estimate the resources of the other player; in many cases
this may be difficult. Furthermore, in many applications a player may have
time for preprocessing or access to large clusters (as in computations that are
run only infrequently, or protocols involving cloud computing companies). Since
the adversary will not know how much precomputation/parallelization has been
used, it cannot conclude much about the size of the honest party’s input. For
example, the standard protocols for ZK sets allow for preprocessing: all computa-
tion that depends of the size of the input can be performed before any interaction
occurs. We note that our definition does not preclude the existence of protocols
for interesting functionalities that make use of precomputation/parallelization
to prevent these basic timing attacks.

Comparison with [CV12]. Chase and Visconti [CV12] made a first step in this
direction by defining and realizing a real/ideal-world notion for a functionality
modeling ZK sets called “secure database commitment”. The solution of [CV12]
is based on two key ideas: 1) defining a modified ideal world; 2) simulating by

542 M. Chase et al.

relying on a new tool that implements a special form of proof of knowledge with
short communication complexity. More specifically, they define an ideal world
where (roughly) player P0 sends F a circuit C which implicitly defines a set,
while player P1 directly sends its input x. F will then compute (x, y = C(x))
and send x to P0 and y to P1. This ideal world is still perfectly secure because
any circuit C uniquely defines a set (i.e., the set of all strings on which the circuit
outputs 1).

Given this ideal world, they are still faced with the issue discussed above
of extracting a potentially very long input from a short proof of knowledge.
This was the original motivation for the introduction of UAQKs: The issue of
efficiently extracting from an adversary that has in mind a very large input is
solved by extracting a small implicit representation of this input. [CV12] then
shows how to construct an ad-hoc circuit that can be sent by Sim to F from
such an implicit representation.

Unfortunately, while the result of [CV12] solves the problem left open by
[MRK03], their solution does not extend to other functionalities. One limitation
of the approach in [CV12] is that it gives input-size privacy and input privacy
for P0 but no input privacy at all for P1. This is appropriate for the function-
ality they consider, but obviously undesirable in general. The more significant
issue, however, is that in the “secure database commitment” functionality the
correctness of P0’s input (the input whose size must be hidden) can be verified
simply by inspection. Indeed F can simply check that the provided circuit C has
k input wires and only one output wire. This means that for every k-bit string
x, C decides the membership or non-membership of x with respect to the unique
set that is implicitly defined by C itself. Note that C both defines P0’s input set
and efficiently computes the set membership functionality. The obvious question
then is whether this approach can be generalized.

Unfortunately for other functionalities the above approach fails spectacularly.
The first issue is the possibility that P0 might send a circuit C whose behavior is
not consistent with any valid input. For example, consider the function f(Φ, x)
that outputs the number of elements of Φ that are greater than x. Now, if an
adversary P0 sends a circuit C which is supposed to compute f(Φ, ·) to the
functionality, there is no way for the functionality to verify that this circuit C
does compute such a function. For example, it is possible that C(x) > C(x′) when
x′ < x, which clearly can not be consistent with any set Φ. Thus, a functionality
F which simply receives a circuit C from A = P �

0 , and sends C(x) to P1, would be
clearly insecure. A second issue involves P �

0 learning P1’s input. Indeed, consider
a circuit C that on input x1 instead of giving in output (y0, y1) = f(x0, x1) (i.e.,
y0 for P0 and y1 for P1) outputs (x1, y1). In this case P1 would get the correct
output, but P �

0 manages to learn P1’s private input. A third issue is that of
selective failure, in which P �

0 can adaptively corrupt P1’s output depending on
P1’s input. For example, P �

0 could compute a circuit that depending on the input
x1 will output a value that is not in the output space of the function; F might
send this invalid output to P1 or send an error message, but in both cases P1’s
reaction would allow P �

0 to learn something about his input. Notice that the 1st

Executable Proofs, Input-Size Hiding Secure Computation 543

and 3rd issues above also apply in case only P1 receives an output, while the
2nd issue also applies when only P �

0 receives an output.
Our work avoids these issues by including the executable proof and an “ideal

error” in the ideal world. A valid executable proof guarantees that the function-
ality will only output a result if it does correspond to f(x0, x1) for the specified
x0. The “ideal error” will guarantee that if C ever produces and invalid exe-
cutable proof then the two worlds are clearly distinguishable; this holds because
in the ideal world the functionality sends “ideal error” to P1 while by definition
“ideal error” can not appear as output of P1 in the real world.

1.7 Open Problems and Future Work

We observe that there are several new ideas here that might be interesting for
future study. First, executable PCPs: what languages have polynomial-sized exe-
cutable PCPs? Note that an efficient executable PCP is different from a PCP
with efficient prover - the latter would require that the PCP be of polynomial
length, whereas the PCP represented by an efficient executable PCP might be
exponentially long; we only require that each bit be efficiently computable.

Our new ideal world also presents several interesting questions. First there is
the use of executable PCPs (or more generally, any type of unconditionally sound
proofs) in the ideal world: might this allow us to avoid some of the impossibility
results in secure computation? Similarly, we propose an ideal world in which F
only receives an implicit representation, evaluates a program produced by one
of the parties to obtain the output, and then merely verifies that the result is
correct. Again, one might ask whether this gives more power than the traditional
ideal world where F receives the explicit input and computes the output itself.

We also introduce the idea of proofs of polynomial work (PPW) and show
one possible application. Other interesting questions would be to look at possible
constructions of PPW, or to formally show that PPW requires non-standard
assumptions, or to consider other applications where PPW could be useful. One
could also consider how to achieve input-size hiding using superpolynomial-time
simulation.

We only study the simplest possible world here - we do not for example
address the problem of composition, or of obtaining efficient protocols or those
that would allow for preprocessing or parallelization. Finally, we leave the ques-
tion of addressing the case of hiding the input-size of both players (at least for
some functionalities) for future research.

2 Secure 2-Party Computation and Proofs of Work

2.1 Input-Size Hiding and Proofs of Polynomial Work

We now show that when the standard ideal world is considered, input-size hiding
is hard to achieve under standard assumptions since it implies some form of proof
of work that we call proof of polynomial work. There have been many works

544 M. Chase et al.

studying proofs of work, going back to [DN92]. However, as far as we know our
notion is not captured by any of the previous definitions.

Roughly, for security parameter k, a PPW is a protocol between P ,V where
P and V take as input a number n represented as a k-bit string. For honest
players we expect n to be polynomial in k. For any polynomial time A playing
as P we want a polynomial upper bound for the n’s on which he can cause V to
accept. Intuitively this means that if A can convince V to accept an n, we know
that it is bounded by a polynomial (i.e., there exists a polynomial p such that
V will reject any n > p(k)).

Definition 1. A proof of polynomial work (PPW) is a pair (P, V) such that the
following two properties hold: 1) (correctness) there exist fixed polynomials poly
and poly′ such that the running time of P and V for security parameter k and
input n < 2k, is respectively poly(n) and poly′(k), and the output of V is 1. 2)
(security) for every polynomial-time adversary A, there exists a polynomial p
and a negligible function μ such that for sufficiently large k, for any n ≥ p(k),
V on input n, interacting with A outputs 1 with probability at most μ(k).

Theorem 1. One-sided input-size hiding secure 2PC (secure with respect to the
standard ideal world) implies the existence of a proof of polynomial work.

Proof. First, consider a PPW with a somewhat weaker security property, which
only guarantees that A succeeds on n ≥ p(k) with probability at most 1/2+μ(k)
for some negligible function μ. Note that given a PPW with this weak security
property, we could easily construct a PPW with the above property just by
sequential composition. Thus, we focus here on showing that input-size hiding
with a standard ideal/real-world security definition would imply a weak PPW.

We now show how to construct a weak PPW (P, V) by starting from a
protocol for input-size hiding secure 2PC (P0, P1). Consider the functionality F
that receives a set of integers from P0 and an integer n from P1 and proceeds
as follows: if the set is the list of numbers from 1 to n, then F outputs 1 to P1,
otherwise it outputs ⊥ to P1. Now, suppose we had a protocol for F that hides
the size of P0’s input under the standard simulation-based definition of secure
2PC. If there exists an input-size hiding 2PC protocol for F then we obtain
the following PPW (P, V): P plays as P0 on input Φ = {1, . . . , n} and wants
to make V running on input n output 1; both parties use security parameter
k. By efficiency of the 2PC we have that if n is represented as a k-bit strong,
then V runs in time polynomial in k and P runs in time polynomial in n. And
clearly by observation honest V (n) outputs 1 when interacting with honest P (n).
Therefore correctness is satisfied.

We then consider security. Suppose for contradiction that the weak PPW
property does not hold. Then there exists a polynomial-time adversary A such
that for all polynomials p and all negligible functions μ, there are infinitely many
k such that on some n > p(k) (where n is represented as a k-bit string), A causes
V (n) to output 1 with probability greater than 1/2 + μ(k).

2PC guarantees that for any A there is a 2PC simulator and a negligible
function μ′ such that for all sufficiently large k, for all inputs n represented as

Executable Proofs, Input-Size Hiding Secure Computation 545

k-bit strings, the real and ideal executions can be distinguished with probability
at most 1/2 + μ′.

Let p′ be the running time of the 2PC simulator for A, let p = 2p′, consider
μ = 2μ′, and let D be the 2PC distinguisher that outputs 1 if V (n) outputs
1, and a random guess otherwise. Note that the simulator is assumed to have
expected running time p′(k) = p(k)/2, so with probability at least 1/2, it will
run in time at most p(k). However, in order to cause V (n) to output 1 it must
output the set {1, . . . , n} which requires at least n time. Thus, for n > p(k), in
the ideal game V (n) outputs 1 with probability at most 1/2.

Now, if the weak PPW property does not hold, as explained above there are
infinitely many k such that on some n > p(k), A causes V (n) to output 1 with
probability greater than 1/2 + 2μ′(k). For every such n, D clearly succeeds in
distinguishing real and ideal executions with probability greater than 1/2+μ′(k).
However, by 2PC security as we have said before, for all sufficiently long n, D
must have advantage at most 1/2+μ′(k). Thus, we have reached a contradiction.

We do not have any candidate constructions based on standard assumptions,
and in fact this seems difficult. We could of course construct them by direct
relying on some number-theoretic assumptions, but this would require strong
generic-group assumptions.

2.2 Our New Definition: A New Ideal World

We give a new general formulation for 2-party computation; we will show later
that under this formulation we can achieve 1-side input-size hiding secure com-
putation for any functionality.

First let us informally review the standard ideal-world for secure 2PC of an
efficient function f = (f0(·, ·), f1(·, ·)), considering the simulation-with-aborts
variation. An ideal-world player Pb for b ∈ {0, 1} sends his input xb to a func-
tionality F and gets as output fb(x0, x1). An adversary P �

b after getting her
output, can decide whether P1−b should receive his output or not. The commu-
nication is always through F .

In this work we consider the setting of static inputs and corruptions (e.g.,
inputs of both parties are specified before the execution of any protocol and the
adversary corrupts one of the two players before the protocol starts). Further-
more, we consider secure computation protocols with aborts and no fairness.
This notion is well studied in literature [Gol04]. More specifically, the adversary
can abort at any point and the adversary can decide when (if at all) the honest
parties will receive their output as computed by the function.

Before presenting our new definition, we will discuss a few necessary concepts.

Input sizes. In the discussion and definition below we will assume w.l.o.g. that
P0 is the party who wishes to hide the size of his input. We use k to denote the
security parameter. Honest P0’s input length is assumed to be poly(k) for some
polynomial poly, although this polynomial is not fixed by the protocol or known
to P1. The input of P1 is then of a fixed length, so w.l.o.g. we assume it is a k-bit
string; we also assume that the output of the function f is always a k-bit string.

546 M. Chase et al.

All parties (honest and malicious) run in time polynomial in k. As discussed in
Section 1, we want our ideal functionality F to run in time polynomial in the size
of the messages it receives from the parties; since the ideal parties are polynomial
time (in k), the functionality will be as well (this polynomial may depend on the
adversary). Throughout the discussion, unless otherwise specified “polynomial”
means a polynomial in the security parameter k which may depend on P �

0 .

Implicit representation of data. As discussed in Section 1, we will consider an
ideal world in which one party only submits an implicit representation of this
input. The only properties that we require for our definition is that this repre-
sentation be efficiently computable for any polynomial-size input, and that the
input is uniquely defined by its implicit representation. More formally, we say
that an implicit representation is defined by a potentially unbounded function
Decode : {0, 1}∗ → {0, 1}∗, which maps each implicit representation back to
an input string, and an efficiently computable injective function Rep : {0, 1}∗ →
{0, 1}∗ which computes an implicit representation of each input. We require that
for all x ∈ {0, 1}∗, Decode(Rep(x)) = x, and for any string x we refer to Rep(x)
as an implicit representation of the explicit string x.

One implicit representation which we will use often is the circuit represen-
tation, by which we mean a circuit that when queried on input i outputs the
i-th bit of the explicit string.10 This representation can be of much shorter size
(depending on the data), even potentially logarithmic in the length of the string.
As an example, consider the 2k-bit string s where all odd positions are 0s while
all even positions are 1s. Clearly, one can construct a circuit of size O(k) (there-
fore of size logarithmic in the size of s) that on input i outputs the i-th bit of s.
Given a circuit representation s′ of a string s, we denote by s′(i) the i-th bit of
the underlying explicit string.

Ideal errors. As discussed in Section 1, our formulation is based on an ideal-world
experiment whose output clearly specifies whether the computation has been per-
formed correctly or whether something went wrong. Therefore, the honest player’s
output will be either (this is the good case) the canonical output corresponding
to an element in the range of the function, or (this is the bad case) a special mes-
sage ideal error that does not belong to the output space of the function. The
ideal-world adversary in standard 2PC is allowed to stop the delivery of the out-
put to the honest player, (to avoid fairness impossibility results proved in [Cle86]),
but will not be allowed to stop delivery of the ideal error message. (This ideal
error represents a failure that should never happen in a secure real-world imple-
mentation, and we need it to be visible in the output of the ideal-world experi-
ment.) This is similar to the way that ideal world inconsistencies are handled in
UC definitions (see for example FSIG in [Can03]11).
10 To make this formally injective we can define all invalid circuits to be implicit rep-

resentations of 0.
11 That functionality outputs an error and halts, which also makes the two games clearly

distinguishable (the functionality never produces output for the honest party). We
chose to make this explicit by defining the ideal error, but it has the same effect.

Executable Proofs, Input-Size Hiding Secure Computation 547

We require by definition that ideal error does not occur in the real world.
A real protocol is considered to be secure for a function f if: 1) for all real-world
adversaries there exists an ideal-world adversary such that the executions in the
real and ideal worlds are indistinguishable: 2) the honest parties in the real world
execution do not ever output ideal error.12

This means that for every real-world adversary, there must be an ideal-world
adversary that causes the ideal honest party to output ideal error with at most
negligible probability, but produces the same execution output (i.e., adversary’s
view and honest player output). This is because any ideal adversary that causes
ideal error with non-negligible probability would make the two executions
clearly distinguishable.

Our ideal error helps to define security because it characterizes the “bad”
events of our ideal world; combining this with the fact that the real-world pro-
tocol never produces an ideal error and with the fact that any adversary of
the real-world can be simulated in the ideal world, we get the desired security
guarantees.

Special unconditionally sound proofs: executable PCPs. Our ideal functionality
will be parameterized by an unconditionally sound proof system. We will say
that a protocol satisfies input-size hiding for a given function if there exists an
unconditionally sound proof system such that (for all adversaries there exists
a simulator such that) the executions of the ideal and real worlds are indistin-
guishable. The only requirements we will make on this proof system are that
it be unconditionally sound, with negligible soundness error, and that verifica-
tion time be polynomial in the size of the proof. This does mean that we have
some cryptographic tools in the ideal model, however the unconditional sound-
ness means that security of the ideal model is not based on any computational
assumption. As discussed in the intro, the ideal P0 will send to the functionality
a circuit C which computes both the output and a proof; this proof will allow the
functionality to verify correctness of that output in polynomial time (since the
ideal-world adversary is polynomial time, this proof will have polynomial size).
We require unconditionally sound proofs so that in the ideal world correctness
holds unconditionally. Computational assumptions may risk the basic guarantee
that the functionality be trivially secure.

When we prove security of our size-hiding protocol, we will instantiate the
proofs in the ideal world with executable PCPs. An executable PCP for language
L is defined by a probabilistic polynomial-time verifier V , and satisfies perfect
completeness (∀x ∈ L, ∃π such that Pr[V (x, π) = 1] = 1) and unconditional
soundness (∀x /∈ L, ∀π, Pr[V (x, π) = 1] is negligible in the length of x), where the
probabilities are over V ’s random coins. Equivalently, we can view it as a circuit
version of a PCP: the prover sends the verifier a circuit “computing” the PCP. In
order to verify the PCP, the verifier will run the circuit on inputs corresponding
to his PCP queries; the circuit’s output will be viewed as the corresponding bit
12 This can be enforced by requiring that a real-world experiment checks whether the

honest party outputs ideal error, and if so replaces this output with ⊥.

548 M. Chase et al.

of the PCP; hence the name “executable PCP”. (We will equivalently use the
term executable proof.) We emphasize that the soundness is unconditional, so
as argued above, we can use it in the ideal world. We will denote by EXπ a
scheme implementing an executable proof, and by π an individual proof that
can be verified by F .

Functionalities. In 2PC, the output computed by the functionality F is a func-
tion f(x0, x1) of the inputs x0 and x1 received from P0 and P1; traditionally f
is described by a circuit. This means that the size (or at least an upperbound)
of inputs and outputs is fixed as specified by the domain and range of f . For
instance, if f is the set intersection function, we have that the domain of f fixes
a bound on the number of elements in each player’s set. Instead, in our set-
ting we want honest players to have inputs of unrestricted length, because any
fixed polynomial bound inherently reveals some information about the size of
the inputs. For every input length there should be a different function for imple-
menting the same functionality. We need therefore a concise formalization of a
functionality that corresponds to a family of functions accommodating different
input lengths.

The natural way to formalize this consists of describing the functionality as
a deterministic efficient machine M , than on input a pair (1i, 1j) outputs the
circuit Cfi,j

. For each i, j, such a circuit describes the function fi,j that has
the appropriate domain to accommodate inputs of size i and j. (Note that we
will assume throughout that the length of the output is always bounded and
independent of i and j.) We will focus here on the case of hiding the size of the
input of only one player, so we will only need to consider families indexed by
a single size parameter (i.e., M(1i), Cfi

and fi). We denote by f the family of
functions.

On using circuits instead of Turing machines. Circuits have the advantage that
any circuit produced by a polynomial time machine will run in polynomial time
on all inputs; using them for implicit input makes clear that the functionality is
efficient. Using circuits for the functions fi,j is arbitrary but closer to other 2PC
work.

Putting this together. We follow the outline suggested in Section 1. Formally, we
require P0 to send to F an implicit representation x̄0 of its input x0, and a circuit
C that for any input x outputs the pair ((y0, y1), π) where (y0, y1) = f(x0, x).
Here π is a proof that can be used by F to check unconditionally that (y0, y1)
is correct according to f, x and x̄0. F will therefore check the correctness of
the proof given by π. If π convinces F , then y0 is sent to P0 and y1 is sent
to P1, keeping in mind that in this case output delivery to an honest player is
conditioned on the approval of the adversary. If instead F is not convinced by π,
then F does not send any output to P0 and sends ideal error to P1, without
waiting for P0’s approval.

Executable Proofs, Input-Size Hiding Secure Computation 549

Execution in the ideal world. We now describe an ideal execution with a PPT
adversary Sim who has auxiliary input z and controls one of the parties. The
PPT trusted third party that computes f = {fi}i∈N will be denoted by F .
Without loss of generality, let P0 be the player interested in keeping the size of
his input private. We will first describe the execution in the setting in which the
adversary Sim controls P1, then follow with the setting in which the adversary
controls P0.

1. Inputs: Sim receives as input x1 and auxiliary input z, party P0 receives as
input x0 and constructs a triple (i, x̄0,C), where i = |x0|, x̄0 is an implicit
representation of x0, C as described above computes f|x0|(x0, ·) and the
executable PCP.

2. P0 sends input to trusted party: upon activation, P0 sends (i, x̄0, C) to F .
3. Sim sends input to F and receives output: whenever Sim wishes, it may send

a message x′
1 to F , for any x′

1 of its choice. Upon receiving this message,
F computes ((y0, y1), π) = C(x′

1), verifies π, and sends y1 to Sim. (Once an
output has already been sent to Sim, all further input messages are ignored
by F .)

4. Sim instructs F to answer P0: when Sim sends a message of the type end
to F , F sends y0 to P0. If inputs have not yet been received by F , then F
ignores message end.

5. Outputs: P0 always outputs y0 that it received from F . Sim may output an
arbitrary (probabilistic polynomial-time computable) function of its auxil-
iary input z, the initial input x1, and the output obtained from F .

The ideal execution of f = {fi}i∈N using implicit representation Rep and
an executable PCP EXπ (with security parameter k, initial inputs (x0, x1) and
auxiliary input z to Sim), denoted by
IDEALf,Sim,Rep,EXπ

(k, x0, x1, z) is the output pair of P0 and Sim from the above
execution. We now consider the case in which the adversary Sim corrupts P0

while P1 is honest.

1. Inputs: P1 receives as input x1, Sim receives as input x0 and auxiliary input
z.

2. P1 sends input to F : upon activation P1 sends x1 to F .
3. Sim sends input to F and receives output: whenever Sim wishes, it may

send a message (i′, x̄′
0, C

′) to F . Upon receiving this message, F computes
((y0, y1), π) = C ′(x1). F then verifies π to check unconditionally that the
pair (y0, y1) corresponds to fi′(x′

0, x1) where x′
0 is the explicit representation

of x̄′
0 and i′ = |x′

0|. If the proof given by π is not accepting, F sends ideal
error to P1. If the proof given by π is accepting, F sends y0 to Sim. (Once
output has been sent to either P1 or Sim, all further input messages are
ignored by F .)

4. Sim instructs F to answer P1: when Sim sends a message of the type end
to F , F sends y1 to P1. If inputs have not yet been received by F or ideal
error was sent to P1, F ignores message end.

550 M. Chase et al.

5. Outputs: P1 outputs whatever it received from F (i.e., ideal error or y1).
Sim may output an arbitrary (probabilistic polynomial-time computable)
function of its auxiliary input z, the initial input x0, and the output y0
obtained from F .

The ideal execution of f = {fi}i∈k using implicit representation Rep and an
executable PCP EXπ (with security parameter k, initial inputs (x0, x1) and
auxiliary input z to Sim), denoted by
IDEALf,Sim,Rep,EXπ

(k, x0, x1, z) is the output pair of Sim and P1 from the above
execution.

Execution in the real world. We next consider the real world in which a real two-
party protocol is executed (and there exists no trusted third party). Formally, a
two-party protocol Π = (Π0,Π1) is defined by two sets of instructions Π0 and
Π1 for parties P0 and P1, respectively. A protocol is said to be polynomial time
if the running times of both Π0 and Π1 are bounded by fixed polynomials in the
security parameter k and in the size of the corresponding inputs.

Let f be as above and let Π be a PPT two-party protocol for computing
f . In addition, assume that a non-uniform PPT adversary (with non-uniform
input z) controls either P0 or P1. We describe the case in which the party P1

is corrupted, and therefore we will denote it as A = P �
1 . The setting in which

party P0 is corrupted proceeds in a similar manner. The adversary A = P �
1 on

input x1 starts by activating P0, who uses his input x0 and follows the protocol
instructions Π0 while the adversary A = P �

1 follows any arbitrary polynomial
time strategy. Upon the conclusion of this execution P0 writes its output from
the execution on its output-tape while the adversary A = P �

1 may output any
arbitrary polynomial time function of its view of the computation. To enforce
the condition that ideal error never occurs in the output of the real execution
we require that if ideal error does occur in the output of the honest party,
the real-world execution will replace it with ⊥. The real-world execution of Π
(with security parameter k, initial inputs (x0, x1), and auxiliary input z to the
adversary A = P �

1), denoted by REALΠ,P �
1
(k, x0, x1, z), is defined as the output

pair of P0 and A = P �
1 , resulting from the above process.

Security as emulation of real-world attacks in the ideal world. We can now define
security of protocols. Loosely speaking, a 2-party protocol Π is 1-sided input-size
secure if there exist Rep and EXπ such that for every real-world PPT adversary
A = P �, there exists an ideal-world PPT adversary Sim such that for all pairs
of initial inputs (x0, x1), the outcome of the ideal execution using Rep and EXπ

with adversary Sim is computationally indistinguishable from the outcome of a
real protocol execution with A = P �. We now present a formal definition.

Definition 2. Let f and Π be as above. Π is said to securely compute f if there
exists an executable PCP EXπ and an implicit representation Rep such that
for every b ∈ {0, 1} and every real-world non-uniform PPT adversary A = P �

controlling party Pb there exists an ideal-world non-uniform probabilistic expected

Executable Proofs, Input-Size Hiding Secure Computation 551

polynomial-time adversary Sim controlling Pb such that

{IDEALf,Sim,Rep,EXπ
(k, x0, x1, z)}k∈N ;z∈{0,1}∗;x0∈{0,1}poly(k);x1∈{0,1}k ≈

{REALΠ,P �(k, x0, x1, z)}k∈N ;z∈{0,1}∗;x0∈{0,1}poly(k);x1∈{0,1}k .

A sanity check. We note that our definition implies standard 2PC (with NBB
simulator) when the input size is a fixed polynomial: in that case the implicit
input is equivalent to explicit input (one can efficiently extract all the bits) and
the unconditional proofs ensure the correctness.

Discussion. This definition has all the desirable properties mentioned in Section
1. First, it is clear that no information is revealed to the adversary beside the
output yb. Moreover, as long as ideal error does not occur, it is clear by uncon-
ditional soundness of EXπ that the output is indeed equal to f(x0, x1) for the
input implicitly defined by x̄0. (Again, since the real protocol cannot output
ideal error, any attack on a real protocol translates into an ideal attack in
which ideal error does not occur.) We obtain the second property (uncondi-
tional security) directly because EXπ is unconditionally sound. The third prop-
erty follows because the ideal adversary must be efficient, and F just runs the
circuit received from Sim. (Efficient algorithms cannot produce inefficient cir-
cuits.)

3 Realizing Input-Size Hiding Secure 2-Party
Computation

Here we show that input-size hiding is possible. We begin by introducing the
tools that are used in our construction. Then we give an informal description of
our protocol, followed by a more formal specification.

Special commitment schemes. We will require a special type of commitment
scheme that we call “size hiding”, which will allow the sender to commit to a
string and later to open only some bits of the string, in such a way that the
commitment (and opening) does not reveal the size of the committed message.
We will denote it by (Gen,Com,Dec,Ver) where Gen is run by the receiver to
generate parameters13, Com commits to a string whose length is not a priori
bounded, Dec reveals a bit of the committed string and Ver verifies the opening
of a bit. A size-hiding commitment scheme can be constructed by using any com-
mitment scheme along with a Merkle tree. One can also use a zero-knowledge14

set scheme [MRK03]. For more details see the full version.

Error-correcting codes. We will use error-correcting codes (ECC) with constant
distance. See the full version.
13 Note that this is a 2-message commitment rather than a CRS-model commitment,

so the hiding properties must hold even against adversarially chosen parameters.
14 Actually indistinguishability as discussed in [CDV06] is sufficient here.

552 M. Chase et al.

ZKUAQKs. We use the standard definitions (see the full version) of interactive
proof systems, zero knowledge (ZK) and proofs of knowledge. We also use zero-
knowledge universal arguments of quasi knowledge (ZKUAQKs) as introduced
by [CV12]. In the full version we give the definitions introduced in previous
work for zero knowledge for interactive arguments, for the proof of knowledge
property for a universal argument (UA) and for quasi-knowledge for universal
arguments. Informally, a universal argument of quasi knowledge (UAQK) is a
universal argument with a special proof of knowledge property. Being a universal
argument, it can be used to prove that a machine on input a certain string
produces a certain output in a given number of steps T . The communication
complexity and the running time of the verifier do not depend on T , which
means that one can have a polynomial-time verifier even when T and the witness
used by the prover are superpolynomial in the size of the statement. The special
proof of knowledge property guarantees that for any polynomial time adversarial
prover there always exists an extractor that runs in expected polynomial time
and outputs bits of a valid witness. Moreover if the success probability of the
prover is non-negligible, then for any polynomially computable set of indexes Φ,
the extractor queried on each input i ∈ Φ with overwhelming probability outputs
the i-th bit of a valid witness.

[CV12] gives a constant-round construction of a ZKUAQK based on the exis-
tence of CRHFs, building on the zero-knowledge universal argument of [Bar04].
(Since a universal argument is an interactive argument, the definition of a
ZKUAQK is simply a UAQK which also satisfies the ZK property.) Indeed
by plugging the zero-knowledge UA of [Bar04] in the witness indistinguishable
UAQK of [CV12] (this works since ZK implies WI) we have that the quasi knowl-
edge property follows directly. To see the ZK property, note that in the protocol
in [CV12] the prover runs a ZK verifier, sends some commitments, and runs
several ZK proofs sequentially. Thus, a simulator can easily run such steps by
making use of the the simulator for the ZK proofs and sending commitments
of random messages. Zero knowledge therefore follows from sequential composi-
tion of the ZK property of the UA [Bar04], and from the hiding property of the
commitment.

Fully homomorphic encryption [Gen09]. A fully homomorphic encryption (FHE)
scheme is a semantically secure encryption scheme (KeyGen,Enc,Dec) augmented
with an additional algorithm Eval that allows for computations over encrypted
ciphertexts. See the full version for details.

Probabilistic checkable proofs of proximity. A “PCP of proximity” (PCPP) proof
[BSGH+06] is a relaxation of a standard PCP, that only verifies that the input
is close to an element of the language. It has the property that the PCP verifier
needs only the description of the Turing machine M deciding the language and
oracle access to bits of the input (x0, x1) of M and to bits of the PCP proof π.
See the full version for details.

Executable Proofs, Input-Size Hiding Secure Computation 553

3.1 High-Level Overview of the Protocol

Here we describe a protocol which provides size-hiding for P0 for functions in
which only P1 receives output. See the full version for protocols which allow
either or both parties to receive output. At a high level, our protocol follows the
outline described in Section 1 and consists of the following 3 steps:

1st Part. In the first part, P1 sends to P0 parameters for a size-hiding string com-
mitment scheme. Then P0 uses this scheme in order to send to P1 the commitment
com of its input x0 expanded by means of an error correcting code. P0 then proves
“quasi knowledge” of the committed value. This is done by using a ZKUAQK and
ends the first part. The above first part of the protocol implements the idea of P0

committing to its input along with a zero knowledge argument of “quasi knowl-
edge”. Looking ahead the simulator will use this argument to extract from P �

0 a
reliable implicit representation of the committed input. The ECC guarantees that
the explicit input will be well defined and correct even if the extracted circuit is
incorrect in a few positions. (Recall that quasi knowledge allows the extracted cir-
cuits to be incorrect on any negligible fraction of the positions.)

2nd Part. In the second part of the protocol, P1 sends the public key for
FHE. This key will later be used by P0 to perform the correct computation on
encrypted data. P1 also proves (in ZK) knowledge of the corresponding secret
key, and then sends an encryption e of its input x1. Intuitively, the ciphertext
e combined with the proof of knowledge of the secret key guarantees that P1

“knows” his input. Looking ahead to the proof, this is useful because it will
allow the simulator to decrypt e and extract P �

1 ’s input. This ends this part of
the protocol, which focuses on P1 committing to its input in a way that is both
extractable and usable to perform computations over encrypted data.

3rd Part. P0 uses the FHE evaluation algorithm and the ciphertext e received
from P1 in order to compute the encryption e′ of P1’s output according to the
function f with inputs x0 and x1. Then e′ is sent to P1. P0 also computes a PCPP
proof π proving that e′ has been correctly computed by applying the function
f(x0, ·) to e. Then P0 proves by means of a ZKUAQK, “quasi knowledge” of a
value x0 that is committed (after ECC expansion) in com and of a PCPP proof
π as described above corresponding to that x0. Finally, P1 decrypts e′ therefore
obtaining its output. This part of the protocol thereby focuses on P0 computing
P1’s output e′ and sending it to P1, and proving with a ZKUAQK that e′ was
computed correctly and there is a PCPP proof confirming it. Here, circuit privacy
of the encryption scheme guarantees that P1 learns nothing about P0’s input.
“Quasi knowledge” of the ZKUAQK allows the simulator to obtain from P �

1 a
circuit representation of a PCPP. Very roughly, the PCPP properties allow the
functionality to verify that e′ is correct given only this circuit representation
of the PCPP and the implicit representation of x0 that we extracted in step 1.
This is possible because the verifier a of PCPP (i.e., the functionality, in our
case) only needs access to few bits of the the PCP proof and only part of the
statement.

554 M. Chase et al.

3.2 Our Protocol for Input-Size Hiding Secure 2PC

We now give a specification of our protocol. For function family {fi} defined by
circuit M(·), our protocol appears in Fig. 1 and uses the following ingredients,
as defined above. (For extensions, see the full version.)
� A circuit private FHE scheme (KeyGen,Enc,Dec,Eval).
� A size-hiding string commitment scheme (Gen,Com,Dec,Ver).
� An error correcting code (ECC,ECCDec) with polynomial expansion and

constant distance δ.
� A PCPP (ProvePCPP,VerifyPCPP) with proximity parameter δ for the follow-

ing pair language: ((i, e, e′, pk), x′) ∈ LPCPP if there exists randomness r′

and input x such that e′ ← Eval(pk, C, e, r′) ∧ x′ = ECC(x) ∧ i = |x| ∧ fi is
as defined by M ∧ C is the circuit for fi(x, ·).

� A ZKPoK (PPOK,VPOK) for the following relation: (pk, σ) ∈ R3 iff (pk, sk) ←
KeyGen(σ).

� A ZKUAQK (ProverUAQK,VerifierUAQK) for the following relations.
R1: accept ((com, η), (i, x′, x, dec)) iff Ver(η, com, dec, x′) = 1∧x′ = ECC(x)∧

|x| = i). (By Ver(η, com, dec, x′) = 1, we mean that verification succeeds
on all bits of x′.) We denote by L1 the corresponding language.

R2: accept ((com, η, e, e′, pk), (i, dec, x′, r′, x, r′′, π)) iff Ver(η, com, dec, x′) =
1 and π = ProvePCPP(((i, e, e′, pk), x′), (r′, x); r′′) is an honestly generated
proof for ((i, e, e′, pk), x′)) ∈ LPCPP (generated using randomness r′′). We
denote by L2 the corresponding language.

Theorem 2. The protocol in Fig. 1 securely computes function family f defined
by M , under Definition 2 (i.e., for one-sided size-hiding secure 2-party compu-
tation).

Here we give the main ideas for the proof. For more details, see the full version.
First, we need to describe an implicit representation and an executable PCP

scheme that we will use for the ideal execution.
The implicit representation. In the ideal model we require that the implicit rep-
resentation uniquely determines the explicit input, i.e. there must exist some
(potentially inefficient) decoding algorithm Decode that maps every implicit
representation x′ to some explicit input. In our construction, this will consist
of taking an implicit circuit representation x′, extracting all the bits of the cor-
responding string x̃ by evaluating x′ on 1, . . . i′, where i′ is the length of an
encoding under ECC of a string of length i, and then running the ECC decoding
algorithm ECCDec(x̃) to produce x. Rep(x) simply outputs a circuit representa-
tion of ECC(x).
The executable PCP. The ideal world requires an executable PCP for check-
ing membership of a statement in the language: (i, x′

0, y, x1) ∈ LIdeal(Decode)
if there exists x0 such that Decode(x′

0) = x0,∧|x0| = i ∧ y = fi(x0, x1). The
executable PCP EXπ will be instantiated through a circuit representation of a
PCPP proof. Indeed proofs given by a PCPP are unconditionally sound but of
size polynomial in the length of the witness and this could be too long. However,
a circuit representation of a PCPP proof can have short size and still can be

Executable Proofs, Input-Size Hiding Secure Computation 555

Players: P0 and P1 with private inputs x0 and x1 respectively.

Common input: the description of the machine M describing the function family
f = {fi}i∈N .

1. P1 → P0: P1 picks random coins σ, runs η ← Gen(σ) and send η to P0.
2. P0 → P1: P0 computes (com, dec) = Com(η, x′

0 = ECC(x0), r) with random coins
r and sends com to P1.

3. P0 ↔ P1: P0 and P1 run the ZKUAQK 〈ProverUAQK((com, η), (|x0|, x′
0, x0, dec)),

VerifierUAQK((com, η))〉 for language L1 to prove quasi knowledge of an opening
to com that can be correctly decoded. P1 aborts if VerifierUAQK rejects.

4. P1 → P0: P1 chooses random coins σ′ and runs (pk, sk) ← KeyGen(σ′). P1 sends
pk to P0.

5. P1 ↔ P0: P1 and P0 run the ZKPoK 〈PPOK(pk, σ′),VPOK(pk)〉 to prove knowledge
of the coins used to generate pk. P0 aborts if VPOK does not accept.

6. P1 → P0: P1 picks random coins re and computes e ← Enc(pk, x1, re). P1 sends
e to P0.

7. P0 → P1: P0 computes the circuit C for f|x0|(x0, ·), chooses a sufficiently long
random string r′ and then computes e′ ← Eval(pk, C, e, r′). P0 sends e′ to P1.

8. P0 ↔ P1: P0 runs π ← ProvePCPP((|x0|, e, e′, pk, x′
0), (r

′, x0); r
′′) after pick-

ing random coins r′′, thereby generating a PCPP π showing that e′ is cor-
rectly computed from e, pk and x0 such that x′

0 = ECC(x0). Then P0 and
P1 run the ZKUAQK 〈ProverUAQK((com, η, e, e′, pk), (|x0|, dec, x′

0, r
′, x0, r

′′, π)),
VerifierUAQK(com, η, e, e′, pk)〉 for language L2 to prove quasi knowledge of an
opening x′

0, dec to com and of a PCPP proof π computed with randomness r′′

showing that e′ is correctly computed with randomness r′ and inputs e, pk and
x0 such that x′

0 = ECC(x0). P1 aborts if VerifierUAQK rejects.
9. P1: P1 runs y = Dec(sk, e′) and outputs y.

Fig. 1. A secure protocol for with input-size hiding for P0 and output for P1

easily used to unconditionally verify the validity of the intended statement since
it can be executed a polynomial number (independent of the witness size) of
times to obtain the bits of the PCPP proof needed by the PCPP verifier. In
fact, the proof system that we use will be somewhat more involved: the proof
will include additional values σ, e, e′, x′′

0 as well as the circuit representing the
PCPP Cπ′ . Formally, we can define the required executable proof by defining its
verification algorithm.

The verifier Verify((i, x′
0, y, x1), π̄) for the executable proof proceeds as follows

(recall that (i, x′
0, C) will be the input received from the player that aims to hide

the size of his inputs, and (y, π̄) is the output of C(x1))

1. Parse π̄ = (σ, e, e′, x′′
0 , Cπ′), and view both x′

0 and x′′
0 as circuit representations

of i′-bit strings (again, i′ is the length of an encoded string of length i using
ECC). If π̄ cannot be parsed this way, output 0.

2. Choose k random locations i1, . . . , ik ∈ {0, . . . , i′ − 1}, and halt and output 0
if x′

0(i) �= x′′
0(i) for any i ∈ i1, . . . , ik.

556 M. Chase et al.

3. Compute (pk, sk) ← KeyGen(σ), and halt and output 0 if Dec(sk, e) �= x1 or
Dec(sk, e′) �= y.

4. Run the PCPP verifier VerifyPCPP((i, e, e′, pk), x′
0) for language LPCPP, to

obtain index sets Iπ, Iz and decision circuit D. Compute x′
0(j) on each index

j ∈ Iz and compute Cπ′(j) on each index j ∈ I ′
π; call the resulting list of

bits X. Finally output the result of D(X).

Note that an honest prover when given x0 can efficiently generate an accept-
ing proof for each valid x1, y. Note also that PCPP proofs require the verifier to
access only a few bits of the statement and the proof in order to be convinced,
so we obtain an efficient verifier.

Lemma 1. The above proof system is unconditionally sound for the language
LIdeal(Decode).

Proof. The soundness of the PCPP guarantees that x′
0 is close to a valid code-

word. Then we have that if ECCDec(x′
0) �= ECCDec(x′′

0) then the probability that
we sample k random positions without finding any difference among x′

0 and x′′
0 is

negligible. Then, by soundness of the PCPP, if the verifier accepts, we know that
with all but negligible probability e′ ← Eval(pk, C, e, r′) for some r′, where C is
the circuit for fi(ECCDec(x′

0), ·) and i = |x0|. Finally, the verifier will generate
(pk, sk) ← KeyGen(σ) and check that x1 = Dec(sk, e) and y = Dec(sk, e′). By
the circuit privacy property, we then get that the distribution of e′ is statisti-
cally close to Enc(pk, C(x1)) and if we let x0 = ECCDec(x′′

0) = ECCDec(x′
0), this

means that Dec(sk, e′) = C(x1) = fi(x0, x1) = y as desired.

Security with Corrupt P1. Now we are ready to sketch the proof of security for
the case where P1 is corrupt. For any real-world adversary P ∗

1 , we will show
an ideal-world adversary Sim such that the ideal and real-world outputs are
indistinguishable. Sim will simulate P ∗

1 internally. It receives parameters for the
commitment scheme from P ∗

1 in step 1, commits to 0 in step 2, and runs the
ZK simulator for the UAQK with P ∗

1 in step 3. In step 4, it receives pk, and
in step 5 it runs the PoK extractor to extract σ′. Then in step 6 it receives e
and computes (pk, sk) ← KeyGen(σ′), and x1 = Dec(sk, e). It sends x1 to the
functionality and receives y. In step 7, it sends e′ = Enc(pk, y), and in step 8 it
runs the ZK simulator for the UAQK.

We argue that the ideal-world output with this simulator is indistinguishable
from the real-world output with P ∗

1 through a series of games. We define Game
0 to be the real game, and then proceed as follows:

– Game 1: UAQK Simulator. This is identical to the real game except that in
steps 3 and 8, P0 uses the ZK simulator. (This is indistinguishable by the
Zero Knowledge property of the ZKUAQK.)

– Game 2: Simulated commitment. This is identical to game 1 except that
in step 2 P0 forms a commitment to 0. (This is indistinguishable by hiding
property of the commitment scheme.)

Executable Proofs, Input-Size Hiding Secure Computation 557

– Game 3: Extracting σ′. This is identical to game 2 except that in step 5 P0

uses the PoK extractor to extract σ′, and aborts if KeyGen(σ′) = (pk′, sk′)
such that pk′ �= pk. (This is indistinguishable by the PoK property.)

– Game 4: Decrypting e. This is identical to game 3 except that in step 7 P0

computes x1 = Dec(sk, e) and then sends e′ = Enc(pk, f|x0|(x0, x1)). (This is
indistinguishable by the circuit privacy property of the FHE scheme.)

– Game 5: Ideal Game. The only difference is that in Game 4 P0 computes
f|x0|(x0, x1) and encrypts it, while in the ideal game Sim sends x1 to the
ideal functionality, receives y = f|x0|(x0, x1), and encrypts that, so the two
games are identical.

Corrupt P0. Finally we consider the case when party P0 is corrupted. For any
real world adversary A, we will show an ideal-world adversary Sim such that the
ideal and real-world outputs are indistinguishable. Here we present the intuition
behind the proof. (For a more detailed treatment, see the full version.)

At a high level the idea is that the simulator will use the extractor for the
UAQK in step 3 to construct an implicit representation x′

0 of x0. Then, for C it
will construct a circuit which on input x1 1) continues to run A with an honest
P1 using input x1 in steps 4-7, 2) decrypts the ciphertext e′ received in step 7
to obtain y, and 3) uses the extractor for the UAQK in step 8 to construct an
implicit representation of the statistically sound proof (in particular of x′′

0 and
the PCPP π′). Finally, in order to ensure that the protocol is aborted with the
same probability in both worlds, the simulator will first run A once with honest
P1; it will rewind to step 3 and construct x′

0 and C as described above only if this
first run is successful. Since the simulator does not know x1, it will instead use
x1 = 0 for this run, and we will argue that the result will be indistinguishable.
The ideal world never produces ideal error except with negligible probability.
Recall that to verify the proof π produced by C(x1), the functionality will have
to check several things: 1) that x′

0 and x′′
0 are close, 2) that e, e′ decrypt to x1

and y, and 3) that the PCPP π′ verifies for the statement (i, e, e′, pk), x′′
0 .

Thus, we need only show that these three checks will succeed. The argument
goes as follows. First, we argue that x′′

0 extracted in step 8 must be very close
to x′

0 extracted in step 3. If not, we could use the UAQK extractors to extract
some pair of bits that differ along with a pair of valid openings for those bits,
and thus produce a contradiction to the binding property. The second check
is clearly satisfied by the way that e and y are computed. Finally, the quasi-
knowledge property of the UAQK implies that almost all of the bits of the
extracted PCPP will be correct, so the verification should succeed with all but
negligible probability.

P1’s output in the two games is indistinguishable given that the functionality
does not send ideal error. The issue here is that the functionality will run the
circuit C to obtain P1’s output, which is essentially like rewinding and rerunning
steps 4-8 of the protocol. (This is an issue because Sim will produce its ideal
output using A’s initial run, so we need to make sure that P1’s output is still
consistent with this initial run.) Thus, we have to argue that rewinding to step
4 can not change P1’s output. Above, we argued that C produces a valid proof

558 M. Chase et al.

that y = f|x0|(x0, x1) where x0 is as defined by the decoding of the implicit string
produced by the UAQK extractor in step 3. Similarly, we can argue that if we
extract from the UAQK in the first run-through, we can also produce a valid
proof that y produced in that run is also equal to y = f|x0|(x0, x1) for the same
x0. Finally, by the unconditional soundness of the proof described in Section 3.2,
we conclude that P1’s output y will be the same in both games.
The adversary’s output in the two games is indistinguishable. The main difference
is that in the real game, A is interacting with P1 whose input is x1, while in the
ideal game, Sim’s output is what A produces when run with P1 whose input is 0.
This follows fairly directly from semantic security. Note that we also need zero
knowledge to ensure that the proof in step 5 does not reveal anything about sk
or x1.

A technical issue. There is one technical issue that occurs because we are build-
ing on UAQKs. The issue is that for our simulator to work, we need to ensure
that the UAQK extractors run in polynomial time, and succeed with overwhelm-
ing probability. By definition, we are guaranteed that from a prover with success
probability p, a UAQK extractor will run in time 1/p and successfully extract
a witness with overwhelming probability assuming p is non-negligible. Here, we
need to ensure that the UAQK is given a prover that succeeds with non-negligible
probability. (Unless we have a real world adversary that aborts with all but negli-
gible probability - in that case our simulator will also abort with all but negligible
probability.) The issue is that that the adversary’s probability of aborting may
depend on the random coins that P1 uses up until that point, and in particular
on the randomness used in forming the key pair pk, sk and the encryption e.
Recall that our simulator uses the first run, with e = Enc(pk, 0, ·) to determine
whether to abort, and then rewinds and gives the ideal functionality a circuit
that extracts from a prover who is sent e = Enc(pk, x1, ·) (under a fresh public
key). It is possible that for some values of e, A always aborts; we may get unlucky
and in the first run get an e on which A successfully completes the protocol (so
we continue and form C), and then when C is run it ends up with an e for
which A aborts with high probability thus causing the extractor to fail and the
circuit C to not produce a valid proof π. However, if there is a non-negligible
probability with which A does not abort on the first run, then there must be a
non-negligible chance that it will produce valid proofs on the rewinding as well.
(This follows from semantic security because the only difference in the runs is
the value encrypted in e.) Thus, we will rewind many times, find one on which A
does produce valid proofs, and extract from that run. To determine how many
times to rewind (so that we can argue that at least one will be successful but the
process still runs in expected polynomial time), we will use estimation techniques
from [CV12]. For a more detailed proof see the full version.

Acknowledgments. Research supported in part by MIUR Project PRIN “GenData
2020”, NSF grants CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-
1136174; US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM
Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Founda-

Executable Proofs, Input-Size Hiding Secure Computation 559

tion Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. This material is also based upon work supported by the Defense Advanced
Research Projects Agency through the U.S. Office of Naval Research under Contract
N00014-11-1-0392. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

References

[ACT11] Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-
hiding private set intersection. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer,
Heidelberg (2011)

[Bar04] Barak, B.: Non-black-box techniques in cryptography. Ph.D Thesis
(2004)

[Bea92] Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum,
J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidel-
berg (1992)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm
for designing efficient protocols. In: ACM Conference on Computer and
Communications Security, pp. 62–73. ACM (1993)

[BSGH+06] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.:
Robust pcps of proximity, shorter pcps, and applications to coding. SIAM
J. Comput. 36(4), 889–974 (2006)

[Can03] Canetti, R.: Universally composable signatures, certification and authen-
tication. Cryptology ePrint Archive, Report 2003/239 (2003). http://
eprint.iacr.org/

[Can05] Canetti, R.: Universally composable security: a new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/67 (version
13 Dec 2005) (2005). http://eprint.iacr.org/2000/067/20051214:064128

[CDV06] Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: minimal
assumptions and efficient constructions. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 120–144. Springer, Heidelberg (2006)

[CFT13] De Cristofaro, E., Faber, S., Tsudik, G.: Secure genomic testing with
size- and position-hiding private substring matching. In: Proceedings of
the 12th annual ACM Workshop on Privacy in the Electronic Society,
WPES 2013, Berlin, Germany, November 4, 2013, pp. 107–118 (2013)

[CGH98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited (preliminary version). In: Vitter, J.S. (ed.), Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, 23–26 May, 1998, pp. 209–218. ACM (1998)

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors
are faulty (extended abstract). In: STOC, pp. 364–369. ACM (1986)

[CV12] Chase, M., Visconti, I.: Secure database commitments and universal
arguments of quasi knowledge. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 236–254. Springer, Heidelberg
(2012)

[Dam92] Damg̊ard, I.B.: Towards practical public key systems secure against cho-
sen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 445–456. Springer, Heidelberg (1992)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2000/067/20051214:064128

560 M. Chase et al.

[DN92] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147.
Springer, Heidelberg (1993)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178. ACM (2009)

[GL91] Goldwasser, S., Levin, L.A.: Fair computation of general functions in
presence of immoral majority. In: Menezes, A., Vanstone, S.A. (eds.)
CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC,
pp. 218–229. ACM (1987)

[Gol04] Goldreich, O.: Foundations of cryptography, vol. 2: Basic applications
(2004)

[IP07] Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007)

[LNO13] Lindell, Y., Nissim, K., Orlandi, C.: Hiding the input-size in secure two-
party computation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part II. LNCS, vol. 8270, pp. 421–440. Springer, Heidelberg (2013)

[MR92] Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg
(1992)

[MRK03] Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS,
pp. 80–91. IEEE Computer Society (2003)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003)

Encryption

Semantically Secure Order-Revealing
Encryption: Multi-input Functional Encryption

Without Obfuscation

Dan Boneh1(B), Kevin Lewi1, Mariana Raykova2, Amit Sahai3,
Mark Zhandry1, and Joe Zimmerman1

1 Stanford University, Stanford, US
dabo@cs.stanford.edu

2 SRI International, Menlo Park, US
3 Computer Science, UCLA and Center for Encrypted Functionalities,

Los Angeles, US

Abstract. Deciding “greater-than” relations among data items just
given their encryptions is at the heart of search algorithms on encrypted
data, most notably, non-interactive binary search on encrypted data.
Order-preserving encryption provides one solution, but provably pro-
vides only limited security guarantees. Two-input functional encryption
is another approach, but requires the full power of obfuscation machinery
and is currently not implementable.

We construct the first implementable encryption system supporting
greater-than comparisons on encrypted data that provides the “best-
possible” semantic security. In our scheme there is a public algorithm
that given two ciphertexts as input, reveals the order of the correspond-
ing plaintexts and nothing else. Our constructions are inspired by obfus-
cation techniques, but do not use obfuscation. For example, to compare
two 16-bit encrypted values (e.g., salaries or age) we only need a 9-way
multilinear map. More generally, comparing k-bit values requires only a
(k/2+1)-way multilinear map. The required degree of multilinearity can
be further reduced, but at the cost of increasing ciphertext size.

Beyond comparisons, our results give an implementable secret-key
multi-input functional encryption scheme for functionalities that can be
expressed as (generalized) branching programs of polynomial length and
width. Comparisons are a special case of this class, where for k-bit inputs
the branching program is of length k + 1 and width 4.

1 Introduction

Functional encryption [BSW11] is a public-key encryption system that supports
“partial” decryption keys: decrypting a ciphertext c = E(pk,m) using a key skf

reveals f(m) and nothing else. Multi-input functional encryption [GGG+14] is
a generalization of functional encryption where the key skf acts on � ciphertexts
c1 = E(pk,m1), . . . , c� = E(pk,m�) to reveal f(m1, . . . ,m�) and nothing else.
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 563–594, 2015.
DOI: 10.1007/978-3-662-46803-6 19

564 D. Boneh et al.

Existing constructions for general multi-input functional encryption are based
on obfuscation and thus are not currently feasible to implement, even for simple
functionalities.

In this paper we present a construction for secret-key multi-input functional
encryption from multilinear maps. By restricting our attention to the secret-key
setting, we are able to achieve a much more efficient construction, without the
full machinery of obfuscation and NIZK proofs.

For concreteness, in the introduction we present our results as they apply
to a specific application called order-revealing encryption [AKS+04,BCL+09,
BCO11]. The paper body presents the results in their full generality, namely as
a secret-key multi-input functional encryption scheme.

1.1 Order-Revealing Encryption

Definition. A secret-key encryption scheme is order-revealing1 [BCO11] if there
is a public procedure that takes two encrypted plaintexts as input and reports
their lexicographic ordering. This procedure, which we call the order-revealing
algorithm, requires no secrets and can be evaluated by anyone. More precisely, an
order-revealing scheme is a tuple (G,E,D) of algorithms. Algorithm G outputs
a pair (sk, comp) where sk is a secret encryption key and comp(·, ·) is an efficient
deterministic algorithm that takes two ciphertexts as input and outputs either
‘<’ or ‘≥’. Algorithms E(sk,m) and D(sk, c) are standard encryption/decryption
algorithms where m ∈ {0, . . . , B} for some B. In addition to the standard cor-
rectness of decryption we also require that for all (sk, comp) output by G and
for all plaintexts m0,m1 we have:

m0 < m1 =⇒ Pr[comp(E(sk,m0) , E(sk,m1)) =′<′] = 1
m0 ≥ m1 =⇒ Pr[comp(E(sk,m0) , E(sk,m1)) =′≥′] = 1

An order-revealing encryption scheme is secure if a ciphertext reveals nothing
about the corresponding plaintext beyond its lexicographic relation relative to
other ciphertexts. This is defined using a simple variant of the standard semantic
security game [GM82]: the adversary is given algorithm comp(·, ·) and access to
a “left-right-oracle” O(·, ·) that on input (m0,m1) returns E(sk,mb) for some
b ∈ {0, 1} chosen at the beginning of the game. After adaptively querying the
oracle O the adversary outputs a guess b′ and wins the game if b = b′. Let
(m(0)

0 ,m
(0)
1), . . . , (m(q)

0 ,m
(q)
1) be the adversary’s queries to O. To ensure that the

adversary cannot use algorithm comp(·, ·) to trivially win the game we require
that the relative ordering of messages on the left is the same as the relative
ordering on the right, namely for all 0 ≤ i, j ≤ q:

m
(i)
0 < m

(j)
0 ⇐⇒ m

(i)
1 < m

(j)
1

The scheme is secure if the adversary cannot win this game with non-negligible
advantage. We refer to this notion as best-possible semantic security. We give a
complete (and more general) definition in Section 3.
1 In [BCO11] order revealing encryption was called “efficiently-orderable encryption.”

Semantically Secure Order-Revealing Encryption 565

Note that a public-key order-revealing encryption scheme is impossible: if an
adversary has unrestricted access to the encryption algorithm, he can use the
encryption algorithm and the order-revealing algorithm comp(·, ·) to decrypt any
ciphertext using binary search without the secret key.

Applications. Order-revealing encryption (ORE) is motivated by the problem
of answering range queries on a remote encrypted database [AKS+04,BCL+09].
Consider a remote database holding encrypted pairs (name, salary). The data
owner wishes to retrieve all records with a salary greater than t. If salaries are
encrypted using an ORE then the database can sort all records on its own from
lowest salary to highest. This sorting can be done even when records are inserted
sequentially into the database (perhaps by multiple users who share the secret
encryption key) and requires no interaction with the data owner(s). To issue the
range query the data owner sends the encryption of t under the ORE key. In
response, the database first uses binary search on the encrypted salaries to locate
the smallest encrypted record R with a salary greater then t and then simply
sends all records to the “right” of R back to the user. Thus, for a database
of n records, the database’s work is O(log n) and requires only one round of
interaction with the client, as in the case of a cleartext database. Security of the
ORE ensures that the database learns nothing beyond the relative ordering of
records and queries.

Alternate Approaches. Before describing our construction we briefly survey
a few alternate constructions for answering range queries on a remote encrypted
database.

Boldyreva et al. [BCL+09,BCO11] describe an elegant primitive called Order
Preserving Encryption (OPE) where encryption preserves the relative ordering
of plaintexts. Comparing encrypted data is then done by simply comparing the
corresponding ciphertexts. However, OPE leaks information about the relative
distances of plaintexts. Recent work of Malkin et al. [MTY13] constructs an OPE
scheme with a partial security guarantee, hiding the low-order bits of plaintexts,
but still does not achieve best-possible semantic security. Indeed, Boldyreva
et al. [BCL+09] prove that no OPE scheme can possibly achieve best-possible
semantic security. In ORE, unlike OPE, comparisons are done with a dedicated
algorithm comp(·, ·) which is the reason best-possible semantic security can be
achieved.

A very different approach to answering range queries on encrypted data uses
garbled RAMs [LO13,GHL+14]. With garbled RAMs the database can answer
range queries without learning any information about the data, but answer-
ing the range queries requires more rounds of interaction per query and the
database’s work is higher than with ORE.

Other approaches to answering range queries are based on public-key predi-
cate encryption [BW07,SBC+07,KSW08] and require a linear scan through the
database. With ORE, range queries can be answered in logarithmic time in the
size of the database. We also mention a result of Popa et al. [PLZ13] who describe

566 D. Boneh et al.

an interactive protocol for answering range queries. Interaction is used to main-
tain a sorted data structure at the database by offloading some comparisons to
the client. Finally, we note that ORE is a special case of secret-key two-input
functional encryption [GGG+14].

1.2 Order Revealing Encryption: Our Construction

Our construction begins with a simple automaton for the comparison function
on two inputs that we represent as a low-width matrix branching program. We
encrypt ciphertexts in a way such that given two independently-created cipher-
texts, anyone can run the comparison branching program to reveal the relative
ordering of the corresponding plaintexts. While our encryption scheme applies
to any multi-input functionality expressed as a matrix branching program (see
Section 2.2), for the rest of this section we use the two-input comparison automa-
ton and its branching program as a concrete example to illustrate the construc-
tion.

The Comparison Automaton and Branching Program. Fig. 1 shows a
five-state automaton A that computes the ordering of two inputs x = x1x2 · · · xn

and y = y1y2 . . . yn in {0, 1}n when the input is processed in an interleaved
order (of the form x1y1x2y2 · · · xnyn). From this automaton we derive four 5× 5
matrices X0,X1,Y0,Y1, where each is the adjacency matrix of a subgraph of A:
for b ∈ {0, 1}, the matrix Xb is the adjacency matrix of the subgraph consisting
only of the b-transitions used by input bits of x, and the matrix Yb is the
adjacency matrix of the subgraph consisting only of the b-transitions used by
input bits of y. Note that these matrices are not invertible because of the sink
states in the automaton. This introduces additional challenges in the security
proof; however, we are able to handle branching programs with non-invertible
matrices using recent results of Sahai and Zhandry [SZ14].

Let ei be the 5-vector containing 1 in position i and zero elsewhere. Then the
product eᵀ

1 ·∏n
i=1 (Xxi

Yyi
) results in a vector with a single “1” in three possible

locations (corresponding to either the “x > y”, “x < y”, or “=” final states), and
the location of the “1” determines the result of the comparison operation on x
and y. Hence, the matrices X0,X1,Y0,Y1 form a matrix branching program for
the two-input comparison function. In the full version we show that a simple re-
ordering of the inputs reduces the matrix program length to only n+1 matrices
each of dimension 4 × 4, but for simplicity we ignore this optimization here.

Fig. 1. The 5-state comparison automaton on inputs x, y ∈ {0, 1}n where ‘=’ is the
start state. Input bits are processed in an interleaved order x1 y1 x2 y2 . . .

Semantically Secure Order-Revealing Encryption 567

The ORE Encryption Scheme. Fix a prime q. The setup algorithm G uni-
formly samples 2n − 1 invertible matrices R1, . . . ,R2n−1 from GL5(Zq). These
matrices form the secret encryption key sk. During encryption these matrices
will be used to randomize the matrices of the comparison branching program
using Kilian’s randomization technique [Kil88]. We define two additional vectors
R0 := eᵀ

1 and R2n := e5. The secret key also contains the parameters for an
asymmetric multilinear map [GGH13a] with 2n indices (i.e., of degree 2n). We
divide the 2n indices into two disjoint size-n sets U1 and U2.

The encryption algorithm encrypts a plaintext x = x1x2 · · · xn ∈ {0, 1}n as
follows. It first samples a partition (S1, . . . , Sn) of U1 and a partition (T1, . . . , Tn)
of U2. These partitions are sampled at random from a family of partitions we call
an “exclusive partition family.” They must satisfy a specific combinatorial prop-
erty needed to prevent certain “mix-and-match” attacks where the attacker tries
to run the comparison algorithm on improperly formed ciphertexts. We define
and construct these partition families in Section 2.5. They are a generalization
of the “straddling sets” used in Barak et al. [BGK+14].

Next, the encryption algorithm samples random scalars α1, . . . , α2n ∈ Z
∗
q and

constructs the 5 × 5 matrices

X̂i = αi · (R2i−2 Xxi
R−1

2i−1) and Ŷi = αn+i · (R2i−1 Yxi
R−1

2i)

for i ∈ [n] where we define R−1
2n := e5. Recall that the matrices Ri are taken

from the secret key and the matrices X0,X1 and Y0,Y1 are the matrices in the
comparison branching program. Because R0 and R2n are vectors, so are X̂0 and
Ŷn. All other ciphertext components are square matrices.

Finally, for i ∈ [n] the encryption algorithm encodes the entries of X̂i under
the index set Si of the multilinear map, and encodes the entries of Ŷi under the
index set Ti. The resulting 2n encoded 5 × 5 matrices ({X̂i}n

i=1, {Ŷj}n
j=1) are

output as the encryption of x ∈ {0, 1}n.

Fig. 2. The order-revealing algorithm applied to encryptions of x1x2x3 and y1y2y3

568 D. Boneh et al.

The Order-Revealing Algorithm. Given two independently-created cipher-
texts cx and cy corresponding to plaintexts x and y, the order-revealing algorithm
computes the interleaved product of the matrices in the left half of cx with the
matrices in the right half of cy. In other words, if cx = ({Ai}n

i=1, {Bj}n
j=1) and

cy = ({Ci}n
i=1, {Dj}n

j=1) then z = A1D1A2D2 · · ·AnDn, as shown in Fig. 2. We
compute z using the multilinear map and the result is a single group element
(a scalar) because A1 and Dn are vectors. Finally, the algorithm zero-tests z
and the outcome reveals the ordering of x and y. Zero-testing this z is possi-
ble because it is an encoding of an element under the full 2n index set, by the
structure of the partitions.

To verify that the final zero-test correctly reveals the ordering of x and y,
observe that the scalar z expands to the quantity

(
eᵀ
1 Xx1 R

−1
1

) (
R1Yy1R

−1
2

) · · · (R2n−2Xxn
R−1

2n−1

)
(R2n−1Yyn

e5) (1)

Hence, z takes on a non-zero value if and only if the comparison automaton
terminates in the state “x < y”. Note that we omitted the scalars αi in the
expansion (1) for ease of exposition. Their presence causes z to be either 0 or
non-zero, as opposed to 0 or 1.

Security. We prove the security of a generalization of this construction in the
generic multilinear map model [GGH+13b,BR14,BGK+14]. The use of Kilian’s
randomization technique in the encryption key restricts the adversary’s abil-
ity to manipulate ciphertext components in an elementary manner, such as
by computing products of matrices out of order. Also, the use of the random
scalars α1, . . . , α2n prevents the adversary from correlating multiple encryptions
of plaintexts which share the same bit pattern. However, there is still a large
domain of attacks that the adversary could potentially take advantage of. For
example, an adversary can combine components from multiple ciphertexts to
look for relations, or he can compare the results of partial evaluations of the
branching program on different inputs.

In order to handle these types of attacks, we use the combinatorial structure
provided by our exclusive partition families. Intuitively, the use of a random
partition from an exclusive partition family for each ciphertext ensures that if
the adversary computes a partial evaluation of the branching program, or tries to
mix components from multiple ciphertexts, he will not be able to obtain a group
element which is encoded in the index set for the zero-tester, as required by the
generic multilinear map model. In fact, it turns out that the use of these exclusive
partition families is indeed sufficient to prove security of the construction in the
generic model.

Performance. Our basic construction requires a (2n+2)-way multilinear map to
evaluate comparisons on n-bit numbers. However, simple optimizations, includ-
ing re-ordering of the matrices in the branching program, enables us to shrink
the total length of the comparison branching program to only (n + 1) matrices

Semantically Secure Order-Revealing Encryption 569

each of dimension 4 × 4 (see Section 2.2 for details). Consequently, we only need
an (n + 1)-way multilinear map to evaluate comparisons on n-bit numbers. The
secret encryption key contains 16n elements in Zq, and each ciphertext is 16n − 8
encoded group elements. We can further reduce the required degree of multilin-
earity by a factor of log2 B by representing messages in base-B (instead of base-2)
and modifying the comparison automaton to compare one base-B digit per step.
This shortens the length of the branching program (and therefore the degree of
multilinearity) by a factor of log2 B, but at the cost of increasing the number of
states in the automaton by a factor of B and consequently increasing the number
of group elements in the ciphertext by a factor of approximately B2/ log2 B. For
example, moving to base B = 4 gives multilinearity (n/2 + 1), with ciphertexts
requiring 18n − 24 group elements.

Concretely, for n = 16 bits, we can use a 9-linear map giving ciphertexts of
264 group elements. While this scheme is still too inefficient for practical use,
the construction can be implemented and provides an important step towards
more realistic ORE schemes. This is in contrast to the immense number of levels
of multilinearity required to obtain ORE from obfuscation-based constructions.

Generalizing toMulti-input Functional Encryption. While we used order-
revealing encryption (ORE) as an example application, our construction is more
general: it gives a secret-key multi-input functional encryption where the degree
of multilinearity needed for decrypting with a key skf depends on the length of the
branching program representing f . In fact, every matrix in the branching program
can depend on all the bits of one of the inputs to f and this can be used to shrink
the length of the branching program. We refer to these as generalized branching
programs and define them precisely in the next section.

Our base multi-input functional encryption scheme supports a single func-
tion f (such as comparison) fixed a-priori during initial key generation. This
function f defines the branching program relative to which all encryptions are
computed. This apparent single-function limitation is easily removed using uni-
versal circuits: the functionality fixed a-priori is a universal circuit U that takes
as input the description of a function f and its inputs x1, . . . , xn and outputs
f(x1, . . . , xn). Now, a functional encryption “key” skf for a function f is simply
the encryption of f under our encryption scheme. Given skf and the encryptions
of x1, . . . , xn the functionality for the universal circuit U can be used to compute
f(x1, . . . , xn) in the clear.

1.3 Other Related Work

Multi-input functional encryption was introduced by Goldwasser et al.
[GGG+14], who gave constructions based on indistinguishability obfusca-
tion [BGI+01,GGH+13b] and differing-inputs obfuscation [BGI+01,BCP14,
ABG+13].

Our construction of multi-input functional encryption is inspired by obfusca-
tion techniques [GGH+13b,BBC+14,AGI+14], but does not use obfuscation.

570 D. Boneh et al.

Instead we build multi-input functional encryption directly from multilinear
maps. Several other results use obfuscation techniques to obtain more efficient
constructions directly from multilinear maps. Zhandry [Zha14] showed how to
construct n-way Diffie-Hellman key exchange without trusted setup, a result
that was previously known only using obfuscation [BZ14]. Concurrently with
this work, Garg et al. [GGH+14] showed how to construct single-input functional
encryption from multilinear maps; however, their motivation was to obtain secu-
rity proofs from concrete assumptions, rather than efficiency. The constructions
in this paper are considerably more efficient (we make use of a much smaller
number of matrices), but our security proof is in the generic multilinear map
model.

Single-input functional encryption [BSW11] has been traditionally defined
in the public-key settings and studied extensively [O’N10,GVW12,AGV+13,
BO13,CIJ+13,GGH+13b,GKP+13,BCP14]. In this paper, however, we focus
on secret-key (multi-input) functional encryption, which is sufficient for data
processing on a remote encrypted database, including order-revealing encryption.
Focusing on the secret-key setting enables us to give a simple construction from
multilinear maps. Single-input secret-key functional encryption was previously
explored for the inner-product functionality by Shen et al. [SSW09] and more
generally by Goldwasser et al. [GKP+13]. Brakerski and Segev [BS14] recently
showed how to convert any secret-key functional encryption scheme into one
where secret keys do not reveal their functionality.

2 Preliminaries

2.1 Conventions

For an integer n, we write [n] to denote the set {1, . . . , n}. For a finite set S,
we write Uniform(S) to denote the probability distribution that is uniform over
the elements of S. When working with vectors in Z

n for some integer n, for
each i ∈ [n] we write ei to denote the ith unit column vector, i.e., the vector
(x1, x2, . . . , xn)ᵀ such that xi = 1 and, for all i′ �= i ∈ [n], we have xi′ = 0. We
write GLw(Zq) to represent the set of all w × w invertible matrices over Zq.

2.2 Matrix Branching Programs (MBPs)

In this section, we define a variant of matrix branching programs for which our
main construction applies. These generalized matrix branching programs are
a sequence of efficiently computable Boolean circuits that turn a given multi-
variate input into a matrix.

Definition 2.1 (Generalized Matrix Branching Program). Let X ⊂
{0, 1}∗ be a set of possible input strings, and let f : X m → {0, 1} be a multi-
input function. A generalized matrix branching program P of length � and width
w, over Zq for a prime q, is a tuple of the form

P = (q, m, d, inp, (M1, . . . , M�)) ,

Semantically Secure Order-Revealing Encryption 571

where for each j ∈ [�], the function Mj : X → Z
w×w
q is computable by an

efficient deterministic algorithm. The value inp is a lookup table of the form

inp = (inp(1), . . . , inp(�)),

where for each j ∈ [�], we have inp(j) ∈ [m]. The branching program takes
m inputs and we say that at step j it inspects input number inp(j) ∈ [m].
To simplify notation, we require the branching program to inspect each of its m
input variables exactly d times2 (so that the length of the program, �, is precisely
md). We also introduce the following shorthand notations:

– For a branching program step j ∈ [�], input slot i ∈ [m], and sub-index
h ∈ [d], we write j = inp.j(i, h) to signify that j is the step in which the
program inspects input slot i for the hth time.

– For a branching program step j ∈ [�] and sub-index h ∈ [d], we write
h = inp.h(j) to signify that j is the step in which the program inspects
the corresponding input slot inp(j) for the hth time.

We say that P computes the function f if, for all inputs x = (x(1), . . . , x(m)) ∈
X m, ⎛

⎝
∏

j∈[�]

Mj(x(inp(j)))

⎞

⎠ [1, 1] = 0 ⇐⇒ f(x) = 1.

Since every program P computes a unique function f , we also write P (x) to
denote f(x).

Following Sahai and Zhandry [SZ14], we also define the notion of a non-
shortcutting matrix branching program.

Definition 2.2 (Shortcuts in Matrix Branching Programs [SZ14]). A
branching program has a shortcut on input x = (x(1), . . . , x(m)) ∈ X m if either:
⎛

⎝
∏

j∈[�]

Mj(x(inp(j)))

⎞

⎠ · e1 = 0w×1 or eᵀ
1 ·

⎛

⎝
∏

j∈[�]

Mj(x(inp(j)))

⎞

⎠ = 01×w

In such a case, it is possible to determine that f(x) = 1 without carrying out
the entire matrix product. We say that a branching program is non-shortcutting
if, for all inputs x, it has no shortcuts on x. We require that every generalized
matrix branching program is non-shortcutting.
2 We note that this assumption is without loss of generality, since given any program

of length � that does not satisfy this condition, we can construct a new program
whose value of d is the original program’s value of �, and pad the program with
dummy matrix functions that always return the identity matrix regardless of their
input string. (Alternatively, for practical applications, it is also easy to adapt the
techniques we describe to the general case, albeit at the expense of cumbersome
notation.).

572 D. Boneh et al.

We note that there are multiple ways to obtain a generalized matrix branch-
ing program from a circuit, or from a time-bounded Turing machine or RAM.
Barrington’s theorem [Bar86] shows how to convert a Boolean circuit of depth
d into a matrix branching program of length O(4d) and width 5. The work of
Ananth, Gupta, Ishai, and Sahai [AGI+14] takes a different approach to obtain
MBPs for Boolean formulas that avoids the complexity of Barrington’s construc-
tion. They construct a layered automaton for any Boolean formula which con-
sists of several states including a starting state and an accepting state together
with edges denoting the transitions between states based on the input bit val-
ues. Given such an automaton representation, a formula can be evaluated by
counting the number of paths between the starting and the accepting state.
Ananth et al. show that a Boolean formula of size s can be converted into a
layered graph-based branching program with O(s) layers with matrices of size
O(s2). Thus, the size of the resulting MBP is O(s3). Subsequently, Sahai and
Zhandry [SZ14] improve the conversion, giving MBP’s of length O(s) and size
O(s(log2 s)2). Our approach follows the general method of computing automata
with generalized MBPs, but we observe that for some problems such as compar-
ing two-bit strings, we can directly construct extremely efficient automata that
do not use the general translation from formulas to automata.

For more details, we refer the reader to the full version.

2.3 Randomized Matrix Branching Programs

In our construction, as in obfuscation constructions that use MBPs [GGH+13b,
BGK+14,BR14,AGI+14], we must make sure that the adversary always evalu-
ates the MBP by multiplying together one matrix selection for each step j ∈ [�].
In particular, we must ensure that partial matrix products, which omit some
steps, will not reveal any information about the program.

The main ingredient we need here is the MBP randomization technique of
Kilian [Kil88], in which we pre- and post-multiply each matrix in the MBP
by matching, invertible random “blinding” matrices R0, . . . ,R�. Intuitively, the
resulting randomized MBP fixes the order in which the randomized MBP matri-
ces can be multiplied, i.e., requiring one matrix for each step in the original MBP.
Any other product will also contain at least one random “blinding” matrix, ren-
dering the result useless to the adversary.

In addition, we combine Kilian’s randomization technique with “bookend
vectors” ŝ, t̂, as introduced in [GGH+13b], which further restrict the adversary
to projecting a single scalar entry of the matrix product resulting from the MBP
evaluation (namely, the entry at position [1,1]). Testing whether this scalar is
zero suffices to determine the Boolean output of the program, while preventing
the adversary from learning extra information by testing other matrix entries.

We now present the details of the randomized MBP construction.

Definition 2.3 (Randomized MBPs ([Kil88], adapted)). We define an
efficient randomized procedure MBPRand, such that, for a given generalized
matrix branching program

Semantically Secure Order-Revealing Encryption 573

P = (q, m, d, inp, (M1, . . . , M�)) ,

the procedure MBPRand(P) outputs a tuple P̂ of the form

P̂ =
(

q, m, d, inp, (M̂1, . . . , M̂�), ŝ, t̂
)

,

where, for each j ∈ [�], the function M̂j : X → Z
w×w
q is represented, like Mj,

as a Boolean circuit; and ŝ and t̂ are vectors in Z
w
q .

The procedure MBPRand operates as follows. It samples (� + 1) invertible
matrices R0, . . . ,R� uniformly at random from GLw(Zq). It computes the values

ŝ = eᵀ
1 R

−1
0 and t̂ = R� e1,

and, for each j ∈ [�], the function M̂j defined as

M̂j(x) = R−1
j−1 Mj(x)Rj .

Finally, it outputs the tuple

P̂ =
(

q, m, d, inp, (M̂1, . . . , M̂�), ŝ, t̂
)

.

To evaluate a randomized MBP P̂ on an input x = (x(1), . . . , x(m)), we run
each (randomized) matrix function M̂j on the indicated input string x(inp(j)),
producing a randomized matrix Mj . We write MBPSelect(P̂ ,x) to denote the
sequence of randomized matrices and bookend vectors (ŝ,M1, . . . ,M�, t̂), and to
evaluate the program, we multiply all of these randomized matrices and vectors
together. Formally, we define the following procedures.

Definition 2.4 (Evaluation for Randomized MBPs ([Kil88], adapted)).
Fix a generalized matrix branching program P and a vector of inputs x =

(x(1), . . . , x(m)) ∈ X m, and suppose that

P̂ =
(

q, m, d, inp, (M̂1, . . . , M̂�), ŝ, t̂
)

← MBPRand(P).

For each j ∈ [�], we define M̂j = M̂j(x(inp(j))), and we define

MBPSelect(P̂ ,x) =
(
ŝᵀ, M̂1, . . . , M̂�, t̂

)
.

Finally, we define

MBPEval
(
ŝᵀ, M̂1, . . . , M̂�, t̂

)
= ŝᵀ

⎛

⎝
∏

j∈�

M̂j

⎞

⎠ t̂.

Given the above definitions, the proof of the following lemma follows imme-
diately.

574 D. Boneh et al.

Lemma 2.5 (Correctness for Randomized MBPs). Fix a generalized
matrix branching program P , and a vector of inputs x = (x(1), . . . , x(m)) ∈ X m.
Then,

MBPEval(MBPSelect(P̂ ,x)) = 0 ⇐⇒ f(x) = 1.

Ordinarily, for MBPs derived from Barrington’s theorem [Bar86], we would
also be able to state a simulation theorem, showing that the output distribution
MBPSelect(P̂ ,x) depends only the output of the original program, P (x). In
our construction, however, we obtain much more efficient programs by other
techniques , and the matrices Mj(x) in these programs do not always have full
rank. Indeed, the kernel of each matrix may depend on the input vector x, and
as a result, the output distributions MBPSelect(P̂ , ·) may be noticeably different
for different inputs x0,x1, even if the outputs of the program, P (x0) = P (x1),
are ultimately identical.

Instead of constructing a simulator, we rely on a weaker property that is still
strong enough to prove security of our main construction. Specifically, we show
that even though the distributions MBPSelect(P̂ ,x0) and MBPSelect(P̂ ,x1) may
differ, they cannot be distinguished by a certain weak family of tests; in our
construction (Section 4), we will show that these are the only tests an adversary
can possibly perform in our security model. To define such a family of tests, we
refer to the following definition of Sahai and Zhandry [SZ14].

Definition 2.6 (Allowable Tests [SZ14]). Let p : Z2w+w2�
q → Zq be a multi-

linear (multivariate) polynomial over the entries of ŝ, t̂ ∈ Z
w
q and M̂1, . . . , M̂� ∈

Z
w×w
q (as formal variables). We say p is an allowable test polynomial if each

monomial in the expansion of p contains at most one entry of each vector ŝ, t̂
and matrix M̂1, . . . , M̂�.

Lemma 2.7 (Security for Randomized MBPs). Fix a non-shortcutting
generalized matrix branching program P (over Zq, for q > 2λ), two input vectors
x0,x1 such that P (x0) = P (x1), and an allowable test polynomial p (Def. 2.6).
Then either

Pr
[
P̂ ← MBPRand(P) ; p(MBPSelect(P̂ ,xb)) = 0

]
= 1

for both bits b ∈ {0, 1}, or,

Pr
[
P̂ ← MBPRand(P) ; p(MBPSelect(P̂ ,xb)) = 0

]
< negl(λ)

for both bits b ∈ {0, 1}.
Lemma 2.7 follows immediately from the results of Sahai and Zhandry [SZ14];
we defer the formal treatment to the full version.

Semantically Secure Order-Revealing Encryption 575

2.4 Multilinear Maps

Multilinear maps [BS03], also known as graded encodings, or graded multilinear
maps [GGH13a,CLT13], are a generalization of bilinear maps such as pairings
over elliptic curves [Mil04,MOV93,Jou00,BF01]. Roughly speaking, a multilin-
ear map lets us take a scalar x ∈ Fq and produce an encoded version, x̂ = [x]S ,
where S ⊆ U is a finite set, called an index set, that indicates the level of the
encoding x̂ in a given hierarchy (namely, the subsets of U ordered by inclusion).3

By convention, we will say that these index sets are made up of formal
symbols, denoted by capital letters (A,B,C), which serve the same role as formal
variables in polynomials. To be fully precise, we state the following definitions.

Definition 2.8 (Formal Symbol). A formal symbol is a bit string in {0, 1}∗,
and distinct variables denote distinct bit strings. A fresh formal symbol is any bit
string in {0, 1}∗ that has not already been assigned to another formal symbol.

Definition 2.9 (Index Sets). An index set is a set of formal symbols called
indices. By convention, for index sets we use set notation and product notation
interchangeably, so that ABC represents {A,B,C}, and ABC ∪ D = ABCD.

Definition 2.10 (Multilinear Map ([BS03,GGH13a,CLT13])). A multi-
linear map over prime-order finite fields supports the following operations. Each
of the operations (MM.Setup, MM.Add, MM.Mult, MM.ZeroTest, MM.Encode) is
implemented by an efficient randomized algorithm.

– The setup procedure receives as input an index set U (Definition 2.9), which
we refer to as the “top-level index set”, as well as the security parameter
λ (in unary). It produces public parameters pp (which include an O(λ)-bit
prime q), and secret evaluation parameters sk:

MM.Setup(U , 1λ) → (pp, sk)

– For each index set S ⊆ U , and each scalar x ∈ Zq, there is a set of strings
[x]S ⊆ {0, 1}∗, i.e., the set of all valid encodings of x at index set S. 4 From
here on, we will abuse notation to write [x]S to stand for any element of [x]S
(i.e., any valid encoding of x at the index set S).

– Elements at the same index set S ⊆ U can be added, with the result also
encoded at S:

MM.Add(pp, [x]S , [y]S) → [x + y]S
3 We describe here the case of asymmetric multilinear maps, since this is the one

relevant to our constructions in this work.
4 To be more precise, we define [x]S = {χ ∈ {0, 1}∗ : MM.IsEncoding(pp, χ, x, S)},

where the predicate MM.IsEncoding is specified by the concrete instantiation of the
multilinear map. In general, the predicate MM.IsEncoding is not necessarily efficiently
decidable—and indeed, for the security of the multilinear map, it should not be.

576 D. Boneh et al.

– Elements at two index sets S1,S2 can be multiplied, with the result encoded
at the union of the two sets, as long as their union is still contained in U :

MM.Mult(pp, [x]S1 , [y]S2) →
{

[xy]S1∪S2 if S1 ∪ S2 ⊆ U
⊥ otherwise

– Elements at the top level U can be zero-tested:

MM.ZeroTest(pp, [x]S) →
{

“zero” if S = U and x = 0 ∈ Zq

“nonzero” otherwise

– Using the secret parameters, one can generate a representation of a given
scalar x ∈ Zq at any index set S ⊆ U :

MM.Encode(sp, x, S) → [x]S

– For the trivial index set S = ∅, we specify that the only valid encoding of
[x]∅ is just the scalar x ∈ Fq. (So, for instance, we can perform subtraction
via MM.Add, by scalar multiplication with −1.)

By convention, we refer to the cardinality of U as the degree of multilinearity
of the map.5 Technically, known instantiations of multilinear maps [GGH13a,
CLT13] are only approximate, and have a “noise” term that restricts the degree
of multilinearity to a pre-specified polynomial in the security parameter. How-
ever, this restriction will not affect our results in this work, and to keep the
presentation simple we do not model the restriction formally.

When the context is clear, we also abuse notation to write, for encoded
elements â, b̂, the expression â+ b̂ to mean MM.Add(MM.pp, â, b̂); the expression
âb̂ to mean MM.Mult(MM.pp, â, b̂); and likewise for other arithmetic expressions.

The Generic Multilinear Map Model. To define security, we will operate
in the generic multilinear map model (also known as the generic graded encoding
model [GGH+13b,BR14,BGK+14]). This model is very similar to the generic
group model [Sho97]—intuitively, in this model, the only operations an adver-
sary can use with encoded elements are the operations of the multilinear map.
More precisely, we say a scheme that uses multilinear maps is secure in the
generic multilinear map model if, for any concrete adversary breaking the real
scheme, there is an ideal adversary breaking a modified scheme in which each
concrete encoded element is replaced by a “handle” (concretely, a fresh nonce),
mapped to the actual encoded scalar in a table unavailable to the adversary.
5 In some cases, when we optimize a construction that uses multilinear maps, we

find that we never need to encode elements of a given singleton index set. Thus in
general, for constructions that are optimized in this way, we relax the definition of
multilinearity degree to refer to the total number of sequential multiplications that
must be performed on any encoded elements in the construction.

Semantically Secure Order-Revealing Encryption 577

Each multilinear map operation is replaced by an oracle query that takes two
handles and returns another fresh handle (creating a new table entry), except
for the zero-test oracle query, which, when given a handle, returns “zero” if the
corresponding scalar in the table is zero, and “nonzero” otherwise. We defer the
formal definitions to the full version.

2.5 Exclusive Partition Families

Even though the randomized MBPs of Section 2.3 impose certain restrictions
on how their matrices can be multiplied together to remove the randomizing
factors, this alone does not prevent an adversary from learning more informa-
tion than just the outputs of honest evaluations on the MBP. The issue is that
the adversary may execute “mix-and-match” attacks, using encoded matrices
from multiple ciphertexts in the same evaluation. Our construction will use the
multilinear map’s index sets to enforce constraints on the adversary’s evalua-
tion, ruling out this kind of attack. As with the “straddling sets” technique of
Barak et al. [BGK+14], in order to use index sets to enforce this restriction, we
need to design these index sets with some combinatorial properties in mind.

In more detail, suppose U is the top-level index set in the multilinear map,
and F is some family of partitions of U . Intuitively, whenever we intend terms to
be multiplied together (e.g., because they are matrix elements from a consistent
choice of ciphertexts), the index sets of those terms will partition U , so that
the product of the encoded elements can legally be zero-tested. We will design
the partition family F so that our intended partitions (those in F) are the only
partitions of U that the adversary can possibly construct given the index sets of
the terms we provide, thereby ruling out “mix-and-match” attacks.

Formally, we define the following:

Definition 2.11 (Partition). The collection of sets P = {S1, . . . , Sd} is a
partition of a set U if S1 ∪ · · · ∪Sd = U ; each Si is a nonempty subset of U ; and
Si ∩ Sj = ∅ for each i �= j.

Definition 2.12 (Exclusive Partition Family). Fix a set U , and a family
F of partitions of U , where we write the N partitions in the family F as the
rows of the matrix: ⎛

⎜
⎝

S1,1 S1,2 · · · S1,d

...
...

. . .
...

SN,1 SN,2 · · · SN,d

⎞

⎟
⎠

We say that F is an (N , d)-exclusive partition family of U if the only par-
titions of U that can be formed from sets in F are precisely the rows of the
matrix. (Formally: for all (i1, j1), . . . , (im, jm) ∈ [N] × [d], the collection P =
{Si1,j1 , . . . , Sim,jm

} is a partition of U if and only if i1 = . . . = im and {j1,
. . . , jm} = [d].)

We say that an exclusive partition family F is explicit if there is an efficient
deterministic algorithm which, when given i ∈ [N], j ∈ [d], outputs the elements

578 D. Boneh et al.

of Si,j (i.e., outputs the index of each element in some canonical ordering of
the elements of U). We note that if F is explicit, then it is also easy to sample
a partition (Si,1, . . . , Si,d) uniformly over all of the partitions in F , simply by
choosing uniform i ← [N]. To simplify notation, we write this sampling proce-

dure as (Si,1, . . . , Si,d)
$← F .

Construction 2.13 ((2λ, d)-Exclusive Partition Families). Let d, λ > 0
be integers, and let U be a set of size (1 + (d − 1)(λ + 1)). Denote the elements
of U as

U = { a1, a2, . . . , ad, b2,1, . . . , b2,λ, . . . , bd,1, . . . , bd,λ } ,

and identify an index i ∈ [2λ] with the string ρ(i) ∈ {0, 1}λ that forms the binary
representation of (i − 1). Define

Si,1 = {a1} ∪
⋃

j∈{2,...,d}
{bj,k : ρ(i)k = 1}

and for each j ∈ {2, . . . , d}, define

Si,j = {aj} ∪ {bj,k : ρ(i)k = 0}.

Finally, define the family F(d, λ) = ((S1,1, . . . , S1,d), . . . , (SN,1, . . . , SN,d)).

Lemma 2.14 ((2λ, d)-Exclusive Partition Families). For integers d, λ > 0,
the family F(d, λ) defined by Construction 2.13 is an explicit (2λ, d)-exclusive
partition family.

Proof. By construction, each (Si,1, . . . , Si,d) is a partition of U consisting of
d sets, and the elements of each set are efficiently computable. Now, suppose
that for some choice of sets (i1, j1), . . . , (im, jm) ∈ [N] × [d], the collection P =
{Si1,j1 , . . . , Sim,jm

} is a partition of U . Then there exists some r∗ ∈ [m] such
that the set Sir∗ ,jr∗ contains a1. The only such sets are of the form:

Sir∗ ,jr∗ = Sir∗ ,1 = {a1} ∪
⋃

j∈{2,...,d}
{bj,k : ρ(ir∗)k = 1}

Assume for sake of contradiction that for some r ∈ [m], ir �= ir∗ . We cannot
have jr = 1, since this would cover the element a1 twice: once by Sir∗ ,jr∗ , and
once by Sir,jr

. Thus jr ∈ {2, . . . , d}, and the set Sir,jr
is of the form:

Sir,jr
= {ajr

} ∪ {bjr,k : ρ(ir)k = 0}
But for each k ∈ [λ], the only sets that contain bjr,k also contain either a1 or
ajr

, and we already have a1 ∈ Si∗,1 and ajr
∈ Sir,jr

covered by the putative
partition P . Hence the only elements bjr,k that are covered by P are those of
the form {bj,k : ρ(ir∗)k = 1} and {bj,k : ρ(ir)k = 0}. Since by assumption
ir �= ir∗ , the strings ρ(ir), ρ(ir∗) differ on some bit k∗ ∈ [λ]. If ρ(ir∗)k∗ = 0 and

Semantically Secure Order-Revealing Encryption 579

ρ(ir)k = 1, then P fails to cover bjr,k∗ , while if ρ(ir∗)k∗ = 1 and ρ(ir)k = 0, then
P covers bjr,k∗ twice. In either case P is not a partition of U , contradicting our
assumption. So we conclude that ir∗ = i1 = . . . = im, and thus F is an explicit
(2λ, d)-exclusive partition family.

We also observe that our definition of exclusive partition families generalizes
the straddling set systems of Barak et al. [BGK+14]. Indeed, for any integer
d > 0, a straddling set system Sd (as defined in [BGK+14]) is a (2, d)-exclusive
partition family.

3 Secret-Key Multi-Input Functional Encryption
(SK-MIFE)

We now discuss the definition of secret-key multi-input functional encryption (SK-
MIFE), which is a special case of the definition of multi-input functional encryp-
tion (MIFE) in [GGG+14].

In fact we will specialize this definition further, to the case of SK-MIFE with
a single function evaluation key (1SK-MIFE). We note that it is straightforward
to construct ordinary SK-MIFE (enabling multiple function keys) from 1SK-
MIFE, as follows. We can set the single functionality in 1SK-MIFE to be a
universal branching program, U(f, x1, . . . , xn), which takes as one of its inputs
the function f to be evaluated. In this SK-MIFE scheme, the key to evaluate a
particular function f will be the 1SK-MIFE encryption 1SK-MIFE.Enc(sk, 1, f)
(for input slot 1 in the universal program U).

We also note that 1SK-MIFE already covers the application of order-revealing
encryption (ORE), since here we only want to enable a single function on MIFE
ciphertexts: namely, the comparison function. As we will see below, working with
1SK-MIFE enables us to achieve a much more efficient construction. Thus, we
will restrict our attention to 1SK-MIFE here.

