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Preface

Eurocrypt 2015, the 34th annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, was held during April 26–30, 2015, in Sofia, Bul-
garia, and sponsored by the International Association for Cryptologic Research (IACR).
Responsible for the local organization were Svetla Nikova, from Katholieke Universiteit
Leuven, and Dimitar Jetchev, from EPFL. They were supported by a Local Organizing
Committee consisting of Tsonka Baicheva (Institute of Mathematics and Informatics,
BAS), Violeta Ducheva (SANS), and Georgi Sharkov (ESI Center Eastern Europe). We
are indebted to them for their support.

To accommodate the request by IACR to showcase as many high-quality submis-
sions as possible, the program was organized in two tracks. These tracks ran in parallel
with the exception of invited talks, the single best paper, and two papers with honor-
able mention. Following a popular convention in contemporary cryptography, one track
was labeled R and featured results more closely related to ‘real’ world cryptography,
whereas the second track was labeled I and featured results in a more abstract or ‘ideal’
world.

A total of 194 submissions were considered during the review process, many were
of high quality. As usual, all reviews were conducted double-blind and we excluded
Program Committee members from discussing submissions for which they had a pos-
sible conflict of interest. To account for a desire (by authors and the wider community
alike) to maintain the high standard of publications, we allowed for longer submissions
such that essential elements of proofs or other form of evidence could be included in
the body of the submissions (appendices were not scrutinized by reviewers). Further-
more, a more focused review process was used that consisted of two rounds. In the
first round of reviews we solicited three independent reviews per submission. After a
short discussion phase among the 38 Program Committee members, just over half of
the submissions were retained for the second round. Authors of these retained papers
were given the opportunity to comment on the reviews so far. After extensive delibera-
tions in a second round, we accepted 57 papers. The revised versions of these papers are
included in these two volume proceedings, organized topically within their respective
track.

The review process would have been impossible without the hard work of the Pro-
gram Committee members and over 210 external reviewers, whose effort we would like
to commend here. It has been an honor to work with everyone. The process was enabled
by the Web Submission and Review Software written by Shai Halevi and the server was
hosted by IACR. We would like to thank Shai for setting up the service on the server
and for helping us whenever needed.

The Program Committee decided to honor one submission with the Best Paper
Award this year. This submission was “Cryptanalysis of the Multilinear Map over the
Integers” authored by Junghee Cheo, Kyoohyung Han, Changmin Lee, Hansol Ryu, and



VI Preface

Damien Stehlé. The two runners-up to the award, “Robust Authenticated-Encryption:
AEZ and the Problem that it Solves” (by Viet Tung Hoang, Ted Krovetz, and Phillip
Rogaway) and “On the behaviors of affine equivalent Sboxes regarding differential and
linear attacks” (by Anne Canteaut and Joëlle Roué) received Honorable Mentions and
hence also invitations for the Journal of Cryptology.

In addition to the contributed talks, we had three invited speakers: Kristin Lauter,
Tal Rabin, and Vincent Rijmen. We would like to thank them for accepting our invi-
tation and thank everyone (speakers, session chairs, and rump session chair) for their
contribution to the program of Eurocrypt 2015.

April 2015 Elisabeth Oswald
Marc Fischlin
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Cryptanalysis of the Multilinear Map over
the Integers

Jung Hee Cheon1(B), Kyoohyung Han1, Changmin Lee1,
Hansol Ryu1, and Damien Stehlé2

1 Seoul National University (SNU), Seoul, Republic of Korea
jhcheon@snu.ac.kr

2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
Lyon, France

Abstract. We describe a polynomial-time cryptanalysis of the (approx-
imate) multilinear map of Coron, Lepoint and Tibouchi (CLT). The
attack relies on an adaptation of the so-called zeroizing attack against
the Garg, Gentry and Halevi (GGH) candidate multilinear map. Zeroiz-
ing is much more devastating for CLT than for GGH. In the case of
GGH, it allows to break generalizations of the Decision Linear and Sub-
group Membership problems from pairing-based cryptography. For CLT,
this leads to a total break: all quantities meant to be kept secret can be
efficiently and publicly recovered.

Keywords: Multilinear maps · Graded encoding schemes

1 Introduction

Cryptographic bilinear maps, made possible thanks to pairings over elliptic
curves, have led to a bounty of exciting cryptographic applications. In 2002,
Boneh and Silverberg [BS02] formalized the concept of cryptographic multilin-
ear maps and provided two applications: a one-round key multi-party exchange
protocol, and a very efficient broadcast encryption scheme. But these promising
applications were only day-dreaming exercises, as no realization of such multilin-
ear maps was known. This was changed about ten years later, as Garg, Gentry
and Halevi proposed the first approximation to multilinear maps [GGH13a].
They introduced the concept of (approximate) graded encoding scheme as a
variant of multilinear maps, and described a candidate construction relying on
ideal lattices (which we will refer to as GGH in this work). Soon after, Coron,
Lepoint and Tibouchi [CLT13] proposed another candidate construction of a
graded encoding scheme, relying on a variant of the approximate greatest com-
mon divisor problem (CLT, for short).

The GGH and CLT constructions share similarities. Both are derived from
a homomorphic encryption scheme (Gentry’s scheme [Gen09] and the van Dijk
et al. scheme [DGHV10], respectively). And both rely on some extra public data,
called the zero-testing or extraction parameter, which allows to publicly decide
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 3–12, 2015.
DOI: 10.1007/978-3-662-46800-5 1
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whether the plaintext data hidden in a given encoding is zero, as long as the
encoding is not the output of a too deep homomorphic evaluation circuit.

Graded encoding schemes serve as a basis to define presumably hard prob-
lems. These problems are then used as security foundations of cryptographic
constructions. A major discrepancy between GGH and CLT is that some natural
problems seem easy when instantiated with the GGH graded encoding scheme,
and hard for CLT. Two such problems are subgroup membership (SubM) and
decision linear (DLIN). Roughly speaking, SubM asks to distinguish between
encodings of elements of a group and encodings of elements of a subgroup
thereof. DLIN consists in determining whether a matrix of elements is singu-
lar, given as input encodings of those elements. Another similar discrepancy
seems to exist between the asymmetric variants of GGH and CLT: the Exter-
nal Decision Diffie-Hellman (XDH) problem seems hard for CLT but is easy for
GGH. XDH is exactly DDH for one of the components of the asymmetric graded
encoding scheme. These problems have been extensively used in the context of
cryptographic bilinear maps [Sco02,BBS04,BGN05].

In the first public version of [GGH13a] (dated 29 Oct. 2012),1 the GGH
construction was thought to provide secure DLIN instantiation. It was soon
realized that DLIN could be broken in polynomial-time. The attack consists
in multiplying an encoding of some element m by an encoding of 0 and by
the zero-testing parameter: this produces a small element (because the encoded
value is m · 0 = 0), which happens to be a multiple of m. This zeroizing
attack (also called weak discrete logarithm attack) is dramatic for SubM, DLIN
and XDH. Fortunately, it does not seem useful against other problems, such as
Graded Decision Diffie Hellman (GDDH), the adaptation of DDH to the graded
encoding scheme settnig. As no such attack was known for CLT, the presumed
hardness of the CLT instantiations of SubM, DLIN and XDH was exploited as a
security grounding for several cryptographic constructions [ABP14,Att14,BP13,
BLMR13,GGHZ14a,GGHZ14b,GLW14,GLSW14,LMR14,Zha14,Zim14].

Main Result. We describe a zeroizing attack on the CLT graded encoding
scheme. It runs in polynomial-time, and allows to publicly compute all the
parameters of the CLT scheme that were supposed to be kept secret.

Impact of the Attack. The CLT candidate construction should be considered
broken, unless the low-level encodings of 0 are not made public. At the moment,
there does not remain any candidate multilinear map approximation for which
any of SubM, DLIN and XDH is hard. Several recent cryptographic construc-
tions cannot be realized anymore: this includes all constructions from [Att14,
GGHZ14a,GGHZ14b,Zha14], the GPAKE construction of [ABP14] for more
than 3 users, one of the two constructions of password hashing of [BP13], the
alternative key-homomorphic PRF construction from [BLMR13], and the use of
the latter in [LMR14].

Our attack heavily relies on the fact that low-level encodings of 0 are made pub-
licly available. It is not applicable if these parameters are kept secret. They are used
1 It can be accessed from the IACR eprint server.
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in applications to homomorphically re-randomize encodings, in order to “canoni-
calize” their distributions. A simple way to thwart the attack is to not make any
low-level encoding of 0 public. This approach was used in [GGH+13b] and [BR13],
for example. It seems that this approach can be used to secure the construction
from [Zim14] as well.

Related Works. A third candidate construction of a variant of graded encoding
schemes was recently proposed in [GGH14]. In that scheme, no encoding of 0 is
provided, as it would incur serious security issues (see [GGH14, Se. 4]).

Our attack was extended in [BWZ14,GHMS14] to settings in which no low-
level encoding of 0 is available. The extensions rely on low-level encodings of
elements corresponding to orthogonal vectors, and impact [GLW14,GLSW14].

After our attack was published, the draft [GGHZ14a] was updated, to propose
a candidate immunization against our attack (see [GGHZ14a, Se. 6]).2 Another
candidate immunization was proposed in [BWZ14]. Both immunizations have
been showed insecure in [CLT14a].

Open Problems. A natural line of research is to extend the range of applica-
tions of graded encoding schemes for which the encodings of zero are not needed.

Publishing encodings of zero as well as a zero-test parameter can lead to
damaging consequences (total break of CLT, weakness of SubM, DLIN and XDH
for GGH). An impossibility result would be fascinating.

Organization. In Section 2, we recall the CLT scheme and the zeroizing attack
against GGH. In Section 3, we present our attack on CLT.

2 Preliminaries

Notation. We use a ← A to denote the operation of uniformly choosing an
element a from a finite set A. We define [n] = {1, 2, . . . , n}. We let Zq denote the
ringZ/(qZ). For pairwise coprime integersp1, p2, . . . , pn, we define CRT(p1,p2,...,pn)

(r1, r2, . . . , rn) (abbreviated as CRT(pi)(ri)) as the unique integer in(− 1
2

∏n
i=1 pi,

1
2

∏n
i=1 pi

]
which is congruent to ri mod pi for all i ∈ [n]. We

use the notation [t]p for integers t and p to denote the reduction of t modulo p
into the interval (−p/2, p/2].

We use lower-case bold letters to denote vectors whereas upper-case bold
letters are used to denote matrices. For matrix S, we denote by ST the transpose
of S. We define ‖S‖∞ = maxi

∑
j∈[n] |sij |, where sij is the (i, j) component

of S. Finally we denote by diag(a1, . . . , an) the diagonal matrix with diagonal
coefficients equal to a1, . . . , an.

2.1 A Candidate Multilinear Map over the Integers

First, we briefly recall the Coron et al. construction. We refer to the original
paper [CLT13] for a complete description.
2 The former version that was impacted by our attack can still be accessed from the

IACR eprint server.
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The scheme relies on the following parameters.

λ: the security parameter
κ: the multilinearity parameter
ρ: the bit length of the randomness used for encodings
α: the bit length of the message slots
η: the bit length of the secret primes pi

n: the number of distinct secret primes
τ : the number of level-1 encodings of zero in public parameters
�: the number of level-0 encodings in public parameters
ν: the bit length of the image of the multilinear map
β: the bit length of the entries of the zero-test matrix H

Coron et al. suggested to set the parameters so that the following conditions
are met:

• ρ = Ω(λ): to avoid brute force attack (see also [LS14] for a constant factor
improvement).

• α = λ : so that the ring of messages Zg1 × . . .×Zgn
does not contain a small

subring Zgi
.3

• n = Ω(η · λ): to thwart lattice reduction attacks.
• � ≥ n · α + 2λ: to be able to apply the leftover hash lemma from [CLT13,

Le. 1].
• τ ≥ n ·(ρ+log2(2n))+2λ: to apply leftover hash lemma from [CLT13, Se. 4].
• β = Ω(λ): to avoid the so-called gcd attack.
• η ≥ ρκ +α+2β +λ+8, where ρκ is the maximum bit size of the random ri’s

a level-κ encoding. When computing the product of κ level-1 encodings and
an additional level-0 encoding, one obtains ρκ = κ · (2α + 2ρ + λ + 2 log2 n +
2) + ρ + log2 � + 1.

• ν = η − β − ρf − λ − 3: to ensure zero-test correctness.

Instance generation: (params,pzt) ← InstGen(1λ, 1κ). Set the scheme param-
eters as explained above. For i ∈ [n], generate η-bit primes pi, α-bit primes gi,
and compute x0 =

∏
i∈[n] pi. Sample z ← Zx0 . Let Π = (πij) ∈ Z

n×n with πij ←
(n2ρ, (n + 1)2ρ) ∩Z if i = j, otherwise πij ← (−2ρ, 2ρ) ∩Z. For i ∈ [n], generate
ri ∈ Z

n by choosing randomly and independently in the half-open parallelepiped
spanned by the columns of the matrix Π and denote by rij the j-th component
of ri. Generate H = (hij) ∈ Z

n×n,A = (aij) ∈ Z
n×� such that H is invertible

3 In fact, it seems that making the primes gi public, equal, and Ω(κ) may not lead to
any specific attack [CLT14b].
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and ‖HT ‖∞ ≤ 2β , ‖(H−1)T ‖∞ ≤ 2β and for i ∈ [n], j ∈ [�], aij ← [0, gi). Then
define:

y = CRT(pi)

(
rigi + 1

z

)
, where ri ← (−2ρ, 2ρ) ∩ Z for i ∈ [n],

xj = CRT(pi)

(rijgi

z

)
for j ∈ [τ ],

x′
j = CRT(pi)(x

′
ij), where x′

ij = r′
ijgi+ aij and r′

ij ← (−2ρ, 2ρ)∩ Z for i∈ [n], j ∈ [�],

(pzt)j =

⎡

⎣
n∑

i=1

[
hij · (zκ · g−1

i

]
pi

·
∏

i′ �=i

pi′

⎤

⎦

x0

for j ∈ [n].

Output params = (n, η, α, ρ, β, τ, �, ν, y, {xj}, {x′
j}, {Πj}, s) and pzt. Here s is a seed

for a strong randomness extractor, which is used for an “Extraction” procedure. We
do not recall the latter as it is not needed to describe our attack.

Re-randomizing level-1 encodings: c′ ← reRand(params, c). For j ∈ [τ ], i ∈ [n],
sample bj ← {0, 1}, b′

i ← [0, 2μ) ∩ Z, with μ = ρ + α + λ. Return c′ = [c +
∑

j∈[τ ] bj ·
xj +

∑
i∈[n] b

′
i · Πi]x0 . Note that this is the only procedure in the CLT multilinear map

that uses the xj ’s.
4

Adding andmultiplying encodings: Add(c1, c2)=[c1+c2]x0 andMul(c1, c2)=[c1 ·
c2]x0 .

Zero-testing: isZero(params, pzt, uκ) =? 0/1. Given a level-κ encoding c, return 1 if
‖[pzt · c]x0‖∞ < x0 · 2−ν , and return 0 otherwise.

Coron et al. also described a variant where only one such (pzt)j is given out, rather
than n of them (see [CLT13, Se. 6]). Our attack requires only one (pzt)j . In [GLW14,
App. B.3], Gentry et al. described a variant of the above construction that aims at
generalizing asymmetric cryptographic bilinear maps. Our attack can be adapted to
that variant.

2.2 Zeroizing Attack on GGH

As a warm-up before describing the zeroizing attack on CLT, we recall the zeroizing
attack on GGH.

Garg et al. constructed the first approximation to multilinear maps, by using ideal
lattices [GGH13a]. They used the polynomial ring R = Z[x]/(xn + 1) and a (prime)
principal ideal I = 〈g〉 ⊆ R, where g is a secret short element. They also chose an
integer parameter q and another random secret z ∈ Rq = R/(qR). Then one can
encode an element of R/I, via division by z in Rq. More precisely, a level-i encoding
of the coset e + I is an element of the form [c/zi]q, where c ∈ e + I is short. By
publishing a zero-testing parameter, any user can decide whether two elements encode
the same coset or not.

4 This procedure can be adapted to higher levels 1 < k ≤ κ by publishing appropriate
quantities in params.
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The zero-testing parameter is pzt = [h · zκ/g]q, where h is appropriately small.
For a given level-κ encoding u = [c/zκ]q, the quantity [u · pzt]q = [h · c/g]q is small
if and only if c ∈ I, i.e., u is an encoding of zero.

The latter creates a weakness in the scheme, which enables to solve the Sub-
group Membership (SubM) and the decision linear (DLIN) problems easily, by so-called
“zeroizing” attack. It uses the property that an encoding of zero has small value when
it is multiplied by the zero-testing parameter. In that case, the reduction modulo q is
vacuous, and one can have equations over R (instead of Rq) and compute some fixed
multiples of secrets. The attack procedure can be summarized as follows (and refer the
reader to [GGH13a] for a more detailed description). It relies on the following public
parameters:

• y = [a/z]q, with a ∈ 1 + I and a small, a level-1 encoding of 1,
• xj = [bjg/z]q, with bj small, a level-1 encoding of 0,
• pzt = [hzκ/g]q, with h ∈ R appropriately small, the zero-testing parameter.

Step 1: Compute level-κ encodings of zero and get the equations in R by multi-
plying by the zero-testing parameter.

Let u = d/zt be a level-t encoding of some message d mod I. Then compute

f := [u · xj · pzt · yκ−t−1]q =

[
d

zt
· bj · g

z
· h · zκ

g
· a

κ−t−1

zκ−t−1

]

q

= d · bj · h · aκ−t−1

︸ ︷︷ ︸
�q

.

Note that the last term in the above equation consists of only small elements,
so that the equality holds without modulus reduction by q. Therefore we can
obtain various multiples of h (in R) for various u and xj .

Step 2: From multiples of h, compute a basis of 〈h〉. Using a similar procedure,
compute a basis of 〈h · g〉, and hence a basis for I (by dividing 〈h · g〉 by 〈h〉).

SubM is as follows: Given a level-1 encoding u = [d/z]q, assess whether d ∈ 〈g1〉,
where g = g1 · g2 (note that in this context, I is not a prime ideal). Using the above
method, we can get f = d · Δ for some Δ (which is unrelated to g). Taking the gcd of
〈f〉 and I, we easily solve the subgroup membership problem.

DLIN is as follows: Given level-t encodings C = (cij)i,j∈[N ] of messages M =
(mij)i,j∈[N ] for some t < κ and N > κ/t,5 assess whether the rank of M (over the field
R/I) is full or not. Using the above, we can compute M · Δ for some scalar Δ ∈ R/I
which is unlikely to be 0. In that case, the matrices M · Δ and M have equal rank,
and the problem is easy to solve.

3 A Zeroizing Attack on CLT

The first step of the attack is similar to that of the zeroizing attack of GGH. We com-
pute many level-κ encodings of zero and multiply them by the zero-testing parameter.
Then we get matrix equations over Q (not reduced modulo x0). By adapting the latter

5 If N is smaller than that, the problem is not interesting as it can always be solved
efficiently using the zero-test parameter.
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to CLT, one would obtain samples from the ideal 〈h1, . . . , hn〉 ⊆ Z. Most of the time,
it is the whole Z, and the samples do not contain any useful information. Instead, we
form matrix equations by using several xj ’s rather than a single one.

These equations share common terms. The second step of the attack is to remove
some of these common terms by computing the ratio (over the rationals) between two
such equations, and to extract the ratios of the CRT components of the underlying
plaintexts by computing the eigenvalues.

The third step consists in recovering the pi’s from these CRT components. Once the
pi’s are obtained, recovering the other secret quantities is relatively straightforward.

Now we give full details of each step.

3.1 Constructing Matrix Equations over Z

Let t ≤ κ − 1. Let c be a level-t encoding of (m
(c)
1 , . . . , m

(c)
n ), i.e., c = ci/zt mod pi

and ci = m
(c)
i for all i ∈ [n]. Then we can compute the following quantities using the

public parameters (for j ∈ [�], k ∈ [τ ]):

wjk :=
[
c · x′

jxk · yκ−t−1 · (pzt)1
]
x0

=

[
n∑

i=1

[
hi1 · c · x′

jxkyκ−t−1zκg−1
i

]
pi

· x0

pi

]

x0

=

[
n∑

i=1

hi1cix
′
ijrik(rigi + 1)κ−t−1 · x0

pi

]

x0

=

[
n∑

i=1

x′
ijh

′
icirik

]

x0

,

where h′
i := hi1(rigi + 1)κ−t−1x0/pi for i ∈ [n].

Now, as c is a level-t encoding, then x′
j · (c · xk · yκ−t−1) is a valid level-κ Diffie-

Hellman product (i.e., a product of one level-0 encoding and κ level-1 encodings).
Further, it is an encoding of 0, as xk is an encoding of 0. By design, we have that |wjk|
is much smaller than x0 (this may be checked by a tedious computation, but this is
exactly how the correctness requirement for the zero-test parameter is derived). As a
result, the equation wjk =

∑
i∈[n] x

′
ijh

′
icirik holds over the integers.

This equation can be rewritten as follows:

wjk = (x′
1j , . . . , x

′
nj) · diag(c1, . . . , cn) · diag(h′

1, . . . , h
′
n) · (r1k, . . . , rnk)T .

By letting the index pair (j, k) vary in [n] × [n], we obtain a matrix equation involving
the following matrix W c = (wjk) ∈ Z

n×n.

W c =

⎛

⎜
⎝

x′
11 · · · x′

n1

. . .

x′
1n · · · x′

nn

⎞

⎟
⎠

⎛

⎜
⎝

c1 0

. . .

0 cn

⎞

⎟
⎠

⎛

⎜
⎝

h′
1 0

. . .

0 h′
n

⎞

⎟
⎠

⎛

⎜
⎝

r11 · · · r1n

. . .

rn1 · · · rnn

⎞

⎟
⎠

= X ′ diag(c1, . . . , cn) diag(h′
1, . . . , h

′
n) R.

(1)

To build these equations, we need sufficiently many x′
j ’s and xk’s. Namely, we need

� ≥ n and τ ≥ n. The design conditions on � and τ ensure that this is the case.
Note that the only component in the right hand side of Equation (1) that depends

on c is diag(c1, . . . , cn): the matrices X ′,R and diag(h′
1, . . . , h

′
n) are independent of c.



10 J.H. Cheon et al.

3.2 Breaking into the CRT Decomposition

We now take t = 0, and instantiate Equation (1) twice, with c = x′
1 and c = x′

2. We
obtain, for j ∈ {1, 2}:

W j := X ′ · diag(x′
1j , . . . , x

′
nj) · diag(h′

1, . . . , h
′
n) · R.

We can then compute (over Q):

W 1 · W−1
2 = X ′ · diag

(
x′
11

x′
12

, . . . ,
x′

n1

x′
n2

)
X ′−1.

In the latter, we need that W 2 is invertible. Below, we will also need that W 1 is
invertible. We argue here that we may assume this is the case. We prove it for W 1.
Note first that the x′

i1’s and the h′
i’s are all non-zero, with overwhelming probability.

Note that by design, the matrix (rij)i∈[n],j∈[τ ] has rank n (see [CLT13, Se. 4]). The
same holds for the matrix (x′

ij)i∈[n],j∈[�] (see [CLT13, Le. 1]). As we can compute the
rank of a W c ∈ Z

t×t obtained by using an X ′ ∈ Z
t×n and an R ∈ Z

n×t obtained
by respectively using a t-subset of the x′

j ’s and a t-subset of the xj ’s, without loss
of generality we may assume that our X ′,R ∈ Z

n×n are non-singular. The cost of
finding such a pair (X ′,R) is bounded as Õ((τ + �) · (nω log x0)) = Õ(κω+3λ2ω+6),
with ω ≤ 2.38 (assuming all parameters are set smallest possible so that the bounds of
Subsection 2.1 hold). Here we used the fact that the rank of a matrix A ∈ Z

n×n may

be computed in time Õ(nω log ‖A‖∞) (see [Sto09]). This dominates the overall cost of
the attack.

As X ′ is non-singular, we obtain that the x′
i1/x′

i2’s are the eigenvalues (over Q)
of W 1 · W−1

2 . These may be computed in polynomial-time from W 1 · W−1
2 (e.g., by

factoring the characteristic polynomial). We hence obtain the x′
i1/x′

i2’s, for all i ∈ [n],
possibly in a permuted order. We write the fraction x′

i1/x′
i2 as x′′

i1/x′′
i2, with co-prime

x′′
i1 and x′′

i2. At this stage, we have the (x′′
i1, x

′′
i2)’s at hand, for all i ∈ [n]. For each of

these pairs, we compute:
gcd(x′′

i1 · x′
2 − x′′

i2 · x′
1, x0).

The prime pi is a common factor of both x′′
i1 · x′

2 − x′′
i2 · x′

1 and x0. As all the other
factors of x0 are huge, there is a negligible probability that the gcd is not exactly pi:
another pj divides x′′

i1 · x′
2 − x′′

i2 · x′
1 if and only if x′

i1 · x′
j2 = x′

i2 · x′
j1.

3.3 Disclosing all the Secret Quantities

At this stage, we know all the pi’s.
Let j ∈ [τ ]. We have xj/y = rijgi/(rigi +1) mod pi. As the numerator and denom-

inator are coprime and very small compared to pi, they can be recovered by rational
reconstruction. We hence obtain rijgi for all j. The gcd of the (rijgi)’s reveals gi. As
a result, we can also recover all the rij ’s and ri’s.

As x1 = ri1gi/z mod pi and as the numerator is known, we can recover z mod pi

for all i, and hence z mod x0. The hij ’s can then be recovered as well. So can the r′
ij ’s

and aij ’s.
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Abstract. With a scheme for robust authenticated-encryption a user
can select an arbitrary value λ≥ 0 and then encrypt a plaintext of any
length into a ciphertext that’s λ characters longer. The scheme must
provide all the privacy and authenticity possible for the requested λ. We
formalize and investigate this idea, and construct a well-optimized solu-
tion, AEZ, from the AES round function. Our scheme encrypts strings
at almost the same rate as OCB-AES or CTR-AES (on Haswell, AEZ
has a peak speed of about 0.7 cpb). To accomplish this we employ an
approach we call prove-then-prune: prove security and then instantiate
with a scaled-down primitive (e.g., reducing rounds for blockcipher calls).

Keywords: AEZ · Authenticated encryption · CAESAR competition ·
Misuse resistance · Modes of operation · Nonce reuse · Prove-then-
prune · Robust AE

1 Introduction

We expose the low cost and high benefit of building authenticated-encryption
(AE) schemes that achieve the unprecedentedly strong goal we call robust AE
(henceforth RAE). We explain why RAE is desirable, define its syntax and secu-
rity, and explore its guarantees. Then we construct an RAE scheme, AEZ, from
AES4 and AES10 (four- and ten-round AES). AEZ’s efficiency—nearly that of
AES-based OCB [32] or CTR mode—flies in the face of a community’s collec-
tive work [4,11–13,22–25,35,38–40,52–54,60] in which wide-block enciphering
schemes—a special case of RAE—were always far more expensive than conven-
tional blockciphers. Achieving this efficiency has entailed using a design para-
digm, the prove-then-prune approach, with implications beyond AE.

Ciphertext expansion. One can motivate RAE from a syntactic point of
view. Recall that in a nonce-based AE scheme, a plaintext M is mapped to a
ciphertext C = E

N,A
K (M) under the control of a key K, nonce N , and associated

data (AD) A. Typically the ciphertext expansion (or stretch) λ = |C| − |M | is a
constant or user-selectable parameter. For conventional AE, the stretch mustn’t
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 15–44, 2015.
DOI: 10.1007/978-3-662-46800-5 2
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be too small, as customary definitions would break: a trivial adversary can get
large advantage. This is because AE definitions “give up” when the first forgery
occurs. The issue isn’t only definitional: no prior AE scheme provides a desirable
security guarantee when the ciphertext expansion is small.

Still, we know that meaningful security is possible even for zero-stretch: a
strong pseudorandom permutation buys significant security, even from an AE
point of view [5]. What is more, it would seem to be useful to allow small stretch,
as, for example, short tags can save significant energy in resource-constrained
environments (as discussed, e.g., by Struik [58]).

RAE takes a liberal approach towards ciphertext expansion, accommodating
whatever stretch a user requests. This leads to schemes that deliver more than
conventional AE even when the stretch is not small. Indeed we could have moti-
vated RAE without considering small-λ, describing a desire to achieve nonce-
reuse misuse-resistance [51], to automatically exploit novelty or redundancy in
plaintexts [5], or to accommodate the release of unverified plaintexts [1,21]. But
our ideas are most easily understood by asking what it means, and what it takes,
to do well for any stretch.

Defining RAE. So consider an AE scheme that expands a plaintext M ∈
{0, 1}∗ by a user-selectable number of bits1 τ ≥0. We ask: what’s the best privacy
and authenticity guarantee possible for some arbitrary, specified τ? Robust AE
formalizes an answer.

Recall the definition of a pseudorandom-injection (PRI) [51]: for each nonce N
and associated data A, for a fixed τ ≥0, the scheme’s encryption algorithm should
resemble a uniformly chosen injective function πN,A,τ from binary strings to τ -bit
longer ones. Decryption of an invalid ciphertext (one lacking a preimage under π)
should return an indication of invalidity.

PRIs were introduced as an alternative characterization of nonce-reuse misuse-
resistant AE (henceforth MRAE). But PRIs only approximate MRAE schemes
with large stretch. We recast the PRI notion as prescriptive: the user selects τ ≥ 0
and then the scheme must look like a PRI for the chosen value. This is our basic
definition for RAE.

RAE can be thought of as a bridge connecting blockciphers and AE. When
τ =0 an RAE scheme is a kind of blockcipher—a tweakable blockcipher (TBC)
[34] that operates on messages and tweaks of arbitrary length and is secure
as strong pseudorandom permutation (PRP). The nonce and AD comprise the
tweak. When τ � 128 an RAE scheme amounts to an MRAE scheme. An RAE
scheme encompasses both objects, and everything in between.

In defining RAE we are actually a bit more generous than what was sketched
above, allowing an RAE’s decryption algorithm to return information about an
invalid ciphertext beyond a single-valued indication of invalidity. The informa-
tion just needs to be harmless. To formalize this the reference experiment uses
1 We’ll later permit arbitrary alphabets. To avoid confusion, we use λ to measure

ciphertext expansion in characters (bits, bytes, etc.) and τ to measure it in bits.
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a simulator S to provide responses to invalid decryption queries. It must do this
without benefit of the family of random injections.

Enciphering-Based AE. We can achieve RAE with enciphering-based AE.
The idea, rooted in folklore, was formalized by Bellare and Rogaway [5] and, in
a different form, by Shrimpton and Terashima [56]. In its modern incarnation,
enciphering-based AE works like this:

Take the message you want to encrypt, augment it with τ bits of redundancy,
and then encipher the resulting string by applying an arbitrary-input-length
tweakable blockcipher. Tweak this using the nonce, AD, and an encoding of τ .
On decryption, check for the presence of the anticipated redundancy and reject
a ciphertext if it is not there.

We will prove that this method achieves RAE. In fact, we’ll prove that this is
so even if the decryption algorithm releases candidate plaintexts with incorrect
redundancy.

AEZ. We construct a highly optimized RAE scheme, AEZ. We use the same
name to refer to the arbitrary-input-length tweakable blockcipher from which
it’s built.2 With the increasing ubiquity of hardware AES support, we choose to
base AEZ on the AES round function.

How AEZ works depends on the length of the input; see Fig. 1. To encipher a
plaintext of fewer than 32 bytes we use AEZ-tiny, a balanced-Feistel scheme with
a round function based on AES4, a four-round version of AES. The construction
builds on FFX [6,17]. The more interesting case, AEZ-core, is used to encipher
strings of 32 bytes or more. It builds on EME [22,24] and OTR [36]. Look ahead
to the top-left panel of Fig. 7. There are two enciphering layers, with consecutive
pairs of blocks processed together using a two-round Feistel network. The round
function for this is again based on AES4. The mask injected as the middle layer
is determined, for each pair of consecutive blocks, using another AES4 call.

Performance. AEZ-core is remarkably fast; as the description above implies,
we need about five AES4 calls to encipher each consecutive pair of blocks, so ten
AES rounds per block. Thus our performance approaches that of CTR-AES. An
implementation of AEZ on Haswell using AES-NI has a peak speed of 0.72 cpb—
about the same as OCB [32]. Look ahead to Fig. 8. Additionally, invalid strings
can be rejected, and AD processed, in about 0.4 AES-equivalents per block, or
0.29 cpb peak (again on Haswell). Only the forward direction of AES is used,
saving chip area in hardware realizations. The context size, about 128 bytes, is
small, and key setup, about 1.2 AES-equivalents for a 128-bit key, is fast.

For a two-pass mode achieving MRAE, the cluster of performance charac-
teristics described is unexpected. Part of the explanation as to how this is pos-
sible lies in the use of a design approach that benefits from both classical and
provable-security design. Let us explain.
2 Since an RAE scheme trivially determines an arbitrary-input-length tweakable block-

cipher (set τ = 0) it makes sense to use a single name for both objects.
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N,  A,  τ

C

0···0M
τ

AEZ-core

AEZ

AEZ-tiny

Tweak

T T

Fig. 1. High-level structure of AEZ. After appending to the message a block of τ
zero bits we encipher it using a tweak T comprising the nonce N , associated data A,
and stretch τ . Enciphering depends on the length of the plaintext: usually we use
AEZ-core, but strings shorter than 32 bytes are enciphered by AEZ-tiny. Both depend
on the underlying key K, which is not shown in the diagram above.

Prove-then-prune design. We designed AEZ using an approach we call
prove-then-prune. It works like this:

To achieve some complex cryptographic goal, design a scheme in the provable-
security tradition, choosing an underlying primitive and demonstrably achiev-
ing the goal when it’s instantiated by an object achieving some standard
assumption. Then, to improve speed, selectively instantiate some of the appli-
cations of the primitive using a scaled-down (e.g., reduced-round) construction.
Use heuristic or cryptanalytic reasons to support the expectation that, despite
scaling down, the scheme remains secure.

Specifically, AEZ is designed in terms of a tweakable blockcipher (TBC). If this
TBC had been instantiated in the “usual” way, say using AES and the XE
construction [34,49], we would have a provably-sound design on message space
{0, 1}≥128. The cost would be about 2.5 times the cost of AES. But to speed
things up, we instantiate most TBC calls with an AES4-based construction.
Heuristics reasons to suggest that security nonetheless remains. Our design was
specifically chosen so as to make a scaled-down instantiation plausible.

The thesis underlying prove-then-prune approach is that it can be instru-
mental for devising highly efficient schemes for complex aims. We believe that
if the instantiation is done judiciously, then the scaled-down scheme retains
some assurance benefit. Still, it is important to emphasize the limitations of
prove-then-prune. Naming an approach is not license to abuse it. The method is
dangerous in the same sort of way that designing a confusion/diffusion primitive
is: one has no guarantees for the object that will actually be used. Additionally,
the set of people with provable-security competence is nearly disjoint from those
with cryptanalytic competence. The authors think it essential that cryptanalysts
study AEZ. This is all the more true because pruning was aggressive.

In some way, prove-then-prune is implicit in prior work: schemes like ALRED
[15] typify a trend in which reduced-round AES in used in contexts where full
AES would demonstrably do the job.
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RAE benefits. What do we hope to gain with RAE? Our definition and
scheme are meant to achieve all of the following: (1) If (M,A) tuples are known
a priori not to repeat, no nonce is needed to ensure semantic security. (2) If
there’s redundancy in plaintexts whose presence is verified on decryption, this
augments authenticity. (3) Any authenticator-length can be selected, achiev-
ing best-possible authenticity for this amount of stretch. (4) Because of the
last two properties, one can minimize length-expansion in many bandwidth-
constrained applications. (5) If what’s supposed to be a nonce should acciden-
tally get repeated, the privacy loss is limited to revealing repetitions in (N,A,M)
tuples, while authenticity is not damaged at all. (6) If a decrypting party leaks
some or all of a putative plaintext that was supposed to be squelched because
of an authenticity-check failure, this won’t compromise privacy or authenticity.

The authors believe that the properties enumerated would sometimes be
worth a considerable computational price. Yet the overhead we pay is low: AEZ
is almost as fast as OCB.

Discussion. AEZ’s name is meant to simultaneously suggest AE, AES, and EZ
(easy), the last in the sense of ease of correct use. But the simplicity is for the
user; we would not claim that the AEZ algorithm is simple.

Since McOE and COPA [2,20], some recent AE schemes have been adver-
tised as nonce-reuse misuse-resistant despite being online.3 But online schemes
are never misuse-resistant in the sense originally defined [51].4 They never sup-
port automatic exploitation of novelty or verified redundancy [5] and are always
vulnerable to a simple message-recovery attack [47]. We disagree with the pre-
sumption that two-pass AE schemes are routinely problematic; in fact, our work
suggests that, on capable platforms, there isn’t even a performance penalty.
Finally, short messages routinely dominate networking applications, and we
know of no application setting where it’s important to limit latency to just
a few bytes, the implicit expectation for proposed online schemes.

This paper upends some well-entrenched assumptions. Before, AE-quality
was always measured with respect to an aspirational goal; now we’re suggesting
to employ an achievable one. Before, substantial ciphertext expansion was seen
as necessary for any good AE; now we’re allowing an arbitrary, user-supplied
input. Before, AE schemes and blockciphers were considered fundamentally dif-
ferent species of primitives; now we’re saying that, once the definitions are
strengthened, they’re pretty much the same thing. Before, one could either give
a provable-security design or one that follows a more heuristic tradition; now
we’re doing the one and yet still finding need for the other.

AEZ is one of 57 CAESAR submissions [7]. It’s distinguished by being the
notionally strongest submission. We expect it to help clarify the potential cost
and benefit of two-pass AE.
3 By online we mean that the encryption algorithm can be realized in O(1) memory

and a single pass over M .
4 If the first bit of ciphertext doesn’t depend on the last bit of plaintext an adversary

easily wins the MRAE game.
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2 Prior AE Definitions

Fix an alphabet Σ. Typically Σ is {0, 1} or {0, 1}8, but other values, like Σ =
{0, 1, . . . , 9}, are fine. For x ∈ Σ∗ let |x| denote its length. We write ε for the
empty string and x� X for uniformly sampling from a distribution X. If X is
a finite set, it has the uniform distribution.

Syntax. We formalize a nonce-based AE scheme as a triple Π = (K,E,D). The
key space K is a set of strings with an associated distribution. The encryption
algorithm E is deterministic and maps a four-tuple (K,N,A,M) ∈ (Σ∗)4 to a
value C = E

N,A
K (M) that is either a string in Σ∗ or the distinguished symbol ⊥.

Later we will allow AD to be a vector of strings, A ∈ (Σ∗)∗. The distinction
is insignificant insofar as we can always encode a vector of strings as a string.
We require the existence of sets N, A and M (the nonce space, AD space, and
message space) such that EN,A

K (M) �= ⊥ iff (K,N,A,M) ∈ K×N×A×M. The
decryption algorithm D is deterministic and takes a four-tuple (K,N,A,C) to
a value D

N,A
K (C) ∈ Σ∗ ∪ {⊥}. The length of a string-valued C = E

N,A
K (M) is

not allowed to depend on anything beyond |N |, |A| and |M |. In fact, usually
λ = |C| − |M | is a constant, in which case we call the scheme λ-expanding and
refer to λ as the ciphertext expansion or stretch. We require that if C = E

N,A
K (M)

is a string then D
N,A
K (C) = M . Algorithm D rejects ciphertext C if DN,A

K (C) = ⊥
and accepts it otherwise.

AE and MRAE security. Both conventional-AE and MRAE security can be
defined using a compact, all-in-one formulation [51]. Let Π = (K,E,D) be an
AE-scheme. Consider an adversary A with access to an encryption oracle Enc and
a decryption oracle Dec. We define the MRAE security of A as Advmrae

Π (A) =
Pr[ARealΠ ⇒ 1]−Pr[AIdealΠ ⇒ 1], the difference in the probability that A out-
puts 1 when run in the Real and Ideal games of Fig. 2. Both begin by selecting
K �K. Game Real answers encryption queries (N,A,M) with E

N,A
K (M) and

decryption queries (N,A,C) with D
N,A
K (C). Game Ideal answers Dec(N,A,C)

queries with ⊥ and Enc(N,A,M) queries with |C| uniformly chosen characters,
where C ← E

N,A
K (M). For games Real and Ideal, adversaries may not repeat

an Enc or Dec query, ask an Enc query (N,A,M) �∈N×A×M, ask a Dec query
(N,A,C) �∈ N×A×Σ∗, or ask a Dec query (N,A,C) after an Enc query of
(N,A,M) returned C.

The above definition captures MRAE security because repeated nonces were
allowed and were properly serviced. For the conventional AE notion, Advae

Π (A),
modify Real and Ideal by having an Enc(N,A,M) query following an earlier
Enc(N,A′,M ′) query return ⊥. This has the same effect as prohibiting repeated
N -values to the Enc oracle.

PRI security. We define security in the sense of a pseudorandom-injection
(PRI) [51]. Fix a λ-expanding AE scheme Π = (K,E,D); for now, λ is a constant
associated to a (well-behaved) AE scheme. Let Advpri

Π (A) = Pr[ARealΠ ⇒ 1] −
Pr[APRIΠ ⇒ 1] with the oracles again defined in Fig. 2. There Inj(λ) denotes
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initialize IdealΠ
K �K

oracle Enc(N, A, M)
C′ ← EK(N, A, M)

C � Σ|C′|

return C

oracle Dec(N, A, C)
return ⊥

initialize RealΠ
K �K

oracle Enc(N, A, M)
return EK(N, A, M)

oracle Dec(N, A, C)
return DK(N, A, C)

initialize PRIΠ

for (N, A) ∈ N × A do
πN,A � Inj(λ)

oracle Enc(N, A, M)
return πN,A(M)

oracle Dec(N, A, C)
if ∃M ∈ M s.t. πN,A(M) = C

then return M
return ⊥

initialize REALΠ

K �K

oracle Enc(N, A, λ, M)
return EK(N, A, λ, M)

oracle Dec(N, A, λ, C)
return DK(N, A, λ, C)

initialize RAEΠ and RAEΠ,S

for (N, A, λ) ∈ Σ∗×Σ∗×N do πN,A,λ � Inj(λ)
θ ← ε

oracle Enc(N, A, λ, M)
return πN,A,λ(M)

oracle Dec(N, A, λ, C)
if ∃M ∈ M s.t. πN,A,λ(M) = C then return M
M ← ⊥ ←− for RAEΠ

(M, θ) ← S(N, A, λ, C, θ) ←− for RAEΠ,S

return M

Fig. 2. Games for defining security. The top three games are the usual ones for
defining the AE and MRAE notions. The bottom two games are used to define RAE.

the set of all one-to-one functions from Σ∗ to Σ∗ that increase the length of
their inputs by λ characters. The same query restrictions apply as before.

Besides defining PRI security, Rogaway and Shrimpton showed that, for large
ciphertext expansion λ, the notion essentially coincides with MRAE security [51].
Below we clarify the role of the ciphertext expansion by giving a sharper extended
version of their result. To state our bound, define the misuse count as follows.
Initially, set r = 0. Then, for each encryption query Enc(N,A,M), if there was a
prior query (N,A,M ′) such that |M ′| = |M |, increment r by 1. The final value
of r is the misuse count. Below we show that good PRI security implies good
MRAE security as long as q is small compared to |Σ|λ and r is small compared to
|Σ|(λ+mmin)/2 (with all variables defined below). The proof is in Appendix B.1.

Theorem 1. |Advpri
Π (A) −Advmrae

Π (A)| ≤ 2q/|Σ|λ + (r2 + r)/|Σ|λ+mmin+1 for
any λ-expanding AE scheme Π and adversary A, where r is the misuse count
of A’s queries, q is the number of queries it asks, and mmin is the length of the
shortest string in the message space.

In short, the PRI definition captures best-possible security of a λ-expanding AE
scheme, while the MRAE formulation captures an unreachable ideal. The gap
between the realizable and the ideal is formalized by Theorem 1. It is small
if the ciphertext expansion is large, and it is large if the ciphertext expansion
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is small. The latter is so because any actual encryption algorithm must map
distinct (N,A,M) and (N,A,M ′) to distinct ciphertexts, whence real encryption
can’t return uniformly random characters. Similarly, for any infinite message
space, some unqueried ciphertexts must be valid, whence a decryption oracle
that always returns an indication of invalidity is hoping for too much. Building
on the PRI notion, we will now look towards an even more precise way to capture
best-possible AE security.

3 RAE Security

Syntax. The principle difference between a PRI and an RAE scheme is that,
for the latter, the ciphertext expansion λ is no longer a property of a scheme:
it’s an arbitrary input from the user. All values λ ∈ N should be allowed.5 Cor-
responding to this change, we’ll write E

N,A,λ
K (M) and D

N,A,λ
K (C). The difference

may look small, but its consequences are not.
Fix an alphabet Σ. Our formal definition again has an RAE scheme being a

triple Π = (K,E,D), but with the signature of E and D updated. The encryption
algorithm E is deterministic and maps a five-tuple (K,N,A, λ,M) ∈ (Σ∗)3 ×
N× Σ∗ to a string C = E

N,A,λ
K (M) of length |M | + λ. For maximal utility when

realized, we are not permitting a return value of ⊥: an RAE scheme must be
able to encrypt any M using any N , A, and λ. The decryption algorithm D is
deterministic and takes a five-tuple (K,N,A, λ,C) to a value D

N,A,λ
K (C) ∈ Σ∗ ∪

{⊥}. We require that D
N,A,λ
K (EN,A,λ

K (M)) = M for all K,N,A, λ,M . If there’s
no M such that C = E

N,A,λ
K (M) then D

N,A,λ
K (C) = ⊥. Later in this section

we will relax this requirement as a way to model the possibility of decryption
algorithms that reveal information beyond an indication of invalidity.

RAE security. Let Π = (K,E,D) be an RAE scheme over alphabet Σ.
Its security is defined using the games REALΠ and RAEΠ at the bottom of
Fig. 2. (For the moment, ignore RAEΠ,S .) The adversary A has two oracles,
an encryption oracle Enc and a decryption oracle Dec. For game REAL, these
are realized by the actual encryption and decryption algorithms, which now
take in the argument λ. For game RAEΠ we behave according to the family
of random injections πN,A,λ chosen at the beginning of the game, responding
to each encryption query (N,A, λ,M) with C = πN,A,λ(M) and responding to
each decryption query (N,A, λ,C) with π−1

N,A,λ(C), if that inverse exists, and ⊥
if it does not. We let Advrae

Π (A) = Pr[AREALΠ ⇒ 1] − Pr[ARAEΠ ⇒ 1]. There
are no restrictions on the kinds of queries the adversary may make.

To gain some appreciation for the RAE definition, consider an adversary that
asks to encrypt a message M using a single byte of stretch. Such a scheme would
not be considered secure in the MRAE setting, as forging with probability 1/256
is easy. But under the RAE viewpoint, that isn’t a defect per se, as the user who
5 It might be OK to set some reasonable upperbound λ ≤ λmax, but there shouldn’t

be a nonzero lowerbound.
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requests one-byte expansion would expect 1/256 of all ciphertexts to have some
preimage. If a user should try to decrypt such a ciphertext C using the same
K,N,A but λ = 0, a plaintext will emerge, never an indication of invalidity, but
that plaintext should be unrelated to the originally encrypted one.

Decryption-call leakage. An AE scheme will fail to approximate the
RAEΠ abstraction if its decryption algorithm, when presented an invalid cipher-
text, routinely returns anything beyond an indication of invalidity. We now
explain how to relax this expectation so that it’s OK to return additional mate-
rial as long as it is known to be useless.

We said earlier that, for an RAE scheme Π = (K,E,D) and any N,A, λ,C, if
there’s no M such that C = E

N,A,λ
K (M) then we expect DN,A,λ

K (C) to return ⊥.
Let us relax this requirement so that DN,A,λ

K (C) may instead return a string, as
long as its length is not |C|−λ. Any such string is trivially recognized as invalid,
so, in effect, we are having D return both ⊥ and an arbitrary piece of side infor-
mation Y . We are not suggesting that the “real” decryption algorithm should
return anything other than ⊥ when presented an invalid ciphertext; instead, we
are effectively overloading D by folding into it a “leakage function” that cap-
tures that which a decryption algorithm’s realization may leak about a presented
ciphertext.

Using this generalized syntax, we define a game RAEΠ,S parameterized by
a probabilistic algorithm S, the simulator. Again see Fig. 2. Simulator S is
called upon to produce imitation ciphertexts when there’s no preimage under
πN,A,λ. To accomplish this task S is provided nothing beyond the current oracle
query and any saved state θ it wants to maintain. An RAE scheme is judged
secure if there’s a simulator S—preferably an efficient one—such that (E,D) is
indistinguishable from the pair of oracles defined in RAEΠ,S . We refine the RAE
advantage by asserting that Advrae

Π,S(A) = Pr[AREALΠ ⇒ 1] − Pr[ARAEΠ,S ⇒
1]. The “basic” RAE definition corresponds to the case where simulator S ignores
its input and returns (⊥, ε).

The RAE definition effectively captures that, while it may be “nice” for
decryption to reveal nothing but ⊥ on presentation of an invalid ciphertext,
there are plenty of other things we could return without damaging privacy or
authenticity. In fact, it really doesn’t matter what is returned just so long as it’s
recognizably invalid and doesn’t depend on the key.

Illustration. Fig. 3 illustrates two possibilities for how an RAE scheme
might encrypt 2-bit strings with 2-bit ciphertext expansion (λ = 2). The key K,
nonce N , and AD A are all fixed. For encryption, the four possible plaintexts
are bijectively paired with four of the 16 possible ciphertexts. For decryption
we show two possibilities. On the left is a conventional decryption algorithm:
the 12 ciphertexts without a preimage decrypt to an indication of invalidity. One
expects the simulator to always return (⊥, ε). On the right is a sloppy decryption
algorithm. The 12 ciphertexts with no preimage decrypt to 12 distinct strings,
all recognizably invalid, all of the form abcd ∈ {0, 1}4 with cd �= 00. Here the
simulator S might sample without replacement from the named set of size 12.
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Fig. 3. Illustrating RAE. Two ways an RAE scheme might encrypt and decrypt a
2-bit string with 2-bit stretch.

Discussion. The reader may have noticed that there is no distinction in the
RAE security definition between the nonce N and associated data (AD) A.
For this reason, either could be dropped—say the nonce—leaving us a signature
E

A,λ
K (M) and D

A,λ
K (C). There’s an especially good argument for doing this when

the AD A is vector-valued: the user is already free to use one of its components
as a nonce. Still, for greater uniformity in treatment across AE notions, and to
encourage users to provide a nonce, we have retained both N and A.

We gave our definition of RAE into two stages only for pedagogical purposes:
this paper offers only one definition for RAE. The simulator S may be trivial or
not; that is the only distinction.

Andreeva et. al [1] recently provided several security definitions also meant
to capture the requirement that a decryption algorithm releases only harmless
information when presented an invalid ciphertext and a repeated nonce. Our own
work is radically different from theirs insofar as we provide a single definition,
RAE, that rolls into it this, among many, considerations.

4 Verified Redundancy Enhances Authenticity

If a plaintext contains redundancy, one naively expects that verifying its presence
upon decryption should enhance the authenticity guarantee provided. For the
case of enciphering-based encryption, which provides no authenticity guarantee
on its own, this has been formally supported [5,51]. But even in this case the
existing results are with respect to conventional notions of AE, and such notions
are too blunt to capture what one expects from verified redundancy. This is
because the notions “give up” as soon as a single ciphertext forgery is made.

Let Π = (K,E,D) be RAE scheme and let v : Σ∗ → {0, 1} be a function
for indicating the “valid” strings: it determines Mv ⊆ Σ∗ by Mv = {M ∈ Σ∗ :
v(M) = 1}. Let Πv = (K,E, D̃) be the AE scheme built from Π that declares
messages invalid if v says so: D̃N,A,λ

K (C) = M if |M | = |C|−λ and v(M) = 1, or
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if |M | �= |C| − λ, where M = D
N,A,λ
K (C), while D̃

N,A,λ
K (C) = 0 ‖ M otherwise,

with 0 a canonical point in Σ. Let dv = max�∈N

{
(|Mv ∩ Σ�|)/|Σ|�} be the

density of Mv.
Suppose, for example, that Σ = {0, 1} and dv = 1/256: there’s a byte worth

of redundancy in the message space. We’d like to be able to make statements
about the authenticity of Πv such as: the chance that an adversary can forge 10
successive, distinct ciphertexts is negligibly more than 2−80. Conventional AE
definitions don’t let one say such a thing; they stop at the bound q/|Σ|λ where q
is the number of queries and λ is the ciphertext expansion (assumed here to be a
constant). One would like to obtain a much sharper bound via dv and λ—in our
example, the forgery probability should be about about q(dv/|Σ|λ)10. This way,
even if, say, λ = 0 and dv = 1/2, we are still able to make strong statements
about the security of Πv. Intuitively, for an RAE scheme Π, the scheme Πv

should have about (λmin + log(1/dv)) log(|Σ|) bits of authenticity, where λmin is
the minimum ciphertext expansion of any query—even after multiple successful
forgeries and even in the presence of decryption leakage, future forgeries still
remain just as hard.

To capture the intuition above, in Theorem 2 we show that Πv itself is RAE-
secure. The proof is in Appendix B.2. Consequently, in game RAE, for any query
(N,A, λ,C) with |C| = 	 + λ to Dec, the chance that this query is a successful
forgery is about |Mv ∩ Σ�|/|Σ|�+λ ≤ dv/|Σ|λ, despite any decryption leakage
and past successful forgeries.

Theorem 2. Let Π and Πv be defined as above. There is an explicitly given
reduction R with the following property. For any simulator S and any adver-
sary A, there is a simulator S′ such that the adversary B = R(A) satisfies
Advrae

Π,S(B) = Advrae
Πv,S′(A). Adversary B makes the same queries as A and has

essentially the same running time.

Note that for good RAE security, we want the simulator S to be efficient. This is
important for privacy, but when the concern is authenticity, it’s less of an issue: a
computationally-unbounded simulator may give the adversary some information
that it can’t compute itself, but as long as the adversary can’t forge, whatever
the adversary learns from the simulator is irrelevant for authenticity. Still, in the
proof of Theorem 2, for each query (N,A, λ,C), the simulator S′ either runs S
or samples from Σ� ∩ Mv, where 	 = |C| − λ. For functions v that arise from
real-world usage, sampling from Σ� ∩ Mv is likely to be simple and efficient,
whence S′ will be about as fast as S itself.

5 Robust AE from an Arbitrary-Input-Length TBC

We now show how to make an AE scheme that achieves RAE security. We
begin with some basic definitions. Let M ⊆ Σ∗ and T be sets. A blockcipher
Ẽ : K × T × M → M is a mapping such that Ẽ

T
K(·) = Ẽ(K,T, ·) is a length-

preserving permutation on M for any K,T . Thus |ẼT
K(X)| = |X| and there’s

a unique D̃ : K × T × {0, 1}∗ → M ∪ {⊥} such that Ẽ
T
K(M) = C implies
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D̃
T
K(C) = M and D̃

T
K(C) = ⊥ when there’s no M such that Ẽ

T
K(M) = C. We

call T the tweak space of Ẽ. When |T| = 1 we make the tweak implicit, writing
E : K × M → M, now with inverse D. We define Perm(M) as the set of all
length-preserving permutations on M, and Perm(T,M) the set of all mappings
π̃ : T ×M → M where π̃(T, ·) ∈ Perm(M) for all T ∈ T. We usually use encipher
instead of encrypt when speaking of applying a blockcipher, and similarly for
decipher and decrypt.

An arbitrary-input-length blockcipher is a blockcipher with message space
M = Σ∗. To be maximally useful, we will want a rich tweak space as well. These
are versatile objects. A bit less general, a wide-block blockcipher has message
space Σ≥n for some fixed n. Again one prefers a rich tweak space. A conventional
blockcipher has message space {0, 1}n for some fixed n.

The strong, tweakable, PRP advantage of an adversary A attacking a block-
cipher Ẽ is defined as Adv±p̃rp

˜E
(A) = Pr[K �K : A

˜EK(·,·),˜DK(·,·) ⇒ 1] −
Pr[π̃ � Perm(T,M) : Aπ̃(·,·),π̃−1(·,·) ⇒ 1]. We’ll write Adv±prp

E
(A) = Pr[K �K :

AEK(·),DK(·) ⇒ 1] − Pr[π � Perm(M) : Aπ(·), π−1(·) ⇒ 1] if there’s no tweak. If
we prohibit the adversary A from querying the second oracle we drop the word
“strong” and write Advp̃rp

˜E
(A) and Advprp

E
(A) respectively.

Encode-then-encipher. Fix Σ. Let Ẽ : K × T × Σ∗ → Σ∗ be an arbitrary-
input-length tweakable blockcipher with tweak space T = Σ∗ ×Σ∗ × N. Let D̃

be its inverse. Let Encode : Σ∗ × N → Σ∗ be an injective function satisfying
|Encode(M,λ)| = |M |+λ. We write the second argument to Encode as a subscript,
Encodeλ(M) ∈ Σ|M |+λ. An example encoding function is Encodeλ(M) = M ‖0λ.

For any encoding function Encode there’s a corresponding Decode: Σ∗×N →
Σ∗ ∪{⊥} such that Decodeλ(X) = M if there’s an M satisfying Encodeλ(M) =
X, while Decodeλ(X) = ⊥ if there’s no such M . We expect Encode and Decode
to be trivially computable, as in the example.

From Ẽ : K× T × Σ∗ → Σ∗ and Encode we define the encode-then-encipher
construction as the RAE scheme EtE[Encode, Ẽ] = (K,E,D) where

E
N,A,λ
K (M) = Ẽ

(N,A,λ)
K (Encodeλ(M)),

D
N,A,λ
K (C) = M if D̃(N,A,λ)

K (C) = X and M satisfies Encodeλ(M) = X,

D
N,A,λ
K (C) = X if D̃(N,A,λ)

K (C) = X and no M satisfies Encodeλ(M) = X.

We stress that decryption does not simply return ⊥ when called on an invalid
(N,A, λ,C), as is conventionally done; instead, we define decryption to “leak”
the entire improperly encoded string X. Nonetheless, Theorem 3 shows that
EtE[Encode, Ẽ] is RAE-secure when Ẽ is secure as a strong, tweakable PRP. Its
proof appears in the full version [28].
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Theorem 3 (EtE is RAE-secure). Let Encode and Ẽ : K×T×Σ∗ → Σ∗ be
defined as above. Then there’s an explicitly given reduction R and an efficient
simulator S with the following property. For any adversary A, the adversary B =
R(A) satisfies Advrae

EtE[Encode,˜E],S
(A) ≤ Adv±p̃rp

˜E
(B). It makes at most q queries

whose total length is at most that of A’s queries plus qλmax, where q is the
number of A’s queries and λmax is the largest stretch among them. The running
time of B is about that of A, plus the time associated to computations of Encode
and Decode.

6 Wide-Block Enciphering: AEZ-core

Let n ≥ 1 be an integer and let {0, 1}≥2n = {x ∈ {0, 1}∗ : |x| ≥ 2n}. Define the
block length of a string x as �|x|/n�. We show how to build a strong PRP on
{0, 1}≥2n from a TBC on {0, 1}n. We’ll use about 2.5 TBC calls per n-bit block.
Later we’ll instantiate the TBC using mostly AES4, employing the prove-then-
prune paradigm to selectively scale-down. This will reduce the amortized cost
to about one AES call per block. Also see the full version [28] for how to tweak
a wide-block blockcipher.

We begin by recalling the definition of a pseudorandom function (PRF)
f : K × M → {0, 1}n. For an adversary A attacking f , its PRF advantage
is Advprf

f (A) = Pr[K �K : AfK(·) ⇒ 1]−Pr[ρ� Func(M, n) : Aρ(·) ⇒ 1] where
Func(M, n) is the set of all functions from M to {0, 1}n.

AEZ-core. Let T = {a, u, uu, v, vv, x, xx, y, yy}∪({a, aa}×N) be the tweak space.
Suppose we have a PRF f : K × (T × {0, 1}n) → {0, 1}n. One can instantiate
this with a TBC Ẽ on {0, 1}n by setting fK(K, (T,X)) = ẼT

K(X). Consider the
wide-block blockcipher AEZ-core[f ] defined and illustrated in Fig. 6. It loosely
follows EME/EME2 [22,24,29], but avoids all doubling operations and only uses
the forward direction of the underlying TBC. AEZ-core[f ] operates on M =
{0, 1}≥2n and itself takes in no tweak. Theorem 4 shows that it’s a strong PRP.
The proof is in the full version [28].

Theorem 4. Let n ≥ 1 be an integer and let T and f be as above. There’s an
explicitly given reduction R with the following property. For any adversary A,
adversary B = R(A) satisfies Adv±prp

AEZ-core[f ](A) ≤ Advprf
f (B) + 2σ2/2n where

σ is the total block length of A’s queries. Adversary B uses the same running
time as A, and makes at most 2.5σ queries.

Discussion. AEZ-core and its inverse are almost the same: the only change
needed is to take the rightmost column of tweaks in reverse order. Given that
one must have some asymmetry in an RAE scheme—an involution is certainly
RAE-insecure—this is about as symmetric a design as one could hope for. A high
degree of symmetry can help maximize efficiency of both hardware and software.
Symmetry is the reason for the wire-crossing just before each Ci C ′

i.
Among the efficiency characteristics of AEZ-core is that one can selectively

decrypt a chosen block about 2.5 times more quickly than decrypting everything.
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10 algorithm AEZ-core(K, M) //AEZ-core
11 M1M

′
1 · · · MmM ′

m Muv MxMy ← M
12 where |M1| = · · · = |M ′

m| = |Mx| = |My| = n and |Muv| < 2n
13 d ← |Muv|; if d < n then Mu ← Muv; Mv ← ε
14 else Mu ← Muv[1..n]; Mv ← Muv[n + 1..|Muv|] fi
15 for i ← 1 to m do Wi ← Mi ⊕ fa,i(M

′
i); Xi ← M ′

i ⊕ fa(Wi) od
16 if d = 0 then X ← X1 ⊕ · · · ⊕ Xm ⊕ 0
17 else if d < n then X ← X1 ⊕ · · · ⊕ Xm ⊕ fu(Mu10∗)
18 else X ← X1 ⊕ · · · ⊕ Xm ⊕ fu(Mu) ⊕ fv(Mv10∗) fi
19 Sx ← Mx ⊕ X ⊕ fx(My); Sy ← My ⊕ fxx(Sx); S ← Sx ⊕ Sy

20 for i←1 to m do
21 S′ ←faa,i(S); Yi ←Wi ⊕ S′; Zi ←Xi ⊕ S′

22 C′
i ←Yi ⊕ fa(Zi); Ci ←Zi ⊕ fa,i(C

′
i) od

23 if d = 0 then Cu ← Cv ← ε; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ 0
24 else if d < n then Cu ← Mu ⊕ fuu(S); Cv ← ε; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ fu(Cu10∗)
25 else Cu ←Mu ⊕ fu(S); Cv ←Mv ⊕ fvv(S)
26 Y ←Y1 ⊕ · · · ⊕ Ym ⊕ fu(Cu) ⊕ fv(Cv10∗) fi

27 Cy ← Sx ⊕ fyy(Sy); Cx ← Sy ⊕ Y ⊕ fy(Cy)
28 return C1C

′
1 · · · CmC′

m CuCv CxCy

Fig. 4. The AEZ-core[f ] construction. The method builds a strong-PRP on
{0, 1}≥2n from an n-bit-output PRF f that operates on its subscript and argument.
It’s key K is implicit. The PRF can be realized by a TBC.

When AEZ-core is turned into an RAE scheme by the EtE construction, this
observation is put to good use in achieving fast rejection of ciphertexts whose
final 0τ bits is plaintext is not correct. That it is undamaging to release this
timing information is guaranteed by results already show—in particular, that it
is ok to release the entire speculative plaintext.

AEZ-core confines “specialized” processing to the final 2–4 blocks. This helps
with efficiency and simplicity compared to having specialized processing at the
beginning or at the beginning and end. In particular, the 0τ authenticator used
to make an RAE scheme will be put at the end of the message (adding a variable
number of zero-bits at beginning could destroy word alignment) and, as long as
τ ≤ 2n, it will be found in the final two blocks.
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Numerous alternatives to AEZ-core were considered before arriving at our
design. Correct alternatives we know are slower or more complex, while most
simplifications are wrong. For example, consider trying to cheapen the design by
using ci · faa,1(S) instead of faa,i(S) where each ci is a public constant and the
product is in GF(2n). This fails for any choice of ci. See Appendix C.

One variant of AEZ-core that does work is to eliminate the “left-hand” xor
coming out of faa,i. (One then has to define Xi as the output of fa instead of
that output xor’ed with M ′

1, and change Yi similarly.) We have kept this xor
because it’s needed for symmetry.

7 Definition of AEZ

So far we have described two key elements of AEZ: the EtE construction and the
AEZ-core[f ] wide-block blockcipher. Now we give AEZ’s complete description.
First a bit of notation.

Notation. The bit length of a string X is written |X|. For the bitwise xor of
unequal-length strings, drop the necessary number of rightmost bits from the
longer (10 ⊕ 0100 = 11). For X a string, let X0∗ = X0p with p the smallest
number such that 128 divides |X| + p. By X∗ we denote the set of all strings
over the alphabet X, including ε. By (X∗)∗ we denote the set of all vectors over
X∗, including the empty vector.

If |X| = n and 1 ≤ i ≤ j ≤ n then X(i) is the ith bit of X (indexing
from the left starting at 1), msb(X) = X(1), and X(i..j) = X(i) · · · X(j). Let
[n]t be the t-bit string representing n mod 2t and let [n] be shorthand for [n]8;
for example [0]16 = ([0]8)16 = 0128 and [1]16 = (00000001)16. A block is 128
bits. Let 0 = 0128. If X = a1 · · · a128 is a block (ai ∈ {0, 1}) then we define
X � 1 = a2 · · · a128 0. For n ∈ N and X ∈ {0, 1}128 define n · X by asserting
that 0 · X = 0 and 1 · X = X and 2 · X = (X �1) ⊕ [135 · msb(X)]128 and
2n · X = 2 · (n · X) and (2n + 1) · X = (2n · X) ⊕ X.

For K,X ∈ {0, 1}128 we write aesenc(X,K) for a single round of AES:
SubBytes, ShiftRows, MixColumns, then an AddRoundKey with K. For K =
(K0,K1,K2,K3,K4) a list of five blocks, let AES4K(X) = AES4(K,X) be
aesenc(aesenc(aesenc(aesenc(X ⊕ K0,K1),K2),K3),K4). For K a list of 11
blocks, K = (K0,K1, . . . , K10), define AES10K(X) = AES10(K,X) like we
defined AES4 but with ten rounds of aesenc. We do not omit the final-round
MixColumns.

AEZ definition. See Figs. 5 and 6 for the definition of AEZ, and Fig. 7 for
an illustration. Most of it is self-explanatory. We briefly explain some of the
algorithm’s more unusual elements.

AEZ operates on arbitrary byte strings. Not only is the plaintext M ∈ Byte∗

arbitrary, but so too the key Key ∈ Byte∗ and nonce N ∈ Byte∗. The AD
is even more general: an arbitrary-length vector of byte strings, A ∈ (Byte∗)∗.
The requested ciphertext expansion of λ ∈ N bytes is measured in τ = 8λ bits.
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100 algorithm Encrypt(K, N, A, τ, M) //AEZ authenticated encryption
101 X ← M ‖ 0τ ; (A1, . . . , Am) ← A
102 T ← ([τ ]128, N, A1, . . . , Am)
103 if M = ε then return AEZ-prf(K, T, τ) else return Encipher(K, T, X)

110 algorithm Decrypt(K, N, A, τ, C) //AEZ authenticated decryption
111 (A1, . . . , Am) ← A; T ← ([τ ]128, N, A1, . . . , Am)
112 if |C| < τ then return ⊥
113 if |C| = τ then if C = AEZ-prf(K, T, τ) then return ε else return ⊥ fi fi
114 X ← Decipher(K, T, C); M ‖ Z ← X where |Z| = τ
115 if (Z = 0τ ) then return M else return ⊥
200 algorithm Encipher(K, T, X) //AEZ enciphering
201 if |X| < 256 then return Encipher-AEZ-tiny(K, T, X)
202 if |X| ≥ 256 then return Encipher-AEZ-core(K, T, X)

210 algorithm Encipher-AEZ-tiny(K, T, M) //AEZ-tiny enciphering
211 m ← |M |; n ← m/2; Δ ← AEZ-hash(K, T )
212 if m = 8 then k ← 24 else if m = 16 then k ← 16
213 else if m < 128 then k ← 10 else k ← 8 fi
214 L ← M(1 .. n); R ← M(n + 1 .. m); if m ≥ 128 then j ← 6 else j ← 7 fi
215 for i ← 0 to k − 1 do

216 R′ ← L ⊕ ((E0,j
K (Δ ⊕ R10∗ ⊕ [i]128))(1 .. n)); L ← R; R ← R′ od

217 C ← R ‖ L; if m < 128 then C ← C ⊕ (E0,3
K (Δ ⊕ (C0∗ ∨ 10∗)) ∧ 10∗) fi

218 return C

220 algorithm Encipher-AEZ-core(K, T, M) //AEZ-core enciphering
221 M1M

′
1 · · · MmM ′

m Muv MxMy ← M
222 where |M1| = · · · = |M ′

m| = |Mx| = |My| = 128 and |Muv| < 256
223 Δ ← AEZ-hash(K, T ); d ← |Muv|
224 if d ≤ 127 then Mu ← Muv; Mv ← ε
225 else Mu ← Muv[1..128]; Mv ← Muv[129..|Muv|] fi
226 for i ← 1 to m do Wi ← Mi ⊕ E1,i

K (M ′
i); Xi ← M ′

i ⊕ E0,0
K (Wi) od

227 if d = 0 then X ← X1 ⊕ · · · ⊕ Xm ⊕ 0

228 else if d ≤ 127 then X ← X1 ⊕ · · · ⊕ Xm ⊕ E0,4
K (Mu10∗)

229 else X ← X1 ⊕ · · · ⊕ Xm ⊕ E0,4
K (Mu) ⊕ E0,5

K (Mv10∗) fi

230 Sx ← Mx ⊕ Δ ⊕ X ⊕ E0,1
K (My); Sy ← My ⊕ E−1,1

K (Sx); S ← Sx ⊕ Sy

231 for i←1 to m do

232 S′ ←E2,i
K (S); Yi ←Wi ⊕ S′; Zi ←Xi ⊕ S′

233 C′
i ←Yi ⊕ E0,0

K (Zi); Ci ←Zi ⊕ E1,i
K (C′

i) od
234 if d = 0 then Cu ← Cv ← ε; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ 0
235 else if d ≤ 127 then

236 Cu ← Mu ⊕ E−1,4
K (S); Cv ← ε; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ E0,4

K (Cu10∗)
237 else Cu ←Mu ⊕ E−1,4

K (S); Cv ←Mv ⊕ E−1,5
K (S)

238 Y ←Y1 ⊕ · · · ⊕ Ym ⊕ E0,4
K (Cu) ⊕ E0,5

K (Cv10∗) fi

239 Cy ← Sx ⊕ E−1,2
K (Sy); Cx ← Sy ⊕ Δ ⊕ Y ⊕ E0,2

K (Cy)
240 return C1C

′
1 · · · CmC′

m CuCv CxCy

Fig. 5. Main routines of AEZ. The tweakable blockcipher E, the hash AEZ-hash,
and the PRF AEZ-prf are defined in Fig. 6. The ciphertext expansion is τ = 8λ bits.
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300 algorithm AEZ-hash(K, T ) //AXU hash. T is a vector of strings
301 (T1, . . . , Tt) ← T
302 for i ← 1 to t do
303 m ← max(1, �|Ti|/128); X1 · · · Xm ← Ti //|X1| = · · · = |Xm−1| = 128

304 if |Xm| = 128 then Δi ← E2+i,1
K (X1) ⊕ · · · ⊕ E2+i,m

K (Xm)
305 if |Xm| < 128 then

306 Δi ← E2+i,1
K (X1) ⊕ · · · ⊕ E2+i,m−1

K (Xm−1) ⊕ E2+i,0
K (Xm10∗)

307 return Δ1 ⊕ · · · ⊕ Δt ⊕ 0

310 algorithm AEZ-prf(K, T, τ) //PRF used when M = ε
311 Δ ← AEZ-hash(K, T )

312 return (E−1,3
K (Δ) ‖ E−1,3

K (Δ⊕[1]128) ‖ E−1,3
K (Δ⊕[2]128) ‖ · · · )[1..τ ]

400 algorithm Ei,j
K (X) //Scaled-down TBC

401 I ‖ J ‖ L ← Extract(K) where |I| = |J | = |L| = 128
402 k0 ← (0, I, J, L,0); k1 ← (0, J, L, I,0); k2 ← (0, L, I, J, I)
403 K ← (0, I, L, J, I, L, J, I, L, J, I)
404 if i = −1 and 0 ≤ j ≤ 7 then return AES10K (X ⊕ jJ)
405 if i = 0 and 0 ≤ j ≤ 7 then return AES4k0(X ⊕ jJ)

406 if 1 ≤ i ≤ 2 and j ≥ 1 then return AES4ki(X ⊕ (j mod 8)J ⊕ 2�(j−1)/8�L)
407 if i ≥ 3 and j ≥ 1 then

408 return AES4k0(X ⊕ (j mod 8)J ⊕ 2�(j−1)/8� · L ⊕ (i − 2)8J)
409 if i ≥ 3 and j = 0 then return AES4k0(X ⊕ (i − 2)8J)

Fig. 6. AEZ’s hash, PRF, and TBC. The last is the locus of prove-then-prune
scaling-down. The key K is turned into 384 bits by a key-derivation function Extract.

At line 217, Encipher-AEZ-tiny may xor a bit into the ciphertext just before
the algorithm’s conclusion. This is done to avoid a simple random-permutation
distinguishing attacks, for very short strings, based on the fact that Feistel net-
works only generate even permutations [30]. A similar trick, conditionally swap-
ping two fixed points, has been used before [45]. Our approach has the benefit
that the natural implementation is constant-time.

We define Decipher(K,T, Y ) as the unique X such that Encipher(K,T,X) =
Y . Logically, this is all we need say for the specification to be well-defined.
Still, the additional pseudocode is easy to describe. AEZ-tiny deciphering is
identical to AEZ-tiny enciphering except we must count backwards instead
of forwards, and must do the even-cycles correction (line 217) at the begin-
ning instead of the end. Specifically, Decipher-AEZ-tiny(K,T,M) is identical
to Encipher-AEZ-tiny(K,T,M) except that line 215 is changed to count from
k − 1 down to 0, while line 217 has each C replaced by M before moving the
line up to just after line 213. And AEZ-core deciphering is identical to AEZ-core
enciphering except that we must take the xy-tweaks in reverse order. Specifically,
Decipher-AEZ-core(K,T,M) is identical to Encipher-AEZ-core(K,T,M) except
we swap tweaks (0, 1) and (0, 2), and we swap tweaks (−1, 1) and (−1, 2). These
appear at lines 230 and 239.

The TBC Ei,j
K (X) takes a tweak (i, j) ∈ {−1, 0}×[0..7] ∪ {1, 2, 3} × N. The

first component selects between AES10 (when i = −1) and AES4 (when i ≥ 0).
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Fig. 7. Illustrating AEZ enciphering. Rectangles with pairs of numbers are TBCs,
the pair being the tweak (the key, always K, is not shown). Top row: enciphering
a message M of (32 or more bytes) with AEZ-core. The diagram shows processing a
string that is (exclude the middle panel) or isn’t (include the middle panel) a multiple
of 16 bytes. Bottom left: AEZ-hash is an xor-universal hash built from AES4. It
computes Δ =

⊕
Δi from a vector-valued tweak T comprising A, N , and τ . Its i-th

component T1 · · · Tm is hashed as shown. Bottom right: AEZ-tiny, when operating
on a string M = L ‖ R of 16–31 bytes. More rounds are used if M has 1–15 bytes.

Either way, the construction is based on XE [34,49]. We emphasize that E is not
secure as a tweakable-PRP, since AES4 itself is completely insecure as a PRP: it
is easily broken by the “Square” attack [14]. Use of an AES4-based TBC despite
this fact is where the scaling-down has been done in AEZ.

The key K ∈ Byte∗ is mapped to three 16-byte subkeys (I, J , L) using
the key-derivation function (KDF) named Extract that is called at line 401. The
definition of Extract is omitted from the figures and regarded as orthogonal to the
rest of AEZ. See the AEZ spec [26] for the current Extract : Byte∗ → Byte48.
In our view, it is an unresolved matter what the security properties (and even
what signature) of a good KDF should be. Work has gone off in very different
directions [33,46,61], and the area is currently the subject of a Password Hashing
Competition (PHC) running concurrently with CAESAR.

Note the mod 8’s at lines 406 and 408. Unlike the offset sequence used for
OCB [32], we limit ourselves to eight successive J values; after that, we add in
the next power-of-two times L. This allows a small table of 2j · J values to be
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precomputed and used regardless of the length of the message. In this way we
limit the frequency of doublings yet avoid number-of-trailing-zeros calculations.

We impose a limit that AEZ be used for at most 248 bytes of data (about
280 TB); by that time, the user should rekey. This usage limit stems from the
existence of birthday attacks on AEZ, as well as the use of AES4 to create a
universal hash function.

Cost accounting. Let us summarize the computational cost of AEZ in “AES-
equivalents,” where 1 AES-equivalent is 10 AES rounds. Assume a message of m
blocks, the last of which may be fragmentary. To encipher or decipher m ≥ 2
blocks takes at most m+2.4 AES-equivalents (latency 3.6). This assumes K, N ,
τ , and A have already been processed. To encrypt or decrypt m ≥ 2 blocks: at
most m+3.8 AES-equivalents (latency 3.6). This assumes that K, A, and τ have
already been processed and that |N | ≤ 128 and τ = 128. To reject an invalid
ciphertext of m ≥ 2 blocks: at most 0.4m + 2.4 AES-equivalents (latency 2.8).
Same assumptions. To setup an m block key: 1.2m AES-equivalents (latency 0.4).
This assumes that needed constants have been precomputed. To setup a string-
values AD: 0.4m (latency 0.4). To encipher or decipher messages of 1–15 bytes
is somewhat slower: 10, 6.8, and 4.4 AES-equivalents for 1, 2, and 3 bytes.

Parameterized counterparts. For a TBC-parameterized generalization of
AEZ, let AEZ[Ẽ] be identical to AEZ except for using the TBC Ẽ : K × Taez ×
{0, 1}128 → {0, 1}128 in place of E (assume the correct tweak-space Taez). The
key space of Ẽ is then taken as the key space for the constructed RAE scheme.
Note that AEZ = AEZ[E] with E the algorithm defined by lines 400–409.

Taking the above a step further, given a conventional blockcipher E : K ×
{0, 1}128 → {0, 1}128 we can define AEZ[E] as AEZ[Ẽ] where Ẽi,j

K (X) = EK(X⊕
(i + 1)I ⊕ jJ) for I = EK(0) and J = EK(1). The scheme AEZ[AES] can be
regarded as a natural “scaled up” version of AEZ. We emphasize that AEZ is
not AEZ[AES], which is about 2.5 times as slow.

Schemes AEZ[Ẽ] and AEZ[E] are close to AEZ, but enjoy conventional
provable-security guarantees, as we now describe.

8 Security of AEZ[Ẽ] and AEZ[E]

We show that if Ẽ is secure as a tweakable PRP then AEZ[Ẽ] is RAE-secure.
In fact, the statement holds even if the decryption algorithm is modified so as
to leak the entire improperly encoded string obtained by deciphering an invalid
ciphertext. So, for the remainder of this section, assume the modification of AEZ
in which the else clause of line 115 returns the deciphered message X rather
than ⊥. This change only makes our results stronger, explicitly modeling the
possibility of a decryption implementation leaking some or all of X. The actual
decryption algorithm returns ⊥.

Our provable-security results for AEZ need to assume that the adversary
avoids enciphering or deciphering extremely short strings—at least those under
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16 bytes, say, for which AEZ-tiny, a Feistel-based construction, will not enjoy a
desirable bound. While provably-secure options are now available for enciphering
very short strings, they still do not have competitive efficiency.

As the alphabet for AEZ is Σ = Byte, in this this section we write |x| for
the byte length of x. For an encryption query (N,A, λ,M), define the number
of blocks processed as �|N |/16� +

∑
i�|Ai|/16� + �(|M | + λ)/16�. This query is

small if M �= ε and 16 ≤ |M | + λ < 32, and tiny if M �= ε and |M | + λ < 16.
Likewise, for a decryption query (N,A, λ,C), the number of blocks processed
is �|N |/16� +

∑
i�|Ai|� + �(|C|)/16�. The query is small if 16 ≤ |C| < 32 and

|C| �= λ, and tiny if |C| �= λ and |C| < 16. The proof for the following is in the
full version [28].

Theorem 5. Let Ẽ : K × Taez × {0, 1}128 → {0, 1}128 be a TBC and Π =
AEZ[Ẽ]. Then there are efficient, explicitly given algorithms R and S with
the following property. Let A be an adversary for attacking Π. Assume it
never asks any small or tiny query. Then B = R(A) satisfies Advrae

Π,S(A) ≤
3.5s2/2128 +Advp̃rp

˜E
(B), where s is the total number of processed blocks, plus 2

blocks per message. Adversary B makes at most 2.5s queries and has about the
same running time as A.

An alternative approach to justifying the security of AEZ is to speak of the
security of AEZ[E], the cousin of AEZ defined from a conventional blockcipher
E using the XE construction to make the needed TBC. Its security can be
captured by the following result. The proof is in the full version [28].

Theorem 6. Let E : K × {0, 1}128 → {0, 1}128 be a blockcipher and Π =
AEZ[E]. Then there are efficient, explicitly given algorithms R and S with
the following property. Let A be an adversary for attacking Π. Assume it
never asks a small or tiny query. Then B = R(A) satisfies Advrae

Π,S(A) ≤
13s2/2128 +Advprp

E (B), where s is the total number of processed blocks, plus 2
blocks per message. Adversary B makes at most 2.5s queries and has about the
same running time as A.

If one wants to accommodate small queries then we still have a provable, albeit
much inferior result. Let Feistel[r, n] denote an ideal r-round Feistel network on
{0, 1}2n. The best known provable bound for Feistel networks [43, Theorem 7]
states that if an adversary makes q ≤ 2n

128n queries then Adv±prp
Feistel[6,n](A) ≤

8q
2n + q2

22n+1 . Translating this to our setting, one is bound to make at most q ≤
264

128·64 = 251 small queries, and the security advantage is q/261 +4s2/2128. These
restrictions seem to be more of the artifacts of the analysis in [43, Theorem 7]
than reflecting the actual security of Feistel networks: assuming that the round
functions of Feistel[6, n] are instantiated from full AES, the fastest known attack,
for n ≥ 64, is still the exhaustive key search on AES.
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9 Estimated Security of AEZ Itself

Consider enciphering a message M , |M | ≥ 256, by AEZ[AES] (which, recall, is
not AEZ, but a scaled-up version using an AES-based TBC). The design would
seem excessive: each block Mi would be subjected to 30 rounds of AES (ten
shared with a neighboring block), not counting the additional AES rounds to
produce the highly unpredictable, M -dependent value S, a value derived from
which gets injected into the process while 20 rounds yet remain. It is in light of
such apparent overkill that AEZ selectively prunes some of the AES calls that
AEZ[AES] would perform. In particular, we prune invocations where we aim to
achieve computational xor-universal hashing. We leave enough AES rounds so
that each block Mi is effectively processed with 12 AES rounds, eight of these
subsequent to injection of the highly-unpredictable S and four of them shared
with a neighboring block. The key steps in calculating S are not pruned, nor are
the TBCs used to mask u- and v-blocks.

To estimate the security of AEZ it seems appropriate to replace the s2/2128

term of Theorem 5 by s2/2113, resulting in the bound 4s2/2113 + t/2128, because
of the higher maximal expected differential probability of AES4 [31] compared
to an ideal hash or cipher, where t is the time (including the description size) in
which the adversary runs.

Moreover, we contend that the assumption that the adversary avoids asking
tiny or small queries can be lifted. To justify this heuristically, consider a col-
lection of independent, ideal, k-round Feistel networks on {0, 1}2n; the round
functions are all uniformly random and independent. The best attack known,
due to Patarin [41], that distinguishes them from a family of independent, truly
random even permutations requires at least 2(k−4)n plaintext/ciphertext pairs.
From our choice of the number of rounds, this attack needs at least 272 plain-
text/ciphertext pairs, and thus doesn’t violate our up-to-the-birthday-bound
security goal.

AEZ was specifically designed so that scaling-down most of its AES calls
would seem safe. This is design-specific; one cannot indiscriminately scale a
scheme’s primitives. A previous design, where AEZ-core followed the NR app-
roach [39,40], could not be as effectively scaled-down.

10 Software Performance

The development of AEZ has generally presumed an instruction set architec-
ture (ISA) with round-level support for AES, such as Intel’s AES-NI or ARM’s
version 8 ISA. On these systems the AES unit can be kept busy processing
several AES4 computations in parallel while idle processing units handle load,
store, and xor overhead. On Intel’s Haswell architecture, for example, unrelated
AES rounds can issue every cycle and take seven cycles to retire, so seven par-
allel AES4 calculations can complete in 34 CPU cycles, while idle superscalar
processing units can handle other computations. This observation has led us to
design AEZ to conveniently process eight blocks at a time.
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Fig. 8. AEZ vs. OCB performance. The x-axis is message length, in bytes, and the
y-axis is cycles per byte (cpb). The graph is best viewed in color: solid purple circles
are for AEZ; unfilled yellow circles are for OCB3 [32]. Performance of the two is close,
both having peak speeds around 0.7 cpb and being similar on most shorter messages
as well. The execution vehicle is an Intel Haswell processor using AES-NI.

AEZ overhead beyond AES rounds has been minimized. As an example of
this, our AES4 key schedule omits the final round key, allowing aesenc’s included
xor operation to be used for other purposes. Such optimizations lead to AEZ peak
speeds, on Haswell, of around 0.72 cpb—not far from the theoretical maximum
for the number of rounds executed of 0.63 cpb.

Fig. 8 compares the performance of AEZ and OCB on messages of all byte
lengths up to 1600 bytes. The two are not only similar for long messages but for
short strings too. Only when messages are shorter than 16 bytes, where AEZ-tiny
increases the number of AES4 calls used, does OCB become significantly faster.

The performance of AEZ is on par with OCB even on processors that are not
superscalar or do not support AES rounds at the assembly level. On a Marvell
88F6283 embedded CPU—a single-issue, 32-bit, ARM version 5 ISA—we see an
experimental version of AEZ peaking at 86 cpb while OCB’s optimized reference
code runs at 84 cpb. For comparison, GCM, CCM and CTR run at 124, 134 and
67 cpb, respectively. The figures use the OpenSSL libraries.

One might expect the two-pass nature of AEZ to be a performance burden
because data must be dragged into cache from memory twice. We have found that
modern processors, like Intel’s Haswell, have such efficient hardware prefetching
that bringing data into cache twice, in a sequential streaming fashion, is not
expensive at all. It requires no explicit prefetching. Encrypting 1MB on Haswell is
as efficient as encrypting 32KB despite 1MB exceeding the 256KB level-2 cache.
Two passes may have a more significant cost on systems with poor prefetching
facilities, although this might be mitigated by software prefetching.

Another benefit of AEZ’s two passes is that the second pass is not needed
to discover that a ciphertext is inauthentic, leading to message rejection costing
as little as 0.28 cpb on Haswell. On long messages, approximately 2/5 of AES4
calls are performed during the first pass, which aligns perfectly with the peak
times we’ve observed for encryption and fast-rejection.

All Haswell timings reported in this paper were gathered on a 2.9 GHz Intel
Core i5-4570S CPU using its time-stamp counter to gather elapsed CPU cycles



Robust Authenticated-Encryption 37

over encryption calls. Our implementation is written in C using “intrinsic” func-
tions to access CPU-specific functionality. It was compiled using GCC 4.9 with
options -march=native -O3. Our optimized implementation will be made pub-
licly available and freely licensed.
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A More on Related Work

RAE and AEZ build on a large body of related work. While we have summarized
much of this throughout this paper, here we give some additional context and
high points.

Blockciphers accommodating truly arbitrary inputs were first realized by
Schroeppel’s Hasty Pudding Cipher (HPC) [55]. Ahead of its time, the work not
only built a blockcipher on all of {0, 1}∗, but also provided it a tweak. If one were
to first overcome the problem that HPC’s tweak is limited in length, it could be
used with the EtE construction to make an RAE scheme.

The problem of constructing from conventional blockciphers those with arbi-
trary or near-arbitrary domains was first identified Bellare and Rogaway [4],
who wanted to construct these objects with a conventional-looking mode. But
the mechanism they suggested was somewhat slow, was limited to a domain of
({0, 1}n)+, and only achieves conventional (not strong) PRP security.

In a follow-up paper [5] the same authors evidenced the utility of arbitrary-
input-length blockciphers by explaining how semantic security could be achieved
by enciphering messages with novelty, and they showed how authenticity could
be achieved by enciphering messages with redundancy (this time using a strong
PRP). These observations formed the basis for our work.

Around the same time as the last two work, Naor and Reingold (NR) con-
structed a blockcipher on ({0, 1}n)+ by sandwiching a layer of ECB between
layers of a “blockwise-universal” hashing [39,40]. The approach came to be used
in many proposals, including XCB [35], which was standardized in the IEEE [29].
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The other method inspiring further wide-block blockciphers was EME [24],
which involves two layers of blockcipher-based enciphering and a light layer of
mixing in between. A follow-on design, EME2 [22], become the other wide-block
blockcipher of IEEE 1619.2 [29], Both it and XCB are tweakable and operate
on a message space of {0, 1}≥n. EME/EME2 provides the starting point for
AEZ-core.

As for extending blockciphers to short blocks, a different line of work was
begun [9]. Format-preserving encryption aimed to deal not only with small
domains but also those defined as arbitrary finite sets, sets of numbers [0..N −1],
or strings over arbitrary alphabets. Adapting Feistel designs to arbitrary alpha-
bets, realizations of FFX [6], now a draft NIST standard [17], would form the
basis of AEZ-tiny.

Meanwhile, notions of AE were appearing. Probabilistic versions came first [5,
27], then a nonce-based version [50], then AD finally appeared [49]. Next the
MRAE goal—RAE’s closest definition counterpart—was defined [51]. The main
motivation for that work was to minimize the damage that could be done by
nonce-reuse.

Other authors had the same concern but weren’t willing to use two-pass
schemes. Fleischmann et. al [20] built on Bellare et. al [3] to define a security
notion for online-AE intended to confer some lower level of nonce-reuse misuse-
resistance. The approach has gained popularity—many CAESAR submissions
follow it, especially after COPA [2] made clear that one could achieve this weak-
ened flavor of nonce-reuse misuse-resistance with a parallelizable scheme. The
RAE definition goes a different direction, strengthening instead of weakening the
original MRAE definition.

Following up on directions from prior work [10,20,21], AE security in the
face of decryption-algorithm leakage was studied by Andreeva et. al [1] in work
concurrent with our own. A principle motivation for those authors has been to
express when it is OK for an online decryption algorithm to be incrementally
releasing unverified plaintext. For us, this is a direction not taken, for such leak-
age can never be generically harmless [47]. In effect, leaking equality of message
prefixes is leaking an enormous amount of information.

Ferguson made clear early on that AE algorithms could fail badly when
tags are too short [18]. Still, no definitions for AE security were ever offered
appropriate to the short-tag setting. But the general concern for making short
MACs work well goes back to Black and Cochran [8] and Wang et. al [59].

Some examples of using AES4 where AES itself would do include ALRED,
LETTERSOUP, MARVIN, and Pelican [15,16,57]. These inspired our predilec-
tion to cut certain AES rounds even when provable security couldn’t promise
this was fine. The approach should not be confused with that of Minematsu and
Tsunoo [37], where AES4 provably does suffice for the protocol devised [37]. The
approach leverages the low MEDP for AES4, a line of work culminating in the
bound of Keliher and Sui [31].
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Many authors have proposed ideas to eliminate use of the inverse-direction of
a blockcipher in modes that previously needed this. The method we us in AEZ
is inspired by Minematsu’s OTR [36].

The CAESAR competition [7], organized by Dan Bernstein, was the proximal
motivation to define RAE and to try to develop a nice scheme for achieving it.

B Deferred Proofs

B.1 Proof of Theorem 1

It suffices to show that
∣
∣Pr[AIdealΠ ⇒ 1] − Pr[APRIΠ ⇒ 1]

∣
∣ ≤ (r2 + r)/|Σ|λ+mmin+1 + 2q/|Σ|λ .

Without loss of generality, assume that q ≤ |Σ|λ−1; otherwise the claim is trivial.
Consider games G1–G4 in Fig. 9. Game G1 corresponds to game IdealΠ and
game G4 corresponds to game PRIΠ . We explain the game chain up to the
terminal one. Game G2 is identical to game G1, except that in procedure Enc, it
ensures that ciphertexts C are distinct. Partition the encryption queries based
on the nonce, the associated data, and the size of the message. Suppose that
in game G1 we have p partitions of size s1, . . . , sp ≥ 1. Games G1 and G2 are
identical-until-bad, and thus

∣
∣Pr[AG1 ⇒ 1] − Pr[AG2 ⇒ 1]

∣
∣ ≤ Pr[AG1 sets bad]

≤
p∑

i=1

si(si − 1)
|Σ|mmin+λ+1

=
p∑

i=1

(si − 1)2 + (si − 1)
|Σ|mmin+λ+1

≤ r2 + r

|Σ|mmin+λ+1
;

the last inequality is due to the fact that (s1−1)+ · · ·+(sp −1) = r. Game G3 is
a simplified version of game G2; the change is conservative. Game G4 is identical
to game G3, except that in procedure Dec, it samples a λ-character string v and
returns a non-⊥ answer if v = 0λ, where 0 is a canonical point in Σ. Let L′

be the multiset of |C| in A’s decryption queries in game G4, and let L be the
multiset {	 | 	 ≥ 0 and 	 + λ ∈ L′}. Then

∣
∣Pr[AG3 ⇒ 1] − Pr[AG4 ⇒ 1]

∣
∣ ≤ Pr[AG3 sets bad]

≤
∑

�∈L

|Σ|�
|Σ|�+λ − q

=
∑

�∈L

1
|Σ|λ − (q/|Σ|�)

≤
∑

�∈L

1
|Σ|λ − q

≤ q

|Σ|λ − q
≤ 2q

|Σ|λ ;
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proc Enc(N, A, M) Games G1 / G2

	 ← |M |; C � Σ�+λ

if C ∈ RanN,A,� then

bad ← true; C � Σ�+λ\RanN,A,�

RanN,A,� ← RanN,A,� ∪ {C}
DomN,A ← DomN,A ∪ {(M,0λ)}
return C

proc Dec(N, A, λ, C)
if |C| < λ then return ⊥
	 ← |C| − λ

(M, v) � (Σ� × Σλ)\DomN,A

DomN,A ← DomN,A ∪ {(M, v)}
return ⊥

proc Enc(N, A, M) Games G3 / G4

	 ← |M |; C � Σ�+λ

DomN,A ← DomN,A ∪ {(M,0λ)}
return C

proc Dec(N, A, C)
if |C| < λ then return ⊥
	 ← |C| − λ

(M, v) � (Σ� × Σλ)\DomN,A

DomN,A ← DomN,A ∪ {(M, v)}
if v = 0λ then

bad ← true; return M
return ⊥

Fig. 9. Games used to prove Theorem 1. Here 0 is a canonical element of Σ.
Games G2 and G4 contain the boxed statements, but games G1 and G3 do not.

the last inequality is due to the assumption that q ≤ |Σ|λ−1. Summing up,

∣
∣Pr[AIdealΠ ⇒ 1] − Pr[APRIΠ ⇒ 1]

∣
∣ ≤

3∑

i=1

∣
∣Pr[AGi ⇒ 1] − Pr[AGi+1 ⇒ 1]

∣
∣

≤ r2 + r

|Σ|λ+mmin+1
+

2q

|Σ|λ
as claimed.

B.2 Proof of Theorem 2

The reduction R creates from A the adversary B as follows. It runs A. When the
latter makes an encryption query (N,A, λ,M), if v(M) = 1 then the former sends
the same query to its encryption oracle and returns the answer to A; otherwise
it returns ⊥. When A makes a query (N,A, λ,C), adversary B sends the same
query to its decryption oracle to get M . If |M | = |C| − λ and v(M) �= 1 then it
returns 0 ‖ M to A, where 0 is a canonical point in Σ. Otherwise, it returns M .
Finally, it outputs the same guess as A.

For any query (N,A, λ,C) that it receives, S′ stores (N,A, λ, |C|) in a set Lλ.
It also maintains, for each (N,A, λ, 	) in Lλ, a set BN,A,λ,�. Initially, BN,A,λ,� =
Σ�−λ\Mv. The simulator S′ works by running the simulator S. For each query
(N,A, λ,C), the simulator S′ tosses a biased coin, heads landing land with prob-
ability |BN,A,λ,�|/(|BN,A,λ,�| + |Σ|� − |Σ|�−λ), where 	 = |C|. If heads shows up,
simulator S′ will sample M � BN,A,λ,�, remove M from BN,A,λ,�, and return M .
Otherwise, it runs S on query (N,A, λ,C) and output whatever S returns. Then

Pr[AREALΠv,S′ ⇒ 1] = Pr[BREALΠ,S ⇒ 1], and
Pr[ARAEΠv,S′ ⇒ 1] = Pr[BRAEΠ,S ⇒ 1] .

Subtracting, we get Advrae
Π,S(B) = Advrae

Πv,S′(A).
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C An Insecure Variant of AEZ-core

Numerous variants of AEZ-core were considered to arrive at AEZ-core. Most
simplifications of the final version do not work. As an example, consider trying
to cheapen the design by using ci · faa,1(S) instead of faa,i(S) to whiten the
middle of each Feistel network, where each ci is a public constant, and the dot is
the multiplication in GF(2n). For example, one might hope this works for ci = 1
or ci = i. But this modification is insecure for any choice of ci values.

For each L ⊆ {1, . . . , n + 1} let θ(L) = ⊕i∈L ci. Let D �= ∅ be a subset
of {1, . . . , n + 1} such that θ(D) = 0n. Such a set D must exists. Assume to
the contrary that θ(L) �= 0n for all nonempty L ⊆ {1, . . . , n + 1}. Then for any
distinct nonempty subsets L,L′ ⊆ {1, . . . , n + 1}, we have θ(L) �= θ(L′). This
means that for 2n+1−1 nonempty subsets L ⊆ {1, . . . , n+1} we have 2n+1−1 >
2n corresponding distinct elements θ(L) of GF(2n), which is a contradiction.

We now describe an attack to the modified AEZ-core. Our attack only uses
strings of length 	 = 2n(n + 3). Let M and M̃ be arbitrary distinct 	-bit strings
such that they agree everywhere except the last two blocks. Query M and M̃
to the first oracle to get answers C and C̃ respectively. In the real game, we’ll
have Xi = X̃i and Ỹi = Yi ⊕ (ci · (S ⊕ S̃)) for every 1 ≤ i ≤ n + 2. Next, let C∗

be the “mixed” ciphertext such that, for every 1 ≤ i ≤ n + 3, the (2i − 1)’th
and 2i’th blocks of C∗ are the same as those of C̃ if i ∈ D, otherwise C∗ would
borrow the corresponding two blocks of C. Query C∗ to the second oracle to get
an answer M∗. Let D = {1, . . . , n + 2}\D. In the real game, the query C∗ will
generate Y ∗

i = Ỹi for every i ∈ D, and Y ∗
i = Yi for every i ∈ D. Then

Y ∗ =
⊕

i∈D

Ỹi ⊕
⊕

j∈D

Yj = Y ⊕
⊕

i∈D

((S ⊕ S̃) · ci) = Y .

Consequently, S∗ = S and thus M∗ and M agree at the (2n+3)th and (2n+4)th
blocks. The latter event happens with probability at mos 2−n in the random
game. Hence this attack wins with advantage at least 1 − 2−n.
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Abstract. This paper investigates the effect of affine transformations
of the Sbox on the maximal expected differential probability MEDP and
linear potential MELP over two rounds of a substitution-permutation
network, when the diffusion layer is linear over the finite field defined by
the Sbox alphabet. It is mainly motivated by the fact that the 2-round
MEDP and MELP of the AES both increase when the AES Sbox is
replaced by the inversion in F28 . Most notably, we give new upper bounds
on these two quantities which are not invariant under affine equivalence.
Moreover, within a given equivalence class, these new bounds are maxi-
mal when the considered Sbox is an involution. These results point out
that different Sboxes within the same affine equivalence class may lead
to different two-round MEDP and MELP. In particular, we exhibit some
examples where the basis chosen for defining the isomorphism between
Fm

2 and F2m affects these values. For Sboxes with some particular prop-
erties, including all Sboxes of the form A(xs) as in the AES, we also
derive some lower and upper bounds for the 2-round MEDP and MELP
which hold for any MDS linear layer.

Keywords: Sboxes · Affine equivalence · Differential cryptanalysis ·
Linear cryptanalysis · AES

1 Introduction

Cryptographic functions, including the so-called Sboxes, are usually classified
up to affine equivalence (see e.g. [6,11,34]) since many of the relevant cryp-
tographic properties are invariant under affine transformations. Indeed, both
Sboxes S and A2 ◦ S ◦ A1, where A1 and A2 are two affine permutations, have
the same algebraic degree, the same non-linearity (even the same square Walsh
spectrum) and the same differential uniformity (even the same differential spec-
trum), which are the usual criteria measuring the resistance of an Sbox against
higher-order differential attacks [29,31], linear cryptanalysis [37,44] and differ-
ential cryptanalysis [5] respectively. However, it is well-known that equivalent
Sboxes may have different implementation costs and may also provide different
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security levels. For instance, the number of terms in their polynomial representa-
tions may highly vary within an equivalent class. This has motivated the choice
of the AES Sbox: it corresponds to the inversion in F28 , which is a power permu-
tation with the best known resistance against the previously mentioned attacks;
but this power permutation is then composed with an F2-affine permutation of
F8

2 which makes its polynomial representation much more complex. Composing
the inverse function with an affine permutation then thwarts potential attacks
exploiting a simple algebraic representation of the Sbox, like an extremely sparse
polynomial. Some other relevant properties (usually of minor importance) are
also affected by composition with affine transformations, like the number of fixed
points and the bitwise branch number [43].

But, when focusing on statistical attacks, especially on differential and linear
cryptanalyses, the Sboxes within the same equivalence class are often consid-
ered to have similar behaviors. The main reason is that all known upper bounds
on the maximal expected differential probability, and on the maximal expected
square correlation (aka maximum expected linear potential) [41] are invariant
under the affine transformations of the Sbox. However, the exact values of these
two quantities for two rounds of the AES have been computed by Keliher and
Sui with a sophisticated pruning algorithm [28], and it appears that the values
obtained for the multiplicative inverse in F28 and for the original AES Sbox are
different, while these two Sboxes belong to the same equivalence class. Going
further in the analysis, Daemen and Rijmen have then determined the expected
probabilities of all two-round differentials with 5 or 6 active Sboxes in the AES
for both Sboxes [20]. After this analysis, they have even conjectured that, for
any number of rounds, the maximal expected differential probability of the AES
is always higher with the inversion in F28 than with the AES Sbox [17]. The
aim of this paper is then to have a better understanding of this phenomenon.
For instance, we would like to determine whether these different behaviors orig-
inate from the Sboxes only, independently of the choice of the diffusion layer,
or not. One of our main motivations is to help the designers choose an Sbox
within a given equivalence class. Indeed, in most situations, some appropriate
equivalence classes are known (e.g. 4-bit permutations are classified up to affine
equivalence [34]) and the search is often restricted to these classes.

Our Contribution. In this paper, we investigate the maximal expected differ-
ential probability MEDP and linear potential MELP over two rounds of an SPN.
We focus on diffusion layers which are linear over the field of size 2m, where m is
the number of bits of the Sbox, exactly as in the AES and several other ciphers
like LED [25], KLEIN [24], mCrypton [35], Prøst [27]... We give a new upper
bound on the two-round MEDP and MELP which supersedes the best previous
result [41], and which is not invariant under affine equivalence. This result is
combined with the lower bounds corresponding to some minimum-weight differ-
entials (or linear masks). We are then able to exhibit different behaviors regard-
ing differential and linear attacks on two rounds depending on the choice of the
Sbox within a given equivalence class. This includes some unexpected differences
since we point out that, for a given m-bit Sbox, the choice of the basis used for
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defining the finite field in the description of the linear layer may also affect the
value of the two-round MEDP or MELP. This is due to the F2m -linearity of the
mixing layer.

More interestingly from the designers’ viewpoint, for some classical families
of Sboxes including all functions of the form A(xs) or (A(x))s where A is an affine
function, like the AES Sbox, our results yield some lower and upper bounds on
the two-round MEDP and MELP which are independent of the choice of the
MDS linear layer. In other words, we show that, for these families of Sboxes,
the two-round MEDP and MELP are two quantities which essentially depend
on the Sbox only. Therefore, the designer can choose an Sbox and get a precise
estimation of the corresponding two-round MEDP and MELP, while all previous
methods [28] involved the specifications of both the Sbox and the diffusion layer
together. As an illustration, we prove that the previously known upper bounds on
MEDP2 and MELP2 due to Park et al. [41] are always tight for the multiplicative
inverse over F2m and for any MDS linear layer. In other words, the inversion is
the mapping within its equivalence class which has the highest two-round MEDP
and MELP, independently of the choice of the MDS linear layer. This situation
mainly originates from the fact that this Sbox is an involution.

2 Maximum Expected Differential Probability and Linear
Potential for Substitution-Permutation Networks

2.1 Substitution-Permutation Networks

One of the most widely-used constructions for iterated block ciphers is the
so-called key-alternating construction [15,18] (aka iterated Even-Mansour con-
struction), which consists of an alternation of key-independent (usually similar)
permutations and of round-key additions. The round permutation usually follows
the principles introduced by Shannon. It is decomposed into a nonlinear substi-
tution function Sub which provides confusion, and a linear permutation which
provides diffusion1. In order to reduce the implementation cost of the substi-
tution layer, which is usually the most expensive part of the cipher in terms of
circuit complexity, a usual choice for Sub consists in concatenating several copies
of a permutation S which operates on a much smaller alphabet. In the whole
paper, we will concentrate on such block ciphers, and use the following notation
to describe the corresponding round permutation.

Definition 1. Let m and t be two positive integers. Let S be a permutation
of Fm

2 and M be a linear permutation of Fmt
2 . Then, SPN(m, t, S,M) denotes

any substitution-permutation network defined over Fmt
2 whose substitution func-

tion consists of the concatenation of t copies of S and whose diffusion function
corresponds to M .
1 Here, the terminology substitution-permutation has to be understood in a broad sense

without any restriction on the linear permutation, while in some other papers, it is
limited to the class of bit permutations.
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For instance, up to a linear transformation, two rounds of the AES can
be seen as the concatenation of four similar superboxes [20]. The superbox,
depicted on Fig. 1, is linearly equivalent to a two-round permutation of the
form SPN(8, 4, S,M) where the AES Sbox S corresponds to the composi-
tion of the inversion in F28 with an affine permutation A. More precisely,
S(x) = A ◦ ϕ−1

(
ϕ(x)254

)
where ϕ is the isomorphism from F8

2 into F28 defined
by the basis {1, α, α2, . . . , α7} with α a root of X8 + X4 + X3 + X + 1.
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Fig. 1. The AES superbox

Differential [5] and linear [37,44] cryptanalyses are the most prominent sta-
tistical attacks. The complexity of differential attacks depends critically on the
distribution over the keys k of the probability of the differentials (a, b), i.e.,

DP(a, b) = PrX [Ek(X) + Ek(X + a) = b]

where Ek corresponds to the (possibly round-reduced) encryption function under
key k. This probability may highly vary with the key especially when a small
number of rounds is considered (see e.g. [32], [19, Section 8.7.2], [21], [22] and
[7]). But computing the whole distribution of the probability of a differential is
a very difficult task, and cryptanalysts usually focus on its expectation.

Definition 2. Let (Ek)k∈Fκ
2

be an r-round iterated cipher with key-size κ. Then,
the expected probability of an r-round differential (a, b) is

EDPE
r (a, b) = 2−κ

∑

k∈Fκ
2

PrX [Ek(X) + Ek(X + a) = b] .

The maximum expected differential probability for r rounds is

MEDPE
r = max

a�=0,b
EDPE

r (a, b) .
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The index in MEDPE
r will be omitted when the number of rounds is not specified.

It is worth noticing that the MEDP is relevant for estimating the resistance
against classical differential cryptanalysis, not against its variants like truncated
differential attacks (which provide better attacks on the AES since the AES
resists differential cryptanalysis by design).

Similarly, the resistance of a cipher against linear cryptanalysis can be eval-
uated by determining the distribution over the keys of the correlation of each
r-round mask (u, v):

C(u, v) = 2−n
∑

x∈Fn
2

(−1)u·x+v·Ek(x),

where n is the block-size. For a key-alternating cipher with independent round
keys, the average over all keys of the correlation C(u, v) is zero for any nonzero
mask (u, v) (see e.g. [19, Section 7.9] or [1, Prop. 1]). Then, the major parameter
investigated in this paper is the variance of the distribution of the correlation,
which corresponds to the average square correlation. The way it affects the com-
plexity of linear cryptanalysis is discussed for instance in [1,19,33,38,40].

Definition 3. Let (Ek)k∈Fκ
2

be an r-round iterated cipher with block-size n and
key-size κ. Then, the expected square correlation (aka linear potential [40]) of
an r-round mask (u, v) is

ELPE
r (u, v) = 2−2n−κ

∑

k∈Fκ
2

⎛

⎝
∑

x∈Fn
2

(−1)u·x+v·Ek(x)

⎞

⎠

2

.

The maximum expected square correlation for r rounds is

MELPE
r = max

u,v �=0
ELPE

r (u, v).

2.2 Known Results on Two-Round MEDP and MELP

Computing the MEDP and MELP for an SPN, even for a small number of
rounds, is usually non-trivial. An easier task consists in computing the expected
probability of an r-round differential characteristic (i.e., a collection of (r+1) dif-
ferences), or the expected square correlation of a linear trail (i.e., a collection of
(r + 1) linear masks). In particular, a simple upper bound on this quantity can
be derived from the differential uniformity [39] (resp. the nonlinearity) of the
Sbox, and from the differential (resp. linear) branch number of the linear layer.
We will then extensively use the following notation for these quantities.

Definition 4. Let S be a function from Fm
2 into Fm

2 .

– For any a and b in Fm
2 , we define

δS(a, b) = #{x ∈ Fm
2 , S(x + a) + S(x) = b} .

The multi-set {δS(a, b), a, b ∈ Fm
2 } is the differential spectrum of S and its

maximum Δ(S) = maxa�=0,b δS(a, b) is the differential uniformity of S.
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– For any u and v in Fm
2 , we define

WS(u, v) =
∑

x∈Fm
2

(−1)u·x+v·S(x) ,

where · is the usual scalar product in Fm
2 . The multi-set {WS(u, v), u ∈

Fm
2 , v ∈ Fm

2 } is the Walsh spectrum of S, and its highest magnitude L(S) =
maxu,v �=0

∣
∣WS(u, v)

∣
∣ is the linearity of S.

The branch number of the diffusion layer then determines the minimum num-
ber of active Sboxes within a differential or linear trail.

Definition 5. [15] Let M be an F2-linear permutation of (Fm
2 )t. We associate

with M the codes CM and C⊥
M of length 2t and size 2t over Fm

2 defined by

CM = {(c,M(c)), c ∈ (Fm
2 )t} and C⊥

M = {(M∗(c), c), c ∈ (Fm
2 )t} ,

where M∗ is the adjoint of M , i.e., the linear map such that x ·M(y) = M∗(x) ·y
for any (x, y). The differential branch number (resp. linear branch number) of
M is the minimum distance of the code CM (resp. of C⊥

M ).

From Singleton’s bound, the maximum branch number of M is (t + 1) and is
achieved when CM is MDS. Since the codes CM and C⊥

M are dual to each other,
M has optimal differential branch number if and only if it has optimal linear
branch number. A simple upper bound for both the two-round MEDP and MELP
can then be derived from the branch numbers of M , and from the differential
uniformity and the linearity of the Sbox (see [26] and [19, Section B.2]):

MEDP2 ≤ (
2−mΔ(S)

)t and MELP2 ≤ (
2−mL(S)

)2t
. (1)

This result has then be refined in [14,41].

Theorem 1 (FSE 2003 bounds). [14,41] Let E be a block cipher of the form
SPN(m, t, S,M) where M is a linear permutation with differential (resp. linear)
branch number d (resp. d⊥). Then, we have

MEDPE
2 ≤ 2−md max

⎛

⎝ max
a∈(Fm

2 )∗

∑

γ∈(Fm
2 )∗

δS(a, γ)d, max
b∈(Fm

2 )∗

∑

γ∈(Fm
2 )∗

δS(γ, b)d

⎞

⎠ ,

MELPE
2 ≤ 2−2md⊥

max

⎛

⎝ max
u∈(Fm

2 )∗

∑

γ∈(Fm
2 )∗

WS(u, γ)2d⊥
, max
v∈(Fm

2 )∗

∑

γ∈(Fm
2 )∗

WS(γ, v)2d⊥

⎞

⎠

It is worth noticing that the FSE 2003 bounds always supersede (1).
The main question is now to determine the gap between the FSE 2003 bounds

and the exact values of MEDP2 and MELP2 for a given cipher. An interesting
property is that the FSE 2003 bound is invariant under affine equivalence, i.e.,
under left or right composition of the Sbox with an affine permutation. Actually,
the following well-known property holds.
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Lemma 1. Let S be permutation of Fm
2 and A1 and A2 be two affine permuta-

tions of Fm
2 . Then S′ = A2 ◦ S ◦ A1 satisfies

δS′
(a, b) = δS(L1(a), L−1

2 (b)) and WS′
(u, v)2 = WS((L−1

1 )∗(u), L∗
2(v))2

where L1 and L2 correspond to the linear parts of A1 and A2, and L∗ denotes
the adjoint of L.

However, while the previous bounds are invariant under affine equivalence, it
appears that the exact values of MEDP2 and MELP2 may vary when the Sbox
is composed with an affine permutation. For instance, for the AES with its
original Sbox, the exact values of the two-round MEDP2 and MELP2 have been
computed by a pruning search algorithm [28]: MEDP2 = 53×2−34 and MELP2 =
109, 953, 193 × 2−54 ≈ 1.638 × 2−28. But, if the AES Sbox is replaced by the so-
called naive Sbox [17], obtained by removing the affine permutation from the
AES Sbox, MEDP2 = 79× 2−34 [20] which corresponds to the FSE 2003 bound.
To our best knowledge, the exact value of MELP2 for the naive Sbox has not
been computed, but we will deduce from our results in Section 4.3 that, for the
multiplicative inverse over F2m and any MDS F2m-linear layer, the FSE 2003
bound is always tight. In particular, for m = 8, MELP2 = 192, 773, 764×2−54 ≈
2.873×2−28. Then, the AES Sbox provides a better resistance against differential
and linear cryptanalyses for two rounds of the AES than the naive Sbox. More
generally, it has been conjectured in [17, Conjecture 1] that, for any number of
rounds r, MEDPr is smaller for the AES Sbox than for the naive Sbox.

2.3 SPNs over F2m

A special case of affine equivalent Sboxes corresponds to the mappings over
Fm

2 which are derived from the same function over the finite field F2m , but from
different correspondences between F2m and the vector space Fm

2 . Such equivalent
Sboxes appear in several situations. Indeed, a simple construction for an optimal
linear layer consists in choosing for M a permutation of Fmt

2 associated with a
code CM which is linear over the field F2m , where m is the size of the Sbox.
Then, this diffusion layer has to be defined over Ft

2m , instead of Fmt
2 . To this

end, we need to identify the vector space Fm
2 with the finite field F2m by the

means of an isomorphism ϕ associated to a basis (α0, . . . , αm−1), namely:

ϕ : Fm
2 → F2m

(x0, . . . , xm−1) �→ ∑m−1
i=0 xiαi .

Then, both the Sbox and the diffusion layer can be represented as functions over
the field F2m by

S = ϕ ◦ S ◦ ϕ−1 and M = ϕ̃ ◦ M ◦ ϕ̃−1 ,

where ϕ̃ is the concatenation of t copies of ϕ. In this case, as noticed in [19,
Section A.5], any r rounds of SPN(m, t, S,M) can be written as ϕ̃−1◦Addkr

◦ . . .◦
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R ◦ Addk1 ◦R ◦ Addk0 ◦ϕ̃ where the round function R = M ◦ (S, . . . ,S) is a
permutation of (F2m)t and Addx denotes the addition of x in (F2m)t. Obviously,
composing by ϕ̃ at the beginning and by ϕ̃−1 at the end changes neither the
MEDP nor the MELP. This implies that MEDPE

r and MELPE
r depend on M

and S only, i.e., on the representations of the Sbox and of the diffusion layer
over F2m . In particular, the choice of the basis (α0, . . . , αm−1) has no influence
on the differential and linear properties of the cipher. For this reason, we use the
following alternative notation for defining an SPN from these representations.

Definition 6. Let m and t be two positive integers. Let S be a permutation
of F2m and M be a permutation of (F2m)t which is linear over F2m . Then,
we denote by SPNF (m, t,S,M) a substitution-permutation network defined over
(F2m)t whose substitution function consists of the concatenation of t copies of S
and whose diffusion function corresponds to M.

For the sake of clarity, all quantities related to the representation in the field
F2m will be indexed by F , and all functions defined over F2m will be denoted by
calligraphic letters. As pointed out in [23], the differential and linear properties
of any SPN(m, t, S,M) can be equivalently studied by considering the alterna-
tive representation SPNF (m, t,S,M). This alternative analysis then involves the
differential spectrum and the Walsh spectrum of the Sbox S over F2m , which
are related to the spectra of the corresponding function S over Fm

2 as follows.

Proposition 1. (see e.g. [23]) Let (α0, . . . , αm−1) be a basis of F2m , and ϕ the
corresponding isomorphism from Fm

2 into F2m . Let S be a mapping over Fm
2 ,

and S = ϕ ◦ S ◦ ϕ−1. Then, for any (α, β) ∈ F2m ,

δS
F (α, β) = #{x ∈ F2m ,S(x + α) + S(x) = β} = δS(ϕ−1(α), ϕ−1(β))

WS
F (α, β) =

∑

x∈F2m

(−1)Tr(αx+βS(x)) = WS(ψ−1(α), ψ−1(β))

where ψ is the isomorphism from Fm
2 into F2m defined by the dual basis, i.e.,

the basis (β0, . . . , βm−1) such that Tr(αiβj) = 0 if i �= j and Tr(αiβi) = 1.

3 New Upper Bounds on the 2-Round MEDP and MELP

Now, we study the exact values of the two-round MEDP and MELP for any
cipher of the form SPN(m, t, S,M) where the diffusion layer M is linear over
F2m , like in the AES. We aim at obtaining a better approximation of the MEDP2

and MELP2 by finding some improved lower and upper bounds. In particular,
we would like to be able to differentiate affine equivalent Sboxes.

3.1 The New Upper Bounds

From now on, when considering a cipher of the form SPNF (m, t,S,M), δF (α, β)
and WF (α, β) will denote the differential and Walsh spectra of the Sbox S. The
considered Sbox will be mentioned in the notation in case of ambiguity only.
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Theorem 2. Let E be a block cipher of the form SPNF (m, t,S,M) where M is
linear over F2m and has differential (resp. linear) branch number d (resp. d⊥).
For μ ∈ F2m and u > 0, we define

Bu(μ) = max
α,β,λ∈F∗

2m

∑

γ∈F∗
2m

δF (α, γ)uδF (γλ + μ, β)(d−u) , (2)

B⊥
u (μ) = max

α,β,λ∈F∗
2m

∑

γ∈F∗
2m

WF (α, γ)2uWF (γλ + μ, β)2(d
⊥−u) , (3)

B(μ) = max
1≤u<d

Bu(μ) and B⊥(μ) = max
1≤u<d⊥

B⊥
u (μ) .

Then,

MEDPE
2 ≤ 2−md max

μ∈F2m
B(μ) and MELPE

2 ≤ 2−2md⊥
max

μ∈F2m
B⊥(μ) .

The proof is given in Appendix A. It mainly exploits the special form of the
codewords in an F2m-linear code (see Lemma 2 in Appendix A). In the whole
paper, the proofs in the context of differential attacks and of linear attacks are
similar. Actually, all results can be written in a more generic way, by replacing
the 2m × 2m matrix with coefficients 2−mδF (α, β), α, β ∈ F2m , or with coef-
ficients 2−2mWF (α, β)2, by any matrix (Λ(α, β))α,β∈F2m , such that the coeffi-
cients Λ(α, β) lie between 0 and 1 and satisfy Λ(α, 0) = Λ(0, α) = 0 for any
nonzero α and

∑
β∈F2m

Λ(α, β) =
∑

β∈F2m
Λ(β, α) = 1 for all α ∈ F2m . Clearly,

both normalized differential and Walsh spectra satisfy these conditions.
Computing this new bound is obviously more expensive than computing the

FSE 2003 bound since we have to take the maximum of a similar quantity over
all λ and μ. We will see in Section 4 that this bound simplifies in some cases, for
instance for all Sboxes corresponding to the composition of a power permutation
with an affine mapping, like the AES Sbox. Also, we will show that this refined
bound may enable us to deduce the exact values of the MEDP2 and MELP2 in
a much more efficient way than the ad hoc search algorithm presented in [28].

In the case of the AES Sbox over F28 and d = d⊥ = 5, these new bounds lead
to MEDP2 ≤ 55.5×2−34 instead of MEDP2 ≤ 79×2−34 for the FSE 2003 bound,
and MELP2 ≤ 31, 231, 767 × 2−52 instead of MELP2 ≤ 48, 193, 441 × 2−52. This
seems to be a minor improvement since there is only a factor ρ 	 0.7 between
the two bounds. However, in AES-like constructions, the 2-round MEDP and
MELP correspond to the average differential uniformity and linearity of the
average superbox. Upper-bounds on the 4-round MEDP and MELP can then be
derived from these values using (1). Then, we get a factor ρd−1 (resp. ρd⊥−1)
between the bounds on MEDP4 and MELP4.

While the FSE 2003 bound corresponds to the highest d-th power moment of
a row or a column in the difference table of the Sbox (or in the square correlation
table), our new bound involves together a row and a column in the table. In
other words, this new bound depends on the link between some quantity (e.g. a
derivative or the squared Walsh transform of a component) for S, and the same
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quantity for the inverse permutation S−1. This clearly appears when S has a
two-valued differential spectrum, since the expression of B(μ) simplifies to

B(μ) = Δ(S)d max
α,β,λ∈F∗

2m

#
(
Im(DαS) ∩ [λIm(DβS−1) + μ

])
,

where DαS denotes the derivative of S at point α, i.e., the function x �→ S(x +
α) + S(x). Similarly, if S is a plateaued function [45], i.e., a function whose
Walsh spectrum contains the values 0 and ±L(S) only, we get

B⊥(μ) = L(S)2d⊥
max

α,β,λ∈F∗
2m

#
(
Supp(Ŝ−1

α ) ∩
[
λSupp(Ŝβ) + μ

])
,

where Sα denotes the Boolean function x �→ Tr(αS(x)), and f̂ denotes the
Walsh transform of f , i.e., α �→ ∑

x∈F2m
(−1)Tr(f(x)+αx). It appears from these

formulas that the cardinality of the intersection of such sets cannot exceed the
cardinality of each set (equal to 2m/Δ(S) and 22m/L(S)2 respectively), and
that this maximum is obviously tight when S is an involution, i.e., S−1 = S.
But when the Sbox is composed with a randomly chosen affine permutation,
the two sets can be considered as independent. Then, the expected cardinality
of their intersection is about 2mπ2

Δ = 2m/Δ(S)2 (resp. 2mπ2
L = 23m/L(S)4)

where πΔ = 1/Δ(S) is the proportion of nonzero elements within a row or a
column of the difference table, and πL = 2m/L(S)2 is the proportion of nonzero
elements within a row or a column of the square correlation table. For instance,
for an almost bent Sbox, i.e., with m odd, Δ(S) = 2 and L(S) = 2(m+1)/2, the
expected cardinality of the two sets involved in the previous formulas is 2m−2,
while it is equal to 2m−1 when S is an involution. More generally, our new upper
bound is always smaller than or equal to the corresponding FSE 2003 bound,
with equality when S is an involution, as stated in the following proposition (see
the proof in Appendix A).

Proposition 2. Let S be a permutation of F2m and d be some positive integer.
Then, each of the two upper bounds defined in Theorem 2 is less than or equal to
the corresponding FSE 2003 bound. Moreover, equality holds if S is an involution,
since for any integer u < d,

max
μ∈F2m

Bu(μ) = Bu(0) = max
a∈F∗

2m

∑

γ∈F∗
2m

δF (a, γ)d = max
b∈F∗

2m

∑

γ∈F∗
2m

δF (γ, b)d

and max
μ∈F2m

B⊥
u (μ) = B⊥

u (0) = max
a∈F∗

2m

∑

γ∈F∗
2m

WF (a, γ)2d = max
b∈F∗

2m

∑

γ∈F∗
2m

WF (γ, b)2d.

3.2 Some Lower Bounds

An interesting question is to determine whether these new bounds are optimal, in
the sense that, for a given Sbox, there exists a linear layer such that the bounds
are tight. Here, we exhibit some functions M with optimal branch number such
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that the EDP (resp. ELP) of some minimum-weight differential (resp. linear
mask) over two rounds is related to the upper bound of Theorem 2. This lower
bound results from the fact that the minimum-weight codewords with a given
support in an F2m -linear MDS code form a set of the form {λc, λ ∈ F∗

2m} for
some fixed codeword c. Such a set is named a bundle in [20]. It is not difficult to
observe that B(0) (resp. B⊥(0)) corresponds to the maximum EDP (resp. to the
maximum ELP) of some particular minimum-weight bundles. Moreover, for any
such particular bundle, a function M such that CM contains this bundle can be
constructed from some Generalized Reed-Solomon code.

Proposition 3. Let S be a permutation of F2m and t be any integer such that
t ≤ 2m−1. Then, there exist two F2m-linear diffusion layers M1 and M2 over
Ft

2m with maximal branch number d = t+1 such that any block cipher E1 of the
form SPNF (m, t,S,M1) and E2 of the form SPNF (m, t,S,M2) satisfy

MEDPE1
2 ≥ 2−m(t+1)B(0) and MELPE2

2 ≥ 2−2m(t+1)B⊥(0)

where B(0) and B⊥(0) are defined as in Theorem 2.

Proof. We give here the proof for MEDP2 only, but it is similar for MELP2.
Actually, the proposition can be formulated in a generic way as the results
in Appendix A. Let α̂, β̂, λ̂ ∈ F∗

2m and 1 ≤ û ≤ t be some values such that∑
γ∈F∗

2m
δF (α̂, γ)ûδF (γλ̂, β̂)t+1−û = B(0). Let a ∈ Ft

2m be the input difference
whose first û coordinates equal α̂ and whose last (t−û) coordinates equal 0. Sim-
ilarly, b ∈ Ft

2m denotes the output difference whose first (t + 1 − û) coordinates
equal β̂ and whose last (û − 1) coordinates equal 0. Since

EDP2(a,M(b)) =
∑

c∈CM

(
t∏

i=1

δF (ai, ci)

)⎛

⎝
t∏

j=1

δF (ct+j , bj)

⎞

⎠ ,

it is equal to B(0) if the words of the form

γ(1, . . . , 1
︸ ︷︷ ︸

û

, 0, . . . , 0
︸ ︷︷ ︸

t−û

, λ̂, . . . , λ̂
︸ ︷︷ ︸

t+1−û

, 0, . . . , 0
︸ ︷︷ ︸

û−1

) (4)

are the codewords in CM having the same support as (a, b). Therefore, we aim at
finding a linear MDS diffusion layer M such that CM contains these codewords.
Since t ≤ 2m−1, we can choose 2t distinct elements x1, . . . , x2t in F2m . For any
choice of 2t elements v1, . . . , v2t, we define the t × t matrix

R =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 ... 1
x1v1 x2v2 ... xtvt

x2
1v1 x2

2v2 ... x2
t vt

. . .
xt−1

1 v1 xt−1
2 v2 ... xt−1

t vt

⎤

⎥
⎥
⎥
⎥
⎦

−1

×

⎡

⎢
⎢
⎢
⎢
⎣

1 1 ... 1
xt+1vt+1 xt+2vt+2 ... x2tv2t

x2
t+1vt+1 x2

t+2vt+2 ... x2
2tv2t

. . .
xt−1

t+1vt+1 xt−1
t+2vt+2 ... xt−1

2t v2t

⎤

⎥
⎥
⎥
⎥
⎦

.

Then, the code CM = {(x, xR), x ∈ Ft
2m} is the generalized Reed-Solomon code

GRSt(x1, . . . , x2t; v). It is well-known [36, Page 303] that this code is MDS and is
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composed of all words of the form (v1F (x1), . . . , v2tF (x2t)) where F ranges over
all polynomials in F2m [X] of degree strictly less than t. Then, the codewords in
CM having the same support as (a, b) correspond to the polynomials of degree
at most (t − 1) which vanish at all (t − 1) points xi for i �∈ Supp((a, b)). Then,
these polynomials can be written as γF̂ (x), γ ∈ F∗

2m , and F̂ (xi) �= 0 for i ∈
Supp((a, b)) since F̂ cannot have more than (t − 1) roots. Therefore, we can
choose for v a vector such that vi = 1/F̂ (xi) for 1 ≤ i ≤ û and vi = λ̂/F̂ (xi) for
t + 1 ≤ i ≤ 2t + 1 − û. This guarantees that the words in CM having the same
support as (a, b) are the words of the form (4). It follows that

EDP2(a,M(b)) =
∑

γ∈F∗
2m

(
û∏

i=1

δF (α̂, γviF̂ (xi))

)⎛

⎝
t+1−û∏

j=1

δF (γvt+jF̂ (xt+j), β̂)

⎞

⎠

=
∑

γ∈F∗
2m

δF (α̂, γ)ûδF (γλ̂, β̂)t+1−û .

�
Remark 1. In some particular cases, we can find a generalized Reed-Solomon
code corresponding to a linear layer M for which the two bounds hold together.
Indeed, we want to construct a code CM which contains the words (4) and whose
dual C⊥

M contains the words

γ(0, . . . , 0
︸ ︷︷ ︸

t−ū

, λ̄, . . . , λ̄
︸ ︷︷ ︸

ū

, 0, . . . , 0
︸ ︷︷ ︸

ū−1

, 1, . . . , 1
︸ ︷︷ ︸
t+1−ū

)

for some given λ̄ and ū. But the dual of GRSt(x1, . . . , x2t; v) is another general-
ized Reed-Solomon code, GRSt(x1, . . . , x2t;w) with w−1

i = vi

∏
j �=i(xi + xj). In

particular, if ū + û = t, we can find a vector (v1, . . . , v2t) such that both condi-
tions hold together. This situation occurs for instance when S is an involution
since B(0) (resp. B⊥(0)) is attained for all û < d (resp. for all ū < d⊥).

An interesting situation is the case where the maximum over all μ ∈ F2m of
B(μ) (resp. of B⊥(μ)) is attained for μ = 0. Then there exists some M for which
the upper bound from Theorem 2 is tight for SPNF (m, t,S,M), implying that it
is impossible to find a general better bound which depends on S and t only. This
situation occurs in particular for any involutional Sbox. Indeed, by combining
Prop. 2 and 3, we deduce that, for any involutional Sbox and any t ≤ 2m−1,
there exists a linear layer over Ft

2m such that the exact values of MEDP2 and of
MELP2 are equal to the FSE 2003 bounds.

Corollary 1. Let S be an involution of F2m and t be any integer with t ≤ 2m−1.
Then, there exist an F2m-linear diffusion layer M over Ft

2m with maximal branch
number such that SPNF (m, t,S,M) satisfies

MEDP2 = max
a∈F∗

2m

∑

γ∈F∗
2m

(
δF (a, γ)

2m

)(t+1)

= max
b∈F∗

2m

∑

γ∈F∗
2m

(
δF (γ, b)

2m

)(t+1)
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and MELP2 = max
a∈F∗

2m

∑

γ∈F∗
2m

(WF (a, γ)
2m

)2(t+1)

= max
b∈F∗

2m

∑

γ∈F∗
2m

(WF (γ, b)
2m

)2(t+1)

.

Proof. We know from Prop. 2 that for any u, maxμ∈F2m Bu(μ) = Bu(0) = B(0),
and maxμ∈F2m Bu(μ)⊥ = Bu(0)⊥ = B(0). Moreover, all these values are equal to
the FSE 2003 bounds. By combining Th. 2 and Prop. 3, we deduce the existence
of some linear layers for which MEDP2 (resp. MELP2) are lower- and upper-
bounded by B(0) (resp. B⊥(0)). Moreover, we have proved in Prop. 2 that B(0)
(resp. B⊥(0)) is attained for all values of u. This is a case where we can construct
a GRS code satisfying the conditions for MEDP2 and MELP2 together. �
Example 1. The Prøst permutation over F16d

2 , d ≥ 1, is the core function of sev-
eral AEAD-schemes submitted to the CAESAR competition [27]. This permuta-
tion is of the form SPN(4, 4d, S,M) where S is a 4-bit involution named SubRows
and M corresponds to the composition of two linear permutations, MixSlices
and ShiftPlanes. The round-constant addition is omitted here since it does not
have any impact in our context. Similarly to the AES, two consecutive rounds
of the Prøst permutation can be seen as the parallel application of d copies of
a superbox defined over F16. This superbox corresponds to two SubRows layers
separated by a MixSlices transformation. Moreover, even if it is not mentioned
in the design rationale, it can be checked that MixSlices is linear over F16 if
F16 is identified with F4

2 by the following isomorphism:

ϕ : (x0, . . . , x3) �→ x1 + αx2 + α2x3 + α3x0

where α is a root of X4 + X3 + 1. Indeed, the function defined over F4
16 by

M = ϕ̃ ◦ MixSlices ◦ ϕ̃−1 corresponds to the multiplication by
⎛

⎜
⎜
⎝

1 α α + α2 α2

α 1 α2 α + α2

α + α2 α2 1 α
α2 α + α2 α 1

⎞

⎟
⎟
⎠ .

The previous framework then directly applies2. In particular, since the Sbox is
an involution, our bounds are equal to the FSE 2003 bounds (Prop. 2): the Prøst
permutation with any F2-linear MDS MixSlices transformation satisfies

MEDP2 ≤ 2−8 and MELP2 ≤ 2−8 .

These bounds are tight as stated in Corollary 1: using the construction described
in the proof of Prop. 3, we obtain that the following matrix over F16 (with the
previously described representation) leads to a variant of the Prøst permutation
with MEDP2 = MELP2 = 2−8:
2 We here focus on the MEDP and MELP of the SPN with the same building blocks as

the Prøst permutation, but these expectations do not provide any direct information
on the security of the Prøst permutation in which the key is fixed.
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⎛

⎜
⎜
⎝

α2 + α + 1 α3 + α α3 + α + 1 1
α + 1 α3 + α2 + α α2 + α + 1 1
α2 + 1 α3 + α2 + 1 α3 1

α2 α3 + α2 α3 + 1 1

⎞

⎟
⎟
⎠ .

This implies that, for this particular Sbox, the MixSlices transformation must
be chosen with care to guarantee small MEDP2 and MELP2. Instead, for some
Sboxes within the same equivalence class as SubRows, we can guarantee that, for
any F16-linear MDS MixSlices, MEDP2 ≤ 3 × 2−10. This does not make a big
difference in the case of Prøst since the alphabet is small and the exact MEDP2

and MELP2 can be easily computed. For instance, for the MixSlices transfor-
mation chosen by the designers, we have MEDP2 = 3 × 2−11 and MELP2 =
81 × 2−16. However, for Sboxes over F28 , computing the exact MEDP2 and
MELP2 is rather expensive and obtaining a better upper bound is very helpful.

3.3 Influence of the Field Representation

Clearly, there is no reason why the two-round MEDP or MELP should be the
same for affine equivalent Sboxes in general. Then, it makes sense that our
new bounds are not invariant under affine equivalence. More surprisingly, by
combining the upper bound from Theorem 2 with the lower bound provided by
Prop. 3, we can exhibit some examples showing that the choice of the field F2m ,
i.e., the choice of the isomorphism ϕ between Fm

2 and F2m , may influence the
value of the MEDP and MELP.

Example 2. Let us consider 2 rounds of a cipher of the form SPN(4, 4, S,M),
where S is one of the permutations of F4

2 used in the PRINCE-family [9], namely
permutation S6 in [10, Table 3]:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 1 2 13 4 7 15 6 8 14 11 10 9 3 12 5

where each element in F4
2 is here represented as an integer between 0 and 15.

This Sbox is differentially 4-uniform and has linearity L(S) = 8. For this Sbox,
the FSE 2003 bound gives MEDPE

2 ≤ 34 × 2−14, for any F2-linear diffusion
layer M over F16

2 with branch number 5. If we now consider a diffusion layer M
with branch number 5 which is linear over F24 where F24 is identified with
F4

2 by the basis {1, α, α2, α3} where α is a root of the irreducible polynomial
X4 + X3 + X2 + X + 1, we get from Theorem 2 that

MEDPE
2 ≤ 33 × 2−14 ,

and this inequality holds for any such function M. However, we can now consider
a permutation M′ which is linear over F24 , but where the isomorphism between
F4

2 and F24 is defined by a different basis, namely {1, β, β2, β3} where β is a
root of the primitive polynomial X4 + X + 1. Then, the value B(0) involved in
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Prop. 3 equals 17×27, implying that there exists an F24-linear function M′ with
branch number 5 such that

MEDPE
2 = 34 × 2−14 ,

which is strictly higher that the upper bound we have for any MDS diffusion
layer F24 -linear where F24 is defined with the basis {1, α, α2, α3}.

There is no contradiction here since the two theorems apply to the represen-
tations of the Sbox and of the diffusion function over F24 only. Here, we have
proved that there is a particular M′ such that SPN(4, 4, S, ψ̃−1 ◦ M′ ◦ ψ̃) has
MEDP2 = 34×2−14, where ψ̃ is the concatenation of 4 copies of the isomorphism
ψ from F4

2 into F24 defined by the basis {1, β, β2, β3}. But if we consider the basis
{1, α, α2, α3} and the corresponding isomorphism ϕ, Th. 2 provides a bound for
all SPNF (4, 4, ϕ ◦ S ◦ ϕ−1,M) which does not include the previous case because
the permutation defined by M = ϕ̃ ◦ ψ̃−1 ◦ M′ ◦ ψ̃ ◦ ϕ̃−1 is not linear over F24 ,
since (ψ◦ϕ−1) is not a ring isomorphism. This unexpected result comes from the
fact that the definitions of the Sbox and of the linear layer do not use the same
representation: the Sbox is defined over F4

2 while the linear layer is defined over
F24 . This is why the choice of the basis affects the MEDP while this is obviously
not the case when the two functions are defined over the same alphabet. But,
even if this does not correspond to a natural mathematical description, it may
be relevant to use the binary representation for the Sbox (chosen to minimize
the number of gates for instance), while the field representation is used for the
mixing layer since it is F2m -linear (see e.g. [25]).

It is worth noticing that the previous situation is not related to the fact that
one of the field representations is defined by a non-primitive polynomial. Indeed,
the following example shows that even changing the primitive polynomial used
for constructing F2m may affect the two-round MEDP and MELP.

Example 3. We now consider two rounds of a cipher SPN(5, 4, S,M) where S is
the following permutation of F5

2:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 1 18 20 25 16 6 27 17 3 22 15 31 7 30 26

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 4 23 29 21 9 10 24 2 14 5 13 8 28 19 12 11

When F25 is identified with F5
2 by the basis {1, α, α2, α3, α4} where α is a root of

the primitive polynomial X5 +X2 +1, Theorem 2 shows that any MDS diffusion
layer linear over F25 with this representation satisfies

MEDPE
2 ≤ 13 × 2−20 and MELPE

2 ≤ 8407 × 2−27 .

When F25 is constructed from the primitive polynomial X5 + X3 + 1, the lower
and upper bounds from Th. 2 and Prop. 3 are equal, and show that there exists
some MDS layer linear over F25 with this alternative representation such that

MEDPE
2 = 14 × 2−20 and MELPE

2 = 8663 × 2−27 .



60 A. Canteaut and J. Roué

The first primitive polynomial then guarantees lower two-round MEDP and
MELP than the second one.

Another example is the LED block cipher. In [25, Section 3.2], the design-
ers provide an upper bound on the four-round MEDP and MELP of a cipher
of the form SPNF (4, 4,S,M)3 where M is an F24-linear function with branch
number 5, S corresponds to the Present Sbox and F24 is defined by the basis
(1, α, α2, α3), with α a root of X4 + X + 1. To this end, they use the FSE 2003
bound, which leads to MEDP2 ≤ 2−8 and MELP2 ≤ 2−8, implying that
MEDP4 ≤ 2−32 and MELP4 ≤ 2−32. For this cipher, our new upper bound
is equal to the FSE 2003 bound and then does not improve the result. However,
if we consider the same Sbox, but modify the representation of F24 and choose
the basis defined by X4 + X3 + 1, Theorem 2 leads to MEDP2 ≤ 3 × 2−10.
Then, with this minor modification, the upper bound on MEDP4 is improved
by a factor (3/4)4 = 0.3164 (while the bound on MELP4 is unchanged).

4 Multiplicative Invariance for Sboxes

Power permutations are often considered as suitable Sboxes since determining
their differential and Walsh spectra is easier and also because they usually have
a lower implementation cost. This family of Sboxes is also of great interest in our
context since our bounds provide a very good approximation of the exact two-
round MEDP and MELP which depends on the Sbox and on the branch number
only. Indeed, for power permutations, we get a universal lower bound in the
sense that the bound provided in Prop. 3 holds for any F2m -linear permutation
M. This comes from the fact that all rows in the difference table (resp. in the
correlation table) of a power permutation can be deduced from a single one. This
is because any power function S is an endomorphism over the multiplicative
group F∗

2m , i.e., S(xy) = S(x)S(y) for any pair of nonzero elements (x, y).
Unfortunately, there is no hope to capture a larger family of Sboxes with a
straightforward generalization of this property since it can be easily shown that
any function S satisfying S(xy) = S(x)S ′(y) for some S ′ is of the form S(x) =
cxs. However, we can define this suitable multiplicative property on the difference
table (resp. on the Walsh transform) of S, and not on the function itself.

4.1 Generalizing the Multiplicative Property

Definition 7. Let S be a mapping of F2m .

– S is said to have multiplicative-invariant derivatives if, for any x ∈ F∗
2m

there exists a permutation πx of F∗
2m such that

δF (α, xy) = δF (πx(α), y), ∀y ∈ F∗
2m .

3 As for Prøst, this result does not directly apply to LED since the round keys are
inserted every four rounds only.



On the Behaviors of Affine Equivalent Sboxes Regarding Differential 61

– S is said to have a multiplicative-invariant Walsh transform if, for any x ∈
F∗

2m there exists a permutation ψx of F∗
2m such that

WF (α, xy)2 = WF (ψx(α), y)2, ∀y ∈ F∗
2m .

These definitions include all functions resulting from the composition on the right
of a power permutation with an F2-linear permutation (cf. proof in Appendix B).

Proposition 4. Let S = S ′ ◦ L where L is an F2-linear permutation of F2m

and S ′ : x �→ xs is a power permutation over F2m . Then, both the derivatives of
S and its Walsh transform are multiplicative-invariant.

It is worth noticing that the fact that a permutation has multiplicative-invariant
derivatives (resp. Walsh transform) does not imply that a similar property holds
for its inverse. In other words, Prop. 4 does not apply to the composition on the
left of a power permutation with a linear permutation. The following proposi-
tion shows that the permutations with multiplicative-invariant derivatives (resp.
Walsh transform) are not all affine equivalent to a power permutation.

Proposition 5. Let m be an odd integer and S be a quadratic permutation
of F2m with Δ(S) = 2 (aka APN permutation). Then, S has multiplicative-
invariant derivatives and S−1 has a multiplicative-invariant Walsh transform.

This result actually applies to a (possibly) more general class of permutations
known as crooked permutations, which includes all quadratic APN permutations
(see details in Appendix B). Prop. 5 applies for instance to the infinite family of
APN permutations of degree 2

x �−→ x2i+1 + ux2j m
3 +2(3−j) m

3 +i

with gcd(i,m) = 1 and j = im/3 mod 3

over F2m , m odd, divisible by 3 and not by 9, which is not affine equivalent to
a power mapping [12].

4.2 A Universal Lower Bound for Sboxes with Some Multiplicative
Invariance

We now show that for Sboxes with multiplicative-invariant derivatives (resp.
Walsh transform), the previously established bounds simplify.

Proposition 6. Let S be a permutation of F2m such that either S or S−1 has
multiplication-invariant derivatives (resp. Walsh transform). For any integers d
and d⊥, we define

B′
u(μ) = max

α,β∈F∗
2m

∑

γ∈F∗
2m

δF (α, γ)uδF (γ + μ, β)(d−u), with 1 ≤ u < d,

B′⊥
u (μ) = max

α,β∈F∗
2m

∑

γ∈F∗
2m

WF (α, γ)2uWF (γ + μ, β)2(d
⊥−u), with 1 ≤ u < d⊥ .
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Then, for any u, we have

Bu(0) = B′
u(0) and max

μ∈F∗
2m

Bu(μ) = max
μ∈F∗

2m

B′
u(μ)

resp. B⊥
u (0) = B′⊥

u (0) and max
μ∈F∗

2m

B⊥
u (μ) = max

μ∈F∗
2m

B′⊥
u (μ) ,

where Bu(μ) and B⊥
u (μ) are defined as in Theorem 2.

It follows that the upper bounds defined by Theorem 2 simplify to

MEDPE
2 ≤ 2−md max

1≤u<d
max

μ∈F2m
B′

u(μ) and MELPE
2 ≤ 2−2md⊥

max
1≤u<d⊥

max
μ∈F2m

B′⊥
u (μ).

More interestingly, we now get some universal lower bound on MEDP2 and
MELP2, i.e., which hold for any diffusion layer with maximal branch number.

Theorem 3. Let S be a permutation of F2m . Then, for any F2m-linear diffusion
layer M over (F2m)t with maximal branch number d = t + 1, the MEDP2 and
MELP2 of any block cipher E of the form SPNF (m, t,S,M) satisfy the following.

– If both S and S−1 have multiplicative-invariant derivatives, then

MEDPE
2 ≥ 2−m(t+1) max

1≤u<d
B′

u(0);

– if both S and S−1 have a multiplicative-invariant Walsh transform, then

MELPE
2 ≥ 2−2m(t+1) max

1≤u<d
B′⊥

u (0) ;

– if S has multiplicative-invariant derivatives (resp. Walsh transform), then

MEDPE
2 ≥ 2−m(t+1)B′

t(0), resp. MELPE
2 ≥ 2−2m(t+1)B′⊥

t (0).

– if S−1 has multiplicative-invariant derivatives (resp. Walsh transform), then

MEDPE
2 ≥ 2−m(t+1)B′

1(0), resp. MELPE
2 ≥ 2−2m(t+1)B′⊥

1 (0).

Let us focus on all permutations of F28 of the same form as the AES Sbox:
S(x) = A(x254), where A is an F2-affine permutation of F28 . Since S−1 has
multiplication-invariant derivatives and Walsh transform (cf. Prop. 4), we derive
from Theorems 2 and 3, and Prop. 6 that, for t = 4,

2−40B′
1(0) ≤ MEDP2 ≤ 2−40 max

1≤u≤4
max

μ∈F∗
28

B′
u(μ)

and 2−80B′⊥
1 (0) ≤ MELP2 ≤ 2−80 max

1≤u≤4
max

μ∈F∗
28

B′⊥
u (μ) .

These bounds do not depend on the isomorphism between F8
2 and F28 since their

expressions do not involve any multiplication in F28 , while this was not the case
of the more general bound in Theorem 2. Then, we get the following results for
different choices of the affine permutation A.
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– For the affine function A used in the AES, SPNF (8, 4,S,M) satisfies

53×2−34 ≤ MEDP2 ≤ 55.5×2−34 and 1.638×2−28 ≤ MELP2 ≤ 1.86×2−28

for any F28 -linear MDS diffusion layer M and any isomorphism between F28

and F8
2. The exact values for the diffusion layer used in the AES correspond

to the lower bounds in both cases. But, we have exhibited in Prop. 3 an
MDS diffusion layer for which MELP2 ≥ 1.66 × 2−28. Then, the choice of
the MDS linear layer affects the value of MELP2 within this interval.

– For the affine function A′ used in SHARK [42] and Square [16] which are
two predecessors of the AES, SPNF (8, 4,S,M) satisfies

53×2−34 ≤ MEDP2 ≤ 56×2−34 and 1.7169×2−28 ≤ MELP2 ≤ 1.9847×2−28

for any F28 -linear MDS diffusion layer M. Then, the affine function chosen
in the AES Sbox offers a slightly better guarantee than the one chosen in
Square. Indeed, it is impossible with the Square affine function to obtain
a two-round MELP which is as small as the one of the AES. Note that the
isomorphism between F8

2 and F28 is different in Square and in the AES [2].
– We have exhibited a linear permutation A′′ of F8

2 for which the corresponding
Sbox is such that SPNF (8, 4,S,M) satisfies

MEDP2 = 56 × 2−34 and 1.8354 × 2−28 ≤ MELP2 ≤ 1.8684 × 2−28

for any F28 -linear MDS diffusion layer M. Then, this Sbox always provides
a higher two-round MEDP than the AES Sbox.

Even if we are not able to explicitly construct an affine permutation A which
minimizes the values of MEDP2 and MELP2, our results clearly simplify the task
of the designer. Indeed, the affine permutation A and the diffusion layer M can be
chosen separately since a very good estimate of MEDP2 and MELP2 is obtained
independently of the diffusion layer. This is more efficient than computing these
values for many pairs (A,M).

4.3 Involutions with Some Multiplicative Invariance

A particular case of interest is when S is an involution with multiplicative-
invariant derivatives (or Walsh transform). Then, the lower bound in the previous
theorem corresponds to the upper bound in Theorem 2, and both values are equal
to the FSE 2003 bound.

Corollary 2. Let S be an involution of F2m with multiplicative-invariant deriva-
tives (resp. Walsh transform). Then, for any t and any F2m-linear diffusion
layer M over Ft

2m with branch number t + 1, any block cipher of the form
SPNF (m, t,S,M) satisfies

MEDPE
2 = 2m(t+1) max

α∈F∗
2m

∑

γ∈F∗
2m

δF (α, γ)t+1,

resp. MELPE
2 = 22m(t+1) max

α∈F∗
2m

∑

γ∈F∗
2m

WF (α, γ)2(t+1).
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The naive Sbox, i.e. the inversion in F2m , satisfies all hypotheses of the previous
corollary. The exact values of MEDP2 and MELP2 for an SPN combining the
naive Sbox over F2m and any F2m -linear layer with maximal branch number are
then always equal to the FSE 2003 bounds. For instance, for the two-round AES
with the naive Sbox, we have MEDP2 = 79 × 2−34 and MELP2 = 48, 193, 409 ×
2−52, and this is independent of the F28-linear MDS layer. In particular, the exact
MEDP2 and MELP2 do not depend on the field representation since Coro. 2
provides the same value for any basis. Also, this explains why, among all Sboxes
in the same equivalence class, the naive Sbox is the one which leads after two
rounds both to the highest MEDP and to the highest MELP for any F2m-linear
diffusion layer with maximal branch number. And this situation is independent
of the size of the Sbox, and of the choice of the F2m -linear MDS layer.

5 Conclusions

We have improved the general upper bounds on the two-round MEDP and MELP
for a given Sbox over Fm

2 and any F2m-linear diffusion layer with given branch
numbers. One of the main properties of these new bounds is that they are not
invariant under affine equivalence, and then they enable the designers to choose
an appropriate Sbox within an equivalence class, independently of the diffusion
layer. These bounds point out the importance of some interactions between the
Sbox and its inverse. In particular, the involutions play a special role since there
always exists some diffusion layer for which both MEDP2 and MELP2 achieve the
highest possible value we can obtain for an Sbox in the same equivalence class.
Also, we have shown that, for the Sboxes with multiplicative-invariant derivatives
or Walsh transform, we can compute a lower bound on MEDP2 and MELP2

independently of the choice of the MDS diffusion layer. This result applies for
instance to all Sboxes of the form x �→ A(xs), as in the AES. In particular,
we have proved that, independently of the specifications of the MDS diffusion
layer, the naive Sbox leads to the highest possible MEDP2 and MELP2. The
exact MEDP2 and MELP2 may even vary with the basis used for defining F2m .
Our work then raises several open questions. We have shown that involutional
power permutations are the weakest Sboxes in their equivalence class whatever
MDS linear layer is chosen. For involutions which do not have any multiplicative-
invariant property, this result holds but for some MDS layers only. Then, it would
be interesting to determine whether this weakness is more general, and whether
an involution is always the worst choice within an equivalent class. This issue is
of practical interest since involutional Sboxes are a natural choice for minimizing
the implementation overhead of decryption on top of encryption. Another open
question is whether the use of an involutional Sbox, especially of the naive Sbox,
introduces a similar weakness for a higher number of rounds, in the sense of
the conjecture in [17]. The difficulty comes from the fact that, exactly as for
the FSE 2003 bound, applying our upper bound twice successively requires the
knowledge of the whole difference table of the superbox. Our new bound can then
be combined with (1) only, to get a bound of the 4-round MEDP and MELP.
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T.: Prøst v1.1. Submission to the CAESAR competition (2014). http://proest.
compute.dtu.dk/proestv11.pdf

28. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for
two-round Advanced Encryption Standard. IET Information Security 1(2), 53–57
(2007)

29. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

30. Kyureghyan, G.M.: Crooked maps in F2n . Finite Fields and Their Applications
13(3), 713–726 (2007)

31. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Symposium on
Communication, Coding and Cryptography. Kluwer Academic Publishers (1994)

32. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

33. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a crypt-
analysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol.
6632, pp. 303–322. Springer, Heidelberg (2011)

34. Leander, G., Poschmann, A.: On the classification of 4 bit S-Boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007)

35. Lim, C.H., Korkishko, T.: mCrypton – A lightweight block cipher for security of
low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

36. MacWilliams, F.J., Sloane, N.J.: The theory of error-correcting codes. North-
Holland (1977)

37. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

http://proest.compute.dtu.dk/proestv11.pdf
http://proest.compute.dtu.dk/proestv11.pdf


On the Behaviors of Affine Equivalent Sboxes Regarding Differential 67

38. Murphy, S.: The effectiveness of the linear hull effect. J. Mathematical Cryptology
6(2), 137–147 (2012)

39. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

40. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

41. Park, S., Sung, S.H., Lee, S.-J., Lim, J.-I.: Improving the upper bound on the max-
imum differential and the maximum linear hull probability for SPN structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,
Heidelberg (2003)

42. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., Win, E.D.: The cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer,
Heidelberg (1996)

43. Saarinen, M.-J.O.: Cryptographic analysis of all 4 × 4-bit S-boxes. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 118–133. Springer, Heidelberg
(2012)

44. Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 172–182. Springer,
Heidelberg (1992)

45. Zheng, Y., Zhang, X.-M.: Plateaued functions. In: Varadharajan, V., Mu, Y. (eds.)
ICICS 1999. LNCS, vol. 1726, pp. 284–300. Springer, Heidelberg (1999)

A Proofs of Theorem 2, Prop. 2 and 6, and Theorem 3

The new upper bounds on MEDP2 and MELP2 exploit the particular structure
of the codewords in an F2m-linear code, which is related to the notion of bundle
introduced in [20]. In particular, we use the structure of the subsets of the code
of the following form.

Definition 8. Consider a word c of length n and a subset I ⊆ {1, . . . , n}. The
decomposition of c with respect to I is denoted by (x, y)I : x corresponds to the
restriction of c to I, and y corresponds to the restriction of c to the complement
subset Ī. For the sake of simplicity, the |I| coordinates of x (resp. the coordinates
of y) will be indexed by the elements of I (resp. of Ī), i.e., xi = ci for all i ∈ I
and yj = cj for all j ∈ Ī.

Lemma 2. Let C be a linear code of length n, dimension k and minimum dis-
tance d over F2m . For any subset I ⊂ {1, . . . , n} of size (n − d), and any
x ∈ (F2m)n−d, we define

Z(I, x) = {y : (x, y)I ∈ C} .

Then, for any I of size (n − d),

– either Z(I, 0) is empty or there exists some y0 ∈ (F∗
2m)d such that Z(I, 0) =

{γy0, γ ∈ F2m};
– For any x �= 0, either Z(I, x) is empty or there exist some y0 ∈ (F∗

2m)d and
some y1 ∈ (F2m)d such that Z(I, x) ⊆ {y1 + γy0, γ ∈ F2m}.
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Proof. – Assume that Z(I, 0) is not empty. Since C is F2m -linear, for any
y0 ∈ Z(I, 0), (0, y0)I belongs to C, implying that all γ(0, y0)I with γ ∈ F2m

belong to C too.
– Let x �= 0. Since the result obviously holds if |Z(I, x)| ≤ 1, we suppose that

|Z(I, x)| ≥ 2. For any distinct y and y′ in Z(I, x), we get that both c = (x, y)I

and c′ = (x, y′)I belong to C, implying that (y + y′) ∈ Z(I, 0). From the
previous result, there exists some y0 such that y+y′ = γy0 for some γ ∈ F2m .
It follows that y′ is of the form y′ = y + γy0. Since wt(c + c′) = wt(y + y′)
cannot be less than d, all coordinates of y0 should be nonzero. �

A.1 Proofs of Theorem 2 and Proposition 2

As in [41], we will use the following generalized version of Hölder inequality.

Lemma 3. [41, Lemma 1] Let {x
(j)
i }n

i=1, 1 ≤ j ≤ p, be p sequences of n real
numbers. Then

n∑

i=1

∣
∣
∣
∣
∣
∣

p∏

j=1

x
(j)
i

∣
∣
∣
∣
∣
∣

≤
p∏

j=1

(
n∑

i=1

|x(j)
i |p

) 1
p

.

Now, we prove the following generic version of Theorem 2.

Theorem 4. Let m and t be two positive integers. Let Λ be a 2m × 2m matrix
with coefficients Λ(α, β), (α, β) ∈ (F2m)2, in [0; 1] such that Λ(α, 0) = Λ(0, α) =
0 for any α �= 0, and

∑

β∈F2m

Λ(α, β) =
∑

β∈F2m

Λ(β, α) = 1, for all α ∈ F2m .

Then, for any F2m-linear code C of length (2t) with minimum distance d and for
any nonzero a and b in Ft

2m , we have:

Λa,b =
∑

c∈C

(
t∏

i=1

Λ(ai, ci)

)⎛

⎝
t∏

j=1

Λ(ct+j , bj)

⎞

⎠ ≤ max
1≤u<d

max
μ∈F2m

Bu(μ)

where Bu(μ) = max
α,β,λ∈F∗

2m

∑

γ∈F∗
2m

Λ(α, γ)uΛ(γλ + μ, β)d−u.

Proof. Let a, b be nonzero elements of (F2m)t. For any codeword c such that
Supp(c) �= Supp(a, b), there exists � ∈ {1, . . . , t} such that Λ(a�, c�) = 0 or
Λ(ct+�, b�) = 0. Then,

Λa,b =
∑

c∈C:Supp(c)=Supp(a,b)

(
t∏

i=1

Λ(ai, ci)

)⎛

⎝
t∏

j=1

Λ(ct+j , bj)

⎞

⎠ .

We assume that wt(a) + wt(b) ≥ d, otherwise the value Λa,b is equal to zero,
as there is no c ∈ C such that Supp(c) = Supp(a, b). Then we can choose a pair



On the Behaviors of Affine Equivalent Sboxes Regarding Differential 69

of subsets I1 and I2 of {1, . . . , t} such that I1 ⊆ Supp(a), I2 ⊆ Supp(b) and
|I1|+ |I2| = d. We decompose any codeword c whose support equals Supp((a, b))
into two parts: c = (y, x)I where I = ({1, . . . , t} \ I1) ∪ {t + j, j �∈ I2}. In other
words, y corresponds to the restriction of c to the positions outside I1 and I2,
while x corresponds to the other d positions. Recall that, following Definition 8,
the coordinates of y (resp. of x) are indexed by the elements of I (resp. of
I1 ∪ {t + j, j ∈ I2}). Then, for Z(I, y) = {x : (y, x)I ∈ C},

Λa,b =
∑

y∈Fn−d
2m

⎛

⎝
∏

i�∈I1

Λ(ai, yi)

⎞

⎠

⎛

⎝
∏

j �∈I2

Λ(yt+j , bj)

⎞

⎠Qa,b(I, y) (5)

where Qa,b(I, y) =
∑

x∈Z(I,y)

(
∏

i∈I1

Λ(ai, xi)

)⎛

⎝
∏

j∈I2

Λ(xt+j , bj)

⎞

⎠ .

We aim at finding an upper bound on Qa,b(I, y). Let u = |I1|. From Lemma 3,

Qa,b(I, y) =
∑

x∈Z(I,y)

∏

i∈I1

⎡

⎢
⎣Λ(ai, xi)

⎛

⎝
∏

j∈I2

Λ(xt+j , bj)

⎞

⎠

1
u

⎤

⎥
⎦

≤
∏

i∈I1

⎡

⎣
∑

x∈Z(I,y)

Λ(ai, xi)u

⎛

⎝
∏

j∈I2

Λ(xt+j , bj)

⎞

⎠

⎤

⎦

1
u

.

For any i ∈ I1, we apply Lemma 3 again:

∑

x∈Z(I,y)

Λ(ai, xi)
u

(
∏

j∈I2

Λ(xt+j , bj)

)

=
∑

x∈Z(I,y)

∏

j∈I2

(
Λ(ai, xi)

u
d−u Λ(xt+j , bj)

)

≤
∏

j∈I2

⎛

⎝
∑

x∈Z(I,y)

Λ(ai, xi)
uΛ(xt+j , bj)

d−u

⎞

⎠

1
d−u

Now, we know from Lemma 2 that, if Z(I, y) �= ∅, there exist α ∈ (F∗
2m)d

and β ∈ (F2m)d such that Z(I, y) ⊆ {γα + β, γ ∈ F2m}. Then, for any pair
(i, j) ∈ I1 × I2, we can write:
∑

x∈Z(I,y)

Λ(ai, xi)uΛ(xt+j , bj)d−u ≤
∑

γ∈F2m

Λ(ai, γαi + βi)uΛ(γαt+j + βt+j , bj)d−u

=
∑

γ′∈F∗
2m

Λ(ai, γ
′)uΛ(γ′λ + μ, bj)d−u ,

where the last equality is obtained by replacing γαi + βi by γ′ since αi �= 0, and
by setting λ = αt+jα

−1
i and μ = βt+j + αt+jα

−1
i βi. Moreover the sum can be
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taken over all nonzero γ′ since Λ(ai, γ
′) = 0 for γ′ = 0. Let

Bu = max
a,b,λ∈F∗

2m

max
μ∈F2m

∑

γ∈F∗
2m

Λ(a, γ)uΛ(γλ + μ, b)d−u .

Then, we get

Qa,b(I, y) ≤
∏

i∈I1

∏

j∈I2

⎛

⎝
∑

x∈Z(I,y)

Λ(ai, xi)uΛ(xt+j , bj)d−u

⎞

⎠

1
u(d−u)

≤ B
u(d−u)
u(d−u)
u = Bu .

Using (5) and
∑

β∈F2m
Λ(α, β) =

∑
α∈F2m

Λ(α, β) = 1, we eventually deduce

Λa,b =
∑

y∈Fn−d
2m

⎛

⎝
∏

i�∈I1

Λ(ai, yi)

⎞

⎠

⎛

⎝
∏

j �∈I2

Λ(yt+j , bj)

⎞

⎠Qa,b(I, y)

≤ Bu

∑

y∈Fn−d
2m

⎛

⎝
∏

i�∈I1

Λ(ai, yi)

⎞

⎠

⎛

⎝
∏

j �∈I2

Λ(yt+j , bj)

⎞

⎠ ≤ Bu . �

Theorem 2 is derived by observing that, up to a constant factor, Λa,b =
EDP2(a,M(b)) for Λ(α, β) = 2−mδF (α, β) and C is the code CM defined in
Definition 5, while Λa,b = ELP2(a, (M∗)−1(b)) for Λ(α, β) = 2−2mWF (α, β)2

when C is the code C⊥
M and M∗ denotes the adjoint of M.

In the same way, we now prove the following generic version of Prop. 2.

Proposition 7. Let m and d be two positive integers and Λ be a 2m×2m matrix
satisfying the same hypotheses as in Theorem 4. Then, for any 1 ≤ u < d and
any μ ∈ F2m , we have

Bu(μ) ≤ max

⎛

⎝ max
a∈F∗

2m

∑

γ∈F∗
2m

Λ(a, γ)d, max
b∈F∗

2m

∑

γ∈F∗
2m

Λ(γ, b)d

⎞

⎠ .

Moreover, if Λ(α, β) = Λ(β, α) for any (α, β) ∈ (F2m)2, we have that, for any
1 ≤ u < d,

max
μ∈F2m

Bu(μ) = Bu(0) = max
a∈F∗

2m

∑

γ∈F∗
2m

Λ(a, γ)d = max
b∈F∗

2m

∑

γ∈F∗
2m

Λ(γ, b)d .

Proof. Lemma 2 implies that, for any set of p sequences {x
(j)
i }n

i=1, 1 ≤ j ≤ p,

n∑

i=1

∣
∣
∣
∣
∣
∣

p∏

j=1

x
(j)
i

∣
∣
∣
∣
∣
∣
≤ max

1≤j≤p

n∑

i=1

|x(j)
i |p .
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Using this inequality with p = d, we get that, for any 1 ≤ u < d, α, β, λ ∈ F∗
2m

and μ ∈ F2m

∑

γ∈F∗
2m

Λ(α, γλ+μ)uΛ(γ, β)d−u ≤ max

⎛

⎝
∑

γ∈F∗
2m

Λ(α, γ)d,
∑

γ∈F∗
2m

Λ(γλ + μ, β)d

⎞

⎠ .

Since λ �= 0, we have
∑

γ∈F∗
2m

Λ(γλ+μ, β)d =
∑

γ′∈F∗
2m

Λ(γ′, β)d. The inequality
then follows.

Now, we assume that Λ(a, b) = Λ(b, a) for any pair (a, b). Then,
∑

γ∈F∗
2m

Λ(α, γ)uΛ(γλ + μ, β)d−u =
∑

γ∈F∗
2m

Λ(α, γ)uΛ(β, γλ + μ)d−u .

For μ = 0, the maximum of this value over all nonzero α, β, λ is then greater
than or equal to the value obtained for β = α and λ = 1, implying that

Bu(0) ≥
∑

γ∈F∗
2m

Λ(α, γ)uΛ(α, γ)d−u =
∑

γ∈F∗
2m

Λ(α, γ)d .

Then, maxa∈F∗
2m

∑
γ∈F∗

2m
Λ(a, γ)d is a lower bound for Bu(0), and then for

maxμ Bu(μ). Since we have proved that it is also an upper bound, we conclude
that both quantities are equal. �

A.2 Proofs of Proposition 6 and of Theorem 3

We now prove that for any Sbox S such that either S or S−1 has multiplicative-
invariant derivatives (resp. Walsh transform), the bound defined in Theorem 2
simplifies as explained in Prop. 6. Again, we give a generic version of this propo-
sition which captures both settings.

Proposition 8. Let m and d be two positive integers and Λ be a 2m×2m matrix
satisfying the same hypotheses as in Theorem 4. Let

B′
u(μ) = max

α,β∈F∗
2m

∑

γ∈F∗
2m

Λ(α, γ)uΛ(γ + μ, β)(d−u), with 1 ≤ u < d .

Assume that one of the following two conditions holds:

(i) for any x ∈ F∗
2m there is a permutation πx of F∗

2m such that Λ(α, xy) =
Λ(πx(α), y), ∀y ∈ F∗

2m ;
(ii) for any x ∈ F∗

2m there is a permutation ψx of F∗
2m such that Λ(xy, α) =

Λ(y, ψx(α)), ∀y ∈ F∗
2m .

Then, the quantities Bu(μ) defined in Theorem 4 satisfy

Bu(0) = B′
u(0) and max

μ∈F∗
2m

Bu(μ) = max
μ∈F∗

2m

B′
u(μ) .
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Proof. If Condition (i) holds, we have for any α, β, λ ∈ F∗
2m and any μ ∈ F2m ,

Bu(α, β, λ, μ) =
∑

γ∈F∗
2m

Λ(α, γ)uΛ(γλ + μ, β)d−u

=
∑

γ′∈F∗
2m

Λ(α, λ−1(γ′ + μ))uΛ(γ′, β)d−u = Bu(πλ−1(α), β, 1, μ) .

The result then follows. If (ii) holds, we get Bu(α, β, λ, μ) = Bu(α,ψλ(β), 1, μλ−1)
in a similar way. �
A generic version of Theorem 3 is then the following.

Theorem 5. Let m and t be 2 positive integers and Λ a 2m × 2m matrix satis-
fying the hypotheses of Th. 4. Assume that one of the following holds:

(i) for any x ∈ F∗
2m there is a permutation πx of F∗

2m such that Λ(α, xy) =
Λ(πx(α), y), ∀y ∈ F∗

2m ;
(ii) for any x ∈ F∗

2m there is a permutation ψx of F∗
2m such that Λ(xy, α) =

Λ(y, ψx(α)), ∀y ∈ F∗
2m .

Let MΛ be defined by

MΛ = max
a,b �=0

∑

c∈C

(
t∏

i=1

Λ(ai, ci)

)⎛

⎝
t∏

j=1

Λ(ct+j , bj)

⎞

⎠ .

with C any F2m-linear code of length 2t, dimension t and dmin = t + 1. Then,

– If both (i) and (ii) hold, then MΛ ≥ max1≤u<d B′
u(0).

– If (i) holds, then MΛ ≥ B′
t(0).

– If (ii) holds, then MΛ ≥ B′
1(0).

Proof. For any fixed u, 1 ≤ u ≤ t, we consider α̂, β̂ ∈ F∗
2m some values for which

∑

γ∈F∗
2m

Λ(α̂, γ)uΛ(γ, β̂)(d−u) = B′
u(0) .

Since C is MDS, any set of (t + 1) positions is the support of a minimum-weight
codeword [36, Page 319]. Let then c ∈ C with support I = {1, . . . , u} ∪ {t +
1, . . . , 2t + 1 − u}. From Lemma 2, we know that the codewords with support I
are the elements γc, γ ∈ F∗

2m . We now examine the 3 cases.

– If both (i) and (ii) hold, then for any pair (a, b), we have

Λa,b =
∑

c∈C

(
t∏

i=1

Λ(ai, ci)

)⎛

⎝
t∏

j=1

Λ(ct+j , bj)

⎞

⎠

=
∑

γ∈F∗
2m

(
t∏

i=1

Λ(ai, γci)

)⎛

⎝
t∏

j=1

Λ(γct+j , bj)

⎞

⎠

=
∑

γ∈F∗
2m

(
t∏

i=1

Λ(πci
(ai), γ)

)⎛

⎝
t∏

j=1

Λ(γ, ψct+j
(bj))

⎞

⎠ .
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We choose a and b as ai = π−1
ci

(α̂) for 1 ≤ i ≤ u, ai = 0 otherwise, and
bj = ψ−1

ct+j
(β̂) for 1 ≤ j ≤ t+1−u, bj = 0 otherwise. Then, for these values,

Λa,b =
∑

γ∈F∗
2m

(
t∏

i=1

Λ(α̂, γ)

)⎛

⎝
t∏

j=1

Λ(γ, β̂)

⎞

⎠ = B′
u(0) .

Since such a pair (a, b) can be defined for any 1 ≤ u < d, we deduce that
MΛ ≥ max1≤u<d B′

u(0).
– If only (i) holds, then we consider u = t and we define a and b by ai =

π−1

cic
−1
t+1

(α̂) for 1 ≤ i ≤ t, b1 = β̂ and bj = 0 for j > 1. Then, we get

Λa,b =
∑

γ∈F∗
2m

(
t∏

i=1

Λ(ai, γci)

)

Λ(γct+1, b1)

=
∑

γ′∈F∗
2m

(
t∏

i=1

Λ(ai, γ
′cic

−1
t+1)

)

Λ(γ′, b1)

=
∑

γ′∈F∗
2m

(
t∏

i=1

Λ(πcic
−1
t+1

(ai), γ′)

)

Λ(γ′, b1)

=
∑

γ′∈F∗
2m

Λ(α̂, γ′)tΛ(γ′, β̂) = B′
t(0) .

– If only (ii) holds, then we choose u = 1 and define a and b by a1 = α̂, ai = 0 for
i > 1, and bj = ϕ−1

ct+jc−1
1

(β̂) for 1 ≤ j ≤ t. Then we get that Λa,b = B′
1(0) �

B Proofs of Propositions 4 and 5

We now prove that for any mapping S = S ′ ◦A where A is an F2-affine permuta-
tion of F2m and S ′ : x �→ xs, both the derivatives of S and its Walsh transform
are multiplicative-invariant.

Proof. From Lemma 1, it is known that

δS
F (a, b) = δS′

F (L(a), b) and WS
F (a, b)2 = WS′

F ((L−1)∗(a), b)2 ,

where L : x �→ A(x) + A(0). Since S ′(x) = xs, we have

δS′
F (a, bc) = #{x ∈ F2m , (x + a)s + xs = bc}

= #{x ∈ F2m ,
(
c−ex + c−ea

)s + (c−ex)s = b} = δS′
F (c−ea, b)

where x �→ xe is the compositional inverse of S ′, i.e., e is the inverse of s
modulo (2m − 1), and

WS′
F (a, bc) =

∑

x∈F2m

(−1)Tr(bcxs+ax) =
∑

x∈F2m

(−1)Tr(bys+ac−ey) = WS′
F (c−ea, b) .
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Therefore, it follows that

δS
F (a, bc) = δS′

F (c−eL(a), b) = δS
F (πc(a), b) with πc(a) = L−1(c−eL(a)) ,

and WS
F (a, bc) = WS′

F (c−e(L−1)∗(a), b)2 = WS
F (ψc(a), b)

with ψc(a) = L∗(c−e(L−1)∗(a)), since (L−1)∗ = (L∗)−1. Clearly, both πc and ψc

are permutations for any nonzero c. �
Now, we prove a generalized version of Prop. 5, which applies to a (possibly)

larger family of mappings named crooked permutations.

Definition 9. [3] A function S from F2m into F2m is said to be crooked if, for
any nonzero α ∈ F2m , Im(DαS) is a linear or affine subspace of codimension 1,
where DαS : x �→ S(x + α) + S(x).

It is known that all crooked permutations are APN and almost bent [3], and
exist for m odd only. Clearly, any quadratic APN permutation is crooked. And
it is highly conjectured that the crooked functions exactly correspond to the
quadratic APN functions. This has been proved in [30] in the case of monomial
functions and in [4] in the case of binomials. Now we can prove the following.

Proposition 9. Let S be a crooked permutation. Then, S has multiplicative-
invariant derivatives and S−1 has a multiplicative-invariant Walsh transform.

Proof. Since S is a permutation, for any nonzero a, DaS cannot vanish implying
that Im(DaS) is an affine hyperplane. Moreover, it is known that the (2m − 1)
affine hyperplanes corresponding to Im(DaS) for all a �= 0 are distinct [13,
Lemma 5]. Therefore, there exists a permutation ϕ of F2m with ϕ(0) = 0 such
that Im(DaS) = F2m \ 〈ϕ(a)〉⊥ for any nonzero a. Moreover, it is known (see
e.g. [8]) that, for u, v ∈ F∗

2m ,

W2
F (u, v) =

∑

a,b∈F2m

(−1)Tr(au+bv)δF (a, b) = 2m +
∑

a,b∈F2m ,a�=0

(−1)Tr(au+bv)δF (a, b).

The differential spectrum of S is determined by ϕ: for any a �= 0, δF (a, b) =
1 − (−1)Tr(ϕ(a)b). Then, for any v �= 0, we get

W2
F (u, v) = 2m +

∑

a,b∈F2m ,a�=0

(−1)Tr(au+bv) −
∑

a,b∈F2m ,a�=0

(−1)Tr(au+bv+ϕ(a)b)

= 2m −
∑

a∈F2m ,a�=0

(−1)Tr(au)

⎛

⎝
∑

b∈F2m

(−1)Tr(b(v+ϕ(a)))

⎞

⎠

= 2m − 2m(−1)Tr(uϕ−1(v))

where the last equality uses the fact that ϕ−1(v) �= 0 when v �= 0. It follows that

W2
F (xy, v) = 2m − 2m(−1)Tr(xyϕ−1(v)) = 2m − 2m(−1)Tr(yϕ−1(πx(v)))

where πx(v) = ϕ(xϕ−1(v)). Moreover, for any nonzero x, πx is a permutation.
�
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Abstract. We provide the first provable-security analysis of the Intel
Secure Key hardware RNG (ISK-RNG), versions of which have appeared
in Intel processors since late 2011. To model the ISK-RNG, we gen-
eralize the PRNG-with-inputs primitive, introduced by Dodis et al. at
CCS’13 for their /dev/[u]random analysis. The concrete security bounds
we uncover tell a mixed story. We find that ISK-RNG lacks backward-
security altogether, and that the forward-security bound for the “truly
random” bits fetched by the RDSEED instruction is potentially worrisome.
On the other hand, we are able to prove stronger forward-security bounds
for the pseudorandom bits fetched by the RDRAND instruction. En route
to these results, our main technical efforts focus on the way in which
ISK-RNG employs CBCMAC as an entropy extractor.

Keywords: Random number generator · Entropy extraction · Provable
security

1 Introduction

In late 2011, Intel began production of Ivy Bridge processors, which introduced
a new pseudorandom number generator (PRNG), fully implemented in hard-
ware. Access to this PRNG is through the RDRAND instruction (pronounced
“read rand”), and benchmarks demonstrate a throughput of over 500 MB/s on
a quad-core Ivy Bridge processor [10]. The forthcoming Broadwell architecture
will support an additional instruction, RDSEED (“read seed”), which delivers true
random bits, as opposed to cryptographically pseudorandom ones. Both RDRAND
and RDSEED fall under the Intel Secure Key umbrella, so we will refer to the new
hardware as the ISK-RNG [11].

The ISK-RNG has received a third-party lab evaluation [8], commissioned
by Intel, but has yet to receive an academic, provable-security treatment along
the lines of that given the /dev/[u]random software RNGs by a line of papers
[1,5,7,13]. We provide such a treatment.

Our abstract model for the ISK-RNG is that of a PRNG-with-input (PWI),
established by Barak and Halevi [1] and extended by Dodis et al. [5]. To better
capture important design features of the ISK-RNG we make several improve-
ments to the PWI abstraction, which have significant knock-on effects for the
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 77–100, 2015.
DOI: 10.1007/978-3-662-46800-5 4
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associated security notions. Our results establish the security of the ISK-RNG
relative to these notions. Our findings are mixed, suggesting that in some cases
RDSEED may not be as secure as one might hope, but with stronger results for
RDRAND.

Fig. 1. Overview of the ISK-RNG

The ISK-RNG architecture. A
detailed description of the ISK-
RNG can be found in Section 3,
but we’ll provide a short sketch
here. At a high-level, the ISK-
RNG consists of four main com-
ponents, as shown in Figure 1. At
the heart is the hardware entropy
source, which uses thermal noise
to generate random bits and then
writes them into a 256-bit raw-
sample buffer. This buffer is sub-
jected to a battery of heuristic
health tests, which try to deter-
mine if the buffer contents are sufficiently random. The raw entropy bits are
not assumed to be uniformly random — they may be biased or correlated. So a
conditioner (i.e. an entropy extractor), repeatedly reads from this buffer, combin-
ing multiple 256-bit samples and compressing them into a single 128-bit string,
hopefully one that is close to uniformly random.

These uniform bit strings then periodically reseed a deterministic PRNG
(based on CTR-AES), providing a high-speed source of pseudorandom bits. Calls
to the RDRAND instruction read from these bits, whereas calls to RDSEED will read
directly from the conditioner output.

1.1 Security Findings for the ISK-RNG

We consider security of the ISK-RNG relative to four PWI-security notions,
adopted (with modifications) from Dodis, Pointcheval, Ruhault, Vergniaud and
Wichs [5] (hereafter DPRVW): resilience, the apparent randomness of RDRAND
and RDSEED outputs; forward security, the apparent randomness of previous
RDRAND and RDSEED outputs once the PWI state is revealed; backward secu-
rity, the apparent randomness of future RDRAND and RDSEED outputs from a
corrupted PWI state; and robustness, the apparent randomness of RDRAND and
RDSEED outputs when state observation and corruption may happen at arbitrary
times.

Using estimates for the quality of the entropy source derived from the findings
of [8], we are able to show the following results (in a random permutation model):

1. As far as the resilience of RDRAND and RDSEED is concerned, RDRAND deliv-
ers pseudorandom bits with a comfortable security margin. On the other
hand, RDSEED delivers truly random bits but with a security margin that



A Provable-Security Analysis of Intel’s Secure Key RNG 79

becomes worrisome if an adversary can see a large number of outputs from
either interface. If he controls an unprivileged process on the same physical
machine, this could happen very quickly.

2. For forward security, RDRAND and RDSEED also provide these respective secu-
rity margins, as long as one is willing to make some reasonable assumptions
about the adversary’s limitations.

3. The ISK-RNG does not provide backward security because the hardware
indefinitely retains stale state when the ISK-RNG is not in active use. How-
ever, we are able to quantify the lifespan of this information when the ISK-
RNG is in active use, thus proving backwards security and a read-only form
of robustness against a class of “slow” adversaries.

Interpretation. In this context, forward security, backward security, and robust-
ness are only relevant to those concerned about attackers who (1) are able to
obtain physical access to the machine and (2) sophisticated enough to read
or tamper with registers directly (the registers in question are not accessible
through software, even by the operating system). Moreover, the window of oppor-
tunity for an attacker trying to compromise forward security (i.e., trying to
reconstruct past random values given current access to the machine) is under a
millisecond, barring pathological failures of the entropy source. Hence we suspect
most practitioners will be concerned only with resilience.

As far as resilience, then, we prove RDRAND to be secure under a reasonable
set of assumptions regarding the quality of the entropy source and a reasonable
but heuristic assumption regarding AES-128: namely that it can be modeled as
a random permutation when used with a specific fixed, publicly known key. We
provide concrete, quantitative analysis in Section 7.3; the results are encouraging.

The situation with RDSEED is more complicated, because the security bounds
become quantitatively quite weak in this context. We believe, but cannot prove,
that this weakness does not correspond to a practical attack. Our suspicion is
that an actual attack would require the adversary to have a precise physical
model of the entropy source (the exact parameters of which appear to change
from chip to chip [8]), and compute, by brute force, the distribution induced
by processing streams from this entropy source using CBC-MAC under the pre-
viously mentioned AES key. Such an attack would clearly be computationally
infeasible as long as the number of possible streams is large, but the relevant por-
tion of the security bound is for computationally unbounded adversaries. (Recall
that RDSEED is designed to provide truly random bits, rather than “merely” cryp-
tographically pseudorandom ones.)

The stronger RDRAND results hold even if an attacker can access both interfaces.

Analyzing the ISK-RNG Entropy Extractor. The core technical results of the
paper are concerned with analyzing the ISK-RNG entropy extractor, which
employs CBC-MAC over AES-128, using the fixed string AES0(1) as the AES
key. Although Intel documents [17] appeal to a CRYPTO’02 paper by Dodis,
Gennaro, H̊astad and Krawcyzk [4] for support, this direct appeal is not well
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founded. There are significant technical obstacles to overcome before these CBC-
MAC results can be applied. For example, because extractor-dependent state
is maintained across extractions (including state revealed to the adversary by
RDSEED), a crucial “seed independence” assumption is violated. The CRI report
[8], on the other hand, ignores the issue entirely by making an implicit assump-
tion that applying CBC-MAC-AES to an arbitrary input with 128 bits of min-
entropy will produce an output close to a uniformly random 128-bit string, an
assumption known to be false with respect to any entropy extractor (not just
CBC-MAC) [15]. We discuss and resolve these issues in Section 4.

1.2 Improvements to the PWI Model

For our abstract model, we take the pseudorandom number generator with input
(PWI) primitive, formalized by DPRVW as a model for /dev/[u]random. At a
high level, a PWI surfaces three algorithms: one to initialize the internal state
of the primitive, one that produces an output for use by calling applications
(updating the state in the process), and one that updates the state as a func-
tion of an externally provided input. Exposing an external input captures the
practical situation in which PRNG outputs may depend upon external sources
of (assumed) entropy.

One contribution of this paper is to generalize the PWI abstraction in ways
that better capture not only the ISK-RNG, but also, we hope, other real-world
PWIs. These include allowances for: non-uniform state, as is common in real-
world PRNGs; realistic modeling of state setup procedures such as those in
ISK-RNG1; multiple external interfaces to the underlying state (e.g. RDRAND
and RDSEED, as well as /dev/[u]random); and blocking behaviors.

To deal with non-uniform state, we introduce an analytical tool called a
masking function. Loosely speaking, a masking function M is a tool for speci-
fying what the “ideal” version M(S) of any given PWI state S would be. This
allows us to give general results about PWI security (e.g. what can be achieved
when the state is ideal), yet admits per-scheme specification of what “ideal”
means. We define masking functions, and incorporate them into the DPRVW’s
security notions in such a way that their results can be quickly lifted to our
setting. Masking functions also allow us to frame an appropriate definition for
secure initialization: i.e.e does the setup procedure produce a state S that is
indistinguishable from M(S)?

2 Preliminaries

Notation. We denote the set of all n-bit strings as {0, 1}n, and the set of all
(finite) binary strings as {0, 1}∗. Given x, y ∈ {0, 1}∗, both xy and x ‖ y denote
their concatenation, and |x| is the length of x. If |x| = |y|, x ⊕ y is the bitwise
XOR of x and y. The symbol ε denotes the empty string. The set Perm (n)
denotes the set of permutations on {0, 1}n.
1 See [6,9] for examples of what can go wrong when state initialization is weak.



A Provable-Security Analysis of Intel’s Secure Key RNG 81

When S is a finite set, we assume that it is equipped with the uniform dis-
tribution unless otherwise specified. For any distribution S, the notation X

$←− S
indicates X is a random variable sampled from S. Similarly, if F is a randomized
algorithm, X

$←− F(x1, . . . , xn) means that X is sampled from the distribution
induced by providing F with the indicated arguments. An adversary A is a ran-
domized algorithm, and we adopt the shorthand A ⇒ y to mean that when its
execution halts, it outputs y. When an algorithm P is provided oracle (black-box,
unit-time) access to an algorithm Q, we write PQ.

Entropy and Sources. If X and X ′ are random variables, their statistical dis-
tance is Δ(X,X ′) = 1

2

∑
x |Pr [ X = x ] − Pr [ X ′ = x ] |, where the sum is over

the union of the supports of X and X ′. The min-entropy of X is H∞ (X) =
−maxx (log Pr [ X = x ]), and the worst-case min-entropy of X given
X ′ is H∞ (X | X ′) = − log (maxx,x′ Pr [ X = x | X ′ = x′ ]) . When X is a ran-
dom variable and E is some event, we denote by X|E the random variable
X conditioned on E ; i.e., for any x in the support of X, Pr [ X|E = x ] =
Pr [ X = x | E ].

An entropy source D is a randomized algorithm that, given a state string
σ ∈ {0, 1}∗, samples a tuple (σ′, I, γ, z) ∈ {0, 1}∗ × {0, 1}p × R≥0 × {0, 1}∗.
Let (σi, Ii, γi, zi)

$←− D(σi−1) be a sequence of samples, where σ0 = ε, and i =
1, . . . , qD for some integer qD. We say that entropy source D is legitimate if
H∞(Ij | (Ii, zi, γi)i�=j) ≥ γj . In this paper, we assume all entropy sources are
legitimate.

In this definition, σ, σ′ ∈ {0, 1}∗ represent the current and new states for D,
respectively. The string I ∈ {0, 1}p is what will be to be fed as input to the
PWI, and should provide fresh entropy. The quantity γ ∈ R≥0 is an estimate for
the amount of entropy contained in I. We note that γ is strictly a convenient
book-keeping device in the PWI model, and is not intended to reflect an actual
output of the entropy source being modeled. Our security notions will formalize
attacker capabilities of interest, but we also allow for side-information (about I)
that an attacker might obtain through means not otherwise explicit in the model
(e.g. timing or power side-channels). This side information will be encoded in
the string z.

Cryptographic Building Blocks. A blockcipher is a function E : {0, 1}κ×{0, 1}n →
{0, 1}n such that for each key K ∈ {0, 1}κ, E(K, ·), written EK(·), is a permuta-
tion on {0, 1}n. Given IV ∈ {0, 1}n, K ∈ {0, 1}κ, and Xi ∈ {0, 1}n for i ∈ [0..ν],
define

CTRIV
K(X0 · · · Xν) = (X0 ⊕ EK(IV)) ‖ · · · ‖ (Xν ⊕ EK(IV + ν)).

(We define the + operator on {0, 1}n as addition modulo 2n on the unsigned
integers encoded by the operands.) Further define

CBCMACIV
K(X0 · · · Xν) = CBCMAC

EK(IV ⊕ X0)
K (X1 · · · Xν),
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Fig. 2. Block diagram for Intel’s RDRAND implementation. The CBCMAC computation
uses AES-128 with the fixed key K′ = AES0(1). The DRBG runs AES-128 in counter
mode to produce {0, 1}128·3 bits of output; the first 256 bits are used to update the
key K and IV; the final 128 bits are sent to the output buffer, which is read by the
RDRAND instruction.

and CBCMACIV
K(ε) = IV. Describing the standard CBCMAC algorithm in this

manner simplifies descriptions of programs that compute CBCMAC online. We
omit an explicit IV from the notation when IV = 0n. In this paper, the implicit
blockcipher E will always be AES-128 (κ = n = 128).

The pseudorandom-permutation (PRP) advantage of an adversary A attack-
ing a blockcipher E : {0, 1}κ × {0, 1}n → {0, 1}n is defined as Advprp

E (A) =
Pr

[
AEK ⇒ 1

] − Pr [ Aπ ⇒ 1 ], with probabilities over the coins of A and the
random variables K

$←− {0, 1}κ and π
$←− Perm (n).

3 The ISK-RNG Architecture

This section describes the design of the ISK-RNG. Unless otherwise noted, this
information comes from the CRI report [8]. The design can be divided roughly
into three phases: entropy generation, entropy extraction, and expansion. Raw
bits from the generation phase are fed into an entropy extractor, which is tasked
with turning biased or correlated bits into uniform random strings. The expan-
sion step uses these strings to seed a deterministic PRNG, which can produce
cryptographically pseudorandom outputs at high speeds.

The design is shown in Figure 2. In this figure, rectangular boxes indicate
values we consider part of the ISK-RNG state, hexagons indicate procedures that
read and modify the state, and the shaded arrows indicate assembly instructions
that allow (unprivileged) processes to read from the indicated buffer.

Entropy Generation, Health Tests, and “Swellness”. The hardware entropy source
(labeled ES) is a dual differential jamb latch with feedback; thermal noise resolves
a latch formed by two cross-coupled inverters, generating a random bit before the
system is reset. Bits from the entropy source arewritten into a 256-bit shift register.

Every 256 writes, the contents of the register are subjected to a series of
health tests. These count how many times certain specified bit strings appear,
and verify that the results are within normal limits. For example, the substring
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010 may occur between 9 and 57 times, inclusive. These substrings and the corre-
sponding numbers of allowable occurrences are intended to catch pathologically
bad failures while keeping the false-positive rate low. (For reference, a uniformly
random 256-bit string would be flagged as unhealthy approximately 1% of the
time.) If the current ES register fails one of the tests, that 256-bit source-sample
is flagged as unhealthy. We refer interested readers to the CRI report [8] for a
more detailed description; for our purposes, it suffices to say there is some fixed
set H ⊆ {0, 1}256 of strings that pass the health tests. The health-history reg-
ister tracks how many of the last 256 samples passed the health test. This is a
first-in first-out buffer, where a 1-bit means that a sample was deemed healthy,
and a 0-bit mean that a sample was deemed unhealthy. The global health of the
ISK-RNG is captured by a property call swellness.

Definition 1 (Swell ISK-RNG). The ISK-RNG is said to be swell if at least
128 of the last 256 samples were healthy, i.e. if the health-history register contains
at least 128 1s. 
�

Whether or not the current sample passes the health test, it is appended to
the Online Self-Tested Entropy (OSTE) queue, and it is the OSTE queue that
provides input to the extraction phase.

Extraction. Strings in the OSTE queue are not assumed to be uniformly random.
Instead, each 256-bit entry is assumed to have a certain amount of min-entropy.
The CBCMAC construction, over AES with key K ′ = AES0(1) [12], is employed
as an entropy extractor, in order to turn strings in the OSTE queue into two
128-bit conditioned entropy (CE) strings. These are held in the CE buffer, which
is initially all zeros, and are used to service RDSEED instructions and to reseed
the DRBG. An important property of the CE buffer is its availability.

Definition 2 (CE buffer availability). The CE buffer is available if (1) the
ISK-RNG is swell, and (2) both 128-bit halves of the CE buffer (CE0 and CE1)
have been updated using m healthy OSTE values since the most recent RDSEED
call and the most recent DRBG reseeding. For Ivy Bridge chips, m = 2; for
Broadwell chips, m = 3 [12]. 
�

When the CE buffer is not available, the hardware will replenish the OSTE
buffers with fresh entropy and feed them into a running CBCMAC calculation
until a sufficient number of healthy samples have been conditioned. So if at some
point CE0 = X and then the CE buffer is used to service a RDSEED instruction
(making the CE buffer unavailable), the hardware will collect entropy strings
I1, I2, I3, . . . ∈ {0, 1}256 and reassign CE0 ← CBCMAC0(XI1I2I3 · · · ) online until
there exist i1 < i2 < · · · < im such that Iij

∈ H for j ∈ [1..m] and the ISK-RNG
is swell. Then the processes will repeat for CE1.

The particulars of the way CBCMAC is used in the ISK-RNG extractor, along
with the notions of swellness and availability, play a large role in Section 4.
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Expansion. To reseed the DRBG, the contents of CE0 and CE1 are used to
generate a key and IV (respectively) for counter mode encryption over AES.
This reseeding process only happens when the CE buffer is available. It takes
the current key and IV, (K, IV), and updates them by computing K ‖ IV ←
CTRIV

K(CE1 ‖ CE2). Initially, K = IV = 0128. However, using CTR with this non-
random key is not a problem as long as the CE buffer is (close to) uniformly
random: since the CE buffer is XORed into the CTR keystream, it can act as a
one-time pad.

ApseudorandomvalueR is generatedbycomputingR‖K‖IV ← CTRIV
K(03·128).

(Note that this process also irreversibly updates K and IV, which helps provide
forward security.) The ISK-RNG writes R to an output buffer, which is read by
RDRAND. This FIFO output buffer [10] can contain up to eight 64-bit values. ISK-
RNG allows a maximum of 511 64-bit values to be generated between reseeding
operations; after this, it will only return 0s and will clear the carry bit to signal an
error.

Setup. When the ISK-RNG powers on, the ISK-RNG performs a series of known-
answer, built-in self-tests. Then the conditioned entropy (CE) buffer is cleared
and the deterministic random bit generator (DRBG) is reseeded four times [12].
Each reseeding operation requires reconditioning the CE buffer until it is avail-
able. Finally, the system populates the eight output buffers using the DRBG.

Standards Compliance. Intel states [14] that ISK-RNG is compliant with NIST’s
SP800-90B & C draft standards. Whereas RDRAND can provide bit strings with
“only” a 128-bit security level (since it uses AES-128 in CTR mode), RDSEED
has no such limitation.

4 Analysis of the ISK-RNG Extractor

As we will see, some of the PWI-security results for the ISK-RNG are not as
strong as one might hope. Much of this is due to weak concrete bounds on its
CBCMAC entropy extractor, which is tasked with turning the presumably biased
and correlated bits from the entropy source into uniformly distributed strings.
Let us explain.

Previous CBC-MAC Results Are Not (directly) Helpful. A paper by Dodis, Gen-
naro, H̊astad, Krawcyzk and Rabin [4] analyzes the security of CBC-MAC as
an entropy extractor, and their results are cited by Intel documents [17] to sup-
port the ISK-RNG design. Because generic PRFs-as-entropy-extractors results
[3] are too weak to be useful, the analysis of [4] takes place in the random per-
mutation model. That is, instead of considering CBC-MAC over a blockcipher
with a random key, they consider CBC-MAC over a random permutation. This
model is a heuristic: even, say, AES equipped with a random key would not be
a random permutation. In fact, CBC-MAC within the ISK-RNG uses AES with
the fixed key K ′ = AES0(1) (on all chips). This fact may strike one as alarming.
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But we believe that a “nothing-up-my-sleeve” value for the extractor seed is a
reasonable choice. (Generating the seed from the entropy source would be highly
suspect from a theoretical perspective, because one requires that the extractor
seed be “independent” of the entropy distribution.)

Anyway, our primary goal here is to identify what we can say about ISK,
even if we’re forced to use a heuristic model. Dodis et al.[4] provide the following
theorem:

Theorem 1 (CBCMAC entropy extractor [4]). Fix positive integers k and L.
Let I ∈ {0, 1}Lk be a random variable, R

$←− {0, 1}k be a uniform random string,
and let π

$←− Perm (k) be a random permutation. Then Δ((π,R), (π,CBCMACπ

(I)) ≤ 1
2

√
2k−H∞(I) + O(L2)

2k .

Unfortunately, one cannot simply apply this theorem to the CBC-MAC-based
extractor used in ISK-RNG, without attending to the following two significant
obstacles:

(1) As we noted in Section 3, the CBCMAC-based extractor uses its own
previous output as the first block of its next input. Consequently, the CBCMAC
inputs are not independent of the seed. This pushes leftover-hash-lemma style
results like Theorem 1 out of scope, and furthermore prevents us from employing
a black-box hybrid argument to lift the results to the multiple-query setting.

(2) The O(L2) term is problematic, contributing a O(L/2k/2) term to bound.2

We note that this is significantly worse than the familiar O(L2/2k) “birthday
bound” — although the two both become vacuous when L ≈ 2k/2, the former vio-
lates a desired security level ε � 1 much sooner (hidden constants being equal).
The weak bound is exacerbated by the fact that L may grow very quickly in the
ISK-RNG during periods of time when the CE buffer is not available.

Analyzing the CBC-MAC Extractor. In this section we present results that allow
us to overcome these hurdles, bringing Theorem 1 into scope. In particular, the
main technical result of this section is the following theorem. Loosely, it says that
we can still obtain a hybrid-like bound, even though a black-box hybrid argument
isn’t possible. Moreover, we can avoid the problem of “runaway” input strings
(resulting in large L) by, in effect, only counting a fixed-length prefix of such
strings.

Theorem 2. Fix positive integers L, k, q and n with q ≤ n. For i ∈
[1..n], let Ii ∈ {0, 1}∗ be random variables with lengths divisible by k,
2 A set of slides published by Intel [17] claims a much stronger result based on The-

orem 1. However, in addition to failing to account for point (1) above, the differ-
ence appears to stem from a mistake in translating notation. Specifically, the above
theorem from [4] writes the second term under the radical as K · ε(L, K), where
ε(L, K) = O(L2/K2) and in our notation K = 2k. The Intel slides, however, appear
to have mistranscribed this term as L ·ε(L, K) (in their notation, L = b and K = 2n).
Since L � K for values of interest, Intel’s claim significantly underestimates the con-
crete security bound.
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and sample Ri
$←− {0, 1}k. Fix π

$←− Perm (k). Define ILi and IRi to be the
unique strings such that

∣
∣ILi

∣
∣ = min {|Ii| , Lk} and Ii = ILi IRi . Let

Ci = CBCMACπ(Ci−1 ‖ Ii), where C0 is a random variable independent
of π and each Ii and Ri. Then Δ((π,C1, . . . , Cq, I>q), (π,R1, . . . , Rq, I>q)) ≤
1
2

∑q
i=1

√
2k−H∞(IL

i | I>i,IR
i ) + O((L+1)2)

2k , where I>m = (Im+1, . . . , In) for inte-
ger m.

The proof is available in the full version of this document [16].
It remains to show that, with high probability, the (potentially) truncated

extractor input contains sufficient min-entropy. Note that making reasonable min-
entropy assumptions regarding the entropy source is not sufficient; for example,
the approximate 1% false-positive rate of the health tests on uniformly random
256-bit strings implies that there are at least 2249 unhealthy strings. Therefore the
entropy source could produce only unhealthy samples, resulting in unbounded L,
and still have high min-entropy. In order to avoid such pathological behavior, we
will later (in Section 7.2) need to introduce additional assumptions regarding the
rate at which the entropy source produces healthy samples. Ultimately, we will
choose L such that we have a high probability of never needing more that L/2
samples, but such that L/2k/2 is small, as this term will dominate our security
bounds.

5 Modeling the ISK-RNG as a PWI

Building upon DPRVW, here we define the syntax of a PWI. We give the syntax
first, and then discuss what it captures, pointing out where our definition differs
from DPRVW.

5.1 The PWI Model

Definition 3 (PWI). Let p, and 
 be non-negative integers, and let
IFace,Seed,State be non-empty sets. A PRNG with input (PWI) with interface
set IFace, seed space Seed, and state space State is a tuple of deterministic
algorithms G = (setup, refresh, next, tick), where

– setup takes no input, and generates an initial PWI state S0 ∈ State. Although
setup itself is deterministic, it may be provided oracle access to an entropy
source D, in which case its output S0 will be a random variable determined
by the coins of D.

– refresh : Seed × State × {0, 1}p → State takes a seed seed ∈ Seed, the current
PWI state S ∈ State, and string I ∈ {0, 1}p as input, and a returns new state.

– next : Seed× IFace×State → State× ({0, 1}� ∪{⊥}) takes a seed, the current
state, and an interface label m ∈ IFace, and returns a new state, and either

-bit output value or a distinguished, non-string symbol ⊥.

– tick : Seed × State → State takes a seed and the current state as input, and
returns a new state. 
�
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We will typically omit explicit mention of the the seed argument to refresh,
next and tick, unless it is needed for clarity.

The setup algorithm captures the initialization of the PWI, in particular its
internal state. Unlike DPRVW, whose syntax requires setup to generate the PWI
seed, we view the seed as something generated externally and provided to the
PWI. Permitting an explicit setup procedure is necessary to correctly model ISK-
RNG and, more generally, allows us to formulate an appropriate security definition
for PWI initialization.

The refresh algorithm captures the incorporation of new entropy into the PWI
state. Like DPRVW, we treat the entropy source as external. This provides a clean
and general way to model the source as untrusted to provide consistent, high-
entropy outputs.

Our next algorithm captures the interface exposed to (potentially adversarial)
parties that request PWI outputs. By embellishing the DPRVW syntax for next
with the interface set interface, we model APIs that expose multiple functionalities
that access PWI state. This is certainly the case for the ISK-RNG, via the RDRAND
and RDSEED instructions, as well as /dev/[u]random. We also model blocking by
letting next return ⊥.

The tick algorithm is entirely new, and requires some explanation. In the secu-
rity notions formalized by DPRVW, the passage of “time” is implicitly driven
by adversarial queries. (This is typical for security notions, in general.) But real
PRNGs like the ISK-RNG may have behaviors that update the state in ways that
are not cleanly captured by an execution model that is driven by entropy-input
events (refresh calls), or output-request events (next calls). The tick algorithm han-
dles this, while allowing our upcoming security notions to retain the tradition of
being driven by adversarial queries: the adversary will be allowed to “query” the
tick oracle, causing one unit of time to pass and state changes to occur.

5.2 Mapping ISK-RNG into the PWI Model

We now turn our attention to mapping the ISK-RNG specification into the PWI
model. Figure 3 summarizes the state that our model tracks. Figure 4 provides
our model for the PWI setup, refresh, next, and tick oracles. Two additional pro-
cedures, DRBG and reseed, are used internally.

6 PWI Security

Having defined the syntax for PWIs, we can now introduce corresponding security
notions. The basic notions are those of DPRVW, with a few notable alterations. To
handle issues of non-uniform state and (more) realistic initialization procedures,
we introduce a new technical tool, masking functions, that allows us to cleanly
address these issues.
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Variable Bits Description

ESSR 256 Entropy source shift register
window 8 Counts new bits in the ESSR
OSTE1 256

}

Online self-tested entropy buffers
OSTE2 256
CE0 128

}

Conditioned entropy buffers
CE1 128
ptr 1 Tracks CE buffer to condition next
health 256 Tracks health of last 256 ES samples
K 128 DRBG key (For AES-CTR)
IV 128 DRBG IV (For AES-CTR)
out1,...,8 512 Eight 64-bit output buffers
outcount ≥ 4 Counts number of full output buffers
count ≥ 9 Counts DRBG calls since reseeding
CEfull 1 Set if CE buffers are available
block 1 Set if reseed has priority over RDSEED

Fig. 3. State variables of the ISK-RNG

6.1 Basic Notions

Here we define four PWI-security notions, in the game-playing framework [2]. In
each there is a (potentially adversarial) entropy source D, and an adversary A.
The latter is provided access to the oracles detailed in Figure 5 (top), and what
distinguishes the four notions are restrictions applied to the queries of the adver-
sary A. In particular, we consider the following games:

Robustness (ROB): no restrictions on queries.
Forward security (FWD): no queries to set-state are allowed; and a single query

to get-state is allowed, and this must be the final query.
Backward security (BWD): no queries to get-state are allowed; a single query

to set-state is allowed, and this must be the first query.
Resilience (RES): no queries to get-state or set-state are allowed.

See DPRVW for additional discussion. We note that all games share com-
mon initialize and finalize procedures, shown in Figure 5 (bottom). Thus, the
robustness-advantage of A in attacking G is defined to be Advrob

G,D(A) =
2 Pr [ ROBG,D(A) = 1 ]−1. The forward security, backward security, and resilience
advantages Advfwd

G,D(A), Advbwd
G,D(A), and Advres

G,D(A) are similarly defined. It is
clear that robustness implies forwards and backwards security, and both of these
independently imply resilience.

We note that, because the PRNG cannot reasonably be expected to produce
random-looking outputs without sufficient entropy or with a known or corrupted
state, the various security experiments track (1) a boolean variable corrupt and
(2) a value γ measuring the total entropy that has been fed into the PRNG since
corrupt was last set. These serve as book-keeping devices to prevent trivial wins.
The corrupt flag is cleared whenever γ exceeds some specified threshold γ∗.
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Oracle setup(ES):

01 for i = 1, 2, 3, 4 do
02 S.CE0 ← CBCMACK′ (S.CE0)
03 while S.ptr = 0 do

04 I
$←− ES

05 S ← refresh(S, I)
06 S.CE1 ← CBCMACK′ (S.CE1)
07 while S.ptr = 1 do

08 I
$←− ES

09 S ← refresh(S, I)
10 S ← reseed(S)
11 for i = 1, 3, 5, 7 do
12 (S, R) ← DRBG(S)
13 S.outi ‖ S.outi+1 ← R
14 S.outcount ← 8
15 return S

Oracle DRBG(S):

16 S.IV ← S.IV + 1
17 R ← CTRV

K(0128)
18 if S.CEfull then
19 S ← reseed(S)
20 else if S.count < 512
21 S.K ‖ S.V ← CTRS.V +1

S.K (0256)
22 S.count ← S.count + 1
23 else
24 return (S, ⊥)
25 return (S, R)

Oracle tick(S):

26 if S.CEfull and S.count > 0 then
27 S ← reseed(S)
28 return S
29 if S.count < 512 then
30 if S.outcount < 8 then
31 S.outcount ← S.outcount + 1
32 (S, R) = DRBG(S)
33 S.outoutcount ← R
34 return S
35 return S

Oracle refresh(S, I):

36 shift(S.ESSR, I)
37 S.window ← S.window + 1 mod 256
38 if S.window = 0 then
39 shift(S.health, isHealthy(S.ESSR))
40 S.OSTE2 ← S.OSTE1
41 S.OSTE1 ← S.ESSR
42 i ← S.ptr
43 Ii

j ← Ii
j ‖ S.OSTE2 // Record-keeping

44 S.CEi ← CBCMAC
S.CEi
K′ (OSTE2)

45 if sum(S.health) ≥ 128 then
46 if isHealthy(OSTE2) then
47 S.samples ← S.samples + 1
48 if S.samples = m then
49 S.samples ← 0
50 if S.ptr = 0 then
51 S.ptr ← 1
52 else
53 S.ptr ← 0; S.CEfull ← 1
54 C0

j ‖ C1
j ← S.CE // Record-keeping

55 j ← j + 1; // Record-keeping
56 return S

Oracle reseed(S):

57 S.K ‖ S.V ← CTRV +1
K (S.CE)

58 S.CE0 ← CBCMACK′ (S.CE0)
59 S.CE1 ← CBCMACK′ (S.CE1)
60 S.count ← 0; S.CEfull ← 0
61 S.ptr ← 0; S.block ← 0
62 return S

Oracle next(interface, S):

63 if interface = RDRAND then
64 if S.outcount = 0 then return (S, ⊥)
65 R ← LSB64(S.out1)
66 for i = 1, . . . , 7 do
67 S.outi ← S.outi+1
68 S.outcount ← S.outcount − 1
69 return (S, R)
70 else if interface = RDSEED
71 if S.CEfull = 0 then
72 return (S, ⊥)
73 if S.block = 1, S.count > 0 then
74 return (S, ⊥)
75 R ← S.CE0 ‖ S.CE1
76 S.CEfull ← 0; S.ptr ← 0
77 S.CE0 ← CBCMACK′ (S.CE0)
78 S.CE1 ← CBCMACK′ (S.CE1)
79 S.block ← 1
80 return (S, R)

Fig. 4. The above oracles describe the behavior of ISK-RNG from within the PWI
model. See Table 3 for a description of the state variables S.∗. All bits are initially zero.
For Ivy Bridge chips, m = 2, and for Broadwell chips m = 3. The key K′ = AES0(1) is
fixed across all chips. The function shift(x, y) sets value of x to the right-most |x| bits
of x ‖ y. Lines marked with a “Record-keeping” comment are there to aid in proofs and
exposition.
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Oracle D-refresh:

(σ, I, γ, z)
$←− D(σ)

S ← refresh(S, I)
c ← c + γ
if c ≥ γ∗ then

corrupt ← false
return (γ, z)

Oracle next-ror(m):

if corrupt then
return ⊥

(S, R0) ← next(m, S)
if R0 = ⊥ then

R1 ← ⊥
else

R1
$←− {0, 1}�

return Rb

Oracle get-next(m):

(S, R) ← next(m, S)
if corrupt then

c ← 0
return R

Oracle wait:

S ← tick(S)
return ε

Oracle get-state:

c ← 0
corrupt ← true
return S

Oracle set-state(S∗):

c ← 0
corrupt ← true
S ← S∗

Procedure initialize:

σ ← 0; seed
$←− Seed; i ← 0

S ← setupES

c ← n; corrupt ← false

b
$←− {0, 1}

return (seed, (γj , zj)
i
j=1)

Oracle ES:

i ← i + 1

(σ, I, γi, zi)
$←− D(σ)

return I

Procedure finalize(b):

if b = b∗ then
return 1

else
return 0

Fig. 5. Top: Oracles for the PWI security games. Bottom: the shared intialize and
finalize procedures for the PWI security games. Recall that the output of initialize is
provided to adversary A as input, and the output of finalize is the output of the game.

6.2 Masking Functions and Updated Security Notions

As noted earlier, the DPRVW security definitions assume the PWI state is initially
uniformly random. However, this does not realistically model the behavior of real-
world PWIs, notably ISK-RNG, which do not attempt to reach a pseudorandom
state; for example, they may maintain counters. (Indeed one can construct PWIs
that would be deemed secure when starting from a uniformly random state, but
that would not be secure in actuality; the reverse is also true. See the full version
of this paper [16] for examples.) Yet, clearly, some portion of the PWI state must
be unpredictable to an attacker, as otherwise one cannot expect PWI outputs to
look random.

To better capture real-world characteristics of PWI state, we introduce the
idea of a masking function. A masking function M over state space State is a
randomized algorithm from State to itself. As an example, if states consist of a
counter c, a fixed identifier id, and a buffer B of (supposedly) entropic bits, then
M(c, id, B) might be defined to return (c, id, B′) where B′ is sampled by M from
some distribution.

A masked state is meant to capture whatever characterizes a “good” state of
a PWI, i.e. after it has accumulated a sufficient amount of externally provided
entropy. Informally, for any state S, we want that (1) a PWI with state M(S)
should produce pseudorandom outputs, and (2) after the PWI has gathered suf-
ficient entropy, its state S should be indistinguishable from M(S).

To the second point, the initial PWI state S0 is of particular importance. In the
following definition, we characterize masking functions M such that the initial S0

and M(S0) are indistinguishable.
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Definition 4 (Honest-initialization masking functions). Let D be an
entropy source, G = (setup, refresh, next) be a PWI with state space State, A
be an adversary, and M : State → State be a masking function. Let (seed, Z)
be the random variable returned by running the initialize() (Figure 5) using G
and D, and let S0 be the state produced by this procedure. Set Advinit

G,D,M (A) =
Pr [ A(S0, seed, Z) ⇒ 1 ] − Pr [ A(M(S0), seed, Z) ⇒ 1 ] . If Advinit

G,D,M (A) ≤ ε for
any adversary A running in time t, then M is a (G,D, t, ε)-honest-initialization
masking function. 
�

Note that the above definition is made with respect to a specific D. The
assumptions required of D (e.g., that it will provide a certain amount of entropy
within a specified number of queries) will depend on the PWI in question, but
should be as weak as possible.

We now define “bootstrapped” versions of the PWI security goals, which
always begin from a masked state. This will allow us to reason about security
when the PWI starts from an “ideal” state, i.e. what we expect after an secure
initialization of the system.

Definition 5 (Bootstrapped security). Let G be a PWI and M be a masking
function. For x ∈ {fwd,bwd, res, rob}, let Advx/M

G,D (A) be defined as Advx
G,D(A),

except with line 02 of the initialize procedure (Fig. 5) changed, to execute instead
S′ $←− setupES;S $←− M(S′). 
�

6.3 PWI-Security Theorems

Bootstrapped security notions are useful, because they allow the analysis to begin
with an idealized state. However, this comes at a cost: we need to ensure that
the masking function is honest in the sense that it accurately reflects the result
of running the setup procedure. The following theorem states the intuitive result
that if the masking function is secure (and honest), then security when the PWI
begins in a masked state M(S) implies security when the PWI begins in state S.
We omit the simple proof, which follows from a standard reduction argument.

Theorem 3. Let G be a PWI, D be an entropy source, and M be a masking func-
tion. Suppose M is a (G,D, t, ε)-honest initialization mask. Then for any x ∈
{fwd,bwd, res, rob} there exists some adversary B(·) such that for any adversary
A, Advx

G,D(A) ≤ Advx/M
G,D (B(A)) + ε. Further, if it takes time t′ to compute M ,

and A makes q queries and runs in time t, then B(A) makes q queries and runs in
time O(t) + t′.

For a second general result, we revisit a nice theorem by DPRVW and adapt
it to our model. The theorem states that if a PWI possesses two weaker security
properties — roughly, the ability to randomize a corrupted state after harvesting
sufficient entropy and the ability to keep its state pseudorandom in the presence of
adversarial entropy — then it is robust. These definitions, however, again assume
that a state “should” appear uniformly random. We present modified definitions
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that instead use masking functions, and prove an analogous theorem. While the
transition involves a couple subtleties — in particular, we require an idempotence
property of the masking function — the proof is essential identical to the one in
[5]; therefore we make an informal statement here and defer the formal treatment
to the full version [16].

Theorem 4 (Informal). Let G be a PWI. Suppose there exists a mask M such
that: (1) When starting from an arbitrary initial state S of the adversary’s choos-
ing, the final PWI state S′ is indistinguishable from M(S′) provided the PWI
obtains sufficient entropy; (2) When starting from an initial state M(S) (for adver-
sarially chosen S), the final PWI state S′ is indistinguishable from M(S′), even if
the adversary controls the intervening entropy input strings; (3) G produces pseu-
dorandom outputs when in a masked state. Then G is robust.

7 Security of the ISK-RNG as a PWI

We are now positioned to analyze the security of ISK-RNG. To begin, we demon-
strate some simple attacks that violate both forwards and backwards security
(hence robustness, too). Next, we show that by placing a few additional restric-
tions on adversaries — restrictions that are well-motivated by the hardware — we
can recover forward security. As we said in our introduction, the concrete secu-
rity bounds we prove are not as strong as one might hope, due to some limita-
tions of CBCMAC’s effectiveness as an entropy extractor in the ISK-RNG. How-
ever, we are able to prove somewhat better results when legitimate parties use
only the RDRAND interface, even when attackers also have access to RDSEED. This
means that, e.g., a hostile process can’t use its access to RDSEED to learn informa-
tion about RDRAND return values used by a would-be victim; the result also implies
stronger results for Ivy Bridge chips, where RDSEED is not available.

For the remainder of Section 7, we fix the following constants: p = 1 is the
length of each entropy input; k = 128 is the length of each CBCMAC input block
(since ISK-RNG uses AES); IFace = {RDSEED, RDRAND} are the ISK-RNG inter-
faces; m = 2, 3 is the number of healthy samples required by Ivy Bridge and Broad-
well, respectively, before the CE buffer is available; and 
 = 64 is the length of the
PWI outputs. Although RDRAND also allows programs to request 16 or 32 bits, this
is implemented by fetching then truncating a 64-bit output, and similarly with
RDSEED [12]. Therefore we assume without loss of generality that the adversary
only requests the full 64 bits.

Recall that in the PWI model, the entropy source leaks information γ about
each input string. We assume that every 256th such string (each one a single bit,
p = 1) leaks the health of the corresponding 256 bit string (as determined by the
online health test). Hence the adversary will always know the health of the OSTE
buffers and the value of the health buffer. This is not simply a convenience: because
the CE buffer is not available until it has been reconditioned with m healthy sam-
ples, RDSEED may leak health information through a timing side channel.

When the CE buffer is available, it can be used to reseed the DRBG or to ser-
vice a RDSEED instruction. Priority is given to whichever was not last used [12].
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However, because the PWI model cannot describe pending RDSEED instructions,
the adversary must explicitly use itswait oracle to yield when it has priority: await
invocation uses the CE to reseed, while a RDSEED invocation returns its contents.

The adversary’s wait oracle also allows us to account for the fact that updat-
ing the eight 64-bit output buffers is not an atomic operation. By using the tick
function (invoked by wait) to only fill one at a time, we conservatively allow the
adversary to control if a reseeding operation intervenes. Note that tick will reseed
rather than fill an output buffer if reseeding is desired (S.count > 0) and possible
(S.CEfull = 1). This reflects the priorities of the hardware [12].

In order to save power, the entropy source goes to sleep if all the output buffers
are full, the CE buffer is available, and no RDRAND instructions have been processed
since the last reseed [12]. The PWI model, however, requires that we continue to
provide D-refresh access to the adversary. Our decision to leak health information
to the adversary allows us to avoid any problems here: the adversary knows when
the entropy source sleeps, so we can restrict the adversary to not make D-refresh
calls when it does.

