
KDM-CCA Security from RKA Secure
Authenticated Encryption

Xianhui Lu1,2(B), Bao Li1,2, and Dingding Jia1,2

1 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing 10093, China

2 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{xhlu,lb,ddj}@is.ac.cn

Abstract. We propose an efficient public key encryption scheme which
is key-dependent message secure against chosen ciphertext attacks
(KDM-CCA) with respect to affine functions based on the decisional
composite residuosity assumption. Technically, we achieve KDM-CCA
security by enhancing a chosen ciphertext secure scheme based on the
high entropy hash proof system with three tools: a key-dependent mes-
sage encoding, an entropy filter and an authenticated encryption secure
against related-key attacks.
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1 Introduction

An encryption scheme is key-dependent message (KDM) secure if it is secure
even when the adversary can access encryptions of messages that depend on
the secret key. Due to its extensive usefulness in cryptographic protocol design
and analysis [16,23], hard disk encryption[19] and fully homomorphic public key
encryption [28], KDM security was widely studied in recent years [2–4,7,8,11,
17,19–21,31,32,34,40].

Although the construction of KDM secure schemes in the random oracle
model is very easy [6,16,23], in the standard model it remained an open problem
until Boneh et al. [19] proposed the first construction. The main idea of Boneh
et al.’s scheme is to construct key-dependent encryptions without knowing the
private key. When considering the case of KDM-CCA, unfortunately, Boneh et
al.’s approach causes a direct attack: an adversary can construct an encryption
of the private key, submit it to the decryption oracle and obtain the private key.
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Since the plaintexts may depend on the private key, existing techniques to
achieve IND-CCA2 (Indistinguishability security against adaptive chosen cipher-
text attacks) security in the standard model can not be used to construct KDM-
CCA secure schemes directly. Camenisch, Chandran and Shoup [22] modified the
Naor-Yung double encryption paradigm [41], and showed that one can combine a
KDM-CPA (Key-dependent message security against chosen plaintext attacks)
secure scheme with an IND-CCA2 secure scheme, along with an appropriate
non-interactive zero-knowledge (NIZK) proof, to obtain a KDM-CCA secure
scheme.

To construct practical KDM-CCA secure public key encryption (PKE)
schemes, a direct solution is to replace the generic inefficient NIZK proof sys-
tem by the hash proof system in [25]. Unfortunately, when the adversary can
get encryptions of the private key of the hash proof system, the entropy of the
private key will be leaked completely. To solve this problem, Hofheinz [33] pro-
posed a “twice encryption” construction, in which the algorithm of the hash
proof system shares the same private key with the encryption algorithm and
two random coins are used: one for encryption and the other for hash proof. To
prevent the adversary from generating valid ciphertexts of key-dependent mes-
sages, Hofheinz [33] added an authentication tag, constructed by embedding the
plaintext into an encrypted LAF (Lossy Algebraic Filter), to the ciphertext. It
guarantees that, in order to place a valid key-dependent decryption query, the
adversary would have to guess the whole private key.

Galindo et al. [27] proposed a master key-dependent message (MKDM) secure
IBE (Identity Based Encryption) scheme. Using the IBE to PKE transformation
of Canetti, Halevi and Katz [24], they get a KDM-CCA secure PKE scheme.
However, their concrete construction only achieves a bounded version of KDM
security, that is, the adversary can only make a bounded number of encryption
queries per public key.

1.1 Our Contribution

We propose an efficient KDM-CCA secure public key encryption scheme with
respect to affine functions by enhancing an IND-CCA2 secure hybrid encryption
scheme based on the high entropy hash proof system which was proposed by
Kiltz et al. in [37]. Briefly, Kiltz et al. [37] provided a transformation from a
k-entropic to a universal2 hash proof system. Combining the latter with an
AE-OT (Semantic and integrity security against one-time attack) secure data
encapsulation mechanism (DEM) gives an IND-CCA2 secure hybrid encryption
scheme. However, when key-dependent messages are encrypted by this hybrid
encryption, the entropy of the private key of the hash proof system may be
leaked completely.

Specifically, let (u, e = DEM.Ek(m)) be a ciphertext of such a hybrid encryp-
tion scheme, where (u, k) = KEM.Epk(r), KEM is the key encapsulation mech-
anism (KEM) constructed based on the hash proof system, pk is the public key,
k is the encapsulated key. When key-dependent messages are encrypted by this
hybrid encryption, for example e = DEM.Ek(f(sk)) (sk denotes the private key
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of the KEM, f(·) denotes the key-dependent function), the entropy of the private
key of the hash proof system may be leaked completely. To achieve KDM-CCA
security, we enhance the hybrid encryption as follows:

– Key-Dependent Message Encoding. To deal with the problem of entropy
leakage of key-dependent encryptions, we enhance the hybrid encryption by
using a key-dependent message encoding E(·). Specifically, instead of direct
encryption, the plaintexts are encoded as E(m) before encryption. We require
that, E(f(sk)) can be constructed publicly without using the private key sk.
Hence DEM.Ek(E(f(sk))) will not leak any entropy of sk. In fact most of
the KDM-CPA secure public key encryption schemes [4,19,20,40] meet this
requirement.

– Entropy Filter. Although the key-dependent message encoding prevents
the challenge ciphertexts from releasing the entropy of the private key of the
hash proof system, it enables the adversary to construct valid key-dependent
encryptions at the same time. Inspired by the technique of Hofheinz [33],
we solve this problem by adding an authentication tag to the ciphertext.
Specifically, we divide the entropy of the private key of the hash proof system
into two parts, and use an entropy filter to derive the first part to construct
an authentication tag. Let θ(·) be an entropy filter, the DEM part of the
hybrid encryption is enhanced as DEM.Ek(θ(m), E(m)).

– RKA Secure Authenticated Encryption. To guarantee that authen-
tication tag θ(m) can be used to prevent the adversary from constructing
valid ciphertexts, we must prevent the challenge ciphertexts from releas-
ing the entropy of the private key of the hash proof system derived by the
entropy filter. The main difficulty is that, to prevent the entropy leakage,
the challenger needs to provide a random encapsulated key for each key-
dependent encryption query. However, the entropy of the second part of the
hash proof system is not enough to protect the encapsulated keys for all
of the key-dependent encryption queries. We solve this problem by using
an RKA secure authenticated encryption. Specifically, let k∗ be an original
key for the RKA secure authenticated encryption scheme, in the construc-
tion of challenge ciphertexts, the keys for the authenticated encryption are
affine functions of k∗. And k∗ is hidden from the adversary perfectly by
using linearly dependent combinations of the second part of the private key.
According to the definition of RKA security, the encryption scheme is secure
if k∗ is randomly distributed. Therefor, we can hide the authentication tag
from the adversary perfectly.

On RKA Secure Authenticated Encryption. Related-key attacks (RKAs)
were first proposed in [14,38] as a cryptanalysis tool for block ciphers. Motivated
by real attacks [15,18], theoretical model for RKA was proposed by Bellare and
Kohno [12]. In the last decade the RKA security for a wide range of cryptographic
primitives was studied [1,5,9,10,13,29,30,35,36,39,43].