3.1 Definitions

A single-key, secret-key multi-input functional encryption (1SK-MIFE) scheme

Π = (1SK-MIFE.Setup, 1SK-MIFE.Enc, 1SK-MIFE.Dec)

supports the following operations. Each operation is implemented by a random-
ized algorithm, which (with all but negligible probability) runs in time polyno-
mial in its input length and the security parameter λ.

– The setup procedure takes as input a security parameter λ and a program
P , given as an m-input matrix branching program (Section 2.2) over Zq for
some prime q > 2λ. The setup procedure outputs an evaluation key ek and
a secret key sk.

1SK-MIFE.Setup(λ, P) → (ek, sk)

580 D. Boneh et al.

– The encryption procedure takes as input a secret key sk, an input variable
index i ∈ [m], and an input x ∈ X , and outputs a ciphertext ct.

1SK-MIFE.Enc(sk, i, x) → ct

– The decryption procedure takes as input an evaluation key ek and ciphertexts
ct(1), . . . , ct(m), and outputs a computation result b ∈ {0, 1}.

1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)) → b

Definition 3.1 (1SK-MIFE Correctness). A 1SK-MIFE scheme Π is cor-
rect if for any uniform multi-input matrix branching program P , and any inputs
x(1), . . . , x(m) ∈ X , if (ek, sk) ← 1SK-MIFE.Setup(λ, P) and for each i ∈ [m] it
is the case that ct(i) ← 1SK-MIFE.Enc(sk, i, x(i)), then,

1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)) → P (x(1), . . . , x(m)).

Security. It is clearly impossible to achieve (standard) semantic security for
1SK-MIFE, since by design, our scheme must leak some information about the
plaintexts—namely, the result of evaluating the 1SK-MIFE program P on every
possible choice of query plaintext tuple. Our goal, then, is best-possible seman-
tic security, in which we leak only this information. In this respect, our secu-
rity definition is similar to IND-OCPA in the special case of order-preserving
(or order-revealing) encryption [BCL+09], but of course we must generalize it
for 1SK-MIFE. Our definition is also similar to the indistinguishability-based def-
initions of (general) multi-input functional encryption given by Goldwasser et al.
[GGG+14]. We now present the formal details.

Definition 3.2 (1SK-MIFE Security Game). Fix a generalized matrix branch-
ing program P (to be used in the 1SK-MIFE scheme). For an adversary A, and
for each “world” bit b ∈ {0, 1}, we define the experiment Expt1SK-MIFE

P,Q,b (A), param-
eterized over a number of queries Q:

Experiment Expt1SK-MIFE
P,Q,b (A):

1. A receives an evaluation key ek, where (ek, sk) ← 1SK-MIFE.Setup(λ, P).
2. A makes Q adaptive queries to a left-or-right encryption oracle, as follows.

For each t ∈ [Q], the adversary sends queryt = (it, xt,0, xt,1), and is given
a ciphertext ctt ← 1SK-MIFE.Enc(sk, it, xt,b).

3. A outputs a bit b′ ∈ {0, 1}, which is the output of the experiment.

Definition 3.3 (Input-Consistent Queries). In an execution trace of the
experiment Expt1SK-MIFE

P,Q,b (A) (Definition 3.2), let t1, . . . , tm ∈ [Q] be time steps
in the adversary’s query sequence, such that for every input slot index i ∈ [m],
we have queryti

[1] = i (i.e., at time t1, the adversary queried for input slot 1;
at time t2, the adversary queried for input slot 2; and so on). Then we say the
query time sequence τ = (t1, . . . , tm) is input-consistent. Furthermore, for each
world bit b ∈ {0, 1}, we say that such an input-consistent sequence τ selects the
vector of inputs xτ,b = (xt1,b, . . . , xtm,b).

Semantically Secure Order-Revealing Encryption 581

Definition 3.4 (Execution Trace). Fix an adversary A in the generic
multilinear map model. We define the execution trace of the experiment
Expt1SK-MIFE

P,Q,b (A) to be the sequence of all oracle query-response pairs, both
between A and the challenger and between A and the multilinear map oracle.

Definition 3.5 (Admissibility of Execution Traces). An execution trace
of the experiment Expt1SK-MIFE

P,Q,b (A) is admissible if the Q adaptive queries made
by the adversary satisfy the following condition: for every input-consistent query
time sequence τ ∈ [Q]m, letting xτ,b denote the vector of inputs selected by τ in
world b, we have P (xτ,0) = P (xτ,1).

We note that admissibility can be checked, for any given execution trace,
in time O([Q]m) · poly(λ, |P |)), simply by testing the condition every possible
sequence τ . Thus, if m is a constant—e.g., for order-revealing encryption, where
the arity of the comparison program is m = 2—then admissibility can be checked
in polynomial time. For general programs P , the arity m may be ω(1), in which
case admissibility may not be efficiently checkable. Nevertheless, we can still
define IND-security the same way.

Definition 3.6 (IND-security for 1SK-MIFE). A 1SK-MIFE scheme Π
is Q-IND-secure if, for all generalized matrix branching programs P , and all
efficient adversaries A, the quantity

Adv1SK-MIFE
P,Q (A) = |W0 − W1|

is negligible, where for each world bit b ∈ {0, 1} we define

Wb = Pr
[
Expt1SK-MIFE

P,Q,b (A) outputs 1 and yields an admissible execution trace
]
.

Application to Order-Revealing Encryption. Our motivating application
of 1SK-MIFE is order-revealing encryption (ORE). In this case, the program P
is a matrix branching program for the comparison function, which takes two bit
strings x, y ∈ {0, 1}n representing numbers in binary, and returns 1 if x ≤ y.
The 1SK-MIFE evaluation key ek then fills the role of the comparison algorithm
in ORE.

Strictly speaking, in addition to the comparison algorithm, ORE requires that
someone who holds the secret key can also decrypt each ciphertext, revealing the
original string x ∈ {0, 1}n. We can accomplish this by including, along with the
1SK-MIFE ciphertext, another encryption of x under an ordinary (semantically-
secure) symmetric encryption scheme, and including this scheme’s secret key as
part of the key in ORE.

4 Our 1SK-MIFE Construction

Consider an m-input generalized matrix branching program (MBP) of length �.
We construct a 1SK-MIFE for the function computed by this MBP. To encrypt

582 D. Boneh et al.

an input x ∈ X we construct the set of matrices obtained by considering the
input (x, . . . , x) ∈ X m to the MBP. We randomize each matrix in the branch-
ing program as in Section 2.3 by using a randomizing matrix taken from the
secret key. These randomizing matrices Ri are fixed at key generation time and
used for all encryptions. The encryption procedure then chooses random scalars
α1, . . . , α� and, more importantly, chooses random index sets for a multilinear
map with which to encode each of the matrices (these index sets are chosen from
an exclusive partition family which, as we will see, have the properties needed for
correctness and security). The encryptor encodes each randomized matrix using
its assigned index set and outputs the set of encoded matrices as the encryp-
tion of x. Now, to compute the MBP function given m independently-created
ciphertexts we can select appropriate encoded matrices from each ciphertext and
compute their product using the multilinear map, as done in the ORE example
in Section 1. We then zero-test the result to learn the output of the function in
the clear.

The challenge with this approach is to guarantee that any meaningful eval-
uation has to use all of the matrices in a set of m ciphertexts and no other
elements. In other words, the difficulty in the security proof lies in preventing
attacks that evaluate the decryption function by mixing matrices from differ-
ent encryptions for the same input position. We resolve this issue by relying on
exclusive partition families from Definition 2.12. For each input position i that
determines d matrices in the generalized MBP, we construct a (2λ, d)-exclusive
partition family F (i). To encrypt a message for that position, we sample at ran-
dom a partition (S(i)

1 , . . . , S
(i)
d) from the family F (i) and use the sets from the

partition as the index sets for encoded matrices included in the encryption. The
properties of the exclusive partition families guarantee that MBP evaluations
using matrices from ciphertexts generated by sampling different partitions from
F (i) will fail because the result will not be encoded with respect to the index set
for the zero-tester.

We now describe the formal construction for the above intuition.

Construction 4.1 (1SK-MIFE). The 1SK-MIFE construction consists of
the following procedures:

– 1SK-MIFE.Setup(λ, P):
The setup procedure receives as input a security parameter λ and a gener-
alized matrix branching program P : X m → {0, 1} of the form

P = (q, m, d, inp, (M1, . . . , M�)) ,

as described in Section 2.2, where X ⊂ {0, 1}∗ is a space of possible input
strings, each Mj : X → GLw(Zq) is expressed as a Boolean circuit, and
� = md.
For each input variable index i ∈ [m], let F (i) be a (2λ, d)-exclusive partition
family (Lemma 2.14) over a set Ui of O(dλ) fresh formal indices (Section 2.4),

Semantically Secure Order-Revealing Encryption 583

and let As, At also be fresh formal indices. The setup procedure forms a top-
level universe of indices

U = AsAt

∏

i∈[m]

Ui,

and generates corresponding parameters for a multilinear map

(MM.pp, MM.sp) ← MM.Setup(U , q).

Then, it randomizes P via the method of Definition 2.3, producing a ran-
domized program P̂ as

P̂ = MBPRand(P) =
(

q, m, n, inp, (M̂1, . . . , M̂�), ŝ, t̂
)

.

Finally, it outputs the evaluation key ek and the secret key sk:

ek =
(
MM.pp, P, [ŝ]As

,
[
t̂
]
At

)
sk = (MM.sp, P̂)

(using MM.Encode(MM.sp, ·, ·) to generate fresh encoded elements
[ŝ]As

,
[
t̂
]
At

).

– 1SK-MIFE.Enc(sk, i, x):
The encryption procedure receives as input the secret key sk = (MM.sp, P̂),
an input variable index i ∈ [m], and a plaintext x ∈ X (to be encrypted to
the ith input slot of the branching program).
Let F (i) be a (2λ, d)-exclusive partition family (Lemma 2.14) over Ui, as
defined in 1SK-MIFE.Setup above. The encryption procedure samples a par-
tition uniformly at random from the family F (i) of the form

(
S
(i)
1 , . . . , S

(i)
d

)
$← F (i).

The procedure also chooses scalars α1, . . . , αd ← Z
∗
q uniformly at random.

Finally, for each h ∈ [d], the procedure generates the following fresh encoded
elements (using MM.Encode(MM.sp, ·, ·)):

cth :=
[
αh M̂inp.j(i,h)(x)

]

S
(i)
h

,

and outputs the ciphertext ct = (ct1, . . . , ctd).

– 1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)): The decryption procedure receives as
input the public parameters ek = (MM.pp, P, [ŝ]As

,
[
t̂
]
At

), along with m

ciphertexts ct(1), . . . , ct(m). Each ciphertext is parsed as

ct(i) = (ct(i)1 , . . . , ct
(i)
d) =

(
Ĉ(i)

1 , . . . Ĉ(i)
d

)
,

584 D. Boneh et al.

where the entries of the matrices Ĉ(i)
h are encoded elements in the multilinear

map. Then, using the multilinear map operations (MM.Add, MM.Mult), it
computes

z = [ŝ]As
·
⎛

⎝
∏

j∈[�]

Ĉ(inp(j))
inp.h(j)

⎞

⎠ · [
t̂
]
At

.

Using the operation MM.ZeroTest, the procedure tests whether z encodes
zero in Fq, and outputs 1 if so, and 0 otherwise.

Functional correctness follows from the definition of Construction 4.1, along
with the correctness of the multilinear map procedures. Formally, we state the
following theorem.

Theorem 4.2. Construction 4.1 is correct (Definition 3.1).

To prove Theorem 4.2, we first show that for a given evaluation on m
honestly-generated ciphertexts, all of the index sets “match up” for each i ∈ [m],
so that the result z is a valid zero-test query; this follows from the properties
of exclusive partition families (Definition 2.12). Then, we show that the actual
value of z corresponds to the execution of the original program; this follows by
correctness of the randomization procedure MBPRand (Definition 2.3).

Proof. Fix a multi-input matrix branching program P , a security param-
eter λ, and a tuple of plaintext inputs x = (x(1), . . . , x(m)). Let
(ek, sk) ← 1SK-MIFE.Setup(λ, P), and suppose that for each i ∈
[m], we have ct(i) ← 1SK-MIFE.Enc(sk, i, x(i)). Then we claim that
1SK-MIFE.Dec(sk, x(1), . . . , x(m)) → P (x).

To begin, we write:
ct(i) = (M̂(i)

1 , . . . , M̂(i)
d),

where the entries of the each matrix M̂(i)
h are encoded elements in the multilinear

map. Note that 1SK-MIFE.Dec outputs the result of zero-testing the following
encoded element:

z = [ŝ]As
·
⎛

⎝
∏

j∈[�]

M̂(inp(j))
inp.h(j)

⎞

⎠ · [
t̂
]
At

Hence, for correctness, it suffices to show that for honestly constructed cipher-
texts, z is a valid (non-⊥) encoded element at the top-level index set U , and that
z’s value in Zq is zero precisely when P evaluates to 1 on x.

By definition, for any j ∈ [�], we have j = inp.j(inp(j), inp.h(j)) (Section 2.2).
Thus by construction of 1SK-MIFE.Enc:

z = [ŝ]As
·
⎛

⎝
∏

j∈[�]

[
α′

j M̂j(x(inp(j)))
]

S
(inp(j))
inp.h(j)

⎞

⎠ · [
t̂
]
At

,

Semantically Secure Order-Revealing Encryption 585

for some α′
j ∈ Z

∗
q chosen by 1SK-MIFE.Enc on some input. Now, note that

{
S
(inp(j))
inp.h(j) : j ∈ [�]

}
=

{
S
(i)
h : i ∈ [m], h ∈ [d]

}
. (2)

Since for each i ∈ [m], the tuple (S(inp(j))
h)h∈[d] is a partition of Ui (Lemma 2.14),

we conclude that the right-hand side of (2) is a partition of (U \ (As ∪ At)), and
thus so is the left-hand side. Hence each MM.Mult operation performed by the
functional decryption procedure is valid, and the result z is an element of Zq

encoded at the top-level universe U .
It only remains to establish that z encodes zero precisely when the program

evaluates to 1 on the corresponding inputs. We have that

z =

⎡

⎣

⎛

⎝
∏

j∈[�]

α′
j

⎞

⎠ ŝ ·
⎛

⎝
∏

j∈[�]

M̂j(x(inp(j)))

⎞

⎠ · t̂
⎤

⎦

U

,

and hence, by the correctness of the randomized encoding (Lemma 2.5),

z =

⎡

⎣

⎛

⎝
∏

j∈[�]

α′
j

⎞

⎠ ·
⎛

⎝
∏

j∈[�]

Mj(x(inp(j)))

⎞

⎠ [1, 1]

⎤

⎦

U

.

Since each α′
j ∈ Z

∗
q is invertible, z encodes zero if and only if

⎛

⎝
∏

j∈[�]

Mj(x(inp(j)))

⎞

⎠ [1, 1] = 0,

so by the definition of the branching program, we conclude that

z = 0 ⇐⇒ P (x) = 1.

Remark 4.3. As written, Construction 4.1 requires an (� + 2)-way multilinear
map to support the computation of z in 1SK-MIFE.Dec. However, we note that we
could optimize the construction so that 1SK-MIFE.Enc pre-multiplies the vectors
ŝ and t̂ with the first and last matrices, respectively, Ĉ(inp(1))

inp.h(1), Ĉ
(inp(�))
inp.h(�), · · · . This

would enable us to reduce the degree of the computation from (� + 2) to �
(and hence obtain better parameters for the multilinear map); in the special
case of order-revealing encryption, we have � = k + 1, and thus we reduce the
degree required from (k + 3) to (k + 1). For simplicity, however, we present the
construction without this optimization.

Remark 4.4 (Multi-Bit Output). For simplicity, we present our SK-MIFE con-
struction only for functions that output a single bit. However, the construction
can easily be extended to functions with multi-bit output in a number of ways.

586 D. Boneh et al.

First, if a given generalized branching program already outputs k bits6, then we
can output the same k bits via the techniques of Sahai and Zhandry, replacing
the bookend vectors ŝ, t̂ by randomized diagonal matrices as described in [SZ14].
This transformation yields multi-bit output at essentially no additional perfor-
mance cost. Alternatively, for arbitrary programs (not represented efficiently as
multi-bit branching programs a priori), we can also simply run k copies of our
scheme in parallel, supporting multi-bit output at the cost of a factor k loss in
efficiency.

4.1 Security Proof

Our main theorem states that the construction above indeed yields a secure
1SK-MIFE scheme.

Theorem 4.5 (1SK-MIFE Security). The 1SK-MIFE construction of
Section 4 is poly(λ)-IND-secure in the generic multilinear map model.

Before proving Theorem 4.5, we first give a few relevant definitions and lem-
mas. Our proof techniques in this section are similar to those in related works
that use the generic multilinear map model [BR14,BGK+14].

Remark 4.6 (Queries Referring to Formal Polynomials). Formally, the generic
multilinear map model is defined in terms of oracle queries on “handles” (nonces).
In any particular security game, however, it is usually more intuitive to regard
each oracle query as a formal polynomial. The formal variables are specified
in terms of the expressions initially supplied to the MM.Encode procedure (as
appropriate to the security game), and the adversary can construct new polyno-
mials by making oracle queries for the generic-model ring operations MM.Add,
MM.Mult. Rather than operating on a handle, then, we can think of each valid
MM.ZeroTest query as referring to a formal polynomial encoded at the top-level
universe U . The result of the query is “zero” precisely if the given polynomial
evaluates to zero, when its variables are instantiated with the real joint distribu-
tion over their values in Zq, generated as in the actual security game. For precise
definitions, we refer the reader to the full version.

Structure Lemmas. Our 1SK-MIFE construction uses index sets to enforce
constraints on the adversary’s evaluation (as depicted in Fig. 3). The purpose of
these constraints is to prevent the adversary from constructing zero-test queries
that are inconsistent—i.e., use encodings that “mix and match” elements of
different ciphertexts. To show that our design indeed prevents these undesired
queries, we first state and prove a few simple definitions and “structure lemmas”,
showing that all valid query polynomials have a certain form.
6 In such a branching program, the output is determined by the upper left k1 × k2

submatrix (k = k1k2) of the final matrix product, as opposed to just the upper left
entry. The output of the program is the k1 × k2 Boolean matrix indicating which
entries in the submatrix are 0.

Semantically Secure Order-Revealing Encryption 587

Fig. 3. The matrices of two 1SK-MIFE ciphertexts, ct = (ct
(1)
1 , ct

(1)
2 , ct

(1)
3) and ct′ =

(ct1
′(1), ct2′(1), ct3′(1)) (both encrypted to slot 1), with the index set of each matrix

depicted below it. Since the index sets are defined by two different elements of the
same exclusive partition family, the adversary cannot “mix and match” elements from
the two ciphertexts.

Definition 4.7 (Query-Consistent Polynomials). For an execution trace
of the experiment Expt1SK-MIFE

P,Q,b (A) in the generic multilinear map model, consider
any input-consistent sequence τ = (t1, . . . , tm) of query times (Definition 3.3).
By definition of the encryption procedure, the corresponding ciphertexts for those
query times are encoded elements that refer to formal polynomials (Remark 4.6)
of the form ctti,h = αti,hM̂ti,h, where αti,h is a scalar and M̂ti,h is a w × w
matrix. We now define the formal polynomial

ατ =
∏

i∈[m], h∈[d]

αti,h

(intuitively, the α coefficient that would be present, for a given query sequence
τ , in an honest evaluation of the program), as well as the tuple of formal poly-
nomials

M̂|τ =
(
M̂tinp(1),inp.h(1), . . . , M̂tinp(�),inp.h(�)

)

(intuitively, the matrices whose entries would be involved in an honest evaluation
of the program). Finally, we say that a formal polynomial zτ ,b is consistent with

588 D. Boneh et al.

the query sequence τ if it can be expressed as a polynomial in the entries of
the correct vectors and matrices (ŝ, M̂|τ , and t̂), scaled by the correct blinding
coefficient, ατ . More precisely, zτ is consistent with τ if it is identically equal
to a formal polynomial of the form

zτ = ατ · pτ (ŝ, M̂|τ , t̂)

for some polynomial pτ of degree poly(λ).

Lemma 4.8 (Decomposition of Zero-Test Queries). Fix any efficient
adversary A. In the experiment Expt1SK-MIFE

P,Q,b (A), with all but negligible proba-
bility, every MM.ZeroTest query made by A that is valid (i.e., whose handle is
at the top-level universe U), refers to a polynomial (Remark 4.6) formally equal
to a sum of (potentially exponentially many) query-consistent polynomials of the
form

z =
∑

τ

ατ · pτ (ŝ, M̂|τ , t̂),

and each polynomial pτ is allowable (Definition 2.6) and consistent with a query
sequence τ (Definition 4.7).

Proof. Consider any valid formal polynomial z submitted to MM.ZeroTest. First,
we expand the polynomial z into a sum of monomials (for purposes of analysis,
not by the scheme), and collect like terms with respect to the α variables. Each
term in the resulting expression must be encoded at the top-level universe U ,
since some valid zero-testing handle refers to their sum. This means, in partic-
ular, that the index set of each term must contain a partition of every Ui.

The only variables available to the adversary whose index sets contain ele-
ments of Ui are the ciphertexts ctt,h generated during time steps t ∈ T (i), where
T (i) is the set of all times at which the adversary made chosen-plaintext queries
for input slot i. For these time steps, we will assume that the partitions selected
by the challenger: (

Pt = (S(i)
t,1, . . . , S

(i)
t,d) : t ∈ T (i)

)

are distinct, since each is drawn independently uniform from a family of size 2λ,
regardless of the adversary’s queries, and thus by the birthday bound a collision
occurs with negligible probability.

This implies that the index sets S
(i)
t,h are distinct elements of the exclusive

partition family Fit
, and thus by Lemma 2.14, for each i ∈ [m], the only mono-

mials whose index sets can cover each Ui all share the same value of the partition
Pt (and hence of t), and thus are precisely products of one element from each
component of the same query ciphertext, ctti

. Finally, for each h ∈ [d], we note
that the hth term of each such ciphertext contains precisely the factors αti,h and
Mti,h. Thus, letting τ = (t1, . . . , tm) ⊆ [Q], we conclude that such monomials
have precisely a leading factor of ατ , while the remaining factors are drawn from
M|τ , as desired. We observe that each such monomial (and hence their sum, pτ)
must be allowable (Definition 2.6), since all entries of each vector and matrix

Semantically Secure Order-Revealing Encryption 589

ŝ, M̂|τ , t̂ are encoded at the same index set, and thus the monomial can only
include one factor from each. Finally, the degree of the polynomial pτ must be
at most poly(λ), since the index set of any formal polynomial grows with its
degree, and the size of any valid index set is bounded by the size of the top-level
universe U .

We are now ready to present the main proof of Theorem 4.5.

4.2 Proof of Theorem 4.5

Proof. Fix an efficient adversary A for the experiment Expt1SK-MIFE
P,poly(λ),b(A) in the

generic graded encoding model. We will show that for every admissible trace π in
the experiment (Definition 3.5), except for failure events of negligible probability,
the probability that the experiment yields the trace π when b = 0 differs by a
negligible amount from the probability that it yields the trace π when b = 1.
It then follows immediately that Adv1SK-MIFE

P,Q (A) = |W0 − W1| is negligible, as
desired.

First, we note that in any trace π, the only responses sent to A are either
(a) handles in the multilinear map, via MM.Encode, from the public parameters
and from ciphertexts generated for chosen-plaintext queries; (b) handles in the
multilinear map, via MM.Add,MM.Mult, from queries to the generic map oracle
M; or else (c) answers to MM.ZeroTest queries on handles in the multilinear map.
Since in the generic model the handles for (a) and (b) are uniform independent
nonces, their distribution clearly does not depend on b. Thus, our task reduces
to showing that for each MM.ZeroTest query, the probability of each response
(“zero”, “nonzero”) differs by a negligible amount between the cases b = 0 and
b = 1. The claim will then follow by a union bound, since A (being efficient) can
make only polynomially many oracle queries.7

Fix a valid MM.ZeroTest query, which refers to a formal multivariate poly-
nomial z (Remark 4.6). By Lemma 4.8, z is identically equal to a polynomial of
the form ∑

τ

ατ · pτ (ŝ, M̂|τ , t̂) ,

where each polynomial pτ is allowable (Definition 2.6) and consistent with the
query sequence τ (Definition 4.7). For each bit b ∈ {0, 1}, let xτ ,b = (xt1,b, . . . ,
xtm,b) be the chosen-plaintext queries corresponding to τ in the adversary’s
execution trace up to the point of query z. Since by assumption the execution
trace is admissible (Definition 3.5), we have P (xτ ,0) = P (xτ ,1). By Lemma 2.7,
we now conclude that each formal polynomial pτ , when evaluated on the real
distribution of values in Zq from the oracle’s table, is either zero with probability

7 Technically, we must also show that the distribution of the values in the oracle’s
table, conditioned on each possible subsequence of past oracle query-response pairs
(assuming no failure events), has negligible statistical distance from its prior distri-
bution from MM.Setup; this follows by a standard conditional probability argument,
given that the probability of each failure event is negligible.

590 D. Boneh et al.

1 for both values of b ∈ {0, 1}, or else is nonzero with all but negligible probability
for both values of b ∈ {0, 1}. We consider the following cases:

– Suppose that for all τ in the formal sum for z, the polynomial pτ evaluates
to zero on its argument’s entire support. In this case, the entire query z will
evaluate to zero always, regardless of the value of b.

– Suppose that for some τ ∗ in the formal sum for z, the polynomial pτ∗ eval-
uates to zero negligibly often, regardless of the value of b (and consider the
lexicographically first such τ ∗, without loss of generality). Then for both
values of b, when the query z is instantiated with the real distribution of all
values except the α variables, pτ∗ evaluates to a polynomial function of the
α variables which, with all but negligible probability, is not identically zero.
Since the distribution over the α variables is statistically close to indepen-
dently uniform over Zq, the Schwartz-Zippel lemma implies that the entire
query z will evaluate to a nonzero value regardless of the value of b, except
for failure events with negligible probability.

Thus, for each MM.ZeroTest query, the probability that the answer is “zero”
differs by a negligible amount between the cases b = 0 and b = 1, as desired.

5 Extensions

Stateful Encryption. In the construction of Section 4, since encryption is
required to be stateless, we need to generate a fresh partition for each encryp-
tion (and rely on the birthday bound to prevent collisions). However, in many
applications of SK-MIFE, it may be reasonable to modify the encryption proce-
dure to be stateful. For instance, suppose a client is encrypting an entire database
to be stored on a remote server (and later queried according to the functions for
which we reveal MIFE evaluation keys). Here the client may know the contents
of the entire database in advance, or may be able to retain local state between
interactions with the server. In either case, if the maximum number of database
elements N is known in advance, then we can simply replace the (2λ, d)-exclusive
partition families in the construction (Section 4) with (2�log N	, d)-exclusive par-
tition families, and instead of sampling a partition index uniformly at random
for each encryption, use the partitions in order: the ith partition for the ith

encryption operation, for each i ∈ [N].

6 Conclusions

We presented a secret-key multi-input functional encryption scheme for function-
alities that can be captured by a generalized branching programs of polynomial
length and width. An interesting functionality in this family is comparison which
enables comparisons of symmetrically encrypted data. We refer to this specific
functionality as order-revealing encryption (ORE). ORE can be used to answer
range queries on symmetrically encrypted data in one round and in logarithmic
time in the size of the database.

Semantically Secure Order-Revealing Encryption 591

Our construction is inspired by obfuscation techniques, but does not use
obfuscation. Instead it is built directly from multilinear maps and is substan-
tially simpler than current obfuscation-based schemes. While the resulting order-
revealing encryption (ORE) scheme is still too inefficient for practical use, it
provides a first step towards building usable ORE systems. We hope that future
work will further improve the efficiency of ORE and, more generally, the effi-
ciency of secret-key multi-input functional encryption.

Acknowledgments. This work was supported by NSF, the DARPA PROCEED pro-
gram, a grant from ONR, and by a Google faculty scholarship. Opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DARPA.

Research supported in part from a DARPA/ONR PROCEED award, NSF Fron-
tier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox
Faculty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through the U.S. Office
of Naval Research under Contract N00014-11-1-0389. The views expressed are those
of the author(s) and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government.

References

[ABG+13] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs
obfuscation and applications. IACR Cryptology ePrint Archive 2013, 689
(2013)

[AGI+14] Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation:
Avoiding barrington’s theorem. IACR Cryptology ePrint Archive 2014,
222 (2014)

[AGV+13] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional
encryption: new perspectives and lower bounds. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 500–518.
Springer, Heidelberg (2013)

[AKS+04] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryp-
tion for numeric data (2004)

[Bar86] Barrington, D.A.: Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. In: Proceedings, 18th ACM
STOC, pp. 1–5 (1986)

[BBC+14] Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.:
Obfuscation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 26–51. Springer, Heidelberg (2014)

[BCL+09] Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving sym-
metric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 224–241. Springer, Heidelberg (2009)

592 D. Boneh et al.

[BCO11] Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption
revisited: improved security analysis and alternative solutions. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer,
Heidelberg (2011)

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In:
Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer,
Heidelberg (2014)

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vad-
han, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer,
Heidelberg (2001)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidel-
berg (2014)

[BO13] Bellare, M., O’Neill, A.: Semantically-secure functional encryption: pos-
sibility results, impossibility results and the quest for a general definition.
In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS,
vol. 8257, pp. 218–234. Springer, Heidelberg (2013)

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[BS03] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemporary Mathematics 324(1), 71–90 (2003)

[BS14] Brakerski, Z., Segev, G.: Function-private functional encryption in the
private-key setting. Cryptology ePrint Archive, Report 2014/550, 2014.
http://eprint.iacr.org/

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011)

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on
encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 535–554. Springer, Heidelberg (2007)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499.
Springer, Heidelberg (2014)

[CIJ+13] De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.:
On the achievability of simulation-based security for functional encryp-
tion. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 519–535. Springer, Heidelberg (2013)

http://eprint.iacr.org/

Semantically Secure Order-Revealing Encryption 593

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[GGG+14] Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H.,
Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 578–602. Springer, Heidelberg (2014)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. Cryptology ePrint Archive, Report 2013/451, 2013. http://
eprint.iacr.org/

[GGH+14] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional
encryption without obfuscation. Cryptology ePrint Archive, Report
2014/666 (2014). http://eprint.iacr.org/

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.:
Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
STOC (2013)

[GM82] Goldwasser, S., Micali, S.: Probabilistic encryption and how to play men-
tal poker keeping secret all partial information. In: STOC, pp. 365–377
(1982)

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption
with bounded collusions via multi-party computation. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179.
Springer, Heidelberg (2012)

[Jou00] Joux, A.: A one round protocol for tripartite diffie-hellman. In: Pro-
ceedings of the 4th International Symposium on Algorithmic Number
Theory, pp. 385–394 (2000)

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: STOC (1988)

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008)

[LO13] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734.
Springer, Heidelberg (2013)

[Mil04] Miller, V.J.: The Weil pairing, and its efficient calculation. Journal of
Cryptology (2004)

[MOV93] Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve loga-
rithms to logarithms in a finite field. IEEE Transactions on Information
Theory 39(5), 1639–1646 (1993)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

594 D. Boneh et al.

[MTY13] Malkin, T., Teranishi, I., Yung, M.: Order-preserving encryption secure
beyond one-wayness. IACR Cryptology ePrint Archive 2013, 409 (2013)

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology
ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/

[PLZ13] Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-
preserving encoding. In: S&P, pp. 463–477 (2013)

[SBC+07] Shi, E., Bethencourt, J., Chan, H.T., Song, D.X., Perrig, A.: Multi-
dimensional range query over encrypted data. In: S&P, pp. 350–364
(2007)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997)

[SSW09] Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer,
Heidelberg (2009)

[SZ14] Sahai, A., Zhandry, M.: Obfuscating low-rank matrix branching pro-
grams. Cryptology ePrint Archive, Report 2014/773 (2014). http://
eprint.iacr.org/

[Zha14] Zhandry, M.: How to avoid obfuscation using witness PRFs. Cryptology
ePrint Archive, Report 2014/301 (2014). http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Improved Dual System ABE in Prime-Order
Groups via Predicate Encodings

Jie Chen1(B), Romain Gay2, and Hoeteck Wee2

1 East China Normal University, Shanghai, China
s080001@e.ntu.edu.sg
2 ENS, Paris, France

{rgay,wee}@di.ens.fr

Abstract. We present a modular framework for the design of efficient
adaptively secure attribute-based encryption (ABE) schemes for a large
class of predicates under the standard k-Lin assumption in prime-order
groups; this is the first uniform treatment of dual system ABE across
different predicates and across both composite and prime-order groups.
Via this framework, we obtain concrete efficiency improvements for sev-
eral ABE schemes. Our framework has three novel components over
prior works: (i) new techniques for simulating composite-order groups
in prime-order ones, (ii) a refinement of prior encodings framework for
dual system ABE in composite-order groups, (iii) an extension to weakly
attribute-hiding predicate encryption (which includes anonymous
identity-based encryption as a special case).

1 Introduction

Attribute-based encryption (ABE) [15,27] is a new paradigm for public-key
encryption that enables fine-grained access control for encrypted data. In ABE,
ciphertexts are associated with descriptive values x in addition to a plaintext,
secret keys are associated with values y, and a secret key decrypts the ciphertext
if and only if P(x, y) = 1 for some boolean predicate P. Here, y together with P
may express an arbitrarily complex access policy, which is in stark contrast to
traditional public-key encryption, where access is all or nothing. The simplest
example of ABE is that of identity-based encryption (IBE) [5,12,28] where P

J. Chen—Shanghai Key Laboratory of Multidimensional Information Processing and
Shanghai Key Lab of Trustworthy Computing. Supported by the National Natural
Science Foundation of China (Grant Nos. 61472142, 61321064, 61172085), Science
and Technology Commission of Shanghai Municipality (Grant Nos. 14YF1404200,
13JC1403500).
R. Gay—Supported in part by ANR-14-CE28-0003 (Project EnBiD).
H. Wee—CNRS, INRIA and Columbia University. Supported in part by ANR-14-
CE28-0003 (Project EnBiD), NSF Award CNS-1445424, the Alexander von Hum-
boldt Foundation and a Google Faculty Research Award.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 595–624, 2015.
DOI: 10.1007/978-3-662-46803-6 20

596 J. Chen et al.

corresponds to equality. The security requirement for ABE enforces resilience
to collusion attacks, namely any group of users holding secret keys for different
values learns nothing about the plaintext if none of them is individually autho-
rized to decrypt the ciphertext. This should hold even if the adversary adaptively
decides which secret keys to ask for.

ABE in Prime-Order Groups. The goal of this work is to obtain efficient
adaptively secure ABE for a large class of predicates. We now have a fairly
good understanding of how to obtain such schemes in composite-order bilin-
ear groups, thanks to Waters’ powerful dual system encryption methodology [30]
and recent unifying frameworks in [2,31] for the design of dual system ABE
schemes. However, these latter frameworks only work in composite-order bilin-
ear groups, for which group operations and especially pairing computations are
prohibitively slow. In practice, prime-order bilinear groups are preferable [16] as
they admit not only more efficient but also more compact instantiations. To mit-
igate the gap between ease of theoretical design and practical efficiency, a series
of works studied techniques for converting cryptosystems relying on composite-
order groups to cryptosystems based on prime-order groups [10,11,14,20,23,24],
largely in the context of dual system ABE. In addition, we have direct construc-
tions of dual system prime-order hierarchical identity-based encryption (HIBE)
schemes in [3,18] that bypass a conversion from composite-order groups, but
the techniques in these constructions do not seem to naturally extend beyond
(H)IBE. Furthermore, the prior constructions rely on fairly distinct techniques,
and efficiency improvements in one construction do not necessarily translate to a
different construction and a different predicate. In short, prior works fall short of
providing a unifying and modular framework for the design of efficient dual sys-
tem ABE schemes in prime-order groups that work for a large class of predicates
(c.f. Fig. 1).

1.1 Our Contributions

We present a modular framework for the design of efficient dual system ABE
schemes for a large class of predicates under the standard k-Lin assumption in
prime-order groups; this is the first uniform treatment of dual system ABE across
different predicates and across both composite and prime-order groups. Via this
framework, we obtain concrete efficiency improvements for several ABE schemes.
Our framework has three novel components over prior works: (i) new techniques
for simulating composite-order groups in prime-order ones, (ii) a refinement of
the encodings framework for dual system ABE for composite-order groups in
[2,31], (iii) an extension to weakly attribute-hiding predicate encryption [6,19]
(which includes anonymous IBE as a special case). The last two components
answer the open problems left in [2,31].

New Techniques for Simulating Composite-Order Groups. The starting
point of our construction is simply a simpler choice of basis. Fix a bilinear

Improved Dual System ABE in Prime-Order Groups 597

compact
HIBE

boolean
formula

k-Lin
anonymous

IBE
weakly-AH

ZIPE

DPVS [11,20,23,24] no yes yes yes yes

sparse DPVS [26] yes ? ? yes yes

QANIZK [18] yes ? yes yes ?

dual system groups [10] yes ? yes ? ?

MAC-to-(H)IBE [3] yes ? yes yes ?

this work yes yes yes yes yes

Fig. 1. Summary of previous approaches for building efficient dual system (H)IBE and
ABE in prime-order groups. The first column refers to HIBE with constant-size cipher-
texts; the second refers to KP/CP-ABE for boolean formula. The third column refers
to instantiations from the general k-Lin assumption. The last two columns address
extensions to stronger notions of security like anonymity and weakly attribute-hiding
(AH) inner product encryption (ZIPE). Additional discussion is provided in Sect. 1.2.

group (G1, G2, GT) with e : G1 × G2 → GT of prime order p. We pick random
matrices (A,B) ←r Z

(k+1)×k
p , along with random vectors a⊥,b⊥ ∈ Z

k+1
p so that

a⊥�
A = b⊥�

B = 0, and we assume a⊥�
b⊥ �= 0. Observe that1

([A]1, [b⊥]1) := (gA1 , gb
⊥

1) ∈ G
(k+1)×k
1 × Gk+1

1

forms a basis for Gk+1
1 . Similarly,

([B]2, [a⊥]2) := (gB2 , ga
⊥

2) ∈ G
(k+1)×k
2 × Gk+1

2

forms a basis for Gk+1
2 . In the context of dual system encryption, we use [A]1

as a basis for normal components in the ciphertext space, and [b⊥]1 as a basis
for semi-functional components. Similarly, we use [B]2 as a basis for normal
components in the secret key space, and [a⊥]2 as a basis for semi-functional
components. Indistinguishability for elements with and without random semi-
functional components follow readily from the k-Lin assumption. Moreover, we
have an orthogonality property given by a⊥�

A = b⊥�
B = 0, which tells us that

the normal and semi-functional components in different spaces cancel out.
We can then randomize this basis by choosing W ∈ Z

(k+1)×(k+1)
p uniformly

at random and using ([W�A]1, [W�b⊥]1) for Gk+1
1 and ([WB]2, [Wa⊥]2) for

Gk+1
2 . For decryption correctness, we will exploit the following “associative”

property when the new basis interacts with the original one, namely:

e([A]1, [WB]2) = e([W�A]1, [B]2) (1)

where we define the pairing operation on matrices via

e([M]1, [M′]2) := e(g1, g2)M
�M′

.

1 Following [13], we use the implicit representation notation for group elements, as
explained in Sect. 4.1.

598 J. Chen et al.

Observe that W has one unit of residual entropy given (W�A,WB). This will
be crucial for carrying out the information-theoretic argument in the proof of
ABE security via the dual system encryption methodology [2,30,31].

We note that prior transformations in prime-order groups in [14,20,23,24] try
to simulate all of the structure in composite-order groups (e.g. orthogonality).
We simulate less structure (associativity, c.f. Eqn. (1)), thus leading to better
concrete efficiency. However, when combined with the existing encodings frame-
work for dual system ABE schemes in composite-order groups, we cannot even
guarantee ABE decryption correctness. We compensate for less structure while
simulating composite-order groups by imposing more structure to the encod-
ings, which we can achieve without increasing the size of the encodings. We will
exploit the additional structure in the encodings for correctness and for security.
We now proceed to describe our encodings framework for ABE.

Modular Approach for ABE. We begin with the observation that the prior
composite-order ABE schemes in [2,31] (generalizing [21,22]) may be modified
so that master public key, secret key and ciphertext are of the form:

mpk :=
(
g1, gw1 , e(g1, g1)α

)

sky :=
(
gr
1, g

kE(y,α)+r·rE(y,w)
1

)

ctx :=
(
gs
1, g

s·sE(x,w)
1 , e(g1, g1)αs · m

)
(2)

Here, g1 is a generator of order p1 where the underlying composite group order
is the product of three primes p1, p2, p3 (for simplicity we consider the case of a
symmetric bilinear group); w is a vector of length n; and kE, rE, sE are a triple
of deterministic “encoding” functions that depend on the underlying predicate
P (we refer to these functions as key encoding, receiver encoding and sender
encoding respectively.) Syntactically, this is already a refinement of the prior
frameworks in [2,31] which associates a single function with sky given by

(y, α,w, r) �→ (
r, kE(y, α) + r · rE(y,w)

)
(3)

in the exponent. The prior frameworks allow for instance for kE to be ran-
domized. With the refinement in place, we can now specify the restricted α-
reconstruction property used for correctness:

(restricted α-reconstruction.) For every x, y for which P(x, y) = 1,
there is a linear map Lxy such that for all α, r,

Lxy

(
kE(y, α) + r · rE(y,w), r · sE(x,w)

)
= α.

This means that we can recover e(g1, g1)αs given

e(gs
1, g

kE(y,α)+r·rE(y,w)
1) and e(gs·sE(x,w)

1 , gr
1),

upon which we can decrypt the ciphertext. Observe that we only need to pair
the first component gs

1 of ctx with the second component of sky and the second

Improved Dual System ABE in Prime-Order Groups 599

component of ctx with the first component gr
1 of sky. Correctness now relies on

a so-called associativity property [10], namely that for all i and all wi:

e(gs
1, g

wir
1) = e(gwis

1 , gr
1) (4)

To translate the scheme to prime-order groups, we carry out the following sub-
stitution:

wi �→ Wi ∈ Z
(k+1)×(k+1)
p , s �→ s ∈ Z

k
p, r �→ r ∈ Z

k
p

gs
1 �→ [As]1, gr

1 �→ [Br]2

gwis
1 �→ [W�

i As]1, gwir
1 �→ [WiBr]2

Using (1), we have

e([As]1, [WiBr]2) = e([W�
i As]1, [Br]2)

which is exactly what we used in composite-order groups in (4). In fact, a stronger
“pairwise associativity” property holds in composite-order groups, namely for all
i, j and all wi, wj :

e(gwjs
1 , gwir

1) = e(gwis
1 , g

wjr
1)

which is not satisfied by our prime-order techniques since Wi and Wj do not
commute. Restricted α-reconstruction means that we do not need to pair g

wjs
1

with gwir
1 during decryption, and thus the associativity property already suffices

for decryption correctness. For maximal modularity, we describe our compiler
using the framework of dual system groups introduced in [10], which allows us
to simultaneously capture prime-order and composite-order groups.

Next, we specify the privacy property which we use in the proof of ABE
security:

(α-privacy.) For every x, y for which P(x, y) = 0, α is perfectly hidden
given

sE(x,w), kE(y, α) + rE(y,w)

where w ←r Z
n
p .

We stress that the privacy requirement only needs to hold in a private-key setting
where the adversary does not see w and in a one-time setting where the adversary
only gets a single copy of sE(x,w), kE(y, α)+rE(y,w). As pointed out in [31], the
dual system encryption methodology can be used to boost security in a private-
key, one-time, non-adaptive setting as given by α-privacy to a full-fledged public-
key, many-time, adaptive setting as is required for ABE security. One novelty in
this work over [2,31] lies in carrying this out over prime-order bilinear groups.
In the proof, we exploit the fact that the key sky leaks no information about
w when r = 0 (c.f. Eqn. (2)). This way, we can ensure that in each step in the
proof of security, at most one secret key leaks information about w in the semi-
functional space. This is important since α-privacy only holds when w is used
once. We also introduce new attribute-hiding privacy requirements for encodings
in this work (c.f. Sect. 7.2).

600 J. Chen et al.

New Encodings. For many predicates, the prior encodings in [2,31] satisfy the
new refinement trivially. In addition, we introduce a number of new encodings:

– For KP-ABE for boolean formula, the prior encoding corresponding to the
secret key in [2,31] is given by

(r, α1 + rw1, . . . , α� + rw�)

where (α1, . . . , α�) are random shares of α using a linear secret-sharing
scheme and fresh randomness for each secret key. This does not satisfy the
syntactic refinement captured in Eqn. (3). In our scheme, we use

(r, α′
1 + r(w1 + v1), . . . , α′

� + r(w� + v�))

where (α′
1, . . . , α

′
�) are deterministically derived from α using the secret-

sharing scheme with randomness fixed to 0 and (v1, . . . , v�) are random
shares of 0. In the ensuing KP-ABE scheme, we use the same v1, . . . , v�

across all secret keys whereas prior constructions use fresh randomness for
secret-sharing for each key. In addition, we obtain an analogous construction
for CP-ABE. Here, we avoid having to consider randomized sender encod-
ings as in [2,31]. The final encodings have the same sizes as the prior ones,
while satisfying the new refinement requirement. Moreover, by using asso-
ciativity (c.f. Eqn. (4)), we reduce the number of pairings for the decryption
to a constant and avoid exponentiations in the target group at the cost of
cheaper exponentiations in the source groups.

– We extend the encodings for KP-ABE and CP-ABE to arithmetic branching
programs, based on the selectively secure KP-ABE for arithmetic branching
programs in [17]. Combined with our generic framework, we obtain the first
adaptively secure KP-ABE and CP-ABE for arithmetic branching programs.

– We also present a new encoding for broadcast encryption with n users where
both the receiver and sender encoding have sublinear O(

√
n) length and a

simple encoding for large universe fuzzy IBE.

Achieving Weak Attribute-Hiding. In a weakly attribute-hiding scheme,
we need to guarantee the privacy of the ciphertext attribute x against collusions
that are not authorized to decrypt the challenge ciphertext. To achieve this
property, we require additional properties from the underlying encoding and the
underlying group structure (extending ideas from [1,3,25]). We use the fact that
for any vector c ∈ Z

k+1
p outside the span of A, the vector W�c is uniformly

random given W�A, where W is a uniformly random matrix. We can then use
W�c to information-theoretically blind the attribute in the challenge ciphertext.
For this to work, we need to make sure that the semi-functional secret keys do
not leak any additional information about WB.

New ABE Schemes. We describe several concrete new ABE schemes obtained
via our new framework (c.f. Fig. 2). Specifically, we obtain:

Improved Dual System ABE in Prime-Order Groups 601

functionality improvements

KP-ABE boolean formula 50% savings in SK size, faster Dec

CP-ABE boolean formula 50% savings in CT size, faster Dec

KP-ABE arithmetic formula first adaptively secure scheme

CP-ABE arithmetic formula first adaptively secure scheme

NIPE 25-50 % savings in SK and CT size and in Dec time

weakly attribute-hiding ZIPE 25% savings in SK and CT size and in Dec time

Fig. 2. Summary of efficiency improvements in our new ABE schemes. Here, SK, CT,
and Dec stand for secret key, ciphertext, and decryption respectively.

– ABE schemes for the inner product and non-zero inner product predicates
with a 25 % improvement in secret key and ciphertext sizes and decryption
time, improving upon previous constructions in [26];

– a key-policy ABE scheme for boolean formula with a 50 % improvement in
secret key size and faster decryption and an analogous result for ciphertext-
policy ABE, improving upon previous constructions in [20,25];

– the first adaptively secure key-policy and ciphertext-policy ABE schemes for
arithmetic formula and branching programs without an exponential security
loss, improving upon previous constructions in [8,17].

Along the way, we also generalize several previous constructions for k = 2 to
general k with k = 1 being particularly relevant for practical efficiency. More
generally, the parameters of our schemes under k-Lin is k + 1 times those of the
best composite-order schemes based on subgroup assumptions: this achieves a
“seemingly best-possible” composite-to-prime-order transformation where each
composite element is simulated using k + 1 prime-order elements.

Finally, our prime-order ABE schemes are simpler to describe than prior
schemes as they share the same structure as existing composite-order schemes.
In particular, we obtain the following anonymous IBE scheme:

mpk = [A,W�
0A,W�

1A]1, [k�A]T

skid = [Br,k + (W0 + id · W1)Br]2 ∈ G
2(k+1)
2

ctid = [As, (W0 + id · W1)�As]1, [k�As]T · m ∈ G
2(k+1)
1 × GT

where A,B ∈ Z
(k+1)×k
p , W0,W1 ∈ Z

(k+1)×(k+1)
p , s, r ∈ Z

k
p, k ∈ Z

k+1
p . This

scheme extends naturally to a non-anonymous BBG-style compact HIBE [7]
(this is not the case for the prime-order IBE schemes in [11,20]).

1.2 Discussion

Comparison with Prior Works. A summary of the prior approaches for
obtaining efficient adaptively secure efficient dual system (H)IBE and ABE is

602 J. Chen et al.

presented in Fig. 1. The most general technique we have for simulating composite-
order groups in prime-order ones are those based on “dual pairing vector spaces”
(DPVS) [11,20,23,24]. However, these techniques do not preserve the asymp-
totic efficiency of the underlying schemes; in particular, applying them to the
composite-order compact HIBE schemes in [21] blows up the ciphertext size
from constant to linear. The sparse DPVS technique [26,29] uses subgroups of
sparse matrices with mostly zero entries to overcome this limitation; however,
they substantially limit the generality of the DPVS technique: the structure of
these matrices now depend on the predicate and the composite-order scheme
(to preserve efficiency), and the analysis for correctness, efficiency and security
are more involved. The constructions in [10] fail to extend to boolean formula
due to the need for additional randomness for secret-sharing, and also do not
extend to yield anonymous IBE. The direct constructions in [3,18] that bypass a
conversion from composite-order groups do not seem to naturally extend beyond
(H)IBE: the former uses tag-based languages where tags correspond to identi-
ties, and the latter relies on the notion of message authentication codes where
messages correspond to identities. In particular, we do not know analogues of
these constructions for either the inner product predicate or CP/KP-ABE for
boolean formula.

As noted earlier, another novel contribution in this work over prior unify-
ing frameworks in [2,31] (generalizing [21,22]) for composite-order groups lies
in realizing the weakly-attribute guarantee. This is particularly challenging in
composite-order groups for two reasons: (i) there is an explicit anonymity attack
on the Lewko-Waters IBE [21] in composite-order group and (ii) the attribute
in the semi-functional ciphertext is leaked in the Gp1 -component. Interestingly,
we are still able to show that our prime-order analog of the Lewko-Waters IBE
is anonymous.

Organization. We recall the definition of an attribute-based encryption scheme
in Sect. 2. We recall the notion of dual system groups in Sect. 3 and describe
our instantiations in Sect. 4. We describe our notion of predicate encodings in
Sect. 5. We present our generic ABE construction in Sect. 6. We handle weakly
attribute-hiding predicate encryption in Sect. 7. We defer instantiations of pred-
icate encodings and all other details to the full version of this paper.

2 Preliminaries

Notation. We denote by s ←r S the fact that s is picked uniformly at random
from a finite set S. By PPT, we denote a probabilistic polynomial-time algo-
rithm. Throughout this paper, we use 1λ as the security parameter. We use · to
denote multiplication as well as component-wise multiplication.

2.1 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a predicate P(· , ·) consists of
four algorithms (Setup,Enc, KeyGen,Dec):

Improved Dual System ABE in Prime-Order Groups 603

Setup(1λ,X ,Y,M) → (mpk,msk). The setup algorithm gets as input the secu-
rity parameter λ, the attribute universe X , the predicate universe Y, the
message space M and outputs the public parameter mpk, and the master
key msk.

Enc(mpk, x,m) → ctx. The encryption algorithm gets as input mpk, an attribute
x ∈ X and a message m ∈ M. It outputs a ciphertext ctx. Note that x is
public given ctx.

KeyGen(mpk,msk, y) → sky. The key generation algorithm gets as input msk
and a value y ∈ Y. It outputs a secret key sky. Note that y is public given
sky.

Dec(mpk, sky, ctx) → m. The decryption algorithm gets as input sky and ctx
such that P(x, y) = 1. It outputs a message m.

Correctness. We require that for all (x, y) ∈ X × Y such that P(x, y) = 1 and
all m ∈ M,

Pr[Dec(mpk, sky,Enc(mpk, x,m)) = m] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X ,Y,M), sky ←
KeyGen(mpk,msk, y), and the coins of Enc.

Security Definition. For a stateful adversary A, we define the advantage func-
tion

AdvabeA (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′ :

(mpk,msk) ← Setup(1λ,X ,Y,M);

(x∗,m0,m1) ← AKeyGen(msk,·)(mpk);

b ←r {0, 1}; ctx∗ ← Enc(mpk, x∗,mb);

b′ ← AKeyGen(msk,·)(ctx∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies
P(x∗, y) = 0 (that is, sky does not decrypt ctx∗). An ABE scheme is adaptively
secure if for all PPT adversaries A, the advantage AdvabeA (λ) is a negligible
function in λ.

3 Dual System Groups

This section is largely adapted from [10].

3.1 Overview

Dual system groups contain a triple of abelian groups (G, H, GT) and a non-
degenerate bilinear map e : G × H → GT . For concreteness, we may think
of (G, H, GT) as composite-order bilinear groups. Dual system groups take as
input a parameter 1n (think of n as the universe size in KP-ABE) and satisfy
the following properties:

604 J. Chen et al.

(subgroup indistinguishability.) There are two computationally indistin-
guishable ways to sample correlated (n + 1)-tuples from G

n+1: the “nor-
mal” distribution, and a higher-entropy distribution with “semi-functional
components”. We sample the normal distribution using SampG and the semi-
functional components using ŜampG. An analogous property holds for H

n+1,
with algorithms SampH and ŜampH respectively, with an important distinc-
tion in the auxiliary input provided to the distinguisher. For concreteness,
think in terms of symmetric bilinear groups of composite order N where

SampG → (gs
1, g

sw
1) ∈ Gn+1

N and SampH → (gr
1, g

rw
1) ∈ Gn+1

N

ŜampG → (gs
2, g

sw
2) ∈ Gn+1

N and ŜampH → (gr
2, g

rw
2) ∈ Gn+1

N

Here, N is the product of three primes p1, p2, p3; g1, g2 are generators of
order p1, p2; and gw1 ∈ Gn

N is part of the public parameters.

(associativity.) For all (g0, g1, . . . , gn) ∈ G
n+1 and all (h0, h1, . . . , hn) ∈ H

n+1

drawn from the respective normal distributions according to SampG and
SampH, we have that for all i = 1, . . . , n,

e(g0, hi) = e(gi, h0).

We require this property for correctness (c.f. Eqn. (4)).

(right subgroup H.) There is some distinguished element h∗ ∈ H, which gen-
erates the semi-functional components in H. It is convenient to think of h∗ as
being orthogonal to the normal distribution over G (c.f. orthogonality). On
the other hand, we require that h∗ is not orthogonal to the semi-functional
components in G (c.f. non-degeneracy), so that we get a random value when
we decrypt a semi-functional ciphertext with a semi-functional key.

(parameter-hiding.) Both normal distributions can be efficiently sampled
given the public parameters; on the other hand, given only the public param-
eters, the higher-entropy distributions contain n “units” of information-
theoretic entropy (in the semi-functional component), one unit for each of
the n elements in the (n + 1)-tuple apart from the first. In the formal state-
ment, the hidden entropy is captured by n random exponents (u1, . . . , un)
shared across G and H. It is crucial here that we use the same ui in G and
in H, so that decryption succeeds with nominally semi-functional objects.

3.2 Definitions

Syntax. Dual system groups consist of six randomized algorithms given by
(SampP, SampGT, SampG, SampH) along with (ŜampG, ŜampH):

SampP(1λ, 1n): On input (1λ, 1n), output public and secret parameters (pp, sp),
where:

Improved Dual System ABE in Prime-Order Groups 605

– pp contains a prime p of length Ω(λ), a triple of abelian groups
(G, H, GT), a non-degenerate bilinear map e : G × H → GT , a linear
map μ defined on H, along with some additional parameters used by
SampG,SampH;

– the groups (G, H, GT) are Zp-modules where Zp acts on G, H, GT via
exponentiation;

– given pp, we can uniformly sample from H;
– sp contains h∗ ∈ H (where h∗ �= 1), along with some additional parame-

ters used by ŜampG, ŜampH;

SampGT : Im(μ) → GT. (As a concrete example, suppose μ : H → GT and
Im(μ) = GT.)

SampG(pp): Output g ∈ G
n+1.

SampH(pp): Output h ∈ H
n+1.

ŜampG(pp, sp): Output ĝ ∈ G
n+1.

ŜampH(pp, sp): Output ĥ ∈ H
n+1.

The first four algorithms are used in the actual scheme, whereas the last two
algorithms are used only in the proofs of security. We define SampG0 to denote
the first group element in the output of SampG, and we define ŜampG0, ŜampH0

analogously.

Remark 1. Given a Zp-linear function L : Z
n
p → Zp given by (w1, . . . , wn) �→

a1w1 + · · · + anwn (where a1, . . . , an ∈ Zp are fixed constants), L acts on Zp-
modules G

n, Hn, Gn
T in the natural way. For instance, L : G

n → G is given
by (g1, . . . , gn) �→ ga1

1 · · · gan
n . This extends also to general Zp-linear functions

L : Z
n
p → Z

m
p coordinate-wise.

Correctness. The requirements for correctness are as follows:

(projective.) For all h ∈ H and all coin tosses s, we have SampGT(μ(h); s) =
e(SampG0(pp; s), h).

(associative.) For all (g0, g1, . . . , gn) ← SampG(pp) and (h0, h1, . . . , hn) ←
SampH(pp) and for all i = 1, . . . , n, we have e(g0, hi) = e(gi, h0).

(H-subgroup.) The output of SampH(pp) is the uniform distribution over a
subgroup of H

n+1.

Security. The requirements for security are as follows:

(orthogonality.) μ(h∗) = 1.

(non-degeneracy.) For all ĥ0 ← ŜampH0(pp, sp), h∗ lies in the group gener-
ated by ĥ0. For all ĝ0 ← ŜampG0(pp, sp), we have e(ĝ0, h∗)α is identically
distributed to the uniform distribution over GT , where α ←r Zp.

606 J. Chen et al.

(left subgroup indistinguishability.) For any adversary A, we define the
advantage function:

AdvlsA(λ) :=
∣
∣Pr[A(pp, g) = 1] − Pr[A(pp, g · ĝ) = 1]

∣
∣

where (pp, sp) ← SampP(1λ, 1n), g ← SampG(pp), ĝ ← ŜampG(pp, sp).

(right subgroup indistinguishability.) For any adversary A, we define the
advantage function:

AdvrsA (λ) :=
∣
∣Pr[A(pp, h∗,g · ĝ, h) = 1] − Pr[A(pp, h∗,g · ĝ, h · ĥ) = 1]

∣
∣

where (pp, sp) ← SampP(1λ, 1n), g ← SampG(pp), ĝ ← ŜampG(pp, sp), h ←
SampH(pp), ĥ ← ŜampH(pp, sp).

(parameter-hiding.) The following distributions are identically distributed

{pp, h∗, ĝ, ĥ } and {pp, h∗, ĝ · ĝ′, ĥ · ĥ′ }
where

(pp, sp) ← SampP(1λ, 1n); u1, . . . , un ←r Zp;

ĝ = (ĝ0, . . .) ← ŜampG(pp, sp); ĥ = (ĥ0, . . .) ← ŜampH(pp, sp);

ĝ′ := (1, ĝu1
0 , . . . , ĝun

0) ∈ G
n+1; ĥ

′
:= (1, ĥu1

0 , . . . , ĥun
0) ∈ H

n+1.

4 Instantiations of DSG from k-Lin

We present a new instantiation of dual system groups under the k-Lin assump-
tion, inspired by the constructions in [3,10].

Overview. The prior construction of DSG [10] (building upon [11,20,24,25])
starts with a random B ←r GLk+1(Zp) and defines B∗ := (B�)−1 so that B�B∗

is the identity matrix; then uses B for SampG, ŜampG and B∗ for SampH, ŜampH.
In our construction, we may start with any pair of matrices A,B in Z

(k+1)×k
p of

full rank:

– In addition, we pick a⊥,b⊥ so that a⊥�
A = b⊥�

B = 0 and a⊥�
b⊥ �= 0; we

then use (A,b⊥) for SampG, ŜampG and (B,a⊥) for SampH, ŜampH.
– We achieve randomization as follows: again, pick a random W ←r

Z
(k+1)×(k+1)
p and replace (A,B) with (W�A,WB). The associativity prop-

erty follows from the equation:

(W�A)�B = A�(WB)

Interestingly, the prior construction in [10] randomizes by multiplying a random
W on the right, whereas our construction multiplies a random W on the left.
Together with the fact that we no longer require the fact that B�B∗ is the
identity, we substantially simplify the proof of subgroup indistinguishability.

Improved Dual System ABE in Prime-Order Groups 607

4.1 Cryptographic Assumptions

We follow the notation and algebraic framework for Diffie-Hellman-like assump-
tions in [13].

Prime-Order Bilinear Groups. A generator G takes as input a security
parameter λ and outputs a description (p,G1, G2, GT , g1, g2, e), where p is a
prime of Θ(λ) bits; G1, G2 and GT are cyclic groups of order p; g1, g2 are gen-
erators of G1 and G2 respectively; and e : G1 × G2 → GT is a non-degenerate
bilinear map. Given a ∈ Zp, we use [a]1 to denote ga

1 , [a]2 to denote ga
2 , [a]T to

denote e(g1, g2)a. This extends to vectors and matrices in the obvious way. We
define e([A]1, [B]2) := [A�B]T .

Linear Assumption. Let Dk be an efficiently samplable distribution of matri-
ces (A,a⊥) over Z

(k+1)×k
p × Z

k+1
p so that A�a⊥ = 0 and a⊥ �= 0. In particular,

we consider the distribution generated as follows: pick a1, . . . , ak ←r Z
∗
p and set

A :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1

a2

. . .

ak

1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(k+1)×k
p and a⊥ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a−1
1

a−1
2

...

a−1
k

−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(k+1)
p .

This distribution captures the k-linear assumption, which stipulates that

([A] , [As]) ≈c ([A] , [z])

where s ←r Z
k
p, z ←r Z

k+1
p in both G1 and G2.

Assumption 1 (k-Lin: the k-linear assumption in G1) For any adversary
A, we define the advantage function:

Advk-Lin
A :=

∣
∣Pr[A((p,G1, G2, GT , g1, g2, e); [A]1 , [As]1) = 1]

− Pr[A((p,G1, G2, GT , g1, g2, e); [A]1 , [z]1) = 1]
∣
∣

where (p,G1, G2, GT , g1, g2, e) ← G(1λ), (A,a⊥) ← Dk, s ←r Z
k
p, z ←r Z

k+1
p .

We will slightly abuse notation and also use Advk-Lin
A to denote the corresponding

advantage function for G2.

Basis Lemma. The following structural lemma tells us that if we pick random
(A,a⊥), (B,b⊥) ← Dk, then with overwhelming probability, both (A,b⊥) and
(B,a⊥) form a basis for Z

k+1
p and a⊥,b⊥ are not orthogonal. We will assume

henceforth that this property always holds.

608 J. Chen et al.

Lemma 1 (Basis Lemma). With probability 1−1/p over (A,a⊥), (B,b⊥) ←
Dk, it holds that:

(
a⊥ �∈ span(B)

) ∧ (
b⊥ �∈ span(A)

) ∧ (
a⊥�

b⊥ �= 0
)
.

Proof. It is easy to see that if a⊥�
b⊥ �= 0, then

(
a⊥ �∈ span(B)

)
and

(
b⊥ �∈ span(A)

)

since every vector in span(A) is orthogonal to a⊥ and every vector in span(B)
is orthogonal to b⊥. Observe that a⊥�

b⊥ = 1 +
∑d

i=1(aibi)−1 and

Pr
[
1 +

d∑

i=1

(aibi)−1 �= 0 : a1, b1, . . . , ak, bk ←r Z
∗
p

]
= 1 − 1/p.

The lemma then follows readily.
�
Remark 2. Observe that Lemma 1 is not particular to the k-Lin distribution,
since a similar proof works for any example of matrix distribution Dk presented
in [13], namely Uk+1,k, k-Casc, k-SCasc and k-ILin [13, Section 3.4].

4.2 Construction

Our construction is as follows:

SampP(1λ, 1n): On input (1λ, 1n), do:

– run (p,G1, G2, GT , g1, g2, e) ← G(1λ), where G(1λ) is an asymmetric
prime-order group generator;

– define (G, H, GT , e) := (Gk+1
1 , Gk+1

2 , GT , e);
– sample (A,a⊥), (B,b⊥) ← Dk, along with W1, . . . ,Wn ←r

Z
(k+1)×(k+1)
p ;

– define μ : Gk+1
2 → Gk

T by μ([k]2) = [A�k]T ;
– set h∗ :=

[
a⊥]

2
.

Output

pp :=

⎛

⎝ (p, G, H, GT , e);
[A]1 , [W�

1A]1 , . . . , [W�
nA]1

[B]2 , [W1B]2 , . . . , [WnB]2

⎞

⎠ ;

sp :=
(
a⊥,b⊥,W1, . . . ,Wn

)
.

SampGT([p]T): Pick s ←r Z
k
p and output [s�p]T ∈ GT .

SampG(pp): Pick s ←r Z
k
p and output

(
[As]1 , [W�

1As]1 , . . . , [W�
nAs]1

)
∈ (Gk+1

1)n+1.

Improved Dual System ABE in Prime-Order Groups 609

SampH(pp): Pick r ←r Z
k
p and output

(
[Br]2 , [W1Br]2 , . . . , [WnBr]2

)
∈ (Gk+1

2)n+1.

ŜampG(pp, sp): Pick ŝ ←r Z
∗
p and output

([
b⊥ŝ

]
1
,
[
W�

1b
⊥ŝ
]
1
, . . . ,

[
W�

nb
⊥ŝ
]
1

)
∈ (Gk+1

1)n+1.

ŜampH(pp, sp): Pick r̂ ←r Z
∗
p and output

([
a⊥r̂

]
2
,
[
W1a⊥r̂

]
2
, . . . ,

[
Wna⊥r̂

]
2

)
∈ (Gk+1

2)n+1.

Correctness. We check correctness properties as follows:

(projective.) This follows readily from the fact that for all k ∈ Z
k+1
p , s ∈ Z

k
p:

(As)�k = (A�k)�s.

(associative.) This follows readily from the fact that for all s ∈ Z
k
p, r ∈

Z
k
p,Wi ∈ Z

(k+1)×(k+1)
p :

(W�
i As)�(Br) = (As)�(WiBr).

(H-subgroup.) This follows readily from the fact that Z
k
p is an additive group.

Security. We check security properties as follows:

(orthogonality.) This follows readily from A�a⊥ = 0.

(non-degeneracy.) This follows readily from b⊥�
a⊥ �= 0.

We establish left subgroup indistinguishability, right subgroup indistinguisha-
bility, and parameter-hiding in the next three lemmas. The left and right sub-
group indistinguishability relies on the k-Lin assumption in prime-order groups,
whereas parameter-hiding is unconditional.

Lemma 2 (Left Subgroup Indistinguishability from k-Lin). For any
adversary A, there exists an adversary B such that:

AdvlsA(λ) ≤ Advk-Lin
B + 2/p

and Time(B) ≈ Time(A) + k2 · poly(λ, n) where poly(λ, n) is independent of
Time(A).

The proof is a simpler case of the proof of Lemma 3, we omit it here.

610 J. Chen et al.

Lemma 3 (Right Subgroup Indistinguishability from k-Lin). For any
adversary A, there exists an adversary B such that:

AdvrsA (λ) ≤ Advk-Lin
B + 2/p

and Time(B) ≈ Time(A) + k2 · poly(λ, n) where poly(λ, n) is independent of
Time(A).

We may rewrite the corresponding advantage function as:

AdvrsA (λ) :=
∣
∣Pr[A(pp, h∗,g · ĝ,h) = 1] − Pr[A(pp, h∗,g · ĝ,h · ĥ) = 1]

∣
∣

where

(pp, sp) ← SampP(1λ, 1n); s, r ←r Z
k
p; ŝ, r̂ ←r Z

∗
p; h∗ :=

[
a⊥]

2
;

g · ĝ :=
([

As + b⊥ŝ
]
1
,
[
W�

1(As + b⊥ŝ)
]
1
, . . . ,

[
W�

n(As + b⊥ŝ)
]
1

)
;

h :=
(
[Br]2 , [W1Br]2 , . . . , [WnBr]2

)
;

h · ĥ :=
([

Br + a⊥r̂
]
2
,
[
W1(Br + a⊥r̂)

]
2
, . . . ,

[
Wn(Br + a⊥r̂)

]
2

)
.

Proof. The adversary B samples (A,a⊥) ← Dk along with W1, . . . ,Wn ←r

Z
(k+1)×(k+1)
p . Recall that (B,a⊥) is a basis for Z

k+1
p , so {Br + a⊥r̂ : r ←r

Z
k
p, r̂ ←r Z

∗
p} is statistically close to the uniform distribution. Adversary B then

gets as input
(

(p,G1, G2, GT , g1, g2, e), [B]2 ,
[
Br + a⊥r̂

]
2

)

where either r̂ = 0 or r̂ ←r Z
∗
p, and proceeds as follows:

Simulating pp, h∗. Output

[A]1 , [W�
1A]1 , . . . , [W�

nA]1
[B]2 , [W1B]2 , . . . , [WnB]2

and
[
a⊥]

2

Simulating
[
As + b⊥ŝ

]
1
,
[
W�

i (As + b⊥ŝ)
]
1
. Note that B does not know b⊥.

Instead, B samples s̃ ←r Z
k+1
p and outputs

[s̃]1 , [W�
1 s̃]1 , . . . , [W�

ns̃]1 .

Observe that As + b⊥ŝ is statistically close to the uniform vector s̃ as long
as b⊥ �∈ span(A) and ŝ ←r Zp.

Simulating the Challenge. Upon receiving a k-Lin challenge, B outputs
[
Br + a⊥r̂

]
2
,
[
W1(Br + a⊥r̂)

]
2
, . . . ,

[
Wn(Br + a⊥r̂)

]
2

where either r̂ = 0 or r̂ ←r Zp.

Improved Dual System ABE in Prime-Order Groups 611

Observe that:

– if r̂ = 0, then we can write the output challenge as

[Br]2 , [W1Br]2 , . . . , [WnBr]2 .

which equals h; we obtain the left distribution in the statement of the lemma;
– if r̂ ←r Zp, then we can write the output challenge as

[
Br + a⊥r̂

]
2
,
[
W1(Br + a⊥r̂)

]
2
, . . . ,

[
Wn(Br + a⊥r̂)

]
2
.

which equals h · ĥ; we obtain the right distribution in the statement of the
lemma.

Typically, we sample ŝ, r̂ ←r Z
∗
p for ŜampG(pp, sp) and ŜampH(pp, sp); this yields

a 2/p negligible difference in the advantage. The lemma then follows readily.
�
Lemma 4 (Parameter-Hiding). The following distributions are identically
distributed

⎧
⎨

⎩
pp,

[
a⊥]

2
,

[
b⊥ŝ

]
1
,
[
W�

1b
⊥ŝ
]
1
, . . . ,

[
W�

nb
⊥ŝ
]
1

[
a⊥r̂

]
2
,
[
W1a⊥r̂

]
2
, . . . ,

[
Wna⊥r̂

]
2

⎫
⎬

⎭
and

⎧
⎨

⎩
pp,

[
a⊥]

2
,

[
b⊥ŝ

]
1
,
[
(W�

1b
⊥ + u1b⊥)ŝ

]
1
, . . . ,

[
(W�

nb
⊥ + unb⊥)ŝ

]
1

[
a⊥r̂

]
2
,
[
(W1a⊥ + u1a⊥)r̂

]
2
, . . . ,

[
(Wna⊥ + una⊥)r̂

]
2

⎫
⎬

⎭

where (pp, sp) ← SampP(1λ, 1n), ŝ, r̂ ←r Z
∗
p and u1, . . . , un ←r Zp.

Proof. Fix g1, g2, (A,a⊥), (B,b⊥), ŝ, r̂; that is, we prove that the statement holds
for all g1, g2, (A,a⊥), (B,b⊥), ŝ, r̂. Set V := a⊥b⊥� ∈ Z

(k+1)×(k+1)
p which satis-

fies the following properties:

V�A = 0 and VB = 0 (5)

Va⊥ = (a⊥�
b⊥)a⊥ and V�b⊥ = (a⊥�

b⊥)b⊥ (6)

Eqn. (6) basically says that a⊥ and b⊥ are the respective eigenvectors of V and
V�. Now, consider the following “change of variables” in the first distribution,
namely, replace

Wi with Wi + ui(a⊥�
b⊥)−1V, i = 1, . . . , n.

Clearly, this does not change the first distribution. Now, observe that
[
(Wi + ui(a⊥�

b⊥)−1V)�A
]

1
= [W�

i A]1 ;
[
(Wi + ui(a⊥�

b⊥)−1V)B
]

2
= [WiB]2

612 J. Chen et al.

where we use (5) in the last equalities. That is, pp remains unchanged. In addi-
tion, we have

[
(Wi + ui(a⊥�

b⊥)−1V)�b⊥
]

1
=
[
W�

i b
⊥ + uib⊥]

1
;

[
(Wi + ui(a⊥�

b⊥)−1V)a⊥
]

2
=
[
Wia⊥ + uia⊥]

2

where we use (6) in the last equalities. Indeed, this is exactly the second distri-
bution.
�

5 Predicate Encodings

In this section, we describe a refinement of the predicate encodings from [2,31]
which we use in this work. We refer to Sect. 1.1 for an overview of the refinement.

Predicate Encodings. Fix a predicate P : X × Y → {0, 1}. A Zp-bilinear
predicate encoding for P is a tuple of deterministic algorithms (sE, rE, kE, sD, rD)
satisfying the following properties:

(linearity.) For all (x, y) ∈ X × Y, the functions sE(x, ·), rE(y, ·), kE(y, ·),
sD(x, y, ·), rD(x, y, ·) are Zp-linear.

(restricted α-reconstruction.) For all (x, y) ∈ X × Y such that P(x, y) = 1
and for all w ∈ W:

sD(x, y, sE(x,w)) = rD(x, y, rE(y,w)) and rD(x, y, kE(y, α)) = α.

(α-privacy.) For all (x, y) ∈ X ×Y such that P(x, y) = 0, and for all α ∈ Zp, the
joint distribution {sE(x,w), kE(y, α) + rE(y,w)} perfectly hides α. That is,
for all α ∈ Zp, the following joint distributions2 are identically distributed:
{
x, y, α, sE(x,w), kE(y, α) + rE(y,w)

}
and

{
x, y, α, sE(x,w), rE(y,w)

}

where the randomness is taken over w ←r W.

Remark 3. Given a predicate encoding as defined above, we can construct an
encoding (rE′, sE′) which achieves the notion in [2,31] by considering:

sE′ = sE and rE′(y, α,w, r) =
(
r, kE(y, α) + r · rE(y,w)

)
.

Note that rE′ leaks no information about w when r = 0 which trivially yields
the w-hiding property in [31] (aka parameter-hiding in [2]). Here, we use the
fact that kE does not depend on w.

2 Note that since kE(y, ·) is Zp-linear, we have kE(y, 0) + rE(y,w) = rE(y,w).

Improved Dual System ABE in Prime-Order Groups 613

Example: Equality. Fix a prime integer p. Consider the equality predicate
where X = Y = Zp and P(x, y) = 1 iff x = y. The following is a predicate
encoding for equality used in [4,21]:

sE(x, (w1, w2)) := w1 + w2x rE(y, (w1, w2)) := w1 + w2y kE(y, α) := α

sD(x, y, c) = c rD(x, y, k) = k

When x = y, w1 + w2x = w1 + w2y and we can reconstruct α. For α-privacy, we
exploit the fact that (w1 +w2x,w1 +w2y) are pairwise independent when x �= y.

6 ABE from Dual System Groups and Predicate
Encodings

Starting from a predicate encoding for P, we construct an ABE for P using dual
system groups. We refer to Sect. 1.1 for an overview of the scheme, which is of
the form:

mpk :=
(
g1, gw1 , e(g1, g1)α

)

sky :=
(
gr
1, g

kE(y,α)+r·rE(y,w)
1

)

ctx :=
(
gs
1, g

s·sE(x,w)
1 , e(g1, g1)αs · m

)

We will generate mpk using SampP(1λ, 1n), where w ∈ Z
n
p . We will use

SampG(pp) to generate the terms (gs
1, g

sw
1) in the ciphertext, from which we

can compute (gs
1, g

s·sE(x,w)
1) by linearity of sE(x, ·). Similarly, we use SampH(pp)

to generate the terms (gr
1, g

rw
1) in the secret key, from which we can compute

(gr
1, g

r·rE(y,w)
1). We replace gα

1 with msk ←r H.

6.1 Construction

Setup(1λ, 1n): On input (1λ, 1n), first sample

(pp, sp) ← SampP(1λ, 1n).

Pick msk ←r H and output the master public and secret key pair

mpk := (pp, μ(msk)) and msk.

Enc(mpk, x,m): On input x ∈ X and m ∈ GT , sample

(g0, g1, . . . , gn) ← SampG(pp; s), g′
T ← SampGT(μ(msk); s)

and output3

ctx := (C0 := g0, C1 := sE(x, (g1, . . . , gn)), C ′ := g′
T · m) .

3 See Remark 1 for an explanation of the function sE(x, (g1, . . . , gn)).

614 J. Chen et al.

KeyGen(mpk,msk, y): On input y ∈ Y, sample

(h0, h1, . . . , hn) ← SampH(pp)

and output

sky := (K0 := h0, K1 := kE(y,msk) · rE(y, (h1, . . . , hn))) .

Dec(mpk, sky, ctx): Compute

e(g0,msk) ← e(C0, rD(x, y,K1))/e(sD(x, y,C1),K0)

and recover the message as

m ← C ′ · e(g0,msk)−1 ∈ GT .

Correctness. For all (x, y) ∈ X × Y such that P(x, y) = 1, we have

e(C0, rD(x, y,K1))

= e(g0, rD(x, y, rE(y, (h1, . . . , hn)))) · e(g0, rD(x, y, kE(y,msk)))

= e(g0, rD(x, y, rE(y, (h1, . . . , hn)))) · e(g0,msk)

= rD(x, y, rE(y, (e(g0, h1), . . . , e(g0, hn)))) · e(g0,msk)

= rD(x, y, rE(y, (e(g1, h0), . . . , e(gn, h0)))) · e(g0,msk)

= sD(x, y, sE(x, (e(g1, h0), . . . , e(gn, h0)))) · e(g0,msk)

= e(sD(x, y, sE(x(g1, . . . , gn))), h0) · e(g0,msk)

= e(sD(x, y,C1),K0) · e(g0,msk)

In line 2, we use linearity of rD(x, y, ·) and e(g0, ·). In line 3 and line 6, we use
α-reconstruction. In line 4 and line 7, we use the fact that the functions e(g0, ·),
e(·, h0) and sD(x, y, sE(y, ·)) commute with linear functions. That is, given a Zp-
linear function L : Z

n
p → Zp given by (w1, . . . , wn) �→ a1w1 + · · · + anwn, we

have:
e(g0, L(h1, . . . , hn)) = e(g0, ha1

1 · · · han
n)

= e(g0, h1)a1 · · · e(g0, hn)an

= L(e(g0, h1), . . . , e(g0, hn))

In line 5, we use associativity in DSG. Finally, by projective, g′
T = e(g0,msk).

Correctness follows readily.

Improved Dual System ABE in Prime-Order Groups 615

game ciphertext (C0,C1, C
′) secret key (K0,K1) justification

0 (1,1, 1) (1, (h∗)kE(y,0) · 1) 1 = (h∗)kE(y,0)

1 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (1, (h∗)kE(y,0) · 1) left subgroup ind

2.i.1 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (ĥ0 , (h∗)kE(y,0) · rE(y, ĥ)) right subgroup ind

2.i.2 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (ĥ0, (h∗)kE(y,α) · rE(y, ĥ)) α-privacy

2.i.3 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (1 , (h∗)kE(y,α) · 1) right subgroup ind

3 (ĝ0, sE(x, ĝ), random) (1, (h∗)kE(y,α) · 1)

Fig. 3. Sequence of games in the “semi-functional” space. We omitted the normal
components: those sampled using SampG, SampH, and we omitted e(g0,msk) · m in C′

and kE(y,msk) in sky. We drew a box to highlight the differences between each game
and the preceding one, and games 2.i.x refer to the i’th secret key. The semi-functional
components of the keys transition from (h∗)kE(y,0) to (h∗)kE(y,α). For the final transition,
we use the fact that e(ĝ0,msk) is statistically random given msk · (h∗)α.

6.2 Proof of Security

We prove the following theorem:

Theorem 1. Under the left and right subgroup indistinguishability (described in
Sect. 3), the ABE scheme described in Sect. 6.1 is adaptively secure (in the sense
of Definition 2.1). More precisely, for any adversary A that makes at most q key
queries against the ABE scheme, there exist adversaries B1,B2,B3 such that:

AdvabeA (λ) ≤ AdvlsB1
(λ) + q · AdvrsB2

(λ) + q · AdvrsB3
(λ)

and

max{Time(B1),Time(B2),Time(B3)} ≈ Time(A) + q · poly(λ, n)

where poly(λ, n) is independent of Time(A).

The proof follows via a series of games, analogous to that in [10,21,30,31], and
outlined in Fig. 3. We first define two auxiliary algorithms and then the semi-
functional distributions, upon which we can describe the games.

Auxiliary Algorithms. We consider the following algorithms:

Ênc(pp, x,m;msk, t): On input x ∈ X , m ∈ GT , and t := (T0, T1, . . . , Tn) ∈
G

n+1, output

ctx := (T0, sE(x, (T1, . . . , Tn)), e(T0,msk) · m) .

K̂eyGen(pp,msk′, y; t): On input msk′ ∈ H, y ∈ Y, and t := (T0, T1, . . . , Tn) ∈
H

n+1, output

sky :=
(

T0, kE(y,msk′) · rE(y, (T1, . . . , Tn))
)
.

In all the proofs and figures that follow, we denote sE(x, (T1, . . . , Tn)) by sE(x, t)
for notational convenience, and we define rE(y, t) analogously.

616 J. Chen et al.

Auxiliary Distributions.

Semi-functional Master Secret Key.

m̂sk := msk · (h∗)α,

where α ←r Zp .

Semi-functional Ciphertext.

Ênc(pp, x,m;msk, g · ĝ),

where g ← SampG(pp) and ĝ ← ŜampG(pp, sp) .

Pseudo-normal Secret Key.

K̂eyGen(pp,msk, y; h · ĥ),

where fresh h ← SampH(pp) and ĥ ← ŜampH(pp, sp) are chosen for each secret
key.

Pseudo-SF Secret Key.

K̂eyGen(pp, m̂sk , y;h · ĥ),

where fresh h ← SampH(pp) and ĥ ← ŜampH(pp, sp) are chosen for each secret
key.

Semi-functional Secret Key.

K̂eyGen(pp, m̂sk, y; h),

where a fresh h ← SampH(pp) is chosen for each secret key. We note that the
semi-functional key generation algorithm is identical to the normal key genera-
tion except that it replaces msk with m̂sk as input.

Game Sequence. We present a series of games. We write Advxxx(λ) to denote
the advantage of A in Gamexxx.

– Game0: is the real security game (c.f. Sect. 2.1).
– Game1: is the same as Game0 except that the challenge ciphertext is semi-

functional.
– Game2,i,1 for i from 1 to q, Game2,i,1 is the same as Game1 except that the

first i − 1 keys are semi-functional, the last q − i keys are normal while the
i’th key is pseudo-normal.

Improved Dual System ABE in Prime-Order Groups 617

– Game2,i,2 for i from 1 to q, Game2,i,2 is the same as Game1 except that the
first i − 1 keys are semi-functional, the last q − i keys are normal while the
i’th key is pseudo-SF.

– Game2,i,3 for i from 1 to q, Game2,i,3 is the same as Game1 except that the
first i keys are semi-functional, the last q − i keys are normal.

– Game3: is the same as Game2,q,3, except that the challenge ciphertext is a
semi-functional encryption of a random message in GT .

In Game3, the view of the adversary is statistically independent of the challenge
bit b. Hence, Adv3(λ) = 0. We complete the proof by establishing the following
sequence of lemmas. We omit the proofs of lemmas 5, 6, 8, 9 as they are the
same as those of lemmas 1, 2, 5, 6 in [10, Section 4].

Lemma 5 (Normal to SF Ciphertext: Game0 to Game1). For any adver-
sary A that makes at most q key queries, there exists an adversary B1 such
that

|Adv0(λ) − Adv1(λ)| ≤ AdvlsB1
(λ)

and Time(B1) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A).

Lemma 6 (Normal to Pseudo-Normal Keys: Game2,i−1,3 to Game2,i,1).
For i = 1, . . . , q, for any adversary A that makes at most q key queries, there
exists an adversary B2 such that

|Adv2,i−1,3(λ) − Adv2,i,1(λ)| ≤ AdvrsB2
(λ)

and Time(B2) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A). (We note that Game2,0,3 is identical to Game1.)

Lemma 7 (Pseudo-Normal to Pseudo-SF Keys: Game2,i,1 to Game2,i,2).
For i = 1, . . . , q, we have

|Adv2,i,1(λ) − Adv2,i,2(λ)| = 0.

Proof. Observe that the only difference between Game2,i,1 and Game2,i,2 lies in
that we replace msk in Game2,i,1 with m̂sk in Game2,i,2 as input for the i’th secret
key query, where msk ←r H, α ←r Zp and m̂sk := msk · (h∗)α. Thus, it suffices
to establish the following:

Claim. or all α, all x ∈ X and y ∈ Y, where P(x, y) = 0, the following
distributions are identically distributed:

{pp,msk, (h∗)α, Ênc(pp, x,mβ ;msk,g · ĝ), K̂eyGen(pp, msk , y;h · ĥ)} and

{pp,msk, (h∗)α, Ênc(pp, x,mβ ;msk,g · ĝ), K̂eyGen(pp, msk · (h∗)α , y;h · ĥ)}.

618 J. Chen et al.

We defer the proof of the claim for now, and first explain how the lemma follows
from the claim. Given (pp,msk, (h∗)α), we can output mpk := (pp, μ(msk)) and
generate the first i−1 semi-functional secret keys, and the remaining q−i normal
secret keys using

K̂eyGen(pp,msk · (h∗)α, y;SampH(pp)) and K̂eyGen(pp,msk, y;SampH(pp))

respectively.
This would in turn imply that Game2,i,1 and Game2,i,2 are statistically indis-

tinguishable. We note that this holds even if the adversary chooses y adaptively
after seeing the challenge ciphertext ctx∗ , or if the challenge x∗ is chosen after
the adversary sees sky.
�
Proof (of Claim). By linearity, we have:

Ênc(pp, x,mβ ;msk,g · ĝ) = Ênc(pp, x,mβ ;msk,g) · Ênc(pp, x, 1;msk, ĝ)

K̂eyGen(pp,msk, y;h · ĥ) = K̂eyGen(pp,msk, y;h) · K̂eyGen(pp, 1, y; ĥ)

K̂eyGen(pp,msk · (h∗)α, y;h · ĥ) = K̂eyGen(pp,msk, y;h) · K̂eyGen(pp, (h∗)α, y; ĥ)

Therefore, it suffices to show that:

{pp,msk, (h∗)α, Ênc(pp, x, 1;msk, ĝ), K̂eyGen(pp, 1 , y; ĥ)} and

{pp,msk, (h∗)α, Ênc(pp, x, 1;msk, ĝ), K̂eyGen(pp, (h∗)α , y; ĥ)}

are identically distributed.

By parameter-hiding, we may replace (pp, h∗, ĝ, ĥ) with

(pp, h∗, ĝ · ĝ′, ĥ · ĥ′
), which means it suffices to show that:

{pp,msk, (h∗)α, Ênc(pp, x, 1;msk, ĝ · ĝ′), K̂eyGen(pp, 1 , y; ĥ · ĥ′
)} and

{pp,msk, (h∗)α, Ênc(pp, x, 1;msk, ĝ · ĝ′), K̂eyGen(pp, (h∗)α , y; ĥ · ĥ′
)}

are identically distributed. At this point, we expand the expressions for Ênc and
K̂eyGen:

Ênc(pp, x, 1;msk, ĝ · ĝ′) = (ĝ0, sE(x, ĝ) · sE(x, ĝ′), e(ĝ0,msk))

= (ĝ0, sE(x, ĝ) · ĝ
sE(x,u)
0 , e(ĝ0,msk))

where u denotes the vector u := (u1, . . . , un) and thus sE(x, ĝ′) = sE(x, ĝu0) =
ĝ
sE(x,u)
0 ;

K̂eyGen(pp, 1, y; ĥ · ĥ′
) = (ĥ0, rE(y, ĥ) · ĥ

rE(y,u)
0)

K̂eyGen(pp, (h∗)α, y; ĥ · ĥ′
) = (ĥ0, kE(y, (h∗)α) · rE(y, ĥ) · ĥ

rE(y,u)
0)

Improved Dual System ABE in Prime-Order Groups 619

Since h∗ lies in the group generated by ĥ0, we have kE(y, (h∗)α) = kE(y, (h0)α′
) =

ĥ
kE(y,α′)
0 for some α′ ∈ Zp; the claim then follows readily from α′-privacy, that

is, rE(y,u) and kE(y, α′) + rE(y,u) are identically distributed.
�
Lemma 8 (Pseudo-SF to SF Keys: Game2,i,2 to Game2,i,3). For i =
1, . . . , q, for any adversary A that makes at most q key queries, there exists
an adversary B3 such that

|Adv2,i,2(λ) − Adv2,i,3(λ)| ≤ AdvrsB3
(λ)

and Time(B3) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A).

Lemma 9 (Final Transition: Game2,q,3 to Game3). For any adversary A,
we have

|Adv2,q,3(λ) − Adv3(λ)| = 0.

7 Extension to Weakly Attribute-Hiding

We present an extension of our framework to weakly attribute-hiding predicate
encryption [6,19]. A predicate encryption scheme has the same syntax as an ABE
in Sect. 2.1 except the attribute x on the ciphertext is not public; for security,
we require in addition that x remains hidden from the adversary.

7.1 Security Definition

For a stateful adversary A, we define the advantage function

AdvpeA (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′ :

(mpk,msk) ← Setup(1λ,X ,Y,M);

(x∗
0, x

∗
1,m0,m1) ← AKeyGen(msk,·)(mpk);

b ←r {0, 1}; ctx∗
b

← Enc(mpk, x∗
b ,mb);

b′ ← AKeyGen(msk,·)(ctx∗
b
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies
P(x∗

0, y) = P(x∗
1, y) = 0 (that is, sky does not decrypt the challenge ciphertext).

A predicate encryption scheme is adaptively secure and weakly attribute-hiding
if for all PPT adversaries A, the advantage AdvpeA (λ) is a negligible function in
λ.4

4 In a fully attribute-hiding scheme, the adversary is also allowed key queries y for
which P(x∗

0, y) = P(x∗
1, y) = 1, in which case the challenge messages m0, m1 must be

equal.

620 J. Chen et al.

7.2 Attribute-Hiding Encodings

We say that a Zp-bilinear predicate encoding (c.f. Section 5) for P : X × Y →
{0, 1} is attribute-hiding if it satisfies the following additional properties:

(x-oblivious α-reconstruction.) sD(x, y, ·) and rD(x, y, ·) are independent of
x.

(attribute-hiding.) For all (x, y) ∈ X ×Y such that P(x, y) = 0, the joint dis-
tribution of {sE(x,w), rE(y,w)} is uniformly random. That is, the following
distributions are identically distributed:

{
x, y, sE(x,w), rE(y,w)

}
and

{
x, y,v

}

where the randomness is taken over w ←r W and v ←r Z
|sE(·)|+|rE(·)|
p .

7.3 Attribute-Hiding Dual System Groups

Recall from the introduction in Sect. 1.1 that to realize weakly attribute-hiding
predicate encryption, we will use the fact that for any vector c ∈ Z

k+1
p outside the

span of A, the vector W�c ∈ Z
k+1
p is uniformly random given W�A ∈ Z

(k+1)×k
p ,

provided WB remains hidden. We can then use W�c to completely blind the
attribute in the challenge ciphertext. We also need to make sure that the semi-
functional secret keys do not leak any additional information about WB. The
former is captured by G-uniformity, and the latter by H-hiding. In particular, the
secret keys in the predicate encryption scheme satisfy the following properties:

– the distribution of normal secret keys is completely determined given
B,W1B, . . . ,WnB and leaks no additional information about W1, . . . ,Wn;

– the distribution of semi-functional secret keys is completely determined given
A,W�

1A, . . . ,W�
nA and leaks no additional information about W1, . . . ,Wn.