To make this power-saving hardware constraint “work” with the PWI model,
we assume that each healthy 256-bit block produced by the entropy source con-
tains at least γ bits of min-entropy. Formally, define (σi, bi, γi, zi) = D(σi−1)
for i ≥ 1 (where σ0 = ε), and let Ii = b256ib256i+1 · · · b256i+255. We assume
H∞ (Ii | (σj , Ij , γj , zj)j �=i, Ii ∈ H) ≥ γ, for some γ > 0, and require that
∑256i+255

j=256i γi ≥ γ whenever Ii ∈ H. We set γ∗ = mγ to demand, in effect, that
ISK-RNG delivers on its implicit promise that m healthy entropy samples are suf-
ficient. At the end of this section, we will draw from the CRI report’s analysis to
find reasonable estimates for γ and discuss the implications.

7.1 Negative Results

We begin with some quick negative results, showing that the ISK-RNG achieves
neither forward nor backwards security. This immediately rules out robustness,
too. We again emphasize that these negative results will be followed by positive
results for realistic classes of restricted adversaries; we present them primarily to
motivate the coming restrictions.

Theorem 5 (ISK-RNG lacks forward security). There exists an adversary
A making one next-ror query and one get-state query such that for any entropy
source D, Advfwd

ISK,D(A) = 1 − 2−128.

Theorem 6 (ISK-RNG lacks backward security). There exists an adversary
A making one next-ror query and one set-state query such that for any entropy
source D, Advbwd

ISK,D(A) = 1 − 2−128.

In the case of backwards security, the adversary sets some initial state S with
S.samples = 0, makes a sequence of D-refresh calls to clear the corrupt flag (which,
by our previously state assumptions, will happen as soon as the CE buffer becomes
available), and finally assigns X ← next-ror(RDRAND). The adversary then checks if
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X = S.out1, and outputs 0 if this is the case and 1 otherwise. For forward security,
the adversary assigns X ← next-ror(RDSEED), then learns the resulting state S
using get-state(). If X = AES−1

0 (S.CE0) ‖ AES−1
0 (S.CE1), the adversary outputs

0; otherwise, the it outputs 1. (Here, 0 = 0128.)
However, these results are very conservative. In the case of forward security,

the hardware will quickly recondition the CE buffer and refill the output buffers,
effectively erasing all state that could be used to compute previous outputs. Back-
wards security is more complicated because not only do future outputs persist in
the output buffer indefinitely, but future DRBG keys are leaked via the ESSR,
OSTE, and CE buffers. Once the output buffers are flushed, though, these other
buffers will quickly be overwritten with fresh entropy.

7.2 Positive Results

We now turn our attention to restricted, but still conservative, classes of adversary
in order to produce positive results.

Additional assumptions. We further assume that in the forward-security game,
adversaries do not make their get-state query until they have allowed the output
buffers to be refilled. This assumption is motivated by the speed with which the
hardware will automatically accomplish this: at the reported RDRAND throughput
of 500 MB/s, all eight 64-bit buffers can be refilled around 8 million times per
second. Formally:

Definition 6 (Delayed adversaries). An adversary A attacking ISK-RNG in
the forward-security game is delayed if after making its last get-next and next-ror
queries, A calls D-refresh until the CE buffer is available, then calls wait nine times
before making its get-state query. 
�
This will trigger a reseed and then refill any empty output buffers.

Moreover, we will assume there is some positive probability β such that each
256-bit block of bits from the entropy source is healthy with probability at least
β. Formally (recall that H ⊆ {0, 1}256 is the set of strings deemed healthy by
ISK-RNG’s online health tests):

Definition 7 (β-healthy). Let D be an entropy source and fix β > 0. Let
H ⊆ {0, 1}256 be the set of strings deemed healthy by the ISK-RNG. For i =
1, 2, 3, . . . define (σi, bi, γi, zi) = D(σi−1) (where σ0 = ε), and for j = 0, 1, 2, . . .,
define Bj = b256j ‖ b256j+1 ‖ · · · ‖ b256j+255. Let Hj = 1 if Bj ∈ H, and set
Hj = 0, otherwise. Then D is β-healthy if for all such j and all H ∈ {0, 1}j−1,
Pr [ Bj ∈ H | (H�)�<j = H ] ≥ β. 
�
So for any positive integers 
 and Lm, we can upper bound the
probability that the sequence (Bi)�+Lm−1

i=� contains fewer than m healthy values
using: Pr [ |{j : Bj ∈ H, 
 ≤ j < 
 + Lm}| < m ] ≤ ∑m−1

i=0

(
Lm

i

)
βi(1 − β)Lm−i.
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k CBCMAC blocksize (128 bits)
m Number of “healthy” 2k-bit strings that need to be conditioned before the CE

buffer becomes available (m = 2, 3 for Ivy Bridge and Broadwell chips, respec-
tively).

Lm Parameter we can freely choose to keep both ε̂(Lm) and ε(Lm) small.
γ An assumed lower bound on the conditional min-entropy of healthy strings.

Fig. 6. Summary of values used for theorem statements

Remark 1. Our goal is to identify under what reasonable assumptions ISK-RNG
could be deemed secure, and, as we argued at the end of Section 4, this requires
making an assumption about the entropy source’s ability to produce “healthy”
samples (amin-entropy assumption is tooweak).We settled on the aboveβ-healthy
assumption because it is simple and fairly broad: we do not assume the probabili-
ties of samples being healthy are constant or even independent, just that the condi-
tional probabilities don’t dip below the β threshold. Moreover, we later show that
the “unhealthy sample rate” could easily be fifty times the ideal 1% false-positive
base rate without significantly damaging our bounds. Finally, even the β-healthy
assumption is more than we need. We require an upperbound on the probability on
the left-hand side of the above equation, and the β-healthy assumption provides a
natural, concrete way to think about this probability.

Rigorously testing the β-healthy assumptiton without access to the entropy
source is problematic. That being said, barring such access, we doubt it would be
possible to do significantly better.

With these assumptions, we are ready to continue on to our positive results.
Our first step is to define an appropriate masking function that describes an “ideal”
state, and then to prove that setup creates such a state. This lets later proofs sim-
ply assume we begin in an idealized state (see Theorem 3).

ISK-RNG masking function. Fix the masking function M : {0, 1}n → {0, 1}n

that on input S, overwrites S.CE, S.K, S.IV, and S.out1,...,8 with independent,
uniformly random strings of the appropriate lengths, leaves all other portions of
the state untouched, and returns the result (refer back to Fig. 3 for a listing of the
components of the ISK-RNG state S). This is the ISK-RNG masking function.

Recall the results of Theorem 2. For convenience, we define ε(Lm) =
O(Lm + 1)/2k/2 and ε̂(Lm) =

∑m−1
i=0

(
Lm

i

)
βi(1 − β)Lm−i, where ε(Lm) is

from Theorem 2 and ε̂(Lm) is the above bound on the probability of obtaining
fewer than m healthy samples from a β-healthy entropy source within Lm trials.
Our theorem statements refer to various previously defined values, summarized in
Figure 6.

The following lemma says that if AES is a secure PRP (against adversaries
making three queries) and each healthy sample from the entropy source has suf-
ficiently large min-entropy, then the ISK-RNG masking function is honest. That
is, that the ISK-RNG setup procedure successfully places the hardware in a state
where (we will show) it can begin producing pseudorandom outputs.
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Lemma 1 (ISK-RNG masking function is honest). Fix positive integers k
and m, and fix 0 < β ≤ 1. Let Lm be a positive integer. Let M be the ISK-RNG
masking function. Let D be a β-healthy entropy source. Then for any adversary A,
there exists an adversary B running in the same time and making three queries such
that Advinit

ISK,D,M (A) ≤ 2(k−mγ)/2+2 + 4ε(Lm) + 8ε̂(Lm) + 5
(
Advprp

AES(B) + 3
2k

)
.

The proof is deferred to the full version of this paper [16]. Using reasonable
estimates for the big-O constant and γ (discussed in Section 7.3) provides us with
an upper bound of roughly 2−60 for the first three terms of the security bound for
both m = 2, 3.

Remark 2. The PRP term may be problematic if one takes the view that RDSEED
should offer information-theoretic security. That is, Lemma 2 says that the ISK-
RNG initialization procedure yields state — which includes the CE buffers— that
is only computationally indistinguishable from “ideal”. However, we observe that
if one adjusts the masking function to leave the output buffers unchanged, and
demands a post-setup reconditioning (which the hardware endeavors to provide,
anyway), one could indeed use the result to prove information-theoretic RDSEED
security. However, this would be at the expense of not being able to prove security
of the RDRAND interface, a task which necessarily requires computational
assumptions.

Forward Security. Our exploration of forward security proceeds in two steps. To
begin, we introduce a new game, M -RDRAND, which differs from M -FWD in that
the next-ror oracle always returns the “real” value R0 when queried on the
RDSEEDinterface, but behaves normally during queries to the RDRAND interface.
Define

Advfwd−RDRAND/M
G,D (A) = 2Pr [ M -RDRAND(A) ⇒ 1 ] − 1.

Proving the security of this game is not only a useful intermediate step in proving
the security of M -FWD, but also can be interpreted as measuring the strength of
RDRAND return values when an adversary also has access to the RDSEED instruction
(which can be used to learn information about the ISK-RNG state, but that we do
not require to return pseudorandom values). This distinction is valuable, because
the concrete bounds on the M -FWD experiment are not as strong as one would
hope.

Theorem 7 (M -RDRAND). Let A be a delayed adversary making q queries to
RDRAND and running in time t. Then there exists an adversary B making three
queries and running in time O(t) such that Advfwd−RDRAND/M

ISK,D (A) ≤ 2(q +
4)

(
Advprp

AES(B) + 3
2k

)
.

The proof appears in the full version [16]. Barring an efficient attack on AES (that
only uses three queries!) this bound is quite strong. If q were to grow quite large,
say on the order of q ≈ 280, then the bound might begin to approach 2−40, which
seems a reasonable safety margin. However, even at the reported rate of around
500 MB/s, ISK-RNG would take over 70 years to reach this point. Moreover, the
hybrid factor of q is likely a conservative artifact of the proof.
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Note, however, that this bound applies to ISK-RNG when starting in an “ideal”
masked state; one needs to add in the bound from Lemma 1 to account for initial-
ization. As we mentioned earlier, reasonable estimates for the big-O constant and
γ (see Section 7.3) place this term at roughly 2−60.

We now proceed to the “full” forward-security result, where both the RDRAND
and the RDSEED interfaces are required to produce indistinguishable-from-random
outputs. Since RDSEED reads directly from the CE buffer, this bound relies more
heavily on the entropy source and CBCMAC extractor (and less on the computa-
tional security of AES). Again, see the full version [16] for a proof.

Theorem 8 (ISK-RNG’s masked forward security). Fix a positive integers
k and m, and fix 0 < β ≤ 1. Let Lm be a positive integer. Let A be a delayed
adversary making a combined q queries to get-next and next-ror. Then if D is β-
healthy, there exists some adversary B making three queries and running in the
same time as A such that

Advfwd/M
ISK,D (A) ≤ (q + 1)

(
2(k−mγ)/2 + ε(Lm) + 2ε̂(Lm)

)

+ 2(q + 4)
(
Advprp

AES(B) +
3
2k

)
.

Corollary 1. Let A be a delayed adversary making a combined q queries to its
get-next and next-ror oracles. If D is β-healthy, then there exists and adversary B
making three queries and running in the same time as A such that

Advfwd
ISK,D(A) ≤ (q + 5)

(
2(k−mγ)/2 + ε(Lm) + 2ε̂(Lm)

)

+ (2q + 13)
(
Advprp

AES(B) +
3
2k

)
,

where the remaining quantities are defined as in Theorem 8.

The corollary follows from applying Theorem 3 to Theorem 8 and Lemma 1.
We defer our discussion of this bound to Section 7.3. First, we briefly turn our
attention to the questions of backwards security and robustness.

Backwards security and Robustness. The issue with obtaining backwards secu-
rity (and hence robustness) is that future outputs can linger in the output buffers
indefinitely: the hardware will shutdown the entropy source after all the buffers
are full and the CE buffer is available. Hence, state remains compromised until
fresh entropy filters through the ESSR → OSTE1 → OSTE2 → CE buffers and is
used to reseed the DRBG, without first being siphoned off by RDSEED.

Consider the worst-case scenario for Ivy Bridge chips, where only the RDRAND
interface is available. Following a state compromise, the next eight outputs are
revealed by the output buffers, the next 511 may be computed using the compro-
mised DRBG seed, the next 511 may be computed using a DRBG seed determined
by the compromised CE buffer, and the next 511 may be computed using a DRBG
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key determined by the compromised OSTE and ESSR buffers. This amounts to
slightly more than 12 KB of outputs that an adversary could potentially predict.

However, we show in the full version [16] that if one restricts the model to
“read-only” adversaries (by denying adversaries access to set-state but permitting
access to get-state) and one discounts wins based on the above attacks (by denying
adversaries access to next-ror until after the “corrupted” values have already been
replaced) then ISK-RNG is secure. The concrete bounds we obtain are essentially
identical to those provided by Theorems 7 and 8, depending on whether or not
one requires the RDSEED interface to be secure. See the appendix for further dis-
cussion of how these restrictions can be interpreted along with a formal theorem
statement and proof.

7.3 Discussion of Results

Let us examine the bound of Corollary 1 in detail. We specialize to the parameters
used by Intel: k = 128 (a consequence of using AES), m = 2 for Ivy Bridge chips,
and m = 3 for Broadwell chips.

To estimate γ, we turn to the CRI report [8]. Hamburg, Kocher, and Marson
subjected raw entropy source bits (using data provided by Intel) to a battery of
statistical tests. Using a Markov model with 12 bits of state, they estimate the
entropy source produces approximately 0.65 bits of min-entropy per bit of output.
However, this was an average (some states of the Markov model resulted in more
predictable bits), and a 12-bit state, though perhaps necessary to collect enough
samples for a meaningful empirical analysis, is not enough for our purposes. There-
fore let us suppose a more conservative rate of 0.5, leading to γ = 128.

This sets the (q +5)2(k−mγ)/2 term of our bound to (q +5)2−64 for Ivy Bridge
(where m = 2) and (q + 5)2−128 for Broadwell (where m = 3). The latter bound
is quite strong, but, given how quickly q can grow, the former may be worrisome
if one wishes to maintain strong security guarantees (e.g., one wishes to cap an
adversary’s advantage at 2−40). But this is not the dominate term.

We next consider the term (q+5)(ε(Lm)+2ε̂(Lm)). If we set the big-O constant
of ε to c (so ε(Lm) = cL/264) then we can choose Lm to optimize this expression.
Taking β = 1/2, c =

√
10, which we believe to be conservative,3 gives an upper

bound of (q +5)2−56; a more generous β = 0.99, c = 1 improves the upper bound
to about (q + 5)2−60. (These bounds are accurate for both m = 2 and m = 3,
although the corresponding values for Lm differ considerably.)

At this point, limiting an adversary’s advantage to 2−40 is difficult — an adver-
sarial process gathering random bits at the benchmarked rate of 500 MB/s could
issue the maximum allowable number of queries in under one millisecond. Or at
least, this is the case if we demand that RDSEED produces uniform random out-
puts. On the other hand, if one only needs RDRAND to be secure, then Theorem 7
suggests that limiting an adversary’s advantage to 2−40 is entirely reasonable; in
3 An author of [4] assures us that the asymptotic constant is “certainly less than 10”

(and our c is the square root of this constant). A perfect entropy source would give
β = 0.99 since the health tests have a 0.01 false-positive rate.
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this setting, we only pick up a single 4(ε(Lm)+2ε̂(Lm)) term even after moving to
the unmasked forward-security setting, with no troublesome multiplicative factor
of q.

The remaining term, (2q +13)(Advprp
AES(B)+3/2128), is likely to be negligible

(recall that B is permitted only three queries).
Our analysis does not point to any obvious, practical attacks (aside from the

trivial ones that exploit the output buffers, though it seems a stretch to deem
those practical). However, it exposes the CBCMAC extraction process as the likely
weakest link, and quantifies the extent of that weakness. An actual attack would
need to exploit how the specific output distribution of the entropy source interacts
with CBCMAC under the fixed key K ′.

7.4 Discussion of the Attack Model

The DPRVW syntax and security notions, which we take as our starting point,
assume a strongly adversarial operating environment. They treat the entropy
source as adversarial (although not pathologically bad), and allow attackers to
observe, even corrupt, the full internal state of the PWI. One might argue that
these choices are inappropriate in the case of ISK-RNG. After all, the entire RNG
is implemented in 22-32nm hardware, so direct observation of the internal state
should require the use of expensive and highly technical equipment, e.g. a state of
the art scanning/tunnelling electron microscope.

We are sympathetic to this argument, but still find value in adopting the strong
attack model. Even if the entropy source is beyond attacker influence, treating it as
adversarial can bee seen as a mathematical tool for minimizing the assumptions we
make regarding its behavior. Moreover, the model allows us to explore the limits of
ISK-RNG’s security, providing analysis of less pessimistic settings (i.e. resilience
security) as a byproduct.
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Abstract. We provide a formal treatment of backdoored pseudorandom
generators (PRGs). Here a saboteur chooses a PRG instance for which
she knows a trapdoor that allows prediction of future (and possibly past)
generator outputs. This topic was formally studied by Vazirani and Vazi-
rani, but only in a limited form and not in the context of subverting cryp-
tographic protocols. The latter has become increasingly important due
to revelations about NIST’s backdoored Dual EC PRG and new results
about its practical exploitability using a trapdoor.

We show that backdoored PRGs are equivalent to public-key encryp-
tion schemes with pseudorandom ciphertexts. We use this equivalence to
build backdoored PRGs that avoid a well known drawback of the Dual
EC PRG, namely biases in outputs that an attacker can exploit without
the trapdoor. Our results also yield a number of new constructions and
an explanatory framework for why there are no reported observations in
the wild of backdoored PRGs using only symmetric primitives.

We also investigate folklore suggestions for countermeasures to back-
doored PRGs, which we call immunizers. We show that simply hash-
ing PRG outputs is not an effective immunizer against an attacker that
knows the hash function in use. Salting the hash, however, does yield a
secure immunizer, a fact we prove using a surprisingly subtle proof in
the random oracle model. We also give a proof in the standard model
under the assumption that the hash function is a universal computational
extractor (a recent notion introduced by Bellare, Tung, and Keelveedhi).

1 Introduction

Pseudorandom number generators (PRGs) stretch a short, uniform bit string to
a larger sequence of pseudorandom bits. Beyond being a foundational primitive
in cryptography, they are used widely in practice within applications requiring
relatively large amounts of cryptographic randomness. Seed the PRG via the

c© International Association for Cryptologic Research 2015
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output of some (more expensive to use) source of randomness, such as a system
random number generator, and then use it to efficiently generate effectively
unbounded number of pseudorandom bits for the application. Unfortunately, an
adversary that can distinguish such bits from uniform or, worse yet, outright
predict the outputs of a PRG, almost invariably compromises security of higher
level applications. This fragility in the face of poor pseudorandom sources is
borne out by a long history of vulnerabilities [7,8,14,16,17,22,24,33].

Perhaps it is no coincidence, then, that PRGs have also been a target for
backdoors. As far back as 1983, Vazirani and Vazirani [30,31] introduce the
notion of trapdoored PRGs and show the Blum-Blum-Shub PRG is one [10].
Their purpose was not for sabotaging systems, however, but instead they used
the property constructively in a higher level protocol. The best known example
of potential sabotage is the backdoored NIST Dual EC PRG [23]. It is parame-
terized by two elliptic curve points; call them P and Q. The entity that selects
these points can trivially know d = dlogQ P , and armed with d any attacker can
from an output of the PRG predict all future outputs. This algorithm and the
proposed use of it as a way of performing key escrow was detailed at length in a
patent by Brown and Vanstone [11]. The possibility of the Dual EC PRG having
been standardized so as to include a backdoor was first discussed publicly by
Shumow and Ferguson [27]. More recent are allegations that the United States
government did in fact retain trapdoor information for the P and Q constants
mandated by the NIST standard. The practical implications of this backdoor,
should those constants be available, were recently explored experimentally by
Checkoway et al. [13]: they quantified how saboteurs might decrypt TLS ses-
sions using the trapdoor information and sufficient computational resources.

Given the importance of backdoored PRGs (and protecting against them),
we find it striking that there has been, thus far, no formal treatment of the topic
of maliciously backdoored PRGs. We rectify this, giving appropriate notions for
backdoored PRGs (building off of [30]) that not only capture Dual EC, but
allow us to explore other possible avenues by which a backdoored PRG might be
designed, the relationships between this primitive and others, and the efficacy
of potential countermeasures against backdoors. We provide an overview of each
set of contributions in turn.

Backdoored PRGs. We focus on families of PRGs, meaning that one assumes a
parameter generation algorithm that outputs a public set of parameters that we
will call, for reasons that will become clear shortly, a public key. A generation
algorithm takes a public key, the current state of the generator, and yields a
(hopefully) pseudorandom output, as well as a new state. This is standard. A
backdoored PRG, on the other hand, has a parameter generation algorithm
that additionally outputs a trapdoor value that we will also call a secret key.
A backdoored PRG should provide, to any party that has just the public key,
a sequence of bits that are indistinguishable from random. To a party with
the secret key these bits may be easily distinguishable or, better yet from the
attacker’s perspective, predictable with some reasonable success probability.



A Formal Treatment of Backdoored Pseudorandom Generators 103

As an example, the generation algorithm for backdoored Dual EC picks a
fixed group element Q, a random exponent d, and outputs as public key the
pair P = Qd and Q. The secret key is d. (We use multiplicative notation for
simplicity.) Generation works by taking as input an initial, random state s, and
then computing s′ = P s as the next state. An output is computed as all but the
last 16 bits of Qs′

. (We ignore here for simplicity the possible use of additional
input.) An attacker that knows d can guess the unknown 16 bits of Qs′

and
compute P s′

, the value which defines the next output as well as all future states.
In practice applications allow the attacker to check guesses against future PRG
outputs, allowing exact discovery of the future state (c.f., [13]).

The Dual EC PRG does not provide outputs that are provably indistinguish-
able from random bits, and in fact some analysis has shown that despite dropping
the low 16 bits, abusable biases remain [25]. A natural question is whether one
can build a similarly backdoored PRG but which is provably secure as a PRG?

We answer this in the positive. To do so, we first show a more general result:
the equivalence of pseudorandom public-key encryption (PKE) and backdoored
PRGs whose outputs are pseudorandom (to those without the trapdoor). Pseu-
dorandom PKE schemes have ciphertexts that are indistinguishable from random
bits. Constructions from elliptic curves include Möller’s [21] and the more recent
Elligator proposal [9] and its variants [2,29]. Another approach to achieve pseu-
dorandom bits is via public-key steganography [3,12,32,36]. We give a black-box
construction of backdoored PRGs from any pseudorandom PKE. To complete
the equivalence we show how any secure backdoored PRG can be used to build
pseudorandom PKE scheme. The latter requires using an amplification result
due to Holenstein [18].

We also show how a saboteur can get by with key encapsulation mechanisms
that have pseudorandom ciphertexts (which are simpler than regular PKE).
A KEM encapsulate algorithm takes as input randomness and a public key,
and outputs a ciphertext and a one-time-use secret key. We use this algorithm
directly as a generator for a backdoored PRG: the ciphertext is the output and
the session key is the next state. The secret key for decapsulation reveals the
next state. Seen in this light, the Dual EC PRG is, modulo the bit truncations,
an instantiation of our generic KEM construction using the ElGamal KEM.

The types of backdoored PRGs discussed thus far only allow use of a trapdoor
to predict future states. We formalize another type of backdoored PRG which
requires the attacker to be able to determine any output (as chosen at random
from a sequence of outputs) using another output (again chosen at random from
the same sequence). Such “random access” could be useful to attackers that want
to predict previous outputs from future ones, for example.

Immunization countermeasures. So far we have formalized the problem and dis-
cussed improved backdoored PRGs. We now turn to countermeasures, a topic of
interest given the reduced trust in PRGs engendered by the possibility of back-
dooring. While the best countermeasure would be to use only trusted PRGs,
this may not be possible in all circumstances. For example, existing proprietary
software or hardware modules may not be easily changed, or PRG choices may
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be mandated by standards, as in the case of FIPS. Another oft-suggested route,
therefore, is to efficiently post-process the output of a PRG in order to pre-
vent exploitation of the backdoor. We call such a post-processing strategy an
immunizer.

A clear candidate for an immunizer is a cryptographic hash function, such as
SHA-256 (or SHA-3). A natural assumption is that hashing the output of a PRG
will provide security even when the attacker knows the trapdoor, as the hash will
hide the data the attacker might use to break PRG security. (This assumption
presumes that SHA-256 is itself not backdoored; we have no evidence otherwise,
although see [1].) Another, similar idea is to truncate a large number of the
output bits.

We show that successful immunization is, perhaps surprisingly, more subtle
than näıve approaches like this would suggest. We show that, a saboteur that
knows the immunizer strategy ahead of time can build a backdoored PRG that
bypasses the immunizer. We refer to this setting as the public immunizer security
model, as both the PRG designer and the backdoor exploiter know the exact
immunizer function. We show that for any such immunizer, the attacker can leak
secret state bit-by-bit. Hence, this is true even when hashing and truncating, and
even when modeling the hash function as a random oracle (RO).

This observation suggests that a the designer of a secure PRG should not
have exact knowledge of the immunizer. We introduce two further security mod-
els for immunizers. In the semi-private model, the immunizer can use randomness
unknown to the PRG designer, but which is revealed to the backdoor exploiter.
In the private model, the randomness is never revealed to the saboteur. Con-
structing provably strong immunizers is straightforward in this last model, but
not necessarily practical ones.

For semi-private immunizers, one can prevent basic immunizer-bypassing
attacks against hashing (such as we describe below) by using the immunizer’s
randomness as a salt for the hash. While this immunization strategy thwarts such
attacks, proving that it is secure — meaning that its outputs are provably indis-
tinguishable from random bits even for an attacker that has the trapdoor secret
of the original backdoored RNG and the immunization salt — is surprisingly
tricky. One would like to argue that since the PRG must be indistinguishable
from random to attackers without the secret trapdoor, then they must have high
entropy, and hence hashing with a salt can extract uniform bits from these unpre-
dictable outputs. However, the distinguisher here does know the trapdoor, and
thus we cannot directly use the assumed backdoored PRG’s security against
distinguishers who do not know the trapdoor. Giving an analysis in the RO
model (ROM), we overcome this hurdle by exploiting the fact that, to achieve
standard PRG security (no trapdoor available) across multiple invocations with
fresh seeds, the backdoored PRG must have low collision probability of outputs.
We can in turn use the collision probability as a bound on the predictability of
outputs by an adversary, and thereby prove the security of the hashed outputs.
We also extend this result to work in the standard model assuming only that
the hash function is a universal computational extractor (UCE) [4].
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Further related work. As already mentioned, Vazirani and Vazirani [30,31] intro-
duce the notion of trapdoored generators and use them constructively in protocol
design. We build on their notion, but require stronger security in normal opera-
tion (indistinguishability from random bits). We also generalize to other trapdoor
exploitation models, and study broader connections and countermeasures. Their
trapdoor PRG using Blum-Blum-Shub can be recast to work as a backdoored
PRG using our KEM-style framework (the generated parity bits being the next
state and the final squaring of the seed being the generator output). This app-
roach does produce an unbounded number of bits, however, as no further bits
can be produced once the final squaring is output.

Young and Yung studied what they called kleptography: subversion of cryp-
tosystems by modifying encryption algorithms in order to leak information sub-
liminally [34–36]. Juels and Guajardo [20] propose an immunization scheme for
kleptographic key-generation protocols that involves publicly-verifiable injection
of private randomness by a trusted entity. More recent work by Bellare, Paterson,
and Rogaway [5] treats a special case of Young and Yung’s setting for symmet-
ric encryption. We treat a different case, that of PRGs, that has not yet been
extensively treated (but our general setting is the same).

Goh et al. [15] investigate how to modify TLS or SSH implementations in
order to leak session keys to network attackers that know a trapdoor. One could
use a backdoored PRG to accomplish this; indeed this was seemingly the intent
behind use of Dual EC in TLS [13]. However, their work does not try to subvert
PRGs.

Some of our results, in particular the backdoored PRG that foils public immu-
nizers, use channels that can be viewed as subliminal in the sense introduced
by Simmons [28]. Our technique is also reminiscent of the one used to build
secret-key steganography [19].

2 Models and Definitions

Notation. We denote the set of all binary strings of length n by {0, 1}n, and the
set of all binary strings {0, 1}∗ = ∪∞

i=0{0, 1}i. We denote the concatenation of
two bit strings s1 and s2 by s1‖s2. We use lsb and lsb2 to mean the last bit and
the last two bits of a bit string, respectively. We denote by R�1 and R�2 the
bit strings obtained by one and two right shifts of R, respectively.

An algorithm is a function mapping inputs from some domain to outputs
in some range. For non-empty sets X ,Y,Z, we denote the composition of algo-
rithms F: X → Y and G: Y → Z by F◦G, i.e. (F◦G)(s) = F(G(s)). A random-
ized algorithm is an algorithm with a designated bit-string input (always the
last) called the coins. We write F(x; r) to denote the output resulting from run-
ning F on input x and coins r. We write y ← F(x; r) to assign y that value. We
will write F(x) when the coins are understood from context and write y ←$ F(x)
to denote picking a fresh r appropriately and running F(x; r). We assume r is
always of some sufficient length that we leave implicit. For brevity, we often
introduce algorithms without their domain and range when these are clear from
context.
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The running time of an algorithm is the worst-case number of steps to com-
pute it in an abstract model of computation with unit basic operation costs. In
most cases the implementation will be clear, and we will clarify when not; our
results extend in straightforward ways to finer-grained models of computation.

We write x ←$ X to denote sampling a value x uniformly from a set X . We
use the same notation for non-uniform distributions, and in such cases specify the
distribution. We let Un denote the uniform distribution over {0, 1}n and Uq

n the
uniform distribution over Un × · · · × Un (q repeats of Un). For ease of notation,
we abbreviate Un to U when the length n is clear from context. Applying an
algorithm (or other function) to a distribution, e.g., F(x;U), denotes the implied
distribution over outputs.

PRFs, PRPs, and Encryption. We recall a number of standard cryptographic
primitives.

Definition 1 (Computational Indistinguishability). Two distributions
X and Y are called (t, ε)-computationally indistinguishable (denoted by
CDt(X,Y ) ≤ ε) if for any algorithm D running in time t, |Pr[D(X) =
1] − Pr[D(Y ) = 1]| ≤ ε.

Definition 2 (Pseudorandom Function). A family of algorithms
{Fsk : {0, 1}m → {0, 1}n | sk ∈ {0, 1}k} is called a family of
(t, q, δ)-pseudorandom functions if AdvPRF

F � maxD AdvPRF
F (D) �

maxD(2 |Pr[GPRF
F (D) ⇒ true] − 1

2 |) ≤ δ where the maximum is taken
over all algorithms D running in time t and making up to q queries to the oracle
O (the game GPRF

F (D) is shown in Fig. 1). Function F in Fig. 1 is a uniformly
selected random function F : {0, 1}m → {0, 1}n.

Definition 3 (Pseudorandom Permutation). A family of functions
{fseed : {0, 1}n → {0, 1}n | seed ∈ {0, 1}�} is called a (t, q, ε)-pseudorandom
permutation if it is a (t, q, ε)-pseudorandom function and fseed is a permutation
for every seed ∈ {0, 1}�.

Conventional public-key encryption (PKE) schemes meet semantic security
style notions, meaning no partial information about plaintexts is leaked. Many
traditional ones additionaly are such that ciphertexts are indistinguishable from
uniformly chosen group elements (e.g., ElGamal). We use something slightly dif-
ferent still: public-key encryption (PKE) with pseudorandom ciphertexts. These
schemes have ciphertexts that are indistinguishable from random bit strings (of
appropriate length). Both theoretical and practical constructions of such pub-
lic key encryption schemes were shown in [3,12,32]. Constructions from elliptic
curves include [21] and [9].

Definition 4 (IND$-CPA Public Key Encryption). A triple
(K,Encpk,Decsk), where K → {0, 1}p × {0, 1}k, pk ∈ {0, 1}p,Encpk : {0, 1}m ×
{0, 1}ρ → {0, 1}n, sk ∈ {0, 1}k,Decsk : {0, 1}n → {0, 1}m is called a
(t, q, δ) − IND$-CPA public key encryption scheme if
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Game GPRF
F (D)

sk ← Uk

b ←$ {0, 1}
if b = 1 then

O ← Fsk

else
O ← F

b′ ← DO

return (b = b′)

Fig. 1. PRF game

Game GCPA
K,Enc(D)

(pk, sk) ←$ K
b ←$ {0, 1}
if b = 1 then

O ← Encpk

else
O ← R

b′ ← DO(pk)
return (b = b′)

Fig. 2. IND$-CPA Game

– Pr[Decsk(Encpk(s;α)) = s] = 1, where s ← {0, 1}m, (pk, sk) ← K, α ←
{0, 1}ρ,

– AdvCPA
K,Enc(D) � 2 |Pr[GCPA

K,Enc(D) ⇒ true]− 1
2 | ≤ δ for any algorithm D running

in time t and making up to q queries to the oracle O. (The game GCPA
K,Enc(D)

is defined in Fig. 2, the function R outputs a uniformly selected output of
length n.)

Pseudorandom generators. A pseudorandom generator (PRG) is a pair of algo-
rithms (K,G). The parameter generation algorithm K takes input coins and
outputs a pair (pk, sk), called the public key and secret or private key (or trap-
door). Traditionally, a PRG has no trapdoor, and pk would be referred to as the
public parameter. Our notation of public / private keys is for consistency with
the next section; for an ordinary PRG, sk may be taken as null. We assume that
sk uniquely determines pk. A public key pk designates a family of algorithms
denoted by G. Each algorithm Gpk : S → {0, 1}n × S maps an input called the
state to an n-bit output and a new state. We drop the subscript pk where it
is clear from context. We refer to S as the state space; it will often simply be
bit strings of some length. We will always specify a distribution over S that
specifies the selection of an initial state, written s ←$ S, for the PRG. For any
integer q ≥ 1, we let outq(G, s) for s ∈ S denote the sequence of bit strings
(r1, r2, . . . , rq) output by running (r1, s1) ← G(s), then (r2, s2) ← G(s1), and so
on. By stateq(G, s) we denote the sequence of states (s1, s2, . . . , sq). A PRG is
secure when no adversary can distinguish between its outputs and random bits.

Definition 5 (PRG security). A PRG (K,G) is a (t, q, δ)-secure PRG if for
pk ← K, CDt((pk, outq(Gpk,U)),U) ≤ δ.

This definition does not capture forward-secrecy, meaning that past outputs
should be indistinguishable from random bits even if the current state is revealed.
In all the PRG constructions that follow, we point out which of the results satisfy
the forward-security notion and which are forward-insecure.
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3 Backdoored Pseudorandom Generators

A backdoored pseudorandom generator (BPRG) is a triple of algorithms
(K,G,A). The pair (K,G) is a PRG, as per the definition in the last section. The
third algorithm A we call the adversary, although it is in fact co-designed with
the rest of the scheme. It uses the trapdoor output by K to violate security of
the PRG in one of several potential ways. We give games defining these distinct
ways of violating security in Figure 3.

Game GBPRG
dist (K,G,A)

(pk, sk) ←$ K
s ←$ S
r01, . . . , r

0
q ← outq(Gpk, s)

r11, . . . , r
1
q ←$ Uq

n

b ←$ {0, 1}
b′ ← A(sk, rb

1, . . . , r
b
q)

return (b = b′)

Game GBPRG
next (K,G,A)

(pk, sk) ←$ K
s ←$ S
r1, . . . , rq ← outq(Gpk, s)
s1, . . . , sq ←$ stateq(Gpk, s)
s′

q ←$ A(sk, r1, . . . , rq)
return (s′

q = sq)

Game GBPRG
rseek (K,G,A, i, j)

(pk, sk) ←$ K
s ←$ S
r1, . . . , rq ← outq(Gpk, s)
r′
j ←$ A(sk, i, j, ri)
return (rj = r′

j)

Fig. 3. Security games defining success of trapdoor-equipped adversaries

The first game is identical to the standard PRG definition except that the
adversary here gets the trapdoor. The second tasks A with recovering the current
state, given the trapdoor and a sequence of outputs. This is, by definition, suf-
ficient information to produce all future outputs of Gpk. The last tasks A with
predicting the full output of some state j given the trapdoor and the output
for i.

Definition 6 (Backdoored PRG). A triple (K,G,A) is called a
(t, q, δ, (Gtype, ε))-backdoored PRG for type ∈ {dist, next, rseek} if (K,G) is
a (t, q, δ)-secure PRG and AdvBPRG

type (K,G,A) ≥ ε, where

AdvBPRG
dist (K,G,A) � 2 ·

∣
∣
∣
∣Pr[GBPRG

dist (K,G,A) ⇒ true] − 1
2

∣
∣
∣
∣ ,

AdvBPRG
next (K,G,A) � Pr[GBPRG

next (K,G,A) ⇒ true], and

AdvBPRG
rseek (K,G,A) � min

1≤i,j≤q
Pr[GBPRG

rseek (K,G,A, i, j) ⇒ true].

A Gdist-BPRG is only interesting when ε � δ, as otherwise the distinguisher
without the trapdoor information can distinguish already with advantage δ. For
the other types, even if ε < δ the definition is still meaningful.

A (t, q, δ, (Gnext, ε)-BPRG is (strictly) better for the saboteur than achieving
a Gdist-BPRG under the same parameters. The random seek notion is orthogo-
nal; it may or may not be better depending on the situation. Our attacks and
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(looking ahead to later sections) defenses will be given according to the strongest
definitions. That is when taking on the role of the sabotuer, we will build Gnext-
BPRGs and/or Grseek-BPRGs with as efficient as possible A. When considering
defenses against saboteurs by way of immunization, we will target showing that
no efficient A can succeed in Gdist.

Example: the Dual EC BPRG. As an example of a BPRG we turn to Dual EC.
It uses an elliptic curve group G with generator g. For consistency with later
sections, we use multiplicative notation for group operations. We also skip for
simplicity some details about representation of elliptic curve points, these being
unimportant for understanding the attack. For a more detailed description of
the algorithm and backdoor see [13].

Key generation K picks a random point Q ∈ G and an exponent d ←$ Z|G|.
It computes P = Qd. The public key is set to pk = (P,Q) and the secret is x.
The state space is S = Z|G|. On input a seed si ∈ S, the generation algorithm
G computes si+1 ← P si and computes ri+1 as all but the last 16 bits of Qsi+1 .
The output is (ri+1, si+1).

With knowledge of d and given two consecutive outputs r1, r2 correspond-
ing to states s, s1 we can give a Gnext adversary A that efficiently recovers s2.
Adversary A starts by computing from r1 a set of at most 216 possibilities for
Qs1 . Let these possibilities be X1, . . . , X216 . Then for each i ∈ [1..216], the adver-
sary checks whether QXd

i has all but last 16 bits that match r2. If so it outputs
s2 = Xd

i = Qs1d = P s1 . Note that while A cannot recover the generator’s second
state s1, it can predict the generator’s second output r2, the third state s2, and
all subsequent states and outputs. Also A is relatively efficient, working in time
about 216 operations.

As for basic PRG security without the trapdoor, a result due to Schoenmakers
and Sidorenko [25] gives an attack working in time about 216 using a single
output to achieve distinguishing advantage around 1/100. Thus, putting it all
together, we have that Dual EC is a (t, q, δ, (Gnext, 1))-BPRG for t ≈ 216, q > 2,
and δ ≈ 1/100.

From a saboteur’s perspective, that Dual EC doesn’t achieve PRG secu-
rity (against distinguishers without the trapdoor) seems a limitation. One can
truncate more than 16 bits to achieve better security, but this would make A
exponentially less efficient. In the next section we will show how a saboteur can
construct a BPRG with strong PRG security and efficient state recovery.

4 Backdoored PRG Constructions

We start by simplifying and improving the Dual EC BPRG. Let G be a group
and g a generator of G. Let K pick a random secret key x ←$ Z|G| and let
pk � X = gx. The PRG works simply as G(pk, si) = (ri+1, si+1) = (gsi ,Xsi).
A Gnext adversary can recover si+1 = Xsi by computing ri+1

x. For a G that is
DDH secure and for which uniform group elements are indistinguishable from
bit strings (e.g., [2,9,29]), this construction can be proven GPRG

dist secure under
the DDH assumption.
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K′

(pk, sk) ←$ Gen
return (pk, sk)

G′(pk, s)
(r′, s′) ← Encap(pk; s)
return (r′, s′)

A′(sk, r1, . . . , rq)
s′ ← Decap(sk, rq)
return s′

Fig. 5. Backdoored PRG from a pseudorandom KEM

4.1 Backdoored PRGs from Key Encapsulation

We in fact can generalize significantly by observing that the previous con-
struction is actually using the ElGamal key encapsulation scheme (KEM) in
a direct way. Recall that a KEM scheme triple of algorithms is a KEM Γ =
(Gen,Encap,Decap). The key generation outputs a public key / secret key

Game DistD
KEM

(pk, sk) ←$ Gen
r ←$ {0, 1}n

(c0,K0) ←$ Encap(pk; r)
c1 ←$ {0, 1}n

K1 ←$ {0, 1}n

b ←$ {0, 1}
b′ ←$ D(pk, cb,Kb)
return (b = b′)

Fig. 4. Pseudorandom KEM secu-
rity

pair (pk, sk) ← Gen. The encapsulation
algorithm takes the public key, random coins
r ∈ {0, 1}n for some n and outputs a
ciphertext-key pair (c,K) ← Encap(pk; r)
where K ∈ {0, 1}n. The decapsulation algo-
rithm takes a secret key and ciphertext
and outputs a key: Decap(sk, c) = K̃ ∈
{0, 1}n ∪ {invalid}. We require correctness,
meaning that Decap(sk, c) = K for (c,K) =
Encap(pk; r) and for all pk, sk pairs gener-
atable by Gen and all coin strings r.

We give a variant of KEM security
that requires ciphertexts to be pseudoran-
dom: the output of Encap is indistinguish-
able from a pair of random bit strings.
See Figure 4. We define AdvDist

KEM(D) =
2
∣
∣Pr[DistD

KEM ⇒ true] − 1
2

∣
∣. A KEM Γ is

said to be a (t, δ)-pseudorandom KEM if
AdvDist

Γ
··= maxD AdvDist

Γ (D) ≤ δ, where the maximum is taken over all algo-
rithms D running in time t.

This is a strictly stronger security notion than the conventional one for
KEMs [26], which does not demand that ciphertexts have any particular appear-
ance to attackers. This stronger pseudorandomness requirement was first intro-
duced by Möller [21]. He gave an elliptic curve variant of ElGamal that provably
meets it, and other KEM constructions can be built using [2,9,29].

We have the following result showing that any pseudorandom KEM gives a
Gnext-BPRG.

Proposition 1. Let Γ = (Gen,Encap,Decap) be a (t, δ)-pseudorandom KEM.
Then (K′,G′,A′) defined in Fig. 5 is a (t, q, qδ, (Gnext, 1))-BPRG.
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Proof. The correctness of the KEM gives that AdvBPRG
next (K′,G′,A′) = 1 and

that A′ is efficient. We now prove (standard) PRG security against distinguish-
ers without the trapdoor. To do so we use a hybrid argument, applying the
pseudorandom KEM security q times. Let H0 be the GPRG

dist game with b = 0 and
Hq be GPRG

dist with b = 1. Let Hi for 1 ≤ i ≤ q − 1 be the same as game Hi−1

except that we replace the ith output of Encap with two independent, random
bit strings. A straightforward reduction gives that CDt(Hi,Hi+1) ≤ δ, and since
we have q hybrids AdvPRG

dist (K,G,D) ≤ qδ for any D running in time t. �

4.2 Random Seek Backdoored PRGs

We now show a prediction attack, where the prediction algorithm can seek to any
output quickly. Given one output, we can predict any other, and the prediction
can seek in both directions, that is predict previous outputs as well. In the
construction shown, we use the lsb of a random string to make a decision, and
we shift by one bit, so that the randomness used later is independent of the bit
used for decision. We assume that the underlying PRG or PRF was used to get
enough number of bits so that after the shift we have enough random bits for
encryption.

Proposition 2. Let (K,Encpk,Decsk) be a (t, q, δ)-IND$-CPA public key encryp-
tion scheme, Fsk be a (t, q, δ)-pseudorandom function. Then (K′,G′,A′) defined
in Fig. 6 is a (t, q, 3δ, (Grseek,

1
4 − δ))-backdoored pseudorandom generator.

K′

(pk, sk) ← K
return (pk, sk)

G′(pk, (s0, s1, count))
α ← Fs1(count)
if lsb(α) = 0 then

r ← Encpk(s0;α�1)
else

r ← Fs0(count)
count ← count + 1
return (r, (s0, s1, count))

A′(sk, i, j, ri)
if (i = j) then

return ri

s0 ← Decsk(ri)
if (s0 = ⊥) then

return 0
rj ← Fs0(j)
return rj

Fig. 6. Random seek backdoored PRG

Proof.

AdvBPRG
rseek (K′,G′,A′)= Pr[rj = r′

j ] ≥ Pr[lsb(Fs1(i)) = 0∧lsb(Fs1(j)) = 1] ≥ 1
4
−δ.

From pseudorandomness of F’s outputs

CDt(Fs0(1), . . . ,Fs0(q),U) ≤ δ,CDt(Fs1(1), . . . ,Fs1(q),U) ≤ δ.
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Then CDt((pk, s0,Encpk(s0;α�1)), (pk, s0,U)) ≤ 2δ due to IND$-CPA security.
Thus,

CDt((pk, outq(G′
pk,U)),U) ≤ 3δ.

�
The distinguishing and predicting PRGs we discussed also satisfy the notion

of forward security, whereas the Grseek construction in Fig 6 is forward-insecure.

4.3 Public-Key Encryption from a Backdoor PRG

We show that the existence of backdoored PRGs implies public-key encryption
(PKE). From a backdoored PRG, we construct a bit encryption scheme with
noticeable correctness and overwhelming secrecy. Using parallel repetition and
privacy amplification of key-agreement [18], we can amplify secrecy and correct-
ness without increasing the number of rounds. Since the number of rounds is not
increased, we obtain secure public-key encryption.

Theorem 1. If (K,Gpk,A) is a (t, q, δ, (Gdist, ε))-backdoored PRG, then the pro-
tocol in Fig. 7 is a bit-encryption protocol with correctness ε and security 1 − δ
against attackers running in time t.

Gen
(pk, sk) ← K
return (pk, sk)

Enc(pk, b)
s ← U
if (b = 0) then

r ← U
else

r ← outq(Gpk, s)
return r

Dec(sk, r)
b′ ← A(sk, r)
return b′

Fig. 7. Bit Encryption

Proof. orrectness:

Pr[Dec(sk,Enc(pk, b)) = b] = Pr[b = b′] = Pr[GBPRG
dist (K,G,A) ⇒ true] ≥ 1

2
+

ε

2
.

Security:
For any adversary D who runs in time t,

Pr[D(pk, r) = b] =
1 + CDt((pk, outq(G,U)),U)

2
≤ 1

2
+

δ

2
.

�
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Note that combining this result with our earlier construction of backdoored
PRGs from PKE and Proposition 1, we arrive at the promised conclusion that
backdoored PRGs and pseudorandom PKE are equivalent. We capture this with
the following informal theorem, which is a corollary of the results so far.

Theorem 2. Backdoor PRGs exist iff public-key encryption with pseudorandom
ciphertexts exists.

5 Immunization

In this section, we ask how to immunize a potentially backdoored PRG. A natu-
ral idea is for the user to apply a non-trivial function f to the output of the PRG.
So now the attacker A learns f(ri) rather than ri. We ask the question: when
does f successfully immunize a PRG? We study the immunization functions
that turn a backdoored PRG into a backdoor-less PRG. Letting the immuniza-
tion function be a family of algorithms {fseed | seed ∈ {0, 1}�}, we consider the
following immunization models:

1. Public immunization: In this model, seed is revealed to the attacker A prior
to construction of the PRG algorithm. The attacker thus knows the immu-
nization function fseed that will be applied to the outputs of the generator.
In this setting, the goal of the attacker A is to develop a PRG G with a
backdoor that bypasses the known immunization.

2. Semi-private immunization: In this model, the PRG generator G is con-
structed without reference to seed. We may view this as a setting in which
the PRG attacker A learns seed, and thus fseed, only after the specification
of G. This situation can arise, for example, when the immunization function
f depends upon a source of fresh public randomness.

3. Private immunization: In this model, seed is secret, in the sense that G is
constructed without reference to seed and A never learns seed. We might
imagine the user using a source of private randomness, unavailable to A, to
seed the immunization function f . (Note that although the user has some
private randomness, she might still need the PRG to generate longer pseu-
dorandom strings.)

Now we give formal definitions of secure immunization in the three models
discussed above. We slightly abuse notation in the following way: For a PRG G
such that (ri, si) ← G(si−1), we write f ◦ G to mean f(ri), i.e., f applied to the
output of G only (and not G’s internal state). Similarly, by outq(f ◦ G, s) we
mean the sequence (f(r1), . . . , f(rq)), where (r1, . . . , rq) = outq(G, s).

Definition 7 (Public Immunization). Let type ∈ {dist, next, rseek}.
A family of algorithms {fseed | seed ∈ {0, 1}�} is called a public
((t, q, δ), (t′, q′, δ′), (Gtype, ε))-immunization, if for any (t, q, δ)-secure PRG
(K,G), and for any algorithm A running in time t′,

– {fseed ◦ Gpk(seed, ·) | (seed, pk) ∈ {0, 1}� × {0, 1}p} is a (t′, q′, δ′)-
pseudorandom generator,
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– AdvBPRG
type (K, fseed ◦ G(seed, ·),A(seed, ·)) ≤ ε.

Definition 8 (Semi-private Immunization). Let type ∈ {dist, next, rseek}.
A family of algorithms {fseed | seed ∈ {0, 1}�} is called a semi-private
((t, q, δ), (t′, q′, δ′), (Gtype, ε))-immunization, if for any (t, q, δ)-secure PRG
(K,G), and for any algorithm A running in time t′,

– {fseed ◦ Gpk(·) | (seed, pk) ∈ {0, 1}� × {0, 1}p} is a (t′, q′, δ′)-pseudorandom
generator,

– AdvBPRG
type (K, fseed ◦ G(·),A(seed, ·)) ≤ ε.

Definition 9 (Private Immunization). Let type ∈ {dist, next, rseek}.
A family of algorithms {fseed | seed ∈ {0, 1}�} is called a private
((t, q, δ), (t′, q′, δ′), (Gtype, ε))-immunization, if for any (t, q, δ)-secure PRG
(K,G), and for any algorithm A running in time t′,

– {fseed ◦ Gpk(·) | (seed, pk) ∈ {0, 1}� × {0, 1}p} is a (t′, q′, δ′)-pseudorandom
generator,

– AdvBPRG
type (K, fseed ◦ G(·),A(·)) ≤ ε.

In Section 5.1 we show that it is possible to successfully create a PRG backdoor
in the public immunization setting. On the other hand, in Section 5.2 we show
that there exist immunizations in the semi-private model that separate these
two models. Also, as we will see in Section 5.3, a pseudorandom function is a
secure private immunization. To separate semi-private and private models, in
the following simple lemma we show that a pseudorandom permutation is not a
semi-private immunization. The construction we give for the separation in Fig. 8
also satisfies forward security.

Lemma 1. Let fseed be a (t, q, δ)-pseudorandom permutation. Then there exists
a triple (K′,G′,A′), such that (K′, fseed◦G′(·),A′(seed, ·)) is a (t, q, 2qδ, (Gnext, 1))-
backdoored pseudorandom generator.

Proof. Let G be a (t′, q, δ)-pseudorandom generator, and Γ =
(Gen,Encap,Decap) be a (t, δ)-pseudorandom ciphertext KEM. Consider the
triple (K′,G′

pk,A′(seed, ·)) shown in Fig. 8. Then AdvBPRG
next (K′, fseed ◦ G′,A′) =

Pr[Decap(r′, sk) = s′|(r′, s′) ← Encap(pk;α), (pk, sk) ← Gen] = 1. From pseu-
dorandomness of G’s outputs CDt(outq(G,U),U) ≤ δ, (t, δ)-pseudorandomness
of Γ , and using a hybrid argument similar to the proof of Proposition 1,

CDt((pk, outq(G′
pk,U)),U) ≤ 2qδ.

�

5.1 Public Immunization Model

In the public immunization model, the PRG algorithms G and A know the seed
of the immunization function that will be applied on the output. In this section
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K′

(pk, sk) ← Gen
return (pk, sk)

G′(pk, s)
(α, β) ← G(s)
(r′, s′) ← Encap(pk;α)
return (r′, s′)

A′(sk, seed, fseed(ri))
c ← f−1

seed(fseed(ri))
s′ ← Decap(c, sk)
return s′

i

Fig. 8. PRP Immunization Insecure in Semi-private Model

we demonstrate backdoored pseudorandom generator that cannot be immunized
in the public immunization model. Since seed of the immunization function fseed
is known to both G and A, in order to construct a backdoored pseudorandom
generator from the viewpoint of the saboteur, we fix the strongest function from
this family so that for any function in the family, the backdoored PRG after
immunization is compromised. The idea behind the construction is to leak the
initial state bit by bit, by rejection sampling of the output of the immunization
function such that the bias is unnoticeable. For a bit string s, we denote the ith
bit of s by s(i).

K′

(pk, sk) ← K
return (pk, sk)

G′(pk, seed, (s0, s1, count))
c ← Encpk(s1)
L ← |c|
if count ≤ L then

j ← 0
s′
0 ← s0
count2 ← 0
repeat

count2 ← count2 + 1
(r′, s′

0) ← G(s′
0)

until (fseed(r′)(1) = c(count)) ∨
(count2 > lnL

1−δ );
s′
1 ← s1

else
(r′, s′

1) ← G(s1)
s′
0 ← 0

count′ ← count + 1
return (r′, (s′

0, s
′
1, count

′))

A′(sk, seed, fseed(r1), . . . , fseed(rq))
for 1 ≤ i ≤ L do

ci ← fseed(ri)(1)
s1 ← Decsk(c)
for L + 1 ≤ i ≤ q do

r′
i, s1 ← G(s1)

return (0, s1, q + 1)

Fig. 9. Predicting backdoored PRG in Public Model

Lemma 2. Let (K,Encpk,Decsk) be a (t, q, δ) − IND$-CPA public key encryp-
tion scheme, G be a (t, q, δ)-pseudorandom generator, and f such that for
seed ← {0, 1}� , CDt(fseed(U),U) ≤ δ. Then (K′,G′,A′) defined in Fig. 9
is a (t, q − L lnL

1−δ , 2δ, (Gnext, ε))-backdoored pseudorandom generator, where ε =

1 − L · exp
(

− ln2 L
3(1−δ)

)
, L is the length of ciphertexts produced by Encpk.
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Proof. From pseudorandomness of G’s outputs CDt(outq(G,U),U) ≤ δ and
pseudorandomness of ciphertexts CDt((pk, s1,Encpk(s1)), (pk, s1,U)) ≤ δ,

CDt((pk, outq(G′
pk,U)),U) ≤ 2δ.

From the Chernoff bound:

AdvBPRG
next (K′,G′,A′) ≥ 1 − L · Pr[count2 ≥ ln L

1 − δ
] ≥ 1 − L · exp

( − ln2 L

3(1 − δ)

)
.

�

5.2 Semi-Private Immunization Model

In the semi-private model, the generator G does not know seed of fseed, but the
attacker does. We show that a Random Oracle and a Universal Computational
Extractor are secure immunizations in the semi-private model. We will first
bound the collision probability of pseudorandom outputs. The collision proba-
bility bounds the probability that an algorithm can predict the output of a PRG
run on a uniformly random seed, even with the knowledge of some trapdoor
information, because, intuitively, the output of a PRG should depend on the
input seed also.

Definition 10. The conditional predictability of X conditioned on Y is defined
as

Pred(X|Y ) ··= Ey←Y [max
x

(Pr[X = x|y = Y ])].

Definition 11. The conditional collision probability of X conditioned on Y is
defined as

Col(X|Y ) ··= Ey←Y [ Pr
x1,x2←X

[x1 = x2|Y = y]].

Lemma 3. For any distributions X and Y , Pred(X|Y ) ≤ √
Col(X|Y ).

Proof. Let py = Pr[Y = y], px|y = Pr[X = x|Y = y]. Then

Pred[X|Y ] =
∑

y

py · max
x

px|y =
∑

y

√
py · (

√
py max

x
px|y) ≤

√∑

y

py ·
∑

y

py max p2x|y ≤
√

1 ·
∑

y

(py ·
∑

x

p2x|y) =
√

Col(X|Y ).

�
Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a family of algo-

rithms, then by outi(Gpk,U) we denote the distribution of Gpk’s ith output, i.e.
the distribution of ri where (r1, . . . , ri, . . . , rq) ← outq(Gpk,U).



A Formal Treatment of Backdoored Pseudorandom Generators 117

Lemma 4. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a (t, q, δ)-
pseudorandom generator. 1 Then for any 1 ≤ i ≤ q, for any K → {0, 1}p×{0, 1}k

such that CDt(pk, Up) ≤ δ, where (pk, sk) ← K,

Pred(outi(Gpk,U)|sk) ≤
√

δ +
1
2n

.

Proof. We show that Col(outi(Gpk,U)|sk) ≤ δ + 1
2n , then Lemma 3 implies the

desired bound.
Assume, to the contrary, Col(outi(Gpk,U)|sk) > δ + 1

2n . This implies that
there exists i such that E(pk,sk)←K Pr[ri = r′

i|sk] > δ + 1
2n , where ri, r

′
i ←

outi(Gpk,U). Let D be a PRG-distinguisher for Gpk as defined in Fig. 10. Then,

|Pr[D(outq(Gpk,U)) = 1] − Pr[D(U) = 1]| ≥ Col(outi(Gpk,U)|sk) − 1
2n

> δ,

which contradicts the (t, q, δ)-pseudorandomness of {Gpk}. �

D(pk, r1, . . . , rq)
s ← {0, 1}m

r′
1, · · · , r′

q ← outq(Gpk, s)
if ri = r′

i then
return 1

else
return 0

Fig. 10. Distinguisher D for Gpk

Positive Result in Random Oracle Model. A random oracle (RO) is an
oracle that responds to every unique query with a random response chosen uni-
formly from its output domain. If a query is repeated it responds the same way
every time that query is submitted. A RO : {0, 1}n × {0, 1}k → {0, 1}n is cho-
sen uniformly at random from the set of all functions that map {0, 1}n+k to
{0, 1}n. We show that in the semi-private model, a Random Oracle is a secure
immunization function.

Theorem 3. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a
(t, q, δ)-pseudorandom generator. Then fseed(x) = RO(x‖seed) is a semiprivate
((t, q, δ), (t, q, δ), (Gdist, ε))-immunization for Gpk, where

ε = δ +
q2

2n
+

qG

2k
+ qqA

√

δ +
1
2n

,

1 Here and below we assume that t > C(p+ q(n+m+ time(Gpk))) for some absolute
constant C > 0, so that the attacker can always parse the input, and run G for q
times.
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k = |seed|, qG and qA are the bounds on the number of times G and A query the
random oracle, respectively.

Proof. Assume, to the contrary, there exists a pair of algorithms (K,A) running
in time t′, such that the triple (K, fseed ◦ G(·),A(seed, ·)) is a (t, q, δ, (Gdist, ε))-
backdoored pseudorandom generator. I.e.,

AdvBPRG
dist (K, fseed ◦ G,A) = 2

∣
∣
∣
∣Pr[GBPRG

dist (K, fseed ◦ G,A) ⇒ true] − 1
2

∣
∣
∣
∣ > ε

in Game GBPRG
dist (K, fseed ◦G,A) from Fig. 3. Let r1, . . . , rq be the outputs of Gpk

before the immunization, i.e. s ← U , (r1, . . . , rq) ← outq(Gpk, s). The immuniza-
tion is fseed(ri) = RO(ri‖seed) for 1 ≤ i ≤ q.

We define the following three events:

– W1: ri = rj for i �= j.
– W2: Gpk queries (ri‖seed) for some 1 ≤ i ≤ q.
– W3: A queries (ri‖seed) for some 1 ≤ i ≤ q.

Note that if none of the events above happened then the two distributions
in the distinguishing game corresponding to the challenge bit being 0 or 1, are
identical. Now we proceed to bound the probabilities of these three events.

– Since the PRG-security of G is δ, Pr[W1] ≤ q2

2n + δ.
– In the semiprivate model G does not see seed, therefore, the probability that

G queries ri‖seed in one of its queries is the probability that the G guesses
seed, and by the union bound this is bounded from above by qG

2k
. Thus,

Pr[W2] ≤ qG/2k.
– Now, we look at the probability that A makes a relevant query, given that

G did not query ri‖seed for all i. Assume A predicts ri for i ∈ I ⊆ [q].
Then there exists i ∈ I that was predicted first, i.e. when all fseed(rj)
looked random to A. Then, the probability that A predicts at least one ri

is at most
∑q

i=1 Pr[A predicts ri using qA queries given sk]. Since A makes
at most qA calls to the random oracle, the latter probability, by the union
bound, is bounded by qA

∑q
i=1 Pr[A predicts ri using one query given sk].

Now Lemma 4 gives us the following bound:

Pr[W3] ≤
q∑

i=1

Pr[A predicts ri using qA queries|sk]

≤ qA

q∑

i=1

Pr[A predicts ri using one query|sk]

≤ qA

q∑

i=1

Pred[ri|sk] ≤ qqA

√

δ +
1
2n

.

By the claims above,
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ε = Pr[W1] + Pr[W2] + Pr[W3] ≤ δ +
q2

2n
+

qG
2k

+ qqA

√

δ +
1
2n

.

�

Positive Result in Standard Model. In this section, we show that replacing
the Random Oracle with a UCE function [4] is secure in the standard model.
First, we briefly recall Universal Computational Extractor (UCE) defined in [4]
by Bellare et al. UCE is a family of security notions for a hash function family.

UCE Security. A notion of UCE security is specified by specifying a class of
sources S. The source is given oracle access to the hash function. UCE security for
the class of sources S states that for any PPT algorithm called the distinguisher
D, who receives the key of the hash function and leakage L passed by the source,
cannot tell better than random guessing whether Hk was used or a random
function. We now give the formal definitions. A source S is a PPT algorithm
which is given oracle access to Hash, and outputs a value L called the leakage.
For a pair of source S and distinguisher D, define the UCES,D

H game as shown
in Fig. 11.

Definition 12. A function H is called UCE[S, qD, ε]-secure, if for all sources
S ∈ S, and all polynomial-time algorithms D that make at most qD queries to
H, AdvUCE

H (S,D) ··= 2Pr[UCES,D
H ⇒ true] − 1 ≤ ε.

For a source S, and a polynomial-time algorithm P called the predictor, define
the game PredP

S as shown in Fig. 12.

Definition 13. A source S is called (l, ε)-statistically unpredictable, denoted
by S ∈ Ssup[l, ε], if for all computationally unbounded algorithms P that output
a list of at most l guesses AdvPred

S,P
··= Pr[PredP

S ⇒ true] ≤ ε.

Main UCES,D
H

b ← {0, 1}
k ← K
L ← SHash

b′ ← D(k, L)
return (b′ = b)

Hash(x)
if T [x] = ⊥ then

if (b = 1) then
T [x] ← H(k, x)

else
T [x] ← {0, 1}k

return T [x]

Fig. 11. Game UCE and Hash Oracle
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PredP
S

done ← false
Q ← ∅
L ← SHash

done ← true
Q′ ← PHash(L)
return (Q ∩ Q′ �= ∅)

Hash(x)
if done ← false then

Q ← Q ∪ {x}
if T [x] = ⊥ then

T [x] ← {0, 1}k

return T [x]

Fig. 12. Game Pred and Hash Oracle

Theorem 4. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a
(t, q, δ)-pseudorandom generator. Then fseed(x) = Hseed(x) is a semiprivate
((t, q, δ), (t, q, δ + ε), (Gdist, ε

′))-immunization for Gpk, where

ε′ = 2ε + δ +
q2

2n
,

H ∈ UCE[S, qD, ε], S = Ssup[l, δ + q2

2n + ql
√

δ + 1
2n ].

Proof. Given an adversary A playing the distinguishing attack game
GBPRG
dist (K,H ◦ G,A(seed)) we will construct a statistically unpredictable source

S and a polynomial-time distinguisher D (see Fig. 13) such that AdvBPRG
dist (K,H◦

G,A(seed)) ≤ 2AdvUCE
H (S,D) + δ + q2

2n .

SHash

(pk, sk) ← K
s ← {0, 1}m

r1, r2, · · · , rq ← outq(Gpk, s)
for 1 ≤ i ≤ q do

u0
i ← Hash(Ri)

u1
i ← {0, 1}n

d ← {0, 1}
I = {ud

1, . . . , u
d
q}

return (d, pk, sk, I)

D(d, sk, I, k)
d′ ← A(sk, I, k)
if (d = d′) then

return 1
else

return 0

Fig. 13. Source S and Distinguisher D

Let b be the challenge bit in the UCE game UCES,D
H . Then,

Pr[UCES,D
H ⇒ true|b = 1] = Pr[GBPRG

dist (K,H ◦ G,A(seed)) ⇒ true],

Pr[UCES,D
H ⇒ true|b = 0] = 1 − Pr[GBPRG

dist (K,RO ◦ G,A(seed)) ⇒ true],
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where in the RO immunization game, A has to distinguish uniformly random
outputs from RO applied to the outputs of G. If r’s are distinct, then these two
distributions are identical. From the PRG security, the probability of the event
ri = rj for i �= j is less than δ + q2

2n . Therefore,

Pr[UCES,D
H ⇒ true|b = 0] ≥ 1

2
− 1

2
(δ +

q2

2n
)

Summing yields,

AdvUCE
H (S,D) =

1
2
AdvBPRG

dist (K,H ◦ G,A) − 1
2
δ − 1

2
.
q2

2n
,

AdvBPRG
dist (K,H ◦ G,A) ≤ 2AdvUCE

H (S,D) + δ +
q2

2n
.

Now we argue that S is statistically unpredictable; that is, it is hard to guess
the source’s Hash queries even given the leakage, in the random case of the
UCE game. Consider an arbitrary predictor P , and the advantage of P in the
game PredP

S . If all Ri are distinct (which happens with probability 1 − δ − q2

2n ),
the probability that P guesses at least one of r’s given the leakage is at most
qPred(R|sk). Now, since P outputs a list of length l, by Lemma 4,

AdvPred
S,P ≤ δ +

q2

2n
+ ql

√

δ +
1
2n

.

�

5.3 Private Immunization Model

We now study the strongest model of immunization which is the private model,
where seed is secret from both the PRG and the attacker. We show that a
PRF is an immunization function in this model. But if users had access to a
backdoor-less PRF, then instead of using it to immunize a backdoored PRG,
they could use the PRF itself for pseudorandomness. In this section, we explore
using functions weaker than PRF as immunization functions, and show that
some natural functions are not secure immunizations.

PRF Immunization

Lemma 5. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a (t, q, δ)-
pseudorandom generator, let also {fseed : {0, 1}n → {0, 1}k|seed ∈ {0, 1}l}
be a (t, q, ε)-pseudorandom function. Then fseed is a private ((t, q, δ), (t, q, δ +
ε), (Gdist, ε

′))-immunization for Gpk, where

ε′ = ε + δ +
q2

2n
.
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Proof. From the definition of PRF, no distinguisher D running in time t given q
outputs of Fseed can distinguish the output from uniformly random with advan-
tage greater than ε. By PRG security of Gpk, CDt((pk, outq(Gpk,U)),U) ≤
δ. Therefore, {fseed ◦ Gpk(·)|(seed, pk) ∈ {0, 1}� × {0, 1}p} is a (t, q, δ + ε)-
pseudorandom generator. Similar to the proof of Theorem 3, AdvBPRG

dist (K, fseed ◦
G(·),A(·)) ≤ AdvPRF

f +Pr[∃i, j : ri = rj |(r1, . . . , rq) ← outq(Gpk,U)] ≤ ε+δ+ q2

2n .
�

Attack against XOR. One of natural candidates for the immunization func-
tion in the private randomness model is the function XOR with a random string
as private randomness. In this section we show an attack against fseed(x) =
seed ⊕ x, where seed is private randomness of immunization function f . The
backdoored PRG works as follows: it outputs strings such that the XOR of two
consecutive outputs leaks one bit of s1 where s1 is a part of the seed of length n,
such that the bias introduced is negligible. After (n + 1) outputs A can recover
all of s1, and can predict future outputs.

Lemma 6. Let (K,Encpk,Decsk) be a (t, q, δ) − IND$-CPA public key encryp-
tion scheme, G be a (t, q, δ)-pseudorandom generator. Then for (K′,G′,A′)
defined in Fig. 14 and fseed(x) = seed ⊕ x, (K′, fcirc ◦ G′(·),A′(·)) is a
(t, q−n log n

1−δ , 2δ, (Gnext, ε))-backdoored pseudorandom generator, where ε = 1−n ·
exp

(
− ln2 n
3(1−δ)

)
.

Proof. From the Chernoff bound:

AdvBPRG
next (K′,G′,A′) ≥ 1 − n · Pr[count2 ≥ ln n

1 − δ
] ≥ 1 − n · exp

( − ln2 n

3(1 − δ)

)
.

From pseudorandomness of G’s outputs CDt(outq(Gpk,U),U) ≤ δ, and
CDt((pk, s1,Enc(s1)), (pk, s1,U)) ≤ δ due to IND$-CPA security. Thus,
CDt((pk, outq(G′

pk,U)),U) ≤ 2δ. �

Extensions of XOR-attack. The previous attack can be extended in two
ways. First, the PRG can be modified so that one does not need to see q > n
outputs to guess the next one, with high probability it is enough to see just three
random outputs. Although this kind of attack is weaker than the definition of
rseek-attack, it is much stronger than next-attack. Second, using homomorphic
encryption, the previous attack can be extended to some other natural immuniza-
tion functions. Here we show an example where the multiplication with a private
random string is not a private immunization. Let (K,Encpk,Decsk) be a homo-
morphic (t, q, δ) − IND$-CPA encryption scheme. For simplicity we assume that
Encpk : Zb → Zn,Decsk : Zn → Zb, and Encpk(m1) ·Encpk(m2) = Enc((m1+m2)
mod b), and the immunization function fseed(r) = (seed ·r) mod n (e.g., one can
think of Benaloh cryptosystem [6]).

By 3rseek we mean the rseek-game where the adversary gets to see 3 outputs
rather than just one.



A Formal Treatment of Backdoored Pseudorandom Generators 123

K′

(pk, sk) ← K
return (pk, sk)

G′(pk, (s0, s1, c, rprev, count))
s′
0 ← s0

s′
1 ← s1
if count = 1 then

(α, s0) ← G(s0)
c ← Encpk(s1;α)
n ← |c|
(r′, s′

0) ← G(s0)
if 1 < count ≤ n + 1 then

count2 ← 0
repeat

(r′, s′
0) ← G(s′

0)
until ((r′ ⊕ rprev)(1) = c(i)) ∨
(count2 > lnn

1−δ );
if count > (n + 1) then

(r′, s′
1) ← G(s1)

rprev = r′

count ← count + 1
return
(r′, (s′

0, s
′
1, c, rprev, count))

A′(sk, fseed(r1), · · · fseed(rq))
for 1 ≤ i ≤ n do

c(i) ← (fseed(ri) ⊕
fseed(ri+1))(1)

c = c(1)c(2) . . . c(n)
s1 ← Decsk(c)
r′
n+2 ← G(s1)
seed′ ← r′

n+2 ⊕ f(seed, r′
n+2)

for n + 1 < j ≤ q + 1 do
(r′

j , s1) ← G(s1)
return r′

q+1 ⊕ seed′

Fig. 14. Predicting backdoored PRG — Private immunization with fseed(x) = seed⊕x

K′

(pk, sk) ← K
return (pk, sk)

G′(pk, s0, s1, count)
α ← Fs1(count)
if (lsb2(α) = 00) then

r′ ← Encpk(0;α�2)
else if (lsb2(α) = 10) then

r′ ← 1/(Encpk(s0;α�2))
else

r′ ← Fs0(count)
return (r′, (s0, s1, count + 1))

A′(sk, fseed(ra), fseed(rb), fseed(rc), d)
e ← (fseed(ra))/fseed(rb)
s′
0 ← Decsk(e)
if s′

0 �= ⊥ then
r′
c ← Fs′

0
(c)

seed′ ← fseed(rc)/r′
c

r′
d ← Fs′

0
(d) · seed′

return r′
d

return 0

Fig. 15. Predicting Backdoored PRG — Private Immunization

Lemma 7. Let (K,Encpk,Decsk) be a (t, q, δ) − IND$-CPA public key encryp-
tion scheme which is multiplicatively homomorphic as above, Fsk be a (t, q, δ)-
pseudorandom function for q ≥ 4. Then for (K′,G′,A′) defined in Fig. 15 and
fseed(x) = seed ·x, (K′, fseed◦G′(·),A′(·)) is a (t, q, 3δ, (G3rseek,

1
64 −δ))-backdoored

pseudorandom generator.

Proof. From pseudorandomness of F’s outputs

CDt((Fs0(1), . . . ,Fs0(q)),U) ≤ δ,CDt((Fs1(1), . . . ,Fs1(q)),U) ≤ δ.

Then CDt((pk, s0,Enc(s0;α�2)), (pk, s0,U)) ≤ 2δ due to IND$-CPA security.
Thus,

CDt((pk, outq(G′
pk,U)),U) ≤ 3δ.
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AdvBPRG
3rseek (K′, fseed ◦ G′,A′) = Pr[rd = r′

d] ≥
Pr[lsb(Fs1(d)) = 1 ∧ seed′ = seed ∧ s′

0 = s0] ≥
Pr[lsb(Fs1(d)) = 1 ∧ r′

c = rc ∧ s′
0 = s0] ≥

Pr[lsb(Fs1(d)) = 1 ∧ lsb(Fs1(c)) = 1 ∧ s′
0 = s0] ≥

Pr[lsb(Fs1(d)) = 1 ∧ lsb(Fs1(c)) = 1 ∧ ra = Encpk(0) ∧ rb = 1/(Encpk(s0))] ≥
Pr[lsb(Fs1(d)) = 1 ∧ lsb(Fs1(c)) = 1 ∧ lsb2(Fs1(a)) = 00 ∧ lsb2(Fs1(b)) = 10] ≥

1
64

− δ

for q ≥ 4.
�
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Abstract. The aim of this work is to investigate the hardness of the
discrete logarithm problem in fields GF(pn) where n is a small integer
greater than 1. Though less studied than the small characteristic case
or the prime field case, the difficulty of this problem is at the heart of
security evaluations for torus-based and pairing-based cryptography. The
best known method for solving this problem is the Number Field Sieve
(NFS). A key ingredient in this algorithm is the ability to find good
polynomials that define the extension fields used in NFS. We design two
new methods for this task, modifying the asymptotic complexity and
paving the way for record-breaking computations. We exemplify these
results with the computation of discrete logarithms over a field GF(p2)
whose cardinality is 180 digits (595 bits) long.

1 Introduction

The security of cryptographic protocols relies on hard problems like integer
factorization or discrete logarithm (DLP) computations in a finite group. The
difficulty of the latter depends on the chosen group. While no subexponential
methods for DLP instances are known for some groups (including elliptic curves),
finite fields are vulnerable to variants of the Number Field Sieve (NFS) algo-
rithm.

Getting more insight about the theoretical and the practical behaviour of
NFS for non-prime fields is important in cryptography. Indeed, although cryp-
tosystems based on discrete logarithms in non-prime finite fields are not as widely
deployed as for prime fields, they can be found in two areas: torus-based and
pairing-based cryptography.

Torus-based cryptography, and in particular its most popular avatars LUC
[32], XTR [21] and CEILIDH [29], provides an efficient way to build a cryptosys-
tem working in a subgroup of the multiplicative group of a finite field Fpn where
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 129–155, 2015.
DOI: 10.1007/978-3-662-46800-5 6
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n > 1 is a small integer. The size of the considered prime-order subgroup must
be large enough to resist Pollard’s rho attacks, and pn must be large enough to
resist NFS attacks.

In pairing-based cryptography, the security relies on the difficulty of the
discrete logarithm problem in elliptic curves, and in finite fields of the form Fqn ,
where n is small (mostly n ≤ 20). The table [12, Tab. 1.1] lists the available
choices of elliptic curve and finite field sizes to balance the security on both
sides. Due to recent progress in attacks on discrete logarithms in finite fields of
small characteristic, it is also common to assume that q is prime, so that NFS
is also to be considered as an attack to be resisted.

Expressing the complexity of subexponential methods is done using the L-
function. If α ∈ [0, 1] and c > 0 are two constants, we set

LQ(α, c) = exp
(
(c + o(1))(log Q)α(log log Q)1−α

)
,

and simply write LQ(α) if the constant c is not made explicit.
It was proven in [16] that the complexity of DLP in the medium an large char-

acteristic case is LQ(1/3, c). This ended proving that the complexity of DLP for
every finite field of cardinality Q is LQ(1/3, c). The constant c depends on the size
of the characteristic p with respect to Q. It is customary to write p = LQ(α, c)
and to classify the different cases as follows: p is said to be small if α < 1/3,
medium if 1/3 < α < 2/3 and large if 2/3 < α. In this article, we target non-
small characteristic finite fields, for which the state-of-art algorithm is the Num-
ber Field Sieve (NFS) and where the quasi polynomial time algorithm [2] does
not apply. Schirokauer [30] studied the family of fields Fpn for which n is con-
stant when p goes to infinity, and obtained the same complexity as in the prime
case LQ(1/3, 3

√
64/9). The variants of the algorithm by Joux, Lercier, Smart

and Vercauteren [16] have complexity LQ(1/3, 3
√

64/9) for fields of large char-
acteristic, and LQ(1/3, 3

√
128/9) in medium characteristic. A Coppersmith-like

variant [3] has a complexity of LQ(1/3, 3
√

(92 + 26
√

13)/27) in large characteristic,
and LQ(1/3, 3

√
213/36) in medium characteristic. The situation is more complex

in the boundary case, i.e. when p = LQ(2/3), having a complexity LQ(1/3, c)
with c varying between 16/9 and 3

√
213/36 [3]. Finally, if the characteristic p has

a special form, i.e. can be written as p = P (m), for an integer m ≈ p1/ deg P and
a polynomial P ∈ Z[x] of small degree and with small coefficients, then a faster
variant of NFS is available [18].

In practice, the boundary between the medium and large characteristic cases
is determined by direct timing of each variant of NFS, for each pair (�log p�, n).
A series of record computations were realized using the medium characteristic
variant [17, Table 8.], but to our knowledge no computations have been done in
non-prime fields using the large characteristic variant of NFS.

In this article, we propose two new methods to select polynomials for NFS
in the context of discrete logarithms in non-prime finite fields: the Generalized
Joux–Lercier (GJL) method and the Conjugation (Conj) method.

We prove the following result in Section 4.
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Theorem 1. Let FQ, with Q = pn be a finite field of characteristic p. Assuming
the usual heuristics on smoothness of algebraic numbers, made in the analysis
of the Number Field Sieve algorithm, we get the following time complexities for
computing a discrete logarithm in FQ, depending on the polynomial selection
method and the size of p compared to Q:

1. (Large prime case). Assuming p ≥ LQ

(
2/3, 3

√
8/3

)
, NFS with the General-

ized Joux–Lercier method has complexity

LQ

(
1/3, 3

√
64/9

)
.

2. (Medium prime case). Assuming p = LQ(α) for 1/3 < α < 2/3, NFS with
the Conjugation method has complexity

LQ

(
1/3, 3

√
96/9

)
.

3. (Boundary case). Assuming p = LQ(2/3, 121/3)1+o(1), NFS with the Conju-
gation method has complexity

LQ

(
1/3, 3

√
48/9

)
.

This improves on the previously known complexities in the medium charac-
teristic case, and in the boundary case where p is around LQ(2/3).

When the characteristic is large, we improved on the known method of the
polynomial selection (Proposition 5), but our gain is hidden in the 1 + o(1)
exponent of the complexity formula. It led us to do a more precise analysis
for sizes around the limit of what seems feasible with current and near future
technology, and for extension degrees between 2 and 6. This suggests that our
polynomial selection methods behave better than expected for small extension
degrees.

In order to illustrate this, we implemented our methods and ran a discrete
logarithm computation in a finite field of the form Fp2 , where p has 90 decimal
digits. With the Conjugation method, we were able to perform this in a time
that is smaller than what is needed to factor an integer of 180 decimal digits.

Outline. The paper is organized as follows. In Section 2 we make a short pre-
sentation of the number field sieve. In Section 3 we present two new methods
of polynomial selection for NFS. We measure their asymptotic complexity, thus
proving Theorem 1, and derive non-asymptotic cost estimates for small degree
extensions in Section 4. After discussing some further improvements in Section 5,
we detail a record computation in Fp2 obtained with our algorithm in Section 6.

2 Sketch of the Number Field Sieve

Let us sketch the variant of NFS, the state-of-art algorithm used to compute
discrete logarithms in any finite field Fpn with non-small characteristic.
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In the first stage, called polynomial selection, two polynomials f, g in Z[x] are
constructed (we assume that deg f ≥ deg g), such that their reductions modulo p
have a common irreducible factor ϕ ∈ Fp[x] which is irreducible of degree n. This
polynomial ϕ defines Fpn over Fp, and does not impact the complexity of NFS.
We will use it in the final part of the algorithm, the individual logarithm stage
(see below), to embed the input element, whose discrete logarithm is requested,
into our representation Fpn = Fp[x]/〈ϕ〉.

Essentially, we impose no additional comdition on f and g. During this pre-
sentation we will consider the number fields of f and g, meaning that the two
polynomials are irreducible, but everything works the same if we replace them
by their irreducible factors over Z which are divisible by ϕ modulo p. Far more
important is the fact that we do not make the classical assumption that f and g
are monic. Indeed, the NFS algorithm can be modified to work with non-monic
polynomials by adding factors of the leading coefficient to the factor base and by
implementing carefully the decompostion of algebraic numbers into prime ideals.
This was known in the folklore of NFS for a long time now and was also written
more or less explicitly in the literature of NFS [16,20] where non-monic polyno-
mials are used. A recent description of this technicalities is made in Section 6.5
of [4]. CADO-NFS accepts non-monic polynomials as an input, which allowed
us to do experiments with our polynomials.

Let α and β be algebraic numbers such that f(α) = 0 and g(β) = 0 and let
m be a root of ϕ in Fpn , allowing us to write Fpn = Fp(m). Let Kf and Kg

be the number fields associated with f and g respectively, and Of and Og their
rings of integers. In the algorithm, we consider elements of Z(α) and Z(β) as
polynomials in α and β respectively, which are in general not integers. However,
the only denominators that can occur are divisors of the leading coefficients of
the polynomials f and g that we denote respectively by l(f) and l(g).

For the second stage of NFS, called relation collection or sieving, a smooth-
ness bound B is chosen and we consider the two factor bases

Ff =
{

prime ideals q in Of of norm less than B
or above prime factors of l(f)

}
,

Fg =
{

prime ideals q in Og of norm less than B
or above prime factors of l(g)

}
.

An integer is B-smooth if all its prime factors are less than B. For any polynomial
φ(x) ∈ Z[x], the algebraic number φ(α) (resp. φ(β)) in Kf (resp. Kg) is B-
smooth if Res(f, φ) (resp. Res(g, φ)) is the product of a B-smooth integer and
of a product of factors of l(f) (resp. l(g)). In that case, due to the equation

N (φ(α)) = ±l(f)− deg φ Res(f, φ),

the fractional ideal φ(α)Of decomposes into a product of ideals of Ff , with
positive or negative exponents.

In the sieve stage, one collects #Ff + #Fg polynomials φ(x) ∈ Z[x] with
coprime coefficients and degree at most t − 1, for a parameter t ≥ 2 to be
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chosen, such that Res(f, φ) and Res(g, φ) are B-smooth. Since both φ(α) and
φ(β) are B-smooth, we get relations of the form:

{
φ(α)Of =

∏
q∈Ff

qvalq(φ(α))

φ(β)Og =
∏

r∈Fg
rvalr(φ(β)).

Each relation allows us to write a linear equation among the (virtual) logarithms
of the ideals in the factor base. In this article we hush up the technical details
related to virtual logarithms and Schirokauer maps, but the reader can find a
detailed description in [5,16,31].

The norm of φ(α) (resp. of φ(β)) is the product of the norms of the ide-
als in the right hand side and will be bounded by the size of the finite field
(pn)max(deg f,deg g) (this is a very crude estimate; refining it is the heart of the
complexity analysis of Section 4); therefore the number of ideals involved in a
relation is less than log2(pn)O(1). One can also remark that the ideals that can
occur in a relation have degrees that are at most equal to the degree of φ, that is
t−1. Therefore, it makes sense to include in Ff and Fg only the ideals of degree
at most t − 1 (for a theoretical analysis of NFS one can maintain the variant
without restrictions on the degree of the ideals in the factor base).

In order to estimate the probability that a random polynomial φ with given
degree and size of coefficients gives a relation, we make the common heuristic
that the integer Res(φ, f) · Res(φ, g) has the same probability of B-smoothness
as a random integer of the same size. Therefore, reducing the expected size of
this product of norms is the main criterion when selecting the polynomials f
and g.

In the linear algebra stage, we consider the homogeneous linear system
obtained after the sieve. We make the usual heuristic that this system has a space
of solutions of dimension one. Since the system is sparse (at most (log2(pn))O(1)

non-zero entries per row), an iterative algorithm like (block) Wiedemann [10,33]
is used to compute a non-zero solution in quasi-quadratic time. This gives the (vir-
tual) logarithms of all the factor base elements.

In principle, the coefficient ring of the matrix is Z/(pn −1)Z, but it is enough
to solve it modulo each prime divisor � of pn − 1 and then to recombine the
results using the Pohlig–Hellman algorithm [27]. Since one can use Pollard’s
method [28] for small primes �, we can suppose that � is larger than Lpn(1/3).
Since � is large, we may assume that � is coprime to Disc(f), Disc(g), the class
numbers of Kf and Kg, and the orders of the roots of unity in Kf and Kg. These
assumptions greatly simplify the theory, but again, we do not elaborate on the
mathematical aspects of the algorithm since the improvements that we discuss
in this article do not affect them.

In the last stage of the algorithm, called individual logarithm, the discrete log-
arithm of any element z =

∑n−1
i=0 zim

i of Fpn in the finite field is computed. For
this, we associate z with the algebraic number z =

∑n−1
i=0 ziα

i in Kf and check
whether the corresponding principal ideal factors into prime ideals of norms
bounded by a second bound B′ larger than B. We also ask the prime ideals to
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be of degree at most t − 1. If z does not satisfy these smoothness assumptions,
then we replace z by ze for a randomly chosen integer e and try again. This
allows us to obtain a linear equation similar to those of the linear system, in
which one of the unknowns is log z. The second step of the individual logarithm
stage consists in obtaining relations between a prime ideal and prime ideals of
smaller norm, until all the ideals involved are in Ff or Fg. This allows us to
backtrack and obtain log z.

3 New Methods for Selecting Polynomials

In this section, we propose two new methods to select the polynomials f and g,
in the case of finite fields that are low degree extensions of prime fields. For any
polynomial g, we denote by ||g||∞ the maximum absolute value of its coefficients.
The first method is an extension to non-prime fields of the method used by Joux
and Lercier [15] for Fp. In the second one, we use rational reconstruction and
the existence of some square roots in Fp.

All the constructions that follow use either LLL reduction [22] or simple
rational reconstruction (also known as the continued fraction method), see for
example [8]. It allows us to write any residue a modulo a prime p as

a ≡ u/v mod p

with u, v ≤ c
√

p for some constant c. If one computes the rational reconstruction
using LLL in dimension two, then one can show that it always succeeds if c is a
large enough explicit constant. In practice we might want two different rational
reconstructions a ≡ u1/v1 ≡ u2/v2 mod p. In this case we cannot make any
proof on the size of u2 and v2, but they can be small.

For ease of reading, f is supposed to have degree greater than or equal to
that of g. Although the polynomial ϕ(x) that defines Fpn as Fp[X]/〈ϕ(x)〉 does
not occur explicitly in the computations, we sometimes give it along with the
pair (f, g).

3.1 State of the Art

Joux, Lercier, Smart and Vercauteren [16] introduced two methods of polynomial
selection in non-prime fields which are the only option for their respective range
of application: medium characteristic and, respectively, large characteristic finite
fields.

JLSV1. In Algorithm 1 we recall the method introduced in [16, §2.3]. This
method is best suited to the medium characteristic case. It produces two poly-
nomials f and g of the same degree n, which have coefficients of size O(

√
p)

each.

Example 1. Take p = 1000001447, n = 4, and a = 44723 ≥ �√p. One has
f = (x4 − 6x2 + 1) − 44723(x3 − x) and g = 22360(x4 − 6x2 + 1) − 4833(x3 − x)
with u/v = 4833/22360 a rational reconstruction of a modulo p.
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Algorithm 1. Polynomial selection with the first method in [16] (JLSV1)
Input: p prime and n integer
Output: f, g, ϕ with f, g ∈ Z[x] irreducible and ϕ = gcd(f mod p, g mod p) in

Fp[x] irreducible of degree n
1 Select f1(x), f0(x), two polynomials with small integer coefficients,

deg f1 < deg f0 = n ;
2 repeat
3 choose a ≥ �√p�;
4 until f = f0 + af1 is irreducible in Fp[x];
5 (u, v) ← a rational reconstruction of a modulo p ;
6 g ← vf0 + uf1 ;
7 return (f, g, ϕ = g mod p)

JLSV2. In Algorithm 2 we reproduce the method described in [16, §3.2]. We
denote by LLL(M) the matrix obtained by applying the LLL algorithm to the
rows of a matrix M with integer coefficients.

Algorithm 2. Polynomial selection with the second method in [16]
(JLSV2)
Input: p prime, n integer and D ≥ n integer
Output: f, g, ϕ with f, g ∈ Z[x] irreducible and ϕ = gcd(f mod p, g mod p) in

Fp[x] irreducible of degree n
1 Choose some monic polynomial g0(x) of degree n with small integer coefficients ;

2 Choose an integer W ≈ p1/(D+1), but slightly larger, and set
g(x) = g0(x + W ) = c0 + c1x + · · · + xn ;

3 Reduce the rows of the following matrix using LLL

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p

. . .

p
c0 c1 · · · 1

. . .
. . .

. . .

c0 c1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎬

⎪⎭
deg ϕ = n

⎫
⎪⎬

⎪⎭
D + 1 − n

, to get LLL(M) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0 f1 · · · fD

∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

4 return (f = fDxD + · · · + f0, g, ϕ = g mod p)

Proposition 1. The coefficients of the polynomial f in Algorithm 2 have
approximate size Q1/(D+1).

Proof. By construction, |c0| ≈ Wn ≈ Q1/(D+1). Since c was chose so that cn = 1,
we get det(M) = pn. The first row of LLL(M) gives a polynomial f of degree at
most D which is divisible by g modulo p. The coefficients of f are of approximate
size (det M)1/(D+1). It is = pn/(D+1) = Q1/(D+1) if we assume that the dimension
D + 1 stays small.
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We can have deg(f) = D for any value of D ≥ n. We may want to take
D = n for some real-life cases, so that f and g are of degree n; moreover we take
ϕ ≡ g mod p. We give such an example here.

Example 2. Consider again the case of p = 1000001447 and n = 4 this time.
We take g0 to be a polynomial of degree four and small coefficients, for example
g0 = x4 + x3 + x2 + x + 1. We use W0 = 64 ≥ p1/(D+1) and we set

g = g0(x + W0) = x4 + 257x3 + 24769x2 + 1060993x + 17043521.

We construct the lattice of integer polynomials of degree at most 4 which are
divisible by g modulo p. Since D = n we are here in a particular case where the
lattice corresponds to the line of multiples of g by elements of Fp. We obtain

f = 7791770x4 + 2481996x3 − 5928141x2 + 1465261x + 3462017 .

Note that f and g have coefficients of size p4/5 = Q1/5.

3.2 The Generalized Joux–Lercier (GJL) Method1

Joux and Lercier proposed a method in [15] to select polynomials in the context
of prime fields. In Algorithm 3 we generalize their method so that it applies to
any finite field.

Algorithm 3. Polynomial selection with the generalized Joux–Lercier
method (GJL)
Input: p prime, n integer and d ≥ n integer
Output: f, g, ϕ with f, g ∈ Z[x] irreducible and ϕ = gcd(f mod p, g mod p) in

Fp[x] irreducible of degree n
1 Choose a polynomial f(x) of degree d + 1 with small integer coefficients which

has a monic irreducible factor ϕ(x) = ϕ0 + ϕ1x + · · · + xn of degree n modulo p ;
2 Reduce the following matrix using LLL

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p

. . .

p
ϕ0 ϕ1 · · · 1

. . .
. . .

. . .

ϕ0 ϕ1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎬

⎪⎭
deg ϕ = n

⎫
⎪⎬

⎪⎭
d + 1 − n

to get LLL(M) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

g0 g1 · · · gd

∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

3 return (f, g = g0 + g1x + · · · + gdx
d, ϕ)

1 Recently, (February 2015), D. Matyukhin informed us that he proposed the same
polynomial selection method for his algorithm of discrete logarithm [24], published
in Russian.
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In the prime field case, where n = 1, GJL goes as follows. One starts with
a polynomial f of degree d + 1 with small coefficients such that f admits a
factor ϕ of degree one, or equivalently a root m modulo p. Then, a matrix
M is constructed whose rows correspond to the lattice of polynomials in Z[x]
of degree at most d, that also admit m as a root modulo p. We reduce this
matrix with LLL and obtain g from the first row of LLL(M). Note that one
can transform M into M ′ in Equation (1) by linear combinations on the rows.
Hence, LLL(M) = LLL(M ′), so GJL and the original method of Joux–Lercier
obtain the same polynomial g.

M =

⎡

⎢
⎢
⎢
⎣

p 0 · · · 0
−m 1 0 0

...
. . .

. . . 0
0 · · · −m 1

⎤

⎥
⎥
⎥
⎦

, M ′ =

⎡

⎢
⎢
⎢
⎣

p 0 · · · 0
−m 1 0 0

...
. . .

. . . 0

−md · · · 0 1

⎤

⎥
⎥
⎥
⎦

, (1)

The following result is proved in the same way as Proposition 1.

Proposition 2. The coefficients of the polynomial g in Algorithm 3 have
approximate size Q1/(d+1).

Remark 1. By considering a smaller matrix, it is possible to produce a polyno-
mial g whose degree is smaller than d = deg f − 1. This does not seem to be a
good idea. Indeed, the size of the coefficients of g would be the same as the coef-
ficients of a polynomial obtained starting with a polynomial f with coefficients
of the same size but of a smaller degree (d or less).

Example 3. We keep p = 1000001447 and n = 4 (see Ex. 2). We choose d = n =
4, f = x5 + x4 − 7x3 + 4x2 + x + 1 of degree 5. Then f factors modulo p and
has a degree four factor ϕ = x4 + 234892989x3 + 208762833x2 + 670387270x +
109760434. We construct the lattice of polynomials of degree at most 4 which
are divisible by ϕ modulo p. Reducing it, we obtain

g = 8117108x4 + 1234709x3 + 9836008x2 − 1577146x + 7720480 .

The polynomial f has coefficients of size O(1); g of size O(p4/5). More precisely,
log2 p = 30 and log2 ||g||∞ = 24 = 4/5 log2 p.

3.3 The Conjugation Method

Roughly speaking, the aim of polynomial selection is to produce two polynomials
f, g such that the norm of f , resp. g evaluated at some algebraic integer a−bα (or
φ(α)) is minimal, with respect to the size of a and b (see Sec. 2). This means, the
degrees of f and g need to stay small but also the size of their coefficients. The
previous method GJL was focused on minimizing the degrees of both f and g to
e.g. n and n+1. Here we set f with a higher degree: 2n instead of n+1, so that
the size of the coefficients of g is always O(

√
p). We cannot achieve a so small
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coefficient size for g with the GJL method. We show in Sec. 4.4 that despite the
higher degree of f , this method is better in practice than any other one when
n = 2, 3 and p is more than 660 bits, and in particular for cryptographic sizes.

Let us give the idea of our method. We first carefully select f of degree
2n, irreducible over Z, and so that it factors into two irreducible conjugate
polynomials ϕ and ϕ over some quadratic extension of Q. If we can embed this
quadratic extension in Fp, we end up with two irreducible factors of f modulo
p. Because of our judicious choice of f with two conjugate factors, we obtain g
whose coefficients have size O(

√
p) using rational reconstruction. We give a first

example in Ex. 4 to clarify what we have in mind.
We start with two examples, and then give the general construction.

Example 4. We target Fp4 with p = 1000010633 and n = 4. We try integers a =
−2,−3, . . . until a is a square but not a fourth power in Fp. We find a = −9. We
set f = x8−a = x8+9 which is irreducible over Z. Observe that by construction,
f has two degree 4 conjugate irreducible factors f = (x4 −√

a)(x4 +
√

a). We set
ϕ = x4 − √

a which, due to the choice of a, belongs to Fp[x] and is irreducible.
We continue by computing a rational reconstruction (u, v) of

√
a modulo p:

u · v−1 ≡ √
a mod p; here u = −58281 and v = 24952. Finally we set g =

vx4 − u = 24952x4 + 58281 of norm ||g||∞ ∼ √
p. Note that we respect the

condition ϕ = gcd(f mod p, g mod p).

In the previous example, the prime p was given and we searched for a param-
eter a, or equivalently for a polynomial f = x8 − a. It turns out that some poly-
nomials f have very good sieving properties and we would like to use them for
many primes p. In this case, we can reverse the process and start with a given
f , while expecting to succeed in only a fraction of the cases.

Example 5. We want to use f = x4 + 1. We target Fp2 for p ≡ 7 mod 8 prime.
Note that f(x) = (x2 +

√
2x + 1)(x2 − √

2x + 1) over Q(
√

2). Since 2 is a square
modulo p, we take ϕ = x2 +

√
2x + 1 ∈ Fp[x] and note that ϕ is a factor of

f modulo p. Now, by rational reconstruction of
√

2 in Fp, we can obtain two
integers u, v ∈ Z such that u

v ≡ √
2 mod p, and u and v have size similar to

√
p.

We define g = vx2 + ux + v. Then f and g share a common irreducible factor of
degree 2 modulo p, and satisfy the degree and size properties given in Prop. 3.

Although the technique in the second example is more interesting in practice,
it is the construction in the first example that can be made general, as given
in Algorithm 4. Under reasonable assumptions, this algorithm terminates and
finds pairs of polynomials f and g with the claimed degree and size properties
for any extension field Fpn .

Proposition 3. The polynomials (f, g) returned by Algorithm 4 satisfy the fol-
lowing properties

1. f and g have integer coefficients and degrees 2n and n respectively;
2. the coefficients of f have size O(1) and the coefficients of g are bounded by

O(
√

p);
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Algorithm 4. Polynomial selection with the Conjugation method (Conj)
Input: p prime and n integer
Output: f, g, ϕ with f, g ∈ Z[x] irreducible and ϕ = gcd(f mod p, g mod p) in

Fp[x] irreducible of degree n
1 repeat
2 Select g1(x), g0(x), two polynomials with small integer coefficients,

deg g1 < deg g0 = n ;
3 Select μ(x) a quadratic, monic, irreducible polynomial over Z with small

coefficients ;

4 until μ(x) has a root λ in Fp and ϕ = g0 + λg1 is irreducible in Fp[x];
5 (u, v) ← a rational reconstruction of λ ;
6 f ← ResY (μ(Y ), g0(x) + Y g1(x)) ;
7 g ← vg0 + ug1 ;
8 return (f, g, ϕ)

3. f and g have a common irreducible factor ϕ of degree n over Fp.

Proof. The polynomial f is the resultant of two bivariate polynomials with inte-
ger coefficients. Using classical properties of the resultant, f can be seen as the
product of the polynomial g0(x) + Y g1(x) evaluated in Y at the two roots of
μ(Y ), therefore its degree is 2n. Since all the coefficients of the polynomials
involved in the definition of f have size O(1), and the degree n is assumed to be
“small”, then the coefficients of f are also O(1). For the size of the coefficients
of g, it follows from the output of the rational reconstruction of λ in Fp, which is
expected to have sizes in O(

√
p). The polynomials f and g are suitable for NFS

in Fpn , because both are divisible by ϕ = g0+λg1 modulo p, and by construction
ϕ is irreducible of degree n.

In the example above (Ex. 5), for Fp2 with p ≡ 7 mod 8, Algorithm 4 was
applied with g1 = x, g0 = x2 + 1 and μ = x2 − 2. One can check that f =
ResY (Y 2 − 2, (x2 + 1) + Y x) = x4 + 1.

In the following section, an asymptotic analysis shows that there are cases
where this Conjugation method is more interesting than JLSV1 and that GJL is
competitive with JLSV2; furthermore, the new methods are also well-suited for
small degree extensions that can be reached with current implementations.

4 Complexity Analysis

In this section we prove Theorem 1 that we stated in the Introduction.

4.1 Preliminaries

As introduced in Section 2, the parameter t denotes the number of terms of the
polynomials in the sieving domain, i.e. deg φ = t − 1, and B is the smoothness
bound. We call E the square root of the number of sieved polynomials, i.e. the
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coefficients of φ belong to the interval [−E2/t, E2/t]. Kalkbrener’s bound [19,
Corollary 2] states that, for any polynomials f and φ,

|Res(f, φ)| ≤ κ(deg f,deg φ)||f ||deg φ
∞ ||φ||deg f

∞ ,

where κ(n,m) =
(
n+m

n

)(
n+m−1

n

)
. For two polynomials f and g we write κ(f, g)

for κ(deg f,deg g). Hence, we obtain a bound on the product of the norms:

|Res(f, φ)Res(g, φ)| ≤ κ(f, φ)κ(g, φ)||φ||deg f+deg g
∞ (||f ||∞||g||∞)deg φ. (2)

A simple upper bound for κ(n,m) is (n + m)!:

|Res(f, φ)Res(g, φ)| ≤
≤ (deg f + deg φ)!(deg g + deg φ)!(||f ||∞||g||∞)t||φ||deg f+deg g

∞
≤ (deg f + t − 1)!(deg g + t − 1)!(||f ||∞||g||∞)t−1E2(deg f+deg g)/t.

In what follows we respect make sure that the degrees of our polynomials
satisfy: deg f + deg g + t = O(1)max

(
(log Q)1/3, n

)
. Writing p = LQ(α) with

α > 1/3, we obtain n = O(1)(log Q)1−α/(log log Q)1−α. Then, we have (deg f +
t−1)!(deg g + t−1)! = LQ(max(1−α, 1/3)), whereas our estimates for the right
hand side will have a size LQ(2/3). This allows us to use the estimation

max
φ in sieving domain

|Res(f, φ)Res(g, φ)| ≈ (||f ||∞||g||∞)t−1E2(deg f+deg g)/t. (3)

Since the number of sieved polynomials is E2, the cost of the sieve is E2+o(1).
Independently of the choice of the polynomials f and g, the cardinality of the
factor base is B1+o(1), and using the (block) Wiedemann algorithm [10,33], the
cost of the linear algebra is B2+o(1). Hence, we set E = B and, since we expect
an algorithm of complexity LQ(1/3), the two are equal to LQ(1/3, β)

E = B = LQ(1/3, β)

for a constant β to be found.
We make the common heuristic that the product of the resultants of the

polynomials φ in the sieving domain with f and g has the same probability to
be B-smooth as a random integer of the same size; we denote this probability
by P. Since the cost of the sieve is BP−1 and, at the same time E2+o(1), we find
the equation

B = P−1. (4)

4.2 The Generalized Joux–Lercier Method

We are now ready to prove the first part of Theorem 1. Using GJL, one constructs
two polynomials f and g such that, for a parameter d ≥ n, we have deg f = d+1,
deg g = d, ||g||∞ ≈ Q1/(d+1) and ||f ||∞ of size O(1).

The GJL polynomials have the same degree and coefficient size as those
obtained in [15] for prime fields. Hence, we make the same choices for parameter
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t, i.e. we sieve on linear polynomials. Also, we take d of roughly the same size,
i.e. d = δ ((log Q)/(log log Q))1/3, which we inject in Equation (3):

maxφ (|Res(f, φ)Res(g, φ)|) ≈ ||f ||∞||g||∞Edeg f+deg g,
≈ Q1/(d+1)E2d+1.

With the L-notation, we obtain

|Res(f, φ)Res(g, φ)| ≤ LQ

(
2/3, δβ +

2
δ

)
.

Using the Canfield–Erdös–Pomerance theorem [7], we obtain

P = 1/LQ

(
1/3,

δ

3
+

2
3βδ

)
.

The equality P−1 = B imposes

β =
δ

3
+

2
3βδ

.

The optimal value of δ is the one which minimizes the expression on the right
hand side, so we take δ =

√
2/β and we obtain β = 2/3

√
2/β, or equivalently

β = 3
√

8/9. Since the complexity of NFS is (E2 + B2)1+o(1) = LQ(1/3, 2β), we
obtain the complexity given in Theorem 1.

The range of application of GJL is determined by the condition n ≤ d.
This is true for all fields of large characteristic. In the boundary case, since

d = δ/2
(

log Q
log log Q

)1/3

with δ =
√

2/β = 3
√

3, the GJL method applies only to
those fields Fpn such that

p ≥ LQ

(
2/3, 3

√
8/3

)
.

This concludes the proof of the first part of Theorem 1.

4.3 The Conjugation Method

Recall that the Conjugation method allows us to construct two polynomials f
and g such that deg f = 2n, deg g = n, ||g||∞ ≈ Q1/(2n) and ||f ||∞ = O(1).
When introduced in Equation (3), these values give

|Res(φ, f)Res(φ, g)| ≤
(
E6n/tQ(t−1)/2n

)1+o(1)

. (5)

We study first the case of medium characteristic and then the boundary case
between medium and large characteristic.
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The Case of Medium Characteristic. The Conj polynomials are similar to
the ones in [16] obtained using JLSV1, so we choose parameters of the same type
as in [16] and set

t = ctn

(
log Q

log log Q

)−1/3

.

Using E = B = LQ(1/3, β) in Equation (5), the product of the two resultants
has norm LQ(2/3, 6β/ct+ct/2). Due to the Canfield–Erdös–Pomerance theorem,
the probability that a polynomial φ in the sieving domain has B-smooth resul-
tants is

P = 1/LQ

(
1/3,

2
ct

+
ct

6β

)
.

We choose ct = 2
√

3β in order to optimize this probability:

P = 1/LQ

(
1/3, 2/

√
3β

)
.

From the condition P−1 = B, we have β = 3
√

4/3, and we obtain the second
result in Theorem 1.

The Boundary Case. For every constant cp > 0, we consider the family of
finite fields Fpn such that

p = Lpn(2/3, cp)1+o(1).

We will take parameter t (Section 2) to be a constant in this analysis. Then
the probability that a polynomial φ in the sieving domain has B-smooth resul-
tants is

P = 1/LQ

(
1/3,

2
cpt

+
cp(t − 1)

6β

)
.

The condition P−1 = B leads to 2
cpt + cp(t−1)

6β = β, or equivalently to β =
1

cpt +
√

1
(cpt)2 + 1

6cp(t − 1).
This completes the proof of the following result.

Proposition 4. When log Q goes to infinity and p satisfies the condition p =
LQ(2/3, cp), the complexity of NFS with the Conjugation method is:

LQ

(

1/3,
2

cpt
+

√
4

(cpt)2
+

2
3
cp(t − 1)

)

.

In Figure 1 we have plotted the complexities of Proposition 4, together with
GJL and the Multiple number field sieve variant of [3].2 There are some ranges
of the parameter cp where the Conjugation method is the fastest and a range
where the GJL method is optimal. The best case for NFS with Conjugation
polynomials corresponds to cp = 121/3 ≈ 2.29 and t = 2. In this case we get the
third result in Theorem 1.
2 Thanks to Cécile Pierrot who pointed to us that this figure was inexact in an earlier

variant of the manuscript.
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Fig. 1. The complexity of NFS for fields Fpn with p = Lpn(2/3, cp) is Lpn(1/3, c)

4.4 Non-asymptotic Comparisons for Small Extension Degrees

Let us make a practical (as opposed to asymptotic) analysis of the four methods
in our arsenal:

– the methods of Joux, Lercier, Smart and Vercauteren: JLSV1 and JLSV2.
– the generalized Joux–Lercier method, GJL; to indicate the value of the

parameter d we sometimes write GJL-(d + 1, d).
– the Conjugation method, Conj.

We do not include Schirokauer’s variant in our study since it is very different
in nature, requiring to sieve on polynomials with coefficients in small degree
extensions of Q.

The complexity analysis that was presented earlier in this section gives hints,
but does not allow us to choose the best method. For example, if one wants to
compute discrete logarithms in finite fields FQ of constant bitsize, i.e. log2 Q ≈
const, then JLSV1 and Conj are competitive when p is smaller (medium prime
case), whereas JLSV2 and GJL are better when p is larger (large characteristic
case). Also, we expect the choice t = 2 to be optimal when p is large, whereas we
might consider sieving on non-linear polynomials, i.e. t ≥ 3, for smaller values
of p.

Table 1 summarizes the properties of the polynomials obtained with each
method.

Although JLSV2 was the state-of-art for the non-prime fields of large char-
acteristic, it is now beaten either by GJL or by JLSV1:
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Table 1. Summary of the sizes of the norms product corresponding to various methods.
Here FQ, Q = pn, is the target field, d and D are parameters in the polynomial selection
stage and E is the sieve parameter.

method deg f deg g ||f ||∞ ||g||∞ product of norms

Conj 2n n O(1) Q1/(2n) E6n/tQ(t−1)/(2n)

GJL d + 1 d ≥ n O(1) Q1/(d+1) E2(2d+1)/tQ(t−1)/(d+1)

JLSV1 n n Q1/(2n) Q1/(2n) E4n/tQ(t−1)/n

JLSV2 D ≥ n n Q1/(D+1) Q1/(D+1) E2(D+n)/tQ2(t−1)/(D+1)

Proposition 5. Let n, t,D be integers with n, t ≥ 2 and D ≥ n, and let E and
Q be positive real numbers. Then the quantity (En+D)2/t(Q2/(D+1))t−1 is either
larger than (E2n)2/t(Q1/n)t−1 or we can select d ≥ n so that it is larger than
(E2d+1)2/t(Q1/(d+1))t−1.

Proof. Case D ≥ 2n. We set d = �D/2� and we use GJL with this param-
eter. On the one hand we have 2(�D/2� + 1) ≥ D + 1, so (Q2/(D+1))t−1 ≥
(Q1/(d+1))t−1. On the other hand, we have n+D ≥ 1+(D+1) ≥ 1+(2�D/2�+1),
so (En+D)2/t ≥ (E2d+1)2/t.

Case n ≤ D ≤ 2n−1. On the one hand we have D+n ≥ 2n, so (En+D)2/t ≥
(E2n)2/t. On the other hand, 2/(D + 1) ≥ 1/n, so (Q2/(D+1))t−1 ≥ (Q1/n)t−1.

In order to compare the remaining candidates we need to plug numerical
values into Equation (2). The parameter E is hard to determine, and depends
on the polynomials which are used. For example, better polynomials allow us to
sieve less and hence to use a smaller value of E. Luckily, the difference between
the various values of E are not very large and, when one method is considerably
better than another, an approximate value of E is enough for the comparison.
Another bias we are aware of is that for norm products of similar sizes, a method
that provides norms that are well-balanced should be better than if the norm
on one side is much larger than the norm on the other side. Therefore, when
the differences between methods are small, we cannot decide by looking only at
the size of the norm product. Table 2 lists the values of E with respect to the
cardinality Q of the target field, obtained from the default parameters of the
CADO factoring software [1] up to log10 Q = 220 and extrapolated afterwards.
But these values should not be taken too seriously in order to derive security
parameters. The goal is only to investigate the relative performances of the
various methods of polynomial selection for sizes where it is currently too costly
to do experiments.

We considered several values of parameters d and t = deg φ + 1. As the
asymptotic analysis predicts for the case of large characteristic (small degree),
our results showed that the choice t = 2 is optimal for n = 2, 3, 4, 5. Since, in
addition, the comparison goes in a similar manner for each value of parameter t,
we focus on the case t = 2. We make an exception to this rule for n = 6, where
the choice t = 3 is optimal for some ranges of log10 Q.
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Table 2. Practical values of E for Q from 100 to 300 decimal digits(dd)

Q(dd) 100 120 140 160 180 200 220 240 260 280 300
Q(bits) 333 399 466 532 598 665 731 798 864 931 997

E(bits) 20.9 22.7 24.3 25.8 27.2 28.5 29.7 30.9 31.9 33.0 34.0

In Table 3 we expand the formula of Equation (3) for t = 2 and n =
2, 3, 4, 5, 6. Note also that we list several values for the parameter d of GJL
since it cannot be fixed by asymptotic arguments. Using the remark that the
quotient log Q/ log E belongs to the interval [15, 30], we discard some choices,
and mark them with an ⊗. For example, JLSV1 beats GJL-(3, 2) only when
log Q/ log E ≤ 6, which is outside of our range of interest.

4.5 Final Results

The Case n = 2. We draw the curves corresponding to the results in Table 3,
since t = 2 is optimal in this case. From Figure 2, the best choice is to use Conj
polynomials.
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Fig. 2. Polynomials for Fp2

The Case n = 3. Again, it is optimal to sieve on linear polynomials. For smaller
values, i.e. Q of less than 220 decimal digits, we use GJL-(4, 3) polynomials,
whereas for larger fields we switch to Conj, as exemplified in Figure 3.

The Case n = 4. We sieve on linear polynomials as before (t = 2). Here JLSV1

and GJL−(5, 4) offer similar polynomials, see Figure 4.

The Case n = 5. Several methods give polynomials with a norm product of
roughly the same size: Conj with t = 3 and t = 4, GJL−(6, 5) with t = 2 and
t = 3 and, finally JLSV1 with t = 2. All this is demonstrated in Figure 5.



146 R. Barbulescu et al.

Table 3. Size of the product of norms for various methods and associated parameters,
when one sieves on linear polynomials (t = 2). We discard (⊗) the methods which offer
sizes of norms product which are clearly not competitive compared to some other one,
assuming that 15 ≤ log Q/ log E ≤ 30 (Tab. 2).

n method (deg g, deg f) ||f ||∞ ||g||∞ Edeg f+deg g||f ||∞||g||∞ discard

GJL −(3, 2) (3, 2)
O(1)

Q1/3 E5Q1/3

2 GJL −(4, 3) (4, 3) Q1/4 E7Q1/4 ⊗
Conj (4, 2) Q1/4 E6Q1/4

JLSV1 (2, 2) Q1/4 Q1/4 E4Q1/2 ⊗

n method (deg f, deg g) ||f ||∞ ||g||∞ Edeg f+deg g||f ||∞||g||∞ discard

GJL −(4, 3) (4, 3)
O(1)

Q1/4 E7Q1/4

3 GJL −(5, 4) (5, 4) Q1/5 E9Q1/5 ⊗
Conj (6, 3) Q1/6 E9Q1/6

JLSV1 (3, 3) Q1/6 Q1/6 E6Q1/3 ⊗

n method (deg f, deg g) ||f ||∞ ||g||∞ Edeg f+deg g||f ||∞||g||∞ discard

GJL −(5, 4) (5, 4)
O(1)

Q1/5 E9Q1/5

4 GJL −(6, 5) (6, 5) Q1/6 E11Q1/6 ⊗
Conj (8, 4) Q1/8 E12Q1/8 ⊗

JLSV1 (4, 4) Q1/8 Q1/8 E8Q1/4

n method (deg f, deg g) ||f ||∞ ||g||∞ Edeg f+deg g||f ||∞||g||∞ discard

GJL −(6, 5) (6, 5)
O(1)

Q1/6 E11Q1/6

5 GJL −(7, 6) (7, 6) Q1/7 E13Q1/7 ⊗
Conj (10, 5) Q1/10 E15Q1/10 ⊗

JLSV1 (5, 5) Q1/10 Q1/10 E10Q1/5

n method (deg f, deg g) ||f ||∞ ||g||∞ Edeg f+deg g||f ||∞||g||∞ discard

GJL −(7, 6) (7, 6)
O(1)

Q1/7 E13Q1/7

6 GJL −(8, 7) (8, 7) Q1/8 E15Q1/8 ⊗
Conj (12, 6) Q1/12 E18Q1/12 ⊗

JLSV1 (6, 6) Q1/12 Q1/12 E12Q1/6
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Fig. 3. Polynomials for Fp3
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Fig. 4. Polynomials for Fp4

The Case n = 6. When Q is less than 180 decimal digits, the choice is
between GJL−(7, 6) with t = 3 and Conj with t = 4. When Q is larger than
260 decimal digits, the best two methods are Conj with t = 4 and JLSV1 with
t = 2. Between the two ranges, one needs to consider the three methods listed
before. See Figure 6.

5 Additional Improvements

5.1 Improving the Root Properties

In both GJL and Conjugation methods, it is possible to obtain more than one
polynomial g for a given f by taking another choice for the rational reconstruc-
tion, or another vector in the reduced lattice. Hence, we can assume that one
has obtained two distinct reduced polynomials g1 and g2 ∈ Z[x] such that ϕ
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Fig. 5. Polynomials for Fp5
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Fig. 6. Polynomials for Fp6

divides both g1 and g2 in Fp[x]. Any linear combination g = λ1g1 + λ2g2 for
small integers λ1 and λ2 is then suitable for running the NFS algorithm.

The Murphy E value as explained in [25, Sec. 5.2.1, Eq. 5.7 p. 86] is a good cri-
terion to choose between all these g polynomials. In our experiments we searched
for g = λ1g1 +λ2g2 with |λi| < 200 and such that E(f, g) is maximal. In practice
we obtain g with α(g) ≤ −1.5 and E(f, g) improved by 2% up to 30 %.
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5.2 Coppersmith’s Multiple-field Variant

In [9], Coppersmith introduced a variant of NFS in which more than two poly-
nomials are used. This can be applied to essentially all polynomial selection
methods and in particular to the ones mentioned in this article. The base-m
method, which applies only to prime fields, was analyzed by Matyukhin [23].
Recently, it was shown that JLSV1 and JLSV2 can successfully be adapted to
use multiple fields, as demonstrated by [3].

Another important example is the Conjugation method. In Sec. 5.1, we noted
that the same polynomial f can be paired with any of the two polynomials g1
and g2, and that we have gcd(f mod p, g1 mod p, g2 mod p) = ϕ. This fact can
be used to derive a multiple-field variant. It was remarked and analyzed in [26]

and results in a complexity of LQ(1/3, c) with c =
(
8(9 + 4

√
6)/15

)1/3 ≈ 2.156,
in the medium characteristic case.

We have also analyzed a multiple-field variant of the Generalized Joux–
Lercier method. This provides only a marginal improvement in the theoretical
complexity and is not competitive with other methods [3], and therefore we do
not include this analysis here.

5.3 Taking Advantage of Automorphisms

Joux, Lercier, Smart and Vercauteren [16, Section4.3] proposed to speed up
computations in NFS using number field automorphisms. Given a field K and
an irreducible polynomial f ∈ K[x] without multiple roots, a K-automorphism
is a rational fraction A ∈ K(x) such that, for some rational fraction D(x) ∈
K(x), we have f(A(x)) = D(x)f(x). Using the language of Galois theory, a K-
automorphism is an automorphism of the extension (K[x]/〈f〉) /K. Hence, the
automorphisms form a group whose order divides deg f .

It is possible to push further the idea in [16] so that one can use automor-
phisms of both polynomials f and g. An example is given in our record com-
putation described in Section 6 where we used two reciprocal polynomials: this
saves a factor of two in the sieve and a factor of four in the linear algebra.

When a method to select polynomials gives the choice of the first polynomial
f , we can select f in the family of our preference, making possible for example
to have automorphisms. The only obstacle is that we cannot find polynomials
with an automorphism of order n, as required by the results in [16] if deg f is
not a multiple of n.

But in fact some methods allow us to have automorphisms for both polynomi-
als. Indeed, the literature, e.g. [11], offers examples of polynomials g0, g1 ∈ Q[x]
and rational fractions A(x) ∈ Q(x) such that, for any number field K and any
parameter a ∈ K, the polynomial g0 + ag1 admits A as a K-automorphism:

∃Da(x) ∈ K(x), g0(A(x)) + ag1(A(x)) = Da(x) (g0(x) + ag1(x)) .
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Example 6. For g0 = x3 − 3x − 1 and g1 = x2 + x, the rational fraction A =
−(1+1/x) is an automorphism, for any value of parameter a. Indeed, g0(A(x))+
ag1(A(x)) is (x3 + ax2 + (a − 3)x − 1 = (g0(x) + ag1(x))/x3, so D(x) = 1/x3.

We do not study the question of finding such families. Let us instead make a list
of the cases where one or both polynomials can admit automorphisms.

– JLSV1 allows both polynomials to be in a family of type g0 + ag1, with g0
and g1 fixed; we can have automorphisms on both sides.

– JLSV2 allows g to be selected with good properties; since deg g = n, g can
have Q-automorphisms of order n.

– GJL allows f to be selected in the family of our choice; when deg f is divisible
by n, f can have Q-automorphisms of order n.

– Conj allows us to have Q-automorphisms for both polynomials, for the values
of n where families as above can be found. On the one hand, g is chosen
in the family {g0 + ag1}, of automorphism A(x). On the other hand, let
ω be an algebraic number, root of an irreducible degree two polynomial
μ ∈ Q[x], such that f = (g0 + ωg1)(g0 + ωg1). Let Dω ∈ Q(ω)(x) be such
that g0(A(x)) + ωg1(A(x)) = Dω(x)(g0(x) + ωg1(x)). Then, by conjugation
in Q(ω) we have g0(A(x)) + ωg1(A(x)) = Dω(x)(g0(x) + ωg1(x)). When we
multiply, we get

f(A(x)) = (g0(A(x)) + ωg1(A(x))) · (g0(A(x)) + ωg1(A(x)))
= (Dω(x)(g0(x) + ωg1(x))) · (

Dω(x)(g0(x) + ωg1(x))
)

=
(
Dω(x)Dω(x)

)
f(x).

By noting that Dω(x)Dω(x) belongs to Q(x), we conclude that A is a Q-
automorphism for f .

6 Record Computations

6.1 Setup

In order to test how our ideas perform in practice, we did several medium-sized
practical experiments in fields of the form Fp2 . We have decided to choose a
prime number p of 90 decimal digits so that Fp2 has size 180 digits, the current
record-size for Fp. This corresponds to a 600-bit field. To demonstrate that our
approach is not specific to a particular form of the prime, we took the first 90
decimal digits of π. Our prime number p is the next prime such that p ≡ 7 mod 8
and both p + 1 and p − 1 have a large prime factor: p = �π · 1089� + 14905741.

p = 3141592653589793238462643383279502884197169399375105820974\
94459230781640628620899877709223

� = 3926990816987241548078304229099378605246461749218882276218\
6807403847705078577612484713653

p − 1 = 6 · h0 with h0 a 89 digit prime
p + 1 = 8 · �
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We solved the discrete logarithm problem in the order � subgroup. We
imposed p to be congruent to −1 modulo 8, so that the polynomial f(x) = x4+1
could be used. The Conjugation method yields a polynomial g of degree 2 and
negative discriminant:

f = x4 + 1
g = 448225077249286433565160965828828303618362474 x2

− 296061099084763680469275137306557962657824623 x
+ 448225077249286433565160965828828303618362474 .

Since p is 90 digits long, the coefficients of g have 45 digits. The polynomials f
and g have the irreducible factor

ϕ = t2 + 10778151309582301866698988310224439480941229764389534\
9097410632508049455376698784691699593 t + 1

in common modulo p, and Fp2 will be taken as Fp[X]/〈ϕ〉.
This choice of polynomials has several practical advantages. Both f and g

are reciprocal polynomials, so that x �→ 1/x is an automorphism in the sense
of Subsection 5.3. This provides a speed-up by a factor of 2 for the relation
collection and a factor of 4 in the linear algebra, as explained below. Furthermore,
the polynomial f corresponds to a number field Kf with unit rank 1, and a
fundamental unit is given by the fundamental unit of the subfield Q(

√
2). By

construction, 2 is a square modulo p, so that
√

2 belongs to Fp. Then, the image
in Fp2 of the fundamental unit of Kf is actually in Fp and its discrete logarithm
is 0 modulo �. Since the polynomial g corresponds to a number field with unit
rank 0, we do not need Schirokauer maps for this case. Generalizations of this
interesting fact will be explained elsewhere.

6.2 Collecting Relations

The relation collection step was then done using the sieving software of CADO-
NFS [1]. More precisely, we used the special-q technique for ideals q on the
g-side, since it produces norms that are larger than on the f -side. We sieved all
the special-qs between 120, 000, 000 and 160, 000, 000, keeping only one in each
pair of conjugates under the action x �→ 1/x. Indeed, if φ = a − bx gives a
relation for a special-q, then b − ax yields a relation for the conjugate ideal of
this special-q. In total, we computed about 34M relations.

The main parameters in the sieve were the following: we sieved all primes
below 80M on the f -side, and below 120M on the g-side, and we allowed two
large primes less than 229 on each side. The search space for each special-q was
set to 215 × 214 (the parameter I in CADO-NFS was set to 15).

The total CPU time for this relation collection step is equivalent to 157 days
on one core of an Intel Xeon E5-2650 at 2 GHz. This was run in parallel on a
few nodes, each with 16 cores, so that the elapsed time for this step was a few
days, and could easily be made arbitrary small with enough nodes.
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Table 4. Comparison of running time for integer factorization (NFS-IF), discrete log-
arithm in prime field (NFS-DL(p)) and in quadratic field (NFS-DL(p2)) of same global
size 180 dd

Algorithm relation collection linear algebra total

NFS-IF 5 years 5.5 months 5.5 years
NFS-DL(p) 50 years 80 years 130 years
NFS-DL(p2) 157 days 18 days (GPU) 0.5 years

6.3 Linear Algebra

The filtering step was run as usual, but we modified it to take into account the
Galois action on the ideals: we selected a representative ideal in each orbit under
the action x �→ 1/x, and rewrote all the relations in terms of these representatives
only. Indeed, it can be shown that the corresponding virtual logarithms are
opposite modulo �; this amounts just to keep track of sign-change, that has
to be reminded when combining two relations during the filtering, and when
preparing the sparse matrix for the sparse linear algebra step. Since we keep
only half of the columns in the matrix, and assuming a quadratic cost for the
linear algebra step, the x �→ 1/x automorphism saves a factor of 4, as claimed.
The output of the filtering step was a matrix with about 2.7M rows and columns,
having on average 86 non-zero entries per row.

Thanks to our choice of f and g, it was not necessary to add columns with
Schirokauer maps. We used Jeljeli’s implementation of Block Wiedemann’s algo-
rithm for GPUs [13,14]. We used two sequences in parallel, on two independent
NVidia GTX 680 graphic cards. The total running time for this step is equivalent
to around 18.2 days on a single NVidia GTX 680 graphic card.

At the end of the linear algebra we know the virtual logarithms of almost all
prime ideals of degree one above primes of at most 28 bits, and of some of those
above primes of 29 bits. At this point we could test that the logs on the f -side
were correct.

6.4 Computing Individual Logarithms

The last step is that of computing some individual logarithms. We used G = t+2
as a generator for Fp2 and the following “random” element:

s = �(π(2298)/8)�t + �(γ · 2298)�.

We started by looking for an integer e such that z = se, seen as an element of
the number field of f , is smooth. After a few dozen of core-hours, we found a
value of e such that z = z1/z2 with z1 and z2 splitting completely into prime
ideals of at most 65 bits. With the lattice-sieving software of CADO-NFS, we
then performed a “special-q descent” for each of these prime ideals. The total
time for descending all the prime ideals was a few minutes. Finally, we found
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logG s ≡ 2762142436179128043003373492683066054037581738194144186101\
9832278568318885392430499058012 mod �.

7 Conclusions

The present article contains new estimates for the complexity of solving DLP
over non-prime finite fields. We have discovered several places in the (log p, n)
plane where more methods battle to be the best ones. We have also analyzed
the complexity of sieving on a domain of non-linear polynomials, and this shows
the way for more algorithmic problems, so that this could be a routine problem
for subsequent records.

From a practical point of view, we have demonstrated that a clever use of
algebraic properties of fields occurring in DLP computations, such as finding
polynomials defining number fields with automorphisms and/or Galois proper-
ties, gives a significant practical speed-up. This study will be continued else-
where.

We gather some figures for the factorization of an 180 decimal digit composite
number; the time needed for solving DLP on Fp with p of 180 decimal digits taken
from [6] and our computations for Fp2 with p of 90 decimal digits.

Considering the relation collection phase only, we see that for the same object
size, a DLP over Fp2 is much easier than the corresponding factoring of an integer.
This tends to contradict the usual rule-of-thumb: The discrete logarithm problem
in large characteristic finite fields is at least as hard as factoring an integer of
the same size as the cardinality of the finite field.
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thesis, Université de Lorraine (2013)

5. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improvements to the num-
ber field sieve for non-prime finite fields. preprint available at http://hal.inria.fr/
hal-01052449

6. Bouvier, C., Gaudry, P., Imbert, L., Jeljeli, H., Thomé, E.: Discrete logarithms in
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Abstract. In this paper, we propose two variants of the Number Field
Sieve (NFS) to compute discrete logarithms inmediumcharacteristic finite
fields. We consider algorithms that combine two ideas, namely the Multi-
ple variant of the Number Field Sieve (MNFS) taking advantage of a large
number of number fields in the sieving phase, and two recent polynomial
selections for the classical Number Field Sieve. Combining MNFS with the
Conjugation Method, we design the best asymptotic algorithm to com-
pute discrete logarithms in the medium characteric case. The asymptotic
complexity of our improved algorithm is Lpn(1/3, (8(9 + 4

√
6)/15)1/3) ≈

Lpn(1/3, 2.156), where Fpn is the target finite field. This has to be com-
pared with the complexity of the previous state-of-the-art algorithm for
medium characteristic finite fields, NFS with Conjugation Method, that
has a complexity of approximately Lpn(1/3, 2.201). Similarly, combining
MNFS with the Generalized Joux-Lercier method leads to an improvement
on the asymptotic complexities in the boundary case between medium and
high characteristic finite fields.

1 Introduction

Public key cryptosystems are designed around computational hardness assump-
tions related to mathematical properties, making such protocols hard to break
in practice by any adversary. Algorithmic number theory provides most of those
assumptions, such as the presumed difficulty to factorize a large integer or to
compute discrete logarithms in some groups. Given an arbitrary element h of a
cyclic group, the discrete logarithm problem consists in recovering the exponent
x of a generator g such that gx = h. We focus here on the multiplicative group
of the invertible elements in a finite field.

Current discrete logarithms algorithms for finite fields vary with the relative
sizes of the characteristic p and the extension degree n. To be more precise,
finite fields split into three families and so do the related algorithms. When p
is small compared to n, the best choice is to apply the recent Quasi-Polynomial
algorithm [BGJT14]. Medium and high characteristics share some properties
since we use in both cases variants of the Number Field Sieve (NFS) that was
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 156–170, 2015.
DOI: 10.1007/978-3-662-46800-5 7
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first introduced for discrete logarithms computations in prime fields in 1993 by
Gordon [Gor93]. Then, NFS was extended to all medium and high characteristic
finite fields in 2006 by Joux, Lercier, Smart and Vercauteren [JLSV06]. For the
past few months, discrete logarithm in finite fields has been a vivid domain and
things change fast – not only for small characteristic.

In February 2014, Barbulescu and Pierrot [BP14] presented the Multiple
Number Field Sieve (MNFS) that applies in both medium and high characteristic
finite fields. As for NFS, the main idea came from factoring [Cop93] and was first
introduced for discrete logarithms computations in prime fields in 2003 thanks to
Matyukhin [Mat03]. In both medium and high characteristic cases, the idea is to
go from two number fields, as in the classical NFS, to a large number of number
fields, making the probability to obtain a good relation in the sieving phase
higher. Yet, the sieving phase differs between medium and high characteristics
since the parameters of the two first polynomials defining the number fields
are equal in the medium case but unbalanced in the high case. Let us recall the
notation Lq(α, c) = exp((c+o(1))(log q)α(log log q)1−α) to be more precise about
complexities, and focus on the high characteristic case. Due to unbalanced degree
of the first two polynomials, the variant proposed by Barbulescu and Pierrot is
dissymmetric. It means that in the sieving phase they select only elements that
are small in some sense in the first number field and in at least another number
field, giving to the first number field a specific role with regards to the others.
With this dissymmetric MNFS, the asymptotic complexity to compute discrete
logarithms in a finite field Fpn of characteristic p = Lpn(lp, c) when p is high,
i.e. when lp > 2/3, is the same as the complexity given for factoring an integer
of the same size [Cop93]. Namely, it is:

Lpn

⎛

⎝1
3
,

(
2 · (46 + 13

√
13)

27

)1/3
⎞

⎠ .

Note that MNFS as described in [BP14] is currently the state-of-the-art algo-
rithm for computing discrete logarithms in high characteristic finite fields.

In the medium characteristic case, i.e. when 1/3 � lp � 2/3, the polynomial
selection of the classical Number Field Sieve allows to construct two polynomials
with same degrees and same sizes of coefficients. Making linear combination,
MNFS creates then a lots of polynomials with equal parameters. Thanks to this
notion of symmetry, the sieving phase of the Multiple variant consists in keeping
elements that are small in any pairs of number fields, making the probability to
obtain a good relation growing further.

Yet, few months later, in August 2014, Barbulescu, Gaudry, Guillevic and
Morain detailed in a preprint [BGGM14] some practical improvements for the
classical Number Field Sieve. Besides, they gave a new polynomial selection
method that has the nice theoretical interest to lead to the best asymptotic
heuristic complexity known in the medium characteristic case, overpassing the
one given in [BP14]. This new polynomial selection also called Conjugation
Method permits to create one polynomial with a small degree and high
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coefficients and another one with a high degree and coefficients of constant size.
Finally, the authors of [BGGM14] obtain the asymptotic complexity:

Lpn

(
1
3
,

(
96
9

)1/3
)

.

In this article, we adapt for the first time the Multiple variant of NFS to
this very recent algorithm. At first sight, one could fear that the parameters
of the two polynomials given with the Conjugation Method could act as a bar-
rier, since their unbalanced features differ from the ones used in the medium
characteristic case of [BP14]. Moreover, following the high characteristic dis-
symmetric sieving phase of [BP14] and creating the remaining polynomials with
linear combination would mean spreading both high coefficients and high degrees
on the polynomials defining the various number fields. This clearly would not
be a good idea, as all NFS-based algorithms require to create elements with
small norms. However, we show that the Conjugation Method may be adapted
to overcome this difficulty. The idea is to try to keep the advantage of the kind
of balanced dissymetry brought by the two polynomials with small -degree-high-
coefficients/high-degree-small -coefficients. We show that the Multiple Number
Field Sieve with Conjugation Method (MNFS-CM) becomes the best current
algorithm to compute discrete logarithms in medium characteristic finite fields.
Indeed, in this case its asymptotic complexity is:

Lpn

⎛

⎝1
3
,

(
8 · (9 + 4

√
6)

15

)1/3
⎞

⎠ .

To ease the comparison, note that our second constant
(
8 (9 + 4

√
6)/15

)1/3 ≈
2.156 whereas the previous one is (96/9)1/3 ≈ 2.201. MNFS-CM in the boundary
case between medium and high characteristic leads also to an improvement of
NFS-CM. Interestingly enough, sieving on degree one polynomials with MNFS-
CM in this boundary case permits to obtain the best asymptotic complexity ever
of any medium, boundary and high characteristic discrete logarithms algorithms,
which is approximately Lpn(1/3, 1.659).

Besides the new Conjugation Method, the authors of [BGGM14] extend the
polynomial selection given by Joux and Lercier in [JL03] for prime fields. Thanks
to it, they get an improvement on the high cases of the boundary case. We
propose here a simple dissymetric Multiple Number Field Sieve based on this
Generalized Joux-Lercier method (MNFS-GJL) to get a further improvement on
the same boundary case. Note that the asymptotic complexity we obtain here,

Lpn

⎛

⎝1
3
,

(
2 · (46 + 13

√
13)

27

)1/3
⎞

⎠ ,

is exactly the one of MNFS for high characteristic finite fields, as given in [BP14].
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Outline. We first detail in Section 2 how to manage the selection of numerous
polynomials based on the Conjugation method to construct a dissymetric Multi-
ple Number Field Sieve. Section 3 explains then how to combine MNFS with the
Generalized Joux-Lercier method. The asymptotic complexity analyses of both
medium and boundary cases are given in Section 4.

2 Combining the Multiple Variant of the Number Field
Sieve with the Conjugation Method

Let Fpn denote the finite field we target, p its characteristic and n the extension
degree relatively to the base field. We propose an algorithm to compute discrete
logarithms in Fpn as soon as p can be written as p = Lpn(lp, cp) with 1/3 �
lp � 2/3 (and cp close to 1). In this case we say that the characteristic has
medium size. In Section 2.1 we explain how to represent the finite field and to
construct the polynomials that define the large number of number fields we need.
In Section 2.2 we give details about the variant of the Multiple Number Field
Sieve we propose to follow.

2.1 Polynomial Selection

Basic Idea: Large Numbers of Polynomials with a Common Root in
Fpn . To compute discrete logarithms in Fpn , all algorithms based on the Number
Field Sieve start by choosing two polynomials f1 and f2 with integers coefficients
such that the greatest common divisor of these polynomials has an irreducible
factor of degree n over the base field. If m denotes a common root of these two
polynomials in Fpn and Q(θi) denotes the number field Q[X]/(fi(X)) for each
i = 1, 2, i.e. θi is a root of fi in C, then we are able to draw the commutative
diagram of Figure 1.

Since MNFS requires to have a large number of number fields, let say V
number fields, then we have to construct V −2 extra polynomials that share the
same common root m in Fpn . The commutative diagram that is the cornerstone
of all Multiple variants of the Number Field Sieve is given in Figure 2.

Z [X]

Q [X] /(f1(X)) Q [X] /(f2(X))

Fpn

X �→θ1

X �→θ2

θ1 �→m

θ2 �→m

Fig. 1. Commutative diagram of NFS
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Z [X]

Q (θ1) Q (θ2) . . . Q (θi) . . . Q (θV −1) Q (θV )

Fpn

X �→θi

θi �→m

Fig. 2. Commutative diagram of MNFS

Settings: Construction of V Polynomials with the Conjugation
Method. We start with the Conjugation Method given in [BGGM14, Para-
graph6.3] to construct the first two polynomials. The idea is as follows.

We create two auxilliary polynomials ga and gb in Z[X] with small coefficients
such that deg ga = n and deg gb < n. We then search for an irreducible polyno-
mial X2 + uX + v over Z[X], where u and v are small integers1 of size O(log p),
such that its roots λ and λ′ are in Fp. Since we seek a degree n irreducible polyno-
mial over Fp[X] to construct the finite field, we keep the polynomial X2+uX +v
if one of the two degree n polynomials ga + λgb or ga + λ′gb is irreducible over
Fp[X]. In the sequel we assume that ga + λgb is irreducible over Fp[X]. When
we have found such parameters, we set our first polynomial f1 ∈ Z[X]:

f1 = g2a − ugagb + vg2b .

Equivalently, f1 is defined in [BGGM14] as equal to ResY (Y 2 +uY + v, ga(X)+
Y gb(X)). Since λ and λ′ are roots of X2 + uX + v in Fp, we have the equality
of polynomials f1 ≡ g2a + (λ + λ′)gagb + λλ′g2b mod p. In other words, f1 ≡
(ga + λgb)(ga + λ′gb) mod p. Thus we have a polynomial f1 of degree 2n with
coefficients of size O(log p) that is divisible by ga + λgb in Fp[X].

Let us construct the next two polynomials. Thanks to continued fractions we
can write:

λ ≡ a

b
≡ a′

b′ mod p

where a, b, a′ and b′ are of the size of
√

p. We underline that these two recon-
structions (a, b) and (a′, b′) of λ are linearly independent over Q. We then set:

f2 = bga + agb and f3 = b′ga + a′gb.

1 We correct here a mistake in [BGGM14, Paragraph6.3]. The authors propose to
search for an irreducible quadratic polynomial that has constant size coefficients.

However, if |u| and |v| are both lower than a constant C, then there exist 24C2
such

polynomials. Since each one has probability 1/2 to has its roots in Fp for one random

prime p, if we try to select such polynomials for approximately 24C2
primes, we will

find one finite field Fp for which this method fails. Looking for quadratic polynomials
with coefficients of size O(log p) bypasses this trap and does not interfere with final
asymptotic complexities.
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Note that the Conjugation Method ends with the selection of f1 and f2 and does
not use the second reconstruction. It is clear that both f2 and f3 have degree n
and coefficients of size

√
p. Furthermore, we notice that f2 ≡ b(ga +λgb) mod p

and similarly f3 ≡ b′(ga + λgb) mod p, so they share a common root with f1 in
Fpn .

We finally set for all i from 4 to V :

fi = αif2 + βif3

with αi and βi of the size of
√

V . We underline that V is negligible with regards
to p, as shown in Section 4. Thanks to linear combination, for all 2 � i � V ,
fi has degree n, coefficients of size

√
p and is divisible by ga + λgb in Fp[X].

2.2 A Dissymmetric Multiple Number Field Sieve

As any Index Calculus algorithm, the variant we propose follows three phases:
the sieving phase, in which we create lots of relations involving only a small set of
elements, the factor base ; the linear algebra, to recover the discrete logarithms of
the elements of the factor base ; and the individual logarithm phase, to compute
the discrete logarithm of an arbitrary element of the finite field.

We propose to sieve as usual on high degree polynomials φ(X) = a0 + · · · +
at−1X

t−1 with coefficients of size bounded by S. Let us recall that, given an
integer y, an integer x is called y-smooth if it can be written as a product
of prime factors less than y. We then collect all polynomials such that, first,
the norm of φ(θ1) is B-smooth and, second, there exists (at least) one number
field Q(θi) with i � 2 in which the norm φ(θi) is B′-smooth. In other simpler
words, we create relations thanks to polynomials that cross over the diagram
of Figure 3 in two paths: the one on the left side of the drawing and (at least)
another one among those on the right. If we set that the factor base consists in
the union of all the prime ideals in the rings of integers that have a B-or-B′-
smooth norm, the smoothness bound depending on the number field, then we
keep only relations that involve these factor base elements. Note that B and B′

are two smoothness bounds possibly different from one another.

Z [X]

Q (θ1) Q (θ2) . . . Q (θi) . . . Q (θV )

Fpn

X �→θ2

θ2 �→m

Fig. 3. Commutative diagram for the dissymmetric Multiple Number Field Sieve with
Conjugation Method
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After the same post-processing as in [JLSV06] or as detailed in [BGGM14]
more recently, each such polynomial φ yields a linear equation between “loga-
rithms of ideals” coming from two number fields. Hence, from each relation we
obtain a linear equation where the unknowns are the logarithms of ideals. Let
us remark that by construction each equation only involves a small number of
unknowns.

The sparse linear algebra and individual logarithm phases run exactly as in
the classical Number Field Sieve of [JLSV06]. Even if there exists a specific way
to manage the last phase with a multiple variant as detailed in [BP14], taking
advantage of the large number of number fields again, we do not consider it here.
In fact, the runtime of the classical individual logarithm phase is already negligi-
ble with regards to the total runtime of the algorithm, as proved by Barbulescu
and Pierrot in their article.

3 Combining the Multiple Number Field Sieve with the
General Joux-Lercier Method

In 2003 Joux and Lercier [JL03] gave a polynomial selection to compute discrete
logarithms in prime fields. Barbulescu, Gaudry, Guillevic and Morain propose
in [BGGM14, Paragraph6.2] to generalize this construction. Using again lattice
reduction, they obtain an improvement on the asymptotic complexity in the
boundary case where the characteristic can be written as p = LQ(2/3, c) for
some specific c. We propose here to apply a Multiple variant of NFS to this
construction in a very simple way.

Let us recall the General Joux-Lercier (GJL) method as presented in
[BGGM14]. In order to compute discrete logarithms in the finite field Fpn , we
first select an irreducible polynomial f1 in Fp[X] with small coefficients (let us
say of the size of O(log pn)) and such that it has an irreducible factor ϕ of
degree n modulo p. We assume furthermore that this irreducible factor is monic.
Let us write ϕ = Xn +

∑n−1
i=0 ϕiX

i and d + 1 the degree of f . Thus we have
d + 1 > n.2 To assure that the second polynomial shares the same irreducible
factor modulo p, we define it thanks to linear combination of polynomials of
the form ϕXk and pXk. Lattice reduction permits then to obtain small coeffi-
cients. More precisely, we note M the following (d + 1) × (d + 1) matrix:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p
...

p
︸ ︷︷ ︸
n columns

1
... ϕn−1

1
...

...
ϕn−1 ϕ0

...
...

ϕ0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
d+1−n columns

Xd

Xd−1

...
Xn−1

...
1

2 We emphasize that we require ϕ to be different from f1 since we need that f2 is not
equal to f1 mod p.
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A generator of this lattice of polynomials is represented in one column, meaning
that each one of its coefficients is written in the row corresponding to the associated
monomial (see indications on the right of the matrix). Clearly, the determinant of
the lattice is pn and its dimension is d+1. Hence, running the LLL algorithm on M
gives a polynomial of degree at most d that has coefficients of size at most pn/d+1

(assuming that 2(d+1)/4 stays small compared to pn/d+1).
In a nutshell, we obtain two polynomials f1 and f2 that share a common

degree n factor over Fp[X] and such that:

deg f1 = d + 1 > n, ‖f1‖∞ = O(log pn),
deg f2 = d, ‖f2‖∞ = pn/(d+1).

where ‖fi‖∞ denotes the largest coefficients of fi in absolute value. This ends
the GJL method. As in [BP14], we perform then linear combination of these two
polynomials. Setting for all i from 3 to V :

fi = αif2 + βif3

with αi and βi of the size of
√

V . Thus, for all 3 � i � V , fi has degree d + 1
and coefficients of size pn/(d+1). Note that is is also possible to extract from the
lattice reduction a second polynomial f3 that has, as f2, degree d and coefficients
of size pn/(d+1). Making linear combination of f2 and f3 leads to polynomials of
degree d instead of degree d + 1. Yet, this little improvement has no impact on
the asymptotic complexity of the algorithm.

As usual in this boundary case where p = LQ(2/3, c), we propose to sieve
on degree 1 polynomials. We apply then a dissymmetric MNFS, as described in
Section 2.2.

4 Asymptotic Complexity Analyses

We give now details about the asymptotic heuristic complexities we obtain with
MNFS-CM in medium characteristic and with both MNFS-CM and MNFS-GJL
in the boundary case between medium and high characteristics. Let us fix the
notations. We write the extension degree n and the characteristic p of the target
finite field FQ as:

n =
1
cp

(
log Q

log log Q

)1−lp

and p = exp(cp(log Q)lp(log log Q)1−lp)

with 1/3 � lp � 2/3. The parameters taking part in the heuristic asymptotic
complexity analyses are: the sieving bound S, the degree of the polynomials we
are sieving over t − 1, the number of number fields V , the smoothness bound B
related to the first number field and the smoothness bound B′ related to the
others number fields. The analyses of both MNFS-CM and MNFS-GJL work
by optimizing the total runtime of the sieving and linear algebra phases while
complying with two constraints.
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Balancing the Cost of the Two First Phases. We first require that the
runtime of the sieving phase St equals the cost of the linear algebra. Since the
linear system of equations we obtain is sparse, the cost of the linear algebra
is asymptotically (B + V B′)2. Similarly to balancing the runtime of the two
phases, we require that B = V B′. Thus, leaving apart the constant 4 that is
clearly negligible with regards to the sizes of the parameters, the first constraint
can be written as:

St = B2. (1)

Balancing the Number of Equations with the Number of Unknows. To
be able to do the linear algebra phase correctly, we require that the number of
unknows, that is approximately B, is equal to the number of equations produced
in the sieving phase. If we note P the probability that a polynomial give a good
relation then we want to have StP = B. Combining it with the constraint (1),
it leads to:

B = 1/P.

4.1 Analysis of MNFS-CM in the Medium Characteristic Case

We continue the analysis for the large range of finite fields where the character-
istic can be written as p = LQ(lp, cp) with 1/3 � lp < 2/3. We consider here
MNFS-CM as described in Section 2.

Evaluating the Probability of Smoothness. To evaluate the probability P
we need to recall some tools about norms in number fields. For fi ∈ Z[X] an
irreducible polynomial, θi a complex root of fi, and for any polynomial φ ∈ Z[X],
the norm N(φ(θ)) satisfies Res(φ, fi) = ±ldeg φ

i N(φ(θ)), where the term li is
the leading coefficient of fi. Since we treat li together with small primes, we
make no distinction in smoothness estimates between norms and resultants. We
have the upper bound on the resultant:

|Res(φ, fi)| ≤ (deg fi + deg φ)! · ‖fi‖deg φ
∞ · ‖φ‖deg fi∞ .

Thus, recalling that f1 is of degree 2n and has constant coefficients and that
every other polynomials fi has degree n and coefficients of the size

√
p, we

obtain that the norm of a sieving polynomial φ is upper-bounded by S2n in the
first number field and by Snpt/2 in every other number fields. To evaluate the
probability of smoothness of these norms with regards to B and B′, the main
tool is the following theorem:

Theorem 1 (Canfield, Erdős, Pomerance [CEP83]). Let ψ(x, y) denote the
number of positive integers up to x which are y-smooth. If ε > 0 and 3 ≤ u ≤
(1 − ε) log x/ log log x, then ψ(x, x1/u) = xu−u+o(u).

Yet, this result under this form is not very convenient. If we write the two
integers x and y with the Lq-notation, we obtain a more helpful corollary:
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Corollary 1. Let (α1, α2, c1, c2) ∈ [0, 1]2 × [0,∞)2 be four reals such that
α1 > α2. Let P denote the probability that a random positive integer below
x = Lq(α1, c1) splits into primes less than y = Lq(α2, c2). Then we have P−1 =
Lq

(
α1 − α2, (α1 − α2)c1c−1

2

)
.

So we would like to express both norms and sieving bounds with the help of
this notation. As usual, we set:

t =
ct

cp

(
log Q

log log Q

)2/3−lp

, St = LQ(1/3, csct), B = LQ(1/3, cb) and

V = LQ(1/3, cv).

Thanks to this, we first remark that the first constraint can be rewritten as:

csct = 2cb. (2)

Besides, we apply the Corollary 1 to reformulate the second constraint. Let us
note LQ(1/3, pr) (respectively LQ(1/3, pr′)) the probability to get a B-smooth
norm in the first number field (respectively a B′-smooth norm in at least one
other number field). The second constraint becomes cb = −(pr + pr′). Using
equation (2), the constants in the probabilities can be written as:

pr =
−2cs

3cb
=

−2(2/ct)cb

3cb
and pr′ = cv − (2/ct)cb + ct/2

3(cb − cv)
.

That leads to require cb = −(−4/(3ct) + cv − (4cb + c2t )/(6ct(cb − cv))) and
afterwards 6ct(c2b − c2v) = 8(cb − cv) + 4cb + c2t . Finally we would like to have:

(6ct)c2b − 12cb − 6ctc
2
v + 8cv − c2t = 0. (3)

Optimizing the Asymptotic Complexity. We recall that the complexity
of our algorithm is given by the cost of the sparse linear algebra LQ(1/3, 2cb),
since we equalize the runtime of the sieving and linear algebra phases. Hence we
look for minimizing cb under the above constraint (3). The method of Lagrange
multipliers indicates that cb, cv and ct have to be solutions of the following
system: ⎧

⎨

⎩

2 + λ(12ctcb − 12) = 0
λ(−12cvct + 8) = 0
λ(6c2b − 6c2v − 2ct) = 0

with λ ∈ R
∗. From the second row we obtain ct = 2/(3cv) and from the third one

we get cb = (c2v +2/(9cv))1/2. Together with equation (3), it gives the equation in
one variable: 405c6v +126c3v − 1 = 0. We deduce that cv = ((3

√
6− 7)/45)1/3 and

we recover cb = ((9 + 4
√

6)/15)1/3. Finally, the heuristic asymptotic complexity
of the Multiple Number Field Sieve with Conjugation Method is, as announced:

LQ

⎛

⎝1
3
,

(
8 · (9 + 4

√
6)

15

)1/3
⎞

⎠ .
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This has to be compared with the Number Field Sieve with Conjugation Method
proposed in [BGGM14] that has complexity LQ(1/3, (96/9)1/3). Note that our
second constant is (8(9 + 4

√
6)/15)1/3 ≈ 2.156, whereas (96/9)1/3 ≈ 2.201.

4.2 Analysis of MNFS-CM in the Boundary Case p = LQ(2/3, cp)

The analysis made in this case follows the previous one except for the fact that
we have to reconsider the parameter t. We consider here a family of algorithms
indexed by the degree t − 1 of the polynomials of the sieving. We compute so
the final complexity of each algorithm as a function of cp (and t). Moreover, we
underline that the round off error in t in the computation of the norms is no
longer negligible.

Sieving on Polynomials of Degree t − 1. Again, to easily evaluate the
probability of smoothness of norms, we set the following parameters:

V = LQ(1/3, cv), B = LQ(1/3, cb), B′ = LQ(1/3, cb − cv) and
S = LQ(1/3, cs).

With these notations, the first constraint becomes this time:

cst = 2cb. (4)

Moreover, the norms are upper-bounded by S2n = LQ(2/3, 2cs/cp) in the first
number field and by Snp(t−1)/2 = LQ(2/3, cs/cp + cp(t − 1)/2) in all the other
number fields. We apply the Canfield-Erdős-Pomerance theorem, and, with the
same notation as in the previous paragraph, we obtain pr = −2cs/(3cbcp) in
one hand and pr′ = cv − (cs/cp + cp(t − 1)/2)/(3(cb − cv)) in the other hand.
Using equation (4), the second constraint cb = −(pr + pr′) can be rewritten as
3tcp(cb − cv)(cb + cv) = 4(cb − cv) + 2cb + t(t − 1)c2p/2. As a consequence, we
require:

(6tcp)c2b − 12cb − 6tcpc
2
v + 8cv − t(t − 1)c2p = 0. (5)

As previously, we want to minimize 2cb under the constraint (5). The method of
Lagrange multipliers shows that we need that the derivative of (6tcp)c2b − 12cb −
6tcpc

2
v + 8cv − t(t − 1)c2p with respect to cv is equal to 0. This leads to require

that cv = 2/(3tcp). Putting this value in equation (5) we get:

(18t2c2p)c
2
b − (36tcp)cb + 8 − 3t2(t − 1)c3p = 0.

Finally, solving this equation in cb we deduce that cb = (6 + (20 + 6t2(t −
1)c3p)

1/2)/(6tcp). Consequently, the asymptotic complexity of the Multiple Num-
ber Field Sieve with Conjugation Method in this boundary case is:

LQ

(
1
3
,

2
cpt

+

√
20

(9cpt)2
+

2
3
cp(t − 1)

)
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where t−1 is the degree of the polynomials we are sieving on. Figure 4 compares
our MNFS-CM with previous and various algorithms in this boundary case. For
almost all variants of the Number Field Sieve presented in this figure (namely
NFS, MNFS, NFS-CM and MNFS-CM), each hollow in the curve corresponds
to a particular degree of the polynomials we are sieving on.

Remark 1. This boundary case has been the scene of various recent improve-
ments but, as far as we know, all of them are not yet published nor available on
the Internet. In particular, this is the case of the so-called PiRaTh algorithm,
presented at the DLP conference in May 2014 by Pierrick Gaudry, Razvan Bar-
bulescu and Thorsten Kleinjung. Yet, for the sake of comparison, we plot it
together with already broadcast algorithms.

The Best Asymptotic Complexity of any Variant of the Number Field
Sieve: MNFS-CM on Linear Polynomials. According to Figure 4, sieving
on linear polynomials seems to give the best complexity, as usual in this boundary
case. Let us make a more precise analysis of the optimal case reached by our
Multiple Number Field Sieve with Conjugation Method. We consider now cp as
a variable and we would like to find the minimal complexity obtained by each
algorithm. Namely, we want to minimize:

C(cp) =
2

cpt
+

√
20

(9cpt)2
+

2
3
cp(t − 1).

The derivative of this function with respect to cp vanishes when 2 · 92 t cp(20/
(9 cp t)2 + (2/3)cp(t − 1))1/2 = −20 + 27(t − 1)t2c3p. This leads to the quadratic
equation in c3p: 36t4(t − 1)2c6p − 24 33 43 t2(t − 1)c3p − 26 · 5 · 19 = 0. Thus, the
optimal value comes when cp = (2/3) · ((43 + 18

√
6)/(t2(t − 1))1/3. We get for

this value the minimal complexity:

LQ

(
1
3
,

(
9 +

√
177 + 72

√
6

3 · (43 + 18
√

6)1/3

)

·
(

t − 1
t

)1/3
)

.

Looking at this formula, it is clear that the best possible complexity is obtained
when t = 2, i.e. when we sieve on linear polynomials. Interestingly enough, we
conclude that we have with our MNFS-CM the best complexity of any medium,
boundary and high characteristics cases, which is:

LQ

(
1
3
,

9 +
√

177 + 72
√

6
3 · (2 · (43 + 18

√
6))1/3

)

.

Note that the approximation of the second constant in the complexity is given
by (9+

√
177 + 72

√
6)·3−1 ·(2·(43+18

√
6))−1/3 ≈ 1.659. We get this complexity

when p can be written as p ≈ LQ(1/3, 1.86).
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4.3 Analysis of MNFS-GJL in the Boundary Case p = LQ(2/3, cp)

In this setting, we recall that we propose to sieve on linear polynomials. As usual,
we assume that B = V B′ where V is the number of number fields and B′ is the
smoothness bound relatively to the last V −1 number fields. Thus, the constraint
given in Equation (1) leads to require that the sieving bound S is equal to the
first smoothness bound B. With the same notations as previously, we also require
that B = 1/P. Finally, we emphasize that the polynomial selection proposed in
Section 3 requires that n < d + 1. If we set that:

d = δ

(
log Q

log log Q

)1/3

,

where δ is a parameter to define, then we have to keep in mind that our com-
plexity results are valid provided δ � 1/cp.

Since f1 has small coefficients and degree d+1 the norms in the first number
field are upper-bounded by LQ(2/3, cbδ). The probability to get a B-smooth
norm is though LQ(1/3, pr) with pr = −δ/3. Similarly, the norms in the last
V − 1 number fields are bounded by LQ(2/3, cbδ + 1/δ). The probability to
get a B′-smooth norm in a least one number field is LQ(1/3, pr′) where pr′ =
−(cbδ + 1/δ)/(cb − cv) + cv.

From cb = −(pr + pr′) we get then:

cb + cv =
δ

3
+

δ2cb + 1
3δ(cb − cv)

⇔ 3δ(c2b − c2v) = 2δ2cb − δ2cv + 1
⇔ 3δc2b − 2δ2cb + δ2cv − 3δc2v − 1 = 0.

The method of Lagrange multipliers shows that we require:
⎧
⎪⎨

⎪⎩

3δc2b − 2δ2cb + δ2cv − 3δc2v − 1 = 0

3c2b − 4δcb + 2δcv − 3c2v = 0

δ2 − 6δcv = 0

(6)

From the third line of System (6) we recover δ = 6cv. Substituting in the second
line, we obtain c2b −8cvcb +3c2v = 0. Then, writing cv as as function of cb we get:
cv = ((4 − √

13)/3)cb. Substituting the value of δ in the first line of the system
gives 18cvc2b − 72c2vcb + 18c3v − 1 = 0, and, substituting again with the value of
cv we finally get: cb = (46 + 13

√
13/108)1/3. With this constant, we recover the

value of δ which is (4
√

13 − 14)1/3. Thus, as soon as:

cp �
(

7 + 2
√

13
6

)1/3

,

which is approximately equal to 1.33, the complexity of the Multiple Number
Field Sieve with the Generalized Joux-Lercier method is:

LQ

⎛

⎝1
3
,

(
2 · (46 + 13

√
13)

27

)1/3
⎞

⎠ .
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Fig. 4. Asymptotic complexities LQ(1/3, C(cp)) in the boundary case, as a function
of cp with p = LQ(2/3, cp). The dark blue curve represents the complexities obtained
with our Multiple Number Field Sieve with Conjugation Method while the brown one
represents the complexity of the Multiple Number Field Sieve with the General Joux-
Lercier method (see next Section). The red, light blue, black, yellow and purple curves
represent respectively the complexities of NFS [JLSV06], MNFS [BP14], PiRaTh, NFS-
GJL [BGGM14] and NFS-CM [BGGM14].

As expected, we recover the exact asymptotic complexity given by [BP14] when
solving the discrete logarithm problem in high characteristic finite fields. This
has to be compared with the asymptotic complexity of the classical Number
Field Sieve with the Generalized Joux-Lercier method [BGGM14] in the same
case which is LQ(1/3, (64/9)1/3). For the sake of comparison we recall that
(64/9)1/3 ≈ 1.92 whereas (2(46 + 13

√
13)/27)1/3 ≈ 1.90.

When cp <
(
(7 + 2

√
13)/6

)1/3
, from the constraint δ > 1/cp we get δ >

(4
√

13−14)1/3 and the previous simplification no longer applies. Yet, the equal-
ities cb = 3cv/(4−√

13) = δ/(2(4−√
13)) show that we minimize the complexity

when δ = 1/cp. We obtain thus cb = (4 +
√

13)/(6cp). Finally, when:

cp <

(
7 + 2

√
13

6

)1/3

,
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the asymptotic complexity of MNFS with the Generalized Joux-Lercier method
is:

LQ

(
1
3
,
4 +

√
13

3cp

)

.

Figure 4 shows how this asymptotic complexity varies with cp.
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Abstract. The Learning With Error problem (LWE) is becoming more
and more used in cryptography, for instance, in the design of some fully
homomorphic encryption schemes. It is thus of primordial importance
to find the best algorithms that might solve this problem so that con-
crete parameters can be proposed. The BKW algorithm was proposed
by Blum et al. as an algorithm to solve the Learning Parity with Noise
problem (LPN), a subproblem of LWE. This algorithm was then adapted
to LWE by Albrecht et al.

In this paper, we improve the algorithm proposed by Albrecht et al.
by using multidimensional Fourier transforms. Our algorithm is, to the
best of our knowledge, the fastest LWE solving algorithm. Compared to
the work of Albrecht et al. we greatly simplify the analysis, getting rid
of integrals which were hard to evaluate in the final complexity. We also
remove some heuristics on rounded Gaussians. Some of our results on
rounded Gaussians might be of independent interest. Moreover, we also
analyze algorithms solving LWE with discrete Gaussian noise.

Finally, we apply the same algorithm to the Learning With Rounding
problem (LWR) for prime q, a deterministic counterpart to LWE. This
problem is getting more and more attention and is used, for instance, to
design pseudorandom functions. To the best of our knowledge, our algo-
rithm is the first algorithm applied directly to LWR. Furthermore, the
analysis of LWR contains some technical results of independent interest.

1 Introduction

The Learning With Error problem (LWE) was introduced by Regev in [43] and
can be seen as an extension of the Learning (from) Parity with Noise prob-
lem (LPN). Roughly, the adversary is given queries from an LWE oracle, which
returns uniformly random vectors aj in Zq and their inner-product with a fixed
secret vector s ∈ Z

k
q to which some noise was added (typically some discrete

Gaussian noise). The goal of the adversary is then to recover the secret s.
In LPN, q = 2 and the noise follows a Bernoulli distribution. In his seminal
paper [43], Regev shows a quantum reduction from some well-known Lattice
problems like the decisional shortest vector problem (Gap-SVP) or the short
independent vector problem (SIVP) to the LWE problem. Later, Peikert and
Brakerski et al. showed how to make this reduction classical [16,42]. The LWE

A. Duc—Supported by a grant of the Swiss National Science Foundation, 200021
143899/1.
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E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 173–202, 2015.
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problem was then used to design a wide range of cryptographic primitives. For
instance, Gentry et al. showed how to construct a trapdoor function based on
LWE and created an identity-based cryptosystem [26]. Applebaum et al. used
LWE to design encryption schemes with strong security properties [4]. However,
the biggest breakthrough that uses LWE is its use in the design of (fully) homo-
morphic encryption schemes (FHE). FHE was first introduced by Gentry in his
PhD thesis [25]. While the initial construction was not using the LWE problem,
most of the recent designs are, e.g., [15,17,27].

The Learning With Rounding problem (LWR) was introduced by Banerjee,
Peikert, and Rosen to construct pseudorandom functions [8]. LWR can be seen
as a derandomization of LWE where the random noise is replaced by a rounding
modulo p < q. This rounding introduces a deterministic error which makes the
problem hard to solve. Banerjee et al. showed that the hardness of the LWE
problem can be reduced to the hardness of LWR, when q/p = kω(1), where k is
the length of the secret. The LWR problem was later revisited by Alwen et al.
to get rid of this exponential blowup [3]. However, the number of LWR samples
given to the adversary is limited in this case. LWR finds new applications every
year. Among them, there is the design of pseudorandom functions [8], lossy
trapdoor functions and reusable extractors [3], or key-homomorphic PRFs [13].

When designing a new cryptosystem, one critical part is to propose some
concrete parameters so that the new scheme can be used in practice. Regarding
the LWE problem, there was no such algorithmic analysis before the work of
Albrecht et al. [1]. This lack of concrete complexity analysis implied that most
of the constructions based on LWE propose only asymptotic parameters. Hence,
it is of primary importance to study algorithms that solve the hard problems on
which our cryptosystems rely.

Previous Work. Algorithms solving LWE can be divided into two categories:
those finding short vectors in a lattice using, e.g., Regev’s [43] or Brakerski
et al.’s [16] reduction and those attacking the LWE problem directly. The first
type of algorithms is extensively studied (see, e.g., [9,21,23,30,31,36,40,41]).
However, there is still no precise complexity analysis for large dimensions. In this
paper, we focus only on the second type of algorithms the study of which started
with the LPN problem and the Blum—Kalai—Wasserman algorithm (BKW) [11]
with complexity 2O(k/ log k) where k is the length of the secret vector. The idea
of BKW is to add queries together, such that the vectors aj are zero in all but
one positions. Then, using a majority rule, one can recover the corresponding
bit of the secret with good probability.

In [35], Levieil and Fouque proposed an optimization of the BKW algorithm
for LPN, denoted LF1, which recovers a full block of b bits of the secret s at once
by cleverly applying a Walsh-Hadamard transform. Compared to the original
BKW algorithm, their method has the advantage of making use of all the avail-
able samples after reduction, instead of having to discard those with more than
one non-zero position. Instead of an exhaustive search, they use a fast Walsh-
Hadamard transform to recover the most likely secret block in time O

(
m + b2b

)

(where m is the number of samples left after reduction). The analysis of their
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algorithm shows that it clearly outperforms the standard BKW, although their
asymptotic complexities remain the same. In the same paper, they also proposed
to apply some heuristics to reduce the query complexity (LF2 algorithm).

In parallel, Fossorier et al. also improved the original BKW algorithm using
techniques taken from fast correlation attacks [22]. Later, Bernstein and Lange [10]
combinedboth theLFalgorithmsandFossorier et al.’swork to attackLapin [32], an
authenticationprotocol basedonaversionofLPNover a ring (ring-LPN).However,
all these results achieve the same asymptotic complexity of 2O(k/ log k).

Many cryptographic applications of LPN make sure that the number of
queries to the LPN oracle is limited. However, all the algorithms based on
BKW initially require a sub-exponential number of LPN samples. In [37], Lyuba-
shevsky proposed a clever way to combine queries using a universal hash func-
tion. He could, thus, obtain an algorithm using less queries (the minimal being
k1+2/ log k for a worse time complexity).

In ICALP 2011, Arora and Ge publish the first algorithm targeting a specific
version of LWE, namely when the Gaussian noise is low [5]. Using BKW for
LWE was first mentioned by Regev [43]. However, it is only in 2013 that the
first detailed analysis of a generic algorithm targeting LWE is published by
Albrecht et al. [1]. It is an adaptation of the original BKW algorithm with
some clever improvements of the memory usage and achieves complexity 2O(k).
Their analysis is extremely detailed and we present their results in Section 3.
Finally, Albercht et al. presented in PKC 2014 an algorithm targeting LWE when
the secret vector has small components (typically binary). Using BKW along
with modulus switching techniques, they managed to reduce the complexity for
solving the LWE problem in these cases [2].

Our Contribution. We contributed in the following:

– First we propose a new algorithm for LWE, which is better than the cur-
rent state of the art. Our new algorithm replaces the log-likelihood part
from [1] by a multidimensional Fourier transform. We also propose a heuris-
tic adapted from LF2 [35] to reduce the number of oracle queries even further.

– Albrecht et al. in [1] were relying on the heuristic that the sum of rounded
Gaussian variables remain rounded Gaussians. We remove this heuristic by a
careful analysis. In particular, we give good bounds on the expected value of
the cosine of the rounded Gaussian distribution. Our algorithm relies solely
on the common heuristic stating that after having performed all the XORs in
the BKW algorithm, all the noises are independent. This heuristic is already
used in most of the LPN-solving algorithms (e.g. [1,22,35]).

– In [1], only the rounded Gaussian distribution for the noise in LWE is con-
sidered. While this distribution was initially used by Regev [43], more recent
papers tend to use the discrete Gaussian distribution instead. We perform
our analysis for both distributions.

– Albrecht et al.’s complexity is rather difficult to estimate when
√

2aσ >
q/2 [1, Theorem 2]. Indeed, their result contains a parameter which they
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could express only using an integral and the erf function. Our detailed anal-
ysis allows us to bound the Fourier coefficients of the rounded Gaussian
distribution in all the cases and, hence, all our complexities are simple to
evaluate.

– We adapt Lyubashevsky’s idea to LWE and show that for LWE (and LWR),
the minimum number of queries required using his method is k1+(log q+1)/ log k.

– We propose the first algorithmic analysis of the LWR problem when q is
prime. While our proposal requires a subexponential number of samples,
our detailed analysis contains many results of independent interest.

Organization. In Section 2, we introduce the LWE and LWR problems and give
basic results about Gaussians and Fourier transforms. In Section 3, we present
the BKW algorithm as it was done in [1]. We detail our algorithm and apply it
to LWE in Section 4. We adapt it to LWR in Section 5. Finally, we conclude in
Section 6.

2 Preliminaries

2.1 Notations

Given a vector a we denote by aj its j-th component. We write a(j) to say
that we access the j-th vector of a set. We let �.� : R → Z be the rounding
function that rounds to the closest integer.1 We define

√−1 = i ∈ C. Finally,
for a predicate π(x), we denote by 1{π(x)} the function which is 1 when π(x) is
true and 0 otherwise.

2.2 The LWE Problem

In this section, we define the LWE problem.

Definition 1 (LWE Oracle). Let k, q be positive integers. A Learning with
Error (LWE) oracle Πs,χ for a hidden vector s ∈ Z

k
q and a probability distribution

χ over Zq is an oracle returning
(
a

U←− Z
k
q , 〈a, s〉 + ν

)
,

where ν ← χ.

Definition 2 (Search-LWE). The Search-LWE problem is the problem of recov-
ering the hidden secret s given n queries (a(j), c(j)) ∈ Z

k
q ×Zq obtained from Πs,χ.

In typical schemes based on LWE, the parameter q is taken to be polynomial in
k, and χ follows a discretized Gaussian distribution (see next section).

1 In case of equality, we take the floor.
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2.3 Gaussian Distributions

Let N (0, σ2) denote the Gaussian distribution of mean 0 and standard devia-
tion σ. We denote its probability density function by φ 
→ p(φ; σ), for φ ∈ R.
Consider the wrapped Gaussian distribution Ψσ,q resulting from wrapping the
Gaussian distribution around a circle of circumference q > 0. Its probability
density function g(θ;σ, q) is given by

g(θ;σ, q) :=
∞∑

�=−∞

1
σ
√

2π
exp

[−(θ + 
q)2)
2σ2

]
, for θ ∈

]
−q

2
,
q

2

]
. (1)

Note that Ψσ,2π is the standard wrapped normal distribution obtained by
wrapping N (0, σ2) around the unit circle, used for instance in directional statis-
tics [39].

LWE schemes use a discretization of a Gaussian over Zq. There are two vari-
ants of LWE that we will consider in this paper. We will see that we obtain
similar results for both distributions. In the initial version by Regev [43], the
noise in LWE was a rounded Gaussian distribution. This is also what is consid-
ered in [1,29]. Such a distribution can be obtained by sampling from Ψσ,q and
rounding the result to the nearest integer in the interval ]−q

2 , q
2 ]. We denote this

distribution by Ψ̄σ,q. Its probability mass function is given by

Pr[x ← Ψ̄σ,q] =

x+ 1
2∫

x− 1
2

g(θ; σ, q) dθ , (2)

for x an integer in the interval ]−q
2 , q

2 ].
The LWE problem is believed to be hard when σ ≥ √

k and q ∈ poly(k).
The second Gaussian distribution used for LWE is the discrete Gaussian

distribution Dσ,q. This distribution is used in most of the applications and in
the classical LWE reduction [16]. This distribution is, for x an integer in ]− q

2 , q
2 ]:

Pr[x ← Dσ,q] =
exp(−x2/(2σ2))

∑

y∈]− q
2 , q

2 ]

exp(−y2/(2σ2))
. (3)

2.4 The LWR Problem

In this section, we define the LWR problem.

Definition 3 (Rounding Function). Let q ≥ p ≥ 2 be positive integers. The
LWR problem uses the rounding function from Zq = {0, . . . , q − 1} to Zp =
{0, . . . , p − 1}, given by2

2 For the second component returned by the LWR oracle, we decided to return the
rounding of instead of the usual . The problem is equivalent (see,
e.g., [3]). However, if we would use the floor operation, the noise in Lemma 19 would
not have zero mean but mean (1/2 − gcd(p, q)/2q) and we would have to introduce
tedious correcting terms in (32).
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�·�p : Zq → Zp : x 
→
⌈(

p

q

)
· x

⌋
.

Definition 4 (LWR Oracle). Let k and q ≥ p ≥ 2 be positive integers. A
Learning with Rounding (LWR) oracle Λs,p for a hidden vector s ∈ Z

k
q , s �= 0

is an oracle returning (
a

U←− Z
k
q , �〈a, s〉�p

)
.

Definition 5 (Search-LWR). The Search-LWR problem is the problem of
recovering the hidden secret s given n queries (a(j), c(j)) ∈ Z

k
q × Zp obtained

from Λs,p.

Two reductions from LWE to LWR exist: one with exponential parameters and
another with a limited number of samples.

Theorem 6 (Theorem 3.2 in [8]). Let β ∈ R+ and let χ be any efficiently
sampleable distribution over Z such that Prx←χ[|x| > β] is negligible. Let q ≥
p · β · kω(1). Then, solving decision-LWR with secrets of size k and parameters p
and q is at least as hard as solving decision-LWE over Zq with secret of size k
and noise distribution χ.

The second result reduces this explosion in the parameters but limits the number
of samples the adversary is allowed to get from the LWR oracle.

Theorem 7 (Theorem 4.1 from [3]). Let λ be the security parameter. Let
k, 
,m, p, γ be positive integers, pmax be the largest prime divisor of q, and pmax ≥
2βγkmp. Let χ be a probability distribution over Z such that E[|χ|] ≤ β. Then, if
k ≥ (
 + λ + 1) log(q)/ log(2γ) + 2λ and if gcd(q, q/pmax) = 1, the decision-LWR
with secret of size k, parameters p and q and limited to m queries is at least as
hard as solving decision-LWE over Zq with secrets of size 
, noise distribution χ
and limited to m queries.

2.5 Discrete Fourier Transform

Let p1, · · · , pb be integers and let θpj
:= exp(2πi/pj), for 1 ≤ j ≤ b and where

i =
√−1. Define the group G := Zp1 ×· · ·×Zpb

. We may write an element x ∈ G
as (x1, · · · , xb). The discrete Fourier transform (DFT) of a function f : G → C

is a function f̂ : G → C defined as

f̂(α) :=
∑

x∈G

f(x)θ−α1x1
p1

· · · θ−αbxb
pb

. (4)

The discrete Fourier transform can be computed in time O (|G| log(|G|)) =:
CFFT · |G| log(|G|) for a small constant CFFT.
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2.6 Hoeffding’s Inequality

We will use the following Hoeffding bound.

Theorem 8 ([33]). Let X1,X2, . . . , Xn be n independent random variables such
that Pr[Xj ∈ [αj , βj ]] = 1 for 1 ≤ j ≤ n. We define X = X1 + . . . + Xn and
E[X] to be the expected value of X. We have that

Pr[X − E[X] ≥ t] ≤ exp

(
−2t2

∑n
j=1(βj − αj)2

)

and

Pr[X − E ≤ −t] ≤ exp

(
−2t2

∑n
j=1(βj − αj)2

)

,

for any t > 0.

3 The BKW Algorithm

The BKW algorithm [11], introduced by Blum et al., was the first sub-exponential
algorithmgiven for solving theLearningParitywithNoise (LPN)problem.Asymp-
totically, it has a time and samples complexity of 2O(k/ log k). Since LPN can be seen
as a special case ofLWEwherewework overZ2, theBKWalgorithmcanbe adapted
to solve Search-LWE over Zq with an asymptotic sample and time complexity of
qO(k/ log(k)) = 2O(k) when the modulus q is polynomial in k [1,43,44].

The BKW algorithm can be described as a variant of the standard Gaussian
elimination procedure, where a row addition results in the elimination of a whole
block of elements instead of a single element. The main idea is that by using
‘few’ row additions and no row multiplications, we limit the size of the noise
at the end of the reduction, allowing us to recover a small number of elements
of s with high probability through maximum likelihood. The main complexity
drawback of the algorithm comes from finding samples colliding on a block of
elements such that their addition eliminates multiple elements at once.

The BKW algorithm takes two integer parameters, usually denoted a and b,
such that a = �k/b�. The algorithm repeatedly eliminates blocks of up to b ele-
ments per row addition, over a rounds, to obtain the samples used for recovering
elements of s. Minimizing the complexity of the algorithm requires a tradeoff
between the two parameters. For small a, the reduced samples have low noise
and the complexity of recovering elements of s with high probability is reduced.
For large b however, the complexity of finding colliding samples increases.

In [1], Albrecht et al. view the BKW algorithm as a linear system solving
algorithm consisting of three stages, denoted sample reduction, hypothesis testing
and back substitution. For convenience, we briefly describe each of these stages
below.
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Sample Reduction. Given an LWE oracle Πs,χ, the goal of this stage is to
construct a series of oracles As,χ,�, each of which produces samples (a, c), where
the first b · 
 elements of a are zero. To create the oracles As,χ,� for 0 < 
 < a,
Albrecht et al. make use of a set of tables T �, which are maintained throughout
the execution of the algorithm. To sample from As,χ,1, we query the oracle As,χ,0

(which is the original LWE oracle) to obtain samples (a, c) to be stored in table
T 1. If T 1 already contains a sample (a′, c′) such that a and ±a′ agree on their
first b coordinates, we do not store (a, c) but instead output (a ∓ a′, c ∓ c′). If a
sample from As,χ,0 already has its first b elements to be zero, we directly output
it as a sample from As,χ,1.

For 1 < 
 < a, we proceed recursively by populating a table T � of non-zero
samples from As,χ,�−1 and outputting a query as soon as we get a collision in
the table.

Exploiting the symmetry of Zq and the fact that we do not need to store
queries which are already all-zero on a block, a table T � contains at most (qb −
1)/2 samples. Then, to create m samples from As,χ,�, we will need at most
m+ qb−1

2 calls to As,χ,�−1. Furthermore, since there is no use in storing the zero
elements from reduced samples, table T � stores samples of size n − (
 − 1) · b + 1
elements from Zq. The description of the oracles As,χ,� is given in Algorithm 1.

In the original BKW algorithm (see [11,35]), one would then take samples
from As,χ,a−1, i.e., samples with zeros everywhere except in the first b positions,
and delete any sample (a, c) with more than one non-zero coordinate ai. The
remaining samples would be used to recover one bit of s at a time.

Albrecht et al. generalized a bit the result. Instead of keeping only one single
element of the secret vector, they select a parameter d ≤ k−(a−1) ·b and create
a final oracle As,χ,a, which produces samples with d non-zero entries at fixed
positions in a. These samples are used to recover d bits of s through exhaustive
search over qd values. The oracle As,χ,a is defined similarly as above, making
use of a final table T a. It samples from As,χ,a−1 and adds (or subtracts) queries
(a, c), (a′, c′), for which a and ±a′ agree on coordinates (a − 1) · b + 1 through
k − d − 1. Albrecht et al. note that they obtain the best results when choosing
d equal to 1 or 2. Note that d = 1 corresponds to the BKW algorithm.3

HypothesisTesting. After the reduction phase,Albrecht et al. are leftwith sam-
ples (a, c) from As,χ,a, where a has d non-zero elements. We can view As,χ,a as
outputting samples in Z

d
q ×Zq. Let s′ denote the d first elements of s. Since a was

obtained by summing or subtracting up to 2a samples from the LWE oracle Πs,χ

(and considering the fact that χ is symmetric around 0), the noise (c − 〈a, s′〉) of
the reduced samples follows the distribution of the sum of 2a noise samples. The
problem of recovering s′ can then be seen as a problem of distinguishing between
the noise distributions for s′ and v �= s′.
3 The only difference between the two algorithms is that the original BKW algorithm

restarts every time As,χ,a outputs something.
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Algorithm 1. Oracle As,χ,�, for 0 < 
 < a

State: A table T � (initially empty)
Output: An LWE tuple (a, c) such that a has the first b · � elements set to 0.
1: loop
2: Let (a, c) ← As,χ,�−1.
3: if a has the first b · � elements set to 0 then
4: return (a, c).
5: end if
6: if there is (a′, c′) ∈ T � such that a and ±a′ are equal on the first b · � positions

then
7: return (a ∓ a′, c ∓ c′)
8: end if
9: Add (a, c) to T �.

10: end loop

By performing an exhaustive search over Z
d
q and making use of the log-

likelihood ratio, Albrecht et al. determine the number m of samples from As,χ,a

which should be required to recover s′ with high enough probability.
As already mentioned, the analysis of the solving phase from [1] makes use of

the heuristic assumption that the noise contributions of the samples from As,χ,a

are independent and that the sum of rounded Gaussians also follows a rounded
Gaussian distribution.

Back Substitution. This stage was not part of the original BKW algorithm
for LPN [11,35] (which does not make use of the set of tables T defined previ-
ously either). It is analogous to the back substitution typically used in Gaussian
elimination and is a clever way of reducing the size of the LWE problem after
part of the secret s has been recovered.

Indeed, once d elements of s are recovered with high probability, we can
perform a back substitution over the set of tables T , zeroing-out d elements in
each sample. To recover the next d elements from s, we query m new samples
from Πs,χ and reduce them through the tables T (which are already filled) to
obtain samples for hypothesis testing. Note that as soon as we recover all the
bits at positions (
−1) ·b through 
 ·b−1, the oracle As,χ,� and its corresponding
table T � become superfluous and further samples will need one reduction phase
less.

4 The LWE-solving Algorithm

In this section, we present our new LWE-solving algorithm. Following the struc-
ture from [1], our algorithm will also consist of the sample reduction, hypothesis
testing and back substitution phases. However, we change the hypothesis testing
phase with an idea similar to the LF1 algorithm [35]. Indeed, since the Walsh-
Hadamard transform can be seen as a multidimensional discrete Fourier trans-
form in Z2, it would seem plausible that a similar optimization could be achieved
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over Zq for LWE. As we have seen, the BKW algorithm for LWE from [1] differs
slightly from the original BKW algorithm in its reduction phase. Recall that
after reducing samples to a block of size k′ ≤ b, Albrecht et al. further reduce
the samples to d elements. Our idea is to remove this last reduction to d ele-
ments and recover directly the k′ elements of s using a DFT. Thus, the samples
we use for the DFT would have noise sampled from the sum of 2a−1 discretized
Gaussians instead of 2a, which might also lead to a significant improvement. As
for most other works on LPN or LWE solving algorithms, we will make use of
an heuristic assumption of independence for the noise of the reduced samples.

Finally, note that the LF1 algorithm uses the exact same reduction phase as
the original BKW. Similarly, our algorithm will use (nearly) the same reduction
phase as in [1], combined with a different hypothesis testing phase. The major
differences in our reduction phase will be that we perform one reduction round
less, and that we decide to store and re-use samples for solving successive blocks
of s.

4.1 Sample Reduction

As mentioned previously, our algorithm uses the same reduction phase as the
BKW algorithm from [1], except that we always stop the reduction as soon as we
reach a block of k′ ≤ b non-zero elements. We will construct the oracles As,χ,�

and the tables T � only for 1 ≤ 
 ≤ a − 1. It is thus fairly trivial to adapt the
results from [1] to bound the complexity of our algorithm’s reduction phase.

Lemma 9 (Lemma 2 and 3 from [1]). Let k, q be positive integers and Πs,χ

be an LWE oracle, where s ∈ Z
k
q . Let a ∈ Z with 1 ≤ a ≤ k, let b be such that

ab ≤ k, and let k′ = k − (a − 1)b. The worst case cost of obtaining m samples
(ai, ci) from the oracle As,χ,a−1, where the ai are zero for all but the first k′

elements, is upper bounded by
(

qb−1
2

)(
(a−1) · (a−2)

2
(k+1) − ab · (a−1) · (a−2)

6

)
+m

(
a−1
2

(k+2)
)

additions in Zq and (a − 1) · qb−1
2 + m calls to Πs,χ.

The memory required in the worst case to store the set of tables T 1 through
T a−1, expressed in elements of Zq is upper bounded by

(
qb − 1

2
· (a − 1) ·

(
k + 1 − b

a − 2
2

))
.

Proof. The proof follows exactly the one from [1], with the exception that we do
not use any table T a. ��
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4.2 Hypothesis Testing

At the end of the reduction phase, we are left with m samples (a(j), c(j)) from
the oracle As,χ,a−1, where each a(j) has all elements equal to zero except for a
block of size k′ = k−(a−1)·b. Let s′ denote the corresponding block of the secret
s. We can view the oracle As,χ,a−1 as returning samples in Z

k′
q × Zq. We will

consider that each such sample is the sum of 2a−1 samples (or their negation)
from the LWE oracle Πs,χ. Then, the noise 〈a(j), s′〉 − c(j) will correspond to
the sum of 2a−1 independent samples from the distribution χ, multiplied by ±1,
and taken modulo q. We perform our analysis when χ is the discrete Gaussian
distribution (3) and when χ is the rounded Gaussian distribution (2) which are
used in most of the LWE research, i.e., we let χ = Dσ,q or χ = Ψ̄σ,q.

We represent our m samples as a matrix A ∈ Z
m×k′
q with rows Aj and a

vector c ∈ Z
m
q . Recall that θq := exp(2πi/q). Let us consider the function

f(x) :=
m∑

j=1

1{Aj=x} θcj
q , ∀x ∈ Z

k′
q . (5)

The discrete Fourier transform of f is

f̂(α) :=
∑

x∈Zk′
q

f(x)θ−〈x,α〉
q =

∑

x∈Zk′
q

m∑

j=1

1{Aj=x} θcj
q θ−〈x,α〉

q =
m∑

j=1

θ−(〈Aj ,α〉−cj)
q .

In particular, note that

f̂(s′) =
m∑

j=1

θ−(〈Aj ,s′〉−cj)
q =

m∑

j=1

θ
−(νj,1±···±νj,2a−1 )
q , (6)

where the νj,l are independent samples from χ. Note that we dropped the reduc-
tion of the sum of the ν modulo q, since θkq

q = 1, for k ∈ Z.
We will now show, through a series of lemmas, that for appropriate values

for m and a, the maximum value of the function Re(f̂(α)) is reached by s′ with
high probability. Our algorithm for recovering s′ will thus consist in finding the
highest peak of the real part of the DFT of f(x).

We start first with two technical lemmas regarding Gaussian distributions
which might be of independent interest.

Lemma 10. For q an odd integer, let X ∼ Ψ̄σ,q and let Y ∼ 2πX/q. Then

E[cos(Y )] ≥ q

π
sin

(
π

q

)
e−2π2σ2/q2

and E[sin(Y )] = 0 .

Proof. Let S� be the set of integers in ] − q/2 + 
q, q/2 + 
q]. Using (1) and (2),
we can write
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E[cos(Y )] =
∑

x∈S0

cos
(

2π

q
x

) ∞∑

�=−∞

∫ x+1/2

x−1/2

p(θ + 
q; σ) dθ (7)

=
∞∑

�=−∞

∑

x∈S0

cos
(

2π

q
x + 2π


)∫ x+1/2

x−1/2

p(θ + 
q; σ) dθ (8)

=
∞∑

�=−∞

∑

x∈S0

cos
(

2π

q
(x + 
q)

)∫ x+1/2+�q

x−1/2+�q

p(θ; σ) dθ (9)

=
∞∑

�=−∞

∑

x′∈S�

cos
(

2π

q
x′
)∫ x′+1/2

x′−1/2

p(θ; σ) dθ (10)

=
∞∑

x′=−∞
cos

(
2π

q
x′
)∫ x′+1/2

x′−1/2

p(θ; σ) dθ (11)

=
∞∑

χ=−∞
F
(

cos
(

x
2π

q

)∫ x+1/2

x−1/2

p(θ; σ) dθ

)

(χ) , (12)

where, for (10), we used x′ := x + 
q and, for (12), we used the Poisson sum-
mation formula (Lemma 25 in Appendix A). Basics about continuous Fourier
transforms can be found in Appendix A. The Fourier transforms of cos(2πx/q)
and 1/(σ

√
2π) exp[−x/(2σ2)] can be found in Appendix A. We are now ready

to prove the lemma (we drop some (χ) for readability). For integer values of χ,
we have

where (14) is the convolution property of the FT, (15) comes from the translation
property of the FT, (16) comes from the integration property of the FT, and
(17) holds since δ(χ ± 1/q) ∗ δ(χ) = 0 for integer values of χ. We can write (12)
as
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q

π
sin

(
π

q

)
exp−2π2σ2/q2

+
∞∑

χ=1

q

π
sin

(
π

q

)
(−1)χ

(
e−2π2σ2(qχ+1)2/q2

qχ + 1
− e−2π2σ2(qχ−1)2/q2

qχ − 1

)

.

Notice that the sum term in this equation is alternating and decreasing in abso-
lute value when χ grows (derivative is negative). Notice also that the first term
(when χ = 1) is positive. Hence this sum is greater than 0 and we get our result
for E [cos(Y )].

For E [sin(Y )], note that when q is odd, X and Y are perfectly symmetric
around 0. The result then follows trivially from the symmetry of the sine func-
tion. ��
Lemma 11. For q an odd integer, let X ∼ Dσ,q and let Y ∼ 2πX/q. Then

E[cos(Y )] ≥ 1 − 2π2σ2

q2
and E[sin(Y )] = 0 .

Proof. Using [7, Lemma 1.3] with a = 1/(2σ2), we have that E[X2] ≤ σ2. Hence,
using cos(x) ≥ 1 − x2/2,

E[cos(2πX/q)] ≥ 1 − 2π2
E[X2]/q2 = 1 − 2π2σ2/q2 .

For E [sin(Y )], note that when q is odd, X and Y are perfectly symmetric around
0. The result then follows trivially from the symmetry of the sine function. ��
Definition 12 (Rσ,q,χ). In the following, let Rσ,q,χ := E[cos(χ)], i.e.,

Rσ,q,χ :=

{
q
π sin

(
π
q

)
e−2π2σ2/q2

when χ = Ψ̄q,σ

1 − 2π2σ2

q2 when χ = Dq,σ

Lemma 13. E

[
Re(f̂(s′))

]
≥ m · (Rσ,q,χ)2

a−1

.

Proof. From (6), we get

using the independence of the noise samples νj,� and E[θ±νj,�
q ] = E[cos(2πνj,�/q)]

(which follows from Lemmas 10 and 11). Using Lemmas 10 and 11 again, we have
that E[cos(2πνj,�/q)] ≥ Rσ,q,χ. Hence, we get that

E

[
Re(f̂(s′))

]
>

m∑

j=1

(Rσ,q,χ)2
a−1

= m · (Rσ,q,χ)2
a−1

. (19)

��
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Lemma 14. Let G ⊆ Zq be a subgroup of Zq, let X
U←− G and let e ∈ Zq be

independent from X. Then, E
[
θX+e

q

]
= 0.

Proof. Define Y = 2π
q X. Then Y is a random variable following a discrete uni-

form distribution on the unit circle. Then E[θX
q ] = 0 follows from the analysis

of discrete circular uniform distributions (see e.g. [6]). Now, since X and e are
independent, E[θX+e

q ] = E[θX
q ]E[θe

q ] = 0. ��

Lemma 15. arg maxα Re(f̂(α)) = s′ with probability greater than

1 − qk′ · exp
(
−m

8
· (Rσ,q,χ)2

a
)

.

Proof. A similar proof is proposed for LPN in [12]. We are looking to upper
bound the probability that there is some α �= s′ such that Re(f̂(α)) ≥ Re(f̂(s′)).
Using a union bound, we may upper bound this by qk′

times the probability
that Re(f̂(α)) ≥ Re(f̂(s′)) for some fixed vector α ∈ Z

k′
q , α �= s′ which is the

probability that

m∑

j=1

(
Re

(
θ−(〈Aj ,s′〉−cj)

q

)
− Re

(
θ−(〈Aj ,α〉−cj)

q

))
≤ 0 .

Let y = α − s′ ∈ Z
k′
q . Also, define ej := 〈Aj , s

′〉 − cj , for 1 ≤ j ≤ m.
Then, 〈Aj ,α〉−cj = 〈Aj ,y〉+ej . Note that since Aj is uniformly distributed at
random, independently from ej , and y is fixed and non-zero, 〈Aj ,y〉 is uniformly
distributed in a subgroup of Zq, and thus so is 〈Aj ,α〉−cj . Hence, we can apply
Lemma 14.

From our heuristic assumption, we will consider X1,X2, . . . , Xm to be inde-
pendent random variables with Xj = uj − vj , where

uj = Re
(
θ−(〈Aj ,s′〉−cj)

q

)
and vj = Re

(
θ−(〈Aj ,α〉−cj)

q

)
. (20)

Note that Xj ∈ [−2, 2] for all j. Furthermore, let X =
∑m

j=1 Xj . Using
Lemmas 13 (for the uj ’s) and 14 (for the vj ’s), we get that

E [X] ≥ m · (Rσ,q,χ)2
a−1

. (21)

We will bound the probability that X ≤ 0 using Hoeffding’s inequality
(Theorem 8). Let t = E[X] > 0. Then,

Pr[X ≤ 0] = Pr
[
(X − E[X]) ≤ −E[X]

] ≤ exp
(−2(E[X])2

16m

)

≤ exp
(
−m

8
· (Rσ,q,χ)2

a
)

.

(22)

Applying the aforementioned union-bound, we get the desired result. ��
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We are now ready to derive the number of samples m required to recover the
correct secret block s′ with high probability.

Theorem 16. Let k, q be positive integers and Πs,χ be an LWE oracle, where
s ∈ Z

k
q . Let a ∈ Z with 1 ≤ a ≤ k, let b be such that ab ≤ k, and let k′ =

k − (a − 1)b. Let As,χ,a−1 be the oracle returning samples (ai, ci) where the ai

are zero for all but the first k′ elements. Denote the vector consisting of the
first k′ elements of s as s′. Fix an ε ∈ (0, 1). Then, the number of independent
samples mLWE from As,χ,a−1, which are required such that we fail to recover the
secret block s′ with probability at most ε satisfies

mLWE ≥

⎧
⎪⎨

⎪⎩

8 · k′ · log
(

q
ε

) ·
(

q
π sin

(
π
q

)
e−2π2σ2/q2

)−2a

when χ = Ψ̄σ,q

8 · k′ · log
(

q
ε

) ·
(
1 − 2π2σ2

q2

)−2a

when χ = Dσ,q .

Furthermore, the hypothesis testing phase (the FFT phase in Algorithm 2)
that recovers s′ requires 2mLWE+CFFT ·k′ ·qk′ · log q operations in C and requires
storage for qk′

complex numbers, where CFFT is the small constant in the com-
plexity of the FFT.4

Proof. For a fixed m, we get

ε = Pr
[
∃ α �= s′ : Re(f̂(α)) ≥ Re(f̂(s′))

]
< qk′ · exp

(
−m

8
· (Rσ,q,χ)2

a
)

.

Solving for m, we get the desired result.
Concerning the algorithmic and memory complexities, we need to store the

values of the function f(x) as qk′
elements from C. For each of the mLWE samples

we receive from As,χ,a−1, we compute an exponentiation and an addition in C to
update f(x) and then discard the sample. Finally, computing the discrete Fourier
transform of f can be achieved with CFFT ·k′ · qk′ · log q complex operations, and
no additional memory, using an in-place FFT algorithm. ��

The hypothesis testing part of the algorithm is summarized in Algorithm 2.

4.3 Back Substitution

We use a similar back substitution mechanism as the one described in [1]. Note
that we have to apply back substitution on one table less, since we performed
only a − 1 reductions. Furthermore, since we recovered a complete block of s,
the table T a−1 would be completely zeroed-out by back substitution and can
4 One might comment on the required precision needed to compute the DFT. For this,

we set our precision to O log(m(Rσ,q,χ)2
a

) bits which is the expected size of our

highest peak in the DFT. Using this result along with some standard results about
the exact complexity to compute a DFT with a given precision (see, e.g., [18]), the
ratio between our (binary) complexities and the binary complexities of [1] remain
the same.
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Algorithm 2. Hypothesis testing algorithm for LWE.
Input: m independent LWE samples with only k′ := k−(a−1)b non-zero components

in a. We represent our samples as a matrix A ∈ Z
m×k′
q and a vector c ∈ Z

m
q .

Output: A vector consisting of the k′ elements of s that are at the non-zero positions
of a

1: Compute the fast Fourier Transform of the function f(x) :
∑m

j=1 1Aj=xθ
cj
q

2: return arg max

therefore simply be dropped after the hypothesis testing phase. Finally, we do
not discard the mLWE queries from Πs,χ, which were reduced and then used
for the solving phase. Instead, we store these mLWE original queries and re-use
m′ < mLWE of these queries for the next block of s.

4.4 Complexity of BKW with Multidimensional DFT

We now have all the results we need in order to state the total complexity of
solving SEARCH-LWE with our algorithm. For ease of notation, we will consider
from here on that the parameters a and b are chosen such that k = a·b. Note that
the general case, where k = (a − 1) · b + k′, follows similarly from our previous
results.

Theorem 17 (Complexity of SEARCH-LWE). Let k, q be positive integers
and Πs,χ be an LWE oracle, where s ∈ Z

k
q . Let a, b ∈ N be such that a · b = k.

Let CFFT be the small constant in the complexity of the fast Fourier transform
computation. Let 0 < ε < 1 be a targeted success rate and define ε′ := (1 − ε)/a.
For 0 ≤ j ≤ a − 1, let

mLWE
j,ε :=

⎧
⎪⎨

⎪⎩

8 · b · log
(

q
ε

) ·
(

q
π sin

(
π
q

)
e−2π2σ2/q2

)−2a−j

when χ = Ψ̄σ,q

8 · b · log
(

q
ε

) ·
(
1 − 2π2σ2

q2

)−2a−j

when χ = Dσ,q .

Under the standard heuristic that all the samples after reduction are independent
(which was also used in the previous work), the time complexity of our algorithm
to recover the secret s with probability at least ε is c1 + c2 + c3 + c4, where

c1 :=
(

qb − 1
2

)
·
(

(a − 1) · (a − 2)
2

(k + 1) − b

6
(a · (a − 1) · (a − 2))

)
(23)

is the number of additions in Zq to produce all tables T j, 0 ≤ j ≤ a − 1,

c2 :=
a−1∑

j=0

mLWE
j,ε′ · a − 1 − j

2
· (k + 2) (24)
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is the number of additions in Zq to produce the samples required to recover all
blocks of s with probability ε,

c3 := 2

⎛

⎝
a−1∑

j=0

mLWE
j,ε′

⎞

⎠+ CFFT · k · qb · log(q) (25)

is the number of operations in C to prepare and compute the DFTs,and

c4 := (a − 1) · (a − 2) · b · qb − 1
2

(26)

is the number of operations in Zq for back substitution.
The number of calls to the oracle Πs,χ is

(a − 1) · qb − 1
2

+ mLWE
0,ε . (27)

Finally, the memory complexity in number of elements from Zq and C are
respectively

(
qb − 1

2
· (a − 1) ·

(
k + 1 − b

a − 2
2

))
+ mLWE

0,ε and qb . (28)

Proof. To recover s, we need to recover each block of s successfully. Since we
are making use of the same set of tables T and reduced queries for each block,
these events are not independent. Using a union bound, and a failure probability
bounded by (1 − ε)/a for each of the a blocks thus leads to a overall success
probability of at least ε.

− The cost of constructing the set of tables T in (23) is given by Lemma 9. Note
that theses tables are constructed only once and maintained throughout the
execution of the algorithm.

− As per Lemma 9, the cost of obtaining m samples from the oracle As,χ,a−1

is upper bounded by m · a−1
2 ·(k+2). Noting that after solving the jth block,

the table T j is dropped, the result in (24) follows.
− The DFT has to be applied a times, for each block of size b. Since the number

of samples required is updated for each block, we get equation (25).
− After solving the first block, back substitution has to be applied to a − 2

tables (table T a−1 can be dropped). Per table, the substitution has cost 2b
for each of the qb−1

2 rows. In total, we get a cost of
∑a−2

j=1 2 · b ·
(
i · qb−1

2

)
, as

in (26).
− The required number of oracle samples follows from Lemma 9. Note that

the samples needed to fill up the tables are required only once and that the
mLWE

0,ε additional queries are stored and can be reused for each block of s

since mLWE
0,ε > mLWE

j,ε for j > 0. This gives us the total from (27).
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− Finally, the storage cost for the tables follows from Lemma 9. In addition,
we need an array of size qb to store the complex function on which we apply
the DFT (we assume an in-place DFT algorithm requiring no extra storage).
We also store the mLWE

0,ε samples queried to solve the first block. Combining
these results gives us (28).

��

4.5 Using Fewer Samples

If the number of queries to the LWE oracle is limited we can use an idea intro-
duced by Lyubashevsky [37]. The idea is to use a universal family of hash function
to combine samples and create new ones. However, these new samples will have
higher noise.

Theorem 18. Let ε ≥ (log q+1)/ log k. Then, one can convert an LWE instance
Πs,χ where χ is Ψ̄σ,q (resp. Dσ,q) and using k1+ε samples into an LWE instance
Πs,χ′ where χ′ is Ψ̄σ	(log q+1)k/(ε log k)
,q (resp. Dσ	(log q+1)k/(ε log k)
) without any
sample limit.

Proof (sketch). The proof is exactly the same as in [37] except for few differences
that we state here. We let our samples be A = a(1), · · · a(k1+ε) ∈ Z

k
q . Let also X ⊂

{0, 1}k1+ε

with x ∈ X if
∑

j xj = �(log(q) + 1)k/(ε log k)�. We use the following
universal family of hash function H :=

{
hA : X ← Z

k
q

}
where A is defined above

and hA(x) := x1a
(1) + · · · + xk1+εa(k1+ε). By the Leftover Hash Lemma [34],

when A and x are uniformly distributed, with probability greater than 1−2−k/4,
Δ(hA(x), U) ≤ 2−n/4, where U is the uniform probability distribution over Zk

q .
Note that the Leftover Hash Lemma holds since

|X| ≥
(

k1+ε

�(log q + 1)k/(ε log k)�
)	(log q+1)k/(ε log k)


≥ qk ,

when ε ≥ (log q + 1)/ log k. ��

The LF2 Heuristic. In [35], Levieil and Fouque propose LF2, an heuristic
improvement for the reduction phase of their LPN solving algorithm LF1. The
main idea of LF2 is to compute the sum (or difference) of any pair of samples
(a, c) and (a′, c′), which agree on b particular coordinates. Thus, in an entry
of a reduction table T i, we would store not only one, but all samples agreeing
(up to negation) on b coordinates. Then, when reducing a sample (a, c), we
could output (a ± a′, c ± c′) for each sample (a′, c′) in the corresponding table
entry. Note that if we have x samples agreeing on b positions, we can output

(
x
2

)

reduced samples.
An interesting case arises when we take exactly 3 · qb/2 oracle samples. In

the worst case, we get exactly 3 samples per entry in table T 1. Then, applying
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all the pairwise reductions, we again get 3 · qb/2 samples to be stored in table
T 2 and so forth. Hence, if we take

max
{
mLWE

0,ε′ , 3 · qb/2
}

(29)

oracle queries, we are ensured to have enough samples for the Fourier transform.
We could thus solve the LWE problem using fewer oracle samples than in The-
orem 17 and with a similar time complexity, at the expense of a higher memory
complexity (to store multiple samples per table entry).

4.6 Results

We computed the number of operations needed in Zq to solve the LWE problem
for various values of k when the parameters are chosen according to Regev’s
cryptosystem [43] and ε = 0.99. In this scheme, q is a prime bigger than k2

and σ = q/(
√

k log2(k)
√

2π). For our table, we took q to be the smallest prime
greater than k2. Our results are displayed in Table 1.5 To simplify our result,
we considered operations over C to have the same complexity as operations over
Zq. We also took CFFT = 1 which is the best one can hope to obtain for a FFT.
Regarding the noise distribution, we obtained the same results for both Dσ,q

and Ψ̄σ,q. If we compare our results with [1, Table1], we see that we are better in
all the cases.6 This improvement with respect to log likelihood comes from the
fact that we do one reduction less in our reduction phase as we recover a full
block instead of a single element in Zq. This implies that our noise is going to
be smaller and, hence, we will need a lower number of queries. However, we still
achieve the same asymptotic complexity.

5 Applying our Algorithm to LWR

In this section, we try to apply a similar algorithm to LWR. In the following, we
will always consider q to be prime.

Lemma 19. Let k and q > p ≥ 2 be positive integers, q prime. Let (a, c) be
a random sample from an LWR oracle Λs,p. Then, the “rounding error”, given
by ξ = (p/q)〈a, s〉 − c, follows a uniform distribution in a discrete subset of
[−1/2, 1/2] with mean zero.

Furthermore, for γ ∈ R �=0,

E
[
e±iξγ

]
=

1
q

· sin(γ
2 )

sin( γ
2q )

. (30)

5 The code used to compute these value is available on our website http://lasec.epfl.
ch/lwe/

6 Albrecht et al. simplified their complexity by considering non-integer a which
explains why the difference between our results varies depending on k.
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Table 1. We write #Zq for the worst case cost (in operations over Zq) of solving Search-
LWE for various parameters for the Regev cryptosystem [43] when ε = 0.99 according
to Theorem 17. We provide also the value of a that minimizes the complexity, the
number of queries (m) according to (27), and the number of queries (m) when we
apply the LF2 heuristic (29).

k q a log(#Zq) log(m) log(m) for LF2 log(#Zq) in [1]

64 4 099 19 52.62 43.61 41.01 54.85
80 6 421 20 63.23 53.85 51.18 65.78
96 9 221 21 73.72 63.95 61.98 76.75
112 12 547 21 85.86 75.94 73.20 87.72
128 16 411 22 95.03 84.86 82.05 98.67
160 25 601 23 115.87 105.33 102.46 120.43
224 50 177 24 160.34 149.26 146.32 163.76
256 65 537 25 178.74 167.43 164.43 185.35
384 147 457 26 269.18 257.23 254.17 −
512 262 147 27 357.45 345.03 341.92 −

Proof. We first prove the first part of the lemma. We will prove that for any
α ∈ [−q+1

2 , . . . , q−1
2 ], ξ takes the value α/q with probability 1/q. We have p ·

〈a, s〉 ≡ ξq (mod q). So α = ξq = ((p · 〈a, s〉 + (q − 1)/2) mod q) − (q − 1)/2.
Since 〈a, s〉 is uniform in Zq (for s �= 0), α is uniform in −(q+1)/2, · · · , (q−1)/2
and has mean zero. Hence, so has ξ.

We now prove the second part of our lemma. Let X = q · ξ be a random
variable following a discrete uniform distribution on the set of integers {(−q +
1)/2, . . . , (q − 1)/2}. Then, from the characteristic function of X, for any t ∈ R

we have

E
[
eitX

]
=

e−it(q−1)/2 − eit(q+1)/2

q · (1 − eit)
. (31)

By simple arithmetic, we obtain

E
[
eiξγ

]
= E

[
eiγq−1X

]
=

eiγ/(2q)
(
e−iγ/2 − eiγ/2

)

q
(
1 − eiγ/q

) =
− sin(γ/2) · 2i

q
(
e−γi/(2q) − eγi/(2q)

)

which gives our result. ��
In our case, q is an odd prime and different from p. Hence, E[eiξγ ]tends to
2
γ sin(γ/2) as q grows to infinity. We will be interested in the value γ = 2π/p.
Then, for small p = {2, 3, 4, 5, . . .}, E[eiξγ ] is {0.6366, 0.8270, 0.9003, 0.9355, . . .}.

5.1 The LWR-solving Algorithm

From the similarity of the LWR and LWE problems, it should not seem surprising
that we would use the same sample reduction and back substation phases, but
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we need an alternative “hypothesis testing phase” (which we call solving phase)
to account for the difference in error distributions.

As for LWE, we choose some a, b ≤ k such that ab ≤ k and we let k′ =
k − (a − 1)b. We will view the reduction phase of our algorithm as producing a
series of oracles Bs,p,� for 0 ≤ 
 ≤ a − 1, where Bs,p,0 is the original LWR oracle
Λs,p. The final oracle Bs,p,a−1 produces samples (a, c) where a is non-zero only
on the first k′ elements.

Solving Phase. We consider the samples from Bs,p,a−1 as belonging to Z
k′
q ×Zp.

We assume we have m such samples and represent them as a matrix A ∈ Z
m×k′
q

with rows Ai and a vector c ∈ Z
m
p . The corresponding block of k′ elements of

the secret s is denoted s′.
Additionally, we assume that each sample (a(j), c(j)) from Bs,p,a−1 is the sum

of 2a−1 samples (or their negation) from the LWR oracle. The ‘noise’ 〈a(j), s′〉p
q −

c(j) will then correspond to the sum of 2a−1 independent “rounding errors” (or
their negation) from the original samples.

For θu := exp(2πi/u), we consider the function

flwr(x) :=
m∑

j=1

1{Aj=x} θcj
p , ∀x ∈ Z

k′
q . (32)

The discrete Fourier transform of flwr is

f̂lwr(α) :=
∑

x∈Zk′
q

flwr(x)θ−〈x,α〉
q =

m∑

j=1

θ
−(〈Aj ,α〉 p

q −cj)
p . (33)

In particular, note that

f̂lwr(s′) =
m∑

j=1

θ
−(〈s′,α〉 p

q −cj)
p =

m∑

j=1

θ
−(±ξj,1±···±ξj,2a−1 )
p , (34)

where the ξj,� are independent rounding errors from the original LWR samples.
Note that it is irrelevant whether the noise has been reduced modulo p, since
θ−up

p = 1 for u ∈ Z.
As for LWE, we can now derive an explicit formula for the number of samples

m, which are required to recover s′ with high probability.

Lemma 20. For q > p ≥ 2, q prime, E
[
Re(f̂lwr(s′))

]
= m ·

(
1
q · sin(π

p )

sin( π
pq )

)2a−1

.

Proof. Let ξ be the random variable defined in Lemma 19. Since the original
rounding errors are independent, using Lemma 19, we may write

E

[
Re(f̂lwr(s′))

]
= m · Re

(
E

[
e∓iξ 2π

p

]2a−1)
= m ·

(
1
q

·
sin(π

p )

sin( π
pq )

)2a−1

. (35)

��
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We need also to bound the values of f̂ when not evaluated at s′.

Lemma 21. Let α �= s′. Then

E

[
Re(f̂lwr(α))

]
≤ m

(
2
p

+
1
p

cos
(

π

p

))2a−1

≤ m

(
3
p

)2a−1

.

Proof. Like in the previous lemma, we can write, for a uniformly distributed,

E

[
Re(f̂lwr(α))

]
= m · Re

(
E

[
e∓i(2π〈a,α〉/q−2πc/p)

]2a−1)
. (36)

However, unlike in the LWE case, we cannot use the independence of a and
the noise to obtain a zero expected value. This occurs because the errors are
computed deterministically from the vectors a in LWR. In fact, experiments
showed that the error is strongly correlated to a and that the expected value is
not zero. Thus, we will instead bound this expected value. To do this, we write

and we bound both the sine and the cosine term.

− We first show that the contribution of the sine is zero, i.e., that for α �= s′

fixed,7

E [sin (2π〈a,α〉/q − 2πc/p)] = 0 . (37)

Let w(a) := sin (2π〈a,α〉/q − 2π�〈a, s′〉(p/q)�/p). First, note that for a = 0,
c = 0. For a �= 0, the contribution in the expected value is w(a). We have

w(−a) = sin (2π〈−a, α〉/q − 2π�〈−a, s′〉(p/q)�/p)
= sin (−2π〈a,α〉/q − 2π�−〈a, s′〉(p/q)�/p) = −w(a) .

Since q is odd, −a �= a and, thus, in the expected value, the contribution of
any a �= 0 is cancelled. Hence, the result.

− For the cosine, as in Lemma 15, we let y = α − s′ ∈ Z
k′
q . We get,

cos
(

2π〈a,α〉
q

− 2πc

p

)
= cos

(
2π〈a,y〉

q
+

2π(〈a, s′〉p/q − c)
p

)

= cos
(

2π〈a,y〉
q

+
2πξ

p

)
, (38)

where ξ ∈ [−1/2, 1/2] is the rounding error from Lemma 19. We are looking
for an upper-bound and, hence, we assume that ξ ∈ [−1/2, 1/2] will always

7 This is where the round function instead of the floor function in the definition of
LWR becomes handy.
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be such that cos(2π〈a,y〉/q+2πξ/p) is maximized. Figure 1 might help with
the reading. We divide the circle into sets of the form

S� :=
[

π

p
,
(
 + 1)π

p

]
∪
[−
π

p
,
−(
 + 1)π

p

]
, 
 ∈ [0, p − 1] .

Note that this covers the whole circle. The hashed surface in Figure 1 is such
a set.
When 2π〈a,y〉/q ∈ S� for 
 �= 0, we upper-bound (38) by cos((
 − 1)π/p)
(the bold line in Figure 1). Indeed, |2πξ/p| ≤ π/p. When 2π〈a,y〉/q ∈ S0,
we upper-bound (38) by cos(0) = 1.

Fig. 1. Figure for the proof of Lemma 21

Note that Pr[2π〈a,y〉/q ∈ S�]] = 1/p since 〈a,y〉 is uniformly distributed in
Zq and p ≤ q. Hence,

E [cos (2π〈a,y〉 + 2πξ/p)] ≤ 1
p

+
1
p

p−1∑

�=1

cos
(

(
 − 1)π
p

)

=
1
p

+
1
p

cos(0) − 1
p

cos
(

(p − 1)π
p

)
=

2
p

+
1
p

cos
(

π

p

)
≤ 3

p
. (39)

Plugging the values of the sine and the upper-bound for the cosine in (36) finishes
the proof. ��
Lemma 22. When q > p ≥ 4 and q is prime, arg maxα Re(f̂lwr(α)) = s′ with
probability greater than

1 − qk′ · exp

⎛

⎜
⎝−m

8
·
⎛

⎝

(
1
q

·
sin(π

p )

sin( π
pq )

)2a−1

−
(

3
p

)2a−1
⎞

⎠

2
⎞

⎟
⎠ .
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Proof. We first want the probability that Re(f̂(x)) ≥ Re(f̂(s′)) for some fixed
vector x ∈ Z

k′
q , x �= s′. Applying the same heuristic argument as for LWE, we

consider X1,X2, . . . , Xm to be independent random variables with Xj = uj −vj ,
where

uj = Re
(

θ
−(〈Aj ,s′〉 p

q −cj)
p

)
and vj = Re

(
θ

−(〈Aj ,x〉 p
q −cj)

p

)
. (40)

Note that Xj ∈ [−2, 2] for all j. Furthermore, let X =
∑m

j=1 Xj . Using
Lemmas 20 and 21, we get that

E [X] ≥ m ·
⎛

⎝

(
1
q

·
sin(π

p )

sin( π
pq )

)2a−1

−
(

3
p

)2a−1
⎞

⎠ ≥ 0 . (41)

We will again bound the probability that X ≤ 0 using Hoeffding’s inequality.
Let t = E[X] > 0. Then,

Pr[X ≤ 0] = Pr
[
(X − E[X]) ≤ −E[X]

] ≤ exp
(−2(E[X])2

16m

)

≤ exp

⎛

⎜
⎝−m

8
·
⎛

⎝

(
1
q

·
sin(π

p )

sin( π
pq )

)2a−1

−
(

3
p

)2a−1
⎞

⎠

2
⎞

⎟
⎠ . (42)

The final result follows by applying a union bound over all possible values
of x. ��

As for LWE, we may now deduce the number m of reduced samples that are
required to recover a block s′.

Theorem 23. Let k and q > p ≥ 4 be positive integers, q prime, and Λs,p be
an LWR oracle, where s ∈ Z

k
q . Let a ∈ Z with 1 ≤ a ≤ k, let b be such that

ab ≤ k, and let k′ = k − (a − 1)b. Let Bs,p,a−1 be the oracle returning samples
(ai, ci) where the ai are zero for all but the first k′ elements. Denote the vector
consisting of the first k′ elements of s as s′. Fix an ε ∈ (0, 1). Then, the number
of samples m from Bs,p,a−1 , which are required such that we fail to recover the
secret block s′ with probability at most ε satisfies

mLWR ≥ 8 · k′ · log
(q

ε

)
·
⎛

⎝

(
1
q

·
sin(π

p )

sin( π
pq )

)2a−1

−
(

3
p

)2a−1
⎞

⎠

−2

.

Furthermore, recovering s′ in the solving phase (the FFT phase) requires
2mLWR + CFFT · k′ · qk′ · log q operations in C, as well as storage for qk′

complex
numbers.

We now summarize the complexity of our algorithm in the following theorem
(the proof of which is analogous to the proof of Theorem 17).
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Theorem 24 (Complexity of SEARCH-LWR). Let k, q > p ≥ 4 be posi-
tive integers, q prime, and Πs,χ be an LWE oracle, where s ∈ Z

k
q . Let a, b ∈ Zq

be such that a · b = k. For 0 ≤ j ≤ a − 1, let

mLWR
j,ε := 8 · b · log

(q

ε

)
·
⎛

⎝

(
1
q

·
sin(π

p )

sin( π
pq )

)2a−1−j

−
(

3
p

)2a−1−j
⎞

⎠

−2

.

Let 0 < ε < 1 be a targeted success rate and define ε′ := (1 − ε)/a. The (time,
memory and query) complexities to recover the LWR secret s with probability ε
are the same as in Theorem 17 where we replace mLWE

j,ε by mLWR
j,ε .

5.2 Results

The current hardness results for LWR require either a parameter q exponential in
k or a bound m on the number of oracle samples that an adversary may query. It is
an open problem ([3]) to assess the hardness of LWR with polynomial parameters
when the adversary has no sample limit. In such a case, for a = O (log k) and b =
�k/a�, our algorithm would solve LWR in time 2O(k), as for LWE.