Up to now the RKA security for authenticated encryption has not been
studied yet. We propose formal definition for the semantic security and integrity
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security of authenticated encryption under RKAs. Similar to [12], we consider
RKA security with respect to a class of related-key deriving (RKD) functions
F which specify the key-relations available to the adversary. Informally, we let
the adversary apply chosen plaintext attacks and forgery attacks with respect
to a set of keys k1, · · · , kl which are derived from the original key k via a known
function f ∈ F .

According to the framework in [10], it is easy to transform an AE-OT secure
authenticated encryption scheme to an RKA secure authenticated encryption
scheme based a RKA secure PRF (Pseudorandom function). Although the recent
construction of RKA secure PRF with respect to affine function in [1] seems very
efficient in general case, it will be very inefficient for our application. Specifically,
the RKA secure PRF proposed by Abdalla et al. in [1] can be described as follows:

F(a, x) = NR∗(a, 11||h(x, (ga[1], · · · , ga[n]))),NR∗(a, x) = g
∏n

i=1 a[i]x[i]
,

where a = (a[1], · · · ,a[n]) ∈ (Z∗
q )n+1 is the key for the PRF, x = (x[1], · · · , x[n]

∈ {0, 1}n) is the input of the PRF, n is the parameter of security level, G = 〈g〉 is
a group of order q, h is a collision resistant hash function. When (ga[1], · · · , ga[n])
are precomputed, the computation of F only needs one exponentiation . However,
when embedded into our scheme, the key of the PRF a is randomly generated
for every ciphertext. That is, we need to compute (ga[1], · · · , ga[n]) for every
computation of the PRF. As a result, the computation of the PRF needs n + 1
exponentiations.

Moreover, the key space of the RKA secure PRF is a vector that contains
n elements. To embed this PRF into our scheme, the KEM part of our scheme
needs to encapsulate the key a which contains n elements. This will significantly
enlarge the ciphertext.

In this paper, we propose a direct construction of RKA secure authenticated
encryption scheme with respect to affine functions that do not contain constant
functions. Concretely, let f(x) = ax + b be an affine function, we consider affine
functions that a �= 0. Let π be an AE-OT secure authenticated encryption
scheme, G a group with order N , g ∈ G a generator of G, H : ZN → {0, 1}lκ

a 4-wise independent hash function, r a random number chosen from ZN , our
RKA secure authenticated encryption scheme encrypts the plaintext message m
as follows:

u ← gr, κ ← H(uk, u), e ← π.Eκ(m),

where lκ is the length of κ, π.Eκ(·) denote the encryption algorithm with the key
κ, and the ciphertext is (u, e). We prove that if π is AE-OT secure and the DDH
(Decisional Diffie-Hellman) assumption holds in G, then our new authenticated
encryption scheme is RKA secure.

Technical Relation to Hofheinz’s Scheme. To prevent the entropy leakage
of the authentication tag added to the ciphertext, Hofheinz’s [33] solution is
embedding the plaintext into an encrypted LAF. Concretely, for a given public
key Fpk, if t is a lossy tag, then LAFFpk,t([sk]Zn

p
) only depends on a linear
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combination of its input [sk]Zn
p

∈ Zn
p , here [sk]Zn

p
denotes encoding the private

key sk into Zn
p . In particular, the coefficients of the linear combination only

depend on Fpk. That is, for different tags ti, LAFFpk,ti
([sk]Zn

p
) only leaks the

same linear function of [sk]Zn
p
. However, when considering KDM security with

respect to richer functions such as affine functions, LAFFpk,ti
([fi(sk)]Zn

p
) may

leak all the entropy of [sk]Zn
p
, here f1, · · · , fl are affine functions chosen by

the adversary. Thus, Hofheinz’s scheme can only achieve CIRC-CCA (circular
security against chosen ciphertext attacks) security.

In our new construction, different from the approach of Hofheinz [33], we
divide the entropy of the private key into two independent parts and derive the
first part by using an entropy filter to construct an authentication tag. We prove
that the entropy in the first part of the private key is enough to prevent the
adversary from constructing a valid key-dependent encryption. Compared with
the LAF used by Hofheinz, the construction of our entropy filter is simpler and
more efficient.

To prevent the entropy leakage of the authentication tag in the challenge
ciphertext, Hofheinz’s [33] solution is “lossy”. The lossy property of LAF guar-
antees that, information theoretically, little information about the private key
is released. To this end, we use a way of “hiding”. Concretely, the keys for the
authenticated encryption are hidden from the adversary by using linear combi-
nations of the second part of the private key. According to the definition of RKA
security, the encryption scheme is secure even when the keys are linearly depen-
dent. Thus, the authentication tags are perfectly hidden from the adversary.

1.2 Outline

In section 2 we review the definitions of public key encryption scheme,
KDM-CCA security, decisional composite residuosity assumption, authenticated
encryption, decisional Diffie-Hellman assumption and leftover hash lemma. In
section 3 we propose the formal definition of RKA secure authenticated encryp-
tion scheme and an efficient construction. In section 4 we propose our new KDM-
CCA secure scheme and the security proof. Finally we give the conclusion in
section 5.

2 Definitions

We write [n] = {1, · · · , n}. In describing probabilistic processes, if S is a finite
set, we write s

R← S to denote assignment to s of an element sampled from
uniform distribution on S. If A is a probabilistic algorithm and x an input, then
A(x) denotes the output distribution of A on input x. Thus, we write y←A(x)
to denote of running algorithm A on input x and assigning the output to the
variable y. For an integer v ∈ N , we let Uv denote the uniform distribution over
{0, 1}v, the bit-string of length v. The min-entropy of a random variable X is
defined as

H∞(X) = − lg(max
x∈X

Pr[X = x]).



564 X. Lu et al.

The statistical distance between two random variables X,Y is defined by

SD(X,Y ) =
1
2

∑

x

|Pr[X = x] − Pr[Y = x]|.

2.1 Public Key Encryption Scheme

A public key encryption scheme consists of the following algorithms:

– Setup(l): A probabilistic polynomial-time setup algorithm takes as input
a security parameter l and outputs the system parameter prm. We write
prm ← Setup(l).

– Gen(prm): A probabilistic polynomial-time key generation algorithm takes
as input the system parameter prm and outputs a public key pk and a private
key sk. We write (pk, sk) ← Gen(prm).

– E(pk,m): A probabilistic polynomial-time encryption algorithm takes as
input a public key pk and a message m, and outputs a ciphertext c. We
write c ← Epk(m).

– D(sk, c): A decryption algorithm takes as input a ciphertext c and a private
key sk, and outputs a plaintext m. We write m ← Dsk(c).

For correctness, we require Dsk(Epk(m)) = m for all (pk, sk) output by
Gen(prm) and all m ∈ M (M denotes the message space).

2.2 KDM-CCA Security

A public key encryption scheme is n-KDM-CCA secure w.r.t F if the advantage
of any adversary in the following game is negligible in the security parameter l:

– Step 1: The challenger runs Setup(l) to generate the system parameter prm,
then runs Gen(prm) to obtain n keypairs (pki, ski), i = 1, · · · , n. It sends
prm and (pk1, · · · , pkn) to the adversary.