Additional properties. We assume that pp in dual system groups has a ppG-
component which is sufficient to run SampG. We then require dual system groups
to satisfy the following additional properties.

(H-hiding) There is an (inefficient) randomized procedure SampH∗ that given
ppG and h∗, outputs a distribution identical to that of

h · (h∗)(0,v)

where h ← SampH(pp), v ←r Z
n
p .

(G-uniformity) The following distributions are identically distributed
{
ppG, h∗, g · ĝ

}
and

{
ppG, h∗, g′

}

where (pp, sp) ← SampP(1λ, 1n), g = (g0, . . .) ← SampG(pp), ĝ = (ĝ0, . . .) ←
ŜampG(pp, sp), g′ ←r {g0ĝ0} × G

n.

Improved Dual System ABE in Prime-Order Groups 621

In the full version of this paper, we show that our instantiations satisfy the
additional attribute-hiding requirements when ppG is defined to be:

ppG := ((p, G, H, GT , e); [A]1 , [W�
1A]1 , . . . , [W�

nA]1 , [B]2) .

7.4 Weakly Attribute-Hiding PE

Starting from an attribute-hiding encoding and an attribute-hiding dual system
group, we can construct a predicate encryption scheme as described in Sect. 6.1,
with the following modification: we put ppG instead of pp in mpk (which suffices
for SampG and Enc). We show that the ensuing scheme is weakly attribute-hiding:

Theorem 2. Under the left and right subgroup indistinguishability (described in
Sect. 3), the predicate encryption scheme described above is adaptively secure and
weakly attribute-hiding (in the sense of Definition 7.1). More precisely, for any
adversary A that makes at most q key queries against the predicate encryption
scheme, there exist adversaries B1,B2,B3 such that:

AdvpeA (λ) ≤ AdvlsB1
(λ) + q · AdvrsB2

(λ) + q · AdvrsB3
(λ)

and

max{Time(B1),Time(B2),Time(B3)} ≈ Time(A) + q · poly(λ, n)

where poly(λ, n) is independent of Time(A).

The proof follows via a series of games, outlined in Fig. 4.

Auxiliary Distributions. The auxiliary algorithms and distributions are the
same as in Sect. 6.2 with the following modifications: (1) pseudo-SF and semi-
functional secret keys have additional h∗-components, (2) Ênc and K̂eyGen get
as input ppG instead of pp (neither algorithm needs to run SampH).

Pseudo-SF Secret Key.

K̂eyGen(ppG, m̂sk , y; h · ĥ · (h∗)(0,v)),

where fresh h ← SampH(pp), ĥ ← ŜampH(pp, sp), and v ←r Z
n
p are chosen for

each secret key.

Semi-functional Secret Key.

K̂eyGen(ppG, m̂sk, y; h · (h∗)(0,v)),

where a fresh h ← SampH(pp) and v ←r Z
n
p are chosen for each secret key.

622 J. Chen et al.

game ciphertext (C0,C1, C
′) secret key (K0,K1) justification

0 (1,1, 1) (1, (h∗)kE(y,0) · 1) 1 = (h∗)kE(y,0)

1 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (1, (h∗)kE(y,0) · 1) left subgroup ind

2.i.1 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (ĥ0 , (h∗)kE(y,0)· rE(y, ĥ)) right subgroup ind

2.i.2 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (ĥ0, (h∗)kE(y,α)+rE(y,vi) · rE(y, ĥ)) AH encoding

2.i.3 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (1 , (h∗)kE(y,α)+rE(y,vi) · 1) right subgroup ind

3 (ĝ0, sE(x, ĝ), random) (1, (h∗)kE(y,α)+rE(y,vi) · 1)

4 (ĝ0, random , random) (1, (h∗)kE(y,α)+rE(y,vi) · 1) AH encoding

H-hiding

G-uniformity

Fig. 4. Sequence of games in the “semi-functional” space for weakly attribute-hiding
PE. We omitted the normal components: those sampled using SampG, SampH, and we
omitted e(g0,msk) · m in C′ and kE(y,msk) in sky. We drew a box to highlight the
differences between each game and the preceding one, and games 2.i.x refer to the
i’th secret key. The semi-functional components of the keys transition from (h∗)kE(y,0)

to (h∗)kE(y,α)+rE(y,vi), with a fresh vi ←r Z
n
p for the i’th key. In the penultimate

transition, we use the fact that e(ĝ0,msk) is statistically random given msk · (h∗)α.
In the final transition, we use the fact that C1 (including normal components) is
statistically random.

Game Sequence. We proceed exactly as in Sect. 6.2 with the same auxiliary
algorithms but with the following modifications: (1) the distributions of pseudo-
SF and semi-functional secret keys have additional h∗-components, (2) the chal-
lenge ciphertext uses the attribute x∗

b as defined in the security experiment, and
(3) we append an extra game Game4 where we switch x∗

b to random at the end:

– Game0: is the real security game (c.f. Sect. 7.1).
– The descriptions of Game1, Game2,i,1, Game2,i,2, Game2,i,3, and Game3 are

identical to those in Sect. 6.2, we omit them here.
– Game4: is the same as Game3, except we replace x∗

b in the challenge ciphertext
with a random attribute x∗ ←r X .

In Game4, the view of the adversary is statistically independent of the challenge
bit b. Hence, Adv4(λ) = 0. We defer the proofs to the full version of this paper.

Acknowledgments. We thank Eike Kiltz and Jiaxin Pan for insightful discussions,
and the anonymous reviewers for helpful feedback on the write-up.

Improved Dual System ABE in Prime-Order Groups 623

References

1. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

3. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

6. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007), Also Cryptology ePrint Archive, Report 2006/287

7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

8. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

9. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

10. Chen, J., Wee, H.: Dual system groups and its applications - compact HIBE and
more. IACR Cryptology ePrint Archive, Report 2014/265 (2014), Preliminary ver-
sion in [9]

11. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via
asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol.
7708, pp. 122–140. Springer, Heidelberg (2013)

12. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, p. 360. Springer,
Heidelberg (2001)

13. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

14. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

16. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013)

624 J. Chen et al.

17. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014)

18. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

19. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

20. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

21. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

22. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

23. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol.
5209, pp. 57–74. Springer, Heidelberg (2008)

24. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

25. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

26. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011),
Also, Cryptology ePrint Archive, Report 2011/648

27. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

28. Shamir, A.: Identity-Based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

29. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: Abdalla, M., De Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Heidelberg (2014)

30. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

31. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

Resistant Protocols

Resisting Randomness Subversion:
Fast Deterministic and Hedged Public-Key

Encryption in the Standard Model

Mihir Bellare1(B) and Viet Tung Hoang2,3

1 Department of Computer Science and Engineering,
University of California San Diego, San Diego, USA

mihir@eng.ucsd.edu
2 Department of Computer Science, Georgetown University,

Washington, DC, USA
3 Department of Computer Science, University of Maryland,

College Park, USA

Abstract. This paper provides the first efficient, standard-model, fully-
secure schemes for some related and challenging forms of public-key
encryption (PKE), namely deterministic and hedged PKE. These forms
of PKE defend against subversion of random number generators, an end
given new urgency by recent revelations on the nature and extent of such
subversion.We resolve the (recognized) technical challenges in reaching
these goals via a new paradigm that combines UCEs (universal compu-
tational extractors) with LTDFs (lossy trapdoor functions). Crucially,
we rely only on a weak form of UCE, namely security for statistically
(rather than computationally) unpredictable sources. We then define and
achieve unique-ciphertext PKE as a way to defend against implementa-
tion subversion via algorithm-substitution attacks.

1 Introduction

Recent revelations about the prevalence of mass-surveillance and subversion raise
new challenges for cryptography. This paper is concerned with subversion of
public-key encryption (PKE). We first consider randomness-subversion attacks,
namely ones that undermine randomness-generation processes. Forms of PKE
resisting these have in fact already been defined, namely deterministic public-key
encryption (D-PKE) [3] and hedged public-key encryption (H-PKE) [4]. How-
ever, good schemes —we mean efficient ones providing full security in the stan-
dard model— are not only lacking but a recognized challenge [53]. With the new
impetus and urgency arising from the subversion perspective, we revisit these
goals to provide such schemes. We achieve our ends via a new PKE paradigm in
which universal computational extractors (UCEs) [8] —of the weaker ilk requir-
ing only statistical rather than computational unpredictability— are combined
with lossy trapdoor functions (LTDFs) [48].

We then turn to defending against subversion of encryption implementa-
tions via algorithm-substitution attacks [12,56]. Here we follow [12] to define the
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 627–656, 2015.
DOI: 10.1007/978-3-662-46803-6 21

628 M. Bellare and V.T. Hoang

new goal of unique ciphertext public-key encryption (U-PKE) and then reach it
generically and efficiently from D-PKE.

Deterministic PKE. Technically, conceptually and historically, D-PKE is the
core goal in this domain, and we begin there. The encryption algorithm of a
D-PKE scheme takes public encryption key ek and message m to deterministi-
cally return a ciphertext c. We use the IND formalization of [6] which they show
equivalent to the PRIV formalization of [3]. These formalizations capture the
best possible privacy, namely semantic security for unpredictable messages that
do not depend on the public key.

The core IND requirement asks for privacy when messages are individually
unpredictable but may be arbitrarily correlated. We call this full IND security
for emphasis. Full security is important in practice. For example, I might upload
an encrypted file, then make a small edit to the file, re-encrypt and re-upload,
so that the messages underlying the successive ciphertexts are very similar. It is
thus the desired goal.

The EwH —encrypt with hash— D-PKE scheme of [3] encrypts message m
under a (any) randomized IND-CPA scheme RE with the coins set to a hash of
m. When the hash function is a random oracle, they showed EwH achieves full
IND security. Achieving full IND security in the standard model however seemed
out of reach. Many standard-model D-PKE schemes, using sophisticated tech-
niques [6,11,17,19,30,33,49], have been proposed, but the security they achieve
is not full. They only achieve security for block sources, where each message is
assumed unpredictable even given prior ones, which is not realistic in practice.

The elusiveness of full security in the standard model was explained by
Wichs [53], who showed that it could not be achieved under any single-stage
assumption. To achieve full security one thus needs a multi-stage assumption.
However most assumptions are single stage and it was not immediately clear
what would even be a candidate for a suitable multi-stage assumption.

Such a candidate emerged with the UCE class of assumptions of security for
hash functions of BHK1 [8]. The latter showed that the RO in EwH could be
securely instantiated with a function family H that is UCE[Scup] —UCE-secure
for computationally unpredictable sources— to yield a standard model, fully
IND secure D-PKE scheme. Unfortunately, soon after, Brzuska, Farshim and
Mittelbach (BFM) [21] showed that UCE[Scup]-security is not achievable if indis-
tinguishability obfuscation (iO) [2,34,35] is possible. BFM [21] and BHK1 [8]
independently proposed to instead use UCE[Ssup]— UCE-security for statisti-
cally unpredictable sources. BFM [21] give some evidence that their attacks will
not extend to UCE[Ssup] and that this assumption is weaker.

This raises several questions. Can one show that the scheme EwH is secure
under UCE[Ssup]? If not, can one provide a new, different D-PKE scheme that
achieves full IND-security under UCE[Ssup]?

Results for D-PKE. Our first result is negative. We show that if iO is possible
then the RO in EwH is not universally instantiable. In more detail, given any
family of functions H —in particular a UCE[Ssup] one— we build a (pathological
and H-dependent) randomized PKE scheme RE such that (1) RE is IND-CPA

Resisting Randomness Subversion 629

secure, but (2) An attack shows that the D-PKE scheme EwH[H,RE] given by
the EwH transform is not IND-secure. The starting point is ideas of BFM [21],
but several new ideas are needed, including several applications of a variable-
output-length PRF to allocate randomness for the iO and a base PKE scheme
in such a way that both (1) and (2) are possible. We note that the same negative
result was obtained independently and concurrently by [22]. A general framework
to obtain RO un-instantiability results via iO is given in [38] but it applies to
single-stage games and thus doesn’t yield a result for D-PKE.

Let H be a UCE[Ssup] function family. Then our negative result rules out
showing an analogue of BHK1 [8], namely that EwH[H,RE] is fully IND secure
for any IND-CPA RE. But there is a loophole, namely that the negative result
does not preclude showing this for a particular choice of RE. We exploit this
loophole to arrive at the desired goal of a fully IND secure D-PKE scheme under
UCE[Ssup], as follows. We take the ROM BR93 PKE scheme [13], instantiate its
trapdoor function with a lossy trapdoor function (LTDF) [32,48], and instantiate
its RO with H, to get a standard-model PKE scheme RE. Next, we take the
D-PKE scheme EwH[H,RE], which has two uses of H, under two independent
keys. Our D-PKE scheme DE1 is obtained by implementing these two uses of H
with a single key. We prove that DE1 is fully IND secure assuming the LTDF is
secure and H is UCE[Ssup]. We remark that using a single H key is important to
prove security under UCE[Ssup], not just an efficiency optimization.

The connection of LTDFs to D-PKE was first made by Boldyreva, Fehr and
O’Neill (BFO) [17]. Their LTDF-based D-PKE schemes however only achieve
security for block sources, not full IND security. The block source restriction
seems quite inherent in their methods, and indeed due to Wichs [53] we do not
expect to achieve fully IND secure D-PKE using LTDFs alone. Our approach
combines LTDFs with UCE[Ssup] to surmount this obstacle.

DE1 is the first D-PKE scheme that is fully IND secure in the standard model.
Beyond that, however, it has the following important practical attributes: it is
competitive on short messages, very fast on long messages, and supports variable-
length messages directly. These practical attributes are a first for standard-model
D-PKE schemes.

LTDFs and UCE[Ssup] are a productive and (in retrospect) natural match.
Intuitively, LTDFs allow us to move to a game with information-theoretic guar-
antees, at which point it becomes possible to exploit UCE under statistical unpre-
dictability. We view DE1 as a relatively simple illustration of the power of the
UCE+LTDF method. H-PKE brings new challenges, which we surmount via
non-trivial extensions of the basic method. We believe the UCE+LTDF method
will have applications beyond this as well.

Hedged PKE. The encryption algorithm of a H-PKE scheme takes public
encryption key ek, message m and randomness r to deterministically return
a ciphertext c. The H-IND requirement of BBNRSS [4] has two parts: (1) stan-
dard IND-CPA security if r is good, meaning uniform and independent across
encryptions, and (2) semantic security of m if the pair (m, r) is unpredictable

630 M. Bellare and V.T. Hoang

and does not depend on the public key. This second requirement is formalized
as indistinguishability under chosen-distribution attack (IND-CDA) [4].

H-IND-secure PKE aims to provide the best possible privacy in the face of
untrusted randomness. If the randomness is good, it does as well as standard
IND-CPA encryption. But, whereas schemes providing only IND-CPA can fail
spectacularly under poor randomness [4,20,46], H-IND PKE will not. It will
compensate for poor randomness by also exploiting any available entropy in the
message, protecting the latter as long as the message and randomness together
are unpredictable. This is as good as it can get, since if the message-randomness
pair is predictable, trial re-encryption on candidate pairs will recover the message
underlying a target ciphertext. IND-CDA is an extension of IND that coincides
with the latter if the randomness has no entropy at all.

In practice the most desirable form of IND-CDA is, again, full, meaning
privacy when message-randomness pairs, although individually unpredictable,
may be arbitrarily correlated. By full H-IND, we mean IND-CPA plus full
IND-CDA. In the ROM, fully H-IND PKE is achieved by an extension of EwH
called REwH that encrypts m under an IND-CPA scheme with the coins set to
the hash of m ‖ r [4]. In the standard model, things are more difficult. Provid-
ing a fully IND-CDA PKE scheme is harder than providing a fully IND D-PKE
scheme because the unpredictability pertains to (m, r) not just m and also, more
importantly, because IND-CDA is formalized in [4] as an adaptive requirement.
Additionally, while IND-CPA is easy in isolation, it is not in combination with
IND-CDA. The reason is subtle, namely that IND-CDA breaks when m depends
on the public key, but IND-CPA must remain secure in this case. This butting
of heads of the IND-CPA and IND-CDA conditions doubles the challenge of
achieving fully H-IND PKE compared to fully IND D-PKE.

These technical difficulties are reflected in the landscape of standard-model
schemes, where fully H-IND PKE has not been achieved under any assump-
tion. BBNRSS [4] build standard-model H-IND PKE schemes by composition of
standard-model D-PKE and IND-CPA schemes, and also directly via anonymous
LTDFs, but these schemes achieve IND-CDA only for block sources. (The latter
now means that message-randomness pairs are assumed to be unpredictable
even given prior ones.) It is instructive that full H-IND PKE has not even
been achieved under UCE[Scup]. To elaborate, recall that BHK1 [8] showed that
UCE[Scup]-instantiating the RO in EwH results in a fully IND secure standard-
model D-PKE scheme. We can correspondingly UCE[Scup]-instantiate the RO
in REwH. But, even if the resulting scheme can be shown fully IND-CDA, there
seems no reason it is IND-CPA. The reason is the difficulty alluded to above.
Namely, a UCE hash function may not provide security on messages that are a
function of the hashing key, but the latter is part of the public key and IND-CPA
requires security for messages depending on the public key.

But the bar for us is even higher: due to the BFM attacks [21] on UCE[Scup],
we want to use the weaker UCE[Ssup] assumption, just as we did for DE1. We
thus face at least two difficulties. The first is to achieve full IND-CDA under
UCE[Ssup]. Here the main challenge is handling adaptivity. But beyond that

Resisting Randomness Subversion 631

the fundamental above-mentioned difficulty of achieving IND-CPA in the same
scheme remains, because no form of UCE guarantees security for messages that
depend on the hashing key.

Results for H-PKE. We surmount the technical difficulties discussed above to
provide the first standard-model, fully H-IND PKE schemes. We specify three
schemes, HE1,HE2 and HE3. All efficiently achieve our security goals, the second
and third handle variable-length messages, and the third further adds better
concrete security.

Recall that we obtained DE1 as EwH[H,BR93[LT,H]], where H is UCE[Ssup]
and LT is a LTDF. A natural idea is to similarly get H-PKE as REwH[H,BR93[LT,
H]]. (In both cases we use one hash key rather than two.) We are able to show
this achieves full IND-CDA. This is significant since handling adaptivity required
anonymous LTDFs in [4] which we do not need. But we then hit the problem
above, namely UCE[Ssup] security of H may not be enough to provide IND-CPA.
We resolve this by building a particular, suitable UCE[Ssup] family H. We first
build a particular family U of AU (almost universal) hash functions and then
obtain H by applying the AU-then-Hash transform of BHK2 [9] to a fixed-input-
length UCE[Ssup] family H and our U. We refer to the resulting PKE scheme as
HE1. We are able to show that it is full IND-CDA as well as IND-CPA assuming
UCE[Ssup] security of H and security of the LTDF.

This achieves, for the first time, the security goal of fully H-IND PKE in the
standard model, which we consider already significant. But in terms of practi-
cality, HE1 is not ideal because it can only handle fixed-length messages. HE2
efficiently encrypts variable and arbitrary length messages while retaining full
H-IND security. It uses a variable-output-length PRF in addition to the primi-
tives used by HE1. Finally, HE3 exploits some combinatorial techniques to obtain
better security bounds, as a result of which it offers security for lower values of
the message min-entropy than the other schemes.

Speed. Our D-PKE and H-PKE schemes are the first to achieve full security in
the standard model, which we believe is a significant theoretical contribution.
However, beyond that, they have important practical attributes, expanded on
below and in Section 5.

It is well known that asymmetric primitives are orders of magnitude less effi-
cient than symmetric ones. Central to making standard IND-CPA encryption
efficient is hybrid encryption as represented by the KEM-DEM paradigm [25].
Encryption generates a random asymmetrically-protected per-message symmet-
ric key and then symmetrically encrypts the message under the latter, leading to
cheap encryption of long messages. But for standard model D-PKE and H-PKE
the hybrid encryption paradigm breaks down, because, with the constraint of
being deterministic or not trusting the randomness, it is not clear how to even
pick the per-message key. This difficulty is recognized and seems quite fundamen-
tal and hard to bypass. As a result, prior standard-model D-PKE and H-PKE
schemes fix the message length and rely only on asymmetric operations. Their
cost in asymmetric operations becomes exorbitant on long messages and they
also cannot encrypt variable-length messages.

632 M. Bellare and V.T. Hoang

Our methods break these efficiency bottlenecks to recover hybrid-encryption
like performance. Our DE1,HE2 and HE3 schemes handle messages of variable
and arbitrary length, and the asymmetric cost is fixed independent of the mes-
sage length, so that we pay only in hashing as the message length grows. Placing
us in a particularly good position to exploit this is the speed of UCE[Ssup] func-
tions. Direct constructions based on HMAC-SHA-256 [8,45] are already efficient,
but in fact still more efficient and even parallelizable constructions are given in
BHK2 [9], along with software implementations and cost comparisons. Mean-
while LTDFs can be efficiently instantiated in a variety of ways [32,40,43,48],
making the asymmetric component competitive. This leads overall to perfor-
mance comparable to existing IND-CPA schemes while providing protection
against randomness subversion.

In practice concrete security is important to know how to set parameters.
Good bounds are important so that one may use smaller parameters. (The cost
of the asymmetric operations is usually cubic in the key length so cutting the
latter by one-half yields a factor eight speedup.) For this reason we not only
state in our theorems the concrete security bounds of the reductions but also
try to obtain good ones.

Unique-Ciphertext PKE. In an algorithm-substitution attack (ASA) [12,56],
the prescribed encryption algorithm is replaced with a malicious one that may
attempt to leak information about the message to “big brother” based on a
shared key. BPR [12] formalize the attacker goal in an ASA as compromising
privacy without detection. BPR [12] and ACMPS [1] indicate that random-
ized encryption will be subject to successful attack. In the symmetric setting,
BPR [12] show that ASAs can be protected against by a form of deterministic
encryption they call unique-ciphertext symmetric encryption.

We analogously define unique-ciphertext PKE. U-PKE requires that for every
key pair (ek,dk) and message m, there is at most one ciphertext c that decrypts
to m under dk. A U-PKE scheme is thus deterministic, but not every D-PKE
scheme is U-PKE. For example, appending to a D-PKE ciphertext a zero bit
ignored by decryption leaves D-PKE intact but violates U-PKE. In Section 6 we
show however how to achieve U-PKE in a simple and generic way from D-PKE.
Combining this with our efficient D-PKE scheme above yields efficient U-PKE,
allowing us to better defend against ASAs.

Discussion and Related Work. In a world of subversion, there are no
panaceas. As with BPR [12], our goals are deliberately restricted in scope. We
aim to provide better (not perfect) security in the face of some (not all) subver-
sion threats. Thus, we restrict attention to randomness-subversion attacks and
algorithm-substitution attacks. We assume that key-generation, being one-time,
can leverage good randomness.

We might view IND-CPA as the optimistic view (the randomness is excellent,
use it), D-PKE as the pessimistic view (the randomness may be bad so, to be
safe, ignore it) and H-IND PKE as the pragmatic view (I don’t know how good
the randomness is but I will just get the best out of it that I can). We would
expect the extent and nature of randomness subversion to vary rather than be

Resisting Randomness Subversion 633

ubiquitous and total, in part because subversion will aim to evade detection. In
this light H-IND PKE emerges as the best defense in the face of randomness
subversion.

Failures of randomness-generation processes [24,28,29,39,41,44] have in the
past been attributed to error. Now we know better, namely that some should
be attributed to subversion. This makes practical defenses more urgent and
increases the motivation for work like ours that delivers such defenses.

At SXSW 2014, Snowden said “... we know that the encryption algorithms
we are using today work ... it is the random number generators that are attacked
as opposed to the encryption algorithms themselves ... ”. We aim, in some sense,
to turn this on its head. We suggest that the encryption algorithms don’t work
because they are not robust in the face of poor randomness. We pursue practical
hedged encryption as a counter-measure.

Wedonot expect or aim tomaintain, under subversion, the high level of security
we can achieve in its absence. Security will unavoidably degrade. Our goal with
H-IND PKE is for it to degrade as little as possible rather than disappear. This
philosophy sets us apart from most of the related work on randomness subversion
we will discuss in the next paragraph, which either aims to understand under what
limitations on the class of attacks one can achieve the same security one would
under perfect randomness, or shows that such security is not possible.

Yilek [55] studies randomness-reset attacks, where the randomness is uniform
but the adversary can force its re-use across different encryptions. Paterson,
Schuldt and Sibborn [47] introduce related-randomness attacks, where encryption
is under adversary-specified functions of some initial uniform randomness, provid-
ing negative results, as well as positive results for some classes of attacks. Birrell,
Chung, Pass and Telang [15] and Hemenway and Ostrovsky [40] study the encryp-
tion of randomness-dependent messages. Austrin, Chung, Mahmoody, Pass and
Seth [1] show that encryption is insecure under even quite weak adversarial tam-
pering of randomness. Authenticated key-exchange with bad randomness is stud-
ied in [31,54]. Negative results for cryptography with imperfect randomness are
provided by [18,26,27]. Kamara and Katz [42] study symmetric encryption pro-
viding semantic security under good coins in the face of chosen-plaintext attacks
involving bad coins.

Ristenpart and Yilek [50] study the use of H-IND PKE in real systems.
Brakerski and Segev [19] study D-PKE security in the presence of auxiliary
information about messages. Raghunathan, Segev and Vadhan [49] study secu-
rity of D-PKE when the message may depend on the public key. Vergnaud and
Xiao [52] study IND-CDA when the message and randomness may depend on the
public key. In the symmetric setting, Rogaway and Shrimpton’s misuse-resistant
authenticated encryption [51] represents a form of hedging.

634 M. Bellare and V.T. Hoang

2 Preliminaries

We review basic notation and definitions including games, function families, VOL
PRFs, LTDFs and UCE.

By λ ∈ N we denote the security parameter and by 1λ its unary representa-
tion. We denote the number of coordinates of a vector x by |x|, and the length
of a string x ∈ {0, 1}∗ by |x|. Algorithms are randomized unless otherwise indi-
cated. Running time is worst case. “PT” stands for “polynomial-time,” whether
for randomized algorithms or deterministic ones. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with randomness r on inputs x1, . . . and
assigning the output to y. We let y ←$ A(x1, . . .) be the resulting of picking r
at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all
possible outputs of A when invoked with inputs x1,

We use the code based game playing framework of [14]. (See Fig. 1 for an
example.) By GA(λ) we denote the event that the execution of game G with
adversary A and security parameter λ results in output true, the game output
being what is returned by Game.

For concrete security assessments, we adopt the notation of [10]. Let the
number of queries of A to an oracle Proc be the function QProc

A that on input
λ returns the maximum number of queries that A makes to Proc when executed
with security parameter λ, the maximum over all coins and all possible replies to
queries to all oracles of A. Time assessments are simplified by the convention that
running time is that of the game rather than merely the adversary, and we let
T(GA1,A2,...) denote the function of λ that returns the maximum execution time
of game G with adversaries A1, A2, . . . and security parameter λ, the maximum
over all coins, and the time being all inclusive, meaning the time taken by game
procedures to compute replies is included.

Function Families. Our syntax for function families follows [8], in particular
allowing variable output lengths. This is important in our applications to encrypt
messages of variable length, which in turn is important in practice. A family of
functions H specifies the following. On input the unary representation 1λ of
the security parameter λ ∈ N, key generation algorithm H.Kg returns a key
hk ∈ {0, 1}H.kl(λ), where H.kl: N → N is the key length function associated
to H. The deterministic, PT evaluation algorithm H.Ev takes 1λ, key hk an
input x ∈ {0, 1}∗ with |x| ∈ H.IL(λ), and a unary encoding 1� of an output
length � ∈ H.OL(λ) to return H.Ev(1λ,hk, x, 1�) ∈ {0, 1}�. Here H.IL is the
input-length function associated to H, so that H.IL(λ) ⊆ N is the set of allowed
input lengths, and similarly H.OL is the output-length function associated to H,
so that H.OL(λ) ⊆ N is the set of allowed output lengths. The latter allows us
to cover functions of variable output length. If H has fixed input length then let
H.il denote the function such that H.IL(λ) = {H.il(λ)} for every λ ∈ N. If H has
fixed output length, define H.ol likewise.

Variable Output Length PRFs. A variable output length (VOL) PRF is a
function family F such that F.Kg returns a uniformly distributed key in {0, 1}F.kl

and AdvprfF,A(λ) = 2Pr[PRFA
F (λ)]−1 is negligible for every PT adversary A, where

Resisting Randomness Subversion 635

Game CPAA
PKE(λ)

(ek, dk) ←$ PKE.Kg(1λ)

b ←$ {0, 1}
(m0, m1, ,) ←$ A(1λ, ek)

c ←$ PKE.Enc(ek, mb)

b′ ←$ A(1λ, t, c)

Return (b = b′)

Game PRFA
F (λ)

b ←$ {0, 1} ; fk ←$ {0, 1}F.kl(λ)

b′ ←$ ARR(1λ)

Return (b = b′)

RR(x, 1�)

If b = 1 then

y ← F.Ev(1λ, fk, x, 1�)

Else y ←$ {0, 1}�

Return y

Game LossyA
LT(λ)

(ek, dk) ←$ LT.EKg(1λ)

lk ←$ LT.LKg(1λ)

b ←$ {0, 1}
If b = 1 then K ← ek

Else K ← lk

b′ ← A(1λ, K)

Return (b′ = b)

Fig. 1. Left: Game CPA defining IND-CPA security of a PKE scheme PKE. Middle:
Game PRF defining the PRF security of a variable-output-length function family F.
Right: Game Lossy defining the security of a lossy trapdoor function LT.

game PRFA
F is defined in the middle panel of Fig. 1. In this game the adversary

is given an oracle RR that either implements a random oracle or F.Ev(1λ, fk, ·, ·),
where fk ←$ {0, 1}F.kl(λ) is a random key. We assume that A doesn’t repeat a prior
RR query, and any RR query (x, 1�) must satisfy x ∈ F.IL(λ) and � ∈ F.OL(λ).
This extends [36] to VOL families. A practical construction of a VOL PRF from
a blockcipher is given in [16].

Public-Key Encryption. A PKE scheme PKE defines PT algorithms PKE.Kg,

PKE.Enc,PKE.Dec, the last deterministic. Algorithm PKE.Kg takes as input 1λ

and outputs a public encryption key ek ∈ {0, 1}PKE.ekl(λ) and a secret decryption
key dk, where PKE.ekl: N → N is the public-key length of PKE. Algorithm
PKE.Enc takes as input 1λ, ek and a message m with |m| ∈ PKE.IL(λ) to return
a ciphertext c, where PKE.IL is the input-length function associated to PKE, so
that PKE.IL(λ) ⊆ N is the set of allowed input (message) lengths. Algorithm
PKE.Dec takes 1λ,dk, c and outputs m ∈ {0, 1}∗ ∪ {⊥}. Correctness requires
that PKE.Dec(1λ,dk, c) = m for all λ ∈ N, all (ek,dk) ∈ [PKE.Kg(1λ)] all m
with |m| ∈ PKE.IL(λ) and all c ∈ [PKE.Enc(1λ, ek,m)]. Scheme PKE is IND-
CPA secure [37] if Advind-cpaPKE,A (λ) = 2[CPAA

PKE(λ)] − 1 is negligible for every PT
adversary A, where game CPA is defined in the left panel of Fig. 1. We require
that the messages m0,m1 output by A have the same length |m0| = |m1| ∈
PKE.IL(λ). Let PKE.rl: N → N denote the randomness-length function of PKE,
meaning PKE.Enc(1λ, ·, ·) draws its coins at random from {0, 1}PKE.rl(λ). We say
that PKE has input length PKE.il: N → N if PKE.IL(λ) = {PKE.il(λ)} for all λ ∈
N, and refer to this as a PKE scheme that only allows fixed length messages. Our
goal will be to allow variable and arbitrary-length messages, ideally PKE.IL(·) =
N, but at least some large subset thereof.

Lossy Trapdoor Functions. A lossy trapdoor function [48] LT specifies PT
algorithms LT.EKg, LT.LKg, LT.Ev, LT.Inv, the last two deterministic, as well as
an input length LT.il: N → N and an output length LT.ol: N → N. Key-
generation algorithm LT.EKg takes 1λ and returns an “injective” key ek and a

636 M. Bellare and V.T. Hoang

Game UCES,D
H (λ)

b ←$ {0, 1} ; hk ←$ H.Kg(1λ)

L ←$ SHash(1λ) ; b′ ←$ D(1λ, hk, L)

Return (b′ = b)

Hash(x, 1�)

If T [x, �] = ⊥ then

If b = 0 then T [x, �] ←$ {0, 1}�

Else T [x, �] ← H.Ev(1λ, hk, x, 1�)

Return T [x, �]

Game PredP
S (λ)

Q ← ∅ ; L ←$ SHash(1λ) ; Q′ ←$ P (1λ, L)

Return (Q′ ∩ Q �= ∅)

Hash(x, 1�)

If T [x, �] = ⊥ then T [x, �] ←$ {0, 1}�

Q ← Q ∪ {x} ; Return T [x, �]

Game ResetR
S (λ)

Dom ← ∅ ; L ←$ SHash(1λ) ; b ←$ {0, 1}
If b = 0 then // reset the array T

For all (x, �) ∈ Dom do

T [x, �] ←$ {0, 1}�

b′ ← RHash(1λ, L) ; Return (b′ = b)

Hash(x, 1�)

If T [x, �] = ⊥ then T [x, �] ←$ {0, 1}�

Dom ← Dom ∪ {(x, �)} ; Return T [x, �]

Fig. 2. Games UCE (top), Pred (middle), and Reset (bottom) to define UCE
security

decryption key dk. Evaluation algorithm LT.Ev takes 1λ, ek and x ∈ {0, 1}LT.il(λ)

to return an LT.ol(λ)-bit string. Inversion algorithm LT.Inv takes 1λ,dk and y ∈
{0, 1}LT.ol(λ) to return a LT.il(λ)-bit string. The correctness requirement demands
that LT.Inv(1λ,dk, LT.Ev(1λ, ek, x)) = x for every λ ∈ N, every (ek,dk) ∈
[LT.EKg(1λ)] and every x ∈ {0, 1}LT.il(λ). Algorithm LT.LKg, given 1λ, returns a
“lossy” key lk. Let τ : N → N be a function such that 2−τ(·) is negligible. We
say that LT is τ -lossy if the size of the set {LT.Ev(1λ, lk, x) | x ∈ {0, 1}LT.il(λ)} is
at most 2LT.il(λ)−τ(λ) for every λ ∈ N and every lk ∈ [LT.LKg(1λ)]. Security of an
LTDF demands two things. First, lossy and injective keys are indistinguishable.
Formally, AdvltdfLT,A(λ) = 2Pr[LossyA

LT(·)] − 1 must be negligible for every PT
adversary A, where game Lossy is defined in the right panel of Fig. 1. Second,
LTDF is τ -lossy for some τ such that 2−τ(·) is negligible. To simplify concrete
security analyses, we assume that LT.LKg’s worst-case running time is at most
that of LT.EKg.

There are by now many constructions of LTDFs known [32,40,43,48]. As an
example, RSA is shown to be lossy [43] under the Φ-hiding assumption of [23].
For a 2048-bit modulus, one may choose τ = 430 for 80-bit security.

UCE. We recall the Universal Computational Extractor (UCE) framework of
BHK1 [8]. Let H be a family of functions as defined above. Let S be an adversary
called the source and D an adversary called the distinguisher. We associate to
them and H the game UCES,D

H (λ) at the left panel of Fig. 2. The source has
access to an oracle Hash and we require that any query (x, 1�) made to this
oracle satisfy |x| ∈ H.IL(λ) and � ∈ H.OL(λ). When the challenge bit b is 1 (the
“real” case) the oracle responds via H.Ev under a key hk that is chosen by the
game and not given to the source. When b = 0 (the “random” case) it responds as
a random oracle. The source then leaks a string L to its accomplice distinguisher.

Resisting Randomness Subversion 637

The latter does get the key hk as input and must now return its guess b′ ∈ {0, 1}
for b. The game returns true iff b′ = b, and the uce-advantage of (S,D) is defined
for λ ∈ N via AdvuceH,S,D(λ) = 2Pr[UCES,D

H (λ)]−1. If S is a class (set) of sources,
we say that H is UCE[S]-secure if AdvuceH,S,D(·) is negligible for all sources S ∈ S
and all PT distinguishers D. Trivial attacks from [8] show that UCE[S]-security
is not achievable if S is the class of all PT sources. To obtain meaningful notions
of security, BHK1 [8] impose restrictions on the source. There are many ways
to do this; below we’ll focus on what they call statistically unpredictable and
reset-secure sources.

A source is unpredictable if it is hard to guess the source’s Hash queries even
given the leakage, in the random case of UCE game. Formally, let S be a source
and P an adversary called a predictor. Consider game PredP

S (λ) in the middle
panel of Fig. 2. Given the leakage, P outputs a set Q′; we require that |Q′|
is polynomially bounded. The predictor wins if this set contains a Hash-query
of the source. For λ ∈ N we let AdvpredS,P (λ) = Pr[PredP

S (λ)]. We say that S is
statistically unpredictable if AdvpredS,P (·) is negligible for all (even computationally
unbounded) predictors P . We say that H is UCE[Ssup]-secure if AdvuceH,S,D(·) is
negligible for all statistically unpredictable PT sources and all PT distinguishers.

The second restriction on sources from [8] is reset security. Let S be a source
and R an adversary called a reset adversary. The source again is executed with
its Hash being a random oracle. The reset adversary is either given access to
the same random oracle or to an independent one. The requirement is that it
should not be able to tell which. Consider game ResetR

S (λ) at the right panel
of Fig. 2; we require that R make only polynomial number of queries to Hash.
For λ ∈ N we let AdvresetS,R (λ) = 2Pr[ResetR

S (λ)] − 1. We say S is statistically
reset-secure if AdvresetS,R (·) is negligible for all reset adversaries R. We say that H
is UCE[Ssrs]-secure if AdvuceH,S,D(·) is negligible for all statistically reset-secure PT
sources and all PT distinguishers.

BHK1 [8] show that UCE[Ssrs]-security of H implies UCE[Ssup]-security of H.
BFM [21] show that if indistinguishability obfuscation for all circuits is possi-
ble then UCE[Scup] —UCE for computationally unpredictable sources— is not
achievable in the standard model. However UCE[Ssup] and UCE[Ssrs] are not sub-
ject to their attack and emerge as weaker and plausible assumptions. Moving to
the statistical versions was independently suggested by BHK1 [8] and BFM [21].
These statistical assumptions will be the basis of our constructs.

While UCE[Ssup] and UCE[Ssrs] may seem like strong assumptions, we know
that multi-stage assumptions are necessary to reach our goals [53]. There are
very few candidate multi-stage assumptions and amongst them the ones we use
are the more plausible.

UCE[Ssup] and UCE[Ssrs] families may be efficiently instantiated via HMAC-
SHA-256 [8,45] or super-efficiently via [9], which we will exploit for efficient
schemes.

638 M. Bellare and V.T. Hoang

Game INDA
DE(λ)

b ←$ {0, 1} ; (ek, dk) ←$ DE.Kg(1λ) ; (m0,m1) ←$ A1(1
λ)

For i = 1 to |m0| do c[i] ←$ DE.Enc(1λ, ek,mb[i])

b′ ←$ A2(1
λ, ek, c) ; Return (b = b′)

DE.Kg(1λ)

(ek, dk) ←$ RE.Kg(1λ) ; hk ←$ H.Kg(1λ)

Return ((ek, hk), dk)

DE.Enc(1λ, (ek, hk), m)

r ← H.Ev(1λ, hk, ek ‖ m, 1RE.rl(λ))

c ← RE.Enc(1λ, ek, m; r) ; Return c

DE.Dec(1λ, dk, c)

m ← RE.Dec(1λ, dk, c) ; Return m

Game IOA
G (λ)

(C0, C1, t) ←$ A(1λ) ; b ←$ {0, 1} ; P ←$ G.Ob(1λ, Cb)

b′ ←$ A(t, P) ; Return (b = b′)

Fig. 3. Top: Game defining IND security of D-PKE scheme DE. Middle: D-PKE
scheme DE = EwH[H,RE]. Bottom: Game defining iO security of an indistinguisha-
bility obfuscator G.

3 Efficient, Fully IND Secure D-PKE

This section begins with a negative result —that assuming iO the random oracle
(RO) in EwH is not universally instantiable— and then provides a complemen-
tary positive result —that there is a particular instantiation of the RO and
IND-CPA scheme in EwH that results in a fully IND secure D-PKE scheme.
The latter, which is the main result of this section, showcases our UCE+LTDF
method and brings a new D-PKE scheme with two attributes: (1) On the theo-
retical front, it is the first D-PKE scheme shown fully IND secure in the standard
model, and (2) On the practical front, it encrypts variable-input length messages
and achieves hybrid-encryption like efficiency on long messages.

D-PKE and EwH. We say that a PKE scheme DE is a deterministic public-key
encryption (D-PKE) [3] if the encryption algorithm DE.Enc is deterministic. We
use the IND formalization of security of BFOR [6], which they show equivalent to
the PRIV formalization of [3]. Game IND defining the IND notion is shown in the
left panel of Fig. 3. An IND adversary A = (A1, A2) is a pair of PT algorithms,
where A1 on input 1λ returns a pair of message vectors (m0,m1). We require that
(i) there be a polynomial v such that |m0| = |m1| ≤ v(λ) and |m0[i]| = |m1[i]| ∈
DE.IL(λ), for every i ≤ |m0|, and (ii) messages m0[1], . . . ,m0[|m0|] are distinct
and also messages m1[1], . . . ,m1[|m1|] are distinct. The guessing probability
GuessA(·) of A is the function that on input λ ∈ N returns the maximum, over
all b,m, i, of Pr[mb[i] = m], the probability over (m0,m1) ←$ A1(1λ). We say

Resisting Randomness Subversion 639

that A has high min-entropy if GuessA(·) is negligible. We let AdvindDE,A(λ) =
2Pr[INDA

DE(λ)] − 1 and say that DE is IND-secure if AdvindDE,A(·) is negligible for
all PT A of high min-entropy.

We stress that this definition captures full security because the messages in
the message vectors may be arbitrarily correlated. This is what is needed in
practice. In contrast, security for block sources [17] requires that each message
in each vector has high min entropy even given prior ones. This is often not true
in practice and security only for block sources is quite weak, yet prior standard-
model schemes have only been able to achieve this.

EwH [3] is a simple and natural transform that takes a family of functions
H and a randomized PKE scheme RE to return the D-PKE scheme DE =
EwH[H,RE] whose algorithms are shown in the middle panel of Fig. 3. We let
DE.IL = RE.IL. We require that RE.rl(λ) ∈ H.OL(λ) and RE.ekl(λ) + � ∈ H.IL(λ)
for all λ ∈ N and all � ∈ RE.IL(λ).

Indistinguishability Obfuscation. We recall the definition of [34], which
extends that of [2] to allow auxiliary information. We say that circuits C0 and
C1 are functionally equivalent, denoted C0 ≡ C1, if they have the same size, the
same number n of inputs, and C0(x) = C1(x) for every input x ∈ {0, 1}n. An
indistinguishability obfuscator (iO) G defines PT algorithms G.Ob,G.Ev and a
randomness length function G.rl: N → N. Algorithm G.Ob takes as input 1λ and
a circuit C, and outputs a string P using randomness of length G.rl(λ). Determin-
istic algorithm G.Ev takes as input strings P, x and returns y ∈ {0, 1}∗ ∪ {⊥}.
We require that for any circuit C, any input x for C any λ ∈ N, and any
P ∈ [G.Ob(1λ, C)], it holds that G.Ev(P, x) = C(x). An adversary A is well-
formed if Pr[C0 �≡ C1 : (C0, C1, t) ←$ A(1λ)] is negligible. We say that G is iO-
secure if AdvioG,A(λ) = 2Pr[IOA

G (λ)] − 1 is negligible for every PT well-formed
adversary A, where game IO is defined at the right panel of Fig. 3.

Implausibility of Universal Instantiation of EwH. BBO [3] showed that if
H is implemented via a RO then EwH[H,RE] is IND-secure for any IND-CPA RE.
A basic theoretical and practical question is whether the RO in this result can
be securely instantiated. The most desirable instantiation is universal, by which
we mean there is a function family H such that EwH[H,RE] is IND-secure for
any IND-CPA RE. Here we show that if iO exists then there is no such universal
instantiation. Given any function family H we build an IND-CPA PKE scheme
RE such that EwH[H,RE] is not IND-secure. We stress that this does not preclude
providing specific H,RE such that EwH[H,RE] is IND-secure, and indeed it is in
this way that we will later obtain our positive result.

Our findings strengthen, and are consistent with, prior work. BHK1 [8]
showed that a UCE[Scup] family will provide a universal instantiation of EwH,
but UCE[Scup] is ruled out under iO by BFM [21], so there is no contradiction.
However, following BFM, it remained possible that some other class of function
families might be able to universally instantiate EwH. Under iO, we rule this
out.

640 M. Bellare and V.T. Hoang

Circuit C1λ,x,y(hk)

// Input length is H.kl(λ), and output length is |x|
r ← H.Ev(1λ, hk, x, 1H.ol(λ)) ; fk ← r[1,F.kl(λ)]

u ← F.Ev(1λ, fk, 0F.il(λ), 1F.kl(λ)+λ)

If y = u then return x

Return 0|x|

RE.Enc(1λ, ek, m; r)

fk ← r[1,F.kl(λ)] ; y ← F.Ev(1λ, fk, 0F.il(λ), 1F.kl(λ)+λ)

r1 ← F.Ev(1λ, fk, 0 ‖ 1F.il(λ)−1, 1G.rl(λ)) ; r2 ← F.Ev(1λ, fk, 1F.il(λ), 1RE.rl(λ))

x ← ek ‖ m ; P ← G.Ob(1λ, C1λ,x,y; r1) ; c′ ← RE.Enc(1λ, ek, m; r2)

c ← (c′, P) ; Return c

RE.Dec(1λ, dk, c)

(c′, P) ← c ; Return RE.Dec(1λ, dk, c′)

Fig. 4. Middle, Bottom: Encryption and decryption algorithm of the counter-
example PKE scheme RE for Proposition 1. Top: Circuit constructed and obfuscated
in RE.Enc.

We let H be a function family with input length H.il and output length H.ol.
We will build the counter-example PKE scheme RE from H and the following
auxiliary primitives: an arbitrary, base IND-CPA scheme RE, a VOL PRF F and
an iO scheme G. The result is as follows.

Proposition 1. Let H be a function family with input length H.il and output
length H.ol. Let F be a VOL PRF with F.IL = F.OL = N. Assume F.kl ≤ H.ol.
Let RE be an IND-CPA PKE scheme with fixed input length RE.il and public key
length RE.pkl satisfying RE.il + RE.pkl = H.il. Let G be an iO-secure iO scheme.
Define PKE scheme RE as follows. Let RE.il = RE.il. Let RE.Kg = RE.Kg. Let
the encryption and decryption algorithms of RE be as shown in Fig. 4. Then
(1) EwH[H,RE] is not IND-secure, but (2) RE is IND-CPA secure. �

The proof of Proposition 1 is in [7]. Here we will sketch the ideas. An encryption
c = (c′, P) of a message m under RE with public key ek will have two parts. The
first, c′, is an encryption of m under RE with ek. The second, P , is an obfus-
cated circuit that will (1) help attack DE = EwH[H,RE] yet (2) not compromise
IND-CPA security of RE. The question is how to construct RE to ensure both
properties. (Ensuring either alone is trivial.)

The starting idea, inspired by BFM [21], is to have RE.Enc, given 1λ, ek,m
and coins r, create the following circuit:

C1λ,ek,m,r(hk) : If H(1λ,hk, ek‖m, 1RE.rl(λ)) = r then return m else return 0|m|.

The input to the circuit is a key hk for H, and the hardwired values 1λ, ek,m, r
are the inputs to the algorithm RE.Enc that creates the circuit. Now RE.Enc lets
P be an obfuscation of this circuit. Pretend for now that the obfuscation process

Resisting Randomness Subversion 641

DE1.Kg(1λ)

(ek, dk) ←$ LT.EKg(1λ); hk ←$ H.Kg(1λ); Return ((ek, hk), (dk, hk))

DE1.Enc(1λ, (ek, hk), m)

r ← H.Ev(1λ, hk, m, 1LT.il(λ)) ; trap ← LT.Ev(1λ, ek, r)

c ← m⊕H.Ev(1λ, hk, r, 1|m|) ; Return (trap, c)

DE1.Dec(1λ, (dk, hk), (trap, c))

r ← LT.Inv(1λ, dk, trap) ; Return c⊕H.Ev(1λ, hk, r, 1|c|)

Fig. 5. The algorithms of our DE1 D-PKE scheme

is deterministic, which of course is not true, and also that no coins are used to
create c′, which is also not true. Under these assumptions, if an attacker has an
EwH ciphertext (c′, P) = DE.Enc(1λ, (ek,hk),m), and also has the public key
(ek,hk) of DE, then it can run P on hk which, due to the structure of EwH and
the construction of C1λ,ek,m,r, returns m, breaking the IND-security of DE. But
there are a number of difficulties. One is that there seems no reason that this RE
retains IND-CPA security assuming only iO security of the obfuscation. Another
is that the obfuscation and RE are randomized, and RE has to provide coins for
both from r yet be able to create P to allow the attack when r is produced via
the hash in EwH.

We will use the VOL PRF F to allocate pseudorandom coins for the obfus-
cation process and RE. The key for F will be a prefix fk ← r[1,F.kl(λ)] of the
coins r provided to RE.Enc. Recall that in our definition of a VOL PRF, the
key generation always samples fk ←$ {0, 1}F.kl(λ), so if r is truly random then
we give F a correctly generated key. Instead of hardwiring r to the circuit, we
hardwire y ← F.Ev(1λ, fk, 0F.il(λ), 1�) for an appropriate �. We also hardwire
x = ek‖m rather than ek,m separately. Our circuit C1λ,x,y is shown in the left
panel of Fig. 4. We need (1) an attack on DE = EwH[H,RE] and (2) a proof that
RE is IND-CPA. For (1) our claim is that if C1λ,ek‖m,y is produced by RE.Enc
within DE then C1λ,ek‖m,y(hk) will return ek‖m, and thus running an obfusca-
tion P of C1λ,ek‖m,y on hk will return the same. For (2), r is truly random so
C1λ,ek‖m,y as produced during encryption is indistinguishable from C1λ,ek‖m,u

with u a random �-bit string, by PRF security of F. To use iO security, we want
that when u is random the probability that there exists a H.kl(λ)-bit z such that
C1λ,ek‖m,u(z) �= 0|ek ‖ m| is negligible. This is established via a counting argument
which relies on having set � to be large enough. See [7] for details.

The DE1 Scheme. We now provide our positive result on D-PKE, namely
an efficient, fully IND standard model scheme under UCE[Ssup]. Let H be a
UCE[Ssup] function family with H.IL(·) = H.OL(·) = N. From the above we know
that EwH[H,RE] will not be IND for all IND-CPA RE. We consider instead a
particular choice of IND-CPA RE. Recall that BR93 [13] present a simple TDF-
based PKE scheme proven IND-CPA in the ROM. We instantiate their TDF
with a LTDF and then instantiate the RO with H to get a standard-model

642 M. Bellare and V.T. Hoang

PKE scheme we denote RE = BR93[LT,H]. We now consider the standard-model
D-PKE scheme EwH[H,RE]. In this scheme, H is used twice, with two indepen-
dent keys. Our final DE1 D-PKE scheme is obtained by using the same key for
both invocations of H. The algorithms of this scheme are shown in Fig. 5. Impor-
tantly, DE1.IL(·) = H.OL(·) = N, meaning we can encrypt messages of arbitrary
and varying length. We note that using a single H key is not only an optimization
in key size but also avoids using multi-key variants of UCE [8] and is important
to prove security under UCE[Ssup]. The following says that DE1 is IND-secure.

Theorem 2. Let LT be a lossy trapdoor function and H a UCE[Ssup] function
family with H.IL(·) = H.OL(·) = N. Let DE1 be constructed as in Fig. 5. Then

Asymptotic result: DE1 is IND-secure.

Concrete result: Let A be an adversary and P a predictor. We can construct an
adversary B, a source S, and a distinguisher D such that

AdvindDE1,A(·) ≤ 2AdvltdfLT,B(·) + 2AdvuceH,S,D(·) +
3v2

2LT.il
(1)

AdvpredS,P (·) ≤ 1.5v2

2LT.il
+ qv · GuessA(·) +

qv

2τ
(2)

where q is the maximum of the size of P ’s output in the execution of PredP
S , v is

the maximum of the size of A’s message vector in the execution of INDA
DE, and

τ is the lossiness of LT. Furthermore, T(UCES,D
H) ≤ T(INDA

DE1); Q
Hash
S ≤ v;

and T(LossyB
LT) ≤ T(INDA

DE1). �

The proof is in [7]. Here we discuss some of the ideas. To construct a source S
and a distinguisher D, a naive method is to let them run A to simulate game
INDA

DE1. However this won’t produce a statistically unpredictable source. The
key idea is to let our source generate a lossy key lk. instead of an injective key
ek as in game INDA

DE1. The statistical unpredictability of S then follows from
the lossiness of LT, as represented by (2). On the other hand, game UCES,D

H for
challenge bit b = 1 no longer coincides with game INDA

DE1. Still, this gap can be
bounded by constructing B attacking LT, so that (1) holds.

In Section 5 we discuss how, under appropriate instantiations of the UCE[Ssup]
family, DE1 is extremely efficient compared to prior standard-model D-PKE
schemes.

BFOR [6] originally defined an IND adversary as a triple (A0, A1, A2), where
A0 specifies state information that is passed on to A1, A2. Results from [5] indi-
cate this is important to ensure that security in the standard model implies
security in the ROM. For notational simplicity, here we omit A0. Our construc-
tion and proof work for the original IND definition with the following modifica-
tion. One first needs to redefine GuessA as the conditional min-entropy of the
messages, given the state, and then include the state as a part of the leakage
of S.

Resisting Randomness Subversion 643

Game CDAA
HE(λ)

(ek,dk) ←$ HE.Kg(1λ) ; b ←$ {0, 1} ; , ←$ ALR
2 (1λ)

b′ ←$ A2(, , ek) ; Return (b = b′)

LR(d)
(m0,m1, r) ←$ A1(1λ, d)
For i = 1 to |r| do c[i] ← HE.Enc(1λ, ek,mb[i]; r[i])
Return c

Fig. 6. Game defining IND-CDA security of PKE scheme HE

4 Fully Secure Hedged PKE

In this section we provide the first fully H-IND PKE schemes in the standard
model. Additionally our schemes are efficient. HE1 is our base scheme encrypting
fixed-length messages; HE2 encrypts variable-length messages; HE3 has a tighter
security analysis. Our schemes provide pragmatic and effective defense against
subversion of encryption randomness.

Hedged PKE. To achieve standard IND-CPA security, PKE schemes demand
truly random coins. Many well-known PKE schemes fail spectacularly, allowing
message recovery from the ciphertext, if the latter is created with even somewhat
weak coins [4,20,46]. BBNRSS [4] introduce security under chosen-distribution
attack (IND-CDA) to provide meaningful security when bad randomness is used.
A secure hedged PKE scheme must provide IND-CPA security when the coins
are truly random, and fall back to IND-CDA security when bad coins are pro-
vided. Formally, for a PKE scheme HE, we say that HE is H-IND secure if (1) HE
is IND-CPA secure, and (2) HE is IND-CDA secure. Game CDA defining the
IND-CDA notion is given in Fig. 6. An IND-CDA adversary A = (A1, A2) is a
pair of algorithms. In the first part of the attack, A2 can adaptively query oracle
LR, each query taking a distribution-specifier string d and returning a challenge
ciphertext vector c. In this phase A2 does not get ek. Once this stage ends, it gets
ek and must then render its decision. Algorithm A1 defines a distribution over
triples (m0,m1, r) that is a function of d. We require that (i) there be a poly-
nomial v such that |m0| = |m1| = |r| ≤ v(λ), (ii) |m0[i]| = |m1[i]| ∈ HE.IL(λ)
and |r[i]| = HE.rl(λ) for every i ≤ |r|, and (iii) for each b ∈ {0, 1} the |r| pairs
(mb[i], r[i]) are distinct, where 1 ≤ i ≤ |r|. Let GuessA(·) be the function that
on input λ ∈ N returns the maximum, over all b, i,m, r, d, of Pr[(mb[i], r[i]) =
(m, r)], the probability over (m0,m1, r) ←$ A1(1λ, d). We say that A has high
min-entropy if GuessA(·) is negligible. We say that HE is IND-CDA-secure if
AdvcdaHE,A(·) = 2Pr[CDAA

HE(·)] − 1 is negligible for every PT adversary A of high
min-entropy. We stress that this captures full IND-CDA since the messages in
the message vectors may be arbitrarily correlated.

The HE1 Scheme. Recall we obtained our D-PKE scheme DE1 via a BR93-
based instantiation of EwH. In analogy it is natural to try to obtain an H-

644 M. Bellare and V.T. Hoang

Hedge[H, LT].Kg(1λ)

hk ←$ H.Kg(1λ)

(ek, dk) ←$ LT.EKg(1λ)

Return ((ek, hk), (dk, hk))

Hedge[H, LT].Enc(1λ, (ek, hk), m; r)

x ← H.Ev(1λ, hk, r ‖ m, 1LT.il(λ))

trap ← LT.Ev(1λ, ek, x)

c ← H.Ev(1λ, hk, x, 1|m|)⊕m

Return (trap, c)

Hedge[H, LT].Dec(1λ, (dk, hk), (trap, c))

x ← LT.Inv(1λ, dk, trap)

m ← H.Ev(1λ, hk, x, 1|c|)⊕c ; Return m

H.Kg(1λ)

uk ←$ U.Kg(1λ) ; hk ←$ H.Kg(λ)

hk ← (hk, uk) ; Return hk

H.Ev(1λ, hk, x, 1�)

(hk, uk) ← hk ; u ← U.Ev(1λ, uk, x)

y ← H.Ev(1λ, hk, u, 1�) ; Return y

U.Kg(1λ)

uk ←$ U.Kg(1λ)

mk ←$ {0, 1}U.ol(λ)

rk ←$ GF(2U.ol(λ))\{0U.ol(λ)}
Return (uk, rk,mk)

U.Ev(1λ, (uk, rk), x)

If |x| < U.ol(λ) then

Return mk⊕(x ‖ 10U.ol(λ)−|x|)
x1 ← x[1,U.ol(λ)]; x2 ← x[U.ol(λ)+1, |x|]
y ← U.Ev(1λ, uk, x2)⊕(x1 × rk)

Return y

Fig. 7. Top: The PKE scheme Hedge[H, LT] associated to function family H and
LTDF LT. Middle: The H = AU-then-Hash[U,H] VIL UCE[Ssup] family built from an
AU hash U and a FIL UCE[Ssup] family H. Bottom: The U = Hash-then-Mask[U]
AU family built from an AU family U. The operator × is multiplication in the finite
field GF(2U.ol(λ)) and the string 0U.ol(λ) encodes the zero element of GF(2U.ol(λ)).
HE1: Our HE1 PKE scheme is obtained from an LTDF LT, a FIL UCE[Ssup] fam-
ily H and an AU family U as HE1 = Hedge[H, LT] with H = AU-then-Hash[U,H] and
U = Hash-then-Mask[U].

IND scheme via a similar BR93-based instantiation of the REwH transform of
BBNRSS [4]. This results in the candidate scheme Hedge[H, LT], associated to a
function family H and LTDF LT, whose algorithms are shown in the left panel
of Fig. 7. Here Hedge[H, LT].IL(·) = H.OL(·), meaning we can encrypt messages
of length matching the allowed output lengths of H.

We first ask if one can show IND-CDA security of Hedge[H, LT] assuming
UCE[Ssup] security of H. This involves two new difficulties relative to Theo-
rem 2. The first, more minor, is the presence of the randomness. The second
is more major, namely that the IND-CDA notion is adaptive. To address this,
BBNRSS [4] needed quite involved techniques including anonymous LTDFs and
an adaptive LHL, and yet only achieved security for block sources, not the full
IND-CDA security that we target. However we are able to show that Hedge[H, LT]
does achieve (full) IND-CDA assuming only that LT is a (standard) LTDF and
H is UCE[Ssup].

But recall that H-IND requires also that Hedge[H, LT] is IND-CPA. But it is
quite unclear why this would be true under UCE[Ssup] security of H. The reason
is that UCE guarantees nothing for inputs depending on hk but messages in

Resisting Randomness Subversion 645

IND-CPA can depend on the public key, which contains hk. This difficulty is
quite fundamental and at first seemed impossible to circumvent within the UCE
framework. We resolve it by using a particular UCE[Ssup] family H. Let H be a
fixed input length UCE[Ssup] family. Recall that the AU-then-Hash transform of
BHK2 [10] takes an AU (almost universal) family U and H to return a variable
input length family H = AU-then-Hash[U,H] that they show is itself UCE[Ssup].
We will take an (arbitrary) AU family U and construct another, special AU
family U = Hash-then-Mask[U] via a transform called Hash-then-Mask that we
introduce. Then our UCE[Ssup] family is H = AU-then-Hash[U,H]. With this
choice we will be able to show that HE1 = Hedge[H, LT] —this is our scheme—
is IND-CPA. In conjunction with our prior claim, HE1 is then H-IND as desired.

We now detail this. We recall some definitions from BHK2 [9]. Let V be a
fixed output length (FOL) function family. Let λ,m ∈ N. Let

Coll1V(λ,m) = max {Pr[y = V.Ev(1λ, vk, x)] : |y| = V.ol(λ) and |x| ≤ m }
Coll2V(λ,m0,m1) = max {Pr[V.Ev(1λ, vk, x0) = V.Ev(1λ, vk, x1)] :

|x0| ≤ m0, |x1| ≤ m1 and x0 �= x1 }
CollV(λ,m0,m1) = max {Coll2V(λ,m0,m1), Coll1V(λ,min{m0,m1}) } .

In the first and second equations, the probability is over vk ←$ V.Kg(1λ). A
FOL family V is almost universal (AU) if for all polynomials M0,M1: N →
N the function fM0,M1 is negligible, where for λ ∈ N we let fM0,M1(λ) =
CollV(λ,M0(λ),M1(λ)).

Now let U be a (FOL) AU family having U.IL = N. We introduce a transform
called Hash-then-Mask that given U returns the family U = Hash-then-Mask[U]
defined in the right panel of Fig. 7. It has U.ol = U.ol and U.IL = N. Lemma 3
below shows that U is itself an AU family.

Lemma 3. Let U be a (FOL) AU hash of U.IL = N. Let U = Hash-then-Mask[U].
Then for any λ,m,m′ ∈ N we have (a) Coll1U(λ,m) ≤ Coll1U(λ,m)+2−U.ol(λ)

and (b) Coll2U(λ,m,m′) ≤ Coll2U(λ,m,m′) + 2/2U.ol(λ). �
The proof of Lemma 3 is in [7]. Note that BHK2 [9] provide an extremely fast con-
struction of an AU family U, running at 0.4 cycles per byte. Our Hash-then-Mask
does not degrade speed much, and thus the family U = Hash-then-Mask[U] used
in our scheme is also fast.

Now let H be a function family with FIL H.il and with H.OL = N. Let U
be a FOL AU function family with U.ol = H.il and with U.IL = H.OL = N.
The AU-then-Hash transform of BHK2 [9] takes U,H and returns the family H =
AU-then-Hash[U,H] shown in the middle panel of Fig. 7. It has H.OL = H.IL = N.
BHK2 [9] show that if H is UCE[Ssup] then so is H.

We are finally ready to define our HE1 scheme. Let H be a function family
with FIL H.il and with H.OL = N. Let U be a (FOL) AU family having U.IL = N.
Let LT be an LTDF. Let �: N → N be a polynomial. Then let HE1 = Hedge[H, LT]
with H = AU-then-Hash[U,H] and U = Hash-then-Mask[U]. A subtle point is that
we set HE1.il = �, meaning HE1 is restricted to encrypt messages of length �.

646 M. Bellare and V.T. Hoang

Why this is needed is not evident from the scheme description but will be needed
in the proof of security. We also set HE1.rl = U.ol. Theorem 4 below shows that
HE1 is H-IND secure. The concrete security statements refer to

AdvcollU (λ, p, σ)

= max
{ k∑

i=1

k′
∑

j=1

CollU(λ,mi,m
′
j) : k

}
≤ p, k′ ≤ p,

k∑

i=1

mi ≤ σ,
k′

∑

i=1

m′
i ≤ σ .

Theorem 4. Let H be a UCE[Ssup] function family with FIL H.il and with
H.OL = N. Let U be a (FOL) AU family having U.IL = N. Let LT be an LTDF.
Let �: N → N be a polynomial. Let HE1 be defined from H,U, LT, � as above.

Asymptotic result: HE1 is H-IND secure.

Concrete IND-CPA result: Let A be an adversary and P be a predictor. We can
construct a source S, a distinguisher D and an adversary B such that

Advind-cpaHE1,A (·) ≤ 2Advuce
H,S,D

(·) + 2AdvltdfLT,B(·) + 21−U.ol

Advpred
S,P

(·) ≤
√

q

2τ/2
+

√
q · Coll2U(·, LT.il) +

2
√

q

2U.ol/2

where q is the maximum of the size of P ’s output in the execution of PredP
S

and

τ is the lossiness of LT. Furthermore, T(LossyB
LT),T(UCES,D

H
); and QHash

S = 2.

Concrete IND-CDA result: Let A be an adversary and P be a predictor. We can
construct a source S, a distinguisher D and an adversary B such that

AdvcdaHE1,A(·) ≤ 2AdvltdfLT,B(·) + 2Advuce
H,S,D

(·) + 2Advcoll
U

(·, 2p, s) +

3p2 · GuessA(·) +
19p2

2min{U.ol,LT.il}

Advpred
S,P

(·) ≤
√

2q · Advcoll
U

(·, 2p, s) + 2p
√

q · GuessA(·) +
6p

√
q

2min{U.ol,τ}/2

where p is the maximum of the total number of messages that A produces in the
execution of CDAA

HE1, s = p · (U.ol + LT.il + �), q is the maximum of the size
of P ’s output in the execution of PredP

S
, and τ is the lossiness of LT. Moreover,

T(LossyB
LT),T(UCES,D

H
) ≤ T(CDAA

HE1); and QHash
S

≤ 2p. �

The proof of Theorem 4 is in [7]. Here we discuss some of the ideas. For IND-CPA
security, recall that the adversary A makes only a single LR query. The transform
Hash-then-Mask ensures that, for any string m, if r is a random U.ol(λ)-bit string
and uk ←$ U.Kg(1λ) then u ← U(1λ,uk, r ‖ m) is also uniformly random, inde-
pendent of m. Therefore, one doesn’t need to know m to sample r ←$ {0, 1}U.ol(λ)

Resisting Randomness Subversion 647

HE2.Enc(1λ, (ek, hk), m; r)

x ← H.Ev(1λ, hk, r ‖ m, 1LT.il(λ))

trap ← LT.Ev(1λ, ek, x)

seed ← H.Ev(1λ, hk, x, 1F.kl(λ)+U.ol(λ))

y ← seed[1,U.ol(λ)]

fk ← seed[U.ol(λ) + 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|m|)
c ← H.Ev(1λ, hk, y, 1|m|)⊕mask⊕m

Return (trap, c)

HE2.Dec(1λ, (dk, hk), (trap, c))

x ← LT.Inv(1λ, dk, trap)

seed ← H.Ev(1λ, hk, x, 1F.kl(λ)+U.ol(λ))

y ← seed[1,U.ol(λ)]

fk ← seed[U.ol(λ) + 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|c|)
m ← H.Ev(1λ, hk, y, 1|c|)⊕mask⊕c

Return m

Fig. 8. Encryption and decryption algorithms of HE2, where U is an AU family, H is
a FIL UCE[Ssup] family, F is a VOL PRF, LT is a LTDF. Here U = Hash-then-Mask[U]
and H = AU-then-Hash[U,H].

and compute x ← H.Ev(1λ,hk, r ‖ m, 1LT.il(λ)), because one can instead sam-
ple u ←$ {0, 1}U.ol(λ) and compute x ← H.Ev(1λ,hk, u, 1LT.il(λ)). The source will
leak H.Ev(1λ,hk, x, 1|m|) so that the distinguisher can run A to get m and xor
the two strings to complete the ciphertext. Still, computing H.Ev(1λ,hk, x, 1|m|)
requires knowing |m|; it’s why HE1 can only handle fixed-length messages. For
IND-CDA security, we can actually prove that Hedge[H, LT] is IND-CDA secure
for any UCE[Ssup] H. The source will run A1 and the first phase of A2 to create
the ciphertexts via the Hash oracle. Note that during the first phase, A2 only
receives what the source sees, and therefore doesn’t get to learn the hash key hk.
UCE then allows us to switch to a game in which the adversary has to fight an
RO-based scheme, and thus its adaptivity is futile. Moreover, it can only specify
distributions, and thus despite the adaptivity, the chance that the source repeats
a Hash query is about p2 ·GuessA. We again exploit the lossiness of LT to allow
statistical unpredictability.

The HE2 Scheme. With HE1 we reach our goal of the first fully H-IND secure
PKE scheme in the standard model. Additionally it is more efficient than prior
standard-model schemes that only achieved non-full security. However, like prior
standard-model schemes, it is FIL, meaning only encrypts messages of a fixed
length. We now provide the HE2 scheme that retains the security properties
of HE1 but additionally can encrypt messages of variable and arbitrary length.
Furthermore it can do this with hybrid-encryption like performance, meaning
the asymmetric cost is fixed as message length grows.

The additional tool that we need is a VOL PRF F —this means F.OL(·) = N—
such that λ ∈ F.IL(λ) for every λ ∈ N. As before let H be a function family with
FIL H.il and with H.OL(·) = N. Let U be a (FOL) AU family having U.IL(·) = N.
Let LT be an LTDF. Let U = Hash-then-Mask[U] and H = AU-then-Hash[U,H].
The encryption and decryption algorithms of HE2 are specified in Fig. 8. The
key-generation algorithm HE2.Kg is the same as HE1.Kg. We let HE2.rl = U.ol.
But this time HE2.IL(·) = N, meaning we can encrypt messages of any length.
Theorem 5 below formally confirms that HE2 is H-IND secure.

648 M. Bellare and V.T. Hoang

Theorem 5. Let F be a PRF with F.OL(·) = N and λ ∈ F.IL(λ) for every λ ∈ N.
Let H be a UCE[Ssup] function family with FIL H.il and with H.OL(·) = N.
Let U be a (FOL) AU family having U.IL(·) = N. Let LT be an LTDF. Let HE2
be defined from F,H,U, LT as above.

Asymptotic result: HE2 is H-IND secure.

Concrete IND-CPA result: Let A be an adversary and P be a predictor. We can
construct a source S, a distinguisher D, adversaries B and C such that

Advind-cpaHE2,A (·) ≤ 2Advuce
H,S,D

(·) + 2AdvltdfLT,B(·) + 2AdvprfF,C(·) + 21−U.ol

Advpred
S,P

(·) ≤
√

q

2τ/2
+

√
q · Coll2U(·, LT.il) +

2
√

q

2U.ol/2

where q is the maximum of the size of P ’s output in the execution of PredP
S

and τ is the lossiness of LT. Furthermore, T(LossyB
LT),T(UCES,D

H
),T(PRFC

F) ≤
T(CPAA

HE3); Q
RR
C = 1; and QHash

S = 2.

Concrete IND-CDA result: Let A be an adversary and P be a predictor. We can
construct a source S, a distinguisher D, adversary B such that

AdvcdaHE,A(·) ≤ 2AdvltdfLT,B(·) + 2Advuce
H,S,D

(·) + 2Advcoll
U

(·, 3p, s) +

5p2 · GuessA(·) +
44p2

2min{U.ol,LT.il}

Advpred
S,P

(·) ≤
√

2qAdvcoll
U

(·, 3p, s) + 2.5p
√

q · GuessA(·) +
9.5p

√
q

2min{U.ol,τ}/2

where p is the maximum of the total number of messages that A produces in the
execution of CDAA

HE2, s is 3p · max{U.ol, LT.il} plus the maximum of the total
length of messages that A produces in the execution of CDAA

HE2, q is the maxi-
mum of the size of P ’s output in the execution of PredP

S
, and τ is the lossiness

of LT. In addition, T(LossyB
LT),T(UCES,D

H
) ≤ T(CDAA

HE2); and QHash
S

≤ 3p. �

The proof of Theorem 5 is in [7]. Here we give some intuition about why HE2
can securely handle variable-length messages. We’ll only discuss the IND-CPA
case, in which the message length may depend on the public key. The source
will be responsible for producing a PRF key fk, whose length is independent of
the public key, and will leak it along with some other information. The UCE
security is only used to ensure that fk looks random to the distinguisher. The
task of generating the two pads F.Ev(1λ, fk, 0F.il(λ), 1|m|) and H.Ev(1λ,hk, y, 1|m|)
is left to the distinguisher who runs A to get m. Note that the distinguisher
always creates H.Ev(1λ,hk, y, 1|m|) regardless of the challenge bit of game UCE.
We then use the PRF security of F to ensure that the first pad looks random
to A. Consequently, in the string (trap, c) that A receives, the first component
is independent of the message, and the second component is indistinguishable
from a random string.

Resisting Randomness Subversion 649

The HE3 Scheme. Consider the p
√

q · GuessA(·) term in the concrete bound
for IND-CDA security in Theorem 5. This is worse than the “optimal” bound
p(q + p) · GuessA(·) if one uses a random oracle. Why does this gap matter?
Asymptotically, we know that GuessA(·) is negligible, and hence this entire term
is negligible too, under either of the two bounds. But concretely, the first bound
means that we must have more min-entropy in the messages to get security.
This is not desirable in practice. For example if we encrypt passwords, their
min-entropy may be borderline. Thus it would be desirable to have a better
bound. Moreover, it would also be desirable to give a simple construction based
on a generic UCE-secure hash. We achieve both goals with our HE3 scheme.

The only ingredients we need this time are a PRF F (with fixed input length
F.il and F.OL(·) = N), a UCE[Ssrs] family H (with H.IL(·) = H.OL(·) = N) and a
LTDF LT. We let ρ: N → N be a polynomial that is a parameter of the scheme.
The encryption and decryption algorithms of HE3 are shown in Fig. 9 and the
key-generation algorithm HE3.Kg is the same as HE1.Kg. We let HE3.rl = ρ.
We also let HE3.IL(·) = N, meaning the scheme encrypts variable and arbitrary
length messages. While the scheme is quite simple it’s challenging to find an
analysis to match the desired bound p(q + p) · GuessA(·) for the reset-advantage
in the IND-CDA setting. A naive analysis will end up in an inferior bound
q2p · GuessA(·). Let (m1, r1), . . . , (mp, rp) be the message-coin pairs specified
by A’s IND-CDA queries. The reset adversary R is given a random oracle RO
that on input (x, �), returns a random string of length �. Let Bad be the event
that R queries y ← RO(mk, ρ(λ)) and then queries RO(y⊕rk,F.kl(λ) + λ) for
some k ≤ p. For HE3 to be IND-CDA secure, Bad must not occur. Suppose the
reset adversary R queries RO(x1, ρ(λ)), . . . ,RO(x�q/2�, ρ(λ)), and then queries
RO(z1,F.kl(λ) + λ), . . . ,RO(z�q/2�,F.kl(λ) + λ). If there are i, j ≤ �q/2� and
k ≤ p such that xi = mk and RO(xi, ρ(λ))⊕zj = rk then Bad occurs. This seems
to happen with probability q2p

4 GuessA(·), because R can adaptively choose zj

after seeing RO(x1, ρ(λ)), . . . ,RO(x�q/2�, ρ(λ)).
To tackle this problem, we exploit a combinatorial technique on the coin

length ρ—a parameter that we fully control. From Lemma 6 below, the chance
that Bad occurs is at most qp ·GuessA(·)+q2p ·2−ρ(λ)/3. If ρ is large enough, say
ρ(λ) ≥ 4.5λ for every λ ∈ N, then this matches the optimal bound. The proof of
Lemma 6 is in [7].

Lemma 6. Let U, V be random variables over {0, 1}∗ and {0, 1}�, respectively.
Assume that the maximum, over all u, v, of Pr[(U, V) = (u, v)], is at most ε.
Let RO be a random oracle and let W = RO(U, �)⊕V . For any adversary A that
makes at most q queries to RO, the probability that the first component of one
of A’s RO queries is W is at most qε + q2 · 2−�/3. �

Theorem 7 below confirms that HE3 is H-IND secure with very good concrete
security bounds. While UCE[Ssup] is enough for IND-CPA security, IND-CDA
requires the stronger UCE[Ssrs] assumption. The proof is in [7].

Theorem 7. Let F be a PRF with F.OL(·) = N and fixed input length F.il. Let H
be a UCE[Ssrs] function family with H.IL(·) = H.OL(·) = N. Let LT be an LTDF

650 M. Bellare and V.T. Hoang

HE3.Enc(1λ, (ek, hk), m; r)

w ← H.Ev(1λ, hk, m, 1|r|)⊕r

x ← H.Ev(1λ, hk, w, 1LT.il(λ))

trap ← LT.Ev(1λ, ek, x)

seed ← H.Ev(1λ, hk, x, 1F.kl(λ)+λ)

y ← seed[1, λ] ; fk ← seed[λ+1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|m|)
c ← H.Ev(1λ, hk, y, 1|m|)⊕mask⊕m

Return (trap, c)

HE3.Dec(1λ, (dk, hk), (trap, c))

x ← LT.Inv(1λ, dk, trap)

seed ← H.Ev(1λ, hk, x, 1F.kl(λ)+λ)

y ← seed[1, λ] ; fk ← seed[λ + 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|c|)
m ← H.Ev(1λ, hk, y, 1|c|)⊕mask⊕c

Return m

Fig. 9. Encryption and decryption algorithms of HE3, where H is a UCE[Ssrs] family,
F is a VOL PRF and LT is a LTDF

such that LT.il(λ) ≥ λ for all λ ∈ N. Let ρ: N → N be a polynomial such that
ρ(λ) ≥ λ for all λ ∈ N. Let HE3 be defined from F,H, LT, ρ as above.

Asymptotic result: HE3 is H-IND secure.

Concrete IND-CPA result: Let A be an adversary and P be a predictor. We can
construct a source S, a distinguisher D, adversaries B and C such that

Advind-cpaHE3,A (·) ≤ 2AdvuceH,S,D(·) + 2AdvltdfLT,B(·) + 2AdvprfF,C(·) + 21−ρ

AdvpredS,P (·) ≤ 2q

2ρ
+

q

2τ

where q is the maximum of the size of P ’s output in the execution of PredP
S

and τ is the lossiness of LT. Furthermore, T(LossyB
LT),T(UCES,D

H
),T(PRFC

F) ≤
T(CPAA

HE3); Q
RR
C = 1; and QHash

S = 2.

Concrete IND-CDA result: Let A be an adversary and R be a predictor. We can
construct a source S, a distinguisher D, adversary B such that

AdvcdaHE,A(λ) ≤ 2AdvltdfLT,B(λ) + 2AdvuceH,S,D(λ) + p2 · GuessA(λ) +

8p2

2λ
+

12p2

2min{τ(λ),ρ(λ)}

AdvresetS,R (λ) ≤ p(p + q) · GuessA(λ) +
5p2

2λ
+

6.5p2

2min{τ(λ),ρ(λ)} +
pq2

2ρ(λ)/3

where p is the maximum of the total number of messages that A produces in the
execution of CDAA

HE3, q = QHash
R , and τ is the lossiness of LT. Furthermore,

T(LossyB
LT),T(UCES,D

H
) ≤ T(CDAA

HE3); and QHash
S ≤ 3p. �

5 Efficiency and Comparisons with Prior Schemes

Our schemes improve on prior work on both the theoretical and practical fronts.
On the theoretical front, DE1 is the first standard-model D-PKE scheme that is

Resisting Randomness Subversion 651

fully IND secure and HE1,HE2,HE3 are the first standard-model PKE schemes
achieving full H-IND, meaning IND-CPA plus full IND-CDA. Prior standard-
model D-PKE (resp. PKE) schemes only achieved IND (resp. IND-CDA) for
block sources, which assumes messages (resp. message-randomness pairs) are
unpredictable even given prior ones, which is unlikely to be true in applications.

On the practical front, prior standard-model schemes fix a message length,
create keys depending on it, and use only asymmetric operations, making them
inflexible and inefficient. Our schemes handle variable input length messages
with hybrid-encryption like efficiency, meaning the asymmetric cost is fixed and
one pays only in hashing as message length grows. Exploiting fast instantiations
of UCE[Ssup] and UCE[Ssrs] functions [9,45], this yields high performance.

To elaborate, recall that asymmetric primitives are orders of magnitude more
expensive than symmetric ones. Crucial to making IND-CPA PKE efficient
is the hybrid encryption paradigm as represented by the KEM-DEM frame-
work [25]. Here, PKE.Enc(1λ, ek,m) uses its coins to generate a random sym-
metric key K along with an encapsulation ca of K under ek, and returns
ciphertext (ca, cs) where cs is a symmetric encryption of m under K. The
asymmetric cost is thus fixed regardless of message length and is amortized
out for long messages. Ideally, we would like a similar generic hybrid encryp-
tion paradigm for D-PKE and H-PKE. But, despite interest and search, this
has not been found. The reason in part is the apparently crucial use of ran-
domness in the choice of K. As a result, prior standard-model D-PKE and
H-PKE schemes have used only asymmetric operations. This has resulted not
only in fixed message lengths but in costs that are exorbitant for long messages.

Our methods and schemes change this. Although we do not provide a generic
hybrid encryption paradigm for these domains, our DE1,HE2 and HE3 schemes
achieve hybrid-encryption like performance, meaning the asymmetric cost is fixed
regardless of message length, and one pays only in symmetric operations — in
our case this means hashing via the UCE[Ssup] or UCE[Ssrs] functions— as the
message length grows.

To capitalize on this for performance, good and careful instantiation of the
UCE hash functions is needed. We need UCE functions H that are both VIL
—variable input length, H.IL(·) = N— and VOL —variable output length,
H.OL(·) = N. We now discuss how best to obtain these.

A simple instantiation of a UCE family is based on HMAC-SHA-256, as
suggested in [8] and justified in [45]. While this yields a VIL family, it is FOL
(fixed output length). A method to turn FOL UCE families into VOL ones is
given in [8], but is slow. A better and faster transform is provided in [7]. With
this we get UCE[Ssup] and UCE[Ssrs] families with very good performance. These
suffice for DE1,HE1 and HE3.

But one can do even better. BHK2 [9] provide a fast FIL, VOL UCE[Ssup]
function H based on AES. They also provide a fast AU family U. Applying their
AU-then-Hash transform will return a VIL, VOL UCE[Ssup] family H that is
significantly faster than the HMAC-SHA-256 based instantiation. This suffices
for DE1 and HE1.

652 M. Bellare and V.T. Hoang

UE.Kg(1λ)

(ek, dk) ←$ DE.Kg(1λ)

Return (ek, (ek, dk))

UE.Enc(1λ, ek, m)

c ← DE.Enc(ek, m)

Return c

UE.Dec(1λ, (ek, dk), c)

m ← DE.Dec(dk, c)

If m �= ⊥ then

c′ ← DE.Enc(ek, m)

If c′ �= c then return ⊥
Return m

Fig. 10. U-PKE scheme UE = UniqueCtx[DE] constructed from D-PKE scheme DE

Recall HE2 needs a UCE[Ssup] family H of a special form, but it is based on
AU-then-Hash and thus amenable to an efficient instantiation. Start again from
H,U from BHK2 as above. This time turn U into U via our Hash-then-Mask
transform —this preserves performance— and apply AU-then-Hash to this to
get H. This UCE[Ssup] family is again exceptionally fast and of the special form
required for HE2.

6 Unique-Ciphertext PKE

In an algorithm-substitution attack (ASA) [12], the prescribed encryption algo-
rithm is replaced with a subverted one that may attempt to leak information
about the message to “big brother.” The latter and the subverted algorithm
may even share a key based on which they communicate. BPR [12] formalize
the attacker goal in an ASA as compromising privacy while evading detection,
the latter meaning that subverted ciphertexts are indistinguishable from real
ones even given the decryption key. They focus on the symmetric setting. They
give attacks showing that randomized, stateless schemes will succumb to attack.
They show however that security against ASAs may be achieved by what they
call unique ciphertext symmetric encryption schemes.

BPR [12] initiate the study of ASAs for PKE. Continuing that theme, we define
unique ciphertext PKE. We say that a PKE scheme PKE has unique ciphertexts,
or is a U-PKE scheme, if for every λ ∈ N, every (ek,dk) ∈ [PKE.Kg(1λ)], and every
message m, there is atmost one ciphertext c ∈ {0, 1}∗ such thatPKE.Dec(1λ,dk, c)
�= ⊥. Coupled with correctness, this means that for every λ ∈ N, every (ek,dk) ∈
[PKE.Kg(1λ)] and everym ∈ {0, 1}∗ with |m| ∈ PKE.IL(λ) the set [PKE.Enc(1λ, ek,
m)] has size exactly one. The latter means that a unique ciphertext scheme is deter-
ministic, meaning a D-PKE scheme.

We now ask how to design a U-PKE scheme. The natural thought is that any
D-PKE scheme is a U-PKE scheme. This is not true. As an example, take any
IND D-PKE scheme, and modify it so that encryption pre-pends a bit to the
ciphertext that is ignored by decryption. This is still an IND D-PKE scheme,
but it does not have unique ciphertexts, because if c is the encryption of m
under 1λ, ek in the starting D-PKE scheme then both 0 ‖ c and 1 ‖ c are valid
ciphertexts in the new D-PKE scheme.

However, we show that one can transform any given D-PKE scheme DE into
a U-PKE scheme UE. The U-PKE public key is the same as the D-PKE one,

Resisting Randomness Subversion 653

but the secret key is the pair (ek,dk) consisting of the D-PKE public key and
matching secret key. Encryption is as in D-PKE. U-PKE decryption of ciphertext
c first recovers the candidate message m via D-PKE decryption of c under dk
and then checks that re-encrypting m under ek yields c, rejecting otherwise.
UE = UniqueCtx[DE] is is formally specified in Fig. 10.

The security requirement for U-PKE contains to be IND, meaning a U-PKE
scheme is treated just as a D-PKE scheme in the context of security. Applying
our UniqueCtx to DE1 thus yields a very efficient IND U-PKE scheme.

In the symmetric setting, unique-ciphertext encryption could be stateful and
thus attain IND-CPA type security [12]. Here, a synchronized state is shared
between sender and receiver. In the PKE setting, however, it is does not seem
practical to assume that the sender and receiver share a synchronized state.
Indeed, this would go against the spirit of public-key cryptography. As a con-
sequence, for the benefit of unique ciphertexts, security must drop compared to
IND-CPA, meaning we pay in security to protect against ASAs.

Acknowledgments. Bellare is supported in part by NSF grants CNS-1116800 and
CNS-1228890. Hoang is supported in part by NSF grant 1223623. Part of the work
was done when Hoang was working at UCSD, supported in part by NSF grants CNS-
1116800 and CNS-1228890.

References

1. Austrin, P., Chung, K.-M., Mahmoody, M., Pass, R., Seth, K.: On the impossibility
of cryptography with tamperable randomness. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 462–479. Springer, Heidelberg (2014)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (2009)

5. Bellare, M., Dowsley, R., Keelveedhi, S.: How secure is deterministic encryption?
In: Public-Key Cryptography-PKC 2015. Springer (2015)

6. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

7. Bellare, M., Hoang, V.T.: Resisting randomness subversion: Fast deterministic and
hedged public-key encryption in the standard model. Cryptology ePrint Archive,
Report 2014/786 (2014)

8. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
Cryptology ePrint Archive, Report 2013/424 (2013). Preliminary version in
CRYPTO 2013

654 M. Bellare and V.T. Hoang

9. Bellare, M., Hoang, V.T., Keelveedhi, S.: Cryptography from compression func-
tions: The UCE bridge to the ROM. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 169–187. Springer, Heidelberg (2014)

10. Bellare, M., Hoang, V.T., Keelveedhi, S.: Cryptography from compression func-
tions: The UCE bridge to the ROM. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 169–187. Springer, Heidelberg (2014)

11. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor func-
tions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012)

12. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014)

13. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

14. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

15. Birrell, E., Chung, K.-M., Pass, R., Telang, S.: Randomness-dependent message
security. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 700–720. Springer,
Heidelberg (2013)

16. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009)

17. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

18. Bosley, C., Dodis, Y.: Does privacy require true randomness? In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 1–20. Springer, Heidelberg (2007)

19. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
The auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 543–560. Springer, Heidelberg (2011)

20. Brown, D.R.L.: A weak-randomizer attack on RSA-OAEP with e = 3. Cryptology
ePrint Archive, Report 2005/189 (2005). http://eprint.iacr.org/2005/189

21. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: The case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014)

22. Brzuska, C., Farshim, P., Mittelbach, A.: Random oracle uninstantiability from
indistinguishability obfuscation. Cryptology ePrint Archive, Report 2014/867
(2014). http://eprint.iacr.org/2014/867

23. Cachin, C., Micali, S., Stadler, M.A.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

24. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.: On the practical
exploitability of dual EC in TLS implementations. In: Proceedings of the 23rd
USENIX Security Symposium, pp. 319–335, August 2014

25. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

http://eprint.iacr.org/2005/189
http://eprint.iacr.org/2014/867

Resisting Randomness Subversion 655

26. Dodis, Y., López-Alt, A., Mironov, I., Vadhan, S.: Differential privacy with imper-
fect randomness. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 497–516. Springer, Heidelberg (2012)

27. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryptog-
raphy with imperfect randomness. In: 45th FOCS, pp. 196–205. IEEE Computer
Society Press, October 2004

28. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analy-
sis of pseudo-random number generators with input: /dev/random is not robust.
Cryptology ePrint Archive, Report 2013/338 (2013). http://eprint.iacr.org/2013/
338

29. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the windows random
number generator. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM
CCS 2007, pp. 476–485. ACM Press, October 2007

30. Escala, A., Herranz, J., Libert, B., Ràfols, C.: Identity-based lossy trapdoor func-
tions: new definitions, hierarchical extensions, and implications. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 239–256. Springer, Heidelberg (2014)

31. Feltz, M., Cremers, C.: On the limits of authenticated key exchange security with
an application to bad randomness. Cryptology ePrint Archive, Report 2014/369
(2014). http://eprint.iacr.org/2014/369

32. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. Journal of Cryptology 26(1),
39–74 (2013)

33. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

34. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

35. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014). http://eprint.iacr.org/2014/309

36. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4), 792–807 (1986)

37. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

38. Green, M.D., Katz, J., Malozemoff, A.J., Zhou, H.-S.: A unified approach to ide-
alized model separations via indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2014/863 (2014). http://eprint.iacr.org/2014/863

39. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the linux random number
generator. In: 2006 IEEE Symposium on Security and Privacy, pp. 371–385. IEEE
Computer Society Press, May 2006

40. Hemenway, B., Ostrovsky, R.: Building lossy trapdoor functions from lossy encryp-
tion. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 241–260. Springer, Heidelberg (2013)

41. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: Detection of widespread weak keys in network devices. In: Proceedings of the
21st USENIX Security Symposium, pp. 205–220, August 2012

42. Kamara, S., Katz, J.: How to encrypt with a malicious random number generator.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 303–315. Springer, Heidelberg
(2008)

http://eprint.iacr.org/2013/338
http://eprint.iacr.org/2013/338
http://eprint.iacr.org/2014/369
http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2014/863

656 M. Bellare and V.T. Hoang

43. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010)

44. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

45. Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 603–621.
Springer, Heidelberg (2014)

46. Ouafi, K., Vaudenay, S.: Smashing SQUASH-0. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 300–312. Springer, Heidelberg (2009)

47. Paterson, K.G., Schuldt, J.C.N., Sibborn, D.L.: Related randomness attacks for
public key encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
465–482. Springer, Heidelberg (2014)

48. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C., (eds.) 40th ACM STOC, pp. 187–196. ACM Press, May 2008

49. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013)

50. Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS 2010. The Internet
Society, February / March 2010

51. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

52. Vergnaud, D., Xiao, D.: Public-key encryption with weak randomness: Security
against strong chosen distribution attacks. Cryptology ePrint Archive, Report
2013/681 (2013). http://eprint.iacr.org/2013/681

53. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.). In: ITCS 2013, pp. 111–126. ACM, January 2013

54. Yang, G., Duan, S., Wong, D.S., Tan, C.H., Wang, H.: Authenticated key exchange
under bad randomness. Cryptology ePrint Archive, Report 2011/688 (2011).
http://eprint.iacr.org/2011/688

55. Yilek, S.: Resettable public-key encryption: How to encrypt on a virtual machine.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 41–56. Springer, Hei-
delberg (2010)

56. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997)

http://eprint.iacr.org/2013/681
http://eprint.iacr.org/2011/688

Cryptographic Reverse Firewalls

Ilya Mironov1(B) and Noah Stephens-Davidowitz2

1 Google, Menlo Park, US
mironov@gmail.com

2 Department of Computer Science, New York University, New York, US
noahsd@gmail.com

Abstract. Recent revelations by Edward Snowden [3,20,27] show that a
user’s own hardware and software can be used against her in various ways
(e.g., to leak her private information). And, a series of recent announce-
ments has shown that widespread implementations of cryptographic soft-
ware often contain serious bugs that cripple security (e.g., [12–14,22]).
This motivates us to consider the following (seemingly absurd) ques-
tion: How can we guarantee a user’s security when she may be using
a malfunctioning or arbitrarily compromised machine? To that end, we
introduce the notion of a cryptographic reverse firewall (RF). Such a
machine sits between the user’s computer and the outside world, poten-
tially modifying the messages that she sends and receives as she engages
in a cryptographic protocol.