However, the bound on the number of oracle samples in Theorem 7 is much
lower than the amount of samples required by our algorithm. Using an idea
from Lyubashevsky [37] we can generate additional samples with higher noise
(see Theorem 18). Yet, even this method requires at least k1+ε samples for
ε ≥ (log q + 1)/ log k, which is incompatible with the constraints of Theorem 7,
for a q polynomial in k.

in [3, Corollary 4.2], two types of parameters are proposed: parameters min-
imizing the Modulus/Error ratio (a) and parameters maximizing efficiency (b).
For completeness, we show in Table 2 the complexity of our algorithm applied
to these parameters. More precisely, we took for the underlying LWE problem

Table 2. Worst case cost (in operations over Zq) of solving Search-LWR for various
parameters for the Regev cryptosystem [43] when ε = 0.99 according to Theorem 24.
We provide also the value of a that minimizes the complexity, the number of queries
(m) according to (27).

k q p a log(#Zq) log(m) type

64 383 056 211 733 23 92.20 82.80 (a)
80 1 492 443 083 1 151 25 110.91 101.11 (a)
96 ≈ 232 1 663 26 132.26 122.15 (a)
112 ≈ 233 2 287 28 148.08 137.68 (a)
128 ≈ 234 3 023 29 167.52 156.87 (a)
64 9 461 13 12 81.61 72.90 (b)
80 14 867 13 12 103.89 94.86 (b)
96 21 611 13 12 126.97 117.66 (b)
112 29 717 13 13 140.21 130.60 (b)
128 39 241 13 13 162.63 152.84 (b)
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Regev’s parameters and ignored the constrains on the number of samples. For
the type (a) parameters, we took

σ =
k2

√
k log2(k)

√
2π

q = nextprime(�(2σk)3�) p = nextprime(� 3
√

q�)

and for the type (b) parameters

σ =
k2

√
k log2(k)

√
2π

p = 13 q = nextprime(�2σkp�) .

Table 2 shows that the parameters proposed in [3] seem secure even if we remove
the constrain on the number of samples as the complexities are still quite high.

6 Conclusion

To summarize, we propose an algorithm which is currently the best algorithm
for solving the LWE problem. Our algorithm uses Fourier transforms and we
propose a careful analysis of the rounded Gaussian distribution which can be of
independent interest. In particular, we study its variance and the expected value
of its cosine. We also adapt our algorithm to the LWR problem when q is prime.
This algorithm is the first LWR-solving algorithm.

Further work includes the study of the Ring variants of LWE and LWR [8,38]
and the study of variants of LWE, e.g., when the secret follows a non-uniform
distribution (like in [2]) or when the noise follows a non Gaussian distribution.
It would also be interesting to see if our LWR algorithm can be extended for q
non prime.

Acknowledgments. We are grateful to Dimitar Jetchev and Adeline Langlois
for helpful discussions and pointers. We thank the Eurocrypt 2015 reviewers for
their fruitful comments.

A Continuous Fourier Transforms

We use the following definition for continuous Fourier Transforms. The continu-
ous Fourier transform (FT) of a function f : R → C is a function F(f) : R → C

defined as
F(f)(χ) =

∫ ∞

−∞
f(x)e−2πiχx dx . (43)

We will use the following well-known properties.

Linearity.
F(f(x) + g(x))(χ) = (F(f) + F(g))(χ) . (44)
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Translation.
F(f(x − y))(χ) = e−i2πyχF(f)(χ) . (45)

Convolution.
F(f(x)g(x))(χ) = (F(f(x)) ∗ F(g(x)))(χ) , (46)

where ∗ denotes the convolution operator which is defined as

(u ∗ v)(x) :=
∫ ∞

−∞
u(y)v(x − y) dy .

Integration.

F
(∫ x

−∞
f(τ) dτ

)
(χ) =

1
2iπχ

F(f)(χ) +
1
2
F(f)(0)δ(χ) , (47)

where δ is the Dirac delta distribution. We will use the following property of the
Dirac delta. ∫ ∞

−∞
f(τ)δ(τ − 
) dτ = f(
) .

We refer the reader to, e.g., [24,45,47] for more information about the Dirac delta
distribution and its derivatives or, e.g. [14] for a more engineering approach.

We will also use the Poisson summation formula.

Lemma 25. Poisson summation formula (see, e.g., [46])] Let f(x) : R → C be
a function in the Schwartz space8 and F(f) its continuous Fourier transform
then ∞∑

�=−∞
f(
) =

∞∑

χ=−∞
F(f)(χ) . (48)

Useful Fourier Transforms.

F
(

1
σ
√

2π
e−x2/(2σ2)

)
(χ) = e−2π2σ2χ2

. (49)

Let γ ∈ R. Then

F (cos(αx)) (χ) =
1
2

(
δ
(
χ − γ

2π

)
+ δ

(
χ +

γ

2π

))
, (50)

where δ is the Dirac delta distribution.
8 A function f(x) is in the Schwartz space if ∀α, β ∈ N, ∃Cα,β such that

sup|xα∂β
x f(x)| ≤ Cα,β . A function in C∞ with compact support is in the Schwartz

space.
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of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA,
USA, June 1–4, 2013. pp. 575–584. ACM (2013)

17. Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from
(Standard) LWE. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22–25,
2011. pp. 97–106. IEEE (2011)

18. Buhler, J., Shokrollahi, M.A., Stemann, V.: Fast and precise Fourier transforms.
IEEE Transactions on Information Theory 46(1), 213–228 (2000)



Better Algorithms for LWE and LWR 201

19. Canetti, R., Garay, J.A. (eds.): Advances in Cryptology - CRYPTO 2013–33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2013.
Proceedings, Part I, Lecture Notes in Computer Science, vol. 8042. Springer (2013)

20. Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.): Approximation,
Randomization and Combinatorial Optimization, Algorithms and Techniques,
APPROX 2005 and RANDOM 2005, Lecture Notes in Computer Science, vol.
3624. Springer (2005)

21. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)
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Abstract. We propose a new decoding algorithm for random binary
linear codes. The so-called information set decoding algorithm of Prange
(1962) achieves worst-case complexity 20.121n. In the late 80s, Stern pro-
posed a sort-and-match version for Prange’s algorithm, on which all vari-
ants of the currently best known decoding algorithms are build. The
fastest algorithm of Becker, Joux, May and Meurer (2012) achieves run-
ning time 20.102n in the full distance decoding setting and 20.0494n with
half (bounded) distance decoding.

In this work we point out that the sort-and-match routine in Stern’s
algorithm is carried out in a non-optimal way, since the matching is
done in a two step manner to realize an approximate matching up to
a small number of error coordinates. Our observation is that such an
approximate matching can be done by a variant of the so-called High
Dimensional Nearest Neighbor Problem. Namely, out of two lists with
entries from F

m
2 we have to find a pair with closest Hamming distance. We

develop a new algorithm for this problem with sub-quadratic complexity
which might be of independent interest in other contexts.

Using our algorithm for full distance decoding improves Stern’s com-
plexity from 20.117n to 20.114n. Since the techniques of Becker et al apply
for our algorithm as well, we eventually obtain the fastest decoding algo-
rithm for binary linear codes with complexity 20.097n. In the half distance
decoding scenario, we obtain a complexity of 20.0473n.

Keywords: Linear codes · Nearest neighbor problem · Approximate
matching · Meet-in-the-middle

1 Introduction

The NP-hard decoding problem for random linear codes is one of the most fun-
damental combinatorial problems in coding and complexity theory. Due to its
purely combinatorial structure it is the major source for constructing crypto-
graphic hardness assumptions that retain their hardness even in the presence of
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quantum computers. Almost all code-based cryptosystems, such as the McEliece
encryption scheme [15], rely on the fact that random linear codes are hard to
decode.

The way cryptographers usually embed a trapdoor into code-based construc-
tions is that they start with some structured code C, which allows for efficient
decoding, and then use a linear transformation to obtain a scrambled code C ′.
The cryptographic transformation has to ensure that the scrambled code C ′

is indistinguishable from a purely random code. Unless somebody is able to
unscramble the code, a cryptanalyst faces the problem of decoding a random
linear code. Hence, for choosing appropriate security parameters for a crypto-
graphic scheme it is crucial to know the best performance of generic decoding
algorithms for linear codes.

Also closely related to random linear codes is the so-called Learning Parity
with Noise Problem (LPN) that is frequently used in cryptography [9,12]. In
LPN, one directly starts with a generator matrix that defines a random linear
code C and the LPN search problem is a decoding problem on C. Cryptographers
usually prefer decision versions of hard problems for proving security of their
schemes. However, for LPN there is a reduction from the decision to the search
version that directly links the cryptographic hardness of the underlying schemes
to the task of decoding random linear codes.

The Learning with Errors Problem (LWE) that was introduced for crypto-
graphic purposes in the work of Regev [19,20] can be seen as a generalization of
LPN to codes defined over larger fields. LWE is closely related to well-studied
problems in learning theory, and it proved to be a fruitful source within the
last decade for many cryptographic constructions that provide new functionali-
ties [5,7,16]. Although we focus in this work on random linear codes over F2, we
do not see any obstacles in transferring our techniques to larger finite fields Fq as
this was done in [17]. Surely, our techniques will also lead to some improvement
for arbitrary fields, but we believe that our improvements are best tailored to
F2, easiest to explain for the binary field, and we feel that binary codes define
the most fundamental and widely applied class of linear codes.

Let us define some basics of linear codes and review the progress that decod-
ing algorithms underwent. A (random) binary linear code C is a (random) k-
dimensional subspace of Fn

2 . Therefore, a code defines a mapping F
k
2 → F

n
2 that

maps a message m ∈ F
k
2 to a codeword c ∈ F

n
2 . On a noisy channel, a receiver

gets an erroneous version x = c + e for some error vector e ∈ F
n
2 . The decoding

problem now asks for finding e, which in turn enables to reconstruct c and m.
Usually, we assume that during transmission of c not too many errors occurred,
such that e has a small Hamming weight wt(e) and c is the closest codeword to
x. This defines the search space of e, which is closely linked to the distance d of
C.

So naturally, the running time T (n, k, d) of a decoding algorithm is a function
of all code parameters n, k and d. However, we know that asymptotically random
linear codes reach the Gilbert-Varshamov bound k

n ≤ 1 − H( d
n ), where H(·) is

the binary entropy function (see e.g. [22]). In the full distance decoding setting we
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are looking for an error vector e s.t. wt(e) ≤ d, whereas in half distance decoding
we have wt(e) ≤ �d−1

2 �. Thus, in both cases we can upper bound the running
time by a function T (n, k) of n and k only. When we speak of worst-case running
time, we maximize T (n, k) for all k where the maximum is obtained for code
rates k

n near 1
2 . Usually, it suffices to compare worst-case complexities since all

known decoding algorithms with running time T, T ′ and worst-case complexity
T (n) < T ′(n) satisfy T (n, k) < T ′(n, k) for all k.

The simplest algorithm is to enumerate naively over e’s search space and
check whether x+e ∈ C. However, it was already noticed in 1962 by Prange [18]
that the search space for e can considerably be lowered by applying simple lin-
ear algebra. Prange’s algorithm consists of an enumeration step with exponential
complexity and some Gaussian elimination step with only polynomial complex-
ity. The worst-case complexity of Prange’s algorithm is 20.121n in the full distance
decoding case and 20.0576n with half distance decoding.

In 1989, Stern [21] noticed that Prange’s enumeration step can be accelerated
by enumerating two lists L,R within half of the search space, a typical time-
memory trade-off. The lists L,R are then sorted and one looks for a matching
pair. This is a standard trick for many combinatorial search problems and is usu-
ally called a sort-and-match or Meet-in-the-middle approach in the literature.
Stern’s algorithm however is unable to directly realize an approximate match-
ing of lists, where one wants to find a pair of vectors from L × R with small
Hamming distance. In Stern’s algorithm this is solved by a non-optimal two-step
approach, where one first matches vector pairs exactly on some portion of the
coordinates, and then in a second step checks whether any of these pairs has
the desired distance on all coordinates. Stern’s algorithm led to a running time
improvement to 20.117n (full distance) and 20.0557n (half distance), respectively.

Our Contribution: In this work, we propose a different type of matching algo-
rithm for Stern’s algorithm that directly recovers a pair from L × R with small
Hamming distance. Fortunately, this problem is well-known in different variants
in many fields of computer science as the High Dimensional Nearest Neighbor
Problem [6,8,23] or the Bichromatic Closest Pair Problem [2]. The best bounds
that are known for the Hamming metric are due to Dubiner [6] and Valiant [24].

However, we were not able to apply Dubiner’s algorithm to our decoding
problem, since we have a bounded vector size, which is referred to as the limited
amount of data case in [6]. Although it is stated in Dubiner’s work [6] that
his algorithm might also be applicable to the limited case, the analysis is only
done for the unlimited amount of data case. The algorithm of Valiant [24] is
only optimal in special cases (i.e. large Hamming distances) and unfortunately
doesn’t apply to our problem either. Thus we decided to give an own algorithmic
solution, which gives us the required flexibility for choosing parameters that are
tailored to the decoding setting.

We provide a different and quite general algorithm for finding a pair of (lim-
ited or unlimited size) vectors in two lists that fulfill some consistency criterion,
like e.g. in our case being close in some distance metric. The way we solve this
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problem is by checking parts of the vectors locally, and thus sorting out vector
pairs that violate consistency locally, since these pairs are highly unlikely to ful-
fill consistency globally. In our special case, where |L| = |R| and where we want
to find the closest pair of vectors from F

m
2 with Hamming distance γm, γ ≤ 1

2 ,
we obtain an algorithm that approaches sub-quadratic complexity |L| 1

1−γ . In our
analysis in Sections 4 and 5 we propose an algorithm for bounded vector size
and show that in the unlimited amount of data case (which is not important for
the decoding problem) our algorithm approaches Dubiner’s bound.

Using this matching algorithm in the full distance decoding setting directly
leads to an improved decoding algorithm for random binary linear codes with
complexity 20.114n, as opposed to Stern’s complexity 20.117n. In 2011, Stern’s
algorithm was improved by Bernstein, Lange and Peters to 20.116n. Then, using
recent techniques from improving subset sum algorithms [3,11], May, Meurer,
Thomae [14] and Becker, Joux, May, Meurer [4] further improved the running
time to 20.102n. Fortunately, these techniques directly apply to our algorithm as
well and result in a new worst-case running time as small as 20.097n. We obtain
similar results in the case of half distance decoding.

0.097 0.102 0.112 0.114 0.117 0.121

Theorem 3 BJMM (2012) MMT (2011) Th. 2 Stern (1989)Prange (1962)

Fig. 1. History of Information Set Decoding: full distance decoding (FDD)

0.0473 0.0494 0.0537 0.0550

0.0557

0.0576

Theorem 3 BJMM (2012) MMT (2011) Th. 2

Stern (1989)

Prange (1962)

Fig. 2. History of Information Set Decoding: half distance decoding (HDD)

The paper is organized as follows. In Section 2, we elaborate a bit more
on previous work and explain the basic idea of our matching approach. This
leads to a sort-and-match decoding algorithm that we describe and analyze in
Section 3, including the application of the improvement from Becker et al [4].
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Fig. 3. Stern, Th. 2, BJMM and Th. 3 for BDD/FDD and all code rates k/n

Our decoding algorithm calls a new matching subroutine that finds a pair of
vectors with minimal Hamming distance in two lists. We describe this matching
procedure in Section 4.

2 Previous Work – Information Set Decoding

A binary linear code C is a k-dimensional subspace of Fn
2 . Thus, C is generated

by a matrix G ∈ F
k×n
2 that defines a linear mapping F

k
2 → F

n
2 . If G’s entries are

chosen independently and uniformly at random from F
k×n
2 with the restriction

that G has rank k, then we call C a random binary linear code. The distance d
of C is defined by the minimum Hamming distance of two different codewords
in C.

Let H ∈ F
(n−k)×n
2 be a basis of the kernel of C. If C is random then it is

not hard to see that the entries of H are also independently and uniformly at
random distributed in F2. Therefore, we have Hct = 0 for every c ∈ C. For
simplicity, we omit from now on all transposition of vectors and write c instead
of ct.

For every erroneous codeword x = c + e with error vector e, we obtain
Hx = He by linearity. We call s := Hx ∈ F

n−k
2 the syndrome of a message x.

In order to decode x, it suffices to find a low weight vector e such that He = s.
Once e is found, we can simply recover c from x. This process is called syndrome
decoding, and the problem is known to be NP-hard.

In the case of full distance decoding (FDD), we receive an arbitrary point
x ∈ F

n
2 and want to decode to the closest codeword in the Hamming metric.
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We want to argue that there is always a codeword within (roughly) Hamming
distance d. Therefore, we observe that the syndrome equation He = s is solvable
as long as the search space for e roughly equals 2n−k. Hence, for weight-d vectors
e ∈ F

n
2 we obtain

(
n
d

) ≈ 2H( d
n )n ≈ 2n−k, where H(·) is the binary entropy

function. This implies H( d
n ) ≈ 1 − k

n , a relation that is known as the Gilbert-
Varshamov bound. Moreover, it is well-known that random codes asymptotically
reach the Gilbert-Varshamov bound [22]. This implies that for every x we can
always expect to find a closest codeword within distance d.

In the other case of half distance decoding (HDD), we obtain the promise
that the error vector is within the error correction distance, i.e. wt(e) ≤ �d−1

2 �,
which is for example the case in cryptographic settings, where an error is added
artificially by e.g. the encryption of a message.

Since the decoding algorithms that we study use ω := wt(e) as an input, we
run the algorithms in the range ω ∈ [0, d] or ω ∈ [0, �d−1

2 �], respectively. However,
all our algorithms attain their maximum running time for their maximal weight
ω = d, respectively ω = �d−1

2 �. In the following we assume that we know ω.
Let us return to our syndrome decoding problem He = s. Naively, one can

solve this equation by simply enumerating all weight-ω vectors e ∈ F
n
2 in time

Õ ((
n
ω

))
.

Prange’s Information Set Decoding: At the beginning of the 60s, Prange
showed that the use of linear algebra provides a significant speedup. Notice that
we can simply reorder the positions of the error vector e by permuting the
columns of H. For some column permutation π let Q ∈ F

(n−k)×(n−k)
2 denote

the quadratic matrix at the right hand side of π(H) = (·||Q). Assume that Q
has full rank, which happens with constant probability and define s̄ = Q−1 · s
and H̄ = Q−1 · π(H) = (·|I) for an (n − k) × (n − k) identity matrix I. Let
π(e) = e1 + (0k||eq) with e1 ∈ F

k
2 × 0n−k and eq ∈ F

n−k
2 be the permuted

error vector. Assume that e1 = 0n. In this case, we call the first k error-free
coordinates an information set. Having an information set, we can rewrite our
syndrome equation as

H̄π(e) = H̄e1 + eq = s̄, where wt(e1) = 0 and wt(eq) = ω.

Since e1 is the zero vector, we can simplify as eq = s̄. Thus we only have to
check whether s̄ has the correct weight wt(s̄) = ω.

Notice that all complexity in Prange’s algorithm is moved to the initial per-
mutation π of H’s columns, whereas the remaining step has polynomial complex-
ity. To improve upon the running time, it is reasonable to lower the restriction
that the information set has no 1-entries in e1, which was done in the work of
Lee-Brickell [13]. Assume that the information set carries exactly p 1-positions.
Then we enumerate over all

(
k
p

)
possible e1 ∈ F

k
2 × 0n−k with weight p. There-

fore, we can test whether wt(eq) = wt(s̄− H̄e1) = ω − p. On the downside, this
trade-off between lowering the complexity for finding a good π and enumerating
weight-p vectors does not pay off. Namely, asymptotically (in n) the trade-off
achieves its optimum for p = 0.
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On the positive side, we can improve on the simple enumeration of weight-
p vectors by enumerating two lists of weight-p

2 vectors1. This classical time-
memory trade-off, usually called a Meet-in-the-middle approach, allows to reduce
the enumeration time from

(
k
p

)
to

(
k/2
p/2

)
by increasing the memory to the

same amount. Such a Meet-in-the-middle approach was introduced by Stern
for Prange’s Information Set decoding in 1989 [18]. In a nutshell, Stern’s variant
splits the first k columns of π(e) = e1 + e2 + (0k||eq) with eq ∈ F

n−k
2 in two

parts e1 ∈ F
k/2
2 × 0k/2 × 0n−k and e2 ∈ 0k/2 × F

k/2
2 × 0n−k. Additionally, we

want a good permutation π to achieve

H̄ · (e1 + e2) + eq = s̄ with wt(e1 + e2) = p and wt(eq) = ω − p. (1)

Thus we have
H̄e1 = H̄e2 + s̄ + eq. (2)

Since wt(eq) = ω − p, for all but ω − p of the n − k coordinates of the vectors
we have

H̄e1 = H̄e2 + s̄. (3)

Remember that Q was defined as the right hand part of π(H). It can be
shown that Q is invertible with constant probability over the choice of H and
π. Thus inverting Q can be ignored for the computation of the time complexity
that suppresses polynomial factors.

Definition 1. A permutation π is good if Q is invertible and if for π(e) there
exists a solution (e∗

1, e
∗
2) satisfying (1).

In Stern’s algorithm, one computes for every candidate e1 the left-hand side
of Eq. (3) and stores the result in a sorted list L. Then, one computes for every
e2 the right-hand side and looks whether the result is in L. But recall that the
above equation only holds for all but ω−p coordinates. Thus, one cannot simply
match a candidate solution to one entry in L.

The solution to this problem in Stern’s algorithm is to introduce another
parameter � and to test whether there is an exact match on � out of all n − k
coordinates. For those pairs (e1, e2) whose result matches on � coordinates, one
checks whether they in total match on all but ω − p coordinates. However, this
two-step approach for approximately matching similar vectors introduces another
probability that enters the running time – namely that both vectors match on the
chosen � coordinates. Clearly, one would like to have some algorithm that directly
addresses the approximate matching problem given by identity (2). Altogether,
Stern’s algorithm leads to the first asymptotical improvement since Prange’s
algorithm.

1 Throughout the paper we ignore any rounding issues.
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3 Our Decoding Algorithm

3.1 Application to Stern’s Algorithm

Our main observation is that the matching in Stern’s algorithm can be done in
a smarter way by an algorithm for approximately matching vectors. We propose
such an algorithm in Section 4. Our algorithm NearestNeighbor works on two
lists L,R with uniformly distributed and pairwise independent entries from F

m
2 ,

where one guarantees the existence of a pair from L×R that has small Hamming
distance γm, 0 ≤ γ ≤ 1

2 . On lists of equal size |L| = |R| we achieve a running
time that approaches Õ(|L| 1

1−γ ). Notice that our running time is sub-quadratic
for any γ < 1

2 . The smaller γ the better is our algorithm. In the case of γ = 0,
we achieve linear running time (up to logarithmic factors) which coincides with
the simple sort-and-match routine.

Our new matching algorithm immediately gives us an improved complexity
for decoding random binary linear codes. First we proceed as in Stern’s algorithm
by enumerating over all weight-p

2 candidates for e1 ∈ F
k/2
2 × 0k/2 × 0n−k. We

compute the left-hand side H̄e1 of Eq. (3) and store the result in a list L. For
the right-hand side we proceed similar and store H̄e2 + s̄ in a list R.

Notice that by construction each pair (e1, e2) of enumerated error vectors
yields an error vector e1 + e2 + (0k||eq) with eq = H̄(e1 + e2) + s̄ such that
identity (2) holds. Moreover, by construction we have wt(e1 + e2) = p. Thus all
that remains is to find among all tuples (H̄e1, H̄e2 + s̄) ∈ L×R one with small
Hamming distance ω − p.

Our complete algorithm Decode is described in Algorithm 1.
Before we analyze correctness and running time of algorithm Decode, we

want to explain the idea of the subroutine NearestNeighbor.
Basic Idea of NearestNeighbor: Let m be the length of the vectors in L and R
and define a constant λ such that |L| = |R| = 2λm. Assume the permutation π is
good and hence (e∗

1, e
∗
2) exist such that wt(e∗

1+e∗
2) = p and wt(H̄e∗

1+H̄e∗
2+s̄) =

ω − p =: γm for some 0 < γ < 1
2 holds. Let u∗ := H̄e∗

1 and v∗ := H̄e∗
2 + s̄. Our

algorithm NearestNeighbor gets the input (L,R, γ) and outputs a list C,
where (u∗,v∗) ∈ C with overwhelming probability. Thus our algorithm solves
the following problem.

Definition 2 (NN problem). Let m ∈ N, 0 < γ < 1
2 and 0 < λ < 1.

In the (m, γ, λ)-Nearest Neighbor (NN) problem, we are given γ and two lists
L,R ⊂ F

m
2 of equal size 2λm with uniform and pairwise independent vectors. If

there exists a pair (u∗,v∗) ∈ L × R with Hamming distance Δ(u∗,v∗) = γm,
we have to output a list C that contains (u∗,v∗).

Notice that in Definition 2 the lists L, R themselves do not have to be
independent, e.g. L = R is allowed. A naive algorithm solves the NN problem
by simply computing the Hamming distance of each (u,v) ∈ L×R in quadratic
time Õ((2λm)2). In the following we describe a sub-quadratic algorithm for the
NN problem.
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Algorithm 1. Decode

1: procedure Decode
2: Input: n, k, H ∈ F

(n−k)×n
2 , x ∈ F

n
2

3: Output: e ∈ F
n
2 with He = Hx and wt(e) ≤ d (FDD), wt(e) ≤ � d−1

2
� (HDD)

4: s ← Hx � compute the syndrome
5: d ← H−1(1 − k

n
) · n � H: bin. entropy function, inverse H−1 maps to [0, 1

2
]

6: for ω ← 0 . . . d do � (FDD) or ω ← 0 . . . � d−1
2

� in the HDD case
7: Choose 0 < p < ω � We find an optimal choice of p numerically
8: repeat poly(n) · 1

P[π is good]
many times

9: π ← random permutation on F
n
2 .

10: (·||Q) ← π(H) (permute columns) with Q ← F
(n−k)×(n−k)
2

11: choose another permutation (goto line 9), if Q is not invertible
12: H̄ ← Q−1π(H) and s̄ ← Q−1s

13: L ← H̄e1 for all e1 ∈ F
k/2
2 × 0k/2 × 0n−k with wt(e1) = p

2

14: R ← H̄e2 + s̄ for all e2 ∈ 0k/2 × F
k/2
2 × 0n−k with wt(e2) = p

2

15: C ← NearestNeighbor(L,R, ω−p
n−k

)
16: if (u,v) ∈ C ∩ (L × R) with Hamming distance Δ(u,v) = ω − p then
17: find (e1, e2) s.t. u = H̄e1 and v = H̄e2 + s̄ � binary search in L,R
18: return π−1(e1 + e2 + (0k||u + v))
19: end if
20: until
21: end for
22: end procedure

Given an initial list pair L,R, our main idea is to create exponentially many
pairs of sublists L′,R′. Each sublist is computed by first choosing a random
partition A ⊂ [m] of the columns of size m

2 . We keep only those elements in
L′,R′ that have a certain Hamming weight h · m

2 on the columns defined by A,
for some 0 < h < 1

2 that only depends on λ. The parameter h will be chosen
s.t. each of the L′,R′ have expected polynomially (in m) many elements. We
create as many sublists L′,R′ s.t. with overwhelming probability there exists a
pair of sublists L∗,R∗ with (u∗,v∗) ∈ L∗ × R∗. For each sublist pair L′,R′ we
check naively for a possible “good” vector by computing the Hamming distance
Δ(u′,v′) for all (u′,v′) ∈ L′ × R′. Notice that this results only in a polynomial
blow-up, because the list sizes are polynomial. We store all vectors (u,v) with
the correct Hamming distance in the output list C.

The idea of the algorithm is summarized in Fig. 4.
We will discuss the algorithm NearestNeighbor in more detail in Section 4.

The following theorem that we prove in Section 5 states its correctness and time
complexity.

Theorem 1. For any constant ε > 0 and any λ < 1 − H(γ
2 ), NearestNeigh-

bor solves the (m, γ, λ)-NN problem with overwhelming probability (over both
the coins of the algorithm and the random choice of the input) in time

Õ
(
2(y+ε)m

)
with y := (1 − γ)

(
1 − H

(
H−1(1 − λ) − γ

2

1 − γ

))
.
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L R
u∗ ∈ L

v∗ ∈ R size: 2λm

create exponentially many sublists

by choosing random partitions A

L′ R′ L′ R′ · · · L∗ R∗ L′ R′

For at least one sublist pair we have (u∗,v∗) ∈ L∗ × R∗ w.o.p.

Fig. 4. Main idea of our algorithm NearestNeighbor

In Definition 2, we defined our list sizes |L| = |R| = 2λm to be exponential
in m, which is the cryptographically relevant scenario. A naive solution of the
NN problem yields an exponent of 2λm, so we are interested in quotients y

λ < 2.
In the following corollary we achieve a complexity of Õ(|L| 1

1−γ ) in the case of
polynomial list sizes |L| = |R|. This is the best case scenario for our algorithm,
which is in the literature often referred to as the unlimited amount of data
case. Notice that the quotient y

λ is strictly increasing in λ until we reach the
prerequisite bound λ = 1 − H(γ

2 ), beyond which our algorithm does no longer
work. Finding a better dependency for the NN problem on λ would immediately
result in further improvements for the decoding bounds from Theorems 2 and 3.

Corollary 1. In the case of a list size |L| = |R| that is polynomial in m,
we obtain a complexity exponent limλ→0 y/λ = 1

1−γ , i.e. our complexity is

Õ(|L| 1
1−γ ).

Proof. Notice that we defined the inverse of the binary entropy function as
H−1(·) and that H−1(1) = 1

2 . The derivative of the binary entropy function
is H ′(x) = log2

(
1
x − 1

)
and the derivative of the inverse of the binary entropy

function is (H−1(1−λ))′ = −1
log2(

1
H−1(1−λ)

−1)
. We obtain the result by the follow-

ing calculation, using L’Hospital’s rule twice.

lim
λ→0

y

λ
= lim

λ→0
−(1 − γ) log2

(
1 − γ

H−1(1 − λ) − γ
2

− 1
)

1
1 − γ

−1
log2(

1
H−1(1−λ) − 1)

= lim
λ→0

ln
(

1 − γ

H−1(1 − λ) − γ
2

− 1
)

/ ln
(

1
H−1(1 − λ)

− 1
)

= lim
λ→0

(
1−γ

H−1(1−λ)− γ
2

− 1
)−1

(−1)(1−γ)

(H−1(1−λ)− γ
2 )2

(H−1(1 − λ))′

(
1

H−1(1−λ) − 1
)−1

(−1)

(H−1(1−λ))2
(H−1(1 − λ))′

= lim
λ→0

(−1)(1−γ)

(H−1(1−λ)− γ
2 )2

(−1)

(H−1(1−λ))2

= lim
λ→0

(1 − γ)
(

H−1(1 − λ)
H−1(1 − λ) − γ

2

)2

=
1

1 − γ
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In the following Theorem we show that Decode is correct and prove its time
complexity.

Theorem 2 (complexity and correctness). Decode solves the decoding
problem with overwhelming probability in time O(20.114n) in the full and time
O(20.0550n) in the half distance decoding setting.

Proof. Let us define

γ :=
ω − p

n − k
, r := H

(ω

n

)
− k

n
· H

(p

k

)
−

(
1 − k

n

)
· H (γ) , μ :=

k

2n
· H

(p

k

)

and

y := (1 − γ)

(

1 − H

(
H−1(1 − μn

n−k ) − γ
2

1 − γ

))

.

We want to show that for any ε > 0 Decode solves the decoding problem with
overwhelming probability in time

Õ
(
2rn

(
2μn + 2(y+ε)(n−k)

))
. (4)

In line 8 of Decode, we repeat poly(n) · 1
P[π is good] times. A permutation π

is good, whenever p/2 ones are in the first k/2 columns, p/2 in the subsequent
k/2 columns and ω − p ones in the last n − k columns. Additionally, Q (as
defined in line 10) has to be invertible (which happens with constant probability).
Therefore, the number of repetitions until we find a good π is

poly(n) ·
(

n
ω

)

(
k/2
p/2

)2 · (
n−k

γ(n−k)

) = Õ
(
2n·H(ω/n)−k·H(p/k)−(n−k)·H(γ)

)
= Õ(2rn).

We fix a repetition that leads to a good permutation π. In this repetition, we
therefore have e∗

1, e
∗
2 with wt(e∗

1 + e∗
2) = p and Δ(u∗,v∗) = ω − p =: γ(n − k)

with u∗ := H̄e∗
1 and v∗ := H̄e∗

2+ s̄. In lines 13 and 14, the algorithm creates two
lists of uniform and pairwise independent vectors of size n−k s.t. by construction
u∗ ∈ L and v∗ ∈ R and

|L| = |R| =
(

k/2
p/2

)
= Õ

(
2k/2·H(p/k)

)
= Õ(2μn).

Notice that μn = λ(n − k) controls the list size. By a suitably small choice
of p one can always satisfy the prerequisite λ < 1 − H(γ

2 ) of Theorem 1. Thus
we obtain an instance (L,R, γ) of the (n − k, γ, μ n

n−k )-NN problem, for which
Theorem 1 guarantees to output a list C that contains the solution (u∗,v∗) with
overwhelming probability. Notice that any vector (u,v) ∈ C ∩ (L × R) with a
Hamming distance of ω − p solves our problem, because the corresponding e1
with H̄e1 = u and e2 with H̄e2 + s̄ = v have the property wt(e1 +e2) = p. This
in turn leads to wt(e1 + e2 + (0k||(u + v)) = ω. In line 17, the (e1, e2) can be
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found by a binary search in slightly modified lists L,R (that also store e1 and
e2). Thus, with overwhelming probability, the algorithm outputs a solution to
the decoding problem in line 18.

Also by Theorem 1, an application of algorithm NearestNeighbor has
time complexity Õ(2(y+ε)(n−k)) for any ε > 0. Notice that this complexity is
independent of whether we have a good permutation π or not. This complexity
has to be added to the creation time of the input lists L,R. Recall that the loop
has to be repeated Õ(2rn) times, leading to the runtime of Eq. (4).

Numerical optimization in the half distance decoding case yields time com-
plexity O(20.0550n) in the worst case k/n ≈ 0.466 with p/n ≈ 0.00383. In the
full distance decoding case we get a runtime of O(20.114n) in the worst case
k/n ≈ 0.447 with p/n ≈ 0.01286. 	


3.2 Application to the BJMM Algorithm

It is possible to apply our idea to the decoding algorithm of Becker, Joux, May
and Meurer (BJMM) [4]. We already explained that BJMM is a variant of Stern’s
algorithm and thus a Meet-in-the-Middle algorithm that constructs two list L̃, R̃.
The major difference is that L̃, R̃ are not directly enumerated as the lists L,R in
Stern’s algorithm. Instead, L̃, R̃ are constructed in a more involved tree-based
manner. This has the benefit that the list length is significantly smaller than
in Stern’s construction, which in turn leads to an improved running time. This
similarity however enables us to directly apply our technique to the BJMM algo-
rithm. Namely, we have to simply replace in Decode the construction of L,R
by the BJMM-construction of L̃, R̃, on which we apply our NearestNeigh-
bor-algorithm.

Notice that as opposed to Section 3.1 not all possible vector pairs in C with
the correct Hamming distance solve the decoding problem. The issue is that the
corresponding e1, e2 do not necessarily have a Hamming distance of p. Thus,
additionally to Δ(u,v) = ω − p, we have to verify that also Δ(e1, e2) = p holds.

Algorithm DecodeBJMM describes the application of our algorithm in the
BJMM framework. Notice that up to line 22 the algorithm is identical to the
one in [4]. The only difference is the final step (from line 23). Instead of using
the exact matching of Stern, we use our NearestNeighbor algorithm that
searches for two vectors that are close (i.e. have Hamming distance ω − p) on
the remaining n − k − � coordinates.

Algorithm DecodeBJMM uses a subroutine BaseLists. As described in [4],
BaseLists chooses a random partition of the first k + � columns into two sets
P1, P2 ⊆ [k + �] of equal size. Then a list B1 is created that contains all vectors
b1 ∈ F

k+�
2 × 0n−k−� with wt(b1) = p

8 + ε1
4 + ε2

2 that are zero on the coordinates
from P2. Analogously, a list B2 is build, that contains all vectors b2 ∈ F

k+�
2 ×

0n−k−� of the same Hamming weight as above, but with zeros on the coordinates
from P1. Thus, with inverse polynomial probability, a fixed vector of size k + �
with Hamming weight p

4 + ε1
2 + ε2 can be represented as a sum of an element in

B1 and an element in B2. Repeating this choice a polynomial number of times
guarantees the representation with overwhelming probability.
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Algorithm 2. DecodeBJMM

1: procedure DecodeBJMM
2: Input: n, k,H ∈ F

(n−k)×n
2 , x ∈ F

n
2

3: Output: e ∈ F
n
2 with He = Hx and wt(e) ≤ d (FDD), wt(e) ≤ � d−1

2
� (HDD)

4: s ← Hx
5: d ← H−1(1 − k

n
) · n � H: bin. entropy function, inverse H−1 maps to [0, 1

2
].

6: for ω ← 0 . . . d do � (FDD) or ω ← 0 . . . � d−1
2

� in the HDD case
7: Choose 0 < p, ε1, ε2 < ω, 0 < �2 < � < n − k � optimize numerically
8: repeat poly(n) · 1

P[π is good]
many times

9: π ← random permutation on F
n
2 .

10: (·||Q) ← π(H) (permute columns) with Q ← F
(n−k)×(n−k)
2

11: choose another permutation (goto line 9), if Q is not invertible
12: H̄ ← Q−1π(H) and s̄ ← Q−1s
13: tL ∈R F

�
2, tL0 , tL1 , tR0 ∈R F

�2
2 � choose uniformly at random

14: tR = [s̄]� − tL � [·]c restricts to first c columns
15: tR1 = [s̄]�2 − tL0 − tL1 − tR0 � [·]c restricts to last c columns
16: L0 ← BaseLists(H̄, p, ε1, ε2, tL0) � list of b ∈ F

k+�
2 × 0n−k−�

17: L1 ← BaseLists(H̄, p, ε1, ε2, tL1) � with wt(b) = p
4

+ ε1
2

+ ε2
18: R0 ← BaseLists(H̄, p, ε1, ε2, tR0) � s.t. [H̄b]�2 = tL0

19: R1 ← BaseLists(H̄, p, ε1, ε2, tR1)
20: L ← [H̄(x + y)]n−k−� for all x ∈ L0,y ∈ L1 with [H̄(x + y)]� = tL

21: R ← [H̄(x+ y) + s̄]n−k−� for all x ∈ R0,y ∈ R1 with [H̄(x+ y)]� = tR

22: (In lines 20, 21: only keep elements with wt(x + y) = p
2

+ ε1.)
23: C ← NearestNeighbor(L,R, ω−p

n−k−�
)

24: for all (u,v) ∈ C ∩ (L × R) with distance Δ(u,v) = ω − p do
25: find (e1, e2) s.t. u = [H̄e1]

n−k−� and v = [H̄e2 + s̄]n−k−�

26: if wt(e1 + e2) = p then
27: return π−1(e1 + e2 + (0k+�||u + v))
28: end if
29: end for
30: until
31: end for
32: end procedure

BaseLists continues by computing the corresponding values H̄b1 for each
element b1 ∈ B1, stores these elements and sorts the list by these values. Even-
tually an output list of vectors in b ∈ F

k+�
2 × 0n−k−� with weight p

4 + ε1
2 + ε2 is

computed by a standard meet-in-the-middle technique s.t. H̄b equals the input
target value t on the first �2 coordinates.

The same technique is used in lines 20 and 21. In the computation of L, for
each pair of vectors (x,y) ∈ L0 × L1 a list of sums x + y is obtained such that
H̄(x+ y) matches a uniformly chosen target value tL on the first � coordinates.
After this step we also restrict to only those elements that have a certain Ham-
ming weight of p

2 + ε1, since by [4] the target solution splits in two vectors of
this particular weight. The computation tree is illustrated in Figure 5.
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L0

L1

R0

R1

L

R

e1 + e2

weight: p

weight: p
2

+ ε1

weight: p
4

+ ε1
2

+ ε2construction of the base lists:

Õ(2τn)

final size of the base lists:

Õ(22τn−�2)

computation time for L,R:

Õ(24τn−�−�2)

final size of L,R:

Õ(2μn)

e computation:

Õ(2(y+ε)(n−k−�))
representations:

2� = Õ(
(

p
p/2

) · (k+�−p
ε1

)
)

2�2 = Õ(
(

p/2+ε1
p/4+ε1/2

) · (k+�−p/2−ε1
ε2

)
)

base top
level level

Fig. 5. Computation tree of DecodeBJMM

Theorem 3. DecodeBJMM solves the decoding problem with overwhelming
probability in time O(20.097n) in the full distance decoding setting and time
O(20.0473n) in the half distance decoding setting.

Proof. Let us define

γ :=
ω − p

n − k − �
, r := H

(ω

n

)
− k + �

n
· H

(
p

k + �

)
−

(
1 − k + �

n

)
· H (γ) ,

τ :=
k + �

2n
· H

( p
4 + ε1

2 + ε2

k + �

)
, �

!= p + (k + � − p) · H

(
ε1

k + � − p

)

μ :=
k + �

n
·H

( p
2 + ε1

k + �

)
− �

n
, �2 :=

p

2
+ε1+(k+�− p

2
−ε1) ·H

(
ε2

k + � − p
2 − ε1

)

and

y := (1 − γ)

(

1 − H

(
H−1(1 − μn

n−k−� ) − γ
2

1 − γ

))

.

We want to show that for any ε > 0 the decoding problem can be solved with
overwhelming probability in time

Õ
(
2rn

(
2τn + 22τn−�2 + 24τn−�−�2 + 2μn + 2(y+ε)(n−k−�)

))
.

The correctness and time complexity of the first part of the algorithm (i.e.
the computation of L and R up to line 22) was already shown in [4]. Let us
summarize the time complexity for this computation. First of all we have a loop
that guarantees a good distribution with overwhelming probability. In our case,
a good splitting would be p ones on the first k + � coordinates and ω −p ones on
the remaining n − k − � coordinates. Thus the necessary number of repetitions
is Õ(

(
n
ω

)
/[

(
k+�

p

) · (
n−k−�

ω−p

)
]) = Õ(2rn).

The algorithm of BJMM [4] makes use of the so-called representation tech-
nique introduced by Joux and Howgrave-Graham [11]. The main idea is to blow
up the search space such that each error vector can be represented as a sum
of two vectors in many different ways. In the algorithm, all but one of these
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representations are filtered out using some restriction. Inside the loop, we there-
fore first need to make sure that 2� is the number of representations on the top
level, because we restrict to � binary coordinates. On the top level we split the
F

k+�
2 vector with p ones in a sum of two vectors in F

k+�
2 with p

2 + ε1 ones each.
Thus there are

(
p

p/2

)
ways to represent the ones (as 1 + 0 or 0 + 1) and

(
k+�−p

ε1

)

ways to represent the zeros (as 0 + 0 or 1 + 1). Hence we need to choose � such
that 2� = Θ̃(

(
p

p/2

) · (
k+�−p

ε1

)
). On the bottom level, vectors with p

2 + ε1 ones are
represented as sums of two vectors with p

4 + ε1
2 + ε2 ones each. In this case there

are
(

p/2+ε1
p/4+ε1/2

)
ways to represent the ones and

(
k+�−p/2−ε1

ε2

)
ways to represent the

zeros. Thus we choose 2�2 = Θ̃(
(

p/2+ε1
p/4+ε1/2

) · (
k+�−p/2−ε1

ε2

)
).

The computation starts by creating the four base lists. In the first step two
lists with vectors of size k+�

2 and p
8 + ε1

4 + ε2
2 ones are created, which takes time

Õ(
( k+�

2
p
8+

ε1
4 +

ε2
2

)
) = Õ(2τn). These two lists are merged, considering each pair of

one vector of the first list and one vector of the second list such that the first �2
coordinates of the sum are a fixed value (i.e. restricting to one special represen-
tation). The number of elements in the base lists is therefore Õ(22τn/2�2).

In lines 20 and 21 the top level lists L and R are computed from the
base lists. In this step, the vectors are restricted to additional � − �2 coordi-
nates, resulting in a total restriction of 2�. Therefore, the time complexity is
Õ((22τn/2�2)2/(2�−�2)) = Õ(24τn−�−�2).

In line 22 the algorithm restricts the lists L and R to those vectors with
p
2 +ε1 ones. Due to the fact that the vectors are restricted to fixed � coordinates,
the number of elements can be upper bounded by Õ(

(
k+�

p/2+ε1

)
/2�) = Õ(2μn).

In the final step we have two lists of uniform (because the elements are a
linear combination of the columns of H) and pairwise independent (because
each element is computed by a linear combination of pairwise different columns)
vectors in F

n−k−�
2 .

From the analysis in [4] we know that there are e∗
1, e

∗
2 ∈ F

k+�
2 × 0n−k−� with

wt(e1 + e2) = p such that u∗ = [H̄e∗
1]

n−k−� ∈ L and v∗ = [H̄e∗
2 + s̄]n−k−� ∈ R,

where wt(u∗ + v∗) = ω − p. Therefore, by Theorem 1, NearestNeighbor
outputs a list C that contains (u∗,v∗). The (e∗

1, e
∗
2) can be found in line 25 by

binary searching in slightly modified L,R (that also contain x + y).
Thus π−1(e∗

1 + e∗
2 + (0k+�||u∗ + v∗)) (with weight ω) is a correct solution to

the problem, because

H̄ · (e∗
1 + e∗

2 + (0k+�||u∗ + v∗)) = H̄ · (e∗
1 + e∗

2) + (0�||u∗ + v∗)

= H̄ · (e∗
1 + e∗

2) + (0�||[H̄ · (e∗
1 + e∗

2) + s̄]n−k−�)
= H̄ · (e∗

1 + e∗
2) + (H̄ · (e∗

1 + e∗
2) + s̄) = s̄.

Notice that [H̄(e∗
1 +e∗

2)+ s̄]� = 0� holds by construction. By Theorem 1 the time
complexity of NearestNeighbor is 2(y+ε)(n−k−�).

In the half distance decoding case, for the worst case k/n ≈ 0.45 we get a
time complexity of O(20.0473n) with p/n ≈ 0.01667, ε1/n ≈ 0.00577 and ε2/n ≈
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0.00124. In the full distance decoding setting, we have a runtime of O(20.097n)
with k/n ≈ 0.42, p/n ≈ 0.06284, ε1/n ≈ 0.02001 and ε2/n ≈ 0.00391.

	


4 Solving the Nearest Neighbor Problem

In this section we will describe NearestNeighbor, an algorithm that solves
the Nearest Neighbor problem from Definition 2. We will prove correctness and
time complexity of our algorithm in the subsequent section.

As already outlined in the previous section, given the input lists L and R with
|L| = |R| = 2λm, our idea is to create exponentially many sublists L′,R′ that are
of expected polynomial size. The sublists are chosen such that with overwhelming
probability our unknown solution (u∗,v∗) ∈ L × R with Δ(u∗,v∗) = γm is
contained in at least one of these sublists. The sublists L′ (resp. R′) are defined
as all elements of L (resp. R) that have a Hamming weight of hm

2 on the columns
defined by a random partition A ⊂ [m] of size m

2 . In Lemma 3, we will prove
that h := H−1(1 − λ) with 0 ≤ h ≤ 1

2 is a suitable choice, because it leads to
sublists of expected polynomial size.

We will prove in Lemma 2 that the required number of sublists such that
(u∗,v∗) is contained in one of these sublists is Õ(2ym) with

y := (1 − γ)
(

1 − H

(
H−1(1 − λ) − γ

2

1 − γ

))
. (5)

We will make use of the fact that y > λ for any constant 0 < λ < 1, 0 < γ < 1
2 ,

which can be verified numerically.
There is still one problem to solve, because we never discussed how to com-

pute the L′,R′ given L,R. A naive way to do so would be to traverse the original
lists linearly and to check the weight condition. Unfortunately, this would have
to be done for each sampled A, which would result in an overall complexity of
Õ(2ym · 2λm).

Instead, as illustrated in Fig. 6, we do not proceed with the whole m coor-
dinates at once, but first start with a strip {1, . . . , α1m} of the left hand side
columns and filter only on that strip. The resulting list pairs L1,R1 are still of
exponential, but smaller, size. In the second step, we proceed on the subsequent
α2m columns {α1m + 1, . . . , (α1 + α2)m} to generate sublists L2,R2 that con-
tain all elements that in addition have a small Hamming weight on the second
strip. The advantage of this technique is that we are able to use the smaller lists
L1,R1 to construct L2,R2, again by traversing these lists, instead of using L,R
for all the m columns.

As illustrated in Fig. 7, we grow a search tree of constant depth t, where
the leaves are pairs of lists Lt,Rt, which were filtered on (α1 + . . . + αt)m
coordinates. We choose α1 + . . . + αt = 1 to cover all coordinates. The choice
of the αj will be given in Theorem 1 and is basically done in a way to balance
the costs in each level of the search tree, which allows us to solve the problem in
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create Õ(2yα1m) sublist pairs (L′,R′) by sampling random A’s

create Õ(2yα2m) sublist pairs (L′′,R′′) (of each of the Õ(2yα1m)
sublist pairs) and solve recursively or finally naively

list L

list L′

list R

list R′

partition A

random

partition Â

same A

same Â

α1 · m

α2 · m

α1 · m

α2 · m

m

m

m

m

2λm 2λm

O(2λ(1−α1)m)

part of
vectors with

weight h

in the A

columns

wt. h

in Â

part of
vectors with

weight h

in the A

columns

wt. h

in Â

Fig. 6. Step-by-step computation of NearestNeighbor
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time Õ(2(y+ε)m) for any constant ε > 0. Notice that we never actually compute
the Hamming distance between elements from the list pairs, except for the very
last step, where we obtain list pairs Lt,Rt of small size Õ(2

ε
2m), and compute

the Hamming distance of all pairs by a naive quadratic algorithm, which has
time complexity Õ(2εm). Because we proceed analogously for any of the Õ(2ym)
sublists, we obtain an overall time complexity of Õ(2(y+ε)m).

L R

L′ R′ L′ R′ · · · L∗ R∗ L′ R′

· · · · · · · · ·

L∗ R∗ L′ R′ · · · L′ R′ L′ R′

Fig. 7. Example: computation tree of depth t = 2 with one good path (→)

In total, our algorithm heavily relies on the observation that the property
of the pair (u∗,v∗) with small Hamming distance Δ(u∗,v∗) = γm also holds
locally on each of the t strips. In case that the differing coordinates of (u∗,v∗)
would cluster in any of the strips αjm, we would by mistake sort out the pair.
However, this issue can be easily resolved by rerandomizing the position of the
coordinates in both input lists L and R. Denote z∗ := u∗ + v∗ ∈ F

m
2 and

the splitting z∗ = (z∗
1, . . . , z

∗
t ) ∈ F

α1m
2 × F

α2m
2 × . . . × F

αtm
2 according to the t

strips. We will prove in Lemma 1 that after randomly permuting the m columns
a polynomial in m number of times, there will be one permutation such that
wt(zj) = γαjm for all 1 ≤ j ≤ t.

Furthermore, we want to enforce that wt(u∗) = wt(v∗) = 1
2m, which also

has to hold on each of the t strips. Define u∗ = (u∗
1, . . . ,u

∗
t ) and v∗ = (v∗

1, . . . ,v
∗
t )

as above. We therefore want to make sure that wt(u∗
j ) = wt(v∗

j ) = 1
2αjm for all

1 ≤ j ≤ t. Notice that this can also be achieved by rerandomization. Concretely,
we pick a uniformly random vector r ∈ F

m
2 and add this vector to all elements

of both input lists L,R. Notice that the Hamming weight of our solution pair
(u∗,v∗) isn’t changed by this operation. We will also show in Lemma 1 that
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after applying this process a polynomial (in m) number of times, the vectors u∗

and v∗ have the desired Hamming weight in at least one step.

Algorithm 3. NearestNeighbor

1: procedure NearestNeighbor(L,R, γ) � L,R ⊂ F
m
2 , 0 < γ < 1

2

2: compute vectors length m and size λ from L,R

3: y := (1 − γ)

(

1 − H

(
H−1(1−λ)− γ

2
1−γ

))

� as defined in Theorem 1

4: choose a constant ε > 0 � could also be an input

5: t := 
 log(y−λ+ ε
2 )−log( ε

2 )

log(y)−log(λ)
� � as defined in the proof of Theorem 1

6: α1 :=
y−λ+ ε

2
y

� as defined in the proof of Theorem 1
7: for 2 ≤ j ≤ t do
8: αi := y

λ
· αi−1 � as defined in the proof of Theorem 1

9: end for
10: for poly(m) uniformly random permutations π of [m] do
11: for poly(m) unif. rand. r ∈ F

α1m
2 × . . . × F

αtm
2 (wt. αj

m
2

on each strip) do
12: L̄ ← π(L) + r
13: R̄ ← π(R) + r � permute columns and add r to all elements
14: Remove all vectors from L̄, R̄ that are not of weight αj

m
2

on each strip
15: return NearestNeighborRec(L̄, R̄, m, t, γ, λ, α1, . . . , αt, y, ε, 1)
16: end for
17: end for
18: end procedure

Our algorithm NearestNeighbor starts by computing the length of the
vectors m and a λ such that |L| = |R| = 2λm from L and R. This list size is
used to compute the repetition parameter y. The algorithm chooses a constant
ε > 0 that is part of the asymptotic time complexity. The parameter ε also
determines the number of strips t and the relative sizes of the strips α1, . . . , αt.
Eventually, the two input lists are rerandomized by permuting the columns and
adding a random vector. Another recursive algorithm NearestNeighborRec
is then called with the rerandomized lists as input.

In the algorithm NearestNeighborRec we sample random partitions A of
the columns, until it is guaranteed with overwhelming probability that the solu-
tion is in at least one of the created sublists. The sublists are created by naively
traversing the input lists for all vectors with a Hamming weight of H−1(1−λ)αjm

2
on the columns defined by the random partition. We only continue, if L′ and R′

don’t grow too large, as defined in Lemma 3. In line 10, we apply the algorithm
recursively on the subsequent α2m columns, and so on. Eventually, we compare
the final list pairs naively.

5 Analysis of Our Algorithm

In this section, we first show that NearestNeighbor achieves a good distri-
bution in at least one of the polynomially many repetitions. We define a good
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Algorithm 4. NearestNeighborRec

1: procedure NearestNeighborRec(L,R, m, t, γ, λ, α1, . . . , αt, y, ε, j) � init j = 1
2: if j = t + 1 then
3: run the naive algorithm to compute C, a list of correct pairs
4: end if
5: for Θ̃(2yαjm) times do
6: A ← partition(αjm) � random partition of size

αjm

2
of the αjm columns

7: L′ ← all vL ∈ L with wt. H−1(1 − λ)
αjm

2
on A-columns � naive search

8: R′ ← all vR ∈ R with wt. H−1(1 − λ)
αjm

2
on A-columns � naive search

9: if |L′|, |R′| don’t grow too large then � as defined in Lemma 3
10: C ← C∪NearestNeighborRec(L′,R′, m, t, γ, λ, α1, . . . , αt, y, ε, j+1)

� solve the problem recursively
11: end if
12: end for
13: return C � output a list of correct pairs
14: end procedure

computation path and show that NearestNeighbor has at least one of them
with overwhelming probability over the coins of the algorithm. We continue by
showing that the lists on that computation path achieve their expected size with
overwhelming probability over the random choice of the input. We conclude
with Theorem 1 that combines these results and shows the correctness and time
complexity of NearestNeighbor.

Lemma 1 (good distribution). Let (L,R, γ) be an instance of an (m, γ, λ)
Nearest Neighbor problem with unknown solution vectors (u∗,v∗) ∈ L × R. Let
z∗ := u∗ + v∗ and for any constant t let u∗ := (u∗

1, . . . ,u
∗
t ), v

∗ := (v∗
1, . . . ,v

∗
t )

z∗ := (z∗
1, . . . , z

∗
t ) be a splitting of the vectors in t strips with sizes αjm for all

1 ≤ j ≤ t with α1 + . . . + αt = 1. Then the double rerandomization of algorithm
NearestNeighbor guarantees with overwhelming probability that

wt(z∗
j ) = γαjm and wt(u∗

j ) = wt(v∗
j ) = 1

2αjm for all 1 ≤ j ≤ t

in at least one of the rerandomized input lists.

Proof. In the first loop, random permutations π of the m columns are chosen.
Thus the probability for wt(z∗

j ) = γαjm for all 1 ≤ j ≤ t is
(

α1m

γα1m

)
· . . . ·

(
αtm

γαtm

)
/

(
m

γm

)
.

A cancellation of the common terms, an application of Stirling’s formula and the
fact that t is constant shows the claim. In the second loop we choose uniformly
random r = (r1, . . . , rt) ∈ F

α1m
2 × . . .Fαtm

2 with weight 1
2αjm on each of the

t strips and add them to all elements in L and R. Fix one of the strips j and
consider the vectors (u∗

j ,v
∗
j ). Let c01 denote the number of columns such that u∗

j

has a 0-coordinate and v∗
j has a 1-coordinate. Define c00, c10 and c11 analogously.
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We define r to be good on the strip j, if it has exactly 1
2cxy ones in all four parts

xy. The probability for that is
(

c00
1
2c00

)(
c01
1
2c01

)(
c10
1
2c10

)(
c11
1
2c11

)
/

(
αjm
1
2αjm

)
.

Notice that this is again inverse polynomial, because c00 + c01 + c10 + c11 = αjm
per definition. Thus the probability stays polynomial for all t strips, since t is
constant.

We conclude that a good r solves the problem, because on each strip

wt(u∗
j + rj) = wt(v∗

j + rj) = 1
2 (c00 + c01 + c10 + c11) = 1

2αjm. 	


In the following we use the notion of a good computation path inside the
computation tree of our algorithm. See Fig. 7 for an example. In this figure the
good path is marked as →, whereas all the other paths are marked as dashed
arrows.

Definition 3 (good computation path). Let (u∗,v∗) ∈ L × R be the target
solution. A computation path of NearestNeighbor is called good, if (u∗,v∗)
is contained in all t sublist pairs from the root to a leaf.

Lemma 2 (correctness). Let t ∈ N be the (constant) depth of Nearest-
Neighbor and λ < 1 − H(γ

2 ). Then the computation tree of NearestNeigh-
bor has a good computation path with overwhelming probability over the coins
of the algorithm.

Proof. By construction, the target solution (u∗,v∗) is contained in the initial
list pair L×R on level 1 of the computation tree. In the following we show that
if the solution is in one of the input lists on a level j, then with overwhelming
probability it is also in one of the output lists on level j (which are either the
input lists on level j + 1 or the input lists for the naive algorithm on the last
level). Thus, if this holds for any 1 ≤ j ≤ t, we have a good path by induction.

Let us create 2yαjm sublist pairs for each input list pair on level j with y
from (5). On each level j we therefore have a total of 2y(α1+...+αj)m output list
pairs, resulting in a total of 2ym output list pairs on the last level.

Fix a level j and a target solution (u∗,v∗) in one of the input pairs L,R
on that level. On this level, we work on a strip of size αjm. Let u∗

j and v∗
j be

the restrictions of u∗, resp. v∗ to that strip. Due to the rerandomization in our
algorithm, it is guaranteed by Lemma 1 that wt(u∗

j ) = wt(v∗
j ) = 1

2αjm and
that their Hamming distance is Δ(u∗

j ,v
∗
j ) = γαjm.

Thus, if we look at the pairwise coordinates of (u∗
j ,v

∗
j ) this implies that we

have exactly 1−γ
2 αjm (0, 0)-pairs and (1, 1)-pairs and exactly γ

2αjm (0, 1)-pairs
and (1, 0)-pairs, respectively. We illustrate this input distribution of the target
pair (u∗

j ,v
∗
j ) in Fig. 8.

The algorithm constructs sublists L′,R′ by choosing a random partition A
of the αj-strip with |A| = 1

2αjm. The algorithm only keeps those vectors of
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u∗
j = 0 . . . . . . 0 0 . . . 0 1 . . . 1 1 . . . . . . 1

v∗
j = 0 . . . . . . 0 1 . . . 1 0 . . . 0 1 . . . . . . 1

weight 1−γ
2

αjm
γ
2
αjm

γ
2
αjm

1−γ
2

αjm

Fig. 8. input distribution (αjm-strip)

the input lists that have a relative Hamming weight of h := H−1(1 − λ) on the
columns defined by A, a choice that will be justified in Lemma 3. The choice of h
implies that the number of (1, 0) overlaps on the columns defined by A plus the
number of (1, 1) overlaps on the columns defined by A is hαj

m
2 . This is also the

case for the number of (0, 1) overlaps plus the number of (1, 1) overlaps. Finally,
we also know that the sum of all overlaps (0, 0), (0, 1), (1, 0) and (1, 1) is αj

m
2 .

Compared to the input distribution, this leaves one degree of freedom, which we
denote by a parameter 0 ≤ c ≤ h. We obtain the output distribution shown in
Fig. 9.

u∗
j,A = 0 . . . . . . . . . . . . . . . 0 0 . . . 0 1 . . . 1 1 . . . . . . . . . . . . 1

v∗
j,A = 0 . . . . . . . . . . . . . . . 0 1 . . . 1 0 . . . 0 1 . . . . . . . . . . . . 1

weight (1 − h − c) αj
m
2

c αj
m
2

c αj
m
2

(h − c) αj
m
2

Fig. 9. output distribution (A-columns of an αjm-strip)

In order to compute the necessary number of repetitions, we have to compute
the number of good partitions A that lead to an output distribution of Fig. 9 for
any 0 ≤ c ≤ h. This can be computed by multiplying the number of choices we
have for each overlap of zeros and ones for any possible value of c αj

m
2 , which is

hαj
m
2∑

cαj
m
2 =0

( 1−γ
2 αjm

(1 − h − c)αj
m
2

)
·
(γ

2αjm

cαj
m
2

)2

·
( 1−γ

2 αjm

(h − c)αj
m
2

)
.

For a fixed c, it is for example possible to choose c αj
m
2 (0,1) overlaps in the

A-area from an overall number of γ
2αjm (0,1)’s in the whole strip.

Notice that some choices of c might lead to no possible choice for A, e.g.
if c > γ. We determine a c that maximizes the number of good partitions.
Numerical optimization shows that this maximum is obtained at c = γ

2 . Notice
that this is a valid choice for c (i.e. none of the binomial coefficients is zero) due
to the restriction λ < 1 − H(γ

2 ) of Theorem 1 that implies h > γ
2 . Thus the

number of good partitions (up to polynomial factors) is

( 1−γ
2 αjm

(1 − h − γ
2 )αj

m
2

)
·
( γ

2αjm
γ
2αj

m
2

)2

·
( 1−γ

2 αjm

(h − γ
2 )αj

m
2

)
= Õ

(
(2αjm)γ+(1−γ)H(

h− γ
2

1−γ )

)
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The total number of partitions is
( αjm

1
2αjm

)
= Õ(2αjm). Thus the expected number

r of repetitions until we find the correct pair is the total number of partitions
divided by the number of good partitions, which is r = Õ(2yαjm), which justifies
our choice of y in identity (5).

It suffices to choose mr repetitions in order to find the correct pair with
overwhelming probability, since the probability to not find the correct pair can
be upper bounded by

(1 − 1/r)mr ≤ 2−m.

Thus the probability that the algorithm goes wrong in any of its 2t calls on a
good computation path can be upper bounded by 2t · 2−m, which is negligible.
Notice that mr = Õ(2yαjm), since polynomial factors vanish in Õ-notation. 	

Lemma 3 (list sizes). Let t ∈ N be the (constant) depth of NearestNeigh-
bor and ε > 0. Consider a good computation path of depth t. Then with over-
whelming probability the 2t lists inside the good computation path have sizes
Õ((2λm)1−∑j

i=1 αi+
ε
2 ) for all 1 ≤ j ≤ t and thus are not cut off by the algorithm.

Proof. Fix some 1 ≤ j ≤ t and an initial input list L with |L| = 2λm (the
argument is analogous for R). For each vector vk ∈ L we define random variables
Xk such that

Xk =

{
1 if

∧j
i=1 vk ∈ Li

0 otherwise
.

Let X :=
∑|L|

k=1 Xk. Thus the random variable X counts the number of elements
in the output list Lj. Recall that NearestNeighbor restricts to relative weight
h = H−1(1−λ) on the columns in A. Since we know that the computation path
is good, there is one vk∗ ∈ L with P[Xk∗ = 1] = 1. Notice that all the other
elements are independent of vk∗ and are uniformly chosen among all vectors
with weight αj

m
2 on each strip j. Thus for all vk ∈ L \ {vk∗} we have

P[Xk = 1] =
j∏

i=1

( αim
2

hαim
2

)( αim
2

(1 − h)αim
2

)
/

(
αim
αim
2

)
,

which is, for each of the first j strips, the number of vectors that have relative
weight h on the A-columns divided by the number of all possible vectors. Thus
the expected size of the output list is

E[X] = 1 + (2λm − 1) ·
j∏

i=1

( αim
2

hαim
2

)( αim
2

(1 − h)αim
2

)
/

(
αim
αim
2

)
.

Notice that obviously E[X] ≥ 1. Applying Chebyshev’s inequality, we get

P
[|X − E[X]| ≥ 2

ε
2m

E[X]
] ≤ V[X]

2εmE[X]2
≤ 1

2εmE[X]
≤ 2−εm,

using V[X] = V[
∑

k Xk] =
∑

k V[Xk] =
∑

k(E[X2
k ] − E[Xk]2) ≤ ∑

k E[Xk] =
E[X]. We have V[

∑
k Xk] =

∑
k V[Xk], because the Xk are pairwise independent.
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Thus (for both lists on each level) we obtain P [Xtoo large in any of the steps] ≤
2t · 2−εm, applying the union bound.

From Stirling’s formula it also follows that E[X] ≤ (2λm)1−∑j
i=1 αi for each

1 ≤ j ≤ t. Hence, with overwhelming probability, the list sizes are as claimed.
	


Now we are able to prove Theorem 1.

Theorem 1. For any constant ε > 0 and any λ < 1 − H(γ
2 ), NearestNeigh-

bor solves the (m, γ, λ) NN problem with overwhelming probability (over both
the coins of the algorithm and the random choice of the input) in time

Õ
(
2(y+ε)m

)
with y := (1 − γ)

(
1 − H

(
H−1(1 − λ) − γ

2

1 − γ

))
.

Proof. By Lemma 2, there is a path that includes the solution (with overwhelm-
ing probability over the coins of the algorithm). Fix that path. We show that by
Lemma 3 (with overwhelming probability over the random choice of the input)
NearestNeighbor’s time complexity is the maximum of the times

Õ
(
(2m)λ(1−∑j−1

i=1 αi)+y
∑j

i=1 αi+
ε
2

)
(6)

to create all sublists on level j for all levels 1 ≤ j ≤ t and the time

Õ(2(y+ε)m) (7)

to naively solve the problem on the last level.
From Lemma 3 we know that on each level j the sizes of the input lists

are Õ((2m)λ(1−∑j−1
i=1 αi)+

ε
2 ). Notice that if the lists grow too large, we simply

abort. On level j we construct Õ(2yαjm) new sublists for each input list so that
we have a total number of Õ((2ym)

∑j
i=1 αi) sublists on this level. Each of these

sublists is computed by naively searching through the input lists. Thus, we have
to multiply the sizes of the input lists with the number of sublists which results
in complexity (6).

In NearestNeighbor’s last step we use the naive algorithm to join a total
number of Õ(2ym) pairs of sublists of size Õ(2

ε
2m) each, resulting in complex-

ity (7). The overall complexity is the maximum of complexities (6) and (7).
We want to continue by computing the overall time complexity of the steps

definedby (6) for anyfixed tby setting the complexities of (6) equal.Thuswe choose

λ

(

1 −
j−1∑

i=1

αi

)

+ y

j∑

i=1

αi +
ε

2
= λ

(

1 −
j∑

i=1

αi

)

+ y

j+1∑

i=1

αi +
ε

2

for all 1 ≤ j ≤ t − 1, which implies αj+1 = (λ/y) · αj . Additionally, we
need

∑t
i=1 αi = 1, thus using y > λ from Eq. (5) we get 1 =

∑t
i=1 αi =

α1 ·∑t−1
i=0(λ/y)i = α1 · 1−(λ/y)t

1−(λ/y) . This implies α1 = 1−(λ/y)
1−(λ/y)t and finally (uniquely)
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determines all (α1, . . . , αt). Since by our choice all complexities (6) are the same,
we get an overall running time of Õ((2m)λ+y·α1+

ε
2 ).

Notice that the (constant) choice t =
⌈

log(y − λ + ε
2 ) − log( ε

2 )
log(y) − log(λ)

⌉
∈ N leads

to α1 = y−λ+ ε
2

y and we finally obtain the same complexity Õ(2(y+ε)m) as in (7),
which makes (7) the time complexity of the whole algorithm.

We want to conclude the proof by showing that for any fixed t it is indeed
optimal to set all time complexities in (6) equal. Let (α1, . . . , αt) be the (unique)
choice defined above. Assume this is not optimal, thus a choice (α̃1, . . . , α̃t)
that is different from the first one improves upon the overall time complexity.
Decreasing one of the time complexities implies that there is a 1 ≤ k ≤ t with
α̃k < αk, because y > λ. Let k be minimal with that property.

Case 1: There is an 1 ≤ � < k s.t. α̃� > α� and let � be minimal with that
property. Then

∑�−1
i=1 α̃i =

∑�−1
i=1 αi. Thus λ + (y − λ) · ∑�−1

i=1 α̃i + y · α̃� + ε
2 >

λ + (y − λ) · ∑�−1
i=1 αi + y · α� + ε

2 .

Case 2: Otherwise, we know that
∑k−1

i=1 α̃i =
∑k−1

i=1 αi and thus
∑k

i=1 α̃i <
∑k

i=1 αi. Notice that it also has to hold that
∑t

i=1 α̃i =
∑t

i=1 αi = 1. Hence
there is an k < � ≤ t s.t.

∑�−1
i=1 α̃i <

∑�−1
i=1 αi and

∑�
i=1 α̃i ≥ ∑�

i=1 αi. Thus
λ − λ · ∑�−1

i=1 α̃i + y · ∑�
i=1 α̃i > λ − λ · ∑�−1

i=1 αi + y · ∑�
i=1 αi.

In both cases the time complexity on some level � �= k (and therefore the overall
time complexity) strictly increases, which makes the new choice inferior to the
original one. 	

Acknowledgments. We would like to thank the anonymous Eurocrypt reviewers for
their helpful and detailed comments that improved and clarified our work.

Open Problem

Our NearestNeighbor algorithm uses a recursion tree of constant depth t.
This leads to a large polynomial blow-up for our decoding algorithm (in the
size of mt), which asymptotically vanishes but in practice might lead to an
undesirably large break-even point with the BJMM algorithm. We pose it as an
open problem to get rid of this polynomial overhead.
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Abstract. The FX-construction was proposed in 1996 by Kilian and
Rogaway as a generalization of the DESX scheme. The construction
increases the security of an n-bit core block cipher with a κ-bit key
by using two additional n-bit masking keys. Recently, several concrete
instances of the FX-construction were proposed, including PRINCE (pro-
posed at Asiacrypt 2012) and PRIDE (proposed at CRYPTO 2014).
These ciphers have n = κ = 64, and are proven to guarantee about
127 − d bits of security, assuming that their core ciphers are ideal, and
the adversary can obtain at most 2d data.

In this paper, we devise new cryptanalytic time-memory-data trade-
off attacks on FX-constructions. While our attacks do not contradict the
security proof of PRINCE and PRIDE, nor pose an immediate threat
to their users, some specific choices of tradeoff parameters demonstrate
that the security margin of the ciphers against practical attacks is smaller
than expected. Our techniques combine a special form of time-memory-
data tradeoffs, typically applied to stream ciphers, with recent analysis
of FX-constructions by Fouque, Joux and Mavromati.

Keywords: Cryptanalysis · Block cipher · Time-memory-data tradeoff ·
FX-construction · DESX · PRINCE · PRIDE

1 Introduction

The Advanced Encryption Standard (AES) is the most widely used block cipher
today. It is believed to guarantee a large security margin against practical attacks,
and can therefore be used to encrypt very sensitive data. The AES was preceded
by the Data Encryption Standard (DES), whose 56-bit key made it vulnerable
to straightforward exhaustive search. Consequently, in 1984, when DES was still
widely used, Ron Rivest proposed a simple solution (known as DESX [21]) to
address the concern regarding its small key size. The DESX construction simply
XORs two independent 64-bit keys at the beginning and at the end of the core DES
encryption process, such that the total key size becomes 56 + 64 + 64 = 174 bits.
This construction was generalized to the so-called FX-construction by Kilian and
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 231–253, 2015.
DOI: 10.1007/978-3-662-46800-5 10
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Rogaway in 1996 [18]. The FX-construction is built using an (arbitrary) n-bit block
cipher FK with a κ-bit key K and two additional n-bit whitening keys K1,K2, and
defined as FXK,K1,K2(P ) = K2 ⊕ FK(K1 ⊕ P ). Kilian and Rogaway proved that
the cipher guarantees κ + n − d − 1 bits of security,1 assuming that F is a per-
fect block cipher and the adversary can obtain D = 2d plaintext-ciphertext pairs.
Furthermore, Kilian and Rogaway showed that the bound is tight by extending
the attack of Daemen [10] (on the related Even-Mansour construction) to a simple
attack on the FX-construction with complexity of about 2κ+n−d−1.

The analysis of Kilian and Rogaway implies that the security of the FX-
construction depends on how much data the attacker can obtain, and thus
the security is not completely determined by the computational power of the
attacker. This is a unique situation, as for (almost) all block ciphers used in
practice today that have no known weaknesses, obtaining additional data does
not seem to give any significant advantage in key recovery attacks. Thus, the
security level of κ+n−d−1 does not allow to directly compare FX-constructions
to classical ciphers, and does not give a clear indication on the effort required in
order to break such a construction.

Until recently, the security guaranteed by FX-constructions was perhaps
not very relevant, as such constructions were not proposed for practical use
(apart from DESX). This situation changed in 2012, when the FX-construction
PRINCE was presented at Asiacrypt [7], and more recently, at CRYPTO 2014,
a similar FX-construction (named PRIDE [1]) was proposed.2 Both of these con-
structions have n = κ = 64, and thus they offer security of about 127 − d bits,
assuming that their core ciphers are ideal.3

In order to encourage its adoption by the industry, the designers of PRINCE
launched a competition (named the PRINCE Challenge [23]), calling for crypt-
analysis of the cipher which would lead to better understanding of its secu-
rity. The competition focuses on practical attacks on round-reduced variants of
PRINCE, where a practical attack is defined to have data complexity of (up
to) 230 known plaintexts (or 220 chosen plaintexts), time complexity of 264 and
memory complexity of 245 bytes.

Motivated by the PRINCE Challenge, in this paper, we investigate the secu-
rity margin guaranteed by FX-constructions against practical attacks, with a
focus on PRINCE and PRIDE (i.e., FX-constructions with n = κ = 64). We
first analyze well-known generic attacks on FX-constructions [5,12,18], and con-
clude that these attacks do to threaten the security of PRINCE and PRIDE.
Then, we devise new attacks with lower memory complexity, and claim that the
1 A cipher guarantees b bits of security if the complexity of the most efficient attack on

it is at least 2b.
2 PRINCE and PRIDE are FX-constructions of a particular type, where K2 linearly

depends on K1. However, it is shown in [7] that the smaller key size does not reduce
the security of the schemes against generic attacks.

3 PRINCE guarantees slightly less than 127 − d bits of security, as its core cipher was
designed to preserve a special property that ensures a small footprint.
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security margin of FX-constructions with n = κ = 64 against these attacks is
somewhat reduced (although the attacks remain impractical).

Despite the new attacks described above, our most interesting attacks are
carried out in Hellman’s time-memory tradeoff model [16]. In this model, the
adversary spends a lot of resources on a one-time preprocessing phase that ana-
lyzes the scheme, and whose output is stored in (relatively small) memory. After
this one-time preprocessing phase is completed, the scheme can be attacked much
more efficiently, and this makes Hellman’s model attractive in many cases.

The starting point of our attacks is a recent analysis of the FX-construction
and related designs by Fouque et al. [14]. One of the attacks of [14] on PRINCE
has data complexity of 232 and a very efficient time complexity of 232. The main
shortcomings of this attack are its huge memory complexity of about 267 bytes,
and its impractical preprocessing phase, which has time complexity of 296. The
techniques we develop trade off these high memory and preprocessing complexities
with time and data complexities, and allow to obtain more balanced and practical
tradeoffs.

Some concrete parameters of our attacks on PRICE and PRIDE in Hellman’s
model are summarized in Table 1. Consider the online phase of Attack 1, which
requires about 232 data, takes 264 time and requires 251 bytes of memory. The
parameters of this attack are thus not far from the parameters considered in the
PRINCE challenge [23] as practical, and they are valid regardless of the cipher’s
internal number of rounds. Furthermore, we show in this paper that Attack 1 (as
well as our other online attacks in Table 1) rarely accesses the memory (which
can be stored on a hard disk), and can be efficiently realized using dedicated
hardware with a budget of a medium-size enterprize. Therefore, we consider this
attack to be semi-practical.

Attack 1 has two main shortcomings: it requires the 232 data in the form
of adaptively chosen plaintexts, and more significantly, it requires a long and
impractical one-time precomputation phase of4 complexity 296.

In order to reduce the preprocessing complexity, we consider Attack 2 which
exploits a larger number of 240 adaptively chosen plaintexts. This data can be col-
lected (for example) if the attacker can obtain black-box access to the encryption
device for a few hours, and can thus be considered practical in some (restricted)
scenarios. The online attack runs in time 256, requires 251 bytes of storage, and
is therefore even more efficient than the online phase of Attack 1. More signifi-
cantly, it requires a shorter precomputation phase of time complexity 288, which
is still impractical, but only marginally.5

4 Note that according to the bound of [18], any generic attack on FX-constructions
with n = κ = 64 using 232 data, must have time complexity of at least 264+64−32−1 =
295.

5 We assume that some adversaries can spend a huge amount of resources on prepro-
cessing (in contrast to online attacks). Therefore, we consider preprocessing time
complexity of 280 to be (marginally) practical, as demonstrated by the capacity of
the Bitcoin network [6], and supported by the NIST recommendation to disallow
80-bit keys after 2014 [20].
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An interesting observation is that when we execute a 0 < p ≤ 1 fraction of
the preprocessing phase of Attack 2, then the key recovery attack succeeds with
probability p. If we consider p = 2−8, the attack succeeds with a non-negligible
probability of p ≈ 1/256, requires only 251−8 = 243 bytes of disk space (or
8 terabytes), and can be implemented today with a small academical budget
(similar tasks have been implemented with such a budget [15]). Moreover, the
preprocessing time complexity of the attack above becomes 288−8 = 280 (which
is more practical than 288). This shows that it may be beneficial to start the
preprocessing phase today, instead of waiting for the technology that would make
it fully realizable in the future. We further note that the complexity parameters
of Attack 2 for p = 2−8 and n = κ = 64 are, in fact, equivalent to those for p ≈ 1
and n = 64, κ = 56. Since DES has a 56-bit key, the full attack against DESX
could potentially be carried out today by a resourceful adversary.

Table 1. Attacks on PRINCE and PRIDE

Attack Reference Data Preprocessing Online Memory Online Attack

ID (ACP)† Time Time (Bytes) Cost Estimate††

(US Dollars)

– [14] 232 296 232 267 > 10, 000, 000, 000

1 This paper 232 296 264 251 < 1, 000, 000

2 This paper 240 288 256 251 < 1, 000, 000

3 This paper 240 288 264 247 < 1, 000, 000

4 This paper 248 280 264 251 < 1, 000, 000
† Adaptively chosen plaintexts
†† As estimated at the end of Section 3

Although the FX-construction is a block cipher, our techniques are borrowed
from cryptanalysis of stateful ciphers (i.e., stream ciphers). We first notice that
the FX-construction can be viewed as a (standard) core block cipher with an
additional secret state (namely, the input or output to the core block cipher),
which is hidden by the masking keys using simple XOR operations. Our main
methodological contribution it to use Hellman’s time-memory tradeoff to invert
a set of special states, similarly to the techniques that Biryukov, Shamir and
Wagner applied to stream ciphers which have low sampling resistance [3,4].
However, unlike the case of stream ciphers, in some cases we analyze (in partic-
ular for d > n/2), we have to request the data and optimize our algorithms in a
non-trivial way in order to obtain efficient tradeoffs.

A unique feature of our time-memory-data tradeoff curve for 2d ≤ 2n/2,
is that the effective hidden state (key) size of the FX-construction is reduced
by a factor of 21.5d in the online phase of the attack. On the other hand, for
stream ciphers, the effective hidden state size is only reduced by a factor of 2d.
The reason for this is that in most stream ciphers, the hidden state is permuted
and its entropy is maintained when producing keystream. On the other hand, we
exploit the basic technique of Fouque et al., which applies a non-bijective function
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to the hidden state of the FX-construction, reducing its entropy. In particular, for
κ = n = 64 and 2d = 232, the effective key size is reduced to 64+64−1.5·32 = 80
bits, whereas one could have expected it to be 64+64−32 = 96 bits. Exploiting
memory to further reduce the effective key size, leads to online key recovery
attacks on PRINCE and PRIDE with semi-practical complexities.

The paper is organized as follows. We begin by introducing our notation
in Section 2, while Section 3 provides an overview of our attacks. Section 4
gives some necessary background, and our simple attacks (that do not use a
preprocessing phase) are described in Section 5, while our advanced attacks are
described in Section 6. Finally, we conclude the paper in Section 7.

2 Notations and Conventions

The FX-construction [18] is built using an (arbitrary) n-bit block cipher FK

with a κ-bit key K and 2 additional n-bit whitening keys K1,K2, and defined as
FXK,K1,K2(P ) = K2⊕FK(K1⊕P ). We denote the plaintext by P , its ciphertext
FXK,K1,K2(P ) = K2 ⊕ FK(K1 ⊕ P ) by C, and the inner values K1 ⊕ P and
FK(K1 ⊕ P ) by X and Y , respectively (see Figure 1).

P ⊕

K1

X
FK

Y
⊕

K2

C

Fig. 1. The FX-Construction

In this paper, we are also interested in more specific instances of the FX-
construction. In particular, this construction also inspired the design of the Even-
Mansour scheme [13], in which the core cipher is, in fact, an unkeyed public
permutation F (for which κ = 0). Furthermore, a major focus of this paper
is placed on the recently proposed concrete FX-constructions PRINCE [7] and
PRIDE [1]. These constructions use only n bits of whitening key material K1,
where K2 is defined by A(K1), for an invertible affine function A. We refer to
this simplified scheme as an SFX-construction.

As we deal with various tradeoffs between complexity parameters of attacks,
we define some notation that is used in order to quantify these parameters. For
an n-bit block cipher, we denote N = 2n. When considering an attack, we denote
by T its total online time complexity, where a unit of time corresponds to an
encryption of a single plaintext. We denote by M = 2m the memory complexity
of the attack in terms of n-bit words, and by D = 2d its data complexity in
terms of plaintext-ciphertext pairs. Finally, we denote by T̂ the preprocessing
time complexity of the attack (if the attack does not require preprocessing, then
T̂ = 0).
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The online and preprocessing time complexities of our attacks throughout
this paper are formulated in terms of the parameters n, κ, d,m defined above.
For the sake of convenience, we assume in several parts of this paper that κ =
n, which is the case for PRINCE and PRIDE. We note that if κ > n, the
attacks we describe have a small penalty of about �κ/n� in the time and memory
complexities.6

Since we estimate the practicality of some of our attacks, it is insufficient to
merely compute their time, data, and memory complexities. Indeed, the prac-
ticality of an attack is largely influenced by more subtle properties such as the
number of memory lookups during its execution (which determines whether the
memory has to be stored in RAM, or can be stored on a cheaper hard disk),
and whether the workload of the attack can be easily parallelized (i.e., divided
across different CPUs). Another crucial element is the size of the implementation
circuit, which determines whether the attack can be efficiently realized on cheap
dedicated hardware.

3 Overview of Previous and New Attacks on
FX-Constructions

The new and previously published tradeoffs for FX-constructions are summa-
rized in Table 2. We now compare these attacks at a high level, and then empha-
size their practicality for n = κ = 64, focusing on the concrete parameters for
the attacks given in Table 1 that use preprocessing.7

Attacks without Preprocessing. We first examine attacks with no prepro-
cessing, for which an initial chosen plaintext attack was described in [18]. Then,
a known plaintext attack with the same complexity was published in [5] for
D = 2n/2, and later generalized in [12] to work with any number of known
plaintexts. All of these attacks require M = D memory and seem impractical
for n = κ = 64, as they either require impractical data and memory (e.g. for
D = M = 264), or impractical time (e.g., for D = M = 232 then T = 296). Inter-
mediate values such as D = M = 248 and T = 280 may seems more practical,
but we note that the large memory of 248 has to be accessed a huge number of
280 times (essentially, for each cipher evaluation). While this can be somewhat
optimized by grouping together the memory lookups, these parameters still seem
completely impractical.

The new attacks we describe in Section 5 show that in the adaptively chosen
plaintext model, we can mount attacks with the same data and time complexi-
ties, and a reduced memory complexity. In particular, for D = 2n/2, our attack
requires negligible memory, while the attacks of [5,12,18] require 2n/2 memory.
For n = κ = 64 and D = 248, our attack requires only 22·d−n = 22·48−64 = 232

6 The ratio between the key size and block size is typically small in modern block
ciphers.

7 We note that optimal choice of parameters and infrastructure to realize an attack
depends of the setting, and there are many more options than listed in Table 1.
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words of memory, which is significantly better than the attack of [12]. In this
case, the time complexity is 280, which can be considered as marginally practi-
cal, but is still a huge effort put into recovering a single key. Furthermore, as
the data collection cannot be parallelized, obtaining 248 data is generally not
considered practical. Nevertheless, we still believe that the attack for D = 248

serves as an initial indication that the security margin of PRINCE and PRIDE
is smaller than expected.

Attacks with Preprocessing. We examine the attacks that require prepro-
cessing assuming 2d ≤ 2n/2, for which the previously published attack was
given in [14]. This attack has a very efficient online time complexity of 2d, but
requires 2κ+n−2d ≥ 2κ words of memory. Our attack trades-off this memory at
the expense of increasing the time complexity, and obtains T = 22(κ+n−m−1.5d).

For d > n/2, assuming 2m ≤ 2κ+n−2d, we can further reduce the pre-
processing complexity and obtain a more efficient online time complexity of
22(κ+n/2−m−d/2). Concrete parameter sets for ciphers with n = κ = 64 are given
in Table 1.

The Practicality of Our Attacks. As we show in sections 6.1 and 6.2,
the online attacks summarized in Table 1 rarely access the memory, which can
be stored on a hard disk. Moreover, the attacks can be easy parallelized, and
although they are conceptually non-trivial, their circuit sizes are almost as small
as the circuits of the attacked FX-constructions. Therefore, the attacks can be
efficiently implemented on dedicated hardware.

As a consequence of the above, we estimate that the online phase of the
attacks in Table 1 (which require at most 264 cipher evaluations and 251 bytes
of storage) can be realized today by a medium-size enterprize with a budget of
several hundred thousand dollars. This rough estimation is based on the fact that
up to about 264 cipher evaluations can be performed in a few weeks on dedicated
hardware with such a budget [9]. Considering storage, a standard 1-terabyte hard
disk costs about 100 US dollars (as of 2015). Therefore, 251 bytes of storage (or
about 2,000 terabytes) cost roughly 200,000 dollars. Of course, fully realizing an
attack requires additional expenses, but we do not expect them to increase the
overall cost by a significant factor. On the other hand, using the same metric,
we estimate the cost of 267 bytes of storage to be more than 10,000,000,000 US
dollars, making the attack of [14] more expensive than our attacks by a factor
larger than 10,000.

4 Background

The new attacks described in this paper combine several previously published
techniques, which are described in this section.
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Table 2. Time-Memory-Data Tradeoffs for FX-Constructions

Reference Data Preprocessing Time Online Time Memory

[12] 2d ≤ 2n KP† - 2κ+n−d 2d

Section 5.1 2d ≤ 2n/2 ACP†† - 2κ+n−d negligible

Section 5.2 2d > 2n/2 ACP†† - 2κ+n−d 22d−n

[14] 2d ≤ 2n/2 ACP†† 2κ+n−d 2d 2κ+n−2d

Section 6.1 2d ≤ 2n/2 ACP†† 2κ+n−d 22(κ+n−m−1.5d) 2m

Section 6.2 2d > 2n/2 ACP†† 2κ+n−d 22(κ+n/2−m−d/2) 2m ≤ 2κ+n−2d

Section 6.2 2d > 2n/2 ACP†† 2κ+n−d 2κ+d−m 2m > 2κ+n−2d

† Known plaintexts
†† Adaptively chosen plaintexts

4.1 Hellman’s Time-Memory Tradeoff [16] (with Preprocessing)

We summarize Hellman’s classical time-memory tradeoff attack [16] on an n-bit
block cipher EK , assuming that κ = n. In the preprocessing phase, we fix a
plaintext P , and define the function h({0, 1}n) → {0, 1}n as h(K) = EK(P ).
The goal in this phase is to cover most (more than half) of the key space with
chains defined by iterating the function h. For parameters M ′ and T ′, we choose
M ′ arbitrary starting points for the chains, where each chain is of length T ′.
We store in a table only the (startpoint, endpoint) pair8 of each chain and sort
the table according to the endpoint value. Such a table requires M ′ words of
memory, and is referred to as a Hellman table.

After evaluating M ′ chains, and reaching the birthday bound (stopping rule)
of T ′ ·M ′T ′ = N , adding additional chains to the table is wasteful. Thus, we can
cover M ′T ′ = N/T ′ points with M ′ words of memory. In order to cover most
of the key space, we use flavors of h, where flavor i is defined (for example) as
h[i](K) = h(K)+i. Thus, we use T ′ flavors of h, and compute a Hellman table for
each flavor, covering a total of about N/T ′ · T ′ = N = 2κ keys as required. The
T ′ tables are the output of the preprocessing phase, and they require M = M ′T ′

words of memory, and a total of T̂ = N computation time.
During the online phase, we request the encryption of P under the unknown

key K, EK(P ). In order to recover K, we try to invert it using each of the
Hellman tables by iteratively calculating h[i] starting form EK(P ), and search-
ing if the current value is an endpoint in the table. Once we reach an end-
point, we obtain its startpoint, and continue the evaluation, hoping to reach
(h[i])−1(Ek(P )+i) and to recover K. This process has a time complexity of about
T ′ for each Hellman table. Thus, the total online time complexity is T = T ′2, and
as M = M ′T ′ and M ′T ′2 = N , we obtain a time-memory tradeoff of TM2 = N2,
or T = 22(κ−m).
8 We note that we can save a large fraction of the memory required for startpoint

storage by exploiting the freedom to choose them, as described in [2]. Thus, we
assume that a chain requires a single word of storage.
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Reducing memory lookups using distinguished points. A simple variant of Hell-
man’s algorithm (attributed to Ron Rivest, and later analyzed in [8,22]), stops
each chain once it reaches a set of distinguished points, which are defined accord-
ing to an easily verifiable condition on h[i](K). For example, in case we require
chains of length T ′, we define the set of distinguished points to contain the
points whose log(T ′) LSBs are zero. With this variant, the length of the chains
is variable and is only defined on average, but this does not result in a significant
penalty on the theoretical time complexity of the attack. On the other hand, the
distinguished points method has a big advantage in practice, as we only need
to access a large Hellman table once for (about) every T ′ evaluations of h[i] in
the online phase of the attack. The small number of memory lookups allows the
attacker to store the memory on hard disk, which is much cheaper than RAM.

Parallelization. Since each of the T ′ Hellman tables can be searched indepen-
dently, the computation can be divided across (at most) T ′ CPUs, each requir-
ing access to a Hellman table of size M ′. Furthermore, each CPU is expected
to access the memory only once during the computation of T ′ time (in order to
find a startpoint that corresponds to an endpoint). Consequently, time-memory
tradeoff algorithms can be implemented relatively cheaply on dedicated hard-
ware [19,22].

For example, in case where κ = 64 and we have M = 248 available words
of memory, then the online algorithm requires T = 22(64−48) = 232 time. This
computation can be divided across T ′ = N/M = 216 processors, each performing
216 operations, and requiring (a single) access to M ′ = M/T ′ = 232 memory (i.e.,
32 gigabytes).

4.2 Parallel Collision Search [24]

The parallel collision search algorithm was published by van Oorschot and
Wiener [24], reducing the memory required for finding collisions in an n-bit
function F (compared to trivial algorithms). Given M = 2m words of memory,
the algorithm builds a chain structure which is similar to a Hellman table. The
chain structure contains 2m chains, where each chain starts at an arbitrary point
and is terminated at a distinguished point (stored in memory) such that its aver-
age length is T ′ = 2(n−m)/2 (i.e., the distinguished point set is of size N/T ′). As
in the case of a Hellman table, since T ′ ·T ′M = N , then every chain is expected
to collide with about one other chain in the structure. Thus, the structure con-
tains about M ′ collisions which can be recovered efficiently as shown in [24].
However, as our attacks only use a degenerated variant of this algorithm, this
short description suffices in order to understand the rest of this paper.

4.3 Basic Time-Memory-Data Tradeoff Attacks on the
FX-Construction [18](without Preprocessing)

We describe the basic and well-known chosen plaintext attack of the FX-
construction [18], which is based on the attack of Daemen on the Even-Manour
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scheme [10]. We also mention the known plaintext attack with the same com-
plexity on the scheme (see [12]), but we do not describe it here, as it is less
relevant for this paper. On the other hand, the ideas and notation introduced in
this simple attack will be repeatedly used throughout the rest of this paper.

The attack on the FX-construction is based on encrypting plaintexts Pi,
and independently evaluating the core function FK with values of K and Xj ,
while looking for an (i, j) pair such that Pi ⊕K1 = Xj . In order to detect such a
collision efficiently, we cancel the effect of the masking keys by defining functions
φ1(Pi) and φ2(K,Xj) such that Pi ⊕ K1 = Xj implies that φ1(Pi) = φ2(K,Xj).
These functions enable us to efficiently filter the (i, j) candidates.

For a general FX-construction, we pre-fix an arbitrary value Δ 	= 0, set
P ′

i � Pi ⊕ Δ and X ′
j � Xj ⊕ Δ, and define:

φFX
1 (Pi) � Ci ⊕ C ′

i = FXK,K1,K2(Pi) ⊕ FXK,K1,K2(Pi ⊕ Δ)

φFX
2 (K,Xj) � Yj ⊕ Y ′

j = FK(Xj) ⊕ FK(Xj ⊕ Δ).

Thus, Pi ⊕ K1 = Xj implies that φFX
1 (Pi) = FXK,K1,K2(Pi) ⊕ FXK,K1,K2(Pi ⊕

Δ) = K2 ⊕ FK(K1 ⊕ Pi) ⊕ K2 ⊕ FK(K1 ⊕ Pi ⊕ Δ) = FK(Xj) ⊕ FK(Xj ⊕ Δ) =
φFX
2 (K,Xj) as required. Note that each collision gives candidates for the full

key (K,K1 = Pi ⊕ Xj ,K2 = Ci ⊕ Yj), which can be easily tested using trial
encryptions.

For an SFX-construction in which K2 = A(K1) (such as PRINCE and
PRIDE), the functions φ1(Pi) and φ2(K,Xj) can be simplified to use single
pairs of (Pi, Ci) and (Xj , Yj), respectively. Formally, we define:

φSFX
1 (Pi) � A(Pi) ⊕ Ci = A(Pi) ⊕ FXK,K1,K2(Pi)

φSFX
2 (K,Xj) � A(Xj) ⊕ Yj = A(Xj) ⊕ FK(Xj).

Thus, Pi ⊕ K1 = Xj implies that φSFX
1 (Pi) = A(Pi) ⊕ FXK,K1,K2(Pi) =

A(Pi) ⊕ K2 ⊕ FK(K1 ⊕ Pi) = A(Pi ⊕ K1) ⊕ FK(K1 ⊕ Pi) = A(Xj) ⊕ FK(Xj) =
φSFX
2 (K,Xj) as required.

The details of the attack are given in Appendix A. It has a memory com-
plexity of D and an expected time complexity of max(2D, 2κ+n−d+1) on FX-
constructions. For SFX-constructions, the data and time complexities of the
attack are reduced by a factor of 2.

4.4 Time-Memory-Data Tradeoff Attacks on Even-Mansour [14]
(with Preprocessing)

We now summarize the time-memory-data tradeoff by Fouque et al. on the Even-
Mansour scheme, which uses a one-time preprocessing phase. The main idea of
the attack is to request plaintexts Pi, and evaluate the permutation F with
values Xj such that a collision Pi ⊕K1 = Xj can be efficiently detected. In order
to do so, we request the data Pi and evaluate values Xj in the form of chains,
as in the parallel collision search algorithm [24].
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Although we cannot immediately detect that Pi ⊕ K1 = Xj , the main obser-
vation of Fouque et al. is that we can independently add to Pi and Xj the same
value φ1(Pi) = φ2(Xj) (for the functions φ1, φ2 defined above for the FX and
SFX constructions, where the key of the core cipher K is simply be ignored),
which guarantees that in case Pi ⊕ K1 = Xj , then Pi+1 ⊕ K1 = Xj+1.9 Hence,
the functions we iterate are defined as

Pi+1 � Φ1(Pi) � Pi ⊕ φ1(Pi)

Xj+1 � Φ2(Xj) � Xj ⊕ φ2(−,Xj).

Note that Φ1 and Φ2 are generally non-bijective mappings (rather than permu-
tations), and their behaviour (and in particular, the analysis of their collision
probability) can be modeled using random functions, assuming that the under-
lying cipher does not behave unexpectedly.10

The downside of the approach of iterating the defined functions is that the
attack becomes an adaptively-chosen plaintext attack, as Pi+1 = Pi ⊕ φ1(Pi)
depends on Ci and cannot be computed in advance (both for general FX-
constructions and SFX-constructions).

The attack works by evaluating chains during the preprocessing phase, where
each chain is iterated using Φ2 and terminated at a distinguished point that is
stored in memory. During the online phase, we evaluate a chain iterated using Φ1

and terminated at a distinguished point. The online distinguished point is matched
with the ones stored in memory, where a match allows to recover the key.

The full details of the attack are described in Appendix B. The time and
data complexities of the online phase of the attack are both about T = D = 2d

for SFX-constructions and 2d+1 for FX-constructions. Its memory complex-
ity is M = 2n−2d, and it requires preprocessing time of T̂ = 2n−d for SFX-
constructions and 2N/D = 2n−d+1 for FX-constructions.

4.5 Time-Memory-Data Tradeoff attacks on the FX-
Construction [14] (with Preprocessing)

As described in [14], we can easily generalize the previous attack on Even-
Mansour to FX-constructions in which the internal permutation is keyed. We
simply iterate over the 2κ keys of the internal permutation, and preprocess
each one separately by computing and storing its distinguished points. In total,
we have M = 2κ · 2n−2d = 2κ+n−2d, while the preprocessing time is about
T̂ = 2κ+n−d for SFX-constructions and T̂ = 2κ+n−d+1 for FX-constructions.
The online phase of the attack is essentially the same as in the previous attack,
i.e., T = D = 2d for SFX-constructions and 2d+1 for FX-constructions.
9 The paper of [14] refers to this situation as the chains becoming parallel.

10 An exception is the specific case of SFX-constructions where the masking keys are
equal (the affine mapping A is the identity), and hence Φ1 and Φ2 defined with the
corresponding φSFX

1 and φSFX
2 are permutations. Thus, in this particular case, we

use Φ1 and Φ2 defined with the more general φFX
1 and φFX

2 , resulting in slightly less
efficient attacks.
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5 New Time-Memory-Data Tradeoff Attacks on the
FX-Construction without Preprocessing

In this section, we describe our new time-memory-data tradeoff attacks on the
FX-construction, without using a preprocessing phase. The attacks are described
in the most general form, i.e., they are applicable to general FX-constructions
(exploiting the general definitions of φ1, φ2, given in Section 4.3). However, as
this paper focuses on the concrete SFX-constructions PRINCE and PRIDE, we
directly analyze only the variants of the attacks which are optimized for SFX-
constructions (i.e., assuming φ1 = φSFX

1 , φ2 = φSFX
2 ). In order to calculate

the complexity parameters for general FX-constructions, we simply multiply the
data and time complexities of the attack by a factor of 2, as in the attacks of
sections 4.3, 4.4 and 4.5.

5.1 The Case of D ≤ 2n/2

The attack for the case of D ≤ 2n/2 can be considered as a straightforward
extension of the attack of [14] on the FX-construction (described in Section 4.5).
However, [14] focused on attacks with preprocessing on the FX-Construction,
and attacks without preprocessing were not described.

We extend the iteration function Φ2 (defined in the Even-Mansour attack of
the FX-construction in Section 4.4) by adding the key of the core cipher as a
parameter. The iteration functions are now defined11 as

Pi+1 � Φ1(Pi) � Pi ⊕ φ1(Pi)

Xj+1 � Φ2(K,Xj) � Xj ⊕ φ2(K,Xj).

The attack is described below:

1. Build a chain of plaintexts, starting from an arbitrary plaintext,
extended using the iteration function Pi+1 = Φ1(Pi), and terminated
at a distinguished point P̂ for which the log(D) LSBs of φ1(P̂ ) are 0
(as in the attack of Appendix B). Store the endpoint P̂ , and its value
φ1(P̂ ).

2. For each possible value of K:
(a) For N/D2 different starting points X0:

i. Build a chain starting from X0, defined according to Xj+1 =
Φ2(K,Xj), and terminated at a distinguished point X̂ for which
the log(D) LSBs of φ2(K, X̂) are 0. If φ2(K, X̂) = φ1(P̂ ), test the
full key K,K1,K2 derived from P̂ and X̂ using a trial encryption.

11 Where φ1 and φ2 are defined in Section 4.3.
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For the correct value of K in Step 2, we expect a collision between a node in
the online chain (of average length D) and the (expected number of) N/D nodes
evaluated offline. As this collision causes the corresponding chains to merge, it
will be detected at the next distinguished point, allowing to recover the key.

The expected data complexity of the attack is D = 2d, while its memory com-
plexity is negligible. The total number of distinguished points that we compute
in Step 2 is about 2κ+n−2d, requiring about 2κ+n−2d+d = 2κ+n−d computation
time. For each such distinguished point, we do not perform more than one trial
encryption, and therefore the expected total time complexity of the attack is
2κ+n−d.

Consequently, we obtain about the same data and time complexities as the
attack described in Section 4.3, but (almost) completely nullify the memory
complexity in the adaptively chosen plaintext model.

5.2 The Case of D > 2n/2

The attack for D ≤ 2n/2 has to be adapted for the case of D > 2n/2, as the
online chain (built in Step 1 of the previous attack) is expected to cycle (i.e.,
collide with itself) after about 2n/2 evaluations, and thus cannot cover more than
2n/2 nodes. Therefore, we build the structure of chains online, while evaluating
offline only one chain per key.

We note that while this attack can also be viewed as an extension of the
attacks of [14], it is less straightforward, as all the attacks of [14] use D ≤ 2n/2.
The reason is that the attacks of [14] are based on the basic Even-Mansour
attack (described in Section 4.4), for which κ = 0 and there is no gain in using
D > 2n/2 (as this increases the total time complexity of the attack). On the
other hand, we observe that for FX-constructions, we can indeed benefit from
D > 2n/2.

1. For D2/N different starting points P0:
(a) Build a chain of plaintexts, starting from P0, extended using the

formula Pi+1 = Φ1(Pi), and terminated at a distinguished point P̂
for which the log(N/D) LSBs of φ1(P̂ ) are 0. Store the endpoint P̂
in a list L, sorted according to φ1(P̂ ).

2. For each possible value of K:
(a) Build a chain starting from an arbitrary value X0, defined according

to Xj+1 = Φ2(K,Xj), and terminated at a distinguished point X̂ for
which the log(N/D) LSBs of φ2(K, X̂) are 0. Search for φ2(K, X̂)
in the list L and for each match with some φ1(P̂ ), recover P̂ , obtain
a suggestion for the full key K,K1,K2 and test it using a trial
encryption.

The chain structure of plaintexts covers D2/N · N/D = D nodes on average,
and it is expected to collide with the chain of values (of expected length N/D)
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for the correct K, allowing to recover it. The data complexity of the attack is
D = 2d, while its memory complexity is M = D2/N = 22d−n.

Computing the distinguished points online and offline requires
max(2d, 2κ+n−d) = 2κ+n−d time (assuming κ ≥ n). Two arbitrary distin-
guished points match with probability 2(n−d)−n = 2−d (as the n − d LSBs
of distinguished points always match). We store a total of 22d−n distin-
guished points in L, and evaluate a total of 2κ distinguished points in Step 2.
Thus, the expected number of matches (resulting in trial encryptions) is
2(κ+2d−n)−d = 2κ−n+d ≤ 2κ+n−d (as d ≤ n), and the expected total time
complexity is 2κ+n−d, dominated by the computation of the distinguished
points in Step 2.

Consequently, we obtain (about) the same time complexity as the basic attack
of Section 4.3, but gain a factor of 2d/(22d−n) = 2n−d in memory.

6 New Time-Memory-Data Tradeoff Attacks on the
FX-Construction with Preprocessing

In this section, we describe our new time-memory-data tradeoff attacks on the
FX-construction, taking advantage of a preprocessing phase. As in Section 5,
we directly analyze only the attack variants which are optimized for SFX-
constructions (although the attacks are described in the most general form). For
general FX-constructions, we simply multiply the data and time complexities of
the attacks by a factor of 2.

6.1 The Case of D ≤ 2n/2

It is possible to apply standard time-memory-data tradeoffs for stream ciphers [3,
4] to the FX-construction in the chosen plaintext model (and to some extent,
also in the known plaintext model). However, the most interesting tradeoffs are
obtained in the adaptively chosen plaintext model, in which we combine the
attacks of the previous section with techniques borrowed from stream cipher
cryptanalysis.

We use Hellman’s time-memory tradeoff algorithm in order to cover during
the preprocessing phase of the attack, the 2κ+n−2d pairs of (K,distinguished
point) that were computed in Step 2 of the attack of Section 5.1. These pairs
were all stored in memory in the attack of [14] (described in Section 4.5), which
required (at least) 2κ words of storage. This memory complexity is completely
impractical for standard values of κ ≥ 64, and our techniques trade it off with
the online time complexity.

The idea of using Hellman’s time-memory tradeoff algorithm to cover special
points was first published in cryptanalysis of a certain type of stream ciphers,12

and we now show how to adapt it to the FX-construction. In order to cover
the pairs of (K,distinguished point), we define a mapping between the 2κ+n−2d

12 Refer to tradeoffs for stream ciphers with low sampling resistance [3,4].
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pairs, denoted by h2(K, X̂). One problem that we need to overcome is that X̂ is
an n-bit word, and does not contain the sufficient κ + n − 2d ≥ n bits13 in order
to define this mapping. Furthermore, the mapping cannot directly depend on K,
as in the online phase we search the Hellman tables without knowledge of the
online key. Thus, in order to collect more data, we simply continue evaluating
the chain by applying Φ2 to (K, X̂) sufficiently many times, until we collect the
κ + n − 2d bits required in order to define the Hellman value of (K, X̂). This
value will be used in order to determine the next (K,distinguished point) pair,
i.e., the output of h2(K, X̂). The algorithm of the Hellman mapping h2(K, X̂)
is given below, assuming that κ = n for the sake of simplicity. We note that in
cases where κ > n, we simply apply Φ2 more times in order to collect more data
(the case of κ < n can be handled by truncation).

1. Compute the 2n-bit Hellman value of (K, X̂) by first computing the
next 2 points in the chain X ′ = Φ2(K, X̂) and X ′′ = Φ2(K,X ′). The
Hellman value of (K, X̂) is defined as (φ2(K,X ′), φ2(K,X ′′)).

2. Interpret the Hellman value as (Z,Knext) = (φ2(K,X ′), φ2(K,X ′′))
(note that both Z and Knext are n-bit words). Compute a chain of (aver-
age) length D = 2d, using the iteration function Φ2(Knext,X), starting
from X = Z, and terminating at a distinguished point (Knext, Ẑnext)
(i.e., the log(D) LSBs of φ2(Knext, Ẑnext) are zero). Output h2(K, X̂) =
(Knext, Ẑnext).

Once the mapping h2(K, X̂) is well-defined, we can use Hellman’s preprocess-
ing algorithm to cover a space of 2κ+n−2d points (pairs) (K, X̂). As the average
time complexity of one application of h2(K, X̂) is D, the total time complexity
of the preprocessing phase is T̂ = D · 2κ+n/D2 = 2κ+n−d. Since h2 is defined on
(at most) 2n bits, we can store M/2 chains with M words of memory. However,
in case D ≈ 2n/2 and κ ≤ n, we essentially need to cover a space of at most 2n

(we cover one distinguished point per key on average), and thus we can store a
larger number of M chains with M words of memory.

We now point out a few technical issues about the preprocessing algorithm:
since we are using Hellman’s algorithm to cover 2κ+n−2d points, the (average)
length of the Hellman chains is 2κ+n−2d−m (determined according to the avail-
able memory M = 2m). In order to terminate a Hellman chain (computed using
h2 on the space of κ + n − 2d bits), we need to define a subset of “Hellman
distinguished points”, containing pairs of (K, X̂). Such a subset (which deter-
mines when to terminate an iteration chain of h2) can be defined (for example)
according to the LSBs of the Hellman value (φ2(K,X ′), φ2(K,X ′′)), computed
in Step 1 of the algorithm above. The “Hellman distinguished points” should be
contrasted with the distinguished points defined for the iteration on the n-bit
13 We consider κ = n and d ≤ n/2, and thus κ + n − 2d ≥ n.
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space with a fixed key using Φ2 (such distinguished points are defined accord-
ing to the LSBs of φ2(K, X̂)). In order to avoid confusion, we refer to chains
and distinguished points computed using h2 as Hellman chains and Hellman
distinguished points, whereas the ones computed using Φ1 and Φ2 are simply
referred to as (standard) chains and distinguished points.14 An additional tech-
nical issue is that in order to cover the full space of 2κ+n−2d points, we need to
define flavors of h2 (namely, h

[i]
2 ), and this can be done (for example) by defining

h
[i]
2 = h2(K, X̂) + (i, i).

The online algorithm is given below.

1. Compute a chain of (approximately) D points using the iteration func-
tion φ1, starting from an arbitrary plaintext, and terminating at a dis-
tinguished point P̂ , where the log(D) LSBs of φ1(P̂ ) are 0.

2. Given P̂ , compute the corresponding Hellman value (φ1(P ′), φ1(P ′′))
similarly to the preprocessing phase, by computing the next 2 points in
the chain P ′ = Φ1(P̂ ) and P ′′ = Φ1(P ′).

3. Invert (K ′,X ′) = (φ1(P ′), φ1(P ′′)) using the Hellman tables, obtain a
suggestion for the full key (K,K1,K2) and test it.

The data complexity of the attack is D, and according to Hellman’s time-
memory tradeoff curve, its average time complexity is T ′ = (N ′/M ′)2 evalua-
tions of h2, where N ′ = 2κ+n−2d is the size of the covered space and M ′ =
M/2 = 2m−1 is the number of Hellman chains stored in memory. Thus T ′ =
(2κ+n−2d/2m−1)2 = 22(κ+n−m−2d+1), and since each evaluation of h2 requires
D = 2d time, then T = 22(κ+n−m−1.5d+1). When D ≈ 2n/2 and κ ≤ n, we can
use the M memory words more efficiently and obtain a (slightly) improved time
complexity of T = 22(κ+n−m−1.5d).

The Difference Between Tradeoffs for FX-Constructions and Stream
Ciphers. As can be seen from the tradeoff above for FX-constructions, the
effective key size is reduced by a factor of 21.5d when obtaining 2d data. On the
other hand, for stream ciphers, the effective hidden state size is only reduced
by a factor of 2d. The reason for this is that in the case of stream ciphers,
the state update function is typically a permutation.15 On the other hand, the
corresponding function in the case of FX-constructions is Φ1, which is a non-
bijective function rather than a permutation. Iterating Φ1 a large number of
times results in entropy loss due to collisions in its functional graph. This reduces
the number of points that we need to search in the Hellman tables to recover
14 Our definitions are related to the definitions of full name,output name, and short

name in the context of stream ciphers with low sampling resistance [3].
15 For example, many stream ciphers are built using feedback shift registers, and it is

possible to run them backwards in a deterministic way.
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the key, and improves the complexity of the online attack compared to the case
of stream ciphers.

Implementation for n = κ = 64. In the case of PRINCE and PRIDE, then
n = κ = 64. We assume that we have 2m = 248 words of memory (251 bytes) and
we can obtain 2d = 232 adaptively chosen plaintexts. In total, the online time
complexity of the algorithm is 22(64+64−48−48) = 264, corresponding to Attack
1 in Table 1. Similarly to the example given at the end of Section 4.1, as the
Hellman chains cover a space of size 2κ = 264 points, the 264 computation can
be divided across 216 CPUs, each requiring (a single) access to a memory of 232

words (and it can thus be stored on a hard disk). Each CPU invokes h2 about 216

times, where each invocation requires 232 cipher evaluations. Thus, each CPU
performs about 248 cipher evaluations in total.

6.2 The Case of D > 2n/2

As in the case considered in Section 5.2, we need to adapt the previous attack
to efficiently exploit D > 2n/2 data. Similarly to the case of D ≤ 2n/2, the tech-
niques we use for D > 2n/2 are related to those of [3,4]. However, as we describe
next, the method in which we request the data and optimize the parameters in
this setting are different from the stream cipher setting (where the method in
which the keystream is obtained does not seem to influence the complexity of
the attack).

We consider two different adaptation methods to the previous attack of D ≤
2n/2. In the first method, we obtain the data using chains of (maximal) length
2n/2. In order to ensure that these chains do not merge, we define flavors of
Φ1 and Φ2 (which should be contrasted with the Hellman flavors of h2). Thus,
we define 2d−n/2 flavors, and build Hellman tables for each one. During the
online phase, we obtain one distinguished point per flavor and search it in the
corresponding Hellman tables. One can observe that in terms of the time-memory
tradeoff, the flavors of Φ1 and Φ2 play a similar role to the flavors of h2 in the
attack with d = n/2. Consequently, we obtain the same time-memory tradeoff
as for d = n/2, i.e., T = 22(κ+n/4−m).16 On the other hand, the preprocessing
complexity is reduced to T̂ = 2κ+n−d.

An Improved Tradeoff. The attack above is a direct extension of the tradeoff
obtained for D = 2n/2, which covered offline, 2κ distinguished points using h2.
We now show how to obtain an improved attack, using a simple and yet subtle
and non-trivial observation. We notice that for D > 2n/2, we can use chains of
length N/D < 2n/2. These chains are shorter than the ones used for D = 2n/2

data, and are of the same length as in the attack with only 2d′
= 2n−d data. At

first, it may not be clear why using shorter chains results in a better attack. As
we show next, the reason for this is that we can use the memory more efficiently
than in the case of longer chains.
16 There are additional restrictions to this curve, discussed at the end of the section.
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We first compare our case of 2d > 2n/2 data and the case of 2d′
= 2n−d

data, which use the same chain length. The difference is that in the case of
2d′

= 2n−d data, we obtained only one distinguished point online, whereas now
we have 2d−(n−d) = 22d−n such distinguished points, and we need to cover only
one of them offline in order to succeed. Thus, in the attack with 2d′

= 2n−d

data, we had to cover offline, the large space of 2κ+n−2d′
distinguished points

using Hellman tables, whereas now we need to cover only 2κ+n−2d′−(2d−n) =
2κ+n−2(n−d)−(2d−n) = 2κ distinguished points. Namely, we need to cover about
one distinguished point for every key K of the core cipher, as in the attack above.
However, the crucial observation is that the space of distinguished points is of
the same size as in the attack with 2d′

= 2n−d data. This space is larger than
the space for D = 2n/2, implying that we can build larger Hellman tables and
use the memory more efficiently compared to the (non optimal) attack above
(which is a direct extension of the case of D = 2n/2).

A simple way to compute the improved tradeoff is to start with the formula
T = 22(κ+n′−m−1.5d′), calculated for the attack with d′ ≤ n/2. Then, we plug in
d′ = n − d and n′ = n − (2d − n), as the space size that we cover by Hellman
tables is reduced by a factor of 22d−n (which is the number of distinguished points
obtained online). In other words, the tradeoff T = 2κ+n−(2d−n)−m−1.5(n−d) =
22(κ+n/2−m−d/2) is obtained by reducing the number of Hellman tables (by a
factor of 22d−n) compared to the attack that used d′ = n − d. However, the
attack cannot use less than 1 Hellman table, and it is therefore necessary to
derive an expression for this variable, which restricts the tradeoff. Interestingly,
the simplest method that we found to compute the number of Hellman tables
is to redo the low-level computation, which also gives a better understanding of
the full attack.

For parameters T ′ and M ′, we build a Hellman table of distinguished points
(using the function h2) with the stopping rule of

T ′ · T ′M ′ = 2κ+n−2d′
= 2κ−n+2d (1)

(after which the Hellman chains start colliding extensively).17 We need to cover
about 2κ distinguished points with H Hellman tables, namely

HT ′M ′ = 2κ. (2)

Since each evaluation of h2 requires 2n−d time, the preprocessing time complex-
ity is T̂ = 2κ+n−d (as in the non-optimized attack above). The total memory
complexity of the attack is

M = HM ′ (3)

and the total online time complexity is calculated as follows: searching a single
Hellman table requires T ′ evaluations of h2, i.e., a total of T ′ · 2n−d time. For
each of the 22d−n distinguished points, we need to search the H Hellman tables,
and thus the total online time complexity is

T = T ′ · 2n−d · H · 22d−n = T ′H · 2d. (4)
17 Note that the stopping rule in the previous attack was T ′ · T ′M ′ = 2κ < 2κ−n+2d.
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Data chains
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M

Hellman tables

Fig. 2. Time-Memory-Data Tradeoff with Preprocessing for D > 2n/2

We calculate the tradeoff according to (3) and (4) by evaluating T · M2 =
T ′H ·2d · (HM ′)2 = 2d ·H3 ·T ′ · (M ′)2. From (2), we get T ·M2 = 2κ+d ·H2 ·M ′.
Furthermore, from (1) and (2), we obtain

H2 · M ′ = 22κ−(κ−n+2d) = 2κ+n−2d. (5)

Thus, T · M2 = 2κ+d+κ+n−2d = 22κ+n−d, i.e., we obtain the tradeoff

T = 22(κ+n/2−m−d/2)

(which was obtained above in a different way). This tradeoff efficiently exploits
more than 2n/2 data, unlike the previous tradeoff T = 22(κ+n/4−m).

As noted above, a condition that we have to impose on this tradeoff is that
the number of Hellman tables is at least 1, i.e., H ≥ 1. In order to calculate H,
we use (3) and (5), obtaining H = 2κ+n−2d−m. Since H ≥ 1, the tradeoff above
is valid only for m ≤ κ + n − 2d.

When we want to utilize 2m memory for m > κ+n−2d, then we use only one
Hellman table (i.e., H = 1), and we are forced to stop the Hellman chains before
the stopping rule (T ′)2 ·M ′ < 2κ−n+2d (1). Namely, we have M ′ = M = 2m and
T ′M ′ = 2κ, implying that T ′ = 2κ−m, and using (4), T = T ′ · 2d = 2κ+d−m.
Note that (T ′)2 · M ′ = 22(κ−m) · 2m = 22κ−m < 22κ−(κ+n−2d) = 2κ−n+2d, so
indeed we do not violate the stopping rule (1).

Finally, we observe that a similar restriction on m also applies to the previous
tradeoff T = 22(κ+n/4−m) for d > n/2, and it is possible to show that the tradeoff
obtained here is always at least as efficient as the previous one.

Implementation for n = κ = 64. We assume that we have 2m = 248

words of memory and we can obtain 2d = 240 adaptively chosen plaintexts. In
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total, the online time complexity of the algorithm is T = 22(κ+n/2−m−d/2) =
22(64+32−48−20) = 256, corresponding to Attack 2 in Table 1. In this case H =
2κ+n−2d−m = 1, i.e., we have a single Hellman table. As we search the table with
22d−n = 216 distinguished points, the 256 computations can be divided across
(up to) 216 CPUs, each performing 256−16 = 240 computations, and accessing
the memory only once (and it can therefore be stored on a hard disk).

7 Conclusions

In this paper, we proposed new generic time-memory-data tradeoffs for FX-
constructions, and optimized them for the recent proposals PRINCE and PRIDE.
Some of our attacks are surprisingly efficient, and despite their limitations, we
believe that they demonstrate the small security margin of PRINCE and PRIDE
against practical attacks. In the extended version of this paper [11], we show that
PRINCE and PRIDE could counter these generic attacks with little overhead by
incorporating the masking keys into the key schedule of the core ciphers. This
suggests that the DESX solution proposed by Ron Rivest in 1984 (in order to
provide better security for the widely-deployed DES) may be less suitable for
new ciphers.

Acknowledgments. The author would like to thank Orr Dunkelman and Adi Shamir
for helpful discussions on this work.

A Details of the Basic Time-Memory-Data Tradeoff
Attack on the FX-Construction [18] (without
Preprocessing)

We give the details of the basic attack using the general functions φ1(Pi) and
φ2(K,Xj), defined in Section 4.3.

1. Obtain the encryptions of D arbitrary values Pi, denoted by Ci. For gen-
eral FX-constructions, also obtain the D additional encryptions required
to calculate φFX

1 (Pi), by asking for the encryptions of P ′
i = Pi⊕Δ. Store

(Pi, Ci) in a list L, sorted according to φ1(Pi).
2. For each possible value of K:

(a) For N/D different values of Xj :
i. Compute φ2(K,Xj) by computing Yj = FK(Xj) (for a general

FX-construction, also compute FK(Xj ⊕ Δ)).
ii. Search φ2(K,Xj) in L. For each match, retrieve (Pi, Ci), and test

each of the key candidate triplet (K,K1 = Pi⊕Xj ,K2 = Ci⊕Yj)
using trial encryptions. If a trial encryption succeeds, return the
corresponding full key (otherwise return to Step 2.(a)).
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According the the birthday paradox, for the correct value of K in Step 2, we
expect a pair (i, j) such that Pi ⊕ K1 = Xj . Therefore, we expect to obtain a
match in L in Step 2.(a).ii between φ1(Pi) and φ2(K,Xj) and recover the correct
K,K1,K2.

For general FX-constructions, the data complexity of the attack is 2D chosen
plaintexts, and its memory complexity is M = 2D n-bit words, required in
order to store L. In order to compute the time complexity, we note that for
an arbitrary value of the n bits of φ2(K,Xj), we expect at most one match in
L (which contains at most 2n elements). Thus, the expected time complexity
of Step 2.(a) is about 2, implying that the expected time complexity of the
full attack is max(2D, 2κ+n−d+1) (i.e., we can efficiently exploit D ≤ 2(κ+n)/2

data). For SFX-constructions, the data and time complexities of the attack are
reduced by a factor of 2 (note that in this case, the attack requires only known
plaintexts).

B Details of the Time-Memory-Data Tradeoff Attack on
Even-Mansour [14] (with Preprocessing)

We assume that we can obtain the encryptions of about D ≤ 2n/2 adaptively-
chosen plaintexts during the online phase. During the preprocessing phase, we
use the preprocessing iteration function Φ2(X) (defined in Section 4.4) in order
to build a structure containing N/D2 chains. Each chain is evaluated from
an arbitrary starting point, and terminated at a distinguished point X̂ for
which the log(D) LSBs of φ2(X̂) are zero. Thus, the average chain length is
D, implying that the time complexity of preprocessing is T̂ = N/D = 2n−d

for SFX-constructions and 2N/D = 2n−d+1 for FX-constructions. For each
chain in the structure, we store in memory only the endpoint18 X̂, and sort
the chains according to their values φ2(X̂). Thus, the memory complexity is
about M = N/D2 = 2n−2d.

During the online phase, we evaluate a single chain of (expected) length D,
starting for an arbitrary plaintext. The chain is defined according to the online
iteration function Φ1(P ), and is terminated at a distinguished point P̂ for which
the log(D) LSBs of φ1(P̂ ) are zero. Once a distinguished point is reached, we
search for it in the structure, and for each match, we obtain and test the key
suggestions for K1,K2. Note that unlike Hellman’s original attack, we directly
recover the key from the distinguished points stored in the structure, without
the need to further traverse the chains (and thus we do not need to store any
information about their startpoints).

As the offline structure covers about 2n−d values of Xj and the online chain
contains 2d values of Pi, we expect a collision Pi ⊕ K1 = Xj . The collision
implies that φ1(Pi) = φ2(Xj), which causes the two corresponding chains to
merge and reach distinguished points with the same value. This distinguished
18 The structure is somewhat different from a Hellman table, for which we also store

information about the startpoints of the chains.
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point is recovered in the online phase and allows to recover the key K1,K2. Thus,
the time and data complexities of the online phase of the attack are both about
T = D = 2d for SFX-constructions and 2d+1 for FX-constructions.
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Abstract. Invariant subspace attacks were introduced at CRYPTO
2011 to cryptanalyze PRINTcipher. The invariant subspaces for
PRINTcipher were discovered in an ad hoc fashion, leaving a generic
technique to discover invariant subspaces in other ciphers as an open
problem. Here, based on a rather simple observation, we introduce a
generic algorithm to detect invariant subspaces. We apply this algo-
rithm to the CAESAR candidate iSCREAM, the closely related LS-
design Robin, as well as the lightweight cipher Zorro. For all three candi-
dates invariant subspaces were detected, and result in practical breaks of
the ciphers. A closer analysis of independent interest reveals that these
invariant subspaces are underpinned by a new type of self-similarity prop-
erty. For all ciphers, our strongest attack shows the existence of a weak
key set of density 2−32. These weak keys lead to a simple property on
the plaintexts going through the whole encryption process with prob-
ability one. All our attacks have been practically verified on reference
implementations of the ciphers.

Keywords: Cryptanalysis · Lightweight cryptography · Invariant sub-
space · Self-similarity · iSCREAM · LS-designs · Zorro · CAESAR

Introduction

Block ciphers are one of the most essential cryptographic primitives. Our under-
standing of how to build secure block ciphers has greatly advanced in the last
20 years. Nowadays, analyzing a given block cipher with respect to a large class
of non-trivial attacks, including linear and differential attacks and their vari-
ants, is a well-understood process for a large class of block ciphers. However,
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when it comes to designing block ciphers with strong performance requirements,
often less conservative approaches are chosen. Examples of such performance
requirements that have recently been studied extensively include low hardware
footprint (e.g. PRESENT [6], LED [20], KATAN [10]), low memory consumption
on small embedded processors (e.g. ITUBee [21], SPECK [5], PRIDE [2]), low
latency (e.g. PRINCE [7]) and ease of side-channel protection (e.g. Zorro [14],
LS-Designs [15]).

In order to fit within constrained settings, many of these ciphers feature
innovative designs: they may rely on simpler round functions, or minimal key
schedules. While in most cases, guarantees against traditional linear or differen-
tial attacks are still offered, the simpler structure of many of these ciphers may
lend itself to new attacks. Careful cryptanalysis is required in order to assess the
security of these new designs; in this process, new techniques have emerged.

One such technique is the invariant subspace attack, introduced in [22] for
the cryptanalysis of PRINTcipher. The general idea behind this attack is the
following: assume that the round function of a cipher maps a coset A of some
vector subspace of the inner state to a coset B of the same space, and a fixed
key belonging to A − B is added in every round. Then the set A is preserved
by the round function, and hence remains stable through the whole encryption
process. This property holds for a large set of keys in PRINTcipher, breaking
the cipher in a practical setting. This type of attack seems particularly well-
suited to substitution-permutation networks (SPN) with a minimal key schedule
or cryptographic permutations with highly structured round constants.

Invariant subspace attacks are unusual in that they rely on an unexpected
form of symmetry in the round function, and yield attacks that are independent
of the number of rounds. On the other hand, the same attributes are shared by
attacks based on self-similarity properties. These properties were first formally
defined in [4] to study alternative descriptions of AES, and later used in [8] to
cryptanalyze the SHA-3 candidate Lesamnta and the lightweight cipher XTEA.

Interestingly, despite its fundamental nature, the understanding of symme-
tries and invariant subspaces, in block ciphers or cryptographic permutations,
is rather limited. The invariant subspace attack on PRINTCipher was found
in an ad hoc fashion and no general approach to detect or avoid such invariant
spaces is known. This is even more surprising as for more involved attacks like
differential and linear attacks and their variations our general understanding of
detection and avoiding those attacks by design is much more evolved.

Our Contribution. In this paper we aim at increasing the general under-
standing of invariant subspaces. For this purpose, and as our first main result,
we present a generic algorithm that is able to detect invariant subspaces. The
running time of this algorithm depends on the block size of the primitive and the
density of the existing invariant subspaces. In particular, it is especially efficient
if relatively large invariant subspaces exist. As the impact of an invariant sub-
space increases with its dimension, this can be seen as detecting stronger attacks
significantly faster than minor attacks.



256 G. Leander et al.

We apply this generic algorithm to the lightweight cipher Robin introduced
at FSE 2014 as a concrete instance of the LS-design framework [15], the closely
related CAESAR [1] candidate iSCREAM [18], as well the lightweight cipher
Zorro presented at CHES 2013 [14]. In all cases the algorithm is able to detect
invariant subspaces.1 Attacks resulting from these invariant subspaces break all
three ciphers in a practical setting. All attacks have been verified on reference
implementations of the ciphers.

As our second main contribution, we show that the invariant subspaces we
have discovered are underpinned by a type of self-similarity property of indepen-
dent interest, stemming from a linear map commuting with the round function.
Surprisingly, such a map exists for all three ciphers, despite Robin and Zorro
having quite different structures. As a result, we obtain stronger attacks on our
target ciphers. We also hope to provide useful insight for the design and analysis
of ciphers with minimal key schedules as well as for the choice of round constants
in cryptographic permutations.

More specifically, our attacks show the existence of weak keys in Robin, Zorro,
as well as iSCREAM in the chosen-tweak scenario. In all cases, the proportion of
weak keys is 2−32 within the set of all keys. Encryption of a single chosen plain-
text is enough to determine whether a key is weak, making our weak key setting
very practical. Once a key is recognized as weak, a simple property on plaintexts
goes through the whole encryption process with probability one, breaking plain-
text confidentiality. In addition, the full 128-bit encryption key can be recovered
using one chosen plaintext in time complexity 264. We also show that all three
ciphers are instantly broken in the related-key setting, without any weak key
requirement; although only iSCREAM claims security in this model.

In the case of LS-designs, we furthermore present a second attack, based on
S-box-dependent invariant subspaces, without an underlying self-similarity. We
obtain a new set of weak keys with the same properties as above, including the
fact that they can be detected using a single chosen plaintext. However when
applying this second attack to Robin and iSCREAM, we obtain a much rarer
set of weak keys, with only one key in 280 being weak. We then fine-tune this
attack against iSCREAM, and obtain a ratio of weak keys of 2−48, at the cost of
requiring 232 chosen-tweak chosen plaintexts in order to detect whether a key is
weak; once a weak key is detected, the full 128-bit key can be recovered in time
complexity 248 with no additionnal data.

Regarding LS-designs, it should be pointed out that while our first attack
breaks Robin and iSCREAM in a practical setting, Fantomas and SCREAM
appear to be safe. Moreover, in the case of Robin and iSCREAM, a careful
tweak of the ciphers should be able to prevent our attacks. Thus, the security of
the LS-design framework in general is not called into question. On the contrary,
in the case of Zorro, our attack adds to other attacks suggesting that partial
nonlinear layers should be approached with caution.
1 The source code of our tool is available at invariant-space.gforge.inria.fr.

invariant-space.gforge.inria.fr
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Related Work. Invariant subspace attacks were introduced in [22]. Their appli-
cation to PRINTcipher relies on undesirable properties induced by its 3-bit
S-boxes. By contrast, most of our attacks (except the second attack on Robin
and iSCREAM) are actually independent of a particular choice of S-boxes.

A thorough analysis of invariant subspaces in PRINTcipher was subse-
quently carried out in [9]. Using a dedicated tool, the authors were able to
enumerate all invariant subspaces of PRINTcipher, of the type uncovered in
the previous article. However their approach is tailored to PRINTcipher, and
does not extend to other ciphers.

An older line of work has studied “linear factors” of DES [11,13,28], which
bear some resemblance to invariant subspaces. The existence of a linear factor
is an even stronger property than that of an invariant subspace: essentially, it
asks that a (linearly defined) portion of the ciphertext only depend on (linearly
defined) portions of the plaintext and key. Nonetheless, it is interesting to note
that our attacks do uncover a linear factor in Robin and Zorro (the subcipher
in Section 3.3), although only in a weak key setting.

Along a similar line, the attack on SAFER in [25] should be mentioned. It
exploits the action of the cipher on cosets of a vector space as a whole, rather
than isolating a specific trail or characteristic.

Self-similarity properties were used to attack hash functions and block ciphers
in [8]. It should be noted that self-similarity is a very wide framework, encom-
passing attacks ranging from probability one related-key differentials to slide
attacks. To the best of our knowledge, the commutation property we consider
here is very different from any previous work.

There is no prior cryptanalysis of LS-designs. As for iSCREAM, an issue with
the padding in the original CAESAR submission of SCREAM and iSCREAM was
pointed out in [29] and subsequently corrected.Our attacks have caused iSCREAM
to be temporarily withdrawn from the CAESAR competition for a redesign [17].

By contrast, many attacks have been carried out against Zorro, mostly differ-
ential or linear in nature [3,19,27,30,31]. The best attack in [3] is a differential
attack requiring 241 data and time complexity 245 to break the full cipher. Our
attack is of a different nature: it holds in the weak key setting (with 296 weak keys
out of 2128), requires minimal data and time, and is independent of the number
of rounds. Similar to [3], our attack can be readily extended to Zorro-like ciphers,
as shown in the ePrint version of this work [23].

Structure of the Paper

In Section 1, we recall the definitions of invariant subspace and present our
generic algorithm for detecting such invariant subspaces. In Section 2, we pro-
vide a description of LS-designs, including our targets Robin and iSCREAM.
In Sections 3, 4 and 5, we develop our attacks against LS-designs, introduce a
particular self-similarity property, the resulting invariant subspaces, and finally
describe a different invariant subspace attack not underpinned by self-similarity.
In Section 6, we apply our self-similarity and invariant subspace attacks to Zorro.
Finally, in Section 7, we conclude with a discussion of our results and outline
interesting open problems.
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1 A Generic Algorithm to Detect Invariant Subspaces

In this section we first recall the invariant subspace attack and later present our
algorithmic approach to detect invariant subspaces in a generic manner.

1.1 Invariant Subspace Attacks

Invariant subspace attacks were introduced and applied to PRINTCipher in
[22]. We briefly recall the basic principle here.

Consider a n-bit block cipher with round function FK consisting of a key
addition and a SP layer F : F

n
2 → F

n
2 . That is, FK is defined by FK(x) =

F (x + K). Assume the SP-layer F is such there exists a subspace A ⊆ F
n
2 and

two constants u, v ∈ F
n
2 with the property:

F (u + A) = v + A

Then, given a (round) key K ∈ u − v + A, i.e. K = KA + u − v with KA ∈ A,
the following holds:

FK(v + A) = F (v + A + u − v) = F (u + A) = v + A

i.e. the round function maps the affine subspace v+A onto itself. If all round keys
are in u − v + A, in particular if identical round keys are used as in LS-designs
and Zorro, then this property is iterative over an arbitrary number of rounds.

In the case where an identical key is added in every round (there is no key
schedule), a key is said to be weak iff it belongs to u − v + A. Whenever a key is
weak, plaintexts in v +A are mapped to ciphertexts in v +A, breaking plaintext
confidentiality. The number of weak keys is the cardinality of A.

In order to detect whether an unknown key is weak, it is enough to encrypt
one plaintext in v + A, and test whether the resulting ciphertext is in the same
space. Indeed, over the set of all keys, false positives will occur with the same
frequency as true positives, and can be discarded with a second chosen plaintext.

1.2 A Generic Algorithm

In this section we present a simple and entirely generic probabilistic algorithm
able to discover invariant subspaces for a given round function. The algorithm
gives instant results for vector subspaces, and is able to discover affine subspaces
in time proportional to their density. Despite its simplicity, this algorithm is
enough to automatically discover all invariant subspace attacks to be elaborated
upon in the following sections.

The algorithm will identify minimal invariant subspaces and thereby iden-
tify invariant subspace attacks automatically. However, further analysis usually
allows to significantly improve upon the attacks recovered automatically by the
algorithm and gain further insights in the structure of the detected weakness.
Furthermore, as the expected running time is determined by the density of invari-
ant subspaces, it might well be that not all possible attacks are detected. Thus,
for the moment, this generic algorithm cannot be used to fully exclude the exis-
tence of invariant subspaces.
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Identifying Minimal Subspaces. Assume we are given a permutation F :
F

n
2 → F

n
2 . Here F could be a (keyless) round of a block cipher or a cryptographic

permutation (like Keccak-f). Our goal is to find affine subspaces u + A ⊂ F
n
2

such that:
F (u + A) = v + A

for some v ∈ F
n
2 .

Our algorithm is based on the following trivial observation.

Lemma 1. Assume u + A is an affine subspace such that F (u + A) is also
an affine subspace v + A. Then for any subset X ⊆ A, the linear span of
(F (u + X) − v) ∪ X is contained in A.

The idea is to first guess one possible offset u′ of the affine space to be found
and use v′ = F (u′). Next, we guess a one-dimensional subspace of A, denote this
by A0. The algorithm will succeed if and only if u′ + A0 is contained in u + A.

1. We compute Ai+1 from Ai as:

Ai+1 = span{(F (u′ + Ai) − v′) ∪ Ai}
2. If the dimension of Ai+1 equals the dimension of Ai, we found an invariant

subspace and exit.
3. If not, we continue with step 1.

Thus, the idea is to start with what we denote nucleon of A and map it using
F until it stabilizes. In the case that our initial guess was wrong and u′ + A0

is not contained in some non-trivial invariant subspace we will end up with the
full space after at most n iterations of the above.

Note that it is not necessary to really map the complete spaces Ai using F
but a randomly chosen subset of relatively small size is enough for our purpose
and significantly speeds up the process.

If the largest invariant subspace of F has dimension d, the algorithm will
detect this space (or any invariant subspaces of this space) after an expected
number of 22(n−d) guesses for A0 and u′. Thus, in this basic form, the algorithm
becomes quickly impractical. However, in the case of round functions of a cipher
(or a cryptographic permutation) that differ by round constants only, its running
time can be greatly improved as described next.

Knowing the Nucleon. For block ciphers with identical round keys or cryp-
tographic permutations, we actually have a very good idea about the nucleon we
want to be included in the space A, namely the round constants. More precisely,
we consider round functions Fi : Fn

2 → F
n
2 that differ only by the addition of

constants, i.e.
Fi(x) = F (x) + ci

for ci ∈ F
n
2 , where for simplicity we assume c0 = 0. We are looking for affine

subspaces u + A that are mapped to v + A by all round functions. In particular

F0(u + A) = F (u + A) = v + A
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and
Fi(u + A) = F (u + A) + ci = v + A

which implies
v + A = ci + v + A

and thus ci ∈ A. Thus, given the situation as above, any subspace that is invari-
ant under all round functions must necessarily contain the linear span of all
round constants ci.

For the algorithm outlined above this has significant consequences. Here, the
only thing we have to guess is the offset. Therefore, the expected number of
iterations of the algorithm is reduced from 22(n−d) to 2n−d.

Moreover, after running the algorithm for m iterations with randomly chosen
guesses for the offset, the probability that an invariant subspace of dimension d
is not detected by the approach is given by

pm,n,d :=
(
1 − 2n−d

)m

which can be approximated by

log pm,n,d ≈ −m2d−n.

The Algorithm.

For offset u and nucleon A, the above procedure outputs the smallest affine
subspace containing u + span{A}, that is mapped to a coset of the same space
by F (with high probability). The algorithm depends on a global parameter N
that controls the risk of error. Namely, when the algorithm exits, elements of
u+span{A} are mapped to v +span{A} with probability greater than 1− 2−N .
This probabilistic result is enough for an invariant subspace attack to go through
even for moderate choices of N .
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Guessing the Offset. If we are actually looking for stable vector spaces rather
than affine spaces, as will be the case in the S-box independent setting described
in Section 3.2, guessing the offset is not needed: we can choose zero as the offset.
Then the algorithm above finds the smallest invariant subspace instantly.

In the general case where we are looking for any (affine) invariant subspace,
we need to guess one offset u belonging to the affine space we are searching for.
Then we can run the procedure above to find the generated invariant subspace,
if it exists (otherwise, the algorithm will simply output the full space). If the
space we are looking for has dimension d, guessing such an offset u by brute
force will require 2n−d tries on average. Of course we just require one invariant
subspace; so in general 2n−d can be replaced by the density of vectors belonging
to (non-trivial) invariant subspaces.

Each iteration of the algorithm requires Gaussian reduction to determine
whether a certain n-bit vector belongs to some subspace, amounting to n2 oper-
ations. Hence the overall running time to find an invariant subspace of dimension
d is roughly n2 · 2n−d. Thus if n is large, the above approach will only work if
n − d is relatively small, or more generally the density of invariant subspaces is
large. The case where n is small is also useful in order to find invariant subspaces
through a single S-box: this is how we found spaces in Appendix B (after making
the algorithm deterministic and exhaustive, which is affordable for small n).

1.3 Applications

We applied the algorithm to the block ciphers Zorro, Robin, Fantomas, LED and
Noekeon, as well as to the CAESAR candidate iSCREAM. We chose N = 50
to be very conservative. We ran the algorithm with approximately 234 iterations
for each primitive, stopping earlier in the case where an invariant subspace was
detected. The results are summarized in the table below.

Table 1. Experimental Results: Here n is the block size and d0.001 is the smallest
dimension of an invariant subspace that has a probability to exist upper bounded by
0.001

Primitive n Dimension found d0.001 Running Time (h)

LED 64 - 34 24

Noekeon [12] 128 - 98 40

Fantomas 128 - 98 40

Robin 128 96 - 22

iSCREAM 128 96 - 22

Zorro 128 96 - <1

For LED, Noekeon and Fantomas, no invariant subspaces were detected
given our limited iterations. In that case, Table 1 indicates the dimension d0.001

of the largest invariant subspace that has a probability to exist upper bounded
by 0.001. More precisely, if x denotes the codimension of the largest invariant
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subspace, each random guess of an offset has probability 2−x of falling into this
subspace. After T tries, the probability of not having found the subspace is thus
(1−2−x)T ≈ e−T2−x

. We want this probability to be 1/1000 within T = 232 tries,
which yields x = 32 − log(ln(1000)) ≈ 30, so d0.001 ≈ n − 30. Thus it is unlikely
that invariant subspaces of dimension above 98 exist for Noekeon. However,
the existence of smaller subspaces cannot be excluded with high probability by
our results.

Aswewill showbelow, for Zorro,Robin and theCAESARcandidate iSCREAM
the largest invariant subspace has dimension 96 out of 128, i.e. density 2−32. Thus
the time complexity is expected to be 232 Gaussian eliminations on 128×128 binary
matrices. Our experiments confirm this estimation. Discovering the invariant sub-
space took 22 hours on a single desktop PC equipped with an Intel Xeon Core i7
with 12 virtual cores used in parallel.

In the case of Zorro, we chose to use a single round as target function, rather
than the four rounds separating key addition. It turns out many cosets of the
invariant subspace in Appendix A are sent to another coset by a single round
(namely, all cosets stemming with offsets where cells 0 and 3 are equal). Our
generic approach discovers this fact and the associated subspace instantly, hence
the “< 1” time in the previous table.

As mentioned in the introduction, a detailed analysis of the findings of the
generic algorithm allows to understand the underlying structure of the invariant
subspaces we have found, and improve the attacks. We present those findings in
the following sections.

2 Description of LS-Designs, Robin, and iSCREAM

2.1 LS-Designs

LS-designs were introduced by Grosso, Leurent, Standaert and Varici at FSE
2014 [15]. We refer the interested reader to their article for a detailed presenta-
tion of LS-designs and their design rationale. For our purpose, a brief technical
description suffices.

An LS-design is a block cipher encrypting n-bit plaintext blocks using a n-
bit key. The inner state of the cipher, as well as the plaintext, ciphertext, and
key, are all represented as an r × c bit array, with r the number of rows and c
the number of columns. A concrete LS-design is parametrized by the following
components:

– A choice of r and c. The size of the key and message blocks is n = r · c.
– An r-bit S-box s.
– A bijective linear map � on c-bit vectors, called the L-box.
– A number of rounds t.
– A choice of k-bit round constants C(i) for 1 ≤ i ≤ t.

In order to encrypt a given n-bit plaintext block, the plaintext is first loaded
into the inner state of the cipher, and the master key is added in (all additions
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are bitwise XORs). Then a round function is applied successively for rounds 1 to
t. At that point the cipherext is equal to the inner state. The round function at
round i proceeds as follows:

1. The round constant C(i) is added to the inner state.
2. The S-box s is applied to each column of the state.
3. The L-box � is applied to each row of the state.
4. The n-bit master key K is added to the state.

2.2 Notation

When dealing with LS-designs, we will always use the previous notation; that is:
r the number of rows of the state.
c the number of columns.
n the size of the state; that is, n = r · c.
s the r-bit S-box.
S the S-box step; that is, the application of s on each column of the state.
� the c × c binary matrix representing the linear layer, identified with the

corresponding linear map on F
c
2.

L the L-box step; that is, application of � on each row of the state.

2.3 Robin

In [15], two concrete LS-designs are proposed, Robin and Fantomas. The idea
behind Robin is that both the S-box and L-box are involutive. This allows
the same circuitry to be reused when computing these components and their
inverse operation, i.e. when encrypting and decrypting. This saves valuable
space on embedded devices when both encryption and decryption capabilities
are required. The trade-off is that involutive components have more structure,
resulting in a slightly higher number of rounds to reach the same security level
as an LS-design based on non-involutive components.

Robin strictly fits within the LS-design framework recalled in the previous
section. As such it can be fully described by the following parameters:

– The inner state of Robin has 8 rows and 16 columns, resulting in 128-bit
blocks and a 128-bit key.

– The 8-bit involutive S-box is given in [15].
– The 16-bit involutive L-box is depicted as a 16×16 binary matrix on Fig. 1.
– The number of rounds is 16.
– At round i (starting from 1), the round constant C(i) is zero outside of the

first row, where it is equal to �(i), with � the L-box matrix.

2.4 iSCREAM

SCREAM and iSCREAM [18] are two authenticated ciphers closely related to
LS-designs. In fact iSCREAM is essentially a tweaked version of Robin, together
with a Tweakable Authenticated Encryption (TAE) mode of operation [24].
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Fig. 1. Matrix representing the L-box of Robin and iSCREAM. Dark cells stand for
1’s and white cells for 0’s.

Meanwhile SCREAM is similar to Fantomas, with a different linear layer. The
TAE mode of operation requires a tweakable block cipher [24]. Accordingly,
the difference between the block cipher underlying iSCREAM and Robin stems
from the introduction of a 128-bit tweak T into the (previously non-existent)
key schedule.

In the remainder of this article we focus on weaknesses of the block cipher
on which iSCREAM is built, independently of the mode of operation. We may
abuse notations and write iSCREAM to mean its underlying block cipher.

This block cipher can be described as an LS-design, except for the fact that
during the key addition phase, instead of adding in K every round: at odd
rounds, K +T is added; while at even rounds, T ≪c 1 is added, where T ≪c 1
denotes a circular shift of the columns of T by one column towards the left.
The combination of two rounds is called a step. Beside that, iSCREAM can be
described by the following parameters:

– The inner state of iSCREAM has 8 rows and 16 columns, resulting in 128-bit
blocks and a 128-bit key.

– The S-box and L-box are those of Robin.
– The number of rounds depends on the required security level. The original

article lists six variants. However the primary recommendation for iSCREAM
as per CAESAR requirements is 12 steps (24 rounds) [16]. A secondary rec-
ommendation claiming related-key security has 14 steps (28 rounds). Since
our attacks are essentially independent of the number of rounds, we omit
other variants.

– At round i (starting from 1), the round constant C(i) is zero outside of the
first row, where it is equal to 27 · i modulo 256 (affecting only the first 8 bits
of the row).
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3 Invariant Permutation Attack

In the next two sections, we analyze the invariant subspace discovered by the
generic algorithm on Robin and iSCREAM. This subspace is actually induced
by a particular type of self-similarity of independent interest, as is the invariant
subspace of Zorro. Using this self-similarity directly results in an even stronger
attack, as will be discussed below.

We start by recalling the concept of self-similarity and explaining a link
to commutating linear maps. These concepts will afterwards be applied to LS-
designs in general and to Robin and iSCREAM in particular (as well as to Zorro
in Section 6).

3.1 Self-Similarity Properties and Linear Commutant

In [4] and [8], self-similarity in general is defined as:

Definition 1 (Self-similarity in a block cipher). For a fixed block cipher
E, let EK(x) denote the ciphertext block resulting from the encryption of plain-
text block x under key K. A self-similarity relation is given by invertible and
efficiently computable mappings φ, ψ, θ such that:

∀K,x : θ(EK(x)) = Eψ(K)(φ(x))

What we are interested in is the case where M = φ = ψ = θ is a linear
map. This situation will arise if the cipher follows a generalized Even-Mansour
structure where key-independent round functions Fi alternate with the addition
of a fixed key K (i.e. no key schedule); and M commutes with the round functions
Fi. This last condition is very demanding; but this is precisely what happens in
both Robin and Zorro, despite their different structure. We expand on why this
might be the case in the discussion (Section 7). The following lemma sums up
the attack.

Lemma 2. Consider a block cipher composed of round functions Fi separated
by addition of a fixed key K. Suppose there exists a linear map M such that M
commutes with the Fi’s. Then:

∀x : M(EK(x)) = EM(K)(M(x))

In particular, if K = M(K):

∀x : M(EK(x)) = EK(M(x))

The commutativity of M and the round functions can be interpreted from
the invariant subspace perspective. Indeed, if we let A = ker(M i + Id) for any
i, A is an invariant subspace2. Of course self-similarity is a stronger property
stemming from a stronger requirement on the cipher.
2 It may be that a non-trivial commuting matrix leads only to trivial invariant sub-

spaces, as evidenced by the 2 × 2 binary matrix with rows [01] and [11]. However if
M is involutive, ker(M + Id) is at least half of the space.
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In our applications, M will be involutive, so we focus on the case i = 1.
In the remainder, whenever two plaintext blocks (or ciphertext blocks, or inner
states, or keys) satisfy x2 = M(x1), we say that they are related. If a plaintext
block (or ciphertext block, or inner state, or key) is related to itself, we say that
it is self-related. A weak key is a self-related key. In short, our attack states that
weak keys map self-related plaintexts to self-related ciphertexts; while related
keys map pairs of related plaintexts to pairs of related ciphertexts.

3.2 S-box-Independent Setting

We now focus on the case where the cipher is a substitution-permutation network
(SPN), whose round function Fi consists of an S-box layer with identical S-boxes,
a linear map L, addition of a round constant C(i), and addition of a fixed key K.
From the invariant subspace (resp. self-similarity) perspective, we are interested
in subspaces (resp. linear maps) that traverse (resp. commute with) each of these
components.

It is quite apparent that the main roadblock is the non-linear S-box layer.
However even in a generic setting where we do not take into account a particular
choice of S-box, any permutation of the S-box inputs will commute with the
S-box layer (due to S-boxes being identical). Thus we restrict our attention to
permutations of S-box inputs rather than general linear maps.

In terms of invariant subspaces, this corresponds to subspaces containing
those vectors whose coordinates belonging to the same cycle in the permuta-
tion are equal; that is, subspaces that only require S-box inputs to be equal to
some other input, or independent. We call such spaces equality spaces. Note that
these are vector subspaces and no longer affine subspaces. Our strongest attacks
actually occur in this setting.

As for constant and key addition, asking that their addition commutes with
M amounts to asking that they belong to ker(M + Id). Now it remains to find
permutations that commute with the linear layer. An efficient algorithm to do
so is provided in the ePrint version of this work [23]. The invariant subspace
variant seems more difficult, as we do not know an algorithm able to efficiently
enumerate equality spaces that traverse a linear map.

3.3 Key Recovery

The self-similarity attack above breaks plaintext confidentiality. In addition, if
the commuting permutation P is involutive (as will be the case in our appli-
cations), efficient key recovery may be possible. In short, the part of the key
corresponding to fixed points of the permutation can be guessed independently
of the rest.

Intuitively, this is because if two self-related inner states differ only outside
the fixed points of the permutation P , this difference will never be propagated to
the fixed points of P . This is clear for the S-box layer (because the permutation
operates on entire S-box inputs), but also holds for the linear layer. A general
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statement and proof are provided in the ePrint version of this work [23]. In fact
the proof also encompasses the case where the S-box layer is partial.

What we show is that the cipher contains an embedded subcipher operating
on the fixed points F of the permutation: we can project self-related plaintexts
and ciphertexts on F and obtain a well-defined map. Note that this embedded
subcipher may lend itself to further attacks; this is a direction we have not
investigated, as we believe ciphers are sufficiently broken at that point.

3.4 Invariant Permutation Attack on LS-Designs

Notation. In the S-box-independent setting of Section 3.2, for an LS-design,
a permutation of S-box inputs is simply a permutation of the columns of the
state. Let us write P for such a permutation. We always denote by the lowercase
p its effect on a single row. Thus, P is the application of p on each row of the
state. We identify p with the corresponding c× c permutation matrix. We adopt
notations from Section 2.2.

The particular structure of LS-designs means that P commutes with L iff p
commutes with �. This is still a strong requirement, but we expect the L-box of
an LS-design to have some structure in order to provide a good branch number,
especially if it is involutive. In the case of Robin for instance, the linear layer
is built from a Reed-Muller code and provides plenty of structure. Applied to
LS-designs, Lemma 2 becomes:

Lemma 3. For an LS-design, assume there exists a permutation P with the
following properties:

– P commutes with L.
– P (C(i)) = C(i) for all round indices i.

Then for any plaintext message m:

EncP (K)(P (m)) = P (EncK(m))

In particular, if K = P (K):

EncK(P (m)) = P (EncK(m))

Note that the identity permutation trivially satisfies the above requirements.
Hereafter we always assume P is non-trivial. If ncycles(p) is the number of cycles
of p, weak keys form a proportion 2−r·(c−ncycles(p)) of all keys (namely, those keys
whose columns are equal on each cycle of p).

Key Recovery. The previous attack breaks plaintext confidentiality. In addi-
tion, when P is involutive, efficient key recovery is possible, as announced in
Section 3.3. A general statement and proof are provided in the ePrint version of
this work [23].

It may still be worthwhile to provide a simpler statement dedicated to LS-
designs. This is what we propose below.
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Lemma 4. Consider an LS-design, and assume there exists a permutation P
with the same requirements as in Lemma 3. Also assume that P is an involution.
Consider a weak key K = P (K). Denote by F the set of fixed points of P .

Take any self-related plaintext m = P (m). Then the value of the ciphertext
EncK(m) on the columns in F only depends on the value of m and K on the
same columns.

Proof. Since P is an involution, all of its cycles have length 1 or 2. Hence we
can partition the columns of the state into three subsets F , A, B, such that P
is the identity on F , and maps A and B into each other. Take any self-related
message m that is zero on F . Then the linear layer maps m to a self-related state
L(m) that is also zero on F . To see this, write m = mA +mB , where mA is equal
to m on A, and zero elsewhere, and likewise mB is equal to m on B and zero
elsewhere. Then P (mA) = mB, hence P (L(mA)) = L(mB) by commutativity of
P and L. Since P is the identity on F , this implies that L(mA) + L(mB) is zero
on F , so L(m) is zero on F .

Thus, if m = P (m) is zero on F , so is L(m). By linearity, this implies that
if m1 and m2 are self-related and equal on F , then so are L(m1) and L(m2).
Thus, the property that two self-related states are equal on F goes through the
linear layer. This property automatically goes through the S-box layer since it is
column-wise. Since the same key and round constants are added to both sides,
they have no impact. Hence this property goes through the whole cipher.

As a direct consequence, the value of the key on the columns corresponding
to fixed points of P can be guessed independently of the rest of the key by using
any self-related plaintext. In addition, the embedded subcipher is a smaller LS-
design, and may lend itself to further attacks. As a side note, both this lemma
and the previous one also show that the cipher is malleable in a strong sense.

Permutation Characteristic. Instead of considering only permutations P
commuting with L, we can naturally look for pairs of permutations (P,Q) such
that L · P = Q · L. We denote this by P → Q, representing the fact that if two
inner states are related by P before the linear layer, then after the linear layer
they are related by Q.

From there we can hope to build a form of characteristic P0 → P1 → P2 →
P3 → . . . The commutative case in the previous section corresponds to P → P .
Note that the set of permutations P such that Q = L · P · L−1 is a permutation
forms a group. Also note that if L is involutive, P → Q is equivalent to Q → P :
indeed L · P = Q · L implies P−1 · L = L · Q−1, implies L · Q = P · L: hence any
transition P → Q yields an iterative characteristic of length at most 2.

A particularly interesting case occurs whenever P → Pα for some α 
= 0.
Indeed, in that case we automatically have a cyclic characteristic P → Pα →
Pα2 → · · · → Pαi

= P . Moreover the attack from Lemma 3 goes through with
exactly the same requirements on the key and round constants (namely they are
self-related by P ).
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Application to Robin. Applying our attack to Robin amounts to finding
a permutation p commuting with the matrix � in Fig. 1, such that P leaves
all round constants C(i) invariant. More generally, as pointed out just above,
we can actually look at transitions P → Q, i.e. permutations p, q such that
� · p = q · �. It turns out there are 720 such transitions, and all of them are of the
form P → P−1. Moreover 76 of these permutations are involutive, and hence
commute with L.

Recall that the round constants of Robin are defined as C(i) = �(i) on the first
row, and zero on the others, for 1 ≤ i ≤ t. Hence we want p(�(i)) = �(i), which
amounts to p(i) = i by commutativity. Since i ranges from 1 to 16, what we are
looking for is simply permutations leaving the first 5 columns fixed. It turns out
there exists exactly one such permutation, namely the involutive permutation P0

switching columns 8, 9, 10, 11 respectively with columns 12, 13, 14, 15. Looking
at Fig. 1, one can indeed see that permuting the rows and columns of the matrix
of � by p0 leaves the matrix invariant, which is the same as saying p0 commutes
with �.

With P0, weak keys are simply keys whose last four columns are equal to the
previous four. In particular the proportion of weak keys is 2−32. Furthermore P0

leaves the first 8 columns fixed, so Lemma 4 shows that for self-related plaintexts,
the first 8 columns of ciphertexts only depend on the first 8 columns of plaintext
and key. This makes it possible to guess the value of the master key on the first
8 columns independently of the rest of the key. This means 64 bits of the key
can be guessed separately; then the remaining 64 bits are symmetric through
P0, so only 32 bits remain to be guessed. Thus the full key can be recovered in
time complexity 264 by encrypting any self-related message. This may yield a
few solutions, which can be checked against any other plaintext/ciphertext pair.

Table 2. Permutations p0, p1 and p2. Fixed points are omitted.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p0 12 13 14 15 8 9 10 11

p1 8 9 10 15 4 5 6 7

p2 12 13 14 11 7 4 5 6

Beside P0, two other permutations P1 and P2 commuting with L leave the
round constants invariant up to the very last round (cf. Table 2). This means
related plaintexts are mapped to related inner states after 15 encryption rounds;
followed by the final constant addition, S-box layer, L-box layer, and key addi-
tion. The final linear layer can be reversed, and the resulting states will agree
on pairs of columns transposed by P on which C(16) is equal. In both cases,
there is one such pair, so self-related keys with respect to P1 and P2 can still
be detected easily by encrypting a few self-related plaintexts, reversing the last
linear layer, and checking that these two columns agree.

Permutations P1 and P2 both leave 8 columns fixed and hence yield an attack
with essentially the same properties as P0. Actually some key bits can be recov-
ered faster than with P0 thanks to the one-round differential at the end, but this
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involves the symmetric part of the key (that is, outside the fixed points of the
permutation) and thus the overall key recovery time is still 264.

Application to iSCREAM. Recall that iSCREAM and Robin share the same
linear layer. Round constants only affect the first eight columns of the state, and
so we are looking for permutations commuting with L and leaving the first
eight columns unchanged. As a matter of fact, there exists exactly one such
permutation, namely the same permutation P0 as above, which switches the last
four columns of the state with the previous four.

Another difference between Robin and iSCREAM is the number of rounds,
but that is actually irrelevant for our attack. The last difference is the presence
of a tweak in the key schedule. Recall that at odd rounds, T +K is added, while
at even rounds, T ≪c 1 is added, where T is a 128-bit tweak. In a chosen-
tweak scenario, we can simply set T to zero, or any other value such that T and
T ≪c 1 are invariant by P . Then the attack against Robin from the previous
section applies to iSCREAM essentially unchanged, with the same consequences.

A small variant of our attack is also possible when using P0 as the commuting
permutation. What we truly want is that K + T and T ≪c 1 should be self-
related. This amounts to asking that columns 8, 9, 10, 11 should be equal to
columns 12, 13, 14, 15. Since T ≪c 1 is a column-wise shift of T by one column
towards the left, this means that columns 9, 10, 11, 12 of T should be equal to
columns 13, 14, 15, 0. Note that there is no condition on column 8 of T . As a
consequence, for K + T to be self-related for some choice of T , it is enough to
ask that columns 9, 10, 11 of K should be equal to columns 13, 14, 15. Indeed
in that case, we can fix T to be all-zero, except for column 8 which can take any
value: exactly one such choice of T will satisfy that K + T is self-related. Thus
we obtain a larger set of weak keys (with ratio 2−24), at the cost of requiring 28

chosen-tweak messages in order to detect whether a fixed unknown key is weak.
In addition, some variants of iSCREAM claim related-key security. If two

keys are related by P0, then our attack applies immediately without any weak
key requirement, following the first consequence of Lemma 3. That is, related
plaintexts are mapped by the related keys to related ciphertexts. Thus it is easy
to check whether a pair of keys is related, and the cipher is broken in a strong
sense.

Generalizations of the Permutation Attack. There appears to be a few
simple ways in which our attack could be generalized. We discuss them briefly
here.

We could consider a probabilistic version of the attack. Instead of requiring
L · P = P · L, we could consider P ’s such that the kernel of L · P − P · L is
almost the full space. In the case of Robin or iSCREAM, this would incur a cost
at least 2−8 per round.

Another natural extension is to consider cases where all round constants are
P -invariant except for the last few rounds (or first few rounds). Then our attack
goes through most of the encryption process, and eventually yields a differential
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attack on the remaining rounds. When encrypting self-related plaintexts, this
differential attack turns into an inner differential.

4 Invariant Equality Space Attack

In this section we study invariant subspaces for LS-designs following the S-box-
independent setting of Section 3.2. We begin by defining equality spaces, and
then present our results on Robin and iSCREAM. On the way, we will recover
the invariant subspace detected by our generic algorithm (Section 1.3), and link
it to the commuting permutations from the previous section.

4.1 Equality Spaces

As always, we use notations from Section 2.2. We always view n-bit vectors as
an r × c matrix. In Section 3.2, we defined equality spaces in general terms for
an SPN; we now provide a more specific definition suited to LS-designs.

Definition 2. A subspace E of {0, 1}c is an equality space iff there exists a
partition of {0, . . . , c − 1} such that E is the set of vectors whose values on
coordinates belonging to the same class in the partition are equal.

The dimension of E is the number of classes of the partition. By Er we denote
the set of n-bit states whose columns belonging to the same class in the partition
underlying E are equal. Equivalently, this means that every row of the state
belongs to E, hence the notation Er. By extension we also call Er an equality
space. The point of this definition is that equality spaces are preserved by the S-
box layer. The question is to determine which equality spaces are also preserved
by the linear layer. That is, we are looking for equality spaces E ⊂ {0, 1}c such
that �(E) = E.

As pointed out in Section 3.1, when a permutation P commutes with L, the
equality space defined by the cycles of P is preserved by the linear layer. The idea
is that equality spaces preserved by the linear layer do not necessarily stem from a
commuting permutation. Conversely, commuting permutations are an interesting
special case, since they lead to a stronger property: indeed, when considering
equality spaces rather than permutations, we are looking at a property of a single
state, and there is no equivalent to the property that distinct related plaintexts
are mapped to related ciphertexts; there is also no equivalent to Lemma 4.
Meanwhile, Lemma 3 becomes:

Lemma 5. For an LS-design, assume there exists an equality space E such that:

– �(E) = E.
– C(i) ∈ Er for all round indexes i.

Then for any key K and plaintext message m:

If K ∈ Er and m ∈ Er then EncK(m) ∈ Er

The lemma trivially holds if E is the full space {0, 1}c; hereafter we assume
this is not the case. Then we have an attack in the weak key setting, where weak
keys are keys in Er. Hence the proportion of weak keys is 2−r·(c−dim(E)).
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4.2 Variants of the Attack

Essentially the same extensions as in Section 3.4 apply to equality spaces.
Characteristics: if the image F = L(E) of an equality space E is also

an equality space, we write E → F . As with permutations, we can aim to
build a characteristic E0 → E1 → . . . over several rounds. Note that the set of
equality spaces is closed under intersection, and as a direct consequence, the set
of equality spaces E such that L(E) is an equality space is also closed under
intersection. If L is involutive, E → F is equivalent to F → E, so characteristics
are automatically cyclic.

Probabilistic attack: Instead of asking F = L(E), we can require the
dimension of the quotient space F/L(E) to be small.

Differential ending: If all round constants are in the required equality
spaces except for the last few (or first few) rounds, it may be possible to cover
the remaining rounds with an inner differential characteristic. Indeed in the case
E → E, the equality space attack may be seen as an all-zero inner differential
attack.

Differential attack: the entire attack itself may be transposed into the
differential world, at the expense of becoming probabilistic. Consider a state
difference living in Er with L(E) = E. Then at each round, require that the
S-box layer preserves this equality; that is, the output of some S-boxes which
receive equal input, should remain equal. Note that if E stems from an involu-
tive permutation commuting with L, the columns corresponding to fixed points
of the permutation can be set to a zero difference: this will be preserved by
the linear layer (cf. the proof of Lemma 4). This attack avoids key and round
constant requirements, at the cost of much lower probability, and hence high
data requirements. In practice this would lead to a weaker attack against Robin
than truncated differential product trails in the original article [15], because the
branch number is 8 and the non-fixed points of P0 involve 8 S-boxes.

4.3 Application to Robin and iSCREAM

Since Robin and iSCREAM share the same linear layer L, we consider them
together. We enumerated all equality spaces E such that L(E) is an equality
space (there are around 233 partitions of 16 elements, so this is feasible), and
analyzed the results.

Our first observation is that there are many more well-behaved equality spaces
E (in the sense that L(E) is also an equality space), than well-behaved permuta-
tions P (in the sense that Q = L · P · L−1 is also a permutation). Namely, there
are 720 well-behaved permutations for L, while there are 30162 well-behaved
spaces of dimension 8 or more. Even if we remove from this list spaces that are
an intersection of larger well-behaved spaces (and thus could have a chance of
indirectly resulting from well-behaved permutations), 7746 well-behaved spaces
remain.

Recall that L is involutive, so any transition E → F (i.e. L(E) = F with E
and F two equality spaces) yields a cyclic characteristic E → F → E. Hence all
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well-behaved spaces belong to cycles of length 1 or 2. The aforementioned 7746
intersection-reduced well-behaved spaces of dimension at least 8 form 2506 cycles
of length 1 (that is, E → E) and 2620 cycles of length 2 (that is E → F → E).
Thus equality spaces offer considerably more potential attacks, depending on
round constants.

However, all equality spaces compatible with actual round constants for
Robin minus the last round, and hence directly usable in an attack, stem from
commuting permutations. There exist four such spaces: three of them correspond
to permutations P0, P1 and P2 from Table 2, and the last one is a space of dimen-
sion 8 resulting from the composition of any two of the previous permutations
(any combination yields the same permutation or its inverse). As for iSCREAM,
the only well-behaved space compatible with round constants is the one resulting
from P0. Thus, our previous attack is not improved. Moreover, the largest well-
behaved spaces have dimension 12 and all stem from involutive permutations
(there are 15 of them). The largest well-behaved equality spaces not stemming
from a well-behaved permutation have dimension 10. This may be interpreted
to mean that the strongest phenomenon is due to commuting permutations.

Thus for both Robin and iSCREAM, the equality space induced by P0 is
the only equality space that goes through the whole cipher, including the last
round. This space has dimension 96 over F2, and it is the invariant subspace
automatically discovered by the generic algorithm from Section 1.

4.4 A note on Fantomas and SCREAM

The matrix L of Fantomas is a permutation of the lines and columns of the
matrix of Robin. As a consequence, they have the same number of well-behaved
permutations and spaces. However we found no cycle among well-behaved spaces
of Fantomas of dimension 6 or more (lower dimensions would yield very weak
attacks); and no characteristic of length more than 2. Hence Fantomas seems
safe from this attack.

The same is true for SCREAM. However, it is worth noting that there exists
no well-behaved permutation for the matrix of SCREAM, while we found 5404
well-behaved spaces of dimension 8 or more.

5 A Second Invariant Subspace Attack on LS-Designs

In this section we present a different invariant subspace attack on LS-designs,
which may be regarded as a form of dual of the previous attack. This attack
does not stem from an underlying permutation; nor does it have an equivalent
for Zorro. Thus, this section is specific to LS-designs, and takes advantage of
their particular structure: namely, the fact that LS-designs not only rely on a
layer of identical S-boxes, but also on a layer of identical L-boxes.

Now that we have understood the invariant subspace discovered by our
generic algorithm as being an equality space, i.e. a space that is automatically
preserved by the S-box layer, it is natural to ask if something similar can be



274 G. Leander et al.

done with the L-box layer. That is, we are now going to look for a property that
is automatically preserved by the L-box layer.

This gives us more freedom, since we can leverage linearity. Essentially, if all
columns of the state live in the same linear subspace, this will remain true after
the linear layer (in the ePrint version of this work [23], we prove that this is in
fact the most general property generically preserved by the linear layer); whereas
in the previous case, we were limited to equality spaces. Beside this difference,
the attack is essentially a dual version of the previous one, reversing the roles of
the L-box and S-box layers.

5.1 Description of the Attack

In the previous attack, we searched for equality spaces E ⊂ {0, 1}c on the rows
of the state such that �(E) = E. Instead, we are now interested in general linear
subspaces A ⊂ {0, 1}r on the columns of the state such that s(A) = A. Once
again, if A is a linear space on the columns (or one of its cosets), we denote by
Ac the set of states whose columns all belong to A.

The core of the attack is the following: assume s(A) = A for some linear
space A. If the inner state lies in Ac, this will remain true after the S-box layer.
Moreover, this property is automatically preserved by the linear layer. Indeed,
the linear layer of an LS-design is not truly “line-wise”: precisely because the
same linear map is applied to each row, the linear layer may be seen as directly
adding together column vectors. From this point of view, it becomes clear that
if all columns lie in the same linear space A, this remains true after the linear
layer.

Thus we are still within the invariant subspace framework, and follow the
corresponding strategy: we choose A such that all round constants belong to Ac,
and we consider a weak key scenario by requiring that the key also lie in Ac. If
these requirements are fulfilled, plaintexts in Ac are mapped to ciphertexts in
Ac.

More generally, we can consider cosets of linear spaces (i.e. affine spaces)
rather than just linear spaces: indeed, as long as each coordinate at the output
of � is the sum of an odd number of coordinates at the input, the linear layer still
preserves the property that all columns belong to a fixed coset. The following
lemma sums up the attack.

Lemma 6. Let u, v, w be r-bit vectors, and A be a linear subspace of r-bit
vectors. Assume the following conditions hold:

– The S-box s maps all vectors in u + A to vectors in v + A.
– Either v = 0 or all rows of the matrix of � have an odd number of 1’s.
– The columns of all round constants are in w + A.
– The columns of the key are in (u + v + w) + A.

Then any plaintext in (u + w) + A is encrypted into a ciphertext in (u + w) + A
(and conversely).

Weak keys are keys in (u+v+w)+E. This means a proportion 2−c·(r−dim(A))

of keys is weak.
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5.2 Application to Robin and iSCREAM

In the case of Robin, the second condition in Lemma 6 is automatically true.
In order to satisfy the third condition (round constants), since round constants
only affect the first row of the state, we require that the r-bit vector denoted
by 1, with 1 on the first row and 0 elsewhere, belongs to E. To instantiate the
attack, it remains to look for affine spaces whose direction contains the vector
1, that are mapped by the S-box to affine spaces with the same direction.

It turns out the largest such spaces have dimension 3, and are mapped into
themselves. We list all six choices in Table 3. Since these spaces have dimension
3, and the state has 8 rows and 16 columns, a proportion 2−16·5 = 2−80 of keys
are weak. This means our attack is considerably weaker than the first one against
Robin. By comparison, a generic multi-target time-memory trade-off with 248

memory would lead to key recovery for the same proportion of keys. Of course
our attack requires no memory or table lookup.

Table 3. Six affine spaces of dimension 3 invariant through s

Values in A Dir(A)

00 01 26 27 84 85 a2 a3 01 26 84

18 19 7c 7d 9e 9f fa fb 01 64 86

28 29 32 33 8a 8b 90 91 01 1a a2

3c 3d 5e 5f b2 b3 d0 d1 01 62 8e

44 45 66 67 c8 c9 ea eb 01 22 8c

4e 4f 54 55 6c 6d 76 77 01 1a 22

We now turn to iSCREAM. Recall that its S-box is the same as that of Robin,
and round constants still only affect the first row of the state. We want both
K +T and T to live in the same coset, so we require T to lie in (u+v +w +A)c,
and K to lie in Ac. In our actual attack we have u = v and w = 0 so in the end,
we can set the tweak to zero (or any value in Ac), and the attack goes through
with the same parameters as before.

5.3 Taking Advantage of the iSCREAM Tweak Schedule

In the case of iSCREAM, it is possible to leverage the tweak schedule to create
a trade-off between the ratio of weak keys and the number of chosen-tweak
messages required to detect a weak key. To simplify notations, we explain this
technique using vector spaces; it extends to their cosets in a straightforward
manner. Assume we have two vector spaces A and B with S(A) = B. As before,
we assume 1 ∈ A and 1 ∈ B so that round constants belong to Ac and Bc. Since
S is involutive, we have S(B) = A, so A → B → A is a characteristic for the the
S-box.

In order for this characteristic to traverse encryption, we need K + T ∈ Ac,
and T ≪c 1 ∈ Bc, which is equivalent to T ∈ Bc. For this it is enough to
ask K ∈ Ac + Bc = (A + B)c. Indeed in that case, write K = KA + KB with
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KA ∈ Ac and KB ∈ Bc. Then for T = KB , we have K + T ∈ Ac and T ∈ Bc,
which is precisely what we want. Of course the key is unknown to the attacker,
so she cannot compute T in this way. Instead, she can try every value in the
supplementary space of Ac in (A+B)c (which is smaller than Bc, if only because
1 ∈ A ∩ B). For exactly one such value of the tweak, every plaintext in Ac will
be encrypted to a ciphertext in Bc.

Now the question is to find two spaces A and B as above. Actually we look
for cosets of linear spaces with the same properties, since the linear layer of
iSCREAM also preserves these cosets. In summary, we look for affine spaces
u + A 
= v + B such that S(u + A) = v + B, and 1 belongs to A ∩ B.

It turns out the largest such spaces have dimension 3. There are 11 such
spaces (counting only 1 for u + A → v + B and v + B → u + A), listed in
Appendix B. Furthermore, 8 of these spaces satisfy dim(A + B) = 5, which is
the maximal possible value since 1 belongs to A ∩ B. Thus K ∈ (A + B)c yields
a ratio of weak keys of 2−c·(r−dim(A+B)) = 2−48.

In order to detect whether a key is weak, one needs to encrypt a message
for each tweak in the supplementary of Ac in (A + B)c, which is of dimension
2 · c, hence 232 chosen-tweak messages are required (for a random key and a
given choice of the tweak, a false positive has probability only 2−80, and can be
discarded by one additionnal chosen-tweak message). Finally, once a weak key is
detected in this way, we know K +T ∈ Ac for one specific T , hence K = T +Ac,
so only 2c·dim(A) = 248 possibilities remain for the value of the key.

5.4 Variants of the Attack

It seems natural to consider a probabilistic version of the attack, where instead
of requiring that every vector in u + A be mapped by the S-box to a vector in
v + A, we only require most of them to comply. If only x elements in u + A are
not mapped to v + A, the probability to pass an S-box is 1 − x/2r. The cost for
each round is then (1 − x/2r)c. In the case of Robin, there is no A of dimension
4 with x < 3, so there does not appear to be an obvious interesting probabilistic
version of the attack.

6 Commuting Permutation and Invariant Subspace
for Zorro

6.1 Description of Zorro

The block cipher Zorro was introduced at CHES 2013 [14]. Like LS-designs, the
design goal is to offer a cipher that can efficiently be made resistant to side-
channel attacks through masking [26]. This is achieved by two main techniques:
first, a carefully constructed 8-bit S-box; and second, an AES-like structure
where S-boxes are only applied on the first row of the state.

The 128-bit state is represented as a 4 × 4 array of 8-bit cells. The round
function applies the following transformations:
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– SubBytes: A fixed 8-bit S-box is applied to the first row of the state.
– AddConstant: At round i, the constants i, i, i and i << 3 are added to the

four cells of the first row (from left to right).
– ShiftRow: This step is identical to AES. Row i, counting from zero, is shifted

by i cells to the left.
– MixColumns: This step is again identical to AES. A fixed 4 × 4 circulant

matrix on F28 is applied to each column of the state. The matrix is the same
as that of AES.

Four consecutive rounds are called a step. After each step, the 128-bit master
key is simply added to the inner state: there is no key schedule. Encryption
consists in key addition, followed by 6 steps (24 rounds), each followed by key
addition.

6.2 Self-Similarity and Invariant Subspace

Weare interested in anS-box-independent commuting linearmap, as inSection3.1.
To simplify, we focus on a single round: commuting with every round is a sufficient
condition to commute with every step. Thus we are looking for a linear map M
acting as a permutation on the S-boxes, and commuting with the linear layer.

Since there are only four S-boxes, there are only 24 choices for the permuta-
tion. In fact, because the constant added to the fourth S-box is different from the
others, we impose that this S-box should remain fixed by the permutation, leav-
ing only 6 possibilities. In this way, our linear map will automatically commute
with both the S-box and constant addition layers.

For each of the 6 permutation choices on the first 3 S-boxes, the set of linear
maps behaving as this particular permutation on the first 4 cells, and indepen-
dently on the other cells, is itself a vector space. Furthermore the commutant
of the linear layer is naturally a vector space. Thus, it suffices to intersect these
two spaces to find a solution, if it exists.

It turns out there exists exactly one solution, for the permutation swapping
the first and third S-boxes, and leaving the other two fixed. This solution is given
in Appendix A, together with the resulting invariant subspace. This subspace
has dimension 12 over F28 , that is, 96 over F2. Hence the proportion of weak
keys is 2−32.

In the ePrint version of this work [23], we show how to enumerate all invari-
ant subspaces for Zorro, and deduce that the previous space is in fact the only
invariant subspace (in the S-box-independent setting). The strategy used to enu-
merate spaces extends naturally to any SPN with a partial S-box layer of only
a few S-boxes per round.

6.3 Key Recovery

The key recovery strategy from Section 3.4 extends to partial S-box layers such
as Zorro. In brief, if an involutive linear map commutes with the components of
an SPN, and acts as a permutation on the S-box inputs, part of the key may
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be recovered independently of the rest. When the S-box layer is full, i.e. the
commuting map is simply a permutation, this part of the key corresponds to
the fixed poins of the permutation. When the S-box layer is partial, and hence
the commuting map M is not fully a permutation, the role of the non-fixed
points is essentially played by I = Im(M + Id). A formal statement and proof
are provided in the ePrint version of this work [23].

The consequence for Zorro is that once a key is recognized as weak, 64 bits
of the key can be guessed independently of the rest using one chosen plaintext
(any self-related plaintext). Indeed, the part of the key in I only influences the
part of the ciphertext in I. After these 64 bits have been recovered by brute
force, only 32 bits remain to be guessed, due to the key being weak. Thus key
recovery requires only one chosen plaintext and a time complexity of 264 offline
encryptions.

7 Conclusion

In this article, we present a unified cryptanalysis of several ciphers based on
invariant properties traversing the cipher under certain conditions, while provid-
ing generic tools for this type of attack. Our attacks are able to break lightweight
ciphers Robin, iSCREAM and Zorro in a practical setting.

Our attacks from sections 4 and 5 are quite similar in principle. The state of
an LS-design is a rectangular array. A fixed line-wise operation is performed in
each direction. Each attack looks for properties of the inner state that would be
structurally preserved in one direction (in the sense that this does not depend
on the specificities of the S-box or linear layer), that would happen to also be
preserved in the other (this time due to the particular choices of S or L).

In the case where the generic direction is linear, any linear space is preserved,
and under some conditions any coset; if it is nonlinear, only equality spaces
are preserved. In the ePrint version of this work[23], we prove that these are
in fact the most general properties structurally preserved in each direction, so
our attacks fully realize the program outlined in the previous paragraph. It
remains an open question whether a similar attack could in some way combine
information from both directions; that is, neither direction would preserve the
invariant property in a fully generic way.

Concerning our first attack on LS-designs from sections 3 and 4 (encompass-
ing both invariant permutations and invariant equality spaces), the structure
of the linear map is a key component. It seems unlikely that the attack could
succeed in cases where the linear layer is not involutive. Indeed, as shown by
the matrices of SCREAM and Fantomas, even in the presence of a large number
of well-behaved equality spaces, it appears that iterative characteristics do not
occur by accident. By contrast, if the linear layer is involutive, any well-behaved
equality space (or permutation) yields a cyclic characteristic of length at most 2;



A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 279

and indeed, in the case of Robin and iSCREAM, thousands of iterative charac-
teristics exist. Of course, the matrix of Robin and iSCREAM has much more
structure than a generic involutive matrix.

It is quite striking that exactly the same attacks exist on Zorro, despite its
quite different structure (byte-oriented vs. bit-oriented, partial S-box layer vs.
full, AES-like vs. somewhat SERPENT-like). It is worth noting however that
both ciphers attempt precisely the same goal, namely to offer efficient masked
implementations. As a result both reduce non-linear operations to a minimum
per round, while giving more weight to the linear layer; LS-designs achieve this
by parallelizing the S-box through bit slicing; Zorro by resorting to a partial S-
box layer. In both cases the contribution of the non-linear layer is very structured
with respect to the linear layer; this, together with the minimal key schedule and
simple round constants leads to our attacks.

We note that all our attacks can be prevented by a careful choice of round
constants. One needs only ensure that no weaker (such as probabilistic or differ-
ential) version of the attack is left behind. This is particularly true when claiming
related-key security (as in iSCREAM), since in this setting our attacks do not
require weak keys, and hence weaker probabilistic versions are quite relevant.

Going back to the generic algorithm used to find the attacks, an interesting
open problem is to specialize it to SPN structures, hoping to achieve better time
complexity. In particular, it may be worthwhile to find an algorithm that is able
to enumerate all invariant subspaces through a layer of n S-boxes, given n and
the S-box. With improvements in time complexity, it may become possible to
entirely disprove the existence of invariant subspaces for some SPNs.

Finally, we hope our analysis contributes some insight for the design of future
ciphers with minimal key schedules and the choice of round constants in cryp-
tographic permutations.

Acknowledgments. The authors would like to thank Henri Gilbert for many fruitful
discussions related to the attacks presented in this article.

A Commuting Linear Map and Invariant Subspace for
Zorro

The commuting linear map M is represented as a 16×16 matrix over F28 , using
the AES representation of F28 as F2[x]/(x8 + x4 + x3 + x + 1).
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⎡
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⎢
⎢
⎢
⎢
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⎣

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 34 101 35 101 50 249 50 249 249 116 249 116
0 0 0 0 101 35 101 34 249 50 249 50 116 249 116 249
0 0 0 0 35 101 34 101 50 249 50 249 249 116 249 116
0 0 0 0 101 34 101 35 249 50 249 50 116 249 116 249
0 0 0 0 17 86 17 86 1 0 0 0 249 50 249 50
0 0 0 0 86 17 86 17 0 0 0 1 50 249 50 249
0 0 0 0 17 86 17 86 0 0 1 0 249 50 249 50
0 0 0 0 86 17 86 17 0 1 0 0 50 249 50 249
0 0 0 0 51 190 51 190 86 17 86 17 35 101 34 101
0 0 0 0 190 51 190 51 17 86 17 86 101 34 101 35
0 0 0 0 51 190 51 190 86 17 86 17 34 101 35 101
0 0 0 0 190 51 190 51 17 86 17 86 101 35 101 34

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The invariant subspace ker(M + Id) is generated by the following 12 row
vectors, in the same representation.

(1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 1 0 0 0 0 0 0 38 0 0 159 0)
(0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3)
(0 0 0 0 0 0 1 0 0 0 0 38 0 0 159 0)
(0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3)
(0 0 0 0 0 0 0 0 1 0 0 79 0 0 38 1)
(0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 1 79 0 0 38 1)
(0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1)

B Well-Behaved Affine Spaces for the Robin and
iSCREAM S-Box

Only spaces whose direction contains 1 are listed.
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DIAC 2014 (2014). http://2014.diac.cr.yp.to/slides/leurent-scream.pdf

18. Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Durvaux, F., Gaspar, L.,
Kerckhof, S.: SCREAM & iSCREAM. Entry in the CAESAR competition [1]
(2014). http://competitions.cr.yp.to/round1/screamv1.pdf
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Abstract. In this paper, we show structural cryptanalyses against
two popular networks, i.e., the Feistel Network and the Substitute-
Permutation Network (SPN). Our cryptanalyses are distinguishing
attacks by an improved integral distinguisher. The integral distinguisher
is one of the most powerful attacks against block ciphers, and it is
usually constructed by evaluating the propagation characteristic of inte-
gral properties, e.g., the ALL or BALANCE property. However, the inte-
gral property does not derive useful distinguishers against block ciphers
with non-bijective functions and bit-oriented structures. Moreover, since
the integral property does not clearly exploit the algebraic degree of
block ciphers, it tends not to construct useful distinguishers against
block ciphers with low-degree functions. In this paper, we propose a
new property called the division property, which is the generalization
of the integral property. It can effectively construct the integral distin-
guisher even if the block cipher has non-bijective functions, bit-oriented
structures, and low-degree functions. From viewpoints of the attackable
number of rounds or chosen plaintexts, the division property can con-
struct better distinguishers than previous methods. Although our attack
is a generic attack, it can improve several integral distinguishers against
specific cryptographic primitives. For instance, it can reduce the required
number of chosen plaintexts for the 10-round distinguisher on Keccak-
f from 21025 to 2515. For the Feistel cipher, it theoretically proves that
Simon 32, 48, 64, 96, and 128 have 9-, 11-, 11-, 13-, and 13-round integral
distinguishers, respectively.

Keywords: Block cipher · Integral distinguisher · Feistel network ·
Substitute-Permutation network · Keccak · Simon · AES-like cipher ·
Boolean function

1 Introduction

The structural evaluation of cryptographic networks is an important topic of
cryptology, and it helps a designer to design strong symmetric key primitives.
There are several structural evaluations against the Feistel Network and the
Substitute-Permutation Network (SPN) [6,19,22,26,28]. As one direction of the
structural evaluation, there are the security evaluation by “the generic attack,”
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 287–314, 2015.
DOI: 10.1007/978-3-662-46800-5 12
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Table 1. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on the Simon family, Serpent, and Keccak-f

Target log2(#texts) Method Reference
r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13

Simon 32 17 25 29 31 - - - - our Sect. 4.3
- - - - - - - - degree [8,21]

Simon 48 17 29 39 44 46 47 - - our Sect. 4.3
17 - - - - - - - degree [8,21]

Simon 64 17 33 49 57 61 63 - - our Sect. 4.3
17 - - - - - - - degree [8,21]

Simon 96 17 33 57 77 87 92 94 95 our Sect. 4.3
17 33 - - - - - - degree [8,21]

Simon 128 17 33 65 97 113 121 125 127 our Sect. 4.3
17 33 - - - - - - degree [8,21]

Target log2(#texts) Method Reference
r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

Serpent 12 28 84 113 124 - - - our Sect. 5.3
28 82 113 123 127 - - - degree [9]

Target log2(#texts) Method Reference
r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15

Keccak-f 130 258 515 1025 1410 1538 1580 1595 our Sect. 5.3
257 513 1025 1409 1537 1579 1593 1598 degree [9]

which exploits only the feature of the network and does not exploit the particular
weaknesses of a specific cipher. It is applicable to large classes of block ciphers,
but it is not often effective than the dedicated attack against the specific cipher.
This paper focuses on generic attacks against both the Feistel Network and
the SPN. The existing generic attack shows that the Feistel Network whose F -
functions are chosen from random functions or permutations is vulnerable up
to 5 rounds [22,28]. Moreover, Biryukov and Shamir showed that the SPN is
vulnerable up to 2.5 rounds [6].

Our Contribution. This paper shows generic attacks against two networks
by improving an integral distinguisher. The integral attack was first proposed
by Daemen et al. to evaluate the security of Square [13], and then it was
formalized by Knudsen and Wagner [23]. Nowadays, many integral distinguishers
have been proposed against specific ciphers [23,25,35–37], and they are often
constructed by evaluating the propagation characteristic of integral properties,
e.g., the ALL property or the BALANCE property. In this paper, we revisit
the integral property, and then introduce the division property by generalizing
the integral property. The division property can effectively construct integral
distinguishers even if block ciphers have non-bijective functions, bit-oriented
structures, and low-degree functions.
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The Feistel Network is a generic construction to create a (2�)-bit pseudo-
random permutation from an �-bit pseudo-random function. We call the �-bit
function the F -function, and assume that an attacker can not know the specifi-
cation of the F -function. Our distinguishing attack can attack up to 3 rounds,
and it can attack up to 5 rounds if the F -function is limited to a permuta-
tion. Unfortunately, they are not improved compared with the previous ones.
However, assuming that the algebraic degree of the F -function is smaller than
the bit length of the F -function, our attack can attack more rounds than the
previous attacks exploiting the low-degree function. We summarize new integral
distinguishers in Appendix B. Although the assumption of our attack is only the
algebraic degree of the F -function, it can construct new integral distinguishers
on the Simon family [5]. Since Simon has a non-bijective F -function and a bit-
oriented structure, it is complicated task to construct the integral distinguisher.
The division property theoretically introduces that Simon 32, 48, 64, 96, and 128
have at least 9-, 11-, 11-, 13-, and 13-round integral distinguishers, respectively.
Table 1 shows the comparison between our distinguishers and previous ones.

The SPN consists of an S-Layer and a P-Layer, where the S-Layer has m �-bit
bijective S-boxes and the P-Layer has an (�m)-bit bijective linear function. The
attacker can not know the specifications of the S-boxes and the linear function. Sur-
prisingly, our generic attack becomes able to attack more rounds as the number of
S-boxes is larger than the bit length of the S-box. This fact implies that the design
of the P-Layer that can diffuse more outputs of S-boxes may not derive prospective
security improvements. We summarize new integral distinguishers in Appendix C.
Similar to the result against the Feistel Network, the division property is also useful
to construct integral distinguishers against specific cryptographic primitives. For
instance, we can reduce the required number of chosen plaintexts for the 7-round
distinguisher on Serpent [1] from 2127 to 2124. Moreover, for the integral distin-
guisher on Keccak-f [12], we can reduce the required number of chosen plain-
texts compared with previous ones constructed by Boura et al. [9]. Table 1 shows
the comparison between our distinguishers and previous ones.

Organization. This paper is organized as follows: In Sect. 2, we show notations,
Boolean functions, and the framework of integral distinguishers. In Sect. 3, we
propose the division property by generalizing the integral property, and show the
propagation characteristic. In Sect. 4 and Sect. 5, we show new distinguishing
attacks on the Feistel Network and the SPN, respectively. In Sect. 6, we show
that the division property is also useful to construct the dedicated attack against
specific ciphers. As an example, we show new distinguishing attacks on the AES-
like cipher. Section 7 concludes this paper.

2 Preliminaries

2.1 Notation

We make the distinction between addition of Fn
2 and addition of Z, and we use

⊕ and + as addition of Fn
2 and addition of Z, respectively. For any a ∈ F

n
2 , the
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i-th element is expressed in a[i] and the hamming weight wa is calculated as
wa =

∑n
i=1 a[i]. Let 1n ∈ F

n
2 be a value whose all elements are 1. Moreover, let

0n ∈ F
n
2 be a value whose all elements are 0.

Subsets Sn
k and S

n,m
k . Let Sn

k be a subset of Fn
2 for any integer k ∈ {0, 1, . . . , n}.

The subset S
n
k is a set of all a ∈ F

n
2 satisfying k ≤ wa, and it is defined as

S
n
k := {a ∈ F

n
2 | k ≤ wa} .

Let S
n,m
k be a subset of (Fn

2 )m for any vector k ∈ ({0, 1, . . . , n})m. The subset
S

n,m
k is a set of all a ∈ (Fn

2 )m satisfying ki ≤ wai
, and it is defined as

S
n,m
k := {(a1, a2, . . . , am) ∈ (Fn

2 )m | ki ≤ wai
for 1 ≤ i ≤ m} .

Bit Product Functions πu and πu. Let πu : Fn
2 → F2 be a function for any

u ∈ F
n
2 . Let x ∈ F

n
2 be an input of πu, and πu(x) is the AND of x[i] satisfying

u[i] = 1, namely, it is defined as

πu(x) :=
n∏

i=1

x[i]u[i].

Let πu : (Fn
2 )m → F2 be a function for any u ∈ (Fn

2 )m. Let x ∈ (Fn
2 )m be an

input of πu, namely, πu(x) is calculated as

πu(x) :=
m∏

i=1

πui
(xi).

2.2 Boolean Function

A Boolean function is a function from F
n
2 to F2. Let deg(f) be the algebraic

degree of a Boolean function f . As representations of the Boolean function, we
use Algebraic Normal Form, which is defined as follows.

Algebraic Normal Form. Algebraic Normal Form (ANF) is a representation
of a Boolean function. Any f : Fn

2 → F2 can be represented as

f(x) =
⊕

u∈F
n
2

af
u

(
n∏

i=1

x[i]u[i]
)

=
⊕

u∈F
n
2

af
uπu(x),

where af
u ∈ F2 is a constant value depending on f and u. If deg(f) is at most d, all

af
u satisfying d < wu are 0. An n-bit S-box can be regarded as the concatenation

of n Boolean functions. If algebraic degrees of n Boolean functions are at most
d, we say the algebraic degree of the S-box is at most d.



Structural Evaluation by Generalized Integral Property 291

A C C C
C A C C
C C A C
C C C A

A C C C
C C C C
C C C C
C C C C

A
A
A
A

A A A A
A A A A
A A A A
A A A A

B B B B
B B B B
B B B B
B B B B

224 sets 224 sets 224 sets 224 sets

C C C
C C C
C C C
C C C

Fig. 1. Integral distinguisher on 4-round AES

2.3 Integral Distinguisher

An integral distinguisher was first proposed by Daemen et al. to evaluate the
security of Square [13], and then it was formalized by Knudsen and Wagner [23].
It uses a set of chosen plaintexts that contains all possible values for some bits and
has a constant value for the other bits. Corresponding ciphertexts are calculated
from plaintexts in the set by using an encryption oracle. If the XOR of the
corresponding ciphertexts always becomes 0, we say that this cipher has the
integral distinguisher.

Integral Property. Nowadays, many integral distinguishers have been pro-
posed against specific ciphers [23,25,35–37], and they are often constructed by
evaluating the propagation characteristic of the integral property. We define four
integral properties as follows:

– ALL (A) : Every value appears the same number in the multiset.
– BALANCE (B) : The XOR of all texts in the multiset is 0.
– CONSTANT (C) : The value is fixed to a constant for all texts in the multiset.
– UNKNOWN (U) : The multiset is indistinguishable from one of n-bit random

values.

Knudsen and Wagner showed that AES has the 4-round integral distinguisher
with 232 chosen plaintexts [23]. Figure 1 shows the integral distinguisher.

Unfortunately, the integral property does not derive effective distinguishers
if block ciphers consist of non-bijective functions, e.g., DES [31] and Simon [5]
consist of non-bijection functions. Moreover, since the propagation characteristic
does not clearly exploit the algebraic degree of block ciphers, it tends not to
construct effective distinguishers against block ciphers with low-degree round
functions.

Degree Estimation. As another method to construct the integral distin-
guisher, there is a higher-order differential attack [21,24], which exploits the
algebraic degree of block ciphers. When the algebraic degree of a block cipher
is at most D, the cipher has the integral distinguisher with 2D+1 chosen plain-
texts. Canteaut and Videau showed the bound of the degree of iterated round
functions [11]. Then, Boura et al. improved the bound [9], and showed integral
distinguishers on Keccak [12] and Luffa [10]. We show the bound in Appen-
dix A.
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3 Division Property

3.1 Introduction of Division Property

We propose a new property called the division property, which is the generaliza-
tion of the integral property. We consider one bijective S-box with degree d. If
an input multiset has A, the output multiset also has A. If an input multiset
has B, the output multiset has U . If we have the input multiset with 2d+1 cho-
sen texts, the output multiset has B because the degree of the S-box is d. The
integral property does not exploit this property. We now want to exploit useful
properties that are hidden between A and B. Therefore, we redefine A and B by
the same notation, and then introduce the division property by generalizing the
redefinition.

Redefinition of Integral Property. Let X be a multiset whose elements
take an n-bit value. We first consider features of the multiset X satisfying A.
If we choose one bit from n bits and calculate the XOR of the chosen bit in
the multiset, the calculated value is always 0. Moreover, if we choose at most
(n − 1) bits from n bits and calculate the XOR of the AND of chosen bits in
the multiset, the calculated value is also always 0. However, if we choose all bits
from n bits and calculate the XOR of the AND of n bits in the multiset, the
calculated value becomes unknown1. Above features are expressed by using the
bit product function πu, which is defined in Sect. 2.1, as follows. We evaluate
the parity of πu(x) for all x ∈ X, namely, evaluate

⊕
x∈X

πu(x). The parity is
always even for any u satisfying wu < n. On the other hand, the parity becomes
unknown for u = 1n.

We next consider features of the multiset X satisfying B. If we choose one
bit from n bits and calculate the XOR of the chosen bit in the multiset, the
calculated value is always 0. However, if we choose at least two bits from n bits
and calculate the XOR of the AND of chosen bits in the multiset, the calculated
value becomes unknown. Above features are expressed by using the bit product
function πu as follows. We evaluate the parity of πu(x) for all x ∈ X. The parity is
always even for any u satisfying wu < 2. On the other hand, the parity becomes
unknown for any u satisfying wu ≥ 2.

3.2 Definition of Division Property

Section 3.1 redefines both the ALL and BALANCE properties by the same
notation. Since the redefinition can be parameterized by the number of product
bits wu of the bit product function πu, we generalize the integral property as
follows.
1 If all values appear the same even number in the multiset, the calculated value is

always 0. If all values appear the same odd number in the multiset, the calculated
value is always 1. Thus, we cannot guarantee whether the calculated value is 0 or
not when we consider the multiset satisfying A. In this case, we say the calculated
value becomes unknown.
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Definition 1 (Division Property). Let X be a multiset whose elements take
a value of Fn

2 , and k takes a value between 0 and n. When the multiset X has
the division property Dn

k , it fulfils the following conditions: The parity of πu(x)
for all x ∈ X is always even if wu is less than k. Moreover, the parity becomes
unknown if wu is greater than or equal to k.

When the multiset X has Dn
k , it satisfies

⊕

x∈X

πu(x) = 0, for all u ∈ (Fn
2 \ S

n
k ),

where S
n
k is a subset defined in Sect. 2.1. The parity of πu(x) for all x ∈ X

becomes unknown for any u ∈ S
n
k . Namely, in the division property, the set of

u is divided into the subset that
⊕

x∈X
πu(x) becomes unknown and the subset

that
⊕

x∈X
πu(x) becomes 0.

Example 1. Let X be a multiset whose elements take a value of F4
2. As an exam-

ple, we prepare the input multiset X as

X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE}.

A following table calculates the summation of πu(x).

0x0 0x3 0x3 0x3 0x5 0x6 0x8 0xB 0xD 0xE
∑

πu(x)
0000 0011 0011 0011 0101 0110 1000 1011 1101 1110 (

⊕
πu(x))

u = 0000 1 1 1 1 1 1 1 1 1 1 10 (0)
u = 0001 0 1 1 1 1 0 0 1 1 0 6 (0)
u = 0010 0 1 1 1 0 1 0 1 0 1 6 (0)
u = 0011 0 1 1 1 0 0 0 1 0 0 4 (0)
u = 0100 0 0 0 0 1 1 0 0 1 1 4 (0)
u = 0101 0 0 0 0 1 0 0 0 1 0 2 (0)
u = 0110 0 0 0 0 0 1 0 0 0 1 2 (0)
u = 0111 0 0 0 0 0 0 0 0 0 0 0 (0)
u = 1000 0 0 0 0 0 0 1 1 1 1 4 (0)
u = 1001 0 0 0 0 0 0 0 1 1 0 2 (0)
u = 1010 0 0 0 0 0 0 0 1 0 1 2 (0)
u = 1011 0 0 0 0 0 0 0 1 0 0 1 (1)
u = 1100 0 0 0 0 0 0 0 0 1 1 2 (0)
u = 1101 0 0 0 0 0 0 0 0 1 0 1 (1)
u = 1110 0 0 0 0 0 0 0 0 0 1 1 (1)
u = 1111 0 0 0 0 0 0 0 0 0 0 0 (0)

For all u satisfying wu < 3,
⊕

x∈X
πu(x) becomes 0. Therefore, the multiset has

the division property D4
3.

Each definition of B and U is essentially the same as that of Dn
2 and Dn

1 ,
respectively. However, the definition of A is different from that of Dn

n. The mul-
tiset satisfying A always has the division property Dn

n but not vice versa. For
instance, the multiset satisfying the EVEN property, which is defined that the
number of occurrences is even for all values [30], does not always have A, but it
always has Dn

n. In this paper, we use only Dn
n instead of A because it is sufficient

to use Dn
n from the viewpoint of the construction of integral distinguishers.
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Propagation Characteristic of Division Property Let s be an S-box whose
degree is d. Let X be an input multiset whose elements take a value of Fn

2 . Let
Y be an output multiset whose elements are calculated from s(x) for all x ∈ X.
We assume that X has Dn

k , and want to evaluate the division property of Y. In
the division property, the set of u is divided into the subset that

⊕
x∈X

πu(x)
becomes unknown and the subset that

⊕
x∈X

πu(x) becomes 0. Therefore, we
divide the set of v into the subset that

⊕
s(x)∈Y

πv(s(x)) becomes unknown and
the subset that

⊕
s(x)∈Y

πv(s(x)) becomes 0. Since the parity of πv(s(x)) for all
s(x) ∈ Y is equal to that of (πv ◦s)(x) for all x ∈ X, we evaluate

⊕
x∈X

(πv ◦s)(x).

Proposition 1 (Propagation Characteristic of Division Property). Let
s be an function (S-box) from n bits to n bits, and the degree is d. Assuming
that an input multiset X has the division property Dn

k , the output multiset Y has
Dn

� k
d �. In addition, assuming that the S-box is a permutation, the output multiset

Y has Dn
n when the input multiset has Dn

n.

Proof. We represent
⊕

x∈X
(πv ◦ s)(x) by using ANF as

⊕

x∈X

(πv ◦ s)(x) =
⊕

x∈X

⎛

⎝
⊕

u∈F
n
2

aπv◦s
u πu(x)

⎞

⎠

=
⊕

u∈S
n
k

aπv◦s
u

(
⊕

x∈X

πu(x)

)

⊕
⊕

u∈(Fn
2 \Snk )

aπv◦s
u

(
⊕

x∈X

πu(x)

)

.

Since the multiset X has Dn
k ,

⊕
x∈X

πu(x) is always 0 for any u ∈ (Fn
2 \ S

n
k ).

Therefore, it satisfies

⊕

x∈X

(πv ◦ s)(x) =
⊕

u∈S
n
k

aπv◦s
u

(
⊕

x∈X

πu(x)

)

.

If aπv◦s
u is 0 for all u ∈ S

n
k ,

⊕
x∈A

(πv ◦ s)(x) always becomes 0. In other words,
if there exists u ∈ S

n
k such that aπv◦s

u is 1,
⊕

x∈A
(πv ◦ s)(x) becomes unknown.

Since the function πv is the AND of wv bits and the degree of S-box is d, the
degree of the Boolean function (πv ◦ s) has the following properties:

– The degree of (πv ◦ s) is at most min{n − 1, wv × d}.
– If the S-box is a permutation, the degree of (πv ◦ s) is at most n − 1 for

wv < n.

We first assume that the multiset X has Dn
k . In this case, we consider only u

satisfying wu ≥ k. When wv ×d < k holds, aπv◦s
u is always 0. Thus, the necessary

condition that aπv◦s
u becomes 1 is wv × d ≥ k, and it is wv ≥ �k

d	. Namely, the
necessary condition that

⊕
x∈X

(πv ◦ s)(x) becomes unknown is wv ≥ �k
d	, and

Y has Dn
� k
d �. We next assume that the multiset X has Dn

n and the S-box is a

permutation. In this case, we consider only u = 1n. When wv < n holds, aπv◦s
1n
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Fig. 2. Propagation characteristic of division property

is always 0 because the degree of the Boolean function (πv ◦ s) is at most n − 1.
Thus, the necessary condition that aπv◦s

1n becomes 1 is v = 1n. Namely, the
necessary condition that

⊕
x∈X

(πv ◦ s)(x) becomes unknown is v = 1n, and Y

has Dn
n. 
�

Example 2. Let us consider a following 4-bit S-box.

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF
s(x) 0x8 0xC 0x0 0xB 0x9 0xD 0xE 0x5 0xA 0x1 0x2 0x6 0x4 0xF 0x3 0x7

The S-box is bijective and the algebraic degree is 2. We now prepare the input
multiset X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE}, which is the same
as Example 1 and the division property is D4

3. The output multiset is calculated
as Y := {0x8, 0xB, 0xB, 0xB, 0xD, 0xE, 0xA, 0x6, 0xF, 0x3}, and a following table
calculates the summation of πv(y).

0x8 0xB 0xB 0xB 0xD 0xE 0xA 0x6 0xF 0x3
∑

πv(y)
1000 1011 1011 1011 1101 1110 1010 0110 1111 0011 (

⊕
πv(y))

v = 0000 1 1 1 1 1 1 1 1 1 1 10 (0)
v = 0001 0 1 1 1 1 0 0 0 1 1 6 (0)
v = 0010 0 1 1 1 0 1 1 1 1 1 8 (0)
v = 0011 0 1 1 1 0 0 0 0 1 1 5 (1)
v = 0100 0 0 0 0 1 1 0 1 1 0 4 (0)
v = 0101 0 0 0 0 1 0 0 0 1 0 2 (0)
v = 0110 0 0 0 0 0 1 0 1 1 0 3 (1)
v = 0111 0 0 0 0 0 0 0 0 1 0 1 (1)
v = 1000 1 1 1 1 1 1 1 0 1 0 8 (0)
v = 1001 0 1 1 1 1 0 0 0 1 0 5 (1)
v = 1010 0 1 1 1 0 1 1 0 1 0 6 (0)
v = 1011 0 1 1 1 0 0 0 0 1 0 4 (0)
v = 1100 0 0 0 0 1 1 0 0 1 0 3 (1)
v = 1101 0 0 0 0 1 0 0 0 1 0 2 (0)
v = 1110 0 0 0 0 0 1 0 0 1 0 2 (0)
v = 1111 0 0 0 0 0 0 0 0 1 0 1 (1)

For all v satisfying wv < 2,
⊕

y∈Y
πv(y) becomes 0. Therefore, the multiset Y

has the division property D4
2.

Figure 2 shows the outline of the propagation characteristic of the division
property. Let X and Y be input and output multisets, respectively. First, the
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size of the set of u that
⊕

x∈X
πu(x) becomes unknown is small. However, the

size of the set of u that
⊕

x∈X
πu(s(x)) becomes unknown expands. If the size

expands to the universal set except for 0n, we regard that the output multiset
is indistinguishable from the multiset of random texts.

3.3 Vectorial Division Property

Section 3.2 only shows the division property for one S-box. However, since prac-
tical ciphers use several S-boxes in every round, we can not construct integral
distinguishers by only using Proposition 1. Therefore, we vectorize the division
property.

Let an S-Layer be any function that consists of m n-bit S-boxes with degree d
in parallel. We now consider the propagation characteristic of the division prop-
erty against the S-Layer. Let X be the input multiset of the S-Layer, and x ∈ X

takes a value of (Fn
2 )m. The vectorization is the natural extension of the divi-

sion property. Namely, the set of u is divided into the subset that
⊕

x∈X
πu(x)

becomes unknown and the subset that
⊕

x∈X
πu(x) becomes 0, where u is an

m-dimensional vector whose elements take a value of F
n
2 . Figure 3 shows the

difference between the division property and the vectorial one.

Definition 2 (Vectorial Division Property). Let X be the multiset whose
elements take a value of (Fn

2 )m, and k is an m-dimensional vector whose ele-
ments take a value between 0 and n. When the multiset X has the division prop-
erty Dn,m

k , the multiset fulfils the following conditions: The parity of πu(x) for
all x ∈ X is always even if u does NOT belong to S

n,m
k . Moreover, the parity

becomes unknown if u belongs to S
n,m
k .

Propagation Characteristic of Vectorial Division Property. Assume
that the input multiset of the S-Layer has the division property Dn,m

k . The
output of the S-Layer is calculated as S(x) = (s1(x1), s2(x2), . . . , sm(xm)) for
(x1, x2, . . . , xm) ∈ X. We now consider the set of v that

⊕
x∈X

πv(S(x)) becomes
unknown and the set of v that

⊕
x∈X

πv(S(x)) becomes 0. Since the output of
each S-box is calculated independently, the propagation characteristic of the
division property can also be evaluated independently. Namely, the output mul-
tiset has Dn,m

k′ , where k′
i = �ki/d	 holds. Moreover, if the S-box is bijective and

ki = n holds, k′
i = n holds.

3.4 Collective Division Property

By vectorizing of the division property, we can evaluate the multiset whose ele-
ments take a value of (Fn

2 )m. However, it is still insufficient to use only vectorial
division property. For simplicity, we consider a multiset X whose elements take
a value of (F8

2)
2. Assume that the number of elements in X is 256, and two ele-

ments of x take all values from 0 to 255 independently. We consider the set of u
that the parity of πu(x) for all x ∈ X becomes unknown and the set of u that
the parity becomes 0.
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Fig. 3. Division property, vectorial division property, and collective division property

– The parity becomes unknown if u belongs to S
8,2
[8,0].

– The parity becomes unknown if u belongs to S
8,2
[0,8].

– The parity becomes unknown if u belongs to S
8,2
[1,1].

– Otherwise, i.e., u does NOT belong to S
8,2
[8,0] ∪ S

8,2
[0,8] ∪ S

8,2
[1,1], the parity is

always even.

We can not express this property by using the vectorial division property. There-
fore, we collect several vectorial division properties. Figure 3 shows the difference
between the vectorial division property and the collective division property.

Definition 3 (Collective Division Property). Let X be the multiset whose
elements take a value of (Fn

2 )m, and k(j) (j = 1, 2, . . . , q) are m-dimensional
vectors whose elements take a value between 0 and n. When the multiset X has
the division property Dn,m

k(1),k(2),...,k(q) , the multiset fulfils the following conditions:
The parity of πu(x) for all x ∈ X is always even if u does NOT belong to the
union S

n,m
k(1) ∪S

n,m
k(2) ∪· · ·∪S

n,m
k(q) . Moreover, the parity becomes unknown if u belongs

to the union S
n,m
k(1) ∪ S

n,m
k(2) ∪ · · · ∪ S

n,m
k(q) .

It is obvious that the collective division property with q = 1 is the same as the
vectorial division property.

Propagation Characteristic of Collective Division Property. Assume
that the input multiset of the S-Layer has the division property Dn,m

k(1),k(2),...,k(q) .
We now consider the set of v that

⊕
x∈X

πv(S(x)) becomes unknown, and the set
is derived from only the set of u that

⊕
x∈X

πu(x) becomes unknown. Therefore,
we can evaluate the propagation characteristic of Dn,m

k(j) for all j independently.

Namely, the output multiset has Dn,m
k′(1),k′(2),...,k′(q) , where k

′(j)
i = �k(j)

i /d	 holds.

Moreover, if the S-box is bijective and k
(j)
i = n holds, k

′(j)
i = n holds.
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4 Improved Integral Distinguishers on Feistel Network

4.1 Feistel Network

(�, d)-Feistel. The Feistel Network is one of the most popular network to design
block ciphers. When n-bit block ciphers are constructed by the Feistel Network,
the input of the round function is expressed in two (n/2)-bit values. Moreover,
an (n/2)-bit non-linear function F is used in the round function, and we call
this function the F -function. Let (w1, w2) be the input of the round function,
and the output is calculated as (z1, z2) = (F (w1) ⊕ w2, w1). We now define an
(�, d)-Feistel, whose F -function is an �-bit non-linear function with degree d (this
function is not limited to a permutation). Figure 4 shows the round function of
the Feistel Network. There are many block ciphers adopting (�, d)-Feistel, e.g.
DES [31], Camellia [3], and Simon 2n [5] adopt (32, 5)-, (64, 7)-, and (n, 2)-
Feistel, respectively.

4.2 Propagation Characteristic for Feistel Network

This section shows that the division property is useful to construct integral
distinguishers on (�, d)-Feistel. Since the Feistel Network has “copy,” “substitu-
tion,” and “compression,” we need to propagate the division property against
them. The “copy” creates the input of the F -function, and the “substitution”
processes the input by the F-function, and finally the “compression” creates the
left half of the output by XOR. Figure 5 shows the outline of the propagation
characteristic.

-1- Copy. Let W be an input set, and (w1, w2) ∈ W denotes the input value.
The round function first creates (x1, x2, x3), where x1 = w1, x2 = w1, and



Structural Evaluation by Generalized Integral Property 299

x3 = w2 hold. Here, x1 is the input of the F -function, x2 is the right half
of the output of the round function, and x3 is the right half of the input of
the round function. Let X be the output set whose elements take (x1, x2, x3)
for all (w1, w2) ∈ W. Assume that the input set W has the division property
D�,2

k(1),k(2),...,k(q) . If we use πu satisfying k
(j)
1 ≤ u1 and k

(j)
2 ≤ u2, the parity of

πu(w) for all w ∈ W becomes unknown. Since x1 is equal to x2, the parity of
πv(x) for all x ∈ X becomes unknown if we use πv satisfying k

(j)
1 − k′ ≤ v1,

k′ ≤ v2, and k
(j)
2 ≤ v3 for all k′ (0 ≤ k′ ≤ k

(j)
1 ). Therefore, the set X has the

division property D�,3

[0,k
(1)
1 ,k

(1)
2 ],[1,k

(1)
1 −1,k

(1)
2 ],...,[k

(1)
1 ,0,k

(1)
2 ],...,[k

(q)
1 ,0,k

(q)
2 ]

.

-2- Substitution. The F -function is an �-bit function with degree d. Assume
that the input set has the division property D�,3

k(1),k(2),...,k(q) . From the
propagation characteristic of the division property, the output set has
D�,3

k′(1),k′(2),...,k′(q) , where (k′(j)
1 , k

′(j)
2 , k

′(j)
3 ) = (�k(j)

1 /d	, k(j)
2 , k

(j)
3 ) holds. If the

F -function is limited to a permutation, k
′(j)
1 becomes � when k

(j)
1 = � holds.

-3- Compression. Let Y be the input set, and (y1, y2, y3) ∈ Y denotes the
input value, where y1 denotes the output of the F -function. Let y1 be XORed
with y3, and then the internal state is expressed in (z1, z2) = (y1⊕y3, y2). Let
Z be the set whose elements take (z1, z2) for all (y1, y2, y3) ∈ Y. To evaluate
the division property of the set Z, we calculate the parity of πv(z1, z2) for
all (z1, z2) ∈ Z as

⊕

(z1,z2)∈Z

πv(z1, z2) =
⊕

(z1,z2)∈Z

(πv1(z1) × πv2(z2))

=
⊕

(y1,y2,y3)∈Y

(πv1(y1 ⊕ y3) × πv2(y2))

=
⊕

(y1,y2,y3)∈Y

⎛

⎝
⊕

c�v1

(πc(y1) × πv1⊕c(y3)) × πv2(y2)

⎞

⎠

=
⊕

c�v1

⎛

⎝
⊕

(y1,y2,y3)∈Y

πc(y1) × πv2(y2) × πv1⊕c(y3)

⎞

⎠ ,

where the set of c chosen from c  v1 denotes the set of c satisfying c∧v1 = c.
Assuming that the input set Y has the division property D�,3

k(1),k(2),...,k(q) , the

output set Z has the division property D�,2
k′(1),k′(2),...,k′(q) , where (k′(j)

1 , k
′(j)
2 ) =

(k(j)
1 +k

(j)
3 , k

(j)
2 ) holds. Notice that the parity of πv(z1, z2) for all (z1, z2) ∈ Z

becomes 0 if k
(j)
1 + k

(j)
3 is more than �.

4.3 Path Search Algorithm for (�, d)-Feistel

This section shows the path search algorithm for integral distinguishers against
(�, d)-Feistel. The algorithm is based on the propagation characteristic shown
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Algorithm 1. Path search algorithm for integral distinguishers on (�, d)-Feistel
1: procedure FeistelFuncEval(�, d, k1, k2)
2: q ⇐ 0
3: for X = 0 to k1 do
4: L ⇐ k2 + �X/d�
5: if L ≤ � then
6: q ⇐ q + 1
7: k(q) ⇐ (L, k1 − X)
8: end if
9: end for

10: return k(1), . . . , k(q)

11: end procedure

12: procedure IntegralPathSearch(�, d, r = 0, k1, k2)
13: k(1), . . . , k(q) ⇐ FeistelFuncEval(�, d, k1, k2)

14: D ⇐ max{k
(1)
1 + k

(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }

15: while 1 < D do
16: r ⇐ r + 1
17: for i = 1 to q do
18: k(i,1), . . . , k(i,pi) ⇐ FeistelFuncEval(�, d, k

(i)
1 , k

(i)
2 )

19: end for
20: (k(1), k(2), . . . , k(q′)) ⇐ SizeReduce(k(1,1), k(1,2), . . . , k(q,pq))

21: D ⇐ max{k
(1)
1 + k

(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q′)
1 + k

(q′)
2 }

22: q ⇐ q′

23: end while
24: return r
25: end procedure

in Sect. 4.2. Assume that k1 bits of the left half of the input are active and
the rest (� − k1) bits are constant. Moreover, assume that k2 bits of the right
half of the input are active and the rest (� − k2) bits are constant. Namely, we
prepare 2k1+k2 chosen plaintexts. The input set has the division property D�,2

[k1,k2]
.

Algorithm 1 shows the path search algorithm to create the integral distinguisher
on (�, d)-Feistel. Algorithm 1 does not limit the F -function to be a permutation.
If the F -function is limited to be a permutation, L becomes k2 + � when X = �
holds (see the 4-th line in Algorithm 1). Algorithm 1 calls SizeReduce, which
eliminates k(i,j) if there exists (i′, j′) satisfying S

�,2
k(i,j) ⊆ S

�,2

k(i′,j′) .

