Elisabeth Oswald
Marc Fischlin (Eds.)

Advances in Cryptology -
EUROCRYPT 2015

34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part |

LNCS 9056

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Ziirich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9056

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Elisabeth Oswald - Marc Fischlin (Eds.)

Advances 1n Cryptology —
EUROCRYPT 2015

34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Sofia, Bulgaria, April 26-30, 2015

Proceedings, Part I

@ Springer

Editors

Elisabeth Oswald Marc Fischlin

University of Bristol Technische Universitdt Darmstadt
Bristol Darmstadt

UK Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-662-46799-2 ISBN 978-3-662-46800-5 (eBook)

DOI 10.1007/978-3-662-46800-5

Library of Congress Control Number: 2015935614
LNCS Sublibrary: SL4 — Security and Cryptology

Springer Heidelberg New York Dordrecht London

(© International Association for Cryptologic Research 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

Eurocrypt 2015, the 34th annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, was held during April 26-30, 2015, in Sofia, Bul-
garia, and sponsored by the International Association for Cryptologic Research (IACR).
Responsible for the local organization were Svetla Nikova, from Katholieke Universiteit
Leuven, and Dimitar Jetchev, from EPFL. They were supported by a Local Organizing
Committee consisting of Tsonka Baicheva (Institute of Mathematics and Informatics,
BAS), Violeta Ducheva (SANS), and Georgi Sharkov (ESI Center Eastern Europe). We
are indebted to them for their support.

To accommodate the request by IACR to showcase as many high-quality submis-
sions as possible, the program was organized in two tracks. These tracks ran in parallel
with the exception of invited talks, the single best paper, and two papers with honor-
able mention. Following a popular convention in contemporary cryptography, one track
was labeled R and featured results more closely related to ‘real’ world cryptography,
whereas the second track was labeled Z and featured results in a more abstract or ‘ideal’
world.

A total of 194 submissions were considered during the review process, many were
of high quality. As usual, all reviews were conducted double-blind and we excluded
Program Committee members from discussing submissions for which they had a pos-
sible conflict of interest. To account for a desire (by authors and the wider community
alike) to maintain the high standard of publications, we allowed for longer submissions
such that essential elements of proofs or other form of evidence could be included in
the body of the submissions (appendices were not scrutinized by reviewers). Further-
more, a more focused review process was used that consisted of two rounds. In the
first round of reviews we solicited three independent reviews per submission. After a
short discussion phase among the 38 Program Committee members, just over half of
the submissions were retained for the second round. Authors of these retained papers
were given the opportunity to comment on the reviews so far. After extensive delibera-
tions in a second round, we accepted 57 papers. The revised versions of these papers are
included in these two volume proceedings, organized topically within their respective
track.

The review process would have been impossible without the hard work of the Pro-
gram Committee members and over 210 external reviewers, whose effort we would like
to commend here. It has been an honor to work with everyone. The process was enabled
by the Web Submission and Review Software written by Shai Halevi and the server was
hosted by IACR. We would like to thank Shai for setting up the service on the server
and for helping us whenever needed.

The Program Committee decided to honor one submission with the Best Paper
Award this year. This submission was “Cryptanalysis of the Multilinear Map over the
Integers” authored by Junghee Cheo, Kyoohyung Han, Changmin Lee, Hansol Ryu, and

VI Preface

Damien Stehlé. The two runners-up to the award, “Robust Authenticated-Encryption:
AEZ and the Problem that it Solves” (by Viet Tung Hoang, Ted Krovetz, and Phillip
Rogaway) and “On the behaviors of affine equivalent Sboxes regarding differential and
linear attacks” (by Anne Canteaut and Jo€lle Roué) received Honorable Mentions and
hence also invitations for the Journal of Cryptology.

In addition to the contributed talks, we had three invited speakers: Kristin Lauter,
Tal Rabin, and Vincent Rijmen. We would like to thank them for accepting our invi-
tation and thank everyone (speakers, session chairs, and rump session chair) for their
contribution to the program of Eurocrypt 2015.

April 2015 Elisabeth Oswald
Marc Fischlin

EUROCRYPT 2015

The 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Track R

Sofia, Bulgaria, April 26-30, 2015

General Chairs

Svetla Nikova
Dimitar Jetchev

Program Co-chairs

Elisabeth Oswald
Marc Fischlin

Program Commitee

Masayuki Abe
Gilles Barthe
Lejla Batina

Alex Biryukov
Alexandra Boldyreva
Jan Camenisch
Anne Canteaut
Liqun Chen
Chen-Mou Cheng
Marten van Dijk
Jens Groth

Tetsu Iwata

Marc Joye
Charanjit Jutla
Eike Kiltz
Markulf Kohlweiss
Gregor Leander
Benoit Libert
Yehuda Lindell
Stefan Mangard
Steve Myers
Gregory Neven

Katholieke Universiteit Leuven, Belgium
Ecole Polytechnique Fédérale de Lausanne,
Switzerland

University of Bristol, UK
Technische Universitdt Darmstadt, Germany

NTT, Japan

IMDEA, Spain

Radboud University Nijmegen, The Netherlands
University of Luxembourg, Luxembourg
Georgia Institute of Technology, USA
IBM Research — Zurich, Switzerland
Inria, France

HP Laboratories, UK

National Taiwan University, Taiwan
University of Connecticut, USA
University College London, UK
Nagoya University, Japan

Technicolor, USA

IBM Research, USA

Ruhr-Universitit Bochum, Germany
Microsoft Research, UK
Ruhr-Universitdt Bochum, Germany
ENS Lyon, France

Bar-Ilan University, Israel

Graz University of Technology, Austria
Indiana University, USA

IBM Research — Zurich, Switzerland

VIII EUROCRYPT 2015

Kaisa Nyberg
Kenneth G. Paterson
David Pointcheval
Manoj Prabhakaran
Emmanuel Prouff
Christian Rechberger
Pankaj Rohatgi

Alon Rosen
Alessandra Scafuro
Christian Schaffner
Dominique Schroder
Martijn Stam
Francgois-Xavier Standaert
Douglas Stebila
Frederik Vercauteren
Bogdan Warinschi

External Reviewers

Divesh Aggarwal
Shweta Agrawal
Martin Albrecht
Hiroaki Anada
Prabhanjan Ananth
Elena Andreeva

Benny Applebaum
Srinivasan Arunachalam
Gilad Asharov
Nuttapong Attrapadung
Saikrishna Badrinarayanan
Rachid El Bansarkhani
Manuel Barbosa

Lynn Batten

Amos Beimel

Sonia Belaid

Josh Benaloh

Florian Bergsma
Sanjay Bhattacherjee
Nir Bitansky

Celine Blondeau
Andrej Bogdanov

Niek Bouman

Colin Boyd

Elette Boyle

Zvika Brakerski

Aalto University, Finland

Royal Holloway, University of London, UK

Ecole Normale Supérieure Paris, France
University of Illinois at Urbana—Champaign, USA

ANSSI, France

Technical University of Denmark, Denmark
Cryptography Research Inc., USA

Herzliya Interdisciplinary Center, Herzliya, Israel
University of California, Los Angeles, USA
University of Amsterdam, The Netherlands
Saarland University, Germany

University of Bristol, UK

Université catholique de Louvain, Belgium
Queensland University of Technology, Australia
Katholieke Universiteit Leuven, Belgium
University of Bristol, UK

Luis T.A.N. Brandao
Billy Bob Brumley
Christina Brzuska
Claude Carlet
Angelo De Caro
Ignacio Cascudo
David Cash

Andrea Cerulli
Pyrros Chaidos
Yun-An Chang

Jie Chen

Baudoin Collard
Geoffroy Couteau
Edouard Cuvelier
Joan Daemen

Vizér Damian
Jean-Paul Degabriele
Patrick Derbez
David Derler
Christoph Dobraunig
Nico Déttling

Manu Drijvers
Maria Dubovitskaya
Orr Dunkelman
Francois Dupressoir
Stefan Dziembowski

Markus Diirmuth
Robert Enderlein
Chun-I Fan

Edvard Fargerholm
Pooya Farshim
Feng-Hao Liu
Matthieu Finiasz
Dario Fiore

Rob Fitzpatrick
Robert Fitzpatrick
Nils Fleischhacker
Jean-Pierre Flori
Pierre-Alain Fouque
Thomas Fuhr
Eiichiro Fujisaki
Benjamin Fuller
Tommaso Gagliardoni
Steven Galbraith
Nicolas Gama
Praveen Gauravaram
Ran Gelles

Rosario Gennaro
Henri Gilbert
Sergey Gorbunov
Matthew Green
Vincent Grosso

Johann Groszschidl
Sylvain Guilley
Shai Halevi

Michael Hamburg
Mike Hamburg
Fabrice Ben Hamouda
Christian Hanser
Ryan Henry

Jens Hermans

Javier Herranz

Ryo Hiromasa
Shoichi Hirose

Yan Huang

Yuval Ishai

Cess Jansen
Thomas Johansson
Anthony Journault
Antoine Joux

Ali El Kaafarani
Saqib Kakvi
Akshay Kamath
Bhavana Kanukurthi
Carmen Kempka
Dmitry Khovratovich
Dakshita Khurana
Susumu Kiyoshima
Stefan Koelbl
Francois Koeune
Vlad Kolesnikov
Anna Krasnova
Stephan Krenn
Po-Chun Kuo
Fabien Laguillaumie
Adeline Langlois
Martin M. Laurisden
Jooyoung Lee

Anja Lehmann
Tancrede Lepoint
Reynald Lercier
Gaétan Leurent
Anthony Leverrier
Huijia Lin

Steve Lu

Atul Luykx

Giulio Malavolta
Mark Marson

Dan Martin

Christian Matt

Ueli Maurer

Ingo von Maurich
Matthew McKague
Marcel Medwed
Florian Mendel

Bart Mennink

Arno Mittelbach
Payman Mohassel
Mridul Nandi

Maria Naya-Plasencia
Phong Nguyen

Ryo Nishimaki

Kobbi Nissim

Adam O’Neill
Wakaha Ogata
Miyako Ohkubo

Olya Ohrimenko
Tatsuaki Okamoto
Jiaxin Pan

Omkant Pandey

Omer Paneth

Saurabh Panjwani
Louiza Papachristodolou
Anat Paskin-Cherniavsky
Rafael Pass

Chris Peikert

Ludovic Perret

Léo Perrin

Thomas Peters
Christophe Petit
Duong Hieu Phan
Krzysztof Pietrzak
Benny Pinkas

Jérome PIit
Christopher Portmann
Romain Poussier
Ignacio Cascudo Pueyo
Ivan Pustogarov
Bertram Péttering
Max Rabkin

Carla Rafols

Somindu Ramanna
Jothi Rangasamy
Alfredo Rial

EUROCRYPT 2015 IX

Vincent Rijmen

Ben Riva

Matthieu Rivain

Thomas Roche

Mike Rosulek

Ron Rothblum

Yannis Rouselakis

Arnab Roy

Atri Rudra

Kai Samelin

Palash Sarkar

Benedikt Schmidt

Peter Scholl

Peter Schwabe

Gil Segev

Nicolas Sendrier

Yannick Seurin

Abhi Shelat

Adam Shull

Jamie Sikora

Mark Simkin

Daniel Slamanig

Hadi Soleimany

Juarj Somorovsky

Florian Speelman

Damien Stehlé

John Steinberger

Noah
Stephens-Davidowitz

Marc Stevens

Pierre-Yves Strub

Stefano Tessaro

Susan Thomson

Mehdi Tibouchi

Tyge Tiessen

Pei-Yih Ting

Elmar Tischhauser

Mike Tunstall

Dominique Unruh

Vinod Vaikuntanathan

Kerem Varici

Vesselin Velichkov

Muthuramakrishnan

Venkitasubramaniam

Daniele Venturi

Nicolas Veyrat-Charvillon

X EUROCRYPT 2015

Ivan Visconti
David Wagner
Hoeteck Wee
Erich Wenger
Cyrille Wielding

David Wu

Keita Xagawa
Bo-Yin Yang
Shang-Yi Yang
Kazuki Yoneyama

Mark Zhandry
Vassilis Zikas

Contents — Part I, Track R

Best Paper

Cryptanalysis of the Multilinear Map over the Integers. 3
Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu,
and Damien Stehlé

Honorable Mentions

Robust Authenticated-Encryption AEZ and the Problem That It Solves. 15
Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway

On the Behaviors of Affine Equivalent Sboxes Regarding Differential
and Linear Attacks e 45
Anne Canteaut and Joélle Roué

Random Number Generators

A Provable-Security Analysis of Intel’s Secure Key RNG.............. 77
Thomas Shrimpton and R. Seth Terashima

A Formal Treatment of Backdoored Pseudorandom Generators 101
Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev,
Ari Juels, and Thomas Ristenpart

Number Field Sieve

Improving NFS for the Discrete Logarithm Problem in Non-prime

Finite Fields. 129
Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic,
and Frangois Morain

The Multiple Number Field Sieve with Conjugation and Generalized
Joux-Lercier Methods 156
Cécile Pierrot

Algorithmic Cryptanalysis

Better Algorithms for LWE and LWR. 173
Alexandre Duc, Florian Tramer, and Serge Vaudenay

XII Contents — Part I, Track R

On Computing Nearest Neighbors with Applications to Decoding
of Binary Linear Codes
Alexander May and Ilya Ozerov

Symmetric Cryptanalysis I

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions
with Applications to PRINCE and PRIDE
Itai Dinur

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis
of Robin, iISCREAM and ZOITo 0t
Gregor Leander, Brice Minaud, and Sondre Rgnjom

Symmetric Cryptanalysis II

Structural Evaluation by Generalized Integral Property
Yosuke Todo

Cryptanalysis of SP Networks with Partial Non-Linear Layers.
Achiya Bar-On, Itai Dinur, Orr Dunkelman, Virginie Lallemand,
Nathan Keller, and Boaz Tsaban

Hash Functions

The Sum Can Be Weaker Than Each Part.
Gaétan Leurent and Lei Wang

SPHINCS: Practical Stateless Hash-Based Signatures
Daniel J. Bernstein, Daira Hopwood, Andreas Hiilsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider,

Peter Schwabe, and Zooko Wilcox-O’Hearn

Evaluating Implementations

Making Masking Security Proofs Concrete: Or How to Evaluate the Security
of Any Leaking Device.
Alexandre Duc, Sebastian Faust, and Francois-Xavier Standaert

Ciphers for MPC and FHE.
Martin R. Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner

Contents — Part I, Track R XIII

Masking

Verified Proofs of Higher-Order Masking 457
Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, and Pierre-Yves Strub

Inner Product Masking Revisited 486
Josep Balasch, Sebastian Faust, and Benedikt Gierlichs

Fully Homomorphic Encryption I

Fully Homomophic Encryption over the Integers Revisited 513
Jung Hee Cheon and Damien Stehlé

(Batch) Fully Homomorphic Encryption over Integers for Non-Binary
MESSAZE SPACES « . o ¢ vt e e 537
Koji Nuida and Kaoru Kurosawa

Related-Key Attacks

KDM-CCA Security from RKA Secure Authenticated Encryption 559
Xianhui Lu, Bao Li, and Dingding Jia

On the Provable Security of the Iterated Even-Mansour Cipher Against
Related-Key and Chosen-Key Attacks. 584
Benoit Cogliati and Yannick Seurin

Fully Homomorphic Encryption II

FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second ... 617
Léo Ducas and Daniele Micciancio

Bootstrapping for HE1ib 641
Shai Halevi and Victor Shoup

Efficient Two-Party Protocols

More Efficient Oblivious Transfer Extensions with Security
for Malicious AdVersaries i e e 673
Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner

How to Efficiently Evaluate RAM Programs with Malicious Security. 702
Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek

XIV Contents — Part I, Track R

Symmetric Cryptanalysis III

Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-Reduced

Keccak Sponge Function.

Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny,
and Michat Straus

Twisted Polynomials and Forgery Attacks on GCM

Mohamed Ahmed Abdelraheem, Peter Beelen, Andrey Bogdanov,
and Elmar Tischhauser

Lattices

Quadratic Time, Linear Space Algorithms for Gram-Schmidt

Orthogonalization and Gaussian Sampling in Structured Lattices

Vadim Lyubashevsky and Thomas Prest

Author Index e

Contents — Part II, Track I

Signatures

Universal Signature Aggregators.ottt ittt et
Susan Hohenberger, Venkata Koppula, and Brent Waters

Fully Structure-Preserving Signatures and Shrinking Commitments.
Masayuki Abe, Markulf Kohlweiss, Miyako Ohkubo,
and Mehdi Tibouchi

Zero-Knowledge Proofs

Disjunctions for Hash Proof Systems: New Constructions
and Applications. i e
Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Quasi-Adaptive NIZK for Linear Subspaces Revisited
Eike Kiltz and Hoeteck Wee

Leakage-Resilient Cryptography

Leakage-Resilient Circuits Revisited — Optimal Number of Computing
Components Without Leak-Free Hardware.
Dana Dachman-Soled, Feng-Hao Liu, and Hong-Sheng Zhou

Noisy Leakage Revisited i
Stefan Dziembowski, Sebastian Faust, and Maciej Skorski

Garbled Circuits

Privacy-Free Garbled Circuits with Applications to Efficient
Zero-Knowledge.o e
Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi

Two Halves Make a Whole: Reducing Data Transfer in Garbled Circuits
Using Half Gates e
Samee Zahur, Mike Rosulek, and David Evans

XVI Contents — Part II, Track I

Crypto Currencies

One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin. 253
Jens Groth and Markulf Kohlweiss

The Bitcoin Backbone Protocol: Analysis and Applications. 281
Juan Garay, Aggelos Kiayias, and Nikos Leonardos
Secret Sharing

Linear Secret Sharing Schemes from Error Correcting Codes

and Universal Hash Functions 313
Ronald Cramer, Ivan Bjerre Damgdrd, Nico Dottling,
Serge Fehr, and Gabriele Spini

Function Secret Sharing. 337
Elette Boyle, Niv Gilboa, and Yuval Ishai
Outsourcing Computations

Cluster Computing in Zero Knowledge 371
Alessandro Chiesa, Eran Tromer, and Madars Virza

Hosting Services on an Untrusted Cloud 404
Dan Boneh, Divya Gupta, Illya Mironov, and Amit Sahai
Obfuscation and E-Voting

How to Obfuscate Programs Directly 439
Joe Zimmerman

End-to-End Verifiable Elections in the Standard Model. 468
Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang

Multi-party Computations

Cryptographic Agents: Towards a Unified Theory of Computing
on Encrypted Data 501
Shashank Agrawal, Shweta Agrawal, and Manoj Prabhakaran

Executable Proofs, Input-Size Hiding Secure Computation
and a New Ideal World 532
Melissa Chase, Rafail Ostrovsky, and Ivan Visconti

Contents — Part II, Track I XVII

Encryption

Semantically Secure Order-Revealing Encryption: Multi-input Functional
Encryption Without Obfuscation. 563
Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai,
Mark Zhandry, and Joe Zimmerman

Improved Dual System ABE in Prime-Order Groups via Predicate
Encodings 595
Jie Chen, Romain Gay, and Hoeteck Wee

Resistant Protocols

Resisting Randomness Subversion: Fast Deterministic and Hedged
Public-Key Encryption in the Standard Model 627
Mihir Bellare and Viet Tung Hoang

Cryptographic Reverse Firewalls 657
Ilya Mironov and Noah Stephens-Davidowitz
Key Exchange

Mind the Gap: Modular Machine-Checked Proofs of One-Round

Key Exchange Protocols 689
Gilles Barthe, Juan Manuel Crespo, Yassine Lakhnech,
and Benedikt Schmidt

Authenticated Key Exchange from Ideal Lattices 719
Jiang Zhang, Zhenfeng Zhang, Jintai Ding, Michael Snook,
and Ozgiir Dagdelen

Quantum Cryptography

Non-Interactive Zero-Knowledge Proofs in the Quantum Random
Oracle Model 755
Dominique Unruh

Privacy Amplification in the Isolated Qubits Model 785
Yi-Kai Liu
Discrete Logarithms

Generic Hardness of the Multiple Discrete Logarithm Problem 817
Aaram Yun

Author Index e 837

Best Paper

Cryptanalysis of the Multilinear Map over
the Integers

Jung Hee Cheon' ™) Kyoohyung Han', Changmin Lee®,
Hansol Ryu', and Damien Stehlé?

1 Seoul National University (SNU), Seoul, Republic of Korea
jhcheon@snu.ac.kr
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
Lyon, France

Abstract. We describe a polynomial-time cryptanalysis of the (approx-
imate) multilinear map of Coron, Lepoint and Tibouchi (CLT). The
attack relies on an adaptation of the so-called zeroizing attack against
the Garg, Gentry and Halevi (GGH) candidate multilinear map. Zeroiz-
ing is much more devastating for CLT than for GGH. In the case of
GGH, it allows to break generalizations of the Decision Linear and Sub-
group Membership problems from pairing-based cryptography. For CLT,
this leads to a total break: all quantities meant to be kept secret can be
efficiently and publicly recovered.

Keywords: Multilinear maps * Graded encoding schemes

1 Introduction

Cryptographic bilinear maps, made possible thanks to pairings over elliptic
curves, have led to a bounty of exciting cryptographic applications. In 2002,
Boneh and Silverberg [BS02] formalized the concept of cryptographic multilin-
ear maps and provided two applications: a one-round key multi-party exchange
protocol, and a very efficient broadcast encryption scheme. But these promising
applications were only day-dreaming exercises, as no realization of such multilin-
ear maps was known. This was changed about ten years later, as Garg, Gentry
and Halevi proposed the first approximation to multilinear maps [GGH13a].
They introduced the concept of (approximate) graded encoding scheme as a
variant of multilinear maps, and described a candidate construction relying on
ideal lattices (which we will refer to as GGH in this work). Soon after, Coron,
Lepoint and Tibouchi [CLT13] proposed another candidate construction of a
graded encoding scheme, relying on a variant of the approximate greatest com-
mon divisor problem (CLT, for short).

The GGH and CLT constructions share similarities. Both are derived from
a homomorphic encryption scheme (Gentry’s scheme [Gen09] and the van Dijk
et al. scheme [DGHV10], respectively). And both rely on some extra public data,
called the zero-testing or extraction parameter, which allows to publicly decide

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 3-12, 2015.
DOI: 10.1007/978-3-662-46800-5_1

4 J.H. Cheon et al.

whether the plaintext data hidden in a given encoding is zero, as long as the
encoding is not the output of a too deep homomorphic evaluation circuit.

Graded encoding schemes serve as a basis to define presumably hard prob-
lems. These problems are then used as security foundations of cryptographic
constructions. A major discrepancy between GGH and CLT is that some natural
problems seem easy when instantiated with the GGH graded encoding scheme,
and hard for CLT. Two such problems are subgroup membership (SubM) and
decision linear (DLIN). Roughly speaking, SubM asks to distinguish between
encodings of elements of a group and encodings of elements of a subgroup
thereof. DLIN consists in determining whether a matrix of elements is singu-
lar, given as input encodings of those elements. Another similar discrepancy
seems to exist between the asymmetric variants of GGH and CLT: the Exter-
nal Decision Diffie-Hellman (XDH) problem seems hard for CLT but is easy for
GGH. XDH is exactly DDH for one of the components of the asymmetric graded
encoding scheme. These problems have been extensively used in the context of
cryptographic bilinear maps [Sco02,BBS04, BGN05].

In the first public version of [GGH13a] (dated 29 Oct. 2012),! the GGH
construction was thought to provide secure DLIN instantiation. It was soon
realized that DLIN could be broken in polynomial-time. The attack consists
in multiplying an encoding of some element m by an encoding of 0 and by
the zero-testing parameter: this produces a small element (because the encoded
value is m - 0 = 0), which happens to be a multiple of m. This zeroizing
attack (also called weak discrete logarithm attack) is dramatic for SubM, DLIN
and XDH. Fortunately, it does not seem useful against other problems, such as
Graded Decision Diffie Hellman (GDDH), the adaptation of DDH to the graded
encoding scheme settnig. As no such attack was known for CLT, the presumed
hardness of the CLT instantiations of SubM, DLIN and XDH was exploited as a
security grounding for several cryptographic constructions [ABP14, Att14, BP13,
BLMR13,GGHZ14a, GGHZ14b, GLW14, GLSW14,LMR14, Zhal4, Zim14].

Main Result. We describe a zeroizing attack on the CLT graded encoding
scheme. It runs in polynomial-time, and allows to publicly compute all the
parameters of the CLT scheme that were supposed to be kept secret.

Impact of the Attack. The CLT candidate construction should be considered
broken, unless the low-level encodings of 0 are not made public. At the moment,
there does not remain any candidate multilinear map approximation for which
any of SubM, DLIN and XDH is hard. Several recent cryptographic construc-
tions cannot be realized anymore: this includes all constructions from [Att14,
GGHZ14a,GGHZ14b,Zhal4], the GPAKE construction of [ABP14] for more
than 3 users, one of the two constructions of password hashing of [BP13], the
alternative key-homomorphic PRF construction from [BLMR13], and the use of
the latter in [LMR14].

Our attack heavily relies on the fact that low-level encodings of 0 are made pub-
licly available. It is not applicable if these parameters are kept secret. They are used

! Tt can be accessed from the IACR eprint server.

Cryptanalysis of the Multilinear Map over the Integers 5

in applications to homomorphically re-randomize encodings, in order to “canoni-
calize” their distributions. A simple way to thwart the attack is to not make any
low-level encoding of 0 public. This approach was used in [GGH+13b] and [BR13],
for example. It seems that this approach can be used to secure the construction
from [Zim14] as well.

Related Works. A third candidate construction of a variant of graded encoding
schemes was recently proposed in [GGH14]. In that scheme, no encoding of 0 is
provided, as it would incur serious security issues (see [GGH14, Se. 4]).

Our attack was extended in [BWZ14, GHMS14] to settings in which no low-
level encoding of 0 is available. The extensions rely on low-level encodings of
elements corresponding to orthogonal vectors, and impact [GLW14, GLSW14].

After our attack was published, the draft [GGHZ14a] was updated, to propose
a candidate immunization against our attack (see [GGHZ14a, Se. 6]).2 Another
candidate immunization was proposed in [BWZ14]. Both immunizations have
been showed insecure in [CLT14a].

Open Problems. A natural line of research is to extend the range of applica-
tions of graded encoding schemes for which the encodings of zero are not needed.

Publishing encodings of zero as well as a zero-test parameter can lead to
damaging consequences (total break of CLT, weakness of SubM, DLIN and XDH
for GGH). An impossibility result would be fascinating.

Organization. In Section 2, we recall the CLT scheme and the zeroizing attack
against GGH. In Section 3, we present our attack on CLT.

2 Preliminaries

Notation. We use a < A to denote the operation of uniformly choosing an
element a from a finite set A. We define [n] = {1,2,...,n}. We let Z, denote the
ringZ/(qZ). For pairwise coprime integersps, pa, . .., pn, we define CRT(,, n, . 5y
(ri,ro,...,7n) (abbreviated as CRT(,,)(r;)) as the unique integer in
(=211 pi, 2 TT;—; i) which is congruent to r; mod p; for all i € [n]. We
use the notation [t], for integers ¢t and p to denote the reduction of ¢ modulo p
into the interval (—p/2,p/2].

We use lower-case bold letters to denote vectors whereas upper-case bold
letters are used to denote matrices. For matrix S, we denote by ST the transpose
of S. We define ||S||loc = max; Y, [si], where s;; is the (4,j) component
of S. Finally we denote by diag(as,...,a,) the diagonal matrix with diagonal
coefficients equal to aq,...,a,.

2.1 A Candidate Multilinear Map over the Integers

First, we briefly recall the Coron et al. construction. We refer to the original
paper [CLT13] for a complete description.

2 The former version that was impacted by our attack can still be accessed from the
TACR eprint server.

6 J.H. Cheon et al.

The scheme relies on the following parameters.

A: the security parameter

k: the multilinearity parameter

p: the bit length of the randomness used for encodings

a: the bit length of the message slots

7: the bit length of the secret primes p;

n: the number of distinct secret primes

7: the number of level-1 encodings of zero in public parameters
£: the number of level-0 encodings in public parameters

v: the bit length of the image of the multilinear map

(: the bit length of the entries of the zero-test matrix H

Coron et al. suggested to set the parameters so that the following conditions
are met:

e p = 2(A): to avoid brute force attack (see also [LS14] for a constant factor
improvement).

e a =)\ :so that the ring of messages Zg4, x ... X Zg4, does not contain a small

subring Zg,.?

n = §2(n - A): to thwart lattice reduction attacks.

£ >n-a+ 2\ to be able to apply the leftover hash lemma from [CLT13,

Le. 1].

T > n-(p+logy(2n))+2A: to apply leftover hash lemma from [CLT13, Se. 4].

e 3= (2()\): to avoid the so-called ged attack.

N> pet+a+26+ A+8, where p, is the maximum bit size of the random 7;’s

a level-x encoding. When computing the product of x level-1 encodings and

an additional level-0 encoding, one obtains p,, = k- (2a+2p+ A+ 2log, n+

2) + p+logy £+ 1.

o v=1n—03—p;—X—3: to ensure zero-test correctness.

Instance generation: (params,p.;) < InstGen(1*,1%). Set the scheme param-
eters as explained above. For i € [n], generate n-bit primes p;, a-bit primes g;,
and compute z¢ = Hie[n] pi. Sample z < Zg,. Let IT = (m;;) € Z™*™ with m;; <
(n2°,(n+1)2°)NZif i = j, otherwise m;; « (—27,2°) N Z. For i € [n], generate
r; € Z" by choosing randomly and independently in the half-open parallelepiped
spanned by the columns of the matrix /I and denote by r;; the j-th component
of ;. Generate H = (h;;) € Z"", A = (a;j) € Z"™** such that H is invertible

3 In fact, it seems that making the primes g; public, equal, and 2(k) may not lead to
any specific attack [CLT14b].

Cryptanalysis of the Multilinear Map over the Integers 7

and |HT || <27, [(H Y7o < 27 and for i € [n], j € [{], ai; < [0, gi). Then
define:

y = CRT(,,) (%) , where r; «— (=2°,2°)NZ for i € [n],

T = CRT@n (%) for j € [7‘]7
x5 = CRT(,,) @i;), wherex}; = ri;gi+ ai; and ri; < (—2°,2°)NZ for i € [n],j € [¢],

_ (R g h . ., i
(pZt)j - Z [h”] (Z 9; }Pi H Di fOI‘ J € [n]
i=1 il i
£
Output params = (n,n, a,p, 8, 7,4, v,y,{z;},{z}}, {II;},s) and p.,. Here s is a seed
for a strong randomness extractor, which is used for an “Extraction” procedure. We
do not recall the latter as it is not needed to describe our attack.

Re-randomizing level-1 encodings: ¢’ « reRand(params,c). For j € [1],i € [n],
sample b; — {0,1}, b; « [0,2*) N Z, with = p+ o+ A. Return ¢’ = [e+ 35, b5 -
Tj+ Zie[n] b; - I1;]5, - Note that this is the only procedure in the CLT multilinear map

that uses the z;’s.*

Adding and multiplying encodings: Add(ci, c2)=[c1+c2]s, and Mul(c1, c2)=][c1 -

Cg}zo.

Zero-testing: isZero(params, p.;,u.) =" 0/1. Given a level-x encoding ¢, return 1 if
[Pzt - claolloo < xo - 277, and return 0 otherwise.

Coron et al. also described a variant where only one such (p.¢); is given out, rather
than n of them (see [CLT13, Se. 6]). Our attack requires only one (pz¢);. In [GLW14,
App. B.3], Gentry et al. described a variant of the above construction that aims at
generalizing asymmetric cryptographic bilinear maps. Our attack can be adapted to
that variant.

2.2 Zeroizing Attack on GGH

As a warm-up before describing the zeroizing attack on CLT, we recall the zeroizing
attack on GGH.

Garg et al. constructed the first approximation to multilinear maps, by using ideal
lattices [GGH13a]. They used the polynomial ring R = Z[z]/(z" + 1) and a (prime)
principal ideal Z = (g) C R, where g is a secret short element. They also chose an
integer parameter ¢ and another random secret z € R; = R/(qR). Then one can
encode an element of R/Z, via division by z in R,. More precisely, a level-i encoding
of the coset e 4+ T is an element of the form [¢/z'],, where ¢ € e + Z is short. By
publishing a zero-testing parameter, any user can decide whether two elements encode
the same coset or not.

4 This procedure can be adapted to higher levels 1 < k < & by publishing appropriate
quantities in params.

8 J.H. Cheon et al.

The zero-testing parameter is p,¢ = [h - 27/g|q, where h is appropriately small.
For a given level-x encoding u = [e/z"]q, the quantity [u - p.t]q = [h - ¢/g]q is small
if and only if ¢ € Z, i.e., u is an encoding of zero.

The latter creates a weakness in the scheme, which enables to solve the Sub-
group Membership (SubM) and the decision linear (DLIN) problems easily, by so-called
“zeroizing” attack. It uses the property that an encoding of zero has small value when
it is multiplied by the zero-testing parameter. In that case, the reduction modulo ¢ is
vacuous, and one can have equations over R (instead of R,) and compute some fixed
multiples of secrets. The attack procedure can be summarized as follows (and refer the
reader to [GGH13a] for a more detailed description). It relies on the following public
parameters:

e y=|a/z]q, with @ € 1+ 7 and a small, a level-1 encoding of 1,
e x; = [b;jg/z],, with b; small, a level-1 encoding of 0,
e p.. = [hz"/g],, with h € R appropriately small, the zero-testing parameter.

Step 1: Compute level-x encodings of zero and get the equations in R by multi-
plying by the zero-testing parameter.
Let u = d/z" be a level-t encoding of some message d mod Z. Then compute

d bj-g h-z" a7t

mftfl] .
=zt z g Zﬁ—t—l

F=u-x; px-y q=

q
=d-bj-h-a" """,
N— ——
<q

Note that the last term in the above equation consists of only small elements,
so that the equality holds without modulus reduction by ¢. Therefore we can
obtain various multiples of h (in R) for various u and ;.
Step 2: From multiples of h, compute a basis of (k). Using a similar procedure,
compute a basis of (h - g), and hence a basis for Z (by dividing (h - g) by (h)).

SubM is as follows: Given a level-1 encoding u = [d/z],, assess whether d € (g1),
where g = g1 - g2 (note that in this context, Z is not a prime ideal). Using the above
method, we can get f = d- A for some A (which is unrelated to g). Taking the ged of
(f) and Z, we easily solve the subgroup membership problem.

DLIN is as follows: Given level-t encodings C = (cij);, je(n] of messages M =
(mij)i jein for some t < k and N > r/t,” assess whether the rank of M (over the field
R/T) is full or not. Using the above, we can compute M - A for some scalar A € R/Z
which is unlikely to be 0. In that case, the matrices M - A and M have equal rank,
and the problem is easy to solve.

3 A Zeroizing Attack on CLT

The first step of the attack is similar to that of the zeroizing attack of GGH. We com-
pute many level-x encodings of zero and multiply them by the zero-testing parameter.
Then we get matrix equations over Q (not reduced modulo x¢). By adapting the latter

5 If N is smaller than that, the problem is not interesting as it can always be solved
efficiently using the zero-test parameter.

Cryptanalysis of the Multilinear Map over the Integers 9

to CLT, one would obtain samples from the ideal (hi,...,hyn) C Z. Most of the time,
it is the whole Z, and the samples do not contain any useful information. Instead, we
form matrix equations by using several x;’s rather than a single one.

These equations share common terms. The second step of the attack is to remove
some of these common terms by computing the ratio (over the rationals) between two
such equations, and to extract the ratios of the CRT components of the underlying
plaintexts by computing the eigenvalues.

The third step consists in recovering the p;’s from these CRT components. Once the
pi’s are obtained, recovering the other secret quantities is relatively straightforward.

Now we give full details of each step.

3.1 Constructing Matrix Equations over 7Z

Let t < k — 1. Let ¢ be a level-t encoding of (mgc)7 . ,m£f>), ie., ¢ = ¢;/2" mod p;

and ¢; = m§°> for all ¢ € [n]. Then we can compute the following quantities using the
public parameters (for j € [¢],k € [7]):

Wik = [cac;a:k ~y'€_t_1 . (pzt)l]wo = Z [hil ~c-x;~xkyﬁ_t_lzngi_ L,i : p}
Li=1 R PO

= Z hivciwiyra(rigs + 1)1 xo]
o

Li=1

[n
! !
= E xijhicirik >
Li=1 z

0

where hf := hi1(rigi + 1) ao /p; for i € [n)].

Now, as ¢ is a level-t encoding, then z/ - (¢ zy - y is a valid level-x Diffie-
Hellman product (i.e., a product of one level-0 encoding and k level-1 encodings).
Further, it is an encoding of 0, as z is an encoding of 0. By design, we have that |w;|
is much smaller than zo (this may be checked by a tedious computation, but this is
exactly how the correctness requirement for the zero-test parameter is derived). As a
result, the equation wji = Zie[n] xj;hje;ry, holds over the integers.

This equation can be rewritten as follows:

nftfl)

Wik = (m'lj, . ,x;j) -diag(c1,...,¢n) - diag(h’l, .. .,h;) (Tky - ,rnk)T

By letting the index pair (j, k) vary in [n] x [n], we obtain a matrix equation involving
the following matrix W. = (wjx) € Z™*"™.

i o xhy c1 0 hi 0 11 - Tin
W, =
m/ln x;mn 0 Cn 0 h”n Tn1 *°° Tnn (1)
= X' diag(ci,. .., c,) diag(hl, ..., hL) R.

To build these equations, we need sufficiently many z’s and zx’s. Namely, we need
¢ >mn and 7 > n. The design conditions on ¢ and 7 ensure that this is the case.

Note that the only component in the right hand side of Equation (1) that depends
on c is diag(ci, . .., c,): the matrices X', R and diag(h}, ..., h,) are independent of c.

10 J.H. Cheon et al.

3.2 Breaking into the CRT Decomposition

We now take t = 0, and instantiate Equation (1) twice, with ¢ = 2} and ¢ = x5. We
obtain, for j € {1,2}:

W, =X" diag(m'lj, e ,m;j) -diag(h1,...,hn) - R.

We can then compute (over Q):

! /
W, -W;'= X' diag (x“ N @> X't

/
L2 Th2

In the latter, we need that W, is invertible. Below, we will also need that W is
invertible. We argue here that we may assume this is the case. We prove it for W';.
Note first that the z};’s and the h}’s are all non-zero, with overwhelming probability.
Note that by design, the matrix (ri;);cn],je[r] has rank n (see [CLT13, Se. 4]). The
same holds for the matrix (2};)ie[n),jeg (see [CLT13, Le. 1]). As we can compute the
rank of a W. € Z'** obtained by using an X' € Z**™ and an R € Z™** obtained
by respectively using a t-subset of the z’s and a t-subset of the z;’s, without loss
of generality we may assume that our X', R € Z™*" are non-singular. The cost of
finding such a pair (X', R) is bounded as O((7 + £) - (n*logzo)) = O(k“T3\2T6),
with w < 2.38 (assuming all parameters are set smallest possible so that the bounds of
Subsection 2.1 hold). Here we used the fact that the rank of a matrix A € Z™*™ may
be computed in time O(n® log || Al|c) (see [Sto09]). This dominates the overall cost of
the attack.

As X' is non-singular, we obtain that the zj,/xj,’s are the eigenvalues (over Q)
of W - W;l. These may be computed in polynomial-time from W - W;l (e.g., by
factoring the characteristic polynomial). We hence obtain the xj; /z{y’s, for all i € [n],
possibly in a permuted order. We write the fraction x, /iy as x}) /5, with co-prime
z31 and zj5. At this stage, we have the ({1, 7}5)’s at hand, for all i € [n]. For each of
these pairs, we compute:

ged(ay - b — @iy - @, wo).

The prime p; is a common factor of both z}; - 5 — 25 - 7 and xo. As all the other
factors of xo are huge, there is a negligible probability that the gcd is not exactly p;:
another p; divides z}) - 5 — zi% - 1 if and only if z}; - 2 = x}s - ;.

3.3 Disclosing all the Secret Quantities

At this stage, we know all the p;’s.

Let j € [7]. We have z;/y = 7i;¢:/(r:9: + 1) mod p;. As the numerator and denom-
inator are coprime and very small compared to p;, they can be recovered by rational
reconstruction. We hence obtain r;;¢g; for all j. The ged of the (r;;9:)’s reveals g;. As
a result, we can also recover all the r;;’s and r;’s.

As 1 = r;19:/2 mod p; and as the numerator is known, we can recover z mod p;
for all 4, and hence z mod zo. The h;;’s can then be recovered as well. So can the rgj’s
and a;;’s.

Acknowledgments. The authors thank Michel Abdalla, Jean-Sébastien Coron, Shai
Halevi, Adeline Langlois, Tancrede Lepoint, Benoit Libert, Alon Rosen, Gilles Villard
and Joe Zimmerman for helpful discussions. The first four author were supported by the

Cryptanalysis of the Multilinear Map over the Integers 11

National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIP) (No. 2014R1A2A 1A11050917). The last author was supported by the ERC
Starting Grant ERC-2013-StG-335086-LATTAC.

References

[ABP14]

[Att14]

[BBSO04]

[BGNOS5]

[BLMR13]

[BP13]

[BR13)]

[BS02]

[BWZ14]

[CLT13]

[CLT14a]

[CLT14b)
[DGHV10]

[Gen09]

[GGH13a]

Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash
proof systems: New constructions and applications. IACR Cryptology
ePrint Archive 2014, 483 (2014)

Attrapadung, N.: Fully secure and succinct attribute based encryption
for circuits from multi-linear maps. TACR Cryptology ePrint Archive
2014, 772 (2014)

Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41-55. Springer, Heidel-
berg (2004)

Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on cipher-
texts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325-341.
Springer, Heidelberg (2005)

Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410-428. Springer, Heidel-
berg (2013)

Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated
key exchange: New models and constructions. IACR Cryptology ePrint
Archive 2013, 833 (2013)

Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
416-434. Springer, Heidelberg (2013)

Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemporary Mathematics 324, 71-90 (2002)

Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps
against zeroizing attacks. IACR Cryptology ePrint Archive 2014, 930
(2014)

Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476-493. Springer, Heidelberg (2013)

Coron, J.-S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate
fixes of multilinear maps over the integers. IACR Cryptology ePrint
Archive 2014, 975 (2014)

Coron, J.-S., Lepoint, T., Tibouchi, M.: Personal communication (2014)
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 24-43. Springer, Heidelberg (2010)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Pro-
ceedings of STOC, pp. 169-178. ACM (2009)

Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1-17. Springer, Heidelberg (2013)

12 J.H. Cheon et al.

[GGH-+13b)

[GGH14]

[GGHZ14a]

[GGHZ14b)

[GHMS14]

[GLSW14]

[GLW14]

[LMR14]

[LS14]

[Sco02]

[Sto09]
[Zhal4]

[Zim14]

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: Proceedings of FOCS, pp. 40—49. IEEE Computer Society
Press (2013)

Gentry, C., Gorbunov, S., Halevi, S.: Graded multilinear maps from lat-
tices. IACR Cryptology ePrint Archive 2014, 645 (2014)

Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based
encryption from multilinear maps. Cryptology ePrint Archive, Report
2014/622 (2014)

Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional
encryption without obfuscation. Cryptology ePrint Archive, Report
2014/666 (2014)

Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes:
Cryptanalyzing multilinear maps without encodings of zero. IACR, Cryp-
tology ePrint Archive 2014, 929 (2014)

Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. ITACR
Cryptology ePrint Archive 2014, 309 (2014)

Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance
independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 426—443. Springer, Heidelberg (2014)
Lewi, K., Montgomery, H., Raghunathan, A.: Improved constructions of
PRF's secure against related-key attacks. In: Boureanu, 1., Owesarski, P.,
Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 44-61. Springer,
Heidelberg (2014)

Lee, H.T., Seo, J.H.: Security analysis of multilinear maps over the inte-
gers. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 224-240. Springer, Heidelberg (2014)

Scott, M.: Authenticated ID-based key exchange and remote log-in with
simple token and PIN number. IACR Cryptology ePrint Archive 2002,
164 (2002)

Storjohann, A.: Integer matrix rank certification. In: Proceedings of
ISSAC, pp. 333-340. ACM (2009)

Zhandry, M.: Adaptively secure broadcast encryption with small system
parameters. IACR Cryptology ePrint Archive 2014, 757 (2014)
Zimmerman, J.: How to obfuscate programs directly. IACR Cryptology
ePrint Archive 2014, 776 (2014)

Honorable Mentions

Robust Authenticated-Encryption
AEZ and the Problem That It Solves

Viet Tung Hoang 2™ Ted Krovetz?®, and Phillip Rogaway*

! Department of Computer Science, University of Maryland, College Park, USA
tvhoang@umd. edu
2 Department of Computer Science, Georgetown University, Washington DC, USA
3 Department of Computer Science, California State University, Sacramento, USA
4 Department of Computer Science, University of California, Davis, USA

Abstract. With a scheme for robust authenticated-encryption a user
can select an arbitrary value A> 0 and then encrypt a plaintext of any
length into a ciphertext that’s A characters longer. The scheme must
provide all the privacy and authenticity possible for the requested A\. We
formalize and investigate this idea, and construct a well-optimized solu-
tion, AEZ, from the AES round function. Our scheme encrypts strings
at almost the same rate as OCB-AES or CTR-AES (on Haswell, AEZ
has a peak speed of about 0.7 cpb). To accomplish this we employ an
approach we call prove-then-prune: prove security and then instantiate
with a scaled-down primitive (e.g., reducing rounds for blockcipher calls).

Keywords: AEZ - Authenticated encryption - CAESAR competition -
Misuse resistance + Modes of operation - Nonce reuse : Prove-then-
prune - Robust AE

1 Introduction

We expose the low cost and high benefit of building authenticated-encryption
(AE) schemes that achieve the unprecedentedly strong goal we call robust AE
(henceforth RAE). We explain why RAE is desirable, define its syntax and secu-
rity, and explore its guarantees. Then we construct an RAE scheme, AEZ, from
AES4 and AES10 (four- and ten-round AES). AEZ’s efficiency—nearly that of
AES-based OCB [32] or CTR mode—flies in the face of a community’s collec-
tive work [4,11-13,22-25,35,38-40,52-54,60] in which wide-block enciphering
schemes—a special case of RAE—were always far more expensive than conven-
tional blockciphers. Achieving this efficiency has entailed using a design para-
digm, the prove-then-prune approach, with implications beyond AE.

CIPHERTEXT EXPANSION. One can motivate RAE from a syntactic point of
view. Recall that in a nonce-based AE scheme, a plaintext M is mapped to a
ciphertext C' = 8%’A(M) under the control of a key K, nonce N, and associated
data (AD) A. Typically the ciphertext expansion (or stretch) A = |C|—|M| is a
constant or user-selectable parameter. For conventional AE, the stretch mustn’t

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 15-44, 2015.
DOI: 10.1007/978-3-662-46800-5_-2

16 V.T. Hoang et al.

be too small, as customary definitions would break: a trivial adversary can get
large advantage. This is because AE definitions “give up” when the first forgery
occurs. The issue isn’t only definitional: no prior AE scheme provides a desirable
security guarantee when the ciphertext expansion is small.

Still, we know that meaningful security is possible even for zero-stretch: a
strong pseudorandom permutation buys significant security, even from an AE
point of view [5]. What is more, it would seem to be useful to allow small stretch,
as, for example, short tags can save significant energy in resource-constrained
environments (as discussed, e.g., by Struik [58]).

RAE takes a liberal approach towards ciphertext expansion, accommodating
whatever stretch a user requests. This leads to schemes that deliver more than
conventional AE even when the stretch is not small. Indeed we could have moti-
vated RAE without considering small-A, describing a desire to achieve nonce-
reuse misuse-resistance [51], to automatically exploit novelty or redundancy in
plaintexts [5], or to accommodate the release of unverified plaintexts [1,21]. But
our ideas are most easily understood by asking what it means, and what it takes,
to do well for any stretch.

DEFINING RAE. So consider an AE scheme that expands a plaintext M €
{0, 1}* by a user-selectable number of bits! 7>0. We ask: what’s the best privacy
and authenticity guarantee possible for some arbitrary, specified 77 Robust AE
formalizes an answer.

Recall the definition of a pseudorandom-injection (PRI) [51]: for each nonce N
and associated data A, for a fixed 7 >0, the scheme’s encryption algorithm should
resemble a uniformly chosen injective function mx, 4 - from binary strings to 7-bit
longer ones. Decryption of an invalid ciphertext (one lacking a preimage under)
should return an indication of invalidity.

PRIs were introduced as an alternative characterization of nonce-reuse misuse-
resistant AE (henceforth MRAE). But PRIs only approximate MRAE schemes
with large stretch. We recast the PRI notion as prescriptive: the user selects 7 > 0
and then the scheme must look like a PRI for the chosen value. This is our basic
definition for RAE.

RAE can be thought of as a bridge connecting blockciphers and AE. When
7=0 an RAE scheme is a kind of blockcipher—a tweakable blockcipher (TBC)
[34] that operates on messages and tweaks of arbitrary length and is secure
as strong pseudorandom permutation (PRP). The nonce and AD comprise the
tweak. When 7 2 128 an RAE scheme amounts to an MRAE scheme. An RAE
scheme encompasses both objects, and everything in between.

In defining RAE we are actually a bit more generous than what was sketched
above, allowing an RAFE’s decryption algorithm to return information about an
invalid ciphertext beyond a single-valued indication of invalidity. The informa-
tion just needs to be harmless. To formalize this the reference experiment uses

L 'We’ll later permit arbitrary alphabets. To avoid confusion, we use A to measure
ciphertext expansion in characters (bits, bytes, etc.) and 7 to measure it in bits.

Robust Authenticated-Encryption 17

a simulator S to provide responses to invalid decryption queries. It must do this
without benefit of the family of random injections.

ENCIPHERING-BASED AE. We can achieve RAE with enciphering-based AE.
The idea, rooted in folklore, was formalized by Bellare and Rogaway [5] and, in
a different form, by Shrimpton and Terashima [56]. In its modern incarnation,
enciphering-based AE works like this:

Take the message you want to encrypt, augment it with 7 bits of redundancy,
and then encipher the resulting string by applying an arbitrary-input-length
tweakable blockcipher. Tweak this using the nonce, AD, and an encoding of .
On decryption, check for the presence of the anticipated redundancy and reject
a ciphertext if it is not there.

We will prove that this method achieves RAE. In fact, we’ll prove that this is
so even if the decryption algorithm releases candidate plaintexts with incorrect
redundancy.

AEZ. We construct a highly optimized RAE scheme, AEZ. We use the same
name to refer to the arbitrary-input-length tweakable blockcipher from which
it’s built.? With the increasing ubiquity of hardware AES support, we choose to
base AEZ on the AES round function.

How AEZ works depends on the length of the input; see Fig. 1. To encipher a
plaintext of fewer than 32 bytes we use AEZ-tiny, a balanced-Feistel scheme with
a round function based on AES4, a four-round version of AES. The construction
builds on FFX [6,17]. The more interesting case, AEZ-core, is used to encipher
strings of 32 bytes or more. It builds on EME [22,24] and OTR [36]. Look ahead
to the top-left panel of Fig. 7. There are two enciphering layers, with consecutive
pairs of blocks processed together using a two-round Feistel network. The round
function for this is again based on AES4. The mask injected as the middle layer
is determined, for each pair of consecutive blocks, using another AES4 call.

PERFORMANCE. AEZ-core is remarkably fast; as the description above implies,
we need about five AES4 calls to encipher each consecutive pair of blocks, so ten
AES rounds per block. Thus our performance approaches that of CTR-AES. An
implementation of AEZ on Haswell using AES-NI has a peak speed of 0.72 cpb—
about the same as OCB [32]. Look ahead to Fig. 8. Additionally, invalid strings
can be rejected, and AD processed, in about 0.4 AES-equivalents per block, or
0.29 cpb peak (again on Haswell). Only the forward direction of AES is used,
saving chip area in hardware realizations. The context size, about 128 bytes, is
small, and key setup, about 1.2 AES-equivalents for a 128-bit key, is fast.

For a two-pass mode achieving MRAE, the cluster of performance charac-
teristics described is unexpected. Part of the explanation as to how this is pos-
sible lies in the use of a design approach that benefits from both classical and
provable-security design. Let us explain.

2 Since an RAE scheme trivially determines an arbitrary-input-length tweakable block-
cipher (set 7 = 0) it makes sense to use a single name for both objects.

18 V.T. Hoang et al.

Tweak /\ AEZ

I | AEZ-tiny | | AEZ-core

Fig. 1. High-level structure of AEZ. After appending to the message a block of 7
zero bits we encipher it using a tweak 7' comprising the nonce N, associated data A,
and stretch 7. Enciphering depends on the length of the plaintext: usually we use
AEZ-core, but strings shorter than 32 bytes are enciphered by AEZ-tiny. Both depend
on the underlying key K, which is not shown in the diagram above.

PROVE-THEN-PRUNE DESIGN. We designed AEZ using an approach we call
prove-then-prune. It works like this:

To achieve some complex cryptographic goal, design a scheme in the provable-
security tradition, choosing an underlying primitive and demonstrably achiev-
ing the goal when it’s instantiated by an object achieving some standard
assumption. Then, to improve speed, selectively instantiate some of the appli-
cations of the primitive using a scaled-down (e.g., reduced-round) construction.
Use heuristic or cryptanalytic reasons to support the expectation that, despite
scaling down, the scheme remains secure.

Specifically, AEZ is designed in terms of a tweakable blockcipher (TBC). If this
TBC had been instantiated in the “usual” way, say using AES and the XE
construction [34,49], we would have a provably-sound design on message space
{0,1}2128. The cost would be about 2.5 times the cost of AES. But to speed
things up, we instantiate most TBC calls with an AES4-based construction.
Heuristics reasons to suggest that security nonetheless remains. Our design was
specifically chosen so as to make a scaled-down instantiation plausible.

The thesis underlying prove-then-prune approach is that it can be instru-
mental for devising highly efficient schemes for complex aims. We believe that
if the instantiation is done judiciously, then the scaled-down scheme retains
some assurance benefit. Still, it is important to emphasize the limitations of
prove-then-prune. Naming an approach is not license to abuse it. The method is
dangerous in the same sort of way that designing a confusion/diffusion primitive
is: one has no guarantees for the object that will actually be used. Additionally,
the set of people with provable-security competence is nearly disjoint from those
with cryptanalytic competence. The authors think it essential that cryptanalysts
study AEZ. This is all the more true because pruning was aggressive.

In some way, prove-then-prune is implicit in prior work: schemes like ALRED
[15] typify a trend in which reduced-round AES in used in contexts where full
AES would demonstrably do the job.

Robust Authenticated-Encryption 19

RAE BENEFITS. What do we hope to gain with RAE? Our definition and
scheme are meant to achieve all of the following: (1) If (M, A) tuples are known
a priori not to repeat, no nonce is needed to ensure semantic security. (2) If
there’s redundancy in plaintexts whose presence is verified on decryption, this
augments authenticity. (3) Any authenticator-length can be selected, achiev-
ing best-possible authenticity for this amount of stretch. (4) Because of the
last two properties, one can minimize length-expansion in many bandwidth-
constrained applications. (5) If what’s supposed to be a nonce should acciden-
tally get repeated, the privacy loss is limited to revealing repetitions in (N, A, M)
tuples, while authenticity is not damaged at all. (6) If a decrypting party leaks
some or all of a putative plaintext that was supposed to be squelched because
of an authenticity-check failure, this won’t compromise privacy or authenticity.

The authors believe that the properties enumerated would sometimes be
worth a considerable computational price. Yet the overhead we pay is low: AEZ
is almost as fast as OCB.

DiscussioN. AEZ’s name is meant to simultaneously suggest AE, AES, and EZ
(easy), the last in the sense of ease of correct use. But the simplicity is for the
user; we would not claim that the AEZ algorithm is simple.

Since McOE and COPA [2,20], some recent AE schemes have been adver-
tised as nonce-reuse misuse-resistant despite being online.? But online schemes
are never misuse-resistant in the sense originally defined [51].# They never sup-
port automatic exploitation of novelty or verified redundancy [5] and are always
vulnerable to a simple message-recovery attack [47]. We disagree with the pre-
sumption that two-pass AE schemes are routinely problematic; in fact, our work
suggests that, on capable platforms, there isn’t even a performance penalty.
Finally, short messages routinely dominate networking applications, and we
know of no application setting where it’s important to limit latency to just
a few bytes, the implicit expectation for proposed online schemes.

This paper upends some well-entrenched assumptions. Before, AE-quality
was always measured with respect to an aspirational goal; now we’re suggesting
to employ an achievable one. Before, substantial ciphertext expansion was seen
as necessary for any good AE; now we’re allowing an arbitrary, user-supplied
input. Before, AE schemes and blockciphers were considered fundamentally dif-
ferent species of primitives; now we’re saying that, once the definitions are
strengthened, they’re pretty much the same thing. Before, one could either give
a provable-security design or one that follows a more heuristic tradition; now
we’re doing the one and yet still finding need for the other.

AEZ is one of 57 CAESAR submissions [7]. It’s distinguished by being the
notionally strongest submission. We expect it to help clarify the potential cost
and benefit of two-pass AE.

3 By online we mean that the encryption algorithm can be realized in O(1) memory
and a single pass over M.

4 If the first bit of ciphertext doesn’t depend on the last bit of plaintext an adversary
easily wins the MRAE game.

20 V.T. Hoang et al.

2 Prior AE Definitions

Fix an alphabet X. Typically X is {0,1} or {0,1}®, but other values, like X =
{0,1,...,9}, are fine. For z € X* let |x| denote its length. We write ¢ for the
empty string and x « X for uniformly sampling from a distribution X. If X is
a finite set, it has the uniform distribution.

SYNTAX. We formalize a nonce-based AE scheme as a triple IT = (X, €, D). The
key space X is a set of strings with an associated distribution. The encryption
algorithm € is deterministic and maps a four-tuple (K, N, A, M) € (X*)* to a
value C' = SZ’A(M) that is either a string in 2* or the distinguished symbol L.
Later we will allow AD to be a vector of strings, A € (X*)*. The distinction
is insignificant insofar as we can always encode a vector of strings as a string.
We require the existence of sets N, A and M (the nonce space, AD space, and
message space) such that Sg’A(M) # Liff (K,N,A, M) e X xNxAxM. The
decryption algorithm D is deterministic and takes a four-tuple (K, N, A,C) to
a value D%’A(C) € X* U {L}. The length of a string-valued C' = EX’A(M) is
not allowed to depend on anything beyond |N|, |A| and |M]. In fact, usually
A = |C|— |M] is a constant, in which case we call the scheme A-expanding and
refer to A as the ciphertext expansion or stretch. We require that if C' = 8%’A(M)
is a string then D%’A(C) = M. Algorithm D rejects ciphertext C if @%’A(C) =1
and accepts it otherwise.

AE AND MRAE SECURITY. Both conventional-AE and MRAE security can be
defined using a compact, all-in-one formulation [51]. Let IT = (X, &, D) be an
AE-scheme. Consider an adversary A with access to an encryption oracle Enc and
a decryption oracle Dec. We define the MRAE security of A as Adv°(A) =
Pr[ARealn = 1] — Pr[Aldealn — 1] the difference in the probability that A out-
puts 1 when run in the Real and Ideal games of Fig. 2. Both begin by selecting
K « XK. Game Real answers encryption queries (N, A, M) with EIA([’A(M) and
decryption queries (N, A, C') with D%’A(C). Game Ideal answers Dec(N, A, C)
queries with | and Enc(N, A, M) queries with |C| uniformly chosen characters,
where C' «— EQ’A(M). For games Real and Ideal, adversaries may not repeat
an Enc or Dec query, ask an Enc query (N, A, M) €N xAxM, ask a Dec query
(N,A,C) € NxAxX* or ask a Dec query (N, A,C) after an Enc query of
(N, A, M) returned C.

The above definition captures MRAE security because repeated nonces were
allowed and were properly serviced. For the conventional AE notion, Advi;(A),
modify Real and Ideal by having an Enc(N, A, M) query following an earlier
Enc(N, A’; M") query return L. This has the same effect as prohibiting repeated
N-values to the Enc oracle.

PRI SECURITY. We define security in the sense of a pseudorandom-injection
(PRI) [51]. Fix a A-expanding AE scheme IT = (X, €, D); for now,) is a constant
associated to a (well-behaved) AE scheme. Let Adv?' (A) = Pr[ARealr = 1] —
Pr[APRIZT = 1] with the oracles again defined in Fig. 2. There Inj()\) denotes

Robust Authenticated-Encryption 21

initialize initialize initialize
K« X K« X for (N,A) e N x A do
TN, A < Inj(A)
oracle Enc(N, A, M) oracle Enc(N, A, M)
C' — Ex(N,A, M) return Ex (N, A, M) oracle Enc(N, A, M)
C « yicl return wy (M
return C oracle Dec(N, A, C) (M)
return Dk (N, A,C) oracle Dec(N, A, C)
oracle Dec(N, A, C) ifIM e M st ava(M) =C
return | then return M
return |
initialize REALy || initialize |RAE; and RAE s |
KX for (N, A,\) € X*x X*xN do mn 4. « Inj(\)
oracle Enc(N, A, \, M) 0 e
return Ex (N, A, A, M) oracle Enc(N, A, A\, M)
oracle Dec(N, A, \, C) return 4,3 (M)
return D (N, A, A, C) oracle Dec(N, A, \,C)
if 3IM € M s.t. mn, 4,2 (M) = C then return M
M — L «— for RAE
(M,) — S(N, A\, C,0) « for RAEp s
return M

Fig. 2. Games for defining security. The top three games are the usual ones for
defining the AE and MRAE notions. The bottom two games are used to define RAE.

the set of all one-to-one functions from X* to L* that increase the length of
their inputs by A characters. The same query restrictions apply as before.
Besides defining PRI security, Rogaway and Shrimpton showed that, for large
ciphertext expansion A, the notion essentially coincides with MRAE security [51].
Below we clarify the role of the ciphertext expansion by giving a sharper extended
version of their result. To state our bound, define the misuse count as follows.
Initially, set = 0. Then, for each encryption query Enc(N, A, M), if there was a
prior query (N, A, M') such that |[M’'| = |M]|, increment r by 1. The final value
of r is the misuse count. Below we show that good PRI security implies good
MRAE security as long as ¢ is small compared to | X|* and 7 is small compared to
| 2| (At mmin)/2 (with all variables defined below). The proof is in Appendix B.1.

Theorem 1. \Advlj}lri (A) — AdVF*(A)| < 2¢/| 2 + (r2 + 1) /| Z|pFmmintL for
any A-expanding AE scheme II and adversary A, where r is the misuse count
of A’s queries, ¢ is the number of queries it asks, and my;, is the length of the
shortest string in the message space.

In short, the PRI definition captures best-possible security of a A-expanding AE
scheme, while the MRAE formulation captures an unreachable ideal. The gap
between the realizable and the ideal is formalized by Theorem 1. It is small
if the ciphertext expansion is large, and it is large if the ciphertext expansion

22 V.T. Hoang et al.

is small. The latter is so because any actual encryption algorithm must map
distinct (N, A, M) and (N, A, M") to distinct ciphertexts, whence real encryption
can’t return uniformly random characters. Similarly, for any infinite message
space, some unqueried ciphertexts must be valid, whence a decryption oracle
that always returns an indication of invalidity is hoping for too much. Building
on the PRI notion, we will now look towards an even more precise way to capture
best-possible AE security.

3 RAE Security

SYNTAX. The principle difference between a PRI and an RAE scheme is that,
for the latter, the ciphertext expansion A is no longer a property of a scheme:
it’s an arbitrary input from the user. All values A € N should be allowed.? Cor-
responding to this change, we’ll write 8%’A’A(M) and D%’A’A(C). The difference
may look small, but its consequences are not.

Fix an alphabet Y. Our formal definition again has an RAE scheme being a
triple IT = (X, €, D), but with the signature of & and D updated. The encryption
algorithm & is deterministic and maps a five-tuple (K, N, A,\, M) € (X*)3 x
N x X* to a string C' = X**(M) of length [M|+ A. For maximal utility when
realized, we are not permitting a return value of L: an RAE scheme must be
able to encrypt any M using any N, A, and A. The decryption algorithm D is
deterministic and takes a five-tuple (K, N, A, \, C) to a value D%’A”\(C) e X*u
{L}. We require that D%’A’A(SQ’A’A(M)) = M for all K,N, A, X\, M. If there’s
no M such that C = EQ’A’)‘(M) then D%’A”\(C) = 1. Later in this section
we will relax this requirement as a way to model the possibility of decryption
algorithms that reveal information beyond an indication of invalidity.

RAE securiTy. Let IT = (X,&,D) be an RAE scheme over alphabet X.
Its security is defined using the games REAL; and RAE; at the bottom of
Fig. 2. (For the moment, ignore RAE g.) The adversary A has two oracles,
an encryption oracle Enc and a decryption oracle Dec. For game REAL, these
are realized by the actual encryption and decryption algorithms, which now
take in the argument A. For game RAE;; we behave according to the family
of random injections 7 4,x chosen at the beginning of the game, responding
to each encryption query (N, A, A\, M) with C' = 7n a,x(M) and responding to
each decryption query (N, A, A, C) with W&}AJ\(C), if that inverse exists, and L
if it does not. We let Adv7°(A) = Pr[AREALn — 1] — Pr[ARAED = 1]. There
are no restrictions on the kinds of queries the adversary may make.

To gain some appreciation for the RAE definition, consider an adversary that
asks to encrypt a message M using a single byte of stretch. Such a scheme would
not be considered secure in the MRAE setting, as forging with probability 1/256
is easy. But under the RAE viewpoint, that isn’t a defect per se, as the user who

5 It might be OK to set some reasonable upperbound A < Amax, but there shouldn’t
be a nonzero lowerbound.

Robust Authenticated-Encryption 23

requests one-byte expansion would ezpect 1/256 of all ciphertexts to have some
preimage. If a user should try to decrypt such a ciphertext C using the same
K,N,Abut A =0, a plaintext will emerge, never an indication of invalidity, but
that plaintext should be unrelated to the originally encrypted one.

DECRYPTION-CALL LEAKAGE. An AE scheme will fail to approximate the
RAE/; abstraction if its decryption algorithm, when presented an invalid cipher-
text, routinely returns anything beyond an indication of invalidity. We now
explain how to relax this expectation so that it’s OK to return additional mate-
rial as long as it is known to be useless.

We said earlier that, for an RAE scheme IT = (X, €, D) and any N, A, A\, C, if
there’s no M such that C' = EQ’A’/\(M) then we expect 'D%’A”\(C’) to return L.
Let us relax this requirement so that @%’A’)‘(C) may instead return a string, as
long as its length is not |C] — A. Any such string is trivially recognized as invalid,
so, in effect, we are having D return both | and an arbitrary piece of side infor-
mation Y. We are not suggesting that the “real” decryption algorithm should
return anything other than | when presented an invalid ciphertext; instead, we
are effectively overloading D by folding into it a “leakage function” that cap-
tures that which a decryption algorithm’s realization may leak about a presented
ciphertext.

Using this generalized syntax, we define a game RAE; g parameterized by
a probabilistic algorithm S, the simulator. Again see Fig. 2. Simulator S is
called upon to produce imitation ciphertexts when there’s no preimage under
TN, A,x- To accomplish this task S is provided nothing beyond the current oracle
query and any saved state 6 it wants to maintain. An RAE scheme is judged
secure if there’s a simulator S—preferably an efficient one—such that (€, D) is
indistinguishable from the pair of oracles defined in RAE7 5. We refine the RAE
advantage by asserting that Advi’s(A) = Pr[AREALT = 1] — PrlARAELs —
1]. The “basic” RAE definition corresponds to the case where simulator S ignores
its input and returns (L,).

The RAE definition effectively captures that, while it may be “nice” for
decryption to reveal nothing but | on presentation of an invalid ciphertext,
there are plenty of other things we could return without damaging privacy or
authenticity. In fact, it really doesn’t matter what is returned just so long as it’s
recognizably invalid and doesn’t depend on the key.

ILLusTRATION. Fig. 3 illustrates two possibilities for how an RAE scheme
might encrypt 2-bit strings with 2-bit ciphertext expansion (A = 2). The key K,
nonce N, and AD A are all fixed. For encryption, the four possible plaintexts
are bijectively paired with four of the 16 possible ciphertexts. For decryption
we show two possibilities. On the left is a conventional decryption algorithm:
the 12 ciphertexts without a preimage decrypt to an indication of invalidity. One
expects the simulator to always return (L,). On the right is a sloppy decryption
algorithm. The 12 ciphertexts with no preimage decrypt to 12 distinct strings,
all recognizably invalid, all of the form abed € {0,1}* with ed # 00. Here the
simulator S might sample without replacement from the named set of size 12.

24 V.T. Hoang et al.

Fig. 3. Illustrating RAE. Two ways an RAE scheme might encrypt and decrypt a
2-bit string with 2-bit stretch.

DiscussioN. The reader may have noticed that there is no distinction in the
RAE security definition between the nonce N and associated data (AD) A.
For this reason, either could be dropped—say the nonce—leaving us a signature
SQ’A(M) and D?}’)‘(C). There’s an especially good argument for doing this when
the AD A is vector-valued: the user is already free to use one of its components
as a nonce. Still, for greater uniformity in treatment across AE notions, and to
encourage users to provide a nonce, we have retained both N and A.

We gave our definition of RAE into two stages only for pedagogical purposes:
this paper offers only one definition for RAE. The simulator S may be trivial or
not; that is the only distinction.

Andreeva et. al [1] recently provided several security definitions also meant
to capture the requirement that a decryption algorithm releases only harmless
information when presented an invalid ciphertext and a repeated nonce. Our own
work is radically different from theirs insofar as we provide a single definition,
RAE, that rolls into it this, among many, considerations.

4 Verified Redundancy Enhances Authenticity

If a plaintext contains redundancy, one naively expects that verifying its presence
upon decryption should enhance the authenticity guarantee provided. For the
case of enciphering-based encryption, which provides no authenticity guarantee
on its own, this has been formally supported [5,51]. But even in this case the
existing results are with respect to conventional notions of AE, and such notions
are too blunt to capture what one expects from verified redundancy. This is
because the notions “give up” as soon as a single ciphertext forgery is made.
Let IT = (X,&,D) be RAE scheme and let v: X* — {0,1} be a function
for indicating the “valid” strings: it determines M, C X* by M, = {M € ¥*:
v(M) = 1}. Let I, = (X, €,D) be the AE scheme built from IT that declares
messages invalid if v says so: DM(C) = M if [M| = |C| - X and v(M) = 1, or

Robust Authenticated-Encryption 25

if [M| # |C| — A, where M = DYX4X(C), while DXY(C) = 0 || M otherwise,
with 0 a canonical point in X. Let d, = maxgen {(|M, N Z¥)/|Z|°} be the
density of M,,.

Suppose, for example, that X = {0,1} and d,, = 1/256: there’s a byte worth
of redundancy in the message space. We'd like to be able to make statements
about the authenticity of IT, such as: the chance that an adversary can forge 10
successive, distinct ciphertexts is negligibly more than 273°. Conventional AE
definitions don’t let one say such a thing; they stop at the bound ¢/|X|* where ¢
is the number of queries and A is the ciphertext expansion (assumed here to be a
constant). One would like to obtain a much sharper bound via d, and A—in our
example, the forgery probability should be about about ¢(d,,/|X|*)!°. This way,
even if, say, A = 0 and d, = 1/2, we are still able to make strong statements
about the security of IT,. Intuitively, for an RAE scheme I, the scheme IT,
should have about (Amin + log(1/d,))log(|X]) bits of authenticity, where Apiy is
the minimum ciphertext expansion of any query—even after multiple successful
forgeries and even in the presence of decryption leakage, future forgeries still
remain just as hard.

To capture the intuition above, in Theorem 2 we show that IT,, itself is RAE-
secure. The proof is in Appendix B.2. Consequently, in game RAE, for any query
(N, A, N\, C) with |C| = £+ X to Dec, the chance that this query is a successful
forgery is about |M, N X¢|/|X|*** < d,/|X|*, despite any decryption leakage
and past successful forgeries.

Theorem 2. Let IT and II, be defined as above. There is an explicitly given
reduction R with the following property. For any simulator S and any adver-
sary A, there is a simulator S’ such that the adversary B = R(A) satisfies
AdvraLe 5(B) = AdvY’ o/(A). Adversary B makes the same queries as A and has
eSbentlally the same running time.

Note that for good RAE security, we want the simulator S to be efficient. This is
important for privacy, but when the concern is authenticity, it’s less of an issue: a
computationally-unbounded simulator may give the adversary some information
that it can’t compute itself, but as long as the adversary can’t forge, whatever
the adversary learns from the simulator is irrelevant for authenticity. Still, in the
proof of Theorem 2, for each query (N, A, A, C), the simulator S’ either runs S
or samples from X* N M, where ¢ = |C| — \. For functions v that arise from
real-world usage, sampling from X N M, is likely to be simple and efficient,
whence S’ will be about as fast as S itself.

5 Robust AE from an Arbitrary-Input-Length TBC

We now show how to make an AE scheme that achieves RAE security. We
begin with some basic definitions. Let M C Y* and T be sets. A blockcipher
E: X xTxM — M is a mapping such that ET() = E(K,T,-) is a length-
preserving permutation on M for any K, T. Thus |]ET(()| = |X| and there’s

a unique D : X x T x {0,1}* — M U {L} such that EZ (M) = C implies

26 V.T. Hoang et al.

]ﬁ};(C’) = M and]ﬁ)};(C) = 1| when there’s no M such that IE};(M) =C. We
call T the tweak space of E. When |T] = 1 we make the tweak implicit, writing
E: X x M — M, now with inverse D. We define Perm(M) as the set of all
length-preserving permutations on M, and Perm(T, M) the set of all mappings
7: T x M — M where 7(T,) € Perm(M) for all T' € T. We usually use encipher
instead of encrypt when speaking of applying a blockcipher, and similarly for
decipher and decrypt.

An arbitrary-input-length blockcipher is a blockcipher with message space
M = X*. To be maximally useful, we will want a rich tweak space as well. These
are versatile objects. A bit less general, a wide-block blockcipher has message
space X2 for some fixed n. Again one prefers a rich tweak space. A conventional
blockcipher has message space {0, 1}" for some fixed n.

The strong, tweakable, PRP advantage of an adversary A attacking a block-

cipher E is defined as Adv%ﬁ)(ﬂ) = Pr[K « X : ABx () D) = 1] —

Pr[7 « Perm (T, M) : ATC)7 () = 1], We'll write AdvEP™P(A) = Pr[K « K :
AEK():Dx() = 1] — Pr[r « Perm(M): A™0:7 () = 1] if there’s no tweak. If
we prohibit the adversary A from querying the second oracle we drop the word

“strong” and write AdvZ™"(A) and Advy " (A) respectively.
ENCODE-THEN-ENCIPHER. Fix X. Let E: K x T x X* — X* be an arbitrary-
input-length tweakable blockcipher with tweak space T = X* x X* x N. Let D
be its inverse. Let Encode : X* x N — X* be an injective function satisfying
|Encode(M, \)| = | M|+ . We write the second argument to Encode as a subscript,
Encodey (M) € ZIMI+A An example encoding function is Encodey (M) = M | 0*.

For any encoding function Encode there’s a corresponding Decode: X*xN —
2*U{L} such that Decodey(X) = M if there’s an M satisfying Encodey (M) =
X, while Decodey (X) = L if there’s no such M. We expect Encode and Decode
to be trivially computable, as in the example.

From E: X x T x X* — X* and Encode we define the encode-then-encipher
construction as the RAE scheme EtE[Encode, E] = (X, &, D) where

- SQ’A”\(M) = E%V’A’A)(Encode,\(M)),

PN AN _ ce I(N,AN) _ ; =
- DRN(C) =M if Dy, (C) = X and M satisfies Encodey (M) = X,
- DN¥ANC) = X it DIV (C) = X and no M satisfies Encodey (M) = X.
We stress that decryption does not simply return 1 when called on an invalid
(N, A, A\, C), as is conventionally done; instead, we define decryption to “leak”
the entire improperly encoded string X. Nonetheless, Theorem 3 shows that

EtE[Encode, E] is RAE-secure when E is secure as a strong, tweakable PRP. Its
proof appears in the full version [28].

Robust Authenticated-Encryption 27

Theorem 3 (EtE is RAE-secure). Let Encode and E: X x T x £* — X* be
defined as above. Then there’s an explicitly given reduction R and an efficient
simulator S with the following property. For any adversary A, the adversary B =

R(A) satisfies AdvEﬁE[EnCO do), g(A) < Advgprp(B). It makes at most g queries

whose total length is at most that of A’s queries plus gAmax, Where ¢ is the
number of A’s queries and Ay is the largest stretch among them. The running
time of B is about that of A, plus the time associated to computations of Encode
and Decode.

6 Wide-Block Enciphering: AEZ-core

Let n > 1 be an integer and let {0,1}22" = {x € {0,1}*: |z| > 2n}. Define the
block length of a string x as [|z|/n]. We show how to build a strong PRP on
{0,1}=2" from a TBC on {0, 1}". We'll use about 2.5 TBC calls per n-bit block.
Later we’ll instantiate the TBC using mostly AES4, employing the prove-then-
prune paradigm to selectively scale-down. This will reduce the amortized cost
to about one AES call per block. Also see the full version [28] for how to tweak
a wide-block blockcipher.

We begin by recalling the definition of a pseudorandom function (PRF)
fi: X xM — {0,1}". For an adversary A attacking f, its PRF advantage
is Adv?rf(fl) = Pr[K « X: A'c() = 1] = Pr[p « Func(M,n): A”0) = 1] where
Func(M, n) is the set of all functions from M to {0,1}"™.

AEZ-CORE. Let T = {a,u,uu,v, v, x,xx,y,yy U({a,aa} xN) be the tweak space.
Suppose we have a PRF f: X x (T x {0,1}") — {0,1}". One can instantiate
this with a TBC E on {0, 1}" by setting fx (K, (T, X)) = E};(X) Consider the
wide-block blockcipher AEZ-core[f] defined and illustrated in Fig. 6. It loosely
follows EME/EME2 [22,24,29], but avoids all doubling operations and only uses
the forward direction of the underlying TBC. AEZ-core[f] operates on M =
{0,1}22" and itself takes in no tweak. Theorem 4 shows that it’s a strong PRP.
The proof is in the full version [28].

Theorem 4. Let n > 1 be an integer and let 7 and f be as above. There’s an
explicitly given reduction R with the following property. For any adversary A,
adversary B = R(A) satisfies Advj\:grz‘icore[qA) < Adv?rf(B) + 202 /2" where
o is the total block length of A’s queries. Adversary B uses the same running

time as A, and makes at most 2.50 queries.

DiscussioN. AEZ-core and its inverse are almost the same: the only change
needed is to take the rightmost column of tweaks in reverse order. Given that
one must have some asymmetry in an RAE scheme—an involution is certainly
RAE-insecure—this is about as symmetric a design as one could hope for. A high
degree of symmetry can help maximize efficiency of both hardware and software.
Symmetry is the reason for the wire-crossing just before each C; C..

Among the efficiency characteristics of AEZ-core is that one can selectively
decrypt a chosen block about 2.5 times more quickly than decrypting everything.

28 V.T. Hoang et al.

“ _l-'_fam X X P
. d . &
S Xm)
el ¢UE-| T
Yy, o fy |
e Y, Y, =
QLA 4
P o~
[om] [Com J|[Ca] G
10 algorithm AEZ-core(K, M) //AEZ-core
11 My M- My M, May MyM, — M
12 where |Mi| = -+ = |M},| = |Myx| = |M,| = n and | M| < 2n

13 d«— |Mw]; if d <n then M, «— My; M, — ¢

14 else M, — My[l..n]; M, — My[n+ 1..|M,|] fi

15 fori« 1tomdo W; — M; ® f..(M); X; — M ® f.(W;) od
16 ifd=0then X — X1 ®---®Xn ® 0

17 elseifd<nthen X « X1 @ - ® X © fu(M,10%)

18 else X — X1 @ & Xon @ fu(M,) ® f(M,10%) i

19 Sx‘_MxGaX@fx(My)Q Sy‘_My@fxx(Sx); SHSX@Sy

20 for i1 to m do

21 S — faai(S); YieW; @S Zi— X; 0 5

22 C{<—Yl®fa(Zz), Cﬂ—ZZEBfa,Z(C{) od

23 ifd=0thenC, —C,+—¢; Y —YV1d - Y, DO

24 elseifd <nthen C, — My ® fw(9); Cv — &Y «Y1®- - DY, ® fu(Cy10%)
25 else Cy—M, ® fu(S); Cv—M, D fn(S)

26 Y<Y1® - @Yn® fulCy) ® f,(C,107) i

27 Cy 5@ fy(Sy); Cx =Sy dY @ f,(Cy)

28 return C,Cj ---C,,C,, C,C, CxC,

Fig.4. The AEZ-core[f] construction. The method builds a strong-PRP on
{0, 1}22" from an m-bit-output PRF f that operates on its subscript and argument.
It’s key K is implicit. The PRF can be realized by a TBC.

When AEZ-core is turned into an RAE scheme by the EtE construction, this
observation is put to good use in achieving fast rejection of ciphertexts whose
final 0™ bits is plaintext is not correct. That it is undamaging to release this
timing information is guaranteed by results already show—in particular, that it
is ok to release the entire speculative plaintext.

AFEZ-core confines “specialized” processing to the final 2-4 blocks. This helps
with efficiency and simplicity compared to having specialized processing at the
beginning or at the beginning and end. In particular, the 0" authenticator used
to make an RAE scheme will be put at the end of the message (adding a variable
number of zero-bits at beginning could destroy word alignment) and, as long as
7 < 2n, it will be found in the final two blocks.

Robust Authenticated-Encryption 29

Numerous alternatives to AEZ-core were considered before arriving at our
design. Correct alternatives we know are slower or more complex, while most
simplifications are wrong. For example, consider trying to cheapen the design by
using ¢; - faa,1(S) instead of faa;(S) where each ¢; is a public constant and the
product is in GF(2™). This fails for any choice of ¢;. See Appendix C.

One variant of AEZ-core that does work is to eliminate the “left-hand” xor
coming out of f,a;. (One then has to define X; as the output of f, instead of
that output xor’ed with Mj, and change Y; similarly.) We have kept this xor
because it’s needed for symmetry.

7 Definition of AEZ

So far we have described two key elements of AEZ: the EtE construction and the
AEZ-core[f] wide-block blockcipher. Now we give AEZ’s complete description.
First a bit of notation.

NOTATION. The bit length of a string X is written |X|. For the bitwise xor of
unequal-length strings, drop the necessary number of rightmost bits from the
longer (10 @ 0100 = 11). For X a string, let X0* = X0P with p the smallest
number such that 128 divides | X| 4+ p. By X* we denote the set of all strings
over the alphabet X, including . By (X*)* we denote the set of all vectors over
X*, including the empty vector.

If | X| =nand 1 < i < j < n then X(¢) is the ith bit of X (indexing
from the left starting at 1), msb(X) = X (1), and X (i..5) = X(4)--- X(j). Let
[n]; be the t-bit string representing n mod 2! and let [n] be shorthand for [n]s;
for example [0]'¢ = ([0]g)1® = 0!28 and [1]!6 = (00000001)6. A block is 128
bits. Let 0 = 0'2%. If X = a1 --- ajog is a block (a; € {0,1}) then we define
X <1 =uay - ap0. Forn € Nand X € {0,1}'2® define n - X by asserting
that 0- X =0and 1-X = X and 2- X = (X<1) & [135 - msb(X)]12s8 and
n-X=2-n-X)and 2n+1)- X =02n-X)® X.

For K, X € {0,1}'?® we write aesenc(X, K) for a single round of AES:
SubBytes, ShiftRows, MixColumns, then an AddRoundKey with K. For K =
(Ko, K1, Ko, K3,K,4) a list of five blocks, let AES4x(X) = AES4(K, X) be
aesenc(aesenc(aesenc(aesenc(X @ Ky, K1), K»), K3), K4). For K a list of 11
blocks, K = (Ko, Ki,...,Kjo), define AES10x(X) = AES10(K, X) like we
defined AES4 but with ten rounds of aesenc. We do not omit the final-round
MixColumns.

AEZ DEFINITION. See Figs. 5 and 6 for the definition of AEZ, and Fig. 7 for
an illustration. Most of it is self-explanatory. We briefly explain some of the
algorithm’s more unusual elements.

AEZ operates on arbitrary byte strings. Not only is the plaintext M € BYTE"
arbitrary, but so too the key Key € BYTE" and nonce N € BYTE". The AD
is even more general: an arbitrary-length vector of byte strings, A € (BYTE")*.
The requested ciphertext expansion of A € N bytes is measured in 7 = 8\ bits.

30 V.T. Hoang et al.

100 algorithm ENCRYPT(K, N, A, 7, M) //AEZ authenticated encryption
101 X «— M| 07; (A1,...,Ap) — A

102 T<—([T]128,N,A17...,Am)

103 if M = ¢ then return AEZ-prf(K, T, 1) else return Encipher(K, T, X)

110 algorithm DECRYPT(K, N, A, 7,C) //AEZ authenticated decryption
111 (Ah...,Am)(*A; TH([Tth,N,Al,...,Am)

112 if |C| < 7 then return L

113 if |C| = 7 then if C = AEZ-prf(K,T,7) then return ¢ else return L fi fi
114 X « Decipher(K,T,C); M || Z «— X where |Z| =T

115 if (Z =07) then return M else return L

200 algorithm Encipher(K, T, X) /JAEZ enciphering
201 if |X| < 256 then return Encipher-AEZ-tiny (K, T, X)
202 if | X| > 256 then return Encipher-AEZ-core(K, T, X)

210 algorithm Encipher-AEZ-tiny (K, T, M) //AEZ-tiny enciphering
211 m «— |M|; n<—m/2; A« AEZ-hash(K,T)

212 if m = 8 then k «— 24 else if m = 16 then k «— 16

213 else if m < 128 then k «— 10 else &k — 8 fi

214 L—M(1l..n); R—M(n+1.m); if m>128 then j — 6 else j «— 7 fi
215 fori+—0tok—1do

216 R «— Lo ((EY (A ® R10* @ [i]12s))(1..n)); L+ R; R— R od

217 C — R| L; if m < 128 then C — C & (E%*(A @ (C0* v 10*)) A 10%) fi

218 return C

220 algorithm Encipher-AEZ-core(K, T, M) J/AEZ-core enciphering
9221 My M - My M., My MM, — M
222 where |Mi| =--- = |M],| = |My| = |M,| = 128 and | M| < 256

223 A «— AEZ-hash(K,T); d«— |Mu|

224 if d < 127 then M, — My,; M, — ¢

225 else M, «— My [1..128]; M, — M,,[129.|M,|] fi

226 for i «— 1to m do W; — M; ® ER'(M}); X; — M ®EY’(W;) od
227 ifd=0then X «— X1 & - & X, D0

228 else if d < 127 then X «— X, @ --- @ X,,, & E%*(M,10%)

229 else X « X1 @ --- @ X, ©® B} (M,) @ EY’(M,10) fi

230 Sy My ® A® X @ER (M,); Sy — M, ®E"'(S)); S — S® S,
231 for i+ 1 to m do

232 S —ER(S); Yie W ® S Zi —X; ® S’

233 Cl—Yi o EY(Z:); Ci—Zi DER(C) od

234 ifd=0thenC, —C,«—¢; YYD - DY ®O

235 else if d < 127 then

236 Co = My®ELYS); Ch—e ¥V —Yi® @ Yn ®ER(C,10%)
237 else Cy— M, @ E"*(S); Cv—M, ®E"°(S)
238 YY1 & @Y ®EY(C) ®EY®(C,10%) fi

239 C, — S, ®EL"(Sy); Cx— S, @ AaY @EY(C,)
240 return C,Cj---C,,C;, C,C, CC,

Fig.5. Main routines of AEZ. The tweakable blockcipher E, the hash AEZ-hash,
and the PRF AEZ-prf are defined in Fig. 6. The ciphertext expansion is 7 = 8\ bits.

Robust Authenticated-Encryption 31

300 algorithm AEZ-hash(K,T) //AXU hash. T is a vector of strings
301 (Th,...,T)) —T

302 fori«— 1totdo

303 m <« max(l, HT1|/128—|), X1 . ‘Xm — Ti //‘X1| == |Xm71| =128
304 if | X,,| = 128 then A; — EX7" (X)) @ - @ BXF™(Xn)

305 if | Xm| < 128 then

306 A = ENX) @ @ BTN (X o) @ EX0(X0n107)
307 return A1 d--- DA, DO
310 algorithm AEZ-prf(K,T, 1) //PRF used when M =¢

311 A« AEZ-hash(K,T)
312 return (E;*(4) | Eg"(A®[11es) | Ex P (A®[2azs) || ---)[1.7]

400 algorithm E}/(X) //Scaled-down TBC
401 1| J || L « Extract(K) where |I| = |J| = |L| =128

402 ko « (0,1,J,L,0); ki « (0,J,L,1,0); ks« (0,L,1,J,1)

403 K « (0,1,L,J,1,L,J,1,L,J,1)

404 ifi=—1and 0 < j <7 then return AES10x (X & jJ)

405 ifi=0and 0 < j <7 then return AES4,,(X @ jJ)

406 if 1 <i<2and j> 1 then return AES4;, (X @ (j mod 8)J @ 2l0~1/8 1)
407 ifi >3 and j > 1 then

408 return AES4x, (X @ (j mod 8)J @ 2lU~V/8 . [@ (i — 2)8J)

409 if i > 3 and j =0 then return AES4,,(X & (i — 2)8J)

Fig. 6. AEZ’s hash, PRF, and TBC. The last is the locus of prove-then-prune
scaling-down. The key K is turned into 384 bits by a key-derivation function Extract.

At line 217, Encipher-AEZ-tiny may xor a bit into the ciphertext just before
the algorithm’s conclusion. This is done to avoid a simple random-permutation
distinguishing attacks, for very short strings, based on the fact that Feistel net-
works only generate even permutations [30]. A similar trick, conditionally swap-
ping two fixed points, has been used before [45]. Our approach has the benefit
that the natural implementation is constant-time.

We define Decipher(K, T,Y") as the unique X such that Encipher(K, T, X) =
Y. Logically, this is all we need say for the specification to be well-defined.
Still, the additional pseudocode is easy to describe. AEZ-tiny deciphering is
identical to AEZ-tiny enciphering except we must count backwards instead
of forwards, and must do the even-cycles correction (line 217) at the begin-
ning instead of the end. Specifically, Decipher-AEZ-tiny (K, T, M) is identical
to Encipher-AEZ-tiny (K, T, M) except that line 215 is changed to count from
k — 1 down to 0, while line 217 has each C replaced by M before moving the
line up to just after line 213. And AEZ-core deciphering is identical to AEZ-core
enciphering except that we must take the xy-tweaks in reverse order. Specifically,
Decipher-AEZ-core(K, T, M) is identical to Encipher-AEZ-core(K, T, M) except
we swap tweaks (0,1) and (0, 2), and we swap tweaks (—1,1) and (—1,2). These
appear at lines 230 and 239.

The TBC E}/ (X) takes a tweak (i,7) € {—1,0}x[0..7] U {1,2,3} x N. The
first component selects between AES10 (when ¢ = —1) and AES4 (when ¢ > 0).

32 V.T. Hoang et al.

| My | | My | | M | | M, | | My | M, My My
X—9
{1, 1} &1, mj— A—o{0,1
X X,
0.0} {0019 oy O e Tt 1.
s | s [|Xm i
2,1 2,m o1, 42 ¢ -1,5 3 e
S
Y, Y,
0, 4 4 Ho, 5 ©—-1,2
0,2—A
&—Y
[| Gy

[z] ey LB
oo (0616 D
oo
(oo {0, 6 6D
g Sy B .
o—Cof0. 6 6D
B S Ty B .
o0 66D
—o{o6—"Do

Fig. 7. Illustrating AEZ enciphering. Rectangles with pairs of numbers are TBCs,
the pair being the tweak (the key, always K, is not shown). Top row: enciphering
a message M of (32 or more bytes) with AEZ-core. The diagram shows processing a
string that is (exclude the middle panel) or isn’t (include the middle panel) a multiple
of 16 bytes. Bottom left: AEZ-hash is an xor-universal hash built from AES4. It
computes A = @ A; from a vector-valued tweak T comprising A, N, and 7. Its i-th
component 7Tj - - - Tp, is hashed as shown. Bottom right: AEZ-tiny, when operating
on a string M = L || R of 16-31 bytes. More rounds are used if M has 1-15 bytes.

Either way, the construction is based on XE [34,49]. We emphasize that E is not
secure as a tweakable-PRP, since AES4 itself is completely insecure as a PRP: it
is easily broken by the “Square” attack [14]. Use of an AES4-based TBC despite
this fact is where the scaling-down has been done in AEZ.

The key K € BYTE" is mapped to three 16-byte subkeys (I, J, L) using
the key-derivation function (KDF) named Extract that is called at line 401. The
definition of Extract is omitted from the figures and regarded as orthogonal to the
rest of AEZ. See the AEZ spec [26] for the current Extract: BYTE* — ByTr®®.
In our view, it is an unresolved matter what the security properties (and even
what signature) of a good KDF should be. Work has gone off in very different
directions [33,46,61], and the area is currently the subject of a Password Hashing
Competition (PHC) running concurrently with CAESAR.

Note the mod 8’s at lines 406 and 408. Unlike the offset sequence used for
OCB [32], we limit ourselves to eight successive J values; after that, we add in
the next power-of-two times L. This allows a small table of 2/ - J values to be

Robust Authenticated-Encryption 33

precomputed and used regardless of the length of the message. In this way we
limit the frequency of doublings yet avoid number-of-trailing-zeros calculations.

We impose a limit that AEZ be used for at most 2% bytes of data (about
280 TB); by that time, the user should rekey. This usage limit stems from the
existence of birthday attacks on AEZ, as well as the use of AES4 to create a
universal hash function.

COST ACCOUNTING. Let us summarize the computational cost of AEZ in “AES-
equivalents,” where 1 AES-equivalent is 10 AES rounds. Assume a message of m
blocks, the last of which may be fragmentary. To encipher or decipher m > 2
blocks takes at most m + 2.4 AES-equivalents (latency 3.6). This assumes K, N,
7, and A have already been processed. To encrypt or decrypt m > 2 blocks: at
most m+ 3.8 AES-equivalents (latency 3.6). This assumes that K, A, and 7 have
already been processed and that |N| < 128 and 7 = 128. To reject an invalid
ciphertext of m > 2 blocks: at most 0.4m + 2.4 AES-equivalents (latency 2.8).
Same assumptions. To setup an m block key: 1.2m AES-equivalents (latency 0.4).
This assumes that needed constants have been precomputed. To setup a string-
values AD: 0.4m (latency 0.4). To encipher or decipher messages of 1-15 bytes
is somewhat slower: 10, 6.8, and 4.4 AES-equivalents for 1, 2, and 3 bytes.