– Step 2: The adversary issues decryption queries with (cj , i), where 1 ≤ j ≤
Qd, 1 ≤ i ≤ n, Qd denotes the total number of decryption queries. With each
query, the challenger sends mj ← Dski

(cj) to the adversary.
– Step 3: The adversary issues encryption queries with (fλ, i), where fλ ∈

F, 1 ≤ λ ≤ Qe, 1 ≤ i ≤ n, Qe denotes the total number of encryption queries.
With each query, the challenger sends c∗

λ ← Epki
(mλb) to the adversary,

where mλ0 = {0}lλ ,mλ1 = fλ(sk1, · · · , skn), lλ = |mλ1|, b ∈ {0, 1} is a
random bit selected by the challenger (note that the challenger chooses b
only once).

– Step 4: The adversary issues decryption queries just as in step 2, the only
restriction is that the adversary can not ask the decryption of c∗

λ for 1 ≤ λ ≤
Qe.

– Step 5: Finally, the adversary outputs b′ as the guess of b.
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The adversary’s advantage is defined as:

AdvKDMcca
A,n = |Pr[b′ = b] − 1/2|.

As a special case of n-KDM-CCA, if F = {fλ : fλ(sk1, · · · , skn) = skλ, λ ∈
[n] we say that the public key encryption scheme is n-CIRC-CCA secure.

2.3 Decisional Composite Residuosity Assumption

Let N = pq, p and q are safe primes, the quadratic residuosity group over Z∗
Ns

is defined as QRNs = {u2 mod Ns|u ∈ Z∗
Ns}, the square composite residu-

osity group as SCRNs = {vNs−1
mod Ns|v ∈ QRNs}, the root of the unity

group as RUNs = {T r mod Ns|r ∈ [Ns−1], T = 1 + N mod Ns}, consider the
experiment Expdcr

A :

W0
R← QRNs ,W1

R← SCRNs , b
R← {0, 1},

b′ ← A(N,Wb), return b′.

Denote Pr[Sucdcr
A ] = Pr[b′ = b] as the probability that A succeeds in guessing

b. We define the advantage of A in Expdcr
A as

Advdcr
A = |Pr[b′ = b] − 1

2
|.

We say that the decisional composite residuosity (DCR) assumption holds if
Advdcr

A is negligible for all polynomial-time adversaries A.
We review a lemma of [20] which is useful to the security proof of our scheme.

Let A be an adversary and s ≥ 2 be an integer, define game IV2 as follows.

IV2: g1, g2
R← SCRNs , b′ ← AOiv2(δ,δ̄)(N, g1, g2).

In the game above A is allowed to make polynomial number queries. In each
query, A can send (δ, δ̄ ∈ ZNs−1) to the oracle Oiv2. Oiv2(δ, δ̄) then selects
r ∈ [
N/4�] randomly and returns (gr

1T
δ, gr

2T
δ̄) if b = 1 and (gr

1, g
r
2) otherwise,

where b ∈ {0, 1} is randomly selected. The advantage of A is defined to be

Adviv2
A = |Pr[b′ = b] − 1

2
|.

Lemma 1. No polynomial-time adversary can have non-negligible advantage in
IV2 under the DCR assumption.

Our definition of IV2 follows from the version in [40], which is slightly differ-
ent from the original definition in [20].

Note that the discrete logarithm dlogT (X) := x for X ∈ RUNs and x ∈ Ns−1

can be efficiently computed [26,42].
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2.4 Authenticated Encryption

We review the security definitions of the authenticated encryption scheme. An
authenticated encryption (AE) scheme consists of three algorithms:

– AE.Setup(l): The setup algorithm takes as input the security parameter l,
and outputs public parameters param and the key k of the AE scheme. We
write (param, k) ← AE.Setup(l).

– AE.Ek(m): The encryption algorithm takes as inputs a key k and a message
m and outputs a ciphertext χ. We write χ ← AE.Ek(m)

– AE.Dk(χ): The decryption algorithm takes as inputs a key k, a ciphertext
χ and outputs a message m or the rejection symbol ⊥. We write m ←
AE.Dk(χ).

We require that for all k ∈ {0, 1}lk (lk denotes the length of k), m ∈ {0, 1}∗, we
have:

AE.Dk(AE.Ek(m)) = m.

An AE scheme is IND-OT (indistinguishability against one-time attacks) secure
if the advantage of any PPT (Probabilistic Polynomial Time) adversary A in
the following game is negligible in the security parameter l:

1. The challenger randomly generates an appropriately sized key k.
2. The adversary A queries the encryption oracle with two messages m0 and

m1 such that |m0| = |m1|. The challenger computes

b
R← {0, 1}, χ∗ ← AE.Ek(mb)

and responds with χ∗.
3. Finally, A outputs a guess b′ .

The advantage of A is defined as Advind-ot
A (l) = |Pr[b = b′] − 1/2|. We say that

the AE is one-time secure in the sense of indistinguishability if Advind-ot
A (l) is

negligible.
An AE scheme is INT-OT (one-time secure in the sense of ciphertext integrity)

secure if the advantage of any PPT adversary A in the following game is negli-
gible in the security parameter l:

1. The challenger randomly generates an appropriately sized key k.
2. The adversary A queries the encryption oracle with a message m. The chal-

lenger computes
χ∗ ← AE.Ek(m)

and responds with χ∗.
3. Finally, the adversary A outputs a ciphertext χ �= χ∗ such that

AE.Dk(χ) �=⊥.
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The advantage of A is defined as

Advint-ot
A (l) = Pr[AE.Dk(χ) �=⊥].

We say that the AE is one-time secure in the sense of ciphertext integrity if
Advint-ot

A (l) is negligible. An AE is one-time secure (AE-OT) iff it is IND-OT
secure and INT-OT secure.

2.5 Decisional Diffie-Hellman Assumption

Let G be a group of large prime order q, g is a generator of G, consider the
experiment Expddh

G,A:

(x, y, z) R← Z∗
q ;W0←gz;W1 ← gxy; b R← {0, 1}

b′ ← A(g, gx, gy,Wb).

We define the advantage of A as

Advddh
A = |Pr[b′ = b] − 1/2|.

We say that the DDH assumption holds if Advddh
A is negligible for all

polynomial-time adversaries A.

2.6 Leftover Hash Lemma

Multiple versions of LHL (Leftover Hash Lemma) have been proposed, we recall
the generalized version in [37]: if H is 4-wise independent, then (H,H(X),H(X̃))
is close to uniformly random distribution.

Lemma 2. (Generalized Leftover Hash Lemma) Let H = {H : X →
{0, 1}v} be a family of 4-wise independent hash functions, (X, X̃) ∈ X × X
be two random variables where H∞(X) ≥ κ, H∞(X̃) ≥ κ and Pr[X = X̃] ≤ δ.
Then for H

R← H and U2l
R← {0, 1}2l,

SD((H,H(X),H(X̃)), (H,U2l)) ≤ √
1 + δ · 2l−κ/2 + δ.

3 RKA Secure Authenticated Encryption

3.1 Definition of RKA Security for Authenticated Encryption

Following [12], we give a formal definition for the RKA security of AE schemes.
Similar as the definition of AE-OT security, the definition of RKA security
includes two aspects: indistinguishability security against related key attacks
(IND-RKA) and integrity security against related key attacks (INT-RKA).
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Definition 1. An AE scheme is IND-RKA secure with respect to a class of
related-key deriving functions F if the advantage of any PPT adversary A in the
following game is negligible in the security parameter l.