Results. Table 2 shows the number of required chosen plaintexts to construct
r-round integral distinguishers on (32, 5)- and (64, 7)-Feistel, where DES [31] is
classified into (32, 5)-Feistel with non-bijective function and Camellia [3] is clas-
sified into (64, 7)-Feistel with bijective function. When we construct the integral
distinguisher on (�, d)-Feistel with 2D chosen plaintexts, we use (k1, k2) satisfying
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Table 2. The number of chosen plaintexts to construct r-round integral distinguishers
on (32, 5)- and (64, 7)-Feistel. Our distinguishers are got by implementing Algorithm 1.

Target F -function log2(#texts) Method Reference
[Application] r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

(32, 5)-Feistel non-bijection 26 51 62 - - - our Sect. 4.3
[DES] 26 - - - - - degree [8,21]

(64, 7)-Feistel bijection 50 98 124 - - - our Sect. 4.3
[Camellia] 50 - - - - - degree [8,21]

64 - - - - - integral [23]

Table 3. The number of chosen plaintexts to construct r-round integral distinguishers
on the Simon family, where the F -function is not bijective. Our distinguishers are got
by implementing Algorithm 1.

Target log2(#texts) Method Reference
[Application] r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13

(16, 2)-Feistel 17 25 29 31 - - - - our Sect. 4.3
[Simon 32] - - - - - - - - degree [8,21]

(24, 2)-Feistel 17 29 39 44 46 47 - - our Sect. 4.3
[Simon 48] 17 - - - - - - - degree [8,21]

(32, 2)-Feistel 17 33 49 57 61 63 - - our Sect. 4.3
[Simon 64] 17 - - - - - - - degree [8,21]

(48, 2)-Feistel 17 33 57 77 87 92 94 95 our Sect. 4.3
[Simon 96] 17 33 - - - - - - degree [8,21]

(64, 2)-Feistel 17 33 65 97 113 121 125 127 our Sect. 4.3
[Simon 128] 17 33 - - - - - - degree [8,21]

(k1, k2) =

{
(D − �, �) for � ≤ D,

(0,D) for D < �.

For the comparison with our integral distinguishers, we consider two previ-
ous methods, one is the propagation characteristic of the integral property and
another is the estimation of the algebraic degree. We first consider the propaga-
tion characteristic of the integral property. If the F -function is a non-bijective
function, the propagation characteristic does not construct sufficient distinguish-
ers. Therefore, results introduced by the integral property are only shown when
the F -function is bijective. We next consider the estimation of the algebraic
degree. Unfortunately, since we do not know the improved bound against the
Feistel Network, we use the trivial bound for the Feistel Network. Assume that
the left half of the plaintext is constant. For any r-round (�, d)-Feistel, it can be
observed that the function, which associates the right half of the ciphertext with
the right half of the plaintext, has degree at most dr−2 for 2 ≤ r. Therefore, we
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can construct the r-round integral distinguishers with 2dr−2+1 chosen plaintexts.
Since the right half of the plaintext is at most � bits, the distinguisher can be
constructed with 2dr−2+1 < 2�.

As a result, as far as we try, all distinguishers constructed by the division
property are “better” than those by previous methods. We summarize integral
distinguishers on other (�, d)-Feistel in Appendix B. We already know a “bet-
ter” integral distinguisher on Camellia in [36], but it is constructed by using the
specific feature of Camellia. On the other hand, our method is generic distin-
guishing attacks against (�, d)-Feistel. From the result of (64, 7)-Feistel, it shows
that even if the F -function of Camellia is chosen from any functions with degree
7, the modified Camellia has the 6-round integral distinguisher.

Integral Distinguishers on Simon Family. Although our attack is a generic
attack, it can create new integral distinguishers on the Simon family [5]. Simon
is a lightweight block ciphers proposed by the National Security Agency. Since
Simon has a non-bijective F -function and a bit-oriented structure, it is compli-
cated task to construct the integral distinguisher. The division property theo-
retically shows that Simon 32, 48, 64, 96, and 128 have at least 9-, 11-, 11-, 13-,
and 13-round integral distinguishers, respectively. Table 3 shows the comparison
between our distinguishers and previous ones by the degree estimation. On the
other hand, Wang et al. showed that Simon 32 has the 15-round integral dis-
tinguisher by experiments [33]. Therefore, there are 6-round differences between
our theoretical result and Wang’s experimental result. Our distinguisher is valid
against all (32, 2)-Feistel and it does not exploit the feature of the round function.
Namely, we expect that the 6-round difference is derived from the specification
of the round function of Simon 32.

5 Improved Integral Distinguishers on Substitute-
Permutation Network

5.1 Substitute-Permutation Network

(�, d, m)-SPN. The Substitute-Permutation Network (SPN) is another impor-
tant structure for block ciphers. The SPN has a round function that consists of
an S-Layer and a P-Layer, and a block cipher is designed by iterating the round
function. We now define an (�, d,m)-SPN, whose round function has m �-bit
S-boxes in the S-Layer and one (�m)-bit linear function in the P-Layer. Here,
each S-box is any bijective function whose degree is at most d, and an (�m)-
bit linear function is any bijective function whose degree is at most 1. Figure 6
shows the round function of the SPN. Nowadays, many block ciphers adopting
(�, d,m)-SPN have been proposed, e.g. AES [32], PRESENT [7], and Serpent [1]
adopt (8, 7, 16)-, (4, 3, 16)-, and (4, 3, 32)-SPN, respectively. Moreover, Keccak-
f [12], which is a permutation in the hash function Keccak, can be regarded
as (5, 2, 320)-SPN.
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Fig. 6. (�, d, m)-SPN

5.2 Propagation Characteristic for SPN

This section shows that the division property is useful to construct integral dis-
tinguishers on (�, d,m)-SPN. We first prepare the set of the input of the S-Layer
such that ki bits of the input of the i-th S-box are active and the rest (�−ki) bits
are constant. In this case, the input set has the division property D�,m

k . We first
evaluate the propagation characteristic against the S-Layer. Next, the P-Layer
is applied but the input and output take a value of F�m

2 . Therefore, we need to
convert the division property D�,m

k into D�m
k , and then evaluate the propaga-

tion characteristic against the P-Layer. Since the S-Layer is applied again after
the P-Layer, we convert the division property D�m

k into D�,m
k(1),k(2),...,k(q) . After

the second round, we evaluate the propagation characteristic of this collective
division property.

- S-Layer. Assume that the input set of the S-Layer has the division property
D�,m

k . Since the S-Layer consists of m �-bit S-boxes with degree d, the output
set of the S-Layer has D�,m

k′ . Here, if ki < � holds, k′
i is calculated as k′

i =
�ki/d	. If ki = � holds, k′

i is calculated as k′
i = �.

- Concatenation (Conversion form S-Layer to P-Layer). The output
of the S-Layer is expressed in a value of (F�

2)
m, but the input of the P-

Layer is expressed in a value of F�m
2 . Let X be the output set of the S-Layer

whose elements take a value of (F�
2)

m. Let Y be the input set of the P-
Layer whose elements take a value of F�m

2 . The transformation is generally
implemented by a simple bit concatenation, namely, y = (x1‖x2‖ · · · ‖xm)
where (x1, x2, . . . , xm) and y are values of X and Y, respectively. We now
consider the conversion of the division property from D�,m

k to D�m
k′ . The

parity of πv(y) for all y ∈ Y becomes unknown if and only if we choose v
satisfying wv ≥ ∑m

i=1 ki. Therefore, the input set of the P-Layer has the
division property D�m

k′ , where k′ =
∑m

i=1 ki holds.
- P-Layer. The P-Layer consists of an (�m)-bit linear function. Since the degree

of the linear function is at most 1, there is no change in the division property.
- Partition (Conversion form P-Layer to S-Layer). The output of the P-

Layer is expressed in a value of F�m
2 , but the input of the S-Layer is expressed
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in a value of (F�
2)

m. Let X be the output set of the P-Layer whose elements
take a value of F�m

2 . Let Y be the input set of the S-Layer whose elements
take a value of (F�

2)
m. The transformation is generally implemented by a sim-

ple bit partition, namely, (y1‖y2‖ · · · ‖ym) = x where x and (y1, y2, . . . , ym)
are values of X and Y, respectively. We now consider the conversion of the
division property from D�m

k to D�,m
k′ . When the output set of the P-Layer has

D�m
k , the sufficient condition that the parity of πu(x) for all x ∈ X becomes

unknown is k ≤ wu. Therefore, the input set of the S-Layer has the collec-
tive division property D�,m

k′(1),k′(2),...,k′(q) , where q denotes the number of all

possible vectors satisfying k
′(j)
1 +k

′(j)
2 + · · ·+k

′(j)
m = k (1 ≤ j ≤ q). After the

second round, we evaluate the propagation characteristic of the collective
division property.

We can construct the integral distinguisher by evaluating the propagation char-
acteristic of the collective division property. However, since the size of q extremely
expands, it is infeasible to execute the straightforward implementation. There-
fore, we show more efficient technique. Let X be the input set of the S-Layer, and
the elements take a value of (F�

2)
m. Assume that the input set has the division

property D�,m
k(1),k(2),...,k(q) that is created by the partition of the division property

D�m
k . If k > (�−1)m holds, at least (m−�m+k) elements of k(j) have to become

�. In this case, the rest elements have to become �− 1. Since the S-Layer derives⌈
�−1

d

⌉
and � from (� − 1) and �, respectively, the output set has the division

property D�m
k′ , where k′ is calculated as

k′ =

{⌈
�−1

d

⌉
(�m − k) + �(m − �m + k) for k > (� − 1)m,

⌈
k
d

⌉
for k ≤ (� − 1)m.

Here, if k ≤ (�−1)m holds, we simply regard the round function of (�, d,m)-SPN
as one (�m)-bit S-box with degree d.

5.3 Path Search Algorithm for (�, d, m)-SPN

We now consider integral distinguishers on (�, d,m)-SPN. We first prepare the set
of chosen plaintexts such that ki bits of the input of the i-th S-box are active and
the rest (�−ki) bits are constant. Namely, we prepare 2

∑m
i=1 ki chosen plaintexts.

The input set has the division property D�,m
k . Algorithm 2 shows the path search

algorithm to construct the integral distinguisher.

Results. Table 4 shows the number of required chosen plaintexts to construct
the r-round integral distinguisher on (4, 3, 16)- and (8, 7, 16)-SPN, where
PRESENT [7] and AES [32] are classified into (4, 3, 16)- and (8, 7, 16)-SPN,
respectively. When we construct the integral distinguisher on (�, d,m)-SPN with
2D chosen plaintexts, we use a vector k satisfying
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Algorithm 2. Path search algorithm for integral distinguishers on (�, d,m)-SPN
1: procedure IntegralPathSearch(�, d, m, r = 0, k1, k2, . . . , km)
2: if ki < � then ki ⇐ �ki/d� � 1-st round S-Layer
3: end if
4: k ⇐∑m

i=1 ki � 1-st round Concatenation and P-Layer
5: while 1 < k do
6: r ⇐ r + 1
7: if k ≤ (� − 1)m then k ⇐ �k/d� � (r + 1)-th round
8: else k ⇐ ⌈ �−1

d

⌉
(�m − k) + �(m − �m + k) � (r + 1)-th round

9: end if
10: end while
11: return r
12: end procedure

Table 4. The number of chosen plaintexts to construct r-round integral distinguishers
on (�, d, m)-SPN. Our distinguishers are got by implementing Algorithm 2.

Target log2(#texts) Method Reference
r = 3 r = 4 r = 5 r = 6 r = 7

(4, 3, 16)-SPN 12 28 52 60 - our Sect. 5.3
[PRESENT] 28 52 60 63 - degree [9]
(8, 7, 16)-SPN 56 120 - - - our Sect. 5.3

[AES] 117 127 - - - degree [9]

Table 5. The number of chosen plaintexts to construct r-round integral distinguishers
on Keccak-f and Serpent. Our distinguishers are got by implementing Algorithm 2.

Target log2(#texts) Method Reference
[Application] r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9‘ r = 10

(4, 3, 32)-SPN 12 28 84 113 124 - - - our Sect. 5.3
[Serpent] 28 82 113 123 127 - - - degree [9]

Target log2(#texts) Method Reference
[Application] r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15

(5, 2, 320)-SPN 130 258 515 1025 1410 1538 1580 1595 our Sect. 5.3
[Keccak-f ] 257 513 1025 1409 1537 1579 1593 1598 degree [9]

ki =

⎧
⎪⎨

⎪⎩

� for i� ≤ D,

D − (i − 1)� for (i − 1)� ≤ D < i�,

0 for D < (i − 1)�.

For the comparison with our integral distinguishers, we first consider the
propagation characteristic of the integral property. However, it does not con-
struct a sufficient distinguisher because the P-Layer is any linear function. Next,



306 Y. Todo

we estimate the algebraic degree by using the method proposed by Boura et al.
We show the method in Appendix A.

As a result, as far as we try, all distinguishers constructed by the division
property are “better” than those by previous methods. We summarize inte-
gral distinguishers on other (�, d,m)-SPN in Appendix C. We already know the
7-round integral distinguisher on PRESENT in [34] and the 4-round integral
distinguisher on AES in [23]. However, they are constructed by using the spe-
cific feature of each block cipher. On the other hand, our method is generic
distinguishing attacks against (�, d,m)-SPN. From the result of (4, 3, 16)-SPN,
it shows that even if the P-Layer of PRESENT is chosen from any bijective
linear functions, the modified PRESENT has the 6-round integral distinguisher.
Similarly, from the result of (8, 7, 16)-SPN, it shows that even if the P-Layer of
AES is chosen from any bijective linear function, the modified AES still has the
4-round integral distinguisher.

Integral Distinguishers on Serpent and Keccak-f Although our attack
is a generic attack, it can create new integral distinguishers on Serpent and
Keccak-f . Serpent is one of AES finalists and is classified into (4, 3, 32)-SPN.
The existing integral distinguisher is shown in [37], and it shows that Serpent has
3.5-round integral distinguisher. On the other hand, we show that all (4, 3, 32)-
SPNs have at least 7-round integral distinguishers with 2124 chosen plaintexts.
Table 5 shows the comparison between our distinguishers and previous ones by
the degree estimation.

Keccak is chosen as SHA-3, and the core function Keccak-f is classified
into (5, 2, 320)-SPN. Boura et al. estimated the algebraic degree of Keccak-f
in [9]. We search for the integral distinguisher by using Algorithm 2. As a result,
our distinguishers can reduce the number of chosen plaintexts compared with
previous ones. Table 5 shows the comparison between our distinguishers and
previous ones.

6 Toward Dedicated Attack

We introduced the division property in Sect. 3, and proposed distinguishing
attacks against the Feistel Network and the SPN in Sect. 4 and Sect. 5, respec-
tively. In this section, we show that the division property is also useful to con-
struct the dedicated attack against specific ciphers. As an example, we show
integral distinguishers on AES-like ciphers.

6.1 AES-Like Cipher

(�, d, m)-AES. AES is a 128-bit block cipher, and an intermediate text of AES
is expressed in a 4 × 4 matrix whose elements are 8 bits. The round function of
AES consists of SubBytes, ShiftRows, MixColumns, and AddRoundKey, where
each function is defined as follows:
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Algorithm 3. Evaluating algorithm against the round function of (�, d,m)-AES
1: procedure AesFuncEval(�, d, m, K)
2: for r = 1 to m do
3: for c = 1 to m do
4: if kr,c < � then kr,c ⇐ �kr,c/d� � SubBytes
5: end if
6: end for
7: end for
8: K ⇐ ShiftRows(K) � ShiftRows
9: k′

c ⇐∑m
r=1 k′

r,c for all c � MixColumns
10: k′ ⇐ sort(k′)
11: return k′

12: end procedure

– SubBytes (SB) : It substitutes each byte in the matrix into another byte by
an S-box.

– ShiftRows (SR) : Each byte of the i-th row is rotated i − 1 bytes to the left.
– MixColumns (MC) : It diffuses bytes within each column by a linear function.
– AddRoundKey (AK) : A round key is XORed with the intermediate text.

We define an (�, d,m)-AES, where �, d, and m denote the bit length of an S-box,
the algebraic degree of an S-box, and the size of the matrix, respectively. This
intermediate text is expressed in an m × m matrix whose elements are � bits.
Let X ∈ (F�

2)
m×m be an input of the round function, which is arranged as

⎡

⎢
⎢
⎢
⎣

x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m

...
...

. . .
...

xm,1 xm,2 · · · xm,m

⎤

⎥
⎥
⎥
⎦

.

Let Y ∈ (F�
2)

m×m be an output of the round function, which is calculated as
Y = (AK ◦ MC ◦ SR ◦ SB)(X). Each function is the same as that of AES
except for the scale. For instance, AES [32] and LED [18] adopt (8, 7, 4)-AES and
(4, 3, 4)-AES, respectively. Moreover, P256 of PHOTON [17] adopts (4, 3, 8)-AES2.

6.2 Path Search Algorithm for (�, d, m)-AES

Section 5 shows how to construct integral distinguishers on (�, d,m)-SPN, but
practical block ciphers have a specific P-Layer. For instance, the P-Layer in
AES consists of ShiftRows and MixColumns, and it is not any linear function.
Taking into account the structure of the P-Layer, we can construct more effective
algorithm. In this section, as an example, we show a path search algorithm to
construct integral distinguishers on (�, d,m)-AES. Algorithm 3 evaluates the
propagation characteristic of the division property against the round function
2 Since PHOTON is a hash function, it uses AddConstant instead of AddRoundKey.
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Algorithm 4. Path search algorithm for integral distinguishers on (�, d,m)-AES
1: procedure IntegralPathSearch(�, d, m, r = 0, K ∈ {0, 1, . . . , �}m×m)
2: k(1) ⇐ AesFuncEval(�, d, m, K) � 1-st round

3: D ⇐∑m
c=1 k

(1)
c

4: q ⇐ 1
5: while 1 < D do
6: r ⇐ r + 1
7: for i = 1 to q do
8: K(i,1), . . . , K(i,s) ⇐ Partition(k(i))
9: for j = 1 to s do

10: k̄
(1)

, . . . , k̄
(t) ⇐ AesFuncEval(�, d, m, K(i,j)) � (r + 1)-th round

11: if (i, j) = (1, 1) then

12: k′(1), . . . , k′(q′) ⇐ SizeReduce(k̄
(1)

, . . . , k̄
(t)

)
13: else
14: k′(1), . . . , k′(q′′) ⇐ SizeReduce(k′(1), . . . , k′(q′), k̄

(1)
, . . . , k̄

(t)
)

15: q′ ⇐ q′′

16: end if
17: end for
18: end for
19: k(i) ⇐ k′(i) for all 1 ≤ i ≤ q′

20: q ⇐ q′

21: D ⇐ min{∑m
c=1 k

(1)
c ,
∑m

c=1 k
(2)
c , . . . ,

∑m
c=1 k

(q)
c }

22: end while
23: return r
24: end procedure

of AES-like ciphers, and it calls ShiftRows and sort. ShiftRows performs a
similar transformation to SR. sort is the sorting algorithm, which is useful for
feasible implementation. Algorithm 4 shows the path search algorithm, and it
calls Partition, AesFuncEval, and SizeReduce. Partition(k(i)) calculates all
possible K(i,j) satisfying

(
m∑

r=1

k
(i,j)
r,1 ,

m∑

r=1

k
(i,j)
r,2 , . . . ,

m∑

r=1

k(i,j)
r,m

)

= (k(i)
1 , k

(i)
2 , . . . , k(i)

m ),

where 0 ≤ k
(i,j)
r,c ≤ � holds. SizeReduce eliminates k(i,j) if there exists (i′, j′)

satisfying S
�m,m
k(i,j) ⊆ S

�m,m

k(i′,j′) .
Notice that the size of q in the division property extremely expands when the

partition of the division property is executed (see the 8-th line in Algorithm 4).
Namely, our algorithm takes large execution time and large memory capacity
if we straightforwardly implement our algorithm. Therefore, we use an effective
method, which uses the feature of (�, d,m)-AES, for the feasible implementation.
Notice that each column of (�, d,m)-AES is equivalent each other. Assuming that
the input set has D�m,m

k,k′ that k′ is a permutation of elements of k, the division
property of the next round calculated from k is exactly the same as that from k′

because columns of (�, d,m)-AES are equivalent each other. Namely, it is enough
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Table 6. The number of chosen plaintexts to construct r-round integral distinguish-
ers on (4, 3, m)-AES. Our distinguishers are got by implementing Algorithm 2 and
Algorithm 4.

Target log2(#texts) Method Reference
[Application] r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

(4, 3, 4)-AES 4 12 32 52 - - our (AES) Sect. 6.2
[LED] 12 28 52 60 - - our (SPN) Sect. 5.3

28 52 60 63 - - degree [9]
4 16 - - - - integral [13,23]

(4, 3, 5)-AES 4 12 20 72 97 - our (AES) Sect. 6.2
[P100 in PHOTON] 12 28 76 92 - - our (SPN) Sect. 5.3

28 76 92 98 - - degree [9]
4 20 - - - - integral [13,23]

(4, 3, 6)-AES 4 12 24 84 132 - our (AES) Sect. 6.2
[P144 in PHOTON] 12 28 84 124 140 - our (SPN) Sect. 5.3

28 82 124 138 142 - degree [9]
4 24 - - - - integral [13,23]

(4, 3, 7)-AES 4 12 24 84 164 192 our (AES) Sect. 6.2
[P196 in PHOTON] 12 28 84 160 184 192 our (SPN) Sect. 5.3

28 82 158 184 192 195 degree [9]
4 28 - - - - integral [13,23]

(4, 3, 8)-AES 4 12 28 92 204 249 our (AES) Sect. 6.2
[P256 in PHOTON] 12 28 84 200 237 252 our (SPN) Sect. 5.3

28 82 198 237 250 254 degree [9]
4 32 - - - - integral [13,23]

to save either, and we implement it by a sorting algorithm (see the 10-th line in
Algorithm 3). This technique enables us to execute our path search algorithm
feasibly in many parameters.

Results. Table 6 shows the number of required chosen plaintexts to construct
r-round integral distinguishers on (4, 3,m)-AES. When we construct the integral
distinguisher on (�, d,m)-AES with 2D chosen plaintexts, we carefully choose the
input matrix K.

For the comparison with our improved integral distinguishers, we also show
integral distinguishers by using the propagation characteristic of the integral
property. We also estimate the algebraic degree by the method proposed Boura et
al. (see Appendix A). Moreover, since (4, 3,m)-AES are classified into (4, 3,m2)-
SPN, we construct integral distinguishers by Algorithm 2.

As a result, as far as we try, all distinguishers constructed by the division
property are at least better than those by previous methods. Especially, the
advantage of our method is large when we construct the integral distinguisher
with the small number of texts. For instance, our method shows that (4, 3, 8)-
AES, which is adopted by P256 in PHOTON, has the 6-round distinguisher with
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292 chosen plaintexts. If we regard (4, 3, 8)-AES as (4, 3, 64)-SPN, 2200 chosen
plaintexts are required to construct the distinguisher.

7 Conclusions

In this paper, we proposed the fundamental technique to improve integral dis-
tinguishers, and showed structural cryptanalyses against the Feistel Network and
the SPN. Our new technique uses the division property, which is the
generalization of the integral property. It can effectively construct integral dis-
tinguishers even if block ciphers have non-bijective functions, bit-oriented struc-
tures, and low-degree functions. For the Feistel Network, when the algebraic
degree of the F -function is smaller than the bit length of the F -function, our
method can attack more rounds than previous generic attacks. Moreover, we
theoretically showed that Simon 48, 64, 96, and 128 have 11-, 11-, 13-, and 13-
round integral distinguishers, respectively. For the SPN, our method extremely
reduces the required number of chosen plaintexts compared with previous meth-
ods. Moreover, we improved integral distinguishers on Keccak-f and Serpent.
The division property is useful to construct integral distinguishers against spe-
cific ciphers. As one example, we showed a path search algorithm to construct
integral distinguishers on the AES-like cipher, which is the sub class of the
SPN. From this fact, we expect that the division property can construct many
improved integral distinguishers against specific ciphers by constructing the ded-
icated path search algorithm.

A Estimation of Algebraic Degree for (�, d, m)-SPN

If the degree of r iterated round functions is at most D, we can construct the r-
round integral distinguisher with 2D+1 chosen plaintexts. In a classical method,
if the degree of the round function is at most d, the degree of r iterated round
functions is bounded by dr. In 2011, Boura et al. showed tighter bound as follows.

Theorem 1 ([9]). Let S be a function from F
n
2 into F

n
2 corresponding to the

concatenation of m smaller S-boxes, defined over F
n0
2 . Let δk be the maximal

degree of the product of any k bits of anyone of these S-boxes. Then, for any
function G from F

n
2 into F2, we have

deg(G ◦ S) ≤ n − n − deg(G)
γ

,

where

γ = max
1≤i≤n0−1

n0 − i

n0 − δi
.

By using this bound, we can estimate the degree of (�, d,m)-SPN. For instance,
we show the degree of (4, 3, 64)-SPN as follows.
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Number of rounds 1 2 3 4 5 6 7 8 9
Bound on degree 3 9 27 81 197 236 249 253 255

Therefore, we can construct the 8-round integral distinguisher on (4, 3, 64)-SPN
with 2254 chosen plaintexts.

B Integral Distinguishers on (�, d)-Feistel

Table 7 shows integral distinguishers on (�, d)-Feistel, where (�, d)-Feistel is
defined in Sect. 4.1. If we construct the dedicated path search algorithm for

Table 7. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on (�, d)-Feistel. We get these values by implementing Algorithm 1.

Target F -function log2(#texts) Examples
r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14

(16, 2) non-bijection 17 25 29 31 - - - - - Simon 32 [5]
bijection 16 23 28 30 31 - - - -

(24, 2) non-bijection 17 29 39 44 46 47 - - - Simon 48 [5]
bijection 17 27 38 43 46 47 - - -

(32, 2) non-bijection 17 33 49 57 61 63 - - - Simon 64 [5]
bijection 17 32 47 56 60 62 63 - -

(48, 2) non-bijection 17 33 57 77 87 92 94 95 - Simon 96 [5]
bijection 17 33 55 76 86 91 94 95 -

(64, 2) non-bijection 17 33 65 97 113 121 125 127 - Simon 128 [5]
bijection 17 33 64 95 112 120 124 126 127

Target F -function log2(#texts) Examples
r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11

(32, 5) non-bijection 6 26 51 62 - - - - - DES [31]
bijection 6 26 46 61 - - - - -

(48, 5) non-bijection 6 26 64 90 95 - - - -
bijection 6 26 59 89 95 - - - -

(64, 5) non-bijection 6 26 77 118 126 - - - -
bijection 6 26 72 117 126 - - - -

Target F -function log2(#texts) Examples
r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11

(32, 7) non-bijection 8 35 60 - - - - - -
bijection 8 32 59 - - - - - -

(48, 7) non-bijection 8 49 90 - - - - - -
bijection 8 48 84 95 - - - - -

(64, 7) non-bijection 8 50 104 125 - - - - -
bijection 8 50 98 124 - - - - - Camellia [3]

Target F -function log2(#texts) Examples
r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11

(32, 31) non-bijection 32 62 - - - - - - -
bijection 32 32 63 - - - - - -

(48, 47) non-bijection 48 94 - - - - - - -
bijection 48 48 95 - - - - - -

(64, 63) non-bijection 64 126 - - - - - - -
bijection 64 64 127 - - - - - -

(32, 32) non-bijection 33 - - - - - - - -

(48, 48) non-bijection 49 - - - - - - - -

(64, 64) non-bijection 65 - - - - - - - -
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the specific cipher, we expect that the algorithm can create better integral dis-
tinguishers.

C Integral Distinguishers on (�, d, m)-SPN

Table 8 shows integral distinguishers on (�, d,m)-SPN, where (�, d,m)-SPN is
defined in Sect. 5.1. If we construct the dedicated path search algorithm for the
specific cipher, we expect that the algorithm can create better integral distin-
guishers.

Table 8. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on (�, d, m)-SPN. We get these values by implementing Algorithm 2.

Target Size log2(#texts) Examples
(bits) r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

(4, 3, 16) 64 28 52 60 - - - - PRESENT [7], LED [18]

(4, 3, 24) 96 28 76 89 - - - -

(4, 3, 32) 128 28 84 113 124 - - - Serpent [1], Noekeon [14]

(4, 3, 40) 160 28 84 136 152 - - -

(4, 3, 48) 192 28 84 156 180 188 - -

(4, 3, 56) 224 28 84 177 209 220 - -

(4, 3, 64) 256 28 84 200 237 252 - - Prøst-128 [20], Minalpher-P [29]

(4, 3, 128) 512 28 84 244 424 484 504 509 Prøst-256 [20]

Target Size log2(#texts) Examples
(bits) r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11

(5, 2, 40) 200 18 35 65 130 178 195 - PRIMATE-80 [2]

(5, 2, 56) 280 18 35 65 130 230 265 275 PRIMATE-120 [2]

(5, 2, 64) 320 18 35 65 130 258 300 315 ASCON Permutation [16]

Target Size log2(#texts) Examples
(bits) r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15

(5, 2, 160) 800 258 515 705 770 790 798 - Keccak-f [800] [12]

(5, 2, 256) 1280 258 515 1025 1195 1253 1271 1278

(5, 2, 320) 1600 258 515 1025 1410 1538 1580 1595 Keccak-f [1600] [12]

Target Size log2(#texts) Examples
(bits) r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

(5, 4, 40) 200 20 65 170 195 - - -

(5, 4, 56) 280 20 65 230 270 - - -

(5, 4, 64) 320 20 65 260 305 - - -

(5, 4, 160) 800 20 65 260 665 770 795 -

(5, 4, 256) 1280 20 65 260 1025 1220 1265 - ICEPOLE Permutation [27]

(5, 4, 320) 1600 20 65 260 1025 1460 1565 1595

Target Size log2(#texts) Examples
(bits) r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

(8, 7, 16) 128 56 120 - - - - - AES [32]

(8, 7, 24) 192 56 176 - - - - - Rijndael-192 [15]

(8, 7, 32) 256 56 232 - - - - - Rijndael-256 [15]

(8, 7, 64) 512 56 344 488 - - - - Whirlpool primitive [4]
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1 Introduction

Most block ciphers are either SP networks that apply linear and non-linear layers
to the entire state in every encryption round, or (generalized) Feistel structures
that apply partial linear and non-linear layers in every round. In the CHES 2013
paper [10], Gérard et al. suggested a compromise between the two common block
cipher designs – an SP network in which the non-linear layer is applied to only a
part of the state in every round. Such partial non-linear SP networks (which we
call PSP networks) contain a wide range of possible concrete schemes that were
not considered so far, some of which have performance advantage on certain
platforms. More importantly, PSP networks allow for more efficient masking
techniques, capable of thwarting side-channel attacks with a small performance
overhead.

As a concrete instantiation of their methodology, Gérard et al. designed
Zorro, a 128-bit lightweight block cipher. Zorro has an unconventional struc-
ture, as it applies a sequence of 24 AES-like rounds, with a partial S-box layer
in each round, containing only 4 out of the possible 16 S-boxes. Since previ-
ous tools that were developed in order to formally prove the security of block
ciphers against standard differential and linear cryptanalysis (such as the wide-
trail strategy used for AES) do not apply to PSP networks such as Zorro, the
authors replaced the formal proof for Zorro by a heuristic argument. Unfortu-
nately, the heuristic argument turned out to be insufficient, as Wang et al. [16]
found iterative differential and linear characteristics that were missed by the
heuristic and used them to break full Zorro with complexity of 2112.

In this paper, we propose efficient algorithms for differential and linear crypt-
analysis of PSP networks. These algorithms allow us to fully evaluate the security
of such constructions against standard differential and linear cryptanalysis. In
some cases, we can compute tight upper bounds on the probability of differential
and linear characteristics, thus offering formal proofs which are expected from
any proposal of a modern block cipher.

Our most useful tool is a generic differential/linear characteristic search algo-
rithm, allowing us to search for the best differential/linear characteristics for
many rounds with a practical time complexity. A complementary tool is an effi-
cient key recovery technique for differential and linear attacks, making use of
the partial S-box layers to analyze more rounds at the end of the cipher with no
increase in the attack’s complexity.

1.1 Our New Automated Characteristic Search Tool

The starting point of our characteristic search algorithm is the algorithm of
Biryukov and Nikolic [3] (along with several related algorithms, starting from
Matsui’s classical algorithm [12] and more recent ones [4,13]), which is based on
a compact representation of differential characteristics, that we call a pattern.
At its most basic form, a pattern describes for each byte (or nibble) of the
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cipher’s state, whether it is active (namely, it has a non-zero input difference)
or inactive.1

Patterns allow the algorithm to group together and simultaneously analyze
many characteristics for a given number of the cipher’s rounds. The algorithm
outputs only patterns that contain the smallest number of active S-boxes, and
thus correspond to high probability characteristics. However, depending on the
analyzed cipher, not all possible patterns are valid, as there are patterns not
followed by any actual characteristic.2 Thus, in order to provide meaningful
results, a characteristic search algorithm has to ensure that it only outputs valid
patterns.

Previous search algorithms [3,4,12,13] indeed made sure that their output
patterns were valid. This was done using local consistency checks, separately
ensuring that for each of the r rounds of a pattern, there exist characteristics that
satisfy the transitions of the round3 (i.e., conform to the 1-round pattern). For
standard block ciphers, ensuring that an r-round pattern is locally valid (in the
sense described above) also implies that it is globally valid, namely, there exists
an actual r-round characteristic that simultaneously satisfies all the transitions
of the r rounds.

Unlike standard block ciphers, for PSP networks there exist many locally valid
patterns which are not globally valid over several rounds. In order to demonstrate
this, consider a 4-round AES-like cipher with 4 S-boxes in each round (such as 4-
round Zorro). The cipher contains a total of 4 · 4 = 16 S-boxes, and a larger num-
ber of 12 · 4 = 48 state bytes that do not go through an S-box in these rounds. It is
easy to see that the cipher has a large number of locally valid patterns in which all
the 16 S-boxes are inactive, as in each round, there are many valid active/inactive
possibilities for the 12 bytes that do not go through an S-box. Consequently, when
applying previous algorithms (such as [3]) to this cipher, we obtain many patterns
in which all the 16 S-boxes are inactive, containing a huge number of possible 4-
round characteristics with probability 1. However, as we show next, it is likely that
none of these characteristics is globally valid, rendering previous algorithms inef-
fective for this (seemingly simple) PSP network.

At a high level, the reason that it is likely that there exists no characteristic
in which all the 16 S-boxes are inactive, is that each inactive S-box forces the
input difference to 0, imposing a constraint on the characteristic. Thus, for the
4-round cipher, we have 16 such constraints, whereas the number of available
degrees of freedom to choose the input difference at the first round is also 16.
Consequently, we have the same number of constraints and degrees of freedom,
and it is probable that the constraints cannot be simultaneously satisfied (which
is indeed the case for 4-round Zorro, as shown in [10]).

1 For example, the 16 bytes of the 128-bit AES state can be described by a pattern of
only 16 bits.

2 For example, if the input to an AES round contains 1 active byte, then its output
contains exactly 4 active bytes, and all other patterns are automatically invalid.

3 The algorithm of [4] is a bit different, as a characteristic is broken down into groups
of 3 consecutive rounds.
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In order to take into account global constraints, we group characteristics
according to patterns similarly to previous algorithms. However, unlike previous
algorithms, our patterns do not contain information about the full state, but
only about the activity/inactivity of the bytes that go through S-boxes. Then,
we observe that all the constraints imposed on a characteristic that follows such
a pattern can be described by a set of linear equations. This observation allows
us to group together and efficiently analyze, many characteristics which reside in
a subspace, defined according to subtle linear constraints imposed by the cipher’s
linear layer.

Previous related automated search tools of [3,4,12,13] mostly employed
method of dynamic programming and mixed integer-linear programming. On
the other hand, our characteristic search algorithm, as well as our key recov-
ery algorithms, is mostly based on linearization techniques, which combine in a
novel way methods from simple linear algebra and combinatorics, and may be
of independent interest. These techniques exploit the small number of S-boxes
in the non-linear layers of the cipher in order to “linearize” sequences of rounds,
thus making it possible to analyze many rounds efficiently. We stress that while
we focus in this paper on PSP networks, our algorithms can potentially offer
new insights on the security of other designs that apply a non-linear function to
only a part of the state in each round, such as (generalized) Feistel constructions
and stream ciphers.

1.2 Main Application of the New Tool: Studying the Security of
the PSP Network Design Methodology

As a first demonstration of our techniques, we apply them to the block cipher
Zorro, improving the complexity of the previously best attack from 2112 to a
practical 245. Our attack was fully simulated several times on a standard desktop
PC over several days. This is a rare case in which an attack on a modern block
cipher is fully simulated in practice.

More significantly, we address the general question of whether the attacks on
Zorro indicate a structural flaw in its design methodology, or are merely a result
of an unlucky combination of components. Our conclusion is that indeed the
methodology of building PSP networks based on AES in a straightforward way is
flawed, and should not be reused. The structural weakness in this methodology is
due to a subtle inter-relation between the ShiftRows and MixColumns operations
of AES, that may need to be taken into consideration in future designs, especially
in light of the common practice of using part of the AES components as building
blocks.

Finally, we address an even more general question of whether the basic PSP
network design methodology is flawed, or it can potentially be reused in future
designs. This question is investigated by analyzing a PSP network that slightly
deviates from the AES design strategy, having a lightly modified ShiftRows
mapping. We analyze this scheme using our characteristic search tool and for-
mally prove its resistance to standard differential and linear cryptanalysis (as
expected from modern block ciphers). Thus, as the most important application
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of our tools, we answer the main question posed by this paper, concluding that
PSP networks are not inherently flawed, and can be reused (with caution) to
build secure block ciphers.

1.3 Organization of the Paper

We start by presenting our generic characteristic search algorithms for PSP
networks in Section 2. Our generic key recovery algorithms for differential and
linear attacks are given in Sections 3 and 4, respectively. In Section 5, we use our
algorithms to attack Zorro. Finally, we study the problem of designing secure
PSP networks in Section 6 and conclude in Section 7.

2 Generic High-Probability Characteristic Search
Algorithm for PSP Networks

In this section we present a novel and efficient high-probability characteristic
search algorithm for SP networks with partial non-linear layers. The search
algorithm is only presented for differential characteristics, but we note that the
algorithm for linear characteristics is very similar. As the algorithm is somewhat
involved, we first describe it at a high-level and then present it in detail. Finally,
we describe an optimization which is very useful in practice.

For ease of exposition, we describe the algorithm on the example of an AES-
like cipher, in which a 128-bit state is represented as a 4-by-4 matrix of bytes,
and the S-boxes (which are the only non-linear operation) act on some of the
bytes in each round. The number of S-boxes in each round is denoted by t (e.g.,
t = 16 for AES and t = 4 for Zorro). Hence, we shall concentrate on a PSP that
contains the following parts:

– S-box layer — The S-box layer is applied to t out of the 16 state bytes. The
S-boxes are all invertible.

– Linear layer — The linear layer L is applied to the state. We do not assume
anything in particular concerning the structure of L (as long as it is invert-
ible).

– Key addition layer — XORing the subkey into the state.

As common in AES-like ciphers, we shall assume that there is one key addition
layer before the first round (it does not affect our results whatsoever), and one
can have in the last round a different linear layer (our described attacks and
algorithms are trivially extended to cases where each round has its own linear
layer).

Inspired by [3], we define the pattern of a differential (or a linear) charac-
teristic to be a description of the activity for each of its spanned S-boxes (see
Figure 1). Namely, a pattern is a function that specifies for each S-box spanned
by the characteristic whether it is active (i.e., has a non-zero input difference)
or not. We note that while [3] defines a pattern over the full bytes (S-boxes) of
a state, we define it only over the bytes that are covered by S-boxes.
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Fig. 1. A 2-Round Pattern and a Differential Characteristic that Follows it

2.1 An Overview of the Algorithm

Our algorithm is based on two observations:

1. The number of possible patterns is small. We observe that if there are
only a few S-boxes in each round (i.e., if t is small), then even for a relatively
large number r of rounds, the number of possible patterns of r-round char-
acteristics with a small number of active S-boxes is rather small. Specifically,
since r rounds contain only tr S-boxes, the number of r-round patterns with

at most a active S-boxes is at most
(

tr

≤a

)
�

a∑

i=0

(
tr
i

)
. For reasonably small

values of t, r and a, this number is quite small, and we can iterate all of
them. For example, for t = 4, r = 9 and a = 4, there are only

(
36

≤4

) ≈ 217

distinct patterns.
2. All characteristics following a fixed pattern can be enumerated

efficiently. We observe that once we fix a pattern (i.e., fix the active and
inactive S-boxes), we can typically calculate the actual characteristics that
follow this pattern in an efficient way. This is the result of the fact that once
the activity/inactivity of each S-box is determined, all the possible charac-
teristics reside in a restricted linear subspace that can be easily calculated
using linear algebra.

Specifically, we denote the input difference of the characteristic by 128
variables, and “linearize” the chain of intermediate encryption differences
by adding 8 new variables each time 8 state bits enter an active S-box.
Since the active S-boxes are the only non-linear operations in the encryption
process, all intermediate differences can be described as linear combinations
of at most 128 + 8a variables. On the other hand, each inactive S-box in
the pattern restricts the intermediate difference at the input of the S-box
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to zero, giving rise to 8 linear equations in the state variables. As there
are at least rt − a inactive S-boxes, we obtain a system containing at least
8(rt−a) linear equations in at most 128+8a variables, which can be efficiently
solved.4 For a sufficiently small a (compared to rt, i.e., when most of the
S-boxes are inactive), the expected dimension of the subspace in which the
possible characteristics reside is small.

After calculating the linear subspace of all possible characteristics, we
apply a post-filtering phase that enumerates the elements of the subspace,
and filters out characteristics in which the active S-box transitions are impos-
sible (according to the difference distribution table of the S-box).5 Given that
the dimension of the subspace is small enough, we can efficiently post-filter
its elements, and thus output all the possible characteristics for the given
pattern.

Combining the two observations, when t, r and a are not too large, we can
efficiently enumerate all the possible r-round differential characteristics with at
most a active S-boxes. The analysis of the algorithm, presented in the next
subsection, shows that the complexity of the algorithm is proportional to

(
tr

≤a

)
,

given that the output size (i.e., the number of possible characteristics) is not too
large.6 As a result, the algorithm is practical for a surprisingly wide choice of
parameters (e.g., for t = 4 as in Zorro, r = 10 rounds and at most a = 10 active
S-boxes, its complexity is still below 232).

2.2 Detailed Description of the Algorithm

We fix the global parameters t, r, a. The algorithm iterates over the
(

tr

≤a

)
distinct

differential patterns, and for each of them, applies the two-step pattern analysis
algorithm described below.

Calculating the Linear Subspace of a Pattern. We maintain a symbolic
representation of the 128-bit state difference at round i, STi, using 128 linear
combinations. Each linear combination is initialized with a 1-bit variable, repre-
senting the corresponding unknown state difference bit in the first round Δ(X0)
(before the first S-box layer). Additionally, we allocate a linear equation system
Ei (which is empty at first), that describes linear constraints on the characteris-
tic, which are imposed by the inactive S-boxes. At the end of the algorithm (after
the final round, r), the subspace of all the possible characteristics is described
by the null-space of Er.
4 Note that some of the equations may be linearly dependent; this depends on the

exact structure of the linear transformation.
5 Note that the solution of the linear equations yields all the intermediate differences,

and in particular, the input and output differences of the active S-boxes.
6 As we are mainly interested in characteristics with the smallest number of active

S-boxes, their number is typically not very large, and thus it is reasonable to assume
that the output size is small.
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The following round-linearization algorithm describes how we extend STi

and Ei to STi+1 and Ei+1, according to the activity pattern of the S-boxes in
round i + 1 (starting from round i = 0).

Extending Linearization by 1 Round
1. Allocate and initialize STi+1 ← STi, Ei+1 ← Ei.
2. For each S-box S of round i:

(a) If S is inactive according to the pattern of round i, add 8 equa-
tions to the system Ei+1, that equate the corresponding 8 bits in
STi+1 to zero. If the dimension of the null-space of Ei+1 is 0 (i.e.,
there is no non-zero solution to the system, and thus no matching
characteristic), return STi+1 and Ei+1 as NULL, and exit.

(b) If S is active according to the pattern of round i, replace the corre-
sponding 8 linear combinations in STi+1 with the newly allocated
variables.

3. Set STi+1 ← L(STi+1), i.e., update the symbolic state STi+1 according
to the linear function of the cipher, L.

Given a pattern, the linear subspace of all possible characteristics for r rounds
is calculated with the following algorithm:

Calculate Linear Subspace
1. Initialize ST0 with 128 new variables, and E0 with an empty set of

equations.
2. For i = 0 to i = r − 1, run the extension algorithm for round i + 1,

calculating STi+1 and Ei+1. If they are NULL, return NULL and exit.
3. Output a basis B for all the possible characteristics of the pattern using

the null space of Er. This basis is represented as a set of b free (uncon-
strained) linear variables, and linear combinations of these variables,
as follows: the 128 linear combinations of the initial state ST0, and the
16 · a linear combinations of all the inputs/outputs of the a active S-box
transitions (according to the pattern).

Post-Filtering the Linear Subspace of a Pattern. Once we obtain a basis
B for all the possible characteristics of the pattern, we apply a simple post-
filtering algorithm.

1. For each of the 2b possible values of the free variables:
(a) For each active S-box transition:

i. Calculate the actual input/output for the S-box transition by
plugging in the values of the free variables.

ii. Check in the difference distribution table of the cipher whether
the differential transition is possible, and if not, go back to
Step 1.

(b) Output the full characteristic according to the current value of the
free variables.
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We note that it is possible to optimize the post filtering in various situations
by choosing the free variables to be input/output bits of a restricted set of S-
boxes. This enables us to iterate in advance only over the input/output difference
transitions that are possible according to the difference distribution table of these
S-boxes. The optimization can be particularly useful when the filtered linear
subspace is of a relatively large dimension (and thus, we have less restrictions
on the choice of free variables).

Complexity Analysis. Let T (node) be the average complexity of evaluating
a node in the recursive tree, without iterating and post-filtering the solutions.
As the number of evaluated nodes is proportional to

(
tr

≤a

)
, the complexity of the

algorithm can be estimated by the formula
(

tr

≤a

) ·T (node) + SOL, where SOL

is the total number of solutions that we need to post-filter.7 Since we cannot
determine in advance the value of SOL, we will estimate it according to the
total number of characteristics which remain after post-filtering (i.e., the actual
output size), which we denote by OUT .

In order to relate SOL and OUT , we note that an arbitrary input-output
transition for an S-box is possible with probability of (at least) about 2−1.5 (this
is true for the Zorro S-box, and for the AES S-box, the probability is even closer
to 2−1), and thus if we have at most a active S-boxes, then we expect that OUT ≥
SOL · 2−1.5a, or SOL ≤ OUT · 21.5a. Consequently, the time complexity of the
algorithm can be upper bounded by

(
tr

≤a

) ·T (Node) + OUT · 21.5a. Assuming
that the output size OUT is not too big, the complexity of the algorithm is
proportional to

(
tr

≤a

)
.

2.3 Optimized Search Algorithm Using Pattern-Prefix Search

In this section we describe an optimization of the characteristic search algorithm,
which is based on the observation that we can analyze together many common
patterns with the same prefix. This allows us to dispose of all the patterns whose
common prefix is not possible (instead of analyzing and disposing each one sepa-
rately). In addition, this algorithm reduces the average amount of work (mostly
linear algebra) performed for each pattern. We note that we cannot provide an
improved theoretical analysis for this algorithm. However, this algorithm appears
to give a significant advantage over the basic algorithm in practice.

The algorithm PPS (Pattern-Prefix Search) iterates over the tree of possible
prefixes of patterns using the DFS (Depth First Search) algorithm. The global
parameters of PPS are the number of rounds to analyze, r, the number of
S-boxes in each round, t, and the maximal number of active S-boxes, a. The
parameters which are passed to each node of the tree are: the round number i,
the current S-box index in the round s ∈ {0, 1, . . . , t − 1}, the current number
of active S-boxes in the prefix, ca, and STi, Ei (as in the standard pattern-
analysis algorithm). Thus, the PPS algorithm is initially called with parameters
7 As post-filtering a solution is very simple, we assume it can be done in unit time.
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PPS(i, s, ca, ST0, E0), where i = 0, s = 0, ca = 0, ST0 is initialized with 128
new variables and E0 is an empty set of equations.

PPS(i, s, ca, STi, Ei):
1. If i = r (i.e., we finished iterating over all the S-boxes of the pattern),

then the r-round pattern is fully determined by the path to the root of
the tree. Thus, calculate the basis B for all the possible characteristics
of the pattern (using Er). Finally, post-filter the characteristics (as in
the pattern-analysis algorithm), and return them.

2. Allocate a node n1 for the case that S-box with index s in round i is
inactive (duplicating the current STi, Ei): For this node, add 8 equa-
tions to the system Ei, which equate the corresponding 8 bits in STi to
zero. Denote the (yet undetermined) output set of this node as OUT1.

– If the dimension of the null-space of Ei is 0 (i.e., there is no non-zero
solution to the system, and thus no matching characteristic), delete
this node and set OUT1 = ∅.

– Otherwise, the dimension of the null-space is greater than 0. If s =
t − 1 (i.e., we finished iterating over all the S-boxes of the current
round i), then set STi+1 = L(STi) (i.e., update the symbolic state
STi+1 according to the linear function of the cipher, L), also set
Ei+1 = Ei. Recursively call PPS(i + 1, 0, ca, STi+1, Ei+1) and set
OUT1 according to the returned output.

– Otherwise, the dimension of the null-space is greater than 0, and
s < t − 1. Recursively call PPS(i, s + 1, ca, STi, Ei) and set OUT1

according to the returned output.
3. If ca = a (i.e., we have reached the maximum number of active S-boxes),

return OUT1.
4. Otherwise (ca < a) allocate a node n2 for the case that S-box with

index s in round i is active (duplicating the current STi, Ei): For this
node, replace the corresponding 8 linear combinations in STi with newly
allocated variables. Denote the (yet undetermined) output set for this
node as OUT2.

– If s = t−1 (i.e., we finished iterating over all the S-boxes of the cur-
rent round i), then set STi+1 = L(STi) and Ei+1 = Ei. Recursively
call PPS(i + 1, 0, ca + 1, STi+1, Ei+1) and set OUT2 according to
the returned output.

– Otherwise, s < t − 1. Recursively call PPS(i, s + 1, ca + 1, STi, Ei)
and set OUT2 according to the returned output.

5. Return OUT1

⋃
OUT2.

3 Generic Key-Recovery Algorithm for Differential
Attacks on PSP Networks

In this section we present a key recovery algorithm for differential attacks exploit-
ing the small number t of S-boxes in each round of the cipher. As in Section 2, we
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describe the algorithm on the example of an AES-like cipher, in which a 128-bit
state is represented as a 4-by-4 matrix of bytes, and the S-boxes (which are the
only non-linear operation) act on t bytes in each round. We show that given an
r-round differential characteristic with probability p, one can attack r + �16/t	
rounds (i.e., �16/t	 rounds in addition to the characteristic) with data and time
complexity of only about 2 · p−1, using negligible memory. First, we present an
overview of the algorithm, and then we give a more detailed description.

3.1 An Overview of the Algorithm

For sake of simplicity, we assume that t divides 16, but the algorithm can be
easily adapted to any value of t. We denote the intermediate difference of the
characteristic after i rounds by Δi, and thus the characteristic determines Δi for
i ∈ {0, 1, . . . , r}. The algorithm requires the encryption of p−1 plaintext pairs
with input difference Δ0, and thus we expect that at least one of them is a
right pair (i.e., follows the characteristic) with high probability. However, since
we only have the output after r + 16/t rounds, there are no obvious filtering
conditions on the ciphertext pair, and a trivial differential attack would fail to
distinguish between right and wrong pairs.

In order to work around this problem, we first note that given the actual
values at the output of round r +16/t, there is, on average, only one 128-bit key
that leads to the fixed difference of Δr.8 In this attack, we efficiently find the
key suggestion (or suggestions in general) for each of the p−1 ciphertext pairs,
and then we perform a trial encryption in order to test whether it is the correct
key. Hence, we show that instead of determining the right pair, it is sufficient to
efficiently attach a candidate key to each pair.

Our strategy resembles “Attack-C” of Albrecht and Cid [1]. In Attack-C, the
adversary tests suggestions for the key, obtained by solving non-linear equations
constructed using the fixed final difference of the characteristic and each of the
ciphertexts pairs. In our case, we use a similar strategy, but without directly
solving any non-linear equation. Instead, we use a linearization technique similar
to the technique used in our search algorithm to determine the candidate key
efficiently by solving two systems of linear equations.

The algorithm first “linearizes” the last 16/t rounds by expressing the output
difference Δr+16/t as a linear combination of the fixed difference Δr and some
auxiliary variables. We start with the difference Δr and examine its evolution
through round r + 1. Since there are t S-boxes in round r + 1, after the S-box
layer there are (at most) 8t unknown bits. Hence, we add 8t variables to denote
this difference so that Δr+1 can be expressed as a linear combination of Δr and
these 8t variables.9 We continue through rounds r + 2, r + 3, . . . , r + 16/t, and

8 When partially decrypting the two ciphertexts through the last 16/t rounds until
round r with a random key, their intermediate difference is equal to Δr with prob-
ability 2−128.

9 Note that unlike the characteristic search algorithm, there is no need for 128 initial
variables, since the “initial” difference Δr is fixed.



326 A. Bar-On et al.

finally we obtain a representation of Δr+16/t as a linear combination of Δr and
8t · (16/t) = 128 variables. Note that this procedure does not depend on the
actual ciphertexts, and can be performed during preprocessing. After obtaining
the p−1 ciphertext pairs, we plug the output difference Δr+16/t into the system
of equations, find all the 128 intermediate variables, and thus all intermediate
differences Δr+1, . . . ,Δr+16/t−1.

After the differential sequence is determined, we can efficiently obtain the
corresponding key suggestions to test. This is due to the fact that the determined
differential transitions for the (16/t) · t = 16 S-boxes give us the actual possible
transition values (as each input/output difference suggests on average a single
actual value). Assuming that the subkeys are interleaved with the state by a
XOR operation (as in most SP networks), this gives 128 linear equations in the
subkey bits, which are usually sufficient to recover the key easily.10

We note that the number of additional rounds can be further increased from
16/t if the differential characteristic is chosen such that its output difference
Δr forces some S-boxes in the next rounds to be inactive. In such a case, the
number of auxiliary variables in the linearization stage is decreased, and thus,
more rounds can be covered by 128 auxiliary variables. As will be shown in
Section 5, this is the case in our attack on Zorro, where the r-round characteristic
is chosen such that out of the 8 S-boxes in rounds (r + 1) and (r + 2), only four
are active. As a result, rather than attacking r + 16/4 = r + 4 rounds, we are
able to break r + 5 rounds with the same complexity.

The full details of the algorithm are given below. Its data complexity is
2 · p−1 chosen plaintexts and its time complexity is a bit more than 2 · p−1 (and
is estimated as 4 · p−1), since the analysis of each encrypted pair is very efficient
(it essentially involves solving two small sets of linear equations). The algorithm
requires negligible memory to store two small matrices.

3.2 A Detailed Description of the Algorithm

In order to avoid abundance of variables, we assume that the number of S-boxes
in each round is t = 4 (as in Zorro), and thus the attack targets r + 4 rounds.
The algorithm can be easily adapted to any value of t.

The Main Key-Recovery Algorithm. The algorithm makes use of two aux-
iliary matrices, A1 and A2, that are independent of the actual key and data, and
are computed during preprocessing (to be described below).

– Given the 96×128 matrix A1, and Δr+4, the 96-bit vector A1 ·Δr+4 describes
all the 12 · 8 = 96 unknown output differences for the S-boxes of rounds r+1,
r + 2 and r + 3. Note that once the output differences of these 12 S-boxes
are known, computing the full Δr+1, Δr+2 and Δr+3 can be done by simple
linear algebra.

10 If the key schedule is linear (as in Zorro), this can be done instantly by solving a
system of linear equations. For more complex key schedules like that of AES, the
key can typically be easily recovered by a guess-and-determine procedure.
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– Given the 128 × (128 + 256) matrix A2, and a (128 + 256)-bit vector v
(comprised of the 128-bit ciphertext, and 2 · (32 · 4) = 256-bit input-output
values of all the S-boxes of the last 4 rounds), the product A2 · v gives a
suggestion of the 128-bit key K.

The full algorithm is as follows:

1. Compute the matrices A1 and A2 (as described below).
2. Ask for the encryptions of p−1 plaintext pairs with input difference Δ0.

For each pair (P,C) and (P ′, C ′):
(a) Compute Δr+4 = C ⊕C ′, and then calculate A1 ·Δr+4. This allows

to compute the input-output differences of the 16 S-boxes in rounds
r + 1, r + 2, r + 3, r + 4.

(b) Check for each of the 16 S-boxes, whether the input-output differ-
ence transitions are possible according to the difference distribution
table. If any of them is impossible, discard this pair and analyze the
next pair by going back to Step 2.

(c) Compute according to the difference distribution table, a list of
vectors List, containing 2 · (32 · 4) = 256-bit vectors, specifying all
the possible input-output values of all the 16 S-boxes of the last 4
rounds.

(d) For each 256-bit vector in List, denoted by w:
i. Denote by v the (128+256)-bit vector, comprised of the 128-bit

ciphertext C, and the 256-bit vector w (specifying the input-
output values for all the S-boxes of the last 4 rounds). Obtain
a suggestion for the key K by computing product A2 · v.

ii. Test the key using a trial encryption, and if it succeeds, return
it.

Complexity Analysis. The data complexity of the attack is 2 · p−1 chosen
plaintexts. For each plaintext-ciphertext pair, we perform some simple linear
algebra operations, whose complexity is generally proportional to a full cipher
evaluation.11 As noted in the beginning of this section, we expect to test only 1
key per plaintext pair, and thus we can estimate the time complexity of the attack
to be slightly higher than 2 · p−1 cipher evaluations (given that the preprocessing
complexity is negligible compared to p−1).

The memory complexity of the attack is less than 210 words of 128 bits,
required in order to store A1 and A2. Note that the elements of List can be
generated “on-the-fly”, and we do not need to store them.

Calculating the Differential Transitions from the Output Difference.
This preprocessing algorithm is given as input Δr (which is known from the

11 We can further reduce the complexity of the linear algebra using various low-level
techniques (e.g., by using Gray-Codes), but these are out of the scope of this paper.
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characteristic) and computes the 96 × 128 matrix A1 defined above. The algo-
rithm symbolically maintains the state difference of round i (Δi), denoted by
STi (which is initialized for i = r with the known Δr).

1. For each round i ∈ {r, r + 1, r + 2, r + 3}:
(a) Given STi, compute STi+1 by allocating 4 · 8 = 32 new linear vari-

ables for the output of the 4 S-boxes of round i+1, and then symbol-
ically applying the linear layer L, obtaining STi+1 = L(STi) (i.e., a
symbolic representation of Δi+1).

2. Given the 128 computed symbolic expressions STr+4 (as functions of a
total of 4 · 32 = 128 linear variables), invert the 128 × 128 matrix.
This gives a matrix which calculates the S-box output differences of
rounds r + 1, r + 2 and r + 3 (and r + 4) as functions of Δr+4 (note
that we do not actually need to allocate the 32 variables for Δr+4 in
order to compute this matrix). Denote by A1 the first 96 rows of this
matrix (calculating the S-box output differences of rounds r + 1, r + 2
and r + 3).

Calculating the Key From the Ciphertext and S-box Transition Val-
ues. This preprocessing algorithm computes the 128 × (128 + 256) matrix A2

defined above. The algorithm first symbolically describes all the (32 · 4) = 128
S-box output values in the decryption process of a (symbolic) ciphertext C,
as linear combinations of the 128 variables of C, the 128 variables of K, and
the (32 · 4) = 128 input values of all the intermediate S-boxes. This is done
by iteratively computing the symbolic description of the values obtained in the
decryption process of C through rounds r+4, r+3, r+2, r+1 (from the decryp-
tion side), and expressing for each round, the outputs of the S-box transitions
as linear combinations of the previous variables. Finally, the algorithm performs
Gaussian elimination to express the 128 variables of the key as linear combina-
tions in terms of the other 128 + 256 variables, giving the matrix A2.

As the idea of this algorithm is very similar to the one of the previous algo-
rithm (which computes A1), we do not give its full description in this paper.

4 Key-Recovery Algorithm for Linear Attacks on PSP
Networks

In this section we present a key recovery algorithm for linear attacks exploiting
the small number t of S-boxes in each round. We show that given an r-round
linear characteristic with bias q, one can attack r + � rounds (i.e., � rounds
in addition to the characteristic) with data complexity12 of c · q−2, time com-
12 The value of c is determined by the amount of recovered subkey material and the

desired success rate according to the formula suggested by Selçuk in [15] or its
refinements from [5]. For example, for t = 4 (32-bit subkey) and success rate of 84%,
we need to fix c = 3.7. For the full 128-bit key and success rate of 78.8% we need to
fix c = 7.
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plexity of q−2 + t� · 28t�+8 , and memory complexity of min(c · q−2, 28t�). As in
the differential case, the algorithm is based on linearization of the rounds after
the characteristic. An additional tool used here is a variant of the partial sums
technique introduced by Ferguson et al. [9].

A 1-Round Attack. For sake of clarity, we first present the algorithm in the
case of � = 1. Thus, we want to attack r + 1 rounds exploiting an r-round
linear characteristic. We denote the mask of the characteristic after i rounds by
Ωi, determining Ωi for i ∈ {0, 1, . . . , r}. The algorithm works by asking for the
encryptions of c · q−2 arbitrary plaintexts, and thus we expect to obtain a strong
linear distinguisher after r rounds.

Obviously, the naive attack (guessing the last subkey and checking whether
the linear relation holds) is worse than exhaustive key search for a 128-bit cipher,
since the last round subkey consists of 128 bits. A better approach is to exchange
the order of operations in the final round, such that the final key addition is
performed right after the S-box layer, and the final linear layer becomes the
last operation in the encryption process. This can be done by replacing the final
round subkey with an equivalent key.13 As a result, in order to compute Ωr ·Xr,
where Xr denotes the state after round r, it is sufficient to guess only the 8t
equivalent subkey bits that affect the S-boxes of the last round. Thus, the attack
complexity is reduced to 28t · q−2.

The next optimization is useful when c · q−2 > 28t (as in the case of Zorro).
We write Ωr = Ω8t ⊕ Ω128−8t, namely, we divide the mask Ωr between two
masks — one that affects only the 8t bits in the S-boxes, and all the rest
(as a result Ω8t · Ω128−t = 0). If two “ciphertexts” (i.e., partially decrypted
ciphertexts through the linear layer L, which in the case of AES is composed
of MC and SR) have the same value in the bits masked by Ω8t, then for any
key guess, they yield the same value for Ω8t ·Xr. Hence, we count for each
of the 8t bits that enter the S-box, how many times they were suggested (if
Ω0 ·P ⊕Ω128−8t · Xr = 0, we increment the counter corresponding to the 8t bits,
and if Ω0 ·P ⊕Ω128−8t ·Xr = 1, we decrement this counter). After counting how
many times an 8t-bit value is suggested (again, compensating for the difference
in the values of Ω0 ·P ⊕Ω128−8t ·Xr), we can analyze the 8t-bit value itself, and
just increment/decrement the observed bias by the value of its corresponding
counter. The resulting attack algorithm is as follows:

1. Initialize 28t counters to zero.
2. Collect c · q−2 plaintext/ciphertext pairs (Pi, Ci).
3. For each ciphertext Ci, compute Zi = L−1(Ci).
4. For each pair (Pi, Zi):

– If Ω0 ·P ⊕Ω128−8t ·Zi = 0, increment the counter corresponding to
the value of the 8t bits of Zi.

13 This procedure is common in attacks on AES, where the equivalent key is defined
by K̃ = SR−1(MC−1(K)), or in our notations K̃ = L−1(K).
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– Else, decrement the counter corresponding to the value of the 8t
bits of Zi.

5. For all 8t key bits guess:
(a) Initialize a bias counter to 0.
(b) For any value of the 8t bits masked by Ω8t, use the guess of the key

bits to evaluate Ω8t ·Xr.
(c) If Ω8t ·Xr = 0, add to the bias counter, the counter associated with

the 8t “ciphertext” bits, otherwise, decrement by the same value.
(d) Output the key with the maximal bias from 0.

The advantage of this approach over the previous one is that the expensive
partial decryption step is done only 28t times, rather than c · q−2 times. The
time complexity of the algorithm is c · q−2 + 22 · 8t, and its memory complexity
is min(c · q−2, 28t).

The algorithm can be further refined by dividing the key guessing procedure
into t steps using the partial-sum technique. In the first step, we guess only the
8 subkey bits corresponding to a single S-box and partially decrypt only through
this S-box, summing over the relevant counters. After this step, there are only
28(t−1) possible values (for the 8(t − 1) bits, as the 8 bits corresponding to the
“guessed” S-box are merged into a single entry). This process can be repeated
for the next 8 subkey bits, until all 8t equivalent subkey bits are guessed. As the
complexity of each of these stages is 28t+8 operations, the overall time complex-
ity of the attack becomes c · q−2 + t28t+8 operations. The memory complexity
remains min(c · q−2, 28t).

Finally, we note that when the key addition layer is composed of XOR, we can
optimize the parity evaluations by applying the algorithm of [6]. This algorithm,
based on Fast Fourier Transform, allows computing the biases of all combinations
of values and keys for a single S-box in time 3 · 8 · 28 = 212.6 rather than 216 as
in a straightforward implementation. Hence, the time complexity of our attack
becomes c · q−2 + t28t+4.6.

An �-Round Attack. In order to extend the attack to r+� rounds, we linearize
the last � encryption rounds. Namely, we represent the bits of the state Xr as a
linear function of the ciphertext bits and 8t� auxiliary variables (similarly to the
differential attack, we add 8 variables each time an active S-box is encountered).
As in the case � = 1, we observe that if two partially decrypted ciphertexts
agree on 8t� bits, then they agree also on Ωr ·Xr. Hence, we can group the
ciphertexts into 28t� sets according to the values of these bits, and execute the
same algorithm as in the case of � = 1.

The complexity of the attack is D = c · q−2 known plaintexts, M =
min(c · q−2, 28t�) 128-bit memory blocks, and T = c · q−2 + t� · 28t�+4.6 opera-
tions, where each operation is less than a single round decryption.

We note that the complexity of the attack can be further reduced if the
linear characteristic is chosen in such a way that only t′ of the active S-boxes in
round r + 1 affect the output mask Ωr ·Xr. In such a case, the number of sets
to which we group the ciphertexts is reduced to 28((�−1)t+t′), and the attack’s
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complexity is reduced accordingly. As described in Appendix A, this is the case
in our linear attack on Zorro, where only 2 of the 4 active S-boxes in the last
round affect the output mask. This also changes the memory complexity to
M = min(c · q−2, 28t(�−1)+8t′

).

5 Practical Cryptanalysis of the Full Zorro

In this section we apply our generic algorithms to the lightweight block cipher
Zorro.

5.1 Description of Zorro

Zorro is an AES-based 128-bit lightweight block cipher proposed by Gérard et
al. at CHES 2013 [10]. The cipher executes 24 AES-like rounds, where the key
schedule simply adds the 128-bit master key every four rounds, as shown at the
top of Figure 2.

Each Zorro round is made of four AES-like operations, namely SB∗, AC, SR
and MC (see the bottom of Figure 2). SR and MC are exactly the same as the
ones used in AES, whereas AC for round i adds the four constants (i, i, i, i � 3)
to the 4 bytes of the first row. The main difference of Zorro from the AES is its
non-linear operation SB∗, which contains only 4 S-boxes (instead of 16), located
in the first row of the state matrix. Moreover, the actual 8 × 8 S-box is different
than the one used in AES. However, as the S-box implantation has only a limited
effect on our results, we refer the interested reader to the design document [10]
for its specification.
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Fig. 2. The Key Schedule and Round Function of Zorro
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Summary of Attacks on Zorro. Table 1 summarizes the previously published
and our new attacks on full Zorro.14 We note that although the (independent and
concurrent) work of Rasoolzadeh et al. [14] exploited the same characteristics as
we do (that were found by them manually), their attack complexities are higher
by a factor of 212, due to the use of inferior attack techniques.

Table 1. Previous, Independent and New Key-Recovery Attacks on Full Zorro

Source Time Data Memory Technique

[16] 2112†† 2112 CP negligible Differential

[14] † ≈ 255 †† 255.12 CP 217 Differential

[14] † 257.85 245.44 KP 217 Linear

Sec. 5.2 245 241.5 CP 210 Differential

App. A 245 245 KP 217 Linear

KP - Known plaintext, CP - Chosen plaintext
† The results were obtained concurrently and indepen-

dently of ours.
†† The reported time complexities of [14,16] are lower.

However, in order to calculate the time complexity,
we take into account the time required for generat-
ing the data.

5.2 Differential Cryptanalysis of Full Zorro

In order to mount a differential attack on Zorro, we first apply the differential
characteristic search algorithm of Section 2.2, and then use the key recovery
technique of Section 3.

Differential Characteristic Search. We applied the differential search algo-
rithm of Section 2.2 to the full Zorro. The highest probability characteris-
tic for Zorro (for more than 7 rounds) is obtained by concatenating several
instances of the 4-round iterative characteristic described15 in Figure 4 (given in
the appendix). In fact, there are 5 additional linearly-dependent variants (over
GF (28)) of the presented characteristic with the same probability.

Key Recovery for the Differential Attack. In order to exploit the charac-
teristic in an attack, we extend it up to round 19 (see Figure 4). The resulting
19-round characteristic has 8 active S-boxes in total, and has probability of
(6/256)8 ≈ 2−43. We used the optimized version of our characteristic search tool
(pattern-prefix search) to prove that it is the highest probability characteristic
for the full 19 rounds.
14 The table does not include the results of [11], which attack a weak-key class.
15 We note that similar iterative characteristics were independently found in [14].
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A straightforward application of the algorithm presented in Section 3 can
be used to attack 19 + 16/4 = 23 rounds. However, as mentioned in Section 3,
more rounds can be attacked if the characteristic is chosen such that several
S-boxes after the characteristic are inactive, and this is the case here. First, we
observe that the state difference after 19 rounds (i.e., the output difference of the
characteristic) contains 2 inactive S-boxes (see Figure 4). Furthermore, we can
exploit the specific super S-box structure of Zorro (and of AES-based designs
in general), and extend the characteristic with 2 additional inactive S-boxes in
round 20 (see Figure 4). Thus, we have a total of 16 active S-boxes in the last 5
rounds (similarly to 4 fully active Zorro rounds), allowing to attack 5 rounds in
addition to the 19 rounds of the characteristic.

According to Section 3, as the 19-round characteristic has a probability of
about p = 2−43, the data complexity of the attack is about 2 · p−1 = 244 chosen
plaintexts, its time complexity is about 245, and its memory complexity is less
than 210.

We can reduce the data complexity of the attack by a factor of 6 by using
structures that exploit all the 6 characteristics of probability p = 2−43. This
is a common technique in differential cryptanalysis, and was used (for exam-
ple) in [16]. Each structure we use is an affine subspace of dimension 6, which
is constructed from an arbitrary plaintext, by XORing to it all the 26 linear
combinations (over GF (2)) of the 6 initial differences of the characteristics of
probability p = 2−43. Thus, the data complexity is reduced by a factor of 6 to
about 241.5. The time complexity remains the same, and the memory complexity
remains very small (as each structure contains only 26 elements).

Attack Simulation. The differential attack presented in this section was imple-
mented and fully simulated 11 times on a single desktop PC, each simulation
running for (up to) several days (the fastest took less than 8 hours, whereas the
longest took about 235.5 hours). Table 2 describes the average results of the
simulations, which are very close to the theoretical prediction. More detailed
results are given in Table 3 (in the appendix).

Table 2. Average Simulation Results of Differential Attack on Full Zorro (Versus
Theoretical Estimate)

Result Plaintexts Structures Pairs Keys

Encrypted Analyzed Analyzed Suggested

Theory 241.5 235.5 243 243

Simulations (Average) 241.49 235.49 243.07 243.07
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6 Design of Secure PSP Networks

In this section, we show that the weakness of Zorro is not inherently present
in all PSP networks. We demonstrate this by designing a mild modification of
Zorro that is provably secure against basic differential and linear attacks (such
as those that broke the original Zorro). Finally, we discuss how to choose the
parameter t (i.e., the number of S-boxes in each round) in PSP networks.

In order to quantify what we consider to be a “good” PSP network with
respect to resistance against basic differential and linear attacks, we estimate
the minimal number a of active S-boxes in an r-round characteristic for a very
strong PSP network. Our model constructs an idealized PSP network by choosing
the layer of each round uniformly at random from the space of invertible linear
mappings, and it is therefore expected to provide very fast diffusion.

As described in Section 2, an r-round characteristic with a active S-boxes
gives rise to a system of 8(tr − a) linear equations in 8(16 + a) variables (using
the notations of Section 2). Based on our randomness assumption, we expect a
solution when 8(16 + a) ≥ 8(tr − a), or equivalently, a ≥ (t · r − 16)/2. Namely,
an r-round characteristic for an idealized PSP network is expected to have at
least (t · r − 16)/2 active S-boxes.16 We note that this inequality is somewhat
oversimplified, as it does not take into account the fact that we have many
possible patterns, whereas we are looking for only one valid characteristic. On
the other hand, depending on the actual S-box, not all solutions are valid for a
given cipher. As these two considerations have opposite effects on a, and their
total effect seems relatively small for large values of r, we consider the formula
a ≥ (t · r − 16)/2 to be a reasonable measure for a “good” PSP Network. As an
extreme case, consider AES for which t = 16. Plugging r = 4 into the formula, we
estimate that 4-round AES can be designed to have at least a ≥ (16 · 4−16)/2 =
24 active S-boxes in any characteristic. Indeed, it is known that the minimal
number of active S-boxes in a 4-round characteristic of AES is 25 (see [7]), and
thus our estimate is very close in this case.

6.1 Analysis of a Concrete PSP Network

We now construct a PSP Network which (roughly) satisfies the formula a ≥
(t · r − 16)/2 for large values of r, thus providing significantly better resistance
against basic differential and linear attacks compared to Zorro. According to
the full version of this paper [2], in order to avoid the weakness of Zorro, our
scheme has to deviate from the AES-based design strategy. More specifically,
this appendix shows that any AES-based PSP network (with small t) is likely
to have 4-round iterative characteristics with a high probably. The reason for
the inherent weakness of AES-based PSP networks is subtle and is detailed in
16 This formula is somewhat more conservative (from the point of view of the designer)

compared to the one obtained in [10], that seems to underestimate the number of
degrees of freedom available in the construction of the characteristic, thus obtaining
larger values of a.
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the full version of this paper [2]. Very roughly, this weakness stems from the
combination of the two properties below:

1. Any MDS circulant MixColumn matrix, MC, raised to the power of 4 (i.e.,
(MC)4) has a large space of eigenvectors (“almost fixed-points”) that satisfy
MC4(x) = αx for an appropriately chosen eigenvalue scalar α.

2. The order of ShiftRows is 4 (i.e., (SR)4 is the identity).

Therefore, in order to avoid the high probability 4-round iterative character-
istics of the type shown in Figure 4, our scheme has to deviate from the AES
design strategy by changing at least one of the two properties above. In our
tweaked scheme, we slightly change the ShiftRows operation such that its order
is greater than 4, as described below. Furthermore, in order to avoid additional
types of iterative characteristics (namely, characteristics presented in [16], which
are independent of ShiftRows), we also change the locations of the S-boxes, and
place them on the diagonal instead of the first row.

The modified variant of ShiftRows (denoted as SR∗) is described in Figure 3
and works as follows: The action of SR∗ on rows 1,3 and 4 is the same as in
the original ShiftRows. On the other hand, only the first 3 bytes of row 2 are
cyclically rotated by 1 (whereas the 4’th byte remains unchanged at its position),
and it is easy to see that the order of SR∗ is 3 · 4 = 12. We note that this modified
variant provides slightly weaker local diffusion compared to AES-based designs.
However, we now show that globally, this modification significantly strengthens
the resistance of the scheme against standard differential and linear attacks.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 67 8

9 1011 12

13 14 1516

SR
∗

Fig. 3. Modified ShiftRows

We first consider 11 rounds of the tweaked scheme and estimate its strength
in our ideal model by plugging t = 4 and r = 11 into the formula a ≥ (t · r −
16)/2, obtaining a ≥ (4 · 11 − 16)/2 = 14. However, a more careful analysis
reveals that there are many possible 11-round patterns with 13 active S-boxes
(
(
11 · 4
13

)
> 235), each giving rise to a system with 8 · (16 + 13) = 8 · 29 variables

and 8 · (44 − 13) = 8 · 31 equations, which has a solution with non-negligible
probability of 28 · (29−31) = 2−16. Therefore, 13-round characteristics can also be
expected, slightly deviating from the generic formula when we do not consider
post-filtering according to the cipher’s S-box.
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Using the characteristic search tool presented in Section 2, we were able
to prove that there exists no characteristic (or linear mask) with at most 12
active S-boxes (regardless of the cipher’s specific S-box). Considering 13 active
S-boxes, there exist only a few dozens of possible characteristics for the cipher.
Consequently, the behavior of the 11-round scheme closely matches our ideal one,
and we conclude that it has no particular weakness against standard differential
and linear cryptanalysis.

A more comprehensive differential analysis17 of the 11-round cipher reveals
that none of the characteristics with 13 active S-boxes satisfies the restrictions
imposed by the 13 transitions through the Zorro S-box. This is expected, as
the number of possible characteristics is small, and implies that our generic
formula a ≥ (t · r − 16)/2 predicted the exact value of a = 14 in this case.
Indeed, we were able to find about 232 11-round characteristics with 14 active S-
boxes using our tool. When considering the specific Zorro S-box for post-filtering
these solutions, about 222 valid 14-round differential characteristics remain. The
highest-probability differential characteristic with 14 active S-boxes is described
in Figure 5 (in the appendix), having probability of about 2−86.8. Since the
highest differential transition probability for the Zorro S-box is about 2−4.7,
this proves that the best 11-round characteristic has probability of at most
min(2−86.8, 215 · (−4.7)) = 2−70.5. Consequently, the best characteristic for 22
rounds of the cipher has probability of at most 2−70.5 · 2 = 2−141 (note that for
the stronger AES S-box, the bound is even lower).

For 12 rounds of the cipher, we were able to prove that there exists no
characteristic (or mask) with at most 14 active S-boxes. However, we did not
run the tool for more than 14 active S-boxes, as this is too time-consuming for
a standard desktop PC. Of course, it would be interesting to further optimize
the search tool and efficiently analyze more rounds.18 Nevertheless, even in their
current state, our results are sufficient for demonstrating that the security of our
modified Zorro variant with respect to standard differential and linear attacks
is close to that of an idealized PSP network with the same parameters. Indeed,
according to the formula a ≥ (t · r − 16)/2, the bound of at least a = 30 active
S-boxes (or a differential characteristic probability bound of 2−141) should be
obtained for r = 19 rounds. Thus, the gap between the expected behavior of the
scheme and what we can prove, is only 3 rounds for a probability bound as low
as 2−141, and if we consider the stronger AES S-box (for which the probability
bound of 2−141 can be obtained with only 24 active S-boxes), this gap is even
smaller.

17 The linear analysis is very similar, and we omit it from this paper.
18 One could try to incorporate dynamic programming techniques into our tool, sim-

ilarly to the algorithms of [3,4]. However, this seems far from straightforward, as
concatenating two patterns requires the relatively complex operation of intersecting
their corresponding linear subspaces.
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6.2 How to Choose the Number of S-boxes in Each Round in PSP
Networks?

We now use the insight gained in this paper to revisit one of the main questions
posed in [10], namely: for a PSP network, what is the value of t that offers security
with the minimal number of S-boxes? In [10], it was concluded that for 128-bit
ciphers with 8-bit S-boxes, the optimal value is t = 4, when considering security
against standard differential and linear cryptanalysis. However, our formula a ≥
(t · r−16)/2 shows that the total number of S-boxes in the scheme, t · r, required
to guarantee that a of them are active (and thus to obtain a bound on the
characteristic probability) is fixed to (2 · a) + 16, regardless of the value of t.
Furthermore, according to Sections 3 and 4, the number of S-boxes that need to
be added at the end of the cipher is fixed as well (e.g., to about 16 for differential
attacks), and is independent of t.

Since it is possible to use t = 16 as in AES, this seems to question the
effectiveness of PSP networks in thwarting side-channel attacks via masking
techniques. Indeed, when considering resistance against standard differential and
linear cryptanalysis, it seems that there is no gain in using partial non-linear
layers. However, we still claim that the combination of partial non-linear layers
with strong linear layers has an advantage, when taking into consideration other
types of attacks.

In order to demonstrate this potential advantage, we consider AES-128,
where 4 rounds are sufficient for assuring that any characteristic has proba-
bility lower than 2−128. Despite its strength against differential and linear crypt-
analysis, 4-round AES-128 is an extremely weak cipher due to strong structural
properties, and can be broken in 210 chosen plaintexts and time (see [9]). In fact,
as the best attacks on AES-128 can break 7 rounds (e.g., see [8]), one has to (at
least) double the number of rounds to 8 (and double the number of S-boxes to
16 · 8 = 128) in order to obtain a secure cipher.

PSP networks, on the other hand, employ many strong linear layers through
more rounds, and thus seem to better mitigate structural attacks. Consequently,
one could build a secure PSP network where the number of S-boxes is closer
(compared to AES) to the bound (2 · a) + 16.

Finally, we note that (generalized) Feistel structures employ only partial lin-
ear layers, and therefore may require many more than (2 · a)+16 S-boxes to resist
standard differential and linear cryptanalysis. Furthermore, due to the partial
linear layers, some Feistel structures are particularly vulnerable to structural
attacks such as impossible differential cryptanalysis.

We conclude that PSP networks may allow for more efficient masking tech-
niques to mitigate side-channel attacks. However, the optimal choice of the num-
ber of S-boxes in each round has to be made for each specific design separately,
after evaluating its security against a broad class of attacks, which are out of
the context of this paper.
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7 Conclusions

In this paper, we introduced new algorithms for differential and linear crypt-
analysis of PSP networks. Using these algorithms, we were able to devise and
fully simulate a practical attack against the block cipher Zorro. We then closely
examined PSP networks, and concluded that they should not be based directly
on the AES design strategy. Finally, we designed and analyzed a tweak of Zorro
and used it to show that PSP networks do not have an inherent flaw. We do not
formally propose to use this tweak, as this would require defining its concrete
number of rounds and performing full analysis against many types of known
attacks. Nevertheless, we believe that our tweak may provide a good starting
point for building future designs. Alternatively, one can think of building PSP
networks based on bit-oriented design strategies, such as the one used for the
block cipher Serpent. Regardless of concrete design strategies, we believe that
the tools developed in this paper will be useful in future PSP network design
and analysis.

A Details of the Linear Cryptanalysis of Full Zorro

In this section, we describe our linear attack on full Zorro.

Linear Characteristic Search. We applied the linear characteristic search
algorithm of Section 2 to 23-round Zorro. Similarly to the differential case, the
best characteristics are concatenations of 4-round iterative linear characteristics.
These characteristics can be viewed as counterparts of the differential ones, and
follow a similar representation as in Figure 4. The resulting 23-round linear
characteristic has 10 active S-boxes, and thus has a bias of q = (56/256)10 ≈
2−22. As in the differential case, we used our characteristic search tool to prove
that it is the best linear characteristic for 23 rounds.

Key Recovery for the Linear Attack. Using the algorithm of Section 4, we
can attack 23 + 1 = 24 rounds with data complexity of 244 known plaintexts,
time complexity of 244 + 22 · 8+9 ≈ 244 encryptions, and memory complexity of
min(244, 22 · 8+1) = 217 32-bit words.19 The attack recovers 2 bytes of equivalent
key K̃ = SR−1(MC−1(K)) (i.e., the two bytes used in the “active” S-boxes in
round 24), which is the result of exchanging the order of the final key addition
and linear operations SR and MC.

In order to recover additional 2 bytes of K̃, we can simultaneously and inde-
pendently (using the same data) exploit the variant of the same linear character-
istic, in which the 2 columns are swapped. Furthermore, we can simultaneously
exploit another variant of the iterative characteristic which spans rounds 2–24
19 Note that since there are only two active S-boxes in round 24 that affect the output

bias of the characteristic, the memory complexity is 217, and not 233 as it would be
in the worst case.
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(with the active S-boxes in round 2), and apply the key recovery on the encryp-
tion side. This allows us to recover 2 bytes of K, and additional 2 bytes can
be simultaneously recovered by swapping the columns in the last characteris-
tic. As the time complexity bottleneck in all of these 4 simultaneous attacks
is the actual collection of data, the total time complexity of recovering the 8
bytes of key material remains about 244, and the memory complexity is less
than 4 · 2(2 · 8)+1 = 219 words of 32 bits, or 217 words of 128 bits.

After determining the 8 bytes of key material used in rounds 1 and 24 which
contribute to all non-linear operations, we can “peel off” this non-linearity and
apply the same ideas to the inner rounds 2 and 23 in order to recover the 8 addi-
tional (linear combinations of) key bytes, which contribute to the non-linearity in
these rounds. This is done by exploiting the iterative characteristics in which the
active S-boxes are in round 2, and in round 23. However, due to the dependency
of the inner-round attacks on the previously recovered 8 bytes, it is not obvious
how to perform these attacks simultaneously, and thus (in order to avoid the
large memory overhead of storing the original data) we can request additional
244 known plaintexts in order to recover the rest of the key. This leads to an
attack that uses 245 known plaintexts, runs in 245 time, and requires memory of
about 217 words of 128 bits.

Table 3. Simulation Results of Differential Attack on Full Zorro (Versus Theoretical
Estimate)

Simulation Plaintexts Structures Pairs Keys

Encrypted Analyzed Analyzed Suggested

Theory 241.5 235.5 243 243

Simulation Average 241.49 235.49 243.07 243.07

1 238.30 232.30 239.89 239.84

2 238.50 232.50 240.08 240.06

3 238.56 232.56 240.14 240.10

4 238.77 232.77 240.35 240.34

5 238.86 232.86 240.44 240.44

6 239.12 233.12 240.70 240.69

7 240.59 234.59 242.17 242.22

8 240.83 234.83 242.41 242.43

9 242.90 236.90 244.49 244.47

10 243.07 237.07 244.66 244.67

11 243.21 237.21 244.79 244.79
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Fig. 4. Differential Attack on Full Zorro
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Abstract. In this paper we study the security of summing the outputs
of two independent hash functions, in an effort to increase the security
of the resulting design, or to hedge against the failure of one of the hash
functions. The exclusive-or (XOR) combiner H1(M) ⊕ H2(M) is one of
the two most classical combiners, together with the concatenation com-
biner H1(M) ‖ H2(M). While the security of the concatenation of two
hash functions is well understood since Joux’s seminal work on multi-
collisions, the security of the sum of two hash functions has been much
less studied. The XOR combiner is well known as a good PRF and MAC
combiner, and is used in practice in TLS versions 1.0 and 1.1. In a hash
function setting, Hoch and Shamir have shown that if the compression
functions are modeled as random oracles, or even weak random oracles
(i.e. they can easily be inverted – in particular H1 and H2 offer no secu-
rity), H1⊕H2 is indifferentiable from a random oracle up to the birthday
bound.

In this work, we focus on the preimage resistance of the sum of
two narrow-pipe n-bit hash functions, following the Merkle-Damg̊ard or
HAIFA structure (the internal state size and the output size are both
n bits).We show a rather surprising result: the sum of two such hash
functions, e.g. SHA-512 ⊕ Whirlpool, can never provide n-bit security
for preimage resistance. More precisely, we present a generic preimage
attack with a complexity of Õ(25n/6). While it is already known that the
XOR combiner is not preserving for preimage resistance (i.e. there might
be some instantiations where the hash functions are secure but the sum
is not), our result is much stronger: for any narrow-pipe functions, the
sum is not preimage resistant.

Besides, we also provide concrete preimage attacks on the XOR com-
biner (and the concatenation combiner) when one or both of the com-
pression functions are weak; this complements Hoch and Shamir’s proof
by showing its tightness for preimage resistance.

Of independent interests, one of our main technical contributions is
a novel structure to control simultaneously the behavior of independent
hash computations which share the same input message. We hope that
breaking the pairwise relationship between their internal states will have
applications in related settings.

Keywords: Hash functions · Combiners · XOR combiner · Preimage
attack
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1 Introduction

Hash functions are a very important class of primitive in modern cryptography,
used in almost every secure system. A hash function H : {0, 1}∗ �→ {0, 1}n takes
an arbitrary length input and produces an n-bit output or digest. Hash func-
tions are used in many setting with various security requirements; the general
expectation is that a hash function should behave like a random function from
{0, 1}∗ to {0, 1}n. More concretely, the main security notions expected from a
hash function are:

Collision resistance. It should be hard to find two messages M �= M ′ with
H(M) = H(M ′).

Second-preimage resistance. Given a message M , it should be hard to find
M ′ �= M with H(M) = H(M ′).

Preimage resistance. Given a target hash value H, it should be hard to find
M with H(M) = H.

Since generic collision attacks require 2n/2 work, and generic preimage attacks
require 2n work, a secure hash function should have the same level of resistance.

In order to build more secure hash functions, or to protect oneself against
future cryptanalysis advances, such as the devastating attacks of Wang et al.
against the SHA family [36,37], a practical countermeasure might be to combine
two different hash functions. The goal is that the combined hash function can
only be broken when both components are weak. In particular, this reasoning was
used by the designers of SSL [11] and TLS [5], who combined MD5 and SHA-1
in various ways. More precisely, the Key Derivation Function of TLS v1.0/v1.1
uses a sum of HMAC-MD5 and HMAC-SHA-1.1 The designers explain [5]: “In
order to make the PRF as secure as possible, it uses two hash algorithms in a
way which should guarantee its security if either algorithm remains secure.”

There are two classical hash function combiners: the concatenation combiner
H1(M)‖H2(M) and the XOR combiner H1(M)⊕H2(M). In a seminal work [17],
Joux showed that the concatenation combiner with narrow-pipe hash functions
offers much less security than could be expected: it has 2n bits of output, but
essentially offers the same security as an n-bit hash function. In this work, we
carry a similar analysis for the XOR combiner. Previous work has shown that
it is indifferentiable from a random oracle up to the birthday bound [14], even
if the initial functions are weak; in particular, it has optimal collision resistance
of n/2 bits. However, we show that the preimage security is much less than one
might expect, with a generic preimage attack with complexity Õ(25n/6).

Since the goal of a combiner is to keep some security even if one of the func-
tions is found to be weak, it is natural that the two hash functions H1 and
H2 are independent in practice. Throughout this paper the two hash functions

1 We note that this MD5/SHA-1 combiner has been replaced by primitives based on
single hash function (e.g., SHA-256) since TLS v1.2 [6].
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used in a combiner are always assumed to be independent without specifying it
explicitly2.

Iterated Hash Function. In this paper we consider iterated hash functions,
following the Merkle-Damg̊ard construction [4,27] or the more general HAIFA
construction [2], as shown in Figure 1. We focus on narrow-pipe designs, i.e. we
assume that the internal state size is the same as the output size n. The message
M is first split into blocks m0, . . . m�, and the hash function iterates a series of
compression functions hi over an internal state x, with the initial value denoted
as IV . Finally, the hash value is computed with a finalization function g:

x0 = IV xi+1 = hi(xi,mi) H(M) = g(x�+1, |M |)

In the following, we assume that the compression function is the same at every
step (∀i, hi = h) in order to simplify the notations, but it is straightforward to
apply the attack with the corresponding function at each step.

h0n

m0

x0

h1n

m1

x1

h2n

m2

x2 x3

H(M)
n n

|M |

IV
g

Fig. 1. Iterated hash function

1.1 Related Works

Combiners have been studied in several different settings. For generic attacks,
the compression functions are modeled as random functions, in order to devise
attacks that don’t use any weakness of the compression functions. On the other
hand, some work assumes that the compression function is a weak random oracle
(that can easily be inverted), and prove that some constructions are still secure
in this model. Finally, more theoretical work focus on the notion of robustness,
i.e. the existence of a reduction from attacks on the hash functions to attacks
on the combiner.

2 If the two hash functions can be related, it is trivial that the XOR combiner is not
security-preserving. For instance, let H2(M) := H1(M) ⊕ const, where const is a
constant. If H1 is ideally secure, then H2 is also ideally secure. However, the XOR
combiner H1(M) ⊕ H2(M) = const for any message M .
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Analysis of the Concatenation Combiner. The concatenation combiner
H1(M) ‖ H2(M) is probably the most studied one. In 2004, Joux [17] described
surprising attacks on the concatenation of two narrow-pipe hash functions using
multicollisions: while the output size is 2n bits, the concatenation can at most
provide n/2-bit security for collision resistance and n-bit security for preimage
resistance3. In particular, the concatenation is not security-amplifying. On the
other hand, the concatenation combiner is robust for preimages and collisions,
which gives a matching lower bound for generic attacks.

Later, Hoch and Shamir [14] evaluated the security of the concatenation
combiner with two weak hash functions. More precisely, the two hash functions
are narrow-pipe Merkle-Damg̊ard, and the compression functions are modeled
as weak random oracles (as defined by Liskov [21]), i.e., the adversary is given
additional interfaces to receive (random) preimages of the compression functions.
They have proven that in this model, the concatenation combiner is still indif-
ferentiable from a random oracle with n/2-bit security, implying (at least) the
same security bound for collision resistance and preimage resistance. The bound
is matched by Joux’s attack for collisions, but there is a gap with Joux’s attack
for preimages, with complexity 2n, which might be interesting to investigate
further.

Mendel et al. analyzed some dedicated instantiations of the concatenation
combiner [25], in particular using the hash function MD5. We omit the details
and refer interested readers to [25].

Analysis of the XOR Combiner. The XOR combiner has received less anal-
ysis. The work of Hoch and Shamir [14] actually proves the security of the XOR
combiner as an intermediate result: it is also indifferentiable from a random ora-
cle up to 2n/2 queries in the weak random oracle model. In particular, this proves
that there are no generic attacks with complexity smaller than 2n/2. For colli-
sion resistance, the bound is tight, since it is matched with the generic birthday
attack bound. On the other hand, for preimage resistance, there exists a gap
between the n/2-bit proven bound and the n-bit expected ideal security bound.

To the best of our knowledge, no preimage attacks have been shown against
the XOR combiner. Therefore, the preimage security of the XOR combiner
against generic attacks is still an open problem, and will be the main topic
of our work. We will also consider the preimage security of the XOR combiner
with weak hash functions, and study the tightness of Hoch and Shamir’s bound.

Robust Combiners. In the last years, the general problem of combining two
(or more) hash functions H1 and H2 has been extensively studied from a the-
oretical point of view. These works focus on the notion of a robust combiner:
a robust combiner is secure with respect to property α as long as one of the
underlying hash functions is secure for α. It can be shown that the concatena-
tion combiner is a robust combiner for collision-resistant hash functions and for
3 The attacks actually require only one of the functions to be narrow-pipe.
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MACs, while the XOR combiner is robust for PRFs and for MACs [20]. More
advanced combiners have been constructed in order to be robust for multiple
properties simultaneously [8–10]. The notion was mostly studied via the black-
box reduction model.

A series of results have showed that robust combiners for collision resistance
and preimage resistance cannot have an output length significantly shorter than
the sum of the output length of the underlying hash functions [3,28,32,33].
Since the XOR combiner is length preserving, this shows that it is not robust
for collision resistance and preimage resistance.

Actually, the impossibility results are in part due to the stringent require-
ment from the black-box reduction model. In order to overcome this limitation,
Mittelbach introduced the idealized random oracle model [29]. He gives a con-
struction of a short output combiner with optimal collision and preimage security
in this model4 (assuming that one of the functions is ideal): Cryptophia’s short
combiner uses the sum of two hash functions with some pre-processing of the
messages (to allow non-independent functions).

More generally, we point out that a combiner being non-robust does not
necessarily mean there is an attack. The non-robustness results only show that
the security of the combiner cannot be proved with a reduction from the security
of the hash functions. In particular, the XOR combiner is not robust for collision-
resistance, or even collision-resistance preserving. However, Hoch and Shamir’s
work proves that there are no generic collision attacks on this construction, either
with ideal compression function, or even with weak compression functions. This
arguably makes the XOR a useful combiner for collision resistance. Regarding
preimage security, the non-robustness result does not imply that the XOR of
two concrete hash functions is weak, and the simplicity and short output of this
construction still make it quite attractive.

1.2 Our Results

In this work, we study the preimage security of the XOR combiner, the main
remaining open problem for classical combiners. We show that, surprisingly, the
sum of two narrow-pipe n-bit hash functions can never achieve n-bit security
for preimage resistance. More precisely, we find a generic preimage attack with
a complexity of Õ(25n/6). It does not exploit any structural weakness of the
compression functions and hence is applicable even if the compression functions
are two ideal random oracles. Thus, even if the two hash functions are n-bit
secure for preimage resistance, the XOR combiner is at most 5n/6-bit secure for
primage resistance. In other words, the sum can be weaker than each part.

The attack is based on a novel technique to break the pairwise relationship
between the internal states of the two hash functions. More precisely, the two
hash functions H1 and H2 share the same input message, and hence the inter-
nal states of their iterative compression function computations are related. We
4 A mistake in the initial proof and construction was later fixed by Mennink and

Preneel [26].
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control the computation chains of H1 and H2 simultaneously by constructing a
new message structure M, and two sets of internal states A for H1 and B for H2

such that: for any value A from A and any value B from B, we can derive a mes-
sage MA,B from M such that H1(MA,B) produces A and H2(MA,B) produces
B. Hence we can select states from A and B independently. After that, we use
a birthday match to find a message block m, a value A from A and a value B
from B such that h1(A,m) ⊕ h2(B,m) is equal to the target hash digest, where
h1 and h2 are the compression functions of H1 and H2 respectively. Finally we
derive the message MA,B from M, and output MA,B ‖ m as a preimage of the
target hash digest.

Our preimage attack is also applicable to Cryptophia’s short combiner [26,
29]. This construction has been proven to provide optimal collision and preimage
resistance, assuming that at least one of the initial functions is a monolithic
random oracle, but our attack does not violate the security proof, because we
use the fact that both functions have an iterative structures with an n-bit internal
state. Still, this shows that with many practical hash functions, the combiner
will be weaker that the initial functions. Our results also show that the XOR
combiner and Cryptophia’s combiner are not robust in the semi-black-box model
introduced by Mittelbach [29]5, even with independant hash functions H1 and
H2.

Our analysis on the XOR combiner is also interesting for dedicated hash func-
tion design. The hash function family RIPEMD [7] is based on a compression
function with two parallel lanes, added together at the end of each compres-
sion function. Interestingly, RIPEMD-160 has been quite resilient to cryptanal-
ysis [22–24,34], and are still considered secure. Several more recent designs use
parallel lanes in a similar way (combining them at the end of each compres-
sion function call), such as HAS-V [31], FORK [15] and LANE [16]. It might
be tempting to use parallel lanes during the full iteration, and to combine them
only at the end. Indeed, the designers of SHA-V [12] used this approach: the
160-bit version of SHA-V has two parallel lanes, combined at the end with a
modular sum. This is equivalent to summing two different hash functions, and
hence our attack can be applied to SHA-V.

Another contribution of this paper is to present concrete preimage attacks on
the XOR combiner with one or both weak hash functions (defined in [21]). The
complexity of our attacks is Õ(2n/2). Furthermore, the attack can be extended
to the concatenation combiner with two weak hash functions under the same
complexity. It can be seen that these attacks match the bound of Hoch and
Shamir’s security proof [14], and hence fulfill the gaps pointed out in Section 1.1.
It implies the tightness of Hoch and Shamir’s proof on the classical combiners
with weak hash functions for preimage resistance.

Finally, we would like to highlight the technical interests of this paper. We
devise a novel structure named interchange structure to simultaneously control
two (or more) hash lanes with the same input message, and succeed in further

5 Loosely speaking, a combiner is robust with respect to property α if it is (at least)
as secure as the stronger underlying hash function for α.
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relaxing the pairwise relation between the internal states of lanes. It is indeed a
step of technical advance compared with previous extensive studies on this topic,
and hence will hopefully have applications or lead to new technical development
in related settings. We refer to the open discussions in Section 7 for more details.

1.3 Notations and Roadmap in the Rest of Paper

We use the following notations:
H1, H2 : hash functions
IV1, IV2: initial values for H1 and H2, respectively
h1, h2 : compression functions of H1 and H2, respectively
h∗
1, h∗

2 : compression functions iterated over several blocks
(in particular, Hi(M) = h∗

i (IVi,M))
m : message block
M : message chunk (n/2 blocks)
M : long message (several chunks)
aj , bk : chains for H1 and H2, respectively

aj denotes a generic chain, while aj0 denotes a particular chain
Aj , Bk : end points of the chains
n : hash function output size

Roadmap. Section 2 provides an overview of our generic preimage attack on
the XOR combiner. Sections 3, 4, and 5 elaborate the attack procedure step by
step in details. Section 6 presents the applications and extensions of the attack.
Finally we conclude the paper and discuss future directions in Section 7.

2 Overview of the Attack

We first give an overview of the techniques and the structures used in the attack,
while more detailed descriptions will be given in the following sections.

The main idea is to consider several chains of internal states reached by
processing a common message M from different starting points (note that the
message M is not fixed in advance, but will be determined when building the
structure). More precisely, the message M is denoted as the primary message,
and divided in several chunks: M = M0 ‖ M1 ‖ . . . (as discussed later, a chunk
will consist of several message blocks). We denote chains of internal states for
H1 as aj , and the individual states of the chain as ai

j , with h∗
1(a

i
j ,Mi) = ai+1

j .
Similarly, we denote chains for H2 as bk, with h∗

2(b
i
k,Mi) = bi+1

k . When consider-
ing both hash functions, message block Mi leads from the pair of states (ai

j , b
i
k)

to (ai+1
j , bi+1

k ), which is denoted:

(ai
j , b

i
k) Mi� (ai+1

j , bi+1
k ).
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Switch structure. Next we build special structures called switches in order to
jump between chains in a controlled way. A switch allows to jump from a specific
pair of chains (aj0 , bk0) to a different pair of chains (aj0 , bk1) using a secondary
message chunk M ′

i , in addition to the normal transitions using chunk Mi of the
primary message M :

(ai
j , b

i
k) Mi� (ai+1

j , bi+1
k ) : normal transition for each chain

(ai
j0 , b

i
k0

) Mi
′

� (ai+1
j0

, bi+1
k1

) : jump from chains (aj0 , bk0) to (aj0 , bk1)

In order to simplify the notations, we often omit the chunk index, in order to
show only the chains that are affected by the switch.

The main message chunk Mi and the secondary message chunk M ′
i are deter-

mined when building the switch, and the main message defines the next state
of all the chains. We note that the secondary message chunk M ′

i should only be
used when the state is (ai

j0
, bi

k0
). A simple example is depicted in Figure 2.

H1

H2

a0

b1

b0

a0

b1

b0

(a0, b0)
M� (a0, b0)

a0

b1

b0

(a0, b1)
M� (a0, b1)

a0

b1

b0

(a0, b0)
M′
� (a0, b1)

Fig. 2. A single switch: jump from (a0, b0) to (a0, b1) by using M ′ (dashed lines) instead
of M (solid lines)

Alternatively, a switch can be designed to jump from (aj0 , bk0) to (aj1 , bk0).
We defer the details of the construction to Section 3; it can be built with a
complexity of Õ(2n/2).

Interchange Structure. By combining several simple switches, we can build
an interchange structure with starting points IV1 and IV2 and ending points{
Aj , j = 0 . . . 2t − 1

}
and

{
Bk, k = 0 . . . 2t − 1

}
, so that we can select a message

ending in any state (Aj , Bk). Figure 3 shows one possible way to build such a
structure, and Figure 4 shows how to select a given message in the structure.
An interchange structure with 2t chains for each function requires about 22t

switches. Since we can build a switch for a cost of Õ(2n/2), the total structure
is built with Õ(22t+n/2) operations.

Preimage Search. Finally, we can use an interchange structure with ending
points

{
Aj , j = 0 . . . 2t − 1

}
and

{
Bk, k = 0 . . . 2t − 1

}
, to build a preimage
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IV1

IV2

H1

H2

B0

A0

B1

A1

B2

A2

B3

A3

Fig. 3. Overview of an interchange structure

IV1

IV2

H1

H2

B0

A0

B1

A1

B2

A2

B3

A3

M M ′ M M M M M M M M ′ M M M M M

Fig. 4. Using of the interchange structure to reach output (A1, B2)

attack as follows. Let H denote the target value. We select a random message
block m, and we compute two lists by evaluating the compression functions after
the interchange structure:

{
A′

j = h1(Aj ,m), j = 0 . . . 2t − 1
}

and
{
B′

k = H ⊕
h2(Bk,m), k = 0 . . . 2t−1

}
. We expect a match between the lists with probability

22t−n. After about 2n−2t random choices of m, we get a match (j∗, k∗):

h1(Aj∗ ,m) = H ⊕ h2(Bk∗ ,m) i.e. h1(Aj∗ ,m) ⊕ h2(Bk∗ ,m) = H.

Therefore, we can construct a preimage of H by concatenating the message
leading to (Aj∗ , Bk∗) in the interchange structure, and the block m (we ignore
the finalization function in this section).

The complexity of the preimage search is about 2n−t evaluations of the com-
pression function, using an interchange structure with 2t end-points.
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Complexity Analysis. Building the interchange structures requires about
22t+n/2 evaluations of the compression function, while the preimage search req-
uires about 2n−t. The optimal complexity is reached when both steps take the
same time, i.e. t = n/6. This gives a complexity of Õ(25n/6).

3 The Switch Structure

We now explain how to build the switch structure at the core of our attack. This
construction is strongly based on the multicollision technique of Joux [17].

Given states ai
j0

, bi
k0

and bi
k1

, we want to build message chunks Mi and Mi
′

in order to have the following transitions:

(ai
j0 , b

i
k0

) Mi� (ai+1
j0

, bi+1
k0

) (ai
j0 , b

i
k1

) Mi� (ai+1
j0

, bi+1
k1

) (ai
j0 , b

i
k0

) Mi
′

� (ai+1
j0

, bi+1
k1

).

The main message chunk Mi is used to define the next state of all the remaining
chains, while the secondary message chunk Mi

′ will be used to jump from chains
(aj0 , bk0) to (aj0 , bk1). We note that Mi

′ will only be used when the state is
(ai

j0
, bi

k0
). In particular, Mi and Mi

′ must satisfy:

ai+1
j0

= h∗
1(a

i
j0 ,Mi) = h∗

1(a
i
j0 ,Mi

′)

bi+1
k1

= h∗
2(b

i
k1

,Mi) = h∗
2(b

i
k0

,Mi
′)

bi+1
k0

= h∗
2(b

i
k0

,Mi) �= bi+1
k1

We first build a multicollision for h∗
1, starting from state ai

j0
, i.e. a large set

M of 2n/2 messages that all reach the same state ai+1
j0

(∀M ∈ M, h∗
1(a

i
j0

,M) =
ai+1

j0
). As shown by Joux, this can be done efficiently by sequentially building

n/2 collisions.
Next, we evaluate h∗

2(b
i
k0

,M) and h∗
2(b

i
k1

,M) for all the messages M in the set
M. With high probability there is match between the sets of values6. We denote
the colliding messages as Mi and Mi

′, so that we have h∗
2(b

i
k0

,Mi
′) = h∗

2(b
i
k1

,Mi).
Finallywe compute themissing chains using themessagemi:ai+1

j = h∗
1(a

i
j ,mi),

bi+1
k = h∗

2(b
i
k,mi). With high probability all the chains reach distinct values; if

this is not the case, we restart the construction with a new multicollision. The full
algorithm is shown as Algorithm 1, and illustrated by Figure 5; it requires about
n/2 · 2n/2 evaluations of the compression functions.

4 The Interchange Structure

Let us now describe the combination of switch structures into an interchange
structure. The goal of this structure is to select the final value of the H1 com-
putation and the H2 computation independently. More precisely, the structure
defines two sets of final values Aj and Bk, and a set of messages M jk such that:

(IV1, IV2)
Mjk� (Aj , Bk).

6 If this is not the case, we build a new multicollision.
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H1

H2

ai
j0

ai+1
j0

M

bik0

bik1 M

M
bi+1
k1

M ′

M

bi+1
k0M

Fig. 5. Building a switch structure. First, M and M ′ are selected from M to generate
a collision (defining the new bk1), then bk0 is evaluated using M .

In order to build this structure, we initialize the first chains with a0
0 = IV1,

b00 = IV2, and set the other starting points randomly. Then, we use switches
to jump for an already reachable pair (aj0 , bk0) to a different pair (aj0 , bk1) (or
to (aj1 , bk0), respectively). By using 22t − 1 switches, we can make all pairs
reachable. There are many way to combine the switches; a simple one can be
described as follow:

1. first, build switches from (a0, b0) to each of the (a0, bk)’s;
2. then for each k, build a series of switches from (a0, bk) to all the (aj , bk)’s.

In order to reach the chains (aj , bk), one would activate the k-th switch in the
first part to jump from (a0, b0) to (a0, bk), and then the j-th switch in the k-th
series of the second part to jump from (a0, bk) to (aj , bk). This structure is shown
in Figure 3 and a pseudo-code description is given by Algorithm 2, where the
Interchange functions builds the structure, and the SelectMessage function
extracts the message reaching (aj , bk).

The structure can be somewhat optimized using the fact that the extra chains
have no prespecified initial values. We show how to take advantage of this in
Appendix A, using multicollision structures in addition to the switch structures.
However, this doesn’t change significantly the complexity: we need (2t−1)(2t−1)
switches instead of 22t − 1. In total, we need about n/2 · 22t+n/2 evaluations of
the compression functions to build a 2t-interchange structure.

We believe that a 2t-interchange structure based on switches will need at least
Θ(22t) switches, because every switch can only increase the number of reachable
pairs (aj , bk) by one. As shown in Appendix A some switches can be saved in
the beginning but it seems that new ideas would be needed to reduce the total
complexity below Θ(22t+n/2).

5 Preimage Attack

Finally, we describe the full preimage attack. We first build an interchange struc-
ture with 2t chains for each of H1 and H2. We denote the ending points as



356 G. Leurent and L. Wang

Algorithm 1. Building a single switch
function Switch(h1, h2, a, b, b′)

x ← a
M ← ∅

for 0 ≤ i < n/2 do
(m, m′) ← Collision(h1, x)
M ← (M ‖ m) ∪ (M ‖ m′)
x ← h1(x, m)

end for
H ← {}
for M ∈ M do

y ← h∗
2(b, M)

H[y] ← M
end for
for M ∈ M do

y ← h∗
2(b

′, M)
if H[y] exists then

return M, H[y]
end if

end for
end function

function Collision(h, x)
H ← {}
loop

m ← $
y ← h1(x, m)
if H[y] exists then

return m, H[y]
else

H[y] ← m
end if

end loop
end function

{
Aj , j = 0 . . . 2t − 1

}
and

{
Bk, k = 0 . . . 2t − 1

}
, and we know how to select

a message M jk to reach any state (Aj , Bk). When adding a message block m
to one of the messages M jk in the interchange structure, the output of the
combiner can be written as:

H1(M jk ‖ m) ⊕ H2(M jk ‖ m) = g1(h1(Aj ,m), � + 1) ⊕ g2(h2(Bk,m), � + 1),

where g1 and g2 are the finalization functions of H1 and H2, respectively, and �
is the length of the messages in the structure.

In order to reach a target value H, we select a random block m, and we eval-
uate

{
A′

j = g1(h1(Aj ,m), � + 1), j = 0 . . . 2t − 1
}

and
{
B′

k = H ⊕ g2(h2(Bk,m),
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Algorithm 2. Building and using a T -interchange structure
function Interchange(h1, h2, IV1, IV2)

a0 ← IV1, b0 ← IV2

for 1 ≤ k < T do
ak ← $, bk ← $

end for
for 1 ≤ j < T do

(M, M ′) ← Switch(h1, h2, a0, b0, bj)
M ← M ‖ M ;M ′ ← M ′ ‖ M ′

for 0 ≤ k < T do
ak ← h∗

1(ak, M)
bk ← h∗

2(bk, M)
end for

end for
for 1 ≤ j < T do

for 1 ≤ i < T do
(M, M ′) ← Switch(h2, h1, bj , a0, ai)
M ← M ‖ M ;M ′ ← M ′ ‖ M ′

for 0 ≤ k < T do
ak ← h∗

1(ak, M)
bk ← h∗

2(bk, M)
end for

end for
end for
return (M ,M ′)

end function

function SelectMessage(M ,M ′, j, k)
μ ← M
if k �= 0 then

μ[k − 1] ← M ′[k − 1]
end if
if j �= 0 then

μ[(k + 1) · (T − 1) + j − 1] ← M ′[(k + 1) · (T − 1) + j − 1]
end if
return μ

end function

� + 1), k = 0 . . . 2t − 1
}
. If there is a match (j∗, k∗) between the two lists, we

have:

A′
j∗ = B′

k∗ ⇔ g1(h1(Aj∗ ,m), � + 1) = H ⊕ g2(h2(Bk∗ ,m), � + 1)

⇔ H1(M jk ‖ m) ⊕ H2(M jk ‖ m) = H.
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For a random choice of m, we expect that a match exists with probability
22t−n, and testing it requires about 2t operations7. We will have to repeat this
procedure 2n−2t times on average, therefore the total cost of the preimage search
is about 2n−t evaluations of h1 and h2.

As explained in the previous section, building a 2t-interchange structure
requires about n/2 · 22t+n/2 operations. Using t = n/6 we balance the two steps
of the attack, and reach the optimal complexity of about n/2 · 25n/6 operations
for the preimage attack.

5.1 Message Length and Memory Complexity

The attack uses messages of length n/2 · 22t, and the memory complexity of the
attack8 is also n/2 · 22t. The optimal choice t = n/6 gives messages of length
n/2·2n/3. The memory requirement is probably not an issue9 for an attacker that
can spend time 25n/6, but the message length can be a problem with some hash
functions that don’t accept long inputs. For instance SHA-256 is only defined
for message with less than 264 bits (i.e. 255 blocks).

In this case, one can apply the attack with a smaller value of t: this reduces the
length of the messages, at the cost of more time spent in the preimage search step.
For instance, we can mount a preimage attack against SHA-256 ⊕ BLAKE-256
with complexity 2232 using t = 24, while the optimal attack with n = 256 would
cost only 2220.3. Similarly, our attack applied to SHA-512 ⊕ Whirlpool has a
complexity of 2461, rather than 2434.7.

6 Applications and Extensions

The attack works identically if the hash functions use the HAIFA mode rather
than the plain Merkle-Damg̊ard iteration. Also it can easily be extended to
H1(M)
H2(M) where 
 denotes an easy to invert group operation (for instance,
a modular addition rather than the exclusive or). The attack can also be extended
to hash functions H1 and/or H2 using an internal check-sum, such as the GOST
family of hash functions, using pairs of blocks with a constant sum.

6.1 Application to the Sum of Wide-Pipe Hash Functions

The attack can also be used when the internal state size � is larger than the
output size n. The complexity of building a 2t-interchange structure is related
to � as �/2 ·22t+�/2. On the other hand, the complexity of the meet-in-the-middle
preimage search is related to n as 2n−t. The optimal complexity is �/2 ·22n/3+�/6

by matching the two complexities with t = n/3 − �/6. Therefore our attack can
be applied as long as � + 6 log(�) ≤ 2n holds. For instance, we can compute
preimages of SHA-224 ⊕ BLAKE-224 with complexity roughly 2199.
7 It takes O(t · 2t) operations by sorting the lists, but only 2 · 2t using a hash table.
8 We only need to store the messages M and M ′
9 For instance, the attack is on the verge of practicality with n = 64; the time com-

plexity is 258.3 and the memory complexity is 226.3.
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6.2 Application to Cryptophia’s Short Combiner

Our attack can also be applied to Cryptophia’s short combiner, as proposed by
Mittelbach [29], and to the revised version of Mennink and Preneel [26]. This
combiner computes the sum of two hash functions with some pre-processing of
the message, to allow non-independent functions:

C(M) = H1

(
m̃1

1 ‖ . . . ‖ m̃1
�

) ⊕ H2

(
m̃2

1 ‖ . . . ‖ m̃2
�

)

m̃1
j = H1(0 ‖ l1 ‖ mj ⊕ k1) ⊕ H2(0 ‖ l2 ‖ mj ⊕ k2)

m̃2
j = H1(1 ‖ l1 ‖ mj ⊕ k1) ⊕ H2(1 ‖ l2 ‖ mj ⊕ k2)

where k1, k2, l1, l2 is a randomly chosen key. The security proof in the ideal model
shows that C is optimally preimage resistant if at least one of the hash functions
is ideal.

However, if both H1 and H2 are narrow-pipe, we can apply our preimage
attack with complexity Õ(25n/6). This does not violate the security proof because
we need both functions to be narrow-pipe, hence not n-bit ideal10. From a prac-
tical point of view, though, it shows that in many cases (e.g. using SHA-512 and
Whirlpool) the combiner is weaker than the initial functions.

6.3 Improvements Using Weaknesses of the Hash Functions

If H1 or H2 has known cryptographic weaknesses, more efficient attacks are
possible. More precisely, if the compression function of one of the hash functions
can be inverted11 in time 2t, then we can find a preimage of H1 ⊕ H2 with
complexity only Õ(2(n+t)/2).

The attack is presented using the case, where (at least) one compression
function is modeled as a weak compression function defined in [21], as an exam-
ple. Without loss of the generality, we assume the compression function of H2,
h2(x, y) = z, is such a weak compression function, which is a random oracle with
two additional interfaces as below.

– Backward interface. On a query (x, y, z), it returns either a value x uniformly
chosen from all the values satisfying h2(x, y) = z, or ⊥ if no such x exists.

– Bridging interface. On a query (x, y, z), it return either a value y uniformly
chosen from all the values satisfying h2(x, y) = z, or ⊥ if no such y exists.

Note that the inversion of compression function h2 takes unit time and hence
the attack against H1 ⊕ H2 takes time Õ(2n/2). The procedure is detailed as
follows, which is also illustrated in Figure 6.

Let the target hash digest be denoted as H. We firstly build an n-block
long multicollision on H1 following Joux’s approach [17]. Let the final output be
denoted as Z. It contains a set of up to 2n messages that link IV1 to Z on H1.

10 A large multi-collisions can be built with a cost of roughly 2n/2 in a narrow-pipe
function, but costs almost 2n for an ideal hash function.

11 finding an input chaining value from the output chaining value and the message
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We split every n-block long multicolliding message into halves, and collect the
first half n/2-block long messages as a set M1 and the second half as another
set M2. Hence for any message M1 ∈ M1 and any M2 ∈ M2, the concatenated
message M1 ‖M2 links IV1 to Z on H1. Secondly, for the messages M2 ∈ M2, we
use the additional backward interface of h2 to carry out backward computations
from H⊕Z, and get values X such that h∗

2(X,M2) = H⊕Z. We store (X,M2) in
a table TX . On average TX contains 2n/2 elements.12 Finally, for each message
M1 ∈ M1, we iteratively compute h2 forward from IV2, and get an internal
state Y . We match Y to the elements in TX . A match implies that concatenated
M1 ‖M2 links IV2 to H ⊕Z, and in turn is a preimage of H1(M1 ‖M2)⊕H2(M1 ‖
M2) = Z ⊕ H ⊕ Z = H. The success probability of finding such a match is not
negligible since there are 2n/2 X’s and Y ’s. The complexity is around n · 2n/2

that is Õ(2n/2) by ignoring the polynomial factors.

H1

H2

IV1 Z

backwards

H ⊕ ZIV2

forwards

M1 M2

M1 M2

Fig. 6. Preimage attack on the XOR combiner with a weak H2

Moreover, the above preimage attack can be extended to the concatenation
combiner H1 ‖ H2 if both H1 and H2 are weak by a minor modification. This
shows that the proof of Hoch and Shamir [14] is tight for preimage resistance.
Here we mainly highlight the modifications. Let the target hash digest be H1‖H2,
where H1 is from H1 and H2 from H2. After we build the multicollision on H1

and let the output internal state be denoted as Z, we link Z to H1 by using
the bridging interface of h1 to receive a message m such that h1(Z,m) = H1.
This gives us a set of messages linking IV1 to H1 on H1. Also note that for the
backward computations on H2, the starting value should be H2. The rest of the
attack procedure remains the same. Hence it is easy to get that the complexity
is also Õ(2n/2).

6.4 Extension to the Sum of Three or More Hash Functions

The attack can be extended to the sum of three or more hash functions. In order
to attack the sum of k functions, two different strategies are possible: either we
12 The backward interface may output ⊥ for some message block. To compensate it, for

the other message blocks, we make multiple queries, since they may have more than
one preimages. On average, the backward interface should produce one preimage for
each query.
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use a simpler structure that only gives two degrees of freedom, and fixes k − 2
functions to a constant value, or we build an interchange structure to control all
the k functions independently.

Controlling only Two Functions. The easiest way to extend the attack is
to use a single chain in the k − 2 extra hash functions. The procedure to build
a switch is modified in order to use multicollisions for k − 1 functions instead
a simple multicollisions for one function; this costs O(nk−1 · 2n/2) using Joux’s
method [17].

As in the basic attack, we need O(t2) switches to generate a 2t-interchange
for two functions, and the preimage search costs O(2n−t); the optimal complexity
is therefore O(nk−1 · 25n/6) with t = n/6.

Controlling all the Functions. Alternatively, we can build a more complex
interchange structure in order to control all the functions independently. When
attacking three functions, we will use the switch structure to jump from chains
(aj0 , bk0 , cl0) to (aj0 , bk0 , cl1) (or (aj0 , bk1 , cl0) or (aj1 , bk0 , cl0), respectively). We
need 23t − 1 switches in the interchange structure to reach all the 23t triplets of
chains (a switch makes only one new triplet reachable). Each switch is built using
a 2n/2-multicollision on two functions, which can be built for a cost of O(n2 ·2n/2)
following Joux’s technique [17]. Therefore we can build a 2t-interchange for a cost
of O(n2 · 23t+n/2). More generally, for the sum of k hash functions, we can build
an interchange structure for k functions for a cost of O(nk−1 · 2kt+n/2).

In the preimage search phase, we generate k lists of size 2t, and we need
to detect efficiently whether we can combine then to generate a zero sum. This
problem can be solved using a algorithm similar to Wagner’s generalized birthday
algorithm [35]. If k = 2κ, we find a solution with probability O(2n−(κ+1)·t) for a
cost of O(k · 2t). Therefore the preimage search costs O(k · 2n−κt). With k = 4
(i.e. κ = 2), this yields a complexity of O(n3 · 25n/6). However, this approach is
less efficient than the previous one for k = 3 and for k > 4.

To summarize, attacking the sum of k hash functions (k ≥ 2) costs O(nk−1 ·
25n/6). Controlling chains independently in more than two hash function might
be useful for further work, but it doesn’t improve the preimage attack on the
sum of k hash functions.

7 Conclusion and Open Discussions

In this work, we gave the first generic attack on the XOR combiner. Our result
is rather surprising: the sum of two ideal narrow-pipe hash functions only has
about 5n/6 bits of security against preimage attacks. In particular, the sum is
easier to break than the initial functions. Since most practical hash functions
are narrow-pipe (e.g. SHA-1, SHA-256, SHA-512, Whirlpool, RIPEMD, GOST,
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BLAKE, Skein...), the XOR combiner will usually provide a weaker security than
the component hash functions.

Moreover, we would like to discuss a few directions for future work.

On Controlling Multiple Hash Lanes. Since 2004, several generic attacks
have been found against narrow-pipe hash functions, such as the multicolli-
sion attack[17], the long-message second preimage attack[19] and the herding
attack[18]. There has been extensive work to extend these attacks to more com-
plex constructions with several computation chains, such as the concatenation
H1(M) ‖ H2(M) and the cascade H2(H1(M),M).

As in our present work, the essential difficulty in those attacks comes from the
fact that several lanes of computation share the same input message, and hence
their outputs are related. If an adversary considers a näıve set of messages, the set
of outputs gives random pairs of n-bit values {(Ai, Bi) : i ∈ I}: selecting a value
for the first entry of the pair gives a single candidate for the second entry, and
the adversary is essentially working with a 2n-bit state. Previous works [1,13,30]
have developed various message structures (mostly based on multicollision and
diamond structures), in order to relax this relation. They mainly result in a set
of messages M such that the corresponding outputs are in a more structured
set {(A,Bi) : i ∈ I}: the first entry is a constant value A, but several options
Bi can be selected for the second entry. For any value (A,Bi), it is then possible
to select a message in M so that the first lane reaches A, while the second lane
reaches Bi. This allows to modify the value of the second lane without affecting
the first lane.

Our result is quite stronger: with the interchange structure we have a set of
message such that the corresponding outputs are a set {(Ai, Bj) : i ∈ I, j ∈ J },
where both lanes have several options that can be selected independently. We
hope that our technique will have applications or lead to new technical devel-
opment in related settings, e.g., the open problem of generic second preim-
age attacks (with long messages) on the concatenation hash or on the Zipper
hash [21].

On Extending to Practical Hash Function. Several practical hash functions
such as RIPEMD [7] and HAS-V [31] are based on a compression function with
more than one independent lanes, which interacts with each other at the end of
each compression function call. It is very interesting to investigate if our attack
can be further modified to attack these hash functions in future. Again the
obstacle comes from the relations between internal states of lanes. Particularly,
the internal states of the lanes interact with each other, which makes the relation
even tighter and in turn harder to attack.
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A Optimized Interchange Structure

We now describe an optimized attack using only (2t − 1)(2t − 1) switches rather
than 22t − 1. The attack also requires multicollision structures, as introduced by
Joux[17].

We replace the first 2t − 1 switches with a 2t-multicollision in H1, and we
use those messages to initialize all the bk chains in H2. We can also optimize the
first series of switches in H2 in the same way: we build a 2t-multicollision in H2

starting from b0, and we use those messages to initialize the aj chains in H1.
This is illustrated by Figure 7, and the detailed attack is given as Algorithm 3.

IV1

IV2

H1

H2

B0

A0

B1

A1

B2

A2

B3

A3

Fig. 7. Optimized interchange structure
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Algorithm 3. Optimized T -interchange structure
function Interchange(h1, h2, IV1, IV2, T )

a0 ← IV1, b0 ← IV2

M0 ← MultiCollision(h1, a0)
for 0 ≤ k < T do

bk ← h∗
2(b0, M0[k])

end for
a0 ← h∗

1(a0, M0[0])
M1 ← MultiCollision(h2, b0)
for 1 ≤ k < T do

ak ← h∗
2(a0, M1[k])

end for
a0 ← h∗

2(a0, M1[0])
b0 ← h∗

1(b0, M1[0])
for 2 ≤ j < T do

for 1 ≤ i < T do
(M, M ′) ← Switch(h2, h1, bj , a0, ai)
M ← M ‖ M ;M ′ ← M ′ ‖ M ′

for 0 ≤ k < T do
ak ← h∗

1(ak, M)
bk ← h∗

2(bk, M)
end for

end for
end for
return (M0, M1,M ,M ′)

end function

function SelectMessage(M0, M1,M ,M ′, j, k)
if j = 0 then

return M0[k] ‖ M1[0] ‖ M
else if k = 0 then

return M0[0] ‖ M1[j] ‖ M
else

μ ← M
μ[(k − 1) · (T − 1) + j − 1] ← M ′[(k − 1) · (T − 1) + j − 1]
return M0[k] ‖ M1[0] ‖ μ

end if
end function

function MultiCollision(h, x)
M ← {}
for 0 ≤ i < n/2 do

(m, m′) ← Collision(h, x)
x ← h(x, m)
M ← (M ‖ m) ∪ (M ‖ m′)

end for
return M

end function
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Abstract. This paper introduces a high-security post-quantum state-
less hash-based signature scheme that signs hundreds of messages per
second on a modern 4-core 3.5GHz Intel CPU. Signatures are 41 KB,
public keys are 1 KB, and private keys are 1 KB. The signature scheme
is designed to provide long-term 2128 security even against attackers
equipped with quantum computers. Unlike most hash-based designs, this
signature scheme is stateless, allowing it to be a drop-in replacement for
current signature schemes.
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1 Introduction

It is not at all clear how to securely sign operating-system updates, web-site
certificates, etc. once an attacker has constructed a large quantum computer:

– RSA and ECC are perceived today as being small and fast, but they are
broken in polynomial time by Shor’s algorithm. The polynomial is so small
that scaling up to secure parameters seems impossible.

– Lattice-based signature schemes are reasonably fast and provide reasonably
small signatures and keys for proposed parameters. However, their quanti-
tative security levels are highly unclear. It is unsurprising for a lattice-based
scheme to promise “100-bit” security for a parameter set in 2012 and to
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correct this promise to only “75-80 bits” in 2013 (see [19, footnote 2]). Fur-
thermore, both of these promises are only against pre-quantum attacks, and
it seems likely that the same parameters will be breakable in practice by
quantum computers.

– Multivariate-quadratic signature schemes have extremely short signatures,
are reasonably fast, and in some cases have public keys short enough for
typical applications. However, the long-term security of these schemes is
even less clear than the security of lattice-based schemes.

– Code-based signature schemes provide short signatures, and in some cases
have been studied enough to support quantitative security conjectures. How-
ever, the schemes that have attracted the most security analysis have keys
of many megabytes, and would need even larger keys to be secure against
quantum computers.

Hash-based signature schemes are perhaps the most attractive answer. Every
signature scheme uses a cryptographic hash function; hash-based signatures use
nothing else. Many hash-based signature schemes offer security proofs relative to
comprehensible, and plausible, properties of the hash function, properties that
have not been broken even when the hash function is MD5. (We do not mean to
suggest that MD5 is a good choice of hash function; it is easy to make, and we
recommend, much more conservative parameter choices.) A recent result by Song
[35] shows that these proofs are still valid for quantum adversaries; this is not
known to be the case for many other post-quantum signature proposals. Hash-
based signing is reasonably fast, even without hardware acceleration; verification
is faster; signatures and keys are reasonably small.

However, every practical hash-based signature scheme in the literature is
stateful. Signing reads a secret key and a message and generates a signature but
also generates an updated secret key. This does not fit standard APIs; it does
not even fit the standard definition of signatures in cryptography. If the update
fails (for example, if a key is copied from one device to another, or backed up
and later restored) then security disintegrates.

It has been known for many years that, as a theoretical matter, one can build
hash-based signature schemes without a state. What we show in this paper is that
high-security post-quantum stateless hash-based signature systems are practical,
and in particular that they can sign hundreds of messages per second on a
modern 4-core 3.5GHz Intel CPU using parameters that provide 2128 security
against quantum attacks. In particular, we

– introduce SPHINCS, a new method to do randomized tree-based stateless
signatures;

– introduce HORS with trees (HORST), an improvement of the HORS few-
time signature scheme;

– propose SPHINCS-256, an efficient high-security instantiation of SPHINCS;
and

– describe a fast vectorized implementation of SPHINCS-256.
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SPHINCS is carefully designed so that its security can be based on weak
standard-model assumptions, avoiding collision resistance and the random-oracle
model.

Hash-Based Signatures. The idea of hash-based signatures goes back to a
proposal from 1979 by Lamport [30]. In Lamport’s scheme, the public key con-
sists of two hash outputs for secret inputs; to sign bit 0, reveal the preimage of
the first output; to sign bit 1, reveal the preimage of the second output. Obvi-
ously the secret key in this scheme can be used only once: signing a total of
T bits of messages requires a sequence of T public keys and is therefore highly
impractical.

To allow a short public key to sign many messages, Merkle [32] proposed
what are now called Merkle trees. Merkle starts with a one-time signature scheme
(OTS), i.e. a signature scheme where a key pair is used only once. To construct
a many-time signature scheme, Merkle authenticates 2h OTS key pairs using a
binary hash tree of height h. The leaves of this tree are the hashes of the OTS
public keys. The OTS secret keys become the secret key of the new scheme and
the root of the tree the public key. A key pair can be used to sign 2h messages.

A signature of the many-time signature scheme is also called a full signature
if necessary to distinguish it from other kinds of signatures. A full signature
contains the index of the used OTS key pair in the tree; the OTS public key; the
OTS signature; and the authentication path, i.e., the set of sibling nodes on the
path from the OTS public key to the root. (If a Winternitz-style OTS is used,
the OTS public key can be computed from the OTS signature. Hence, the OTS
public key can be omitted in the full signature in that case.) To guarantee that
each OTS key pair is used only once, the OTS key pairs are used in a predefined
order, using the leaves of the tree from left to right. To verify the signature,
one verifies the OTS signature on the message, and verifies the authenticity of
the OTS key pair by checking whether the public key is consistent with the
authentication path and the hash of the OTS public key.

This approach generates small signatures, small secret keys (using pseudo-
random generation of the OTS secret keys), and small public keys. However,
key generation and signature time are exponential in h as the whole tree has to
be built in the key generation. Recent practical hash-based signature systems
[15–18,27] solve these two performance problems. First, key generation time is
significantly reduced using a hyper-tree of several layers of trees, i.e. a certifica-
tion tree where a single hash tree of height h1 is used to sign the public keys of
2h1 hash-based key pairs and so on. During key generation only one tree on each
layer has to be generated. Using d layers of trees with height h/d reduces the
key-generation time from O(2h) to O(d2h/d). Second, signing time is reduced
from O(2h) to O(h) using stateful algorithms that exploit the ordered use of the
OTS key pairs. When combined with hyper-trees, the ordered use of the trees
reduces the signing time even further to O(h/d).

From Stateful to Stateless. Goldreich [23] (elaborating upon [22]) proposed a
stateless hash-based signature scheme, using a binary certification tree built out
of one-time signature keys. In Goldreich’s system, each OTS key pair
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corresponding to a non-leaf node is used to sign the hash of the public keys
of its two child nodes. The leaf OTS key pairs are used to sign the messages.
The OTS public key of the root becomes the overall public key. The secret key
is a seed value that is used to pseudorandomly generate all the OTS key pairs
of the tree.

It is important to ensure that a single OTS key pair is never used to sign two
different messages. One approach is to sign message M using a tree of height n
as follows: compute an n-bit hash of M , view the hash as an integer h between
0 and 2n − 1, and use the leaf at index h to sign. The full signature contains
all the OTS public keys in the path from leaf h to the root, all the public keys
of the sibling nodes on this path, and the one-time signatures on the message
and on the public keys in the path. Security obviously cannot be better than the
collision resistance of the hash function, at most 2n/2.

For this scheme, key generation requires a single OTS key generation. Sign-
ing takes 2n OTS key generations and n OTS signatures. This can be done in
reasonable time for secure parameters. Keys are also very short: one OTS public
key (O(n2)) for the public key and a single seed value (O(n)) for the secret
key. However, the signature size is cubic in the security parameter. Consider, for
example, the Winternitz OTS construction from [26], which has small signatures
for a hash-based OTS; taking n = 256 as we do for SPHINCS-256, and applying
some straightforward optimizations, produces a Goldreich signature size that is
still above 1 MB.

One way to evaluate the real-world impact of particular signature sizes is to
compare those sizes to the sizes of messages being signed. For example, in the
Debian operating system (September 2014 Wheezy distribution), the average
package size is 1.2 MB and the median package size is just 0.08 MB. Debian
is designed for frequent updates, typically upgrading just one package or a few
packages at a time, and of course each upgrade has to check at least one new
signature. As another example, the size of an average web page in the Alexa Top
1000000 is 1.8 MB, and HTTPS typically sends multiple signatures per page;
the exact number depends on how many HTTPS sites cooperate to produce the
page, how many certificates are sent, etc. A signature size above 1 MB would
often dominate the traffic in these applications and would also add user-visible
latency on typical network connections.

Goldreich also proposes randomized leaf selection: instead of applying a pub-
lic hash function to the message to determine the index of the OTS key pair,
select an index randomly. It is then safe for the total tree height h to be somewhat
smaller than the hash output length n: the hash output length protects against
offline computations by the attacker, while the tree height protects against acci-
dental collisions in indices chosen by the signer. For example, choosing h as 128
instead of 256 saves a factor of 2 in signature size and signing speed, if it is
acceptable to have probability roughly 2−30 of OTS reuse (presumably breaking
the system) within 250 signatures.

The SPHINCS Approach. SPHINCS introduces two new ideas that together
drastically reduce signature size. First, to increase the security level of randomized
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index selection, SPHINCS replaces the leaf OTS with a hash-based few-time signa-
ture scheme (FTS). An FTS is, as the name suggests, a signature scheme designed
to sign a few messages; in the context of SPHINCS this allows a few index colli-
sions, which in turn allows a smaller tree height for the same security level. For our
FTS (see below) the probability of a forgery after γ signatures gradually increases
with γ, while the probability that the signer uses the same FTS key γ times grad-
ually decreases with γ; we choose parameters to make sure that the product of
these probabilities is sufficiently small for all γ ∈ N. For example, SPHINCS-256
reduces the total tree height from 256 to just 60 while maintaining 2128 security
against quantum attackers.

Second, SPHINCS views Goldreich’s construction as a hyper-tree construc-
tion with h layers of trees of height 1, and generalizes to a hyper-tree with d layers
of trees of height h/d. This introduces a tradeoff between signature size and time
controlled by the number of layers d. The signature size is |σ| ≈ d|σOTS| + hn
assuming a hash function with n-bit outputs. Recall that the size of a one-time
signature |σOTS| is roughly O(n2), so by decreasing the number of layers we get
smaller full signatures. The tradeoff is that signing time increases exponentially
in the decrease of layers: signing takes d2h/d OTS key generations and d2h/d −d
hash computations. For example, in SPHINCS-256, with h = 60, we reduce d
from 60 to 12, increasing d2h/d from 120 to 384.

We accompany our construction with an exact security reduction to some
standard-model properties of hash functions. For parameter selection, we analyze
the costs of generic attacks against these properties when the attacker has access
to a large-scale quantum computer. For SPHINCS-256 we select parameters
that provide 128 bits of security against quantum attackers and keep a balance
between signature size and time.

HORS and HORST. HORS [34] is a fast hash-based FTS. For message hashes
of length m, HORS uses two parameters t = 2τ for τ ∈ N and k ∈ N such that
m = k log t = kτ . For practical secure parameters t � k. HORS uses a secret
key consisting of t random values. The public key consists of the t hashes of
these values. A signature consists of k secret key elements, with indices selected
as public functions of the message being signed.

In the context of SPHINCS, each full signature has to include not just an
FTS signature but also an FTS public key. The problem with HORS is that it
has large public keys. Of course, one can replace the public key in any signature
system by a short hash of the original public key, but then the original public
key needs to be included in the signature; this does not improve the total length
of key and signature.

As a better FTS for SPHINCS we introduce HORS with trees (HORST).
Compared to HORS, HORST sacrifices runtime to reduce the public key size
and the combined size of a signature and a public key. A HORST public key is
the root node of a binary hash tree of height log t, where the leaves are the public
key elements of a HORS key. This reduces the public key size to a single hash
value. For this to work, a HORST signature contains not only the k secret key
elements but also one authentication path per secret key element. Now the public
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key can be computed given a signature. A full hash-based signature thus includes
just k log t hash values for HORST, compared to t hash values for HORS. We
also introduce some optimizations that further compress signatures.

For the SPHINCS-256 parameters, switching from HORS to HORST reduces
the FTS part of the full signature from 216 hash values to fewer than 16 ·32 = 29

hash values, i.e., from 2 MB to just 16 KB.
The same idea applies in more generality. For example, HORS++ [33] is a

variant of HORS that gives stronger security guarantees but that has bigger
keys; the changes from HORS to HORST can easily be adapted to HORS++,
producing HORST++.

Vectorized Software Implementation. We also present an optimized imple-
mentation of SPHINCS-256. Almost all hash computations in SPHINCS are
highly parallel and we make extensive use of vector instructions. On an Intel
Xeon E3-1275 (Haswell) CPU, our hashing throughput is about 1.6 cycles/byte.
Signing a short message with SPHINCS-256 takes 51 636 372 cycles on a single
core; simultaneous signing on all 4 cores of the 3.5 GHz CPU has a throughput
of more than 200 signatures per second, fast enough for most applications. Ver-
ification takes only 1 451 004 cycles; key-pair generation takes 3 237 260 cycles.

We placed the software described in this paper into the public domain to
maximize reusability of our results. We submitted the software to eBACS [10]
for independent benchmarking; the software is also available online at http://
cryptojedi.org/crypto/#sphincs.

Notation. We always use the logarithm with base 2 and hence write log instead
of log2. We write [x] for the set {0, 1, . . . , x}. Given a bit string x we write x(i)
for the ith bit of x and x(i, j) for the j-bit substring of x that starts with the
ith bit.

2 The SPHINCS Construction

In this section we describe our main construction. We begin by listing the param-
eters used in the construction, reviewing the one-time signature scheme WOTS+,
and reviewing binary hash trees. In Section 2.1 we present our few-time signa-
ture scheme HORST, and in Section 2.2 we present our many-time signature
scheme SPHINCS.

Parameters. SPHINCS uses several parameters and several functions. The
main security parameter is n ∈ N. The functions include two short-input cryp-
tographic hash functions F : {0, 1}n → {0, 1}n and H : {0, 1}2n → {0, 1}n; one
arbitrary-input randomized hash function H : {0, 1}n × {0, 1}∗ → {0, 1}m, for
m = poly(n); a family of pseudorandom generators Gλ : {0, 1}n → {0, 1}λn

for different values of λ; an ensemble of pseudorandom function families Fλ :
{0, 1}λ × {0, 1}n → {0, 1}n; and a pseudorandom function family F : {0, 1}∗ ×
{0, 1}n → {0, 1}2n that supports arbitrary input lengths. Of course, these func-
tions can all be built from a single cryptographic hash function, but it is more
natural to separate the functions according to their roles.

http://cryptojedi.org/crypto/#sphincs
http://cryptojedi.org/crypto/#sphincs
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SPHINCS uses a hyper-tree (a tree of trees) of total height h ∈ N, where h
is a multiple of d and the hyper-tree consists of d layers of trees, each having
height h/d. The components of SPHINCS have additional parameters which
influence performance and size of the signature and keys: the Winternitz one-time
signature WOTS naturally allows for a space-time tradeoff using the Winternitz
parameter w ∈ N, w > 1; the tree-based few-time signature scheme HORST has
a space-time tradeoff which is controlled by two parameters k ∈ N and t = 2τ

with τ ∈ N and kτ = m.
As a running example we present concrete numbers for SPHINCS-256; the

choices are explained in Section 4. For SPHINCS-256 we use n = 256,m =
512, h = 60, d = 12, w = 16, t = 216, k = 32.

WOTS+. We now describe the Winternitz one-time signature (WOTS+) from
[26]. We deviate slightly from the description in [26] to describe the algorithms as
they are used in SPHINCS. Specifically, we include pseudorandom key generation
and fix the message length to be n, meaning that a seed value takes the place of
a secret key in our description. Given n and w, we define

�1 =
⌈

n

log(w)

⌉
, �2 =

⌊
log(�1(w − 1))

log(w)

⌋
+ 1, � = �1 + �2.

For the SPHINCS-256 parameters this leads to � = 67. WOTS+ uses the function
F to construct the following chaining function.

Chaining function ci(x, r): On input of value x ∈ {0, 1}n, iteration counter i ∈ N,
and bitmasks r = (r1, . . . , rj) ∈ {0, 1}n×j with j ≥ i, the chaining function works
the following way. In case i = 0, c returns x, i.e., c0(x, r) = x. For i > 0 we define
c recursively as

ci(x, r) = F(ci−1(x, r) ⊕ ri),

i.e. in every round, the function first takes the bitwise xor of the previous value
ci−1(x, r) and bitmask ri and evaluates F on the result. We write ra,b for the
substring (ra, . . . , rb) of r. In case b < a we define ra,b to be the empty string.
Now we describe the three algorithms of WOTS+.

Key Generation Algorithm (sk, pk ← WOTS.kg(S, r)): On input of seed S ∈
{0, 1}n and bitmasks r ∈ {0, 1}n×(w−1) the key generation algorithm computes
the internal secret key as sk = (sk1, . . . , sk�) ← G�(S), i.e., the n bit seed is
expanded to � values of n bits. The public key pk is computed as

pk = (pk1, . . . , pk�) = (cw−1(sk1, r), . . . , cw−1(sk�, r)).

Note that S requires less storage than sk; thus we generate sk and pk on the fly
when necessary.

Signature Algorithm (σ ← WOTS.sign(M,S, r)): On input of an n-bit message
M , seed S and the bitmasks r, the signature algorithm first computes a base-
w representation of M : M = (M1 . . .M�1), Mi ∈ {0, . . . , w − 1}. That is, M
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Fig. 1. The binary hash tree construction

is treated as the binary representation of a natural number x and then the
w-ary representation of x is computed. Next it computes the checksum C =∑�1

i=1(w − 1 − Mi) and its base w representation C = (C1, . . . , C�2). The length
of the base w representation of C is at most �2 since C ≤ �1(w − 1). We set
B = (b1, . . . , b�) = M ‖ C, the concatenation of the base w representations of
M and C. Then the internal secret key is generated using G�(S) the same way
as during key generation. The signature is computed as

σ = (σ1, . . . , σ�) = (cb1(sk1, r), . . . , cb�(sk�, r)).

Verification Algorithm (pk′ ← WOTS.vf(M,σ, r)): On input of an n-bit message
M , a signature σ, and bitmasks r, the verification algorithm first computes the
bi, 1 ≤ i ≤ � as described above. Then it returns:

pk′ = (pk′
1, . . . , pk

′
�) = (cw−1−b1(σ1, rb1+1,w−1), . . . , cw−1−b�(σ�, rb�+1,w−1)).

A formally correct verification algorithm would compare pk′ to a given public key
and output true on equality and false otherwise. In SPHINCS this comparison is
delegated to the overall verification algorithm.

Binary Hash Trees. The central elements of our construction are full binary
hash trees. We use the construction proposed in [18] shown in Figure 1.

In SPHINCS, a binary hash tree of height h always has 2h leaves which are
n bit strings Li, i ∈ [2h − 1]. Each node Ni,j , for 0 < j ≤ h, 0 ≤ i < 2h−j , of
the tree stores an n-bit string. To construct the tree, h bit masks Qj ∈ {0, 1}2n,
0 < j ≤ h, are used. For the leaf nodes define Ni,0 = Li. The values of the
internal nodes Ni,j are computed as

Ni,j = H((N2i,j−1||N2i+1,j−1) ⊕ Qj).

We also denote the root as Root = N0,h.
An important notion is the authentication path Authi = (A0, . . . ,Ah−1) of a

leaf Li shown in Figure 2. Authi consists of all the sibling nodes of the nodes
contained in the path from Li to the root. For a discussion on how to compute
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Input: Leaf index i, leaf Li, authentication path Authi = (A0, . . . ,Ah−1) for Li.
Output: Root node Root of the tree that contains Li.

Set P0 ← Li;
for j ← 1 up to h do

Pj =
{

H((Pj−1||Aj−1) ⊕ Qj), if
⌊
i/2j−1

⌋ ≡ 0 mod 2;
H((Aj−1||Pj−1) ⊕ Qj), if

⌊
i/2j−1

⌋ ≡ 1 mod 2;
end
return Ph

Algorithm 1. Root Computation

authentication paths, see Section 5. Given a leaf Li together with its authenti-
cation path Authi, the root of the tree can be computed using Algorithm 1.

L-Tree. In addition to the full binary trees above, we also use unbalanced binary
trees called L-Trees as in [18]. These are exclusively used to hash WOTS+ public
keys. The � leaves of an L-Tree are the elements of a WOTS+ public key and
the tree is constructed as described above but with one difference: A left node
that has no right sibling is lifted to a higher level of the L-Tree until it becomes
the right sibling of another node. Apart from this the computations work the
same as for binary trees. The L-Trees have height �log �� and hence need �log ��
bitmasks.

2.1 HORST

HORST signs messages of length m and uses parameters k and t = 2τ with
kτ = m (typical values as used in SPHINCS-256 are t = 216, k = 32). HORST
improves HORS [34] using a binary hash-tree to reduce the public key size from
tn bits to n bits1 and the combined signature and public key size from tn bits to
(k(τ − x + 1) + 2x)n bits for some x ∈ N\{0}. The value x is determined based
on t and k such that k(τ − x + 1) + 2x is minimal. It might happen that the
expression takes its minimum for two successive values. In this case the greater
value is used. For SPHINCS-256 this results in x = 6.

In contrast to a one-time signature scheme like WOTS, HORST can be used
to sign more than one message with the same key pair. However, with each
signature the security decreases. See Section 3 for more details. Like for WOTS+

our description includes pseudorandom key generation. We now describe the
algorithms for HORST:

Key Generation Algorithm (pk ← HORST.kg(S,Q)): On input of seed S ∈
{0, 1}n and bitmasks Q ∈ {0, 1}2n×log t the key generation algorithm first com-
putes the internal secret key sk = (sk1, . . . , skt) ← Gt(S). The leaves of the tree
are computed as Li = F(ski) for i ∈ [t − 1] and the tree is constructed using

1 Here we assume that the used bitmasks are given as they are used for several key
pairs. Otherwise, public key size is (2τ + 1)n bit including bitmasks, which is still
less than tn bits.
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Fig. 2. The authentication path for leaf Li

bitmasks Q. The public key pk is computed as the root node of a binary tree of
height log t.

Signature Algorithm ((σ, pk) ← HORST.sign(M,S,Q)): On input of a message
M ∈ {0, 1}m, seed S ∈ {0, 1}n, and bitmasks Q ∈ {0, 1}2n×log t first the internal
secret key sk is computed as described above. Then, let M = (M0, . . . ,Mk−1)
denote the k numbers obtained by splitting M into k strings of length log t
bits each and interpreting each as an unsigned integer. The signature σ =
(σ0, . . . , σk−1, σk) consists of k blocks σi = (skMi

,AuthMi
) for i ∈ [k−1] contain-

ing the Mith secret key element and the lower τ−x elements of the authentication
path of the corresponding leaf (A0, . . . ,Aτ−1−x). The block σk contains all the
2x nodes of the binary tree on level τ − x (N0,τ−x, . . . , N2x−1,τ−x). In addition
to the signature, HORST.sign also outputs the public key.

Verification Algorithm (pk′ ← HORST.vf(M,σ,Q)): On input of message M ∈
{0, 1}m, a signature σ, and bitmasks Q ∈ {0, 1}2n×log t, the verification algorithm
first computes the Mi, as described above. Then, for i ∈ [k−1], yi = Mi/2τ − x�
it computes N ′

yi,τ−x using Algorithm 1 with index Mi, LMi
= F(σ1

i ), and
AuthMi

= σ2
i . It then checks that ∀i ∈ [k − 1] : N ′

yi,τ−x = Nyi,τ−x, i.e., that the
computed nodes match those in σk. If all comparisons hold it uses σk to compute
and then return Root0, otherwise it returns fail.

Theoretical Performance. In the following we give rough theoretical perfor-
mance values for HORST when used in a many-time signature scheme. We ignore
the space needed for bitmasks, assuming they are provided. For runtimes we only
count PRG calls and the number of hash evaluations without distinguishing the
different hash functions.

Sizes: A HORST secret key consists of a single n bit seed. The public key
contains a single n bit hash. A signature contains k secret key elements and
authentication paths of length (log t) − x (Recall t = 2τ is a power of two). In
addition it contains 2x nodes in σk, adding up to a total of (k((log t)−x+1)+2x)n
bits.
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Runtimes: Key generation needs one evaluation of Gt and t hashes to compute
the leaf values and t − 1 hashes to compute the public key, leading to a total of
2t − 1. Signing takes the same time as we require the root is part of the output.
Verification takes k times one hash to compute a leaf value plus (log t)−x hashes
to compute the node on level (log t)−x. In addition, 2x −1 hashes are needed to
compute the root from σk. Together these are k((log t) − x + 1) + 2x − 1 hashes.

2.2 SPHINCS

Given all of the above we can finally describe the algorithms of the SPHINCS
construction. A SPHINCS keypair completely defines a “virtual” structure which
we explain first. SPHINCS works on a hyper-tree of height h that consists of d
layers of trees of height h/d. Each of these trees looks as follows. The leaves of a
tree are 2h/d L-Tree root nodes that each compress the public key of a WOTS+

key pair. Hence, a tree can be viewed as a key pair that can be used to sign
2h/d messages. The hyper-tree is structured into d layers. On layer d − 1 it has
a single tree. On layer d− 2 it has 2h/d trees. The roots of these trees are signed
using the WOTS+ key pairs of the tree on layer d−1. In general, layer i consists
of 2(d−1−i)(h/d) trees and the roots of these trees are signed using the WOTS+

key pairs of the trees on layer i + 1. Finally, on layer 0 each WOTS+ key pair
is used to sign a HORST public key. We talk about a “virtual” structure as
all values within are determined choosing a seed and the bitmasks, and as the
full structure is never computed. The seed is part of the secret key and used
for pseudorandom key generation. To support easier understanding, Figure 3
shows the virtual structure of a SPHINCS signature, i.e. of one path inside the
hyper-tree. It contains d trees Treei i ∈ [d−1] (each consisting of a binary hash
tree that authenticates the root nodes of 2h/d L-Trees which in turn each have
the public key nodes of one WOTS+ keypair as leaves). Each tree authenticates
the tree below using a WOTS+ signature σW,i. The only exception is Tree0
which authenticates a HORST public key using a WOTS+ signature. Finally,
the HORST key pair is used to sign the message. Which trees inside the hyper-
tree are used (which in turn determines the WOTS+ key pairs used for the
signature) and which HORST key pair is determined by the pseudorandomly
generated index not shown here.

We use a simple addressing scheme for pseudorandom key generation. An
address is a bit string of length a = �log(d + 1)� + (d − 1)(h/d) + (h/d) =
�log(d + 1)� + h. The address of a WOTS+ key pair is obtained by encoding the
layer of the tree it belongs to as a log(d+1)-bit string (using d−1 for the top layer
with a single tree). Then, appending the index of the tree in the layer encoded
as a (d − 1)(h/d)-bit string (we number the trees from left to right, starting
with 0 for the left-most tree). Finally, appending the index of the WOTS+ key
pair within the tree encoded as a (h/d)-bit string (again numbering from left to
right, starting with 0). The address of the HORST key pair is obtained using
the address of the WOTS+ key pair used to sign its public key and placing d as
the layer value in the address string, encoded as �log(d + 1)� bit string. To give
an example: In SPHINCS-256, an address needs 64 bits.
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TREEd-1

σW,d-1

h/d

TREEd-2

σW,d-2

TREE0

σW,0

HORST

σH

h/d

h/d

log t

Fig. 3. Virtual structure of a SPHINCS signature

Key Generation Algorithm ((SK,PK) ← kg(1n)): The key generation algorithm
first samples two secret key values (SK1,SK2) ∈ {0, 1}n ×{0, 1}n. The value SK1

is used for pseudorandom key generation. The value SK2 is used to generate an
unpredictable index in sign and pseudorandom values to randomize the message
hash in sign. Also, p uniformly random n-bit values Q $← {0, 1}p×n are sampled
as bitmasks where p = max{w−1, 2(h+�log ��), 2 log t}. These bitmasks are used
for all WOTS+ and HORST instances as well as for the trees. In the following
we use QWOTS+ for the first w − 1 bitmasks (of length n) in Q, QHORST for the
first 2 log t, QL−Tree for the first 2�log ��, and QTree for the 2h strings of length
n in Q that follow QL−Tree.

The remaining part of kg consists of generating the root node of the tree on
layer d − 1. Towards this end the WOTS+ key pairs for the single tree on layer
d − 1 are generated. The seed for the key pair with address A = (d − 1||0||i)
where i ∈ [2h/d − 1] is computed as SA ← Fa(A,SK1), evaluating the PRF on
input A with key SK1. In general, the seed for a WOTS+ key pair with address
A is computed as SA ← Fa(A,SK1) and we will assume from now on that these
seeds are known to any algorithm that knows SK1. The WOTS+ public key is
computed as pkA ← WOTS.kg(SA,QWOTS+). The ith leaf Li of the tree is the
root of an L-Tree that compresses pkA using bit masks QL−Tree. Finally, a binary
hash tree is built using the constructed leaves and its root node becomes PK1.

The SPHINCS secret key is SK = (SK1,SK2,Q), the public key is PK =
(PK1,Q). kg returns the key pair ((SK1,SK2,Q), (PK1,Q)).

Signature Algorithm (Σ ← sign(M,SK)): On input of a message M ∈ {0, 1}∗ and
secret key SK = (SK1,SK2,Q), sign computes a randomized message digest D ∈
{0, 1}m: First, a pseudorandom R = (R1, R2) ∈ {0, 1}n ×{0, 1}n is computed as
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R ← F(M,SK2). Then, D ← H(R1,M) is computed as the randomized hash of
M using the first n bits of R as randomness. The latter n bits of R are used to
select a HORST keypair, computing an h bit index i ← Chop(R2, h) as the first
h bits of R2. Note, that signing is deterministic, i.e. we need no real randomness
as all required ’randomness’ is pseudorandomly generated using PRF F .

Given index i, the HORST key pair with address AHORST = (d||i(0, (d −
1)h/d)||i((d − 1)h/d, h/d)) is used to sign the message digest D, i.e., the first
(d − 1)h/d bits of i are used as tree index and the remaining bits for the index
within the tree. The HORST signature and public key (σH, pkH) ← (D,SAHORST ,
QHORST) are computed using the HORST bitmasks and the seed SAHORST ←
Fa(AHORST,SK1).

The SPHINCS signature Σ = (i, R1, σH, σW,0,AuthA0 , . . . , σW,d−1,AuthAd−1)
contains besides index i, randomness R1 and HORST signature σH also one
WOTS+ signature and one authentication path σW,i,AuthAi

, i ∈ [d−2] per layer.
These are computed as follows: The WOTS+ key pair with address A0 is used to
sign pkH, where A0 is the address obtained taking AHORST and setting the first
�log(d+1)� bits to zero. This is done running σW,1 ← (pkH,SA0 ,QWOTS+) using
the WOTS+ bitmasks. Then the authentication path Authi((d−1)h/d,h/d)) of the
used WOTS+ key pair is computed. Next, the WOTS+ public key pkW,0 is com-
puted running pkW,0 ← WOTS.vf(pkH, σW,0,QWOTS+). The root node Root0

of the tree is computed by first compressing pkW,0 using an L-Tree. Then Algo-
rithm 1 is applied using the index of the WOTS+ key pair within the tree, the
root of the L-Tree and Authi((d−1)h/d,h/d)).

This procedure gets repeated for layers 1 to d − 1 with the following two
differences. On layer 1 ≤ j < d, WOTS+ is used to sign Rootj−1, the root
computed at the end of the previous iteration. The address of the WOTS+ key
pair used on layer j is computed as Aj = (j||i(0, (d − 1 − j)h/d)||i((d − 1 −
j)h/d, h/d)), i.e. on each layer the last (h/d) bits of the tree address become the
new leaf address and the remaining bits of the former tree address become the
new tree address.

Finally, sign outputs Σ = (i, R1, σH, σW,0,AuthA0 , . . . , σW,d−1,AuthAd−1).

Verification Algorithm (b ← vf(M,Σ,PK)): On input of a message M ∈ {0, 1}∗,
a signature Σ, and a public key PK, the algorithm computes the message digest
D ← H(R1,M) using the randomness R1 contained in the signature. The mes-
sage digest D and the HORST bitmasks QHORST from PK are used to compute
the HORST public key pkH ← HORST.vf(D,σH,QHORST) from the HORST
signature. If HORST.vf returns fail, verification returns false. The HORST pub-
lic key in turn is used together with the WOTS+ bit masks and the WOTS+

signature to compute the first WOTS+ public key pkW,0 ← WOTS.vf(pkH, σW,0,
QWOTS+). An L-Tree is used to compute Li((d−1)h/d,h/d), the leaf corresponding
to pkW,0. Then, the root Root0 of the respective tree is computed using Algo-
rithm 1 with index i((d − 1)h/d, h/d), leaf Li((d−1)h/d,h/d) and authentication
path Auth0.

Then, this procedure gets repeated for layers 1 to d − 1 with the following
two differences. First, on layer 1 ≤ j < d the root of the previously processed
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tree Rootj−1 is used to compute the WOTS+ public key pkW,j . Second, the
leaf computed from pkW,j using an L-Tree is Li((d−1−j)h/d,h/d), i.e., the index of
the leaf within the tree can be computed cutting off the last j(h/d) bits of i and
then using the last (h/d) bits of the resulting bit string.

The result of the final repetition on layer d − 1 is a value Rootd−1 for the
root node of the single tree on the top layer. This value is compared to the first
element of the public key, i.e., PK1

?= Rootd−1. If the comparison holds, vf
returns true, otherwise it returns false.

Theoretical Performance. In the following we give rough theoretical perfor-
mance values. We count runtimes counting the number of PRF, PRG and hash
evaluations without distinguishing the different PRFs, PRGs, and hashes.

Sizes: A SPHINCS secret key consists of two n bit seeds and the p = max{w −
1, 2(h+ �log ��), 2 log t} n bit bitmasks, summing up to (2+p)n bits. The public
key contains a single n bit hash and the bitmasks: (1 + p)n bits. A signature
contains one h bit index and n bits of randomness. Moreover, it contains a
HORST signature ((k((log t) − x + 1) + 2x)n bits), d WOTS signatures (�n bits
each), and a total of h authentication path nodes (n bits each). This gives a
signature size of ((k((log t) − x + 1) + 2x) + d� + h + 1) n + h bits.

Runtimes: SPHINCS key generation consists of building the top tree. This takes
for leaf generation 2h/d times the following: One PRF call, one PRG call, one
WOTS+ key generation (�w hashes), and one L-Tree (� − 1 hashes). Building
the tree adds another 2h/d − 1 hashes. Together these are 2h/d PRF and PRG
calls and (�(w + 1))2h/d − 1 hashes. Signing requires one PRF call to generate
the index and the randomness for the message hash as well as the message hash
itself. Then one PRF call to generate a HORST seed and a HORST signature.
In addition, d trees have to be built, adding d times the time for key generation.
The WOTS+ signatures can be extracted while running WOTS+ key generation,
hence they add no extra cost. This sums up to d2h/d + 2 PRF calls, d2h/d + 1
PRG calls, and 2t + d((�(w + 1))2h/d − 1) hashes. Finally, verification needs
the message hash, one HORST verification, and d times a WOTS+ verification
(< �w hashes), computing an L-Tree, and h/d − 1 hashes to compute the root.
This leads to a total of k((log t) − x + 1) + 2x + d(�(w + 1) − 2) + h hashes.

3 Security Analysis

We now discuss the security of SPHINCS. We first give a reduction from standard
hash function properties. Afterwards we discuss the best generic attacks on these
properties using quantum computers. Definitions of the used properties can be
found in Appendix A. For our security analysis we group the message hash and
the mapping used within HORST to a function Hk,t that maps bit strings of
arbitrary length to a subset of {0, ..., t − 1} with at most k elements.
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3.1 Security Reduction

We will now prove our main theorem which states that SPHINCS is secure as
long as the used function (families) provide certain standard security proper-
ties. These properties are fulfilled by secure cryptographic hash functions, even
against quantum attacks. For the exact statement in the proof we use the notion
of insecurity functions. An insecurity function InSecp (s; t, q) describes the max-
imum success probability of any adversary against property p of primitive s,
running in time ≤ t, and (if given oracle access, e.g. to a signing oracle) making
no more than q queries. To avoid the non-constructive high-probability attacks
discussed in [11], we measure time with the AT metric rather than the RAM met-
ric. Properties are one-wayness (ow), second-preimage resistance (spr), unde-
tectability (ud), secure pseudorandom generator (prg), secure pseudorandom
function family (prf), and γ-subset resilience (γ-sr).

Theorem 1. SPHINCS is existentially unforgeable under qs-adaptive chosen
message attacks if

– F is a second-preimage resistant, undetectable one-way function,
– H is a second-preimage resistant hash function,
– Gλ is a secure pseudorandom generator for values λ ∈ {�, t},
– Fλ is a pseudorandom function family for λ = a,
– F is a pseudorandom function family, and
– for the subset-resilience of Hk,t it holds that

∞∑

γ=1

min
{

2γ(log qs−h)+h, 1
}

· Succγ-sr
Hk,t

(A) = negl(n)

for any probabilistic polynomial-time adversary A, where Succγ-sr
Hk,t

(A)
denotes the success probability of A against the γ-subset resilience of Hk,t.

More specifically, the insecurity function InSecEU-CMA (SPHINCS; ξ, qs)
describing the maximum success probability of all adversaries against the exis-
tential unforgeability under qs-adaptive chosen message attacks, running in time
≤ ξ, is bounded by

InSeceu-cma (SPHINCS; ξ, qs)
≤ InSecprf (F ; ξ, qs) + InSecprf (Fa; ξ,#fts + #ots)
+ #ots · InSecprg (G�; ξ) + #fts · InSecprg (Gt; ξ)

+ #tree · 2h/d+�log �� · InSecspr (H; ξ)

+ #ots · (�w2 · InSecud (F; ξ) + �w · InSecow (F; ξ) + �w2 · InSecspr (F; ξ))
+ #fts · 2t · InSecspr (H; ξ) + #fts · t · InSecow (F; ξ)

+
∞∑

γ=1

min
{

2γ(log qs−h)+h, 1
}

· InSecγ-sr (Hk,t; ξ) ,
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where #ots = min
{∑d

i=1 2ih/d, dqs

}
denotes the maximum number of WOTS+

key pairs, #fts = min
{
2h, qs

}
denotes the maximum number of HORST key

pairs, and #tree = min
{∑d−1

i=1 2ih/d, (d − 1)qs

}
denotes the maximum number

of subtrees used answering qs signature queries.

Before we give the proof, note that although there is a bunch of factors within
the exact security statement, the reduction is tight. All the factors are constant /
independent of the security parameter. They arise as all the primitives are used
many times. E.g., the pseudorandom generator G� is used for every WOTS+

key pair and an adversary can forge a signature if it can distinguish the output
for one out of the #ots applications of G� from a random bit string. Similar
explanations exist for the other factors.

Proof. In the following we first show that the success probability of any prob-
abilistic polynomial-time adversary A that attacks the EU-CMA security of
SPHINCS is negligible in the security parameter. Afterwards, we analyze the
exact success probability of A and show that it indeed fulfills the claimed bound.
First consider the following six games:

Game 1 is the original EU-CMA game against SPHINCS.
Game 2 differs from Game 1 in that the value R used to randomize the message

hash and to choose the index i is chosen uniformly at random instead of using
F .

Game 3 is similar to Game 2 but this time all used WOTS+ and HORST seeds
are generated uniformly at random and stored in some list for reuse instead
of generating them using Fa.

Game 4 is similar to Game 3 but this time no pseudorandom key generation is
used inside WOTS+. Instead, all WOTS+ secret key elements are generated
uniformly at random and stored in some list for reuse.

Game 5 is similar to Game 4 but this time no pseudorandom key generation
is used at all. Instead, also all HORST secret key elements are generated
uniformly at random and stored in some list for reuse.

The difference in the success probability of A between playing Game 1 and
Game 2 must be negligible. Otherwise we could use A as an distinguisher against
the pseudorandomness of F . Similarly, the difference in the success probability
of A between playing Game 2 and Game 3 must be negligible. Otherwise, we
could use A as an distinguisher against the pseudorandomness of Fa. Also the
difference in the success probability of A between playing Game 3 and Game 4
and playing Game 4 and Game 5 must be negligible. Otherwise, A could be used
to distinguish the outputs of the PRG G� (resp. Gt) from uniformly random bit
strings.

It remains to limit the success probability of A running in Game 5. Assume
that A makes qs queries to the signing oracle before outputting a valid forgery

M∗, Σ∗ = (i∗, R∗, σ∗
H, σ∗

W,0,Auth
∗
A0

, . . . , σ∗
W,d−1,Auth

∗
Ad−1

).
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The index i∗ was used to sign at least one of the query messages with overwhelm-
ing probability. Otherwise, A could be turned into a (second-)preimage finder for
H that succeeds with non-negligible probability. Hence, we assume from now on
i∗ was used before. While running vf(M∗, Σ∗,PK) we can extract the computed
HORST public key pk∗

H as well as the computed WOTS+ public keys pk∗
W,j and

the root nodes of the trees containing these WOTS+ public keys Root∗
j for

all levels j ∈ [d − 1]. In addition, we compute the respective values pkH, pkW,j

and Rootj using the list of secret key elements. All required elements must be
contained in the lists as i∗ was used before.

Next we compare these values in reverse order of computation, i.e., starting
with pkW,d−1

?= pk∗
W,d−1, then Rootd−2

?= Root∗
d−2, and so forth. Then one of

the following four mutually exclusive cases must appear:

Case 1: The first occurrence of a difference happens for a WOTS+ public key.
As shown in [18] this can only happen with negligible probability. Otherwise,
we can use A to compute second-preimages for H with non-negligible success
probability.

Case 2: The first difference occurs for two root nodes Rootj �= Root∗
j . This

implies a forgery for the WOTS+ key pair used to sign Rootj . As shown
in [26] this can only happen with negligible advantage. Otherwise, we could
use A to either break the one-wayness, the second-preimage resistance, or
the undetectability of F with non-negligible success probability.

Case 3: The first spotted difference is two different HORST public keys. As
for Case 2, this implies a WOTS+ forgery and can hence only appear with
negligible probability.

Case 4: All the public keys and root nodes are equal, i.e. no difference occurs.

We excluded all cases but Case 4 which we analyze now. The analysis consists
of a sequence of mutually exclusive cases. Recall that the secret key elements
for this HORST key pair are already fixed and contained in the secret value
list as i∗ was used in the query phase. First, we compare the values of all leaf
nodes that can be derived from σ∗

H with the respective values derived from the
list entries. These are the hashes of the secret key elements in the signature and
the authentication path nodes for level 0. The case that there exists a difference
can only appear with negligible probability, as otherwise A could be used to
compute second-preimages for H with non-negligible probability following the
proof in [18]. Hence, we assume from now on all of these are equal.

Second, the indices of the secret key values contained in σ∗
H have either all

been published as parts of query signatures or at least one index has not been
published before. The latter case can only appear with negligible probability.
Otherwise, A could be turned into a preimage finder for F that has non-negligible
success probability. Finally, we can limit the probability that all indices have been
published as parts of previous signatures.

Recall, when computing the signatures on the query messages, the indices
were chosen uniformly at random. Hence, the probability that a given index
reoccurs γ times, i.e., is used for γ signatures, is equal to the probability of the
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event C(2h, qs, γ) that after qs samples from a set of size 2h at least one value
was sampled γ times. This probability can in turn be bound by

Pr[C(2h, qs, γ)] ≤ 1
2h(γ−1)

(
qs

γ

)
≤ qγ

s

2h(γ−1)
= 2γ(log qs−h)+h (1)

as shown in [36]. Using Equation (1), the probability for this last case can be
written as ∞∑

γ=1

min
{

2γ(log qs−h)+h, 1
}

· Succγ-sr
Hk,t

(A) ,

i.e. the sum over the probabilities that there exists at least one index that was
used γ times multiplied by A’s success probability against the γ-subset resilience
of Hk,t. This sum is negligible per assumption. Hence the success probability of
A is negligible which concludes the asymptotic proof.

Probabilities. Now we take a look at the exact success probability ε =
Succeu-cma

sphincs
(A) of an adversary A that runs in time ξ and makes qs signature

queries. Per definition, A’s probability of winning Game 1 is ε. In what fol-
lows let #ots = min

{∑d
i=1 2ih/d, dqs

}
denote the maximum number of WOTS+

key pairs, #fts = min
{
2h, qs

}
the maximum number of HORST key pairs,

and #tree = min
{∑d−1

i=1 2ih/d, (d − 1)qs

}
the maximum number of subtrees

used while answering signature queries. Now, from the definition of the inse-
curity functions we get that the differences in the success probabilities of A
playing two neighboring games from the above series of games are bounded
by InSecprf (F ; ξ, qs), InSecprf (Fa; ξ,#fts + #ots), #ots · InSecprg (G�; ξ), #fts ·
InSecprg (Gt; ξ), respectively. Hence, ε is bounded by A’s probability of winning
Game 5 plus the sum of the above bounds.

It remains to limit A’s success probability in Game 5. A more detailed anal-
ysis shows that the case that i∗ was not used before is also covered by the
following cases. (The reason is that at some point the path from the message to
the root must meet a path which was used in the response to a query before.) So
we only have to consider the four cases. The probability that A succeeds with
a Case 1 forgery is limited by #tree · 2h/d+�log �� · InSecspr (H; ξ). This bound
can be obtained by first guessing a tree and then following the proof in [18].
The combined probability that A succeeds with a Case 2 or Case 3 forgery is
limited by #ots · InSeceu-cma

(
WOTS+; t, 1

) ≤ #ots · (�w2 · InSecud (F; ξ) + �w ·
InSecow (F; ξ) + �w2 · InSecspr (F; ξ)). Similarly to the last case, this bound can
be obtained by first guessing the WOTS+ key pair A will forge a signature for
and then following the proof from [26]2.

Case 4 consists of another three mutually exclusive cases. The probability
that A succeeds by inserting new leaves into the HORST tree can be bounded by
#fts ·2t·InSecspr (H; ξ). This can be seen, first guessing the HORST key pair and
then following again the proof in [18]. The probability that A succeeds by provid-
ing a valid value for an index not included in previous signatures can be bounded
2 The used bound is actually an improved bound from [25].
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by #fts ·t ·InSecow (F; ξ). This can be shown, first guessing the HORST key pair
and afterwards, guessing the index. Finally, the probability that A succeeds find-
ing a message for which it already knows the values to be opened from previous
signatures can be bounded by

∑∞
γ=1 min

{
2γ(log qs−h)+h, 1

} · InSecγ-sr (Hk,t; ξ).
As the three cases are mutually exclusive, the probability that A succeeds with

a Case 4 forgery is bound by the sum of the three probabilities above. Similarly,
the probability of A winning Game 5 is bound by the sum of the probabilities of
A succeeding in Case 1 - 4. This finally leads the claimed bound. ��

3.2 Generic Attacks

As a complement to the above reduction, we now analyze the concrete complexity
of various attacks, both pre-quantum and post-quantum. Recall that Hk,t(R,M)
applied to message M ∈ {0, 1}∗ and randomness R ∈ {0, 1}n works as follows.
First, the message digest is computed as M ′ = H(R,M) ∈ {0, 1}m. Then, M ′ is
split into k bit strings, each of length log t. Finally, each of these bit strings is
interpreted as an unsigned integer. Thus, the output of Hk,t is an ordered subset
of k values out of the set [t − 1] (possibly with repetitions).

Subset-Resilience. The main attack vector against SPHINCS is targeting
subset-resilience. The obvious first attack is to simply replace (R,M) in a valid
signature with (R′,M ′), hoping that Hk,t(R,M) = Hk,t(R′,M ′). This violates
strong unforgeability if (R,M) �= (R′,M ′), and it violates existential unforge-
ability if M �= M ′. Finding a second preimage of (R,M) under Hk,t costs 2m

pre-quantum but only 2m/2 post-quantum (Grover’s algorithm). To reach success
probability p takes time

√
p2m/2.

The attacker does succeed in reusing Hk,t(R,M) if Hk,t(R′,M ′) contains
the same indices as Hk,t(R,M), because then he can permute the HORST sig-
nature for (R,M) accordingly to obtain the HORST signature for (R′,M ′). If
k2 is considerably smaller than t then the k indices in a hash are unlikely to
contain any collisions, so there are about 2m/k! equivalence classes of hashes
under permutations. It is easy to map each hash to a numerical representative
of its equivalence class, effectively reducing the pre-quantum second-preimage
cost from 2m to 2m/k!, and the post-quantum second-preimage cost from 2m/2

to
√

2m/k!.
More generally, when γ valid signatures use the same HORST key, the

attacker can mix and match the HORST signatures. All the attacker needs is to
break γ-subset-resilience: i.e., find Hk,t(R′,M ′) so that the set of k indices in it
is a subset of the union of the indices in the γ valid signatures. The union has
size about γk (at most γk, and usually close to γk if γk is not very large com-
pared to t), so a uniform random number has probability about γk/t of being
in the union, and if the k indices were independent uniform random numbers
then they would have probability about (γk)k/tk of all being in the union. The
expected cost of a pre-quantum attack is about tk/(γk)k, and the expected cost
of a post-quantum attack is about tk/2/(γk)k/2.

Of course, this attack cannot start unless the signer in fact produced γ
valid signatures using the same HORST key. After a total of q signatures, the
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probability of any particular HORST key being used exactly γ times is exactly(
q
γ

)
(1 − 1/2h)q−γ(1/2h)γ . This probability is bounded above by (q/2h)γ in the

above proof; a much tighter approximation is (q/2h)γ exp(−q/2h)/γ!. If the ratio
ρ = q/2h is significantly smaller than 1 then there will be approximately q keys
used once, approximately ρq/2 keys used twice, approximately ρ2q/6 keys used
three times, and so on. The chance that some key will be used γ times, for
γ = h/ log(1/ρ) + δ, is approximately ρδ/γ!.

For example, consider t = 216, k = 32, h = 60, and q = 250. There is a
noticeable chance, approximately 2−9.5, that some HORST key is used 6 times.
For γ = 6 the expected cost of a pre-quantum attack is 2269 and the expected
cost of a post-quantum attack is 2134. Increasing γ to 9 reduces the post-quantum
cost below 2128, specifically to 2125.3, but the probability of a HORST key being
used 9 times is below 2−48. Increasing γ to 10, 11, 12, 13, 14, 15 reduces the cost to
2122.8, 2120.6, 2118.6, 2116.8, 2115.1, 2113.5 respectively, but reduces the probability
to 2−61, 2−75, 2−88, 2−102, 2−116, 2−130 respectively.

Security degrades as q grows closer to 2h. For example, for q = 260 the
attacker finds γ = 26 with probability above 2−30, and then a post-quantum
attack costs only about 2100. Of course, the signer is in control of the number
of messages signed: for example, even if the signer’s key is shared across enough
devices to continuously sign 220 messages per second, signing 250 messages would
take more than 30 years.

One-Wayness. The attacker can also try to work backwards from a hash output
to an n-bit hash input that was not revealed by the signer (or a n-bit half of
a 2n-bit hash input where the other half was revealed by the signer). If the
hash inputs were independent uniform random n-bit strings then this would be
a standard preimage problem; generic pre-quantum preimage search costs 2n,
and generic post-quantum preimage search (again Grover) costs 2n/2.

The attacker can also merge preimage searches for n-bit-to-n-bit hashes. (For
2n-bit-to-n-bit hashes the known n input bits have negligible chance of repeat-
ing.) For pre-quantum attacks the cost of generic T -target preimage attacks is
well known to drop by a factor of T ; here T is bounded by approximately 2h (the
exact bound depends on q), for a total attack cost of approximately 2n−h. For
post-quantum attacks, it is well known that 2n/2/

√
T quantum queries are nec-

essary and sufficient for generic T -target preimage attacks (assuming T < 2n/3),
but there is overhead beyond the queries. An analysis of this overhead by Bern-
stein [8] concludes that all known post-quantum collision-finding algorithms cost
at least 2n/2, implying that the post-quantum cost of multi-target preimage
attacks is also 2n/2. For example, for n = 256 and T = 256 the best post-
quantum attacks use only 2100 queries but still cost 2128.

Second-Preimage Resistance. As for the message hash, finding a second
preimage of either a message M ∈ {0, 1}n under F or a message M ∈ {0, 1}2n

under H costs 2n pre-quantum and 2n/2 post-quantum (Grover’s algorithm).

PRF, PRG, and Undetectability. The hash inputs are actually obtained
from a chain of PRF outputs, PRG outputs, and lower-level hash outputs. The
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attacker can try to find patterns in these inputs, for example by guessing the
PRF key, the PRG seed, or an input to F that ends up at a target value after
a number of rounds of the chaining function. All generic attacks again cost 2n

pre-quantum and 2n/2 post-quantum.

4 SPHINCS-256

In addition to the general construction of SPHINCS, we propose a specific
instantiation called SPHINCS-256. The parameters, functions, and resulting key
and signature sizes of SPHINCS-256 are summarized in Table 1. This section
describes how these parameters and functions were chosen.

Parameters. The parameters for SPHINCS-256 were selected with two goals
in mind: (1) long-term 2128 security against attackers with access to quantum
computers; (2) a good tradeoff between speed and signature size. The first goal
determined the security parameter n = 256, which in turn determined the name
SPHINCS-256. Optimizing the remaining parameters required deciding on the
relative importance of speed and signature size. After searching a large parameter
space we settled on the parameters m = 512, h = 60, d = 12, w = 16, t = 216,
and k = 32, implying � = 67, x = 6, and a = 64. These choices are small enough
and fast enough for a wide range of applications. Of course, one can also define
different SPHINCS instantiations, changing the remaining parameters in favor
of either speed or signature size.

Security of SPHINCS-256. SPHINCS-256 uses n = 256,m = 512, h =
60, d = 12, w = 16, t = 216, k = 32 as parameters. Hence, considering attackers
that have access to a large scale quantum computer this means the following.
Assuming the best attacks against the used hash functions are generic attacks as
described in the last section, Hk,t provides security above 2128 regarding subset-
resilience, F and H provide 2128 security against preimage, second-preimage and
in case of F undetectability attacks. Similarly, the used PRFs and PRGs pro-
vide security 2128. Summing up, SPHINCS-256 provides 2128 security against
post-quantum attackers under the assumptions above.

Fast Fixed-Size Hashing. The primary cost metric in the literature on cryp-
tographic hash functions, for example in the recently concluded SHA-3 com-
petition, is performance for long inputs. However, what is most important for
SPHINCS and hash-based signatures in general is performance for short inputs.
The hashing in SPHINCS consists primarily of applying F to n-bit inputs and
secondarily of applying H to 2n-bit inputs.

Short-input performance was emphasized in a recent MAC/PRF design [1]
from Aumasson and Bernstein. We propose short-input performance as a simi-
larly interesting target for hash-function designers.

Designing a new hash function is not within the scope of this paper: we
limit ourselves to evaluating the short-input performance of previously designed
components that appear to have received adequate study. Below we explain our
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Table 1. SPHINCS-256 parameters and functions for the 128-bit post-quantum secu-
rity level and resulting signature and key sizes

Parameter Value Meaning

n 256 bitlength of hashes in HORST and WOTS
m 512 bitlength of the message hash
h 60 height of the hyper-tree
d 12 layers of the hyper-tree
w 16 Winternitz parameter used for WOTS signatures
t 216 number of secret-key elements of HORST
k 32 number of revealed secret-key elements per HORST sig.

Functions

Hash H: H(R, M) = BLAKE-512(R‖M)
PRF Fa: Fa(A, K) = BLAKE-256(K‖A)
PRF F : F(M, K) = BLAKE-512(K‖M)
PRG Gλ: Gλ(Seed) = ChaCha12Seed(0)0,...,λ−1

Hash F: F(M1) = Chop(πChaCha(M1‖C), 256)
Hash H: H(M1‖M2) = Chop

(
πChaCha

(
πChaCha (M1‖C) ⊕ (

M2‖0256
))

, 256
)

Sizes

Signature size: 41000 bytes
Public-key size: 1056 bytes
Private-key size: 1088 bytes

selection of specific functions F : {0, 1}n → {0, 1}n and H : {0, 1}2n → {0, 1}n

for n = 256.

Review of Permutation-Based Cryptography. Rivest suggested strength-
ening the DES cipher by “whitening” the input and output: i.e., encrypting a
block M under key (K,K1,K2) as EK(M ⊕ K1) ⊕ K2, where EK means DES
using key K. Even and Mansour [21] suggested eliminating the original key K:
i.e., encrypting a block M under key (K1,K2) as E(M ⊕ K1) ⊕ K2, where E is
an unkeyed public permutation. Kilian and Rogaway [28, Section 4] suggested
taking K1 = K2.

Combining all of these suggestions means encrypting M under key K as
E(M ⊕K)⊕K; see, e.g., [29], [7], and [20]. Trivial 0-padding or, more generally,
padding with a constant allows M and K to be shorter than the block length of
E: for example, the “Salsa20” cipher from [7] actually produces E(K,M,C) +
(K,M,C), where C is a constant. The PRF security of Salsa20 is tightly equiva-
lent to the PRF security of E(K,M,C)+(K, 0, 0), which in turn implies the PRF
security of the “HSalsa20” stream cipher [9] obtained by truncating E(K,M,C).

Bertoni, Daemen, Peeters, and Van Assche [12] proposed building crypto-
graphic hash functions from unkeyed permutations, and later proposed a specific
“Keccak” hash function. The “sponge” construction used in [12], and in Keccak,
hashes a (b−c)-bit message K1 to a (b−c)-bit truncation of E(K1, C), where C is
a c-bit constant; hashes a 2(b−c)-bit message (K1,K2) to a (b−c)-bit truncation
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of E(E(K1, C) ⊕ (K2, 0)); etc. Sponges have been reused in many subsequent
designs and studied in many papers. We ended up selecting the sponge structure
for both F and H.

Note that the single-block hash here, a truncation of E(K1, C), is the same
as an encryption of a constant nonce using a truncated-E(K1,M,C) cipher. Of
course, there is no logical connection between the PRF security of this cipher
and (e.g.) second-preimage resistance, but designers use the same techniques
to build E for either context: consider, for example, the reuse of the Salsa20
permutation in the “Rumba20” [5] compression function, the reuse of a tweaked
version of the “ChaCha20” permutation [6] in the “BLAKE” and “BLAKE2”
[4] hash functions, and the reuse of the Keccak permutation in the “Keyak” [14]
authenticated-encryption scheme.

Many other hash-function designs use input blocks as cipher keys, but in
most cases the underlying ciphers use complicated “key schedules” rather than
wrapping simple key addition around an unkeyed permutation. Both [7] and [13]
state reasons to believe that unkeyed permutations provide the best performance-
security tradeoff. Performance obviously played a large role in the selection of
Salsa20/12 (Salsa20 reduced to 12 rounds) for the eSTREAM portfolio, the
deployment of ChaCha20 in TLS [31], and the selection of Keccak as SHA-3.
We did not find any non-permutation-based hash-function software competitive
in performance with the permutation that we selected.

Choice of Permutation for n = 256. A sponge function using a b-bit permu-
tation E and a c-bit “capacity” takes b−c bits in each input block and produces
b − c bits of output. We require b − c ≥ 256 so that a single call to E hashes 256
bits to 256 bits (and two calls to E hash 512 bits to 256 bits). The attacker can
compute preimages by guessing the c missing bits and applying E−1, so we also
require c ≥ 256.

We considered using the Keccak permutation, which has b = 1600, but this
is overkill: it takes as long to hash a 256-bit block as it does to hash a 1000-bit
block. There is a scaled-down version of Keccak with b = 800, but this is not
part of SHA-3, and we do not know how intensively it has been analyzed.

After considering various other permutations we settled on ChaCha, which
has b = 512. ChaCha is a slightly modified version of Salsa, advertising faster dif-
fusion and at the same time better performance. The best key-recovery attacks
known are from Aumasson, Fischer, Khazaei, Meier, and Rechberger [2] and are
slightly faster than 2256 operations against 8 rounds of Salsa and 7 rounds of
ChaCha, supporting the security advertisement. The eSTREAM portfolio rec-
ommends 12 rounds of Salsa20 as having a “comfortable margin for security”
so we selected 12 rounds of ChaCha (ChaCha12). The Salsa and ChaCha per-
mutations are not designed to simulate ideal permutations: they are designed
to simulate ideal permutations with certain symmetries, i.e., ideal permutations
of the orbits of the state space under these symmetries. The Salsa and ChaCha
stream ciphers add their inputs to only part of the block and specify the rest
of the block as asymmetric constants, guaranteeing that different inputs lie in
different orbits. For the same reason we specify an asymmetric constant for C.
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Specifically, let πChaCha : {0, 1}512 → {0, 1}512 denote the ChaCha12 permu-
tation, let C be the bytes of the ASCII representation of “expand 32-byte to
64-byte state!” and let Chop(M, i) be the function that returns the first i bits
of the string M . Then we define

F(M1) = Chop (πChaCha (M1‖C) , 256) , and

H(M1‖M2) = Chop
(
πChaCha

(
πChaCha (M1‖C) ⊕ (

M2‖0256
))

, 256
)
.

for any 256-bit strings M1,M2.

Other Functions. We also use ChaCha12 directly for the PRG Gλ. Specifically,
we define Gλ(Seed) = ChaCha12Seed(0)0,...,λ−1, i.e., we run ChaCha12 with key
Seed and initialization vector 0 and take the first λ output bits.

For message hashing we use BLAKE, whose security was extensively studied
as part of the SHA-3 competition. We also use BLAKE for the n-bit-output
PRF and for the 2n-bit-output PRF: We define H(R,M) = BLAKE-512(R‖M);
Fa(A,K) = BLAKE-256(K‖A); and F(M,K) = BLAKE-512(K‖M).

5 Fast Software Implementation

The fastest arithmetic units of most modern microprocessors are vector units.
Instead of performing a certain arithmetic operation on scalar inputs, they per-
form the same operation in parallel on multiple values kept in vector registers.
Not surprisingly, many speed records for cryptographic algorithms are held by
implementations that make efficient use of these vector units. Also not surpris-
ingly, many modern cryptographic primitives are designed with vectorizability
in mind. In this section we describe how to efficiently implement SPHINCS-
256 using vector instructions, more specifically the AVX2 vector instructions in
Intel Haswell processors. All cycle counts reported in this section are measured
on one core of an Intel Xeon E3-1275 CPU running at 3.5 GHz. We followed
the standard practice of turning off Turbo Boost and hyperthreading for our
benchmarks.

The AVX2 Instruction Set. The Advanced Vector Extensions (AVX) were
introduced by Intel in 2011 with the Sandy Bridge microarchitecture. The exten-
sions feature 16 vector registers of size 256 bits. In AVX, those registers can
only be used as vectors of 8 single-precision floating-point values or vectors of 4
double-precision floating-point values. This functionality was extended in AVX2,
introduced with the Haswell microarchitecture, to also support arithmetic on
256-bit vectors of integers of various sizes. We use these AVX2 instructions for
8-way parallel computations on 32-bit integers.

Vectorizing Hash Computations. The two low-level operations in SPHINCS
that account for most of the computations are the fixed-input-size hash functions
F and H. The SPHINCS-256 instantiation of F and H internally uses the ChaCha
permutation. We now discuss vectorized computation of this permutation.
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An obvious approach is to use the same parallelism exploited in [3, Section
3.1.3], which notes that the core operations in ChaCha and BLAKE “can be com-
puted in four parallel branches”. Most high-speed implementations of BLAKE
use this internal 4-way parallelism for vector computations.

However, it is much more efficient to vectorize across multiple independent
computations of F or H. The most obvious reason is that the ChaCha permu-
tation operates on 32-bit integers which means that 4-way-parallel computation
can only make use of half of the 256-bit AVX vector registers. A second reason is
that internal vectorization of ChaCha requires relatively frequent shuffling of val-
ues in vector registers. Those shuffles do not incur a serious performance penalty,
but they are noticeable. A third reason is that vectorization is not the only way
that modern microprocessors exploit parallelism. Instruction-level parallelism is
used on pipelined processors to hide latencies and superscalar CPUs can even
execute multiple independent instruction in the same cycle. A non-vectorized
implementation of ChaCha has 4-way instruction-level parallelism which makes
very good use of pipelining and superscalar execution. A vectorized implemen-
tation of ChaCha has almost no instruction-level parallelism and suffers from
serious instruction-latency penalties.

Our 8-way parallel implementation of F takes 420 cycles to hash 8 indepen-
dent 256-bit inputs to 8 256-bit outputs. Our 8-way parallel implementation of
H takes 836 cycles to hash 8 independent 512-bit inputs to 8 256-bit outputs.
These speeds assume that the inputs are interleaved in memory. Interleaving and
de-interleaving data means transposing an 8 × 8 32-bit-word matrix.

This vectorization across 8 simultaneous hash computations is suitable for the
two main components in the SPHINCS signature generation, namely HORST
signing and WOTS authentication-path computations, as described below. The
same approach also generalizes to other instantiations of F and H, although for
some functions it is more natural to use 64-bit words.

HORST Signing. The first step in HORST signature generation is to expand
the secret seed into a stream of t · n = 16 777 216 bits (or 2 MB). This pseudo-
random stream forms the 216 secret keys of HORST. We use ChaCha12 for this
seed expansion, more specifically Andrew Moon’s implementation of ChaCha12,
which SUPERCOP identifies as the fastest implementation for Haswell CPUs.
The seed expansion costs about 1 814 424 cycles.

The costly part of HORST signing is to first evaluate F(ski) for i = 0, . . . , t−
1, and then build the binary hash tree on top of the F(ski) and extract nodes
which are required for the 32 authentication paths. SPHINCS-256 uses t =
216 so we need a total of 65 536 evaluations of F and 65 535 evaluations of
H. A streamlined vectorized implementation treats the HORST binary tree up
to level 13 (the level with 8 nodes) as 8 independent sub-trees and vectorizes
computations across these sub-trees. Data needs to be interleaved only once
at the beginning (the HORST secret keys ski) and de-interleaved at the very
end (the 8 nodes on level 13 of the HORST tree). All computations in between
are streamlined 8-way parallel computations of F and H on interleaved data.
The final tree hashing from level 13 to the HORST root at level 16 needs only
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7 evaluations of H. This is a negligible cost, even when using a slower non-
vectorized implementation of H.

Note that, strictly speaking, we do not have to interleave input at all; we can
simply treat the 2 MB output of ChaCha12 as already interleaved random data.
However, this complicates compatible non-vectorized or differently vectorized
implementations on other platforms.

WOTS Authentication Paths. Computing a WOTS authentication path con-
sists of 32 WOTS key generations, each followed by an L-Tree computation. This
produces 32 WOTS public keys, which form the leaves of a binary tree. Com-
puting this binary tree and extracting the nodes required for the authentication
path finishes this computation. The costly part of this operation is the compu-
tation of 32 WOTS public keys (32 · 15 · 67 = 32 160 evaluations of F) and of
32 L-Tree computations (32 · 66 = 2 112 evaluations of H). For comparison, the
binary tree at the end costs only 31 computations of H. Efficient vectorization
parallelizes across 8 independent WOTS public-key computations with subse-
quent L-Tree computations. Data needs to be interleaved only once at the very
beginning (the WOTS secret key) and de-interleaved once at the very end (the
roots of the L-Trees). Again, all computations in between are streamlined 8-way
parallel computations of F and H on interleaved data.

SPHINCS Signing Performance. Our software still uses some more transpo-
sitions of data than the almost perfectly streamlined implementation described
above. With these transpositions and some additional overhead to xor hash
inputs with masks, update pointers and indices etc., HORST signing takes
15 033 564 cycles. The lower bound from 65 536 evaluations of F and 65 535 eval-
uations of H is 10 289 047 cycles. The computation of one WOTS authentication
path takes 2 586 784 cycles. The lower bound from 32 160 evaluations of F and
2 143 evaluations of H is 1 912 343 cycles. The complete SPHINCS-256 signing
takes 51 636 372 cycles; almost all of these cycles are explained by one HORST
signature and 12 WOTS authentication paths.

SPHINCS Key Generation and Verification. The by far most costly oper-
ation in SPHINCS is signing so we focused our optimization efforts on this
operation. Some easily vectorizable parts of key generation and verification also
use our high-speed 8-way vectorized implementations of F and H, but other
parts still use relatively slow non-vectorized versions based on the ChaCha12
reference implementation in eBACS [10]. Our implementation of key genera-
tion takes 3 237 260 cycles. Our implementation of signature verification takes
1 451 004 cycles.

RAM Usage and Size. Our implementation is optimized for speed on large
Intel processors where size and memory usage are typically only a minor concern.
Consequently, we did not optimize for those parameters. For example, we keep
the complete HORST tree in memory and then extract the hashes that are
needed in the 32 authentication paths. This approach keeps the software simple,
but if we wanted to save memory, we would instead use treehash [32] to construct
the tree and extract and store required authentication-path entries on the fly.
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Although the software is not optimized for memory usage, we do not need any
dynamic memory allocations; all temporary data fits into the Linux default stack
limit of 8 MB. The size of the complete signing software, including BLAKE for
message hashing, is 104 KB.

Acknowledgments. Thanks to Christian Rechberger and Andrew Miller for helpful
discussions on the topic.
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A Security Properties

In this appendix we give the basic definitions for security properties we use.

Existential Unforgeability Under Adaptive Chosen Message Attacks.
The standard security notion for digital signature schemes is existential unforge-
ability under adaptive chosen message attacks (EU-CMA) [24] which is defined
using the following experiment. By Dss(1n) we denote a signature scheme with
security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk) ← kg(1n)
(M�, σ�) ← Asign(sk,·)(pk)
Let {(Mi, σi)}q

1 be the query-answer pairs of sign(sk, ·).
Return 1 iff vf(pk,M�, σ�) = 1 and M� �∈ {Mi}q

1.

A signature scheme is called existentially unforgeable under a q adaptive cho-
sen message attack if any PPT adversary making at most q queries, has only
negligible success probability in winning the above game.

An EU-CMA secure one-time signature scheme (OTS) is a signature scheme
that is existentially unforgeable under a 1-adaptively chosen message attack.

Hash Function Families. We now provide definitions of the security properties
of hash function families that we use, namely one-wayness, second-preimage
resistance, undetectability and pseudorandomness. In the following let n ∈ N be
the security parameter, m, k = poly(n) , Hn = {HK : {0, 1}m → {0, 1}n |K ∈
{0, 1}k} a family of functions. (In the description of SPHINCS we actually omit
the key K in many cases for readability.)

We define the security properties in terms of the success probability of an
adversary A against the respective property. A function family Hn is said to
provide a property if the success probability of any probabilistic polynomial-
time adversary against this property is negligible. We begin with the success
probability of an adversary A against the one-wayness (ow) of a function family
Hn.

Succow

Hn
(A) = Pr [ K

$← {0, 1}k;M $← {0, 1}m, Y ← HK(M),
M ′ ← A(K,Y ) : Y = HK(M ′)] .
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We next define the success probability of an adversary A against second-preimage
resistance (spr).

Succspr

Hn
(A) =Pr [ K

$← {0, 1}k;M $← {0, 1}m,M ′ ← A(K,M) :
(M �= M ′) ∧ (HK(M) = HK(M ′))] .

To define undetectability, assume the following two distributions over {0, 1}n ×
{0, 1}k. A sample (U,K) from the first distribution Dud,U is obtained by sampling

U
$← {0, 1}n and K

$← {0, 1}k uniformly at random from the respective domains.
A sample (U,K) from the second distribution Dud,H is obtained by sampling

K
$← {0, 1}k and then evaluating HK on a uniformly random bit string, i.e.,

Um
$← {0, 1}m, U ← HK(Um). The success probability of an adversary A against

the undetectability of Hn is defined as:

Succud

Hn
(A) =

∣
∣Pr[ADud,U = 1] − Pr[ADud,H = 1]

∣
∣ ,

where Adist denotes that A has oracle access to some oracle that outputs samples
from distribution dist.

The fourth notion we use is pseudorandomness of a function family (prf). In
the definition of the success probability of an adversary against pseudorandom-
ness the adversary gets black-box access to an oracle Box. Box is either initialized
with a function from Hn or a function from the set G(m,n) of all functions with
domain {0, 1}m and range {0, 1}n. The goal of the adversary is to distinguish
both cases:

Succprf

Hn
(A) =

∣
∣
∣Pr[Box

$← Hn : ABox(·) = 1] − Pr[Box $← G(m,n) : ABox(·) = 1]
∣
∣
∣ .

Subset-Resilient Functions. We now recall the definition of subset resilience
from [34]. Let H = {Hi,t,k} be a family of functions, where Hi,t,k maps a bit
string of arbitrary length to an subset of size at most k of the set [t − 1]. (As for
hash functions in the description of SPHINCS we omit the key and assume the
used function is randomly selected from a family using the uniform distribution.)
Moreover, assume that there is a polynomial-time algorithm that, given i, 1t, 1k

and M , computes Hi,t,k(M). Then H is called γ-subset resilient if the following
success probability is negligible for any probabilistic polynomial-time adversary
A:

Succγ-sr
H (A) = Pri

[
(M1,M2, . . . ,Mγ+1) ← A(i, 1t, 1k)

s.t. Hi,t,k(Mγ+1) ⊆
γ⋃

j=1

Hi,t,k(Mj)
]
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Abstract. We investigate the relationships between theoretical stud-
ies of leaking cryptographic devices and concrete security evaluations
with standard side-channel attacks. Our contributions are in four parts.
First, we connect the formal analysis of the masking countermeasure
proposed by Duc et al. (Eurocrypt 2014) with the Eurocrypt 2009 eval-
uation framework for side-channel key recovery attacks. In particular,
we re-state their main proof for the masking countermeasure based on a
mutual information metric, which is frequently used in concrete physical
security evaluations. Second, we discuss the tightness of the Eurocrypt
2014 bounds based on experimental case studies. This allows us to con-
jecture a simplified link between the mutual information metric and the
success rate of a side-channel adversary, ignoring technical parameters
and proof artifacts. Third, we introduce heuristic (yet well-motivated)
tools for the evaluation of the masking countermeasure when its inde-
pendent leakage assumption is not perfectly fulfilled, as it is frequently
encountered in practice. Thanks to these tools, we argue that mask-
ing with non-independent leakages may provide improved security levels
in certain scenarios. Eventually, we consider the tradeoff between mea-
surement complexity and key enumeration in divide-and-conquer side-
channel attacks, and show that it can be predicted based on the mutual
information metric, by solving a non-linear integer programming problem
for which efficient solutions exist. The combination of these observations
enables significant reductions of the evaluation costs for certification
bodies.

1 Introduction

Side-channel attacks are an important concern for the security of cryptographic
hardware, and masking is one of the most investigated solutions to counteract
them. Its underlying principle is to randomize any sensitive data manipulated
by a leaking implementation by splitting it into d shares, and to perform all the
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computations on these shared values only. Intuitively, such a process is expected
to force the adversary to combine several leakages corresponding to the differ-
ent shares in order to recover secret information. As a result, it has first been
shown by Chari et al. that the measurement complexity of a specialized attack
– namely a single-bit Differential Power Analysis (DPA) [35] – against a care-
fully implemented masked computation (i.e. where the leakages of all the shares
are independent and sufficiently noisy) increases exponentially with d [14]. Fol-
lowing this seminal work, a number of progresses have been made in order to
state the security guarantee of masking in both general and rigorous terms. For
example, Ishai, Sahai and Wagner introduced a compiler (next referred to as
the ISW compiler), able to encode any circuit into an equivalent (secret-shared)
one, and proved its security against so-called probing adversaries, able to read
a bounded number of wires in the implementation [33]. A practical counterpart
to these results was published at Asiacrypt 2010, where Standaert et al. ana-
lyzed the security of several masked implementations [61], using the information
theoretic framework introduced in [60]. While this analysis was specialized to a
few concrete case studies, it allowed confirming the exponential security increase
provided by masking against actual leakages, typically made of a noisy but arbi-
trary function of the target device’s state. Following, Faust et al. attempted
to analyze the ISW compiler against more realistic leakage functions, and suc-
ceeded to prove its security against computationally bounded (yet still unrealis-
tic) ones, e.g. in the AC0 complexity class [25]. Prouff and Rivain then made a
complementary step towards bridging the gap between the theory and practice
of masking schemes, by providing a formal information theoretic analysis of a
wide (and realistic) class of so-called noisy leakage functions [49]. Eventually,
Duc et al. turned this analysis into a simulation-based security proof, under
standard conditions (i.e. chosen-message rather than random-message attacks,
without leak-free components, and with reduced noise requirements) [22]. The
central and fundamental ingredient of this last work was a reduction from the
noisy leakage model of Prouff and Rivain to the probing model of Ishai et al.

Our Contribution. In view of this state-of-the-art, one of the main remaining
questions regarding the security of the masking countermeasure is whether its
proofs can be helpful in the security evaluation of concrete devices. That is,
can we state theorems for masking so that the hypotheses can be easily fulfilled
by hardware designers, and the resulting guarantee is reflective of the actual
security level of the target implementation. For this purpose, we first observe
that the proofs in [22,49] express their hypothesis for the amount of noise in
the shares’ leakages based on a statistical distance. This is in contrast with the
large body of published work where the mutual information metric introduced
in [60] is estimated for various implementations (e.g. [4,12,27,30,32,42,50,51,57,
63,66]). Since the latter metric generally carries more intuition (see, e.g. [3] in
the context of linear cryptanalysis), and benefits from recent advances in leakage
certification, allowing to make sure that its estimation is accurate and based on
sound assumptions [23], we first provide a useful link between the statistical
distance and mutual information, and also connect them with easy-to-interpret
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(but more specialized) tools such as the Signal-to-Noise Ratio (SNR). We then
re-state the theorems of Duc et al. based on the mutual information metric in
two relevant scenarios. Namely, we consider both the security of an idealized
implementation with a “leak-free refreshing” of the shares, and the one of a
standard ISW-like encoding (i.e. capturing any type of leaking computation).

Interestingly, the implementation with leak-free refreshing corresponds to
the frequently investigated (practical) context where a side-channel attack aims
at key recovery, and only targets the d shares’ leakage of a so-called sensitive
intermediate variable (i.e. that depends on the plaintext and key) [17]. So despite
being less interesting from a theoretical point of view, this scenario allows us
to compare the theorem bounds with concrete attacks. Taking advantage of
this comparison, we discuss the bounds’ tightness and separate parameters that
are physically motivated from more “technical ones”(that most likely result of
proof artifacts). As a result, we conjecture a simplified link between the mutual
information metric and the success rate of a side-channel adversary, which allows
accurate approximations of the attacks’ measurement complexity at minimum
(evaluation) cost. We further illustrate that the noise condition for masking has
a simple and intuitive interpretation when stated in terms of SNR.

Next, we note that the published results about masking (including the pre-
viously mentioned theorems and conjecture) assume independence between the
leakages corresponding to different shares in an implementation. Yet, concrete
experiments have shown that small (or even large) deviations from this assump-
tion frequently occur in practice (see, e.g. [5,16,41,54]). Hence, we complete
our discussion by providing sound heuristics to analyze the impact of “non-
independent leakages” which allow, for the first time, to evaluate and predict
the security level of a masked implementation in such imperfect conditions.

Eventually, we consider the tradeoff between measurement complexity and
time complexity in the important context of divide-and-conquer attacks. Previ-
ously known approaches for this purpose were based on launching key enumer-
ation and/or rank estimation algorithms for multiple attacks, and to average
results to obtain a success rate [64,65]. We provide an alternative solution, where
success rates (possibly obtained from estimations of the mutual information met-
ric) are estimated/bounded for all the target key bytes of the divide-and-conquer
attack first, and the impact of enumeration is evaluated only once afterwards.
We also connect the problem of approximating the enumeration cost for a given
number of measurements with a non-linear integer programming problem, and
provide simple heuristics to estimate bounds on this enumeration cost.

Summarizing, the combination of these observations highlights that the secu-
rity evaluation of a masked implementation boils down to the estimation of the
mutual information between its shares and their corresponding leakages. Inciden-
tally, the tools introduced in this paper apply identically to unprotected imple-
mentations, or implementations protected with other countermeasures, as long
as one can estimate the same mutual information metric for the target inter-
mediate values. Therefore, our results clarify the long standing open question
whether the (informal) link between information theoretic and security metrics
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in the Eurocrypt 2009 evaluation framework [60] can be proved formally. They
also have important consequences for certification bodies, since they translate
the (worst-case) side-channel evaluation problem into the well-defined challenge
of estimating a single metric, leading to significantly reduced evaluation costs.

Notations. We next use capital letters for random variables, small caps for
their realizations and hats for estimations. Vectors will be denoted with bold
notations, functions with sans serif fonts, and sets with calligraphic ones.

2 Background

2.1 Leakage Traces and Assumptions

Let y be a n-bit sensitive value manipulated by a leaking device. Typically, it
could be the output of an S-box computation such that y = S(x ⊕ k) with n-bit
plaintext/key words x and k. Let y1, y2, . . . , yd be the d shares representing y
in a Boolean masking scheme (i.e. y = y1 ⊕ y2 ⊕ . . . ⊕ yd). In a side-channel
attack, the adversary is provided with some information (aka leakage) on each
share. Typically, this leakage takes the form of a random variable Lyi

that is the
output of a leakage function L with yi and a noise variable Ri as arguments:

Lyi
= L(yi,Ri) . (1)

The top of Fig. 1 represents a leakage trace corresponding to the manipulation
of d shares. Concretely, each subtrace Lyi

is a vector of which the elements
represent time samples. Whenever accessing a single time sample t, we use the
notation Lt

yi
= Lt(yi,R

t
i). From this general setup, a number of assumptions are

frequently used in the literature. We will consider the following three.

a. Selection of Points-of-Interest / Dimensionality Reduction. For con-
venience, a number of attacks start with a pre-processing in order to reduce each
leakage subtrace Lyi

to a scalar random variable Lyi
. Such a pre-processing is

motivated both by popular side-channel distinguishers such as Correlation Power
Analysis (CPA) [11], which can only deal with univariate data, and by the eas-
ier representation of small dimensional data spaces. In this respect, even dis-
tinguishers that naturally extend towards multivariate data (such as Template
attacks (TA) [15], Linear Regression (LR) [58] or Mutual Information Analysis
(MIA) [28]) generally benefit from some dimensionality reduction. This step can
be achieved heuristically, by looking for leakage samples where one distinguisher
works best, or more systematically using tools such as Principal Component
Analysis (PCA) [2] or Linear Discriminant Analysis (LDA) [59]. An example of
reduced leakage trace is represented at the bottom of Fig. 1.

b. Additive Noise. A standard assumption in the literature is to consider
leakage functions made of a deterministic part G(yi) and additive noise Ni [40]:

Lyi
= L(yi,Ri) ≈ G(yi) + Ni . (2)
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Fig. 1. Leakage trace & reduced leakage trace of a d-shared secret

For example, a typical setting is to assume reduced leakages to be approximately
generated as the combination of a Hamming weight function (or some other
simple function of the shares’ bits [58]) with additive Gaussian noise.

c. Independence Condition. A secure implementation of the masking coun-
termeasure requires that the leakage vectors Lyi

are independent random vari-
ables. If respected, it implies that a d-share masking will lead to a (d−1)th-order
secure implementation as defined in [17]. That is, it guarantees that every d-tuple
of leakage vectors is independent of any sensitive variable. This means that any
adversary targeting the implementation will have to “combine”the information
of at least d shares, and that extracting information from these d shares will
require to estimate a dth-order moment of the leakage PDF (conditioned on a
sensitive variable) – a task that becomes exponentially hard in d if the noise
is sufficient. As witnessed by several prior works, this condition may be hard
to fulfill in practice. In software implementations, it typically requires avoid-
ing transition-based leakages (i.e. leakages that depend on the distance between
shares rather than directly on the shares) [5,16]. In hardware implementations,
physical defaults such as glitches are another usual issue that can invalidate the
independence assumption [41], which motivates various research efforts to miti-
gate this risk, both at the hardware level (e.g. [43]) and at the algorithmic level
(e.g. [46]).

Note that only this last (independence) assumption is strictly needed for the
following proofs of Sect. 3 to hold. By contrast, the previous assumptions (a)
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and (b) will be useful to provide practical intuition in Sect. 4. Furthermore, it
is worth noting that slight deviations from this independence assumption (i.e.
slight dependencies between the shares’ leakages) may still lead to concrete secu-
rity improvements, despite falling outside the proofs’ formal guarantees. Such
(practically meaningful) contexts will be further analyzed in Sect. 4.2.

2.2 Evaluation Metrics

Following [60], one generally considers two types of evaluation metrics for leaking
cryptographic devices. First, information theoretic metrics aim to capture the
amount of information available in a side-channel, independent of the adversary
exploiting it. Second, security metrics aim to quantify how this information can
be exploited by some concrete adversary. As will be clear next, the two types of
metrics are related. For example, in the context of standard DPA attacks [41],
they both measure the prediction of the (true) leakage function with some model,
the latter usually expressed as an estimation of the leakage Probability Density
Function (PDF). Yet they differ since information theoretic metrics only depend
on the leakage function and model, while security metrics also depend on the
adversary’s computational power. For example, the capacity to enumerate key
candidates may improve security metrics, but has no impact on information
theoretic ones [64,65]. Our goal in the following is to draw a formal connection
between information theoretic and security metrics, i.e. between the amount of
leakage provided by an implementation and its (worst-case) security level.

In the case of masking, proofs informally state that “given that the leakage
of each share is independent of each other and sufficiently noisy, the security
of the implementation increases exponentially in the number of shares”. So we
need the two types of metrics to quantify the noise condition and security level.

b. Metrics to Quantify the Noise Condition. In general (i.e. without
assumptions on the leakage distribution), the noise condition on the shares can
be expressed with an information theoretic metric. The Mutual Information (MI)
advocated in [60] is the most frequently used candidate for this purpose:

MI(Yi;LYi
) = H[Yi] +

∑

yi∈Y
Pr[yi] ·

∑

lyi∈L
Pr[lyi

|yi] · log2 Pr[yi|lyi
] , (3)

where we use the notation Pr[Yi = yi] =: Pr[yi] when clear from the context.
Note that whenever trying to compute this quantity from an actual implemen-
tation, evaluators face the problem that the leakage PDF is unknown and can
only be sampled and estimated. As a result, one then computes the Perceived
Information (PI), which is the evaluator’s best estimate of the MI [54]:

P̂I(Yi;LYi
) = H[Yi] +

∑

yi∈Y
Pr[yi] ·

∑

lyi∈L
Pr
chip

[lyi
|yi] · log2 P̂r

model
[yi|lyi

] , (4)

with Prchip the true chip distribution that can only be sampled and P̂rmodel the
adversary’s estimated model. For simplicity, we will ignore this issue and use the
MI in our discussions (conclusions would be identical with the PI).
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Interestingly, when additionally considering reduced leakages with additive
Gaussian noise, and restricting the evaluation to so-called “first-order informa-
tion”(i.e. information lying in the first-order statistical moments of the leakage
PDF, which is typically the case for the leakage of each share), simpler met-
rics can be considered [40]. For example, the SNR introduced by Mangard at
CT-RSA 2004 in [38] is of particular interest for our following discussions:

SNR =
v̂arYi

(
Êni

(LYi
)
)

ÊYi
(v̂arni

(LYi
))

, (5)

where Ê is the sample mean operator and v̂ar is the sample variance. Summa-
rizing, stating the noise condition based on the MI metric is more general (as
it can capture any leakage PDF). By contrast, the SNR provides a simpler and
more intuitive condition in a more specific but practically relevant context.

Eventually, the previous works of Prouff–Rivain and Duc et al. [22,49] con-
sider the following Statistical Distance (SD) to state their noise condition:

SD(Yi;Yi|LYi
) =

∑

lyi∈L
Pr[lyi

] · d(Yi;Yi|lyi
) , (6)

with d the Euclidean norm in [49] and d(X1,X2)= 1
2

∑
x∈X |Pr[X1 = x]−Pr[X2 =

x]| in [22]. In their terminology, a leakage function L is then called “δ-noisy” if
δ = SD(Yi;Yi|LYi

), which was useful to connect different leakage models.
As previously mentioned, some of these metrics can be related under certain

conditions. For example, in the context of univariate Gaussian random variables,
the MI can be approximated from Pearson’s correlation coefficient [40], which
was also connected to the SNR by Mangard [38]. The combination of those links
corresponds to the classical MI bound in Cover and Thomas [19]:

MI(Yi;LYi
) ≈ −1

2
log

⎛

⎜
⎝1 −

⎛

⎝ 1
√

(1 + 1
SNR )

⎞

⎠

2
⎞

⎟
⎠ ≤ 1

2
log

(
1 + SNR

)
· (7)

In Sect. 3.1, we show that the MI and SD metrics can be connected as well.

c. Metrics to Quantify the Security Result. Quantifying security requires
defining the adversary’s goal. Current side-channel attacks published in the lit-
erature mostly focus on key recovery. In this context, one can easily evaluate the
exploitation of the leakages with the success rate defined in [60], i.e. the proba-
bility that an adversary recovers the key given the observation of some (typically
known or chosen) plaintexts, ciphertexts and leakages. We will next denote it
with SRkr. Key recovery is a weak security notion from a cryptographic point of
view. As a result, rigorous proofs for masking such as the one of Duc et al. in [22]
rather define security using the standard real/ideal world paradigm, which con-
sider two settings: the ideal world where the adversary attacks the algorithm of a
cryptographic scheme in a black-box way, and the real world where he addition-
ally obtains leakages. A scheme is said to be secure in the real world, if for any
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adversary in the real world there exists an adversary in the ideal world. In other
words: any attack that can be carried out given the leakages can also be carried
out in a black-box manner. A proof of security usually involves constructing
an efficient simulator that is able to simulate the leakages just giving black-box
access to the attacked cryptographic scheme. Whenever considering this (stan-
dard) indistinguishability-based security notion, we will denote the adversary’s
success probability of distinguishing the two worlds with SRdist.

3 Making Proofs Concrete: Theory

In this section, we discuss theoretical tweaks allowing to improve the concreteness
of masking proofs. For this purpose, we recall three important leakage models
that are relevant for our work. First, the t-probing and ε-probing (aka random
probing) models were introduced in [33]. In the former one, the adversary obtains
t intermediate values of the computation (e.g. can probe t wires if we compute in
binary fields). In the latter one, he obtains each of these intermediate values with
probability ε, and gets ⊥ with probability 1 − ε (where ⊥ means no knowledge).
Using a Chernoff-bound it is easy to show that security in the t-probing model
reduces to security in the ε-probing model for certain values of ε. Second, the
noisy leakage model describes many realistic side-channel attacks and allows an
adversary to obtain each intermediate value perturbed with a δ-noisy leakage
function L [49]. As mentioned in the previous section, a leakage function L is
called δ-noisy if for a uniformly random variable Y (over the field F) we have
SD(Y ;Y |LY ) ≤ δ. In contrast with the conceptually simpler ε-probing model,
the adversary obtains noisy leakages on each intermediate variable. For example,
in the context of masking, he obtains L(Yi,R) for all the shares Yi, which is
more reflective of actual implementations where the adversary can potentially
observe the leakage of all these shares, since they are all present in leakage
traces such as in Fig. 1. Recently, Duc et al. showed that security against probing
attacks implies security against noisy leakages (up to a factor |F|, where F is the
underlying field in which the operations are carried out) [22]. In the rest of this
section, we first connect the statistical distance SD with the mutual information
metric MI, which shows that both can be used to quantify the noise condition
required for masking. Next, we provide alternative forms for the theorems of Duc
et al. and show (i) the security of the encoding used in (e.g. Boolean) masking
and (ii) the security of a complete circuit based on the ISW compiler.

3.1 From Statistical Distance to MI

The results from Duc et al. require to have a bound on the SD between the shares
and the shares given the leakage. For different reasons, expressing this distance
based on the MI metric may be more convenient in practice (as witnessed by
the numerous works where this metric has been computed, for various types of
devices, countermeasures and technologies – see the list in introduction). For
example, the MI metric is useful to determine whether the leakage model used
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in a standard DPA is sound (see the discussion in Sect. 4.1) and for analyzing
the impact of key enumeration in divide-and-conquer attacks (see the discussion
in Sect. 4.3). Very concretely, Equations (3) and (4) are also expressed in a way
that requires summing over the intermediate values first and on the leakages
afterwards, which corresponds to the way security evaluations are performed
(i.e. fix the target device’s state, and then perform measurements). Thus, we
now show how to express the SD in function of the MI. We use a previous result
from Dodis [21], which proofs follows [9] that we rephrase with our notations.

Lemma 1 ([21], Lemma 6). Let Yi and LYi
be two random variables. Then:

1
2

⎛

⎝
∑

(y∈Y,�∈L)

|Pr[Yi = y,LYi
= �] − Pr[Yi = y] Pr[LYi

= �]|
⎞

⎠

2

≤ MI(Yi;LYi
) .