PARAMETERIZED COUNTERPARTS. For a TBC-parameterized generalization of
AFEZ, let AEZ[E] be identical to AEZ except for using the TBC E: K X Tye, X
{0,1}'28 — {0,1}'?8 in place of E (assume the correct tweak-space Te,). The
key space of E is then taken as the key space for the constructed RAE scheme.
Note that AEZ = AEZ[E] with E the algorithm defined by lines 400-409.

Taking the above a step further, given a conventional blockcipher £': X x
{0,1}'28 — {0,1}'%® we can define AEZ[E] as AEZ[E] where E}Y (X) = Ex(X®
(i+1)I®jJ) for I = Ex(0) and J = Ex(1). The scheme AEZ[AES] can be
regarded as a natural “scaled up” version of AEZ. We emphasize that AEZ is
not AEZ[AES], which is about 2.5 times as slow.

Schemes AEZ[E] and AEZ[E] are close to AEZ, but enjoy conventional
provable-security guarantees, as we now describe.

8 Security of AEZ[E] and AEZ[E]

We show that if E is secure as a tweakable PRP then AEZ[E] is RAE-secure.
In fact, the statement holds even if the decryption algorithm is modified so as
to leak the entire improperly encoded string obtained by deciphering an invalid
ciphertext. So, for the remainder of this section, assume the modification of AEZ
in which the else clause of line 115 returns the deciphered message X rather
than 1. This change only makes our results stronger, explicitly modeling the
possibility of a decryption implementation leaking some or all of X. The actual
decryption algorithm returns L.

Our provable-security results for AEZ need to assume that the adversary
avoids enciphering or deciphering extremely short strings—at least those under

34 V.T. Hoang et al.

16 bytes, say, for which AEZ-tiny, a Feistel-based construction, will not enjoy a
desirable bound. While provably-secure options are now available for enciphering
very short strings, they still do not have competitive efficiency.

As the alphabet for AEZ is X' = BYTE, in this this section we write |z| for
the byte length of x. For an encryption query (N, A, A\, M), define the number
of blocks processed as [|N|/16] + >,[|Ai|/16] + [(|M]|+ X)/16]. This query is
small if M # ¢ and 16 < |M| + X < 32, and tiny if M # € and |M|+ X\ < 16.
Likewise, for a decryption query (N, A, \,C), the number of blocks processed
is [|N]/16] 4+ >, [|As|] + [(]C])/16]. The query is small if 16 < |C| < 32 and
|C] # A, and tiny if |C| # A and |C| < 16. The proof for the following is in the
full version [28].

Theorem 5. Let E: X X Toe, x {0,1}128 — {0,1}'28 be a TBC and IT =
AEZ[E]. Then there are efficient, explicitly given algorithms R and S with
the following property. Let A be an adversary for attacking II. Assume it
never asks any small or tiny query. Then B = R(A) satisfies Advys(A) <

3.5s2 /2128 + Adv%rp(‘B)7 where s is the total number of processed blocks, plus 2
blocks per message. Adversary B makes at most 2.5s queries and has about the
same running time as A.

An alternative approach to justifying the security of AEZ is to speak of the
security of AEZ[F], the cousin of AEZ defined from a conventional blockcipher
E using the XE construction to make the needed TBC. Its security can be
captured by the following result. The proof is in the full version [28].

Theorem 6. Let E: X x {0,1}'%® — {0,1}'%® be a blockcipher and IT =
AEZ[E]. Then there are efficient, explicitly given algorithms R and S with
the following property. Let A be an adversary for attacking II. Assume it
never asks a small or tiny query. Then B = R(A) satisfies Advi’s(A) <
13s%/2'28 1 Adv P (B), where s is the total number of processed blocks, plus 2
blocks per message. Adversary B makes at most 2.5s queries and has about the
same running time as A.

If one wants to accommodate small queries then we still have a provable, albeit
much inferior result. Let Feistel[r, n] denote an ideal r-round Feistel network on
{0,1}?". The best known provable bound for Feistel networks [43, Theorem 7]

states that if an adversary makes q < % queries then AdvaEeIi’;fel[&n] (A) <

2
3—3 + QQqﬁ Translating this to our setting, one is bound to make at most ¢ <
122;464 = 251 small queries, and the security advantage is ¢/2% + 452 /2128, These
restrictions seem to be more of the artifacts of the analysis in [43, Theorem 7]
than reflecting the actual security of Feistel networks: assuming that the round
functions of Feistel[6, n] are instantiated from full AES, the fastest known attack,

for n > 64, is still the exhaustive key search on AES.

Robust Authenticated-Encryption 35

9 Estimated Security of AEZ Itself

Consider enciphering a message M, |M| > 256, by AEZ[AES] (which, recall, is
not AEZ, but a scaled-up version using an AES-based TBC). The design would
seem excessive: each block M; would be subjected to 30 rounds of AES (ten
shared with a neighboring block), not counting the additional AES rounds to
produce the highly unpredictable, M-dependent value S, a value derived from
which gets injected into the process while 20 rounds yet remain. It is in light of
such apparent overkill that AEZ selectively prunes some of the AES calls that
AEZ[AES] would perform. In particular, we prune invocations where we aim to
achieve computational xor-universal hashing. We leave enough AES rounds so
that each block M; is effectively processed with 12 AES rounds, eight of these
subsequent to injection of the highly-unpredictable S and four of them shared
with a neighboring block. The key steps in calculating S are not pruned, nor are
the TBCs used to mask u- and v-blocks.

To estimate the security of AEZ it seems appropriate to replace the s2/2128
term of Theorem 5 by s?/2113 resulting in the bound 4s? /2113 + /2128 because
of the higher maximal expected differential probability of AES4 [31] compared
to an ideal hash or cipher, where ¢ is the time (including the description size) in
which the adversary runs.

Moreover, we contend that the assumption that the adversary avoids asking
tiny or small queries can be lifted. To justify this heuristically, consider a col-
lection of independent, ideal, k-round Feistel networks on {0,1}2"; the round
functions are all uniformly random and independent. The best attack known,
due to Patarin [41], that distinguishes them from a family of independent, truly
random even permutations requires at least 25~ plaintext/ciphertext pairs.
From our choice of the number of rounds, this attack needs at least 272 plain-
text /ciphertext pairs, and thus doesn’t violate our up-to-the-birthday-bound
security goal.

AEZ was specifically designed so that scaling-down most of its AES calls
would seem safe. This is design-specific; one cannot indiscriminately scale a
scheme’s primitives. A previous design, where AEZ-core followed the NR app-
roach [39,40], could not be as effectively scaled-down.

10 Software Performance

The development of AEZ has generally presumed an instruction set architec-
ture (ISA) with round-level support for AES, such as Intel’'s AES-NI or ARM’s
version 8 ISA. On these systems the AES unit can be kept busy processing
several AES4 computations in parallel while idle processing units handle load,
store, and xor overhead. On Intel’s Haswell architecture, for example, unrelated
AES rounds can issue every cycle and take seven cycles to retire, so seven par-
allel AES4 calculations can complete in 34 CPU cycles, while idle superscalar
processing units can handle other computations. This observation has led us to
design AEZ to conveniently process eight blocks at a time.

36 V.T. Hoang et al.

AEZ

0
T T T T T T T 1
0 200 400 600 800 1000 1200 1400 1600

Fig. 8. AEZ vs. OCB performance. The z-axis is message length, in bytes, and the
y-axis is cycles per byte (cpb). The graph is best viewed in color: solid purple circles
are for AEZ; unfilled yellow circles are for OCB3 [32]. Performance of the two is close,
both having peak speeds around 0.7 cpb and being similar on most shorter messages
as well. The execution vehicle is an Intel Haswell processor using AES-NI.

AEZ overhead beyond AES rounds has been minimized. As an example of
this, our AES4 key schedule omits the final round key, allowing aesenc’s included
xor operation to be used for other purposes. Such optimizations lead to AEZ peak
speeds, on Haswell, of around 0.72 cpb—mnot far from the theoretical maximum
for the number of rounds executed of 0.63 cpb.

Fig. 8 compares the performance of AEZ and OCB on messages of all byte
lengths up to 1600 bytes. The two are not only similar for long messages but for
short strings too. Only when messages are shorter than 16 bytes, where AEZ-tiny
increases the number of AES4 calls used, does OCB become significantly faster.

The performance of AEZ is on par with OCB even on processors that are not
superscalar or do not support AES rounds at the assembly level. On a Marvell
88F6283 embedded CPU—a single-issue, 32-bit, ARM version 5 ISA—we see an
experimental version of AEZ peaking at 86 cpb while OCB’s optimized reference
code runs at 84 cpb. For comparison, GCM, CCM and CTR run at 124, 134 and
67 cpb, respectively. The figures use the OpenSSL libraries.

One might expect the two-pass nature of AEZ to be a performance burden
because data must be dragged into cache from memory twice. We have found that
modern processors, like Intel’s Haswell, have such efficient hardware prefetching
that bringing data into cache twice, in a sequential streaming fashion, is not
expensive at all. It requires no explicit prefetching. Encrypting 1MB on Haswell is
as efficient as encrypting 32KB despite 1MB exceeding the 256KB level-2 cache.
Two passes may have a more significant cost on systems with poor prefetching
facilities, although this might be mitigated by software prefetching.

Another benefit of AEZ’s two passes is that the second pass is not needed
to discover that a ciphertext is inauthentic, leading to message rejection costing
as little as 0.28 cpb on Haswell. On long messages, approximately 2/5 of AES4
calls are performed during the first pass, which aligns perfectly with the peak
times we’ve observed for encryption and fast-rejection.

All Haswell timings reported in this paper were gathered on a 2.9 GHz Intel
Core i5-4570S CPU using its time-stamp counter to gather elapsed CPU cycles

Robust Authenticated-Encryption 37

over encryption calls. Our implementation is written in C using “intrinsic” func-
tions to access CPU-specific functionality. It was compiled using GCC 4.9 with
options -march=native -03. Our optimized implementation will be made pub-
licly available and freely licensed.

Acknowledgments. Many thanks to Tom Shrimpton, who provided important inter-
action on RAE definitions and their implications. Liden Mu and Chris Patton proofread
our specification document and did implementations that helped verify our own. We
received good comments and corrections Danilo Gligoroski, Tom Ristenpart, and Yusi
(James) Zhang. Thanks to Dustin Boswell for an April 2013 email on the importance
of making AE easier to use, Stefan Lucks for a Jan 2012 discussion on the problem
unverified plaintexts, and René Struik for an August 2013 DIAC presentation on the
utility of minimizing ciphertext expansion. Thanks to Terence Spies for catalyzing the
idea of unifying AE and blockciphers both in definition and schemes.

Part of this work was done when Tung was a postdoc at UC San Diego and Phil
was visiting ETH Ziirich. Many thanks to Mihir Bellare for that postdoc, and many
thanks to Ueli Maurer for hosting that sabbatical.

Hoang was supported by NSF grants CNS-0904380, CCF-0915675, CNS-1116800
and CNS-1228890; Krovetz was supported by NSF grant CNS-1314592; and Rogaway
was supported by NSF grants CNS-1228828 and CNS-1314885. Many thanks to the
NSF for their continuing support.

A More on Related Work

RAE and AEZ build on a large body of related work. While we have summarized
much of this throughout this paper, here we give some additional context and
high points.

Blockciphers accommodating truly arbitrary inputs were first realized by
Schroeppel’s Hasty Pudding Cipher (HPC) [55]. Ahead of its time, the work not
only built a blockeipher on all of {0, 1}*, but also provided it a tweak. If one were
to first overcome the problem that HPC’s tweak is limited in length, it could be
used with the EtE construction to make an RAE scheme.

The problem of constructing from conventional blockciphers those with arbi-
trary or near-arbitrary domains was first identified Bellare and Rogaway [4],
who wanted to construct these objects with a conventional-looking mode. But
the mechanism they suggested was somewhat slow, was limited to a domain of
({0,1}™)*, and only achieves conventional (not strong) PRP security.

In a follow-up paper [5] the same authors evidenced the utility of arbitrary-
input-length blockciphers by explaining how semantic security could be achieved
by enciphering messages with novelty, and they showed how authenticity could
be achieved by enciphering messages with redundancy (this time using a strong
PRP). These observations formed the basis for our work.

Around the same time as the last two work, Naor and Reingold (NR) con-
structed a blockcipher on ({0,1}")" by sandwiching a layer of ECB between
layers of a “blockwise-universal” hashing [39,40]. The approach came to be used
in many proposals, including XCB [35], which was standardized in the IEEE [29].

38 V.T. Hoang et al.

The other method inspiring further wide-block blockciphers was EME [24],
which involves two layers of blockcipher-based enciphering and a light layer of
mixing in between. A follow-on design, EME2 [22], become the other wide-block
blockcipher of TEEE 1619.2 [29], Both it and XCB are tweakable and operate
on a message space of {0,1}=". EME/EME2 provides the starting point for
AEZ-core.

As for extending blockciphers to short blocks, a different line of work was
begun [9]. Format-preserving encryption aimed to deal not only with small
domains but also those defined as arbitrary finite sets, sets of numbers [0..N —1],
or strings over arbitrary alphabets. Adapting Feistel designs to arbitrary alpha-
bets, realizations of FFX [6], now a draft NIST standard [17], would form the
basis of AEZ-tiny.

Meanwhile, notions of AE were appearing. Probabilistic versions came first [5,
27], then a nonce-based version [50], then AD finally appeared [49]. Next the
MRAE goal—RAE'’s closest definition counterpart—was defined [51]. The main
motivation for that work was to minimize the damage that could be done by
nonce-reuse.

Other authors had the same concern but weren’t willing to use two-pass
schemes. Fleischmann et. al [20] built on Bellare et. al [3] to define a security
notion for online-AE intended to confer some lower level of nonce-reuse misuse-
resistance. The approach has gained popularity—many CAESAR submissions
follow it, especially after COPA [2] made clear that one could achieve this weak-
ened flavor of nonce-reuse misuse-resistance with a parallelizable scheme. The
RAE definition goes a different direction, strengthening instead of weakening the
original MRAE definition.

Following up on directions from prior work [10,20,21], AE security in the
face of decryption-algorithm leakage was studied by Andreeva et. al [1] in work
concurrent with our own. A principle motivation for those authors has been to
express when it is OK for an online decryption algorithm to be incrementally
releasing unverified plaintext. For us, this is a direction not taken, for such leak-
age can never be generically harmless [47]. In effect, leaking equality of message
prefixes is leaking an enormous amount of information.

Ferguson made clear early on that AE algorithms could fail badly when
tags are too short [18]. Still, no definitions for AE security were ever offered
appropriate to the short-tag setting. But the general concern for making short
MACs work well goes back to Black and Cochran [8] and Wang et. al [59].

Some examples of using AES4 where AES itself would do include ALRED,
LETTERSOUP, MARVIN, and Pelican [15,16,57]. These inspired our predilec-
tion to cut certain AES rounds even when provable security couldn’t promise
this was fine. The approach should not be confused with that of Minematsu and
Tsunoo [37], where AES4 provably does suffice for the protocol devised [37]. The
approach leverages the low MEDP for AES4, a line of work culminating in the
bound of Keliher and Sui [31].

Robust Authenticated-Encryption 39

Many authors have proposed ideas to eliminate use of the inverse-direction of
a blockcipher in modes that previously needed this. The method we us in AEZ
is inspired by Minematsu’s OTR [36].

The CAESAR competition [7], organized by Dan Bernstein, was the proximal
motivation to define RAE and to try to develop a nice scheme for achieving it.

B Deferred Proofs

B.1 Proof of Theorem 1

It suffices to show that
|Priatdealn = 1] — PrlAPRIT = 1]] < (12 4 r) /| Pt 4 2g/ |2

Without loss of generality, assume that ¢ < |X|*~!; otherwise the claim is trivial.
Consider games G1—G4 in Fig. 9. Game G corresponds to game Ideal;; and
game G4 corresponds to game PRI;;. We explain the game chain up to the
terminal one. Game G is identical to game G, except that in procedure Enc, it
ensures that ciphertexts C are distinct. Partition the encryption queries based
on the nonce, the associated data, and the size of the message. Suppose that
in game G; we have p partitions of size s1,...,s, > 1. Games G; and G2 are
identical-until-bad, and thus

[Pr[AST = 1] — Pr[A®” = 1]| < Pr[A9" sets bad]

P
i(si — 1)
Z |E|mmm+>\+1
=1

i(sz—l (52—1)< r+r

[S[mrmn AT = (D[A

I A

i=1

the last inequality is due to the fact that (s —1)+---+(sp, —1) = r. Game G3 is
a simplified version of game G5; the change is conservative. Game G4 is identical
to game (3, except that in procedure Dec, it samples a A-character string v and
returns a non-_L answer if v = 0%, where 0 is a canonical point in ¥. Let L’
be the multiset of |C] in A’s decryption queries in game G4, and let L be the
multiset {¢ | £ > 0 and £+ X € L'}. Then

[Pr[A%® = 1] — Pr[A%* = 1]| < Pr[A% sets bad]
|2|£

S LE

leL

1
-2 121> = (a/121%)

1 q 2q
< < < :
<2 (X} —q T ZP —q T X

40 V.T. Hoang et al.

proc Enc(N, A, M) Games G / proc Enc(N, A, M) Games G3 /

U [M[; O« X 0 — |M|; C« Xt
if C € Rann, 4 then Domn, o < Dompn,a U {(M, OA)}
bad « true; | C' « X" \Rany . ‘ return C

Rany, 4.0 — Rany, 4,0 U{C} A proc Dec(N, A, C)
Domy, 4 « Domy,4 U {(M,0%)} if |C| < X then return L
return C 0|0 = A

(M, v) « (5° x X*)\Domp, 4

Dec(N, A
proc Dec(N, 4,4, C) Dompn a < Domn,a U{(M,v)}

if |C] < X then return L

(—|Cl—x if v = 0* then

(M, v) « (£° x £*)\Domn, bad — true;
Domp, 4 < Domn, 4 U {(M,v)} return |

return |

Fig.9. Games used to prove Theorem 1. Here O is a canonical element of X.
Games G2 and G4 contain the boxed statements, but games G1 and G3 do not.

the last inequality is due to the assumption that ¢ < |X|*~!. Summing up,

3
|[Prialdeatn = 1] — PrlAPRIT = 1] <) |Pr[AS" = 1] - PrlA9+ = 1]|
i=1

r2 4 2q
- |2‘>\+7”n)in+1 |2‘>\

as claimed.

B.2 Proof of Theorem 2

The reduction R creates from A the adversary B as follows. It runs A. When the
latter makes an encryption query (N, A, A\, M), if v(M) = 1 then the former sends
the same query to its encryption oracle and returns the answer to A; otherwise
it returns L. When A makes a query (N, 4, A, C), adversary B sends the same
query to its decryption oracle to get M. If |M| = |C| — X and v(M) # 1 then it
returns 0 || M to A, where 0 is a canonical point in Y. Otherwise, it returns M.
Finally, it outputs the same guess as A.

For any query (N, A, A, C) that it receives, S’ stores (N, A, A, |C|) in a set L.
It also maintains, for each (N, A, A\, ¢) in Ly, a set By, a,x¢. Initially, By a e =
X=M\M,. The simulator S’ works by running the simulator S. For each query
(N, A, A\, C), the simulator S’ tosses a biased coin, heads landing land with prob-
ability | B, axel/(|Bn.axel +|Z[F —|X|?), where £ = |C|. If heads shows up,
simulator S” will sample M « By _a ., remove M from By 4 x.¢, and return M.
Otherwise, it runs S on query (N, A, A, C) and output whatever S returns. Then

Pr[AREALD, s/ — 1] = py[BREALms - 1] and
Pr[ARAED, s = 1] = Pr[BRABms — 1]

Subtracting, we get Advi’s(B) = Advi; & (A).

Robust Authenticated-Encryption 41

C An Insecure Variant of AEZ-core

Numerous variants of AEZ-core were considered to arrive at AEZ-core. Most
simplifications of the final version do not work. As an example, consider trying
to cheapen the design by using c¢; - fas,1(S) instead of faa:(S) to whiten the
middle of each Feistel network, where each ¢; is a public constant, and the dot is
the multiplication in GF(2"). For example, one might hope this works for ¢; = 1
or ¢; = i. But this modification is insecure for any choice of ¢; values.

For each L C {1,...,n+ 1} let O(L) = @®;er ¢;. Let D # () be a subset
of {1,...,n 4+ 1} such that (D) = 0. Such a set D must exists. Assume to
the contrary that 8(L) # 0™ for all nonempty L C {1,...,n + 1}. Then for any
distinct nonempty subsets L, L’ C {1,...,n + 1}, we have (L) # 0(L’). This
means that for 2" — 1 nonempty subsets L C {1,...,n+1} we have 21 —1 >
2" corresponding distinct elements 0(L) of GF(2"), which is a contradiction.

We now describe an attack to the modified AEZ-core. Our attack only uses
strings of length ¢ = 2n(n + 3). Let M and M be arbitrary distinct ¢-bit strings
such that they agree everywhere except the last two blocks. Query M and M
to the first oracle to get answers C' and C' respectively. In the real game, we’ll
have X; = X; and V; = Y; & (c;- (S 5)) for every 1 < i < n + 2. Next, let C*
be the “mixed” ciphertext such that, for every 1 < i < n + 3, the (2i — 1)’th
and 2i’th blocks of C* are the same as those of C if i € D, otherwise C* would
borrow the corresponding two blocks of C'. Query C* to the second oracle to get
an answer M*. Let D = {1,...,n + 2}\D. In the real game, the query C* will
generate Y,* = Y; for every i € D, and Y;* =Y, for every i € D. Then

v'=Prie@Py,=YoP(sed) =Y.

i€D jeD i€D

Consequently, S* = S and thus M* and M agree at the (2n+3)th and (2n+4)th
blocks. The latter event happens with probability at mos 27" in the random
game. Hence this attack wins with advantage at least 1 — 277,

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. Cryptology
ePrint report 2014/144, February 25, 2014

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASTACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424-443. Springer, Heidelberg
(2013)

3. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online ciphers and
the hash-CBC construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 292-309. Springer, Heidelberg (2001)

4. Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In:
Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 231-244. Springer, Heidelberg
(1999)

42

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

V.T. Hoang et al.

Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317-330. Springer, Heidelberg (2000)
Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-
preserving encryption. Draft 1.1. Submission to NIST, February 20, 2010

. Bernstein, D.: Cryptographic competitions: CAESAR call for submissions, final,

January 27, 2014. http://competitions.cr.yp.to/caesar-call.html

Black, J., Cochran, M.: MAC reforgeability. In: Dunkelman, O. (ed.) FSE 20009.
LNCS, vol. 5665, pp. 345-362. Springer, Heidelberg (2009)

Black, J.A., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B.
(ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114-130. Springer, Heidelberg (2002)
Boldyreva, A., Degabriele, J., Paterson, K., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. Cryptology ePrint Report 2013/433
(2013)

Chakraborty, D., Nandi, M.: An improved security bound for HCTR. In: Nyberg,
K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 289-302. Springer, Heidelberg (2008)
Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
hash-encrypt-hash approach. IEEE Transactions on Information Theory 54(4),
1683-1699 (2008)

Chakraborty, D., Sarkar, P.. A new mode of encryption providing a tweakable
strong pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol.
4047, pp. 293-309. Springer, Heidelberg (2006)

Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer-Verlag, Heidelberg (2002)

Daemen, J., Rijmen, V.: A new MAC construction ALRED and a specific instance
ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557,
pp. 1-17. Springer, Heidelberg (2005)

Daemen, J., Rijmen, V.: The Pelican MAC function. Cryptology ePrint report
2005/088 (2005)

Dworkin, M.: Recommendation for block cipher modes of operation: methods
for format-preserving encryption. NIST Special Publication 800-38G: Draft, July
2013

Ferguson, N.: Authentication weaknesses in GCM. Manuscript, May 20, 2005
Fisher, R., Yates, F.: Statistical tables for biological, agricultural and medical
research. Oliver & Boyd, London (1938)

Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196-215. Springer, Heidelberg (2012)

Fouque, P., Joux, A., Martinet, G., Valette, F.: Authenticated on-line encryption.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 145-159.
Springer, Heidelberg (2004)

Halevi, S.: EME*: extending EME to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315-327. Springer, Heidelberg (2004)

Halevi, S.: Invertible universal hashing and the TET encryption mode. Cryptology
ePrint report 2007/014

Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292-304. Springer, Heidelberg (2004)
Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482-499. Springer, Heidelberg (2003)

http://competitions.cr.yp.to/caesar-call.html

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Robust Authenticated-Encryption 43

Hoang, V.T., Krovetz, T., Rogaway, P.: AEZ v3: authenticated encryption by
enciphering. CAESAR submission (2014)

Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284-299. Springer,
Heidelberg (2001)

Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption: AEZ
and the problem that it solves. Cryptology ePrint report 2014/793, January 2015
(Full version of this paper)

IEEE. 1619.2-2010 - IEEE standard for wide-block encryption for shared storage
media. IEEE press (2010)

Kaliski Jr., B.S., Rivest, R.L., Sherman, A.T.: Is DES a Pure Cipher? (Results
of more cycling experiments on DES). In: Williams, H.C. (ed.) CRYPTO 1985.
LNCS, vol. 218, pp. 212-226. Springer, Heidelberg (1986)

Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for
two-round Advanced Encryption Standard. IET Information Security 1(2), 53-57
(2007)

Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306-327. Springer,
Heidelberg (2011)

Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631-648. Springer, Hei-
delberg (2010)

Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31-46. Springer, Heidelberg (2002)
McGrew, D.A., Fluhrer, S.R.: The security of the extended codebook (XCB) mode
of operation. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol.
4876, pp. 311-327. Springer, Heidelberg (2007)

Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 275-292. Springer, Heidelberg (2014)

Minematsu, K., Tsunoo, Y.: Provably secure MACs from differentially-uniform
permutations and AES-based implementations. In: Robshaw, M. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 226-241. Springer, Heidelberg (2006)

Nandi, M.: Improving upon HCTR and matching attacks for Hash-Counter-Hash
approach. Cryptology ePrint report 2008/090, February 28, 2008

Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited. Journal of Cryptology 12(1), 29-66 (1999)

Naor, M., Reingold, O.: The NR mode of operation. Undated manuscript realizing
the mechanism of [39]

Patarin, J.: Generic attacks on feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 222-238. Springer, Heidelberg (2001)

Patel, S., Ramzan, Z., Sundaram, G.S.: Efficient constructions of variable-input-
length block ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 326-340. Springer, Heidelberg (2004)

Patarin, J.: Security of balanced and unbalanced Feistel schemes with linear non
equalities. Cryptology ePrint report 2010/293, May 2010

Patarin, J.: Security of random feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106-122. Springer, Heidelberg
(2004)

44

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

V.T. Hoang et al.

Patarin, J., Gittins, B., Treger, J.: Increasing block sizes using feistel networks:
the example of the AES. In: Naccache, D. (ed.) Cryphtography and Security: From
Theory to Applications. LNCS, vol. 6805, pp. 67-82. Springer, Heidelberg (2012)
Percival, C.: Stronger key derivation via sequential memory-hard functions. The
BSD Conference (BSDCan), May 2009

Reyhanitabar, R., Vizar, D.: Careful with misuse resistance of online AEAD.
Unpublished manuscript distributed on the crypto-competitions mailing list.
August 24, 2014

Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS 2002,
pp. 98-107. ACM Press (2002)

Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASTACRYPT 2004. LNCS, vol. 3329,
pp. 16-31. Springer, Heidelberg (2004)

Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS, pp. 196-205 (2001)
Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373-390.
Springer, Heidelberg (2006)

Sarkar, P.: Efficient tweakable enciphering schemes from (block-wise) universal
hash functions. Cryptology ePrint report 2008,/004

Sarkar, P.: Improving upon the TET mode of operation. In: Nam, K.-H., Rhee,
G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 180-192. Springer, Heidelberg (2007)
Sarkar, P.: Tweakable enciphering schemes using only the encryption function of
a block cipher. Cryptology ePrint report 2009/216

Schroeppel, R.: Hasty Pudding Cipher Specification. AES candidate submitted
to NIST, June 1998. http://richard.schroeppel.name/hpc/hpc-spec (revised May
1999)

Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013, Part
I. LNCS, vol. 8269, pp. 405-423. Springer, Heidelberg (2013)

Simplicio, M., Barbuda, P., Barreto, P., Carvalho, T., Margi, C.: The MARVIN
message authentication code and the LETTERSOUP authenticated encryption
scheme. Security and Communications Networks 2(2), 165-180 (2009)

Struik, R.: AEAD ciphers for highly constrained networks. DIAC 2013 presenta-
tion, August 13, 2013

Wang, P., Feng, D., Lin, C., Wu, W.: Security of truncated MACs. In: Yung,
M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 96-114. Springer,
Heidelberg (2009)

Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175-188.
Springer, Heidelberg (2005)

Yao, F., Yin, Y.L.: Design and analysis of password-based key derivation functions.
IEEE Trans. on Information Theory 51(9), 3292-3297 (2005)

http://richard.schroeppel.name/hpc/hpc-spec

On the Behaviors of Affine Equivalent Sboxes
Regarding Differential and Linear Attacks

Anne Canteaut® and Joélle Roué

Inria, Project-team SECRET, Rocquencourt, France
{Anne.Canteaut,Joelle.Roue}@inria.fr

Abstract. This paper investigates the effect of affine transformations
of the Sbox on the maximal expected differential probability MEDP and
linear potential MELP over two rounds of a substitution-permutation
network, when the diffusion layer is linear over the finite field defined by
the Sbox alphabet. It is mainly motivated by the fact that the 2-round
MEDP and MELP of the AES both increase when the AES Sbox is
replaced by the inversion in Fys. Most notably, we give new upper bounds
on these two quantities which are not invariant under affine equivalence.
Moreover, within a given equivalence class, these new bounds are maxi-
mal when the considered Sbox is an involution. These results point out
that different Sboxes within the same affine equivalence class may lead
to different two-round MEDP and MELP. In particular, we exhibit some
examples where the basis chosen for defining the isomorphism between
F5' and Fam affects these values. For Sboxes with some particular prop-
erties, including all Sboxes of the form A(z®) as in the AES, we also
derive some lower and upper bounds for the 2-round MEDP and MELP
which hold for any MDS linear layer.

Keywords: Sboxes - Affine equivalence - Differential cryptanalysis -
Linear cryptanalysis + AES

1 Introduction

Cryptographic functions, including the so-called Sboxes, are usually classified
up to affine equivalence (see e.g. [6,11,34]) since many of the relevant cryp-
tographic properties are invariant under affine transformations. Indeed, both
Sboxes S and Ay oS o Ay, where A; and A, are two affine permutations, have
the same algebraic degree, the same non-linearity (even the same square Walsh
spectrum) and the same differential uniformity (even the same differential spec-
trum), which are the usual criteria measuring the resistance of an Sbox against
higher-order differential attacks [29,31], linear cryptanalysis [37,44] and differ-
ential cryptanalysis [5] respectively. However, it is well-known that equivalent
Sboxes may have different implementation costs and may also provide different

Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.
© International Association for Cryptologic Research 2015

E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 45-74, 2015.
DOT: 10.1007/978-3-662-46800-5_3

46 A. Canteaut and J. Roué

security levels. For instance, the number of terms in their polynomial representa-
tions may highly vary within an equivalent class. This has motivated the choice
of the AES Sbox: it corresponds to the inversion in Fgs, which is a power permu-
tation with the best known resistance against the previously mentioned attacks;
but this power permutation is then composed with an Fs-affine permutation of
F§ which makes its polynomial representation much more complex. Composing
the inverse function with an affine permutation then thwarts potential attacks
exploiting a simple algebraic representation of the Sbox, like an extremely sparse
polynomial. Some other relevant properties (usually of minor importance) are
also affected by composition with affine transformations, like the number of fixed
points and the bitwise branch number [43].

But, when focusing on statistical attacks, especially on differential and linear
cryptanalyses, the Sboxes within the same equivalence class are often consid-
ered to have similar behaviors. The main reason is that all known upper bounds
on the maximal expected differential probability, and on the maximal expected
square correlation (aka maximum expected linear potential) [41] are invariant
under the affine transformations of the Sbox. However, the exact values of these
two quantities for two rounds of the AES have been computed by Keliher and
Sui with a sophisticated pruning algorithm [28], and it appears that the values
obtained for the multiplicative inverse in Fys and for the original AES Sbox are
different, while these two Sboxes belong to the same equivalence class. Going
further in the analysis, Daemen and Rijmen have then determined the expected
probabilities of all two-round differentials with 5 or 6 active Sboxes in the AES
for both Sboxes [20]. After this analysis, they have even conjectured that, for
any number of rounds, the maximal expected differential probability of the AES
is always higher with the inversion in Fgs than with the AES Sbox [17]. The
aim of this paper is then to have a better understanding of this phenomenon.
For instance, we would like to determine whether these different behaviors orig-
inate from the Sboxes only, independently of the choice of the diffusion layer,
or not. One of our main motivations is to help the designers choose an Sbox
within a given equivalence class. Indeed, in most situations, some appropriate
equivalence classes are known (e.g. 4-bit permutations are classified up to affine
equivalence [34]) and the search is often restricted to these classes.

Our Contribution. In this paper, we investigate the maximal expected differ-
ential probability MEDP and linear potential MELP over two rounds of an SPN.
We focus on diffusion layers which are linear over the field of size 2™, where m is
the number of bits of the Sbox, exactly as in the AES and several other ciphers
like LED [25], KLEIN [24], mCrypton [35], Prgst [27]... We give a new upper
bound on the two-round MEDP and MELP which supersedes the best previous
result [41], and which is not invariant under affine equivalence. This result is
combined with the lower bounds corresponding to some minimum-weight differ-
entials (or linear masks). We are then able to exhibit different behaviors regard-
ing differential and linear attacks on two rounds depending on the choice of the
Sbox within a given equivalence class. This includes some unexpected differences
since we point out that, for a given m-bit Sbox, the choice of the basis used for

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 47

defining the finite field in the description of the linear layer may also affect the
value of the two-round MEDP or MELP. This is due to the Fam-linearity of the
mixing layer.

More interestingly from the designers’ viewpoint, for some classical families
of Sboxes including all functions of the form A(z*) or (A(x))® where A is an affine
function, like the AES Sbox, our results yield some lower and upper bounds on
the two-round MEDP and MELP which are independent of the choice of the
MDS linear layer. In other words, we show that, for these families of Sboxes,
the two-round MEDP and MELP are two quantities which essentially depend
on the Sbox only. Therefore, the designer can choose an Sbox and get a precise
estimation of the corresponding two-round MEDP and MELP, while all previous
methods [28] involved the specifications of both the Sbox and the diffusion layer
together. As an illustration, we prove that the previously known upper bounds on
MEDP; and MELP; due to Park et al. [41] are always tight for the multiplicative
inverse over Fom and for any MDS linear layer. In other words, the inversion is
the mapping within its equivalence class which has the highest two-round MEDP
and MELP, independently of the choice of the MDS linear layer. This situation
mainly originates from the fact that this Sbox is an involution.

2 Maximum Expected Differential Probability and Linear
Potential for Substitution-Permutation Networks

2.1 Substitution-Permutation Networks

One of the most widely-used constructions for iterated block ciphers is the
so-called key-alternating construction [15,18] (aka iterated Even-Mansour con-
struction), which consists of an alternation of key-independent (usually similar)
permutations and of round-key additions. The round permutation usually follows
the principles introduced by Shannon. It is decomposed into a nonlinear substi-
tution function Sub which provides confusion, and a linear permutation which
provides diffusion'. In order to reduce the implementation cost of the substi-
tution layer, which is usually the most expensive part of the cipher in terms of
circuit complexity, a usual choice for Sub consists in concatenating several copies
of a permutation S which operates on a much smaller alphabet. In the whole
paper, we will concentrate on such block ciphers, and use the following notation
to describe the corresponding round permutation.

Definition 1. Let m and t be two positive integers. Let S be a permutation
of F3' and M be a linear permutation of F3'*. Then, SPN(m,t,S, M) denotes
any substitution-permutation network defined over F§'* whose substitution func-
tion consists of the concatenation of t copies of S and whose diffusion function
corresponds to M .

! Here, the terminology substitution-permutation has to be understood in a broad sense
without any restriction on the linear permutation, while in some other papers, it is
limited to the class of bit permutations.

48 A. Canteaut and J. Roué

For instance, up to a linear transformation, two rounds of the AES can
be seen as the concatenation of four similar superbozes [20]. The superbox,
depicted on Fig. 1, is linearly equivalent to a two-round permutation of the
form SPN(8,4,5, M) where the AES Sbox S corresponds to the composi-
tion of the inversion in Fis with an affine permutation A. More precisely,
S(z) = Aot (p(x)?*) where ¢ is the isomorphism from F§ into Fas defined
by the basis {1,a,a?, ..., a"} with a a root of X® + X4 + X3 + X + 1.

b

L[T]

Fig. 1. The AES superbox

Differential [5] and linear [37,44] cryptanalyses are the most prominent sta-
tistical attacks. The complexity of differential attacks depends critically on the
distribution over the keys k of the probability of the differentials (a, b), i.e.,

DP(a,b) = Prx[Ep(X) + Ex(X +a) =]

where Ej, corresponds to the (possibly round-reduced) encryption function under
key k. This probability may highly vary with the key especially when a small
number of rounds is considered (see e.g. [32], [19, Section 8.7.2], [21], [22] and
[7]). But computing the whole distribution of the probability of a differential is
a very difficult task, and cryptanalysts usually focus on its expectation.

Definition 2. Let (Ek)kng be an r-round iterated cipher with key-size k. Then,
the expected probability of an r-round differential (a, b) is

EDPF (a,b) = 27" Y Prx[Ex(X) + Ex(X +a) =1b] .
kEFg

The maximum expected differential probability for r rounds is

MEDPZ = max EDPZ(a,b) .

)

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 49

The index in MEDPZ will be omitted when the number of rounds is not specified.
It is worth noticing that the MEDP is relevant for estimating the resistance
against classical differential cryptanalysis, not against its variants like truncated
differential attacks (which provide better attacks on the AES since the AES
resists differential cryptanalysis by design).

Similarly, the resistance of a cipher against linear cryptanalysis can be eval-
uated by determining the distribution over the keys of the correlation of each
r-round mask (u,v):

C(U,U) —9—n Z (_1)u~a:+v»Ek(ac),

zCF}

where n is the block-size. For a key-alternating cipher with independent round
keys, the average over all keys of the correlation C(u,v) is zero for any nonzero
mask (u,v) (see e.g. [19, Section 7.9] or [1, Prop. 1]). Then, the major parameter
investigated in this paper is the variance of the distribution of the correlation,
which corresponds to the average square correlation. The way it affects the com-
plexity of linear cryptanalysis is discussed for instance in [1,19,33,38,40].

Definition 3. Let (Ex)rery be an r-round iterated cipher with block-size n and
key-size k. Then, the expected square correlation (aka linear potential [40]) of
an r-round mask (u,v) is

2

ELP/ (u,v) =272"7% 3 [Y (—p)wetv B

kEFs \zcFy
The maximum expected square correlation for » rounds is

MELPZ = max ELPZ (u,v).

2.2 Known Results on Two-Round MEDP and MELP

Computing the MEDP and MELP for an SPN, even for a small number of
rounds, is usually non-trivial. An easier task consists in computing the expected
probability of an r-round differential characteristic (i.e., a collection of (r+1) dif-
ferences), or the expected square correlation of a linear trail (i.e., a collection of
(r + 1) linear masks). In particular, a simple upper bound on this quantity can
be derived from the differential uniformity [39] (resp. the nonlinearity) of the
Shox, and from the differential (resp. linear) branch number of the linear layer.
We will then extensively use the following notation for these quantities.

Definition 4. Let S be a function from F3' into F3'.
— For any a and b in F§', we define
6%(a,b) = #{z € F, S(x + a) + S(x) = b} .

The multi-set {6%(a,b), a,b € FJ'} is the differential spectrum of S and its
mazimum A(S) = max,.o 6°(a,b) is the differential uniformity of S.

50 A. Canteaut and J. Roué

— For any u and v in F3*, we define

Wilu,) = 3 (—1etese)

zeFy

where - is the usual scalar product in F5*. The multi-set {W°(u,v), u €
F',v € FI'} is the Walsh spectrum of S, and its highest magnitude L(S) =
MaXy, y£0 |Ws(u7v)‘ is the linearity of S.

The branch number of the diffusion layer then determines the minimum num-
ber of active Sboxes within a differential or linear trail.

Definition 5. [15] Let M be an Fa-linear permutation of (F5*)t. We associate
with M the codes Cpy and Ciy of length 2t and size 2t over ' defined by

Car = {(c, M(c)), c € (FF)'} and Cyy = {(M*(c),c), c € (F5')'},

where M* is the adjoint of M, i.e., the linear map such that x- M (y) = M*(z)-y
for any (x,y). The differential branch number (resp. linear branch number) of
M is the minimum distance of the code Cpr (resp. of Ciz).

From Singleton’s bound, the maximum branch number of M is (¢t + 1) and is
achieved when Cj; is MDS. Since the codes Cp; and C]\L/I are dual to each other,
M has optimal differential branch number if and only if it has optimal linear
branch number. A simple upper bound for both the two-round MEDP and MELP
can then be derived from the branch numbers of M, and from the differential
uniformity and the linearity of the Sbox (see [26] and [19, Section B.2]):

MEDP, < (27™A(S))" and MELP, < (27"£(5))* . (1)

This result has then be refined in [14,41].

Theorem 1 (FSE 2003 bounds). [14,/1] Let E be a block cipher of the form
SPN(m,t,S, M) where M is a linear permutation with differential (resp. linear)
branch number d (resp. d*). Then, we have

MEDPY <279 max | max 6%(a,7)?, max (v, 0
5 < ex Z @), max Zﬂ 9%nD)
vyE(F3) YE(FT)

MELPY < 2724 max | max E V\/S(u77)2d7L max E Ws(v,v)le
u€(Fy)~ 2
ye(Fz)* ye(FF)*

It is worth noticing that the FSE 2003 bounds always supersede (1).

The main question is now to determine the gap between the FSE 2003 bounds
and the exact values of MEDP, and MELP; for a given cipher. An interesting
property is that the FSE 2003 bound is invariant under affine equivalence, i.e.,
under left or right composition of the Sbox with an affine permutation. Actually,
the following well-known property holds.

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 51

Lemma 1. Let S be permutation of F* and Ay and As be two affine permuta-
tions of FJ*. Then S’ = As 0 S o A satisfies

6% (a,b) = 65(L(a), Ly (b)) and W3 (u,v)* = W ((L11)* (u), L3(v))?

where Ly and Lo correspond to the linear parts of Ay and As, and L* denotes
the adjoint of L.

However, while the previous bounds are invariant under affine equivalence, it
appears that the exact values of MEDPs; and MELPs may vary when the Sbox
is composed with an affine permutation. For instance, for the AES with its
original Sbox, the exact values of the two-round MEDPy and MELPs have been
computed by a pruning search algorithm [28]: MEDPy = 53x273% and MELP; =
109,953,193 x 2754 ~ 1.638 x 2728, But, if the AES Sbox is replaced by the so-
called naive Sbox [17], obtained by removing the affine permutation from the
AES Sbox, MEDP, = 79 x 273% [20] which corresponds to the FSE 2003 bound.
To our best knowledge, the exact value of MELP, for the naive Sbox has not
been computed, but we will deduce from our results in Section 4.3 that, for the
multiplicative inverse over Fom and any MDS Fam-linear layer, the FSE 2003
bound is always tight. In particular, for m = 8, MELP, = 192,773, 764 x 27%% ~
2.873x2728 Then, the AES Sbox provides a better resistance against differential
and linear cryptanalyses for two rounds of the AES than the naive Sbox. More
generally, it has been conjectured in [17, Conjecture 1] that, for any number of
rounds 7, MEDP,. is smaller for the AES Sbox than for the naive Sbox.

2.3 SPNs over Fam

A special case of affine equivalent Sboxes corresponds to the mappings over
F15' which are derived from the same function over the finite field Fam, but from
different correspondences between Fam and the vector space F3'. Such equivalent
Sboxes appear in several situations. Indeed, a simple construction for an optimal
linear layer consists in choosing for M a permutation of F3'* associated with a
code Cp; which is linear over the field Fom, where m is the size of the Sbox.
Then, this diffusion layer has to be defined over Fi.., instead of F5*. To this
end, we need to identify the vector space F5' with the finite field Fam by the

means of an isomorphism ¢ associated to a basis (aq, ..., Qmn—1), namely:
p: Fy — Fom
m—1
(IEQ, e 7l’m_1) — Zi:O Ty .

Then, both the Sbox and the diffusion layer can be represented as functions over
the field Fom by

S=poSop tand M =goMogp ',

where ¢ is the concatenation of ¢ copies of . In this case, as noticed in [19,
Section A.5], any r rounds of SPN(m, ¢,.S, M) can be written as " 1oAddy, o...o

52 A. Canteaut and J. Roué

R o Addg, oR o Addy, op where the round function R = Mo (S,...,S) is a
permutation of (Fam)" and Add, denotes the addition of z in (Fam)’. Obviously,
composing by @ at the beginning and by @~ ! at the end changes neither the
MEDP nor the MELP. This implies that MEDP% and MELPZ depend on M
and S only, i.e., on the representations of the Sbox and of the diffusion layer
over Fom. In particular, the choice of the basis (cw, ..., xm—1) has no influence
on the differential and linear properties of the cipher. For this reason, we use the

following alternative notation for defining an SPN from these representations.

Definition 6. Let m and t be two positive integers. Let S be a permutation
of Fam and M be a permutation of (Fam)t which is linear over Fom. Then,
we denote by SPNp(m,t,S, M) a substitution-permutation network defined over
(Fam)t whose substitution function consists of the concatenation of t copies of S
and whose diffusion function corresponds to M.

For the sake of clarity, all quantities related to the representation in the field
Fym will be indexed by F', and all functions defined over Fom will be denoted by
calligraphic letters. As pointed out in [23], the differential and linear properties
of any SPN(m,t,S, M) can be equivalently studied by considering the alterna-
tive representation SPNg(m, t,S, M). This alternative analysis then involves the
differential spectrum and the Walsh spectrum of the Sbox S over Faom, which
are related to the spectra of the corresponding function S over F3* as follows.

Proposition 1. (see e.g. [25]) Let (ao, ..., am—1) be a basis of Fam, and ¢ the

corresponding isomorphism from F3' into Fom. Let S be a mapping over F3*,

and S = po So L. Then, for any (a, 3) € Fom,
0p(a,) = #{z € Fom,S(z +) + S(z) = B} = 6° (¢~ " (@), 7' (8))
Wile,8) = Y (1)@ = Wi (41 (), v 1(8))
z€EFom

where 1 is the isomorphism from F3' into Fom defined by the dual basis, i.e.,
the basis (Bo, ..., Pm—1) such that Tr(a;0;) =0 if i # j and Tr(ayf3;) = 1.

3 New Upper Bounds on the 2-Round MEDP and MELP

Now, we study the exact values of the two-round MEDP and MELP for any
cipher of the form SPN(m,t,S, M) where the diffusion layer M is linear over
Fom, like in the AES. We aim at obtaining a better approximation of the MEDP,
and MELP, by finding some improved lower and upper bounds. In particular,
we would like to be able to differentiate affine equivalent Sboxes.

3.1 The New Upper Bounds

From now on, when considering a cipher of the form SPNg(m,t,S, M), ér(a, 5)
and Wr(a,) will denote the differential and Walsh spectra of the Sbox S. The
considered Sbox will be mentioned in the notation in case of ambiguity only.

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 53

Theorem 2. Let E be a block cipher of the form SPNg(m,t,S, M) where M is
linear over Fom and has differential (resp. linear) branch number d (resp. d*).
For p € Fom and u > 0, we define

— U (d—u)
Bulp) = max > el) Sr(vA+ p B (2)
YEFm
1 _ 2u 2(d+—w)
By (1) a’ﬂr’≶”w; Wi (0, 7)*Wrg (YA + 1, B) . (3

B(u) = max B,(u) and B-(p) = max Bl (u).

1<u<d 1<u<dt

Then,

MEDPZ < 274 max B(u) and MELPY < 272" max B (p).
pneEFom HEFm

The proof is given in Appendix A. It mainly exploits the special form of the
codewords in an Fam-linear code (see Lemma 2 in Appendix A). In the whole
paper, the proofs in the context of differential attacks and of linear attacks are
similar. Actually, all results can be written in a more generic way, by replacing
the 2™ x 2™ matrix with coefficients 27™0r (v, 3), «, 8 € Fom, or with coef-
ficients 272" Wr(a, 8)?, by any matrix (A, 8))a,seFym,» such that the coeffi-
cients A(a, 8) lie between 0 and 1 and satisfy A(a,0) = A(0,a) = 0 for any
nonzero a and > _gcp. A,) = 5cp,, A(B,a) =1 for all a € Fam. Clearly,
both normalized differential and Walsh spectra satisfy these conditions.

Computing this new bound is obviously more expensive than computing the
FSE 2003 bound since we have to take the maximum of a similar quantity over
all A and p. We will see in Section 4 that this bound simplifies in some cases, for
instance for all Sboxes corresponding to the composition of a power permutation
with an affine mapping, like the AES Sbox. Also, we will show that this refined
bound may enable us to deduce the exact values of the MEDPs; and MELP5 in
a much more efficient way than the ad hoc search algorithm presented in [28].

In the case of the AES Sbox over Fas and d = d+ = 5, these new bounds lead
to MEDP, < 55.5x 2734 instead of MEDP, < 79x 2734 for the FSE 2003 bound,
and MELP, < 31, 231, 767 x 2752 instead of MELP, < 48,193, 441 x 2752, This
seems to be a minor improvement since there is only a factor p ~ 0.7 between
the two bounds. However, in AES-like constructions, the 2-round MEDP and
MELP correspond to the average differential uniformity and linearity of the
average superbox. Upper-bounds on the 4-round MEDP and MELP can then be
derived from these values using (1). Then, we get a factor p=1 (resp. p? —1)
between the bounds on MEDP, and MELP,.

While the FSE 2003 bound corresponds to the highest d-th power moment of
arow or a column in the difference table of the Sbox (or in the square correlation
table), our new bound involves together a row and a column in the table. In
other words, this new bound depends on the link between some quantity (e.g. a
derivative or the squared Walsh transform of a component) for S, and the same

54 A. Canteaut and J. Roué

quantity for the inverse permutation S~!. This clearly appears when S has a
two-valued differential spectrum, since the expression of B(u) simplifies to

B(p) = A(S)dmﬁ{r;g)lg*m # (IM(DaS) N [NM(DS™) +4d])

where D, S denotes the derivative of S at point «, i.e., the function z +— S(x +
a) + S(z). Similarly, if S is a plateaued function [45], i.e., a function whose
Walsh spectrum contains the values 0 and +££(.5) only, we get

—

1 _ 2d+ -1 N
B (p) = L(S) aﬁr&g;m#(swp(&)n ASUPP(SBHMD ,

where S, denotes the Boolean function z — Tr(aS(z)), and f denotes the
Walsh transform of f, ie., a = > cp (—1)Tr((@)+az) Tt appears from these
formulas that the cardinality of the intersection of such sets cannot exceed the
cardinality of each set (equal to 2™/A(S) and 22™/L(S)? respectively), and
that this maximum is obviously tight when S is an involution, i.e., S™! = S.
But when the Sbox is composed with a randomly chosen affine permutation,
the two sets can be considered as independent. Then, the expected cardinality
of their intersection is about 2m7% = 2™/A(S)? (resp. 272 = 23™/L(S)*)
where ma = 1/A(S) is the proportion of nonzero elements within a row or a
column of the difference table, and 7, = 2™ /L(S)? is the proportion of nonzero
elements within a row or a column of the square correlation table. For instance,
for an almost bent Sbox, i.e., with m odd, A(S) = 2 and £(S) = 2("+1/2 the
expected cardinality of the two sets involved in the previous formulas is 22,
while it is equal to 2™~! when S is an involution. More generally, our new upper
bound is always smaller than or equal to the corresponding FSE 2003 bound,
with equality when § is an involution, as stated in the following proposition (see
the proof in Appendix A).

Proposition 2. Let S be a permutation of Fom and d be some positive integer.
Then, each of the two upper bounds defined in Theorem 2 is less than or equal to
the corresponding FSE 2003 bound. Moreover, equality holds if S is an involution,
since for any integer u < d,

max B, (u) = B,(0) = max Z or(a,7)? = ,max Z 5p (7, b)?

HEFm aGF;m

Ly — rlqy — 2d _ 2d
and max Bl (p) = B (0) = max Z Wr(a,) = hax Z Wr(7,0)"".

neEFom aEF;m

3.2 Some Lower Bounds

An interesting question is to determine whether these new bounds are optimal, in
the sense that, for a given Sbox, there exists a linear layer such that the bounds
are tight. Here, we exhibit some functions M with optimal branch number such

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 55

that the EDP (resp. ELP) of some minimum-weight differential (resp. linear
mask) over two rounds is related to the upper bound of Theorem 2. This lower
bound results from the fact that the minimum-weight codewords with a given
support in an Fom-linear MDS code form a set of the form {Ac, A € F3..} for
some fixed codeword c. Such a set is named a bundle in [20]. It is not difficult to
observe that B(0) (resp. B+(0)) corresponds to the maximum EDP (resp. to the
maximum ELP) of some particular minimum-weight bundles. Moreover, for any
such particular bundle, a function M such that C contains this bundle can be
constructed from some Generalized Reed-Solomon code.

Proposition 3. Let S be a permutation of Fom and t be any integer such that
t < 2™~ Then, there exist two Fom -linear diffusion layers My and My over
Fi.. with mazimal branch number d = t+ 1 such that any block cipher Ey of the
form SPNg(m,t,S, M1) and Ey of the form SPNg(m,t,S, Ms) satisfy

MEDPJ" > 27D B(0) and MELPS? > 272m(t+D gL ()
where B(0) and B(0) are defined as in Theorem 2.

Proof. We give here the proof for MEDPs only, but it is similar for MELPs.
Actually, the pr0p051t10n can be formulated in a generic way as the results
in Appendix A. Let & ﬁ)€ F2m and 1 < u < t be some values such that
> yery, 0r(@,7)" B (A, B)T1T = B(0). Let a € Fh. be the input difference
whose first & coordinates equal @ and whose last (¢t —u) coordinates equal 0. Sim-
ilarly, b € F%,. denotes the output difference whose first (¢ + 1 — @) coordinates
equal E and whose last (@ — 1) coordinates equal 0. Since

EDPQ(G M(Z <H5F ai, Ci > H6F(Ct+jabj))

ceCpm =1

it is equal to B(0) if the words of the form

v(1,...,1,0,...,0,X,...,X,0,...,0) (4)
H/—/W—/W—/W—/
t+1—7u u—1

a t—u

are the codewords in Cx having the same support as (a, b). Therefore, we aim at
finding a linear MDS diffusion layer M such that Caq contains these codewords.

Since t < 2™~! we can choose 2t distinct elements z1, ..., 2y in Fyn. For any
choice of 2t elements vy, ..., v9:, we define the ¢ x t matrix
-1
1 1 .1 1 1 1
T1v1 T2V2 ... Tl Tt41Vt41 Tp4-2Vt42 ... T2tV
2 2 2 2 2 2
R=| z{v1 302 ... ziw X | TE Vi1 ThoViq2 - ThU2¢
t—1 t—1 t—1 t—1 t—1 t—1
Ty V1 Ty V2 ... Ty Ut .’ﬂtJrlUt_._l $t+2’l)t+2 co Loy Uzt

Then, the code Cpq = {(z,2R),x € Fh.. } is the generalized Reed-Solomon code
GRS¢(z1, ..., x2;v). It is well-known [36, Page 303] that this code is MDS and is

56 A. Canteaut and J. Roué

composed of all words of the form (vi F(x1),. .., v F (x2)) where F ranges over
all polynomials in Fom [X] of degree strictly less than ¢. Then, the codewords in
Cam having the same support as (a,b) correspond to the polynomials of degree
at most (¢ — 1) which vanish at all (¢ — 1) points z; for ¢ & Supp((a,b)). Then,
these polynomials can be written as 'yﬁ(x), v € F5n, and ﬁ(xl) # 0 for i €
Supp((a, b)) since F cannot have more than (t — 1) roots. Therefore, we can
choose for v a vector such that v; = 1/F(z;) for 1 <i < @ and v; = X/Z?(a:z) for
t+1<i<2t+1—u. This guarantees that the words in C having the same
support as (a,b) are the words of the form (4). It follows that

t+1—u
Z <H 5F ")/'Uz 2))) H (SF ’th+] ($t+j) E)

vEFS, \i=1 j=1

> op(@,y) % r(yA, BT

YEFm

EDP,(a, M(b))

O

Remark 1. In some particular cases, we can find a generalized Reed-Solomon
code corresponding to a linear layer M for which the two bounds hold together.
Indeed, we want to construct a code Caq which contains the words (4) and whose
dual C4, contains the words

¥(0,...,0,\ ..., \0,...,0,1,...,1)
N N N N —

t—u U a—1 t+1—u

for some given A and %. But the dual of GRS;(z1, ...,z v) is another general-
ized Reed-Solomon code, GRS;(z1, ..., 2o w) with w;l = v Hj#(xi +z;). In
particular, if @ 4+ @ = ¢, we can find a vector (vy,...,vy) such that both condi-
tions hold together. This situation occurs for instance when S is an involution
since B(0) (resp. B+(0)) is attained for all 4 < d (resp. for all @ < d*).

An interesting situation is the case where the maximum over all g € Fom of
B(u) (resp. of B+(p)) is attained for u = 0. Then there exists some M for which
the upper bound from Theorem 2 is tight for SPNg(m,t,S, M), implying that it
is impossible to find a general better bound which depends on S and ¢ only. This
situation occurs in particular for any involutional Sbox. Indeed, by combining
Prop. 2 and 3, we deduce that, for any involutional Sbox and any t < 2™~
there exists a linear layer over Fh,. such that the exact values of MEDP, and of
MELP> are equal to the FSE 2003 bounds.

Corollary 1. Let S be an involution of Fom and t be any integer with t < 2m~1,
Then, there exist an Fam -linear diffusion layer M over ¥, with mazimal branch

number such that SPNg(m,t,S, M) satisfies

ueore= e 3 (T520) a2 ()
2" YEF

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 57

B Wr(a,7))2 Wi (7,b))Y
and MELP; = arenl%}i Z (2m = max —om .
v

Proof. We know from Prop. 2 that for any u, max,cw,., Bu(1t) = B,(0) = B(0),
and max,eF,m Bu (1)t = B,(0)1 = B(0). Moreover, all these values are equal to
the FSE 2003 bounds. By combining Th. 2 and Prop. 3, we deduce the existence
of some linear layers for which MEDPs (resp. MELP3) are lower- and upper-
bounded by B(0) (resp. B+(0)). Moreover, we have proved in Prop. 2 that B(0)
(resp. B+(0)) is attained for all values of u. This is a case where we can construct
a GRS code satisfying the conditions for MEDP5; and MELP, together. O

Ezample 1. The Prgst permutation over F16¢ d > 1, is the core function of sev-
eral AEAD-schemes submitted to the CAESAR competition [27]. This permuta-
tion is of the form SPN(4,4d, S, M) where S is a 4-bit involution named SubRows
and M corresponds to the composition of two linear permutations, MixSlices
and ShiftPlanes. The round-constant addition is omitted here since it does not
have any impact in our context. Similarly to the AES, two consecutive rounds
of the Prgst permutation can be seen as the parallel application of d copies of
a superbox defined over Fig. This superbox corresponds to two SubRows layers
separated by a MixSlices transformation. Moreover, even if it is not mentioned
in the design rationale, it can be checked that MixSlices is linear over Fi4 if
F 6 is identified with F5 by the following isomorphism:

2
@ (x0,...,x3) — 21 + axg + w3 + a3z

where « is a root of X% + X3 + 1. Indeed, the function defined over Fi4 by
M = @oMixSlices o $~! corresponds to the multiplication by

1 a a+ao? o?

a 1 a2 a+a?
a+a? o 1 o

o2 a+a® « 1

The previous framework then directly applies?. In particular, since the Sbox is
an involution, our bounds are equal to the FSE 2003 bounds (Prop. 2): the Prgst
permutation with any Fa-linear MDS MixSlices transformation satisfies

MEDP; < 278 and MELP, < 278 .

These bounds are tight as stated in Corollary 1: using the construction described
in the proof of Prop. 3, we obtain that the following matrix over Fig (with the
previously described representation) leads to a variant of the Prgst permutation
with MEDP, = MELP, = 278:

2 We here focus on the MEDP and MELP of the SPN with the same building blocks as
the Prgst permutation, but these expectations do not provide any direct information
on the security of the Prgst permutation in which the key is fixed.

58 A. Canteaut and J. Roué

a?+a+1 oP4+a aB+a+11
a+l aP+a’l+acl+a+11
a?+1 aP+a?+1 al 1
a? o +a? a?+1 1

This implies that, for this particular Sbox, the MixSlices transformation must
be chosen with care to guarantee small MEDPy and MELP,. Instead, for some
Sboxes within the same equivalence class as SubRows, we can guarantee that, for
any Fig-linear MDS MixSlices, MEDP; < 3 x 2719, This does not make a big
difference in the case of Prgst since the alphabet is small and the exact MEDP,
and MELP5 can be easily computed. For instance, for the MixSlices transfor-
mation chosen by the designers, we have MEDPy = 3 x 27!! and MELP, =
81 x 2716, However, for Sboxes over Fas, computing the exact MEDP, and
MELPs is rather expensive and obtaining a better upper bound is very helpful.

3.3 Influence of the Field Representation

Clearly, there is no reason why the two-round MEDP or MELP should be the
same for affine equivalent Sboxes in general. Then, it makes sense that our
new bounds are not invariant under affine equivalence. More surprisingly, by
combining the upper bound from Theorem 2 with the lower bound provided by
Prop. 3, we can exhibit some examples showing that the choice of the field Fom,

i.e., the choice of the isomorphism ¢ between F5' and Fam, may influence the
value of the MEDP and MELP.

Ezample 2. Let us consider 2 rounds of a cipher of the form SPN(4,4,S, M),
where S is one of the permutations of F3 used in the PRINCE-family [9], namely
permutation Sg in [10, Table 3]:

3
13

T ‘O 1
S() [0 1

2 4 6 7 8 9 10 11 12 13 14 15
2 4 8

)
7 15 6 14 11 10 9 3 12 5

where each element in Fj is here represented as an integer between 0 and 15.
This Sbox is differentially 4-uniform and has linearity £(S) = 8. For this Sbox,
the FSE 2003 bound gives MEDPf < 34 x 2714, for any Fs-linear diffusion
layer M over Fi6 with branch number 5. If we now consider a diffusion layer M
with branch number 5 which is linear over Fos where Fos is identified with
F4 by the basis {1, a,a?,a3} where « is a root of the irreducible polynomial
X*+ X3+ X2+ X +1, we get from Theorem 2 that

MEDPEY < 33 x 2714

and this inequality holds for any such function M. However, we can now consider
a permutation M’ which is linear over Fy4, but where the isomorphism between
F4 and Fyi is defined by a different basis, namely {1, 3, 3%, 3%} where 3 is a
root of the primitive polynomial X# 4+ X + 1. Then, the value B(0) involved in

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 59

Prop. 3 equals 17 x 27, implying that there exists an Fas-linear function M’ with
branch number 5 such that

MEDPY =34 x 2714 |

which is strictly higher that the upper bound we have for any MDS diffusion
layer Fas-linear where Fa1 is defined with the basis {1, o, a?, a3}.

There is no contradiction here since the two theorems apply to the represen-
tations of the Sbox and of the diffusion function over Fys only. Here, we have
proved that there is a particular M’ such that SPN(4,4, 5,11 o M’ 0 ¢) has
MEDP; = 34 x 2714, where 7:/; is the concatenation of 4 copies of the isomorphism
1 from F3 into Fau defined by the basis {1, 3, 3%, 3%}. But if we consider the basis
{1,a,a?,a®} and the corresponding isomorphism ¢, Th. 2 provides a bound for
all SPNf(4,4,p0S5 0™t M) which does not include the previous case because
the permutation defined by M = @ o 1,/}1 oMo 120 @1 is not linear over Faa,
since (1o ~1) is not a ring isomorphism. This unexpected result comes from the
fact that the definitions of the Sbox and of the linear layer do not use the same
representation: the Sbox is defined over F3 while the linear layer is defined over
Foa. This is why the choice of the basis affects the MEDP while this is obviously
not the case when the two functions are defined over the same alphabet. But,
even if this does not correspond to a natural mathematical description, it may
be relevant to use the binary representation for the Sbox (chosen to minimize
the number of gates for instance), while the field representation is used for the
mixing layer since it is Fom-linear (see e.g. [25]).

It is worth noticing that the previous situation is not related to the fact that
one of the field representations is defined by a non-primitive polynomial. Indeed,
the following example shows that even changing the primitive polynomial used
for constructing Fom may affect the two-round MEDP and MELP.

Ezample 3. We now consider two rounds of a cipher SPN(5,4, .S, M) where S is
the following permutation of F3:

z (001 23456 78 9101112131415
()0 1 18202516 6 2717 3 221531 7 3026
r |16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(z)[4 232921 9 1024 2 14 5 13 8 28191211

S

When Fys is identified with F§ by the basis {1, o, o?, a®, a*} where « is a root of
the primitive polynomial X°+ X2+ 1, Theorem 2 shows that any MDS diffusion
layer linear over Fas with this representation satisfies

MEDPY < 13 x 2729 and MELPY < 8407 x 2727 .

When Fas is constructed from the primitive polynomial X° 4+ X3 + 1, the lower
and upper bounds from Th. 2 and Prop. 3 are equal, and show that there exists
some MDS layer linear over Fg9s with this alternative representation such that

MEDPY = 14 x 272 and MELPY = 8663 x 2727 .

60 A. Canteaut and J. Roué

The first primitive polynomial then guarantees lower two-round MEDP and
MELP than the second one.

Another example is the LED block cipher. In [25, Section 3.2], the design-
ers provide an upper bound on the four-round MEDP and MELP of a cipher
of the form SPNf(4,4,8, M)? where M is an Faa-linear function with branch
number 5, S corresponds to the Present Sbox and Fy4 is defined by the basis
(1,a, 02, a?), with a a root of X% + X + 1. To this end, they use the FSE 2003
bound, which leads to MEDP; < 278 and MELP; < 278, implying that
MEDP, < 2732 and MELP, < 2732, For this cipher, our new upper bound
is equal to the FSE 2003 bound and then does not improve the result. However,
if we consider the same Sbox, but modify the representation of F,1 and choose
the basis defined by X* + X3 4 1, Theorem 2 leads to MEDP, < 3 x 2710,
Then, with this minor modification, the upper bound on MEDP, is improved
by a factor (3/4)* = 0.3164 (while the bound on MELP, is unchanged).

4 Multiplicative Invariance for Sboxes

Power permutations are often considered as suitable Sboxes since determining
their differential and Walsh spectra is easier and also because they usually have
a lower implementation cost. This family of Sboxes is also of great interest in our
context since our bounds provide a very good approximation of the exact two-
round MEDP and MELP which depends on the Sbox and on the branch number
only. Indeed, for power permutations, we get a universal lower bound in the
sense that the bound provided in Prop. 3 holds for any Fom-linear permutation
M. This comes from the fact that all rows in the difference table (resp. in the
correlation table) of a power permutation can be deduced from a single one. This
is because any power function S is an endomorphism over the multiplicative
group F5., i.e., S(xy) = S(x)S(y) for any pair of nonzero elements (z,y).
Unfortunately, there is no hope to capture a larger family of Sboxes with a
straightforward generalization of this property since it can be easily shown that
any function S satisfying S(zy) = S(z)S’(y) for some S’ is of the form S(x) =
cx®. However, we can define this suitable multiplicative property on the difference
table (resp. on the Walsh transform) of S, and not on the function itself.

4.1 Generalizing the Multiplicative Property

Definition 7. Let S be a mapping of Fom.

—- S is said to have multiplicative-invariant derivatives if, for any x € Fi..
there exists a permutation 7, of F5.. such that

Or(a,zy) = dp(mz(),y), Yy € Fin.

3 As for Prgst, this result does not directly apply to LED since the round keys are
inserted every four rounds only.

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 61

- S is said to have a multiplicative-invariant Walsh transform if, for any = €
F3.. there exists a permutation v, of F5.. such that

We (o, 2y)* = Wr(¥2(a),y)?, Yy € Fh.

These definitions include all functions resulting from the composition on the right
of a power permutation with an Fy-linear permutation (cf. proof in Appendix B).

Proposition 4. Let S = 8’ o L where L is an Fa-linear permutation of Fom
and 8" : x — x° is a power permutation over Fom. Then, both the derivatives of
S and its Walsh transform are multiplicative-invariant.

It is worth noticing that the fact that a permutation has multiplicative-invariant
derivatives (resp. Walsh transform) does not imply that a similar property holds
for its inverse. In other words, Prop. 4 does not apply to the composition on the
left of a power permutation with a linear permutation. The following proposi-
tion shows that the permutations with multiplicative-invariant derivatives (resp.
Walsh transform) are not all affine equivalent to a power permutation.

Proposition 5. Let m be an odd integer and S be a quadratic permutation
of Fom with A(S) = 2 (aka APN permutation). Then, S has multiplicative-
invariant derivatives and S~ has a multiplicative-invariant Walsh transform.

This result actually applies to a (possibly) more general class of permutations
known as crooked permutations, which includes all quadratic APN permutations
(see details in Appendix B). Prop. 5 applies for instance to the infinite family of
APN permutations of degree 2

Pk ICREE S

T — x2i+1 + uzr Wlthgcd(27m) =1 and] = Zm/3 mod 3

over Fom, m odd, divisible by 3 and not by 9, which is not affine equivalent to

a power mapping [12].

4.2 A Universal Lower Bound for Sboxes with Some Multiplicative
Invariance

We now show that for Sboxes with multiplicative-invariant derivatives (resp.
Walsh transform), the previously established bounds simplify.

Proposition 6. Let S be a permutation of Fom such that either S or S™' has
multiplication-invariant derivatives (resp. Walsh transform). For any integers d
and d*, we define

B, (p) = max Z Sp (0, 7) " 0r (v + 11, 8), with 1 < u < d,

0 fEFy Lo
om
Bi(w) = max ST Wrla,)2 Wr(y + u, 829, with 1 < u < d* .
BEFS,

YEF m

62 A. Canteaut and J. Roué

Then, for any u, we have

B.(0) = B,(0) and max B,(u) = max B, ()

HEF;, HEFS,

resp. BX(0) = B/ (0) and max Br(u) = max B (u),
HEFS HEF M

where By (1) and B (1) are defined as in Theorem 2.

It follows that the upper bounds defined by Theorem 2 simplify to

E —md / E —2md™* /L
MEDP; <2 11;132[#renljslz)x B, (1) and MELP; < 2 1;12}; Hgl}g;{ B ().

More interestingly, we now get some universal lower bound on MEDPs and
MELPs, i.e., which hold for any diffusion layer with maximal branch number.

Theorem 3. Let S be a permutation of Fom. Then, for any Fom -linear diffusion
layer M over (Fam)t with mazimal branch number d =t + 1, the MEDPy and
MELP; of any block cipher E of the form SPNg(m,t,S, M) satisfy the following.

If both S and S~' have multiplicative-invariant derivatives, then

MEDPE > 27m(+ max B (0);

if both S and S~' have a multiplicative-invariant Walsh transform, then

MELPE > g=2m(t+1) max. B(0) ;
<u<

if S has multiplicative-invariant derivatives (resp. Walsh transform), then
MEDPY > 27m(+VB1(0), resp. MELPY > 272m(t+1 gt (),

— if 871 has multiplicative-invariant derivatives (resp. Walsh transform), then

MEDPZ > 27D B! (0), resp. MELPY > 272m(t+D gL (),

Let us focus on all permutations of Fos of the same form as the AES Sbox:
S(x) = A(2?%), where A is an Fa-affine permutation of Fas. Since S™! has
multiplication-invariant derivatives and Walsh transform (cf. Prop. 4), we derive
from Theorems 2 and 3, and Prop. 6 that, for t = 4,

274081 (0) < MEDP; < 27%° max max Bl (1)
1<u<d peF s,

and Z_SOBfﬁ(O) < MELP; < 278 max max B;l(,u) .
1<u<4 p€eFg
These bounds do not depend on the isomorphism between F§ and Fys since their
expressions do not involve any multiplication in Fgs, while this was not the case
of the more general bound in Theorem 2. Then, we get the following results for
different choices of the affine permutation A.

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 63

— For the affine function A used in the AES, SPNr(8,4, S, M) satisfies
53 x 273 < MEDP, < 55.5x27%* and 1.638x272% < MELP, < 1.86x2™%®

for any Fas-linear MDS diffusion layer M and any isomorphism between Fos
and F§. The exact values for the diffusion layer used in the AES correspond
to the lower bounds in both cases. But, we have exhibited in Prop. 3 an
MDS diffusion layer for which MELPy > 1.66 x 2728, Then, the choice of
the MDS linear layer affects the value of MELPy within this interval.

— For the affine function A’ used in SHARK [42] and SQUARE [16] which are
two predecessors of the AES, SPNg(8,4,S, M) satisfies

53x273* < MEDP, < 56x273% and 1.7169%x27 28 < MELP, < 1.9847x2~28

for any Fys-linear MDS diffusion layer M. Then, the affine function chosen
in the AES Sbox offers a slightly better guarantee than the one chosen in
SQUARE. Indeed, it is impossible with the SQUARE affine function to obtain
a two-round MELP which is as small as the one of the AES. Note that the
isomorphism between F§ and Fys is different in SQUARE and in the AES [2].

— We have exhibited a linear permutation A” of F§ for which the corresponding
Shox is such that SPNg(8,4,S, M) satisfies

MEDP; = 56 x 273% and 1.8354 x 2728 < MELP, < 1.8684 x 2728

for any Fys-linear MDS diffusion layer M. Then, this Sbox always provides
a higher two-round MEDP than the AES Sbox.

Even if we are not able to explicitly construct an affine permutation A which
minimizes the values of MEDP5 and MELP,, our results clearly simplify the task
of the designer. Indeed, the affine permutation A and the diffusion layer M can be
chosen separately since a very good estimate of MEDPy and MELP; is obtained
independently of the diffusion layer. This is more efficient than computing these
values for many pairs (A4, M).

4.3 Involutions with Some Multiplicative Invariance

A particular case of interest is when S is an involution with multiplicative-
invariant derivatives (or Walsh transform). Then, the lower bound in the previous
theorem corresponds to the upper bound in Theorem 2, and both values are equal
to the FSE 2003 bound.

Corollary 2. Let S be an involution of Fom with multiplicative-invariant deriva-
tives (resp. Walsh transform). Then, for any t and any Fam-linear diffusion
layer M over Fh,.. with branch number t + 1, any block cipher of the form
SPNg(m,t,S, M) satisfies

MEDPE = 27(*D max Y §p(a,)"+

a€FL, EFe
MELPE — 92m(t+1) 2(t+1)
resp > D > We(a,7)

64 A. Canteaut and J. Roué

The naive Sbox, i.e. the inversion in Fam, satisfies all hypotheses of the previous
corollary. The exact values of MEDPs and MELP; for an SPN combining the
naive Sbox over Fom and any Fom-linear layer with maximal branch number are
then always equal to the FSE 2003 bounds. For instance, for the two-round AES
with the naive Sbox, we have MEDPy = 79 x 273* and MELP, = 48,193,409 x
2752 and this is independent of the Fos-linear MDS layer. In particular, the exact
MEDP5; and MELP; do not depend on the field representation since Coro. 2
provides the same value for any basis. Also, this explains why, among all Sboxes
in the same equivalence class, the naive Sbox is the one which leads after two
rounds both to the highest MEDP and to the highest MELP for any Fom-linear
diffusion layer with maximal branch number. And this situation is independent
of the size of the Sbox, and of the choice of the Fom-linear MDS layer.

5 Conclusions

We have improved the general upper bounds on the two-round MEDP and MELP
for a given Sbox over F5" and any Fam-linear diffusion layer with given branch
numbers. One of the main properties of these new bounds is that they are not
invariant under affine equivalence, and then they enable the designers to choose
an appropriate Sbox within an equivalence class, independently of the diffusion
layer. These bounds point out the importance of some interactions between the
Sbox and its inverse. In particular, the involutions play a special role since there
always exists some diffusion layer for which both MEDPs and MELP; achieve the
highest possible value we can obtain for an Sbox in the same equivalence class.
Also, we have shown that, for the Sboxes with multiplicative-invariant derivatives
or Walsh transform, we can compute a lower bound on MEDP,; and MELP,
independently of the choice of the MDS diffusion layer. This result applies for
instance to all Sboxes of the form z — A(z®), as in the AES. In particular,
we have proved that, independently of the specifications of the MDS diffusion
layer, the naive Sbox leads to the highest possible MEDP,; and MELP,. The
exact MEDP, and MELP,; may even vary with the basis used for defining Fom.
Our work then raises several open questions. We have shown that involutional
power permutations are the weakest Sboxes in their equivalence class whatever
MDS linear layer is chosen. For involutions which do not have any multiplicative-
invariant property, this result holds but for some MDS layers only. Then, it would
be interesting to determine whether this weakness is more general, and whether
an involution is always the worst choice within an equivalent class. This issue is
of practical interest since involutional Sboxes are a natural choice for minimizing
the implementation overhead of decryption on top of encryption. Another open
question is whether the use of an involutional Sbox, especially of the naive Sbox,
introduces a similar weakness for a higher number of rounds, in the sense of
the conjecture in [17]. The difficulty comes from the fact that, exactly as for
the FSE 2003 bound, applying our upper bound twice successively requires the
knowledge of the whole difference table of the superbox. Our new bound can then
be combined with (1) only, to get a bound of the 4-round MEDP and MELP.

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 65

Acknowledgments. The authors would like to thank Daniel Augot, Matthieu Fini-
asz, Marfa Naya Plasencia for valuable discussions, and the reviewers for their con-
structive comments.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Abdelraheem, M.A., Agren, M., Beelen, P., Leander, G.: On the distribution of
linear biases: three instructive examples. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 50-67. Springer, Heidelberg (2012)

. Barreto, P.S.: Implementation of the SQUARE block cipher. http://www .larc.usp.

br/~pbarreto/sqjava2l.zip

. Bending, T.D., Fon-Der-Flaass, D.: Crooked Functions, Bent Functions, and Dis-

tance Regular Graphs. Electr. J. Comb. 5 (1998)

. Bierbrauer, J., Kyureghyan, G.M.: Crooked binomials. Designs, Codes and Cryp-

tography 46(3), 269-301 (2008)

Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology, 3-72 (1991)

Biryukov, A., De Canniere, C., Braeken, A., Preneel, B.: A toolbox for cryptanal-
ysis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33-50. Springer, Heidelberg (2003)

Blondeau, C., Bogdanov, A., Leander, G.: Bounds in shallows and in miseries.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
204-221. Springer, Heidelberg (2013)

Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
388-404. Springer, Heidelberg (2013)

Borghoff, J., Canteaut, A., Giineysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yal¢in, T.: PRINCE — A low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASTACRYPT 2012. LNCS, vol. 7658,
pp. 208-225. Springer, Heidelberg (2012)

Borghoff, J., Canteaut, A., Giineysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalgin, T.: PRINCE - A Low-latency Block Cipher for Pervasive Computing
Applications (Full version). IACR Cryptology ePrint Archive 529 (2012)
Brinkmann, M., Leander, G.: On the classification of APN functions up to dimen-
sion five. Designs, Codes and Cryptography 49(1-3), 273-288 (2008)

Budaghyan, L., Carlet, C., Leander, G.: Two Classes of Quadratic APN Binomials
Inequivalent to Power Functions. IEEE Transactions on Information Theory 54(9),
4218-4229 (2008)

Canteaut, A., Charpin, P.: Decomposing bent functions. IEEE Transactions on
Information Theory 49(8), 2004-2019 (2003)

Chun, K., Kim, S., Lee, S., Sung, S.H., Yoon, S.: Differential and linear cryptanal-
ysis for 2-round SPNs. Inf. Process. Lett. 87(5), 277-282 (2003)

Daemen, J.: Cipher and hash function design strategies based on linear and differ-
ential cryptanalysis. Ph.D. thesis, K.U. Leuven (1995)

Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149-165. Springer, Heidelberg (1997)
Daemen, J., Lamberger, M., Pramstaller, N., Rijmen, V., Vercauteren, F.: Com-
putational aspects of the expected differential probability of 4-round AES and
AES-like ciphers. Computing 85(1-2), 85-104 (2009)

http://www.larc.usp.br/~pbarreto/sqjava21.zip
http://www.larc.usp.br/~pbarreto/sqjava21.zip

66

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A. Canteaut and J. Roué

Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222-238. Springer, Heidelberg
(2001)

Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002)

Daemen, J., Rijmen, V.: Understanding two-round differentials in AES. In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78-94. Springer, Hei-
delberg (2006)

Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. Journal of Mathematical Cryptology 1(3), 221-242 (2007)
Daemen, J., Rijmen, V.: New criteria for linear maps in AES-like ciphers. Cryp-
tography and Communications 1(1), 47-69 (2009)

Daemen, J., Rijmen, V.: Correlation analysis in GF(2"). In: Advanced Linear
Cryptanalysis of Block and Stream Ciphers. Cryptology and information security,
pp. 115-131. TOS Press (2011)

Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1-18. Springer,
Heidelberg (2012)

Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326-341. Springer,
Heidelberg (2011)

Hong, S.H., Lee, S.-J., Lim, J.-I., Sung, J., Cheon, D.H., Cho, I.: Provable security
against differential and linear cryptanalysis for the SPN structure. In: Schneier, B.
(ed.) FSE 2000. LNCS, vol. 1978, pp. 273-283. Springer, Heidelberg (2001)
Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalgin,
T.: Prgst v1.1. Submission to the CAESAR competition (2014). http://proest.
compute.dtu.dk/proestv1l.pdf

Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for
two-round Advanced Encryption Standard. IET Information Security 1(2), 53-57
(2007)

Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196-211. Springer, Heidelberg (1995)

Kyureghyan, G.M.: Crooked maps in Fan. Finite Fields and Their Applications
13(3), 713-726 (2007)

Lai, X.: Higher order derivatives and differential cryptanalysis. In: Symposium on
Communication, Coding and Cryptography. Kluwer Academic Publishers (1994)
Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17-38. Springer,
Heidelberg (1991)

Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a crypt-
analysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol.
6632, pp. 303-322. Springer, Heidelberg (2011)

Leander, G., Poschmann, A.: On the classification of 4 bit S-Boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159-176. Springer, Heidelberg
2007

£i1f117)C.H., Korkishko, T.: mCrypton — A lightweight block cipher for security of
low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243-258. Springer, Heidelberg (2006)

MacWilliams, F.J., Sloane, N.J.: The theory of error-correcting codes. North-
Holland (1977)

Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994)

http://proest.compute.dtu.dk/proestv11.pdf
http://proest.compute.dtu.dk/proestv11.pdf

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 67

38. Murphy, S.: The effectiveness of the linear hull effect. J. Mathematical Cryptology
6(2), 137-147 (2012)

39. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55-64. Springer, Heidelberg (1994)

40. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439-444. Springer, Heidelberg (1995)

41. Park, S., Sung, S.H., Lee, S.-J., Lim, J.-I.: Improving the upper bound on the max-
imum differential and the maximum linear hull probability for SPN structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247-260. Springer,
Heidelberg (2003)

42. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., Win, E.D.: The cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99-111. Springer,
Heidelberg (1996)

43. Saarinen, M.-J.O.: Cryptographic analysis of all 4 x 4-bit S-boxes. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 118-133. Springer, Heidelberg
(2012)

44. Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 172-182. Springer,
Heidelberg (1992)

45. Zheng, Y., Zhang, X.-M.: Plateaued functions. In: Varadharajan, V., Mu, Y. (eds.)
ICICS 1999. LNCS, vol. 1726, pp. 284-300. Springer, Heidelberg (1999)

A Proofs of Theorem 2, Prop. 2 and 6, and Theorem 3

The new upper bounds on MEDP,; and MELP, exploit the particular structure
of the codewords in an Fom-linear code, which is related to the notion of bundle
introduced in [20]. In particular, we use the structure of the subsets of the code
of the following form.

Definition 8. Consider a word ¢ of length n and a subset I C {1,...,n}. The
decomposition of ¢ with respect to I is denoted by (x,y)r: x corresponds to the
restriction of ¢ to I, and y corresponds to the restriction of ¢ to the complement
subset I. For the sake of simplicity, the |I| coordinates of x (resp. the coordinates
of y) will be indexed by the elements of I (resp. of I), i.e., x; = c; for alli € I
and y; = c; for all j € I.

Lemma 2. Let C be a linear code of length n, dimension k and minimum dis-
tance d over Fom. For any subset I C {1,...,n} of size (n — d), and any
x € (Fom)" %, we define

Z(ILx)={y :(z,y)r €C}.
Then, for any I of size (n —d),

— either Z(1,0) is empty or there exists some yo € (F5..)? such that Z(1,0) =

{71/07 ve FQ""};
~ For any x # 0, either Z(I,x) is empty or there exist some yo € (F5.)¢ and
some 1y € (Fam)9 such that Z(I,z) C {y1 +vyo, v € Fam }.

68 A. Canteaut and J. Roué

Proof. — Assume that Z(I,0) is not empty. Since C is Fam-linear, for any
Yo € Z(1,0), (0,y0) belongs to C, implying that all v(0,y¢); with v € Fam
belong to C too.

— Let x # 0. Since the result obviously holds if |Z(I,z)| < 1, we suppose that
|Z(I,z)| > 2. For any distinct y and ¢ in Z(I,z), we get that both ¢ = (z,%);
and ¢ = (z,y'); belong to C, implying that (y + y’) € Z(I,0). From the
previous result, there exists some yo such that y+y' = vyo for some v € Fam.
It follows that y’ is of the form 3’ = y + vyyo. Since wt(c + ') = wt(y + ')
cannot be less than d, all coordinates of yy should be nonzero. O

A.1 Proofs of Theorem 2 and Proposition 2

As in [41], we will use the following generalized version of Holder inequality.

Lemma 3. [/1, Lemma 1] Let {x , 1 < j <p, be p sequences of n real
numbers. Then

S

n

> f[wﬁ” < H (Z x§”|p>
i=1 |j=1 j=1

Now, we prove the following generic version of Theorem 2.

Theorem 4. Let m and t be two positive integers. Let A be a 2™ x 2™ matrix
with coefficients A(a, 3), (a, B) € (Fam)?, in [0;1] such that A(a,0) = A0, a) =
0 for any a # 0, and

Y Aa,B)= D AB,a)=1, foralla € Fym.

BEFm BEFm

Then, for any Fom -linear code C of length (2t) with minimum distance d and for
any nonzero a and b in Fh,., we have:

t
b_z HAa ci) H (ct < max max B,
Aa (v +» b 1<u<d p€Fqm (1)

ceC \i=1

where B,(1n) = max Z A A(YA + p, B)%

a,B,AEF, EF i

Proof. Let a, b be nonzero elements of (Fam)!. For any codeword ¢ such that
Supp(c) # Supp(a,b), there exists ¢ € {1,...,t} such that A(as,cp) = 0 or
A(Ct+g,b[) =0. Then,

t t
Aop = > (H Afas, Ci)) IT Alerssnb9)
Supp(a,b) Jj=1

c€C:Supp(c)= i=1

We assume that wt(a) + wt(b) > d, otherwise the value A, is equal to zero,
as there is no ¢ € C such that Supp(c) = Supp(a, b). Then we can choose a pair

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 69

of subsets I; and Iy of {1,...,t} such that I; C Supp(a), Ir C Supp(b) and
|I1] + |I2| = d. We decompose any codeword ¢ whose support equals Supp((a, b))
into two parts: ¢ = (y,z);r where I = ({1,...,t}\ 1) U{t + j,j & I2}. In other
words, y corresponds to the restriction of ¢ to the positions outside I; and I,
while = corresponds to the other d positions. Recall that, following Definition 8,
the coordinates of y (resp. of z) are indexed by the elements of I (resp. of
L Uu{t+4j,j € L}). Then, for Z(I,y) ={z : (y,z); € C},

Agp = Z H A(ai,yi) H AYirj,b5) | Qap(l,y) (5)

yerrnd \igh il

where Q. (I, y) Z <H A(a;, x Z)) H A(xeqj,b5)
)

zeZ(l,y) \i€ly VISP

We aim at finding an upper bound on Q, (I,y). Let w = |I1|. From Lemma 3,

1
u

Qap(I Z H Alai, x;) HA(xt'i‘j?bJ)

z€Z(l,y)i€h jEI,

< H Z A(ai, z;)" HAl'tJrj»

i€l |z€Z(1,y) JEl2

For any ¢ € I;, we apply Lemma 3 again:

Z A az,xz <H A :Ef+]7 >— Z H (A(ai,xi)ﬁA(xtH,bj))

xz€Z(1,y) Jj€Il2 zeZ(1,y)j€l2

SH(Z A(ai,xi)u/\(mt+j7bj)du)

JjeIx \z€Z(1,y)

Now, we know from Lemma 2 that, if Z(I,y) # (), there exist a € (Fim)?
and 3 € (Fam)? such that Z(I,y) C {ya + (3,7 € Fam}. Then, for any pair
(i,4) € I x Iy, we can write:

Z Aag,)" A2y, b)) < Z Alag, vai + Bi) “Mvarj + Bigs b))
xe€Z(1,y) YEFm
Z A(ai7 VI)UA(’YI)\ + M, bj)d_u)

vV EFSm

where the last equality is obtained by replacing va; + 3; by 7' since «; # 0, and
by setting A = oztﬂ-a;l and pu = Biqj + atﬂ-a;lﬂi. Moreover the sum can be

70 A. Canteaut and J. Roué

taken over all nonzero 7 since A(a;,7’) = 0 for 4/ = 0. Let

— u d—u
Bu= s, o 2, Alaa)"AA+umhT.
YEEym

Then, we get

1
d—
ul w) u(d—u)

Qap(l,y) < H H Z Aas, i) My, 0;)0" < By =B,

i€l jelz \z€Z(1,y)

Using (5) and > 5cp , A, B) =3 cr,.. Ala, B) =1, we eventually deduce

Map =Y | TTMaows) | | T] Awersiby) | Qan(l,9)

yeFrnt \igh ¢l

< B, Z H Alai,y;) H A(yt+jvbj) <B,. o

yeFnd \igh €1

Theorem 2 is derived by observing that, up to a constant factor, Ay, =
EDPs(a, M(b)) for Ala,B) = 27™dp(w, B) and C is the code Cpq defined in
Definition 5, while A, = ELP2(a, (M*)71(b)) for Ala, 8) = 272" Wp(a, 8)?
when C is the code C1, and M* denotes the adjoint of M.

In the same way, we now prove the following generic version of Prop. 2.

Proposition 7. Let m and d be two positive integers and A be a 2™ x 2™ matrix
satisfying the same hypotheses as in Theorem 4. Then, for any 1 < u < d and
any p € Fom , we have

< A(A(
B, (1) < max arenax Z (a,7) ,max Z (7,

~YEF, YEFsm

Moreover, if Ala, 3) = A(B,a) for any (o,) € (Fam)?, we have that, for any
1<u<d,

max B, (pu) = B,(0) = max E A(a,7)? = max A(v,b)?.
pneEFom CLGF;m EFSWL
YEFSm YEFSm

Proof. Lemma 2 implies that, for any set of p sequences {xfj r,,1<ji<p,

n p

zz:];[(@) <1r£]a§pZ|x(J)|p

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 71

Using this inequality with p = d, we get that, for any 1 < u < d, a, 8, A € F5..
and p € Fom

Z Ao, YA 41) Ay,)% < max Z Ao, 7)? Z A(YA + p, B)?

'YGanL 'YEFzm 'YGFQTn

Since A # 0, we have ZveF;m Ay p, B)4 = Ev'ngm A(, 3)%. The inequality
then follows.
Now, we assume that A(a,b) = A(b,a) for any pair (a,b). Then,

ZAa'y A(YA + p, B)% ZA By A+ p)

YEF m YEFm

For p = 0, the maximum of this value over all nonzero «, 3, A is then greater
than or equal to the value obtained for § = o and A = 1, implying that

Z Ao,)" Ala,v)4" = Z A

’YGF;nL 'Yerm,

Then, max,cr;,, Z%F;m A(a,7)? is a lower bound for B,(0), and then for

max,, B, (u). Since we have proved that it is also an upper bound, we conclude
that both quantities are equal. O

A.2 Proofs of Proposition 6 and of Theorem 3

We now prove that for any Sbox S such that either S or S~! has multiplicative-
invariant derivatives (resp. Walsh transform), the bound defined in Theorem 2
simplifies as explained in Prop. 6. Again, we give a generic version of this propo-
sition which captures both settings.

Proposition 8. Let m and d be two positive integers and A be a 2™ x 2™ matrix
satisfying the same hypotheses as in Theorem 4. Let

B, (u) = o ax Z Ao, 7) Ay + 1, B) W with 1 <u < d .
’ om ’YEF;m

Assume that one of the following two conditions holds:

(i) for any x € F5.. there is a permutation 7, of Fi. such that Ala,zy) =
Ay (@), y), Yy € Fin s

(ii) for any x € Fi. there is a permutation ¢, of Fin such that A(zy,a) =
Ay, e(a)), Vy € Fim.

Then, the quantities B, (1) defined in Theorem 4 satisfy

B,(0) = B, (0) and max B,(u) = max Bl (1) .

PEFS,, HEF S,

72 A. Canteaut and J. Roué

Proof. Tf Condition (i) holds, we have for any «, 3, A € F5.. and any p € Fam,
Bu(o, B A1) = > Ao,)" A(yA+ p, B)*

YEF m
> M AT 4) A)T = Bu(ma-i (a), 8,1, 1) -
V' EFm
The result then follows. If (ii) holds, we get By (a, 3, A, 1) = By (v, ¥a(8), 1, uA™1)
in a similar way. a

A generic version of Theorem 3 is then the following.