1. The challenger randomly generates an appropriately sized key k for the secu-
rity parameter l.

2. The adversary A makes a sequence of related-key encryption queries with
mi0,mi1, fi such that |mi0| = |mi1|. Here 1 ≤ i ≤ Q, Q denotes the number
of related-key encryption queries made by the adversary A, mi0 and mi1

are two messages, fi ∈ F , F is a class of related-key deriving functions.
The challenger chooses b ∈ {0, 1} randomly and responds with a challenge
ciphertext for each query of A computed as follows:

χ∗
i ← AE.Efi(k)(mib).

3. Finally, A outputs a guess b′ .

The advantage of A is defined as Advind-rka
A (l) = |Pr[b = b′] − 1/2|.

Definition 2. An AE scheme is INT-RKA secure with respect to a class of
related-key deriving functions F , if the advantage of any PPT adversary A in
the following game is negligible in the security parameter l.

1. The challenger randomly generates an appropriately sized key k for the secu-
rity parameter l.

2. The adversary A makes a sequence of related-key encryption queries with
mi, fi. Here 1 ≤ i ≤ Q, Q denotes the number of related-key encryption
queries made by the adversary A, mi is a plaintext message, fi ∈ F , F
is a class of related-key deriving functions. The challenger responds with a
challenge ciphertext for each query of A computed as follows:

χ∗
i ← AE.Efi(k)(mi).

3. Finally, the adversary A outputs a ciphertext χ and a related-key deriving
function f such that (f, χ) �= (fi, χ

∗
i ) and AE.Df(k)(χ) �=⊥.

The advantage of A is defined as

Advint-rka
A (l) = Pr[AE.Dk(χ) �=⊥].

Finally, the RKA security of the AE scheme is defined as follows:

Definition 3. An AE is RKA secure iff it is IND-RKA secure and INT-RKA
secure.
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3.2 Construction of RKA Secure Authenticated Encryption

We propose a randomized RKA secure authenticated encryption scheme with
respect to affine functions that do not contain constant functions. Concretely,
let f(x) = ax + b be an affine function, we consider affine functions that a �= 0.

Let π be an AE-OT secure authenticated encryption scheme, our new con-
struction π̄ is described as follows:

– Setup(l): Randomly choose two safe primes p and q that 2pq + 1 is also a
prime, then compute:

N ← pq, N̄ ← 2N + 1, g
R← QRN̄ , param ← (N, N̄, g), k R← ZN .

– Encryption: The encryption algorithm takes as inputs a key k ∈ ZN and
a message m and computes as follows:

r
R← ZN , u ← gr, κ ← H(uk, u),

e ← π.Eκ(m), χ ← (u, e).

Here H : QRN̄ × QRN̄ → {0, 1}lκ is a 4-wise independent universal hash
function, lκ is the length of κ.

– Decryption: The decryption algorithm takes as inputs a key k, a ciphertext
χ = (u, e) and computes as follows:

κ ← H(uk, u),m ← π.Dκ(e).

We prove that if π is AE-OT secure and the DDH assumption holds in QRN̄ ,
then our new authenticated encryption scheme is RKA secure.

Theorem 1. Assume the DDH assumption holds in QRN̄ , π is AE-OT secure,
then π̄ is RKA secure with respect to affine functions f(x) = ax + b that a �= 0.

According to the definition of the RKA security of AE scheme, we need to
prove two lemmas as follows.

Lemma 3. Assume the DDH assumption holds in QRN̄ , π is AE-OT secure,
then π̄ is IND-RKA secure with respect to affine functions f(x) = ax + b that
a �= 0.

Lemma 4. Assume the DDH assumption holds in QRN̄ , π is AE-OT secure,
then π̄ is INT-RKA secure with respect to affine functions f(x) = ax + b that
a �= 0.

Proof of Lemma 3: The proof is via a sequence of games involving the
challenger C and the adversary A. Let Wi be the event that A guesses b correctly
in Game i.

– Game 0: This game is the actual IND-RKA game. Hence,we have:

Pr[W0] = 1/2 + Advind-rka
A . (1)
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– Game 1: This game is exactly like Game 0, except that the challenge ciper-
texts are computed using gk instead of k. That is, let ĝ = gk, the keys for π
are computed as κi ← H(ĝriaigribi , gri). It is clear that Game 0 and Game
1 are identical from the point view of the adversary A, hence we have:

Pr[W0] = Pr[W1]. (2)

• Game 1.i: Denote Game 1.0 as Game 1, for 1 ≤ i ≤ Q, Game 1.i is
exactly like Game 1.(i−1) except that the key for π in the ith ciphertext
is computed as κi ← H(ĝr∗

i aigribi , gri), where r∗
i �= ri is randomly chosen

from ZN . It is clear that if the adversary A can distinguish Game 1.i
from Game 1.(i − 1), then we can break the DDH assumption. Briefly,
given a DDH challenge (g, ĝ, gr, ĝr∗

), to compute the ith ciphertext, the
challenger sets ui = gr, κi = H(ĝr∗aigrbi , ui). The computation of the
other ciphertexts is the same as in Game 1.(i − 1). It is clear that when
r = r∗, it is just the case in Game 1.(i-1), when r �= r∗ it is just the case
in Game 1.i. Thus, if the adversary A can distinguish Game 1.i from
Game 1.(i − 1), then the challenger can break the DDH assumption.
Hence we have:

Pr[W1.i−1] ≤ Pr[W1.i] + Advddh
A . (3)

– Game 2: This game is exactly Game 1.Q. It is clear that, when ai �= 0
the keys for the challenge ciphertexts κi = H(ĝr∗

i aigribi , gri) are randomly
distributed. According to the IND-OT security of π, we have:

Pr[W2] ≤ 1/2 + QAdvind-ot
A . (4)

From equations (1) − (4) we have:

Advind-rka
A ≤ QAdvddh

A + QAdvind-ot
A .

This completes the proof of lemma 3. ��
Proof of Lemma 4: The proof is via a sequence of games involving the

challenger C and the adversary A. Let Wi be the event that A outputs a valid
ciphertext in Game i.

– Game 0: This game is the actual INT-RKA game. When responding to a
related-key encryption query with mi, fi, where fi(k) = aik+bi, C computes
as follows:

ri
R← ZN , ui ← gri , κi ← H(uaik+bi

i , ui),

ei ← π.Eκi
(mi), χi ← (ui, ei).