Using this lemma, we can now express the SD in function of the MI as follows.

Theorem 1. Let Yi and LYi
be two random variables. Then:

2 · SD(Yi;Yi | LYi
)2 ≤ MI(Yi;LYi

) .

Proof. The proof follows the proof of [8], Lemma 4.4. We have:
∑

(y∈Y,�∈L)

|Pr[Yi = y,LYi
= �] − Pr[Yi = y] Pr[LYi

= �]| ,

=
∑

�∈L
Pr[LYi

= �]
∑

y∈Y
|Pr[Yi = y | LYi

= �] − Pr[Yi = y]| ,

= 2 · SD(Yi;Yi | LYi
) .

The final result directly derives from Lemma 1. ��

3.2 Security of the Encoding

In this section, we analyze the security of an encoding when m measurements
are performed and the encoding is refreshed between each measurements using
a leak-free gate. More precisely, we assume that a secret y is secret-shared into d
shares y1, . . . yd, using an additive masking scheme over a finite field F. Between
each measurement, we assume that we take fresh y1, . . . , yd values such that
y = y1 + · · · + yd (e.g. it could be the Boolean encoding of Sect. 2.1). We also
assume that this refreshing process does not leak and first recall a previous
result from [22] that relates the random probing model to the noisy model.
For conciseness, we call an adversary in the random-probing model a “random-
probing adversary”, an adversary in the δ-noisy model a “δ-noisy adversary”,
and an adversary having access to leakages such that MI(Y ;Y |LY ) ≤ δ a “δ-MI-
adversary”. However, note that the physical noise (and its quantification with
the MI) is a property of the implementation rather than of the adversary.
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Lemma 2 ([22], Lemma 3). Let A be a δ-noisy adversary on F
d. Then, there

exists a δ ·|F|-random-probing adversary S on F
d such that for every (y1, . . . , yd),

A and S produce the same view when applied on (y1, . . . , yd).

This result enables us to work directly in the random-probing model instead
of the noisy leakage model. Next, we study the security of the encoding. As
mentioned in introduction, the adversary’s goal in this case is to recover the
encoded value, which is equivalent to key recovery if this value is a key. In order
to make it completely comparable with actual attacks, we also add the number
of measurements m used by the adversary as a parameter in our bounds.

Theorem 2. Let d be the number of shares used for a key encoding, m be the
number of measurements, and MI(Yi,LYi

) ≤ t for some t ≤ 2/|F|2. Then, if
we refresh the encoding in a leak-free manner between each measurement, the
probability of success of a key recovery adversary under independent leakage is:

SRkr ≤ 1 −
(

1 −
(
|F|

√
t/2

)d
)m

. (8)

Proof. In the random probing model with parameter ε, an adversary learns noth-
ing about the secret if there is at least one share that did not leak. Since all the
measurements are independent and we use leak-free refreshing gates, we have:

SRkr ≤ 1 − (
1 − εd

)m
. (9)

Let A be a t-MI-adversary on F
d. From Theorem 1, we know that A implies a√

t/2-noisy-adversary on F
d and, by Lemma 2, we obtain a |F|√t/2-random-

probing adversary on F
d. Letting ε := |F|√t/2 in (9) gives us the result. ��

Note that Equation (9) focuses on the impact of the adversary’s measurement
complexity m on the success rate, which is usually the dominating factor in
concrete side-channel analyses. Yet, the impact of time complexity when consid-
ering key enumeration will be discussed in Sect. 4.3. Besides and for readability,
this equation only includes the terms corresponding to attacks taking advantage
of the leakages. We ignore the additional terms corresponding to mathematical
cryptanalysis (e.g. exhaustive search) that should be added for completeness. In
order to allow us comparing this result with the case where we study the security
of a complete circuit encoded with the ISW compiler, we also write our result
according to the following corollary (which is less general than Theorem 2).

Corollary 1. Let d be the number of shares used for a key encoding and m the
number of measurements. Then, if we refresh the encoding in leak-free manner
between each measurement and for any α > 0, the probability of success of a key
recovery adversary under independent leakage is:

SRkr ≤ m · exp (−αd) , (10)

if we have:

MI(Yi;LYi
) ≤ 2

(
1

eα|F |
)2

. (11)
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Proof. We have:
1 − (

1 − εd
)m ≤ melog(ε)d .

We want log(ε) = −α. Hence, from Theorem 2, we get our result. ��

3.3 Security of the Whole Circuit

In this section, we restate the theorems from Duc et al. when securing a whole
circuit with the seminal ISW compiler. The main theorem from [22] bounds the
probability of success of a distinguishing adversary in the noisy leakage model.
We provide an alternative version of their theorem and, as in the previous section,
we relate it to the mutual information instead of the statistical distance.

Theorem 3. Suppose that we have a circuit of size |Γ | protected with the ISW
compiler with d shares. Then, the probability of success of a distinguishing adver-
sary under independent leakage is:

SRdist ≤ |Γ | · exp
(

− d

12

)
= |Γ | · 2

(

− d·log2(e)
12

)

≤ |Γ | · 2−d/9, (12)

if we have:

MI(Yi;LYi
) ≤ 2 ·

(
1

|F | · (28d + 16)

)2

. (13)

Similarly to what we did in the previous section, we also write this corollary.

Corollary 2. Suppose that we have a circuit of size |Γ | protected with the ISW
compiler with d shares. Then, if MI(Yi,LYi

) ≤ t, a distinguisher adversary under
independent leakage needs:

d ≥
1 − 16|F |

√
1
2 t

28|F |
√

1
2 t

(14)

shares in order to obtain:

SRdist ≤ |Γ | · exp
(

− d

12

)
≤ |Γ | · exp

⎛

⎝−
1 − 16|F |

√
1
2 t

336|F |
√

1
2 t

⎞

⎠ . (15)

Note that the ISW compiler can actually be used to efficiently compute any
circuit. For example, the work of Rivain and Prouff at CHES 2010 showed how to
adapt the compiler to |F | = 256 which leads to efficient masked implementations
of the AES [56] (see also various following works such as [13,18,31,57]).
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4 Making Proofs Concrete: Practice

In this section, we complement the previous theoretical results with an experi-
mental analysis. Our contributions are threefold. First, we provide and empirical
evaluation of the encoding scheme in Sect. 3.2, which allows us to discuss the
noise condition and tightness of the bounds in our proofs. We use this discussion
to conjecture a simple connection between the mutual information metric and the
success rate of a (worst-case) side-channel adversary, and argue that it can lead
to quite accurate approximations of the attacks’ measurement complexity. Next,
we discuss possible deviations from the independent leakage assumption and
provide tools allowing one to approximate the security level of concrete devices
in such cases. Eventually, we consider the tradeoff between measurement com-
plexity and time complexity in the context of divide-and-conquer side-channel
attacks. We show how one can build a side-channel security graph (i.e. a plot of
the adversary’s success probability bounds in function of both parameters [65]),
based only on the estimation of the MI metric for each share of a masking scheme.
Along these lines, we eventually provide a formal justification for the physical
security evaluation framework proposed at Eurocrypt 2009 [60].

4.1 Experimental Validation

In order to discuss the relevance of the proofs in the previous section, we take
the (usual) context of standard DPA attacks defined in [40]. More precisely,
we consider the simple case where an adversary targets a single S-box from a
block cipher (e.g. the AES) as specified in Sect. 2.1, and obtains leakage variables
Lyi

= L(yi,Ri) for 1 ≤ i ≤ d (the case of multiple S-boxes will be studied in
Sect. 4.3). For convenience, we mainly consider the context of mathematically-
generated Gaussian Hamming weight leakages, where Lyi

= HW(yi) + Ni, with
HW the Hamming weight function and Ni a Gaussian-distributed noise, with
variance σ2. In this respect, we note that we did not mount concrete attacks
since we would have had to measure hundreds of different implementations to
observe useful trends in practice. Our experiments indeed correspond to hun-
dreds of different noise levels. Yet, we note that devices that exhibit close to
Hamming weight leakages are frequently encountered in practice [39]. Further-
more, such a simulated setting is a well established tool to analyze masking
schemes (see, e.g. [18] for polynomial masking, [4] for inner product masking
and [12] for leakage squeezing). Besides, we also consider random Gaussian leak-
age functions, of which the deterministic part corresponds to random functions
over Y, to confirm that all the trends we put forward are also observed with
leakage functions that radically differ from the usual Hamming weight one.

a. Computing the MI Metric. In this DPA setting, we aim to compute the
MI between the key and the plaintext and leakages. For conciseness, we use the
notations Y = [Y1, . . . , Yd] and L = [LY1 , . . . ,LYd

] for vectors containing the d
shares and their corresponding leakages. Then we compute:
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MI(K;X,LY ) = H[K] +
∑

k∈K
Pr[k] ·

∑

x∈X ,y∈Yd

Pr[x, y] ·
∑

ly∈Ld

Pr[ly|k, x, y] · log2 Pr[k|x, ly] . (16)

While this expression may look quite involved, we note that it is actually simple
to estimate in practice, by sampling the target implementation. Evaluators just
have to set keys k in their device and generate leakage traces corresponding to
(known) plaintexts x and (unknown) shares y. Say there are |K| = nk key candi-
dates and we generate nt leakage traces li, then, one just assigns probabilities p̂j

i

to each key candidate k∗
j , for each measured trace, as in Table 1. This is typically

done using TA or LR. Following, if the correct key candidate is k, the second
line of (16) can be computed as Êi log2(p̂k

i ). Note that whenever considering the
standard DPA setting where the target operations follow a key addition, it is
not even necessary to sum over the keys since MI(K = k;X,LY ) is identical for
all k’s, thanks to the key equivalence property put forward in [40].

Table 1. Computing key candidate probabilities for MI metric estimation

Key candidates
State & leakage k∗

1 k∗
2 . . . k∗

Nk

(k, x1) � l1 p̂1
1 p̂2

1 . . . p̂
nk
1

(k, x2) � l2 p̂1
2 p̂2

2 . . . p̂
nk
2

. . . . . . . . . . . . . . .

(k, xnt) � lnt p̂1
nt

p̂2
nt

. . . p̂nk
nt

Intuitively, MI(K;X,LY ) measures the amount of information leaked on the
key variable K. The framework in [60] additionally defines a Mutual Information
Matrix (MIM) that captures the correlation between any key k and key candi-
dates k∗. Using our sampling notations, it can be simply defined as MIMk,k∗ =
H[K] +

∑
i log2(p̂k∗

i ), which directly leads to MI(K;X,LY ) = Ek(MIMk,k).

b. Intuition Behind the Noise Condition. Theorems 2 and 3 both require
that the MI between the shares and their corresponding leakage is sufficiently
small. In other words, they require the noise to be sufficiently large. In this
section, we compute the MI metric for both an unprotected implementation (i.e.
d = 1) and a masked one (i.e. d = 2) in function of different parameters.1 In order
to illustrate the computation of this metric, we provide a simple open source code
that evaluates the MI between a sensitive variable Y and its Hamming weights,
for different noise levels, both via numerical integration (that is only possible for
mathematically-generated leakages) and sampling (that is more reflective of the
evaluation of an actual device) [1]. In the latter case, an evaluator additionally

1 For the masked case, we consider univariate leakages corresponding to the parallel
setting in [7], for which computing the MI is slightly faster than in the serial one.
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has to make sure that his estimations are accurate enough. Tools for ensuring
this condition are discussed in [23]. In the following, this sufficient sampling is
informally confirmed by the smooth shape of our experimental curves.

We start with the simplest possible plot, where the MI metric is computed
in function of the noise variance σ2. Figure 2 shows these quantities, both for
Hamming weight leakage functions and for random ones with output range Nl

(in the latter context, the functions for different Nl’s were randomly picked up
prior to the experiments, and stable across experiments). We also considered
different bit sizes (n = 2, 4, 6, 8). Positively, we see that in all cases, the curves
reach a linear behavior, where the slope corresponds to the number of shares d.
Since the independent leakage condition is fulfilled in these experiments, this d
corresponds to the smallest key-dependent moment in the leakage distribution.
And since the measurement (aka sampling) cost for estimating such moments
is proportional to (σ2)d, we observe that the MI decreases exponentially in d
for large enough noises. Note that this behavior is plotted for d = 1, 2, but was
experimented for d’s up to 4 in [61], and in fact holds for any d, since it exactly
corresponds to Theorem 2 in a context where its assumptions are fulfilled.

Fig. 2. MI metric in function of σ2. HW (left) and random (right) leakages.

Negatively, we also see that the noise level that can be considered as high
enough depends on the leakage functions. For example, the random leakage func-
tions in the right part of the figure have signals that vary from approximately
2
4 for Nl = 2 to 16

4 for Nl = 16. It implies that the linearly decreasing part of
the curves is reached for larger noises in the latter case. Yet, this observation in
fact nicely captures the intuition behind the noise condition. That is, the noise
should be high enough for hiding the signal. Therefore, a very convenient way
to express it is to plot the MI metric in function of shares’ SNR, as in Fig. 3.
Here, we clearly see that as soon as the SNR is below a certain constant (10−1,
typically), the shape of the MI curves gets close to linear. This corroborates the
condition in Theorem 2 that masking requires MI(Ki;X,LYi

) to be smaller than
a given constant. Our experiments with different bit sizes also suggest that the |F|
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factor in this noise condition is a proof artifact. This is now formally proven by
Dziembowski, Faust and Skorski in [24]. Of course, and as discussed in Sect. 2.2,
the SNR metric is only applicable under certain conditions (univariate Gaussian
leakages). So concretely, an evaluator may choose between computing it after
dimensionality reduction (leading to a heuristic but intuitive condition), or to
directly state the condition in function of the MI. For completeness, we also plot
the MI metric for an unprotected and masked implementation in function of
the share’s MI in Appendix, Fig. 10. It clearly exhibits that as the share’s MI
decreases, this reduction is amplified by masking (exponentially in d).

Fig. 3. MI metric in fct. of the shares’ SNR. HW (left) and random (right) leakages.

c. Tightness of the Bounds. Given that the noise is high enough (as just
discussed), Theorems 2 and 3 guarantee that the success rate of a side-channel
adversary can be bounded based on the value of the share’s leakage, measured
with MI(Ki;X,LYi

). This directly leads to useful bounds on the measurement
complexity to reach a given success rate, e.g. from (8) we can compute:

m ≥ log(1 − SRkr)

log

(

1 −
(

|F|
√

MI(Ki;X,LYi
)

2

)d
) · (17)

We now want to investigate how tight this bound is. For this purpose, we com-
pared it with the measurement complexity of concrete key recovery TA (using
a perfect leakage model).2 As previously mentioned, the |F| factor in this equa-
tion can be seen as a proof artifact related to the reduction in our theorems –
so we tested a bound excluding this factor. For similar reasons, we also tested
a bound additionally excluding the square root loss in the reductions (coming

2 Our attacks exploit the leakages of an S-box output, as specified in Sect. 2.1. We
took the PRESENT S-box for n = 4, the AES one for n = 8, and picked up two
random S-boxes for n = 2, 6, as we did for the random leakage functions.
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Fig. 4. Measurement complexity and bounds/approximations for concrete TA

from Theorem 1). As illustrated in Fig. 4, the measurement complexity of the
attacks is indeed bounded by Equation (17), and removing the square root loss
allows the experimental and theoretical curves to have similar slopes. The lat-
ter observation fits with the upper bound MI(Yi;LYi

) ≤ |F|
ln(2) · SD(Yi;Yi | LYi

)
given in [49] that becomes tight as the noise increases.3 As expected, the bounds
become meaningless for too low noise levels (or too large SNRs, see Appendix,
Fig. 11). Intuitively, this is because we reach success rates that are stuck to
one when we deviate from this condition. For completeness, we added approx-
imations obtained by normalizing the shares’ MI by H[K] to the figure, which
provide hints about the behavior of a leaking device when the noise is too low.

Interestingly, these results also allow us to reach a comprehensive view of
the parameters in Theorem 3, where the security of a complete circuit encoded
according to the ISW compiler is proven. That is, in this case as well we expect
the |F| and 1/9 factors in Equation (12) to be due to proof technicalities. By
contrast, the |Γ | factor is physically motivated, since it corresponds to the size
of the circuit and fits the intuition that more computations inevitably means
more exploitable leakage. The d factor appearing in the noise condition of Equa-
tion (13) can also be explained, since it directly relates to the fact that in the ISW
compiler, any multiplication will require to manipulate each share d times. It typ-
ically reflects the distance between standard (divide-and-conquer) side-channel
attacks (such as analyzed in this section) and more powerful (multivariate) adver-
saries trying the exploit the leakage of all the intermediate computations in a
block cipher, e.g. based on algebraic cryptanalysis (see [52,53] and follow up
works). Taking all these observations into account, we summarize the concrete
security of any masking scheme with the following informal conjecture.

Informal Conjecture. Suppose that we have a circuit of size |Γ | masked with d
shares such that the information leakage on each of these shares (using all avail-
able time samples) is bounded by MI(Yi;LYi

). Then, the probability of success of
3 Since their inequality comes from a log(1 + x) < log(x) inequality that gets close to

an equality when x gets close to 0, which happens for large noise levels.
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a distinguishing adversary using m measurements and targeting a single element
(e.g. gate) of the circuit under independent and sufficiently noisy leakage is:

SRdist
1 ≤ 1 − (

1 − MI(Yi;LYi
)d

)m
, (18)

and the probability of success targeting all |Γ | elements independently equals:

SRdist
|Γ | ≤ 1 − (1 − SRdist

1 )|Γ | . (19)

Interestingly, Equation (19) (like Theorem 3) assumes that the leakages of the
|Γ | gates (or target intermediate values) are exploited independently. This per-
fectly corresponds to the probing model in which the adversary gains either full
knowledge or no knowledge of such computing elements. Thanks to [22], it also
implies a similar result against noisy leakages if the noise condition is fulfilled.
However, as the noise level decreases, some advanced (e.g. algebraic) side-channel
attacks can sometimes take advantage of different computations jointly in a more
efficient manner. Note that this informal conjecture is backed up by the results
in [3] (Theorem 6) where a similar bound is given in the context of statistical
cryptanalysis. By using the approximation log(1 − x) ≈ −x that holds for x’s
close to 0, Equation (18) directly leads to the following simple approximation of
a standard DPA’s measurement complexity for large noise levels:

m ≥ log(1 − SRdist
1 )

log(1 − MI(Yi;LYi
)d)

≈ c

MI(Yi;LYi
)d

, (20)

where c is a small constant that depends on the target success rate. A similar
approximation can be obtained from Equation (19) for multi-target attacks.

d. Relation with the Eurocrypt 2009 Evaluation Framework. The eval-
uation of leaking cryptographic implementations with a combination of informa-
tion and security metrics was put forward by Standaert et al. at Eurocrypt 2009.
In this reference, the authors showed a qualitative connection between both met-
rics. Namely, they proved that the model (i.e. the approximation of the leakage
PDF) used by a side-channel adversary is sound (i.e. allows key recoveries) if and
only if the mutual information matrix (defined in paragraph (a) of this section)
is such that its diagonal values are maximum for each line. By contrast, they
left the quantitative connection between these metrics as an open problem (i.e.
does more MI imply less security?). Our results provide a formal foundation for
this quantitative connection. They prove that for any implementation, decreas-
ing the MI of the target intermediate values is beneficial to security. This can be
achieved by ad hoc countermeasures, in which case it is the goal of an evaluation
laboratory to quantify the MI metric, or by masking, in which case we can bound
security based only on the value of this metric for each share taken separately.

4.2 Beyond Independent Leakage

The previous section evaluated an experimental setting where the leakage of each
share is independent of each other, i.e. Lyi

= G(yi) + Ni. But as discussed in
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introduction, this condition frequently turns out to be hard to fulfill and so far,
there are only limited (in)formal tools allowing to analyze the deviations from
independent leakages that may be observed in practice. In order to contribute
to this topic, we first launched another set of experiments (for 2-share masking),
where the leakage of each share can be written as:

Ly1 = G1(y1) + f · G1,2(y1, y2) + N1 ,

Ly2 = G2(y2) + f · G2,1(y1, y2) + N2 .

Here the Gi functions manipulate the shares independently, while the Gi,j func-
tions depend on both shares. We additionally used the f (for flaw) parameter in
order to specify how strongly we deviate from the independent leakage assump-
tion. As in the previous section, we considered Hamming weight and random
functions for all G’s (and we used Gi,j(yi, yj) = G(yi ⊕ yj) for illustration).
Exemplary results of an information theoretic analysis in this context are given
in Fig. 5 for the n = 4-, and 8-bit cases (and in Appendix, Fig. 12 for the n = 2-
and 6-bit S-box cases). We mainly observe that as the noise increases, even small
flaws are exploitable by an adversary. Indeed, breaking the independence con-
dition makes smaller-order moments of the leakage distribution key-dependent.
Consequently, for large enough noise, it is always this smaller-order moment that
will be the most informative. This is empirically confirmed by the slopes of the
IT curves in the figures, that gradually reach one rather than two.

Fig. 5. MI metric for masked implementation with flaw (n = 4, 8)

Following these experiments, let us consider a chip that concretely exhibits
such a flaw for a given noise level σ2

exp (corresponding to its actual measure-
ments). Despite falling outside the masking proofs’ guarantees, an important
question is whether we can still (approximatively) predict its security level based
on sound statistical tools. In this respect, a useful observation is that the MI
metric cannot directly answer the question since it captures the information lying
in all the statistical moments of the leakage PDF. So we need another ingredient
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in order to reveal the informativeness of each moment of the leakage PDF, sep-
arately. The Moments-Correlating DPA (MC-DPA) recently introduced in [44]
is a natural candidate for this purpose. We now describe how it can be used to
(informally) analyze the security of a flawed masked implementation.

In this context, we first need to launch MC-DPA for different statistical
moments, e.g. the first- and second-order ones in our 2-share example. They
are illustrated by the circle and square markers in the left part of Fig. 6. For
concreteness, we take the (most revealing) case where the second-order moment
is more informative than the first-order one. Assuming that the noise condition
in our theorems is fulfilled, the impact of increasing the noise on the value of
the MC-DPA distinguisher can be predicted as indicated by the curves of the
figure. That is, with a slope of 1/2 for the first-order moment and a slope of 1
for the second-order one.4 Hence, we can directly predict the noise level σ2

exp +
Δ such that the first-order moment becomes more informative. Eventually, we
just observe that concrete side-channel attacks always exploit the smallest key-
dependent moment in priority (which motivates the definition of the security-
order for masking schemes [17]). So starting from the value of the MI at σ2

exp

(represented by a circle in the right part of the figure), we can extrapolate
that this MI will decrease following a curve with slope 2 until σ2

exp + Δ and a
curve with slope 1 afterwards. Taking advantage of the theorems in the previous
sections, this directly leads to approximations of the best attacks’ measurement
complexity. Furthermore, extending this reasoning to more shares and higher-
order statistical moments is straightforward: it just requires to add MC-DPA
curves in the left part of Fig. 6, and to always consider the one leading to the
highest MC-DPA value to set the slope of the MI curves, in the right part of the
figure. To the best of our knowledge, such figures (despite informal) provide the
first concrete tools to approximate the security level in such contexts.

Fig. 6. Evaluating non-independent leakages with MC-DPA (left) and MI (right)

4 Slopes are divided by 2 when considering Pearson’s correlation rather than the MI
since this correlation is essentially proportional to the square root of the SNR. This
is also reflected by the measurement complexity of CPA, that is proportional to the
inverse of the squared correlation vs. the inverse of the MI for TA [62].
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Note finally that the shape of the non-independent leakages (i.e. the Gi,j

functions) observed in practice highly depends on the implementations. For
example in hardware, multiple shares can leak jointly in a hardly predictable
manner [41,54]. By contrast in software, the most usual issue (due to transition-
based leakages) is easier to analyse [5]. It typically divides the order of the
smallest key-dependent moment in the leakage distribution by two, which cor-
responds to the additional square root loss in the security bounds of Duc et al.
when considering leakages that depend on two wires simultaneously (see [22],
Sect. 5.5).

4.3 Exploiting Computational Power

In this section, we finally tackle the problem of divide-and-conquer DPA attacks,
where the adversary aims to combine side-channel information gathered from a
number of measurements, and computational power. That is, how to deal with
the practically critical situation where the number of measurements available is
not sufficient to exactly recover the key? As discussed in [64,65], optimal enu-
meration and key ranking algorithms provide a concrete answer to this question.
They allow building security graphs, where the success rate is plotted in func-
tion of a number of measurements and computing power, by repeating attacks
multiple times. We next discuss more efficient and analytical strategies.

a. Why MI Is Not Enough? Whenever trying to exploit both side-channel
leakage and brute-force computation (e.g. key enumeration) the most challenging
aspect of the problem is to capture how measurements and computation actually
combine. This is easily illustrated with the following example. Imagine two hypo-
thetical side-channel attacks that both succeed with probability 1/100. In the
first case, the adversary gains nothing with probability 99/100 and the full key
with probability 1/100. In the second case, he always gains a set of 100 equally
likely keys. Clearly, enumeration will be pretty useless in the first case, while
extremely powerful in the second one. More generally, such examples essentially
suggest that the computational cost of an enumeration does not only depend on
the informativeness of the leakage function (e.g. measured with the MI) but also
on its shape. For illustration, a line of the mutual information matrix computed
from Hamming weight leakages for two noise levels is given in Fig. 7, where we
can clearly identify the patterns due to this leakage model. While MIMk,k only
corresponds to a single value of the matrix line (here k = 111), which bounds the
measurement complexity to recover this key without additional computation (as
previously discussed), how helpful is enumeration will additionally depend on
the relative distance between the MIMk,k and MIMk,k∗ values [68]. Incidentally,
this example also puts forward some limitations of the probing leakage model
when measuring computational cost, since it describes an all-or-nothing strategy
– as already mentioned in Sect. 4.1, paragraph (c) – which is not the case for the
noisy leakage setting. Hence, whereas the probing model is easier to manipulate
in proofs, and therefore useful to obtain asymptotic results, noisy leakages are a
more accurate tool to quantify concrete security levels as in this section.



Making Masking Security Proofs Concrete or How to Evaluate the Security 421

Fig. 7. Exemplary line of the mutual information matrix (for k = 111)

b. Measurement and Computational Bounds Per S-Box. Interestingly,
one can easily derive bounds for attacks combining side-channel measurements
and enumeration power against a single S-box, by re-using exactly the same
material as we anyway need to estimate MI(K;X,LYi

) for a single secret share.
In the following, we will assume that the key equivalence property mentioned in
Sect. 4.1, paragraph (a) holds, and focus on a single line of the mutual informa-
tion matrix (if it does not, evaluators simply have to compute all its lines), next
denoted as MIMk,−. In order to characterize the distance between a key k and
its close candidates k∗, we first sort this line and produce s = sort(MIMk,−). As
a result, the key candidate k∗

s(1) is the best rated one (i.e. the correct k if the
leakage model is sound), k∗

s(2) is the second best, . . . From there, we compute a
“computational version”of the mutual information matrix as:

MIMc
k,k = H[Ki] + Ej

(

log

(
c∑

l=1

p̂
s(l)
j

))

. (21)

It essentially corresponds to the amount of information an adversary obtains
about a random variable that aggregates the c most likely key candidates.
Assuming that these c key candidates are equally likely (which can only be
pessimistic), it directly provides simple bounds on the success rate of an attack
combining m measurements with the enumeration of c keys:

SRkr(m, c) ≤ 1 − (
1 − (MIMc

k,k)d
)m

, (22)

For illustration, a couple of such bounds are given in Fig. 8, where we see the
impact of increasing the number of shares d and number of measurements m.
Note that despite requiring similar characterization efforts, these bounds are
conceptually different from the previous approaches to approximate the success
rate of side-channel attacks. In particular, works like [20,26,37,55] are specific
to popular distinguishers (and usually require specialized assumptions about the
distribution of these distinguishers), while our results directly connect to security
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Fig. 8. Key recovery success rate against a single S-box, in function of the time com-
plexity for the leakage function of Fig. 7 (right), after m measurements

proofs that are independent of the adversarial strategy and hold for any leakage
distribution. Nevertheless, the only requirement to analyze the combination of
multiple S-boxes in the next paragraph (c) is to have success rates curves for
each S-box. So while this paragraph (b) describes an efficient way to build such
curves, the following contribution is in fact general, and could be used as a
complement to any security evaluation obtained for separate S-boxes.

c. Combining Multiple S-Boxes. We finally generalize our analysis of the
previous paragraph to the case where we target ns S-boxes (e.g. ns = 16 for
the AES), gained information about their respective input key bytes, and want
to recover the full master key. We assume that we perform the same amount of
measurements m on each S-box. This can be easily justified in practice, since
a leakage trace usually contains samples corresponding to all S-boxes. By con-
trast, we make no assumption about how informative the leakages of each S-box
are. For example, it could completely happen that one S-box is very leaky, and
another one perfectly protected (so that enumeration is the only option to recover
its corresponding key byte). As just explained, we then characterize the mea-
surement vs. complexity tradeoff with ns success rate curves SRkr

i (m, ci) with
1 ≤ i ≤ ns. Typically, we will then set a limit β to the adversary’s computational
power and try to solve the following optimization problem:

max
c1,...,cns

ns∏

i=1

SRkr
i (m, ci) ,

subject to
ns∏

i=1

ci ≤ β .

(23)

Taking the logarithm of both products, we get:
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Fig. 9. Downsampling SR curves (left) and enumeration complexity bounds (right)

max
c1,...,cns

ns∑

i=1

log
(
SRkr

i (m, ci)
)

,

subject to
ns∑

i=1

log(ci) ≤ log(β) .

(24)

For general functions SRkr
i , this problem is known as a “separable, non-linear

integer programming problem”. Surveys about non-linear integer programming
problems are various (e.g. [10,36]). There exist many well-studied heuristics to
solve them, including branch-and-bounds and convex envelop techniques. Note
that the problem generally becomes easier when dealing with convex functions.

We conclude this section with a simple and cheap heuristic algorithm which
approximates well the optimal solution for the problem sizes and leakage func-
tions we considered. The approach we propose is inspired by [29], and based on
a tradeoff between the computational cost and accuracy of the solutions found,
that is controlled by downsampling the success rate curves and keeping track
of quantization errors. Intuitively, enumerating the combination of the possi-
ble success rates for two n-bit S-boxes requires the computation of 22n product
complexities ci · cj . Since combining more S-boxes exhaustively will increase the
complexity exponentially (i.e. 2ns·n for ns n-bit S-boxes), the idea of our heuris-
tic is simply to ignore some samples. Namely, we will fix a bound Nmax which
will designate the maximum number of samples we save per success rate curve
(or combination of them). Such a well-known downsampling process is informally
illustrated in the left part of Fig. 9, where we can see that the original curve can
be easily upperbounded and lowerbounded, since it is increasing.

This solution is described more formally in Algorithm 1 and works as follows.
First, we downsample each success rate curve SRi(m, c) to Nmax linearly spaced
points that we can write as Nmax pairs (si,1, ci,1), . . . , (si,Nmax , ci,Nmax). Next,
we take the first S-Box and combine it with the second one, obtaining Nmax

2

values. These values are then downsampled again to Nmax linearly spaced points,
so that we can iteratively combine them with the next S-boxes. We denote the
aggregation of the i first success rate curves with SR1:i. We also add an additional
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Fig. 10. MI metric in fct. of the shares’ MI. HW (left) and random (right) leakages.

output to our algorithm, namely a list of complexities �i, describing how the effort
is distributed among the S-boxes. Indeed, suppose for example that we combine
the success rate pair (0.1, 24) of S-box 1 with the success rate pair (0.2, 25) of
S-box 2. We obtain a success rate of 0.02 for a complexity of 29, but nothing tells
us how the effort is distributed between S-box 1 and S-box 2. Hence, we write
the result as (0.02, 29, {24, 25}) which shows how the complexities are shared.

For illustration, the right part of Fig. 9 provides such bounds for the combi-
nation of 8, 12 and 16 AES S-boxes, for a noise level and number of measurement

Algorithm 1. Heuristic to combine the SR curves of ns S-boxes
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Fig. 11. Measurement complexity and bounds/approximations for concrete TA

Fig. 12. MI metric for masked implementation with flaw (n = 2, 6)

such that the rank estimation problem is challenging (i.e. with full key rank for
the 16-byte master key around 280). The complexity of this heuristic is propor-
tional to ns · (N2

max + log(Nmax)) and the results in the figure were obtained
within seconds of computation on a desktop computer, using a simple Matlab
prototype code. We leave the investigation of better solutions to obtain accurate
time complexity bounds with minimum efforts as a scope for further research.

Summarizing, our results show that the (complex) task of evaluating the
worst-case security level of a masked implementation against (divide-and-
conquer) DPA can be simplified to the evaluation of a couple of MI values, even
in contexts where the independence assumption is not fulfilled. This provides a
solid foundation for the Eurocrypt 2009 evaluation framework. It also makes it
easier to implement, since success rate curves for full keys can now be derived
from the MI values, rather than sampled experimentally by repeating (many)
subkey recovery experiments and key rank estimations, which is an expensive
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task. Taking advantage of the tools in this paper therefore allow reducing both
the number of measurements and the time needed to evaluate leaking devices.
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Abstract. Designing an efficient cipher was always a delicate balance
between linear and non-linear operations. This goes back to the design
of DES, and in fact all the way back to the seminal work of Shannon.

Here we focus, for the first time, on an extreme corner of the design
space and initiate a study of symmetric-key primitives that minimize the
multiplicative size and depth of their descriptions. This is motivated by
recent progress in practical instantiations of secure multi-party computa-
tion (MPC), fully homomorphic encryption (FHE), and zero-knowledge
proofs (ZK) where linear computations are, compared to non-linear oper-
ations, essentially “free”.

We focus on the case of a block cipher, and propose the family of
block ciphers “LowMC”, beating all existing proposals with respect to
these metrics by far. We sketch several applications for such ciphers and
give implementation comparisons suggesting that when encrypting larger
amounts of data the new design strategy translates into improvements
in computation and communication complexity by up to a factor of 5
compared to AES-128, which incidentally is one of the most competitive
classical designs. Furthermore, we identify cases where “free XORs” can
no longer be regarded as such but represent a bottleneck, hence refuting
this commonly held belief with a practical example.

Keywords: Block cipher · Multiplicative complexity · Multiplicative
depth · Secure multiparty computation · Fully homomorphic encryption

1 Introduction

Modern cryptography developed many techniques that go well beyond solving
traditional confidentiality and authenticity problems in two-party communica-
tion. Secure multi-party computation (MPC), zero-knowledge proofs (ZK) and
fully homomorphic encryption (FHE) are some of the most striking examples.

In recent years, especially the area of secure multi-party computation has
moved from a science that largely concerned itself with the mere existence of
solutions towards considerations of a more practical nature, such as costs of
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actual implementations for proposed protocols in terms of computational time,
memory, and communication.

Despite important progress and existing proof-of-concept implementations,
e.g. [MNPS04,PSSW09,HEKM11,NNOB12,KSS12,FN13,SS13], there exists a
huge cost gap between employing cryptographic primitives in a traditional way
and using them in the more versatile MPC context. As an example, consider
implementations of the AES block cipher, a global standard for the bulk encryp-
tion of data. Modern processors achieve a single execution of the block cipher
within a few hundred clock cycles (or even less than 100 clock cycles using
AES-NI). However, realizing the same cipher execution in the context of an
MPC protocol takes many billions of clock cycles and high communication vol-
umes between the participating parties, e.g. several hundreds of Megabytes for
two-party AES with security against malicious adversaries [PSSW09,NNOB12,
KSS12,FN13,SS13,DZ13,LOS14,DLT14].

While our design approach is not specific to block ciphers but can be equally
applied to e.g. hash functions, in this work, we propose block ciphers that are
specifically designed for application in MPC and similar contexts. Tradition-
ally, ciphers are built from linear and non-linear building blocks. These two have
roughly similar costs in hardware and software implementations. In CMOS hard-
ware, the smallest linear gate (XOR) is about 2-3 times larger than the smallest
non-linear gate (typically, NAND). When implemented in an MPC protocol or
a homomorphic encryption scheme, however, the situation is radically different:
linear operations come almost for free, since they only incur local computation
(resp. do not increase the noise much), whereas the bottleneck are non-linear
operations that involve symmetric cryptographic operations and communication
between parties (resp. increase the noise considerably). Our motivation hence
comes from implementations of ciphers in the context of MPC, ZK, or FHE
schemes where linear parts are much cheaper than non-linear parts.

This cost metric suggests a new way of designing a cipher where most of the
cryptographically relevant work would be performed as linear operations and the
use of non-linear operations is minimized. This design philosophy is related to
the fundamental theoretical question of the minimal multiplicative complexity
(MC) [BPP00] of certain tasks. Such extreme trade-offs were not studied before,
as all earlier designs – due to their target platforms – faired better with obtaining
a balance between linear and non-linear operations.

In this work we propose to start studying symmetric cryptography prim-
itives with low multiplicative complexity in earnest. Earlier tender steps in
this direction [GGNPS13,PRC12,GLSV14] were aimed at good cost and per-
formance when implemented with side-channel attack countermeasures, and are
not extreme enough for our purpose. Our question hence is: what is the minimum
number of multiplications for building a secure block cipher? We limit ourselves
to multiplications in GF(2) and motivate this as follows:

– By using Boolean circuits we decouple the underlying protocol / primitive
(MPC protocol / ZK protocol / FHE scheme) from that of the cipher. Hence,
the same cipher can be used for multiple applications.
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– GF(2) is a natural choice for MPC protocols based on Yao or GMW (in the
semi-honest setting, but also for their extensions to stronger adversaries), ZK
protocols, as well as for fully or somewhat homomorphic encryption schemes
(cf. Section 2 for details).

By nature of the problem, we are interested in two different metrics. One met-
ric refers to what is commonly called multiplicative complexity (MC), which is
simply the number of multiplications (AND gates) in a circuit, see e.g. [BPP00].
The second metric refers to the multiplicative depth of the circuit, which we
will subsequently call ANDdepth. We note that already in [DSES14] it was
observed that using ciphers with low ANDdepth is of central importance for
efficient evaluations within homomorphic encryption schemes. Therefore, the
authors of [DSES14] suggest to study block cipher designs that are optimized
for low ANDdepth, a task to which we provide a first answer. Our work is some-
how orthogonal to Applebaum et. al [AIK06], where the question of what can in
principle be achieved in cryptography with shallow circuits was addressed.

This all motivates the following guiding hypothesis which we will test in
this paper: “When implemented in practice, a block cipher design with lower
MC and lower ANDdepth will result in lower executing times”. We note that
the relatively low execution times often reported in the literature are amortized
times, i.e. averaged over many calls of a cipher (in parallel). This, however,
neglects the often important latency. Hence, another design goal in this work is
to reduce this latency.

Outline and Contribution. In Section 2 we describe several schemes with
“free XORs”. Then, in Section 3, we focus on an extreme corner of the design
space of block ciphers and propose a new block-cipher design strategy that min-
imizes the multiplicative size and depth of the circuit describing it, beating all
existing candidates by far with respect to these metrics. In terms of ANDdepth,
the closest competitor is PRINCE. In terms of MC, the closest competitor turns
out to be Simon. We give a high-level overview over a larger field of competing
designs in Section 4. We analyse the security of our constructions in Section 5 and
provide experimental evidence for the soundness of our approach in Section 6.
In particular, our implementations outperform previously reported results in the
literature, often by more than a factor 5 in MPC and FHE implementation set-
tings. They also indicate that in the design space we consider, “free XORs” can
no longer be regarded as free but significantly contribute to the overall cost,
hence refuting this commonly held belief with a practical example. Finally, we
describe our optimisation strategies for implementing our designs in the MPC
and FHE case, which might be of independent interest.

Main Features and Advantages of LowMC

– Low ANDdepth, and low MC, which positively impacts the latency and
throughput of the FHE, MPC, or ZK evaluation of the cipher.
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– Partial Sbox layer.
– Security arguments against large classes of statistical attacks like differen-

tial attacks, similar to other state-of-the-art designs are given in Section 5.
Zorro [GGNPS13] is the first SPN cipher in the literature that uses a non-
full Sbox layer and is related to LowMC in this respect. However, recent
attacks on Zorro that exploit this particular property [WWGY13,RASA14,
GNPW13,BODD+14], highlight the need to be very careful with this design
strategy. In our analysis of LowMC in Section 5 we are able to take these
into account.

– In contrast to other constructions, it is easy to obtain tight bounds on the
MC and ANDdepth.

– The design is very flexible and allows for a unified description regardless of
the blocksize.

– We explicitly de-couple the security claim of a block cipher from the block
size.

2 Schemes

In this section we list several schemesfor MPC, FHE, and ZK that benefit from
evaluating our cipher. We give a list of example applications for LowMC in the
full version of the paper.

2.1 Multi-Party Computation (MPC)

There are two classes of practically efficient secure multi-party computation
(MPC) protocols for securely evaluating Boolean circuits where XOR gates are
considerably cheaper (no communication and less computation) than AND gates.

The first class of MPC protocols has a constant number of rounds and
their total amount of communication depends on the MC of the circuit (each
AND gate requires communication). Examples are protocols based on Yao’s gar-
bled circuits [Yao86] with the free XOR technique [KS08]. To achieve secu-
rity against stronger (i.e., malicious or covert) adversaries, garbled circuit-
based protocols apply the cut-and-choose technique where multiple garbled
circuits are evaluated, e.g., [LP07,AL07,LPS08,PSSW09,LP11,SS11,KSS12,
FN13,Lin13,HKE13,SS13,FJN14,HKK+14,LR14]; also MiniLEGO [FJN+13]
falls into this class.

The second class of MPC protocols has a round complexity that is linear in
the ANDdepth of the evaluated circuit (each AND gate requires interaction) and
hence the performance depends on both, the MC and ANDdepth of the circuit.
Examples are the semi-honest secure version of the GMW protocol [GMW87]
implemented in [CHK+12,SZ13], and tiny-OT [NNOB12] with security against
malicious adversaries.
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2.2 Fully Homomorphic Encryption (FHE)

In all somewhat and fully homomorphic encryption schemes known so far XOR
(addition) gates are considerably cheaper than AND (multiplication) gates. More-
over, XOR gates do not increase the noise much, whereas AND gates increase the
noise considerably (cf. [HS14]). Hence, as in somewhat homomorphic encryption
schemes the parameters must be chosen such that the noise of the result is low
enough to permit decryption, the overall complexity depends on the ANDdepth.

2.3 Zero-Knowledge Proof of Knowledge (ZK)

In several zero-knowledge proof protocols XOR relations can be proven for free
and the complexity essentially depends on the number of AND gates of the
relation to be proven. Examples for such protocols are [BC86,BDP00] and the
recently proposed highly efficient protocol of [JKO13] that requires only one eval-
uation of a garbled circuit [Yao86] and can make use of the free XOR technique
[KS08].

3 Description of LowMC

LowMC is a flexible block cipher based on an SPN structure where the block
size n, the key size k, the number of Sboxes m in the substitution layer and
the allowed data complexity d of attacks can independently be chosen1. The
number of rounds needed to reach the security claims is then derived from these
parameters.

To reduce the MC, the number of Sboxes applied in parallel can be reduced,
leaving part of the substitution layer as the identity mapping. Despite concerns
raised regarding this strategy [WWGY13], we will show that security is viable. To
reach security in spite of a low MC, pseudorandomly generated binary matrices
are used in the linear layer to introduce a very high degree of diffusion. A method
to accountably instantiate LowMC is given in Section 3.3.

Encryption with LowMC starts with a key whitening, followed by several
rounds of encryption where the exact number of rounds depends on the chosen
parameter set. A single round is composed as follows:

LowMCRound(i) =
KeyAddition(i) ◦ ConstantAddition(i) ◦ LinearLayer(i) ◦ SboxLayer

In the following we give a detailed description of the individual steps.

SboxLayer is an m-fold parallel application of the same 3-bit Sbox on the first
3m bits of the state. If n > 3m then for the remaining n−3m bits, the SboxLayer
is the identity. The selection criteria for the Sbox were as follows:
1 The number of Sboxes is limited though by the block size as the Sboxes need to fit

into a block.
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Fig. 1. Depiction of one round of encryption with LowMC

– Maximum differential probability: 2−2

– Maximum linear probability: 2−2

– Simple circuit description involving MC = 3 AND gates, with ANDdepth=1
– Each of the 8 non-zero component functions has algebraic degree 2

The Sbox is specified in 2, and coincides with the Sbox used for PRINTci-
pher [KLPR10]. Other representations of the Sbox can be found in the full
version of this paper.

LinearLayer(i) is the multiplication in GF(2) of the state with the binary
n×n matrix Lmatrix[i]. The matrices are chosen independently and uniformly
at random from all invertible binary n × n matrices.

ConstantAddition(i) is the addition in GF(2) of roundconstant[i] to the
state. The constants are chosen independently and uniformly at random from
all binary vectors of length n.

KeyAddition(i) is the addition in GF(2) of roundkey[i] to the state. To gen-
erate roundkey[i], the master key key is multiplied in GF(2) with the binary
n×k matrix Kmatrix[i]. The matrices are chosen independently and uniformly
at random from all binary n × k matrices of rank min(n, k).

Decryption is done in the straightforward manner by an inversion of these
steps.

S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ c ⊕ ab)

Fig. 2. Specification of the 3-bit Sbox

3.1 Pseudocode

plaintext and state are n-bit quantities. key is a k-bit quantity, which can
both be larger or smaller than n. r is the number of rounds.
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ciphertext = encrypt (plaintext,key)
//initial whitening
state = plaintext + MultiplyWithGF2Matrix(KMatrix(0),key)

for (i = 1 to r)
//m computations of 3-bit sbox,
//remaining n-3m bits remain the same
state = Sboxlayer (state)

//affine layer
state = MultiplyWithGF2Matrix(LMatrix(i),state)
state = state + Constants(i)

//generate round key and add to the state
state = state + MultiplyWithGF2Matrix(KMatrix(i),state)

end
ciphertext = state

3.2 Parameters

Our security analysis against differential, linear, higher-order, meet-in-the-
middle, algebraic, and slide attacks suggests that, except with negligible proba-
bility, any uniformly randomly chosen set of matrices leads to a secure construc-
tion for the parameters given in Table 1. For a larger selection of parameters
bundled with security bounds, see the full version of this paper.

Table 1. Parameter sets of LowMC instantiations. One first set has PRESENT-like
security parameters, the second set has AES-like security parameters.

blocksize sboxes keysize data rounds ANDdepth ANDs
n m k d r per bit

256 49 80 64 11 11 6.3
256 63 128 128 12 12 8.86

3.3 Instantiation of LowMC

To maximize the amount of diffusion done by the linear layer, we rely on ran-
domly generated, invertible binary matrices. As there exist no binary matrices of
size larger than 1×1 that are MDS, and as it is generally an NP-complete prob-
lem to determine the branching number of a binary matrix [BMvT78], there is
no obviously better method to reach this goal. The problem in the instantiation
of LowMC is to find an accountable way of constructing the random matrices
and vectors that leaves no room for the designer to plant backdoors.
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Our recommended instantiation is a compromise between randomness,
accountability and ease of implementation. It uses the Grain LSFR as a self-
shrinking generator (see [HJMM08] and [MS94]) as a source of random bits.
The exact procedure can be found in the full version of this paper.

It must be mentioned though that it is principally possible to use any suf-
ficiently random source to generate the matrices and constants. It is also not
necessary that the source is cryptographically secure.

4 Comparison with Other Ciphers

In the following we survey a larger number of existing cipher designs and study
their ANDdepth and MC per encrypted bit which we summarize in Table 2. We
both choose representative candidates from various design strategies, as well as
the designs that are most competitive in terms of our metrics. We do this in
two distinct categories: AES-like security (with key sizes of 128-bits and more
and data security and block size of 128-bits and more), and lightweight security
(data security and block size of 96 bits or below). Note that data security refers
to the log2 of the allowable data complexity up to which a cipher is expected
to give the claimed securtiy against shortcut attacks. For LowMC we explicitly
de-couple the data security from the block size of the cipher as the proposed
design strategy favour larger block sizes but we don’t see a new for larger data
security than 128. For size-optimized variants we instantiate �-bit adders using
a ripple-carry adder which has � − 1 ANDs and ANDdepth � − 1; for depth-
optimized variants we instantiate them with a Ladner-Fischer adder that has
� + 1.25� log2 � ANDs and ANDdepth 1 + 2 log2 �, cf. [SZ13].

We first survey AES versions and then ciphers with related security proper-
ties. The Sbox construction of [BP12] has 34 AND gates and ANDdepth 4 (the
size optimized Sbox construction of [BMP13] has only 32 AND gates, but higher
ANDdepth 6). See also Canright [Can05]. To encrypt a 128-bit block, AES-128
has 10 rounds and uses 160 calls to the Sbox (40 for key schedule), hence 5 440
AND gates, or 42.5 AND gates per encrypted bit. To encrypt a 128-bit block,
AES-192 has 12 rounds and uses 192 calls to the Sbox (32 for key schedule),
hence 6 528 AND gates, or 51 AND gates per encrypted bit. To encrypt a 128-
bit block, AES-256 has 14 rounds and uses 224 calls to the Sbox (56 for key
schedule), hence 7 616 AND gates, or 59.5 AND gates per encrypted bit.

AES is actually comparatively efficient. Other ciphers with a different design
strategy can have very different properties. Threefish [FLS+10] is a cipher with
large block size. Threefish with its 512-bit block size has 72 rounds with 4 addi-
tions modulo 264 each resulting in 35.438 AND gates per encrypted bit and
ANDdepth=4 536 (63 per round). Threefish with its 1 024-bit block size has 80
rounds with 8 additions each resulting in 39.375 AND gates per bit and AND-
depth=5 040 (63 per round). The recently proposed NSA cipher Simon [BSS+13]
is also a good candidate to be of low multiplicative complexity. If b is the block
size, it does b/2 AND gates per round, and ANDdepth is equal to the number
of rounds. For a key size of 128 bit (comparable to AES) and block size 128 bit,
it needs 68 rounds. This means, 4 352 AND gates, or 34 AND gates per bit.
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In the lightweight category, we consider Present, but also Simon. The Present
Sbox can be implemented with as little as 4 AND gates which is optimal [CHM11]
and has ANDdepth 3. With 16 · 31 = 496 Sbox applications per 64 bit block we
arrive at 31 AND gates per bit. A depth-optimized version of the Present Sbox
with ANDdepth 2 and 8 ANDs is given in the full version of this paper. The
128bit secure version of Present differs only in the key schedule. Simon-64/96 has
a 96 bit key, block size 64 bit and 42 rounds and Simon-32/64 has a 64 bit key,
block size 32 bit and 32 rounds; see above for MC and ANDdepth. As another
data point, the DES circuit of [TS] has 18 175 AND gates and ANDdepth 261.
KATAN [CDK09] has 254 rounds. In KATAN32, the ANDdepth increases by two
every 8 rounds resulting in an ANDdepth of 64; with 3 AND gates per round
and a block size of 32 bit this results in 23.81 ANDs per bit, but similar to
Simon-32/64 applications are limited due to the small block size. In KATAN48
and KATAN64 the ANDdepth increases by 2 every 7 rounds resulting in an
ANDdepth of 74. KATAN48 has 6 ANDs per round and a block size of 48 bit
resulting in 31.75 ANDs per bit. KATAN64 has 9 ANDs per round and a block
size of 64 bit resulting in 35.72 ANDs per bit. Prince [BCG+12] has 12 rounds
and each round can be implemented with 10 AND gates and ANDdepth 2, cf.
[DSES14]. NOEKEON [DPVAR00] is a competitive block cipher with 16 rounds
and each round applies 32 S-boxes consisting of 4 AND gates with ANDdepth 2
each.

LowMC is easily parameterizable to all these settings, see also Table 1 in
Section 3. It has at most (if 3m = n) one AND gate per bit per round which
results, together with a moderate number of rounds to make it secure, in the
lowest ANDdepth and lowest MC per encrypted bit, cf. Table 2.

5 Resistance Against Cryptanalytic Attacks

The number of rounds r equals ANDdepth, and is hence a crucial factor to
minimize. For this we evaluate the security of the construction against an array
of known attack vectors. Below we especially discuss differential, linear and high-
order attacks, as their analysis is a relevant technical contribution in itself. For a
short discussion of other attack vectors, we refer to the full version of this paper.

We aim to prove the LowMC designs secure against classes of known attacks.
However, due to the choice of random linear layers it is not immediately clear
how to bound the probability of differential or linear characteristics. This is
something we will investigate and resolve in Section 5.1. Due to the extremely
simple description of the Sbox, higher order [Knu94] and cube attacks [DS09]
that exploit a relatively slow growth in the algebraic degree appear to be the
most promising attack vector, and are studied in Section 5.4. The quality of these
bounds is tested on small versions of LowMC. This all will allow us to formulate
in Section 5.6 a relatively simple expression for deriving a lower bound for the
number of rounds given other parameters like the desired security level in terms
of time and data, and block size.
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Table 2. Comparison of ciphers (excluding key schedule). We list the depth-optimized
variants; size-optimized variants are given in () if available. Best in class are marked
in bold.

Cipher Key size Block size Data sec. ANDdepth ANDs/bit Sbox representation
AES-like security

AES-128 128 128 128 40 (60) 43 (40) [BP12] ([BMP13])
AES-192 192 128 128 48 (72) 51 (48) [BP12] ([BMP13])
AES-256 256 128 128 56 (84) 60 (56) [BP12] ([BMP13])
Simon 128 128 128 68 34 [BSS+13]
Simon 192 128 128 69 35 [BSS+13]
Simon 256 128 128 72 36 [BSS+13]

Noekeon 128 128 128 32 16 [DPVAR00]
Robin 128 128 128 96 24 [GLSV14]

Fantomas 128 128 128 48 16.5 [GLSV14]
Threefish 512 512 512 936 (4 536) 306 (36) [FLS+10]
Threefish 512 1 024 1024 1 040 (5 040) 340 (40) [FLS+10]
LowMC 128 256 128 12 8.85 full version

Lightweight security
PrintCipher-96 160 96 96 96 96 full version
PrintCipher-48 80 48 48 48 48 full version

Present 80 or 128 64 64 62 (93) 62 (31) full version ([CHM11])
Simon 96 64 64 42 21 [BSS+13]
Simon 64 32 32 32 16 [BSS+13]
Prince 128 64 64 24 30 [DSES14]

KATAN64 80 64 64 74 36 [CDK09]
KATAN48 80 48 48 74 32 [CDK09]
KATAN32 80 32 32 64 24 [CDK09]

DES 56 64 56 261 284 [TS]
LowMC 80 256 64 11 6.31 full version

5.1 Differential Characteristics

In differential attacks, the principal goal is to find a pair (α, β) of an input
difference α and an output difference β for the cipher such that pairs of input
texts with difference α have an unusual high probability to produce output
texts with difference β. Such a pair of differences is called a differential. A good
differential can be used to mount distinguishing attacks as well as key recovery
attacks on the cipher. For this it suffices if the differential does not cover the
whole cipher but all except one or a few rounds.

As it is infeasible to calculate the probability of differentials for most ciphers,
the cryptanalyst often has to be content with finding good differential charac-
teristics i.e., paths of differences through the cipher for which the probability
can directly be calculated. Note that a differential is made up of all differential
characteristics that have the same input and output difference as the differential.
The probability of a good differential characteristic is thus a lower bound for the
related differential.

Allowing parts of the state to go unchanged through the Sbox layer clearly
increases the chance of good differential characteristics. It is for example always
possible to find a one round characteristic of probability 1. In fact, it is even
possible to find � l

3m�-round characteristics of probability 1 where l is the width
of the identity part and m the number of 3-bit Sboxes. Nonetheless, as we will
prove in the following, this poses no threat. This is because of the randomness of
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the linear layer which maps a fixed subspace to a random subspace of the same
dimension: Most “good” difference i.e., differences that activate none or only few
Sboxes, are mapped to “bad” differences that activate most of the Sboxes per
layer. This causes the number of characteristics that only use “good” differences
to decay exponentially with the number of rounds. In the case of a � l

3m�-round
characteristic of probability 1, this means that the output difference is fixed
to very few options, which makes it then already in the next round extremely
unlikely that any one of the options is mapped onto a “good” difference.

We will now prove that good differential characteristics exist only with negli-
gible probability in LowMC. The basic idea behind the proof is the following. We
calculate for each possible good differential characteristic the probability that it
is realized in an instantiation of LowMC under the assumption that the binary
matrices of the linear layer were chosen independently and uniformly at random.
We then show that the sum of these probabilities, which is an upper bound for
the probability that any good characteristic exists, is negligible.

Recall that m is the number of Sboxes in one Sbox layer in LowMC and that
l is the bit-length of the identity part of the Sbox layer. We thus have n = 3m+l.
Let V (i) be the number of bit vectors of length n that correspond to a difference
that activates i Sboxes. As we can choose i out of the m Sboxes, as for each
active 3-bit Sbox there are 7 possible non-zero input differences and as the bits
of the identity part can be chosen freely, we have

V (i) =
(

m

i

)
· 7i · 2l . (1)

Let α0 be an input difference and let α1 be an output difference for one
round of LowMC. Let a0 be the number of Sboxes activated by α0. As an active
Sbox maps its non-zero input difference to four possible output differences each
with probability 1

4 , and as a uniformly randomly chosen invertible binary n × n
matrix maps a given non-zero n-bit vector with probability 1

2n−1 to another
given non-zero output vector, the probability that the one-round characteristic
(α0, α1) has a probability larger than 0 is

4a0

2n − 1
. (2)

Let (α0, α1, . . . , αr) now be a given characteristic over r rounds where the
differences αi are at the end of round i and α0 is the starting difference. Let
(a0, a1, . . . , ar−1) be the numbers of Sboxes activated by each α0, α1,. . . , and
αr−1. We can now calculate the probability that this characteristic has a prob-
ability larger than 0 in a random instantiation of LowMC as

4a0

2n − 1
· 4a1

2n − 1
. . .

4ar−1

2n − 1
=

4a0+a1+···+ar−1

(2n − 1)r
. (3)

Summing now over all possible characteristics over r rounds that activate at
most d Sboxes, we can calculate an upper bound for the probability that there
exists an r-round characteristic with d or fewer active Sboxes as
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∑

0≤a0,a1,...,ar−1≤m
a0+a1+···+ar−1≤d

V (a0) · V (a1) · · · V (ar−1) · (2n − 1) · 4a0+a1+···+ar−1

(2n − 1)r
(4)

where the factor (2n − 1) is the number of choices for the last difference αr that
can take any non-zero value.

With the knowledge that each active Sbox reduces the probability of a charac-
teristic by a factor of 2−2, we can now calculate for each parameter set of LowMC
the number of rounds after which no good differentials are present except for
a negligible probability. We consider as good differential characteristics those
with a probability higher than 2−d, where d is the allowed data complexity in
the respective parameter set. We call a negligible probability a probability lower
than 2−100. Note that this probability only comes into play once when fixing an
instantiation of LowMC. The calculated bound for our choice of parameters can
be found in Table 4.

Table 3. Example of how the probability bound pstat, for the existence of differential
or linear characteristic of probability at least 2−d, evolves. The parameters are here
m = 42, d = 128.

Rounds 1 - 6 7 8 9 10 11 12 13 14 15

n = 256 1.0 2−100 2−212 2−326 2−442 2−558 2−676 2−794 2−913 -
n = 1024 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2−26 2−145 2−264

5.2 Linear Characteristics

In linear cryptanalysis [Mat93], the goal of the cryptanalyst is to find affine
approximations of the cipher that hold sufficiently well. As with differential
cryptanalysis, these can be used to mount distinguishing and key recovery
attacks. The approximation is done by finding so-called linear characteristics, a
concatenation of linear approximations for the consecutive rounds of the cipher.
Similar to differential characteristics, linear characteristics activate Sboxes that
are involved in the approximations.

The proof for the absence of good differential characteristics is directly trans-
ferable to linear characteristics because of two facts. Firstly, the maximal linear
probability of the Sbox is 2−2, just the same as the maximal differential proba-
bility. Secondly, the transpose of a uniformly randomly chosen invertible binary
matrix is still a uniformly randomly chosen invertible binary matrix. Thus we
can use equation 4 to calculate the bounds for good linear characteristics as well.

5.3 Boomerang Attacks

In boomerang attacks [Wag99], good partial differential characteristics that cover
only part of the cipher can be combined to attack ciphers that might be immune
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to standard differential cryptanalysis. In these attacks, two differential charac-
teristics are combined, one that covers the first half of the cipher and another
that covers the second half. If both have about the same probability, the com-
plexity corresponds roughly to the inverse of the fourth power of this probability
[Wag99]. Thus to calculate the number of rounds sufficient to make sure that
no boomerang exists, we calculate the number of rounds after which differential
characteristics of probability 2−d/4 exist only with negligible probability and
then double this number.

5.4 Higher Order Attacks

Due to its small size, the degree of the Sbox in its algebraic representation is
only two. Since in one round the Sboxes are applied in parallel and since the
affine layer does not change the algebraic degree, the algebraic degree of one
round is two as well. As a low degree could be used as a lever for a high-order
attack, let us take a look at how the algebraic degree of LowMC develops over
several rounds.

Clearly the algebraic degree of the cipher after r rounds is bounded from
above by 2r. It is furthermore generally bounded from above by n − 1 since
the cipher is a permutation. A second upper bound, that is better suited and
certainly more realistic for the later rounds, was found by Boura et al. [BCC11].
In our case it is stated as following: If the cipher has degree dr after r rounds, the
degree after round r + 1 is at most n

2 + dr

2 . Differing from Boura et al. [BCC11],
in LowMC the Sbox layer only partially consists of Sboxes and partially of the
identity mapping. This must be accounted for and requires a third bound: If
the cipher has degree dr after r rounds, the degree after round r + 1 is at most
m + dr. A proof of this can be found in the full version of this paper. This can
be summarized as follows:

Lemma 1. If the algebraic degree of LowMC with m Sboxes and length l of the
identity part in the Sbox layer is dr after r rounds, the degree in round r + 1 is
at most

min
(

2dr,m + dr,
n

2
+

dr
2

)
(5)

where n = 3m + l is the block width of LowMC.

Combining these three bounds, we can easily calculate lower bounds for the
number of rounds r needed for different parameter sets l and m of LowMC to
reach a degree that is at least as large as the allowed data complexity d minus
1. The results of this for LowMC’s parameters are displayed in Table 4.

5.5 Experimental Cryptanalysis

We proved that no good differential or linear characteristic can cover sufficiently
many rounds to be usable as an attack vector in LowMC. This does not exclude
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Table 4. For the different sets of LowMC parameters, bounds are given for the number
of rounds for which no good differential or linear characteristics exist (rstat), to avoid
good boomerangs (rbmrg), and the number of rounds needed to have a sufficiently high
algebraic degree (rdeg). The bounds were calculated using equations 4 and 5.

Sboxes blocksize data complexity rstat rbmrg rdeg

49 256 64 5 6 6
63 256 128 5 6 7

though the possibility of good differentials or linear hulls for which a large num-
ber of characteristics combine. Given the highly diffusive, random linear layers,
this seems very unlikely.

Likewise we were able to find lower bounds on the number of rounds needed
for the algebraic degree of LowMC to be sufficiently high. Even though this is
state-of-the art also for traditional designs to date, this gives us no guarantee
that it will indeed be high. Unfortunately it is not possible to directly calculate
the algebraic degree for any large block size.

To nevertheless strengthen our confidence in the design, we numerically
examined the properties of small-scale versions of LowMC. In table 5, we find the
results for a 24-bit wide version with 4 Sboxes. For testing its resistance against
differential cryptanalysis, we calculated the full codebook under 100 randomly
chosen keys and used the distribution of differences to estimate the probabilities
of the differentials. To reduce the computational complexity, we restricted the
search space to differentials with one active bit in the input difference.

It can clearly be seen that the probability of differentials quickly saturates to
values too low to allow an attack. Clearly, the bound calculated with equation 4
(pstat in the table) overestimates the probability of good characteristics. Even
though we were not able to search the whole space of differentials there is little
reason to assume that there are other differentials that fare considerably better.
It is important to note that the number of impossible differentials goes to 0
after only few rounds. Thus impossible differentials cannot be used to attack
any relevant number of rounds. At the same time this assures the absence of any
truncated differentials of probability 1.

The minimal algebraic degree2 is tight for this version when compared with
the theoretic upper bound as determined with equation 5. More experimental
cryptanalysis can be found in the full version of this paper.

5.6 Fixing the Number of Rounds

We base our recommendation for the number of rounds on the following:

r ≥ max(rstat, rbmrg, rdeg) + router

2 That is the minimum of the algebraic degrees of the 24 output bit when written as
Boolean functions.
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Table 5. Experimental results of full codebook encryption over 100 random keys
for a set of small parameters are given. pbest and pworst are the best and the worst
approximate differential probability of any differential with one active bit in the input
difference. nimposs is the number of impossible differentials with one active bit in the
input difference. degexp is the minimal algebraic degree in any of the output bits.
degtheor is the upper bound for the algebraic degree as determined from equation 5.
pstat is the probability that a differential or linear characteristic of probability at least
2−12 exists (see eq. 4).

(a) n = 24, m = 4, k = 12, d = 12

Rounds pbest pworst nimposs degexp degtheor pstat

2 2−8.64 0 228.58 4 4 -
3 2−12.64 0 228.00 8 8 -
4 2−14.64 0 24.25 12 12 -
5 2−18.60 2−26.06 0 16 16 -
6 2−20.49 2−25.84 0 20 20 -
7 2−23.03 2−25.74 0 22 22 -
8 2−23.06 2−25.74 0 23 23 -
10 - - - - - 2−5.91

11 - - - - - 2−16.00

12 - - - - - 2−26.28

19 - - - - - 2−101.5

where rstat is a bound for statistical attack vectors such as differentials and linear
characteristics as discussed in Section 5.1, rbmrng is the bound for boomerang
attacks as discussed in Section 5.3, and where rdeg indicates the number of rounds
needed for the cipher to have sufficient degree as discussed in Section 5.4. Values
of these for the parameters of LowMC can be found in Table 4. For the number
of rounds which can be peeled off at the beginning and end of the cipher by key
guessing and other strategies, we use the ad-hoc formular router = rstat.

6 Comparison of Implementations

In the following we report on experiments when evaluating LowMC with MPC
protocols in Section 6.1 and with FHE in Section 6.2. The performance of both
implementations is independent of the specific choice of the random matrices
and vectors used in LowMC (cf. Section 3.3) as we do not use any optimizations
that are based on their specific structure.

In both the FHE and MPC settings, for more efficient matrix multiplication,
we use a method that is generically better than a naive approach: the “method of
the four Russians” [ABH10]. This method reduces the complexity of the matrix-
vector product from O(n2) to O(n2/log(n)), i.e. it’s an asymptotically faster
algorithm and is also fast in practice for the dimensions we face in LowMC.
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Asymptotically faster methods like the Strassen-Winograd method method make
no sense however, for the dimensions we are considering.

It turns out that considering design-optimizations of the linear layer by intro-
ducing structure and thereby lowering the density of the matricies and in turn
reducing the number of XOR computations will not improve performance of
all these implementations. On the contrary, as the application of the security
analysis suggests, the number of rounds would need to be increased in such a
case.

6.1 MPC Setting

As an example for both classes of MPC protocols described in Section 2.1 we
use the GMW protocol [GMW87] in the semi-honest setting. As described in
[CHK+12], this protocol can be partitioned into 1) a setup phase with a constant
number of rounds and communication linear in the MC of the circuit (2κ bits per
AND gate for κ-bit security), and 2) an online phase whose round complexity
is linear in the ANDdepth of the circuit. Hence, we expect that the setup time
grows linearly in the MC while the online time grows mostly with increasing
ANDdepth when network latency is high.

Benchmark Settings. For our MPC experiments we compare LowMC against
other ciphers with a comparable level of security. We compare LowMC with the
two standardized ciphers Present and AES and also with the NSA cipher Simon
which previously had the lowest number of ANDs per encrypted bit (cf. Table 2).
More specifically, for lightweight security with at least κ = 80 bit security we
compare LowMC with 80 bit keys against Present with 80 bit key (using the
Sbox of [CHM11]) and Simon with 96 bit keys (the Simon specification does
not include a variant with 80 bit keys); for long-term security with κ = 128 bit
security we compare LowMC with 128 bit keys against AES-128 (using the Sbox
of [BP12]) and Simon with 128 bit key; we set the security parameters for the
underlying MPC protocol to κ = 80 bit for lightweight security and to κ = 128
bit for long-term security. We exclude the key schedule and directly input the pre-
computed round keys. We use the GMW implementation that is available in the
ABY-framework [DSZ15] which uses the efficient oblivious transfer extensions of
[ALSZ13]3. We run our MPC experiments on two desktop PCs, each equipped
with an Intel Haswell i7-4770K CPU with 3.5 GHz and 16GB of RAM, that are
connected by Gigabit LAN. To see the impact of the reduced ANDdepth in the
online phase, we measured the times in a LAN scenario (0.2 ms latency) and
also a trans-atlantic WAN scenario (50 ms latency) which we simulated using
the Linux command tc.

In our first experiment depicted in Table 6 we encrypt a single block, whereas
in our second experiment depicted in Table 7 we encrypt multiple blocks in
parallel to encrypt 12.8 Mbit of data.
3 Our MPC implementations of the benchmarked block-ciphers are available online as

part of the ABY-framework https://github.com/encryptogroup/ABY.

https://github.com/encryptogroup/ABY
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Table 6. GMW benchmarking results for single block. Best in class marked in bold.

Lightweight Security
Cipher Present Simon LowMC
Communication [kB] 39 26 51
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 0.003 0.21 0.002 0.21 0.002 0.14
Online [s] 0.05 13.86 0.05 5.34 0.06 1.46
Total [s] 0.05 14.07 0.05 5.45 0.06 1.61

Long-Term Security
Cipher AES Simon LowMC
Communication [kB] 170 136 72
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 0.01 0.27 0.009 0.23 0.002 0.15
Online [s] 0.04 4.08 0.05 6.95 0.07 1.87
Total [s] 0.05 4.35 0.06 7.18 0.07 2.02

Single-Block Results. From our single-block experiments in Table 6 we
see that the communication of LowMC is higher by factor 2 compared to the
lightweight security ciphers but lower by factor 2 compared to the long-term
security ciphers. In terms of total runtime, for lightweight security LowMC per-
forms similar to Present and Simon in the LAN setting and outperforms both
by factor 3 to 9 in the WAN setting. For long-term security AES is slightly
faster than LowMC in the LAN setting, but slower than LowMC in the WAN
setting by factor 2. These results can be explained by the high number of XOR
gates of LowMC compared to AES, which impact the run-time higher than the
communication for the AND gates. In the WAN setting, the higher ANDdepth
of AES outweighs the local overhead of the XOR gates for LowMC, yielding a
faster run-time for LowMC.

Multi-Block Results. From our multi-block experiments in Table 7 we see
that LowMC needs less communication than all other ciphers: at least factor 2 for
lightweight security and factor 4 for long-term security. Also the total runtime of
LowMC is the lowest among all ciphers, ranging from factor 6 when compared to
Simon for lightweight security to factor 9 when compared to AES for long-term
security.

Summary of the Results. To summarize our MPC experiments, the bene-
fits of LowMC w.r.t. the online time depend on the network latency: over the
low-latency LAN network existing ciphers achieve comparable or even slightly
faster online runtimes than LowMC, whereas in the higher latency WAN network
LowMC achieves the fastest online runtime. W.r.t. the total runtime, LowMC’s
benefit in the single-block application again depends on the latency (comparable
or slightly less efficient over LAN, but more efficient over WAN), whereas in the
multi-block application LowMC significantly improves over existing ciphers by
factor 6 to 9. For secure computation protocols with security against malicious
adversaries, the benefit of using LowMC would be even more significant, since
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Table 7. GMW benchmarking results for multiple blocks to encrypt 12.8 Mbit of data.
Best in class marked in bold.

Lightweight Security
Cipher Present Simon LowMC
Comm. [GB] 7.4 5.0 2.5
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 214.17 453.89 268.93 568.35 43.33 138.63
Online [s] 2.71 34.35 3.29 37.06 2.02 17.12
Total [s] 216.88 488.24 272.22 605.41 45.36 155.75

Long-Term Security
Cipher AES Simon LowMC
Comm. [GB] 16 13 3.5
Runtime LAN WAN LAN WAN LAN WAN
Setup [s] 553.41 914.27 444.30 727.48 62.01 193.90
Online [s] 2.50 33.52 2.97 34.42 2.36 21.11
Total [s] 555.91 947.79 447.27 761.90 64.37 215.01

there the costs per AND gate are at least an order of magnitude higher than in
the semi-honest GMW protocol, cf. [NNOB12,LOS14].

6.2 FHE Setting

WeimplementedLowMCusing thehomomorphic encryption libraryHELib [HS13,
HS14], which implements the BGV homomorphic encryption scheme [BGV11] and
which was also used to evaluate AES-128 [GHS12a,GHS12b]. Our implementation
represents each plaintext, ciphertext and key bits as individual HE ciphertexts on
which XOR and AND operations are performed. Due to the nature of the BGV
system this means that we can evaluate many such instances in parallel, typically
a few hundred. We found this representation to be more efficient than our other
“compact” implementation which packs these bits into the slots of HE ciphertexts.

In the homomorphic encryption setting the number of AND gates is not the
main determinant of complexity. Instead, the ANDdepth of the circuit largely
determines the cost of XOR and AND, where AND is more expensive than
XOR. However, due to the high number of XORs in LowMC, the cost of the
linear layer is not negligible. In our implementation we use the “method of the
four Russians” [ABH10] to reduce the number of HE ciphertext additions from
O(n2) to O(n2/ log(n)).

In our experiments we chose the depth for the homomorphic encryption
scheme such that the “base level” of fresh ciphertexts is at least the number
of rounds, i.e. we consume one level per round. Our implementation also does
not precompute round keys in advance, but deriving round keys is considered
part of the evaluation (cost).

We consider LowMC instances for Present-80 and AES-128 like security. We
always choose a homomorphic encryption security level of 80 for compatibility
with [GHS12b]. Our results are given in Table 8. Our implementation is available
at https://bitbucket.org/malb/lowmc-helib.

https://bitbucket.org/malb/lowmc-helib
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Table 8. LowMC (commit f6a086e) in HElib [HS13] (commit e9d3785e) on Intel
i7-4850HQ CPU @ 2.30GHz; d is the allowed data complexity, m is the number of
Sboxes, n is the blocksize, r is the number of rounds, # blocks is the number of blocks
computed in parallel, tsetup is the total setup time, teval is the total running time of
the encryption in seconds, tsbox the total time spent in the S-Box layer in seconds,
tkey the total time spent in the key schedule in seconds, tblock = teval/#blocks and
tbit = tblock/n. The rows marked as “main” contain the main parameter proposals.
The rows marked as “perf”, “cons” or “smll” contain alternative parameter sets being
conservative, performance oriented or relatively small respectively.

d m r n #blocks tsetup teval tsbox tkey tblock tbit Memory Comment

128 63 12 256 600 11.6 506.1 353.2 1.6 0.8434 0.0033 1.58GB main
128 86 11 512 600 11.7 847.6 451.5 3.2 1.4127 0.0028 2.62GB perf
128 86 12 512 600 11.7 893.9 480.1 3.2 1.4898 0.0029 2.62GB cons

64 49 11 256 600 11.0 383.0 206.3 0.9 0.6383 0.0025 1.52GB main
64 49 10 256 600 11.5 305.6 255.6 1.1 0.5093 0.0020 1.37GB perf
64 34 11 128 600 13.0 260.7 204.0 0.7 0.4345 0.0034 1.08GB smll

For comparison with previous results in the literature we reproduce those
results in Table 9 which demonstrates the benefit of a dedicated block cipher for
homomorphic evaluation.

Table 9. Comparison of various block cipher evaluations in the literature and this
work; Notation as in Table 8. Memory requirements are not listed as they are usually
not provided in the literature. The first row is based on experimental data obtained on
the same machine and the same instance of HELib as in Table 8.

d ANDdepth #blocks teval tblock tbit Cipher Reference Key Schedule

128 40 120 3m 1.5s 0.0119s AES-128 [GHS12b] excluded
128 40 2048 31h 55s 0.2580s AES-128 [DHS14] excluded
128 40 1 22m 22m 10.313s AES-128 [MS13] excluded
128 40 12 2h47m 14m 6.562s AES-128 [MS13] excluded
128 12 600 8m 0.8s 0.0033s LowMC this work included

64 24 1024 57m 3.3s 0.0520s PRINCE [DSES14] excluded
64 11 600 6.4m 0.64s 0.0025s LowMC this work included

7 Conclusions, Lessons Learned, and Open Problems

We proposed block ciphers with an extremely small number of AND gates and
an extremely shallow AND depth, demonstrated the soundness of our design
through experimental evidence and provided a security analysis of these con-
structions. Of course, as with any other block cipher, more security analysis is
needed to firmly establish the security provided by this new design. Further-
more, with the proposal of the LowMC familiy, we bring together the areas of
symmetric cryptographic design and analysis research with new developments
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around MPC and FHE. Finally, in contrast to current folklore belief, in some
implementation scenarios, we identified practical cases where “free XORs” can
no longer be considered free and where local computations in an MPC protocol
represent a considerable bottleneck.

To finish, we highlight a number of open problems related to the LowMC
family of ciphers. Is it possible to reduce the number of rounds in LowMC fur-
ther, which in turn would further reduce MC and ANDdepth? Analyzing such an
extreme corner of the design space for a symmetric cipher is an interesting enda-
vor in itself. Can we add more structure into the linear layers in order to reduce
the necessary computational effort in those cases where the number of AND gates
is no longer the bottleneck? Do such approaches beat applying asymptotically
faster linear algebra techniques for applying linear layers as done in Section 6?
As we argue in the paper, simply lowering the density of the matrices by several
factors of two will not be enough.

Currently, the MC and ANDdepth of various cipher constructions is poorly
understood. For example, it would be interesting to find efficient algorithms
along the lines of [BMP13] for the various ciphers including the recent lightweight
cipher proposals in the literature. While our choice for GF(2) is well motivated,
there are scenarios where larger fields might be beneficial. What designs minimize
MC and ANDdepth under such constraints?
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Abstract. In this paper, we study the problem of automatically ver-
ifying higher-order masking countermeasures. This problem is impor-
tant in practice, since weaknesses have been discovered in schemes that
were thought secure, but is inherently exponential: for t-order masking,
it involves proving that every subset of t intermediate variables is dis-
tributed independently of the secrets. Some tools have been proposed to
help cryptographers check their proofs, but are often limited in scope.

We propose a new method, based on program verification techniques,
to check the independence of sets of intermediate variables from some
secrets. Our new language-based characterization of the problem also
allows us to design and implement several algorithms that greatly reduce
the number of sets of variables that need to be considered to prove this
independence property on all valid adversary observations. The result of
these algorithms is either a proof of security or a set of observations on
which the independence property cannot be proved. We focus on AES
implementations to check the validity of our algorithms. We also con-
firm the tool’s ability to give useful information when proofs fail, by
rediscovering existing attacks and discovering new ones.

Keywords: Higher-order masking · Automatic tools · EasyCrypt

1 Introduction

Most widely used cryptographic algorithms are assumed to be secure in the
black-box model, that is when the adversary is only given access to the inputs
and outputs of the algorithm. However, this model does not fit the reality of
embedded devices. In practice, an attacker can observe the physical leakage
of a device in order to mount side-channel attacks. These attacks exploit the
dependence between secret values used in the computation and the physical
c© International Association for Cryptologic Research 2015
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leakage inherent to the physical implementation and execution (for example,
timing, power consumption or electromagnetic radiations). Such attacks are very
efficient in practice, with a recent attack recovering a full AES key using a single
power trace [34]. Further, differential attacks can be mounted that exploit similar
dependencies between sensitive values, that depend on both secret inputs and
adversarially-controlled public inputs, to speed up the rate at which information
on the secrets is gathered. Differential Power Analysis [22] (DPA), in particular,
is a very effective class of attacks.

Masking. In order to thwart Differential Power Analysis, the community have
proposed many countermeasures but masking remains most widely used. Mask-
ing makes use of a secret-sharing scheme to split each secret or sensitive variable
into (t + 1) shares such that the joint distribution of any subset of at most t
shares is independent of the secret, but the knowledge of all (t+1) shares allows
for the efficient recovery of the secret. The computation itself is then masked as
well, replacing basic operations on, say, bytes with complex operations on (t+1)
bytes. Intuitively, an implementation that is split over (t + 1) shares should be
able to resist the leakage of t of its intermediate variables (t is then usually called
the masking order). Most of the implementations were then masked at order 1
to prevent an adversary from recovering secrets using a single observation. How-
ever, even higher-order attacks, where t is greater than 1 have been conducted in
practice [26,28] and need to be protected against. Many masked implementations
have been proposed to protect AES or its non-linear component, the S-box (for
example, [10,27,30,31,33]), among which some are also proved secure. Checking
first-order masking schemes is a relatively routine task since it is sufficient to
check that each intermediate variable carries a distribution that is independent
from the secret. However, manually checking higher-order masked implementa-
tions is a more difficult and error-prone task. As a consequence, many published
schemes were later shown to be insecure, such as those presented by [33] and [31],
which were later broken in [12] and [13]. In this paper, we address this issue by
developing automated methods to verify the security of algorithms masked at
higher orders.

Adversary Models. The first step towards formally reasoning about the security
of masked algorithms is to define a leakage model that formally captures the
information that is leaked to the adversary. For this purpose, Chari et al. [11]
perform the first formal security analysis of masking, by showing that the number
of queries needed to recover a sensitive bit in a noisy leakage model is at least
exponential in the masking order. In this model, the adversary gets leaked values
sampled according to a Gaussian distribution centered around the actual value
of the wire. This model is later extended by Prouff and Rivain [30] in several
respects. First, they consider more general distributions to sample noisy leakage
from, rather than just Gaussian [11] or Bernoulli leakage [18]. Moreover, they
remove the limitation to one-bit observations, allowing the adversary to observe
intermediate variables of any bitsize. Finally, they also extend the notion of
leakage to take computation, rather than data, into account, following the only
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computation leaks information principle introduced by Micali and Reyzin [24].
They also offer the first proof of security for a masked algorithm in this model,
although it relies on leak-free components and a relatively weak adversary model.

In a different approach, Ishai, Sahai and Wagner [21] introduce the t-threshold
probing model, in which the adversary receives the exact value of at most t
internal variables (of his choice) in the computation. At the same time, they
describe a transformation that turns any boolean circuit C secure in the black-
box model into a circuit C ′ secure in the t-threshold probing model.

In practice, the noisy leakage model is often thought of as more realistic,
since experimental physical leakage is noisy [23]. In particular, although the t-
threshold probing model enables the adversary to observe exact values rather
than noisy ones, it is not more powerful than the noisy leakage model, since
the models also differ in the number of observations allowed to the adversary.
The relationship between the two models was recently clarified by Duc, Dziem-
bowski and Faust [14]. They advantageously recast the noisy leakage in the more
classic statistical security model and show that security in the extended noisy
leakage model of [30], fixed to capture chosen plaintext attacks, can be reduced
to security in the t-threshold probing model of [21], in which security proofs
are much more direct. In addition, the reduction does not rely on the existence
of leak-free components. Thus, proving the security of a cryptosystem in the t-
threshold probing model automatically ensures its security in the more realistic
noisy leakage model.

In both models, only the values of intermediate variables are usually consid-
ered when determining the security order of an implementation. However, Balash
et al. [2] show that this value-based leakage model does not fully capture some
real-world scenarios in which additional physical leaks can occur, namely glitches
or transition-based leakage, leaking information about more than one interme-
diate variable in a single observation. As a consequence, a perfectly masked
algorithm secure in the value-based model can succumb to first-order attacks in
these finer-grained leakage models.

Program Verification. Many tools aimed at proving the security of masked algo-
rithms in the t-threshold probing model have recently appeared [9,15–17,25].
Some [9,25] use type systems to propagate sensitivity marks along the programs,
but such approaches are not complete [16] and many programs are thus incor-
rectly typed as secure. Others take the underlying probability distributions into
account, but can only handle low masking orders (typically orders 1 and 2), even
on small programs.

Contributions. In this paper, we develop automated methods to prove the
security of masked implementations in the t-threshold probing model, both for
value-based and transition-based leakage. More specifically, our theoretical con-
tributions are three-fold: i. We provide a formal characterization of security
in the t-threshold probing model as a combination of variants of two well-
known properties in programming languages: t-non-interference and functional
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equivalence; ii. We provide algorithms that construct bijections between an
adversary observation and a distribution that is trivially independent from the
secret inputs, thereby proving that the adversary observation is independent
from secret inputs; iii. We provide algorithms that make use of the constructed
bijections to extend sets of observations with additional observations that do
not give the adversary any more information about the secrets, thereby reduc-
ing greatly the number of non-interference proofs that need to be performed in
order to prove a whole program t-non-interfering. As a practical contribution,
we implement our algorithms and apply them to various masked implementa-
tions of AES, and a masked implementation of MAC-Keccak. Pleasingly, our
tools are able to successfully analyze first-order masked implementations of AES
(in a couple of minutes), 2 rounds of second-order masked implementations of
AES at level 2 (in around 22 minutes), and masked implementations of multi-
plication, up to order 5 (in 45s). Our experiments allow us to rediscover several
known attacks ([12,13]) on flawed implementations, to check that proposed fixes,
when they exist, are indeed secure, and finally to discover new attacks on flawed
implementations ([33]). We also discuss how our approach and tool can easily be
adapted to deal with stronger leakage models capturing both transition-based
leakage and leakage due to glitches, and illustrate it by studying the security of
variants of secure field multiplication in the transition-based leakage model.

Putting our work in perspective, we deliberately focus on algorithmic meth-
ods that are able to cover large spaces of observation sets very efficiently, and
without any assumption on the program. Although our results demonstrate that
such methods can perform surprisingly well in practice, their inherent limita-
tions with respect to scalability remain. A common strategy to address scal-
ability issues is to develop compositional techniques. This could be done, for
instance, in the context of a masking compiler, whose proof of security proceeds
by showing that each gadget is secure, and that gadgets are combined securely.
Assumptions on the structure of the masked algorithm could also be made that
would allow such compositional reasoning. In this light, our algorithmic methods
can be seen as focusing primarily on proving that core gadgets are secure with
respect to a widely-used notion of security.

Outline. We first review previous uses of formal methods to prove similar prop-
erties (Section 2). In Sections 3 and 4, we describe our algorithms. In Section 5,
we evaluate the practicality of our approach by implementing our algorithms in
the framework provided by EasyCrypt [6], and testing the performance of our
implementation on representative examples from the literature.

2 Language-Based Techniques for Threshold Security in
the t-Threshold Probing Model

In this paper, we rephrase security in the t-threshold probing model by defining
the notion of t-non interference, which is based on the notions of probabilistic
non-interference used for verifying information-flow properties in language-based
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security. We first define a general notion of program equivalence. Two proba-
bilistic programs p1 and p2 are said to be (I,O)-equivalent, denoted p1 ∼O

I p2,
whenever the probability distributions on O defined by p1 and p2, conditioned
by the assumptions on input variables encoded in I, are equal.

This notion of equivalence subsumes the two more specialized notions we
consider here: functional equivalence and t-non-interference. Two programs p
and p̄ are said to be functionally equivalent when they are (I,Z)-equivalent
with Z all output variables, and I all input variables. A program p̄ is said to
be t-non-interfering with respect to a set of secret input variables Isec and a
set of observations O when p̄(s0, ·) and p̄(s1, ·) are (Ipub,O)-equivalent (with
Ipub = I \ Isec the set of non-secret input variables) for any values s0 and s1 of
the secret input variables.

We now give an indistinguishability-based definition of the t-threshold prob-
ing model. In this model, the challenger randomly chooses two secret values s0
and s1 (representing for instance two different values of the secret key) and a
bit b according to which the leakage will be produced: the output computation
always uses secret s0, but the adversary observations are computed using sb.
The adversary A is allowed to query an oracle with chosen instances of public
arguments, along with a set of at most t intermediate variables (adaptively or
non-adaptively chosen); such queries reveal their output and the values of the
intermediate variables requested by the adversary. We say that A wins if he
guesses b.

We now state the central theorem to our approach, heavily inspired by Duc,
Dziembowski and Faust [14] and Ishai, Sahai and Wagner [21].

Theorem 1. Let p and p be two programs. If p and p are functionally equivalent
and p is t-non-interfering, then for every adversary A against p in the t-threshold
probing model, there exists an adversary S against p in the black-box model, such
that

Δ(S
bb
� p,A

thr
� p) = 0

where Δ(· ; ·) denotes the statistical distance1.

Proof. Since p and p are functionally equivalent, we have Δ(S
bb

� p,S
bb

� p) = 0
for all black-box adversary S, and we only have to prove that there exists an

S such that Δ(S
bb

� p,A
thr

� p) = 0. We simply construct a simulator S ′ that
simulates the leakage for A, and build S by composing them. The simulator
receives as inputs the public variables that are used for the execution of p,
and the output of p, but not the t intermediate values corresponding to the
observation set O. Since p is t-non-interfering, the observations do not depend
on the secret variables that are used for the execution of p, and the simulator
can choose arbitrary values for the secret variables, run p on these values and
the public variables given as inputs, and output the requested observations. ��
1 The theorem can be lifted to the noisy leakage model using Corollary 1 from [14],

using a small bound on the statistical distance instead.
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Following Theorem 1, we propose algorithms to prove functional equiva-
lence (details can be found in the long version of this document [3]) and t-non-
interference properties of probabilistic programs, thereby reducing the security
of masked implementations in the t-threshold probing model to the black-box
security of the algorithms they implement.

In the following, we provide an overview of language-based techniques that
could be used to verify the assumptions of Theorem 1, and to motivate the
need for more efficient techniques. First, we introduce mild variants of two stan-
dard problems in programming languages, namely information-flow checking and
equivalence checking, which formalize the assumptions of Theorem 1. Then, we
present three prominent methods to address these problems: type systems (which
are only applicable to information-flow checking), model counting, and relational
logics. Finally, we discuss efficiency issues and justify the need for efficient tech-
niques.

2.1 Problem Statement and Setting

The hypotheses of Theorem 1 can be seen as variants of two problems that have
been widely studied in the programming language setting: equivalence check-
ing and information-flow checking. Equivalence checking is a standard prob-
lem in program verification, although it is generally considered in the setting
of deterministic programs, whereas we consider probabilistic programs here.
Information-flow checking is a standard problem in language-based security,
although it usually considers flows from secret inputs to public outputs, whereas
we consider flows from secret inputs to intermediate values here.

Both problems can be construed as instances of relational verification. For
clarity, we formalize this view in the simple case of straightline probabilistic pro-
grams. Such programs are sequences of random assignments and deterministic
assignments, and have distinguished sets of input and output variables. Given
a program p, we let IVar(p), OVar(p), and PVar(p) denote the sets of input,
output, and intermediate variables of p. Without loss of generality, we assume
that programs are written in single static assignment (SSA) form, and in par-
ticular, that program variables appear exactly once on the left hand side of an
assignment, called their defining assignment—one can very easily transform an
arbitrary straightline program into an equivalent straightline program in SSA
form. Assuming that programs are in SSA form, we can partition PVar(p) into
two sets DVar(p) and RVar(p) of deterministic and probabilistic variables, where
a variable is probabilistic if it is defined by a probabilistic assignment, and is
deterministic otherwise. Let V denote the set of program values (we ignore typing
issues). Each program p can be interpreted as a function:

�p� : D(Vκ) → D(V�+�′
)

where D(T ) denotes the set of discrete distributions over a set T , and κ, � and
�′ respectively denote the sizes of IVar(p), PVar(p) and OVar(p). The function
�p� takes as input a joint distribution on input variables and returns a joint
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distribution on all program variables, and is defined inductively in the expected
way. Furthermore, one can define for every subset O of PVar(p) of size m a
function:

�p�O : D(Vκ) → D(Vm)

that computes, for each v ∈ Vκ, the marginal distributions of �p�(v) with respect
to O.

We can now define the information-flow checking problem formally: a pro-
gram p is non-interfering with respect to a partial equivalence relation Φ ⊆
D(Vκ) × D(Vκ) (in the following, we write Φ μ1 μ2 to mean (μ1, μ2) ∈ Φ), and
a set O ⊆ PVar(p), or (Φ,O)-non-interfering, iff �p�O(μ1) = �p�O(μ2) for every
μ1, μ2 ∈ D(Vκ) such that Φ μ1 μ2. In this case, we write NIΦ,O(p). Moreover,
let O be a set of subsets of PVar(p), that is O ⊆ P(PVar(p)); we say that p is
(Φ, O)-non-interfering, if it is (Φ,O)-non-interfering for every O ∈ O.

Before relating non-interference with security in the t-threshold probing mod-
els, we briefly comment on the nature of Φ. In the standard, deterministic, setting
for non-interference, variables are generally marked as secret or public—in the
general case, they can be drawn from a lattice of security levels, but this is not
required here. Moreover, Φ denotes low equivalence, where two tuples of values
v1 and v2 are low-equivalent if they coincide on public variables. The notion of
low-equivalence has a direct counterpart in the probabilistic setting: two distri-
butions μ1 and μ2 are low equivalent iff their marginal distributions with respect
to public variables are equal. However, non-interference of masked implementa-
tions is often conditioned by well-formedness conditions on inputs; for instance,
the inputs must consist of uniformly distributed, t-wise independent values. In
this case, Φ is defined in such a way that two distributions are related by Φ iff
they are well-formed and low equivalent.

There is a direct interpretation of t-threshold probing security as a non-
interference property. We say that a program p is (Φ, t)-non-interfering if it
is (Φ,O)-non-interfering for all subsets O of PVar(p) with size smaller than t
(we write O ∈ P≤t (PVar(p)) in the following). Then a program p is secure in
the t-threshold probing model (with respect to a relation Φ) iff it is (Φ, t)-non-
interfering.

In order to capture t-threshold probing security in the transition-based leak-
age model, we rely on a partial function next that maps program variables to
their successors. For programs that have been translated into SSA form, all pro-
gram variables are of the form xi, where x is a variable of the original program,
and i is an index—typically a program line number. The successor of such a
variable xi, when it exists, is a variable of the form xj where j is the smallest
index such that i < j and xj is a program variable. Then, we say that a program
p is (Φ, t)-non-interfering in the transition-based model, written NIΦ,t,succ(p),
iff p is (Φ,O ∪ next(O))-non-interfering for every subset of PVar(p) with size
smaller than t. Then a program p is secure in the transition-based t-threshold
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probing model (with respect to a relation Φ) iff it is (Φ, t)-non-interfering in the
transition-based model.2

We now turn to program equivalence. For the sake of simplicity, we consider
two programs p1 and p2 that have the same sets of input and output variables;
we let W denote the latter. We let �p�W denote the function that computes for
every initial distribution μ the marginal distribution of �p�(μ) with respect to
W. We say that p1 and p2 are equivalent with respect to a partial equivalence
relation Φ ⊆ D(Vκ) × D(Vκ), written p1 ∼Φ p2, iff �p1�W(μ) = �p2�W(μ) for
every distribution μ such that Φ μ μ.

For the sake of completeness, we point out that both notions are subsumed
by the notion of (Φ,O)-equivalence. Specifically, we say that programs p1 and
p2 are (Φ,O)-equivalent, written p1 ∼O

Φ p2, iff �p1�O(μ1) = �p2�O(μ2) for every
two distributions μ1 and μ2 such that Φ μ1 μ2. Therefore, both equivalence
checking and information-flow checking can be implemented using as subroutine
any sound algorithm for verifying that p1 ∼O

Φ p2.

2.2 Type-Based Approaches

Information-flow type systems are a class of type systems that enforce non-
interference by tracking dependencies between program variables and rejecting
programs containing illicit flows. There are multiple notions of non-interference
(termination-sensitive, termination-insensitive, or bisimulation-based) and forms
of information-flow type systems (for instance, flow-sensitive, or flow-insensitive);
we refer the reader to [32] for a survey. For the purpose of this paper, it is
sufficient to know that information-flow type systems for deterministic programs
assign to all program variables a level drawn from a lattice of security levels which
includes a level of public variables and secret variables. In the same vein, one can
develop information-flow type systems to enforce probabilistic non-interference;
broadly speaking, such type systems distinguish between public values, secret
values, and uniformly distributed values. Following these ideas, Moss et al. [25]
pioneer the application of information-flow type systems to masking. They use
the type system as a central part in a masking compiler that transforms an input
program into a functionally equivalent program that is resistant to first-order
DPA. Their technique can readily be extended to prove non-interference with
respect to a single observation set.

Because they are implemented with well-understood tools (such as data flow
analyses) and are able to handle large programs extremely fast, information-
flow type systems provide an appealing solution that one would like to use for
higher-order DPA. However, the semantic information carried by types is inher-
ently attached to individual values, rather than tuples of values, and there is
2 Similarly, glitches could be captured by considering that each observation leaks four

values: the values of the arguments, and the old and new values of the wire or reg-
ister. More fine-grained leakage models depending on implementation details and
combining value-based, transition-based and glitch-based leakage could also be con-
sidered.



Verified Proofs of Higher-Order Masking 465

no immediately obvious way to devise an information-flow type system even
for second-order DPA. Notwithstanding, it is relatively easy to devise a sound
method for verifying resistance to higher-order DPA using an information-flow
type system in the style of [25]. The basic idea is to instrument the code of
the original program with assignments w := x1 ‖ . . . ‖ xt, where w is a fresh
program variable, x1 . . . xt are variables of the original program, and t is the
order for which resistance is sought; we let p′ denote the instrumented program.
Clearly, a program p is secure at order t iff for every initial values v1 and v2,
�p′�{w}(v1) = �p′�{w}(v2) where w ranges over the set of fresh variables that have
been introduced by the transformation. It is then possible to use an information-
flow type system in the spirit of [25] to verify that c′ satisfies non-interference
with respect to output set {w}. However, this transformational approach suf-
fers from two shortcomings: first, a more elaborate type system is required for
handling concatenation with sufficient accuracy; second, and more critically, the
transformation induces an exponential blow-up in the size of programs.

In a slightly different context, Pettai and Laud [29] use a type-system to
prove non-interference of a limited number of adversary observations imposed
by their adversary model in the multi-party computation scenario. They do so
by propagating information regarding linear dependencies on random variables
throughout their arithmetic circuits and progressively replacing subcircuits with
random gates. Because of the limited number of possible adversary observations
their model imposes, they do not run into the same scalability issues we deal
with in this paper. However, their techniques for dealing with active adversaries
may be useful for verifying masking-based countermeasures in the presence of
fault injection attacks.

2.3 SMT-Based Methods

There have been a number of works that use SMT solvers to achieve more flexible
analysis of masked implementations.

Bayrak et al. [9] develop an SMT-based method for analyzing the sensitivity
of sequences of operations. Informally, the notion of sensitivity characterizes
whether a variable used to store an intermediate computation in the sequence
of operations depends on a secret and is statistically independent from random
variables. Their approach is specialized to first-order masking, and suffers from
some scalability issue—in particular, they report analysis of a single round of
AES.

Eldib, Wang and Schaumont develop an alternative tool, SCSniffer [16], that
is able to analyze masked implementations at orders 1 and 2. Their approach
is based on model counting [20]: to prove that a set of probabilistic expressions
is distributed independently from a set of secrets, model-counting-based tools
count the number of valuations of the secrets that yield each possible value of
the observed expressions and checks that that number is indeed independent
from the secret. This process in itself is inherently exponential in the size of
the observed expressions, even when only one such observation is considered. To
overcome this issue, SCSniffer implements an incremental approach for reducing
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the size of such expressions when they contain randomness that is syntactically
independent from the rest of the program. This incremental approach is essen-
tial to analyzing some of their examples, but it is still insufficient for analyzing
complete implementations: for instance, SCSniffer can only analyze one round of
(MAC-)Keccak whereas our approach is able to analyze the full 24 rounds of the
permutation. The additional power of our tool is derived from our novel tech-
nique: instead of explicitly counting solutions to large boolean systems, our tool
simply constructs a bijection between two distributions, one of which is syntacti-
cally independent from the secrets. Although the complexity of this process still
depends on the size of expressions (and in particular in the number of randomly
sampled variables they contain), it is only polynomial in it, rather than exponen-
tial. In addition, the approach, as it is used in Sleuth and SCSniffer, is limited
to the study of boolean programs or circuits, where all variables are 1 bit in size.
This leads to unwieldy program descriptions and artificially increases the size of
expressions, thereby also artificially increasing the complexity of the problem.
Our approach bypasses this issue by considering abstract algebraic expressions
rather than specific types. This is only possible because we forego explicit solu-
tion counting. Moreover, SCSniffer requires to run the tool at all orders d ≤ t
to obtain security at level t. In contrast, we achieve the same guarantees in a
single run. This is due to the fact that the exclusive-or of observed variables
is used for model counting rather than their joint distribution. Our approach
yields proofs of t-non-interference directly by considering the joint distribution
of observed variables. Finally, we contribute a technique that helps reduce the
practical complexity of the problem by extending proofs of independence for a
given observation set into a proof of independence for many observation sets at
once. This process is made less costly by the fact that we can efficiently check
whether a proof of independence is still valid for an extended observation set,
but we believe it would apply to techniques based on model-counting given the
same ability.

All of these differences lead to our techniques greatly outperforming existing
approaches when it comes to practical examples. For example, even considering
only masking at order 1, where it takes SCSniffer 10 minutes to prove a masked
implementation of one round of Keccak (implemented bit-by-bit), it takes our
tool around 7 minutes to prove the full 24 rounds of the permutation (imple-
mented on 64-bit words as in reference implementations), and around 2 minutes
to verify a full implementation of AES (including its key schedule).

2.4 Relational Verification

A more elaborate approach is to use program verification for proving non-
interference and equivalence of programs. Because these properties are inherently
relational—that is, they either consider two programs or two executions of the
same program—the natural verification framework to establish such properties
is relational program logic. Motivated by applications to cryptography, Barthe,
Grégoire and Zanella-Bèguelin [8] introduce pRHL, a probabilistic Relational
Hoare Logic that is specifically tailored for the class of probabilistic programs
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considered in this paper. Using pRHL, (φ,O)-non-interference a program p is
captured by the pRHL judgment:

{φ}p ∼ p{
∧

y∈O
y〈1〉 = y〈2〉}

which informally states that the joint distributions of the variables y ∈ O coin-
cide on any two executions (which is captured by the logical formula y〈1〉 = y〈2〉)
that start from initial memories related by Φ.

Barthe et al. [7] propose an automated method to verify the validity of
such judgments. For clarity of our exposition, we consider the case where p
is a straightline code program. The approach proceeds in three steps:

1. transform the program p into a semantically equivalent program which per-
forms a sequence of random assignments, and then a sequence of deter-
ministic assignments. The program transformation repeatedly applies eager
sampling to pull all probabilistic assignments upfront. At this stage, the
judgement is of the form

{φ}S;D ∼ S;D{
∧

y∈O
y〈1〉 = y〈2〉}

where S is a sequence of probabilistic assignments, and D is a sequence of
deterministic assignments;

2. apply a relational weakest precondition calculus to D the deterministic se-
quence of assignments; at this point, the judgment is of the form

{φ}S ∼ S{
∧

y∈O
ey〈1〉 = ey〈2〉}

where ey is an expression that depends only on the variables sampled in S
and on the program inputs;

3. repeatedly apply the rule for random sampling to generate a verification con-
dition that can be discharged by SMT solvers. Informally, the rule for random
sampling requires finding a bijection between the domains of the distribution
from which values are drawn, and proving that a formula derived from the
post-condition is valid. We refer to [8] and [7] for a detailed explanation of
the rule for random sampling. For our purposes, it is sufficient to consider
a specialized logic for reasoning about the validity of judgments of the form
above. We describe such a logic in Section 3.1.

Note that there is a mismatch between the definition of (Φ, t)-non-interference
used to model security in the t-threshold probing model, and the notion of (φ,O)-
non-interference modelled by pRHL. In the former, Φ is a relation over distribu-
tions of memories, whereas in the latter φ is a relation over memories. There are
two possible approaches to address this problem: the first is to develop a vari-
ant of pRHL that supports a richer language of assertions; while possible, the
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resulting logic might not be amenable to automation. A more pragmatic solu-
tion, which we adopt in our tool, is to transform the program p into a program
i; p, where i is some initialization step, such that p is (Φ,O) non-interfering iff
i; p is (φ,O) non-interfering for some pre-condition φ derived from Φ.

In particular, i includes code marked as non-observable that preshares any
input or state marked as secret,3 and fully observable code that simply shares
public inputs. The code for sharing and presharing, as well as a simple example
of this transformation are given in Appendix A.

3 A Logic for Probabilistic Non-Interference

In this section, we propose new verification-based techniques to prove probabilis-
tic non-interference statements. We first introduce a specialized logic to prove
a vector of probabilistic expressions independent from some secret variables.
We then explain how this logic specializes the general approach described in
Section 2.4 to a particular interesting case. Finally, we describe simple algo-
rithms that soundly construct derivations in our logic.

3.1 Our Logic

Our logic shares many similarities with the equational logic developed in [5]
to reason about equality of distributions. In particular, it considers equational
theories over multi-sorted signatures.

A multi-sorted signature is defined by a set of types and a set of operators.
Each operator has a signature σ1 × . . . × σn → τ , which determines the type
of its arguments, and the type of the result. We assume that some operators
are declared as invertible with respect to one or several of their arguments;
informally, a k-ary operator f is invertible with respect to its i-th argument, or i-
invertible for short, if, for any (xj)i�=j the function f(x0, . . . , xi−1, ·, xi+1, . . . , xk)
is a bijection. If f is i-invertible, we say that its i-th argument is an invertible
argument of f .

Expressions are built inductively from two sets R and X of probabilis-
tic and deterministic variables respectively, and from operators. Expressions
are (strongly) typed. The set of deterministic (resp. probabilistic) variables of
a vector of expressions e is denoted as dvar(e) (resp. rvar(e)). We say that
an expression e is invertible in x whenever ∀i j, x /∈ rvar(ej

i ), we have e =
f1(. . . , e1i1−1, f2(. . . fn(. . . , en

in−1, x, . . .) . . .), . . .), and each fj is ij-invertible.
We equip expressions with an equational theory E . An equational theory is a

set of equations, where an equation is a pair of expressions of the same type. Two
expressions e and e′ are provably equal with respect to an equational theory E ,
written e

.=E e′, if the equation e
.=E e′ can be derived from the standard rules

of multi-sorted equational logic: reflexivity, symmetry, transitivity, congruence,
and instantiation of axioms in E . Such axioms can be used, for example, to equip
types with particular algebraic structures.
3 This corresponds to Ishai, Sahai and Wagner’s input encoders [21].
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Expressions have a probabilistic semantics. A valuation ρ is a function that
maps deterministic variables to values in the interpretation of their respective
types. The interpretation �e�ρ of an expression is a discrete distribution over
the type of e; informally, �e�ρ samples all random variables in e, and returns
the usual interpretation of e under an extended valuation ρ, ρ′ where ρ′ maps
each probabilistic variable to a value of its type. The definition of interpretation
is extended to tuples of expressions in the obvious way. Note that, contrary to
the deterministic setting, the distribution �(e1, . . . , ek)�ρ differs from the product
distribution �e1�ρ×. . .×�ek�ρ. We assume that the equational theory is consistent
with respect to the interpretation of expressions.

Judgments in our logic are of the form (xL,xH) � e, where e is a set of
expressions and (xL,xH) partitions the deterministic variables of e into public
and private inputs, that is, dvar(e) ⊆ xL � xH . A judgment (xL,xH) � e is
valid iff the identity of distributions �e�ρ1 = �e�ρ2 holds for all valuations ρ1 and
ρ2 such that ρ1(x) = ρ2(x) for all x ∈ xL.

A proof system for deriving valid judgments is given in Figure 1. Rule (Indep)
states that a judgment is valid whenever all the deterministic variables in expres-
sions are public. Rule (Conv) states that one can replace expressions by other
expressions that are provably equivalent with respect to the equational theory E .
Rule (Opt) states that, whenever the only occurrences of a random variable r in
e are as the i-th argument of some fixed application of an i-invertible operator
f where f ’s other arguments are some (ej)i�=j , then it is sufficient to derive the
validity of the judgment where r is substituted for f(e0, . . . , ei−1, r, ei+1, . . . , ek)
in e. The soundness of rule (Opt) becomes clear by remarking that the distri-
butions �f(e0, . . . , ei−1, r, ei+1, . . . , ek)� and �r� are equal, since f is i-invertible
and r is uniform random and does not appear in any of the ej . Although the
proof system can be extended with further rules (see, for example [5]), these
three rules are in fact sufficient for our purposes.

dvar(e) ∩ xH = ∅
(xL ,xH ) � e

(Indep)
(xL ,xH ) � e′ e

.
=E e′

(xL ,xH ) � e
(Conv)

(xL ,xH ) � e f is i-invertible r ∈ R r /∈ rvar(e0, . . . , ei−1, ei+1, . . . , ek)

(xL ,xH ) � e[f(e0, . . . , ei−1, r, ei+1, . . . , ek)/r]
(Opt)

Fig. 1. Proof system for non-interference

3.2 From Logical Derivations to Relational Judgments

In Section 2.4, we have shown that the problem of proving that a program
is (Φ,O)-non-interfering could be reduced to proving relational judgements of
the form {φ}S ∼ S{∧y∈O ey〈1〉 = ey〈2〉} where S is a sequence of random
samplings, ey is an expression that depends only on the variables sampled in
S and on the program inputs, and φ is a precondition derived from Φ after
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the initial sharing and presharing code is inserted, and exactly captures low-
equivalence on the program’s inputs. We now show that proving such judgments
can in fact be reduced to constructing a derivation in the logic from Section 3.1.
Indeed, since both sides of the equalities in the postcondition are equal, it is
in fact sufficient to prove that the (ey)y∈O are independent from secret inputs:
since public inputs are known to be equal and both programs are identical, the
postcondition then becomes trivially true. In particular, to prove the judgment
{∧

x∈xL
x〈1〉 = x〈2〉}S ∼ S{∧y∈O ey〈1〉 = ey〈2〉}, it is in fact sufficient to find

a derivation of (xL,xH) � (ey)y∈O, where xH is the complement of xL in the
set of all program inputs. An example detailing this reasoning step is discussed
in Appendix A.

3.3 Our Algorithms

We now describe two algorithms that soundly derive judgments in the logic.
Throughout this paper, we make use of unspecified choose algorithms that, given
a set X, return an x ∈ X or ⊥ if X = ∅. We discuss our chosen instantiations
where valuable.

Our simplest algorithm (Algorithm 1) works using only rules (Indep) and
(Opt) of the logic. Until (Indep) applies, Algorithm 1 tries to apply (Opt),
that is, to find (e′, e, r) such that r ∈ R and e is invertible in r and e = e′[e/r];
if it succeeds, it then performs a recursive call on e′ else it fails. Remark that the
conditions are sufficient to derive the validity of e from the validity of e′ using
successive applications of the (Opt) rule.

The result of the function (h) can be understood as a compact representation
of the logical derivation. Such compact representations of derivations become
especially useful in Section 4, where we efficiently extend sets of observed expres-
sions, but can also be used, independently of performance, to construct formal
proof trees if desired.

Algorithm 1. Proving Probabilistic Non-Interference: A Simple Algorithm
1: function NIR,xH (e) � the joint distribution of e is independent from xH

2: if ∀x ∈ dvar(e). x /∈ xH then
3: return Indep
4: (e′, e, r) ← choose({(e′, e, r) | e is invertible in r ∧ r ∈ R ∧ e = e′[e/r]})
5: if (e′, e, r) 	= ⊥ then
6: return Opt(e, r) : NIR,xH (e′)

7: return ⊥

This algorithm is sound, since it returns a derivation h constructed after
checking each rule’s side-conditions. However, it is incomplete and may fail to
construct valid derivations. In particular, it does not make use of rule (Conv).

Our second algorithm (Algorithm 2) is a slight improvement on Algorithm 1
that makes restricted use of the (Conv) rule: when we cannot find a suit-
able (e′, e, r), we normalize algebraic expressions as described in [1], simplifying
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expressions and perhaps revealing potential applications of the (Opt) rule. We
use only algebraic normalization to avoid the need for user-provided hints, and
even then, only use this restricted version of the (Conv) rule as a last resort.
This is for two reasons: first, ring normalization may prevent the use of some
(e′, e, r) triples in later recursive calls (for example, the expression (a + r) · r′

gets normalized as a · r′ + r · r′, which prevents the substitution of a + r by r);
second, the normalization can be costly and negatively impact performance.

Algorithm 2. Proving Probabilistic Non-Interference: A More Precise Algo-
rithm
1: function NIR,xH (e, b) � the joint distribution of e is independent from xH

2: if ∀x ∈ dvar(e). x /∈ xH then
3: return Indep
4: (e′, e, r) ← choose({(e′, e, r) | e is invertible in r ∧ r ∈ R ∧ e = e′[e/r]})
5: if (e′, e, r) 	= ⊥ then
6: return Opt(e, r) : NIR,xH (e′, b)
7: else if b then
8: e ← ring simplify(e)
9: return Conv : NIR,xH (e, false)

10: return ⊥

In practice, we have found only one example where Algorithm 1 yields false
negatives, and we have not found any where Algorithm 2 fails to prove the
security of a secure implementation. In the following, we use NIR,xH

(X) the
function from Algorithm 2 with b initially true. In particular, the implementation
described and evaluated in Section 5 relies on this algorithm.4

Discussion. We observe that Algorithm 2 can only be refined in this way
because it works directly on program expressions. In particular, any abstrac-
tion, be it type-based or otherwise, could prevent the equational theory from
being used to simplify observed expressions. Further refinements are theoreti-
cally possible (in particular, we could also consider a complete proof system for
the logic in Section 3.1), although they may be too costly to make use of in
practice.

4 Divide-and-Conquer Algorithms Based on Large Sets

Even with efficient algorithms to prove that a program p is (R,O)-non-interfering
for some observation set O, proving that p is t-non-interfering remains a complex
task: indeed this involves proving NIR,O(p) for all O ∈ P≤t (PVar(p)). Simply

4 Some of the longer-running experiments reported in Section 5 do make use of Algo-
rithm 1 since their running time makes it impractical to run them repeatedly after
algorithmic changes. However, Algorithm 2 only makes a difference when false pos-
itives occur, which is not the case on our long-running tests.
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enumerating all possible observation sets quickly becomes intractable as p and
t grow. Our main idea to solve this problem is based on the following fact: if
NIR,O(p) then for every O′ ⊆ O we have NIR,O′(p). Therefore checking NIR,Oi

(p)
for every i can be done in a single step by checking NIR,

⋃

i Oi
(p).

Our goal is therefore to find fewer, larger observation sets O1, . . . ,Ok such
that NIR,Ok

(p) for all k and, for all O ∈ P≤t (PVar(p)), O is a subset of at
least one of the Oi. Since this last condition is the contraposite of the Hitting
Set problem [19], which is known to be NP-hard, we do not expect to find a
generally efficient solution, and focus on proposing algorithms that prove efficient
in practice.

We describe and implement several algorithms based on the observation that
the sequences of derivations constructed to prove the independence judgments in
Section 2 can be used to efficiently extend the observation sets with additional
observations whose joint distributions with the existing ones is still independent
from the secrets. We first present algorithms that perform such extensions, and
others that make use of observation sets extended in this way to find a family
O1, . . . ,Ok of observation sets that fulfill the condition above with k as small as
possible.

4.1 Extending Safe Observation Sets

The NIR,xH
algorithm from Section 2 (Algorithm 2) allows us to identify sets X

of expressions whose joint distribution is independent from variables in xH . We
now want to extend such an X into a set X ′ that may contain more observable
expressions and such that the joint distribution of X ′ is still independent from
variables in xH .

First we define Algorithm 3, which rechecks that a derivation applies to
a given set of expressions using the compact representation of derivations
returned by algorithms 1 and 2: The algorithm simply checks that the con-
secutive rules encoded by h can be applied on e. A key observation is that if
NIR,xH

(e) = h then recheckR,xH
(e,h). Furthermore, if recheckR,xH

(e,h) and
recheckR,xH

(e′,h) then recheckR,xH
(e ∪ e′,h).

Algorithm 3. Rechecking a derivation

function recheckR,xH (e,h) �
Check that the derivation represented by h can be
applied to e

if h = Indep then
return ∀x ∈ dvar(e). x /∈ xH

if h = Opt(e, r) : h′ then
(e′) ← choose({e′ | e = e′[e/r]})
if e′ 	= bot then

return recheckR,xH (e′,h′)

if h = Conv : h′ then
e ← ring simplify(e)
return recheckR,xH (e,h′)
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Algorithm 4. Extending the Observation using a Fixed Derivation

function extendR,xH (x, e,h) �
find x′ such that x ⊆ x′ ⊆ e and h(x′) is
syntactically independent from xH

e ← choose(e)
if recheckR,xH (e,h) then

return extendR,xH ((x, e), e \ {e},h)
else

return extendR,xH (x, e \ {e},h)

Secondly, we consider (as Algorithm 4) an extension operation that only adds
expressions on which h can safely be applied as it is.

We also considered an algorithm that extends a set x with elements in e
following h whilst also extending the derivation itself when needed. However, this
algorithm induces a loss of performance due to the low proportion of program
variables that can in fact be used to extend the observation set, wasting a lot of
effort on attempting to extend the derivation when it was not in fact possible.
Coming up with a good choose algorithm that prioritizes variables that are
likely to be successfully added to the observation set, and with conservative and
efficient tests to avoid attempting to extend the derivation for variables that are
clearly not independent from the secrets are interesting challenges that would
refine this algorithm, and thus improve the performance of the space splitting
algorithms we discuss next.

In the following, we use extendR,xH
(x,e,h) to denote the function from Algo-

rithm 4, which is used to obtain all experimental results reported in Section 5.

4.2 Splitting the Space of Adversary Observations

Equipped with an efficient observation set extension algorithm, we can now
attempt to accelerate the coverage of all possible sets of adversary observations
to prove t-non-interference. The general idea of these coverage algorithms is to
choose a set X of t observations and prove that the program is non-interfering
with respect to X, then use the resulting derivation witness to efficiently extend
X into an X̂ that contains (hopefully many) more variables. This X̂, with respect
to which the program is known to be non-interfering, can then be used to split
the search space recursively. In this paper, we consider two splitting strategies to
accelerate the enumeration: the first (Algorithm 5) simply splits the observation
space into X̂ and its complement before covering observations that straddle the
two sets. The second (Algorithm 6) splits the space many-ways, considering all
possible combinations of the sub-spaces when merging the sets resulting from
recursive calls.

Pairwise Space-Splitting. Our first algorithm (Algorithm 5) uses its initial
tuple X to split the space into two disjoint sets of observations, recursively
descending into the one that does not supersede X and calling itself recursively
to merge the two sets once they are processed separately.
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Algorithm 5. Pairwise Space-Splitting
1: function checkR,xH (x, d, e) � every x,y with y ∈ P≤d (e) is independent of xH

2: if d ≤ |E| then
3: y ← choose(P≤d (e))
4: hx,y ← NIR,xH ((x,y)) � if NIR,xH fails, raise error CannotProve (x,y)
5: ŷ ← extendR,xH (y, e \ y,hx,y) � if hx,y = , use ŷ = y
6: checkR,xH (x, d, e \ ŷ)
7: for 0 < i < d do
8: for u ∈ P≤i (ŷ) do
9: checkR,xH ((x,u), d − i, e \ ŷ)

Theorem 2 (Soundness of Pairwise Space-Splitting). Given a set R of
random variables, a set xH of secret variables, a set of expressions e and an
integer t > 0, if checkR,xH

(∅, t,e) succeeds then every x ∈ P≤t (e) is independent
from xH .

Proof. The proof is by generalizing on x and d and by strong induction on e. If
|e| < d, the theorem is vacuously true, and this base case is eventually reached
since ŷ contains at least d elements. Otherwise, by induction hypothesis, the
algorithm is sound for every e′

� e. After line 5, we know that all t-tuples of
variables in ŷ are independent, jointly with x, from the secrets. By the induc-
tion hypothesis, after line 6, we know that all t-tuples of variables in e \ ŷ are
independent, jointly with x, from the secrets. It remains to prove the property
for t-tuples that have some elements in ŷ and some elements in e\ ŷ. The nested
for loops at lines 7-9 guarantee it using the induction hypothesis. ��

Worklist-Based Space-Splitting. Our second algorithm (Algorithm 6) splits
the space much more finely given an extended safe observation set. The algo-
rithm works with a worklist of pairs (d,e) (initially called with a single element
(t,P≤t (PVar(p)))). Unless otherwise specified, we lift algorithms seen so far to
work with vectors or sets of arguments by applying them element by element.
Note in particular, that the for loop at line 7 iterates over all vectors of n integers
such that each element ij is strictly between 0 and dj .

Algorithm 6. Worklist-Based Space-Splitting

1: function checkR,xH ((dj , ej)0≤j<n) �
every x =

⋃
0≤j<n xj with xj ∈ P≤dj (ej)

is independent from xH

2: if ∀j, dj ≤ |ej | then
3: yj ← choose(P≤dj (ej))
4: h ← NIR,xH (

⋃
0≤j<n yj) � if NIR,xH fails, raise error CannotProve (

⋃
yj)

5: ŷj ← extendR,xH (yj , ej \ yj ,h)
6: checkR,xH ((dj , ej \ ŷj)0≤j<n)
7: for j; 0 < ij < dj do
8: checkR,xH (ij , (ŷj , dj − ij , ej \ ŷj))
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Theorem 3 (Soundness of Worklist-Based Space-Splitting). Given a
set R of random variables, a set xH of secret variables, a set of expressions e
and an integer t > 0, if checkR,xH

((t,e)) succeeds then every x ∈ P≤t (e) is
independent from xH .

Proof. As in the proof of Theorem 2, we start by generalizing, and we prove that,
for all vector (dj ,ej) with 0 < dj for all j, if checkR,xH

((dj ,ej)) succeeds, then
every x =

⋃
0≤j<n xj with xj ∈ P≤dj

(ej) is independent from xH . The proof
is again by strong induction on the vectors, using an element-wise lexicographic
order (using size order on the e) and lifting it to multisets as a bag order. If there
exists an index i for which |ei| < di, the theorem is vacuously true. Otherwise,
we unroll the algorithm in a manner similar to that in Theorem 2. After line 5,
we know that, for every j, every x ∈ P≤dj

(ŷj) is independent from xH . After
line 6, by induction hypothesis (for all j, #ej \ ŷj < #ej since ŷj is of size at
least dj), we know that this is also the case for every x ∈ P≤dj

(ŷj). Remains to
prove that every subset of ej of size dj that has some elements in ŷj and some
elements outside of it is also independent from xH . This is dealt with by the for
loop on lines 7-8, which covers all possible combinations to recombine yj and its
complement, in parallel for all j. ��

Comparison. Both algorithms lead to significant improvements in the verification
time compared to the naive method which enumerates all t-tuples of observations
for a given implementation. Further, our divide-and-conquer strategies make
feasible the verification of some masked programs on which enumeration is simply
unfeasible. To illustrate both these improvements and the differences between
our algorithms, we apply the three methods to the S-box of [13] (Algorithm 4)
protected at various orders. Table 1 shows the results, where column # tuples
contains the total number of tuples of program points to be considered, column
# sets contains the number of sets used by the splitting algorithms and the time
column shows the verification times when run on a headless VM with a dual
core5 64-bit processor clocked at 2GHz.

As can be seen, the worklist-based method is generally the most efficient one.
In the following, and in particular in Section 5, we use the check function from
Algorithm 6.

Discussion. Note that in both Algorithms 5 and 6, the worst execution time
occurs when the call to extend does not in fact increase the size of the observation
set under study. In the unlikely event where this occurs in all recursive calls,
both algorithms degrade into an exhaustive enumeration of all tuples, which is
no worse than the naive implementation.

However, this observation makes it clear that it is important for the extend
function to extend observation sets as much as possible. It could be interesting,
and would definitely be valuable, to find a good balance between the complexity
and precision of the extend function.
5 Only one core is used in the computation.
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Table 1. Comparison of Algorithms 5 and 6 with naive enumeration and with each
other

Method # tuples Security
Complexity

# sets time

First-Order Masking

naive 63 � 63 0.001s
pair 63 � 17 0.001s
list 63 � 17 0.001s

Second-Order Masking

naive 12,561 � 12,561 0.180s
pair 12,561 � 851 0.046s
list 12,561 � 619 0.029s

Third-Order Masking

naive 4,499,950 � 4,499,950 140.642s
pair 4,499,950 � 68,492 9.923s
list 4,499,950 � 33,075 3.894s

Fourth-Order Masking

naive 2,277,036,685 � - unpractical
pair 2,277,036,685 � 8,852,144 2959.770s
list 2,277,036,685 � 3,343,587 879.235s

5 Experiments

In this section, we aim to show on concrete examples the efficiency of the methods
we considered so far. This evaluation is performed using a prototype implementa-
tion of our algorithms that uses the EasyCrypt [6] tool’s internal representations
of programs and expressions, and relying on some of its low-level tactics for sub-
stitution and conversion. As such, the prototype is not designed for performance,
but rather for trust, and the time measurements given below could certainly be
improved. However, the numbers of sets each algorithm considers are fixed by
our choice of algorithm, and by the particular choose algorithms we decided to
use. We detail and discuss this particular implementation decision at the end of
this section.

Our choice of examples mainly focuses on higher-order masking schemes since
they are much more promising than the schemes dedicated to small orders. Aside
from the masking order itself, the most salient limiting factor for performance
is the size of the program considered, which is also (more or less) the number
of observations that need to be considered. Still, we analyze programs of sizes
ranging from simple multiplication algorithms to either round-reduced or full
AES, depending on the masking order.

We discuss our practical results depending on the leakage model considered:
we first discuss our prototype’s performance in the value-based leakage model,
then focus on results obtained in the transition-based leakage model.
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Table 2. Verification of state-of-the-art higher-order masking schemes with # tuples
the number t-uples of the algorithm at order t, # sets the number of sets built by our
prototype and time the verification time in seconds

Reference Target # tuples Result
Complexity

# sets time (s)

First-Order Masking

CHES10 [31] multiplication 13 secure � 7 ε
FSE13 [13] Sbox (4) 63 secure � 17 ε
FSE13 [13] full AES (4) 17,206 secure � 3,342 128

MAC-Keccak full Keccak-f 13,466 secure � 5,421 405

Second-Order Masking

RSA06 [33] Sbox 1,188,111 secure � 4,104 1.649
CHES10 [31] multiplication 435 secure � 92 0.001

1st-order flaws
CHES10 [31] Sbox 7,140

(2)
866 0.045

CHES10 [31] key schedule [13] 23,041,866 secure � 771,263 340,745
FSE13 [13] AES 2 rounds (4) 25,429,146 secure � 511,865 1,295
FSE13 [13] AES 4 rounds (4) 109,571,806 secure � 2,317,593 40,169

Third-Order Masking

CHES10 [31] multiplication 24,804 secure � 1,410 0.033
FSE13 [13] Sbox(4) 4,499,950 secure � 33,075 3.894
FSE13 [13] Sbox(5) 4,499,950 secure � 39,613 5.036

Fourth-Order Masking

3rd-order flaws
RSA06 [33] Sbox 4,874,429,560

(98, 176)
35,895,437 22,119

CHES10 [31] multiplication 2,024,785 secure � 33,322 1.138
FSE13 [13] Sbox (4) 2, 277, 036, 685 secure � 3,343,587 879

Fifth-Order Masking

CHES10 [31] multiplication 216,071,394 secure � 856,147 45

5.1 Value-Based Model

Table 2 lists the performance of our prototype on multiple examples, presenting
the total number of sets of observations to be considered (giving an indication
of each problem’s relative difficulty), as well as the number of sets used to cover
all tuples of observations by our prototype. We also list the verification time,
although these could certainly be improved independently of the algorithms
themselves. Each of our tests is identified by a reference and a function, with
additional information where relevant. The MAC-Keccak example is a simple
implementation of Keccak-f on 64-bit words, masked using a variant of Ishai,
Sahai and Wagner’s transformation [21,31] (noting that their SecMult algorithm
can be used to securely compute any associative and commutative binary oper-
ation that distributes over field addition, including bitwise ANDs).

The two rows without checkmarks correspond to examples on which the tool
fails to prove t-non-interference. We now analyze them in more detail.

On Schramm and Paar’s table-based implementation of the AES Sbox, sup-
posed to be secure at order 4, our tool finds 98,176 third-order observations that
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it cannot prove independent from the secrets. The time listed is the time needed
to cover all triples, and the first error is found in 0.221s. These errors in fact
correspond to four families of observations, which we now describe. Denoting by
X =

⊕
0�i�4 xi the S-box input and by Y =

⊕
0�i�4 yi its output, we can write

the four sets of flawed triples as follows:

1. (x0,Sbox(X ⊕ x0 ⊕ i) ⊕ (Y ⊕ y0),Sbox(X ⊕ x0 ⊕ j) ⊕ (Y ⊕ y0)) ,
∀i, j ∈ GF(28), i �= j

2. (y0,Sbox(X ⊕ x0 ⊕ i) ⊕ (Y ⊕ y0),Sbox(X ⊕ x0 ⊕ j) ⊕ (Y ⊕ y0)) ,
∀i, j ∈ GF(28), i �= j

3. (x0,Sbox(X ⊕ x0 ⊕ i) ⊕ (Y ⊕ y0 ⊕ y4),Sbox(X ⊕ x0 ⊕ j) ⊕ (Y ⊕ y0 ⊕ y4)) ,
∀i, j ∈ GF(28), i �= j

4. (x0, y0,Sbox(X ⊕ x0 ⊕ i) ⊕ (Y ⊕ y0)) , ∀i ∈ GF(28).

We recall that y0 is read as y0 = Sbox(x0), and prove that all four families of
observations in fact correspond to attacks.

The first family corresponds to the attack detailed by Coron, Prouff and
Rivain [12]). By summing the second and third variables, the attacker obtains
Sbox(X ⊕ x0 ⊕ i) ⊕ Sbox(X ⊕ x0 ⊕ j). The additional knowledge of x0 clearly
breaks the independence from X. To recover secrets from a second set’s triple
of observations, the attacker can sum the second and third variables to obtain
X⊕x0, from which he can learn Y ⊕y0 (by combining it with the second variable)
and then Y (by combining it with the first one). The third family is a variant of
the first: the S-box masks can be removed in both cases. Finally, when observing
three variables in the fourth family of observations, the knowledge of both x0

and y0 unmasks the third observed variable, making it dependent on X.
Our tool also finds two suspicious adversary observations on the S-box algo-

rithm proposed by Rivain and Prouff [31], that in fact correspond to the two
flaws revealed in [13]. However, by the soundness of our algorithm, and since our
implementation only reports these two flaws, we now know that these are the
only two observations that reveal any information on the secrets. We consider
several corrected versions of this S-box algorithm, listed in Table 3. Some of
these fixes focused on using a more secure mask refreshing function (borrowed
from [14]) or refreshing all modified variables that are reused later on (as sug-
gested by [30]). Others make use of specialized versions of the multiplication
algorithm [13] that allow the masked program to retain its performance whilst
gaining in security.

Although it is important to note that the algorithms appear to be “precise
enough” in practice, Table 2 also reveals that program size is not in fact the
only source of complexity. Indeed, proving the full key schedule at order 2 only
involves around 23 million pairs of observations, compared to the 109 million
that need to be considered to prove the security of 4 rounds of AES at the same
order; yet the latter takes less than an hour to complete compared to 4 days for
the full ten rounds of key schedule. We suspect that this is due to the shapes
of the two programs’ dependency graphs, with each variable in the key schedule
depending on a large proportion of the program’s input variables, whereas the
dependencies in full AES are sparser. Although properties of composition would
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Table 3. Fixing RP-CHES10 [31] at the second order

Reference S-box # tuples Result
Complexity

# sets time

Second-Order Masking

RP-CHES10 [31] initially proposed 7,140 1st-order flaws (2) 840 0.070s
RP-CHES10 [31] different refreshMasks 7,875 secure � 949 0.164s
RP-CHES10 [31] more refreshMasks 8,646 secure � 902 0.180s
CPRR-FSE13 [13] use of x · g(x) (Algo 4) 12,561 secure � 619 0.073s
CPRR-FSE13 [13] use of tables (Algo 5) 12,561 secure � 955 0.196s

allow us to consider large programs masked at much higher orders, we leave
these investigations to further works.

Another important factor in the performance of our algorithm is the instanti-
ation of the various choice functions. We describe them here for the sake of repro-
ducibility. In Algorithms 1 and 2, when choosing a triple (e′, e, r) to use with rule
(Opt), our prototype first chooses r as the first (leftmost-first depth-first) ran-
dom variable that fulfills the required conditions, then chooses e as the largest
superterm of r that fulfills the required conditions (this fixes e′). When choosing
an expression to observe (in Algorithms 5 and 6) or to extend a set of observation
with (in Algorithm 4), we choose first the expression that has the highest num-
ber of dependencies on random or input variables. These decisions certainly may
have a significant effect on our algorithm’s performance, and investigating these
effects more deeply may help gather some insight on the core problems related to
masking. We leave this a future work.

5.2 Transition-Based Model

The value-based leakage model may not always be the best fit to capture the
behaviour of hardware and software. In particular, when considering software
implementations, it is possible that writing a value into a register leaks both its
new and old contents. To illustrate the adaptability of our algorithms, we first
run some simple tests. We then illustrate another potential application of our
tool, whereby masked implementations that make use of t+1 masks per variable
can be proved secure in the transitions model at orders much higher than the
generic t/2, simply by reordering instructions and reallocating registers.

Table 4 describes the result of our experiments. Our first (naive) implemen-
tation is only secure at the second order in the transition-based leakage model
and uses 21 local registers (the number of registers needed for this and other
implementations to be secure could also be reduced further by zeroing out reg-
isters between independent uses). Our first improved implementation achieves
security at order 3 in the transition-based leakage model with only 6 local reg-
isters. Trying to provide the best possible security in this model, we also find a
third implementation that achieves security at order 4. This last implementation
is in fact the original implementation with additional registers. Note however,
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Table 4. Multiplication in the transition-based leakage model

Reference Multiplication # tuples Security
Complexity

# sets time

RP-CHES10 [31] initial scheme for order 4 3,570 order 2 161 0.008s
RP-CHES10 [31] with some instructions reordering 98,770 order 3 3,488 0.179s
RP-CHES10 [31] using more registers 2,024,785 order 4 17,319 1.235s

that in spite of its maximal security order, this last implementation still reuses
registers (in fact, most are used at least twice).

The main point of these experiments is to show that the techniques and
tools we developed are helpful in building and verifying implementations in other
models. Concretely, our tools give countermeasure designers the chance to easily
check the security of their implementation in one or the other leakage model,
and identify problematic observations that would prevent the countermeasure
from operating properly against higher-order adversaries.

6 Conclusion

This paper initiates the study of relational verification techniques for checking
the security of masked implementations against t-order DPA attacks. Beyond
demonstrating the feasibility of this approach for masking orders higher than 2,
our work opens a number of interesting perspectives on automated DPA tools.

The most immediate direction for further work is to exhibit and prove compo-
sitional properties in order to achieve the verification of larger masked programs
at higher orders.

Another promising direction is to automatically synthesize efficient and secure
implementations by search-based optimization. Specifically, we envision a 2-step
approach where one first uses an unoptimized but provably secure compiler to
transform a program p into a program pt that is t-non-interfering, and then applies
relational synthesis methods, in the spirit of [4], to derive a more efficient program
p′ that is observationally equivalent to pt and equally secure—the latter property
being verified using pRHL.
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ANR-14-CE28-0015 BRUTUS and ANR project ANR-10-SEGI-015 PRINCE.

A Initial Transformations on Programs: An Example

To illustrate our algorithms, we consider the simple masked multiplication algo-
rithm defined in [31] and relying on Algorithm 7, which is secure against 2-
threshold probing adversaries. In practice, the code we consider is in 3-address
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form, with a single operation per line (operator application or table lookup). For
brevity, we use parentheses instead, unless relevant to the discussion. In the rest
of this paper, we write Line (n).i to denote the ith expression computed on line
n, using the convention that products are computed immediately before their
use. For example, Line (5).1 is the expression a0 � b1, Line (5).2 is r0,1 ⊕ a0 � b1
and Line (5).3 is a1 � b0.

Algorithm 7. Secure Multiplication Algorithm (t = 2) from [31]
Input: a0, a1, a2 (resp. b0, b1, b2) such that a0 ⊕ a1 ⊕ a2 = a (resp. b0 ⊕ b1 ⊕ b2 = b)
Output: c0, c1, c2 such that c0 ⊕ c1 ⊕ c2 = a � b
1: function SecMult(�a0, a1, a2�, �b0, b1, b2�)

2: r0,1
$← F256

3: r0,2
$← F256

4: r1,2
$← F256

5: r1,0 ← (r0,1 ⊕ a0 � b1) ⊕ a1 � b0
6: r2,0 ← (r0,2 ⊕ a0 � b2) ⊕ a2 � b0
7: r2,1 ← (r1,2 ⊕ a1 � b2) ⊕ a2 � b1
8: c0 ← (a0 � b0 ⊕ r0,1) ⊕ r0,2
9: c1 ← (a1 � b1 ⊕ r1,0) ⊕ r1,2

10: c2 ← (a2 � b2 ⊕ r2,0) ⊕ r2,1
11: return �c0, c1, c2�

Algorithm 8. Presharing, Sharing and Preprocessed multiplication (t = 2, a is
secret, b is public)

1: function PreShare(a)

2: a0
$← F256

3: a1
$← F256

4: a2 ← [a ⊕ a0 ⊕ a1]
5: return �a0, a1, a2�

1: function Share(a)

2: a0
$← F256

3: a1
$← F256

4: a2 ← (a ⊕ a0) ⊕ a1

5: return �a0, a1, a2�

1: function SecMult(a, b)

2: a0
$← F256

3: a1
$← F256

4: a2 ← [a ⊕ a0 ⊕ a1]

5: b0
$← F256

6: b1
$← F256

7: b2 ← (b ⊕ b0) ⊕ b1

8: r0,1
$← F256

9: r0,2
$← F256

10: r1,2
$← F256

11: r1,0 ← (r0,1 ⊕ a0 � b1) ⊕ a1 � b0
12: r2,0 ← (r0,2 ⊕ a0 � b2) ⊕ a2 � b0
13: r2,1 ← (r1,2 ⊕ a1 � b2) ⊕ a2 � b1
14: c0 ← (a0 � b0 ⊕ r0,1) ⊕ r0,2
15: c1 ← (a1 � b1 ⊕ r1,0) ⊕ r1,2
16: c2 ← (a2 � b2 ⊕ r2,0) ⊕ r2,1
17: return [c0 ⊕ c1 ⊕ c2]
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Line Observed Expression Line Observed Expression

(2) a0 (12).2 r0,2 ⊕ a0 � b2
(3) a1 (12).3 a2 � b0
(4) a2 := (a ⊕ a0) ⊕ a1 (12) (r0,2 ⊕ a0 � b2) ⊕ a2 � b0
(5) b0 (13).1 a1 � b2
(6) b1 (13).2 r1,2 ⊕ a1 � b2
(7).1 b ⊕ b0 (13).3 a2 � b1
(7) b2 := (b ⊕ b0) ⊕ b1 (13) (r1,2 ⊕ a1 � b2) ⊕ a2 � b1
(8) r0,1 (14).1 a0 � b0
(9) r0,2 (14).2 a0 � b0 ⊕ r0,1
(10) r1,2 (14) (a0 � b0 ⊕ r0,1) ⊕ r0,2
(11).1 a0 � b1 (15).1 a1 � b1
(11).2 r0,1 ⊕ a0 � b1 (15).2 a1 � b1 ⊕ ((r0,1 ⊕ a0 � b1) ⊕ a1 � b0)
(11).3 a1 � b0 (15) (a1 � b1 ⊕ ((r0,1 ⊕ a0 � b1) ⊕ a1 � b0)) ⊕ r1,2
(11) (r0,1 ⊕ a0 � b1) ⊕ a1 � b0 (16).1 a2 � b2
(12).1 a0 � b2 (16).2 a2 � b2 ⊕ ((r0,2 ⊕ a0 � b2) ⊕ a2 � b0)

(16) (16).2 ⊕((r1,2 ⊕ a1 � b2) ⊕ a2 � b1)

Fig. 2. Possible wire observations for SecMult. (Note that, after Lines 4 and 7, we
keep a2 and b2 in expressions due to margin constraints.)

When given a program whose inputs have been annotated as secret or pub-
lic, we transform it as described at the end of Section 2.4 to add some simple
initialization code that preshares secrets in a way that is not observable by the
adversary, and lets the adversary observe the initial sharing of public inputs.
This allows us to model, as part of the program, the assumption that shares of
the secret are initially uniformly distributed and that their sum is the secret.
The initialization code, as well as the transformed version of Algorithm 7 where
argument a is marked as secret and b is marked as public, are shown in Algo-
rithm 8. We use the square brackets on Line (4) of function PreShare to mean
that the intermediate results obtained during the computation of the bracketed
expression are not observable by the adversary: this is equivalent to the usual
assumption that secret inputs and state are shared before the adversary starts
performing measurements.

Once the program is in this form, it can be transformed to obtain: i. the set
of its random variables;6 ii. the set of expressions representing all of the possible
adversary observations; This final processing step on SecMult yields the set of
random variables R = {a0, a1, b0, b1, r0,1, r0,2, r1,2}, and the set of expressions
shown in Figure 2 (labelled with their extended line number). Recall that these
sets were obtained with a marked as secret and b marked as public.
6 In practice, since we consider programs in SSA form, it is not possible to assign a

non-random value to a variable that was initialized with a random.
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Line Register Old Contents New Contents

(2) ⊥ a0

(3) ⊥ a1

(4) ⊥ a ⊕ a0 ⊕ a1

(5) ⊥ b0
(6) ⊥ b1

(7).1 b2 ⊥ b ⊕ b0
(7) b ⊕ b0 b ⊕ b0 ⊕ a1

(8) ⊥ r0,1
(9) ⊥ r0,2

(10) ⊥ r1,2
(11).1 r1,0 ⊥ a0 � b1
(11).2 r1,0 a0 � b1 r0,1 ⊕ a0 � b1
(11).3 t ⊥ a1 � b0

(11) r0,1 ⊕ a0 � b1 r0,1 ⊕ a0 � b1 ⊕ a1 � b0
(12).1 r2,0 ⊥ a0 � b2
(12).2 r2,0 a0 � b2 r0,2 ⊕ a0 � b2
(12).3 t a1 � b0 a2 � b0

(12) r0,2 ⊕ a0 � b2 r0,2 ⊕ a0 � b2 ⊕ a2 � b0
(13).1 r2,1 ⊥ a1 � b2
(13).2 r2,1 a1 � b2 r1,2 ⊕ a1 � b2
(13).3 t a2 � b0 a2 � b1

(13) r1,2 ⊕ a1 � b2 r1,2 ⊕ a1 � b2 ⊕ a2 � b1
(14).1 c0 ⊥ a0 � b0
(14).2 c0 a0 � b0 a0 � b0 ⊕ r0,1

(14) a0 � b0 ⊕ r0,1 a0 � b0 ⊕ r0,1 ⊕ r0,2
(15).1 c1 ⊥ a1 � b1
(15).2 c1 a1 � b1 a1 � b1 ⊕ r0,1 ⊕ a0 � b1 ⊕ a1 � b0

(15) a1 � b1 ⊕ r0,1 ⊕ a0 � b1 ⊕ a1 � b0 (15).2 ⊕r1,2
(16).1 c2 ⊥ a2 � b2
(16).2 c2 a2 � b2 a2 � b2 ⊕ r0,2 ⊕ a0 � b2 ⊕ a2 � b0

(16) a2 � b2 ⊕ r0,2 ⊕ a0 � b2 ⊕ a2 � b0 (16).2 ⊕r1,2 ⊕ a1 � b2 ⊕ a2 � b1

Fig. 3. Possible transition observations for SecMult with a naive register allocation
(shown in the last column). ⊥ denotes an uninitialized register, whose content may
already be known to (and perhaps chosen by) the adversary.

A.1 Observable Transitions

Figure 3 presents the observable transitions for Algorithm 7. It gives the old
value and the new value of the register modified by each program point. This is
done using a simple register allocation of Algorithm 7 (where we use the word
“register” loosely, to denote program variables, plus perhaps some additional
temporary registers if required) that uses a single temporary register that is
never cleared, and stores intermediate computations in the variable where their
end result is stored. For clarity, the register in which the intermediate result is
stored is also listed in the Figure.
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Abstract. Masking is a popular countermeasure against side channel
attacks. Many practical works use Boolean masking because of its sim-
plicity, ease of implementation and comparably low performance over-
head. Some recent works have explored masking schemes with higher
algebraic complexity and have shown that they provide more security
than Boolean masking at the cost of higher overheads. In particular,
masking based on the inner product was shown to be practical, albeit
not efficient, for a small security parameter, and at the same time prov-
able secure in the domain of leakage resilient cryptography for a large
security parameter. In this work we explore a security versus efficiency
tradeoff and provide an improved and tweaked inner product masking.
Our practical security evaluation shows that it is less secure than the
original inner product masking but more secure than Boolean masking.
Our performance evaluation shows that our scheme is only four times
slower than Boolean masking and more than two times faster than the
original inner product masking. Besides the practical security analysis
we prove the security of our scheme and its masked operations in the
threshold probing model.

1 Introduction

Side-channel attacks (SCA) are a well-known threat to embedded security. They
allow to perform key recovery attacks on cryptographic implementations by ana-
lyzing physical properties present in embedded devices. Examples are execution
time [22], power consumption [23] or electromagnetic emanations [16,30]. SCA
exploit the fact that these measurable quantities are statistically dependent on
the intermediate variables being processed in the implementation. One of the
most popular and well-studied countermeasures for block ciphers are data ran-
domization techniques, commonly known as masking [5,19]. These aim to conceal
all intermediate variables of a cryptographic computation with random data.

The core principle of higher-order masking is to split any sensitive variable S
into n random and secret shares. The way in which such a splitting is made deter-
mines the masking type or the masking function. Typical examples are Boolean
masking (S = S1 + . . . + Sn) or multiplicative masking (S = S1 × . . . × Sn). A
c© International Association for Cryptologic Research 2015
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masking scheme additionally defines a set of operations to process the n shares
while preserving the correctness of computations and ensuring that intermediate
values remain independent of the sensitive variables. The security order d of a
masking scheme is defined as the smallest number of d + 1 intermediate values
that, considered jointly, are not independent of a sensitive variable S. While a
d-th order masking scheme can always be broken by a d + 1-th order SCA that
exploits the leakage of d+1 intermediate values in the protected implementation
jointly, the design of higher-order masking countermeasures is of practical inter-
est due to two main reasons. First, the data complexity of applying a d + 1-th
order SCA grows exponentially on d given a sufficient amount of noise [5,11,27].
And second, the computational complexity of searching for the d + 1 leakage
points grows combinatorially in the attack order [32].

1.1 Related Work

Ishai, Sahai and Wagner [21] were first to introduce a higher-order Boolean
masking scheme tailored to hardware contexts by showing how to protect a
circuit over F2 composed of NOT and AND gates. They also proved the security
of their construction against an adversary capable of probing d wires of the
protected circuit. The framework introduced in [21] (commonly known as the
ISW probing model) provides a sound basis to determine the security of higher-
order masking schemes, as security against d probes directly implies d-th order
SCA resistance [7]. Ishai et al. proved their construction secure in the probing
model for n ≥ 2d + 1.

Rivain and Prouff [33] extended the ideas of [21] to any finite field. They
devised a series of provable secure operations in the masked domain and applied
them to efficiently secure AES implementations in software contexts. To protect
the most complex part of AES, namely the nonlinear part of the S-box, they
employed a power function devised to minimize the number of costly multipli-
cations. Although the original claim in [33] was that n = d + 1 shares could
provide d-th order provable security, Coron et al. [9] have shown that in fact
n ≥ 2d + 1 shares are necessary. Despite this, the Boolean scheme due to Rivain
and Prouff remains one of the most efficient generic higher-order constructions
in the literature.

Further work has focused on improving the performance of higher-order
Boolean masking for the most challenging part of cipher implementations, namely
nonlinear transformations. Genelle et al. [17] proposed a method to securely
switch between Boolean and multiplicative masking at any order. The technique
is particularly suitable to protect implementations of the AES, as it enables to
switch the mask type before and after the S-box power function. Carlet et al. [4]
built on the ideas of [33] to secure any look-up table using Lagrange interpola-
tion. Coron [7] introduced a method to mask look-up tables at any order.

Generic higher-order countermeasures using other types of masking have also
been investigated. Because of their higher algebraic complexity, observation of
the shares results in significantly less information leakage than for the Boolean
type given the same security order d and low levels of noise. Along these lines,



488 J. Balasch et al.

von Willich [37] proposed affine masking in which variables are encoded as S′ =
mask1×S+mask2. Fumaroli et al. [15] analyzed this type of masking and showed
how it can be used to secure AES software implementations, in which the S-box
is protected by means of table re-computation. The authors achieve performance
results that are comparable to those of Boolean masking, but the affine masking
construction has not been generalized to higher security orders d > 1.

Another proposal for a different type of masking is polynomial masking.
Independently introduced by Prouff and Roche [29] as well as by Goubin and
Martinelli [18], it employs Shamir’s secret-sharing [34] and secure multi-party
computation techniques [2]. In particular, a sensitive variable S is associated to
a polynomial of degree d of the form PS(X) = S +

∑d
i=1 ai×Xi where the ai are

random secret coefficients. An encoding of a variable S is performed by selecting
n distinct nonzero elements αi and evaluating Si = PS(αi) for i = 1, . . . , n. The
variable S is then represented in the masked domain as the combination of n
pairs (αi, Si), of which only the Si are secret. The variable S can be reconstructed
as S =

∑n
i=1 Si × βi, where the coefficients βi are computed from the public αi.

Although based on the same masking type, the schemes due to Prouff and
Roche [29] and by Goubin and Martinelli [18] have notable differences. In partic-
ular, the construction of [29] is specifically designed to prove d-th order security
in the presence of glitches [24], while the construction of [18] is designed to
achieve “classical” d-th order SCA resistance. Both schemes use an algorithm to
compute the product of two masked variables that is based on the secure multi-
party computation scheme due to Ben-Or et al. [2], and that requires n ≥ 2d+1.
The authors of [18] additionally propose a more efficient algorithm that reduces
the number of required shares to n ≥ d + 1. Despite this improvement, the
complexity of both multiplication algorithms is O(n3) in the number of shares,
as opposed to e.g. Boolean masking which achieves O(n2). A recent work by
Coron et al. [8] has improved this complexity to Õ(n2) by using DFT for fast
polynomial evaluation.

A different approach is followed by Balasch et al. [1]. They introduce IP mask-
ing based on the inner product construction of Dziembowski and Faust [12]. A
masked variable is represented by 2n shares in the form of two random vec-
tors (L,R) of n elements each such that S equals the inner product of L and
R. The authors propose an efficient multiplication algorithm with complexity
O(n2), thus similar to Boolean constructions, while achieving significantly less
information leakage than other types of masking at the same security order d
for low noise levels. Despite these advantages, the addition and refreshing algo-
rithms are more complex (larger constant terms) than their counterparts in the
Boolean and polynomial masking schemes.

Overall, the applicability of higher-order masking techniques other than
Boolean is still an open question. Coron et al. [8] have identified a first-order
flaw in the faster multiplication routine of the polynomial masking construction
of Goubin and Martinelli [18]. Similarly, a first-order leakage in the refresh and
addition operations of IP Masking [1] has been pointed out by Prouff et al. [28].
And the polynomial masking scheme by Prouff and Roche [29] has been shown
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to be rather demanding when implemented in hardware [25], mostly due to its
security guarantees even in the presence of glitches. Eventually, and despite their
potential, higher-order countermeasures based on masking constructions other
than Boolean do not appear to be ready for practical applications.

1.2 Our Contributions

In this work, we develop several improvements to the original IP masking scheme
proposed in [1].

New IP Masking Scheme. Our first contribution is to introduce a few tweaks
in the definition of the masking function that result in significant performance
improvements. Similar to the original IP masking, a masked variable is repre-
sented by 2n shares in the form of two vectors (L,R). Our first change is to let L
be a public value, allowing us to reduce the number of secret shares from 2n to n.
As a result we fix L to a constant value in such a way that all variables involved
in computations are masked under the same L, but different R. Additionally,
we require that the first public element of L is L1 = 1. The combination of these
changes results in great efficiency improvements for all operations in the masked
domain. In particular, the complexity of the addition and refreshing algorithms
becomes comparable to those of Boolean and polynomial masking schemes. An
important side benefit of our tweaks is that the first-order leakage identified
in [28] on the refresh and addition algorithms no longer applies.

Practical Security Analysis. Our second contribution is to evaluate the impact
of our tweaks and compare the security of the new masking type with other
higher-order masking functions. We use the mutual information between the
secret variable and the leakage of all shares of its masked representation as
figure of merit. Our evaluation shows that our new masking function leaks more
than IP masking, which is expected because L is now public, but it leaks roughly
one order of magnitude less than Boolean masking with the same security order
d. It also leaks similar to polynomial masking with the same security order d.

Security in the Threshold-Probing Model. As a third contribution we prove the
security of our improved scheme in the probing model introduced by Ishai, Sahai
and Wagner [21]. Our security analysis shows that our construction is secure
against d probes, when n ≥ 2d + 1. We emphasize that this is the same security
threshold that can be achieved by most other higher-order masking schemes [7,
21,33]. Notice that only for the multiplication operation we require that n ≥
2d+1. For all other operations including the masking function, it is sufficient to
set n > d.

Efficient Implementation. Finally, our fourth contribution is to determine the
performance of our masking scheme in securing a block cipher implementation.
Similar to [1], we opt to protect a software implementation of AES-128 on an
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embedded 8-bit controller and we compare our results to other d-th order mask-
ing schemes. The results show that our improved construction allows to halve
the execution time with respect to the original IP masking scheme, and to reduce
the gap with Boolean masking from approximately a factor 10 to a factor 4.

2 Notation

In the following we denote by K a field of characteristic 2 and we represent field
elements with upper-case letters. For instance, S ∈ F28 denotes an element in the
AES field GF (28). Let X,Y represent two vectors over Kn. Field elements in
vectors are addressed with subindex i, e.g. Xi and Yi, respectively. The standard
inner product function over K is denoted as 〈X,Y 〉 =

∑
i Xi × Yi.

The matrix Â = X × Y over Kn×n is defined as the tensor product of two
vectors X and Y . Field elements in a matrix are addressed as Ai,j , where i

and j represent row and column position, respectively. If Â, B̂ are matrices over
Kn×n, then we denote by 〈Â, B̂〉 the inner product of matrices when we view
them as vectors of n2 field elements, i.e.

∑
i

∑
j Ai,j × Bi,j .

For an integer n we denote by [n] the set {1, . . . , n}.

3 Our Construction

Our scheme improves on the IP masking by Balasch et al. [1] based on the inner
product construction of Dziembowski and Faust [12]. A variable S ∈ K in IP
masking is encoded by using two vectors (L,R) of n elements with L ← K\{0}n
and R ← Kn. Note that the elements of the vector L are by definition different
than zero.

Our new masking function has three major differences with respect to [1].
First, the vector L is computed once and kept as a constant parameter. This
implies that all masked variables employed in our scheme share a unique vector
L. Second, we let the vector L be a public (rather than secret) parameter. In
other words, we assume the elements Li can be known to the adversary. And
third, we constrain the selection of the first element of L such that L1 = 1.
The number of shares that are kept secret in our masking function is therefore
determined by the security parameter n, which corresponds to the number of
elements in R. We show in the remainder of this section that all these choices
allow to significantly reduce the complexity of operations in the masked domain.

The procedure IPSetupn depicted in Algorithm 1 details the initialization
steps of our masking construction. Given n and a field description K, the algo-
rithm returns a public vector L and a public matrix L̂. The latter corresponds
to the tensor product L × L, and its pre-computation allows us to speed-up
multiplications in the masked domain. One can imagine IPSetupn is executed
before system roll-out during device personalization, e.g. in parallel with key
generation. The sub-routine randNonZero() returns a nonzero element in the
field K. More precisely, it samples uniformly at random from K\{0}.
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Algorithm 1. Setup the masking scheme: (L, L̂) ← IPSetupn(K)
Input: field description K
Output: random vector L and tensor product L̂ = L×L

1: L1 = 1;
2: for i = 2 to n do
3: Li ← randNonZero(K);
4: end for
5: for i = 1 to n do
6: for j = 1 to n do
7: Li,j = Li × Lj ;
8: end for
9: end for

Algorithm 2 depicts the steps to convert a variable S ∈ K into the masked
domain. This routine, denoted by IPMaskL, is parametrized by a vector L
resulting from executing IPSetupn. The sub-routine rand() returns a randomly
selected element in the field K. This function is called n − 1 times in order to
set the values of R2 . . . Rn. The value R1 is then computed in order to obtain a
valid masking of S under the inner product construction.

Algorithm 2. Masking a variable: R ← IPMaskL(S)
Input: variable S ∈ K
Output: vector R such that S = 〈L,R〉
1: for i = 2 to n do
2: Ri ← rand(K);
3: end for
4: R1 = S +

∑n
i=2 Li × Ri

3.1 Operations in the Masked Domain

We propose three main algorithms of our masking construction: IPRefreshL,
IPAddL and IPMultL,L̂. For an implementation of the AES (as detailed in
Sect. 6) it is advantageous to further have a dedicated squaring routine in the
masked domain. For this reason we also propose an additional IPSquareL algo-
rithm.

The routine IPRefreshL is depicted in Algorithm 3. It consists of two steps.
First, the computation of a vector A orthogonal to L. And second, the addition
of A to R to obtain a fresh vector R′. The correctness of the algorithm is easy
to prove:

〈L,R′〉 = 〈L,R + A〉 = 〈L,R〉 + 〈L,A〉 = 〈L,R〉 + 0 = 〈L,R〉.
The routine IPAddL is illustrated in Algorithm 4. Because all variables in our

construction are masked with a common vector L, the output vector T can be
simply obtained by adding the input vectors R and Q.
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Algorithm 3. Refresh vector: R′ ← IPRefreshL(R)
Input: vector R
Output: vector R′ such that 〈L,R〉 = 〈L,R′〉
1: A ∈R Kn s.t. 〈A,L〉 = 0
2: R′ = R + A

Algorithm 4. Add masked values: T ← IPAddL(R,Q)
Input: vectors R and Q
Output: vector T such that 〈L,T 〉 = 〈L,R〉+〈L,Q〉
1: T = R + Q

Note that the IPAddL algorithm is similar to that of Boolean masking con-
structions, yet our type of masking has higher algebraic complexity. This improve-
ment is a direct consequence of letting L be a public and constant parameter.

The multiplication routine IPMultL,L̂ depicted in Algorithm 5 is the most
involved operation. Our starting point is the masked multiplication of [1], albeit
with some efficiency improvements. First, since both input operands are masked
under the same vector L, the computation of the matrix L̂ is not dependent
on the input operands. Consequently, we can save n2 field multiplications by
pre-computing this matrix during IPSetupn. And second, because the first com-
ponent of L is set to L1 = 1, a constant b can be added to a masking (L,R) by
simply computing the new masking as (L, (R1 + b,R2, . . . , Rn)).

Algorithm 5. Multiply masked values: T ← IPMultL,L̂(R,Q)
Input: vectors R and Q
Output: vector T such that 〈L,T 〉 = 〈L,R〉×〈L,Q〉
1: Â ∈R Kn×n s.t. 〈L̂, Â〉 = 0
2: R̂ = R × Q
3: B̂ = R̂ ⊕ Â
4: b =

∑n
i=2

∑n
j=1 Li,j × Bi,j

5: T = (B1,1 + b, B1,2, . . . , B1,n)

In order to keep the d-th order security for n = 2d + 1 throughout the whole
execution of IPMultL,L̂, it is important that operations in lines 1 and 4 are
computed in a certain way as depicted in Table 1. In particular, the intermediate
values Δj are calculated by aggregating the intermediate products of elements
in matrices Â and L̂ in a column-wise fashion. In contrast, the values βi are
computed by processing the elements of the matrices L̂ and B̂ row by row. This
important difference in the way we compute the sums is crucial for the security
proof and, in fact, crucial for the actual security of our scheme.

For illustration purposes, consider a setting where the operations in line 1 and
line 4 of IPMultL,L̂ are computed row-wise. Let us also assume that all elements
in L are Li = 1. Under these circumstances, the following attack would apply:
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Table 1. Detailed description of operations in IPMultL,L̂

Line 1: Â ∈R Kn×n s.t. 〈L̂, Â〉 = 0 Line 4: b =
∑n

i=2

∑n
j=1 Li,j × Bi,j

//Random sampling //Row-wise processing

for (i, j) �= (n, n) do β1 = 0

Ai,j ← rand(K) for i = 2 to n do

end βi = βi−1 +
∑n

j=1 Li,j × Bi,j

//Column-wise processing end

Δ0 = 0 b = βn

for j = 1 to n − 1 do

Δj = Δj−1 +
∑n

i=1 Ai,j × Li,j

end

An,n = (Δn−1 +
∑n−1

i=1 Ai,n × Li,n) × L−1
n,n

1. The adversary learns the value Δ2 =
∑n

j=1 A2,j

2. The adversary learns β2 =
∑n

j=1 A2,j + Q2 × Rj = Δ2 + Q2〈L,R〉
3. The adversary learns Q2

Assuming that Q2 �= 0 the above attack indeed recovers completely the secret
value 〈L,R〉. Notice that the attack even applies when Li �= 1 but in this case the
bias in the leaky distribution decreases with the number of shares. We prevent
this attack by computing the intermediate values Δj as a sum of elements in a
column, and βi as a sum of elements in a row. This approach effectively results
in a “mixing” of the random shares and enables a security proof.

For an implementation of the AES it is beneficial to have a particularly
efficient implementation of the squaring algorithm. The IPSquareL routine is
illustrated in Algorithm 6.

Algorithm 6. Square masked variable: T ← IPSquareL(R)
Input: vector R
Output: vector R′ such that 〈L,T 〉 = 〈L,R〉×〈L,R〉

for i = 1 to n do
Ti ← (Ri)

2 × Li;
end for

4 Practical Evaluation

In this section we evaluate the information leakage of our improved IP masking
scheme and compare it to that of other masking schemes that can be imple-
mented at any order, e.g. Boolean masking, polynomial masking and the original
IP masking. We follow the common approach to focus the analysis on the type
of masking, i.e. to analyze the leakage of the shares of one masked variable. In
practice, the leakage of the operations in the masked domain depends a lot on
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their (secure) implementation and on the target platform, for instance a table
lookup in software versus combinational logic in hardware. We abstract from
such practical issues to be able to provide a fair and meaningful comparison.

4.1 Attack Order

We begin the evaluation by deriving the minimum order for an attack against
our type of masking. We say that a masking function is d-th order SCA secure,
if every tuple of d or less shares is independent of the masked variable.

It is easy to see that the masking function of our improved scheme is d-th
order SCA secure for n = d + 1. If we choose all elements in L equal to 1 the
argument is exactly the same as for Boolean masking. It uses the same number
of uniformly distributed secret shares. If we choose any Li greater than 1 we just
need to observe that the field multiplication Li × Ri does not introduce biases,
i.e. for uniformly distributed Ri the output is uniformly distributed. Recall that
all elements in L are nonzero by definition.

4.2 Information Leakage

It remains to explore the security versus efficiency tradeoff of our improved
scheme. It is known that a more complex algebraic relation between the shares
and the masked variable provides less information leakage. We hence expect our
type of masking to leak less information than the Boolean type whenever at least
one Li is unequal to 1 (since the field multiplication Li × Ri adds diffusion) but
more than the original IP masking since L is public.

Similar to our type of masking, in polynomial masking half of the shares
are distinct nonzero public constants and the other half are random and secret
masks. For our evaluation of information leakage we refer only to the n secret
shares. For example, polynomial masking of security order d uses n = d + 1
random and secret shares, and can theoretically be broken by a d + 1-th order
SCA. Due to the similar representations of variables in the masked domain, we
expect our masking function and the polynomial type to provide comparable
information leakage.

We compare our type of masking with Boolean masking, polynomial masking
(all of security order d using n = d+1 secret shares) and, for completeness, with
the original IP masking (of security order d = 1 using n = 4 secret shares).

Followingpreviouswork [1,18,29,35,36]weuse themutual informationbetween
a variable and the leakage of all shares of its masked representation as criterion for
the comparison. We estimate the mutual information using computer simulations.

We evaluate our improved IP masking for d = 1 (L1 = 1, L2 = 255) and
for d = 2 (L1 = 1, L2 = 15, L3 = 233). Boolean masking uses d + 1 shares
(M1, . . . ,Md, V ) where the Mi ∈R F28 and V is computed such that S = M1 +
. . . + Md + V holds. We evaluate Boolean masking for d ∈ {1, 2, 3}. Polynomial
masking uses d + 1 public coefficients (α1, . . . , αd+1) with αi ∈R F28 \ {0} and
pairwise distinct, and d + 1 shares (S1, . . . , Sd+1) with Si = PS(αi) ∈ F28 [29].
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Fig. 1. Mutual information (log10) over increasing noise standard deviation σ for dif-
ferent masking functions

We evaluate polynomial masking for d = 1 (α1 = 3, α2 = 7) and d = 2 (α1 =
13, α2 = 240, α3 = 163). For the original IP masking we set d = 1 and let
R2 ∈R F28 and L1, L2 ∈R F28 \ {0} such that S = L1 × R1 + L2 × R2.

We model the relation between a share and its physical leakage as usual in the
literature: each share leaks its Hamming weight, each share leaks independently
of all other shares, and each leakage is affected by independent Gaussian noise. In
summary, we model the leakage of our improved scheme as

Leak(L,R) = (HW(R1) + n1, . . . ,HW(Rd+1) + nd+1) ,

the leakage of boolean masking as

Leak(M1, . . . ,Md, V ) = (HW(M1) + n1, . . . ,HW(Md) + nd,HW(V ) + nd+1) ,

the leakage of polynomial masking as

Leak(S1, . . . , Sd+1) = (HW(S1) + n1, . . . ,HW(Sd+1) + nd+1)

and the leakage of the original IP masking as

Leak(L,R) = (HW(L1) + n1,HW(R1) + n2,HW(L2) + n3,HW(R2) + n4) ,

where the ni are independent Gaussian variables with mean zero and stan-
dard deviation σ. The mutual information between the secret variable and the
leaked information is then I(S; Leak(L,R)), I(S; Leak(M1, . . . , Md, V ), and
I(S; Leak(S1, . . . , Sd+1)) respectively. Recall that the mutual information is
directly related to the number of measurements that a Template Attack [6] (worst
case attack scenario) requires to achieve a given success probability. Standaert
et al. [36] defined the relation via c · I(·; ·)−1 where the constant c is related to
the success probability.

Figure 1 shows plots of the mutual information (in log10 scale) between S and
the information leaked by all shares of its masked representation, over increasing
noise levels σ, for all masking types considered.
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The results are in line with our expectations. Our improved IP masking
leaks more information than the original IP masking (in the improved scheme
L is public), which illustrates the security versus efficiency tradeoff. But it leaks
less than Boolean masking with the same number of shares, which is due to
the more complex algebraic relation between the shares and the secret variable.
The difference is particularly pronounced for low levels of noise and it seems
to increase with increasing security order d. Finally, our improved IP masking
and polynomial masking leak comparably. We attribute this to their similar
representation of variables in the masked domain.

5 Security Proof in the Probing Model

We start our security analysis with a proof in the so-called probing model intro-
duced by Ishai, Sahai and Wagner [21]. Recall that our masking scheme has the
form (L,R), where L is public and R is secret and random in Kn for n ∈ N being
the security parameter. We will show that our construction is secure against any
d probing adversary, where we assume that n = 2d+1. That is, an adversary that
can learn up to d arbitrary intermediate values computed during the execution
of the masked scheme will not learn anything about the underlying secrets. Let
in the following denote by P the set of intermediate values that the adversary is
probing.

As a first step we show that our masking function is indeed secure against an
(n − 1)-probing adversary. We use the notation An−1(IPMaskL(S)) to describe
that the adversary A obtains at most n − 1 shares of the masking.

Lemma 1. For any two secrets S, S′ ∈ K and any (n − 1)-probing adversary A
we have

An−1(S) = An−1(S′),

where L was sampled as specified by the setup algorithm and S ← IPMaskL(S)
and S′ ← IPMaskL(S′).

Proof. Notice that in our scheme the vector L is public and hence does not
contribute to the security against probing attacks. Further, recall that all Li �= 0,
and hence all values of R contribute to the security of the masking. The proof
follows by the fact that given L with all components �= 0 the vector R is a
perfect random additive (n − 1) out of n secret sharing scheme. More precisely,
let I ⊂ [n] be the subset of indices for which An−1 learns Ri, i.e., for all i ∈ I
we have that An−1 probes Ri. As |I| < n there exists at least one j ∈ [n] such
that j /∈ I. Hence, for any value S ∈ K, any choice of L and any Ri such that
i ∈ I there exists Rj such that S = 〈L,R〉. 	


5.1 Security of Masked Operations

We now show the security of the different operations presented in Section 3.
Informally, we will show that any subset of wires P with size |P| ≤ d is indepen-
dent of the underlying masked values, i.e., the probes P given to the adversary
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will not help the adversary in breaking the security guarantee of the underly-
ing scheme. To this end, we will prove the security for any masked operation
individually and then show that also a combination of such masked operations
remains secure if the adversary obtains at most d probes in the entire circuit.

The proof is easy for the masked addition operation: probes at the inputs
and outputs directly translate to probes at the underlying masked value. We will
show security for the masked squaring and masked multiplication operation.
The proof of the masked multiplication is rather tedious since simulating the
intermediate values just from the encoded inputs and outputs of the masked
operations requires careful bookkeeping.

We will denote by Ad(Operation(X,Y )) the output of an adversary that
probes up to d values in the execution of the operation Operation when run on
masked inputs X and Y . Notice that Ad may also probe the output produced
by Operation, i.e., Z←Operation(X,Y ). As an example let Operation be the
IPMultL,L̂(Q,R) operation on inputs Q and R. The adversary may learn up to
d of the intermediate values produced during the computation of this algorithm.
Moreover, for a vector X and a subset I ⊂ [n] we denote by X |I the set
{Xi}i∈I . Following Ishai et al. we will say that a masked operation Operation is
secure against d probing attacks if probes on intermediate values produced by
the masked operation Operation can be simulated by just access to the inputs of
the operation.

Security of the masked squaring operation. It is simple to show security of the
squaring algorithm presented in Algorithm 6 in the probing model, where d < n.

Lemma 2. Let n be the security parameter and let d < n, then for any d-probing
adversary Ad and any R ∈ K and R ← IPMaskL(R), there exists a subset I ⊂ [n]
with |I| ≤ d and a simulator Sim(R|I) such that:

Ad(IPSquareL(R)) ≡ Sim(R|I).

Proof. We start by a description of how to build the set I, which initially is set
to I = {}. For each probe of the form Ri, (Ri)2 or (Ri)2 × Li add the index i to
I. Since the adversary can make at most d probes, we clearly have |I| ≤ d. Given
the set RI and L (which is public and hence the simulator has access to it), it is
easy to simulate all probes in IPSquareL(R) in a perfect way and in particular
consistent with probes on the real execution of the squaring algorithm. 	

Security of masked multiplication. We prove the security of Algorithm 5 in the
d-probing model, where n ≥ 2d + 1.

Lemma 3. For any Q,R ∈ K let Q ← IPMaskL(Q) and R ← IPMaskL(R). Let
n be the security parameter and let d be such that 2d < n, then for any d-probing
adversary Ad that learns at most d probes on intermediate values produced during
the masked multiplication IPMultL,L̂(Q,R), there exists a subset I ⊂ [n] with
|I| ≤ 2d and a simulator Sim(Q|I ,R|I) such that:

Ad(IPMultL,L̂(Q,R)) ≡ Sim(Q|I ,R|I).
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Proof. To simplify the analysis we assume that L is given in its entirety a-priori
to the adversary. We show that the entire distribution of the multiplication
algorithm can be simulated by having access to at most 2d shares of Q and
R, respectively. Since by Lemma 1 seeing 2d shares of Q and R respectively, is
independent of the masked secret this proves the security of the masked mul-
tiplication operation. The set that keeps track of what values are revealed of
Q,R is called I. Moreover, we keep track of two sets T and U that are needed
to keep the simulation consistent. T keeps tuples (i, j) ⊂ [n] × [n] of pairs that
correspond to the values of Ai,j which are revealed during a probing attack,
while U represents the values (i, j) of Bi,j that are revealed by the attack. To
simplify our analysis, we will be rather generous to the adversary and usually
give him much more values than what are revealed during the actual probe of
the particular intermediate value. Below we describe how to build the set I.

A. Building the sets I,U , T : In this step we initialize the sets that later are
needed for the simulation.
1. Initially, we set the sets I,U , T to the empty set {}.
2. Probes when Δi is computed, i.e., probes of the form A1,i, . . . , An,i or probes

of the form Δi−1 +
∑

1≤j<n Lj,i ×Aj,i: Add the index (1, i), . . . , (n, i) into
the set T .

3. Probes of the form Bi,j or sums of the form
∑

j Li,j×Bi,j: We distinguish
two cases:
(a) For i > 1: Add the index (i, 1), . . . , (i, n) to the set U .
(b) For i = 1: Add the index (i, j) to the set U .
The above two cases capture the fact that for row i = 1 of the matrix
B̂ we do not compute the sum of values B1,j , i.e., of the first row of the
matrix B̂. Additionally, for each such (i, j) that has been added to U : if
(i, j) is in T , then add i, j to I.

4. Probes of the form Qi, Rj and Qi×Rj: For probes of the form Qi resp. Rj

add i resp. j to I. For a probe of the form Qi × Rj add the indices i, j
to I.

Given the above description of the the sets I, T and U , we can now define
the simulator SimI,T ,U (R|I ,Q|I).

B. Sampling variables independently of probes: We start by sampling
some of the values a-priori before we answer the actual probing queries.
We will later take care that all probes are answered consistently with the
values sampled in this initial step.
1. Choose β2, . . . , βn uniformly at random. Notice that this allows to com-

pute all the potential values that appear in the sum when computing the
value b – including the value b.

2. Sample Δ1, . . . ,Δn−1 uniformly at random and set Δ0 = Δn = 0.
C. Simulating the probes: We next show how to answer the probing queries

of the adversary given all values {Qi}i∈I and {Ri}i∈I , and the values Δi,
βj sampled in Step B.
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1. Probes of the form β2, . . . , βn and sums thereof: These values have been
fixed in Step B1 and hence probes on these values can easily be answered
from the above sampled values.

2. Probes on the sampling of Ai,j: Notice that this involves the individual
values Ai,j as well as sub-sums of values in the columns with the appro-
priate values Δi. If (1, i), . . . , (n, i) are in T then sample A1,i, . . . , An,i

uniformly at random such that
∑

j Lj,i × Aj,i = Δi + Δi−1. Given the
above sampled values and the values Δi sampled in Step B2, we can
answer any probe of the adversary.

3. Probes of the form Qi, Rj and Qi × Rj: Given access to {Qi}i∈I and
{Ri}i∈I we can easily simulate the probes in a consistent way.

4. Probes of Bi,j, or when i > 1 of sums thereof: To answer these probes,
we sample the values of Bi,j in the following way:
(a) If (i, j) is not in U then leave the values Bi,j un-assigned.
(b) If (i, j) is in U and (i, j) is in T then compute Bi,j = Qi ×Rj +Ai,j .

Notice that this is possible since the relevant values of Qi and Rj are
given in {Qi}i∈I and {Ri}i∈I and Ai,j has been assigned in Step C2.

(c) If (i, j) is in U , but (i, j) is not in T , then we sample Bi,j uniformly
at random subject to the constraint that βi =

∑
j Li,j ×Bi,j . Notice

that the later requirement only is needed for i > 1. The value B1,j

is chosen uniformly at random.

We will show below that (1) the simulation has the same distribution as the real
execution of the masked multiplication operation (second claim below), and (2)
we argue that the size of the set I has always cardinality |I| ≤ 2d (first claim
below). Putting these two claims together proves the lemma.

In the following analysis we denote by u the number of probes corresponding
to Step A2, by v the number of probes corresponding to Step A3 and by w the
number of probes corresponding to Step A4.

Claim. Let n ∈ N be the security parameters and d be the number of probes
such that 2d < n. Then, |I| ≤ 2d.

Proof. Observe that the simulator adds elements to I only in Step A3 and
Step A4. As each probe in Step A4 leads to adding at most two elements to I
and w ≤ d, this directly implies |I| ≤ 2d if probes appear only in Step A4. It
remains to analyze the number of elements we add to I for each probe done in
Step A3. The analysis for Step A3 is a little more involved as the number of
elements added to I depends on both u (number of probes in Step A2) and v
(number of probes in Step A3). Recall that for each probe of Step A2 that is
within the i-th column we add all indices (1, i), . . . , (n, i) to T that correspond
to the elements in the i-th column of the matrix Â, while for each probe in
Step A3 we add all indices (i, 1), . . . , (i, n) to U that correspond to the i-th
row of the matrix B̂ (except for the first row, but this does not matter for the
rest of the analysis). Furthermore, recall that each Bi,j is computed from Ai,j .
Depending on the values added to T and U , in Step A3 we will add all i, j to I
where (i, j) is an “intersection” between the columns and rows mentioned above.
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Unfortunately, it is easy to see that for u columns and v = d − u − w rows we
may have more than 2d intersections.1 The good news is, however, that many
elements will be added multiple times to I, hence not increasing the size of I.

More precisely, for a query in the i-th row from Step A3, we add the index
i into the set I. Additionally, for each such query we add index of the column
at which we have an intersection from a query in the j-th column. The main
observation is that for each row the indices added by the intersections with the
columns are the same. In other words, for each i the tuples (i, j) have the same
second component, and hence we add at most u+ v ≤ d indices to I in Step A3.
Combining it with the probes from Step A4, we add u + v + 2w elements to I.
Since u + v + w ≤ d, we get that |I| ≤ 2d, which proves the claim. 	

The next claim shows that the sampling of the simulator produces the same view
as a d-probing adversary obtains in a real attack against the masked multiplica-
tion operation.

Claim. For any Q,R ∈ K let Q ← IPMaskL(Q) and R ← IPMaskL(R), we have:

Ad(IPMultL,L̂(Q,R)) ≡ Sim(Q|I ,R|I),

with parameters defined as in the statement of the lemma.

Proof. By the last claim we have |I| ≤ 2d. We compare the way in which the
probes are answered by the simulator in Steps B and C with the real attack
against the execution of the masked multiplication.

Step B: The joint distribution of values sampled at this step in the simulation
is identically distributed with the real experiment even given all these values
to the adversary. This is easy to see for the βi values as they are just sums
of random values Ai,j . Moreover, for the Δj values we observe that the first
row is never used in computing βi (since i > 1), and hence all Δj for j < n
can be chosen uniformly at random (they can essentially be made consistent
with the view of the adversary by choosing A1,j appropriately. The value Δn

is fixed to 0 as we require 〈Â, L̂〉 = 0.
Step C2: In Step B2 we sampled Δ1, . . . Δn−1 uniformly at random and in

Step C2 we sample each column (A1,i, . . . , An,i) of the matrix Â uniformly
at random such that Δi + Δi−1 =

∑
j∈[n] Lj,i × Aj,i. This implies that all

Ai,j for j ∈ [n] are chosen uniformly at random2. For the last column of
the matrix we require that Δn + Δn−1 = Δn−1 =

∑
j∈[n] Lj,n × Aj,n, which

guarantees that 〈Â, L̂〉 = 0 as required by the protocol. It remains to show
that the choice of the Ai,j values produced by the simulator is consistent
with the simulator’s choice of the values βi.
To this end observe that after a probing attack at most u ≤ d columns of
the matrix Â have been assigned, i.e., the values in n − d columns remain

1 For instance, suppose that u = d − 3 and v = 3, then we add 3d − 9 elements to the
set I.

2 At this step we also require that Li,j �= 0 as required by our scheme.
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un-assigned. As βi = a +
∑

j Ai,j for some fixed value a = Qi × Li × R the
value βi is distributed uniformly at random even given all values Δi and
all values Ai,j that haven been assigned previously. Notice that this is the
case since (a) there is at least one column in the matrix Â that has not been
assigned yet, and (b) the scheme never computes

∑
j A1,j as β1 is not needed

for the computation. More precisely, let j∗ be the column that is unassigned
after the assignment of the values above, then each βi is perfectly hidden by
Ai,j∗ and we can choose A1,j∗ in such a way that the column is consistent
with Δj∗ . This concludes the analysis of Step C2.

Step C3: To answer the queries on Qi, Rj and Qi×Rj we use the values given in
{Qi}i∈I and {Ri}i∈I . To argue that this gives us the right distribution (inde-
pendent of Q and R), we first recall that by the last claim |I| ≤ 2d. Notice
that these values will always be consistent with the previously assigned values
since each βi is still blinded by at least one un-assigned value Ai,j∗ . More-
over, probes of this form (by itself) do not reveal any additional information
about Â.3

Step C4: We can ignore the values sampled in Step C4a as these values remain
un-assigned, i.e., they are never directly probed nor are they used in the
computation of other probes. The values sampled in Step C4b can be com-
puted from the values that have been assigned previously (since (i, j) was
in U and T which implies that i, j ∈ I), and, hence will not affect the joint
distribution. Notice that in this step we will always only fix a subset of the
Bi,j elements in the i-th row, because there are at most u ≤ d probes in
Step A2 (which lead to adding tuples (i, j) to T ). The remaining values for
the i-th row are chosen as defined in Step C4c. That is, in the simulation
we choose these values uniformly at random such that βi =

∑
j Li,j × Bi,j

taking into account the previously assigned values for Bi,j from Step C4b.
By the requirement given in Step C4c our choice of Bi,j is consistent with
the choice of βi.
It remains to argue why the simulator’s choice is also consistent with the
matrix Â as sampled in Step C2 and with Δ1, . . . ,Δn. To this end, observe
that the simulator only samples Bi,j according to Step C4c if Ai,j has not
been revealed previously (i.e., it was in a column of Â that has never been
probed). Hence, indeed Bi,j is uniformly distributed (since it is blinded by
the random and unknown value Ai,j). Finally, it remains to argue that the
choice of Bi,j is also consistent with the choice of Δj from Step B. Recall
that for values Bi,j for which (i, j) ∈ U , but not in T this implies that the
j-th row has not been queried. Moreover, we know since v ≤ d there are at
least n − v > d rows that have not been probed. Hence, there exists some
Bk,j and Ak,j that have not been assigned during the experiment (i.e., they
belong to Step C4a). Such values Ak,j were never used in the experiment
and can always be chosen such that the total sum is consistent with Δj .

The above description concludes the proof. 	

3 They can, however, reveal information about Bi,j as we will see in the next step.
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Putting together the above two claims we obtain the statement of the lemma.
	


This completes the analysis of the security of individual masked operations. In
the next section we briefly argue about security of masked composed algorithms.

5.2 Security of General Masked Computation

In Section 5.1 we showed that an adversary that probes up to d intermediate
values in the computation of the basic masked operation will not be able to learn
anything about the underlying sensitive information. We are now interested in
what happens to the security when multiple of such operations are combined
to carry out some more complicated computation such as the AES encryption
algorithm. In other words, we let the adversary learn d intermediate values of
the computation carried out by the masked AES algorithm (or any other masked
algorithm). Notice that this in particular requires that, e.g., learning d1 values
in a masked multiplication cannot be exploited together with d2 values learnt
from a consecutive masked squaring algorithm as long as d1 + d2 ≤ d.

Similar to earlier work [21], we only provide an informal analysis of d-probing
security of composed masked operations. To this end, observe that both in
Lemma 2 and Lemma 3 the simulation only depends on at most 2d elements
of the outputs of the masked operation. As an example consider the masked
multiplication that outputs the vector T and assume that T is input for a squar-
ing algorithm. If the adversary probes d1 intermediate values in the multiplica-
tion operation, then it is easy to see that the simulation described in Lemma 3
depends on at most 2d1 shares of T . Moreover, the masked multiplication oper-
ation guarantees that even given Q and R entirely, the output T is a uniformly
and independently chosen maskings of Q×R. This means that for the simulation
of the adjacent squaring algorithm the simulator starts with a masking of which
2d1 shares are already known. Since according to Lemma 2 the simulator requires
d2 elements of its inputs to simulate the probes in the squaring operation, the
simulator will learn additionally d2 elements of T . Since 2d1 +d2 < n this shows
security of the simple composed circuit consisting of a multiplication followed
by a masked squaring operation. The above argument can easily be extended to
arbitrary complicated masked algorithms consisting of many masked operations.

Another difficulty occurs when the adversary can run the masked algorithm
multiple times and in each execution he may observe d intermediate values. For
instance, one may think of a masked AES algorithm running with a masked key
K. Notice that this setting is different from the setting of composed masked com-
putation described above since now the adversary can observe qd intermediate
values, where q is the number of executions that the masked algorithm is run.
As in earlier work [7,21] the problem of a continuous probing adversary, i.e., an
adversary that learns up to d intermediate values in each execution of the masked
AES algorithm, can be addressed by a key refresh algorithm. If (L,R) denotes
the masking of a key byte of the AES, then the masking of this key byte can be
refreshed by running the Algorithm 3 n times consecutively. In other words, the
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key refresh algorithm takes as input R0 := R and for i = 1, . . . n proceeds as
follows: Compute Ri = IPRefreshL(Ri−1) and output R′ = Rn. Clearly, since
we execute IPRefreshL n times and the adversary can probe only d < n inter-
mediate values there must exist at least one execution of IPRefreshL(Ri−1)
that does not leak at all. Hence the mask of R is completely refreshed. This
enables us to transform our result to a continuous probing adversary without
any additional loss, when in each execution the adversary can learn up to d
values (where 2d < n).

We notice that the fact that IPRefreshL is repeated multiple times to refresh
the masking of the key is not only an artefact of the security proof. In fact, it
is easy to show that for natural implementations of IPRefreshL the scheme
becomes insecure. To illustrate this, we present a simple attack against a more
efficient key refresh algorithm that executes IPRefreshL only a single time.
For simplicity, let us assume that L = (1, . . . , 1), i.e., the vector is the all-1
vector. Notice that in this case the inner product masking function is identical
to the Boolean masking used, e.g., in [33]. Let us assume that A is sampled in
IPRefreshL in the following way:

1. Let t0 = 0. For i = 1, . . . , n − 1 repeat the following:
(a) Sample Ai uniformly at random in K
(b) Compute ti = ti−1 + Ai.

2. Set An = ti and output A = (A1, . . . , An).

Consider a masked implementation of the AES that at the end of the execu-
tion refreshes its key shares by applying a single execution of the IPRefreshL
algorithm. We now describe an attack that allows to recover the key with only
2 probes in each execution of the masked AES implementation. Notice that we
consider the full probing model [7], where the adversary can move its probes
between consecutive rounds of execution. Our attack does not apply in the
restricted probing model [7]. We denote by Ki the masking of the key k at
the beginning of the i-th round, i.e., for all i we have 〈L,Ki〉 = k. We have
K0 being the initially shared key. Moreover, we denote by Ai the vector that
is used in the i-th execution of the masked AES implementation for refreshing,
i.e., Ki = Ki−1 + Ai.

1. First execution of the masked AES: Probe K0
1 and A0

1. Notice that this allows
us to compute K1

1 .
2. In the i-th execution of the masked AES: Probe Ki

i and tii−1.

We will now describe how to compute k from the above described probes. Sup-
pose at the beginning of the i-th round (i.e., before carrying out the probes
in this round) the adversary knows

∑i−1
j=1 Ki−1

j . We show how with the probes
described above he can compute

∑i
j=1 Ki

j . To this end, notice that:

i∑

j=1

Ki
j =

i−1∑

j=1

Ki−1
j + tii−1 + Ki

i ,
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where the second and the third term the adversary knows from the probes in
the i-th round and the first term he knows by assumption. Hence, by induction
it is easy to argue that the above attack allows to recover the secret key k.

6 Performance Evaluation

We have applied our masking scheme to protect a software implementation of
AES-128 encryption. For illustrative purposes we have opted to develop two
implementations employing n = 2 and n = 3 shares, respectively. This choice
not only enables a better comparison with other higher-order schemes, but also
allows us to gain insight into how the performance scales with an increasing
number of shares.

Our target platform is a legacy AVR ATMega163 microcontroller. This device
has an 8-bit architecture and offers 32 general purpose registers, 1 024 bytes of
internal SRAM and 16 KBytes of Flash memory. Our implementation is aimed
for speed. To this end, we have written all operations in assembly code and made
use of lookup tables whenever possible.

The lowest implementation layer corresponds to arithmetic in the field F28 .
Field addition is very efficient, as it can be performed in one clock cycle via the
native XOR instruction. Field multiplication on the other hand is not part of the
AVR instruction set, and we opt to implement it using log and alog tables [38].
Because this method contains a conditional statement, i.e. check if any of the
operands equals zero, realizing it with a constant flow of instructions requires in
our implementation 22 cycles. Field squaring - as well as raisings to the power
of four and sixteen - are implemented by means of lookup tables. Our platform
does not have internal support for generating random numbers, as opposed to
e.g. JavaCard smart cards. For the sake of completeness and testing, random
numbers are provided externally and stored in memory.

The public parameters L and L̂ are initialized at setup time and kept con-
stant for each execution of the cipher. Consequently, they are hardcoded in
Flash memory. Note that for n = 2, there exist 28 possible vectors A orthog-
onal to L satisfying 〈A,L〉 = 0. These vectors can be as well precomputed
during initialization and stored in Flash memory as a look-up table T satisfying
T (A2) = A1 = L2 × A2. During IPRefreshL, a value A2 is picked at random
and the corresponding value A1 is looked up as T (A2). This allows to improve
the efficiency of IPRefreshL at the cost of storing 256 bytes in Flash memory.

The main difficulty of applying our masking scheme (and any other) to AES
consists in efficiently masking its nonlinear part, i.e. the SubBytes transforma-
tion. In software contexts it is common to implement this transformation by
means of a lookup table. While there exist techniques in the literature to pro-
tect table lookups at higher-order, e.g. [7], these are rather costly in terms of
performance and storage. Alternatively, one can compute the full SubBytes step
by using the following equation over F28 for a given input state byte X:

SubBytes[X] = {05} × X254 + {09} × X253 + {f9} × X251 + {25} × X247+
{f4} × X239 + X223 + {b5} × X191 + {8f} × X127 + {63}.
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This equation involves multiple field operations (particularly costly multipli-
cations) in order to calculate the different powers of X. It is therefore not very
suitable if one aims for an efficient implementation. We therefore follow a dif-
ferent path as already done in [1], i.e. we carry out both steps of the SubBytes
transformation (inverse and affine transformation) separately. Specifically, we
first compute the field inverse by using the following power function:

Inverse[X] = X254 =
(
(X2 × X)4 × (X2 × X)

)16 × (X2 × X)4 × X2.

As discussed in [33], this equation can be efficiently carried out with only 4
multiplications and 7 squarings. For the affine transformation (linear only in F2)
we employ the following equation over F28 :

AffTrans[X] = {05} × X128 + {09} × X64 + {f9} × X32 + {25} × X16+
{f4} × X8 + {01} × X4 + {b5} × X2 + {8f} × X + {63},

requiring 7 squarings, 8 additions, and 7 multiplications with a constant.
The MixCol transformation operates on the AES state column-by-column.

In particular, each of the bytes in the 0 ≤ j ≤ 3 columns is replaced as:

s′
0,j = {02} × s0,j + {03} × s1,j + s2,j + s3,j

s′
1,j = s0,j + {02} × s1,j + {03} × s2,j + s3,j

s′
2,j = s0,j + s1,j × {02} + s2,j + {03} × s3,j

s′
3,j = {03} × s0,j + s1,j + s2,j + {02} × s3,j .

From these equations it follows that this step can be implemented using a
total of 12 masked additions and 8 masked multiplications by a constant, for
each column. In [10], the authors of AES suggest a more efficient way to com-
pute the MixCol step by using the so-called xtime tables. Such technique takes
advantage of the fact that field addition is more efficient than field multipli-
cation in general purpose processors. Due to this, they suggest an alternative
approach that requires 15 additions and 4 multiplications by 02, which can be
simply performed as table lookups. We employ this technique to compute the
MixCol transformation.

The performance of our protected AES-128 implementation is given in Table 2
for n = 2 and n = 3 secret shares. We have also implemented Boolean masking
as proposed in [33] with the same number of secret shares. In order to enable a fair
comparison, all implementations are developedon the sameplatformand follow the
same optimization strategy. Finally, we also provide the results given in [1] for the
original IP masking using n = 4 secret shares. Recall that the original IP masking
was developed to provide security order d = 1 for n = 4, the same as our new
scheme and Boolean masking for n = 3.

The performance results presented in Table 2 are given in clock cycles. The
rightmost column shows the execution time of a full AES-128 encryption includ-
ing key schedule, while the other columns depict the performances achieved for
each AES building block.
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Table 2. Performance evaluation (in clock cycles) of protected AES implementations.
This work and Boolean with n = 2 secret shares (top); this work and Boolean with
n = 3 secret shares (middle); original IP masking with n = 4 secret shares (bottom).

AddKey SubBytes ShiftRows MixCol NextSubKey Full AES

n = 2
this work 364 28 810 100 465 7 416 373 544

Boolean 364 7 850 100 465 2 175 110 569

n = 3
this work 476 63 354 150 678 16 148 812 303

Boolean 476 17 034 150 678 4 568 230 221

n = 4 original IP 8 796 117 760 200 27 468 44 437 1 912 000

The improvement with respect to the original IP masking is clear from the
results. The overall execution time is reduced by more than a factor 2. This
efficiency gain is due to our tweaks in the type of masking leading to an improved
construction. In fact, almost all newly proposed operations in the masked domain
involve significantly less field operations than in [1]. On the implementation
side, this reduction in complexity enables a better usage of the register file,
i.e. the number of memory accesses to load/store intermediate results can be
significantly reduced.

When compared to Boolean masking for the same security level, our scheme
still performs slower. The difference is not entirely due to the operations in
the masked domain, but rather to the way the AES affine transformation is
defined. Because this operation is linear in F2, protecting it with Boolean mask-
ing requires only a matrix multiplication (table lookup) followed by an XOR
operation. In contrast, and due to the higher algebraic complexity of the inner
product construction, our implementation needs to compute the more complex
formula defined over F28 . Despite this limitation, our results manage to bridge
the gap from approximately a factor 10 to a factor 4. This result makes our
proposal an interesting alternative to secure implementations at higher orders.

7 Discussion

In this section we discuss further relevant properties of our improved IP masking
scheme and touch on ideas for future work.

Similarities and Differences with Polynomial Masking. A direct consequence
of our tweaks is that some characteristics of our construction become closer
to those of polynomial masking. In particular, variables in both schemes are
encoded using 2n shares (Li, Ri) and (αi, Si) respectively, with n shares being
public and n shares being secret. The decoding sequences of a masked variable
S follow the same pattern of operations, e.g. S = 〈L,R〉 =

∑
i Li × Ri and

S =
∑

i βi × Si. We note, however, that the latter is not a consequence of our
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simplifications. The same sequence was already used in [1]. In contrast, a direct
effect of our tweaks is that the information leakage of encoded secrets using the
mutual information as figure of merit becomes comparable.

Despite these high-level similarities, the low-level constructions proposed in
this work to carry out operations in the masked domain are different from those
proposed in [18,29]. The only exception is the addition algorithm, in which the
secret shares Ri (Si, respectively) of the input operands are added element-wise
to obtain the secret shares of the output. We note that this is also the same for
other constructions based on e.g. Boolean masking. The most notable differences
can be found in the steps followed to compute the product of two masked vari-
ables. In addition, the asymptotic complexity of our multiplication algorithm is
O(n2) rather than O(n3) as presented in [18,29] or Õ(n2) as described in [8].
Asymptotic improvements are possible using more efficient protocols from mul-
tiparty computation – in particular, techniques from multiparty computation
using packed secret sharing [14,20], which results overall in quasi-linear com-
plexity (for large and parallelizable computation).

Finally, we recall that the very nature of both approaches is different. Poly-
nomial masking employs secure multi-party computation techniques [2] and
Shamir’s secret-sharing [34], while our construction is inspired by work on leakage
resilient cryptography [12]. This difference is for instance prominently reflected
in the procedures to mask a variable. In polynomial masking the secret shares
are obtained by polynomial evaluation Si = PS(αi) of the public shares αi,
which is different from the procedure described in IPSetupn. Another difference
is that the public parameters αi of polynomial masking must be both distinct
and nonzero, while for IP masking only the latter requirement applies, i.e. several
Li can have the same value.

Bounded Leakage Model. We notice that we do not prove the security of our
construction in the bounded independent leakage model as done in the work
of Balasch et al. [1]. Instead, the goal of the current work is to develop an
efficient higher-order masking scheme that exhibits higher algebraic complexity
than Boolean masking and prove its security in the ISW probing model. Note
that it is still possible to provide a scheme secure in the independent leakage
model even if the vector L is public but random. The technical reason for this is
that the inner product is a strong extractor, i.e. security holds even if one part
is revealed completely.

The only requirement we need is that the leakage functions are chosen a-
priori and independently of L, which allows us to rely on the fact that the inner
product function over finite fields is a strong extractor [31].4 While this may
slightly improve the bounds, for small field size, we would still require a large
number of shares which may be unrealistic for practical settings. In addition,
we would have to make slight changes to the construction, e.g. to our optimized
4 We notice that a similar non-adaptive leakage model was considered in [13,39]. The

attack presented in [13] against [39] would not apply in our case since masking
schemes are randomized while the stream cipher construction of [39] is deterministic.
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squaring algorithm, to prevent simultaneous access to the two halves (L,R) of
the IP encoding (which becomes insecure under bounded independent leakages).

Resistance Against Glitches. The original scheme in [1] achieves provable secu-
rity in the presence of glitches only when the security parameter n is large. In
fact, the proof for glitch resistance follows directly from security in the bounded
independent leakage model. However, the construction in this work is proven
secure in the probing model, which does not automatically imply glitch resis-
tance. Hence we do not claim that our construction is provable secure in the
presence of glitches, in contrast to e.g. the polynomial masking scheme by Prouff
and Roche [29] and the Threshold Implementation scheme by Nikova et al. [3,26].

Future Work. An interesting question for future work is if the ideas from [9] can
be applied in order to gain a factor 2, i.e. it may be feasible to achieve security
against d probes when d = n − 1 in the restricted model.
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Abstract. Two main computational problems serve as security founda-
tions of current fully homomorphic encryption schemes: Regev’s Learn-
ing With Errors problem (LWE) and Howgrave-Graham’s Approximate
Greatest Common Divisor problem (AGCD). Our first contribution is a
reduction from LWE to AGCD. As a second contribution, we describe
a new AGCD-based fully homomorphic encryption scheme, which out-
performs all prior AGCD-based proposals: its security does not rely on
the presumed hardness of the so-called Sparse Subset Sum problem, and
the bit-length of a ciphertext is only Õ(λ), where λ refers to the security
parameter.

Keywords: Fully homomorphic encryption · Approximate GCD ·
DGHV · LWE

1 Introduction

Fully homomorphic encryption has been a major focus of interest in cryptogra-
phy since Gentry’s first proposal of a fully homomorphic encryption scheme [21,
22]. The security of Gentry’s proposal relies on two hardness assumptions: some
relatively ad-hoc problem involving lattices arising in algebraic number theory
is assumed intractable, as is the Sparse Subset Sum Problem (SSSP), a variant
of the subset sum problem in which the subset is constrained to be very small.
The efficiency of Gentry’s scheme was later improved [23,45,46], but soon two
other design approaches were developed. The interest in Gentry’s original design
faded, as the latter approaches rely on better understood hardness assumptions
and lead to more efficient instantiations.

Chronologically, the first alternative design was proposed by van Dijk, Gen-
try, Halevi and Vaikuntanathan [20]. They constructed a fully homomorphic
scheme whose security relies on the hardness of SSSP as well as that of the
Approximate Greatest Common Divisor problem (AGCD). The AGCD prob-
lem, introduced by Howgrave-Graham in [28], is to recover a secret integer p
from many approximate multiples qi · p + ri of p (see Section 2 for a formal
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 513–536, 2015.
DOI: 10.1007/978-3-662-46800-5 20
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definition). The efficiency of the DGHV scheme has been improved in a series of
works [14,17–19,29], and recently adapted to devise a graded encoding scheme
serving as an approximation to cryptographic multilinear maps [16].

The other main family of fully homomorphic schemes was initiated by Brak-
erski and Vaikuntanathan, in [9,10]. They proposed two fully homomorphic
schemes with similar designs. One was relying on the hardness of the Learning
With Errors problem (LWE) from [40,41] while the other used the less under-
stood Ring Learning With Errors problem from [31] to gain on the efficiency
front. Note that in both cases, the SSSP hardness assumption is not required
anymore. A series of subsequent works proposed efficiency and security improve-
ments, as well as implementations [3,5,6,12,24,25,27].

The co-existence of these two main design strategies for fully homomorphic
encryption is due to the combination of circumstances. On one hand, it is not
known how the underlying hardness assumptions compare: there is no known
reduction from AGCD and SSSP to LWE (or its ring variants), and reciprocally.
On the other hand, both approaches seem to lead to implementations whose
performances are relatively comparable.

Contributions. This work contains two main results that together lead to a
better understanding of the relationship between the AGCD-based and LWE-
based fully homomorphic encryption schemes.

Our first contribution is a reduction from LWE to a new and quite natural
decision variant of AGCD. Informally, the goal is to distinguish between random
approximate multiples qip + ri of a random p and integers uniformly chosen
in an interval, with non-negligible distinguishing advantage and non-negligible
probability over the choice of p. This AGCD variant is clearly no easier than
the search variant considered in [20]. Our reduction implies that for certain
distributions for p, the ri’s and the qi’s, AGCD is no easier than LWE. It may be
combined with Regev’s quantum reduction [40,41] from the approximate variant
of the shortest independent vectors problem (SIVPγ) to LWE. Concretely, if we
assume that SIVPγ in dimension n with γ = poly(n) is exponentially hard to
solve (quantumly) with respect to n, which is compatible with the state of the
art algorithms for SIVP (see [34]), then AGCD is also exponentially hard to
solve, even for bit-sizes of p, ri, qi that are quasi-linear in n.

Our second contribution is a fully homomorphic encryption scheme with
security based on the hardness of our AGCD variant. In particular, the security
does not rely on the presumed hardness of SSSP.1 The scheme is a variant of
the DGHV encryption scheme that embeds the plaintext message in the most
significant bit modulo p of an AGCD sample: a ciphertext c corresponding to
a plaintext m is of the form c = qp + �p/2�m + r. Parameters may be set so
that security relies on the quantum hardness of SIVPγ in dimension n with γ =
nO(log n), while the secret key, public/evaluation key and ciphertext expansion
remain bounded as Õ(λ), Õ(λ3) and Õ(λ), where λ is such that all known attacks
require time 2Ω(λ).
1 We still require a circular security assumption, like all known fully homomorphic

encryption schemes.
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Compared to DGHV, we obtain improved asymptotic efficiency and security
solely relying on the hardness of LWE. The security and performance are quite
similar to those of Brakerski’s LWE-based scheme [5]. This is no coincidence, as
both contributions build upon ideas from Brakerski’s work.

Technical Overview. The reduction from LWE to AGCD relies on several
sub-reductions. We use the dimension-modulus trade-off for LWE from [8] and
start from 1-dimensional LWE with an exponential modulus q. Informally, the
goal is to distinguish from uniform the distribution (a, a · s+ e) ∈ (1qZ)/Z×R/Z
with a uniform, e small and s an integer. We reduce this variant of LWE to
another one where a is instead uniformly sampled in R/Z. The computational
irrelevance of the discretization parameter q is implicit in [5,8]: we go one small
step further by simply removing it. We then reduce this one-dimensional scale-
invariant variant of LWE to the problem considered by Regev in [38] and inspired
from [1]. The problem consists in distinguishing from uniform samples of the form
(k + e)/s ∈ R/Z, where k is uniformly sampled in [0, s) and e is a small noise.
A converse reduction was sketched in the appendix of [42], and our reduction
was sketched by Oded Regev in a private communication [43]. We formalize the
latter reduction. Our chain of reductions improves over the result of [38] in that
for comparable hardness assumptions our reduction allows to take a bitsize for s
that is the square root of that allowed by [38]. Finally, we scale and re-discretize
samples (k + e)/s ∈ R/Z to obtain a reduction from the latter problem to a
decision variant of AGCD.

Our encryption scheme is inspired from that of [38] and the LWE-based
Brakerski’s fully homomorphic encryption scheme [5]. It is scale-invariant in the
sense that it remains unchanged if we multiply both the secret key p and the
ciphertext by the same quantity. It does not use a hidden greatest common divi-
sor that is a square as in the Coron et al. scale invariant version of the DGHV
scheme [17]. Homomorphic addition comes without extra work. For homomor-
phic multiplication, we adapt the dimension-reduction technique from [9], that
uses (invalid) encryptions of the bits of secret p (we assume that it is safe to
publish these data, hence making a circular-security assumption). Finally, we
bound the multiplicative depth of the decryption circuit is bounded as O(log λ)
where λ refers to the security parameter. As the parameters may be set so that
our homomorphic scheme supports this multiplicative depth, it is hence possible
to bootstrap it [22], leading to a fully homomorphic encryption scheme. This
allows us to circumvent the SSSP hardness assumption made in prior variants
of the DGHV encryption scheme.

Finally, we propose a modification of our scheme in which the ciphertext
bit-size is reduced. This is achieved by truncating the least significant bits of the
ciphertext, which is made possible by the fact that the plaintext is not embedded
into these. As a result, the ciphertext size is almost as low as γ − ρ, where γ is
the bit-length of the AGCD samples and ρ is the bit-length of the AGCD noise.
We remark that one can additionally use the technique of [19] to compress the
public key.
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Open Problems. Our results show that the DGHV fully homomorphic encryp-
tion scheme [20] can be made to fit into the LWE landscape. The modified
scheme asymptotically outperforms DGHV (and all subsequent variants), but
its performance only matches Brakerski’s LWE-based scheme [5]. Further, there
exist recent LWE-based fully homomorphic encryption schemes with strength-
ened security [3,11,27],2 and efficiency can be increased if one relies on the ring
variant of LWE problem.

With this state of affairs, it may be tempting to drop the AGCD approach
altogether. We prefer a more optimistic interpretation of our work. First, it
gives greater confidence into the hardness of AGCD and simplifies AGCD-based
encryption. This clearer landscape could serve as a firmer grounding for further
developments. The AGCD problem can be seen as another way of expressing
LWE: it may turn out to be more convenient for cryptographic design. Finally,
the analogy does not seem to be complete: some variants of DGHV rely on a
modification of AGCD in which a noiseless multiple of the secret integer p is
published [18] (the security of these variants relies on an extra hardness assump-
tion related to factoring). We are not aware of a similar problem in the LWE
landscape.

Our scheme is relatively slow (compared to those based on Ring LWE), but
several existing techniques could be exploited to accelerate it. For instance, it
may be possible to pack more plaintexts into a single ciphertext, similarly to [14].
It may also be possible to refine the bootstrapping step rather than looking
at decryption as a generic binary circuit. Finally, our variant with truncated
ciphertexts raises the question of taking AGCD instances with small (γ − ρ). To
thwart attacks based on exhaustive search, we should have γ −ρ ≥ λ+Ω(log λ).
If γ − ρ ≈ λ + Ω(log λ) turns out to be safe, then the ciphertext bit-sizes of our
variant scheme based on truncation can be made quite small.

Road-Map. We describe our LWE to AGCD reduction in Section 2. In Section 3,
we describe our AGCD-based scheme, and we show in Section 4 how it may be
extended into a fully homomorphic encryption scheme. Section 5 contains a
modification of the scheme with smaller ciphertexts.

Notation. We use standard Landau notations. When manipulating reals, we
in fact manipulate finite-precision approximations, with polynomially many bits
of precision. If x is a real, then �x� refers to the nearest integer to x, rounding
upwards in case of a tie. The notation log refers to the base-2 logarithm. We use
the notation (ai)i=1,...,k or simply (ai)i for a vector (a1, . . . , ak). Given x, p ∈ R,
we let [x]p denote the unique number in (−p/2, p/2] that is congruent to x
modulo p. The notation is extended to vectors x ∈ R

n in the obvious way. We
let T denote the torus R/Z. For an integer q ≥ 1, we let Tq denote the set
{0, 1/q, . . . , (q − 1)/q} with addition modulo 1.

We use a ← A to denote the operation of uniformly sampling an element
a from a finite set A. When D is a distribution, the notation a ← D refers to
2 Note that it may be possible to adapt these techniques to the AGCD framework. A

DGHV variant was proposed in appendix of [27].
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sampling a according to distribution D. We recall that the statistical distance
between two distributions D1 and D2 with supports contained in a common
measurable set is half the �1-norm of their difference.

If X is a set of finite weight, we let U(X) denote the uniform distribution
over X. For a parameter s > 0, we let Ds denote the (continuous) Gaussian
distribution of parameter s, i.e., the law over R with density function x �→
exp(−πx2/s2)/s. We write D≤s to refer to a Ds′ for some s′ ≤ s. If Λ ⊆ R

n is a
full-rank lattice, s > 0 and c ∈ R

n, we let DΛ,s,c denote the (discrete) Gaussian
distribution with support Λ and density function x �→ exp(−π‖x − c‖2/s2)/C
with C =

∑
x∈Λ exp(−π‖x − c‖2/s2). When c = 0, we omit the last subscript.

We recall a few properties of Gaussians in Appendix A.
We say that a distribution D over Zn is (B, ε)-bounded if Prx←D[‖x‖ ≤ B]] ≥

1 − ε. We say that D is (B, δ, ε)-contained if Prx←D[‖x‖ ∈ [δB,B]] ≥ 1 − ε. For
example, for all ε ∈ (0, 1/2), the distribution DZn,r is (B, ε)-bounded, with
B = O(r

√
n ln(n/ε)) (see [32]). If r = Ω(

√
ln(1/ε)), then the distribution DZ,r

is (B, δ, ε)-contained, with B = O(r
√

ln(1/ε)) and δ = ε/
√

ln(1/ε).
Throughout the paper, we let λ denote the security parameter: all known

valid attacks against the cryptographic scheme under scope should require 2Ω(λ)

bit operations to mount.

2 Hardness of Approximate GCD

We exhibit a reduction from the Learning With Errors problem (LWE) to a
variant of the Approximate Greatest Common Divisor problem (AGCD). We
first introduce the precise problems under scope.

We will consider the following decision variant of AGCD. The corresponding
search variant (consisting in finding the unknown p) is frequent in the literature.
There exists a (trivial) reduction from the search variant to the decision variant.
Other decision variants of AGCD were considered in [17,19,29]. We believe that
our decision variant of AGCD is more natural as it is less application-driven.

Definition 1 (AGCD). Let p,X ≥ 1, and φ a distribution over Z (that can
depend on p). We define AAGCD

X,φ (p) as the distribution over Z obtained by sam-
pling q ← Z ∩ [0,X/p) and r ← φ, and returning x = q · p + r.

Let D be a distribution over Z∩ [0,X). AGCDX,φ(D) consists in distinguish-
ing, given arbitrarily many independent samples, between the uniform distribu-
tion over Z ∩ [0,X) and the distribution AAGCD

X,φ (p) for a fixed p ← D. We use
the notation AGCDm

X,φ(D) to emphasize the number of samples m used by the
eventual distinguisher.

We say that an algorithm A is an (ε1, ε2)-distinguisher for AGCDX,φ(D) if,
with probability ≥ ε2 over the randomness of p ← D, its distinguishing advantage
between AAGCD

X,φ (p) and U(Z ∩ [0,X)) is ≥ ε1.3

3 We do not explicitly focus on the distinguishing run-times, as our reductions almost
preserve run-times.
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For ρ, η, γ ≥ 1, the (ρ, η, γ)-AGCD problem is AGCD2γ ,φ(D) with D the
uniform distribution over η-bit prime integers and φ the uniform distribution
over Z ∩ (−2ρ, 2ρ).

We will not rely on (ρ, η, γ)-AGCD in our constructions, but we recall it for
comparison convenience with prior works. First, we do not need to impose that
the secret p is prime. In fact, there is no known attack that exploits the factor-
ization of p. Also, if the distribution D is sufficiently well-behaved, restricting D
to prime integers (e.g., by rejection sampling) would result in a problem that is
no easier, as the density of prime numbers is non-negligible. Second, we do not
know how to reduce LWE to (ρ, η, γ)-AGCD. In particular, our reduction leads
to distributions D and φ that are somewhat more cumbersome. However, from
the perspective of cryptographic constructions, they may be used in the exact
same manner as their (ρ, η, γ)-AGCD counterparts.

LWE was introduced by Regev [41]. We use the variant from [8].

Definition 2 (LWE). Let n, q ≥ 1, s ∈ Z
n and φ a distribution over R. We

define ALWE
q,φ (s) as the distribution over T

n
q × T obtained by sampling a ← T

n
q

and e ← φ, and returning (a, 〈a, s〉 + e).
Let D be a distribution over Zn. LWEn,q,φ(D) consists in distinguishing, given

arbitrarily many independent samples, between U(Tn
q × T) and ALWE

q,φ (s) for a
fixed s ← D.

In [41], Regev described a quantum reduction from several standard (worst-
case) problems over n-dimensional Euclidean lattices to LWEn,p,D≤α

(U((Z ∩
[0, p))n)), where the modulus p may be chosen as a polynomial in n and the
parameter α may be set as poly(n)/γ with γ referring to the approximation factor
of the considered lattice problem. The reduction assumes that α ≥ Ω(

√
n/q).

Regev’s reduction was partly dequantized in [36] and [8]. Further, a modulus-
dimension trade-off was exhibited in [8]: in particular, if q = Ω(pn) and α ≤
poly(n)β, then LWE1,q,D≤α

(U(Z∩ [0, q))) is no easier than LWEn,p,D≤β
(U((Z∩

[0, p))n)).
In [4], Applebaum et al gave an LWE self-reduction from secret distribution

U((Z∩ [0, p))n) to secret distribution DZn,O(αp) which reduces the distinguishing
advantage from ε to Ω(ε), if α ≥ Ω(

√
ln(n/ε)/p).

The main result of this section is the following.

Theorem 1. Let α, β ∈ (0, 1), X,B,m, q ≥ 1, and D a distribution over Z.
Assume that there exists an (ε1, ε2)-distinguisher for AGCDm

X,�D≤α�(�X/D�). If
D is (B, δ, ε2/2)-contained, q ≥ Ω(

√
ln(m/ε1)B/β), X ≥ Ω(mB2/(βε1)) and

β ≤ O(αδB/X), then there exists an (Ω(ε1), Ω(ε2δβ/
√

ln(m/ε1))-distinguisher
for LWEm

1,q,D≤β
(D).

Setting Parameters in AGCD. We discuss a possible choice of secure para-
meters for AGCD.

Recall that there exists a (quantum) reduction from λ-dimensional lattice
problems with approximation factors λ

˜O(1), to LWE1,q,D≤β′ (DZ,σ), for q = 2 ˜O(λ),
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β′ = λ− ˜Ω(1) and σ = O(β′q). We can hence reasonably assume that for these
parameters, the time required to solve LWE1,q,D≤β′ (DZ,σ) is 2 ˜Ω(λ), even for ε1, ε2

as small as 2− ˜Ω(λ).
We set β =

√
λβ′. As we can publicly increase the Gaussian noise of the LWE

samples, LWE1,q,D≤β
(DZ,σ) is no easier than the latter variant. Now, Theorem 1

depends quite importantly on the potential smallness of samples from D. We
avoid such small values by rejection sampling. We define D as follows: Sample
a fresh s ← DZ,O(σ) until s ∈ (σ/2, 2σ). As a result, we can set B = O(σ) and
δ = Ω(1). The condition on q in Theorem 1 is fulfilled. If we set X = 2λσ2 and
α = Ω(βX/σ) ≈ β2λσ, then all conditions are fulfilled, guaranteeing exponential
hardness of AGCDm

X,�D≤α�(D

σ), with D


σ = �X/D�.
To ease comparison with prior works, we define

γ = log X, η = log X − log σ, and ρ = log α + (log λ)/2.

The bit-size of each AGCD sample pq + r is ≈ γ, the bit-size of the AGCD
secret p is ≈ η, and the bit-size of each noise term r is bounded by ρ, with
probability exponentially close to 1 (in the analysis of the primitives, we will
assume that each fresh noise r has magnitude ≤ 2ρ, hence forgetting about the
unlikely event that one of the noises is bigger). With our choices of X and α, we
have: γ ≈ λ + 2 log σ, η ≈ λ + log σ and ρ ≈ η + log(

√
λβ).

Proof Overview. The proof of Theorem 1 consists of three sub-reductions.
We first show that LWE is essentially equivalent to a variant of LWE that does
not involve any discretization parameter q. That variant, which we name scale-
invariant LWE (SILWE), is implicit in [5,8]. We then show that SILWE is essen-
tially equivalent to the problem studied in [39] (and inspired from [1]), which we
name zero-dimensional LWE (ZDLWE). Finally, the third sub-reduction is from
ZDLWE to AGCD.

In Appendix B, we give converse reductions for each one of the three sub-
reductions. This implies that from the hardness viewpoint, AGCD and LWE are
quite closely related.

2.1 Scale-Invariant LWE

We consider the following LWE variant, in which the modulus q does not play a
role anymore.

Definition 3 (Scale-Invariant LWE). Let n ≥ 1, s ∈ Z
n and φ a distribution

over R. We define ASILWE
φ (s) as the distribution over Tn×T obtained by sampling

a ← T
n and e ← φ, and returning (a, 〈a, s〉 + e).

Let D be a distribution over Z
n. SILWEn,φ(D) consists in distinguishing,

given arbitrarily many independent samples, between U(Tn ×T) and ASILWE
φ (s)

for a fixed s ← D.

Lemma 1. Let α, β ∈ (0, 1), m,n, q,B ≥ 1 and D a distribution over Z
n.

Assume that there exists an (ε1, ε2)-distinguisher for SILWEm
n,D≤α

(D). If D is
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(B, ε2/2)-bounded, q ≥ Ω(
√

ln(mn/ε1)B/β) and β ≤ O(α), then there exists an
(Ω(ε1), Ω(ε2))-distinguisher for LWEm

n,q,D≤β
(D).

Proof. We map each input sample (a, b) for LWEn,q,D≤β
to an input sample

(a′, b′) for SILWEn,D≤α
, as follows: Sample f ← Dn

r with r = Ω(
√

ln(mn/ε1)/q);
set a′ = a + f and b′ = b. We show below that, with probability ≥ 1 − ε2/2
over the randomness of s ← D, this transformation maps the distributions
U(Tn

q × T) and ALWE
q,D≤β

(s) to distributions within statistical distances O(ε1/m)
from U(Tn × T) and ASILWE

D≤α
(s), respectively.

By Lemma 10, the distribution of f mod 1 is within statistical dis-
tance O(ε1/m) from U(Tn), and the distribution of f conditioned on (f mod 1)
is DZn/q,r. The former imples that a′ is uniformly distributed over T

n. Now,
we consider two cases. If b was uniformly distributed in T independently of a,
then b′ is uniformly distributed in T independently of a′. Now, assume that
b = 〈a, s〉 + e for some fixed s and e ← D≤β . Then b′ − 〈a′, s〉 = e − 〈f , s〉. By
Lemma 12, the distribution of e − 〈f , s〉 (conditioned on a′) is within statistical
distance O(ε1/m) from D≤

√
β2+‖s‖2r2 , assuming that (1/r2 + ‖s‖2/β2)−1/2 ≥

Ω(
√

ln(mn/ε1)/q). We have ‖s‖ ≤ B with probability ≥ 1 − ε2/2 (over the
randomness of s). When this is the case, we obtain that e − 〈f , s〉 (conditioned
on a′) is within statistical distance O(ε1/m) from D≤

√
β2+‖s‖2r2 (by using the

condition on q and the definition of r). Finally, the assumptions on β, B and r
ensure that

√
β2 + ‖s‖2r2 ≤ α. ��

2.2 Zero-Dimensional LWE

We now show that SILWE is essentially equivalent to the problem studied by
Regev in [39]. The latter may be viewed as a zero-dimensional variant of LWE,
as the provided samples are from T rather than T

n
q × T.