Theorem 5. Let m and t be 2 positive integers and A a 2™ x 2™ matrixz satis-
fying the hypotheses of Th. 4. Assume that one of the following holds:

(i) for any x € F5.. there is a permutation 7, of Fan such that Ao, zy) =
A (@), y), Yy € Fin s

(ii) for any x € Fi. there is a permutation 1, of Fi. such that A(zy,a) =
Ay, va()), Vy € Fim.

Let MA be defined by

t
MA_(%E;)B (HA az,Cz) HA(Ct+j7bJ)
J=

with C any Fam -linear code of length 2t, dimension t and dyiy, =t + 1. Then,

— If both (i) and (ii) hold, then MA > maxi<y<q B,,(0).
— If (i) holds, then MA > B;(0).
— If (ii) holds, then MA > B{(0).

Proof. For any fixed u, 1 < u < t, we consider Q, B\ € F%,. some values for which
S A@) Al B = BL(0) .
YEF m

Since C is MDS, any set of (¢t + 1) positions is the support of a minimum-weight
codeword [36, Page 319]. Let then ¢ € C with support 7 = {1,...,u} U{t +
1,...,2t +1 —u}. From Lemma 2, we know that the codewords with support I
are the elements vc¢,v € F3... We now examine the 3 cases.

— If both (i) and (ii) hold, then for any pair (a,b), we have

Aoy = Z <H A(ay, Ci)) H Alcttj, b))

ceC

t t
5 (HAW,%) TT A, b,
Jj=1

NEFS, \i=1

> (HAmaz) 1:[1/\7%“ i)

PYGF;’NL =1

On the Behaviors of Affine Equivalent Sboxes Regarding Differential 73

We choose a and b as a; = 71';1(62) for1 < i < u, a; = 0 otherwise, and

bj = 1/1;}”_ (B) for 1 < j <t+1—u, b; =0 otherwise. Then, for these values,

Aa,b = Z <H A(aa 7)) H A(fY’ B) = B; (O) :

YEF,m \i=1

Since such a pair (a,b) can be defined for any 1 < u < d, we deduce that
MA Z maxi<uy<d 8;(0)

— If only (i) holds, then we consider « = ¢ and we define a and b by a; =
7l @ for1<i<t b =0 and b; =0 for j > 1. Then, we get

CiCyiq

Aap= Y (HM%’Y@) A(veit1,b1)
i=1

YEFLm \i=

= > (HA(az‘m/Cin+11)> A(Y',b1)

v EF%, \i=1
t
Z (H A(ﬂ-cic;rll (a’i)ﬂf}/)> A(’Y/?bl)
v EFm \i=1

> A@Y)AW,B) = Bj(0) .

RS e

— Ifonly (ii) holds, then we choose u = 1 and define ¢ and b by a; = @, a; = 0 for
i>1,and b; = <p_1; _1(B) for 1 < j < t. Then we get that A, = B7(0) O

Ct4+5Cq

B Proofs of Propositions 4 and 5

We now prove that for any mapping S = &’ o0 A where A is an Fa-affine permuta-
tion of Fom and &’ : x — x*, both the derivatives of S and its Walsh transform
are multiplicative-invariant.

Proof. From Lemma 1, it is known that
67 (a,b) = 67 (L(a),b) and Wi (a,b)* = W ((L71)"(a),b)*
where L : 2 — A(z) + A(0). Since §’(x) = x*°, we have
53 (a,bc) = #{x € Fom, (z + a)® + 2° = b}
= #{z € Fam, (¢ "z +c%a)” + (¢ °2)* = b} = 6% (¢ °a,b)

where x — x° is the compositional inverse of &', i.e., e is the inverse of s
modulo (2™ — 1), and

Wi (a,be) = Y (—1)Trlberten) = N () Trbyracy) W (cmeq, b) .

xEFom zEFom

74 A. Canteaut and J. Roué

Therefore, it follows that
5}3((1, be) = 51‘§,(c76L(a), b) = 5}2(776((1), b) with m.(a) = L™ (¢ °L(a)) ,

and Wi (a,be) = Wi (¢c=(L7")*(a),0)? = Wi (te(a), b)

)
with ¥.(a) = L*(c=¢(L71)*(a)), since (L~1)* = (L*)~!. Clearly, both 7. and 1,
are permutations for any nonzero c. O

Now, we prove a generalized version of Prop. 5, which applies to a (possibly)
larger family of mappings named crooked permutations.

Definition 9. [3] A function S from Fam into Fam is said to be crooked if, for
any nonzero & € Fom, Im(D,S) is a linear or affine subspace of codimension 1,
where DoS 1z — S(r + o) + S(x).

It is known that all crooked permutations are APN and almost bent [3], and
exist for m odd only. Clearly, any quadratic APN permutation is crooked. And
it is highly conjectured that the crooked functions exactly correspond to the
quadratic APN functions. This has been proved in [30] in the case of monomial
functions and in [4] in the case of binomials. Now we can prove the following.

Proposition 9. Let S be a crooked permutation. Then, S has multiplicative-
invariant derivatives and S~ has a multiplicative-invariant Walsh transform.

Proof. Since § is a permutation, for any nonzero a, D,S cannot vanish implying
that Im(D,S) is an affine hyperplane. Moreover, it is known that the (2™ — 1)
affine hyperplanes corresponding to Im(D,S) for all a # 0 are distinct [13,
Lemma 5]. Therefore, there exists a permutation ¢ of Faom with ¢(0) = 0 such
that Im(D,S) = Fam \ {¢(a))* for any nonzero a. Moreover, it is known (see
e.g. [8]) that, for u,v € Fin,

W%(u, U) — Z (_1)Tr(au-i—bv)(st_a(a7 b) —omy Z (_1)Tr(au+bv)(SF(CL7 b).
a,beFom a,beFom ,a#0

The differential spectrum of S is determined by ¢: for any a # 0, dp(a,b) =
1 — (—1)T(¢(@)®) Then, for any v # 0, we get

Wl%-.(u7v) —9om 4 Z (_1)Tr(au+bv) _ Z (_1)Tr(au+bv+<p(a)b)
a,b€Fym a0 a,be€Fom a0
—9om _ Z (_1)Tr(au) Z (_1)Tr(b(v+go(a)))
a€F2m7a7éO bEFQnL

—om _ Qm(_l)Tr(ugp’l(v))
where the last equality uses the fact that ¢=!(v) # 0 when v # 0. It follows that
W%(a:y,v) —9om _ 2m(71)'ﬁ(wy¢_l(v)) —9m _ 2m(71)Tr(y<P_l(7Tz(v)))

where 7, (v) = p(x¢~t(v)). Moreover, for any nonzero x, 7, is a permutation.
O

Random Number Generators

A Provable-Security Analysis
of Intel’s Secure Key RNG

Thomas Shrimpton®™® and R. Seth Terashima

Department of Computer Science, Portland State University, Portland, USA
{teshrim,seth}@cs.pdx.edu

Abstract. We provide the first provable-security analysis of the Intel
Secure Key hardware RNG (ISK-RNG), versions of which have appeared
in Intel processors since late 2011. To model the ISK-RNG, we gen-
eralize the PRNG-with-inputs primitive, introduced by Dodis et al. at
CCS’13 for their /dev/[u]random analysis. The concrete security bounds
we uncover tell a mixed story. We find that ISK-RNG lacks backward-
security altogether, and that the forward-security bound for the “truly
random” bits fetched by the RDSEED instruction is potentially worrisome.
On the other hand, we are able to prove stronger forward-security bounds
for the pseudorandom bits fetched by the RDRAND instruction. En route
to these results, our main technical efforts focus on the way in which
ISK-RNG employs CBCMAC as an entropy extractor.

Keywords: Random number generator - Entropy extraction - Provable
security

1 Introduction

In late 2011, Intel began production of Ivy Bridge processors, which introduced
a new pseudorandom number generator (PRNG), fully implemented in hard-
ware. Access to this PRNG is through the RDRAND instruction (pronounced
“read rand”), and benchmarks demonstrate a throughput of over 500 MB/s on
a quad-core Ivy Bridge processor [10]. The forthcoming Broadwell architecture
will support an additional instruction, RDSEED (“read seed”), which delivers true
random bits, as opposed to cryptographically pseudorandom ones. Both RDRAND
and RDSEED fall under the Intel Secure Key umbrella, so we will refer to the new
hardware as the ISK-RNG [11].

The ISK-RNG has received a third-party lab evaluation [8], commissioned
by Intel, but has yet to receive an academic, provable-security treatment along
the lines of that given the /dev/[ulrandom software RNGs by a line of papers
[1,5,7,13]. We provide such a treatment.

Our abstract model for the ISK-RNG is that of a PRNG-with-input (PWT),
established by Barak and Halevi [1] and extended by Dodis et al. [5]. To better
capture important design features of the ISK-RNG we make several improve-
ments to the PWI abstraction, which have significant knock-on effects for the

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 77-100, 2015.
DOI: 10.1007/978-3-662-46800-5_4

78 T. Shrimpton and R.S. Terashima

associated security notions. Our results establish the security of the ISK-RNG
relative to these notions. Our findings are mixed, suggesting that in some cases
RDSEED may not be as secure as one might hope, but with stronger results for
RDRAND.

The ISK-RNG architecture. A
detailed description of the ISK-
RNG can be found in Section 3,
but we’ll provide a short sketch
here. At a high-level, the ISK- TN
RNG consists of four main com- = }_>H oalth Test > Sondierer »
ponents, as shown in Figure 1. At J—
the heart is the hardware entropy

. . ES: Entropy source
source, which uses thermal noise DRBG: Deterministic random
to generate random bits and then bit generator
writes them into a 256-bit raw-
sample buffer. This buffer is sub-
jected to a battery of heuristic
health tests, which try to deter-
mine if the buffer contents are sufficiently random. The raw entropy bits are
not assumed to be uniformly random — they may be biased or correlated. So a
conditioner (i.e. an entropy extractor), repeatedly reads from this buffer, combin-
ing multiple 256-bit samples and compressing them into a single 128-bit string,
hopefully one that is close to uniformly random.

These uniform bit strings then periodically reseed a deterministic PRNG
(based on CTR-AES), providing a high-speed source of pseudorandom bits. Calls
to the RDRAND instruction read from these bits, whereas calls to RDSEED will read
directly from the conditioner output.

RDRAND

Fig. 1. Overview of the ISK-RNG

1.1 Security Findings for the ISK-RNG

We consider security of the ISK-RNG relative to four PWI-security notions,
adopted (with modifications) from Dodis, Pointcheval, Ruhault, Vergniaud and
Wichs [5] (hereafter DPRVW): resilience, the apparent randomness of RDRAND
and RDSEED outputs; forward security, the apparent randomness of previous
RDRAND and RDSEED outputs once the PWI state is revealed; backward secu-
rity, the apparent randomness of future RDRAND and RDSEED outputs from a
corrupted PWI state; and robustness, the apparent randomness of RDRAND and
RDSEED outputs when state observation and corruption may happen at arbitrary
times.

Using estimates for the quality of the entropy source derived from the findings
of [8], we are able to show the following results (in a random permutation model):

1. As far as the resilience of RDRAND and RDSEED is concerned, RDRAND deliv-
ers pseudorandom bits with a comfortable security margin. On the other
hand, RDSEED delivers truly random bits but with a security margin that

A Provable-Security Analysis of Intel’s Secure Key RNG 79

becomes worrisome if an adversary can see a large number of outputs from
either interface. If he controls an unprivileged process on the same physical
machine, this could happen very quickly.

2. For forward security, RDRAND and RDSEED also provide these respective secu-
rity margins, as long as one is willing to make some reasonable assumptions
about the adversary’s limitations.

3. The ISK-RNG does not provide backward security because the hardware
indefinitely retains stale state when the ISK-RNG is not in active use. How-
ever, we are able to quantify the lifespan of this information when the ISK-
RNG is in active use, thus proving backwards security and a read-only form
of robustness against a class of “slow” adversaries.

Interpretation. In this context, forward security, backward security, and robust-
ness are only relevant to those concerned about attackers who (1) are able to
obtain physical access to the machine and (2) sophisticated enough to read
or tamper with registers directly (the registers in question are not accessible
through software, even by the operating system). Moreover, the window of oppor-
tunity for an attacker trying to compromise forward security (i.e., trying to
reconstruct past random values given current access to the machine) is under a
millisecond, barring pathological failures of the entropy source. Hence we suspect
most practitioners will be concerned only with resilience.

As far as resilience, then, we prove RDRAND to be secure under a reasonable
set of assumptions regarding the quality of the entropy source and a reasonable
but heuristic assumption regarding AES-128: namely that it can be modeled as
a random permutation when used with a specific fixed, publicly known key. We
provide concrete, quantitative analysis in Section 7.3; the results are encouraging.

The situation with RDSEED is more complicated, because the security bounds
become quantitatively quite weak in this context. We believe, but cannot prove,
that this weakness does not correspond to a practical attack. Our suspicion is
that an actual attack would require the adversary to have a precise physical
model of the entropy source (the exact parameters of which appear to change
from chip to chip [8]), and compute, by brute force, the distribution induced
by processing streams from this entropy source using CBC-MAC under the pre-
viously mentioned AES key. Such an attack would clearly be computationally
infeasible as long as the number of possible streams is large, but the relevant por-
tion of the security bound is for computationally unbounded adversaries. (Recall
that RDSEED is designed to provide truly random bits, rather than “merely” cryp-
tographically pseudorandom ones.)

The stronger RDRAND results hold even if an attacker can access both interfaces.

Analyzing the ISK-RNG Entropy Extractor. The core technical results of the
paper are concerned with analyzing the ISK-RNG entropy extractor, which
employs CBC-MAC over AES-128, using the fixed string AESg(1) as the AES
key. Although Intel documents [17] appeal to a CRYPTO’02 paper by Dodis,
Gennaro, Hastad and Krawcyzk [4] for support, this direct appeal is not well

80 T. Shrimpton and R.S. Terashima

founded. There are significant technical obstacles to overcome before these CBC-
MAC results can be applied. For example, because extractor-dependent state
is maintained across extractions (including state revealed to the adversary by
RDSEED), a crucial “seed independence” assumption is violated. The CRI report
[8], on the other hand, ignores the issue entirely by making an implicit assump-
tion that applying CBC-MAC-AES to an arbitrary input with 128 bits of min-
entropy will produce an output close to a uniformly random 128-bit string, an
assumption known to be false with respect to any entropy extractor (not just
CBC-MAQ) [15]. We discuss and resolve these issues in Section 4.

1.2 TImprovements to the PWI Model

For our abstract model, we take the pseudorandom number generator with input
(PWI) primitive, formalized by DPRVW as a model for /dev/[ulrandom. At a
high level, a PWI surfaces three algorithms: one to initialize the internal state
of the primitive, one that produces an output for use by calling applications
(updating the state in the process), and one that updates the state as a func-
tion of an externally provided input. Exposing an external input captures the
practical situation in which PRNG outputs may depend upon external sources
of (assumed) entropy.

One contribution of this paper is to generalize the PWI abstraction in ways
that better capture not only the ISK-RNG, but also, we hope, other real-world
PWTIs. These include allowances for: non-uniform state, as is common in real-
world PRNGs; realistic modeling of state setup procedures such as those in
ISK-RNG!; multiple external interfaces to the underlying state (e.g. RDRAND
and RDSEED, as well as /dev/[ulrandom); and blocking behaviors.

To deal with non-uniform state, we introduce an analytical tool called a
masking function. Loosely speaking, a masking function M is a tool for speci-
fying what the “ideal” version M (S) of any given PWI state S would be. This
allows us to give general results about PWI security (e.g. what can be achieved
when the state is ideal), yet admits per-scheme specification of what “ideal”
means. We define masking functions, and incorporate them into the DPRVW’s
security notions in such a way that their results can be quickly lifted to our
setting. Masking functions also allow us to frame an appropriate definition for
secure initialization: i.e.e does the setup procedure produce a state S that is
indistinguishable from M (S)?

2 Preliminaries

Notation. We denote the set of all n-bit strings as {0,1}", and the set of all
(finite) binary strings as {0,1}". Given z,y € {0,1}", both 2y and x || y denote
their concatenation, and |z| is the length of x. If |x| = |y|, x @ y is the bitwise
XOR of z and y. The symbol ¢ denotes the empty string. The set Perm (n)
denotes the set of permutations on {0,1}".

! See [6,9] for examples of what can go wrong when state initialization is weak.

A Provable-Security Analysis of Intel’s Secure Key RNG 81

When S is a finite set, we assume that it is equipped with the uniform dis-
tribution unless otherwise specified. For any distribution S, the notation X < S
indicates X is a random variable sampled from S. Similarly, if F is a randomized
algorithm, X < F(x1,...,x,) means that X is sampled from the distribution
induced by providing F with the indicated arguments. An adversary A is a ran-
domized algorithm, and we adopt the shorthand A = y to mean that when its
execution halts, it outputs y. When an algorithm P is provided oracle (black-box,
unit-time) access to an algorithm Q, we write P9.

Entropy and Sources. If X and X' are random variables, their statistical dis-
tance is A(X,X’) = 3 |Pr[X =z] —Pr[X’ = z]|, where the sum is over
the union of the supports of X and X’. The min-entropy of X is Hy, (X) =
—max, (logPr[X =x]), and the worst-case min-entropy of X given
X'is Hoo (X | X') = —log (max, , Pr(X =2 | X' =2']). When X is a ran-
dom variable and £ is some event, we denote by X|. the random variable
X conditioned on &; i.e., for any x in the support of X, Pr{ X|, =z] =
Pr[X=2z|&]

An entropy source D is a randomized algorithm that, given a state string
o € {0,1}", samples a tuple (¢/,1,7,2) € {0,1}" x {0,1} x Rx¢ x {0,1}".
Let (04, 1,7, 2i) < D(0i_1) be a sequence of samples, where oy = ¢, and i =
1,...,gp for some integer gp. We say that entropy source D is legitimate if
Hoo(I; | (I, 2i,7i)i#;) > ;- In this paper, we assume all entropy sources are
legitimate.

In this definition, 0,0’ € {0,1}" represent the current and new states for D,
respectively. The string I € {0,1}" is what will be to be fed as input to the
PWI, and should provide fresh entropy. The quantity v € R>¢ is an estimate for
the amount of entropy contained in I. We note that ~ is strictly a convenient
book-keeping device in the PWI model, and is not intended to reflect an actual
output of the entropy source being modeled. Our security notions will formalize
attacker capabilities of interest, but we also allow for side-information (about I
that an attacker might obtain through means not otherwise explicit in the model
(e.g. timing or power side-channels). This side information will be encoded in
the string z.

Cryptographic Building Blocks. A blockcipher is a function £ : {0,1}"x{0,1}" —
{0,1}" such that for each key K € {0,1}", E(K, "), written Ex(-), is a permuta-
tion on {0,1}". Given IV € {0,1}", K € {0,1}", and X; € {0,1}" for i € [0..v],
define

CTRY (X0 X)) = (Xo ® Ex(IV)) || -+ || (X, ® Ex(IV +v)).

(We define the + operator on {0,1}" as addition modulo 2" on the unsigned
integers encoded by the operands.) Further define

CBCMACY.(Xy -+ X,,) = CBCMACEXV & Xo)(x, ... x),

82 T. Shrimpton and R.S. Terashima

Es ES Shift Register ES: Entropy source
256 bits OSTE: Online self-tested entropy

CE: Conditioned entropy
Ny DRBG: Deterministic random bit generator
Health History
- <_ Health Test >
256 bits 0x00. . .000
] l

OSTE Queue DRBG
2x 256 bits

“_(CTR-AES) /
/ Condition "\ CE Buffer
_ (CBCMAC) / 256 bits

Output Buffers
8 64 bits

Reseed
_(CTR-AES) /

Fig. 2. Block diagram for Intel’s RDRAND implementation. The CBCMAC computation
uses AES-128 with the fixed key K’ = AESq(1). The DRBG runs AES-128 in counter
mode to produce {0, 1}12&3 bits of output; the first 256 bits are used to update the
key K and IV; the final 128 bits are sent to the output buffer, which is read by the
RDRAND instruction.

and CBCMACY (¢) = IV. Describing the standard CBCMAC algorithm in this
manner simplifies descriptions of programs that compute CBCMAC online. We
omit an explicit IV from the notation when IV = 0™. In this paper, the implicit
blockcipher E will always be AES-128 (k = n = 128).

The pseudorandom-permutation (PRP) advantage of an adversary A attack-
ing a blockeipher E : {0,1}" x {0,1}" — {0,1}" is defined as Adv"(A) =
Pr[AFx = 1] — Pr[A™ = 1], with probabilities over the coins of A and the

random variables K < {0,1}" and 7 < Perm (n).

3 The ISK-RNG Architecture

This section describes the design of the ISK-RNG. Unless otherwise noted, this
information comes from the CRI report [8]. The design can be divided roughly
into three phases: entropy generation, entropy extraction, and expansion. Raw
bits from the generation phase are fed into an entropy extractor, which is tasked
with turning biased or correlated bits into uniform random strings. The expan-
sion step uses these strings to seed a deterministic PRNG, which can produce
cryptographically pseudorandom outputs at high speeds.

The design is shown in Figure 2. In this figure, rectangular boxes indicate
values we consider part of the ISK-RNG state, hexagons indicate procedures that
read and modify the state, and the shaded arrows indicate assembly instructions
that allow (unprivileged) processes to read from the indicated buffer.

Entropy Generation, Health Tests, and “Swellness”. The hardware entropy source
(labeled ES) is a dual differential jamb latch with feedback; thermal noise resolves
a latch formed by two cross-coupled inverters, generating a random bit before the
system is reset. Bits from the entropy source are written into a 256-bit shift register.

Every 256 writes, the contents of the register are subjected to a series of
health tests. These count how many times certain specified bit strings appear,
and verify that the results are within normal limits. For example, the substring

A Provable-Security Analysis of Intel’s Secure Key RNG 83

010 may occur between 9 and 57 times, inclusive. These substrings and the corre-
sponding numbers of allowable occurrences are intended to catch pathologically
bad failures while keeping the false-positive rate low. (For reference, a uniformly
random 256-bit string would be flagged as unhealthy approximately 1% of the
time.) If the current ES register fails one of the tests, that 256-bit source-sample
is flagged as unhealthy. We refer interested readers to the CRI report [8] for a
more detailed description; for our purposes, it suffices to say there is some fixed
set H C {0, 1}256 of strings that pass the health tests. The health-history reg-
ister tracks how many of the last 256 samples passed the health test. This is a
first-in first-out buffer, where a 1-bit means that a sample was deemed healthy,
and a 0-bit mean that a sample was deemed unhealthy. The global health of the
ISK-RNG is captured by a property call swellness.

Definition 1 (Swell ISK-RNG). The ISK-RNG is said to be swell if at least
128 of the last 256 samples were healthy, i.e. if the health-history register contains
at least 128 1s. a

Whether or not the current sample passes the health test, it is appended to
the Online Self-Tested Entropy (OSTE) queue, and it is the OSTE queue that
provides input to the extraction phase.

Extraction. Strings in the OSTE queue are not assumed to be uniformly random.
Instead, each 256-bit entry is assumed to have a certain amount of min-entropy.
The CBCMAC construction, over AES with key K’ = AESq(1) [12], is employed
as an entropy extractor, in order to turn strings in the OSTE queue into two
128-bit conditioned entropy (CE) strings. These are held in the CE buffer, which
is initially all zeros, and are used to service RDSEED instructions and to reseed
the DRBG. An important property of the CE buffer is its availability.

Definition 2 (CE buffer availability). The CE buffer is available if (1) the
ISK-RNG is swell, and (2) both 128-bit halves of the CE buffer (CEq and CE;)
have been updated using m healthy OSTE values since the most recent RDSEED
call and the most recent DRBG reseeding. For Ivy Bridge chips, m = 2; for
Broadwell chips, m =3 [12]. O

When the CE buffer is not available, the hardware will replenish the OSTE
buffers with fresh entropy and feed them into a running CBCMAC calculation
until a sufficient number of healthy samples have been conditioned. So if at some
point CEy = X and then the CE buffer is used to service a RDSEED instruction
(making the CE buffer unavailable), the hardware will collect entropy strings
I, I, Is, ... € {0,1}*°° and reassign CEy <« CBCMACqo(X ;1515 - - -) online until
there exist 4; < iy < --- <y, such that I;, € H for j € [1..m] and the ISK-RNG
is swell. Then the processes will repeat for CE;.

The particulars of the way CBCMAC is used in the ISK-RNG extractor, along
with the notions of swellness and availability, play a large role in Section 4.

84 T. Shrimpton and R.S. Terashima

Expansion. To reseed the DRBG, the contents of CEy and CE; are used to
generate a key and IV (respectively) for counter mode encryption over AES.
This reseeding process only happens when the CE buffer is available. It takes
the current key and IV, (K,IV), and updates them by computing K || IV «—
CTRY(CE, || CE,). Initially, K = IV = 028, However, using CTR with this non-
random key is not a problem as long as the CE buffer is (close to) uniformly
random: since the CE buffer is XORed into the CTR keystream, it can act as a
one-time pad.

A pseudorandom value Ris generated by computing R|| K [|IV «— CTRY(
(Note that this process also irreversibly updates K and 1V, which helps provide
forward security.) The ISK-RNG writes R to an output buffer, which is read by
RDRAND. This FIFO output buffer [10] can contain up to eight 64-bit values. ISK-
RNG allows a maximum of 511 64-bit values to be generated between reseeding
operations; after this, it will only return Os and will clear the carry bit to signal an
error.

03-128)'

Setup. When the ISK-RNG powers on, the ISK-RNG performs a series of known-
answer, built-in self-tests. Then the conditioned entropy (CE) buffer is cleared
and the deterministic random bit generator (DRBG) is reseeded four times [12].
Each reseeding operation requires reconditioning the CE buffer until it is avail-
able. Finally, the system populates the eight output buffers using the DRBG.

Standards Compliance. Intel states [14] that ISK-RNG is compliant with NIST’s
SP800-90B & C draft standards. Whereas RDRAND can provide bit strings with
“only” a 128-bit security level (since it uses AES-128 in CTR mode), RDSEED
has no such limitation.

4 Analysis of the ISK-RNG Extractor

As we will see, some of the PWI-security results for the ISK-RNG are not as
strong as one might hope. Much of this is due to weak concrete bounds on its
CBCMAC entropy extractor, which is tasked with turning the presumably biased
and correlated bits from the entropy source into uniformly distributed strings.
Let us explain.

Previous CBC-MAC Results Are Not (directly) Helpful. A paper by Dodis, Gen-
naro, Hastad, Krawcyzk and Rabin [4] analyzes the security of CBC-MAC as
an entropy extractor, and their results are cited by Intel documents [17] to sup-
port the ISK-RNG design. Because generic PRFs-as-entropy-extractors results
[3] are too weak to be useful, the analysis of [4] takes place in the random per-
mutation model. That is, instead of considering CBC-MAC over a blockcipher
with a random key, they consider CBC-MAC over a random permutation. This
model is a heuristic: even, say, AES equipped with a random key would not be
a random permutation. In fact, CBC-MAC within the ISK-RNG uses AES with
the fixed key K’ = AES((1) (on all chips). This fact may strike one as alarming.

A Provable-Security Analysis of Intel’s Secure Key RNG 85

But we believe that a “nothing-up-my-sleeve” value for the extractor seed is a
reasonable choice. (Generating the seed from the entropy source would be highly
suspect from a theoretical perspective, because one requires that the extractor
seed be “independent” of the entropy distribution.)

Anyway, our primary goal here is to identify what we can say about ISK,
even if we're forced to use a heuristic model. Dodis et al.[4] provide the following
theorem:

Theorem 1 (CBCMAC entropy extractor [4]). Fiz positive integers k and L.
Let I € {0,1}"* be a random variable, R < {0,1}"* be a uniform random string,
and let m < Perm (k) be a random permutation. Then A((w, R), (m, CBCMAC,

(1)) < §y/28-He D 1 002,

Unfortunately, one cannot simply apply this theorem to the CBC-MAC-based
extractor used in ISK-RNG, without attending to the following two significant
obstacles:

(1) As we noted in Section 3, the CBCMAC-based extractor uses its own
previous output as the first block of its next input. Consequently, the CBCMAC
inputs are not independent of the seed. This pushes leftover-hash-lemma style
results like Theorem 1 out of scope, and furthermore prevents us from employing
a black-box hybrid argument to lift the results to the multiple-query setting.

(2) The O(L?) term is problematic, contributing a O(L/2*/?) term to bound.?
We note that this is significantly worse than the familiar O(L?/2%) “birthday
bound” — although the two both become vacuous when L ~ 25/2, the former vio-
lates a desired security level € < 1 much sooner (hidden constants being equal).
The weak bound is exacerbated by the fact that L may grow very quickly in the
ISK-RNG during periods of time when the CE buffer is not available.

Analyzing the CBC-MAC Extractor. In this section we present results that allow
us to overcome these hurdles, bringing Theorem 1 into scope. In particular, the
main technical result of this section is the following theorem. Loosely, it says that
we can still obtain a hybrid-like bound, even though a black-box hybrid argument
isn’t possible. Moreover, we can avoid the problem of “runaway” input strings
(resulting in large L) by, in effect, only counting a fixed-length prefix of such
strings.

Theorem 2. Fiz positive integers L, k, ¢ and n with ¢ < n. For i €
[1.n], let I € {0,1}" be random wvariables with lengths divisible by k,

2 A set of slides published by Intel [17] claims a much stronger result based on The-
orem 1. However, in addition to failing to account for point (1) above, the differ-
ence appears to stem from a mistake in translating notation. Specifically, the above
theorem from [4] writes the second term under the radical as K - e(L, K), where
e(L,K) = O(L?/K?) and in our notation K = 2¥. The Intel slides, however, appear
to have mistranscribed this term as L-e(L, K) (in their notation, L = b and K = 2™).
Since L < K for values of interest, Intel’s claim significantly underestimates the con-
crete security bound.

86 T. Shrimpton and R.S. Terashima

and sample R; < {0,1}". Fiz w< Perm(k). Define IF and IR to be the
unique strings such that |IF| = min{|L|,Lk} and I; = IFIR. Let
C; = CBCMAC,(Ci—1 || I;), where Cy is a random wvariable independent
0f7T and each I; and R;. Then A((w,Ch,...,Cq, Isq), (7, R1, ..., Ry, Isq)) <

\/Qk Hoo (I} | I>s, IR) O((LH)), where Isy, = (Ims1,-..,1In) for inte-

ger m

The proof is available in the full version of this document [16].

It remains to show that, with high probability, the (potentially) truncated
extractor input contains sufficient min-entropy. Note that making reasonable min-
entropy assumptions regarding the entropy source is not sufficient; for example,
the approximate 1% false-positive rate of the health tests on uniformly random
256-bit strings implies that there are at least 2247 unhealthy strings. Therefore the
entropy source could produce only unhealthy samples, resulting in unbounded L,
and still have high min-entropy. In order to avoid such pathological behavior, we
will later (in Section 7.2) need to introduce additional assumptions regarding the
rate at which the entropy source produces healthy samples. Ultimately, we will
choose L such that we have a high probability of never needing more that L/2
samples, but such that L/ 2k/2 is small, as this term will dominate our security
bounds.

5 Modeling the ISK-RNG as a PWI

Building upon DPRVW, here we define the syntax of a PWI. We give the syntax
first, and then discuss what it captures, pointing out where our definition differs
from DPRVW.

5.1 The PWI Model

Definition 3 (PWI). Let p, and ¢ be non-negative integers, and let
IFace, Seed, State be non-empty sets. A PRNG with input (PWI) with interface
set IFace, seed space Seed, and state space State is a tuple of deterministic
algorithms G = (setup, refresh, next, tick), where

— setup takes no input, and generates an initial PWI state Sy € State. Although
setup itself is deterministic, it may be provided oracle access to an entropy
source D, in which case its output Sy will be a random wvariable determined
by the coins of D.

— refresh : Seed x State x {0,1}” — State takes a seed seed € Seed, the current
PWI state S € State, and string I € {0,1}" as input, and a returns new state.

— next : Seed x IFace x State — State x ({0, 1}1g U{L}) takes a seed, the current
state, and an interface label m € IFace, and returns a new state, and either
£-bit output value or a distinguished, non-string symbol 1.

— tick : Seed x State — State takes a seed and the current state as input, and
returns a new state. O

A Provable-Security Analysis of Intel’s Secure Key RNG 87

We will typically omit explicit mention of the the seed argument to refresh,
next and tick, unless it is needed for clarity.

The setup algorithm captures the initialization of the PWI, in particular its
internal state. Unlike DPRVW, whose syntax requires setup to generate the PWI
seed, we view the seed as something generated externally and provided to the
PWI. Permitting an explicit setup procedure is necessary to correctly model ISK-
RNG and, more generally, allows us to formulate an appropriate security definition
for PWI initialization.

The refresh algorithm captures the incorporation of new entropy into the PWI
state. Like DPRVW, we treat the entropy source as external. This provides a clean
and general way to model the source as untrusted to provide consistent, high-
entropy outputs.

Our next algorithm captures the interface exposed to (potentially adversarial)
parties that request PWI outputs. By embellishing the DPRVW syntax for next
with the interface set interface, we model APIs that expose multiple functionalities
that access PWI state. This is certainly the case for the ISK-RNG, via the RDRAND
and RDSEED instructions, as well as /dev/[ulrandom. We also model blocking by
letting next return L.

The tick algorithm is entirely new, and requires some explanation. In the secu-
rity notions formalized by DPRVW, the passage of “time” is implicitly driven
by adversarial queries. (This is typical for security notions, in general.) But real
PRNGs like the ISK-RNG may have behaviors that update the state in ways that
are not cleanly captured by an execution model that is driven by entropy-input
events (refresh calls), or output-request events (next calls). The tick algorithm han-
dles this, while allowing our upcoming security notions to retain the tradition of
being driven by adversarial queries: the adversary will be allowed to “query” the
tick oracle, causing one unit of time to pass and state changes to occur.

5.2 Mapping ISK-RNG into the PWI Model

We now turn our attention to mapping the ISK-RNG specification into the PWI
model. Figure 3 summarizes the state that our model tracks. Figure 4 provides
our model for the PWT setup, refresh, next, and tick oracles. Two additional pro-
cedures, DRBG and reseed, are used internally.

6 PWI Security

Having defined the syntax for PWIs, we can now introduce corresponding security
notions. The basic notions are those of DPRVW, with a few notable alterations. To
handle issues of non-uniform state and (more) realistic initialization procedures,
we introduce a new technical tool, masking functions, that allows us to cleanly
address these issues.

88 T. Shrimpton and R.S. Terashima

Variable Bits Description

ESSR 256 Entropy source shift register
window 8 Counts new bits in the ESSR

82$E ;gg} Online self-tested entropy buffers
EE? gz} Conditioned entropy buffers

ptr 1 Tracks CE buffer to condition next
health 256 Tracks health of last 256 ES samples
K 128 DRBG key (For AES-CTR)

v 128 DRBG IV (For AES-CTR)

outi,..s 512 Eight 64-bit output buffers

outcount > 4 Counts number of full output buffers
count > 9 Counts DRBG calls since reseeding
CEfull 1 Set if CE buffers are available

block 1 Set if reseed has priority over RDSEED

Fig. 3. State variables of the ISK-RNG

6.1 Basic Notions

Here we define four PWI-security notions, in the game-playing framework [2]. In
each there is a (potentially adversarial) entropy source D, and an adversary A.
The latter is provided access to the oracles detailed in Figure 5 (top), and what
distinguishes the four notions are restrictions applied to the queries of the adver-
sary A. In particular, we consider the following games:

Robustness (ROB): no restrictions on queries.

Forward security (FWD): no queries to set-state are allowed; and a single query
to get-state is allowed, and this must be the final query.

Backward security (BWD): no queries to get-state are allowed; a single query
to set-state is allowed, and this must be the first query.

Resilience (RES): no queries to get-state or set-state are allowed.

See DPRVW for additional discussion. We note that all games share com-
mon initialize and finalize procedures, shown in Figure 5 (bottom). Thus, the
robustness-advantage of A in attacking G is defined to be Advfj‘)’bD(A) =
2Pr[ROBg p(A) = 1]—1. The forward security, backward security, and resilience
advantages Advfg"’v% (4), Advg‘:vg(A), and Advg'p(A) are similarly defined. It is
clear that robustness implies forwards and backwards security, and both of these
independently imply resilience.

We note that, because the PRNG cannot reasonably be expected to produce
random-looking outputs without sufficient entropy or with a known or corrupted
state, the various security experiments track (1) a boolean variable corrupt and
(2) a value v measuring the total entropy that has been fed into the PRNG since
corrupt was last set. These serve as book-keeping devices to prevent trivial wins.
The corrupt flag is cleared whenever v exceeds some specified threshold ~*.

A Provable-Security Analysis of Intel’s Secure Key RNG 89

Oracle setup(ES):

01 fori=1,2,3,4do
02 S.CEp «— CBCMAC - (S.CEp)
03 while S.ptr = 0 do

04 13 Es

05 S « refresh(S, I)

06 S.CE; «— CBCMAC -/ (S.CEq)
07 while S.ptr = 1 do

08 12 Es

09 S «— refresh(S, I)

10 S « reseed(S)

11 for :=1,3,5,7 do

12 (S, R) «— DRBG(S)

13 S.out; || S.out;41 — R
14 S.outcount «— 8

15 return S

Oracle DRBG(S):

16 SV «— S.IV+1

17 R « CTRY(0'?®)

18 if S.CEfull then

19 S« reseed(S)

20 else if S.count < 512

21 S.K || 8.V « CTRS 1.7 (0%°9)
22 S.count « S.count 4+ 1

23 else

24 return (S, 1)

25 return (S, R)

Oracle tick(S):

26 if S.CEfull and S.count > 0 then
27 S« reseed(.S)

28 return S

29 if S.count < 512 then

30 if S.outcount < 8 then

31 S.outcount «+ S.outcount 4+ 1
32 (S, R) = DRBG(S)

33 S.outoutcount — R

34 return S

35 return S

Oracle refresh(S, I):

shift(S.ESSR, I)
S.window «— S.window + 1 mod 256
if S.window = 0 then
shift(.S.health, isHealthy (S.ESSR))
S.OSTE; «— S.OSTE;
S.OSTE; « S.ESSR
i < S.ptr
Ij « I || S.OSTE2 // Record-keeping

S.CE; « CBCMACS % (OSTE2)

if sum(S.health) > 128 then
if isHealthy(OSTE2) then
S.samples <« S.samples + 1
if S.samples = m then
S.samples < 0
if S.ptr = 0 then
S.ptr — 1
else
S.ptr «— 0; S.CEfull — 1
C;.’ I C; «— S.CE // Record-keeping
j < j+1; // Record-keeping
return S

Oracle reseed(S):

S.K || S.V « CTRY. "' (S.CE)
S.CEg <+ CBCMAC g/ (S.CEp)
S.CE; < CBCMAC -/ (S.CE1)
S.count «— 0; S.CEfull — 0
S.ptr < 0; S.block < 0
return S

Oracle next(interface, S):

if interface = RDRAND then
if S.outcount = 0 then return (S, 1)
R < LSBg4(S.outy)
fori=1,...,7 do
S.out; < S.out;j4q
S.outcount < S.outcount — 1
return (S, R)
else if interface = RDSEED
if S.CEfull = 0 then
return (S, 1)
if S.block = 1, S.count > 0 then
return (S, 1)
R «— S.CEg || S.CE4
S.CEfull < 0; S.ptr — 0
S.CEp «— CBCMAC -/ (S.CEp)
S.CE; «— CBCMAC/ (S.CEy)
S.block «— 1
return (S, R)

Fig. 4. The above oracles describe the behavior of ISK-RNG from within the PWI
model. See Table 3 for a description of the state variables S.x. All bits are initially zero.
For Ivy Bridge chips, m = 2, and for Broadwell chips m = 3. The key K’ = AESo(1) is
fixed across all chips. The function shift(x, y) sets value of z to the right-most |z| bits
of z || y. Lines marked with a “Record-keeping” comment are there to aid in proofs and

exposition.

90 T. Shrimpton and R.S. Terashima

Oracle D-refresh: Oracle next-ror(m): Oracle get-next(m): Oracle get-state:
(0,1,7,z) S D(o) if corrupt then (S, R) « next(m, S) c—0
S « refresh(S, I) return L if corrupt then corrupt — true
ce—cH+n (S, Rg) « next(m, S) c—20 return S
if ¢ > v* then if Ro = L then return R
corrupt « false Ry — L Oracle set-state(S™):
return (7, 2) else $ B Oracle wait: c«— 0
R = {0,1} S — tick(S) corrupt < true
return Ry return & S — S*
Procedure initialize: Oracle ES: Procedure finalize(b):
o« 0; seed <& Seed; i «— 0 ikl if b= b* then
S «— setup® (0,1,7i,2i) — D(o) return 1
c «— n; corrupt « false return [else
return 0

b {01}
return (seed, (7v;,2;)5-1)

Fig. 5. Top: Oracles for the PWI security games. Bottom: the shared intialize and
finalize procedures for the PWI security games. Recall that the output of initialize is
provided to adversary A as input, and the output of finalize is the output of the game.

6.2 Masking Functions and Updated Security Notions

Asnoted earlier, the DPRVW security definitions assume the PWI state is initially
uniformly random. However, this does not realistically model the behavior of real-
world PWIs, notably ISK-RNG, which do not attempt to reach a pseudorandom
state; for example, they may maintain counters. (Indeed one can construct PWIs
that would be deemed secure when starting from a uniformly random state, but
that would not be secure in actuality; the reverse is also true. See the full version
of this paper [16] for examples.) Yet, clearly, some portion of the PWT state must
be unpredictable to an attacker, as otherwise one cannot expect PWI outputs to
look random.

To better capture real-world characteristics of PWI state, we introduce the
idea of a masking function. A masking function M over state space State is a
randomized algorithm from State to itself. As an example, if states consist of a
counter ¢, a fixed identifier id, and a buffer B of (supposedly) entropic bits, then
M (e,id, B) might be defined to return (¢, id, B") where B’ is sampled by M from
some distribution.

A masked state is meant to capture whatever characterizes a “good” state of
a PWI, i.e. after it has accumulated a sufficient amount of externally provided
entropy. Informally, for any state S, we want that (1) a PWI with state M (S)
should produce pseudorandom outputs, and (2) after the PWT has gathered suf-
ficient entropy, its state S should be indistinguishable from M (S).

To the second point, the initial PWI state .S is of particular importance. In the
following definition, we characterize masking functions M such that the initial Sy
and M (Sy) are indistinguishable.

A Provable-Security Analysis of Intel’s Secure Key RNG 91

Definition 4 (Honest-initialization masking functions). Let D be an
entropy source, G = (setup, refresh, next) be a PWI with state space State, A
be an adversary, and M : State — State be a masking function. Let (seed, Z)
be the random variable returned by running the initialize() (Figure 5) using G
and D, and let Sy be the state produced by this procedure. Set Advg%,M(A) =
Pr[A(So,seed, Z) = 1] — Pr[A(M(Sy),seed, Z) = 1]. If Adv{'p 5 (A) < e for
any adversary A running in time ¢, then M is a (G, D, t, €)-honest-initialization
masking function. O

Note that the above definition is made with respect to a specific D. The
assumptions required of D (e.g., that it will provide a certain amount of entropy
within a specified number of queries) will depend on the PWT in question, but
should be as weak as possible.

We now define “bootstrapped” versions of the PWI security goals, which
always begin from a masked state. This will allow us to reason about security
when the PWI starts from an “ideal” state, i.e. what we expect after an secure
initialization of the system.

Definition 5 (Bootstrapped security). Let G be a PWI and M be a masking

function. For x € {fwd, bwd, res,rob}, let Advé{g[(A) be defined as Advg p(A),
except with line 02 of the initialize procedure (Fig. 5) changed, to execute instead

S" & setup®s; S <& M (7). O

6.3 PWI-Security Theorems

Bootstrapped security notions are useful, because they allow the analysis to begin
with an idealized state. However, this comes at a cost: we need to ensure that
the masking function is honest in the sense that it accurately reflects the result
of running the setup procedure. The following theorem states the intuitive result
that if the masking function is secure (and honest), then security when the PWI
begins in a masked state M (.S) implies security when the PWI begins in state S.
We omit the simple proof, which follows from a standard reduction argument.

Theorem 3. Let G be a PWI, D be an entropy source, and M be a masking func-
tion. Suppose M is a (G, D,t,¢)-honest initialization mask. Then for any x €
{fwd, bwd, res, rob} there exists some adversary B(-) such that for any adversary
A, Advg p(A) < Advé{g(B(A)) + €. Further, if it takes time t' to compute M,
and A makes q queries and runs in time t, then B(A) makes q queries and runs in
time O(t) +t'.

For a second general result, we revisit a nice theorem by DPRVW and adapt
it to our model. The theorem states that if a PWI possesses two weaker security
properties—roughly, the ability to randomize a corrupted state after harvesting
sufficient entropy and the ability to keep its state pseudorandom in the presence of
adversarial entropy — then it is robust. These definitions, however, again assume
that a state “should” appear uniformly random. We present modified definitions

92 T. Shrimpton and R.S. Terashima

that instead use masking functions, and prove an analogous theorem. While the
transition involves a couple subtleties —in particular, we require an idempotence
property of the masking function —the proof is essential identical to the one in
[5]; therefore we make an informal statement here and defer the formal treatment
to the full version [16].

Theorem 4 (Informal). Let G be a PWI. Suppose there exists a mask M such
that: (1) When starting from an arbitrary initial state S of the adversary’s choos-
ing, the final PWI state S’ is indistinguishable from M(S’) provided the PWI
obtains sufficient entropy; (2) When starting from an initial state M (S) (for adver-
sarially chosen S), the final PWI state S’ is indistinguishable from M (S"), even if
the adversary controls the intervening entropy input strings; (3) G produces pseu-
dorandom outputs when in a masked state. Then G is robust.

7 Security of the ISK-RNG as a PWI

We are now positioned to analyze the security of ISK-RNG. To begin, we demon-
strate some simple attacks that violate both forwards and backwards security
(hence robustness, too). Next, we show that by placing a few additional restric-
tions on adversaries — restrictions that are well-motivated by the hardware — we
can recover forward security. As we said in our introduction, the concrete secu-
rity bounds we prove are not as strong as one might hope, due to some limita-
tions of CBCMAC’s effectiveness as an entropy extractor in the ISK-RNG. How-
ever, we are able to prove somewhat better results when legitimate parties use
only the RDRAND interface, even when attackers also have access to RDSEED. This
means that, e.g., a hostile process can’t use its access to RDSEED to learn informa-
tion about RDRAND return values used by a would-be victim; the result also implies
stronger results for Ivy Bridge chips, where RDSEED is not available.

For the remainder of Section 7, we fix the following constants: p = 1 is the
length of each entropy input; k = 128 is the length of each CBCMAC input block
(since ISK-RNG uses AES); IFace = {RDSEED, RDRAND} are the ISK-RNG inter-
faces; m = 2, 3 is the number of healthy samples required by Ivy Bridge and Broad-
well, respectively, before the CE buffer is available; and ¢ = 64 is the length of the
PWTI outputs. Although RDRAND also allows programs to request 16 or 32 bits, this
is implemented by fetching then truncating a 64-bit output, and similarly with
RDSEED [12]. Therefore we assume without loss of generality that the adversary
only requests the full 64 bits.

Recall that in the PWI model, the entropy source leaks information v about
each input string. We assume that every 256th such string (each one a single bit,
p = 1) leaks the health of the corresponding 256 bit string (as determined by the
online health test). Hence the adversary will always know the health of the OSTE
buffers and the value of the health buffer. This is not simply a convenience: because
the CE buffer is not available until it has been reconditioned with m healthy sam-
ples, RDSEED may leak health information through a timing side channel.

When the CE buffer is available, it can be used to reseed the DRBG or to ser-
vice a RDSEED instruction. Priority is given to whichever was not last used [12].

A Provable-Security Analysis of Intel’s Secure Key RNG 93

However, because the PWI model cannot describe pending RDSEED instructions,
the adversary must explicitly use its wait oracle to yield when it has priority: a wait
invocation uses the CE to reseed, while a RDSEED invocation returns its contents.

The adversary’s wait oracle also allows us to account for the fact that updat-
ing the eight 64-bit output buffers is not an atomic operation. By using the tick
function (invoked by wait) to only fill one at a time, we conservatively allow the
adversary to control if a reseeding operation intervenes. Note that tick will reseed
rather than fill an output buffer if reseeding is desired (S.count > 0) and possible
(S.CEfull = 1). This reflects the priorities of the hardware [12].

In order to save power, the entropy source goes to sleep if all the output buffers
are full, the CE buffer is available, and no RDRAND instructions have been processed
since the last reseed [12]. The PWI model, however, requires that we continue to
provide D-refresh access to the adversary. Our decision to leak health information
to the adversary allows us to avoid any problems here: the adversary knows when
the entropy source sleeps, so we can restrict the adversary to not make D-refresh
calls when it does.

To make this power-saving hardware constraint “work” with the PWI model,
we assume that each healthy 256-bit block produced by the entropy source con-
tains at least v bits of min-entropy. Formally, define (o, b;,7;,2:) = D(0i—1)

for 4 2 1 (where og = 8)7 and let I,L = b256ib256i+1 N 'b256i+255~ We assume
H (I; | (0j,1;,7;,2) i, li € H) > ~, for some v > 0, and require that
255:621;321_55 ~; > v whenever I; € H. We set v* = m+ to demand, in effect, that

ISK-RNG delivers on its implicit promise that m healthy entropy samples are suf-
ficient. At the end of this section, we will draw from the CRI report’s analysis to
find reasonable estimates for v and discuss the implications.

7.1 Negative Results

We begin with some quick negative results, showing that the ISK-RNG achieves
neither forward nor backwards security. This immediately rules out robustness,
too. We again emphasize that these negative results will be followed by positive
results for realistic classes of restricted adversaries; we present them primarily to
motivate the coming restrictions.

Theorem 5 (ISK-RNG lacks forward security). There exists an adversary
A making one next-ror query and one get-state query such that for any entropy
source D, Adv,fg’,fyp(A) =1-27128,

Theorem 6 (ISK-RNG lacks backward security). There exists an adversary
A making one next-ror query and one set-state query such that for any entropy
source D, Adv3iip(A) =1 — 27128,

In the case of backwards security, the adversary sets some initial state S with
S.samples = 0, makes a sequence of D-refresh calls to clear the corrupt flag (which,
by our previously state assumptions, will happen as soon as the CE buffer becomes
available), and finally assigns X < next-ror(RDRAND). The adversary then checks if

94 T. Shrimpton and R.S. Terashima

X = S.outy, and outputs 0 if this is the case and 1 otherwise. For forward security,
the adversary assigns X <« next-ror(RDSEED), then learns the resulting state S
using get-state(). If X = AESy'(S.CEg) || AESg ' (S.CE;), the adversary outputs
0; otherwise, the it outputs 1. (Here, 0 = 0!28.)

However, these results are very conservative. In the case of forward security,
the hardware will quickly recondition the CE buffer and refill the output buffers,
effectively erasing all state that could be used to compute previous outputs. Back-
wards security is more complicated because not only do future outputs persist in
the output buffer indefinitely, but future DRBG keys are leaked via the ESSR,
OSTE, and CE buffers. Once the output buffers are flushed, though, these other
buffers will quickly be overwritten with fresh entropy.

7.2 Positive Results

We now turn our attention to restricted, but still conservative, classes of adversary
in order to produce positive results.

Additional assumptions. We further assume that in the forward-security game,
adversaries do not make their get-state query until they have allowed the output
buffers to be refilled. This assumption is motivated by the speed with which the
hardware will automatically accomplish this: at the reported RDRAND throughput
of 500 MB/s, all eight 64-bit buffers can be refilled around 8 million times per
second. Formally:

Definition 6 (Delayed adversaries). An adversary A attacking ISK-RNG in
the forward-security game is delayed if after making its last get-next and next-ror
queries, A calls D-refresh until the CE buffer is available, then calls wait nine times
before making its get-state query. a

This will trigger a reseed and then refill any empty output buffers.

Moreover, we will assume there is some positive probability § such that each
256-bit block of bits from the entropy source is healthy with probability at least
. Formally (recall that H C {0,1}°® is the set of strings deemed healthy by
ISK-RNG’s online health tests):

Definition 7 (8-healthy). Let D be an entropy source and fir § > 0. Let
H C {0, 1}256 be the set of strings deemed healthy by the ISK-RNG. For i =
1,2,3,... define (04,b;,7i,2;) = D(0i—1) (where o9 =€), and forj = 0,1,2,...,

deﬁne Bj = b256j || b256j+1 || s H 6256j+255' Let Hj =1 ’Lf Bj S H, CLTLd‘ set
H; = 0, otherwise. Then D is B-healthy if for all such j and all H € {0, 1}]71,
Pr(B;e H| (He)ecj=H] > . O

So for any positive integers ¢ and L,,, we can upper bound the
probability that the sequence (Bz-)fifm_l contains fewer than m healthy values

using: Pr([{j © B € K0 < j <L+ Ly} <m] < S0t (57) 51— B)Fn .

A Provable-Security Analysis of Intel’s Secure Key RNG 95

k CBCMAC blocksize (128 bits)

m Number of “healthy” 2k-bit strings that need to be conditioned before the CE
buffer becomes available (m = 2,3 for Ivy Bridge and Broadwell chips, respec-
tively).

L., Parameter we can freely choose to keep both é(L,,) and €(L,,) small.

¥ An assumed lower bound on the conditional min-entropy of healthy strings.

Fig. 6. Summary of values used for theorem statements

Remark 1. Our goal is to identify under what reasonable assumptions ISK-RNG
could be deemed secure, and, as we argued at the end of Section 4, this requires
making an assumption about the entropy source’s ability to produce “healthy”
samples (a min-entropy assumption is too weak). We settled on the above 3-healthy
assumption because it is simple and fairly broad: we do not assume the probabili-
ties of samples being healthy are constant or even independent, just that the condi-
tional probabilities don’t dip below the § threshold. Moreover, we later show that
the “unhealthy sample rate” could easily be fifty times the ideal 1% false-positive
base rate without significantly damaging our bounds. Finally, even the 8-healthy
assumption is more than we need. We require an upperbound on the probability on
the left-hand side of the above equation, and the G-healthy assumption provides a
natural, concrete way to think about this probability.

Rigorously testing the [-healthy assumptiton without access to the entropy
source is problematic. That being said, barring such access, we doubt it would be
possible to do significantly better.

With these assumptions, we are ready to continue on to our positive results.
Our first step is to define an appropriate masking function that describes an “ideal”
state, and then to prove that setup creates such a state. This lets later proofs sim-
ply assume we begin in an idealized state (see Theorem 3).

ISK-RNG masking function. Fix the masking function M : {0,1}" — {0,1}"
that on input S, overwrites S.CE, S.K, S.IV, and S.out;, g with independent,
uniformly random strings of the appropriate lengths, leaves all other portions of
the state untouched, and returns the result (refer back to Fig. 3 for a listing of the
components of the ISK-RNG state S). This is the ISK-RNG masking function.

Recall the results of Theorem 2. For convenience, we define €(L,,) =
O(Ly +1)/2"2 and &(Ly) = S0 (57)87(1 — p)lm—7, where €(Ly,) is
from Theorem 2 and é(L,,) is the above bound on the probability of obtaining
fewer than m healthy samples from a §-healthy entropy source within L, trials.
Our theorem statements refer to various previously defined values, summarized in
Figure 6.

The following lemma says that if AES is a secure PRP (against adversaries
making three queries) and each healthy sample from the entropy source has suf-
ficiently large min-entropy, then the ISK-RNG masking function is honest. That
is, that the ISK-RNG setup procedure successfully places the hardware in a state
where (we will show) it can begin producing pseudorandom outputs.

96 T. Shrimpton and R.S. Terashima

Lemma 1 (ISK-RNG masking function is honest). Fiz positive integers k
and m, and fir 0 < 8 < 1. Let Ly, be a positive integer. Let M be the ISK-RNG
masking function. Let D be a 3-healthy entropy source. Then for any adversary A,
there exists an adversary B running in the same time and making three queries such
that Advigg p pr(A) < 2F=mD/242 4 de(L,,,) + 8¢(Lyn) + 5 (AdVRgL(B) + 25).

2F
The proof is deferred to the full version of this paper [16]. Using reasonable
estimates for the big-O constant and (discussed in Section 7.3) provides us with

an upper bound of roughly 276 for the first three terms of the security bound for
both m = 2, 3.

Remark 2. The PRP term may be problematic if one takes the view that RDSEED
should offer information-theoretic security. That is, Lemma 2 says that the ISK-
RNG initialization procedure yields state — which includes the CE buffers —that
is only computationally indistinguishable from “ideal”. However, we observe that
if one adjusts the masking function to leave the output buffers unchanged, and
demands a post-setup reconditioning (which the hardware endeavors to provide,
anyway), one could indeed use the result to prove information-theoretic RDSEED
security. However, this would be at the expense of not being able to prove security
of the RDRAND interface, a task which necessarily requires computational
assumptions.

Forward Security. Our exploration of forward security proceeds in two steps. To
begin, we introduce a new game, M-RDRAND, which differs from M-FWD in that
the next-ror oracle always returns the “real” value Ry when queried on the
RDSEEDinterface, but behaves normally during queries to the RDRAND interface.
Define

Advy's M (A) = 9 Pr[M-RDRAND(A) = 1] — 1.

Proving the security of this game is not only a useful intermediate step in proving
the security of M-FWD, but also can be interpreted as measuring the strength of
RDRAND return values when an adversary also has access to the RDSEED instruction
(which can be used to learn information about the ISK-RNG state, but that we do
not require to return pseudorandom values). This distinction is valuable, because
the concrete bounds on the M-FWD experiment are not as strong as one would
hope.

Theorem 7 (M-RDRAND). Let A be a delayed adversary making q queries to
RDRAND and running in time t. Then there exists an adversary B making three
queries and running in time O(t) such that Advlf;?’;RDRAND/M(A) < 2(q +

4) (AdvRgs(B) + 3%) -

The proof appears in the full version [16]. Barring an efficient attack on AES (that
only uses three queries!) this bound is quite strong. If ¢ were to grow quite large,
say on the order of ¢ ~ 23, then the bound might begin to approach 2740, which
seems a reasonable safety margin. However, even at the reported rate of around
500 MB/s, ISK-RNG would take over 70 years to reach this point. Moreover, the
hybrid factor of ¢ is likely a conservative artifact of the proof.

A Provable-Security Analysis of Intel’s Secure Key RNG 97

Note, however, that this bound applies to ISK-RNG when starting in an “ideal”
masked state; one needs to add in the bound from Lemma 1 to account for initial-
ization. As we mentioned earlier, reasonable estimates for the big-O constant and
7 (see Section 7.3) place this term at roughly 2760,

We now proceed to the “full” forward-security result, where both the RDRAND
and the RDSEED interfaces are required to produce indistinguishable-from-random
outputs. Since RDSEED reads directly from the CE buffer, this bound relies more
heavily on the entropy source and CBCMAC extractor (and less on the computa-
tional security of AES). Again, see the full version [16] for a proof.

Theorem 8 (ISK-RNG’s masked forward security). Fiz a positive integers
k and m, and fit 0 < B < 1. Let L,, be a positive integer. Let A be a delayed
adversary making a combined q queries to get-next and next-ror. Then if D is [3-
healthy, there exists some adversary B making three queries and running in the
same time as A such that

Advigs (4) < (+1) (2572 4 (L) + 26(Lm))

3
+2(q+4) (AdvﬁrEpS(B) + 2,6) .
Corollary 1. Let A be a delayed adversary making a combined q queries to its
get-next and next-ror oracles. If D is 3-healthy, then there exists and adversary B
making three queries and running in the same time as A such that

AdviE p(4) < (g+5) (267772 4 (L) + 26(Lun))

r 3
+ (2¢ + 13) (AdeEpS(B) + 2k> ;

where the remaining quantities are defined as in Theorem 8.

The corollary follows from applying Theorem 3 to Theorem 8 and Lemma 1.
We defer our discussion of this bound to Section 7.3. First, we briefly turn our
attention to the questions of backwards security and robustness.

Backwards security and Robustness. The issue with obtaining backwards secu-
rity (and hence robustness) is that future outputs can linger in the output buffers
indefinitely: the hardware will shutdown the entropy source after all the buffers
are full and the CE buffer is available. Hence, state remains compromised until
fresh entropy filters through the ESSR — OSTE; — OSTEs — CE buffers and is
used to reseed the DRBG, without first being siphoned off by RDSEED.

Consider the worst-case scenario for Ivy Bridge chips, where only the RDRAND
interface is available. Following a state compromise, the next eight outputs are
revealed by the output buffers, the next 511 may be computed using the compro-
mised DRBG seed, the next 511 may be computed using a DRBG seed determined
by the compromised CE buffer, and the next 511 may be computed using a DRBG

98 T. Shrimpton and R.S. Terashima

key determined by the compromised OSTE and ESSR buffers. This amounts to
slightly more than 12 KB of outputs that an adversary could potentially predict.

However, we show in the full version [16] that if one restricts the model to
“read-only” adversaries (by denying adversaries access to set-state but permitting
access to get-state) and one discounts wins based on the above attacks (by denying
adversaries access to next-ror until after the “corrupted” values have already been
replaced) then ISK-RNG is secure. The concrete bounds we obtain are essentially
identical to those provided by Theorems 7 and 8, depending on whether or not
one requires the RDSEED interface to be secure. See the appendix for further dis-
cussion of how these restrictions can be interpreted along with a formal theorem
statement and proof.

7.3 Discussion of Results

Let us examine the bound of Corollary 1 in detail. We specialize to the parameters
used by Intel: £ = 128 (a consequence of using AES), m = 2 for Ivy Bridge chips,
and m = 3 for Broadwell chips.

To estimate 7, we turn to the CRI report [8]. Hamburg, Kocher, and Marson
subjected raw entropy source bits (using data provided by Intel) to a battery of
statistical tests. Using a Markov model with 12 bits of state, they estimate the
entropy source produces approximately 0.65 bits of min-entropy per bit of output.
However, this was an average (some states of the Markov model resulted in more
predictable bits), and a 12-bit state, though perhaps necessary to collect enough
samples for a meaningful empirical analysis, is not enough for our purposes. There-
fore let us suppose a more conservative rate of 0.5, leading to v = 128.

This sets the (g4 5)2(*=™7)/2 term of our bound to (¢ +5)27%* for Ivy Bridge
(where m = 2) and (q + 5)27 128 for Broadwell (where m = 3). The latter bound
is quite strong, but, given how quickly ¢ can grow, the former may be worrisome
if one wishes to maintain strong security guarantees (e.g., one wishes to cap an
adversary’s advantage at 274°). But this is not the dominate term.

We next consider the term (q+5)(€(Ly,)+2€(Lyy,)). If we set the big-O constant
of e to ¢ (so €(Ly,) = cL/2%%) then we can choose L., to optimize this expression.
Taking 8 = 1/2, ¢ = V10, which we believe to be conservative,® gives an upper
bound of (g +5)27°%; a more generous 3 = 0.99, ¢ = 1 improves the upper bound
to about (g + 5)27%°. (These bounds are accurate for both m = 2 and m = 3,
although the corresponding values for L,, differ considerably.)

At this point, limiting an adversary’s advantage to 2749 is difficult — an adver-
sarial process gathering random bits at the benchmarked rate of 500 MB/s could
issue the maximum allowable number of queries in under one millisecond. Or at
least, this is the case if we demand that RDSEED produces uniform random out-
puts. On the other hand, if one only needs RDRAND to be secure, then Theorem 7
suggests that limiting an adversary’s advantage to 2740 is entirely reasonable; in

3 An author of [4] assures us that the asymptotic constant is “certainly less than 10”
(and our ¢ is the square root of this constant). A perfect entropy source would give
B = 0.99 since the health tests have a 0.01 false-positive rate.

A Provable-Security Analysis of Intel’s Secure Key RNG 99

this setting, we only pick up a single 4(e(Ly,) +2€é(L,,)) term even after moving to
the unmasked forward-security setting, with no troublesome multiplicative factor
of q.

The remaining term, (2¢+ 13)(Advihgs(B) 4+ 3/2'%%), is likely to be negligible
(recall that B is permitted only three queries).

Our analysis does not point to any obvious, practical attacks (aside from the
trivial ones that exploit the output buffers, though it seems a stretch to deem
those practical). However, it exposes the CBCMAC extraction process as the likely
weakest link, and quantifies the extent of that weakness. An actual attack would
need to exploit how the specific output distribution of the entropy source interacts
with CBCMAC under the fixed key K'.

7.4 Discussion of the Attack Model

The DPRVW syntax and security notions, which we take as our starting point,
assume a strongly adversarial operating environment. They treat the entropy
source as adversarial (although not pathologically bad), and allow attackers to
observe, even corrupt, the full internal state of the PWI. One might argue that
these choices are inappropriate in the case of ISK-RNG. After all, the entire RNG
is implemented in 22-32nm hardware, so direct observation of the internal state
should require the use of expensive and highly technical equipment, e.g. a state of
the art scanning/tunnelling electron microscope.

We are sympathetic to this argument, but still find value in adopting the strong
attack model. Even if the entropy source is beyond attacker influence, treating it as
adversarial can bee seen as a mathematical tool for minimizing the assumptions we
make regarding its behavior. Moreover, the model allows us to explore the limits of
ISK-RNG's security, providing analysis of less pessimistic settings (i.e. resilience
security) as a byproduct.

Acknowledgments. The authors wish to thank DJ Johnston and Jesse Walker of Intel
for answering our questions regarding the design and implementation details of ISK-
RNG. Both Terashima and Shrimpton were supported by NSF grants CNS-0845610 and
CNS-1319061.

References

1. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to /dev/random. In: Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, pp. 203—212. ACM (2005)

2. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409-426. Springer, Heidelberg (2006)

3. Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: The Twist-AUgmented
Technique for Key Exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 410-426. Springer, Heidelberg (2006)

100

4.

10.

11.

12.

13.

14.

15.

16.

17.

T. Shrimpton and R.S. Terashima

Dodis, Y., Gennaro, R., Hastad, J., Krawczyk, H., Rabin, T.: Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494-510. Springer, Heidelberg (2004)
Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: /dev/random is not robust. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security, pp. 647-658. ACM (2013)

Everspaugh, A., Zhai, Y., Jellinek, R., Ristenpart, T., Swift, M.: Not-so-random
numbers in virtualized Linux and the Whirlwind RNG. In: IEEE Symposium on
Security And Privacy (2014)

Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the Linux random number
generator. In: 2006 IEEE Symposium on Security and Privacy, p. 15. IEEE (2006)
Hamburg, M., Kocher, P., Marson, M.E.: Analysis of Intel’s Ivy Bridge digital ran-
dom number generator (2012). http://www.cryptography.com/public/pdf/Intel-
TRNG_Report_20120312.pdf

Heninger, N., Durumeric, Z., Wustrow, E., Alex Halderman, J.: Mining your ps and
gs: Detection of widespread weak keys in network devices. In: USENIX Security
Symposium, pp. 205-220 (2012)

Hofemeier, G.: Intel Digital Random Number Generator (DRNG) software
implementation guide (August 2012). https://software.intel.com/en-us/articles/
intel-digital-random-number-generator-drng-software-implementation-guide
(accessed May 2014)

Hofemeier, G., Chesebrough, R.: Introduction to Intel AES-NI and Intel
Secure Key instructions (July 2012). https://software.intel.com/en-us/articles/
introduction-to-intel-aes-ni-and-intel-secure-key-instructions (accessed May 2014)
JD Johnston (Intel). Personal communication (May 2014)

Lacharme, P., Rock, A., Strubel, V., Videau, M.: The Linux pseudorandom number
generator revisited. IACR Cryptology ePrint Archive 2012, 251 (2012)

Mechalas, J.: The difference between RDRAND and RDSEED (November
2012). https://software.intel.com/en-us/blogs/2012/11/17 /the-difference-between-
rdrand-and-rdseed (accessed April 2014)

Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM Journal on Discrete Mathematics 13(1), 2-24 (2000)
Shrimpton, T., Seth Terashima, R.: A provable security analysis of Intel’s Secure
Key RNG. Cryptology ePrint Archive, Report 2014/504 (2014). http://eprint.iacr.
org/

Walker, J.: Conceptual foundations of the Ivy Bridge random number generator.
http://www.ists.dartmouth.edu/docs/walker_ivy-bridge.pdf (November 2011)

http://www.cryptography.com/public/pdf/Intel_TRN G_Report_20120312. pdf
http://www.cryptography.com/public/pdf/Intel_TRN G_Report_20120312. pdf
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/introduction-to-intel-aes-ni-and-intel-secure-key-instructions
https://software.intel.com/en-us/articles/introduction-to-intel-aes-ni-and-intel-secure-key-instructions
https://software.intel.com/en-us/blogs/2012/11/17/the-difference-between-rdrand-and-rdseed
https://software.intel.com/en-us/blogs/2012/11/17/the-difference-between-rdrand-and-rdseed
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ists.dartmouth.edu/docs/walker_ivy-bridge.pdf

A Formal Treatment of Backdoored
Pseudorandom Generators

Yevgeniy Dodis! ™), Chaya Ganesh!, Alexander Golovnev!,
Ari Juels?, and Thomas Ristenpart?

! Department of Computer Science, New York University, New York, USA
dodis@cs.nyu.edu, {chaya.ganesh,alexgolovnev}Qgmail.com
2 Jacobs Institute, Cornell Tech, New York, USA
juels@cornell.edu
3 Department of Computer Sciences, University of Wisconsin, Madison, USA
tomrist@gmail.com

Abstract. We provide a formal treatment of backdoored pseudorandom
generators (PRGs). Here a saboteur chooses a PRG instance for which
she knows a trapdoor that allows prediction of future (and possibly past)
generator outputs. This topic was formally studied by Vazirani and Vazi-
rani, but only in a limited form and not in the context of subverting cryp-
tographic protocols. The latter has become increasingly important due
to revelations about NIST’s backdoored Dual EC PRG and new results
about its practical exploitability using a trapdoor.

We show that backdoored PRGs are equivalent to public-key encryp-
tion schemes with pseudorandom ciphertexts. We use this equivalence to
build backdoored PRGs that avoid a well known drawback of the Dual
EC PRG, namely biases in outputs that an attacker can exploit without
the trapdoor. Our results also yield a number of new constructions and
an explanatory framework for why there are no reported observations in
the wild of backdoored PRGs using only symmetric primitives.

We also investigate folklore suggestions for countermeasures to back-
doored PRGs, which we call immunizers. We show that simply hash-
ing PRG outputs is not an effective immunizer against an attacker that
knows the hash function in use. Salting the hash, however, does yield a
secure immunizer, a fact we prove using a surprisingly subtle proof in
the random oracle model. We also give a proof in the standard model
under the assumption that the hash function is a universal computational
extractor (a recent notion introduced by Bellare, Tung, and Keelveedhi).

1 Introduction

Pseudorandom number generators (PRGs) stretch a short, uniform bit string to
a larger sequence of pseudorandom bits. Beyond being a foundational primitive
in cryptography, they are used widely in practice within applications requiring
relatively large amounts of cryptographic randomness. Seed the PRG via the
© International Association for Cryptologic Research 2015

E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 101-126, 2015.
DOT: 10.1007/978-3-662-46800-5_5

102 Y. Dodis et al.

output of some (more expensive to use) source of randomness, such as a system
random number generator, and then use it to efficiently generate effectively
unbounded number of pseudorandom bits for the application. Unfortunately, an
adversary that can distinguish such bits from uniform or, worse yet, outright
predict the outputs of a PRG, almost invariably compromises security of higher
level applications. This fragility in the face of poor pseudorandom sources is
borne out by a long history of vulnerabilities [7,8,14,16,17,22,24,33].

Perhaps it is no coincidence, then, that PRGs have also been a target for
backdoors. As far back as 1983, Vazirani and Vazirani [30,31] introduce the
notion of trapdoored PRGs and show the Blum-Blum-Shub PRG is one [10].
Their purpose was not for sabotaging systems, however, but instead they used
the property constructively in a higher level protocol. The best known example
of potential sabotage is the backdoored NIST Dual EC PRG [23]. It is parame-
terized by two elliptic curve points; call them P and @Q. The entity that selects
these points can trivially know d = dlog,, P, and armed with d any attacker can
from an output of the PRG predict all future outputs. This algorithm and the
proposed use of it as a way of performing key escrow was detailed at length in a
patent by Brown and Vanstone [11]. The possibility of the Dual EC PRG having
been standardized so as to include a backdoor was first discussed publicly by
Shumow and Ferguson [27]. More recent are allegations that the United States
government did in fact retain trapdoor information for the P and @ constants
mandated by the NIST standard. The practical implications of this backdoor,
should those constants be available, were recently explored experimentally by
Checkoway et al. [13]: they quantified how saboteurs might decrypt TLS ses-
sions using the trapdoor information and sufficient computational resources.

Given the importance of backdoored PRGs (and protecting against them),
we find it striking that there has been, thus far, no formal treatment of the topic
of maliciously backdoored PRGs. We rectify this, giving appropriate notions for
backdoored PRGs (building off of [30]) that not only capture Dual EC, but
allow us to explore other possible avenues by which a backdoored PRG might be
designed, the relationships between this primitive and others, and the efficacy
of potential countermeasures against backdoors. We provide an overview of each
set of contributions in turn.

Backdoored PRGs. We focus on families of PRGs, meaning that one assumes a
parameter generation algorithm that outputs a public set of parameters that we
will call, for reasons that will become clear shortly, a public key. A generation
algorithm takes a public key, the current state of the generator, and yields a
(hopefully) pseudorandom output, as well as a new state. This is standard. A
backdoored PRG, on the other hand, has a parameter generation algorithm
that additionally outputs a trapdoor value that we will also call a secret key.
A backdoored PRG should provide, to any party that has just the public key,
a sequence of bits that are indistinguishable from random. To a party with
the secret key these bits may be easily distinguishable or, better yet from the
attacker’s perspective, predictable with some reasonable success probability.

A Formal Treatment of Backdoored Pseudorandom Generators 103

As an example, the generation algorithm for backdoored Dual EC picks a
fixed group element @), a random exponent d, and outputs as public key the
pair P = Q% and Q. The secret key is d. (We use multiplicative notation for
simplicity.) Generation works by taking as input an initial, random state s, and
then computing s’ = P?® as the next state. An output is computed as all but the
last 16 bits of Q* . (We ignore here for simplicity the possible use of additional
input.) An attacker that knows d can guess the unknown 16 bits of Q¢ and
compute PS/, the value which defines the next output as well as all future states.
In practice applications allow the attacker to check guesses against future PRG
outputs, allowing exact discovery of the future state (c.f., [13]).

The Dual EC PRG does not provide outputs that are provably indistinguish-
able from random bits, and in fact some analysis has shown that despite dropping
the low 16 bits, abusable biases remain [25]. A natural question is whether one
can build a similarly backdoored PRG but which is provably secure as a PRG?

We answer this in the positive. To do so, we first show a more general result:
the equivalence of pseudorandom public-key encryption (PKE) and backdoored
PRGs whose outputs are pseudorandom (to those without the trapdoor). Pseu-
dorandom PKE schemes have ciphertexts that are indistinguishable from random
bits. Constructions from elliptic curves include Méller’s [21] and the more recent
Elligator proposal [9] and its variants [2,29]. Another approach to achieve pseu-
dorandom bits is via public-key steganography [3,12,32,36]. We give a black-box
construction of backdoored PRGs from any pseudorandom PKE. To complete
the equivalence we show how any secure backdoored PRG can be used to build
pseudorandom PKE scheme. The latter requires using an amplification result
due to Holenstein [18].

We also show how a saboteur can get by with key encapsulation mechanisms
that have pseudorandom ciphertexts (which are simpler than regular PKE).
A KEM encapsulate algorithm takes as input randomness and a public key,
and outputs a ciphertext and a one-time-use secret key. We use this algorithm
directly as a generator for a backdoored PRG: the ciphertext is the output and
the session key is the next state. The secret key for decapsulation reveals the
next state. Seen in this light, the Dual EC PRG is, modulo the bit truncations,
an instantiation of our generic KEM construction using the ElGamal KEM.

The types of backdoored PRGs discussed thus far only allow use of a trapdoor
to predict future states. We formalize another type of backdoored PRG which
requires the attacker to be able to determine any output (as chosen at random
from a sequence of outputs) using another output (again chosen at random from
the same sequence). Such “random access” could be useful to attackers that want
to predict previous outputs from future ones, for example.

Immunization countermeasures. So far we have formalized the problem and dis-
cussed improved backdoored PRGs. We now turn to countermeasures, a topic of
interest given the reduced trust in PRGs engendered by the possibility of back-
dooring. While the best countermeasure would be to use only trusted PRGs,
this may not be possible in all circumstances. For example, existing proprietary
software or hardware modules may not be easily changed, or PRG choices may

104 Y. Dodis et al.

be mandated by standards, as in the case of FIPS. Another oft-suggested route,
therefore, is to efficiently post-process the output of a PRG in order to pre-
vent exploitation of the backdoor. We call such a post-processing strategy an
immaunizer.

A clear candidate for an immunizer is a cryptographic hash function, such as
SHA-256 (or SHA-3). A natural assumption is that hashing the output of a PRG
will provide security even when the attacker knows the trapdoor, as the hash will
hide the data the attacker might use to break PRG security. (This assumption
presumes that SHA-256 is itself not backdoored; we have no evidence otherwise,
although see [1].) Another, similar idea is to truncate a large number of the
output bits.

We show that successful immunization is, perhaps surprisingly, more subtle
than naive approaches like this would suggest. We show that, a saboteur that
knows the immunizer strategy ahead of time can build a backdoored PRG that
bypasses the immunizer. We refer to this setting as the public immunizer security
model, as both the PRG designer and the backdoor exploiter know the exact
immunizer function. We show that for any such immunizer, the attacker can leak
secret state bit-by-bit. Hence, this is true even when hashing and truncating, and
even when modeling the hash function as a random oracle (RO).

This observation suggests that a the designer of a secure PRG should not
have exact knowledge of the immunizer. We introduce two further security mod-
els for immunizers. In the semi-private model, the immunizer can use randomness
unknown to the PRG designer, but which is revealed to the backdoor exploiter.
In the private model, the randomness is never revealed to the saboteur. Con-
structing provably strong immunizers is straightforward in this last model, but
not necessarily practical ones.

For semi-private immunizers, one can prevent basic immunizer-bypassing
attacks against hashing (such as we describe below) by using the immunizer’s
randomness as a salt for the hash. While this immunization strategy thwarts such
attacks, proving that it is secure — meaning that its outputs are provably indis-
tinguishable from random bits even for an attacker that has the trapdoor secret
of the original backdoored RNG and the immunization salt — is surprisingly
tricky. One would like to argue that since the PRG must be indistinguishable
from random to attackers without the secret trapdoor, then they must have high
entropy, and hence hashing with a salt can extract uniform bits from these unpre-
dictable outputs. However, the distinguisher here does know the trapdoor, and
thus we cannot directly use the assumed backdoored PRG’s security against
distinguishers who do mot know the trapdoor. Giving an analysis in the RO
model (ROM), we overcome this hurdle by exploiting the fact that, to achieve
standard PRG security (no trapdoor available) across multiple invocations with
fresh seeds, the backdoored PRG must have low collision probability of outputs.
We can in turn use the collision probability as a bound on the predictability of
outputs by an adversary, and thereby prove the security of the hashed outputs.
We also extend this result to work in the standard model assuming only that
the hash function is a universal computational extractor (UCE) [4].

A Formal Treatment of Backdoored Pseudorandom Generators 105

Further related work. As already mentioned, Vazirani and Vazirani [30,31] intro-
duce the notion of trapdoored generators and use them constructively in protocol
design. We build on their notion, but require stronger security in normal opera-
tion (indistinguishability from random bits). We also generalize to other trapdoor
exploitation models, and study broader connections and countermeasures. Their
trapdoor PRG using Blum-Blum-Shub can be recast to work as a backdoored
PRG using our KEM-style framework (the generated parity bits being the next
state and the final squaring of the seed being the generator output). This app-
roach does produce an unbounded number of bits, however, as no further bits
can be produced once the final squaring is output.

Young and Yung studied what they called kleptography: subversion of cryp-
tosystems by modifying encryption algorithms in order to leak information sub-
liminally [34-36]. Juels and Guajardo [20] propose an immunization scheme for
kleptographic key-generation protocols that involves publicly-verifiable injection
of private randomness by a trusted entity. More recent work by Bellare, Paterson,
and Rogaway [5] treats a special case of Young and Yung’s setting for symmet-
ric encryption. We treat a different case, that of PRGs, that has not yet been
extensively treated (but our general setting is the same).

Goh et al. [15] investigate how to modify TLS or SSH implementations in
order to leak session keys to network attackers that know a trapdoor. One could
use a backdoored PRG to accomplish this; indeed this was seemingly the intent
behind use of Dual EC in TLS [13]. However, their work does not try to subvert
PRGs.

Some of our results, in particular the backdoored PRG that foils public immu-
nizers, use channels that can be viewed as subliminal in the sense introduced
by Simmons [28]. Our technique is also reminiscent of the one used to build
secret-key steganography [19].

2 Models and Definitions

Notation. We denote the set of all binary strings of length n by {0, 1}", and the
set of all binary strings {0,1}* = U,{0,1}*. We denote the concatenation of
two bit strings s1 and s by s1||s2. We use Isb and Isby to mean the last bit and
the last two bits of a bit string, respectively. We denote by R>! and R>?2 the
bit strings obtained by one and two right shifts of R, respectively.

An algorithm is a function mapping inputs from some domain to outputs
in some range. For non-empty sets X',), Z, we denote the composition of algo-
rithms F: X — Y and G: Y — Z by FoG, ie. (FoG)(s) =F(G(s)). A random-
ized algorithm is an algorithm with a designated bit-string input (always the
last) called the coins. We write F(z;7) to denote the output resulting from run-
ning F on input = and coins r. We write y < F(x;r) to assign y that value. We
will write F(x) when the coins are understood from context and write y «s F(x)
to denote picking a fresh r appropriately and running F(z;r). We assume r is
always of some sufficient length that we leave implicit. For brevity, we often
introduce algorithms without their domain and range when these are clear from
context.

106 Y. Dodis et al.

The running time of an algorithm is the worst-case number of steps to com-
pute it in an abstract model of computation with unit basic operation costs. In
most cases the implementation will be clear, and we will clarify when not; our
results extend in straightforward ways to finer-grained models of computation.

We write x <s X to denote sampling a value z uniformly from a set X'. We
use the same notation for non-uniform distributions, and in such cases specify the
distribution. We let U,, denote the uniform distribution over {0,1}"™ and UZ the
uniform distribution over U,, x --- X U,, (q repeats of U,). For ease of notation,
we abbreviate U,, to U when the length n is clear from context. Applying an
algorithm (or other function) to a distribution, e.g., F(z;U), denotes the implied
distribution over outputs.

PRFs, PRPs, and Encryption. We recall a number of standard cryptographic
primitives.

Definition 1 (Computational Indistinguishability). Two distributions
X and Y are called (t,e)-computationally indistinguishable (denoted by
CD:(X,Y) < ¢) if for any algorithm D running in time t, |Pr[D(X) =
1] —PrD(Y) =1]| <e.

Definition 2 (Pseudorandom Function). A family of algorithms

{F..: {0,1}™ — {0,1} | sk € {0,1}*} is called a family of
(t,q,0)-pseudorandom functions if Advp " 2 maxpAdvp o (D) £
maxp (2| Pr[GERF (D) = true] — 3|) < & where the mazimum is taken

over all algorithms D running in time t and making up to q queries to the oracle
O (the game GERY(D) is shown in Fig. 1). Function F in Fig. 1 is a uniformly
selected random function F: {0,1}™ — {0,1}™.

Definition 3 (Pseudorandom Permutation). A family of functions
{feeed: {0,1}" — {0,1}" | seed € {0,1}*} is called a (t,q,¢)-pseudorandom
permutation if it is a (¢, q,€)-pseudorandom function and fseed is a permutation
for every seed € {0,1}*.

Conventional public-key encryption (PKE) schemes meet semantic security
style notions, meaning no partial information about plaintexts is leaked. Many
traditional ones additionaly are such that ciphertexts are indistinguishable from
uniformly chosen group elements (e.g., ElGamal). We use something slightly dif-
ferent still: public-key encryption (PKE) with pseudorandom ciphertexts. These
schemes have ciphertexts that are indistinguishable from random bit strings (of
appropriate length). Both theoretical and practical constructions of such pub-
lic key encryption schemes were shown in [3,12,32]. Constructions from elliptic
curves include [21] and [9].

Definition 4 (IND$-CPA Public Key Encryption). A triple
(K, Encyy,, Decgy), where K — {0,1}P x {0,1}*,pk € {0,1}?, Encp: {0,1}™ x
{0,1} — {0,1}",sk € {0,1}* Decg: {0,1}" — {0,1}™ is called a
(t,q,9) — IND$-CPA public key encryption scheme if

A Formal Treatment of Backdoored Pseudorandom Generators 107

Garne GP(D). Game Gigigh (D)
sk — Uy, (pk, sk) —s K
b+s{0,1} b«—s{0,1}
if b =1 then if b =1 then

\ O<—Fsk ‘ (9<—Encpk
else else

I O« F I O« R
b — D@ b — DO(pk)
return (b =1’) return (b =)

Fig. 1. PRF game Fig. 2. IND$-CPA Game

- Pr[Decsi,(Encpr(s;a)) = s] = 1, where s «— {0,1}, (pk, sk) — K,a «
{0,1}7,

- Adv%aé‘;w()£ 2|Pr [gg%ﬁlc() = true]—1| < § for any algorithm D running
in time t and making up to q queries to the oracle O. (The game QI%PEAHC(D)
is defined in Fig. 2, the function R outputs a uniformly selected output of

length n.)

Pseudorandom generators. A pseudorandom generator (PRG) is a pair of algo-
rithms (K, G). The parameter generation algorithm K takes input coins and
outputs a pair (pk, sk), called the public key and secret or private key (or trap-
door). Traditionally, a PRG has no trapdoor, and pk would be referred to as the
public parameter. Our notation of public / private keys is for consistency with
the next section; for an ordinary PRG, sk may be taken as null. We assume that
sk uniquely determines pk. A public key pk designates a family of algorithms
denoted by G. Each algorithm Gpi: S — {0,1}” X S maps an input called the
state to an n-bit output and a new state. We drop the subscript pk where it
is clear from context. We refer to S as the state space; it will often simply be
bit strings of some length. We will always specify a distribution over S that
specifies the selection of an initial state, written s <s S, for the PRG. For any
integer ¢ > 1, we let out?(G,s) for s € S denote the sequence of bit strings
(ri,r2,...,7¢) output by running (r1, s1) < G(s), then (12, s2) < G(s1), and so
on. By state?(G, s) we denote the sequence of states (s1,s2,...,54). A PRG is
secure when no adversary can distinguish between its outputs and random bits.

Definition 5 (PRG security). A PRG (K, G) is a (t,q,d)-secure PRG if for
pk — K, CDy((pk,out?(Gp,U)),U) <46.

This definition does not capture forward-secrecy, meaning that past outputs
should be indistinguishable from random bits even if the current state is revealed.
In all the PRG constructions that follow, we point out which of the results satisfy
the forward-security notion and which are forward-insecure.

108 Y. Dodis et al.

3 Backdoored Pseudorandom Generators

A backdoored pseudorandom generator (BPRG) is a triple of algorithms
(K, G, A). The pair (K, G) is a PRG, as per the definition in the last section. The
third algorithm A we call the adversary, although it is in fact co-designed with
the rest of the scheme. It uses the trapdoor output by K to violate security of
the PRG in one of several potential ways. We give games defining these distinct
ways of violating security in Figure 3.

Game GEPRG(K, G, A) Game GEPRG (K G, A) Game GEPRG(K G, A, i, 5)
(pk, sk) —s K (pk, sk) —s K (pk, sk) «—s K

538 5«38 ssS

... ,7“2 —out?!(Gpr,s) T1,...,7q —out!(Gpp,s) 7T1,...,7q — out?(Gpi, s)
Ty s UL 815,84 < state?(Gpg, s) 7 s A(sk, i, j,74)
b«s{0,1} sq s A(sk,r1,...,7q) return (r; = 17)

W — A(sk,rb,... ,T‘Z) return (s, = s4)

return (b =1V')

Fig. 3. Security games defining success of trapdoor-equipped adversaries

The first game is identical to the standard PRG definition except that the
adversary here gets the trapdoor. The second tasks A with recovering the current
state, given the trapdoor and a sequence of outputs. This is, by definition, suf-
ficient information to produce all future outputs of G,i. The last tasks A with
predicting the full output of some state j given the trapdoor and the output
for 3.

Definition 6 (Backdoored PRG). A triple (K,G,A) is called a
(t,q,0, (Giype, €))-backdoored PRG for type € {dist, next,rseek} if (K,G) is
a (t,q,0)-secure PRG and AdvEPRC (K, G, A) > e, where

type
1
Advgise"© (K, G, A) £ 2 [Pr{gEg (K, G, A) = true] — o,

AdvEPRG(K G, A) 2 Pr[GEPRG (K, G, A) = true], and

next next

AdVEFRG(K G, A) 2 min Pr[GBYRS(K, G, A, i,5) = true].

Viseek 1<i.5<q rseek

A Gyist-BPRG is only interesting when € > §, as otherwise the distinguisher
without the trapdoor information can distinguish already with advantage §. For
the other types, even if ¢ < ¢ the definition is still meaningful.

A (t,4,0, (Gnext, €)-BPRG is (strictly) better for the saboteur than achieving
a Ggist-BPRG under the same parameters. The random seek notion is orthogo-
nal; it may or may not be better depending on the situation. Our attacks and

A Formal Treatment of Backdoored Pseudorandom Generators 109

(looking ahead to later sections) defenses will be given according to the strongest
definitions. That is when taking on the role of the sabotuer, we will build Gpext-
BPRGs and/or Gseek-BPRGs with as efficient as possible A. When considering
defenses against saboteurs by way of immunization, we will target showing that
no efficient A can succeed in Gyjst.

Ezample: the Dual EC BPRG. As an example of a BPRG we turn to Dual EC.
It uses an elliptic curve group G with generator g. For consistency with later
sections, we use multiplicative notation for group operations. We also skip for
simplicity some details about representation of elliptic curve points, these being
unimportant for understanding the attack. For a more detailed description of
the algorithm and backdoor see [13].

Key generation K picks a random point () € G and an exponent d s Zg.
It computes P = Q?. The public key is set to pk = (P, Q) and the secret is .
The state space is § = Zg|- On input a seed s; € S, the generation algorithm
G computes s;41 < P*® and computes ;41 as all but the last 16 bits of Q%+*.
The output is (r;11, Sit1)-

With knowledge of d and given two consecutive outputs r1, 7, correspond-
ing to states s,s1 we can give a Gne adversary A that efficiently recovers ss.
Adversary A starts by computing from r; a set of at most 2'6 possibilities for
Q°*. Let these possibilities be X1, ..., Xo16. Then for each i € [1..216], the adver-
sary checks whether QXI'd has all but last 16 bits that match ro. If so it outputs
53 = X3 = Q1% = P%1. Note that while A cannot recover the generator’s second
state s1, it can predict the generator’s second output r3, the third state so, and
all subsequent states and outputs. Also A is relatively efficient, working in time
about 2'6 operations.

As for basic PRG security without the trapdoor, a result due to Schoenmakers
and Sidorenko [25] gives an attack working in time about 2'¢ using a single
output to achieve distinguishing advantage around 1/100. Thus, putting it all
together, we have that Dual EC is a (¢, q,d, (Gnext, 1))-BPRG for ¢ ~ 216, ¢ > 2,
and § =~ 1/100.

From a saboteur’s perspective, that Dual EC doesn’t achieve PRG secu-
rity (against distinguishers without the trapdoor) seems a limitation. One can
truncate more than 16 bits to achieve better security, but this would make A
exponentially less efficient. In the next section we will show how a saboteur can
construct a BPRG with strong PRG security and efficient state recovery.

4 Backdoored PRG Constructions

We start by simplifying and improving the Dual EC BPRG. Let G be a group
and g a generator of G. Let K pick a random secret key x «sZ g and let
pk 2 X = ¢g®. The PRG works simply as G(pk, s;) = (rir1,8i41) = (g%, X5).
A Ghext adversary can recover s;11 = X% by computing r;11%. For a G that is
DDH secure and for which uniform group elements are indistinguishable from
bit strings (e.g., [2,9,29]), this construction can be proven GERY secure under

the DDH assumption.

110 Y. Dodis et al.

K’ G'(pk, s) Al(sk,ri,...,1rq)
(pk, sk) «s Gen (r', s") < Encap(pk; s) s" «— Decap(sk,rq)
return (pk,sk) return (1, s’) return s’

Fig. 5. Backdoored PRG from a pseudorandom KEM

4.1 Backdoored PRGs from Key Encapsulation

We in fact can generalize significantly by observing that the previous con-
struction is actually using the ElGamal key encapsulation scheme (KEM) in
a direct way. Recall that a KEM scheme triple of algorithms is a KEM I' =
(Gen, Encap, Decap). The key generation outputs a public key / secret key
pair (pk,sk) < Gen. The encapsulation
algorithm takes the public key, random coins
r € {0,1}™ for some n and outputs a

ciphertext-key pair (¢, K) « Encap(pk;r) D
where K € {0,1}". The decapsulation algo- Game Distypy
rithm takes a secret key and ciphertext (pk, sk) «—s Gen
and outputs a key: Decap(sk,c) = K € r—s{0,1}"
{0,1}™ U {invalid}. We require correctness, (co, Ko) < Encap(pk;)
meaning that Decap(sk,c) = K for (¢, K) = ¢ s {0,1}"
Encap(pk;r) and for all pk, sk pairs gener- Ky s {0,1}"
atable by Gen and all coin strings r. bs{0,1}
We give a variant of KEM security b s D(pk, cy, Kp)
that requires ciphertexts to be pseudoran- return (b =V')

dom: the output of Encap is indistinguish-
able from a pair of random bit strings. Fig.4. Pseudorandom KEM secu-
See Figure 4. We define Advpgs(D) = rity

2 [Pr[DistRpy = true] — 3|. A KEM T is

said to be a (t,d)-pseudorandom KEM if

AdvPEt = maxp AdvRSY(D) < §, where the maximum is taken over all algo-
rithms D running in time ¢.

This is a strictly stronger security notion than the conventional one for
KEM:s [26], which does not demand that ciphertexts have any particular appear-
ance to attackers. This stronger pseudorandomness requirement was first intro-
duced by Méller [21]. He gave an elliptic curve variant of ElGamal that provably
meets it, and other KEM constructions can be built using [2,9,29].