Agood reverse firewall accomplishes three things: (1) itmaintains func-
tionality, so that if the user’s computer is working correctly, the RF will not
break the functionality of the underlying protocol; (2) it preserves security,
so that regardless of how the user’s machine behaves, the presence of the
RF will provide the same security guarantees as the properly implemented
protocol; and (3) it resists exfiltration, so that regardless of how the user’s
machine behaves, the presence of the RF will prevent the machine from
leaking any information to the outsideworld. Importantly, we do notmodel
the firewall as a trusted party. It does not share any secrets with the user,
and the protocol should be both secure and functional without the firewall
(when the protocol’s implementation is correct).

Our security definition for reverse firewalls depends on the security
notion(s) of the underlying protocol. As such, our model generalizes much
prior work (e.g., [5,7,26,32]) and provides a general framework for build-
ing cryptographic schemes that remain secure when run on compromised
machine. It is also a modern take on a line of work that received consid-
erable attention in the 80s and 90s (e.g., [7,9,11,15,16,30,31]).

We show that our definition is achievable by constructing a private
function evaluation protocol with a secure reverse firewall for each party.
Along the way, we design an oblivious transfer protocol that also has a
secure RF for each party, and a rerandomizable garbled circuit that is
both more efficient and more secure than previous constructions. Finally,
we show how to convert any protocol into a protocol with an exfiltration-
resistant reverse firewall for all parties. (In other words, we provide a
generic way to prevent a tampered machine from leaking information to
an eavesdropper via any protocol.)

Most of this work was done in Microsoft Research.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 657–686, 2015.
DOI: 10.1007/978-3-662-46803-6 22

658 I. Mironov and N. Stephens-Davidowitz

1 Introduction

Recent revelations of Edward Snowden show that powerful actors will go to
remarkable lengths to obtain secret information. In particular, the National
Security Agency has engineered a backdoor into a public cryptographic stan-
dard [3,27] and intercepted hardware as it was being delivered to customers in
order to tamper with it [20]. Meanwhile, multiple serious flaws have been uncov-
ered in widely used implementations of cryptographic protocols, leaving many
users vulnerable to simple but devastating attacks (e.g., [12–14,22]). The extreme
complexity of modern cryptographic implementations makes it extremely diffi-
cult for experts (let alone the typical user) to detect such vulnerabilities, even
when they are introduced innocently. Attackers that deliberately insert such
vulnerabilities into hardware and software can make this even harder by using
cryptographic methods to cover their tracks.

So, facing the disturbing (and quite real) possibility of a compromise that
reaches inside one’s communication platform, we consider the following seem-
ingly paradoxical question: Can we design cryptographic protocols that achieve
meaningful security when the adversary may arbitrarily tamper with the victim’s
computer?

To resolve this question, we present a strong and general notion of security
in the presence of an active tampering adversary and show how to instanti-
ate powerful cryptographic primitives in this model. Of course, if Alice’s com-
puter simply chooses to replace her first message to Bob in some protocol with,
for example, her secret business plans, we cannot hope to guarantee her secu-
rity without some sort of help. Inverting the metaphor from network security,
we propose and investigate the power of a (cryptographic) reverse firewall—an
entity whose role is to protect cryptographic schemes and protocols from insider
attacks. Informally, a cryptographic reverse firewall (RF) is a machine run by
a third party (e.g., a security contractor hired by Alice’s employer) that sits
somewhere between Alice and the outside world and prevents Alice’s computer
from compromising her security by potentially modifying the messages that it
sends and receives. In contrast to the standard firewall, the focus of a reverse
firewall is on the inside of the perimeter. In particular, one important goal of
reverse firewall is prevention of exfiltration attacks. Our primary contribution is
the definition of reverse firewalls and the additional level of security that they
bring to cryptographic protocols.

More specifically, we define three desirable properties of reverse firewalls.
First, a reverse firewall should maintain functionality. I.e., if Alice’s computer
is behaving as it should, then the RF should not break the underlying func-
tionality of the protocol. Second, a reverse firewall should preserve security. I.e.,
if the protocol without the RF present provides some security guarantee when
Alice’s computer behaves as it should, then the protocol with the RF present
should provide this same security guarantee regardless of how Alice’s computer
behaves. Finally, a reverse firewall should resist exfiltration. Intuitively, an RF is
exfiltration-resistant if Alice’s tampered implementation cannot leak any infor-
mation to the outside world through the firewall.

Cryptographic Reverse Firewalls 659

We defer much of the discussion of our definition to Section 2, where we
introduce it formally. We emphasize, however, that the reverse firewall is not
a trusted third party, and we do not rely solely on it for security. If Alice’s
implementation of the protocol is correct, then the protocol should be secure
and functional without the firewall. In other words, we ask that the firewall
preserves security, not that it provides it. In addition, the RF only has access
to Alice’s incoming and outgoing messages and any public parameters—not to
Alice’s state or input or any shared secrets. In effect, we place no more trust in
the reverse firewall than we do in the communication medium. (We additionally
require that firewalls be “stackable,” so that one party may have arbitrarily many
firewalls. Security is then guaranteed if just one of the firewalls is implemented
correctly—or if Alice’s own implementation is correct.)

Note that our security definition is quite strong, as it imagines the adversary
“living inside of our computer.” Consider, for example, a secure coin-flipping
protocol in which Alice wishes to agree on a fair coin toss with Bob. Informally,
the protocol is secure for Alice in the standard setting (i.e., without reverse
firewalls) if Bob cannot bias the resulting coin toss alone. In our setting, we
imagine both parties working together to bias the coin toss in Bob’s favor. (Bob
is adversarial as always, and in our setting, Bob may have also tampered with
Alice’s computer so that it is effectively “on Bob’s side.”) The only defense
against this attack is a reverse firewall that can modify the messages that Alice
sends and receives but must do so in a way that does not break the protocol
when Alice and Bob are honest. (And, again, it must do so without access to
any privileged information.)

In spite of this strength, we show that security in this model is achievable
for very strong primitives. Indeed, we construct a two-round private function
evaluation protocol that is secure in this model (Section 4). In particular, each
party in this protocol has a corresponding secure reverse firewall. In other words,
we show a relatively simple protocol that allows Alice and Bob to jointly and
securely compute any circuit with the remarkable property that a reverse firewall
can guarantee Alice’s security even when Bob has tampered with her computer,
and vice versa. This immediately shows that a very large class of two-party
primitives can be realized securely in this model. The main ingredients for this
protocol are an oblivious transfer scheme that itself has a secure reverse firewall
for each party (Section 3) and a rerandomizable version of Yao’s garbled circuit
(Section 4.1). Our oblivious transfer protocol is a modified version of the Naor-
Pinkas/Aiello-Ishai-Reingold protocol [1,25]. Our rerandomizable garbled circuit
is significantly more efficient than the construction of Gentry et al. [19], and
it achieves a stronger notion of rerandomizability. (See Section 1.1 for further
comparison.)

Finally, in Section 5, we show a generic construction that can convert any
protocol into a protocol with the same functionality that has an exfiltration-
resistant reverse firewall. In other words, we provide a generic way to prevent
a tampered machine from leaking information to an eavesdropper via any pro-
tocol. So, for the important special case in which Alice is primarily concerned

660 I. Mironov and N. Stephens-Davidowitz

with passive eavesdroppers, we show that any multiparty functionality can be
implemented in our model.

Our protocols are described in full in terms of basic group operations, and
we avoid using “heavy machinery” like non-interactive zero-knowledge proofs
in our constructions. In particular, this means that our protocols are relatively
simple and efficient and that the security of our constructions follows from rela-
tively weak complexity-theoretic assumptions (namely, the slight variants of the
decisional Diffie-Hellman assumption presented in Appendix A).

1.1 Related Work

In this section we give a summary of related prior work, starting with the most
directly comparable and recent literature. Given the size and the scope of existing
work dealing with various models of insider attacks and mitigation strategies,
our focus is on the similarities and differences between our work and prior art
rather than a comprehensive review of all previous approaches.
Algorithm-substitution Attacks. Motivated by the potential threat of pow-
erful adversaries subverting implementations of cryptographic algorithms, Bel-
lare, Paterson, and Rogaway recently proposed a formalization of the notion
of resilience of symmetric encryption schemes to algorithm-substitution attacks
(ASA) [5]. They observe that modern standards for symmetric encryption cru-
cially rely on sender-chosen randomness to attain acceptable security levels. Since
these standards do not include any mechanisms for ensuring that randomness
used in the encryption stage is unbiased, they effectively enable a communica-
tion channel, which a corrupt implementation may use to leak information to an
external party.

Bellare et al. define a general framework for ASA security, identifying two
adversarial goals—avoiding detection and conducting surveillance. They cast
several algorithm-substitution attacks against symmetric-key encryption in this
framework, showing that widely deployed secure communication protocols, such
as SSL/TLS, IPsec, and SSH, are vulnerable to these attacks. Furthermore, they
present a universal, essentially undetectable attack effective against any stateless,
randomized symmetric-key encryption scheme.

On the positive (defensive) side, Bellare et al. advocate using stateful, deter-
ministic encryption schemes with unique ciphertexts as a counter-ASA measure.
They construct a provably ASA-resilient encryption scheme based on the encode-
then-encipher paradigm, and prove that all nonce-based schemes satisfying a
natural non-degeneracy condition can be converted into stateful schemes with
unique ciphertexts by choosing their nonces sequentially.

Our work extends Bellare et al. in several directions. First, we include in our
treatment arbitrary two- and multi-party protocols, as opposed to just symmetric-
key encryption. Second, we shift our objective from developing primitives that are
ASA-resilient by design to constructing protocols that are reverse-firewall-ready.
Bellare et al. only achieve security against adversaries that do not break the func-
tionality of the encryption scheme (“functionality-maintaining adversaries” in our

Cryptographic Reverse Firewalls 661

terminology). By making a stronger assumption—availability of an uncorrupted
reverse firewall—we are able to achieve stronger security guarantees, such as secu-
rity against tampered implementations that break functionality.

Our results and techniques can be viewed as complementary. Whereas Bellare
et al. make a strong case for suppressing “freedom of choice” in cryptographic
primitives, we demonstrate that additional randomness can be injected by an
intermediary in some protocols to achieve stronger security guarantees for a
much wider range of primitives.
Collusion-free Protocols and Mediated Collusion-free Protocols. Infor-
mally, Lepinski, Micali, and shelat say that a multi-party protocol is collusion-
free if the parties cannot communicate information about their private inputs to
each other via the protocol [23]. For example, a collusion-free protocol for the
game of poker allows parties to play a hand of poker, but it does not allow them
to communicate information about their cards to other players during the hand.

This notion resembles our definition of exfiltration resistance in that it disal-
lows subliminal communication via the protocol, but the two notions are incom-
parable. On one hand, the definition of Lepinski et al. is much stronger than
ours because it does not allow the use of a third-party reverse firewall to pre-
vent subliminal communication. On the other hand, it is much weaker because
it specifies what information parties are not allowed to communicate. Indeed,
their constructions involve a setup phase that is conducted before the parties
are given their inputs, and the authors observe that this setup phase can be
used as a subliminal channel. So, in our model, their protocols are completely
insecure. Their constructions also require strong physical assumptions to ensure
verifiable determinism.

To avoid the need for the setup phase and physical assumptions, Alwen, she-
lat, and Visconti introduce the mediated model for collusion-free protocols [2]. In
this model, all communication between the parties is routed through a mediator.
Intuitively, the mediator rerandomizes the parties’ messages in much the same
way that our reverse firewalls do. However, the mediator is much more powerful
than a reverse firewall in that (1) it intercepts all parties’ messages and (2) it may
exchange messages with the parties in any order. In contrast, our firewall mod-
ifies the messages sent and received by a single party in an online fashion, and
we require our protocols to work without the firewall present. Because Alwen et
al. give the mediator this additional power, they must explicitly model security
against the mediator as a separate property of the protocol. In contrast, we get
security “against the firewall” for free, as a natural consequence of the security
of the underlying protocol. Their security definition is also stronger in the sense
that it includes a strong notion of secure multi-party computation. While our
notion of security preservation allows for such security, we intentionally do not
require it in general.
Subliminal Channels and Divertible Protocols. A long series of works
explored the idea of subliminal channels in various cryptosystems (e.g., [7,9,11,
15,16,30,31]). Simmons [30] introduced the notion by showing subliminal chan-
nels in various signature and authentication schemes. The underlying theme of

662 I. Mironov and N. Stephens-Davidowitz

this work is a story in which two prisoners, Alice and Bob, wish to communicate
in some sanctioned way through the prison’s warden (e.g., Alice wishes to tell
Bob in some authenticated manner that she has not been harmed). The war-
den wishes to remove any subliminal messages from this communication (e.g.,
to prevent Alice from communicating escape plans to Bob). The warden in this
story is quite similar to our reverse firewall, and the notion of a subliminal-free
channel is closely related to our notion of exfiltration resistance. Because of the
wide body of work with a variety of definitions, results, and applications, we
focus on a small portion that is most related to our work—divertible protocols.

Intuitively, a protocol is divertible if a warden sitting between Alice and
Bob can rerandomize the messages of both parties so that (1) neither party is
aware of the warden’s existence and (2) neither party can distinguish between
an interaction with a dishonest party with the warden in the middle and an
interaction with an honest party. Okamoto and Ohta provided the first definition
of divertibility for zero-knowledge proofs [26] (based on earlier definitions of
subliminal-free zero-knowledge proofs), and Burmester et al. showed that all
languages in NP have a divertible zero-knowledge proof [9,10]. These simple and
elegant constructions immediately provide zero-knowledge proofs with reverse
firewalls for all languages in NP.

Blaze, Bleumer, and Strauss showed how to generalize and strengthen the
definition of divertibility to apply to any two-party cryptographic protocol [7].
Indeed, their prescient definition comes close to our notion of a protocol with
an exfiltration-resistant reverse firewall. We highlight three primary differences
between their work and ours.

1. In our terminology, Blaze et al. consider only exfiltration resistance and not
security preservation. In some applications (e.g., zero-knowledge proofs), the
two properties are equivalent, but in many important applications (such as
those that we consider in the sequel), the two properties are very different.
(See Section 2.3 for further discussion of the distinction between these two
properties.)

2. Blaze et al. implicitly assume that any dishonest version of the prover
still provides valid proofs. (In our language, tampered provers must “main-
tain functionality.”) This assumption is necessary for the prover of zero-
knowledge proofs, but in general we can and should do better.

3. They consider only synchronous protocols with two parties and one warden.
We consider asynchronous multi-party protocols in which each party may
have its own firewall. By separating the warden into multiple firewalls and
moving away from the synchronous model, our definition becomes much
stronger, as our firewalls do not have the benefit of seeing all messages from
all parties sent during a round before deciding how to modify them. (Indeed,
Blaze et al. provide an example of a simple divertible key-agreement protocol.
However, this protocol is not secure in our model because it crucially relies
on the synchronous model of communication for its security.) We also find
our more modular model to be more natural in our modern context, in which
different parties may have different security needs.

Cryptographic Reverse Firewalls 663

Divertible protocols also differ from protocols with reverse firewalls in a num-
ber of more subtle ways. For example, Blaze et al. require that the warden is
undetectable to either party. The protocols presented in the sequel achieve this
notion of “transparency”, but we intentionally do not require it as part of our
definition.

In short, divertible protocols and subliminal-free channels were founded on a
story that predates the concerns that motivate our work. Our more modern story,
in which Alice and Bob (who need not be prisoners!) are concerned that their
computers have been corrupted, leads naturally to our more general definition.
Kleptography. Young and Yung identified an important subclass of insider
threats against cryptographic schemes, which they called kleptographic
attacks [32]. The goal of a kleptographic attack is to leak a secret to an adver-
sary who planted a malicious implementation of a cryptographic system on a
victim’s computer. The attack is asymmetric—the compromised implementation
may carry the attacker’s public key, but a private key is necessary in order to
read from the subliminal channel. A secure kleptographic attack is undetectable
as long as the system is accessed as a black box, and while it may be identified
if one reverse engineers the implementation, this will only expose the attacker’s
public key. In particular, if multiple systems run the same compromised software
stack, a successful reverse engineering effort of one such system will not help in
breaching the security of others.

The (now withdrawn) NIST-standardized Dual Elliptic Curve Determnistic
Random Bit Generator (Dual EC DRBG) is an example of a mechanism with a
potential kleptographic backdoor [8,29].

Our adversarial model is a relaxation of the kleptographic attacker. We con-
sider the possibility that the adversary may not worry about detection and is
not concerned about a split-key solution.
Rerandomizable Garbled Circuits. Gentry, Halevi, and Vaikuntanathan
construct a rerandomizable version of Yao’s garbled circuit in order to build
an “i-hop” homomorphic encryption scheme [19]. Their construction is quite
elegant, and its security is based on a slightly weaker assumption than ours
(pure decisional Diffie-Hellman, as opposed to the slight variants presented in
Appendix A). But, it does not work in our context. Informally, their circuit is
rerandomizable when constructed honestly, but the rerandomization of a dis-
honestly constructed circuit can easily be distinguished from a freshly garbled
circuit. (With negligible probability, even the honest implementation can create
circuits that in some sense “cannot be rerandomized.”) In our context, in which
we consider the possibility that the garbled circuit was constructed by a cor-
rupted algorithm, this is a fatal flaw. We thus construct a new garbling scheme
that can be rerandomized in a much stronger sense.

Our scheme (presented in Section 4) is also substantially more efficient than
that of Gentry et al. The size of a single gate in their circuit is O(λ2) group
elements, where λ is the security parameter, whereas our gates require only
a constant number of group elements. As a consequence, our rerandomizable
garbling scheme (which uses a trick inspired by Prabhakaran and Rosulek [28])

664 I. Mironov and N. Stephens-Davidowitz

also implies a significantly more efficient implementation of i-hop homomorphic
encryption.
Combiners. An alternative defense against untrusted implementations of a
cryptographic primitive is to combine multiple implementations of the same
primitive in some way so that the combined primitive will be secure if a suitably
large subset of the initial primitives are secure. This idea is quite common in the
literature, and it was formalized by Harnik et al., who show that many primitives
have elegant robust combiners [21].

Combiners solve a slightly different problem than reverse firewalls. Firewalls
guarantee security when a user’s system has been arbitrarily compromised, while
combiners provide security only when the user already has access to at least
one secure implementation of a primitive (and a secure implementation of the
combiner itself!). Intuitively, combiners are applicable when multiple implemen-
tations of the same primitive exist that either (1) may have bugs in them or (2)
rely on different unproven assumptions. In contrast, reverse firewalls work even
when our implementations have been intentionally compromised.

2 Cryptographic Reverse Firewalls

We now present our general definition of a cryptographic reverse firewall that
can be applied to a large class of primitives. This requires us first to define a
cryptographic protocol in a (very general) way that suits our purposes. We note,
however, that we describe the concrete schemes presented in the sequel in simpler
terms. So, this level of generality is not necessary to understand the rest of the
paper.

2.1 Cryptographic protocols

Definition 1 (Cryptographic protocol). A cryptographic protocol P defines
an interaction between stateful parties (P1, . . . , P�). First, a setup procedure
setup(1λ) is run, where λ is the security parameter. It returns a starting state for
each party (σPi

)�
i=1, which we call their respective input; public parameters ρ;

and a schedule of messages.1 The parties proceed to send messages to each other
according to the schedule. Each party has an associated next message algorithm
nextPi

(σPi
) that is called when it must output a message and a message receipt

algorithm receivePi
(σPi

,m) that is called upon receipt of a message to update the
party’s state. After the protocol is finished, each party runs its output algorithm
outputPi

(σPi
) and returns the result.

1 Note that we only consider protocols in which the message schedule is fixed by setup.
Formally, this schedule determines the number of messages that a party must receive
from each other party before sending each message. (E.g., Alice will send her second
message after she has received three messages from Bob, two from Carol, and one
from David.) We omit explicit reference to this schedule in the sequel as it will always
be clear.

Cryptographic Reverse Firewalls 665

We identify the protocol with its parties and setup procedure, P = (setup,
(Pi)�

i=1), and we identify the parties with the algorithms that define them, Pi =
(receivePi

, nextPi
, outputPi

). A complete record of all messages sent during a run
of the protocol is a transcript T .

We call a run of a protocol a run with input I if the parties’ respective input
and the public parameters are set to the values represented by I. We assume
implicitly that the input I satisfies certain validity requirements.

A protocol must satisfy functionality requirements F , which place constraints
on the output of the parties for particular input I, and security requirements
S, which place constraints on the message distribution conditioned on specific
input I. For our purposes, it will often be convenient to assign to each security
requirement S a specific party who “is concerned with S.” For a party P , we say
that a protocol is secure for P if all of P ’s security requirements are met.

For example, a one-out-of-two oblivious transfer (OT) protocol is a protocol
between a sender, Alice, and a receiver, Bob. Alice’s input is a pair of messages
m0,m1, and Bob’s input is a bit b. The protocol is functional if Bob’s output is
mb. It is secure for Bob if for any valid messages m0,m1, no efficient algorithm
playing the role of Alice can predict b with non-negligible advantage after the
protocol is complete. (I.e., Alice is oblivious to Bob’s bit b.) Intuitively, the
protocol is secure for Alice if no efficient algorithm playing the role of Bob can
“learn any information” other than m0 or m1 (but not both!).

Below, we list some terminology and notation that will be useful in the next
section.

Definition 2 (Protocols and parties). For a protocol P = (setup, (Pi)�
i=1)

satisfying functionality F , input I, party P , index j, and index set J ⊆
{1, . . . , �},
1. T ← P(I) denotes setting the variable T to the transcript obtained by a run

of P with input I;
2. PPj⇒P is the protocol obtained by replacing party Pj with P in the protocol

P;
3. PJ⇒P is the protocol obtained by replacing all of the parties {Pj}j∈J with a

single implementation of P in P (i.e., the parties {Pj}j∈J “collapse” into a
single party P that has a single state σP);

4. if any party sends the special symbol ⊥ as a message at any time, then the
protocol immediately ends and, by definition, functionality has been violated;
and

5. P maintains F for Pj in P if PPj⇒P satisfies F with all but negligible prob-
ability over the random coins of the parties and setup procedure of P for any
fixed input.

When F , Pj, and P are clear, we simply say that P maintains functionality.

2.2 Cryptographic Reverse Firewalls

Definition 3 (Cryptographic reverse firewall). A cryptographic reverse
firewall (RF) is a stateful algorithm W that takes as input its state and a

666 I. Mironov and N. Stephens-Davidowitz

message and outputs an updated state and message. For simplicity, we do not
write the state of W explicitly.

For a party P = (receive, next, output) and reverse firewall W, the composed
party is defined as

W ◦ P := (receiveW◦P (σ,m) = receiveP (σ,W(m)),
nextW◦P (σ) = W(nextP (σ)),
outputW◦P (σ) = outputP (σ)) .

When the composed party engages in a protocol, the state of W is initialized to
the public parameters ρ. If W is meant to be composed with a party P , we call
it a reverse firewall for P .

Intuitively, an RF simply modifies Alice’s incoming and outgoing messages.
Alice of course does not want a reverse firewall to ruin her protocol’s function-
ality when her internal implementation is correct. Indeed, we want something
more than this. Alice’s employer may wish to deploy multiple reverse firewalls
(one internal firewall managed by its network administrators, one provided by
a security contractor, another by networking equipment vendor, etc.), and we
do not want such “stacking” of firewalls to break functionality. The definition
below captures this.

Definition 4 (Functionality-maintaining RFs). For any reverse firewall W
and any party P , let W1◦P = W◦P , and for k ≥ 2, let Wk◦P = W◦(Wk−1◦P).

For a protocol P that satisfies some functionality requirements F , we say that
a reverse firewall W maintains F for Pj in P if Wk ◦ Pj maintains F for Pj in
P for any polynomially bounded k ≥ 1. When F , Pj, and P are clear, we simply
say that W maintains functionality.

We emphasize that we are interested in reverse firewalls that maintain the
functionality of an already functional protocol—protocols that do not function
without the firewall are not nearly as interesting. We also note that the reverse
firewalls described in the sequel actually achieve much stronger properties. In
particular, they are all “transparent”, so that the behavior of W◦P is identical to
the behavior of P if P is the honest implementation. And, W ◦P is functionality
maintaining whenever P is (and not just when P is an honest implementation).
While these properties seem desirable for many applications, we do not wish to
exclude from our definitions firewalls that, for example, append a signature to
each message that they send.

More interestingly, we would like a reverse firewall to protect Alice from an
adversary that may have tampered with her computer. To that end, we ask
that the firewall preserves the security properties of the underlying protocol. So,
we are only interested in protocols that are already secure without the firewall
present. Since this definition depends on the security properties of the under-
lying protocol, it provides a general framework for the study of arbitrary cryp-
tographic primitives in this model. Our strongest notion of security imagines a

Cryptographic Reverse Firewalls 667

completely adversarial algorithm replacing Alice’s implementation of the proto-
col and requires that security is still preserved even in this setting. Our weaker
notion only considers tampered implementations that maintain functionality.

Definition 5 (Security-preserving RFs). For a protocol P = (setup, (nextPi
,

receivePi
, outputPi

)�
i=1) that satisfies some security requirements S and function-

ality F and a reverse firewall W,

1. W strongly preserves S for Pj in P if the protocol PPj⇒W◦P ∗
A satisfies S for

any probabilistic polynomial-time P ∗
A; and

2. W weakly preserves S for Pj in P against F-maintaining adversaries if the
protocol PPj⇒W◦P ∗

A satisfies S for any probabilistic polynomial-time P ∗
A that

maintains functionality F .

When S, Pj, P and F are clear, we simply say that W strongly preserves security
or weakly preserves security respectively.

One type of attack that particularly concerns us is exfiltration, in which
Alice’s corrupted computer attempts to leak some private information (e.g.,
secret business plans) to an adversary who has control over some (possibly
empty) list of other parties J . We call security against such an attack exfil-
tration resistance, and we define it in terms of the game LEAK(P, Pj , J, λ), pre-
sented in Figure 1. Intuitively, the game LEAK asks the adversary to distinguish
between a tampered implementation of party Pj and an honest implementation.
An exfiltration-resistant reverse firewall therefore prevents an adversary from
even learning whether Alice’s computer has been compromised—let alone her
secret business plans.

proc. LEAK(P, Pj , J, W, λ)

(σA, P ∗
A, P ∗

B, I) ← A(1λ)

b
$← {0, 1}

IF b = 1, P ∗ ← W ◦ P ∗
A

ELSE, P ∗ ← W ◦ Pj

T ∗ ← PPj⇒P ∗,J⇒PB∗ (I)
b∗ ← A(σA, T ∗, σP ∗

B)

OUTPUT (b = b∗)

Fig. 1. LEAK(P, Pj , J, λ), the exfiltration resistance security game for a reverse firewall
W for party Pj in protocol P with corrupted parties J and security parameter λ. (For-
mally, the adversary represents a party by a collection of three (possibly randomized)
circuits that implement the relevant functions receive, next, and output.)

Definition 6 (Exfiltration-resistant RFs). For a protocol P satisfying func-
tionality F and a reverse firewall W,

1. W is (P, Pj , J)-strongly exfiltration-resistant if no PPT adversary A
achieves advantage that is non-negligible in the security parameter λ in the
game LEAK(P, Pj , J,W, λ); and

668 I. Mironov and N. Stephens-Davidowitz

2. W is (P, Pj , J)-weakly exfiltration-resistant against F-maintaining adver-
saries if no PPT adversary A achieves advantage that is non-negligible in
the security parameter λ in the game LEAK(P, Pj , J,W, λ) provided that the
adversary’s output P ∗

A maintains F for Pj.

When Pj, P, and F are clear, we simply say that W is strongly exfiltration-
resistant against J or weakly exfiltration-resistant against J respectively. In the
special case when J is empty, we say that W is exfiltration-resistant against
eavesdroppers.

This brings us to our strongest security notion.

Definition 7 (Robust RFs). A cryptographic reverse firewall W is robust for
a party Pj in P with functionality requirements F and security requirements S
if it is F-maintaining, strongly S-preserving, and strongly exfiltration-resistant
against the collection of all parties other than Pj in P. We often simply say that
W is robust when Pj, P, F , and S are clear.

2.3 Discussion of the Definitions

The newly introduced terminology for security of reverse firewalls and a new type
of adversary facilitates accurate and tight characterization of security guaran-
tees offered by schemes in the sequel. Before we proceed to constructions, some
analysis of the new notions is in order.
The Relationship Between Exfiltration-resistant and Security-
preserving Firewalls. For many natural notions of security, exfiltration resis-
tance and security preservation are equivalent. For example, a reverse firewall
preserves the semantic security of an encryption scheme if and only if it is
exfiltration-resistant against an eavesdropper. However, for notions of security
that do not promise privacy, a security-preserving firewall is not necessarily
exfiltration-resistant. For example, a reverse firewall may preserve the binding
property of a commitment scheme, but it may still allow information to leak out
of a compromised machine. Even when a security requirement does imply some
type of privacy, a firewall that preserves it may not be exfiltration-resistant.
Consider the hiding property of a commitment scheme, which guarantees pri-
vacy during the initial (commitment) phase, but it certainly does not prevent
information from leaking during the opening phase. In fact, it is relatively easy
to construct reverse firewalls that strongly preserve the hiding property of com-
mitment schemes (just use a rerandomizable commitment scheme), but it is
provably impossible to construct a strongly exfiltration-resistant reverse firewall
for the sender against the receiver in any commitment scheme! (Loosely speak-
ing, the functionality of a commitment scheme allows the sender to communicate
a message to the receiver. So, a reverse firewall cannot hope to simultaneously
maintain functionality and prevent the sender from leaking information to the
receiver.)

On the other hand, it may seem at first that an exfiltration-resistant reverse
firewall always preserves security, since interaction with such an RF composed

Cryptographic Reverse Firewalls 669

with an adversarially chosen circuit is, by definition, indistinguishable from
interaction with an honest implementation. (Technically, we ask that the RF
composed with an adversarially chosen circuit is indistinguishable from the RF
composed with an honest implementation.) However, this is not always the case.
For example, if security requirements are simulation-based or consider adver-
saries who have access to oracles or are computationally unbounded, then an
exfiltration-resistant firewall may not preserve security.
Functionality-maintaining Adversaries. Intuitively, our weaker secu-
rity notions exclude the “more conspicuous” adversaries whose tampered cir-
cuit would be noticed by honest parties participating in the protocol with
non-negligible probability. However, even our weakest adversaries may behave
arbitrarily some negligible fraction of the time against honest parties. This dis-
tinction can be quite important in the context of security definitions that allow
for the corruption of other players in the protocol. For example, consider an
oblivious transfer protocol in which Bob’s first message is uniformly random
over some large set (as is the case in Section 3). A tampered implementation of
Alice in this protocol may respond to one specific such message by, say, encoding
the XOR of both of Alice’s inputs into its response to Bob. Such an implemen-
tation can still be functionality-maintaining because this event rarely happens
when Bob behaves honestly. But, the security definition of oblivious transfer
requires that an adversary playing the role of Bob should not be able to learn
the XOR of the inputs.

So, any reverse firewall that even weakly preserves Alice’s security in such a
model must somehow address this issue. In Section 3, we approach it by compos-
ing a firewall for Alice that only works against tampered implementations that
always maintain functionality with a firewall that is exfiltration-resistant for
Bob against Alice. (The composed firewall is still serving Alice’s security—Bob’s
outputs are randomized for her protection, not his.) We expect this approach to
be useful in future work.
Timing and Scheduling Issues. Our model does not explicitly account for
the timing of messages. In practice, message timing is a natural channel, and a
tampered implementation could, of course, use this to leak information and com-
promise Alice’s security. So, any reverse firewall in the real world must account
for this (e.g., by fixing the time between when it receives a message and when
it forwards Alice’s response). As the above discussion shows, in some cases, it
might be necessary for the firewall to control the timing of both outgoing and
incoming messages. In a protocol with more than two parties, this issue naturally
becomes more complicated. In such cases, protocol designers should consider the
relative timing of messages from multiple parties’ perspectives and the order in
which Alice receives messages from various parties.

3 Oblivious Transfer

Naor and Pinkas and, independently, Aiello, Ishai, and Reingold developed very
similar OT protocols whose security reduces immediately to DDH [1,25]. We

670 I. Mironov and N. Stephens-Davidowitz

present a version of this protocol that is suitable for our setting. In particular,
Alice’s input is a pair of elements (m0,m1) in some group G of order p in which
DDH is hard, and Bob’s input is a bit b. Alice and Bob then engage in the
protocol shown in Figure 2.

Alice Bob

INPUT: (m0, m1) ∈ G2 INPUT: b ∈ {0, 1}

g
$← G \ {1G}

c
$← G; y

$← Zp

(g, c, d = gy, h = cygb)←−−−−−−−−−−−−−−−−
IF g = 1G, OUTPUT ⊥
(r0, s0, r1, s1)

$← Z
4
p

(ui)
1
i=0 ← (gricsi)1i=0

(ei)
1
i=0 ← (dri(h/gi)simi)

1
i=0

(ui, ei)
1
i=0−−−−−−−−−−−−−−−−→

OUTPUT eb/uy
b

Fig. 2. A version of Naor-Pinkas/Aiello-Ishai-Reingold protocol for oblivious transfer

Proposition 1. The protocol shown in Figure 2 is correct and secure for both
parties if DDH is hard in G.

Proof. Let x = logg c, which is well defined since g �= 1G and G is cyclic.
Correctness follows from the fact that uy

b = gsbxy+rby = (h/gb)sbdrb . Bob’s
security follows immediately from the DDH assumption in G.

To prove security for Alice, we note that if (g, c, d, h) �= (g, gx, gy, gxy+b) for
some x, y ∈ Zp and b ∈ {0, 1}, then (ub, eb) is uniformly random. Indeed, note
that

logg ub = rb + x · sb,

logg(eb/mb) = y · rb + (logg h − b) · sb.

It follows that ub and eb are distributed uniformly and independently unless
logg h − b = xy. This allows us to construct, for any (not necessarily efficient)
adversary B playing the role of Bob, an (inefficient) simulator SB with access to
the ideal functionality F that behaves as follows on input b.

1. (σ, g, c, d, h) ← B().

2. (m0,m1)
$← G2.

3. If (g, c, d, h) = (g, gx, gy, gxy+b) for b ∈ {0, 1}, set mb ← F(b).

4. (r0, r1, s0, s1)
$← Zp.

Cryptographic Reverse Firewalls 671

5. (ui, ei)1i=0 ← (gricsi , dri(h/gi)simi)1i=0.
6. Output B(σ, u0, e0, u1, e1).

It should be clear that the simulator’s “message” (ui, ei)1i=0 is distributed iden-
tically to the message that B receives from Alice in the real protocol, and the
result follows.

We present reverse firewalls for both parties in our variant of the Naor-
Pinkas/Aiello-Ishai-Reingold protocol and show that they are secure. Bob’s
reverse firewall is shown in Figure 3, and Alice’s is shown in Figure 4. Alice’s
firewall by itself strongly prevents leaks against eavesdroppers. In order for it to
weakly maintain security, it must be composed with Bob’s firewall.

Alice Bob’s Firewall Bob

(g, c, d, h)←−−−−−−−−−−−−−−
α

$← Z
∗
p

(x′, y′) $← Z
2
p

g′ ← gα

IF g = 1G, g′ $← G \ {1G}
c′ ← cαg′x′

; d′ ← dαg′y′

h′ ← hαcαy′
dαx′

g′x′y′

(g′, c′, d′, h′)←−−−−−−−−−−−−−−
(u0, e0, u1, e1)−−−−−−−−−−−−−−→

e′
0 ← e0/uy′

0 ; e′
1 ← e1/uy′

1

(u0, e
′
0, u1, e

′
1)−−−−−−−−−−−−−−→

Fig. 3. Bob’s reverse firewall for the protocol shown in Figure 2

In the full version of the paper [24], we prove the following theorem.

Theorem 2. Bob’s reverse firewall WB shown in Figure 3 maintains correctness
and is robust if the chosen-base DDH with a hint game is hard in G.

Alice’s reverse firewall WA shown in Figure 4 maintains correctness and is
strongly exfiltration-resistant against an eavesdropper if DDH is hard in G. The
composed firewall WB ◦ WA also weakly preserves security against Bob.

4 Private Function Evaluation

We now construct a private function evaluation scheme based on the oblivious
transfer protocol from Section 3 and a version of Yao’s garbled circuit. We assume
that the reader is familiar with garbled circuits and this type of construction (see,
for example, [4]). Our key technical tool is a rerandomizable garbled circuit based
on ElGamal encryption [17], which may be of independent interest.

672 I. Mironov and N. Stephens-Davidowitz

Alice Alice’s Firewall Bob

(g, c, d, h)←−−−−−−−−−−−−−−
IF g = 1G, OUTPUT ⊥

(g, c, d, h)←−−−−−−−−−−−−−−
(u0, e0, u1, e1)−−−−−−−−−−−−−−→

(r′
0, r

′
1, s

′
0, s

′
1)

$← Z
4
p

(u′
i)

1
i=0 ← (uig

r′
ics′

i)1i=0

(e′
i)

1
i=0 ← (eid

r′
i(h/gi)s′

i)1i=0

(u′
i, e

′
i)

1
i=0−−−−−−−−−−−−−−→

Fig. 4. Alice’s reverse firewall for the protocol shown in Figure 2. It is strongly
exfiltration-resistant, and it weakly preserves security when it is composed with the
firewall shown in Figure 3.

4.1 A Rerandomizable Garbled Circuit

We wish to use the homomorphic properties and rerandomizability of ElGamal
encryption to make a rerandomizable garbled circuit. But, a subtlety immedi-
ately arises: Yao’s garbled circuit construction makes heavy use of encryptions
of private keys (which can be used to decrypt more encryptions of private keys,
etc.). However, in ElGamal encryption, private keys are elements in Zp but
messages are elements of a group G of order p in which DDH is hard. Our con-
struction requires an efficient injective homomorphism from the key space to the
message space. But, since DDH is easy in Zp, such a map cannot exist.

To get around this issue, we use a technique inspired by Prabhakaran and
Rosulek [28]. In particular, for circuits of depth D, we need groups G1, . . . , GD

of prime order |Gd| = pd such that Gd is a subgroup of Z
∗
pd+1

and pd+1/pd is
polynomially bounded2 for d < D. In particular, this means that, given g ∈ Gd

and h ∈ Gd+1, the operation hg is well-defined, and elements from Gd can
therefore serve as private keys for ElGamal encryption over Gd+1.

Formally we say that a vertex z is at depth d in a circuit layout L if the longest
path from an input vertex to z has length d − 1, and we write depth(z) = d. For
ease of presentation, we assume that all edges in the circuit layout L are between
vertices of adjacent depths (i.e., edges do not “skip levels”) and that all output
vertices have maximal depth D. With this simplification, we can use the group
Gd to garble vertices at depth d. (Note that this restriction is not necessary, and
the garbling scheme generalizes naturally to handle arbitrary circuits.)

2 In practice, such chains of primes can be found efficiently. Indeed, the sequence
defined by starting at q1 = 2 and setting qi+1 to be the minimal prime with qi+1 ≡ 1
mod qi is suitable. There are 497 primes in this sequence between 21024 and 26144.
The ratios between successive primes in this specific chain are conjectured to remain
polynomially bounded in the length of the primes, and other chains with this prop-
erty are conjectured to be abundant. See, for example, [18].

Cryptographic Reverse Firewalls 673

Our garbling scheme for a circuit C is shown in Figure 5, and a schematic
illustration of gate evaluation is provided in Figure 6. Alice can use the function
Garble to garble a circuit C (represented by a collection of gate functions (fz)),
yielding a collection of ciphertexts (Az) and input tags (T (b)

z)z∈I,b∈{0,1}. Given
a collection of ciphertexts (Az) and input tags (T (xz)

z)z∈I corresponding to some
input x, Bob can use the function Eval to compute C(x).

In particular, Garble assigns two tags T
(0)
z and T

(1)
z to each vertex z, which

represent the vertex taking the value 0 and 1 respectively. T
(b)
z is a uniformly

random group element for all vertices that are not output gates, while the tags
of output gates are simply encodings gb

D of output bits. Intuitively, we want Bob
to “only be able to learn” the tag corresponding to the value that each gate
takes when C is evaluated on his input.

The function Garble represents each non-input gate z by Az, a collection of
ElGamal ciphertexts. The ciphertexts are encrypted under one of four private
keys, each of which is the product of a tag from the gate’s left parent T

(bL)
L(z) and a

tag from the gate’s right parent T
(bR)
R(z) . The ciphertexts contain encryptions under

the private key T
(bL)
L(z) · T

(bR)
R(z) of the tag T

fz(bL,bR)
z corresponding to the gate’s

output on some input (bL, bR). The ciphertexts are arranged randomly in the
collection so that their order does not reveal any information about the circuit.
So that Bob can know which ciphertext he should decrypt at each gate, together
with each encrypted tag we also include a second ciphertext that encrypts a
location bit τ (under the same key). Bob can then use the two location bits from
a gate’s left and right parent to know which ciphertext CτL,τR to decrypt at the
current gate.

The output of Garble is a collection of tags and location bits
(T (b)

z , τ
(b)
z)z∈I,b∈{0,1} for the input vertices together with the ciphertexts

(Az)z∈V \I . The function Eval takes as input the ciphertexts (Az) and the tags
and location bits corresponding to some input x, (T (xz)

z , τ
(xz)
z), and it outputs

C(x).

4.2 PFE from Garbled Circuits and OT

With the garbling scheme from Figure 5 and the oblivious transfer scheme from
Section 3, we can build a private function evaluation protocol, which we present
in Figure 7. We note that the protocol can be optimized so that Bob sends his
oblivious transfer messages in one batch. With this optimization, the protocol
requires only two messages. (Bob sends (g1, c) and his oblivious transfer requests
in a single message. Alice then sends her responses to the oblivious transfer
requests and the garbled circuit, also in a single message.) The proof of security
as well as the reverse firewalls and their corresponding proofs of security can be
naturally modified to accommodate this change.

We prove the following proposition in the full version of the paper.

674 I. Mironov and N. Stephens-Davidowitz

proc. Garble(C = (fz), g1)
FOR d = 2, . . . , D,

gd
$← Gd \ {1Gd}

FOR z in V ,

b∗
z

$← {0, 1}
IF z ∈ O,

(T
(0)
z , T

(1)
z) ← (1GD , gD)

ELSE,
d ← depth(z)

(T
(0)
z , T

(1)
z)

$← G2
d

FOR z in V \ I,

Az
$← GarbleGate(z)

FOR z in I,

τ
(0)
z ← b∗

z; τ
(1)
z ← 1 ⊕ b∗

z

OUTPUT ((T
(b)
z , τ

(b)
z), (Az), (gd))

proc. GarbleGate(z)
d ← depth(z)
FOR (bL, bR) in {0, 1}2,

k ← T
(bL)

L(z) · T
(bR)

R(z)

τL = bL ⊕ b∗
L(z)

τR = bR ⊕ b∗
R(z)

η ← (τL, τR)

hη ← gk
d

b ← fz(bL, bR)

(r, s)
$← Z

2
pd

(uη , eη) ← (gr
d, hr

ηT
(b)
z)

τ ← b ⊕ b∗
z

(vη , wη) ← (gs
d, hs

ηgτ
d)

OUTPUT (hη , uη , eη , vη , wη)

proc. Eval((Tz, τz), (Az), (gd)D
d=1)

FOR d = 1, . . . , D,
IF gd = 1GD , OUTPUT ⊥

FOR z in V \ I,
(Tz, τz) ← EvalGate(z)

FOR z in O,
IF Tz /∈ {1GD , gD}, OUTPUT ⊥

OUTPUT (loggD
Tz)z∈O

proc. EvalGate(z)
k ← TL(z) · TR(z)

d ← depth(z)
PARSE (hη , uη , eη , vη , wη) ← Az

η ← (τL(z), τR(z))

IF hη 	= gk
d , OUTPUT ⊥

(Tz, Bz) ← (eη/uk
η , wη/vk

η)
IF Bz /∈ {1Gd , gd}, OUTPUT ⊥
OUTPUT (Tz, loggd

Bz)

Fig. 5. Our garbled circuit scheme with input circuit C of depth D and a publicly
known layout. (We assume for simplicity that all edges in the circuit are from vertices
of depth d to vertices of depth d+1 and that all output vertices have maximal depth.)

AL(z) AR(z)

(
T

(bR)
R(z) , τ

(bR)
R(z)

)(
T

(bL)
L(z) , τ

(bL)
L(z)

)

k ← T
(bL)
L(z) · T

(bR)
R(z)

C0,0 C1,0

C0,1 C1,1

bz := fz(bL, bR)

(T
(bz)
z , τ

(bz)
z)

(
T

(bz)
z , τ

(bz)
z

)
← Deck

(
C

τ
(bL)

L(z)
,τ

(bR)

R(z)

)Az =

Fig. 6. A schematic representation of the evaluation of a single gate. The bits bL, bR,
and bz are not known to the evaluation algorithm.

Proposition 3. The private function evaluation protocol shown in Figure 7 is
correct and secure for both Alice and Bob if DDH is hard in the (Gi).

Cryptographic Reverse Firewalls 675

Alice Bob

INPUT: C = (fz)z∈V \I INPUT: x ∈ {0, 1}|I|

Setup Phase

g1
$← G1 \ {1G1}; c

$← G1

(g1, c)←−−−−−−−−−−−−−−−−
IF g1 = 1G1 , OUTPUT ⊥
((T

(b)
z , τ

(b)
z), (Az), (gd))

$←
Garble(C, g1)

Input Phase (OT)
(For each z ∈ I)

y
$← Zp

(d, h) ← (gy
1 , cygxz

1)
(d, h)←−−−−−−−−−−−−−−−−

FOR b in {0, 1},

(q, r, s, t)
$← Z

4
p1

ub ← gq
1c

r

eb ← dq(h/gb
1)

rT
(b)
z

(ub, eb, vb, wb)
1
b=0−−−−−−−−−−−−−−−−→

Tz ← (uxz/ey
xz

)
τz ← (vxz/wy

xz
)

Output Phase
(Garbled Circuit)

((Az), (gd))−−−−−−−−−−−−−−−−→
OUTPUT

Eval((Tz, τz), (Az), (gd))

Fig. 7. A private function evaluation protocol using our oblivious transfer protocol
from Section 3 and our garbled circuit scheme shown in Figure 5. (See Figure 5 for the
functions Garble and Eval.)

4.3 Reverse Firewalls for PFE

Bob’s reverse firewall is very similar to his reverse firewall for the oblivious trans-
fer protocol in Section 3 (see full version for details). Alice’s reverse firewall is
shown in Figure 8. It makes use of a function RerandGarble that rerandomizes
garbled circuits. This procedure is rather complicated because our garbled cir-
cuits necessarily have many moving parts: location bits τ ; the ordering of the
ciphertexts, which is determined by the location bits; tags T ; the keys, which are

676 I. Mironov and N. Stephens-Davidowitz

products of the tags; and the randomness used to encrypt the tags and location
bits. Our task is to rerandomize all of this without breaking functionality. Below,
we describe the intuition behind the rerandomization procedure.

Ideally, in order to rerandomize the tags in the garbled circuit, we would
simply use the malleability of ElGamal to multiply each tag T

(b)
z by a uniformly

random mask R(b)
z . But (as Gentry et al. observe in a similar context [19]), the

firewall cannot know which tags are used to generate which keys—so maintaining
consistency between tags and keys would not be possible with this approach. We
can, however, multiply both T

(0)
z and T

(1)
z by a single uniformly random mask Rz

(i.e., we can multiply all the corresponding ciphertexts by Rz). Since we apply
this operation to both tags, we can easily maintain consistency (after noting
that an ElGamal encryption under a private key k can be easily converted into
an encryption under k · k′ without knowing k). But, we need a second degree of
freedom per gate (otherwise, T

(0)
z /T

(1)
z would remain unchanged).

We find our solution in the location bits. In particular, for each ciphertext
(h, u, e, v, w) = (h, gr, hrT, gs, hsgτ), we use the homomorphic property of
ElGamal encryption to multiply the tag T by gβzτ for uniformly random βz.
Since the location bit τ encodes which ciphertexts will be encrypted under a key
generated from T , we do not need to know which tags correspond to which keys
to maintain consistency between the tags and keys—we just need to know that
whichever tag had a corresponding location bit τ = 1 was multiplied by gβz . The
complete mask is therefore Rzg

βzτ for the appropriate value of τ . (Of course, a
tampered implementation playing the role of Alice may not produce ciphertexts
of the correct form (h, gr, hrT, gs, hsgτ) where τ is a bit. Our rerandomization
algorithm will still multiply each key of the children of the node z by the mask
Rzg

βzτ for the appropriate value of τ . This rerandomization of keys is what
makes the scheme secure.)

We also need a way to rerandomize the location bits themselves. Recall that
the location bits τ are encrypted as (v, w) = (gs, hsgτ). In order to rerandomize
them, we note that (v−1, w−1g) = (g−s, h−sg1−τ) is an encryption of τ ⊕ 1. We
can therefore flip the location bits without knowing their values.

To maintain consistency with the rerandomization of the oblivious transfer
rounds, RerandGarble takes as input the masks that should be used to rerandomize
the input tags. In particular, the procedure takes as input a collection of gar-
bled gates (Az)z∈V \I , group elements (gd)D

d=1, and masks for the input vertices
(Rz, βz, b

∗
z)z∈I , and it outputs new ciphertexts (A′

z) and new group elements
(g′

d). The masks Rz and βz are used to mask tags as described above, and the
bit b∗

z determines whether the location bits τ
(b)
z should be flipped. (The masks

for non-input vertices are selected uniformly at random by the rerandomization
procedure.)

In the full version of the paper, we prove the following theorem.

Theorem 4. The reverse firewall for Bob is robust if the DDH with a hint
game is hard in G1.

Cryptographic Reverse Firewalls 677

Alice Alice’s Firewall Bob

Setup Phase

(g1, c)←−−−−−−−−−−−−−−
(g1, c)←−−−−−−−−−−−−−−

FOR z in I
Rz

$← G1; βz
$← Zp1 ;

b∗
z

$← {0, 1}

Input Phase (OT)
(For each z ∈ I)

(d, h)←−−−−−−−−−−−−−−
(d, h)←−−−−−−−−−−−−−−

(ub, eb, vb, wb)
1
b=0−−−−−−−−−−−−−−→

FOR b in {0, 1}
(q′, r′, s′, t′) $← Z

4
p1

u′
b ← ubg

q′
1 cr′ · vβz

b

e′
b ←

ebd
q′

(h/gb
1)

r′ ·Rzwβz

v′
b ← vbg

s′
1 ct′

w′
b ← wbd

s′
(h/gb

1)
t′

IF b∗
z = 1,
v′

b ← v′−1
b ;

w′
b ← w′−1

b g1
(u′

b, e
′
b, v

′
b, w

′
b)

1
b=0−−−−−−−−−−−−−−→

Output Phase
(Garbled Circuit)

((Az), (gd))−−−−−−−−−−−−−−→
((A′

z), (g
′
d))

$←
RerandGarble((Az), (gd), (Rz, βz, b∗

z))
((A′

z), (g
′
d))−−−−−−−−−−−−−−→

Fig. 8. Alice’s firewall for the private function evaluation protocol shown in Figure 7.
See the full version of the paper for the formal definition of RerandGarble.

678 I. Mironov and N. Stephens-Davidowitz

The reverse firewall for Alice shown in Figure 8 maintains correctness, weakly
preserves Alice’s security, and is strongly exfiltration-resistant against an eaves-
dropper if non-uniform DDH is hard in the (Gd).

5 A Generic Construction for Strong Exfiltration
Resistance Against Eavesdroppers

We now show that any protocol can be converted into a protocol that has a
reverse firewall for each party that is strongly exfiltration-resistant against eaves-
droppers. The resulting protocol will have at most one additional (broadcast)
message per party (or fewer than two additional messages per party in the non-
broadcast model). For all of the primitives that we consider in this paper, the
resulting protocol will also satisfy the same security requirements as the original
protocol. We cannot say that the resulting protocol will always satisfy the same
security requirements for arbitrary primitives because security requirements are
quite a general notion. For example, a security requirement could specifically
ask that a protocol does not have an exfiltration-resistant reverse firewall.

In order to achieve this, the key idea is to use a public-key encryption scheme
that is rerandomizable and has a rerandomizable key. I.e., a reverse firewall
should be able to convert any public key into a uniformly random public key in
such a way that it can also convert messages encrypted under the resulting key
into messages encrypted under the original key. ElGamal encryption has this
property (as we observe in Section 4), so we describe the scheme using ElGamal.

In particular, we interpret all messages as elements in some group G of order
p in which DDH is hard. Each party computes g

$← G \ {1G} and x
$← Zp

and sends the message (g, h = gx) to all other parties. All future messages m
sent to a party are then replaced by ciphertexts encrypted under her public key
(u = gr, e = hrm). Each time any party receives an encrypted message (u, e),
she decrypts it m = e/ux and then proceeds with the protocol as normal. In
addition, to prevent leakage due to early termination of the protocol, the parties
never output ⊥ until the end of the protocol; they instead send encryptions of a
special message m⊥ and wait until the end of the protocol to output ⊥. A party’s
reverse firewall simply rerandomizes her keys and ciphertexts. If the party ever
sends a message that is not of the right form, the firewall simply sends two
uniformly random group elements in place of an encryption.

We show such a firewall for Alice in the two-party case in Figure 9. Note
that Bob can implement essentially the same firewall. The fact that this firewall
is strongly exfiltration-resistant against eavesdroppers follows immediately from
the assumption that DDH is hard in G.

We note that, in general, the construction in Figure 9 should not be expected
to “compose well” with other reverse firewalls. I.e., if some protocol has a reverse
firewall that preserves Alice’s security but is not exfiltration-resistant, we cannot
necessarily apply the above transformation and obtain a protocol with a reverse
firewall that both preserves Alice’s security and is exfiltration-resistant, as it
will not be possible for an efficient firewall to compute arbitrary functions on

Cryptographic Reverse Firewalls 679

Alice Firewall for Alice Bob

Key Exchange

KA
?
= (gA, hA)−−−−−−−−−−−−−−→

x′ $← Zp, α
$← Z

∗
p

IF KA /∈ G2 OR gA = 1G,

g′
A

$← G \ {1G}; h′
A

$← G
ELSE,

PARSE (gA, hA) ← KA

g′
A ← gα

A; h′
A = hA · gαx′

(g′
A, h′

A)−−−−−−−−−−−−−−→
(gB , hB)←−−−−−−−−−−−−−− (gB , hB)←−−−−−−−−−−−−−−

Encryptions of P’s
messages

(u1, e1) = (g′r
A , h′r

Am1)←−−−−−−−−−−−−−−
u′
1 ← u

1/α
1 ; e′

1 ← e1/ux′
1

(u′
1, e

′
1)←−−−−−−−−−−−−−−

M
?
= (gs

B , hs
Bm2)−−−−−−−−−−−−−−→

IF M /∈ G2, (u′
2, e

′
2)

$← G2

ELSE,
PARSE (u2, e2) ← M

r′ $← Zp

(u′
2, e

′
2) ← (u2g

r′
B , e2h

r′
B)

(u′
2, e

′
2)−−−−−−−−−−−−−−→

...

Fig. 9. A reverse firewall for Alice in a modified arbitrary two-party protocol P. Two
messages are added to the protocol in which the parties exchange public keys. They
then follow the specification of P, replacing messages mi with ciphertexts (gr, hrmi).
Bob has a similar reverse firewall.

the messages if they are encrypted. Even a very simple operation like equality
testing (e.g., testing whether a message is some specific element) cannot be done
efficiently if the message is encrypted under a semantically secure scheme. So, in
general, one may need to choose between strongly exfiltration-resistant firewalls
and firewalls that preserve security.

680 I. Mironov and N. Stephens-Davidowitz

6 Conclusion and Directions for Future Work

The revelations of Edward Snowden [3,20,27] highlight a different kind of threat
posed by sophisticated adversaries—the potential hijacking of a user’s own soft-
ware or hardware for subversive purposes. A compromised machine engaged
in a cryptographic protocol may (perhaps selectively) fail to protect security
or enable a covert communication channel through which the attacker can leak
sensitive information or coordinate its activities. Standard solutions such as test-
ing, auditing, or monitoring cannot in general ensure security since the attacker
may use cryptographic methods to cover its tracks (aided by the complexity of
modern protocols and the ubiquitous use of randomness in communications).

To counter the threat of insider attacks, we propose the concept of a (cryp-
tographic) reverse firewall, whose role is to backstop the security of some under-
lying cryptographic scheme. We discuss several desirable properties of reverse
firewalls (maintaining functionality, preserving security, and protecting against
exfiltration attacks) and two types of tampering (arbitrary tampering and
functionality-maintaining tampering). The generality of our definition provides
a framework for studying insider attacks and counter-measures across a wide
range of primitives.

Our main technical contribution is a protocol for private function evalua-
tion based on Yao’s garbled circuits and oblivious transfer that admits a reverse
firewall for both parties. The instantiation of this remarkably strong primitive
in a way that remains secure even when the user’s computer has been compro-
mised shows the power of reverse firewalls as a tool for protecting against insider
attacks. In addition, our rerandomizable garbling scheme is more efficient and
is secure against a stronger adversary than the scheme proposed by Gentry
et al. [19] (though we rely on slightly stronger number-theoretic assumptions).

We also show that any protocol can be easily converted into a protocol with
an exfiltration-resistant reverse firewall for each party (and the same function-
ality). This provides a generic way to prevent a tampered machine from leaking
information to an eavesdropper via any protocol.

We conclude with a (non-exhaustive!) list of exciting directions for future
work in the newly emphasized study of defense against insider attacks:

1. The most obvious direction for future work is simply the instantiation of
more primitives in this framework. While this work includes an instantia-
tion of private function evaluation (which can be used to instantiate many
more primitives), there is still much more to study. For example, can we
achieve stronger notions of security for two party computation? (We prove a
relatively restricted notion of security for private function evaluation.) How
efficiently (and under what assumptions) can we instantiate simpler prim-
itives in this model? What can we achieve in the multi-party case? What
about other primitives that are not implied by PFE (such as authenticated
key agreement)?

2. We hope that future work on reverse firewalls develops a comprehensive
collection of composable, efficient, modular protocols with secure reverse

Cryptographic Reverse Firewalls 681

firewalls. The “holy grail” would be a full characterization of functionalities
and security properties for which reverse firewalls exist.

3. More generally, we hope to see a systematic study of defensive mecha-
nisms against deliberate insider attacks. The legitimate targets of these
attacks include software libraries, hardware platforms, communication chan-
nels, standards, protocols, sources of entropy, system parameters, and the
choice of constants.

A Groups and Hardness Assumptions

Definition 8 (Family of groups). We say that G = (Gi)∞
i=1 is an efficiently

computable family of groups if there is some probabilistic polynomial-time algo-
rithm setup such that setup(1λ) outputs a representation of a group Gi with all
group elements represented by poly(λ) bits, a polynomial-size circuit that outputs
a uniformly random group element on random input, the order of the group, and
a polynomial-size circuit that computes the group operation over Gi.

Throughout this paper, whenever we refer to a group G with certain proper-
ties, we implicitly define a family of groups G with these properties and assume
that G

$← setup(1λ), where λ is the security parameter. We assume that all algo-
rithms have access to the group description. We write 1G to denote the identity
element in G. When we speak of negligible probabilities, polynomial-time algo-
rithms, etc., we mean probabilities that are negligible in the security parameter
λ, algorithms whose running time is polynomial in the security parameter, etc.
We sometimes need to work with more than one group at a time, so we extend
these notions in the natural way to a collection of groups.

Definition 9 (Decisional Diffie-Hellman). Let G be a group of order p.
Then, we say that decisional Diffie-Hellman (DDH) is hard in G if no probabilis-
tic polynomial-time algorithm A can distinguish between (g, gx, gy, gxy), where

g
$← G, (x, y) $← Z

2
p, and (g1, g2, g3, g4)

$← G4.

We will need a slight variant of the DDH assumption, which we call DDH
with a hint.

Definition 10 (DDH with a hint). We say that DDH with a hint is hard in
G if no probabilistic polynomial-time adversary A has non-negligible advantage
in the following game.

1. (σ, g, c, d) $← A(1λ), with (g, c, d) ∈ G3.

2. Sample b
$← {0, 1} and (x, y) $← Z

2
p.

3. If b = 1, set z ← xy. Otherwise, set z
$← Zp.

4. b∗ $← A(σ, (gx, gy, gz, cx, dy)).
5. A wins if and only if b = b∗.

682 I. Mironov and N. Stephens-Davidowitz

It will also be convenient to define two hardness assumptions that are implied
by DDH.

Definition 11 (Subgroup DDH). Let G be a group of order p and Ĝ be a
subgroup of Z∗

p. We say that Ĝ-subgroup DDH is hard in G if no probabilistic

polynomial-time algorithm A can distinguish between (g, gx, gy, gxy), where g
$←

G, (x, y) $← Ĝ2, and (g1, g2, g3, g4)
$← G4.

Lemma 1. Let G be a group of order p and Ĝ be a subgroup of Z∗
p. If DDH is

hard in G and |G|/|Ĝ| is polynomially bounded, then Ĝ-subgroup DDH is hard
in G.

Proof. Fix some probabilistic polynomial-time adversary A in the DDH game,
and let g

$← G. Consider the cosets of Ĝ in Z
∗
p. In particular, we can associate

to each pair of cosets (Ci, Cj) an advantage

PCi,Cj := Pr
(x,y)

$←Ci×Cj

[A(g, gx, gy, gxy) = 1] − Pr
(x,y,z)

$←Ci×Cj×Zp

[A(g, gx, gy, gz) = 1] .

Suppose that A has non-negligible advantage in the Ĝ-subgroup DDH game.
Then, there is some constant k such that PĜ,Ĝ > λ−k. Let I = |G|/|Ĝ| be the
index of Ĝ over G, and recall that I is polynomially bounded. By the pigeonhole
principle, there must be some interval between 0 and λ−k of length 1/(2λkI2)
such that none of the values PCi,Cj

is in this interval. So, by the Chernoff bound,
for each (Ci, Cj), we can run A, say, 100λ3kI5 times to classify PCi,Cj

as either
greater than the midpoint of this interval or less than it, failing with only negligi-
ble probability. Indeed, given (g, gx) for unknown x in coset C(x) and any coset
Cj , we can classify PC(x),Cj

by running A a total of 100λ3kI5 times on input

of the form (g, gαx, gy, gαxy) and input of the form (g, gαx, gy, gz) for z
$← Zp,

α
$← Ĝ, and y

$← Cj and comparing the results. Similarly, given (g, gy), we can
classify PCi,C(y).

Finally, we claim that given (g, gx, gy), we can classify PC(x),C(y). We do this
by first classifying all of the PCi,Cj

. We then divide the Ci into left equivalence
classes such that for two elements Ci and Ck in the same equivalence class, PCi,Cj

has the same classification as PCk,Cj
for all Cj . We similarly divide the Cj into

right equivalence classes. Finally, using the idea outlined above, we can identify
the left equivalence class of C(x) and the right equivalence class of C(y). We can
then categorize PC(x),C(y) by finding the unique category that “matches” these
equivalence classes.

So, an adversary A′ in the DDH game can, on input (g, gx, gy, gz), first
categorize PC(x),C(y). If PC(x),C(y) is greater than the midpoint of the interval,
it outputs A(g, gx, gy, gz). Otherwise, it flips a coin and outputs the result. Since
PĜ,Ĝ > λ−k, it follows that with probability at least |Ĝ|/|G| = 1/poly(λ), we
have that PC(x),C(y) is larger than the midpoint. The result follows.

Cryptographic Reverse Firewalls 683

Definition 12 (k-DDH and subgroup k-DDH). Let G be a group of order p.
For k ≥ 2, we say that k-DDH is hard in G if no probabilistic polynomial-time
algorithm A can distinguish between (g, (gxi)k

i=1, (gxixj)1≤i<j≤k) and (g∗
i)�

i=1

with � = k(k + 1)/2 + 1, where g
$← G, (xi)

$← Z
k
p, and (g∗

i) $← G�.
Let G be a group of order p, Ĝ be a subgroup of Z∗

p, and k ≥ 2. We say that
Ĝ-subgroup k-DDH is hard in G if no probabilistic polynomial-time algorithm A
can distinguish between (g, (gxi)k

i=1, (g
xixj)1≤i<j≤k) and (g∗

i)�
i=1, where g

$← G,

(xi)
$← Ĝk, and (g∗

i) $← G�.

Lemma 2. Let G be a group of order p. If DDH is hard in G, then k-DDH is
hard in G for any polynomially bounded k.

Let Ĝ be a subgroup of Z∗
p. If DDH is hard in G and |G|/|Ĝ| is polynomially

bounded, then Ĝ-subgroup k-DDH is hard in G for any polynomially bounded k.

Proof. For i = 0, . . . , (k2 − k)/2, let Game i be the game of distinguishing

between a uniformly random tuple (g∗
1 , . . . , g

∗
�) $← G� and a tuple of the form

(g, (gxi)k
i=1, (g

xixj)1≤i<j≤k) with the last i elements changed to a uniformly ran-
dom element. It follows from the assumption that DDH is hard in G that no
adversary can have non-negligibly larger advantage in Game i than in Game
i + 1. The result follows by noting that Game 0 is the k-DDH game and that
no adversary can have any advantage in Game (k2 − k)/2. The second claim
follows analogously to the proof of Lemma 1.

We will also require a non-uniform version of DDH.

Definition 13 (Non-uniform decisional Diffie-Hellman). Let G be a group
of order p. We say that non-uniform decisional Diffie-Hellman is hard in G if
no probabilistic polynomial-time algorithm A with auxiliary information aux =
aux(G) can distinguish between (g, gx, gy, gxy), where g

$← G, (x, y) $← Z
2
p, and

(g1, g2, g3, g4)
$← G4. Note that aux does not need to be efficiently computable.

We similarly extend the definitions of Ĝ-subgroup DDH, k-DDH, and Ĝ-
subgroup k-DDH to the non-uniform setting. Finally, one more definition will
be useful.

Definition 14 (Chosen-bases Ĝ-subgroup k-DDH). Let G be a group of
order p, Ĝ be a subgroup of Z∗

p, and k ≥ 2. We say that chosen-bases Ĝ-subgroup
k-DDH is hard in G if no probabilistic polynomial-time algorithm A has non-
negligible advantage in the following game.

1. (σ, (gi)k
i=1, (hi,j)1≤i<j≤k) $← A(1λ), with gi, hi,j ∈ G \ {1G}.

2. Sample b
$← {0, 1}, (xi)k

i=1
$← Z

k
p, and (g∗

i)�
i=1

$← G�, where � = (k2 + k)/2.

3. If b = 0, b∗ $← A(σ, (gxi
i)k

i=1, (h
xixj

i,j)i<j). Otherwise, b∗ $← A(σ, (g∗
i)).

4. A wins if and only if b = b∗.

684 I. Mironov and N. Stephens-Davidowitz

Lemma 3. Let G be a group of order p, and let Ĝ be a subgroup of Z∗
p. If non-

uniform DDH is hard in G and |G|/|Ĝ| is polynomially bounded, then chosen-
bases Ĝ-subgroup k-DDH is hard in G for any polynomially bounded k.

Proof. We first note that the natural non-uniform analogue of Lemma 2 holds
by an essentially identical proof. In particular, it suffices to show that chosen-
bases Ĝ-subgroup k-DDH is hard in G if non-uniform Ĝ-subgroup k-DDH is
hard in G.

Let A be an adversary in the chosen-bases Ĝ-subgroup k-DDH game in
G. Note that A may not be deterministic, but we can fix the output of A,
(σ, (gi)k

i=1, (hi,j)1≤i<j≤k) $← A(1λ), such that the advantage of A with this fixed
output is maximal. Let aux = (σ, (logg1

(gi))k
i=1, (logg1

(hi,j))1≤i<j≤k).
We then build A′, an adversary in the non-uniform Ĝ-subgroup k-DDH in

G as follows. A′ receives auxiliary input (σ, (logg1
(gi))k

i=1, (logg1
(hi,j))1≤i<j≤k)

and challenge ((g∗
i)k

i=1, (h
∗
i,j)). For each i, j, it sets g′

i ← g
∗ logg1

gi

i and h′
i,j ←

h
∗ logg1

(hi,j)

i,j . It then returns A(σ, (g′
i), (h

′
i,j)).

It should be clear that the view of A is identical to its view in the Ĝ-subgroup
k-DDH game in G.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model.
In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer,
Heidelberg (2008)

3. Ball, J., Borger, J., Greenwald, G.: Revealed: how US and UK spy agencies defeat
internet privacy and security. Guardian Weekly, September 2013

4. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS 2012, pp. 784–796. ACM, New York (2012)

5. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014)

6. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. Cryptology ePrint Archive, Report 2014/438 (2014). http://
eprint.iacr.org/

7. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

8. Brown, D., Vanstone, S.: Elliptic curve random number generation, US Patent
App. 11/336,814, August 16 (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/

Cryptographic Reverse Firewalls 685

9. Burmester, M., Desmedt, Y.G.: All languages in NP have divertible zero-knowledge
proofs and arguments under cryptographic assumptions. In: Damg̊ard, I.B. (ed.)
EUROCRYPT 1990. LNCS, vol. 473, pp. 1–10. Springer, Heidelberg (1991)

10. Burmester, M., Desmedt, Y., Itoh, T., Sakurai, K., Shizuya, H.: Divertible and
subliminal-free zero-knowledge proofs for languages. J. Cryptology 12, 197–223
(1999)

11. Burmester, M., Desmedt, Y., Itoh, T., Sakurai, K., Shizuya, H., Yung, M.: A
progress report on subliminal-free channels. In: Anderson, R. (ed.) Information
Hiding. LNCS, vol. 1174, pp. 157–168. Springer, Berlin Heidelberg (1996)

12. Vulnerability summary for CVE-2014-1260 (‘Heartbleed’), April 2014. http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1260

13. Vulnerability summary for CVE-2014-1266 (‘goto fail’), February 2014. http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266

14. Vulnerability summary for CVE-2014-6271 (‘Shellshock’), September 2014. http://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271

15. Desmedt, Y.: Subliminal-free sharing schemes. In: Proceedings of the 1994 IEEE
international symposium on information theory, p. 490, June 1994

16. Desmedt, Y.G.: Abuses in cryptography and how to fight them. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 375–389. Springer, Heidelberg (1990)

17. ElGamal, Taher: A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Robert Blakley, George, Chaum, David (eds.) CRYPT
2004. LNCS, vol. 196, pp. 10–18. Springer, New York (1985)

18. Ford, K., Konyagin, S.V., Luca, F.: Prime chains and Pratt trees. Geometric and
Functional Analysis 20(5), 1231–1258 (2010)

19. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption and
rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 155–172. Springer, Heidelberg (2010)

20. Greenwald, G.: No Place to Hide: Edward Snowden, the NSA, and the U.S. Surveil-
lance State. Metropolitan Books, May 2014

21. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for
oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)

22. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

23. Lepinksi, M., Micali, S., Shelat, A.: Collusion-free protocols. In: Proceedings of the
Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC 2005,
pp. 543–552. ACM, New York (2005)

24. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. Cryptology
ePrint Archive, Report 2014/758, full version (2014). http://eprint.iacr.org/

25. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2001, pp.
448–457. Society for Industrial and Applied Mathematics, Philadelphia (2001)

26. Okamoto, T., Ohta, K.: Divertible zero knowledge interactive proofs and commu-
tative random self-reducibility. In: Quisquater, J.-J., Vandewalle, J. (eds.) EURO-
CRYPT 1989. LNCS, vol. 434, pp. 134–149. Springer, Heidelberg (1990)

27. Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil basic safeguards of privacy
on Web. The New York Times, September 2013

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1260
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1260
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
http://eprint.iacr.org/

686 I. Mironov and N. Stephens-Davidowitz

28. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007)

29. Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST SP800-90
Dual Ec Prng. CRYPTO Rump Session (2007)

30. Simmons, G.: The prisoners’ problem and the subliminal channel. In: Chaum, D.
(ed.) Advances in Cryptology, pp. 51–67. Springer, US (1984)

31. Simmons, G.J.: The subliminal channel and digital signatures. In: Beth, T., Cot, N.,
Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 364–378. Springer,
Heidelberg (1985)

32. Young, A., Yung, M.: The dark side of “Black-Box” cryptography, or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996)

Key Exchange

Mind the Gap: Modular Machine-Checked
Proofs of One-Round Key Exchange Protocols

Gilles Barthe1, Juan Manuel Crespo1,2, Yassine Lakhnech3,
and Benedikt Schmidt1(B)

1 IMDEA Software Institute, Madrid, Spain
{gilles.barthe,benedikt.schmidt}@imdea.org

2 FireEye Germany, Dresden, Germany
juanmanuel.crespo@fireeye.com

3 University of Grenoble and VERIMAG, Grenoble, France
yassine.lakhnech@imag.fr

Abstract. Using EasyCrypt, we formalize a new modular security proof
for one-round authenticated key exchange protocols in the random ora-
cle model. Our proof improves earlier work by Kudla and Paterson (ASI-
ACRYPT 2005) in three significant ways: we consider a stronger adver-
sary model, we provide support tailored to protocols that utilize the Naxos
trick, and we support proofs under the Computational DH assumption not
relying on Gap oracles. Furthermore, our modular proof can be used to
obtain concrete security proofs for protocols with or without adversarial
key registration. We use this support to investigate, still using EasyCrypt,
the connection between proofs without Gap assumptions and adversar-
ial key registration. For the case of honestly generated keys, we obtain
the first proofs of the Naxos and Nets protocols under the Computational
DH assumption. For the case of adversarial key registration, we obtain
machine-checked and modular variants of the well-known proofs forNaxos,
Nets, and Naxos+.

Keywords: Provable security · Security protocols · EasyCrypt ·
Key exchange · Interactive theorem proving

1 Introduction

Cryptographic protocols, like TLS, SSH, and VPNs, are one of the main build-
ing blocks of the Internet. At the heart of these protocols lies a key exchange
protocol, which allows two parties to establish a shared session key used for
building a secure channel. Traditionally, key exchange has often been realized
using key transport protocols. Here, one participant generates the session key
and uses public key encryption and signatures to transport it to the peer. Since
this approach usually uses a longterm public key for encryption, it lacks resilience
against leakage of the corresponding secret key, either through cryptanalysis or
coercion. Concretely, if an adversary obtains the longterm secrets of a partici-
pant, he can obtain all his session keys. Resilience against such attacks is called
© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 689–718, 2015.
DOI: 10.1007/978-3-662-46803-6 23

690 G. Barthe et al.

forward secrecy [24]. While long known in the cryptographic community, forward
secrecy has recently come under public light following revelations about mass
surveillance and implementation bugs such as Heartbleed. As a consequence, we
expect that the ongoing shift from key transport protocols to key agreement
protocols that achieve forward secrecy will accelerate; for instance, there is con-
sensus to deprecate RSA key transport in TLS 1.3.

One solution to achieve forward secrecy is to use protocols that use an
ephemeral Diffie-Hellman (DH) exchange. Since the ephemeral DH exchange
uses fresh exponents for each session, protocols using them can provide forward
secrecy. In order to provide authentication, most popular protocols such as TLS
and SSH sign the exchanged DH messages. Theoretically, key agreement proto-
cols based on signed DH are well understood and allow for relatively straight-
forward proofs of the classical security properties and forward secrecy [10,18].
In practice, their usage in real-world protocols poses additional problems and
there is a large body of work on analyzing the security of the combined channel
establishment protocol [13,27,32].

Nevertheless, the use of signatures has several disadvantages. First, standard-
ization and implementation must include a signature scheme which might not
be required otherwise. Second, the use of signatures might compromise deniabil-
ity [30]. Third, signing and verification time might be a bottleneck. Furthermore,
several realistic attacks are still possible for one-round versions of such protocols.
For example, leakage of session randomness can lead to the compromise of future
sessions in signed DH protocols [31, Section1.6].

To address these deficiencies, implicitly authenticated key exchange (IAKE)
protocols have been introduced in [40]. Such protocols enhance an ephemeral DH
exchange with static DH keys that are only used in the key computation. Many
protocols of this type have been proposed, such as HQMV [31], Naxos [36], and
Nets [38], and they often surpass signature-based protocols in terms of perfor-
mance and security. For example, the HMQV protocol, which is a hashed variant
of the MQV [37] protocol, adds authentication to the ephemeral Diffie-Hellman
protocol at a very low cost if Shamir’s trick [25] is used for multi-exponentiation.
Prominent instances of deployed systems based on such protocols include the
EMV [17] chip based payment system, which uses a custom protocol and Black-
berry phones, which use the elliptic curve version of MQV [37]. One of the main
adversary models for IAKE protocols is the extended Canetti-Krawczyk (eCK)
model [36], which provides very strong security guarantees such as (weak) per-
fect forward secrecy and session key secrecy even in the case where the session’s
randomness is leaked.

However, a number of concerns with the provable security of this class of pro-
tocols remain. First, only some of them achieve efficient designs and tight reduc-
tions under standard assumptions such as computational DH (CDH). Instead,
known proofs of efficient protocols often use the Forking Lemma (and therefore
give non-tight reductions), or strong assumptions such as Gap-CDH [43]. Sec-
ond, and probably more importantly, the security definitions for key exchange
protocols are an order of magnitude more complex than standard definitions for

Mind the Gap: Modular Machine-Checked Proofs 691

most cryptographic primitives, such as IND-CCA. This results in long proofs
that few people understand or check for flaws. Unsurprisingly, numerous attacks
have been discovered on key exchange protocols [28,31,41,42], even on those
claimed provably secure. This second problem is not exclusive to key exchange
protocols. In fact, two approaches have been developed to tame the complexity
of cryptographic proofs in the computational model.

The first approach is to develop generic results that can be applied to many
concrete instances. While genericity does not eliminate the possibility of flaws,
it allows to build a reduced corpus of results on which the security of proto-
cols depends, and gives greater incentive to examine their proofs carefully. One
popular class of generic results in cryptography are protocol transformations. If
a protocol Π is secure with respect to an adversary model M, then Π can be
transformed into a (more complicated) protocol Π ′ that is secure with respect
to a stronger adversary model M′. For key exchange, this approach was pio-
neered by Bellare, Canetti, and Krawczyk [8] and other transformations have
been proposed by Kudla and Paterson [33], Cremers and Feltz [23], and Boyd
et al. [16]. However, existing transformations have several drawbacks, in partic-
ular: the transformation in [8] cannot be applied to many protocols of interest;
the transformations in [16,23] assume that the initial protocol is already secure
in the eCK model; and the transformation in [33] only supports proofs under Gap
assumptions, predates the eCK model and is only applicable to weaker security
models.

The second approach is to build machine-checked, independently verifiable
proofs of security; this approach has been suggested notably by Halevi [26], and
more recently by Hales1 in the context of verifying the absence of trapdoors
in NIST standards. Assuming that the verification tool is correct, one can gain
trust in a formal proof simply by checking the definitions it uses and the the-
orem statement, since the tool ensures the correctness of the reasoning steps.
There are two mature tools to perform machine-checked cryptographic proofs
in the computational model: CryptoVerif [14] and EasyCrypt [5,6]. CryptoVerif
is an automatic prover in the computational model and has been applied to
cryptographic constructions such as the Full Domain Hash signature scheme,
Kerberos, and the One-Encryption Key Exchange. EasyCrypt is a toolset for the
construction and verification of game-based cryptographic proofs and has mostly
been applied to cryptographic primitives, such as the Cramer-Shoup encryption
scheme, and the OAEP padding scheme. So far neither of these tools have been
used to obtain machine-checked proofs of modern key exchange protocols with
respect to their intended security definitions.

Both approaches are complementary. Indeed, machine-checked proofs make
checking proofs efficient, but they also significantly increase the cost of building
proofs. As a consequence, generic results are ideal targets for machine-checked
proofs, for two reasons. First, the cost of building proofs for generic results is
justified by their multiple applications. Second, the level of abstraction required
1 https://jiggerwit.wordpress.com/2013/11/04/formalizing-nist-standards/

https://jiggerwit.wordpress.com/2013/11/04/formalizing-nist-standards/

692 G. Barthe et al.

to obtain generic proofs combined with the explicit tracking of assumptions in
machine-checked proofs often provides new insights.

Contributions

We develop a new generic proof of security for key-exchange protocols, and
instantiate it to obtain security proofs for known protocols with respect to dif-
ferent adversary models and hardness assumptions. In the cases of Naxos and
Nets, we show that it is possible to obtain a CDH proof (without GAP) if static
keys are honestly generated. We also formalize our generic proof and its instan-
tiations using EasyCrypt. We elaborate on these points below.

Generic Proof for eCK Security. We consider the class of one-round Diffie-
Hellman protocols defined in the random oracle model where the session key
is the output of a hash function. We reduce eCK-security of a key exchange
protocol in this class to a condition on the key computation function and four
simple games, in which the adversary can access at most one oracle. For protocols
that employ the Naxos trick and use h(x, a) as the exponent of the DH message,
we provide an even simpler reduction with three games.

Concretely, we structure our generic proof in terms of protocol transforma-
tions and different versions of the security game. We are interested in eCK secu-
rity. As proof tools, we also use three additional security games:

eCK: Adversary must distinguish the session key of a fresh test session from
random key.

eCKnt: Variant of eCK where adversary must provide the actor’s static secret
key as input to the ephemeral reveal oracle.

CSK: Simplified game for protocols that do not use the Naxos trick where
adversary must compute session key of test session (4 cases).

CSKnt: Simplified game for protocols that use the Naxos trick where adversary
must compute session key of test session (3 cases).

We then define protocol transformations T nt (use Naxos trick) and T hsk (hash
session key) and prove that the following implications hold for all protocols Π:

Π is eCKnt-secure =⇒ T nt(Π) is eCK-secure
Π is CSKnt-secure =⇒ T hsk(Π) is eCKnt-secure
Π is CSK-secure =⇒ T hsk(Π) is eCK-secure

As an example, consider the Naxos protocol which uses the Naxos trick
and hashes its session key. We first define the “core” of Naxos and call it
Naxoscore. Since it holds that Naxos = T hsk(T nt(Naxoscore)), it suffices to prove
that Naxoscore is CSKnt-secure to obtain that Naxos is eCK-secure. While the orig-
inal eCK security definition consists of a game with seven oracles where the win-
ning condition contains a complicated freshness condition, the CSKnt game has
a very simple winning condition and only provides a decision oracle that allows
the adversary to confirm session key guesses.

Mind the Gap: Modular Machine-Checked Proofs 693

Protocol Existing Proof Our Proofs EasyCrypt

Naxos [36] eCK/Gap-CDH eCKkr/Gap-CDH, eCKnkr/CDH yes
Nets [38] eCKkr/Gap-CDH eCKkr/Gap-CDH, eCKnkr/CDH yes
Naxos+ [39] eCKkr/Gap-CDH eCKkr/CDH yes
HMQV [31]∗ CKHMQV/Gap-CDH+KEA1 eCKkr/Gap-CDH no

Fig. 1. Obtained proofs for Key Exchange Protocols (∗see explanation, nt=non-tight)

To compare different models of key distribution, we support two versions
of the eCK model: The eCKnkr model where all static keys are honestly gener-
ated and the eCKkr model that allows the adversary to adaptively register arbi-
trary public keys for dishonest parties without providing a proof of possession.
The original eCK model [36] sits in between our two versions. The adversary can
register arbitrary public keys for dishonest parties before activating the first ses-
sion, i.e., the registered public keys can depend on public keys of honest parties,
but not on protocol messages, as, for example, required for Kaliski’s attack [28]
on MQV.

Our proof improves [33] in several ways: it uses the stronger eCK adversary
model (with and without adversarial key registration); it supports proofs under
standard assumptions (whereas the proof from [33] requires Gap assumptions),
and; it exploits the Naxos trick resulting in simpler proof obligations for proto-
cols that use it.

Concrete Proofs. We instantiate the generic proof to obtain security proofs for
existing protocols; in all cases, the proofs of the simplified games are short by the
standards of machine-checked proofs. Our results are summarized in Figure 1.
Concretely, we prove that:

− Naxos and Nets are secure in the eCK model under the CDH assumption if
keys are honestly generated. If we allow arbitrary adversarial key registra-
tion, we require the Gap-CDH assumption as in the original proof.

− The Naxos variant Naxos+ [39] is secure in the eCK model with arbitrary
adversarial key registration under the CDH assumption. Here we obtain a
similar result to the original proof using our generic proof method.

− A version of HMQV is secure in the eCK model under the Gap-CDH assump-
tion. The version we analyze includes the identities and exchanged message
in the input of the key derivation hash. The proof does not need KEA1
(knowledge of exponent assumption).

EasyCrypt Formalization. We have formalized all models, our generic proof
for protocols using the Naxos trick, and the proofs for Nets, Naxos, and Naxos+
in EasyCrypt. Our formalization constitutes the biggest case study developed
with the tool so far; e.g. the generic proof for protocols using the Naxos trick
takes about 30,000 lines of code, including game definitions (about 50 of them),
specifications, and proofs. On the other hand, the instantiation of the proof for

694 G. Barthe et al.

concrete protocols is short and takes less than 1,000 lines each. Our formaliza-
tion also includes several reusable libraries that deal with random oracles, Twin
DH, and common proof techniques such as plug and pray, that we discuss in
Section 2.3.

Future Work

There are several directions for future work, including:
1. Automation and synthesis. The next logical step of this work is to extend

our library of high-level principles to reason about AKE proofs in the random
oracle model and provide more automation to simplify their application. These
high-level principles will serve as a useful basis for future formalizations in Easy-
Crypt (beyond AKE), but will also make it faster to extend the current proof
to support new features. They could also serve as a basis for fully automated
proof methods and allow for the use of synthesis to generate secure protocols,
following [3].

2. Extensions. We plan to strengthen our results in different directions. Possi-
ble extensions include adversary models with a more precise model of the CA [16],
adversary models that allow reveal of different parts of state, and models of weak
randomness. Moreover, we are also interested in using our framework to analyze
larger protocols that use AKE as a subprotocol. This will be valuable to evaluate
existing [45] and future proposals for secure transport-layer protocols.

3. Implementations. Our model provides a precise specification of the pro-
tocol. Using the techniques from [2], we intend to carry the security proof to
executable implementations.

Related Work

There is a vast body of literature on key-exchange protocols and on their asso-
ciated security models; for a comparison between some existing models we refer
to [20,22,34]. In addition to Naxos+, which we already mentioned, there are
other protocols that achieve eCK-security under the CDH assumption, e.g., by
Kim, Fujioka, and Ustaoglu [29] or by Pan and Wang [44].

There has been extensive work on the formal verification of key exchange
protocols, see for instance the recent survey [15]. A significant amount of work is
carried in the symbolic model, a high-level model which idealizes the treatment
of cryptographic primitives. This level of abstraction makes the symbolic model
amenable to automated analysis, and many tools have been developed for proving
protocol security. Recent results focusing on DH-based key exchange protocols
include [7], [35] and [46]. Over the last decade, many results on computational
soundness results [1,21] have shown that under certain conditions, protocols
deemed secure in the symbolic model remain secure in the computational model.
Another related line of research (see, e.g., [12]) deals with the verification of
implementations of security protocols such as TLS in the computational model.

Mind the Gap: Modular Machine-Checked Proofs 695

2 Background

In this section, we give some background on notation, authenticated key exchange
protocols, and EasyCrypt.

2.1 Notation

A∗ denotes the set of all sequences with elements taken from A. For two sequences
s1 and s2, we use S1 ++S2 to denote their concatenation. We use s1 ←++ s2 as a
shorthand for the assignment s1 ← s1 ++ s2. In the special case of bitstrings b1
and b2, we also use b1 ‖b2 to denote their concatenation.

We use A ⇀ B to denote the set of partial functions from A to B. If
f is a (partial) function, we define f [a := b] as the function x �→ if x =
a then b else f(x). In games, we use f [a] ← b as a shorthand for f ← f [a := b]
(update f at key a). For a finite set A, we use x

$← A to denote that x is uniformly
sampled from A.

We use G to denote a cyclic group of prime order p with generator g. We use
Fp to denote the field of integers modulo p. We use dlog(Y) to denote the discrete
logarithm of Y with respect to the basis g. We define dh(X,Y) .= Xdlog(Y) and
ddh(X,Y,Z) .= (dh(X,Y) = Z). Based on the previous definitions, we define the
following cryptographic assumptions. The challenger for DLOG gives X

$← G to
the adversary who must return dlog(X). The challenger for CDH gives X,Y

$← G

to the adversary who must return dh(X,Y). For SCDH, the adversary is given the
same challenge, but must return a set containing dh(X,Y). We also define Gap
versions [43] of these assumptions where the adversary is given access to an
oracle that returns ddh(X,Y,Z) for arbitrary X,Y,Z ∈ G.

2.2 One-Round Authenticated Key Exchange Protocols

In the following, we focus on one-round key exchange protocols. We believe most
of our results can be extended to a more general notion of protocol. Further note
that our results are not restricted to DH-based protocols and the formal defini-
tions in Section 3.1 will generalize some of the notions we introduce informally
in this section.

Figure 2 shows the computations and exchanged messages for a typical DH-
based key exchange protocol. We assume a protocol consists of three components.
First, there is a protocol component for key generation, which we show in the
first line. Here, a participant Â samples the static secret key a and computes the
corresponding static public key A. Second, there is a component responsible for
the distribution of the static public keys. We ignore the details for now and just
assume that an agent can obtain the public key of another agent.

Finally, there is a component responsible for establishing the session key.
This component consists of an initiator role and a responder role. If an agent
Â executes an instance of the initiator (resp. responder) role with the goal of
establishing a session key with B̂, we call this execution a session with role
initiator (resp. responder), actor Â, and peer B̂.

696 G. Barthe et al.

Â : a
$← Fp, A = ga B̂ : b

$← Fp, B = gb

x
$← Fp receive X

receive Y y
$← Fp

compute session key

KeyI (x, a, Y, B, Â, B̂)

compute session key

KeyR(y, b, X, A, B̂, Â)

gx gh(x,a)

gy gh(y,b)

Fig. 2. Generic two pass protocol. Protocols using the Naxos trick use boxed messages.

When the initiator role is activated with actor Â and peer B̂, it first generates
an ephemeral secret key x, computes the ephemeral public key X, sends it to B̂,
and waits for a reply. When the responder B̂ is activated with a received message
from Â, he stores the received message as X, generates y and Y in the same way
as the initiator, sends Y to Â, and computes the session key using the KeyR
function. When the initiator is activated with the received message, he computes
the session key using KeyI .