Definition 4 (Zero-Dimensional LWE). Let s ∈ Z and φ a distribution
over R. We define AZDLWE

φ (s) as the distribution over T obtained by sampling
k ← Z ∩ [0, s) and e ← φ, and returning [(k + e)/s]1.

Let D be a distribution over Z. ZDLWEφ(D) consists in distinguishing, given
arbitrarily many independent samples, between U(T) and AZDLWE

φ (s) for a fixed
s ← D.

The following result and its proof are derived from [43].

Lemma 2. Let α, β ∈ (0, 1), B ≥ 1 and D a distribution over Z. Assume that
there exists an (ε1, ε2)-distinguisher for ZDLWEm

D≤α
(D). If D is (B, δ, ε2/2)-

contained and β ≤ O(α), then there exists an (Ω(ε1), Ω(ε2δα/
√

ln(m/ε1)))-
distinguisher for SILWEm

1,D≤β
(D).

Proof. We describe a reduction from SILWE to ZDLWE. Let r = Θ(
√

ln(m/ε1))
(chosen to be able to use Lemma 10) and δ′ ≤ Θ(δα/

√
ln(m/ε1)). The reduction
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produces a guess s′ of the SILWE secret s by sampling s′ ← Bδ′ ·(Z∩ [0, �1/δ′�));
then it maps any input sample (a, b) for SILWE1,D≤β

to an input sample y for
ZDLWED≤α

, by setting y = [a − b/s′]1.
This transformation maps U(T × T) to U(T). We now show that it maps

ASILWE
D≤β

(s) to a distribution that is within statistical distance O(ε1/m) from
AZDLWE

D≤α
(s), with probability Ω(ε2δ′) over the choice of s ← D. Thanks to the

assumption on D, we have that |s| ∈ [δB,B], with probability ≥ 1 − ε2/2 over
the randomness of s. The success probability of the ZDLWED≤α

distinguisher
conditioned on that event is ≥ ε2/2. Further, with probability ≥ Ω(δ′) over
the choice of s′, we have |s′ − s| ≤ Bδ′. We now assume that |s| ∈ [δB,B],
|s′ − s| ≤ Bδ′ and that the ZDLWED≤α

distinguisher suceeds. This event has
weight Ω(ε2δ′).

By Lemma 10, the distribution of a is within statistical distance O(ε1/m)
of the distribution obtained by sampling k ← Z ∩ [0, s) and f ← Dr, and
returning [(k + f)/s]1. With these notations, we have b = f + e mod 1 and
y = k/s+f(1/s−1/s′)−e/s′ mod 1. The distribution of sy−k is within statistical
distance O(ε1/m) of D≤α′ with α′ = ((βs/s′)2 + r2(1 − s/s′)2)1/2. Thanks to
the properties on s and s′, we have |s/s′| ≤ O(1) and |1 − s/s′| ≤ O(δ′/δ). This
leads to α′ ≤ O(β + rδ′/δ). The condition on β and the choice of δ′ ensure that
α′ ≤ α. ��

Note that the hardness result obtained here via LWE is stronger than the
one from [39]. Indeed, the present approach leads to a (quantum) reduction from
standard n-dimensional lattice problems with polynomial approximation factors
to ZDLWE with an s of bitsize Õ(n), whereas [39] leads to an s of bitsize Õ(n2).
However, the latter reduction is classical rather than quantum.

2.3 Reducing ZDLWE to AGCD

Lemma 3. Let α, β ∈ (0, 1), X,B ≥ 1 and D a distribution over Z. Assume
that there exists an (ε1, ε2)-distinguisher for AGCDm

X,�D≤α�(�X/D�). If D is
(B, δ, ε2/2)-contained, X ≥ Ω(mB2/(αε1)) and β ≤ O(αδB/X), then there
exists an (Ω(ε1), Ω(ε2))-distinguisher for ZDLWEm

D≤β
(D).

Proof. Given an input sample y for ZDLWED≤β
, the reduction produces an input

sample x for AGCDDZ,≤α
, as follows: Set x = [�Xy�]X .

If y is uniformly distributed over T, then so is x over Z∩ [0,X). Now, assume
that y = (k+e)/s for some fixed s (sampled from D), k ← Z∩[0, s) and e ← D≤β .
Then x = kp + r − Δ with p = �X/s�, r = �Xe/s� and Δ = �X(k + e)/s� −
k�X/s� − r. We have |Δ| ≤ 2 + k ≤ O(B), with probability ≥ 1 − ε2/2 over the
choice of s ← D. The distribution of r is �Dα′� for some α′ ∈ [Xβ/B,Xβ/(δB)]
(where we used the fact that |s| ≥ δB, which holds with high probability over
the choice of s, by assumption on D). We observe that the statistical distance
between �Dα′� and �Dα′� − Δ is O(Δ/α′) ≤ O(B2/(Xβ)) ≤ O(ε1/m).

It now suffices to show that the distribution of k ← Z ∩ [0, s) is statistically
close to the uniform distribution over Z ∩ [0,X/p). A simple calculation shows
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that the statistical distance between the uniform distributions over these two
intervals is O(|X/p − s|/s). By definition of p, we have that |ps − X| ≤ s and
hence |X/(ps) − 1| ≤ 1/p. The latter is O(B/X) ≤ O(ε1/m), thanks to the
assumption on X. ��

Theorem 1 is obtained by combining Lemmas 1, 2 and 3.

3 An AGCD-Based Additive Homomorphic Encryption
Scheme

In this section, we propose an additive homomorphic encryption (AHE) scheme
whose security relies on the hardness of the AGCD problem. This scheme is simi-
lar to the DGHV encryption scheme [20], but the plaintext message is embedded
into the ciphertext c as the most significant bit of c mod p for the secret key p. It
may be viewed as an AGCD adaptation of Regev’s encryption scheme from [38].

We let ρ denote a bound on the bit-length of the error, η the bit-length of
the secret greatest common divisor, and γ the bit-length of an AGCD sample.
The parameter τ refers to the number of encryptions of zero contained in the
public key.

Parameters. We set parameters such that they satisfy the following constraints.

• ρ ≥ λ, to protect against the brute force attacks on the noise such as [13,28].
• γ ≥ Ω( λ

log λ (η − ρ)2) and γ ≤ η2, to thwart the lattice reduction attacks on
AGCD such as the orthogonal lattice attacks [20,35], Lagarias’ simultaneous
Diophantine approximation [30] and the Cohn-Heninger attack [15].

• η will be determined later to support correct decryption. For the moment,
we only suppose that ρ < η.

• τ = γ + 2λ + 2, to be able to use the leftover hash lemma in the security
proof (see Subsection 3.3).

Note that there is some discrepancy with the conditions with prior works on
AGCD. Part of it stems from the fact that we place ourselves in the context of
sub-exponential attackers rather than polynomial-time attackers. Further, once
adapted to this attacker setup, the condition corresponding to thwarting lattice
attacks is γ ≥ Ω(λη2) in prior works. In fact, that condition is too stringent:
lattice attacks are tharted even if our (weaker) condition is satisfied. Moreover,
our condition is compatible with the LWE to AGCD reduction when applied to
exponentially intractable LWE parameters, as explained in Section 2. This has
a significant impact on the asymptotic performance of the scheme, as γ may be
set much smaller.

Concretely, we set ρ = λ, η = ρ + L log λ for an L > 0 to be chosen to
provide desirable functionalities, γ = Ω(L2λ log λ) and τ = γ + 2λ + 2. Note
that the ciphertext size γ is quasi-linear in λ. Assume one wants to rely on the
exponential hardness of lattice problems for approximation factors nO(L) for a
small L. First, one has to set n = Ω(Lλ). In that case, via the reduction from
Section 2, one can set σ = Ω(L2λ log λ), and η′ = cL2λ log λ for some constant c,
ρ′ = η′ − L log λ, γ′ = 2η′ + λ and τ ′ = γ′ + 2λ + 2.
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3.1 The Construction

The scheme AHE is defined as follows:

AHE.KeyGen(λ). Given a security parameter λ, determine parameters
(X,σ, α) and (γ, η, ρ) providing security λ and decryption correctness (see
analysis below). We refer to the discussion just after Theorem 1 for the rela-
tionship between the two parameter sets. Sample p ← D


σ (of bitsize ≈ η).
For 0 ≤ i ≤ τ , sample xi ← AAGCD

X,�Dα�(p). Relabel so that x0 is the largest
and x1 has an odd �x1

p �, and restart if we cannot find such an x1. Output
the secret key sk = p and the public key pk = (x0, x1, . . . , xτ ).

AHE.Encpk(m). Given a message m ∈ {0, 1}, uniformly sample a subset
S ⊆ {1, 2, . . . , τ}, and output

c =

[
∑

i∈S

xi +
⌊x1

2

⌉
m

]

x0

.

AHE.Addx0(c1, c2). Given two ciphertexts c1, c2, output cadd = [c1 + c2]x0 .

AHE.Decsk(c). Given a ciphertext c, output m =
[⌊

2c

p

⌉]

2

.

Note that [�x�]2 may not be equal to �[x]2� for some x ∈ R. In fact, the latter
has value in {0, 1,−1} while the former has value in {0, 1}. However, they are
congruent modulo 2.

3.2 Correctness

We analyze the noise growth at encryption and addition, and provide a sufficient
condition for decryption correctness.

Lemma 4 (Encryption noise). Let (sk = p, pk = (x0, . . . , xτ )) ←
AHE.KeyGen(λ) and c ← AHE.Encpk(m) for a message m ∈ {0, 1}. Then

c = r +
⌊p

2

⌉
m mod p

for some r with |r| ≤ (2τ + 1/2)(2ρ − 1) + 1/2.

Proof. Write xi = pqi + ri with qi ∈ Z and ri = [xi]p for 0 ≤ i ≤ τ . We have
�x1

2 � = pq1
2 + r1

2 + δ for |δ| ≤ 1/2. Since q1 is odd, we have, modulo p:

c =
∑

i∈S

xi +
⌊x1

2

⌉
m − kx0 =

∑

i∈S

ri − kr0 +
⌊p

2

⌉
m +

(r1
2

+ δ
)

m,

for some k ∈ [0, τ ]. Therefore, we have c = r +
⌊

p
2

⌉
m mod p for some r with

|r| ≤ (2τ + 1/2)(2ρ − 1) + 1/2. ��
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Lemma 5 (Addition noise). Let (sk = p, pk = (x0, . . . , xτ )) ←
AHE.KeyGen(λ) and ci ← AHE.Encpk(mi) with ci = ri +

⌊
p
2

⌉
mi mod p

for all i ∈ {1, 2}. If cadd ← AHE.Addx0(c1, c2), then

cadd = r +
⌊p

2

⌉
[m1 + m2]2 mod p,

for some r with |r| ≤ |r1 + r2| + 2ρ.

Proof. We have, modulo p:

cadd = c1 + c2 − δx0 = r1 + r2 − δr0 +
⌊p

2

⌉
[m1 + m2]2 − δ′

for some δ, δ′ ∈ [−1, 1]. Hence we can write cadd = r +
⌊

p
2

⌉
[m1 +m2]2 mod p for

some r with |r| ≤ |r1 + r2| + 2ρ. ��
Lemma 6 (Decryption noise). Let p a positive integer and m ∈ {0, 1}. Given
an integer c, we have

AHE.Decp(c) = m if c = r +
⌊p

2

⌉
m mod p with |r| <

p

4
− 1

2
.

Proof. Write c = pq + r +
⌊

p
2

⌉
m. Then, for some b ∈ {0, 1}:

⌊
c · 2

p

⌉
=

⌊
2q + m +

2r + b

p

⌉
= 2q + m +

⌊
2r + b

p

⌉
,

which is congruent to m modulo 2 when |r| < p
4 − 1

2 . ��
Theorem 2 (Correctness). Let � ≥ 1. Let (sk = p, pk = (x0, . . . , xτ )) ←
AHE.KeyGen(λ) and ci ← AHE.Encpk(mi) for i = 1, . . . , � and mi ∈ {0, 1}.
Let c = [

∑
i=1 ci]x0 . Then we have

AHE.Decp(c) =

[
∑

i=1

mi

]

2

when � ≤ 2η−ρ

6(4τ + 1)
.

In particular, a fresh ciphertext (i.e., with � = 1) decrypts correctly if η − ρ ≥
log(24τ + 6).

Proof. For 1 ≤ i ≤ �, write ci = pqi + ri + �p
2�mi for some integers qi, ri, and

mi with |ri| ≤ (2τ + 1/2)(2ρ − 1) + 1/2 and mi ∈ {0, 1} by Lemma 4. Since
|∑

i=1 ci| ≤ �x0/2, there exists a k ∈ Z ∩ [0, �/2] such that, modulo p:

c =
∑

i=1

ri − kr0 +
⌊p

2

⌉
[

∑

i=1

mi

]

2

+
⌊p

2

⌉
(

∑

i=1

mi −
[

∑

i=1

mi

]

2

)

.

So c is correctly decrypted when r :=
∑

i=1 ri−kr0+ 1
2

(∑
i=1 mi − [

∑
i=1 mi]2

)

is small. By applying Lemmas 4 and 5, we have |r| ≤ (3�/2)((2τ +1/2)(2ρ −1)+
1/2) + �/2. It is less than p

4 − 1
2 if � ≤ 2η−ρ

6(4τ+1) . The proof may be completed by
using Lemma 6. ��

To guarantee correct decryption, it suffices to take η ≥ ρ + log(24τ + 6).
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3.3 Security

We first recall the classical Leftover Hash Lemma (LHL) over finite sums modulo
an integer as in [20].

Lemma 7. Sample x1, . . . , xτ ← Zx0 independently, sample s1, . . . , sτ ← {0, 1},
and set y =

∑τ
i=1 sixi mod x0. Then (x1, . . . , xτ , y) is within statistical distance

1
2

√
x0/2τ from U(Zτ+1

x0
).

This LHL is used to show that the AHE ciphertext is computationally indis-
tinguishable from a uniform integer modulo x0, independently of the encrypted
plaintext bit.

Theorem 3 (Security). Under the assumptions that AGCDX,�Dα�(D

σ) is hard

and that τ ≥ log X+2λ+2, the AHE scheme described above is IND-CPA secure.

Proof. The key generation procedure produces independent xi ← AAGCD
X,�Dα�(p).

With probability exponentially close to 1, there exists i such that xi is not the
largest, and �xi/p� is odd.

Now, in the IND-CPA security experiment, we replace the sampling of the
xi’s by xi ← U(Z ∩ [0,X)), independently, for i = 0, . . . , τ . We still sort them
so that x0 is the largest, and x1 is such that �x1/p� is odd (we resample if we
cannot find such an x1). The resulting public key distribution is computationally
indistinguishable from the genuine public key distribution, under the assumption
that AGCDX,�Dα�(D


σ) is hard.
With this modified key generation procedure, the distribution of (xi)2≤i≤τ

is within exponentially small statistical distance from U((Z∩ [0, x0))τ−1). Using
Lemma 7 and the assumption on τ , the tuple (x2, · · · , xτ ,

∑
i>1 sixi mod x0) is

within exponentially small statistical distance from U((Z∩[0, x0))τ ). As a result,
the distribution of the challenge ciphertext in the IND-CPA experiment is within
exponentially small statistical distance from U(Z∩ [0, x0)), independently of the
underlying plaintext. In that experiment, the distinguishing advantage of the
adversary is exponentially small. ��

4 A Scale-Invariant AGCD-Based FHE

In this section, we first extend the AHE scheme into a somewhat homomor-
phic scheme allowing a certain amount of homomorphic data manipulation, and
then use Gentry’s bootstrapping technique [22] to obtain a fully homomorphic
encryption scheme.

We adapt some notations from [7] to our context. Let n be a positive integer.
Given x ∈ Z ∩ [0, 2n) and y ∈ R, define

BDn(x) = (x0, x1, . . . , xn−1) ∈ {0, 1}n with x =
n−1∑

i=0

xi2i

Pn(y) = (y, 2y, . . . , 2n−1y) ∈ R
n.
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Then we can see that

〈BDn(x),Pn(y)〉 =
n−1∑

i=1

xi(2iy) = xy.

We also recall the definition of a tensor product on the vector space R
n

(u1, . . . , un) ⊗ (v1, . . . , vn) = (u1v1, u1v2, . . . , u1vn, . . . , unv1, . . . , unvn),

and its relation with the inner product

〈u ⊗ u′,v ⊗ v′〉 = 〈u,v〉 · 〈u′,v′〉.

4.1 The Construction

The scheme SHE is identical to AHE, except concerning the following two
procedures. Its security is inherited from that of AHE.

SHE.MultKeyGen(sk). Let p = sk. For all k ∈ Z ∩ [0, 2γ − 2], sam-
ple q∗

i,j , r
∗
i,j as in AAGCD

X,�Dα�(p) and publish a vector y = (pq∗
i,j + r∗

i,j)0≤i,j<γ +
p
2 ([Pγ(2/p)]2 ⊗ [Pγ(2/p)]2) as a multiplication key.

SHE.Multx0,y(c1, c2). Given two ciphertexts c1, c2, output

cmult := [〈BDγ(c1) ⊗ BDγ(c2),y〉]x0 .

The (i, j) component of the γ2-dimensional vector y is a fake encryption of
[2i+1/p]2 · [2j+1/p]2, because it is not decrypted into [2i+1/p]2 · [2j+1/p]2.

4.2 Correctness

We now prove the correctness of the homomorphic multiplication procedure.

Lemma 8. Let p be a positive integer. If c = pq + r + �p/2�m ∈ Z ∩ [0, 2γ − 2]
with q, r ∈ Z and m ∈ {0, 1}, then we have

〈BDγ(c), [Pγ(2/p)]2〉 = 2a + m + ε

for an integer a with |a| ≤ (γ − η + 4)/2 and a real ε with |ε| < (2|r| + 1)/p.

Proof. Let �p/2� = (p+ b)/2, b ∈ {0, 1}. Then, 2c/p = 2q +m+ ε, which is equal
to m + ε modulo 2 for ε = (2r + b)/p with |ε| ≤ (2|r| + 1)/p.

Since BDγ(c) is an integer, we have, modulo 2:

〈BDγ(c), [Pγ(2/p)]2〉 ≡ 〈BDγ(c),Pγ(2/p)〉 = 2c/p.

So, 〈BDγ(c), [Pγ(2/p)]2〉 = 2a + m + ε for some integer a. Using 2/p + 22/p +
· · · + 2η−2/p = 2(2η−2 − 1)/p < 1, we have

|〈BDγ(c), [Pγ(2/p)]2〉| ≤
γ−1∑

i=0

∣
∣
∣
∣

[
2i+1

p

]

2

∣
∣
∣
∣ ≤ γ − η + 3,

which implies |a| ≤ (γ − η + 4)/2.
��
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Lemma 9 (Multiplication noise). Let (sk = p, pk = (x0, . . . , xτ )) ←
AHE.KeyGen(λ) and y ← SHE.MultKeyGen(sk). Given c1, c2 ∈ Z ∩
(−x0/2, x0/2] satisfying ci = ri + �p

2�mi mod p for i ∈ {0, 1}, we have

[〈BDγ(c1) ⊗ BDγ(c2),y〉]x0 = pq + r +
⌊p

2

⌉
m1m2

for some q, r ∈ Z with |r| < (γ − η + 6)(|r1| + |r2|) + γ2 · 2ρ+1.

Proof. We have

y = (pq∗
i,j + r∗∗

i,j)0≤i,j<γ +
p

2
([Pγ(2/p)]2 ⊗ [Pγ(2/p)]2) ,

for some r∗∗
i,j ∈ r∗

i,j + [−1/2, 1/2] for all i, j. We now use Lemma 8:

〈BDγ(c1) ⊗ BDγ(c2),y〉
= 〈BDγ(c1) ⊗ BDγ(c2), (pq

∗
i,j + r

∗∗
i,j)i,j〉 +

p

2
〈BDγ(c1), [Pγ(2/p)]2〉 · 〈BDγ(c2), [Pγ(2/p)]2〉

=
∑

(i,j)∈J

(

pq
∗
i,j + r

∗∗
i,j

)

+
p

2
(m1 + ε1 + 2a1)(m2 + ε2 + 2a2),

for some index set J ⊆ [0, γ)2, and some a1, a2 ∈ Z, ε1, ε2 ∈ R that satisfy
|a1|, |a2| ≤ (γ − η + 4)/2, |ε1| < (2|r1| + 1)/p and |ε2| < (2|r2| + 1)/p. Since
p
2 ((m1 + 2a1)(m2 + 2a2) − m1m2) is a multiple of p, we have that, for some
integer q

[〈BDγ(c1) ⊗ BDγ(c2),y〉]x0 = pq + r +
⌊p

2

⌉
m1m2,

where

r =
∑

(i,j)∈J

r∗∗
i,j +

p

2
(ε2(m1 + 2a1) + ε1(m2 + 2a2) + ε1ε2) − 1

2
m1m2 − kr0

for some k ∈ [−1, γ2]. Therefore, we have |r| < γ2 · 2ρ+1 +(γ − η +6)(|r1|+ |r2|).
Note that r is an integer because all of BDγ(c1), BDγ(c2) and y has only integer
components. ��

Let ci ← SHE.Encpk(mi) with ci = ri +
⌊

p
2

⌉
mi mod p for i ∈ {1, 2}, cadd ←

SHE.Addpk(c1, c2) and cmult ← SHE.Multpk(c1, c2). From Lemmas 5 and 9,
we can see that

cadd = radd +
⌊p

2

⌉
[m1 + m2]2 mod p

cmult = rmult +
⌊p

2

⌉
[m1m2]2 mod p,

with |radd| ≤ |r1|+ |r2|+2ρ and |rmult| ≤ (γ −η+6)(|r1|+ |r2|)+γ2 ·2ρ+1. Both
the addition and multiplication in our scheme increase noise only additively.
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Definition 5. A scheme HE is L-homomorphic if for any depth L binary cir-
cuit C and any set of inputs m1, . . . ,m ∈ {0, 1}, it holds that

HE.Decsk(HE.Evalevk(C, (c1, . . . , c)) = C(m1, . . . ,m)

with probability ≥ 1 − λ−ω(1), where (pk, evk, sk) ← HE.KeyGen(λ) and ci ←
HE.Encpk(mi) for all i ≤ �.

Theorem 4. The scheme SHE is L-homomorphic if

η − ρ ≥ L(1 + log(γ − η + 6)) + 3 + log
(

2τ +
γ2

γ − η + 6

)
.

Proof. For each i ∈ [0, L], let ci be a ciphertext with ci = ri +
⌊

p
2

⌉
mi mod p

after the evaluation of the i-th level gates. Let Ri be a bound on the noise
magnitude |ri|. First, we have R0 = (2τ + 1/2)(2ρ − 1) + 1/2 by Lemma 4. By
Lemmas 5 and 9, we have that Ri+1 := 2(γ − η + 6)Ri + γ2 · 2ρ+1 is a valid
level (i + 1) bound (for all i ≥ 0). By solving the recurrence equation, we obtain

RL ≤
(

2τ +
γ2

γ − η + 6

)
2ρ+12L(γ − η + 6)L − γ2 · 2ρ+1

γ − η + 6
,

which is at most p
4− 1

2 if (η−ρ) satisfies the condition. In that case, any ciphertext
after evaluation of any circuit of depth L can be correctly decrypted. ��

Combining with ρ = λ, γ = Ω( λ
log λ (η − ρ)2), τ = γ + Ω(λ), we may take

γ = Θ(λL2 log λ). Note that the ciphertext size γ is quasi-linear in the security
parameter λ.

4.3 Bootstrapping

We provide a bound on the multiplicative depth of the decryption circuit corre-
sponding to AHE.Decp(c) = [�2c/p�]2.

We take an approximation z to 2/p such that |z − 2
p | < 2−(γ+η). Write

z =
∑γ+η

i=0 z−i2−i for z−i ∈ {0, 1} for each i. As c ∈ [0, 2γ − 2], we have |cz −
2c/p| < 2−η. Therefore, we have [�cz�]2 = m when c = pq + r + �p

2�m and
|r| < p

4 − 1
2 . Since the η most significant bits of z are zero, the most expensive

step in decryption consists in adding up to γ integers of bit-lengths ≤ 2γ. This
can be implemented with a binary circuit of O(log γ) depth.

By Theorem 4 and [22], SHE is bootstrappable and may be turned into a
fully homomorphic encryption scheme when η−ρ = Ω(log2 γ). For bootstrapping
we publish encryptions of zi’s as a bootstrapping key. This requires space O(γ2).

5 Truncation of Ciphertexts

Since the message bit is embedded into the most significant bit of the cipher-
text modulo p, some least significant bits of the ciphertext are irrelevant to
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decryption correctness. However as we truncate more least significant bits of a
ciphertext, decryption failure probability increases slightly at first and becomes
overwhelming after some point between ρ and η bits of truncation.

Let N = 2ν for a positive integer ν < γ. Given a ciphertext c, define ĉ =
�c/N� so that |Nĉ− c| ≤ N/2. In the following, the quantity ĉ can play a similar
role to that of the corresponding ciphertext c in each component of SHE, for
appropriate ν.

1. In the encryption stage, given ĉ := [
∑

i∈S x̂i + � x̂1
2 �m]x̂0 for some S ⊆ Z ∩

[1, τ ], we have, for some integer k:

Nĉ =
∑

i∈S

xi +
⌊x1

2

⌉

m − kx0 +N
∑

i∈S

(x̂i − xi/N) +Nm

(

⌊ x̂1

2

⌉− ⌊x1

2

⌉

/N

)

− kN(x̂0 − x0/N),

which is equivalent to r + �p
2�m modulo p for |r| ≤ (2ρ+1 + N)(τ + 1).

2. In the decryption stage, given ĉ = �c/N� we have
[⌊

2ĉ

p/N

⌉]

2

= m

if |r| < (p − N)/4 − 1/2 when c = r + �p
2�m mod p.

3. In the addition stage, given ĉ1 and ĉ2, we define ĉadd = [ĉ1 + ĉ2]x̂0 . Then we
can show (similarly to Lemma 5):

Nĉadd = r +
⌊p

2

⌉
[m1 + m2]2 mod p

for |r| ≤ |r1| + |r2| + (2ρ + 3
2N) when ci = pqi + ri + �p

2�m for i ∈ {1, 2}.
4. In the multiplication stage, we use ŷ to be the vector of bit-length (γ − ν)2

obtained by removing all entries (i, j) of y such that i < ν or j ≤ ν. Given
ĉ1 and ĉ2, we set

ĉmult = [BDγ̂(ĉ1) ⊗ BDγ̂(ĉ2), ŷ]x̂0 ,

where γ̂ = γ − ν. We can show that for all i ∈ {1, 2}, we have 〈BDγ̂

(ĉi), [Pγ̂(2N/p)]2〉 = 2ĉi

p/N = 2ai +mi +εi for ai ∈ Z with |ai| ≤ (γ̂ −η+4)/2,

mi ∈ {0, 1} and εi ∈ R with |εi| < 2(|r|+N)
p . Thus ĉmult = pq+r+

⌊
p
2

⌉
m1m2

for some q, r ∈ Z satisfying

|r| < (γ̂ − η + 6)(|r1| + |r2|) + γ̂2 · 2ρ+1,

when ci = ri + �p
2�mi mod p for i ∈ {1, 2}.

5. In the bootstrapping stage, we take z ∈ 2−(γ+η−ρ) to be an approximation
of 2/p with |z − 2

p | < 2−(γ+η−ρ). We have

∥
∥
∥
∥Nĉz − 2

p
c

∥
∥
∥
∥ ≤

(
c +

1
N

)(
2
p

+ 2−(γ+η−ρ)

)
≤ (2ρ+1 + N)

p
.
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Combining with 2c
p = 2q + m + 2r+m

p for c = pq + r + �p
2�m, we have

[�Nĉz�]2 = m if (2r + m + 2ρ+1 + N)/p < 1/2. It is satisfied when |r| <
p/4 − 2ρ − (N + 1)/2. If N ≤ p/4, we have a similar homomorphic capacity
of Theorem 4 and so SHE becomes bootstrappable similarly. In this case,
however, the decryption can be done with a binary circuit of O(log(γ − ρ))
depth.

In the above observations, we can see that encryption noise and addition noise
are almost the same when ν ≤ ρ and the decryption and the bootstapping work
similarly when ν < η−1. For multiplication, as ν grows, the multiplication error
decreases. Hence truncating ciphertexts by ρ bits results in similar performance,
but with reduced ciphertext bit-length. In that setup, the bit-size of ciphertext
becomes γ − ρ.

The known attacks on AGCD do not say much on the complexity of AGCD
when γ −ρ is small. A naive attack is as follows. Given c = pq + r, we first guess
the γ − η bits of q and then compute � c

q � = p + � r
q �. Since r

q < 2ρ−(γ−η), we
can obtain the γ − ρ most significant bits of p. This is significant. To avoid this
attack, we need to set γ − η ≥ λ. In that case, the ciphertext size is ≈ γ − ρ =
(γ − η) + (η − ρ) ≥ λ + Ω(L log λ).

Note that this truncation method is different from decreasing the bit-size ρ of
the noise. If ρ is set smaller, then the ciphertext bit-length γ should be increased
to resist lattice-based attacks, i.e., it must satisfy γ ≥ Ω( λ

log λ (η − ρ)2). If we
reduce ρ and η simultaneously, resistance against the lattice-based attacks can
be maintained, but the scheme becomes susceptible to exhaustive search on the
noise components ri.
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A Some Useful Lemmas on Lattice Gaussians

The first statement of the following lemma is a special case of [33, Le. 4.1].
The second statement can be obtained by a simple calculation exploiting [40,
Claim 3.8].

Lemma 10. Let r, ε > 0 such that r ≥ Ω(
√

ln(1/ε)). Then the distribution
Dr mod 1 is within statistical distance O(ε) from U(T). If x ← Dr, then the
distribution of x conditioned on x mod 1 is within statistical distance O(ε) of
DZ,r.

Lemma 11 (Special case of [26, Cor. 2.8]). Let q ≥ 1 and r, ε > 0 such
that r ≥ Ω(

√
ln(1/ε)). Then the distribution DZ/q,r mod 1 is within statistical

distance O(ε) from U(Tq).
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Lemma 12 (Special case of [40, Cor. 3.10]). Let n ≥ 1,z ∈ R
n and

r, ε, α > 0 with (1/r2 + ‖z‖2/α2)−1/2 ≥ Ω(
√

ln(n/ε)). Then the distribution
of 〈Dn

Z,r,z〉 + Dα is within statistical distance O(ε) from Dβ with β = (α2 +
‖z‖2r2)1/2.

Lemma 13 (Special case of [37, Th. 3.1]). Let r, q, s, ε > 0 such that
r ≥ Ω(

√
ln(1/ε)/q). Sample x ← Ds and k ← DZ/q,r,x. Then the distribu-

tion of k is within statistical distance O(ε) from DZ/q,(r2+s2)1/2 and, conditioned
on k, the distribution of x is within statistical distance O(ε) from k 1

(1+r2/s2)1/2 +
D(r−2+s−2)−1/2 .

We also use the following result, which can be derived from Lemmas 10, 11
and 13.

Lemma 14. Let r, q, ε > 0 such that r ≥ Ω(
√

ln(1/ε)/q). Sample x ← T and
k ← DZ/q,r,x. Then k mod 1 is uniformly distributed over Tq and the distribution
of x conditioned on k is within statistical distance O(ε) from k + Dr mod 1.

Proof. Let s ≥ Ω(
√

ln(1/ε)/q). By Lemma 10, the uniform distribution over T is
within statistical distance O(ε) from the distribution Ds mod 1. By Lemma 13,
the distribution of k is within statistical distance O(ε) from DZ/q,(r2+s2)1/2 mod 1
and conditioned on k the distribution of x is within statistical distance O(ε)
from k 1

(1+r2/s2)1/2 +D(r−2+s−2)−1/2 mod 1. The proof can be completed by using
Lemma 11 and letting s tend to infinity. ��

B Converse Results for Lemmas 1, 2 and 3

Lemma 15. Let α, β ∈ (0, 1), m,n, q,B ≥ 1 and D a distribution over Z
n.

Assume that there exists an (ε1, ε2)-distinguisher for LWEm
n,q,D≤β

(D). If D
is (B, ε2/2)-bounded, and α ≤ β − Ω(

√
ln(mn/ε1)B/q), then there exists an

(Ω(ε1), Ω(ε2))-distinguisher for SILWEm
n,D≤α

(D).

Proof. The reduction architecture is similar to the one of Lemma 1. We map each
input sample (a, b) for SILWEn,D≤α

to an input samples (a′, b′) for LWEn,q,D≤β

as follows: Sample a′ ← DZn/q,r,a with r = Ω(
√

ln(mn/ε1)/q (for this, we
independently sample each coordinate a′

j ← DZ/q,r,aj
); set b′ = b.

By Lemma 14, we have that the distribution of a′ is within statistical dis-
tance O(ε1/m) from U(Tn

q ), and that conditioned on a′, the distribution of
f := a−a′ is within statistical distance O(ε1/m) from Dr. As a result, the trans-
formation maps the uniform distribution over T

n × T to a distribution within
statistical distance O(ε1/m) from the uniform distribution over Tn

q ×T. Further,
if b = 〈a, s〉+ e for some fixed s and e ← D≤α, then b′ = b = 〈a′, s〉+ 〈f , s〉+ e.
Conditioned on a′, the distribution of 〈f , s〉 + e is within statistical distance
O(ε1/m) of D≤

√
α2+‖s‖2r2 . We have ‖s‖ ≤ B with probability ≥ 1 − ε2/2 over

the randomness of s ← D. This allows to complete the proof. ��
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Lemma 16 (Adapted from [42, App. A]). Let α, β ∈ (0, 1), B ≥ 1 and
D a distribution over Z. Assume that there exists an (ε1, ε2)-distinguisher for
SILWEm

1,D≤β
(D). If D is (B, δ, ε2/2)-contained and α ≤ O(β), then there exists

an (Ω(ε1), Ω(ε2δα/
√

ln(m/ε1)))-distinguisher for ZDLWEm
D≤α

(D).

Proof. We reduce ZDLWE to SILWE. Let r = Θ(
√

ln(m/ε1)) (chosen to be
able to use Lemma 10) and δ′ = Θ(δα/

√
ln(m/ε1)). The reduction produces

a guess s′ of the ZDLWE secret s by sampling s′ ← Bδ′ · (Z ∩ [0, �1/δ′�));
then it maps any input sample y for ZDLWED≤α

to an input sample (a, b) for
SILWE1,D≤β

, as follows: Sample f ← Dr; set a = [y + f/s′]1 and b = [f ]1.
We assume that |s| ∈ [δB,B], |s′ − s| ≤ Bδ′ and that the SILWE1,D≤β

distinguisher succeeds. As in the proof of Lemma 2, this event has weight Ω(ε2δ′).
Assume that y is uniformly distributed in T. By Lemma 10, the distribution

of b is within statistical distance O(ε1/m) from uniform, independently of y.
Therefore, the distribution of the pair (a, b) is within statistical distance O(ε1/m)
from uniform.

Now, assume that y = (k + e)/s with k ← Z ∩ [0, s) and e ← D≤α. We
have a = (k + e)/s + f/s′ and b − as = [−e + f(1 − s/s′)]1. Let f ′ = fs/s′.
By Lemma 10, the distribution of a′ := (k + f ′)/s is within statistical distance
O(ε1/m) from uniform and the distribution of f ′ conditioned on a′ is within
statististical distance O(ε1/m) of DZ,r|s/s′|. The assumption of Lemma 10 holds
because r|s/s′| ≥ Ω(r) ≥ Ω(

√
ln(m/ε1)), thanks to the choices of δ′ and r.

By Lemma 12, the distribution of b − as = −e + f ′(s′/s − 1) is within sta-
tistical distance O(ε1/m) of D≤β′ with β′ =

√
α2 + r2(1 − s/s′)2, assuming

that ((s′/(rs))2 + (s′/s − 1)2/α2)−1/2 ≥ Ω(
√

ln(m/ε1)). As |s/s′| ≥ Ω(1) and
|s′/s − 1| ≤ O(δ′/δ), the definitions of r and δ′ imply that the latter condition
holds. Further, as |1 − s/s′| ≤ O(δ′/δ), we have that β′ ≤ O(α + rδ′/δ). This
completes the proof. ��
Lemma 17. Let α, β ∈ (0, 1), X,B ≥ 1 and D a distribution over Z. Assume
that there exists an (ε1, ε2)-distinguisher for ZDLWEm

D≤β
(�X/D�). If D is

(B, δ, ε2/2)-contained, X ≥ Ω(mB/ε1), α ≥ Ω(Bm/(δε1)) and β ≥ αB/X,
then there exists an (Ω(ε1), Ω(ε2))-distinguisher for AGCDm

X,�D≤α�(D).

Proof. Given an input sample x for AGCDX,�Dα�, the reduction produces an
input sample y for ZDLWED≤α

as follows: Sample f ← T; set y = (x + f)/X. If
x is uniformly distributed over Z ∩ [0,X), then so is y over T.

Now, assume that x = qp + r for some fixed p = �X/s� (with s sampled
from D), q ← Z ∩ [0,X/p) and r ← �D≤α�. We have y = (q + e + Δ)/s with
s = �X/p�, e = (r + f)s/X and Δ = εqs/X for some ε ∈ [−1/2, 1/2].

As α ≥ Ω(
√

ln(m/ε1)), the distribution of e is within statistical distance
O(ε1/m) from D≤α|s|/X . Further, we have |Δ| ≤ |s|/p ≤ O(B2/X) (assuming
that |s| ≤ B). Thanks to the assumtions on D and α, we have |Δ| ≤ O( ε1

m
α|s|
X ),

and the term e + Δ is within statistical distance O(ε1/m) from D≤α|s|/X . Note
that αB/X ≤ β.
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It now suffices to show that the distributions U(Z∩ [0, s)) and U(Z∩ [0,X/p))
are within statistical distance O(ε1/m). The proof is identical to that of Lemma 3.

��

C Orthogonal Lattice Attack on AGCD

Let us recall the orthogonal lattice attack on AGCD in [20].
Suppose we are given samples (xi = pqi + ri)1≤i≤m from AAGCD

X,�Dα�(p). Let 2ρ

be an upper bound on the magnitudes of the of ri’s. Consider the integral lattice
L generated by the rows of the following m × (m + 1) matrix:

⎡

⎢
⎢
⎢
⎣

x1 2ρ

x2 2ρ

...
. . .

xm 2ρ

⎤

⎥
⎥
⎥
⎦

Define the vector u := (1,− r1
2ρ , . . . ,− rd

2ρ ). For any element v ∈ L, we have
〈u,v〉 ≡ 0 mod p. Further, if ‖v‖1 < p, then we have |〈u,v〉| ≤ ‖v‖1 < p, since
each component of u is at most 1. That is, we have 〈u,v〉 = 0 over Z. Hence if
we find m linearly independent vectors v in L with ‖v‖1 < p, we can recover u
and hence find p from gcd(x1 − r1, . . . , xm − rm) with overwhelming probability.

The lattice L has determinant ≈ 2γ+(m−1)ρ. Assuming that all minima are
almost equal, their norms are ≈ 2γ/m+ρ(m−1)/m. In time 2λ, lattice reduc-
tion [2,44] allows to find m linearly independent lattice vectors of norms ≈
λO(m/λ) · 2ρ(m−1)/m+γ/m. The optimal choice for m is ≈ Θ(

√
γλ/ log λ), which

leads to vector norms that are ≈ 2O(
√

γ log λ/λ)+ρ. The attack is thwarted if
γ ≥ Ω( λ

log λ (η − ρ)2).
The Simultaneous Diophantine Approximation algorithm for AGCD (see [20])

has similar performance.
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6. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proc. of ITCS, pp. 309–325. ACM (2012)

8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
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Abstract. In this paper, we construct a fully homomorphic encryption
(FHE) scheme over integers with the message space ZQ for any prime
Q. Even for the binary case Q = 2, our decryption circuit has a smaller
degree than that of the previous scheme; the multiplicative degree is
reduced from O(λ(log λ)2) to O(λ), where λ is the security parameter.
We also extend our FHE scheme to a batch FHE scheme.

Keywords: Fully homomorphic encryption · Non-binary message

1 Introduction

Fully homomorphic encryption (FHE ) enables computation of any function on the
encrypted data. Many FHE schemes appeared recently after the first construction
of Gentry [9]. In [9], the following general framework for constructing FHE schemes
was also presented. (1) Construct a somewhat homomorphic encryption (SHE)
scheme which can evaluate a limited class of functions homomorphically. (2) Trans-
form (or squash) the SHE scheme into a bootstrappable scheme whose decryption
circuit has a low enough multiplicative degree. (3) Apply Gentry’s transformation
to get an FHE scheme from the bootstrappable scheme.

At Eurocrypt 2010, van Dijk et al. [8] constructed an “FHE scheme over the
integers”. At Eurocrypt 2013, Cheon et al. [3] extended it to a batch FHE scheme,
where the message space is extended from Z2 to (Z2)k. In [3], they also presented a
batch SHE scheme for the message space ZQ1 × · · ·×ZQk

. However, FHE has not
been achieved for the case of primes Qi > 2, even for the non-batch case k = 1.

1.1 What Is the Problem?

Let λ be the security parameter, and let M denote the message space. In the
scheme of van Dijk et al. [8], M = Z2 and the ciphertext c of a plaintext
m ∈ M is c = pq + 2r + m, where p is a secret prime and r is a small noise.
In their SHE scheme, the decryption is given by m = (c mod p) mod 2 = c − p ·
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 537–555, 2015.
DOI: 10.1007/978-3-662-46800-5 21
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�c/p� mod 2 = c − �c/p� mod 2. In the bootstrappable scheme, the (squashed)
decryption algorithm works as

m ← (c mod 2) ⊕
(⌊

Θ∑

i=1

sizi

⌉

mod 2

)

. (1)

Here (s1, . . . , sΘ) ∈ {0, 1}Θ is the secret key with Hamming weight λ and each
zi = (zi,0.zi,1 . . . zi,L)2 is a real number with L = �log2 λ� + 3 bits of precision
after the binary point, satisfying

∑Θ
i=1 sizi ≈ c/p. 1 They constructed a low

multiplicative degree circuit computing (�∑Θ
i=1 sizi� mod 2) in (1) by two steps

[8]:

1. The first circuit computes Wj =
∑Θ

i=1 sizi,j for j = 0, 1, . . . , L. Hence

Θ∑

i=1

sizi = W0 + 2−1W1 + . . . + 2−LWL .

2. By applying the three-for-two trick repeatedly, the second circuit computes
a and b satisfying

W0 + 2−1W1 + . . . + 2−LWL = a + b mod 2 .

The multiplicative degree of the first circuit is λ since Wj ≤ λ, and it is
O((log λ)2) for the second circuit. Hence, the total degree of the decryption
circuit is O(λ(log λ)2); see also the second last paragraph of the proof of Theorem
6.2 in [8] for the evaluation of the total degree.

Now to compute Wj , we have to homomorphically compute (at least) a half
adder; it needs a pair of polynomials, one for the sum and the other for the carry.
However, such a polynomial computing the carry is not known for non-binary
cases. 2 This is the main reason why it is hard to extend the circuit above to
non-binary message spaces.

1.2 Our Contributions

In this paper, we solve the problem above; for M = ZQ where Q is any (con-
stant) prime, we construct an FHE scheme over integers based on a new design
principle. We also extend it to a batch FHE scheme with M = ZQ1 × · · · ×ZQk

,
where Q1, . . . , Qk may be different. Our main advantages are as follows:

1. The FHE scheme for Q > 2 was not achieved in [3,8].
2. Our decryption circuit has multiplicative degree O(λ) for any Q; even for

Q = 2, it is significantly improved from O(λ(log λ)2) of [3,8].
1 See [8] for how to compute zi from c and the public key.
2 In fact, they exploited the fact that the binary expression of Wj is given by elemen-

tary symmetric polynomials in (s1z1,j), . . . , (sΘzΘ,j) [1]. However, such an expression
is unknown for non-binary cases.
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For M = ZQ, the encryption is given by c = pq +Qr +m. The decryption of
the SHE scheme is given by m = (c mod p) mod Q = c − p · �c/p� mod Q. Then
our squashed decryption algorithm works as

m ← c − p ·
⌊

Θ∑

i=1

sizi

⌉

mod Q .3

Here, zi = (zi,0.zi,1 . . . zi,L)Q is a real number with L = �logQ λ� + 2 digits of
precision after the Q-ary point satisfying

∑Θ
i=1 sizi ≈ c/p.

Now we first determine a polynomial f(x, y) computing the carry of a half
adder for any prime Q. Namely, when x, y ∈ ZQ and x + y = β · Q + α ∈ Z, our
polynomial f computes β = f(x, y) mod Q. 4 It has degree Q which is proven to
be the lowest. See Sec. 3. Then we compute

∑Θ
i=1 sizi = (w0.w1 . . . wL)Q mod Q

as follows. 5

– First, we compute the sum of the last digits as shown in Fig. 1 (where each
box is a half adder) so that we obtain wL and the Θ −1 carries β1, . . . , βΘ−1

with
s1z1,L + · · · + sΘzΘ,L = wL + Q · (β1 + . . . + βΘ−1) .

– Secondly, we compute (s1z1,L−1+· · ·+sΘzΘ,L−1)+(β1+. . .+βΘ−1) similarly
so that we obtain wL−1 and the 2(Θ − 1) carries.

– Iterating this process, we obtain (w0.w1 . . . wL)Q. 6

The circuit computing each step has multiplicative degree Q (= deg f).
Hence, the multiplicative degree D of our decryption circuit is QL+1 = O(λ),
which is significantly lower than O(λ(log λ)2) of [3,8].

Finally, in the same way as [3,8], we make our scheme bootstrappable by
letting the bit length of p be ρ · Θ(D), where ρ is the size of noise r in a fresh
ciphertext c. Since the degree D of the decryption circuit has been decreased
in comparison to [3,8], the size of p is also reduced, therefore the size of our
ciphertexts is much smaller than that of [3,8] even for the previously known
case Q = 2. See Table 1.

Moreover, we emphasize that we also give a concrete, not just asymptotic,
condition for the parameters of our scheme to make the scheme bootstrappable;
see (13).

3 In Sec. 6.1, the information of p is involved in an element X and is reflected by
public key components u�, therefore the decryption does not need p itself.

4 One may think that this polynomial would be immediately derived from the Witt
polynomials [19], which determine the carry functions in the addition of Q-adic
integers. However, Q-adic integers are different from Q-ary expression of integers.

5 For the sake of our analysis in Sec. 7, our algorithm in Sec. 4 is described in a
different, but essentially equivalent manner.

6 We choose the parameters to guarantee that w1 ∈ {0, Q − 1}; consequently
�∑Θ

i=1 sizi� ≡ w0 − w1 (mod Q).
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Table 1. Bootstrappable Bit Lengths of Secret Prime p

binary message non-binary message

DGHV’10 [8], CCK+’13 [3] ρ · Θ(λ(log λ)2) —

Our result ρ · Θ(λ) ρ · Θ(λ)

1.3 Organization of the Paper

In Sec. 2, we summarize some definitions and notations used in this paper. In
Sec. 3, we study the polynomial expression of the carry function in the addition
of two Q-ary digits for any prime Q. Based on the result, in Sec. 4, we construct
an algorithm for addition of Q-ary integers which is composed of polynomial
evaluations modulo Q. Then, in Sec. 5, we recall the previous SHE; and in
Sec. 6, we describe our proposed bootstrapping algorithm based on the result
in Sec. 4. Finally, in Sec. 7, we analyze our proposed method to verify that the
bootstrapping is indeed achieved.

2 Preliminaries

In this paper, we naturally identify the integer residue ring Zn := Z/nZ modulo
an integer n > 0 with the set {0, 1, . . . , n − 1}. For real numbers x, y, we write
x ≡ y (mod n) if (x − y)/n ∈ Z. On the other hand, we consider the following
two kinds of remainder operations; we define x mod n to be the unique y ∈ Zn

with y ≡ x (mod n), and xMod n to be the unique integer y in (−n/2, n/2] with
y ≡ x (mod n).

For a Q-ary representation A = (a0.a1, a2, . . .)Q (with aj ∈ ZQ) of a real
number A and an integer L ≥ 0, we define

(A)L := (a0.a1, a2, . . . , aL)Q .

For a prime Q, an integer a and an integer b ∈ ZQ, we define
(

a

b

)

Q

:= a(a − 1) · · · (a − b + 1) · InvQ(b!) (2)

which is a polynomial in a of degree b ≤ Q−1, where InvQ(x) (for x ∈ Z coprime
to Q) denotes the unique integer y ∈ ZQ with xy ≡ 1 (mod Q). Then we have

(
a

b

)

Q

≡
(

a

b

)
(mod Q) (3)

(the right-hand side is the usual binomial coefficient).
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3 Q-ary Half Adder

Let Q be a prime. For x, y ∈ ZQ, let

x + y = (c, s)Q = c · Q + s .

It is clear that s = x + y mod Q. In this section, we construct the lowest degree
polynomial fcarry,Q(x, y) yielding the carry c, as follows:

Theorem 1. We define a polynomial fcarry,Q(x, y) over the field ZQ by

fcarry,Q(x, y) :=
Q−1∑

i=1

(
x

i

)

Q

(
y

Q − i

)

Q

,

having total degree deg fcarry,Q = Q (see (2) for the notations). Then for any
x, y ∈ ZQ, we have

c = fcarry,Q(x, y) mod Q .

Theorem 2. The total degree of fcarry,Q is lowest among all polynomials g(x, y)
over ZQ satisfying that c = g(x, y) mod Q for any x, y ∈ ZQ.

From now, we prove these two theorems. We note that the first part of the
proof of Theorem 1 can be also derived by Lucas’ Theorem [14]; here we give a
direct proof for the sake of completeness.

Proof (Theorem 1). We first show that, for any x, y ∈ ZQ,

c =
(

x + y

Q

)
mod Q . (4)

If 0 ≤ x + y < Q, then we have c = 0, while we have
(
x+y
Q

)
= 0 by the definition

of the binomial coefficient. For the other case Q ≤ x + y < 2Q, we have c = 1,
while we have

(
x + y

Q

)
=

(
x + y

x + y − Q

)

≡ (x + y)(x + y − 1) · · · (Q + 1) · InvQ((x + y − Q) · · · 1)
≡ (x + y − Q)(x + y − Q − 1) · · · 1 · InvQ((x + y − Q) · · · 1)
≡ 1 (mod Q)

(see Sec. 2 for the definition of InvQ). Therefore (4) holds.
Next, from the meaning of

(
x+y
Q

)
, it is easy to see that

(
x + y

Q

)
=

(
x

0

)(
y

Q

)
+

(
x

1

)(
y

Q − 1

)
+ · · · +

(
x

Q

)(
y

0

)
.

Now we have 0 ≤ x < Q and 0 ≤ y < Q since x ∈ ZQ and y ∈ ZQ, therefore(
x
Q

)
=

(
y
Q

)
= 0. Hence, by (3), Theorem 1 holds.
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We use the following property in the proof of Theorem 2; we note that the
proof of this lemma is similar to the proof of Schwartz–Zippel Theorem [15]:

Lemma 1. Let f ′(x, y) be a polynomial over ZQ of degree at most Q − 1 with
respect to each of x and y. If f ′(x, y) = fcarry,Q(x, y) for every x, y ∈ ZQ, then
f ′ coincides with fcarry,Q as polynomials.

Proof. Assume that f ′ �= fcarry,Q as polynomials. Set g := fcarry,Q − f ′, which
is now a non-zero polynomial. Write g(x, y) =

∑Q−1
i=0 gi(y)xi, where each gi(y)

is a polynomial of degree at most Q − 1. Then gi is a non-zero polynomial for
at least one index i. By the polynomial remainder theorem, we have gi(b) = 0
for at most Q − 1 elements b ∈ ZQ; therefore gi(b) �= 0 for some b ∈ ZQ.
Now g(x, b) is a non-zero polynomial in x of degree at most Q − 1, therefore
g(a, b) �= 0 for some a ∈ ZQ by the same reason. On the other hand, we must have
g(x, y) = fcarry,Q(x, y) − f ′(x, y) = 0 for any x, y ∈ ZQ; this is a contradiction.
Hence Lemma 1 holds.

Proof (Theorem 2). If such a polynomial g(x, y) has degree at least Q with
respect to x (respectively, y), then deg g(x, y) can be decreased without chang-
ing the values g(x, y) mod Q by using the relation xQ ≡ x (mod Q) (respectively,
yQ ≡ y (mod Q)) derived from Fermat’s Little Theorem. Iterating the process,
we obtain a polynomial g∗(x, y) of degree at most Q − 1 with respect to each
of x and y, satisfying that deg g∗ ≤ deg g and g∗(x, y) ≡ g(x, y) ≡ fcarry,Q(x, y)
(mod Q) for any x, y ∈ ZQ. Then Lemma 1 implies that g∗ = fcarry,Q as poly-
nomials. Hence we have deg fcarry,Q = deg g∗ ≤ deg g. Therefore Theorem 2
holds.

4 Low-Degree Circuit for Sum of Integers

For i = 1, . . . ,m, let ai = (ai,1, . . . , ai,n)Q. In this section, we give a circuit of
low (multiplicative) degree which computes

a1 + . . . + am mod Qn. (5)

We call the m×n matrix A = (ai,j)i,j the matrix representation of (a1, . . . , am).
First we define an algorithm StreamAddQ(x1, . . . , xm) for x1, . . . , xm ∈ ZQ

(see also Fig. 1).

StreamAddQ(x1, . . . , xm)

s2 ← x1 + x2 mod Q
c2 ← fcarry,Q(x1, x2) mod Q %(c2, s2)Q = x1 + x2

For i = 3, . . . , m,
si ← si−1 + xi mod Q
ci ← fcarry,Q(si−1, xi) mod Q %(ci, si)Q = si−1 + xi

Return (sm, (c2, . . . , cm))
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Fig. 1. StreamAddQ(x1, . . . , x4)

For (sm, (c2, . . . , cm)) ← StreamAdd(x1, . . . , xm), it is easy to see that

x1 + · · · + xm = sm + Q × (c2 + . . . + cm) . (6)

We next define an algorithm MatrixAddQ(A), where A = (ai,j)i,j is an m×n
matrix as above.

MatrixAddQ(A)

For j = 1, . . . , n,
(αj , (β2,j , . . . , βm,j)) ← StreamAddQ(a1,j , . . . , am,j)

% Apply StreamAddQ to the jth column of A.

For j = 1, . . . , n − 1,
(b1,j , . . . , bm,j) ← (αj , β2,j+1, . . . , βm,j+1)

% Shift (β2,j+1, . . . , βm,j+1)T to the left.

Return B = (bi,j) and αn, where B is an m × (n − 1) matrix

Visually, it can be expressed as

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

. . . , αn−1

. . . , β2,n

...
...

. . . , βm,n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, αn ← (StreamAddQ) ←

⎛

⎜
⎜
⎝

. . . , a1,n

...
...

. . . , am,n

⎞

⎟
⎟
⎠ = A

Given (B = (bi,j), αn) ← MatrixAddQ(A), let bi = (bi,1, . . . , bi,n−1, 0)Q for i =
1, . . . ,m. Then from (6), we can see that

a1 + . . . + am ≡ (b1 + . . . + bm) + αn (mod Qn) .

We finally define an algorithm FinalAddQ(A), where A = (ai,j) is an m × n
matrix.
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FinalAddQ(A)

Let A(0) ← A
For j = 1, . . . , n,

(A(j), dn−j+1) ← MatrixAddQ(A(j−1)),
where A(j) is an m × (n − j) matrix

Return (d1, . . . , dn)

Suppose that A is the matrix representation of (a1, . . . , am). Let

(d1, . . . , dn) ← MatrixAddQ(A) .

Then it is easy to see that the followings hold (since deg fcarry,Q = Q):

Theorem 3. We have (d1, . . . , dn)Q = a1 + . . . + am mod Qn.

Theorem 4. For i = 1, . . . , n, there is a polynomial fQ,i(x1,1, . . . , xm,n) over
ZQ satisfying deg fQ,i = Qn−i and di = fQ,i(a1,1, . . . , am,n) mod Q.

5 Batch SHE Scheme over Integers

In this section, we describe an SHE scheme over integers with message space
M = (ZQ1)

h1 × · · · × (ZQk
)hk , where k ≥ 1, hj ≥ 1 and Q1, . . . , Qk are distinct

primes. This scheme is essentially the one proposed in [3] which is semantically
secure under the (ρ, η, γ)-decisional approximate GCD assumption (see [3] for
details), with slight notational modifications. 7 8 To simplify the notations, set

I := {(i, j) | i, j ∈ Z, 1 ≤ i ≤ k, 1 ≤ j ≤ hi} .

The choices of other parameters ρ, γ, η, τ are discussed later.

– Key generation KeyGen(1λ): Choose η-bit primes pi,j for (i, j) ∈ I uniformly
at random in a way that all pi,j and Qi′ are different. Choose

q0
$←

[
1, 2γ/

∏

(i,j)∈I
pi,j

)
∩ ROUGH(2λ2

)

in a way that q0 is coprime to all pi,j and all Qi′ , where ROUGH(2λ2
) denotes

the set of integers having no prime factors less than 2λ2
. Set

N := q0
∏

(i,j)∈I
pi,j .

7 In fact, our proposed bootstrapping method is directly extendable to the variant of
their scheme in [3] based on the error-free approximate GCD assumption.

8 We note that the components of the message space is changed from (−Q/2, Q/2]∩Z

as in [3] to {0, 1, . . . , Q−1}, but it does not affect the security of the scheme. Indeed,
by the map c �→ c+

∑
(i,j)∈I�(Qi −1)/2	x′

i,j we can convert any ciphertext with the
former message space to that with the latter message space, and vice versa.
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Choose eξ;0 and eξ;i,j for ξ ∈ {1, . . . , τ} and (i, j) ∈ I by

eξ;0
$← [0, q0) ∩ Z , eξ;i,j

$← (−2ρ, 2ρ) ∩ Z .

Then let xξ be the unique integer in (−N/2, N/2] satisfying

xξ ≡ eξ;0 (mod q0) , xξ ≡ eξ;i,jQi (mod pi,j) for (i, j) ∈ I .

Similarly, for (i, j), (i′, j′) ∈ I, choose e′
i,j;0 and ei,j;i′,j′ by

e′
i,j;0

$← [0, q0) ∩ Z , ei,j;i′,j′
$← (−2ρ, 2ρ) ∩ Z ,

and let x′
i,j be the unique integer in (−N/2, N/2] satisfying

x′
i,j ≡ e′

i,j;0 (mod q0) ,

x′
i,j ≡ e′

i,j;i′,j′Qi′ + δ(i,j),(i′,j′) (mod pi′,j′) for (i′, j′) ∈ I ,

where δ∗,∗ are Kronecker delta. Then output a public key pk consisting of
all N , xξ and x′

i,j , and a secret key sk consisting of all pi,j .

– Encryption Enc(pk,m): Given a plaintext m = (mi,j)(i,j)∈I ∈ M, output a
ciphertext c defined by

c :=
∑

(i,j)∈I
mi,jx

′
i,j +

∑

ξ∈T

xξ ModN ∈ (−N/2, N/2] ∩ Z ,

where T is a uniformly random subset of {1, 2, . . . , τ}.

– Decryption Dec(sk, c): Given a ciphertext c, output m ∈ M given by

m := ((cMod pi,j) mod Qi)(i,j)∈I .

– Evaluation Eval(pk, f, c1, . . . , cn): Given a polynomial f with integer coeffi-
cients and ciphertexts c1, . . . , cn, output c∗ given by

c∗ := f(c1, . . . , cn)ModN .

Following the arguments in [3], we let the parameters ρ, γ, η and τ satisfy
the following conditions (see Sec. 6.3 for further details):

– ρ = ω(λ), to resist the attack by Chen and Nguyen [4] for the approximate
GCD assumption.

– γ > η2/ρ, to resist Howgrave-Graham’s attack [11] for the approximate GCD
assumption.

– η = Ω(λ2) and γ = (
∑k

i=1 hi) · η + Ω(λ2), to resist Lenstra’s elliptic curve
method [13] for factoring the integer N (the latter is to make the (approxi-
mate) bit length γ − (

∑k
i=1 hi) · η of q0 sufficiently large).

– γ = η2ω(log λ), to resist the attack by Cohn and Heninger [5] and the attack
using Lagarias algorithm [12] on the approximate GCD assumption. (This
implies the condition γ = Ω(λ3) arisen from the general number field sieve
[2] for factoring N .)

– τ = γ + ω(log λ), in order to use the Leftover Hash Lemma in the security
proof (see [3] for the details).
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6 Our FHE Scheme: Bootstrapping for Large Plaintexts

We now describe our bootstraping algorithm for the SHE scheme in Sec. 5 with
non-binary plaintexts, based on our results in Sec. 4.

6.1 Squashed Scheme

In this subsection, we squash the decryption algorithm of the SHE scheme in
Sec. 5, i.e., we modify the scheme in such a way that the multiplicative degree of
the resulting decryption circuit is low enough to make the bootstrapping possible.
It is a natural generalization of the squashing method in [8] to the large message
space. The choices of additional parameters κi, θi, Θi and Li for i ∈ {1, . . . , k}
will be discussed in Sec. 6.3. Set

Θmax := max{Θ1, . . . , Θk} .

From now, we describe the squashed scheme.

– Key Generation KeyGen∗(1λ): First, generate (pk, sk) ← KeyGen(1λ) as in
Sec. 5. Then choose a subset Π of the product of symmetric groups Sh1×· · ·×
Shk

satisfying that Π contains the identity permutation id and Π generates
the group Sh1 × · · · × Shk

. Secondly, for each (i, j) ∈ I, choose uniformly at
random a Θi-bit vector

(si,j;1, . . . , si,j;Θi
) ∈ {0, 1}Θi

with Hamming weight θi, and set

Xi,j := �Qi
κi · (pi,j ModQi)/pi,j� .

For 1 ≤ i ≤ k and 1 ≤ � ≤ Θi, choose

ui,�
$← [0, Qi

κi+1) ∩ Z

in such a way that

Θi∑

�=1

si,j;�ui,� ≡ Xi,j (mod Qi
κi+1) for 1 ≤ j ≤ hi .

Moreover, for each σ = (σ1, . . . , σk) ∈ Π, generate

vσ
� ← Enc(pk,mσ

� ) for 1 ≤ � ≤ Θmax ,

where mσ
� = (mσ

�;i,j)(i,j)∈I ∈ M is defined by

mσ
�;i,j = si,σi(j);� if � ≤ Θi , mσ

�;i,j = 0 otherwise.

Then output a public key pk∗ consisting of all pk, Π, ui,� and vσ
� , and secret

key sk∗ consisting of all si,j;�.
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– Encryption Enc∗(pk∗,m) and evaluation Eval∗(pk∗, f, c1, . . . , cn): These are
the same as the scheme in Sec. 5 (with public key pk).

– Decryption Dec∗(sk∗, c): Given a ciphertext c, for 1 ≤ i ≤ k and 1 ≤ � ≤ Θi,
compute

zi,� := (c · ui,�/Qi
κi mod Qi)Li

.

Then output m = (mi,j)(i,j)∈I defined by

mi,j := c −
⌊

Θi∑

�=1

si,j;�zi,�

⌉

mod Qi for each (i, j) ∈ I .

We note that, the possible difference of the security of this scheme from the
one in Sec. 5 comes from the components ui,� involved in the new public key,
which are dependent on the secret values si,j;�. The situation is the same as the
previous FHE schemes [3,8]. In [8], it was observed that revealing the secret by
using the “hints” ui,� is related to the sparse subset sum problem and the low-
weight knapsack problem. They proposed the following choices of parameters θi

and Θi to avoid the known attacks:

– Θi is ω(log λ) times the bit lengths (κi + 1) log2 Qi of ui,�.
– θi is large enough to resist brute-force attacks; e.g., θi := λ as in [8].

6.2 Our Bootstrapping Procedure

In this subsection, we describe our proposed bootstrapping algorithm based on
the results in Sec. 4. More precisely, in the same manner as the previous FHE
scheme with modulo-two plaintexts [3], we construct “permuted bootstrapping”
algorithm Bootstrap(pk∗, c, σ) for a ciphertext c for plaintext (mi,j)(i,j)∈I and
a permutation σ ∈ Π, which generates a ciphertext for permuted plaintext
(mi,σi(j))(i,j)∈I with reduced noise (the case σ = id yields the usual bootstrap-
ping).

Let StreamAdd′
Q be a variant of the algorithm StreamAddQ defined in Sec. 4,

obtained in such a way that the inputs are ciphertexts rather than elements of ZQ,
and the additions and evaluations of the polynomial fcarry,Q in StreamAddQ mod-
ulo Q are replaced with the corresponding homomorphic evaluations for cipher-
texts, i.e., additions and evaluations of fcarry,Q “Modulo N”. Let MatrixAdd′

Q and
FinalAdd′

Q be the corresponding variants of MatrixAddQ and FinalAddQ, respec-
tively. We construct the algorithm Bootstrap(pk∗, c, σ) by using FinalAdd′

Q, as fol-
lows:

– Permuted bootstrapping Bootstrap(pk∗, c, σ): First, compute zi,� for 1 ≤ i ≤
k and 1 ≤ � ≤ Θi as in Dec∗, and write

zi,� = (zi,�;0.zi,�;1, . . . , zi,�;Li
)Qi

where zi,�;ξ ∈ ZQi
for each 0 ≤ ξ ≤ Li. For 0 ≤ ξ ≤ Li, set

vi,�;ξ := zi,�;ξ · vσ
� ModN . (7)
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Then compute

(wi;0, wi;1, . . . , wi;Li
) ← FinalAdd′

Qi
(Vi) ,

where Vi = (vi,�;ξ)1≤�≤Θi,0≤ξ≤Li
is a Θi × (Li + 1) matrix consisting of

ciphertexts. Moreover, for 1 ≤ i ≤ k, compute

c〈i〉 ← crti · (wi;0 − wi;1)ModN ,

where crti denotes the unique integer in (−(
∏k

i′=1 Qi′)/2, (
∏k

i′=1 Qi′)/2] with
crti ≡ δi,i′ (mod Qi′) for any 1 ≤ i′ ≤ k. Finally, output

c∗ ←
(

cMod
k∏

i=1

Qi

)

− c〈1〉 − · · · − c〈k〉 ModN .

From Theorem 4, the multiplicative degree of the FinalAdd′ circuit is

Qi
Li+1 = Qi

	logQi
λ
+3 ≤ Qi

logQi
λ+4 = Qi

4 · λ

(see Sec. 6.3 below for the choice of Li) which is O(λ) for a constant Qi.

6.3 Choice of Parameters

We give an instance of the choice of parameters for our scheme, where we regard
all of k, Qi and hi as constants. First, we set

ρ = Θ(λ log log log λ), η = Θ(λ2 log log λ), γ = Θ(λ4(log λ)2), τ = γ + λ .

Then all the conditions mentioned in Sec. 5 are indeed satisfied. Secondly, for
the additional parameters in the squashed scheme, we set

Li = �logQi
θi� + 2 , κi = �(γ − log2(4Qi − 5))/ log2 Qi� + 2 ,

Θi = Θ((λ log λ)4) , θi = λ for each 1 ≤ i ≤ k .
(8)

Then the conditions mentioned in Sec. 6.1 are also satisfied. Moreover, the anal-
ysis given in Sec. 7 below shows that our scheme is indeed bootstrappable by
using these parameters. We emphasize that the order of the bit length η of pi,j

is only slightly higher than ρ · λ, which is significantly lower than ρ · λ(log λ)2

required in the previous FHE schemes [3,8] (see also (13) in Sec. 7 for a con-
crete lower bound for η). This reduces the key sizes for the scheme, even in the
previously achieved cases Qi = 2.

7 Analysis of Our Proposed Scheme

In this section, we analyze our proposed scheme, especially our bootstrapping
algorithm, to see the correctness of the scheme and estimate appropriate param-
eters. For the purpose, we introduce the following definition, which intuitively
means the amount of noise in a ciphertext:
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Definition 1. Let c be a ciphertext for plaintext m = (mi,j)(i,j)∈I . We define
the weight wti,j(c) of c at position (i, j) ∈ I to be the minimum integer satisfying
the following for some αi,j(c), βi,j(c) ∈ Z:

c = αi,j(c) · pi,j + βi,j(c) · Qi + mi,j and |βi,j(c) · Qi + mi,j | ≤ wti,j(c) .

We evaluate the weights of fresh ciphertexts:

Proposition 1. For any c ← Enc∗(pk∗,m) with m ∈ M, we have wti,j(c) ≤
QiΓ for any (i, j) ∈ I, where we define

Γ :=
(
h1(Q1 − 1) + · · · + hk(Qk − 1) + τ

) · 2ρ .

Proof. For (i, j) ∈ I, since N is a multiple of pi,j , we have

c ≡
∑

(i′,j′)∈I
mi′,j′(e′

i′,j′;i,jQi + δ(i′,j′),(i,j)) +
∑

ξ∈T

eξ;i,jQi

≡
⎛

⎝
∑

(i′,j′)∈I
mi′,j′e′

i′,j′;i,j +
∑

ξ∈T

eξ;i,j

⎞

⎠ Qi + mi,j (mod pi,j) .

Since mi′,j′ ∈ [0, Qi′ −1] and eξ;i,j , e
′
i′,j′;i,j ∈ (−2ρ, 2ρ), the absolute value of the

right-hand side is bounded by
⎛

⎝
∑

(i′,j′)∈I
(Qi′ − 1) + τ

⎞

⎠ (2ρ − 1)Qi + Qi − 1 ≤
(

k∑

i′=1

hi′(Qi′ − 1) + τ

)

Qi2ρ .

Hence we have wti,j(c) ≤ QiΓ , therefore Proposition 1 holds.

The next property is implied directly by the definition of wti,j(c):

Proposition 2. Let c� be a ciphertext for plaintext (m�;i,j)(i,j)∈I , 1 ≤ � ≤ n.
Let f be a polynomial, and let fabs denote the polynomial obtained by replac-
ing the coefficients in f with their absolute values. Then the output c ←
Eval∗(pk∗, f, c1, . . . , c�) of the evaluation algorithm is a ciphertext for plaintext
(f(m1;i,j , . . . ,m�;i,j) mod Qi)i,j ∈ M, and we have

wti,j(c) ≤ fabs(wti,j(c1), . . . ,wti,j(c�)) for any (i, j) ∈ I .

From now, we show the correctness of the squashed scheme:

Lemma 2. Let c be a ciphertext for plaintext m = (mi,j)(i,j)∈I with weight
wti,j(c). Then for any (i, j) ∈ I, we have

Θi∑

�=1

si,j;�zi,� = pi,j · αi,j(c) + β̃i,j · Qi + εi,j (9)

for the integer αi,j(c) in Definition 1, some integer β̃i,j and some value εi,j with
|εi,j | ≤ ε̃i,j(c), where

ε̃i,j(c) := Qiwti,j(c)/(2pi,j) + θi · Qi
−Li + NQi

−κi/4 .
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Proof. First, by the definition of zi,�, we have zi,� = c · ui,�/Qi
κi + Ai,�Qi + Δi,�

for some Δi,� with |Δi,�| < Qi
−Li and an integer Ai,�. Then we have

Θi∑

�=1

si,j;�zi,� = c ·
Θi∑

�=1

si,j;�ui,�/Qi
κi + A′

i,jQi + Δ′
i,j (10)

for some A′
i,j ∈ Z and Δ′

i,j :=
∑Θi

�=1 si,j;�Δi,� with |Δ′
i,j | < θi ·Qi

−Li (recall that
(si,j;1, . . . , si,j;Θi

) has Hamming weight θi). Now, by the definitions of Xi,j and
ui,�, there are an integer Bi,j and a value Δ′′

i,j ∈ [−1/2, 1/2] satisfying that the
right-hand side of (10) is equal to

c · (Qi
κi · (pi,j ModQi)/pi,j + Δ′′

i,j + Bi,jQi
κi+1)/Qi

κi + A′
i,jQi + Δ′

i,j

= (pi,j Mod Qi) · c/pi,j + (cBi,j + A′
i,j)Qi + Δ′

i,j + Δ′′
i,jc/Qi

κi .

Moreover, by the expression of c as in Definition 1, the right-hand side above is
equal to the right-hand side of (9), where

β̃i,j := cBi,j + A′
i,j − pi,j − (pi,j Mod Qi)

Qi
· αi,j(c) ∈ Z ,

εi,j := (pi,j Mod Qi)(βi,j(c) · Qi + mi,j)/pi,j + Δ′
i,j + Δ′′

i,jc/Qi
κi .

Now, by the definition of wti,j , we have |βi,j(c) · Qi + mi,j | ≤ wti,j(c) and

|εi,j | ≤ (Qi/2) · wti,j(c)/pi,j + θi · Qi
−Li + (1/2) · (N/2)/Qi

κi = ε̃i,j(c) .

Hence, Lemma 2 holds.

Proposition 3. Let c be as in Lemma 2. If ε̃i,j(c) < 1/2 for any (i, j) ∈ I (see
Lemma 2 for the definition), then Dec∗(sk∗, c) outputs m correctly.

Proof. Recall the result of Lemma 2. Then for (i, j) ∈ I, we have |εi,j | < 1/2.
Therefore, by Definition 1, we have

c −
⌊

Θi∑

�=1

si,j;�zi,�

⌉

≡ c − pi,j · αi,j(c) ≡ mi,j (mod Qi) .

Hence, Proposition 3 holds.

From now, in order to analyze our bootstrapping algorithm, we consider the
following condition for ciphertexts which is in general stronger than the condition
mentioned in Proposition 3 for correct decryption:

Definition 2. We say that a ciphertext c is bootstrappable, if ε̃i,j(c) < 1/Qi

for any (i, j) ∈ I (see Lemma 2 for the definition of ε̃i,j(c)).

We analyze the algorithm Bootstrap(pk∗, c, σ). We assume that c is bootstrap-
pable. For any ciphertext c′, let m(c′) = (m(c′)i,j)(i,j)∈I denote the plaintext for
c′. Set

w′
i := wi;0 − wi;1 ModN for any 1 ≤ i ≤ k .
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We analyze FinalAdd′
Qi

(Vi) for 1 ≤ i ≤ k. First, for 1 ≤ j ≤ hi, we have
m(vi,�;ξ)i,j = si,σi(j);�zi,�;ξ for each �, ξ. Therefore, by Theorem 3 (applied to the
Li-digit shift of the sum of si,σi(j);�zi,� to the left), we have

(m(wi;0)i,j .m(wi;1)i,j , . . . ,m(wi;Li
)i,j)Qi

≡
Θi∑

�=1

si,σi(j);�zi,� ≡ pi,σi(j) · αi,σi(j)(c) + εi,σi(j) (mod Qi)

(see Lemma 2 for the last relation). By Lemma 2, we have |εi,σi(j)| < 1/Qi since
c is bootstrappable. Therefore, one of the followings holds:
{

m(wi;1)i,j = 0 and pi,σi(j) · αi,σi(j)(c) ≡ m(wi;0)i,j (mod Qi) ,

m(wi;1)i,j = Qi − 1 and pi,σi(j) · αi,σi(j)(c) ≡ m(wi;0)i,j + 1 (mod Qi) .

In any case, we have

m(w′
i)i,j ≡ m(wi;0)i,j − m(wi;1)i,j ≡ pi,σi(j) · αi,σi(j)(c) (mod Qi) .

On the other hand, Definition 1 applied to ciphertexts w′
i′ implies that

c∗ = pi,jαi,j(c∗) + (cMod Q1 · · · Qk) −
k∑

i′=1

crti′
(
βi,j(w′

i′) · Qi + m(w′
i′)i,j

)
,

where αi,j(c∗) = −∑k
i′=1 crti′ · αi,j(w′

i′). Now, by the definition of crti′ ,

(cMod Q1 · · · Qk) −
k∑

i′=1

crti′
(
βi,j(w′

i′) · Qi + m(w′
i′)i,j

)

≡ c − m(w′
i)i,j ≡ c − pi,σi(j) · αi,σi(j)(c) ≡ m(c)i,σi(j) (mod Qi)

(note that c = pi,σi(j) ·αi,σi(j)(c)+βi,σi(j) ·Qi+m(c)i,σi(j) by Definition 1). There-
fore, c∗ is a ciphertext for plaintext (mi,σi(j)(c))(i,j)∈I , with weights satisfying
the following (since |crti′ | ≤ Q1 · · · Qk/2):

wti,j(c∗) ≤
∣
∣
∣
∣
∣
(cMod Q1 · · · Qk) −

k∑

i′=1

crti′
(
βi,j(w′

i′) · Qi + m(w′
i′)i,j

)
∣
∣
∣
∣
∣

≤ Q1 · · · Qk

2

(

1 +
k∑

i′=1

wti,j(w′
i′)

)

≤ Q1 · · · Qk

2

(

1 +
k∑

i′=1

(
wti,j(wi′;0) + wti,j(wi′;1)

)
)

.

From now, we evaluate the weights wti,j(wi′;0) and wti,j(wi′;1):
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Lemma 3. Let (i, j) ∈ I. For two ciphertexts c1, c2, suppose that wti,j(c1) ≤ α
and wti,j(c2) ≤ β, where 1 < β < α. Then we have

wti,j(fcarry,Q(c1, c2)) ≤ �Q/2� · β

β − 1
· (α/β)
(α/β) − 1

· αQ−1β .

Proof. First, each monomial in fcarry,Q(t1, t2) is of the form at1
d1t2

d2 with |a| ≤
Q/2, d1, d2 ∈ {1, 2, . . . , Q− 1} and d1 + d2 ≤ Q. Therefore, by Proposition 2, we
have

wti,j(fcarry,Q(c1, c2)) ≤ �Q/2�
∑

d1,d2∈{1,2,...,Q−1}
d1+d2≤Q

αd1βd2 .

Now the sum in the right-hand side is

Q−1∑

d1=1

αd1

Q−d1∑

d2=1

βd2 =
Q−1∑

d1=1

αd1
β

β − 1
(βQ−d1 − 1) ≤ β

β − 1

Q−1∑

d1=1

αd1βQ−d1

(where we used the relation β > 1), and similarly, the sum in the right-hand side
above is

αβQ−1

Q−2∑

d1=0

(α/β)d1 ≤ αβQ−1 · (α/β)Q−1

(α/β) − 1
= αQ−1β · (α/β)

(α/β) − 1

(where we used the relation α/β > 1). Hence, Lemma 3 holds.

Lemma 4. Let A = (a�,ξ)�,ξ be a matrix of ciphertexts a�,ξ with Θ rows. Let
μ > 1. For each (i, j) ∈ I, if wti,j(a�,ξ) ≤ μ for any �, ξ, then the output
((b�,ξ)�,ξ, d) of MatrixAdd′

Q(A) satisfies that wti,j(d) ≤ Θ · μ and

wti,j(b�,ξ) ≤ �Q/2� · μ

μ − 1
· Θ

Θ − 1
· ΘQ−1μQ for any �, ξ . (11)

Proof. For the intermediate objects sξ and cξ in the subroutine StreamAdd′
Q

whose inputs are Θ components of A, we have wti,j(sξ) ≤ Θμ for any ξ by the
choice of μ, while Lemma 3 with α := Θμ and β := μ implies that wti,j(cξ) is
bounded by the right-hand side of (11). Hence, Lemma 4 holds (note that the
right-hand side of (11) is larger than Θμ).

Lemma 5. Let (i, j) ∈ I and 1 ≤ i′ ≤ k. For ξ = 1, . . . , Li′ + 1, let
(V (ξ), wi′;Li′+1−ξ) denote the output of the subroutine MatrixAdd′

Qi′ (V
(ξ−1))

in FinalAdd′
Qi′ (Vi′), where V (0) := Vi′ . Then we have wti,j(wi′;Li′+1−ξ) ≤

(Ξi,i′)Qi′ ξ−1
, where

Ξi,i′ :=
(⌊

Qi′

2

⌋
Qi′QiΓ

Qi′QiΓ − 1
· Θi′

Θi′ − 1

)(Qi′ −1)−1

· Θi′Qi′QiΓ

(see Proposition 1 for the definition of Γ ).
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Proof. We show that wti,j(v(ξ)) ≤ μξ/Θi′ for any 0 ≤ ξ ≤ Li′ + 1 and any
component v(ξ) of V (ξ), where

μξ :=
(⌊

Qi′

2

⌋
Qi′QiΓ

Qi′QiΓ − 1
· Θi′

Θi′ − 1

)1+Qi′+···+Qi′ ξ−1

· (Θi′Qi′QiΓ )Qi′ ξ

.

Once this is shown, we have wti,j(wi′;Li′+1−ξ) ≤ μξ−1 by Lemma 4, while we
have μξ ≤ (Ξi,i′)Qi′ ξ

since 1 + Qi′ + · · · + Qi′ ξ−1 ≤ Qi′ ξ/(Qi′ − 1), therefore the
claim will follow.

First, for ξ = 0, we have μ0/Θi′ = Qi′QiΓ , while we have wti,j(v(0)) ≤
Qi′QiΓ by (7) and Proposition 1. Hence, the claim holds for the case.

For ξ > 0, we use the induction on ξ. First, we have

μξ−1/Θi′

μξ−1/Θi′ − 1
≤ Qi′QiΓ

Qi′QiΓ − 1

since μξ−1/Θi′ ≥ μ0/Θi′ = Qi′QiΓ . Then by Lemma 4 and the induction
hypothesis, we have

wti,j(v(ξ)) ≤
⌊

Qi′

2

⌋
Qi′QiΓ

Qi′QiΓ − 1
· Θi′

Θi′ − 1
· Θi′ Qi′ −1

(
μξ−1

Θi′

)Qi′

=
μξ

Θi′
.

Hence the claim holds for the case, therefore Lemma 5 holds.

By Lemma 5, we have

wti,j(c∗) ≤ Q1 · · · Qk

2

(

1 +
k∑

i′=1

(
(Ξi,i′)Qi′ L

i′
+ (Ξi,i′)Qi′ L

i′ −1)
)

≤ Q1 · · · Qk

2

k∑

i′=1

(
1 + (Ξi,i′)Qi′ L

i′
+ (Ξi,i′)Qi′ L

i′ −1) ≤ Q1 · · · Qk

k∑

i′=1

(Ξi,i′)Qi′ L
i′

where we used the relation

1 + (Ξi,i′)Qi′ L
i′ −1 ≤

(
(Ξi,i′)Qi′ L

i′ −1
)2

≤
(
(Ξi,i′)Qi′ L

i′ −1
)Qi′

(note that (Ξi,i′)Qi′ L
i′ −1 ≥ 2). Summarizing, we have the following result:

Theorem 5. Suppose that the parameters satisfy

Qi · Q1 · · · Qk

k∑

i′=1

(Ξi,i′)Qi′ L
i′

/(2pi,j) + θi · Qi
−Li + NQi

−κi/4 < 1/Qi (12)

for any (i, j) ∈ I (see Lemma 5 for the definition of Ξi,i′). Then, for any cipher-
text c for plaintext (mi,j)(i,j)∈I which is bootstrappable in the sense of Definition
2 and any σ ∈ Π, the output c∗ ← Bootstrap(pk∗, c, σ) is a ciphertext for plain-
text (mi,σi(j))(i,j)∈I which is bootstrappable.
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Finally, we investigate the choice of parameters to satisfy the condition (12).
First, for the parameters Li and κi in (8), we have

θi · Qi
−Li + NQi

−κi/4 ≤ 1/Qi
2 + (4Qi − 5)/(4Qi

2) = 1/Qi − 1/(4Qi
2)

since N ≤ 2γ , while we have Qi′ Li′ ≤ θi′Qi′3. On the other hand, we have
pi,j ≥ 2η−1 since pi,j is an η-bit prime. Therefore, to satisfy (12), it suffices to
satisfy the following (where we used θi′ = λ as in Sec. 6.3):

Qi · Q1 · · · Qk

k∑

i′=1

(Ξi,i′)λQi′3/2η ≤ 1/(4Qi
2) ,

or, more strongly,

η ≥ 2 + log2(Qi
3 · Q1 · · · Qk · k) + λ max

1≤i′≤k
Qi′3 log2 Ξi,i′ . (13)

From now, we study the asymptotic behavior of the parameters. By using the
relation t/(t − 1) ≤ e(t−1)−1

for t > 1, we have

Ξi,i′ ≤
(

Qi′

2
· e(Qi′ QiΓ−1)−1+(Θi′ −1)−1

)(Qi′ −1)−1

Θi′Qi′QiΓ ,

therefore

log2 Ξi,i′ ≤ 1
Qi′ − 1

(
log2 Qi′ − 1 +

(
1

Qi′QiΓ − 1
+

1
Θi′ − 1

)
log2 e

)

+ log2 Θi′ + log2 Qi′ + log2 Qi + log2 Γ .

Moreover, we have

log2 Γ = ρ + log2(h1(Q1 − 1) + · · · + hk(Qk − 1) + τ) .

Now, for the choice of parameters in Sec. 6.3, the term ρ in log2 Γ is dominant
among the terms in the upper bound for log2 Ξi,i′ above, therefore it suffices to
set η = ω(ρ · λ) to satisfy (13) asymptotically. Hence, the choice of parameters
in Sec. 6.3 is suitable to enable the bootstrapping.
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Abstract. We propose an efficient public key encryption scheme which
is key-dependent message secure against chosen ciphertext attacks
(KDM-CCA) with respect to affine functions based on the decisional
composite residuosity assumption. Technically, we achieve KDM-CCA
security by enhancing a chosen ciphertext secure scheme based on the
high entropy hash proof system with three tools: a key-dependent mes-
sage encoding, an entropy filter and an authenticated encryption secure
against related-key attacks.

Keywords: Public key encryption · Key-dependent message security ·
Related key attack · Authenticated encryption

1 Introduction

An encryption scheme is key-dependent message (KDM) secure if it is secure
even when the adversary can access encryptions of messages that depend on
the secret key. Due to its extensive usefulness in cryptographic protocol design
and analysis [16,23], hard disk encryption[19] and fully homomorphic public key
encryption [28], KDM security was widely studied in recent years [2–4,7,8,11,
17,19–21,31,32,34,40].

Although the construction of KDM secure schemes in the random oracle
model is very easy [6,16,23], in the standard model it remained an open problem
until Boneh et al. [19] proposed the first construction. The main idea of Boneh
et al.’s scheme is to construct key-dependent encryptions without knowing the
private key. When considering the case of KDM-CCA, unfortunately, Boneh et
al.’s approach causes a direct attack: an adversary can construct an encryption
of the private key, submit it to the decryption oracle and obtain the private key.
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Since the plaintexts may depend on the private key, existing techniques to
achieve IND-CCA2 (Indistinguishability security against adaptive chosen cipher-
text attacks) security in the standard model can not be used to construct KDM-
CCA secure schemes directly. Camenisch, Chandran and Shoup [22] modified the
Naor-Yung double encryption paradigm [41], and showed that one can combine a
KDM-CPA (Key-dependent message security against chosen plaintext attacks)
secure scheme with an IND-CCA2 secure scheme, along with an appropriate
non-interactive zero-knowledge (NIZK) proof, to obtain a KDM-CCA secure
scheme.

To construct practical KDM-CCA secure public key encryption (PKE)
schemes, a direct solution is to replace the generic inefficient NIZK proof sys-
tem by the hash proof system in [25]. Unfortunately, when the adversary can
get encryptions of the private key of the hash proof system, the entropy of the
private key will be leaked completely. To solve this problem, Hofheinz [33] pro-
posed a “twice encryption” construction, in which the algorithm of the hash
proof system shares the same private key with the encryption algorithm and
two random coins are used: one for encryption and the other for hash proof. To
prevent the adversary from generating valid ciphertexts of key-dependent mes-
sages, Hofheinz [33] added an authentication tag, constructed by embedding the
plaintext into an encrypted LAF (Lossy Algebraic Filter), to the ciphertext. It
guarantees that, in order to place a valid key-dependent decryption query, the
adversary would have to guess the whole private key.

Galindo et al. [27] proposed a master key-dependent message (MKDM) secure
IBE (Identity Based Encryption) scheme. Using the IBE to PKE transformation
of Canetti, Halevi and Katz [24], they get a KDM-CCA secure PKE scheme.
However, their concrete construction only achieves a bounded version of KDM
security, that is, the adversary can only make a bounded number of encryption
queries per public key.

1.1 Our Contribution

We propose an efficient KDM-CCA secure public key encryption scheme with
respect to affine functions by enhancing an IND-CCA2 secure hybrid encryption
scheme based on the high entropy hash proof system which was proposed by
Kiltz et al. in [37]. Briefly, Kiltz et al. [37] provided a transformation from a
k-entropic to a universal2 hash proof system. Combining the latter with an
AE-OT (Semantic and integrity security against one-time attack) secure data
encapsulation mechanism (DEM) gives an IND-CCA2 secure hybrid encryption
scheme. However, when key-dependent messages are encrypted by this hybrid
encryption, the entropy of the private key of the hash proof system may be
leaked completely.

Specifically, let (u, e = DEM.Ek(m)) be a ciphertext of such a hybrid encryp-
tion scheme, where (u, k) = KEM.Epk(r), KEM is the key encapsulation mech-
anism (KEM) constructed based on the hash proof system, pk is the public key,
k is the encapsulated key. When key-dependent messages are encrypted by this
hybrid encryption, for example e = DEM.Ek(f(sk)) (sk denotes the private key
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of the KEM, f(·) denotes the key-dependent function), the entropy of the private
key of the hash proof system may be leaked completely. To achieve KDM-CCA
security, we enhance the hybrid encryption as follows:

– Key-Dependent Message Encoding. To deal with the problem of entropy
leakage of key-dependent encryptions, we enhance the hybrid encryption by
using a key-dependent message encoding E(·). Specifically, instead of direct
encryption, the plaintexts are encoded as E(m) before encryption. We require
that, E(f(sk)) can be constructed publicly without using the private key sk.
Hence DEM.Ek(E(f(sk))) will not leak any entropy of sk. In fact most of
the KDM-CPA secure public key encryption schemes [4,19,20,40] meet this
requirement.

– Entropy Filter. Although the key-dependent message encoding prevents
the challenge ciphertexts from releasing the entropy of the private key of the
hash proof system, it enables the adversary to construct valid key-dependent
encryptions at the same time. Inspired by the technique of Hofheinz [33],
we solve this problem by adding an authentication tag to the ciphertext.
Specifically, we divide the entropy of the private key of the hash proof system
into two parts, and use an entropy filter to derive the first part to construct
an authentication tag. Let θ(·) be an entropy filter, the DEM part of the
hybrid encryption is enhanced as DEM.Ek(θ(m), E(m)).

– RKA Secure Authenticated Encryption. To guarantee that authen-
tication tag θ(m) can be used to prevent the adversary from constructing
valid ciphertexts, we must prevent the challenge ciphertexts from releas-
ing the entropy of the private key of the hash proof system derived by the
entropy filter. The main difficulty is that, to prevent the entropy leakage,
the challenger needs to provide a random encapsulated key for each key-
dependent encryption query. However, the entropy of the second part of the
hash proof system is not enough to protect the encapsulated keys for all
of the key-dependent encryption queries. We solve this problem by using
an RKA secure authenticated encryption. Specifically, let k∗ be an original
key for the RKA secure authenticated encryption scheme, in the construc-
tion of challenge ciphertexts, the keys for the authenticated encryption are
affine functions of k∗. And k∗ is hidden from the adversary perfectly by
using linearly dependent combinations of the second part of the private key.
According to the definition of RKA security, the encryption scheme is secure
if k∗ is randomly distributed. Therefor, we can hide the authentication tag
from the adversary perfectly.

On RKA Secure Authenticated Encryption. Related-key attacks (RKAs)
were first proposed in [14,38] as a cryptanalysis tool for block ciphers. Motivated
by real attacks [15,18], theoretical model for RKA was proposed by Bellare and
Kohno [12]. In the last decade the RKA security for a wide range of cryptographic
primitives was studied [1,5,9,10,13,29,30,35,36,39,43].

Up to now the RKA security for authenticated encryption has not been
studied yet. We propose formal definition for the semantic security and integrity
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security of authenticated encryption under RKAs. Similar to [12], we consider
RKA security with respect to a class of related-key deriving (RKD) functions
F which specify the key-relations available to the adversary. Informally, we let
the adversary apply chosen plaintext attacks and forgery attacks with respect
to a set of keys k1, · · · , kl which are derived from the original key k via a known
function f ∈ F .

According to the framework in [10], it is easy to transform an AE-OT secure
authenticated encryption scheme to an RKA secure authenticated encryption
scheme based a RKA secure PRF (Pseudorandom function). Although the recent
construction of RKA secure PRF with respect to affine function in [1] seems very
efficient in general case, it will be very inefficient for our application. Specifically,
the RKA secure PRF proposed by Abdalla et al. in [1] can be described as follows:

F(a, x) = NR∗(a, 11||h(x, (ga[1], · · · , ga[n]))),NR∗(a, x) = g
∏n

i=1 a[i]x[i]
,

where a = (a[1], · · · ,a[n]) ∈ (Z∗
q )n+1 is the key for the PRF, x = (x[1], · · · , x[n]

∈ {0, 1}n) is the input of the PRF, n is the parameter of security level, G = 〈g〉 is
a group of order q, h is a collision resistant hash function. When (ga[1], · · · , ga[n])
are precomputed, the computation of F only needs one exponentiation . However,
when embedded into our scheme, the key of the PRF a is randomly generated
for every ciphertext. That is, we need to compute (ga[1], · · · , ga[n]) for every
computation of the PRF. As a result, the computation of the PRF needs n + 1
exponentiations.

Moreover, the key space of the RKA secure PRF is a vector that contains
n elements. To embed this PRF into our scheme, the KEM part of our scheme
needs to encapsulate the key a which contains n elements. This will significantly
enlarge the ciphertext.

In this paper, we propose a direct construction of RKA secure authenticated
encryption scheme with respect to affine functions that do not contain constant
functions. Concretely, let f(x) = ax + b be an affine function, we consider affine
functions that a �= 0. Let π be an AE-OT secure authenticated encryption
scheme, G a group with order N , g ∈ G a generator of G, H : ZN → {0, 1}lκ

a 4-wise independent hash function, r a random number chosen from ZN , our
RKA secure authenticated encryption scheme encrypts the plaintext message m
as follows:

u ← gr, κ ← H(uk, u), e ← π.Eκ(m),

where lκ is the length of κ, π.Eκ(·) denote the encryption algorithm with the key
κ, and the ciphertext is (u, e). We prove that if π is AE-OT secure and the DDH
(Decisional Diffie-Hellman) assumption holds in G, then our new authenticated
encryption scheme is RKA secure.

Technical Relation to Hofheinz’s Scheme. To prevent the entropy leakage
of the authentication tag added to the ciphertext, Hofheinz’s [33] solution is
embedding the plaintext into an encrypted LAF. Concretely, for a given public
key Fpk, if t is a lossy tag, then LAFFpk,t([sk]Zn

p
) only depends on a linear
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combination of its input [sk]Zn
p

∈ Zn
p , here [sk]Zn

p
denotes encoding the private

key sk into Zn
p . In particular, the coefficients of the linear combination only

depend on Fpk. That is, for different tags ti, LAFFpk,ti
([sk]Zn

p
) only leaks the

same linear function of [sk]Zn
p
. However, when considering KDM security with

respect to richer functions such as affine functions, LAFFpk,ti
([fi(sk)]Zn

p
) may

leak all the entropy of [sk]Zn
p
, here f1, · · · , fl are affine functions chosen by

the adversary. Thus, Hofheinz’s scheme can only achieve CIRC-CCA (circular
security against chosen ciphertext attacks) security.

In our new construction, different from the approach of Hofheinz [33], we
divide the entropy of the private key into two independent parts and derive the
first part by using an entropy filter to construct an authentication tag. We prove
that the entropy in the first part of the private key is enough to prevent the
adversary from constructing a valid key-dependent encryption. Compared with
the LAF used by Hofheinz, the construction of our entropy filter is simpler and
more efficient.

To prevent the entropy leakage of the authentication tag in the challenge
ciphertext, Hofheinz’s [33] solution is “lossy”. The lossy property of LAF guar-
antees that, information theoretically, little information about the private key
is released. To this end, we use a way of “hiding”. Concretely, the keys for the
authenticated encryption are hidden from the adversary by using linear combi-
nations of the second part of the private key. According to the definition of RKA
security, the encryption scheme is secure even when the keys are linearly depen-
dent. Thus, the authentication tags are perfectly hidden from the adversary.

1.2 Outline

In section 2 we review the definitions of public key encryption scheme,
KDM-CCA security, decisional composite residuosity assumption, authenticated
encryption, decisional Diffie-Hellman assumption and leftover hash lemma. In
section 3 we propose the formal definition of RKA secure authenticated encryp-
tion scheme and an efficient construction. In section 4 we propose our new KDM-
CCA secure scheme and the security proof. Finally we give the conclusion in
section 5.

2 Definitions

We write [n] = {1, · · · , n}. In describing probabilistic processes, if S is a finite
set, we write s

R← S to denote assignment to s of an element sampled from
uniform distribution on S. If A is a probabilistic algorithm and x an input, then
A(x) denotes the output distribution of A on input x. Thus, we write y←A(x)
to denote of running algorithm A on input x and assigning the output to the
variable y. For an integer v ∈ N , we let Uv denote the uniform distribution over
{0, 1}v, the bit-string of length v. The min-entropy of a random variable X is
defined as

H∞(X) = − lg(max
x∈X

Pr[X = x]).
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The statistical distance between two random variables X,Y is defined by

SD(X,Y ) =
1
2

∑

x

|Pr[X = x] − Pr[Y = x]|.

2.1 Public Key Encryption Scheme

A public key encryption scheme consists of the following algorithms:

– Setup(l): A probabilistic polynomial-time setup algorithm takes as input
a security parameter l and outputs the system parameter prm. We write
prm ← Setup(l).

– Gen(prm): A probabilistic polynomial-time key generation algorithm takes
as input the system parameter prm and outputs a public key pk and a private
key sk. We write (pk, sk) ← Gen(prm).

– E(pk,m): A probabilistic polynomial-time encryption algorithm takes as
input a public key pk and a message m, and outputs a ciphertext c. We
write c ← Epk(m).

– D(sk, c): A decryption algorithm takes as input a ciphertext c and a private
key sk, and outputs a plaintext m. We write m ← Dsk(c).

For correctness, we require Dsk(Epk(m)) = m for all (pk, sk) output by
Gen(prm) and all m ∈ M (M denotes the message space).

2.2 KDM-CCA Security

A public key encryption scheme is n-KDM-CCA secure w.r.t F if the advantage
of any adversary in the following game is negligible in the security parameter l:

– Step 1: The challenger runs Setup(l) to generate the system parameter prm,
then runs Gen(prm) to obtain n keypairs (pki, ski), i = 1, · · · , n. It sends
prm and (pk1, · · · , pkn) to the adversary.

– Step 2: The adversary issues decryption queries with (cj , i), where 1 ≤ j ≤
Qd, 1 ≤ i ≤ n, Qd denotes the total number of decryption queries. With each
query, the challenger sends mj ← Dski

(cj) to the adversary.
– Step 3: The adversary issues encryption queries with (fλ, i), where fλ ∈

F, 1 ≤ λ ≤ Qe, 1 ≤ i ≤ n, Qe denotes the total number of encryption queries.
With each query, the challenger sends c∗

λ ← Epki
(mλb) to the adversary,

where mλ0 = {0}lλ ,mλ1 = fλ(sk1, · · · , skn), lλ = |mλ1|, b ∈ {0, 1} is a
random bit selected by the challenger (note that the challenger chooses b
only once).

– Step 4: The adversary issues decryption queries just as in step 2, the only
restriction is that the adversary can not ask the decryption of c∗

λ for 1 ≤ λ ≤
Qe.

– Step 5: Finally, the adversary outputs b′ as the guess of b.



KDM-CCA Security from RKA Secure Authenticated Encryption 565

The adversary’s advantage is defined as:

AdvKDMcca
A,n = |Pr[b′ = b] − 1/2|.

As a special case of n-KDM-CCA, if F = {fλ : fλ(sk1, · · · , skn) = skλ, λ ∈
[n] we say that the public key encryption scheme is n-CIRC-CCA secure.

2.3 Decisional Composite Residuosity Assumption

Let N = pq, p and q are safe primes, the quadratic residuosity group over Z∗
Ns

is defined as QRNs = {u2 mod Ns|u ∈ Z∗
Ns}, the square composite residu-

osity group as SCRNs = {vNs−1
mod Ns|v ∈ QRNs}, the root of the unity

group as RUNs = {T r mod Ns|r ∈ [Ns−1], T = 1 + N mod Ns}, consider the
experiment Expdcr

A :

W0
R← QRNs ,W1

R← SCRNs , b
R← {0, 1},

b′ ← A(N,Wb), return b′.

Denote Pr[Sucdcr
A ] = Pr[b′ = b] as the probability that A succeeds in guessing

b. We define the advantage of A in Expdcr
A as

Advdcr
A = |Pr[b′ = b] − 1

2
|.

We say that the decisional composite residuosity (DCR) assumption holds if
Advdcr

A is negligible for all polynomial-time adversaries A.
We review a lemma of [20] which is useful to the security proof of our scheme.

Let A be an adversary and s ≥ 2 be an integer, define game IV2 as follows.

IV2: g1, g2
R← SCRNs , b′ ← AOiv2(δ,δ̄)(N, g1, g2).

In the game above A is allowed to make polynomial number queries. In each
query, A can send (δ, δ̄ ∈ ZNs−1) to the oracle Oiv2. Oiv2(δ, δ̄) then selects
r ∈ [
N/4�] randomly and returns (gr

1T
δ, gr

2T
δ̄) if b = 1 and (gr

1, g
r
2) otherwise,

where b ∈ {0, 1} is randomly selected. The advantage of A is defined to be

Adviv2
A = |Pr[b′ = b] − 1

2
|.

Lemma 1. No polynomial-time adversary can have non-negligible advantage in
IV2 under the DCR assumption.

Our definition of IV2 follows from the version in [40], which is slightly differ-
ent from the original definition in [20].

Note that the discrete logarithm dlogT (X) := x for X ∈ RUNs and x ∈ Ns−1

can be efficiently computed [26,42].
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2.4 Authenticated Encryption

We review the security definitions of the authenticated encryption scheme. An
authenticated encryption (AE) scheme consists of three algorithms:

– AE.Setup(l): The setup algorithm takes as input the security parameter l,
and outputs public parameters param and the key k of the AE scheme. We
write (param, k) ← AE.Setup(l).

– AE.Ek(m): The encryption algorithm takes as inputs a key k and a message
m and outputs a ciphertext χ. We write χ ← AE.Ek(m)

– AE.Dk(χ): The decryption algorithm takes as inputs a key k, a ciphertext
χ and outputs a message m or the rejection symbol ⊥. We write m ←
AE.Dk(χ).

We require that for all k ∈ {0, 1}lk (lk denotes the length of k), m ∈ {0, 1}∗, we
have:

AE.Dk(AE.Ek(m)) = m.

An AE scheme is IND-OT (indistinguishability against one-time attacks) secure
if the advantage of any PPT (Probabilistic Polynomial Time) adversary A in
the following game is negligible in the security parameter l:

1. The challenger randomly generates an appropriately sized key k.
2. The adversary A queries the encryption oracle with two messages m0 and

m1 such that |m0| = |m1|. The challenger computes

b
R← {0, 1}, χ∗ ← AE.Ek(mb)

and responds with χ∗.
3. Finally, A outputs a guess b′ .

The advantage of A is defined as Advind-ot
A (l) = |Pr[b = b′] − 1/2|. We say that

the AE is one-time secure in the sense of indistinguishability if Advind-ot
A (l) is

negligible.
An AE scheme is INT-OT (one-time secure in the sense of ciphertext integrity)

secure if the advantage of any PPT adversary A in the following game is negli-
gible in the security parameter l:

1. The challenger randomly generates an appropriately sized key k.
2. The adversary A queries the encryption oracle with a message m. The chal-

lenger computes
χ∗ ← AE.Ek(m)

and responds with χ∗.
3. Finally, the adversary A outputs a ciphertext χ �= χ∗ such that

AE.Dk(χ) �=⊥.
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The advantage of A is defined as

Advint-ot
A (l) = Pr[AE.Dk(χ) �=⊥].

We say that the AE is one-time secure in the sense of ciphertext integrity if
Advint-ot

A (l) is negligible. An AE is one-time secure (AE-OT) iff it is IND-OT
secure and INT-OT secure.

2.5 Decisional Diffie-Hellman Assumption

Let G be a group of large prime order q, g is a generator of G, consider the
experiment Expddh

G,A:

(x, y, z) R← Z∗
q ;W0←gz;W1 ← gxy; b R← {0, 1}

b′ ← A(g, gx, gy,Wb).

We define the advantage of A as

Advddh
A = |Pr[b′ = b] − 1/2|.

We say that the DDH assumption holds if Advddh
A is negligible for all

polynomial-time adversaries A.

2.6 Leftover Hash Lemma

Multiple versions of LHL (Leftover Hash Lemma) have been proposed, we recall
the generalized version in [37]: if H is 4-wise independent, then (H,H(X),H(X̃))
is close to uniformly random distribution.

Lemma 2. (Generalized Leftover Hash Lemma) Let H = {H : X →
{0, 1}v} be a family of 4-wise independent hash functions, (X, X̃) ∈ X × X
be two random variables where H∞(X) ≥ κ, H∞(X̃) ≥ κ and Pr[X = X̃] ≤ δ.
Then for H

R← H and U2l
R← {0, 1}2l,

SD((H,H(X),H(X̃)), (H,U2l)) ≤ √
1 + δ · 2l−κ/2 + δ.

3 RKA Secure Authenticated Encryption

3.1 Definition of RKA Security for Authenticated Encryption

Following [12], we give a formal definition for the RKA security of AE schemes.
Similar as the definition of AE-OT security, the definition of RKA security
includes two aspects: indistinguishability security against related key attacks
(IND-RKA) and integrity security against related key attacks (INT-RKA).
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Definition 1. An AE scheme is IND-RKA secure with respect to a class of
related-key deriving functions F if the advantage of any PPT adversary A in the
following game is negligible in the security parameter l.

1. The challenger randomly generates an appropriately sized key k for the secu-
rity parameter l.

2. The adversary A makes a sequence of related-key encryption queries with
mi0,mi1, fi such that |mi0| = |mi1|. Here 1 ≤ i ≤ Q, Q denotes the number
of related-key encryption queries made by the adversary A, mi0 and mi1

are two messages, fi ∈ F , F is a class of related-key deriving functions.
The challenger chooses b ∈ {0, 1} randomly and responds with a challenge
ciphertext for each query of A computed as follows:

χ∗
i ← AE.Efi(k)(mib).

3. Finally, A outputs a guess b′ .

The advantage of A is defined as Advind-rka
A (l) = |Pr[b = b′] − 1/2|.

Definition 2. An AE scheme is INT-RKA secure with respect to a class of
related-key deriving functions F , if the advantage of any PPT adversary A in
the following game is negligible in the security parameter l.

1. The challenger randomly generates an appropriately sized key k for the secu-
rity parameter l.

2. The adversary A makes a sequence of related-key encryption queries with
mi, fi. Here 1 ≤ i ≤ Q, Q denotes the number of related-key encryption
queries made by the adversary A, mi is a plaintext message, fi ∈ F , F
is a class of related-key deriving functions. The challenger responds with a
challenge ciphertext for each query of A computed as follows:

χ∗
i ← AE.Efi(k)(mi).

3. Finally, the adversary A outputs a ciphertext χ and a related-key deriving
function f such that (f, χ) �= (fi, χ

∗
i ) and AE.Df(k)(χ) �=⊥.

The advantage of A is defined as

Advint-rka
A (l) = Pr[AE.Dk(χ) �=⊥].

Finally, the RKA security of the AE scheme is defined as follows:

Definition 3. An AE is RKA secure iff it is IND-RKA secure and INT-RKA
secure.
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3.2 Construction of RKA Secure Authenticated Encryption

We propose a randomized RKA secure authenticated encryption scheme with
respect to affine functions that do not contain constant functions. Concretely,
let f(x) = ax + b be an affine function, we consider affine functions that a �= 0.

Let π be an AE-OT secure authenticated encryption scheme, our new con-
struction π̄ is described as follows:

– Setup(l): Randomly choose two safe primes p and q that 2pq + 1 is also a
prime, then compute:

N ← pq, N̄ ← 2N + 1, g
R← QRN̄ , param ← (N, N̄, g), k R← ZN .

– Encryption: The encryption algorithm takes as inputs a key k ∈ ZN and
a message m and computes as follows:

r
R← ZN , u ← gr, κ ← H(uk, u),

e ← π.Eκ(m), χ ← (u, e).

Here H : QRN̄ × QRN̄ → {0, 1}lκ is a 4-wise independent universal hash
function, lκ is the length of κ.

– Decryption: The decryption algorithm takes as inputs a key k, a ciphertext
χ = (u, e) and computes as follows:

κ ← H(uk, u),m ← π.Dκ(e).

We prove that if π is AE-OT secure and the DDH assumption holds in QRN̄ ,
then our new authenticated encryption scheme is RKA secure.

Theorem 1. Assume the DDH assumption holds in QRN̄ , π is AE-OT secure,
then π̄ is RKA secure with respect to affine functions f(x) = ax + b that a �= 0.

According to the definition of the RKA security of AE scheme, we need to
prove two lemmas as follows.

Lemma 3. Assume the DDH assumption holds in QRN̄ , π is AE-OT secure,
then π̄ is IND-RKA secure with respect to affine functions f(x) = ax + b that
a �= 0.

Lemma 4. Assume the DDH assumption holds in QRN̄ , π is AE-OT secure,
then π̄ is INT-RKA secure with respect to affine functions f(x) = ax + b that
a �= 0.

Proof of Lemma 3: The proof is via a sequence of games involving the
challenger C and the adversary A. Let Wi be the event that A guesses b correctly
in Game i.

– Game 0: This game is the actual IND-RKA game. Hence,we have:

Pr[W0] = 1/2 + Advind-rka
A . (1)
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– Game 1: This game is exactly like Game 0, except that the challenge ciper-
texts are computed using gk instead of k. That is, let ĝ = gk, the keys for π
are computed as κi ← H(ĝriaigribi , gri). It is clear that Game 0 and Game
1 are identical from the point view of the adversary A, hence we have:

Pr[W0] = Pr[W1]. (2)

• Game 1.i: Denote Game 1.0 as Game 1, for 1 ≤ i ≤ Q, Game 1.i is
exactly like Game 1.(i−1) except that the key for π in the ith ciphertext
is computed as κi ← H(ĝr∗

i aigribi , gri), where r∗
i �= ri is randomly chosen

from ZN . It is clear that if the adversary A can distinguish Game 1.i
from Game 1.(i − 1), then we can break the DDH assumption. Briefly,
given a DDH challenge (g, ĝ, gr, ĝr∗

), to compute the ith ciphertext, the
challenger sets ui = gr, κi = H(ĝr∗aigrbi , ui). The computation of the
other ciphertexts is the same as in Game 1.(i − 1). It is clear that when
r = r∗, it is just the case in Game 1.(i-1), when r �= r∗ it is just the case
in Game 1.i. Thus, if the adversary A can distinguish Game 1.i from
Game 1.(i − 1), then the challenger can break the DDH assumption.
Hence we have:

Pr[W1.i−1] ≤ Pr[W1.i] + Advddh
A . (3)

– Game 2: This game is exactly Game 1.Q. It is clear that, when ai �= 0
the keys for the challenge ciphertexts κi = H(ĝr∗

i aigribi , gri) are randomly
distributed. According to the IND-OT security of π, we have:

Pr[W2] ≤ 1/2 + QAdvind-ot
A . (4)

From equations (1) − (4) we have:

Advind-rka
A ≤ QAdvddh

A + QAdvind-ot
A .

This completes the proof of lemma 3. ��
Proof of Lemma 4: The proof is via a sequence of games involving the

challenger C and the adversary A. Let Wi be the event that A outputs a valid
ciphertext in Game i.

– Game 0: This game is the actual INT-RKA game. When responding to a
related-key encryption query with mi, fi, where fi(k) = aik+bi, C computes
as follows:

ri
R← ZN , ui ← gri , κi ← H(uaik+bi

i , ui),

ei ← π.Eκi
(mi), χi ← (ui, ei).

– Game 1: This game is exactly like Game 0, except that the challenge cipher-
texts are computed using gk instead of k. That is, let ĝ = gk, the keys for π
are computed as κi ← H(ĝriaigribi , gri). It is clear that Game 0 and Game
1 are identical from the point view of the adversary A, hence we have:

Pr[W0] = Pr[W1]. (5)
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• Game 1.i: Denote Game 1.0 as Game 1, for 1 ≤ i ≤ Q, Game 1.i is
exactly like Game 1.(i−1) except that the key for π in the ith ciphertext
is computed as κi ← H(ĝr∗

i aigribi , gri), where r∗
i �= ri is randomly chosen

from ZN . It is clear that if the adversary A can distinguish Game 1.i
from Game 1.(i− 1), then we can break the DDH assumption. Hence we
have:

Pr[W1.i−1] ≤ Pr[W1.i] + Advddh
A . (6)

– Game 2: This game is exactly Game 1.Q. Denote χ = (u = gr, e =
π.Eκ(m)), f(k) = ak+b as the forged ciphertext and the related-key deriving
function, we consider three cases as follows:

• Case 1: f = fi, u = ui, e �= ei. In this case we have κ = κi, if χ is a
valid ciphertext then we get a forged ciphertext of ei. It is clear that the
keys for the challenge ciphertexts κi = H(ĝr∗

i aigribi , gri) are randomly
distributed. According to the INT-OT security of π, we have:

Pr[W2|Case1] ≤ QAdvint-ot
A . (7)

• Case 2: f �= fi, u = ui. In this case, we consider two subcases as follows:
∗ Case 2.1: r∗

i ak+rib = r∗
i aik+ribi. It is clear that, if the adversary A

submits such related-key deriving function, we can break the discrete
logarithm assumption. Concretely, given g, ĝ = gk, the simulator
S can play Game 2 with A. When A submits χ, f , S computes
ki = ri(bi−b)

r∗
i (a−ai)

and test whether ĝ = gki . Let εdlg be the probability
that any adversary breaks the discrete logarithm assumption, we
have:

Pr[Case2.1] ≤ εdlg. (8)

∗ Case 2.2: r∗
i ak + rib �= r∗

i aik + ribi. In this subcase, ĝr∗
i agrib �=

ĝr∗
i aigribi . Since r∗

i is randomly selected from ZN and a �= 0, ai �= 0,
we have:

H∞(ĝr∗
i agrib) = H∞(ĝr∗

i aigribi) = lN ,

where lN is the length of N . According to the property of 4-wise
independent hash functions, H(ĝr∗

i agrib, u),H(ĝr∗
i aigribi , ui) is ran-

domly distributed from the point view of the adversary A. Hence,
we have:

Pr[W2|Case2.2] ≤ Advint-ot
A . (9)

• Case 3: u �= ui. Since the information of k is statistically hidden by r∗
i ,

we have:
H∞(uak+b) = H∞(uaik+bi

i ) = lN ,

where lN is the length of N . According to the property of 4-wise indepen-
dent hash functions, H(uak+b, u),H(uaik+bi

i , ui) is randomly distributed
from the point view of the adversary A. Hence, we have:

Pr[W2|Case3] ≤ Advint-ot
A . (10)
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From equations (7) − (10) we have:

Pr[W2] ≤ QAdvint-ot
A + εdlg. (11)

From the equations (5), (6), (11) we have that:

Advint-rka
A = Pr[W0]

≤ QAdvddh
A + QAdvint-ot

A + εdlg.
(12)

This completes the proof of lemma 4. ��

4 KDM-CCA Secure Scheme

4.1 The Idea of Our Construction

Before formal description, we give some intuition of our construction. Just as
we mentioned in section 1.1, existing KDM-CPA schemes [4,19,20,40] are very
suitable to be used as a key-dependent message encoding. To encode the mes-
sages depending on the private key of the KEM part, the encoding scheme must
share the same parameters (especially the private key) with the KEM part.
For this reason, we first choose a KDM-CPA scheme, then translate it into a
KEM scheme. Concretely, we choose the KDM-CPA scheme in [40] as the key-
dependent message encoding scheme and translate it into a KEM by replacing
the plaintext with a randomly selected key k. Briefly the ciphertext of the hybrid
encryption can be described as:

u = gr, e = hrT k, v = π̄.Ek(gr̃||hr̃Tm),

where g ∈ SCRNs , s ≥ 2, x ∈ [
N2/4�], h = gx, r, r̃ ∈ [
N/4�], π̄ is an RKA
secure authenticated encryption scheme. Given the public key (g, h), we have
h = gx mod φ(N)/4 mod Ns. That is, conditioned on the public key, x mod N
is hidden from the adversary information theoretically. Thus, the entropy of the
private key is x mod N .

To divide the entropy of the private key into two parts independent of each
other, we enlarge the entropy by extending the public key and the private key.
As a result, the ciphertext of the hybrid encryption is extended as:

u1 = gr
1, u2 = gr

2, e = hrT k, v = π̄.Ek(gr̃
1||gr̃

2||hr̃Tm),

where g1, g2 ∈ SCRNs , x1, x2 ∈ [
N2/4�], h = gx1
1 gx2

2 . It is clear that, conditioned
on the public key, the adversary can only get

h = g
x1 mod φ(N)/4
1 g

x2 mod φ(N)/4
2 mod Ns.

The entropy of the private key can be divided into two parts: the first part is
the entropy contained in (x1 mod φ(N)/4, x2 mod φ(N)/4), the second part
is the entropy contained in (x1 mod N,x2 mod N). It is easy to construct an
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entropy filter to derive the first part of the entropy from the key-dependent
messages as θ(f(x1, x2)) = g

f(x1,x2)
1 . To prevent the adversary from getting

a valid key-dependent encryption by modifying the challenge ciphertexts, we
use the universal hash function H to construct the authentication tag as t =
H(u1||u2||e||θ(f(x1, x2))).

In order to protect the key of the RKA secure authenticated encryption
scheme by using the second part of the entropy, we modify the KEM part of the
hybrid encryption slightly as:

u1 = gr
1 mod N2, u2 = gr

2 mod N2, e = hrT k mod N2.

Since g1 mod N2, g2 mod N2 ∈ SCRN2 , the KEM part is now computed in
the group of SCRN2 . In this case we have e = hrT k mod N2 = hrT k mod N

mod N2. That is, the range of k is now shrunk to [N ] from [Ns−1]. When we
use (x1, x2) to protect k, only the second part of the entropy will be derived out.

4.2 The Proposed Scheme

– Setup(l): Randomly choose two safe primes p and q that 2pq + 1 is also a
prime, then compute:

N ← pq, g1, g2
R← SCRNs , prm ← (N, g1, g2).

– Key Generation: For prm, the key generation algorithm computes:

x1, x2
R← [
N2/4�], h ← g−x1

1 g−x2
2 ,

pk ← (h), sk ← (x1, x2).

– Encryption: For m ∈ [Ns−1], the encryption algorithm computes the cipher-
text c as follows:

r, r̃
R← [
N/4�], k R← ZN ,

u1 ← gr
1 mod N2, u2 ← gr

2 mod N2, e ← hrT k mod N2,

ũ1 ← gr̃
1 mod Ns, ũ2 ← gr̃

2 mod Ns, ẽ ← hr̃Tm mod Ns,

t ← H(u1||u2||e||(gm
1 mod N)), v ← π̄.Ek(t||ũ1||ũ2||ẽ), c ← (u1, u2, e, v).

where H : {0, 1}∗ → {0, 1}lt is a universal hash function.
– Decryption: If eux1

1 ux2
2 /∈ RUN2 return the rejection symbol ⊥, else com-

pute:
k ← dlogT (eux1

1 ux2
2 ),

t||ũ1||ũ2||ẽ ← π̄.Dk(v),

If ẽũx1
1 ũx2

2 /∈ RUNs return ⊥,

m ← dlogT (ẽũx1
1 ũx2

2 ),

If t = H(u1||u2||e||(gm
1 mod N)) return m, else return ⊥ .
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It is clear that compared with Hofheinz’s CIRC-CCA scheme [33], our new
scheme is simpler and more efficient. Concretely, the ciphertext of the Hofheinz’s
scheme contains 6 ZN3-elements, 43 Zp-elements (p ≈ N/4), a chameleon hash
randomness, a one-time signature and the verification key, and a symmetric
ciphertext (whose size is about one NN2 -element plus some encryption random-
ness). However, to achieve CIRC-CCA security, we can set s = 3 for our scheme,
in this case the ciphertext of our new scheme only contains 3 ZN2 -elements, 3
ZN3-elements, 1 ZN̄ -elements (N̄ = 2N + 1), a hash value (whose size is about
the security parameter l) and the ciphertext expansion of the authenticated
encryption scheme (whose size is about twice of the security parameter l).

4.3 Security Proof

Before formal proof, we give an intuition of the 1-KDM-CCA security of our
scheme. The n-KDM-CCA security can be achieved by re-randomizing keys and
ciphertexts of a single instance of the scheme like in [19,20]. Our main idea is to
achieve KDM-CCA security based on the entropy of the private key. Concretely,
let xhide

1 = x1 mod N,xreal
1 = x1 mod φ(N)/4, xhide

2 = x2 mod N,xreal
2 = x2

mod φ(N)/4, we have that h = g−x1
1 g−x2

2 = g
−xreal

1
1 g

−xreal
2

2 . Hence, xhide
1 and

xhide
2 are information theoretically hidden from the adversary, conditioned on

the public key.
In the security reduction, to encrypt f(x1, x2) = a1x1 + a2x2 + b, the cipher-

text is constructed as π̄.Ek(t||gr̃
1T

a1 ||gr̃
2T

a2 ||hr̃T b). In fact, this ciphertext can
be constructed without knowing xhide

1 and xhide
2 . Thus it will not leak any infor-

mation of xhide
1 and xhide

2 .
Let logg1

g2 = w, we have that, conditioned on the public key, the only infor-
mation that the adversary gets about xreal

1 and xreal
2 is the following equation:

logg1
h = −(xreal

1 + wxreal
2 ) mod φ(N)/4.

It is clear that there is entropy in the pair (xreal
1 , xreal

2 ), since the adversary
only gets one equation for two variables. We divide the entropy of the private
key into two parts: the first part is the entropy contained in (xreal

1 , xreal
2 ), the

second part is the entropy contained in (xhide
1 , xhide

2 ).
The first part of the entropy is embedded into an authentication tag to pre-

vent the adversary from constructing a valid encryption of an affine function
of the private key f(x1, x2) = a1x1 + a2x2 + b. Concretely, we embed g

f(x1,x2)
1

mod N = g
a1xreal

1 +a2xreal
2 +b

1 mod N into an authentication tag t. Note that
if a2/a1 = w mod φ(N)/4, then a1x

real
1 + a2x

real
2 is linearly dependent with

(xreal
1 + wxreal

2 ), and f(x1, x2) is not randomly distributed. Fortunately, we
prove that this case implies the breaking of the discrete logarithm assumption.
If a2/a1 �= w mod φ(N)/4, then a1x

real
1 + a2x

real
2 is linearly independent with

(xreal
1 +wxreal

2 ), and a1x
real
1 +a2x

real
2 is randomly distributed. In order to place

a valid key-dependent decryption query, the adversary would have to guess the
value of a1x

real
1 + a2x

real
2 .
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The second part of the entropy is used to protect an original key k∗, which
is used to derive keys for the authenticated encryption by using affine functions
f(k∗) = rk∗+s. We show that the decryption oracle will not leak any information
of (xhide

1 , xhide
2 ). Thus k∗ is perfectly hidden from the adversary. According to

the RKA security of the authenticated encryption, the plaintext messages are
perfectly protected by the authenticated encryption.

Theorem 2. Assume the DCR assumption holds in ZNs , π̄ is an RKA secure
authenticated encryption scheme with respect to affine functions f(k) = ak + b
that a �= 0. Then the scheme above is n-KDM-CCA secure with respect to affine
functions with the range of [Ns−1] for s ≥ 2.

The proof is via a sequence of games involving the challenger C and the
adversary A. Let Wδ be the event that A guesses b correctly in Game δ.

– Game 0: This game is the actual n-KDM-CCA game. The challenger C
runs the setup and key generation algorithm, sends the parameters prm =
(g1, g2, N) and public keys pki = (hi = gxi1

1 gxi2
2 ), i = 1, · · · , n to the adver-

sary A. When responding to a key-dependent encryption query with (fλ, i),
that fλ(sk1, · · · , skn) =

∑n
j=1(ajλ1xj1 + ajλ2xj2) + bλ ∈ [Ns−1], the chal-

lenger C randomly chooses b ∈ {0, 1} and computes as follows:

r∗
λ, r̃∗

λ
R← [
N/4�], k∗

λ
R← ZN ,

mλ0 ← 0,mλ1 ←
n∑

j=1

(ajλ1xj1 + ajλ2xj2) + bλ,

u∗
λ1 ← g

r∗
λ

1 mod N2, u∗
λ2 ← g

r∗
λ

2 mod N2, e∗
λ ← h

r∗
λ

i T k∗
λ mod N2,

ũ∗
λ1 ← g

r̃∗
λ

1 mod Ns, ũ∗
λ2 ← g

r̃∗
λ

2 mod Ns, ẽ∗
λ ← h

r̃∗
λ

i Tmλb mod Ns,

t∗λ ← H(u∗
λ1||u∗

λ2||e∗
λ||(gmλb

1 mod N)), v∗
λ ← π̄.Ek∗

λ
(t∗λ||ũ∗

λ1||ũ∗
λ2||ẽ∗

λ),

c∗
λ ← (u∗

λ1, u
∗
λ2, e

∗
λ, v∗

λ).

When responding to a decryption query (c = (u1, u2, e, v), i) the challenger
C decrypts using the secret key ski = (xi1, xi2). By definition we have:

AdvKDMcca
A,n = Pr[W0] − 1/2. (13)

– Game 1: This game is exactly like Game 0, except that the key generation
algorithm runs as follows:

x1, x2
R← [
N2/4�], x̄i1, x̄i2

R← [
N/4�],
xi1 ← x1 + x̄i1, xi2 ← x1 + x̄i2, hi ← g−xi1

1 g−xi2
2 ,

pki ← (hi), ski ← (xi1, xi2),

It is clear that in the key generation algorithm above xi1, xi2 are chosen from
[
N2/4� + 
N/4�] instead of [
N2/4�]. The statistical distance between the
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uniform distribution over these two domains is about 2−lN , where lN is the
length of N .

If we use φ(N)/4 instead of 
N/4� then, the distributions of the public
keys pk1, · · · , pkn are identical in Game 0 and Game 1. Since φ(N)/4 =
pq, 
N/4� = pq +(p+ q)/2, hence the statistical distance between the public
keys in Game 0 and Game 1 is bounded by 2−lN /2.
As a result, we have:

Pr[W0] ≤ Pr[W1] + 2−lN + 2−lN /2. (14)

– Game 2: This game is exactly like Game 1, except that when responding
to the key-dependent encryption query, ẽ∗

λ and e∗
λ are computed as:

e∗
λ ← u∗−xi1

λ1 u∗−xi2
λ2 T k∗

λ mod N2, ẽ∗
λ ← ũ∗−xi1

λ1 ũ∗−xi2
λ2 Tmλb mod Ns.

It is clear that ũ∗−xi1
λ1 ũ∗−xi2

λ2 = h
r̃∗

λ
i , u∗−xi1

λ1 u∗−xi2
λ2 = h

r∗
λ

i . Hence we have:

Pr[W1] = Pr[W2]. (15)

– Game 3: Game 3 is exactly like Game 2, except that when responding to
the key-dependent encryption query, if b = 1, then ũ∗

λ1, ũ
∗
λ2, ẽ

∗
λ are computed

as follows:
ũ∗

λ1 ← g
r̃∗

λ
1 T aλ1 mod Ns,

ũ∗
λ2 ← g

r̃∗
λ

2 T aλ2 mod Ns,

ẽ∗
λ ← h

r̃∗
λ

i T bλ+ρλ mod Ns,

where aλ1 =
∑n

j=1 ajλ1, aλ2 =
∑n

j=1 ajλ2 and ρλ =
∑n

j=1(ajλ1(x̄j1 − x̄i1) +
ajλ2(x̄j2 − x̄i2)).

It is clear that if the adversary A can distinguish Game 3 from Game 2,
then C can solve the IV2 problem. Concretely, when receiving g1, g2 from the
IV2 challenger, C runs the key generation algorithm to get pki, ski. When
responding to the key-dependent encryption query, if b = 1, ũ∗

λ1, ũ
∗
λ2, ẽ

∗
λ are

computed as follows:

(ũ∗
λ1, ũ

∗
λ2) ← Oiv2(aλ1, aλ2), ẽ∗

λ ← ũ∗−xi1
λ1 ũ∗−xi2

λ2 Tmλb mod Ns.

Other parts of the ciphertext and the response to the decryption queries are
computed as in Game 2. According to the definition of the IV2 problem,
(ũ∗

λ1, ũ
∗
λ2) = (gr̃∗

λ
1 , g

r̃∗
λ

2 ) or (ũ∗
λ1, ũ

∗
λ2) = (gr̃∗

λ
1 T aλ1 , g

r̃∗
λ

2 T aλ2). It is easy to verify
that in the first case the response to the key-dependent encryption query is
identical to that of Game 2. In the second case we have:

ẽ∗
λ = ũ∗−xi1

λ1 ũ∗−xi2
λ2 Tmλ1

= (gr̃∗
λ

1 T aλ1)−xi1(gr̃∗
λ

2 T aλ2)−xi2T
∑n

j=1(ajλ1xj1+ajλ2xj2)+bλ

= (gr̃∗
λ

1 T
∑n

j=1 ajλ1)−xi1(gr̃∗
λ

2 T
∑n

j=1 ajλ2)−xi2T
∑n

j=1(ajλ1xj1+ajλ2xj2)+bλ

= hr̃∗
λT
∑n

j=1(ajλ1(xj1−xi1)+ajλ2(xj2−xi2))+bλ

= hr̃∗
λT
∑n

j=1(ajλ1(x̄j1−x̄i1)+ajλ2(x̄j2−x̄i2))+bλ

= hr̃∗
λT ρλ+bλ
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Hence we have:
Pr[W2] ≤ Pr[W3] + Adviv2

A . (16)

– Game 4: This game is exactly like Game 3, except that when responding
to the key-dependent encryption query, the challenger C randomly chooses
α, β ∈ ZN , r∗ ∈ [
N/4�], computes u∗

λ1, u
∗
λ2, e

∗
λ as follows:

u∗
λ1 ← (gr∗

1 Tα)r∗
λ mod N2,

u∗
λ2 ← (gr∗

2 T β)r∗
λ mod N2,

e∗
λ ← (u∗−xi1

λ1 u∗−xi2
λ2 )T k∗

λ mod N2,

Similar as in Game 3, if the adversary A can distinguish Game 4 from Game
3, then C can solve the IV2 problem. Hence we have:

Pr[W3] ≤ Pr[W4] + Adviv2
A . (17)

– Game 5: This game is exactly like Game 4, except that when responding
to the key-dependent encryption query, the challenger C randomly chooses
k∗ ∈ ZN , computes k∗

λ as follows:

s∗
λ

R← ZN , k∗
λ ← r∗

λk∗ + s∗
λ mod N.

It is to verify that k∗
λ = r∗

λk∗ + s∗
λ mod N is uniformly distributed on ZN .

Hence we have:
Pr[W4] = Pr[W5]. (18)

– Game 6: This game is exactly like Game 5, except that when responding
to the decryption query (c = (u1, u2, e, v), i) , the challenger C computes k
and m by using φ(N) = (p − 1)(q − 1) and ski = (xi1, xi2) as follows:

α′ ← dlogT (u
φ(N)
1 )/φ(N) mod N, β′ ← dlogT (u

φ(N)
2 )/φ(N) mod N,

γ′ ← dlogT (eφ(N))/φ(N) mod N, k ← (α′xi1 + β′xi2 + γ′) mod N,

α̃ ← dlogT (ũ
φ(N)
1 )/φ(N) mod Ns−1, β̃ ← dlogT (ũ

φ(N)
2 )/φ(N) mod Ns−1,

γ̃ ← dlogT (ẽφ(N))/φ(N) mod Ns−1, m ← (α̃xi1 + β̃xi2 + γ̃) mod Ns−1.

It is clear that, the computation of the decryption algorithm in Game 6 is
identical to that in Game 5, we have:

Pr[W5] = Pr[W6]. (19)

– Game 7: This game is exactly like Game 6, except that when responding to
the decryption query, the challenger returns ⊥ when u1 = u∗

λ1, u2 = u∗
λ2, e =

e∗
λ, v �= v∗

λ. Since π̄ is INT-RKA secure and k∗ is randomly distributed from
the point view of A (see Game 8 equation 23 for detailed analysis), such
ciphertext will be rejected except with the probability of Advint-rka

A . Hence
we have:

Pr[W6] ≤ Pr[W7] + Advint-rka
A . (20)
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– Game 8: This game is exactly like Game 7, except that when responding
to the decryption query, the challenger returns ⊥ when α̃ �= 0 or β̃ �= 0 or
α′ �= 0 or β′ �= 0.

Let xhide
1 = x1 mod N,xreal

1 = x1 mod φ(N)/4, xhide
2 = x2

mod N,xreal
2 = x2 mod φ(N)/4, xhide

i1 = xi1 mod N,xreal
i1 = xi1

mod φ(N)/4, xhide
i2 = xi2 mod N,xreal

i2 = xi2 mod φ(N)/4, w = logg1
g2,

according to the key generation algorithm we have:

logg1
hi = −(xreal

i1 + wxreal
i2 ) mod φ(N)/4

= −(xreal
1 + x̄real

i1 + w(xreal
2 + x̄real

i2 )) mod φ(N)/4.
(21)

Hence, xhide
1 and xhide

2 are randomly distributed from the point view of
A conditioned on the public key. According to the encryption oracle k∗ is
encapsulated in e∗

λ as follows:

e∗
λ = (u∗−xi1

λ1 u∗−xi2
λ2 )T k∗

λ mod N2

= ((gr∗
1 Tα)r∗

λ)−xi1((gr∗
2 T β)r∗

λ)−xi2T (r∗
λk∗+s∗

λ) mod N2

= h
r∗r∗

λ
i T r∗

λ(−αxi1−βxi2+k∗)+s∗
λ mod N2

= h
r∗r∗

λ
i T r∗

λ(−α(x1+x̄i1)−β(x2+x̄i2)+k∗)+s∗
λ mod N2

(22)

k∗ = dlogT (e
∗φ(N)
λ )/φ(N)

r∗
λ

+ α(x1 + x̄i1) + β(x2 + x̄i2) − s∗
λ

r∗
λ

mod N

= dlogT (e
∗φ(N)
λ )/φ(N)

r∗
λ

+ α(xhide
1 + x̄hide

i1 ) + β(xhide
2 + x̄hide

i2 ) − s∗
λ

r∗
λ

mod N

= dlogT (e
∗φ(N)
λ )/φ(N)

r∗
λ

+ αxhide
1 + βxhide

2 + αx̄hide
i1 + βx̄hide

i2 − s∗
λ

r∗
λ

mod N.

(23)
It is clear that, when α̃ = 0, β̃ = 0, α′ = 0, β′ = 0, the decryption oracle
will not leak any information of the private key. In addition ciphertexts that
u1 = u∗

λ1, u2 = u∗
λ2, e = e∗

λ, v �= v∗
λ are rejected. Denote Bad as the event

that the challenge does not return ⊥ when α̃ �= 0 or β̃ �= 0 or α′ �= 0 or
β′ �= 0. We have that if Bad does not happen, the decryption will not leak
any information of k∗. Hence k∗ is randomly distributed from the point view
of A conditioned on ¬Bad. Now we show that, in Game 7 when α̃ �= 0 or
β̃ �= 0 or α′ �= 0 or β′ �= 0, the challenger will return ⊥ except with a
negligible probability. For clarity, we consider four cases as follows:

• α̃ �= 0, β̃ �= 0: Since k∗ is randomly distributed conditioned on ¬Bad
and the keys k∗

λ = r∗
λk∗ + s∗

λ are affine functions of k∗, according to
the IND-RKA security of π̄ we have that v∗

λ will not leak any informa-

tion of xreal
1 and xreal

2 except with negligible probability of Advind-rka
A .

Hence the only information that the adversary gets about xreal
1 and xreal

2

conditioned on the public key and the ciphertexts is equation (21).
If β̃/α̃ �= w mod φ(N)/4, we have that logg1

gm
1 = α̃(xreal

1 + x̄real
i1 ) +

β̃(xreal
2 + x̄real

i2 ) + γ̃ mod φ(N)/4 is linearly independent with equation
(21). Thus t = H(u1||u2||e||gm

1 ) is randomly distributed from the point
view of the adversary A except with negligible probability of Advind-rka

A .
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So we have that such ciphertexts will be rejected except with the prob-
ability of Advind-rka

A + 2−lt .
If β̃/α̃ = w mod φ(N) the challenger C can compute:

w = β̃/α̃ = dlogT (ũφ(N)
2 )/dlogT (ũφ(N)

1 ).

Let εdlg be the probability that any adversary breaks the discrete loga-
rithm assumption, we have that the probability that such cases happens
is εdlg.

• α̃ �= 0, β̃ = 0 or α̃ = 0, β̃ �= 0: Similar as the case β̃/α̃ �= w mod φ(N)/4
above, such ciphertexts will be rejected except with the probability of
Advind-rka

A + 2−lt .
• α′ �= 0, β′ �= 0: If α′/β′ �= α/β, we have that k = α′(xhide

1 + x̄hide
i1 ) +

β′(xhide
2 + x̄hide

i2 )+γ′ mod N is linearly independent with equation (23).
Hence k ∈ ZN is randomly distributed from the point view of A, such
ciphertexts will be rejected except with the probability of 2−lN .
If α′/β′ = α/β mod N , let α′ = r̄α mod N,β′ = r̄β mod N, γ′ =
r̄(−αxhide

i1 − βxhide
i2 + k∗) + γ mod N , we have:

k = r̄k∗ + γ.

According to the INT-RKA security of π̄, such ciphertexts will be rejected
except with the probability of Advint-rka

A .
• α′ �= 0, β′ = 0 or α′ = 0, β′ �= 0: Similar as the case of α′/β′ �= α/β

mod N , such ciphertexts will be rejected except with the probability of
2−lN .

According to the analysis above, we have that in Game 7:

Pr[Bad] ≤ Advind-rka
A + Advint-rka

A + 2−lt + 2−lN + εdlg

Hence we have:
Pr[W7] ≤ Pr[W8] + Pr[Bad]. (24)

– Game 9: This game is exactly like Game 8, except that when responding
to the key-dependent encryption query, the challenger C randomly chooses
k∗, k̄∗ ∈ ZN , computes e∗

λ and v∗
λ as follows:

s∗
λ

R← ZN , k∗
λ ← r∗

λk∗ + s∗
λ mod N, e∗

λ ← (u∗−xi1
λ1 u∗−xi2

λ2 )T k∗
λ mod N2,

k̄∗
λ ← r∗

λk̄∗ + s∗
λ mod N, v∗

λ ← π̄.Ek̄∗
λ
(t∗λ||ũ∗

λ1||ũ∗
λ2||ẽ∗

λ).

Since all the decryption queries that α̃ �= 0 or β̃ �= 0 or α′ �= 0 or β′ �= 0
are rejected, we have that xhide

1 and xhide
2 are randomly distributed from the

point view of A conditioned on the public key and the decryption oracle. In
addition, when (u1 = u∗

λ1, u2 = u∗
λ2, e = e∗

λ, v �= v∗
λ) decryption queries are

also rejected. Hence, the decryption oracle will not leak any information of
k∗. According to equation (23), k∗ is randomly distributed. So we have:

Pr[W8] ≤ Pr[W9]. (25)
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According to the IND-RKA security of π̄, the probability that A wins in
Game 9 is:

Pr[W9] ≤ 1/2 + Advind-rka
A . (26)

According to equations above we have:

AdvKDMcca
A,n ≤ 2Adviv2

A + 2Advint-rka
A + 2Advind-rka

A + ε. (27)

where ε = 2 · 2−lN + 2−lN /2 + 2−lt + εdlg.
This completes the proof of the theorem 2. ��

5 Conclusion

We propose an efficient KDM-CCA secure public key encryption scheme with
respect to affine functions by enhancing an IND-CCA2 secure hybrid encryp-
tion scheme based on the high entropy hash proof system. Our main idea is
to divide the entropy of the private key into two parts: one part is embedded
into the authentication tag, the other part is used to protect an original key for
the authenticated encryption scheme. To hide the authentication tags from the
adversary perfectly, we use an RKA secure authenticated encryption scheme and
derive the keys from affine functions of the original key.

Compared with Hofheinz’s scheme [33], our new scheme is simpler and more
efficient. In addition, our new scheme achieves KDM-CCA security with respect
to affine functions while Hofheinz’s scheme only achieves CIRC-CCA security.
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Abstract. The iterated Even-Mansour cipher is a construction of a
block cipher from r public permutations P1, . . . , Pr which abstracts in
a generic way the structure of key-alternating ciphers. The indistin-
guishability of this construction from a truly random permutation by
an adversary with oracle access to the inner permutations P1, . . . , Pr

has been investigated in a series of recent papers. This construction has
also been shown to be (fully) indifferentiable from an ideal cipher for
a sufficient number of rounds (five or twelve depending on the assump-
tions on the key-schedule). In this paper, we extend this line of work by
considering the resistance of the iterated Even-Mansour cipher to xor-
induced related-key attacks (i.e., related-key attacks where the adver-
sary is allowed to xor any constant of its choice to the secret key) and
to chosen-key attacks. For xor-induced related-key attacks, we first pro-
vide a distinguishing attack for two rounds, assuming the key-schedule is
linear. We then prove that for a linear key-schedule, three rounds yield
a cipher which is secure against xor-induced related-key attacks up to
O(2

n
2 ) queries of the adversary, whereas for a nonlinear key-schedule, one

round is sufficient to obtain a similar security bound. We also show that
the iterated Even-Mansour cipher with four rounds offers some form of
provable resistance to chosen-key attacks, which is the minimal number
of rounds to achieve this property. The main technical tool that we use
to prove this result is sequential indifferentiability, a weakened variant of
(full) indifferentiability introduced by Mandal et al. (TCC 2010).

Keywords: Block cipher · Ideal cipher · Related-key attacks · Chosen-
key attacks · Iterated Even-Mansour cipher · Key-alternating cipher ·
Indifferentiability · Correlation intractability

1 Introduction

Background. The Even-Mansour construction, and its generalization, the iter-
ated Even-Mansour (IEM for short) construction, is a very simple way to define
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a block cipher from a set of r public permutations P1, . . . , Pr of {0, 1}n. Given
a plaintext x ∈ {0, 1}n, the ciphertext y is computed as

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · · P2(k1 ⊕ P1(k0 ⊕ x)) · · · )),

where the n-bit round keys k0, . . . , kr are either independent or derived from
a master key k through key derivation functions (γ0, . . . , γr). It abstracts in a
generic way the high-level structure of most key-alternating ciphers such as AES.
The nonexistence of generic attacks (i.e., attacks that are possible independently
of a particular instantiation of the permutations P1, . . . , Pr) against this con-
struction can be studied in the Random Permutation Model, where the Pi’s are
modeled as public random permutations to which the adversary is only given
black-box (oracle) access.

The security of this construction in the traditional (single-key) indistin-
guishability framework (in other words, its pseudorandomness) has been exten-
sively studied, starting with the seminal work of Even and Mansour for r = 1
round [16]. For an arbitrary number r of rounds, the case where all round keys
are independent is by now well understood [8,11,23,32], and a tight security
bound of O(2

rn
r+1 ) queries has been established [11]. Chen et al. [10] also consid-

ered, for r = 2, the more complex case where the round keys are derived from
an n-bit master key (as well as the case where the two inner permutations P1

and P2 are identical), and showed that a O(2
2n
3 )-security bound still holds in

that case.
On the other hand, two recent papers [1,24] explored a very strong secu-

rity property of this construction, namely (full) indifferentiability from an ideal
cipher (where “full” indifferentiability refers to the notion of Maurer et al. [27]),
which roughly ensures that the construction “behaves” in some well-defined sense
as an ideal cipher, i.e., a block cipher drawn at random from the set of all block
ciphers of some given block- and key-length. Andreeva et al. [1] showed that this
property is achieved by the 5-round IEM cipher, assuming the key derivation
function is modeled as a random oracle, while Lampe and Seurin [24] showed
this for the 12-round IEM cipher, lifting the cryptographic requirement on the
key derivation (namely, their result holds for the trivial key-schedule, i.e., when
all round keys are equal to the n-bit master key).

In this paper, we complete the picture of the security of the IEM construc-
tion by considering security notions that lie between mere pseudorandomness
and full indifferentiability from an ideal cipher, namely security against xor-
induced related-key attacks (XRKA for short), i.e., related-key attacks where
the adversary is allowed to xor any constant of its choice to the secret key, and
against chosen-key attacks (CKA for short).

Related-Key Attacks. We start by considering XRKAs, which are important
for at least two reasons. First, they arise naturally in a number of contexts, such
as the f8 and f9 protocols of the 3GPP standard [20]. Second, from a theoretical
point of view, they are the simplest kind of attacks to have the completeness
property [18], namely, for any keys k, k′ ∈ {0, 1}n, there exists Δ ∈ {0, 1}n such
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that k ⊕ Δ = k′. In order to study the resistance of the r-round IEM cipher to
XRKAs, we use the traditional indistinguishability-based model of Bellare and
Kohno [4], albeit adapted to the Random Permutation Model. This means that
the adversary has access to r + 1 oracles: a related key oracle which takes as
input an offset Δ ∈ {0, 1}n and a plaintext x ∈ {0, 1}n (or a ciphertext y ∈
{0, 1}n), and r permutation oracles that we denote P = (P1, . . . , Pr). The goal
of the adversary is to distinguish two worlds: the “real” world, where on input
(Δ,x), the related key oracle returns EMP

k⊕Δ(x), where EMP is the iterated Even-
Mansour construction instantiated with permutations P and k ∈ {0, 1}n is a
random key, and the “ideal” world, where the related key oracle returns Ek⊕Δ(x)
for a random block cipher E independent from P . We start by describing a
very efficient distinguishing XRKA on the 2-round IEM construction whenever
the key derivation functions γi are linear (with respect to xor).1 This somehow
comes as a surprise since Bogdanov et al. [8] had previously conjectured that two
rounds should be sufficient to prevent “certain types” of related-key attacks.2

Motivated by this finding, we then consider what is the minimal number of
rounds required to achieve provable security against XRKAs.3 We first show
that for the trivial key-schedule (all round keys are equal to the n-bit master
key), the 3-round IEM cipher is secure against XRKAs up to O(2

n
2 ) queries

of the adversary. We conjecture that this bound is tight, but we were unable
to find a matching attack (we also conjecture that a matching attack must be
adaptive and make two-sided queries to the related-key oracle). If one is willing
to use a cryptographically strong key-schedule, we show that a similar security
bound is already attained with one round, assuming the key derivation functions
are nonlinear (i.e., they have a small maximal differential probability). In this
latter case, we note that our security bound is matched by a standard (i.e., non
related-key) attack, namely Daemen’s attack [13].

Chosen-Key Attacks. We then turn our attention to an even stronger adver-
sarial setting, namely chosen-key attacks [6,22]. In this model, the adversary is
given a block cipher, and its goal is, very informally, to exhibit some non-random
behavior of the cipher, for keys and plaintext/ciphertext pairs of its choice. Rig-
orously formalizing what a non-random behavior means without ending with
1 Usually, in the case of standard (single-key) attacks, a distinguishing attack immedi-

ately gives rise to a key-recovery attack with similar complexity. This does not seem
to be the case here, and we do not know whether our distinguishing XRKA can be
converted into a key-recovery XRKA of similar complexity.

2 The authors of [8] did not formulate any precise conjecture, but they mention that
the best related-key attack they are aware of for two rounds and identical round
keys is a key-recovery attack requiring O(2

n
2 ) queries (see Appendix C.3 of the full

version of their paper). Our own attack does not really improve on Bogdanov et
al.’s one since it is a distinguishing attack, yet it implies that two rounds cannot be
deemed secure against XRKAs.

3 We only consider the case where all round keys are derived from the same n-bit
master key k. Indeed, it is not hard to see that when round keys are independent,
there are trivial XRKAs [8].
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an unachievable definition turns out to be elusive for similar reasons that it is
hard to rigorously define what collision resistance means for a single hash func-
tion [9,31].4 Luckily, working in the Random Permutation Model allows us to
escape those complications since it is somehow equivalent to considering a large
class of ciphers consisting of all key-alternating ciphers of a given block-length
and with a given key-schedule (rather than a single fully specified one, say, AES-
128). In this setting, we are able to rigorously define resistance to CKAs thanks
to the notion of correlation intractability first introduced by Canetti et al. [9] in
the context of hash functions.

The most convenient way we are aware of to prove that a block cipher con-
struction is correlation intractable is to use a weakened variant of “full” indif-
ferentiability [27], named sequential indifferentiability (seq-indifferentiability for
short), introduced by Mandal et al. [26] to prove that the 6-round Feistel con-
struction is correlation intractable. In a nutshell, a block cipher construction CF

based on an underlying ideal primitive F is (fully) indifferentiable from an ideal
cipher if there exists a simulator S such that the two systems (CF , F ), where F
is random, and (E,SE), where E is an ideal (random) cipher, are indistinguish-
able by any (polynomially bounded) adversary D. The distinguisher can query
its two oracles as it wishes, and in the ideal world (E,SE), the simulator is not
aware of the queries made by D directly to E. Seq-indifferentiability is defined
as full indifferentiability, except that the distinguisher is restricted to only query
its right oracle in a first phase (F or SE), and then only its left oracle (CF or
E). Seq-indifferentiability is closely related to the notion of public indifferentia-
bility [14,34], where in the ideal world the simulator gets to know all the queries
of the distinguisher to the ideal primitive (i.e., the ideal cipher E in our con-
text). We first give a “composition” theorem which relates seq-indifferentiability
and correlation intractability (a similar one was already proved in [26], but here
we explicitly relate the various parameters since it is important for concrete
security statements). Then, we prove that the 4-round IEM cipher, with the
trivial key-schedule, is seq-indifferentiable from an ideal cipher (by a previous
attack by Lampe and Seurin [24], this is also the minimal number of rounds to
obtain this property). This implies by our composition theorem that the 4-round
IEM cipher is correlation intractable, and hence offers some form of resistance to
CKAs, but we warn that due to the quadratic query complexity of our simulator,
the provable guarantee one obtains is not as tight as one might wish.

A Note on Known-Key Attacks. Known-key attacks refer, informally, to
the setting where the adversary is given a block cipher E and a random key
k, and must exhibit some non-random behavior of the permutation Ek [22]. In
order to capture this security property, Andreeva et al. [2] have introduced the
notion of known-key indifferentiability (KK-indifferentiability), and they have
proved that the 1-round Even-Mansour cipher is KK-indifferentiable from an
ideal cipher. This might seem surprising at first sight since KKAs seem stronger
4 For example, the fact that for any fixed block cipher E, E0(0) has some fixed, non-

random value may be seen as a non-random behavior, yet arguably a harmless one.
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Table 1. Summary of provable security results for the iterated Even-Mansour cipher
EM[n, r, γ] (with independent inner permutations). The trivial key-schedule means that
all round keys are equal to the n-bit master key.

Sec. notion # rounds Key sched. Sec. bound
Sim. complexity

Ref.
(query / time)

Single-key

r ≥ 1 independent 2
rn

r+1 — [11]

1 trivial 2
n
2 — [15,16]

2 trivial 2
2n
3 — [10]

XOR 3 trivial 2
n
2 — this paper

Related-Key 1 nonlinear 2
n
2 — this paper

Chosen-Key
4 trivial 2

n
4 q2 / q2 this paper

(Seq-indiff.)

Full indiff.
5 random oracle 2

n
10 q2 / q3 [1]

12 trivial 2
n
12 q4 / q6 [24]

than RKAs, yet the 1-round Even-Mansour cipher withstands the former but
not the latter. We argue however that this is due to the fact that the KK-
indifferentiability notion of [2] is slightly too restrictive because it involves one
single random key. We defer the details to Appendix B.

Related Work. Provable security against RKAs was already considered in
previous work. However, this was either for weak classes of RKAs (in particular,
lacking the completeness property) [4,25], or for inefficient number-theoretic
constructions [3]. Our own results seem to be the first that hold both for a
natural class of RKAs and for a practically-oriented construction. For provable
security against CKAs, the only previous work we are aware of is [26], which
considered the 6-round Feistel construction.

In a concurrent and independent work, Farshim and Procter [17] also analyze
the related-key security of the iterated Even-Mansour cipher. One of their main
results (Corollary 3) is very similar to Theorem 2 in this paper; their bound
is slightly worse than ours, but their analysis is more general and applies to
other families of related-key deriving functions than the xor-induced family. They
also consider chosen-plaintext (related-key) attacks, whereas we directly consider
chosen-plaintext and ciphertext attacks.

Open Problems. Regarding related-key security, it seems natural to conjecture
that four rounds and the trivial key-schedule on one hand, or two rounds and
a nonlinear key-schedule on the other hand, should deliver a O(2

2n
3 )-security

bound. If true, this should be provable by combining the techniques of [10] and
the techniques of this paper. Regarding chosen-key security, an interesting open



On the Provable Security of the IEM Cipher Against Related-Key and CKA 589

problem would be to find a construction of a block cipher from some underlying
primitive (e.g., a random oracle or a small set of random permutations) which
is seq-indifferentiable from an ideal cipher with a linear simulator complexity
(indeed, by our composition theorem, this would imply an optimal resistance to
CKAs). A first step in this direction was taken by Kiltz et al. [21] in the context
of digital signatures.

Organization. We set the notation and give some useful definitions in
Section 2. We then consider the security of the IEM cipher against RKAs in
Section 3 and against CKAs in Section 4. Some proofs are omitted for reasons
of space and can be found in the full version of the paper [12].

2 Preliminaries

General Notation. In all the following, we fix an integer n ≥ 1 and
denote N = 2n. The set of all permutations on {0, 1}n will be denoted Pn.
A block cipher with key space {0, 1}κ and message space {0, 1}n is a mapping
E : {0, 1}κ × {0, 1}n → {0, 1}n such that for any key k ∈ {0, 1}κ, x �→ E(k, x)
is a permutation. We interchangeably use the notations E(k, x) and Ek(x). We
denote BC(κ, n) the set of all block ciphers with key space {0, 1}κ and message
space {0, 1}n. For integers 1 ≤ s ≤ t, we will write (t)s = t(t − 1) · · · (t − s + 1)
and (t)0 = 1 by convention. For a function f : {0, 1}n → {0, 1}n, let

δ(f) = max
a,b∈{0,1}n,a�=0

|{x ∈ {0, 1}n : f(x ⊕ a) ⊕ f(x) = b}|.

Note that δ(f) is a measure of the nonlinearity of f . A permutation f of {0, 1}n

is said almost perfect nonlinear [28] if δ(f) = 2.

The Iterated Even-Mansour Cipher. Fix integers n, r ≥ 1. Let γ =
(γ0, . . . , γr) be a (r + 1)-tuple of permutations of {0, 1}n. The r-round iter-
ated Even-Mansour construction EM[n, r, γ] specifies, from any r-tuple P =
(P1, . . . , Pr) of permutations of {0, 1}n, a block cipher with n-bit keys and n-
bit messages, simply denoted EMP in all the following (parameters [n, r, γ] will
always be clear from the context), which maps a plaintext x ∈ {0, 1}n and a key
k ∈ {0, 1}n to the ciphertext defined by (see Figure 1):

EMP (k, x) = γr(k) ⊕ Pr(γr−1(k) ⊕ Pr−1(· · · P2(γ1(k) ⊕ P1(γ0(k) ⊕ x)) · · · )).
The pseudorandomness of the IEM cipher was mostly studied for the case of
independent round keys [8,11,23], with the notable exception of [10]. In this
paper, we focus on the case where the round keys are derived from an n-bit
master key.

Related-Key Oracle. Let E ∈ BC(κ, n) be a block cipher, and fix a key
k ∈ {0, 1}κ. We define the xor-restricted related-key oracle RK[Ek], which takes
as input an “offset” Δ ∈ {0, 1}κ and a plaintext x ∈ {0, 1}n, and returns
RK[Ek](Δ,x) := Ek⊕Δ(x). The oracle can be queried backward, which we denote
RK[Ek]−1(Δ, y) := E−1

k⊕Δ(y).
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Fig. 1. The r-round iterated Even-Mansour cipher

3 Resistance to Related-Key Attacks

3.1 Security Definitions

To formalize related-key attacks against the r-round IEM cipher, we extend in a
straightforward way the classical Bellare-Kohno model [4] to the case where the
adversary has access to additional oracles. Formally, we consider a xor-restricted
related-key adversary D which has access to r+1 oracles, a related-key oracle and
r permutation oracles, and must distinguish between the following two worlds:

− the “real” world, where it interacts with (RK[EMP
k ], P ) where P = (P1, . . . ,

Pr) is a tuple of random permutations and k is a randomly drawn key;
− the “ideal” world where it interacts with (RK[Ek], P ) where P = (P1, . . . , Pr)

is a tuple of random permutations, E is an ideal cipher independent from
P , and k a randomly drawn key.

The distinguisher is adaptive, and can make two-sided queries to each oracle. As
usual, we assume that it is computationally unbounded, deterministic, and never
makes pointless queries. Note that in the ideal world, the key k is meaningless,
and the related-key oracle RK[Ek] simply implements an independent random
permutation for each offset Δ ∈ {0, 1}n.

The distinguishing advantage of D is defined as

Adv(D) =
∣
∣
∣Pr

[
DRK[EMP

k ],P = 1
]

− Pr
[
DRK[Ek],P = 1

]∣∣
∣ ,

where the first probability is taken over the random choice of k and P , and the
second probability is taken over the random choice of E, k, and P .

For qe, qp non-negative integers, we define the insecurity of the iterated Even-
Mansour cipher against xor-restricted related-key attacks as

Advxor-rka
EM[n,r,γ](qe, qp) = max

D
Adv(D),

where the maximum is taken over all distinguishers making exactly qe queries to
the related-key oracle and exactly qp queries to each inner permutation oracle.
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Transcript. We summarize the information gathered by the distinguisher in
what we call the query transcript (QE ,QP1 , . . . ,QPr

), defined as follows. The tuple

QE = ((Δ1, x1, y1), . . . , (Δqe
, xqe

, yqe
))

summarizes the queries to the related-key oracle, and means that the j-th query
was either a forward query (Δj , xj) and the answer yj , or a backward query (Δj , yj)
and the answer xj . Similarly, the tuple

QPi
= ((ui,1, vi,1), . . . , (ui,qp

, vi,qp
))

summarizes the queries to the i-th inner permutation Pi, and means that the j-th
query was either a forward query ui,j and the answer vi,j , or a backward query
vi,j and the answer ui,j . (Recall that the distinguisher is deterministic, so that
there is a one-to-one mapping between this directionless representation and the
raw transcript of the interaction of the distinguisher with the oracles). A query
transcript is said attainable if the probability to obtain it in the ideal world is non-
zero (hence, the set of attainable query transcripts depends on the distinguisher).
To simplify the security proof (in particular, the definition of bad transcripts), we
reveal to the distinguisher the key k at the end of its query phase (this is without
loss of generality since D is free to ignore this additional information to compute
its output bit). Formally, we append k to the query transcript (QE ,QP1 , . . . ,QPr

),
obtaining what we will simply call the transcript τ = (QE ,QP1 , . . . ,QPr

, k) of the
attack. A transcript τ is said attainable if the corresponding query transcript is
attainable. We denote T the set of attainable transcripts. In all the following, we
denote Tre, resp. Tid, the probability distribution of the transcript τ induced by
the real world, resp. the ideal world (note that these two probability distributions
depend on the distinguisher). By extension, we use the same notation to denote a
random variable distributed according to each distribution.

Additional Notation. Given a block cipher E ∈ BC(n, n), a key k ∈ {0, 1}n,
and a related-key oracle query transcript QE , we say that (E, k) extends QE ,
written (E, k) � QE , if Ek⊕Δ(x) = y for each (Δ,x, y) ∈ QE . Similarly, given a
permutation P and a permutation query transcript QP , we say that P extends
QP , written P � QP , if P (u) = v for each (u, v) ∈ QP . It is easy to see that
for any attainable transcript τ = (QE ,QP1 , . . . ,QPr

, k), the interaction of the
distinguisher with oracles (RK[Ek], P1, . . . , Pr) produces τ iff (E, k) � QE and
Pi � QPi

for i = 1, . . . , r.

The H-coefficients Technique. We use the H-coefficients technique [29],
which relies on the following lemma. See e.g. [10,11] for a proof.

Lemma 1. Fix a distinguisher D. Let T = Tgood 	Tbad be a partition of the set
of attainable transcripts. Assume that there exists ε1 such that for any τ ∈ Tgood,
one has5

Pr[Tre = τ ]
Pr[Tid = τ ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Tid ∈ Tbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.
5 Recall that for an attainable transcript, one has Pr[Tid = τ ] > 0.
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3.2 The Linear Key-Schedule Case

In this section, we consider xor-induced related-key attacks against the IEM
cipher with independent permutations and a linear key-schedule. We give attacks
for up to two rounds, and then prove a O(2

n
2 )-security bound for three rounds.

A Simple Attack on One Round. We start with a very simple attack for one
round. Given a permutation P on {0, 1}n and two linear permutations γ0, γ1 :
{0, 1}n → {0, 1}n, consider the 1-round Even-Mansour cipher which maps a key
k ∈ {0, 1}n and a plaintext x ∈ {0, 1}n to the ciphertext defined as

EMP (k, x) = γ1(k) ⊕ P (γ0(k) ⊕ x).

Consider the distinguisher which simply queries the related-key oracle on two
inputs (0, x) and (Δ,x ⊕ γ0(Δ)), where Δ 
= 0, getting respective answers y
and y′, and checks whether y′ = y ⊕ γ1(Δ). This holds with probability 1 in
the real world, but only with probability 1/N in the ideal world, so that the
distinguishing advantage of this adversary is negligibly close to one.

An attack on Two Rounds. We then show a more intricate distinguishing
attack for two rounds (and, again, a linear key-schedule). This attack does not
require to query the internal permutation oracles, and makes only four queries to
the related-key oracle. It can be seen as a very efficient boomerang related-key
attack [5]. Formally, we prove the following theorem.

Theorem 1. Let γ = (γ0, γ1, γ2) be a linear key-schedule. Then

Advxor-rka
EM[n,2,γ](4, 0) ≥ 1 − 1

N
.

Proof. We denote generically (RK, (P1, P2)) the oracles to which the adversary
has access. Consider the following distinguisher (see Figure 2 for a diagram of
the attack):

(1) choose arbitrary values x1,Δ1 ∈ {0, 1}n, and query y1 := RK(Δ1, x1);
(2) choose an arbitrary value Δ2 ∈ {0, 1}n \ {Δ1}, compute x2 := x1 ⊕ γ0(Δ2 ⊕

Δ1), and query y2 := RK(Δ2, x2);
(3) choose an arbitrary Δ3 ∈ {0, 1}n\{Δ1,Δ2}, compute y3 := y1⊕γ2(Δ1⊕Δ3),

and query x3 := RK−1(Δ3, y3);
(4) compute Δ4 := Δ3 ⊕ Δ2 ⊕ Δ1 and y4 := y2 ⊕ γ2(Δ2 ⊕ Δ4), and query

x4 := RK−1(Δ4, y4);
(5) if x4 = x3 ⊕ γ0(Δ3 ⊕ Δ4), output 1, else output 0.

When the distinguisher is interacting with the ideal world (RK[E], (P1, P2)),
where E is an ideal cipher independent from P1 and P2, the value x4 is uni-
formly random and independent from x3, Δ3, and Δ4 (indeed the offsets Δi

for i = 1, 2, 3, 4 are pairwise distinct, so that y4 is the first query to the ran-
dom permutation corresponding to offset Δ4). Hence, the probability that the
distinguisher returns 1 in the ideal case is 2−n.
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Now we show that when the distinguisher is interacting with the real world,
i.e., with (RK[EMP1,P2

k ], (P1, P2)), it always returns 1, independently of k, P1,
and P2. Noting that, by definition, x2 = x1 ⊕ γ0(Δ2 ⊕ Δ1), we denote u1 the
common value

u1
def= x1 ⊕ γ0(k ⊕ Δ1) = x2 ⊕ γ0(k ⊕ Δ2),

and we denote v1 = P1(u1). We also denote

u2 = v1 ⊕ γ1(k ⊕ Δ1) (1)
v2 = P2(u2)
u′
2 = v1 ⊕ γ1(k ⊕ Δ2) (2)

v′
2 = P2(u′

2).

Hence, one has

y1 = v2 ⊕ γ2(k ⊕ Δ1) (3)
y2 = v′

2 ⊕ γ2(k ⊕ Δ2). (4)

Since y3 = y1 ⊕ γ2(Δ1 ⊕ Δ3), we can see, using (3), that

y3 ⊕ γ2(k ⊕ Δ3) = y1 ⊕ γ2(k ⊕ Δ1) = v2.

Define

v′
1 = u2 ⊕ γ1(k ⊕ Δ3) (5)

u′
1 = P−1

1 (v′
1).

This implies that
x3 = u′

1 ⊕ γ0(k ⊕ Δ3). (6)

Since y4 = y2 ⊕ γ2(Δ2 ⊕ Δ4), we see by (4) that

y4 ⊕ γ2(k ⊕ Δ4) = y2 ⊕ γ2(k ⊕ Δ2) = v′
2.

Moreover, since Δ4 = Δ3 ⊕ Δ2 ⊕ Δ1, we have

u′
2 ⊕ γ1(k ⊕ Δ4) = u′

2 ⊕ γ1(k ⊕ Δ2) ⊕ γ1(Δ1 ⊕ Δ3)
= v1 ⊕ γ1(k ⊕ Δ1) ⊕ γ1(k ⊕ Δ3) by (2)
= u2 ⊕ γ1(k ⊕ Δ3) by (1)
= v′

1 by (5).

This finally implies by (6) that

x4 = u′
1 ⊕ γ0(k ⊕ Δ4) = x3 ⊕ γ0(Δ3 ⊕ Δ4),

which concludes the proof. �	
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P1 P2

u1

u′
1

v1

v′
1

u2

u′
2

v2

v′
2

(Δ1, x1)

(Δ2, x2)

(Δ3, x3)

(Δ4, x4)

(Δ1, y1)

(Δ3, y3)

(Δ4, y4)

(Δ2, y2)

k ⊕ Δ1 k ⊕ Δ2 k ⊕ Δ3 k ⊕ Δ4

Fig. 2. A related-key attack on the iterated Even-Mansour cipher with two rounds and
a linear key-schedule

Security Proof for Three Rounds. We consider the 3-round IEM cipher
with the trivial key schedule (the result can be straightforwardly extended to
the general case where the key derivation functions (γ0, . . . , γ3) are any permuta-
tions). Given three permutations P1, P2, P3 on {0, 1}n, we denote EMP1,P2,P3 the
3-round IEM cipher which maps a key k ∈ {0, 1}n and a plaintext x ∈ {0, 1}n

to the ciphertext defined as

EMP1,P2,P3(k, x) = k ⊕ P3(k ⊕ P2(k ⊕ P1(k ⊕ x))).

We prove the following result.

Theorem 2. Let qe, qp be positive integers, N = 2n, and I be the trivial key-
schedule. Then

Advxor-rka
EM[n,3,I](qe, qp) ≤ 6qeqp

N
+

4q2e
N

.

Proof. The proof follows from Lemma 1, and Lemmas 2 and 3 proven below. �	
Following the H-coefficient technique, we start by defining bad transcripts.

Definition 1. Let τ = (QE ,QP1 ,QP2 ,QP3 , k) be an attainable transcript. We
say that τ is bad if

k ∈ BadK =
⋃

1≤i≤2

BadKi

where:

k ∈ BadK1 ⇔ there exists (Δ,x, y) ∈ QE and (u1, v1) ∈ QP1 such that
k ⊕ Δ = x ⊕ u1

k ∈ BadK2 ⇔ there exists (Δ,x, y) ∈ QE and (u3, v3) ∈ QP3 such that
k ⊕ Δ = y ⊕ v3.

Otherwise, τ is said good. We denote Tbad the set of bad transcripts, and Tgood =
T \ Tbad the set of good transcripts.
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First, we upper bound the probability to get a bad transcript in the ideal world.

Lemma 2.
Pr[Tid ∈ Tbad] ≤ 2qeqp

N
.

Proof. Since we are in the ideal case, the key k is drawn uniformly at ran-
dom at the end of the query phase. Hence, we only need to upper bound
the number of possible bad values for k for every attainable query transcripts
(QE ,QP1 ,QP2 ,QP3). Fix any query transcript (QE ,QP1 ,QP2 ,QP3). Then, for
every (Δ,x, y) ∈ QE and every (u1, v1) ∈ QP1 , there is exactly one key k such
that k = x ⊕ Δ ⊕ u1. Hence, |BadK1| ≤ qeqp. Similarly, |BadK2| ≤ qeqp. Hence,
for i = 1, 2,

Pr [k ←$ {0, 1}n : k ∈ BadKi] ≤ qeqp

N
.

The result follows. �	
We then consider good transcripts in the following lemma.

Lemma 3. For any good transcript τ ∈ Tgood, one has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥1 − 4qeqp

N
− 4q2e

N
.

Proof. If Tgood = ∅, there is nothing to prove. Otherwise, fix a good transcript
τ = (QE ,QP1 ,QP2 ,QP3 , k). Let m denote the number of different offsets Δ
appearing in QE and qi the number of queries using the i-th offset (ordering the
offsets arbitrarily). Note that qe =

∑m
i=1 qi. In the ideal world, one simply has

Pr[Tid = τ ] = Pr[k′ ←$ {0, 1}n : k′ = k] × Pr[Pi ←$ Pn : Pi � QPi
, i = 1, 2, 3]

× Pr[E ←$ BC(n, n) : (E, k) � QE ]

=
1
N

· 1
((N)qp

)3
· 1
∏m

i=1(N)qi

. (7)

Now we have to lower bound the probability

Pr [Tre = τ ] =
1
N

× Pr
[
P1, P2, P3 ←$ Pn :

(EMP1,P2,P3 , k) � QE ∧ Pi � QPi
, i = 1, 2, 3

]
.

Let

U1 = {u1 ∈ {0, 1}n : (u1, v1) ∈ QP1}, V1 = {v1 ∈ {0, 1}n : (u1, v1) ∈ QP1},

U2 = {u2 ∈ {0, 1}n : (u2, v2) ∈ QP2}, V2 = {v2 ∈ {0, 1}n : (u2, v2) ∈ QP2},

U3 = {u3 ∈ {0, 1}n : (u3, v3) ∈ QP3}, V3 = {v3 ∈ {0, 1}n : (u3, v3) ∈ QP3}
denote the domains and ranges of QP1 , QP2 , and QP3 respectively. For u′

1 ∈
{0, 1}n, let X(u′

1) = {(Δ,x, y) ∈ QE : x ⊕ k ⊕ Δ = u′
1}, and let U ′

1 = {u′
1 ∈
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{0, 1}n : X(u′
1) 
= ∅}. Similarly, for v′

3 ∈ {0, 1}n, let Y (v′
3) = {(Δ,x, y) ∈ QE :

y⊕k⊕Δ = v′
3}, and let V ′

3 = {v′
3 ∈ {0, 1}n : Y (v′

3) 
= ∅}. Note that by definition
of a good transcript, one has U1 ∩ U ′

1 = ∅ and V3 ∩ V ′
3 = ∅. Let also α = |U ′

1|
and β = |V ′

3 |. For clarity, we denote

U ′
1 = {u′

1,1, . . . , u
′
1,α}

V ′
3 = {v′

3,1, . . . , v
′
3,β}

using an arbitrary order. Note that

qe =
α∑

i=1

|X(u′
1,i)| =

β∑

i=1

|Y (v′
3,i)|. (8)

It is now sufficient for our result to lower bound the number of possible tuple
of values (v′

1,1, . . . , v
′
1,α) and (u′

3,1, . . . , u
′
3,β) such that, conditioned on P1(u′

1,i) =
v′
1,i for 1 ≤ i ≤ α and P3(u′

3,j) = v′
3,j for 1 ≤ j ≤ β, the event EP1,P2,P3

k � QE is
equivalent to qe “new” equations on P2 (i.e., distinct from equations imposed by
P2 � QP2). More precisely, let N1 be the number of tuples of pairwise distinct
values (v′

1,1, . . . , v
′
1,α) such that, for every i = 1, . . . , α:

(i) v′
1,i 
= v1 for every v1 ∈ V1,

(ii) v′
1,i 
= k ⊕ Δ ⊕ u2 for every (Δ,x, y) ∈ X(u′

1,i), u2 ∈ U2,
(iii) v′

1,i 
= Δ⊕v′
1,j ⊕Δ′ for every (Δ,x, y) ∈ X(u′

1,i), 1 ≤ j ≤ i−1, (Δ′, x′, y′) ∈
X(u′

1,j).

Then

N1 ≥
α∏

i=1

⎛

⎝N − qp − i + 1 − |X(u′
1,i)|(qp +

i−1∑

j=1

|X(u′
1,j)|)

⎞

⎠

≥
α∏

i=1

(
N − qp − qe − |X(u′

1,i)|(qp + qe)
)

by (8).

Similarly, let N3 be the number of tuples of pairwise distinct values (u′
3,1, . . . ,

u′
3,β) such that, for every i = 1, . . . , β:

(i’) u′
3,i 
= u3 for every u3 ∈ U3,

(ii’) u′
3,i 
= k ⊕ Δ ⊕ v2 for every (Δ,x, y) ∈ Y (v′

3,i), v2 ∈ V2,
(iii’) u′

3,i 
= Δ⊕u′
3,j⊕Δ′ for every (Δ,x, y) ∈ Y (v′

3,i), 1 ≤ j ≤ i−1, (Δ′, x′, y′) ∈
Y (v′

3,j).

Then

N3 ≥
β∏

i=1

⎛

⎝N − qp − i + 1 − |Y (v′
3,i)|(qp +

i−1∑

j=1

|Y (v′
3,j)|)

⎞

⎠

≥
β∏

i=1

(
N − qp − qe − |Y (v′

3,i)|(qp + qe)
)

by (8).
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For every possible choice of (v′
1,1, . . . , v

′
1,α) and (u′

3,1, . . . , u
′
3,β) satisfying these

conditions, P1 will be fixed on exactly qp+α points, P2 on qp+qe points and P3 on
qp + β points. In more details, assume N1 ·N3 > 0, fix any tuples (v′

1,1, . . . , v
′
1,α)

and (u′
3,1, . . . , u

′
3,β) satisfying these conditions, and let Ev1 be the event that

P1(u′
1,i) = v′

1,i for 1 ≤ i ≤ α and Ev3 be the event that P3(u′
3,j) = v′

3,j for
1 ≤ j ≤ β. Then by conditions (i) and (i’) we have

Pr [Ev1 ∧ (P1 � QP1)] =
1

(N)qp+α

Pr [Ev3 ∧ (P3 � QP3)] =
1

(N)qp+β
.

Fix now P1 and P3 satisfying Ev1 and Ev3. For each (Δ,x, y) ∈ QE , let u′
2 and

v′
2 be respectively the corresponding input and output to P2 for this query, viz.,

u′
2 = v′

1,i ⊕ k ⊕ Δ for i such that x ⊕ k ⊕ Δ = u′
1,i, and v′

2 = u′
3,j ⊕ k ⊕ Δ for j

such that y⊕k⊕Δ = v′
3,j . Then, the qe values u′

2 are all outside U2 by condition
(ii), and pairwise distinct by condition (iii), and similarly the qe values v′

2 are all
outside V2 by condition (ii’), and pairwise distinct by condition (iii’). It follows
that

Pr
[
(EMP1,P2,P3 , k) � QE ∧ (P2 � QP2)

∣
∣
∣Ev1 ∧ (P1 � QP1) ∧ Ev3 ∧ (P3 � QP3)

]

=
1

(N)qp+qe

.

Hence, summing over the at least N1 · N3 possible pairs of tuples, we obtain

Pr [Tre = τ ] ≥ N1 · N3

N · (N)qp+α · (N)qp+qe
· (N)qp+β

. (9)

This last inequality is also trivially true if N1 · N3 = 0. Using (7) and (9), one
has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥ N1 · N3 · N · (N)3qp

∏m
i=1(N)qi

N · (N)qp+α · (N)qp+qe
· (N)qp+β

≥ N1 · N3 · ∏m
i=1(N)qi

(N − qp)α · (N − qp)qe
· (N − qp)β

≥ N1 · N3 · (N)qe

(N − qp)α · (N − qp)qe
· (N − qp)β

≥N1 · N3

Nα+β
.
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Finally, one has, since α ≤ qe,

N1

Nα
=

∏α
i=1

(
N − qp − qe − |X(u′

1,i)|(qp + qe)
)

Nα

≥1 −
α∑

i=1

qp + qe + |X(u′
1,i)|(qp + qe)

N

≥1 − qeqp

N
− q2e

N
− (qp + qe)

α∑

i=1

|X(u′
1,i)|

N

≥1 − 2qeqp

N
− 2q2e

N
by (8).

The same lower bound holds for N3
Nβ . Hence

Pr [Tre = τ ]
Pr [Tid = τ ]

≥
(

1 − 2qeqp

N
− 2q2e

N

)2

≥1 − 4qeqp

N
− 4q2e

N
. �	

3.3 The Nonlinear Key-Schedule Case

In this section, we show that when the key-schedule is nonlinear, one round
is sufficient to achieve a O(2

n
2 )-security bound against xor-induced related-key

attacks.
Given a permutation P on {0, 1}n and two permutations γ0, γ1 : {0, 1}n →

{0, 1}n, we denote EMP the 1-round Even-Mansour cipher which maps a key
k ∈ {0, 1}n and a plaintext x ∈ {0, 1}n to the ciphertext defined as

EMP (k, x) = γ1(k) ⊕ P (γ0(k) ⊕ x).

We prove the following result.

Theorem 3. Let qe, qp be positive integers, N = 2n, and γ = (γ0, γ1). Then

Advxor-rka
EM[n,1,γ](qe, qp) ≤ 2qeqp

N
+

(δ(γ0) + δ(γ1))q2e
2N

.

In particular, if γ0 and γ1 are almost perfect nonlinear permutations, then

Advxor-rka
EM[n,1,γ](qe, qp) ≤ 2qeqp + 2q2e

N
.

Proof. Deferred to the full version of the paper [12] for reasons of space. �	
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4 Resistance to Chosen-Key Attacks and Sequential
Indifferentiability

4.1 Formalizing Chosen-Key Attacks in Idealized Models

In this section, we see a block cipher E ∈ BC(κ, n) as a primitive which takes as
input a triple α = (δ, k, z), where δ ∈ {+,−} indicates whether this is a direct
(plaintext) or inverse (ciphertext) query, k ∈ {0, 1}κ is the key, and z ∈ {0, 1}n is
the plaintext/ciphertext (depending on δ), and returns the corresponding cipher-
text/plaintext (again, depending on δ) z′ ∈ {0, 1}n. This allows the block cipher
to be described as having a single interface rather than two interfaces E and E−1.
In the following, we denote Dom = {+,−}×{0, 1}κ ×{0, 1}n and Rng = {0, 1}n

respectively the domain and the range of E. For an integer m ≥ 1, an m-ary
relation R is simply a subset R ⊂ Domm × Rngm.

It is well-known that it is impossible to rigorously define a notion of resis-
tance to chosen-key attacks for block ciphers in the standard model (i.e., for
block ciphers not relying on an underlying ideal primitive) without running into
impossibility results similar to the one of [9] about random oracles. However, it
is possible to avoid such pitfalls in idealized models, as we explain now.

For this, we introduce the concept of evasive relation which, informally,
refers to a relation such that it is hard for an algorithm with oracle access
to an ideal cipher E to come with a tuple of inputs (α1, . . . , αm) such that
((α1, . . . , αm), (E(α1), . . . , E(αm))) satisfies this relation.

Definition 2 (Evasive Relation). An m-ary relation R is said (q, ε)-evasive
(with respect to an ideal cipher) if for any oracle Turing machine M making at
most q oracle queries, one has

Pr
[
E ←$ BC(κ, n), (α1, . . . , αm) ← ME :

((α1, . . . , αm), (E(α1), . . . , E(αm))) ∈ R
]

≤ ε,

where the probability is taken over the random draw of E and the random coins
of M.

Example 1. Consider the problem of finding a preimage of zero for a compression
function f(k, x) := E(k, x) ⊕ x built from a block cipher E in Davies-Meyer
mode, i.e., finding a pair (k, x) such that E(k, x) ⊕ x = 0. This corresponds to
the unary relation R = {((+, k, x), y) ∈ Dom × Rng : x ⊕ y = 0}. A celebrated
result by Winternitz [33], generalized by Black et al. [7], says that this relation
is (q,O(q/2n))-evasive with respect to an ideal cipher. Similarly, the collision
resistance of the Davies-Meyer mode [7] can be recast as a binary (q,O(q2/2n))-
evasive relation for the underlying block cipher.
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Definition 3 (Correlation Intractable Block Cipher). Let C be a block
cipher construction using (in a black-box way) an underlying primitive F , and
let R be an m-ary relation. CF is said to be (q, ε)-correlation intractable with
respect to R if for any oracle Turing machine M making at most q oracle queries,
one has

Pr
[
(α1, . . . , αm) ← MF : ((α1, . . . , αm), (CF (α1), . . . , CF (αm))) ∈ R] ≤ ε,

where the probability is taken over the random draw of F (in some well-under-
stood set) and the random coins of M.

Informally, a block cipher construction CF can be deemed resistant to chosen-
key attacks if for any (q, ε)-evasive relation R, CF is (q′, ε′)-correlation intractable
with respect to R with q′ � q and ε′ � ε. Note that our definitions above are
information-theoretic, since later we will be able to prove information-theoretic
security for the 4-round IEM cipher. There is no obstacle in providing corre-
sponding computational definitions by taking the running time of the algorithms
into account.

4.2 Sequential Indifferentiability

We define here the notion of sequential indifferentiability (seq-indifferentiability
for short), introduced by [26], which is a weakened variant of (full) indifferen-
tiability as introduced by [27], and then explain how it is related to correlation
intractability. We use the definition of sequential indifferentiability given in [26],
tailored to the case of block ciphers.

We start with some definitions. Let C be a block cipher construction using in
a black-box way an underlying primitive F . Let D be a distinguisher accessing
a pair of oracles that we denote generically (E,F ), which can be either the
construction together with the underlying primitive F , i.e., (CF , F ), or (E,SE)
where E is an ideal cipher and S is an oracle Turing machine with oracle access
to E called a simulator. We will refer informally to E as the left oracle and
F as the right oracle. A distinguisher is said to be sequential if after its first
query to its left (construction/ideal cipher) oracle, it does not query its right
(primitive/simulator) oracle any more. Hence, such a distinguisher works in two
phases: first it queries only its right oracle, and then only its left oracle (see
Figure 3). We define the total oracle query cost of D as the total number of
queries received by F (from D or C) when D interacts with (CF , F ). In particular,
if C makes c queries to F to answer any query it receives, and if D makes qe

queries to its left oracle and qf queries to its right oracle, then the total oracle
query cost of D is at most qf + cqe.

Definition 4 (Seq-indifferentiability). Let q, σ, t ∈ N and ε ∈ R
+. A block

cipher construction C with black-box access to an ideal primitive F is said to
be (q, σ, t, ε)-seq-indifferentiable from an ideal cipher if there exists an oracle
algorithm S such that for any sequential distinguisher D of total oracle query
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D

0/1

SE

12

D

0/1

FC

12

Fig. 3. The sequential indifferentiability notion. The numbers next to query arrows
indicate in which order the distinguisher accesses both oracles. After its first query to
the left oracle, the distinguisher cannot query the right oracle any more.

cost at most q, S makes at most σ oracle queries, runs in time at most t, and
one has ∣

∣
∣Pr

[
DE,SE

= 1
]

− Pr
[
DCF ,F = 1

]∣∣
∣ ≤ ε,

where the first probability is taken over the random draw of the ideal cipher E
and the random coins of S, and the second probability is taken over the random
draw of F (from some well understood set).

Note that this definition is information-theoretic (the distinguisher might be
computationally unbounded), and demands the existence of a universal simu-
lator (this is sometimes called strong indifferentiability; when the simulator is
allowed to depend on the distinguisher, this is called weak indifferentiability).

The usefulness of seq-indifferentiability in the context of CKAs comes from
the following theorem (the proof is essentially similar to the proof of [26, Theo-
rem 3], but we make the relation between the various parameters explicit).

Theorem 4. Let C be a block cipher construction using (in a black-box way) an
underlying primitive F such that C makes at most c queries to F on any input.
Assume that CF is (q+cm, σ, t, ε)-seq-indifferentiable from an ideal cipher. Then
for any m-ary relation R, if R is (σ + m, εR)-evasive with respect to an ideal
cipher, then CF is (q, ε + εR)-correlation intractable with respect to R.

Proof. Assume that there exists an m-ary relation R which is (σ+m, εR)-evasive
but such that CF is not (q, ε+εR)-correlation intractable with respect to R. Then
there exists an oracle machine M making at most q oracle queries such that MF

outputs with probability ε′ > εR + ε a sequence (α1, . . . , αm) such that

((α1, . . . , αm), (CF (α1), . . . , CF (αm))) ∈ R.

Consider the following sequential distinguisher D accessing a pair of oracles
(E,F ): it runs M, answering M’s oracle queries with its own oracle F , until
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M returns a tuple (α1, . . . , αm). D then makes oracle queries E(α1), . . . , E(αm)
and checks6 whether

((α1, . . . , αm), (E(α1), . . . , E(αm))) ∈ R.

If this is the case it returns 1, otherwise it returns 0. Note that the total oracle
query cost of D is at most q + cm.

When the distinguisher is interacting with (CF , F ), the probability that it
returns 1 is exactly ε′ > εR + ε. On the other hand, when it interacts with
(E,SE), then the union of D and S is an oracle machine with oracle access to
E making at most σ + m oracle queries, so that, by definition of a (σ + m, εR)-
evasive relation, D outputs 1 with probability at most εR. Hence, the advantage
of the distinguisher is ε′ − εR > ε, which contradicts the (q + cm, σ, ε)-seq-
indifferentiability of C. �	

Interpretation. Assuming c and m are constants which are negligible com-
pared with q and σ, Theorem 4 can be paraphrased as follows: if C is (q, σ, t, ε)-
seq-indifferentiable from an ideal cipher, and if a relation R cannot be found with
probability better than εR with σ queries to an ideal cipher, then R cannot be
found for CF with probability better than ε+εR with q queries to F . (Note that
the running time of the simulator is irrelevant here since we used an information-
theoretic definition of correlation intractability.) Hence, seq-indifferentiability
measures how much easier it is to find some relation R for a block cipher con-
struction CF than for an ideal cipher. In a sense, Theorem 4 can be seen as the
analogue in the case of sequential indifferentiability of the composition theorem
of [27,30] for full indifferentiability.

If one is only concerned with asymptotic security, then seq-indifferentiability
implies correlation intractability in the following sense. Let (CF

n )n∈N be a block
cipher construction family indexed by a security parameter n. We simply say
that CF

n is seq-indifferentiable from an ideal cipher if for any q ∈ poly(n), CF
n

is (q, σ, t, ε)-seq-indifferentiable from an ideal cipher with σ, t ∈ poly(n) and
ε ∈ negl(n). We simply say that CF

n is correlation intractable if for any (q, ε)-
evasive relation R (with respect to an ideal cipher) where q ∈ poly(n) and
ε ∈ negl(n), CF

n is (q′, ε′)-correlation intractable with respect to R for some
q′ ∈ poly(n) and ε′ ∈ negl(n). Then a direct corollary of Theorem 4 is that if
CF

n is (asymptotically) seq-indifferentiable from an ideal cipher, then it is also
(asymptotically) correlation intractable.

However, if we adopt the “concrete” security viewpoint, then the exact seq-
indifferentiability parameters are important to quantify how well exactly the
construction withstands chosen-key attacks. Consider Example 1 of preimage
resistance of the Davies-Meyer compression function, which can be phrased as a
(q,O(q/2n))-evasive relation R for the underlying (ideal) cipher. Assume that a
block cipher construction CF is (q, σ, t, ε)-seq-indifferentiable from an ideal cipher
6 Note that we are working in the information-theoretic framework, so that the running

time of D is irrelevant. In the computational framework, one should take into account
the time necessary to recognize relation R.
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with, e.g., σ = O(q2) and ε = O(q2/2n). Then Theorem 4 implies that CF is
(q,O(q2/2n))-correlation intractable with respect to R, or in other words, that
the Davies-Meyer compression function based on CF is (q,O(q2/2n))-preimage
resistant (in the ideal-F model). Hence, the quadratic query complexity of the
simulator implies a security loss for correlation intractability. This motivates to
look for block cipher constructions that are (q, σ, t, ε)-seq-indifferentiable from
an ideal cipher with σ = O(q) and ε = O(q/2n), which we leave for future work.

4.3 Proof of Sequential Indifferentiability for Four Rounds

Four Rounds Are Necessary. We first recall that Lampe and Seurin gave an
attack against full indifferentiability of the 3-round IEM cipher [24] (a different
attack has been independently described by Andreeva et al. [1]). A closer look at
their attack shows that their distinguisher is in fact sequential (we refer to [24]
for a detailed description of the attack for reasons of space), so that the 3-round
IEM cipher cannot even be seq-indifferentiable from an ideal cipher. Hence, at
least four rounds are necessary (and, as we will see now, sufficient) to achieve
seq-indifferentiability from an ideal cipher.

Main Result. We now state and prove the main result of this section regarding
the seq-indifferentiability of the 4-round IEM cipher. The proof essentially fol-
lows the same lines as the proof of full indifferentiability of [24] for twelve rounds,
but is quite simpler since the simulator does not recurse when completing chains.

Theorem 5. Let N = 2n. For any integer q such that q2 ≤ N/4, the 4-round
IEM construction (with independent permutations and identical round keys) is
(q, σ, t, ε)-seq-indifferentiable from an ideal cipher with n-bit blocks and n-bit
keys, with

σ = q2, t = O(q2), and ε =
68q4

N
.

Remark 1. It was shown in [26] that for stateless ideal primitives (i.e., prim-
itives whose answers do not depend on the order of the queries it receives),
seq-indifferentiability implies public indifferentiability [14,34], a variant of indif-
ferentiability where the simulator gets to know all queries of the distinguisher to
E. Since an ideal cipher is stateless, Theorem 5 implies that the 4-round IEM
construction is also publicly indifferentiable from an ideal cipher.

In order to prove this theorem, we will first define a simulator S, then prove
that it runs in polynomial time and makes a polynomial number of queries
(Lemma 4), and finally prove that the two systems Σ1 = (E,SE) and Σ3 =
(EMP , P ) are indistinguishable, using an intermediate system Σ2 that we will
describe later (Lemmas 6 and 7).
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Fig. 4. The 4-round iterated Even-Mansour cipher with independent permutations and
identical round keys. The detection and adaptations zones used by the simulator for
proving seq-indifferentiability from an ideal cipher are also depicted.

Informal Description of the Simulator and Notation. We start with
an informal description of the simulator (a formal description in pseudocode is
given in Appendix A). The simulator offers an interface Query(i, δ, w) to the dis-
tinguisher for querying the internal permutations, where i ∈ {1, . . . , 4} names
the permutation, δ ∈ {+,−} indicates whether this a direct or inverse query,
and w ∈ {0, 1}n is the actual value queried. For each i = 1, . . . , 4, the simulator
internally maintains a table Πi mapping entries (δ, w) ∈ {+,−}×{0, 1}n to val-
ues w′ ∈ {0, 1}n, initially undefined for all entries. We denote Π+

i , resp. Π−
i , the

(time-dependent) sets of strings w ∈ {0, 1}n such that Πi(+, w), resp. Πi(−, w),
is defined. When the simulator receives a query (i, δ, w), it looks in table Πi to see
whether the corresponding answer Πi(δ, w) is already defined. When this is the
case, it outputs the answer and waits for the next query. Otherwise, it randomly
draws an answer w′ ∈ {0, 1}n and defines Πi(δ, w) := w′ as well as the answer to
the opposite query Πi(δ̄, w′) := w. In order to handily describe how the answer w′

is drawn, we make the randomness used by the simulator explicit through a tuple
of random permutations P = (P1, . . . , P4). As for the ideal cipher E, we formally
let each Pi have a single interface, namely Pi := {+,−}×{0, 1}n → {0, 1}n, and
for any u, v ∈ {0, 1}n, Pi(+, u) = v ⇔ Pi(−, v) = u. We assume that the tuple
(P1, . . . , P4) is drawn uniformly at random at the beginning of the experiment,
but we note that S could equivalently lazily sample these permutations through-
out its execution. Then w′ is simply defined by the simulator as w′ := Pi(δ, w).
(For reasons that will become clear later, this is not equivalent to drawing w′

uniformly from {0, 1}n \ Π δ̄
i , see Remark 2.)

After this random choice of the answer w′, and before returning it to the
distinguisher, the simulator takes additional steps to ensure consistency with
the ideal cipher E by running a chain completion mechanism. Namely, if the
distinguisher called Query(i, δ, w) with i = 2 or 3, the simulator completes all
newly created “chains” (v2, u3), where v2 ∈ Π−

2 and u3 ∈ Π+
3 by executing

a procedure CompleteChain(v2, u3, ), where  indicates where the chain will be
“adapted”. For example, assume that the distinguisher called Query(2,+, u2)
and that the answer randomly chosen by the simulator was v2 (or the backward
counterpart, namely the distinguisher called Query(2,−, v2) and the answer ran-
domly chosen by the simulator was u2). Then for each u3 ∈ Π+

3 , the simulator
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computes the corresponding key k := v2 ⊕ u3, and evaluates the IEM construc-
tion backward, letting u2 := Π2(−, v2) and v1 := u2 ⊕ k, and forward, letting
v3 := Π3(+, u3), u4 := v3 ⊕ k, v4 := Π4(+, u4) (setting this value at random in
case it was not in Π4), y := v4 ⊕ k, x := E(−, k, y) (hence making a query to
E to “wrap around”), and u1 := x ⊕ k, until the corresponding input/output
values (u1, v1) for the first permutation are defined. It then “adapts” (rather
than setting randomly) table Π1 by calling procedure ForceVal(u1, v1, 1) which
sets Π1(+, u1) := v1 and Π1(−, v1) := u1 in order to ensure consistency of the
simulated IEM construction with E. (A crucial point of the proof will be to show
that this does not cause an overwrite, i.e., that these two values are undefined
before the adaptation occurs.) In case the query was to Query(3, ·, ·), the behav-
ior of the simulator is symmetric, namely adaptation of the chain takes place in
table Π4.

In all the following, we define the size of each table Πi as

|Πi| = max{|Π+
i |, |Π−

i |}.
(Note that as long as no value is overwritten in the tables, |Π+

i | = |Π−
i |.)

Remark 2. As already noted, we could have easily described an equivalent sim-
ulator that lazily samples the random permutations (P1, . . . , P4) throughout its
execution. However, we remark that this is not equivalent to replacing line (6)
of the formal description of the simulator in Appendix A by w′ ←$ {0, 1}n \ Π δ̄

i

for i = 1 and i = 4 since the simulator sometimes adapts the value of these
tables, so that the tables Πi and the permutations Pi will differ in general on
the adapted entries.

Complexity of the Simulator. We start by proving that the simulator runs
in polynomial time and makes a polynomial number of queries to the ideal cipher.
More precisely, we have the following lemma.

Lemma 4. Consider an execution of the simulator SE where the simulator
receives at most q queries in total. Then:

(i) the size of Π2 and Π3 is at most q, and the size of Π1 and Π4 is at most
q2 + q;

(ii) the simulator executes CompleteChain at most q2 times, makes at most q2

queries to E, and runs in time O(q2).

Proof. The size of Π2, resp. Π3, can only increase by one when the distin-
guisher makes a direct call to Query(2, δ, w), resp. Query(3, δ, w), so that the size
of Π2 and Π3 is at most q. Procedure CompleteChain is called once for each
pair (v2, u3) ∈ Π−

2 × Π+
3 , hence at most q2 times in total. Since the simulator

makes exactly one query to E per execution of CompleteChain, the total num-
ber of queries made by the simulator to E is at most q2. The size of Π1, resp.
Π4, can only increase by one when the distinguisher calls Query(1, δ, w), resp.
Query(4, δ, w), or when CompleteChain is called, hence the size of Π1 and Π4 is at
most q2 + q. Clearly, the simulator running time is dominated by the executions
of CompleteChain, hence the simulator runs in time O(q2). �	
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Fig. 5. Systems used in the seq-indifferentiability proof

Intermediate System. In all the following, we consider some fixed distin-
guisher D, and assume that it is deterministic (this is wlog since we consider
computationally unbounded distinguishers). We will denote S(E,P ) rather than
S(P )E the simulator with oracle access to the ideal cipher E and using random
permutations P as source of randomness. In order to prove the indistinguishabil-
ity of the two systems (E,S(E,P )) and (EMP , P ), we will use an intermediate
system.7 Let Σ1 be the “ideal” world where the distinguisher interacts with
(E,S(E,P )). Note that all the randomness of system Σ1 is captured by the pair
(E,P ). Let also Σ3 be the “real” world where the distinguisher interacts with
(EMP , P ). All the randomness of system Σ3 is captured by P . In the intermediate
system Σ2, the distinguisher interacts with (EMS(E,P ),S(E,P )) (see Figure 5).
In words, the right oracle is the simulator S(E,P ) with oracle access to an ideal
cipher E as in Σ1, but now the left oracle is the 4-round IEM construction with
oracle access to S(E,P ) (rather than random permutations). As for Σ1, all the
randomness of system Σ2 is captured by (E,P ).

Transition from Σ1 to Σ2 and Good Executions. We first consider the
transition from the first to the second system.

Definition 5. A pair (E,P ) is said good if the simulator never overwrites an
entry of its tables Πi during an execution of DΣ2(E,P ). Otherwise the pair is said
bad.
7 We warn that this intermediate system is different from the one used in [24] to prove

full indifferentiability of the 12-round IEM cipher, namely (EMP , S(EMP , P )). It is
in fact analogue to the one used by [26] to prove the seq-indifferentiability of the
6-round Feistel construction.
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An overwrite may happen either during a random assignment (line (8) of the
formal description of the simulator in Appendix A), or when adapting a chain
(lines (48) and (49)). Note that whether a pair (E,P ) is good or not depends on
the distinguisher D. We first upper bound the probability that a random pair
(E,P ) is bad.

Lemma 5. Consider a distinguisher D of total oracle query cost at most q,
with q2 ≤ N/4. Then a uniformly random pair (E,P ), where E ←$ BC(n, n)
and P ←$ (Pn)4, is bad (with respect to D) with probability at most 16q4

N .

Proof. First, note that the total number of queries received by the simulator in
Σ2 (either from D or from the construction EM) is exactly the total oracle query
cost q of the distinguisher. Since entries in Π2 and Π3 are never adapted, they
can never be overwritten either. Hence, we only need to consider the probability
of an overwrite in Π1 or Π4. Let BadRand be the event that an overwrite occurs
during a random assignment (i.e., at line (8)) and BadAdapt be the event that
an overwrite occurs when adapting a chain (v2, u3) (i.e., at line (48) or (49)).

We first consider the probability of BadRand. Consider a random assignment
in Πi, for i = 1 or 4, namely Πi(δ, w) := w′, Πi(δ̄, w′) := w, with w′ randomly
defined as w′ := Pi(δ, w). By Lemma 4 (i), there are at most q2 + q random
assignments in Π1 and Π4, so that w′ is uniformly random in a set of size at
least N − (q2 + q). Moreover, this random assignment cannot overwrite a value
that was previously added during a random assignment, but only a value that
was added by ForceVal (i.e., when adapting a chain), and by Lemma 4 (ii) there
are at most q2 such values. Hence, the probability that w′ is equal to one of the
at most q2 values previously added in table Πi by a call to ForceVal is at most

q2

N−q2−q . Summing over the at most q2 + q random assignments in Π1 and Π4,
we get

Pr [BadRand] ≤ 2(q2 + q) × q2

N − q2 − q
≤ 8q4

N
. (10)

We now consider the probability of BadAdapt, conditioned on BadRand not
happening. Let BadAdapti be the event that a value is overwritten by the i-th
call to ForceVal. We will upper bound the probability

Pr
[
BadAdapti

∣
∣¬BadRand ∧ ¬BadAdaptj , j = 1, . . . , i − 1

]
.

Consider the i-th execution of CompleteChain(v2, u3, ), and assume that event
BadRand does not occur and BadAdaptj does not occur for 1 ≤ j ≤ i − 1.
This means that no value was overwritten before this i-th call to CompleteChain.
For concreteness, suppose that this chain completion was triggered by a call to
Query(2, ·, ·) from the distinguisher, so that  = 1 (the reasoning is symmetric
for a call to Query(3, ·, ·) for which  = 4). The simulator will eventually call
ForceVal(u1, v1, 1), and we must show that with high probability, the values
Π1(+, u1) and Π1(−, v1) are undefined previously to this call. We first consider
the case of v1. This value is defined by the simulator by setting k := v2 ⊕ u3

and v1 := u2 ⊕ k, hence v1 = u2 ⊕ v2 ⊕ u3. Independently of the direction of the
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query of the distinguisher, and since there are at most q random assignments
in Π2, the value u2 ⊕ v2 comes at random from a set of size at least N − q (if
the distinguisher called Query(2,+, u2) then v2 is random, whereas if it called
Query(2,−, v2) then u2 is random). Hence, the probability that v1 is equal to
one of the at most q2 + q values already in Π1 is at most q2+q

N−q . We now argue
that Π1(+, u1) is also undefined with high probability. For this, we show that
the query E(−, k, y) made by the simulator to wrap around when evaluating
the IEM construction forward is fresh, i.e., it never made this query before nor
received y as answer to a previous query E(+, k, x). Assume that this does not
hold. Then this means that such a query previously occurred when completing
another chain (v′

2, u
′
3). But since we assumed that no value was overwritten in the

tables before this call to CompleteChain(v2, u3, 1), it can easily be seen that this
implies that (v′

2, u
′
3) = (v2, u3), which cannot be since the simulator completes

any chain at most once by construction. This implies that the value x returned
by E comes at random from a set of size at least N − q2 (since by Lemma 4 the
simulator makes at most q2 queries to E), so that u1 := x ⊕ k is equal to one
of the at most q2 + q values already in table Π1 with probability at most q2+q

N−q2 .
Hence, summing over the at most q2 calls to CompleteChain, we obtain

Pr [BadAdapt|¬BadRand] ≤
q2
∑

i=1

Pr
[
BadAdapti

∣
∣

¬BadRand ∧ ¬BadAdaptj , j = 1, . . . , i − 1
]

≤ q2
(

q2 + q

N − q
+

q2 + q

N − q2

)
≤ 8q4

N
. (11)

Combining (10) and (11) yields the result. �	
Lemma 6. For any distinguisher D of total oracle query cost at most q, one
has ∣

∣
∣Pr

[
DΣ1(E,P ) = 1

]
− Pr

[
DΣ2(E,P ) = 1

]∣∣
∣ ≤ 16q4

N
,

where both probabilities are taken over E ←$ BC(n, n), P ←$ (Pn)4.

Proof. Deferred to the full version of the paper [12] for reasons of space. �	

Transition from Σ2 to Σ3 and Randomness Mapping. We now consider
the transition from the second to the third system, using a randomness mapping
argument similar to the one of [19,24]. For this, we define a map Λ mapping pairs
(E,P ) either to the special symbol ⊥ when (E,P ) is bad, or to a tuple of partial
permutations P ′ = (P ′

1, . . . , P
′
4) when (E,P ) is good. A partial permutation is

a function P ′
i : {+,−} × {0, 1}n → {0, 1}n ∪ {∗} such that for all u, v ∈ {0, 1}n,

P ′
i (+, u) = v 
= ∗ ⇔ P ′

i (−, v) = u 
= ∗.
The map Λ is defined for good pairs (E,P ) as follows: run DΣ2(E,P ), and

consider the tables Πi of the simulator at the end of the execution; then fill all
undefined entries of the Πi’s with the special symbol ∗. The result is exactly
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Λ(E,P ). Since for a good pair (E,P ), the simulator never overwrites an entry
in its tables, it follows that Λ(E,P ) is a tuple of partial permutations as just
defined above. We say that a tuple of partial permutations P ′ = (P ′

1, . . . , P
′
4)

is good if it has a good preimage by Λ. We say that a tuple of permutations
P = (P1, . . . , P4) extends a tuple of partial permutations P ′ = (P ′

1, . . . , P
′
4),

denoted P � P ′, if for each 1 ≤ i ≤ 4, Pi and P ′
i agree on all entries such that

P ′
i (δ, w) 
= ∗.

Lemma 7. For any distinguisher D of total oracle query cost at most q, one
has ∣

∣
∣Pr

[
DΣ2(E,P ) = 1

]
− Pr

[
DΣ3(P ) = 1

]∣∣
∣ ≤ 52q4

N
,

where the first probability is taken over E ←$ BC(n, n), P ←$ (Pn)4, and the
second over P ←$ (Pn)4.

Proof. Deferred to the full version of the paper [12] for reasons of space. �	

Concluding. The proof of Theorem 5 directly follows by combining Lemmas 4,
6, and 7. As a corollary, we obtain from Theorem 4 that for any (q2, ε)-evasive
relation R, the 4-round IEM cipher is (q, ε + O(q4/2n))-correlation intractable
with respect to R. Using again Example 1, the Davies-Meyer compression func-
tion based on the 4-round IEM cipher is (q,O(q4/2n))-preimage resistant in
the Random Permutation Model. This is quite a weak security guarantee, and
as already explained, this motivates the search for a block cipher construc-
tion (potentially the IEM cipher with a sufficient number of rounds) which
is (q, σ, t, ε)-seq-indifferentiable from an ideal cipher with σ = O(q) and ε =
O(q/2n).
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A Formal Description of the Simulator

1 Simulator S(P ):
2 Variables:
3 tables Π1, . . . , Π4, initially empty

4 public procedure Query(i, δ, w):
5 if (δ, w) /∈ Πi then
6 w′ := Pi(δ, w)
7 Πi(δ, w) := w′

8 Πi(δ̄, w′) := w \\ may overwrite an entry
9 \\ complete newly created chains (v2, u3) if any

10 if i = 2 then
11 if δ = + then v2 := w′ else v2 := w

12 forall u3 ∈ Π+
3 do

13 CompleteChain(v2, u3, 1)
14 else if i = 3 then
15 if δ = + then u3 := w else u3 := w′

16 forall v2 ∈ Π−
2 do

17 CompleteChain(v2, u3, 4)
18 return Πi(δ, w)

19 private procedure CompleteChain(v2, u3, ):
20 k := v2 ⊕ u3

21 case  = 1:
22 \\ evaluate the chain bw. up to v1
23 u2 := Π2(−, v2)
24 v1 := u2 ⊕ k
25 \\ evaluate the chain fw. up to u1

26 v3 := Π3(+, u3)
27 u4 := v3 ⊕ k
28 v4 := Query(4,+, u4)
29 y := v4 ⊕ k
30 x := E(−, k, y)
31 u1 := x ⊕ k
32 \\ adapt the chain
33 ForceVal(u1, v1, 1)

34 case  = 4:
35 \\ evaluate the chain fw. up to u4

36 v3 := Π3(+, u3)
37 u4 := v3 ⊕ k
38 \\ evaluate the chain bw. up to v4
39 u2 := Π2(−, v2)
40 v1 := u2 ⊕ k
41 u1 := Query(1,−, v1)
42 x := u1 ⊕ k
43 y := E(+, k, x)
44 v4 := y ⊕ k
45 \\ adapt the chain
46 ForceVal(u4, v4, 4)

47 private procedure ForceVal(ui, vi, i):
48 Πi(+, ui) := vi \\ may overwrite an entry
49 Πi(−, vi) := ui \\ may overwrite an entry
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B Known-Key Attacks

Andreeva et al. [2], in an attempt to formalize known-key attacks, have intro-
duced the notion of known-key indifferentiability (KK-indifferentiability), and
shown that the 1-round Even-Mansour cipher is KK-indifferentiable from an
ideal cipher. KK-indifferentiability for a block cipher construction CF is defined
in a similar way as (full) indifferentiability, except that a random key k is drawn
at the beginning of the security experiment, and the distinguisher is restricted
to querying the construction CF in the real world or the ideal cipher E in the
ideal world with the key k. Moreover, in the ideal world, the simulator is given
the key k as input.

We argue however that the notion of [2] is slightly too restrictive to fully
capture known-key attacks, because their definition involves only one single ran-
dom key. If one tries to consider attacks with larger key arity, then the 1-round
Even-Mansour cipher is not secure against known-key attacks. Consider the fol-
lowing simple example of a known-key attack against the 1-round Even-Mansour
cipher (with identical round keys) involving two random keys. The adversary
receives two random keys k 
= k′. It picks an arbitrary x ∈ {0, 1}n and defines
x′ = x ⊕ k ⊕ k′. Let y = EMP

k (x) and y′ = EMP
k′(x′). Then one can easily check

that x ⊕ x′ = y ⊕ y′. Yet for an ideal cipher E, given two random keys k 
= k′,
finding two pairs (x, y) and (x′, y′) such that Ek(x) = y, Ek′(x′) = y′, and
x ⊕ x′ = y ⊕ y′ can be shown to be hard: more precisely, an adversary making
at most q queries to E finds such pairs with probability O( q2

2n ). In other words,
for the 1-round EM construction, the adversary can very easily find a binary
relation which is (q,O( q2

2n ))-evasive with respect to an ideal cipher and involves
the two “challenge” keys k, k′.

It is straightforward to extend the KK-indifferentiability definition given
by [2] to handle larger key arity, by restricting the distinguisher to query its
left oracle (CF /E) on a set of at most m keys k1, . . . , km randomly drawn at the
beginning of the experiment. Then, for m > 1, the 1-round IEM cipher is not
KK-indifferentiable from an ideal cipher under this definition, as shown by the
attack outlined above.

Similarly, one could easily modify the definition of correlation intractability
(cf. Definition 3) in order to better capture the known-key setting, by simply
drawing m′ random keys k1, . . . , km′ given as input to MF , and imposing to M
that its output (α1, . . . , αm) only involves the “challenge” keys k1, . . . , km′ .

We leave the study of these new notions to future work.
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Abstract. The main bottleneck affecting the efficiency of all known
fully homomorphic encryption (FHE) schemes is Gentry’s bootstrapping
procedure, which is required to refresh noisy ciphertexts and keep com-
puting on encrypted data. Bootstrapping in the latest implementation
of FHE, the HElib library of Halevi and Shoup (Crypto 2014), requires
about six minutes. We present a new method to homomorphically com-
pute simple bit operations, and refresh (bootstrap) the resulting out-
put, which runs on a personal computer in just about half a second.
We present a detailed technical analysis of the scheme (based on the
worst-case hardness of standard lattice problems) and report on the per-
formance of our prototype implementation.

1 Introduction

Since Gentry’s discovery of the first fully homomorphic encryption (FHE) scheme
[15], much progress has been made both towards basing the security of FHE on
more standard and well understood security assumptions, and improving the
efficiency of Gentry’s initial solution.

On the security front, a sequence of papers [2,5,8,9,16] has lead to (leveled)
FHE schemes based on essentially the same intractability assumptions under-
lying standard (non homomorphic) lattice based encryption. To date, the main
open theoretical problem still left to be solved is how to remove the “circular
security” assumption made in [15] (and all subsequent works) to turn a lev-
eled FHE scheme (i.e., a scheme where the homomorphic computation depth is
chosen at key generation time) into a full fledged one which allows to perform
arbitrarily large homomorphic computations on encrypted data, even after all
key material has been fixed.
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Improving the efficiency of Gentry’s scheme has received even more atten-
tion [1,2,6,17–21,23], resulting in enhanced asymptotic performance, and some
reference implementations and libraries [17,23] that are efficient enough to be
run on a personal computer. Still, the cost of running FHE schemes is quite
substantial. The main bottleneck is caused by the fact that all current FHE
solutions are based on “noisy” encryption schemes (based on lattices or similar
problems) where homomorphic operations increase the noise amount and lower
the quality of ciphertexts. As more homomorphic operations are performed, the
noise can easily grow to a level where the ciphertexts are no longer decryptable,
and operating on them produces meaningless results. Gentry’s breakthrough dis-
covery [15] was an ingenious “bootstrapping” technique (used in all subsequent
works) that refreshes the ciphertexts by homomorphically computing the decryp-
tion function on encrypted secret key, and bringing the noise of the ciphertexts
back to acceptable levels. This bootstrapping method allows to homomorphically
evaluate arbitrary circuits, but it is also the main bottleneck in any practical
implementation due to the complexity of homomorphic decryption.

Going back to efficiency considerations, the current state of the art in terms
of FHE implementation is represented by the recent HElib of Halevi and Shoup
[23,24], which reported a bootstrapping/refreshing procedure with running times
around 6 minutes. While this is much better than previous implementations,
and a nontrivial amount of computation can be performed in-between refreshing
operations, the fact that even the simplest computation requiring bootstrapping
takes such a macroscopic amount of time makes FHE clearly unattractive.

Our Work. The goal of this paper is to investigate to what extent the run-
ning time of a useful FHE bootstrapping procedure can be reduced. We do
so by analyzing bootstrapping in vitro, i.e., in the simplest possible setting:
given two encrypted bits E(b1) and E(b2), we want to compute their logical
NAND (or any other complete boolean operation) and obtain the encrypted
result E(b1 ∧̄ b2) in a form which is similar to the input bits. As in the most
recent FHE schemes, here E(·) is just a standard lattice (LWE [32]) encryption
scheme. In particular, E(bi) are noisy encryptions, and the output ciphertext
E(b1 ∧̄ b2) is homomorphically decrypted (i.e., bootstrapped) in order to reduce
its noise level back to that of E(b1) and E(b2). Our main result is a new boost-
rapping method and associated implementation that allows to perform the entire
computation (consisting of homomorphic NAND computation and homomorphic
decryption/bootstrapping) in less than a second on a standard (consumer grade)
personal computer as detailed in Section 6.4.

We remark that the problem solved here is definitely simpler than HElib
[23], as we perform only a single bit operation before bootstrapping, while [23]
allows to perform more complex operations. In fact, using complex ciphertexts
packing and homomorphic SIMD techniques, [23] achieves an amortized cost
(per homomorphic bit operation) which we estimate to be in the same order
of magnitude as our solution. The main improvement with respect to previous
work is in terms of granularity and simplicity: we effectively show that half
hour delays are not a necessary requirement of bootstrapped FHE computations,
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and bootstrapping itself can be achieved at much higher speeds than previously
thought possible. Another attractive feature of the scheme presented in this
paper is simplicity: we implemented our fully bootstrapped NAND computation
in just a few hundreds lines of code and just a few days of programming effort.

Finally, our methods are not necessarly limited to a single NAND computation.
As a simple extension of our basic scheme we show how to compute (homomorphi-
cally, and at essentially the same level of efficiency) various other operations, like
majority, threshold gates. This extension also offers xor-for-almost-free as previ-
oushomomorphic schemes.Combiningour fast (subsecond)bootstrappingmethod
with other techniques that allow to perform substantially more complex computa-
tions in-between bootstrappings, is left as an open problem.

Techniques. Our improvement is based on two main techniques. One is a new
method to homomorphically compute the NAND of two LWE encryptions. We
recall that LWE encryption satisfies certain approximate additive homomorphic
properties. Specifically, given two encryptions E(m1) and E(m2) one can com-
pute a noisier version of E(m1 + m2). When working modulo 2, this allows
to homomorphically compute the exclusive-or of two bits. The way we extend
this operation to a logical NAND computation is by moving (during boostrap-
ping) from arithmetic modulo 2 to arithmetic modulo 4. So, adding E(m1) and
E(m2) results in the encryption E(m) of m = 2 (if m1 ∧̄ m2 = 0) or m ∈ {0, 1}
(if m1 ∧̄m2 = 1). Moving from this ciphertext to the encryption of m1 ∧̄ m2 is
then achieved by a simple affine transformation.

The main advantage of our new homomorphic NAND operation is that it intro-
duces a much lower level of noise than previous techniques. So, the refreshing pro-
cedure (required for bootstrapping) is faced with a much simpler task. Our second
technical contribution builds on a recent method from [2] to implement and speed
up bootstrapping. Decryption of LWE ciphertexts requires essentially the compu-
tation of a scalar product (modulo q) and a rounding operation. So, homomorphic
decryption needs to compute these operations on encrypted data. The scheme of
[2] uses a homomorphic cryptosystem that encrypts integers modulo q, and allows
the efficient computation of scalar products. This is achieved using a homomor-
phic encryption scheme for binary messages x ∈ {0, 1}, and encoding elements
v ∈ C of a cyclic group as vectors of ciphertexts E(x1), . . . , E(x|C|), where xi = 1
if and only if i = v. We introduce a ring variant of the bootstrapping method of [2]
that also supports efficient homomorphic computation of scalar products modulo
q. The use of ring lattices was first suggested1 in [31] to reduce the asymptotic
computation time of lattice cryptography from quadratic to quasi-linear (using
FFT techniques), and have become a fundamental technique to bring theoretical
lattice constructions to levels of performance that are attractive in practice. Our
work uses the LWE instantiation of ring lattices [29,30] for the efficient implemen-
tation of encryption. But our bootstrapping method goes beyond the use of ring
1 Similar lattices had previously been used in practice also by the NTRU cryptosys-

tem [25] , but without employing quasi-linear FFT techniques, and no connection to
the worst-case complexity of lattice problems.
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lattices to speed up normal lattice operations. We also use the ring structure of
these lattices to directly implement the encryption of cyclic groups by encoding
the cyclic group Zq into the group of roots of unity: i �→ Xi where i is a primitive
q-th root of unity. This allows to implement a bootstrapping method similar to
[2], but where each cyclic group element is encoded by a single ciphertext, rather
than a vector of ciphertexts.

As a last technique, in order to contain noise generation during key switch-
ing operations, we use LWE instances with binary secrets, which were recently
proved as hard as standard LWE in [7].

Like all previously known schemes, our FHE construction requires (in addi-
tion to standard worst-case lattice intractability assumptions) a circular security
assumption in order to release a compact homomorphic evaluation key, and allow
to combine an arbitrarily large number of homomorphic bit operations.

Organization. The rest of the paper is organized as follows. In section 2 we give
some background on lattices and related techniques as used in the paper. In
Section 3 we present a detailed description of the LWE encryption scheme that
we want to bootstrap. The high level structure of our bootstrapped homomorphic
NAND computation is given in Section 4. Section 5 goes into the core of our
new refreshing procedure based on ring lattices. Section 6 describes concrete
parameters, implementation and performance details. Section 7 concludes the
paper with extensions and open problems.

2 Preliminaries

We will use bold-face lower-case letters a,b . . . to denote column vectors over Z
or any other ring R, and boldface upper-case letters A,B . . . for matrices. The
product symbol · will be used for both scalar products of two column vectors,
and for matrix product, to be interpreted as the only applicable one. The norm
‖ · ‖, will denote the euclidean norm. When speaking of the norm of a vector v
over the residue ring ZQ of Z modulo Q, we mean the shortest norm among the
equivalence class of v ∈ Z

n
Q in Z

n.