– Game 1: This game is exactly like Game 0, except that the challenge cipher-
texts are computed using gk instead of k. That is, let ĝ = gk, the keys for π
are computed as κi ← H(ĝriaigribi , gri). It is clear that Game 0 and Game
1 are identical from the point view of the adversary A, hence we have:

Pr[W0] = Pr[W1]. (5)
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• Game 1.i: Denote Game 1.0 as Game 1, for 1 ≤ i ≤ Q, Game 1.i is
exactly like Game 1.(i−1) except that the key for π in the ith ciphertext
is computed as κi ← H(ĝr∗

i aigribi , gri), where r∗
i �= ri is randomly chosen

from ZN . It is clear that if the adversary A can distinguish Game 1.i
from Game 1.(i− 1), then we can break the DDH assumption. Hence we
have:

Pr[W1.i−1] ≤ Pr[W1.i] + Advddh
A . (6)

– Game 2: This game is exactly Game 1.Q. Denote χ = (u = gr, e =
π.Eκ(m)), f(k) = ak+b as the forged ciphertext and the related-key deriving
function, we consider three cases as follows:

• Case 1: f = fi, u = ui, e �= ei. In this case we have κ = κi, if χ is a
valid ciphertext then we get a forged ciphertext of ei. It is clear that the
keys for the challenge ciphertexts κi = H(ĝr∗

i aigribi , gri) are randomly
distributed. According to the INT-OT security of π, we have:

Pr[W2|Case1] ≤ QAdvint-ot
A . (7)

• Case 2: f �= fi, u = ui. In this case, we consider two subcases as follows:
∗ Case 2.1: r∗

i ak+rib = r∗
i aik+ribi. It is clear that, if the adversary A

submits such related-key deriving function, we can break the discrete
logarithm assumption. Concretely, given g, ĝ = gk, the simulator
S can play Game 2 with A. When A submits χ, f , S computes
ki = ri(bi−b)

r∗
i (a−ai)

and test whether ĝ = gki . Let εdlg be the probability
that any adversary breaks the discrete logarithm assumption, we
have:

Pr[Case2.1] ≤ εdlg. (8)

∗ Case 2.2: r∗
i ak + rib �= r∗

i aik + ribi. In this subcase, ĝr∗
i agrib �=

ĝr∗
i aigribi . Since r∗

i is randomly selected from ZN and a �= 0, ai �= 0,
we have:

H∞(ĝr∗
i agrib) = H∞(ĝr∗

i aigribi) = lN ,

where lN is the length of N . According to the property of 4-wise
independent hash functions, H(ĝr∗

i agrib, u),H(ĝr∗
i aigribi , ui) is ran-

domly distributed from the point view of the adversary A. Hence,
we have:

Pr[W2|Case2.2] ≤ Advint-ot
A . (9)

• Case 3: u �= ui. Since the information of k is statistically hidden by r∗
i ,

we have:
H∞(uak+b) = H∞(uaik+bi

i ) = lN ,

where lN is the length of N . According to the property of 4-wise indepen-
dent hash functions, H(uak+b, u),H(uaik+bi

i , ui) is randomly distributed
from the point view of the adversary A. Hence, we have:

Pr[W2|Case3] ≤ Advint-ot
A . (10)
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From equations (7) − (10) we have:

Pr[W2] ≤ QAdvint-ot
A + εdlg. (11)

From the equations (5), (6), (11) we have that:

Advint-rka
A = Pr[W0]

≤ QAdvddh
A + QAdvint-ot

A + εdlg.
(12)

This completes the proof of lemma 4. ��

4 KDM-CCA Secure Scheme

4.1 The Idea of Our Construction

Before formal description, we give some intuition of our construction. Just as
we mentioned in section 1.1, existing KDM-CPA schemes [4,19,20,40] are very
suitable to be used as a key-dependent message encoding. To encode the mes-
sages depending on the private key of the KEM part, the encoding scheme must
share the same parameters (especially the private key) with the KEM part.
For this reason, we first choose a KDM-CPA scheme, then translate it into a
KEM scheme. Concretely, we choose the KDM-CPA scheme in [40] as the key-
dependent message encoding scheme and translate it into a KEM by replacing
the plaintext with a randomly selected key k. Briefly the ciphertext of the hybrid
encryption can be described as:

u = gr, e = hrT k, v = π̄.Ek(gr̃||hr̃Tm),

where g ∈ SCRNs , s ≥ 2, x ∈ [
N2/4�], h = gx, r, r̃ ∈ [
N/4�], π̄ is an RKA
secure authenticated encryption scheme. Given the public key (g, h), we have
h = gx mod φ(N)/4 mod Ns. That is, conditioned on the public key, x mod N
is hidden from the adversary information theoretically. Thus, the entropy of the
private key is x mod N .

To divide the entropy of the private key into two parts independent of each
other, we enlarge the entropy by extending the public key and the private key.
As a result, the ciphertext of the hybrid encryption is extended as:

u1 = gr
1, u2 = gr

2, e = hrT k, v = π̄.Ek(gr̃
1||gr̃

2||hr̃Tm),

where g1, g2 ∈ SCRNs , x1, x2 ∈ [
N2/4�], h = gx1
1 gx2

2 . It is clear that, conditioned
on the public key, the adversary can only get

h = g
x1 mod φ(N)/4
1 g

x2 mod φ(N)/4
2 mod Ns.

The entropy of the private key can be divided into two parts: the first part is
the entropy contained in (x1 mod φ(N)/4, x2 mod φ(N)/4), the second part
is the entropy contained in (x1 mod N,x2 mod N). It is easy to construct an
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entropy filter to derive the first part of the entropy from the key-dependent
messages as θ(f(x1, x2)) = g

f(x1,x2)
1 . To prevent the adversary from getting

a valid key-dependent encryption by modifying the challenge ciphertexts, we
use the universal hash function H to construct the authentication tag as t =
H(u1||u2||e||θ(f(x1, x2))).

In order to protect the key of the RKA secure authenticated encryption
scheme by using the second part of the entropy, we modify the KEM part of the
hybrid encryption slightly as:

u1 = gr
1 mod N2, u2 = gr

2 mod N2, e = hrT k mod N2.

Since g1 mod N2, g2 mod N2 ∈ SCRN2 , the KEM part is now computed in
the group of SCRN2 . In this case we have e = hrT k mod N2 = hrT k mod N

mod N2. That is, the range of k is now shrunk to [N ] from [Ns−1]. When we
use (x1, x2) to protect k, only the second part of the entropy will be derived out.

4.2 The Proposed Scheme

– Setup(l): Randomly choose two safe primes p and q that 2pq + 1 is also a
prime, then compute:

N ← pq, g1, g2
R← SCRNs , prm ← (N, g1, g2).

– Key Generation: For prm, the key generation algorithm computes:

x1, x2
R← [
N2/4�], h ← g−x1

1 g−x2
2 ,

pk ← (h), sk ← (x1, x2).

– Encryption: For m ∈ [Ns−1], the encryption algorithm computes the cipher-
text c as follows:

r, r̃
R← [
N/4�], k R← ZN ,

u1 ← gr
1 mod N2, u2 ← gr

2 mod N2, e ← hrT k mod N2,

ũ1 ← gr̃
1 mod Ns, ũ2 ← gr̃

2 mod Ns, ẽ ← hr̃Tm mod Ns,

t ← H(u1||u2||e||(gm
1 mod N)), v ← π̄.Ek(t||ũ1||ũ2||ẽ), c ← (u1, u2, e, v).

where H : {0, 1}∗ → {0, 1}lt is a universal hash function.
– Decryption: If eux1

1 ux2
2 /∈ RUN2 return the rejection symbol ⊥, else com-

pute:
k ← dlogT (eux1

1 ux2
2 ),

t||ũ1||ũ2||ẽ ← π̄.Dk(v),

If ẽũx1
1 ũx2

2 /∈ RUNs return ⊥,

m ← dlogT (ẽũx1
1 ũx2

2 ),

If t = H(u1||u2||e||(gm
1 mod N)) return m, else return ⊥ .
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It is clear that compared with Hofheinz’s CIRC-CCA scheme [33], our new
scheme is simpler and more efficient. Concretely, the ciphertext of the Hofheinz’s
scheme contains 6 ZN3-elements, 43 Zp-elements (p ≈ N/4), a chameleon hash
randomness, a one-time signature and the verification key, and a symmetric
ciphertext (whose size is about one NN2 -element plus some encryption random-
ness). However, to achieve CIRC-CCA security, we can set s = 3 for our scheme,
in this case the ciphertext of our new scheme only contains 3 ZN2 -elements, 3
ZN3-elements, 1 ZN̄ -elements (N̄ = 2N + 1), a hash value (whose size is about
the security parameter l) and the ciphertext expansion of the authenticated
encryption scheme (whose size is about twice of the security parameter l).