We can define the HMQV protocol by using KeyI /KeyR that compute the
key as H(σ) for σ = dh(X,Y) dh(X,B)e dh(A, Y)d dh(A,B)de, e = h̄(X, B̂),
and d = h̄(Y, Â). We can define the Naxos and Nets protocols by using the
boxed expressions from Figure 2 to compute X and Y . These protocols both
utilize the Naxos trick which combines the static and the ephemeral secret using
the hash function h to obtain the exponent of ephemeral public key. Since the
hash output is never stored and recomputed when required, these protocols are
analyzed with respect to possible leakage of x or a, but leakage of h(x, a) is not
considered. The Naxos protocol defines the session key as H(σ) for σ = dh(A, Y)‖
dh(X,B) ‖ dh(X,Y) ‖ Â ‖ B̂. The Nets protocol defines the session key as H(σ)
for σ = dh(X,Y) dh(X,B) dh(A, Y) dh(A,B) ‖ dh(X,Y) ‖ Â ‖ B̂ ‖ X ‖ Y . The
Naxos+ protocol extends the Naxos protocols with the additional group element
dh(A,B), i.e., the session key is defined as H(σ) for σ = dh(A, Y) ‖ dh(X,B) ‖
dh(X,Y)‖dh(A,B)‖Â‖B̂.

Informally, the security notion expected of such protocols is the following. If
Â completes a session with (honest) peer B̂, then the session string computed
by Â is indistinguishable from a random bitstring for everyone except B̂. It has
been shown by Canetti and Krawczyk [18] that this is sufficient to establish a
secure channel between Â and B̂. The secure channel can then be used for key
confirmation. Recent adversary models like eCK build on this definition, but also
allow for many scenarios where the adversary learns additional information such
as ephemeral secret keys, static secret keys, or session keys. The eCK-model
guarantees resilience against Unknown Key Share Attacks, Key Compromise
Impersonation Resilience, and Weak Perfect Forward Secrecy, which we discuss
at the end of Section 3.1.

Mind the Gap: Modular Machine-Checked Proofs 697

2.3 EasyCrypt

EasyCrypt [5,6] is a machine-checked framework for building and verifying secu-
rity proofs of cryptographic constructions. EasyCrypt follows the code-based,
game-based approach to reductionist arguments: a proof consists of a series of
probabilistic programs with adversarial code, called games, and of probabilis-
tic claims relating the probability of one or more events in one or more games.
However, EasyCrypt adopts a foundational approach, meaning that probabilistic
claims, and the overall security statement, must all be justified to the last detail
by means of elementary rules. Leveraging the state of the art in program verifi-
cation, all probabilistic claims are proved using a probabilistic Relational Hoare
Logic (pRHL), which generalizes Relational Hoare Logic [11] to a probabilistic
setting. pRHL is a program logic whose judgments are of the form

{Φ}c1 ∼ c2{Ψ}

where c1 and c2 are games and Φ and Ψ are relations on program states. The
rules of pRHL allow to derive valid judgments, where a judgment as above is
valid if for every initial memories m1 and m2 that are related by Φ, the output
sub-distributions obtained by executing c1 on m1 and c2 on m2 respectively are
related by Ψ#, where # is an operator that lifts relations on states to relations on
sub-distributions over states. The definition of # is inspired from probabilistic
process algebra. For suitable choices of Ψ , this implies inequalities of the form

Pr [c1,m1 : E1] ≤ Pr [c2,m2 : E2]

which are typical in game-based proofs, i.e., the probability of event E1 after
executing c1 in initial memory m1 is upper-bounded by the probability of event
E2 after executing c2 in m2.

Although pRHL captures common patterns of reasoning in cryptographic
proofs, there is an impedance mismatch between cryptographic practice
and proofs built using pRHL; in particular, pRHL lacks mechanisms to instanti-
ate previous results, and to apply high-level principles in proofs. To make matters
precise, consider for instance the reduction of SCDH to CDH: using pRHL, one
can prove that any instance of SCDH can be reduced to CDH, but one cannot
perform the proof once and for all, and reuse the result. Fortunately, EasyCrypt
now features a module system; the module system combines the power of module
systems, as they exist in functional programming languages, with a system of
capabilities that is used to restrict access to oracles or fragments of memories,
as required in cryptography. The module system can be used for performing
successive reductions locally, as often featured in pen-and-paper proofs. Mod-
ule systems are essential to formalize complex proofs such as the ones consid-
ered here; indeed, previous attempts to carry out the generic proof without the
module system were unsuccessful, because the adversary was carried explicitly
throughout the proof, making reasoning unwieldy.

Additionally, the module system allows to prove general principles once and
for all, and to carry out proofs simply by applying high-level principles. In our

698 G. Barthe et al.

formalization underlying this paper, we make extensive use of the following prin-
ciples:
− lazy and eager sampling: this is used to switch back and forth between

an implementation of a random function in which images are sampled on
demand (lazily), or during initialization of the game (eagerly);

− plug and pray: if some event Φ happens for some 0 ≤ i < n, randomly sample
a value j in this range and consider the event Φ ∧ i = j instead of Φ; and

− adversary prescience: this is used to provide an upper bound to the proba-
bility that an adversary guesses an unused value in the range of a random
function

3 Model and Generic Proof

In this section, we first introduce our generic protocol model and our versions
of the eCK model with and without adversarial key registration. Afterwards, we
present our generic proof for protocols that employ the Naxos trick.

3.1 eCKkr Security and eCKnkr Security

We assume given a set ID of agent identities. We also define the set Role = {I,R}
and the function (·)� : Role → Role such that I� = R and R� = I.

Generic Protocol Model. A protocol definition consists of instantiations for
the types and functions given in the first column of Figure 3. These types and
functions are instantiated as follows:
− The sequence H1 : I1 → O1, . . . , Hk : Ik → Ok defines the types of hash

functions used by the protocol.
− Sk defines the type of static secret keys, Pk defines the type of static public

keys, Esk defines the type of ephemeral secret keys, Epk defines the type of
ephemeral public keys, and Key defines the type of session keys.

− The function Pk defines how the static public key is computed from the
static secret key and the function Epk defines how the ephemeral public key
is computed from the ephemeral secret key and the static secret key.

− The functions KeyI and KeyR define how the session key is computed from
the actor’s secret data, the peer’s public data, and the participants’ identities.
We use partial functions to capture failure, e.g., if a subgroup element check
fails for one of the arguments.

We keep the distributions according to which the static and ephemeral secret keys
are sampled implicit and assume they are uniformly sampled unless otherwise
stated. The functions Epk , KeyI , and KeyR can use the hash functions Hi. See
Figure 3 for the Naxoscore instantiation of the generic model. In the next section,
we will demonstrate how Naxoscore can be transformed into Naxos.

Mind the Gap: Modular Machine-Checked Proofs 699

Types/Functions Naxoscore Naxos = T hsk(T nt(Naxoscore))

Hash functions ∅ H : G3×ID2 → {0, 1}l, h : F2
p → Fp

Sk, Pk, Esk, Epk, Key Fp, G, Fp, G, G3 × ID2
Fp, G, Fp, G, {0, 1}l

Pk : Sk → Pk a �→ ga a �→ ga

Epk : Esk × Sk → Epk (x,) �→ gx (x, a) �→ gh(x,a)

KeyI : Esk × Sk × Epk
× Pk × ID × ID → Key⊥

(x, a, Y, B, Â, B̂) �→
Y a ‖Bx ‖Y x ‖Â‖B̂

(x, a, Y, B, Â, B̂) �→
H(Y a ‖Bh(x,a) ‖Y h(x,a) ‖Â‖B̂)

KeyR : Esk × Sk × Epk
× Pk × ID × ID → Key⊥

(y, b, X, A, B̂, Â) �→
Ay ‖Xb ‖Xy ‖Â‖B̂

(x, a, Y, B, B̂, Â) �→
H(Ah(y,b) ‖Xb ‖Xh(y,b) ‖Â‖B̂)

Fig. 3. Generic Protocol Model with Naxoscore instantiation and transformation

Protocol Transformations. We define two transformations T hsk and T nt. The
first transformation T hsk modifies a protocol to hash the session key. The sec-
ond transformation T nt modifies a protocol to utilize the Naxos trick. Figure 3
demonstrates how the Naxos protocol can be obtained by applying the two trans-
formations to Naxoscore. We assume T hsk is implicitly parameterized by a positive
integer l defining the size of the hash function output.

Given a protocol Π using hash functions H, defining types Sk, Pk, Esk,
Epk, Key, and defining functions Pk , Epk , KeyI , KeyR, the transformed pro-
tocols T hsk(Π) and T nt(Π) are defined as follows. We obtain T hsk(Π) from Π
by adding a hash function H : Key → {0, 1}l to H, changing the type Key to
{0, 1}l, redefining KeyI in terms of the original KeyI as ki �→ H(KeyI (ki)),
and redefining KeyR analogously. We obtain T nt(Π) from Π by adding a hash
function h : Esk × Sk → Esk to H and redefining Epk in terms of the original
Epk as (x, a) �→ Epk(h(x, a), a). We also redefine the key computation to use
h(x, a) instead of x. Note that the original Epk usually ignores its second input
and a is therefore only used as input to h in the computation of the ephemeral
public key. We denote the composition of T nt and T hsk with T nt,hsk.

Security Experiments. To define the games eCKkr and eCKnkr (with and with-
out adversarial key registration), we first define the type St for the state of pro-
tocol sessions and the type Ev for the events required to express the security
definition. We define St as Role×Esk×Epk× ID× ID×Epk⊥ ×Key⊥. We define
Ev as the data type generated by the constructors

EphRev : Epk → Ev, KeyRev : Epk → Ev,StaticRev : ID → Ev,
Accept : Role × Epk × ID × ID × Epk → Ev, and Dishonest : ID → Ev,

The main procedure of the games eCKkr,Π(A) and eCKnkr,Π(A) is given in the
first column of Figure 4. We assume that the adversary A consists of the two
procedures A1 and A2 sharing state. In the games, the adversary is provided
with access to the oracles defined in the second column of Figure 4 and with

700 G. Barthe et al.

random oracle access using wrappers HA
1 , . . . ,HA

k . The oracles establishHonest
and establishDishonest (only in eCKkr,Π) allow the adversary to establish honest
agents for which the keys are sampled and dishonest agents where the public
key can be chosen. For honest agents, the adversary can control the execution
of initiator and responder sessions using init1 , init2 , and resp. Dishonest agents
can be used as peers of protocol sessions, but cannot be used as actors since the
static secret key is required to execute the protocol. The remaining oracles allow
the adversary to reveal static secrets, ephemeral secrets, and session keys.

The adversary wins if he can distinguish the session key of the test session
from a random session key and the test session is fresh, i.e., he did not perform
forbidden reveal queries. The freshness condition is formalized using the fresh
predicate given in Figure 5. We use the ephemeral public key to identify a session
for session key reveals and ephemeral reveals.

Discussion. In eCKkr, we allow the actor of the test session to execute sessions
with dishonest users, but the actor and peer of the test session itself must be
honest. In both eCKkr and eCKnkr, we disallow Â = B̂ because many deployed
protocols disallow this case or use distinct keys for different roles. It would be
possible to lift this limitation at the cost of additional proof obligations for users
of the generic proof.

The freshness condition captures Unknown Key Share Attacks because if Â
establishes a key with B̂, but B̂ believes that he shares this key with Ĉ �= Â, then
there are two non-matching sessions with the same session key and one of them
can be revealed. It captures Key Compromise Impersonation because leakage of
the actors static secret key is allowed for the test session. It also captures Weak
Perfect Forward Secrecy because for all sessions where the adversary is passive
(there is a matching session), reveals for all ephemeral secrets, except for those
of the test session and its matching session, and for all static secrets are allowed.
The stronger notion of Perfect Forward Secrecy requires changes to the freshness
condition and we leave such an extension of our results open for future work.

In our definition of Naxos, we use the type G for ephemeral and static public
keys. This models an implementation ensuring that these values are elements
of G. It is also possible to use a “larger type” and explicitly model the required
checks using failure in the key computation functions.

3.2 Generic Proof

Before presenting our generic proof, we define three properties of core protocols:

(P1) The functions Pk and Epk are injective.
(P2) KeyI (x, a, Y,B, Â, B̂) is efficiently computable fromKeyR(x, a, Y,B, Â, B̂).
(P3) If two distinct sessions (X,Y, Â, B̂, r) and (X ′, Y ′, Â′, B̂′, r′) compute the

same session key, then (X,Y, Â, B̂) = (Y ′,X ′, B̂′, Â′) and {r, r′} = {I,R}.

We assume the second property for simplicity. For core protocols, which we
consider here, it usually suffices to reorder the key string elements to obtain

Mind the Gap: Modular Machine-Checked Proofs 701

Game: Oracles (eCKnkr does not include establishDishonest):

var evs : Ev∗ = []
var ses : Nat ⇀ St = ∅
var sks : ID ⇀ Sk = ∅
var pks : ID ⇀ Pk = ∅
var i : Nat = 0

t ← A1()

(r, , X, Â, B̂, Y, k)
← ses[t]

b
$← {0, 1}

k′ $← Key
b′ ← A2(b ? k : k′)
t ← (r, X, Â, B̂, Y)
return

b = b′ ∧ freshevs(t)

init1 (Â, B̂) : Epk =
i ← i + 1

a ← sks[Â]

if a = ⊥ ∨ Â = B̂ then
return ⊥

x
$← Esk; X ← Epk(x, a)

ses[i] ← (I, x, X, Â, B̂, ⊥, ⊥)
return (i, X)

init2 (i, Y) =

(I, x, X, Â, B̂, Ȳ ,) ← ses[i]
if Ȳ
= ⊥ then return ⊥
a ← sks[Â]; B ← pks[B̂]

k ← KeyI (x, a, Y, B, Â, B̂)

ses[i] ← (I, x, X, Â, B̂, Y, k)
if k = ⊥ then return ⊥
evs ←++Accept(I, X, Â, B̂, Y)

resp(B̂, Â, X) : Epk =
i ← i + 1

if Â = B̂ then return ⊥
b ← sks[B̂]; A ← pks[Â]

y
$← Esk; Y ← Epk(y, b)

k ← KeyR(y, b, X, A, B̂, Â)
if k = ⊥ then return ⊥
ses[i] ← (R, y, Y, B̂, Â, X, k)

evs ←++Accept(R, Y, B̂, Â, X)
return (i, Y)

establishHonest(Â) : Pk =

if pks[Â]
= ⊥ then
return ⊥

sks[Â]
$← Sk

pks[Â] ← Pk(sks[Â])

return pks[Â]

establishDishonest(Â, A) =

if pks[Â]
= ⊥ then
return ⊥

pks[Â] ← A

evs ←++Dishonest(Â)

staticRev(Â) : Sk =

evs ←++StaticRev(Â)

return sks[Â]

ephRev(i) : Esk =
(, x, X, , , ,) ← ses[i]
evs ←++EphRev(X)
return x

keyRev(i) : Key =
(, , X, , , , k) ← ses[i]
evs ←++KeyRev(X)
return k

Fig. 4. Games eCKkr,Π(A) and eCKnkr,Π(A) for A = (A1, A2) and protocol Π

KeyI (ki) from KeyR(ki). The third property is called strong partnering in [33]
and ensures key independence.

Exploiting the Naxos Technique. We exploit that for protocols T nt(Π)
using the Naxos technique, both x and a are required to learn the secret input
h(x, a) of Epk . This is a consequence of the fact that the value h(x, a) cannot
be revealed by the adversary in the eCK model. This decision is motivated by
the assumption that honest agents executing the protocol never store the value
h(x, a). We can therefore prove security of Π in a restricted eCKnt game to
obtain eCK-security of T nt(Π). For m ∈ {kr, nkr}, we obtain eCKnt

m from eCKm

702 G. Barthe et al.

freshevs(r, X, Â, B̂, Y)
.
=

There is no session key reveal for t, not both ephemeral and static reveal for t,

KeyRev(X) /∈ evs ∧ ¬(EphRev(X) ∈ evs ∧ StaticRev(Â) ∈ evs)

and the adversary did not register Â’s or B̂’s public keys.

∧ Dishonest(Â) /∈ evs ∧ Dishonest(B̂) /∈ evs
If there is a matching session t′, then

∧ (Accept(r�, Y, B̂, Â, X) ∈ evs =⇒
there is no key reveal for t′ and not both ephemeral and static reveal for t′.
(KeyRev(Y) /∈ evs ∧ ¬(EphRev(Y) ∈ evs ∧ StaticRev(B̂) ∈ evs)))

If there is no matching session, then there is no static reveal for B.

∧ (Accept(r�, Y, B̂, Â, X) /∈ evs =⇒ StaticRev(B̂) /∈ evs)

Fig. 5. Freshness condition for a trace evs and a test session t = (r, X, Â, B̂, Y)

by replacing ephRev with ephRevnt as defined below:

ephRevnt(i, a) : Esk =
(, x,X, Â, , ,) ← ses[i]
if a �= sks[Â] then return ⊥
evs ←++EphRev(X)
return x

Informally, our reduction exploits that x for Π in eCKnt corresponds to h(x, a) for
T nt(Π) in eCK and a query ephRevnt(i, a) in eCKnt corresponds to the sequence
of queries x ← ephRev(i); hA(x, a) in eCK.

To state our lemma, we define A to be a (qse , qag , qH) eCKm (or eCKnt
m)

adversary if A activates at most qse sessions involving at most qag agents and
performs at most qHi

queries to the random oracle HA
i . We use qh to denote the

number of queries to the random oracle hA introduced by the T nt transformation.

Lemma 1. Let m ∈ {kr, nkr}, Π be a protocol, and A a (qse , qag , qH) eCKm adver-
sary. Then there is a (qse , qag , qH) eCKnt

m adversary B such that

Pr
[
eCKm,T nt(Π)(A) = 1

] ≤ Pr
[
eCKnt

m,Π(B) = 1
]
+ εT nt

where εT nt = 2 qh qse/|Esk| + q2
se/2 |Esk|. Furthermore, the adversary B runs in time

at most O(qh tPk + tA) where tPk is the time required to compute Pk.

In our EasyCrypt formalization, we explicitly construct the simulator S sketched
in the proof below and prove the probability statement for B = S(A).

Proof (Sketch). After bounding the probability of collisions for ephemeral secrets
and bounding the probability of the adversary querying hA(x, ∗) for an ephemeral
secret x before revealing it, we define a simulator B that calls A and handles
queries as follows: On queries init1 and resp, B updates a mapping from the

Mind the Gap: Modular Machine-Checked Proofs 703

Ghsk,nt
1,m (a secret): Ghsk,nt

2,m (x, b secret): Ghsk,nt
3 (x, y secret):

a
$← Sk; A ← Pk(a)

z
$← Eskqse ; Z ← Epk(z)

c
$← Skqag−1

a′ ← B1(A,Z, c)
return (a = a′)

eqS kr(i, Y, C, Â, Ĉ, k) =

ki ← (zi, a, Y, C, Â, Ĉ)
return (k = KeyI (ki))

eqSnkr(i, Y, j, Â, Ĉ, k) =
C ← Pk(cj)

ki ← (zi, a, Y, C, Â, Ĉ)
return (k = KeyI (ki))

x
$← Esk; X ← Epk(x)

b
$← Sk; B ← Pk(b)

z
$← Eskqse−1; Z ← Epk(z)

c
$← Skqag−1

(i, Y, Â, B̂, S) ← B2(X, B, c,Z)

k ← KeyI (x, ci, Y, B, Â, B̂)
return (k ∈ S ∧ k �= ⊥)

eqS kr(j, W, C, B̂, Ĉ, k) =

ki ← (zj , b, W, C, B̂, Ĉ)
return (k = KeyI (ki))

eqSnkr(j, W, u, B̂, Ĉ, k) =
C = Pk(cu)

ki ← (zj , b, W, C, B̂, Ĉ)
return (k = KeyI (ki))

x
$← Esk; X ← Epk(x)

y
$← Esk; Y ← Epk(y)

c
$← Skqag

(i, j, Â, B̂, S) ← B3(X, Y, c)
C ← Pk(cj)

k ← KeyI (x, ci, Y, C, Â, B̂)
return (k ∈ S ∧ k �= ⊥)

Fig. 6. Games defining CSKnt
kr,Π(B) and CSKnt

nkr,Π(B) for B = (B1, B2, B3) with alterna-
tive eqS -oracle definitions for kr and nkr

session index i of the started session to the public key Ai of i’s actor. For queries
ephRev(i), B samples and stores the value x̄i ensuring that there are no col-
lisions and that answers are consistent, i.e., B simulates the ephemeral secrets
in eCKm,T nt(Π). On query hA(z, c), B checks if there is an i such that z = x̄i

and Pk(c) = Ai (which implies ai = c, i.e., c is equal to the static secret key
of the i-th session) and returns ephRevnt(i, ai) if the check succeeds and h(z, c)
otherwise. All other queries are just forwarded. In the reduction, the ephemeral
secrets xi in eCKnt

m,Π correspond to hash values h(xi, ai) in eCKm,T nt(Π). ��

Exploiting the Hashing of the Session Key. The CSKnt
nkr and CSKnt

kr models
for protocols that employ the Naxos technique are defined by the three games
given in Figure 6. The winning conditions state that the adversary must compute
certain keys. They result from case distinctions where we show that the adversary
cannot win unless he queries these keys to ephRevnt or the random oracle H. We
first describe the games and then explain how they are used in the reduction.

Ghsk,nt
1,m : The adversary is given a static public key A, a vector Z of ephemeral

public keys, and a vector c of static secret keys. To win, he must return
the static secret key a for A. He is given access to a decision oracle that
returns 1 if the given k is the session key for a session with session data
(zi, a, , Y, C, Â, Ĉ) where zi must be an element of z, a is fixed, and Â, Ĉ,
and Y can be arbitrary. For m = kr, C can be arbitrary. For m = nkr, C
must be an element of Pk(c) reflecting that keys are honestly generated.

Ghsk,nt
2,m : The adversary is given an ephemeral public key X, a static public key B,

a vector Z of ephemeral public keys, and a vector c of static secret keys. He
chooses a static secret key ci from c, an arbitrary ephemeral public key Y ,

704 G. Barthe et al.

and arbitrary agent identities Â and B̂. To win, he must return a set S that
contains the session key for (x, ci, Y,B, Â, B̂). He is provided with access to
a decision oracle that returns 1 if the given k is the session key for a session
with session data (zj , b,W,C, B̂, Ĉ) where zj must be an element of z, b is
fixed, and W , B̂, and Ĉ can be arbitrary. For m = kr, the static public key
C of the peer can be arbitrary. For m = nkr, C must be an element of Pk(c).

Ghsk,nt
3 : The adversary is given ephemeral public keys X, Y and a vector c of

static secret keys. He chooses static secret keys ci, cj in c and arbitrary
Â, B̂. To win, he must return a set S that contains the session key for
(x, ci, Y,Pk(cj), Â, B̂).

In the reduction, we use Ghsk,nt
1,m to handle the case where the adversary queries

ephRevnt(i, a) without revealing the static secret a for some Â. For the remaining
cases, we know that the ephemeral secret x of the test session must be secret. We
use Ghsk,nt

2,m to handle the case where the static secret b of the test session’s peer
remains unrevealed and Ghsk,nt

3 to handle the case where b is revealed and there is
a matching session with unrevealed ephemeral secret y. The eqS oracle in Ghsk,nt

1,m

is used to synchronize queries to HA and keyRev for Â’s sessions. Analogously,
eqS in Ghsk,nt

2 is used for B̂’s sessions. We can now state our main theorem using
qh (resp. qH) to denote the number of queries to the oracle introduced by T nt

(resp. T hsk).

Theorem 1. Let m ∈ {kr, nkr} and Π be a protocol satisfying properties P1–
P3. Let A be a (qse , qag , qH) eCKm adversary. Then there are CSKnt

m adversaries
B1–B3 such that

2Pr
[
eCKm,T nt,hsk(Π)(A) = 1

] − 1

≤ δ1 Pr
[
Ghsk,nt

1,m,Π(B1) = 1
]

+ δ2 Pr
[
Ghsk,nt

2,m,Π(B2) = 1
]

+ δ3 Pr
[
Ghsk,nt

3,Π (B3) = 1
]

+ εT nt,hsk

for εT nt,hsk = (2 qh qse+2 q2
se)/|Esk|, δ1 = qag , δ2 = qag qse , and δ3 = q2se . Further-

more, the adversaries B1 and B2 perform at most qH qse queries to eqS and the
adversaries B2 and B3 return sets of size at most 2 qH . The adversaries B1–B3

run in time at most O((qh + qag) tPk + qse tproto + qse qH + tA) where tproto

denotes the time to execute a protocol session.

Proof (Sketch). We first apply Lemma 1. Then it remains to prove that CSKnt
m-

security of Π implies eCKnt
m-security of T hsk(Π). Let σ denote the input to H

used to compute the session key of the test session. We first bound the probability
that the adversary wins without querying σ to HA by 1/2. First, note that he
cannot reveal a session key with hash input σ since condition P3 for Π implies
that the corresponding session is either a matching session or the test session
itself (up to collisions of ephemeral secrets and guessing of unused ephemeral

Mind the Gap: Modular Machine-Checked Proofs 705

Game: Oracles:

var evs : Ev∗ = []
var sks : ID ⇀ Sk = ∅
var pks : ID ⇀ Pk = ∅
var ses : Nat ⇀ St = ∅
var i : Nat = 0
(S, t) ← A1()

(r, , X, Â, B̂, Y, k) ← ses[t]

ts ← (r, X, Â, B̂, Y)
return (k ∈ S ∧ k
= ⊥ ∧ freshevs(ts))

Replace keyRev and hA with
eqS . Keep other oracles.

eqS (i, k) : Key =

(r, , X, Â, B̂, Y, k′) ← ses[i]

evs ←++KeyRev(r, X, Â, B̂, Y)
return (k = k′)

Fig. 7. Intermediate game GI used in reductions (eCKnt to CSKnt and eCK to CSK)

secrets). He therefore receives a key that is sampled independently of his view
for both values of b and cannot do better than guessing b in this case.

We now proceed by bounding the probability of σ ∈ QH ∧ freshevs(sid) in
eCKnt

m,T hsk(Π) where sid = (r,X, Â, B̂, Y) and QH is the set of values queried to
H by the adversary. Our goal is to perform a reduction to the intermediate game
GI m,Π shown in Figure 7. The simulator will use the eqS oracle in GI m,Π to
simulate the oracles HA and keyRev and return (t,QH). The eqS oracle is used
to synchronize values returned in keyRev and H, but it cannot be used for the
call to H for σ in the main body. We therefore perform a sequence of steps that
includes enforcing a (monotonous version of) freshness to remove this call before
performing the reduction.

To obtain the three games Ghsk,nt
1,m,Π , Ghsk,nt

2,m,Π , and Ghsk,nt
3,Π from GI m,Π , we

perform two case distinctions followed by one reduction for each case. The first
case distinction is for the event that the adversary queries EphRev(i, a) without
performing StaticRev(Â) and revealing a beforehand. To bound this probability,
we first guess Â and then perform a reduction to Ghsk,nt

1,m,Π . Since the adversary can
reveal all secrets except for a and the ephemeral secret keys of Â, the simulator
receives the static secret keys c of the other agents, the ephemeral public keys
of Â’s sessions, and A. The simulator samples all other values himself and can
simulate all oracles on its own, except for eqS where the provided oracle is used
for Â’s sessions. If m = nkr, all keys are honestly generated and for all queries to
eqS , the static public key of the peer is equal to Pk(c) for some c ∈ c. If m = kr,
the static public key of the peer can be arbitrary.

Before performing the second case distinction, we guess the test session. Since
there is no ephemeral reveal without a previous static reveal, the test session’s
ephemeral secret x cannot be revealed. We now perform a case distinction if the
adversary reveals the static secret key b of the peer B̂ of the test session. If not,
then we know that x, b, and the ephemeral secret keys of B̂’s sessions are secret.
To perform the reduction to Ghsk,nt

2,m,Π , we guess B̂ and define a simulator that
receives X, B, the static secret keys c of all agents except B̂, and the ephemeral
public keys of B̂’s sessions. The simulator samples all other values himself and

706 G. Barthe et al.

Game G2DDH: Game G:

x
$← Fp; X ← gx

y
$← F

n
p ; Y ← gy

z
$← Fp; Z ← gz

t ← A2DDH(X,Y , Z)
return φ(X, Z, t)

2DDH(i, Ẑ, U, V) = return

ddh(X, Ẑ, U) ∧ ddh(Yi, Ẑ, U)

x
$← Fp; X ← gx

z
$← Fp; Z ← gz

t ← B(X, Z)
return φ(X, Z, t)

Fig. 8. Twin DDH games G2DDH and G

can simulate all oracles on its own, except for eqS where the provided oracle is
used for B̂’s sessions. Like in the previous case, the static public key of the peer
is equal to Pk(c) for some c ∈ c if m = nkr and arbitrary otherwise.

In the last case, there is a static reveal for the peer B̂ of the test session.
Hence, there must be a matching session with ephemeral secret key y and the
only other value that cannot be revealed is x. We guess the matching session and
since eqS queries for the test session and the matching session are forbidden, the
simulator for Ghsk,nt

3,Π can simulate the eqS oracle on its own in this case. ��

4 Trapdoor Test, Twin DH, and (S)CDH

To minimize the EasyCrypt proof effort, we first prove a generalized version of
the Twin DH Assumption from [19]. We use this result for the protocol proofs
and to obtain a tighter reduction from CDH to SCDH based on Shoup’s self
corrector [47].

Twin DH. In the original Twin DH assumption, the adversary is given chal-
lenges X,Y,Z ∈ G and has to compute the group elements (dh(X,Z), dh(Y,Z))
given oracle access to

2DDH(Ẑ, U, V) .= (ddh(X, Ẑ, U) ∧ ddh(Y, Ẑ, V)).

The value Y is called the “twin” of X and the assumption can be seen as a “twin
version” of the Strong DH assumption, which is a variant of Gap CDH where
the first input of the DDH oracle is fixed. In contrast to these two assumptions,
Twin DH follows from CDH in all groups since the 2DDH oracle can be simulated
using the trapdoor test.

Our generalization uses n twins Y1, . . . , Yn of X instead of a single twin and
consequently provides a 2DDH oracle that can be used with all twins X,Yi.
Concretely, for a predicate φ, we define the two games G2DDH and G given in
Figure 8 and prove the following lemma for which the proof can be found in
Appendix A.

Mind the Gap: Modular Machine-Checked Proofs 707

Lemma 2. Let A be a G2DDH adversary that performs at most q queries to
2DDH. Then there exists a G adversary B such that

Pr [G2DDH(A) = 1] ≤ Pr [G(B) = 1] + q/p.

Moreover, B runs in time O(TA +q tG +n tG) where tG denotes the time required
to perform a group operation such as exponentiation or division.

We define the following reductions as instantiations of this lemma:
− CDH2DDH to CDH for φ(X,Z,U) .= dh(X,Z) = U .
− DLOG2DDH to DLOG for φ(X,Z, x′) .= X = gx′

.
− SCDH2DDH to SCDH for φ(X,Z, S) .= dh(X,Z) ∈ S.

An efficient reduction from SCDH to CDH. We have formalized the proof
following the approach outlined by Cash et al. in [19]. Note that our proof
critically relies on the possibility to relate the probability that an adversary who
is called twice wins both times to the probability for a single win. Support for
this type of reasoning is a recent extension to EasyCrypt. The proof can be found
in Appendix A.

Theorem 2. Let A be an SCDH adversary that returns a set of size at most m.
Then there exists a CDH adversary B such that

Pr [SCDH(A) = 1] ≤
√

Pr [CDH(B) = 1] + m2/q.

Furthermore, the adversary B runs in time O(TA + m2 tG).

5 Case Studies

We first present the application of our generic proof to the Naxos and Naxos+

protocols. Afterwards, we present our proofs for the Nets protocol.

5.1 Proofs for Naxos and Naxos+

We first prove that Naxos is secure in our eCKnkr model with honestly gener-
ated keys under the CDH assumption. In the proof, we discuss why it does not
generalize to the eCKkr model with adversarial key registration. Afterwards, we
describe two ways to obtain a proof in the eCKkr model from the instantia-
tion of our generic proof. First, the proof can be performed with respect to the
Gap-CDH assumption. Second, the protocol can be extended with an additional
group element in the key yielding the Naxos+ protocol [39] which was proved
secure under the CDH assumption in a model similar to eCKkr.

708 G. Barthe et al.

eCKnkr-security of Naxos Under the CDH Assumption. The following
theorem states that Naxos is secure in our model without adversarial key regis-
tration if the CDH problem is hard.

Theorem 3. Let A be a (qse , qag , qH) eCKnkr adversary. Then there exist adver-
saries C1, C2, and C3 such that

2 Pr [eCKnkr,Naxos(A) = 1] − 1 ≤ δ1 (Pr [DLOG(C1) = 1] + qH qse/p)

+ δ2

(√
Pr [CDH(C2) = 1] + 4 q2

H/p + qH qse/p

)

+ δ3

(√
Pr [CDH(C3) = 1] + 4 q2

H/p

)

+ εT nt,hsk

where δ1, δ2, δ3, and εT nt,hsk are defined as in Theorem 1. Furthermore, C1, C2,
and C3 run in time at most O(n tG + tA) where n = max{qh, qag , qH qse , q

2
H}.

Proof. he definition of Naxoscore is given in Figure 3. It is easy to check that
Naxoscore satisfies P1–P3 and Naxos = T nt,hsk(Naxoscore). We can therefore
apply Theorem 1 to reduce eCKnkr-security of Naxos to CSKnt

nkr-security of
Naxoscore. This step accounts for the loss of εT nt,hsk and yields adversaries B1–B3

that return sets of size at most 2 qH and perform at most qH qse queries to eqS .
In the next step, we will define C1, C2, and C3 and prove that the inequalities

Pr
[
Ghsk,nt

1,nkr (B1) = 1
]

≤ Pr [DLOG(C1) = 1] + qH qse/p

Pr
[
Ghsk,nt

2,nkr (B2) = 1
]

≤
√

Pr [CDH(C2) = 1] + 4 q2
H/p + qH qse/p

Pr
[
Ghsk,nt

3,nkr (B3) = 1
]

≤
√

Pr [CDH(C3) = 1] + 4 q2
H/p

hold where Ghsk,nt
i,nkr denotes the corresponding CSKnt

nkr game instantiated with
Naxoscore.

Game Ghsk,nt
1,nkr . Instantiating with Naxoscore yields:

a
$← Fp; A ← ga

z
$← F

qse
p ; Z ← gz

c
$← F

qag−1
p

a′ ← B1(A,Z, c)
return (a = a′)

eqS (i, Y, j, Â, Ĉ, k) =
return k = (dh(A, Y)‖Z

cj
i ‖dh(Zi, Y)‖Â‖ Ĉ)

Since we perform a reduction to DLOG2DDH in the first step, we have already
rewritten eqS such that it does not use a and z. Before continuing, we rename
DLOG2DDH such that X becomes A, Y becomes Z, and Z becomes R. Our
DLOG2DDH adversary C′

1 then receives the DLOG-challenge A, the twins Z of A,

Mind the Gap: Modular Machine-Checked Proofs 709

and the value R which is unused in DLOG. C′
1 samples c, calls B1 with (A,Z, c),

and returns B1’s return value, which is equal to dlog(A) whenever B1 wins.
C′
1 uses the following implementation to simulate eqS :

eqS (i, Y, j, Â, Ĉ, k) =
(U1 ‖U2 ‖U3 ‖D̂‖Ê) ← k
d ← 2DDH(i, U1, U3)
return (d ∧ U2 = Z

cj
i ∧ D̂ = Â ∧ Ê = Ĉ)

Since the original eqS returns 1 if and only if U1 = dh(A, Y) and U3 = dh(Zi, Y)
(which corresponds to the 2DDH result) and the remaining equalities hold, the
simulation is perfect. We can now apply Lemma 2 to obtain a reduction to DLOG
for an adversary C1.

While this reasoning step is valid in the eCKkr model, it does not work in the
eCKkr model since the adversary can register arbitrary static public keys. Hence,
the eqS oracle takes C ∈ Pk instead of an index j into c. In this case, we cannot
check if U2 = dh(Zi, C) by performing the test U2 = Z

cj
i in the implementation

of eqS for the simulator.
Game Ghsk,nt

2,nkr . Instantiating with Naxoscore yields:

x
$← Fp; X ← gx

b
$← Fp; B ← gb

z
$← F

qse−1
p ; Z ← gz

c
$← F

qag−1
p

(i, Y, Â, B̂, S) ← B2(X,B, c,Z)
return (Y ci ‖dh(B,X)‖dh(X,Y)‖Â‖B̂) ∈ S

eqS (j,W, u, B̂, Ĉ, k) =
return k = (dh(B,W)‖Zcu

j ‖dh(Zj ,W)‖B̂ ‖ Ĉ)

For this game, we perform the reduction in three steps. The first reduction is to
SCDH2DDH for which we define the adversary C′

2. Then we use Lemma 2 to get rid
of the 2DDH oracle and finally Theorem 2 to transform the SCDH adversary into
a CDH adversary which yields the adversary B2. Before continuing, we rename
SCDH2DDH such that X becomes B, Y becomes Z, and Y becomes X. The CDH
challenge is therefore B,X and Z is the vector of twins of B for which the 2DDH
oracle can be used.

We define the SCDH2DDH adversary C′
2 as follows. C′

2 gets B,Z,X as input,
samples c, calls B2 with these values, and gets (i, Y, Â, B̂, S). To transform S
into a set that contains dh(B,X) whenever B2 wins, C′

2 applies the function
(U1 ‖U2 ‖U3 ‖ Â‖ B̂) �→ U2. To (perfectly) simulate the orginal eqS , C′

2 uses the
implementation

eqS (j,W, u, B̂, Ĉ, k) =
(U1 ‖U2 ‖U3 ‖D̂‖Ê) ← k
d ← 2DDH(i, U1, U3)
return (d ∧ U2 = Zcu

j ∧ D̂ = B̂ ∧ Ê = Ĉ).

710 G. Barthe et al.

Since the adversary can register arbitrary static public keys in the eCKkr

model, the eqS oracle in the kr version of this game takes C ∈ Pk instead of an
index u into c. In this case, we cannot check if U2 = dh(Zj , C) by performing
the test U2 = Zcu

j in the implementation of eqS for the simulator.
Game Ghsk,nt

3,nkr . Instantiating with Naxoscore yields:

x
$← Fp; X ← gx

y
$← Fp; Y ← gy

c
$← Skqag

(i, j, Â, B̂, S) ← B3(X,Y, c)
return (Y ci ‖Xcj ‖dh(X,Y)‖Â‖B̂) ∈ S

We can directly perform a reduction to SCDH and then use Theorem 2 to obtain
a reduction to CDH. For the reduction to SCDH, we use the function (U1 ‖U2 ‖
U3 ‖ D̂ ‖ Ê) �→ U3 to transform S into a set that contains dh(X,Y). This case
directly generalizes to eCKkr since the third game is identical in this case. ��

eCKkr-security of Naxos and Naxos+. In the previous proof, we have pointed
out where the proof breaks down in the eCKkr model. We will now describe how
to adapt the proof to (1) prove eCKkr-security of Naxos under the Gap-CDH
assumption and (2) prove eCKkr-security of Naxos+ under the CDH assumption.

For the proof with respect to Gap-CDH, we can deal with all the problematic
cases by calling the DDH oracle with the right input, e.g., with DDH(Zi, C, U2)
for the first game. Note that there is no need for the twinning technique at all
in this case and our generic proof can be instantiated in a very similar way to
the original Naxos proof.

The Naxos+core protocol can be obtained from the Naxoscore protocol by
adding the additional group element dh(A,B) to the key. Concretely, we define

Key = G
4 × ID2,

KeyI (x, a, Y,B, Â, B̂) = Y a ‖Bx ‖Y x ‖Ba ‖Â‖B̂, and
KeyR(y, b,X,A, B̂, Â) = Ay ‖Xb ‖Xy ‖Ab ‖Â‖B̂.

The additional group element is only required to simulate the eqS oracle. Every-
thing else, in particular the case Game Ghsk,nt

3 , can be trivially adapted.
Game Ghsk,nt

1,kr . For Naxos+, we must simulate the following eqS oracle (we
underline the differences to the Naxos version):

eqS (i, Y, C, Â, Ĉ, k) =
return k = (dh(A, Y)‖dh(Zi, C)‖dh(Zi, Y)‖dh(A,C)‖Â‖ Ĉ)

Mind the Gap: Modular Machine-Checked Proofs 711

By using the 2DDH oracle for the group elements 1&3 and 2&4, we obtain the
following implementation of eqS .

eqS (i, Y, j, Â, Ĉ, k) =
(U1 ‖U2 ‖U3 ‖U4 ‖D̂‖Ê) ← k
d1 ← 2DDH(i, U1, U3)
d2 ← 2DDH(i, U2, U4)
return (d1 ∧ d2 ∧ D̂ = Â ∧ Ê = Ĉ)

The simulation is perfect because the 2DDH calls returns 1 if and only if U1 =
dh(A, Y) ∧ U3 = dh(Zi, Y) and U4 = dh(A,C) ∧ U2 = dh(Zi, C).

Game Ghsk,nt
2,kr . For Naxos+, we must simulate the following eqS oracle

eqS (j,W,C, B̂, Ĉ, k) =
return k = (dh(B,W)‖dh(Zj , C)‖dh(Zj ,W)‖dh(B,C)‖B̂ ‖ Ĉ)

By using the 2DDH oracle first for the group elements 1 and 3 and then using the
oracle in a second call for the group elements 2 and 4, we obtain the following
implementation of eqS .

eqS (i, Y, j, Â, Ĉ, k) =
(U1 ‖U2 ‖U3 ‖U4 ‖D̂‖Ê) ← k
d1 ← 2DDH(i, U1, U3)
d2 ← 2DDH(i, U4, U2)
return (d1 ∧ d2 ∧ D̂ = Â ∧ Ê = Ĉ)

The simulation is perfect because the first 2DDH calls returns 1 iff U1 = dh(B,W)
∧ U3 = dh(Zj ,W) and the second call returns 1 iff U4 = dh(B,C) ∧ U2 =
dh(Zj , C).

5.2 Proofs for Nets

The proofs for Nets are structured very similarly to the corresponding Naxos
proofs and yield similar bounds. We therefore summarize the required changes
in this section and refer to our EasyCrypt formalization for details.

The proof that Nets is secure in our eCKnkr model with honestly generated
keys under the CDH assumption is follows the corresponding proof for Naxos.
The only significant difference is how the 2DDH oracle is used to simulate the
eqS oracles in the first and second games. Whereas the Naxos protocol uses the
concatenation of three group elements in the key, Nets uses the concatenation
of two group elements U1 ‖U2 where U1 = dh(A,B) dh(A, Y) dh(X,B) dh(X,Y)
and U2 = cdh(X,Y). Computing the right queries to 2DDH for simulating eqS
requires divisions. Concretely, the first game uses 2DDH(U1/Acj Z

cj
i U2, U2) and

the second game uses 2DDH(U1/Bcj Z
cj
i U2, U2).

To prove eCKkr-security under the Gap-CDH assumption, it is again possible
to closely follow the original proof and use the DDH oracle to simulate eqS .

712 G. Barthe et al.

Ghsk
1 (a, b secret, poss. no matching): Ghsk

2 (x, b secret, poss. no matching):

a, b
$← Sk; A ← Pk(a); B ← Pk(b)

z
$← Eskqse

(i, Y, Â, B̂, S) ← A(z, A, B)

k ← KeyI (zi, a, Y, B, Â, B̂)
return (k ∈ S ∧ k
= ⊥)

eqS(i, C, W, D, Ĉ, D̂, k) =
if C /∈ {A, B} then return ⊥
if C = A then c ← a else c ← b

return KeyI (zi, c, W, D, Ĉ, D̂) = k

x
$← Esk; X ← Epk(X)

b
$← Sk; B ← Pk(b)

z
$← Eskqse−1

c
$← Skqag−1

(i, Y, Â, B̂, S) ← A(c, z, X, B)

k ← KeyI (x, ci, Y, B, Â, B̂)
return (k ∈ S ∧ k
= ⊥)

eqS(i, W, D, B̂, D̂, k) =

return KeyI (zi, b, W, D, B̂, D̂) = k

Ghsk
3 (a, y secret): Ghsk

4 (x, y secret):

a
$← Sk; A ← Pk(a)

y
$← Esk; Y ← Epk(y)

z
$← Eskqse−1; c

$← Skqag−1

(i, j, Â, B̂, S) ← A(c, z, A, Y)

k ← KeyI (zi, a, Y,Pk(cj), Â, B̂)
return (k ∈ S ∧ k
= ⊥)

eqS(i, W, D, Â, D̂, k) =

return KeyI (zi, a, W, D, Â, D̂) = k

x
$← Esk; X ← Epk(x)

y
$← Esk; Y ← Epk(y)

c
$← Skqag

(i, j, Â, B̂, S) ← A(c, X, Y)

k ← KeyI (x, ci, Y,Pk(cj), Â, B̂)
return (k ∈ S ∧ k
= ⊥)

Fig. 9. Games defining CSKkr

6 Protocols Without Naxos Trick

In this section, we describe our generic proof for protocols that do no utilize the
Naxos trick and its application to a version of HMQV. The results of this section
have not been formalized in EasyCrypt and we leave this open for future work.

6.1 Model and Generic Proof

We prove a reduction from the eCKkr model to the CSKkr model defined by the
games given in Figure 9.

Theorem 4. Let Π be a protocol that satisfies P1–P3. For all efficient adver-
saries that win the eCKkr,T hsk(Π) game with non-negligible probability, there exists
an efficient adversary that wins one of the CSKkr,Π games with non-negligible
probability .

The proof is analogous to the proof of Theorem 1 and appears in the full ver-
sion of the paper [4]. The proof performs a different case distinction with respect
to the reveal queries performed by the adversary than the proof of Theorem 1.

Mind the Gap: Modular Machine-Checked Proofs 713

6.2 eCKkr-security of mHMQV Under the Gap-CDH Assumption

We first define our (modified version) mHMQVcore as follows. We use Pk(a) = ga

and Epk(x, a) = gx for ephemeral and static key computation. Using the hash
function h̄ : G → Fp, we define the session keys:

KeyI (x, a, Y,B, Â, B̂) = (Y Bh̄(Y))x+a h̄(X) ‖Â‖B̂ ‖X ‖Y

KeyR(y, b,X,A, B̂, Â) = (XAh̄(X))y+b h̄(Y) ‖Â‖B̂ ‖X ‖Y

We instantiate the types using G for group elements and Fp for exponents. We
then define mHMQV as T hsk(mHMQVcore). A similar version of HMQV has been
proposed in the original paper [31, Remark 9.1] for compatibility between the
variants with one, two, and three passes. We slightly deviate from the original
definition by removing the identities from h̄’s input (like in MQV) and including
Â, B̂, X and Y as input to the key derivation hash. Including additional session
data in the hash is considered a prudent engineering principle [16] because it
ensures agreement on this data. Second, it allows us to apply our generic proof
directly since the resulting protocol satisfies P3. To make the protocol symmet-
ric, it would be possible to sort the tuples Â,X and B̂, Y to determine the order
of these elements. We prove the following theorem for mHMQV.

Theorem 5. If there is an efficient adversary that wins the eCK′
mHMQV game

with non-negligible probability, then there is an efficient adversary that wins the
Gap-CDH game with non-negligible probability.

Proof (Sketch). Since mHMQVcore satisfies P1–P3, we can apply Theorem 4 and
proveCSKkr-security ofmHMQVcore. As in theNets proof, we ignore the public part
Â ‖ B̂ ‖ X ‖ Y in our discussion of winning conditions and eqS . Before discussing
the individual games, we note that under the Gap-CDH assumption which provides
a DDH-oracle, it is possible to simulate the eqS oracle in all of the games since at
least the secret key zi is always known. To simulate eqS queries, e.g., in Ghsk

1 , it
suffices to compute

W zi dh(C,W)h̄(gzi) Dzi h̄(W) dh(C,D)h̄(gzi) h̄(W) = k

for zi in z, C ∈ {A,B}, and W,D, k arbitrary. To achieve this, the DDH oracle
can be used to check

dh(C,W h̄(gzi)Dh̄(gzi) h̄(W)) =
k

W zi Ezi h̄(W)
.

For game Ghsk
1 , we perform a reduction to Gap-CDH using the Forking Lemma.

We know there exists an adversary A such that for the CDH challenge A,B and
uniformly sampled z, the call A(z, A,B) returns i, Y , and a set S that contains

Y zi dh(A, Y)h̄(Zi) Bzi h̄(Y) dh(A,B)h̄(Zi) h̄(Y)

with non-negligible probability. To apply the Forking Lemma from [9], we use A
to define a randomized algorithm B that returns v ∈ [qh̄], dh(A, Y) dh(A,B)h̄(Y),

714 G. Barthe et al.

and Y such that Y is the v-th query to h̄ with non-negligible probability. First,
B guesses v, then it calls A with the CDH challenge A,B and uniformly sampled
z. B then computes the result from A’s return values i, Y, S as follows. If Y
is not the v-th query, B returns ⊥. Otherwise, B divides all elements of S by
Y zi Bzi h̄(Y), exponentiates the result with 1/h̄(gzi), and uses the DDH-oracle
to search for U with ddh(A, Y Bh̄(Y), U). If there is no such value, B returns ⊥.
Otherwise, B returns v, Y, dh(A, Y) dh(A,B)h̄(Y). The Forking Lemma yields a
randomized algorithm C from B that returns

Y, dh(A, Y) dh(A,B)e, dh(A, Y) dh(A,B)e′

with e �= e′ with non-negligible probability. Intuitively, the algorithm first calls B
to obtain v, Y, dh(A, Y) dh(A,B)e for e = h̄(Y). Then, it calls B again using the
same randomness, but resampling the values returned by h̄ for all query-indices
greater or equal than v, i.e., e′ = h̄(Y) is the first value that differs. We can then
compute

dh(A,B) =
(
dh(A, Y) dh(A,B)e

dh(A, Y) dh(A,B)e′

) 1
e−e′

.

For game Ghsk
2 , we also reduce to Gap-CDH. We know there exists an adver-

sary A such that for the CDH challenge X,B and uniformly sampled c and z,
the call A(c,z,X,B) returns i, Y , and a set S that contains

dh(X,Y)Y cih̄(X) dh(X,B)h̄(Y) Bci h̄(X) h̄(Y)

with non-negligible probability. Using a similar approach as before, we can obtain
an algorithm that returns the group element dh(X,Y) dh(X,B)e and the group
element dh(X,Y) dh(X,B)e′

for e �= e′ with non-negligible probability. We can
then compute dh(X,B) like in the previous case.

For Ghsk
3 , the reduction to Gap-CDH is simpler than the previous two cases

since we know two secret keys instead of only one. We can call A with randomly
sampled c,z, and a CDH challenge A, Y . Since A returns i, j, and a set S that
contains

Y zi dh(A, Y)h̄(gzi) gzi cj h̄(Y) Acj h̄(gzi) h̄(Y)

with non-negligible probability, we can then use the DDH oracle to find dh(A, Y).
For Ghsk

4 , we can perform a similar reduction to Gap-CDH for the CDH challenge
X,Y . ��

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and suggestions. We also thank François Dupressoir, Benjamin Grégoire, César Kunz,
and Pierre-Yves Strub for their help and the development of EasyCrypt features required
to build the proof. This work is supported in part by ONR grant N00014-12-1-0914,
Madrid regional project S2009TIC-1465 PROMETIDOS, and Spanish projects TIN2009-
14599 DESAFIOS 10, and TIN2012-39391-C04-01 Strongsoft. The research of Schmidt
has received funds from the European Commission’s Seventh Framework Programme
Marie Curie Cofund Action AMAROUT II (grant no. 291803).

Mind the Gap: Modular Machine-Checked Proofs 715

A Proofs For Twin DH and (S)CDH

In this appendix, we present the proofs for Lemma 2 and Theorem 2.

Proof (of Lemma 2). We define B as

B(Z, Y) .=
r

$← F
n
p ; s

$← F
n
p ; Y1 ← gs1/Xr1 ; . . . ; Yn ← gsn/Xrn

return A2DDH(X,Y , Z)

and note that the distribution on (X,Y , Z) is the same as in G2DDH. To sim-
ulate the 2DDH oracle, B uses the test UriV = Ẑsi instead of ddh(X, Ẑ, U) ∧
ddh(Yi, Ẑ, V). The probability that these tests do not agree is at most 1/p. Since
the adversary can perform q queries to 2DDH, the probability of distinguishing
the simulator is at most q/p. ��
Proof (Theorem 2). We first prove that

Pr [SCDH(A) = 1] =
√

Pr [CDH2DDH(B) = 1]

where n = 1 for CDH2DDH, i.e., there is only one twin. To achieve this, we define:

B(X,Y,Z) .= u
$← F

∗
p; S1 ← A(X,Z); S2 ← A(Y,Zu)

foreach (Z1, Z2) ∈ S1 × S2 :
if 2DDH(Z,Z1, Z

1/u
2) then return Z1

Since B wins whenever A wins both times, B’s winning probability is equal to
the square of A’s winning probability. We then conclude the proof by applying
Lemma 2 and observing that the given simulator calls the 2DDH oracle at most
m2 times. ��

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2), 103–127 (2002)

2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Certified computer-aided
cryptography: efficient provably secure machine code from high-level implementa-
tions. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13: 20th Con-
ference on Computer and Communications Security, pp. 1217–1230. ACM Press,
November 2013

3. Barthe, G., Crespo, J.M., Grégoire, B., Kunz, C., Lakhnech, Y., Schmidt, B.,
Béguelin, S.Z.: Fully automated analysis of padding-based encryption in the com-
putational model. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS
13: 20th Conference on Computer and Communications Security, pp. 1247–1260.
ACM Press, November 2013

4. Barthe, G., Crespo, J.M., Lakhnech, Y., Schmidt, B.: Mind the gap: Modular
machine-checked proofs of one-round key exchange protocols. Cryptology ePrint
Archive 2015, (2015). http://eprint.iacr.org/

http://eprint.iacr.org/

716 G. Barthe et al.

5. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: A Tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD VII.
LNCS, vol. 8604, pp. 146–166. Springer, Heidelberg (2014)

6. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

7. Basin, D., Cremers, C.: Modeling and analyzing security in the presence of compro-
mising adversaries. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 340–356. Springer, Heidelberg (2010)

8. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In: 30th
Annual ACM Symposium on Theory of Computing, pp. 419–428. ACM Press, May
1998

9. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 06: 13th
Conference on Computer and Communications Security, pp. 390–399. ACM Press,
October / November 2006

10. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

11. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2004, pp. 14–25. ACM, New York (2004)

12. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.: Implementing
tls with verified cryptographic security. In: 2013 IEEE Symposium on Security and
Privacy (SP), pp. 445–459. IEEE (2013)

13. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 235–255. Springer, Heidel-
berg (2014)

14. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: 2006 IEEE Symposium on Security and Privacy, pp. 140–154. IEEE Computer
Society Press, May 2006

15. Blanchet, B.: Security protocol verification: Symbolic and computational models.
In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS, vol.
7215, pp. 3–29. Springer, Heidelberg (2012)

16. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.:
ASICS: Authenticated key exchange security incorporating certification systems.
In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134,
pp. 381–399. Springer, Heidelberg (2013)

17. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV
channel establishment protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 13: 20th Conference on Computer and Communications Security,
pp. 373–386. ACM Press, November 2013

18. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, p. 453. Springer, Heidelberg (2001)

19. Cash, D.M., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applica-
tions. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145.
Springer, Heidelberg (2008)

Mind the Gap: Modular Machine-Checked Proofs 717

20. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based
proof models for key establishment protocols. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

21. Cortier, V., Kremer, S., Warinschi, B.: A survey of symbolic methods in computa-
tional analysis of cryptographic systems. Journal of Automated Reasoning 46(3–4),
225–259 (2011)

22. Cremers, C.J.: Formally and practically relating the ck, ck-hmqv, and eck secu-
rity models for authenticated key exchange. Cryptology ePrint Archive, Report
2009/253, (2009). http://eprint.iacr.org/

23. Cremers, C., Feltz, M.: Beyond eCK: Perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012)

24. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2), 107–125 (1992)

25. El Gamal, Taher: A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In: Blakely, G.R., Chaum, David (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

26. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181, (2005). http://eprint.iacr.org/2005/181

27. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

28. Kaliski Jr., B.S.: An unknown key-share attack on the MQV key agreement pro-
tocol. ACM Transactions on Information and System Security (TISSEC) 4(3),
275–288 (2001)

29. Kim, M., Fujioka, A., Ustaoğlu, B.: Strongly secure authenticated key exchange
without naxos’ approach. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS,
vol. 5824, pp. 174–191. Springer, Heidelberg (2009)

30. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ approach to authenticated diffie-
hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

31. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

32. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

33. Kudla, C., Paterson, K.G.: Modular security proofs for key agreement protocols.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer,
Heidelberg (2005)

34. Kudla, C.J.: Special Signature Schemes and Key Agreement Protocols. PhD thesis,
University of London (2006)

35. Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation. In: Computer Security Foundations Symposium (CSF),
pp. 157–171. IEEE (2009)

36. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

37. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography 28(2), 119–134
(2003)

http://eprint.iacr.org/
http://eprint.iacr.org/2005/181

718 G. Barthe et al.

38. Lee, J., Park, C.S.: An efficient authenticated key exchange protocol with a tight
security reduction. IACR Cryptology ePrint Archive 2008, 345 (2008)

39. Lee, J., Park, J.H.: Authenticated key exchange secure under the computational
diffie-hellman assumption. Cryptology ePrint Archive, Report 2008/344, (2008).
http://eprint.iacr.org/

40. Matsumoto, T., Takashima, Y.: On seeking smart public-key-distribution systems.
IEICE TRANSACTIONS (1976–1990) 69, 99–106 (1986)

41. Menezes, A.: Another look at HMQV. Mathematical Cryptology JMC 1(1), 47–64
(2007)

42. Menezes, A., Ustaoglu, B.: On the importance of public-key validation in the MQV
and HMQV key agreement protocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006)

43. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001: 4th International
Workshop on Theory and Practice in Public Key Cryptography. Lecture Notes in
Computer Science, vol. 1992, pp. 104–118. Springer, Feb. (2001)

44. Pan, J., Wang, L.: Tmqv: a strongly eck-secure diffie-hellman protocol without
gap assumption. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980,
pp. 380–388. Springer, Heidelberg (2011)

45. Petullo, W.M., Zhang, X., Solworth, J.A., Bernstein, D.J., Lange, T.: MinimaLT:
minimal-latency networking through better security. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 13: 20th Conference on Computer and Commu-
nications Security, pp. 425–438. ACM Press, November 2013

46. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Computer Security Foun-
dations Symposium (CSF), pp. 78–94. IEEE (2012)

47. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

http://eprint.iacr.org/

Authenticated Key Exchange from Ideal Lattices

Jiang Zhang1, Zhenfeng Zhang1(B), Jintai Ding2,3(B),
Michael Snook3, and Özgür Dagdelen4

1 Trusted Computing and Information Assurance Laboratory, SKLCS,
Institute of Software, Chinese Academy of Sciences, Beijing, China

jiangzhang09@gmail.com, zfzhang@tca.iscas.ac.cn
2 Heshi Inc., Shixenze, China

3 Department of Mathematical Sciences, University of Cincinnati, Cincinnati, USA
jintai.ding@gmail.com, snookml@mail.uc.edu

4 Technische Universität Darmstadt, Darmstadt, Germany
oezguer.dagdelen@cased.de

Abstract. In this paper, we present a practical and provably secure
two-pass authenticated key exchange protocol over ideal lattices, which
is conceptually simple and has similarities to the Diffie-Hellman based
protocols such as HMQV (CRYPTO 2005) and OAKE (CCS 2013). Our
method does not involve other cryptographic primitives—in particular,
it does not use signatures—which simplifies the protocol and enables us
to base the security directly on the hardness of the ring learning with
errors problem. The security is proven in the Bellare-Rogaway model
with weak perfect forward secrecy in the random oracle model. We also
give a one-pass variant of our two-pass protocol, which might be appeal-
ing in specific applications. Several concrete choices of parameters are
provided, and a proof-of-concept implementation shows that our proto-
cols are indeed practical.

1 Introduction

Key Exchange (KE) is a fundamental cryptographic primitive, allowing two par-
ties to securely generate a common secret key over an insecure network. Because
symmetric cryptographic tools (e.g., AES) are reliant on both parties having
a shared key in order to securely transmit data, KE is one of the most used
cryptographic tools in building secure communication protocols (e.g., SSL/TLS,
IPSec, SSH). Following the introduction of the Diffie-Hellman (DH) protocol [1],
cryptographers have devised a wide selection of KE protocols with various use-
cases. One such class is Authenticated Key Exchange (AKE), which enables each
party to verify the other’s identity so that an adversary cannot impersonate an
honest party in the conversation.

For an AKE protocol, each party has a pair of static keys: a static secret
key and a corresponding static public key. The static public key is certified to
belong to its owner using a public-key or ID-based infrastructure. During an
execution of the protocol, each party generates a pair of ephemeral keys—an
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 719–751, 2015.
DOI: 10.1007/978-3-662-46803-6 24

720 J. Zhang et al.

ephemeral secret key and an ephemeral public key—and sends the ephemeral
public key to the other party. Then, these keys are used along with the transcripts
of the session to create a shared session state, which is then passed to a key
derivation function to obtain a common session key. Intuitively, such a protocol
is secure if no efficient adversary is able to extract any information about the
session key from the publicly exchanged messages. More formally, Bellare and
Rogaway [2] introduced an indistinguishability-based security model for AKE,
the BR model, which captures key authentication such as implicit mutual key
authentication and confidentiality of agreed session keys. The most prominent
alternatives stem from Canetti and Krawczyk [3] and LaMacchia et al. [4], that
also account for scenarios in which the adversary is able to obtain information
about a static secret key or a session state other than the state of the target
session. In practice, AKE protocols are usually required to have a property,
Perfect Forward Secrecy (PFS), that an adversary cannot compromise session
keys after a completed session, even if it obtains the parties’ static secret keys
(e.g., via the Heartbleed attack1). As shown in [5], no two-pass implicit AKE
protocol based on public-key authentication can achieve PFS (but this may not
be true for two-pass AKEs with explicit authentication [6]). Thus, the notion of
weak PFS (wPFS) is usually considered for two-pass implicit AKE protocols,
which states that the session key of an honestly run session remains private if
the static keys are compromised after the session is finished [5].

One approach for achieving authentication in KE protocols is to explicitly
authenticate the exchanged messages between the involved parties by using some
cryptographic primitives (e.g., signatures, or MACs), which usually incurs addi-
tional computation and communication overheads with respect to the basic KE
protocol, and complicates the understanding of the KE protocol. This includes
several well-known protocols such as IKE [7,8], SIGMA [9], SSL [10], TLS
[11–15], as well as the standard in German electronic identity cards, namely
EAC [16], and the standardized protocols OPACITY [17] and PLAID [18].
Another line of designing AKEs follows the idea of MTI [19] and MQV [20],2

which aims at providing implicit authentication by directly utilizing the alge-
braic structure of DH problems (e.g., HMQV [5] and OAKE [26]). All the above
AKEs are based on classic hard problems, such as factoring, the RSA prob-
lem, or the computational/decisional DH problem. Since these hard problems
are vulnerable to quantum computers [27] and as we are moving into the era
of quantum computing, it is very appealing to find other counterparts based
on problems believed to be resistant to quantum attacks. For instance, post-
quantum AKE is considered of high priority by NIST [28]. Due to the potential
benefits of lattice-based constructions such as asymptotic efficiency, conceptual
simplicity, and worst-case hardness assumptions, it makes perfect sense to build
lattice-based AKEs.

1 http://heartbleed.com/
2 Note that MQV has been widely standardized by ANS [21,22], ISO/IEC [23] and

IEEE [24], and recommended by NIST and NSA Suite B [25].

http://heartbleed.com/

Authenticated Key Exchange from Ideal Lattices 721

1.1 Our Contribution

In this paper, we propose an efficient AKE protocol based on the Ring Learning
With Errors (Ring-LWE), which in turn is as hard as some lattice problems
(e.g., SIVP) in the worst case on ideal lattices [29,30]. Our method avoids intro-
ducing extra cryptographic primitives, thus simplifying the design and reducing
overhead. In particular, the parties are not required to either encrypt any mes-
sages with the other’s public key, nor sign any of their own messages during key
exchange. Furthermore, by having the key exchange as a self-contained system,
we reduce the security assumptions needed, and are able to directly rely on the
hardness of Ring-LWE in the random oracle model.

By utilizing many useful properties of Ring-LWE problems and discrete
Gaussian distributions, we establish an approach to combine both the static
and ephemeral public/secret keys, in a manner similar to HMQV [5]. Thus, our
protocol not only enjoys many nice properties of HMQV such as two-pass mes-
sages, implicit key authentication, high efficiency, and without using any explicit
entity authentication techniques (e.g., signatures), but also has many properties
of lattice-based cryptography, such as asymptotic efficiency, conceptual simplic-
ity, worst-case hardness assumption, as well as resistance to quantum computer
attacks. However, there are also several shortcomings inherited from lattice-
based cryptography, such as “handling of noises” and large public/secret keys.
Besides, unlike HMQV which works on “nicely-behaved” cyclic groups, the secu-
rity of our protocol cannot be proven in the CK model [3] due to the underlying
noise-based algebraic structures. Fortunately, we prove the security in the BR
model (adapted to the public-key setting [31]), which is the most common model
considered as it is usually strong enough for many practical applications and it
comes with composability [32]. In addition, our protocol achieves the weak PFS
property, which is known as the best PFS notion achievable by two-pass AKEs
with implicit authentication [5].

As MQV [20] and HMQV [5], we also present a one-pass variant of our
basic protocol (i.e., only a single message is needed to derive a shared session
key), which might be useful in client-server based applications. Finally, we select
concrete choices of parameters and construct a proof-of-concept implementation
to examine the efficiency of our protocols. Though the implementation has not
undergone any real optimization, the performance results already indicate that
our protocols are practical.

Besides, we note that none of the techniques we use prevents us from instan-
tiating our AKE protocol based on standard lattices. One just has to keep in
mind that key sizes and performance eventually become worse.

1.2 Techniques, and Relation to HMQV

Our AKE protocol is inspired by HMQV [5], which makes our protocol share
some similarities to HMQV. However, there are also many differences between
our protocol and HMQV due to the different underlying algebraic structures.
To better illustrate the similarities and differences between our AKE protocol

722 J. Zhang et al.

and HMQV, we first briefly recall the HMQV protocol [5]. Let G be a cyclic
group with generator g ∈ G. Let (Pi = gsi , si) and (Pj = gsj , sj) be the static
public/secret key pairs of party i and party j, respectively. During the protocol,
both parties exchange ephemeral public keys, i.e., party i sends Xi = gri to
party j, and party j sends Yj = grj to party i. Then, both parties compute the
same key material ki = (P d

j Yj)sic+ri = g(sic+ri)(sjd+rj) = (P c
i Xi)sjd+rj = kj

where c = H1(j,X) and d = H1(i, Y) are computed by using a function H1, and
use it as input of a key derivation function H2 to generate a common session
key, i.e., ski = H2(ki) = H2(kj) = skj .

As mentioned above, HMQV has many nice properties such as only two-
pass messages, implicit key authentication, high efficiency, and without using
any explicit entity authentication techniques (e.g., signatures). Our main goal
is to construct a lattice-based counterpart such that it not only enjoys all those
nice properties of HMQV, but also belongs to post-quantum cryptography, i.e.,
the underlying hardness assumption is believed to hold even against quantum
computer. However, such a task is highly non-trivial since the success of HMQV
greatly relies on the nice properties of cyclic groups such as commutativity (i.e.,
(ga)b = (gb)a) and perfect (and public) randomization (i.e. ga can be perfectly
randomized by computing gagr with a uniformly chosen r at random).

Fortunately, as noticed in [33–35], the Ring-LWE problem supports some
kind of “approximate” commutativity, and can be used to build a passive-secure
key exchange protocol. Specifically, let Rq be a ring, and χ be a Gaussian distri-
bution over Rq. Then, given two Ring-LWE tuples with both secret and errors
choosen from χ, e.g., (a, b1 = as1+e1) and (a, b2 = as2+e2) for randomly chosen
a ←r Rq, s1, s2, e1, e2 ←r χ, the approximate equation s1b2 ≈ s1as2 ≈ s2b1 holds
with overwhelming probability for proper parameters. By the same observation,
we construct an AKE protocol (as illustrated in Fig. 1), where both the static
and ephemeral public keys are actually Ring-LWE elements corresponding to a
globally public element a ∈ Rq. In order to overcome the inability of “approxi-
mate” commutativity, our protocol has to send a signal information wj computed
by using a function Cha [33]. Combining this with another useful function Mod2,
both parties are able to compute the same key material σi = σj (from the
approximately equal values ki and kj) with a guarantee that σj = Mod2(kj , wj)
has high min-entropy even conditioned on the partial information wj = Cha(kj)
of kj (thus it can be used to derive a uniform session key skj).

However, the strategy of sending out the information wj = Cha(kj) inher-
ently brings an undesired byproduct. Specifically, unlike HMQV, the security of
our AKE protocol cannot be proven in the CK model which allows the adver-
saries to obtain the session state (e.g., ki at party i or kj at party j) via session
state reveal queries. This is because in a traditional definition of session iden-
tifier that consists of all the exchanged messages, the two “different” sessions
with identifiers sid = (i, j, xi, yj , wj) and sid′ = (i, j, xi, yj , w

′
j) have the same

session state, i.e., ki at party i.3 This also means that we cannot directly use
3 This problem might not exist if one consider a different definition of session identifier,
e.g., the one that was uniquely determined at the beginning of the protocol execution.

Authenticated Key Exchange from Ideal Lattices 723

Party i Party j

Public Key: pi = asi + 2 i ∈ Rq

Secret Key: si ∈ Rq

where si, i ←r χ

xi = ari + 2fi ∈ Rq

where ri, fi ←r χβ

ki = (pjd + yj)(sic + ri) + 2dgi

where gi ←r χβ

σi = Mod2(ki, wj) ∈ {0, 1}n

ski = H2(i, j, xi, yj , wj , σi)

Public Key: pj = asj + 2 j ∈ Rq

Secret Key: sj ∈ Rq

where sj , j ←r χ

yj = arj + 2fj ∈ Rq

kj = (pic + xi)(sjd + rj) + 2cgj

where rj , fj , gj ←r χβ

wj = Cha(kj) ∈ {0, 1}n

σj = Mod2(kj , wj) ∈ {0, 1}n

skj = H2(i, j, xi, yj , wj , σj)

xi

yj , wj

c = H1(i, j, xi) ∈ R, d = H1(j, i, yj , xi) ∈ R

Fig. 1. Our AKE protocol from Ring-LWE

σi = σj as the session key, because the binding between the value of σi and
the session identifier (especially for the signal part wj) is too loose. In partic-
ular, the fact that σi = Mod2(ki, wj) corresponding to sid is simply a shift of
σ′

i = Mod2(ki, w
′
j) corresponding to sid′(by the definition of the Mod2 function),

may potentially help the adversary distinguish σi with the knowledge of σ′
i. We

prevent the adversary from utilizing this weakness by setting the session key as
the output of the hash function H2 (modeled as a random oracle) which tightly
binds the session identifier sid and the key material σi (i.e., ski = H2(sid, σi)).
Our technique works due to another useful property of Mod2, which guarantees
that σi = Mod2(ki, wj) preserves the high min-entropy property of ki for any wj

(and thus is enough to generate a secure session key by using a good randomness
extractor H2, e.g., a random oracle).4

In order to finally get a security proof of our AKE protocol in the BR model
with weakly perfect forward secrecy, we have to make use of the following prop-
erty of Gaussian distributions, namely some kind of “public randomization”.
Specifically, let χα and χβ be two Gaussian distributions with standard devi-
ation α and β, respectively. Then, the sum of the two distributions is still a
Gaussian distribution χγ with standard deviation γ =

√
α2 + β2. In particular,

if β � α (e.g., β/α = 2ω(log κ) for some security parameter κ), we have that
the distribution χγ is statistically close to χβ . This technique is also known as
“noise flooding” and has been applied, for instance, in proving robustness of
the LWE assumption [36]. The security proof of our protocol is based on the
observation that such a technique allows to statistically hide the distribution of
4 We remark that this is also the reason why the nice reconciliation mechanism in [34]

cannot be used in our protocol. Specifically, it is unclear whether the reconciliation
function rec(·, ·) in [34] could also preserve the high min-entropy property of the
first input (i.e., which might not be uniformly random) for any (maliciously chosen)
second input.

724 J. Zhang et al.

χα in a bigger distribution χβ , and for now let us keep it in mind that a large
distribution will be used to hide a small one.

To better illustrate our technique, we take party j as an example, i.e., the one
who combines his static and ephemeral secret keys by computing r̂j = sjd + rj

where d = H1(j, i, yj , xi). We notice that the value r̂j actually behaves like a
“signature” on the messages that party j knows so far. In other words, it should
be difficult to compute r̂j if we do not know the corresponding “signing key”
sj . Indeed, this combination is necessary to provide the implicit entity authen-
tication. However, it also poses an obstacle to getting a security proof since the
simulator may also be unaware of sj . Fortunately, if the randomness rj is chosen
from a big enough Gaussian distribution, then the value r̂j almost obliterates
all information of sj . More specifically, the simulator can directly choose r̂j such
that r̂j = sjd + rj for some unknown rj by computing yj = (ar̂j + 2f̂j) − pjd,
and programming the random oracle d = H1(j, i, yj , xi) correspondingly. The
properties of Gaussian distributions and the random oracle H1 implies that yj

has almost identical distribution as in the real run of the protocol. Now, we check
the randomness of kj = (pic + xi)r̂j + 2cgj . Note that for the test session, we
can always guarantee that at least one of the pair (pi, xi) is honestly generated
(and thus is computationally indistinguishable from uniformly distributed ele-
ment under the Ring-LWE assumption), or else there is no “secrecy” to protect
if both pi and xi are chosen by the adversary. That is, pic+xi is always random
if c is invertible in Rq. Again, by programming c = H1(i, j, xi), the simulator
can actually replace pic + xi with x̂i = cui for a uniformly distributed ring ele-
ment ui. In this case, we have that kj = x̂ir̂j + 2cgj = c(uir̂j + 2gj) should be
computationally indistinguishable from a uniformly distributed element under
the Ring-LWE assumption. In other words, when proving the security one can
replace kj with a uniformly distributed element to derive a high min-entropy
key material σj by using the Mod2 function as required.

Unfortunately, directly using “noise flooding” has a significant drawback, i.e.,
the requirement of a super-polynomially large standard deviation β, which may
lead to a nightmare for practical performance due to a super-polynomially large
modulus q for correctness and a very large ring dimension n for the hardness of
the underlying Ring-LWE problems. Fortunately, we can reduce the big cost by
further employing the rejection sampling technique [37]. Rejection sampling is
a crucial technique in signature schemes to make the distribution of signatures
independent of the signing key, and has been applied in many other lattice-based
signature schemes [38–41].

In our case the combination of the static and ephemeral secret keys, r̂j =
sjd + rj , at party j is essentially a signature on all the public messages under
party j’s public key (we again take party j as an example, but note that similar
analysis also holds for party i). Thus, we can freely use the rejection sampling
technique to relax the requirement on a super-polynomially large β. In other
words, we can use a much smaller β, but require party j to use rj if r̂j = sjd+rj

follows the distribution χβ , and to resample a new rj otherwise. We note that
by deploying rejection sampling in our AKE it is the first time that rejection

Authenticated Key Exchange from Ideal Lattices 725

Table 1. Comparison of lattice-based AKEs (CCA† means CCA-security with high
min-entropy keys [43], and EUF-CMA means existential unforgeability under chosen
message attacks)

Protocols KEM/PKE Signature Message-pass Model RO? Num. of Rq

FSXY12 [43] CCA† - 2-pass CK × � 7

FSXY13 [44] OW-CCA - 2-pass CK
√

7

Peikert14 [34] CPA EUF-CMA 3-pass SK-security
√

> 2 �

BCNS14 [35] CPA EUF-CMA 4-pass ACCE
√

2 for KEM ��

Ours - - 2-pass BR with wPFS
√

2

� The actual number of ring elements depends on the choice of the concrete
lattice-based signatures.

�� Since the protocol uses traditional signatures to provide authentication, it
does not contain any other ring elements.

sampling is used beyond signature schemes in lattice-based cryptography. As
for signatures, rejection sampling is done locally, and thus will not affect the
interaction between the two parties, i.e., two-pass messages. Even though the
computational performance of each execution might become worse with certain
(small) probability (due to rejection and repeated sampling), the average com-
putational cost is much better than the setting of using a super-polynomially
large β.

1.3 Related Work, Comparison and Discussion

In the past few years, many cryptographers have put effort into constructing
different kinds of KE protocols from lattices. At Asiacrypt 2009, Katz and
Vaikuntanathan [42] proposed the first password-based authenticated key
exchange protocol that can be proven secure based on the LWE assumption.
Ding et al. [33] elegantly constructed a passive-secure KE protocol on (Ring-
)LWE by using a nice error-removing technique with a signal message. Like the
standard DH protocol, the protocol in [33] could not provide authentication—it
is not an AKE protocol—and is thus vulnerable to man-in-the-middle attacks.
This motivates us to design an efficient AKE protocol on (ideal) lattices, espe-
cially an MQV-style one with implicit authentication.

Since the work of Katz et al. [42], there are four papers focusing on design-
ing AKEs from lattices [34,35,43,44]. At a high level, all of them are following
generic transformations from key encapsulation mechanisms (KEM) to AKEs.
Concretely, Fujioka et al. [43] proposed a generic construction of AKE from
KEMs, which can be proven secure in the CK model. Informally, they showed
that if there is a CCA-secure KEM with high min-entropy keys and a family
of pseudorandom functions (PRF), then there is a secure AKE protocol in the
standard model. Thus, by using existing lattice-based CCA-secure KEMs such
as [45,46], it is possible to construct lattice-based AKE protocols in the stan-
dard model. However, as the authors commented, their construction was just

726 J. Zhang et al.

of theoretic interest due to huge public keys and the lack of an efficient and
direct construction of PRFs from (Ring-)LWE. Later, the paper [44] tried to get
a practical AKE protocol by improving the efficiency of the generic framework
in [43], and showed that one-way CCA-secure KEMs were enough to get AKEs
in the random oracle model. The two protocols in [43,44] share some similari-
ties such as having two-pass messages, and involving three encryptions (i.e., two
encryptions under each party’s static public key and one encryption under an
ephemeral public key). However, the use of the random oracle heuristic makes the
protocol in [44] more efficient than that in [43]. Specifically, the protocol in [44]
requires exchanging seven ring elements when instantiated with the CPA-secure
encryption from Ring-LWE [29] by first transforming it into a CCA-secure one
with the Fujisaki-Okamoto transformation.

Recently, Peikert [34] presented an efficient KEM based on Ring-LWE, which
was then transformed into an AKE protocol by using the same structure as
SIGMA [9]. Similar to the SIGMA protocol, the resulting protocol had three-
pass messages and was proven SK-secure [47] in the random oracle model. For
the computation overheads, Peikert’s protocol involved one KEM, two signatures
and two MACs. By treating the KEM in [34] as a DH-like KE protocol, Bos
et al. [35] integrated it into the Transport Layer Security (TLS) protocol by
directly using signatures to provide explicit authentication. Actually, the authors
used traditional digital signatures such as RSA and ECDSA, and thus their pro-
tocol was not a pure post-quantum AKE. As for the security, the protocol in [35]
was proven secure in the authenticated and confidential channel establishment
(ACCE) security model [48] (which is based on the BR model, but has many
differences to capture entity authentication and channel security).

Due to the lack of concrete security analysis and parameter choices in the lit-
erature, we only give a theoretical comparison of lattice-based AKEs in Table 1.
In summary, our protocol only has two-pass messages (about two ring elements)
and does not use signatures/MACs at all, and its security relies on the hardness
of Ring-LWE in the random oracle model. To the best of our knowledge there is
not a single post-quantum authenticated key exchange protocol (until this work)
which directly relies on a quantum-hard computational problem and does not
make use of explicit cryptographic primitives except hash functions.

1.4 On the Quantum Hardness of Our AKE Protocol

We call our AKE protocol post-quantum as our protocol relies merely on the
Ring-LWE assumption, which is believed to hold even in presence of polynomial-
time quantum computers. However, we emphasize that it does not mean nec-
essarily that our scheme is quantum resistant. This may sound confusing and
controversial in the beginning; that is why we clarify this issue in the follow-
ing. While the underlying assumption may give the impression that our scheme
is quantum secure, our security analysis makes use of rewinding the adversary,
which is generally hard to apply to a quantum algorithm (exceptions can be
found in [49,50]). Moreover, our proof is done in the random oracle model.
In [51], Boneh et al. introduced the quantum random oracle model, and show

Authenticated Key Exchange from Ideal Lattices 727

that proofs in this augmented model are more realistic when considering quan-
tum adversaries. In fact, many well-known transformations proven secure in the
classical random oracle model cannot be (easily) proven secure against quantum
algorithms, such as the Fiat-Shamir transform [52,53]. Moreover, it is not clear
whether the security models for key exchange are appropriate when considering
quantum adversaries. An update of security models (in general) may necessary
when considering quantum adversaries (see [54,55]). Therefore, we do not claim
that our scheme is quantum resistant, but believe it is a big step forward.

2 Preliminaries

2.1 Notation

Let κ be the natural security parameter, and all quantities are implicitly depen-
dent on κ. Let poly(κ) denote an unspecified function f(κ) = O(κc) for some
constant c. The function log denotes the natural logarithm. We use standard
notation O,ω to classify the growth of functions. If f(κ) = O(g(κ) · logc κ),
we denote f(κ) = Õ(g(κ)). We say a function f(κ) is negligible if for every
c > 0, there exists a N such that f(κ) < 1/κc for all κ > N . We use negl(κ) to
denote a negligible function of κ, and we say a probability is overwhelming if it
is 1 − negl(κ).

The set of real numbers (integers) is denoted by R (Z, resp.). We use ←r to
denote randomly choosing an element from some distribution (or the uniform
distribution over some finite set). Vectors are in column form and denoted by
bold lower-case letters (e.g., x). The 	2 and 	∞ norms we designate by ‖·‖ and
‖·‖∞. The ring of polynomials over Z (Zq = Z/qZ, resp.) we denote by Z[x]
(Zq[x], resp.).

Let X be a distribution over finite set S. The min-entropy of X is defined as

H∞(X) = − log(max
s∈S

Pr[X = s]).

Intuitively, the min-entropy says that if we (privately) choose x from X at ran-
dom, then no (unbounded) algorithm can guess the value of x correctly with
probability greater than 2−H∞(X).

2.2 Security Model for AKE

We now recall the Bellare-Rogaway security model [2,31], restricted to the case
of two-pass AKE protocol.

Sessions. We fix a positive integer N to be the maximum number of honest par-
ties that use the AKE protocol. Each party is uniquely identified by an integer i
in {1, 2, . . . , N}, and has a static key pair consisting of a static secret key ski

and static public key pki, which is signed by a Certificate Authority (CA). A
single run of the protocol is called a session. A session is activated at a party by

728 J. Zhang et al.

an incoming message of the form (Π, I, i, j) or the form (Π,R, j, i,Xi), where
Π is a protocol identifier; I and R are role identifiers; i and j are party iden-
tifiers. If party i receives a message of the form (Π, I, i, j), we say that i is the
session initiator. Party i then outputs the response Xi intended for party j. If
party j receives a message of the form (Π,R, j, i,Xi), we say that j is the session
responder; party j then outputs a response Yj to party i. After exchanging these
messages, both parties compute a session key.

If a session is activated at party i with i being the initiator, we associate
with it a session identifier sid = (Π, I, i, j,Xi) or sid = (Π, I, i, j,Xi, Yj).
Similarly, if a session is activated at party j with j being the responder, the
session identifier has the form sid = (Π,R, j, i,Xi, Yj). For a session identifier
sid = (Π, ∗, i, j, ∗[, ∗]), the third coordinate—that is, the first party identifier—is
called the owner of the session; the other party is called the peer of the ses-
sion. A session is said to be completed when its owner computes a session key.
The matching session of sid = (Π, I, i, j,Xi, Yj) is the session with identifier
s̃id = (Π,R, j, i,Xi, Yj) and vice versa.

Adversarial Capabilities. We model the adversary A as a probabilistic poly-
nomial time (PPT) Turing machine with full control over all communication
channels between parties, including control over session activations. In partic-
ular, A can intercept all messages, read them all, and remove or modify any
desired messages as well as inject its own messages. We also suppose A is capa-
ble of obtaining hidden information about the parties, including static secret
keys and session keys to model potential leakage of them in genuine protocol
executions. These abilities are formalized by providing A with the following ora-
cles (we split the Send query as in [3] into Send0, Send1 and Send2 queries for
the case of two-pass protocols):

– Send0(Π, I, i, j): A activates party i as an initiator. The oracle returns a
message Xi intended for party j.

– Send1(Π,R, j, i,Xi): A activates party j as a responder using message Xi.
The oracle returns a message Yj intended for party i.

– Send2(Π,R, i, j,Xi, Yj): A sends party i the message Yj to complete a session
previously activated with a Send0(Π, I, i, j) query that returned Xi.

– SessionKeyReveal(sid): The oracle returns the session key associated with the
session sid if it has been generated.

– Corrupt(i): The oracle returns the static secret key belonging to party i. A
party whose key is given to A in this way is called dishonest ; a party not
compromised in this way is called honest.

– Test(sid∗): The oracle chooses a bit b ←r {0, 1}. If b = 0, it returns a key
chosen uniformly at random; if b = 1, it returns the session key associated
with sid∗. Note that we impose some restrictions on this query. We only
allow A to query this oracle once, and only on a fresh (see Definition 1)
session sid∗.

Definition 1 (Freshness). Let sid∗ = (Π, I, i∗, j∗,Xi, Yj) or (Π,R, j∗, i∗,
Xi, Yj) be a completed session with initiator party i∗ and responder party j∗. If the

Authenticated Key Exchange from Ideal Lattices 729

matching session exists, denote it s̃id
∗
. We say that sid∗ is fresh if the following

conditions hold:

– A has not made a SessionKeyReveal query on sid∗.
– A has not made a SessionKeyReveal query on s̃id

∗
(if it exists).

– Neither party i∗ nor j∗ is dishonest if s̃id
∗
does not exist. I.e., A has not

made a Corrupt query on either of them.

Recall that in the original BR model [2], no corruption query is allowed. In
the above freshness definition, we allow the adversary to corrupt both parties
of sid∗ if the matching session exists, i.e., the adversary can obtain the parties’
secret key in advance and then passively eavesdrops the session sid∗ (and thus
s̃id

∗
). We remark that this seems to be stronger than what is needed for capturing

wPFS [5], where the adversary is only allowed to corrupt a party after an honest
session sid∗ (and thus s̃id

∗
) has been completed.

Security Game. The security of a two-pass AKE protocol is defined in terms of
the following game. The adversary A makes any sequence of queries to the oracles
above, so long as only one Test query is made on a fresh session, as mentioned
above. The game ends when A outputs a guess b′ for b. We say A wins the game
if its guess is correct, so that b′ = b. The advantage of A, AdvΠ,A, is defined as
|Pr[b′ = b] − 1/2|.
Definition 2 (Security). We say that an AKE protocol Π is secure if the
following conditions hold:

– If two honest parties complete matching sessions then they compute the same
session key with overwhelming probability.

– For any PPT adversary A, the advantage AdvΠ,A is negligible.

2.3 The Gaussian Distributions and Rejection Sampling

For any positive real α ∈ R, and vectors c ∈ R
m, the continuous Gaussian

distribution over R
m with standard deviation α centered at v is defined by

the probability function ρα,c(x) = (1√
2πα2)m exp

(
−‖x−v‖2

2α2

)
. For integer vectors

c ∈ R
n, let ρα,c(Zm) =

∑
x∈Zm ρα,c(x). Then, we define the discrete Gaussian

distribution over Z
m as DZm,α,c(x) = ρα,c(x)

ρα,c(Zm) , where x ∈ Z
m. The subscripts s

and c are taken to be 1 and 0 (respectively) when omitted. The following lemma
says that for large enough α, almost all the samples from DZm,α are small.

Lemma 1 ([56]). Letting real α = ω(
√

log m), constant η > 1/
√

2π, then we
have that Prx←rDZm,α

[‖x‖ > η · α
√

m] ≤ 1
2Dn, where D = η

√
2πe · e−π·η2

. In
particular, we have Prx←rDZm,α

[‖x‖ > α
√

m] ≤ 2−m+1.

Now, we recall rejection sampling in Theorem 1 from [37], which will be used
in the security proof of our AKE protocol.

730 J. Zhang et al.

Theorem 1 (Rejection Sampling [37]). Let V be a subset of Z
m in which all

the elements have norms less than T , α = ω(T
√

log m) be a real, and ψ : V → R

be a probability distribution. Then there exists a constant M = O(1) such that
the distribution of the following algorithm Samp1 :

1: c ←r ψ
2: z ←r DZm,α,c

3: output (z, c) with probability min
(

DZm,α(z)
MDZm,α,c(z)

, 1
)
.

is within statistical distance 2−ω(log m)

M from the distribution of the following algo-
rithm Samp2 :

1: c ←r ψ
2: z ←r DZm,α

3: output (z, c) with probability 1/M .

Moreover, the probability that Samp1 outputs something is at least 1−2−ω(log m)

M .
More concretely, if α = τT for any positive τ , then M = e12/τ+1/(2τ2) and the
output of algorithm Samp1 is within statistical distance 2−100

M of the output of
Samp2, and the probability that A outputs something is at least 1−2−100

M .

2.4 Ring Learning with Errors

Let the integer n be a power of 2, and consider the ring R = Z[x]/(xn + 1).
For any positive integer q, we define the ring Rq = Zq[x]/(xn + 1) analogously.
For any polynomial y(x) in R (or Rq), we identify y with its coefficient vector
in Z

n (or Z
n
q). Then, we define the norm of a polynomial to be the (Euclidean)

norm of its coefficient vector.

Lemma 2. For any s, t ∈ R, we have ‖s · t‖ ≤ √
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤

n · ‖s‖∞ · ‖t‖∞.

The discrete Gaussian distribution over the ring R can be naturally defined
as the distribution of ring elements whose coefficient vectors are distributed
according to the discrete Gaussian distribution over Z

n, e.g., DZn,α for some
positive real α. Letting χα be the discrete Gaussian distribution over Z

n with
standard deviation α centered at 0, i.e., χα := DZn,α, we now adopt the following
notational convention: since bold-face letters denote vectors, x ←r χα means we
sample the vector x from the distribution χα; for normal weight variables (e.g.,
y ←r χα) we sample an element of R whose coefficient vector is distributed
according to χα.

Now we come to the statement of the Ring-LWE assumption; we will use a
special case detailed in [29]. Let Rq be defined as above, and s ←r Rq. We define
As,χα

to be the distribution of the pair (a, as + x) ∈ Rq × Rq, where a ←r Rq is
uniformly chosen and x ←r χα is independent of a.

Authenticated Key Exchange from Ideal Lattices 731

Definition 3 (Ring-LWE Assumption). Let Rq and χα be defined as above,
and s ←r Rq. The Ring-LWE assumption RLWEq,α states that it is hard for any
PPT algorithm to distinguish As,χα

from the uniform distribution on Rq × Rq

with only polynomially many samples.

The following lemma says that the hardness of the Ring-LWE assumption
can be reduced to some hard lattice problems such as the Shortest Independent
Vectors Problem (SIVP) over ideal lattices.

Proposition 1 (A special case of [29]). Let n be a power of 2, α be a
real number in (0, 1), and q be a prime such that q mod 2n = 1 and αq >
ω(

√
log n). Define Rq = Zq[x]/〈xn +1〉 as above. Then, there exists a polynomial

time quantum reduction from Õ(
√

n/α)-SIVP in the worst case to average-case
RLWEq,β with 	 samples, where β = αq · (n	/ log(n))1/4.

It has been proven that the Ring-LWE assumption still holds even if the
secret s is chosen according to the error distribution χβ rather than uniformly [29,
57]. This variant is known as the normal form, and is preferable for controlling
the size of the error term [58,59]. The underlying Ring-LWE assumption also
holds when scaling the error by a constant t relatively prime to q [58], i.e., using
the pair (ai, ais + txi) rather than (ai, ais + xi). Several lattice-based crypto-
graphic schemes have been constructed based on this variant [58,59]. In our case,
we will fix t = 2. Besides, recall that the RLWEq,β assumption guarantees that
for some prior fixed (but randomly chosen) s, the tuple (a, as + 2x) is computa-
tionally indistinguishable from the uniform distribution over Rq ×Rq if a ←r Rq

and x ← χβ . In this paper, we will use a matrix form of the ring-LWE assump-
tion. Formally, let Bχβ ,�1,�2 be the distribution of (a,B = (bi,j)) ∈ R�1

q ×R�1×�2
q ,

where a = (a0, . . . , a�1−1) ←r R�1
q , s = (s0, . . . , s�2−1) ←r R�2

q , ei,j ←r χβ , and
bi,j = aisj + 2ei,j for i ∈ {0, . . . , 	1 − 1} and j ∈ {0, . . . , 	2 − 1}. For poly-
nomially bounded 	1 and 	2, one can show that the distribution of Bχβ ,�1,�2 is
pseudorandom based on the RLWEq,β assumption [45].