We have the following result showing that any pseudorandom KEM gives a

gnext'BPRG-

Proposition 1. Let I' = (Gen, Encap, Decap) be a (t,6)-pseudorandom KEM.
Then (K',G',A’) defined in Fig. 5 is a (t,q,qd, (Gnext, 1))-BPRG.

A Formal Treatment of Backdoored Pseudorandom Generators 111

Proof. The correctness of the KEM gives that AdvELRC(K/,G/,A’) = 1 and
that A’ is efficient. We now prove (standard) PRG security against distinguish-
ers without the trapdoor. To do so we use a hybrid argument, applying the
pseudorandom KEM security q times. Let Hy be the QESFEG game with b = 0 and
H, be QESIEG with b = 1. Let H; for 1 < i < g — 1 be the same as game H;
except that we replace the i** output of Encap with two independent, random
bit strings. A straightforward reduction gives that CD(H;, H;11) < 4, and since

we have ¢ hybrids Advdpiic’ (K,G,D) < ¢¢ for any D running in time ¢. O

4.2 Random Seek Backdoored PRGs

We now show a prediction attack, where the prediction algorithm can seek to any
output quickly. Given one output, we can predict any other, and the prediction
can seek in both directions, that is predict previous outputs as well. In the
construction shown, we use the Isb of a random string to make a decision, and
we shift by one bit, so that the randomness used later is independent of the bit
used for decision. We assume that the underlying PRG or PRF was used to get
enough number of bits so that after the shift we have enough random bits for
encryption.

Proposition 2. Let (K, Encp, Decsy) be a (t, ¢, §)-IND$-CPA public key encryp-
tion scheme, Fg be a (t,q,0)-pseudorandom function. Then (K',G',A’) defined
in Fig. 6 is a (t,q, 39, (g,seek,i — 9))-backdoored pseudorandom generator.

K G/(pka (507515C0unt)) A/(Skvivja Ti)
(ph.sk) —K =T, (coun) it (i— }) then
return (pk,sk) if Isb(a) = 0 then | return r;
| 7« Encpi(so;a™?) so < Decg(r;)
else if (s = L) then
| r« Fy (count) | return 0
count « count + 1 rj — Fs (4)
return (r, (sg, s1,count)) returnr;

Fig. 6. Random seek backdoored PRG

Proof.

Adviseni (K', G/, A') = Prr; = 7] > Prllsh(F1(i)) = OAlsb(Fa () = 1] >

rseek

—4.

| =

From pseudorandomness of F’s outputs

CD:(Fs,(1),...,Fs.(q),U) < §,CD:(Fs, (1),...,Fs, (q),U) <6.

112 Y. Dodis et al.

Then CD:((pk, so, Encyi(so; 1)), (pk, so,U)) < 26 due to IND$-CPA security.
Thus,

CD,((pk,out? (G, U)),U) < 30.

O

The distinguishing and predicting PRGs we discussed also satisfy the notion
of forward security, whereas the Gseex construction in Fig 6 is forward-insecure.

4.3 Public-Key Encryption from a Backdoor PRG

We show that the existence of backdoored PRGs implies public-key encryption
(PKE). From a backdoored PRG, we construct a bit encryption scheme with
noticeable correctness and overwhelming secrecy. Using parallel repetition and
privacy amplification of key-agreement [18], we can amplify secrecy and correct-
ness without increasing the number of rounds. Since the number of rounds is not
increased, we obtain secure public-key encryption.

Theorem 1. If (K,Gpk, A) is a (t,q, 0, (Gdist, €))-backdoored PRG, then the pro-
tocol in Fig. 7 is a bit-encryption protocol with correctness € and security 1 — ¢
against attackers running in time t.

Gen Enc(pk, b) Dec(sk,)
(pk, sk) — K s—U b — A(sk,r)
return (pk, sk) if (b=0) then return b’
Il r—U
else
| 7 —out?(Gp,s)
return r

Fig. 7. Bit Encryption

Proof. orrectness:

1
Pr[Dec(sk, Enc(pk, b)) = b] = Prlb =] = Pr[gFR"% (K, G, A) = true] > 7 + %
Security:
For any adversary D who runs in time ¢,
a
Pr{D(ph, 1) = b] = 1+ CDt((pk,;)ut (G,U)),U) < %+ g

A Formal Treatment of Backdoored Pseudorandom Generators 113

Note that combining this result with our earlier construction of backdoored
PRGs from PKE and Proposition 1, we arrive at the promised conclusion that
backdoored PRGs and pseudorandom PKE are equivalent. We capture this with
the following informal theorem, which is a corollary of the results so far.

Theorem 2. Backdoor PRGs exist iff public-key encryption with pseudorandom
ciphertexts exists.

5 Immunization

In this section, we ask how to immunize a potentially backdoored PRG. A natu-
ral idea is for the user to apply a non-trivial function f to the output of the PRG.
So now the attacker A learns f(r;) rather than r;. We ask the question: when
does f successfully immunize a PRG? We study the immunization functions
that turn a backdoored PRG into a backdoor-less PRG. Letting the immuniza-
tion function be a family of algorithms { fseed |seed € {0,1}¢}, we consider the
following immunization models:

1. Public immunization: In this model, seed is revealed to the attacker A prior
to construction of the PRG algorithm. The attacker thus knows the immu-
nization function fseq that will be applied to the outputs of the generator.
In this setting, the goal of the attacker A is to develop a PRG G with a
backdoor that bypasses the known immunization.

2. Semi-private immunization: In this model, the PRG generator G is con-
structed without reference to seed. We may view this as a setting in which
the PRG attacker A learns seed, and thus fseqd, only after the specification
of G. This situation can arise, for example, when the immunization function
f depends upon a source of fresh public randomness.

3. Private immunization: In this model, seed is secret, in the sense that G is
constructed without reference to seed and A never learns seed. We might
imagine the user using a source of private randomness, unavailable to A, to
seed the immunization function f. (Note that although the user has some
private randomness, she might still need the PRG to generate longer pseu-
dorandom strings.)

Now we give formal definitions of secure immunization in the three models
discussed above. We slightly abuse notation in the following way: For a PRG G
such that (r;,s;) < G(s;—1), we write f o G to mean f(r;), i.e., f applied to the
output of G only (and not G’s internal state). Similarly, by out?(f o G,s) we
mean the sequence (f(r1),..., f(rq)), where (rq,...,7r4) = out!(G, s).

Definition 7 (Public Immunization). Let type € {dist, next, rseek}.
A family of algorithms {fsed|seed € {0,1}} s called a public
((t,q,9),(t',q', &), (Geype, €))-immunization, if for any (t,q,9)-secure PRG
(K, G), and for any algorithm A running in time t’,

~ {fewced © Gpr(seed,-)|(seed,pk) € {0,1}¢ x {0,1}*} is a (¥,q,¢')-
pseudorandom generator,

114 Y. Dodis et al.

- AdePRG(K7 feeed © G(seed,), A(seed, -)) < e.

type

Definition 8 (Semi-private Immunization). Let type € {dist, next, rseek}.
A family of algorithms {fwed|seed € {0,1}} is called a semi-private
((t,q,0),(t',q',9"), (Geype, €))-immunization, if for any (t,q,9)-secure PRG
(K, G), and for any algorithm A running in time t',

— {fseed © Gpi(+) | (seed, pk) € {0,1}* x {0,1}*} is a (¢, ¢, d")-pseudorandom
generator,
— AdVBPRG(K7 fseed o G(')7A(Seed7)) <e.

type

Definition 9 (Private Immunization). Let type € {dist, next, rseek}.
A family of algorithms {fewed|seed € {0,1}¢} is called a private
((t,q,0),(t',q',9"), (Geype, €))-immunization, if for any (t,q,9)-secure PRG
(K, GQ), and for any algorithm A running in time t’,

~ {freea © Gy | (seed, ph) € {0,1} x {0,1}%} is a (,¢/,8")-pseudorandom
generator,
- AdVBPRG(Kv fseed © G()vA()) <e.

type

In Section 5.1 we show that it is possible to successfully create a PRG backdoor
in the public immunization setting. On the other hand, in Section 5.2 we show
that there exist immunizations in the semi-private model that separate these
two models. Also, as we will see in Section 5.3, a pseudorandom function is a
secure private immunization. To separate semi-private and private models, in
the following simple lemma we show that a pseudorandom permutation is not a
semi-private immunization. The construction we give for the separation in Fig. 8
also satisfies forward security.

Lemma 1. Let feed be a (t, q,0)-pseudorandom permutation. Then there exists
a t’f‘iple (KI7 le A,): such that (K/a fSeedoGl(')7 A/(Seedv)) isa (tv q, 2q§7 (gnextv 1))'
backdoored pseudorandom generator.

Proof. Let G be a (t,q,0)-pseudorandom generator, and I =
(Gen, Encap, Decap) be a (t,d)-pseudorandom ciphertext KEM. Consider the
triple (K’, G}, A’(seed, -)) shown in Fig. 8. Then AdvEBPRG (K| freg 0 G/, AY) =
Pr[Decap(r’, sk) = §'|(r',s") «— Encap(pk;), (pk, sk) < Gen] = 1. From pseu-
dorandomness of G’s outputs CD;(out?(G,U),U) < 4, (¢,d)-pseudorandomness
of I, and using a hybrid argument similar to the proof of Proposition 1,

CD;((pk, out? (G, U)),U) < 240.

5.1 Public Immunization Model

In the public immunization model, the PRG algorithms G and A know the seed
of the immunization function that will be applied on the output. In this section

A Formal Treatment of Backdoored Pseudorandom Generators 115

K Gl(pkvs) A/(Skaseedafseed(ri))

(pk, Sk) « Gen (a’ 6) - G(S) C— fs;eld(fseed(ri))

return (pk, sk) (r',s") « Encap(pk;) s — Decap(c, sk)
return (', s’) return s/

Fig. 8. PRP Immunization Insecure in Semi-private Model

we demonstrate backdoored pseudorandom generator that cannot be immunized
in the public immunization model. Since seed of the immunization function fseeq
is known to both G and A, in order to construct a backdoored pseudorandom
generator from the viewpoint of the saboteur, we fix the strongest function from
this family so that for any function in the family, the backdoored PRG after
immunization is compromised. The idea behind the construction is to leak the
initial state bit by bit, by rejection sampling of the output of the immunization
function such that the bias is unnoticeable. For a bit string s, we denote the ith
bit of s by s(;).

K Gr/(pk:7 seed, (507 S1, count)) A,(3k7 Seed7 fseed(rl)v ey fseed(rq))
(pk,sk) — K ¢ — Encpi(s1) for 1 <i< Ldo
return (pk7 5k) L — |(,| ‘ Ci fseed (rz)(l)
if count < L then 51 « Decqr(c)

JIHO for L+1<i<gqdo

80 < S0 | ris1— G(s1)

county «— 0 return (0,s1,¢+ 1)

repeat

county «— county + 1
(r',s0) « G(sp)

until (fseed(rl)(l) = C(count)) v

(</:ount2 > Ly

sh— s1

else

(r',s1) — G(s1)

50«0

count’ < count + 1

return (77, (sp, s, count’))

Fig. 9. Predicting backdoored PRG in Public Model

Lemma 2. Let (K,Ency, Decgi) be a (t,q,6) — IND$-CPA public key encryp-
tion scheme, G be a (t,q,0)-pseudorandom generator, and f such that for
seed «— {0,1} , CDy(fseed),U) < §. Then (K',G',A’) defined in Fig. 9
is a (t,q — L%,Qé, (Gnext, €))-backdoored pseudorandom generator, where ¢ =

1— L exp (%), L is the length of ciphertexts produced by Encpy.

116 Y. Dodis et al.

Proof. From pseudorandomness of G’s outputs CD,(out?(G,U),U) < ¢ and
pseudorandomness of ciphertexts CD,((pk, s1, Encpk(s1)), (pk, s1,U)) <6,

CDy((pk, out? (G, U)),U) < 20.

From the Chernoff bound:

In L —In’L
AdvBPRG(K! G/, A") > 1 — L - Pr[county > ﬁ] >1—L-exp (3(1_5)> :

5.2 Semi-Private Immunization Model

In the semi-private model, the generator G does not know seed of fseeq, but the
attacker does. We show that a Random Oracle and a Universal Computational
Extractor are secure immunizations in the semi-private model. We will first
bound the collision probability of pseudorandom outputs. The collision proba-
bility bounds the probability that an algorithm can predict the output of a PRG
run on a uniformly random seed, even with the knowledge of some trapdoor
information, because, intuitively, the output of a PRG should depend on the
input seed also.

Definition 10. The conditional predictability of X conditioned on'Y is defined

Pred(X|Y) .= Eyhy[mgx(Pr[X =zly=Y])].

Definition 11. The conditional collision probability of X conditioned on Y is
defined as
Col(X|Y) =Eyy[Pr [z =]V =1].

x1,r2—X

Lemma 3. For any distributions X and Y, Pred(X|Y) < 4/Col(X]Y).

Proof. Let p, = Pr[Y = y],py), = Pr[X = z|Y = y|. Then

Pred[X|Y] = Zpy : mzaxp;vhj = Z \/py : (\/ZTymgxpw\y) S
Yy Yy

\/Zpy : Zpy maXpi\y < \/1 ‘ Z(py : Zpi‘y) = /Col(X[Y).

O

Let {Gpx: {0,1}™ — {0,1}™ x {0,1}™"|pk € {0,1}P} be a family of algo-
rithms, then by out;(Gpx,U) we denote the distribution of G,;’s ith output, i.e.
the distribution of r; where (ri,...,7,...,7¢) « out?(G,g, U).

A Formal Treatment of Backdoored Pseudorandom Generators 117

Lemma 4. Let {Gpi: {0,1}™ — {0,1}" x {0,1}™|pk € {0,1}P} be a (t,q,0)-
pseudorandom generator. * Then for any 1 < i < q, for any K — {0,1}? x{0, 1}*
such that CDy(pk,U,) < 6, where (pk, sk) — K,

1
Pred(out;(Gpr, U)|sk) < 4/ 0 + 7

Proof. We show that Col(out;(Gpy,U)|sk) < 6 + 5=, then Lemma 3 implies the
desired bound.

Assume, to the contrary, Col(out;(Gpx,U)|sk) > § + 5. This implies that
there exists ¢ such that Eqy spy—x Pr[r; = rj|sk] > § + %, where r;, 7, —
out;(Gpk,U). Let D be a PRG-distinguisher for G, as defined in Fig. 10. Then,

1
>4
2 bl

which contradicts the (¢, ¢, §)-pseudorandomness of {G,}. O

| Pr[D(out?(Gpx,U)) = 1] — Pr[D(U) = 1]| > Col(out;(Gpr,U)|sk) —

D(pk,ri,...,7rq)
s« {0,1}™
Ty Ty < outd (G,)
if r; = r; then
| return 1
else
| return 0

Fig. 10. Distinguisher D for Gy

Positive Result in Random Oracle Model. A random oracle (RO) is an
oracle that responds to every unique query with a random response chosen uni-
formly from its output domain. If a query is repeated it responds the same way
every time that query is submitted. A RO : {0,1}" x {0,1}* — {0,1}" is cho-
sen uniformly at random from the set of all functions that map {0,1}"** to
{0,1}"™. We show that in the semi-private model, a Random Oracle is a secure
immunization function.

Theorem 3. Let {Gpr: {0,1}™ — {0,1}"™ x {0,1}™|pk € {0,1}P} be a
(t,q,9)-pseudorandom generator. Then fsed(x) = RO(z|/seed) is a semiprivate
((t,q,9),(t,q,9), (Gdist, €))-immunization for Gy, where

1
=6+ — \/0
€ +2n+2k+QQA + o

! Here and below we assume that t > C(p + q(n +m + time(Gpx))) for some absolute
constant C' > 0, so that the attacker can always parse the input, and run G for ¢
times.

118 Y. Dodis et al.

k = |seed|, qc and ga are the bounds on the number of times G and A query the
random oracle, respectively.

Proof. Assume, to the contrary, there exists a pair of algorithms (K, A) running
in time ¢, such that the triple (K, feeeq © G(-), A(seed,)) is a (¢, ¢, 9, (Gaist, €))-
backdoored pseudorandom generator. I.e.,

1
AQVER (K, frees © G, A) = 2 |PH{GEERC (K, freea © G, A) = true] — 2| > ¢

in Game Q(ﬁgRG (K, fseed © G, A) from Fig. 3. Let r1,..., 74 be the outputs of Gy,
before the immunization, i.e. s < U, (r1,...,74) < out?(Gpy, s). The immuniza-
tion i feeed(r:) = RO(r;||seed) for 1 < i < gq.

We define the following three events:

- Witry =r; fori #j.
— Wa: Gy queries (r;||seed) for some 1 <14 < g.
— W3: A queries (r;||seed) for some 1 < < gq.

Note that if none of the events above happened then the two distributions
in the distinguishing game corresponding to the challenge bit being 0 or 1, are
identical. Now we proceed to bound the probabilities of these three events.

— Since the PRG-security of G is §, Pr[IW;] < g—i + 4.
— In the semiprivate model G does not see seed, therefore, the probability that
G queries 7;||seed in one of its queries is the probability that the G guesses

seed, and by the union bound this is bounded from above by g—f. Thus,
Pr[Wy] < ¢ /2%,

— Now, we look at the probability that A makes a relevant query, given that
G did not query r;||seed for all i. Assume A predicts r; for i € I C [q].
Then there exists ¢ € I that was predicted first, i.e. when all feeed(r;)
looked random to A. Then, the probability that A predicts at least one r;
is at most Y7, Pr[A predicts r; using ga queries given sk]. Since A makes
at most ga calls to the random oracle, the latter probability, by the union
bound, is bounded by ga Y ¢_, Pr[A predicts r; using one query given sk.
Now Lemma 4 gives us the following bound:

q
Pr[W3] < Z Pr[A predicts r; using ga queries|sk]
i=1

q
< qa Z Pr[A predicts r; using one query|sk]

i=1

q
1
< qa) Pred[ri|sk] < qgay/d + T

i=1

By the claims above,

A Formal Treatment of Backdoored Pseudorandom Generators 119

/ 1
e = Pr[W4] 4 Pr[Ws] + Pr[W3] < 6 + = + o S 1 qqar/0 + on-

Positive Result in Standard Model. In this section, we show that replacing
the Random Oracle with a UCE function [4] is secure in the standard model.
First, we briefly recall Universal Computational Extractor (UCE) defined in [4]
by Bellare et al. UCE is a family of security notions for a hash function family.

UCE Security. A notion of UCE security is specified by specifying a class of
sources S. The source is given oracle access to the hash function. UCE security for
the class of sources S states that for any PPT algorithm called the distinguisher
D, who receives the key of the hash function and leakage L passed by the source,
cannot tell better than random guessing whether Hj was used or a random
function. We now give the formal definitions. A source S is a PPT algorithm
which is given oracle access to Hash, and outputs a value L called the leakage.
For a pair of source S and distinguisher D, define the UCE%D game as shown
in Fig. 11.

Definition 12. A function H is called UCE[S, gp, €]-secure, if for all sources
S € S, and all polynomial-time algorithms D that make at most qp queries to
H, AdvECE(S, D) .= 2Pr[UCES” = true] — 1 <e.

For a source S, and a polynomial-time algorithm P called the predictor, define
the game Predg as shown in Fig. 12.

Definition 13. A source S is called (l,¢)-statistically unpredictable, denoted
by S € §%¥P[l, €], if for all computationally unbounded algorithms P that output
a list of at most I guesses AdvPred .= Pr[Pred = true] <e.

Main UCEZ;” Hash(z)

b—{0,1} if T[] = L then

kE—K if (b=1) then

L §Hosh | T — H (k)

b — D(k,L) else

return (b’ =b) | T[z] « {0,1}*
return T[]

Fig. 11. Game UCE and Hash Oracle

120 Y. Dodis et al.

Predf Hash(z)

done « false if done « false then
Q10 | Q= QuU{x}

[, « GHash if T[z] = L then
done « true | T[z] « {0,1}*
Q' «— PHash(L) return 7T[x]

return (Q N Q' # 0)

Fig. 12. Game Pred and Hash Oracle

Theorem 4. Let {Gpr: {0,1}™ — {0,1}™ x {0,1}™|pk € {0,1}P} be a
(t,q,9)-pseudorandom generator. Then feed() = Hseed(x) is a semiprivate
((t,q,9), (t,q, 6 + €), (Gdist, €")) -immunization for Gy, where

2

5’:26—1—(5—&—;}—“7

H € UCE[S,qp,d, § = S™[L,5 + & +al\ /3 + 3]

Proof. Given an adversary A playing the distinguishing attack game

GBPRG (K H o G, A(seed)) we will construct a statistically unpredictable source

dist
S and a polynomial-time distinguisher D (see Fig. 13) such that AdviL S (K, Ho

G, A(seed)) < 2AdvYCF(S, D) + 6 + ‘21%_

SHash D(d, sk, I, k)
(pk, sk) — K d — A(sk, I, k)
s —{0,1}™ if (d = d') then
1,72, ,Tq < out?(Gpk, S) | return 1
for 1 <i<qdo else

uY « Hash(R;) | return 0

ul — {0,1}"
d —{0,1}
I={uf,. .. ul
return (d, pk, sk, I)

Fig. 13. Source S and Distinguisher D

Let b be the challenge bit in the UCE game UCE%D. Then,

Pr[UCE” = true|b = 1] = Pr[GELRC (K, H o G, A(seed)) = true],
Pr[UCE}" = true|b = 0] = 1 — Pr[GFERG (K, RO o G, A(seed)) = true],

A Formal Treatment of Backdoored Pseudorandom Generators 121

where in the RO immunization game, A has to distinguish uniformly random
outputs from RO applied to the outputs of G. If r’s are distinct, then these two
distributions are identical. From the PRG security, the probability of the event

r; =1 for i # j is less than 0 + g—i. Therefore,

2

6+L)

Pr[UCE}" = truelb = 0] > o

1
2

N |

Summing yields,

1 1 1 ¢?
Adv}“P(5,D) = AV (K, H o G, A) = 55— 5.;’7,

2

AdVEPRS (K, H 0 G, A) < 2AdvYCP(S, D) + 6 + ;Ln

Now we argue that S is statistically unpredictable; that is, it is hard to guess

the source’s Hash queries even given the leakage, in the random case of the

UCE game. Consider an arbitrary predictor P, and the advantage of P in the

game Predg. If all R, are distinct (which happens with probability 1 —§ — g—i),

the probability that P guesses at least one of r’s given the leakage is at most
qPred(R|sk). Now, since P outputs a list of length [, by Lemma 4,

¢ [« 1
Advgs! §5+2—n+ql 5+27-

5.3 Private Immunization Model

We now study the strongest model of immunization which is the private model,
where seed is secret from both the PRG and the attacker. We show that a
PRF is an immunization function in this model. But if users had access to a
backdoor-less PRF, then instead of using it to immunize a backdoored PRG,
they could use the PRF itself for pseudorandomness. In this section, we explore
using functions weaker than PRF as immunization functions, and show that
some natural functions are not secure immunizations.

PRF Immunization

Lemma 5. Let {Gpi: {0,1}™ — {0,1}™ x {0,1}™|pk € {0,1}P} be a (t,q,0)-
pseudorandom generator, let also {fseed: {0,1}" — {0,1}¥|seed € {0,1}}
be a (t,q,¢e)-pseudorandom function. Then fsed s a private ((t,q,9), (t,q,0 +
€), (Gdist, €")) -immunization for Gy, where

2

f—eqs+ L
=it

122 Y. Dodis et al.

Proof. From the definition of PRF, no distinguisher D running in time ¢ given ¢
outputs of Fgeq can distinguish the output from uniformly random with advan-
tage greater than €. By PRG security of Gpr, CD((pk,out?(Gpi,U)),U) <
§. Therefore, {fseed © Gpr(-)|(seed,pk) € {0,1}* x {0,1}?} is a (t,q,0 + ¢)-
pseudorandom generator. Similar to the proof of Theorem 3, Advf’iiRG(K, Sseed ©
G(-),AC)) < AWVETRE L Pr[3i, 5y = 1] (11, -y) = outd(Gpp, U)] < 40+ L.

O

Attack against XOR. One of natural candidates for the immunization func-
tion in the private randomness model is the function XOR with a random string
as private randomness. In this section we show an attack against feeed(z) =
seed @ x, where seed is private randomness of immunization function f. The
backdoored PRG works as follows: it outputs strings such that the XOR of two
consecutive outputs leaks one bit of s; where s is a part of the seed of length n,
such that the bias introduced is negligible. After (n + 1) outputs A can recover
all of s, and can predict future outputs.

Lemma 6. Let (K,Enc,, Decsi) be a (t,q,0) — IND$-CPA public key encryp-
tion scheme, G be a (t,q,d)-pseudorandom generator. Then for (K',G',A’)
defined in Fig. 14 and fseed(xz) = seed @ x, (K, feire 0 G'(+),A'(})) is a

(t,q— nlffg , 20, (Gnext, €))-backdoored pseudorandom generator, wheree =1—n-

—1In?
exp (ﬁ) .

Proof. From the Chernoff bound:

Inn —In%n
AdvnBeEFG(K/,G',A') > 1—n-Pr[county > ﬁ] >1—n-exp (3(1_5)) .
From pseudorandomness of G’s outputs CDy(out?(Gp,U),U) < J, and
CD.((pk, s1, Enc(s1)), (pk,s1,U)) < 6 due to IND$-CPA security. Thus,

CD;((pk, out?(G,,.,U)),U) < 2. 0

Extensions of XOR-attack. The previous attack can be extended in two
ways. First, the PRG can be modified so that one does not need to see ¢ > n
outputs to guess the next one, with high probability it is enough to see just three
random outputs. Although this kind of attack is weaker than the definition of
rseek-attack, it is much stronger than next-attack. Second, using homomorphic
encryption, the previous attack can be extended to some other natural immuniza-
tion functions. Here we show an example where the multiplication with a private
random string is not a private immunization. Let (K, Encpy, Decsy) be a homo-
morphic (¢,q,d) — IND$-CPA encryption scheme. For simplicity we assume that
Encpy: Zy — Zy,Decgy,: Ly, — Zp, and Encpy(mq)-Encpr(me) = Enc((mq +ms)
mod b), and the immunization function feeed(r) = (seed-r) mod n (e.g., one can
think of Benaloh cryptosystem [6]).

By 3rseek we mean the rseek-game where the adversary gets to see 3 outputs
rather than just one.

A Formal Treatment of Backdoored Pseudorandom Generators

123

K’ G'(pk, (s0, 51, ¢, Tprev, COUNE))

A/(Sk, fseed(rl)a ce fseed(rq))

(Pk, sk) — K
return (pk, sk)

50« So
s)—s1
if count =1 then
(a,80) < G(s0)
¢ — Encpi(s1; @)
n «— |
(. 54) — Gls0)
if 1 < count < n+1 then
counts «— 0
repeat
| (r',s0) < G(s()
(county > %),
if count > (n + 1) then
| (,s1) Gls1)
Tprev = r
count < count + 1
return
(r', (86, 81, € Tprev, count))

for 1 <i<ndo
C(3) A
fseed(riJrl))(l)

Cc = 8(1)0(2) .o C(n)

s1 < Decg(c)

Thio < G(s1)

seed’ « 1!, @ f(seed, 7])

forn+1<j<g+1do

‘ (7‘;,31) — G(s1)
return r; @ seed’

(fseed (Tz) @D

until ((T’ ©® rprcv)(l) = C(’L)) N

Fig. 14. Predicting backdoored PRG — Private immunization with feeed(z) = seed ® z

K’ G’ (pk, so, s1,count)

(pk, sk) — K a — F,, (count)

return (pk, sk) if (Isby(a) = 00) then
| 7"« Ency(0;™?)

else if (Isbz(a) = 10) then

A/(Sk, fseed(ra)v fseed (7‘17)1 fseed("‘g)7 d)
€ — (fseed(ra))/fseed ("'b)

s < Decgy,(e)
if s{, # L then

e — Fg (c)

| "« 1/(Encpi(so; a>?))
else

| r' « Fg,(count)

return (77, (so, 1, count + 1))

seed’ « feeed(7c) /T
7l — Fy (d) - seed’
return r/;

return 0

Fig. 15. Predicting Backdoored PRG — Private Immunization

Lemma 7. Let (K,Ency, Decgy) be a (t,q,0) — IND$-CPA public key encryp-
tion scheme which is multiplicatively homomorphic as above, Fg be a (t,q,9)-
pseudorandom function for ¢ > 4. Then for (K',G',A’) defined in Fig. 15 and
Jseed(z) = seed -z, (K', feeed©G'(+), A'(+)) is a (¢, q, 35, (Gsrseeks 6%1 —0))-backdoored
pseudorandom generator.

Proof. From pseudorandomness of F’s outputs
CD:((Fs,(1),...,Fs(q),U) < 6,CD:((Fs,(1),...,Fs, (), U) <.

Then CDy((pk, so, Enc(so; a>?)), (pk, so,U)) < 26 due to IND$-CPA security.
Thus,
CDy((pk, out? (G, U)),U) < 30.

124

Y. Dodis et al.

Adv?rlsjelzs (Klv fseed © Gl, A/) = Pr[rd = T:i] 2
Pr[lsh(F,, (d)) = 1 A seed’ = seed A s, = s0] >
Prllsb(Fs, (d)) = 1 AT, =71. A sy = s0] >
Pr(lsb(Fs, (d)) = 1 Alsb(Fs, (¢)) = 1 A sy = so] >
Prllsb(Fs, (d)) = 1 Alsb(Fs, (¢)) = 1 Arq = Encpr(0) Ay = 1/(Encpr(so))] >
Pr[lsb(Fs, (d)) = 1 Alsb(Fs, (¢)) = 1 Alsba(Fy, (a)) = 00 A lsby(Fs, (b)) = 10] >
1
— =0
64
for ¢ > 4.
O
References
1. Albertini, A., Aumasson, J.P., Eichlseder, M., Mendel, F., Schlaffer, M.: Mali-

10.

11.

cious hashing: Eve’s variant of SHA-1. Cryptology ePrint Archive, Report 2014/694
(2014). http://eprint.iacr.org/

Aranha, D.F., Fouque, P.A., Qian, C., Tibouchi, M., Zapalowicz, J.C.: Binary elli-
gator squared. Cryptology ePrint Archive, Report 2014/486 (2014). http://eprint.
iacr.org/

Backes, M., Cachin, C.: Public-key steganography with active attacks. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 210-226. Springer, Heidelberg (2005)

. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.

In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398-415. Springer, Heidelberg (2013)

. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against

aass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 1-19. Springer, Heidelberg (2014)

. Benaloh, J.: Dense probabilistic encryption. In: Proceedings of the Workshop on

Selected Areas of Cryptography, pp. 120-128 (1994)

. Bendel, M.: Hackers describe PS3 security as epic fail, gain unrestricted access.

http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-
fail-gain-unrestricted-access/

. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,

T., van Someren, N.: Factoring RSA keys from certified smart cards: coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013, Part II. LNCS, vol.
8270, pp. 341-360. Springer, Heidelberg (2013)

. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve

points indistinguishable from uniform random strings. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, pp. 967-980.
ACM (2013)

Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing 15(2), 364-383 (1986)

Brown, D., Vanstone, S.: Elliptic curve random number generation (2007). http://
www.google.com/patents/US20070189527

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
http://www.google.com/patents/US20070189527
http://www.google.com/patents/US20070189527

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A Formal Treatment of Backdoored Pseudorandom Generators 125

Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D.
(ed.) ITH 1998. LNCS, vol. 1525, pp. 306-318. Springer, Heidelberg (1998)
Checkoway, S., Fredrikson, M., Niederhagen, R., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H.: On the practical exploitability
of Dual EC DRBG in TLS implementations (2014)

Everspaugh, A., Zhai, Y., Jellinek, R., Ristenpart, T., Swift, M.: Not-so-random
numbers in virtualized linux and the Whirlwind RNG (2014)

Goh, E.-J., Boneh, D., Pinkas, B., Golle, P.: The design and implementation
ofprotocol-based hidden key recovery. In: Boyd, C., Mao, W. (eds.) ISC 2003.
LNCS, vol. 2851, pp. 165-179. Springer, Heidelberg (2003)

Goldberg, I., Wagner, D.: Randomness and the Netscape browser. Dr Dobb’s Jour-
nal pp. 66-71 (1996)

Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: Detection of widespread weak keys in network devices. In: USENIX Security,
pp. 205-220. USENIX (2012)

Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 664-673.
ACM (2005)

Hopper, N., von Ahn, L., Langford, J.: Provably secure steganography. IEEE Trans-
actions on Computers 58(5), 662-676 (2009)

Juels, A., Guajardo, J.: RSA key generation with verifiable randomness. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 357-374. Springer,
Heidelberg (2002)

Moller, B.: A public-key encryption scheme with pseudo-random ciphertexts. In:
Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS,
vol. 3193, pp. 335-351. Springer, Heidelberg (2004)

Mowery, K., Wei, M., Kohlbrenner, D., Shacham, H., Swanson, S.: Welcome to the
Entropics: Boot-time entropy in embedded devices, pp. 589-603. IEEE (2013)
National Institute of Standards and Technology: Special Publication 800-90:
Recommendation for random number generation using deterministic random
bit generators (2012), http://csrc.nist.gov/publications/PubsSPs.html#800-90A,
(first version June 2006, second version March 2007)

Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS (2010)
Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudo-
random generator. IACR Cryptology ePrint Archive 2006, 190 (2006)

Shoup, V.: A proposal for an iso standard for public key encryption (version 2.1).
TACR E-Print Archive 112 (2001)

Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST SP800-90
Dual Ec Prng. In: Proc. Crypto 2007 (2007)

Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Advances
in Cryptology. pp. 51-67. Springer (1984)

Tibouchi, M.: Elligator squared: Uniform points on elliptic curves of prime order
as uniform random strings. Cryptology ePrint Archive, Report 2014/043 (2014).
http://eprint.iacr.org/

Vazirani, U.V., Vazirani, V.V.: Trapdoor pseudo-random number generators, with
applications to protocol design. FOCS 83, 23-30 (1983)

Vazirani, U.V., Vazirani, V.V.: Efficient and secure pseudo-random number gen-
eration. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp.
193-202. Springer, Heidelberg (1985)

http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://eprint.iacr.org/

126

32.

33.

34.

35.

36.

Y. Dodis et al.

von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 323-341. Springer, Heidelberg
(2004)

Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: Results from the 2008 Debian OpenSSL vulnerability. In: SIGCOMM
Conference on Internet Measurement, pp. 15-27. ACM (2009)

Young, A., Yung, M.: The dark side of “black-box” cryptography, or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89-103.
Springer, Heidelberg (1996)

Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62-74. Springer,
Heidelberg (1997)

Young, A., Yung, M.: Kleptography from standard assumptions and applications.
In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 271-290.
Springer, Heidelberg (2010)

Number Field Sieve

Improving NFS for the Discrete Logarithm
Problem in Non-prime Finite Fields

Razvan Barbulescu' 23 (™) Pierrick Gaudry®3*, Aurore Guillevic'2,

and Francois Morain®23

! Institut National de Recherche en Informatique et en Automatique (INRIA),
Paris, France

razvan.barbaud@imj-prg.fr

2 Ecole Polytechnique/LIX, Palaiseau, France

{guillevic,morain}@lix.polytechnique.fr

3 Centre National de la Recherche Scientifique (CNRS), Paris, France
4 Université de Lorraine, Nancy, France

pierrick.gaudry@loria.fr

Abstract. The aim of this work is to investigate the hardness of the
discrete logarithm problem in fields GF(p™) where n is a small integer
greater than 1. Though less studied than the small characteristic case
or the prime field case, the difficulty of this problem is at the heart of
security evaluations for torus-based and pairing-based cryptography. The
best known method for solving this problem is the Number Field Sieve
(NFS). A key ingredient in this algorithm is the ability to find good
polynomials that define the extension fields used in NFS. We design two
new methods for this task, modifying the asymptotic complexity and
paving the way for record-breaking computations. We exemplify these
results with the computation of discrete logarithms over a field GF(p?)
whose cardinality is 180 digits (595 bits) long.

1 Introduction

The security of cryptographic protocols relies on hard problems like integer
factorization or discrete logarithm (DLP) computations in a finite group. The
difficulty of the latter depends on the chosen group. While no subexponential
methods for DLP instances are known for some groups (including elliptic curves),
finite fields are vulnerable to variants of the Number Field Sieve (NFS) algo-
rithm.

Getting more insight about the theoretical and the practical behaviour of
NFS for non-prime fields is important in cryptography. Indeed, although cryp-
tosystems based on discrete logarithms in non-prime finite fields are not as widely
deployed as for prime fields, they can be found in two areas: torus-based and
pairing-based cryptography.

Torus-based cryptography, and in particular its most popular avatars LUC
[32], XTR [21] and CEILIDH [29], provides an efficient way to build a cryptosys-
tem working in a subgroup of the multiplicative group of a finite field F,» where

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 129-155, 2015.
DOI: 10.1007/978-3-662-46800-5_6

130 R. Barbulescu et al.

n > 1 is a small integer. The size of the considered prime-order subgroup must
be large enough to resist Pollard’s rho attacks, and p™ must be large enough to
resist NFS attacks.

In pairing-based cryptography, the security relies on the difficulty of the
discrete logarithm problem in elliptic curves, and in finite fields of the form Fgn,
where n is small (mostly n < 20). The table [12, Tab. 1.1] lists the available
choices of elliptic curve and finite field sizes to balance the security on both
sides. Due to recent progress in attacks on discrete logarithms in finite fields of
small characteristic, it is also common to assume that ¢ is prime, so that NFS
is also to be considered as an attack to be resisted.

Expressing the complexity of subexponential methods is done using the L-
function. If & € [0,1] and ¢ > 0 are two constants, we set

Lg(a,¢) = exp ((c+ o(1))(log @)*(loglog Q) %) ,

and simply write Lg(c) if the constant ¢ is not made explicit.

It was proven in [16] that the complexity of DLP in the medium an large char-
acteristic case is Lg(1/3, ¢). This ended proving that the complexity of DLP for
every finite field of cardinality @ is Lo (1/3, ¢). The constant ¢ depends on the size
of the characteristic p with respect to Q. It is customary to write p = Lg(«, ¢)
and to classify the different cases as follows: p is said to be small if o < 1/3,
medium if 1/3 < o < 2/3 and large if 2/3 < «a. In this article, we target non-
small characteristic finite fields, for which the state-of-art algorithm is the Num-
ber Field Sieve (NFS) and where the quasi polynomial time algorithm [2] does
not apply. Schirokauer [30] studied the family of fields Fyn for which n is con-
stant when p goes to infinity, and obtained the same complexity as in the prime
case Lg(1/3,/64/9). The variants of the algorithm by Joux, Lercier, Smart
and Vercauteren [16] have complexity Lg(1/3, ¢/64/9) for fields of large char-
acteristic, and Lg(1/3, {/128/9) in medium characteristic. A Coppersmith-like
variant [3] has a complexity of Lg(1/3, /(92 + 261/13)/27) in large characteristic,
and Lg(1/3, {/213/35) in medium characteristic. The situation is more complex
in the boundary case, i.e. when p = Lg(2/3), having a complexity Lg(1/3,¢)
with ¢ varying between 16/9 and {/213 /36 [3]. Finally, if the characteristic p has
a special form, i.e. can be written as p = P(m), for an integer m ~ p/ 4 and
a polynomial P € Z[z] of small degree and with small coefficients, then a faster
variant of NFS is available [18].

In practice, the boundary between the medium and large characteristic cases
is determined by direct timing of each variant of NFS, for each pair (|logp],n).
A series of record computations were realized using the medium characteristic
variant [17, Table 8.], but to our knowledge no computations have been done in
non-prime fields using the large characteristic variant of NF'S.

In this article, we propose two new methods to select polynomials for NFS
in the context of discrete logarithms in non-prime finite fields: the Generalized
Joux—Lercier (GJL) method and the Conjugation (Conj) method.

We prove the following result in Section 4.

Improving NF'S for the Discrete Logarithm Problem 131

Theorem 1. Let Fg, with Q = p™ be a finite field of characteristic p. Assuming
the usual heuristics on smoothness of algebraic numbers, made in the analysis
of the Number Field Sieve algorithm, we get the following time complexities for
computing a discrete logarithm in Fg, depending on the polynomial selection
method and the size of p compared to Q:

1. (Large prime case). Assuming p > Lg (2/3, \3/8/3), NE'S with the General-
ized Jouz—Lercier method has complexity

Lo (1 /3, i/@) .

2. (Medium prime case). Assuming p = Lg(a) for 1/3 < a < 2/3, NFS with
the Conjugation method has complexity

Lo (1 /3, i/m) .

3. (Boundary case). Assuming p = Lq(2/3, 121/3)1+e(N) " NES with the Conju-
gation method has complexity

Lo (1 /3, i/M) .

This improves on the previously known complexities in the medium charac-
teristic case, and in the boundary case where p is around Lg(2/3).

When the characteristic is large, we improved on the known method of the
polynomial selection (Proposition 5), but our gain is hidden in the 1 + o(1)
exponent of the complexity formula. It led us to do a more precise analysis
for sizes around the limit of what seems feasible with current and near future
technology, and for extension degrees between 2 and 6. This suggests that our
polynomial selection methods behave better than expected for small extension
degrees.

In order to illustrate this, we implemented our methods and ran a discrete
logarithm computation in a finite field of the form F,», where p has 90 decimal
digits. With the Conjugation method, we were able to perform this in a time
that is smaller than what is needed to factor an integer of 180 decimal digits.

Outline. The paper is organized as follows. In Section 2 we make a short pre-
sentation of the number field sieve. In Section 3 we present two new methods
of polynomial selection for NFS. We measure their asymptotic complexity, thus
proving Theorem 1, and derive non-asymptotic cost estimates for small degree
extensions in Section 4. After discussing some further improvements in Section 5,
we detail a record computation in F,2 obtained with our algorithm in Section 6.

2 Sketch of the Number Field Sieve

Let us sketch the variant of NFS, the state-of-art algorithm used to compute
discrete logarithms in any finite field F,,» with non-small characteristic.

132 R. Barbulescu et al.

In the first stage, called polynomial selection, two polynomials f, g in Z[x] are
constructed (we assume that deg f > deg g), such that their reductions modulo p
have a common irreducible factor ¢ € F,[x] which is irreducible of degree n. This
polynomial ¢ defines Fy» over F,,, and does not impact the complexity of NFS.
We will use it in the final part of the algorithm, the individual logarithm stage
(see below), to embed the input element, whose discrete logarithm is requested,
into our representation Fp»n = Fy,[z]/().

Essentially, we impose no additional comdition on f and g. During this pre-
sentation we will consider the number fields of f and g, meaning that the two
polynomials are irreducible, but everything works the same if we replace them
by their irreducible factors over Z which are divisible by ¢ modulo p. Far more
important is the fact that we do not make the classical assumption that f and g
are monic. Indeed, the NFS algorithm can be modified to work with non-monic
polynomials by adding factors of the leading coefficient to the factor base and by
implementing carefully the decompostion of algebraic numbers into prime ideals.
This was known in the folklore of NFS for a long time now and was also written
more or less explicitly in the literature of NFS [16,20] where non-monic polyno-
mials are used. A recent description of this technicalities is made in Section 6.5
of [4]. CADO-NFS accepts non-monic polynomials as an input, which allowed
us to do experiments with our polynomials.

Let a and (be algebraic numbers such that f(«) =0 and g(8) = 0 and let
m be a root of ¢ in Fyn, allowing us to write Fpn = F,(m). Let K; and K,
be the number fields associated with f and g respectively, and O and O, their
rings of integers. In the algorithm, we consider elements of Z(«) and Z(f) as
polynomials in « and 3 respectively, which are in general not integers. However,
the only denominators that can occur are divisors of the leading coefficients of
the polynomials f and g that we denote respectively by I(f) and I(g).

For the second stage of NFS, called relation collection or sieving, a smooth-
ness bound B is chosen and we consider the two factor bases

- prime ideals q in O of norm less than B
F= or above prime factors of I(f) ’

F prime ideals q in O, of norm less than B
9 or above prime factors of I(g) ’

An integer is B-smooth if all its prime factors are less than B. For any polynomial
¢(x) € Zlz], the algebraic number ¢(a) (resp. ¢(3)) in Ky (resp. K,) is B-
smooth if Res(f, ®) (resp. Res(g,®)) is the product of a B-smooth integer and
of a product of factors of I(f) (resp. I(g)). In that case, due to the equation

N (é(@)) = £I(f)~ 95 Res(f, ¢),

the fractional ideal ¢(a)O; decomposes into a product of ideals of Fy, with
positive or negative exponents.

In the sieve stage, one collects #Fy + #F, polynomials ¢(z) € Z[z] with
coprime coefficients and degree at most ¢ — 1, for a parameter ¢ > 2 to be

Improving NF'S for the Discrete Logarithm Problem 133

chosen, such that Res(f,#) and Res(g,¢) are B-smooth. Since both ¢(«) and
¢(B) are B-smooth, we get relations of the form:

¢(0¢)Of — qu}_f qvalq(¢(a))
#(8)0, = HtG]—'g pvale(¢(8))

Each relation allows us to write a linear equation among the (virtual) logarithms
of the ideals in the factor base. In this article we hush up the technical details
related to virtual logarithms and Schirokauer maps, but the reader can find a
detailed description in [5,16,31].

The norm of ¢(a) (resp. of ¢(3)) is the product of the norms of the ide-
als in the right hand side and will be bounded by the size of the finite field
(p)max(deg f.deg9) (this is a very crude estimate; refining it is the heart of the
complexity analysis of Section 4); therefore the number of ideals involved in a
relation is less than log,(p™)°()). One can also remark that the ideals that can
occur in a relation have degrees that are at most equal to the degree of ¢, that is
t — 1. Therefore, it makes sense to include in 7y and F; only the ideals of degree
at most ¢ — 1 (for a theoretical analysis of NFS one can maintain the variant
without restrictions on the degree of the ideals in the factor base).

In order to estimate the probability that a random polynomial ¢ with given
degree and size of coefficients gives a relation, we make the common heuristic
that the integer Res(¢, f) - Res(¢, g) has the same probability of B-smoothness
as a random integer of the same size. Therefore, reducing the expected size of
this product of norms is the main criterion when selecting the polynomials f
and g.

In the linear algebra stage, we consider the homogeneous linear system
obtained after the sieve. We make the usual heuristic that this system has a space
of solutions of dimension one. Since the system is sparse (at most (log,(p™))°™)
non-zero entries per row), an iterative algorithm like (block) Wiedemann [10,33]
is used to compute a non-zero solution in quasi-quadratic time. This gives the (vir-
tual) logarithms of all the factor base elements.

In principle, the coefficient ring of the matrix is Z/(p™ — 1)Z, but it is enough
to solve it modulo each prime divisor £ of p™ — 1 and then to recombine the
results using the Pohlig—Hellman algorithm [27]. Since one can use Pollard’s
method [28] for small primes ¢, we can suppose that ¢ is larger than L,n(1/3).
Since / is large, we may assume that ¢ is coprime to Disc(f), Disc(g), the class
numbers of K¢ and K, and the orders of the roots of unity in K¢ and K,. These
assumptions greatly simplify the theory, but again, we do not elaborate on the
mathematical aspects of the algorithm since the improvements that we discuss
in this article do not affect them.

In the last stage of the algorithm, called individual logarithm, the discrete log-
arithm of any element z = Z;:Ol zim® of Fpn in the finite field is computed. For
this, we associate z with the algebraic number 7 = 27" 2,0’ in K and check
whether the corresponding principal ideal factors into prime ideals of norms

bounded by a second bound B’ larger than B. We also ask the prime ideals to

134 R. Barbulescu et al.

be of degree at most ¢ — 1. If Z does not satisfy these smoothness assumptions,
then we replace z by 2¢ for a randomly chosen integer e and try again. This
allows us to obtain a linear equation similar to those of the linear system, in
which one of the unknowns is log z. The second step of the individual logarithm
stage consists in obtaining relations between a prime ideal and prime ideals of
smaller norm, until all the ideals involved are in F¢ or F,. This allows us to
backtrack and obtain log z.

3 New Methods for Selecting Polynomials

In this section, we propose two new methods to select the polynomials f and g,
in the case of finite fields that are low degree extensions of prime fields. For any
polynomial g, we denote by ||g|| , the maximum absolute value of its coefficients.
The first method is an extension to non-prime fields of the method used by Joux
and Lercier [15] for FF,,. In the second one, we use rational reconstruction and
the existence of some square roots in F,,.

All the constructions that follow use either LLL reduction [22] or simple
rational reconstruction (also known as the continued fraction method), see for
example [8]. It allows us to write any residue a modulo a prime p as

a=wu/v modp

with u,v < ¢,/p for some constant c. If one computes the rational reconstruction
using LLL in dimension two, then one can show that it always succeeds if ¢ is a
large enough explicit constant. In practice we might want two different rational
reconstructions a = uy /vl = uy /’U2 mod p. In this case we cannot make any
proof on the size of us and vy, but they can be small.

For ease of reading, f is supposed to have degree greater than or equal to
that of g. Although the polynomial ¢(z) that defines Fpn as F,[X]/(p(x)) does
not occur explicitly in the computations, we sometimes give it along with the

pair (f,9).

3.1 State of the Art

Joux, Lercier, Smart and Vercauteren [16] introduced two methods of polynomial
selection in non-prime fields which are the only option for their respective range
of application: medium characteristic and, respectively, large characteristic finite
fields.

JLSV;. In Algorithm 1 we recall the method introduced in [16, §2.3]. This
method is best suited to the medium characteristic case. It produces two poly-
nomials f and g of the same degree n, which have coefficients of size O(,/p)
each.

Ezample 1. Take p = 1000001447, n = 4, and a = 44723 > [,/p]|. One has
f=(2*—6x2+1)—44723(2% — x) and g = 22360(x* — 622 + 1) — 4833 (x> — x)
with u/v = 4833/22360 a rational reconstruction of a modulo p.

Improving NF'S for the Discrete Logarithm Problem 135

Algorithm 1. Polynomial selection with the first method in [16] (JLSV;)

Input: p prime and n integer
Output: f, g, with f,g € Z[z] irreducible and ¢ = ged(f mod p, g mod p) in
Fp[z] irreducible of degree n
1 Select fi(x), fo(z), two polynomials with small integer coefficients,
deg f1 < deg fo =n ;
repeat
| choose a > [/pl;

until f = fo + afi is irreducible in Fp[x];
(u,v) < a rational reconstruction of a modulo p ;
g —vfo+ufi;
return (f, g, = g mod p)

B B =R B VU V)

JLSV,. In Algorithm 2 we reproduce the method described in [16, §3.2]. We
denote by LLL(M) the matrix obtained by applying the LLL algorithm to the
rows of a matrix M with integer coefficients.

Algorithm 2. Polynomial selection with the second method in [16]
(JLSV.,)

Input: p prime, n integer and D > n integer
Output: f,g,¢ with f, g € Z[z] irreducible and ¢ = ged(f mod p, g mod p) in
Fp[x] irreducible of degree n
1 Choose some monic polynomial go(z) of degree n with small integer coefficients ;

2 Choose an integer W ~ p/(P*Y but slightly larger, and set
gx)=go(z+W)=co+taz+---+a";
3 Reduce the rows of the following matrix using LLL

fofi- fo
degp =n

M= P , to get LLL(M) =

D+1—n

cocr--- 1]

4 return (f = fpax® +--- + fo,9,¢ = g mod p)

Proposition 1. The coefficients of the polynomial f in Algorithm 2 have
approzimate size QY/(P+1)

Proof. By construction, |co| = W ~ Q'/(P+1), Since ¢ was chose so that ¢, = 1,
we get det(M) = p™. The first row of LLL(M) gives a polynomial f of degree at
most D which is divisible by g modulo p. The coefficients of f are of approximate
size (det M)Y/ (P Tt is = pn/ (P+1) = Q1/(D+1) if we assume that the dimension
D + 1 stays small.

136 R. Barbulescu et al.

We can have deg(f) = D for any value of D > n. We may want to take
D = n for some real-life cases, so that f and g are of degree n; moreover we take
¢ = g mod p. We give such an example here.

Example 2. Consider again the case of p = 1000001447 and n = 4 this time.
We take gg to be a polynomial of degree four and small coefficients, for example
go=x2*4+23+ 22+ 2+ 1. We use Wy = 64 > pl/(D+1) and we set

g = go(z + Wy) = 2t 4 25723 + 2476922 + 1060993z + 17043521.

We construct the lattice of integer polynomials of degree at most 4 which are
divisible by g modulo p. Since D = n we are here in a particular case where the
lattice corresponds to the line of multiples of g by elements of I,,. We obtain

f = T7791770z* 4 24819962 — 592814122 + 1465261z + 3462017 .

Note that f and g have coefficients of size p*/® = Q/%.

3.2 The Generalized Joux—Lercier (GJL) Method?

Joux and Lercier proposed a method in [15] to select polynomials in the context
of prime fields. In Algorithm 3 we generalize their method so that it applies to
any finite field.

Algorithm 3. Polynomial selection with the generalized Joux—Lercier
method (GJL)

Input: p prime, n integer and d > n integer
Output: f,g, with f, g € Z[z] irreducible and ¢ = ged(f mod p, g mod p) in
Fp[x] irreducible of degree n
1 Choose a polynomial f(z) of degree d + 1 with small integer coefficients which
has a monic irreducible factor ¢(z) = wo + w1z + - - - + 2" of degree n modulo p ;
2 Reduce the following matrix using LLL

gogl...gd
degp =n

M= P to get LLL(M) =

d+1—n

L 800301"'1-

3 return (f,g = go + g1 + -+ + gaz?,)

! Recently, (February 2015), D. Matyukhin informed us that he proposed the same
polynomial selection method for his algorithm of discrete logarithm [24], published
in Russian.

Improving NF'S for the Discrete Logarithm Problem 137

In the prime field case, where n = 1, GJL goes as follows. One starts with
a polynomial f of degree d + 1 with small coefficients such that f admits a
factor ¢ of degree one, or equivalently a root m modulo p. Then, a matrix
M is constructed whose rows correspond to the lattice of polynomials in Z[x]
of degree at most d, that also admit m as a root modulo p. We reduce this
matrix with LLL and obtain g from the first row of LLL(M). Note that one
can transform M into M’ in Equation (1) by linear combinations on the rows.
Hence, LLL(M) = LLL(M"), so GJL and the original method of Joux-Lercier
obtain the same polynomial g.

p 0 -0 p 0 ---0
-m 1 0 0 -m 1 00

M = 5 y M/: .) (1)
0 : -0
0 —-m 1 —m? . 01

The following result is proved in the same way as Proposition 1.

Proposition 2. The coefficients of the polynomial g in Algorithm 3 have
d+1)

approzimate size Q/(.

Remark 1. By considering a smaller matrix, it is possible to produce a polyno-
mial g whose degree is smaller than d = deg f — 1. This does not seem to be a
good idea. Indeed, the size of the coefficients of g would be the same as the coef-
ficients of a polynomial obtained starting with a polynomial f with coefficients
of the same size but of a smaller degree (d or less).

Ezample 3. We keep p = 1000001447 and n = 4 (see Ex. 2). We choose d = n =
4, f = 2%+ 2* — 723 + 422 + 2 + 1 of degree 5. Then f factors modulo p and
has a degree four factor ¢ = z* 4 23489298923 + 208762833z2 + 670387270z +
109760434. We construct the lattice of polynomials of degree at most 4 which
are divisible by ¢ modulo p. Reducing it, we obtain

g = 8117108z 4 12347092 + 983600822 — 15771462 + 7720480 .

The polynomial f has coefficients of size O(1); g of size O(p*/®). More precisely,
log, p = 30 and log, ||g]|., = 24 = 4/5log, p.

3.3 The Conjugation Method

Roughly speaking, the aim of polynomial selection is to produce two polynomials
f, g such that the norm of f, resp. g evaluated at some algebraic integer a —ba (or
¢()) is minimal, with respect to the size of @ and b (see Sec. 2). This means, the
degrees of f and g need to stay small but also the size of their coefficients. The
previous method GJL was focused on minimizing the degrees of both f and g to
e.g. n and n+ 1. Here we set f with a higher degree: 2n instead of n+ 1, so that
the size of the coefficients of g is always O(,/p). We cannot achieve a so small

138 R. Barbulescu et al.

coefficient size for g with the GJL method. We show in Sec. 4.4 that despite the
higher degree of f, this method is better in practice than any other one when
n = 2, 3 and p is more than 660 bits, and in particular for cryptographic sizes.

Let us give the idea of our method. We first carefully select f of degree
2n, irreducible over Z, and so that it factors into two irreducible conjugate
polynomials ¢ and § over some quadratic extension of Q. If we can embed this
quadratic extension in F,,, we end up with two irreducible factors of f modulo
p. Because of our judicious choice of f with two conjugate factors, we obtain g
whose coefficients have size O(,/p) using rational reconstruction. We give a first
example in Ex. 4 to clarify what we have in mind.

We start with two examples, and then give the general construction.

Ezxample 4. We target Fpa with p = 1000010633 and n = 4. We try integers a =
—2,—3,... until a is a square but not a fourth power in F,. We find a = —9. We
set f = 8 —a = 28 +9 which is irreducible over Z. Observe that by construction,
f has two degree 4 conjugate irreducible factors f = (z* — /a)(z* + \/a). We set
¢ = z* — \/a which, due to the choice of a, belongs to F,[z] and is irreducible.
We continue by computing a rational reconstruction (u,v) of /a modulo p:
u-v~t = \/a mod p; here u = —58281 and v = 24952. Finally we set g =
vzt — u = 249522* + 58281 of norm ||g||,, ~ /p. Note that we respect the
condition ¢ = ged(f mod p, g mod p).

In the previous example, the prime p was given and we searched for a param-
eter a, or equivalently for a polynomial f = 2% — a. It turns out that some poly-
nomials f have very good sieving properties and we would like to use them for
many primes p. In this case, we can reverse the process and start with a given
f, while expecting to succeed in only a fraction of the cases.

Ezample 5. We want to use f = x* 4+ 1. We target F,2 for p = 7 mod 8 prime.
Note that f(x) = (22 + 2z +1)(2? — 2z + 1) over Q(v/2). Since 2 is a square
modulo p, we take ¢ = 22 + /22 + 1 € F,[z] and note that ¢ is a factor of
f modulo p. Now, by rational reconstruction of v/2 in F,, we can obtain two
integers u,v € Z such that = = V2 mod p, and u and v have size similar to /P
We define g = va? + ux +v. Then f and ¢ share a common irreducible factor of
degree 2 modulo p, and satisfy the degree and size properties given in Prop. 3.

Although the technique in the second example is more interesting in practice,
it is the construction in the first example that can be made general, as given
in Algorithm 4. Under reasonable assumptions, this algorithm terminates and
finds pairs of polynomials f and g with the claimed degree and size properties
for any extension field Fyn.

Proposition 3. The polynomials (f,g) returned by Algorithm 4 satisfy the fol-
lowing properties

1. f and g have integer coefficients and degrees 2n and n respectively;
2. the coefficients of f have size O(1) and the coefficients of g are bounded by

O(vp);

Improving NF'S for the Discrete Logarithm Problem 139

Algorithm 4. Polynomial selection with the Conjugation method (Conj)

Input: p prime and n integer
Output: f, g, with f,g € Z[z] irreducible and ¢ = ged(f mod p, g mod p) in
Fp[z] irreducible of degree n
1 repeat
Select g1(x), go(x), two polynomials with small integer coefficients,
degg1 < deggo =n;

N

3 Select p(z) a quadratic, monic, irreducible polynomial over Z with small
coefficients ;

4 until u(x) has a root X in Fp and ¢ = go + Ag1 is irreducible in Fp[z];

5 (u,v) < a rational reconstruction of X ;

6 f— Resy(u(Y),g0(x) +Yg1(z)) ;

7 g vgo+ug ;

8 return (f,g,)

3. f and g have a common irreducible factor ¢ of degree n over F,,.

Proof. The polynomial f is the resultant of two bivariate polynomials with inte-
ger coeflicients. Using classical properties of the resultant, f can be seen as the
product of the polynomial go(z) + Yg1(z) evaluated in Y at the two roots of
w(Y'), therefore its degree is 2n. Since all the coefficients of the polynomials
involved in the definition of f have size O(1), and the degree n is assumed to be
“small”, then the coefficients of f are also O(1). For the size of the coefficients
of g, it follows from the output of the rational reconstruction of A in IF,,, which is
expected to have sizes in O(/p). The polynomials f and g are suitable for NF'S
in IF», because both are divisible by ¢ = go+ Ag1 modulo p, and by construction
 is irreducible of degree n.

In the example above (Ex. 5), for F2 with p = 7 mod 8, Algorithm 4 was
applied with g1 = =, go = > + 1 and g = 2% — 2. One can check that f =
Resy (Y2 —2,(z2+ 1)+ Ya) =2* + 1.

In the following section, an asymptotic analysis shows that there are cases
where this Conjugation method is more interesting than JLSV; and that GJL is
competitive with JLSVy; furthermore, the new methods are also well-suited for
small degree extensions that can be reached with current implementations.

4 Complexity Analysis

In this section we prove Theorem 1 that we stated in the Introduction.

4.1 Preliminaries

As introduced in Section 2, the parameter ¢ denotes the number of terms of the
polynomials in the sieving domain, i.e. deg¢ =t — 1, and B is the smoothness
bound. We call E the square root of the number of sieved polynomials, i.e. the

140 R. Barbulescu et al.

coefficients of ¢ belong to the interval [—E?/*, E?/t]. Kalkbrener’s bound [19,
Corollary 2] states that, for any polynomials f and ¢,

|Res(f,¢)| < r(deg f, deg ¢)||f]|28 ||| 227,

where x(n,m) = ("+™)("*™1). For two polynomials f and g we write x(f,)

for k(deg f, deg g). Hence, we obtain a bound on the product of the norms:

| Res(f, ¢) Res(g, ¢)| < w(f, d)r(g, &) ||| T2 9(| | £l Mgl)d5 2. (2)

A simple upper bound for k(n,m) is (n +m)!:

| Res(f, ¢) Res(g, ¢)| <

< (deg f + deg ¢)!(deg g + deg &)(|| £]|o |19l)|]| 08/ FdeB
< (deg f+t — 1)!(deg g+t — DI(|[]| |lgl| o)t~ E2(der S +des o)/t

In what follows we respect make sure that the degrees of our polynomials
satisfy: deg f + degg + t = O(1) max ((log Q)l/s,n). Writing p = Lg(«) with
a > 1/3, we obtain n = O(1)(log Q) =/ (log log Q)*~*. Then, we have (deg f +
t—1)!(degg+t—1)! = Lo(max(l —c,1/3)), whereas our estimates for the right
hand side will have a size L (2/3). This allows us to use the estimation

max |Res(f,¢)Res(g,8)| = (|| f|||lgl] o)t B2 des SHdeea)/t (3)

¢ in sieving domain

Since the number of sieved polynomials is E2, the cost of the sieve is E2+0(1),
Independently of the choice of the polynomials f and g, the cardinality of the
factor base is B't°(1) | and using the (block) Wiedemann algorithm [10,33], the
cost of the linear algebra is B2t°(1), Hence, we set E = B and, since we expect
an algorithm of complexity Lo(1/3), the two are equal to Lg(1/3, 5)

E =B =Lo(1/3.5)

for a constant 3 to be found.

We make the common heuristic that the product of the resultants of the
polynomials ¢ in the sieving domain with f and g has the same probability to
be B-smooth as a random integer of the same size; we denote this probability
by P. Since the cost of the sieve is BP~! and, at the same time E*+°(1) we find
the equation

B=pP " (4)

4.2 The Generalized Joux—Lercier Method

We are now ready to prove the first part of Theorem 1. Using GJL, one constructs
two polynomials f and g such that, for a parameter d > n, we have deg f = d+1,
deg g = d, |lgll.. ~ QY@ and |[f]|., of size O(1).

The GJL polynomials have the same degree and coefficient size as those
obtained in [15] for prime fields. Hence, we make the same choices for parameter

Improving NF'S for the Discrete Logarithm Problem 141

t, i.e. we sieve on linear polynomials. Also, we take d of roughly the same size,
ie. d =6 ((log Q)/(loglog Q))1/3, which we inject in Equation (3):

maxg (| Res(f, ¢) Res(g, 9)|) ~ || f|| |lgl| B8+,
~ QV/(d+1) d+1,

With the L-notation, we obtain

| Res(f, &) Res(g, 9)| < Lq <2/3,55 + ?) _

Using the Canfield-Erdés—Pomerance theorem [7], we obtain

52
P=1/Lg (1/3,3+35§).

The equality P~ = B imposes

) 2

The optimal value of § is the one which minimizes the expression on the right
hand side, so we take § = 1/2/8 and we obtain 8 = 2/3./2/08, or equivalently
8= 3/8/79 Since the complexity of NFS is (E? + B2?)*°() = 1,5(1/3,28), we
obtain the complexity given in Theorem 1.

The range of application of GJL is determined by the condition n < d.
This is true for all fields of large characteristic. In the boundary case, since

1/3
d=104/2 (101;5)?@) with § = \/2/3 = V/3, the GJL method applies only to

those fields IF,» such that

> Lo (213, Y575).

This concludes the proof of the first part of Theorem 1.

4.3 The Conjugation Method

Recall that the Conjugation method allows us to construct two polynomials f
and g such that deg f = 2n, degg = n, ||g||., ~ Q3™ and ||f||,, = O(1).
When introduced in Equation (3), these values give

)1+0(1)

| Res(¢, f) Res(,g)| < (EGn/tQ(t_U/zn -

We study first the case of medium characteristic and then the boundary case
between medium and large characteristic.

142 R. Barbulescu et al.

The Case of Medium Characteristic. The Conj polynomials are similar to
the ones in [16] obtained using JLSV, so we choose parameters of the same type

as in [16] and set
L log @ —1/3
-an loglog @ '

Using E = B = Lg(1/3, 5) in Equation (5), the product of the two resultants
has norm Lg(2/3,608/c;+c:/2). Due to the Canfield-Erdés—Pomerance theorem,
the probability that a polynomial ¢ in the sieving domain has B-smooth resul-

tants is
Ct
=1/L 1
Po1/io (11324).

We choose ¢; = 24/3(in order to optimize this probability:
P=1/Lg (1/3,2/\/35) .

From the condition P~! = B, we have 3 = {/4/3, and we obtain the second
result in Theorem 1.

The Boundary Case. For every constant ¢, > 0, we consider the family of
finite fields Fp» such that
p = L,n(2/3, cp)1+°(1).

We will take parameter ¢ (Section 2) to be a constant in this analysis. Then
the probability that a polynomial ¢ in the sieving domain has B-smooth resul-

tants is 5 (D
_ 2 ol-1)
P=1/Lg (1/3,c + 63 >

The condition P~! = B leads to % + cp(t Y

Cp t
a‘i‘\/w"‘rgcp(—1).
This completes the proof of the following result.

= 3, or equivalently to 3 =

Proposition 4. When log @ goes to infinity and p satisfies the condition p =
Lo(2/3,¢p), the complexity of NFS with the Conjugation method is:

Lo (1/3,;+\/(c:;)2+§cp(t—1) >

In Figure 1 we have plotted the complexities of Proposition 4, together with
GJL and the Multiple number field sieve variant of [3].2 There are some ranges
of the parameter ¢, where the Conjugation method is the fastest and a range
where the GJL method is optimal. The best case for NFS with Conjugation
polynomials corresponds to ¢, = 121/3 & 2.29 and t = 2. In this case we get the
third result in Theorem 1.

2 Thanks to Cécile Pierrot who pointed to us that this figure was inexact in an earlier
variant of the manuscript.

Improving NF'S for the Discrete Logarithm Problem 143

’
multiple»ﬂeld/ /

JLSV, I

’ Conj

GJL

Fig. 1. The complexity of NFS for fields Fp» with p = L,»(2/3,¢p) is Lpn(1/3,¢)

4.4 Non-asymptotic Comparisons for Small Extension Degrees

Let us make a practical (as opposed to asymptotic) analysis of the four methods
in our arsenal:

— the methods of Joux, Lercier, Smart and Vercauteren: JLSV; and JLSV,.

— the generalized Joux—Lercier method, GJL; to indicate the value of the
parameter d we sometimes write GJL-(d + 1, d).

— the Conjugation method, Conj.

We do not include Schirokauer’s variant in our study since it is very different
in nature, requiring to sieve on polynomials with coefficients in small degree
extensions of Q.

The complexity analysis that was presented earlier in this section gives hints,
but does not allow us to choose the best method. For example, if one wants to
compute discrete logarithms in finite fields g of constant bitsize, i.e. log, Q ~
const, then JLSV; and Conj are competitive when p is smaller (medium prime
case), whereas JLSVy and GJL are better when p is larger (large characteristic
case). Also, we expect the choice t = 2 to be optimal when p is large, whereas we
might consider sieving on non-linear polynomials, i.e. ¢t > 3, for smaller values
of p.

Table 1 summarizes the properties of the polynomials obtained with each
method.

Although JLSV, was the state-of-art for the non-prime fields of large char-
acteristic, it is now beaten either by GJL or by JLSV;:

144 R. Barbulescu et al.

Table 1. Summary of the sizes of the norms product corresponding to various methods.
Here Fg, Q = p", is the target field, d and D are parameters in the polynomial selection
stage and FE is the sieve parameter.

[method[deg f [degg| [Ifll. | llgll. | product of norms
Conj 2n n o) | Y ESn/tQU=1)/(n)
GIL |d+1]|d>n| O@Q) [QYVUFD]| E2RHD/IQE-D/E@+D)
JLSV, n n Ql (2n) Ql (2n) i tQ(t—l) n
JLSVy |[D>n| n |Q! (D+1) Q! (D+D) [g2(D+n) tQQ(t—l) (DFD)

Proposition 5. Let n,t, D be integers with n,t > 2 and D > n, and let E and
Q be positive real numbers. Then the quantity (E™tP)2/H(Q*/(PTV)=1 js either

larger than (E2")%/Y(QY™)'=' or we can select d > n so that it is larger than
(E2d+1)2/t(Q1/(d+1))t71.

Proof. Case D > 2n. We set d = |D/2] and we use GJL with this param-
eter. On the one hand we have 2(|D/2| +1) > D + 1, so (Q*(P+1yt=1 >
(QY/(4+1))t=1 On the other hand, we have n+D > 1+(D+1) > 1+(2|D/2]+1),
S0 (En+D)2/t > (E2d+1)2/t

Case n < D < 2n—1. On the one hand we have D+n > 2n, so (E"+P)2/t >
(E?™)2/t. On the other hand, 2/(D + 1) > 1/n, so (Q¥/(P+D)i=1 > (QU/n)t=1

In order to compare the remaining candidates we need to plug numerical
values into Equation (2). The parameter F is hard to determine, and depends
on the polynomials which are used. For example, better polynomials allow us to
sieve less and hence to use a smaller value of E. Luckily, the difference between
the various values of E are not very large and, when one method is considerably
better than another, an approximate value of E is enough for the comparison.
Another bias we are aware of is that for norm products of similar sizes, a method
that provides norms that are well-balanced should be better than if the norm
on one side is much larger than the norm on the other side. Therefore, when
the differences between methods are small, we cannot decide by looking only at
the size of the norm product. Table 2 lists the values of F with respect to the
cardinality @ of the target field, obtained from the default parameters of the
CADO factoring software [1] up to log;, @ = 220 and extrapolated afterwards.
But these values should not be taken too seriously in order to derive security
parameters. The goal is only to investigate the relative performances of the
various methods of polynomial selection for sizes where it is currently too costly
to do experiments.

We considered several values of parameters d and ¢t = deg¢ + 1. As the
asymptotic analysis predicts for the case of large characteristic (small degree),
our results showed that the choice ¢t = 2 is optimal for n = 2,3,4,5. Since, in
addition, the comparison goes in a similar manner for each value of parameter ¢,
we focus on the case t = 2. We make an exception to this rule for n = 6, where
the choice ¢ = 3 is optimal for some ranges of log;, Q.

Improving NF'S for the Discrete Logarithm Problem 145

Table 2. Practical values of E for @ from 100 to 300 decimal digits(dd)

Q(dd) |/ 100 |120|140| 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300
Q(bits) || 333|399 | 466 | 532|598 | 665 | 731 | 798| 864 | 931 | 997
E(bits)|[|20.9(22.7(24.3|25.8|27.2|28.5(29.7|30.9|31.9/33.0{34.0

In Table 3 we expand the formula of Equation (3) for ¢ = 2 and n =
2,3,4,5,6. Note also that we list several values for the parameter d of GJL
since it cannot be fixed by asymptotic arguments. Using the remark that the
quotient log @/ log E belongs to the interval [15,30], we discard some choices,
and mark them with an ®. For example, JLSV; beats GJL-(3,2) only when
log @/ log E < 6, which is outside of our range of interest.

4.5 Final Results

The Case n = 2. We draw the curves corresponding to the results in Table 3,
since t = 2 is optimal in this case. From Figure 2, the best choice is to use Conj
polynomials.

500

400

300

log, (product of norms)

100 120 140 160 180 200 220 240 260 280 300 Q (dd)

Fig. 2. Polynomials for I,

The Case n = 3. Again, it is optimal to sieve on linear polynomials. For smaller
values, i.e. @ of less than 220 decimal digits, we use GJL-(4,3) polynomials,
whereas for larger fields we switch to Conj, as exemplified in Figure 3.

The Case n = 4. We sieve on linear polynomials as before (¢ = 2). Here JLSV;
and GJL —(5,4) offer similar polynomials, see Figure 4.

The Case n = 5. Several methods give polynomials with a norm product of
roughly the same size: Conj with t = 3 and ¢t = 4, GJL —(6,5) with ¢ = 2 and
t = 3 and, finally JLSV; with ¢t = 2. All this is demonstrated in Figure 5.

146 R. Barbulescu et al.

Table 3. Size of the product of norms for various methods and associated parameters,
when one sieves on linear polynomials (¢ = 2). We discard (®) the methods which offer
sizes of norms product which are clearly not competitive compared to some other one,
assuming that 15 < log Q/log E < 30 (Tab. 2).

[] method [(degg, deg Aol B S 7] _[loll.[discard]

GJL —(3,2) (3,2) Q' E°Q'Y3
2 [GJL —(4,3) (4,3) o) [QY4 ETQ* ®
Conj (4,2) Q! E°Q'*
JLSV, (272) Ql 1 Ql 1 E4Q1 pi Q

[] method _][(deg /, deg o) I/ gl [E“=* =7 [7]]_[lgl].. [discard]

GJL —(4,3) (4,3) QY4 ETQY4
3 [GIL —(5,4) (5,4) o) [Q' E°QY/ ®
Conj (6,3) Qs E°QY/®
JLSV;, (3,3) QY Q" ESQ/3 ®

[n | method [[(deg f, deg g)|[| /]l [llgll.[E*= 79[| fl| , llg]| .. [discard]

GJL_(574) (574) Ql ° EQQI >
4 [GJL —(6,5) (6,5) o) [QY° ETQYC ®
Conj (8,4) Q3 EQF ®
JLSV, (4,4) QE Q3 E8Q/*

[] method |[(deg /,deg g) 11/ I g1l | B2 T =[] [gl]- [discard]

GJL7(675) (67 5) Ql ¢ EllQl o
5 GJL_(77 6) (77 6) O(l) Ql 7 E13Q1 7 ¢
Conj (10’5) Ql 10 EISQI 10 ®
JLSVl (575) Ql 10 Ql 10 ElOQl 5

[] method [[(deg 7, deg) [[[71].JllglLJ B "] I[_lgl]._[discard]

GJL —(7,6) (7,6) QYT EBQYT
6 |GJL—(8,7) (8,7 o) | Q'® E"Q'® ®
Conj (12,6) Ql 12 ElSQl 12 ®

JLSVl (6, 6) Ql 12 Ql 12 E12Q1 6

Improving NFS for the Discrete Logarithm Problem 147
384 448 512 576 640 704 768 832 896 960 Q (bits)
— (6,3) Conj, t =2 Pt
500 (- -~ (4,3) GJL, t =2
C (3,3) JLSV1, t =2 :
g - (5,4)
5 400
B3]
=
s=]
5]
)
= 300
o0
2
200
100 120 140 160 180 200 220 240 260 280 300 @ (dd)
Fig. 3. Polynomials for [F 3
384 448 512 576 640 704 768 832 896 960 Q (bits)
— (8,4) Conj, t =3 e]
5001- - (5,4) QJL, t =2 e e
/g (4,4) JLSVy, t =2 Pt ____ z
Z -~ (6,5) JLSVa, t =2 | _ -~ T
g - e
5 400 e - . e
] - e
he . e
2 P e
a - -
= 300 e
o0 o
= L
200
100 120 140 160 180 200 220 240 260 280 300 Q (dd)

Fig. 4. Polynomials for 4

The Case n = 6. When @ is less than 180 decimal digits, the choice is
between GJL —(7,6) with ¢ = 3 and Conj with ¢ = 4. When @ is larger than
260 decimal digits, the best two methods are Conj with ¢ = 4 and JLSV; with
t = 2. Between the two ranges, one needs to consider the three methods listed
before. See Figure 6.

5 Additional Improvements

5.1 Improving the Root Properties

In both GJL and Conjugation methods, it is possible to obtain more than one
polynomial g for a given f by taking another choice for the rational reconstruc-
tion, or another vector in the reduced lattice. Hence, we can assume that one
has obtained two distinct reduced polynomials g1 and go € Z[z] such that ¢

148 R. Barbulescu et al.

384 448 512 576 640 704 768 832 896 960 (bits)
600[— (5,10) Conj, t =4 | ‘ ‘ ‘ e]
(5,10) Conj, t =3
s50|- - (6,5) GIL, t=3
----(6,5) GJL, t =2
£) - (5,5) JLSV1, t =2
-
£ 500|_ - (7,6) JLSV,, t =2
=]
S
B 450 -
=
=}
2
& 00|
@ P
2 -
3s0f
300 |- .
100 120 140 160 180 200 220 240 260 280 300 Q (dd)
Fig. 5. Polynomials for [F 5
384 448 512 576 640 704 768 832 896 960 Q (bits)
600 [— (6,6) Conj, t = 5 ‘ ‘ ‘ T ‘ o]
—(6,6) Conj, t =4 -
550~~~ (7,6) GJL, t =3
- - (7,6) GJL, t =2
z - (6,6) JLSV1, t = 3
5 500 |- (6,6) JLSVy, t=2| -~
; - - (17,6) JLSVa, ¢ =2 :
5 450 .
s e
2
=]
= 400 i
20
3
350 .
300 .

100 240 260 280 300 Q (dd)

Fig. 6. Polynomials for IF 6

divides both g; and go in Fp[z]. Any linear combination g = Ai1g1 + A2ge for
small integers A\; and As is then suitable for running the NFS algorithm.

The Murphy E value as explained in [25, Sec. 5.2.1, Eq. 5.7 p. 86] is a good cri-
terion to choose between all these g polynomials. In our experiments we searched
for g = A1g1 4+ Aage with |A;] < 200 and such that E(f, g) is maximal. In practice
we obtain g with a(g) < —1.5 and E(f, g) improved by 2% up to 30 %.

Improving NF'S for the Discrete Logarithm Problem 149

5.2 Coppersmith’s Multiple-field Variant

In [9], Coppersmith introduced a variant of NFS in which more than two poly-
nomials are used. This can be applied to essentially all polynomial selection
methods and in particular to the ones mentioned in this article. The base-m
method, which applies only to prime fields, was analyzed by Matyukhin [23].
Recently, it was shown that JLSV; and JLSV, can successfully be adapted to
use multiple fields, as demonstrated by [3].

Another important example is the Conjugation method. In Sec. 5.1, we noted
that the same polynomial f can be paired with any of the two polynomials g;
and g9, and that we have ged(f mod p, g1 mod p, g2 mod p) = . This fact can
be used to derive a multiple-field variant. It was remarked and analyzed in [26]

and results in a complexity of Lg(1/3,¢) with ¢ = (8(9 +4v/6)/15) V3~ 2.156,
in the medium characteristic case.

We have also analyzed a multiple-field variant of the Generalized Joux-
Lercier method. This provides only a marginal improvement in the theoretical
complexity and is not competitive with other methods [3], and therefore we do
not include this analysis here.

5.3 Taking Advantage of Automorphisms

Joux, Lercier, Smart and Vercauteren [16, Section4.3] proposed to speed up
computations in NFS using number field automorphisms. Given a field K and
an irreducible polynomial f € K[z] without multiple roots, a K-automorphism
is a rational fraction A € K(x) such that, for some rational fraction D(x) €
K (z), we have f(A(z)) = D(x)f(z). Using the language of Galois theory, a K-
automorphism is an automorphism of the extension (K[x]/(f)) /K. Hence, the
automorphisms form a group whose order divides deg f.

It is possible to push further the idea in [16] so that one can use automor-
phisms of both polynomials f and g. An example is given in our record com-
putation described in Section 6 where we used two reciprocal polynomials: this
saves a factor of two in the sieve and a factor of four in the linear algebra.

When a method to select polynomials gives the choice of the first polynomial
f, we can select f in the family of our preference, making possible for example
to have automorphisms. The only obstacle is that we cannot find polynomials
with an automorphism of order n, as required by the results in [16] if deg f is
not a multiple of n.

But in fact some methods allow us to have automorphisms for both polynomi-
als. Indeed, the literature, e.g. [11], offers examples of polynomials gg, g1 € Qlx]
and rational fractions A(z) € Q(x) such that, for any number field K and any
parameter a € K, the polynomial gy + ag; admits A as a K-automorphism:

ADa(z) € K(2), go(A(z)) + ag1(A(z)) = Da(x) (90(z) + aga(z)).

150 R. Barbulescu et al.

Ezample 6. For gg = > — 3z — 1 and g1 = 22 + z, the rational fraction A =
—(1+1/z) is an automorphism, for any value of parameter a. Indeed, go(A(x))+
agi(A(z)) is (23 + az? + (a — 3)x — 1 = (go(x) + ag1(x))/z?, so D(x) = 1/z3.

We do not study the question of finding such families. Let us instead make a list
of the cases where one or both polynomials can admit automorphisms.

— JLSV; allows both polynomials to be in a family of type go + ag1, with go
and g; fixed; we can have automorphisms on both sides.

JLSV, allows g to be selected with good properties; since degg = n, g can
have Q-automorphisms of order n.

GJL allows f to be selected in the family of our choice; when deg f is divisible
by n, f can have Q-automorphisms of order n.

Conj allows us to have Q-automorphisms for both polynomials, for the values
of n where families as above can be found. On the one hand, g is chosen
in the family {go + ag1}, of automorphism A(z). On the other hand, let
w be an algebraic number, root of an irreducible degree two polynomial
€ Q[z], such that f = (go +wg1)(go + @Wg1). Let D, € Q(w)(x) be such
that go(A(z)) +wgi1(A(z)) = Dy (x)(go(z) + wgi(x)). Then, by conjugation
in Q(w) we have go(A(z)) +wg1(A(x)) = Dy, (x)(go(z) + @g1(x)). When we
multiply, we get

By noting that D, (z)D,(x) belongs to Q(z), we conclude that A is a Q-
automorphism for f.

6 Record Computations

6.1 Setup

In order to test how our ideas perform in practice, we did several medium-sized
practical experiments in fields of the form IF,.. We have decided to choose a
prime number p of 90 decimal digits so that IF,» has size 180 digits, the current
record-size for IF,,. This corresponds to a 600-bit field. To demonstrate that our
approach is not specific to a particular form of the prime, we took the first 90
decimal digits of 7. Our prime number p is the next prime such that p = 7 mod 8
and both p + 1 and p — 1 have a large prime factor: p = |7 - 10%9] + 14905741.

p = 3141592653589793238462643383279502884197169399375105820974\
94459230781640628620899877709223
£ = 3926990816987241548078304229099378605246461749218882276218\
6807403847705078577612484713653
p—1=06-hg with hy a 89 digit prime
p+1=8-/¢

Improving NF'S for the Discrete Logarithm Problem 151

We solved the discrete logarithm problem in the order ¢ subgroup. We
imposed p to be congruent to —1 modulo 8, so that the polynomial f(z) = z*+1
could be used. The Conjugation method yields a polynomial g of degree 2 and
negative discriminant:

f=at+1

g = 448225077249286433565160965828828303618362474 2
—296061099084763680469275137306557962657824623 «
+ 448225077249286433565160965828828303618362474 .

Since p is 90 digits long, the coefficients of g have 45 digits. The polynomials f
and g have the irreducible factor

© = t2 + 10778151309582301866698988310224439480941229764389534\
9097410632508049455376698784691699593 ¢ + 1

in common modulo p, and > will be taken as F,[X]/(p).

This choice of polynomials has several practical advantages. Both f and ¢
are reciprocal polynomials, so that — 1/z is an automorphism in the sense
of Subsection 5.3. This provides a speed-up by a factor of 2 for the relation
collection and a factor of 4 in the linear algebra, as explained below. Furthermore,
the polynomial f corresponds to a number field Ky with unit rank 1, and a
fundamental unit is given by the fundamental unit of the subfield Q(v/2). By
construction, 2 is a square modulo p, so that v/2 belongs to Fp,. Then, the image
in IF,» of the fundamental unit of K is actually in F;, and its discrete logarithm
is 0 modulo £. Since the polynomial g corresponds to a number field with unit
rank 0, we do not need Schirokauer maps for this case. Generalizations of this
interesting fact will be explained elsewhere.

6.2 Collecting Relations

The relation collection step was then done using the sieving software of CADO-
NFS [1]. More precisely, we used the special-q technique for ideals q on the
g-side, since it produces norms that are larger than on the f-side. We sieved all
the special-gs between 120,000,000 and 160, 000, 000, keeping only one in each
pair of conjugates under the action & — 1/x. Indeed, if ¢ = a — bz gives a
relation for a special-q, then b — ax yields a relation for the conjugate ideal of
this special-g. In total, we computed about 34M relations.

The main parameters in the sieve were the following: we sieved all primes
below 80M on the f-side, and below 120M on the g-side, and we allowed two
large primes less than 229 on each side. The search space for each special-q was
set to 215 x 2 (the parameter I in CADO-NFS was set to 15).

The total CPU time for this relation collection step is equivalent to 157 days
on one core of an Intel Xeon E5-2650 at 2 GHz. This was run in parallel on a
few nodes, each with 16 cores, so that the elapsed time for this step was a few
days, and could easily be made arbitrary small with enough nodes.

152 R. Barbulescu et al.

Table 4. Comparison of running time for integer factorization (NFS-IF), discrete log-
arithm in prime field (NFS-DL(p)) and in quadratic field (NFS-DL(p?)) of same global
size 180 dd

Algorithm |relation collection| linear algebra | total
NFS-IF 5 years 5.5 months |5.5 years
NFS-DL(p) 50 years 80 years 130 years
NFS-DL(p?) 157 days 18 days (GPU)|0.5 years

6.3 Linear Algebra

The filtering step was run as usual, but we modified it to take into account the
Galois action on the ideals: we selected a representative ideal in each orbit under
the action z — 1/, and rewrote all the relations in terms of these representatives
only. Indeed, it can be shown that the corresponding virtual logarithms are
opposite modulo ¢; this amounts just to keep track of sign-change, that has
to be reminded when combining two relations during the filtering, and when
preparing the sparse matrix for the sparse linear algebra step. Since we keep
only half of the columns in the matrix, and assuming a quadratic cost for the
linear algebra step, the z +— 1/x automorphism saves a factor of 4, as claimed.
The output of the filtering step was a matrix with about 2.7M rows and columns,
having on average 86 non-zero entries per row.

Thanks to our choice of f and g, it was not necessary to add columns with
Schirokauer maps. We used Jeljeli’s implementation of Block Wiedemann’s algo-
rithm for GPUs [13,14]. We used two sequences in parallel, on two independent
NVidia GTX 680 graphic cards. The total running time for this step is equivalent
to around 18.2 days on a single NVidia GTX 680 graphic card.

At the end of the linear algebra we know the virtual logarithms of almost all
prime ideals of degree one above primes of at most 28 bits, and of some of those
above primes of 29 bits. At this point we could test that the logs on the f-side
were correct.

6.4 Computing Individual Logarithms

The last step is that of computing some individual logarithms. We used G = t+2
as a generator for F2 and the following “random” element:

s = [(w(22%)/8)]t + [(v-2°)].

We started by looking for an integer e such that z = s, seen as an element of
the number field of f, is smooth. After a few dozen of core-hours, we found a
value of e such that z = z1/29 with z; and zy splitting completely into prime
ideals of at most 65 bits. With the lattice-sieving software of CADO-NFS, we
then performed a “special-q descent” for each of these prime ideals. The total
time for descending all the prime ideals was a few minutes. Finally, we found

Improving NF'S for the Discrete Logarithm Problem 153

logg s = 2762142436179128043003373492683066054037581738194144186101\
9832278568318885392430499058012 mod 4.

7 Conclusions

The present article contains new estimates for the complexity of solving DLP
over non-prime finite fields. We have discovered several places in the (logp,n)
plane where more methods battle to be the best ones. We have also analyzed
the complexity of sieving on a domain of non-linear polynomials, and this shows
the way for more algorithmic problems, so that this could be a routine problem
for subsequent records.

From a practical point of view, we have demonstrated that a clever use of
algebraic properties of fields occurring in DLP computations, such as finding
polynomials defining number fields with automorphisms and/or Galois proper-
ties, gives a significant practical speed-up. This study will be continued else-
where.

We gather some figures for the factorization of an 180 decimal digit composite
number; the time needed for solving DLP on I, with p of 180 decimal digits taken
from [6] and our computations for 2 with p of 90 decimal digits.

Considering the relation collection phase only, we see that for the same object
size, a DLP over F,2 is much easier than the corresponding factoring of an integer.
This tends to contradict the usual rule-of-thumb: The discrete logarithm problem
in large characteristic finite fields is at least as hard as factoring an integer of
the same size as the cardinality of the finite field.

References

1. Bai, S., Filbois, A., Gaudry, P., Kruppa, A., Morain, F., Thomé, E., Zimmermann,
P., et al.: Crible algébrique: Distribution, optimisation - NFS (2009). downloadable
at http://cado-nfs.gforge.inria.fr/

2. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A Heuristic Quasi-Polynomial
Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1-16.
Springer, Heidelberg (2014)

3. Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium- and high-
characteristic finite fields. LMS Journal of Computation and Mathematics 17, 230—
246 (2014). http://journals.cambridge.org/article_.S1461157014000369

4. Barbulescu, R.: Algorithmes de logarithmes discrets dans les corps finis. Ph.D.
thesis, Université de Lorraine (2013)

5. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improvements to the num-
ber field sieve for non-prime finite fields. preprint available at http://hal.inria.fr/
hal-01052449

6. Bouvier, C., Gaudry, P., Imbert, L., Jeljeli, H., Thomé, E.: Discrete logarithms in
GF(p) — 180 digits (2014), announcement available at the NMBRTHRY archives,
item 004703

7. Canfield, E.R., Erdés, P., Pomerance, C.: On a problem of Oppenheim concerning
“factorisatio numerorum”. J. Number Theory 17(1), 1-28 (1983)

http://cado-nfs.gforge.inria.fr/
http://journals.cambridge.org/article_S1461157014000369
http://hal.inria.fr/hal-01052449
http://hal.inria.fr/hal-01052449

154

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

R. Barbulescu et al.

. Collins, G.E., Encarnacién, M.J.: Efficient rational number reconstruction. Journal

of Symbolic Computation 20(3), 287-297 (1995)

. Coppersmith, D.: Modifications to the number field sieve. J. of Cryptology 6(3),

169-180 (1993)

Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Math. Comp. 62(205), 333-350 (1994)

Foster, K.: HT90 and “simplest” number fields. Illinois J. Math. 55(4), 1621-1655
(2011)

Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. of Cryptology 23(2), 224-280 (2010)

Jeljeli, H.: Accelerating iterative SpMV for discrete logarithm problem using GPUs
(2014). http://hal.inria.fr/hal-00734975/, preprint, to appear in WAIFI 2014
Jeljeli, H.: An implementation of the Block-Wiedemann algorithm on NVIDIA-
GPUs using the Residue Number System (RNS) arithmetic (2014). available from
http://www.loria.fr/~hjeljeli/

Joux, A., Lercier, R.: Improvements to the general number field for discrete loga-
rithms in prime fields. Math. Comp. 72(242), 953-967 (2003)

Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The Number Field Sieve in the
Medium Prime Case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326-344. Springer, Heidelberg (2006)

Joux, A., Lercier, R., et al.: Algorithmes pour résoudre le probléeme du logarithme
discret dans les corps finis. Nouvelles Méthodes Mathématiques en Cryptographie,
volume Fascicule Journées Annuelles, p. 23 (2007)

Joux, A., Pierrot, C.: The Special Number Field Sieve in Fp». In: Cao, Z., Zhang,
F. (eds.) Pairing 2013. LNCS, vol. 8365, pp. 45-61. Springer, Heidelberg (2014)
Kalkbrener, M.: An upper bound on the number of monomials in determinants of
sparse matrices with symbolic entries. Mathematica Pannonica 73, 82 (1997)
Kleinjung, T.: On polynomial selection for the general number field sieve. Mathe-
matics of Computation 75(256), 2037-2047 (2006)

Lenstra, A.K., Verheul, E.R.: The XTR Public Key System. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 1-19. Springer, Heidelberg (2000)

Lenstra, A.K., Lenstra, H-W., Lovasz, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515-534 (1982)

Matyukhin, D.V.: On asymptotic complexity of computing discrete logarithms over
GF(p). Discrete Mathematics and Applications 13(1), 27-50 (2003)

Matyukhin, D.: Effective version of the number field sieve for discrete log-
arithms in the field GF(p*). Trudy po Discretnoi Matematike 9, 121-151
(2006) (in Russian). http://m.mathnet.ru/php/archive.phtml?wshow=paper&
jrnid=tdmé&paperid=144&option_lang=eng

Murphy, B.A.: Polynomial selection for the number field sieve integer factorisation
algorithm. Ph.D. thesis, Australian National Univers (1999)

Pierrot, C.: The multiple number field sieve with conjugation method (August
2014). preprint available at https://eprint.iacr.org/2014/641

Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and his cryptographic significance. IEEE Trans. Inform. Theory 24(1), 106—
110 (1978)

Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Comp.
32(143), 918-924 (1978)

Rubin, K., Silverberg, A.: Torus-Based Cryptography. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 349-365. Springer, Heidelberg (2003)

http://hal.inria.fr/hal-00734975/
http://www.loria.fr/~hjeljeli/
http://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tdm&paperid=144&option_lang=eng
http://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tdm&paperid=144&option_lang=eng
https://eprint.iacr.org/2014/641

30.