4.3 Security Proof

Before formal proof, we give an intuition of the 1-KDM-CCA security of our
scheme. The n-KDM-CCA security can be achieved by re-randomizing keys and
ciphertexts of a single instance of the scheme like in [19,20]. Our main idea is to
achieve KDM-CCA security based on the entropy of the private key. Concretely,
let xhide

1 = x1 mod N,xreal
1 = x1 mod φ(N)/4, xhide

2 = x2 mod N,xreal
2 = x2

mod φ(N)/4, we have that h = g−x1
1 g−x2

2 = g
−xreal

1
1 g

−xreal
2

2 . Hence, xhide
1 and

xhide
2 are information theoretically hidden from the adversary, conditioned on

the public key.
In the security reduction, to encrypt f(x1, x2) = a1x1 + a2x2 + b, the cipher-

text is constructed as π̄.Ek(t||gr̃
1T

a1 ||gr̃
2T

a2 ||hr̃T b). In fact, this ciphertext can
be constructed without knowing xhide

1 and xhide
2 . Thus it will not leak any infor-

mation of xhide
1 and xhide

2 .
Let logg1

g2 = w, we have that, conditioned on the public key, the only infor-
mation that the adversary gets about xreal

1 and xreal
2 is the following equation:

logg1
h = −(xreal

1 + wxreal
2 ) mod φ(N)/4.

It is clear that there is entropy in the pair (xreal
1 , xreal

2 ), since the adversary
only gets one equation for two variables. We divide the entropy of the private
key into two parts: the first part is the entropy contained in (xreal

1 , xreal
2 ), the

second part is the entropy contained in (xhide
1 , xhide

2 ).
The first part of the entropy is embedded into an authentication tag to pre-

vent the adversary from constructing a valid encryption of an affine function
of the private key f(x1, x2) = a1x1 + a2x2 + b. Concretely, we embed g

f(x1,x2)
1

mod N = g
a1xreal

1 +a2xreal
2 +b

1 mod N into an authentication tag t. Note that
if a2/a1 = w mod φ(N)/4, then a1x

real
1 + a2x

real
2 is linearly dependent with

(xreal
1 + wxreal

2 ), and f(x1, x2) is not randomly distributed. Fortunately, we
prove that this case implies the breaking of the discrete logarithm assumption.
If a2/a1 �= w mod φ(N)/4, then a1x

real
1 + a2x

real
2 is linearly independent with

(xreal
1 +wxreal

2 ), and a1x
real
1 +a2x

real
2 is randomly distributed. In order to place

a valid key-dependent decryption query, the adversary would have to guess the
value of a1x

real
1 + a2x

real
2 .



KDM-CCA Security from RKA Secure Authenticated Encryption 575

The second part of the entropy is used to protect an original key k∗, which
is used to derive keys for the authenticated encryption by using affine functions
f(k∗) = rk∗+s. We show that the decryption oracle will not leak any information
of (xhide

1 , xhide
2 ). Thus k∗ is perfectly hidden from the adversary. According to

the RKA security of the authenticated encryption, the plaintext messages are
perfectly protected by the authenticated encryption.

Theorem 2. Assume the DCR assumption holds in ZNs , π̄ is an RKA secure
authenticated encryption scheme with respect to affine functions f(k) = ak + b
that a �= 0. Then the scheme above is n-KDM-CCA secure with respect to affine
functions with the range of [Ns−1] for s ≥ 2.

The proof is via a sequence of games involving the challenger C and the
adversary A. Let Wδ be the event that A guesses b correctly in Game δ.

– Game 0: This game is the actual n-KDM-CCA game. The challenger C
runs the setup and key generation algorithm, sends the parameters prm =
(g1, g2, N) and public keys pki = (hi = gxi1

1 gxi2
2 ), i = 1, · · · , n to the adver-

sary A. When responding to a key-dependent encryption query with (fλ, i),
that fλ(sk1, · · · , skn) =

∑n
j=1(ajλ1xj1 + ajλ2xj2) + bλ ∈ [Ns−1], the chal-

lenger C randomly chooses b ∈ {0, 1} and computes as follows:

r∗
λ, r̃∗

λ
R← [
N/4�], k∗

λ
R← ZN ,

mλ0 ← 0,mλ1 ←
n∑

j=1

(ajλ1xj1 + ajλ2xj2) + bλ,

u∗
λ1 ← g

r∗
λ

1 mod N2, u∗
λ2 ← g

r∗
λ

2 mod N2, e∗
λ ← h

r∗
λ

i T k∗
λ mod N2,

ũ∗
λ1 ← g

r̃∗
λ

1 mod Ns, ũ∗
λ2 ← g

r̃∗
λ

2 mod Ns, ẽ∗
λ ← h

r̃∗
λ

i Tmλb mod Ns,

t∗λ ← H(u∗
λ1||u∗

λ2||e∗
λ||(gmλb

1 mod N)), v∗
λ ← π̄.Ek∗

λ
(t∗λ||ũ∗

λ1||ũ∗
λ2||ẽ∗

λ),

c∗
λ ← (u∗

λ1, u
∗
λ2, e

∗
λ, v∗

λ).

When responding to a decryption query (c = (u1, u2, e, v), i) the challenger
C decrypts using the secret key ski = (xi1, xi2). By definition we have:

AdvKDMcca
A,n = Pr[W0] − 1/2. (13)

– Game 1: This game is exactly like Game 0, except that the key generation
algorithm runs as follows:

x1, x2
R← [
N2/4�], x̄i1, x̄i2

R← [
N/4�],
xi1 ← x1 + x̄i1, xi2 ← x1 + x̄i2, hi ← g−xi1

1 g−xi2
2 ,

pki ← (hi), ski ← (xi1, xi2),

It is clear that in the key generation algorithm above xi1, xi2 are chosen from
[
N2/4� + 
N/4�] instead of [
N2/4�]. The statistical distance between the
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uniform distribution over these two domains is about 2−lN , where lN is the
length of N .

If we use φ(N)/4 instead of 
N/4� then, the distributions of the public
keys pk1, · · · , pkn are identical in Game 0 and Game 1. Since φ(N)/4 =
pq, 
N/4� = pq +(p+ q)/2, hence the statistical distance between the public
keys in Game 0 and Game 1 is bounded by 2−lN /2.
As a result, we have:

Pr[W0] ≤ Pr[W1] + 2−lN + 2−lN /2. (14)

– Game 2: This game is exactly like Game 1, except that when responding
to the key-dependent encryption query, ẽ∗

λ and e∗
λ are computed as:

e∗
λ ← u∗−xi1

λ1 u∗−xi2
λ2 T k∗

λ mod N2, ẽ∗
λ ← ũ∗−xi1

λ1 ũ∗−xi2
λ2 Tmλb mod Ns.