3 Authenticated Key Exchange from Ring-LWE

We now introduce some notations. For an odd prime q > 2, take Zq = {− q−1
2 , . . . ,

q−1
2 } and define the subset E := {− q

4�, . . . , q
4�} as the middle half of Zq.

We also define Cha to be the characteristic function of the complement of E,
so Cha(v) = 0 if v ∈ E and 1 otherwise. Obviously, for any v in Zq, v +
Cha(v) · q−1

2 mod q belongs to E. We define an auxiliary modular function,
Mod2 : Zq × {0, 1} → {0, 1} as Mod2(v, b) = (v + b · q−1

2) mod q mod 2.
In the following lemma, we show that given the bit b = Cha(v), and a value

w = v + 2e with sufficiently small e, one can recover Mod2(v,Cha(v)). In partic-
ular, we have Mod2(v, b) = Mod2(w, b).

Lemma 3. Let q be an odd prime, v ∈ Zq and e ∈ Zq such that |e| < q/8. Then,
for w = v + 2e, we have Mod2(v,Cha(v)) = Mod2(w,Cha(v)).

732 J. Zhang et al.

Proof. Note that w + Cha(v) q−1
2 mod q = v + Cha(v) q−1

2 + 2e mod q. Now, v +
Cha(v) q−1

2 mod q is in E as we stated above; that is, − q
4� ≤ v+Cha(v) q−1

2 mod
q ≤ q

4�. Thus, since −q/8 < e < q/8, we have − q
2� ≤ v + Cha(v) q−1

2 mod q +
2e ≤ q

2�. Therefore, we have v + Cha(v) q−1
2 mod q + 2e = v + Cha(v) q−1

2 +
2e mod q = w + Cha(v) q−1

2 mod q. Thus, Mod2(w,Cha(v)) = Mod2(v,Cha(v)).

Now, we extend the two functions Cha and Mod2 to ring Rq by applying them
coefficient-wise to ring elements. Namely, for ring element v = (v0, . . . , vn−1) ∈
Rq and binary-vector b = (b0, . . . , bn−1) ∈ {0, 1}n, define C̃ha(v) = (Cha(v0), . . . ,
Cha(vn−1)) and M̃od2(v,b) = (Mod2(v0, b0), . . . , Mod2(vn−1, bn−1)). For simplic-
ity, we slightly abuse the notations and still use Cha (resp. Mod2) to denote C̃ha

(resp. M̃od2). Clearly, the result in Lemma 3 still holds when extending to ring
elements.

In our AKE protocol, the two involved parties will use Cha and Mod2 to derive
a common key material. Concretely, the responder will publicly send the result of
Cha on his own secret ring element to the initiator in order to compute a shared
key material from two “close” ring elements (by applying the Mod2 function).
Ideally, for a uniformly chosen element v from Rq at random, we hope that the
output of Mod2(v,Cha(v)) is uniformly distributed {0, 1}n. However, this can
never happen when q is an odd prime. Fortunately, we can show that the output
of Mod2(v,Cha(v)) conditioned on Cha(v) has high min-entropy, and thus can
be used to extract an (almost) uniformly distributed session key. Actually, we
can prove a stronger result.

Lemma 4. Let q be any odd prime and Rq be the ring defined above. Then, for
any b ∈ {0, 1}n and any v′ ∈ Rq, the output distribution of Mod2(v+v′,b) given
Cha(v) has min-entropy at least −n log(12 + 1

|E|−1), where v is uniformly chosen
from Rq at random. In particular, when q > 203, we have −n log(12 + 1

|E|−1) >
0.97n.

Proof. Since each coefficient of v is independently and uniformly chosen from Zq

at random, we can simplify the proof by focusing on the first coefficient of v.
Formally, letting v = (v0, . . . , vn−1), v′ = (v′

0, . . . , v
′
n−1) and b = (b0, . . . , bn−1),

we condition on Cha(v0):

– If Cha(v0) = 0, then v0 + v′
0 + b0 · q−1

2 is uniformly distributed over v′
0 +

b0 · q−1
2 + E mod q. This shifted set has (q + 1)/2 elements, which are either

consecutive integers—if the shift is small enough—or two sets of consecutive
integers—if the shift is large enough to cause wrap-around. Thus, we must
distinguish a few cases:

• If |E| is even and no wrap-around occurs, then the result of Mod2(v0 +
v′
0, b0) is clearly uniform on {0, 1}. Hence, the result of Mod2(v0 + v′

0, b0)
has no bias.

• If |E| is odd and no wrap-around occurs, then the result of Mod2(v0 +
v′
0, b0) has a bias 1

2|E| over {0, 1}. In other words, the Mod2(v0 + v′
0, b0)

will output either 0 or 1 with probability exactly 1
2 + 1

2|E| .

Authenticated Key Exchange from Ideal Lattices 733

• If |E| is odd and wrap-around does occur, then the set v′
0 + b0 · q−1

2 +
E mod q splits into two parts, one with an even number of elements, and
one with an odd number of elements. This leads to the same situation
as with no wrap-around.

• If |E| is even and wrap-around occurs, then our sample space is split into
either two even-sized sets, or two odd sized sets. If both are even, then
once again the result of Mod2(v0 + v′

0, b0) is uniform. If both are odd, it
is easy to calculate that the result of Mod2(v0 + v′

0, b0) has a bias with
probability 1

|E| over {0, 1}.

– If Cha(v0) = 1, v0+v′
0+b0 · q−1

2 is uniformly distributed over v′
0+b0 · q−1

2 +Ẽ,
where Ẽ = Zq \ E. Now |Ẽ| = |E| − 1, so by splitting into the same cases as
Cha(v0) = 0, the result of Mod2(v0 + v′

0, b) has a bias with probability 1
|E|−1

over {0, 1}.
In all, we have that the result of Mod2(v0 + v′

0, b0) conditioned on Cha(v0)
has min-entropy at least − log(12 + 1

|E|−1). Since the bits in the result of
Mod2(v+v′,b) are independent, we have that given Cha(v), the min-entropy
H∞(Mod2(v + v′,b)) ≥ −n log(12 + 1

|E|−1). This completes the first claim.
The second claim directly follows from the fact that − log(12 + 1

|E|−1) >

− log(0.51) > 0.97 when q > 203. �

Remark 1 (On Uniformly Distributed Keys). It is known that randomness extrac-
tors can be used to obtain an almost uniformly distributed key from a biased bit-
string with high min-entropy [60–64]. In practice, as recommended by NIST [65],
one can actually use the standard cryptographic hash functions such as SHA-2
to derive a uniformly distributed key if the source string has at least 2κ min-
entropy, where κ is the length of the cryptographic hash function.

3.1 The Protocol

We now describe our protocol in detail. Let n be a power of 2, and q be an odd
prime such that q mod 2n = 1. Take R = Z[x]/(xn +1) and Rq = Zq[x]/(xn +1)
as above. For any positive γ ∈ R, let H1 : {0, 1}∗ → χγ = DZn,γ be a hash func-
tion that always outputs invertible elements in Rq.5 Let H2 : {0, 1}∗ → {0, 1}κ

be the key derivation function, where κ is the bit-length of the final shared key.
We model both functions as random oracles [67]. Let χα, χβ be two discrete
Gaussian distributions with parameters α, β ∈ R

+. Let a ∈ Rq be the global
public parameter uniformly chosen from Rq at random, and M be a constant
determined by Theorem 1. Let pi = asi + 2ei ∈ Rq be party i’s static public
key, where (si, ei) is the corresponding static secret key; both si and ei are taken

5 In practice, one can first use a hash function (e.g., SHA-2) to obtain a uniformly
random string, and then use it to sample from DZn,γ . The algorithm outputs a
sample only if it is invertible in Rq, otherwise, it tries another sample and repeats.
By Lemma 10 in [66], we can have a good probability to sample an invertible element
in each trial for an appropriate choice of γ.

734 J. Zhang et al.

from the distribution χα. Similarly, party j has static public key pj = asj + 2ej

and static secret key (sj , ej).

Initiation. Party i proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic + ri and f̂i = eic + fi;
3. Go to step 4 with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂i concatenated with the coefficient vector of
f̂i, and z1 ∈ Z

2n is the coefficient vector of sic concatenated with the
coefficient vector of eic; otherwise go back to step 1;

4. Send xi to party j.
Response. After receiving xi from party i, party j proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd + rj and f̂j = ejd + fj ;

3′. Go to step 4′ with probability min
(

D
Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂j concatenated with the coefficient vector of
f̂j , and z1 ∈ Z

2n is the coefficient vector of sjd concatenated with the
coefficient vector of ejd; otherwise go back to step 1′;

4′. Sample gj ←r χβ , compute kj = (pic+xi)r̂j+2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and send (yj , wj) to party i;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi,

yj , wj , σj).
Finish. Party i receives the pair (yj , wj) from party j, and proceeds as follows:

5. Sample gi ←r χβ and compute ki = (pjd+ yj)r̂i +2dgi with d = H1(j, i,
yj , xi);

6. Compute σi = Mod2(ki, wj) and derive the session key ski =
H2(i, j, xi, yj , wj , σi).

Remark 2. Deploying our protocol practically in a large scale requires the sup-
port of a PKI with a trusted Certificate Authority (CA). In this setting, all the
system parameters (such as a) will be generated by the CA like other PKI-based
protocols.

In the above protocol, both parties will make use of rejection sampling, i.e.,
they will repeat the first three steps with certain probability. By Theorem 1,
the probability that each party will repeat the steps is about 1 − 1

M for some
constant M and appropriately chosen β. Thus, one can hope that both parties
will send something to each other after an averaged M times repetitions of the
first three steps. Next, we will show that once they send something to each other,
both parties will finally compute a shared session key.

3.2 Correctness

To show the correctness of our AKE protocol, i.e., that both parties compute
the same session key ski = skj , it suffices to show that σi = σj . Since σi and

Authenticated Key Exchange from Ideal Lattices 735

σj are both the output of Mod2 with Cha(kj) as the second argument, we need
only to show that ki and kj are sufficiently close by Lemma 3. Note that the two
parties will compute ki and kj as follows:

ki = (pjd + yj)r̂i + 2dgi

= a(sjd + rj)r̂i + 2(ejd + fj)r̂i

+2dgi

= ar̂ir̂j + 2g̃i

kj = (pic + xi)r̂j + 2cgj

= a(sic + ri)r̂j + 2(eic + fi)r̂j

+2cgj

= ar̂ir̂j + 2g̃j

where g̃i = f̂j r̂i + dgi, and g̃j = f̂ir̂j + cgj . Then ki = kj + 2(g̃i − g̃j), and we
have σi = σj if ‖g̃i − g̃j‖∞ < q/8 by Lemma 3.

4 Security

Theorem 2. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 sat-
isfying q = 1 mod 2n, real β = ω(αγn

√
n log n) and let H1,H2 be random

oracles. Then, if RLWEq,α is hard, the proposed AKE is secure with respect to
Definition 2.

The intuition behind our proof is quite simple. Since the public element a and
the public key of each party (e.g., pi = asi + 2ei) actually consist of a RLWEq,α

tuple with Gaussian parameter α (scaled by 2), the parties’ static public keys
are computationally indistinguishable from uniformly distributed elements in
Rq under the Ring-LWE assumption. Similarly, both the exchanged elements
xi and yj are also computationally indistinguishable from uniformly distributed
elements in Rq under the RLWEq,β assumption.

Without loss of generality, we take party j as an example to check the dis-
tribution of the session key. Note that if kj is uniformly distributed over Rq,
we have σj ∈ {0, 1}n has high min-entropy (i.e., 0.97n > 2κ) even conditioned
on wj by Lemma 4. Since H2 is a random oracle, we have that skj is uni-
formly distributed over {0, 1}κ as expected. Now, let us check the distribution of
kj = (pic+xi)(sjd+rj)+2cgj . As one can imagine, we want to establish the ran-
domness of kj based on pseudorandomness of “Ring-LWE samples” with public
element âj = c−1(pic + xi) = pi + c−1xi, the secret ŝj = sjd + rj , as well as the
error term 2gj (thus we have kj = c(âj ŝj + 2gj)). Actually, kj is pseudorandom
due to the following fact: 1) c is invertible in Rq; 2) âj is uniformly distributed
over Rq whenever pi or xi is uniform, and 3) ŝj has distribution statistically
close to χβ by the strategy of rejection sampling in Theorem 1. In other words,
âj ŝj +2gj is statistically close to a RLWEq,β sample, and thus is pseudorandom.

Formally, let N be the maximum number of parties, and m be maximum
number of sessions for each party. We distinguish the following five types of
adversaries:

Type I: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test session, and yj∗ is output
by a session activated at party j by a Send1(Π,R, j∗, i∗, xi∗) query.

736 J. Zhang et al.

Type II: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test session, and yj∗ is not
output by a session activated at party j∗ by a Send1(Π,R, j∗, i∗, xi∗) query.

Type III: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is not
output by a session activated at party i∗ by a Send0(Π, I, i∗, j∗) query.

Type IV: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is out-
put by a session activated at party i∗ by a Send0(Π, I, i∗, j∗) query, but i∗

either never completes the session, or i∗ completes it with exact yj∗ .
Type V: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is out-

put by a session activated at party i∗ by a Send0(Π, I, i∗, j∗) query, but i∗

completes the session with another y′
j �= yj∗ .

The five types of adversaries give a complete partition of all the adversaries.
The weak perfect forward secrecy (wPFS) is captured by allowing Type I and
Type IV adversaries to obtain the static secret keys of both party i∗ and j∗ by
using Corrupt queries. Since sid∗ definitely has no matching session for Type II,
Type III, and Type V adversaries, no corruption to either party i∗ or party j∗

is allowed by Definition 1. The security proofs for the five types of adversaries
are similar, except the forking lemma [68] is involved for Type II, Type III,
and Type V adversaries by using the assumption that H1 is a random oracle.
Informally, the adversary must first “commit” xi (yj , resp.) before seeing c (d,
resp.), thus it cannot determine the value pic + xi or pjd + yi in advance (but
the simulator can set the values by programming H1 when it tries to embed
Ring-LWE instances with respect to either pic + xi or pjd + yi as discussed
before).

For space reason, we only give the security proof for Type I adversaries in
Lemma 5, and defer the proofs for other types of adversaries to the full version.

Lemma 5. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satis-
fying q = 1 mod 2n, real β = ω(αγn

√
n log n). Then, if RLWEq,α is hard, the

proposed AKE is secure against any PPT Type I adversary A in the random
oracle model.

In particular, if there is a PPT Type I adversary A breaking our protocol with
non-negligible advantage ε, then there is a PPT algorithm B solving RLWEq,α

with advantage at least ε
m2N2 − negl(κ).

Proof. We prove this lemma via a sequence of games G1,l for 0 ≤ l ≤ 7, where
the first game G1,0 is almost the same as the real one except that the simulator
randomly guesses the test session at the beginning of the game and aborts the
simulation if the guess is wrong, while the last game G1,7 is a fake one with
randomly and independently chosen session key for the test session (thus the
adversary can only win the game with negligible advantage). The security is
established by showing that any two consecutive games are computationally
indistinguishable. Bold fonts are used to highlight the changes of each game
with respect to its previous game.

Game G1,0. S chooses i∗, j∗ ←r {1, . . . , N}, si∗ , sj∗ ←r {1, . . . , m}, and hopes
that the adversary will use sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) as the test session,

Authenticated Key Exchange from Ideal Lattices 737

where xi∗ is output by the si∗ -th session of party i∗, and yj∗ is output by the s∗
j -th

session of party j∗ activated by a Send1(Π,R, j∗, i∗, xi∗) query. Then, S chooses
a ←r Rq, generates static public keys for all parties (by choosing si, ei ←r χα),
and simulates the security game for A. Specifically, S maintains two tables L1, L2

for the random oracles H1,H2, respectively, and answers the queries from A as
follows:

– H1(in): If there does not exist a tuple (in, out) in L1, choose an invertible
element out ∈ χγ at random, and add (in, out) into L1. Then, return out to
A.

– H2(in) queries: If there does not exist a tuple (in, out) in L2, choose a vector
out ←r {0, 1}κ, and add (in, out) into L2. Then, return out to A.

– Send0(Π, I, i, j): A activates a new session of i with intended party j, S
proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic + ri and f̂i = eic + fi;
3. Go to step 4 with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂i concatenated with the coefficient vector of
f̂i, and z1 ∈ Z

2n is the coefficient vector of sic concatenated with the
coefficient vector of eic; otherwise go back to step 1;

4. Return xi to A;
– Send1(Π,R, j, i, xi): S proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd + rj and f̂j = ejd + fj ;

3′. Go to step 4′ with probability min
(

D
Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂j concatenated with the coefficient vector of
f̂j , and z1 ∈ Z

2n is the coefficient vector of sjd concatenated with the
coefficient vector of ejd; otherwise go back to step 1′;

4′. Sample gj ←r χβ , compute kj = (pic+xi)r̂j+2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj =

H2(i, j, xi, yj , wj , σj).
– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski as follows:

5. Sample gi ←r χβ and compute ki = (pjd+yj)r̂i+2dgi where d = H1(j, i,
yj , xi);

6. Compute σi = Mod2(ki, wj) and derive the session key ski =
H2(i, j, xi, yj , wj , σi).

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗), S returns ski if the session
key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.
– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), S aborts if (i, j) �= (i∗, j∗), or xi

and yj are not output by the si∗ -th session of party i∗ and the s∗
j -th session

of party j∗, respectively. Else, S chooses b ←r {0, 1}, returns sk′
i ←r {0, 1}κ

if b = 0. Otherwise, return the session key ski of sid.

738 J. Zhang et al.

Claim 1. The probability that S will not abort in G1,0 is at least 1
m2N2 .

Proof. This claim directly follows from the fact that S randomly chooses i∗, j∗ ←r

{1, . . . , N} and si∗ , s∗
j ←r {1, . . . , m} independently from the view of A. �

Game G1,1. S behaves almost the same as in G1,0 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) �= (i∗, j∗), or it is not the s∗
j -th session of j∗, S

answers the query as in Game G1,0. Otherwise, it proceeds as follows:
1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Sample an invertible element d ←r χγ , and compute r̂j = sjd + rj ,

f̂j = ejd + fj ;
3′. Go to step 4′ with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂j concatenated with the coefficient vector of
f̂j , and z1 ∈ Z

2n is the coefficient vector of sjd concatenated with the
coefficient vector of ejd; otherwise go back to step 1′;

4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add
((j, i, yj , xi), d) into L1. Then, sample gj ←r χβ and compute kj =
(pic + xi)r̂j + 2cgj where c = H1(i, j, xi);

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj =

H2(i, j, xi, yj , wj , σj).

Let F1,l be the event that A outputs a guess b′ that equals to b in Game G1,l.

Claim 2. If RLWEq,β is hard, then Pr[F1,l] = Pr[F1,0] − negl(κ).

Proof. Since H1 is a random oracle, Game G1,0 and Game G1,1 are identical if
the adversary A does not make a H1 query ((j, i, yj , xi), ∗) before S generates
yj . Thus, the claim follows if the probability that A makes such a query in both
Games is negligible. Actually, if A can make the query before seeing yj with non-
negligible probability, we can construct an algorithm B that breaks the RLWEq,β

assumption.
Formally, after given a ring-LWE challenge tuple (u,b) ∈ Rq × R�

q in matrix
form for some polynomially bounded 	, B sets a = u and behaves like in Game
G1,0 until B has to generate yj for the s∗

j -th session of j∗ intended for party i∗.
Instead of generating a fresh yj , B simply sets yj as the first unused elements in
b = (b0, . . . , b�−1), and checks if there is a tuple ((j, i, yj , xi), ∗) in L1. If yes, it
returns 1 and aborts, else it returns 0 and aborts.

It is easy to check that A has the same view as in G1,0 and G1,1 until the point
that B has to compute yj . Moreover, if b = (b0 = ur0 + 2f0, . . . , b�−1 = ur�−1 +
2f�−1) for some randomly choose r�′ , f�′ ←r χβ where 	′ ∈ {0, 1, . . . , 	 − 1}, we
have the probability that A will make the H1 query with (j, i, yj , xi) is non-
negligible by assumption. While if b is uniformly distributed over R

�
q, we have

the probability that A will make the H1 query with (j, i, yj , xi) is negligible.
This shows that B can be used to solve Ring-LWE assumption by interacting
with A. �

Authenticated Key Exchange from Ideal Lattices 739

Game G1,2. S behaves almost the same as in G1,1 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) �= (i∗, j∗), or it is not the s∗
j -th session of j∗, S

answers the query as in Game G1,1. Otherwise, it proceeds as follows:
1′. Sample an invertible element d ←r χγ , and choose z ←r DZ2n,β ;

2′. Parse z as two ring elements r̂j , f̂j ∈ Rq, and define yj = ar̂j + 2f̂j − pjd;

3′. Go to step 4′ with probability 1/M ; otherwise go back to step 1′;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into

L1. Then, sample gj ←r χβ and compute kj = (pic + xi)r̂j + 2cgj where
c = H1(i, j, xi);

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj ,

wj , σj).

Claim 3. If β = ω(αγn
√

n log n), then Pr[F1,2] = Pr[F1,1] − negl(κ).

Proof. By Lemma 1 and Lemma 2, we have that both ‖sjd‖ ≤ αγn
√

n and
‖ejd‖ ≤ αγn

√
n (in Game G1,1) hold with overwhelming probability. This means

that β = ω(αγn
√

n log n) satisfies the requirement in Theorem 1, and thus the
distribution of (d, z) in Game G1,2 is statistically close to that in G1,1. The claim
follows from the fact that the equation yj = ar̂j +2f̂j − pjd holds in both Game
G1,1 and G1,2.

Game G1,3. S behaves almost the same as in G1,2, except for the following case:

– Send0(Π, I, i, j): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session of i∗, S
answers as in Game G1,2. Otherwise, it proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Sample an invertible element c ←r χγ , and compute r̂i = sic + ri,

f̂i = eic + fi;
3. Go to step 4 with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂i concatenated with the coefficient vector of
f̂i, and z1 ∈ Z

2n is the coefficient vector of sic concatenated with the
coefficient vector of eic; otherwise go back to step 1;

4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c)
into L1. Return xi to A.

Claim 4. If RLWEq,β is hard, then Pr[F1,3] = Pr[F1,2] − negl(κ).

Proof. The proof is similar to the proof of Claim 2, we omit the details. �

Game G1,4. S behaves almost the same as in G1,3 except for the following case:

– Send0(Π, I, i, j): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session of i∗, S answers
as in Game G1,3. Otherwise, it proceeds as follows:
1. Sample an invertible element c ←r χγ , and choose z ←r DZ2n,β;
2. Parse z as two ring elements r̂i, f̂i ∈ Rq, and define xi = ar̂i + 2f̂i − pic;

740 J. Zhang et al.

3. Go to step 4 with probability 1/M ; otherwise go back to step 1;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1.

Return xi to A.

Claim 5. If β = ω(αγn
√

n log n), then Pr[F1,4] = Pr[F1,3] − negl(κ).

Proof. The proof is similar to the proof of Claim 3, we omit the details. �

Game G1,5. S behaves almost the same as in G1,4 except for the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session
of i∗, S behaves as in Game G1,4. Otherwise, if (yj , wj) is output by the
s∗

j -th session of party j∗, S sets ski = skj , where skj is the session key
of sid = (Π,R, j, i, xi, (yj , wj)). Else, S samples gi ←r χβ and computes
ki = (pjd + yj)r̂i + 2dgi where d = H1(j, i, yj , xi). Finally, it computes
σi = Mod2(ki, wj) and derives the session key ski = H2(i, j, xi, yj , wj , σi).

Claim 6. Pr[F1,5] = Pr[F1,4] − negl(κ).

Proof. This claim follows since G1,5 is just a conceptual change of G1,4 by the
correctness of the protocol. �

Game G1,6. S behaves almost the same as in G1,5 except in the following case:

– Send0(Π, I, i, j): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session of i∗, S
answers as in Game G1,5. Otherwise, it proceeds as follows:
1. Sample an invertible element c ←r χγ , and choose x̂i ←r Rq;
2. Define xi = x̂i − pic;
3. Go to step 4 with probability 1/M ; otherwise go back to step 1;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into

L1. Return xi to A.
– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session

of i∗, or (yj , wj) is output by the s∗
j -th session of party j∗, S behaves the

same as in G1,5. Otherwise, it proceeds as follows:
5. Randomly choose ki ←r Rq;
6. Compute σi =Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj ,

wj , σi).

Note that in Game G1,6, we have made two changes: 1) The term ar̂i + 2f̂i

in Game G1,5 is replaced by a uniformly chosen element x̂ ∈ Rq at random; 2)
The value ki = (pjd + yj)r̂i + 2dgi in Game G1,5 is replaced by a uniformly
chosen string ki ←r Rq, when (yj , w

′
j) is output by the s∗

j -th session of party
j∗ but wj �= w′

j . In the following, we will employ the “deferred analysis” proof
technique in [69], which informally allows us to proceed the security games by
patiently postponing some tough probability analysis to a later game. Specially,
for 	 = 5, 6, 7, denote Q1,l as the event in Game G1,� that 1) (yj , w

′
j) is output

by the s∗
j -th session of party j∗ but wj �= w′

j ; and 2) A makes a query to H2 that
is exactly used to generate the session key ski for the si∗ -th session of party i∗,

Authenticated Key Exchange from Ideal Lattices 741

i.e., ski = H2(i, j, xi, yj , wj , σi) for σi = Mod2(ki, wj). Ideally, if Q1,5 does not
happen, then the adversary cannot distinguish whether a correctly computed ki

or a randomly chosen one is used (since H2 is a random oracle, and the adversary
gains no information about ki even if it obtains the session key ski). However,
we cannot prove the claim immediately due to technical reason. Instead, we will
show that Pr[Q1,5] ≈ Pr[Q1,6] ≈ Pr[Q1,7] and Pr[Q1,7] is negligible in κ.

Claim 7. If RLWEq,β is hard, Pr[Q1,6] = Pr[Q1,5] − negl(κ), and
Pr[F1,6|¬Q1,6] = Pr[F1,5|¬Q1,5] − negl(κ).

Proof. Note that H2 is a random oracle, the event Q1,5 is independent from
the distribution of the corresponding ski. Namely, no matter whether or not
A obtains ski, Pr[Q1,5] is the same, which also holds for Pr[Q1,6]. In addition,
under the RLWEq,β assumption, we have x̂i = ar̂i + 2f̂i in G1,5 is computation-
ally indistinguishable from uniform distribution over Rq, and thus the public
information (i.e., static public keys and public transcripts) in G1,5 and G1,6

is computationally indistinguishable. In particular, the view of the adversary
A before Q1,� happens for 	 = 5, 6 is computationally indistinguishable, which
implies that Pr[Q1,6] = Pr[Q1,5] − negl(κ). Besides, if Q1,l for l = 5, 6 does
not happen, the distribution of ski is the same in both games. In other words,
Pr[F1,6|¬Q1,6] = Pr[F1,5|¬Q1,5] − negl(κ). �

Game G1,7. S behaves almost the same as in G1,6 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) �= (i∗, j∗), or it is not the s∗
j -th session of j∗, S

answers the query as in Game G1,6. Otherwise, it proceeds as follows:
1′. Sample an invertible element d ←r χγ , and choose ŷj ←r Rq;

2′. Define yj = ŷj − pjd;

3′. Go to step 4′ with probability 1/M ; otherwise go back to step 1′;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into

L1. Then, the simulator S uniformly chooses kj ←r Rq at random;

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj ,

wj , σj).

Claim 8. Let n be a power of 2, prime q > 203 satisfying q = 1 mod 2n,
β = ω(αγn

√
n log n). Then, if RLWEq,β is hard, Game G1,6 and G1,7 are compu-

tationally indistinguishable. In particular, we have Pr[Q1,7] = Pr[Q1,6]−negl(κ),
and Pr[F1,7|¬Q1,7] = Pr[F1,6|¬Q1,6] − negl(κ).

Proof. Assume there is an adversary that distinguishes Game G1,6 and G1,7, we
now construct a distinguisher D that solves the Ring-LWE problem. Specifically,
let (u = (u0, . . . , u�−1),B) ∈ R�

q×R�×�
q be a challenge Ring-LWE tuple in matrix

form for some polynomially bounded 	, D first sets public parameter a = u0.
Then, it randomly chooses invertible elements v = (v1, . . . , v�−1) ← χ�−1

γ , and
compute û = (v1 · u1, . . . , v�−1u�−1). Finally, D behaves the same as S in Game
G1,6, except for the following cases:

742 J. Zhang et al.

– Send0(Π, I, i, j): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session of i∗, S
answers as in Game G1,6. Otherwise, it proceeds as follows:
1. Set c and x̂i be the first unused element in v and û, respectively;
2. Define xi = x̂i − pic;
3. Go to step 4 with probability 1/M ; otherwise go back to step 1;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1.

Return xi to A.

– Send1(Π,R, j, i, xi): If (i, j) �= (i∗, j∗), or it is not the s∗
j -th session of j∗, S

answers the query as in Game G1,6. Otherwise, it proceeds as follows:
1′. Sample an invertible element d ←r χγ , and set ŷj be the first

unused element in b0 = (b0,0, . . . , b0,�−1);
2′. Define yj = ŷj − pjd;
3′. Go to step 4′ with probability 1/M ; otherwise go back to step 1′;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d)

into L1. Then, let 	1 ≥ 1 be the index that x̂i appears in û, and 	2 ≥ 0
be the index that ŷj appears in b0, the simulator S sets kj = cb�1,�2 ;

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Computeσj = Mod2(kj , wj) andderive the sessionkey skj = H2(i, j, xi, yj ,

wj , σj).

Since v is randomly and independently chosen from χ�−1
γ , the distribution

of c is identical to that in Game G1,6 and Game G1,7. Besides, since each vi is
invertible in Rq, we have û is uniformly distributed over R�−1

q , which shows that
the distribution of x̂i is identical to that in Game G1,6 and Game G1,7. Moreover,
if (u,B) ∈ R�

q × R�×�
q is a Ring-LWE challenge tuple in matrix form, we have

ŷj = u0s�2 + 2e0,�2 and kj = cb�1,�2 = cu�1s�2 + 2ce�1,�2 = x̂is�2 + 2ce�1,�2 =
(xi + pic)s�2 + 2ce�1,�2 for some randomly chosen s�2 , e0,�2 , e�1,�2 ←r χβ . This
shows that the view of A is the same as in Game G1,6. While if (u,B) ∈ R�

q×R�×�
q

is uniformly distributed over R�
q × R�×�

q , we have both ŷj and kj = cb�1,�2 are
uniformly distributed over Rq (since c is invertible). Thus, the view of A is the
same as in G1,7. In all, we have shown that D can be used to break Ring-LWE
assumption if A can distinguish Game G1,6 and G1,7. �

Claim 9. If 0.97n > 2κ, we have Pr[Q1,7] = negl(κ)

Proof. Let ki,� be the element “computed” by S for the s∗
i -th session at party i∗

in Games G1,�, and kj,� be the element “computed” by S for the s∗
j -th session

at party j∗. By the correctness of the protocol, we have that ki,5 = kj,5 + ĝ for
some ĝ with small coefficients in G1,5. Since we have proven that the view of the
adversary before Q1,� happens in Game G1,5, G1,6 and G1,7 is computationally
indistinguishable, the equation ki,7 = kj,7 + ĝ′ should still hold for some ĝ′

with small coefficients in the adversary’s view until Q1,7 happens in G1,7. Let
(yj , wj) be output by the s∗

j -th session of party j = j∗, and (yj , w
′
j) be the

message that is used to complete the test session (i.e., the si∗ -th session of party
i = i∗). Note that kj,7 is randomly chosen from Rq, and the adversary can
only obtain the information of kj,7 from the public wj , the dependence of ĝ on
kj should be totally determined by the information of wj . Thus, we have that

Authenticated Key Exchange from Ideal Lattices 743

σ′
i = Mod2(ki, w

′
j) = Mod2(kj + ĝ′, w′

j) conditioned on wj has high min-entropy
by Lemma 4. In other words, the probability that the adversary makes a query
H2(i, j, xi, yj , w

′
j , σ

′
i) is at most 2−0.97n + negl(κ), which is negligible in κ. �

Claim 10. Pr[F1,7|¬Q1,7] = 1/2 + negl(κ)

Proof. Let (yj , wj) be output by the s∗
j -th session of party j = j∗, (yj , w

′
j) be

the message that is used to complete the test session (i.e., the si∗ -th session of
party i = i∗). We distinguish the following two cases:

– wj = w′
j : In this case, we have ski = skj = H2(i, j, xi, yj , wj , σi), where

σi = σj = Mod2(kj , wj). Note that in G1,7, kj is randomly chosen from the
uniform distribution over Rq, we have that σj ∈ {0, 1}n (conditioned on wj)
has min-entropy at least 0.97n by Lemma 4. Thus, the probability that A
has made a H2 query with σi is less than 2−0.97n + negl(κ).

– wj �= w′
j : By assumption that Q1,7 does not happen, we have that A will

never make a H2 query with σi.

The probability that A has made a H2 query with σi is negligible. This claim
follows from the fact that if the adversary does not make a query with σi exactly,
the distribution of ski is uniform over {0, 1}κ due to the random oracle property
of H2, i.e., Pr[F1,7|¬Q1,7] = 1/2 + negl(κ). �

Combining the claims 1∼10, we have that Lemma 5 follows.

5 One-Pass Protocol from Ring-LWE

As MQV [20] and HMQV [5], our AKE protocol has a one-pass variant, which
only consists of a single message from one party to the other. Let a ∈ Rq be
the global public parameter uniformly chosen from Rq at random, and M be a
constant. Let pi = asi+2ei ∈ Rq be party i’s static public key, where (si, ei) is the
corresponding static secret key; both si and ei are taken from the distribution χα.
Similarly, party j has static public key pj = asj+2ej and static secret key (sj , ej).
The other parameters and notations used here are the same as that in Section 3.

Initiation. Party i proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic + ri and f̂i = eic + fi;
3. Go to step 4 with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂i concatenated with the coefficient vector of
f̂i, and z1 ∈ Z

2n is the coefficient vector of sic concatenated with the
coefficient vector of eic; otherwise go back to step 1;

4. Sample gi ←r χβ and compute ki = pj r̂i + 2gi where c = H1(i, j, xi);
5. Compute wi = Cha(ki) ∈ {0, 1}n and send (yi, wi) to party j;
6. Compute σi = Mod2(ki, wi), and derive the session key ski = H2(i, j, xi,

wi, σi).
Finish. Party j receives the pair (xi, wi) from party i, and proceeds as follows:

744 J. Zhang et al.

1′. Sample gj ←r χα, compute kj = (pic+xi)sj+2cgj where c = H1(i, j, xi);
2′. Compute σj = Mod2(kj , wi) and derive the session key skj = H2(i, j, xi,

wi, σj).

The correctness of the protocol simply follows from the fact that ki = pj r̂i +
2gi = (asj + 2ej)(sic + ri) + 2gi ≈ a(sic + ri)sj + 2(eic + fi)sj + 2cgj = kj . The
security of the protocol cannot be proven in the BR model with party corruption,
since the one-pass protocol inherently can not provide wPFS due to the lack of
messages from the receiver j. Besides, the protocol cannot prevent a replay
attack without additional measures like keeping a state or using synchronized
time. However, we can prove its security in a weak model similar to [5] which
avoids the (above) inherent insufficiencies for one-pass protocols. Since the proof
is parallel to the two-pass one, we omit the details.

Finally, we remark that the one-pass protocol can essentially be used as a
KEM, and can be transformed into a CCA-secure encryption scheme in the ran-
dom oracle model by combining it with a CPA-secure symmetric-key encryption
scheme together with a MAC algorithm in a standard way (where both keys are
derived from the session key in the one-pass protocol). The resulting encryption
has two interesting properties: 1) it allows the receiver to verify the sender’s
identity, but no one else can verify it (since only the receiver can compute the
session key, i.e., it provides some kind of sender authentication); 2) the sender
can deny having created such a ciphertext, because the receiver can also create
such a ciphertext by itself (i.e., it is a deniable encryption).

6 Concrete Parameters and Timings

In this section, we present concrete choices of parameters, and the timings in
a proof-of-concept implementation. Our selection of parameters for our AKE
protocols can be found in Table 2. Those parameters were chosen such that the
correctness property is satisfied with high probability and with the choice of
different levels of security.

For the correctness of our two-pass protocol, the error term must be bounded
by ‖g̃i − g̃j‖∞ < q/8. Note that g̃i = (ejd + fj)(sic + ri) + dgi, and g̃j = (eic +
fi)(sjd+rj)+cgj , where ei, ej ←r χα, c, d ←r χγ , and fi, fj , ri, rj , gi, gj ←r χβ .
Due to the symmetry, we only estimate the size of ‖g̃i‖∞. At this point, we use
the following fact about the product of two Gaussian distributed random values
(as stated in [35]). Let x ∈ R and y ∈ R be two polynomials whose coefficients are
distributed according to a discrete Gaussian distribution with standard deviation
σ and τ , respectively. The individual coefficients of the product xy are then
(approximately) normally distributed around zero with standard deviation στ

√
n

where n is the degree of the polynomial.
In our case, it means that we have ‖(ejd + fj)(sic + ri)‖∞ ≤ 6β2

√
n and

‖dgi‖∞ ≤ 6γβ
√

n with overwhelming probability (since erfc(6) is about 2−55).
Note that the distributions of ejd + fj and sic + ri are both according to χβ

since we use rejection sampling in the protocol. Now, to choose an appropriate β

Authenticated Key Exchange from Ideal Lattices 745

Table 2. Choices of parameters (The bound 6α with erfc(6) ≈ 2−55 is used to estimate
the size of secret keys)

Protocol
Choice of

n Security α τ log β log q (bits)
Size (KB)

Parameters pk sk (expt.) init. msg resp. msg

Two-pass

I1
1024

80 bits 3.397 12 16.1 45 5.625 1.5 5.625 5.75

I2 75 bits 3.397 24 17.1 47 5.875 1.5 5.875 6.0

II1
2048

230 bits 3.397 12 17.1 47 11.75 3.0 11.75 12.0

II2 210 bits 3.397 36 18.7 50 12.50 3.0 12.50 12.75

One-pass

III1
1024

160 bits 3.397 12 16.1 30 3.75 1.5 3.875 -

III2 140 bits 3.397 36 17.7 32 4.0 1.5 4.125 -

IV1
2048

360 bits 3.397 12 17.1 32 8.0 3.0 8.25 -

IV2 350 bits 3.397 36 18.7 33 8.25 3.0 8.5 -

we set η = 1/2 in Lemma 1 such that ‖ejd‖, ‖sic‖ ≤ 1/2αγn with probability at
most 2 · 0.943−n. Hence, for n ≥ 1024, we get a potential decryption error with
only a probability about 2−87. In order to make the rejection sampling work,
it is sufficient to set β ≥ τ · 1/2αγn = 1/2ταγn for some constant τ (which
is much better than the worst-case bound β = ω(αγ

√
n log n) in Theorem 1).

For instance, if τ = 12, we have an expect number of rejection sampling about
M = 2.72 and a statistical distance about 2−100

M by Theorem 1. For such a choice
of β, we can safely assume that ‖g̃i‖∞ ≤ 6β2

√
n + 6γβ

√
n ≤ 7β2

√
n. Thus, it is

enough to set 16 · 7β2
√

n < q for correctness of the protocol in Section 3.
Though the Ring-LWE problem enjoys a worst-case connection to some hard

problems (e.g., SIVP [29]) on ideal lattices, the connection as summarized in
Proposition 1 seems less powerful to estimate the actual security for concrete
choices of parameters. In order to assess the concrete security of our parameters,
we use the approach of [70], which investigates the two most efficient ways to
solve the underlying (Ring-)LWE problem, namely the embedding and decoding
attacks. As opposed to [70], the decoding attack is more efficient against our
instances because the Ring-LWE case with m ≥ 2n is close to the optimal
attack dimension for the corresponding attacks. The decoding attack first uses a
lattice reduction algorithm, such as BKZ [71] / BKZ 2.0 [72] and then applies a
decoding algorithm like the ones in [73–75]. Finally, the closest vector is returned
as the error polynomial, and the secret polynomial is recovered.

As recommended in [74,76], it is enough to set the Gaussian parameter α ≥
3.2 so that the discrete Gaussian DZn,α approximates the continuous Gaussian
Dα extremely well.6 In our experiment, we fix α = 3.397 for a better performance
of the Gaussian sampling algorithm in [39]. As for the choices of γ, we set
γ = α for simplicity (actually such a choice in our experiments works very well:
no rejection happened in 1000 hash evaluations). In Table 2, we set all other
parameters β, n, q for our two-pass protocol to satisfy the correctness condition.
We also give the parameter choices of our one-pass protocol (in this case, we

6 Only α is considered because β � α, and the (Ring-)LWE problem becomes harder
as α grows bigger (for a fixed modulus q).

746 J. Zhang et al.

can save a factor of β in q due to the asymmetry). Note that n is required to be
a power of 2 in our protocol (i.e., it is very sparsely distributed7). We present
several candidate choices of parameters for n = 1024, 2048, and estimate the
sizes of public keys, secret keys, and communication overheads in Table 2.

Table 3. Timings of proof-of-concept implementations in ms

Protocol Parameters τ Initiation Response Finish

Two-pass

I1 12 22.05 ms 30.61 ms 4.35 ms

I2 24 14.26 ms 19.18 ms 4.41 ms

II1 12 49.77 ms 60.31 ms 9.44 ms

II2 36 25.40 ms 36.96 ms 9.59 ms

Protocol Parameters τ Initiation Finish

One-pass

III1 12 26.17 ms 3.64 ms

III2 36 14.57 ms 3.70 ms

IV1 12 53.78 ms 7.75 ms

IV2 36 32.28 ms 7.94 ms

We have implemented our AKE protocol by using the NTL library com-
piled with the option NTL GMP LIP = on (i.e., building NTL using the GNU
Multi-Precision package). The implementations are written in C++ without any
parallel computations or multi-thread programming techniques. The program is
run on a Dell Optiplex 780 computer with Ubuntu 12.04 TLS 64-bit system, a
2.83GHz Intel Core 2 Quad CPU and 3.8GB RAM. We use an n-dimensional Fast
Fourier Transform (FFT) for the multiplications of two ring elements [78,79], and
the CDT algorithm [80] as a tool for hashing to DZn,γ and sampling from DZn,α,
but the DDLL algorithm [39] for sampling from DZn,β (because the CDT algo-
rithm has to store large precomputed values for a big β). In Table 3, we present
the average timings of each operation (in millisecond, ms) for 1000 executions.
Since our protocols also allow some precomputations like sampling Gaussian
distributions offline, the timings can be greatly reduced if this is considered in
practice. Finally, we note that our implementation has not undergone any real
optimization, and it can be much improved in practice.

7 Conclusions and Open Problems

In this paper, a two-pass AKE and its one-pass variant are proposed. Both
protocols are carefully built upon on the algebraic structure of (Ring-)LWE
problems and several recent developments in lattice-based cryptography, and
are proven secure based on the hardness of Ring-LWE in the random oracle
model. However, the literature shows that the use of random oracle is delicate
for proving quantum resistance [51]. It is of great interest to investigate the
quantum security of our protocol, or to design an efficient protocol without the
random oracle heuristic (and the need of rewinding).

7 We remark such a choice of n is not necessary, but it gives a simple analysis and
implementation. In practice, one might use the techniques for Ring-LWE cryptogra-
phy in [77] to give a tighter choice of parameters for desired security levels.

Authenticated Key Exchange from Ideal Lattices 747

Acknowledgments. Jiang Zhang and Zhenfeng Zhang are supported by China’s 973
program (No. 2013CB338003) and the National Natural Science Foundation of China
(No. 61170278, 91118006). Jintai Ding is partially supported by the Charles Phelps Taft
fund. Özgür Dagdelen is supported by the German Federal Ministry of Education and
Research (BMBF) within EC-SPRIDE and by the DFG as part of project P1 within
the CRC 1119 CROSSING. We would like to thank Johannes Buchmann, Lily Chen,
Oded Regev, Adi Shamir, Tsuyoshi Takagi and Xiang Xie for useful discussions, and
the anonymous reviewers of EUROCRYPT 2015 for helpful comments and suggestions.

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22, 644–654 (1976)

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

3. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

4. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated
key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol.
4784, pp. 1–16. Springer, Heidelberg (2007)

5. Krawczyk, H.: HMQV: a high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer,
Heidelberg (2005)

6. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012)

7. Harkins, D., Carrel, D., et al.: The internet key exchange (IKE). Technical report,
RFC 2409, November 1998

8. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet key exchange protocol
version 2 (IKEv2). Technical report, RFC 5996, September 2010

9. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated diffie-
hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

10. Freier, A.: The SSL protocol version 3.0 (1996). http://wp.netscape.com/eng/
ssl3/draft302.txt

11. Dierks, T.: The transport layer security (TLS) protocol version 1.2 (2008)
12. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a

systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

13. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-
protocol attack on the TLS protocol. In: CCS, pp. 62–72 (2012)

14. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In: CCS,
pp. 87–398 (2013)

15. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less is
more: relaxed yet composable security notions for key exchange. Int. J. Inf. Sec.
12, 267–297 (2013)

http://wp.netscape.com/eng/ssl3/draft302.txt
http://wp.netscape.com/eng/ssl3/draft302.txt

748 J. Zhang et al.

16. Dagdelen, Ö., Fischlin, M.: Security analysis of the extended access control pro-
tocol for machine readable travel documents. In: Burmester, M., Tsudik, G.,
Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 54–68. Springer,
Heidelberg (2011)

17. Dagdelen, Ö., Fischlin, M., Gagliardoni, T., Marson, G.A., Mittelbach, A., Onete,
C.: A cryptographic analysis of OPACITY. In: Crampton, J., Jajodia, S., Mayes,
K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 345–362. Springer, Heidelberg
(2013)

18. Degabriele, J.P., Fehr, V., Fischlin, M., Gagliardoni, T., Günther, F., Marson,
G.A., Mittelbach, A., Paterson, K.G.: Unpicking PLAID. In: Chen, L., Mitchell,
C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 1–25. Springer, Heidelberg (2014)

19. Matsumoto, T., Takashima, Y.: On seeking smart public-key-distribution systems.
IEICE Transactions (1976–1990) 69, 99–106 (1986)

20. Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols providing
mutual implicit authentication. In: SAC, pp. 22–32 (1995)

21. ANS X9.42-2001: Public key cryptography for the financial services industry:
Agreement of symmetric keys using discrete logarithm cryptography (2001)

22. ANS X9.63-2001: Public key cryptography for the financial services industry: Key
agreement and key transport using elliptic curve cryptography (2001)

23. ISO/IEC: 11770–3:2008 information technology - security techniques - key man-
agement - part 3: Mechanisms using asymmetric techniques (2008)

24. IEEE 1363: IEEE std 1363–2000: Standard specifications for public key cryptog-
raphy. IEEE, August 2000

25. Barker, E., Chen, L., Roginsky, A., Smid, M.: Recommendation for pair-wise
key establishment schemes using discrete logarithm cryptography. NIST Special
Publication 800, 56A (2013)

26. Yao, A.C.C., Zhao, Y.: OAKE: A new family of implicitly authenticated Diffie-
Hellman protocols. In: CCS, pp. 1113–1128 (2013)

27. Shor, P.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26, 1484–1509
(1997)

28. Chen, L.: Practical impacts on qutumn computing. In: Quantum-Safe-
Crypto Workshop at the European Telecommunications Standards Insti-
tute (2013). http://docbox.etsi.org/Workshop/2013/201309 CRYPTO/S05
DEPLOYMENT/NIST CHEN.pdf.

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010)

30. Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: PKC, pp. 34–51 (2012)
31. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their

security analysis. In: Proceedings of the 6th IMA International Conference on
Cryptography and Coding, Springer-Verlag, London, UK, pp. 30–45 (1997)

32. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: CCS, pp. 51–62 (2011)

33. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012)

34. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Heidelberg (2014)

http://docbox.etsi.org/Workshop/2013/201309_CRYPTO/S05_DEPLOYMENT/NIST_CHEN.pdf.
http://docbox.etsi.org/Workshop/2013/201309_CRYPTO/S05_DEPLOYMENT/NIST_CHEN.pdf.

Authenticated Key Exchange from Ideal Lattices 749

35. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. Cryptology ePrint
Archive, Report 2014/599 (2014)

36. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of
the learning with errors assumption. In: Innovations in Computer Science, pp.
230–240 (2010)

37. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

38. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryp-
tography: a signature scheme for embedded systems. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)

39. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

40. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Heidelberg (2014)

41. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Practical
signatures from the partial fourier recovery problem. In: Boureanu, I., Owesarski,
P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 476–493. Springer,
Heidelberg (2014)

42. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009)

43. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: PKC, pp. 467–484 (2012)

44. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism.
In: ASIACCS, pp. 83–94 (2013)

45. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In:
STOC, pp. 187–196 (2008)

46. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In: STOC, pp. 333–342 (2009)

47. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-
exchange protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–
161. Springer, Heidelberg (2002)

48. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

49. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39,
25–58 (2009)

50. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T.
(eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg
(2012)

51. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011)

52. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The fiat–shamir transformation in a
quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 62–81. Springer, Heidelberg (2013)

750 J. Zhang et al.

53. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems (the hardness of quantum rewinding). In: FOCS 2014, pp. 474–483. IEEE
(2014)

54. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013)

55. Song, F.: A note on quantum security for post-quantum cryptography. In: Mosca,
M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer, Heidelberg
(2014)

56. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput. 37, 267–302 (2007)

57. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

58. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

59. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: ITCS, Innovations in Theoretical Computer Science,
pp. 309–325 (2012)

60. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and
probabilistic communication complexity. In: FOCS, pp. 429–442 (1985)

61. Trevisan, L., Vadhan, S.: Extracting randomness from samplable distributions.
In: FOCS, pp. 32–42 (2000)

62. Trevisan, L.: Extractors and pseudorandom generators. J. ACM 48, 860–879
(2001)

63. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg
(2004)

64. Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few inde-
pendent sources. SIAM Journal on Computing 36, 1095–1118 (2006)

65. Barker, E., Roginsky, A.: Recommendation for the entropy sources used for ran-
dom bit generation. Draft NIST Special Publication 800–90B, August 2012

66. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over
ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
27–47. Springer, Heidelberg (2011)

67. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS, pp. 62–73 (1993)

68. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a
general forking lemma. In: CCS, pp. 390–399 (2006)

69. Gennaro, R., Shoup, V.: A note on an encryption scheme of Kurosawa and
Desmedt. Cryptology ePrint Archive, Report 2004/194 (2004)

70. Dagdelen, O., Bansarkhani, R.E., Göpfert, F., Güneysu, T., Oder, T.,
Pöppelmann, T., Sánchez, A.H., Schwabe, P.: High-speed signatures from stan-
dard lattices. In: LATINCRYPT (2014)

71. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming 66, 181–199 (1994)

72. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011)

Authenticated Key Exchange from Ideal Lattices 751

73. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6, 1–13 (1986)

74. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

75. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

76. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
850–867. Springer, Heidelberg (2012)

77. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

78. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to
algorithms, vol. 2. MIT press, Cambridge (2001)

79. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest
proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer, Heidelberg (2008)

80. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

Quantum Cryptography

Non-Interactive Zero-Knowledge Proofs
in the Quantum Random Oracle Model

Dominique Unruh(B)

University of Tartu, Tartu, Estonia
unruh@ut.ee

Abstract. We present a construction for non-interactive zero-knowledge
proofs of knowledge in the random oracle model from general sigma-
protocols. Our construction is secure against quantum adversaries. Prior
constructions (by Fiat-Shamir and by Fischlin) are only known to be
secure against classical adversaries, and Ambainis, Rosmanis, Unruh
(FOCS 2014) gave evidence that those constructions might not be secure
against quantum adversaries in general.

To prove security of our constructions, we additionally develop new
techniques for adaptively programming the quantum random oracle.

1 Introduction

Classical NIZK Proofs. Zero-knowledge proofs are a vital tool in modern
cryptography. Traditional zero-knowledge proofs (e.g., [12]) are interactive pro-
tocols, this makes them cumbersome to use in many situations. To circumvent
this problem, non-interactive zero-knowledge (NIZK) proofs were introduced [4].
NIZK proofs circumvent the necessity for interaction by introducing a CRS,
which is a publicly known value that needs to be chosen by a trusted third party.
The ease of use of NIZK proofs comes at a cost, though: generally, NIZK proofs
will be less efficient and based on stronger assumptions than their interactive
counterparts. So-called sigma protocols (a certain class of three move interactive
proofs, see below) exist for a wide variety of problems and admit very generic
operations for efficiently constructing more complex ones [6,8] (e.g., the “or” of
two sigma protocols). In contrast, efficient NIZK proofs using a CRS exist only
for specific languages (most notably related to bilinear groups, using Groth-
Sahai proofs [14]). To alleviate this, Fiat and Shamir [10] introduced so-called
Fiat-Shamir proofs that are NIZK proofs in the random oracle model.1 Those
can transform any sigma protocol into a NIZK proof. (In fact the construction
is even a proof of knowledge, but we will ignore this distinction for the moment.)
The Fiat-Shamir construction (or variations of it) has been used in a number

1 [10] originally introduced them as a heuristic construction for signatures schemes
(with a security proof in the random oracle model by [15]). However, the construction
can be seen as a NIZK proof of knowledge in the random oracle model.

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 755–784, 2015.
DOI: 10.1007/978-3-662-46803-6 25

756 D. Unruh

of notable protocols, e.g., Direct Anonymous Attestation [5] and the Helios
voting system [1]. A second construction of NIZK proofs in the random oracle
model was proposed by Fischlin [11]. Fischlin’s construction is less efficient than
Fiat-Shamir (and imposes an additional condition on the sigma protocol, called
“unique responses”), but it avoids certain technical difficulties that Fiat-Shamir
has (Fischlin’s construction does not need rewinding).

Quantum NIZK Proofs. However, if we want security against quantum adver-
saries, the situation becomes worse. Groth-Sahai proofs are not secure because
they are based on hardness assumptions in bilinear groups that can be broken
by Shor’s algorithm [17]. And Ambainis, Rosmanis, and Unruh [2] show that the
Fiat-Shamir construction is not secure in general, at least relative to a specific
oracle. Although this does not exclude that Fiat-Shamir is still secure without
oracle, it at least makes a proof of security less likely – at the least, such a
security proof would be non-relativizing, while all known proof techniques that
deal with rewinding in the quantum case [18,22] are relativizing. Similarly, [2]
also shows Fischlin’s scheme to be insecure in general (relative to an oracle). Of
course, even if Fiat-Shamir and Fischlin’s construction are insecure in general,
for certain specific sigma-protocols, Fiat-Shamir or Fischlin could still be secure.
(Recall that both constructions take an arbitrary sigma-protocol and convert it
into a NIZK proof.) In fact, Dagdelen, Fischlin, and Gagliardoni [7] show that for
a specific class of sigma-protocols (with so-called “oblivious commitments”), a
variant of Fiat-Shamir is secure2. However, sigma-protocols with oblivious com-
mitments are themselves already NIZK proofs in the CRS model.3 (This is not
immediately obvious from the definition presented in [7], but we show this fact
in Section A.) Also, sigma-protocols with oblivious commitments are not closed
under disjunction and similar operations (at least not using the constructions
from [6]), thus losing one of the main advantages of sigma-protocols for efficient
protocol design. Hence sigma-protocols with oblivious commitments are a much
stronger assumption than just normal sigma-protocols; we lose one of the main
advantages of the classical Fiat-Shamir construction: the ability to transform
arbitrary sigma-protocols into NIZK proofs. Summarizing, prior to this paper,
no generic quantum-secure construction was known to transform sigma-protocols
into NIZK proofs or NIZK proofs of knowledge in the random oracle model. ([7]
left this explicitly as an open problem.)

Our Contribution. We present a NIZK proof system in the random ora-
cle model, secure against quantum adversaries. Our construction takes any
sigma protocol (that has the standard properties “honest verifier zero-knowledge”
(HVZK) and “special soundness”) and transforms it into a non-interactive
proof. The resulting proof is a zero-knowledge proof of knowledge (secure
2 Security is shown for Fiat-Shamir as a signature scheme, but the proof technique

most likely also works for Fiat-Shamir as a NIZK proof of knowledge.
3 This observation does not trivialize the construction from [7] because a sigma-

protocol with oblivious commitments is a non-adaptive single-theorem NIZK proof
in the CRS model while the construction from [7] yields an adaptive multi-theorem
NIZK proof in the random oracle model. See Section A.

Non-Interactive Zero-Knowledge Proofs 757

against polynomial-time quantum adversaries) with the extra property of “online
extractability”. This property guarantees that the witness from a proof can be
extracted without rewinding. (Fischlin’s scheme also has this property in the
classical setting, but not Fiat-Shamir.) Furthermore the scheme is non-malleable,
more precisely simulation-sound. That is, given a proof for one statement, it is
not possible to create a proof for a related statement. This property is, e.g.,
important if we wish to construct a signature-scheme from the NIZK proof.

As an application we show how to use our proof system to get strongly
unforgeable signatures in the quantum random oracle model from any sigma
protocol (assuming a generator for hard instances).

In order to prove the security, we additionally develop a result on random
oracle programming in the quantum setting (see the full version [19]) which
is a strengthening of a lemma from [20,21] to the adaptive case. It allows us
to reduce the probability that the adversary notices that a random oracle has
been reprogrammed to the probability of said adversary querying the oracle at
the programmed location. (This would be relatively trivial in a classical setting
but becomes non-trivial if the adversary can query in superposition.) For space
reasons, in the main body of this paper, we only state two special cases of this
result (Corollaries 6 and 7).

Further Related Work. Dagdelen, Fischlin, and Gagliardoni [7] show the
impossibility of proving the quantum security of Fiat-Shamir using a reduction
that does not perform quantum rewinding.4 Ambainis, Rosmanis, and Unruh [2]
show the quantum insecurity of Fiat-Shamir and Fischlin’s scheme relative to an
oracle (and therefore the impossibility of a relativizing proof, even with quantum
rewinding). Faust, Kohlweiss, Marson, and Venturi [9] show that Fiat-Shamir is
zero-knowledge and simulation-sound extractable (not simulation-sound online-
extractable) in the classical setting under the additional assumption of “unique
responses” (a.k.a. computational strict soundness). Fischlin [11] shows that Fis-
chlin’s construction is zero-knowledge and online-extractable (not simulation-
sound online-extractable) in the classical setting assuming unique responses.

Difficulties with Fiat-Shamir and Fischlin. In order to understand our
protocol construction, we first explain why Fiat-Shamir and Fischlin’s scheme
are difficult to prove secure in the quantum setting. A sigma-protocol consists
of three messages com, ch, resp where the “commitment” com is chosen by the
prover, the “challenge” ch is chosen uniformly at random by the verifier, and
the “response” resp is computed by the prover depending on ch. Given a sigma-
protocol, and a random oracle H, the Fiat-Shamir construction produces the
commitment com, computes the challenge ch := H(com), and computes a
response resp for that challenge. The proof is then π := (com, ch, resp), and
the verifier checks whether it is a valid execution of the sigma-protocol, and
whether ch = H(com). How do we prove that Fiat-Shamir is a proof (or a
proof of knowledge)? (The zero-knowledge property is less interesting for the
present discussion, so we skip it.) Very roughly, given a malicious prover P , we

4 I.e., a reduction that cannot apply the inverse of the unitary describing the adversary.

758 D. Unruh

first execute P to get (com, ch, resp). Then we rewind P to the oracle query
H(com) that returned ch. We then change (“program”) the random oracle such
that H(com) := ch ′ for some random ch ′ �= ch. And then we then continue the
execution of P with the modified oracle H. Then P will output a new triple
(com′, ch ′, resp′). And since com was determined before the point of rewinding,
we have com = com′. (This is a vague intuition. But the “forking lemma” [15]
guarantees that this actually works with sufficiently large probability.) Then
we can use a property of sigma-protocols called “special soundness”. It states:
given valid sigma-protocol interactions (com, ch, resp), (com, ch ′, resp′), one can
efficiently compute a witness for the statement being proven. Thus we have
constructed an extractor that, given a (successful) malicious prover P , finds a
witness. This implies that Fiat-Shamir is a proof of knowledge.

What happens if we try and translate this proof idea into the quantum set-
ting? First of all, rewinding is difficult in the quantum setting. We can rewind
P by applying the inverse unitary transformation P † to reconstruct an earlier
state of P . However, if we measure the output of P before rewinding, this dis-
turbs the state, and the rewinding will return to an undefined earlier state. In
some situations this can be avoided by showing that the output that is measured
contains little information about the state and thus does not disturb the state
too much [18], but it is not clear how to do that in the case of Fiat-Shamir. (The
output (com, ch, resp) may contain a lot of entropy due to com, ch, even if we
require resp to be unique.)

Even if we have solved the problem of rewinding, we face a second prob-
lem. We wish to reprogram the random oracle at the input where it is being
queried. Classically, the input of a random oracle query is a well-defined notion.
In the quantum setting, though, the query input may be in superposition, and
we cannot measure the input because this would disturb the state.

So when trying to prove Fiat-Shamir secure, we face two problems to which we
do not have a solution: rewinding, and determining the input to an oracle query.

We now turn to Fischlin’s scheme. Fischlin’s scheme was introduced in
the classical case to avoid the rewinding used in Fiat-Shamir. (There are
certain reasons why even classically, rewinding leads to problems, see [11].)
Here the prover is supposed to send a valid triple (com, ch, resp) such that
H(com, ch, resp) mod 2b = 0 for a certain parameter b. (This is an oversimplifica-
tion but good enough for explaining the difficulties.) By choosing b large enough,
a prover can only find triples (com, ch, resp) with H(com, ch, resp) mod 2b = 0
by trying out several such triples. Thus, if we inspect the list of all query inputs
to H, we will find several different valid triples (com, ch, resp). In particular,
there will be two triples (com, ch, resp) and (com′, ch ′, resp′) with com = com′.
(Due to the oversimplified presentation here, the reader will have to take on trust
that we can achieve com = com′, see [11] for a full analysis.) Again using special
soundness, we can extract a witness from these two triples. So Fischlin’s scheme
is a proof of knowledge with the extra benefit that the extractor can extract
without rewinding, just by looking at the oracle queries (“online-extraction”).

Non-Interactive Zero-Knowledge Proofs 759

What happens if we try to show the security of Fischlin’s scheme in the quan-
tum setting? Then we again face the problem that there is no well-defined notion
of “the list of query inputs”. If we measure the query inputs, this disturbs the mali-
cious prover. If we do not measure the query inputs, they are not well-defined.

The problems with Fiat-Shamir and Fischlin seem not to be just limitations
of our proof techniques, [2] shows that relative to some oracle, Fiat-Shamir and
Fischlin actually become insecure.

Our Protocol. So both in Fiat-Shamir and in Fischlin’s scheme we face the chal-
lenge that it is difficult to get the query inputs made by the malicious prover. Nev-
ertheless, in our construction we will still try to extract the query inputs, but with
a twist: Assume for a moment that the random oracle G is a permutation. Then,
given G(x) it is, at least in principle, possible to extract x. Can we use this idea
to save Fischlin’s scheme? No, because in Fischlin’s scheme we need the inputs to
queries whose outputs we never learn; inverting G will not help. So in our scheme,
for any query input x we want to learn, we need to include G(x) in the output. Basi-
cally, we sent (com,G(resp1), . . . , G(respn)) where the respj are the responses for
com given different challenges chj . Then, by inverting two of the G, we can get two
triples (com, ch, resp) and (com, ch ′, resp′) which allows us to extract the witness.
However, so far we have not made sure that the malicious prover indeed puts valid
responses into the queries. He could simply send random values instead of G(respj).
To avoid this, we use a cut-and-choose technique similar to what is done in Fiat-
Shamir: We first produce a number of proofs (comi, G(respi,1), . . . , G(respi,n)).
Then we hash all of them with a second random oracle H (not a permutation). The
result of the hashing indicates for each comi which of the respi,j should be revealed.
A malicious prover who succeeds in this will have to include valid responses in at
least a large fraction of the G(respi,j). Thus by inverting G, we can find two valid
triples (com, ch, resp) and (com, ch ′, resp′) if the malicious prover’s proof passes
verification. The full protocol is described in Figure 1.

We have not discussed yet: What if G is not a permutation (a random func-
tion will usually not be a permutation)? And how to efficiently invert G? The
answer to the first is: as long as domain and range of G are the same, G is
indistinguishable from a random permutation [24]. So although the real protocol
execution uses a G that is a random function, in an execution with the extrac-
tor, we simply feed a random permutation to the prover. To answer the second,
we need to slightly change our approach (but not the protocol): Zhandry [23]
shows that a random function is indistinguishable from a 2q-wise independent
function (where q is the number of oracle queries performed). Random poly-
nomials of degree ≤ 2q − 1 over a finite field are 2q-wise independent.5 So if,
4 The values hi,Ji could be omitted since they can be recomputed as hi,Ji = G(respi,Ji

).
We include them to keep the notation simple.

5 Proof: Fix distinct x1, . . . , x2q. For any a1, . . . , a2q there exists exactly one polyno-
mial of degree ≤ 2q − 1 with ∀i. f(xi) = ai (by interpolation). Hence, for uniformly
random f of degree ≤ 2q − 1, the tuple (f(x1), . . . , f(x2q)) equals each (a1, . . . a2q)
with the same probability. Hence (f(x1), . . . , f(x2q)) is uniformly distributed, so f
is 2q-wise independent by definition.

760 D. Unruh

Fig. 1. Prover P G,H
OE (x, w) (left) and verifier V G,H

OE (x, π) (right) from Definition 8. The
missing notation will be introduced in Section 2.2.

during extraction, we replace G not by a random permutation, but by a random
polynomial, we can efficiently invert G. (The preimage will not be unique, but the
number of possible preimage will be small enough so that we can scan through
all of them.) This shows that our protocol is online-extractable: the extractor
simply replaces G by a random polynomial, inverts all G(respi,j), searches for
two valid triples (com, ch, resp) and (com, ch ′, resp′) , and computes the witness.
The formal description of the extractor is given in Section 3.2. Our scheme is
then online-extractable.

Of course, we also need that the resulting scheme is zero-knowledge. The
construction of the simulator is quite standard: To be able to create simulated
proofs comi, chi,j , respi,j , the simulator needs to know in advance which of the
G(respi,j) he has to reveal. Since the choice which to reveal is determined by
the result of hashing the proofs using H, the simulator first picks the value that
H should return, creates the proofs using the knowledge of that value, and later
programs H to return the chosen value. In a classical setting, it is quite easy to
see that this simulator works correctly. In the quantum setting, we need to work
harder: we need to generalize a lemma from [20] that shows that the adversary
does not notice when we program the random oracle.

To prove that our scheme is not just online-extractable, but simulation-sound
online-extractable, the same ideas as above can be used, we just need to be careful
to show that proofs produced by the simulator cannot be transformed into new

Non-Interactive Zero-Knowledge Proofs 761

length of proof computation

commitments challenges responses commitments responses

Our scheme t tm tm t tm
Fiat-Shamir 1 0 1 1 1

Fischlin r r r r 2tr

Fig. 2. Complexity of our scheme, Fiat-Shamir, and Fischlin. Our parameters t, m must
satisfy that t log m is superlogarithmic. The parameters t, r of Fischlin must satisfy that
there exists some b such that br and 2t−b are both superlogarithmic.

valid proofs without changing them completely. This turns out to follow from
the collision-resistance of G (Lemma 11).

Efficiency Comparison with Fiat-Shamir and Fischlin. In Figure 2, we
show both the communication complexity (length of proof) and the computa-
tional complexity (in terms of invocations of the prover of the sigma-protocol)
of our scheme, and for comparison of Fiat-Shamir and Fischlin. Notice, however,
that a fair comparison of the efficiency is impossible, because the schemes have
incomparable parameters. If we pick m = 2, our scheme and Fischlin’s scheme
seem comparable both in communication and computational complexity. But
the resulting parameters might not lead to the same security level. For a fair
comparison, we would need to pick parameters with comparable security level,
but for that, we need to know the reduction used in the security proofs of the
schemes that we compare. But Fiat-Shamir and Fischlin have no security proof
in the quantum setting. Even Fiat-Shamir might, given a sufficiently bad security
reduction, be less efficient than our scheme if the reduction forces the security
parameter of the underlying Σ-protocol up. (Although this seems unlikely.)

The runtime of our extractor (which in the end affects the concrete security
level when our protocol is used as a subprotocol) is quadratic in the number
of adversary queries. This is dominated by the time for inverting a polynomial
of degree q. A different implementation of the oracle G (e.g., a strong pseudo-
random permutation) might get rid of this factor altogether. Finding a suitable
candidate is an open problem.

Organization. In Section 2 we introduce the main security notions used in
this paper: those of non-interactive proof systems in the random oracle model
(Section 2.1) and those of sigma-protocols (Section 2.2). In Section 3 we intro-
duce and prove secure our NIZK proof system. In Section 4 we illustrate the
use of our results and construct a signature scheme in the random oracle model
from sigma-protocols. In Section A we discuss sigma-protocols with oblivious
commitments and their relation to the CRS model. The proofs of our results on
adaptive random oracle programming are given in the full version [19].

1.1 Preliminaries

By x ← A(y) we denote the (quantum or classical) algorithm A executed with
(classical) input y, and its (classical) output assigned to x. We write x ← AH(y)

762 D. Unruh

if A has access to an oracle H. We stress that A may query the random oracle H

in superposition. By x
$← M we denote that x is uniformly randomly chosen from

the set M . Pr[P : G] refers to the probability that the predicate P holds true
when the free variables in P are assigned according to the program (game) in G.
All algorithms implicitly depend on a security parameter η that we never write.
If we say a quantity is negligible or overwhelming , we mean that it is in o(ηc) or
1−o(ηc) for all c > 0 where η denote the security parameter. A polynomial-time
algorithm is a classical one that runs in polynomial-time in its input length and
the security parameter, and a quantum-polynomial-time algorithm is a quantum
algorithm that runs in polynomial-time in input and security parameter.

With {0, 1}n we denote the bitstrings of length n, with {0, 1}≤n the bitstrings
of length at most n, and with {0, 1}∗ those of any length. (M → N) refers to the
set of all functions from M to N . a‖b is the concatenation of bitstrings a and b.
GF(2n) is a finite field of size 2n, and GF(2n)[X] is the set of polynomials over
that field. ∂p refers to the degree of the polynomial p. The collision entropy of
a random variable X is − log Pr[X = X ′] where X ′ is independent of X and has
the same distribution. The min-entropy is minx(− log Pr[X = x]). A family of
functions F is called q-wise-independent if for any distinct x1, . . . , xq and for
f

$← F , f(x1), . . . , f(xq) are independently uniformly distributed. E[X] is the
expected value of the random variable X.

TD(ρ, ρ′) denotes the trace distance between two density operators.

2 Security Notions

In the following we present the security notions used in this work. All secu-
rity notions capture security against quantum adversaries. To make the notions
strongest possible, we formulate them with respect to quantum adversaries, but
classical honest parties (and classical simulators and extractors).

2.1 Non-Interactive Proof Systems

In the following, we assume a fixed efficiently decidable relation R on bitstrings,
defining the language of our proof systems. That is, a statement x is in the lan-
guage iff there exists a witness w with (x,w) ∈ R. We also assume a distribution
ROdist on functions, modeling the distributions of our random oracle. (E.g., for
a random oracle H : {0, 1}∗ → {0, 1}n, ROdist would be the uniform distribution
on {0, 1}∗ → {0, 1}n.)

A non-interactive proof system consists of two polynomial-time oracle algo-
rithms P (x,w), V (x, π). (The argument π of V represents the proof produced by
P .) We require that PH(x,w) = ⊥ whenever (x,w) /∈ R and that V H(x, π) ∈
{0, 1}. Inputs and outputs of P and V are classical.

Definition 1 (Completeness). (P, V) is complete iff for any quantum-
polynomial-time oracle algorithm A, the following is negligible:

Pr[(x,w) ∈ R ∧ ok = 0 : H ← ROdist, (x,w) ← AH(),

π ← PH(x,w), ok ← V H(x, π)].

Non-Interactive Zero-Knowledge Proofs 763

Zero-knowledge. We now turn to the zero-knowledge property. Zero-knowledge
means that an adversary cannot distinguish between real proofs and proofs pro-
duced by a simulator (that has no access to the witness). In the random oracle
model, we furthermore allow the simulator to control the random oracle. Classi-
cally, this means in particular that the simulator learns the input for each query,
and can decide on the response adaptively. In the quantum setting, this is not
possible: since the random oracle can be queried in superposition, measuring its
input would disturb the state of the adversary. We chose an alternative route
here: the simulator is allowed to output a circuit that represents the function
computed by the random oracle. And he is allowed to update that circuit when-
ever he is invoked. However, the simulator is not invoked upon a random oracle
query. (This makes the definition only stronger.) We now proceed to the formal
definition:

A simulator is a pair of classical algorithms (Sinit , SP). Sinit outputs a circuit
H describing a classical function which represents the initial (simulated) random
oracle. The stateful algorithm SP (x) returns a proof π. Additionally SP is given
access to the description H and may replace it with a different description (i.e.,
it can program the random oracle).

Definition 2 (Zero-knowledge). Given a simulator (Sinit , SP), the oracle
S′

P (x,w) does: If (x,w) /∈ R, return ⊥. Else return SP (x). (The purpose of S′
P

is merely to serve as an interface for the adversary who expects a prover taking
two arguments x,w.)

A non-interactive proof system (P, V) is zero-knowledge iff there is a
polynomial-time simulator (Sinit , SP) such that for every quantum-polynomial-
time oracle algorithm A, the following is negligible:
∣
∣Pr[b = 1 : H ← ROdist, b ← AH,P ()] − Pr[b = 1 : H ← Sinit(), b ← AH,S′

P ()]
∣
∣.
(1)

We assume that both Sinit and SP have access to and may depend on a polynomial
upper bound on the runtime of A.

The reason why we allow the simulator to know an upper bound of the
runtime of the adversary is that we use the technique of [23] of using q-wise
independent hash functions to mimic random functions. This approach requires
that we know upper bounds on the number and size of A’s queries; the runtime
of A provides such bounds.

Online-extractability. We will now define online-extractability. Online-
extractable proofs are a specific form of proofs of knowledge where extraction is
supposed to work by only looking at the proofs generated by the adversary and
at the oracle queries performed by him. Unfortunately, in the quantum setting,
it is not possible to generate (or even define) the list of oracle queries because
doing so would imply measuring the oracle input, which would disturb the adver-
sary’s state. So, different from the classical definition in [11], we do not give the
extractor the power to see the oracle queries. Is it then possible at all for the
extractor to extract? Yes, because we allow the extractor to see the description of

764 D. Unruh

the random oracle H that was produced by the simulator Sinit . If the simulator
produces suitable circuit descriptions, those descriptions may help the extractor
to extract in a way that would not be possible with oracle access alone. We now
proceed to the formal definition:

An extractor is an algorithm E(H,x, π) where H is assumed to be a descrip-
tion of the random oracle, x a statement and π a proof of x. E is supposed to
output a witness. Inputs and outputs of E are classical.

Definition 3 (Online extractability). A non-interactive proof system (P, V)
is online extractable with respect to Sinit iff there is a polynomial-time extractor E
such that for any quantum-polynomial-time oracle algorithm A, we have that

Pr[ok = 1 ∧ (x,w) /∈ R : H ← Sinit(), (x, π) ← AH(),

ok ← V H(x, π), w ← E(H,x, π)]

is negligible. We assume that both Sinit and E have access to and may depend
on a polynomial upper bound on the runtime of A.

Online-extractability intuitively implies that it is not possible for an adver-
sary to produce a proof for a statement for which he does not know a witness
(because the extractor can extract a witness from what the adversary produces).
However, it does not exclude that the adversary can take one proof π1 for one
statement x1 and transform it into a valid proof for another statement x2 (even
without knowing a witness for x2), as long as a witness for x2 could efficiently
be computed from a witness for x1. This problem is usually referred to as mal-
leability.

To avoid malleability, one definitional approach is simulation-soundness [13,
16]. The idea is that extraction of a witness from the adversary-generated proof
should be successful even if the adversary has access to simulated proofs (as long
as the adversary generated proof does not equal one of the simulated proofs).
Adapting this idea to online-extractability, we get:

Definition 4 (Simulation-sound online-extractability). Anon-interactive
proof system (P, V) is simulation-sound online-extractable with respect to simula-
tor (Sinit , SP) iff there is a polynomial-time extractor E such that for any quantum-
polynomial-time oracle algorithm A, we have that

Pr[ok = 1 ∧ (x, π) /∈ simproofs ∧ (x,w) /∈ R :
H ← Sinit(), (x, π) ← AH,SP (), ok ← V H(x, π), w ← E(H,x, π)]

is negligible. Here simproofs is the set of all proofs returned by SP (together with
the corresponding statements).

We assume that Sinit , SP , and E have access to and may depend on a poly-
nomial upper bound on the runtime of A.

Notice that AH,SP gets access to SP , not to S′
P . That is, A can even create

simulated proofs of statements where he does not know the witness.

Non-Interactive Zero-Knowledge Proofs 765

2.2 Sigma Protocols

We now introduce sigma protocols. The notions in this section are standard, all
we do to adopt them to the quantum setting is to make the adversary quantum-
polynomial-time. Note that the definitions are formulated without the random
oracle, we only use the random oracle for constructing a NIZK proof out of the
sigma protocol.

A sigma protocol for a relation R is a three message proof system. It is
described by the domains N,, Nch , Nresp of the messages (where |Nch | ≥ 2),
a polynomial-time prover (P1, P2) and a deterministic polynomial-time verifier
V . The first message from the prover is com ← P1(x,w) and is called the com-
mitment , the uniformly random reply from the verifier is ch $← Nch (called
challenge), and the prover answers with resp ← P2(ch) (the response). We
assume P1, P2 to share state. Finally V (x, com, ch, resp) outputs whether the
verifier accepts.

Definition 5 (Properties of sigma protocols). Let (N,, Nch , Nresp , P1,
P2, V) be a sigma protocol. We define:
– Completeness: For any quantum-polynomial-time algorithm A, the follow-

ing is negligible:

Pr[(x,w) ∈ R ∧ ok = 0 : (x,w) ← A, com ← P1(x,w), ch $← Nch ,

resp ← P2(ch), ok ← V (x, com, ch, resp)]

– Computational special soundness: There is a polynomial-time algorithm
EΣ such that for any quantum-polynomial-time A, the following is negligible:

Pr[(x,w) /∈ R ∧ ch �= ch ′ ∧ ok = ok ′ = 1 : (x, com, ch, resp, ch ′, resp′) ← A(),
ok ← V (x, com, ch, resp), ok ′ ← V (x, com, ch ′, resp′),
w ← EΣ(x, com, ch, resp, ch ′, resp′)].

– Honest-verifier zero-knowledge (HVZK): There is a polynomial-time
algorithm SΣ (the simulator) such that for any stateful quantum-polynomial-
time algorithm A the following is negligible for all (x,w) ∈ R:

∣
∣ Pr[b = 1 : (x,w) ← A(), com ← P1(x,w), ch $← Nch , resp ← P2(ch),

b ← A(com, ch, resp)]
− Pr[b = 1 : (x,w) ← A(), (com, ch, resp) ← S(x), b ← A(com, ch, resp)]

∣
∣

Note that the above are the standard conditions expected from sigma-
protocols in the classical setting. In contrast, for a sigma-protocol to be a quan-
tum proof of knowledge, a much more restrictive condition is required, strict
soundness [2,18]. Interestingly, this condition is not needed for our protocol to
be quantum secure.

766 D. Unruh

2.3 Random Oracle Programming

For space reasons, we just state here the two special cases of our random oracle
programming theorem that we will be using (in the proof of Theorem 10). For
details, refer to the full version [19].

Corollary 6. Let M,N be finite sets and H : M → N be the random oracle.
Let A0, AC , A2 be algorithms, where AH

0 makes at most q queries to H, AC is
classical, and the output of AC is in M and has collision-entropy at least k given
AC ’s initial state. A0, AC , A2 may share state.

Then
∣
∣ Pr[b = 1 : H

$← (M → N), AH
0 (), x ← AC(), B := H(x), b ← AH

2 (B)]

− Pr[b = 1 : H
$← (M → N), AH

0 (), x ← AC(), B $← N,H(x) := B, b ← AH
2 (B)]

∣
∣

≤ (4 +
√

2)
√

q 2−k/4.

Corollary 7. Let M,N be finite sets and H : M → N be the random oracle.
Let A0, A1 be algorithms that perform at most q0, q1 oracle queries, respectively,
and that may share state. Let AC be a classical algorithm that may access (the
classical part of) the final state of A0. (But A1 does not access AC ’s state.)
Assume that the output of AC has min-entropy at least k given its initial state.
Then

∣
∣ Pr[b = 1 : H

$← (M → N), AH
0 (), x ← AC(), B := H(x), b ← AH

1 (B)]

− Pr[b = 1 : H
$← (M → N), AH

0 (), x ← AC(), B $← N, b ← AH
1 (B)]

∣
∣

≤ (4 +
√

2)
√

q0 2−k/4 + 2q12−k/2.

3 Online-Extractable NIZK Proofs

In the following, we assume a sigma protocol Σ = (N,, Nch , Nresp , P 1
Σ , P 2

Σ , VΣ)
for a relation R. Assume that Nresp = {0, 1}�resp for some �resp .6 We use this

sigma protocol to construct the following non-interactive proof system:

Definition 8 (Online-extractable proof system (POE , VOE)). The proof
system (POE , VOE) is parametrized by polynomially-bounded integers t,m where
m is a power of 2 with 2 ≤ m ≤ |Nch |.

We use random oracles H : {0, 1}∗ → {1, . . . , m}t and G : Nresp → Nresp .7

Prover and verifier are defined in Figure 1.
6 Any Nresp can be efficiently embedded in a set of fixed length bitstrings {0, 1}�resp

(there is no need for this embedding to be surjective). So any sigma protocol can be
transformed to have Nresp = {0, 1}�resp for some �resp .

7 The definitions from Section 2.1 are formulated with respect to only a single random
oracle with distribution ROdist. Having two oracles, however, can be encoded in that
framework by letting ROdist be the uniform distribution over pairs of functions with
the respective domains/ranges.

Non-Interactive Zero-Knowledge Proofs 767

Fig. 3. The simulator (SPOE , SOE
init) for (POE , VOE). SΣ is the simulator

for (P 1
Σ , P 2

Σ , VΣ), cf. Definition 5. H(x) := y means the description of
H is replaced by a new description with H(x) = y. Bounds qG, qH , �
include calls made by the adversary and by POE . Such bounds are known
because the runtime of A is known to the simulator (cf. Definition 2).
ι� is an arbitrary efficiently computable and invertible injection ι� : {0, 1}≤� → {0, 1}�∗

for some �∗ ≥ t log m. pH(ι�(x))1...t log m denotes pH(ι�(x)) truncated to the first t log m
bits. We assume that GF(2�resp) = {0, 1}�resp and GF(2�∗

) = {0, 1}�∗
; such a represen-

tation can be found in polynomial-time [3].

Lemma 9 (Completeness). If Σ is complete, (POE , VOE) is complete.

Proof. Since Σ is complete, VΣ(x, comi, chi,j , respi,j) = 1 for all i, j with over-
whelming probability. Then all checks performed by VOE succeed by construction
of POE . �

3.1 Zero-Knowledge

Theorem 10 (Zero-knowledge). Assume that Σ is HVZK, and that the
response of P 2

Σ has superlogarithmic min-entropy (given its initial state and its
input ch).8

Let κ′ be a lower bound on the collision-entropy of the tuple(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
produced by POE (given its initial state and the ora-

cle G,H). Assume that κ′ is superlogarithmic.9

Then (VOE , POE) is zero-knowledge with the simulator (SOE
init , SPOE

) from
Figure 3.
8 We can always transform a sigma protocol into one with responses with superloga-

rithmic min-entropy by adding some random bits to the responses.
9 This can always be achieved by adding random bits to the commitments.

768 D. Unruh

Proof. We prove this using a sequence of games. We start with the real model
(first term of (1)) and transform it into the ideal model (second term of (1))
step by step, never changing Pr[b = 1] by more than a negligible amount. In
each game, new code lines are marked with new and changed ones with chg
(removed ones are simply crossed out).

Let ROdist be the uniform distribution on pairs of functions G,H (with the
respective domains and ranges as in Definition 8). Then the first term of (1)
becomes:

Game 1. (Real model) G,H
$← ROdist, b ← AG,H,POE .

We now modify the prover. Instead of getting J1, . . . , Jt from the random
oracle H, he chooses J1, . . . , Jt at random and programs the random oracle H
to return those values J1, . . . , Jt.

Game 2. G,H
$← ROdist, b ← AG,H,P with the following prover P :

...
for i = 1 to t do

new Ji ← {1, . . . , m}
comi ← P 1

Σ(x,w)
...

J1‖ . . . ‖Jt := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)
chg H(x, (comi)i, (chi,j)i,j , (hi,j)i,j) := J1‖ . . . ‖Jt

...

By assumption the argument (x, (comi)i, (chi,j)i,j , (hi,j)i,j) to H has super-
logarithmic collision-entropy κ′ (given the state at the beginning of the corre-
sponding invocation of POE). Thus from Corollary 6 we get (using a standard
hybrid argument) that

∣
∣Pr[b = 1 : Game 1]−Pr[b = 1 : Game 2]

∣
∣ is negligible.

Next, we change the order in which the prover produces the subproofs
(comi, chi,j , respi,j): For each i, the (comi, chi,j , respi,j) with j = Ji is produced
first.

Game 3. G,H
$← ROdist, b ← AG,H,P with the P as follows:

...
for i = 1 to t do

Ji ← {1, . . . , m}; comi ← P 1
Σ(x,w)

new chi,Ji

$← Nch ; respi,Ji
← P 2

Σ(chi,Ji
)

chg for j = 1 to m except j = Ji do
chg chi,j

$← Nch \ {chi,Ji
, chi,1, . . . , chi,j−1}

respi,j ← P 2
Σ(chi,j)

...

Non-Interactive Zero-Knowledge Proofs 769

Obviously, changing the order of the P 2
Σ-invocations does not change any-

thing because P 2
Σ has no side effects. At a first glance, it seems that the values

chi,j are chosen according to different distributions in both games, but in fact
in both games (chi,1, . . . , chi,m) are uniformly distributed conditioned on being
pairwise distinct. Thus Pr[b = 1 : Game 2] = Pr[b = 1 : Game 3].

Now we change how the hi,j are constructed. Those hi,j that are never opened
are picked at random.

Game 4. G,H
$← ROdist, b ← AG,H,P with the P as follows:

...
for i = 1 to t do

new hi,Ji
:= G(respi,Ji

)
chg for j = 1 to m except j = Ji do
chg hi,j

$← Nresp

...

Note that the argument respi,j to G has superlogarithmic min-entropy (given
the value of all variables when G(respi,j) is invoked) since we assume that the
responses of P 2

Σ have superlogarithmic min-entropy. Thus from Corollary 7 we get
(using a standard hybrid argument) that

∣
∣Pr[b = 1 : Game 3]−Pr[b = 1 : Game 4]

∣
∣

is negligible. (H in the corollary is G here, and AC in the corollary is P 2
Σ here.)

Now we omit the computation of the values respi,j that are not used:

Game 5. G,H
$← ROdist, b ← AG,H,P with the P as follows:

...
for j = 1 to m except j = Ji do

chi,j
$← Nch \ {chi,Ji

, chi,1, . . . , chi,j−1}
respi,j ← P 2

Σ(chi,j)
...

We now replace the honestly generated proof (comi, chi,Ji
, respi,Ji

) by one
produced by the simulator SΣ (from Definition 5).

Game 6. G,H
$← ROdist, b ← AG,H,P with the P as follows:

...
for i = 1 to t do

Ji ← {1, . . . , m}; comi ← P 1
Σ(x,w)

chi,Ji

$← Nch ; respi,Ji
← P 2

Σ(chi,Ji
)

new (comi, chi,Ji
, respi,Ji

) ← SΣ(x)
...

770 D. Unruh

Since Σ is HVZK by assumption,
∣
∣Pr[b = 1 : Game 5] − Pr[b = 1 : Game 6]

∣
∣

is negligible.
Note that P as defined in Game 6 does not use the witness w any more. Thus

we can replace P by a simulator that depends only on the statement x. That
simulator SPOE

is given in Figure 3.

Game 7. G,H
$← ROdist, b ← AG,H,S′

POE for SPOE
from Figure 3. (Recall that

S′
POE

is defined in terms of SPOE
, see Definition 2.)

From the definition of SPOE
in Figure 3 we immediately get Pr[b = 1 : Game

6] = Pr[b = 1 : Game 7].
Finally, we replace ROdist by oracles as chosen by SOE

init from Figure 3. (In
general, any construction of SOE

init would do for the proof of the zero-knowledge
property, as long as it returns G,H that are indistinguishable from random.
However, in the proof of extractability we use that G is constructed in this
specific way.)

Game 8. G,H
$← SOE

init , b ← AG,H,S′
POE for (SOE

init , SPOE
) from Figure 3.

For the following argument, we introduce the following abbreviation: Given
distributions on functions H,H ′, by H ≈q,� H ′ we denote that H and H ′ are
perfectly indistinguishable by any quantum algorithm making at most q queries
and making no queries with input longer than �. We omit q or � if q = ∞ or
� = ∞. Let pG, pH , �, ι�, �

∗ be as defined in Figure 3.
Let GR denote the function G : Nresp → Nresp as chosen by ROdist, and

let GS denote the function G = pG chosen by SOE
init . It is easy to see that a

uniformly random polynomial p of degree ≤ 2q − 1 is 2q-wise independent. [23]
shows that a 2q-wise independent function is perfectly indistinguishable from a
random function by an adversary performing at most q queries (the queries may
be in superposition). Then GR ≈qG GS .

Similarly, let HR and HS denote H : {0, 1}∗ → {0, 1}t log m as chosen by
ROdist or SOE

init , respectively. Then pH ≈2qH H ′ for a uniformly random function
H ′ : {0, 1}�∗ → {0, 1}�∗

. Hence pH ◦ ι� ≈qH H ′ ◦ ι� ≈ H ′′ for uniformly random
H ′′ : {0, 1}≤� → {0, 1}�∗

. Hence HS = (pH ◦ ι�)1...t log m ≈qH (H ′′)1...t log m

where H1...t log m means H with its output restricted to the first t log m bits.10

And H ′′ ≈� H3 for uniformly random H3 : {0, 1}∗ → {0, 1}�∗
. Thus HS ≈qH

(H ′′)1...t log m ≈� (H3)1...t log m ≈ HR, hence HS ≈qH ,� HR.
Since qH and qG are upper bounds on the number of queries to H and G and �

bounds input length of the H-queries made by A, GR ≈qG GS and HS ≈qH ,� HR

imply that A cannot distinguish the oracles GR,HR produced by ROdist from
the oracles GS ,HS produced by SOE

init . Thus Pr[b = 1 : Game 7] = Pr[b = 1 :
Game 8].

10 Notice that to see this, we need to be able to implement (H ′′)1...t log m using a single
oracle query to H ′′. This can be done by initializing the output qubits of H ′′ that
shall be ignored with |+〉, see [24, Section3.2].

Non-Interactive Zero-Knowledge Proofs 771

Fig. 4. The extractor EPOE for (POE , VOE)

Summarizing, we have that
∣
∣Pr[b = 1 : Game 1] − Pr[b = 1 : Game 8]

∣
∣

is negligible. Since Game7 are the games in (1), it follows that (POE , VOE) is
zero-knowledge. �

3.2 Online Extractability

We now proceed to prove that (POE , VOE) is simulation-sound online-extractable
using the extractor EPOE

from Figure 4.
To analyze EPOE

, we define a number of random variables and events that
can occur in the execution of the simulation-soundness game (Definition 4).
Remember, the game in question is G,H ← SOE

init , (x, π) ← AG,H,SPOE , ok ←
V G,H
OE (x, π), w ← EPOE

(H,x, π), and simproofs is the set of all proofs returned
by SPOE

(together with the corresponding statements).
– H0: Let H0 denote the initial value of H as returned by SOE

init . (H can change
during the game because SPOE

programs it, see Figure 3. On the other hand,
G does not change.)

– H1: Let H1 denote to the final value of H (as used by VOE for computing
ok).