31.
32.

33.

Improving NF'S for the Discrete Logarithm Problem 155

Schirokauer, O.: Using number fields to compute logarithms in finite fields. Math.
Comp. 69(231), 12671283 (2000)

Schirokauer, O.: Virtual logarithms. J. Algorithms 57, 140-147 (2005)

Smith, P., Skinner, C.: A public-key cryptosystem and a digital signature system
based on the Lucas function analogue to discrete logarithms. In: Pieprzyk, J.,
Safavi-Naini, R. (eds.) Advances in Cryptology - ASTACRYPT 1994. LNCS, vol.
917, pp. 357-364. Springer, Heidelberg (1994)

Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Trans.
Inform. Theory 32(1), 54-62 (1986)

The Multiple Number Field Sieve
with Conjugation and Generalized
Joux-Lercier Methods

Cécile Pierrot2(®)

L CNRS and Direction Générale de I’Armement, Rennes, France
2 Laboratoire d’Informatique de Paris 6, UPMC/Sorbonnes-Universités,
Paris, France
Cecile.Pierrot@lip6.fr

Abstract. In this paper, we propose two variants of the Number Field
Sieve (NFS) to compute discrete logarithms in medium characteristic finite
fields. We consider algorithms that combine two ideas, namely the Multi-
ple variant of the Number Field Sieve (MNFS) taking advantage of a large
number of number fields in the sieving phase, and two recent polynomial
selections for the classical Number Field Sieve. Combining MNFS with the
Conjugation Method, we design the best asymptotic algorithm to com-
pute discrete logarithms in the medium characteric case. The asymptotic
complexity of our improved algorithm is Ly (1/3, (8(9 + 4v/6)/15)/?) ~
L,n(1/3,2.156), where Fpn is the target finite field. This has to be com-
pared with the complexity of the previous state-of-the-art algorithm for
medium characteristic finite fields, NFS with Conjugation Method, that
has a complexity of approximately Ly»(1/3,2.201). Similarly, combining
MNFS with the Generalized Joux-Lercier method leads to an improvement
on the asymptotic complexities in the boundary case between medium and
high characteristic finite fields.

1 Introduction

Public key cryptosystems are designed around computational hardness assump-
tions related to mathematical properties, making such protocols hard to break
in practice by any adversary. Algorithmic number theory provides most of those
assumptions, such as the presumed difficulty to factorize a large integer or to
compute discrete logarithms in some groups. Given an arbitrary element h of a
cyclic group, the discrete logarithm problem consists in recovering the exponent
x of a generator g such that g* = h. We focus here on the multiplicative group
of the invertible elements in a finite field.

Current discrete logarithms algorithms for finite fields vary with the relative
sizes of the characteristic p and the extension degree n. To be more precise,
finite fields split into three families and so do the related algorithms. When p
is small compared to n, the best choice is to apply the recent Quasi-Polynomial
algorithm [BGJT14]. Medium and high characteristics share some properties
since we use in both cases variants of the Number Field Sieve (NFS) that was

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 156-170, 2015.
DOI: 10.1007/978-3-662-46800-5_7

MNFS with Conjugation and Generalized Joux-Lercier Methods 157

first introduced for discrete logarithms computations in prime fields in 1993 by
Gordon [Gor93]. Then, NFS was extended to all medium and high characteristic
finite fields in 2006 by Joux, Lercier, Smart and Vercauteren [JLSV06]. For the
past few months, discrete logarithm in finite fields has been a vivid domain and
things change fast — not only for small characteristic.

In February 2014, Barbulescu and Pierrot [BP14] presented the Multiple
Number Field Sieve (MNFS) that applies in both medium and high characteristic
finite fields. As for NFS, the main idea came from factoring [Cop93] and was first
introduced for discrete logarithms computations in prime fields in 2003 thanks to
Matyukhin [Mat03]. In both medium and high characteristic cases, the idea is to
go from two number fields, as in the classical NFS, to a large number of number
fields, making the probability to obtain a good relation in the sieving phase
higher. Yet, the sieving phase differs between medium and high characteristics
since the parameters of the two first polynomials defining the number fields
are equal in the medium case but unbalanced in the high case. Let us recall the
notation Ly(«,) = exp((c+o(1))(log ¢)®(loglog q)* ~*) to be more precise about
complexities, and focus on the high characteristic case. Due to unbalanced degree
of the first two polynomials, the variant proposed by Barbulescu and Pierrot is
dissymmetric. It means that in the sieving phase they select only elements that
are small in some sense in the first number field and in at least another number
field, giving to the first number field a specific role with regards to the others.
With this dissymmetric MNFS, the asymptotic complexity to compute discrete
logarithms in a finite field Fpn of characteristic p = Lyn (I, ¢) when p is high,
i.e. when [, > 2/3, is the same as the complexity given for factoring an integer
of the same size [Cop93]. Namely, it is:

1 [2-(46 +13V/13) v
L T T a—

Note that MNFS as described in [BP14] is currently the state-of-the-art algo-
rithm for computing discrete logarithms in high characteristic finite fields.

In the medium characteristic case, i.e. when 1/3 < I, < 2/3, the polynomial
selection of the classical Number Field Sieve allows to construct two polynomials
with same degrees and same sizes of coefficients. Making linear combination,
MNFS creates then a lots of polynomials with equal parameters. Thanks to this
notion of symmetry, the sieving phase of the Multiple variant consists in keeping
elements that are small in any pairs of number fields, making the probability to
obtain a good relation growing further.

Yet, few months later, in August 2014, Barbulescu, Gaudry, Guillevic and
Morain detailed in a preprint [BGGM14] some practical improvements for the
classical Number Field Sieve. Besides, they gave a new polynomial selection
method that has the nice theoretical interest to lead to the best asymptotic
heuristic complexity known in the medium characteristic case, overpassing the
one given in [BP14]. This new polynomial selection also called Conjugation
Method permits to create one polynomial with a small degree and high

158 C. Pierrot

coefficients and another one with a high degree and coefficients of constant size.
Finally, the authors of [BGGM14] obtain the asymptotic complexity:

1/3
L (1, (%)) |
3\ 9

In this article, we adapt for the first time the Multiple variant of NFS to
this very recent algorithm. At first sight, one could fear that the parameters
of the two polynomials given with the Conjugation Method could act as a bar-
rier, since their unbalanced features differ from the ones used in the medium
characteristic case of [BP14]. Moreover, following the high characteristic dis-
symmetric sieving phase of [BP14] and creating the remaining polynomials with
linear combination would mean spreading both high coefficients and high degrees
on the polynomials defining the various number fields. This clearly would not
be a good idea, as all NFS-based algorithms require to create elements with
small norms. However, we show that the Conjugation Method may be adapted
to overcome this difficulty. The idea is to try to keep the advantage of the kind
of balanced dissymetry brought by the two polynomials with small-degree-high-
coefficients/high-degree-small-coefficients. We show that the Multiple Number
Field Sieve with Conjugation Method (MNFS-CM) becomes the best current
algorithm to compute discrete logarithms in medium characteristic finite fields.
Indeed, in this case its asymptotic complexity is:

! 8- (9+4V0) v
3 15

To ease the comparison, note that our second constant (8 (9 + 4\/6)/15)1/3 ~

2.156 whereas the previous one is (96/9)'/% ~ 2.201. MNFS-CM in the boundary
case between medium and high characteristic leads also to an improvement of
NFS-CM. Interestingly enough, sieving on degree one polynomials with MNFS-
CM in this boundary case permits to obtain the best asymptotic complexity ever
of any medium, boundary and high characteristic discrete logarithms algorithms,
which is approximately Ly,n(1/3,1.659).

Besides the new Conjugation Method, the authors of [BGGM14] extend the
polynomial selection given by Joux and Lercier in [JLO03] for prime fields. Thanks
to it, they get an improvement on the high cases of the boundary case. We
propose here a simple dissymetric Multiple Number Field Sieve based on this
Generalized Joux-Lercier method (MNFS-GJL) to get a further improvement on
the same boundary case. Note that the asymptotic complexity we obtain here,

1/3
1 [2-(46 +13V13)
Lo\g\— 27— ’

is exactly the one of MNF'S for high characteristic finite fields, as given in [BP14].

MNFS with Conjugation and Generalized Joux-Lercier Methods 159

Outline. We first detail in Section 2 how to manage the selection of numerous
polynomials based on the Conjugation method to construct a dissymetric Multi-
ple Number Field Sieve. Section 3 explains then how to combine MNF'S with the
Generalized Joux-Lercier method. The asymptotic complexity analyses of both
medium and boundary cases are given in Section 4.

2 Combining the Multiple Variant of the Number Field
Sieve with the Conjugation Method

Let IFp» denote the finite field we target, p its characteristic and n the extension
degree relatively to the base field. We propose an algorithm to compute discrete
logarithms in Fp» as soon as p can be written as p = Lyn(l,,¢p) with 1/3 <
I, < 2/3 (and ¢, close to 1). In this case we say that the characteristic has
medium size. In Section 2.1 we explain how to represent the finite field and to
construct the polynomials that define the large number of number fields we need.
In Section 2.2 we give details about the variant of the Multiple Number Field
Sieve we propose to follow.

2.1 Polynomial Selection

Basic Idea: Large Numbers of Polynomials with a Common Root in
Fpn. To compute discrete logarithms in [Fj», all algorithms based on the Number
Field Sieve start by choosing two polynomials f; and f; with integers coefficients
such that the greatest common divisor of these polynomials has an irreducible
factor of degree n over the base field. If m denotes a common root of these two
polynomials in F,» and Q(6;) denotes the number field Q[X]/(f;(X)) for each
1 =1,2, i.e. 0; is a root of f; in C, then we are able to draw the commutative
diagram of Figure 1.

Since MNFS requires to have a large number of number fields, let say V
number fields, then we have to construct V' — 2 extra polynomials that share the
same common root m in Fy». The commutative diagram that is the cornerstone
of all Multiple variants of the Number Field Sieve is given in Figure 2.

QX /(f1(X)) Q[X]/(f2(X))

O1—m
Oo—m

Fpn

Fig.1. Commutative diagram of NFS

160 C. Pierrot

Q(62) Q (6:) Q(v-1)

Fig. 2. Commutative diagram of MNFS

Settings: Construction of V Polynomials with the Conjugation
Method. We start with the Conjugation Method given in [BGGM14, Para-
graph6.3] to construct the first two polynomials. The idea is as follows.

We create two auxilliary polynomials g, and g, in Z[X] with small coefficients
such that degg, = n and deg g, < n. We then search for an irreducible polyno-
mial X2+ uX + v over Z[X], where u and v are small integers' of size O(log p),
such that its roots A and A" are in IF,,. Since we seck a degree n irreducible polyno-
mial over F,,[X] to construct the finite field, we keep the polynomial X2 +uX +v
if one of the two degree n polynomials g, + Agy or g, + N g, is irreducible over
F,[X]. In the sequel we assume that g, + Agy is irreducible over F,[X]. When
we have found such parameters, we set our first polynomial f; € Z[X]:

f1 =92 — ugags + vg;.

Equivalently, f; is defined in [BGGM14] as equal to Resy (Y2 +uY +v, go(X) +
Ygp(X)). Since A and X are roots of X2 +uX + v in F,,, we have the equality
of polynomials fi = g2+ (A + X)gags + AN g7 mod p. In other words, f; =
(90 + Agp)(ga + Ngp) mod p. Thus we have a polynomial f; of degree 2n with
coefficients of size O(logp) that is divisible by g, + Agy in F,,[X].

Let us construct the next two polynomials. Thanks to continued fractions we
can write:

=

where a,b,a’ and 0’ are of the size of \/p. We underline that these two recon-
structions (a,b) and (a’, ") of X\ are linearly independent over Q. We then set:

Jo=0bgs+agy and f3="0b'g,+ad'gp.

1 'We correct here a mistake in [BGGM14, Paragraph6.3]. The authors propose to
search for an irreducible quadratic polynomial that has constant size coefficients.
However, if |u| and |v| are both lower than a constant C, then there exist 24“* such
polynomials. Since each one has probability 1/2 to has its roots in F,, for one random
prime p, if we try to select such polynomials for approximately g4c? primes, we will
find one finite field), for which this method fails. Looking for quadratic polynomials
with coefficients of size O(log p) bypasses this trap and does not interfere with final
asymptotic complexities.

MNFS with Conjugation and Generalized Joux-Lercier Methods 161

Note that the Conjugation Method ends with the selection of f; and fs and does
not use the second reconstruction. It is clear that both f; and f3 have degree n
and coeflicients of size /p. Furthermore, we notice that fo = b(ga +Ags) mod p
and similarly f3 = 0'(g, + Ags) mod p, so they share a common root with f; in
Fpn.

We finally set for all ¢ from 4 to V:

fi = aifo+ Bifs

with o; and §; of the size of v/V. We underline that V is negligible with regards
to p, as shown in Section 4. Thanks to linear combination, for all 2 < ¢ < V,
fi has degree n, coefficients of size \/p and is divisible by g, + Agp in Fp[X].

2.2 A Dissymmetric Multiple Number Field Sieve

As any Index Calculus algorithm, the variant we propose follows three phases:
the sieving phase, in which we create lots of relations involving only a small set of
elements, the factor base ; the linear algebra, to recover the discrete logarithms of
the elements of the factor base ; and the individual logarithm phase, to compute
the discrete logarithm of an arbitrary element of the finite field.

We propose to sieve as usual on high degree polynomials ¢(X) =aog+ -+
a;—1 X' ! with coefficients of size bounded by S. Let us recall that, given an
integer y, an integer z is called y-smooth if it can be written as a product
of prime factors less than y. We then collect all polynomials such that, first,
the norm of ¢(6;) is B-smooth and, second, there exists (at least) one number
field Q(6;) with ¢ > 2 in which the norm ¢(6;) is B’-smooth. In other simpler
words, we create relations thanks to polynomials that cross over the diagram
of Figure 3 in two paths: the one on the left side of the drawing and (at least)
another one among those on the right. If we set that the factor base consists in
the union of all the prime ideals in the rings of integers that have a B-or-B’-
smooth norm, the smoothness bound depending on the number field, then we
keep only relations that involve these factor base elements. Note that B and B’
are two smoothness bounds possibly different from one another.

Z[X]

/ lXHM

Q(6h) Q02) .. Q) .. Q(6v)
F

pn

Fig. 3. Commutative diagram for the dissymmetric Multiple Number Field Sieve with
Conjugation Method

162 C. Pierrot

After the same post-processing as in [JLSV06] or as detailed in [BGGM14]
more recently, each such polynomial ¢ yields a linear equation between “loga-
rithms of ideals” coming from two number fields. Hence, from each relation we
obtain a linear equation where the unknowns are the logarithms of ideals. Let
us remark that by construction each equation only involves a small number of
unknowns.

The sparse linear algebra and individual logarithm phases run exactly as in
the classical Number Field Sieve of [JLSV06]. Even if there exists a specific way
to manage the last phase with a multiple variant as detailed in [BP14], taking
advantage of the large number of number fields again, we do not consider it here.
In fact, the runtime of the classical individual logarithm phase is already negligi-
ble with regards to the total runtime of the algorithm, as proved by Barbulescu
and Pierrot in their article.

3 Combining the Multiple Number Field Sieve with the
General Joux-Lercier Method

In 2003 Joux and Lercier [JLO03] gave a polynomial selection to compute discrete
logarithms in prime fields. Barbulescu, Gaudry, Guillevic and Morain propose
in [BGGM14, Paragraph6.2] to generalize this construction. Using again lattice
reduction, they obtain an improvement on the asymptotic complexity in the
boundary case where the characteristic can be written as p = Lg(2/3,¢) for
some specific c¢. We propose here to apply a Multiple variant of NFS to this
construction in a very simple way.

Let us recall the General Joux-Lercier (GJL) method as presented in
[BGGM14]. In order to compute discrete logarithms in the finite field Fpn, we
first select an irreducible polynomial f; in F,[X] with small coefficients (let us
say of the size of O(logp™)) and such that it has an irreducible factor ¢ of
degree n modulo p. We assume furthermore that this irreducible factor is monic.
Let us write ¢ = X” + 37" ¢;X? and d + 1 the degree of f. Thus we have
d+ 1 > n.? To assure that the second polynomial shares the same irreducible
factor modulo p, we define it thanks to linear combination of polynomials of
the form pX* and pX*. Lattice reduction permits then to obtain small coeffi-
cients. More precisely, we note M the following (d + 1) x (d + 1) matrix:

1 Xd
. d—1
Pn—1 X
M = IR i
P Pn—1 %0 X
» :
®o 1

——
|
n columns
d+1—n columns

2 We emphasize that we require ¢ to be different from fi since we need that fo is not
equal to fi mod p.

MNFS with Conjugation and Generalized Joux-Lercier Methods 163

A generator of this lattice of polynomials is represented in one column, meaning
that each one of its coefficients is written in the row corresponding to the associated
monomial (see indications on the right of the matrix). Clearly, the determinant of
the lattice is p™ and its dimension is d + 1. Hence, running the LLL algorithm on M
gives a polynomial of degree at most d that has coefficients of size at most p"/4+1
(assuming that 2(4t1)/4 stays small compared to p™/4+1).

In a nutshell, we obtain two polynomials f; and f> that share a common
degree n factor over F,[X] and such that:

deg fi =d+ 1> n, [|fi]lec = O(logp™),
deg fo =d, [f2lloo = pm/(@+D).

where || fi]lco denotes the largest coefficients of f; in absolute value. This ends
the GJL method. As in [BP14], we perform then linear combination of these two
polynomials. Setting for all ¢ from 3 to V:

fi=aifo+ Bifs

with o; and §; of the size of v/V. Thus, for all 3 < i <V, f; has degree d + 1
and coefficients of size p™/(*t1) Note that is is also p0551b1e to extract from the
lattice reduction a second polynomial f3 that has, as fo, degree d and coefficients
of size p™/(4+1) Making linear combination of fy and f3 leads to polynomials of
degree d instead of degree d + 1. Yet, this little improvement has no impact on
the asymptotic complexity of the algorithm.

As usual in this boundary case where p = L(2/3,¢), we propose to sieve
on degree 1 polynomials. We apply then a dissymmetric MNFS, as described in
Section 2.2.

4 Asymptotic Complexity Analyses

We give now details about the asymptotic heuristic complexities we obtain with
MNFS-CM in medium characteristic and with both MNFS-CM and MNFS-GJL
in the boundary case between medium and high characteristics. Let us fix the
notations. We write the extension degree n and the characteristic p of the target
finite field Fg as:

1 (log @

11,
= l 1-1
log log Q) and p = exp(c,(log Q)" (loglog @) ™)

with 1/3 < I, < 2/3. The parameters taking part in the heuristic asymptotic
complexity analyses are: the sieving bound S, the degree of the polynomials we
are sieving over ¢ — 1, the number of number fields V', the smoothness bound B
related to the first number field and the smoothness bound B’ related to the
others number fields. The analyses of both MNFS-CM and MNFS-GJL work
by optimizing the total runtime of the sieving and linear algebra phases while
complying with two constraints.

164 C. Pierrot

Balancing the Cost of the Two First Phases. We first require that the
runtime of the sieving phase S* equals the cost of the linear algebra. Since the
linear system of equations we obtain is sparse, the cost of the linear algebra
is asymptotically (B + V B’)2. Similarly to balancing the runtime of the two
phases, we require that B = V B’. Thus, leaving apart the constant 4 that is
clearly negligible with regards to the sizes of the parameters, the first constraint

can be written as:
St = B2 (1)

Balancing the Number of Equations with the Number of Unknows. To
be able to do the linear algebra phase correctly, we require that the number of
unknows, that is approximately B, is equal to the number of equations produced
in the sieving phase. If we note P the probability that a polynomial give a good
relation then we want to have S*P = B. Combining it with the constraint (1),
it leads to:

B=1/P.

4.1 Analysis of MNFS-CM in the Medium Characteristic Case

We continue the analysis for the large range of finite fields where the character-
istic can be written as p = Lg(l,,¢p) with 1/3 < I, < 2/3. We consider here
MNFS-CM as described in Section 2.

Evaluating the Probability of Smoothness. To evaluate the probability P
we need to recall some tools about norms in number fields. For f; € Z[X] an
irreducible polynomial, 8; a complex root of f;, and for any polynomial ¢ € Z[X],
the norm N(¢(0)) satisfies Res(, f;) = £I9°%? N(4(0)), where the term [; is
the leading coefficient of f;. Since we treat [; together with small primes, we
make no distinction in smoothness estimates between norms and resultants. We
have the upper bound on the resultant:

| Res(¢, fi)| < (deg f; + deg d)! - || f]| 989 - ||| dc8 f:.

Thus, recalling that f; is of degree 2n and has constant coefficients and that
every other polynomials f; has degree n and coefficients of the size |/p, we
obtain that the norm of a sieving polynomial ¢ is upper-bounded by S2” in the
first number field and by S"p!/? in every other number fields. To evaluate the
probability of smoothness of these norms with regards to B and B’, the main
tool is the following theorem:

Theorem 1 (Canfield, Erd6s, Pomerance [CEP83]). Let 9 (x,y) denote the
number of positive integers up to x which are y-smooth. If ¢ > 0 and 3 < u <
(1 —€)logx/loglogz, then (x, x'/*) = py~uvtelw),

Yet, this result under this form is not very convenient. If we write the two
integers & and y with the L,-notation, we obtain a more helpful corollary:

MNFS with Conjugation and Generalized Joux-Lercier Methods 165

Corollary 1. Let (aj,as,c1,¢0) € [0,1]2 x [0,00)% be four reals such that
a1 > ag. Let P denote the probability that a random positive integer below
x = Ly(aq,c1) splits into primes less than y = Ly(aa,c2). Then we have P~ =
L, (a1 —ag, (a1 — ag)clcgl) .

So we would like to express both norms and sieving bounds with the help of
this notation. As usual, we set:

_ & (_log@
B ¢p \loglog @)
V =Lg(1/3,cy).

2/3-1,
) , S'=Lg(1/3,¢cs¢t), B=Lg(1/3,c,) and

Thanks to this, we first remark that the first constraint can be rewritten as:
CsCt = 2¢Cp. (2)

Besides, we apply the Corollary 1 to reformulate the second constraint. Let us
note Lg(1/3,p,) (respectively Lg(1/3,p,)) the probability to get a B-smooth
norm in the first number field (respectively a B’-smooth norm in at least one
other number field). The second constraint becomes ¢, = —(p, + p,/). Using
equation (2), the constants in the probabilities can be written as:

by = —2¢s _ —2(2/¢t)e and pu = cy — (2/ci)ep + ct/2.
3(ep — ¢v)

3Cb 3Cb
That leads to require ¢, = —(—4/(3¢;) + ¢y — (4cp + ¢2)/(6¢i(cy — ¢y))) and
afterwards 6¢;(c; — ¢2) = 8(cp — ¢p) + 4cp + 7. Finally we would like to have:

(6¢t)cy — 12¢, — 6eger + 8¢,y — ¢ = 0. (3)

Optimizing the Asymptotic Complexity. We recall that the complexity
of our algorithm is given by the cost of the sparse linear algebra Lg(1/3,2c),
since we equalize the runtime of the sieving and linear algebra phases. Hence we
look for minimizing ¢; under the above constraint (3). The method of Lagrange
multipliers indicates that ¢y, c, and c¢; have to be solutions of the following
system:

24+ A12¢c, —12) =0

A(—12¢,¢, +8) =0

A6 —6¢2 —2¢) =0
with A € R*. From the second row we obtain ¢; = 2/(3¢,) and from the third one
we get ¢, = (c2+2/(9¢,))'/2. Together with equation (3), it gives the equation in
one variable: 405¢8 4 126¢2 — 1 = 0. We deduce that ¢, = ((3v/6 —7)/45)'/3 and
we recover ¢, = ((9 +4v/6)/15)'/3. Finally, the heuristic asymptotic complexity
of the Multiple Number Field Sieve with Conjugation Method is, as announced:

1/3
e 8- (9+4v6) /
ely 15

166 C. Pierrot

This has to be compared with the Number Field Sieve with Conjugation Method
proposed in [BGGM14] that has complexity Lg(1/3,(96/9)'/?). Note that our
second constant is (8(9 + 41/6)/15)'/3 ~ 2.156, whereas (96/9)'/3 ~ 2.201.

4.2 Analysis of MNFS-CM in the Boundary Case p = Lg(2/3,¢p)

The analysis made in this case follows the previous one except for the fact that
we have to reconsider the parameter t. We consider here a family of algorithms
indexed by the degree ¢ — 1 of the polynomials of the sieving. We compute so
the final complexity of each algorithm as a function of ¢, (and t). Moreover, we
underline that the round off error in ¢ in the computation of the norms is no
longer negligible.

Sieving on Polynomials of Degree t — 1. Again, to easily evaluate the
probability of smoothness of norms, we set the following parameters:

V =Lg(1/3,c,), B=1Lg(1/3,c), B =Lg(1/3,cp —¢,) and
S = Lo(1/3,c,).

With these notations, the first constraint becomes this time:
cst = 2¢p. (4)
Moreover, the norms are upper-bounded by S?" = Lg(2/3,2c5/cp) in the first

number field and by S"p(t—1/2 = Lo(2/3,cs/c, + cp(t — 1)/2) in all the other
number fields. We apply the Canfield-Erdés-Pomerance theorem, and, with the

same notation as in the previous paragraph, we obtain p, = —2¢s/(3cpcp) in
one hand and p,» = ¢, — (¢s/cp + cp(t — 1)/2)/(3(cy — ¢y)) in the other hand.
Using equation (4), the second constraint ¢, = —(p, + p,») can be rewritten as

tep(cp — co)(cp + ¢o) = 4(cp — ¢y) + 2, + t(t — 1)c2/2. As a consequence, we
require:
(6tcp)cy — 12¢, — 6tepcy + 8¢y — t(t — 1)c;, = 0. (5)

As previously, we want to minimize 2¢;, under the constraint (5). The method of
Lagrange multipliers shows that we need that the derivative of (6tcp)cl2) —12¢, —
6tcpc% + 8¢, — t(t — 1)0127 with respect to ¢, is equal to 0. This leads to require
that ¢, = 2/(3tc,). Putting this value in equation (5) we get:

(18t°¢2)ci — (36tcp)cy + 8 — 3t*(t — 1)c) = 0.

Finally, solving this equation in ¢, we deduce that ¢, = (6 + (20 + 6t2(t —
1)02)1/ 2)/(6tc,). Consequently, the asymptotic complexity of the Multiple Num-
ber Field Sieve with Conjugation Method in this boundary case is:

1 2 20 2
Lols —+] ——=+2ct—1
¢ (3’ of \/(9Cpt)2 R)

MNFS with Conjugation and Generalized Joux-Lercier Methods 167

where ¢t — 1 is the degree of the polynomials we are sieving on. Figure 4 compares
our MNFS-CM with previous and various algorithms in this boundary case. For
almost all variants of the Number Field Sieve presented in this figure (namely
NFS, MNFS, NFS-CM and MNFS-CM), each hollow in the curve corresponds
to a particular degree of the polynomials we are sieving on.

Remark 1. This boundary case has been the scene of various recent improve-
ments but, as far as we know, all of them are not yet published nor available on
the Internet. In particular, this is the case of the so-called PiRaTh algorithm,
presented at the DLP conference in May 2014 by Pierrick Gaudry, Razvan Bar-
bulescu and Thorsten Kleinjung. Yet, for the sake of comparison, we plot it
together with already broadcast algorithms.

The Best Asymptotic Complexity of any Variant of the Number Field
Sieve: MINFS-CM on Linear Polynomials. According to Figure 4, sieving
on linear polynomials seems to give the best complexity, as usual in this boundary
case. Let us make a more precise analysis of the optimal case reached by our
Multiple Number Field Sieve with Conjugation Method. We consider now ¢, as
a variable and we would like to find the minimal complexity obtained by each
algorithm. Namely, we want to minimize:

2 20 2
C(Cp) = & + \/(961775)2 -+ gcp(t — 1)

The derivative of this function with respect to ¢, vanishes when 2 - 9%¢¢,(20/
(9cpt)? + (2/3)cp(t — 1))1/2 = =20 + 27(¢ — 1)t2¢]. This leads to the quadratic
equation in ¢3: 30t4(t — 1)2¢f — 2 334312(t — 1)¢ — 2°-5- 19 = 0. Thus, the
optimal value comes when ¢, = (2/3) - ((43 + 18V/6)/(t>(t — 1))*/3. We get for
this value the minimal complexity:

Lo <1 <9+¢m> | (t1)1/3>'

37\ 3. (43 +18V6)1/3 t

Looking at this formula, it is clear that the best possible complexity is obtained
when t = 2, i.e. when we sieve on linear polynomials. Interestingly enough, we
conclude that we have with our MNFS-CM the best complexity of any medium,
boundary and high characteristics cases, which is:

(1 94177 + 712v6)
Lo .

373.(2- (43 + 18v6))1/3

Note that the approximation of the second constant in the complexity is given

by (94 V177 + 72v/6)-371-(2-(43+18V/6)) /3 ~ 1.659. We get this complexity
when p can be written as p ~ Lg(1/3,1.86).

168 C. Pierrot

4.3 Analysis of MNFS-GJL in the Boundary Case p = Lg(2/3,¢p)

In this setting, we recall that we propose to sieve on linear polynomials. As usual,
we assume that B = V B’ where V is the number of number fields and B’ is the
smoothness bound relatively to the last V' —1 number fields. Thus, the constraint
given in Equation (1) leads to require that the sieving bound S is equal to the
first smoothness bound B. With the same notations as previously, we also require
that B = 1/P. Finally, we emphasize that the polynomial selection proposed in
Section 3 requires that n < d + 1. If we set that:

o s log@ "
~ " \loglogQ ’

where ¢ is a parameter to define, then we have to keep in mind that our com-
plexity results are valid provided § > 1/c,.

Since f; has small coefficients and degree d+ 1 the norms in the first number
field are upper-bounded by Lg(2/3,¢,0). The probability to get a B-smooth
norm is though Lg(1/3,p,) with p, = —¢/3. Similarly, the norms in the last
V' — 1 number fields are bounded by Lg(2/3,c,0 + 1/6). The probability to
get a B’-smooth norm in a least one number field is Ly(1/3,p,s) where p» =
—(epd+1/6)/(cp — ¢y) + ¢y

From ¢, = —(p, + pr) we get then:

1) 52Cb +1
o= 3 * 30(cp — ¢y)
& 35(c — %) =20%c, — 6%c, + 1
& 36ci — 20%¢y, + 6%¢, — 36¢% — 1= 0.

The method of Lagrange multipliers shows that we require:

30c; — 26%¢y + 6%c, —35c2 —1=0
3c; — 45¢y + 26c, — 3¢ =0 (6)

6% — 66c, =0
From the third line of System (6) we recover ¢ = 6¢,. Substituting in the second
line, we obtain cg —8cycp + 3012) = (. Then, writing ¢, as as function of ¢, we get:
¢y = ((4 — V/13)/3)cp. Substituting the value of ¢ in the first line of the system
gives 18¢c,¢i — 72c%cp, + 18¢3 — 1 = 0, and, substituting again with the value of
¢, we finally get: ¢, = (46 + 13v/13/108)/3. With this constant, we recover the

value of § which is (4v/13 — 14)'/3. Thus, as soon as:

1/3
<7+2\/ﬁ> /
6 9

Cp =

P =

which is approximately equal to 1.33, the complexity of the Multiple Number
Field Sieve with the Generalized Joux-Lercier method is:

1/3
(! 2- (46 + 13V/13) /
@\3 27

MNFS with Conjugation and Generalized Joux-Lercier Methods 169

Second constant of the Complexity in the L_Q notation

Fig. 4. Asymptotic complexities Lgo(1/3,C(cp)) in the boundary case, as a function
of ¢, with p = Lg(2/3,¢p). The dark blue curve represents the complexities obtained
with our Multiple Number Field Sieve with Conjugation Method while the brown one
represents the complexity of the Multiple Number Field Sieve with the General Joux-
Lercier method (see next Section). The red, light blue, black, yellow and purple curves
represent respectively the complexities of NFS [JLSV06], MNFS [BP14], PiRaTh, NFS-
GJL [BGGM14] and NFS-CM [BGGM14].

As expected, we recover the exact asymptotic complexity given by [BP14] when
solving the discrete logarithm problem in high characteristic finite fields. This
has to be compared with the asymptotic complexity of the classical Number
Field Sieve with the Generalized Joux-Lercier method [BGGM14] in the same
case which is Lg(1/3,(64/9)'/3). For the sake of comparison we recall that
(64/9)1/3 ~ 1.92 whereas (2(46 + 13+/13)/27)'/3 ~ 1.90.

When ¢, < ((7—}—2\/@)/6)1/3, from the constraint § > 1/c, we get § >

(44/13 —14)'/? and the previous simplification no longer applies. Yet, the equal-
ities ¢, = 3¢, /(4—+/13) = §/(2(4—+/13)) show that we minimize the complexity
when 6 = 1/c,. We obtain thus ¢, = (4 +v/13)/(6¢,). Finally, when:

1/3
7+ 213
@<|{7% ’

170 C. Pierrot

the asymptotic complexity of MNFS with the Generalized Joux-Lercier method

1S:

3" 3¢,

Lo <1 4+\/ﬁ>.

Figure 4 shows how this asymptotic complexity varies with c,,.

References

[BGGM14]

[BGJT14]

[BP14]

[CEPS3)

[Cop93]
[Gor93]

[JL03]

[JLSVO06]

[Mat03]

Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improvements to the
number field sieve for non-prime finite fields. INRIA Hal Archive, Report
01052449 (2014)

Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A Heuristic Quasi-
Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small
Characteristic. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 1-16. Springer, Heidelberg (2014)

Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium
and high characteristic finite fields. LMS Journal of Computation and
Mathematics 17, 230-246 (2014)

Canfield, E.R., Erds, P., Pomerance, C.: On a problem of Oppenheim
concerning factorisatio numerorum. Journal of Number Theory 17, 1-28
(1983)

Coppersmith, D.: Modifications to the number field sieve. J. Cryptology
6(3), 169-180 (1993)

Gordon, D.M.: Discrete logarithms in GF(P) using the number field sieve.
SIAM J. Discrete Math. 6(1), 124-138 (1993)

Joux, A., Lercier, R.: Improvements to the general number field sieve for
discrete logarithms in prime fields. A comparison with the gaussian integer
method. Math. Comput. 72(242), 953-967 (2003)

Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The Number Field
Sieve in the Medium Prime Case. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 326-344. Springer, Heidelberg (2006)

Matyukhin, D.V.: On asymptotic complexity of computing discrete loga-
rithms over GF(p). Discrete Mathematics and Applications 13(1), 27-50
(2003)

Algorithmic Cryptanalysis

Better Algorithms for LWE and LWR

Alexandre Duc®™ | Florian Tramer, and Serge Vaudenay

EPFL, 1015 Lausanne, Switzerland
{alexandre.duc,florian.tramer,serge.vaudenay}@epfl.ch

Abstract. The Learning With Error problem (LWE) is becoming more
and more used in cryptography, for instance, in the design of some fully
homomorphic encryption schemes. It is thus of primordial importance
to find the best algorithms that might solve this problem so that con-
crete parameters can be proposed. The BKW algorithm was proposed
by Blum et al. as an algorithm to solve the Learning Parity with Noise
problem (LPN), a subproblem of LWE. This algorithm was then adapted
to LWE by Albrecht et al.

In this paper, we improve the algorithm proposed by Albrecht et al.
by using multidimensional Fourier transforms. Our algorithm is, to the
best of our knowledge, the fastest LWE solving algorithm. Compared to
the work of Albrecht et al. we greatly simplify the analysis, getting rid
of integrals which were hard to evaluate in the final complexity. We also
remove some heuristics on rounded Gaussians. Some of our results on
rounded Gaussians might be of independent interest. Moreover, we also
analyze algorithms solving LWE with discrete Gaussian noise.

Finally, we apply the same algorithm to the Learning With Rounding
problem (LWR) for prime ¢, a deterministic counterpart to LWE. This
problem is getting more and more attention and is used, for instance, to
design pseudorandom functions. To the best of our knowledge, our algo-
rithm is the first algorithm applied directly to LWR. Furthermore, the
analysis of LWR contains some technical results of independent interest.

1 Introduction

The Learning With Error problem (LWE) was introduced by Regev in [43] and
can be seen as an extension of the Learning (from) Parity with Noise prob-
lem (LPN). Roughly, the adversary is given queries from an LWE oracle, which
returns uniformly random vectors a; in Z, and their inner-product with a fixed
secret vector s € Z’qC to which some noise was added (typically some discrete
Gaussian noise). The goal of the adversary is then to recover the secret s.
In LPN, ¢ = 2 and the noise follows a Bernoulli distribution. In his seminal
paper [43], Regev shows a quantum reduction from some well-known Lattice
problems like the decisional shortest vector problem (Gap-SVP) or the short
independent vector problem (SIVP) to the LWE problem. Later, Peikert and
Brakerski et al. showed how to make this reduction classical [16,42]. The LWE

A. Duc—Supported by a grant of the Swiss National Science Foundation, 200021_
143899/1.
© International Association for Cryptologic Research 2015

E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 173-202, 2015.
DOI: 10.1007/978-3-662-46800-5_8

174 A. Duc et al.

problem was then used to design a wide range of cryptographic primitives. For
instance, Gentry et al. showed how to construct a trapdoor function based on
LWE and created an identity-based cryptosystem [26]. Applebaum et al. used
LWE to design encryption schemes with strong security properties [4]. However,
the biggest breakthrough that uses LWE is its use in the design of (fully) homo-
morphic encryption schemes (FHE). FHE was first introduced by Gentry in his
PhD thesis [25]. While the initial construction was not using the LWE problem,
most of the recent designs are, e.g., [15,17,27].

The Learning With Rounding problem (LWR) was introduced by Banerjee,
Peikert, and Rosen to construct pseudorandom functions [8]. LWR can be seen
as a derandomization of LWE where the random noise is replaced by a rounding
modulo p < ¢. This rounding introduces a deterministic error which makes the
problem hard to solve. Banerjee et al. showed that the hardness of the LWE
problem can be reduced to the hardness of LWR, when ¢/p = k<~ where k is
the length of the secret. The LWR problem was later revisited by Alwen et al.
to get rid of this exponential blowup [3]. However, the number of LWR samples
given to the adversary is limited in this case. LWR finds new applications every
year. Among them, there is the design of pseudorandom functions [8], lossy
trapdoor functions and reusable extractors [3], or key-homomorphic PRFs [13].

When designing a new cryptosystem, one critical part is to propose some
concrete parameters so that the new scheme can be used in practice. Regarding
the LWE problem, there was no such algorithmic analysis before the work of
Albrecht et al. [1]. This lack of concrete complexity analysis implied that most
of the constructions based on LWE propose only asymptotic parameters. Hence,
it is of primary importance to study algorithms that solve the hard problems on
which our cryptosystems rely.

Previous Work. Algorithms solving LWE can be divided into two categories:
those finding short vectors in a lattice using, e.g., Regev’s [43] or Brakerski
et al.’s [16] reduction and those attacking the LWE problem directly. The first
type of algorithms is extensively studied (see, e.g., [9,21,23,30,31,36,40,41]).
However, there is still no precise complexity analysis for large dimensions. In this
paper, we focus only on the second type of algorithms the study of which started
with the LPN problem and the Blum—Kalai—Wasserman algorithm (BKW) [11]
with complexity 20 /108k) where k is the length of the secret vector. The idea
of BKW is to add queries together, such that the vectors a; are zero in all but
one positions. Then, using a majority rule, one can recover the corresponding
bit of the secret with good probability.

In [35], Levieil and Fouque proposed an optimization of the BKW algorithm
for LPN, denoted LF1, which recovers a full block of b bits of the secret s at once
by cleverly applying a Walsh-Hadamard transform. Compared to the original
BKW algorithm, their method has the advantage of making use of all the avail-
able samples after reduction, instead of having to discard those with more than
one non-zero position. Instead of an exhaustive search, they use a fast Walsh-
Hadamard transform to recover the most likely secret block in time O (m + b2b)
(where m is the number of samples left after reduction). The analysis of their

Better Algorithms for LWE and LWR 175

algorithm shows that it clearly outperforms the standard BKW, although their
asymptotic complexities remain the same. In the same paper, they also proposed
to apply some heuristics to reduce the query complexity (LF2 algorithm).

In parallel, Fossorier et al. also improved the original BKW algorithm using
techniques taken from fast correlation attacks [22]. Later, Bernstein and Lange [10]
combined both the LF algorithms and Fossorier et al.’s work to attack Lapin [32], an
authentication protocol based on a version of LPN over aring (ring-LPN). However,
all these results achieve the same asymptotic complexity of 20(%/logk)

Many cryptographic applications of LPN make sure that the number of
queries to the LPN oracle is limited. However, all the algorithms based on
BKW initially require a sub-exponential number of LPN samples. In [37], Lyuba-
shevsky proposed a clever way to combine queries using a universal hash func-
tion. He could, thus, obtain an algorithm using less queries (the minimal being
kit2/1ogk for a worse time complexity).

In ICALP 2011, Arora and Ge publish the first algorithm targeting a specific
version of LWE, namely when the Gaussian noise is low [5]. Using BKW for
LWE was first mentioned by Regev [43]. However, it is only in 2013 that the
first detailed analysis of a generic algorithm targeting LWE is published by
Albrecht et al. [1]. It is an adaptation of the original BKW algorithm with
some clever improvements of the memory usage and achieves complexity 20*).
Their analysis is extremely detailed and we present their results in Section 3.
Finally, Albercht et al. presented in PKC 2014 an algorithm targeting LWE when
the secret vector has small components (typically binary). Using BKW along
with modulus switching techniques, they managed to reduce the complexity for
solving the LWE problem in these cases [2].

Our Contribution. We contributed in the following:

— First we propose a new algorithm for LWE, which is better than the cur-
rent state of the art. Our new algorithm replaces the log-likelihood part
from [1] by a multidimensional Fourier transform. We also propose a heuris-
tic adapted from LF2 [35] to reduce the number of oracle queries even further.

— Albrecht et al. in [1] were relying on the heuristic that the sum of rounded
Gaussian variables remain rounded Gaussians. We remowve this heuristic by a
careful analysis. In particular, we give good bounds on the expected value of
the cosine of the rounded Gaussian distribution. Our algorithm relies solely
on the common heuristic stating that after having performed all the XORs in
the BKW algorithm, all the noises are independent. This heuristic is already
used in most of the LPN-solving algorithms (e.g. [1,22,35]).

— In [1], only the rounded Gaussian distribution for the noise in LWE is con-
sidered. While this distribution was initially used by Regev [43], more recent
papers tend to use the discrete Gaussian distribution instead. We perform
our analysis for both distributions.

— Albrecht et al.’s complexity is rather difficult to estimate when v/2¢0 >
q/2 [1, Theorem 2|. Indeed, their result contains a parameter which they

176 A. Duc et al.

could express only using an integral and the erf function. Our detailed anal-
ysis allows us to bound the Fourier coefficients of the rounded Gaussian
distribution in all the cases and, hence, all our complexities are simple to
evaluate.

— We adapt Lyubashevsky’s idea to LWE and show that for LWE (and LWR),
the minimum number of queries required using his method is k!+(cga+1)/logk

— We propose the first algorithmic analysis of the LWR problem when ¢ is
prime. While our proposal requires a subexponential number of samples,
our detailed analysis contains many results of independent interest.

Organization. In Section 2, we introduce the LWE and LWR problems and give
basic results about Gaussians and Fourier transforms. In Section 3, we present
the BKW algorithm as it was done in [1]. We detail our algorithm and apply it
to LWE in Section 4. We adapt it to LWR in Section 5. Finally, we conclude in
Section 6.

2 Preliminaries

2.1 Notations

Given a vector a we denote by a; its j-th component. We write al’) to say
that we access the j-th vector of a set. We let [.|: R — Z be the rounding
function that rounds to the closest integer.! We define v/—1 = i € C. Finally,
for a predicate 7(x), we denote by 1 ()} the function which is 1 when 7(z) is
true and 0 otherwise.

2.2 The LWE Problem

In this section, we define the LWE problem.

Definition 1 (LWE Oracle). Let k,q be positive integers. A Learning with
Error (LWE) oracle Il for a hidden vector s € Z’; and a probability distribution
X over Zq s an oracle returning

(a&Z’;, <a,s>+u) ,

where v «— x.

Definition 2 (Search-LWE). The Search-LWE problem is the problem of recov-
ering the hidden secret s givenn queries (a9, c\9)) € LY x Zq obtained from I .

In typical schemes based on LWE, the parameter ¢ is taken to be polynomial in
k, and x follows a discretized Gaussian distribution (see next section).

! In case of equality, we take the floor.

Better Algorithms for LWE and LWR 177

2.3 Gaussian Distributions

Let N(0,0?%) denote the Gaussian distribution of mean 0 and standard devia-
tion o. We denote its probability density function by ¢ — p(¢;0), for ¢ € R.
Consider the wrapped Gaussian distribution ¥, , resulting from wrapping the
Gaussian distribution around a circle of circumference ¢ > 0. Its probability
density function g(6;0,q) is given by

o0

9(0;0,q) = Z CT\}%exp {_(92—;5(])2)}, for 6 G}fg,g} . (1)

Note that ¥, o, is the standard wrapped normal distribution obtained by
wrapping N'(0,02) around the unit circle, used for instance in directional statis-
tics [39].

LWE schemes use a discretization of a Gaussian over Z,. There are two vari-
ants of LWE that we will consider in this paper. We will see that we obtain
similar results for both distributions. In the initial version by Regev [43], the
noise in LWE was a rounded Gaussian distribution. This is also what is consid-
ered in [1,29]. Such a distribution can be obtained by sampling from ¥, , and
rounding the result to the nearest integer in the interval |52,]. We denote this
distribution by ¥, 4. Its probability mass function is given by

{=—o00

z+%
Prle — 0,] = / 9(6:0,9)d6 @)

1
T—3

for 2 an integer in the interval | 5, Z].
The LWE problem is believed to be hard when o > v/k and ¢ € poly(k).

The second Gaussian distribution used for LWE is the discrete Gaussian
distribution D, 4. This distribution is used in most of the applications and in
the classical LWE reduction [16]. This distribution is, for z an integer in | -2, 4]:

exp(—z°/(202))

S exp(—y?/(20%)

y€l-1,4]

Prlz — D, 4] = (3)

2.4 The LWR Problem
In this section, we define the LWR problem.

Definition 3 (Rounding Function). Let ¢ > p > 2 be positive integers. The
LWR problem uses the rounding function from Z, = {0,...,q — 1} to Z, =

{0,...,p— 1}, given by?

2 For the second component returned by the LWR oracle, we decided to return the
rounding of (@, s) instead of the usual [{a@,s)]. The problem is equivalent (see,
e.g., [3]). However, if we would use the floor operation, the noise in Lemma 19 would
not have zero mean but mean (1/2 — ged(p, ¢)/2¢) and we would have to introduce
tedious correcting terms in (32).

178 A. Duc et al.

[, Zg—Zp : x> [(S)xJ

Definition 4 (LWR Oracle). Let k and ¢ > p > 2 be positive integers. A
Learning with Rounding (LWR) oracle As,, for a hidden vector s € Z* g S#0
is an oracle returning

(a A Z’;) f(a,s)jp> .

Definition 5 (Search-LWR). The Search-LWR problem is the problem of
recovering the hidden secret s given n queries (a'9),c)) Z’; X Ly, obtained
from Ag .

Two reductions from LWE to LWR exist: one with exponential parameters and
another with a limited number of samples.

Theorem 6 (Theorem 3.2 in [8]). Let § € Ry and let x be any efficiently
sampleable distribution over Z such that Pry[|z| > [] is negligible. Let q¢ >
p-B-k“D . Then, solving decision-LWR with secrets of size k and parameters p
and q is at least as hard as solving decision-LWE over Z, with secret of size k
and noise distribution x.

The second result reduces this explosion in the parameters but limits the number
of samples the adversary is allowed to get from the LWR oracle.

Theorem 7 (Theorem 4.1 from [3]). Let)\ be the security parameter. Let
k, 0, m,p,y be positive integers, pmax be the largest prime divisor of q, and pmax >
20~vkmp. Let x be a probability distribution over Z such that E[|x|] < 8. Then, if
k> (l+X+1)log(q)/log(2v) + 2\ and if ged(q, ¢/pmax) = 1, the decision-LWR
with secret of size k, parameters p and q and limited to m queries is at least as
hard as solving decision-LWE over Zq with secrets of size £, noise distribution x
and limited to m queries.

2.5 Discrete Fourier Transform

Let p1,--- ,pp be integers and let 6, = exp(27i/p;), for 1 < j < b and where
i = y/—1. Define the group G :=Z,, X - - X Zp,. We may write an element z € G
as (1, ,xp). The discrete Fourier transform (DFT) of a function f: G — C

is a function f: G — C defined as

Z f 9 omcl pbozbmb) (4)

zeG

The discrete Fourier transform can be computed in time O (|G|log(|G])) =
Crrr - |G| log(|G]) for a small constant Cgpr.

Better Algorithms for LWE and LWR 179

2.6 Hoeffding’s Inequality
We will use the following Hoeffding bound.

Theorem 8 ([33]). Let X1, Xo, ..., X, ben independent random variables such
that Pr(X; € o, B;]] =1 for 1 < j < n. We define X = X1 +...+ X, and
E[X] to be the expected value of X. We have that

—2t2
Pr[X —E[X] >t < -
' X2t < exp (Zj—1(ﬁj_aj)2>
and
Pr[X —E < —t] <exp ni ,
= TIE P\ S G
for any t > 0.

3 The BKW Algorithm

The BKW algorithm [11], introduced by Blum et al., was the first sub-exponential
algorithm given for solving the Learning Parity with Noise (LPN) problem. Asymp-
totically, it has a time and samples complexity of 20(*/1°8¥) Since LPN can be seen
as aspecial case of LWE where we work over Z5, the BKW algorithm can be adapted
to solve Search-LWE over Z, with an asymptotic sample and time complexity of
q@ ¥/ 1oe(k)) — 20(k) when the modulus ¢ is polynomial in k [1,43,44].

The BKW algorithm can be described as a variant of the standard Gaussian
elimination procedure, where a row addition results in the elimination of a whole
block of elements instead of a single element. The main idea is that by using
‘few’ row additions and no row multiplications, we limit the size of the noise
at the end of the reduction, allowing us to recover a small number of elements
of s with high probability through maximum likelihood. The main complexity
drawback of the algorithm comes from finding samples colliding on a block of
elements such that their addition eliminates multiple elements at once.

The BKW algorithm takes two integer parameters, usually denoted a and b,
such that a = [k/b]. The algorithm repeatedly eliminates blocks of up to b ele-
ments per row addition, over a rounds, to obtain the samples used for recovering
elements of s. Minimizing the complexity of the algorithm requires a tradeoff
between the two parameters. For small a, the reduced samples have low noise
and the complexity of recovering elements of s with high probability is reduced.
For large b however, the complexity of finding colliding samples increases.

In [1], Albrecht et al. view the BKW algorithm as a linear system solving
algorithm consisting of three stages, denoted sample reduction, hypothesis testing
and back substitution. For convenience, we briefly describe each of these stages
below.

180 A. Duc et al.

Sample Reduction. Given an LWE oracle I1s ,, the goal of this stage is to
construct a series of oracles As ¢, each of which produces samples (a, c¢), where
the first b - £ elements of a are zero. To create the oracles Ag ¢ for 0 < £ < a,
Albrecht et al. make use of a set of tables T¢, which are maintained throughout
the execution of the algorithm. To sample from A, , 1, we query the oracle A, , o
(which is the original LWE oracle) to obtain samples (a, c¢) to be stored in table
TL. If T! already contains a sample (a’,c’) such that a and +a’ agree on their
first b coordinates, we do not store (a, ¢) but instead output (a Fa',cF). If a
sample from A, , o already has its first b elements to be zero, we directly output
it as a sample from Ag 1.

For 1 < ¢ < a, we proceed recursively by populating a table T of non-zero
samples from A, ¢—1 and outputting a query as soon as we get a collision in
the table.

Exploiting the symmetry of Z, and the fact that we do not need to store
queries which are already all-zero on a block, a table T* contains at most (¢® —
1)/2 samples. Then, to create m samples from As . ¢, we will need at most

m—+ qu_l calls to As y ¢—1. Furthermore, since there is no use in storing the zero
elements from reduced samples, table T* stores samples of size n — (£ —1)-b+ 1
elements from Z,. The description of the oracles Ay y ¢ is given in Algorithm 1.

In the original BKW algorithm (see [11,35]), one would then take samples
from Ag y.q—1, i.€., samples with zeros everywhere except in the first b positions,
and delete any sample (a,¢) with more than one non-zero coordinate a;. The
remaining samples would be used to recover one bit of s at a time.

Albrecht et al. generalized a bit the result. Instead of keeping only one single
element of the secret vector, they select a parameter d < k— (a—1)-b and create
a final oracle As 4, which produces samples with d non-zero entries at fixed
positions in a. These samples are used to recover d bits of s through exhaustive
search over ¢? values. The oracle As y.a is defined similarly as above, making
use of a final table T*. It samples from A, o—1 and adds (or subtracts) queries
(a,c), (a’,c), for which a and +a’ agree on coordinates (a — 1) - b+ 1 through
k —d — 1. Albrecht et al. note that they obtain the best results when choosing
d equal to 1 or 2. Note that d = 1 corresponds to the BKW algorithm.?

Hypothesis Testing. After the reduction phase, Albrecht et al. are left with sam-
ples (a,c) from A, o, where a has d non-zero elements. We can view As , . as
outputting samples in Zg X Zg4. Let s’ denote the d first elements of s. Since a was
obtained by summing or subtracting up to 2% samples from the LWE oracle I/,
(and considering the fact that x is symmetric around 0), the noise (¢ — (a, s’)) of
the reduced samples follows the distribution of the sum of 2% noise samples. The
problem of recovering s’ can then be seen as a problem of distinguishing between
the noise distributions for s’ and v # s’.

3 The only difference between the two algorithms is that the original BKW algorithm
restarts every time Aj, y,o outputs something.

Better Algorithms for LWE and LWR 181

Algorithm 1. Oracle A; ¢, for 0 < ¢ <a

State: A table T (initially empty)
Output: An LWE tuple (a,c) such that a has the first b - £ elements set to 0.
1: loop
2: Let (a,c) «— Ag,y,0—1.
if a has the first b - £ elements set to 0 then
return (a,c).
end if
if there is (a’,¢’) € T* such that a and +a’ are equal on the first b- £ positions
then

return (a Fa',cF)
end if
Add (a,c) to T
: end loop

By performing an exhaustive search over Zg and making use of the log-
likelihood ratio, Albrecht et al. determine the number m of samples from A, 4
which should be required to recover s’ with high enough probability.

As already mentioned, the analysis of the solving phase from [1] makes use of
the heuristic assumption that the noise contributions of the samples from A o
are independent and that the sum of rounded Gaussians also follows a rounded
Gaussian distribution.

Back Substitution. This stage was not part of the original BKW algorithm
for LPN [11,35] (which does not make use of the set of tables T defined previ-
ously either). It is analogous to the back substitution typically used in Gaussian
elimination and is a clever way of reducing the size of the LWE problem after
part of the secret s has been recovered.

Indeed, once d elements of s are recovered with high probability, we can
perform a back substitution over the set of tables T', zeroing-out d elements in
each sample. To recover the next d elements from s, we query m new samples
from Il , and reduce them through the tables T' (which are already filled) to
obtain samples for hypothesis testing. Note that as soon as we recover all the
bits at positions (£/—1)-b through £-b—1, the oracle A , ¢ and its corresponding
table T become superfluous and further samples will need one reduction phase
less.

4 The LWE-solving Algorithm

In this section, we present our new LWE-solving algorithm. Following the struc-
ture from [1], our algorithm will also consist of the sample reduction, hypothesis
testing and back substitution phases. However, we change the hypothesis testing
phase with an idea similar to the LF1 algorithm [35]. Indeed, since the Walsh-
Hadamard transform can be seen as a multidimensional discrete Fourier trans-
form in Zs, it would seem plausible that a similar optimization could be achieved

182 A. Duc et al.

over Z, for LWE. As we have seen, the BKW algorithm for LWE from [1] differs
slightly from the original BKW algorithm in its reduction phase. Recall that
after reducing samples to a block of size k' < b, Albrecht et al. further reduce
the samples to d elements. Our idea is to remove this last reduction to d ele-
ments and recover directly the &’ elements of s using a DFT. Thus, the samples
we use for the DFT would have noise sampled from the sum of 2¢~! discretized
Gaussians instead of 2%, which might also lead to a significant improvement. As
for most other works on LPN or LWE solving algorithms, we will make use of
an heuristic assumption of independence for the noise of the reduced samples.

Finally, note that the LF1 algorithm uses the exact same reduction phase as
the original BKW. Similarly, our algorithm will use (nearly) the same reduction
phase as in [1], combined with a different hypothesis testing phase. The major
differences in our reduction phase will be that we perform one reduction round
less, and that we decide to store and re-use samples for solving successive blocks
of s.

4.1 Sample Reduction

As mentioned previously, our algorithm uses the same reduction phase as the
BKW algorithm from [1], except that we always stop the reduction as soon as we
reach a block of &’ < b non-zero elements. We will construct the oracles As ¢
and the tables T¢ only for 1 < ¢ < a — 1. It is thus fairly trivial to adapt the
results from [1] to bound the complexity of our algorithm’s reduction phase.

Lemma 9 (Lemma 2 and 3 from [1]). Let k, g be positive integers and Il
be an LWE oracle, where s € Z’;. Let a € Z with 1 < a <k, let b be such that
ab < k, and let k' = k — (a — 1)b. The worst case cost of obtaining m samples
(ai,ci) from the oracle Asy q—1, where the a; are zero for all but the first k'
elements, is upper bounded by

(qb;1> ((a_l)é(a_m (k1) - 2 (a_lﬁ) : (a_2)) +m (‘Sl(kw))

additions in Zq and (a — 1) - qb% +m calls to Il .
The memory required in the worst case to store the set of tables T through
T~ expressed in elements of Z, is upper bounded by

<qb21-(a1)~(k+1ba22)> .

Proof. The proof follows exactly the one from [1], with the exception that we do
not use any table 7. O

Better Algorithms for LWE and LWR 183

4.2 Hypothesis Testing

At the end of the reduction phase, we are left with m samples (a?), cU)) from
the oracle As y,q—1, where each a) has all elements equal to zero except for a
block of size k' = k—(a—1)-b. Let s’ denote the corresponding block of the secret
s. We can view the oracle As y -1 as returning samples in Zk X Zq. We will
consider that each such sample is the sum of 2¢~! samples (or their negatlon)
from the LWE oracle IT, ,. Then, the noise (@), s’) — ¢ will correspond to
the sum of 2! independent samples from the distribution y, multiplied by +1,
and taken modulo q. We perform our analysis when y is the discrete Gaussian
distribution (3) and when y is the rounded Gaussian distribution (2) which are
used in most of the LWE research, i.e., we let x = D, , or x = ¥, ,

We represent our m samples as a matrix A € ZZ”X’“/ with rows A; and a
vector ¢ € Z;". Recall that 6, := exp(2mi/q). Let us consider the function

)= Na,—ay 0, VzeZl . (5)

The discrete Fourier transform of f is

m

= Y f@pee = 3 iﬂ{Aj:m} geigy (@) = 3 grAse)—e
j=1

K’ k! j=1
TEL x€Zk 1

In particular, note that

§) = DA = 3 g, e (6)

Jj=1 Jj=1

where the v;; are independent samples from x. Note that we dropped the reduc-
tion of the sum of the ¥ modulo ¢, since 9’;‘1 =1, for k € Z.

We will now show, through a series of lemmas that for appropriate values
for m and a, the maximum value of the function Re(f (a)) is reached by s’ with
high probability. Our algorithm for recovering s’ will thus consist in finding the
highest peak of the real part of the DFT of f(x).

We start first with two technical lemmas regarding Gaussian distributions
which might be of independent interest.

Lemma 10. For g an odd integer, let X ~ j’mq and let Y ~ 27 X/q. Then

Elcos(Y)] > L sin (”) e 2 gpd Elsin(Y)] =0.
q

™

Proof. Let Sy be the set of integers in | — ¢/2 + £q,q/2 + {q]. Using (1) and (2),
we can write

184 A. Duc et al.

9 o rat1/2
E[cos(Y)] = Z cos (ﬂx> Z / p(0 + £g;0) do (7)
€Sy q l=—c0 z—1/2
00 27 z+1/2
= Z Z cos (x + 27r€> / p(0 + 4gq;0)do (8)
l=—00 €Sy q z—1/2
00 o T+1/2+Lg
= Z Z cos <(x —|—€q)) / p(0;0)do (9)
f=—c0 €Sy q z—1/24+Lq
oo 9 z'+1/2
= Z Z cos (ﬂx’) / p(0;0)do (10)
l=—oc0x’€Sy q z'—1/2
00 9 z'+1/2
= Z cos (ﬂx’) / p(0;0)de (11)
. q z/—1/2
o o z+1/2
= Z F | cos (z) / p(6;0)do | (x) , (12)
y=—00 q z—1/2

where, for (10), we used z’ := x + £q and, for (12), we used the Poisson sum-
mation formula (Lemma 25 in Appendix A). Basics about continuous Fourier
transforms can be found in Appendix A. The Fourier transforms of cos(2mz/q)
and 1/(ov/27) exp[—x/(20?)] can be found in Appendix A. We are now ready
to prove the lemma (we drop some (x) for readability). For integer values of x,
we have

27 z+1/2 g8)
(cos (x .)/a:—l/Q Ume "
41) ol]
:F(cos(x@)>* F / 2 1 67267d9 _F / 2 1 e’zijdg
! - oV 2m —o0 oV 21
(14)
() (e[) o
—0c0 O T
— 1 _ l 1 TIX T TEX L _2”202X2 1
IS MR
(16)
1 1 1 . 1 92,22
2 K q X 1
2 (5 (X q)+5(x+q>)*(51n(7rx) (er)) an
_ isin T (—1)* e 2720 (ax+1)%/q* - - 27202 (gx—1)2 /g? "
= 2w q gx + 1 P 1 \

where (14) is the convolution property of the FT, (15) comes from the translation
property of the FT, (16) comes from the integration property of the FT, and
(17) holds since d(x £ 1/q) = §(x) = 0 for integer values of x. We can write (12)
as

Better Algorithms for LWE and LWR 185

Ton (™ p2mio?/d?
™ q
i 4 ﬁ 1) 20 (ax+1)? /¢ B 20 (ax—1)%/¢*
o gx +1 gx — 1 '

Notice that the sum term in this equation is alternating and decreasing in abso-
lute value when x grows (derivative is negative). Notice also that the first term
(when x = 1) is positive. Hence this sum is greater than 0 and we get our result
for E [cos(Y)].

For E [sin(Y)], note that when ¢ is odd, X and Y are perfectly symmetric
around 0. The result then follows trivially from the symmetry of the sine func-
tion. a

Lemma 11. For q an odd integer, let X ~ Dy 4 and let Y ~ 2nX/q. Then

222

Elcos(Y)] > 1 — and E[sin(Y)] =0.

Proof. Using [7, Lemma 1.3] with a = 1/(20?), we have that E[X?] < o2. Hence,
using cos(z) > 1 — x2/2,

E[cos(27X/q)] > 1 — 27°E[X?]/¢* = 1 — 2n%0%/¢* .

For E [sin(Y")], note that when ¢ is odd, X and Y are perfectly symmetric around
0. The result then follows trivially from the symmetry of the sine function. O

Definition 12 (R,). In the following, let R, 4 = E[cos(x)], i-e.,

1 sin £§2 e 2 when y = o
Roqx = or2o
1 — 27 when x = Dy 5

Lemma 13. E [Re(f(sq)} >m- (Rogy)® .

Proof. From (6), we get
E [RQ(A(SI))] =Re (iE {9;("14*‘“*%,2@—1)]> — Re (iﬂi {COS (2;”]"1)}20_1> ’

using the independence of the noise samples v; , and E[Giy] ‘] =E[cos(2mv;,4/q)]
(which follows from Lemmas 10 and 11). Using Lemmas 10 and 11 again, we have
that E[cos(27v;,¢/q)] > Ro,q,y- Hence, we get that

m

E [Re(7)] > 32 (Bond® ™ = m- (o)

j=1

2(171

(19)

O

186 A. Duc et al.

Lemma 14. Let G C Z, be a subgroup of Zq, let X L Gandletec Zq be
independent from X. Then, E [0X1¢] =0.

Proof. Define Y = %’TX . Then Y is a random variable following a discrete uni-

form distribution on the unit circle. Then E[f;'] = 0 follows from the analysis
of discrete circular uniform distributions (see e.g. [6]). Now, since X and e are
independent, E[6X *¢] = E[0.X]E[0¢] = 0. O

~

Lemma 15. arg max,, Re(f(a)) = s’ with probability greater than

m

1-— qk/ - exp (—g . (RU’,LX)2) .

Proof. A similar proof is proposed for LPN in [12]. We are looking to upper
bound the probability that there is some o # s’ such that Re(f(cx)) > Re(f(s)).
Using a union bound, we may upper bound this by qk' times the probability
that Re(f(a)) > Re(f(s’)) for some fixed vector a € ZZ/, a # s’ which is the
probability that

3 (Re (gq—«AJ,s’)—cn) — Re (9q—<<Aj,a>—cj>)) <0.

j=1
Let y = a—3s € Z’;/. Also, define e; = (A;,s') —¢j, for 1 < j < m.
Then, (A;,a) —¢c; = (Aj,y)+e;. Note that since A; is uniformly distributed at
random, independently from e;, and y is fixed and non-zero, (A4;, y) is uniformly
distributed in a subgroup of Z,, and thus so is (A;, o) —c;. Hence, we can apply
Lemma 14.

From our heuristic assumption, we will consider X7, X»,..., X, to be inde-
pendent random variables with X; = u; — v;, where

u; = Re (0;(<A-7’Sl>*cj)> and v; = Re (9;“’47"0‘%6]‘)) . (20)

Note that X; € [~2,2] for all j. Furthermore, let X = >3, X;. Using
Lemmas 13 (for the u;’s) and 14 (for the v;,’s), we get that

E[X]2m- (Rogn)” . (21)
We will bound the probability that X < 0 using Hoeffding’s inequality
(Theorem 8). Let t = E[X] > 0. Then,

PeX < 0] = Pr[(X — E[X]) < ~E[X]) < exp (L)

(22)
< exp (—% . (ngqVX)Tl) .

Applying the aforementioned union-bound, we get the desired result. O

Better Algorithms for LWE and LWR 187

We are now ready to derive the number of samples m required to recover the
correct secret block s’ with high probability.

Theorem 16. Let k,q be positive integers and Il be an LWE oracle, where
s € Z’;. Let a € Z with 1 < a < k, let b be such that ab < k, and let k' =
k—(a—1)b. Let As y.q—1 be the oracle returning samples (a;,c;) where the a;
are zero for all but the first k' elements. Denote the vector consisting of the
first k' elements of s as s'. Fiz an € € (0,1). Then, the number of independent
samples m*""F from Asg y,a—1, which are required such that we fail to recover the
secret block s’ with probability at most € satisfies

_9oa
Y a4\ . (9« 7\ ,—2r%0%/q? T
IWE 5 8-k log(e) (Wsm(q)e 4) when x = Y5 4

_2‘1
2 2
8-k’-log(%)-(1—2”q—f) when x = Dy g .

Furthermore, the hypothesis testing phase (the FFT phase in Algorithm 2)
that recovers s’ requires 2m*"P 4+ Cger - /<:'~qk -log q operations in C and requires

storage for qk/ complex numbers, where Cgpr is the small constant in the com-
plezity of the FFT.*

Proof. For a fixed m, we get

o~ o~

e=Pr[3a#s i Re(f(@) = Re(f(s))] < ¢*

’

- exp (f% . (R0747X)2a) .

Solving for m, we get the desired result.

Concerning the algorithmic and memory complexities, we need to store the
values of the function f(x) as qk, elements from C. For each of the m"WE samples
we receive from A y 4—1, We compute an exponentiation and an addition in C to
update f(x) and then discard the sample. Finally, computing the discrete Fourier
transform of f can be achieved with Cgpr -k - q"’/ -log g complex operations, and
no additional memory, using an in-place FFT algorithm. O

The hypothesis testing part of the algorithm is summarized in Algorithm 2.

4.3 Back Substitution

We use a similar back substitution mechanism as the one described in [1]. Note
that we have to apply back substitution on one table less, since we performed
only a — 1 reductions. Furthermore, since we recovered a complete block of s,
the table 7% ! would be completely zeroed-out by back substitution and can

4 One might comment on the required precision needed to compute the DFT. For this,

we set our precision to O (log(m(Rg,q,X)w)) bits which is the expected size of our
highest peak in the DFT. Using this result along with some standard results about
the exact complexity to compute a DFT with a given precision (see, e.g., [18]), the
ratio between our (binary) complexities and the binary complexities of [1] remain
the same.

188 A. Duc et al.

Algorithm 2. Hypothesis testing algorithm for LWE.
Input: m independent LWE samples with only k&’ := k— (a — 1)b non-zero components

in a@. We represent our samples as a matrix A € ZZ”X'“/ and a vector ¢ € Zg".
Output: A vector consisting of the k’ elements of s that are at the non-zero positions
of a

1: Compute the fast Fourier Transform f(a) of the function f(a): ;.":1 ILA].:mQ;:j

2: return arg maxg, ey flo

therefore simply be dropped after the hypothesis testing phase. Finally, we do
not discard the m™WF® queries from II, ., which were reduced and then used
for the solving phase. Instead, we store these m"WE original queries and re-use
m’ < m"WE of these queries for the next block of s.

4.4 Complexity of BKW with Multidimensional DFT

We now have all the results we need in order to state the total complexity of
solving SEARCH-LWE with our algorithm. For ease of notation, we will consider
from here on that the parameters a and b are chosen such that k£ = a-b. Note that
the general case, where k = (a — 1) - b+ K/, follows similarly from our previous
results.

Theorem 17 (Complexity of SEARCH-LWE). Let k, q be positive integers
and I, be an LWE oracle, where s € L. Let a,b € N be such that a-b = k.
Let Cgpr be the small constant in the complexity of the fast Fourier transform
computation. Let 0 < € < 1 be a targeted success rate and define € = (1 —€)/a.
For0<j<a-—1,let

_9a—j

LB 8-b-log (%) - (% sin (%) 6_2”2"2/‘12> when x = ¥, ,

oy —2077
8-b-log (%) - (1 - 2”22"2) when x = Dy q .

q

Under the standard heuristic that all the samples after reduction are independent
(which was also used in the previous work), the time complexity of our algorithm
to recover the secret s with probability at least € is c1 + co + c3 + ¢4, where

o = (qb;1> . ((a_l);“_”(ml)—g(a-(a—n.(a_z))) (23)

is the number of additions in Zq to produce all tables Ti,0<j<a-—1,

Cy = Z miWE. LT (k4 2) (24)

Better Algorithms for LWE and LWR 189

is the number of additions in Z, to produce the samples required to recover all
blocks of s with probability e,

c3 =2 ZmLWE + Crer - k- ¢° - log(q) (25)

1s the number of operations in C to prepare and compute the DFTs,and

b
-1
a=@-1)-(a—-2) b2 (26)
is the number of operations in Zq for back substitution.
The number of calls to the oracle I, is
¢"—1
(a—1)- +m§Wr (27)

2

Finally, the memory complexity in number of elements from Z, and C are
respectively

(¢;1.w_1%<

Proof. To recover s, we need to recover each block of s successfully. Since we
are making use of the same set of tables T" and reduced queries for each block,
these events are not independent. Using a union bound, and a failure probability
bounded by (1 — €)/a for each of the a blocks thus leads to a overall success
probability of at least e.

-2
=)) —&-mOLZVE and q¢" . (28)

— The cost of constructing the set of tables 7" in (23) is given by Lemma 9. Note
that theses tables are constructed only once and maintained throughout the
execution of the algorithm.

— As per Lemma 9, the cost of obtaining m samples from the oracle Ag y,q—1
is upper bounded by m- 21 . (k+2). Noting that after solving the jth block,
the table 77 is dropped, the result in (24) follows.

— The DFT has to be applied a times, for each block of size b. Since the number
of samples required is updated for each block, we get equation (25).

— After solving the first block, back substitution has to be applied to a — 2

tables (table T%~! can be dropped). Per table, the substitution has cost 2b

for each of the £ rows. In total, we get a cost of Za 29.b. (%), as

2
in (26).
— The required number of oracle samples follows from Lemma 9. Note that
the samples needed to fill up the tables are required only once and that the
mIgVEVE additional queries are stored and can be reused for each block of s

since mg"Y ™ > miVE for j > 0. This gives us the total from (27).

190 A. Duc et al.

— Finally, the storage cost for the tables follows from Lemma 9. In addition,
we need an array of size ¢¥ to store the complex function on which we apply
the DFT (we assume an in-place DFT algorithm requiring no extra storage).
We also store the mlaYCVE samples queried to solve the first block. Combining
these results gives us (28).

O

4.5 Using Fewer Samples

If the number of queries to the LWE oracle is limited we can use an idea intro-
duced by Lyubashevsky [37]. The idea is to use a universal family of hash function
to combine samples and create new ones. However, these new samples will have
higher noise.

Theorem 18. Lete > (logg+1)/logk. Then, one can convert an LWE instance
I, where x is Uy q (resp. Do g) and using k'€ samples into an LWE instance

I\ where X' is Yyl (1og q+1)k/(elog k),q (T€5D- Dol (log q+1)k/(elog k)1) Without any
sample limit.

Proof (sketch). The proof is exactly the same as in [37] except for few differences
that we state here. We let our samples be 4 = a®),---a*'™) € Z%. Let also X C
Eite . . .
{0,1} with o € X if 37, a; = [(log(q) + 1)k/(elog k)|. We use the following
universal family of hash function H = {h Al X — Z’;} where A is defined above

and ha(z) = z1a® + - + zp1+.a®). By the Leftover Hash Lemma [34],
when A and z are uniformly distributed, with probability greater than 1 —2-%/4,
A(ha(x),U) <277/ where U is the uniform probability distribution over zk.
Note that the Leftover Hash Lemma holds since

Elte [(log g+1)k/(elog k)] i
X| > >
| '—(mogq+1>k/<elogk>1> 240

when € > (logg + 1)/ log k. O

The LF2 Heuristic. In [35], Levieil and Fouque propose LF2, an heuristic
improvement for the reduction phase of their LPN solving algorithm LF1. The
main idea of LF2 is to compute the sum (or difference) of any pair of samples
(a,c) and (a’,c’), which agree on b particular coordinates. Thus, in an entry
of a reduction table T?, we would store not only one, but all samples agreeing
(up to negation) on b coordinates. Then, when reducing a sample (a,c), we
could output (a + a’,c & ¢’) for each sample (a’,¢’) in the corresponding table
entry. Note that if we have x samples agreeing on b positions, we can output (32”)
reduced samples.

An interesting case arises when we take exactly 3 - ¢®/2 oracle samples. In
the worst case, we get exactly 3 samples per entry in table 7. Then, applying

Better Algorithms for LWE and LWR 191

all the pairwise reductions, we again get 3 - ¢°/2 samples to be stored in table
T? and so forth. Hence, if we take

max {m](;}gE,i’) -q"/2} (29)

oracle queries, we are ensured to have enough samples for the Fourier transform.
We could thus solve the LWE problem using fewer oracle samples than in The-
orem 17 and with a similar time complexity, at the expense of a higher memory
complexity (to store multiple samples per table entry).

4.6 Results

We computed the number of operations needed in Z, to solve the LWE problem
for various values of k when the parameters are chosen according to Regev’s
cryptosystem [43] and € = 0.99. In this scheme, ¢ is a prime bigger than k>
and o = q/(Vklog®(k)v/2r). For our table, we took ¢ to be the smallest prime
greater than k2. Our results are displayed in Table 1.° To simplify our result,
we considered operations over C to have the same complexity as operations over
Zq. We also took Crrr = 1 which is the best one can hope to obtain for a FFT.
Regarding the noise distribution, we obtained the same results for both D, 4
and QW. If we compare our results with [1, Tablel], we see that we are better in
all the cases.® This improvement with respect to log likelihood comes from the
fact that we do one reduction less in our reduction phase as we recover a full
block instead of a single element in Z,. This implies that our noise is going to
be smaller and, hence, we will need a lower number of queries. However, we still
achieve the same asymptotic complexity.

5 Applying our Algorithm to LWR

In this section, we try to apply a similar algorithm to LWR. In the following, we
will always consider g to be prime.

Lemma 19. Let k and ¢ > p > 2 be posilive integers, q prime. Let (a,c) be
a random sample from an LWR oracle Ag ;. Then, the “rounding error”, given
by & = (p/q){a,s) — ¢, follows a uniform distribution in a discrete subset of
[—1/2,1/2] with mean zero.
Furthermore, for v € Ry,
E [e:tig'y] _ L Sm(%) .
q sin(Z)

(30)

£S)

5 The code used to compute these value is available on our website http: //lasec.epfl.
ch/lwe/

5 Albrecht et al. simplified their complexity by considering non-integer a which
explains why the difference between our results varies depending on k.

192 A. Duc et al.

Table 1. We write #Z, for the worst case cost (in operations over Zg) of solving Search-
LWE for various parameters for the Regev cryptosystem [43] when € = 0.99 according
to Theorem 17. We provide also the value of a that minimizes the complexity, the
number of queries (m) according to (27), and the number of queries (m) when we
apply the LF2 heuristic (29).

k q a log(#Zq) log(m) log(m) for LF2 log(#Z4) in [1]
64 4099 19 52.62 43.61 41.01 54.85
80 6421 20 63.23 53.85 51.18 65.78
96 9221 21 73.72 63.95 61.98 76.75
112 12547 21 85.86 75.94 73.20 87.72
128 16411 22 95.03 84.86 82.05 98.67
160 25601 23 115.87 105.33 102.46 120.43
224 50177 24 160.34 149.26 146.32 163.76
256 65537 25 178.74 167.43 164.43 185.35
384 147457 26 269.18 257.23 254.17 —
512 262147 27 357.45 345.03 341.92 -

Proof. We first prove the first part of the lemma. We will prove that for any
a € [7‘72“,...,%1], ¢ takes the value «/q with probability 1/q. We have p -
(a,s) = &g (mod q). So a =g = ((p-{a,s) + (¢ —1)/2) mod q) — (¢ — 1)/2.
Since (a, s) is uniform in Z, (for s # 0), c is uniform in —(¢+1)/2,---,(¢g—1)/2
and has mean zero. Hence, so has &.

We now prove the second part of our lemma. Let X = ¢ - £ be a random
variable following a discrete uniform distribution on the set of integers {(—q +
1)/2,...,(g — 1)/2}. Then, from the characteristic function of X, for any t € R

we have
e—it(a—1)/2 _ it(g+1)/2

E [e"X] = , . 31
[e] q-(1—eit) (31)
By simple arithmetic, we obtain
B[] — g [ono %] o DTSR —sina)2) -2
q (1 —ei/9) q (e=7i/(20) — 71/ (20))
which gives our result. a

In our case, ¢ is an odd prime and different from p. Hence, E[e?¢]tends to
%sin(’y/ 2) as ¢ grows to infinity. We will be interested in the value v = 27 /p.

Then, for small p = {2,3,4,5,...}, E[e%7] is {0.6366,0.8270,0.9003, 0.9355, .. .}.
5.1 The LWR-solving Algorithm

From the similarity of the LWR and LWE problems, it should not seem surprising
that we would use the same sample reduction and back substation phases, but

Better Algorithms for LWE and LWR 193

we need an alternative “hypothesis testing phase” (which we call solving phase)
to account for the difference in error distributions.

As for LWE, we choose some a,b < k such that ab < k and we let k' =
k — (a — 1)b. We will view the reduction phase of our algorithm as producing a
series of oracles Bs , ¢ for 0 < ¢ < a — 1, where B, ¢ is the original LWR oracle
As p. The final oracle Bs p 4—1 produces samples (a, c¢) where a is non-zero only
on the first &’ elements.

Solving Phase. We consider the samples from B, ;, ,—1 as belonging to Z’;/ X Lpp-

We assume we have m such samples and represent them as a matrix A € Z;"Xk/
with rows A; and a vector ¢ € Z;'. The corresponding block of &’ elements of
the secret s is denoted s’.

Additionally, we assume that each sample (a?), ¢)) from By ,, ,—1 is the sum
of 2¢~1 samples (or their negation) from the LWR oracle. The ‘noise’ (al), s’) % -

¢ will then correspond to the sum of 2°~! independent “rounding errors” (or
their negation) from the original samples.
For 0, := exp(2mi/u), we consider the function

fiwr(z Z]I{A _ay 09, VzeZt . (32)
The discrete Fourier transform of fi,, is
(A, 2 —c))
flwr Z flwr (@e) — Z Hp . (33)

mEZé’ j=1

In particular, note that
“ - (ke e
f|Wr Zep S Oc> CJ) Zep(5],1 fLZ 1) , (34)
j=1

where the &;, are independent rounding errors from the original LWR samples.
Note that it is irrelevant whether the noise has been reduced modulo p, since
0,"" =1foru € Z.

As for LWE, we can now derive an explicit formula for the number of samples
m, which are required to recover s’ with high probability.

-~ sin(% 2
Lemma 20. Forq>p > 2, q prime, E [Re(ﬁwr(s'))} =m- (1 . Sn3))

q sm(;—q)

Proof. Let & be the random variable defined in Lemma 19. Since the original
rounding errors are independent, using Lemma 19, we may write

o=t sin(7) \ 2
E [Re(ﬁwr(s’))} =m-Re <]E [ﬁ’f%”r > —m- (; . Sin((£)> . (35)

Pq)

O

194 A. Duc et al.

We need also to bound the values of fwhen not evaluated at s'.

Lemma 21. Let o # s'. Then

E [Re(finr(@))] < m (; i %COS <Z>) = (2)

Proof. Like in the previous lemma, we can write, for a uniformly distributed,
~) 20—t
E [Re(flwr(a)):l — m - Re (IE |:e¥7«(2‘n'<a,a>/q72ﬂ'c/p):|) . (36)

However, unlike in the LWE case, we cannot use the independence of a and
the noise to obtain a zero expected value. This occurs because the errors are
computed deterministically from the vectors a in LWR. In fact, experiments
showed that the error is strongly correlated to a and that the expected value is
not zero. Thus, we will instead bound this expected value. To do this, we write

E |:ej;i(2w<a,a)/q—2wc/p)] —E |:COS (27T<a7a> _ @)] +i-E |:511’l <_ 27T<a7a> + @)}
q p q p

and we bound both the sine and the cosine term.

— We first show that the contribution of the sine is zero, i.e., that for a # s’
fixed,”
E [sin (27(a, a)/q — 27wc¢/p)] =0 . (37)

Let w(a) = sin (27(a, o) /q — 27[{a, s')(p/q)|/p). First, note that for a = 0,
¢ = 0. For a # 0, the contribution in the expected value is w(a). We have
w(—a) =sin (2n(—a,a)/q - 2n[(—a,s')(p/a)]/p)
— sin(~2n(a,) /q - 27[~(a, 8')(p/a)] /p) = —w(a) .
Since ¢ is odd, —a # a and, thus, in the expected value, the contribution of

any a # 0 is cancelled. Hence, the result.
— For the cosine, as in Lemma 15, we let y = a — 8’ € Z’qC . We get,

s [FMae) 2me) o (2m(ay) | 27((a,8")p/q — c)
() en (2o)

q p p
= cos <27T<Z’y> + M) y (38)

where ¢ € [—1/2,1/2] is the rounding error from Lemma 19. We are looking
for an upper-bound and, hence, we assume that £ € [—1/2,1/2] will always

7 This is where the round function instead of the floor function in the definition of
LWR becomes handy.

Better Algorithms for LWE and LWR 195

be such that cos(2w{a,y)/q+27¢/p) is maximized. Figure 1 might help with
the reading. We divide the circle into sets of the form

Sy = VZ (“;1)”] U {;ﬂ, (le)w} , Lefo,p—1].

Note that this covers the whole circle. The hashed surface in Figure 1 is such
a set.

When 27(a,y)/q € S for £ # 0, we upper-bound (38) by cos((¢ — 1)7/p)
(the bold line in Figure 1). Indeed, |27¢/p| < 7/p. When 27{a,y)/q € So,
we upper-bound (38) by cos(0) = 1.

sin

¢+ m/p
{m/p
(¢ —1)m/p
COSs
—(t—=1)n/p
—Lm/p
-+ n/p

Fig. 1. Figure for the proof of Lemma 21

Note that Pr[27(a,y)/q € S]] = 1/p since {a,y) is uniformly distributed in
Zq and p < q. Hence,

LIS (b
E[COS(27T<aay>+27r§/p)]§p+p€z:; (p)

1 1 1 -1 2 1
=+cos(0)—cos((p)7T> =+cos<ﬁ) <
p p p p p

Plugging the values of the sine and the upper-bound for the cosine in (36) finishes
the proof. 0O

(39)

Lemma 22. When ¢ > p > 4 and q is prime, argmax,, Re(ﬁwr(a)) = s’ with
probability greater than

s 2 ga—1
8 q sin(;) P

196 A. Duc et al.

Proof. We first want the probability that Re(f(:n)) > Re(f(s')) for some fixed
vector © € Zk , x # s'. Applying the same heuristic argument as for LWE, we

consider X7, XQ, ..., X, to be independent random variables with X; = u; — vy,
where
uj = Re <9 (45407 _c’)> and v; = Re (9;(<Aj’w>a_cj))) (40)

Note that X; € [~2,2] for all j. Furthermore, let X = >>'", X;. Using
Lemmas 20 and 21, we get that

posin()\T gy
E[X] > m- (q.sin(;q)> _<p> >0. (41)

We will again bound the probability that X < 0 using Hoeffding’s inequality.
Let t = E[X] > 0. Then,

Pr{X < 0] = Pr [(X — E[X]) < —E[X]] < exp (W>

16m
. x 2@71
w1)
X _—— _ —
=P 8 q sin(;)

B7)) -

The final result follows by applying a union bound over all possible values
of x. O

As for LWE, we may now deduce the number m of reduced samples that are
required to recover a block s’.

Theorem 23. Let k and g > p > 4 be positive integers, q prime, and Agp be
an LWR oracle, where s € Z’;. Let a € Z with 1 < a < k, let b be such that
ab <k, and let k' = k — (a — 1)b. Let Bs pq—1 be the oracle returning samples
(a;,c;) where the a; are zero for all but the first k' elements. Denote the vector
consisting of the first k' elements of s as s'. Fiz an € € (0,1). Then, the number
of samples m from Bs pa—1 , which are required such that we fail to recover the
secret block s’ with probability at most € satisfies

1 sin(Z) 2 207!
€ q sin(= p

Pq)

Furthermore, recovermg s’ in the solving phase (the FFT phase) requires
2mIWE L Ceer - k' - ¢% -log q operations in C, as well as storage for ¢* complex
numbers.

We now summarize the complexity of our algorithm in the following theorem
(the proof of which is analogous to the proof of Theorem 17).

Better Algorithms for LWE and LWR 197

Theorem 24 (Complexity of SEARCH-LWR). Let k,q > p > 4 be posi-
tive integers, q prime, and I, be an LWE oracle, where s € Z’;. Let a,b € Z,
be such that a-b=k. For 0 < j<a-—1, let

posin®\T T ey
mJLZVR =8-b-log (2) N i — ()
’ € q sm(ﬁ) P

Let 0 < e < 1 be a targeted success rate and define € = (1 —€)/a. The (time,
memory and query) complexities to recover the LWR secret s with probability €

are the same as in Theorem 17 where we replace mJLZVE by mjLZVR.

5.2 Results

The current hardness results for LWR require either a parameter ¢ exponential in
k or a bound m on the number of oracle samples that an adversary may query. It is
an open problem ([3]) to assess the hardness of LWR with polynomial parameters
when the adversary has no sample limit. In such a case, for a = O (log k) and b =
[k/a], our algorithm would solve LWR in time 2°(*) | as for LWE.

However, the bound on the number of oracle samples in Theorem 7 is much
lower than the amount of samples required by our algorithm. Using an idea
from Lyubashevsky [37] we can generate additional samples with higher noise
(see Theorem 18). Yet, even this method requires at least k'*¢ samples for
€ > (logg + 1)/ log k, which is incompatible with the constraints of Theorem 7,
for a ¢ polynomial in k.

in [3, Corollary 4.2], two types of parameters are proposed: parameters min-
imizing the Modulus/Error ratio (a) and parameters maximizing efficiency (b).
For completeness, we show in Table 2 the complexity of our algorithm applied
to these parameters. More precisely, we took for the underlying LWE problem

Table 2. Worst case cost (in operations over Zg) of solving Search-LWR for various
parameters for the Regev cryptosystem [43] when € = 0.99 according to Theorem 24.
We provide also the value of a that minimizes the complexity, the number of queries
(m) according to (27).

k q p a log(#Z,) log(m) type
64 383056211 733 23 92.20 82.80 (a)
80 1492443083 1151 25 110.91 101.11 (a)
96 ~2%% 1663 26 132.26 122.15 (a)
112 ~2% 2287 28 148.08 137.68 (a)
128 ~ 2% 3023 29 167.52 156.87 (a)
64 9461 13 12 81.61 72.90 (b)
80 14867 13 12 103.89 94.86 (b)
96 21611 13 12 126.97 117.66 (b)
112 20717 13 13 140.21 130.60 (b)
128 39241 13 13 162.63 152.84 (b)

198 A. Duc et al.

Regev’s parameters and ignored the constrains on the number of samples. For
the type (a) parameters, we took

k2
7T Vklog? (k)v2r

and for the type (b) parameters

q= nextprime([(?ok)g]) p = nextprime([¥/q])

kQ
7T Vklog?(k)v2r

Table 2 shows that the parameters proposed in [3] seem secure even if we remove
the constrain on the number of samples as the complexities are still quite high.

p=13 q = nextprime([20kp]) .

6 Conclusion

To summarize, we propose an algorithm which is currently the best algorithm
for solving the LWE problem. Our algorithm uses Fourier transforms and we
propose a careful analysis of the rounded Gaussian distribution which can be of
independent interest. In particular, we study its variance and the expected value
of its cosine. We also adapt our algorithm to the LWR problem when ¢ is prime.
This algorithm is the first LWR-solving algorithm.

Further work includes the study of the Ring variants of LWE and LWR |8, 38]
and the study of variants of LWE, e.g., when the secret follows a non-uniform
distribution (like in [2]) or when the noise follows a non Gaussian distribution.
It would also be interesting to see if our LWR algorithm can be extended for ¢
non prime.

Acknowledgments. We are grateful to Dimitar Jetchev and Adeline Langlois
for helpful discussions and pointers. We thank the Eurocrypt 2015 reviewers for
their fruitful comments.

A Continuous Fourier Transforms

We use the following definition for continuous Fourier Transforms. The continu-
ous Fourier transform (FT) of a function f: R — C is a function F(f): R — C
defined as

FO0 = [reds., (43)
We will use the following well-known properties.

Linearity.

F(f(@) +9(2))(x) = (F(F) + F(9)(x) - (44)

Better Algorithms for LWE and LWR 199

Translation. _
F(f(x =)0 = e *™XF(f)(x) - (45)

Convolution.

F(f(2)g(2)) 00 = (F(f(2)) * Fg()))(X) , (46)

where * denotes the convolution operator which is defined as

e = [ule—)dy.

— 00

Integration.

F([10) 0= 500+ N0 .)

where ¢ is the Dirac delta distribution. We will use the following property of the

Dirac delta. -
/_ ()6 — 0y dr = £(0)

We refer the reader to, e.g., [24,45,47] for more information about the Dirac delta
distribution and its derivatives or, e.g. [14] for a more engineering approach.
We will also use the Poisson summation formula.

Lemma 25. Poisson summation formula (see, e.g., [{6])] Let f(z): R — C be
a function in the Schwartz space® and F(f) its continuous Fourier transform

then
Yo=Y FHKX) - (48)

{=—o00 X=—00

Useful Fourier Transforms.

1 71?2 0_2 _ ﬂ'20'2 2
]-"(0 —e /(2 >> (x) =e 2mox (49)

Let v € R. Then

F (cos(ax)) (x) = ; (5 (x - 2—) + 6(%)) : (50)

where ¢ is the Dirac delta distribution.

8 A function f(x) is in the Schwartz space if Va,8 € N,3C.ps such that
sup|z®8?2 f(z)| < Ca,p. A function in C°° with compact support is in the Schwartz
space.