It is clear that ũ∗−xi1
λ1 ũ∗−xi2

λ2 = h
r̃∗

λ
i , u∗−xi1

λ1 u∗−xi2
λ2 = h

r∗
λ

i . Hence we have:

Pr[W1] = Pr[W2]. (15)

– Game 3: Game 3 is exactly like Game 2, except that when responding to
the key-dependent encryption query, if b = 1, then ũ∗

λ1, ũ
∗
λ2, ẽ

∗
λ are computed

as follows:
ũ∗

λ1 ← g
r̃∗

λ
1 T aλ1 mod Ns,

ũ∗
λ2 ← g

r̃∗
λ

2 T aλ2 mod Ns,

ẽ∗
λ ← h

r̃∗
λ

i T bλ+ρλ mod Ns,

where aλ1 =
∑n

j=1 ajλ1, aλ2 =
∑n

j=1 ajλ2 and ρλ =
∑n

j=1(ajλ1(x̄j1 − x̄i1) +
ajλ2(x̄j2 − x̄i2)).

It is clear that if the adversary A can distinguish Game 3 from Game 2,
then C can solve the IV2 problem. Concretely, when receiving g1, g2 from the
IV2 challenger, C runs the key generation algorithm to get pki, ski. When
responding to the key-dependent encryption query, if b = 1, ũ∗

λ1, ũ
∗
λ2, ẽ

∗
λ are

computed as follows:

(ũ∗
λ1, ũ

∗
λ2) ← Oiv2(aλ1, aλ2), ẽ∗

λ ← ũ∗−xi1
λ1 ũ∗−xi2

λ2 Tmλb mod Ns.

Other parts of the ciphertext and the response to the decryption queries are
computed as in Game 2. According to the definition of the IV2 problem,
(ũ∗

λ1, ũ
∗
λ2) = (gr̃∗

λ
1 , g

r̃∗
λ

2 ) or (ũ∗
λ1, ũ

∗
λ2) = (gr̃∗

λ
1 T aλ1 , g

r̃∗
λ

2 T aλ2). It is easy to verify
that in the first case the response to the key-dependent encryption query is
identical to that of Game 2. In the second case we have:

ẽ∗
λ = ũ∗−xi1

λ1 ũ∗−xi2
λ2 Tmλ1

= (gr̃∗
λ

1 T aλ1)−xi1(gr̃∗
λ

2 T aλ2)−xi2T
∑n

j=1(ajλ1xj1+ajλ2xj2)+bλ

= (gr̃∗
λ

1 T
∑n

j=1 ajλ1)−xi1(gr̃∗
λ

2 T
∑n

j=1 ajλ2)−xi2T
∑n

j=1(ajλ1xj1+ajλ2xj2)+bλ

= hr̃∗
λT
∑n

j=1(ajλ1(xj1−xi1)+ajλ2(xj2−xi2))+bλ

= hr̃∗
λT
∑n

j=1(ajλ1(x̄j1−x̄i1)+ajλ2(x̄j2−x̄i2))+bλ

= hr̃∗
λT ρλ+bλ
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Hence we have:
Pr[W2] ≤ Pr[W3] + Adviv2

A . (16)

– Game 4: This game is exactly like Game 3, except that when responding
to the key-dependent encryption query, the challenger C randomly chooses
α, β ∈ ZN , r∗ ∈ [
N/4�], computes u∗

λ1, u
∗
λ2, e

∗
λ as follows:

u∗
λ1 ← (gr∗

1 Tα)r∗
λ mod N2,

u∗
λ2 ← (gr∗

2 T β)r∗
λ mod N2,

e∗
λ ← (u∗−xi1

λ1 u∗−xi2
λ2 )T k∗

λ mod N2,

Similar as in Game 3, if the adversary A can distinguish Game 4 from Game
3, then C can solve the IV2 problem. Hence we have:

Pr[W3] ≤ Pr[W4] + Adviv2
A . (17)

– Game 5: This game is exactly like Game 4, except that when responding
to the key-dependent encryption query, the challenger C randomly chooses
k∗ ∈ ZN , computes k∗

λ as follows:

s∗
λ

R← ZN , k∗
λ ← r∗

λk∗ + s∗
λ mod N.

It is to verify that k∗
λ = r∗

λk∗ + s∗
λ mod N is uniformly distributed on ZN .

Hence we have:
Pr[W4] = Pr[W5]. (18)

– Game 6: This game is exactly like Game 5, except that when responding
to the decryption query (c = (u1, u2, e, v), i) , the challenger C computes k
and m by using φ(N) = (p − 1)(q − 1) and ski = (xi1, xi2) as follows:

α′ ← dlogT (u
φ(N)
1 )/φ(N) mod N, β′ ← dlogT (u

φ(N)
2 )/φ(N) mod N,

γ′ ← dlogT (eφ(N))/φ(N) mod N, k ← (α′xi1 + β′xi2 + γ′) mod N,

α̃ ← dlogT (ũ
φ(N)
1 )/φ(N) mod Ns−1, β̃ ← dlogT (ũ

φ(N)
2 )/φ(N) mod Ns−1,

γ̃ ← dlogT (ẽφ(N))/φ(N) mod Ns−1, m ← (α̃xi1 + β̃xi2 + γ̃) mod Ns−1.

It is clear that, the computation of the decryption algorithm in Game 6 is
identical to that in Game 5, we have:

Pr[W5] = Pr[W6]. (19)

– Game 7: This game is exactly like Game 6, except that when responding to
the decryption query, the challenger returns ⊥ when u1 = u∗

λ1, u2 = u∗
λ2, e =

e∗
λ, v �= v∗

λ. Since π̄ is INT-RKA secure and k∗ is randomly distributed from
the point view of A (see Game 8 equation 23 for detailed analysis), such
ciphertext will be rejected except with the probability of Advint-rka

A . Hence
we have:

Pr[W6] ≤ Pr[W7] + Advint-rka
A . (20)
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– Game 8: This game is exactly like Game 7, except that when responding
to the decryption query, the challenger returns ⊥ when α̃ �= 0 or β̃ �= 0 or
α′ �= 0 or β′ �= 0.