– ShouldEx: ok = 1 and (x, π) /∈ simproofs. (I.e., in this case the extractor
should find a witness.)

– ExFail: ok = 1 and (x, π) /∈ simproofs and (x,w) /∈ R. (ExFail represents a
successful attack.)

– MallSim: ok = 1 and (x, π) /∈ simproofs and (x, π∗) ∈ simproofs for
some π∗ =

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (resp∗

i)i

)
where

(
(comi)i, (chi,j)i,j ,

(hi,j)i,j , (respi)i

)
:= π. (In other words, the adversary produces a valid proof

that differs from one of the simulator generated proofs (for the same state-
ment x) only in the resp-components).

– We call a triple (com, ch, resp) Σ-valid iff VΣ(x, com, ch, resp) = 1 (x will
always be clear from the context). If R is a set, we call (com, ch, R) set-valid
iff there is a resp ∈ R such that (com, ch, resp) is Σ-valid. And Σ-invalid
and set-invalid are the negations of Σ-valid and set-valid.

772 D. Unruh

The following technical lemma establishes that an adversary with access to
the simulator SPOE

cannot produce a new valid proof by just changing the resp-
components of a simulated proof. This will cover one of the attack scenarios
covered in the proof of simulation-sound online-extractability below.

Lemma 11 (Non-malleability). Let κ be a lower bound on the collision-
entropy of the tuple

(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
produced by SPOE

(given its ini-
tial state and the oracle G,H). Let qG be an upper bound for the number of
queries to G made by A and SPOE

and VOE together. Let n be an upper bound
on the number of invocations of SPOE

.
Then Pr[MallSim] ≤ n(n+1)

2 2−κ + O
(
(qG + 1)32−�resp

)
.

Proof. First, since G is chosen as a polynomial of degree 2qG − 1 and is thus
2qG-wise independent, by [23] G is perfectly indistinguishable from a uniformly
random G within qG queries. Thus, for the proof of this lemma, we can assume
that G is a uniformly random function.

In the definition of MallSim, since ok = 1, we have that π is accepted by
VOE . In particular, this implies that G(respi) = hi,Ji

for all i by definition of
VOE . And J1‖ . . . ‖Jt = H1(x, πhalf) where πhalf :=

(
(comi)i, (chi,j)i,j , (hi,j)i,j

)

is π without the resp-components. Furthermore, by construction of SPOE
, we

have that π∗ satisfies: G(resp∗
i) = hi,J∗

i
for all i and J∗

1 ‖ . . . ‖J∗
t = H∗(x, πhalf)

where H∗ denotes the value of H directly after SPOE
output π∗. (I.e., H∗ might

differ from H1 if further invocations of SPOE
programmed H further.) But if

H1(x, πhalf) = H∗(x, πhalf), then Ji = J∗
i for all i, and thus G(respi) = G(resp∗

i)
for all i. And since π /∈ simproofs and π∗ ∈ simproofs by definition of MallSim,
we have that respi �= resp∗

i for some i.
Thus

Pr[MallSim] ≤ Pr[H1(x, πhalf) �= H∗(x, πhalf)]
+ Pr[∃i : G(respi) = G(resp∗

i) ∧ respi �= resp∗
i].

If we have H1(x, πhalf) �= H∗(x, πhalf), this implies that SPOE
reprogrammed

H after producing π∗. This implies in particular that in two invocations of SPOE
,

the same tuple πhalf =
(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
was chosen. This happens

with probability at most n(n+1)
2 2−κ because each such tuple has collision-entropy

at least κ.
Finally, since G is a random function that is queried at most qG times, Pr[∃i :

G(respi) = G(resp∗
i) ∧ respi �= resp∗

i] ∈ O
(
(qG + 1)32−�resp

)
by [24, Theorem3.1]

(collision-resistance of the random oracle).
Thus Pr[MallSim] ≤ n(n+1)

2 2−κ + O
(
(qG + 1)32−�resp

)
. �

The following lemma states that, if H is uniformly random, the adversary
cannot produce a valid proof (conditions (i),(ii)) from which is it not possible
to extract a second response for one of the comi by inverting G (condition (iii)).
This lemma already implies online-extractability, because it implies that the
extractor EPOE

will get a commitment comi with two valid responses. However,

Non-Interactive Zero-Knowledge Proofs 773

it does not go the full way to showing simulation-sound online-extractability yet,
because in that setting, the adversary has access to SPOE

which reprograms the
random oracle H, so H cannot be treated as a random function.

Lemma 12. Let G be an arbitrarily distributed function, and let H0 :
{0, 1}≤� → {0, 1}t log m be uniformly random (and independent of G). Then it is
hard to find x and π =

(
(comi), (chi,j), (hi,j), (respi)

)
such that:

(i) hi,Ji
= G(respi) for all i with

J1‖ . . . ‖Jt := H0(x, (comi)i, (chi,j)i,j , (hi,j)i,j).
(ii) (comi, chi,Ji

, respi) is Σ-valid for all i.
(iii) (comi, chi,j , G

−1(hi,j)) is set-invalid for all i and j with j �= Ji.
More precisely, if AG,H0 makes at most qH queries to H0, it outputs (x, π) with
these properties with probability at most 2(qH + 1)2−(t log m)/2.

Proof. Without loss of generality, we can assume that G is a fixed function and
that A knows that function. Thus in the following, we only provide oracle access
to H0 to A.

For any given value of H0, we call a tuple
(
x, (comi), (chi,j), (hi,j)

)
an H0-

solution iff:

for each i, j, we have that (comi, chi,j , G
−1(hi,j)) is set-valid iff j = Ji

where J1‖ . . . ‖Jt := H0(x, (comi)i, (chi,j)i,j , (hi,j)i,j).

(The name “H0-solution” derives from the fact that we are trying to solve an
equation in terms of H0.)

It is easy to see that if x and π =
(
(comi), (chi,j), (hi,j), (respi)

)
satisfies

(i)–(iii), then
(
x, (comi), (chi,j), (hi,j)

)
is an H0-solution. (Note for the case

j = Ji that hi,Ji
= G(respi) implies respi ∈ G−1(hi,j). With the Σ-validity

of (comi, chi,Ji
, respi) this implies the set-validity of (comi, chi,j , G

−1(hi,j)).)
Thus it is sufficient to prove that AH0() making at most qH queries outputs

an H0-solution with probability at most 2(qH +1)2−(t log m)/2. Fix such an adver-
sary AH0 ; denote the probability that it outputs an H0-solution (for uniformly
random H0) with μ.

We call
(
x, (comi), (chi,j), (hi,j)

)
a candidate iff for each i, there is exactly one

J∗
i such that (comi, chi,J∗

i
, G−1(hi,J∗

i
)) is set-valid. Notice that a non-candidate

can never be an H0-solution. (This justifies the name “candidate”, those are
candidates for being an H0-solution, awaiting a test-call to H0.)

For any given candidate c, for uniformly random H0, the probability that
c is an H0-solution is 2−t log m. (Namely c is an H0-solution iff all Ji = J∗

i for
all i, i.e., there is exactly one output of H0(c) ∈ {0, 1}t log m that makes c an
H0-solution.)

Let Cand denote the set of all candidates. Let F : Cand → {0, 1} be a random
function with all F (c) i.i.d. with Pr[F (c) = 1] = 2−t log m.

Given F , we construct HF : {0, 1}∗ → {0, 1}t log m as follows:
– For each c /∈ Cand, assign a uniformly random y ∈ {0, 1}t log m to HF (c).
– For each c ∈ Cand with F (c) = 1, let HF (c) := J∗

1 ‖ . . . ‖J∗
t where J∗

1 , . . . , J∗
t

are as in the definition of candidates.

774 D. Unruh

– For each c ∈ Cand with F (c) = 0, assign a uniformly random y ∈ {0, 1}t log m\
{J∗

1 ‖ . . . ‖J∗
t } to HF (c).

Since F (c) = 1 with probability 2−t log m, HF (c) is uniformly distributed over
{0, 1}t log m for c ∈ Cand. Thus HF is a uniformly random function.

Since AH0() outputs an H0-solution with probability μ and HF has the same
distribution as H0, AHF () outputs an HF -solution c with probability μ. Since
an HF -solution c must be a candidate, we have c ∈ Cand. And c can only be an
HF -solution if HF (c) = J∗

1 ‖ . . . ‖J∗
t , i.e., if F (c) = 1. Thus AHF () returns some

c with F (c) = 1 with probability μ.
However, to explicitly construct HF , AHF needs to query all values of F , so

the number of F -queries is not bounded by qH . However, AHF can be simulated
by the following algorithm SF :

– Pick uniformly random H1 : {0, 1}≤� → {0, 1}t log m. Set H2(c) := J∗
1 ‖ . . . ‖J∗

t

for all c ∈ Cand. For all c ∈ Cand, let H3(c) := y for uniformly random
y ∈ {0, 1}t log m \ {J∗

1 ‖ . . . ‖J∗
t }.

– Let H ′
F (c) := H1(c) if c /∈ Cand, let H ′

F (c) := H2(c) if c ∈ Cand and F (c) = 1,
let H ′

F (c) := H3(c) if c ∈ Cand and F (c) = 0.
– Run AH′

F ().
The function H ′

F constructed by S has the same distribution as HF (given the
same F). Thus S outputs c with F (c) = 1 with probability μ. Furthermore, no
F -queries are needed to construct H1,H2,H3, and a single F -query is needed
for each H ′

F -query performed by AHF . Thus S performs at most qH F -queries.
Using the hardness of search in a random function (see the full version [19]), we
get μ ≤ 2(qH + 1)2−(t log m)/2. �

Theorem 13 (Simulation-sound online-extractability). Assume that Σ
has special soundness. Let κ be a lower bound on the collision-entropy of the tuple(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
produced by SPOE

(given its input and the oracles
G,H). Assume that t log m and κ and �resp are superlogarithmic.

Then (VOE , POE) is simulation-sound online-extractable with extractor EPOE

from Figure 4 and with respect to the simulator (SPOE
, SOE

init) from figure 3.
A concrete bound μ on the success probability is given in (6) below.

Proof. Given π =
(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
, let πhalf :=

(
(comi)i,

(chi,j)i,j , (hi,j)i,j

)
, i.e., π without the resp-components.

Fix an adversary A for the game in Definition 4. Assume A, SPOE
, VOE

together perform at most qG queries to G and qH queries to H, and that at most
n instances of SPOE

are invoked.
Let Ev(i), Ev(ii), Ev(iii) denote the events that conditions (i), (ii), (iii) from

Lemma 12 are satisfied.
Assume that ShouldEx∧¬MallSim∧¬Ev(iii) occurs. Intuitively, this means that

we are in a situation we the extractor should extract (ShouldEx), but cannot do so
(¬Ev(iii)), and the adversary managed to bring this situation about without using
simulator generated proofs, i.e. without using malleability (¬MallSim). Since we
exclude malleability attacks by Lemma 11, this is basically the only case we will
need to worry about.

Non-Interactive Zero-Knowledge Proofs 775

The event ShouldEx by definition entails ok = 1 and (x, π) /∈ simproofs.
Furthermore, ¬MallSim then implies that for all (x∗, π∗) ∈ simproofs, we
have that (x∗, π∗

half) �= (x, πhalf). In an invocation π∗ ← SPOE
(x∗), SPOE

only reprograms H at position H(x∗, π∗
half), hence H(x, πhalf) is never repro-

grammed. Thus H0(x, πhalf) = H1(x, πhalf). Furthermore ok = 1 implies
by definition of VOE (and the fact that H1 denotes H at the time of
invocation of VOE): (comi, chi,Ji

, respi) is Σ-valid for all i and hi,Ji
=

G(respi) for all i, where J1‖ . . . ‖Jt := H1(x, πhalf). Since H0(x, πhalf) =
H1(x, πhalf), we have J1‖ . . . ‖Jt = H0(x, πhalf) as well. And ¬Ev(iii) implies
that (comi, chi,j , G

−1(hi,j)) is set-valid for some i, j with j �= Ji. Thus by
construction, EPOE

outputs w := EΣ(x, comi, chi,Ji
, respi, chi,j , resp′) for some

resp′ ∈ G−1(hi,j) such that (comi, chi,j , resp′) is Σ-valid. Furthermore, ok = 1
implies by definition of VOE that chi,1, . . . , chi,t are pairwise distinct, in partic-
ular chi,j �= chi,Ji

. And ok = 1 implies that (comi, chi,Ji
, respi) is Σ-valid. On

such inputs, the special soundness of EΣ (cf. Definition 5) implies that (x,w) ∈ R
with probability at least 1 − εsound for negligible εsound . Thus

Pr[ShouldEx ∧ (x,w) ∈ R ∧ ¬MallSim ∧ ¬Ev(iii)]
≥ Pr[ShouldEx ∧ ¬MallSim ∧ ¬Ev(iii)] − εsound . (2)

Then since ExFail ⇐⇒ ShouldEx ∧ (x,w) /∈ R,

Pr[ExFail ∧ ¬MallSim ∧ ¬Ev(iii)]
= Pr[ShouldEx ∧ ¬MallSim ∧ ¬Ev(iii)]

− Pr[ShouldEx ∧ (x,w) ∈ R ∧ ¬MallSim ∧ ¬Ev(iii)]
(2)≤ εsound . (3)

Then

Pr[ExFail ∧ ¬MallSim]
= Pr[ExFail ∧ ¬MallSim ∧ Ev(iii)] + Pr[ExFail ∧ ¬MallSim ∧ ¬Ev(iii)]
(3)

≤ Pr[ExFail ∧ ¬MallSim ∧ Ev(iii)] + εsound . (4)

Assume ExFail ∧ ¬MallSim. As seen above (in the case ShouldEx ∧
¬MallSim ∧ ¬Ev(iii)), this implies that H0(x, πhalf) = H1(x, πhalf) and that
(comi, chi,Ji

, respi) is Σ-valid for all i and hi,Ji
= G(respi) for all i, where

J1‖ . . . ‖Jt := H1(x, πhalf). This immediately implies Ev(i) and Ev(ii). Thus

Pr[ExFail ∧ ¬MallSim]
(4)

≤ Pr[ExFail ∧ ¬MallSim ∧ Ev(iii)] + εsound
(∗)= Pr[ExFail ∧ ¬MallSim ∧ Ev(i) ∧ Ev(ii) ∧ Ev(iii)] + εsound

≤ Pr[Ev(i) ∧ Ev(ii) ∧ Ev(iii)] + εsound (5)

where (∗) uses ExFail ∧ ¬MallSim ⇒ Ev(i) ∧ Ev(ii).
As already seen in the proof of Theorem 10, H = H0 as chosen by SOE

init is
perfectly indistinguishable from a uniformly random H0 : {0, 1}≤� → {0, 1}t log m

776 D. Unruh

using only qH queries. Thus we can apply Lemma 12, and get Pr[Ev(i) ∧ Ev(ii) ∧
Ev(iii)] ≤ 2(qH + 1)2−(t log m)/2.

And by Lemma 11, we have Pr[MallSim] ≤ n(n+1)
2 2−κ + O

(
(qG + 1)32−�resp

)
.

We have

Pr[ExFail] ≤ Pr[ExFail ∧ ¬MallSim] + Pr[MallSim]
(5)

≤ Pr[Ev(i) ∧ Ev(ii) ∧ Ev(iii)] + εsound + Pr[MallSim]

≤ 2(qH + 1)2−(t log m)/2 + εsound +
n(n + 1)

2
2−κ + O

(
(qG + 1)32−�resp

)
=: μ.

(6)

Since the adversary A is polynomial-time, qH , qG, n are polynomially-bounded.
Furthermore t log m and κ and �resp are superlogarithmic by assumption. Thus
μ is negligible. And since ExFail is the probability that the adversary wins in Def-
inition 4, it follows that (POE , VOE) is simulation-sound online-extractable. �

Corollary 14. If there is a sigma-protocol Σ that is complete and HVZK and
has special soundness, then there exists a non-interactive zero-knowledge proof
system with simulation-sound online extractability in the random oracle model.

Proof. Without loss of generality, we can assume that the commitments and
the responses of Σ have at least superlogarithmic collision-entropy κ′. (This
can always be achieved without losing completeness, HVZK, or special sound-
ness by adding κ′ random bits to the commitments and the responses of Σ.)
This also implies that �resp is superlogarithmic. And it implies that the tuples(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
produced by POE have superlogarithmic

collision-entropy ≥ κ′.
Fix polynomially-bounded t,m such that m is a power of two with 2 ≤ m ≤

|Nresp | and such that t log m is superlogarithmic. (E.g., t superlogarithmic and
m = 2.) and let (VOE , POE) be as in Definition 8 (with parameters t,m).

Then by Theorem 10, (VOE , POE) is zero-knowledge.
The collision-entropy κ of the tuples

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
pro-

duced by SPOE
is superlogarithmic. (Otherwise one could distinguish between

POE and SPOE
by invoking it twice with the same argument and checking if they

result in the same tuple.)
Then by Theorem 13, (VOE , POE) is simulation-sound online-extractable. �

4 Signatures

A typical application of non-interactive zero-knowledge proofs of knowledge
are signature schemes. E.g., the Fiat-Shamir construction [10] was originally
described as a signature scheme. As a litmus test whether our security defi-
nitions (Definition 2 and Definition 4) are reasonable in the quantum setting,

Non-Interactive Zero-Knowledge Proofs 777

we demonstrate how to construct signatures from non-interactive simulation-
sound online-extractable zero-knowledge protocols (in particular the protocol
(POE , VOE) from Definition 8). The construction is standard, and the proof sim-
ple, but we believe that such a sanity check for the definitions is necessary,
because sometimes a definition is perfectly reasonable in the classical setting
while its natural quantum counterpart is almost useless. (An example is the clas-
sical definition of “computationally binding commitments” which was shown to
imply almost no security in the quantum setting [2].)

The basic idea of the construction is that to sign a message m, one needs
to show the knowledge of one’s secret key. Thus, we need a relation R between
public and secret keys, and we need an algorithm G to generate public/secret
key pairs such that it is hard to guess the secret key. The following definition
formalizes this:

Definition 15 (Hard instance generators). We call an algorithm G a hard
instance generator for a relation R iff
– Pr[(p, s) ∈ R : (p, s) ← G()] is overwhelming and
– for any polynomial-time A, Pr[(p, s′) ∈ R : (p, s) ← G(), s′ ← A(p)] is

negligible.

An example of a hard instance generator would be: R := {(p, s) : p = f(s)}
for a one-way function f , and G picks s uniformly from the domain of f , sets
p := f(s), and returns (p, s).

Now a signature is just a proof of knowledge of the secret key. That is, the
statement is the public key, and the witness is the secret key. However, a signa-
ture should be bound to a particular message. For this, we include the message
m in the statement that is proven. That is, the statement that is proven consists
of a public key and a message, but the message is ignored when determining
whether a given statement has a witness or not. (In the definition below, this is
formalized by considering an extended relation R′.) The simulation-soundness of
the proof system will then guarantee that a proof/signature with respect to one
message cannot be transformed into a proof/signature with respect to another
message because this would mean changing the statement.

A signature scheme consists of a key generation algorithm (pk , sk) ←
KeyGen(). The secret key sk is used to sign a message m using the signing
algorithm σ ← Sign(sk ,m) to get a signature σ. And the signature is valid iff
Verify(pk , σ,m) = 1.

Definition 16 (Signatures from non-interactive proofs). Let G be a hard
instance generator for a relation R. Let R′ := {((p,m), s) : (p, s) ∈ R}. Let (P, V)
be a non-interactive proof system for R′ (in the random oracle model). Then we
construct the signature scheme (KeyGen,Sign,Verify) as follows:
– KeyGen(): Pick (p, s) ← G(). Let pk := p, sk := (p, s). Return (pk , sk).
– Sign(sk ,m) with sk = (p, s): Run σ ← P (x,w) with x := (p,m) and w := s.

Return σ.
– Verify(pk , σ,m) with pk = y: Run ok ← V (x, σ) with x := (p,m). Return

ok.

778 D. Unruh

Notice that if we use the scheme (POE , VOE) from Definition 8, we do not
need to explicitly find a sigma-protocol for the relation R′. This is because an
HVZK sigma protocol with special soundness for R will automatically also be
an HVZK sigma protocol with special soundness for R′. Thus, the only effect of
considering the relation R′ is that in POE , the message m will be additionally
included in the hash query H(x, (comi), (chi), (hi,j)) as part of x = (p,m).

Definition 17 (Strong unforgeability). A signature scheme (KeyGen,Sign,
Verify) is strongly unforgeable iff for all polynomial-time adversaries A,

Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← ROdist, (pk , sk) ← KeyGen(),

(σ∗,m∗) ← AH,Sig(pk), ok ← Verify(pk , σ∗,m∗)]

is negligible. Here Sig is a classical oracle that upon classical input m returns
Sign(sk ,m). (But queries to H are quantum.) And Q is the list of all queries
made to Sig. (I.e., when Sig(m) returns σ, (m,σ) is added to the list Q.)

If we replace (m∗, σ∗) /∈ Q by ∀σ.(m∗, σ) /∈ Q, we say the signature scheme
is unforgeable.

Theorem 18 (Unforgeability). If (P, V) is zero-knowledge and has simulation-
sound online-extractability, then the signature scheme (KeyGen,Sign,Verify)
from Definition 16 is strongly unforgeable.

Proof. Fix a quantum-polynomial-time adversary A. We need to show that the
following probability P1 is negligible.

P1 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← ROdist, (pk , sk) ← KeyGen(),

(σ∗,m∗) ← AH,Sig(pk), ok ← Verify(pk , σ∗,m∗)]

By definition of the signature scheme,

P1 = Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← ROdist, (p, s) ← G(),

(σ∗,m∗) ← AH,Sig(p), ok ← V ((p,m∗), σ∗)]

And Sig(m) returns the proof P ((p,m), s). And G is the hard instance generator
used in the construction of the signature scheme.

Since G is a hard instance generator, we have that (p, s) ∈ R with overwhelm-
ing probability. Thus, with overwhelming probability, for all m, ((p,m), s) ∈
R′. Thus, with overwhelming probability, Sig invokes P ((p,m), s) only with
((p,m), s) ∈ R′. Since (P, V) is zero-knowledge (Definition 2), we can replace
H ← ROdist by H ← Sinit() and P ((p,m), s) by SP ((p,m)) where (Sinit , SP) is
the simulator for (P, V). That is, |P1 − P2| is negligible where:

P2 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← Sinit(), (p, s) ← G(),

(σ∗,m∗) ← AH,Sig′
(p), ok ← V ((p,m∗), σ∗)]

and Sig′(m) returns SP ((p,m)).

Non-Interactive Zero-Knowledge Proofs 779

Let E be the extractor whose existence is guaranteed by the simulation-sound
online-extractability of (P, V), see Definition 4. Consider the following game G:

G := H ← Sinit(), (p, s) ← G(), (σ∗,m∗) ← AH,Sig′
(p),

ok ← V ((p,m∗), σ∗), s′ ← E(H, (p,m∗), σ∗).

That is, we perform the same operations as in P2, except that we additionally try
to extract a witness for the statement (p,m∗). Since the output of E is simply
ignored, Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : G] = P2.

Let simproofs denote the list of queries made to SP , i.e., whenever Sig′(m)
queries SP ((p,m)) resulting in proof/signature σ, (p,m, σ) is appended to
simproofs. Note that whenever some (p,m, σ) is appended to simproofs, (m,σ)
is appended to Q. Thus (m∗, σ∗) /∈ Q implies (p,m∗, σ∗) /∈ simproofs.

Since (P, V) is simulation-sound online-extractable, P3 := Pr[ok = 1 ∧
(p,m∗, σ∗) /∈ simproofs ∧ ((p,m∗), s′) /∈ R′ : G] is negligible.

Since (m∗, σ∗) /∈ Q implies (p,m∗, σ∗) /∈ simproofs, and ((p,m∗), s′) ∈ R′ iff
(p, s′) ∈ R, we have P3 ≥ P4 with P4 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q ∧ (p, s′) /∈ R :
G]. Hence P4 is negligible.

And since G is a hard instance generator and s is never given to any algorithm
in G, P5 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q ∧ (p, s′) ∈ R : G] is negligible.

Thus P2 = P4 + P5 is negligible. And since |P1 − P2| is negligible, P1 is
negligible. Since this holds for any quantum-polynomial-time A, the signature
scheme is strongly unforgeable. �

Note that this proof is exactly as it would have been in the classical case (even
though the adversary A was quantum). This is due to the fact that simulation-
sound online-extractability as defined in Definition 4 allows us to extract a wit-
ness in a non-invasive way: we do not need to operate in any way on the quantum
state of the adversary (be it by measuring or by rewinding); we get the witness
purely by inspecting the classical proof/signature σ∗. This avoids the usual prob-
lem of disturbing the quantum state while trying to extract a witness.

Acknowledgments. We thank Marc Fischlin and Tommaso Gagliardoni for valuable
discussions and the initial motivation for this work. This work was supported by the
Estonian ICT program 2011-2015 (3.2.1201.13-0022), the European Union through
the European Regional Development Fund through the sub-measure “Supporting the
development of R&D of info and communication technology”, by the European Social
Fund’s Doctoral Studies and Internationalisation Programme DoRa, by the Estonian
Centre of Excellence in Computer Science, EXCS.

A Sigma-Protocols with Oblivious Commitments

In this section we review the definition of sigma-protocols with oblivious commit-
ments [7] and explain why they directly imply NIZK proofs in the CRS model.

780 D. Unruh

Definition 19 (Sigma-protocols with oblivious commitments, follow-
ing [7]). A sigma-protocol Σ = (N,, Nch , Nresp , P 1

Σ , P 2
Σ , VΣ) has oblivious com-

mitments if P 1
Σ simply chooses and return a uniformly random bitstring from

N,.11

In other words, in a sigma-protocol with oblivious commitments, the first mes-
sage (the commitment) is uniformly random. (While normally, we only require
the second message to be uniformly random.)

Note that [7] defines oblivious commitments slightly differently: the prover
does not have to send a uniformly random commitment. Instead, given its com-
mitment, it should be efficiently feasible to find randomness that leads to that
commitment. But [7] points out that that definition is equivalent to what we
wrote in Definition 19 (in the sense that a protocol satisfying one definition can
easily be transformed into one satisfying the other). Furthermore, [7] actually
assumes Definition 19 in their construction, so we give and discuss that definition
here. [7] proves (restated using the language from our paper):

Theorem 20 (Fiat-Shamir-like signatures, [7]). Assume a hard instance
generator G and a sigma-protocol Σ with oblivious commitments, completeness,
special-soundness, and HVZK.

Then there is an unforgeable signature scheme (build in an efficient way from
G and Σ).

The actual construction used [7] is not Fiat-Shamir, but only inspired by Fiat-
Shamir. The crucial difference is that the commitments are not chosen by the
prover, but instead are hash values output by the random oracle (the same way
as the challenges are output by the random oracle in normal Fiat-Shamir).

At the first glance this theorem might seem unrelated to the problem of con-
structing NIZK proofs. However, their proof of unforgeability implicitly proves
the existence of an extractor (though not of a simulation-sound extractor)
because it works by extracting two sigma-protocol executions and then com-
puting a witness from those.

Note however that the proof from [7] does not show that their construction
is zero-knowledge. Yet, we conjecture that with the random oracle program-
ming techniques presented here, one can show that their construction is zero-
knowledge using a proof similar to ours.

Relation to CRS NIZK Proofs. We now argue why sigma-protocols with
oblivious commitments are quite a strong assumption. Namely, they are by them-
selves (without any use of a random oracle) already NIZK proofs of knowledge
in the CRS model.

Given a sigma-protocol Σ = (N,, Nch , Nresp , P 1
Σ , P 2

Σ , VΣ) with oblivious com-
mitments, we construct a proof system ΠΣ = (CRS , P, V) in the CRS model as

11 We stress that P 1
Σ needs to directly output its randomness. For example, if P 1

Σ

produces com := f(r) with random r using a one-way permutation f , then P 1
Σ does

not have oblivious commitments, even though com is uniformly distributed. (Because
P 1

Σ additionally produces a preimage of com under f .)

Non-Interactive Zero-Knowledge Proofs 781

follows: The CRS crs is uniformly random from the set crs := N, × Nch . The
prover P (crs, x, w) splits crs =: (com, ch), runs P 1

Σ(x,w) with the randomness
that would yield com (this is possible because in a sigma-protocol with oblivious
commitments, P 1

Σ just outputs its randomness), and runs resp ← P 2
Σ(ch). The

proof is π := resp. The verifier V (crs, x, π) splits crs =: (com, ch) and resp := π
and runs VΣ(x, com, ch, resp) and accepts if VΣ accepts.

We now show that (P, V) is both zero-knowledge and a proof of knowledge
in the CRS model.

Definition 21 (Zero-knowledge in the CRS model). A non-interactive
protocol (CRS , P, V) is (single-theorem, non-adaptive) zero-knowledge in the
CRS model for relation R iff there exists a polynomial-time simulator S such that
for any quantum-polynomial-time adversary (A1, A2), the following is negligible:

∣
∣ Pr[(x,w) ∈ R ∧ b = 1 : (x,w) ← A1(), crs $← CRS , π ← P (crs, x, w),

b ← A2(crs, π)]

− Pr[(x,w) ∈ R ∧ b = 1 : (x,w) ← A1(), crs, π $← S(x), b ← A2(crs, π)]
∣
∣

Notice that we have chosen the variant of zero-knowledge that is usually
called single-theorem, non-adaptive zero-knowledge. That is, given one CRS,
one is allowed to produce only a single proof. And the statement x that is to be
proven may not depend on the CRS.

Lemma 22. If Σ is a zero-knowledge sigma-protocol with oblivious commit-
ments, then ΠΣ is zero-knowledge in the CRS model.

Proof. Let S(x) be a simulator that runs (com, ch, resp) := SΣ(x) where SΣ is
the simulator of the sigma-protocol (see Definition 5). Then S computes crs :=
(com, ch) and π := resp and returns (crs, π). Note that crs = (com, ch) $←
CRS = N,×Nch yields the same distribution of (com, ch) as com ← P 1

Σ(x), ch $←
Nch . Together with the fact that Σ is zero-knowledge, one easily sees that the
probability difference in Definition 21 is negligible for quantum-polynomial-time
(A1, A2). �

Definition 23 (Proofs of knowledge in the CRS model). A non-
interactive protocol (CRS , P, V) is a (single-theorem, non-adaptive) proof of
knowledge in the CRS model for relation R iff there exists a polynomial-time
extractor (E1, E2) such that the output of E1 is quantum-computationally indis-
tinguishable from crs $← CRS, and such that for any quantum-polynomial-time
adversary (A1, A2), the following probability is negligible:

Pr[ok = 1∧(x,w) /∈ R : x ← A1(), crs ← E1(x), π ← A2(crs), w ← E2(π)]. (7)

Note that again, we have defined a weak form of proofs of knowledge: single-
theorem and non-adaptive.

782 D. Unruh

Lemma 24. Let Σ be a sigma-protocol with oblivious commitments.
Assume that Σ is zero-knowledge with the following extra properties: for
(com, ch, resp) ← SΣ(x), (com, ch) is quantum-computationally indistinguish-
able from uniform, and VΣ(com, ch, resp) = 1 with overwhelming probability.12

Then ΠΣ is a proof of knowledge in the CRS model.

Proof. Let E1(x) run the simulator (com, ch, resp) ← SΣ(x) of the sigma-
protocol Σ. Then E1 picks ch ′ $← Nch \ ch. Then E1 outputs crs := (com, ch ′).

Since (com, ch) chosen as (com, ch, resp) ← SΣ(x) is indistinguishable from
uniform, so is (com, ch ′) as chosen by E1. Thus crs = (com, ch ′) as picked
by E1(x) is quantum-computationally indistinguishable from crs $← CRS =
N, × Nch .

The second part of the extractor, E2(π), sets resp′ := π. This yields two
executions of the sigma-protocol: (com, ch, resp) and (com, ch ′, resp′) with ch �=
ch ′. Then E2 runs w ← EΣ(x, com, ch, resp, ch ′, resp′) (the extractor of Σ) to
get a witness w and returns that witness.

The first execution (com, ch, resp) is valid (i.e., VΣ accepts it) with over-
whelming probability, since (com, ch, resp) was produced by the simulator and
thus passes verification with overwhelming probability (by assumption in the
lemma). If additionally the second execution (com, ch ′, resp′) is valid (i.e., if
ok = 1 in (7)), then EΣ returns a correct witness with overwhelming probability
(i.e., (x,w) ∈ R). Thus the case ok = 1 ∧ (x,w) /∈ R occurs with negligible
probability, hence the probability in (7) is negligible. �

Summarizing, a sigma-protocol with oblivious commitments is already a
NIZK proof of knowledge in the CRS model in itself. Hence sigma-protocols
with oblivious commitments seem to be a much stronger assumption that just
sigma-protocols. (At least we are not aware of any generic construction, classi-
cal or quantum, that transforms a sigma-protocols into a NIZK proof/proof of
knowledge in the CRS model, without using random oracles.)

One may ask why the fact that sigma-protocols with oblivious commitments
are already NIZK proofs of knowledge does not trivialize the construction from
[7] since it converts a NIZK proof of knowledge into a NIZK proof of knowledge.
The crucial point is that sigma-protocols with oblivious commitments are only
single-theorem non-adaptive NIZK proofs. So one can interpret the construction
from [7] as a way of strengthening a specific kind of NIZK proofs to become

12 At the first glance, those properties already follow from zero-knowledge and com-
pleteness of Σ. However, zero-knowledge and completeness do not apply when there
exists no witness for x. So we need to explicitly require those conditions to also hold
when x has no witness.

Note that the proof in [7] does not need these conditions because in their setting,
the statement x is the honestly generated public key of the signature scheme, and
thus always has a witness. If, however, one would adapt their proof to show that
their construction is actually a NIZK proof of knowledge, those conditions would be
needed for the same reasons as in our proof of Lemma 24.

Non-Interactive Zero-Knowledge Proofs 783

multi-theorem adaptive ones.13 (Actually, seen like this, their construction
becomes a very natural one: the statement is hashed using the random oracle,
and the hash is used as a CRS for the proof.)

Sigma-protocols with Oblivious Commitments and Efficient Protocols.
One major advantage of sigma-protocols is that they allow for very efficient
constructions of sigma-protocols for complex relations from simpler ones [6,8].
For example, given sigma-protocols for two relations R1, R2, it is possible to
build a sigma-protocol for the disjunction R := {((x1, x2), w) : (x1, w) ∈ R1 ∨
(x2, w) ∈ R2}. Unfortunately, even when starting with sigma-protocols with
oblivious commitments for R1, R2, the resulting sigma-protocol for R will not
have oblivious commitments any more. This is because the protocol for R sends
a commitment (com1, com2) where com1 is generated by the prover of R1, and
com2 by the simulator of R2 (or vice versa). Since given the output of the
simulator, it is in general hard to determine its randomness, it will not be possible
to find the randomness that lead to com2. Hence the protocol does not have
oblivious commitments.

References

1. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security Symposium 2008, pp. 335–348. USENIX (2008). http://www.
usenix.org/events/sec08/tech/full papers/adida/adida.pdf

2. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems (the hardness of quantum rewinding). In: FOCS 2014, pp. 474–483. IEEE,
October 2014

3. Ben-Or, M.: Probabilistic algorithms in finite fields. In: FOCS 1981, pp. 394–398.
IEEE (1981)

4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC 1988, pp. 103–112. ACM, New York (1988)

5. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM CCS
2004, pp. 132–145. ACM, New York (2004)

6. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

7. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The fiat–shamir transformation in a
quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 62–81. Springer, Heidelberg (2013)

8. Damg̊ard, I.: On σ-protocols. Course notes for “Cryptologic Protocol The-
ory” (2010). http://www.cs.au.dk/∼ivan/Sigma.pdf, http://www.webcitation.org/
6O9USFecZ (Retrieved March 17, 2014)

9. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012)

13 Assuming that their construction can indeed be proven secure as a NIZK proof of
knowledge in the random oracle model.

http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.webcitation.org/6O9USFecZ
http://www.webcitation.org/6O9USFecZ

784 D. Unruh

10. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

11. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 152–168. Springer, Heidelberg (2005)

12. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J ACM 38(3), 690–728
(1991)

13. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

14. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

15. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

16. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553. IEEE (1999)

17. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134. IEEE (1994)

18. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012)

19. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. IACR ePrint 2014/587 (2014). Full version of this paper

20. Unruh, D.: Quantum position verification in the random oracle model. In: Crypto
2014, LNCS. Springer, February 2014. To appear, preprint on IACR ePrint
2014/118

21. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer, Heidelberg
(2014)

22. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

23. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 758–775. Springer, Heidelberg (2012)

24. Zhandry, M.: A note on the quantum collision and set equality problems, Dec. 2013.
arXiv:1312.1027v3 [cs.CC]

http://arxiv.org/abs/1312.1027v3

Privacy Amplification in the Isolated Qubits
Model

Yi-Kai Liu(B)

Applied and Computational Mathematics Division,
National Institute of Standards and Technology,

Gaithersburg, MD, USA
yi-kai.liu@nist.gov

Abstract. Isolated qubits are a special class of quantum devices, which
can be used to implement tamper-resistant cryptographic hardware such
as one-time memories (OTM’s). Unfortunately, these OTM constructions
leak some information, and standard methods for privacy amplification
cannot be applied here, because the adversary has advance knowledge of
the hash function that the honest parties will use.

In this paper we show a stronger form of privacy amplification that
solves this problem, using a fixed hash function that is secure against all
possible adversaries in the isolated qubits model. This allows us to con-
struct single-bit OTM’s which only leak an exponentially small amount
of information.

We then study a natural generalization of the isolated qubits model,
where the adversary is allowed to perform a polynomially-bounded num-
ber of entangling gates, in addition to unbounded local operations and
classical communication (LOCC). We show that our technique for pri-
vacy amplification is also secure in this setting.

1 Introduction

Can one build tamper-resistant cryptographic hardware whose security is based
on the laws of quantum mechanics? This is a natural question, as there are many
unusual phenomena in quantum mechanics, such as the impossibility of cloning
an unknown quantum state, which seem relevant to cryptography. However,
despite these encouraging signs, it turns out that many common cryptographic
functionalities, such as bit commitment and oblivious transfer (with information-
theoretic security), cannot be implemented in a quantum world [1–4].

Recently, there has been progress using a different approach to this prob-
lem, called the “isolated qubits model” [5,6]. Isolated qubits are qubits with
long coherence times, which can only be accessed using single-qubit gates and
measurements; entangling operations are forbidden. Thus, in the isolated qubits
model, one assumes an additional restriction on what the adversary can do.
Formally, the adversary is only allowed to perform local operations and classi-
cal communication, or LOCC, where “local operations” are operations on sin-
gle qubits, and “classical communication” refers to communication between the
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 785–814, 2015.
DOI: 10.1007/978-3-662-46803-6 26

786 Y.-K. Liu

qubits. (Likewise, honest parties are also restricted to LOCC. Furthermore, while
the adversary can perform an unbounded number of operations, all honest parties
must run in polynomial time.) Isolated qubits can be viewed as special-purpose
quantum devices, which can implement functionalities such as oblivious transfer
that are not possible using quantum mechanics alone. Isolated qubits could con-
ceivably be implemented using solid-state nuclear spins, such as quantum dots
or nitrogen vacancy centers [7,8].

Using isolated qubits, there are natural candidate constructions that lead to a
variety of tamper-resistant cryptographic hardware. The first step is to construct
one-time memories (OTM’s) [5]. Intuitively, a one-time memory is a device that
does non-interactive oblivious transfer, i.e., Alice programs the device with two
messages s and t, then gives the device to Bob, who can choose to read either s
or t (but not both).

Using one-time memories, one can then construct one-time programs [9–12],
which are useful for program obfuscation, access control and copy protection. A
one-time program is a program that can be run only once, and hides its internal
state. More precisely, Alice chooses some circuit C, compiles it into a one-time
program, and gives it to Bob; Bob then chooses an input x, runs the one-time
program, and learns the output of the computation C(x); but Bob learns nothing
else, and cannot run the program on another input.

Unfortunately it is not yet possible to prove the security of these one-time
programs in the isolated qubits model. This is because the proof of security
for the one-time memories in [5] is not strong enough — it allows some extra
information to leak to the adversary, which can cause problems when the one-
time memories are used as part of a larger construction.

In this paper we address the issue of information leakage, by developing
a privacy amplification technique that works in the isolated qubits model. By
combining this privacy amplification technique with the leaky one-time memories
from [5], we obtain new one-time memories that only leak an exponentially small
amount of information. These new one-time memories store single bits rather
than strings, but these can also be plugged into known constructions for one-
time programs [10]. This removes one of the main obstacles to constructing
provably-secure one-time programs.

1.1 Privacy Amplification

The candidate construction for one-time memories in [5] was proven to satisfy a
“leaky” definition of security, where up to a constant fraction of the bits of the mes-
sages could be leaked to the adversary. This notion of security was not as strong
as one would have liked, but on the positive side, the adversary’s uncertainty was
expressed in terms of the smoothed min-entropy, which suggested that the leakage
problem might be addressed using some kind of privacy amplification.

However, there is an obstacle to using privacy amplification with our one-time
memories. Usually, in privacy amplification, the adversary has partial informa-
tion about some string s (while the honest parties have complete knowledge of s).
Then the honest parties choose a random seed q, and apply a hash function Fq to

Privacy Amplification in the Isolated Qubits Model 787

produce a shorter string Fq(s), which will be almost completely unknown to the
adversary. This works provided that the random seed q is chosen independent of
the adversary’s actions.

But in the case of our one-time memories, all the information needed to
decode the messages — including the random seed q — must be provided at
the beginning, before the adversary decides how to attack the OTM (i.e., what
measurement to perform on the qubits). Thus the adversary’s attack can depend
on q, and so standard methods of privacy amplification may not be secure.

We show a variant of privacy amplification which uses a fixed hash function F
(without a random seed), and is secure in the isolated qubits model. Intuitively,
this relies on two ideas. First, we use a stronger family of hash functions, namely
r-wise independent functions, where r grows polynomially in the security param-
eter k. These r-wise independent functions can be computed efficiently, but they
behave more like truly random functions, in that they satisfy large-deviation
bounds, similar to Hoeffding’s inequality [13–15].

Second, we exploit the fact that the only way for the adversary to learn about
s is by performing LOCC measurements on the qubits that encode s. Rather than
considering all possible LOCC measurement strategies, which are represented by
decision trees, we consider all possible LOCC measurement outcomes, which are
represented by POVM elements.1 Due to the LOCC restriction, these POVM
elements are tensor products of single-qubit operators. So there are not too
many of them. Say we discretize the set of possible measurement outcomes, with
some fixed resolution.2 Then the number of LOCC measurement outcomes grows
exponentially with the number of qubits; this is in contrast with the number of
entangled measurement outcomes, which grows doubly-exponentially with the
number of qubits. Hence we can use a union bound over the set of all LOCC
measurement outcomes.

We do privacy amplification as follows. We first choose a hash function F from
an r-wise independent family. We then fix F permanently, and announce it to the
adversary. We claim that, with high probability over the choice of F , this privacy
amplification scheme will be secure against all possible LOCC adversaries, i.e.,
every adversary who uses LOCC measurements and gains at most partial infor-
mation about the string s, will still have very little information about F (s).

The proof uses a covering argument over the set of all LOCC measurement
outcomes. First, fix some particular LOCC measurement outcome M . Let S be
the random variable representing the string s, and suppose the hash function F
outputs a single bit F (S). One can calculate the bias of the bit F (S), conditioned
on having observed outcome M , as follows:

ES((−1)F (S) |M) =
∑

s

(−1)F (s) Pr(S = s |M). (1)

(Here ES denotes the expectation value obtained by averaging over S.)

1 POVM elements are defined in Section 2.2, but we do not require these formal
definitions here.

2 Formally, we consider an ε-net, as defined in Section 2.1.

788 Y.-K. Liu

We want to show that ES((−1)F (S) |M) is small. Note that ES((−1)F (S) |M)
is a linear combination of terms (−1)F (s), where each F (s) is a random variable
describing the initial choice of the hash function F . We can use Hoeffding-like
inequalities to show that, with high probability over the choice of F , ES((−1)F (S)

|M) is sharply concentrated around 0. This will work provided that
∑

s Pr(S =
s |M)2 is small, which follows since the Renyi entropy H2(S|M) (or the smoothed
min-entropy Hε

∞(S|M)) are large, which holds since the adversary has at most par-
tial information about S. Thus, one can conclude that, for a fixed LOCC measure-
ment outcome M , with high probability over the choice of F , ES((−1)F (S) |M) is
small, i.e., privacy amplification succeeds.

Finally, one uses the union bound over all LOCC measurement outcomes
M . This shows that, with high probability over the choice of F , for all LOCC
measurement outcomes M , privacy amplification succeeds. This completes the
proof.

The above sketch shows privacy amplification for a single string s, but a
similar technique can be applied to an OTM that stores two strings s and t.
Here one applies two hash functions F and G, which output a pair of bits F (s)
and G(t). Now there is an additional complication, since the adversary has the
possibility of learning information about the correlations between F (s) and G(t).
To address this issue, one needs to bound the quantity

EST ((−1)F (S)+G(T) | M) =
∑

st

(−1)F (s)(−1)G(t) Pr(S = s, T = t | M). (2)

This is a quadratic function of the random variables (−1)F (s) and (−1)G(t),
describing the initial choices of the hash functions F and G. This can be bounded
using the Hanson-Wright inequality [17,18], adapted for r-wise independent vari-
ables using the techniques of [14,15].

Formally, this shows a reduction from an almost-perfect single-bit OTM to a
leaky string-OTM. (That is, given an OTM that stores two strings and leaks a
constant fraction of the information, one can construct an OTM that stores two
bits and leaks an exponentially small amount of information.) By combining
with the results of [5], we get almost-perfect single-bit OTM’s in the isolated
qubits model.

1.2 Beyond the Isolated Qubits Model

Next, we study a generalization of the isolated qubits model, where the adversary
is allowed to perform a polynomially-bounded number of 2-qubit entangling
gates, in addition to unbounded LOCC operations. More precisely, this model is
specified by a constant c ≥ 0, and a “depth” parameter d, which can grow with
the security parameter k, as long as d ≤ kc; then this model allows the adversary
to apply quantum circuits of depth d containing 2-qubit gates combined with
unbounded LOCC operations. (Honest parties are still restricted to polynomial-
time LOCC.) This model may be a more accurate description of real solid-state

Privacy Amplification in the Isolated Qubits Model 789

qubits, where one can perform noisy entangling gates, but the accumulation of
noise makes it difficult to entangle large numbers of qubits at once.

It is an interesting open problem to construct OTM’s that are secure in this
model. We show that our reduction from almost-perfect single-bit OTM’s to
leaky string-OTM’s still works in this setting. More precisely, for any constant
c ≥ 0, and any depth d ≤ kc, we show a variant of our reduction, whose efficiency
is polynomial in d, that remains secure in this depth-d model. The proof uses
the same ideas as before.

Unfortunately, the leaky string-OTM’s from [5] are not known to be secure
in this setting. Nonetheless we believe it should be possible to construct leaky
string-OTM’s in this depth-d model, for at least some super-constant values of d,
for the following intuitive reason: in order to break the leaky string-OTM’s from
[5], one has to break a particular version of Wiesner’s conjugate coding scheme
[19], and this requires running a classical decoding algorithm on a quantum
superposition of inputs, which requires applying a quantum circuit with a certain
minimum number of entangling gates.

1.3 Discussion

Related Work: This paper builds on recent work on non-interactive one-
time memories in the isolated qubits model [5,6]. Some similar ideas have been
investigated in connection with other cryptographic tasks, such as bit commit-
ment, quantum money and password-based identification [20–22]. There is also a
related line of work on LOCC state discrimination, involving “nonlocality with-
out entanglement” and data-hiding states [23–26].

Deterministic privacy amplification has also been studied for other cryptograp-
hic tasks, such as secret key distribution based on causality constraints [27]. Our
results can also be compared to earlier work on deterministic extractors for special
classes of random sources, as well as exposure-resilient cryptography and leakage-
resilient cryptography [28–30], [31,32]. However, these earlier works considered
classical adversaries, with various kinds of restrictions; our result, with a quantum
adversary restricted to (unbounded) LOCC operations, seems to be new.

Open Problems: The overall goal of this work is to construct one-time pro-
grams whose security is based on the properties of realistic physical devices.
One-time memories and the isolated qubits model are useful steps along the way
to achieving this goal, but there remain several open problems.

First, can one prove that these one-time memories satisfy a sufficiently strong
notion of security, so that they can be composed to build one-time programs?
Privacy amplification is helpful, but there may be other issues that affect the
security of more complicated protocols, such as the adversary’s ability to wait
until later stages of the protocol before performing any measurements.

Second, can one modify the isolated qubits model so that it matches more
closely the properties of real solid-state qubits, e.g., by allowing a limited number
of entangling operations? Our model involving bounded-depth quantum circuits
is one step in this direction.

790 Y.-K. Liu

2 Preliminaries

2.1 Notation, ε-nets

For any two matrices A and B, we write A � B if and only if B − A is positive
semidefinite. We let ‖A‖ denote the operator norm, ‖A‖tr denote the trace norm,
and ‖A‖F denote the Frobenius norm. For any vector v, we let ‖v‖p denote the
�p norm of v. For any two probability densities P and Q, we let ‖P − Q‖1 denote
the �1 distance between them.

We write Pr[E] to denote the probability of an event E . We write E[X] to
denote the expectation value of a random variable X. In some cases we write
PrX [·] or EX [·] to emphasize that we are considering probabilities associated with
a random variable X. We write PX|Y to denote a probability density function
PX|Y (x|y) = Pr[X = x |Y = y]. In some cases we abuse this notation, e.g., if E
is an event, we write PEX|Y (x|y) = Pr[E , X = x |Y = y]. Also, if E is an event,
we let 1E be the indicator random variable for E , which equals 1 when the event
E happens, and equals 0 otherwise.

Suppose E is a subset of some normed space, with norm ‖·‖. Let ε > 0. We
say that Ẽ is an ε-net for E if Ẽ ⊂ E, and for every x ∈ E, there exists some
y ∈ Ẽ such that ‖x − y‖ ≤ ε.

2.2 Quantum Measurements

A quantum state is described by a density matrix ρ ∈ C
d×d with ρ � 0 and

tr(ρ) = 1. A quantum measurement can be described by a completely-positive
trace-preserving map E : Cd×d → C

d×d, which can be written in the form E(ρ) =
∑

i KiρK†
i , where the Ki ∈ C

d×d are called Kraus operators and
∑

i K†
i Ki = I.

Given a state ρ, the measurement returns outcome i with probability tr(KiρK†
i),

in which case the post-measurement state is given by KiρK†
i / tr(KiρK†

i).
A measurement outcome can also be described by a POVM element,3 that

is, a matrix M ∈ C
d×d with 0 � M � I. Given a state ρ, the probability that

a measurement returns outcome M is given by tr(Mρ). (In the example in the
previous paragraph, the outcome i is described by the POVM element K†

i Ki.)

2.3 LOCC and Separable Measurements

In the isolated qubits model, qubits are only accessible via local operations and
classical communication (LOCC), that is, one can perform single-qubit quantum
operations, and use classical information (obtained by measuring one qubit) to
choose what operation to perform on another qubit. LOCC strategies can thus
be represented by decision trees, where each vertex corresponds to a single-qubit
operation, and each edge corresponds to a possible (classical) outcome of that
operation [5,6].

3 POVM refers to positive operator-valued measure, though we will not need to use
this concept here.

Privacy Amplification in the Isolated Qubits Model 791

A measurement on m qubits is called separable if it can be written in the
form E : ρ
→ ∑

i KiρK†
i , where each operator Ki is a tensor product of m

single-qubit operators, Ki = Ki,1 ⊗ Ki,2 ⊗ · · · ⊗ Ki,m. It is easy to see that any
LOCC measurement is separable [34].

2.4 Smoothed Min-entropy

We recall the definition of the smoothed conditional min-entropy:

Hε
∞(X|Y) = max

E: Pr(E)≥1−ε
min
x,y

[
− lg

[
PEX|Y (x|y)

]]
, (3)

where the maximization is over all events E (defined by the conditional proba-
bilities PE|XY) such that Pr(E) ≥ 1 − ε. Note that a lower-bound of the form
Hε

∞(X|Y) ≥ h implies that there exists an event E with Pr(E) ≥ 1−ε such that,
for all x and y, Pr[E ,X = x|Y = y] ≤ 2−h.

We will need the following “entropy splitting lemma,” which appeared in
[33]. Intuitively, this says that if X0 and X1 together have min-entropy at least
α, then at least one of them (indicated by the random variable C) must have
min-entropy at least α/2.

Proposition 2.1. Let ε ≥ 0, and let X0, X1 and Z be random variables (which
may be over different alphabets) such that Hε

∞(X0,X1 |Z) ≥ α. Then there exists
a random variable C taking values in {0, 1} such that

Hε+ε′
∞ (X1−C |Z,C) ≥ 1

2α − 1 − lg(1
ε′) (for any ε′ > 0). (4)

2.5 Leaky String-OTM’s

The main result from [5] was a construction of a leaky string-OTM (which stores
two strings, and leaks at most a constant fraction of the information) in the iso-
lated qubits model. Here we state this result using slightly different language —
in particular, we state the result in terms of “δ-non-negligible” measurement
outcomes, whereas in [5] this terminology was used in the proof but not in the
statement of the theorem.

Definition 2.1. For any quantum state ρ ∈ C
d×d, and any δ > 0, we say

that a measurement outcome (POVM element) M ∈ C
d×d is δ-non-negligible if

tr(Mρ) ≥ δ tr(M)/d.

Intuitively, these are the only measurement outcomes we need to consider in
our security proof, as the total probability contributed by all the other
“δ-negligible” measurement outcomes is never more than δ. To see this, consider
any measurement, which can be described by a collection of POVM elements
{Mz | z = 1, 2, . . .} such that

∑
z Mz = I. Say we perform this measurement on

some state ρ, and let Z be the random variable representing the outcome of

792 Y.-K. Liu

the measurement (so Z takes values M1,M2, . . .). Then the total probability of
observing a δ-negligible measurement outcome is at most δ:

Pr[outcome Z is δ-negligible]

=
∑

z : Mz is δ-negl.

tr(Mzρ) <
∑

z : Mz is δ-negl.

δ tr(Mz)/d ≤ δ. (5)

We now restate the main result from [5]:

Theorem 2.1. For any k ≥ 2, and for any small constant 0 < μ � 1, there
exists an OTM construction that stores two messages s, t ∈ {0, 1}�, where � =
Θ(k2), and has the following properties:

1. Correctness and efficiency: there are honest strategies for programming the
OTM with messages s and t, and for reading either s or t, using only LOCC
operations, and time polynomial in k.

2. “Leaky” security: Let δ0 > 0 be any constant, and set δ = 2−δ0k. Suppose
the messages s and t are chosen independently and uniformly at random in
{0, 1}�. For any LOCC adversary, and any separable4 measurement outcome
M that is δ-non-negligible, we have the following security bound:

Hε
∞(S, T |Z = M) ≥ (12 − μ) � − δ0k. (6)

Here S and T are the random variables describing the two messages, Z is
the random variable representing the adversary’s measurement outcome, and
we have ε ≤ exp(−Ω(k)).

2.6 Ideal Bit-OTM’s

We now define security for an “ideal” OTM that stores two bits a0, a1 ∈ {0, 1}.
Note that there is a subtle point with defining security: while the OTM should
hide at least one of the messages (a0, a1), which one remains hidden may depend
on the adversary’s actions in a complicated way. Our definition of security asserts
that, conditioned on the adversary’s measurement outcome, there exists a binary
random variable C that indicates which of the two messages remains hidden.
(For example, C appears naturally when one uses the entropy splitting lemma,
Prop. 2.1.) Formally, we let A0 and A1 be random variables representing the two
messages. Our security definition asserts that the message AC is nearly uniformly
distributed, even given knowledge of the other message A1−C , the value of C,
and the adversary’s measurement outcome.

Definition 2.2. We say that a single-bit OTM construction is secure if the fol-
lowing holds: Let k ≥ 1 be a security parameter. Suppose the OTM is programmed
with two messages a0, a1 ∈ {0, 1} chosen uniformly at random. Consider any
LOCC adversary, and let Z be the random variable representing the results of
4 Note that this includes LOCC measurement outcomes as a special case.

Privacy Amplification in the Isolated Qubits Model 793

the adversary’s measurements. Then there exists a random variable C, which
takes values in {0, 1}, such that:

‖PACA1−CCZ − UAC
× PA1−CCZ‖

1
≤ 2−Ω(k), (7)

where PACA1−CCZ denotes the probability density on the random variables (AC ,
A1−C , C, Z), PA1−CCZ denotes the marginal probability density on (A1−C , C, Z),
and U denotes the uniform distribution on {0, 1}.

We remark that this security guarantee involves the adversary’s measurement
outcome Z, which is classical rather than quantum information. While this may
seem like an artificial restriction on the adversary, we argue that it is simply a
natural consequence of the isolated qubits model. By definition, the adversary
is unable to perform any entangling operations on the isolated qubits contained
in the OTM; thus the only way the adversary can access those qubits is by
performing a measurement, and converting the quantum state into a classical
measurement outcome.

2.7 t-Wise Independent Hash Functions

Let H be a collection of functions h that map {1, . . . , N} to {1, . . . , M}. Let
t ≥ 1 be an integer. Let H be a function chosen uniformly at random from H;
then this defines a collection of random variables {H(x) | x = 1, . . . , N}. We say
that H is t-wise independent if for all subsets S ⊂ {1, . . . , N} of size |S| ≤ t, the
random variables {H(x) |x ∈ S} are independent and uniformly distributed in
{1, . . . , M}.

We will use the fact that there exist efficient constructions for t-wise inde-
pendent hash functions, which run in time polynomial in t, log N and log M ; see
[13] for details.

Proposition 2.2. For all integers n ≥ 1, m ≥ 1 and t ≥ 1, there exist families
of t-wise independent functions H = {h : {0, 1}n → {0, 1}m}, such that sampling
a random function in H takes t · max {n,m} random bits, and evaluating a
function in H takes time poly(n,m, t).

We will use the following large-deviation bound for sums of t-wise indepen-
dent random variables. This is a slight variant of results in [14] (see also [15]);
we sketch the proof in the full version of the paper [16].

Proposition 2.3. Let t ≥ 2 be an even integer, and let H be a family of
t-wise independent functions that map {1, . . . , N} to {0, 1}. Fix some constants
a1, . . . , aN ∈ R. Let H be a function chosen uniformly at random from H, and
define the random variable

Y =
N∑

x=1

(−1)H(x)ax. (8)

794 Y.-K. Liu

Then EY = 0, and we have the following large-deviation bound: for any
λ > 0,

Pr(|Y | ≥ λ) ≤ 2e1/(6t)
√

πt

(
vt

eλ2

)t/2

, (9)

where v =
∑N

x=1 a2
x.

We will also use a large-deviation bound for quadratic functions of 2t-wise
independent random variables. This is based on the Hanson-Wright inequality
[17] (see also [18] for a more modern, slightly stronger result), partially deran-
domized using the techniques of [14] (see also [15]). We sketch the proof in the
full version of the paper [16].

Proposition 2.4. Let t ≥ 2 be an even integer, and let H be a family of
2t-wise independent functions that map {1, . . . , N} to {0, 1}. Let A ∈ R

N×N

be a symmetric matrix, AT = A. Let H be a function chosen uniformly at ran-
dom from H, and define the random variable

S =
N∑

x,y=1

Axy

(
(−1)H(x)(−1)H(y) − δxy

)
, (10)

where δxy equals 1 if x = y, and equals 0 otherwise.
Then ES = 0, and we have the following large-deviation bound: for any

λ > 0,

Pr(|S| ≥ λ) ≤ 4e1/(6t)
√

πt

(
4‖Ã‖2F t

eλ2

)t/2

+ 4e1/(12t)
√

2πt

(
8‖Ã‖t

eλ

)t

, (11)

where Ã ∈ R
N×N is the entry-wise absolute value of A, that is, Ãxy = |Axy|.

3 Privacy Amplification for One-Time Memories Using
Isolated Qubits

Our main result is a reduction from “ideal” one-time memories to “leaky” one-
time memories, in the isolated qubits model. More precisely, we assume the
existence of a “leaky” one-time memory D that stores two strings s, t ∈ {0, 1}�,
and leaks any constant fraction of the bits of (s, t). (Such leaky OTM’s were
constructed previously in [5].) We then construct an “ideal” one-time memory
D′ that stores two bits a0, a1 ∈ {0, 1}, and leaks an exponentially small amount
of information about either a0 or a1 (so that at least one of the bits (a0, a1)
remains almost completely hidden).

Our construction makes use of two functions F,G : {0, 1}� → {0, 1}, which
are chosen from an r-wise independent random ensemble. (We will specify the
value of r later, in the statement of Theorem 3.1.) Once the functions F and
G have been chosen, they are fixed permanently, and they become part of the
public description of the one-time memory D′. (In particular, the adversary may

Privacy Amplification in the Isolated Qubits Model 795

attack D′ using LOCC strategies that depend on F and G. We show that with
high probability over the choice of F and G, D′ is secure against all such attacks.)

We define the “ideal” one-time memory D′ to have the following behavior.
First, one can program D′ with two messages a0, a1 ∈ {0, 1}. D′ implements this
functionality in the following way:

1. Choose s ∈ F−1(a0) and t ∈ G−1(a1) uniformly at random, e.g., using
rejection sampling.5

2. Program a “leaky” one-time memory D with the messages s and t, and
return D.

Given the device D′, an honest user can retrieve either a0 or a1 as follows:

1. Read either s or t from the device D, as appropriate.
2. Compute either a0 = F (s) or a1 = G(t), as appropriate.

We now prove the correctness and security of these “ideal” one-time memo-
ries D′.

Theorem 3.1. Fix some constants k0 ≥ 1, θ ≥ 1, δ0 > 0, α > 0 and ε0 > 0.

Suppose we have a family of devices D = {Dk | k ≥ k0}, indexed by a security
parameter k ≥ k0. Suppose these devices Dk are “leaky” string-OTM’s in the
isolated qubits model, in the sense of Theorem 2.1. More precisely, suppose that
for all k ≥ k0,

1. The device Dk stores two messages s, t ∈ {0, 1}�, where � ≥ k.
2. The device Dk uses m qubits, where k ≤ m ≤ kθ.
3. Correctness and efficiency: there are honest strategies for programming the

device Dk with messages s and t, and for reading either s or t, using only
LOCC operations, and time polynomial in k.

4. “Leaky” security: Suppose the device Dk is programmed with two messages
(s, t) chosen uniformly at random. Consider any LOCC adversary, and let
Z be the random variable representing the result of the adversary’s measure-
ment. Let M be any separable measurement outcome that is δ-non-negligible,
where δ = 2−δ0k. Then we have:

Hε
∞(S, T |Z = M) ≥ αk, (12)

where ε ≤ 2−ε0k.

Now let D′ = {D′
k | k ≥ k0} be the family of devices constructed above, using

r-wise independent random functions F and G, with

r = 4(γ + 1)k2θ. (13)

(This choice of r is motivated by the union bound, see equation (33). Here γ is
some universal constant, see equation (29).)

5 Choose s, t ∈ {0, 1}� uniformly at random, and repeat until one gets s and t that
satisfy F (s) = a0 and G(t) = a1.

796 Y.-K. Liu

Then these devices D′
k are “ideal” OTM’s in the isolated qubits model, in

the sense of Definition 2.2. More precisely, for all k ≥ k0, with probability ≥
1 − e−Ω(k2θ) (over the choice of F and G), the following statements hold:

1. The device D′
k stores two messages a0, a1 ∈ {0, 1}.

2. The device D′
k uses m qubits, where k ≤ m ≤ kθ.

3. Correctness and efficiency: there are honest strategies for programming the
device D′

k with messages a0 and a1, and for reading either a0 or a1, using
only LOCC operations, and time polynomial in k.

4. “Ideal” security: Suppose the device D′
k is programmed with two messages

(a0, a1) chosen uniformly at random. Consider any LOCC adversary, and
let Z be the random variable representing the results of the adversary’s mea-
surements. Then there exists a random variable C, which takes values in
{0, 1}, such that:

‖PACA1−CCZ − UAC
× PA1−CCZ‖

1

≤ 4 · 2−δ0k + 2 · 2−ε0k + 2 · 2−(α/8)k + 4(r + 1) · 2−(α/6)k

≤ 2−Ω(k),

(14)

where PACA1−CCZ denotes the probability density on the random variables
(AC , A1−C , C, Z), PA1−CCZ denotes the marginal probability density on
(A1−C , C, Z), and U denotes the uniform distribution on {0, 1}.
By taking the leaky string-OTM’s constructed in [5] (see Theorem 2.1), and

applying the above reduction, we obtain ideal OTM’s in the isolated qubits
model:

Corollary 3.1. There exist ideal OTM’s in the isolated qubits model, in the
sense of Definition 2.2.

3.1 Overview of the Proof

We now prove Theorem 3.1. It is easy to see that the devices D′
k behave correctly.

To prove that the devices D′
k are secure, we will use a covering argument over the

set of all separable measurement outcomes that can be observed by an LOCC
adversary.

We emphasize that we will be covering the set of all measurement outcomes,
which are represented by POVM elements M , and not the set of all LOCC
adversaries, which are represented by the random variables Z. To see why this
is sufficient to prove security, note that for any two adversaries (represented by
random variables Z and Z ′) that can observe the same measurement outcome M ,
the events Z = M and Z ′ = M are identically distributed.

In the following argument, whenever we consider a particular measurement
outcome M , we will also implicitly fix some adversary (represented by a random
variable Z) that is capable of observing that outcome M . We say that the scheme
is “secure at M” if the scheme is secure when the adversary observes outcome
M (i.e., when the event Z = M occurs).

Privacy Amplification in the Isolated Qubits Model 797

First, we will show that for any (fixed) separable measurement outcome M ,
with high probability (over the choice of the random functions F and G used
to construct D′

k), the scheme is secure at M . Next, we will construct an ε-
net W̃ for the set of all separable measurement outcomes, and show that with
high probability (over F and G), the scheme is secure at all points M̃ ∈ W̃
simultaneously. Finally, we will show that any separable measurement outcome
M can be approximated by a measurement outcome M̃ ∈ W̃ , such that security
at M̃ implies security at M .

We set the parameters in the following way: the last part of the argument
(approximating M by M̃ ∈ W̃) determines how small we must choose ε when
constructing the ε-net W̃ ; this determines the cardinality of W̃ , which affects
the union bound; this determines how large we must choose r when choosing the
r-wise independent random functions F and G.

We now show the details:

Part 1: We begin with the following lemma, which describes what happens when
we fix a particular measurement outcome M . We assume that M is separable and
δ-non-negligible; then the security guarantee for the leaky string-OTM (equation
(12)) implies that:

Hε
∞(S, T |Z = M) ≥ αk. (15)

The lemma introduces a random variable C that indicates which of the two
messages A0 and A1 remains unknown to the adversary; call this message AC .
In addition, the lemma introduces an event E that “smooths” the distribution, by
excluding some low-probability failure events. We then define a quantity Qc(M)
that measures the bias of the message AC , smoothed by E and conditioned on
C = c and Z = M . Similarly, we define a quantity Rc(M) that measures the
correlations between the messages A0 and A1, smoothed by E and conditioned
on C = c and Z = M . The lemma shows that, with high probability (over F
and G), Qc(M) and Rc(M) are small.

Lemma 3.1. Fix any measurement outcome M such that Hε
∞(S, T |Z = M) ≥

αk. Define η = 2−η0k where η0 = α/8. Then there exists a random variable C,
taking values in {0, 1}, and there exists an event E, occurring with probability
Pr(E|Z = M) ≥ 1−ε−η, such that the following statement holds: Say we define,
for all c ∈ {0, 1},

Qc(M) = E(1E · (−1)AC |C = c, Z = M)
= Pr(E , AC = 0 |C = c, Z = M) − Pr(E , AC = 1 |C = c, Z = M),

(16)

which is a random variable depending on F and G. Then for all c ∈ {0, 1}, and
all λ > 0,

Pr
FG

(|Qc(M)| ≥ λ) ≤ 2e1/(6r)
√

πr

(
2−(α/3)kr

eλ2

)r/2

. (17)

In addition, say we define, for all c ∈ {0, 1},
Rc(M) = E(1E · (−1)A0+A1 |C = c, Z = M), (18)

798 Y.-K. Liu

which is a random variable depending on F and G. Then for all c ∈ {0, 1}, and
all λ > 0,

Pr
FG

(|Rc(M)| ≥ λ) ≤ 8e1/(3r)
√

πr

(
8 · 2−(α/3)kr2

e2λ2

)r/4

. (19)

We will prove this lemma in Section 3.2. This lemma is useful for the following
reason: when Qc(M) and Rc(M) are small, this implies security of the devices
D′

k in the case where the adversary observes measurement outcome M . We now
state this observation more precisely:

Lemma 3.2. Fix any measurement outcome M , and any c ∈ {0, 1}. Suppose
that |Qc(M)| ≤ ε1 and |Rc(M)| ≤ ε2. Then

‖PACA1−CE|C=c,Z=M − UAC
× PA1−CE|C=c,Z=M‖

1
≤ ε1 + ε2, (20)

where PACA1−CE|C=c,Z=M is the probability density

PACA1−CE|C=c,Z=M (a, a′) = Pr(AC = a, A1−C = a′, E |C = c, Z = M), (21)

and U denotes the uniform distribution on {0, 1}.
We now prove Lemma 3.2. We can represent the probability density

PACA1−CE|C=c,Z=M as a vector p ∈ R
2 ⊗ R

2, whose entries are given by paa′ =
PACA1−CE|C=c,Z=M (a, a′). Now define vectors u = 1

2 (1, 1) and d = 1
2 (1,−1),

which form an orthogonal basis for R
2. Then we can write p in this basis:

p = α00u ⊗ u + α01u ⊗ d + α10d ⊗ u + α11d ⊗ d, (22)

for some coefficients α00, α01, α10, α11 ∈ R. We can write Qc(M) and Rc(M) as
follows:

Qc(M) = 4(d ⊗ u)T p = α10, (23)

Rc(M) = 4(d ⊗ d)T p = α11, (24)

hence we know that |α10| ≤ ε1 and |α11| ≤ ε2. Finally, note that the probability
density UAC

×PA1−CE|C=c,Z=M is represented by the following vector (call it q):

q = u ⊗ (
2(uT ⊗ I)p

)
= α00u ⊗ u + α01u ⊗ d. (25)

We can combine these facts to bound the �1 distance between p and q:

‖p − q‖1 ≤ |α10|‖d ⊗ u‖1 + |α11|‖d ⊗ d‖1 ≤ ε1 + ε2. (26)

This proves Lemma 3.2.

Part 2: We let W denote the set of all separable measurement outcomes, and
we construct an ε-net W̃ for W . Specifically, we define W as follows:

W = {M ∈ (C2×2)⊗m | M =
m⊗

i=1

Mi, 0 � Mi � I}. (27)

Privacy Amplification in the Isolated Qubits Model 799

Lemma 3.3. For any 0 < μ ≤ 1, there exists a set W̃ ⊂ W , of cardinality
|W̃ | ≤ (9m

μ)4m, which is a μ-net for W with respect to the operator norm ‖·‖.
We will prove this lemma in Section 3.3. Now, we will use the union bound to

show that, with high probability, for all M̃ ∈ W̃ , Qc(M̃) is small simultaneously.
First, we use Lemma 3.3, and we set

μ = 2−(α/6)k · δ4

4m
(28)

(this choice is motivated by equation (37) below — we choose μ small enough
that the μ-net gives a good approximation of any measurement outcome). Also,
recall that k ≤ m ≤ kθ. Then the cardinality of W̃ is bounded by

|W̃ | ≤
(

9m · 2(α/6)k · 4m

δ4

)4m

= (9m · 2(α/6)k+4δ0k+2m)4m

≤ 2γk2θ

,

(29)

for all sufficiently large k; here γ is some universal constant. Next, we use Lemma
3.1, and we set

λ = 2−(α/6)k · 2r; (30)

then we have that

Pr
FG

(|Qc(M)| ≥ λ) ≤ 2e1/(6r)
√

πr(4er)−r/2, (31)

Pr
FG

(|Rc(M)| ≥ λ) ≤ 8e1/(3r)
√

πr(e2/2)−r/4. (32)

Finally, we use the union bound, and we set r sufficiently large (see equation
(13)); then we have that

Pr
FG

(
∃M̃ ∈ W̃ , ∃c ∈ {0, 1}, s.t. M̃ is δ-non-negligible, and

max {|Qc(M̃)|, |Rc(M̃)|} ≥ λ
)

≤ 2 · 2γk2θ ·
(
2e1/(6r)

√
πr(4er)−r/2 + 8e1/(3r)

√
πr(e2/2)−r/4

)

≤ e−Ω(k2θ).

(33)

Hence, with high probability (over F and G), we have that:

∀M̃ ∈ W̃ , ∀c ∈ {0, 1}, (M̃ is δ-non-negligible) ⇒
max {|Qc(M̃)|, |Rc(M̃)|} ≤ λ. (34)

Also, note that λ ≤ 2−Ω(k). Via Lemma 3.2, this implies that the device D′
k is

secure in the case where the adversary observes any of the measurement outcomes
in the set W̃ .

Part 3: We state two lemmas that describe how an arbitrary measurement out-
come M can be approximated by another measurement outcome M̃ . (Implicitly,

800 Y.-K. Liu

we fix some adversary that is capable of observing outcome M , and some other
adversary that is capable of observing M̃ . We let these adversaries be represented
by random variables Z and Z̃.)

Roughly speaking, the first lemma shows that if M is 2δ-non-negligible, then
M̃ is δ-non-negligible.

Lemma 3.4. Suppose that M,M̃ ∈ (C2×2)⊗m, and 0 � M � I, and 0 � M̃ �
I. Suppose that M is 2δ-non-negligible, where 0 < δ ≤ 1

2 , and tr(M) ≥ 1.
Suppose that M̃ satisfies ‖M − M̃‖ ≤ μ, where μ ≤ 2

3δ · 2−m. Then M̃ is δ-non-
negligible.

The second lemma shows that, if the quantities Qc(M̃) and Rc(M̃) are
defined in terms of a random variable C̃ and an event Ẽ (as in equations (16) and
(18)), then we can also define the quantities Qc(M) and Rc(M) (by choosing C

and E in an appropriate way), so that Qc(M) ≈ Qc(M̃) and Rc(M) ≈ Rc(M̃).

Lemma 3.5. Suppose that M,M̃ ∈ (C2×2)⊗m, and 0 � M � I, and 0 � M̃ �
I. Suppose that M is 2δ-non-negligible, where 0 < δ ≤ 1

2 , and ‖M‖ = 1. Suppose
that M̃ satisfies ‖M − M̃‖ ≤ μ, where μ ≤ 1

2 , and M̃ is δ-non-negligible.
Suppose there exists a random variable C̃, taking values in {0, 1}, and there

exists an event Ẽ, occurring with probability Pr(Ẽ |Z̃ = M̃); and let Qc(M̃) and
Rc(M̃) be defined in terms of C̃ and Ẽ, as shown in equations (16) and (18).

Let 0 < τ ≤ 1
2 . Then there exists a random variable C, taking values in

{0, 1}, and there exists an event E, occurring with probability Pr(E|Z = M) ≥
Pr(Ẽ |Z̃ = M̃)− τ , such that if Qc(M) and Rc(M) are defined in terms of C and
E, then the following statements hold:

1. For every c ∈ {0, 1}, either Qc(M) = 0, or we have:

|Qc(M) − Qc(M̃)| ≤ 2μ

(
2m

τδ

)2

. (35)

2. For every c ∈ {0, 1}, either Rc(M) = 0, or we have:

|Rc(M) − Rc(M̃)| ≤ 2μ

(
2m

τδ

)2

. (36)

We will prove these two lemmas in Section 3.4. Using these lemmas, we now
show that the device D′

k is secure, when the adversary observes any separable
measurement outcome M ∈ W that is 2δ-non-negligible.

Without loss of generality, suppose that ‖M‖ = 1. (To see this, note that
without loss of generality, we can assume M �= 0. We can then multiply M by
a scalar factor, as long as 0 � M � I, without changing the distributions of the
other variables conditioned on Z = M . Also note that the δ-non-negligibility
of M is invariant under this scaling, see Definition 2.1.) Note that this implies
tr(M) ≥ 1.

Privacy Amplification in the Isolated Qubits Model 801

Let M̃ ∈ W̃ be the nearest point in the μ-net W̃ ; so we have ‖M − M̃‖ ≤ μ,
where μ is set according to equation (28). By Lemma 3.4, M̃ is δ-non-negligible.
By equation (34), we get that for all c ∈ {0, 1}, |Qc(M̃)| ≤ λ and |Rc(M̃)| ≤ λ,
where λ = 2−(α/6)k · 2r.

Using Lemma 3.5, and setting τ = δ, we get that for every c ∈ {0, 1}, either
Qc(M) = 0, or

|Qc(M) − Qc(M̃)| ≤ 2μ · 4m

δ4
= 2 · 2−(α/6)k, (37)

and likewise, either Rc(M) = 0, or |Rc(M) − Rc(M̃)| ≤ 2 · 2−(α/6)k. So we
conclude that for all c ∈ {0, 1},

|Qc(M)| ≤ 2−(α/6)k · 2(r + 1), (38)

|Rc(M)| ≤ 2−(α/6)k · 2(r + 1). (39)

Using Lemma 3.2, we get that the device D′
k is secure, for all separable 2δ-

non-negligible measurement outcomes M ∈ W that the adversary may observe:

‖PACA1−CE|C=c,Z=M − UAC
× PA1−CE|C=c,Z=M‖

1

≤ 2−(α/6)k · 4(r + 1) ≤ 2−Ω(k). (40)

We can write this security guarantee in a more convenient form. Consider
any LOCC adversary, and let Z be the random variable representing the results
of the adversary’s measurements. We can write:6

‖PACA1−CCZ − UAC
× PA1−CCZ‖

1

≤
∑

M

Pr(Z = M) ‖PACA1−CC|Z=M − UAC
× PA1−CC|Z=M‖

1

≤ 4δ +
∑

M : M is 2δ-non-negl.

Pr(Z = M) ·

‖PACA1−CC|Z=M − UAC
× PA1−CC|Z=M‖

1

≤ 4δ +
∑

M : M is 2δ-non-negl.

Pr(Z = M) ·
(
2(ε + η) + ‖PEACA1−CC|Z=M − UAC

× PEA1−CC|Z=M‖
1

)

≤ 4δ + 2(ε + η) +
∑

M : M is 2δ-non-negl.

Pr(Z = M)
∑

c

Pr(C = c|Z = M) ·

‖PEACA1−C |C=c,Z=M − UAC
× PEA1−C |C=c,Z=M‖

1

6 There is a minor technicality involving the definition of the random variable C.
We have already defined C whenever Z = M , for any δ-non-negligible separable
measurement outcome M . We now need to define C in cases where Z = M and M
is δ-negligible. In these cases we simply define C in an arbitrary way.

802 Y.-K. Liu

≤ 4δ + 2(ε + η) + 2−(α/6)k · 4(r + 1)

≤ 4 · 2−δ0k + 2 · 2−ε0k + 2 · 2−(α/8)k + 4(r + 1) · 2−(α/6)k

≤ 2−Ω(k),

(41)

where we used the fact that
∑

M : M is 2δ-negl. Pr(Z = M) ≤ 2δ (see equation
(5)), the fact that Pr(¬E|Z = M) ≤ ε + η (see Lemma 3.1), the security bound
from equation (40), and finally the definitions of δ, ε and η (see Theorem 3.1
and Lemma 3.1). This completes the proof of Theorem 3.1. �

3.2 Security at a Single Point M

We now prove Lemma 3.1. We are given that Hε
∞(S, T |Z = M) ≥ αk. We

will use the entropy splitting lemma (Prop. 2.1). For notational convenience,
we define σc to be a function that takes two arguments, and returns the first
argument if c = 0 and the second argument if c = 1, that is,

σc(s, t) =

{
s if c = 0,

t if c = 1.
(42)

Setting η = 2−η0k and η0 = α/8, we get that there exists a random variable C,
taking values in {0, 1}, such that:

Hε+η
∞ (σC(S, T) |C,Z = M) ≥ (α/2)k − 1 − η0k ≥ (α/3)k. (43)

Using the definition of the smoothed conditional min-entropy, we get that there
exists an event E , occurring with probability Pr(E |Z = M) ≥ 1 − ε − η, such
that for all c ∈ {0, 1}, and all s ∈ {0, 1}�, Pr(E , σc(S, T) = s |C = c, Z = M) ≤
2−(α/3)k. In particular, this implies that

∑

s∈{0,1}�

Pr(E , σc(S, T) = s |C = c, Z = M)2 ≤ 2−(α/3)k. (44)

We now proceed to bound the quantity Qc(M). We consider the case where
c = 0 (the c = 1 case is similar). In this case, we can write

Q0(M) =
∑

s∈{0,1}�

(−1)F (s) Pr(E , S = s |C = 0, Z = M). (45)

Since F is an r-wise independent random function, we can apply the large devi-
ation bound in Prop. 2.3 (making use of equation (44)). This proves equation
(17).

Finally, we will bound the quantity Rc(M). We consider the case where c = 0
(the c = 1 case is similar). In this case, we can write

R0(M) =
∑

s,t∈{0,1}�

(−1)F (s)+G(t) Pr(E , S = s, T = t |C = 0, Z = M). (46)

Privacy Amplification in the Isolated Qubits Model 803

We will bound this using Prop. 2.4. To this end, we define a function H : {0, 1}×
{0, 1}� → {0, 1}, which returns the following values:

H(i, s) =

{
F (s) if i = 0
G(s) if i = 1.

(47)

We define a matrix A ∈ R
(2·2�)×(2·2�), whose entries are indexed by {0, 1} ×

{0, 1}�, and have the following values:

A(i,s),(j,t) =

⎧
⎪⎨

⎪⎩

1
2 Pr(E , S = s, T = t |C = 0, Z = M) if (i, j) = (0, 1)
1
2 Pr(E , S = t, T = s |C = 0, Z = M) if (i, j) = (1, 0)
0 otherwise.

(48)

A straightforward calculation then shows that R0(M) can be written in the form

R0(M) =
∑

(i,s),(j,t)

A(i,s),(j,t)

(
(−1)H(i,s)(−1)H(j,t) − δ(i,s),(j,t)

)
. (49)

Since F and G are r-wise independent random functions, we can apply Prop.
2.4, setting t = r/2.7 We will use the following bounds on Ã:

‖Ã‖2 ≤ ‖Ã‖2F =
∑

(i,s),(j,t)

A2
(i,s),(j,t)

= 1
2

∑

s,t

Pr(E , S = s, T = t |C = 0, Z = M)2

≤ 1
2

∑

s

(∑

t

Pr(E , S = s, T = t |C = 0, Z = M)
)2

= 1
2

∑

s

Pr(E , S = s |C = 0, Z = M)2

≤ 1
2 · 2−(α/3)k,

(50)

where in the last line we used equation (44). We substitute into Prop. 2.4; this
proves equation (19). This completes the proof of Lemma 3.1. �

3.3 Constructing an ε-net

We now prove Lemma 3.3. First, consider the set

V = {X ∈ C
2×2 | ‖X‖�∞ ≤

√
2, X† = X}, (51)

where ‖·‖�∞ denotes the �∞ norm, viewing each 2× 2 matrix as a 4-dimensional
vector. Let δ > 0 (we will choose a specific value for δ later). It is easy to see
7 The careful reader will notice that one can actually use Prop. 2.4 with t = r,

and thereby prove a stronger bound. The argument of Prop. 2.4 still goes through,
because R0(M) is bilinear in the random variables F (s) and G(t), and these two
groups of random variables are chosen independently of each other.

804 Y.-K. Liu

that there exists a δ-net Ṽ for V , with respect to the �∞ norm, with cardinality
|Ṽ | ≤ (2δ + 1)4. (For instance, one can describe each point in V using 4 real
parameters, and choose a grid with spacing δ

√
2.)

Next, consider the set of single-qubit POVM elements:

U = {X ∈ C
2×2 | 0 � X � I}. (52)

Note that U ⊂ V , since ‖X‖�∞ ≤ ‖X‖F ≤ √
2‖X‖. We will construct a 4δ-net

Ũ for U , by “rounding” each point in Ṽ into U . Define a function r : V → U
that maps each point in V to the nearest point in U with respect to the �∞
norm, that is,

r(X) = arg min
Y ∈U

‖X − Y ‖�∞ . (53)

Let Ũ be the image of Ṽ under this map, that is, Ũ = {r(X) | X ∈ Ṽ }. Note
that |Ũ | ≤ |Ṽ |.

It is easy to see that Ũ is a 2δ-net for U , with respect to the �∞ norm.
(This follows because, for any X ∈ U , there exists some Y ∈ Ṽ such that
‖X − Y ‖�∞ ≤ δ, and we know that r(Y) ∈ Ũ and ‖Y − r(Y)‖�∞ ≤ δ.) This
implies that Ũ is a 4δ-net for U , with respect to the operator norm ‖·‖. (This
follows because ‖X‖ ≤ ‖X‖F ≤ 2‖X‖�∞ .)

We are now ready to consider the set W . We can write W in the form

W = {M | M =
m⊗

i=1

Mi, Mi ∈ U}. (54)

We then define W̃ = {M | M =
⊗m

i=1 Mi, Mi ∈ Ũ}. Note that W̃ has cardinality
|W̃ | ≤ |Ũ |m.

We claim that W̃ is a 4mδ-net for W , with respect to the operator norm ‖·‖.
To see this, consider any M ∈ W , and construct some M̃ ∈ W̃ that approximates
it, as follows. M can be written in the form M =

⊗m
i=1 Mi. For each Mi, there

is a point M̃i ∈ Ũ within distance ‖Mi − M̃i‖ ≤ 4δ. We then let M̃ =
⊗m

i=1 M̃i.
We upper-bound the distance ‖M − M̃‖ as follows, by defining a sequence of

intermediate steps, and using the triangle inequality. For all s = 0, 1, 2, . . . ,m,
define M (s) = (M̃1⊗· · ·⊗M̃s)⊗(Ms+1⊗· · ·⊗Mm). Then we have that M = M (0),
M̃ = M (m), and

‖M − M̃‖ ≤
m−1∑

s=0

‖M (s) − M (s+1)‖

=
m−1∑

s=0

∥
∥(M̃1 ⊗ · · · ⊗ M̃s) ⊗ (Ms+1 − M̃s+1)

⊗ (Ms+2 ⊗ · · · ⊗ Mm)
∥
∥

≤ 4mδ,

(55)

where we used the fact that ‖A ⊗ B‖ = ‖A‖ ‖B‖.

Privacy Amplification in the Isolated Qubits Model 805

Finally, we set δ = μ/(4m). Then W̃ is a μ-net for W , with respect to the
operator norm ‖·‖. The cardinality of W̃ is |W̃ | ≤ (2δ + 1)4m = (8m

μ + 1)4m ≤
(9m

μ)4m, provided that μ ≤ 1. This proves Lemma 3.3. �

3.4 Continuity Arguments

We now prove Lemma 3.4. Since M is 2δ-non-negligible (with respect to some
quantum state ρ), we have Pr(M) = tr(Mρ) ≥ 2δ·2−m tr(M). Since ‖M − M̃‖ ≤
μ, and tr(M) ≥ 1, we can write

Pr(M̃) = tr(M̃ρ) ≥ tr(Mρ) − μ

≥ 2δ · 2−m tr(M) − μ

≥ δ · 2−m tr(M) + δ · 2−m − μ

≥ δ · 2−m tr(M̃) − δ · μ + δ · 2−m − μ

= δ · 2−m tr(M̃) + δ · 2−m − (1 + δ)μ.

(56)

Since μ ≤ 2
3δ · 2−m, and δ ≤ 1

2 , we have (1+ δ)μ ≤ δ · 2−m. By plugging into the
above equation, we see that M̃ is δ-non-negligible. This proves Lemma 3.4. �

We now prove Lemma 3.5. By assumption, there is a random variable C̃,
which is defined by the probabilities Pr(C̃ = c | Z̃ = M̃, S = s, T = t); and
there is an event Ẽ , which is defined by the probabilities Pr(Ẽ | C̃ = c, Z̃ =
M̃, S = s, T = t). Also, let ρst be the quantum state used to encode messages
(s, t), i.e., this is the state of the one-time memory, conditioned on S = s and
T = t.

We start by writing Qc(M̃) and Rc(M̃) in a more explicit form. First consider
Q0(M̃), and note that A0 = F (S). We can write Q0(M̃) in the form:

Q0(M̃) =

(
1

Pr(C̃ = 0, Z̃ = M̃)

)

·
∑

s,t∈{0,1}�

(−1)F (s) Pr(Ẽ , S = s, T = t, C̃ = 0, Z̃ = M̃)

=

(
1

Pr(C̃ = 0, Z̃ = M̃)

)

·
∑

s,t∈{0,1}�

(−1)F (s) Pr(Ẽ , C̃ = 0 | Z̃ = M̃, S = s, T = t) tr(M̃ρst) 4−�

=

(
1

Pr(C̃ = 0, Z̃ = M̃)

)

tr(M̃ν0),

(57)

806 Y.-K. Liu

where we define the matrix ν0 ∈ (C2×2)⊗m as follows:

ν0 = 4−�
∑

s,t∈{0,1}�

(−1)F (s) Pr(Ẽ , C̃ = 0 | Z̃ = M̃, S = s, T = t) ρst. (58)

Note that ‖ν0‖tr ≤ 1. In addition, we can write Pr(C̃ = 0, Z̃ = M̃) in the form:

Pr(C̃ = 0, Z̃ = M̃)

=
∑

s,t∈{0,1}�

Pr(C̃ = 0, Z̃ = M̃, S = s, T = t)

=
∑

s,t∈{0,1}�

Pr(C̃ = 0 | Z̃ = M̃, S = s, T = t) tr(M̃ρst) 4−�

= tr(M̃ξ0),

(59)

where we define the matrix ξ0 ∈ (C2×2)⊗m as follows:

ξ0 = 4−�
∑

s,t∈{0,1}�

Pr(C̃ = 0 | Z̃ = M̃, S = s, T = t) ρst. (60)

Also, note that ‖ξ0‖tr ≤ 1. We can also write similar expressions for Q1(M̃),
R0(M̃) and R1(M̃). We can summarize this as follows:

Qc(M̃) =
tr(M̃νc)

tr(M̃ξc)
, Rc(M̃) =

tr(M̃θc)

tr(M̃ξc)
, (61)

where νc, θc, ξc ∈ (C2×2)⊗m satisfy ‖νc‖tr ≤ 1, ‖θc‖tr ≤ 1 and ‖ξc‖tr ≤ 1.
We now consider the measurement outcome M . We will construct a random

variable C and an event E , which will allow us to define the quantities Qc(M)
and Rc(M). Roughly speaking, C and E (conditioned on Z = M) will behave
similarly to C̃ and Ẽ (conditioned on Z̃ = M̃). However, if there exists some
c ∈ {0, 1} for which the probability Pr(C = c |Z = M) is unusually small, then
we will define E to exclude this event, in order to avoid situations where Qc(M)
“blows up” because the denominator is very small.

Formally, we construct the random variable C and the event E by specifying
the following probabilities (for all c ∈ {0, 1} and s, t ∈ {0, 1}�):

Pr(C = c |Z = M, S = s, T = t)

= Pr(C̃ = c | Z̃ = M̃, S = s, T = t),
(62)

Pr(E |C = c, Z = M, S = s, T = t)

=

{
0 if Pr(C = c |Z = M) < τ,

Pr(Ẽ | C̃ = c, Z̃ = M̃, S = s, T = t) otherwise.

(63)

We now show that Pr(E |Z = M) ≥ Pr(Ẽ | Z̃ = M̃) − τ . Let us say that
c ∈ {0, 1} is “bad” if Pr(C = c |Z = M) < τ . There are two possible values, 0

Privacy Amplification in the Isolated Qubits Model 807

and 1, and at most one of them can be bad. If neither one is bad, then Pr(E |Z =
M) = Pr(Ẽ | Z̃ = M̃). If one particular value (say 0) is bad, then we have:

Pr(E |Z = M)
≥ Pr(E |C = 1, Z = M) Pr(C = 1 |Z = M)

= Pr(Ẽ | C̃ = 1, Z̃ = M̃) Pr(C̃ = 1 | Z̃ = M̃)

= Pr(Ẽ | Z̃ = M̃) − Pr(Ẽ | C̃ = 0, Z̃ = M̃) Pr(C̃ = 0 | Z̃ = M̃)

> Pr(Ẽ | Z̃ = M̃) − τ.