200

A. Duc et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Albrecht, M.R., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: On the com-

plexity of the BKW algorithm on LWE. In: Designs, Codes and Cryptography, pp.
1-30 (2013)

Albrecht, M.R., Faugere, J.-C., Fitzpatrick, R., Perret, L.: Lazy Modulus Switch-
ing for the BKW Algorithm on LWE. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 429-445. Springer, Heidelberg (2014)

Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited -
new reduction, properties and applications. In: Canetti and Garay [19], pp. 57-74
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595-618. Springer, Heidelberg (2009)
Arora, S., Ge, R.: New Algorithms for Learning in Presence of Errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403-415.
Springer, Heidelberg (2011)

Arthur Pewsey, Markus Neuhéuser, G.D.R.: Circular statistics in R. Oxford Uni-
versity Press (2013)

Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296(1), 625-635 (1993)

Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom Functions and Lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719-737. Springer, Heidelberg (2012)

Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices. LMS
Journal of Computation and Mathematics 17, 49-70 (1 2014)

Bernstein, D.J., Lange, T..: Never Trust a Bunny. In: Hoepman, J.-H.,
Verbauwhede, I. (eds.) RFIDSec 2012. LNCS, vol. 7739, pp. 137-148. Springer,
Heidelberg (2013)

Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506-519 (2003)

Bogos, S., Tramer, F., Vaudenay, S.: On Solving LPN using BKW and Variants.
Cryptology ePrint Archive, Report 2015/049 (2015). http://eprint.iacr.org/
Boneh, D., Lewi, K., Montgomery, H.-W., Raghunathan, A.: Key Homomorphic
PRFs and Their Applications. In: Canetti and Garay [19], pp. 410-428
Bracewell, R.N.; Bracewell, R.: The Fourier transform and its applications,
vol. 31999. McGraw-Hill, New York (1986)

Brakerski, Z.: Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868-886. Springer, Heidelberg (2012)

Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA,
USA, June 14, 2013. pp. 575-584. ACM (2013)

Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from
(Standard) LWE. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011. pp. 97-106. IEEE (2011)

Bubhler, J., Shokrollahi, M.A., Stemann, V.: Fast and precise Fourier transforms.
IEEE Transactions on Information Theory 46(1), 213-228 (2000)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Better Algorithms for LWE and LWR 201

Canetti, R., Garay, J.A. (eds.): Advances in Cryptology - CRYPTO 2013-33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, Lecture Notes in Computer Science, vol. 8042. Springer (2013)
Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.): Approximation,
Randomization and Combinatorial Optimization, Algorithms and Techniques,
APPROX 2005 and RANDOM 2005, Lecture Notes in Computer Science, vol.
3624. Springer (2005)

Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In:
Lee, D.H., Wang, X. (eds.) ASTACRYPT 2011. LNCS, vol. 7073, pp. 1-20. Springer,
Heidelberg (2011)

Fossorier, M.P.C., Mihaljevié¢, M.J., Imai, H., Cui, Y., Matsuura, K.: An Algorithm
for Solving the LPN Problem and Its Application to Security Evaluation of the HB
Protocols for RFID Authentication. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 48—-62. Springer, Heidelberg (2006)

Gama, N., Nguyen, P.Q., Regev, O.: Lattice Enumeration Using Extreme Pruning.
In: Gilbert [28], pp. 257-278

Gelfand, .M., Shilov, G.: Generalized functions. Vol. 1. Properties and operations
(1964)

Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008. pp. 197-206. ACM (2008)

Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning with
Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In: Canetti
and Garay [19], pp. 75-92

Gilbert, H. (ed.): Advances in Cryptology - EUROCRYPT 2010, 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, Lecture Notes in Computer
Science, vol. 6110. Springer (2010)

Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
Learning with Errors Assumption. In: Yao, A.C. (ed.) Proceedings of the Innova-
tions in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January
5-7, 2010, pp. 230-240. Tsinghua University Press (2010)

Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the Shortest and Closest Lattice
Vector Problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 159-190. Springer, Heidelberg
(2011)

Hanrot, G., Pujol, X., Stehlé, D.: Analyzing Blockwise Lattice Algorithms Using
Dynamical Systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447-464. Springer, Heidelberg (2011)

Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: An Efficient
Authentication Protocol Based on Ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346-365. Springer, Heidelberg (2012)

Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American statistical association 58(301), 13-30 (1963)
Impagliazzo, R., Zuckerman, D.: How to Recycle Random Bits. In: FOCS. pp.
248-253. IEEE Computer Society (1989)

Levieil, E., Fouque, P.-A.: An Improved LPN Algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348-359. Springer, Heidelberg (2006)

202

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

A. Duc et al.

Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319-339. Springer,
Heidelberg (2011)

Lyubashevsky, V.: The Parity Problem in the Presence of Noise, Decoding Random
Linear Codes, and the Subset Sum Problem. In: Chekuri et al. [20], pp. 378-389
Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert [28], pp. 1-23

Mardia, K., Jupp, P.: Directional Statistics. Wiley, Wiley Series in Probability and
Statistics (2009)

Nguyen, P.Q.: Lattice Reduction Algorithms: Theory and Practice. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 2-6. Springer, Heidelberg
(2011)

Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. ACM
Transactions on Algorithms 5(4) (2009)

Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, pp. 333-342. ACM (2009)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6) (2009)

Regev, O.: The learning with errors problem (invited survey). In: IEEE Conference
on Computational Complexity. pp. 191-204. IEEE Computer Society (2010)
Rudin, W.: Functional analysis. McGraw-Hill Inc, New York (1991)

Eickhoff, J.: Introduction. In: Eickhoff, J. (ed.) Onboard Computers, Onboard
Software and Satellite Operations. SAT, vol. 1, pp. 3-6. Springer, Heidelberg (2012)
Strichartz, R.S.: A guide to distribution theory and Fourier transforms. World
Scientific (2003)

On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes

Alexander May®™) and Ilya Ozerov

Faculty of Mathematics, Horst Gortz Institute for I'T-Security, Ruhr-University
Bochum, Bochum, Germany
{alex.may,ilya.ozerov}@rub.de

Abstract. We propose a new decoding algorithm for random binary
linear codes. The so-called information set decoding algorithm of Prange
(1962) achieves worst-case complexity 201217 1 the late 80s, Stern pro-
posed a sort-and-match version for Prange’s algorithm, on which all vari-
ants of the currently best known decoding algorithms are build. The
fastest algorithm of Becker, Joux, May and Meurer (2012) achieves run-
ning time 2°-1%2" in the full distance decoding setting and 229494 with
half (bounded) distance decoding.

In this work we point out that the sort-and-match routine in Stern’s
algorithm is carried out in a non-optimal way, since the matching is
done in a two step manner to realize an approzimate matching up to
a small number of error coordinates. Our observation is that such an
approximate matching can be done by a variant of the so-called High
Dimensional Nearest Neighbor Problem. Namely, out of two lists with
entries from F5" we have to find a pair with closest Hamming distance. We
develop a new algorithm for this problem with sub-quadratic complexity
which might be of independent interest in other contexts.

Using our algorithm for full distance decoding improves Stern’s com-
plexity from 2°-117" to 291147 Since the techniques of Becker et al apply
for our algorithm as well, we eventually obtain the fastest decoding algo-
rithm for binary linear codes with complexity 2°:°°7". In the half distance
decoding scenario, we obtain a complexity of 2004737,

Keywords: Linear codes + Nearest neighbor problem - Approximate
matching - Meet-in-the-middle

1 Introduction

The NP-hard decoding problem for random linear codes is one of the most fun-
damental combinatorial problems in coding and complexity theory. Due to its
purely combinatorial structure it is the major source for constructing crypto-
graphic hardness assumptions that retain their hardness even in the presence of

A. May—Supported by DFG as part of GRK 1817 Ubicrypt and SPP 1736 Big Data.
1. Ozerov—Supported by DFG as part of SPP 1307 Algorithm Engineering.
© International Association for Cryptologic Research 2015

E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 203228, 2015.
DOI: 10.1007/978-3-662-46800-5_-9

204 A. May and I. Ozerov

quantum computers. Almost all code-based cryptosystems, such as the McEliece
encryption scheme [15], rely on the fact that random linear codes are hard to
decode.

The way cryptographers usually embed a trapdoor into code-based construc-
tions is that they start with some structured code C, which allows for efficient
decoding, and then use a linear transformation to obtain a scrambled code C’.
The cryptographic transformation has to ensure that the scrambled code C’
is indistinguishable from a purely random code. Unless somebody is able to
unscramble the code, a cryptanalyst faces the problem of decoding a random
linear code. Hence, for choosing appropriate security parameters for a crypto-
graphic scheme it is crucial to know the best performance of generic decoding
algorithms for linear codes.

Also closely related to random linear codes is the so-called Learning Parity
with Noise Problem (LPN) that is frequently used in cryptography [9,12]. In
LPN, one directly starts with a generator matrix that defines a random linear
code C' and the LPN search problem is a decoding problem on C. Cryptographers
usually prefer decision versions of hard problems for proving security of their
schemes. However, for LPN there is a reduction from the decision to the search
version that directly links the cryptographic hardness of the underlying schemes
to the task of decoding random linear codes.

The Learning with Errors Problem (LWE) that was introduced for crypto-
graphic purposes in the work of Regev [19,20] can be seen as a generalization of
LPN to codes defined over larger fields. LWE is closely related to well-studied
problems in learning theory, and it proved to be a fruitful source within the
last decade for many cryptographic constructions that provide new functionali-
ties [5,7,16]. Although we focus in this work on random linear codes over Fq, we
do not see any obstacles in transferring our techniques to larger finite fields I, as
this was done in [17]. Surely, our techniques will also lead to some improvement
for arbitrary fields, but we believe that our improvements are best tailored to
[y, easiest to explain for the binary field, and we feel that binary codes define
the most fundamental and widely applied class of linear codes.

Let us define some basics of linear codes and review the progress that decod-
ing algorithms underwent. A (random) binary linear code C' is a (random) k-
dimensional subspace of F%. Therefore, a code defines a mapping F§ — F? that
maps a message m € F5 to a codeword ¢ € F}. On a noisy channel, a receiver
gets an erroneous version x = ¢ + e for some error vector e € . The decoding
problem now asks for finding e, which in turn enables to reconstruct ¢ and m.
Usually, we assume that during transmission of ¢ not too many errors occurred,
such that e has a small Hamming weight wt(e) and c is the closest codeword to
x. This defines the search space of e, which is closely linked to the distance d of
C.

So naturally, the running time T'(n, k, d) of a decoding algorithm is a function
of all code parameters n, k and d. However, we know that asymptotically random
linear codes reach the Gilbert-Varshamov bound % <1-H (%)7 where H(+) is
the binary entropy function (see e.g. [22]). In the full distance decoding setting we

On Computing Nearest Neighbors with Applications 205

are looking for an error vector e s.t. wt(e) < d, whereas in half distance decoding
we have wt(e) < |41]. Thus, in both cases we can upper bound the running
time by a function T'(n, k) of n and k only. When we speak of worst-case running
time, we maximize T'(n, k) for all k& where the maximum is obtained for code
rates % near % Usually, it suffices to compare worst-case complexities since all
known decoding algorithms with running time 7T, 7" and worst-case complexity
T(n) < T'(n) satisfy T'(n, k) < T'(n, k) for all k.

The simplest algorithm is to enumerate naively over e’s search space and
check whether x+e € C. However, it was already noticed in 1962 by Prange [18]
that the search space for e can considerably be lowered by applying simple lin-
ear algebra. Prange’s algorithm consists of an enumeration step with exponential
complexity and some Gaussian elimination step with only polynomial complex-
ity. The worst-case complexity of Prange’s algorithm is 2°-121” in the full distance
decoding case and 2°:9°76™ with half distance decoding.

In 1989, Stern [21] noticed that Prange’s enumeration step can be accelerated
by enumerating two lists L, R within half of the search space, a typical time-
memory trade-off. The lists L, R are then sorted and one looks for a matching
pair. This is a standard trick for many combinatorial search problems and is usu-
ally called a sort-and-match or Meet-in-the-middle approach in the literature.
Stern’s algorithm however is unable to directly realize an approximate match-
ing of lists, where one wants to find a pair of vectors from L x R with small
Hamming distance. In Stern’s algorithm this is solved by a non-optimal two-step
approach, where one first matches vector pairs ezactly on some portion of the
coordinates, and then in a second step checks whether any of these pairs has
the desired distance on all coordinates. Stern’s algorithm led to a running time
improvement to 20-117 (full distance) and 2°-05°7" (half distance), respectively.

Our Contribution: In this work, we propose a different type of matching algo-
rithm for Stern’s algorithm that directly recovers a pair from L x R with small
Hamming distance. Fortunately, this problem is well-known in different variants
in many fields of computer science as the High Dimensional Nearest Neighbor
Problem [6,8,23] or the Bichromatic Closest Pair Problem [2]. The best bounds
that are known for the Hamming metric are due to Dubiner [6] and Valiant [24].

However, we were not able to apply Dubiner’s algorithm to our decoding
problem, since we have a bounded vector size, which is referred to as the limited
amount of data case in [6]. Although it is stated in Dubiner’s work [6] that
his algorithm might also be applicable to the limited case, the analysis is only
done for the wunlimited amount of data case. The algorithm of Valiant [24] is
only optimal in special cases (i.e. large Hamming distances) and unfortunately
doesn’t apply to our problem either. Thus we decided to give an own algorithmic
solution, which gives us the required flexibility for choosing parameters that are
tailored to the decoding setting.

We provide a different and quite general algorithm for finding a pair of (lim-
ited or unlimited size) vectors in two lists that fulfill some consistency criterion,
like e.g. in our case being close in some distance metric. The way we solve this

206 A. May and 1. Ozerov

problem is by checking parts of the vectors locally, and thus sorting out vector
pairs that violate consistency locally, since these pairs are highly unlikely to ful-
fill consistency globally. In our special case, where |L| = |R| and where we want
to find the closest pair of vectors from F35* with Hamming distance ym, vy < %,

we obtain an algorithm that approaches sub-quadratic complexity |L| = . In our
analysis in Sections 4 and 5 we propose an algorithm for bounded vector size
and show that in the unlimited amount of data case (which is not important for
the decoding problem) our algorithm approaches Dubiner’s bound.

Using this matching algorithm in the full distance decoding setting directly
leads to an improved decoding algorithm for random binary linear codes with
complexity 201147 as opposed to Stern’s complexity 29117, In 2011, Stern’s
algorithm was improved by Bernstein, Lange and Peters to 2°:116". Then, using
recent techniques from improving subset sum algorithms [3,11], May, Meurer,
Thomae [14] and Becker, Joux, May, Meurer [4] further improved the running
time to 291927 Fortunately, these techniques directly apply to our algorithm as
well and result in a new worst-case running time as small as 29997 We obtain
similar results in the case of half distance decoding.

0.097 0.102 0.112 0.114 0.117 0.121

Theorem 3 BJMM (2012) MMT (2011) Th. 2 Stern (1989)Prange (1962)

Fig. 1. History of Information Set Decoding: full distance decoding (FDD)

0.0557
0.0473 0.0494 0.0537 0.0550 0.0576
| | | || |
| | |] |
Theorem 3 BJMM (2012) MMT (2011) Th. 2 Prange (1962)

Stern (1989)

Fig. 2. History of Information Set Decoding: half distance decoding (HDD)

The paper is organized as follows. In Section 2, we elaborate a bit more
on previous work and explain the basic idea of our matching approach. This
leads to a sort-and-match decoding algorithm that we describe and analyze in
Section 3, including the application of the improvement from Becker et al [4].

On Computing Nearest Neighbors with Applications 207

Complexity exponent e i Stern (FDD)

Theorem 2 (FDD)
BJMM (FDD)

Theorem 3 (FDD)

Stern (HDD)

code rate

Fig. 3. Stern, Th. 2, BJMM and Th. 3 for BDD/FDD and all code rates k/n

Our decoding algorithm calls a new matching subroutine that finds a pair of
vectors with minimal Hamming distance in two lists. We describe this matching
procedure in Section 4.

2 Previous Work — Information Set Decoding

A binary linear code C' is a k-dimensional subspace of F3. Thus, C' is generated
by a matrix G € IFSX” that defines a linear mapping F§ — F3. If G’s entries are
chosen independently and uniformly at random from FSX” with the restriction
that G has rank k, then we call C' a random binary linear code. The distance d
of C is defined by the minimum Hamming distance of two different codewords
in C.

Let H € an_k)xn be a basis of the kernel of C. If C is random then it is
not hard to see that the entries of H are also independently and uniformly at
random distributed in Fy. Therefore, we have Hc! = 0 for every ¢ € C. For
simplicity, we omit from now on all transposition of vectors and write c instead
of ct.

For every erroneous codeword x = ¢ + e with error vector e, we obtain
Hx = He by linearity. We call s := Hx €]FZ*’C the syndrome of a message x.
In order to decode x, it suffices to find a low weight vector e such that He = s.
Once e is found, we can simply recover ¢ from x. This process is called syndrome
decoding, and the problem is known to be NP-hard.

In the case of full distance decoding (FDD), we receive an arbitrary point
x € F3 and want to decode to the closest codeword in the Hamming metric.

208 A. May and 1. Ozerov

We want to argue that there is always a codeword within (roughly) Hamming
distance d. Therefore, we observe that the syndrome equation He = s is solvable
as long as the search space for e roughly equals 2"~ %. Hence, for weight-d vectors
e € F we obtain () ~ 2H(n ~ 27—k where H(.) is the binary entropy
function. This implies H (%) ~1-— %, a relation that is known as the Gilbert-
Varshamov bound. Moreover, it is well-known that random codes asymptotically
reach the Gilbert-Varshamov bound [22]. This implies that for every x we can
always expect to find a closest codeword within distance d.

In the other case of half distance decoding (HDD), we obtain the promise
that the error vector is within the error correction distance, i.e. wt(e) < [451],
which is for example the case in cryptographic settings, where an error is added
artificially by e.g. the encryption of a message.

Since the decoding algorithms that we study use w := wt(e) as an input, we
run the algorithms in the range w € [0,d] or w € [0, | 5~], respectively. However,
all our algorithms attain their maximum running time for their maximal weight
w = d, respectively w = L%J In the following we assume that we know w.

Let us return to our syndrome decoding problem He = s. Naively, one can

solve this equation by simply enumerating all weight-w vectors e € F5 in time
O ((2)-
Prange’s Information Set Decoding: At the beginning of the 60s, Prange
showed that the use of linear algebra provides a significant speedup. Notice that
we can simply reorder the positions of the error vector e by permuting the
columns of H. For some column permutation 7 let Q € Fén_k)x("_k) denote
the quadratic matrix at the right hand side of 7(H) = (-||Q). Assume that Q
has full rank, which happens with constant probability and define § = Q= ! -s
and H = Q7! - 7n(H) = (:]I) for an (n — k) x (n — k) identity matrix I. Let
m(e) = ey + (0%||e,) with e; € F% x 0" % and e, € Fy~" be the permuted
error vector. Assume that e; = 0". In this case, we call the first k error-free
coordinates an information set. Having an information set, we can rewrite our
syndrome equation as

Hr(e) = He; + e, = §, where wt(e;) = 0 and wt(e,) = w.

Since e; is the zero vector, we can simplify as e; = S. Thus we only have to
check whether § has the correct weight wt(s) = w.

Notice that all complexity in Prange’s algorithm is moved to the initial per-
mutation m of H’s columns, whereas the remaining step has polynomial complex-
ity. To improve upon the running time, it is reasonable to lower the restriction
that the information set has no l-entries in e;, which was done in the work of
Lee-Brickell [13]. Assume that the information set carries exactly p 1-positions.
Then we enumerate over all (f)) possible e; € F5 x 0"~* with weight p. There-
fore, we can test whether wt(e,) = wt(s — He;) = w — p. On the downside, this
trade-off between lowering the complexity for finding a good 7 and enumerating
weight-p vectors does not pay off. Namely, asymptotically (in n) the trade-off
achieves its optimum for p = 0.

On Computing Nearest Neighbors with Applications 209

On the positive side, we can improve on the simple enumeration of weight-
p vectors by enumerating two lists of weight-£ vectors!. This classical time-
memory trade-off, usually called a Meet-in-the-middle approach, allows to reduce
the enumeration time from (];) to (f)g) by increasing the memory to the
same amount. Such a Meet-in-the-middle approach was introduced by Stern
for Prange’s Information Set decoding in 1989 [18]. In a nutshell, Stern’s variant
splits the first k& columns of m(e) = e; + ey + (0||e,) with e, € Fi~* in two
parts e; €]Fg/2 x 0F/2 % 0" and e, € 0F/2 x IF’;/2 x 0"~F. Additionally, we
want a good permutation 7 to achieve

H- (e; +e2) + e, =5 with wt(e; +e2) = p and wt(e,) =w — p. (1)

Thus we have - -
He, = He; +5 + ¢, (2)

Since wt(eq) = w — p, for all but w — p of the n — k coordinates of the vectors
we have ~ ~
He; = He, + 8. (3)

Remember that Q was defined as the right hand part of 7(H). It can be
shown that Q is invertible with constant probability over the choice of H and
7. Thus inverting Q can be ignored for the computation of the time complexity
that suppresses polynomial factors.

Definition 1. A permutation m is good if Q is invertible and if for w(e) there
exists a solution (e, e}) satisfying (1).

In Stern’s algorithm, one computes for every candidate e; the left-hand side
of Eq. (3) and stores the result in a sorted list L. Then, one computes for every
es the right-hand side and looks whether the result is in L. But recall that the
above equation only holds for all but w — p coordinates. Thus, one cannot simply
match a candidate solution to one entry in L.

The solution to this problem in Stern’s algorithm is to introduce another
parameter ¢ and to test whether there is an exact match on ¢ out of all n — k
coordinates. For those pairs (e, es) whose result matches on ¢ coordinates, one
checks whether they in total match on all but w — p coordinates. However, this
two-step approach for approzximately matching similar vectors introduces another
probability that enters the running time — namely that both vectors match on the
chosen /£ coordinates. Clearly, one would like to have some algorithm that directly
addresses the approximate matching problem given by identity (2). Altogether,
Stern’s algorithm leads to the first asymptotical improvement since Prange’s
algorithm.

! Throughout the paper we ignore any rounding issues.

210 A. May and I. Ozerov

3 Our Decoding Algorithm

3.1 Application to Stern’s Algorithm

Our main observation is that the matching in Stern’s algorithm can be done in
a smarter way by an algorithm for approximately matching vectors. We propose
such an algorithm in Section 4. Our algorithm NEARESTNEIGHBOR works on two
lists L, R with uniformly distributed and pairwise independent entries from F5*,
where one guarantees the existence of a pair from L x R that has small Hamming

distance ym, 0 < y < 1. On lists of equal size |L| = |R| we achieve a running

time that approaches (5(\L|ﬁ) Notice that our running time is sub-quadratic
for any v < % The smaller v the better is our algorithm. In the case of v = 0,
we achieve linear running time (up to logarithmic factors) which coincides with
the simple sort-and-match routine.

Our new matching algorithm immediately gives us an improved complexity
for decoding random binary linear codes. First we proceed as in Stern’s algorithm
by enumerating over all weight-£ candidates for e; € Fg/ 2 % 0F/2 % 0n—F. We
compute the left-hand side He; of Eq. (3) and store the result in a list L. For
the right-hand side we proceed similar and store Hey + 5 in a list R.

Notice that by construction each pair (ej,e3) of enumerated error vectors
yields an error vector e; + es + (0*||e,) with e, = H(e; + e2) + § such that
identity (2) holds. Moreover, by construction we have wt(e; + e2) = p. Thus all
that remains is to find among all tuples (He;, Hey +5) € L x R one with small
Hamming distance w — p.

Our complete algorithm DECODE is described in Algorithm 1.

Before we analyze correctness and running time of algorithm DECODE, we

want to explain the idea of the subroutine NEARESTNEIGHBOR.
Basic Idea of NEARESTNEIGHBOR: Let m be the length of the vectors in L and R
and define a constant A such that |L| = |R| = 2*™. Assume the permutation 7 is
good and hence (e}, e}) exist such that wt(ef+e}) = p and wt(He} +He}+5) =
w —p =:ym for some 0 < v < % holds. Let u* := He} and v* := He} + 5. Our
algorithm NEARESTNEIGHBOR gets the input (L,R,v) and outputs a list C,
where (u*,v*) € C with overwhelming probability. Thus our algorithm solves
the following problem.

Definition 2 (NN problem). Let m € N, 0 < v < 1 and 0 < A < 1.
In the (m,~,\)-Nearest Neighbor (NN) problem, we are given v and two lists
L, R C F of equal size 2\™ with uniform and pairwise independent vectors. If
there exists a pair (u*,v*) € L x R with Hamming distance A(u*,v*) = ym,
we have to output a list C that contains (u*,v*).

Notice that in Definition 2 the lists L, R themselves do not have to be
independent, e.g. L = R is allowed. A naive algorithm solves the NN problem
by simply computing the Hamming distance of each (u,v) € L x R in quadratic
time O((2>™)2). In the following we describe a sub-quadratic algorithm for the
NN problem.

On Computing Nearest Neighbors with Applications 211

Algorithm 1. DECODE

1: procedure DECODE
2 Input: n,k, H € Fé"ik)xn, x € Fy

3: Output: e € F with He = Hx and wt(e) < d (FDD), wt(e) < [4;] (HDD)
4: s — Hx > compute the syndrome
5: d—H*'1- %) -n > H: bin. entropy function, inverse H~" maps to [0, 3]
6: for w—0...d do > (FDD) or w « 0...[%1] in the HDD case
T Choose 0 < p < w > We find an optimal choice of p numerically
8: repeat poly(n) - m many times

9: 7 «— random permutation on F5.

10: (]|Q) « w(H) (permute columns) with Q « F{" ">~k

11: choose another permutation (goto line 9), if Q is not invertible

12: H—Q '7(H)and s — Q7 's

13: L «— He; for all e; € IF];/2 x 0%/2 x 0" % with wt(e1) = %

14: R « He, + 5 for all ey € 0%/2 x IF;/Q x 0" % with wt(ez) = &

15: C «— NEARESTNEIGHBOR(L, R, =%)

16: if (u,v) € CN (L x R) with Hamming distance A(u,v) = w — p then
17: find (e1,e2) s.t. u= He; and v = Hey +§ © binary search in L, R
18: return 7r_1(e1 + ey + (OkHu +v))

19: end if
20: until

21: end for
22: end procedure

Given an initial list pair L, R, our main idea is to create exponentially many
pairs of sublists L', R/. Each sublist is computed by first choosing a random
partition A C [m] of the columns of size . We keep only those elements in
L/, R’ that have a certain Hamming weight % - % on the columns defined by A,
for some 0 < h < % that only depends on A. The parameter h will be chosen
s.t. each of the L', R’ have expected polynomially (in m) many elements. We
create as many sublists I/, R’ s.t. with overwhelming probability there exists a
pair of sublists L*, R* with (u*, v*) € L* x R*. For each sublist pair L', R’ we
check naively for a possible “good” vector by computing the Hamming distance
A(d,v') for all (u/,v') € L' x R'. Notice that this results only in a polynomial
blow-up, because the list sizes are polynomial. We store all vectors (u,v) with
the correct Hamming distance in the output list C.

The idea of the algorithm is summarized in Fig. 4.

We will discuss the algorithm NEARESTNEIGHBOR in more detail in Section 4.
The following theorem that we prove in Section 5 states its correctness and time
complexity.

Theorem 1. For any constant € >0 and any A < 1 — H(Z), NEARESTNEIGH-
BOR solves the (m,~,\)-NN problem with overwhelming probability (over both
the coins of the algorithm and the random choice of the input) in time

o (2<y+€>m) with y:=(1—7) (1 ~H (Hl(ti)_g)) .

212 A. May and I. Ozerov

u eL

vieR |L|R| ¢« size: 22"

-7 X~
create exponentially many sublists
by choosing random partitions A

o Ny

L'|R L'|R’ L*R" L'|R’

AEE

For at least one sublist pair we have (u*,v*) € L* x R* w.0.p.
Fig. 4. Main idea of our algorithm NEARESTNEIGHBOR

In Definition 2, we defined our list sizes |L| = |R| = 2*™ to be exponential
in m, which is the cryptographically relevant scenario. A naive solution of the
NN problem yields an exponent of 2Am, so we are interested in quotients § < 2.

In the following corollary we achieve a complexity of (5(|L|ﬁ) in the case of
polynomial list sizes |L| = |R|. This is the best case scenario for our algorithm,
which is in the literature often referred to as the wunlimited amount of data
case. Notice that the quotient % is strictly increasing in A until we reach the
prerequisite bound A = 1 — H (%), beyond which our algorithm does no longer
work. Finding a better dependency for the NN problem on A would immediately
result in further improvements for the decoding bounds from Theorems 2 and 3.

Corollary 1. In the case of a list size |L| = |R| that is polynomial in m,
we obtain a complexity exponent limy_gy/A = T i.e. our complexity is
O(|IL| ™).

Proof Notice that we deﬁned the inverse of the binary entropy function as
H~Y(-) and that H=!(1) = 3. The derivative of the binary entropy function
is H'(x) = log, (7 — 1) and the derivative of the inverse of the binary entropy
function is (H~1(1—\))’ = ———1———. We obtain the result by the follow-

logs (=17~ V)
ing calculation, using L’Hospital’s rule twice.

hmg—hm (—y)logz(ll_v—1> ! _11
250 N =0 H- (1—/\)—§ 1—'710g2(m_1)

-t (=g) (e)

-1
1— _ (=DH(1—=v) 107 ’
(H’l(lﬂ\)*% 1) (H-1(1-X) ”)2 (H=(1=X)

2

A—0 -1 -1 _
(rrtem —1) iy =N
(=D(1-v)

__(ena-y) ,
. (Ha-n-3)°) HY1-2\) 1
= lim 272 i (1 = 0
fim =m0 =) g o 1 1
1 a-N)

On Computing Nearest Neighbors with Applications 213

In the following Theorem we show that DECODE is correct and prove its time
complexity.

Theorem 2 (complexity and correctness). DECODE solves the decoding
problem with overwhelming probability in time O(2°-114") in the full and time
O(20-0550n) i the half distance decoding setting.

Proof. Let us define

—1(1 - #my _ 2
y = (1_7) (1—H<H (11_717]@) 2))

We want to show that for any € > 0 DECODE solves the decoding problem with
overwhelming probability in time

o (2” (2“” + 2<y+5><"—’“>)) . (4)

In line 8 of DECODE, we repeat poly(n)] times. A permutation m

is good, whenever p/2 ones are in the first k£/2 columns, p/2 in the subsequent
k/2 columns and w — p ones in the last n — k columns. Additionally, Q (as
defined in line 10) has to be invertible (which happens with constant probability).

Therefore, the number of repetitions until we find a good 7 is

()
)
k/2y2 —k
(p/2) ’ ('y(ril—k))
We fix a repetition that leads to a good permutation 7. In this repetition, we
therefore have e, e; with wt(e] +e3) = p and A(u*,v*) =w —p =:y(n — k)
with u* := He] and v* := He} +5. In lines 13 and 14, the algorithm creates two

lists of uniform and pairwise independent vectors of size n—k s.t. by construction
u* € L and v* € R and

IL| = [R| = (Z;) = O (2720 = O(2em).

Notice that un = A(n — k) controls the list size. By a suitably small choice
of p one can always satisfy the prerequisite A < 1 — H(3) of Theorem 1. Thus
we obtain an instance (L,R,~) of the (n — k,~, u-"+)-NN problem, for which
Theorem 1 guarantees to output a list C that contains the solution (u*,v*) with
overwhelming probability. Notice that any vector (u,v) € CN (L x R) with a
Hamming distance of w — p solves our problem, because the corresponding e;
with He; = u and e, with Hey +8§ = v have the property wt(e; +es) = p. This
in turn leads to wt(e; + e + (0%|[(u + v)) = w. In line 17, the (e1, ez) can be

poly(n) - -0 (2”'H(w/”)—/f'H(P/k')—("—k)-H(’Y)) _ 6(27%).

214 A. May and I. Ozerov

found by a binary search in slightly modified lists L, R (that also store e; and
e2). Thus, with overwhelming probability, the algorithm outputs a solution to
the decoding problem in line 18.

Also by Theorem 1, an application of algorithm NEARESTNEIGHBOR has
time complexity O(2W+9)(=k)) for any ¢ > 0. Notice that this complexity is
independent of whether we have a good permutation 7 or not. This complexity
has to be added to the creation time of the input lists L, R. Recall that the loop
has to be repeated O(2"™) times, leading to the runtime of Eq. (4).

Numerical optimization in the half distance decoding case yields time com-

plexity (2995597 in the worst case k/n ~ 0.466 with p/n ~ 0.00383. In the
full distance decoding case we get a runtime of O(2°114") in the worst case
k/n ~ 0.447 with p/n ~ 0.01286. O

3.2 Application to the BJMM Algorithm

It is possible to apply our idea to the decoding algorithm of Becker, Joux, May
and Meurer (BJMM) [4]. We already explained that BJMM is a variant of Stern’s
algorithm and thus a Meet-in-the-Middle algorithm that constructs two list L, R.
The major difference is that L, R are not directly enumerated as the lists L, R in
Stern’s algorithm. Instead, f;,f{ are constructed in a more involved tree-based
manner. This has the benefit that the list length is significantly smaller than
in Stern’s construction, which in turn leads to an improved running time. This
similarity however enables us to directly apply our technique to the BJMM algo-
rithm. Namely, we have to simply replace in DECODE the construction of L, R
by the BJMM-construction of L,R, on which we apply our NEARESTNEIGH-
BOR-algorithm.

Notice that as opposed to Section 3.1 not all possible vector pairs in C with
the correct Hamming distance solve the decoding problem. The issue is that the
corresponding eq,es do not necessarily have a Hamming distance of p. Thus,
additionally to A(u,v) = w — p, we have to verify that also A(e1,e2) = p holds.

Algorithm DECODEBJMM describes the application of our algorithm in the
BJMM framework. Notice that up to line 22 the algorithm is identical to the
one in [4]. The only difference is the final step (from line 23). Instead of using
the exact matching of Stern, we use our NEARESTNEIGHBOR algorithm that
searches for two vectors that are close (i.e. have Hamming distance w — p) on
the remaining n — k — ¢ coordinates.

Algorithm DECODEBJMM uses a subroutine BASELISTS. As described in [4],
BASELISTS chooses a random partition of the first k + ¢ columns into two sets
Py, Py C [k +] of equal size. Then a list By is created that contains all vectors
b; € FAT8 % 0" *~¢ with wt(b) = 2+ <L + % that are zero on the coordinates
from P,. Analogously, a list By is build, that contains all vectors by € IF’;H X
0"~*=¢ of the same Hamming weight as above, but with zeros on the coordinates
from P;. Thus, with inverse polynomial probability, a fixed vector of size k + ¢
with Hamming weight £ + £- 4- €2 can be represented as a sum of an element in
B; and an element in By. Repeating this choice a polynomial number of times
guarantees the representation with overwhelming probability.

On Computing Nearest Neighbors with Applications 215

Algorithm 2. DECODEBJMM

1: procedure DECODEBJMM
2 Input: n,k,H € Fénik)xn, x € Fg

3: Output: e € F with He = Hx and wt(e) < d (FDD), wt(e) < [4;] (HDD)
4: s — Hx
5: d— H '(1-%).n > H: bin. entropy function, inverse ' maps to [0, 1].
6: for w—0...d do > (FDD) or w < 0...[%1] in the HDD case
7: Choose 0 < p,e1,e2 <w, 0<la <l <n—k > optimize numerically
8: repeat poly(n) - m many times
9: 7 «— random permutation on F5.
10: (]|Q) « w(H) (permute columns) with Q « F{" ">~k
11: choose another permutation (goto line 9), if Q is not invertible
12: H—Q '7(H)and s — Q7 's
13: tr €r FS, try,tn,,tr, €1 F52 > choose uniformly at random
14: tr =[8]¢ —tr > [-]c restricts to first ¢ columns
15: tr, = [8le, —tr, —tr, —tg, > []¢ restricts to last ¢ columns
16: Lo «— BasgLisTs(H, p,e1,€2,t1,) > list of b € FAT¢ x on=k—*
17: L, — BASELISTS(H,p, €1,€2,tL,) > with wt(b) = g + %1 + &9
18: Ry «— BASELISTS(H,p, £1,€2, tRo) > s.t. [Hb]42 =tr,
19: R, «— BaseLists(H,p,e1,2,tr,)
20: L« [H(x+y)]" "¢ for all x € Lo,y € L1 with [H(x +y)]e =tz
21: R — [H(x+y)+5" " forall x € Ro,y € Ry with [H(x+y)]¢ =tr
22: (In lines 20, 21: only keep elementb with wt(x +y) =5 +¢€1.)
23: C «— NEARESTNEIGHBOR(L, R, -#725)
24: for all (u,v) e CN(L xR) with distance A(u,v) =w —p do
25: find (e1,e2) s.t. u = [He " *~* and v = [Hey + §]" *~*
26: if wt(e1 + e2) = p then
27: return 7 !(e; + ez + (0F|lu+ v))
28: end if
29: end for
30: until

31: end for
32: end procedure

BASELISTS continues by computing the corresponding values Hb; for each
element b; € By, stores these elements and sorts the list by these values. Even-
tually an output list of vectors in b € IF’;H x 0" ~*=¢ with weight b+ teris
computed by a standard meet-in-the-middle technique s.t. Hb equals the input
target value t on the first /5 coordinates.

The same technique is used in lines 20 and 21. In the computation of L, for
each pair of vectors (x,y) € Lo x L; a list of sums x + y is obtained such that
H(x +y) matches a uniformly chosen target value t7 on the first £ coordinates.
After this step we also restrict to only those elements that have a certain Ham-
ming weight of £ 4 €1, since by [4] the target solution splits in two vectors of
this particular weight. The computation tree is illustrated in Figure 5.

216 A. May and I. Ozerov

construction of the base lists: weight: & + - 4 &2 final size of L, R:
0

o) T[p e Era 0@
final size of the base lists: b ¢ weight: p e computation:
A (92Tn—t2 ase OP e + ey 6(2(y+5>(n7k4>)
(2) E level level . L
representations:
computation time for L, R: T 9 — A((P kHl—p
5(247'77,72722) [/) — ot - ((i{fl) ’ /(2 €1))
€ - —e
2 = O((p1/74+51>2) : (52 1))

Fig. 5. Computation tree of DECODEBJMM

Theorem 3. DECODEBJMM solves the decoding problem with overwhelming
probability in time O(2°-9°7") in the full distance decoding setting and time
O(20-0473%) in the half distance decoding setting.

Proof. Let us define

S el A D (R B P
R — TﬁH(n) n H(k—i—é) (1 n) "),

kE+¢ D4 gl 4ey ! €1
= CH (A2 = -p)- H|{—7—
’ 2n < k+1¢ >’ f=pt(k+t-p) (k+€—p

Ck+l (B+ea\ €, p p °2
po=— 'H(k+£>_n’£2‘_2“1*(’“”_2_81)'1{ k+l-%—e

y:=(1-7) (1—H<H_ (1_1”;”)_2».

We want to show that for any € > 0 the decoding problem can be solved with
overwhelming probability in time

and

5 (2rn (27—n + 927n—Ls + 9drn—L—L, 4+ omn 4 2(y+£)(n—k’—€))))

The correctness and time complexity of the first part of the algorithm (i.e.
the computation of L and R up to line 22) was already shown in [4]. Let us
summarize the time complexity for this computation. First of all we have a loop
that guarantees a good distribution with overwhelming probability. In our case,
a good splitting would be p ones on the first k + ¢ coordinates and w — p ones on
the remaining n — k — £ coordinates. Thus the necessary number of repetitions
is O((3)/1(%,7) - ("5, = oe™m).

The algorithm of BJMM [4] makes use of the so-called representation tech-
nique introduced by Joux and Howgrave-Graham [11]. The main idea is to blow
up the search space such that each error vector can be represented as a sum
of two vectors in many different ways. In the algorithm, all but one of these

On Computing Nearest Neighbors with Applications 217

representations are filtered out using some restriction. Inside the loop, we there-
fore first need to make sure that 2¢ is the number of representations on the top
level, because we restrict to ¢ binary coordinates. On the top level we split the
F5+¢ vector with p ones in a sum of two vectors in F5™* with £ + &1 ones each.
Thus there are (pf/’Q) ways to represent the ones (as 1+ 0 or 0+ 1) and (ktzl_p)
ways to represent the zeros (as 0+ 0 or 1 + 1). Hence we need to choose ¢ such

that 2¢ = é((p%) . (k'gl_z’)). On the bottom level, vectors with £ + &, ones are

represented as sums of two vectors with § + 5 4-e5 ones each. In this case there

are (p%if}z) ways to represeilt the ones and (k‘”_gz_el) ways to represent the
zeros. Thus we choose 22 = (9((1)%2;:}2) : (kH_é’f—El)).

The computation starts by creating the four base lists. In the first step two
lists with vectors of size % and £ + <& + 2 ones are created, which takes time

6((£+§j_2)) = O(2™). These two lists are merged, considering each pair of
one vector of the first list and one vector of the second list such that the first 2
coordinates of the sum are a fixed value (i.e. restricting to one special represen-
tation). The number of elements in the base lists is therefore O(227" /22).

In lines 20 and 21 the top level lists L and R are computed from the
base lists. In this step, the vectors are restricted to additional ¢ — £5 coordi-
nates, resulting in a total restriction of 2¢. Therefore, the time complexity is
O((ern/zez)Q/(Qé—ég)) — 0(247—71—8—62).

In line 22 the algorithm restricts the lists L and R to those vectors with
£ +4¢1 ones. Due to the fact that the vectors are restricted to fixed ¢ coordinates,

the number of elements can be upper bounded by (5((1)/’?_"_@61)/2[) = (5(2“”).

In the final step we have two lists of uniform (because the elements are a
linear combination of the columns of H) and pairwise independent (because
each element is computed by a linear combination of pairwise different columns)
vectors in Ty ~F~¢,

From the analysis in [4] we know that there are ef, e} € FA™* x 07—+~ with
wt(e; +ez) = p such that u* = [He;]"*~¢ € L and v* = [He} + 5" ** € R,
where wt(u* 4+ v*) = w — p. Therefore, by Theorem 1, NEARESTNEIGHBOR
outputs a list C that contains (u*,v*). The (e, e}) can be found in line 25 by
binary searching in slightly modified L, R (that also contain x + y).

Thus 7 (e} + e + (0*+¢||u* + v*)) (with weight w) is a correct solution to
the problem, because

H-(ef +e5 + (0""[|u" +v*)) =H- (e +e}) + (0°[[u" +v7)
=H - (e] +e3) + (0°[|[H- (e] +e3) +5]" ")
=H-(e]+e;)+(H- (e +e5)+5) =5
Notice that [H(e} +e3)+8], = 0° holds by construction. By Theorem 1 the time
complexity of NEARESTNEIGHBOR is 2(4F¢)(n—k=0)

In the half distance decoding case, for the worst case k/n =~ 0.45 we get a
time complexity of O(2°:%473") with p/n ~ 0.01667, 21 /n ~ 0.00577 and e/n ~

218 A. May and I. Ozerov

0.00124. In the full distance decoding setting, we have a runtime of ©(2°-9977)

with k/n ~ 0.42,p/n ~ 0.06284, <1 /n ~ 0.02001 and e2/n ~ 0.00391.
O

4 Solving the Nearest Neighbor Problem

In this section we will describe NEARESTNEIGHBOR, an algorithm that solves
the Nearest Neighbor problem from Definition 2. We will prove correctness and
time complexity of our algorithm in the subsequent section.

As already outlined in the previous section, given the input lists L and R with
IL| = |R| = 2*™, our idea is to create exponentially many sublists L/, R’ that are
of expected polynomial size. The sublists are chosen such that with overwhelming
probability our unknown solution (u*,v*) € L x R with A(u*,v*) = ym is
contained in at least one of these sublists. The sublists L’ (resp. R’) are defined
as all elements of L (resp. R) that have a Hamming weight of h* on the columns
defined by a random partition A C [m] of size . In Lemma 3, we will prove
that h := H_1(1 —A) with 0 < h < % is a suitable choice, because it leads to
sublists of expected polynomial size.

We will prove in Lemma 2 that the required number of sublists such that

(u*, v*) is contained in one of these sublists is O(2¥™) with

vm oo (1-m (L2220)

We will make use of the fact that y > A for any constant 0 < A < 1,0 <y < %,
which can be verified numerically.

There is still one problem to solve, because we never discussed how to com-
pute the L', R’ given L, R. A naive way to do so would be to traverse the original
lists linearly and to check the weight condition. Unfortunately, this would have
to be done for each sampled A, which would result in an overall complexity of
O(2vm . 22m).

Instead, as illustrated in Fig. 6, we do not proceed with the whole m coor-
dinates at once, but first start with a strip {1,...,a3m} of the left hand side
columns and filter only on that strip. The resulting list pairs L', R! are still of
exponential, but smaller, size. In the second step, we proceed on the subsequent
agm columns {aym +1,..., (a1 + ag)m} to generate sublists L?, R? that con-
tain all elements that in addition have a small Hamming weight on the second
strip. The advantage of this technique is that we are able to use the smaller lists
L', R! to construct L2, R?, again by traversing these lists, instead of using L, R
for all the m columns.

As illustrated in Fig. 7, we grow a search tree of constant depth t, where
the leaves are pairs of lists L!, R, which were filtered on (a; + ... + ay)m
coordinates. We choose a1 + ...+ a; = 1 to cover all coordinates. The choice
of the a; will be given in Theorem 1 and is basically done in a way to balance
the costs in each level of the search tree, which allows us to solve the problem in

On Computing Nearest Neighbors with Applications

list L

partition A

part of
vectors with
weight h
in the A
columns

7575774
2252524
Am s2727774
) 2 s s e 252524
A 2525242
Ay 2
252k000000050505050505%% 2525244
25538252552525252525055555, 2525242
55508252552525252505555550 2525544
A Ay
R ey 7 A
A, Iy
Ay 22552
A 2550
0 85535453535525050505%) 225524
A 2525244
25552805052525252555555555559 2252524
000100000000000000000 0000 2252524
0000000000000000000000000 00 225
A s, oy
AR s BN | 55 A Vi 2555223
Ay
A, I
ATy
PR A A
\
\
\
\
\
\ 1
ye1my subli irs (L',R’) b li dom A’
create O(2 sublist pairs ,R’) by sampling random A’s
H / . /
random list L list R

9(2)\(17111)771)

3

list R

same A

part of
vectors with

weight h

in the A

columns

pr7s7s7s77777
220777777777
y7772272777777

722772777777
frsrsrsrsrsers sy

wt. h
in A

CAXAAA
A

v (7771777775777
‘
A
‘

P

/7.
7

7277777777777
1/ rs0s0t7202724

m

create O(2Y%2™) sublist pairs (L, R") (of each of the O(2v1™)
sublist pairs) and solve recursively or finally naively

Fig. 6. Step-by-step computation of NEARESTNEIGHBOR

219

220 A. May and I. Ozerov

time O(2(+9)™) for any constant & > 0. Notice that we never actually compute
the Hamming distance between elements from the list pairs, except for the very
last step, where we obtain list pairs L*, R! of small size O(25™), and compute
the Hamming distance of all pairs by a naive quadratic algorithm, which has
time complexity O(2°™). Because we proceed analogously for any of the O(2Y™)
sublists, we obtain an overall time complexity of O(2W+e)m),

L*|R" L'|R’ L'|R’ L'|R

Fig. 7. Example: computation tree of depth ¢ = 2 with one good path (—)

In total, our algorithm heavily relies on the observation that the property
of the pair (u*,v*) with small Hamming distance A(u*,v*) = ym also holds
locally on each of the ¢ strips. In case that the differing coordinates of (u*,v*)
would cluster in any of the strips a;m, we would by mistake sort out the pair.
However, this issue can be easily resolved by rerandomizing the position of the
coordinates in both input lists L and R. Denote z* := u* + v* € FJ' and
the splitting z* = (z},...,27) € Fo*™ x F3?™ x ... x F5*™ according to the ¢
strips. We will prove in Lemma 1 that after randomly permuting the m columns
a polynomial in m number of times, there will be one permutation such that
wt(z;) = ya;m for all 1 < j <t

Furthermore, we want to enforce that wt(u*) = wt(v*) = 3m, which also
has to hold on each of the ¢ strips. Define u* = (uj,...,uf) and v* = (v§,...,v})
as above. We therefore want to make sure that wt(u}) = wt(v}) = 2a;m for all
1 < j <t. Notice that this can also be achieved by rerandomization. Concretely,
we pick a uniformly random vector r € F5* and add this vector to all elements
of both input lists L, R. Notice that the Hamming weight of our solution pair
(u*,v*) isn’t changed by this operation. We will also show in Lemma 1 that

On Computing Nearest Neighbors with Applications 221

after applying this process a polynomial (in m) number of times, the vectors u*
and v* have the desired Hamming weight in at least one step.

Algorithm 3. NEARESTNEIGHBOR

1: procedure NEARESTNEIGHBOR(L, R,) >LRCFY, 0<y< é
2: compute vectors length m and size A from L, R

3: y:=(1-—7) (1 -H (Wi_;\)_%)) > as defined in Theorem 1
4: choose a constant ¢ > 0 > could also be an input
5: t:= [%] > as defined in the proof of Theorem 1
6: ap = % > as defined in the proof of Theorem 1
7 for2<j<td

8: Q= % S Qi1 > as defined in the proof of Theorem 1
9: end for

10: for poly(m) uniformly random permutations 7 of [m] do

11: for poly(m) unif. rand. r € F5*™ x ... x F3*™ (wt. o;; % on each strip) do
12: L—nL)+r

13: R—nR)+r > permute columns and add r to all elements
14: Remove all vectors from L, R that are not of weight a; 5 on each strip
15: return NEARESTNEIGHBORREC(L,R,m,t,v,\, a1,...,a¢,y,¢€,1)

16: end for

17: end for
18: end procedure

Our algorithm NEARESTNEIGHBOR starts by computing the length of the
vectors m and a A such that |L| = |R| = 2™ from L and R. This list size is
used to compute the repetition parameter y. The algorithm chooses a constant
e > 0 that is part of the asymptotic time complexity. The parameter ¢ also
determines the number of strips ¢ and the relative sizes of the strips aq, ..., a;.
Eventually, the two input lists are rerandomized by permuting the columns and
adding a random vector. Another recursive algorithm NEARESTNEIGHBORREC
is then called with the rerandomized lists as input.

In the algorithm NEARESTNEIGHBORREC we sample random partitions A of
the columns, until it is guaranteed with overwhelming probability that the solu-
tion is in at least one of the created sublists. The sublists are created by naively
traversing the input lists for all vectors with a Hamming weight of H—!(1—\)%5™
on the columns defined by the random partition. We only continue, if L’ and R’
don’t grow too large, as defined in Lemma 3. In line 10, we apply the algorithm
recursively on the subsequent aom columns, and so on. Eventually, we compare
the final list pairs naively.

5 Analysis of Our Algorithm

In this section, we first show that NEARESTNEIGHBOR achieves a good distri-
bution in at least one of the polynomially many repetitions. We define a good

222 A. May and I. Ozerov

Algorithm 4. NEARESTNEIGHBORREC

1: procedure NEARESTNEIGHBORREC(L, R, m,t,v,\,a1,...,04,9,€,7) > init j =1
2: if j =t+1 then

3: run the naive algorithm to compute C, a list of correct pairs

4: end if

5: for ©(2¢*™) times do

6: A « partition(a;m) > random partition of size “4™ of the a;m columns
7 L' — all vp € L with wt. H~'(1 — A)%4™ on A-columns > naive search
8: R’ « all vg € R with wt. H~'(1 — A\)“4™ on A-columns > naive search
9: if |L'|,|R’'| don’t grow too large then > as defined in Lemma 3
10: C «— CUNEARESTNEIGHBORREC(L', R/, m,t,vy, A\, a1, ..., a¢,y,¢,7+1)

> solve the problem recursively

11: end if
12: end for
13: return C > output a list of correct pairs

14: end procedure

computation path and show that NEARESTNEIGHBOR has at least one of them
with overwhelming probability over the coins of the algorithm. We continue by
showing that the lists on that computation path achieve their expected size with
overwhelming probability over the random choice of the input. We conclude
with Theorem 1 that combines these results and shows the correctness and time
complexity of NEARESTNEIGHBOR.

Lemma 1 (good distribution). Let (L, R,v) be an instance of an (m,~,\)
Nearest Neighbor problem with unknown solution vectors (u*,v*) € L x R. Let
z* := u* + v* and for any constant t let u* := (uf,... u;y), v*:= (vi,...,v})
z* = (z},...,2}) be a splitting of the vectors in t strips with sizes a;m for all
1<j<twitha+...4+a; =1. Then the double rerandomization of algorithm
NEARESTNEIGHBOR, guarantees with overwhelming probability that

*

wt(z;) = yaym and wt(u]) = wt(v)) = laym forall1<j<t

in at least one of the rerandomized input lists.

Proof. In the first loop, random permutations 7 of the m columns are chosen.
Thus the probability for wt(z}) = ya;m for all 1 < j <t is

am agm m
(70417”) o <7atm>/<7m>'
A cancellation of the common terms, an application of Stirling’s formula and the
fact that ¢ is constant shows the claim. In the second loop we choose uniformly
random r = (r1,...,1;) € F3'™ x ... F3*™ with weight fc;m on each of the
t strips and add them to all elements in L and R. Fix one of the strips j and
consider the vectors (uj, v;*) Let cg1 denote the number of columns such that u§
has a 0-coordinate and v has a 1-coordinate. Define cqo, c10 and ¢11 analogously.

On Computing Nearest Neighbors with Applications 223

We define r to be good on the strip j, if it has exactly %Cwy ones in all four parts
zy. The probability for that is

1 1 1 1 1 :
5C00 5C01 5C10 5C11 5Q5mM

Notice that this is again inverse polynomial, because cgg 4 co1 + 10 +c11 = o;m
per definition. Thus the probability stays polynomial for all ¢ strips, since ¢ is
constant.

We conclude that a good r solves the problem, because on each strip

Wt(ll;< + I‘j) = Wt(V;k —+ I‘j) = %(COO —+ Co1 —+ C10 —+ 011) = %ozjm. O

In the following we use the notion of a good computation path inside the
computation tree of our algorithm. See Fig. 7 for an example. In this figure the
good path is marked as —, whereas all the other paths are marked as dashed
arrows.

Definition 3 (good computation path). Let (u*,v*) € L x R be the target
solution. A computation path of NEARESTNEIGHBOR is called good, if (u*,v*)
18 contained in all t sublist pairs from the root to a leaf.

Lemma 2 (correctness). Lett € N be the (constant) depth of NEAREST-
NEIGHBOR and X\ < 1 — H(3). Then the computation tree of NEARESTNEIGH-
BOR has a good computation path with overwhelming probability over the coins
of the algorithm.

Proof. By construction, the target solution (u*,v*) is contained in the initial
list pair L x R on level 1 of the computation tree. In the following we show that
if the solution is in one of the input lists on a level j, then with overwhelming
probability it is also in one of the output lists on level j (which are either the
input lists on level j + 1 or the input lists for the naive algorithm on the last
level). Thus, if this holds for any 1 < j < ¢, we have a good path by induction.

Let us create 2Y%"™ sublist pairs for each input list pair on level j with y
from (5). On each level j we therefore have a total of 2¢9(®1+-+ai)m output list
pairs, resulting in a total of 2¥™ output list pairs on the last level.

Fix a level j and a target solution (u*,v*) in one of the input pairs L, R
on that level. On this level, we work on a strip of size aym. Let uj and v} be
the restrictions of u*, resp. v* to that strip. Due to the rerandomization in our
algorithm, it is guaranteed by Lemma 1 that wt(uj) = wt(v}) = sa;m and
that their Hamming distance is A(uj, v}) = ya;m.

Thus, if we look at the pairwise coordinates of (u;f, v;‘) this implies that we
have exactly 1_T"ozjm (0,0)-pairs and (1, 1)-pairs and exactly Za;m (0,1)-pairs
and (1,0)-pairs, respectively. We illustrate this input distribution of the target
pair (uj,v}) in Fig. 8.

The algorithm constructs sublists L', R’ by choosing a random partition A
of the aj-strip with |A| = %ajm. The algorithm only keeps those vectors of

224 A. May and I. Ozerov

uj = 0...... 00...01...11...... 1
vi=0...... 01...10...01...... 1
weight 52a;m Jaym Zaym S2aym

Fig. 8. input distribution (a;m-strip)

the input lists that have a relative Hamming weight of h := H~!(1 — \) on the
columns defined by A, a choice that will be justified in Lemma 3. The choice of h
implies that the number of (1,0) overlaps on the columns defined by A plus the
number of (1,1) overlaps on the columns defined by A is ha; . This is also the
case for the number of (0, 1) overlaps plus the number of (1, 1) overlaps. Finally,
we also know that the sum of all overlaps (0,0), (0,1), (1,0) and (1,1) is a; % .
Compared to the input distribution, this leaves one degree of freedom, which we
denote by a parameter 0 < ¢ < h. We obtain the output distribution shown in
Fig. 9.

Wia=0. i, 00...01...11.cccoii... 1
VEiA=0 01...10...01........... 1
weight (1-h—-c)oy% coyF ca;y (h—c)a;y

Fig. 9. output distribution (A-columns of an «;m-strip)

In order to compute the necessary number of repetitions, we have to compute
the number of good partitions A that lead to an output distribution of Fig. 9 for
any 0 < ¢ < h. This can be computed by multiplying the number of choices we
have for each overlap of zeros and ones for any possible value of c ;% , which is

haj 3 1— 2 1—

‘ 2=V . P 1= A

< FLa;m).<2a3m> (5 am)
m m m |°

mzﬂfo (1-h—-c)a;% cojy (h—c)a; 3

)2 T

For a fixed ¢, it is for example possible to choose ca; g (0,1) overlaps in the
A-area from an overall number of Ja;m (0,1)’s in the whole strip.

Notice that some choices of ¢ might lead to no possible choice for A, e.g.
if ¢ > 7. We determine a ¢ that maximizes the number of good partitions.
Numerical optimization shows that this maximum is obtained at ¢ = 7. Notice
that this is a valid choice for ¢ (i.e. none of the binomial coefficients is zero) due
to the restriction A < 1 — H(3) of Theorem 1 that implies » > 3. Thus the

2
number of good partitions (up to polynomial factors) is

— 2 — ~
(%ajm) . (;O(jm) . (1T”Oéjm) _o ((2o¢jm)’y+(1'y)H(h13))
(I=h=3)a5) \305% (h =3y

On Computing Nearest Neighbors with Applications 225

The total number of partitions is (lQSZ) = O(2%™). Thus the expected number
277

r of repetitions until we find the correct pair is the total number of partitions
divided by the number of good partitions, which is r = O(2Y%™), which justifies
our choice of y in identity (5).

It suffices to choose mr repetitions in order to find the correct pair with
overwhelming probability, since the probability to not find the correct pair can
be upper bounded by

(I—-1/m)mm <27™.
Thus the probability that the algorithm goes wrong in any of its 2t calls on a

good computation path can be upper bounded by 2¢ - 27™, which is negligible.
Notice that mr = O(2¥*™), since polynomial factors vanish in O-notation. 0O

Lemma 3 (list sizes). Lett € N be the (constant) depth of NEARESTNEIGH-
BOR and € > 0. Consider a good computation path of depth t. Then with over-
whelming probability the 2t lists inside the good computation path have sizes
(’3((2’\"’)1’25:1 @i+3) for all 1 < j <t and thus are not cut off by the algorithm.

Proof. Fix some 1 < j < t and an initial input list L with |L| = 2*™ (the
argument is analogous for R). For each vector vi € L we define random variables
X} such that _

Yo - {1 if Ay €Lt

0 otherwise

Let X := ZLL:ll X};. Thus the random variable X counts the number of elements
in the output list LJ. Recall that NEARESTNEIGHBOR restricts to relative weight
h = H~1(1—)\) on the columns in A. Since we know that the computation path
is good, there is one vi« € L with P[X;« = 1] = 1. Notice that all the other
elements are independent of vi« and are uniformly chosen among all vectors

with weight a; % on each strip j. Thus for all vy € L\ {vg~} we have

M) o) (22)

which is, for each of the first j strips, the number of vectors that have relative
weight h on the A-columns divided by the number of all possible vectors. Thus
the expected size of the output list is

-0 () (0 e (20)

i=1 2 2 2

Notice that obviously E[X] > 1. Applying Chebyshev’s inequality, we get

P1X ~ BIX]| 2 257BIX]] < gty < e <27

using VIX] = V37, Xi] = 35, VIXy] = 3, (B[XF] — B[Xk]?) < 35, E[X4] =
E[X]. We have V[} ", Xi] = >, V[X4], because the X}, are pairwise independent.

226 A. May and I. Ozerov

Thus (for both lists on each level) we obtain P [Xtoo large in any of the steps] <
2t - 27" applying the union bound. _
From Stirling’s formula it also follows that E[X] < (22™)'~2i=1 % for each
1 < j <t. Hence, with overwhelming probability, the list sizes are as claimed.
O

Now we are able to prove Theorem 1.

Theorem 1. For any constant € > 0 and any A <1 — H(3), NEARESTNEIGH-
BOR solves the (m,~y,\) NN problem with overwhelming probability (over both
the coins of the algorithm and the random choice of the input) in time

o (2<y+€)’”) with y:=(1—7) (1 ~H (W» .

L=~

Proof. By Lemma 2, there is a path that includes the solution (with overwhelm-
ing probability over the coins of the algorithm). Fix that path. We show that by
Lemma 3 (with overwhelming probability over the random choice of the input)
NEARESTNEIGHBOR'’s time complexity is the maximum of the times

%) ((2”7))‘(1*2{;11 ai)ty T, ai+%) (6)
to create all sublists on level j for all levels 1 < j <t and the time
O@wrm) (7)

to naively solve the problem on the last level.

From Lemma 3 we know that on each level j the sizes of the input lists
are (5((2’”)“1_25;11 @i)+3). Notice that if the lists grow too large, we simply
abort. On level j we construct 5(290‘jm) new sublists for each input list so that
we have a total number of O((2v™)Zi=1 %) sublists on this level. Each of these
sublists is computed by naively searching through the input lists. Thus, we have
to multiply the sizes of the input lists with the number of sublists which results
in complexity (6).

In NEARESTNEIGHBOR's last step we use the naive algorithm to join a total
number of O(2Y™) pairs of sublists of size O(25™) each, resulting in complex-
ity (7). The overall complexity is the maximum of complexities (6) and (7).

We want to continue by computing the overall time complexity of the steps
defined by (6) for any fixed ¢ by setting the complexities of (6) equal. Thus we choose

j—1 J Jj+1
A(l—ZaZ)—i—yZai —A(l—ZO@)—i—yZaZ
i=1 i=1

for all 1 < j § t — 1, which implies a1 = (M y) - «;. Additionally, we
need Zf L o; = 1, thus using y > A from Eq. () we get 1= 0 =
Qi+ Z (Jy)t = 11:(();\/ /yy))t. This implies oy = (A/y)t and finally (uniquely)

On Computing Nearest Neighbors with Applications 227

determines all (a1, ..., ay). Since by our choice all complexities (6) are the same,
we get an overall running time of O((2m) M v-orts),

log(y — A+ 5) —log(5)
E Log(y) — log(\)

to ay = w% and we finally obtain the same complexity O(2(4+5)™) as in (7),
which makes (7) the time complexity of the whole algorithm.

We want to conclude the proof by showing that for any fixed ¢ it is indeed
optimal to set all time complexities in (6) equal. Let (a, ..., ot) be the (unique)
choice defined above. Assume this is not optimal, thus a choice (aq,...,ay)
that is different from the first one improves upon the overall time complexity.
Decreasing one of the time complexities implies that there is a 1 < k < ¢t with
ay < ay, because y > \. Let k be minimal with that property.

Notice that the (constant) choice ¢t = { -‘ € N leads

Case 1: There is an 1 <l < kst ay > a and let £ be mlnlmal with that
property. Then Zz 10 = Zf llal Thus A+ (y — A) - ZZ 10 +y-ag+ 5>

A=A -ty -ats.

Case 2: Otherwise, we know that Y.F '@ = "', and thus Y0 & <
Zf 1 ;. Notice that it also has to hold that St a@ =Y a; = 1. Hence
there is a?f: <l <tst. ZZ 1~z < Z lozz and Zf;:l a; > Zleai. Thus
A=A Y ity ZZ 10 >A— X Zz 1az+y~zi’zlai.

In both cases the time complexity on some level ¢ # k (and therefore the overall
time complexity) strictly increases, which makes the new choice inferior to the
original one. a

Acknowledgments. We would like to thank the anonymous Eurocrypt reviewers for
their helpful and detailed comments that improved and clarified our work.

Open Problem

Our NEARESTNEIGHBOR algorithm uses a recursion tree of constant depth t.
This leads to a large polynomial blow-up for our decoding algorithm (in the
size of m!), which asymptotically vanishes but in practice might lead to an
undesirably large break-even point with the BJMM algorithm. We pose it as an
open problem to get rid of this polynomial overhead.

References

1. Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O.: Euclidean Minimum Spanning
Trees and Bichromatic Closest Pairs. Discrete & Computational Geometry 6, 407—
422 (1991)

2. Alekhnovich, M.: More on Average Case vs Approximation Complexity. In: 44th
Symposium on Foundations of Computer Science (FOCS), pp. 298-307 (2003)

3. Becker, A., Coron, J.-S., Joux, A.: Improved Generic Algorithms for Hard Knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364-385.
Springer, Heidelberg (2011)

228

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A. May and I. Ozerov

Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2%/2%: How 14+ 1 =0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520-536. Springer,
Heidelberg (2012)

Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from
(Standard) LWE. In: FOCS, pp. 97-106 (2011)

Dubiner, M., Bucketing coding and information theory for the statistical high-
dimensional nearest-neighbor problem. IEEE Transactions on Information Theory
56(8), 41664179 (2010)

Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197-206 (2008)

Har-Peled, S., Indyk, P.: Rajeev Motwani Approximate Nearest Neighbor: Towards
Removing the Curse of Dimensionality. Theory of Computing 8(1), 321-350 (2012)

. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)

ASTACRYPT 2001. LNCS, vol. 2248, pp. 52-66. Springer, Heidelberg (2001)
Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. ACM 21(2), 277-292 (1974)

Howgrave-Graham, N., Joux, A.: New Generic Algorithms for Hard Knapsacks.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235-256. Springer,
Heidelberg (2010)

Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient Authentica-
tion from Hard Learning Problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 7-26. Springer, Heidelberg (2011)

Lee, P.J., Brickell, E.F.: An Observation on the Security of McEliece’s Public-Key
Cryptosystem. In: Giinther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275-280. Springer, Heidelberg (1988)

May, A., Meurer, A., Thomae, E.: Decoding Random Linear Codes in O(2°-054").
In: Lee, D.H., Wang, X. (eds.) ASTACRYPT 2011. LNCS, vol. 7073, pp. 107-124.
Springer, Heidelberg (2011)

McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet
Propulsion Laboratory DSN Progress Report 42—44, 114-116 (1978)

Peikert, C.: Brent Waters Lossy trapdoor functions and their applications. In:
STOC, pp. 187-196 (2008)

Peters, C.: Information-Set Decoding for Linear Codes over F,. In: Sendrier, N.
(ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81-94. Springer, Heidelberg (2010)
Prange, E.: The Use of Information Sets in Decoding Cyclic Codes. IRE Transac-
tion on Information Theory 8(5), 5-9 (1962)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84-93 (2005)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6) (2009)

Stern, J.: A method for finding codewords of small weight. In: Proceedings of the
3rd International Colloquium on Coding Theory and Applications, London, UK,
pp. 106-113. Springer (1989)

Sudan, M.: Algorithmic Introduction to Coding Theory. Lecture Notes (available
online) (2001)

Andoni, A., Indyk, P., Nguyen, H.L., Razenshteyn, I.: Beyond Locality-Sensitive
Hashing. In: SODA, pp. 1018-1028 (2014)

Valiant, G.: Finding Correlations in Subquadratic Time, with Applications to
Learning Parities and Juntas. In: FOCS, pp. 11-20 (2012)

Symmetric Cryptanalysis I

Cryptanalytic Time-Memory-Data Tradeoffs
for FX-Constructions with Applications
to PRINCE and PRIDE

Ttai Dinur®)

Département d’Informatique, Ecole Normale Supérieure, Paris, France
dinur@di.ens.fr

Abstract. The FX-construction was proposed in 1996 by Kilian and
Rogaway as a generalization of the DESX scheme. The construction
increases the security of an n-bit core block cipher with a x-bit key
by using two additional n-bit masking keys. Recently, several concrete
instances of the FX-construction were proposed, including PRINCE (pro-
posed at Asiacrypt 2012) and PRIDE (proposed at CRYPTO 2014).
These ciphers have n = k = 64, and are proven to guarantee about
127 — d bits of security, assuming that their core ciphers are ideal, and
the adversary can obtain at most 2¢ data.

In this paper, we devise new cryptanalytic time-memory-data trade-
off attacks on FX-constructions. While our attacks do not contradict the
security proof of PRINCE and PRIDE, nor pose an immediate threat
to their users, some specific choices of tradeoff parameters demonstrate
that the security margin of the ciphers against practical attacks is smaller
than expected. Our techniques combine a special form of time-memory-
data tradeoffs, typically applied to stream ciphers, with recent analysis
of FX-constructions by Fouque, Joux and Mavromati.

Keywords: Cryptanalysis - Block cipher - Time-memory-data tradeoff -
FX-construction - DESX - PRINCE - PRIDE

1 Introduction

The Advanced Encryption Standard (AES) is the most widely used block cipher
today. It is believed to guarantee a large security margin against practical attacks,
and can therefore be used to encrypt very sensitive data. The AES was preceded
by the Data Encryption Standard (DES), whose 56-bit key made it vulnerable
to straightforward exhaustive search. Consequently, in 1984, when DES was still
widely used, Ron Rivest proposed a simple solution (known as DESX [21]) to
address the concern regarding its small key size. The DESX construction simply
XORs two independent 64-bit keys at the beginning and at the end of the core DES
encryption process, such that the total key size becomes 56 + 64 + 64 = 174 bits.
This construction was generalized to the so-called FX-construction by Kilian and

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 231-253, 2015.
DOI: 10.1007/978-3-662-46800-5-10

232 I. Dinur

Rogaway in 1996 [18]. The FX-construction is built using an (arbitrary) n-bit block
cipher Fi with a k-bit key K and two additional n-bit whitening keys K7, Ko, and
defined as F Xk i, k,(P) = K2 @ Fx (K1 & P). Kilian and Rogaway proved that
the cipher guarantees x + n — d — 1 bits of security,! assuming that F is a per-
fect block cipher and the adversary can obtain D = 2¢ plaintext-ciphertext pairs.
Furthermore, Kilian and Rogaway showed that the bound is tight by extending
the attack of Daemen [10] (on the related Even-Mansour construction) to a simple
attack on the FX-construction with complexity of about 25741,

The analysis of Kilian and Rogaway implies that the security of the FX-
construction depends on how much data the attacker can obtain, and thus
the security is not completely determined by the computational power of the
attacker. This is a unique situation, as for (almost) all block ciphers used in
practice today that have no known weaknesses, obtaining additional data does
not seem to give any significant advantage in key recovery attacks. Thus, the
security level of k+n—d—1 does not allow to directly compare FX-constructions
to classical ciphers, and does not give a clear indication on the effort required in
order to break such a construction.

Until recently, the security guaranteed by FX-constructions was perhaps
not very relevant, as such constructions were not proposed for practical use
(apart from DESX). This situation changed in 2012, when the FX-construction
PRINCE was presented at Asiacrypt [7], and more recently, at CRYPTO 2014,
a similar FX-construction (named PRIDE [1]) was proposed.? Both of these con-
structions have n = k = 64, and thus they offer security of about 127 — d bits,
assuming that their core ciphers are ideal.?

In order to encourage its adoption by the industry, the designers of PRINCE
launched a competition (named the PRINCE Challenge [23]), calling for crypt-
analysis of the cipher which would lead to better understanding of its secu-
rity. The competition focuses on practical attacks on round-reduced variants of
PRINCE, where a practical attack is defined to have data complexity of (up
to) 230 known plaintexts (or 22 chosen plaintexts), time complexity of 264 and
memory complexity of 24° bytes.

Motivated by the PRINCE Challenge, in this paper, we investigate the secu-
rity margin guaranteed by FX-constructions against practical attacks, with a
focus on PRINCE and PRIDE (i.e., FX-constructions with n = x = 64). We
first analyze well-known generic attacks on FX-constructions [5,12,18], and con-
clude that these attacks do to threaten the security of PRINCE and PRIDE.
Then, we devise new attacks with lower memory complexity, and claim that the

1 A cipher guarantees b bits of security if the complexity of the most efficient attack on
it is at least 2°.

2 PRINCE and PRIDE are FX-constructions of a particular type, where K linearly
depends on K. However, it is shown in [7] that the smaller key size does not reduce
the security of the schemes against generic attacks.

3 PRINCE guarantees slightly less than 127 — d bits of security, as its core cipher was
designed to preserve a special property that ensures a small footprint.

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 233

security margin of FX-constructions with n = k = 64 against these attacks is
somewhat reduced (although the attacks remain impractical).

Despite the new attacks described above, our most interesting attacks are
carried out in Hellman’s time-memory tradeoff model [16]. In this model, the
adversary spends a lot of resources on a one-time preprocessing phase that ana-
lyzes the scheme, and whose output is stored in (relatively small) memory. After
this one-time preprocessing phase is completed, the scheme can be attacked much
more efficiently, and this makes Hellman’s model attractive in many cases.

The starting point of our attacks is a recent analysis of the FX-construction
and related designs by Fouque et al. [14]. One of the attacks of [14] on PRINCE
has data complexity of 232 and a very efficient time complexity of 232. The main
shortcomings of this attack are its huge memory complexity of about 267 bytes,
and its impractical preprocessing phase, which has time complexity of 296, The
techniques we develop trade off these high memory and preprocessing complexities
with time and data complexities, and allow to obtain more balanced and practical
tradeoffs.

Some concrete parameters of our attacks on PRICE and PRIDE in Hellman’s
model are summarized in Table 1. Consider the online phase of Attack 1, which
requires about 232 data, takes 2% time and requires 2°' bytes of memory. The
parameters of this attack are thus not far from the parameters considered in the
PRINCE challenge [23] as practical, and they are valid regardless of the cipher’s
internal number of rounds. Furthermore, we show in this paper that Attack 1 (as
well as our other online attacks in Table 1) rarely accesses the memory (which
can be stored on a hard disk), and can be efficiently realized using dedicated
hardware with a budget of a medium-size enterprize. Therefore, we consider this
attack to be semi-practical.

Attack 1 has two main shortcomings: it requires the data in the form
of adaptively chosen plaintexts, and more significantly, it requires a long and
impractical one-time precomputation phase of* complexity 276.

In order to reduce the preprocessing complexity, we consider Attack 2 which
exploits a larger number of 24° adaptively chosen plaintexts. This data can be col-
lected (for example) if the attacker can obtain black-box access to the encryption
device for a few hours, and can thus be considered practical in some (restricted)
scenarios. The online attack runs in time 2°6, requires 2°! bytes of storage, and
is therefore even more efficient than the online phase of Attack 1. More signifi-
cantly, it requires a shorter precomputation phase of time complexity 288, which
is still impractical, but only marginally.®

232

* Note that according to the bound of [18], any generic attack on FX-constructions
with n = k = 64 using 23 data, must have time complexity of at least 264+64-32-1 —
298,

5 We assume that some adversaries can spend a huge amount of resources on prepro-
cessing (in contrast to online attacks). Therefore, we consider preprocessing time
complexity of 2% to be (marginally) practical, as demonstrated by the capacity of
the Bitcoin network [6], and supported by the NIST recommendation to disallow
80-bit keys after 2014 [20].

234 I. Dinur

An interesting observation is that when we execute a 0 < p < 1 fraction of
the preprocessing phase of Attack 2, then the key recovery attack succeeds with
probability p. If we consider p = 278, the attack succeeds with a non-negligible
probability of p ~ 1/256, requires only 2518 = 243 bytes of disk space (or
8 terabytes), and can be implemented today with a small academical budget
(similar tasks have been implemented with such a budget [15]). Moreover, the
preprocessing time complexity of the attack above becomes 283=8 = 280 (which
is more practical than 2%8). This shows that it may be beneficial to start the
preprocessing phase today, instead of waiting for the technology that would make
it fully realizable in the future. We further note that the complexity parameters
of Attack 2 for p = 278 and n = k = 64 are, in fact, equivalent to those for p ~ 1
and n = 64,k = 56. Since DES has a 56-bit key, the full attack against DESX
could potentially be carried out today by a resourceful adversary.

Table 1. Attacks on PRINCE and PRIDE

Attack| Reference | Data |Preprocessing|Online|Memory| Online Attack
1D (ACP) Time Time | (Bytes) | Cost Estimate!T

(US Dollars)
- [14] 232 296 232 257 1> 10,000, 000, 000

1 |This paper| 232 296 204 251 < 1,000,000

2 |This paper| 2% 288 256 251 < 1,000,000

3 |This paper| 2% 288 204 247 < 1,000,000

4 |This paper| 2% 280 204 251 < 1,000, 000

 Adaptively chosen plaintexts
T As estimated at the end of Section 3

Although the FX-construction is a block cipher, our techniques are borrowed
from cryptanalysis of stateful ciphers (i.e., stream ciphers). We first notice that
the FX-construction can be viewed as a (standard) core block cipher with an
additional secret state (namely, the input or output to the core block cipher),
which is hidden by the masking keys using simple XOR operations. Our main
methodological contribution it to use Hellman’s time-memory tradeoff to invert
a set of special states, similarly to the techniques that Biryukov, Shamir and
Wagner applied to stream ciphers which have low sampling resistance [3,4].
However, unlike the case of stream ciphers, in some cases we analyze (in partic-
ular for d > n/2), we have to request the data and optimize our algorithms in a
non-trivial way in order to obtain efficient tradeoffs.

A unique feature of our time-memory-data tradeoff curve for 2¢ < 27/2,
is that the effective hidden state (key) size of the FX-construction is reduced
by a factor of 21°? in the online phase of the attack. On the other hand, for
stream ciphers, the effective hidden state size is only reduced by a factor of 2¢.
The reason for this is that in most stream ciphers, the hidden state is permuted
and its entropy is maintained when producing keystream. On the other hand, we
exploit the basic technique of Fouque et al., which applies a non-bijective function

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 235

to the hidden state of the FX-construction, reducing its entropy. In particular, for
k =n = 64 and 2¢ = 232, the effective key size is reduced to 64+64—1.5-32 = 80
bits, whereas one could have expected it to be 64 + 64 — 32 = 96 bits. Exploiting
memory to further reduce the effective key size, leads to online key recovery
attacks on PRINCE and PRIDE with semi-practical complexities.

The paper is organized as follows. We begin by introducing our notation
in Section 2, while Section 3 provides an overview of our attacks. Section 4
gives some necessary background, and our simple attacks (that do not use a
preprocessing phase) are described in Section 5, while our advanced attacks are
described in Section 6. Finally, we conclude the paper in Section 7.

2 Notations and Conventions

The FX-construction [18] is built using an (arbitrary) n-bit block cipher Fi
with a k-bit key K and 2 additional n-bit whitening keys K4, K5, and defined as
FXk g, k,(P) = Ko® Fr (K1 ®P). We denote the plaintext by P, its ciphertext
FXk i Kk, (P) = Ko ® Fg(K; @ P) by C, and the inner values K7 @ P and
Fi (K, @ P) by X and Y, respectively (see Figure 1).

K

~
Sramia

|
P @XFK

Fig. 1. The FX-Construction

In this paper, we are also interested in more specific instances of the FX-
construction. In particular, this construction also inspired the design of the Even-
Mansour scheme [13], in which the core cipher is, in fact, an unkeyed public
permutation F' (for which k = 0). Furthermore, a major focus of this paper
is placed on the recently proposed concrete FX-constructions PRINCE [7] and
PRIDE [1]. These constructions use only n bits of whitening key material K7,
where K3 is defined by A(K7), for an invertible affine function A. We refer to
this simplified scheme as an SFX-construction.

As we deal with various tradeoffs between complexity parameters of attacks,
we define some notation that is used in order to quantify these parameters. For
an n-bit block cipher, we denote N = 2. When considering an attack, we denote
by T its total online time complexity, where a unit of time corresponds to an
encryption of a single plaintext. We denote by M = 2" the memory complexity
of the attack in terms of n-bit words, and by D = 2¢ its data complexity in
terms of plaintext-ciphertext pairs. Finally, we denote by T the preprocessing
time complexity of the attack (if the attack does not require preprocessing, then
T=0).

236 I. Dinur

The online and preprocessing time complexities of our attacks throughout
this paper are formulated in terms of the parameters n, k,d, m defined above.
For the sake of convenience, we assume in several parts of this paper that k =
n, which is the case for PRINCE and PRIDE. We note that if x > n, the
attacks we describe have a small penalty of about [x/n] in the time and memory
complexities.5

Since we estimate the practicality of some of our attacks, it is insufficient to
merely compute their time, data, and memory complexities. Indeed, the prac-
ticality of an attack is largely influenced by more subtle properties such as the
number of memory lookups during its execution (which determines whether the
memory has to be stored in RAM, or can be stored on a cheaper hard disk),
and whether the workload of the attack can be easily parallelized (i.e., divided
across different CPUs). Another crucial element is the size of the implementation
circuit, which determines whether the attack can be efficiently realized on cheap
dedicated hardware.

3 Overview of Previous and New Attacks on
FX-Constructions

The new and previously published tradeoffs for FX-constructions are summa-
rized in Table 2. We now compare these attacks at a high level, and then empha-
size their practicality for n = k = 64, focusing on the concrete parameters for
the attacks given in Table 1 that use preprocessing.”

Attacks without Preprocessing. We first examine attacks with no prepro-
cessing, for which an initial chosen plaintext attack was described in [18]. Then,
a known plaintext attack with the same complexity was published in [5] for
D = 2"/2_ and later generalized in [12] to work with any number of known
plaintexts. All of these attacks require M = D memory and seem impractical
for n = k = 64, as they either require impractical data and memory (e.g. for
D = M = 25%), or impractical time (e.g., for D = M = 232 then T' = 26). Inter-
mediate values such as D = M = 28 and T = 280 may seems more practical,
but we note that the large memory of 248 has to be accessed a huge number of
280 times (essentially, for each cipher evaluation). While this can be somewhat
optimized by grouping together the memory lookups, these parameters still seem
completely impractical.

The new attacks we describe in Section 5 show that in the adaptively chosen
plaintext model, we can mount attacks with the same data and time complexi-
ties, and a reduced memory complexity. In particular, for D = 2"/2 our attack
requires negligible memory, while the attacks of [5,12,18] require 2"/2 memory.
For n = k = 64 and D = 28, our attack requires only 224" = 22:48—64 _ 932

5 The ratio between the key size and block size is typically small in modern block
ciphers.

7 We note that optimal choice of parameters and infrastructure to realize an attack
depends of the setting, and there are many more options than listed in Table 1.

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 237

words of memory, which is significantly better than the attack of [12]. In this
case, the time complexity is 28°, which can be considered as marginally practi-
cal, but is still a huge effort put into recovering a single key. Furthermore, as
the data collection cannot be parallelized, obtaining 2*® data is generally not
considered practical. Nevertheless, we still believe that the attack for D = 248
serves as an initial indication that the security margin of PRINCE and PRIDE
is smaller than expected.

Attacks with Preprocessing. We examine the attacks that require prepro-
cessing assuming 2% < 27/2, for which the previously published attack was
given in [14]. This attack has a very efficient online time complexity of 2¢, but
requires 251724 > 2% words of memory. Our attack trades-off this memory at
the expense of increasing the time complexity, and obtains T = 22(x+n—m=15d)

For d > n/2, assuming 2™ < 2°+7~24 we can further reduce the pre-
processing complexity and obtain a more efficient online time complexity of
22(rstn/2=m=d/2) " Concrete parameter sets for ciphers with n = k = 64 are given
in Table 1.

The Practicality of Our Attacks. As we show in sections 6.1 and 6.2,
the online attacks summarized in Table 1 rarely access the memory, which can
be stored on a hard disk. Moreover, the attacks can be easy parallelized, and
although they are conceptually non-trivial, their circuit sizes are almost as small
as the circuits of the attacked FX-constructions. Therefore, the attacks can be
efficiently implemented on dedicated hardware.

As a consequence of the above, we estimate that the online phase of the
attacks in Table 1 (which require at most 264 cipher evaluations and 2°! bytes
of storage) can be realized today by a medium-size enterprize with a budget of
several hundred thousand dollars. This rough estimation is based on the fact that
up to about 24 cipher evaluations can be performed in a few weeks on dedicated
hardware with such a budget [9]. Considering storage, a standard 1-terabyte hard
disk costs about 100 US dollars (as of 2015). Therefore, 25 bytes of storage (or
about 2,000 terabytes) cost roughly 200,000 dollars. Of course, fully realizing an
attack requires additional expenses, but we do not expect them to increase the
overall cost by a significant factor. On the other hand, using the same metric,
we estimate the cost of 267 bytes of storage to be more than 10,000,000,000 US
dollars, making the attack of [14] more expensive than our attacks by a factor
larger than 10,000.

4 Background

The new attacks described in this paper combine several previously published
techniques, which are described in this section.

238 I. Dinur

Table 2. Time-Memory-Data Tradeoffs for FX-Constructions

Reference Data Preprocessing Time| Online Time Memory

[12] 24 < 2" KPT - grtn—d 24
Section 5.1| 2¢ < 27/2 ACP'™T - grtn—d negligible
Section 5.2| 2% > 2"/2 ACPTT - grtn—d 92d—n

[14] 2d S 2n/2 ACPH‘ 2n+n—d 2d 2n+n—2d
Section 6.1| 24 < 27/2 ACPT! grtn—d 22(rtn—m=1.5d) 2m
Section 6.2] 2¢ > 27/2 ACPTT grtn—d 22(stn/2=m=d/2)[gm < ogr+n=2d
Section 6.2 2¢ > 27/2 ACPTf grtn—d grtd—m om > grtn—2d

T Known plaintexts
1t Adaptively chosen plaintexts

4.1 Hellman’s Time-Memory Tradeoff [16] (with Preprocessing)

We summarize Hellman’s classical time-memory tradeoff attack [16] on an n-bit
block cipher Eg, assuming that x = n. In the preprocessing phase, we fix a
plaintext P, and define the function h({0,1}") — {0,1}™ as h(K) = Ex(P).
The goal in this phase is to cover most (more than half) of the key space with
chains defined by iterating the function h. For parameters M’ and T”, we choose
M’ arbitrary starting points for the chains, where each chain is of length T".
We store in a table only the (startpoint, endpoint) pair® of each chain and sort
the table according to the endpoint value. Such a table requires M’ words of
memory, and is referred to as a Hellman table.

After evaluating M’ chains, and reaching the birthday bound (stopping rule)
of T"-M'T" = N, adding additional chains to the table is wasteful. Thus, we can
cover M'T" = N/T' points with M’ words of memory. In order to cover most
of the key space, we use flavors of h, where flavor 4 is defined (for example) as
Rl (K) = h(K)4i. Thus, we use 7" flavors of h, and compute a Hellman table for
each flavor, covering a total of about N/T"-T' = N = 2% keys as required. The
T’ tables are the output of the preprocessing phase, and they require M = M'T’
words of memory, and a total of T=N computation time.

During the online phase, we request the encryption of P under the unknown
key K, Ex(P). In order to recover K, we try to invert it using each of the
Hellman tables by iteratively calculating hlY starting form Ex(P), and search-
ing if the current value is an endpoint in the table. Once we reach an end-
point, we obtain its startpoint, and continue the evaluation, hoping to reach
(R =1 (E}(P)+1i) and to recover K. This process has a time complexity of about
T for each Hellman table. Thus, the total online time complexity is T = 772, and
as M = M'T" and M'T'?> = N, we obtain a time-memory tradeoff of TM? = N2,
or T = 22(r—m),

8 We note that we can save a large fraction of the memory required for startpoint
storage by exploiting the freedom to choose them, as described in [2]. Thus, we
assume that a chain requires a single word of storage.

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 239

Reducing memory lookups using distinguished points. A simple variant of Hell-
man’s algorithm (attributed to Ron Rivest, and later analyzed in [8,22]), stops
each chain once it reaches a set of distinguished points, which are defined accord-
ing to an easily verifiable condition on Al? (K). For example, in case we require
chains of length T’, we define the set of distinguished points to contain the
points whose log(7”) LSBs are zero. With this variant, the length of the chains
is variable and is only defined on average, but this does not result in a significant
penalty on the theoretical time complexity of the attack. On the other hand, the
distinguished points method has a big advantage in practice, as we only need
to access a large Hellman table once for (about) every T” evaluations of Al in
the online phase of the attack. The small number of memory lookups allows the
attacker to store the memory on hard disk, which is much cheaper than RAM.

Parallelization. Since each of the T Hellman tables can be searched indepen-
dently, the computation can be divided across (at most) 77 CPUs, each requir-
ing access to a Hellman table of size M’. Furthermore, each CPU is expected
to access the memory only once during the computation of 7’ time (in order to
find a startpoint that corresponds to an endpoint). Consequently, time-memory
tradeoff algorithms can be implemented relatively cheaply on dedicated hard-
ware [19,22].

For example, in case where x = 64 and we have M = 2*® available words
of memory, then the online algorithm requires 7' = 22(64=48) — 232 time. This
computation can be divided across T' = N/M = 26 processors, each performing
216 operations, and requiring (a single) access to M’ = M /T’ = 232 memory (i.e.,
32 gigabytes).

4.2 Parallel Collision Search [24]

The parallel collision search algorithm was published by van Oorschot and
Wiener [24], reducing the memory required for finding collisions in an n-bit
function F' (compared to trivial algorithms). Given M = 2™ words of memory,
the algorithm builds a chain structure which is similar to a Hellman table. The
chain structure contains 2™ chains, where each chain starts at an arbitrary point
and is terminated at a distinguished point (stored in memory) such that its aver-
age length is 77 = 2("=™)/2 (i.e., the distinguished point set is of size N/T"). As
in the case of a Hellman table, since T7-T"M = N, then every chain is expected
to collide with about one other chain in the structure. Thus, the structure con-
tains about M’ collisions which can be recovered efficiently as shown in [24].
However, as our attacks only use a degenerated variant of this algorithm, this
short description suffices in order to understand the rest of this paper.

4.3 Basic Time-Memory-Data Tradeoff Attacks on the
FX-Construction [18](without Preprocessing)

We describe the basic and well-known chosen plaintext attack of the FX-
construction [18], which is based on the attack of Daemen on the Even-Manour

240 I. Dinur

scheme [10]. We also mention the known plaintext attack with the same com-
plexity on the scheme (see [12]), but we do not describe it here, as it is less
relevant for this paper. On the other hand, the ideas and notation introduced in
this simple attack will be repeatedly used throughout the rest of this paper.

The attack on the FX-construction is based on encrypting plaintexts F;,
and independently evaluating the core function F with values of K and Xj,
while looking for an (¢, j) pair such that P, & K; = X;. In order to detect such a
collision efficiently, we cancel the effect of the masking keys by defining functions
¢1(P1) and ¢2(K7 XJ) such that Pz @Kl = Xj 1mphes that ¢1(P1) = QSQ(K, X])
These functions enable us to efficiently filter the (4, j) candidates.

For a general FX-construction, we pre-fix an arbitrary value A # 0, set
P/ £ P ®Aand Xj £ X;® A, and define:

IX(P)2C,®Cl = FXk Kk, 1 (P) @ FXK Kk, K0 (P © A)

5 (K, X;) 2Y; @Y = Fi (X)) @ Fr(X; @ A).

Thus, P; @ K; = X implies that FX(P) = FXk x, 16, (P) ® F Xk k¢, 16, (P ®
A=K &Fk(Ki®oP) oK@ Fg(Ki®P;,®A) =Fr(X;)®Fr(X;®A) =
FX(K, X;) as required. Note that each collision gives candidates for the full
key (K,K1 = P, & X;,Ky = C; ®Yj), which can be easily tested using trial
encryptions.
For an SFX-construction in which Ky = A(K;) (such as PRINCE and
PRIDE), the functions ¢1(P;) and ¢2(K, X;) can be simplified to use single

pairs of (P;, C;) and (X,Y;), respectively. Formally, we define:

TEX(P) 2 A(P) @ C; = A(P) © FXk k, 1, (Pi)

SIN(K,X;) £ AX;) @ Y; = A(X)) @ Fr(X;).

Thus, P, ® K; = X, implies that ¢77X(P;) = A(P) @ FXk k, 1, (P) =
AP)P K8 Fx(K1 8 P)=AP e K1)® Fr(K1 8 P) = AX;) 8 Fr(X;) =
#3FX (K, X;) as required.

The details of the attack are given in Appendix A. It has a memory com-
plexity of D and an expected time complexity of max(2D,25+t"~4+1) on FX-
constructions. For SFX-constructions, the data and time complexities of the
attack are reduced by a factor of 2.

4.4 Time-Memory-Data Tradeoff Attacks on Even-Mansour [14]
(with Preprocessing)

We now summarize the time-memory-data tradeoff by Fouque et al. on the Even-
Mansour scheme, which uses a one-time preprocessing phase. The main idea of
the attack is to request plaintexts P;, and evaluate the permutation F' with
values X such that a collision P;® K; = X can be efficiently detected. In order
to do so, we request the data P; and evaluate values X; in the form of chains,
as in the parallel collision search algorithm [24].

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 241

Although we cannot immediately detect that P; & K7 = X, the main obser-
vation of Fouque et al. is that we can independently add to P; and X; the same
value ¢1(P;) = ¢2(X;) (for the functions ¢1, @2 defined above for the FX and
SFX constructions, where the key of the core cipher K is simply be ignored),
which guarantees that in case P; ® K; = X, then P, ® K| = Xj+1.9 Hence,
the functions we iterate are defined as

P = D1 (F;) £ P o1(F;)
Xjr1 2 02(X;) 2 X; ® da(—, X;).

Note that ¢; and @, are generally non-bijective mappings (rather than permu-
tations), and their behaviour (and in particular, the analysis of their collision
probability) can be modeled using random functions, assuming that the under-
lying cipher does not behave unexpectedly.'?

The downside of the approach of iterating the defined functions is that the
attack becomes an adaptively-chosen plaintext attack, as P,y; = P; @ ¢1(FP;)
depends on C; and cannot be computed in advance (both for general FX-
constructions and SFX-constructions).

The attack works by evaluating chains during the preprocessing phase, where
each chain is iterated using @, and terminated at a distinguished point that is
stored in memory. During the online phase, we evaluate a chain iterated using @1
and terminated at a distinguished point. The online distinguished point is matched
with the ones stored in memory, where a match allows to recover the key.

The full details of the attack are described in Appendix B. The time and
data complexities of the online phase of the attack are both about T'= D = 2¢
for SFX-constructions and 29*! for FX-constructions. Its memory complex-
ity is M = 27724 and it requires preprocessing time of T = 277 for SFX-
constructions and 2N/D = 2"~ 9+ for FX-constructions.

4.5 Time-Memory-Data Tradeoff attacks on the FX-
Construction [14] (with Preprocessing)

As described in [14], we can easily generalize the previous attack on Even-
Mansour to FX-constructions in which the internal permutation is keyed. We
simply iterate over the 2" keys of the internal permutation, and preprocess
each one separately by computing and storing its distinguished points. In total,
we have M = 2% .27n72d — 98+n=2d ywhile the preprocessing time is about
T = 25+tn=d for SFX-constructions and 7' = 25+7—d+1 for FX-constructions.
The online phase of the attack is essentially the same as in the previous attack,
i.e., T = D = 2¢ for SFX-constructions and 2¢*! for FX-constructions.

9 The paper of [14] refers to this situation as the chains becoming parallel.

10" An exception is the specific case of SFX-constructions where the masking keys are
equal (the affine mapping A is the identity), and hence @1 and @2 defined with the
corresponding &7FX and ¢>2S FX are permutations. Thus, in this particular case, we
use ¢ and P, defined with the more general ¢I'* and ¢2'X | resulting in slightly less
efficient attacks.