Let xhide
1 = x1 mod N,xreal

1 = x1 mod φ(N)/4, xhide
2 = x2

mod N,xreal
2 = x2 mod φ(N)/4, xhide

i1 = xi1 mod N,xreal
i1 = xi1

mod φ(N)/4, xhide
i2 = xi2 mod N,xreal

i2 = xi2 mod φ(N)/4, w = logg1
g2,

according to the key generation algorithm we have:

logg1
hi = −(xreal

i1 + wxreal
i2 ) mod φ(N)/4

= −(xreal
1 + x̄real

i1 + w(xreal
2 + x̄real

i2 )) mod φ(N)/4.
(21)

Hence, xhide
1 and xhide

2 are randomly distributed from the point view of
A conditioned on the public key. According to the encryption oracle k∗ is
encapsulated in e∗

λ as follows:

e∗
λ = (u∗−xi1

λ1 u∗−xi2
λ2 )T k∗

λ mod N2

= ((gr∗
1 Tα)r∗

λ)−xi1((gr∗
2 T β)r∗

λ)−xi2T (r∗
λk∗+s∗

λ) mod N2

= h
r∗r∗

λ
i T r∗

λ(−αxi1−βxi2+k∗)+s∗
λ mod N2

= h
r∗r∗

λ
i T r∗

λ(−α(x1+x̄i1)−β(x2+x̄i2)+k∗)+s∗
λ mod N2

(22)

k∗ = dlogT (e
∗φ(N)
λ )/φ(N)

r∗
λ

+ α(x1 + x̄i1) + β(x2 + x̄i2) − s∗
λ

r∗
λ

mod N

= dlogT (e
∗φ(N)
λ )/φ(N)

r∗
λ

+ α(xhide
1 + x̄hide

i1 ) + β(xhide
2 + x̄hide

i2 ) − s∗
λ

r∗
λ

mod N

= dlogT (e
∗φ(N)
λ )/φ(N)

r∗
λ

+ αxhide
1 + βxhide

2 + αx̄hide
i1 + βx̄hide

i2 − s∗
λ

r∗
λ

mod N.

(23)
It is clear that, when α̃ = 0, β̃ = 0, α′ = 0, β′ = 0, the decryption oracle
will not leak any information of the private key. In addition ciphertexts that
u1 = u∗

λ1, u2 = u∗
λ2, e = e∗

λ, v �= v∗
λ are rejected. Denote Bad as the event

that the challenge does not return ⊥ when α̃ �= 0 or β̃ �= 0 or α′ �= 0 or
β′ �= 0. We have that if Bad does not happen, the decryption will not leak
any information of k∗. Hence k∗ is randomly distributed from the point view
of A conditioned on ¬Bad. Now we show that, in Game 7 when α̃ �= 0 or
β̃ �= 0 or α′ �= 0 or β′ �= 0, the challenger will return ⊥ except with a
negligible probability. For clarity, we consider four cases as follows:

• α̃ �= 0, β̃ �= 0: Since k∗ is randomly distributed conditioned on ¬Bad
and the keys k∗

λ = r∗
λk∗ + s∗

λ are affine functions of k∗, according to
the IND-RKA security of π̄ we have that v∗

λ will not leak any informa-

tion of xreal
1 and xreal

2 except with negligible probability of Advind-rka
A .

Hence the only information that the adversary gets about xreal
1 and xreal

2

conditioned on the public key and the ciphertexts is equation (21).
If β̃/α̃ �= w mod φ(N)/4, we have that logg1

gm
1 = α̃(xreal

1 + x̄real
i1 ) +

β̃(xreal
2 + x̄real

i2 ) + γ̃ mod φ(N)/4 is linearly independent with equation
(21). Thus t = H(u1||u2||e||gm

1 ) is randomly distributed from the point
view of the adversary A except with negligible probability of Advind-rka

A .
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So we have that such ciphertexts will be rejected except with the prob-
ability of Advind-rka

A + 2−lt .
If β̃/α̃ = w mod φ(N) the challenger C can compute:

w = β̃/α̃ = dlogT (ũφ(N)
2 )/dlogT (ũφ(N)

1 ).

Let εdlg be the probability that any adversary breaks the discrete loga-
rithm assumption, we have that the probability that such cases happens
is εdlg.

• α̃ �= 0, β̃ = 0 or α̃ = 0, β̃ �= 0: Similar as the case β̃/α̃ �= w mod φ(N)/4
above, such ciphertexts will be rejected except with the probability of
Advind-rka

A + 2−lt .
• α′ �= 0, β′ �= 0: If α′/β′ �= α/β, we have that k = α′(xhide

1 + x̄hide
i1 ) +

β′(xhide
2 + x̄hide

i2 )+γ′ mod N is linearly independent with equation (23).
Hence k ∈ ZN is randomly distributed from the point view of A, such
ciphertexts will be rejected except with the probability of 2−lN .
If α′/β′ = α/β mod N , let α′ = r̄α mod N,β′ = r̄β mod N, γ′ =
r̄(−αxhide

i1 − βxhide
i2 + k∗) + γ mod N , we have:

k = r̄k∗ + γ.

According to the INT-RKA security of π̄, such ciphertexts will be rejected
except with the probability of Advint-rka

A .
• α′ �= 0, β′ = 0 or α′ = 0, β′ �= 0: Similar as the case of α′/β′ �= α/β

mod N , such ciphertexts will be rejected except with the probability of
2−lN .

According to the analysis above, we have that in Game 7:

Pr[Bad] ≤ Advind-rka
A + Advint-rka

A + 2−lt + 2−lN + εdlg

Hence we have:
Pr[W7] ≤ Pr[W8] + Pr[Bad]. (24)

– Game 9: This game is exactly like Game 8, except that when responding
to the key-dependent encryption query, the challenger C randomly chooses
k∗, k̄∗ ∈ ZN , computes e∗

λ and v∗
λ as follows:

s∗
λ

R← ZN , k∗
λ ← r∗

λk∗ + s∗
λ mod N, e∗

λ ← (u∗−xi1
λ1 u∗−xi2

λ2 )T k∗
λ mod N2,

k̄∗
λ ← r∗

λk̄∗ + s∗
λ mod N, v∗

λ ← π̄.Ek̄∗
λ
(t∗λ||ũ∗

λ1||ũ∗
λ2||ẽ∗

λ).

Since all the decryption queries that α̃ �= 0 or β̃ �= 0 or α′ �= 0 or β′ �= 0
are rejected, we have that xhide

1 and xhide
2 are randomly distributed from the

point view of A conditioned on the public key and the decryption oracle. In
addition, when (u1 = u∗

λ1, u2 = u∗
λ2, e = e∗

λ, v �= v∗
λ) decryption queries are

also rejected. Hence, the decryption oracle will not leak any information of
k∗. According to equation (23), k∗ is randomly distributed. So we have:

Pr[W8] ≤ Pr[W9]. (25)
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According to the IND-RKA security of π̄, the probability that A wins in
Game 9 is:

Pr[W9] ≤ 1/2 + Advind-rka
A . (26)

According to equations above we have:

AdvKDMcca
A,n ≤ 2Adviv2

A + 2Advint-rka
A + 2Advind-rka

A + ε. (27)

where ε = 2 · 2−lN + 2−lN /2 + 2−lt + εdlg.
This completes the proof of the theorem 2. ��

5 Conclusion

We propose an efficient KDM-CCA secure public key encryption scheme with
respect to affine functions by enhancing an IND-CCA2 secure hybrid encryp-
tion scheme based on the high entropy hash proof system. Our main idea is
to divide the entropy of the private key into two parts: one part is embedded
into the authentication tag, the other part is used to protect an original key for
the authenticated encryption scheme. To hide the authentication tags from the
adversary perfectly, we use an RKA secure authenticated encryption scheme and
derive the keys from affine functions of the original key.

Compared with Hofheinz’s scheme [33], our new scheme is simpler and more
efficient. In addition, our new scheme achieves KDM-CCA security with respect
to affine functions while Hofheinz’s scheme only achieves CIRC-CCA security.

References
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