(64)

We now define Qc(M) in terms of C and E , using equation (16). Note that
if c is bad, then Pr(E |C = c, Z = M) = 0, which implies Qc(M) = 0.

We will show that if c is not bad, then Qc(M) ≈ Qc(M̃). When c is not bad,
the events C = c and E (conditioned on the events Z = M , S = s and T = t)
have exactly the same probabilities as the events C̃ = c and Ẽ (conditioned on
the events Z̃ = M̃ , S = s and T = t). So we can write Qc(M) in the form

Qc(M) =
tr(Mνc)
tr(Mξc)

, (65)

where νc and ξc are the same matrices used to express Qc(M̃) in equation (61).
In addition, we can lower-bound tr(Mξc) and tr(M̃ξc) as follows:

tr(Mξc) = Pr(C = c, M) ≥ τ Pr(M) (66)

≥ τ · 2δ · 2−m tr(M) ≥ τ · 2δ · 2−m‖M‖ (67)

≥ τ · 2δ · 2−m, (68)

tr(M̃ξc) = Pr(C̃ = c, M̃) ≥ τ Pr(M̃) (69)

≥ τδ · 2−m tr(M̃) ≥ τδ · 2−m‖M̃‖ (70)

≥ τδ · 2−m(1 − μ) ≥ τδ · 2−m · 1
2 . (71)

Now we can write Qc(M) − Qc(M̃) as follows:

Qc(M) − Qc(M̃) =
tr((M − M̃)νc)

tr(Mξc)
+ tr(M̃νc)

tr((M̃ − M)ξc)

tr(Mξc) tr(M̃ξc)
. (72)

We can then upper-bound this quantity:

|Qc(M) − Qc(M̃)|
≤ μ

τ · 2δ · 2−m
+ (1 + μ)

μ

τ · 2δ · 2−m · τδ · 2−m · 1
2

=
μ

τ · 2δ · 2−m

(

1 +
(1 + μ)

τδ · 2−m · 1
2

)

≤ 2μ

(
2m

τδ

)2

.

(73)

808 Y.-K. Liu

Similarly, we define Rc(M) in terms of C and E , using equation (18). Using
the same argument as above, we see that if c is bad, then Rc(M) = 0, and if c

is not bad, then Rc(M) ≈ Rc(M̃). This completes the proof of Lemma 3.5. �

4 Beyond the Isolated Qubits Model

We now describe a class of adversaries who can perform a polynomial number of
2-qubit entangling operations, in addition to unbounded LOCC. In particular, we
will choose some “depth” parameter d (which may grow polynomially with the
security parameter k), and we will consider adversaries who can apply quantum
circuits whose depth is bounded by d. These kinds of attacks may be feasible in
real physical systems, where one can perform noisy entangling gates. Intuitively,
one may expect that the noise will accumulate when the adversary applies a long
sequence of entangling gates; so it is easier for the adversary to apply shallow
(low-depth) quantum circuits.

We will then show that our privacy amplification result for one-time memories
(Theorem 3.1) still holds against these depth-d adversaries, where d can grow
polynomially in k, and the privacy amplification technique now runs in time
polynomial in d.

First, we will need a few definitions. Let E : ρ
→ ∑
i KiρK†

i be a generalized
quantum measurement. We say that E is 2-local if every Kraus operator Ki

can be written as a tensor product of 2-qubit operators (where different Kraus
operators Ki may arrange the qubits into pairs in different ways). As a simple
example, if E1, E2, . . . , E� are 2-qubit quantum measurements, then E1⊗E2⊗· · ·⊗
E� is a 2-local quantum measurement on 2� qubits.

Note that 2-local measurements can be viewed as a generalization of separable
measurements, in the following sense. First, if E is separable, then E is 2-local.
Also, if E1 and E2 are separable, and F is 2-local, then E2 ◦ F ◦ E1 is 2-local.
Thus any 2-local measurement can include a separable measurement (and in
particular, an LOCC measurement) “for free.”

We say that an adversary is 2-local with depth d if it performs a measurement
of the form E = Ed ◦Ed−1 ◦· · ·◦E1, where E1, E2, . . . , Ed are 2-local measurements.
That is, the adversary first performs the measurement E1, obtains a classical
measurement outcome i1, then performs the measurement E2, obtains a classical
measurement outcome i2, and so on; after the final measurement Ed, the post-
measurement quantum state is discarded.

We say that the corresponding POVM element Mi1,i2,...,id
is 2-local with

depth d. We can write it in the following form:

Mi1,i2,...,id
= (K†

1,i1
K†

2,i2
· · · K†

d,id
) (Kd,id

· · · K2,i2K1,i1), (74)

where the Ka,ia
denote the Kraus operators of the measurement Ea, that is,

Ea(ρ) =
∑

ia
Ka,ia

ρK†
a,ia

, and each Ka,ia
can be written as a tensor product of

2-qubit operators.
We now extend our privacy amplification result for one-time memories (The-

orem 3.1) to the case of 2-local depth-d adversaries.

Privacy Amplification in the Isolated Qubits Model 809

Theorem 4.1. Fix some constant ϕ ≥ 0.
Suppose that D is a family of “leaky” string-OTM’s, as described in Theo-

rem 3.1, but with a stronger security guarantee, which holds for all measurement
outcomes that are 2-local with depth d ≤ kϕ (rather than for all separable mea-
surement outcomes).

Now construct a new family of devices D′, as described in Theorem 3.1, but
where we set the parameter r (for the r-wise independent random functions F
and G) as follows:

r = 4(γ + 1)k2θ+ϕ. (75)

Then these devices D′ are “ideal” OTM’s, as described in Theorem 3.1, but
again with a stronger security guarantee, which holds for all measurement out-
comes that are 2-local with depth d ≤ kϕ (rather than for all separable measure-
ment outcomes).

Thus, if one could construct “leaky” string-OTM’s that were secure against
2-local depth-d adversaries, then one would immediately get “ideal” bit-OTM’s
in this setting. Unfortunately, the leaky string-OTM’s from [5] are not known to
be secure in this setting, and so we leave this as an open problem.

4.1 Overview of the Proof

We prove Theorem 4.1 using the same approach as for Theorem 3.1. Most of the
argument is unchanged; the key difference is in Lemma 3.3, where we now want
to construct an ε-net for the set of all 2-local depth-d measurement outcomes
(rather than the set of all separable measurement outcomes).

Let Λ be the set of all 2-local depth-d measurement outcomes:

Λ = {M ∈ (C2×2)⊗m | M = (K†
1 · · · K†

d) (Kd · · · K1),
where K1, . . . ,Kd ∈ L},

(76)

where L is the set of all operators K ∈ (C2×2)⊗m that can be written as tensor
products of 2-qubit operators having operator norm at most 1. We will construct
an ε-net for Λ, using the following lemma:

Lemma 4.1. For any 0 < μ ≤ 1, there exists a set Λ̃ ⊂ Λ, of cardinality
|Λ̃| ≤ (

24dm17/16

μ

)16md, which is a μ-net for Λ with respect to the operator norm
‖·‖.

We will prove this lemma in Section 4.2. Now, we set

μ = 2−(α/6)k · δ4

4m
(77)

(the same as in the proof of Theorem 3.1). Also, recall that k ≤ m ≤ kθ, and
d ≤ kϕ. Then the cardinality of Λ̃ is bounded by

|Λ̃| ≤
(

24dm17/16 · 2(α/6)k · 4m

δ4

)16md

810 Y.-K. Liu

=
(
24dm17/16 · 2(α/6)k+4δ0k+2m

)16md

≤ 2γk2θ+ϕ

,
(78)

for all sufficiently large k; here γ is some universal constant. This bound plays
the role of equation (29) in the proof of Theorem 3.1.

One then continues with the same argument as in Theorem 3.1: one uses the
union bound over the set Λ̃, while setting the parameter r sufficiently large (see
equation (75)). This gives a result similar to equation (33).

The rest of the proof is the same as for Theorem 3.1. This completes the
proof of Theorem 4.1. �

4.2 Constructing an ε-net

We now prove Lemma 4.1. First, consider the set

V = {X ∈ C
4×4 | ‖X‖�∞ ≤ 2}. (79)

Let δ > 0 (we will choose a specific value for δ later). It is easy to see that
there exists a δ-net Ṽ for V , with respect to the �∞ norm, with cardinality
|Ṽ | ≤ (2

√
2

δ + 1)32. (For instance, one can describe each point in V with 32 real
parameters, and choose a grid with spacing δ

√
2.)

Next, consider the set of 2-qubit Kraus operators:

U = {X ∈ C
4×4 | ‖X‖ ≤ 1}. (80)

Note that U ⊂ V , since ‖X‖�∞ ≤ ‖X‖F ≤ 2‖X‖. We will construct an 8δ-net Ũ

for U , by taking the points in Ṽ and “rounding” them into U . Define a function
r : V → U that maps each point in V to the nearest point in U with respect to
the �∞ norm, that is,

r(X) = arg min
Y ∈U

‖X − Y ‖�∞ . (81)

Let Ũ be the image of Ṽ under this map, that is, Ũ = {r(X) | X ∈ Ṽ }. Note
that |Ũ | ≤ |Ṽ |.

It is easy to see that Ũ is a 2δ-net for U , with respect to the �∞ norm.
(This follows because, for any X ∈ U , there exists some Y ∈ Ṽ such that
‖X − Y ‖�∞ ≤ δ, and we know that r(Y) ∈ Ũ and ‖Y − r(Y)‖�∞ ≤ δ.) This
implies that Ũ is an 8δ-net for U , with respect to the operator norm ‖·‖. (This
follows because ‖X‖ ≤ ‖X‖F ≤ 4‖X‖�∞ .)

Next, we let L be the set of all operators K ∈ (C2×2)⊗m that can be written
as tensor products of 2-qubit operators in U . We then define L̃ to be the set of
all operators K ∈ (C2×2)⊗m that can be written as tensor products of 2-qubit

operators in Ũ . Note that L̃ has cardinality |L̃| ≤ m! |Ũ |m/2
, since every operator

Privacy Amplification in the Isolated Qubits Model 811

K ∈ L̃ can be written in the form
⊗m/2

j=1 Kj (where Kj ∈ Ũ) conjugated with a
permutation of the qubits. (For simplicity, let us assume that m is even.)

We claim that L̃ is a 4mδ-net for L, with respect to the operator norm ‖·‖.
To see this, consider any K ∈ L, and construct some K̃ ∈ L̃ that approximates
it as follows. First, relabel the qubits so that K can be written in the form
K =

⊗m/2
j=1 Kj (where Kj ∈ U). For each Kj , there is a point K̃j ∈ Ũ within

distance ‖Kj − K̃j‖ ≤ 8δ. We then define K̃ =
⊗m/2

j=1 K̃j .
We upper-bound the distance ‖K − K̃‖ as follows, by defining a sequence of

intermediate steps, and using the triangle inequality. For all s = 0, 1, 2, . . . ,m/2,
define K(s) = (K̃1⊗· · ·⊗K̃s)⊗(Ks+1⊗· · ·⊗Km/2). Then we have that K = K(0),
K̃ = K(m/2), and

‖K − K̃‖ ≤
m/2−1∑

s=0

‖K(s) − K(s+1)‖

=
m/2−1∑

s=0

∥
∥(K̃1 ⊗ · · · ⊗ K̃s) ⊗ (Ks+1 − K̃s+1)

⊗ (Ks+2 ⊗ · · · ⊗ Km/2)
∥
∥

≤ (m/2) 8δ = 4mδ,

(82)

where we used the fact that ‖A ⊗ B‖ = ‖A‖ ‖B‖.
Finally, we consider the set Λ of all 2-local depth-d measurement outcomes:

Λ = {M ∈ (C2×2)⊗m | M = (K†
1 · · · K†

d) (Kd · · · K1),
where K1, . . . ,Kd ∈ L}.

(83)

We then define the set Λ̃ as follows:

Λ̃ = {M ∈ (C2×2)⊗m | M = (K†
1 · · · K†

d) (Kd · · · K1),

where K1, . . . ,Kd ∈ L̃}.
(84)

Note that Λ̃ has cardinality |Λ̃| ≤ |L̃|d.
We claim that Λ̃ is an 8dmδ-net for Λ, with respect to the operator norm ‖·‖.

To see this, consider any M ∈ Λ, and construct some M̃ ∈ Λ̃ that approximates
it as follows. M can be written in the form M = (K†

1 · · · K†
d) (Kd · · · K1) (where

Kj ∈ L). For each Kj , there is a point K̃j ∈ L̃ within distance ‖Kj − K̃j‖ ≤ 4mδ.
We then let M̃ = (K̃†

1 · · · K̃†
d) (K̃d · · · K̃1).

We upper-bound the distance ‖M − M̃‖ as follows, by defining a sequence of
intermediate steps, and using the triangle inequality. For all s = 0, 1, 2, . . . , 2d,
define M (s) to be an operator of the form (K†

1 · · · K†
d)· (Kd · · · K1), where the

first s factors (reading from left to right) have tilde’s, and the remaining 2d − s

factors do not have tilde’s. Then we have that M = M (0), M̃ = M (2d), and

812 Y.-K. Liu

‖M − M̃‖ ≤
2d−1∑

s=0

‖M (s) − M (s+1)‖

=
d−1∑

s=0

∥
∥(K̃†

1 · · · K̃†
s)(K†

s+1 − K̃†
s+1)(K

†
s+2 · · · K†

d) (Kd · · · K1)
∥
∥

+
2d−1∑

s=d

∥
∥(K̃†

1 · · · K̃†
d) (K̃d · · · K̃2d−s+1)(K2d−s − K̃2d−s)·

(K2d−s−1 · · · K1)
∥
∥

≤ 2d · 4mδ = 8dmδ,

(85)

where we used the fact that ‖AB‖ ≤ ‖A‖ ‖B‖.
Finally, we set δ = μ/(8dm). Then Λ̃ is a μ-net for Λ, with respect to the

operator norm ‖·‖. The cardinality of Λ̃ is

|Λ̃| ≤ |L̃|d ≤ (m!)d |Ũ |md/2

≤ (m!)d
(
2
√
2

δ + 1
)16md

≤ mmd
(
16

√
2dm
μ + 1

)16md

≤ (
24dm17/16

μ

)16md
,

(86)

provided that μ ≤ 1. This proves Lemma 4.1. �

References

1. Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev.
Lett. 78, 3410 (1997)

2. Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2),
1154–1162 (1997)

3. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys.
Rev. Lett. 78, 3414–3417 (1997)

4. Buhrman, H., Christandl, M., Schaffner, C.: Complete Insecurity of Quantum Pro-
tocols for Classical Two-Party Computation. Phys. Rev. Lett. 109, 160501 (2012)

5. Liu, Y.-K.: Single-Shot Security for One-Time Memories in the Isolated Qubits
Model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 19–36. Springer, Heidelberg (2014)

6. Liu, Y.-K.: Building one-time memories from isolated qubits. ITCS, pp. 269–286
(2014)

7. Saeedi, K., et al.: Room-Temperature Quantum Bit Storage Exceeding 39 Minutes
Using Ionized Donors in Silicon-28. Science 342(6160), 830–833 (2013)

8. Dreau, A., et al.: Single-Shot Readout of Multiple Nuclear Spin Qubits in Diamond
under Ambient Conditions. Phys. Rev. Lett. 110, 060502 (2013)

Privacy Amplification in the Isolated Qubits Model 813

9. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

10. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding Cryptography
on Tamper-Proof Hardware Tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010)

11. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively Secure Garbling with Applica-
tions to One-Time Programs and Secure Outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012)

12. Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 344–360.
Springer, Heidelberg (2013)

13. Vadhan, S.P.: Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science 7(13), 1–336 (2011)

14. Bellare, M., Rompel, J.: Randomness-Efficient Oblivious Sampling. FOCS, 276–287
(1994)

15. Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-Hoeffding Bounds for Applica-
tions with Limited Independence. SIAM J. Discrete Math. 8(2), 223–250 (1995)

16. Liu, Y.-K.: Privacy amplification in the isolated qubits model. Arxiv:1410.3918
17. Hanson, D.L., Wright, F.T.: A Bound on Tail Probabilities for Quadratic Forms

in Independent Random Variables. Ann. Math. Stat. 42(3), 1079–1083 (1971)
18. Rudelson, M., Vershynin, R.: Hanson-Wright inequality and sub-gaussian concen-

tration. Electronic Communications in Probability 18, 1–9 (2013)
19. Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983). original

manuscript written circa 1970
20. Salvail, L.: Quantum Bit Commitment from a Physical Assumption. In: Krawczyk,

H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 338–353. Springer, Heidelberg (1998)
21. Pastawski, F., Yao, N.Y., Jiang, L., Lukin, M.D., Cirac, J.I.: Unforgeable Noise-

Tolerant Quantum Tokens. Proc. Nat. Acad. Sci. 109, 16079–16082 (2012)
22. Bouman, N.J., Fehr, S., González-Guillén, C., Schaffner, C.: An All-But-One

Entropic Uncertainty Relation, and Application to Password-Based Identification.
In: Kawano, Y. (ed.) TQC 2012. LNCS, vol. 7582, pp. 29–44. Springer, Heidelberg
(2012)

23. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W.,
Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys.
Rev. A 59, 1070–1091 (1999)

24. Childs, A.M., Leung, D., Mancinska, L., Ozols, M.: A framework for bounding
nonlocality of state discrimination. arXiv:1206.5822

25. DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum Data Hiding. IEEE Trans.
Inf. Theory 48(3), 580–599 (2002)

26. Eggeling, T., Werner, R.F.: Hiding Classical Data in Multipartite Quantum States.
Phys. Rev. Lett. 89, 097905 (2002)

27. Masanes, L.: Universally Composable Privacy Amplification from Causality Con-
straints. Phys. Rev. Lett. 102, 140501 (2009)

28. Trevisan, L., Vadhan, S.P.: Extracting Randomness from Samplable Distributions.
FOCS, 32–42 (2000)

29. Kamp, J., Zuckerman, D.: Deterministic Extractors for Bit-Fixing Sources and
Exposure-Resilient Cryptography. SIAM J. Comput. 36(5), 1231–1247 (2006)

30. Gabizon, A.: Deterministic Extraction from Weak Random Sources, Springer-
Verlag (2011)

http://arxiv.org/abs/1206.5822

814 Y.-K. Liu

31. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and
Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

32. Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg
(2009)

33. Damg̊ard, I.B., Fehr, S., Renner, R.S., Salvail, L., Schaffner, C.: A Tight High-
Order Entropic Quantum Uncertainty Relation with Applications. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007)

34. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum Entangle-
ment. Rev. Mod. Phys. 81, 865–942 (2009)

Discrete Logarithms

Generic Hardness of the Multiple Discrete
Logarithm Problem

Aaram Yun(B)

Ulsan National Institute of Science and Technology (UNIST),
Ulsan, Republic of Korea
aaramyun@unist.ac.kr

Abstract. We study generic hardness of the multiple discrete logarithm
problem, where the solver has to solve n instances of the discrete loga-
rithm problem simultaneously. There are known generic algorithms which
perform O(

√
np) group operations, where p is the group order, but no

generic lower bound was known other than the trivial bound. In this
paper we prove the tight generic lower bound, showing that the pre-
viously known algorithms are asymptotically optimal. We establish the
lower bound by studying hardness of a related computational problem
which we call the search-by-hyperplane-queries problem, which may be
of independent interest.

Keywords: Multiple discrete logarithm · Search-by-hyperplane-queries ·
Generic group model

1 Introduction

Multiple Discrete Logarithm Problem. Let G be a cyclic group of order p,
where p is prime, and let g be a generator of G. Then the Discrete Logarithm
(DL) problem is defined as follows: given (G, p, g, gα) for a uniform random
α

$← Zp, find out α.
Similarly, the Multiple Discrete Logarithm (MDL) problem is defined as

follows: given (G, p, g, gα1 , . . . , gαn), for independently chosen uniform random
elements α1, . . . , αn

$← Zp, find out �α = (α1, . . . , αn).
The discrete logarithm problem (and related variants like the Diffie-Hellman

problem) is used for many cryptographic constructions and its hardness was
studied widely. On the other hand, as far as we know, there are no cryptographic
constructions whose security is based on the multiple discrete logarithm problem.

Still, the multiple discrete logarithm problem is relevant in the context of
standard curves in the elliptic curve cryptography. Since generating good elliptic
curves is rather computationally expensive, some standards like NIST’s FIPS
186 [1] recommend using a few standard curves to instantiate cryptographic
schemes. Hence, in such a setting, we naturally have to consider the multiple
discrete logarithm problem. Hitchcock et al. [7] analyzed efficiency of algorithms
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 817–836, 2015.
DOI: 10.1007/978-3-662-46803-6 27

818 A. Yun

solving the multiple discrete logarithm problem to see how using such a standard
curve affects security.

Moreover, some cryptographic constructions require a user to solve ‘small’
discrete logarithm problems: either the group order p is small, or the exponent α
is chosen from a small subset I ⊆ Zp. One such example is the Boneh-Goh-Nissim
homomorphic encryption [5], where in order to decrypt a ciphertext, a user has to
first compute gm from the given ciphertext and then solve the discrete logarithm
to recover the message m. Another example is the Maurer-Yacobi identity-based
encryption [10]. Their construction uses a trapdoor discrete logarithm group,
where the discrete logarithm problem is feasible to a user who has the trapdoor
information, while hard for those who do not. They achieve this by using a
composite-order group, and then the trapdoor information is the factorization
of the group order. A user who has the factorization can solve DL on small groups
so the discrete logarithm problem is feasible, but an adversary has to solve the
DL problem in a large group. For these cases, efficient algorithms for solving
DL is crucial, and for example, Lee, Cheon, and Hong [9] and Bernstein and
Lange [2] showed how to speed up the solution of the discrete logarithm problem
via precomputation. When considered as a whole, these become algorithms for
solving the multiple discrete logarithm problem.

Generic Group Model. In general, hardness of a cryptographic problem based
on a group does not depend solely on the isomorphism class of the underlying
group. For example, while we believe that, if we carefully choose an elliptic curve
and a subgroup G of prime order p on it, then the discrete logarithm problem
on G would be difficult, we also know that the same problem is trivial on the
additive group Zp which is nonetheless isomorphic to G. What is important
is how the same isomorphism class is encoded to a concrete ‘representation’.
When ξ : Zp → {0, 1}t is an injective function, we say that ξ is an encoding
of the group Zp. In such a case, we may define G := ξ(Zp), and make G into
a group by giving G the unique group structure induced from the bijection
ξ : Zp

∼→ G. Conversely, we can see that any concrete cyclic group with prime
order p should come from such an encoding ξ : Zp → {0, 1}t together with
functions μ : {0, 1}t × {0, 1}t → {0, 1}t, ι : {0, 1}t → {0, 1}t such that μ|G×G

and ι|G give multiplication and inversion on G, respectively.
Also, a sophisticated algorithm may analyze and exploit structures of such

an encoding to solve group-based computational problems. Naturally, such an
algorithm is specific to that particular encoding. On the other hand, there are
many ‘generic’ algorithms which are agnostic to the particular encoding used.
One such example is the Baby-Step-Giant-Step algorithm for solving the discrete
logarithm problem: BSGS algorithm does not assume anything about the group
encoding, except that it is indeed a group encoding, therefore it works for any
cyclic group, even though better algorithms exist for some specific groups.

‘Generic hardness’ of a cryptographic problem, that is, hardness against such
generic algorithms, was studied for many group-based cryptographic problems.
While a proof of generic hardness cannot really replace serious cryptanalysis

Generic Hardness of the Multiple Discrete Logarithm Problem 819

for such a problem, at least it serves as a sanity check, in the sense that if
a problem can be solved efficiently even by a generic algorithm, certainly one
cannot base cryptographic constructions on such an easy problem. Also, for
example on elliptic curves, so far no better non-generic algorithms are known.

To analyze such generic algorithms, the generic group model was proposed
by Nechaev and Shoup [11,12]. In the generic group model, to ensure that a
generic algorithm cannot exploit the encoding of a group, a random encoding,
an encoding ξ : Zp → {0, 1}t which is uniform randomly chosen from the set
of all injections Zp ↪→ {0, 1}t, is used. Since in such a case we cannot expect
any efficient algorithms for group laws, the group laws are given by oracles:
the algorithm makes oracle queries by giving encodings of group elements like
ξ(α), ξ(β), and the oracle returns the result of multiplication or division of these
elements in encoded form. In the generic group model, we consider the query
complexity of an algorithm to measure its efficiency.

Generic Algorithms for DL and MDL Problems. Shoup [12] analyzed
generic hardness of the discrete logarithm problem. He showed that any generic
DL solver which makes at most q queries to the group law oracles has the success
probability at most O(q2/p). In other words, any generic DL solver with some
constant success probability should make at least Ω(

√
p) queries.

As explained before, there are generic algorithms for DL with asymptotically
tight matching upper bounds. The Baby-Step-Giant-Step algorithm is an exam-
ple, and Pollard’s rho algorithm is another. Both algorithms perform O(

√
p)

group operations. And this gives us a trivial generic algorithm for solving MDL:
simply repeat such an asymptotically optimal generic algorithm n times, where
n is the total number of DL instances. The total complexity would be O(n

√
p).

In fact, there is a better generic algorithm for MDL. Kuhn and Struik [8]
extended Pollard’s rho to a generic algorithm solving MDL. Their algorithm
performs O(

√
np) group operations.

On the other hand, as far as we know, precise generic hardness of MDL is not
known. Clearly, solving n DL instances would be at least as hard as solving one
single DL instance, therefore Shoup’s lower bound Ω(

√
p) applies here. Kuhn and

Struik [8] conjectured that the tight lower bound would be Ω(
√

np), but this has
never been proved yet. This means that even the highly improbable possibility
of a generic algorithm solving n DL instances within O(

√
p), independent of n,

is not yet eliminated!
Perhaps one reason for this situation might be that, most of the previous

results on generic hardness of cryptographic problems were based solely on the
standard technique also originated from Shoup [12]: instead of choosing the hid-
den exponents (for example, α1, . . . , αn in the MDL) at the beginning, the game
is modified so that the exponents are chosen at the end of the game, and all
responses to the group law queries are made with respect to polynomials of
those exponents, where the undetermined exponents are considered as unknown
variables. In this modified game, usually it is straightforward to show that the
solver has only small probability of winning. The proof also has to analyze the

820 A. Yun

difference between the two games, but when the number of queries is not too
large, it is possible to show that the difference is again small, by using the
Schwartz-Zippel lemma. In other words, this technique formalizes the following
intuition: as long as the number of queries is not too large, interesting things
rarely happen, not much useful information is revealed to the solver, and the
solver cannot perform well. Despite the simplicity and genericity, this technique
was highly effective, being able to establish asymptotically tight lower bounds
for problems like the discrete logarithm problem [12], the Diffie-Hellman prob-
lem [12], the strong Diffie-Hellman problem [3], the decision linear problem [4],
and many others.

On the other hand, for the situation of MDL, we do consider cases where
the solver makes queries more than the Shoup bound

√
p. Therefore, a solver

does obtain some nontrivial information, and Shoup’s technique breaks down.
In order to establish a nontrivial lower bound for MDL, a more careful analysis
of the problem is needed.

In this paper, we show that the conjecture of Kuhn and Struik is indeed
correct: any generic algorithm solving MDL with constant success probability
should make at least Ω(

√
np) queries to the group law oracles.

Search-by-Hyperplane-Queries Problem. To circumvent the limitation of
Shoup’s technique, we establish the generic lower bound of MDL by analyzing
a closely related problem, which we call Search-by-Hyperplane-Queries (SHQ)
problem. In the SHQ problem, a uniform random point �α = (α1, . . . , αn) of
the n-dimensional affine space Z

n
p is hidden, and the goal of the solver is to

find the point �α. Of course, the success probability of any unaided solver is at
most 1/pn. Therefore, we allow any solver to make adaptive hyperplane queries.
Recall that an affine hyperplane H ⊆ Z

n
p can be described by an equation of

form a1X1 + · · · + anXn = b, where a1, . . . , an, b ∈ Zp. A hyperplane query is
asked by specifying a hyperplane H via the coefficients a1, . . . , an, b, and the
intended meaning of the query is ‘is �α ∈ H?’ A SHQ solver may make a series
of adaptive hyperplane queries, and use the information gained by such queries
to find the hidden point �α.

We are going to show that any SHQ solver which makes at most q hyperplane
queries has success probability at most O((eq/np)n), where e is the base of
the natural logarithm. Therefore, any SHQ solver with some constant success
probability should make Ω(np) queries. Then, we are going to show that this
lower bound for the SHQ problem implies the Ω(

√
np) lower bound for the MDL

problem.
Since the SHQ problem looks interesting by itself, we also analyze the worst-

case version of the SHQ problem, and show that any worst-case SHQ solver
has to make at least n(p − 1) queries. This is a tight lower bound; there is
a corresponding solver realizing the bound. Moreover, we also analyze another
variant of the worst-case version where a solver is allowed to output a list L
which contains the correct answer �α, instead of uniquely identifying the correct
solution. We again establish a tight lower bound for this version.

Generic Hardness of the Multiple Discrete Logarithm Problem 821

2 Multiple Discrete Logarithm Problem in the Generic
Group Model

2.1 Generic Group Model

Let p be a prime number, and let ξ : Zp → {0, 1}t be a random encoding of
Zp, that is, a uniform randomly chosen function among all injective functions
of form Zp → {0, 1}t for some t satisfying t ≥ log2 p. We define the group law
oracle μ as the oracle satisfying the following:

μ(b, ξ(α), ξ(β)) = ξ(α + (−1)bβ mod p),

where b ∈ {0, 1} is a bit indicating whether multiplication or division is intended.
In the generic group model, we consider the generic algorithm, which is a

probabilistic algorithm A to which is initially given a list of group elements
ξ(β1), . . . , ξ(βk), encoded by the random encoding ξ. Also, while running, the
algorithm A can make group law queries to the oracle μ. Finally A halts with
an output. Note that ξ is never explicitly given to A, but only implicitly via the
initial input and the group law oracles.

2.2 Multiple Discrete Logarithm Problem

Let G be a cyclic group of order p, where p is prime, and let g be a generator of
G. Also, let n be an integer. We require that n = o(p): formally, we consider a
family of such numbers, so that there is a main parameter λ, and both n and p
are functions of λ, and n(λ)/p(λ) → 0, as λ → ∞.

Then we may define the Multiple Discrete Logarithm (MDL) problem as:

Given (G, p, g, gα1 , . . . , gαn), findout (α1, . . . , αn),whereα1, . . . , αn
$← Zp

are independently chosen uniform random elements.

We consider the MDL problem in the generic group model. Hence, for a
generic algorithm A, we define Advmdl

p,n(A), the advantage of A in solving the
MDL problem as

Advmdl
p,n(A) = Pr[Aμ(p, ξ(1), ξ(α1), . . . , ξ(αn)) = (α1, . . . , αn)],

where the probability is over the random choice of ξ, α1, . . . , αn, and the internal
randomness of A.

For any generic MDL solver A, let us say that A solves MDL with constant
advantage if there exists some constant c > 0 such that

Advmdl
p,n(A) ≥ c,

for any value of the parameter λ.

822 A. Yun

Remark 1. We remark that the condition n = o(p) we impose here is rather
natural. It is reasonable to assume that n, the number of DL instances in con-
sideration, is polynomially bounded, so n = o(p) holds if p is exponentially large.
But the condition is much less demanding than that. It may hold even when p
is not exponentially large in comparision with n, for example, when n = Θ(λ)
and p = Θ(λ2), or when n = Θ(1) and p = Θ(λ).

Remark 2. While we may extend our examination of MDL solvers to include
those with non-negligible success probability, that would complicate the rela-
tionship between n, p, and the number of queries, since a solver may make
trade-offs between the number of queries and the success probability. In fact, we
may amplify any such non-negligible probability to a constant probability with
slowdown by at most a polynomial factor. So, ‘standardizing’ this trade-off by
insisting some constant success probability is reasonable, and this approach is
adopted by many authors, including Shoup [12].

3 Search-by-Hyperplane-Queries Problem

In this section, we describe the Search-by-Hyperplane-Queries (SHQ) problem.
Let p be a prime number and Z

n
p be the n-dimensional affine space over the finite

field Zp. As in the MDL problem, we assume that n = o(p).1

Let X1, . . . , Xn be the canonical coordinate functions of Zn
p . Then, an affine

hyperplane H in Z
n
p can be written by a formula of form a1X1 + · · · + anXn = b

for some a1, . . . , an, b ∈ Zp, with ai 	= 0 for some i. Sometimes we represent such
a hyperplane H by the linear expression a1X1 + · · · + anXn − b, or even simply
by the tuple (a1, . . . , an, b).

Let �α ∈ Z
n
p be a point in the affine space. We define

H(�α,H) :=

{
1 if �α ∈ H,
0 otherwise.

The SHQ problem is as follows: pick a uniform random point �α of Zn
p . The

goal of the problem is to correctly guess the hidden point �α. Without anything
else, the probability of correct guess is p−n. Therefore, up to some q adaptive
hyperplane queries are allowed: a solver for this problem is allowed to submit
up to q hyperplane queries H1, . . . , Hq adaptively, and for each such query, the
result H(�α,Hi) is given. In other words, the solver is given the hyperplane query
oracle H(�α, ·).

For a SHQ solver A, we define Advshq
p,n(A), the advantage of A in solving

SHQ, as
Advshq

p,n(A) = Pr[AH(�α,·)(p, n) = �α],

where the probability is over the random choice of �α and the internal randomness
of A.
1 In fact, for SHQ we only require p−n = o(1), which is implied by the given condition.

Generic Hardness of the Multiple Discrete Logarithm Problem 823

For any SHQ solver A, let us say that A solves SHQ with constant advantage
if there exists some constant c > 0 such that

Advshq
p,n(A) ≥ c,

for any value of the parameter λ.

Worst-Case SHQ. We may also consider the worst-case version of the SHQ
problem: instead of searching for the uniform randomly chosen �α with constant
advantage, the worst-case SHQ problem is to find any instance �α ∈ Z

n
p . Formally,

we say that a generic algorithm A solves SHQ in the worst case within q queries,
if for any �α ∈ Z

n
p , AH(�α,·)(p, n) always outputs �α after at most q queries.

Example 1 (Brute-force solver). Here we exhibit a very simple, ‘brute-force’
SHQ solver. We identify Zp with {0, 1, . . . , p − 1}, and consider hyperplanes of
form Xi = j, where i = 1, . . . , n, and j = 1, . . . , p − 1. There are total n(p − 1)
such hyperplanes, and we see that non-adaptive hyperplane queries for these
q := n(p−1) hyperplanes are enough to correctly find any �α: let �α = (α1, . . . , αn).
For any i, if H(�α,Xi = j) = 1 for some j = 1, . . . , p − 1, then αi = j. On the
other hand, if H(�α,Xi = j) = 0 for all j = 1, . . . , p − 1, then clearly αi = 0. So
in this way the brute-force solver completely determines all coordinates of �α.

While the above brute-force solver looks very trivial, it turns out that it is
actually optimal, by Theorem 2 at Section 5.

4 Relationship Between the Two Problems

In this section, we show that MDL and SHQ are closely related, and any hardness
result for SHQ immediately produces a hardness result for MDL.

Theorem 1. Let A be any generic MDL solver which makes at most q queries.
Then, using A, it is possible to construct a SHQ solver B which makes at most
(q + n)(q + n + 1)/2 queries, and satisfying

Advshq
p,n(B) ≥ Advmdl

p,n(A).

Proof. We describe how B works. First B receives (p, n) as the input, and
B also has access to the oracle H(�α, ·), for a uniform randomly chosen �α =
(α1, . . . , αn) $← Z

n
p . For convenience, let us define α0 := 1. The solver B has to

simulate a random encoding ξ : Zp → {0, 1}t for A. To do this, B maintains two
sequences, {si}i and {Li}i, where si ∈ {0, 1}t are random bitstrings generated by
B and given to A as simulated output of the encoding function ξ, and Li are lin-
ear functions of form Li(X1, . . . , Xn) = a1X1 + · · ·+anXn +b ∈ Zp[X1, . . . , Xn].
The idea is to simulate the random encoding ξ, by pretending si = ξ(Li(�α)) for
(si, Li) ∈ T .

824 A. Yun

− Initialization: Here B prepares the simulation of the initial input to A: B

chooses s0
$← {0, 1}t, and defines L0 := 1. Next, B chooses s1, . . . , sn recur-

sively as follows: when choosing si, if there is some j < i with H(�α,Xi =
Xj) = 1 then B picks smallest such j and defines si := sj . Otherwise, B

chooses si
$← {0, 1}t \ {s0, . . . , si−1}. And, Li is defined as Xi. Let ctr be n.

Finally, B runs A(p, s0, s1, s2, . . . , sn).
− Queries: when A makes a query2 μ(b, si, sj) for some 0 ≤ i, j ≤ ctr and b ∈

{0, 1}, B increments ctr ← ctr+1, then defines sctr and Lctr as follows: Lctr

is simply defined as Li + (−1)bLj . Now, if there is k < ctr with H(�α, Lctr =
Lk) = 1, then B picks the smallest such k and defines sctr := sk. Otherwise,
B randomly picks sctr

$← {0, 1}t \ {s0, . . . , sctr−1}. Finally, B returns sctr as
the answer to the query.

− Output: eventually, A halts with output �β = (β1, . . . , βn) ∈ Z
n
p . B then also

outputs �β and halts.

Now, let us analyze the SHQ solver B. At the initialization phase, B can
choose si after making i hyperplane queries; so B makes 1+ · · ·+n = n(n+1)/2
hyperplane queries up to this point. Similarly, to determine sctr , B has to make
ctr hyperplane queries. In total, the number of hyperplane queries B makes is
bounded by

n(n + 1)
2

+
n+q∑

ctr=n+1

ctr =
n(n + 1)

2
+ nq +

q(q + 1)
2

=
n2 + n + q2 + q + 2nq

2

=
(q + n)(q + n + 1)

2
.

Next we have to show that

Advshq
p,n(B) ≥ Advmdl

p,n(A).

In fact, we will show that Advshq
p,n(B) = Advmdl

p,n(A). For this, we need only to
show that the simulated input (p, s0, s1, . . . , sn) given to A has the same distri-
bution as in the original generic MDL problem, and also the simulated group
law oracle has the same distribution as in the original generic MDL problem. Let
ξ : Zp → {0, 1}t be a random encoding, and let s′

i := ξ(αi) for i = 0, 1, . . . , n,
and let s′

n+1, s
′
n+2, . . . be the sequence of bitstrings which would be given as the

answers to the oracle queries made by A, when A is engaged in the real MDL
game with ξ. Finally, let αi := ξ−1(s′

i) for i = n + 1, n + 2, Then, we need
only to show the following: the random variables sctr and s′

ctr are identically
distributed for any ctr ∈ {1, . . . , q + n}, conditioned on the event that

si = s′
i and αi = Li(�α), for all i = 0, 1, 2, . . . , ctr − 1.

2 Here we may assume that μ never makes group law queries using bitstrings outside
of si, because B may ensure that A can guess bitstrings in ξ(Zp) only with negligible
probability, by sufficiently enlarging the bit length t.

Generic Hardness of the Multiple Discrete Logarithm Problem 825

Let us prove this only for ctr > n: the case for s0, . . . , sn can be done similarly.
Suppose that the group law query of A is μ(b, si, sj) when determining the
bitstring sctr . Then, s′

ctr is easy to compute: s′
i = ξ(αi), s′

j = ξ(αj), so s′
ctr =

ξ(αi +(−1)bαj). Also, αctr = ξ−1(s′
ctr) = αi +(−1)bαj = Li(�α)+ (−1)bLj(�α) =

(Li + (−1)bLj)(�α) = Lctr (�α). We need to compare this s′
ctr with sctr computed

by the algorithm B.

− When there is no k < ctr with H(�α, Lctr = Lk) = 1: in this case, we have
sctr

$← {0, 1}t \ {s0, . . . , sctr−1}. But, this means that Lctr (�α) 	= Lk(�α), that
is, αctr 	= αk for k = 0, . . . , ctr − 1. So s′

i = ξ(αctr) is uniformly distributed
on {0, 1}t \ {ξ(α0), . . . , ξ(αctr−1)}. Since si = s′

i = ξ(αi) by assumption, we
see that sctr and s′

ctr are identically distributed in this case.
− Otherwise: let k be the smallest index such that H(�α, Lctr = Lk) = 1. Then

sctr is defined to be sk. On the other hand, this means that Lctr (�α) = Lk(�α),
in other words αctr = αk, so s′

ctr = ξ(αctr) = ξ(αk) = s′
k. Since we have

sk = s′
k by assumption, we see that sctr and sk are in fact the same in this

case.

Hence, in both cases, we see that sctr and s′
ctr are identically distributed.

Therefore the theorem follows. ��

5 Query Complexity of the SHQ Problem

In this section, we analyze the complexity of the SHQ problem. In fact, we are
going to analyze both the worst-case version and the average-case version.

5.1 Useless Queries

One crucial notion that we are going to use is that of useless queries. Let us
define a hyperplane query H useless, if it is possible to know that the return
value H(�α,H) should be 1 before making the query, based on the return values
for the previous hyperplane queries made: for example, if the solver A previously
made a query H and received the answer H(�α,H) = 1, then making the same
query H again will definitely give the same answer 1. Another example is that,
if A previously made p − 1 queries X1 = j for j = 1, . . . , p − 1 and received
answer H(�α,X1 = j) = 0 for all j = 1, . . . , p − 1, then A can deduce that
H(�α,X1 = 0) = 1, so the hyperplane query X1 = 0 is useless. In general, suppose
so far A made q = r + s hyperplane queries H1, . . . , Hr, H ′

1, . . . , H
′
s, and assume

that H(�α,Hi) = 1 for i = 1, . . . , r, and H(�α,H ′
j) = 0 for j = 1, . . . , s. Then the

information given by the answers to the queries is exactly

�α ∈
r⋂

i=1

Hi \
s⋃

j=1

H ′
j .

Hence, we may formally define a hyperplane query H made at this point as
useless if

826 A. Yun

r⋂

i=1

Hi \
s⋃

j=1

H ′
j ⊆ H.

If a query H is not useless, we call it useful.
Note that it is possible to determine if H is useless or not algorithmically.

Since we only consider the query complexity of solvers, this does not even have
to be efficient.

Remark 3. While it is possible to extend the definition of useless queries to
include all queries which are destined to return 0 as the answer, we choose not
to. This is because later we want to force a solver to make exactly q useful
queries. So if a solver does not make enough queries, then we modify it to make
additional useful queries. In fact, we modify a solver to make additional queries
which are destined to return 0, which would all be useful according to our current
definition.

5.2 Worst-Case SHQ

Theorem 2. Any worst-case SHQ solver should make at least n(p − 1) queries.

Proof. Let A be a worst-case SHQ solver. We show that, without loss of gen-
erality, we may assume that A never asks useless queries. Suppose that A is a
solver which may ask useless queries. Then, we construct a solver B as follows:
B runs A internally, and eventually outputs A’s output. When A asks a hyper-
plane query H, B first determines if it is useless or not. If it is useless, then B
replies with 1. If it is useful, then B makes the same oracle query, receives the
answer bit b, and returns the same bit b to the solver A. So, B is a worst-case
SHQ solver which makes no more queries than A, and B also does not make any
useless queries. If we show this theorem for B, then the result for A immediately
follows.

Now, let A be a worst-case SHQ solver which never makes useless queries.
Suppose that A makes at most q queries, and q < n(p − 1). Let H1,H2, . . . , Hq

be the affine hyperplanes queried by A, represented by linear equations: let

Hi(X1, . . . , Xn) = ai1X1 + · · · + ainXn − bi.

Then we show that |∪q
i=1Hi| ≤ pn−2. First, we cannot have that |∪q

i=1Hi| =
pn; in this case, we have ∪q

i=1Hi = Z
n
p , so

Z
n
p \

q−1⋃

i=1

Hi ⊆ Hq,

which shows that the last query Hq is useless.
Next, suppose that |∪q

i=1 Hi| = pn −1. Let Zn
p \∪q

i=1Hi, which is a singleton,
be {�β = (β1, . . . , βn)}.

Generic Hardness of the Multiple Discrete Logarithm Problem 827

Then, we define F ∈ Zp[X1, . . . , Xn] as

F (X1, . . . , Xn) :=
q∏

i=1

(ai1(X1 + β1) + · · · + ain(Xn + βn) − bi) .

We can easily see that deg(F) = q < n(p − 1), F (�0) 	= 0, and F (�x) = 0
for any �x 	= �0, which contradicts Theorem 1.8 of Bruen [6], which we quote as
Theorem 3 below.

Therefore, whenever q < n(p − 1), there should be at least two points �β 	=
�γ ∈ Z

n
p which are not on ∪q

i=1Hi. This allows us to use the standard adversary
argument against A: for any such SHQ solver A, whenever A asks a hyperplane
query H, answer with 0. In the end, if A outputs �β, pretend that �α = �γ, and if
A outputs any point other than �β, pretend that �α = �β. This shows that A in
general does not solve the worst-case SHQ problem. Therefore, q should be at
least n(p − 1) if A is any worst-case SHQ solver. ��
Theorem 3 (Theorem 1.8 of [6]). Let F in Zp[X1, . . . , Xn] satisfy the fol-
lowing conditions.

1. F (�0) 	= 0
2. F (�x) = 0 if �x 	= �0

Then deg(F) ≥ n(p − 1).

For the proof of Theorem 3, we refer to [6].

5.3 Worst-Case SHQ with Uncertainty

Theorem 2 shows that the brute-force SHQ solver given in Example 1 is actually
optimal in that, if any algorithm A makes at most q < n(p − 1) queries, then
A is not a worst-case SHQ solver: there are instances where A cannot find the
correct answer.

Therefore, if an algorithm A makes at most q < n(p − 1) queries, then the
best A could do might be to output a list L which contains the correct solution
�α, instead of uniquely identifying the correct solution. For such an algorithm,
let us call |L| the uncertainty. We call an algorithm A as the worst-case SHQ
solver with uncertainty level u, if A always outputs a list L containing the correct
solution �α, and |L| ≤ u.

The solver in Example 1 can easily be modified to output such a list, even
when q < n(p − 1): let q = r(p − 1) + s for some r, s ∈ Z with 0 ≤ s < p − 1. the
solver makes r(p − 1) hyperplane queries of form H(�α,Xi = j) for i = 1, . . . , r,
j = 1, . . . , p − 1, to completely determine α1, . . . , αr, and makes additional s
queries of form H(�α,Xr+1 = j) for j = 1, . . . , s. If H(�α,Xr+1 = j) = 1 for some
j, then the brute-force solver knows α1, . . . , αr, αr+1, and so it outputs the list
L consisting of points (α1, . . . , αr+1, βr+2, . . . , βn), for (βr+2, . . . , βn) ∈ Z

n−r−1
p .

On the other hand, if none of the s queries return 0, then it outputs the list L
consisting of points

(α1, . . . , αr, γ, βr+2, . . . , βn),

828 A. Yun

where γ 	∈ {1, . . . , s} and (βr+2, . . . , βn) ∈ Z
n−r−1
p . Therefore, |L| ≤ (p −

s)pn−r−1 in both cases. So, the brute-force SHQ solver can be considered as
a worst-case SHQ solver with uncertainty level u = (p − s)pn−r−1. The question
is, can we find a SHQ solver with the same q but smaller uncertainty level?

We show that the brute-force solver is still optimal even in this context:

Theorem 4. Let A be a worst-case SHQ solver with uncertainty level u. Suppose
A makes at most q hyperplane queries, and let q = r(p−1)+s with 0 ≤ s < p−1.
Then, u should be at least (p − s)pn−r−1.

Proof. Again we may assume that A never makes useless queries. Let H1,H2, . . . ,
Hq be the affine hyperplanes queried by A, represented by linear equations: let

Hi(X1, . . . , Xn) = ai1X1 + · · · + ainXn − bi.

Then, we simply define F ∈ Zp[X1, . . . , Xn] as

F (X1, . . . , Xn) :=
q∏

i=1

Hi(X1, . . . , Xn).

Let Z(F) ⊆ Z
n
p be the set of �β ∈ Z

n
p such that F (�β) = 0. Clearly, Z(F) =

∪q
i=1Hi. Since A never makes useless queries, ∪q

i=1Hi 	= Z
n
p , as in Theorem 2.

Then, by Theorem 3.6 of Sorensen [13] which we quote as Theorem 5 below, we
have ∣

∣
∣
∣
∣

q⋃

i=1

Hi

∣
∣
∣
∣
∣
≤ pn − (p − s)pn−r−1.

Now, suppose that A is a solver with uncertainty level u < (p − s)pn−r−1.
Then, we can use the standard adversary argument as follows: for any query Hi of
A, reply with 0. Let L be the final output of A. Since |∪Hi| ≤ pn −(p−s)pn−r−1

and |L| < (p − s)pn−r−1, we have
∣
∣
∣
∣
∣
L ∪

q⋃

i=1

Hi

∣
∣
∣
∣
∣
< pn,

hence there exists some �α ∈ Z
n
p such that �α 	∈ L ∪ (∪iHi). This shows that with

respect to this particular �α, the answer 0 to all the queries was consistent, and
despite this �α 	∈ L, contradicting that A is a worst-case solver with uncertainty
level u. Therefore, for any such solver A, u should be at least (p − s)pn−r−1. ��

The proof of Theorem 4 relies on the following Theorem 5, which estimates
the number of rational points on codimension-1 algebraic sets.

Theorem 5 (Theorem 3.6 of [13]). Let F ∈ Zp[X1, . . . , Xn] be a polynomial
of degree q, with q ≤ n(p−1). Let q = r(p−1)+ s, 0 ≤ s < p−1, and let |Z(F)|
denote the number of zeros of F in Z

n
p . Then,

|Z(F)| = pn

or
|Z(F)| ≤ pn − (p − s)pn−r−1.

For the proof of Theorem 5, we refer to [13].

Generic Hardness of the Multiple Discrete Logarithm Problem 829

5.4 Average-Case SHQ

Now let us return to the average-case SHQ, which is related to MDL.

Theorem 6. Let A be any SHQ solver which makes at most q hyperplane queries.
Then,

Advshq
p,n(A) ≤ 1

pn

n∑

i=0

(
q

i

)

.

Proof. Let A be a SHQ solver which makes at most q hyperplane queries. We
are going to argue that we may safely assume that A satisfies certain properties.

First, using essentially the same argument as in Theorem 2, WLOG we may
assume that A never makes useless queries.

Second, we may also assume that A makes exactly q (useful) queries: if A is a
SHQ solver never making useless queries, then we define a SHQ solver B as follows:
B initializes a counter ctr ← 0, runs A internally, and whenever A makes a query
H, then B makes the same query, receives the answer bit b, then returns the bit b
to the solver A, and increments the counter: ctr ← ctr +1. Eventually, A will halt
with an output �α′. Since ctr counts the number of hyperplane queries made by A,
we have ctr ≤ q. Then B makes q − ctr additional hyperplane queries which are
not useless as follows: in case there was at least one hyperplane query H made by
A with 0 as the answer, all of the q − ctr remaining queries made by B will be H:
surely this query is not useless, for the answer should be 0. On the other hand, in
case there was at least one hyperplane query H made by A with 1 as the answer,
let us write H as H(X1, . . . , Xn) = a1X1 + · · · + anXn − b. Then, let H0 be the
corresponding linear hyperplane defined by H0(X1, . . . , Xn) = a1X1+· · ·+anXn.
Clearly, H0 	= Z

n
p , so there exists a vector�v ∈ Z

n
p satisfying�v 	∈ H0. In fact, we may

easily find such a �v: since (a1, . . . , an) 	= �0, WLOG we may assume a1 	= 0. Then,
�v := (a1, 0, 0, . . . , 0) is such an example. Now, let H ′ be the hyperplane H + �v,
which is a parallel translation of H by �v. We may show that H(�α,H ′) = 0: suppose
not, then �α ∈ H ′ = H + �v, and �α ∈ H by assumption. Then, from these two
we may conclude that �v ∈ H0, which contradicts the construction of �v. Therefore,
in this case B makes q − ctr queries, all of them H ′. Again these queries are not
useless. Finally, B halts with the answer �α′, which was the output of A.

By the construction, B makes exactly q useful queries, but since the output
of B is identical to that of A, we have Advshq

p,n(B) = Advshq
p,n(A). So, if we prove

this theorem for B, the theorem for A clearly follows.
Therefore, now assume that our SHQ solver A makes exactly q useful queries.

In general, A may be probabilistic, consuming finite but unbounded number of
random bits. Therefore, let us write AH(�α,·)(p, n;�r) as the output of the algo-
rithm A with input p, n, while having access to the oracle H(�α, ·) and when the
randomness used is �r = (r1, r2, r3, . . .) ∈ {0, 1}∞.

Then we observe that, once �α, �r, and the algorithm A are fixed, the queries
made by A and the corresponding answers are also fixed. More precisely, let
H1, . . . ,Hq be the hyperplane queries made by A with some fixed �α, �r, and let
b1, . . . , bq be the answer bits: bi = H(�α,Hi). Let us define �H := (H1, . . . , Hq) and

830 A. Yun

�b := (b1, . . . , bq). Then, in fact, we can see that A, �r, and �b completely determine
�H, and A, �r, and �α completely determine �b. So we use the following notation:
�H = H(A)

�r (�b), �b = B(A)
�r (�α). Sometimes we just write H(�b), B(�α) to simplify

notation, when the context is clear.
Moreover, we see that the output AH(�α,·)(p, n;�r) of the algorithm A is com-

pletely determined by A, �r, and the vector �b. So we may write AH(�α,·)(p, n;�r)
as A�r(�b). Again, sometimes we just write A(�b), suppressing �r. For a randomly
chosen �α, since the output A�r(�b) is determined by �b = B(�α), which is in turn
determined by �α, we may write AH(�α,·)(p, n;�r) = A(B(�α)).

Now, let us fix the randomness �r, and let us compute the advantage of A,
which is Pr[AH(�α,·)(p, n;�r) = �α], where the probability is only over the random
choice of �α. Here, to emphasize that it is a random variable, we used the bold
typeface to write �α. We then have

Pr[AH(�α,·)(p, n;�r) = �α] = Pr[A(B(�α)) = �α]

=
∑

�α

Pr[�α = �α] · Pr[A(B(�α)) = �α | �α = �α]

=
1
pn

∑

�α

Pr[A(B(�α)) = �α],

where �α is a random variable with uniform distribution on Z
n
p , and �α is used for

possible concrete values of �α. Note that Pr[A(B(�α)) = �α] should be either 0 or
1, for any �α, because all randomness is fixed: we have Pr[A(B(�α)) = �α] = 1 iff
A(B(�α)) = �α. Continuing,

Pr[AH(�α,·)(p, n;�r) = �α] =
1
pn

∑

�α

Pr[A(B(�α)) = �α],

=
1
pn

∑

�b

∑

�α:B(�α)=�b

Pr[A(B(�α)) = �α],

=
1
pn

∑

�b

∑

�α:B(�α)=�b

Pr[A(�b) = �α],

We can see that, in the above, for any �b,
∑

�α:B(�α)=�b

Pr[A(�b) = �α] ≤ 1,

where the sum is over all �α satisfying B(�α) = �b. Indeed, the only �α which can
possibly make Pr[A(�b) = �α] = 1 is �α = A(�b), so if B(A(�b)) = �b, then the above
value is 1, and if B(A(�b)) 	= �b then the above value is 0.

Generic Hardness of the Multiple Discrete Logarithm Problem 831

Therefore, we see that

Pr[AH(�α,·)(p, n;�r) = �α] ≤ 1
pn

∑

�b

1

=
the number of all possible �b’s

pn
.

Any �b = B(α) is a bitstring of length q, and moreover, in any such �b, 1 cannot
occur more than n times. This is because we assumed that the algorithm A never
makes useless queries; suppose H1, . . . , Hm are hyperplane queries made by A
with 1 as the answer. Then, all of these hyperplanes intersect (�α is on all of
them). Moreover, due to the fact that all these queries were useful, we have

H1 ∩ · · · ∩ Hi 	⊆ Hi+1,

for all i = 1, 2, . . . ,m − 1. But then each additional hyperplane should decre-
ment the dimension of the intersection by 1, so there can be at most n such
hyperplanes, and there can be at most n 1s in any �b. Hence we have,

Pr[AH(�α,·)(p, n;�r) = �α] ≤ 1
pn

n∑

i=0

(
q

i

)

.

Finally, the theorem is satisfied for general A, because when conditioned on
any randomness �r, the success probability is bounded by the same upper bound
p−n

∑n
i=0

(
q
i

)
. ��

Corollary 1. Let A be any SHQ solver which makes at most q hyperplane
queries. Then,

Advshq
p,n(A) ≤ 1

pn
+

1
2

(
eq

np

)n

.

Proof. The proof follows from Theorem 6 and the following Theorem 7. ��
Remark 4. If we write q as q = npδ for some δ, then Corollary 1 says that the
advantage of the solver A is bounded by p−n + (eδ)n/2. Since we assume that
n = o(p), certainly p−n ≤ n/p = o(1). Now we want to show that δ = Ω(1).
Suppose not. Then we may find an increasing sequence {λi} of values of the
parameter λ such that δ(λi) → 0 as i → 0. Then, eδ(λi) < 1 eventually, and
then (eδ(λi))n/2 ≤ eδ(λi)/2 → 0 as i → 0. Therefore, this contradicts that
A solves SHQ with constant advantage. This shows that if A solves SHQ with
constant advantage, then δ = q/np = Ω(1). In short, a SHQ solver with constant
advantage should make Ω(np) queries.

Theorem 7. We have
n∑

i=1

(
q

i

)

≤ 1
2

(eq

n

)n

for any positive integers q, n satisfying 1 ≤ n ≤ q.

The proof of Theorem 7 is in Appendix A.

832 A. Yun

6 Conclusion

6.1 Generic Hardness of MDL

By combining the results so far, we obtain the following corollary:

Corollary 2. Let A be any generic MDL solver which makes at most q queries.
Then,

Advmdl
p,n(A) ≤ 1

pn
+

1
2

(
e(q + n + 1)2

2np

)n

.

Proof. This follows directly from Theorem 1 and Corollary 1. ��
Let us write q =

√
npδ for some δ. Then, the upper bound of Advmdl

p,n(A) in
Corollary 2 can be expanded as

1
pn

+
1
2

(
e(

√
npδ + n + 1)2

2np

)n

=
1
pn

+
1
2

(
eδ2

2
+ eδ

√
n

p
+

eδ√
np

+
en

2p
+

e

p
+

e

2np

)n

.

Suppose that A solves MDL with constant advantage. Then we can see that
δ = Ω(1): suppose not, thenwemayassume thatwe canfindan increasing sequence
{λi} of values of the parameter λ such that δ(λi) → 0 as i → 0. Then, δ(λi) is
eventually bounded by

√
1/e, and since we assume that n = o(p), we have

eδ(λi)2

2
+ eδ(λi)

√
n(λi)
p(λi)

+
eδ(λi)√

n(λi)p(λi)
+

en(λi)
2p(λi)

+
e

p(λi)
+

e

2n(λi)p(λi)
→ 0,

as i → 0. Therefore,

1
p(λi)n(λi)

+
1
2

(
e(

√
n(λi)p(λi)δ + n(λi) + 1)2

2n(λi)p(λi)

)n

→ 0,

as i → 0, contradicting that A has constant advantage. Hence, we conclude that
δ = q/

√
np = Ω(1). Therefore, if a generic MDL solver has constant advantage,

then it should make Ω(
√

np) queries. This affirmatively settles Kuhn and Struik’s
conjecture [8].

6.2 Interval-MDL

We may also consider Interval-MDL, where instead of the exponents α1, . . . , αn

are chosen from the whole group Zp, they are chosen from an interval {0, 1, . . . , l−
1} ⊆ Zp of size l. For example, Boneh-Goh-Nissim homomorphic encryption [5]
requires solving DL for exponents chosen from such an interval, and Bernstein
and Lange [2] suggested preprocessing methods to speed up such computations.

Generic Hardness of the Multiple Discrete Logarithm Problem 833

We remark that with trivial modifications, all of our results (except those
about the worst-case SHQ problems) also apply to Interval-MDL and the corre-
sponding Interval-SHQ: in the upper bounds for advantages, simply replace the
group order p with the interval size l. For example, the bound in Corollary 2
becomes

1
ln

+
1
2

(
e(q + n + 1)2

2nl

)n

,

and a generic Interval-MDL solver with constant advantage should make Ω(
√

nl)
queries, assuming n = o(l). This is because our proof techniques, especially that
of Theorem 6, work equally well for the interval version. For that matter, the
size-l subset does not even have to be an interval: any subset of size l would do.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (No. 2011-0025127).

A Proof of Theorem 7

Before proving Theorem 7, we need a technical lemma:

Lemma 1. Suppose that q ≥ 5 and 2 ≤ n ≤ q − 3. Then,

q

n∑

i=1

(
q

i

)

≥ (n + 1)
n+1∑

i=1

(
q

i

)

. (1)

Proof. Letting S :=
∑n

i=1

(
q
i

)
, we may write the inequality (1) as

qS ≥ (n + 1)
(

S +
(

q

n + 1

))

. (2)

This can be simplified as

n + 1
q − n − 1

(
q

n + 1

)

≤ S. (3)

But,
n + 1

q − n − 1

(
q

n + 1

)

=
n + 1

q − n − 1
· q!
(n + 1)!(q − n − 1)!

=
q − n

q − n − 1
· q!
n!(q − n)!

=
q − n

q − n − 1

(
q

n

)

.

(4)

So, the inequality (1) is equivalent to
(

1 +
1

q − n − 1

)(
q

n

)

≤
n∑

i=1

(
q

i

)

, (5)

which in turn is equivalent to

834 A. Yun

1
q − n − 1

(
q

n

)

≤
n−1∑

i=1

(
q

i

)

. (6)

So let us prove this inequality (6).
Consider the function f(n) := (n − 1)(q − 1 − n). As a function of n, this

is a quadratic concave function with f(1) = f(q − 1) = 0. Since we assume
2 ≤ n ≤ q − 3, we have f(n) ≥ min(f(2), f(q − 3)). Since f(2) = q − 3 ≥ 2 and
f(q − 3) = 2(q − 4) ≥ 2, we have

(n − 1)(q − 1 − n) ≥ 2, (7)

for any n = 2, . . . , q − 3. Simple calculation shows that this is equivalent to

1
(q − n − 1)n

≤ 1
q − n + 1

. (8)

Then,

1
q − n − 1

(
q

n

)

=
1

(q − n − 1)n
· n

(
q

n

)

≤ 1
q − n + 1

· n

(
q

n

)

≤ n

q − n + 1
· q!
n!(q − n)!

=
q!

(n − 1)!(q − n + 1)!

=
(

q

n − 1

)

≤
n−1∑

i=1

(
q

i

)

.

(9)

��
Now we are ready to prove Theorem 7:

Theorem 7. We have
n∑

i=1

(
q

i

)

≤ 1
2

(eq

n

)n

(10)

for any positive integers q, n satisfying 1 ≤ n ≤ q.

Proof. The proof is based on case analysis. First, we prove the inequality when
q ≥ 5 and 1 ≤ n ≤ q − 2.

From Lemma 1, we have

q

n∑

i=1

(
q

i

)

≥ (n + 1)
n+1∑

i=1

(
q

i

)

, (11)

for q ≥ 5 and 2 ≤ n ≤ q − 3.
Then, since e ≥ (1 + 1/n)n, we have

eq

n∑

i=1

(
q

i

)

≥
(

1 +
1
n

)n

(n + 1)
n+1∑

i=1

(
q

i

)

, (12)

Generic Hardness of the Multiple Discrete Logarithm Problem 835

which is equivalent to
(

n

eq

)n n∑

i=1

(
q

i

)

≥
(

n + 1
eq

)n+1 n+1∑

i=1

(
q

i

)

. (13)

Also, when n = 1, the above inequality (13) is

1
eq

(
q

1

)

≥
(

2
eq

)2 2∑

i=1

(
q

i

)

, (14)

which is equivalent to
e

2
≥ 1 +

1
q
, (15)

which is certainly satisfied when q ≥ 5. So,
(

n

eq

)n n∑

i=1

(
q

i

)

(16)

is a decreasing function for n ∈ {1, 2, . . . , q−2}. Then, for any n = 1, 2, . . . , q−2,
we have (

n

eq

)n n∑

i=1

(
q

i

)

≤
(

1
eq

)1 1∑

i=1

(
q

i

)

=
1
e

≤ 1
2
, (17)

proving the inequality (10) when q ≥ 5 and 1 ≤ n ≤ q − 2.
Therefore, we need to handle the remaining cases: when q ≤ 4, or when

n = q − 1, q.

− Case n = q: Then the inequality (10) is equivalent to

2q − 1 ≤ 1
2

(
eq

q

)q

=
eq

2
. (18)

This holds when 2q ≤ eq/2, which can be written as q/(q + 1) ≥ log 2 ≈
0.693 · · · . So this inequality holds when q ≥ 3; then q/(q +1) ≥ 0.75 > log 2.
We can also check that 2q − 1 ≤ eq/2 holds for q = 1, 2 separately.

− Case n = q − 1: Then the inequality (10) is equivalent to

2q − 2 ≤
(

q

q − 1

)q−1
eq−1

2
. (19)

Since the right-hand side is greater than eq−1/2, the inequality is satisfied if
2q −2 ≤ eq−1/2. First, we can check that 2q ≤ eq−1/2 holds if q ≥ 6. And we
can also separately check the inequality (19) for q = 2, . . . , 5. This finishes
this case.

− Case q ≤ 4: Here, we need only to show that the inequality (10) holds when
n = 1 or 2 (of course when n ≤ q). This is because, when q = 1, 2, then
n = 1, 2 cases cover all possibilities. Also, when q = 3, 4, then n = 1, 2, and
n = q − 1, q cases cover all possibilities. Hence,

836 A. Yun

− Case n = 1: Then the inequality (10) is equivalent to

q ≤ 1
2

(eq

1

)
, (20)

which holds trivially, since e ≥ 2.
− Case n = 2: Then the inequality (10) is equivalent to

q +
q(q − 1)

2
=

q(q + 1)
2

≤ 1
2

(eq

2

)2

. (21)

Simplifying, we get
1
q

≤ e2

4
− 1 ≈ 0.847 · · · , (22)

which holds for q ≥ 2. ��

References

1. Digital signature standard (DSS). NIST (National Institute of Standards and Tech-
nology) FIPS, 186–4 (2013)

2. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. In: Gal-
braith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–338.
Springer, Heidelberg (2012)

3. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

6. Bruen, A.A.: Polynomial multiplicities over finite fields and intersection sets. Jour-
nal of Combinatorial Theory, Series A 60(1), 19–33 (1992)

7. Hitchcock, Y., Montague, P., Carter, G., Dawson, E.: The efficiency of solving
multiple discrete logarithm problems and the implications for the security of fixed
elliptic curves. International Journal of Information Security 3(2), 86–98 (2004)

8. Kuhn, F., Struik, R.: Random walks revisited: Extensions of Pollard’s Rho algo-
rithm for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, p. 212. Springer, Heidelberg (2001)

9. Lee, H.T., Cheon, J.H., Hong, J.: Accelerating ID-based encryption based on
trapdoor DL using pre-computation. Cryptology ePrint Archive, Report 2011/187
(2011). http://eprint.iacr.org/2011/187

10. Maurer, U.M., Yacobi, Y.: A non-interactive public-key distribution system.
Designs, Codes and Cryptography 9(3), 305–316 (1996)

11. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2), 165–172 (1994)

12. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

13. Sørensen, A.B.: On the number of rational points on codimension-1 algebraic sets
in Pn(Fq). Discrete Mathematics 135(1–3), 321–334 (1994)

http://eprint.iacr.org/2011/187

Author Index

Abdalla, Michel II-69
Abdelraheem, Mohamed Ahmed I-762
Abe, Masayuki II-35
Afshar, Arash I-702
Agrawal, Shashank II-501
Agrawal, Shweta II-501
Albrecht, Martin R. I-430
Asharov, Gilad I-673

Balasch, Josep I-486
Barbulescu, Razvan I-129
Bar-On, Achiya I-315
Barthe, Gilles I-457, II-689
Beelen, Peter I-762
Belaïd, Sonia I-457
Bellare, Mihir II-627
Benhamouda, Fabrice II-69
Bernstein, Daniel J. I-368
Bogdanov, Andrey I-762
Boneh, Dan II-404, II-563
Boyle, Elette II-337

Canteaut, Anne I-45
Chase, Melissa II-532
Chen, Jie II-595
Cheon, Jung Hee I-3, I-513
Chiesa, Alessandro II-371
Cogliati, Benoît I-584
Cramer, Ronald II-313
Crespo, Juan Manuel II-689

Dachman-Soled, Dana II-131
Dagdelen, Özgür II-719
Damgård, Ivan Bjerre II-313
Ding, Jintai II-719
Dinur, Itai I-231, I-315, I-733
Dodis, Yevgeniy I-101
Döttling, Nico II-313
Duc, Alexandre I-173, I-401
Ducas, Léo I-617
Dunkelman, Orr I-315
Dupressoir, François I-457
Dziembowski, Stefan II-159

Evans, David II-220

Faust, Sebastian I-401, I-486, II-159
Fehr, Serge II-313
Fouque, Pierre-Alain I-457
Frederiksen, Tore Kasper II-191

Ganesh, Chaya I-101
Garay, Juan II-281
Gaudry, Pierrick I-129
Gay, Romain II-595
Gierlichs, Benedikt I-486
Gilboa, Niv II-337
Golovnev, Alexander I-101
Grégoire, Benjamin I-457
Groth, Jens II-253
Guillevic, Aurore I-129
Gupta, Divya II-404

Halevi, Shai I-641
Han, Kyoohyung I-3
Hoang, Viet Tung I-15, II-627
Hohenberger, Susan II-3
Hopwood, Daira I-368
Hu, Zhangxiang I-702
Hülsing, Andreas I-368

Ishai, Yuval II-337

Jia, Dingding I-559
Juels, Ari I-101

Keller, Nathan I-315
Kiayias, Aggelos II-281, II-468
Kiltz, Eike II-101
Kohlweiss, Markulf II-35, II-253
Koppula, Venkata II-3
Krovetz, Ted I-15
Kurosawa, Kaoru I-537

Lakhnech, Yassine II-689
Lallemand, Virginie I-315

Lange, Tanja I-368
Leander, Gregor I-254
Lee, Changmin I-3
Leonardos, Nikos II-281
Leurent, Gaëtan I-345
Lewi, Kevin II-563
Li, Bao I-559
Lindell, Yehuda I-673
Liu, Feng-Hao II-131
Liu, Yi-Kai II-785
Lu, Xianhui I-559
Lyubashevsky, Vadim I-789

May, Alexander I-203
Micciancio, Daniele I-617
Minaud, Brice I-254
Mironov, Ilya II-404, II-657
Mohassel, Payman I-702
Morain, François I-129
Morawiecki, Paweł I-733

Niederhagen, Ruben I-368
Nielsen, Jesper Buus II-191
Nuida, Koji I-537

Ohkubo, Miyako II-35
Orlandi, Claudio II-191
Ostrovsky, Rafail II-532
Ozerov, Ilya I-203

Papachristodoulou, Louiza I-368
Pieprzyk, Josef I-733
Pierrot, Cécile I-156
Pointcheval, David II-69
Prabhakaran, Manoj II-501
Prest, Thomas I-789

Raykova, Mariana II-563
Rechberger, Christian I-430
Ristenpart, Thomas I-101
Rogaway, Phillip I-15
Rønjom, Sondre I-254
Rosulek, Mike I-702, II-220
Roué, Joëlle I-45
Ryu, Hansol I-3

Sahai, Amit II-404, II-563
Schmidt, Benedikt II-689

Schneider, Michael I-368
Schneider, Thomas I-430, I-673
Schwabe, Peter I-368
Seurin, Yannick I-584
Shoup, Victor I-641
Shrimpton, Thomas I-77
Skorski, Maciej II-159
Snook, Michael II-719
Spini, Gabriele II-313
Srebrny, Marian I-733
Standaert, François-Xavier I-401
Stehlé, Damien I-3, I-513
Stephens-Davidowitz, Noah II-657
Straus, Michał I-733
Strub, Pierre-Yves I-457

Terashima, R. Seth I-77
Tibouchi, Mehdi II-35
Tiessen, Tyge I-430
Tischhauser, Elmar I-762
Todo, Yosuke I-287
Tramèr, Florian I-173
Tromer, Eran II-371
Tsaban, Boaz I-315

Unruh, Dominique II-755

Vaudenay, Serge I-173
Virza, Madars II-371
Visconti, Ivan II-532

Wang, Lei I-345
Waters, Brent II-3
Wee, Hoeteck II-101, II-595
Wilcox-O’Hearn, Zooko I-368

Yun, Aaram II-817

Zacharias, Thomas II-468
Zahur, Samee II-220
Zhandry, Mark II-563
Zhang, Bingsheng II-468
Zhang, Jiang II-719
Zhang, Zhenfeng II-719
Zhou, Hong-Sheng II-131
Zimmerman, Joe II-439, II-563
Zohner, Michael I-430, I-673

838 Author Index

	Preface
	EUROCRYPT 2015
	Contents – Part II, Track I
	Contents – Part I, Track R
	Signatures
	Universal Signature Aggregators
	1 Introduction
	1.1 Summary of Our Results

	2 Preliminaries
	2.1 Notations
	2.2 Admissible Hash Functions
	2.3 Signature Schemes
	2.4 Additively Homomorphic Encryption
	2.5 Obfuscation
	2.6 Puncturable Pseudorandom Functions
	2.7 Universal Parameters
	2.8 RSA Assumption

	3 Universal Signature Aggregators
	3.1 Security of Universal Signature Aggregators

	4 Universally Aggregating Unique Signatures
	4.1 Proof of Security

	5 Universal Aggregation of Arbitrary Signatures Using VBB Obfuscation
	5.1 Proof of Security

	6 Universal Aggregation of Arbitrary Signatures from iO in the Random Oracle Model
	6.1 Proof of Security

	References

	Fully Structure-Preserving Signatures and Shrinking Commitments
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Bilinear Groups
	2.3 Digital Signatures

	3 Building Blocks
	3.1 Common Setup Function
	3.2 Partially One-Time Signatures
	3.3 xRMA-Secure Fully Structure-Preserving Signature Scheme

	4 Trapdoor Commitment Schemes
	4.1 Definitions
	4.2 -Binding Commitment Scheme
	4.3 Structure-Preserving Shrinking Trapdoor Commitment Scheme

	5 Fully Structure-Preserving Signatures
	5.1 Warm-Up: Based on One-Time Signatures
	5.2 Main Construction Based on Shrinking Trapdoor Commitments
	5.3 Efficiency
	5.4 Lower Bound on Signature Size and Verification Key Size

	References

	Zero-Knowledge Proofs
	Disjunctions for Hash Proof Systems: New Constructions and Applications
	1 Introduction
	1.1 Results
	1.2 Organization

	2 Overview of Our Constructions
	2.1 Disjunction of Languages
	2.2 Main Application: One-Time Simulation-Sound NIZK Arguments
	2.3 Other Applications
	2.4 Pseudo-Random Projective Hash Functions and More Efficient Applications

	3 Preliminaries
	3.1 Notation
	3.2 Definition of SPHF
	3.3 Hard Subset Membership Languages
	3.4 Bilinear Groups, Graded Rings and Assumptions

	4 Smooth Projective Hash Functions for Disjunctions
	4.1 Generic Framework and Diverse Vector Spaces
	4.2 Disjunctions of SPHFs

	5 One-Time Simulation-Sound NIZK from Disjunctions of SPHFs
	5.1 NIZK from Disjunctions of SPHFs
	5.2 2-Smooth Projective Hash Functions
	5.3 One-Time Simulation-Sound Zero-Knowledge Arguments from SPHF
	5.4 Concrete Instantiation
	5.5 Application: Threshold Cramer-Shoup-like Encryption Scheme

	6 Pseudo-Random Projective Hash Functions and Disjunctions
	6.1 Pseudo-Randomness
	6.2 Canonical PrPHF under k-Lin
	6.3 Disjunction of an SPHF and a PrPHF

	7 One-Time Simulation-Sound NIZK from Disjunctions of an SPHF and a PrPHF
	7.1 NIZK from Disjunctions of an SPHF and a PrPHF
	7.2 One-Time Simulation-Sound NIZK
	7.3 Concrete Instantiation and Comparison with Previous Work
	7.4 Application: Threshold Cramer-Shoup-like Encryption Scheme (Variant)

	References

	Quasi-Adaptive NIZK for Linear Subspaces Revisited
	1 Introduction
	1.1 Our Results and Techniques: QANIZK
	1.2 Extension: Linearly Homomorphic Structure Preserving Signatures
	1.3 Discussion

	2 Definitions
	2.1 Pairing Groups
	2.2 Matrix Diffie-Hellman Assumption
	2.3 Quasi-Adaptive Non-Interactive Zero-Knowledge
	2.4 Linearly Homomorphic Structure-Preserving Signatures

	3 Quasi-Adaptive Zero Knowledge for Linear Spaces
	3.1 Simple QANIZK with Adaptive Soundness
	3.2 More Efficient QANIZK with Adaptive Soundness for WS Distributions
	3.3 Simple QANIZK with Adaptive One-Time Simulation Soundness

	4 QANIZK with Unbounded Simulation Soundness for WS Distributions
	4.1 Computational Core Lemma
	4.2 Our QANIZK Construction

	5 Linearly Homomorphic Structure-Preserving Signatures
	A Appendix
	A.1 More Efficient QANIZK with One-Time Simulation Soundness for WS Distributions
	A.2 One-Time Linearly Homomorphic Structure-Preserving Signatures

	References

	Leakage-Resilient Cryptography
	Leakage-Resilient Circuits Revisited -- Optimal Number of Computing Components Without Leak-Free Hardware
	1 Introduction
	1.1 Our Results
	1.2 Connections with Multi-Party Computation
	1.3 Techniques
	1.4 Related Work

	2 Two-Component OCL Schemes and Hardware Replacement Theorem
	2.1 Security Model

	3 How to Implement Simple Functionalities
	3.1 Ideal Functionality
	3.2 Building Blocks
	3.3 Our Construction

	4 Hardwares in JV and DF Schemes
	4.1 Sampling Distribution for the Juma-Vahlis Compiler
	4.2 Sampling Distribution for the Dziembowski-Faust Compiler

	5 Extension: Multi-component OCL Schemes
	References

	Noisy Leakage Revisited
	1 Introduction
	1.1 Our Contribution
	1.2 Other Related Works

	2 Preliminaries
	3 Previous Noisy Leakage Models
	4 Useful Facts About the Prouff and Rivain Noise Model
	5 Epsilon-Average Probing Model
	5.1 Connection to the Noisy Leakage

	6 Applications of the Average Probing Model
	6.1 Security of the Additive Masking
	6.2 Security of the ISW Compiler with Leak-Free Gates

	References

	Garbled Circuits
	Privacy-Free Garbled Circuits with Applications to Efficient Zero-Knowledge
	1 Introduction
	1.1 Other Garbling Schemes
	1.2 Our Contributions
	1.3 Overview of Our Schemes
	1.4 Efficiency Improvements

	2 Preliminaries and Definitions
	2.1 Notation
	2.2 Defining Our Garbling Scheme
	2.3 Key Derivation Function

	3 Our Privacy-Free Garbling Schemes
	3.1 Warm-Up
	3.2 Generalization Intuition
	3.3 Formal Specification
	3.4 Security

	4 Privacy-Free FleXOR
	References

	Two Halves Make a Whole
	1 Introduction
	1.1 Background
	1.2 Our Contributions

	2 Preliminaries
	3 Half-Gates Garbling Scheme
	3.1 Approach
	3.2 Details of Our Scheme

	4 Security
	4.1 Circular Correlation Robustness for Naturally Derived Keys
	4.2 Proof of Privacy and Obliviousness
	4.3 Obtaining Authenticity

	5 Performance Comparison
	6 Privacy-Free Garbling
	7 Lower Bounds on Garbled Circuits
	7.1 Basic Methodology
	7.2 Linear Garbling Schemes
	7.3 Lower Bound

	References
	A Linear Garbling Schemes

	Crypto Currencies
	One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin
	1 Introduction
	1.1 Our Contribution
	1.2 Applications to Ring Signatures and Zerocoin
	1.3 Related Work

	2 Preliminaries
	2.1 Homomorphic Commitment Schemes
	2.2 -Protocols
	2.3 -Protocol for Commitment to 0 or 1

	3 -Protocol for One Out of N Commitments Containing 0
	4 Ring Signature
	4.1 Definitions
	4.2 Construction

	5 Zerocoin
	5.1 Definition
	5.2 Construction

	References

	The Bitcoin Backbone Protocol: Analysis and Applications
	1 Introduction
	2 Model and Definitions
	3 The Bitcoin Backbone Protocol
	3.1 The Backbone Protocol
	3.2 (Desired) Properties of the Backbone Protocol

	4 Analysis of the Bitcoin Backbone
	5 Applications
	5.1 Robust Public Transaction Ledgers
	5.2 Byzantine Agreement for Honest Majority

	6 Summary and Directions for Future Work
	References

	Secret Sharing
	Linear Secret Sharing Schemes from ErrorCorrecting Codes and Universal Hash Functions
	1 Introduction
	1.1 Applications

	2 Preliminaries
	2.1 Probability
	2.2 Universal Hashing
	2.3 Error Correcting Codes
	2.4 Secret Sharing Schemes

	3 Subspace Surjectivity of Linear Universal HashFunctions
	4 Linear Secret Sharing Schemes from Codes andUniversal Hash Functions
	5 Linear Time Sharing and Reconstruction
	6 Robust Secret Sharing with Constant Size Shares
	6.1 Formal Definitions and Building Blocks
	6.2 The Construction

	References

	Function Secret Sharing
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Function Secret Sharing
	2.1 Preliminaries

	3 New Constructions
	3.1 Point Functions
	3.2 Supporting New Function Classes
	3.3 General FSS from Obfuscation

	4 Relation to Other Primitives
	4.1 Key Functions Are Pseudorandom Functions
	4.2 Barriers Toward FSS for Expressive Function Classes
	4.3 Bootstrapping with Fully Homomorphic Encryption

	References

	Outsourcing Computations
	Cluster Computing in Zero Knowledge
	1 Introduction
	1.1 Motivation
	1.2 Our Focus: MapReduce
	1.3 Our Contributions
	1.4 Prior Work
	1.5 Summary of Challenges and Techniques

	2 Preliminaries
	2.1 Commitments
	2.2 Merkle Trees
	2.3 MapReduce

	3 Definition of Distributed zk-SNARKs for MapReduce
	3.1 Non-distributed zk-SNARKs for MapReduce
	3.2 Distributed zk-SNARKs for MapReduce

	4 Definition of Multi-predicate PCD
	5 Step II: from Multi-predicate PCD to Distributed zk-SNARKs
	5.1 Compliance Engineering for MapReduce
	5.2 Construction of Distributed zk-SNARKs for MapReduce

	6 Step I: Construction of Multi-predicate PCD
	6.1 Arithmetic Circuits and Preprocessing zk-SNARKs
	6.2 Review of the [8] Construction
	6.3 Overview of Our Construction
	6.4 Details of Our Construction

	7 Implementation
	8 Evaluation
	References

	Hosting Services on an Untrusted Cloud
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Prelims
	2.1 Public Key Encryption Scheme
	2.2 Indistinguishability Obfuscation
	2.3 Puncturable PRF
	2.4 Statistical Simulation-Sound Non-Interactive Zero-Knowledge
	2.5 Cover-Free Set Systems and Authentication Schemes

	3 Secure Cloud Service Scheme (SCSS) Model
	3.1 Additional Properties
	3.2 Secure Cloud Service Scheme with Cloud Inputs

	4 Our Secure Cloud Service Scheme
	4.1 Security Proof

	5 Our Secure Cloud Service Scheme with Cloud Inputs
	References

	Obfuscation and E-Voting
	How to Obfuscate Programs Directly
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Conventions
	2.2 Oblivious Computation and the ``Mux'' Operation
	2.3 Straight-Line Programs (Arithmetic Circuits)
	2.4 Keyed Programs
	2.5 Composite-Order Multilinear Maps
	2.6 The Generic Multilinear Map Model
	2.7 ``Noisy'' and ``Clean'' Multilinear Maps
	2.8 Instantiation of Composite-Order Multilinear Maps
	2.9 Program Obfuscation
	2.10 Keyed and Succinct Obfuscation
	2.11 Straddling Sets

	3 Construction
	3.1 Main Theorems

	4 Performance Analysis
	5 Conclusions and Open Problems
	References

	End-to-End Verifiable Elections in the Standard Model
	1 Introduction
	2 E-voting Systems
	2.1 Preliminaries
	2.2 Syntax and Correctness
	2.3 E2E Verifiability
	2.4 Voter Privacy (including Receipt-Freeness)

	3 Presentation of Our e-Voting System
	3.1 Perfectly Binding Commitment
	3.2 Schwartz-Zippel (min-entropy variant)
	3.3 A Protocol for Candidate Encoding Correctness
	3.4 Producing the Verifier's Challenges
	3.5 Description of our e-Voting System
	3.6 Correctness of Our e-Voting System
	3.7 Example of Our e-Voting System

	4 Security of Our e-Voting System
	4.1 E2E Verifiability of Our e-Voting System
	4.2 Voter Privacy/Receipt Freeness of Our e-Voting System

	References

	Multi-Party Computations
	Cryptographic Agents: Towards a Unified Theory of Computing on Encrypted Data
	1 Introduction
	2 Preliminaries
	3 Defining Cryptographic Agents
	4 Reductions and Compositions
	5 Restricted Test Families: , * and det
	6 Generic Group Schema
	7 Obfuscation Schema
	8 Functional Encryption
	8.1 Functional Encryption Without Function Hiding
	8.2 Function-Hiding Functional Encryption

	9 Fully Homomorphic Encryption
	10 On Bypassing Impossibilities
	References

	Executable Proofs, Input-Size Hiding Secure Computation and a New Ideal World
	1 Introduction
	1.1 A Case Study: Hiding the Input Size
	1.2 Limitations of the Real/Ideal-World Paradigm in the Input-Size Hiding Setting
	1.3 A New Ideal World
	1.4 Constructing Input-Size Hiding Under the New Definition
	1.5 Short Summary of Our Results
	1.6 Discussion
	1.7 Open Problems and Future Work

	2 Secure 2-Party Computation and Proofs of Work
	2.1 Input-Size Hiding and Proofs of Polynomial Work
	2.2 Our New Definition: A New Ideal World

	3 Realizing Input-Size Hiding Secure 2-Party Computation
	3.1 High-Level Overview of the Protocol
	3.2 Our Protocol for Input-Size Hiding Secure 2PC

	References

	Encryption
	Semantically Secure Order-Revealing Encryption: Multi-input Functional Encryption Without Obfuscation
	1 Introduction
	1.1 Order-Revealing Encryption
	1.2 Order Revealing Encryption: Our Construction
	1.3 Other Related Work

	2 Preliminaries
	2.1 Conventions
	2.2 Matrix Branching Programs (MBPs)
	2.3 Randomized Matrix Branching Programs
	2.4 Multilinear Maps
	2.5 Exclusive Partition Families

	3 Secret-Key Multi-Input Functional Encryption (SK-MIFE)
	3.1 Definitions

	4 Our 1SK-MIFE Construction
	4.1 Security Proof
	4.2 Proof of Theorem 4.5

	5 Extensions
	6 Conclusions

	Improved Dual System ABE in Prime-Order Groups via Predicate Encodings
	1 Introduction
	1.1 Our Contributions
	1.2 Discussion

	2 Preliminaries
	2.1 Attribute-Based Encryption

	3 Dual System Groups
	3.1 Overview
	3.2 Definitions

	4 Instantiations of DSG from k-Lin
	4.1 Cryptographic Assumptions
	4.2 Construction

	5 Predicate Encodings
	6 ABE from Dual System Groups and Predicate Encodings
	6.1 Construction
	6.2 Proof of Security

	7 Extension to Weakly Attribute-Hiding
	7.1 Security Definition
	7.2 Attribute-Hiding Encodings
	7.3 Attribute-Hiding Dual System Groups
	7.4 Weakly Attribute-Hiding PE

	References

	Resistant Protocols
	Resisting Randomness Subversion: Fast Deterministic and Hedged Public-Key Encryption in the Standard Model
	1 Introduction
	2 Preliminaries
	3 Efficient, Fully IND Secure D-PKE
	4 Fully Secure Hedged PKE
	5 Efficiency and Comparisons with Prior Schemes
	6 Unique-Ciphertext PKE
	References

	Cryptographic Reverse Firewalls
	1 Introduction
	1.1 Related Work

	2 Cryptographic Reverse Firewalls
	2.1 Cryptographic protocols
	2.2 Cryptographic Reverse Firewalls
	2.3 Discussion of the Definitions

	3 Oblivious Transfer
	4 Private Function Evaluation
	4.1 A Rerandomizable Garbled Circuit
	4.2 PFE from Garbled Circuits and OT
	4.3 Reverse Firewalls for PFE

	5 A Generic Construction for Strong Exfiltration Resistance Against Eavesdroppers
	6 Conclusion and Directions for Future Work
	A Groups and Hardness Assumptions
	References

	Key Exchange
	Mind the Gap: Modular Machine-Checked Proofs of One-Round Key Exchange Protocols
	1 Introduction
	2 Background
	2.1 Notation
	2.2 One-Round Authenticated Key Exchange Protocols
	2.3 EasyCrypt

	3 Model and Generic Proof
	3.1 eCKkr Security and eCKnkr Security
	3.2 Generic Proof

	4 Trapdoor Test, Twin DH, and (S)CDH
	5 Case Studies
	5.1 Proofs for Naxos and Naxos+
	5.2 Proofs for Nets

	6 Protocols Without Naxos Trick
	6.1 Model and Generic Proof
	6.2 eCKkr-security of mHMQV Under the Gap-CDH Assumption

	A Proofs For Twin DH and (S)CDH
	References

	Authenticated Key Exchange from Ideal Lattices
	1 Introduction
	1.1 Our Contribution
	1.2 Techniques, and Relation to HMQV
	1.3 Related Work, Comparison and Discussion
	1.4 On the Quantum Hardness of Our AKE Protocol

	2 Preliminaries
	2.1 Notation
	2.2 Security Model for AKE
	2.3 The Gaussian Distributions and Rejection Sampling
	2.4 Ring Learning with Errors

	3 Authenticated Key Exchange from Ring-LWE
	3.1 The Protocol
	3.2 Correctness

	4 Security
	5 One-Pass Protocol from Ring-LWE
	6 Concrete Parameters and Timings
	7 Conclusions and Open Problems
	References

	Quantum Cryptography
	Non-Interactive Zero-Knowledge Proofs in the Quantum Random Oracle Model
	1 Introduction
	1.1 Preliminaries

	2 Security Notions
	2.1 Non-Interactive Proof Systems
	2.2 Sigma Protocols
	2.3 Random Oracle Programming

	3 Online-Extractable NIZK Proofs
	3.1 Zero-Knowledge
	3.2 Online Extractability

	4 Signatures
	A Sigma-Protocols with Oblivious Commitments
	References

	Privacy Amplification in the Isolated Qubits Model
	1 Introduction
	1.1 Privacy Amplification
	1.2 Beyond the Isolated Qubits Model
	1.3 Discussion

	2 Preliminaries
	2.1 Notation, -nets
	2.2 Quantum Measurements
	2.3 LOCC and Separable Measurements
	2.4 Smoothed Min-entropy
	2.5 Leaky String-OTM's
	2.6 Ideal Bit-OTM's
	2.7 t-Wise Independent Hash Functions

	3 Privacy Amplification for One-Time Memories Using Isolated Qubits
	3.1 Overview of the Proof
	3.2 Security at a Single Point M
	3.3 Constructing an -net
	3.4 Continuity Arguments

	4 Beyond the Isolated Qubits Model
	4.1 Overview of the Proof
	4.2 Constructing an -net

	References

	Discrete Logarithms
	Generic Hardness of the Multiple Discrete Logarithm Problem
	1 Introduction
	2 Multiple Discrete Logarithm Problem in the Generic Group Model
	2.1 Generic Group Model
	2.2 Multiple Discrete Logarithm Problem

	3 Search-by-Hyperplane-Queries Problem
	4 Relationship Between the Two Problems
	5 Query Complexity of the SHQ Problem
	5.1 Useless Queries
	5.2 Worst-Case SHQ
	5.3 Worst-Case SHQ with Uncertainty
	5.4 Average-Case SHQ

	6 Conclusion
	6.1 Generic Hardness of MDL
	6.2 Interval-MDL

	A Proof of Theorem 7
	References

	Author Index