242 I. Dinur

5 New Time-Memory-Data Tradeoff Attacks on the
FX-Construction without Preprocessing

In this section, we describe our new time-memory-data tradeoff attacks on the
FX-construction, without using a preprocessing phase. The attacks are described
in the most general form, i.e., they are applicable to general FX-constructions
(exploiting the general definitions of @1, ¢2, given in Section 4.3). However, as
this paper focuses on the concrete SFX-constructions PRINCE and PRIDE, we
directly analyze only the variants of the attacks which are optimized for SFX-
constructions (i.e., assuming ¢; = ¢§FX ¢y = ¢57X). In order to calculate
the complexity parameters for general FX-constructions, we simply multiply the
data and time complexities of the attack by a factor of 2, as in the attacks of
sections 4.3, 4.4 and 4.5.

5.1 The Case of D < 27/2

The attack for the case of D < 2"/2 can be considered as a straightforward
extension of the attack of [14] on the FX-construction (described in Section 4.5).
However, [14] focused on attacks with preprocessing on the FX-Construction,
and attacks without preprocessing were not described.

We extend the iteration function @, (defined in the Even-Mansour attack of
the FX-construction in Section 4.4) by adding the key of the core cipher as a
parameter. The iteration functions are now defined!! as

Pip1 £ ®1(P) £ P, @ ¢1(P)
Xj+1 £ QQ(K, Xj) £ XJ ©® ¢2(K, X])
The attack is described below:

1. Build a chain of plaintexts, starting from an arbitrary plaintext,
extended using the iteration function P,y; = @1(F;), and terminated
at a distinguished point P for which the log(D) LSBs of ¢1(P) are 0
(as in the attack of Appendix B). Store the endpoint P, and its value
b1 (P).

2. For each possible value of K:

(a) For N/D? different starting points Xo:

i. Build a chain starting from Xj, defined according to X;11 =
@,(K, X;), and terminated at a distinguished point X for which
the log(D) LSBs of ¢ (K, X) are 0. If ¢ (K, X) = ¢1(P), test the
full key K, K1, K derived from P and X using a trial encryption.

1 Where ¢1 and ¢2 are defined in Section 4.3.

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 243

For the correct value of K in Step 2, we expect a collision between a node in
the online chain (of average length D) and the (expected number of) N/D nodes
evaluated offline. As this collision causes the corresponding chains to merge, it
will be detected at the next distinguished point, allowing to recover the key.

The expected data complexity of the attack is D = 2¢, while its memory com-
plexity is negligible. The total number of distinguished points that we compute
in Step 2 is about 21" ~2¢_ requiring about 2%+n—2d+d — 2r+n—d computation
time. For each such distinguished point, we do not perform more than one trial
encryption, and therefore the expected total time complexity of the attack is
2r€+n—d.

Consequently, we obtain about the same data and time complexities as the
attack described in Section 4.3, but (almost) completely nullify the memory
complexity in the adaptively chosen plaintext model.

5.2 The Case of D > 2n/2

The attack for D < 2"/2 has to be adapted for the case of D > 2"/27 as the
online chain (built in Step 1 of the previous attack) is expected to cycle (i.e.,
collide with itself) after about 2*/2 evaluations, and thus cannot cover more than
27/2 nodes. Therefore, we build the structure of chains online, while evaluating
offline only one chain per key.

We note that while this attack can also be viewed as an extension of the
attacks of [14], it is less straightforward, as all the attacks of [14] use D < 2"/2.
The reason is that the attacks of [14] are based on the basic Even-Mansour
attack (described in Section 4.4), for which x = 0 and there is no gain in using
D > 27/2 (as this increases the total time complexity of the attack). On the
other hand, we observe that for FX-constructions, we can indeed benefit from
D > 2"/,

1. For D?/N different starting points Pp:
(a) Build a chain of plaintexts, starting from Py, extended using the
formula P11 = &1 (F;), and termlnated at a distinguished point P
for which the log(/N/D) LSBs of ¢ (P P) are 0. Store the endpoint P
in a list L, sorted according to ¢1(P).
2. For each possible value of K:
(a) Build a chain starting from an arbitrary value Xy, defined according
to X411 = (K, X;), and terminated at a distinguished point X for
which the log(N/D) LSBs of ¢o(K, X) are 0. Search for ¢a(K, X)
in the list L and for each match with some ¢4 (P) recover P, obtain
a suggestion for the full key K, K;, Ky and test it using a trial
encryption.

The chain structure of plaintexts covers D?/N - N/D = D nodes on average,
and it is expected to collide with the chain of values (of expected length N/D)

244 I. Dinur

for the correct K, allowing to recover it. The data complexity of the attack is
D = 24, while its memory complexity is M = D? /N = 224",

Computing the distinguished points online and offline requires
max(29,26tn=4) = 2r+n=d time (assuming x > n). Two arbitrary distin-
guished points match with probability 2(»—49-" = 2-d (as the n — d LSBs
of distinguished points always match). We store a total of 229~" distin-
guished points in L, and evaluate a total of 2% distinguished points in Step 2.
Thus, the expected number of matches (resulting in trial encryptions) is
o(rt2d=n)=d _ gr-ntd < grin=d (35 d < p), and the expected total time
complexity is 2°t"~?¢ dominated by the computation of the distinguished
points in Step 2.

Consequently, we obtain (about) the same time complexity as the basic attack
of Section 4.3, but gain a factor of 2¢/(224=") = 2"~4 in memory.

6 New Time-Memory-Data Tradeoff Attacks on the
FX-Construction with Preprocessing

In this section, we describe our new time-memory-data tradeoff attacks on the
FX-construction, taking advantage of a preprocessing phase. As in Section 5,
we directly analyze only the attack variants which are optimized for SFX-
constructions (although the attacks are described in the most general form). For
general FX-constructions, we simply multiply the data and time complexities of
the attacks by a factor of 2.

6.1 The Case of D < 27/2

It is possible to apply standard time-memory-data tradeoffs for stream ciphers |3,
4] to the FX-construction in the chosen plaintext model (and to some extent,
also in the known plaintext model). However, the most interesting tradeoffs are
obtained in the adaptively chosen plaintext model, in which we combine the
attacks of the previous section with techniques borrowed from stream cipher
cryptanalysis.

We use Hellman’s time-memory tradeoff algorithm in order to cover during
the preprocessing phase of the attack, the 2°+t"=24 pairs of (K distinguished
point) that were computed in Step 2 of the attack of Section 5.1. These pairs
were all stored in memory in the attack of [14] (described in Section 4.5), which
required (at least) 2" words of storage. This memory complexity is completely
impractical for standard values of k > 64, and our techniques trade it off with
the online time complexity.

The idea of using Hellman’s time-memory tradeoff algorithm to cover special
points was first published in cryptanalysis of a certain type of stream ciphers,'?
and we now show how to adapt it to the FX-construction. In order to cover
the pairs of (K ,distinguished point), we define a mapping between the 2%+7—24

12 Refer to tradeoffs for stream ciphers with low sampling resistance [3,4].

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 245

pairs, denoted by ho (K, X). One problem that we need to overcome is that X is
an n-bit word, and does not contain the sufficient x +n —2d > n bits'® in order
to define this mapping. Furthermore, the mapping cannot directly depend on K,
as in the online phase we search the Hellman tables without knowledge of the
online key. Thus, in order to collect more data, we simply continue evaluating
the chain by applying @, to (K, X) sufficiently many times, until we collect the
% + n — 2d bits required in order to define the Hellman value of (K, X). This
value will be used in order to determine the next (K ,distinguished point) pair,
i.e., the output of ho (K,X). The algorithm of the Hellman mapping ha(K, X')
is given below, assuming that x = n for the sake of simplicity. We note that in
cases where k > n, we simply apply @5 more times in order to collect more data
(the case of k < n can be handled by truncation).

1. Compute the 2n-bit Hellman value of (K, X) by first computing the
next 2 points in the chain X’ = @,(K, X) and X" = &,(K, X"). The
Hellman value of (K, X) is defined as (¢o(K, X"), 2 (K, X")).

2. Interpret the Hellman value as (Z, K"®®') = (¢o(K, X'), p2(K, X"))
(note that both Z and K™** are n-bit words). Compute a chain of (aver-
age) length D = 2%, using the iteration function @, (K"t X), starting
from X = Z, and terminating at a distinguished point (K7™e*t Znet)
(i.e., the log(D) LSBs of ¢o(K", Z"e*t) are zero). Output hy (K, X) =
(Knezt’ Zne:vt).

Once the mapping ho (K, X) is well-defined, we can use Hellman’s preprocess-
ing algorithm to cover a space of 257724 points (pairs) (K, X). As the average
time complexity of one application of hs (K, X) is D, the total time complexity
of the preprocessing phase is 7' = D - 2547 /D2 = 25+7=d_Since hy is defined on
(at most) 2n bits, we can store M /2 chains with M words of memory. However,
in case D ~ 2"/2 and k < n, we essentially need to cover a space of at most 2"
(we cover one distinguished point per key on average), and thus we can store a
larger number of M chains with M words of memory.

We now point out a few technical issues about the preprocessing algorithm:
since we are using Hellman’s algorithm to cover 257" ~24 points, the (average)
length of the Hellman chains is 257" ~2¢=™ (determined according to the avail-
able memory M = 2™). In order to terminate a Hellman chain (computed using
hs on the space of kK + n — 2d bits), we need to define a subset of “Hellman
distinguished points”, containing pairs of (K, X). Such a subset (which deter-
mines when to terminate an iteration chain of hy) can be defined (for example)
according to the LSBs of the Hellman value (¢2(K, X'), ¢2(K, X")), computed
in Step 1 of the algorithm above. The “Hellman distinguished points” should be
contrasted with the distinguished points defined for the iteration on the n-bit

13 We consider k =n and d < n/2, and thus Kk +n — 2d > n.

246 I. Dinur

space with a fixed key using @, (such distinguished points are defined accord-
ing to the LSBs of ¢o(K, X)). In order to avoid confusion, we refer to chains
and distinguished points computed using ho as Hellman chains and Hellman
distinguished points, whereas the ones computed using ¢; and &, are simply
referred to as (standard) chains and distinguished points.!* An additional tech-
nical issue is that in order to cover the full space of 251" ~2¢ points, we need to
define flavors of hy (namely, h[;]), and this can be done (for example) by defining
W = oy (K, X) + (i, 4).
The online algorithm is given below.

1. Compute a chain of (approximately) D points using the iteration func-
tion ¢1, starting from an arbitrary plaintext, and terminating at a dis-
tinguished point P, where the log(D) LSBs of ¢;(P) are 0.

2. Given P, compute the corresponding Hellman value (91(P"), p1(P"))
similarly to the preprocessing phase, by computing the next 2 points in
the chain P’ = &, (P) and P” = &,(P’).

3. Invert (K',X') = (¢1(P’), ¢1(P")) using the Hellman tables, obtain a
suggestion for the full key (K, K1, K>3) and test it.

The data complexity of the attack is D, and according to Hellman’s time-
memory tradeoff curve, its average time complexity is 77 = (N'/M’)? evalua-
tions of hy, where N/ = 2%+7=2d ig the size of the covered space and M’ =
M/2 = 2™~ is the number of Hellman chains stored in memory. Thus 77 =
(2rtn=2d jogm—1)2 _ 92(ktn-—m=2d+1) "4nd since each evaluation of hy requires
D = 29 time, then T = 22(stn—m=15d+1) \When D ~ 2"/2 and k < n, we can
use the M memory words more efficiently and obtain a (slightly) improved time
complexity of T = 22(r+n=—m=1.5d)

The Difference Between Tradeoffs for FX-Constructions and Stream
Ciphers. As can be seen from the tradeoff above for FX-constructions, the
effective key size is reduced by a factor of 2'°¢ when obtaining 2¢ data. On the
other hand, for stream ciphers, the effective hidden state size is only reduced
by a factor of 2¢. The reason for this is that in the case of stream ciphers,
the state update function is typically a permutation.'® On the other hand, the
corresponding function in the case of FX-constructions is @1, which is a non-
bijective function rather than a permutation. Iterating @, a large number of
times results in entropy loss due to collisions in its functional graph. This reduces
the number of points that we need to search in the Hellman tables to recover

' Qur definitions are related to the definitions of full name,output name, and short
name in the context of stream ciphers with low sampling resistance [3].

5 For example, many stream ciphers are built using feedback shift registers, and it is
possible to run them backwards in a deterministic way.

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 247

the key, and improves the complexity of the online attack compared to the case
of stream ciphers.

Implementation for n = kK = 64. In the case of PRINCE and PRIDE, then
n = k = 64. We assume that we have 2™ = 248 words of memory (2°! bytes) and
we can obtain 2% = 232 adaptively chosen plaintexts. In total, the online time
complexity of the algorithm is 22(64+64-48-48) — 964 corresponding to Attack
1 in Table 1. Similarly to the example given at the end of Section 4.1, as the
Hellman chains cover a space of size 2% = 254 points, the 254 computation can
be divided across 216 CPUs, each requiring (a single) access to a memory of 232
words (and it can thus be stored on a hard disk). Each CPU invokes hy about 216
times, where each invocation requires 232 cipher evaluations. Thus, each CPU
performs about 248 cipher evaluations in total.

6.2 The Case of D > 2n/2

As in the case considered in Section 5.2, we need to adapt the previous attack
to efficiently exploit D > 2™/2 data. Similarly to the case of D < 2"/2, the tech-
niques we use for D > 2™/2 are related to those of [3,4]. However, as we describe
next, the method in which we request the data and optimize the parameters in
this setting are different from the stream cipher setting (where the method in
which the keystream is obtained does not seem to influence the complexity of
the attack).

We consider two different adaptation methods to the previous attack of D <
27/2 In the first method, we obtain the data using chains of (maximal) length
27/2 In order to ensure that these chains do not merge, we define flavors of
@1 and P, (which should be contrasted with the Hellman flavors of hs). Thus,
we define 247/2 flavors, and build Hellman tables for each one. During the
online phase, we obtain one distinguished point per flavor and search it in the
corresponding Hellman tables. One can observe that in terms of the time-memory
tradeoff, the flavors of ¢ and @, play a similar role to the flavors of ho in the
attack with d = n/2. Consequently, we obtain the same time-memory tradeoff
as for d = n/2,ie., T = 22(rtn/4=m) 16 Op the other hand, the preprocessing
complexity is reduced to 7' = 25+7—d,

An Improved Tradeoff. The attack above is a direct extension of the tradeoff
obtained for D = 2"/2 which covered offline, 2 distinguished points using hs.
We now show how to obtain an improved attack, using a simple and yet subtle
and non-trivial observation. We notice that for D > 2%/2, we can use chains of
length N/D < 2"/2. These chains are shorter than the ones used for D = 27/2
data, and are of the same length as in the attack with only 24" = 9n=d data. At
first, it may not be clear why using shorter chains results in a better attack. As
we show next, the reason for this is that we can use the memory more efficiently
than in the case of longer chains.

16 There are additional restrictions to this curve, discussed at the end of the section.

248 I. Dinur

We first compare our case of 2¢ > 27/2 data and the case of 2d" = gn—d
data, which use the same chain length. The difference is that in the case of
2d' — gn—d data, we obtained only one distinguished point online, whereas now
we have 24— (n=d) = 92d—n g;ch distinguished points, and we need to cover only
one of them offline in order to succeed. Thus, in the attack with 2d' = gn—d
data, we had to cover offline, the large space of grtn—2d’ distinguished points
using Hellman tables, whereas now we need to cover only 2r+n—2d'—(2d—n) _
ortn—2(n—d)—(2d=n) — 9 {istinguished points. Namely, we need to cover about
one distinguished point for every key K of the core cipher, as in the attack above.
However, the crucial observation is that the space of distinguished points is of
the same size as in the attack with 2¢° = 27~ data. This space is larger than
the space for D = 2/2, implying that we can build larger Hellman tables and
use the memory more efficiently compared to the (non optimal) attack above
(which is a direct extension of the case of D = 2"/2).

A simple way to compute the improved tradeoff is to start with the formula
T = 22(r+n'=m=15d") " calculated for the attack with d' < n/2. Then, we plug in
d =n—dand n’ =n— (2d — n), as the space size that we cover by Hellman
tables is reduced by a factor of 22¢=" (which is the number of distinguished points
obtained online). In other words, the tradeoff T = 2+n—(2d=n)—m=1.5(n—d) _
92(rtn/2=m=d/2) i5 obtained by reducing the number of Hellman tables (by a
factor of 229=") compared to the attack that used d’ = n — d. However, the
attack cannot use less than 1 Hellman table, and it is therefore necessary to
derive an expression for this variable, which restricts the tradeoff. Interestingly,
the simplest method that we found to compute the number of Hellman tables
is to redo the low-level computation, which also gives a better understanding of
the full attack.

For parameters 7" and M’, we build a Hellman table of distinguished points
(using the function hy) with the stopping rule of

T .7 M = 9rtn—2d" _ gr—n+2d (1)

(after which the Hellman chains start colliding extensively).!” We need to cover
about 2% distinguished points with H Hellman tables, namely

HT'M' =2~ (2)

Since each evaluation of hy requires 2"~ % time, the preprocessing time complex-
ity is T = ortn—d (as in the non-optimized attack above). The total memory
complexity of the attack is

M =HM (3)
and the total online time complexity is calculated as follows: searching a single
Hellman table requires 7" evaluations of he, i.e., a total of 7" - 2"~ % time. For
each of the 229~ distinguished points, we need to search the H Hellman tables,
and thus the total online time complexity is

T=T1 2" H.22 " =7'H.2 (4)

17 Note that the stopping rule in the previous attack was T' - T'M' = 2% < 2r—n+2d,

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 249

I z21‘!,7(1 |

92d—n

2232323 4

——— mpnd ————

Data chains

MY e e e e .+ =

Hellman tables

Fig. 2. Time-Memory-Data Tradeoff with Preprocessing for D > 2"/2

We calculate the tradeoff according to (3) and (4) by evaluating T - M? =
T'H-2% (HM")? =24. H3.T"-(M’)%. From (2), we get T- M? = 2~+d. {2 M.
Furthermore, from (1) and (2), we obtain

H2 . M/ _ 22n7(nfn+2d) _ 2K+n72d. (5)
Thus, T - M? = 2rtdtrtn=2d _ 92rtn—d o we obtain the tradeoff

T = 22(ﬁ+n/2—m—d/2)

(which was obtained above in a different way). This tradeoff efficiently exploits
more than 2"/2 data, unlike the previous tradeoff T = 22(x+n/4=m)

As noted above, a condition that we have to impose on this tradeoff is that
the number of Hellman tables is at least 1, i.e., H > 1. In order to calculate H,
we use (3) and (5), obtaining H = 2¢+7~24=™_Since H > 1, the tradeoff above
is valid only for m < k +n — 2d.

When we want to utilize 2" memory for m > k+n—2d, then we use only one
Hellman table (i.e., H = 1), and we are forced to stop the Hellman chains before
the stopping rule (77)2 - M’ < 2¢~"%24 (1). Namely, we have M’ = M = 2™ and
T'M' = 2%, implying that 7" = 2°~™, and using (4), T = T" - 2¢ = 2r+d—m,
Note that (T/)2 M = 22(n—m) .9m — 92k—m - 22&—(n+n—2d) — 2m—n+2d, S0
indeed we do not violate the stopping rule (1).

Finally, we observe that a similar restriction on m also applies to the previous
tradeoff T' = 22(++7/4=m) for d > n /2, and it is possible to show that the tradeoff
obtained here is always at least as efficient as the previous one.

Implementation for n = k = 64. We assume that we have 2™ = 248
words of memory and we can obtain 2¢ = 240 adaptively chosen plaintexts. In

250 I. Dinur

total, the online time complexity of the algorithm is T = 22(x+n/2=m=d/2) —
22(64+32-48-20) — 956 corresponding to Attack 2 in Table 1. In this case H =
2rtn—2d—m — 1 je. we have a single Hellman table. As we search the table with
22d—n — 916 ({istinguished points, the 2°¢ computations can be divided across
(up to) 2'¢ CPUs, each performing 25616 = 240 computations, and accessing
the memory only once (and it can therefore be stored on a hard disk).

7 Conclusions

In this paper, we proposed new generic time-memory-data tradeoffs for FX-
constructions, and optimized them for the recent proposals PRINCE and PRIDE.
Some of our attacks are surprisingly efficient, and despite their limitations, we
believe that they demonstrate the small security margin of PRINCE and PRIDE
against practical attacks. In the extended version of this paper [11], we show that
PRINCE and PRIDE could counter these generic attacks with little overhead by
incorporating the masking keys into the key schedule of the core ciphers. This
suggests that the DESX solution proposed by Ron Rivest in 1984 (in order to
provide better security for the widely-deployed DES) may be less suitable for
new ciphers.

Acknowledgments. The author would like to thank Orr Dunkelman and Adi Shamir
for helpful discussions on this work.

A Details of the Basic Time-Memory-Data Tradeoff
Attack on the FX-Construction [18] (without
Preprocessing)

We give the details of the basic attack using the general functions ¢ (P;) and
¢2(K, X;), defined in Section 4.3.

1. Obtain the encryptions of D arbitrary values P;, denoted by C;. For gen-
eral FX-constructions, also obtain the D additional encryptions required
to calculate ¢ X (P;), by asking for the encryptions of P/ = P;®A. Store
(P;,C;) in a list L, sorted according to ¢1(F;).

2. For each possible value of K:

(a) For N/D different values of X;:

i. Compute ¢o(K, X;) by computing ¥; = Fi(X;) (for a general
FX-construction, also compute Fx (X; & A)).

ii. Search ¢o(K,X;) in L. For each match, retrieve (P;, C;), and test
each of the key candidate triplet (K, K1 = P& X;, Ko = C;®Y))
using trial encryptions. If a trial encryption succeeds, return the
corresponding full key (otherwise return to Step 2.(a)).

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 251

According the the birthday paradox, for the correct value of K in Step 2, we
expect a pair (4,) such that P; & K1 = X;. Therefore, we expect to obtain a
match in L in Step 2.(a).ii between ¢1 (P;) and ¢2 (K, X;) and recover the correct
K, Ky, K.

For general FX-constructions, the data complexity of the attack is 2D chosen
plaintexts, and its memory complexity is M = 2D n-bit words, required in
order to store L. In order to compute the time complexity, we note that for
an arbitrary value of the n bits of ¢2(K, X;), we expect at most one match in
L (which contains at most 2™ elements). Thus, the expected time complexity
of Step 2.(a) is about 2, implying that the expected time complexity of the
full attack is maz(2D, 251"~ 4+1) (ie., we can efficiently exploit D < 2(++n)/2
data). For SFX-constructions, the data and time complexities of the attack are
reduced by a factor of 2 (note that in this case, the attack requires only known
plaintexts).

B Details of the Time-Memory-Data Tradeoff Attack on
Even-Mansour [14] (with Preprocessing)

We assume that we can obtain the encryptions of about D < 2"/2 adaptively-
chosen plaintexts during the online phase. During the preprocessing phase, we
use the preprocessing iteration function @5(X) (defined in Section 4.4) in order
to build a structure containing N/D? chains. Each chain is evaluated from
an arbitrary starting point, and terminated at a distinguished point X for
which the log(D) LSBs of ¢(X) are zero. Thus, the average chain length is
D, implying that the time complexity of preprocessing is T = N/D = 2n—d
for SFX-constructions and 2N/D = 2"+l for FX-constructions. For each
chain in the structure, we store in memory only the endpoint'® X , and sort
the chains according to their values QSQ(X). Thus, the memory complexity is
about M = N/D? = 2n—2d,

During the online phase, we evaluate a single chain of (expected) length D,
starting for an arbitrary plaintext. The chain is defined according to the online
iteration function @4 (P), and is terminated at a distinguished point P for which
the log(D) LSBs of ¢, (]5) are zero. Once a distinguished point is reached, we
search for it in the structure, and for each match, we obtain and test the key
suggestions for K7, Ko. Note that unlike Hellman’s original attack, we directly
recover the key from the distinguished points stored in the structure, without
the need to further traverse the chains (and thus we do not need to store any
information about their startpoints).

As the offline structure covers about 2"~ values of X ; and the online chain
contains 2¢ values of P;, we expect a collision P; @ K| = X;. The collision
implies that ¢1(P;) = ¢2(X;), which causes the two corresponding chains to
merge and reach distinguished points with the same value. This distinguished

18 The structure is somewhat different from a Hellman table, for which we also store
information about the startpoints of the chains.

252 I. Dinur

point is recovered in the online phase and allows to recover the key K7, K5. Thus,
the time and data complexities of the online phase of the attack are both about
T = D = 2¢ for SFX-constructions and 2¢*! for FX-constructions.

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalgin, T.: Block
Ciphers — Focus on the Linear Layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57—76. Springer, Heidelberg
(2014)

2. Barkan, E., Biham, E., Shamir, A.: Rigorous Bounds on Cryptanalytic
Time/Memory Tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 1-21. Springer, Heidelberg (2006)

3. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASTACRYPT 2000. LNCS, vol. 1976, pp. 1-13.
Springer, Heidelberg (2000)

4. Biryukov, A., Shamir, A., Wagner, D.: Real Time Cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1-18. Springer, Heidelberg
(2001)

5. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589-606. Springer, Heidelberg (2000)

6. Bitcoin network graphs. http://bitcoin.sipa.be/

7. Borghoff, J., et al.: PRINCE — A Low-latency Block Cipher for Pervasive Com-
puting Applications. In: Wang, X., Sako, K. (eds.) ASTACRYPT 2012. LNCS, vol.
7658, pp. 208-225. Springer, Heidelberg (2012)

8. Borst, J., Preneel, B., Vandewalle, J.: On the Time-memory Tradeoff Between
Exhaustive Key Search and Table Precomputation. In: Proceedings of 19th Sym-
posium in Information Theory in the Benelux, WIC, pp. 111-118 (1998)

9. COPACOBANA fags. http://www.copacobana.org/faq.html

10. Daemen, J.: Limitations of the Even-mansour Construction. In: Imai et al. (eds.)
[17], pp. 495-498

11. Dinur, I.: Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions with
Applications to PRINCE and PRIDE. Cryptology ePrint Archive, Report 2014/656
(2014). http://eprint.iacr.org/

12. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-
Mansour Scheme Revisited. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 336-354. Springer, Heidelberg (2012)

13. Even, S., Mansour, Y.: A Construction of a Cioher From a Single Pseudorandom
Permutation. In: Imai et al. (eds.) [17], pp. 210-224

14. Fouque, P.-A.; Joux, A., Mavromati, C.: Multi-user Collisions: Applications to
Discrete Logarithm, Even-Mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.)
ASTACRYPT 2014. LNCS, vol. 8873, pp. 420-438. Springer, Heidelberg (2014)

15. Giineysu, T., Kasper, T., Novotny, M., Paar, C., Rupp, A.: Cryptanalysis with
COPACOBANA. IEEE Trans. Computers 57(11), 1498-1513 (2008)

16. Hellman, M.E.: A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions on
Information Theory 26(4), 401-406 (1980)

17. Imai, H., Rivest, R.L., Matsumoto, T. (eds.): ASTACRYPT 1991. LNCS, vol. 739.
Springer, Heidelberg (1993)

http://bitcoin.sipa.be/
http://www.copacobana.org/faq.html
http://eprint.iacr.org/

18.

19.

20.

21.
22.

23.

24.

Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions 253

Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252-267. Springer,
Heidelberg (1996)

Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Time-Memory Trade-Off
Attack on FPGA Platforms: UNIX Password Cracking. In: Bertels, K., Cardoso,
J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 323-334. Springer,
Heidelberg (2006)

National Institute of Standards and Technology. Recommendation for Key Man-
agement - Part 1: General (revision 3). NIST Special Publication 800-57 (2012)
Rivest, R.L.: DESX (1984) (never published)

Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: A Time-Memory
Tradeoff Using Distinguished Points: New Analysis & FPGA Results. In: Kaliski,
B.S., Kog, C.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 593-609.
Springer, Heidelberg (2002)

The PRINCE Team. The PRINCE Challenge (2014). https://www.emsec.rub.de/
research /research_startseite/prince-challenge/

van QOorschot, P.C.;, Wiener, M.J.: Parallel Collision Search with Cryptanalytic
Applications. J. Cryptology 12(1), 1-28 (1999)

https://www.emsec.rub.de/research/research_startseite/prince-challenge/
https://www.emsec.rub.de/research/research_startseite/prince-challenge/

A Generic Approach to Invariant Subspace
Attacks: Cryptanalysis of Robin,
iSCREAM and Zorro

)

Gregor Leander!®™, Brice Minaud?, and Sondre Rgnjom?

! Horst Gortz University for IT Security, Ruhr-Universitit Bochum,
Bochum, Germany
gregor.leander@rub.de
2 Agence Nationale de la Sécurité des Systemes d’Information, Paris, France
brice.minaud@gmail.com
3 Nasjonal sikkerhetsmyndighet, Oslo, Norway
sondrer@gmail.com

Abstract. Invariant subspace attacks were introduced at CRYPTO
2011 to cryptanalyze PRINTCIPHER. The invariant subspaces for
PRINTCIPHER were discovered in an ad hoc fashion, leaving a generic
technique to discover invariant subspaces in other ciphers as an open
problem. Here, based on a rather simple observation, we introduce a
generic algorithm to detect invariant subspaces. We apply this algo-
rithm to the CAESAR candidate iSCREAM, the closely related LS-
design Robin, as well as the lightweight cipher Zorro. For all three candi-
dates invariant subspaces were detected, and result in practical breaks of
the ciphers. A closer analysis of independent interest reveals that these
invariant subspaces are underpinned by a new type of self-similarity prop-
erty. For all ciphers, our strongest attack shows the existence of a weak
key set of density 2732, These weak keys lead to a simple property on
the plaintexts going through the whole encryption process with prob-
ability one. All our attacks have been practically verified on reference
implementations of the ciphers.

Keywords: Cryptanalysis - Lightweight cryptography - Invariant sub-
space - Self-similarity - iSCREAM - LS-designs + Zorro - CAESAR

Introduction

Block ciphers are one of the most essential cryptographic primitives. Our under-
standing of how to build secure block ciphers has greatly advanced in the last
20 years. Nowadays, analyzing a given block cipher with respect to a large class
of non-trivial attacks, including linear and differential attacks and their vari-
ants, is a well-understood process for a large class of block ciphers. However,

G. Leander—The work of Gregor Leander was funded by the BMBF UNIKOPS
project.

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 254-283, 2015.
DOI: 10.1007/978-3-662-46800-5_-11

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 255

when it comes to designing block ciphers with strong performance requirements,
often less conservative approaches are chosen. Examples of such performance
requirements that have recently been studied extensively include low hardware
footprint (e.g. PRESENT [6], LED [20], KATAN [10]), low memory consumption
on small embedded processors (e.g. ITUBee [21], SPECK [5], PRIDE [2]), low
latency (e.g. PRINCE [7]) and ease of side-channel protection (e.g. Zorro [14],
LS-Designs [15]).

In order to fit within constrained settings, many of these ciphers feature
innovative designs: they may rely on simpler round functions, or minimal key
schedules. While in most cases, guarantees against traditional linear or differen-
tial attacks are still offered, the simpler structure of many of these ciphers may
lend itself to new attacks. Careful cryptanalysis is required in order to assess the
security of these new designs; in this process, new techniques have emerged.

One such technique is the invariant subspace attack, introduced in [22] for
the cryptanalysis of PRINTCIPHER. The general idea behind this attack is the
following: assume that the round function of a cipher maps a coset A of some
vector subspace of the inner state to a coset B of the same space, and a fixed
key belonging to A — B is added in every round. Then the set A is preserved
by the round function, and hence remains stable through the whole encryption
process. This property holds for a large set of keys in PRINTCIPHER, breaking
the cipher in a practical setting. This type of attack seems particularly well-
suited to substitution-permutation networks (SPN) with a minimal key schedule
or cryptographic permutations with highly structured round constants.

Invariant subspace attacks are unusual in that they rely on an unexpected
form of symmetry in the round function, and yield attacks that are independent
of the number of rounds. On the other hand, the same attributes are shared by
attacks based on self-similarity properties. These properties were first formally
defined in [4] to study alternative descriptions of AES, and later used in [8] to
cryptanalyze the SHA-3 candidate Lesamnta and the lightweight cipher XTEA.

Interestingly, despite its fundamental nature, the understanding of symme-
tries and invariant subspaces, in block ciphers or cryptographic permutations,
is rather limited. The invariant subspace attack on PRINT CIPHER was found
in an ad hoc fashion and no general approach to detect or avoid such invariant
spaces is known. This is even more surprising as for more involved attacks like
differential and linear attacks and their variations our general understanding of
detection and avoiding those attacks by design is much more evolved.

Our Contribution. In this paper we aim at increasing the general under-
standing of invariant subspaces. For this purpose, and as our first main result,
we present a generic algorithm that is able to detect invariant subspaces. The
running time of this algorithm depends on the block size of the primitive and the
density of the existing invariant subspaces. In particular, it is especially efficient
if relatively large invariant subspaces exist. As the impact of an invariant sub-
space increases with its dimension, this can be seen as detecting stronger attacks
significantly faster than minor attacks.

256 G. Leander et al.

We apply this generic algorithm to the lightweight cipher Robin introduced
at FSE 2014 as a concrete instance of the LS-design framework [15], the closely
related CAESAR [1] candidate iSCREAM [18], as well the lightweight cipher
Zorro presented at CHES 2013 [14]. In all cases the algorithm is able to detect
invariant subspaces.! Attacks resulting from these invariant subspaces break all
three ciphers in a practical setting. All attacks have been verified on reference
implementations of the ciphers.

As our second main contribution, we show that the invariant subspaces we
have discovered are underpinned by a type of self-similarity property of indepen-
dent interest, stemming from a linear map commuting with the round function.
Surprisingly, such a map exists for all three ciphers, despite Robin and Zorro
having quite different structures. As a result, we obtain stronger attacks on our
target ciphers. We also hope to provide useful insight for the design and analysis
of ciphers with minimal key schedules as well as for the choice of round constants
in cryptographic permutations.

More specifically, our attacks show the existence of weak keys in Robin, Zorro,
as well as iISCREAM in the chosen-tweak scenario. In all cases, the proportion of
weak keys is 2732 within the set of all keys. Encryption of a single chosen plain-
text is enough to determine whether a key is weak, making our weak key setting
very practical. Once a key is recognized as weak, a simple property on plaintexts
goes through the whole encryption process with probability one, breaking plain-
text confidentiality. In addition, the full 128-bit encryption key can be recovered
using one chosen plaintext in time complexity 264. We also show that all three
ciphers are instantly broken in the related-key setting, without any weak key
requirement; although only iSCREAM claims security in this model.

In the case of LS-designs, we furthermore present a second attack, based on
S-box-dependent invariant subspaces, without an underlying self-similarity. We
obtain a new set of weak keys with the same properties as above, including the
fact that they can be detected using a single chosen plaintext. However when
applying this second attack to Robin and iISCREAM, we obtain a much rarer
set of weak keys, with only one key in 23° being weak. We then fine-tune this
attack against iISCREAM, and obtain a ratio of weak keys of 2748, at the cost of
requiring 232 chosen-tweak chosen plaintexts in order to detect whether a key is
weak; once a weak key is detected, the full 128-bit key can be recovered in time
complexity 2*® with no additionnal data.

Regarding LS-designs, it should be pointed out that while our first attack
breaks Robin and iSCREAM in a practical setting, Fantomas and SCREAM
appear to be safe. Moreover, in the case of Robin and iSCREAM, a careful
tweak of the ciphers should be able to prevent our attacks. Thus, the security of
the LS-design framework in general is not called into question. On the contrary,
in the case of Zorro, our attack adds to other attacks suggesting that partial
nonlinear layers should be approached with caution.

! The source code of our tool is available at invariant-space.gforge.inria.fr.

invariant-space.gforge.inria.fr

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 257

Related Work. Invariant subspace attacks were introduced in [22]. Their appli-
cation to PRINTCIPHER relies on undesirable properties induced by its 3-bit
S-boxes. By contrast, most of our attacks (except the second attack on Robin
and iISCREAM) are actually independent of a particular choice of S-boxes.

A thorough analysis of invariant subspaces in PRINTCIPHER was subse-
quently carried out in [9]. Using a dedicated tool, the authors were able to
enumerate all invariant subspaces of PRINTCIPHER, of the type uncovered in
the previous article. However their approach is tailored to PRINTCIPHER, and
does not extend to other ciphers.

An older line of work has studied “linear factors” of DES [11,13,28], which
bear some resemblance to invariant subspaces. The existence of a linear factor
is an even stronger property than that of an invariant subspace: essentially, it
asks that a (linearly defined) portion of the ciphertext only depend on (linearly
defined) portions of the plaintext and key. Nonetheless, it is interesting to note
that our attacks do uncover a linear factor in Robin and Zorro (the subcipher
in Section 3.3), although only in a weak key setting.

Along a similar line, the attack on SAFER in [25] should be mentioned. It
exploits the action of the cipher on cosets of a vector space as a whole, rather
than isolating a specific trail or characteristic.

Self-similarity properties were used to attack hash functions and block ciphers
in [8]. It should be noted that self-similarity is a very wide framework, encom-
passing attacks ranging from probability one related-key differentials to slide
attacks. To the best of our knowledge, the commutation property we consider
here is very different from any previous work.

There is no prior cryptanalysis of LS-designs. As for iSCREAM, an issue with
the padding in the original CAESAR submission of SCREAM and iSCREAM was
pointed out in [29] and subsequently corrected. Our attacks have caused iISCREAM
to be temporarily withdrawn from the CAESAR competition for a redesign [17].

By contrast, many attacks have been carried out against Zorro, mostly differ-
ential or linear in nature [3,19,27,30,31]. The best attack in [3] is a differential
attack requiring 24! data and time complexity 24° to break the full cipher. Our
attack is of a different nature: it holds in the weak key setting (with 2¢ weak keys
out of 212%)_ requires minimal data and time, and is independent of the number
of rounds. Similar to [3], our attack can be readily extended to Zorro-like ciphers,
as shown in the ePrint version of this work [23].

Structure of the Paper

In Section 1, we recall the definitions of invariant subspace and present our
generic algorithm for detecting such invariant subspaces. In Section 2, we pro-
vide a description of LS-designs, including our targets Robin and iSCREAM.
In Sections 3, 4 and 5, we develop our attacks against LS-designs, introduce a
particular self-similarity property, the resulting invariant subspaces, and finally
describe a different invariant subspace attack not underpinned by self-similarity.
In Section 6, we apply our self-similarity and invariant subspace attacks to Zorro.
Finally, in Section 7, we conclude with a discussion of our results and outline
interesting open problems.

258 G. Leander et al.

1 A Generic Algorithm to Detect Invariant Subspaces

In this section we first recall the invariant subspace attack and later present our
algorithmic approach to detect invariant subspaces in a generic manner.

1.1 Invariant Subspace Attacks

Invariant subspace attacks were introduced and applied to PRINTCIPHER in
[22]. We briefly recall the basic principle here.

Consider a n-bit block cipher with round function Fx consisting of a key
addition and a SP layer F' : F§ — F3. That is, Fx is defined by Fg(x) =
F(xz 4+ K). Assume the SP-layer F' is such there exists a subspace A C F% and
two constants u, v € F5 with the property:

Flu+A)=v+A

Then, given a (round) key K € u —v+ A4, i.e. K = Ky +u—v with K4 € A,
the following holds:

Fxv+A) =Fv+A+u—v)=Flu+A) =v+A

i.e. the round function maps the affine subspace v+ A onto itself. If all round keys
are in u — v + A, in particular if identical round keys are used as in LS-designs
and Zorro, then this property is iterative over an arbitrary number of rounds.

In the case where an identical key is added in every round (there is no key
schedule), a key is said to be weak iff it belongs to u — v+ A. Whenever a key is
weak, plaintexts in v+ A are mapped to ciphertexts in v+ A, breaking plaintext
confidentiality. The number of weak keys is the cardinality of A.

In order to detect whether an unknown key is weak, it is enough to encrypt
one plaintext in v + A, and test whether the resulting ciphertext is in the same
space. Indeed, over the set of all keys, false positives will occur with the same
frequency as true positives, and can be discarded with a second chosen plaintext.

1.2 A Generic Algorithm

In this section we present a simple and entirely generic probabilistic algorithm
able to discover invariant subspaces for a given round function. The algorithm
gives instant results for vector subspaces, and is able to discover affine subspaces
in time proportional to their density. Despite its simplicity, this algorithm is
enough to automatically discover all invariant subspace attacks to be elaborated
upon in the following sections.

The algorithm will identify minimal invariant subspaces and thereby iden-
tify invariant subspace attacks automatically. However, further analysis usually
allows to significantly improve upon the attacks recovered automatically by the
algorithm and gain further insights in the structure of the detected weakness.
Furthermore, as the expected running time is determined by the density of invari-
ant subspaces, it might well be that not all possible attacks are detected. Thus,
for the moment, this generic algorithm cannot be used to fully exclude the exis-
tence of invariant subspaces.

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 259

Identifying Minimal Subspaces. Assume we are given a permutation F' :
F% — F5. Here F could be a (keyless) round of a block cipher or a cryptographic
permutation (like Keccak-f). Our goal is to find affine subspaces u + A C F}
such that:

Flu+A)=v+A

for some v € F3.
Our algorithm is based on the following trivial observation.

Lemma 1. Assume u + A is an affine subspace such that F(u + A) is also
an affine subspace v + A. Then for any subset X C A, the linear span of
(Flu+ X) —v)UX is contained in A.

The idea is to first guess one possible offset v’ of the affine space to be found
and use v/ = F(u'). Next, we guess a one-dimensional subspace of A, denote this
by Ag. The algorithm will succeed if and only if u’ + Ag is contained in u + A.

1. We compute A;; from A; as:
A1 =span{(F(u + A;) —v") U A;}

2. If the dimension of A;y; equals the dimension of A;, we found an invariant
subspace and exit.
3. If not, we continue with step 1.

Thus, the idea is to start with what we denote nucleon of A and map it using
F until it stabilizes. In the case that our initial guess was wrong and u’ + Ag
is not contained in some non-trivial invariant subspace we will end up with the
full space after at most n iterations of the above.

Note that it is not necessary to really map the complete spaces A; using F’
but a randomly chosen subset of relatively small size is enough for our purpose
and significantly speeds up the process.

If the largest invariant subspace of F' has dimension d, the algorithm will
detect this space (or any invariant subspaces of this space) after an expected
number of 22("=® guesses for Ay and . Thus, in this basic form, the algorithm
becomes quickly impractical. However, in the case of round functions of a cipher
(or a cryptographic permutation) that differ by round constants only, its running
time can be greatly improved as described next.

Knowing the Nucleon. For block ciphers with identical round keys or cryp-
tographic permutations, we actually have a very good idea about the nucleon we
want to be included in the space A, namely the round constants. More precisely,
we consider round functions F; : Fy — Fy that differ only by the addition of
constants, i.e.

Fi(z)=F(x) + ¢

for ¢; € Fy, where for simplicity we assume cg = 0. We are looking for affine
subspaces u + A that are mapped to v + A by all round functions. In particular

Folu+A)=Flu+A)=v+A

260 G. Leander et al.

and
Filu+A) =Flu+A)+c=v+A4

which implies
v+A=ci+v+ A

and thus ¢; € A. Thus, given the situation as above, any subspace that is invari-
ant under all round functions must necessarily contain the linear span of all
round constants ¢;.

For the algorithm outlined above this has significant consequences. Here, the
only thing we have to guess is the offset. Therefore, the expected number of
iterations of the algorithm is reduced from 22("=9) to 27~<,

Moreover, after running the algorithm for m iterations with randomly chosen
guesses for the offset, the probability that an invariant subspace of dimension d
is not detected by the approach is given by

P = (1-2""4)"
which can be approximated by

log P n,a = —m2¢-",

The Algorithm.

1: procedure CLOSURE(function F', nucleon A, offset u)
2 v 4 F(u)

3 StableCount <+ 0

4: while StableCount < N do

5: Pick a random = < u + span{A}

6: if F(x) —v € span{A} then

7 StableCount = StableCount + 1

8

9

else
: Add F(z) —vto A
10: StableCount < 0
11: end if

12: end while
13: return u + span{A}
14: end procedure

For offset u and nucleon A, the above procedure outputs the smallest affine
subspace containing u + span{A}, that is mapped to a coset of the same space
by F' (with high probability). The algorithm depends on a global parameter N
that controls the risk of error. Namely, when the algorithm exits, elements of
u+span{A} are mapped to v+ span{A} with probability greater than 1 —2~.
This probabilistic result is enough for an invariant subspace attack to go through
even for moderate choices of N.

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 261

Guessing the Offset. If we are actually looking for stable vector spaces rather
than affine spaces, as will be the case in the S-box independent setting described
in Section 3.2, guessing the offset is not needed: we can choose zero as the offset.
Then the algorithm above finds the smallest invariant subspace instantly.

In the general case where we are looking for any (affine) invariant subspace,
we need to guess one offset u belonging to the affine space we are searching for.
Then we can run the procedure above to find the generated invariant subspace,
if it exists (otherwise, the algorithm will simply output the full space). If the
space we are looking for has dimension d, guessing such an offset u by brute
force will require 2"~ % tries on average. Of course we just require one invariant
subspace; so in general 2"~¢ can be replaced by the density of vectors belonging
to (non-trivial) invariant subspaces.

Each iteration of the algorithm requires Gaussian reduction to determine
whether a certain n-bit vector belongs to some subspace, amounting to n? oper-
ations. Hence the overall running time to find an invariant subspace of dimension
d is roughly n? - 2"~%. Thus if n is large, the above approach will only work if
n — d is relatively small, or more generally the density of invariant subspaces is
large. The case where n is small is also useful in order to find invariant subspaces
through a single S-box: this is how we found spaces in Appendix B (after making
the algorithm deterministic and exhaustive, which is affordable for small n).

1.3 Applications

We applied the algorithm to the block ciphers Zorro, Robin, Fantomas, LED and
NOEKEON, as well as to the CAESAR candidate iSCREAM. We chose N = 50
to be very conservative. We ran the algorithm with approximately 234 iterations
for each primitive, stopping earlier in the case where an invariant subspace was
detected. The results are summarized in the table below.

Table 1. Experimental Results: Here n is the block size and dp.go1 is the smallest
dimension of an invariant subspace that has a probability to exist upper bounded by
0.001

l Primitive“ n [Dimension found[do,o(n[Running Time (h)‘

LED|| 64 - 34 24
NOEKEON [12]([128 - 98 40
Fantomas||128 - 98 40
Robin|[128 96 - 22
iSCREAM||128 96 - 22
Zorro||128 96 - <1

For LED, NOEKEON and Fantomas, no invariant subspaces were detected
given our limited iterations. In that case, Table 1 indicates the dimension dy.go1
of the largest invariant subspace that has a probability to exist upper bounded
by 0.001. More precisely, if z denotes the codimension of the largest invariant

262 G. Leander et al.

subspace, each random guess of an offset has probability 27% of falling into this
subspace. After T tries, the probability of not having found the subspace is thus
(1—-272)T ~ e~72"". We want this probability to be 1/1000 within T = 232 tries,
which yields = 32 — log(In(1000)) = 30, so dy.go1 &~ n — 30. Thus it is unlikely
that invariant subspaces of dimension above 98 exist for NOEKEON. However,
the existence of smaller subspaces cannot be excluded with high probability by
our results.

As we will show below, for Zorro, Robin and the CAESAR candidate iSCREAM
the largest invariant subspace has dimension 96 out of 128, i.e. density 2732, Thus
the time complexity is expected to be 232 Gaussian eliminations on 128 x 128 binary
matrices. Our experiments confirm this estimation. Discovering the invariant sub-
space took 22 hours on a single desktop PC equipped with an Intel Xeon Core i7
with 12 virtual cores used in parallel.

In the case of Zorro, we chose to use a single round as target function, rather
than the four rounds separating key addition. It turns out many cosets of the
invariant subspace in Appendix A are sent to another coset by a single round
(namely, all cosets stemming with offsets where cells 0 and 3 are equal). Our
generic approach discovers this fact and the associated subspace instantly, hence
the “< 1”7 time in the previous table.

As mentioned in the introduction, a detailed analysis of the findings of the
generic algorithm allows to understand the underlying structure of the invariant
subspaces we have found, and improve the attacks. We present those findings in
the following sections.

2 Description of LS-Designs, Robin, and iISCREAM

2.1 LS-Designs

LS-designs were introduced by Grosso, Leurent, Standaert and Varici at FSE
2014 [15]. We refer the interested reader to their article for a detailed presenta-
tion of LS-designs and their design rationale. For our purpose, a brief technical
description suffices.

An LS-design is a block cipher encrypting n-bit plaintext blocks using a n-
bit key. The inner state of the cipher, as well as the plaintext, ciphertext, and
key, are all represented as an r X c¢ bit array, with r the number of rows and ¢
the number of columns. A concrete LS-design is parametrized by the following
components:

— A choice of r and c. The size of the key and message blocks isn =1 - c.
— An r-bit S-box s.

— A bijective linear map £ on c¢-bit vectors, called the L-box.

— A number of rounds ¢.

— A choice of k-bit round constants C(i) for 1 <i <.

In order to encrypt a given n-bit plaintext block, the plaintext is first loaded
into the inner state of the cipher, and the master key is added in (all additions

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 263

are bitwise X0Rs). Then a round function is applied successively for rounds 1 to
t. At that point the cipherext is equal to the inner state. The round function at
round ¢ proceeds as follows:

1. The round constant C(%) is added to the inner state.
2. The S-box s is applied to each column of the state.
3. The L-box ¢ is applied to each row of the state.

4. The n-bit master key K is added to the state.

2.2 Notation

When dealing with LS-designs, we will always use the previous notation; that is:
r the number of rows of the state.

the number of columns.

the size of the state; that is, n =1 - c.

the r-bit S-box.

the S-box step; that is, the application of s on each column of the state.

the ¢ x ¢ binary matrix representing the linear layer, identified with the

corresponding linear map on F§.

the L-box step; that is, application of ¢ on each row of the state.

~UnNow 3 o

~

2.3 Robin

In [15], two concrete LS-designs are proposed, Robin and Fantomas. The idea
behind Robin is that both the S-box and L-box are involutive. This allows
the same circuitry to be reused when computing these components and their
inverse operation, i.e. when encrypting and decrypting. This saves valuable
space on embedded devices when both encryption and decryption capabilities
are required. The trade-off is that involutive components have more structure,
resulting in a slightly higher number of rounds to reach the same security level
as an LS-design based on non-involutive components.

Robin strictly fits within the LS-design framework recalled in the previous
section. As such it can be fully described by the following parameters:

— The inner state of Robin has 8 rows and 16 columns, resulting in 128-bit
blocks and a 128-bit key.

— The 8-bit involutive S-box is given in [15].

— The 16-bit involutive L-box is depicted as a 16 x 16 binary matrix on Fig. 1.

— The number of rounds is 16.

At round ¢ (starting from 1), the round constant C(3) is zero outside of the

first row, where it is equal to £(4), with ¢ the L-box matrix.

2.4 iSCREAM

SCREAM and iSCREAM [18] are two authenticated ciphers closely related to
LS-designs. In fact iISCREAM is essentially a tweaked version of Robin, together
with a Tweakable Authenticated Encryption (TAE) mode of operation [24].

264 G. Leander et al.

012345678 9101112131415

© 00O Utk WO

Fig. 1. Matrix representing the L-box of Robin and iSCREAM. Dark cells stand for
1’s and white cells for 0’s.

Meanwhile SCREAM is similar to Fantomas, with a different linear layer. The
TAE mode of operation requires a tweakable block cipher [24]. Accordingly,
the difference between the block cipher underlying iSCREAM and Robin stems
from the introduction of a 128-bit tweak T' into the (previously non-existent)
key schedule.

In the remainder of this article we focus on weaknesses of the block cipher
on which iISCREAM is built, independently of the mode of operation. We may
abuse notations and write iSCREAM to mean its underlying block cipher.

This block cipher can be described as an LS-design, except for the fact that
during the key addition phase, instead of adding in K every round: at odd
rounds, K + T is added; while at even rounds, T' <& 1 is added, where T' << 1
denotes a circular shift of the columns of T' by one column towards the left.
The combination of two rounds is called a step. Beside that, iISCREAM can be
described by the following parameters:

— The inner state of iISCREAM has 8 rows and 16 columns, resulting in 128-bit
blocks and a 128-bit key.

— The S-box and L-box are those of Robin.

— The number of rounds depends on the required security level. The original
article lists six variants. However the primary recommendation for iSCREAM
as per CAESAR requirements is 12 steps (24 rounds) [16]. A secondary rec-
ommendation claiming related-key security has 14 steps (28 rounds). Since
our attacks are essentially independent of the number of rounds, we omit
other variants.

— At round i (starting from 1), the round constant C(4) is zero outside of the
first row, where it is equal to 27-¢ modulo 256 (affecting only the first 8 bits
of the row).

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 265

3 Invariant Permutation Attack

In the next two sections, we analyze the invariant subspace discovered by the
generic algorithm on Robin and iSCREAM. This subspace is actually induced
by a particular type of self-similarity of independent interest, as is the invariant
subspace of Zorro. Using this self-similarity directly results in an even stronger
attack, as will be discussed below.

We start by recalling the concept of self-similarity and explaining a link
to commutating linear maps. These concepts will afterwards be applied to LS-
designs in general and to Robin and iSCREAM in particular (as well as to Zorro
in Section 6).

3.1 Self-Similarity Properties and Linear Commutant
In [4] and [8], self-similarity in general is defined as:

Definition 1 (Self-similarity in a block cipher). For a fized block cipher
E, let Ex(z) denote the ciphertext block resulting from the encryption of plain-
text block x under key K. A self-similarity relation is given by invertible and
efficiently computable mappings ¢, 1, 60 such that:

VK,z: 6(Ek(z)) = Eyx)(o(z))

What we are interested in is the case where M = ¢ = ¢ = 0 is a linear
map. This situation will arise if the cipher follows a generalized Even-Mansour
structure where key-independent round functions F; alternate with the addition
of a fixed key K (i.e. no key schedule); and M commutes with the round functions
F;. This last condition is very demanding; but this is precisely what happens in
both Robin and Zorro, despite their different structure. We expand on why this
might be the case in the discussion (Section 7). The following lemma sums up
the attack.

Lemma 2. Consider a block cipher composed of round functions F; separated
by addition of a fived key K. Suppose there exists a linear map M such that M
commutes with the F;’s. Then:

Vo: M(Ek(x)) = Enr)(M(x))
In particular, if K = M(K):
Vo: M(Eg(x)) = Ex(M(x))

The commutativity of M and the round functions can be interpreted from
the invariant subspace perspective. Indeed, if we let A = ker(M* + Id) for any
i, A is an invariant subspace?. Of course self-similarity is a stronger property
stemming from a stronger requirement on the cipher.

2 Tt may be that a non-trivial commuting matrix leads only to trivial invariant sub-
spaces, as evidenced by the 2 x 2 binary matrix with rows [01] and [11]. However if
M is involutive, ker(M + Id) is at least half of the space.

266 G. Leander et al.

In our applications, M will be involutive, so we focus on the case i = 1.
In the remainder, whenever two plaintext blocks (or ciphertext blocks, or inner
states, or keys) satisfy xo = M(z1), we say that they are related. If a plaintext
block (or ciphertext block, or inner state, or key) is related to itself, we say that
it is self-related. A weak key is a self-related key. In short, our attack states that
weak keys map self-related plaintexts to self-related ciphertexts; while related
keys map pairs of related plaintexts to pairs of related ciphertexts.

3.2 S-box-Independent Setting

We now focus on the case where the cipher is a substitution-permutation network
(SPN), whose round function F; consists of an S-box layer with identical S-boxes,
a linear map L, addition of a round constant C'(¢), and addition of a fixed key K.
From the invariant subspace (resp. self-similarity) perspective, we are interested
in subspaces (resp. linear maps) that traverse (resp. commute with) each of these
components.

It is quite apparent that the main roadblock is the non-linear S-box layer.
However even in a generic setting where we do not take into account a particular
choice of S-box, any permutation of the S-box inputs will commute with the
S-box layer (due to S-boxes being identical). Thus we restrict our attention to
permutations of S-box inputs rather than general linear maps.

In terms of invariant subspaces, this corresponds to subspaces containing
those vectors whose coordinates belonging to the same cycle in the permuta-
tion are equal; that is, subspaces that only require S-box inputs to be equal to
some other input, or independent. We call such spaces equality spaces. Note that
these are vector subspaces and no longer affine subspaces. Our strongest attacks
actually occur in this setting.

As for constant and key addition, asking that their addition commutes with
M amounts to asking that they belong to ker(M + Id). Now it remains to find
permutations that commute with the linear layer. An efficient algorithm to do
so is provided in the ePrint version of this work [23]. The invariant subspace
variant seems more difficult, as we do not know an algorithm able to efficiently
enumerate equality spaces that traverse a linear map.

3.3 Key Recovery

The self-similarity attack above breaks plaintext confidentiality. In addition, if
the commuting permutation P is involutive (as will be the case in our appli-
cations), efficient key recovery may be possible. In short, the part of the key
corresponding to fixed points of the permutation can be guessed independently
of the rest.

Intuitively, this is because if two self-related inner states differ only outside
the fixed points of the permutation P, this difference will never be propagated to
the fixed points of P. This is clear for the S-box layer (because the permutation
operates on entire S-box inputs), but also holds for the linear layer. A general

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 267

statement and proof are provided in the ePrint version of this work [23]. In fact
the proof also encompasses the case where the S-box layer is partial.

What we show is that the cipher contains an embedded subcipher operating
on the fixed points F' of the permutation: we can project self-related plaintexts
and ciphertexts on F' and obtain a well-defined map. Note that this embedded
subcipher may lend itself to further attacks; this is a direction we have not
investigated, as we believe ciphers are sufficiently broken at that point.

3.4 Invariant Permutation Attack on LS-Designs

Notation. In the S-box-independent setting of Section 3.2, for an LS-design,
a permutation of S-box inputs is simply a permutation of the columns of the
state. Let us write P for such a permutation. We always denote by the lowercase
p its effect on a single row. Thus, P is the application of p on each row of the
state. We identify p with the corresponding ¢ X ¢ permutation matrix. We adopt
notations from Section 2.2.

The particular structure of LS-designs means that P commutes with L iff p
commutes with £. This is still a strong requirement, but we expect the L-box of
an LS-design to have some structure in order to provide a good branch number,
especially if it is involutive. In the case of Robin for instance, the linear layer
is built from a Reed-Muller code and provides plenty of structure. Applied to
LS-designs, Lemma 2 becomes:

Lemma 3. For an LS-design, assume there exists a permutation P with the
following properties:

- P commutes with L.
- P(C(3)) = C(i) for all round indices i.

Then for any plaintext message m:
Encp(k)(P(m)) = P(Enck(m))
In particular, if K = P(K):
Enck (P(m)) = P(Enck(m))

Note that the identity permutation trivially satisfies the above requirements.
Hereafter we always assume P is non-trivial. If ncycles(p) is the number of cycles
of p, weak keys form a proportion 27 (¢=neveles(p)) of all keys (namely, those keys
whose columns are equal on each cycle of p).

Key Recovery. The previous attack breaks plaintext confidentiality. In addi-
tion, when P is involutive, efficient key recovery is possible, as announced in
Section 3.3. A general statement and proof are provided in the ePrint version of
this work [23].

It may still be worthwhile to provide a simpler statement dedicated to LS-
designs. This is what we propose below.

268 G. Leander et al.

Lemma 4. Consider an LS-design, and assume there ezists a permutation P
with the same requirements as in Lemma 3. Also assume that P is an involution.
Consider a weak key K = P(K). Denote by F the set of fized points of P.

Take any self-related plaintext m = P(m). Then the value of the ciphertext
Encg(m) on the columns in F only depends on the value of m and K on the
same columns.

Proof. Since P is an involution, all of its cycles have length 1 or 2. Hence we
can partition the columns of the state into three subsets F, A, B, such that P
is the identity on F', and maps A and B into each other. Take any self-related
message m that is zero on F'. Then the linear layer maps m to a self-related state
L(m) that is also zero on F'. To see this, write m = m4 +mpg, where m 4 is equal
to m on A, and zero elsewhere, and likewise mp is equal to m on B and zero
elsewhere. Then P(m4) = mp, hence P(L(my4)) = L(mpg) by commutativity of
P and L. Since P is the identity on F, this implies that L(ma) + L(mp) is zero
on F, so L(m) is zero on F.

Thus, if m = P(m) is zero on F, so is L(m). By linearity, this implies that
if m; and my are self-related and equal on F', then so are L(mj) and L(ms).
Thus, the property that two self-related states are equal on F' goes through the
linear layer. This property automatically goes through the S-box layer since it is
column-wise. Since the same key and round constants are added to both sides,
they have no impact. Hence this property goes through the whole cipher. O

As a direct consequence, the value of the key on the columns corresponding
to fixed points of P can be guessed independently of the rest of the key by using
any self-related plaintext. In addition, the embedded subcipher is a smaller LS-
design, and may lend itself to further attacks. As a side note, both this lemma
and the previous one also show that the cipher is malleable in a strong sense.

Permutation Characteristic. Instead of considering only permutations P
commuting with L, we can naturally look for pairs of permutations (P, Q) such
that L - P = @ - L. We denote this by P — @, representing the fact that if two
inner states are related by P before the linear layer, then after the linear layer
they are related by Q.

From there we can hope to build a form of characteristic Py — P, — P, —
P3; — ... The commutative case in the previous section corresponds to P — P.
Note that the set of permutations P such that Q = L- P- L~ is a permutation
forms a group. Also note that if L is involutive, P — @ is equivalent to Q — P:
indeed L-P = Q- L implies P~'- L =L-Q ', implies L-Q = P - L: hence any
transition P — @ yields an iterative characteristic of length at most 2.

A particularly interesting case occurs whenever P — P% for some o # 0.
Indeed, in that case we automatically have a cyclic characteristic P — P* —
PY — ... = P® = P. Moreover the attack from Lemma 3 goes through with
exactly the same requirements on the key and round constants (namely they are
self-related by P).

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 269

Application to Robin. Applying our attack to Robin amounts to finding
a permutation p commuting with the matrix ¢ in Fig. 1, such that P leaves
all round constants C(¢) invariant. More generally, as pointed out just above,
we can actually look at transitions P — @, i.e. permutations p, g such that
£-p=q-L. It turns out there are 720 such transitions, and all of them are of the
form P — P~!. Moreover 76 of these permutations are involutive, and hence
commute with L.

Recall that the round constants of Robin are defined as C'(¢) = £(7) on the first
row, and zero on the others, for 1 < i < ¢. Hence we want p(¢(i)) = £(¢), which
amounts to p(i) = ¢ by commutativity. Since ¢ ranges from 1 to 16, what we are
looking for is simply permutations leaving the first 5 columns fixed. It turns out
there exists exactly one such permutation, namely the involutive permutation P
switching columns 8, 9, 10, 11 respectively with columns 12, 13, 14, 15. Looking
at Fig. 1, one can indeed see that permuting the rows and columns of the matrix
of £ by pg leaves the matrix invariant, which is the same as saying py commutes
with £.

With Py, weak keys are simply keys whose last four columns are equal to the
previous four. In particular the proportion of weak keys is 2732, Furthermore Py
leaves the first 8 columns fixed, so Lemma 4 shows that for self-related plaintexts,
the first 8 columns of ciphertexts only depend on the first 8 columns of plaintext
and key. This makes it possible to guess the value of the master key on the first
8 columns independently of the rest of the key. This means 64 bits of the key
can be guessed separately; then the remaining 64 bits are symmetric through
Py, so only 32 bits remain to be guessed. Thus the full key can be recovered in
time complexity 2%¢ by encrypting any self-related message. This may yield a
few solutions, which can be checked against any other plaintext/ciphertext pair.

Table 2. Permutations po, p1 and ps. Fixed points are omitted.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Po 12 13 14 15 8 9 10 11
D1 8 9 10 15 4 5 6 7
D2 12 13 14 11 7 4 5 6

Beside Py, two other permutations P; and P, commuting with L leave the
round constants invariant up to the very last round (cf. Table 2). This means
related plaintexts are mapped to related inner states after 15 encryption rounds;
followed by the final constant addition, S-box layer, L-box layer, and key addi-
tion. The final linear layer can be reversed, and the resulting states will agree
on pairs of columns transposed by P on which C(16) is equal. In both cases,
there is one such pair, so self-related keys with respect to P, and P can still
be detected easily by encrypting a few self-related plaintexts, reversing the last
linear layer, and checking that these two columns agree.

Permutations P, and P, both leave 8 columns fixed and hence yield an attack
with essentially the same properties as Py. Actually some key bits can be recov-
ered faster than with Py thanks to the one-round differential at the end, but this

270 G. Leander et al.

involves the symmetric part of the key (that is, outside the fixed points of the
permutation) and thus the overall key recovery time is still 264,

Application to iSCREAM. Recall that iSCREAM and Robin share the same
linear layer. Round constants only affect the first eight columns of the state, and
so we are looking for permutations commuting with L and leaving the first
eight columns unchanged. As a matter of fact, there exists exactly one such
permutation, namely the same permutation Fy as above, which switches the last
four columns of the state with the previous four.

Another difference between Robin and iSCREAM is the number of rounds,
but that is actually irrelevant for our attack. The last difference is the presence
of a tweak in the key schedule. Recall that at odd rounds, T + K is added, while
at even rounds, T <, 1 is added, where T is a 128-bit tweak. In a chosen-
tweak scenario, we can simply set T' to zero, or any other value such that 7" and
T <. 1 are invariant by P. Then the attack against Robin from the previous
section applies to iISCREAM essentially unchanged, with the same consequences.

A small variant of our attack is also possible when using Py as the commuting
permutation. What we truly want is that K + 7T and T <. 1 should be self-
related. This amounts to asking that columns 8, 9, 10, 11 should be equal to
columns 12, 13, 14, 15. Since T' <&, 1 is a column-wise shift of 7' by one column
towards the left, this means that columns 9, 10, 11, 12 of T" should be equal to
columns 13, 14, 15, 0. Note that there is no condition on column 8 of 7. As a
consequence, for K + T to be self-related for some choice of T, it is enough to
ask that columns 9, 10, 11 of K should be equal to columns 13, 14, 15. Indeed
in that case, we can fix T to be all-zero, except for column 8 which can take any
value: exactly one such choice of T will satisfy that K + T is self-related. Thus
we obtain a larger set of weak keys (with ratio 2724), at the cost of requiring 28
chosen-tweak messages in order to detect whether a fixed unknown key is weak.

In addition, some variants of iISCREAM claim related-key security. If two
keys are related by Py, then our attack applies immediately without any weak
key requirement, following the first consequence of Lemma 3. That is, related
plaintexts are mapped by the related keys to related ciphertexts. Thus it is easy
to check whether a pair of keys is related, and the cipher is broken in a strong
sense.

Generalizations of the Permutation Attack. There appears to be a few
simple ways in which our attack could be generalized. We discuss them briefly
here.

We could consider a probabilistic version of the attack. Instead of requiring
L-P = P L, we could consider P’s such that the kernel of L - P — P - L is
almost the full space. In the case of Robin or iISCREAM, this would incur a cost
at least 278 per round.

Another natural extension is to consider cases where all round constants are
P-invariant except for the last few rounds (or first few rounds). Then our attack
goes through most of the encryption process, and eventually yields a differential

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 271

attack on the remaining rounds. When encrypting self-related plaintexts, this
differential attack turns into an inner differential.

4 Invariant Equality Space Attack

In this section we study invariant subspaces for LS-designs following the S-box-
independent setting of Section 3.2. We begin by defining equality spaces, and
then present our results on Robin and iISCREAM. On the way, we will recover
the invariant subspace detected by our generic algorithm (Section 1.3), and link
it to the commuting permutations from the previous section.

4.1 Equality Spaces

As always, we use notations from Section 2.2. We always view n-bit vectors as
an r X ¢ matrix. In Section 3.2, we defined equality spaces in general terms for
an SPN; we now provide a more specific definition suited to LS-designs.

Definition 2. A subspace E of {0,1}¢ is an equality space iff there exists a
partition of {0,...,c — 1} such that E is the set of vectors whose values on
coordinates belonging to the same class in the partition are equal.

The dimension of F is the number of classes of the partition. By E” we denote
the set of n-bit states whose columns belonging to the same class in the partition
underlying E are equal. Equivalently, this means that every row of the state
belongs to F, hence the notation E". By extension we also call E” an equality
space. The point of this definition is that equality spaces are preserved by the S-
box layer. The question is to determine which equality spaces are also preserved
by the linear layer. That is, we are looking for equality spaces E C {0,1}¢ such
that ¢(F) = E.

As pointed out in Section 3.1, when a permutation P commutes with L, the
equality space defined by the cycles of P is preserved by the linear layer. The idea
is that equality spaces preserved by the linear layer do not necessarily stem from a
commuting permutation. Conversely, commuting permutations are an interesting
special case, since they lead to a stronger property: indeed, when considering
equality spaces rather than permutations, we are looking at a property of a single
state, and there is no equivalent to the property that distinct related plaintexts
are mapped to related ciphertexts; there is also no equivalent to Lemma 4.
Meanwhile, Lemma 3 becomes:

Lemma 5. For an LS-design, assume there exists an equality space E such that:

- {(F)=E.
- C(i) € E" for all round indezes i.

Then for any key K and plaintext message m:
If K € E" and m € E" then Encg(m) € E”

The lemma trivially holds if E is the full space {0,1}¢; hereafter we assume
this is not the case. Then we have an attack in the weak key setting, where weak
keys are keys in E”. Hence the proportion of weak keys is 277 (¢—dim(E))

272 G. Leander et al.

4.2 Variants of the Attack

Essentially the same extensions as in Section 3.4 apply to equality spaces.

Characteristics: if the image F = L(E) of an equality space E is also
an equality space, we write £ — F. As with permutations, we can aim to
build a characteristic Eg — E; — ... over several rounds. Note that the set of
equality spaces is closed under intersection, and as a direct consequence, the set
of equality spaces F such that L(E) is an equality space is also closed under
intersection. If L is involutive, F — Fis equivalent to F' — FE, so characteristics
are automatically cyclic.

Probabilistic attack: Instead of asking F' = L(E), we can require the
dimension of the quotient space F//L(E) to be small.

Differential ending: If all round constants are in the required equality
spaces except for the last few (or first few) rounds, it may be possible to cover
the remaining rounds with an inner differential characteristic. Indeed in the case
E — FE, the equality space attack may be seen as an all-zero inner differential
attack.

Differential attack: the entire attack itself may be transposed into the
differential world, at the expense of becoming probabilistic. Consider a state
difference living in E” with L(F) = E. Then at each round, require that the
S-box layer preserves this equality; that is, the output of some S-boxes which
receive equal input, should remain equal. Note that if F stems from an involu-
tive permutation commuting with L, the columns corresponding to fixed points
of the permutation can be set to a zero difference: this will be preserved by
the linear layer (cf. the proof of Lemma 4). This attack avoids key and round
constant requirements, at the cost of much lower probability, and hence high
data requirements. In practice this would lead to a weaker attack against Robin
than truncated differential product trails in the original article [15], because the
branch number is 8 and the non-fixed points of Py involve 8 S-boxes.

4.3 Application to Robin and iSCREAM

Since Robin and iSCREAM share the same linear layer L, we consider them
together. We enumerated all equality spaces E such that L(E) is an equality
space (there are around 232 partitions of 16 elements, so this is feasible), and
analyzed the results.

Our first observation is that there are many more well-behaved equality spaces
E (in the sense that L(F) is also an equality space), than well-behaved permuta-
tions P (in the sense that Q = L - P- L™! is also a permutation). Namely, there
are 720 well-behaved permutations for L, while there are 30162 well-behaved
spaces of dimension 8 or more. Even if we remove from this list spaces that are
an intersection of larger well-behaved spaces (and thus could have a chance of
indirectly resulting from well-behaved permutations), 7746 well-behaved spaces
remain.

Recall that L is involutive, so any transition E — F' (i.e. L(E) = F with E
and F two equality spaces) yields a cyclic characteristic E — F — E. Hence all

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 273

well-behaved spaces belong to cycles of length 1 or 2. The aforementioned 7746
intersection-reduced well-behaved spaces of dimension at least 8 form 2506 cycles
of length 1 (that is, F — E) and 2620 cycles of length 2 (that is £ — F — E).
Thus equality spaces offer considerably more potential attacks, depending on
round constants.

However, all equality spaces compatible with actual round constants for
Robin minus the last round, and hence directly usable in an attack, stem from
commuting permutations. There exist four such spaces: three of them correspond
to permutations Py, P; and P, from Table 2, and the last one is a space of dimen-
sion 8 resulting from the composition of any two of the previous permutations
(any combination yields the same permutation or its inverse). As for iSCREAM,
the only well-behaved space compatible with round constants is the one resulting
from Py. Thus, our previous attack is not improved. Moreover, the largest well-
behaved spaces have dimension 12 and all stem from involutive permutations
(there are 15 of them). The largest well-behaved equality spaces not stemming
from a well-behaved permutation have dimension 10. This may be interpreted
to mean that the strongest phenomenon is due to commuting permutations.

Thus for both Robin and iISCREAM, the equality space induced by Py is
the only equality space that goes through the whole cipher, including the last
round. This space has dimension 96 over Fy, and it is the invariant subspace
automatically discovered by the generic algorithm from Section 1.

4.4 A note on Fantomas and SCREAM

The matrix L of Fantomas is a permutation of the lines and columns of the
matrix of Robin. As a consequence, they have the same number of well-behaved
permutations and spaces. However we found no cycle among well-behaved spaces
of Fantomas of dimension 6 or more (lower dimensions would yield very weak
attacks); and no characteristic of length more than 2. Hence Fantomas seems
safe from this attack.

The same is true for SCREAM. However, it is worth noting that there exists
no well-behaved permutation for the matrix of SCREAM, while we found 5404
well-behaved spaces of dimension 8 or more.

5 A Second Invariant Subspace Attack on LS-Designs

In this section we present a different invariant subspace attack on LS-designs,
which may be regarded as a form of dual of the previous attack. This attack
does not stem from an underlying permutation; nor does it have an equivalent
for Zorro. Thus, this section is specific to LS-designs, and takes advantage of
their particular structure: namely, the fact that LS-designs not only rely on a
layer of identical S-boxes, but also on a layer of identical L-boxes.

Now that we have understood the invariant subspace discovered by our
generic algorithm as being an equality space, i.e. a space that is automatically
preserved by the S-box layer, it is natural to ask if something similar can be

274 G. Leander et al.

done with the L-box layer. That is, we are now going to look for a property that
is automatically preserved by the L-box layer.

This gives us more freedom, since we can leverage linearity. Essentially, if all
columns of the state live in the same linear subspace, this will remain true after
the linear layer (in the ePrint version of this work [23], we prove that this is in
fact the most general property generically preserved by the linear layer); whereas
in the previous case, we were limited to equality spaces. Beside this difference,
the attack is essentially a dual version of the previous one, reversing the roles of
the L-box and S-box layers.

5.1 Description of the Attack

In the previous attack, we searched for equality spaces E C {0,1}¢ on the rows
of the state such that £(F) = E. Instead, we are now interested in general linear
subspaces A C {0,1}" on the columns of the state such that s(A) = A. Once
again, if A is a linear space on the columns (or one of its cosets), we denote by
A€ the set of states whose columns all belong to A.

The core of the attack is the following: assume s(A) = A for some linear
space A. If the inner state lies in A¢, this will remain true after the S-box layer.
Moreover, this property is automatically preserved by the linear layer. Indeed,
the linear layer of an LS-design is not truly “line-wise”: precisely because the
same linear map is applied to each row, the linear layer may be seen as directly
adding together column vectors. From this point of view, it becomes clear that
if all columns lie in the same linear space A, this remains true after the linear
layer.

Thus we are still within the invariant subspace framework, and follow the
corresponding strategy: we choose A such that all round constants belong to A€,
and we consider a weak key scenario by requiring that the key also lie in A°€. If
these requirements are fulfilled, plaintexts in A¢ are mapped to ciphertexts in
Ac.

More generally, we can consider cosets of linear spaces (i.e. affine spaces)
rather than just linear spaces: indeed, as long as each coordinate at the output
of £ is the sum of an odd number of coordinates at the input, the linear layer still
preserves the property that all columns belong to a fixed coset. The following
lemma sums up the attack.

Lemma 6. Let u, v, w be r-bit vectors, and A be a linear subspace of r-bit
vectors. Assume the following conditions hold:

— The S-box s maps all vectors in u + A to vectors in v + A.

— Fither v =0 or all rows of the matriz of £ have an odd number of 1’s.
— The columns of all round constants are in w + A.

— The columns of the key are in (u+ v+ w) + A.

Then any plaintext in (u+w) + A is encrypted into a ciphertext in (u+w)+ A
(and conversely).

Weak keys are keys in (u+v—+w)+ E. This means a proportion ¢ (r—dim(A))

of keys is weak.

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 275

5.2 Application to Robin and iISCREAM

In the case of Robin, the second condition in Lemma 6 is automatically true.
In order to satisfy the third condition (round constants), since round constants
only affect the first row of the state, we require that the r-bit vector denoted
by 1, with 1 on the first row and 0 elsewhere, belongs to E. To instantiate the
attack, it remains to look for affine spaces whose direction contains the vector
1, that are mapped by the S-box to affine spaces with the same direction.

It turns out the largest such spaces have dimension 3, and are mapped into
themselves. We list all six choices in Table 3. Since these spaces have dimension
3, and the state has 8 rows and 16 columns, a proportion 27162 = 2780 of keys
are weak. This means our attack is considerably weaker than the first one against
Robin. By comparison, a generic multi-target time-memory trade-off with 248
memory would lead to key recovery for the same proportion of keys. Of course
our attack requires no memory or table lookup.

Table 3. Six affine spaces of dimension 3 invariant through s

Values in A Dir(A)
00 01 26 27 84 85 a2 a3 |01 26 84
18 19 7¢ 7d 9e¢ 9f fa fb |01 64 86
28 29 32 33 8a 8 90 91|01 1la a2
3c 3d 5e 5f b2 b3 dO dl1|01 62 8e
44 45 66 67 ¢c8 c9 ea eb |01 22 8
4e 4f 54 55 6¢ 6d 76 77|01 1la 22

We now turn to iSCREAM. Recall that its S-box is the same as that of Robin,
and round constants still only affect the first row of the state. We want both
K +T and T to live in the same coset, so we require 7" to lie in (u+v+w+ A)€,
and K to lie in A°. In our actual attack we have u = v and w = 0 so in the end,
we can set the tweak to zero (or any value in A°), and the attack goes through
with the same parameters as before.

5.3 Taking Advantage of the iSCREAM Tweak Schedule

In the case of iISCREAM, it is possible to leverage the tweak schedule to create
a trade-off between the ratio of weak keys and the number of chosen-tweak
messages required to detect a weak key. To simplify notations, we explain this
technique using vector spaces; it extends to their cosets in a straightforward
manner. Assume we have two vector spaces A and B with S(A) = B. As before,
we assume 1 € A and 1 € B so that round constants belong to A° and B€. Since
S is involutive, we have S(B) = A, so A — B — A is a characteristic for the the
S-box.

In order for this characteristic to traverse encryption, we need K + T € A€,
and T . 1 € B¢ which is equivalent to T' € B¢. For this it is enough to
ask K € A°+ B¢ = (A + B)°. Indeed in that case, write K = K4 + Kp with

276 G. Leander et al.

Ky € A° and Kg € B¢ Then for T = Kg, we have K +T € A and T € B¢,
which is precisely what we want. Of course the key is unknown to the attacker,
so she cannot compute 7T in this way. Instead, she can try every value in the
supplementary space of A€ in (A+ B)¢ (which is smaller than B¢, if only because
1 € AN B). For exactly one such value of the tweak, every plaintext in A¢ will
be encrypted to a ciphertext in B€.

Now the question is to find two spaces A and B as above. Actually we look
for cosets of linear spaces with the same properties, since the linear layer of
iSCREAM also preserves these cosets. In summary, we look for affine spaces
u+ A # v+ B such that S(u+ A) = v + B, and 1 belongs to AN B.

It turns out the largest such spaces have dimension 3. There are 11 such
spaces (counting only 1 for u4+ A — v+ B and v + B — u + A), listed in
Appendix B. Furthermore, 8 of these spaces satisfy dim(A + B) = 5, which is
the maximal possible value since 1 belongs to AN B. Thus K € (A + B)¢ yields
a ratio of weak keys of 2—¢ (r—dim(A+B)) — 9—48

In order to detect whether a key is weak, one needs to encrypt a message
for each tweak in the supplementary of A€ in (A 4+ B)¢, which is of dimension
2 - ¢, hence 23? chosen-tweak messages are required (for a random key and a
given choice of the tweak, a false positive has probability only 27%°, and can be
discarded by one additionnal chosen-tweak message). Finally, once a weak key is
detected in this way, we know K +T € A€ for one specific T, hence K = T + A€,
so only 2¢:4im(4) = 948 hossibilities remain for the value of the key.

5.4 Variants of the Attack

It seems natural to consider a probabilistic version of the attack, where instead
of requiring that every vector in u + A be mapped by the S-box to a vector in
v+ A, we only require most of them to comply. If only x elements in u + A are
not mapped to v + A, the probability to pass an S-box is 1 —x/2". The cost for
each round is then (1 — x/2")¢. In the case of Robin, there is no A of dimension
4 with x < 3, so there does not appear to be an obvious interesting probabilistic
version of the attack.

6 Commuting Permutation and Invariant Subspace
for Zorro

6.1 Description of Zorro

The block cipher Zorro was introduced at CHES 2013 [14]. Like LS-designs, the
design goal is to offer a cipher that can efficiently be made resistant to side-
channel attacks through masking [26]. This is achieved by two main techniques:
first, a carefully constructed 8-bit S-box; and second, an AES-like structure
where S-boxes are only applied on the first row of the state.

The 128-bit state is represented as a 4 x 4 array of 8-bit cells. The round
function applies the following transformations:

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 277

— SubBytes: A fixed 8-bit S-box is applied to the first row of the state.

— AddConstant: At round ¢, the constants 4, 7, ¢ and i << 3 are added to the
four cells of the first row (from left to right).

— ShiftRow: This step is identical to AES. Row 4, counting from zero, is shifted
by i cells to the left.

— MixColumns: This step is again identical to AES. A fixed 4 x 4 circulant
matrix on Foys is applied to each column of the state. The matrix is the same
as that of AES.

Four consecutive rounds are called a step. After each step, the 128-bit master
key is simply added to the inner state: there is no key schedule. Encryption
consists in key addition, followed by 6 steps (24 rounds), each followed by key
addition.

6.2 Self-Similarity and Invariant Subspace

We are interested in an S-box-independent commuting linear map, as in Section 3.1.
To simplify, we focus on a single round: commuting with every round is a sufficient
condition to commute with every step. Thus we are looking for a linear map M
acting as a permutation on the S-boxes, and commuting with the linear layer.

Since there are only four S-boxes, there are only 24 choices for the permuta-
tion. In fact, because the constant added to the fourth S-box is different from the
others, we impose that this S-box should remain fixed by the permutation, leav-
ing only 6 possibilities. In this way, our linear map will automatically commute
with both the S-box and constant addition layers.

For each of the 6 permutation choices on the first 3 S-boxes, the set of linear
maps behaving as this particular permutation on the first 4 cells, and indepen-
dently on the other cells, is itself a vector space. Furthermore the commutant
of the linear layer is naturally a vector space. Thus, it suffices to intersect these
two spaces to find a solution, if it exists.

It turns out there exists exactly one solution, for the permutation swapping
the first and third S-boxes, and leaving the other two fixed. This solution is given
in Appendix A, together with the resulting invariant subspace. This subspace
has dimension 12 over Fys, that is, 96 over Fs. Hence the proportion of weak
keys is 2732,

In the ePrint version of this work [23], we show how to enumerate all invari-
ant subspaces for Zorro, and deduce that the previous space is in fact the only
invariant subspace (in the S-box-independent setting). The strategy used to enu-
merate spaces extends naturally to any SPN with a partial S-box layer of only
a few S-boxes per round.

6.3 Key Recovery

The key recovery strategy from Section 3.4 extends to partial S-box layers such
as Zorro. In brief, if an involutive linear map commutes with the components of
an SPN, and acts as a permutation on the S-box inputs, part of the key may

278 G. Leander et al.

be recovered independently of the rest. When the S-box layer is full, i.e. the
commuting map is simply a permutation, this part of the key corresponds to
the fixed poins of the permutation. When the S-box layer is partial, and hence
the commuting map M is not fully a permutation, the role of the non-fixed
points is essentially played by I = Im(M + Id). A formal statement and proof
are provided in the ePrint version of this work [23].

The consequence for Zorro is that once a key is recognized as weak, 64 bits
of the key can be guessed independently of the rest using one chosen plaintext
(any self-related plaintext). Indeed, the part of the key in I only influences the
part of the ciphertext in I. After these 64 bits have been recovered by brute
force, only 32 bits remain to be guessed, due to the key being weak. Thus key
recovery requires only one chosen plaintext and a time complexity of 264 offline
encryptions.

7 Conclusion

In this article, we present a unified cryptanalysis of several ciphers based on
invariant properties traversing the cipher under certain conditions, while provid-
ing generic tools for this type of attack. Our attacks are able to break lightweight
ciphers Robin, iSCREAM and Zorro in a practical setting.

Our attacks from sections 4 and 5 are quite similar in principle. The state of
an LS-design is a rectangular array. A fixed line-wise operation is performed in
each direction. Each attack looks for properties of the inner state that would be
structurally preserved in one direction (in the sense that this does not depend
on the specificities of the S-box or linear layer), that would happen to also be
preserved in the other (this time due to the particular choices of S or L).

In the case where the generic direction is linear, any linear space is preserved,
and under some conditions any coset; if it is nonlinear, only equality spaces
are preserved. In the ePrint version of this work[23], we prove that these are
in fact the most general properties structurally preserved in each direction, so
our attacks fully realize the program outlined in the previous paragraph. It
remains an open question whether a similar attack could in some way combine
information from both directions; that is, neither direction would preserve the
invariant property in a fully generic way.

Concerning our first attack on LS-designs from sections 3 and 4 (encompass-
ing both invariant permutations and invariant equality spaces), the structure
of the linear map is a key component. It seems unlikely that the attack could
succeed in cases where the linear layer is not involutive. Indeed, as shown by
the matrices of SCREAM and Fantomas, even in the presence of a large number
of well-behaved equality spaces, it appears that iterative characteristics do not
occur by accident. By contrast, if the linear layer is involutive, any well-behaved
equality space (or permutation) yields a cyclic characteristic of length at most 2;

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 279

and indeed, in the case of Robin and iISCREAM, thousands of iterative charac-
teristics exist. Of course, the matrix of Robin and iISCREAM has much more
structure than a generic involutive matrix.

It is quite striking that exactly the same attacks exist on Zorro, despite its
quite different structure (byte-oriented vs. bit-oriented, partial S-box layer vs.
full, AES-like vs. somewhat SERPENT-like). It is worth noting however that
both ciphers attempt precisely the same goal, namely to offer efficient masked
implementations. As a result both reduce non-linear operations to a minimum
per round, while giving more weight to the linear layer; LS-designs achieve this
by parallelizing the S-box through bit slicing; Zorro by resorting to a partial S-
box layer. In both cases the contribution of the non-linear layer is very structured
with respect to the linear layer; this, together with the minimal key schedule and
simple round constants leads to our attacks.

We note that all our attacks can be prevented by a careful choice of round
constants. One needs only ensure that no weaker (such as probabilistic or differ-
ential) version of the attack is left behind. This is particularly true when claiming
related-key security (as in iSCREAM), since in this setting our attacks do not
require weak keys, and hence weaker probabilistic versions are quite relevant.

Going back to the generic algorithm used to find the attacks, an interesting
open problem is to specialize it to SPN structures, hoping to achieve better time
complexity. In particular, it may be worthwhile to find an algorithm that is able
to enumerate all invariant subspaces through a layer of n S-boxes, given n and
the S-box. With improvements in time complexity, it may become possible to
entirely disprove the existence of invariant subspaces for some SPNs.

Finally, we hope our analysis contributes some insight for the design of future
ciphers with minimal key schedules and the choice of round constants in cryp-
tographic permutations.

Acknowledgments. The authors would like to thank Henri Gilbert for many fruitful
discussions related to the attacks presented in this article.

A Commuting Linear Map and Invariant Subspace for
Zorro

The commuting linear map M is represented as a 16 x 16 matrix over Fas, using
the AES representation of Fgs as Falx]/(28 + 2 + 23 + 2 + 1).

280 G. Leander et al.

O O O O
O O O
o O O O
O O O
o O O O
O O O
o O O O
O O O
o O O O
o O O
O O O O
O O O

0 0 0 0
34 101 35 101 50 249 50 249 249 116 249 116
101 35 101 34 249 50 249 50 116 249 116 249
35 101 34 101 50 249 50 249 249 116 249 116
101 34 101 35 249 50 249 50 116 249 116 249
17 86 17 86 1 0 0 0 249 50 249 50
86 17 8 17 0 0 0 1 50 249 50 249
17 86 17 86 0 O 1 0 249 50 249 50
86 17 86 17 O 1 0 0 50 249 50 249
51 190 51 190 86 17 86 17 35 101 34 101
190 51 190 51 17 86 17 86 101 34 101 35
51 190 51 190 86 17 86 17 34 101 35 101
190 51 190 51 17 86 17 86 101 35 101 34

O OO OO OO OO OOOOr oo
e eolNeolNeolNeolNeolNolNolNolNololNolNoNol e
O OO OO OO OO OO OO O O =
O OO O OO0 OO OO O

The invariant subspace ker(M + Id) is generated by the following 12 row
vectors, in the same representation.

(101 0 0 0 OO OO O O O0O 0O 0 O
(01t 00 00 OO O O OOOO0O 0O O
(0o o o 1.0 00 0 0 0 0 OO0 O0 00
(0o o 0 01 00 0 0O O 0 38 0 0 1590)
(0o o 0o o0 1t o0 O0OOT1T 0 O0 0 3
(0 0 00001 0 0 O 0 38 0 0 1590)
(0 o 0o 0000 1t 0 O0O0OT1T 0 O0 0 3
(0o 000 00 0 1 0 079 0 0 381)
(0o o 0o o000 00 1t 01 0 0 00
(0o o 0 00 00 0 0 0 179 0 0 381)
(oo 0o 00 00 0O 0 0O O0 0 1 0 1 O
(0o 0o 00 000 0 0O OO0 O 0 1 1)

B Well-Behaved Affine Spaces for the Robin and
iSCREAM S-Box

Only spaces whose direction contains 1 are listed.