2.1 Distributions

A randomized rounding function χ : R → Z is a function mapping each x ∈ R to
a distribution over Z such that χ(x + n) = χ(x) + n for all integers n. For any
x ∈ R, the random variable χ(x) − x is called the rounding error of χ(x). As a
special case, when the domain of χ is restricted to Z, we have χ(x) = x + χ(0),
i.e., the randomized rounding function simply adds a fixed “noise” distribution
χ(0) to the input x ∈ Z.

A random variable X over R is subgaussian with parameter α > 0 if for
all t ∈ R, the (scaled) moment-generating function satisfies E[exp(2πtX)] ≤
exp(πα2t2). If X is subgaussian, then its tails are dominated by a Gaussian of
parameter α, i.e., Pr{|X| ≥ t} ≤ 2 exp(−πt2/α2) for all t ≥ 0. Any B-bounded
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symmetric random variable X (i.e., |X| ≤ B always) is subgaussian with param-
eter B

√
2π. More generally, we say that a random vector x (respectively, a

random matrix X) is subgaussian (of parameter α) if all its one-dimensional
marginals 〈u,x〉 (respectively, utXv) for unit vectors u,v are subgaussian (of
parameter α). It follows immediately from the definition that the concatenation
of independent subgaussian vectors with common parameter α, interpreted as
either a vector or matrix, is subgaussian with parameter α.

2.2 The Cyclotomic Ring

Throughout the paper, we let N be a power of 2 defining the (2N)th cyclotomic
polynomial Φ2N (X) = XN +1 and associated cyclotomic ring R = Z[X]/(XN +
1). We also write RQ = R/(QR) for the residue ring of R modulo an integer
Q. Elements in R have a natural representation as polynomials of degree N − 1
with coefficients in Z, and R can be identified (as an additive group) with the
integer lattice Z

N , where each ring element a = a0 + a1x+ . . . + aN−1x
N−1 ∈ R

is associated with the coefficient vector −→a = (a0, . . . , aN−1) ∈ Z
N . We extend

the notation −→· to any vector (or matrix) over R component-wise. We use the
identification R = Z

N to define standard lattice quantities like the euclidean
length of a ring element ‖a‖ = ‖−→a ‖ =

√∑
i |ai|2, or the spectral norm of a

matrix R ∈ Rw×k of ring elements s1(R) = supx∈Rk\{0} ‖R · x‖/‖x‖.
The ring R is also identified with the sub-ring of anti-circulant square matri-

ces of dimension N by regarding each ring element r ∈ R as a linear transforma-
tion x �→ r · x over (the coefficient embedding) of R. The corresponding matrix
is denoted

⇒
r ∈ Z

N×N , and its first column is −→r . (The other columns are the
cyclic rotations of −→r with the cycled entries negated.) We extend the notation
⇒· to vectors and matrices over R: for R ∈ Rw×k,

⇒
R ∈ Z

Nw×Nk is a matrix with
anti-circulant N×N blocks. Notice that the definition of spectral norm of a ring
element (or a matrice of ring elements) is consistent with the definition of spec-
tral norm of the corresponding anticirculant matrix (or blockwise anti-circulant
matrix): s1(r) = s1(

⇒
r ) and s1(R) = s1(

⇒
R).

We say that a random polynomial a is subgaussian if its associated vector−→a is subgaussian. The fact that a is subgaussian does not imply that its asso-
ciated anticirculant matrix

⇒
a is also subgaussian, because its columns are not

independent. Nevertheless, subgaussianity of a ring elements still allows a good
bound on its singular norm. This bound is as small as its non-ring counterpart
as soon as either w or k is larger than ω(

√
log N).

Fact 1 (Adapted from [12], Fact 6) . If D is a subgaussian distribution of
parameter α over R, and R ← Dw×k has independents coefficients drawn from
D, then, with overwhelming probability, we have s1(R) ≤ α

√
N · O(

√
w +

√
k +

ω(
√

log N)).

Invertibility in R. Invertibility in cyclotomic rings has to be handled with care.
(E.g., see [12].) The main issue is that, for a power-of-two cyclotomic ring R =
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Z[X]/(XN + 1), the residue ring RQ is never a field whatever the choice of Q.
Yet, for appropriate moduli Q, it is not so far from being a field. More concretely,
for Q a power of 3 most elements in R will be invertible, and so will most of the
square matrices over R as detailed by the following Lemma 4. The lemma uses
the following two facts.

Fact 2 (Irreducible factors of XN + 1 modulo 3). For any k ≥ 3 and N =
2k we have XN + 1 = (XN/2 + XN/4 − 1) · (XN/2 − XN/4 − 1) mod 3 and both
factors are irreducible in F3[X].

Proof. This follows directly from [26, Theorem 2.47].

Lemma 3 (Hensel Lemma for powers of prime integers) . Let R be the
ring Z[X]/(F (X)) for some monic polynomial F ∈ Z[X]. For any prime p, if
u ∈ Rpe is invertible mod p (i.e. it is invertible in Rp) then u is also invertible
in Rpe .

Lemma 4 (Invertibility of random matrices). For Q a power of 3, and any
dimension k, if D is a distribution over RQ such that D mod 3 is (statistically
close to) uniform over R3, then, with overwhelming probability D ← Dk×k is
invertible.

Proof. By Fact 2, the ring R3 factors as R3 = F1×F2, where F1 = R/(3, P1(X) =
XN/2 +XN/4 −1) and F2 = R/(3, P2(X) = XN/2 −XN/4 −1) are fields of order
q = #Fi = 3N/2. Note that D mod (3, Pi(X)) is (statistically close to) a uniform
random variable over Fk×k

i . We recall that the number of invertible matrices over
the field of size q is given by

#GL(k, q) = qk2
k−1∏

i=0

(1 − qi−k)

≥ qk2
(1 −

k∑

i=1

q−i) ≥ qk2
(1 − 1

q

∑

i≥0

q−i) = qk2
(1 − 1

q − 1
).

In particular D mod (3, Pi(X)) is invertible except with probability 1/(q−1).
By a union bound, D is invertible modulo both (3, P1(X)) and (3, P2(X)), except
with negligible probability 2/(q−1) = 2/(3N/2−1). It follows that D is invertible
modulo 3, and by Hensel lifting (Lemma 3), also modulo Q. Indeed, Hensel
lemma extends to matrices over R, considering that a matrix M ∈ Rk×k

Q is
invertible if and only if its determinant over RQ is invertible.

3 LWE Symmetric Encryption

We recall the definition of the most basic LWE symmetric encryption scheme
(see [3,4,32]). LWE symmetric encryption is parametrized by a dimension n,
a message-modulus t ≥ 2, a ciphertext modulus q = nO(1) and a randomized
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rounding function χ : R → Z. The message space of the scheme is Zt. (Typically,
the rounding function has error distribution |χ(x) − x| < q/2t, and t = 2 is used
to encrypt message bits.) The (secret) key of the encryption scheme is a vector
s ∈ Z

n
q , which may be chosen uniformly at random, or as a random short vector.

The encryption of a message m ∈ Zt under key s ∈ Z
n
q is

LWEt/q
s (m) = (a, χ(a · s + mq/t) mod q) ∈ Z

n+1
q (1)

where a ← Z
n
q is chosen uniformly at random. Notice that when t divides q, the

encryption of m equals (a,a · s + e + mq/t mod q), where the error e is chosen
according to a fixed noise distribution χ(0). A ciphertext (a, b) is decrypted by
computing

m′ = t(b − a · s)/q� mod t ∈ Zt. (2)

We write LWEt/q
s (m) to denote the set of all possible encryptions of m under s.

The error of a ciphertext (a, b) ∈ LWEt/q
s (m) is the random variable err(a, b) =

(b − a · s − mq/t) mod q describing the rounding error, reduced modulo q to
the centered interval [−q/2, q/2]. Notice that the error err(a, b) depends not just
on (a, b), but also on s, q, t and m. Also, in the absence of any restriction on
the error, a ciphertext (a, b) ∈ LWEt/q

s (m) can be any vector in Z
n+1
q . We write

LWEt/q
s (m,E) to denote the set of all ciphertexts c ∈ LWEt/q

s (m) with error
bounded by |err(c)| < E. It is easy to check that for all (a, b) ∈ LWEt/q

s (m, q/2t),
the decryption procedure correctly recovers the encrypted message:

t(b − a · s)q� mod t =
⌊

t

q
·
(q

t
m + e

)⌉
=

⌊
m +

t

q
e

⌉
= m mod t

because t
q |e| < 1/2.

Modulus Switching. LWE ciphertexts can be converted from one modulus Q
to another q using the (scaled) randomized rounding function [·]Q:q : ZQ → Zq

defined as
[x]Q:q = qx/Q� + B

where B ∈ {0, 1} is a Bernoulli random variable with Pr{B = 1} = (qx/Q) −
qx/Q� ∈ [0, 1). Notice that E[[x]Q:q] = qx/Q� + E[B] = qx/Q and |[x]Q:q −
(qx/Q)| < 1 with probability 1. In particular, the rounding error [x]Q:q − (qx/Q)
is subgaussian of parameter

√
2π. The randomized rounding function is applied

to vectors (e.g., LWE ciphertexts) coordinatewise:

ModSwitch(a, b) = [(a, b)]Q:q = (([a1]Q:q, . . . , [an]Q:q), [b]Q:q). (3)

Lemma 5. For any s ∈ Z
n
q , m ∈ Zt and ciphertext c ∈ LWEt/Q

s (m) with subgaus-
sian error of parameter σ, the rounding ModSwitch(c) = [c]Q:q is a LWEt/q

s (m)
ciphertext with subgaussian error of parameter

√
(qσ/Q)2 + 2π(||s||2 + 1).
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Proof. Let c = (a, b) and [c]Q:q = (a′, b′). We have a′
i = q

Qai + ri and
b′ = q

Qb + r0 for independent subgaussian rounding errors r0 . . . rn of param-

eter
√

2π. It follows that c′ is an LWEt/q
s encryption of m with error err(c′) =

b′ − a′ · s − qm
t = (qerr(c)/Q) + r0 − ∑n

i=1 siri. Since err(c), r0, . . . , rn are inde-
pendent subgaussian variables, their sum is also subgaussian, with parameter√

(qσ/Q)2 + 2π(||s||2 + 1).

In practice, one may use the non-randomized rounding function  · �.
Then, the error of the ouput of ModSwitch, according to the central
limit heuristic is expected to be close to a gaussian of standard deviation√

(qσ/Q)2 + (||s||2 + 1)/12, based on the randomness of a. The factor 1/12
comes from the standard deviation of a uniform distribution in [− 1

2 , 1
2 ].

Key Switching. Key switching allows to convert an LWE encryption under a key
z ∈ Z

N
q into an LWE encryption of the same message (and slightly larger error)

under a different key s ∈ Z
n
q . The key switching procedure is parametrized

by a base Bks, and requires as an auxiliary input a suitable encryption of z
under s. Specifically, let ki,j,v ∈ LWEq/q

s (vziB
j
ks) be an encryption of vziB

j
ks

under z, for all i = 1, . . . , N , v ∈ {0, . . . , Bks} and j = 0, . . . , dks − 1, where
dks = �logBks

q�. (Notice that the message vziB
j
ks is interpreted as a value modulo

t = q, and therefore the ciphertext ki,j,v is not typically decryptable because it
has error bigger than q/2t = 1/2.) Given the switching key K = {ki,j,v} and a
ciphertext (a, b) ∈ LWEt/q

z (m), the key swtching procedure computes the base-
Bks expansion of each coefficient ai =

∑
j ai,jB

j
ks, and outputs

KeySwitch((a, b),K) = (0, b) −
∑

i,j

ki,j,ai,j
. (4)

Lemma 6 . The key switching procedure, given a ciphertext c ∈ LWEt/q
z (m)

with subgaussian error of parameter α, and switching keys ki,j,v =
LWEq/q

s (vziB
j
ks) and subgaussian error of parameter σ, outputs an encryp-

tion KeySwitch(c, {ki,j,v}) ∈ LWEt/q
z (m) with subgaussian error of parameter√

α2 + Ndksσ2.

Proof. Let ei,j,v = err(ki,j,v), so that ki,j,v = (a′
i,j,v,a′

i,j,v · s+ vziB
j
ks + ei,j,v) for

some a′
i,j,v ∈ Z

n
q . The output of the key switching procedure is KeySwitch(a, b) =

(a′, b′) where a′ = −∑
i,j a′

i,j,ai,j
and

b′ = b −
∑

i,j

(a′
i,j,ai,j

· s + ai,jziB
j
ks + ei,j,ai,j

) = b − a · z + a′ · s − E,

where E =
∑

i,j ei,j,ai,j
is subgaussian with parameter σ

√
Ndks. It follows that

(a′, b′) has error

err(a′, b′) = b′ − a′ · s − qm

t
= b − a · z − E − qm

t
= err(a, b) − E.

Since err(a, b) and E are both subgaussian, their difference is also subgaussian
with parameter

√
α2 + Ndksσ2.
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4 Our FHE: High Level Structure

In this section we describe the high level structure/design of our fully homo-
morphic (symmetric) encryption scheme. (This private-key FHE scheme can
be transformed into a public-key one using standard techniques.) The encryp-
tion scheme itself is just the standard LWE symmetric encryption described in
Section 3. For now we focus on encrypting single bits, and evaluating boolean
NAND circuits. In summary, we need to solve the following problem: given two
ciphertexts ci ∈ LWE2/q

s (mi) (for i = 0, 1), compute a ciphertext c ∈ LWE2/q
s (m)

where m = 1 − m0 · m1 = m0 ∧̄ m1 is the logical NAND of m0 and m1.

4.1 A New Homomorphic NAND Gate

The main idea to perform this encrypted NAND computation is to assume that
the input ciphertexts are available in a slightly different form. (We will see later
how to perform the required transformation.) Namely, assume that the input
bits m0,m1 ∈ {0, 1} are encrypted as ciphertexts ci ∈ LWE4/q

s (mi, q/16) using a
slighly different message modulus t = 4 and error bound E = q/16. (Compare
to the standard binary LWE encryption parameters t = 2 and E = q/4.)

Lemma 7. There is a simple algorithm

HomNAND : LWE4/q
s (m0, q/16) × LWE4/q

s (m1, q/16) → LWE2/q
s (m0 ∧̄m1, q/4)

that on input two ciphertexts ci ∈ LWE4/q(mi, q/16) (for i = 0, 1) encrypting
binary messages m0,m1 ∈ {0, 1}, outputs an encryption HomNAND(c0, c1) ∈
LWE2/q(m, q/4) of their logical NAND m = 1−m0m1 = m0 ∧̄m1 with error less
than q/4.

Proof. The NAND of the two ciphertexts ci = (ai, bi) can be easily computed as

(a, b) = HomNAND((a0, b0), (a1, b1)) =
(

−a0 − a1,
5q

8
− b0 − b1

)
.

(Remember that we assumed for simplicity that 8 = 2t divides q, and therefore
5q/8 is an integer.) The resulting ciphertext satisfies

b − as − (1 − m0m1)
q

2
=

q

4
(
1
2

− (m0 − m1)2) − (e0 + e1) = ±q

8
− (e0 + e1).

So, (a, b) = HomNAND(c0, c1) is a regular LWE2/q
s encryption of 1 − m0m1 =

m0 ∧̄m1 with error at most
∣
∣
∣±q

8
− (e0 + e1)

∣
∣
∣ <

q

8
+

q

16
+

q

16
=

q

4
.
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Notice that the HomNAND function can be computed from the input cipher-
texts without using any key material, and it requires just a handfull of additions
modulo q. This shows that in order to compute the NAND of two ciphertexts
(and therefore homomorphically evaluate any boolean circuit on LWE encryp-
tions), it is enough to be able to compute a refreshing function

Refresh : LWE2
s(m, q/4) → LWE4

s(m, q/16).

The refreshing function will require some key material, and it will be substan-
tially more expensive of HomNAND, accounting essentially for the whole cost of
homomorphic circuit evaluation. Notice that the number of refresh computations
required to evaluate a circuit with g gates is n + g (one for each circuit input
and gate-output wire). Assuming that the encrypted input bits are already pro-
vided in refreshed form (e.g., by using the modified LWE4/q(m, q/16) encryption
scheme), one needs just 1 refresh evaluation per gate, applied to the output of
the gate, rather than 2 evaluation (one for each input into the gate). So, the
computational cost of homomorphically evaluating a NAND gate is essentially
that of a single refresh function computation.

Improvement. Previous methods to compute homomorphic AND gates on LWE
ciphertexts require errors of input to be at most O(

√
q), against O(q) in our

case. Our technique therefore relaxes the requirement on the Refresh procedure,
potentially making the overall scheme faster.

4.2 Refreshing via Homomorphic Accumulator

We now move to the description of the refreshing function. As in all previous
works on FHE, our ciphertext refreshing is based on Gentry’s bootstrapping
technique of homomorphically evaluating the decryption function. More specifi-
cally, in our setting, given an LWE ciphertext (a, b) ∈ LWE2/q

s (m), we compute
an encryption E(m) of the same message under a different encryption scheme
E by homomorphically evaluating the LWE decryption procedure (2) on the
encrypted key E(s) to yield

2(b − a · E(s))/q� mod 2 � E(m).

We recall that the final goal of the refreshing function is to obtain an encryp-
tion in LWE4/q(m, q/16). However, this target encryption scheme is not versatile
enough to perform the required homomorphic computation. Instead, following
[2], we use an intermediate encryption scheme E with message space Zq, which
allows to encrypt the secret s ∈ Z

n
q componentwise E(s) = (E(s1), . . . , E(sn))

and supports the efficient computation of affine transformations b − a · E(s) =
E(b − a · s). Once this computation is done, it remains to homomorphically
extract the most significant bit of b−a · s as an LWE ciphertext. We summarize
our requirements under the following definition. Notice that the definition makes
use of two (typically different) encryption schemes:
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− a scheme E, which is used internally by the accumulator, and it is left unspec-
ified to allow a wider range of possible implementations, and

− a target encryption scheme, which for simplicity we fix to LWEt/q as required
by our application.

The definition is easily generalized to make it parametric also with respect to
the target encryption scheme.

Definition 1 (Homomorphic Accumulator) . A Homomorphic Accumula-
tor Scheme is a quadruple of algorithms (E, Init, Incr,msbExtract) together with
moduli t, q, where E and msbExtract may require key material related to an LWE

key s. For brevity, we write ACC ← v for ACC ← Init(v), and ACC
+← E(v)

for ACC ← Incr(ACC, E(v)). For any v0, v1 . . . v� ∈ Zq, after the sequence of
operations

ACC ← v0; for i = 1 to � do ACC
+← E(vi)

we say that we say that ACC is an �-encryption of v, where v =
∑

vi mod q.
A Homomorphic Accumulator Scheme is said E-correct for some function

E if, for any �-encryption ACC of v, computing c ← msbExtract(ACC) ensures
c ∈ LWEt/q

s (v, E(�)) with overwelming probability.

In order to use the accumulator in our refreshing function, we set t = 4
and we will need E(�) ≤ q/16. Note that the correctness requirement assumes
that all ciphertexts added to the accumulator are freshly generated and indepen-
dent. (In particular, although the internal encryption scheme E may enjoy useful
homomorphic properties, the ciphertexts E(vi) are generated by a direct appli-
cation of the encryption function E on vi, rather than performing homomorphic
operations on ciphertexts.)

Using this accumulator data structure, we describe a family of refresh-
ing procedures (exhibiting different space/time trade-offs) parametrized by an
integer Br. (The subscript in Br stands for Refresh, and it is used to dis-
tinguish Br from similar basis parameters used elsewhere in the paper.) The
refreshing procedure takes as input a ciphertext (a, b) ∈ LWE2/q

s (m, q/4) and
a refreshing key K consisting of the encryptions Ki,c,j = E(csiB

j
r mod q) for

c ∈ {0, . . . , Br − 1}, j = 0, . . . , dr − 1 (where dr = �logBr
q�) and i = 1, . . . , n. (In

total, nBrdr ≈ n(Br/ log Br) log q ciphertexts). It then proceeds as described in
Algorithm 1.

Algorithm 1. RefreshK(a, b), for K = {Ki,c,j}i≤n,c≤Br,j≤dr

ACC ← b + (q/4)
for i = 1, . . . , n do

Compute the base-Br representation of −ai =
∑

j Bj
r · ai,j (mod q)

for j = 0, . . . , dr − 1 do ACC
+← Ki,ai,j ,j

end for
Output msbExtract(ACC).
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Theorem 8. If (E, Init, Incr,msbExtract) is a correct Homomorphic Accumulator
Scheme, then the Refresh procedure, on input any ciphertext c ∈ LWE2/q

s (m, q/4),
and a valid refreshing key K = {Ki,c,j = E(csiB

j
r )}i,c,j, outputs a ciphertext

RefreshK(c) ∈ LWEt/q
s (m, E(nd)).

Proof. The refreshing procedure initializes the accumulator to b+ q/4, and then
adds nd (distinct, freshly generated) ciphertexts Ki,ai,j ,j = E(ai,jsiB

j
r ) to it.

So, the final output is (with overwhelming probability) an LWE encryption with
error at most E(nd). The implicit value v of the accumulator at the end of the
main loop is

v − q

4
= b +

∑

i,j

ai,jsiB
j
r = b +

∑

i

si

∑

j

Bj
r ai,j = b + −

∑

i

aisi =
q

2
m + e

where e is the error of the input ciphertext (a, b). Since |e| < q/4 by assumption,
we have 0 < e+q/4 < q/2. If follows that 0 < v < q/2 if m = 0, and q/2 < v < q

if m = 1. Therefore, msbExtract(ACC) produces a LWEq/t
s (m, E(nd)) encryption

as claimed.

5 Homomorphic Accumulator from Ring-GSW

In this section we show how to implement the homomorphic accumulator scheme
needed by our refreshing procedure. As a reminder, the homomorphic accumu-
lator is parametrized by a modulus q = 2k (which we assume to be a power of
2), an integer t (in our main application, t = 4), and an encryption scheme E
with message space Zq.

Our construction follows the suggestion of Alperin-Sheriff and Peikert [2]
to generalize their scheme. Essentially, we avoid the costly construction of the
additive group Zq as a subgroup of some symmetric group S� (represented as
permutation matrices). Instead, we directly implement Zq as the multiplicative
(sub)group of the roots of unity of the ring R.

5.1 Description

The scheme is parametrized by a modulus Q, a dimension N = 2K such that
q divides 2N , and a base Bg. (Here the subscript in Bg stands for gadget.) For
simplicity of the analysis, we will assume that Q = B

dg
g for some integer dg, and

that Bg is a power of 3. We use the rings R = Z[X]/(XN +1) and RQ = (R/QR)
(see Section 2), and an additional parameter u, which should be an invertible
element of ZQ close to Q/2t. Since Q is a power of 3, either Q/2t� or �Q/2t�
is invertible, and we can let u be one of these two numbers, so that the distance
δ = u − Q/2t is at most |δ| < 1.

Messages m ∈ Zq are encoded as roots of unity Y m ∈ R where Y = X2N/q.
Notice that the roots of unity G = 〈X〉 = {1, X . . . ,XN−1,−1,−X . . . ,−XN−1}
form a cyclic group, and the message space Zq � 〈Y 〉 is a subgroup of G �
Z2N . Our Homomorphic Accumulator Scheme is based on a variant of the GSW
cryptosystem and works as follows:
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− Ez(m), on input a message m and a key z ∈ R, picks a ∈ R2dg

Q uniformly
at random, and e ∈ R2dg � Z

2dgN with a subgaussian distribution χ of
parameter ς, and outputs

Ez(m) = [a,a · z + e] + uY mG ∈ R2dg×2
Q

where G = (I, BgI, . . . , B
dg−1
g I) ∈ R2dg×2

Q .
− Init (ACC ← v), on input v ∈ Zq, simply sets ACC := uY v · G ∈ R2dg×2

Q .

− Incr (ACC +← C), on input the current accumulator content ACC ∈ R2dg×2
Q

and a ciphertext C ∈ R2dg×2
Q , first computes the base-Bg decomposition of

u−1ACC =
∑dg

i=1 Bi−1
g Di (where each Di ∈ R2dg×2 has entries with coeffi-

cients in { 1−Bg

2 , . . . ,
Bg−1

2 }), and then updates the accumulator to

ACC := [D1, . . . ,Ddg ] · C.

An efficient algorithm for Incr using FFT/NTT will be detailed in Section 5.3.
− msbExtract (defined by Algorithm 2) uses a key-switching auxiliary input K

(as defined in Section 2) and a testing vector t = −∑q/2−1
i=0

−→
Y i. (On a first

reading, the reader may want to focus on the special case where q = 2N ,
where the testing vector is just t = −(1, 1, . . . , 1).) The algorithm follows.
The crux of matter for the extraction of the msb is that t · −→

Y v = −1 if
0 ≤ i < N , and +1 if N ≤ i < 2N .

Before providing a detailed analysis (Theorem 10) we explain the ideas behind
the definitions of our homomorphic accumulator. As already mentioned, the
scheme is based on a variant of the (private-key, ring-based) GSW encryption
scheme. There are two main differences between our scheme and the original
GSW scheme: the use of the extra parameter u (which plays an important role
in our msb extraction algorithm), and the fact that the messages are encrypted in
the exponent (of Y ). At any point in time, the accumulator data structure holds
the encryption Ez(v) of some value v ∈ Zq under a fixed key z. The initialization
step Init simply sets ACC to a trivial (noiseless) encryption of v. The increment
procedure is similar to the multiplicative homomorphism of the GSW scheme [22].
Since our messages are in the exponent, this provides homomorphic additions of
ciphertexts.

Algorithm 2. msbExtractK(ACC), for K = {ki,j,w}i≤N,j≤Bks,w≤dks

Require: A switching key K = {ki,j,w}i,j,w from z to s: ki,j,w ← LWE
q/q
s (w · zi · dj

ks).
An accumulator ACC that is an �-encryption of v.

1: [at,bt] ← ([
−→
0 t, tt,

−→
0 t, . . . ,

−→
0 t] ·

⇒
ACC) ∈ Z

2N
Q //

⇒
ACC ∈ Z

2Ndg×2N

2: c ← (a, b0 + u) ∈ LWE
t/Q
−→z (msb(v))

3: c′ ← KeySwitch(c,K) ∈ LWE
t/Q
s (msb(v))

4: c′′ ← ModSwitch(c′) ∈ LWE
t/q
s (msb(v))

5: Return c′.
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5.2 Correctness

In this subsection we prove that ACC is a correct Homomorphic Accumulator
Scheme for an appropriate error function E . The main result is given in Theo-
rem 10. But first, let us detail the behaviour of individual operations.

The Init operation ACC ← v sets up ACC to a noiseless encryption of v under
Ez for any secret key z. The homomorphic property of Incr follows from the
following claim.

Fact 9. For any messages m,m′ ∈ Zq, if ACC = [a,a · z + e] + uY mG and C =
[a′,a′ ·z+e′]+uY m′

G, then ACC
+← C has the form [a′′,a′′ ·z+e′′]+uY m+m′

G
for e′′ = e + [C1, . . . ,Cdg ] · e′.

The last operation msbExtract is slightly more intricate. Let us put aside the key
and modulus switching steps, and consider, as in the algorithmic definition of
msbExtract, the vector

[
at, b0

] ← tt ·
[⇒
a ,

−→
b′

]

where [a, b′] ∈ R1×2 is the second row of the accumulator ACC ∈ R2dg×2. If ACC
is a GSW encryption of a value v, [a, b′] verifies

−→
b′ =

⇒
a ·−→z +u ·−−→Y v +e for some

small error e. Let’s write
−−→
Y v as the vector xv·2N/q ∈ Z

N
Q defined as follows:

xi =
−−→
Xi = ( 0 , . . . , 0

︸ ︷︷ ︸
i−1

, 1, 0 . . . , 0) if i ∈ {0 . . . N − 1}, xi = −xi−N otherwise.

For i ∈ Z2N , summing all coordinates of xi results in (−1)msb(i), and tt · −−→
Y v =

−(−1)msb(v) for any v ∈ Zq. It remains to recall the identity 1 − (−1)x = 2x for
any bit x ∈ {0, 1} to rewrite

c = (a, b0 + u) = (a,a ·−→z + t · e + 2u msb(v)) where a = tt · ⇒
a ,

which is an LWE
t/Q−→z encryption of msb(v) since u ≈ Q/2t. We may now move to

the formal correctness statement, including bound on error size.

Theorem 10. Assuming the hardness Ring-LWER,Q,χ the above Homomorphic
Accumulator Scheme is E-correct with error function

E(�) =

√
q2

Q2

(
ς2B2

g · � · q · Ndg + σ2Ndks

)
+ ‖s‖2 · ω(

√
log n).

We obtain Theorem 10 by combining the following Lemma 11 with the cor-
rectness of Key Switching and Modulus Switching, Lemmata 6 and 5. The hard-
ness assumption is not strictly necessary for correctness, but does simplify the
proof by allowing one to assume that fresh ciphertexts C ← Ez(·) behave as
independent uniform random matrices.
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Lemma 11 (Intermediate error). Assume the hardness of Ring-LWER,Q,χ,
and let ACC is an �-encryption of v where � ≥ ω(

√
log N). Then the cipher-

text c ∈ LWEt/Q
z (msb(v)) as define in line 2 of algorithm 2 while comput-

ing msbExtract(ACC) has an error err(c) which is a subgaussian with variable
parameter β and mean 2δ under the randomness used in the calls to Ez(·), for
β = O(ςB

√
q · Ndg · �).

Let us start with the following fact.

Fact 12 (Spectral Norm of Decomposed Matrices). Let C(i) ← Ez(v(i))
be fresh encryptions of v(i) ∈ Zq for all i ≤ � = ω(

√
log n), and assume that the

C(i)’s are indistinguishable from random without the knowledge of z. Consider
ACC(�) as the value of ACC after the sequence of operations:

ACC ← v(0); for i = 1 . . . � do ACC
+← C(i).

Set D(i) = [D1 . . .Ddg ] to be the decomposition of u−1ACC(i) =
∑dg

j=1 Bj−1
g Dj.

Then, with overwhelming probability we have

s1

([
D(0),D(1) . . . ,D(�−1)

])
= O(Bg

√
Ndg · �).

Proof. Because the spectral norm s1([D(0),D(1) . . . ,D(�−1)]) is efficiently com-
putable from the C(i)’s, we can assume without loss of generality that the C(i)’s
are truly uniformly random. We prove by induction on � that

1. for 1 ≤ i ≤ �, the D(i)’s follow independents uniform distributions
in R2dg×2dg

[Bg]
where R[Bg] is the set of polynomials with coefficients in

{ 1−Bg

2 . . .
Bg−1

2 }.
2. for 0 ≤ i ≤ �, D(i) is invertible with overwhelming probability.

The implication 1. ⇒ 2. follows from Lemma 4. Indeed the uniform distribu-
tion over R[Bg] is still a uniform distribution when taken mod3 since 3 divides
Bg. Note that D(0) = Y v0 · I2D is invertible.

We may now start the induction and assume that D(�−1) is invertible. It
follows that ACC(�) = D(�−1) · C(�) is uniformly random in R2dg×D

Q and inde-
pendent of all D(i) for i < �. We conclude the induction using the fact that the
decomposition step is a bijective map R2dg×2

Q → R2dg×2dg

[Bg]
.

The coefficients of D = [D(1) . . . ,D(�−1)] ∈ R2dg×2dg� are independents sub-
gaussian variables with parameter O(Bg). It follows by lemma 1 that

s1(
[
D(0),D(1) . . . ,D(�−1)

]
) ≤ O(Bg

√
Ndg · �).

Proof (of Lemma 11). Applying � times Fact 9, we can show that ACC(�) has
the form

ACC(�) = [A,A · z + e] + uXvG with e =
�∑

i=1

D(i−1)e(i)
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where e(i) is the error used in the encryption C(i) ← Ez(v(i)). The final error in
c is e = [

−→
0 t, tt,

−→
0 t, . . . ,

−→
0 t] · −→e . We rewrite

e =
[−→

0 t, tt,
−→
0 t, . . . ,

−→
0 t

]
·

⇒[
D(0), . . . ,D(�−1)

]
·
−−−−−−−−−−−→(
e(1), . . . , e(�)

)
.

Recall that ‖t‖ =
√

q/2, and by Fact 12, we have that
⇒

[D(0), . . . ,D(�−1)]

has spectral norm O(Bg

√
Ndg · �). We can rewrite e = v ·

−−−−−−−−−−−→
(e(1), . . . , e(�))

where ‖v‖ = O(Bg

√
q · Ndg · �) and

−−−−−−−−−−−→
(e(1), . . . , e(�)) is a subgaussian vector

of parameter ς. We conclude that the final error is subgaussian of parameter
β = O(ςBg

√
qNdg · �).

5.3 Efficient Accumulator Increment

To efficiently implement the accumulator increment Incr, one needs to keep the
accumulator ACC, as well as the precomputed ciphertexts from the bootstrapping
key, in FFT/NTT format.

Algorithm 3. Incr(ÂCC ∈ R̂2dg×2, Ĉ ∈ R̂2dg×2)

Compute ACC ← FFT−1(ÂCC)

Decompose u−1ACC =
∑dg

i=1 Bi−1
g Di, and set D = [D1 . . .Ddg ] ∈ R2dg×2dg

Compute D̂ ← FFT(D)

Return D̂ � Ĉ

Each increment requires 4dg backward FFT’s and 4d2g forward FFT’s. If
one uses the Number Theoretic Transform rather than the complex FFT, 4dg
forward transforms can be traded for a few additions mod Q by computing D̂1 =
u−1ÂCC − ∑dg

i=2 Bi−1
g · D̂i mod Q.

5.4 Asymptotic Parameters and Efficiency

Secret Keys and Errors. We choose the secret key s of the LWE scheme to be
binary in order to minimize the final error parameter E(nd) that depends on
‖s‖ (Theorem 10). The hardness of LWE for such a distribution of secrets was
established in [7]. The randomized rounding used for errors in the switching key
ki,j,v ← LWEq/q

s (v · zi · dj
ks), is χσ(x) = DZ,x,σ, the discrete gaussian of standard

deviation σ centered in x.
The secret z ∈ R of the Ring-GSW scheme follows the discrete gaussian dis-

tribution χς(0), and the errors follow the gaussian randomized rounding function
χς .
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Parameters. For simplicity, we take the base Bg, Br, Bks = Θ(1) to be fixed,
which sets dg, dr, dks = O(log n) provided that q,Q = poly(n). Error parameters
are set to σ, ς = ω(

√
log n). For the dimension of the Ring-GSW scheme, we take

2N = q = Θ(n). It remains to set Q = n2 · log n · ω(log n), and we obtain a
refreshing error E(nd) = O(n) ≤ q/16.

Efficiency and Comparison. The running time of the Refresh operation is domi-
nated by dn homomorphic operations. For comparison, the scheme of [2] requires
dn · O(log3 q/ log log q) homomorphic operations.

In practice this polylogarithmic is far from negligible, e.g. q = 2 ·3 ·5 ·7 ·11 =
2310 gives a factor 22 +32 +52 +72 +112 = 208. Memory usage is also decreased
by a factor O(log2 q/ log log q), that is a factor 28 in our previous example.

Also, we do not rely on randomized decomposition for the increment opera-
tion ACC

+← C. While this randomization is asymptotically less expensive than
the FFT step by a factor log N , avoiding it makes the implementation simpler
and potentially faster considering the cost of randomness in practice.

Finally, our Refresh procedure (before key and modulus switching) produces
a ciphertext with subgaussian error of parameter α = O(n2 log n) in our scheme
against α = Θ(n5/2 log3 n/log log n) in [2].

LWE
4/q
s (m1, q/16)

LWE
4/q
s (m2, q/16)

NAND LWE
2/q
s (m, q/4)

LWE
4/Q
−→z (m, E1(ndr))

ACC operations

LWE
4/Q
s (m, E2(ndr))

KeySwitch

LWE
4/q
s (m, E(ndr))

ModSwitch

Fig. 1. Cycle for a simple NAND gate, using the Homomorphic property of Section 3

6 Parameters, Implementation and Benchmark

We start by presenting the methodology to evaluate the security of our scheme
in Section 6.1, propose parameters in Section 6.2, discuss FFT implementation
details in Section 6.3 and conclude with the benchmarks in Section 6.4.

6.1 Security Estimation

The security estimate methodology follows the analysis of [27]. To build an ε-
distinguisher against LWE in dimension n, modulus q and a randomized rounding
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function χ of standard deviation σ, Lindner and Peikert estimate that the best
known attack by lattice reduction requires to achieve a root Hermite factor of

δ = δ-LWE(n, q, σ, ε) = 2(log
2
2 ρ)/(4n log2 q) where ρ = (q/σ) ·

√
2 ln(1/ε) (5)

To estimate the security of binLWEn,q,σ, going through the security reduction
of [7] would be a very pessimistic approach. Still, binLWEn,q,σ doesn’t enjoy as
much concrete security as LWEn,q,σ. Indeed, binary secrets allow an attacker to
switch to a smaller modulus q′ without affecting the relative error 1/ρ much
(which is actually the property we exploit for the correctness of our scheme).
Indeed, switching from modulus q to q′, one obtains essentially binLWE samples
with errors parameter σ′ =

√
(q′/q)2σ2 + ‖s‖/12 ≈ σq′/q, following Lemma 5.

For comparison, such modulus switch on usual LWE produces errors of parameter
σ′ =

√
(q′/q)2σ2 + σ2O(n) ≈ σ

√
n.

In light of this attack, we compute the root Hermite factor for binLWE as
follows:

δ-binLWE(n, q, σ, ε) = min
q′≤q

δ-LWE(n, q′, σ′ =
√

(q′/q)2σ2 + n/24, ε). (6)

Such minimum will be computed using standard numerical analysis tools for
the security estimation of our set of parameters below.

6.2 Proposed Parameters

Relaxed Constraints on Bg and Q. In practice we will ignore the constraints
of the correctness statement (Theorem 10) that Bg is a power of 3 and Q is a
power of Bg. Those constraints are artifact of our proofs, we will only require that
B

dg
g ≥ Q. We have verified that in practice this relaxation does not signficantly

affects the distribution of err(Refresh(c)).

Accumulated Errors. According to the central limit heuristic, the final error
err(Refresh(c)) of a refreshed ciphertext behaves as a Gaussian of standard devi-
ation:

β =

√
q2

Q2

(
ς2 · B2

r

12
· ndr · q

2
· 2Nd′ + σ2Ndks

)
+

‖s‖2 + 1
12

.

The factors 1
12 follows from the fact that a uniform random variable in [-12 , 1

2 ]
has variance 1

12 .
The factor 2d′ (instead of 2dg) takes account that the final coordinate of a

decomposition of an element modQ over base Bg is bounded by Q/2B
dg
g rather

than Bg/2. Therefore we set d′ = Bg − 1 + Q/B
dg
g (in the following parameters

we have d′ = 2.5 instead of dg = 3).
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Additionally, we assume that ‖s‖ ≤ n/2, which is true for half of the random
secrets s ∈ {0, 1}n. If not, one may simply discard this s during key genera-
tion and resample a fresh secret key. To thwart an attack that would shift all
coordinates of s by −1/2, we also randomize the signs of each entry of s, which
intuitively, can only increase the security (and does not affect the error analysis).

We evaluate the error probability as the probability that two independently
refreshed ciphertexts c1, c2 verify |err(c1)+err(c2)| < q/8, which is sufficient but
looser than |err(ci)| < q/16.

Parameters.
LWE parameters: n = 500 Q = 232, σ = 217, q = 29.
Ring-GSW parameters: N = 210, ς = 1.4.
Gadget Matrix: Bg = 211, dg = 3, u = Q

8 + 1.
Bootstrapping Key parameters: Br = 23, dr = 2.
Key Switching Key parameters: Bks = 24, dks = 7.

Efficiency.
Bootstrapping Key Size: 4nNdrBrdg log2 Q bits = 1032 MBytes.
Key Switching Key Size: nNBksdks log2 Q bits = 314 MBytes.
FFTs per NAND gate: 4ndrdg(dg + 1) = 48, 000 FFTs.

Correctness.
Final error parameter: β = 6.94.
Pr. of error per NAND: p = 1 − erf(r/

√
2) ≤ 2−31 where r = q/8√

2β
.

The error probability can be brought down to 2−45 by applying the HomNAND
operation before KeySwitch and ModSwitch.

Security.
Security of the LWE scheme δ-binLWE(n,Q, σ, 2−64) = 1.0064.
Security of the Ring-GSW scheme δ-LWE(N,Q, ς, 2−64) = 1.0064.

The security of the Ring-GSW scheme is evaluated ignoring the ring structure,
since there are yet no known algorithms that exploit such structure.

According to the predictions of [10], the BKZ algorithm requires a block size
greater than 190 to reach a root hermite factor of 1.0065. For such block size,
each of the many calls to the enumeration routine would visit more than 2100

nodes of the pruned enumeration tree. This is to be considered as a preliminary
security analysis, demonstrating the feasibility of our construction. For a more
precise security analysis, one should include the more involved results of Liu and
Nguyen [28], and any new advances on lattice cryptanalysis.

6.3 FFT Implementation

To avoid implementation technicalities related to working in a prime field FQ

and potentially expensive reduction modQ, we choose to rely on the complex
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FFT rather than the Number Theoretic Transform, that is, we use the complex
primitive 2N -th root of unity ω = exp(2πı/2N) rather than a primitive root in
FQ. This allows us to rely on a flexible and optimized library for FFT, namely,
the Fastest Fourier Transform in the West [13] and choose Q as a power of two,
essentially offering reductions modQ for free.

Technically, one wishes to compute the so-called negacyclic-FFT of rank N ,
which can be extracted from the FFT in rank 2N by only keeping the odd
indexes of the result. Nevertheless, a factor 2 is saved considering that we are
computing FFT on real-data.

Due to vectorized instructions, this implementation of FFT at double-
precision reaches up to 6 Gflops on a single 64-bits Intel Core running at 3
Ghz. We measure a running time of 10 microseconds per FFT at dimension
2N = 2048; which fits the predictions2. While it is unclear if either the choice of
FFT over NTT is optimal, or if this particular implementation is, this prototype
is enough to support our claim.

Precision Issues. One crucial question when using complex FFT is the precision
requirement. In our case (see Section 5.3), FFT is used to multiply two integer
polynomials with coefficients in ZQ, yet one of them is guaranteed to have coef-
ficients smaller than Bg/2. Without reduction modQ, the resulting product is
expected to have coefficients of size S = BgQ

√
N/4. The final result is guaran-

teed to be correct if the final relative error ε verifies Sε ≤ 1/2. For our set of
parameters, we have S = 246.

Asymptotically, the relative error growth during FFT is known to be
O(log N) in the worst case and O(

√
log N) on average [14,33]. In practice, at

double precision (ε0 = 2−54 relative error for each operation) FFTW [13] in
rank 2N = 2048 is reported3 to produce errors of standard deviation ε = 2−52

(which match ≈ ε0 · √
log N). It seems barely sufficient to ensure perfect cor-

rectness of each computation of a products of polynomials. Yet, if small errors
are introduced by floating-point approximations, this doesn’t necessary breaks
the correctness of the scheme. Indeed, this errors can simply be considered as a
small extra error term introduced at each operation on the accumulator.

A formal claim would require a more detailed study. The fact that our imple-
mentation works in practice, and that the measurements of errors fit our predic-
tion is sufficient for our purpose.

6.4 Benchmark and Source Code

Our implementation performs a HomNAND and a Refresh operation every 0.69
seconds on a single 64-bits Intel core at 3GHz, which conforms to our prediction
of 0.5 seconds from the count of FFT operations (the key switching step is having
non negligible cost because it hasn’t been vectorized yet). It consumes 2.2Gbytes
of memory, which is approximately twice the prediction. This is explained by the
2 http://www.fftw.org/speed/
3 http://www.fftw.org/accuracy/

http://www.fftw.org/speed/
http://www.fftw.org/accuracy/
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fact that for efficiency, the Bootstrapping Key is stored in FFT form, at double
precision.

We can expect those performance figures to be improved by further imple-
mentation efforts. Yet, our prototype implementation already performs within
one order of magnitude of the amortized cost of bootstrapping in HElib [23]. A
more precise comparison is hard to state considering our scheme has a different
security parameters, and does not offers the same set of gates. Sophisticated
benchmarking would not be very useful until this new scheme is optimized and
generalized to reach its full potential.

The source code is reasonably concise and simple, consisting of about 600
lines of C++ code, excluding the library FFTW. It is available on github [11].

7 Extensions, Conclusions and Future Work

We have shown that a complete bootstrappable homomorphic computation can
be performed in a fraction of a second, much faster than any previous solution.
We achieved the result by addressing the simplest form of bootstrappable com-
putation (the computation of a single binary gate that is complete for boolean
circuits), and introducing new techniques for this homomorphic computation.
We remark that the techniques presented in the paper are not limited to NAND
gates. For example, it is immediate to extend our solution to compute a major-
ity gate that on input 3 bits x1, x2, x3 ∈ {0, 1}, outputs 1 if at least two of the
inputs are 1, and 0 if at least two of the inputs are zero. To see this, recall that
our solution to the NAND problem resorted to viewing bits are integers modulo
t = 4, and then encoding the NAND operation in terms of addition. Still using
arithmetic modulo 4, one can compute the majority of x1, x2, x3 by taking the
sum y = x1 + x2 + x3 ∈ {0, 1, 2, 3}, and checking if the result is at least 2.
The final test is easily performed by applying our most significant bit extraction
procedure to the shifted sum y − 0.5. As we are adding three input ciphertexts,
this may require slighly smaller noise, but the computation is almost identical
to the NAND gate described in this paper.

This can be further generalized to (weigthed) threshold gates
∑

i wixi > h,
where the number of inputs, weigths wi and the threshold h are arbitrary, by
using arithmetic modulo a larger t > 2

∑ |wi|.
Further generalizations are possible by replacing our msbExtract procedure

with a more complex test that checks membership for many subsets of Zt. Pre-
cisely, membership test may be extended to any anti-symmetric set S ⊂ Zt

(x ∈ S ⇔ x+ t
2 �∈ S). For example, with t = 6 arbitrary large xor’s x1 ⊕ . . . ⊕xk

can be performed in just one Refresh operation using the membership test
x1 + . . . + xk mod 6 ∈ {1, 3, 5}. With this generalization, our technique also
offers xor-for-almost-free, as in previous FHE schemes.

Additionally, taking weighted linear combinations of k input bits
∑

i 2ixi,
and checking membership in subsets of Z2k+2 , one can (at least in principle)
implement arbitrary boolean gates (adders, S-boxes, etc.), but the complexity
grows exponentially in the number of inputs k.
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We also remark that since the membership test is much less expensive than
the rest of the Refresh procedure, one may test several function of the same input
for almost free. In other words, gates with several outputs would not be much
more expensive than gates with only one output. For t = 6, this already allows
to perform an add-with-carry gate (3 inputs, 2 outputs) in a single shot (instead
of 5 using binary gates).

Fully exploring the use of our techniques to realize more complex gates is
left to future work. Other interesting open problems are finding ways to fully
exploit the message space offered by ring LWE encryption in our accumulator
implementation, and combining our framework with the CRT techniques of [2].

Acknowledgments. The authors wish to thank Igors Stepanovs for interesting con-
versations about circular security that lead us to the new homomorphic NAND proce-
dure, as well as the anonymous EUROCRYPT’15 reviewers for their careful reading of
the paper and their diligent comments.
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Abstract. Gentry’s bootstrapping technique is still the only known
method of obtaining fully homomorphic encryption where the system’s
parameters do not depend on the complexity of the evaluated func-
tions. Bootstrapping involves a recryption procedure where the scheme’s
decryption algorithm is evaluated homomorphically. So far, there have
been precious few implementations of recryption, and fewer still that can
handle “packed ciphertexts” that encrypt vectors of elements.

In the current work, we report on an implementation of recryp-
tion of fully-packed ciphertexts using the HElib library for somewhat-
homomorphic encryption. This implementation required extending the
recryption algorithms from the literature, as well as many aspects of
the HElib library. Our implementation supports bootstrapping of packed
ciphertexts over many extension fields/rings. One example that we tested
involves ciphertexts that encrypt vectors of 1024 elements from GF(216).
In that setting, the recryption procedure takes under 5.5 minutes (at
security-level ≈ 76) on a single core, and allows a depth-9 computation
before the next recryption is needed.

1 Introduction

Homomorphic Encryption (HE) [11,26] enables computation of arbitrary func-
tions on encrypted data without knowing the secret key. All current HE schemes
follow Gentry’s outline from [11], where fresh ciphertexts are “noisy” to ensure
security and this noise grows with every operation until it overwhelms the signal
and causes decryption errors. This yields a “somewhat homomorphic” scheme
(SWHE) that can only evaluate low-depth circuits, which can then be converted
to a “fully homomorphic” scheme (FHE) using bootstrapping. Gentry described
a recryption operation, where the decryption procedure of the scheme is run
homomorphically, using an encryption of the secret key that can be found in the
public key, resulting in a new ciphertext that encrypts the same plaintext but
has smaller noise.

The last few years saw a large body of work improving many aspects of
homomorphic encryption in general (e.g., [3–5,7,14,17,21]) and recryption in
particular [1,2,10,16,24]. However, so far, only a few implementations of SWHE
have been reported, and even fewer support recryption. Prior to the current
work, we are aware of only three reported implementations of recryption: the
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 641–670, 2015.
DOI: 10.1007/978-3-662-46800-5 25
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implementation by Gentry and Halevi [12] of Gentry’s original cryptosystem [11],
the implementation of Coron, Lepoint, and Tibouchi [6–8] of van Dijk, Gentry,
Halevi and Vaikuntanathan’s (DGHV) scheme over the integers [9], and the
implementation by Rohloff and Cousins [27] of the NTRU-based cryptosystem
[20,21].

In this paper we report on our new implementation of recryption for the cryp-
tosystem of Brakerski, Gentry and Vaikuntanathan (BGV) [4]. We implemented
recryption on top of the open-source library HElib [18,19], which implements
the ring-LWE variant of BGV. Our implementation includes both new algorith-
mic designs as well as re-engineering of some aspects of HElib. As noted in [18],
the choice of homomorphic primitives in HElib was guided to a large extent by
the desire to support recryption, but nonetheless in the course of our imple-
mentation we had to extend the implementation of some of these primitives
(e.g., matrix-vector multiplication), and also implement a few new ones (e.g.,
polynomial evaluation).

The HElib library is “focused on effective use of the Smart-Vercauteren
ciphertext packing techniques [29] and the Gentry-Halevi-Smart optimizations
[14],” so in particular we implemented recryption for “fully-packed” ciphertexts.
Specifically, our implementation supports recryption of ciphertexts that encrypt
vectors of elements from extension fields (or rings). Importantly, our recryp-
tion procedure itself has rather low depth (usually 10-13 levels), so as to allow
significant processing between recryptions while keeping the lattice dimension
reasonable to maintain efficiency.

Our results are described in Section 6; some example settings include: encrypt-
ing vectors of 1024 elements from GF(216) with a security level of 76 bits, where
recryption takes 320 seconds and depth 12 (and allows additional computations
of depth 9 between recryptions); and encrypting vectors of 960 elements from
GF(224) with a security level of 123 bits, where recryption takes 7–8 minutes and
depth 13 (and allows additional computations of depth 10 between recryptions).1

Compared to the previous recrypt implementations, ours offers several advan-
tages in both flexibility and speed. While the Gentry-Halevi and Rohloff-Cousins
implementations only encrypt one bit per ciphertext, and the Coron-Lepoint-
Tibouchi implementation allows many bits to be packed into a ciphertext, our
implementation supports packed ciphertexts that encrypt vectors from the more
general extension fields (and rings) already supported by HElib. Some exam-
ples that we tested include vectors over the fields GF(216), GF(225), GF(224),
GF(236), GF(1740), and GF(12736), as well as degree-21 and degree-30 exten-
sions of the ring Z256.

In terms of speed, the Gentry-Halevi implementation reportedly took
1/2-hour on a single core to recrypt a single-bit ciphertext. The Rohloff-Cousins
implementation reported recryption time of 275 seconds on 20 cores for a single-
bit ciphertext with 64-bit security. The Coron-Lepoint-Tibouchi implementation
reports a recryption time of 172 seconds on 4 cores for a ciphertext with 513
1 We used the latter setting with our re-implementation of homomorphic AES, see the

long version of [15].
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one-bit slots at a security level of 72. For similar setting, we clocked a single-core
recryption time of 320 seconds for a ciphertext with 1024 slots of elements of
GF(216) at a security level of 76. We note that the same parallelism that was
used by Rohloff and Cousins could in principle be applied to our implementation
too, but doing so involves several software-engineering challenges, and we have
not yet attempted it.

Concurrent work. Concurrently with out work, Ducas and Micciancio described
a new bootstrapping procedure [10]. This procedure is applied to Regev-like
ciphertexts [25] that encrypt a single bit, using a secret key encrypted similarly
to the new cryptosystem of Gentry et al. [17]. They reported on an implemen-
tation of their scheme, where they can perform a NAND operation followed by
recryption in less than a second. Compared to our scheme, theirs has the advan-
tage of a much faster wall-clock time for recryption, but they do not support
batching or large plaintext spaces (hence our implementation has much better
amortized per-bit timing). It is a very interesting open problem to combine their
techniques with ours, achieving a “best of both worlds” implementation.

1.1 Algorithmic Aspects

Our recryption procedure follows the high-level structure introduced by Gentry
et al. [16], and uses the tensor decomposition of Alperin-Sheriff and Peikert
[1] for the linear transformations. However, those two works only dealt with
characteristic-2 plaintext spaces so we had to extend some of their algorithmic
components to deal with characteristics p > 2 (see Section 5)

Also, to get an efficient implementation, we had to make the decomposition
from [1] explicit, specialize it to cases that support very-small-depth circuits, and
align the different representations to reduce the required data-movement and
multiplication-by-constant operations. These aspects are described in Section 4.
One significant difference between our implementation and the procedure of
Alperin-Sheriff and Peikert [1] is that we do not use the ring-switching techniques
of Gentry et al. [13] (see discussion in Appendix B).

Organization. We describe our notations and give some background information
on the BGV cryptosystem and the HElib library in Section 2. In Section 3
we provide an overview of the high-level recryption procedure from [16] and
our variant of it. We then describe in detail our implementation of the linear
transformations in Section 4 and the non-linear parts in Section 5. In Section 5.4
we explain how all these parts are put together in our implementation, and in
Section 6 we discuss our performance results. We conclude with directions for
future work in Section 7. In Appendix A we describe our choice of parameters.

2 Notations and Background

For integer z, we denote by [z]q the reduction of z modulo q into the interval
[−q/2, q/2), except that for q = 2 we reduce to (−1, 1]. This notation extends
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to vectors and matrices coordinate-wise, and to elements of other algebraic
groups/rings/fields by reducing their coefficients in some convenient basis.

For an integer z (positive or negative) we consider the base-p representation
of z and denote its digits by z〈0〉p, z〈1〉p, · · · . When p is clear from the context
we omit the subscript and just write z〈0〉, z〈1〉, · · · . When p = 2 we consider
a 2’s-complement representation of signed integers (i.e., the top bit represent a
large negative number). For an odd p we consider balanced mod-p representation
where all the digits are in [−p−1

2 , p−1
2 ].

For indexes 0 ≤ i ≤ j we also denote by z〈j, . . . , i〉p the integer whose base-p
expansion is z〈j〉 · · · z〈i〉 (with z〈i〉 the least significant digit). Namely, for odd p

we have z〈j, . . . , i〉p =
∑j

k=i z〈k〉pk−i, and for p = 2 we have z〈j, . . . , i〉2 =
(
∑j−1

k=i z〈k〉2k−i) − z〈j〉2j−i. The properties of these representations that we use
in our procedures are the following:

– For any r ≥ 1 and any integer z we have z = z〈r − 1, . . . , 0〉 (mod pr).
– If the representation of z is dr−1, . . . , d0 then the representation of z · pr is

dr−1, . . . , d0, 0, · · · , 0 (with r zeros at the end).
– If p is odd and |z| < pe/2 then the digits in positions e and up in the

representation of z are all zero.
– If p = 2 and |z| < 2e−1, then the bits in positions e − 1 and up in the

representation of z, are either all zero if z ≥ 0 or all one if z < 0.

2.1 The BGV Cryptosystem

The BGV ring-LWE-based somewhat-homomorphic scheme [4] is defined over
a ring R

def= Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial.
For an arbitrary integer modulus N (not necessarily prime) we denote the ring
RN

def= R/NR. We often identify elements in R (or RN ) with their representation
is some convenient basis, e.g., their coefficient vectors as polynomials. When
dealing with RN , we assume that the coefficients are in [−N/2, N/2) (except for
R2 where the coefficients are in {0, 1}). We discuss these representations in some
more detail in Section 4.1. The norm of an element ‖a‖ is defined as its norm in
some convenient basis. 2

As implemented in HElib, the native plaintext space of the BGV cryptosys-
tem is Rpr for a prime power pr. The scheme is parametrized by a sequence
of decreasing moduli qL � qL−1 � · · · � q0, and an “ith level ciphertext”
in the scheme is a vector ct ∈ (Rqi)

2. Secret keys are elements s ∈ R with
“small” coefficients (chosen in {0,±1} in HElib), and we view s as the sec-
ond element of the 2-vector sk = (1, s) ∈ R2. A level-i ciphertext ct = (c0, c1)
encrypts a plaintext element m ∈ Rpr with respect to sk = (1, s) if we have
[〈sk, ct〉]qi = [c0 + s · c1]qi = m + pr · e (in R) for some “small” error term,
pr · ‖e‖ 	 qi.

2 The difference between the norm in the different bases is not very important for the
current work.
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The error term grows with homomorphic operations of the cryptosystem,
and switching from qi+1 to qi is used to decrease the error term roughly by
the ratio qi+1/qi. Once we have a level-0 ciphertext ct, we can no longer use
that technique to reduce the noise. To enable further computation, we need to
use Gentry’s bootstrapping technique [11], whereby we “recrypt” the ciphertext
ct, to obtain a new ciphertext ct∗ that encrypts the same element of Rpr with
respect to some level i > 0.

In HElib, each qi is a product of small (machine-word sized) primes. Elements
of the ring Rqi are typically represented in DoubleCRT format: as a vector a
polynomials modulo each small prime t, each of which itself is represented by
its evaluation at the primitive mth roots of unity in Zt. In DoubleCRT format,
elements of Rqi may be added and multiplied in linear time. Conversion between
DoubleCRT representation and the more natural coefficient representation may
be affected in quasi-linear time using the FFT.

2.2 Encoding Vectors in Plaintext Slots

As observed by Smart and Vercauteren [29], an element of the native plaintext
space α ∈ Rpr can be viewed as encoding a vector of “plaintext slots” containing
elements from some smaller ring extension of Zpr via Chinese remaindering. In
this way, a single arithmetic operation on α corresponds to the same operation
applied component-wise to all the slots.

Specifically, suppose the factorization of Φm(X) modulo pr is Φm(X) ≡
F1(X) · · · Fk(X) (mod pr), where each Fi has the same degree d, which is equal
to the order of p modulo m. (This factorization can be obtained by factoring
Φm(X) modulo p and then Hensel lifting.) From the CRT for polynomials, we
have the isomorphism

Rpr ∼=
k⊕

i=1

(Z[X]/(pr, Fi(X)).

Let us now define E
def= Z[X]/(pr, F1(X)), and let ζ be the residue class of

X in E, which is a principal mth root of unity, so that E = Z/(pr)[ζ]. The
rings Z[X]/(pr, Fi(X)) for i = 1, . . . , k are all isomorphic to E, and their direct
product is isomorphic to Rpr , so we get an isomorphism between Rpr and Ek.
HElib makes extensive use of this isomorphism, representing it explicitly as
follows. It maintains a set S ⊂ Z that forms a complete system of representatives
for the quotient group Z

∗
m/〈p〉, i.e., it contains exactly one element from every

residue class. Then we use a ring isomorphism

Rpr →
⊕

h∈S

E, α �→ {α(ζh)}h∈S . (1)

Here, if α is the residue class a(X) + (pr, Φm(X)) for some a(X) ∈ Z[X], then
α(ζh) = a(ζh) ∈ E, which is independent of the representative a(X).
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This representation allows HElib to effectively pack k
def= |S| = |Z∗

m/〈p〉| ele-
ments of E into different “slots” of a single plaintext. Addition and multiplication
of ciphertexts act on the slots of the corresponding plaintext in parallel.

2.3 Hypercube Structure and One-Dimensional Rotations

Beyond addition and multiplications, we can also manipulate elements in Rpr

using a set of automorphisms on Rpr of the form a(X) �→ a(Xj), or in more
detail

τj : Rpr → Rpr , a(X) + (pr, Φm(X)) �→ a(Xj) + (pr, Φm(X)) (j ∈ Z
∗
m).

We can homomorphically apply these automorphisms by applying them to the
ciphertext elements and then preforming “key switching” (see [4,14]). As dis-
cussed in [14], these automorphisms induce a hypercube structure on the plain-
text slots, where the hypercube structure depends on the structure of the group
Z

∗
m/〈p〉. Specifically, HElib keeps a hypercube basis g1, . . . , gn ∈ Zm with orders

�1, . . . , �n ∈ Z>0, and then defines the set S of representatives for Z∗
m/〈p〉 (which

is used for slot mapping Eqn. (1)) as

S
def= {ge1

1 · · · gen
n mod m : 0 ≤ ei < �i, i = 1, . . . , n}. (2)

This basis defines an n-dimensional hypercube structure on the plaintext slots,
where slots are indexed by tuples (e1, . . . , en) with 0 ≤ ei < �i. If we fix
e1, . . . , ei−1, ei+1, . . . , en, and let ei range over 0, . . . , �i−1, we get a set of �i slots,
indexed by (e1, . . . , en), which we refer to as a hypercolumn in dimension i (and
there are k/�i such hypercolumns). Using automorphisms, we can efficiently per-
form rotations in any dimension; a rotation by v in dimension i maps a slot in-
dexed by (e1, . . . , ei, . . . , en) to the slot indexed by (e1, . . . , ei+ v mod �i, . . . , en).
Below we denote this operation by ρv

i .
We can implement ρv

i by applying either one automorphism or two: if the
order of gi in Z

∗
m is �i, then we get by with just a single automorphism, ρv

i (α) =
τgv

i
(α). If the order of gi in Z

∗
m is different from �i then we need to implement this

rotation using two shifts: specifically, we use a constant “0-1 mask value” mask
that selects some slots and zeros-out the others, and use two automorphisms
with exponents e = gv

i mod m and e′ = gv−�i
i mod m, setting ρv

i (α) = τe(mask ·
α) + τe′((1 − mask) · α). In the first case (where one automorphism suffices) we
call i a “good dimension”, and otherwise we call i a “bad dimension”.

2.4 Frobenius and Linearized Polynomials

We define σ
def= τp, which is the Frobenius map on Rpr . It acts on each slot

independently as the Frobenius map σE on E, which sends ζ to ζp and leaves
elements of Zpr fixed. (When r = 1, σ is the same as the pth power map on E.)
For any Zpr -linear transformation on E, denoted M , there exist unique con-
stants θ0, . . . , θd−1 ∈ E such that M(η) =

∑d−1
f=0 θfσf

E(η) for all η ∈ E. When
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r = 1, this follows from the general theory of linearized polynomials (see, e.g.,
Theorem 10.4.4 on p. 237 of [28]), and these constants are readily computable
by solving a system of equations mod p; when r > 1, we may Hensel-lift these
mod-p solutions to a solution mod pr. In the special case where the image of
M is the sub-ring Zpr of E, the constants θf are obtained as θf = σf

E(θ0) for
f = 1, . . . , d − 1; again, this is standard field theory if r = 1, and is easily
established for r > 1 as well.

Using linearized polynomials, we may effectively apply a fixed linear map to
each slot of a plaintext element α ∈ Rpr (either the same or different maps in each
slot) by computing

∑d−1
f=0 κfσf (α), where the κf ’s are Rpr -constants obtained

by embedding appropriate E-constants in the slots. Applying such linear Zpr -
linear transformation(s) homomorphically on an encryption of α takes d − 1
automorphisms and d constant-ciphertext multiplications, and can be done in
depth of one constant-ciphertext multiplication (since automorphisms consume
almost no depth).

3 Overview of the Recryption Procedure

Recall that the recryption procedure is given a BGV ciphertext ct = (c0, c1),
defined relative to secret-key sk = (1, s), modulus q, and plaintext space pr,
namely, we have [〈sk, ct〉]q ≡ m (mod pr) with m being the plaintext. Also we
have the guarantee that the noise is ct is still rather small, say ‖[〈sk, ct〉]q‖ <
q/100.

The goal of the recryption procedure is to produce another ciphertext ct∗

that encrypts the same plaintext element m relative to the same secret key, but
relative to a much larger modulus Q � q and with a much smaller relative noise.
That is, we still want to get [〈sk, ct∗〉]Q = m (mod pr), but with ‖[〈sk, ct∗〉]Q‖ 	
Q. 3 Our implementation uses roughly the same high-level structure for the
recryption procedure as in [1,16], below we briefly recall the structure from [16]
and then describe our variant of it.

3.1 The GHS Recryption Procedure

The recryption procedure from [16] (for plaintext space p = 2) begins by using
modulus-switching to compute another ciphertext that encrypts the same plain-
text as ct, but relative to a specially chosen modulus q̃ = 2e + 1 (for some
integer e).

Denote the resulting ciphertext by ct′, the rest of the recryption proce-
dure consists of homomorphic implementation of the decryption formula m ←
[[〈sk, ct′〉]q̃]2, applied to an encryption of sk that can be found in the public key.
Note that in this formula we know ct′ = (c′0, c

′
1) explicitly, and it is sk that we

3 The relative noise after recryption is a design parameter. In our implementation we
tried to get the noise below Q/2250, to allow significant additional processing before
another recryption is needed.
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process homomorphically. It was shown in [16] that for the special modulus q̃, the
decryption procedure can be evaluated (roughly) by computing u ← [〈sk, ct′〉]2e+1

and then m ← u〈e〉 ⊕ u〈0〉. 4

To enable recryption, the public key is augmented with an encryption of the
secret key s, relative to a (much) larger modulus Q � q̃, and also relative to a
larger plaintext space 2e+1. Namely this is a ciphertext c̃t such that [〈sk, c̃t〉]Q = s
(mod 2e+1). Recalling that all the coefficients in ct′ = (c′0, c

′
1) are smaller than

q̃/2 < 2e+1/2, we consider c′0, c
′
1 as plaintext elements modulo 2e+1, and compute

homomorphically the inner-product u ← c′1 · s+ c′0 (mod 2e+1) by setting c̃t
′ ←

c′1 · c̃t + (c′0, 0). This means that c̃t
′ encrypts the desired u, and to complete the

recryption procedure we just need to extract and XOR the top and bottom bits
from all the coefficients in u, thus getting an encryption of (the coefficients of)
the plaintext m. This calculation is the most expensive part of recryption, and
it is done in three steps:

Linear transformation. First apply homomorphically a Z2e+1-linear transforma-
tion to c̃t

′, converting it into ciphertexts that have the coefficients of u in the
plaintext slots.

Bit extraction. Next apply a homomorphic (non-linear) bit-extraction procedure,
computing two ciphertexts that contain the top and bottom bits (respectively)
of the integers stored in the slots. A side-effect of the bit-extraction computation
is that the plaintext space is reduced from mod-2e+1 to mod-2, so adding the two
ciphertexts we get a ciphertext whose slots contain the coefficients of m relative
to a mod-2 plaintext space.

Inverse linear transformation. Finally apply homomorphically the inverse linear
transformation (this time over Z2), obtaining a ciphertext ct∗ that encrypts the
plaintext element m.

An optimization. The deepest part of recryption is bit-extraction, and its com-
plexity — both time and depth — increases with the most-significant extracted
bit (i.e., with e). The parameter e can be made somewhat smaller by choosing a
smaller q̃ = 2e + 1, but for various reasons q̃ cannot be too small, so Gentry et
al. described in [16] an optimization for reducing the top extracted bit without
reducing q̃.

After modulus-switching to the ciphertext ct, we can add multiples of q̃ to the
coefficients of c′0, c

′
1 to make them divisible by 2e′

for some moderate-size e′ < e.
Let ct′′ = (c′′0 , c′′1) be the resulting ciphertext, clearly [〈sk, ct′〉]q̃ = [〈sk, ct′′〉]q̃ so
ct′′ still encrypts the same plaintext m. Moreover, as long as the coefficients of ct′′

are sufficiently smaller than q̃2, we can still use the same simplified decryption
formula u′ ← [〈sk, ct′′〉]2e+1 and m ← u′〈e〉 ⊕ u′〈0〉.

However, since ct′′ is divisible by 2e′
then so is u′. For one thing this means

that u′〈0〉 = 0 so the decryption procedure can be simplified to m ← u′〈e〉.
4 This is a slight simplification, the actual formula for p = 2 is m ← u〈e〉 ⊕ u〈e − 1〉 ⊕
u〈0〉, see Lemma 2.
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But more importantly, we can divide ct′′ by 2e′
and compute instead u′′ ←

[〈sk, ct′′/2e′〉]2e−e′+1 and m ← u′〈e − e′〉. This means that the encryption of s in
the public key can be done relative to plaintext space 2e−e′

and we only need to
extract e − e′ bits rather than e.

In this work we observe that we can do even slightly better by adding to ct′

multiples of q̃ and also multiples of 2 (or more generally multiples of q̃ and p
when recrypting a ciphertext with mod-p plaintext space). This lets us get a
value of e′ which is one larger than what we can get by adding only multiples
of q̃, so we can extract one less digit. See details in Section 5.2.

3.2 Our Recryption Procedure

We optimize the GHS recryption procedure and extend it to handle plaintext
spaces modulo arbitrary prime powers pr rather than just p = 2, r = 1. The
high-level structure of the procedure remains roughly the same.

To reduce the complexity as much as we can, we use a special recryption key
s̃k = (1, s̃), which is chosen as sparse as possible (subject to security require-
ments). As we elaborate in Appendix A, the number of nonzero coefficients in s̃
plays an extremely important role in the complexity of recryption.5

To enable recryption of mod-pr ciphertexts, we include in the public key a
ciphertext c̃t that encrypts the secret key s̃ relative to a large modulus Q and
plaintext space mod-pe+r for some e > r. Then given a mod-pr ciphertext ct to
recrypt, we perform the following steps:

Modulus-switching. Convert ct into another ct′ relative to the special modulus
q̃ = pe +1. We prove in Lemma 2 that for the special modulus q̃, the decryption
procedure can be evaluated by computing u ← [〈sk, ct′〉]pe+r and then m ←
u〈r − 1, . . . , 0〉p − u〈e + r − 1, . . . , e〉p (mod pr).

Optimization. Add multiples of q̃ and multiples of pr to the coefficients of ct′,
making them divisible by pe′

for some r ≤ e′ < e without increasing them
too much and also without increasing the noise too much. This is described in
Section 5.2. The resulting ciphertext, which is divisible by pe′

, is denoted ct′′ =
(c′′0 , c′′1). It follows from the same reasoning as above that we can now com-
pute u′ ← [〈sk, ct′′/pe′〉]pe−e′+r and then m ← −u′〈e − e′ + r − 1, . . . , e − e′〉p

(mod pr).

Multiply by encrypted key. Evaluate homomorphically the inner product (divided
by pe′

), u′ ← (c′1 · s + c′0)/pe′
(mod pe−e′+r), by setting c̃t

′ ← (c′1/pe′
) · c̃t +

(c′0/pe′
, 0). The plaintext space of the resulting c̃t

′ is modulo pe−e′+r.
Note that since we only use plaintext space modulo pe−e′+r, then we might

as well use the same plaintext space also for c̃t, rather than encrypting it relative
to plaintext space modulo pe+r as described above.
5 In our implementation we use a Hamming-weight-56 key, which is slightly smaller

than the default Hamming-weight-64-keys that are used elsewhere in HElib.
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Linear transformation. Apply homomorphically a Zpe−e′+r -linear transforma-
tion to c̃t

′, converting it into ciphertexts that have the coefficients of u′ in the
plaintext slots. This linear transformation, which is the most intricate part of
the implementation, is described in Section 4. It uses a tensor decomposition
similar to [1] to reduce complexity, but pays much closer attention to details
such as the mult-by-constant depth and data movements.

Digit extraction. Apply a homomorphic (non-linear) digit-extraction procedure,
computing r ciphertexts that contain the digits e − e′ + r − 1 through e − e′ of
the integers in the slots, respectively, relative to plaintext space mod-pr. This
requires that we generalize the bit-extraction procedure from [16] to a digit-
extraction procedure for any prime power pr ≥ 2, this is done in Section 5.3.
Once we extracted all these digits, we can combine them to get an encryption
of the coefficients of m in the slots relative to plaintext space modulo pr.

Inverse linear transformation. Finally apply homomorphically the inverse linear
transformation, this time over Zpr , converting the ciphertext into an encryption
ct∗ of the plaintext element m itself. This too is described in Section 4.

4 The Linear Transformations

In this section we describe the linear transformations that we apply during the
recryption procedure to map the plaintext coefficients into the slots and back.
Central to our implementation is imposing a hypercube structure on the plain-
text space Rpr = Zpr [X]/(Φm(X)) with one dimension per factor of m, and
implementing the second (inverse) transformation as a sequence of multi-point
polynomial-evaluation operations, one for each dimension of the hypercube. We
begin with some additional background.

4.1 Algebraic Background

Let m denote the parameter defining the underlying cyclotomic ring in an
instance of the BGV cryptosystem with native plaintext space Rpr =
Zpr [X]/(Φm(X)). Throughout this section, we consider a particular factoriza-
tion m = m1 · · · mt, where the mi’s are pairwise co-prime positive integers. We
write CRT(h1, . . . , ht) for the unique solution h ∈ {0, . . . , m − 1} to the system
of congruences h ≡ hi (mod mi) (i = 1, . . . , t), where hi ∈ {0, . . . , mi − 1} for
all i = 1, . . . , t.

Lemma 1. Let p,m and the mi’s be as above, where p is a prime not dividing
any of the mi’s. Let d1 be the order of p modulo m1 and for i = 2, . . . , t let di be
the order of pd1···di−1 modulo mi. Then the order of p modulo m is d

def= d1 · · · dt.
Moreover, suppose that S1, . . . , St are sets of integers such that each Si ⊆

{0, . . . , mi − 1} forms a complete system of representatives for Z
∗
mi

/〈pd1···di−1〉.
Then the set S

def= CRT(S1, . . . , St) forms a complete system of representatives
for Z

∗
m/〈p〉.
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Proof. It suffices to prove the lemma for t = 2. The general case follows by
induction on t.

The fact that the order of p modulo m
def= m1m2 is d

def= d1d2 is clear by
definition. The cardinality of S1 is φ(m1)/d1 and of S2 is φ(m2)/d2, and so the
cardinality of S is φ(m1)φ(m2)/d1d2 = φ(m)/d = |Z∗

m/〈p〉|. So it suffices to
show that distinct elements of S belong to distinct cosets of 〈p〉 in Z

∗
m.

To this end, let a, b ∈ S, and assume that pfa ≡ b (mod m) for some nonneg-
ative integer f . We want to show that a = b. Now, since the congruence pfa ≡ b
holds modulo m, it holds modulo m1 as well, and by the defining property of S1

and the construction of S, we must have a ≡ b (mod m1). So we may cancel a
and b from both sides of the congruence pfa ≡ b (mod m1), obtaining pf ≡ 1
(mod m1), and from the defining property of d1, we must have d1 | f . Again,
since the congruence pfa ≡ b holds modulo m, it holds modulo m2 as well, and
since d1 | f , by the defining property of S2 and the construction of S, we must
have a ≡ b (mod m2). It follows that a ≡ b (mod m), and hence a = b.

The powerful basis. The linear transformations in our recryption procedure make
use of the same tensor decomposition that was used by Alperin-Sheriff and Peik-
ert in [1], which in turn relies on the “powerful basis” representation of the
plaintext space, due to Lyubashevsky et al. [22,23]. The “powerful basis” repre-
sentation is an isomorphism

Rpr = Z[X]/(pr, Φm(X)) ∼= R′
pr

def= Z[X1, . . . , Xt]/(pr, Φm1(X1), . . . , Φmt
(Xt)),

defined explicitly by the map PowToPoly : R′
pr → Rpr that sends (the residue

class of) Xi to (the residue class of) Xm/mi .
Recall that we view an element in the native plaintext space Rpr as encoding

a vector of plaintext slots from E, where E is an extension ring of Zpr that

contains a principal mth root of unity ζ. Below let us define ζi
def= ζm/mi for

i = 1, . . . , t. It follows from the definitions above that for h = CRT(h1, . . . , ht)
and α = PowToPoly(α′), we have α(ζh) = α′(ζh1

1 , . . . , ζht
t ).

Using Lemma 1, we can generalize the above to multi-point evaluation. Let
S1, . . . , St and S be sets as defined in the lemma. Then evaluating an element
α′ ∈ R′

pr at all points (ζh1
1 , . . . , ζht

t ), where (h1, . . . , ht) ranges over S1 ×· · ·×St,
is equivalent to evaluating the corresponding element in α ∈ Rpr at all points
ζh, where h ranges over S.

4.2 The Evaluation Map

With the background above, we can now describe our implementation of the
linear transformations. Recall that these transformations are needed to map the
coefficients of the plaintext into the slots and back. Importantly, it is the powerful
basis coefficients that we put in the slots during the first linear transformation,
and take from the slots in the second transformation.

Since the two linear transformations are inverses of each other (except modulo
different powers of p), then once we have an implementation of one we also get
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an implementation of the other. For didactic reasons we begin by describing in
detail the second transformation, and later we explain how to get from it also
the implementation of the first transformation.

The second transformation begins with a plaintext element β that contains
in its slots the powerful-basis coefficients of some other element α, and ends
with the element α itself. Important to our implementation is the view of this
transformation as multi-point evaluation of a polynomial. Namely, the second
transformation begins with an element β whose slots contain the coefficients of
the powerful basis α′ = PowToPoly(α), and ends with the element α that holds
in the slots the values α(ζh) = α′(ζh1

1 , . . . , ζht
t ), where the hi’s range over the

Si’s from Lemma 1 and correspondingly h range over S. Crucial to this view is
that the CRT set S from Lemma 1 is the same as the representative-set S from
Eqn. (2) that determines the plaintext slots.

Choosing the representatives. Our first order of business is therefore to match
up the sets S from Eqn. (2) and Lemma 1. To facilitate this (and also other
aspects of our implementation), we place some constraints on our choice of the
parameter m and its factorization. 6 Recall that we consider the factorization
m = m1 · · · mt, and denote by di the order of pd1···di−1 modulo mi.

I. In choosing m and the mi’s we restrict ourselves to the case where each
group Z

∗
mi

/〈pd1···di−1〉 is cyclic of order ki, and let its generator be denoted
by (the residue class of) g̃i ∈ {0, . . . , mi − 1}. Then for i = 1, . . . , t, we set
Si

def= {g̃e
i mod mi : 0 ≤ e < ki}.

We define gi
def= CRT(1, . . . , 1, g̃i, 1, . . . , 1) (with g̃i in the ith position), and

use the gi’s as our hypercube basis with the order of gi set to ki. In this
setting, the set S from Lemma 1 coincides with the set S in Eqn. (2); that
is, we have S =

{∏t
i=1g

ei
i mod m : 0 ≤ ei < ki

}
= CRT(S1, . . . , St).

II. We further restrict ourselves to only use factorizations m = m1 · · · mt for
which d1 = d. (That is, the order of p is the same in Z

∗
m1

as in Z
∗
m.) With

this assumption, we have d2 = · · · = dt = 1, and moreover k1 = φ(m1)/d
and ki = φ(mi) for i = 2, . . . , t.

Note that with the above assumptions, the first dimension could be either good
or bad, but the other dimensions 2, . . . , t are always good. This is because
pd1···di−1 ≡ 1 (mod m), so also pd1···di−1 ≡ 1 (mod mi), and therefore
Z

∗
mi

/〈pd1···di−1〉 = Z
∗
mi

, which means that the order of gi in Z
∗
m (which is the

same as the order of g̃i in Z
∗
mi

) equals ki.

Packing the coefficients. In designing the linear transformation, we have the
freedom to choose how we want the coefficients of α′ to be packed in the slots
of β. Let us denote these coefficients by cj1,...,jt where each index ji runs over

6 As we discuss in Section 6, there are still sufficiently many settings that satisfy these
requirements.
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{0, . . . , φ(mi) − 1}, and each cj1,...,jt is in Zpr . That is, we have

α′(X1, . . . , Xt) =
∑

j1,j2,...,jt

cj1,...,jtX
j1
1 Xj2

2 · · · Xjt
t =

∑

j2,...,jt

(∑

j1

cj1,...,jtX
j1
1

)
Xj2

2 · · · Xjt
t .

Recall that we can pack d coefficients into a slot, so for fixed j2, . . . , jt, we can
pack the φ(m1) coefficients of the polynomial

∑
j1

cj1,...,jtX
j1
1 into k1 = φ(m1)/d

slots. In our implementation we pack these coefficients into the slots indexed
by (e1, j2, . . . , jt), for e1 = 0, . . . , k1 − 1. That is, we pack them into a single
hypercolumn in dimension 1.

The Eval Transformation. The second (inverse) linear transformation of the
recryption procedure beings with the element β whose slots pack the coefficients
cj1,...,jt as above. The desired output from this transformation is the element
whose slots contain α(ζh) for all h ∈ S (namely the element α itself). Specifically,
we need each slot of α with hypercube index (e1, . . . , et) to hold the value

α′(ζg
e1
1

1 , . . . , ζ
g
et
t

t

)
= α

(
ζg

e1
1 ···get

t
)
.

Below we denote ζi,ei

def= ζ
g
ei
i

i . We transform β into α in t stages, each of which
can be viewed as multi-point evaluation of polynomials along one dimension of
the hypercube.

Stage 1. This stage beings with the element β, in which each dimension-1
hypercolumn with index (�, j2, . . . , jt) contains the coefficients of the univari-
ate polynomial Pj2,...,jt(X1)

def=
∑

j1
cj1,...,jtX

j1
1 . We transform β into β1 where

that hypercolumn contains the evaluation of the same polynomial in many
points. Specifically, the slot of β1 indexed by (e1, j2, . . . , jt) contains the value
Pj2,...,jt(ζ1,e1).

By definition, this stage consists of parallel application of a particular Zpr -
linear transformation M1 (namely a multi-point polynomial evaluation map)
to each of the k/k1 hypercolumns in dimension 1. In other words, M1 maps
(k1 ·d)-dimensional vectors over Zpr (each packed into k1 slots) to k1-dimensional
vectors over E. We elaborate on the efficient implementation of this stage later
in this section.

Stages 2, . . . , t. The element β1 from the previous stage holds in its slots the
coefficients of the k1 multivariate polynomials Ae1(·) (for e1 = 0, . . . , k1 − 1),

Ae1(X2, . . . , Xt)
def= α′(ζ1,e1 ,X2, . . . , Xt) =

∑

j2,...,jt

( ∑

j1

cj1,...,jtζ
j1
1,e1

)

︸ ︷︷ ︸
slot (e1,j2,...,jt)=Pj2,...,jt (ζ1,e1 )

·Xj2
2 · · · Xjt

t .

The goal in the remaining stages is to implement multi-point evaluation of these
polynomials at all the points Xi = ζi,ei

for 0 ≤ ei < ki. Note that differently from
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the polynomial α′ that we started with, the polynomials Ae1 have coefficients
from E (rather than from Zpr ), and these coefficients are encoded one per slot
(rather than d per slot). As we explain later, this makes it easier to implement
the desired multi-point evaluation. Separating out the second dimension we can
write

Ae1(X2, . . . , Xt) =
∑

j3,...,jt

(∑

j2

Pj2,...,jt(ζ1,e1)X
j2
2

)
Xj3

3 · · · Xjt
t .

We note that each dimension-2 hypercolumn in β1 with index (e1, �, j3, . . . , jt)
contains the E-coefficients of the univariate polynomial Qe1,j3,...,jt(X2)

def=∑
j2

Pj2,...,jt(ζ1,e1)X
j2
2 . In Stage 2, we transform β1 into β2 where that hypercol-

umn contains the evaluation of the same polynomial in many points. Specifically,
the slot of β2 indexed by (e1, e2, j3 . . . , jt) contains the value

Qe1,j3,...,jt(ζ2,e2) =
∑

j2

Pj2,...,jt(ζ1,e1) · ζj2
2,e2

=
∑

j1,j2

cj1,...,jtζ
j1
1,e1

ζj2
2,e2

,

and the following stages implement the multi-point evaluation of these polyno-
mials at all the points Xi = ζi,ei

for 0 ≤ ei < ki.
Stages s = 3, . . . , t proceed analogously to Stage 2, each time eliminating a

single variable Xs via the parallel application of an E-linear map Ms to each of
the k/ks hypercolumns in dimension s. When all of these stages are completed,
we have in every slot with index (e1, . . . , et) the value α′(ζ1,e1 , . . . , ζt,et

), as
needed.

Implementing stages 2, . . . , t. For s = 2, . . . , t, we obtain βs from βs−1 by apply-
ing the linear transformation Ms in parallel to each hypercolumn in dimension s.
We adapt for that purpose the HElib matrix-multiplication procedure [18], using
only rotations along dimension s. The procedure from [18] multiplies an n × n
matrix M by a n × 1 column vector v by computing

Mv = D0v0 + · · · + Dn−1vn−1, (3)

where each vi is the vector obtained by rotating the entries of v by i positions,
and each Di is a diagonal matrix containing one diagonal of M . In our case, we
perform k/ks such computations in parallel, one on every hypercolumn along
the s dimension, implementing the rotations using the ρe

s maps. That is, we set

βs =
ks−1∑

e=0

κs,e · ρe
s(βs−1), (4)

where the κs,e’s are constants in Rpr obtained by embedding appropriate con-
stants in E in each slot. Eqn. (4) translates directly into a simple homomorphic
evaluation algorithm, just by applying the same operations to the ciphertexts.
The cost in time for stage s is ks − 1 automorphisms and ks constant-ciphertext
multiplications; the cost in depth is a single constant-ciphertext multiplication.
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Implementing Stage 1. Stage 1 is more challenging, because the map M1 is a Zpr -
linear map, rather than an E-linear map. Nevertheless, we can still use the same
diagonal decomposition as in Eqn. (3), except that the entries in the diagonal
matrices are no longer elements of E, but rather, Zpr -linear maps on E. These
maps may be encoded using linearized polynomials, as in Section 2.4, allowing
us to write

β1 =
k1−1∑

e=0

d−1∑

f=0

λe,f · σf
(
ρe
1(β)

)
, (5)

where the λe,f ’s are constants in Rpr .
A naive homomorphic implementation of the formula from Eqn. (5) takes

O(dk1) automorphisms, but we can reduce this to O(d + k1) as follows. Since
σf is a ring automorphism, it commutes with addition and multiplication, so we
can rewrite Eqn. (5) as follows:

β1 =
d−1∑

f=0

k1−1∑

e=0

σf
(
σ−f (λe,f ) · ρe

1(β)
)

=
d−1∑

f=0

σf

(
k1−1∑

e=0

σ−f (λe,f ) · ρe
1(β)

)

. (6)

To evaluate Eqn. (6) homomorphically, we compute encryptions of ρe
1(β) for

e = 0, . . . , k1 − 1, then take d different linear combinations of these values, homo-
morphically computing

γf =
k1−1∑

e=0

σ−f (λe,f ) · ρe
1(β) (f = 0, . . . , d − 1).

Finally, we can compute an encryption of β1 =
∑d−1

f=0 σf (γf ) by applying Frobe-
nius maps to the ciphertexts encrypting the γf ’s, and summing.

If dimension 1 is good, the homomorphic computation of the γf ’s takes the
time of k1 − 1 automorphisms and k1d constant-ciphertext multiplications, and
the depth of one constant-ciphertext multiplication. If dimension 1 is bad, we
can maintain the same depth by folding the multiplication by the constants
σ−f (λe,f ) into the masks used for rotation (see Section 2.3); the time increases
to 2(k1 − 1) automorphisms and (2k1 − 1)d constant-ciphertext multiplications.

The entire procedure to compute an encryption of β1 has depth of one
constant-ciphertext multiplication, and it takes time k1 + d − 2 + B(k1 − 1)
automorphisms and k1d+B(k1 −1)d constant-ciphertext multiplications, where
B is a flag which is 1 if dimension 1 is bad and 0 if it is good.

Complexity of Eval. From the above, we get the following cost estimates for
computing the Eval map homomorphically. The depth is t constant-ciphertext
multiplications, and the time is at most

• (B + 1)φ(m1)/d + d + φ(m1) + · · · φ(mt) automorphisms, and
• (B + 1)φ(m1) + φ(m2) + · · · + φ(mt) constant-ciphertext multiplications.
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The Transformation Eval−1 The first linear transformation in the recryption
procedure is the inverse of Eval. This transformation can be implemented by
simply running the above stages in reverse order and using the inverse linear
maps M−1

s in place of Ms. The complexity estimates are identical.

4.3 Unpacking and Repacking the Slots

In our recryption procedure we have the non-linear digit extraction routine
“sandwiched” between the linear evaluation map and its inverse. However the
evaluation map transformations from above maintain fully-packed ciphertexts,
where each slot contains an element of the extension ring E (of degree d), while
our digit extraction routine needs “sparsely packed” slots containing only inte-
gers from Zpr .

Therefore, before we can use the digit extraction procedure we need to
“unpack” the slots, so as to get d ciphertexts in which each slot contains a
single coefficient in the constant term. Similarly, after digit extraction we have
to “repack” the slots, before running the second transformation.

Unpacking. Consider the unpacking procedure in terms of the element β ∈ Rpr .
Each slot of β contains an element of E which we write as

∑d−1
i=0 aiζ

i with the
ai’s in Zpr . We want to compute β(0), . . . , β(d−1), so that the corresponding slot
of each β(i) contains ai. To obtain β(i), we need to apply to each slot of β the
Zpr -linear map Li : E → Zpr that maps

∑d−1
i=0 aiζ

i to ai.
Using linearized polynomials, as discussed in Section 2.4, we may write β(i) =∑d−1

f=0 κi,fσf (β), for constants κi,f ∈ Rpr . Given an encryption of β, we can
compute encryptions of all of the σf (β)’s and then take linear combinations
of these to get encryptions of all of the β(i)’s. This takes the time of d − 1
automorphisms and d2 constant-ciphertext multiplications, and a depth of one
constant-ciphertext multiplication.

While the cost in time of constant-ciphertext multiplications is relatively
cheap, it cannot be ignored, especially as we have to compute d2 of them. In our
implementation, the cost is dominated the time it takes to convert an element
in Rpr to its corresponding DoubleCRT representation. It is possible, of course,
to precompute and store all d2 of these constants in DoubleCRT format, but
the space requirement is significant: for typical parameters, our implementation
takes about 4MB to store a single constant in DoubleCRT format, so for example
with d = 24, these constants take up almost 2.5GB of space.

This unappealing space/time trade-off can be improved considerably using
somewhat more sophisticated implementations. Suppose that in the first linear
transformation Eval−1, instead of packing the coefficients a0, . . . , ad−1 into a
slot as

∑
i aiζ

i, we pack them as
∑

i aiσ
i
E(θ), where θ ∈ E is a normal element.

Further, let L′
0 : E → Zpr be the Zpr -linear map that sends η =

∑
i aiσ

i
E(θ) to

a0. Then we have L′
0(σ

−j(η)) = aj for j = 0, . . . , d − 1. If we realize the map L′
0

with linearized polynomials, and if the plaintext γ has the coefficients packed
into slots via a normal element as above, then we have β(i) =

∑d−1
f=0 κf ·σf−i(γ),

where the κf ’s are constants in Rpr . So we have only d constants rather than d2.
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To use this strategy, however, we must address the issue of how to modify
the Eval transformation so that Eval−1 will give us the plaintext element γ that
packs coefficients as

∑
i aiσ

i
E(θ). As it turns out, in our implementation this

modification is for free: recall that the unpacking transformation immediately
follows the last stage of the inverse evaluation map Eval−1, and that last stage
applies Zpr -linear maps to the slots; therefore, we simply fold into these maps
the Zpr -linear map that takes

∑
i aiζ

i to
∑

i aiσ
i
E(θ) in each slot.

It is possible to reduce the number of stored constants even further: since L′
0

is a map from E to the base ring Zpr , then the κf ’s are related via κf = σf (κ0).
Therefore, we can obtain all of the DoubleCRTs for the κf ’s by computing
just one for κ0 and then applying the Frobenius automorphisms directly to
the DoubleCRT for κ0. We note, however, that applying these automorphisms
directly to DoubleCRTs leads to a slight increase in the noise of the homomorphic
computation. We did not use this last optimization in our implementation.

Repacking. Finally, we discuss the reverse transformation, which repacks the
slots, taking β(0), . . . , β(d−1) to β. This is quite straightforward: if ζ̄ is the plain-
text element with ζ in each slot, then β =

∑d−1
i=0 ζ̄iβ(i). This formula can be

evaluated homomorphically with a cost in time of d constant-ciphertext multi-
plications, and a cost in depth one constant-ciphertext multiplication.

5 Recryption with Plaintext Space Modulo p > 2

Below we extend the treatment from [1,16] to handle plaintext spaces modulo
p > 2. In Sections 5.1 through 5.3 we generalize the various lemmas to p > 2,
in Appendix A we discuss the choice of parameters, and then in Section 5.4 we
explain how these lemmas are put together in the recryption procedure.

5.1 Simpler Decryption Formula

We begin by extending the simplified decryption formula [16, Lemma 1] from
plaintext space mod-2 to any prime-power pr. Recall that we denote by [z]q
the mod-q reduction into [−q/2, q/2) (except when q = 2 we reduce to (−1, 1]).
Also z〈j, . . . , i〉p denotes the integer whose mod-p expansion consists of digits i
through j in the mod-p expansion of z (and we omit the p subscript if it is clear
from the context).

Lemma 2. Let p > 1, r ≥ 1, e ≥ r + 2 and q = pe + 1 be integers, and also let z

be an integer such that |z| ≤ q2

4 − q and |[z]q| ≤ q
4 .

– If p is odd then [z]q = z〈r − 1, . . . , 0〉 − z〈e + r − 1, . . . , e〉 (mod pr).
– If p = 2 then [z]q = z〈r − 1, . . . , 0〉−z〈e + r − 1, . . . , e〉−z〈e − 1〉 (mod 2r).

Proof. We begin with the odd-p case. Denote z0 = [z]q, then z = z0 + kq for
some |k| ≤ q

4 − 1, and hence |z0 + k| ≤ q
4 + q

4 − 1 = (q − 2)/2 = (pe − 1)/2. We
can write

z = z0 + kq = z0 + k(pe + 1) = z0 + k + pek. (7)



658 S. Halevi and V. Shoup

This means in particular that z = z0 + k (mod pr), and also since the mod-p
representation of the sum w = z0 + k has only 0’s in positions e and up then
k〈r − 1, . . . , 0〉 = z〈e + r − 1, . . . , e〉. It follows that

z0〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − k〈r − 1, . . . , 0〉
= z〈r − 1, . . . , 0〉 − z〈e + r − 1, . . . , e〉 (mod pr).

The proof for the p = 2 case is similar, but we no longer have the guarantee that
the high-order bits of the sum w = z0 + k are all zero. Hence from Eqn. (7) we
can only deduce that

z〈e + r − 1, . . . , e〉 = w〈e + r − 1, . . . , e〉 + k〈r − 1, . . . , 0〉 (mod 2r),

and also that z〈e − 1〉 = w〈e − 1〉.
Since |w| ≤ |z0| + |k| < �q/2� = 2e−1, then the bits in positions e − 1 and

up in the representation of w are either all zero if w ≥ 0, or all one if w < 0. In
particular, this means that

w〈e + r − 1, . . . , e〉 =
{

0 if w ≥ 0
−1 if w < 0

}
= −w〈e − 1〉 = −z〈e − 1〉 (mod 2r).

Concluding, we therefore have

z0〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − k〈r − 1, . . . , 0〉
= z〈r − 1, . . . , 0〉 − (

z〈e + r − 1, . . . , e〉 − w〈e + r − 1, . . . , e〉)

= z〈r − 1, . . . , 0〉 − z〈e + r − 1, . . . , e〉 − z〈e − 1〉 (mod 2r).

5.2 Making an Integer Divisible By pe′

As sketched in Section 3, we use the following lemma to reduce to number of
digits that needs to be extracted, hence reducing the time and depth of the
digit-extraction step.

Lemma 3. Let z be an integer, and let p, q, r, e′ be positive integers s.t. e′ ≥ r
and q = 1 (mod pe′

). Also let α be an arbitrary real number in [0,1]. Then there
are integer coefficients u, v such that

z + u · pr + v · q = 0 (mod pe′
)

and moreover u, v are small. Specifically |v| ≤ pr( 12 + �(1 − α)pe′−1/2�) and
|u| ≤ �αpe′−1/2�.
Proof. Since q, p are co-prime then there exists v′ ∈ (−pr/2, pr/2] s.t. z′ =
z + v′q = 0 (mod pr). Let δ = −z′ · p−r mod pe′−1, reduced into the interval

[−pe′−1

2 , pe′−1

2 ], so we have |δ| ≤ pe′−1/2 and z′ + prδ = 0 (mod pe′
). Denote

β = 1 − α and consider the integer z′′ def= z′ + �αδ� · pr + �βδ�pr · q.
On one hand, we have that z′′ = z+u·pr+v·q with |u| = |�αδ�| ≤ |�αpe′−1/2�

and |v| = |v′ + pr�βδ�| ≤ pr( 12 + �βpe′−1/2�). On the other hand since q = 1
(mod pe′

) then we also have z′′ = z′ +pr(�αδ�+�βδ�) = z′ +prδ = 0 (mod pe′
).
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Discussion. Recall that in our recryption procedure we have a ciphertext ct that
encrypts some m with respect to modulus q and plaintext space mod-pr, and we
use the lemma above to convert it into another ciphertext ct′ that encrypts the
same thing but is divisible by pe′

, and by doing so we need to extract e′ fewer
digits in the digit-extraction step.

Considering the elements u ← 〈sk, ct〉 and u′ ← 〈sk, ct′〉 (without any modular
reduction), since sk is integral then adding multiples of q to the coefficients of ct
does not change [u]q, and also as long as we do not wrap around q then adding
multiples of pr does not change [[u]q]pr . Hence as long as we only add small
multiples of pr then we have [[u]q]pr = [[u′]q]pr , so ct and ct′ still encrypt the same
plaintext. However in our recryption procedure we need more: to use our simpler
decryption formula from Lemma 2 we not only need the noise magnitude ‖[u′]q‖
to be smaller than q

4 , but the magnitude of u′ itself (before mod-q reduction)
must be smaller than q2

4 − q.
In essence, the two types of additive terms consume two types of “resources:”

adding multiples of q increases the magnitude of u′, and adding multiple of pr

increases the magnitude of [u′]q. The parameter α from Lemma 3 above lets
us trade-off these two resources: smaller α means slower increase in ‖[u′]q‖ but
faster increase in ‖u′‖, and vice versa for larger α. As we discuss in Appendix A,
the best trade-off is often obtained when α is just under 1

2 ; our implementation
tries to optimize this parameter, and for many settings it uses α ≈ 0.45.

5.3 Digit-Extraction for Plaintext Space Modulo pr

The bit-extraction procedure that was described by Gentry et al. in [16] and
further optimized by Alperin-Sheriff and Peikert in [1] is specific for the case
p = 2e. Namely, for an input ciphertext relative to mod-2e plaintext space,
encrypting some integer z (in one of the slots), this procedure computes the ith
top bit of z (in the same slot), relative to plaintext space mod-2e−i+1. Below
we show how to extend this bit-extraction procedure to a digit-extraction also
when p is an odd prime.

The main observation underlying the original bit-extraction procedure, is
that squaring an integer keeps the least-significant bit unchanged but inserts
zeros in the higher-order bits. Namely, if b is the least significant bit of the
integer z and moreover z = b (mod 2e), e ≥ 1, then squaring z we get z2 = b
(mod 2e+1). Therefore, z − z2 is divisible by 2e, and the LSB of (z − z2)/2e is
the eth bit of z.

Unfortunately the same does not hold when using a base p > 2. Instead, we
show below that for any exponent e there exists some degree-p polynomial Fe(·)
(but not necessarily Fe(X) = Xp) such that when z = z0 (mod pe) then Fe(z) =
z0 (mod pe+1). Hence z − Fe(z) is divisible by pe, and the least-significant digit
of (z − Fe(z))/pe is the eth digit of z. The existence of such polynomial Fe(X)
follows from the simple derivation below.
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Lemma 4. For every prime p and exponent e ≥ 1, and every integer z of
the form z = z0 + pez1 (with z0, z1 integers, z0 ∈ [p]), it holds that zp = z0
(mod p), and zp = zp

0 (mod pe+1).

Proof. The first equality is obvious, and the proof of the second equality is just
by the binomial expansion of (z0 + pez1)p.

Corollary 1. For every prime p there exist a sequence of integer polynomials
f1, f2, . . ., all of degree ≤ p−1, such that for every exponent e ≥ 1 and every inte-
ger z = z0+pez1 (with z0, z1 integers, z0 ∈ [p]), we have zp = z0+

∑e
i=1 fi(z0)pi

(mod pe+1).

Proof. modulo-pe+1 depend only on z0, so there exist some polynomials in z0
that describe them, fi(z0) = zp〈i〉p. Since these fi’s are polynomials from Zp

to itself, then they have degree at most p − 1. Moreover, by the 1st equality in
Lemma 4 we have that the first digit is exactly z0.

Corollary 2. For every prime p and every e ≥ 1 there exist a degree-p polyno-
mial Fe, such that for every integers z0, z1 with z0 ∈ [p] and every 1 ≤ e′ ≤ e we
have Fe(z0 + pe′

z1) = z0 (mod pe′+1).

Proof. Denote z = z0 + pe′
z1. Since z = z0 (mod pe′

) then fi(z0) = fi(z)
(mod pe′

). This implies that for all i ≥ 1 we have fi(z0)pi = fi(z)pi (mod pe′+1),
and of course also for i ≥ e′ + 1 we have fi(z)pi = 0 (mod pe′+1). Therefore,
setting Fe(X) = Xp − ∑e

i=1 fi(X)pi we get

Fe(z) = zp −
e∑

i=1

fi(z)pi = zp −
e′

∑

i=1

fi(z0)pi = z0 (mod pe′+1).

We know that for p = 2 we have Fe(X) = X2 for all e. One can verify that
also for p = 3 we have Fe(X) = X3 for all e (when considering the balanced
mod-3 representation), but for larger primes we no longer have Fe(X) = Xp.

The digit-extraction procedure. Just like in the base-2 case, in the procedure
for extracting the eth base-p digit from the integer z =

∑
i zip

i proceeds by
computing integers wj,k (k ≥ j) such that the lowest digit in wj,k is zj , and the
next k−j digits are zeros. The code in Figure 1 is purposely written to be similar
to the code from [1, Appendix B], with the only difference being in Line 5 where
we use Fe(X) rather than X2.

In our implementation we compute the coefficients of the polynomial Fe once
and store them for future use. In the procedure itself, we apply a homomorphic
polynomial-evaluation procedure to compute Fe(wj,k) in Line 5. We note that
just as in [1,16], the homomorphic division-by-p operation is done by multiplying
the ciphertext by the constant p−1 mod q, where q is the current modulus. Since
the encrypted values are guaranteed to be divisible by p, then this has the desired
effect and also it reduces the noise magnitude by a factor of p. Correctness of the
procedure from Figure 1 is proved exactly the same way as in [1,16], the proof
is omitted here. In the full version we show that for p = 2 we can extract r ≥ 2
consecutive bits using one level less than in the procedure above.
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Digit-Extractionp(z, e): // Extract eth digit in base-p representation of z

1. w0,0 ← z
2. For k = 0 to e − 1
3. y ← z
4. For j = 0 to k
5. wj,k+1 ← Fe(wj,k) // Fe from Corollary 2, for p = 2, 3 we have Fe(X) = Xp

6. y ← (y − wj,k+1)/p
7. wk+1,k+1 ← y

8. Return we,e

Fig. 1. The digit extraction procedure

5.4 Putting Everything Together

Having described all separate parts of our recryption procedure, we now explain
how they are combined in our implementation.

Initialization and parameters. Given the ring parameter m (that specifies the
mth cyclotomic ring of integers R = Z[X]/(Φm(X))) and the plaintext space
pr, we compute the recryption parameters as explained in Appendix A. That
is, we use compute the Hamming weight of recryption secret key t ≥ 56, some
value of α (which is often α ≈ 0.45), and some values for e, e′ where e − e′ − r ∈
{�logp(t + 2)� − 1, �logp(t + 2)�}. We also precompute some key-independent
tables for use in the linear transformations, with the first transformation using
plaintext space pe−e′+r and the second transformation using plaintext space pr.

Key generation. During key generation we choose in addition to the “standard”
secret key sk also a separate secret recryption key s̃k = (1, s̃), with s̃ having
Hamming weight t. We include in the secret key both a key-switching matrix
from sk to s̃k, and a ciphertext c̃t that encrypts s̃ under key sk, relative to
plaintext space pe−e′+r.

The recryption procedure itself. When we want to recrypt a mod-pr ciphertext ct
relative to the “standard” key sk, we first key-switch it to s̃k and modulus-switch
it to q̃ = pe + 1, then make its coefficients divisible by pe′

using the procedure
from Lemma 3, thus getting a new ciphertext ct′ = (c′0, c

′
1). We then compute

the homomorphic inner-product divided by pe′
, by setting ct′′ = (c′1/pe′

) · c̃t +
(0, c′0/pe′

).
Next we apply the first linear transformation (the map Eval−1 from

Section 4.2), moving to the slots the coefficients of the plaintext u′ that is
encrypted in ct′′. The result is a single ciphertext with fully packed slots, where
each slot holds d of the coefficients from u′. Before we can apply the digit-
extraction procedure from Section 5.3, we therefore need to unpack the slots, so
as to put each coefficient in its own slot, which results in d “sparsely packed”
ciphertexts (as described in Section 4.3).

Next we apply the digit-extraction procedure from Section 5.3 to each one
of these d “sparsely packed” ciphertexts. For each one we extract the digits up
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to e + r − e′ and combine the top digits as per Lemma 2 to get in the slots the
coefficients of the plaintext polynomial m (one coefficient per slot). The resulting
ciphertexts all have plaintext space mod-pr.

Next we re-combine the d ciphertext into a single fully-packed ciphertext (as
described in Section 4.3) and finally apply the second linear transformation (the
map Eval described in Section 4.2). This completes the recryption procedure.

6 Implementation and Performance

As discussed in Section 4.2, our algorithms for the linear transformations rely
on the parameter m having a fairly special form. Luckily, there are quite a few
such m’s, which we found by brute-force search. We ran a simple program that
searches through a range of possible m’s (odd, not divisible by p, and not prime).
For each such m, we first compute the order d of p mod m. If this exceeds a
threshold (we chose a threshold of 100), we skip this m. Next, we compute the
factorization of m into prime powers as m = m1 · · · mt. We then find all indexes
i such that p has order d mod mi and all pairs of indexes i, j such that p has
order d mod mimj . If we find none, we skip this m; otherwise, we choose one
such index, or pair of indexes, in such a way to balance the time and depth
complexity of the linear transformations (so mi or mimj becomes the new m1,
and the other prime power factors are ordered arbitrarily).

Table 1. Experimental results with plaintext space GF(2d)

cyclotomic ring m 21845 18631 28679 35113
=257·5·17 =601·31 =241·17·7 =(73·13)·37

lattice dim. φ(m) 16384 18000 23040 31104

plaintext space GF(216) GF(225) GF(224) GF(236)

number of slots 1024 720 960 864

security level 76 110 96 159

before/after levels 22/10 20/10 24/11 24/12

initialization (sec) 177 248 224 694

linear transforms (sec) 127 131 123 325

digit extraction (sec) 193 293 342 1206

total recrypt (sec) 320 424 465 1531

space usage (GB) 3.4 3.5 3.5 8.2

For example, with p = 2, we processed all potential m’s between 16,000 and
64,000. Among these, there were a total of 377 useful m’s with 15, 000 ≤ φ(m) ≤
60, 016, with a fairly even spread (the largest gap between successive φ(m)’s was
less than 2,500, and there were no other gaps that exceeded 2,000). So while
such useful m’s are relatively rare, there are still plenty to choose from. We ran
this parameter-generation program to find potential settings for plaintext-space
modulo p = 2, p = 17, p = 127, and pr = 28, and manually chose a few of the
suggested values of m for our tests.
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Table 2. Experimental results with other plaintext spaces

cyclotomic ring m 45551 51319 42799 49981
=(41·11)·101 =(19·73)·37 = 337·127 =331·151

lattice dim. φ(m) 40000 46656 42336 49981

plaintext space GF(1740) GF(12736) R(256, 21) R(256, 30)

number of slots 1000 1296 2016 1650

security level 106 161 79 91

before/after levels 38/10 32/11 52/6 56/10

initialization (sec) 1148 2787 1202 1533

linear transforms (sec) 735 774 2265 2834

digit extraction (sec) 3135 1861 8542 14616

total recrypt (sec) 3870 2635 10807 17448

space usage (GB) 14.8 39.9 15.6 21.6

For each of these values of m, p, r, we then ran a test in which we chose
three random keys, and performed recryption three times per key (for each key
recrypting the same ciphertext over and over). These tests were run on a five-
year-old IBM BladeCenter HS22/7870, with two Intel X5570 (4-core) processors,
running at 2.93GHz. All of our programs are single-threaded, so only one core
was used in the computations. Tables 1 and 2 summarize the results form our
experiments.

In each table, the first row gives m and its factorization into prime powers.
The first factor (or pair of factors, if grouped by parentheses) shows the value
that was used in the role of m1 (as in Section 4.2). The second row gives φ(m).
The third row gives the plaintext space, i.e., the field/ring that is embedded in
each slot (here, R(pr, d) means a ring extension of degree d over Zpr ). The fourth
row gives the number of slots packed into a single ciphertext. The fifth row gives
the effective security level, computed using the formula that is used in HElib,
taken from [15, Eqn.(8)]. The sixth row gives the levels of ciphertext just before
recryption (i.e., the ciphertext which is included in the public key) and just after
the end of the recryption procedure. The difference accounts for the depth of
recryption, and the after-levels is roughly the circuit-depth that an application
can compute on the resulting ciphertext before having to recrypt again. We tried
to target 10 remaining levels, to allow nontrivial processing between recryptions.

The remaining rows show the resources used in performing a recryption. The
timing results reflect the average of the 9 runs for each setting, and the memory
usage is the top usage among all these runs. Row 7 gives a one-time initialization
cost (all times in seconds). Row 10 (in boldface) gives the total time for a single
recryption, while the previous two rows give a breakdown of that time (note that
the time for the linear transforms includes some trivial preprocessing time, as
well as the less trivial unpacking/repacking time). The last row gives the memory
used (in gigabytes).
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7 Future work

Eventually, we would like to enhance our implementations to take advantage
of multicore computing environments. There are at least two levels at which
the implementation could be easily parallelized. At a low level, the conversions
between DoubleCRT and polynomial representation in HElib could be easily
parallelized, as the FFT’s for the different primes can be done in parallel (as
already observed in [27]). Our bootstrapping procedure could also be parallelized
at a higher level: the rotations in each stage of the linear transformation step
can be done in parallel, as can the d different digit extraction steps. Doing the
parallel steps at a higher level could possibly yield a better work/overhead ratio,
but this would have to be confirmed experimentally.

Another direction to explore is the possibility of speeding up the digit extrac-
tion procedure in the special case where the values in the ciphertext slots are
constants in the base ring Zpr (or, more generally, lie in some sub-ring of the
ring E contained in each slot). Right now, our bootstrapping algorithm does not
exploit this: even in this special case, our digit extraction algorithm still has to
be applied to d ciphertexts. In principle, we should be able to reduce the number
of applications of the digit extraction significantly (from d to 1, if the values in
the slots are constants); however, it is not clear how to do this while maintaining
the structure (and therefore efficiency) of the linear transformations.

Another direction to explore is to try to find a better way to represent con-
stants. In HElib, the most compact way to store constants in Rpr is also the
most natural: as coefficient vectors of polynomials over Zpr . However, in this
representation, a surprisingly significant amount of time may be spent in homo-
morphic computations converting these constants to DoubleCRT format. One
could precompute and store these DoubleCRT representations, but this can be
quite wasteful of space, as DoubleCRT’s occupy much more space than the cor-
responding polynomials over Zpr . We may state as an open question: is there
a more compact representation of elements of Zpr [X] that can be converted to
DoubleCRT format in linear time?

A Parameters for Digit Extraction

Here we explain our choice of parameters for the recryption procedure (e, e′, α,
etc.). These parameters depend on the cyclotomic ring Rm, plaintext space pr,
and the l1-norm of the recryption secret key s̃k (which we denote t).

We begin the recryption procedure with a noise-n ciphertext (c0, c1), relative
to plaintext space pr, a secret key s̃k = (1, s̃) with ‖s‖1 ≤ t, and modulus
q̃ = pe + 1. This means that for the element u ← 〈s̃k, ct〉 (without modular
reduction) we have ‖[u]q‖∞ < n and ‖u‖∞ < (t + 1)q/2, and that the plaintext
element encrypted in ct is m ← [[u]q]pr . 7 We then make the coefficients of ct

7 The term (t + 1)q/2 assumes no “ring constant”, i.e. ‖s · c1‖ ≤ ‖s‖1 · ‖c1‖. This is
not always true but it makes a reasonable heuristic, and we use it for most of this
section.
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divisible by pe′
using Lemma 3, thus getting another ciphertext

ct′ = (c′0, c
′
1) = (c0 + pru0 + qv0, c1 + pru1 + qv1).

Consider the effect of this modification on the coefficients of u′ ← 〈s̃k, ct′〉 =
c′0+s̃·c1. Clearly we have increased both the noise (due to the added pr terms) and
the magnitude of the coefficients (mostly due to the added q terms). Specifically,
we now have

‖u′‖ ≤ ‖u‖ + (‖u0‖ + t‖u1‖)pr + (‖v0‖ + t‖v1‖)q

≤ (t + 1)
(

q

2
+

⌈
αpr+e′−1

2

⌉

︸ ︷︷ ︸
<q

+qpr
(1
2

+

⌊
(1 − α

)
pe′−1

2

⌋
)
)

≤ (t + 1)q
(
1 + (1 − α)pr+e′−1/2 + pr/2

)
,

‖[u′]q‖ ≤ ‖[u]q‖ + (‖u0‖ + t‖u1‖)pr ≤ n + (t + 1)�αpr+e′−1/2�
≤ n + (t + 1)(1 + αpr+e′−1/2).

To be able to still use Lemma 2 we need to have ‖[u′]q‖ < q/4 and ‖u′‖ < q2/4−q.
Namely we need both

n+(t+1)(1+αpr+e′−1/2) < q/4 and (t+1)
(
1+(1−α)pr+e′−1/2+pr/2

)
< q/4−1,

or in other words

q/4 ≥ max

{
(t + 1)

(
1 + αpr+e′−1

2

)
+ n,

(t + 1)
(
1 + (1−α)pr+e′−1

2

)
+ (t+1)pr

2 + 1

}

. (8)

To get good parameters we would like to set α, e′ such that these two constraints
are roughly equivalent. Ignoring for simplicity the +1 at the end of the bottom
constraint, we would want to set the parameters so that

(t + 1)
(
1 +

αpr+e′−1

2
)

+ n = (t + 1)
(
1 +

(1 − α)pr+e′−1

2
)

+
(t + 1)pr

2

⇔ α =
1
2

− n − (t + 1)pr/2
(t + 1)pr+e′−1

.

Note that with out parameters the noise n is much larger than (t + 1)pr/2: The
noise after modulus-switching is at least as large as the modulus-switching added
factor (cf. [4, Lemma 4]), and the heuristic estimate for that added factor (taken
from the HElib design document) is pr ·√(t + 1)φ(m)/12. Since we use Hamming
weight t 	 φ(m) for the secret key s̃, then

√
(t + 1)φ(m) � (t+1), which means

that n ≈ pr ·√(t + 1)φ(m) � pr · (t+1). Hence to get good parameters we need
α ≈ 1

2 − n/((t + 1)pr+e′−1, and since we can only use α ∈ [0, 1] then it means
that we need to set e′ large enough in order to get α > 0, and α tends to 1/2 as
e′ grows.
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To get a first estimate, we assume that we have e, e′ large enough to get
α ≈ 1/2, and we analyze how large must we make e − e′. With α ≈ 1/2 and the
two terms in Eqn. (8) roughly equal, we can simplify that equation to get

q/4 = (pe + 1)/4 > (t + 1)
(
1 +

pr+e′−1

4
+

pr

2
)

+ 1.

With e′ � 1 the most significant term on the right-hand side is (t+1)pr+e′−1/4,
so we can simplify further to get pe/4 > (t + 1 + ε)pr+e′−1/4 (with ε a small
quantity that captures all the low-order terms), or e−e′ > r−1+logp(t+1+ε). In
our implementation we therefore try to use the setting e−e′ = r−1+�logp(t+2)�,
and failing that we use e − e′ = r + �logp(t + 2)�.

In more detail, on input m, p, r we set an initial value of t = 56, then set
γ

def= (t + 1)/p�logp(t+2)�. Plugging e − e′ = r − 1 + �logp(t + 2)� in Eqn. (8) and
ignoring some ‘+1’ terms, we get

pe > max
{

4(t + n)
1 − 2αγ

,
2(t + 1)pr

1 − 2(1 − α)γ

}
. (9)

For the noise n we substitute twice the modulus-switching added noise term,
n

def= pr
√

(t + 1)φ(m)/3, and then we solve for the value α ∈ [0, 1] that minimizes
the right-hand side of Eqn. (9). This gives us a lower-bond on pe.

Next we check that this lower-bound is not too big: recall that at the begin-
ning of the recryption process we multiply the ciphertext c̃t from the public key
by the “constant” c′1/pe′

, whose entries can be as large as q2/(4pe′
) ≈ p2e−e′−2.

Hence as we increase e we need to multiply by a larger constant, and the noise
grows accordingly. In the implementation we define “too big” (somewhat arbi-
trarily) to be anything more than half the ratio between two successive moduli
in our chain. If pe is “too big” then we reset e−e′ to be one larger, which means
re-solving the same system but this time using γ′ = γ/p instead of γ.

Once we computed the values e, e′, α, we finally check if it is possible to
increase our initial t = 56 (i.e., the recryption key weight) without violating
Eqn. (9). This gives us the final values for all of our constants. We summarize
the parameters that we used in our tests in Table 3.

Caveats. The BGV implementation in HElib relies on a myriad of parameters,
some of which are heuristically chosen, and so it takes some experimentation
to set them all so as to get a working implementation with good performance.
Some of the adjustments that we made in the course of our testing include the
following:

– HElib relies on a heuristic noise estimate in order to decide when to per-
form modulus-switching. One inaccuracy of that estimate is that it assumes
that ‖xy‖ ≤ ‖x‖ · ‖y‖, which does not quite hold for the bases that are
used in HElib for representing elements in the ring R = Z[X]/(Φm(X)).
To compensate, the library contains a “ring constant” cm which is set by
default to 1 but can be adjusted by the calling application, and then it sets
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Table 3. Parameters in our different tests. B is the width (in bits) of levels in the
modulus-chain, and cm is the experimental “ring constant” that we used.

m pr e e′ α t B cm Comments

21854 2 15 9 0.45311 56 23 16.0
18631 2 15 9 0.45291 56 23 0.5
28679 2 15 9 0.45241 56 23 10.0
35115 2 13 6 0 59 25 4.0 “conservative” flag

45551 17 4 2 0 134 25 20.0
51319 127 3 2 0 56 25 2.0 forced t = 56
42799 28 23 10 0.45149 57 25 0.2 frequent mod-switching
49981 28 23 10 0.45125 57 25 1.0 frequent mod-switching

estimate(‖xy‖) := estimate(‖x‖) ·estimate(‖y‖) ·cm. In our tests we often had
to set that constant to a larger value to get accurate noise estimation — we
set the value experimentally so as to get good estimate for the noise at the
output of the recryption procedure.

– The same “ring constant” might also affect the setting of the parameters
e, e′, α from above. Rather than trying to incorporate it into the calculation,
our implementation just provides a flag that forces us to forgo the more
aggressive setting of e − e′ = r − 1 + �logp(t + 2)�, and instead always use
the more conservative e−e′ = r+ �logp(t+2)�. The effect is that we have to
extract one more digit during the digit extraction part, but it ensures that
we do not get recryption errors from the use of our simplified decryption
formula. In our tests we had to use this “conservative” flag for the tests at
m = 35113.

– Also, we sometimes had to manually set the Hamming weight of the recryp-
tion key to a lower value than what our automatic procedure suggests, to
avoid recryption errors. This happened for the setting p = 127,m = 51319,
where the automated procedure suggested to use t = 59 but we had to revert
back to t = 56 to avoid errors.

– The “width” of each level (i.e., the ratio qi+1/qi in the modulus chain) can
be adjusted in HElib. The trade-off is that wider levels give better noise
reduction, but also larger overall moduli (and hence lower levels of security).
The HElib implementation uses by default 23 bits per level, which seems to
work well for values of m < 30000 and pr = 2. For our tests, however, this
was sometime not enough, and we had to increase it to 25 bits per level.
For the tests with plaintext space modulo 28, even 25 bits per level were
not quite enough. However for various low-level reasons (having to do with
the NTL single-precision bounds), setting the bit length to 26 bits or more
is not a good option. Instead we changed some of the internals of HElib,
making it use modulus-switching a little more often than its default setting,
while keeping the level width at 25 bits. As a result, for that setting we used
many more levels than for all the other settings (an average of 1.5 levels per
squaring).
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B Why We Didn’t Use Ring Switching

One difference between our implementation and the procedure described by
Alperin-Sheriff and Peikert [1] is that we do not use the ring-switching tech-
niques of Gentry et al. [13] to implement the tensor decomposition of our Eval
transformation and its inverse. There are several reasons why we believe that an
implementation based on ring switching is less appealing in our context, espe-
cially for the smaller parameter settings (say, φ(m) < 30000). The reasoning
behind this is as follows:

Rough factorization of m. Since the non-linear part of our recryption
procedure takes at least seven levels, and we target having around 10 levels
left at the end of recryption, it means that for our smaller examples we cannot
afford to spend too many levels for the linear transformations. Since every stage
of the linear transformation consumes at least half a level, 8 then for such small
parameters we need very few stages. In other words, we have to consider fairly
coarse-grained factorization of m, where the factors have sizes mε for a significant
ε (as large as

√
m in some cases).

Using large rings. Recall that the first linear transformation during recryp-
tion begins with the fresh ciphertext in the public key (after multiplying by a
constant). That ciphertext has very low noise, so we have to process it in a large
ring to ensure security. 9 This means that we must switch up to a much larger
ring before we can afford to drop these rough factors of m. Hence we will be
spending most of our time on operations in very large rings, which defeats the
purpose of targeting these smaller sub-30000 rings in the first place.

We also note that in our tests, the recryption time is dominated by the
non-linear part, so our implantation seems close to optimal there. It is plausi-
ble that some gains can be made by using ring switching for the second linear
transformation, after the non-linear part, but we did not explore this option in
our implementation. And as we said above, there is not much to be gained by
optimizing the linear transformations.
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1 Introduction

1.1 Background

Oblivious Transfer (OT), introduced by Rabin [33], is a fundamental crypto-
graphic protocol involving two parties, a sender and a receiver. In the most
commonly used 1-out-of-2 version [9], the sender has a pair of messages (x0, x1)
and the receiver has a selection bit r; at the end of the protocol the receiver
learns xr (but nothing about x1−r) and the sender learns nothing at all about r.
Oblivious transfer is a fundamental tool for achieving secure computation, and
plays a pivotal role in the Yao protocol [35] where OT is needed for every bit of
input of the client, and in the GMW protocol [12] where OT is needed for every
AND gate in the Boolean circuit computing the function.

Protocols for secure computation provide security in the presence of adver-
sarial behavior. A number of adversary models have been considered in the lit-
erature. The most common adversaries are: passive or semi-honest adversaries
who follow the protocol specification but attempt to learn more than allowed by
inspecting the protocol transcript, and active or malicious adversaries who run
any arbitrary strategy in an attempt to break the protocol. In both these cases,
the security of a protocol guarantees that nothing is learned by an adversary
beyond its legitimate output. Another notion is that of security in the presence
of covert adversaries; in this case the adversary may follow any arbitrary strat-
egy, but is guaranteed to be caught with good probability if it attempts to cheat.
The ultimate goal in designing efficient protocols is to construct protocols that
are secure against strong (active or covert) adversaries while adding very little
overhead compared to the passive variant. In our paper, we focus primarily on
the case of active adversaries, but also provide a variant for covert security.

OT Extensions. As we have mentioned, OT is used extensively in protocols
for secure computation. In many cases, this means several millions of oblivious
transfers must be run, which can become prohibitively expensive. Specifically,
the state-of-the-art protocol for achieving OT with security in the presence of
active adversaries of [31] achieves approximately 350 random OTs per second on
standard PCs. However, a million OTs at this rate would take over 45 minutes.
In order to solve this problem, OT extensions [4] can be used. An OT extension
protocol works by running a small number of “base-OTs” depending on the
security parameter (e.g., a few hundred) that are used as a base for obtaining
many OTs via the use of cheap symmetric cryptographic operations only. This
is conceptually similar to public-key encryption where instead of encrypting a
large message using RSA, which would be too expensive, a hybrid encryption
scheme is used such that the RSA computation is only carried out to encrypt
a symmetric key, which is then used to encrypt the large message. Such an OT
extension can be achieved with extraordinary efficiency; specifically, the protocol
of [16] for passive adversaries requires only three hash function computations per
OT (beyond the initial base-OTs). In [1], by applying additional algorithmic and
cryptographic optimizations, the cost of OT extension for passive adversaries is
so low that essentially the communication is the bottleneck. To be concrete,
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10,000,000 OTs on random inputs (which suffices for many applications) can be
carried out in just 2.62 seconds over a LAN with four threads [1].

For active adversaries, OT extensions are somewhat more expensive. Prior
to this work, the best protocol known for OT extensions with security against
active adversaries was introduced by [30]. The computational cost of the protocol
is due to the number of base-OTs needed for obtaining security, the number of
symmetric operations (e.g., hash function computations) needed for every OT in
the extension, and the bandwidth. Relative to the passive OT extension of [16],
the run-time of [30] is approximately 4 times longer spent on the base-OTs, 1.7
times the cost for each OT in the extension, and 2.7 times the communication.
Asymptotically, regarding the number of base-OTs, for security parameter κ
(e.g., κ = 128), it suffices to run κ base-OTs in the passive case. In contrast, [30]
require � 8

3κ� base-OTs.

Applications of OT for Malicious Adversaries. Most prominently, OT
is heavily used in today’s most efficient protocols for secure computation that
allow two or more parties to securely evaluate a function expressed as Boolean
circuit on their private inputs. Examples include Yao’s garbled circuits-based
approaches such as [10,11,14,19,22,24,25,32,34] where OTs are needed for each
input, or the Tiny-OT [21,30] and MiniMac protocols [5,6] where OTs are needed
for each AND gate. Additional applications include the private set intersection
protocol of [7] which is based purely on OT, and the Yao-based zero-knowledge
protocol of [17] which allows a party to prove in zero-knowledge a predicate
expressed as Boolean circuit, and needs one OT per bit of the witness.

In many of the above applications, the number of oblivious transfers needed
can be huge. For instance, for many applications of practical interest, the
two-party and multiparty protocols of [5–7,21,30] can require several hundred
millions of OTs, making the cost of OT the bottleneck in the protocol. Con-
cretely, the current implementations of secure computation in the malicious set-
ting requires ∼219 OTs for the AES circuit and ∼230 OTs for the PSI circuit
(Sort-Compare-Shuffle), see full version [2] for further details. Thus, improved
OT extensions immediately yield faster two-party and multi-party protocols for
secure computation.

1.2 Our Contributions

In this paper, we present a new protocol for OT extensions with security in the
presence of malicious adversaries, which outperforms the most efficient exist-
ing protocol of [30]. We follow the insights of prior work [1,11], which show
that the bottleneck for efficient OT extension is the communication, and focus
on decreasing the communication at the cost of slightly increased computation.
Furthermore, our protocol can be instantiated with different parameters, allow-
ing us to tradeoff communication for computation. This is of importance since
when running over a LAN the computation time is more significant than when
running over a WAN where the communication cost dominates. We implement
and compare our protocol to the semi-honest protocol of [16] (with optimizations
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of [1,18]) and the malicious protocol of [30] (with optimizations of [11]). As can
be seen from the summary of our results given in Table 1, our actively secure
protocol performs better than the previously fastest protocol of [30] running at
under 60% the cost of the base-OTs of [30], 70% of the cost of each OT in the
extension, and 55% of the communication in the local setting. Due to the lower
communication, the improvement of our protocol over [30] in the cloud setting
(between US East and Europe and thus with higher latency), is even greater
with approximately 45% of the time of the base-OTs and 55% of the time for
each OT in the extension.

Comparing our protocol to the passive OT extension of [16], our actively
secure protocol in the local (LAN) setting costs only 133% more run-time in
the base-OTs, 20% more run-time for each OT in the extension, and 50% more
communication. In the cloud setting, the cost for each OT in the extension is 63%
more than [16] (versus 293% more for [30]). Finally, we obtain covert security
at only a slightly higher cost than passive security (just 10% more for each OT
in the extension in the local setting, and 30% more in the cloud setting). Our
protocol reduces the number of base-OTs that are required to obtain malicious
security from 8

3κ for [30] to κ + ερ, where ρ is the statistical security parameter
(e.g., ρ=40) and ε ≥ 1 is a parameter for trading between computation and
communication. To be concrete, for κ=128-bit security, our protocol reduces the
number of base-OTs from 342 to 190 in the local and to 174 in the cloud setting.

Table 1. Run-time and communication for t random OT extensions with κ=128-bit
security (amortized over 226 executions; [31] amortized over 214 executions). 1KB=
8,192bit.

Prot. Security
Run-Time Communication

Local Cloud Local Cloud

[16] passive 0.3s+1.07μs · t 0.7s+4.24μs · t 4KB+128bit · t

This covert 0.6s+1.18μs · t 1.2s+5.48μs · t 21KB+166bit · t

[20] active - - 42KB+106,018bit · t

[31] active 2975.32μs · t 4597.27μs · t 0.3KB+1,024bit · t

[30] active 1.2s+1.82μs · t 2.9s+12.43μs · t 43KB+342bit · t

This active 0.7s+1.29μs · t 1.3s+6.92μs · t 24KB+191bit · t 22KB+175bit · t

In addition to being more efficient, we can prove the security of a variant of
our protocol with a version of correlation robustness (where the secret value is
chosen with high min-entropy, but not necessarily uniformly), and do not require
a random oracle (see §3.3). In contrast, [30] is proven secure in the random ora-
cle model.1 Our implementation is available online at http://encrypto.de/code/
OTExtension and was integrated into the SCAPI library [8] available at https://
github.com/cryptobiu/scapi.

1 It is conjectured that the [30] OT can be proven secure without a random oracle,
but this has never been proven.

http://encrypto.de/code/OTExtension
http://encrypto.de/code/OTExtension
https://github.com/cryptobiu/scapi
https://github.com/cryptobiu/scapi


More Efficient OT Extensions with Security for Malicious Adversaries 677

1.3 Related Work

The first efficient OT extension protocol for semi-honest adversaries was given
in [16]. Improvements and optimizations to the protocol of [16] were given in
[1,18].

Due to its importance, a number of previous works have tackled the ques-
tion of OT extensions with security for malicious/active adversaries. There exist
several approaches for achieving security against active adversaries for OT exten-
sions. All of the known constructions build on the semi-honest protocol of [16],
and add consistency checks of different types to the OT extension protocol, to
ensure that the receiver sent consistent values. (Note that in [16], the sender can-
not cheat and so it is only necessary to enforce honest behavior for the receiver.)

The first actively-secure version of OT extension used a cut-and-choose tech-
nique and was already given in [16]. This cut-and-choose technique achieves a
security of 2−n by performing n parallel evaluations of the basic OT extension
protocol.

This was improved on by [13,29], who show that active security can be
achieved at a much lower cost. Their approach works in the random oracle model
and ensures security against a malicious receiver by adding a low-cost check per
extended OT, which uses the uncertainty of the receiver in the choice bit of the
sender. As a result, a malicious receiver who wants to learn p choice bits of the
sender risks being caught with probability 2−p. However, this measure allows
a malicious sender to learn information about the receiver’s choice bits. They
prevent this attack by combining S ∈ {2, 3, 4} OTs and ensuring the security of
one OT by sacrificing the remaining S − 1 OTs. Hence, their approach adds an
overhead of at least S ≥ 2 compared to the semi-honest OT extension protocol
of [16] for a reasonable number of OTs (with S = 2 and approximately 107 OTs,
they achieve security except with probability 2−25, cf. [29]). However, the exact
complexity for this approach has not been analyzed.

An alternative approach for achieving actively-secure OT extension was given
in [30]. Their approach also works in the random oracle model but, instead of per-
forming checks per extended OT as in [13,29], they perform consistency checks
per base-OT. Their consistency check method involves hashing the strings that
are transferred in the base-OTs and is highly efficient. In their approach, they
ensure the security of a base-OT by sacrificing another base-OT, which adds an
overhead of factor 2. In addition, a malicious receiver is able to learn p choice bits
of the sender with probability 2−p. [30] shows that this leakage can be tolerated
by increasing the number of base-OTs from κ to � 4

3κ�. Overall, their approach
increases the number of base-OTs that has to be performed by a multiplicative
factor of 8

3 . The [30] protocol has been optimized and implemented on a GPU
in [11]. We give a full description of the [30] protocol with optimizations of [11]
in Appendix §B.

An approach for achieving actively-secure OT extension that works in the
standard model has recently been introduced in [20]. Their approach achieves less
overhead in the base-OTs at the expense of substantially more communication
during the check routine (cf. Table 1), and is therefore considerably less efficient.
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Nevertheless, we point out that the work of [20] is of independent interest since
it is based on the original correlation robustness assumption only.

Since it is the previous best, we compare our protocol to that of [30]. Our
approach reduces the number of base-OTs by removing the “sacrifice” step of [30]
(where one out of every 2 base-OTs are opened) but increases the workload in
the consistency check routine. Indeed, we obtain an additive factor of a statistical
security parameter, instead of the multiplicative increase of [30]. This can be seen
as a trade-off between reducing communication through fewer base-OTs while
increasing computation through more work in the consistency check routine. We
empirically show that this results in a more efficient actively secure OT extension
protocol, which only has 20% more time and 50% more communication than the
passively secure OT extension protocol of [16] in the local setting.

The above works all consider the concrete efficiency of OT extensions. The
theoretical feasibility of OT extensions was established in [4], and further theo-
retical foundations were laid in [26].

2 Preliminaries

2.1 Notation

Our protocol uses a computational (symmetric) security parameter κ and a
statistical security parameter ρ. Asymptotically, this means that our protocols
are secure for any adversary running in time poly(κ), except with probability
μ(κ) + 2−ρ. (Formally, the output distribution of a real protocol execution can
be distinguished from the output distribution of an ideal execution of the OT
functionality with probability at most μ(κ) + 2−ρ. See [23] for a formal defini-
tion of secure computation with both a statistical and computational security
parameter.) In our experiments we set κ = 128 and ρ = 40, which is considered
to be secure beyond 20202.

2.2 Oblivious Transfer

Oblivious transfer (OT) was first introduced by Rabin [33] as a function where
a receiver receives a message, sent by a sender, with probability 1/2, while the
sender remains oblivious whether the message was received. It was later re-
defined to the functionality more commonly used today by [9], where a sender
inputs two messages (x0, x1) and the receiver inputs a choice bit r and obliviously
receives xr without learning any information about x1−r. Formally, the 1-out-of-
2 OT functionality on n bit strings is defined as OTn((x0, x1), r) = (λ, xr) where
λ denotes the empty string and x0, x1 ∈ {0, 1}n. In this paper we focus on the
general (and most applicable) functionality, which is equivalent to m invocations
of the 1-out-of-2 OT functionality on n bit strings. That is, the sender holds as
input m pairs of n-bit strings (x0

j , x
1
j ) for 1 ≤ j ≤ m and the receiver holds m

2 According to the summary of cryptographic key length recommendations at http://
keylength.com.

http://keylength.com
http://keylength.com
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selection bits r = (r1, . . . , rm). The output of the receiver is (xr1
1 , . . . , xrm

m ) while
the sender has no output. We denote this functionality as m×OTn. The parties
are called sender PS and receiver PR.

Several protocols for OT based on different cryptographic assumptions and
attacker models were introduced. Most notable are the passive-secure OT proto-
col of [28] and the active-secure OT protocol of [31], which are among the most
efficient today. However, the impossibility result of [15] showed that OT protocols
require costly asymmetric cryptography, which greatly limits their efficiency.

2.3 OT Extension

In his seminal work, Beaver [4] introduced OT extension protocols, which extend
few costly base-OTs using symmetric cryptography only. While the first con-
struction of [4] was inefficient and mostly of theoretical interest, the protocol
of [16] showed that OT can be extended efficiently and with very little overhead.

Recently, the passively secure OT extension protocol of [16] was improved
by [1,18] who showed how the communication from PR to PS can be reduced
by a factor of two. Furthermore, [1] implemented and optimized the protocol
and demonstrated that the main bottleneck for semi-honest OT extension has
shifted from computation to communication. We give the passively secure OT
extension protocol of [16] with optimizations from [1,18] in Protocol 1.

2.4 On the Malicious Security of [16]

The key insight to understanding how to secure OT extension against mali-
cious adversaries is to understand that a malicious party only has very limited
possibilities for an attack. In fact, the original OT extension protocol of [16]
already provides security against a malicious PS . In addition, the only attack
for a malicious PR is in Step 2a of Protocol 1, where PR computes and sends
ui = ti ⊕ G(k1

i ) ⊕ r (cf. [16]). A malicious PR could choose a different r for
each ui (for 1 ≤ i ≤ �), and thereby extract PS ’s choice bits s. Hence, malicious
security can be obtained if PR can be forced to use the same choice bits r in all
messages u1, . . . ,u�.

3 Our Protocol

All we add to the semi-honest protocol (Protocol 1) is a consistency check for
the values r that are sent in Step 2a, and increase the number of base-OTs.
Let ri = ti ⊕ G(k1

i ) ⊕ ui, i.e., the value that is implicitly defined by ui. We
observe that if the receiver PR uses the same choice bits ri and rj for some
distinct i, j ∈ [�]2, they cancel out when computing their XOR, i.e., ui ⊕ uj =
(ti ⊕ G(k1

i ) ⊕ ri) ⊕ (tj ⊕ G(k1
j ) ⊕ rj) = G(k0

i ) ⊕ G(k1
i ) ⊕ G(k0

j ) ⊕ G(k1
j ). After

the base-OTs, PS holds G(ksi
i ) and G(ksj

j ) and in Step 2a of Protocol 1, PR

computes and sends ui = G(k0
i )⊕G(k1

i )⊕ri and uj = G(k0
j )⊕G(k1

j )⊕rj . Now
note that PS can compute the XOR of the strings he received in the base-OTs
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PROTOCOL 1 (Passive-secure OT extension protocol of [16])

– Input of PS : m pairs (x0
j , x

1
j ) of n-bit strings, 1 ≤ j ≤ m.

– Input of PR : m selection bits r = (r1, . . . , rm).
– Common Input: Symmetric security parameter κ and � = κ.
– Oracles and cryptographic primitives: The parties use an ideal � ×

OTκ functionality, pseudorandom generator G : {0, 1}κ → {0, 1}m and a
correlation robust-function H : [m] × {0, 1}� → {0, 1}n (see §3.3).

1. Initial OT Phase:
(a) PS initializes a random vector s = (s1, . . . , s�) ∈ {0, 1}� and PR

chooses � pairs of seeds k0
i ,k

1
i each of size κ.

(b) The parties invoke the � × OTκ-functionality, where PS acts as the
receiver with input s and PR acts as the sender with inputs (k0

i ,k
1
i )

for every 1 ≤ i ≤ �.
For every 1 ≤ i ≤ �, let ti = G(k0

i ). Let T = [t1| . . . |t�] denote the m × �
bit matrix where its ith column is ti for 1 ≤ i ≤ �. Let tj denote the jth
row of T for 1 ≤ j ≤ m.

2. OT Extension Phase:
(a) PR computes ti = G(k0

i ) and ui = ti ⊕ G(k1
i ) ⊕ r, and sends ui to

PS for every 1 ≤ i ≤ �.
(b) For every 1 ≤ i ≤ �, PS defines qi = (si · ui) ⊕ G(ksi

i ). (Note that
qi = (si · r) ⊕ ti.)

(c) Let Q = [q1| . . . |q�] denote the m× � bit matrix where its ith column
is qi. Let qj denote the jth row of the matrix Q. (Note that qi =
(si · r) ⊕ ti and qj = (rj · s) ⊕ tj .)

(d) PS sends (y0
j , y1

j ) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕ H(j,qj) and y1
j = x1

j ⊕ H(j,qj ⊕ s)

(e) For 1 ≤ j ≤ m, PR computes xj = y
rj

j ⊕ H(j, tj).
3. Output: PR outputs (xr1

1 , . . . , xrm
m ); PS has no output.

G(ksi
i )⊕G(ksj

j ) as well as the “inverse” XOR of the strings received in the base-

OTs G(ksi
i )⊕G(ksj

j ) = G(ksi
i )⊕G(ksj

j )⊕ui ⊕uj if and only if PR has correctly
used ri = rj . However, PS cannot check whether the “inverse” XOR is correct,
since it has no information about G(ksi

i ) and G(ksj

j ) (this is due to the security of
the base-OTs that guarantees that PS receives the keys ksi

i ,ksj

i only, and learns
nothing about ksi

i ,ksj

j ). We solve this problem by having PR commit to the
XORs of all strings hp,q

i,j = H(G(kp
i )⊕G(kq

j)), for all combinations of p, q ∈ {0, 1}.

Now, given h
si,sj

i,j , h
si,sj

i,j , PS checks that h
si,sj

i,j = H(G(ksi
i ) ⊕ G(ksj

j )), and that

h
si,sj

i,j = H(G(ksi
i )⊕G(ksj

i )⊕ui ⊕uj) = H(G(ksi
i )⊕G(ksj

j )). This check passes
if ri = rj and hp,q

i,j were set correctly.
If a malicious PR tries to cheat and has chosen ri 	= rj , it has to convince PS

by computing hp,q
i,j = H(G(kp

i )⊕G(kq
j)⊕ri⊕rj) for all p, q ∈ {0, 1}. However, PS
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can check the validity of h
si,sj

i,j = H(G(ksi
i )⊕G(ksj

j )) while PR remains oblivious
to si, sj . Hence, PR can only convince PS by guessing si, sj , computing h

si,sj

i,j

correctly and h
si,sj

i,j = H(G(ksi
i ) ⊕ G(ksj

j ) ⊕ ri ⊕ rj), which PR cannot do better
than with probability 1/2. This means that PR can only successfully learn ρ bits
but will be caught except with probability 2−ρ. The full description of our new
protocol is given in Protocol 2. We give some more explanations regarding the
possibility of the adversary to cheat during the consistency check in §3.1.

We note that learning few bits of the secret s does not directly break the
security of the protocol once |s| > κ. In particular, the values {H(tj ⊕ s)}j

are used to mask the inputs {x
1−rj

j }j . Therefore, when H is modelled as a
random oracle and enough bits of s remain hidden from the adversary, each
value H(tj ⊕ s) is random, and the adversary cannot learn the input x

1−rj

j . For
simplicity we first prove security of our protocol in the random-oracle model.
We later show that H can be replaced with a variant of a correlation-robustness
assumption.

The advantage of our protocol over [30] is that PS does not need to reveal
any information about si, sj when checking the consistency between ri and rj

(as long as PR does not cheat, in which case it risks getting caught). Hence, it
can force PR to check that ri equals any rj , for 1 ≤ j ≤ � without disclosing any
information.

Section Outline. In the following, we describe our basic protocol and prove its
security (§3.1). We then show how to reduce the number of consistency checks
to achieve better performance (§3.2), and how to replace the random oracle with
a weaker correlation robustness assumption (§3.3). Finally, we show how our
protocol can be used to achieve covert security (§3.4).

3.1 The Security of Our Protocol

Malicious Sender. The original OT extension protocol of [16] already provides
security against a malicious PS . Our checks do not add any capabilities for a
malicious sender, since they consist of messages from the receiver to the sender
only. Thus, by a simple reduction to the original protocol, one can show that
our protocol is secure in the presence of a malicious sender.

Simulating a Malicious Receiver. In the case of a malicious receiver, the
adversary may not use the same r in the messages u1, . . . ,u�, and as a result
learn some bits from the secret s. Therefore, we add a consistency check of r to
the semi-honest protocol of [16]. However, this verification of consistency of r is
not perfectly sound, and the verification may still pass even when the receiver
sends few u’s that do not define the same r. This makes the analysis a bit more
complicated.

For every 1 ≤ i ≤ �, let ri def= ui ⊕ G(k0
i ) ⊕ G(k1

i ) that is, the “input” ri

which is implicitly defined by ui and the base-OTs.
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PROTOCOL 2 (Our active-secure OT extension protocol)

– Input of PS : m pairs (x0
j , x

1
j ) of n-bit strings, 1 ≤ j ≤ m.

– Input of PR : m selection bits r = (r1, . . . , rm).
– Common Input: Symmetric security parameter κ and statistical security

parameter ρ. It is assumed that � = κ + ρ.
– Oracles and cryptographic primitives: The parties use an ideal � ×

OTκ functionality, pseudorandom generator G : {0, 1}κ → {0, 1}m, and
random-oracle H (see §3.3 for instantiation of H.)

1. Initial OT Phase:
(a) PS initializes a random vector s = (s1, . . . , s�) ∈ {0, 1}� and PR

chooses � pairs of seeds k0
i ,k

1
i each of size κ.

(b) The parties invoke the �×OTκ-functionality, where PS acts as the
receiver with input s and PR acts as the sender with inputs (k0

i ,k
1
i )

for every 1 ≤ i ≤ �.
For every 1 ≤ i ≤ �, let ti = G(k0

i ). Let T = [t1| . . . |t�] denote the m × �
bit matrix where its ith column is ti for 1 ≤ i ≤ �. Let tj denote the jth
row of T for 1 ≤ j ≤ m.

2. OT Extension Phase (Part I):
(a) PR computes ti = G(k0

i ) and ui = ti ⊕ G(k1
i ) ⊕ r, and sends ui to

PS for every 1 ≤ i ≤ �.
3. Consistency Check of r: (the main change from Protocol 1)

(a) For every pair α, β ⊆ [�]2, PR defines the four values:

h0,0
α,β = H(G(k0

α) ⊕ G(k0
β)) h0,1

α,β = H(G(k0
α) ⊕ G(k1

β)) ,

h1,0
α,β = H(G(k1

α) ⊕ G(k0
β)) h1,1

α,β = H(G(k1
α) ⊕ G(k1

β)) .

It then sends Hα,β = (h0,0
α,β , h0,1

α,β , h1,0
α,β , h1,1

α,β) to PS .

(b) For every pair α, β ⊆ [�]2, PS knows sα, sβ ,ksα
α ,k

sβ

β ,uα,uβ and checks
that:

i. h
sα,sβ

α,β = H(G(ksα
α ) ⊕ G(k

sβ

β )).

ii. h
sα,sβ

α,β = H(G(ksα
α ) ⊕ G(k

sβ

β ) ⊕ uα ⊕ uβ) (= H(G(ksα
α ) ⊕

G(k
sβ

β ) ⊕ rα ⊕ rβ)).

iii. uα �= uβ .
In case one of these checks fails, PS aborts and outputs ⊥.

4. OT Extension Phase (Part II):
(a) For every 1 ≤ i ≤ �, PS defines qi = (si · ui) ⊕ G(ksi

i ). (Note that
qi = (si · r) ⊕ ti.)

(b) Let Q = [q1| . . . |q�] denote the m× � bit matrix where its ith column
is qi. Let qj denote the jth row of the matrix Q. (Note that qi =
(si · r) ⊕ ti and qj = (rj · s) ⊕ tj .)

(c) PS sends (y0
j , y1

j ) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕ H(j,qj) and y1
j = x1

j ⊕ H(j,qj ⊕ s)

(d) For 1 ≤ j ≤ m, PR computes xj = y
rj

j ⊕ H(j, tj).
5. Output: PR outputs (xr1

1 , . . . , xrm
m ); PS has no output.
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We now explore how the matrices Q,T are changed when the adversary uses
inconsistent r’s. Recall that when the receiver uses the same r, then qi = (si ·
r)⊕ti and qj = (rj ·s)⊕tj . However, in case of inconsistent r’s, we get that qi =
(si · ri)⊕ ti. The case of qj is rather more involved; let R =

[
r1 | . . . | r�

]
denote

the m× � matrix where its ith column is ri, and let rj denote the jth row of the
matrix R. For two strings of the same length a = (a1, . . . , ak),b = (b1, . . . , bk),
let a ∗ b define the entry-wise product, that is a ∗ b = (a1 · b1, . . . , ak · bk). We
get that qj = (rj ∗ s) ⊕ tj (note that in an honest execution, rj is the same bit
everywhere). The sender masks the inputs (x0

j , x
1
j ) with (H(j,qj),H(j,qj ⊕ s)).

In order to understand better the value qj , let r = (r1, . . . , rm) be the string
that occurs the most from the set {r1, . . . , r�}, and let U ⊂ [�] be the set of all
indices for which ri = r for all i ∈ U . Let B = [�] \ U be the complementary set,
that is, the set of all indices for which for every i ∈ B it holds that ri 	= r. As
we will see below, except with some negligible probability, the verification phase
guarantees that |U| ≥ � − ρ. Thus, for every 1 ≤ j ≤ m, the vector rj (which is
the jth row of the matrix R), can be represented as rj = (rj ·1)⊕ej , where 1 is
the all one vector of size �, and ej is some error vector with Hamming distance
at most ρ from 0. Note that the non-zero indices in ej are all in B. Thus, we
conclude that:

qj = (s ∗ rj) ⊕ tj = (s ∗ (rj · 1 ⊕ ej)) ⊕ tj = (rj · s) ⊕ tj ⊕ (s ∗ ej) .

Recall that in an honest execution qj = (rj · s) ⊕ tj , and therefore the only
difference is the term (s∗ej). Moreover, note that s∗ej completely hides all the
bits of s that are in U , and may expose only the bits that are in B. Thus, the
consistency check of r guarantees two important properties: First, that almost
all the inputs are consistent with some implicitly defined string r, and thus the
bits rj are uniquely defined. Second, the set of inconsistent inputs (i.e., the set
B) is small, and thus the adversary may learn only a limited amount of bits of s.

The Consistency Checks of r. We now examine what properties are guaran-
teed by our consistency check, for a single pair (α, β). The malicious receiver PR

first sends the set of keys K = {k0
i ,k

1
i } to the base-OT protocol, and then sends

all the values (u1, . . . ,u�) and the checks H = {Hα,β}α,β . In the simulation, the
simulator can choose s only after it receives all these messages (this is because
the adversary gets no output from the invocation of the OT primitive). Thus,
for a given set of messages that the adversary outputs, we can ask what is the
number of secrets s for which the verification will pass, and the number for which
it will fail. If the verification passes for some given T = (K,u1, . . . ,u�,H) and
some secret s, then we say that T is consistent with s; In case the verification
fails, we say that T is inconsistent.

The following Lemma considers the values that the adversary has sent regard-
ing some pair (α, β), and considers the relation to the pair of bits (sα, sβ) of the
secret s. We have:

Lemma 31. Let Tα,β = {Hα,β ,uα,uβ , {kb
α}b, {kb

β}b} and assume that H is a
collision-resistant hash-function. We have:
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1. If rα 	= rβ and Tα,β is consistent with (sα, sβ), then it is inconsistent with
(sα, sβ).

2. If rα = rβ and Tα,β is consistent with (sα, sβ), then it is consistent also with
(sα, sβ).

Proof: For the first item, assume that rα 	= rβ and that Tα,β is consistent both
with (sα, sβ) and (sα, sβ). Thus, from the check of consistency of (sα, sβ):

h
sα,sβ

α,β = H
(
G(ksα

α ) ⊕ G(ksβ

β )
)

, h
sα,sβ

α,β = H
(
G(ksα

α ) ⊕ G(ksβ

β ) ⊕ uα ⊕ uβ
)

,

and that uα 	= uβ . In addition, from the check of consistency of (sα, sβ) it holds
that:

h
sα,sβ

α,β = H
(
G(ksα

α ) ⊕ G(ksβ

β )
)

, h
sα,sβ

α,β = H
(
G(ksα

α ) ⊕ G(ksβ

β ) ⊕ uα ⊕ uβ
)

,

and that uα 	= uβ . This implies that:

H
(
G(ksα

α ) ⊕ G(ksβ

β )
)

= h
sα,sβ

α,β = H
(
G(ksα

α ) ⊕ G(ksβ

β ) ⊕ uα ⊕ uβ
)

,

and from the collision resistance property of H we get that:

G(ksα
α ) ⊕ G(ksβ

β ) = G(ksα
α ) ⊕ G(ksβ

β ) ⊕ uα ⊕ uβ .

Recall that rα def= uα⊕G(k0
α)⊕G(k1

α), and rβ def= uβ⊕G(k0
β)⊕G(k1

β). Combining
the above, we get that rα = rβ , in contradiction.

For the second item, once rα = rβ , we get that uα ⊕uβ = G(k0
α) ⊕ G(k1

α) ⊕
G(k0

β)⊕G(k1
β) and it is easy to see that if the consistency check of (sα, sβ) holds,

then the consistency check of (sα, sβ) holds also.

Lemma 31 implies what attacks the adversary can do, and what bits of s
it can learn from each such an attack. In the following, we consider a given
partial transcript Tα,β = ((k0

α,k1
α,k0

β ,k1
β), (uα,uβ),Hα,β) and analyze what the

messages might be, and what the adversary learns in case the verification passes.
Let rα = uα ⊕ G(k0

α) ⊕ G(k1
α) and rβ defined analogously. We consider 4 types:

1. Type 1: correct. In this case, it holds that rα = rβ , and for every (a, b) ∈
{0, 1}2: ha,b

α,β = H
(
G(ka

α) ⊕ G(kb
β)

)
. The verification passes for every possi-

ble value of (sα, sβ).
2. Type 2: rα = rβ, but Hα,β is incorrect. In this case, the adversary

sent uα,uβ that define the same r. However, it may send hashes Hα,β that
are incorrect (i.e., for some (a, b) ∈ {0, 1}2, it may send: ha,b

α,β 	= H(G(ka
α) ⊕

G(kb
β))). However, from Lemma 31, if rα = rβ and Hα,β is consistent with

(sα, sβ) then it is also consistent with (sα, sβ).
Thus, a possible attack of the adversary, for instance, is to send correct
hashes for some bits (0, 0) and (1, 1), but incorrect ones for (0, 1) and (1, 0).
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The verification will pass with probability 1/2, exactly if (sα, sβ) are either
(0, 0) or (1, 1), but it will fail in the other two cases (i.e., (1, 0) or (0, 1)). We
therefore conclude that the adversary may learn the relation sα ⊕ sβ , and
gets caught with probability 1/2.

3. Type 3: rα �= rβ and Hα,β is incorrect in two positions. In this
case, for instance, the adversary can set the values h0,0

α,β , h0,1
α,β correctly (i.e.,

h0,0
α,β = H(G(k0

α) ⊕ G(k0
β)) and h0,1

α,β = H(G(k0
α) ⊕ G(k1

β))) and set values
h1,0

α,β , h1,1
α,β , accordingly, such that the verification will pass for the cases of

(sα, sβ) = (0, 0) or (0, 1). That is, it sets:

h1,0
α,β = H(G(k0

α) ⊕ G(k1
β) ⊕ uα ⊕ uβ)

(and it sets h1,1
α,β in a similar way). In this case, the adversary succeeds

with probability 1/2 and learns that sα = 0 in case the verification passes.
Similarly, it can guess the value of sβ and set the values accordingly. For
conclusion, the adversary can learn whether its guess was correct, and in
which case it learns exactly one of the bits sα or sβ but does not learn
anything about the other bit.

4. Type 4: rα �= rβ and Hα,β is incorrect in three positions. In this case,
the adversary may guess both bits (sα, sβ) = (a, b) and set ha,b

α,β correctly,

set ha,b
α,β accordingly (i.e., such that the verification will pass for (a, b)), but

will fail for any one of the other cases. In this case, the adversary learns the
values (sα, sβ) entirely, but succeeds with probability of at most 1/4.

Note that whenever rα 	= rβ , the adversary may pass the verification of
the pair (α, β) with probability of at most 1/2. This is because it cannot send
consistent hashes for all possible values of (sα, sβ), and must, in some sense,
“guess” either one of the bits, or both (i.e., Type 3 or Type 4). However, an
important point that makes the analysis more difficult is the fact that the two
checks are not necessarily independent. That is, in case where rα 	= rβ and
rβ 	= rγ , although the probability to pass each one of the verification of (α, β)
and (β, γ) separately is at most 1/2, the probability to pass both verifications
together is higher than 1/4, and these two checks are not independent. This is
because the adversary can guess the bit sβ , and set the hashes as in Type 3 in
both checks. The adversary will pass these two checks if it guesses sβ correctly,
with probability 1/2.

Theorem 32. Assuming that H is a random oracle, G is a pseudo-random
generator, Protocol 2 with � = κ+ρ securely computes the m×OTn functionality
in the �×OTκ-hybrid model in the presence of a static malicious adversary, where
κ is the symmetric security parameter and ρ is the statistical security parameter.

Proof Sketch: The simulator S invokes the malicious receiver and plays the
role of the base-OT trusted party and the honest sender. It receives from the
adversary its inputs to the base-OTs, and thus knows the values {k0

i ,k
1
i }�

i=1.
Therefore, it can compute all the values r1, . . . , r� when it receives the messages
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u1, . . . ,u�. It computes the set of indices U , and extracts r. It then performs
the same checks as an honest sender, in Step 3 of Protocol 2, and aborts the
execution if the adversary is caught cheating. Then, it sends the trusted party
the value r that it has extracted, and learns the inputs xr1

1 , . . . , xrm
m . It computes

qj as instructed in the protocol (recall that these qj may contain the additional
“shift” s ∗ ej) and use some random values for all {y

rj

j }m
j=1. The full description

of the simulator is given in the full proof in the full version [2].
Since the values {y

rj

j }m
j=1 are random in the ideal execution, and equal {x

rj

j ⊕
H(j,qj ⊕ s)} in the real execution, a distinguisher may distinguish between the
real and ideal execution once it makes a query of the form (j,qj ⊕ s) to the
random oracle. We claim, however, that the probability that the distinguisher
will make such a query is bounded by (t+1)/|S|, where t is the number of queries
it makes to the random oracle, and S is the set of all possible secrets s that are
consistent with the view that it receives. Thus, once we show that |S| > 2κ,
the probability that it will distinguish between the real and ideal execution is
negligible in κ.

However, the above description is too simplified. First, if the adversary per-
forms few attacks of Type 2, it learns information regarding s from the mere
fact that the verification has passed. Moreover, recall that y

rj

j = x
rj

j ⊕ H(j, tj ⊕
(s ∗ ej)), and that the adversary can control the values tj and ej . Recall that ej

is a vector that is all zero in positions that are in U , and may vary in positions
that are in B. This implies that by simple queries to the random oracle, and
by choosing the vectors ej cleverly, the adversary can totally reveal the bits sB

quite easily. We therefore have to show that the set B is small, while also showing
that the set of consistent secrets is greater than 2κ (that is, |S| ≥ 2κ).

Let T = {{k0
i ,k

1
i }�

i=1,u
1, . . . ,u�, {Hα,β}α,β}, i.e., the values that the adver-

sary gives during the execution of the protocol. Observe that the simulator
chooses the secret s only after T is determined (since the adversary receives
no output from the execution of the base-OT primitive, we can assume that).
We divide all possible T into two sets, Tgood and Tbad, defined as follows:

Tgood =
{

T | Pr
s

[consistent(T , s) = 1] > 2−ρ
}

and

Tbad =
{

T | Pr
s

[consistent(T , s) = 1] ≤ 2−ρ
}

,

where consistent(T , s) is a predicate that gets 1 when the verification passes for
the transcript T and the secret s, and 0 otherwise. The probability is taken over
the choice of s. For a given T , let S(T ) be the set of all possible secrets s ∈ {0, 1}�,
that are consistent with T . That is: S(T ) = {s ∈ {0, 1}� | consistent(T , s) = 1}.
Therefore, it holds that: Prs [consistent(T , s) = 1] = |S(T )|

2� , and thus |S(T )| =
2� · Pr [consistent(T , s) = 1]. As a result, for every T ∈ Tgood, it holds that
|S(T )| > 2� · 2−ρ = 2�−ρ. This already guarantees that once the adversary
sends transcript T that will pass the verification with high probability, then the
number of possible secrets that are consistent with this transcript is quite large,
and therefore it is hard to guess the exact secret s that was chosen.
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We claim that if |U| ≤ �−ρ (i.e., |B| > ρ), then it must hold that T ∈ Tbad and
the adversary gets caught with high probability. Intuitively, this is because we
have ρ independent checks, {(u, b)}, where u ∈ U and b ∈ B, which are pairwise
disjoint. As we saw, here we do have independency between the checks, and the
adversary can pass this verification with probability at most 2−ρ. Thus, once the
adversary outputs transcript T for which |B| > ρ, we have that T ∈ Tbad.

We conclude that if the adversary outputs T for which T ∈ Tbad then it gets
caught both in the ideal and the real execution, and the simulation is identical.
When T ∈ Tgood, we get that the number of possible secrets is greater than
2�−ρ, and in addition, |B| < ρ. This already gives us a proof for the case where
� = κ + 2ρ: Even if we give the distinguisher all the bits sB (additonal ρ bits),
the set of all possible secrets that are consistent with T is of size 2�−2ρ ≥ 2κ.

In the full proof in the full version [2], we show that � = κ + ρ base-OTs
are sufficient. In particular, we show that for a given transcript T ∈ Tgood the
bits sB are exactly the same for all the secrets that are consistent with T . As a
result, the at most ρ bits sB that we give to the distinguisher do not give it any
new information, and we can set � = κ + ρ.

3.2 Reducing the Number of Checks

In Protocol 2, in the consistency check of r, we check all possible pairs (α, β) ∈
[�]2. In order to achieve higher efficiency, we want to reduce the number of checks.

Let G = (V,E) be a graph for which V = [�], and an edge (α, β) represents
a check between rα and rβ . In Protocol 2 the receiver asks for all possible edges
in the graph (all pairs). In order to achieve better performance, we would like to
reduce the number of pairs that we check. In particular, the protocol is changed
so that in Step 3 of Protocol 2 the sender chooses some set of pairs (edges)
E′ ⊆ V 2, and the receiver must respond with the quadruples Hα,β for every
(α, β) ∈ E′ that it has been asked for. The sender continues with the protocol
only if all the checks have passed successfully.

Observe that after sending the values u1, . . . ,u�, the sets U and B (which
are both subsets of [�]) are implicitly defined. In case that the set B is too large,
we want to catch the adversary cheating with probability of at least 1 − 2−ρ. In
order to achieve this, we should have ρ edges between B and U that are pairwise
non-adjacent. That is, in case the adversary defines B that is “too large”, we
want to choose a set of edges E′ that contains a matching between B and U of
size of at least ρ.

Note, however, that the sender chooses the edges E′ with no knowledge what-
soever regarding the identities of U and B, and thus it needs to choose a graph
such that (with overwhelming probability), for any possible choice of a large B,
there will be a ρ-matching between B and U .

In protocol 3 we modify the consistency check of r that appears in Step 3 of
Protocol 2. The sender chooses for each vertex α ∈ [�] exactly μ out-neighbours
uniformly at random. We later show that with high probability the set E′ that
is chosen contains a ρ-matching between the two sets B and U , even for a very
small value of μ (for instance, μ = 3 or even μ = 2).
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PROTOCOL 3 (Modification for Protocol 2, Fewer Checks)
The parties run Protocol 2 with the following modifications:
Step 3 – Consistency Check of r: (modified)

1. PS chooses μ functions φ0, . . . , φμ−1 uniformly at random, where φi : [�] →
[�]. It sends φ0, . . . , φμ−1 to the receiver PR.

2. For every pair α ∈ [�], i ∈ [μ], let (α, β) = (α, φi(α)). PR defines the four
values:

h0,0
α,β = H(G(k0

α) ⊕ G(k0
β)) h0,1

α,β = H(G(k0
α) ⊕ G(k1

β)) ,

h1,0
α,β = H(G(k1

α) ⊕ G(k0
β)) h1,1

α,β = H(G(k1
α) ⊕ G(k1

β)) .

It then sends Hα,β = (h0,0
α,β , h0,1

α,β , h1,0
α,β , h1,1

α,β) to PS .
3. PS checks that it receives Hα,φi(α) for every α ∈ [�] and i ∈ [μ]. Then, for

each pair (α, β) = (α, φ(α)) it checks that:
(a) h

sα,sβ

α,β = H(G(ksα
α ) ⊕ G(k

sβ

β )).

(b) h
sα,sβ

α,β = H(G(ksα
α ) ⊕ G(k

sβ

β ) ⊕uα ⊕uβ) (= H(G(ksα
α ) ⊕ G(k

sβ

β ) ⊕
rα ⊕ rβ)).

(c) uα �= uβ .
In case one of these checks fails, PS aborts and outputs ⊥.

In our modified protocol, the adversary again first outputs T = {{k0
i ,k

1
i }�

i=1,
u1, . . . ,u�}. Then, the set of checks Φ = {φ0, . . . , φμ−1} is chosen, and the adver-
sary responds with H = {{Hα,φi(α)}α,φi

}. We can assume that the actual secret
s is chosen only after T , Φ and H are determined. Similarly to the proof of The-
orem 32, for a given transcript (T , Φ,H) and a secret s, we define the predicate
consistent((T , Φ,H), s) that gets 1 if and only if the verification is passed for the
secret s (that is, that the sender does not output ⊥). For a given T and set of
checks Φ, let HT ,Φ be the set of responds that maximizes the probability to pass
the verification, that is:

HT ,Φ
def= argmaxH{Pr [consistents((T , Φ,H), s) = 1]} .

We separate all possible transcripts (T , Φ) to two sets Tgood and Tbad such
that:

Tgood = {(T , Φ) | Prs [consistent((T , Φ,HT ,Φ), s) = 1] > 2−ρ} and
Tbad = {(T , Φ) | Prs [consistent((T , Φ,HT ,Φ), s) = 1] ≤ 2−ρ} .

Observe that if a pair (T , Φ) ∈ Tbad, then no matter what set H the adversary
sends, it gets caught with probability of at least 1 − 2−ρ.

The following claim bounds the size of the set B. It states that if the adversary
A outputs T that defines |U| < κ, then with probability 1 − 2−ρ the sender will
choose Φ such that (T , Φ) ∈ Tbad.
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Claim 33. Let T be as above, and let U be the largest set of indices such that
for every α, β ∈ U , rα = rβ. Assume that |U| < κ. Then, for appropriate choice
of parameters |B|, μ, it holds that:

Pr
Φ

[(T , Φ) ∈ Tbad] ≥ 1 − 2−ρ.

Proof: The partial transcript T defines the two sets B and U . Viewing the
base-OTs [�] as vertices in a graph, and the pairs of elements that are being
checked as edges E′ = {(α, φi(α)) | α ∈ [�], i ∈ [μ]}, we have a bipartite graph
(B ∪ U,E′) where each vertex has at least μ out edges. We want to show that
with probability 1−2−ρ (over the choice of Φ), there exists a ρ-matching between
U and B. Once there is a ρ-matching, the adversary passes the verification phase
with probability of at most 2−ρ, and thus the pair (T , Φ) is in Tbad.

In order to show that in a graph there is a ρ-matching between B and U , we
state the following theorem which is a refinement of Hall’s well-known theorem
(see [27]). Let NU (S) denote the set of neighbours in U , for some set of vertices
S ⊆ B, that is, NU (S) = {u ∈ U | ∃v ∈ S, s.t. (u, v) ∈ E′}. We have:

Theorem 34. There exists a matching of size ρ between B and U if and only
if, for any set S ⊆ B, |NU (S)| ≥ |S| − |B| + ρ.

Note that we need to consider only subsets S ⊆ B for which |S| ≥ |B| − ρ
(otherwise, the condition holds trivially).

The choice of Φ is equivalent to choosing μ out edges for each vertex uni-
formly. We will show that for every subset of S ⊆ B with |S| ≥ |B| − ρ, it holds
that |NU (S)| ≥ |S| − |B| + ρ.

Let S ⊆ B and T ⊂ U . Let XS,T be an indicator random variable for the
event that all the out-edges from S go to B ∪ T , and all the out-edges of U \ T
do not go to S (we use the term “out edges” even though the graph is not
directed; our intention is simply the edges connecting these parts). As a result,
|NU (S)| ≤ |T |. Then, the probability that XS,T equals 1 is the probability that
all the μ · |S| out edges of S go to B ∪T only, and all the μ · (|U|− |T |) out edges
of U \ T go to {�} \ S only. Since we have independency everywhere, we have:

Pr [XS,T = 1] =
( |B| + |T |

�

)|S|·μ
·
(

� − |S|
�

)(|U|−|T |)·μ

We are interested in the event
∑

XS,T for all S ⊆ B, T ⊆ U s.t. |B| − ρ ≤
|S| ≤ |B|, |T | ≤ |S| − |B| + ρ (denote this condition by (�)), and we want to
show that it is greater than 0 with very low probability. We have:
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Pr

⎡

⎣
∑

S,T, s.t. (
)

XS,T > 0

⎤

⎦ ≤
∑

S,T s.t. (
)

Pr [XS,T = 1] (1)

≤
∑

S,T s.t. (
)

( |B| + |T |
�

)|S|·μ
·
(

� − |S|
�

)(|U|−|T |)·μ
(2)

=
|B|∑

|S|=|B|−ρ

|S|−|B|+ρ∑

|T |=0

(|B|
|S|

)
·
(|U|

|T |
)

·
( |B| + |T |

�

)|S|·μ
·
(

� − |S|
�

)(|U|−|T |)·μ

We do not provide an asymptotic analysis for this expression since we loose
accuracy by using any upper bound for any one of the terms in it. We next
compute this expression for some concrete choice of parameters. We note that
the use of the union bound in (2) already reduces the tightness of our analysis,
which may cause more redundant checks or base-OTs than actually needed.

Concrete Choice of Parameters. Claim 33 states that the bound is achieved
for an appropriate choice of parameters. We numerically computed the proba-
bility in (1) for a variety of parameters, and obtained that the probability is less
than 2−ρ with ρ = 40, for the following parameters:

κ 128 80

|B| 62 49 46 44 43 42 41 53 48 46 42

μ 2 3 4 5 6 8 15 3 4 5 10

� 190 177 174 172 171 170 169 133 128 125 122

#-checks 380 531 696 860 1,026 1,360 2,535 399 512 625 1,220

In Section 4.2, we run empirical tests to see which parameters perform best
in which setting. We recall that in case we check all pairs (i.e., Protocol 2), we
have either � = κ + ρ = 128 + 40 = 168 base-OTs with

(
�
2

)
= 14,028 checks, or

� = κ + ρ = 80 + 40 = 120 base-OTs with 7,140 checks.

3.3 Correlation Robustness Instead of a Random Oracle

In this section, we show how a correlation robustness assumption (with respect
to a high min-entropy source) suffices for proving the security of our protocol.

Correlation Robust Function. We first recall the standard definition of a cor-
relation robust function from [16], as well as a stronger version of the assumption.
Let U� denote the uniform distribution over strings of length �.

Definition 35 (Correlation Robustness). An efficiently computable function
H : {0, 1}κ → {0, 1}n is correlation robust if it holds that:

{t1, . . . , tm,H(t1 ⊕ s), . . . , H(tm ⊕ s)} c≡ {Um·κ+m·n}
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where t1, . . . , tm, s ∈ {0, 1}κ are uniformly and independently distributed. H is
strongly correlation robust if for every t1, . . . , tm ∈ {0, 1}κ it holds that:

{H(t1 ⊕ s), . . . , H(tm ⊕ s)} c≡ {Um·n}
where s ∈ {0, 1}κ is uniform.

Another way of looking at this is as a type of pseudorandom function. Specif-
ically, define Fs(t) = H(t ⊕ s). Then, H is correlation robust if and only if F is
a weak pseudorandom function, and H is strongly correlation robust if and only
if F is a (non-adaptive) pseudorandom function. For proving the security of our
protocol, we need to consider the above notions but where s is chosen from a
high min-entropy source. Thus, we consider the case where H is also somewhat
an extractor.

Let X be a random variable taking values from {0, 1}�. The min-entropy of
X , denoted H∞(X ), is: H∞(X )

def
= minx

{
log 1

Pr[X=x]

}
= − log (maxx {Pr [X = x]}) .

If a source X has a min entropy κ we say that X is a “κ-source”. For instance,
a κ-source may be κ uniform and independent bits, together with some � − κ
fixed bits (in an arbitrary order), or κ uniform bits with some � − κ bits that
dependent arbitrarily on the first random bits. We are now ready to define min-
entropy correlation robustness.

Definition 36 (Min-Entropy Correlation Robustness). An efficiently
computable function H : {0, 1}� → {0, 1}n is κ-min-entropy correlation robust
if for all (efficiently samplable) κ-sources X on {0, 1}� it holds that:

{t1, . . . , tm,H(t1 ⊕ s), . . . , H(tm ⊕ s)} c≡ {Um·�+m·n}
where t1, . . . , tm are chosen uniformly and independently at random from {0, 1}�,
and s ← X . H is κ-min-entropy strongly correlation robust if for all (efficiently
samplable) κ-sources X on {0, 1}� and every (distinct) t1, . . . , tm ∈ {0, 1}� it
holds that:

{H(t1 ⊕ s), . . . , H(tm ⊕ s)} c≡ {Um·n}
where s ← X .

In Protocol 2, the values that are used to mask the inputs of the sender are
H(tj),H(tj ⊕ s) (or, H(tj ⊕ (s ∗ ej)),H(tj ⊕ (s ∗ ej) ⊕ s) in case the adversary
uses different ri’s). Since the receiver is the one that effectively chooses the tj ’s
values, it may choose values that are not distributed uniformly or even choose
them maliciously. As a result, we prove the security of Protocol 2 in its current
form using the strong κ-min-entropy correlation robustness assumption.

However, it is also possible to modify the protocol and rely only on κ-min-
entropy correlation robustness, as follows. In Step 4c (of Protocol 2), in each
iteration 1 ≤ j ≤ m, the sender chooses a random value dj ∈ {0, 1}�, and sends
the values (dj , y

0
j , y1

j ), where:

y0
j = x0

j ⊕ H(j,qj ⊕ dj) and y1
j = x1

j ⊕ H(j,qj ⊕ dj ⊕ s) .
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Then, PR computes xj = y
rj

j ⊕ H(j, tj ⊕ dj). Since the dj values are chosen
last, this ensures that the values used inside H are always uniformly distributed.
Thus, κ-min-entropy correlation robustness suffices.

In Step 3 of Protocol 2 we also use the function H; however, the property that
is needed from H for these invocations is collision resistance and not correlation
robustness. Therefore, to explicitly emphasize the differences between the two
assumptions, we say that the parties use a collision resistant function h in Step 3
of the protocol, and a (variant of) correlation robust function in Step 4c.

Theorem 37

1. Assume that H is strongly κ-min-entropy correlation robust, h is a collision
resistant function and G is a pseudo-random generator. Then, Protocol 2
securely computes the m×OTn functionality in the �×OTκ-hybrid model in
the presence of a static malicious adversary.

2. Assume that H is κ-min-entropy correlation robust, h is a collision resistant
function and G is a pseudo-random generator. Then, the above-described
modified protocol securely computes the m×OTn functionality in the �×OTκ-
hybrid model in the presence of a static malicious adversary.

A proof for this theorem appears in the full version [2].

3.4 Achieving Covert Security

In this section, we present a more efficient protocol (with fewer base-OTs and
checks) with the property that any deviation from the protocol that can result
in a breach of security will be detected with probability at least 1/2. For details
on the definition of covert security, we refer to [3]. Our protocol below is secure
under the strong explicit-cheat formulation with deterrent factor ε = 1

2 .
As in the malicious case, given the set of keys {k0

i ,k
1
i }, and the messages

u1, . . . , u�, the sets B and U are implicitly defined, and we want to catch the
adversary if its behavior defines a set B with “high” cardinality. Here, in con-
trast to the malicious case, we will be content with catching the adversary with
probability 1/2, instead of 1− 2−ρ as in the case of malicious adversaries. As we
will show below, our approach for the consistency check of r enables us to achieve
a deterrent factor of 1/2 at the cost of very few consistency checks. Concretely,
it will be enough to use 7 checks of pairs only.

The Protocol. In Step 3 of Protocol 2, the sender chooses t random pairs
{(αi, βi)}t

i=1 uniformly and independently at random, and sends them to the
receiver. The receiver sends Hαi,βi

for each pair (αi, βi) that it was asked. Then,
the sender performs the same checks as in the previous protocol: It checks that
the receiver replied with hashes for all the pairs (αi, βi) that it was asked for,
and that the hashes that were sent are correct (i.e., as in Step 3b of Protocol 2).

The Analysis. Although at first sight the analysis below ignores attacks of
Type 2, these attacks are still taken into consideration. This is because when-
ever the adversary tries to cheat and learn bits of s where rα = rβ , it gets



More Efficient OT Extensions with Security for Malicious Adversaries 693

caught doing so with probability 1/2, which is exactly the deterrent factor. The
analysis therefore focuses on the case that the adversary cheats when |B| is “too
large”, and shows that when we have t checks and |B| is large enough, then the
probability that the adversary passes the verification is less than 1/2.

We again consider the graph of checks, and let V = [�] and the edges are
all possible checks. We divide [�] to B and U , and we show that when using t
checks, the probability that the adversary succeeds to pass the verification when
B is “large” is less than 1/2.

There are �2 edges overall, where 2|B| · |U| are edges between B and U , and
|B|2 + |U|2 edges are between B and B, or U and U . We say that an edge is
“good” if it goes between B and U . Recall that in such a check, the adversary
is caught with probability at least 1/2.

For the first edge that is chosen, the probability that it is a good edge is
2|B| · |U|/�2. However, once this specific edge between B and U is chosen, an
edge between B and U that is pairwise non-adjacent with the previously chosen
edge is not longer good, since the probability that the adversary will get caught
here is not 1/2. Therefore, we denote by goodi the probability of choosing the
(i+1)th “good” edge. That is, the probability that edge ej is good, conditioned
on the event that i good edges were previously chosen in the set {e1, . . . , ej−1}.
We have that:

goodi =
2 · (|B| − i) · (|U| − i)

�2
.

This holds because once a good edge is chosen, we do not want to choose an
edge that is adjacent to it. As a result, with each good edge that is chosen, the
effective size of the set B and U is decreased by 1.

In contrast, we denote by badi the probability that the next chosen edge is
bad, given that there were i previous good edges. That is, a bad edge is either
an edge between B and B, an edge between U and U , or is adjacent to one of the
2i vertices of the previously chosen good edges. This probability is as follows:

badi =
|B|2 + |U|2 + 2i · |U| + 2i · |B| − 2i2

�2
=

|B|2 + |U|2 + 2i(� − i)
�2

That is, a bad edge can be either an edge from B to B, U to U , or an edge
between the i vertices that were chosen with any other vertex. Note, however,
that there are some edges that are counted twice and thus we remove 2i2. In
addition, observe that goodi + badi = 1.

When we have t checks, we may have between 0 to t good edges. In case
there are d good edges, the probability that the adversary succeeds to cheat is
2−d. In order to ease the calculation, let good be the maximal probability of
good0, . . . , goodt−1, and let bad be the maximal probability of bad0, . . . , badt.
We get that:

good =
2 · |B| · |U|

�2

and for t < �/2:

bad =
|B|2 + |U|2 + 2t(� − t)

�2
.
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Now, consider the edges e1, . . . , et. The probability that the adversary succeeds
in its cheating is the union of succeeds in cheating in each possible combination
of checks. In particular, we may have d = 0, . . . , t good edges, and for each d,
there are

(
t
d

)
possible ways to order d good edges and t−d “bad” edges. Finally,

when we have d good edges, the probability that the adversary succeeds to cheat
is 2−d. We therefore have that the probability that the adversary successfully
cheats without being caught is less than:

t∑

d=0

(
t

d

)

· goodd · badt−d · 2−d =

t∑

d=0

(
t

d

)

·
(

1

2
· good

)d

· badt−d =

(
1

2
· good + bad

)t

.

It is easy to verify that this probability is less than 0.5 for |B| = 38, |U| =
128 (and so overall � = 166), with only 7 checks. In which case, we have that
good = 0.353, bad = 0.728, and the probability is less than 0.495.

4 Performance Evaluation

We experimentally compare the performance of our protocols to previous works
using the same programming language and running benchmarks on the same
machines: We first describe our implementation (§4.1), empirically evaluate and
compare the identified active and covert parameters of §3.2 and §3.4 (§4.2), and
compare our work to the active-secure protocol of [30] with optimizations of [11]
and to the passive-secure protocol of [16] with optimizations from [1] (§4.3).

Benchmarking Environment: We run our experiments in two settings: a local
setting and a cloud setting. In the local setting, the sender and receiver routines
run on two Desktop PCs which each have 16 GB RAM, an Intel Haswell i7-
4770K CPU with 4 cores and AES-NI support, and are connected via Gigabit
Ethernet. In the cloud setting, we run the OT sender routine on an Amazon
EC2 m3.medium instance with a 2.5 GHz, Intel Xeon E5-2670v2 CPU and 3.75
memory located in North Virginia (US East) and run the OT receiver routine on
one of our Desktop PCs in Europe. The average bandwidth usage in the cloud
setting was 52 MBit/s and the average ping latency (round-trip-time) was 95 ms.

4.1 Implementation

We build on the passive-secure and publicly available OT extension C++ imple-
mentation of [1]. We perform the OT extension protocol and consistency checks
block-wise, i.e., we split m OTs into b blocks of size w = 218, with b = �m

w �.
These blocks can be processed independently of each other and using multiple
threads. For all experiments we evaluate the random OT version of [1], since the
additional overhead to obtain the traditional OT functionality is equal for all
protocols, and output n = 8-bit strings. For the base-OTs we use [28] for the
passive-secure OT extension protocol and [31] in decryption mode with security
based on the Decisional Diffie-Helmann (DDH) assumption for the covert- and
active-secure OT extension protocols; we implement both using elliptic curves.
We assume κ = 128-bit long-term security with ρ = 40 statistical security. Fur-
ther implementation details are given in Appendix §A.
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4.2 Parameter Evaluation

We evaluate the asymptotic communication and run-time in the local and cloud
setting on 223 random OTs for our most promising active security (cf. Table 3.2)
and covert security (cf. §3.4) parameters, and compare them to the active-secure
protocol of [30] with � = � 8

3κ� = 342 base-OTs and �/2 = 171 checks, and to the
passive-secure protocol of [16] with � = 128 base-OTs and no checks. The results
are depicted in Table 2 where the parameters are given as (#base-OTs;#checks).
We also include the pairwise comparison Protocol 2 (which performs all pos-
sible checks) with parameters (168;14,028) and discuss its special features in
Appendix §A.3.

Table 2. Run-time and communication for active, covert, and passive security using
different parameters (#base-OTs;#checks) on 223 random OTs. Minimum values are
marked in bold.

Security Active Covert Passive
Parameters [30] 190;380 177;531 174;696 170;1,360 168;14,028 166;7 [16]

Comm. [MB] 342 191 178 175 173 195 166 128

Local Setting
Run-time [s] 16.988 11.938 13.201 18.218 25.918 221.382 10.675 9.579
Cloud Setting
Run-time [s] 110.223 64.698 63.845 63.712 83.414 454.595 46.718 33.838

For the communication we can observe that our parameter sets have 50% −
55% of the communication of [30]. Furthermore, while decreasing the number of
base-OTs reduces the overall communication until 170 base-OTs, the overhead
in communication for sending the consistency check hashes outweighs the gains
from the reduced number of base-OTs. Hence, using less than 170 base-OTs
for block-size w = 218 would increase both communication and computation
complexity.

For the run-time we can observe that our best-performing parameter has
70% of the run-time of [30] in the local setting and 58% of the run-time in
the cloud setting. Furthermore, the best-performing parameter differs between
the local and cloud setting: while the (190;380) parameter performs best in the
local setting, the (174;696) parameter achieves the lowest run-time in the cloud
setting. This can be explained by the smaller bandwidth of the cloud setting,
which influences the run-time of all parameters differently. For instance, when
switching from the local to the cloud setting, the run-time of [30] increases by
factor 6.5, whereas that of our pairwise comparison Protocol 2 with parameter
(168;14,028) only increases by factor 2. As expected, the covert parameter (166;7)
performs better than the parameters for active security.

4.3 Comparison with Related Work

We empirically evaluate and compare our protocol on a varing number of OTs in
its active and covert versions to the passive-secure OT extension protocol of [16]
with optimizations of [1,18], and the active-secure OT extension protocol of [30]
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Fig. 1. Run-time for random OT extension protocols for 8-bit strings with active,
covert, and passive security in the local- and cloud setting. Time for 226 OTs given
in {}.

with optimizations of [11]. The results for the local and cloud setting are given
in Figure 1. We benchmark the protocols on an exponentially increasing number
of OTs: from 210 to 229 for the local setting and from 210 to 226 for the cloud
setting. The passive-secure [16] serves as bottom-line for the performance of the
other protocols to show the (small) gap to the covert- and active-secure protocols.
For our protocol we use the parameters from our parameter evaluation in §4.2
which were shown to perform best in the respective setting, i.e., (190;380) for
the local setting, (174;696) for the cloud setting, and (166;7) for covert security.
For the [30] protocol we use � = � 8

3κ� = 342 base-OTs and �/2 = 171 checks.
We excluded the active-secure protocol of [20], since its communication overhead
is at least two orders of magnitude higher than for the evaluated protocols and



More Efficient OT Extensions with Security for Malicious Adversaries 697

simply transferring the required data would result in higher run-times than those
of the other protocols.

For the results in the local setting we can observe that our active-secure
OT extension protocol outperforms the [30] protocol for all OTs tested on and
scales better with increasing number of OTs. Furthermore, our active-secure
protocol converges towards the passive-secure [16] protocol when more OTs are
performed, decreasing the overhead for active security down to 121% for 226

OTs, compared to an overhead of 171% for the [30] protocol. The convergence of
our protocol can be explained by the amortizing costs of the consistency checks.
Since the consistency checks are performed on blocks of fixed width 218, their
amortization happens for a larger number of OTs. The covert version of our
protocol has only 111% overhead compared to the passive-secure protocol.

In the cloud setting, the performance of all protocols decreases, as expected.
However, the performance of the passive-secure protocol decreases less signifi-
cantly compared to the covert- and active-secure protocols. This can be explained
by the smaller communication complexity of the passive-secure protocol, since
the run-time overhead scales with the communication overhead of the respec-
tive protocol. For the active-secure protocol of [30] with communication over-
head of 267% compared to the passive-secure protocol, the run-time overhead
increases from 171% to 294%. In comparison, for our active-secure protocol with
communication overhead of 136%, the run-time overhead increases from 121%
to 163%. Finally, for our covert protocol with communication overhead of 129%,
the run-time overhead increases from 111% to 129%.
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A Implementation Details

In this section we provide details about the architecture of our implementa-
tion (§A.1), the method we use to allow block-wise evaluation of our protocol
and [30] (§A.2), and discuss the benefits of the pairwise-comparison method
described in Protocol 2 (§A.3).

A.1 Architecture

We designed the architecture of the active-secure OT extension implementa-
tions such that the communication-intensive passive-secure OT extension rou-
tine and the computation-intensive checks on receiver side are performed by
separate threads and can be further parallelized independently of each other.
This architecture allows us to instantiate the implementation specifically to the
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available resources of the deployment scenario. More detailed, we can perform
the communication-intensive operations with as many threads as required to
fully utilize the bandwidth and can then focus the remaining processing power
on the computationally-intensive operations. This kind of parallelization offers
benefits especially for deployment scenarios of OT extension with small band-
width, where the network is the bottle-neck for OT extension and where further
parallelization of communication-intensive operations would only result in con-
gestion on the network interface. Although this architecture favors our protocol
which is computationally more intensive than the protocols of [16] and [30], we
argue that it nicely fits to today’s increasing number of CPU cores.

A.2 3-Step OT Extension

Note that in order to allow block-wise evaluation of our protocol and [30], the
base-OTs have to be renewed. For the block-wise evaluation of m × OTn in b
blocks of width w bits (b = �m

w �), we perform a 3-step OT extension: In the first
step, we perform � × OTb� base-OTs using the protocol of [31]. In the second
step, we extend � × OTb� to b� × OTw using the respective active secure OT
extension protocol. In the third step, we again perform the OT extension step
b-times on each �-bit interval, i.e., we extend � × OTw to w × OTn b-times and
thereby obtain bw ≥ m OTs on n-bit strings.

A.3 Advantages of the Pairwise Comparison Protocol

Although the pairwise comparison Protocol 2 with parameter (168;14,028) is the
slowest in our evaluation in §4.2, we stress that it has several advantages which
make it favorable in settings with high computation power. The main advantage
is that the receiver can pre-compute all checks directly after the base-OTs, since
all combinations are checked and hence the sender does not need to send a
mapping to the receiver. Additionally, if a computationally powerful device such
as a GPU is present, the receiver can use it for computing the checks in parallel.

B Active Secure OT Extension of [30]

In Protocol 4 we depict the actively-secure OT extension protocol of [30] with
optimizations from [11].
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PROTOCOL 4 (Active secure OT extension protocol of [30])

– Input of PS : m pairs (x0
j , x

1
j ) of n-bit strings, 1 ≤ j ≤ m.

– Input of PR : m selection bits r = (r1, . . . , rm).
– Common Input: Symmetric security parameter κ and � = 	 8

3
κ
.

– Oracles and primitives: Ideal � × OTκ functionality, pseudorandom
generator G, correlation-robust function H, and random-oracle H ′.

1. Initial OT Phase:
(a) PS initializes a random vector s = (s1, . . . , s�) ∈ {0, 1}� and PR

chooses � pairs of seeds k0
i ,k

1
i each of size κ.

(b) The parties invoke the � × OTκ-functionality, where PS acts as the
receiver with input s and PR acts as the sender with inputs (k0

i ,k
1
i )

for every 1 ≤ i ≤ �.
For every 1 ≤ i ≤ �, let ti = G(k0

i ). Let T = [t1| . . . |t�] denote the m × �
bit matrix where its ith column is ti for 1 ≤ i ≤ �. Let tj denote the jth
row of T for 1 ≤ j ≤ m.

2. OT Extension Phase:
(a) PR computes ti = G(k0

i ) and ui = ti ⊕ G(k1
i ) ⊕ r, and sends ui to

PS for every 1 ≤ i ≤ �.
(b) For every 1 ≤ i ≤ �, PS defines qi = (si ·ui)⊕G(ksi

i ). qi = (si ·r)⊕ti.)
3. Consistency Check of r:

(a) PS chooses a uniform random permutation π : {1, ..., �} �→ {1, ..., �}
with π(π(i)) = i and sends π to Bob. Let Π(π) = {i|i ≤ π(i)}.

(b) For all i ∈ Π(π), PS computes di = si ⊕ sπ(i) and zi = qi ⊕ qπ(i)

sends di to PR.
(c) PR computes z′i = (di · r) ⊕ ti ⊕ tπ(i).
(d) PS and PR check equality between Z = z1||...||z��/2� and Z′ =

z′
1||...||z��/2� as follows:
i. PS samples w ∈R {0, 1}κ, computes c = H ′(Z||w), sends c to PR.
ii. PR then sends Z′ to PS .

iii. PS checks Z
?
= Z′ and aborts on failure. Else sends (Z,w) to PR.

iv. PR checks that Z
?
= Z′ and c

?
= H ′(Z′||w) and aborts on failure.

(e) For all ��/2 indices in i ∈ Π(π) where i is the kth index with 1 ≤
k ≤ ��/2, PS sets q′

k = qi and s′
k = si and PR sets t′

k = ti.

4. OT Extension (continue):
(a) Let Q′ = [q′1| . . . |q′��/2�] denote the m × ��/2 bit matrix where its

ith column is q′i. Let q′
j denote the jth row of the matrix Q′. (Note

that q′i = (s′
i · r) ⊕ t′i and q′

j = (rj · s′) ⊕ t′
j .)

(b) PS sends (y0
j , y1

j ) for every 1 ≤ j ≤ m, where y0
j = x0

j ⊕ H(j,q′
j) and

y1
j = x1

j ⊕ H(j,q′
j ⊕ s′).

(c) For 1 ≤ j ≤ m, PR computes xj = y
rj

j ⊕ H(j, t′
j).

5. Output: PR outputs (xr1
1 , . . . , xrm

m ); PS has no output.
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Abstract. Secure 2-party computation (2PC) is becoming practical for
some applications. However, most approaches are limited by the fact that
the desired functionality must be represented as a boolean circuit. In
response, random-access machines (RAM programs) have recently been
investigated as a promising alternative representation.

In this work, we present the first practical protocols for evaluating
RAM programs with security against malicious adversaries. A useful effi-
ciency measure is to divide the cost of malicious-secure evaluation of f
by the cost of semi-honest-secure evaluation of f . Our RAM protocols
achieve ratios matching the state of the art for circuit-based 2PC. For sta-
tistical security 2−s, our protocol without preprocessing achieves a ratio
of s; our online-offline protocol has a pre-processing phase and achieves
online ratio ∼ 2s/ log T , where T is the total execution time of the RAM
program.

To summarize, our solutions show that the “extra overhead” of obtain-
ing malicious security for RAM programs (beyond what is needed for
circuits) is minimal and does not grow with the running time of the
program.

1 Introduction

General secure two-party computation (2PC) allows two parties to perform
“arbitrary” computation on their joint inputs without revealing any informa-
tion about their private inputs beyond what is deducible from the output of
computation. This is an extremely powerful paradigm that allows for applica-
tions to utilize sensitive data without jeopardizing its privacy.

From a feasibility perspective, we know that it is possible to securely com-
pute any function, thanks to seminal results of [11,41]. The last decade has
also witnessed significant progress in design and implementation of more prac-
tical/scalable secure computation techniques, improving performance by orders
of magnitude and enabling computation of circuits with billions of gates.
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These techniques, however, are largely restricted to functions represented as
Boolean or arithmetic circuits, whereas the majority of applications we encounter
in practice are more efficiently captured using random-access memory (RAM)
programs that allow constant-time memory lookup. Modern algorithms of prac-
tical interest (e.g., binary search, Dijkstra’s shortest-paths algorithm, and the
Gale-Shapely stable matching algorithm) all rely on fast memory access for effi-
ciency, and suffer from major blowup in running time otherwise. More generally,
a circuit computing a RAM program with running time T requires Θ(T 2) gates
in the worst case, making it prohibitively expensive (as a general approach) to
compile RAM programs into a circuit and then apply known circuit 2PC tech-
niques.

A promising alternative approach uses the building block of oblivious RAM,
introduced by Goldreich and Ostrovsky [12]. ORAM is an approach for mak-
ing a RAM program’s memory access pattern input-oblivious while still retain-
ing fast (polylogarithmic) memory access time. Recent work in 2PC has begun
to investigate direct computation of ORAM computations as an alternative to
RAM-to-circuit compilation [10,13,19,27,28]. These works all follow the same
general approach of evaluating a sequence of ORAM instructions using tradi-
tional circuit-based 2PC phases. More precisely, they use existing circuit-based
MPC to (1) initialize and setup the ORAM, a one-time computation with cost
proportional to the memory size, (2) evaluate the next-instruction circuit which
outputs “shares” of the RAM program’s internal state, the next memory opera-
tions (read/write), the location to access, and the data value in case of a write.
All of these existing solutions provide security only against semi-honest adver-
saries.

Challenges for malicious-secure RAM evaluation. It is possible to take a semi-
honest secure protocol for RAM evaluation (e.g., [13]) and adapt it to the mali-
cious setting using standard techniques. Doing so näıvely, however, would result
in several major inefficiencies that are avoidable. We point out three significant
challenges for efficient, malicious-secure RAM evaluation:

1: Integrity and consistency of state information, by which we mean
both the RAM’s small internal state and its large memory both of which are
passed from one CPU step to the next. A natural approach for handling internal
state is to have parties hold secret shares of the state (as in [13]), which they
provide as input to a secure evaluation of the next-instruction circuit. Using
standard techniques for malicious-secure SFE, it would incur significant overhead
in the form of oblivious transfers and consistency checks to deal with state
information as inputs to the circuit.

A natural approach suitable for handling RAM memory is to evaluate an
Oblivious RAM that encrypts its memory contents. In this approach, the par-
ties must evaluate a next-instruction circuit that includes both encryption and
decryption sub-circuits. Evaluating a block cipher’s circuit securely against mali-
cious adversaries is already rather expensive [22], and this approach essentially
asks the parties to do so at every time-step, even when the original RAM’s
behavior is non-cryptographic. Additional techniques are needed to detect any
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tampering of data by either participant, such as computing/verifying a MAC of
each memory location access inside the circuit or computing a “shared” Merkle-
tree on top of the memory in order to check its consistency after each access.
All these solutions incur major overhead when state is passed or memory is
accessed and are hence prohibitively expensive (see full version [1] for a concrete
example).

2: Compatibility with batch execution and input-recovery tech-
niques. In a secure computation, every input bit must be “touched” at some
point. Oblivious RAM programs address this with a pre-processing phase that
“touches” the entire (large) RAM memory, after which the computation need
not “touch” every bit of memory. Since an offline phase is already inevitable for
ORAMs, we would like to use such a phase to further increase the efficiency of
the online phase of the secure evaluation protocol. In particular, recent tech-
niques of [15,26] suggest that pre-processing/batching garbled circuits can lead
to significant efficiency improvement for secure evaluation of circuits. The fact
that the ORAM next-instruction circuits are used at every timestep and are
known a priori makes the use of batch execution techniques even more critical.

Another recent technique, called input-recovery [23], reduces the number of
garbled circuits in cut-and-choose by a factor of 3 by only requiring that at
least one of the evaluated circuits is correct (as opposed to the majority). This
is achieved by running an input-recovery step at the end of computation that
recover’s the garbler’s private input in case he cheats in more than one evaluated
circuit. The evaluator then uses the private input to do the computation on his
own. A natural applications of this technique in case of RAM programs, would
require running the input-recovering step after every timestep which would be
highly inefficient (see full version [1] for a concrete example).

3: Run-time dependence. The above issues are common to any com-
putation that involves persistent, secret internal state across several rounds of
inputs/outputs (any so-called reactive functionality). RAM programs present an
additional challenge, in that only part of memory is accessed at each step, and
furthermore these memory locations are determined only at run-time. In partic-
ular, it is non-trivial to reconcile run-time data dependence with offline batching
optimizations.

Our approach: In a RAM computation, both the memory and internal state
need to be secret and resist tampering by a malicious adversary. As mentioned
above, the obvious solutions to these problem all incur major overhead whenever
state is passed from one execution to the next or memory is accessed. We bypass
all these overheads and obtain secrecy and tamper-resistance essentially for free.
Our insight is that these are properties also shared by wire labels in most garbling
schemes — they hide the associated logical value, and, given only one wire label,
it is hard to “guess” the corresponding complementary label.

Hence, instead of secret-sharing the internal state of the RAM program
between the parties, we simply “re-use” the garbled wire labels from the output
of one circuit into the input of the next circuit. These wire labels already inherit
the required authenticity properties, so no oblivious transfers or consistency
checks are needed.
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Similarly, we also encode the RAM’s memory via wire labels. When the RAM
reads from memory location �, we simply reuse the appropriate output wire labels
from the most recent circuit to write to location � (not necessarily the previous
instruction, as is the case for the internal state). Since the wire labels already
hide the underlying logical values, we only require an oblivious RAM that hides
the memory access pattern and not the contents of memory. More concretely,
this means that we do not need to add encryption/decryption and MAC/verify
circuitry inside the circuit that is being garbled or perform oblivious transfers on
shared intermediate secrets. Importantly, if the RAM program being evaluated
is “non-cryptographic” (i.e., has a small circuit description) then the circuits
garbled at each round of our protocols will be small.

Of course, it is a delicate task to make these intuitive ideas work with the
state of art techniques for cut-and-choose. We present two protocols, which use
different approaches for reusing wire labels.

The first protocol uses ideas from the LEGO paradigm [9,33] for 2PC and
other recent works on batch-preprocessing of garbled circuits [15,26]. The idea
behind these techniques is to generate all the necessary garbled circuits in an
offline phase (before inputs are selected), open and check a random subset, and
randomly assign the rest into buckets, where each bucket corresponds to one
execution of the circuit. But unlike the setting of [15,26], where circuits are
processed for many independent evaluations of a function, we have the additional
requirement that the wire labels for memory and state data should be directly
reused between various garbled circuits. Since we cannot know which circuits
must have shared wire labels (due to random assignment to buckets and run-
time memory access pattern), we use the “soldering” technique of [9,33] that
directly transfers garbled wire labels from one wire to another, after the circuits
have been generated. However, we must adapt the soldering approach to make
it amenable to soldering entire circuits as opposed to soldering simple gates as
in [9,33]. For a discussion of subtle problems that arise from a direct application
of their soldering technique, see Section 3.

Our second approach directly reuses wire labels without soldering. As a
result, garbled circuits cannot be generated offline, but the scheme does not
require the homomorphic commitments required for the LEGO soldering tech-
nique. At a high level, we must avoid having the cut-and-choose phase reveal
secret wire labels that are shared in common with other garbled circuits. The
technique recently proposed in [31] allows us to use a single cut-and-choose
for all steps of the RAM computation (rather than independent cut-and-choose
steps for each time step), and further hide the set of opened/evaluated circuits
from the garbler using an OT-based cut-and-choose [18,22]. We observe that this
approach is compatible with the state of the art techniques for input-consistency
check [30,38].

We also show how to incorporate the input-recovery technique of [23] for
reducing the number of circuits by a factor of three. The naive solution of run-
ning the cheating recovery after each timestep would be prohibitively expensive
since it would require running a malicious 2PC for the cheating recovery circuit
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(and the corresponding input-consistency checks) at every timestep. We show a
modified approach that only requires a final cheating recovery step at the end
of the computation.

Based on some concrete measurements (see full version [1]), the “extra over-
head” of achieving malicious security for RAM programs (i.e. the additional cost
beyond what is needed for malicious security of the circuits involved in the com-
putation), is at least an order of magnitude smaller than the naive solutions and
this gap grows as the running time of the RAM program increases.

Related work. Starting with seminal work of [11,42], the bulk of secure multi-
party computation protocols focus on functions represented as circuits (arith-
metic or Boolean). More relevant to this work, there is over a decade’s worth of
active research on design and implementation of practical 2PC protocols with
malicious security based on garbled circuits [14,20,23–25,29,30,37,38], based on
GMW [32], and based on arithmetic circuits [8].

The work on secure computation of RAM programs is much more recent.
[13] introduces the idea of using ORAM inside a Yao-based secure two-party
computation in order to accommodate (amortized) sublinear-time secure com-
putation. The work of [10,28] study non-interactive garbling schemes for RAM
programs which can be used to design protocols for secure RAM program com-
putation. The recent work of [19], implements ORAM-based computation using
arithmetic secure computation protocol of [8], hence extending these ideas to
the multiparty case, and implementing various oblivious data-structures. SCVM
[27] and Obliv-C [44] provide frameworks (including programming languages)
for secure computation of RAM programs that can be instantiated using differ-
ent secure computation RAM programs on the back-end. The above work all
focus on the semi-honest adversarial model. To the best of our knowledge, our
work provides the first practical solution for secure computation of RAM pro-
gram with malicious security. Our constructions can be used to instantiate the
back-end in SCVM and Obliv-C with malicious security.

2 Preliminaries

2.1 (Oblivious) RAM Programs

A RAM program is characterized by a deterministic circuit Π and is executed in
the presence of memory M . The memory is an array of blocks, which are initially
set to 0n. An execution of the RAM program Π on inputs (x1, x2) with memory
M is given by:

RAMEval(Π,M, x1, x2)
st := x1‖x2‖0n; block := 0n; inst := ⊥
do until inst has the form (halt, z):

block := [if inst = (read, �) then M [�] else 0n]
r ← {0, 1}n; (st, inst, block) := Π(st, block, r)
if inst = (write, �) then M [�] := block

output z
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Oblivious RAM, introduced in [12], is a technique for hiding all information
about a RAM program’s memory (both its contents and the data-dependent
access pattern). Our constructions require a RAM program that hides only the
memory access pattern, and we will use other techniques to hide the contents
of memory. Throughout this work, when we use the term “ORAM”, we will be
referring to this weaker security notion. Concretely, such an ORAM can often be
obtained by taking a standard ORAM construction (e.g., [7,40]) and removing
the steps where it encrypts/decrypts memory contents.

Define I(Π,M, x1, x2) as the random variable denoting the sequence of val-
ues taken by the inst variable in RamEval(Π,M, x1, x2). Our precise notion of
ORAM security for Π requires that there exist a simulator S such that, for
all x1, x2 and initially empty M , the output S(1λ, z) is indistinguishable from
I(Π,M, x1, x2), where z is the final output of the RAM program on inputs
x1, x2.

2.2 Garbling Schemes

In this section we adapt the abstraction of garbling schemes [5] to our needs. Our
2PC protocol constructions re-use wire labels between different garbled circuits,
so we define a specialized syntax for garbling schemes in which the input and
output wire labels are pre-specified.

We represent a set of wire labels W as a m × 3 array. Wire labels W [i, 0]
and W [i, 1] denote the two wire labels associated with some wire i. We employ
the point-permute optimization [34], so we require lsb(W [i, b]) = b. The value
W [i, 2] is a single-bit translation bit, so that W [i,W [i, 2]] is the wire label that
encodes false for wire i. For shorthand, we use τ(W ) to denote the m-bit string
W [1, 2] · · · W [m, 2].

We require the garbling scheme to have syntax F ← Garble(f,E,D) where f
is a circuit, E and D represent wire labels as above.

For v ∈ {0, 1}m, we define W |v = (W [1, v1], . . . ,W [m, vm]), i.e., the wire
labels with select bits v. We also define W |∗x := W |x⊕τ(W ), i.e., the wire labels
corresponding to truth values x. The correctness condition we require for garbling
is that, for all f , x, and valid wire label descriptions E, D, we have:

Eval(Garble(F,E,D), E|∗x) = D|∗f(x)
If Y denotes a vector of output wire labels, then it can be decoded to a plain
output via lsb(Y )⊕τ(D), where lsb is applied component-wise. Hence, τ(D) can
be used as output-decoding information. More generally, if μ ∈ {0, 1}m is a mask
value, then revealing (μ, τ(D) ∧ μ) allows the evaluator to learn only the output
bits for which μi = 1.

Let W denote the uniform distribution of m × 3 matrices of the above form
(wire labels with the constraint on least-significant bits described above). Then
the security condition we need is that there exists an efficient simulator S such
that for all f, x,D, the following distributions are indistinguishable:



708 A. Afshar et al.

Real(f, x,D):
E ← W
F ← Garble(f,E,D)
return (F,E|∗x)

SimS(f, x,D):
E ← W
F ← S(f,E|∗x,D|∗f(x))
return (F,E|∗x)

To understand this definition, consider an evaluator who receives garbled
circuit F and wire labels E|∗x which encode its input x. The security definition
ensures that the evaluator learns no more than the correct output wires D|∗f(x).

Consider what happens when we apply this definition with D chosen from
W and against an adversary who is given only partial decoding information
(μ, τ(D) ∧ μ).1 Such an adversary’s view is then independent of f(x) ∧ μ. This
gives us a combination of the privacy and obliviousness properties of [5]. Fur-
thermore, the adversary’s view is independent of the complementary wire labels
D|∗

f(x)
, except possibly in their least significant bits (by the point-permute con-

straint). So the other wire labels are hard to predict, and we achieve an authen-
ticity property similar to that of [5].2

Finally, we require that it be possible to efficiently determine whether F is
in the range of Garble(f,E,D), given (f,E,D). For efficiency improvements, one
may also reveal a seed which was used to generate the randomness used in Garble.

These security definitions can be easily achieved using typical garbling schemes
used in practice (e.g., [21]). We note that the above arguments hold even when the
distribution W is slightly different. For instance, when using the Free-XOR opti-
mization [21], wire label matrices E and D are chosen from a distribution parame-
terized by a secret Δ, where E[i, 0]⊕E[i, 1] = Δ for all i. This distribution satisfies
all the properties of W that were used above.

Conventions for wire labels. We exclusively garble the ORAM circuit which has
its inputs/outputs partitioned into several logical values. When W is a descrip-
tion of input wire labels for such a circuit, we let st(W ), rand(W ), block(W )
denote the submatrices of W corresponding to the incoming internal state, ran-
dom tape, and incoming memory block. When W describes output wires, we
use st(W ), inst(W ) and block(W ) to denote the outgoing internal state, out-
put instruction (read/write/halt, and memory location), and outgoing memory
data block. We use these functions analogously for vectors (not matrices) of wire
labels.

2.3 (XOR-Homomorphic) Commitment

In addition to a standard commitment functionality Fcom, one of our protocols
requires an XOR-homomorphic commitment functionality Fxcom. This function-
ality allows P1 to open the XOR of two or more commited messages without
1 Our definition applies to this case, since a distinguisher for the above two distribu-

tions is allowed to know D which parameterizes the distributions.
2 We stress that the evaluator can indeed decode the garbled output (using τ(D) and

the select bits), yet cannot forge valid output wire labels in their entirety. This
combination of requirements was not considered in the definitions of [5].



How to Efficiently Evaluate RAM Programs with Malicious Security 709

The functionality is initialized with internal value
i = 1. It then repeatedly responds to commands as
follows:

– On input (commit, m) from P1, store (i, m) in-
ternally, set i := i+1 and output (committed, i)
to both parties.

– On input (open, S) from P1, where S is a set of
integers, for each i ∈ S find (i, mi) in memory.
If for some i, no such mi exists, send ⊥ to P2.
Otherwise, send (open, S,

⊕
i∈S mi) to P2.

Fig. 1. XOR-homomorphic commitment functionality Fxcom

leaking any other information about the individual messages. The funcionality
is defined in Figure 1. Further details, including an implementation, can be found
in [9].

3 Batching Protocol

3.1 High-Level Overview

Roughly speaking, the LEGO technique of [9,33] is to generate a large quantity
of garbled gates, perform a cut-and-choose on all gates to ensure their correct-
ness, and finally assemble the gates together into a circuit which can tolerate a
bounded number of faulty gates (since the cut-and-choose will not guarantee that
all the gates are correct). More concretely, with sN gates and a cut-and-choose
phase which opens half of them correctly, a statistical argument shows that per-
muting the remaining gates into buckets of size O(s/ log N) each ensures that
each bucket contains a majority of correct gates, except with negligible proba-
bility in s.

For each gate, the garbler provides a homomorphic commitment to its input/
output wire labels, which is also checked in the cut and choose phase. This allows
wires to be connected on the fly with a technique called soldering. A wire with
labels (w0, w1) (here 0 and 1 refer to the public select bits) can be soldered to
a wire with labels (w′

0, w
′
1) as follows. If w0 and w′

0 both encode the same truth
value, then decommit to Δ0 = w0 ⊕w′

0 and Δ1 = w1 ⊕w′
1. Otherwise decommit

to Δ0 = w0 ⊕ w′
1 and Δ1 = w1 ⊕ w′

0. Then when an evaluator obtains the wire
label wb on the first wire, wb ⊕ Δb will be the correct wire label for the second
wire. To prove that the garbler hasn’t inverted the truth value of the wires by
choosing the wrong case above, she must also decommit to the XOR of each
wire’s translation bit (i.e., β ⊕ β′ where wβ and w′

β′ both encode false).
Next, an arbitrary gate within each bucket is chosen as the head. For each

other gate, we solder its input wires to those of the head, and output wires to
those of the head. Then an evaluator can transfer the input wire labels to each of



710 A. Afshar et al.

the gates (by XORing with the appropriate solder value), evaluate the gates, and
transfer the wire labels back. The majority value is taken to be the output wire
label of the bucket. The cut-and-choose ensures that each bucket functions as a
correct gate, with overwhelming probability. Then the circuit can be constructed
by appropriately soldering together the buckets in a similar way.

For our protocol we use a similar approach but work with buckets of cir-
cuits, not buckets of gates. Each bucket evaluates a single timestep of the RAM
program. To transfer RAM memory and internal state between timesteps, we
solder wires together appropriately (i.e., state input of time t soldered to state
output of time t − 1; memory-block input t soldered to memory-block output
of the previous timestep that wrote to the desired location). Additionally, the
approach of using buckets also saves an asymptotic log T factor in the number
of circuits needed for each timestep (i.e., the size of the buckets), where T is
the total running time of the ORAM, a savings that motivates similar work on
batch pre-processing of garbled circuits [15,26].

We remark that our presentation of the LEGO approach above is a slight
departure from the original papers [9,33]. In those works, all gates were garbled
using Free XOR optimization, where w0 ⊕ w1 is a secret constant shared on
all wires. Hence, we have only one “solder” value w0 ⊕ w′

0 = w1 ⊕ w′
1. If the

sender commits to only the “false” wire label of each wire, then the sender
is prevented from inverting the truth value while soldering (“false” is always
mapped to “false”). However, to keep the offset w0 ⊕ w1 secret, only one of the
4 possible input combinations of each gate can be opened in the cut-and-choose
phase. The receiver has only a 1/4 probability of identifying a faulty gate. This
approach does not scale to a cut-and-choose of entire circuits, where the number
of possible input combinations is exponential. Hence our approach of forgoing
common wire offsets w0 ⊕ w1 between circuits and instead committing to the
translation bits. As a beneficial side effect, the concrete parameters for bucket
sizes are improved since the receiver will detect faulty circuits with probability
1, not 1/4.

Back to our protocol, P1 generates O(sT/ log T ) garblings of the ORAM’s
next-instruction circuit, and commits to the circuits and their wire labels. P2

chooses a random half of these to be opened and aborts if any are found to be
incorrect.

For each timestep t, P2 picks a random subset of remaining garbled circuits
and the parties assemble them into a bucket Bt (this is the MkBucket subpro-
tocol) by having P1 open appropriate XORs of wire labels, as described above.
We can extend the garbled-circuit evaluation function Eval to EvalBucket using
the same syntax. Then EvalBucket inherits the correctness property of Eval with
overwhelming probability, for each of the buckets created in the protocol.

After a bucket is created, P2 needs to obtain garbled inputs on which to
evaluate it. See Figure 3 for an overview. Let Xt denote the vector of input wire
labels to bucket Bt. We use block(Xt), st(Xt), rand(Xt) to denote the sets of wire
labels for the input memory block, internal state, and shares of random tape,
respectively. The simplest wire labels to handle are the ones for internal state,
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GC(1)

GC(2)

GC(3)

maj
E(1) D(1)

E(2) D(2)

E(3) D(3)

Δ(1→2)

Δ(1→3)

Δ(2→1)

Δ(3→1)

Fig. 2. Illustration of MkBucket(B = {1, 2, 3}, hd = 1)

as they always come from the previous timestep. We solder the output internal
state wires of bucket Bt−1 to the input internal state wires of bucket Bt. Then
if Yt−1 were the output wire labels for bucket Bt−1 by P2, we obtain st(Xt) by
adjusting st(Yt−1) according to the solder values.

If the previous memory instruction was a read of a location that was last
written to at time t′, then we need to solder the appropriate output wires from
bucket Bt′ to the corresponding input wires of Bt. P2 then obtains block(Xt) by
adjusting the wire labels block(Yt′) according to the solder values. If the previous
memory instruction was a read of an uninitialized block, or a write, then P1

simply opens these input wire labels to all zero values (see GetInputpub).
To obtain wire labels rand(Xt), we have P1 open wire labels for its shares

(GetInput1) and have P2 obtain its wire labels via a standard OT (GetInput2).
At this point, P2 can evaluate the bucket (EvalBucket). Let Yt denote the

output wire labels. P1 opens the commitment to their translation values, so P2

can decode and learn these outputs of the circuit. P2 sends these labels back to
P1, who verifies them for authenticity. Knowing only the translation values and
not the entire actual output wire labels, P2 cannot lie about the circuit’s output
except with negligible probability.

3.2 Detailed Protocol Description

Let Π be the ORAM program to be computed. Define Π̃(st, block, inp1, inp2,1, . . . ,
inp2,n) = Π(st, block, inp1,

⊕
i inp2,i). Looking ahead, during the first timestep,

the parties will provide inp1 = x1 and inp2 = x2, while in subsequent timesteps
they input their shares r1 and r2 of the RAM program’s randomness. P2’s input
is further secret shared to prevent a selective failure attack on both x2 and his
random input r2. We first define the following subroutines / subprotocols:

prot Solder(A,A′) // A, A′ are wire labels descriptions
P1 opens Fxcom-commitments to τ(A) and τ(A′)

so that P2 receives τ = τ(A) ⊕ τ(A′)
for each position i in τ and each b ∈ {0, 1}:
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bucket Bt−1 bucket Btst(·)

block(·)

inst(·)

st(·)

block(·)

rand(·)

D(hdt−1)

Yt−1

E(hdt)

Xt

Δst = Solder(·, ·)
Adjust(·, Δst)

read from block
last written at t′

Δblock = Solder(·, ·)
Adjust(·, Δblock)

no read, or read

from uninitialized
block GetInputpub(·, 0n)

decode via τ(·)

GetInput1,GetInput2

Text above an edge refers to the entire
set of wire labels. Text below an edge
refers to the wire labels visible to P2
while evaluating.

Fig. 3. Overview of soldering and evaluation steps performed in the online phase

P1 opens Fxcom-commitments to A[i, b] and A′[i, τi ⊕ b]
so that P2 receives Δ[i, b] = A[i, b] ⊕ A′[i, τi ⊕ b]

return Δ

prot MkBucket(B, hd) // B is a set of indices
for each j ∈ B \ {hd}:

Δ(hd→j) = Solder(E(hd), E(j))
Δ(j→hd) = Solder(D(j),D(hd))

Δ(hd→hd) := all zeroes // for convenience

func Adjust(X,Δ) // X is a vector of wire labels
for each i do X̃[i] = X[i] ⊕ Δ[i, lsb(X[i])]
return X̃

func EvalBucket(B,X, hd)
for each j in B:

X̃j = Adjust(X,Δ(hd→j)))
Yj = Adjust(Eval(GC(j), X̃j),Δ(j→hd))

return the majority element of {Yj}j∈B

prot GetInputpub(A, x) // A describes wire labels; x public
P1 opens commitments of A|∗x; call the result X
P1 opens commitments of τ(A)
P2 aborts if lsb(X) �= τ(A) ⊕ x; else returns X

prot GetInput1(A, x) // A describes wire labels; P1 holds x

P1 opens commitments of A|∗x; return these values

prot GetInput2(A, x) // A describes wire labels; P2 holds x

for each position i in A, parties invoke an instance of Fot:
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P1 uses input (A[i, A[i, 2]], A[i, 1 ⊕ A[i, 2]])
P2 uses input xi

P2 stores the output as X[i]
P2 returns X

We now describe the main protocol for secure evaluation of Π. We let s denote a
statistical security parameter, and T denote an upper bound on the total running
time of Π.

1. [Pre-processing phase] Circuit garbling: P1 and P2 agree on the total
number N = O(sT/ log T ) of garbled circuits to be generated. Then, for each
circuit index i ∈ {1, . . . , N}:
(a) P1 chooses random input/output wire label descriptions E(i), D(i) and

commits to each of these values component-wise under Fxcom.
(b) P1 computes GC(i) = Garble(Π̃, E(i),D(i)) and commits to GC(i) under

Fcom.
2. [Pre-processing phase] Cut and choose: P2 randomly picks a subset Sc

of {1, . . . , N} of size N/2 and sends it to P1. Sc will denote the set of check
circuits and Se = {1, . . . , N} \ Sc will denote the set of evaluation circuits.
For check circuit index i ∈ Sc:
(a) P1 opens the commitments of E(i), D(i), and GC(i).
(b) P2 checks that GC(i) ∈ Garble(Π̃, E(i),D(i)); if not, P2 aborts.

3. Online phase: For each timestep t:
(a) Bucket creation: P2 chooses a random subset of Bt of Se of size

Θ(s/ log T ) and a random head circuit hdt ∈ Bt. P2 announces them
to P1. Both parties set Se := Se \ Bt.

(b) Garbled input: randomness: P1 chooses random r1 ← {0, 1}n, and
P2 chooses random r2,1, . . . , r2,n ← {0, 1}n. P2 sets

rand1(Xt) = GetInput1(rand1(E
(hdt)), r1)

rand2(Xt) = GetInput2(rand2(E
(hdt)), r2,1 · · · r2,n)

(c) Garbled input: state: If t > 1 then the parties execute:

Δst = Solder(st(D(hdt−1)), st(E(hdt)))

and P2 sets st(Xt) := Adjust(st(Yt−1),Δst).
Otherwise, in the first timestep, let x1 and x2 denote the inputs of P1

and P2, respectively. For input wire labels W , let st1(W ), st2(W ), st3(W )
denote the groups of the internal state wires corresponding to the initial
state x1‖x2‖0n. To prevent selective abort attacks, we must have P2

encode his input as n-wise independent shares, as above. P2 chooses
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random r2,1, . . . , r2,n ∈ {0, 1}n such that
∑n

i r2,i = x2, and sets:3

st(Xt) = GetInput1(st1(E
(hdt)), x1)

‖ GetInput2(st2(E
(hdt)), r2,1 · · · r2,n)

‖ GetInputpub(st3(E
(hdt)), 0n)

(d) Garbled input: memory block: If the previous instruction instt−1 =
(read, �) and no previous (write, �) instruction has happened, or if the
previous instruction was not a read, then the parties do block(Xt) =
GetInputpub(block(E(hdt)), 0n).
Otherwise, if instt−1 = (read, �) and t′ is the largest time step with
instt′ = (write, �), then the parties execute:

Δblock = Solder(block(D(hdt′ )), block(E(hdt)))

Then P2 sets block(Xt) := Adjust(block(Yt′),Δblock).
(e) Construct bucket: P1 and P2 run subprotocol MkBucket(Bt, hdt) to

assemble the circuits.
(f) Circuit evaluation: For each i ∈ Bt, P1 opens the commitment to

GC(i) and to τ(inst(D(i))). P2 does Yt = EvalBucket(Bt,Xt, hdt).
(g) Output authenticity: P2 sends Ỹ = inst(Yt) to P1. Both parties decode

the output instt = lsb(Ỹ ) ⊕ τ(inst(D(hdt))). P1 aborts if the claimed
wire labels Ỹ do not equal the expected wire labels inst(D(hdt))|∗instt . If
instt = (halt, z), then both parties halt with output z.

3.3 Security Proof

Due to page limits, we give only an overview of the simulator S and security
proof. The complete details are deferred to the full version [1].

Assumptions. The security of our protocol relies on the security underlying func-
tionalities, i.e. Fxcom,Fcom,Fot, a garbling scheme satisfying properties discussed
in Section 2.2, and an ORAM scheme satisfying standard properties discussed
in Section 2.1. All the functionalities can be instantiated using standard number
theoretic assumptions, and for UC security would be in the CRS model. The
garbling scheme can be instantiated using a standard PRF, or using stronger
assumptions such as correlation-secure hash functions for taking advantage of
3 We are slightly abusing notation here. More precisely, the parties are evaluating a

slightly different circuit Π̃ in the first timestep than other timesteps. In the first
timestep, it is P2’s input x2 that is encoded randomly, whereas in the other steps it
is P2’s share r2 of the random tape. However, the difference between these circuits
is only in the addition of new XOR gates, and only at the input level. When using
the Free-XOR optimization, these gates can actually be added after the fact, so the
difference is compatible with our pre-processing.
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free-XOR. As noted earlier, we do not require the garbling scheme to be adap-
tively secure, but if so, we can simplify the protocol by not committing to the
garbled circuits.

When P1 is corrupted: The pre-processing phase does not depend on
party’s inputs, so it is trivial to simulate the behavior of an honest P2. However,
S can obtain P1’s commitments to all circuits and wire labels. Hence, it can
determine whether each of these circuits is correct.

In each timestep t of the online phase, S can abort if an bucket is constructed
with a majority of incorrect circuits; this happens with only negligible proba-
bility. S can abort just as an honest P2 would abort if P1 cheats in the Solder,
GetInput1, or GetInputpub subprotocols. Using a standard argument from [24], S
can also match (up to a negligible difference) the probability of an honest P2

aborting due to cheating in the GetInput2 subprotocol. S can extract P1’s input
x1 in timestep t = 1 by comparing the sent wire labels to the committed wire
labels extracted in the offline phase. S can send x1 to the ideal functionality
and receive the output z. Then S generates a simulated ORAM memory-access
sequence. Each time in step (3g), S knows all of the relevant wire labels so
can send wire labels Ỹ chosen to encode the desired simulated ORAM memory
instruction.

When P2 is corrupted: In the pre-processing phase, S simulates commit
messages from Fcom. After receiving Sc from P2, it equivocates the opening of
the check sets to honestly garbled circuits and wire labels.

In each timestep t of the online phase, S sends random wire labels in the
GetInput1 and GetInputpub subprotocols, and also simulates random wire labels
as the output of Fot in the GetInput2 subprotocols. These determine the wire
labels that are “visible” to P2. S also extracts P2’s input x2 from its select bits
sent to Fot. It sends x2 to the ideal functionality and receives the output z. Then
S generates a simulated ORAM memory-access sequence.

In the Solder steps, S equivocates soldering values chosen to map visible
wire labels to their counterparts in other circuits, and chooses random soldering
values for the non-visible wire labels. When it is time to open the commitment
to the garbled circuit, S chooses a random set of visible output wire labels and
equivocates to a simulated garbled circuit generated using only these visible wire
labels. S also equivocates on the decommitment to the decoding information
τ(inst(D(i))), chosen so that the visible output wires will decode to the next
simulated ORAM memory instruction. Instead of checking P2’s claimed wire
labels in step (3g), the simulator simply aborts if these wire labels are not the
pre-determined visible output wire labels.

3.4 Efficiency and Parameter Analysis

In the offline phase, the protocol is dominated by the generation of many garbled
circuits, O(sT/ log T ) in all. In the full version [1], we describe computation of
the exact constant. As an example, for T = 1 million, and to achieve statistical
security 2−40, it is necessary to generate 10 · T circuits in the offline phase.
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In the online phase, the protocol is dominated by two factors: the homomor-
phic decommitments within the Solder subprotocol, and the oblivious transfers
(in GetInput2) in which P2 receives garbled inputs. For the former, we require
one decommitment for each input and output wire label (to solder that wire to
another wire) of the circuit Π̃. Hence the cost in each timestep is proportional
to the input/output size of the circuit and the size of the buckets. Continuing
our example from above (T = 106 and s = 40), buckets of size 5 are sufficient.

In the full version [1], we additionally discuss parameter settings for when
the parties open a different fraction (i.e., not 1/2) of circuits in the cut-and-
choose phase. By opening a smaller fraction in the offline phase, we require fewer
circuits overall, at the cost of slightly more circuits per timestep (i.e., slightly
larger buckets) in the online phase.

We require one oblivious transfer per input bit of P2 per timestep (indepen-
dent of the size of buckets). P2’s input is split in an s-way secret share to assure
input-dependent failure probabilities, leading to a total of sn OTs per timestep
(where n is the number of random bits required by Π̃). However, online oblivious
transfers are inexpensive (requiring only few symmetric-key operations) when
instantiated via OT extension [2,16], where the more expensive “seed OTs” will
be done in the pre-processing phase. In Section 5 we suggest further ways to
reduce the required number of OTs in the online phase.

Overall, the online overhead of this protocol (compared to the semi-honest
setting) is dominated by the bucket size, which is likely at most 5 or 7 for most
reasonable settings.

In terms of memory requirements, P1 must store all pre-processed garbled cir-
cuits, and P2 must store all of their commitments. For each bit of RAM memory,
P1 must store the two wire labels (and their decommitment info) corresponding
to that bit, from the last write-time of that memory location. P2 must store only
a single wire label per memory bit.

4 Streaming Cut-and-Choose Protocol

4.1 High-Level Overview

The standard cut-and-choose approach is (for evaluating a single circuit) for
the sender P1 to garble O(s) copies of the circuit, and receiver P2 to request half
of them to be opened. If all opened circuits are correct, then with overwhelming
probability (in s) a majority of the unopened circuits are correct as well.

When trying to apply this methodology to our setting, we face the challenge of
feeding past outputs (internal state, memory blocks) into future circuits. Näıvely
doing a separate cut-and-choose for each timestep of the RAM program leads to
problems when reusing wire labels. Circuits that are opened and checked in time
step t must have wire labels independent of past circuits (so that opening these
circuits does not leak information about past garbled outputs). Circuits used for
evaluation must be garbled with input wire labels matching output wire labels of
past circuits. But the security of cut and choose demands that P1 cannot know,
at the time of garbling, which circuits will be checked or used for evaluation.
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Our alternative is to use a technique suggested by [31] to perform a single cut-
and-choose that applies to all timesteps. We make O(s) independent threads
of execution, where wire labels are directly reused only within a single thread.
A cut-and-choose step at the beginning determines whether each entire thread
is used for checking or evaluation. Importantly, this is done using an oblivious
transfer (as in [18,22]) so that P1 does not learn the status of the threads.

More concretely, for each thread the parties run an oblivious transfer allowing
P2 to pick up either kcheck or keval. Then at each timestep, P1 sends the garbled
circuit but also encrypts the entire set of wire labels under kcheck and encrypts
wire labels for only her input under keval. Hence, in check threads P2 receives
enough information to verify correct garbling of the circuits (including reuse of
wire labels — see below), but learns nothing about P1’s inputs. In evaluation
threads, P2 receives only P1’s garbled input and the security property of garbled
circuits applies. If P1 behaves incorrectly in a check thread, P2 aborts immedi-
ately. Hence, it is not hard to see that P1 cannot cause a majority of evaluation
threads to be faulty while avoiding detection in all check threads, except with
negligible probability.

Reusing wire labels is fairly straight-forward since it occurs only within a
single thread. The next circuit in the thread is simply garbled with input wire
labels matching the appropriate output wire labels in the same thread (i.e., the
state output of the previous circuit, and possibly the memory-block output wires
of an earlier circuit). We point out that P1 must know the previous memory
instruction before garbling the next batch of circuits: if the instruction was
(read, �), then the next circuit must be garbled with wire labels matching those
of the last circuit to write to memory location �. Hence this approach is not
compatible with batch pre-processing of garbled circuits.

For enforcing consistency of P1’s input, we use the approach of [38]4, where
the very first circuit is augmented to compute a “hiding” universal hash of P1’s
input. For efficiency purposes, the hash is chosen as M · (x1‖r), where M is a
random binary matrix M of size s × (n + 2s + log s) chosen by P2. We prevent
input-dependent abort based on P2’s input using the XOR-tree approach of [24],
also used in the previous protocol.

We ensure authenticity of the output for P1 using an approach suggested
in [30]. Namely, wire labels corresponding to the same output wire and truth
value are used to encrypt a random “output authenticity” key. Hence P2 can
compute these output keys only for the circuit’s true output. P2 is not given
the information required for checking these ciphertexts until after he commits
to the output keys. At the time of committing, he cannot guess complementary
output keys, but he does not actually open the commitment until he receives
the checking information and is satisfied with the check circuits.

The adaptation of the input-recovery technique of Lindell [23] is more involved
and hence we discuss it separately in Section 4.5.
4 Although our protocol is also compatible with the solution of [30].
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GC(i,t′) GC(i,t−1) GC(i,t)· · ·

inst(·)
⇒ (write, �)

inst(·)
⇒ (read, �)

rand(·) rand(·)

block(·) block(·)

st(·)
E(i,t) D(i,t)E(i,t−1) D(i,t−1)E(i,t′) D(i,t′)

Fig. 4. Wire-label reuse within a single thread i, in the streaming cut-and-choose pro-
tocol

4.2 Detailed Protocol Description

We now describe the streaming cut-and-choose protocol for secure evaluation of
Π, the ORAM program to be computed. Recall that Π̃(st, block, inp1, inp2,1, . . . ,
inp2,n) = Π(st, block, inp1

⊕
i inp2,i). We let s denote a statistical security param-

eter parameter, and T denote an upper bound on the total running time of Π.
Here, we describe the majority-evaluation variant of the protocol and discuss
how to integrate the input-recovery technique in Section 4.5.

1. Cut-and-choose. The parties agree on S = O(s), the number of threads
(see discussion below). P2 chooses a random string b ← {0, 1}S . Looking
ahead, thread i will be a check thread if bi = 0 and an evaluation thread if
bi = 1.
For each i ∈ {1, . . . , S}, P1 chooses two symmetric encryption keys k(i,check)

and k(i,eval). The parties invoke an instance of Fot with P2 providing input
bi and P1 providing input (k(i,check), k(i,eval)).

2. RAM evaluation. For each timestep t, the following are done in parallel
for each thread i ∈ {1, . . . , S}:
(a) Wire label selection. P1 determines the input wire labels E(t,i) for

garbled circuit GC(t,i) as follows. If t = 1, these wire labels are cho-
sen uniformly. Otherwise, we set st(E(t,i)) = st(D(t−1,i)) and choose
rand1(E(t,i)) and rand2(E(t,i)) uniformly. If the previous instruction
instt−1 = (read, �) and no previous (write, �) instruction has hap-
pened, or if the previous instruction was not a read, then P1 chooses
block(E(t,i)) uniformly at random. Otherwise, we set block(E(t,i)) =
block(D(t′,i)), where t′ is the last instruction that wrote to memory loca-
tion �.

(b) Input selection. Parties choose shares of the randomness required for
Π̃: P1 chooses r1 ← {0, 1}n, and P2 chooses r2,1, . . . , r2,n ← {0, 1}n.

(c) P1’sgarbled inputtransfer.P1 sends the followingwire labels, encrypted
under k(i,eval):

st1(E(t,i))|∗x1
if t = 1

rand1(E(t,i))|∗r1

The following additional wire labels are also sent in the clear:

st3(E(t,i))|∗0n if t = 1
block(E(t,i))|∗0n if write or uninitialized read
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(d) P2’s garbled input transfer. P2 obtains garbled inputs via calls to
OT. To guarantee that P2 uses the same input in all threads, we use a
single OT across all threads for each input bit of P2. For each input bit,
P1 provides the true and false wire labels for all threads as input to Fot,
and P2 provides his input bit as the OT select bit.
Note that P2’s inputs consist of the strings r2,1, . . . , r2,n as well as the
string x2 for the case of t = 1.

(e) Input consistency. If t = 1, then P2 sends a random s×(n+2s+log s)
binary matrix M to P1. P1 chooses random input r ∈ {0, 1}2s+log s, and
augments the circuit for Π̃ with a subcircuit for computing M · (x1‖r).

(f) Circuit garbling. P1 chooses output wire labels D(t,i) at random and
does GC(t,i) = Garble(Π̃, E(t,i),D(t,i)), where in the first timestep, Π̃

also contains the additional subcircuit described above. P1 sends GC(t,i)

to P2 as well as τ(inst(D(t,i))).
In addition, P1 chooses a random Δt for this time-step and for each
inst-output bit j, he chooses random strings w(t,j,0) and w(t,j,1) (the
same across all threads) to be used for output authenticity, such that
w(t,j,0) ⊕ w(t,j,1) = Δt. For each thread i, output wire j and select bit b
corresponding to truth value b′, let vi,j,b denote the corresponding wire
label. P1 computes ci,j,b = Encvi,j,b

(w(t,j,b′)) and hi,j,b = H(ci,j,b), where
H is a 2-Universal hash function. P1 sends hi,j,b in the clear and sends
ci,j,b encrypted under k(eval,i).

(g) Garbled input collection. If thread i is an evaluation thread, then P2

assembles input wire labels X(t,i) for GC(t,i) as follows:
P2 uses k(eval,i) to decrypt wire labels sent by P1. Along with the wire
labels sent in the clear and those obtained via OTs in GetInput2, these
wire labels will comprise rand(X(t,i)); block(X(t,i)) in the case of a write
or uninitialized read; and st(X(t,i)) when t = 1.
Other input wire labels are obtained via:

st(X(t,i)) = st(Y(t−1,i))
block(X(t,i)) = block(Y(t′,i))

where t′ is the last write time of the appropriate memory location, and
Y denote the output wire labels that P2 obtained during previous eval-
uations.

(h) Evaluate and commit to output. If thread i is an eval thread, then
P2 evaluates the circuit via Y(t,i) = Eval(GC(t,i),X(t,i)) and decodes the
output inst(t,i) = lsb(Y(t,i))⊕τ(D(t,i)). He sets instt = majorityi{inst(t,i)}.
For each inst-output wire label j, P2 decrypts the corresponding cipher-
text ci,j,b, then takes w′

j to be the majority result across all threads i.
P2 commits to w′

j .
If t = 1, then P2 verifies that the output of the auxiliary function M ·
(x1‖r) is identical to that of all other threads; if not, he aborts.

(i) Checking the check threads. P1 sends Enck(i,check)(seed(t,i)) to P2,
where seed(t,i) is the randomness used in the call toGarble. Then if thread i
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is a check thread, P2 checks the correctness of GC(t,i) as follows. By induc-
tion, P2 knows all the previous wire labels in thread i, so can use seed(t,i)
to verify that GC(t,i) is garbled using the correct outputs. In doing so, P2

learns all of the output wire labels for GC(t,i) as well. P2 checks that the
wire labels sent by P1 in the clear are as specified in the protocol, and that
the ci,j,b ciphertexts and hi,j,b are correct and consistent. He also decrypts
ci,j,b for b ∈ {0, 1} with the corresponding output label to recover w′

(t,j,b)

and checks that w′
(t,j,0)⊕w′

(t,j,1) is the same for all j. Finally, P2 checks that
the wire labels obtained via OT in GetInput2 are the correct wire labels
encoding P2’s provided input. If any of these checks fail, then P2 aborts
immediately.

(j) Output verification. P2 opens the commitments to values w′
j and P1

uses them to decode the output instt. If a value w′
j does not match one

of w(t,j,0) or w(t,j,1), then P1 aborts.

4.3 Security Proof

Again we only give a brief overview of the simulator, with the details deferred
to the full version [1].

The security of the protocol relies on functionalities Fcom,Fot which can both
be instantiated under number theoretic assumptions in the CRS model, a secure
garbling scheme and an ORAM scheme satisfying standard properties discussed
earlier. More efficiency can be obtained using RO or correlation-secure hash
functions, to take advantage of the free-XOR technique for garbling (and faster
input-consistency checks), or the use of fast OT extension techniques.

When P1 is corrupt: In the cut-and-choose step, the simulator S extracts
both encryption keys k(i,eval) and k(i,check). Just as P2, the simulator designates
half of the threads to be check threads and half to be eval threads, and aborts if
a check thread is ever found to be incorrect. However, the simulator can perform
the same check for all threads, and keeps track of which eval threads are correct.
A standard argument shows that if all check threads are correct, then a majority
of eval threads are also correct, except with negligible probability. Without loss
of generality, we can have S abort if this condition is ever violated.

Knowing both encryption keys, S can associate P1’s input wire labels with
truth values (at least in the correct threads). If P1 provides disagreeing inputs
x1 among the correct eval threads, then S aborts, which is negligibly close to
P2’s abort probability (via the argument regarding the input-consistency of [38]).
Otherwise, this determines P1’s input x1 which S sends to the ideal functionality,
receiving output z in return. S generates a simulated ORAM memory access
pattern.

In the output commitment step, S simulates a commit message. Then after
the check phase, S learns all of the output-authenticity keys. So S simply equiv-
ocates the opening of the output keys to be the ones encoding the next ORAM
memory instruction.

When P2 is corrupt: In the cut-and-choose phase, S extracts P2’s selection
of check threads and eval threads. In check threads, S always sends correctly
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generated garbled circuits, following the protocol specification and generates
dummy ciphertexts for the encryptions under k(i,eval). Hence, these threads can
be simulated independently of P1’s input.

In each eval thread, S maintains visible input/output wire labels for each
circuit, chosing new output wire labels at random. S ensures that P2 picks up
these wire labels in the input collection step. S also extracts P2’s input x2 in this
phase, from its select bit inputs to Fot. S sends x2 to the ideal functionality and
receives output z. Then S generates a simulated ORAM memory access pattern.

At each timestep, for each eval thread, S generates a simulated garbled cir-
cuit, using the appropriate visible input/output wire labels. It fixes the decoding
information τ so that the visible output wire labels will decode to the appropri-
ate ORAM instruction. In the output reveal step, S aborts if P2 does not open
its commitment to the expected output keys. Indeed, P2’s view in the simulation
is independent of the complementary output keys.

4.4 Efficiency and Parameter Analysis

At each timestep, the protocol is dominated by the generation of S garbled cir-
cuits (where S is the number of threads) as well as the oblivious transfers for
P2’s inputs. As before, using OT extension as well as the optimizations discussed
in Section 5, the cost of the oblivious transfers can be significantly minimized.
Other costs in the protocol include simple commitments and symmetric encryp-
tions, again proportional to the number of threads. Hence the major computa-
tional overhead is simply the number of threads. An important advantage of this
protocol is that we avoid the soldering and the “expensive” xor-homomorphic
commitments needed for input/outputs of each circuit in our batching solution.
On the other hand, this protocol always require O(s) garbled circuit executions
regardless of the size of the RAM computation, while as discussed earlier, our
batching protocol can require significantly less garbled circuit execution when
the running time T is large. The choice of which protocol to use would then
depend on the running time of the RAM computation, the input/output size of
the next-instruction circuits as well as practical efficiency of xor-homomorphic
commitment schemes in the future.

Compared to our other protocol, this one has a milder memory requirement.
Garbled circuits are generated on the fly and can be discarded after they are
used, with the exception of the wire labels that encode memory values. P1 must
remember 2S wire labels per bit of memory (although in Section 5 we discuss
a way to significantly reduce this requirement). P2 must remember between S
and 2S wire labels per bit of memory (1 wire label for evaluation threads, 2 wire
labels for check threads).

Using the standard techniques described above, we require S ≈ 3s threads
to achieve statistical security of 2−s. Recently, techniques have been developed
[23] for the SFE setting that require only s circuits for security 2−s (concretely,
s is typically taken to be 40). We now discuss the feasibility of adapting these
techniques to our protocol:
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4.5 Integrating Cheating Recovery

The idea of [23] is to provide a mechanism that would detect inconsistency in the
output wire labels encoding the final output of the computation. If P2 receives
output wire labels for two threads encoding disparate values, then a secondary
computation allows him to recover P1’s input (and hence compute the function
himself). This technique reduces the number of circuits necessary by a factor of
3 since we only need a single honest thread among the set of evaluated threads
(as opposed to a majority). We refer the reader to [23] for more details. We point
out that in some settings, recovering P1’s input may not be enough. Rather, if
P2 is to perform the entire computation on his own in the case of a cheating P1,
then he also needs to know the contents of the RAM memory!

Cheating recovery at each timestep. It is possible to adapt this approach to
our setting, by performing an input-recovery computation at the end of each
timestep. But this would be very costly, since each input-recovery computation
is a maliciously secure 2PC that requires expensive input-consistency checks for
both party’s inputs, something we worked hard to avoid for the state/memory
bits. Furthermore, each cheating-recovery garbled circuit contains non-XOR
gates that need to be garbled/evaluated 3s times at each timestep. These addi-
tional costs can become a bottleneck in the computation specially when the
next-instruction circuit is small.

Cheating recovery at the end. It is natural to consider delaying the input-recovery
computation until the last timestep, and only perform it once. If two of the
threads in the final timestep (which also computes the final output of computa-
tion) output different values, the evaluator recovers the garbler’s input. Unfor-
tunately, however, this approach is not secure. In particular, a malicious P1 can
cheat in an intermediate timestep by garbling one or more incorrect circuits. This
could either lead to two or more valid memory instruction/location outputs, or
no valid outputs at all. It could also lead to a premature “halt” instruction. In
either case, P2 cannot yet abort since that would leak extra information about his
private input. He also cannot continue with the computation because he needs
to provide P1 with the next instruction along with proof of its authenticity (i.e.
the corresponding garbled labels) but that would reveal information about his
input.

We now describe a solution that avoids the difficulties mentioned above
and at the same time eliminates the need for input-consistency checks or gar-
bling/evaluating non-XOR gates at each timestep. In particular, we delay the
“proof of authenticity” by P2 for all the memory instructions until after the last
timestep. Whenever P2 detects cheating by P1 (i.e. more than two valid memory
instructions), instead of aborting, he pretends that the computation is going
as planned and sends “dummy memory operations” to P1 but does not (and
cannot) prove the authenticity of the corresponding wire labels yet. For mod-
ern tree-based ORAM constructions ([7,40], etc) the memory access pattern is
always uniform, so it is easy for P2 to switch from reporting the real memory
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access pattern to a simulated one. Note that in step (h) of the protocol, P2 no
longer needs to commit to the majority w′

j . As a result, step (j) of the protocol
will be obsolete. Instead, in step (h), P2 sends the instt in plaintext. This instruc-
tion is the single valid instruction he has recovered or a dummy instruction (if
P2 has attempted to cheat).

After the evaluation of the final timestep, we perform a fully secure 2PC for
an input-recovery circuit that has two main components. The first one checks
if P1 has cheated. If he has, it reveals P1’s input to P2. The second one checks
the proofs of authenticity of the inst instructions P2 reveals in all timesteps and
signals to P1 to abort if the proof fails.

First cheating recovery, then opening the check circuits. For this cheating recov-
ery method to work, we perform the evaluation steps (step (h)) for all time-
steps first (at this stage, P2 only learns the labels for the final output but not
the actual value), then perform the cheating recovery as described above, and
finally perform all the checks (step (i)) for all time-steps.

We now describe the cheating recovery circuit which consists of two main
components in more detail.

– The first component is similar to the original cheating recovery circuit of
[23]. P2’s input is the XOR of two valid output authenticity labels for a
wire j at step t for which he has detected cheating (if there is more than
one instance of cheating he can use the first occurrence). Lets denote the
output authenticity labels for jth bit of block(Y(t,i)) at time-step t with
w(t,j,b), b ∈ {0, 1}. Then P2 will input w(t,j,0) ⊕w(t,j,1) to the circuit. If there
is no cheating, he inputs garbage. Notice that w(t,j,0) ⊕ w(t,j,1) = Δt for
valid output authenticity values, as described in the protocol (note that we
assume that all output authenticity labels in timestep t use the same offset
Δt).

P1 inputs his input x1. He also hardcodes Δt. For timestep t (as shown in
Figure 5) the circuit compares P2’s input against the hardcoded Δt. If P2’s
input is the same as the Δt, cheating is detected and the circuit outputs 1.
To check that P2’s input is the same as at least one of the hard-coded Δs,
in the circuit of Figure 6 we compute the OR of all these outputs. Thus, if
the output of this circuit is 1, it means that P1 has cheated in at least one
timestep.

To reveal P1’s input, we compute the AND of output of circuit of Figure
6 with each bit of P1’s input as depicted in Figure 7. This concludes the
description of the first component for cheating recovery.

– In the second component, we check the authenticity of the memory instruc-
tions P2 provided in all timesteps. In particular, he provides the hash of
concatenation of all output authentication labels he obtained during the
evaluation corresponding to inst in all timesteps (P2 uses dummy labels if he
does not have valid ones due to P1’s cheating), while P1 does the same based
on the plaintext instructions he received from P2 and the labels which he
knows. The circuit then outputs 1 if the two hash values match. The circuit
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structure is therefore identical to that of Figure 5, but the inputs are the
hash values. An output of 0 would mean that P2 does not have a valid proof
of authenticity.

As shown in the final circuit of Figure 7 then, if P1 was not already caught
cheating in the previous step, and P2’s proof of authenticity fails, the circuit
outputs a 1 to signal an abort to P1. This is a crucial condition, i.e., it
is important to ensure P1 did not cheat (the output of circuit of Figure 6)
before accusing P2 of cheating, since in case of cheating by P1 say in timestep
t, P2 may be able to prove authenticity of the instructions for timestep t or
later.

Efficiency: Following the techniques of [23], all the gates of Figures 5, and 6 can
be garbled using non-cryptographic operations (XORs) and only the circuit of
Figure 7 has non-XOR gates. More precisely it requires |x1| ANDs and a NOT
gate.

Of course, the final circuit will be evaluate using a basic maliciously secure
2PC. Thus, we need to add a factor of 3s to the above numbers which results
in garbling a total of 3s(|x1| + 1) non-XOR gates which is at most 12s(|x1| + 1)
symmetric operations.

The input consistency checks are also done for P1’s input x1 and P2’s input
which is a proof of cheating of length |Δ| and a proof of authenticity which is the
output of a hash function (both are in the order of the computational security
parameter). We stress that the gain is significant since both the malicious 2PC
and the input consistency cheks are only done once at the end.

Δt[0](w(t,j,0) ⊕ w(t,j,1))[0]

Δt[1](w(t,j,0) ⊕ w(t,j,1))[1]

Δt[m](w(t,j,0) ⊕ w(t,j,1))[m]

outt

MatchBoxt

Fig. 5. Cheating recovery component 1: MatchBox. Where Δt[i] denotes the ith bit of
Δt and m = |Δt|.

5 Optimizations

Here we present a collection of further optimizations compatible with our 2PC
protocols:
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MatchBox0

MatchBox1

MatchBoxT

w(t,j,0) ⊕ w(t,j,1)
garbler
cheated

GarbCheatDetection

Fig. 6. Cheating Recovery component 1: Garbler Cheating Detection

5.1 Hide only the Input-Dependent Behavior

Systems like SCVM [27] use static program analysis to “factor out” as much
input-independent program flow as possible from a RAM computation, leaving
significantly less residual computation that requires protection from the 2PC
mechanisms.

The backend protocol currently implemented by SCVM achieves security only
against semi-honest adversaries. However, our protocols are also compatible with
their RAM-level optimizations, which we discuss in more detail:

Special-purpose circuits. For notational simplicity, we have described our RAM
programs via a single circuit Π that evaluates each timestep. Then Π must
contain subcircuits for every low-level instruction (addition, multiplication, etc)
that may ever be needed by this RAM program.

Instruction-trace obliviousness means that the choice of low-level instruc-
tion (e.g., addition, multiplication) performed at each time t does not depend
on private input. The SCVM system can compile a RAM program into an
instruction-trace-oblivious one (though one does not need full instruction-trace
obliviousness to achieve an efficiency gain in 2PC protocols). For RAM pro-
grams with this property, we need only evaluate an (presumably much smaller)
instruction-specific circuit Πt at each timestep t.

It is quite straight-forward to evaluate different circuits at different timesteps
in our cut-and-choose protocol of Section 4. For the batching protocol of Section
3, enough instruction-specific circuits must be generated in the pre-processing
phase to ensure a majority of correct circuits in each bucket. However, we point
out that buckets at different timesteps could certainly be different sizes! One
particularly interesting use-case would involve a very aggressive pre-processing of
the circuits involved in the ORAM construction (i.e., the logic translating logical
memory accesses to physical accesses), since these will dominate the computation
and do not depend on the functionality being computed.5 The bucket size /
replication factor for these timesteps could be very low (say, 5), while the less-
aggressively pre-processed instructions could have larger buckets. In this case,
5 Such pre-processing yields an instance of commodity-based MPC [3].
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w(t,j,0) ⊕ w(t,j,1)

Hash(w(t,j,b)),
t ∈ {0, . . . , T},

j ∈ {1, . . . , |instt|}

GarbCheat
Detection

MatchBox

x1

P2’s
output

P1 aborts
if equal to 1

Fig. 7. Final Circuit

the plain-RAM internal state could be kept separate from the ORAM-specific
internal state, and only fed into the appropriate circuits.

Along similar lines, we have for simplicity described RAM programs that
require a random input tape at each timestep. This randomness leads to oblivious
transfers within the protocol. However, if it is known to both parties that a par-
ticular instruction does not require randomness, then these OTs are not needed.
For example, deterministic algorithms require randomness only for the ORAM
mechanism. Concretely, tree-based ORAM constructions [7,39,40] require only
a small amount of randomness and at input-indepenent steps.

Memory-trace obliviousness. Due to their general-purpose nature, ORAM con-
structions protect all memory accesses, even those that may already be input-
independent (for example, sequantial iteration over an array). One key feature of
SCVM is detecting which memory accesses are already input-independent and
not applying ORAM to them. Of course, such optimizations to a RAM program
would yield benefit to our protocols as well.

5.2 Reusing Memory

We have described our protocols in terms of a single RAM computation on
an initially empty memory. However, one of the “killer applications” of RAM
computations is that, after an initial quasi-linear-time ORAM initialization of
memory, future computations can use time sublinear in the total size of data
(something that is impossible with circuits). This requires an ORAM-initialized
memory to be reused repeatedly, as in [13].

Our protocols are compatible with reusing garbled memory. In particular, this
can be viewed as a single RAM computation computing a reactive functionality
(one that takes inputs and gives outputs repeatedly).
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5.3 Other Protocol Optimizations

Storage requirements for RAM memory. In our cut-and-choose protocol, P1

chooses random wire labels to encode bits of memory, and then has to remember
these wire labels when garbling later circuits that read from those locations. As
an optimization, P1 could instead choose wire labels via Fk(t, j, i, b), where F
is a suitable PRF, t is the timestep in which the data was written, j is the
index of a thread, i is the bit-offset within the data block, and b is the truth
value. Since memory locations are computed at run-time, P1 cannot include the
memory location in the computation of these wire labels. Hence, P1 will still
need to remember, for each memory location �, the last timestep t at which
location � was written.

Adaptive garbling. In the batching protocol, P1 must commit to the garbled
circuits and reveal them only after P2 obtains the garbled inputs. This is due
to a subtle issue of (non)adaptivity in standard security definitions of garbled
circuits; see [4] for a detailed discussion. These commitments could be avoided
by using an adaptively-secure garbling scheme.

Online/offline tradeoff. For simplicity we described our online/offline protocol
in which P1 generates many garbled circuits and P2 opens exactly half of them.
Lindell and Riva [26] also follow a similar approach of generating many circuits in
an offline phase and assigning the remainder to random buckets; they also point
out that changing the fraction of opened circuits results in different tradeoffs
between the amount of circuits used in the online and offline phases. For example,
checking 20% of circuits results in fewer circuits overall (i.e., fewer generated in
the offline phase) but larger buckets (in our setting, more garbled circuits per
timestep in the online phase).
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Abstract. In this paper, we comprehensively study the resistance of
keyed variants of SHA-3 (Keccak) against algebraic attacks. This analysis
covers a wide range of key recovery, MAC forgery and other types of
attacks, breaking up to 9 rounds (out of the full 24) of the Keccak internal
permutation much faster than exhaustive search. Moreover, some of our
attacks on the 6-round Keccak are completely practical and were verified
on a desktop PC. Our methods combine cube attacks (an algebraic key
recovery attack) and related algebraic techniques with structural analysis
of the Keccak permutation. These techniques should be useful in future
cryptanalysis of Keccak and similar designs.

Although our attacks break more rounds than previously published
techniques, the security margin of Keccak remains large. For Keyak – the
Keccak-based authenticated encryption scheme – the nominal number of
rounds is 12 and therefore its security margin is smaller (although still
sufficient).

Keywords: Keccak · SHA-3 · Sponge function · Cube attack

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST) annou-
nced a public contest aiming at the selection of a new standard for a crypto-
graphic hash function. In 2012, after 5 years of intensive scrutiny, the winner
was selected. The new SHA-3 standard is the Keccak hash function [8].

As a new standard, Keccak will be widely deployed, and therefore understand-
ing its security is crucial. Indeed, the hash function and its internal permutation
c© International Association for Cryptologic Research 2015
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havebeenextensivelyanalysed inmanyresearchpapers [2,6,11–13,17,21,22].How-
ever,most papers focused on key-less variants of the hash function,whereasKeccak
is actually a family of sponge functions [7] and can also be used in keyed modes. In
such modes, the sponge function can generate an infinite bit stream, making it suit-
able to work as a stream cipher or as a pseudorandom bit generator. Furthermore,
the sponge function can be used as a building block for message authentication
codes (MACs) and authenticated encryption (AE) schemes as described in [10].

In this paper, we aim at filling the gap in the security analysis of Keccak
by analysing keyed modes of its variants, in which the number of rounds of the
internal permutation is reduced from the full 24. We analyse concrete instances
of stream ciphers, MACs and AE schemes based on the Keccak permutation
and investigate their resistance against strong key recovery attacks and weaker
types of attacks (such as a MAC forgery). The stream cipher and MAC con-
structions we analyse are instantiated according to the design strategy of [10],
which describes methods for building such ciphers from the sponge function.
The AE scheme we analyse is called Lake Keyak — a recently proposed authen-
ticated encryption scheme, submitted by the Keccak designers to the CAESAR
competition [1] for authenticated encryption.

All of our attacks are closely related to high order differential cryptanaly-
sis [20], which used, for the first time, high order derivatives in cryptanalysis
of ciphers with low algebraic degree. As the degree of a round of the Keccak
internal permutation is only 2, it makes the round-reduced Keccak a natural
target for these types of attacks.

Our analysis is divided into three parts. First, we investigate the security
of keyed modes of Keccak against cube attacks — an algebraic key recovery
technique introduced in [14]. This attack was previously applied to the 4-round
Keccak in [21], and we show how to break up to 6 rounds of some Keccak variants.
As our optimized cube attacks have very low complexity, they were implemented
and verified on a desktop PC.

In the second part of our analysis, we study the security of keyed modes of
the round-reduced Keccak against the cube testers [3]. Unlike the cube attack,
cube testers do not recover the secret key, but allow to predict outputs of the
scheme for previously unseen inputs, giving rise to other types of attacks (such
as MAC forgery). Here, we present theoretical attacks on up to 9 rounds of
keyed Keccak variants. Although the attack complexities are impractical, they
are significantly faster than generic attacks.

Finally, we reconsider key recovery attacks, and show how to recover the key
for 7 rounds of Keccak, much faster than exhaustive search. Table 1 summarizes
our attacks on keyed modes of Keccak.

The attacks developed in this paper are described with an increasing degree
of sophistication. We start by describing rather simple (yet effective) techniques,
such as partial inversion of the internal non-linear mapping of Keccak. Then, our
more complex methods exploit additional structural properties of the Keccak
permutation (namely, the limited diffusion of its internal mappings) in order to
optimize cube testers. Finally, we devise a new key recovery method which also
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Table 1. Parameters and complexities of our attacks

Mode Rounds Type of Attack Key size Time Data Reference

MAC 5 Key Recovery 128 236 235 Sect. 4

MAC 6 Key Recovery 128 266 264 Sect. 6

MAC 7 Key Recovery 128 297 264 Sect. 6

MAC 7 Forgery 128 265 265 Sect. 5

MAC 8 Forgery 256 2129 2129 Sect. 5

AE (Keyak) 6 Key Recovery (nonce respected) 128 237 236 Sect. 4

AE (Keyak) 7 Key Recovery (nonce reused) 128 276 275 Sect. 6

AE (Keyak) 7 Forgery (nonce reused) 128 265 265 Sect. 5

Stream Cipher 6 Key Recovery 128 237 236 Sect. 4

Stream Cipher 8 Keystream Prediction 256 2128 2128 Sect. 5

Stream Cipher 9 Keystream Prediction 512 2256 2256 Sect. 5

exploits the limited diffusion properties. Yet, the key recovery technique is based
on a divide-and-conquer strategy, exploiting subtle interactions between the bits
of the Keccak internal state, and is of independent interest.

The low algebraic degree of a Keccak round has been exploited in many pre-
vious attacks, and in particular, in key recovery attacks [21], preimage attacks [6]
and zero-sum distinguishers on the permutation [2,11]. However, most of those
attacks (apart from [21]) were only applied to the non-keyed Keccak variants,
whereas we focus on its keyed modes. Furthermore, several of these attacks
seem to have limited applicability, as they either assume a very powerful attack
model (which does not correspond to a realistic attack scenario), or give a
marginal improvement over generic attacks. Compared to these related attacks,
our attacks seem to have broader applicability (as they focus on concrete schemes
that use the Keccak permutation), and are significantly more efficient than
generic attacks.

From a methodological point of view, most related attacks [2,6,11,21] were
based on algebraic analysis of the Keccak non-linear component. Although such
analysis can be highly non-trivial (e.g., see [11]), it mostly takes into account
the low algebraic degree of the Keccak permutation, but ignores several other
(potentially useful) properties of Keccak internal mappings. The main difference
between our approach and the previous ones, is that we show how to combine
structural properties of Keccak (such as the limited diffusion of its linear layer) in
order to gain advantage over standard algebraic analysis. In fact, it is likely that
some of our techniques may be combined with the previous attacks to improve
their results.

The paper is organized as follows. In Section 2, we briefly describe the cube
attack, and in Section 3, we describe the Keccak sponge function and its keyed
variants we analyse. In Section 4 we present our cube attacks on Keccak. In
Section 5 we describe attacks which are based on output prediction (exploiting
cube testers). Finally, we present our divide-and-conquer attack in Section 6 and
conclude the paper in Section 7.
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2 Cube Attacks

The cube attack is a chosen plaintext key-recovery attack, which was formally
introduced in [14] as an extension of higher order differential cryptanalysis [20]
and AIDA [23]. Since its introduction, the cube attack was applied to many dif-
ferent cryptographic primitives such as [3,4,21]. Below we give a brief description
of the cube attack, and refer the reader to [14] for more details.

The cube attack assumes that the output bit of a cipher is given as a black-
box polynomial f : Xn → {0, 1} in the input bits (variables). The main observa-
tion used in the attack is that when this polynomial has a (low) algebraic degree
d, then summing its outputs over 2d−1 inputs, in which a subset of variables
(i.e., a cube) of dimension d − 1 ranges over all possible values, and the other
variables are fixed to some constant, yields a linear function (see the theorem
below).

Theorem 1. (Dinur, Shamir) Given a polynomial f : Xn → {0, 1} of degree d.
Suppose that 0 < k < d and t is the monomial x0 . . . xk−1. Write the function as

f(x) = t · Pt(x) + Qt(x)

where none of the terms in Qt(x) is divisible by t. Note that deg Pt ≤ d − k.
Then the sum of f over all values of the cube (defined by t) is

∑

x′=(x0,...,xk−1)∈Ct

f(x′, x) = Pt(1, . . . , 1
︸ ︷︷ ︸

k

, xk, . . . , xn−1)

whose degree is at most d − k (or 1 if k = d − 1), where the cube Ct contains all
binary vectors of the length k.

A simple combinatorial proof of this theorem is given in [14]. Algebraically, we
note that addition and subtraction are the same operation over GF (2). Conse-
quently, the cube sum operation can be viewed as differentiating the polynomial
with respect to the cube variables, and thus its degree is reduced accordingly.

2.1 Preprocessing (Offline) Phase

The preprocessing phase is carried out once per cryptosystem and is independent
of the value of the secret key.

Let us denote public variables (variables controlled by the attacker e.g.,
a message or a nonce) by v = (v1, . . . , vp) and secret key variables by x =
(x1, . . . , xn). An output (ciphertext bit, keystream bit, or a hash bit) is deter-
mined by the polynomial f(v, x). We use the following notation

∑

v∈Ct

f(v, x) = L(x)

for some cube Ct, where L(x) is called the superpoly of Ct. Assuming that the
degree of f(v, x) is d, then, according to the main observation, we can write
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L(x) = a1x1 + . . . + anxn + c.

In the preprocessing phase we find linear superpolys L(x), which eventually help
us build a set of linear equations in the secret variables. We interpolate the linear
coefficients of L(x) as follows

– find the constant c =
∑

v∈Ct
f(v, 0)

– find ai =
∑

v∈Ct
f(v, 0, . . . , 1︸︷︷︸

xi

, 0, . . . , 0)) = ai

Note that in the most general case, the full symbolic description of f(v, x)
is unknown and we need to estimate its degree d using an additional complex
preprocessing step. This step is carried out by trying cubes of different dimen-
sions, and testing their superpolys L(x) for linearity. However, as described in
our specific attacks on Keccak, the degree of f(v, x) can be easily estimated in
our attacks, and thus this extra step is not required.

2.2 Online Phase

The online phase is carried out after the secret key is set. In this phase, we
exploit the ability of the attacker to choose values of the public variables v. For
each cube Ct, the attacker computes the binary value bt by summing over the
cube Ct or in other words ∑

v∈Ct

f(v, x) = bt.

For a given cube Ct, bt is equal to the linear expression L(x) determined in the
preprocessing phase, therefore a single linear equation is obtained

a1x1 + . . . + anxn + c = bt.

Considering many different cubes Ct, the attacker aims at constructing a suffi-
cient number of linear equations. If the number of (linearly independent) equa-
tions is equal to a number of secret variables, the system is solved by the Gaussian
elimination.1

2.3 Cube Testers

The notion of cube testers was introduced in [3], as an extension of the cube
attack. Unlike standard cube attacks, cube testers aim at detecting a non-random
behaviour (rather than performing key recovery), e.g., by observing that the cube
sums are always equal to zero, regardless of the value of the secret key.
1 More generally, one can use any number of linearly independent equations in order

to speed up exhaustive search for the key.
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3 Keccak Sponge Function

Keccak is a family of sponge functions [7]. It can be used as a hash function,
but can also generate an infinite bit stream, making it suitable to work as a
stream cipher or a pseudorandom bit generator. In this section, we provide
a brief description of the Keccak sponge function to the extent necessary for
understanding the attacks described in the paper. For a complete specification,
we refer the interested reader to the original specification [8].

The sponge function works on a b-bit internal state, divided according to two
main parameters r and c, which are called bitrate and capacity, respectively.
Initially, the (r + c)-bit state is filled with 0’s, and the message is split into r-bit
blocks. Then, the sponge function processes the message in two phases.

In the first phase (also called the absorbing phase), the r-bit message blocks
are XORed into the state, interleaved with applications of the internal permu-
tation. After all message blocks have been processed, the sponge function moves
to the second phase (also called the squeezing phase). In this phase, the first r
bits of the state are returned as part of the output, interleaved with applications
of the internal permutation. The squeezing phase is finished after the desired
length of the output digest has been produced.

Keccak is a family of sponge functions defined in [8]. The state of Keccak
can be visualized as an array of 5×5 lanes, where each lane is a 64-bit string in
the default version (and thus the default state size is 1600 bits). Other versions
of Keccak are defined with smaller lanes, and thus smaller state sizes (e.g., a
400-bit state with a 16-bit lane). The state size also determines the number of
rounds of the Keccak-f internal permutation, which is 24 for the default 1600-bit
version.

All Keccak rounds are the same except for the round-dependent constants,
which are XORed into the state. Below there is a pseudo-code of a single round.
In the latter part of the paper, we often refer to the algorithm steps (denoted
by Greek letters) described in the following pseudo-code.

Round(A,RC) {

θ step

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor

A[x,3] xor A[x,4], forall x in (0...4)

D[x] = C[x-1] xor rot(C[x+1],1), forall x in (0...4)

A[x,y] = A[x,y] xor D[x], forall (x,y) in (0...4,0...4)

ρ step forall (x,y) in (0...4,0...4)

A[x,y] = rot(A[x,y], r[x,y]),

π step forall (x,y) in (0...4,0...4)

B[y,2*x+3*y] = A[x,y],

χ step forall (x,y) in (0...4,0...4)

A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]),
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ι step
A[0,0] = A[0,0] xor RC

return A }

All the operations on the indices shown in the pseudo-code are done modulo 5.
A denotes the complete permutation state array and A[x,y] denotes a particular
lane in that state. B[x,y], C[x], D[x] are intermediate variables. The constants
r[x,y] are the rotation offsets, while RC are the round constants. rot(W,m) is
the usual bitwise rotation operation, moving bit at position i into position i+m
in the lane W (i + m are done modulo the lane size). θ is a linear operation that
provides diffusion to the state. ρ is a permutation that mixes bits of a lane using
rotation and π permutes lanes. The only non-linear operation is χ, which can
be viewed as a layer of 5-bit S-boxes. Note that the algebraic degree of χ over
GF (2) is only 2. Furthermore, χ only multiplies neighbouring bits (A[x,y,z]
and A[x+1,y,z]). Finally, ι XORes the round constant into the first lane.

In this paper we refer to the linear steps θ, ρ, π as the first half of a round,
and the remaining steps χ and ι as the second half of a round. In many cases it
is useful to treat the state as the 5× 5 array of 64-bit lanes. Each element of the
array is specified by two coordinates, as shown in Figure 1.

Fig. 1. Lanes coordinates. Each square represents a lane in the state.

3.1 Keyed Modes of Keccak

The Keccak sponge function can be used in keyed mode, providing several differ-
ent functionalities. Three of these functionalities which we analyse in this paper
are a hash-based message authentication code (MAC), a stream cipher and an
authenticated encryption (AE) scheme based on the design methods proposed
in [10].

MAC Based on Keccak. A message authentication code (MAC) is used
for verifying data integrity and authentication of a message. A secure MAC
is expected to satisfy two main security properties. Assuming that an adversary
has access to many valid message-tag pairs, (1) it should be infeasible to recover
the secret key used and (2) it should be infeasible for the adversary to forge a
MAC, namely, provide a valid message-tag pair (M,T ) for a message M that
has not been previously authenticated.
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A hash-based algorithm for calculating a MAC involves a cryptographic hash
function in combination with a secret key. A typical construction of such a MAC
is HMAC, proposed by Bellare et al. [5]. However, for the Keccak hash function,
the complex nested approach of HMAC is not needed and in order to provide a
MAC functionality, we simply prepend the secret key to the message in order to
calculate a tag. In this paper, we only use short messages such that the internal
permutation is applied only once (see Figure 2).

Stream Cipher Based on Keccak. In the stream cipher mode, the state is
initialized with the secret key, concatenated with a public initialization vector
(IV). After each Keccak permutation call, an r-bit keystream (where r is the
bitrate of the Keccak instance) is extracted and used to encrypt a plaintext via
bitwise XOR. In this paper, we only exploit the first r bits of keystream, such
that the internal permutation is applied only once (as shown in Figure 3).

Fig. 2. MAC based on Keccak Fig. 3. Stream Cipher Based on Keccak

Authenticated Encryption Scheme Based on Keccak. The Keccak sponge
function can also be used as a building block for authenticated encryption (AE)
schemes, simultaneously providing confidentiality, integrity, and authenticity of
data. In this paper, we concentrate on the concrete design of Keyak [9] — a
recently proposed authenticated encryption scheme, submitted to the CAESAR
competition [1]. The scheme is based on the Keccak permutation with a nominal
number of rounds set to 12.

Figure 4 shows the scheme of Lake Keyak, which is the primary recommen-
dation of the Keyak family algorithms. In this scheme, the key and tag sizes are
128 bits long, and the capacity is set to c = 252 (i.e., r = 1600 − 252 = 1348).
For a more formal description, we refer the reader to [9].

Figure 4 shows how the Keyak scheme processes two plaintext blocks. The
first permutation call of Keyak takes as an input a key and a nonce. We note
that some of our attacks use up to 2 plaintext blocks, and further note that the
scheme has an optional input of associated data, which we do not use.

According to the specification of Keyak, in order to assure confidentiality of
data, a user must respect the nonce requirement. Namely, a nonce cannot be
reused, otherwise, confidentiality is not guaranteed. However, for authenticity
and integrity of data, a variable nonce is not required (according to the Keyak
specification).
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Fig. 4. Lake Keyak processing two plaintext blocks

3.2 Attack Models and Parameters

Most of our attacks focus on default variants of Keccak, suggested by the Keccak
designers, namely 1600-bit state and 1024-bit bitrate, or a 1344-bit bitrate (used
for example in Keyak and SHAKE-128). Furthermore, we concentrate on typical,
real-life key, tag and IV lengths, avoiding artificial scenarios although they could
potentially help the attacker (e.g., tags larger than 256 bits or very long IVs).

The Keccak sponge function can also work on smaller states, which may
be useful for lightweight cryptography. In such Keccak variants, the size of the
internal lanes is reduced and this has an effect on our attacks, as we highlight
in several places.

All the attacks follow the chosen plaintext model, assuming that the attacker
is able to choose various values of message/nonce/IV and obtain the correspond-
ing ciphertext/tag/keystream outputs. For Keccak working as a MAC, we can
control many input message bits, but only a short tag (128 or 256 bits) is avail-
able as an output. In the stream cipher mode the situation is reversed, as the
attacker can only control IV bits (typically up to 256 bits), however, the output
(keystream bits) can be as big as the bitrate (1024 bits for the default variant).
Interestingly, for authenticated encryption mode (such as Keyak), we can take
advantage of both long input and available output, as shown in Section 6. For
some of our attacks in Sections 5 and 6 we assume a stronger model of attacks,
where a nonce is reused.

4 Cube Attack on Keccak Sponge Function

In this section we focus on practical key recovery attacks which can be imple-
mented and verified on a desktop PC. We analyse the round-reduced Keccak
used as a MAC and a stream cipher. We also show how to recover the key for
the 6-round Keyak.
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4.1 Key Recovery Attack on 5-Round Keccak Working as MAC

We attack the default variant of Keccak with a 1600-bit state (r = 1024, c =
576), where the number of rounds of the internal permutation is reduced to 5.
The key and tag sizes are both 128 bits.

Preprocessing Phase. As previously noted, we exploit the property that the
algebraic degree of a single round of the Keccak permutation is only 2. There-
fore, after 5 rounds the algebraic degree is at most 25 = 32 and for any cube
with 31 variables, the superpoly consists of linear terms only. In general, cubes of
dimension 30 (or smaller) are not expected having linear superpolys. Although
this may occur by chance, considering such cubes somewhat complicates pre-
processing, as we need to perform linearity tests. For some cubes it is expected
that superpolys will be constant, which are not useful for key-recovery attacks
(as they do not contain information about the key). This typically occurs due to
the slow diffusion of variables into the initial rounds, which causes the algebraic
degree of the examined output bits to be less than the maximal possible degree
of 32.

To find useful cubes for our attack, we randomly pick 31 out of the 128 public
variables and check whether the superpoly consists of any secret variables or it
is a constant. With this simple strategy, we have been able to find 117 linearly
independent expressions (superpolys) in a few days on a desktop PC (example
is given in Appendix A). The search was more complex than expected, as only
20 − 25% of the superpolys are useful (i.e., non-constant). On the other hand,
we found more superpolys and shortened the search time by examining different
output bits (with their corresponding superpolys).

Online Phase

In the online phase, the attacker computes the actual binary value of a given
superpoly by summing over the outputs obtained from the corresponding cube.
There are 19 cubes used in this attack, each cube with 31 variables. Thus, the
attacker obtains 19 · 231 ∼= 235 outputs for the 5-round Keccak. Having com-
puted the values of the superpolys, the attacker constructs a set of 117 linearly
independent equations, and recovers the full 128-bit secret key by guessing the
values of 11 additional linearly independent equations. In total, the complexity
of the online phase is dominated by 235 Keccak calls (the cost of linear algebra
can be neglected).

4.2 Key Recovery Attack on 6-round Keccak Working in Stream
Cipher Mode

A direct extension of the attack to 6 rounds seems infeasible as we would deal
with polynomials of approximate degree 26 = 64, and it is very unlikely to find
(in reasonable time) cubes with linear superpolys. However, one more round can
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be reached by exploiting a specific property of the Keccak χ step. As χ operates
on the rows independently, if a whole row (5 bits) is known, we can invert these
bits through ι and χ from the given output bits. Consequently, the final nonlinear
step χ can be inverted and the cube attack is reduced to 5.5 rounds. As the first
half of a round is linear and does not increase the degree, the output bits have
a manageable polynomial degree of at most 32 and the scenario is very similar
to the one considered in the previous attack.

Standard MACs are of size 128 or 256 output bits, which are insufficient for
inversion — these output bits do not allow us to uniquely calculate any bit (or
a linear combination of bits) after 5.5 rounds. If we consider longer MACs (for
instance with 320 bits), then the attack setting becomes somewhat artificial.
However, we can still attack the Keccak sponge function working in a different
mode, where the attacker has access to more output bits. A good example is
Keccak used as a stream cipher, and here, we attack the default variant of
Keccak with 1600-bit state, r = 1024, c = 576 with key and IV sizes of 128 bits.
The first 960 of the 1024 available output bits contain 960/5 = 192 full rows
(each sequence of 320 bits contains 320/5 = 64 full rows), which can be inverted
and exploited in the attack.

We executed the preprocessing phase in a similar way to the one described
for the 5-round attack. We were able to find 128 linearly independent superpolys
using 25 cubes (example is given in Appendix B). This gives an online attack
complexity of 231 · 25 ∼= 236.

4.3 Key Recovery Attack on MAC-Based State-Reduced 6-Round
Keccak

We attack the Keccak MAC that operates on 400-bit state with 80-bit key and
160-bit bitrate. As the state is smaller, 128 bits of MAC (output bits) cover all
the rows in the state and we are able to invert these rows through the ι and χ
steps. Therefore, our attack on the 6-round Keccak MAC becomes practical.

During the preprocessing phase, we have found 80 linearly independent super-
polys using 18 cubes. This allows us to recover the 80-bit secret key with com-
plexity 231 · 18 ∼= 235. It is interesting to note that, compared to the previous
attacks, the superpolys consist of many more secret variables. It is due to a faster
diffusion of variables when the state is smaller. An example of a cube chosen for
the attack is given in Appendix C.

4.4 Key Recovery Attack on 6-Round Keyak

The key recovery attack is essentially the same as the one described for the
stream cipher mode. Instead of IV variables, we use the nonce as cube variables.
After a single call to the Keccak permutation, the bitrate part of state is available
(by XORing known plaintext with the corresponding ciphertext – see Figure 4).
As in the stream cipher mode, we have many output bits available (r = 1348),
allowing to easily invert ι and χ and break 6 rounds.
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5 Output Prediction for Keyed Variants of Keccak

In this section, we first present a practical cube tester for 6.5-round Keccak, and
then show how to exploit similar distinguishers in order to predict the output of
Keccak when used as a MAC (i.e., mount a forgery attack) or in stream cipher
mode.

5.1 Practical Cube Tester for 6.5-Round Keccak Permutation

We show how to construct a practical cube tester for the 6.5-round Keccak per-
mutation. As the expected algebraic degree for 6-round Keccak is 64, such an
attack may seem at first impractical (without exploiting some internal invert-
ibility properties, as in the previous section). However, if we carefully choose the
cube variables, we can exploit a special property of θ in order to considerably
reduce the output degree after 6 rounds and keep the complexity low.

The well-known property of θ, we exploit, is that its action depends on the
column parities only (and not on the actual values of each bit in a column).
Thus, if we set the cube variables in such a way that all the column parities
are constants for all the possible variable values, then θ will not diffuse these
variables throughout the state. Moreover, as ρ and π only permute the bits of
the state, it is easy to choose the cube variables such that after the linear part of
the round, they are not multiplied with each other through the subsequent non-
linear χ layer. Consequently, the algebraic degree of the state bits in the cube
variables remains 1 after the first round, and it is at most 32 after 6 rounds.

We choose the 33-dimensional cube {v0, v1, . . . , v32} such that vi = A[0, 2, i],
while ensuring that the column parities remain constant by setting the addi-
tional linear constraints A[0, 3, i] = vi ⊕ ci, for arbitrary binary constants ci
(see Figure 5). In other words, we sum over the outputs of the 33-dimensional
linear subspace defined on the 66 state bits A[0, 2, i], A[0, 3, i] by 33 equations
A[0, 2, i] = A[0, 3, i] ⊕ ci for i ∈ {0, 1, . . . , 32}. The remaining bits of the input
state (some of which are potentially unknown secret variables) are set to arbi-
trary constants. As can be seen from Figure 5, at the input to χ, each 5-bit row
of the state contains at most one variable, and therefore, the variables are not
multiplied together in the first round as required.

Since the degree of the output polynomials in the cube variables after 6
rounds is only 32, the cube sum of any output bit after 6 rounds is equal to zero,
which is a clear non-random property. Moreover, we can add a (linear) half-
round and obtain a 6.5-round distinguisher using the same cube. Furthermore,
if we assume that we can obtain sufficiently many output bits in order to par-
tially invert the non-linear layer (as in the previous section), we can extend the
attack to 7 rounds in practical time. Note that the distinguishing attack works
regardless of the number of secret variables, their location, or their values.

Assume that the 33-dimensional cube is missing an output for one value of the
public variables. Then, as the sums of all 233 outputs is zero, the missing output
is equal to the sum of the remaining 233 − 1 outputs. Thus, the distinguishing
attack can be used to predict the output of the cipher for a previously unseen
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Fig. 5. The initial state of a cube tester and the transition through the first linear part
of the round (θ, ρ, π steps)

input value. In the rest of this section, we exploit this property in more specific
attacks on keyed modes of Keccak.

We note that it possible to predict the values of several outputs at a smaller
amortized cost than summing over a 33-variable cube for each missing value.
This can be accomplished by using larger cubes which contain several missing
outputs, and using more complex algebraic algorithms (such as the ones used
in [6]) in order to calculate them. However, in this paper we focus on basic
attacks that predict only one output.

5.2 Extending the Cube Tester to Smaller States and More Rounds

When considering Keccak variants with states of at most b = 400 bits, then
each lane contains (at most) 16 bits, and it is not clear how to select the 33-
variable cube as in the previous case. However, we can generalize the above idea
by noticing that it is possible to carefully select a cube of dimension of (up to)
4 · 16 = 64 such that its variables are not multiplied together in the first round.
Such a cube contains (up to) 64 independent variables in 4 lanes of 16 columns,
where the 5th lane keeps the columns parities constant (e.g., to keep the column
parities to zero, its value has to be equal to the XOR of the 4 independent lanes).
One can observe that after the application of ρ and π, these variables are not
multiplied together by χ in the first round.

A careful selection of cube variables allows to select large cubes for which
the complexity of the distinguishing attack is significantly reduced compared to
the complexity with arbitrary cubes. We note that there exist other methods to
carefully select a large set of variables that are not multiplied together in the
first round, and we only give one of these methods in this section.

Clearly, the idea can also be exploited for Keccak variants with larger states,
for which we can select larger cubes and mount distinguishing attacks on more
than 6.5 rounds. In such cases, the attack becomes impractical, but it may still
be more efficient than generic attacks (depending on the attack setting).

5.3 MAC Forgery for 7-Round Keccak MAC and Keyak

We attack 7-round Keccak MAC with the default bitrate r = 1024 and 128-bit
key and tag length, ideally providing 128-bit security. In order to forge a tag
T for an arbitrary message M , we use a cube tester similar to the one from
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Fig. 6. The transition through the first half a round for the cube tester exploited in
the MAC forgery attack. In the initial state cube variables are assumed to be equal
column-wise.

Section 5.1. We choose a 65-variable cube, as shown in Figure 6. The remaining
bits of the input state are set according to the message bits of M which are
not part of the cube and additional constants (some of which are potentially
unknown secret variables). Due to the placement of the cube variables, we can
go through the first round without increasing the algebraic degree. Consequently,
after 7 rounds, the degree is at most 64 (rather than 128). Therefore, the cube
sum of any output bit after 7 rounds is equal to zero.

The forgery attack works by collecting 265−1 tags for chosen messages which
consist of all 265 messages defined by the cube (shown in Figure 6), with the
exception of M . Since the cube sums of all 128 output bits of the MAC are zero,
we can calculate the tag of M by XORing the 265 −1 known tags. Therefore, we
forge a valid message-tag pair (M,T ), which has not been previously seen.

MAC Forgery for 7-round Keyak. For Keyak, the selection of cube variables
is limited to the 128 nonce bits, and it is not clear how to exploit the method
above to gain an extra round. However, according to the Keyak specification, a
variable nonce is not required for authenticity and integrity of data. Therefore,
we fix the nonce, and hence also fix the state after the first permutation call.
Then, before the second permutation call, the state absorbs plaintext variables,
which we select as cube variables. In this setting, we can control as many as
r = 1348 state bits, and forge the 128-bit tag with complexity 265, similarly to
the 7-round Keccak MAC forgery above.

5.4 MAC Forgery for 8 Rounds

We attack 8-round variants with a longer 256-bit key and tag, increasing the secu-
rity level to 256 bits. The other parameters remain the same. In this case, we select
a 129-variable cube as follows: 128 variables among lanes A[4, 0], A[4, 1], A[4, 2]
(as c = 576, these lanes contain public message bits), using the generalized idea
of Section 5.2, and 1 additional variable in lanes A[2, 1], A[2, 2]. After the linear
layer, these variables diffuse to lanes A[2, 0], A[1, 1], A[1, 2], A[0, 3], A[2, 4] which
have different y indices and are not multiplied together in the first round. There-
fore, for such a selection, the output degree in the variables after 8 rounds is at
most 27 = 128, implying that the cube sums are zero, and we can forge a message
with complexity 2129.



Cube Attacks and Cube-Attack-Like Cryptanalysis 747

5.5 Keystream Prediction for 8- and 9-Round Keccak-Based
Stream Cipher

The output prediction strategy used to forge a MAC can be used to predict the
keystream of a previously unseen IV in the stream cipher mode. The difference
is that in this mode we generally have less control over the public variables
(IV), and we cannot select the cube variable as in the previous attacks to gain
a round at the beginning. On the other hand, we exploit larger cubes than in
MACs (as some stream ciphers aim for higher security level compared to MACs).
Furthermore, as more output bits are generally available, we can invert the last
non-linear χ on sequences of 320 output bits and reduce their algebraic degree
as in Section 4.

First, let us describe the attack on the 8-round variant with the default
parameters r = 1024 and c = 576. We set the key length to 256 bits and IV
length to 128 bits. Having 1024 bits of keystream, we can invert as many as 960
bits through ι and χ. Therefore, we reduce our attack to 7.5 rounds for which
the algebraic degree is at most 27 = 128. The attack has two phases.

Preprocessing Phase

Since for 7.5 rounds we deal with the algebraic degree 128, summing over any 128-
bit cube gives a constant regardless of the secret key values. Thus, we determine
a cube sum (either 1 or 0) for each output bit of the first 3 · 320 = 960 bits of
state (which can be fully inverted online, given the 1024-bit keystream after 8
rounds). The cost of the preprocessing is 2128 Keccak calls.

Online Phase

Keystream prediction for an unused IV follows the same pattern as for a MAC
forgery. First, we collect 2128 − 1 keystream sets for IVs which reside in a 128-
dimensional cube (not including the IV whose keystream we predict), and invert
ι and χ on the first available bits 3 · 320 = 960 bits of state. Then, the first
960 bits of keystream of the remaining IV can be predicted. This is done by
XORing the 960 bits of all the 2128 − 1 inverted keystreams to the cube sums
calculated during preprocessing, and then reapplying χ and ι to the outcome.
The complexity of the online phase is 2128 Keccak calls, whereas the generic
attack complexity is 2256.

Keystream Prediction for 9-Round Keccak

Following the procedure from 8-round variant, we can easily extend the attack
to 9-round Keccak with r = 1024, c = 576 using larger keys of 512 bits, and
an IV of 256 bits. The only difference is that we would sum over larger 256-
bit cubes. According to the recent analysis [18], the ideal security level of this
variant should be 512 bits2, whereas our attack has complexity of 2256.
2 According to [18], the security of the scheme is min(n, c, b/2) = min(512, 576, 800) =

512 bits.
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6 Divide-and-Conquer Key Recovery Attack on
Keccak-Based MAC and Keyak

In the previous section, we showed how to predict output for several keyed
variants of Keccak. In this section, we return to the most powerful type of attacks,
and describe key recovery attacks on the 6- and 7-round Keccak with a 1600-bit
state. We attack a variant with the capacity parameter c = 256 and a 128-bit
key. Therefore, the security level of this variant is 128 bits.

First, we note that for 6 rounds the degree of the output bits is generally
26 = 64, and thus the preprocessing phase of the standard cube attack is too
expensive to perform (without exploiting some internal invertibility properties,
as in Section 4). Another possible approach it to carefully select the cube such
that we obtain a practical distinguisher (as in Section 5.1). Then, we can try
to apply several techniques that were developed to exploit similar distinguishers
for key recovery (such as conditional differential cryptanalysis [19] and dynamic
cube attacks [15]). However, these techniques seem to be better suited for stream
ciphers built using feedback shift registers, rather than the SP-network design
of Keccak.

As it is not clear how to use the standard key recovery techniques in our
case, we use a different approach. The main idea in our attack is to select the
public variables of the cube in such a way that the superpolys depend only on a
(relatively) small number of key bits, whose value can be recovered independently
of the rest of the key. Thus, the full key can be recovered in several phases in a
divide-and-conquer manner.

The approach we use is similar to the one used in the attacks on the stream
ciphers Trivium and Grain in [16]. However, while the results on Trivium and
Grain were mostly obtained using simulations, our attack is based on theoretical
analysis that combines algebraic and structural properties of Keccak in a novel
way. This analysis enables us to estimate the complexity of the attack beyond
the feasible region (in contrast to the simulation-based attack of [16]).

Borderline Cubes. The starting point of the attack is the cube tester of
Section 5.1, which is based on a 33-variable cube, whose column parities remain
constant for all of their 233 possible values. As the cube variables are not multi-
plied together in the first round and the degree of 6-round Keccak in the state
variables after one round is 25 = 32, then the cube sums for the 33-variables
are zero for all output bits. When we remove one variable from this cube, the
sums are no longer guaranteed to be zero and they depend on the values of some
of the constant bits of the state. This leaves us in a borderline situation. If a
state bit is not multiplied with the cube variables in the first round, then the
cube sums do not depend on the value of this bit. On the other hand, if a state
bit is multiplied with the cube variables in the first round, then the cube sums
generally depend on the value of the bit (assuming sufficient mixing of the state
by the Keccak mapping). Thus, by a careful selection of a “borderline” cube of
dimension 32, we can assure that the cube sums depend only on a (relatively)
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small number of key bits. This gives rise to divide-and-conquer attacks, which
we describe in detail in the rest of this section.

6.1 Basic 6-Round Attack

According to the Keccak MAC specification, the 128-bit key is placed in A[0, 0]
and A[1, 0]. However, it is worth noting that our attack could be easily adapted to
any other placements of the secret key. We select 32 cube variables v1, v2, . . . , v32
in A[2, 2] and A[2, 3], such that the column parities of A[2, ∗] remain constant
for the 232 possible values of the variables (similarly to Section 5.1). This careful
selection of the cube variables leads to two properties on which our attack is
based:

Property 1. The cube sum of each output bit after 6 rounds does not depend on
the value of A[1, 0].

Property 2. The cube sums of the output bits after 6 rounds depend on the value
of A[0, 0].

The detailed proof of these properties is given in Appendix D, but note that
as we selected a “borderline” cube of 32 variables, we can prove Property 1 by
showing that the cube variables are not multiplied with the secret variables of
A[1, 0] in the first round. Similarly, we can prove Property 2 by showing that
the cube variables are multiplied with the secret variables of A[0, 0] in the first
round.

We now describe the attack which exploits the two properties to retrieve the
value of A[0, 0]. For the sake of convenience, we separate the attack to prepro-
cessing and online phases, where the preprocessing phase does not depend on the
online values of the secret key. However, we take into account both of the phases
when calculating the complexity of the full attack. The preprocessing phase is
described below.

1. Set the capacity lanes (A[1, 4], A[2, 4], A[3, 4], A[4, 4]) to zero. Set all other
state bits (beside A[0, 0] and the cube variables) to an arbitrary constant.3

2. For each of the 264 possible values of A[0, 0]:
(a) Calculate the cube sums after 6 rounds for all the output bits. Store

the cube sums in a sorted list L, next to the value of the corresponding
A[0, 0].

As the cube contains 32 variables, the time complexity of Step 2.(a) is 232.
The cube sums are calculated and stored for each of the 264 values of A[0, 0],
and thus the total time complexity of the preprocessing phase is 264 · 232 = 296,
while its memory complexity is 264.

The online phase, which retrieves A[0, 0], is described below.

3 The chosen constant has to include padding bits.
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1. Request the outputs for the 232 messages that make up the chosen cube
(using the same constant as in the preprocessing phase).

2. Calculate the cube sums for the output bits and search them in L.
3. For each match in L, retrieve A[0, 0] and store all of its possible values.

Although the actual online value of A[1, 0] does not necessarily match its
value used during preprocessing, according to Property 1, it does not affect
the cube sums. Thus, we will obtain a match in Step 3 with the correct value of
A[0, 0]. In order to recover A[1, 0], we independently apply a similar attack using
32 public variables in A[4, 2] and A[4, 3] (for which properties corresponding to
Property 1 and Property 2 would apply). Finally, in order to recover the full
key, we enumerate and test all combinations of the suggestions independently
obtained for A[0, 0] and A[1, 0].

The time complexity of the attack depends on the number of matches we
obtain in Step 3. The expected number of matches is determined by several fac-
tors, and in particular, it depends on a stronger version of Property 2, namely
on the actual distribution of the cube sums after 6 rounds in A[0, 0] (Property 2
simply tells us that the distribution is not concentrated in one value of A[0, 0]).
Furthermore, the number of matches varies according to the number of avail-
able output bits, and the actual cube and constants chosen during preprocessing
Step 1 (and reused online). In general, assuming that the cube sums are uni-
formly distributed in A[0, 0], and we have at least 64 available output bits (which
is the typical case for a MAC), we do not expect more than a few suggestions
for the 64-bit A[0, 0] in online Step 3. Although we cannot make the very strong
assumption that the cube sums are uniformly distributed in A[0, 0], our exper-
iments (described in Appendix D) indeed reveal that we are likely to remain
with very few suggestions for A[0, 0] in online Step 3. Furthermore, even if we
remain with more suggestions than expected, we can collect sums from several
cubes, obtained by choosing different cube variables or changing the value of
the message bits, which do not depend on the cube variables. This reduces the
number of matches in Step 3 at the expense of slightly increasing the complexity
of the attack. We thus assume that the number of matches we obtain in Step 3
is very small.

The online phase requires 232 data to retrieve the 64-bit A[0, 0] and requires
232 time in order to calculate the cube sums. As previously mentioned, in order
to recover A[1, 0], we independently apply the same attack but this time using
32 public variables in A[4, 2] and A[4, 3]. Thus, for the full key recovery, the total
data complexity is 233 and the online time complexity is 233 (assuming that we
do not have too many suggestions in Step 3). Taking preprocessing into account,
the total time complexity is 296, and the memory complexity is 264.

6.2 Balanced 6-Round Attack

The basic attack above employs an expensive preprocessing phase which domi-
nates its time complexity. In this section, we describe how to tradeoff the com-
plexity of the preprocessing and online phases, allowing us to devise a more
efficient attack.
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Fig. 7. Impact of auxiliary variables on diffusion of the secret key variables. When
using auxiliary variables, A[0, 0] (secret variables) and A[0, 1] (auxiliary variables) are
diffused to A[0, 0] and A[1, 3], without affecting many lanes of the state.

The imbalance of the basic attack comes from the fact that the cube sums
after 6 rounds depend on all the variables of A[0, 0]. Thus, we need to iterate
over all of their 264 values during preprocessing to cover all the possible values
of the cube sums in the online phase.

In order to reduce the preprocessing complexity, we aim to eliminate the
dependency of the cube sums on some of the variables of A[0, 0]. However, it
is not clear how to achieve this, as we cannot control the values of the secret
variables and thus we cannot directly control their diffusion. On the other hand,
as the action of θ is only determined by the column parities, we can indirectly
control the diffusion of the secret variables by using additional auxiliary variables
in the lanes with x = 0, and specifically in A[0, 1]. If we set the column parities
for x = 0 to zero (or any other pre-defined constant), then the diffusion of the
secret key is substantially reduced. Figure 7 shows an impact of the auxiliary
variables on diffusion of the secret key variables.

Similarly to the basic attack, we select a borderline cube with 32 variables in
A[2, 2] and A[2, 3], such that the column parities of A[2, ∗] remain constant for the
232 possible values of the variables. As explicitly shown in the proof of Property 1
in Appendix D, the cube variables are not multiplied with the auxiliary variables
or secret variables in the first round (assuming that the column parities of x = 0
are fixed). Therefore, the cube sums after 6 rounds depend neither on the value of
A[0, 0], nor on the auxiliary variables of A[0, 1] (but only on the column parities
of x = 0). This observation gives rise to our balanced attack. Similarly to the
basic attack, we divide the attack into preprocessing and online phases, where
the preprocessing phase is described below.
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1. Set the state bits (which are not cube variables) to zero (or an arbitrary
constant). Furthermore, set A[1, 0] and the 32 LSBs of A[0, 0] to zero (or an
arbitrary constant).

2. For each possible value of the 32 MSBs of A[0, 0]:
(a) Calculate the cube sums after 6 rounds for all the output bits. Store the

cube sums in a sorted list L, next to the value of the 32 MSBs of A[0, 0].

The cube sums are calculated and stored for each of the 232 values of the 32
MSBs of A[0, 0], and thus the total time complexity of the preprocessing phase
is 232 · 232 = 264, while its memory complexity is 232.

The online phase is described below.

1. For each possible value of the 32 LSBs of A[0, 1]:
(a) Request the outputs for the 232 messages that make up the chosen cube

with the 32 LSBs of A[0, 1] set according to Step 1 (setting the same
constant values in the state as in the preprocessing).

(b) Calculate the cube sums for the output bits and search them in L.
(c) For each match in L, retrieve the 32 MSBs of A[0, 0]. Assume that the

32 LSBs of A[0, 0] are equal to the 32 LSBs of A[0, 1] (the 32 column
parities should be zero, as in the preprocessing phase). Then, given the
full 64-bit A[0, 0], exhaustively search A[1, 0] using trial encryptions, and
if a trial encryption succeeds, return the full key A[0, 0], A[1, 0].

Once the value of the 32 LSBs of A[0, 1] in Step 1 is equal to the 32 LSBs of
the (unknown) A[0, 0], the corresponding column parities are zero, and thus they
match the column parities assumed during preprocessing. The actual values of
the 32 LSBs of A[0, 1] and A[0, 0] (and the actual value of A[1, 0]) do not neces-
sarily match their values during preprocessing. However, they do not influence
the cube sums, and thus the attack recovers the correct key once the value of
the 32 LSBs of A[1, 0] is equal to the 32 LSBs of A[0, 0].

The online phase requires 232+32 = 264 chosen messages to retrieve the
64-bit A[0, 0]. Assuming that we do not have too many suggestions in Step 3 (as
assumed in the basic attack), it requires 264 time in order to obtain the data and
calculate the cube sums, and additional 264 time to exhaustively search A[1, 0]
in Step 1(c). Taking preprocessing into account, the total time complexity of the
attack is about 266, and its memory complexity is 232.

We note that it is possible to obtain additional tradeoffs between the prepro-
cessing and online complexities by adjusting the number of auxiliary variables.
However, in this paper we describe the attack with the best total time complexity
only.

6.3 7-Round Attack

For a MAC based on the 7-round Keccak, the algebraic degree of the output
in the state variables of round 1 is 26 = 64. We can extend our 6-round attack
to 7 rounds by selecting a borderline cube of 64-variables (i.e., a full lane) in
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A[2, 2] and A[2, 3]. As the cube consists of 32 more variables than the cube of the
6-round attack, the data complexity increases by a factor of 232, and the time
complexity of both the preprocessing and online phases increases by the same
factor (except for the exhaustive search for A[1, 0] in online Step 1(c), which still
requires 264 time). Thus, the data complexity of the full 7-round attack is 264,
its time complexity is 297, and its memory complexity remains 232.

Comparison with Standard Cube Attacks. One may claim that the
6-round attacks presented in this section are somewhat less interesting, as it
seems reasonable that the standard cube attack (such as the ones presented
in Section 4) would break the scheme in a similar time complexity of (a bit
more than) 22

6
= 264. However, in order to mount the standard cube attack,

we need to run a lengthy preprocessing phase whose outcome is undetermined,
whereas our divide-and-conquer algorithm is much better defined. Furthermore,
the divide-and-conquer attacks allow a wider range of parameters and can work
with much less than 264 data.

Despite its advantage in attacking 6 rounds, the real power of the divide-and-
conquer attack introduced in this paper is demonstrated by the 7-round attack.
Indeed, the standard cube attack on the 7-round scheme is expected to require
more than 22

7
= 2128 time, and is therefore slower than exhaustive search,

whereas our divide-and-conquer attack breaks the scheme with complexity 297.

6.4 Application to 7-Round Keyak

We now apply the divide-and-conquer attack to 7-round Keyak. As in the forgery
attack on 7-round Keyak of Section 5.3, we reuse the nonce and consider the mes-
sage bits as public variables in order to have more freedom and gain an additional
round at the beginning. Therefore, we only aim to break the authenticity and
integrity of Keyak. Compared to the attack of Section 5.3 which allows to forge
a single tag, the 7-round attack described here is significantly stronger. This
attack recovers the secret key, after which the security of the system is com-
pletely compromised (e.g. one can immediately forge the tag of any message).

In the initial setting, all the 1600 state bits obtained after the first permu-
tation are unknown, and we aim to recover them. Once this state is recovered,
we can run the permutation backwards and recover the secret key. In order to
recover the secret 1600-bit state, we first obtain the encryption of an arbitrary
2-block message whose first-block ciphertext reveals the value of r = 1348 bits of
secret state. Then, during the actual attack, we choose messages that set these
r = 1348 known bits to an arbitrary pre-fixed constant (e.g., zero), whose value
is defined and used during the preprocessing phase of the attack. Using this
simple idea, the number of secret state variables for Keyak is reduced from 1600
to c = 252 variables in A[1, 4], A[2, 4], A[3, 4], A[4, 4]. Note that although the key
size is only 128 bits, we have a larger number of 252 secret variables.

In this attack, we use a borderline cube containing d = 32 variables. Recall
that in the case of MAC-based Keccak, a 32-variable cube was used to attack 6
rounds, but here, we have a larger output of 1348 bits which allows to exploit
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the inversion property from Section 4. Therefore, we can attack 7 rounds using
a 32-bit borderline cube, exploiting the inversion property on 320 · 4 = 1280
output bits.

In the attack on the 6-round Keccak MAC, we selected the 32 cube variables
by varying 64 bits in A[2, 2] and A[2, 3], which diffuse to different 64 bits after
the linear layer. As χ only multiplies consecutive bits in a row, then each such
bit is multiplied with 2 neighbouring bits in its row, and therefore the 64 bits
are multiplied with 128 bits that remain constant during the cube summation.
As we selected a borderline cube, these 128 constant bits are the only ones
that effect the value of the cube summations (which is the crucial property on
which the divide-and-conquer attack is based), and we refer to these bits here
as effective bits. Some of the values of the 128 effective bits are unknown as
they depend on linear combinations of secret variables (such a combination can
either be a singleton bit, or a linear combination of several secret bits), which
we refer to here as effective secret expressions. Note that since each effective bit
contains at most one effective secret expression, then the number of effective
secret expressions is upper bounded by the number of effective bits.

In the case of the 6-round attack on the Keccak MAC, only 64 of the 128
effective bits actually depend on secret material (i.e., the number of effective
secret expressions is 64). In order to recover the 64 bits of effective secret expres-
sions, the idea was to enumerate their values during preprocessing, store their
cube sums, and compare these sums to the ones obtained online. Therefore, the
complexity of the basic (non-balanced) attack was about 264+32 = 296.

In the case of 7-round Keyak, we have as many as 252 secret variables, which
extensively diffuse over the state. Therefore, a selection of a cube similar to the 6-
round attack on MAC will cause the 64 cube variables to be multiplied with (the
maximal number of) 128 effective secret expressions (instead of 64) in the first
round, increasing the complexity of the basic attack to about 2128+32 = 2160,
much above the exhaustive search of 2128. In order to reduce the number of
effective secret expressions, we use the idea from Section 5.2, and choose the 32
cube variables among the 5 lanes with x = 0. More precisely, we set the 8 LSBs
of the first 4 lanes A[0, 0], A[0, 1], A[0, 2], A[0, 3] as independent cube variables
(i.e., we have a total of 4 · 8 = 32 independent variables), while the 8 LSBs of
A[0, 4] act as “parity checks”. Using that selection of cube variables, we have
only 40 bits (instead of 64) that depend on the cube variables. The first linear
layer diffuses these 40 bits to A[0, 0], A[2, 1], A[4, 2], A[1, 3], A[3, 4]. These lanes
have distinct y coordinates, and are therefore not multiplied together by χ —
the condition to get the first round for ‘free’.

Once again, as χ multiplies each bit with two neighbouring bits in its row, the
40 bits that depend on the cube variables are multiplied with 40 ·2 = 80 effective
bits, which implies that the number of effective secret expressions is at most 80.
Figure 8 shows an example diffusion of the 40-bit cube and the placement of the
effective bits.

We now use the same procedure that we used for the basic attack on 6-
round MAC to recover the values of the 80 effective secret expressions. Namely,
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Fig. 8. Example placement of the cube and effective bits before the first χ is applied

during the preprocessing phase, we enumerate and store the 280 cube sums for
all the possible values of the secret expressions in time 280+32 = 2112, using 280

memory. During the online phase, we simply request the outputs for the chosen
cube, calculate the cube sums and compare with the values stored in memory.
This online procedure recovers the secret expressions in 232 data and time.

In order to recover all the 252 secret variables, we use a total of 8 cubes,
obtained by rotating the variables of the initial cube inside the lanes by multiples
of 8 towards the MSB (e.g., the second cube contains bits 8–16 of the lanes
with x = 0). Each such cube changes the effective secret expressions that are
multiplied with the cube variables (although their number remains 80). One can
verify that the secret expressions multiplied with these 8 cubes contain sufficient
information to recover all the 252 secret variables (by solving a system of linear
equations in the 252 variables). Note that as we only have 252 secret variables,
after exploiting the first few cubes, the values of some secret linear expressions
is already determined, and this can be used to slightly optimize the attack.

Balanced Attack. As in the case of the Keccak MAC, we can use auxiliary
variables to balance the preprocessing and online complexities, reaching the lower
total complexity. In the preprocessing, we calculate and store only 240 cube
sums — a substantially smaller subset of all possible 280 cube sums for the 80
effective secret expressions. Thus, the preprocessing time complexity is reduced
to 240+32 = 272 and the memory complexity is reduced to 240.

During the online phase, we exploit the large freedom in the message bits
(we have 1348 − 40 − 2 = 1306 free message bits that are not cube variables or
padding bits) to set auxiliary variables that affect the values of the 80 effective
bits which are multiplied with the cube variables. Then, we request the plain-
texts and calculate online the cube sums for 240 (unknown beforehand) different
values of these 80 effective bits. According to the birthday paradox, with high
probability, the (unknown beforehand) values of the 80 effective bits, in one of
these online trials, will match one of their 240 preprocessed values. This match
will be detected by equating the cube sums, and allow us to recover the 80 effec-
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tive secret expressions. Therefore, the data and time complexities of recovering
80 effective secret expressions are 232+40 = 272, and including preprocessing, the
total time complexity is 2 · 272 = 273.

In order to recover all the 252 secret variables, we use the 8 cubes defined
in the basic (non-balanced) attack. Therefore, the total time complexity of the
attack is 8 · 273 = 276, the data complexity is 8 · 272 = 275 and it requires
8 · 240 = 243 words of memory (the memory can be reduced to 240 if the cubes
are analysed sequentially).

There are many possible tradeoffs between complexities of the preprocessing
and the online phase. Interesting parameters are obtained by using only 24 auxil-
iary variables. In this case, according to the birthday paradox, we need to iterate
over 280−24 = 256 values of the effective secret expressions for each cube during
the preprocessing. Thus, the preprocessing complexity is 8 · 232+56 = 291, the
memory complexity is 8 · 256 = 259, while the data and online time complexities
are 8 · 232+24 = 259 as well.

7 Conclusion

We mounted various types of algebraic attacks on keyed Keccak variants, break-
ing up to 6 rounds with practical complexity, and up to 9 rounds much faster
than the exhaustive search. Our attacks incorporate in a novel way both alge-
braic and structural analysis of Keccak. We expect that the techniques developed
in this paper will be further refined and used in future analysis of Keccak and
related designs.

Considering attacks that break core security properties of the keyless, hashing
mode, much faster than exhaustive search, the best result is 5 rounds [13]. As
we can break up to 9 rounds of the keyed variants, the conclusion from our
analysis is that the security margin of Keccak is somewhat reduced in the keyed
modes. However, the full 24-round variants still have a big security margin. For
Keyak – the authenticated encryption scheme based on Keccak – the nominal
number of rounds is 12 and we showed that its security margin is smaller (but
still sufficient).

Acknowledgments. Project was financed by Polish National Science Centre, project
DEC-2013/09/D/ST6/03918. Josef Pieprzyk was supported by the ARC grant
DP0987734.
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Appendix

A

Table 2. An example of a cube and corresponding superpolys used in the attack on
5-round Keccak MAC

cube: 128,130,131,139,145,146,147,148,151,155,158,160,161,163,164,165,185,186,189,
190,193,196,205,212, 220,225,229,238,242,245,249
superpoly output bit superpoly output bit

x77 7 1 + x110 13

1 + x113 15 x25 31

1 + x103 42 1 + x105 69

x44 84 x123 87

1 + x100 96 1 + x104 100

x17 112 x38 + x51 71

1 + x7 + x19 91 1 + x80 + x122 113

x17 + x68 + x116 114

B

Table 3. An example of a cube and corresponding superpolys found for 5.5 rounds,
used in the attack on the 6-round Keccak working in the stream cipher mode

cube: 128,133,134,137,138,145,153,154,155,157,158,161,175,180,182,187,191,192,195,
199,206,208,211,220,227,229,245,247,249,251,252
superpoly output bit superpoly output bit

x76 1 1 + x64 13

x41 17 x106 28

1 + x85 38 1 + x32 46

1 + x10 49 x0 70

x109 71 1 + x121 73

1 + x25 88 x96 91

1 + x35 95 1 + x68 97

x42 106 x72 111

x26 112 1 + x34 123

x116 125
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C

Table 4. An example of a cube and corresponding superpolys found for the 5.5-round
variant with the reduced (400-bit) state. Cubes were used in the attack on the 6-round
Keccak MAC.

cube: 80,82,84,85,87,90,91,96,102,105,109,110,111,116,119,122,128,130,133,134,136,
139,140,141,145,146, 147,149,153,156,159
superpoly output bit superpoly output bit

1 + x1 + x2 + x8 + x11 + x12

+ x16 + x17 + x18 + x19 + x20

+ x31 + x35 + x37 + x40 + x41

+ x50 + x52 + x62 + x65 + x69

+ x71 + x74 + x79

29 x2 + x4 + x5 + x16 + x17 +
x20 + x22 + x24 + x28 + x34 +
x40 + x42 + x43 + x44 + x47 +
x49 + x51 + x52 + x53 + x54 +
x56 + x60 + x61 + x62 + x67 +
x69 + x72 + x73 + x75 + x78

98

x0 + x2 + x4 + x7 + x8 + x10

+ x11 + x13 + x14 + x16 + x17

+ x20 + x23 + x26 + x28 + x30

+ x31 + x32 + x34 + x35 + x36

+ x39 + x41 + x43 + x46 + x49

+ x52 + x54 + x56 + x63 + x76

79

D

In this section, we provide detailed analysis of some elements of the divide-and-
conquer attack of Section 6.

Proofs of Properties 1 and 2

We prove the two properties on which the basic attack of Section 6 is based.
Recall that we select the cube variables v1, v2, . . . , v32 in A[2, 2] and A[2, 3], such
that the column parities remain constant for all the 232 possible values of the
variables.

Property 1 (restated). The cube sum of each output bit after 6 rounds does
not depend on the value of A[1, 0].

Proof. We fix the value of A[0, 0] to an arbitrary constant, and symbolically rep-
resent the 64 bits of A[1, 0] as secret variables. We track the symbolic evolution
of the 64 secret variables and 32 public variables throughout the first round:
Due to θ, the secret variables of A[1, 0] linearly diffuse to A[0, ∗], A[2, ∗] and
A[1, 0], while the cube variables of A[2, 2] and A[2, 3] do not diffuse (as the col-
umn parities of A[2, ∗] remain constant). Then, ρ rotates the lanes, but does not
effect the inter-lane diffusion. The mapping π reorders the lanes, and after its
application, the bits of the 2 lanes A[2, 0], A[3, 3] linearly depend on the public
variables, while the bits of the following 11 lanes linearly depend on the secret
variables. Figure 9 shows the details.
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Fig. 9. Diffusion of the secret dependent variables

After the application of the linear mappings, we apply χ to the state. Despite
its non-linearity, the only non-linear operation of χ is multiplying together bits
in consecutive lanes (with the same y and z indexes). Thus, the bits of the 2
lanes that depend on the public variables, A[2, 0], A[3, 3], are only multiplied
with the bits of A[1, 0], A[3, 0], A[2, 3], A[4, 3]. Since these 4 lanes are constants
(they do not depend on any cube or secret variables), then the cube variables are
not multiplied by any variables throughout the first round (ι is a linear mapping
which does not change this property). In other words, the symbolic form of
each state bit A[x, y, z] can be written as Lx,y,z(v1, v2, . . . , v32, w1, w2, . . .), where
Lx,y,z is some linear function, and the variables wi depend only on the secret
variables (and not on the cube variables v1, v2, . . . , v32).

We now analyse the symbolic form of the state bits after 6 Keccak rounds,
whose algebraic degree in the state variables after one round is 25 = 32. Given
the special symbolic form of the state bits after one Keccak round, the degree
of each state bit after 6 rounds in the variables v1, v2, . . . , v32, w1, w2, . . . is at
most 32, and thus the superpoly of the monomial v1v2 . . . v32 is constant. As a
result, the cube sum of each state bit after 6 rounds is a constant, which does
not depend on the value of the secret variables. This proves Property 1.

Property 2 (restated). The cube sums of the output bits after 6 rounds depend
on the value of A[0, 0].

Proof. When considering the bits of A[0, 0] as secret variables, they are multi-
plied with the cube variables in the first round (e.g. A[0, 0] diffuses to A[1, 0],
whose bits are multiplied with A[2, 0] due to χ). After 6 rounds, we expect the
degree of the output bits, in the state bits after one round, to be 25 = 32.
Consequently, we expect the superpoly of v1v2 . . . v32 for an output bit to gen-
erally depend on the value of A[0, 0], and thus the cube sums of the output bits
generally depend on the value of A[0, 0]. This proves Property 2.

Simulation Results

In our 6- and 7-round key recovery attack, the most desired situation is when
each 64-bit key would correspond to a distinct vector of cube sums. However,
checking all 264 cases, where each case requires summing over 232 messages,
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is infeasible. Therefore, we conducted experiments checking a limited number
of keys and using smaller cubes. First, we checked 216 randomly chosen keys
using 16-bit cube and nearly all keys have their unique cube sum vector. Only
a very small fraction (below 0.007%) share the output vector with other keys.
The second experiment, ran on the smaller variant with 400-bit state, with 216

randomly chosen keys, showed that each key has its unique cube sum vector.
Thus, our simulation results is a strong indication that assumptions taken for
the 6- and 7-round key recovery attacks are sound.
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Abstract. Polynomial hashing as an instantiation of universal hashing
is a widely employed method for the construction of MACs and authenti-
cated encryption (AE) schemes, the ubiquitous GCM being a prominent
example. It is also used in recent AE proposals within the CAESAR com-
petition which aim at providing nonce misuse resistance, such as POET.
The algebraic structure of polynomial hashing has given rise to security
concerns: At CRYPTO 2008, Handschuh and Preneel describe key recov-
ery attacks, and at FSE 2013, Procter and Cid provide a comprehensive
framework for forgery attacks. Both approaches rely heavily on the abil-
ity to construct forgery polynomials having disjoint sets of roots, with
many roots (“weak keys”) each. Constructing such polynomials beyond
näıve approaches is crucial for these attacks, but still an open problem.

In this paper, we comprehensively address this issue. We propose to
use twisted polynomials from Ore rings as forgery polynomials. We show
how to construct sparse forgery polynomials with full control over the
sets of roots. We also achieve complete and explicit disjoint coverage of
the key space by these polynomials. We furthermore leverage this new
construction in an improved key recovery algorithm.

As cryptanalytic applications of our twisted polynomials, we develop
the first universal forgery attacks on GCM in the weak-key model that
do not require nonce reuse. Moreover, we present universal weak-key
forgeries for the nonce-misuse resistant AE scheme POET, which is a
CAESAR candidate.

Keywords: Authenticated encryption · Polynomial hashing · Twisted
polynomial ring (Ore ring) · Weak keys · GCM · POET

1 Introduction

Authenticated encryption (AE) schemes are symmetric cryptographic primitives
combining the security goals of confidentiality and integrity. Providing both
ciphertext and an authentication tag on input of a plaintext message, they allow

Due to page limitations, several details are omitted in this proceedings version. A
full version is available at [2].
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two parties sharing a secret key to exchange messages in privacy and with the
assurance that they have not been tampered with.

Approaches to construct AE schemes range from generic composition of a
symmetric block or stream cipher for confidentiality and a message authentica-
tion code (MAC) for integrity to dedicated designs. An important method for
constructing both stand-alone MACs and the authentication tag generation part
of dedicated AE algorithms is based on universal hash functions, typically fol-
lowing the Carter-Wegman paradigm [21]. This construction enjoys information-
theoretic security and is usually instantiated by polynomial hashing, that is, the
evaluation of a polynomial in H (the authentication key) over a finite field with
the message blocks as coefficients.

One of the most widely adopted AE schemes is the Galois Counter Mode
(GCM) [6], which has been integrated into important protocols such as TLS,
SSH and IPsec; and furthermore has been standardized by among others NIST
and ISO/IEC. It combines a 128-bit block cipher in CTR mode of operation for
encryption with a polynomial hash in F

128
2 over the ciphertexts to generate an

authentication tag. The security of GCM relies crucially on the uniqueness of its
nonce parameter [7,10,11].

As a field, authenticated encryption has recently become a major focus of
the cryptographic community due to the ongoing CAESAR competition for a
portfolio of recommended AE algorithms [1]. A large number of diverse designs
has been submitted to this competition, and a number of the submissions feature
polynomial hashing as part of their authentication functionality. Among these,
the new AE schemes POET [3], Julius [5] and COBRA [4] feature stronger
security claims about preserving confidentiality and/or integrity under nonce
reuse (so-called nonce misuse resistance [12]).

Background. The usual method to build a MAC or the authentication com-
ponent of an AE scheme from universal hash functions is to use polynomial
hashing, in other words, to evaluate a polynomial in the authentication key with
the message or ciphertext blocks as coefficients:

Definition 1 (Polynomial-based Authentication Scheme). A polynomial
hash-based authentication scheme processes an input consisting of a key H and
plaintext/ciphertext M = (M1||M2|| · · · ||Ml), where each Mi ∈ F

n
2 , by evaluating

the polynomial

hH(M) :=
l∑

i=1

MiH
i ∈ F

n
2 .

To produce an authentication tag, the value hH(M) is often processed fur-
ther, for example by encryption, or additive combination with another pseu-
dorandom function. For a survey of existing constructions, we refer the reader
to [10]. Out of these schemes, GCM [6,13] is by far the most important and
widespread algorithm. We therefore recapitulate existing security results about
polynomial hashing at the example of GCM.
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The Galois Counter Mode. GCM is defined as follows. It takes as input the
plaintext M = M1||M2|| · · · ||Ml, a key k and a nonce N . It outputs correspond-
ing ciphertext C = C1||C2|| · · · ||Cl and an authentication tag T . The ciphertext
blocks are generated using a block cipher Ek (usually AES) in counter mode:
Ci = Ek(Ji−1) ⊕ Mi, with J0 an initial counter value derived from N , and the
J1, J2, . . . successive increments of J0. The ciphertexts are then processed with
polynomial hashing to generate the tag

T = Ek(J0) ⊕ hH(C)

with H = Ek(0) as the authentication (hash) key. GCM is typically instantiated
with a 128-bit block cipher, uses 128-bit keys and 96-bit nonces and produces
128-bit tags.

Joux’ “forbidden” attack. Soon after the proposal of GCM, Joux [11] pointed
out that the security of GCM breaks down completely if nonces are re-used with
the same key. Since GCM is built upon the assumption of nonce uniqueness,
his attack is referred to as the “forbidden” attack against GCM. It recovers the
hashing key H using pairs of different messages M and M ′ that are authenticated
using the same nonce N . This leads to the following equation in one unknown
H:

T ⊕ T ′ = hH(C) ⊕ EK(N) ⊕ hH(C ′) ⊕ EK(N) = hH(C ⊕ C ′),

where C/C ′ and T/T ′ are the ciphertext/tag of M/M ′. This is equivalent to
saying that the polynomial T ⊕ T ′ ⊕ hH(C ⊕ C ′) has a root at H. By using
multiple message pairs and computing the GCD of the arising polynomials, H
can be uniquely identified. This attack does not apply to the nonce-respecting
adversarial model.

Ferguson’s Short Tag attacks. While Joux’ attack establishes GCM’s sensitivity
to nonce reuse, Ferguson [7] demonstrated that truncation of its output to shorter
tags of s < 128 bits not only (generically) limits its authentication security
level to s/2 bits, but also allows a key recovery attack with little more than
2s/2 queries, which especially does not require a collision on the full 128-bit
polynomial hash. Ferguson’s attacks make use of so-called error polynomials

l∑

i=1

(Ci − C ′
i)H

i,

with the Ci the original and the C ′
i the modified ciphertext blocks. Since GCM

operates in a field or characteristic two, squaring is a linear operation, and this
allows Ferguson to consider linearized error polynomials, i.e. where only the
coefficients of H2i are nonzero. The effect of these modifications on the first
bits of the (truncated) authentication tag is then a linear function of H and the
coefficients. Using linear algebra, the coefficients of the error polynomial are then
computed such that the first s/2 bits of the shortened tag will not change. The
attack then exploits a generic birthday-type collision on the remaining s/2 tag
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bits to obtain a complete collision on the short tag. A small number of further
forgeries then yield enough linear relations about bits of H to allow its complete
recovery. Note that this attack does not require nonce reuse.

Handschuh and Preneel’s Key Recovery Attacks. Handschuh and Preneel [10]
propose various methods for recovering the hash key of polynomial hashing-
based MACs, among them GCM. The main idea is to obtain a valid ciphertext-
tag pair C, T and then to attempt verification with a different message C ′ but
the same tag; here C ′ is chosen such that C − C ′ has many distinct roots. If
verification is not successful, another C ′′ is used which is chosen such that C−C ′′

has no roots in common with C − C ′, and so on. Once a verification succeeds,
this indicates that the authentication key is among the roots of this polynomial.
Further queries can then be made to subsequently reduce the search space until
the key is identified. When using polynomials of degree d in each step, the total
number of verification queries needed is 2n/d. Knowing the authentication key
then allows the adversary to produce forgeries for any given combination of
nonce and corresponding ciphertext blocks. The attack of [10] does not require
nonce reuse, however is limited to ciphertexts as it does not allow the adversary
to create universal forgeries for any desired plaintext message.

Handschuh and Preneel further identify the key H = 0 as a trivially weak key
for GCM-like authentication schemes. They further provide a formalization of
the concept of weak keys, namely a class D of keys is called weak if membership
in this class requires less than |D| key tests and verification queries.

Saarinen’s Cycling Weak Key Forgery Attacks. This concept of weak keys for
polynomial authentication was taken a step further by Saarinen in [20], where
a forgery attack for GCM is described for the case where the order of the hash
key H in F

×
2128 is small. If the hash key belongs to a cyclic subgroup of order t,

i.e. Ht+1 = H, then the attacker can create a blind forgery by simply swapping
any two ciphertext blocks Ci and Ci+jt. Such hash keys with short cycles (small
value of t) can be labelled as weak keys. In other words, Saarinen identifies all
elements with less than maximal order in F

×
2128 as weak keys. Since constructing

a corresponding forgery requires a message length of at least 2t blocks, and GCM
limits the message to 232 blocks, this means that all keys with order less than
232 are weak keys for GCM. We finally note that cycling attacks depend on the
factorisation of 2n −1, since any subgroup order is a divisor of the order of F×

2128 .

Procter and Cid’s General Weak-Key Forgery Framework. The idea behind
cycling attacks was extended and formalized by Procter and Cid [15] by intro-
ducing the notion of so-called forgery polynomials: Let H be the (unknown) hash
key. A polynomial q(X) =

∑l
i=1 qiX

i is then called a forgery polynomial if it
has H as a root, i.e. q(H) = 0. This designation is explained by noting that for
C = (C1||C2|| · · · ||Cl) and writing Q = q1|| · · · ||ql, we have

hH(C) = hH(C + Q),
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that is, adding the coefficients of q yields the same authentication tag, i.e. a
forgery.1 More concretely, for GCM, we have that (N,C + Q,T ) is a forgery
for (N,C, T ) whenever q(H) = 0. This also means that all roots of q can be
considered weak keys in the sense of [10]. In order to obtain forgeries with high
probability, Procter and Cid note that a concrete choice for q should have a high
degree and preferably no repeated roots.

Since any choice of q is a forgery polynomial for its roots as the key, Procter
and Cid establish the interesting fact that any set of keys in polynomial hashing
can be considered weak: membership to a weak key class D can namely be
tested by one or two verification queries using the forgery polynomial q(X) =∏

d∈D(X − d) regardless of the size of D. They also note that such a forgery
polynomial can be combined with the key recovery technique of [10], namely
by using the polynomial q(X) =

∏
H∈F

n
2 ,Hn=0(X − H) and then subsequently

fixing more bits of H according to the results of the verification queries. This
only requires two queries for a first forgery, and at most n + 1 for complete
key recvoery. Note however that this requires messages lengths up to 2n blocks,
which is clearly infeasible for GCM (where n = 128).

We also note that all previously described attacks can be seen as special cases
of Procter and Cid’s general forgery framework [15,16].

Our Problem. We start by noting that besides the attacks of Joux and Fer-
guson, which apply to the special cases where the nonce is reused or tags are
truncated, only Saarinen’s cycling attack gives a concrete security result on GCM
and similar authentication schemes. In the formalism of [15], it uses the forgery
polynomials Xt − X with t < 232 the subgroup order. To the best of our knowl-
edge, no other explicit forgery polynomials have been devised. In [15], two generic
classes of forgery polynomials are discussed: random polynomials of degree d in
F2n [X] or näıve multiplication of linear factors (x−H1) · · · · ·(x−Hd). The latter
construction requires d multiplications already for the construction of the forgery
polynomial, which quickly becomes impractical. We also note that in both cases,
the coefficients will be “dense”, i.e. almost all of them will be nonzero. This means
that all of the ciphertext blocks have to be modified by the adversary to submit
each verification query. In the same sense, the observation of [15] that any key
is weak is essentially a certificational result only since |D| multiplications are
needed to produce q for a weak key class of size |D|. The construction of explicit
forgery polynomials is left as an important open problem in [15].

Similarly, the key recovery technique of [10] does not deal with the impor-
tant question of how to construct new polynomials of degree d having distinct
roots from all previously chosen ones, especially without the need to store all d
roots from each of the 2n/d iterations. These observations lead to the following
questions:
1 Note that forgery polynomials are conceptually different from Ferguson’s error poly-

nomials, since the authentication key H typically is not a root of an error polynomial,
while this is the defining property for forgery polynomials.
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Can we efficiently construct explicit forgery polynomials having pre-
scribed sets of roots, ideally having few nonzero coefficients? Moreover,
can we disjointly cover the entire key space using these explicit forgery
polynomials?

Answers to these questions would essentially solve the open problem mentioned
in [15], and also make the observation concrete that any key in polynomial
hashing can be considered weak. It would also improve the key recovery algo-
rithm of Handschuh and Preneel [10]. On the application side, we ask whether
plaintext-universal forgeries for GCM can be constructed in the nonce-respecting
adversarial model.

Our Results. In this paper, we answer the above-mentioned questions in the
affirmative. We comprehensively address the issue of polynomial construction
and selection in forgery and key recovery attacks on authentication and AE
schemes based on polynomial hashing. In detail, the contributions of this paper
are as follows.

Explicit construction of sparse forgery polynomials. In contrast to the existing
generic methods to construct forgery polynomials, we propose a construction
based on so-called twisted polynomial rings that allows us to explicitly describe
polynomials of degree 2d in any finite field F

n
2 which have as roots precisely the

elements of an arbitrary d-dimensional subspace of Fn
2 , independent of n or the

factorisation of 2n − 1. While achieving this, our polynomials are very sparse,
having at most d + 1 nonzero coefficients.

Complete disjoint coverage of the key space by forgery polynomials. In order to
recover the authentication key (as opposed to blind forgeries), the attacks of
Handschuh and Preneel [10] and Procter and Cid [15] need to construct polyno-
mials having a certain set of roots, being disjoint from the roots of all previous
polynomials. We propose an explicit algebraic construction achieving the parti-
tioning of the whole key space Fn

2 into roots of structured and sparse polynomials.
This substantiates the certificational observation of [15] that any key is weak,
in a concrete way. We give an informal overview of our construction of twisted
forgery polynomials in the following proposition.

Proposition (informal). Let q = re and let V be a subspace of Fq of over the
field Fr of dimension d. Then there exists a twisted polynomial φ from the Ore
ring Fq{τ} with the following properties:

1. φ can be written as φ(X) = c0+
∑d

i=1 ciX
2i , i.e. φ has at most d+1 nonzero

coefficients;
2. For any a ∈ Fq, the polynomial φ(X)−φ(a) has exactly a+V as set of roots;
3. The sets of roots of the polynomials φ(X) − b with b ∈ Im φ partition Fq.
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Improved key recovery algorithm. We then leverage the construction of sparse
forgery polynomials from the twisted polynomial ring to propose an improved key
recovery algorithm, which exploits the particular structure of the root spaces of
our forgery polynomials. In contrast to the key recovery techniques of [10] or [15],
it only requires the modification of a logarithmic number of message blocks in
each iteration (i.e., d blocks for a 2d-block message). It also allows arbitrary
trade-offs between message lengths and number of queries.

New universal forgery attacks on GCM. Turning to applications, we develop
the first universal forgery attacks on GCM in the weak-key model that do not
require nonce reuse. We first use tailored twisted forgery polynomials to recover
the authentication key. Depending on the length of the nonce, we then either use
a sliding technique on the counter encryptions or exploit an interaction between
the processing of different nonce lengths to obtain valid ciphertext-tag pairs for
any given combination of nonce and plaintext.

Analysis of POET, Julius, and COBRA. Using our framework, we finally present
further universal forgery attacks in the weak-key model also for the recently
proposed nonce-misuse resistant AE schemes POET, Julius, and COBRA.

Our results on POET prompted the designers to formally withdraw the vari-
ant with finite field multiplications as universal hashing from the CAESAR
competition. Previously, an error in an earlier specification of POET had been
exploited for constant-time blind forgeries [9]. This attack however does not
apply to the corrected specification of POET. Likewise, for COBRA, a previous
efficient attack by Nandi [14] does not yield universal forgeries.

Organization. The remainder of the paper is organized as follows. We introduce
some common notation in Sect. 2. In Sect. 3, we describe our method to con-
struct explicit and sparse forgery polynomials. Sect. 4 proposes two approaches
to construct a set of explicit forgery polynomials whose roots partition the whole
finite field F

128
2 . In Sect. 5, we describe our improved key recovery algorithm. In

Sect. 6, two universal weak-key forgery attacks against GCM are presented. In
Sect. 7, we present several universal forgery attacks on POET under the weak-
key assumption. For the attacks on Julius and COBRA, we refer to the full
version of this paper [2]. We conclude in Sect. 8.

2 Preliminaries

Throughout the paper, we denote by Fpn the finite field of order pn and char-
acteristic p, and write F

n
p for the corresponding n-dimensional vector space over

Fp. We use + and ⊕ interchangeably to denote addition in F2n and F
n
2 .
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Forgery polynomials. We formally define forgery polynomials [15] as polynomials
q(X) =

∑r
i=1 qiX

i with the property that that q(H) = 0 for the authentication
key H. Assume that M = (M1||M2|| · · · ||Ml) and that l ≤ r. Then

hH(M) =
r∑

i=1

MiH
i =

l∑

i=1

MiH
i +

r∑

i=1

qiH
i =

r∑

i=1

(Mi + qi)Hi = hH(M + Q)

where Q = q1|| · · · ||qr. If l < r, we simply pad M with zeros. Throughout the
paper, we will refer to Q as the binary coefficient string of a forgery polynomial
q(X).

Using q as a forgery polynomial in a blind forgery gives a success probability
p = #roots of q(X)

2n . Therefore, in order to have a forgery using the polynomial
q(X) with high probability, q(X) should have a high degree and preferably no
repeated roots.

In the next section, we will present methods to construct explicit sparse
forgery polynomials q(X) with distinct roots and high forgery probability.

3 Explicit Construction of Twisted Forgery Polynomials

When applying either the key recovery attack of [10] or any of the forgery or
key recovery attacks of [15], a crucial issue lies in the selection of polynomials
that have a certain number � of roots in F

n
2 , and additionally being able to select

each polynomial to have no common roots with the previous ones. Ideally, these
polynomials should both be described by explicit constructive formulas, and they
should be sparse, i.e. have few nonzero coefficients.

As noted in [15], the direct way to do this is to choose distinct elements
α1, . . . , α� ∈ F2n and to work out the product (X−α1) · · · (X−α�), which quickly
gets impractical for typical values of � and will not result in sparse polynomials.
The second suggestion described in [15] is to select them at random, which
is efficient, but also does not produce sparse polynomials. Moreover, as noted
in [16], subsequently chosen random polynomials will likely have common roots,
which rules out the key recovery attacks of both [10] and [16].

The only proposed explicit construction of forgery polynomials so far are the
polynomials Xt−1 with t|(2128−1), due to Saarinen [20]. Their roots correspond
precisely to the cyclic subgroups of F128

2 , which also limits their usefulness in the
key recovery attacks.

In this section, we propose a new method which yields explicit constructions
for polynomials with the desired number of roots. At the same time, the resulting
polynomials are sparse in the sense that a polynomial with 2d roots will have at
most d + 1 nonzero coefficients.

For this, we use the fact that F2128 can be seen as a vector space (of dimension
128) over F2. More precisely, given a subvector space V of F2128 of dimension
d with basis {b1, . . . , bd}, we describe a fast procedure to find a polynomial
pV (X) ∈ F2128 [X] whose roots are exactly all elements of V . Note that this
implies that deg PV (X) = 2d. We will also see that the pV (X) is sparse, more
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precisely that the only coefficients of pV (X) that may be distinct from zero are
the coefficients of the monomials X2i with 0 ≤ i ≤ d. In particular this will
imply that pV (X) has at most d + 1 non-zero coefficients despite the fact that
it has degree 2d.

To explain the above, we introduce the concept of a twisted polynomial ring,
also called an Ore ring.

Definition 2. Let Fq be a field of characteristic p. The twisted polynomial or
Ore ring Fq{τ} is defined as the set of polynomials in the indeterminate τ having
coefficients in Fq with the usual addition, but with multiplication defined by the
relation τα = αpτ for all α ∈ Fq.

The precise ring we will need is the ring F2128{τ}. In other words, two polynomi-
als in τ can be multiplied as usual, but when multiplying the indeterminate with
a constant, the given relation applies. This makes the ring a non-commutative
ring (see [8] for an overview of some of its properties). One of the reasons to
study this ring is that it gives a convenient way to study linear maps from F2128

to itself, when viewed as a vector space over F2. A constant α ∈ F2128{τ} then
corresponds to the linear map sending x ∈ F2128 to α ·x, while the indeterminate
τ corresponds to the linear map sending x ∈ F2128 to x2. Addition in the Ore
ring corresponds to the usual addition of linear maps, while multiplication cor-
responds to composition of linear maps. This explains the relation τ ·α = α2 · τ ,
since both expressions on the left and right of the equality sign correspond to
the linear map sending x to α2x2. To any element φ from the Ore ring, we can
associate a polynomial φ(X), by replacing τ i with X2i . The resulting polynomi-
als have possibly non-zero coefficients from F2128 only for those monomials Xe,
such that e is a power of 2. Such polynomials are called linearized and are just
yet another way to describe linear maps from F2128 to itself. The advantage of
this description is that the null space of a linear map represented by a linearized
polynomial p(X) just consists of the roots of p(X) in F2128 .

Now we describe how to find a polynomial pV (X) having precisely the ele-
ments of a subspace V of F2128 as roots. The idea is to construct a linear map
from F2128 to itself having V as null space recursively. We will assume that we
are given a basis {β1, . . . , βd} of V . For convenience we define Vi to be the sub-
space generated by {β1, . . . , βi}. Note that V0 = ∅ and Vd = V . Then we proceed
recursively for 0 ≤ i ≤ d by constructing a linear map φi (expressed as an ele-
ment of the Ore ring) with null space equal to Vi. For i = 0 we define φ0 := 1,
while for i > 0 we define φi := (τ + φi−1(βi))φi−1. For d = 2, we obtain for
example

φ0 = 1, φ1 = τ + β1

and

φ2 = (τ + (β2
2 + β1β2))(τ + β1) = τ2 + (β2

2 + β1β2 + β2
1)τ + β1β

2
2 + β2

1β2.

The null spaces of these linear maps are the roots of the polynomials

X, X2 + β1X
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and
X4 + (β2

2 + β1β2 + β2
1)X

2 + (β1β
2
2 + β2

1β2)X.

It is easy to see directly that the null spaces of φ0, φ1, φ2 have respective bases
∅, {β1} and {β1, β2}. More general, a basis for the null space of φi is given by
{β1, . . . , βi}: indeed, since φi := (τ +φi−1(βi))φi−1, it is clear that the null space
of φi−1 is contained in that of φi. Moreover, evaluating φi in βi, we find that

φi(βi) = (τ + φi−1(βi))(φi−1(βi)) = φi−1(βi)2 + φi−1(βi)φi−1(βi) = 0.

This means that the null space of φi at least contains Vi (and therefore at least
2i elements). On the other hand, the null space of φi can be expressed as the
set of roots of the linearized polynomial φi(X), which is a polynomial of degree
2i. Therefore the null space of φi equals Vi. For i = d, we obtain that the
null space of φd is V . In other words: the desired polynomial pV (X) is just the
linearized polynomial φd(X). The above claim about the sparseness of pV (X)
now also follows. It is not hard to convert the above recursive description to
compute pV (X) into an algorithm (see Alg. 5.1). In a step of the recursion, the
multiplication (τ + φi−1(βi))φi−1 needs to be carried out in the Ore ring. Since
the left term has degree one in τ , this is easy to do. To compute the coefficients in
φi of all powers of τ one needs the commutation relation τα = α2τ for α ∈ F2128 .
Computing a coefficient of a power of τ in a step of the recursion, therefore takes
one multiplication, one squaring and one addition. The computation of φd can
therefore be carried out without further optimization in quadratic complexity in
d. A straightforward implementation can therefore be used to compute examples.
Two examples are given in Appendix A with d = 31 and d = 61 needed for
attacking GCM and POET.

Note that the above theory can easily be generalized to the setting of a
finite field Fre and Fr-subspaces V over the field Fre . In the corresponding Ore
ring Fre{τ} the commutation relation is τα = αrτ . Similarly as above, for any
subspace of a given dimension d one can find a polynomial pV (X) of degree
rd having as set of roots precisely the elements of V . It may have non-zero
coefficients only for monomials of the form Xri

. In the program given in the full
version of this paper [2], r and e can be chosen freely. See [8] for a more detailed
overview of properties of linearized polynomials and the associated Ore ring.

4 Disjoint Coverage of the key Space with Roots of
Structured Polynomials

The purpose of this section is to describe how one can cover the elements of a
finite field Fq by sets of roots of families of explicitly given polynomials. We will
focus our attention to the case that q = 2128, but the given constructions can
directly be generalized to other values of q = re. We denote by γ a primitive
element of Fq. Two approaches will be described. The first one exploits the
multiplicative structure of Fq\{0}, while the second one exploits the additive
structure of Fq seen as a vector space over F2. We will in fact describe a way
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to partition the elements of Fq as sets of roots of explicit polynomials, that is
to say that two sets of roots of distinct polynomials will have no elements in
common. In both cases the algebraic fact that will be used is the following: Let
G be a group with group operation ∗ and let H ⊂ G be a subgroup. Then two
cosets g ∗H and f ∗H are either identical or disjoint. Moreover the set of cosets
gives rise to a partition of G into disjoint subsets.

4.1 Using the Multiplicative Structure

We first consider the group G = Fq\{0} with group operation ∗ the mul-
tiplication in Fq. For any factorization q − 1 = n · m we find a subgroup
Hm := {γnj | 0 ≤ j ≤ m − 1} consisting of m elements. This gives rise to
the following proposition:

Proposition 1. Let γ be a primitive element of the field Fq and suppose that
q − 1 = n · m for positive integers n and m. For i between 0 and n − 1 define

Ai := {γi+nj | 0 ≤ j ≤ m − 1}.

Then the sets A0, . . . , An−1 partition Fq\{0}. Moreover, the set Ai consists
exactly of the roots of the polynomial Xm − γim.

Proof. As mentioned we work in the multiplicative group Fq\{0} and let Hm be
the subgroup of G of order m. Note that A0 = Hm and that Hm is the kernel
of the group homomorphism φ : G → G sending x to xm. In particular, Hm is
precisely the set of roots of the polynomial Xm − 1. Any element from the coset
gHm is sent by φ to gm. This means that gHm is precisely the set of roots of
the polynomial Xm − gm. Note that gm = γim for some i between 0 and n − 1,
so that the set of roots of Xm − gm equals γiHm = Ai for some i between 0 and
n − 1. Varying i we obtain all cosets of Hm, so the result follows.

If q = re for some prime power r, one can choose n = r − 1 and m =
re−1 + · · · + r + 1. For any element α ∈ Fq we then have αm ∈ Fr, since αm

is just the so-called Fq/Fr-norm of α. Therefore the family of polynomials in
the above lemma in this case take the particularly simple form xm − a, with
a ∈ Fr\{0}. In case q = 2128, Proposition 1 gives rise to a family of polynomials
whose roots partition F2128\{0}. For more details about the explicit form of these
polynomials, we refer the reader to the full version [2] of this paper.

4.2 Using the Additive Structure

Now we use a completely different approach to partition the elements from Fq in
disjoint sets where we exploit the additive structure. Suppose again that q = re,
then we can view Fq as a vector space over Fr. Now let V ⊂ Fq be any linear
subspace (still over the field Fr). If V has dimension d, then the number of
elements in V equals rd. For any a ∈ Fq, we define a + V , the translate of V by
a, as

a + V := {a + v | v ∈ V }.
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Of course a+V can also be seen as a coset of the subgroup V ⊂ Fq with addition
as group operation. Any translate a + V has rd elements and moreover, it holds
that two translates a + V and b + V are either disjoint or the same. This means
that one can choose n := re/rd = re−d values of a, say a1, . . . , an such that the
sets a1 + V, . . . , an + V partition Fq.

The next task is to describe for a given subspace V of dimension d, the
n := rd−e polynomials with a1 + V, . . . , an + V as sets of roots. As a first step,
we can just as before, construct an Fr-linear map φ from Fq to itself, that can be
described using a linearized polynomial of the form pV (X) = Xrd

+cd−1X
rd−1

+
· · · + c1X

r + c0X. The linear map φ then simply sends x to pV (x) and has as
image

W := {pV (x) | x ∈ Fq}.

A coset a + V of V is then sent to the element pV (a) by φ. This means that any
coset of V can be described as the set of roots of the polynomial pV (X)−pV (a),
that is to say of the form pV (X) − b with b ∈ W (the image of the map φ).
Combining this, we obtain that we can partition the elements of Fq as sets
of roots of polynomials of the form pV (X) − b with b ∈ W . Note that these
polynomials still are very structured: just a constant term is added to the already
very sparse polynomial pV (X). Note that pV (X) − pV (a) = pV (X − a), since
pV (X) is a linearized polynomial. This makes it easy to confirm that indeed the
set of roots of a polynomial of the form pV (X) − pV (a) is just the coset a + V .
The number of elements in W is easily calculated: since it is the image of the
linear map φ and the dimension of the null space of φ is d (the dimension of V ),
the dimension of its image is e− d. This implies that W contains re−d elements.
We collect some of this in the following proposition:

Proposition 2. Let q = re and let V be a linear subspace of Fq of over the
field Fr of dimension d. Moreover denote by pV (x) be the linearized polynomial
associated to V and define W := {pV (x) | x ∈ Fq}.

Then for any a ∈ Fq, the polynomial pV (x) − pV (a) has as sets of roots
exactly a + V . Moreover, the sets of roots of the polynomials pV (x) − b with
b ∈ W partition Fq.

A possible description of a basis of W can be obtained in a fairly straight-
forward way. If {β1, . . . , βd} is a basis of V , one can extend this to a basis of Fq,
say by adding the elements βd+1, . . . , βe. Then a basis of the image W of φ is
simply given by the set {pV (βd+1), . . . , pV (βe)} (note that φ(βi) = pV (βi) = 0
for 1 ≤ i ≤ d). This means that the re−d polynomials whose roots partition Fq

are given by

pV (X) +
e∑

i=d+1

aipV (βi), with ai ∈ Fr.

The set of roots of a polynomial of this form is given by
∑e

i=d+1 aiβi + V . In
the appendix, we give examples for re = 2128 and d = 31 or d = 61.
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5 Improved key Recovery Algorithm

Suppose that we have observed a polynomial hash collision for some forgery
polynomial pV (X) of degree d, i.e. some observed message M and M + pV have
the same image under hH with the unknown authentication key H. This means
that H must be among the roots of pV (X), and we can submit further verification
queries using specially chosen forgery polynomials to recover the key.

5.1 An Explicit key Recovery Algorithm Using Twisted Polynomials

Being constructed in a twisted polynomial ring, our polynomials pV (X) are lin-
earized polynomials, so that all roots are contained in a d-dimensional linear
space V ⊂ F

n
2 . This enables an explicit and particularly efficient key recov-

ery algorithm which recovers the key H by writing it as H =
∑d

i=1 biβi with
respect to (w.r.t.) a basis B = {β1, . . . , βd} for V over F2 and determining its
d binary coordinates w.r.t. B one by one. Shortening the basis by the last ele-
ment, we can test if bd = 0 by using the forgery polynomial corresponding to
V ′ = span{β1, . . . , βd−1}. If this query was not successful, we deduce bd = 1. We
then proceed recursively for the next bit.

Unless all bi = 0, the search space will be restricted to an affine instead of a
linear subspace at some point. It is easy to see, however, that the corresponding
polynomial for A = V +a with V a linear subspace, can always be determined as
pA(X) = pV (X−a) = pV (X)−pV (a) since the pV (X) are linearized polynomials.

The complexity of Algorithm 5.2 for a polynomial of degree d (corresponding
to |V | = 2d) is given by d verification queries and one invocation of the polyno-
mial construction algorithm 5.1, which in turn takes O(d2) finite field operations.
Note that typically, d < 64. The total length of all verification queries is limited
by 2d+1 blocks. Since the polynomials pU(i)(X) have at most d+1 nonzero coef-
ficients, they are very sparse and only very few additions to M are required to
compute the message M + PU(i) for the forgery attempt.

We emphasize that this algorithm can be readily generalized to deal with
input polynomials pA(X) having affine root spaces A = V +a by operating with
the corresponding linear space V and adding pV (i)(a) to all verification queries.
This especially allows to combine this algorithm with the key space covering
strategy of Sect. 4.2.

In the context of authenticated encryption, M will typically correspond to
ciphertexts instead of plaintexts, so also in this case, only calls to the verifi-
cation oracle are required. It is also straightforward to adapt Algorithm 5.2 to
cases where a polynomial hash collision cannot directly be observed, but instead
propagates into some other property visible from ciphertext and tag. This is for
example used in our attacks on the COBRA authenticated encryption scheme
(see the full version [2] for details).

5.2 Comparison to Previous Work

The idea of using a binary search-type algorithm to recover authentication keys
has previously been applied to various universal hashing-based MAC construc-
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Algorithm 5.1. Construction of
twisted polynomials
Input: basis B = {β1, . . . , βd} of V ⊂

F
n
2

Output: polynomials pV (i)(X) having
span{β1, . . . , βi} as set of roots

1: Set a1 ← 1
2: Set ai ← 0 for 2 ≤ i ≤ d + 1
3: for i = 1 to d do
4: v ←∑d

k=1 akβ2k

i

5: c1 ← v · a1

6: for j = 2 to d + 1 do
7: cj ← a2

j−1 + v · aj

8: end for
9: pV (i) ←∑d+1

k=1 ckX2k−1

10: end for
11: return polynomials

pV (1)(X), . . . , pV (d)(X)

Algorithm 5.2. Key recovery using
twisted polynomials
Input: message M , polynomial pV (X)

s.t. hH(M) = hH(M + PV ),basis
B = {β1, . . . , βd} of d-dimensional
linear subspace V ⊂ F

n
2 .

Output: authentication key H.
1: bi ← 0, 1 ≤ i ≤ d
2: Call Alg. 5.1 on V , obtain

pV (1) , . . . , pV (d)

3: for i = d downto 1 do
4: Denote U (i) = span{β1, . . . , βi−1},

so that pU(i) = pV (i−1)

5: α ← pU(i)(
∑d

j=i bjβj)
6: if hH(M) = hH(M + PU(i) + α)

then
7: bi ← 0
8: else
9: bi ← 1

10: end if
11: end for
12: return key H =

∑d
i=1 biβi

tions by Handschuh and Preneel [10]. Their attack algorithm however does not
deal with the (important) questions of determining new polynomials having dis-
tinct roots from all previously used ones, and also requires the calculation and
storage of the 2d roots during the key search phase. Also, the required polynomi-
als will not be sparse and require up to 2d nonzero coefficients. By contrast, our
algorithm leverages the twisted polynomial ring to explicitly construct sparse
polynomials with exactly the necessary roots for restricting the search space in
each iteration.

A different approach for binary-search type key recovery is given in Sect. 7.3
of [15], suggesting the use of forgery polynomial q(X) =

∏
H∈F

n
2 ,Hn=0(X−H) and

then subsequently fixing more bits of H according to the results of the verification
queries. While this is clearly optimal with respect to the number of queries
(which is n), the resulting messages are up to 2n blocks long, which typically
exceeds the limits imposed by the specifications. Additionally, the polynomials
will have almost no zero coefficients, which requires up to 2n+1 additions for
the verification queries. By contrast, when combined with the keyspace covering
strategy outlined in Sect. 4.2, our algorithm requires 2n/d ·d queries, each of them
being maximally 2d blocks long. This not only allows staying within the specified
limits, but also allows choosing any desired trade-off between the number and
length of the queries. Our explicit polynomials also have a maximum of d + 1
nonzero coefficients each, which limits the number of additions to 2n/d · (d + 1).
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6 Nonce-respecting Universal Forgeries for GCM

In this section, we describe two nonce-respecting universal forgery attacks
against GCM [6] under weak keys. Before describing the attacks we describe the
GCM authenticated encryption scheme and the GCM counter values generation
procedure as defined in the NIST standard [6].

6.1 More Details on GCM

We recall the GCM ciphertext/tag generation:

T = Ek(J0) ⊕ hH(C),

with T denoting the tag, with M = M1||M2|| · · · ||Ml the plaintext and C =
C1||C2|| · · · ||Cl the ciphertext blocks produced using a block cipher Ek in counter
mode, i.e. Ci = EK(Ji−1) ⊕ Mi. The Ji’s are successive counters with the initial
J0 generated from the nonce N ; furthermore H = Ek(0) with k the secret key.

We now focus on the detailed generation of the counter values in GCM. We
have

J0 =

{
N ||031||1 if |N | = 96,

hH(N ||0s+64||[|N |]64) if |N | 	= 96,

where Ji = inc32(Ji−1), where s = 128
|N |/128�−|N |, [X]64 is the 64-bit binary
representation of X and inc32(X) increments the right-most 32 bits of the binary
string X modulo 232; the other left-most |X| − 32 bits remain unchanged.

6.2 Universal Forgery Attacks on GCM

Our universal forgery attacks are possible if the hash key H is weak. There-
fore, our attack starts by detecting whether the hashing key H is weak or not
using our forgery polynomial q(X) = pV (X) of degree 231 explicitly described in
Appendix A.1. In other words, we make a blind forgery for an observed ciphertex-
t/tag pair (C;T ) by asking for the verification of the forged ciphertext (C+Q);T
where Q = q1||...||ql. Now if H is a weak key according to our forgery polyno-
mial – is a root of q(X) = pV (X) – then the verification succeeds and the GCM
scheme outputs a random plaintext.

Once we know that H is a weak-key, then we can recover it using Algo-
rithm 5.2 over the roots of q(X) = pV (X) (see Appendix A.1) where at each
query we can choose different nonces.

Now, the only hurdle for generating a nonce-respecting forgery is computing
the value of EK(J0) since we do not know the secret key K (we have only
recovered H = EK(0)). However, since GCM is using a counter mode encryption
where the successive counter values Ji, are generated from the nonce, we can
easily get the encryption of the counter values EK(Ji) by simply xoring the
corresponding plaintext and ciphertext blocks (Note that in NIST GCM, the
right-most 32 bits of the counter values are successive modulo 232 as shown
below). In the sequel, we show how to use the encryption of the counter values
in order to construct universal forgeries.
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Fig. 1. Forgeries for GCM via sliding the counter encryptions

Slide Universal Forgeries Using Chosen Nonce N with |N | �= 96 Sup-
pose that we have observed an l-block plaintext/ciphertext with tag T , M =
M1|| · · · ||Ml and C = C1|| · · · ||Cl, where Ci = Mi ⊕ EK(Ji−1), Ji = inc32(Ji−1)
and T = EK(J0) ⊕ hH(C). Our goal now is to generate a valid ciphertext/tag
for a different message M ′ using a different chosen nonce N ′ where |N ′| 	= 96.

As mentioned above, the counter mode of operation enables us to find the
encryption of the counter values, EK(J0), EK(J1), · · · , EK(Jv), · · · , EK(Jl). The
idea of the attack is to slide these encrypted counter values v positions to the left
in order to re-use the (l − v) encrypted counter values EK(Jv), · · · , EK(Jl) to
generate valid ciphertext/tag for any new message M ′ with a new chosen nonce
N ′ that gives us an initial counter value J ′

0 = Jv. This will enable us to make
slide universal forgeries for an (l − v)-block message. See Fig. 1.

One can see that using Jv, v > 0, it is possible to choose a nonce N ′ that
gives J ′

0 = Jv by solving the following equation for N ′

J ′
0 = Jv = hH(N ′||0s+64||[|N ′|]64)

Note that when |N ′| = 128 (i.e. s = 0), we have only one solution for N ′

and more than one solution for |N ′| > 128. However, when |N ′| < 128 we might
have no solution. Therefore we assume that |N ′| ≥ 128.

Once we find the nonce N ′ that yields J ′
0 = Jv, then one can see that we

have the following ‘slid’ identities:

EK(J ′
0) = EK(Jv), EK(J ′

1) = EK(Jv+1), · · · , EK(J ′
l−v) = EK(Jl)

Consequently, we are able to compute C ′
i = M ′

i ⊕ EK(J ′
i−1) for 1 ≤ i ≤ l − v

and T ′ = EK(J ′
0)⊕hH(C ′). Thus observing the encryption of an l-block message

and setting J ′
0 = Jv as shown above enable us to generate a valid ciphertext/tag

(C ′/T ′) for an (l − v)-block message M ′ under the nonce-respecting setting.

Universal Forgeries Using Arbitrary Nonces N with |N | = 96. Assume
that we are using a GCM implementation that supports variable nonce lengths.
For example, the implementation of GCM in the latest version of OpenSSL



778 M.A. Abdelraheem et al.

[17,18] makes the choice of the nonce length optional, i.e. one can use different
nonce sizes under the same secret key. Now, suppose that using such a GCM
oracle with the secret key K, we need to find the ciphertext/tag of a message
M = M1|| · · · ||Ml with a nonce N where |N | = 96, so J0 = N ||031||1. In order
to generate the ciphertext/tag we need to find EK(Ji) where Ji = inc32(Ji−1).
We do not know the secret key K. However, since we know the secret hash key
H, we can solve for N ′ the following equation

J0 = hH(N ′||0s+64||[|N ′|]64) where |N ′| 	= 96

Note that we assume that |N ′| ≥ 128 as otherwise we might not get a solu-
tion. After finding N ′, we can query the same GCM oracle (that has been
queried for encrypting M with the nonce N where |N | = 96) with a new nonce
N ′ that has a different size |N ′| ≥ 128 2 for the encryption of some plain-
text M = M ′

1|| · · · ||M ′
l . Now, |N ′| 	= 96 means that the initial counter value

J ′
0 = hH(N ′||0s+64||[|N ′|]64) = J0. Therefore, from the corresponding ciphertext

blocks C ′
1, · · · , C ′

l , we find EK(Ji) = EK(J ′
i) = M ′

i ⊕C ′
i. Consequently the corre-

sponding ith ciphertext block of Mi is Ci = EK(J ′
i)⊕Mi and the corresponding

tag is T = EK(J ′
0)⊕hH(C). It is worthy to note, that this interaction possibility

between two different nonce lengths on GCM had been listed in [19] as one of the
undesirable characteristics of GCM. Fig. 2 demonstrates the interaction attack.

7 Analysis of POET

In this section, we present a detailed weak key analysis of the online authenti-
cation cipher POET when instantiated with Galois-Field multiplication. More
specifically, we create universal forgery attacks once we recover the hashing weak
key. Before this we give a brief description of POET.

7.1 Description of POET

A schematic description of POET [3] is given in Fig. 3a. Five keys L,K,Ltop, Lbot

and LT are derived from a user key as encryptions of the constants 1, . . . , 5. K
denotes the block cipher key, L is used as the mask in the AD processing, and LT

is used as a mask for computing the tag. Associated data (AD) and the nonce
are processed using the secret value L in a PMAC-like fashion (see [3] for details)
to produce a value τ which is then used as the initial chaining value for both top
and bottom mask layers, as well as for generating the authentication tag T . The
“header” H encompasses the associated data (if present) and includes the nonce

2 Two of the test vectors (Test Case 3 and Test Case 6, see the full version [2]) for
the GCM implementation in the latest release of OpenSSL share the same secret
key (and therefore the same hash key) but they use different nonce sizes, Test Case
3 uses a nonce with length 96 while Test Case 6 uses a nonce with length 480 [18].
This suggests that it is conceivable to have different IV sizes under the same secret
key.
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Fig. 2. Forgeries for GCM via cross-nonce interaction

in its last block. S denotes the encryption of the bit length of the message M ,
i.e. S = EK(|M |). The inputs and outputs of the i-th block cipher call during
message processing are denoted by Xi and Yi, respectively.

One of the variants of POET instantiates the functions Ft and Fb by Ft(x) =
Ltop ·x and Fb(x) = Lbot ·x, with the multiplication taken in F

128
2 . This is also the

variant that we consider in this paper. The top AXU hash chain then corresponds
to the evaluation of a polynomial hash in F

128
2 :

gt(X) = τLtop
m +

m∑

i=1

XiLtop
m−i,

with gt being evaluated at X = M1, . . . ,Mm−1,Mm ⊕ S.
For integral messages (i.e., with a length a multiple of the block size), the

authentication tag T then generated as T = T β with empty Z, as shown in
Fig. 3b. Otherwise, the tag T is the concatenation of the two parts Tα and T β ,
see Fig. 3a and 3b.

7.2 Universal Weak-key Forgeries for POET

We start by the following observations.

Observation 1 (Collisions in gt imply tag collisions). Let M = M1, . . . ,
Mm and M ′ = M ′

1, . . . ,M
′
m be two distinct messages of m blocks length such that

gt(M) = gt(M ′) or gt(M1, . . . ,M�) = gt(M ′
1, . . . ,M

′
�) with � < m and Mi = M ′

i

for i > �. This implies a collision on POET’s internal state Xi, Yi for i = m or
i = � respectively, and therefore equal tags for M and M ′.
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FtFt FtFt

FbFb FbFb

S

S

E E EE

X0 X2 X�M −2 X�M −1
X�M

Y0 Y2 Y�M −2 Y�M −1

Y�M

M1 M2 M�M −1 M�M
|| τα

C1 C2 C�M −1 C�M
|| T α

(a) First-part tag generation in POET [3]

Ft

Fb

E

LT

LT

X�M

Y�M

τ

T β || Z

(b) Second-part tag
generation in POET [3]

Fig. 3. Schematic description of POET

We note that such a collision also allows the recovery of Ltop by Algorithm 5.2.

Observation 2 (Knowing Ltop implies knowing Lbot). Once the first hash
key Ltop is known, the second hash key Lbot can be determined with only two 2-
block queries: Choose arbitrary M1,M2,∇1 with ∇1 	= 0 and obtain the encryp-
tions of the two 2-block messages M1,M2 and M ′

1,M
′
2 with M ′

1 = M1⊕∇1,M
′
2 =

M2 ⊕ ∇1 · Ltop. Denote Δi = Ci ⊕ C ′
i. Then we have the relation Δ1 · Lbot = Δ2,

so Lbot = Δ−1
1 · Δ2.

It is worth noting that this procedure works for arbitrary Lbot, and is in
particular not limited to Lbot being another root of the polynomial q.

A Generic Forgery. In the setting of [15], consider an arbitrarily chosen
polynomial q(X) =

∑m−1
i=1 qiX

i = pV (X) of degree m − 1 and some message

M = M1‖ · · · ‖Mm−1‖Mm. Write Q = q1‖ · · · ‖qm−1 and define M ′ def= M + Q
with Q zero-padded as necessary. For a constant nonce (1-block header) H,
denote ciphertext and tag corresponding to M by C = C1, . . . , Cm and T , and
ciphertext and tag corresponding to M ′ = M + Q by C ′ = C ′

1, . . . , C
′
m and T ′,

respectively.
If some root of q is used as the key Ltop, we have a collision between M and

M ′ = M + Q in the polynomial hash evaluation after m − 1 blocks:

τLtop
m +

m−1∑

i=1

MiLtop
m−i = τ ′Ltop

m +
m−1∑

i=1

M ′
iLtop

m−i

This implies Xm−1 = X ′
m−1 and therefore Ym−1 = Y ′

m−1. Since the messages
are of equal length, S = S′ and we also have a collision in Xm and Ym. It follows
that Cm = C ′

m. Furthermore, since τ = τ ′, the tag T is colliding as well. Since
then M and M + Q have the same tag, M + Q is a valid forgery whenever some
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root of q(X) = pV (X) is used as Ltop. Note that both M and the forged message
will be m blocks long.

Using the class of weak keys represented by the roots of the forgery polyno-
mial q(X) = pV (X) explicitly described in Appendix A and Appendix A.2, we
discuss the implication of having one such key as the universal hash key Ltop.
Since POET allows nonce-reuse, we consider nonce-repeating adversaries, i.e. for
our purposes, the nonce will be fixed to some constant value for all encryption
and verification queries. However, once we recovered τ , we will be able to recover
the secret value L and consequently we can make forgeries without nonce-reuse.

More specifically, we show that weak keys enable universal forgeries for POET
under the condition that the order of the weak key is smaller than the maximal
message length in blocks. For obtaining universal forgeries, we first use the poly-
nomial hash collision described above to recover the weak keys Ltop and Lbot,
and then recover τ , which is equal to the initial states X0 and Y0, under the
weak key assumption.

Recovering τ . Suppose that we have recovered the weak keys Ltopand Lbot.
Now our goal is to recover the secret X0 = Y0 = τ . We know that Xi = τLi

top +
M1L

i−1
top +M2L

i−2
top + · · ·+Mi and Xi+j = τLi+j

top +M1L
i+j−1
top +M2L

i+j−2
top + · · ·+

Mi+j .
Now if Ltop has order j , i.e. Lj

top = Identity, then we get Xi = Xi+j by
constructing Mi+1, · · · ,Mi+j such that Mi+1L

j−1
top +Mi+2L

j−2
top + ...+Mi+j = 0.

The easiest choice is to set Mi+1 = Mi+2 = · · · = Mi+j = 0. This gives us
Yi = Yi+j . Now equating the following two equations and assuming that Lj

bot 	=
Identity, Yi = τLi

bot+C1L
i−1
bot +C2L

i−2
bot +· · ·+Ci and Yi+j = τLi+j

bot +C1L
i+j−1
bot +

C2L
i+j−2
bot + · · · + Ci+j . We get

τ =
(
C1L

i−1
bot + C2L

i−2
bot + · · · + Ci

+ C1L
i+j−1
bot + C2L

i+j−2
bot + · · · + Ci+j

) · (Li
bot + Li+j

bot )−1,

which means that we now know the initial values of the cipher state.

Querying POET’s Block Cipher EK . One can see from Fig. 3a that once
we know Ltop, Lbot and τ , we can directly query POET’s internal block cipher
without knowing its secret key K. internal block cipher, i.e. we want to compute
EK(x). Now from Fig. 3a, we see that the following equation holds: EK(τLtop ⊕
M1) = C1 ⊕ τLbot, therefore EK(x) = C1 ⊕ τLbot. If M1 was the last message
block, however, we would need the encryption S = EK(|M |). Therefore we have
to extend the auxiliary message for the block cipher queries by one block, yielding
the following:

Observation 3 (Querying POET’s block cipher). Knowing Ltop, Lbot and
τ enables us to query POET’s internal block cipher without the knowledge of its
secret key K. To compute EK(x) for arbitrary x, we form a two-block auxiliary
message M ′

1 = (x⊕ τLtop,M
′
2) for arbitrary M ′

2 and obtain its POET encryption
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as C ′
1, C

′
2. Computing EK(x) := C ′

1 ⊕ τLbot then yields the required block cipher
output.

This means that we can produce valid ciphertext blocks C1, . . . , C�M and
(if necessary) partial tags Tα for any desired messages, by simply following the
POET encryption algorithm using the knowledge of Ltop, Lbot, τ and querying
POET with the appropriate auxiliary messages whenever we need to execute an
encryption EK . Note that this also includes the computation of S = EK(|M |).

Generating the Final Tag. In order to generate the second part of the tag T β

(see Fig. 3b), which is the full tag T for integral messages, we use the following
procedure.

We know the value of X�M for our target message M from the computation
of C�M . If we query the tag for an auxiliary message M ′ with the same X ′

�M′ ,
the tag for M ′ will be the valid tag for M as well, since having X ′

�M′ = X�M

means that Y ′
�M′ = Y�M and consequently T β ′ = T β .

Therefore, we construct an auxiliary one-block message M ′ = (X�M ⊕
EK(|M ′|)⊕τLtop and obtain its tag as T ′ (computing the encryption of the one-
block message length by querying EK as above). By construction X ′

1 = X�M , so
T ′ is the correct tag for our target message M as well.

By this, we have computed valid ciphertext blocks and tag for an arbitrary
message M by only querying some one- or two-block auxiliary messages. This
constitutes a universal forgery.

We finish by noting that in case a one- or two-block universal forgery is
requested, we artificially extend our auxiliary messages in either the final tag
generation (for one-block targets) or the block cipher queries (for two-block
messages) with one arbitrary block to avoid having queried the target message
as one of our auxiliary message queries.

7.3 Further Forgery Strategies

Since the universal forgery of the previous section relies on having a weak key
Ltop with an order smaller than the maximum message length for recovering
τ , we describe two further forgery strategies that are valid for any weak key,
regardless of its order. We also show how the knowledge of τ enables us to
recover the secret value L. This will enable us to make universal forgeries on
POET within the nonce-respecting adversary model. In other words, recovering
the secret value L means that we will be able to process the header (associated
data and nonce) and generate a new τ and consequently have a total control
over the POET scheme. Due to the space limitation, all these further forgery
attacks are given in the full version [2] of this paper.

8 Conclusion

Polynomial hashing is used in a large number of MAC and AE schemes to derive
authentication tags, including the widely deployed and standardized GCM, and
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recent nonce misuse-resistant proposals such as POET, Julius, and COBRA.
While a substantial number of works has pointed out weaknesses stemming
from its algebraic structure [10,15,20], a crucial part of the proposed attacks,
the construction of appropriate forgery polynomials, had not been satisfactorily
addressed.

In this paper, we deal with this open problem of polynomial construction
and selection in forgery and key recovery attacks on such schemes. We describe
explicit constructions of such forgery polynomials with controlled sets of roots
that have the additional advantage of being very sparse. Based upon this, we
propose two strategies to achieve complete disjoint coverage of the key space
by means of such polynomials, again in an explicit and efficiently computable
construction. We also saw that this yields an improved strategy for key recovery
in such attacks.

We then apply our framework to GCM in the weak-key model and describe,
to the best of our knowledge, the first universal forgeries without nonce reuse. We
also describe such universal forgeries for the recent AE schemes POET, Julius,
and COBRA.

A Appendix: Forgery Polynomial Suggestions for GCM
and POET

In this appendix we give some examples of polynomials whose roots form a linear
subspace Vd of F2128 of dimension d for d = 31 and d = 61. As vector space Vd we
have chosen the space spanned by the elements 1, γ, · · · , γd−1, with γ a primitive
elements of F2128 satisfying γ128 = γ7+γ2+γ+1. The calculated polynomial will
have the form cd+1X

2d +cdX
2d−1

+ · · ·+c1X
20 and it is sufficient to simply state

the coefficients ci, which can be expressed in the form aei with 0 ≤ ei ≤ 2128−2.
To save space we only list the exponents ei for each polynomial in the following
tables.

A.1 Forgery Polynomial with Degree 231 for Attacking GCM

For d = 31, one obtains the following coefficients:
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Table 1. The table shows the coefficients of the forgery polynomial q(X) = pV (X) for
attacking GCM

i ei

1 5766136470989878973942162593394430677
2 88640585123887860771282360281650849369
3 228467699759147933517306066079059941262
4 60870920642211311860125058878376239967
5 69981393859668264373786090851403919597
6 255459844209463555435845538974500206397
7 263576500668765237830541241929740306586
8 37167015149451472008716003077656492621
9 58043277378748107723324135119415484405
10 321767455835401530567257366419614234023
11 45033888451450737621429712394846444657
12 258425985086309803122357832308421510564
13 105831989526232747717837668269825340779
14 267464360177071876386745024557199320756
15 280644372754658909872880662034708629284
16 105000326856250697615431403289357708609
17 45825818359460611542283225368908192857
18 82845961308169259876601267127459416989
19 44217989936194208472522353821220861115
20 69062943960552309089842983129403174217
21 268462019404836089359334939776220681511
22 30001648942113240212113555293749765514
23 669737854382487997736546203881056449
24 127958856468256956044189872000451203235
25 277162238678239965835219683143318848400
26 134662498954166373112542807113066342554
27 219278415175240762588240883266619436470
28 216197476010311230105259534730909158682
29 281783005767613667130380044536264251829
30 181483131639777656403198412151415404929
31 38384836687611426333051602240884584792
32 0

Table 2. The table shows the coefficients of the forgery polynomial q(X) = pV (X) for
attacking POET

i ei i ei
1 20526963135026773119771529419991247327 32 109604555581389038896555752982244394616
2 264546851691026540251722618719245777504 33 119482829110451460647031381779266776526
3 79279732305833474902893647967721594921 34 165259785861038013124994816644344468967
4 325712555585908542291537560181869632351 35 155444340258770748055544634836807134293
5 28114083879843420358932488547561249913 36 86982184438730045821274025831061961430
6 271147943451442547572675283203493325775 37 104870645496065737272877350967826010844
7 335255520823733252020392488407731432338 38 56281281579002318337037919356127105369
8 6718016882907633170860567569329895273 39 10006851898283792847187058774049983141
9 255889065981883867903019621991013125435 40 93687920075554812358890244898088345449
10 49457687721601463712640189217755474230 41 69832672900303432248401753658262533506
11 311579005442569730277030755228683616807 42 246360754285298743574294101515912517720
12 227984510405461964893924913268809066393 43 89567893601904271767461459448076404968
13 324660953045118328235538900161997992161 44 337681726780870315172220356080972321854
14 101370059745789285127519397790494215441 45 210317547004302372764274348440690947691
15 335840777837142047555650075244373419708 46 158574321133010145534802861165087620178
16 31458849980267201461747347071710907523 47 291559826228649927512447763293001897434
17 339477818976914242962960654286547702007 48 15635124331244231609760952717791457746
18 267056244491330957618685443721979120206 49 196562458398036090488379086660199368109
19 115274327651619347046091793992432007152 50 308779188958300135859037769338975723488
20 309606471838332610868454369483105904888 51 311961723579011854596575128443762996895
21 31472831963470543380493543496732929763 52 153505386496968503239745640447605550270
22 191332595597193424626322329032056378009 53 266880473479137548264080346617303001989
23 189553913431309255614514163550670075672 54 325361660912502344542873376867973189476
24 224617322052671248319257827067474740867 55 75648626101374794093175916332043285057
25 63041230306788032973111145533307051562 56 122904035765598179315104311504496672627
26 221576606272152354153350739375040337239 57 240654849065616783877381099532333510366
27 291799903540006289220245045188573741192 58 71774746460316463981542974558280671865
28 290489624437950764499707232619770186293 59 318833970371431372762935716012099244730
29 263754726506046639985479240660603777000 60 176351990917361872511208705771673004140
30 45160807436167307990689150792052670707 61 227372417807158122619428517134408021585
31 33630881905996630925237701622950425950 62 0

A.2 Forgery Polynomial with Degree 261 for Attacking POET

Similarly for d = 61 one obtains the following coefficients:
Let us denote the found polynomials by pd(X) (with d = 31 or d = 61). From

pd(X), we can obtain a family of 2128−d polynomials whose root sets partition
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F
128
2 . The polynomials have the form pd(X) + b, with b ∈ Wd := {pd(a) | a ∈

F
128
2 }. Since in the above examples Vd has basis {1, γ, . . . , γd−1} A basis of Wd

is given by {pd(γi) | d ≤ i ≤ 127}, making it straightforward to describe all
possibilities for b.
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Abstract. A procedure for sampling lattice vectors is at the heart of
many lattice constructions, and the algorithm of Klein (SODA 2000)
and Gentry, Peikert, Vaikuntanathan (STOC 2008) is currently the one
that produces the shortest vectors. But due to the fact that its most
time-efficient (quadratic-time) variant requires the storage of the Gram-
Schmidt basis, the asymptotic space requirements of this algorithm are
the same for general and ideal lattices. The main result of the current
work is a series of algorithms that ultimately lead to a sampling proce-
dure producing the same outputs as the Klein/GPV one, but requiring
only linear-storage when working on lattices used in ideal-lattice cryp-
tography. The reduced storage directly leads to a reduction in key-sizes
by a factor of Ω(d), and makes cryptographic constructions requiring
lattice sampling much more suitable for practical applications.

At the core of our improvements is a new, faster algorithm for com-
puting the Gram-Schmidt orthogonalization of a set of vectors that are
related via a linear isometry. In particular, for a linear isometry r : Rd →
R

d which is computable in time O(d) and a d-dimensional vector b, our
algorithm for computing the orthogonalization of (b, r(b), r2(b), . . . , rd−1

(b)) uses O(d2) floating point operations. This is in contrast to O(d3)
such operations that are required by the standard Gram-Schmidt algo-
rithm. This improvement is directly applicable to bases that appear in
ideal-lattice cryptography because those bases exhibit such “isometric
structure”. The above-mentioned algorithm improves on a previous one
of Gama, Howgrave-Graham, Nguyen (EUROCRYPT 2006) which used
different techniques to achieve only a constant-factor speed-up for sim-
ilar lattice bases. Interestingly, our present ideas can be combined with
those from Gama et al. to achieve an even an larger practical speed-up.

We next show how this new Gram-Schmidt algorithm can be applied
towards lattice sampling in quadratic time using only linear space. The
main idea is that rather thanpre-computing and storing theGram-Schmidt
vectors, one can compute them “on-the-fly” while running the sampling
algorithm. We also rigorously analyze the required arithmetic precision
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necessary for achieving negligible statistical distance between the outputs
of our sampling algorithm and the desired Gaussian distribution. The resu-
lts of our experiments involving NTRU lattices show that the practical per-
formance improvements of our algorithms are as predicted in theory.

1 Introduction

Sampling lattice points is one of the fundamental procedures in lattice cryptogra-
phy. It is used in hash-and-sign signatures [GPV08], (hierarchical) identity-based
encryption schemes [GPV08,CHKP10,ABB10], standard-model signatures
[ABB10,Boy10], attribute-based encryption [BGG+14], and many other con-
structions. Being able to output shorter vectors leads to more secure schemes,
and the algorithm that produces the currently-shortest samples is the random-
ized version of Babai’s nearest-plane algorithm [Bab86] due to Klein [Kle00] and
Gentry, Peikert, Vaikuntanathan [GPV08].

The main inefficiency of cryptography based on general lattices is that the
key size is usually (at least) quadratic in the security parameter, which is related
to the fact that a d-dimensional lattice is generated by d vectors. For secu-
rity, the lattice dimension is usually taken to be on the order of 512, and this
results in keys that are larger than one megabyte in size and unsuitable for most
real-world applications. For this reason, all practical implementations of lattice
schemes (e.g. [HPS98,LMPR08,LPR13a,DDLL13,DLP14]) rely on the hardness
of problems involving polynomial rings [PR06,LM06,LPR13a], in which lattices
can be represented by a few polynomials. Due to the fact that solving certain
average-case problems over polynomial rings was shown to be as hard as solving
worst-case problems in ideal lattices [SSTX09,LPR13a], building cryptographic
systems using polynomimals is often referred to as ideal lattice cryptography.

During its execution, the Klein/GPV algorithm is implicitly computing the
Gram-Schmidt orthogonalization of the input basis.1 Since the Gram-Schmidt
procedure requires Θ(d3) operations, the Klein/GPV sampler also requires at
least this much time. For improving the time-complexity, one can pre-compute
and store the Gram-Schmidt basis, which results in a sampling procedure that
uses only Θ(d2) operations. The Gram-Schmidt basis, however, requires the stor-
age of Θ(d2) elements, and so the key size is, as mentioned above, unacceptably
large. One may hope that, again, using polynomials results in a decrease of the
required storage. In this case, unfortunately, such rings do not help. The Gram-
Schmidt orthogonalization procedure completely destroys the nice structure of
polynomial lattices. So while a polynomial lattice basis can be represented by
a few vectors, its Gram-Schmidt basis will have d vectors. Thus the Θ(d2)-
operation Klein/GPV algorithm requires as much storage when using polyno-
mial lattices as when using general lattices, and is equally unsuitable for practical
purposes. Therefore the only realistic solution is to not store the pre-processed
1 The Gram-Schmidt procedure produces a mutually-orthogonal set of vectors

(b̃1, . . . , b̃d) that span the same inner-product space as the input vectors (b1, . . . ,bd).
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Gram-Schmidt basis, which would then allow for the polynomial lattice algo-
rithm to be linear-space (since only the original, compact-representation basis
needs to be stored), but require at least Ω(d3) time due to the fact that the
Gram-Schmidt basis will need to be computed.

1.1 Our Results

Our main result is an algorithm that computes the Gram-Schmidt basis of certain
algebraic lattices using Θ(d2), instead of Θ(d3), arithmetic operations. We then
show how this new procedure can be combined with the Klein/GPV sampler
to achieve a “best-of-both-worlds” result – a sampling algorithm that requires
Θ(d2) operations, which does not require storing a pre-processed Gram-Schmidt
basis. In ideal lattice cryptography, this implies being able to have keys that
consist of just the compact algebraic basis requiring only linear storage. Not
pre-computing the Gram-Schmidt basis of course necessarily slows down our
sampling algorithm versus the one where this basis is already stored in memory.
But our new orthogonalization algorithm is rather efficient, and the slowdown
in some practical applications is by less than a factor of 4 (see the performance
table in Section 9.1). In case of amortization (i.e. sampling more than one vector
at a time), the running time of our new algorithm becomes essentially the same
as that of the one requiring the storage of the orthogonalized basis. As a side
note, since the Klein/GPV algorithm is just a randomized version of the classic
Babai nearest plane algorithm [Bab86], all our improvements apply to the latter
as well.

While analyzing the running-time of lattice algorithms, it is very important
to not only consider the number of arithmetic operations, but also the arithmetic
precision required for the algorithms to be stable. The run-time of algorithms
that are not numerically stable may suffer due to the high precision required dur-
ing their execution. A second important issue is understanding how the precision
affects the statistical closeness of the distribution of the outputted vectors ver-
sus the desired distribution. We rigorously show that in order to have statistical
closeness between the output distribution and the desired discrete Gaussian one
be at most 2−λ, the required precision of the Gram-Schmidt basis needs to be a
little more (in practice, less than a hundred bits) than λ. We then experimentally
show that our new Gram-Schmidt procedure is rather numerically stable, and
the intermediate storage is not much more than the final required precision.2

A third issue that also needs to be considered in practice is the space require-
ments of the algorithm during run-time. While the stored basis is very short, it
could be that the intermediate computations require much larger storage (e.g.
2 The reason that we only do experimental analysis of this second part, rather than a

rigorous theoretical one, is because the precision required in practice will be much
less than in theory due to the fact that theoretically, there could exist bases on
which the Gram-Schmidt procedure is rather unstable. When using this procedure
in cryptographic schemes, we can always test our basis for numerical stability by
comparing the output of the exact Gram-Schmidt algorithm versus the “approxi-
mate” Gram-Schmidt algorithm that will be actually used.
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if the intermediate computation requires storing the entire Gram-Schmidt basis
to a high precision). Our sampling algorithm, however, is rather efficient in this
regard because it only requires storing one Gram-Schmidt vector at a time.
The storage requirement during run-time is therefore less than 64KB for typical
dimensions used in cryptographic applications.

Isometries and Ideal Lattices. Interestingly, our improved orthogonalization
algorithm for polynomial lattices does not have much to do with their algebraic
structure, but rather relies on their implicit geometric properties. The types of
bases whose Gram-Schmidt orthogonalization we speed up are those that consist
of a set of vectors that are related via a linear isometry. In particular, if H is
a d-dimensional Hermitian inner-product space and r : H → H is a linear
map that preserves the norm and is computable using O(d) operations, then we
show (both theoretically and via implementations) that orthogonalizing a set
of vectors {b, r(b), r2(b) . . . , rd−1(b)} can be done using Θ(d2) floating point
operations.

We now explain the connection between isometries and ideal lattices. Con-
sider the cyclotomic number field, with the usual polynomial addition and mul-
tiplication operations, F = Q[X]/〈Φm(X)〉 where Φm(X) is the mth cyclotomic
polynomial (and so it has degree φ(m)). Elements in F can be represented via
a canonical embedding3 into C

φ(m), and in that case F becomes isomorphic, as
an inner product space, to R

φ(m) where the inner product 〈a,b〉 of a,b ∈ F is
defined as

〈a,b〉 =
∑

1≤i≤m,gcd(i,m)=1

a(ζi
m) · b(ζi

m),

where ζm ∈ C is an mth root of unity (c.f. [LPR13b, Sections 2.2, 2.5.2]).4

With the above definition of inner product (which is in fact the usual inner
product over Cφ(m) when elements in F are represented via the canonical embed-
ding), the norm of an element b ∈ F is

‖b‖ =
√ ∑

1≤i≤m,gcd(i,m)=1

|b(ζi
m)|2.

Since all ζi
m, where gcd(i,m) = 1, are roots of Φm(X) and |ζi

m| = 1, one
can check that for any b ∈ F , ‖b‖ = ‖bX‖. Since the function r : F → F

3 The canonical embedding of a polynomial b ∈ F is a vector in C
φ(m) whose coeff-

cients are the evaluations of b on each of the φ(m) complex roots of Φm(X). Due
to the fact that half of the roots of Φm(X) are conjugates of the other half, the
resulting embedded vector in C

φ(m) can be represented by φ(m) real numbers.
4 We point out that the actual computation of the inner product does not require any

operations over C. The reason is that 〈a,b〉 =
∑

1≤i≤m,gcd(i,m)=1 a(ζi
m) · b(ζi

m) can

be rewritten as (V a)T V b = aT V T V b for a Vandermonde matrix V with coefficients
in C. The matrix V T V , however, is a simple integer matrix, multiplication by which
can be performed in linear time for most “interesting” cyclotomic polynomials (e.g.
m is prime or a power of 2).
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defined as r(b) = bX is linear, it is also an isometry (since it preserves the
norm). Furthermore, since F is a field, for any non-zero b ∈ F , the elements
b,bX,bX2, . . . ,bXφ(m)−1 are all linearly-independent. When b is an element
of R = Z[X]/〈Φm(X)〉, the set

{b,bX,bX2, . . . ,bXφ(m)−1} = {b, r(b), r2(b), . . . , rφ(m)−1(b)}

therefore generates the ideal 〈b〉 as an additive group. Such bases containing
short elements can serve as private keys in cryptographic schemes.5

Paper Organization. In Section 2, we set up the notations and definitions that
will be used throughout the paper. In Section 3.1, we describe a simple version
of our new algorithm that efficiently orthogonalizes a given set of vectors, and in
Section 3.2 we give the full, optimized algorithm. In Section 4, we describe an algo-
rithm that, given the orthogonalization, returns the transformation matrix μ that
converts the set {b, r(b), . . . , r(b)} to {b̃1, b̃2, . . . , b̃n}. In Section 5, we extend
our basic algorithms to those that can more efficiently orthogonalize sets of vectors
of the form b1, r(b1), . . . , rn−1(b1),b2, r(b2), . . . , rn−1(b2),b3, r(b3), . . .. These
types of sets are the ones that normally occur as secret keys in lattice cryptogra-
phy. A particular example of such a set is the NTRU lattice, which we discuss in
Section 7. In that section, we also give timing comparisons between the exact ver-
sion of our orthogonalization algorithm (which is analyzed in Section 6), and that
of [GHN06], for computing the Gram-Schmidt orthogonalization of NTRU lat-
tices. Since the two algorithms use different techniques to achieve speed-ups, we
demonstrate that the two improvements can complement each other in the form of
an even faster algorithm. In Section 8, we show how to implement Babai’s nearest
plane algorithm and the Klein/GPV sampling in linear space for lattices whose
basis contains vectors that are related via an isometry. In Section 9 we focus on
the implementation aspects of our results. In particular, we analyze the required
precision to insure the correct functionality of our sampling algorithm.

1.2 Related Work

Computing faster orthogonalization for vectors that are somehow related has
been considered in the past. For example, Sweet [Swe84] demonstrated an algo-
rithm that orthogonalizes d × d Toeplitz matrices using O(d2) operations. This
is the same linear-time speed-up as for our algorithm, but for a different class of
5 Normally, the bases used in schemes have slightly different forms, such as consisting

of a concatenation of elements from R, or being formed by several elements in R.
Such bases still contain large components that are related via an isometry, and we
discuss this in more detail in Section 7.
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structured matrices.6 The techniques in that paper seem to be rather different
than in ours – [Swe84] works with the concrete representation of Toeplitz matri-
ces, whereas we only rely on the abstract geometric properties of isometries.

For the special case of NTRU lattices, Gama, Howgrave-Graham, and Nguyen
[GHN06] devised algorithms that take advantage of a structure of NTRU bases
called symplecticity. This allows them to be faster (by a constant factor) than
standard Gram-Schmidt orthogonalization when performing orthogonalization
in exact arithmetic. We adapt our algorithms for the same application and they
outperform those from [GHN06].7 And since our algorithm and that of [GHN06]
relies on different ideas, it turns out that we can combine the two techniques to
achieve a greater overall improvement (see Figure 1 in Section 7).

2 Preliminaries

2.1 Notations

Throughout the paper, we will be working over a d-dimensional inner product
space H (usually H = R

d or Cd), with 〈·, ·〉 and ‖·‖ being a scalar product and the
associated norm over H. Except when stated otherwise, vectors will be written
in bold, matrices and bases in capital bold, and scalars in non-bold letters.
B = {b1, ...,bn} will be either an ordered set of independent vectors, also called a
basis, or the n×d matrix whose rows are the bi. We denote Bk = Span(b1, ...,bk)
to be the vector space spanned by the vectors b1, ...,bk.

Definition 1. A linear isometry is a linear map r : H → H such that for any
x,y ∈ H :

〈r(x), r(y)〉 = 〈x,y〉,
or equivalently

‖x‖ = ‖r(x)‖.

For conciseness, we will sometimes say isometry instead of linear isometry. Since
the dimension of H is finite, it is immediate that r is invertible. We will be
assuming throughout the work that both r and r−1 are computable in time O(d).

Definition 2. Let x ∈ H, and F be a subspace of H. Then Proj(x, F ), the
projection of x over F , is the unique vector y ∈ F such that ‖x−y‖ = min

z∈F
‖x−z‖

6 One may imagine that it may be possible to somehow adapt the results of [Swe84]
to the orthogonalization of bases of ideal lattices. The idea would be to embed
elements of F = Q[X]/〈Φm(X)〉 into C = Q[X]/〈Xm − 1〉 and then try to use the
fact that in the coefficient representation, the elements b,bX,bX2, . . . in C form a
Toeplitz matrix. One would have to also take care to make sure that the norm in F
corresponds to the coefficient norm in C. We are not sure whether this direction is
viable, and even if it is, the algorithm would necessarily involve computations over
dimension m, rather than φ(m), which would unnecessarily increase the running-time
of all algorithms.

7 We mention that [GHN06] also contains other results which are independent of
Gram-Schmidt orthogonalization and are therefore not improved by our work.
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Proposition 1. Let r be an isometry and and F be a subspace of H. Then :
1. x ⊥ F ⇒ r(x) ⊥ r(F )
2. r(Proj(x, F )) = Proj(r(x), r(F ))

Proof. We prove the two claims separately :
1. Since r preserves the dot product, it also preserves orthogonality between

vectors.
2. r preserves the norm, so

‖x − y‖ = min
z∈F

‖x − z‖ =⇒ ‖r(x) − r(y)‖ = min
z∈r(F )

‖r(x) − z‖

	


2.2 The Gram-Schmidt Orthogonalization

We provide three equivalent definitions of the Gram-Schmidt orthogonalization
of an ordered basis. The first one is geometrical, the second one is a mathematical
formula, and the third one looks at each vector of the basis as its decomposition
over two orthogonal vector spaces. Although the two first definitions are standard
and useful for comprehension and computation, the third one is less common
and we will mostly use it to prove that a basis is indeed the orthogonalization
of another one.

Definition 3. Let the basis B = {b1, ...,bn} be an ordered set of vectors in H.
Its Gram-Schmidt orthogonalization (GSO) is the unique basis B̃ = {b̃1, ..., b̃n}
verifying one of these properties :

– ∀k ∈ �1, n�, b̃k = bk − Proj(bk,Bk−1)

– ∀k ∈ �1, n�, b̃k = bk −
k−1∑

j=1

〈bk,b̃j〉
‖b̃j‖2 b̃j

– ∀k ∈ �1, n�, b̃k ⊥ Bk−1 and (bk − b̃k) ∈ Bk−1

The bases B and B̃ then satisfy : ∀k ∈ �1, n�,Bk = B̃k. For a vector bk, we will
say that b̃k is its Gram-Schmidt reduction (GSR).

Algorithm 1 describes the Gram-Schmidt process as it is usually presented.

2.3 The Gram-Schmidt and LQ Decompositions

The Gram-Schmidt decomposition (GSD) is a natural side-product of the Gram-
Schmidt orthogonalization which gives the relation between the input and out-
put bases in the form of a matrix μ. Such a matrix is useful in many cases –
for example, it is crucially used in the LLL algorithm [LLL82]. Outside cryp-
tography, applications include solving undetermined linear systems, least square
problems and computing eigenvalues.
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Algorithm 1. GramSchmidt Process(B)
Require: Basis B = {b1, ...,bn}
Ensure: Gram-Schmidt reduced basis B̃ = {b̃1, ..., b̃n}
1: for i = 1, ..., n do
2: b̃i ← bi

3: for j = 1, ..., i − 1 do

4: μi,j =
〈bi,b̃j〉
‖b̃j‖2

5: b̃i ← b̃i − μi,jb̃j

6: end for
7: end for
8: return B̃ = {b̃1, ..., b̃n}

Definition 4 (Gram-Schmidt Decomposition). Let B be a d × n matrix.
B can be uniquely decomposed as B = μ × B̃, where B̃ is the GSO of B and
μ = (μi,j)1�i,j�n is the lower triangular matrix such that

μi,j =

⎧
⎪⎨

⎪⎩

〈bi,b̃j〉
‖b̃j‖2 if i > j

1 if i = j
0 otherwise

Notice that the matrix μ is automatically constructed in Algorithm 1 while
computing the GSO. This, however, will not be the case in our improved GSO
algorithm, and this is why in this paper we will differentiate between GSO and
GSD.

We now recall the definition of LQ decomposition and give its natural relation
to the B = μ × B̃ decomposition.

Definition 5 (LQ Decomposition). Let B be a square invertible matrix. B
can be decomposed as B = L×Q, where L is a lower triangular matrix and Q is
an orthonormal matrix. If we request the diagonal coefficients of L to be positive,
then this decomposition is unique.

Fact 1 Let B be a square invertible matrix, and B = μ × B̃ its GSD. An LQ
decomposition of B can be computed in time O(n2) by taking Q = D−1 × B̃ and
L = μ × D, where D = Diag(‖b̃1‖, ..., ‖b̃n‖).

2.4 Discrete Gaussians

Discrete Gaussians are n-dimensional Gaussians discretized over some lattice Λ.

Definition 6. The n-dimensional Gaussian function ρσ,c : R
n → (0, 1] of

standard deviation σ and center c is defined by :

ρσ,c(x) Δ=
1

(σ
√

2π)n
exp

(
−‖x − c‖2

2σ2

)
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For any lattice Λ ⊂ R
n, ρσ,c(Λ) Δ=

∑
x∈Λ ρσ,c(x). Normalizing ρσ,c(x) by ρσ,c(Λ),

we obtain the probability distribution function of the discrete Gaussian distribu-
tion DΛ,σ,c.

Gaussian Sampling was introduced in [Kle00,GPV08] as a technique to sample
from discrete Gaussian distributions, and has since found numerous applications
in lattice-based cryptography. In [GPV08], it requires a basis B of the lattice Λ
being sampled from, as well as the GSO B̃ of B.

3 Gram-Schmidt Orthogonalization over Isometric Bases

In this section we present our improved isometric Gram-Schmidt algorithm. In
Section 3.1, we present a first simple version which we believe is very intuitive
to understand, and then present a slightly faster, more involved, version of it in
Section 3.2.

Definition 7. Let B = {b1, ...,bn} be an ordered basis of a lattice Λ ⊆ H. We
say that B is isometric if there exists an isometry r such that

∀k ∈ �2, n�,bk = r(bk−1)

3.1 A Quadratic-Time Algorithm

We now describe a simple algorithm that computes the GSO of any isometric
basis in time Θ(nd) (or Θ(n2) when n = d).

We briefly expose the general idea behind the algorithm before presenting it
formally. If b̃k is the GSR of bk, then r(b̃k) is almost the GSR of bk+1 : it is
orthogonal to b2, ...,bk, but not to b1. However, reducing r(b̃k) with respect to
b1 would break its orthogonality to b2, ...,bk, so what we really need to do is to
reduce it with respect to b1−Proj(b1, Span(b2...bk)). Indeed, this latter vector
is orthogonal to b2, ...,bk, so reducing r(b̃k) with respect to it won’t break the
orthogonality of r(b̃k) to b2, ...,bk. Fortunately, b1 − Proj(b1, Span(b2...bk))
can itself be updated quickly. Definition 8 and Algorithm 2 formalize this idea.

Definition 8. Let B = {b1, ...,bn} be an ordered basis and k ∈ �1, n�. We
denote vB,k = b1 −Proj(b1, r(Bk−1)). When B is obvious from the context, we
simply write vk.

Proposition 2. Let B be an isometric basis with respect to r. Algorithm 2
returns the GSO of B. Moreover, if r(v) can be computed in time O(d) for
any v ∈ H, then Algorithm 2 terminates in time O(nd).

Proof. We first prove the correctness of the scheme by proving by induction that
for every k ∈ �1, n�, we have the following :

– vk = b1 − Proj(b1, r(Bk−1)) (1)
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Algorithm 2. Isometric GSO(B)
Require: Basis B = {b1, ...,bn}
Ensure: Gram-Schmidt reduced basis B̃ = {b̃1, ..., b̃n}
1: b̃1 ← b1

2: v1 ← b1

3: for k = 1, ..., n − 1 do

4: b̃k+1 ← r(b̃k) − 〈vk,r(b̃k)〉
‖vk‖2 vk

5: vk+1 ← vk − 〈vk,r(b̃k)〉
‖b̃k‖2 r(b̃k)

6: end for
7: return B̃ = {b̃1, ..., b̃n}

b1 b̃1 b̃2 b̃3 b̃4 ...

v1 v2 v3 v4 ...

Fig. 1. Computing all the orthogonalized vectors from the first one in Algorithm 2

– b̃k = bk − Proj(bk,Bk−1) (2)

This is trivially true for k = 1. Assuming (1) and (2) are true at step k, we have:

– Since vk and b̃k are already orthogonal to r(Bk−1), vk+1 also is as a linear
combination of the two. But vk+1 is also the orthogonalization of vk w.r.t.
r(b̃k), so it is orthogonal to r(Bk−1) + Span(r(b̃k)) = r(Bk). On the other
hand, b1 −vk is in r(Bk−1) so b1 −vk+1 is in r(Bk). By applying Definition
3, we can conclude that (1) is true for k + 1.

– The same reasoning holds for b̃k+1 : it is orthogonal to r(Bk−1) because
both vk and r(b̃k) are. But since it also is orthogonalized w.r.t. vk (in line
4 of the algorithm), it then is orthogonal to r(Bk−1) + Span(vk) = Bk. On
the other hand, bk+1 − b̃k+1 = r(bk − b̃k)+ 〈r(b̃k),vk〉

〈vk,vk〉 vk is in Bk. As before,
we can conclude that (2) is true for k + 1.

Since (2) is verified for any k ∈ �1, n�, B̃ is the GSO of B.
The time complexity of the algorithm is straightforward : assuming additions,

subtractions, multiplications and divisions are done in constant time, each scalar
product or square norm takes time O(d). Since there are 3(n−1) norms or scalar
products, and 2(n−1) computations of r(.), the total complexity is O(nd). 	


3.2 Making Isometric GSO Faster

Algorithm 2 is already O(n) times faster than the classical Gram-Schmidt pro-
cess. In this subsection, we show that intermediate values are strongly interde-
pendent and that this fact can be used to speed up our GSO implementation by
about 67%.
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Lemma 1. Let B be an isometric basis. For any k in �1, n�, we have the fol-
lowing equalities:
– 〈v1, r(b̃k)〉 = 〈vk, r(b̃k)〉
– ‖vk‖2 = 〈vk,v1〉 = ‖b̃k‖2

When implicit from context, we will denote Ck = 〈vk, r(b̃k)〉 and Dk = ‖b̃k‖2.
We have the following recursive formula :

∀k ∈ �1, n − 1�,Dk+1 = Dk − C2
k

Dk

Proof. We prove each of the three equalities separately :
– The equality 〈v1, r(b̃k)〉 = 〈vk, r(b̃k)〉 is equivalent to 〈vk − v1, r(b̃k)〉 = 0,

which is true since vk −v1 = Proj(b1, r(Bk−1)) is in the subspace r(Bk−1)
and b̃k is orthogonal to r(Bk−1)

– The equality ‖vk‖2 = 〈vk,v1〉 is obtained by following the same reasoning
as above

– The equality ‖vk‖2 = ‖b̃k‖2 is shown by induction : it is the case for k =
1. By observing that b̃k+1 is orthogonal to vk from line 4 of Algorithm
2(resp. vk+1 is orthogonal to r(bk) from line 5)), we can use the Pythagorean
theorem to compute ‖b̃k+1‖2 and ‖vk+1‖2 :

‖b̃k+1‖2 = ‖b̃k‖2 − 〈vk, r(b̃k)〉2
‖vk‖2 and ‖vk+1‖2 = ‖vk‖2 − 〈vk, r(b̃k)〉2

‖b̃k‖2

At which point we can conclude by induction that ‖vk+1‖2 = ‖b̃k+1‖2, and
these equalities also yield the recursive formula Dk+1 = Dk − C2

k

Dk
.

	

This result allows us to speed up further the GSO for isometric bases. At

each iteration of the algorithm Isometric GSO, instead of computing 〈vk, r(b̃k)〉,
‖b̃k‖2 and ‖vk‖2, one only needs to compute 〈v1, r(b̃k)〉, and can instantly
compute ‖b̃k‖2 = ‖vk‖2 from previously known values. We choose 〈v1, r(b̃k)〉
rather than 〈vk, r(b̃k)〉 because v1 has a much smaller bitsize than vk, resulting
in a better complexity in exact arithmetic. Moreover, in the case where we use
floating-point arithmetic, v1 does not introduce any floating-point error, unlike
vk.
Algorithm 3 sums up these enhancements.

Proposition 3. If B is an isometric basis, then Algorithm 3 returns the GSO
of B. Moreover, if we disregard the computational cost of r, then Algorithm 3
performs essentially 3n2 multiplications (resp. additions), whereas Algorithm 2
performs essentially 5n2 multiplications (resp. additions).

Proof. For the correctness of Algorithm 3, one only needs to show that at each
step, Ck = 〈vk, r(b̃k)〉 and Dk = ‖b̃k‖2 = ‖vk‖2. The first and third equalities
are given by lemma 1, and the second one by induction : assuming that Ck,Dk

are correct, Dk+1 is correct, once again from lemma 1.
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Algorithm 3. Faster Isometric GSO(B)
Require: Basis B = {b1, ...,bn}
Ensure: Gram-Schmidt reduced basis B̃ = {b̃1, ..., b̃n}(, (Ck)1�k<n, (Dk)1�k<n)
1: b̃1 ← b1

2: v1 ← b1

3: C1 ← 〈v1, r(b̃1)〉
4: D1 ← ‖b1‖2

5: for k = 1, ..., n − 1 do
6: b̃k+1 ← r(b̃k) − Ck

Dk
vk

7: vk+1 ← vk − Ck
Dk

r(b̃k)

8: Ck+1 ← 〈v1, r(b̃k+1)〉
9: Dk+1 ← Dk − C2

k
Dk

10: end for

4 Gram-Schmidt Decomposition over Isometric Bases

In this section, we show that the computation of the matrix μ from the Gram-
Schmidt decomposition (or GSD, see Definition 4) can be sped up by a O(n)
factor in the case of isometric matrices by using tricks similar to those which led
to the speeding-up of GSO. The proof of the following theorem explains how to
compute the GSD of an isometric basis/matrix in quadratic time.

Theorem 2. Let B = (b1, ...,bn) be an isometric basis and B̃ = (b̃1, ..., b̃n) its
GSO. For the sake of simplicity, we identify the basis B (resp. B̃) to the (not
necessarily square) matrix which rows are the vectors of the basis. Assume we
already have B and B̃, along with the values Cj = 〈vj , r(b̃j)〉,Dj = ‖b̃j‖2 for
1 � j < n. Then the matrix μ associated to B can be computed in time O(n2).

Proof. For 1 � i < j � n, let Xi,j = 〈bi, b̃j〉 and Yi,j = 〈r(bi),vj〉. All the
nontrivial values of μi,j (that is, the values μi,j for 1 � j < i � n) can be
expressed as μi,j = Xi,j

Dj
. The values Xi,j , Yi,j satisfy these recursive formulae:

{
Xi+1,j+1 = Xi,j − Cj

Dj
Yi,j

Yi,j+1 = Yi,j − Cj

Dj
Xi,j

These formulae allow us to compute all the values of Xi,j , Yi,j from the 2(n − 1)
values Xi,1, Yi,1. Once all of these values are computed, one can simply obtain
the μi,j from the Xi,j . Algorithm 4 puts this idea into practice.

The idea of this algorithm is somewhat similar to the one behind Algorithms 2
and 3: the only values that we really need to compute are the Xi,j ’s, but in order
to do that efficiently we resort to a mutual recursion involving the Yi,j ’s.

The time complexity is straightforward. Each Xi,j , Yi,j takes time O(1) to
be computed, except for 2n of them which need time O(n) each. So the overall
cost is O(n2). 	
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Algorithm 4. Isometric GSD(B, B̃, (Ci), (Di))

Require: Basis B and its orthogonalization B̃, values Cj = 〈vj , r(b̃j)〉, Dj = ‖b̃j‖2

for 1 � j < n
Ensure: Matrix μ = B × B̃−1

1: Set the diagonal values of μ to 1 and the values above the diagonal to 0
2: for i = 2...n do {Computing the (Xi,1), (Yi,1)}
3: Xi,1 ← 〈bi, b̃1〉
4: Yi,1 ← 〈r(bi),b1〉
5: for j = 2...i − 1 do
6: Xi,j ← Xi−1,j−1 − Cj−1

Dj−1
Yi−1,j−1

7: Yi,j ← Yi,j−1 − Cj−1
Dj−1

Xi,j−1

8: end for
9: end for

10: for i = 2...n do {Filling out the non-trivial values of μi,j}
11: for j = 1...i − 1 do
12: μi,j ← Xi,j

Dj

13: end for
14: end for

As an example, the matrices Xsteps and Xchrono below show, for n = 5, in
which order the matrices X,Y are filled. The two matrices use different metrics:
Xchrono displays the chronological order in which the matrices are filled by the
algorithm, whereas Xsteps display the minimal depth of the computational tree
necessary in order to compute an Xi,j (resp. Yi,j). If a box contains ×, it means
that the corresponding value is trivial (see step 1 of the algorithm).

Xsteps =

× × × × ×
1 × × × ×
1 2 × × ×
1 2 3 × ×
1 2 3 4 ×

Xchrono =

× × × × ×
1 × × × ×
2 3 × × ×
4 5 6 × ×
7 8 9 10 ×

As Xchrono shows, the algorithm fills the matrices X,Y row after row, but if
necessary, it could be rewritten in order to fill X,Y column after column, as
shown by Xsteps.

5 Extending the Results to Block Isometric Bases

In previous sections, we showed that we can gain a factor O(n) improvement
when performing operations such as Gram-Schmidt decomposition on isometric
bases. In this section, we show that these results can be extended to block
isometric bases, that is bases that are concatenations of isometric bases.

Definition 9. Let B = {b1, ...,bkn} be a basis. We say that B is block isometric
if there exist k isometric bases B(1), ...,B(k) such that B is the concatenation of
all these bases.
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Algorithm 5. Block GSO(B)
Require: Block isometric basis B = {B(1), ...,B(k)} = {b1, ...,bkn}
Ensure: Gram-Schmidt reduced basis B̃
1: for i = 0, ..., k − 1 do
2: b̃ni+1 ← bni+1

3: for j = 1, ..., ni do

4: b̃ni+1 ← bni+1 − 〈bni+1,b̃j〉
‖b̃j‖2 b̃j {Make b̃ni+1 orthogonal to previous vectors}

5: end for
6: B̃(i+1) ← {bni+1, r(bni+1), ..., r

n−1(bni+1)}
7: B̃(i+1) ← Faster Isometric GSO(B̃(i+1))
8: end for

The main idea of Algorithm 5 is to use the hypothesis that r(Span(B(i))) =
Span(B(i)) (which in practice is always verified for ideal lattices) in conjunction
with part 2 of Proposition 1 : if b̃ is the GSR of b w.r.t. a block B(i), then r(b̃)
will be the GSR of r(b) w.r.t. that same block B(i).

Lemma 2. Assume :
– B(1), ...,B(k) are matrices isometric for the same isometry r, and of same

rank n
– ∀i ∈ �1, k − 1�, r(Span(B(i))) = Span(B(i))

Then Algorithm 5 compute the GSO of B = {B(1), ...,B(k)} = {b1, ...,bkn} in
O(k2nd) elementary operations over the scalars.

Proof. We prove correctness by showing inductively that at the end of each
iteration i of the outer loop, the n(i+1) first vectors b̃1, ..., b̃n(i+1) are the GSO
of b̃1, ..., b̃n(i+1) :

– For i = 0, this is the case since B̃(1) is simply the GSO of B(i)

– If it is verified until step i − 1, then at step i the vector b̃ni+1 computed
in lines 2-5 of the algorithm is exactly the GSR of bni+1. Its rotations are
orthogonal to the vectors of the previous blocks because r preserves the
dot product and ∀i, r(Span(B(i))) = Span(B(i)), and one can verify that
bni+j − rj−1(b̃ni+1) ∈ Span{B̃(1)...B̃(i−1)}, so rj−1(b̃ni+1) is exactly the
orthogonalization of bni+j w.r.t. b1, ..., b̃ni. The basis computed at line 6 is
isometric, so applying Faster Isometric GSO effectively orthogonalize it.

We now study the complexity of algorithm 5. At each iteration i of the algorithm,
the orthogonalization of bni+1 w.r.t. previous vectors (steps 3 to 5) take time
O(nid), and steps 6-7 take time O(nd). So the total complexity is O(k2nd),
gaining a factor n when compared to the complexity O((kn)2d) of the naive
Gram-Schmidt orthogonalisation. 	


The GSD can be sped up too. We will not detail it, but Fig. 2 gives the
outline on how to use Algorithm 4 on a two-blocks isometric basis.
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B̃ =

[
B(1)

B(2)

]

⇒
[
B̃(1)

B(2)

]

⇒
[

B̃(1)

{b̃n+1, ..., r
n−1(b̃n+1)}

]

⇒
[
B̃(1)

B̃(2)

]

μ =

[
In 0n

0n In

]

⇒
[

μ1 0n

0n In

]

⇒
[

μ1 0n

μ3 In

]

⇒
[

μ1 0n

μ3 μ4

]

Fig. 2. Computing the GSD of a two-block isometric basis. B̃ and μ always satisfy
μ × B̃ = B

6 GSO and GSD in Exact Arithmetic

Generally, GSO and GSD are performed over real bases, so the standard way of
implementing it is by using floating-point arithmetic. However, this can result
in rounding errors: several books and articles discuss this problem with a good
introduction being [Hig02].

When the input vectors are in Z
d, as it is very often the case in lattice-

based cryptography, then the GSD can be performed using only exact arithmetic
over Q. Moreover, some algorithms such as the original LLL algorithm [LLL82]
explicitely perform exact GSD.

However, this gain in precision comes at the cost of reduced efficiency: when
an integer basis undergoes GSO, the reduced vectors’ bitsize quickly escalates
in the dimension of the basis and of the underlying space. This phenomenom
is called coefficient explosion and impacts the space and computational cost of
GSD. In this section, we adapt Algorithms 3 and 4 to the exact arithmetic setting
and show that we still gain a O(d) factor compared to classical GSO/GSD.
Moreover, our adapted algorithms completely avoid rational arithmetic.

Through this section, we make an additional “niceness” assumption over the
isometry r, namely we suppose that it maps integer vectors into integer vectors:
∀b ∈ Z

d, r(b) ∈ Z
d.

6.1 GSO in Exact Arithmetic

Definition 10. Let B = (bj)1�j�n be an isometric basis, and for j ∈ �1, n�,
b̃j ,vj , Cj ,Dj be defined as in Section 3. We then define, ∀i, j ∈ �1, n�, the
following values:

• λj,j =
∏

1�k�j ‖b̃k‖2
• d̃bj = λj−1,j−1b̃j

• cj = λj−1,j−1Cj

• λi,j = μi,jλj,j

• dvj = λj−1,j−1vj

• dj = λj−1,j−1Dj

Proposition 4. Using notations of Definition 10, ∀i, j ∈ �1, n�, we have:

1. λi,j ∈ Z

2. d̃bj ,dvj ∈ Z
d

3. cj , dj ∈ Z
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Proof. Proofs for assertions 1 and 2 can be found per example in [Gal12, chapter
17, theorem 17.3.2]. As for assertion 3, dj = λj,j and cj = 〈v1, r(d̃bj)〉, where
v1 and r(d̃bj) are in Z

d. 	

With these results in hand, we can now devise an integer version of Algo-

rithm 3. Instead of outputting rational values, Algorithm 6 outputs only inte-
gers and integer vectors, and one can then retrieve any vector b̃k by computing
b̃k = 1√

dk−1
d̃bk. Algorithm 6 uses no rational number and all the internal oper-

ations, including exact divisions in steps 6,7 and 9, output integer values. The
following lemma shows that in the case we use exact arithmetic, Algorithm 6 is
still at least O(n) faster than standard GSO.

Lemma 3. Let B = {b1, ...,bn} ∈ (Zd)n be an integral isometric basis, |B| =
max

k=1...n
(‖bk‖) and M(X) denote the time complexity for multiplying two integers

of at most X bits. Suppose the isometry r associated to B can be computed in
time and space linear to the size of the input. Then Algorithm 6 performs in
time O(dnM(n log |B|)).
Proof. By definition, dk =

∏
1�i�k ‖b̃i‖2 so |dk| � |B|2k. Moreover, |Ck| < Dk

implies |ck| < dk and therefore ck, dk both have bitsizes O(k log |B|). On the
other hand, d̃bk (resp. dvk) has its norm less than |B|2k−1 so the four scalar-
vectors products performed on steps 6,7 have complexity O(dM(k log |B|)), as
well as the two divisions of vectors by scalars (we recall that euclidean division of
X bit numbers can be performed in time O(M(X))). Overall, each iteration k of
the for loop takes time O(dM(k log |B|)), so the total complexity of Algorithm 6
is O(dnM(n log |B|)).

	


Algorithm 6. Integer Isometric GSO(B)
Require: Basis B = {b1, ...,bn}
Ensure: (d̃bk,dvk, ck, dk)k=1...n as defined in Definition 10
1: d̃b1 ← b1

2: dv1 ← b1

3: c1 ← 〈r(b̃1),dv1〉
4: d1 ← ‖b1‖2

5: for k = 1, ..., n − 1 do

6: d̃bk+1 ←
[
dkr(d̃bk) − ckdvk

]
/dk−1

7: dvk+1 ←
[
dkdvk − ckr(d̃bk)

]
/dk−1

8: ck+1 ← 〈v1, r(d̃bk+1)〉
9: dk+1 ← d2

k−c2k
dk−1

10: end for
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6.2 GSD in Exact Arithmetic

The isometric GSD can also naturally be converted into an efficient, “rational-
free” version. Let xi,j

Δ= λj−1Xi,j = 〈bi, d̃bj〉 ∈ Z and yi,j
Δ= λj−1Yi,j =

〈r(bi),dvj〉 ∈ Z. The relations
{

Xi+1,j+1 = Xi,j − Cj

Dj
Yi,j

Yi,j+1 = Yi,j − Cj

Dj
Xi,j

then become {
xi+1,j+1 = djxi,j−cjyi,j

dj−1

yi,j+1 = djyi,j−cjxi,j

dj−1

The xi,j ’s actually are the λi,j ’s, but in Algorithm 7 we continue to write xi,j

since it highlights the natural transformation of Algorithm 4 to Algorithm 7.

Lemma 4. Following the notations of Lemma 3, the time complexity of Algo-
rithm 7 is O(n2M(n log |B|) + ndM(log |B|)).
Proof. The costliest operations of Algorithm 7 are either the 2(n − 1) dot prod-
ucts in steps 2 and 3, which cost O(dM(log |B|)) each, or the essentially 3n2

multiplications and divisions made at steps 5 and 6, which cost O(M(j log |B|))
each. Summing these costs yields the result. 	

Note that in practice d is not much bigger than n, so the complexity of Algo-
rithm 7 becomes O(n2M(n log |B|)). Even in exact arithmetic, our GSO and
GSD algorithms still perform O(n) times faster than standard GSD, which com-
plexity is O(dn2M(n log |B|)) (implicit in the proof of [Gal12, Theorem 17.3.4]).
Moreover, we manage to avoid the use of any rational number, making our algo-
rithms both efficient and easy to implement.

7 NTRU Lattices

NTRU lattices are a special class of lattices widely used in cryptography, because
their ideal structure allows a gain of a factor n both in time and space when

Algorithm 7. Integer Isometric GSD(B, (ck, dk)k=1...n)
Require: Basis B and the values (ck, dk)k=1...n

Ensure: xi,j ’s,yi,j ’s as defined above
1: for i = 2...n do {Computing the (xi,1), (yi,1)}
2: xi,1 ← 〈bi, b̃1〉
3: yi,1 ← 〈r(bi),b1〉
4: for j = 2...i − 1 do
5: xi,j ← [dj−1xi−1,j−1 − cj−1yi−1,j−1] /dj−2

6: yi,j ← [dj−1yi,j−1 − cj−1xi,j−1] /dj−2

7: end for
8: end for
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performing usual operations over lattices. This results in efficient and compact
cryptosystems (e.g. [HPS98,LTV12,DDLL13]).

Definition 11. Let N, q ∈ N
∗ and f, g, F,G ∈ ZN [x] such that fG − gF = q

mod (xN + 1). The NTRU lattice generated by f, g, F,G is the lattice generated
by the rows of the block matrix

[ A(f) A(g)
A(F ) A(G)

]

Where A(p) is the N × N matrix which i-th row is the coefficients of xi−1 · p(x)
mod (xN + 1).

In [GHN06], Gama et al. considered exact GSD of NTRU bases. They showed
that these lattices verify an algebraic property called symplecticity, which allows
them to compute the exact GSD faster than with the standard algorithm, using
[GHN06, Corollary 1].

But in addition to being q-symplectic, NTRU bases are also block isometric.
So we devised an algorithm to compute the exact GSD of a NTRU basis, by
combining three strategies:

– use Algorithms 6 and 7 in order to avoid rational arithmetic (as in [Gal12]
and [GHN06])

– use the GSO/GSD strategies for isometric bases detailed in Section 5
– use [GHN06, Corollary 1] to compute only one half of the GSO and get the

other for free
We compared our exact reduction algorithm with the ones from [GHN06]. It

turns out that our algorithm is faster, both theoretically and in practice, despite
computing more information: it provides B̃ and μ, whereas the algorithms in
[GHN06] only provide μ. The timings are summarized in Table 1 and the full
implementation can be found at https://github.com/tprest/Fast-GSD.

Table 1. Timings for Gram-Schmidt over NTRU bases, in seconds. The implementa-
tion was done on Sage 5.3. Timings were performed on an Intel Core i5-3210M laptop
with a 2.5GHz CPU and 6GB RAM. Isometric GSD is “standard” GSD for block
isometric bases, whereas Iso.+Symp. GSD takes into account the observations from
[GHN06].

Dimension n = 2N 128 256 512 1024

Standard GS [GHN06] 3.22 30.7 390 4536
Dual GS [GHN06] 2.39 17 214 2496
Symplectic GS [GHN06] 0.89 5.73 33.9 279
Isometric GSD 0.48 2.05 12.4 89
Iso.+Symp. GSD 0.312 1.4 8.18 57.8
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8 Reversibility and Application to Linear-Storage
Gaussian Sampling

Gaussian Sampling [Kle00,GPV08] is a cornerstone of lattice cryptography. It
can either serve to find approximately close lattice points close to a vector
[Kle00], or to sample a lattice point close to a target point without leaking
any information about the basis used [GPV08]. We recall the definition of the
Gaussian Sampler:

A drawback of applying the Gaussian Sampler over ideal lattices is that, even
though the basis B of an ideal lattice can be stored using O(1) vectors, this is
not the case for the reduced basis B̃, which needs n vectors. This can quickly
impede the practicality of the Gaussian Sampler: for example, for n = 1024 (a
typical dimension for cryptographic lattices), if B̃ is stored using 128 bits of
precision, the bitsize of B̃ then exceeds 128 Mbits.

Our algorithm allows to overcome this problem by computing the reduced
basis B̃ on-the-fly. An obstacle is that Gaussian Sampling needs the vectors of
B̃ in reverse order, so a straightforward use of Algorithm 2 or 3 does not solve
the problem since it provides the basis in direct order. Fortunately, as Fig. 1
suggests, Algorithms 2 and 3 can be “reversed” in the sense that provided with
the last vector b̃n of the basis B̃ and a few extra pieces of information, one can
compute b̃n−1, ..., b̃1 on-the-fly.

Definition 12. For a basis B, we denote, for any i ∈ �1;n−1�, Ci = 〈vi, r(b̃i)〉
and Di = ‖b̃i‖2. We also define Hi = 1

1−(Ci/Di)2
= Di

Di+1
and Ii = Ci/Di

1−(Ci/Di)2
=

Ci

Di+1
.

Lemma 5. Algorithms 8 and 9 produce the same output when they have the
same input B and c (assuming the associated precomputed values are correct).

Proof. First, observe that ∀i = 1...n − 1, |Ci| < Di, because otherwise Di+1

would be zero and B would not be a basis. One can see that the ”linear system”
– b̃i+1 = r(b̃i) − Ci

Di
vi

– vi+1 = vi − Ci

Di
r(b̃i)

is invertible :
– b̃i = r−1(Hib̃i+1 + Iivi+1)
– vi = Iib̃i+1 + Hivi+1

Hi and Ii are always defined since |Ci| < Di. Therefore, the same way the values
Ci,Di allow to compute b̃i+1,vi+1 from b̃i,vi, Hi, Ii allow to compute b̃i,vi

from b̃i+1,vi+1. 	

This allows us to perform Gaussian Sampling using O(m) memory space

instead of O(mn) for the classic version. The overhead in time is reasonable :
– Classic Sampler: 2mn additions, 2mn multiplications, n samplings in Z

– Compact Sampler: 4mn additions , 6mn multiplications, n samplings in Z

Therefore, the compact Gaussian Sampler is at most three times slower than the
classic one. This is confirmed by experiments summarised in Table ??. Moreover,
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Algorithm 8. Gaussian Sampler(B, B̃, σ, c)

Require: Basis B = {b1, ...,bn}, its GSO B̃ = {b̃1, ..., b̃n}, σ > 0, center c ∈ Z
m

Ensure: z sampled in DΛ(B),σ,c

1: cn ← c
2: for i ← n, ..., 1 do
3: di ← 〈ci, b̃i〉/‖b̃i‖2

4: σi ← σ/‖b̃i‖
5: zi ← DZ,σi,di

6: ci−1 ← ci − zibi

7: end for
8: return c − c0

Algorithm 9. Compact Gaussian Sampler(B, B̃, σ, c, b̃n,vn,H, I)

Require: Basis B = {b1, ...,bn}, center c ∈ Z
m, precomputed vectors b̃n,vn, pre-

computed values (Hi, Ii)1�i<n from definition 12
Ensure: z sampled in DΛ(B),σ,c

1: cn ← c
2: for i ← n, ..., 1 do
3: di ← 〈ci, b̃i〉/‖b̃i‖2

4: σi ← σ/‖b̃i‖
5: zi ← DZ,σi,di

6: ci−1 ← ci − zibi

7: b̃i−1 ← r−1(Hi−1b̃i + Ii−1vi)
8: vi−1 ← Ii−1b̃i + Hi−1vi

9: end for
10: return c − c0

in Algorithm 9, it is possible to sample around several c’s at the same time: this
then makes negligible the overhead induced by the addition (in Algorithm 9) of
lines 7 and 8. This time-memory trade-off allows to do Gaussian Sampling for k
targets in space O(km) and in time at most

(
1 + 2

k

)
times the time required by

the classic Gaussian Sampler.

8.1 Analysis of the Space Requirement for the Gaussian Sampler

Suppose that B̃ needs to be known up to | log2 ε| bits, for some ε < 1. In order
to be able to run Algorithm 9 any time (without having to undergo the GSO
beforehand), one only needs to store (Hi, Ii, ‖b̃i‖)i=1...n as well as b̃n,vn. How-

ever, it is straightforward to use the relation ‖b̃i+1‖2

‖b̃i‖2 = 1 −
(

Ci

Di

)2

to save even

more space by just storing the ‖b̃i‖’s and deriving the Hi’s, Ii’s from them.
During the execution of Algorithm 9, one also needs to store the current b̃i,vi.
So overall the space requirement of Algorithm 9 is 5n(| log2 ε| + b), where b is
less the “number of bits lost” in steps 6, 7 of Algorithm 9: in other words, b
is such that if b̃n,vn, (‖b̃i‖)i=1...n are known up to | log2 ε| + b bits, then B̃ is
guaranteed to be known up to | log2 ε| bits.
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For NTRU lattices, this analysis can be refined: only half of the ‖b̃i‖ need
to be known, and b̃n,vn can be determined from b1 = b̃1 [GHN06, Corollary
1]. Instead of needing to know 3n(| log2 ε| + b) bits beforehand, we just need
n
2 (| log2 ε| + b), so the total space requirement is 2.5n(| log2 ε| + b).

9 Precision of the Gaussian Sampler

It is known [GPV08] that for σ big enough, the output f of Algorithm 8 is
statistically close to the distribution DΛ(B),σ,c. However, the proof holds only
when B, B̃, σ, c and the values ‖b̃i‖’s are known exactly. But in practice, one
can not afford to do computations with the exact representation of B̃ and of the
‖b̃i‖’s, as it would be too costly in terms of space and computational resources.
Therefore, B̃ and the ‖b̃i‖’s are stored up to some finite precision, and this
finite precision introduces errors ε, δ1 which impact the output distribution of
the algorithm. Theorem 3 bounds the statistical distance Δ(f, fε,δ1) between the
output distribution f of the “perfect” algorithm, and the output distribution
fε,δ1 of the “imperfect” algorithm.

Theorem 3. Let m,n, q ∈ N
	, B = {b1, ...,bn} ∈ Z

n×m be a basis of a lattice
Λ ⊆ Zm, B̃ = {b̃1, ..., b̃n} be the exact GSO of B and c ∈ Z

m
q . Let δ, ε, k > 0, σ �

max ‖b̃i‖ and for any i = 1...n, let σi = σ
‖b̃i‖ . Let fε,δ1 be the output distribution

of Algorithm 8 ran on input (B, B̃, σ, (‖b̃i‖)i, c), where the coefficients of B̃ are
known with absolute precision at least δ1, and the values ‖b̃i‖ are known with
relative precision at least ε. When B̃ and the ‖b̃i‖ are known exactly, we simply
refer to the output distribution as f .
Let δ3 = 2kεq

√
m

σ + εk2 + mqδ1k

σ mini ‖b̃i‖ . If δ3 � 1/2, then:

Δ(f, fε,δ1) � 2n(δ3 + 3e−k2/2)

In particular, if we want Δ(f, fε,δ1) to be less than 2−λ for some λ > 0, it is
enough that:

δ1, ε � 2−λ

2n
√

λ + log2 n
(√

λ + log2 n + 2q
√

m
σ + mq

σ mini ‖b̃i‖

)

Proof. f is the output distribution of Algorithm 8 executed on exact input
(B, B̃, σ, (‖b̃i‖)i, c), and fε,δ1 is the output distribution of Algorithm 8 executed
on input (B, B̃′, σ, (‖b̃i‖′)i, c), where:

– each vector b̃′
i of B̃′ is correct up to log2 δ1 bits after the comma:

∀i, ‖b̃i − b̃′
i‖∞ � δ1

– each ‖bi‖′ is correct up to log2 ε bits:
∣
∣
∣ ‖b̃i‖
‖bi‖′ − 1

∣
∣
∣ � ε

– since σi = σ
‖b̃i‖ , σ′

i = σ
‖b̃i‖′ , each σ′

i is also correct up to log2 ε bits
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Let g = fε,δ1 . Out goal is make f and g fall into the conditions of Lemma 6 for
some X,X ′, γ, δ5, so that we can get a bound on their statistical distance.
Let X = {∑i=1...n zibi|(z1, ..., zn) ∈ Z

n}. Each possible output z =
∑

i zibi

implicitely defines (d1, ...dn). Let X ′ = {z =
∑

i zibi

∣
∣∀i, |zi − di| � kσi}. From

[Lyu12, Lemma 4.4, part 1], f(X\X ′), g(X\X ′) � 1−(1−4e−k2/2)n � 4ne−k2/2.
On the other hand, Lemma 10 tells us that for δ4 ≈ 4δ3 + 4e−k2/2, ∀z =∑

i=1...n zibi ∈ X and ∀i = 1...n:

1 − δ4 �
DZ,σ′

i,d
′
i
(zi)

DZ,σi,di
(zi)

� 1 + δ4

Combining this with f(z) =
∏

i=1...n

DZ,σi,di
(z) and g(z) =

∏

i=1...n

DZ,σ′
i,d

′
i
(z), we

have a bounded ratio g
f over X ′:

∀z ∈ X ′, 1 − nδ4 � (1 − δ4)n � g(z)
f(z)

� (1 + δ4)n = 1 + nδ4 + O(δ24)

Taking γ = 4ne−k2/2 and δ5 = nδ4, we can now apply Lemma 6:

2Δ(f, g) � nδ4 + 2γ

	

The proof of Theorem 3 resorts to several lemmas that can be found in

Appendix A.

9.1 Application to NTRU Lattices

We use the formula obtained in Theorem 3 in order to derive concrete bounds
in the case of NTRU lattices. In this particular case, m = n, σ min ‖b̃i‖ > q
[GHN06, Corollary 1] and σ >

√
q (because

∏
i ‖b̃i‖ = qn/2). We can also

reasonably assume that log2 n < λ < qn/2, so

ε, δ1 <
2−λ

8n
√

λqn
=⇒ Δ(f, fε,δ1) � 2−λ

As an example, for n = 1024, q � 226 and λ � 256, this means that Δ(f, fε,δ1) �
2−128 provided that B̃ (resp. the ‖b̃i‖’s) is known up to λ+35+log2(maxi ‖b̃i‖)
(resp. λ + 35) bits of precision.

We now use the results from Subsection 8.1 to determine the space require-
ments for the parameters as above. Algorithm 9 requires 2.5n(λ+35+ b) bits of
space. In experiments we launched on NTRU lattices, we always get b � 30. We
will therefore take this value for b.

As a test for the practicality of our compact Gaussian Sampler, we imple-
mented both the classic and compact Gaussian Samplers and compared their
timings and space requirements. As predicted by our computations, the com-
pact Gaussian Sampler is no more than thrice slower than the classic one, while
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Table 2. Timings (in milliseconds) and space requirements (in bits and mega-bits)
of the classic and compact Gaussian Samplers (Classic GS and Compact GS). The
implementation was done in C++ using GMP. Timings were performed on an Intel Core
i5-3210M laptop with a 2.5GHz CPU and 6GB RAM.

Statistical distance from ideal 2−80 2−128 2−192

Precision needed
Classic GS 115 bits 163 bits 223 bits
Compact GS 145 bits 193 bits 253 bits

Running time
Classic GS 115 ms 170 ms 203 ms
Compact GS 446 ms 521 ms 523 ms

Space requirements
Classic GS 115 Mb 163 Mb 223 Mb
Compact GS 0.35 Mb 0.47 Mb 0.63 Mb

having space requirements smaller by between two and three orders of magni-
tude. Our results are summarized in Table 2 and the complete implementation
can be found on https://github.com/tprest/Compact-Sampler.

Acknowledgments. The authors wish to thank Phong Q. Nguyen, as well as the
anonymous Eurocrypt’15 reviewers, for helpful comments which helped improve the
presentation of this work.

A Lemmas Used In the Precision Analysis of the
Gaussian Sampler

This section regroups the lemmas used by Theorem 3 in order to bound the sta-
tistical distance. We will sometimes resort to approximations such as ρd,σ(Z) ≈ 1
in order to simplify computations: indeed, |ρd′,σ(Z) − 1| < 1.04·10−8σ2

whenever
σ > 1√

2
(see e.g. [MS07, Sect. 1.1]), and that will always be the case through this

section. In the same way, we always assume ε and δi’s to be very small and will
therefore discard δ terms whenever possible. Each time such an approximation
is done, it is indicated with signs such as O(·) or ≈, and has a negligible impact.
More precisely, it never adds “hidden errors” to the result being proven.

The first lemma gives a simple bound on the statistical distance between two
distributions f and g which are both in a set X ′ with probability 1 − γ, and
enjoy a relative error bound 1−δ5 � g(z)

f(z) � 1+δ5 over this set X ′. As one could
expect, the statistical distance between f and g becomes linear in δ5 + γ when
δ5, γ → 0.

Lemma 6. Let f, g be two distributions over a set X. Let X ′ ⊆ X, δ5, γ > 0
such that

∑
z∈X\X′ f(z),

∑
z∈X\X′ g(z) � γ, and ∀z ∈ X ′, 1−δ5 � g(z)

f(z) � 1+δ5.
Then:

2Δ(f, g) � 2γ + δ5.
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Proof. We separate the statistical distance sum into two sums over X ′ and X\X ′:

2Δ(f, g) �
∑

z∈X\X′ f(z) +
∑

z∈X\X′ g(z) +
∑

z∈X′ |f(z) − g(z)|
� 2γ + δ5

∑

z∈X′
f(z)

� 2γ + δ5

	

The following lemma bounds the error occurring in step 3 of Algorithm 8,

when the center di is computed. In the floating-point version, the b̃i are known
up to absolute precision δ1 (ie log2 δ1 bits after the comma) and their norms
‖b̃i‖ are known up to relative precision ε (ie log2 ε − log2 ‖b̃i‖ bits after the
comma), where δ1 and ε are not necessarily equal.

Lemma 7. Let 0 < δ1, ε � 1, c ∈ Z
m
q ,b,b′ ∈ R

m such that ‖b − b′‖∞ � δ1

and
∣
∣
∣ ‖b‖
‖b′‖ − 1

∣
∣
∣ � ε. Let d = 〈c,b〉

‖b‖2 , d′ = 〈c,b′〉
‖b′‖2 . Then |d − d′| � δ2, where δ2 ≈

2ε q
√

m
‖b‖ + mqδ1

‖b‖2 .

Proof. d′ =
(

〈c,b〉
‖b‖2 + 〈c,b′−b〉

‖b‖2

)
‖b‖2

‖b′‖2 , so

|d′ − d| � ((1 + ε)2 − 1)d + ‖c‖1‖b′−b‖∞
‖b‖2 (1 + ε)2

� 2 q
√

m
‖b‖ (ε + O(ε2)) + mq

‖b‖2 (δ1 + O(δ21))

	

In the three next lemmas, we study the difference of behaviour between a

perfect gaussian over Z of center d and standard deviation σ, and the same
gaussian with a slightly perturbed center d′ and standard deviation σ′. For any
center d, DZ,σ,d can be exactly simulated from DZ,σ,d−1 (and reciprocally), so
we can suppose w.l.o.g. that d ∈ (−1/2, 1/2]. The Lemmas 8, 9 progressively
build up to establish in Lemma 10 a bound over the ratio of DZ,σ,d and DZ,σ′,d′ ,
which are the distributions from which Algorithm 8 samples in step 5 (DZ,σ,d in
the “perfect” algorithm, DZ,σ′,d′ in the “imperfect” one).

Lemma 8. Let ε, δ2, k > 0, σ, σ′ > 1 and d, d′ ∈ (−1/2, 1/2] such that |d − d′| �
δ2 and

∣
∣ σ
σ′ − 1

∣
∣ � ε. Let z ∈ Z such that |z − d| � kσ. Then

e−δ3 � ρσ′,d′(z)
ρσ,d(z)

� eδ3

where δ3 = δ2k
σ + ε(k2 + 1) + O(ε, δ22 , εδ2). In particular, if δ3 � 1/2, then∣

∣
∣
ρσ′,d′ (z)
ρσ,d(z)

− 1
∣
∣
∣ � 2δ3

Proof.
ρσ′,d′(z)
ρσ,d(z)

=
ρσ′,d′(z)
ρσ′,d(z)

× ρσ,d′(z)
ρσ,d(z)
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One one hand,

ρσ,d′(z)
ρσ,d(z)

= e
(d′−d)(2z−d′+d)

2σ2 , and
∣
∣
∣
∣
(d′ − d)(2z − d′ + d)

2σ2

∣
∣
∣
∣ � k

σ
(δ2 + O(δ22))

On the other hand,

ρσ′,d′(z)
ρσ,d′(z)

=
σ

σ′ × e
(z−d′)2

2σ2 − (z−d′)2
2σ′2

and ∣
∣
∣
∣
(z − d′)2

2σ2
− (z − d′)2

2σ′2

∣
∣
∣
∣ =

(z − d′)2

2σ2

∣
∣
∣
∣1 − σ2

σ′2

∣
∣
∣
∣ � k2(ε + O(ε2))

Combining both inequalities and using ex = 1 + x + O(x2) yield:

ρσ′,d′ (z)
ρσ,d(z)

� (1 + k
σ (δ2 + O(δ22)) (1 + ε)

(
1 + k2(ε + O(ε2)

)

� 1 + δ2k
σ + ε(k2 + 1) + O(ε, δ22 , εδ2)

	

Lemma 9. Let σ, σ′ > 1 and d, d′ ∈ (−1/2, 1/2]. Let k > 0 and Z = {z ∈
Z, |z − d| � kσ}. Suppose ∃δ3 ∈ (0, 1/2),∀z ∈ Z,

∣
∣
∣
ρσ′,d′ (z)
ρσ,d(z)

− 1
∣
∣
∣ � 2δ3. Then:

∑

z∈Z

|ρσ′,d′(z) − ρσ,d(z)| � 2δ3 + 4e−k2/2

Proof. We separate the sum in two sums over Z and Z\Z. For the first sum:
∑

z∈Z

|ρσ′,d′(z) − ρσ,d(z)| � 2δ3
∑

z∈Z

|ρσ,d(z)| � 2δ3(1 + 1.01 · 10−8) ≈ 2δ3

Now, for the second sum, Lemma 4.4, part 1, from [Lyu12] states that8:

For any k > 0,P [|z − d| > kσ; z ← DZ,σ,d] � 2e−k2/2

Using this lemma, it is straightforward that
∑

z∈Z\Z

|ρσ,d(z) − ρσ,d′(z)| �
∑

z∈Z\Z

ρσ,d(z) + ρσ,d(z)

� 4e−k2/2 (ρσ,c(Z) + ρσ′,c′(Z))
� 8e−k2/2δ3(1 + 1.01 · 10−8) ≈ 8e−k2/2

	

8 It is actually stated only for d = 0, but the proofs holds ∀d ∈ R.



814 V. Lyubashevsky et al.

Lemma 10 (Bounded ratio of discrete gaussians over a finite set). Let
σ, σ′ > 1 and d, d′ ∈ (−1/2, 1/2]. Let k > 0 and z ∈ Z such that |z − d| � kσ.
Suppose ∃δ3 ∈ (0, 1/2) such that 1 − 2δ3 � ρσ′,d′ (z)

ρσ,d(z)
� 1 + 2δ3. Then:

∣
∣
∣
∣
DZ,σ′,c′(z)
DZ,σ,c(z)

− 1
∣
∣
∣
∣ � δ4

where δ4 = 4δ3 + 4e−k2/2 + 4δ23 + 8δ3e
−k2/2. In practice δ3 is small and k is

“somewhat” big, so δ4 ≈ 4δ3 + 4e−k2/2.

Proof.

|DZ,σ,c(z) − DZ,σ′,c′(z)| =
∣
∣
∣ ρσ,c(z)
ρσ,c(Z)

− ρσ′,c′ (z)
ρσ′,c′ (Z)

∣
∣
∣

= ρσ,c(z)
ρσ,c(Z)

∣
∣
∣1 − ρσ′,c′ (z)

ρσ,c(z)
× ρσ,c(Z)

ρσ′,c′ (Z)

∣
∣
∣

� ρσ,c(z)
ρσ,c(Z)

∣
∣
∣1 − (1 + 2δ3)(1 + 2δ3 + 4e−k2/2)

∣
∣
∣

� DZ,σ,c(z)
(
4δ3 + 4e−k2/2 + 4δ23 + 8δ3e

−k2/2
)

where the penultimate line is obtained by bounding ρσ,c(Z)
ρσ′,c′ (Z) via Lemma 9. 	
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