281

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis

S ° 0T 70|69 89 68 88 GF ¥F G %® | ¥° ®BT T0|S6 76 F8 ©8 19 0§ Av ®©¥
S ®qd 0 TO|[8F 6F OF PF TV €7 9V LV |98 O T0|P6 °6 €8 T8 dE€ ®BE GC 7¥C
5 0® 90 TO|SP %P 6P 8P SL VL 6L 8L[Te 9T T0|L6 96 T8 08 SE€ ¥E €¢ T
5 04 %0 TO|%® Pe 8o 6° 9G PS 85 6G|9e O T0 |66 86 L8 98 FE °€ 1T 0T
5 oF 0T 70|0° Te 0F TF ¢ Pe 94 Pq |25 g T0|AP ®P € > LT 9T 30 0
S ¥ T T10|€L TL 69 89 LE 9€ PT ST |22 8T TO|FP ®p 1O 9° €T CT 90 ®0
S 08 ®©C T0|C® €@ OO0 P> 79 €9 9% P¥|C6 0 T0|9e ®©e Q6 ®BE 6E€ 8E 60 80
S 28 ¢C 10|C® €@ 092 12 @9 F9 9% Py |¥8 9C T0O|qe ®e P8 D298 FCT ©C 60 80
v ze 20 T0|0° 1o 90 PO g9 €9 °9 F9 e 9T 10|46 ©6 P8 °8 6€ 8€ FT °F
v 9% BT T0|P9 O9 LL 9L d8 ©8 16 06|99 ©T T0|GS ¥S Fv OF €€ C€ 6C 8T
v %> BT TO|F¥v °v G5 ¥S A8 ©8 16 06 ¥y ©T TO|LL 9L P9 09 €€ TE 6T 8T
€ ¢C¢ ®T 10 |®% F» %9 G9 ©°9 P9 9L LL|CT ®T 1T0|.LL 9L P9 29 GS %S IV °oF%
€ 98 TC TO0|L9 99 SG7 ¥¥% 9® ® 69 82|28 ¢C T0|9® ®d 62 81> L9 99 SV ¥
€ 8 C9 T0|¥S ©9 Pg 2¢ TP OP €4 C9|®8 ¢C9 TO|TP OP €9 ¢CA FS ®S PE O¢
€ Ze ®T T0|6C 8T €€ ¢€ A8 ©8 16 06 (e ©I 10|16 06 48 ® €€ CE 6C 8T
€ 98 $9 10 |aF ®F 36 °6 PL oL 61 81|98 ¥9 10|AF ©F 36 96 PL OL 61 8T
€ ¥8 9C 10|€® C® G8 %8 LT 9T 10 00 |¥8 9C TO0|€® C® S8 ¥8 LZ 9¢ T0 00
(d+v)wp | gjosiseq | (y+n)§ =g +aursonep |} josiseq V -+ n ut sonfep

282

G. Leander et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

CAESAR- Competition for Authenticated Encryption: Security, Applicability, and
Robustness. General secretary Daniel J. Bernstein (2013). http://competitions.cr.
yp-to/caesar.html

. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalcin, T.: Block

ciphers — focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57-76. Springer, Heidelberg
2014

](Sar-CZn, A., Dinur, I., Dunkelman, O., Lallemand, V., Tsaban, B.: Improved anal-
ysis of Zorro-like ciphers. Cryptology ePrint Archive, Report 2014/228 (2014).
http://eprint.iacr.org/

Barkan, E., Biham, E.: In how many ways can you write rijndael? In: Zheng,
Y. (ed.) ASTACRYPT 2002. LNCS, vol. 2501, pp. 160-175. Springer, Heidelberg
2002

](Beaul)ieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. ITACR, Cryptology
ePrint Archive, 2013:414 (2013)

Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, 1. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466.
Springer, Heidelberg (2007)

Borghoff, J., et al.: PRINCE — a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASTACRYPT 2012. LNCS, vol. 7658,
pp. 208-225. Springer, Heidelberg (2012)

Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.-A.: Another look at com-
plementation properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 347-364. Springer, Heidelberg (2010)

. Bulygin, S., Walter, M., Buchmann, J.: Many weak keys for PRINTCIPHER: fast

key recovery and countermeasures. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol.
7779, pp. 189-206. Springer, Heidelberg (2013)

De Canniere, C., Dunkelman, O., Knezevi¢, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272-288. Springer, Heidelberg (2009)
Chaum, D., Evertse, J.-H.: Cryptanalysis of des with a reduced number of rounds.
In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192-211. Springer,
Heidelberg (1986)

Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: NESSIE proposal: NOEKEON
(2000). http://gro.noekeon.org/

Evertse, J.-H.: Linear structures in block ciphers. In: Price, W.L., Chaum, D. (eds.)
EUROCRYPT 1987. LNCS, vol. 304, pp. 249-266. Springer, Heidelberg (1988)
Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383-399. Springer, Heidelberg (2013)

Grosso, V., Leurent, G., Standaert, F.-X., Varici, K.: LS-designs: bitslice encryption
for efficient masked software implementations. To appear in the Proceedings of FSE
2014 (2014). http://www.uclouvain.be/crypto/people/show/382

Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Durvaux, F., Gaspar, L.,
Kerckhof, S.: Addendum to the CAESAR submission for SCREAM and iSCREAM.
Posted on the official CAESAR submission list (2014). http://competitions.cr.yp.
to/round1/scream-ordering.txt

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://eprint.iacr.org/
http://gro.noekeon.org/
http://www.uclouvain.be/crypto/people/show/382
http://competitions.cr.yp.to/round1/scream-ordering.txt
http://competitions.cr.yp.to/round1/scream-ordering.txt

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A Generic Approach to Invariant Subspace Attacks: Cryptanalysis 283

Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Durvaux, F., Gaspar, L.,
Kerckhof, S.: CAESAR candidate SCREAM. Presentation by Gaétan Leurent at
DIAC 2014 (2014). http://2014.diac.cr.yp.to/slides/leurent-scream.pdf

Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Durvaux, F., Gaspar, L.,
Kerckhof, S.: SCREAM & iSCREAM. Entry in the CAESAR competition [1]
(2014). http://competitions.cr.yp.to/roundl/screamvl.pdf

Guo, J., Nikoli¢, I., Peyrin, T., Wang, L.: Cryptanalysis of Zorro. Cryptology ePrint
Archive, Report 2013/713 (2013). http://eprint.iacr.org/

Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326-341. Springer,
Heidelberg (2011)

Karakog, F., Demirci, H., Harmanci, A.E.: ITUbee: a software oriented lightweight
block cipher. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
16-27. Springer, Heidelberg (2013)

Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTCIPHER: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206—221. Springer, Heidelberg (2011)

Leander, G., Minaud, B., Rgnjom, S.: A generic approach to invariant subspace
attacks: Cryptanalysis of Robin, iISCREAM and Zorro. Cryptology ePrint Archive,
Report 2015/068 (2015). http://eprint.iacr.org/2015/068

Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31-46. Springer, Heidelberg (2002)
Murphy, S.: An analysis of SAFER. Journal of Cryptology 11(4), 235-251 (1998)
Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142-159. Springer, Heidelberg (2013)

Rasoolzadeh, S., Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Total break of Zorro
using linear and differential attacks. Cryptology ePrint Archive, Report 2014/220
(2014). http://eprint.iacr.org/

Reeds, J.A., Manferdelli, J.L.: Des has no per round linear factors. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 377-389. Springer,
Heidelberg (1985)

Sim, S.M., Wang, L.: Practical forgery attacks on SCREAM and iSCREAM (2014).
Posted on the crypto competitions mailing list at https://groups.google.com/
d/forum/crypto-competitions, report available at https://wwwl.spms.ntu.edu.sg/
~syllab/m/images/b/b3/Forgery AttackOnSCREAM.pdf

Soleimany, H.: Probabilistic slide cryptanalysis and its applications to LED-64 and
Zorro. To appear in the Proceedings of FSE 2014 (2014). http://research.ics.aalto.
fi/publications/bibdb2014 /pdf/fse2014.pdf

Wang, Y., Wu, W., Guo, Z., Yu, X.: Differential cryptanalysis and linear distin-
guisher of full-round zorro. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 308-323. Springer, Heidelberg (2014)

http://2014.diac.cr.yp.to/slides/leurent-scream.pdf
http://competitions.cr.yp.to/round1/screamv1.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/2015/068
http://eprint.iacr.org/
https://groups.google.com/d/forum/crypto-competitions
https://groups.google.com/d/forum/crypto-competitions
https://www1.spms.ntu.edu.sg/~syllab/m/images/b/b3/ForgeryAttackOnSCREAM.pdf
https://www1.spms.ntu.edu.sg/~syllab/m/images/b/b3/ForgeryAttackOnSCREAM.pdf
http://research.ics.aalto.fi/publications/bibdb2014/pdf/fse2014.pdf
http://research.ics.aalto.fi/publications/bibdb2014/pdf/fse2014.pdf

Symmetric Cryptanalysis 11

Structural Evaluation
by Generalized Integral Property

Yosuke Todo™)

NTT Secure Platform Laboratories, Tokyo, Japan
todo.yosuke@lab.ntt.co. jp

Abstract. In this paper, we show structural cryptanalyses against
two popular networks, i.e., the Feistel Network and the Substitute-
Permutation Network (SPN). Our cryptanalyses are distinguishing
attacks by an improved integral distinguisher. The integral distinguisher
is one of the most powerful attacks against block ciphers, and it is
usually constructed by evaluating the propagation characteristic of inte-
gral properties, e.g., the ALL or BALANCE property. However, the inte-
gral property does not derive useful distinguishers against block ciphers
with non-bijective functions and bit-oriented structures. Moreover, since
the integral property does not clearly exploit the algebraic degree of
block ciphers, it tends not to construct useful distinguishers against
block ciphers with low-degree functions. In this paper, we propose a
new property called the division property, which is the generalization
of the integral property. It can effectively construct the integral distin-
guisher even if the block cipher has non-bijective functions, bit-oriented
structures, and low-degree functions. From viewpoints of the attackable
number of rounds or chosen plaintexts, the division property can con-
struct better distinguishers than previous methods. Although our attack
is a generic attack, it can improve several integral distinguishers against
specific cryptographic primitives. For instance, it can reduce the required
number of chosen plaintexts for the 10-round distinguisher on KECCAK-
f from 21925 to 2515, For the Feistel cipher, it theoretically proves that
SIMON 32, 48, 64, 96, and 128 have 9-, 11-, 11-, 13-, and 13-round integral
distinguishers, respectively.

Keywords: Block cipher - Integral distinguisher - Feistel network -
Substitute-Permutation network - KECCAK - SIMON - AES-like cipher -
Boolean function

1 Introduction

The structural evaluation of cryptographic networks is an important topic of
cryptology, and it helps a designer to design strong symmetric key primitives.
There are several structural evaluations against the Feistel Network and the
Substitute-Permutation Network (SPN) [6,19,22,26,28]. As one direction of the
structural evaluation, there are the security evaluation by “the generic attack,”

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 287-314, 2015.
DOI: 10.1007/978-3-662-46800-5_-12

288 Y. Todo

Table 1. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on the SIMON family, Serpent, and KECCAK-f

Target log, (#texts) Method |Reference
r=6lr=7r=8|r=9|r=10r =11|r = 12|r =13
SIMON 32 | 17 | 25 29 31 - - - - our | Sect. 4.3
- - - - - - - - degree | [8,21]
SIMON 48 | 17 | 29 39 44 46 47 - - our | Sect. 4.3
17 - - - - - - - degree | [8,21]
SiMON 64 | 17 | 33 49 57 61 63 - - our | Sect. 4.3
17 - - - - - - - degree | [8,21]
SIMON 96 | 17 | 33 57 77 87 92 94 95 our | Sect. 4.3
17 | 33 - - - - - - degree | [8,21]
SIMON 128| 17 33 65 97 113 121 125 127 our | Sect. 4.3
17 | 33 - - - - - - degree | [8,21]
Target log, (#texts) Method |Reference
r=3r=4/r=5|r=6|r=7|r=8|r=9|r=10
Serpent 12 | 28 84 113 | 124 - - - our | Sect. 5.3
28 82 113 123 127 - - - degree [9]
Target log, (#texts) Method |Reference
r=8|r =9|r =10|r = 11|r = 12|r = 13|r = 14|r = 15
KEccak-f| 130 | 258 | 515 | 1025 | 1410 | 1538 | 1580 | 1595 our | Sect. 5.3
257 | 513 | 1025 | 1409 | 1537 | 1579 | 1593 | 1598 | degree 9]

which exploits only the feature of the network and does not exploit the particular
weaknesses of a specific cipher. It is applicable to large classes of block ciphers,
but it is not often effective than the dedicated attack against the specific cipher.
This paper focuses on generic attacks against both the Feistel Network and
the SPN. The existing generic attack shows that the Feistel Network whose F-
functions are chosen from random functions or permutations is vulnerable up
to 5 rounds [22,28]. Moreover, Biryukov and Shamir showed that the SPN is
vulnerable up to 2.5 rounds [6].

Our Contribution. This paper shows generic attacks against two networks
by improving an integral distinguisher. The integral attack was first proposed
by Daemen et al. to evaluate the security of SQUARE [13], and then it was
formalized by Knudsen and Wagner [23]. Nowadays, many integral distinguishers
have been proposed against specific ciphers [23,25,35-37], and they are often
constructed by evaluating the propagation characteristic of integral properties,
e.g., the ALL property or the BALANCE property. In this paper, we revisit
the integral property, and then introduce the division property by generalizing
the integral property. The division property can effectively construct integral
distinguishers even if block ciphers have non-bijective functions, bit-oriented
structures, and low-degree functions.

Structural Evaluation by Generalized Integral Property 289

The Feistel Network is a generic construction to create a (2¢)-bit pseudo-
random permutation from an ¢-bit pseudo-random function. We call the ¢-bit
function the F-function, and assume that an attacker can not know the specifi-
cation of the F-function. Our distinguishing attack can attack up to 3 rounds,
and it can attack up to 5 rounds if the F-function is limited to a permuta-
tion. Unfortunately, they are not improved compared with the previous ones.
However, assuming that the algebraic degree of the F-function is smaller than
the bit length of the F-function, our attack can attack more rounds than the
previous attacks exploiting the low-degree function. We summarize new integral
distinguishers in Appendix B. Although the assumption of our attack is only the
algebraic degree of the F-function, it can construct new integral distinguishers
on the SIMON family [5]. Since SIMON has a non-bijective F-function and a bit-
oriented structure, it is complicated task to construct the integral distinguisher.
The division property theoretically introduces that SIMON 32, 48, 64, 96, and 128
have at least 9-, 11-, 11-, 13-, and 13-round integral distinguishers, respectively.
Table 1 shows the comparison between our distinguishers and previous ones.

The SPN consists of an S-Layer and a P-Layer, where the S-Layer has m ¢-bit
bijective S-boxes and the P-Layer has an (¢m)-bit bijective linear function. The
attacker can not know the specifications of the S-boxes and the linear function. Sur-
prisingly, our generic attack becomes able to attack more rounds as the number of
S-boxes is larger than the bit length of the S-box. This fact implies that the design
of the P-Layer that can diffuse more outputs of S-boxes may not derive prospective
security improvements. We summarize new integral distinguishers in Appendix C.
Similar to the result against the Feistel Network, the division property is also useful
to construct integral distinguishers against specific cryptographic primitives. For
instance, we can reduce the required number of chosen plaintexts for the 7-round
distinguisher on Serpent [1] from 227 to 2124, Moreover, for the integral distin-
guisher on KECCAK-f [12], we can reduce the required number of chosen plain-
texts compared with previous ones constructed by Boura et al. [9]. Table 1 shows
the comparison between our distinguishers and previous ones.

Organization. This paper is organized as follows: In Sect. 2, we show notations,
Boolean functions, and the framework of integral distinguishers. In Sect. 3, we
propose the division property by generalizing the integral property, and show the
propagation characteristic. In Sect. 4 and Sect. 5, we show new distinguishing
attacks on the Feistel Network and the SPN, respectively. In Sect. 6, we show
that the division property is also useful to construct the dedicated attack against
specific ciphers. As an example, we show new distinguishing attacks on the AES-
like cipher. Section 7 concludes this paper.

2 Preliminaries

2.1 Notation

We make the distinction between addition of Fy and addition of Z, and we use
@ and + as addition of Fy and addition of Z, respectively. For any a € Fy, the

290 Y. Todo

i-th element is expressed in a[i] and the hamming weight w, is calculated as
we = > 1 ali]. Let 1" € F} be a value whose all elements are 1. Moreover, let
0™ € F3 be a value whose all elements are 0.

Subsets S} and S;’"". Let S} be a subset of F4 for any integer k € {0,1,...,n}.
The subset S} is a set of all a € Fy satisfying k < w,, and it is defined as

Spi={aeFy|k<w,}.

Let Sp™ be a subset of (F3)™ for any vector k € ({0,1,...,n})™. The subset
Sp™ is a set of all @ € (F%)™ satisfying k; < w,,, and it is defined as

S i={(a1,az,...,am) € (F5)™ | ky < wq, for 1 <i<m}.

Bit Product Functions 7, and m,. Let 7, : F} — Fy be a function for any
u € F4. Let « € FY be an input of 7, and 7, (z) is the AND of z[i] satisfying
u[i] = 1, namely, it is defined as

n

mu(x) == [[=li]"".

i=1

Let my : (F5)™ — Fg be a function for any u € (F3)™. Let « € (F5)™ be an
input of m,,, namely, m, (x) is calculated as

(@) := H T, (X))

2.2 Boolean Function

A Boolean function is a function from F} to Fo. Let deg(f) be the algebraic
degree of a Boolean function f. As representations of the Boolean function, we
use Algebraic Normal Form, which is defined as follows.

Algebraic Normal Form. Algebraic Normal Form (ANF) is a representation
of a Boolean function. Any f : F} — Fy can be represented as

160 = @ ot ([Tt = @ otmto),

u€Fy u€Fy

where af € T is a constant value depending on f and u. If deg(f) is at most d, all
af satisfying d < w,, are 0. An n-bit S-box can be regarded as the concatenation
of n Boolean functions. If algebraic degrees of n Boolean functions are at most
d, we say the algebraic degree of the S-box is at most d.

Structural Evaluation by Generalized Integral Property 291

Alc|cC|C Alc|c|C AlcC|C|C AlA|A|A B|B|B|B
C|A|C|C cic|cic Alc|c|cC AlA|A|A B|B|B|B
SB SR MC AK SB SR MC AK SB SR MC AK SB SR MC AK
C|C|A|C cicj|cic Alc|cC|C A|A|A|A B|B|B|B
C|C|C|A cicj|cic Alc|c|cC A|A|A]A B|B|B|B
2% sets 2% sets 2% sets 2% sets

Fig. 1. Integral distinguisher on 4-round AES

2.3 Integral Distinguisher

An integral distinguisher was first proposed by Daemen et al. to evaluate the
security of SQUARE [13], and then it was formalized by Knudsen and Wagner [23].
It uses a set of chosen plaintexts that contains all possible values for some bits and
has a constant value for the other bits. Corresponding ciphertexts are calculated
from plaintexts in the set by using an encryption oracle. If the XOR of the
corresponding ciphertexts always becomes 0, we say that this cipher has the
integral distinguisher.

Integral Property. Nowadays, many integral distinguishers have been pro-
posed against specific ciphers [23,25,35-37], and they are often constructed by
evaluating the propagation characteristic of the integral property. We define four
integral properties as follows:

— ALL (A) : Every value appears the same number in the multiset.

— BALANCE (B) : The XOR of all texts in the multiset is 0.

— CONSTANT (C) : The value is fixed to a constant for all texts in the multiset.
— UNKNOWN (Uf) : The multiset is indistinguishable from one of n-bit random

values.

Knudsen and Wagner showed that AES has the 4-round integral distinguisher
with 232 chosen plaintexts [23]. Figure 1 shows the integral distinguisher.

Unfortunately, the integral property does not derive effective distinguishers
if block ciphers consist of non-bijective functions, e.g., DES [31] and SIMON [5]
consist of non-bijection functions. Moreover, since the propagation characteristic
does not clearly exploit the algebraic degree of block ciphers, it tends not to
construct effective distinguishers against block ciphers with low-degree round
functions.

Degree Estimation. As another method to construct the integral distin-
guisher, there is a higher-order differential attack [21,24], which exploits the
algebraic degree of block ciphers. When the algebraic degree of a block cipher
is at most D, the cipher has the integral distinguisher with 2P*! chosen plain-
texts. Canteaut and Videau showed the bound of the degree of iterated round
functions [11]. Then, Boura et al. improved the bound [9], and showed integral
distinguishers on KeEccAK [12] and Luffa [10]. We show the bound in Appen-
dix A.

292 Y. Todo

3 Division Property

3.1 Introduction of Division Property

We propose a new property called the division property, which is the generaliza-
tion of the integral property. We consider one bijective S-box with degree d. If
an input multiset has A, the output multiset also has A. If an input multiset
has B, the output multiset has /. If we have the input multiset with 2¢*! cho-
sen texts, the output multiset has B because the degree of the S-box is d. The
integral property does not exploit this property. We now want to exploit useful
properties that are hidden between A and B. Therefore, we redefine A and B by
the same notation, and then introduce the division property by generalizing the
redefinition.

Redefinition of Integral Property. Let X be a multiset whose elements
take an m-bit value. We first consider features of the multiset X satisfying .A.
If we choose one bit from n bits and calculate the XOR of the chosen bit in
the multiset, the calculated value is always 0. Moreover, if we choose at most
(n — 1) bits from n bits and calculate the XOR of the AND of chosen bits in
the multiset, the calculated value is also always 0. However, if we choose all bits
from n bits and calculate the XOR of the AND of n bits in the multiset, the
calculated value becomes unknown®. Above features are expressed by using the
bit product function ,, which is defined in Sect. 2.1, as follows. We evaluate
the parity of m,(x) for all z € X, namely, evaluate @, x mu(z). The parity is
always even for any wu satisfying w, < n. On the other hand, the parity becomes
unknown for u = 1™.

We next consider features of the multiset X satisfying B. If we choose one
bit from n bits and calculate the XOR of the chosen bit in the multiset, the
calculated value is always 0. However, if we choose at least two bits from n bits
and calculate the XOR of the AND of chosen bits in the multiset, the calculated
value becomes unknown. Above features are expressed by using the bit product
function 7, as follows. We evaluate the parity of 7, (x) for all € X. The parity is
always even for any u satisfying w, < 2. On the other hand, the parity becomes
unknown for any u satisfying w, > 2.

3.2 Definition of Division Property

Section 3.1 redefines both the ALL and BALANCE properties by the same
notation. Since the redefinition can be parameterized by the number of product
bits w, of the bit product function 7,, we generalize the integral property as
follows.

L If all values appear the same even number in the multiset, the calculated value is
always 0. If all values appear the same odd number in the multiset, the calculated
value is always 1. Thus, we cannot guarantee whether the calculated value is 0 or
not when we consider the multiset satisfying .A. In this case, we say the calculated
value becomes unknown.

Structural Evaluation by Generalized Integral Property 293

Definition 1 (Division Property). Let X be a multiset whose elements take
a value of Iy, and k takes a value between 0 and n. When the multiset X has
the division property Dy, it fulfils the following conditions: The parity of m,(x)
for all x € X is always even if w, is less than k. Moreover, the parity becomes
unknown if w, is greater than or equal to k.

When the multiset X has Dy, it satisfies
P ru(x) =0, for all u € (F3 \ Sp),
zeX

where S7 is a subset defined in Sect. 2.1. The parity of m,(x) for all z € X
becomes unknown for any u € S. Namely, in the division property, the set of
u is divided into the subset that @, x 7. (x) becomes unknown and the subset
that @, cx mu(z) becomes 0.

Example 1. Let X be a multiset whose elements take a value of 5. As an exam-
ple, we prepare the input multiset X as

X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, OXE}.

A following table calculates the summation of m,(z).

0x0 | 0x3 | 0x3 | 0x3 | 0x5 | 0x6 | 0x8 | 0xB | 0xD | OxE || > m,(x)

0000[0011]0011[0011[0101[0110{1000[1011[1101[1110[| (B 7u(z))
uw=0000] 1 1 1 1 1 1 1 1 1 1 10 (0)
uw=0001| ©O 1 1 1 1 0 0 1 1 0 6 (0)
u=0010|| © 1 1 1 0 1 0 1 0 1 6 (0)
u=0011(© 1 1 1 0 0 0 1 0 0 4 (0)
uw=0100]] © 0 0 0 1 1 0 0 1 1 4 (0)
uw=0101|| © 0 0 0 1 0 0 0 1 0 2 (0)
u=0110]] © 0 0 0 0 1 0 0 0 1 2 (0)
uw=0111[] ©0 0 0 0 0 0 0 0 0 0 0 (0)
uw=1000|| © 0 0 0 0 0 1 1 1 1 4 (0)
u=1001|] 0 0 0 0 0 0 0 1 1 0 2 (0)
uw=1010]] ©0 0 0 0 0 0 0 1 0 1 2 (0)
uw=1011|| © 0 0 0 0 0 0 1 0 0 1 (1)
u=1100]] © 0 0 0 0 0 0 0 1 1 2 (0)
uw=1101]] ©0 0 0 0 0 0 0 0 1 0 1 (D
uw=1110|| © 0 0 0 0 0 0 0 0 1 1 (D)
u=1111[| 0 0 0 0 0 0 0 0 0 0 0 (0)

For all u satisfying w, < 3, @,cx mu(x) becomes 0. Therefore, the multiset has
the division property Dj.

Each definition of B and U is essentially the same as that of Dy and D7,
respectively. However, the definition of A is different from that of D}'. The mul-
tiset satisfying A always has the division property D]’ but not vice versa. For
instance, the multiset satisfying the EVEN property, which is defined that the
number of occurrences is even for all values [30], does not always have A, but it
always has D]. In this paper, we use only D} instead of A because it is sufficient
to use D! from the viewpoint of the construction of integral distinguishers.

294 Y. Todo

Propagation Characteristic of Division Property Let s be an S-box whose
degree is d. Let X be an input multiset whose elements take a value of F5. Let
Y be an output multiset whose elements are calculated from s(z) for all z € X.
We assume that X has Dj}, and want to evaluate the division property of Y. In
the division property, the set of u is divided into the subset that @,y mu(x)
becomes unknown and the subset that €, x mu(x) becomes 0. Therefore, we
divide the set of v into the subset that €, ,)cy mv(s(z)) becomes unknown and
the subset that @, ,)cy mv(s(x)) becomes 0. Since the parity of 7, (s(x)) for all
s(z) € Y is equal to that of (1, 0s)(x) for all z € X, we evaluate @, x (m,05)(z).

Proposition 1 (Propagation Characteristic of Division Property). Let
s be an function (S-box) from n bits to n bits, and the degree is d. Assuming
that an input multiset X has the division property Dy, the output multiset Y has
DFET In addition, assuming that the S-box is a permutation, the output multiset

d
Y has D;; when the input multiset has Dj;.

Proof. We represent P, x (7, o s)(x) by using ANF as

@(m os)(x) = @ @ alvm,(x)

zeX zeX \u€eFy
= @ amos <@ ﬂ'u(x)> @ @ aros (@ﬂ'u(x)> _
u€eSy zeX u€ (F3\S}) reX

Since the multiset X has D}, @, x mu(z) is always 0 for any v € (F3 \ S}}).
Therefore, it satisfies

Dm0 5)w) = € a (@m(l‘)> |

zeX ueSy zeX

If aj»°* is 0 for all u € S}, @, 4 (7 0 5)(x) always becomes 0. In other words,
if there exists u € S} such that a;v°* is 1, @, 4 (7 © 5)(x) becomes unknown.
Since the function m, is the AND of w, bits and the degree of S-box is d, the
degree of the Boolean function (7, o s) has the following properties:

— The degree of (m, o s) is at most min{n — 1, w, x d}.
— If the S-box is a permutation, the degree of (m, o s) is at most n — 1 for
Wy < M.

We first assume that the multiset X has Dj!. In this case, we consider only u
satisfying w,, > k. When w, xd < k holds, a]»°® is always 0. Thus, the necessary
condition that a]*°® becomes 1 is w, x d > k, and it is w, > [g] Namely, the
necessary condition that @, x(m, o s)(x) becomes unknown is w, > f%], and
Y has DF% 1 We next assume that the multiset X has D) and the S-box is a
permutation. In this case, we consider only u = 1. When w, < n holds, a2°*

Structural Evaluation by Generalized Integral Property 295

Set of u

n
Dy,

Dry

X—[s|]>Y

Set of u

@nknowra

@Ven parity)

Fig. 2. Propagation characteristic of division property

is always 0 because the degree of the Boolean function (7, o s) is at most n — 1.
Thus, the necessary condition that a7:°® becomes 1 is v = 1. Namely, the
necessary condition that @, x(m, o s)(x) becomes unknown is v = 1", and Y

has D;.

Example 2. Let us consider a following 4-bit S-box.

O

x || 0x0

0x1

0x2 | 0x3 | 0x4

0x5

0x6

0x7|0x8 | 0x9

OxA

0xB

0xC | 0xD

OxE | OXF

s(z) || 0x8

0xC

0x0 | 0xB | 0x9

0xD

OxE

0x5 | 0xA | 0x1

0x2

0x6

0x4 | OxF

0x3|0x7

The S-box is bijective and the algebraic degree is 2. We now prepare the input
multiset X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, OxE}, which is the same
as Example 1 and the division property is D3. The output multiset is calculated
as Y := {0x8, 0xB, 0xB, 0xB, 0xD, OxE, OxA, 0x6, 0xF, 0x3}, and a following table
calculates the summation of ,(y).

0x8 | 0xB | 0xB | 0xB | 0xD | OxE | OxA | 0x6 | OxF | 0x3 || > m,(y)

1000(1011]1011{1011[1101|1110[1010[0110| 1111|0011 || (P 7 (y))
v=0000| 1 1 1 1 1 1 1 1 1 1 10 (0)
v=0001|| ©O 1 1 1 1 0 0 0 1 1 6 (0)
v =0010|| © 1 1 1 0 1 1 1 1 1 8 (0)
v=0011|| © 1 1 1 0 0 0 0 1 1 5 (1)
v=0100|| © 0 0 0 1 1 0 1 1 0 4 (0)
v=0101]] © 0 0 0 1 0 0 0 1 0 2 (0)
v=0110|| © 0 0 0 0 1 0 1 1 0 3 (1)
v=0111|| © 0 0 0 0 0 0 0 1 0 1 (1)
v=1000]] 1 1 1 1 1 1 1 0 1 0 8 (0)
v=1001|| O 1 1 1 1 0 0 0 1 0 5 (1)
v=1010|| © 1 1 1 0 1 1 0 1 0 6 (0)
v=1011[] © 1 1 1 0 0 0 0 1 0 4 (0)
v=1100]] © 0 0 0 1 1 0 0 1 0 3 (1)
v=1101|| © 0 0 0 1 0 0 0 1 0 2 (0)
v=1110]] © 0 0 0 0 1 0 0 1 0 2 (0)
v=1111[] © 0 0 0 0 0 0 0 1 0 1 (D

For all v satisfying w, < 2, EBer 7y (y) becomes 0. Therefore, the multiset Y

has the division property Dj.

Figure 2 shows the outline of the propagation characteristic of the division
property. Let X and Y be input and output multisets, respectively. First, the

296 Y. Todo

size of the set of u that @,y 7.(z) becomes unknown is small. However, the
size of the set of u that €, x mu(s(x)) becomes unknown expands. If the size
expands to the universal set except for 0, we regard that the output multiset
is indistinguishable from the multiset of random texts.

3.3 Vectorial Division Property

Section 3.2 only shows the division property for one S-box. However, since prac-
tical ciphers use several S-boxes in every round, we can not construct integral
distinguishers by only using Proposition 1. Therefore, we vectorize the division
property.

Let an S-Layer be any function that consists of m n-bit S-boxes with degree d
in parallel. We now consider the propagation characteristic of the division prop-
erty against the S-Layer. Let X be the input multiset of the S-Layer, and x € X
takes a value of (F%)™. The vectorization is the natural extension of the divi-
sion property. Namely, the set of u is divided into the subset that @, x mu ()
becomes unknown and the subset that € x mu () becomes 0, where u is an
m-dimensional vector whose elements take a value of Fy. Figure 3 shows the
difference between the division property and the vectorial one.

Definition 2 (Vectorial Division Property). Let X be the multiset whose
elements take a value of (F3)™, and k is an m-dimensional vector whose ele-
ments take a value between 0 and n. When the multiset X has the division prop-
erty D™, the multiset fulfils the following conditions: The parity of my(x) for
all x € X is always even if u does NOT belong to Si'™. Moreover, the parity
becomes unknown if w belongs to Sp™.

Propagation Characteristic of Vectorial Division Property. Assume
that the input multiset of the S-Layer has the division property D,"™. The
output of the S-Layer is calculated as S(x) = (s1(x1), s2(z2), ..., Sm(xm)) for
(71,22,...,2m) € X. We now consider the set of v that @ x 7 (S(x)) becomes
unknown and the set of v that @y 7, (S(x)) becomes 0. Since the output of
each S-box is calculated independently, the propagation characteristic of the
division property can also be evaluated independently. Namely, the output mul-
tiset has D™, where k] = [k;/d] holds. Moreover, if the S-box is bijective and
k; = n holds, k; = n holds.

3.4 Collective Division Property

By vectorizing of the division property, we can evaluate the multiset whose ele-
ments take a value of (F3)™. However, it is still insufficient to use only vectorial
division property. For simplicity, we consider a multiset X whose elements take
a value of (F§)2. Assume that the number of elements in X is 256, and two ele-
ments of take all values from 0 to 255 independently. We consider the set of u
that the parity of m,,(z) for all € X becomes unknown and the set of u that
the parity becomes 0.

Structural Evaluation by Generalized Integral Property 297

division property n (u ¢ SD)
D} D)
unknown

wex (u € Sy)

A

. n n,m
vectorizal # + + D rula) = 0 (uw g S,™)
n,m uw - n,m
Dy H m| wex unknown (u € Sp"™)

1 n
collective # + ¢ (¢ Sn(;r; U S’H(;I)L U SZ(Z)L)
unknown

DZ(T)L k2, k(D) S S S @ Tu (il)' Sn m Sn m Sn m
L [>2 m| zex (u € S USiay U o)

Fig. 3. Division property, vectorial division property, and collective division property

]

PR

— The parity becomes unknown if u belongs to 8[8 e

The parity becomes unknown if u belongs to 8?028]

— The parity becomes unknown if « belongs to s¥2

[, 1]
— Otherwise, i.e., u does NOT belong to s%2 U sH2
always even.

US*? the parity is

8,0] [0,8] [1,1]

We can not express this property by using the vectorial division property. There-
fore, we collect several vectorial division properties. Figure 3 shows the difference
between the vectorial division property and the collective division property.

Definition 3 (Collective Division Property). Let X be the multiset whose
elements take a value of (F3)™, and k) (j = 1,2,...,q) are m-dimensional
vectors whose elements take a value between 0 and n. When the multiset X has
the division property ka k) k(@) the multiset fulfils the following conditions:
The parity of my(x) for al x € X is always even if u does NOT belong to the
union Sy 1y US, 5 U- - US”EZ; Moreover, the parity becomes unknown if u belongs

to the union Sk(?; USgiay U US-

It is obvious that the collective division property with ¢ = 1 is the same as the
vectorial division property.

Propagation Characteristic of Collective Division Property. Assume
that the input multiset of the S-Layer has the division property Dk(l) NONTOE
We now consider the set of v that @y 7, (S(x)) becomes unknown, and the set
is derived from only the set of u that @y 7w (2) becomes unknown. Therefore,

we can evaluate the propagation characteristic of ka for all j independently.
e o where k7 = [k /d] holds.
Moreover, if the S-box is bijective and ki = n holds, k:;('” = n holds.

Namely, the output multiset has D}

298 Y. Todo

wn
/

d<s

21 o)

Fig. 4. (¢, d)-Feistel

T8 2

substitution

T2

Fig. 5. Propagation characteristic for Feistel Network

4 Improved Integral Distinguishers on Feistel Network

4.1 Feistel Network

(¢, d)-Feistel. The Feistel Network is one of the most popular network to design
block ciphers. When n-bit block ciphers are constructed by the Feistel Network,
the input of the round function is expressed in two (n/2)-bit values. Moreover,
an (n/2)-bit non-linear function F' is used in the round function, and we call
this function the F-function. Let (wi,ws) be the input of the round function,
and the output is calculated as (z1,22) = (F(w1) ® we, w1). We now define an
(¢, d)-Feistel, whose F-function is an ¢-bit non-linear function with degree d (this
function is not limited to a permutation). Figure 4 shows the round function of
the Feistel Network. There are many block ciphers adopting (¢, d)-Feistel, e.g.
DES [31], Camellia [3], and SIMON 2n [5] adopt (32,5)-, (64,7)-, and (n,2)-
Feistel, respectively.

4.2 Propagation Characteristic for Feistel Network

This section shows that the division property is useful to construct integral
distinguishers on (¢, d)-Feistel. Since the Feistel Network has “copy,” “substitu-
tion,” and “compression,” we need to propagate the division property against
them. The “copy” creates the input of the F-function, and the “substitution”
processes the input by the F-function, and finally the “compression” creates the
left half of the output by XOR. Figure 5 shows the outline of the propagation
characteristic.

-1- Copy. Let W be an input set, and (w1, ws) € W denotes the input value.
The round function first creates (x1,xs,x3), where x1 = wy, T2 = wy, and

Structural Evaluation by Generalized Integral Property 299

x3 = wo hold. Here, z; is the input of the F-function, x5 is the right half
of the output of the round function, and z3 is the right half of the input of
the round function. Let X be the output set whose elements take (z1, z2, z3)

for all (w1, ws) € W. Assume that the input set W has the division property

Diﬁ) K g 1f we use my, satisfying ky) < up and kéj) < ug, the parity of

7o (w) for all w € W becomes unknown. Since z; is equal to 2, the parity of
my(x) for all & € X becomes unknown if we use 7, satisfying k%j) — k' <y,
k' < vy, and k) < v for all & (0 < k' < k). Therefore, the set X has the
0,3

[0k kST, (1,65 =1,k [0 E,0,6E0], [R(7,0,k50)

-2- Substitution. The F-function is an ¢-bit function with degree d. Assume

that the input set has the division property Diﬁhk(?),...,k(q)' From the

propagation characteristic of the division property, the output set has

Doty gocer . s Where (B9 k57 kED) = ([B7 /d], k5, k§”) holds. Tf the

division property D

F-function is limited to a permutation, kll(j) becomes ¢ when kgj) = ¢ holds.

-3- Compression. Let Y be the input set, and (y1,y2,¥3) € Y denotes the
input value, where y; denotes the output of the F-function. Let y; be XORed
with y3, and then the internal state is expressed in (21, 22) = (y1Dys, y2). Let
Z be the set whose elements take (21, z2) for all (y1,y2,y3) € Y. To evaluate
the division property of the set Z, we calculate the parity of m, (21, 22) for
all (21,20) € Z as

@ 771;(21722) = @ (7T7J1 (Zl) X Ty, (22))

(21,22)€Z (z1,22)€Z

= @ (0, (Y1 B Y3) X Ty (Y2))

(y1,y2,y3)€Y

= P | B) x moree(ys) mu (42)

(y1,92,y3)€Y \cXv1

= @ @ Wc(y1> X Ty, (yQ) X 7T111@C(y3) 5

czv1 \ (y1,¥2,¥3)€EY

where the set of ¢ chosen from ¢ < v1 denotes the set of ¢ satisfying cAv; = c.

Assuming that the input set Y has the division property Di’(gl) k(@ g(o the
output set Z has the division property fom w2 (e Where (k'l(j), k;(j)) =

(K9 + £ kY)Y holds. Notice that the parity of my (21, z) for all (21, 23) € Z
becomes 0 if k:gj) + k‘éﬂ) is more than /.

4.3 Path Search Algorithm for (¢, d)-Feistel

This section shows the path search algorithm for integral distinguishers against
(¢, d)-Feistel. The algorithm is based on the propagation characteristic shown

300 Y. Todo

Algorithm 1. Path search algorithm for integral distinguishers on (¢, d)-Feistel

1: procedure FeistelFuncEval((,d, k1, k2)
2 qg<=0

3 for X =0 to k1 do

4 L <k +[X/d]

5 if L </ then

6: g<=q+1

7: kD <= (L, k1 — X)

8 end if

9 end for

0 return k... k@

1

: end procedure

12: procedure IntegralPathSearch(/,d,r = 0, k1, k2)
13: S NN CO FeistelFuncEval({,d, k1, k2)

14: D < max{k{" + k" EP + k2R 4 kY
15: while 1 < D do

16: r<r+1

17: for i =1 to g do

18: EGD k) = FeistelFuncEval(/,d, k%w, kgz))

19: end for

20: (kW k® .. k) < SizeReduce(k™V, k(12 klarad)
21: D < max{k® + &P £ + £ KO 4 kl0y

22: qg<=q

23: end while

24 return r

25: end procedure

in Sect. 4.2. Assume that k; bits of the left half of the input are active and
the rest (¢ — k1) bits are constant. Moreover, assume that ko bits of the right
half of the input are active and the rest (¢ — kg) bits are constant. Namely, we
prepare 2F11F2 chosen plaintexts. The input set has the division property D[Z,i’ ks
Algorithm 1 shows the path search algorithm to create the integral distinguisher
on (¢, d)-Feistel. Algorithm 1 does not limit the F-function to be a permutation.
If the F-function is limited to be a permutation, L becomes ks + £ when X =/
holds (see the 4-th line in Algorithm 1). Algorithm 1 calls SizeReduce, which

eliminates k(7 if there exists (', j') satisfying Si’(%?j) C Sié'v-i’)'

Results. Table 2 shows the number of required chosen plaintexts to construct
r-round integral distinguishers on (32, 5)- and (64, 7)-Feistel, where DES [31] is
classified into (32, 5)-Feistel with non-bijective function and Camellia [3] is clas-
sified into (64, 7)-Feistel with bijective function. When we construct the integral
distinguisher on (¢, d)-Feistel with 2P chosen plaintexts, we use (k1, k2) satisfying

Structural Evaluation by Generalized Integral Property 301

Table 2. The number of chosen plaintexts to construct r-round integral distinguishers
on (32,5)- and (64, 7)-Feistel. Our distinguishers are got by implementing Algorithm 1.

Target F-function log, (#texts) Method|Reference
[Application] r=4lr=5lr=6r=7[r=8r=9
(32, 5)-Feistel[non-bijection| 26 | 51 | 62 - - - our | Sect. 4.3
[DES] 26 - - - - - | degree | [8,21]
(64, 7)-Feistel| bijection 50 | 98 | 124 | - - - our | Sect. 4.3
[Camellia] 50 - - - - - | degree | [8,21]
64 - - - - - |integral| [23]

Table 3. The number of chosen plaintexts to construct r-round integral distinguishers
on the SIMON family, where the F-function is not bijective. Our distinguishers are got
by implementing Algorithm 1.

Target log, (#texts) Method|Reference
[Application] [r = 6|r = 7|r = 8|r = 9|r = 10|r = 11|r = 12|r = 13
(16,2)-Feistel| 17 | 25 | 29 | 31 - - - - our | Sect. 4.3
[SIMON 32] - - - - - - - - degree | [8,21]
(24,2)-Feistel| 17 | 29 | 39 | 44 46 47 - - our | Sect. 4.3
[SiMON 48] | 17 - - - - - - - degree | [8,21]
(32,2)-Feistel| 17 | 33 | 49 | 57 61 63 - - our | Sect. 4.3
[SIMON 64] | 17 - - - - - - - degree | [8,21]
(48,2)-Feistel| 17 | 33 57 | 7T 87 92 94 95 our | Sect. 4.3
[SiMON 96] | 17 | 33 - - - - - - degree | [8,21]
(64, 2)-Feistel| 17 | 33 65 97 113 121 125 127 our | Sect. 4.3
[SiMON 128] | 17 | 33 - - - - - - degree | [8,21]

D—1(0) forf <D,
(klka) = ()
(0,D) for D < .

For the comparison with our integral distinguishers, we consider two previ-
ous methods, one is the propagation characteristic of the integral property and
another is the estimation of the algebraic degree. We first consider the propaga-
tion characteristic of the integral property. If the F-function is a non-bijective
function, the propagation characteristic does not construct sufficient distinguish-
ers. Therefore, results introduced by the integral property are only shown when
the F-function is bijective. We next consider the estimation of the algebraic
degree. Unfortunately, since we do not know the improved bound against the
Feistel Network, we use the trivial bound for the Feistel Network. Assume that
the left half of the plaintext is constant. For any r-round (¢, d)-Feistel, it can be
observed that the function, which associates the right half of the ciphertext with
the right half of the plaintext, has degree at most d"~2 for 2 < r. Therefore, we

302 Y. Todo

can construct the r-round integral distinguishers with 24" *+1 chosen plaintexts.
Since the right half of the plaintext is at most ¢ bits, the distinguisher can be
constructed with 24" °+1 < 2¢,

As a result, as far as we try, all distinguishers constructed by the division
property are “better” than those by previous methods. We summarize integral
distinguishers on other (¢, d)-Feistel in Appendix B. We already know a “bet-
ter” integral distinguisher on Camellia in [36], but it is constructed by using the
specific feature of Camellia. On the other hand, our method is generic distin-
guishing attacks against (¢, d)-Feistel. From the result of (64, 7)-Feistel, it shows
that even if the F-function of Camellia is chosen from any functions with degree
7, the modified Camellia has the 6-round integral distinguisher.

Integral Distinguishers on Simon Family. Although our attack is a generic
attack, it can create new integral distinguishers on the SIMON family [5]. SIMON
is a lightweight block ciphers proposed by the National Security Agency. Since
SIMON has a non-bijective F-function and a bit-oriented structure, it is compli-
cated task to construct the integral distinguisher. The division property theo-
retically shows that SIMON 32, 48, 64, 96, and 128 have at least 9-, 11-, 11-, 13-,
and 13-round integral distinguishers, respectively. Table 3 shows the comparison
between our distinguishers and previous ones by the degree estimation. On the
other hand, Wang et al. showed that SIMON 32 has the 15-round integral dis-
tinguisher by experiments [33]. Therefore, there are 6-round differences between
our theoretical result and Wang’s experimental result. Our distinguisher is valid
against all (32, 2)-Feistel and it does not exploit the feature of the round function.
Namely, we expect that the 6-round difference is derived from the specification
of the round function of SIMON 32.

5 Improved Integral Distinguishers on Substitute-
Permutation Network

5.1 Substitute-Permutation Network

(¢,d, m)-SPN. The Substitute-Permutation Network (SPN) is another impor-
tant structure for block ciphers. The SPN has a round function that consists of
an S-Layer and a P-Layer, and a block cipher is designed by iterating the round
function. We now define an (¢,d, m)-SPN, whose round function has m ¢-bit
S-boxes in the S-Layer and one (¢m)-bit linear function in the P-Layer. Here,
each S-box is any bijective function whose degree is at most d, and an (¢m)-
bit linear function is any bijective function whose degree is at most 1. Figure 6
shows the round function of the SPN. Nowadays, many block ciphers adopting
(¢,d, m)-SPN have been proposed, e.g. AES [32], PRESENT [7], and Serpent [1]
adopt (8,7,16)-, (4,3,16)-, and (4, 3, 32)-SPN, respectively. Moreover, KECCAK-
f [12], which is a permutation in the hash function KECCAK, can be regarded
as (5,2, 320)-SPN.

Structural Evaluation by Generalized Integral Property 303

o SLayer P-Layer

A ' : —1 £

s — P
K | | ¢

; . Im Lim >
3) 3 > P —+

» I

; BI=N

Fig. 6. (¢,d, m)-SPN

5.2 Propagation Characteristic for SPN

This section shows that the division property is useful to construct integral dis-
tinguishers on (¢, d, m)-SPN. We first prepare the set of the input of the S-Layer
such that k; bits of the input of the i-th S-box are active and the rest (£—k;) bits
are constant. In this case, the input set has the division property Di’m. We first
evaluate the propagation characteristic against the S-Layer. Next, the P-Layer
is applied but the input and output take a value of F5™. Therefore, we need to
convert the division property Di’m into Dﬁm, and then evaluate the propaga-
tion characteristic against the P-Layer. Since the S-Layer is applied again after
the P-Layer, we convert the division property Di’” into Dé(lmxk(%,m,k(q)' After
the second round, we evaluate the propagation characteristic of this collective
division property.

- S-Layer. Assume that the input set of the S-Layer has the division property
Di’m. Since the S-Layer consists of m ¢-bit S-boxes with degree d, the output
set of the S-Layer has Dy/™. Here, if k; < £ holds, k} is calculated as k] =
[ki/d]. If k; = € holds, ki is calculated as k] = /.

- Concatenation (Conversion form S-Layer to P-Layer). The output
of the S-Layer is expressed in a value of (F4)™, but the input of the P-
Layer is expressed in a value of F§™. Let X be the output set of the S-Layer
whose elements take a value of (F5)™. Let Y be the input set of the P-
Layer whose elements take a value of F5™. The transformation is generally
implemented by a simple bit concatenation, namely, y = (z1|z2|| - ||zm)
where (x1,29,...,%,) and y are values of X and Y, respectively. We now
consider the conversion of the division property from Di’m to Di’,”. The
parity of m,(y) for all y € Y becomes unknown if and only if we choose v
satisfying w, > >_." | k;. Therefore, the input set of the P-Layer has the
division property Dy, where k' = Y"1 | k; holds.

- P-Layer. The P-Layer consists of an (¢m)-bit linear function. Since the degree
of the linear function is at most 1, there is no change in the division property.

- Partition (Conversion form P-Layer to S-Layer). The output of the P-
Layer is expressed in a value of F5™, but the input of the S-Layer is expressed

304 Y. Todo

in a value of (F5)™. Let X be the output set of the P-Layer whose elements
take a value of F§™. Let Y be the input set of the S-Layer whose elements
take a value of (F)™. The transformation is generally implemented by a sim-
ple bit partition, namely, (y1([yzll - [|ym) = @ where z and (y1,92,...,Ym)
are values of X and Y, respectively. We now consider the conversion of the
division property from D™ to D[,;’/m. When the output set of the P-Layer has
D™ | the sufficient condition that the parity of m, () for all x € X becomes
unknown is k£ < w,. Therefore the input set of the S-Layer has the collec-

tive division property Dk/(n R) where ¢ denotes the number of all

possible vectors satisfying kl(]) + k;(j) ot kD =k (1 <j<q). After the
second round, we evaluate the propagation characteristic of the collective
division property.

,,,,,

We can construct the integral distinguisher by evaluating the propagation char-
acteristic of the collective division property. However, since the size of ¢ extremely
expands, it is infeasible to execute the straightforward implementation. There-
fore, we show more efficient technique. Let X be the input set of the S-Layer, and
the elements take a value of (F5)™. Assume that the input set has the division

property Dku) O R@ that is created by the partition of the division property

D™ If k > (£—1)m holds, at least (m —¢m+k) elements of k/) have to become
£. In this case, the rest elements have to become ¢ — 1. Since the S-Layer derives
V*TW and ¢ from (¢ — 1) and ¢, respectively, the output set has the division
property D, where k’ is calculated as

Here, if £ < (¢—1)m holds, we simply regard the round function of (¢, d, m)-SPN
as one (¢m)-bit S-box with degree d.

‘ <\

] (m — k) + £(m — tm + k) for k> (£ —1)m,
| for k < (£ —1)m.

ISWES

5.3 Path Search Algorithm for (¢,d, m)-SPN

We now consider integral distinguishers on (¢, d, m)-SPN. We first prepare the set
of chosen plaintexts such that k; bits of the input of the ¢-th S-box are active and
the rest (£—k;) bits are constant. Namely, we prepare 222721 ki chosen plaintexts.
The input set has the division property Di’m. Algorithm 2 shows the path search
algorithm to construct the integral distinguisher.

Results. Table 4 shows the number of required chosen plaintexts to construct

the r-round integral distinguisher on (4,3,16)- and (8,7,16)-SPN, where

PRESENT [7] and AES [32] are classified into (4,3,16)- and (8,7,16)-SPN,

respectively. When we construct the integral distinguisher on (¢, d, m)-SPN with
D chosen plaintexts, we use a vector k satisfying

Structural Evaluation by Generalized Integral Property 305

Algorithm 2. Path search algorithm for integral distinguishers on (¢, d, m)-SPN

1: procedure IntegralPathSearch(f,d,m,r = 0,ki,ka,...,kn)

2: if k; < ¢ then k; < [k;/d] > 1-st round S-Layer
3: end if

4: B ki > 1-st round Concatenation and P-Layer
5: while 1 < k£ do

6: r<r+1

7 if £ < (¢ —1)m then k < [k/d] > (r 4 1)-th round
8: else k < [51] (bm — k) + €(m — tm + k) > (r + 1)-th round
9: end if

10: end while

11: return r

12: end procedure

Table 4. The number of chosen plaintexts to construct r-round integral distinguishers
on (¢,d,m)-SPN. Our distinguishers are got by implementing Algorithm 2.

Target log, (#texts) Method |Reference
r=3r=4/r=5|r=6{r="7
(4,3,16)-SPN| 12 | 28 | 52 | 60 - our | Sect. 5.3
[PRESENT] | 28 | 52 | 60 | 63 - | degree [9]
(8,7,16)-SPN| 56 | 120 | - - - our | Sect. 5.3
[AES] 117 | 127 | - - - | degree 9]

Table 5. The number of chosen plaintexts to construct r-round integral distinguishers
on KECCAK-f and Serpent. Our distinguishers are got by implementing Algorithm 2.

Target log, (#texts) Method |Reference
[Application] |r =3[r=4|r=5|r=6|r=7[r=8[r=9|r =10
(4,3,32)-SPN | 12 28 84 113 124 - - - our | Sect. 5.3
[Serpent] 28 | 82 | 113 | 123 | 127 - - - degree 9]
Target log, (#texts) Method |Reference
[Application] |r = 8[r = 9|r = 10[r = 11|r = 12|r = 13|r = 14|r = 15
(5,2,320)-SPN| 130 | 258 | 515 | 1025 | 1410 | 1538 | 1580 | 1595 our | Sect. 5.3
[KECCAK-f] | 257 | 513 | 1025 | 1409 | 1537 | 1579 | 1593 | 1598 | degree 9]

for il < D,
—(@—=1)¢ for (i—1)¢ <D <il,
for D < (i — 1)¢.

&
[
o g~

For the comparison with our integral distinguishers, we first consider the
propagation characteristic of the integral property. However, it does not con-
struct a sufficient distinguisher because the P-Layer is any linear function. Next,

306 Y. Todo

we estimate the algebraic degree by using the method proposed by Boura et al.
We show the method in Appendix A.

As a result, as far as we try, all distinguishers constructed by the division
property are “better” than those by previous methods. We summarize inte-
gral distinguishers on other (¢,d, m)-SPN in Appendix C. We already know the
7-round integral distinguisher on PRESENT in [34] and the 4-round integral
distinguisher on AES in [23]. However, they are constructed by using the spe-
cific feature of each block cipher. On the other hand, our method is generic
distinguishing attacks against (¢,d, m)-SPN. From the result of (4, 3,16)-SPN,
it shows that even if the P-Layer of PRESENT is chosen from any bijective
linear functions, the modified PRESENT has the 6-round integral distinguisher.
Similarly, from the result of (8,7,16)-SPN;, it shows that even if the P-Layer of
AES is chosen from any bijective linear function, the modified AES still has the
4-round integral distinguisher.

Integral Distinguishers on Serpent and Keccak-f Although our attack
is a generic attack, it can create new integral distinguishers on Serpent and
KECCAK-f. Serpent is one of AES finalists and is classified into (4, 3, 32)-SPN.
The existing integral distinguisher is shown in [37], and it shows that Serpent has
3.5-round integral distinguisher. On the other hand, we show that all (4, 3, 32)-
SPNs have at least 7-round integral distinguishers with 2'24 chosen plaintexts.
Table 5 shows the comparison between our distinguishers and previous ones by
the degree estimation.

KEccAK is chosen as SHA-3, and the core function KECCAK-f is classified
into (5,2,320)-SPN. Boura et al. estimated the algebraic degree of KECCAK-f
in [9]. We search for the integral distinguisher by using Algorithm 2. As a result,
our distinguishers can reduce the number of chosen plaintexts compared with
previous ones. Table 5 shows the comparison between our distinguishers and
previous ones.

6 Toward Dedicated Attack

We introduced the division property in Sect. 3, and proposed distinguishing
attacks against the Feistel Network and the SPN in Sect. 4 and Sect. 5, respec-
tively. In this section, we show that the division property is also useful to con-
struct the dedicated attack against specific ciphers. As an example, we show
integral distinguishers on AES-like ciphers.

6.1 AES-Like Cipher

(¢,d, m)-AES. AES is a 128-bit block cipher, and an intermediate text of AES
is expressed in a 4 x 4 matrix whose elements are 8 bits. The round function of
AES consists of SubBytes, ShiftRows, MixColumns, and AddRoundKey, where
each function is defined as follows:

Structural Evaluation by Generalized Integral Property 307

Algorithm 3. Evaluating algorithm against the round function of (¢, d, m)-AES

1: procedure AesFuncEval({,d, m, K)

2: for r =1tom do

3: for c=1 tom do

4: if krc < £ then k. < [kr/d] > SubBytes
5: end if

6: end for

7 end for

8: K <« ShiftRows(K) > ShiftRows
9: ke <> k. forall ¢ > MixColumns
10: k' < sort(k’)

11: return k’

12: end procedure

— SubBytes (SB) : It substitutes each byte in the matrix into another byte by
an S-box.

— ShiftRows (SR) : Each byte of the i-th row is rotated ¢ — 1 bytes to the left.

MixColumns (MC) : It diffuses bytes within each column by a linear function.

— AddRoundKey (AK) : A round key is XORed with the intermediate text.

We define an (¢, d, m)-AES, where ¢, d, and m denote the bit length of an S-box,
the algebraic degree of an S-box, and the size of the matrix, respectively. This
intermediate text is expressed in an m X m matrix whose elements are ¢ bits.
Let X € (F5)™*™ be an input of the round function, which is arranged as

T1,1 T1,2 *° Tim
T21 T22 **° T2m
Tm,1 Tm,2 " Tm,m

Let Y € (F)™*™ be an output of the round function, which is calculated as
Y = (AK o MC o SR o SB)(X). Each function is the same as that of AES
except for the scale. For instance, AES [32] and LED [18] adopt (8, 7,4)-AES and
(4,3, 4)-AES, respectively. Moreover, Pasq of PHOTON [17] adopts (4, 3,8)-AES?.

6.2 Path Search Algorithm for (¢,d, m)-AES

Section 5 shows how to construct integral distinguishers on (¢, d, m)-SPN, but
practical block ciphers have a specific P-Layer. For instance, the P-Layer in
AES consists of ShiftRows and MixColumns, and it is not any linear function.
Taking into account the structure of the P-Layer, we can construct more effective
algorithm. In this section, as an example, we show a path search algorithm to
construct integral distinguishers on (¢,d, m)-AES. Algorithm 3 evaluates the
propagation characteristic of the division property against the round function

2 Since PHOTON is a hash function, it uses AddConstant instead of AddRoundKey.

308 Y. Todo

Algorithm 4. Path search algorithm for integral distinguishers on (¢, d, m)-AES
1: procedure IntegralPathSearch({,d,m,r =0,K € {0,1,...,£}"*™)

2: AS AesFuncEval(¢,d,m, K) > 1-st round
32 DeYm kY
4: qg<=1
5: while 1 < D do
6: r<r+1
T for i =1 to g do
8: KU K®® < Partition(k")
9: for j =1tosdo
10: E<1), ceey Y < AesFuncEval (¢, d,m, K 7)) > (r + 1)-th round
11: if (4,7) = (1,1) then
12: AR UC R SizeReduce(l_c<1), e I_c(t))
13: else
14: EO k) = SizeReduce(k'W), ..., [2COR E<1), e E(t))
15: qd<=q"
16: end if
17: end for
18: end for
19: kW < k'™ forall 1 <i<g
20: qg<dq
21: D <min{>X"™ k& Sm kP k)
22: end while
23: return r

24: end procedure

of AES-like ciphers, and it calls ShiftRows and sort. ShiftRows performs a
similar transformation to SR. sort is the sorting algorithm, which is useful for
feasible implementation. Algorithm 4 shows the path search algorithm, and it
calls Partition, AesFuncEval, and SizeReduce. Partition(k(*)) calculates all
possible K(9) satisfying

m
(Z killj) 5’1727)7" Zkr #3) ,k'g),...,k'gfl)),

r=1 r=1

where 0 < k') < ¢ holds. SizeReduce eliminates k(i) if there exists (¢, ;')
satisfying SZ”]’? C SZ"/T/)

Notice that the size of ¢ in the division property extremely expands when the
partition of the division property is executed (see the 8-th line in Algorithm 4).
Namely, our algorithm takes large execution time and large memory capacity
if we straightforwardly implement our algorithm. Therefore, we use an effective
method, which uses the feature of (¢, d, m)-AES, for the feasible implementation.
Notice that each column of (¢, d, m)-AES is equivalent each other. Assuming that
the input set has Di";c,m that k' is a permutation of elements of k, the division
property of the next round calculated from k is exactly the same as that from k'
because columns of (¢, d, m)-AES are equivalent each other. Namely, it is enough

Structural Evaluation by Generalized Integral Property 309

Table 6. The number of chosen plaintexts to construct r-round integral distinguish-
ers on (4,3, m)-AES. Our distinguishers are got by implementing Algorithm 2 and
Algorithm 4.

Target log, (#texts) Method |Reference
[Application] |r =3|r =4|r =5|r=6[r =T|r =38
(4,3,4)-AES 4 12 | 32 | 52 - - |our (AES)| Sect. 6.2
[LED] 12 | 28 | 52 | 60 | - | - |our (SPN)| Sect. 5.3
28 | 52 | 60 | 63 - - degree [9]
4 16 - - - - integral | [13,23]
(4,3,5)-AES | 4 | 12 | 20 | 72 | 97 | - |our (AES)| Sect. 6.2
[Pioo in PHOTON]| 12 | 28 | 76 | 92 - - |our (SPN)| Sect. 5.3
28 | 76 | 92 | 98 - - degree [9]
4 20 - - - - integral | [13,23]
(4,3,6)-AES 4 12 24 84 | 132 - |our (AES)| Sect. 6.2
[P144 in PHOTON]| 12 28 84 | 124 | 140 - |our (SPN)| Sect. 5.3
98 | 82 | 124 | 138 | 142 | - | degree 9]
I [24 | - | - [- | - [integral | [13,23]
(4,3,7)-AES 4 12 24 84 | 164 | 192 |our (AES)| Sect. 6.2
[Pi9s in PHOTON]| 12 | 28 | 84 | 160 | 184 | 192 |our (SPN)| Sect. 5.3
28 82 | 158 | 184 | 192 | 195 degree [9]
4 28 - - - - integral | [13,23]
(4,3,8)-AES | 4 | 12 | 28 | 92 | 204 | 249 |our (AES)| Sect. 6.2
[P256 in PHOTON]| 12 28 84 | 200 | 237 | 252 |our (SPN)| Sect. 5.3
28 | 82 | 198 | 237 | 250 | 254 | degree [9]
4 32 - - - - integral | [13,23]

to save either, and we implement it by a sorting algorithm (see the 10-th line in
Algorithm 3). This technique enables us to execute our path search algorithm
feasibly in many parameters.

Results. Table 6 shows the number of required chosen plaintexts to construct
r-round integral distinguishers on (4,3, m)-AES. When we construct the integral
distinguisher on (£, d, m)-AES with 2 chosen plaintexts, we carefully choose the
input matrix K.

For the comparison with our improved integral distinguishers, we also show
integral distinguishers by using the propagation characteristic of the integral
property. We also estimate the algebraic degree by the method proposed Boura et
al. (see Appendix A). Moreover, since (4,3, m)-AES are classified into (4, 3, m?)-
SPN, we construct integral distinguishers by Algorithm 2.

As a result, as far as we try, all distinguishers constructed by the division
property are at least better than those by previous methods. Especially, the
advantage of our method is large when we construct the integral distinguisher
with the small number of texts. For instance, our method shows that (4,3, 8)-
AES, which is adopted by Pssg in PHOTON, has the 6-round distinguisher with

310 Y. Todo

292 chosen plaintexts. If we regard (4,3,8)-AES as (4, 3,64)-SPN, 22%° chosen
plaintexts are required to construct the distinguisher.

7 Conclusions

In this paper, we proposed the fundamental technique to improve integral dis-
tinguishers, and showed structural cryptanalyses against the Feistel Network and
the SPN. Our new technique uses the division property, which is the
generalization of the integral property. It can effectively construct integral dis-
tinguishers even if block ciphers have non-bijective functions, bit-oriented struc-
tures, and low-degree functions. For the Feistel Network, when the algebraic
degree of the F-function is smaller than the bit length of the F-function, our
method can attack more rounds than previous generic attacks. Moreover, we
theoretically showed that SIMON 48, 64, 96, and 128 have 11-, 11-, 13-, and 13-
round integral distinguishers, respectively. For the SPN, our method extremely
reduces the required number of chosen plaintexts compared with previous meth-
ods. Moreover, we improved integral distinguishers on KECCAK-f and Serpent.
The division property is useful to construct integral distinguishers against spe-
cific ciphers. As one example, we showed a path search algorithm to construct
integral distinguishers on the AES-like cipher, which is the sub class of the
SPN. From this fact, we expect that the division property can construct many
improved integral distinguishers against specific ciphers by constructing the ded-
icated path search algorithm.

A Estimation of Algebraic Degree for (¢,d, m)-SPN

If the degree of r iterated round functions is at most D, we can construct the -
round integral distinguisher with 2°%! chosen plaintexts. In a classical method,
if the degree of the round function is at most d, the degree of r iterated round
functions is bounded by d”". In 2011, Boura et al. showed tighter bound as follows.

Theorem 1 ([9]). Let S be a function from Fy into FY corresponding to the
concatenation of m smaller S-boxes, defined over F3°. Let & be the mazimal
degree of the product of any k bits of anyone of these S-boxes. Then, for any

function G from Fy into Fa, we have

deg(GoS)<n— %7
Y
where
ng —)

v = max .
1<i<no—1 ng — 0;

By using this bound, we can estimate the degree of (¢, d, m)-SPN. For instance,
we show the degree of (4, 3,64)-SPN as follows.

Structural Evaluation by Generalized Integral Property 311
Number of rounds 1 2 3 4 5 6 7 8 9
Bound on degree 3 9 27 81 197 236 249 253 255

Therefore, we can construct the 8-round integral distinguisher on (4, 3, 64)-SPN

with 22°4 chosen plaintexts.

B

Table 7 shows integral distinguishers on (¢, d)-Feistel, where (¢,d)-Feistel is
defined in Sect. 4.1. If we construct the dedicated path search algorithm for

Table 7. The number of required chosen plaintexts to construct r-round integral dis-

Integral Distinguishers on (£, d)-Feistel

tinguishers on (¢, d)-Feistel. We get these values by implementing Algorithm 1.

Target | F-function log, (#texts) Examples
r=6r="7r=8r=9|r=10\r = 11|r = 12|r = 13|r = 14
(16,2) |non-bijection| 17 | 25 | 29 | 31 - - - - SIMON 32 [5]
bijection 16 23 28 30 31 - - - -
(24,2) |non-bijection| 17 | 29 | 39 | 44 46 47 - - - SIMON 48 [5]
bijection 17 | 27 | 38 | 43 46 47 - - -
(32,2) [non-bijection| 17 | 33 | 49 | 57 | 61 | 63 | - - ~ | SimoN 64 [5]
bijection 17 | 32 | 47 | 56 60 62 63 - -
(48,2) |non-bijection| 17 33 57 7 87 92 94 95 - SIMON 96 [5]
bijection 17 | 33 | 55 | 76 86 91 94 95 -
(64, 2) [non-bijection| 17 33 65 97 113 121 125 127 - |SimMoON 128 [5]
bijection 17 33 64 | 95 112 120 124 126 127
Target | F-function log, (#texts) Examples
r=3r=4/r=5\r=6|r=7|r=8|r=9|r=10r =11
(32,5) |non-bijection| 6 26 | 51 | 62 - - - - DES [31]
bijection 6 26 | 46 | 61 - - - - -
(48,5) |non-bijection| 6 26 | 64 | 90 95 - - - -
bijection 6 26 59 | 89 95 - - - -
(64,5) [non-bijection| 6 26 | 77 | 118 | 126 - - - -
bijection 6 26 72 | 117 | 126 - - - -
Target | F-function log, (#texts) Examples
r=3r=4/r=5\r=6/r=7|r=8|r=9|r=10r =11
(32,7) |non-bijection| 8 35 | 60 - - - - - -
bijection 8 32 59 - - - - - -
(48,7) |non-bijection| 8 49 | 90 - - - - - -
bijection 8 48 84 | 95 - - - - -
(64,7) |non-bijection| 8 50 | 104 | 125 - - - - -
bijection 8 | 50 | 98 | 124 - - - - - Camellia [3]
Target | F-function log, (#texts) Examples
r=3r=4/r=5|r=6/r=7|r=8|r=9|r=10r =11
(32,31) |non-bijection| 32 | 62 - - - - -
bijection 32 32 | 63 - - - - - -
(48,47) |non-bijection| 48 | 94 - - - - - - -
bijection 48 | 48 | 95 - - - - - -
(64, 63) |lnon-bijection| 64 | 126 | - - - - - - -
bijection 64 64 | 127 - - - - - -
(32, 32) |non-bijection| 33 - - - - - - - -
(48, 48) |non-bijection| 49 - - - - - - - -
(64, 64) |lnon-bijection| 65 - - - - - - - -

312 Y. Todo

the specific cipher, we expect that the algorithm can create better integral dis-
tinguishers.

C Integral Distinguishers on (¢,d, m)-SPN

Table 8 shows integral distinguishers on (¢,d, m)-SPN, where (¢,d, m)-SPN is
defined in Sect. 5.1. If we construct the dedicated path search algorithm for the
specific cipher, we expect that the algorithm can create better integral distin-

guishers.

Table 8. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on (¢, d, m)-SPN. We get these values by implementing Algorithm 2.

Target | Size log, (#texts) Examples
(bits)|r =4|r=5|r=6|r=7|r=8|r=9[r=10
(4,3,16)| 64 | 28 | 52 | 60 | - - - PRESENT [7], LED [18]
(4,3,24)| 96 | 28 | 76 | 89 | - - - -
(4,3,32) | 128 | 28 | 84 | 113 | 124 | - N - Serpent [1], NOEKEON [14]
(4,3,40) | 160 | 28 84 136 152 - - -
(4,3,48) | 192 | 28 | 84 | 156 | 180 | 188 | - -
(4,3,56) | 224 | 28 84 177 209 220 - -
(4,3,64) | 256 | 28 | 84 | 200 | 237 | 252 | - ~ [Prost-128 [20], Minalpher-P [29]
(4,3,128)| 512 | 28 84 244 424 484 504 509 Prost-256 [20]
Target | Size log, (#texts) Examples
(bits)[r =5{r=6|r=7|r=8|r=9|r=10r =11
(5,2,40) | 200 | 18 | 35 | 65 | 130 | 178 | 195 | - PRIMATE-80 [2]
(5,2,56) | 280 | 18 35 65 130 | 230 | 265 275 PRIMATE-120 [2]
(5,2,64) | 320 | 18 35 65 130 | 258 | 300 | 315 ASCON Permutation [16]
Target | Size log, (#texts) Examples
(bits){r = 9|r = 10[r = 11|r = 12|r = 13|r = 14|r = 15
(5,2,160)| 800 | 258 | 515 705 770 790 798 - KECCAK-£[800] [12]
(5,2,256)| 1280 | 258 | 515 | 1025 | 1195 | 1253 | 1271 | 1278
(5,2,320)| 1600 | 258 | 515 | 1025 | 1410 | 1538 | 1580 | 1595 KECCAK-f[1600] [12]
Target | Size log, (#texts) Examples
(bits)[r =3|r=4|r=5|r=6|r=T|r=8[r=9
(5,4,40) | 200 | 20 65 170 195 - - -
(5,4,56) | 280 | 20 65 230 270 - - -
(5,4,64) | 320 | 20 65 260 305 - - -
(5,4,160)| 800 | 20 65 260 | 665 770 795 -
(5,4,256) 1280 | 20 65 260 | 1025 | 1220 | 1265 - ICEPOLE Permutation [27]
(5,4,320)[1600 | 20 65 260 | 1025 | 1460 | 1565 | 1595
Target | Size log, (#texts) Examples
(bits)[r =3|r=4|r=5|r=6|r=7T[r=8[r=9
(8,7,16) | 128 | 56 120 - - - - - AES [32]
(8,7,24) | 192 | 56 176 - - - - - Rijndael-192 [15
(8,7,32) | 256 | 56 232 - - - - - Rijndael-256 [15
(8,7,64) | 512 | 56 | 344 | 488 - - - - WHIRLPOOL primitive [4]

Structural Evaluation by Generalized Integral Property 313

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the Advanced
Encryption Standard. NIST AES Proposal (1998)

Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1.02 (2014), submission to CAE-
SAR competition

Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39-56. Springer, Heidelberg (2001)

Barreto, P.S.L.M., Rijmen, V.: The Whirlpool hashing function (2003), submitted
to the NESSIE project. http://www.larc.usp.br/~pbarreto/ WhirlpoolPage.html
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013). http://eprint.iacr.org/2013/404

Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395-405. Springer, Heidelberg
(2001)

Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466.
Springer, Heidelberg (2007)

Boura, C., Canteaut, A.: On the influence of the algebraic degree of F~! on the
algebraic degree of GoF'. IEEE Transactions on Information Theory 59(1), 691-702
(2013)

Boura, C., Canteaut, A., De Canniére, C.: Higher-order differential properties of
KEeccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252-269.
Springer, Heidelberg (2011)

Canniere, C.D., Sato, H., Watanabe, D.: Hash function Luffa - a SHA-
3 candidate (2008). http://hitachi.com/rd/yrl/crypto/luffa/roundlarchive/Luffa_
Specification.pdf

Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions
and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 518-533. Springer, Heidelberg (2002)
Daemen, J., Bertoni, G., Peeters, M., Assche, G.V.: The Keccak reference version
3.0 (2011)

Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149-165. Springer, Heidelberg (1997)
Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: The Noekeon block cipher.
(2000), submitted to the NESSIE project. http://gro.noekeon.org/

Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002)

Dobraunig, C., Eichlseder, M., Mendel, F., Schlaffer, M.: Ascon v1 (2014), submis-
sion to CAESAR competition

Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family oflightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222-239.
Springer, Heidelberg (2011)

Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326-341. Springer,
Heidelberg (2011)

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://eprint.iacr.org/2013/404
http://hitachi.com/rd/yrl/crypto/luffa/round1archive/Luffa_Specification.pdf
http://hitachi.com/rd/yrl/crypto/luffa/round1archive/Luffa_Specification.pdf
http://gro.noekeon.org/

314

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Y. Todo

Isobe, T., Shibutani, K.: Generic key recovery attack on Feistel scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 464-485.
Springer, Heidelberg (2013)

Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalgin,
T.: Prgst v1.1 (2014), submission to CAESAR competition

Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196-211. Springer, Heidelberg (1995)

Knudsen, L.R.: The security of Feistel ciphers with six rounds or less. J. Cryptology
15(3), 207—222 (2002)

Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112-127. Springer, Heidelberg (2002)

Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications
and Cryptography. The Springer International Series in Engineering and Computer
Science, vol. 276, pp. 227-233 (1994)

Li, Y., Wu, W., Zhang, L.: Improved integral attacks on reduced-round CLEFIA
block cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 28-39.
Springer, Heidelberg (2012)

Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. STAM J. Comput. 17(2), 373-386 (1988)

Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J.,
Rogawski, M., Srebrny, M., Wgjcik, M.: ICEPOLE v1 (2014), submission to CAE-
SAR competition

Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106—122. Springer, Heidelberg (2004)
Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M., Hirose, S.: Minalpher v1 (2014), submission to CAESAR competition
Shibayama, N., Kaneko, T.: A peculiar higher order differential of CLEFIA. In:
ISITA, pp. 526-530. IEEE (2012)

National Institute of Standards and Technology: Data Encryption Standard (DES).
Federal Information Processing Standards Publication 46 (1977)

National Institute of Standards and Technology: Specification for the ADVANCED
ENCRYPTION STANDARD (AES). Federal Information Processing Standards
Publication 197 (2001)

Wang, Q., Liu, Z., Varici, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis
of reduced-round SIMON32 and SIMON48. In: Daemen, J., Rijmen, V. (eds.)
INDOCRYPT. LNCS, vol. 8885, pp. 143-160. Springer, Heidelberg (2014)

Wu, S., Wang, M.: Integral attacks on reduced-round PRESENT. In: Qing, S.,
Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 331-345. Springer, Hei-
delberg (2013)

Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327-344. Springer, Heidelberg (2011)
Yeom, Y., Park, S., Kim, I.: On the security of CAMELLIA against the Square
attack. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89-99.
Springer, Heidelberg (2002)

Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral
attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363-381. Springer,
Heidelberg (2008)

Cryptanalysis of SP Networks
with Partial Non-Linear Layers

Achiya Bar-On!, Itai Dinur?(®), Orr Dunkelman®?, Virginie Lallemand?,
Nathan Keller!®, and Boaz Tsaban'

! Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
2 Département d’Informatique, Ecole Normale Supérieure, Paris, France
Itai.Dinur@ens.fr
3 Computer Science Department, University of Haifa, Haifa, Israel
4 Inria, Paris, France
5 Computer Science Department, The Weizmann Institute, Rehovot, Israel

Abstract. Design of SP networks in which the non-linear layer is applied
to only a part of the state in each round was suggested by Gérard et al. at
CHES 2013. Besides performance advantage on certain platforms, such
a design allows for more efficient masking techniques that can mitigate
side-channel attacks with a small performance overhead.

In this paper we present generic techniques for differential and lin-
ear cryptanalysis of SP networks with partial non-linear layers, includ-
ing an automated characteristic search tool and dedicated key-recovery
algorithms. Our techniques can be used both for cryptanalysis of such
schemes and for proving their security with respect to basic differential
and linear cryptanalysis, succeeding where previous automated analysis
tools seem to fail.

We first apply our techniques to the block cipher Zorro (designed by
Gérard et al. following their methodology), obtaining practical attacks
on the cipher which where fully simulated on a single desktop PC in a
few days. Then, we propose a mild change to Zorro, and formally prove
its security against basic differential and linear cryptanalysis. We con-
clude that there is no inherent flaw in the design strategy of Gérard et
al., and it can be used in future designs, where our tools should prove
useful.

Keywords: Block cipher - Lightweight - Zorro - Differential crypt-
analysis + Linear cryptanalysis

Achiya Bar-On—The research of the first author was partially supported by the
Israeli Ministry of Science, Technology and Space, and by the Check Point Institute
for Information Security.
Orr Dunkelman—The third author was supported in part by the German-Israeli
Foundation for Scientific Research and Development through grant No. 2282-
2222.6/2011.
Virginie Lallemand—The fourth author was partially supported by the French
Agence Nationale de la Recherche through the BLOC project under Contract ANR-
11-INS-011.
Nathan Keller—The fifth author was supported by the Alon Fellowship.

© International Association for Cryptologic Research 2015

E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 315-342, 2015.
DOT: 10.1007/978-3-662-46800-5_13

316 A. Bar-On et al.

1 Introduction

Most block ciphers are either SP networks that apply linear and non-linear layers
to the entire state in every encryption round, or (generalized) Feistel structures
that apply partial linear and non-linear layers in every round. In the CHES 2013
paper [10], Gérard et al. suggested a compromise between the two common block
cipher designs — an SP network in which the non-linear layer is applied to only a
part of the state in every round. Such partial non-linear SP networks (which we
call PSP networks) contain a wide range of possible concrete schemes that were
not considered so far, some of which have performance advantage on certain
platforms. More importantly, PSP networks allow for more efficient masking
techniques, capable of thwarting side-channel attacks with a small performance
overhead.

As a concrete instantiation of their methodology, Gérard et al. designed
Zorro, a 128-bit lightweight block cipher. Zorro has an unconventional struc-
ture, as it applies a sequence of 24 AES-like rounds, with a partial S-box layer
in each round, containing only 4 out of the possible 16 S-boxes. Since previ-
ous tools that were developed in order to formally prove the security of block
ciphers against standard differential and linear cryptanalysis (such as the wide-
trail strategy used for AES) do not apply to PSP networks such as Zorro, the
authors replaced the formal proof for Zorro by a heuristic argument. Unfortu-
nately, the heuristic argument turned out to be insufficient, as Wang et al. [16]
found iterative differential and linear characteristics that were missed by the
heuristic and used them to break full Zorro with complexity of 212,

In this paper, we propose efficient algorithms for differential and linear crypt-
analysis of PSP networks. These algorithms allow us to fully evaluate the security
of such constructions against standard differential and linear cryptanalysis. In
some cases, we can compute tight upper bounds on the probability of differential
and linear characteristics, thus offering formal proofs which are expected from
any proposal of a modern block cipher.

Our most useful tool is a generic differential/linear characteristic search algo-
rithm, allowing us to search for the best differential/linear characteristics for
many rounds with a practical time complexity. A complementary tool is an effi-
cient key recovery technique for differential and linear attacks, making use of
the partial S-box layers to analyze more rounds at the end of the cipher with no
increase in the attack’s complexity.

1.1 Owur New Automated Characteristic Search Tool

The starting point of our characteristic search algorithm is the algorithm of
Biryukov and Nikolic [3] (along with several related algorithms, starting from
Matsui’s classical algorithm [12] and more recent ones [4,13]), which is based on
a compact representation of differential characteristics, that we call a pattern.
At its most basic form, a pattern describes for each byte (or nibble) of the

Cryptanalysis of SP Networks with Partial Non-Linear Layers 317

cipher’s state, whether it is active (namely, it has a non-zero input difference)
or inactive.!

Patterns allow the algorithm to group together and simultaneously analyze
many characteristics for a given number of the cipher’s rounds. The algorithm
outputs only patterns that contain the smallest number of active S-boxes, and
thus correspond to high probability characteristics. However, depending on the
analyzed cipher, not all possible patterns are valid, as there are patterns not
followed by any actual characteristic.? Thus, in order to provide meaningful
results, a characteristic search algorithm has to ensure that it only outputs valid
patterns.

Previous search algorithms [3,4,12,13] indeed made sure that their output
patterns were valid. This was done using local consistency checks, separately
ensuring that for each of the r rounds of a pattern, there exist characteristics that
satisfy the transitions of the round? (i.e., conform to the 1-round pattern). For
standard block ciphers, ensuring that an r-round pattern is locally valid (in the
sense described above) also implies that it is globally valid, namely, there exists
an actual r-round characteristic that simultaneously satisfies all the transitions
of the r rounds.

Unlike standard block ciphers, for PSP networks there exist many locally valid
patterns which are not globally valid over several rounds. In order to demonstrate
this, consider a 4-round AES-like cipher with 4 S-boxes in each round (such as 4-
round Zorro). The cipher contains a total of 4 -4 = 16 S-boxes, and a larger num-
ber of 12 -4 = 48 state bytes that do not go through an S-box in these rounds. It is
easy to see that the cipher has a large number of locally valid patterns in which all
the 16 S-boxes are inactive, as in each round, there are many valid active/inactive
possibilities for the 12 bytes that do not go through an S-box. Consequently, when
applying previous algorithms (such as [3]) to this cipher, we obtain many patterns
in which all the 16 S-boxes are inactive, containing a huge number of possible 4-
round characteristics with probability 1. However, as we show next, it is likely that
none of these characteristics is globally valid, rendering previous algorithms inef-
fective for this (seemingly simple) PSP network.

At a high level, the reason that it is likely that there exists no characteristic
in which all the 16 S-boxes are inactive, is that each inactive S-box forces the
input difference to 0, imposing a constraint on the characteristic. Thus, for the
4-round cipher, we have 16 such constraints, whereas the number of available
degrees of freedom to choose the input difference at the first round is also 16.
Consequently, we have the same number of constraints and degrees of freedom,
and it is probable that the constraints cannot be simultaneously satisfied (which
is indeed the case for 4-round Zorro, as shown in [10]).

! For example, the 16 bytes of the 128-bit AES state can be described by a pattern of
only 16 bits.

2 For example, if the input to an AES round contains 1 active byte, then its output
contains exactly 4 active bytes, and all other patterns are automatically invalid.

3 The algorithm of [4] is a bit different, as a characteristic is broken down into groups
of 3 consecutive rounds.

318 A. Bar-On et al.

In order to take into account global constraints, we group characteristics
according to patterns similarly to previous algorithms. However, unlike previous
algorithms, our patterns do not contain information about the full state, but
only about the activity/inactivity of the bytes that go through S-boxes. Then,
we observe that all the constraints imposed on a characteristic that follows such
a pattern can be described by a set of linear equations. This observation allows
us to group together and efficiently analyze, many characteristics which reside in
a subspace, defined according to subtle linear constraints imposed by the cipher’s
linear layer.

Previous related automated search tools of [3,4,12,13] mostly employed
method of dynamic programming and mixed integer-linear programming. On
the other hand, our characteristic search algorithm, as well as our key recov-
ery algorithms, is mostly based on linearization techniques, which combine in a
novel way methods from simple linear algebra and combinatorics, and may be
of independent interest. These techniques exploit the small number of S-boxes
in the non-linear layers of the cipher in order to “linearize” sequences of rounds,
thus making it possible to analyze many rounds efficiently. We stress that while
we focus in this paper on PSP networks, our algorithms can potentially offer
new insights on the security of other designs that apply a non-linear function to
only a part of the state in each round, such as (generalized) Feistel constructions
and stream ciphers.

1.2 Main Application of the New Tool: Studying the Security of
the PSP Network Design Methodology

As a first demonstration of our techniques, we apply them to the block cipher
Zorro, improving the complexity of the previously best attack from 2''2 to a
practical 245, Our attack was fully simulated several times on a standard desktop
PC over several days. This is a rare case in which an attack on a modern block
cipher is fully simulated in practice.

More significantly, we address the general question of whether the attacks on
Zorro indicate a structural flaw in its design methodology, or are merely a result
of an unlucky combination of components. Our conclusion is that indeed the
methodology of building PSP networks based on AES in a straightforward way is
flawed, and should not be reused. The structural weakness in this methodology is
due to a subtle inter-relation between the ShiftRows and MixColumns operations
of AES, that may need to be taken into consideration in future designs, especially
in light of the common practice of using part of the AES components as building
blocks.

Finally, we address an even more general question of whether the basic PSP
network design methodology is flawed, or it can potentially be reused in future
designs. This question is investigated by analyzing a PSP network that slightly
deviates from the AES design strategy, having a lightly modified ShiftRows
mapping. We analyze this scheme using our characteristic search tool and for-
mally prove its resistance to standard differential and linear cryptanalysis (as
expected from modern block ciphers). Thus, as the most important application

Cryptanalysis of SP Networks with Partial Non-Linear Layers 319

of our tools, we answer the main question posed by this paper, concluding that
PSP networks are not inherently flawed, and can be reused (with caution) to
build secure block ciphers.

1.3 Organization of the Paper

We start by presenting our generic characteristic search algorithms for PSP
networks in Section 2. Our generic key recovery algorithms for differential and
linear attacks are given in Sections 3 and 4, respectively. In Section 5, we use our
algorithms to attack Zorro. Finally, we study the problem of designing secure
PSP networks in Section 6 and conclude in Section 7.

2 Generic High-Probability Characteristic Search
Algorithm for PSP Networks

In this section we present a novel and efficient high-probability characteristic
search algorithm for SP networks with partial non-linear layers. The search
algorithm is only presented for differential characteristics, but we note that the
algorithm for linear characteristics is very similar. As the algorithm is somewhat
involved, we first describe it at a high-level and then present it in detail. Finally,
we describe an optimization which is very useful in practice.

For ease of exposition, we describe the algorithm on the example of an AES-
like cipher, in which a 128-bit state is represented as a 4-by-4 matrix of bytes,
and the S-boxes (which are the only non-linear operation) act on some of the
bytes in each round. The number of S-boxes in each round is denoted by ¢ (e.g.,
t = 16 for AES and ¢t = 4 for Zorro). Hence, we shall concentrate on a PSP that
contains the following parts:

— S-box layer — The S-box layer is applied to ¢ out of the 16 state bytes. The
S-boxes are all invertible.

— Linear layer — The linear layer L is applied to the state. We do not assume
anything in particular concerning the structure of L (as long as it is invert-
ible).

— Key addition layer — XORing the subkey into the state.

As common in AES-like ciphers, we shall assume that there is one key addition
layer before the first round (it does not affect our results whatsoever), and one
can have in the last round a different linear layer (our described attacks and
algorithms are trivially extended to cases where each round has its own linear
layer).

Inspired by [3], we define the pattern of a differential (or a linear) charac-
teristic to be a description of the activity for each of its spanned S-boxes (see
Figure 1). Namely, a pattern is a function that specifies for each S-box spanned
by the characteristic whether it is active (i.e., has a non-zero input difference)
or not. We note that while [3] defines a pattern over the full bytes (S-boxes) of
a state, we define it only over the bytes that are covered by S-boxes.

320

A. Bar-On et al.

1_l

1)1

[00]'35] 00 00] [0o] 5] 00] 0o] [00] 00] 00] 00 00
1 iy

00| 00[00{ 00 00] 00| 00| 00 00| 00[00{ 00
2 ey

A - Active S-box, I - Inactive S-box

v}

W

Fig. 1. A 2-Round Pattern and a Differential Characteristic that Follows it

2.1 An Overview of the Algorithm

Our algorithm is based on two observations:

1.

The number of possible patterns is small. We observe that if there are
only a few S-boxes in each round (i.e., if ¢ is small), then even for a relatively
large number r of rounds, the number of possible patterns of r-round char-
acteristics with a small number of active S-boxes is rather small. Specifically,
since r rounds contain only ¢r S-boxes, the number of r-round patterns with

a
at most a active S-boxes is at most (?;) £ 3 (*7). For reasonably small

values of ¢, r and a, this number is quite smf;ll, and we can iterate all of
them. For example, for t = 4, r = 9 and a = 4, there are only (ii) ~ 217

distinct patterns.

. All characteristics following a fixed pattern can be enumerated

efficiently. We observe that once we fix a pattern (i.e., fix the active and
inactive S-boxes), we can typically calculate the actual characteristics that
follow this pattern in an efficient way. This is the result of the fact that once
the activity /inactivity of each S-box is determined, all the possible charac-
teristics reside in a restricted linear subspace that can be easily calculated
using linear algebra.

Specifically, we denote the input difference of the characteristic by 128
variables, and “linearize” the chain of intermediate encryption differences
by adding 8 new variables each time 8 state bits enter an active S-box.
Since the active S-boxes are the only non-linear operations in the encryption
process, all intermediate differences can be described as linear combinations
of at most 128 + 8a variables. On the other hand, each inactive S-box in
the pattern restricts the intermediate difference at the input of the S-box

Cryptanalysis of SP Networks with Partial Non-Linear Layers 321

to zero, giving rise to 8 linear equations in the state variables. As there
are at least rt — a inactive S-boxes, we obtain a system containing at least
8(rt—a) linear equations in at most 128+8a variables, which can be efficiently
solved.* For a sufficiently small a (compared to 7t, i.e., when most of the
S-boxes are inactive), the expected dimension of the subspace in which the
possible characteristics reside is small.

After calculating the linear subspace of all possible characteristics, we
apply a post-filtering phase that enumerates the elements of the subspace,
and filters out characteristics in which the active S-box transitions are impos-
sible (according to the difference distribution table of the S-box).? Given that
the dimension of the subspace is small enough, we can efficiently post-filter
its elements, and thus output all the possible characteristics for the given
pattern.

Combining the two observations, when t,r and a are not too large, we can
efficiently enumerate all the possible r-round differential characteristics with at
most a active S-boxes. The analysis of the algorithm, presented in the next

subsection, shows that the complexity of the algorithm is proportional to (Zz)’

given that the output size (i.e., the number of possible characteristics) is not too
large.% As a result, the algorithm is practical for a surprisingly wide choice of
parameters (e.g., for t = 4 as in Zorro, r = 10 rounds and at most a = 10 active
S-boxes, its complexity is still below 232).

2.2 Detailed Description of the Algorithm

We fix the global parameters ¢, 7, a. The algorithm iterates over the CZ) distinct
differential patterns, and for each of them, applies the two-step pattern analysis
algorithm described below.

Calculating the Linear Subspace of a Pattern. We maintain a symbolic
representation of the 128-bit state difference at round i, S7T;, using 128 linear
combinations. Each linear combination is initialized with a 1-bit variable, repre-
senting the corresponding unknown state difference bit in the first round A(Xy)
(before the first S-box layer). Additionally, we allocate a linear equation system
E; (which is empty at first), that describes linear constraints on the characteris-
tic, which are imposed by the inactive S-boxes. At the end of the algorithm (after
the final round, r), the subspace of all the possible characteristics is described
by the null-space of E,.

4 Note that some of the equations may be linearly dependent; this depends on the
exact structure of the linear transformation.

5 Note that the solution of the linear equations yields all the intermediate differences,
and in particular, the input and output differences of the active S-boxes.

5 As we are mainly interested in characteristics with the smallest number of active
S-boxes, their number is typically not very large, and thus it is reasonable to assume
that the output size is small.

322 A. Bar-On et al.

The following round-linearization algorithm describes how we extend ST;
and F; to ST;41 and E;41, according to the activity pattern of the S-boxes in
round ¢ + 1 (starting from round ¢ = 0).

Extending Linearization by 1 Round
1. Allocate and initialize ST;41 < ST;, Eip1 — E;.
2. For each S-box S of round i:

(a) If S is inactive according to the pattern of round i, add 8 equa-
tions to the system FE;,;, that equate the corresponding 8 bits in
ST;11 to zero. If the dimension of the null-space of F;; is 0 (i.e.,
there is no non-zero solution to the system, and thus no matching
characteristic), return ST;41 and E; 1 as NULL, and exit.

(b) If S is active according to the pattern of round 4, replace the corre-
sponding 8 linear combinations in S7T;,; with the newly allocated
variables.

3. Set ST; 11 «— L(ST;+1), i.e., update the symbolic state ST;; according

to the linear function of the cipher, L.

Given a pattern, the linear subspace of all possible characteristics for 7 rounds
is calculated with the following algorithm:

Calculate Linear Subspace

1. Initialize STy with 128 new variables, and Fy with an empty set of
equations.

2. For ¢ = 0 to ¢ = r — 1, run the extension algorithm for round i + 1,
calculating ST; 1 and E; ;. If they are NULL, return NULL and exit.

3. Output a basis B for all the possible characteristics of the pattern using
the null space of E,.. This basis is represented as a set of b free (uncon-
strained) linear variables, and linear combinations of these variables,
as follows: the 128 linear combinations of the initial state STg, and the
16 - a linear combinations of all the inputs/outputs of the a active S-box
transitions (according to the pattern).

Post-Filtering the Linear Subspace of a Pattern. Once we obtain a basis
B for all the possible characteristics of the pattern, we apply a simple post-
filtering algorithm.

1. For each of the 2 possible values of the free variables:
(a) For each active S-box transition:
i. Calculate the actual input/output for the S-box transition by
plugging in the values of the free variables.
ii. Check in the difference distribution table of the cipher whether
the differential transition is possible, and if not, go back to
Step 1.
(b) Output the full characteristic according to the current value of the
free variables.

Cryptanalysis of SP Networks with Partial Non-Linear Layers 323

We note that it is possible to optimize the post filtering in various situations
by choosing the free variables to be input/output bits of a restricted set of S-
boxes. This enables us to iterate in advance only over the input/output difference
transitions that are possible according to the difference distribution table of these
S-boxes. The optimization can be particularly useful when the filtered linear
subspace is of a relatively large dimension (and thus, we have less restrictions
on the choice of free variables).

Complexity Analysis. Let T'(node) be the average complexity of evaluating
a node in the recursive tree, without iterating and post-filtering the solutions.
As the number of evaluated nodes is proportional to (3@), the complexity of the
algorithm can be estimated by the formula (ZL) -T(node) + SOL, where SOL
is the total number of solutions that we need to post-filter.” Since we cannot
determine in advance the value of SOL, we will estimate it according to the
total number of characteristics which remain after post-filtering (i.e., the actual
output size), which we denote by OUT.

In order to relate SOL and OUT, we note that an arbitrary input-output
transition for an S-box is possible with probability of (at least) about 2715 (this
is true for the Zorro S-box, and for the AES S-box, the probability is even closer
to 271), and thus if we have at most a active S-boxes, then we expect that OUT >
SOL-2715 or SOL < OUT -2'5*. Consequently, the time complexity of the
algorithm can be upper bounded by (i’;) -T(Node) + OUT -2'-5%, Assuming

that the output size OUT is not too big, the complexity of the algorithm is

proportional to (ira) .

2.3 Optimized Search Algorithm Using Pattern-Prefix Search

In this section we describe an optimization of the characteristic search algorithm,
which is based on the observation that we can analyze together many common
patterns with the same prefix. This allows us to dispose of all the patterns whose
common prefix is not possible (instead of analyzing and disposing each one sepa-
rately). In addition, this algorithm reduces the average amount of work (mostly
linear algebra) performed for each pattern. We note that we cannot provide an
improved theoretical analysis for this algorithm. However, this algorithm appears
to give a significant advantage over the basic algorithm in practice.

The algorithm PPS (Pattern-Prefix Search) iterates over the tree of possible
prefixes of patterns using the DF'S (Depth First Search) algorithm. The global
parameters of PPS are the number of rounds to analyze, r, the number of
S-boxes in each round, ¢, and the maximal number of active S-boxes, a. The
parameters which are passed to each node of the tree are: the round number 4,
the current S-box index in the round s € {0,1,...,¢ — 1}, the current number
of active S-boxes in the prefix, ca, and ST;, E; (as in the standard pattern-
analysis algorithm). Thus, the PPS algorithm is initially called with parameters

" As post-filtering a solution is very simple, we assume it can be done in unit time.

324 A. Bar-On et al.

PPS(i,s,ca, STy, Ep), where i = 0, s = 0, ca = 0, STy is initialized with 128
new variables and Ej is an empty set of equations.

PPS(i,s,ca,ST;, E;):

1. If i = r (i.e., we finished iterating over all the S-boxes of the pattern),
then the r-round pattern is fully determined by the path to the root of
the tree. Thus, calculate the basis B for all the possible characteristics
of the pattern (using F,). Finally, post-filter the characteristics (as in
the pattern-analysis algorithm), and return them.

2. Allocate a node nq for the case that S-box with index s in round 7 is
inactive (duplicating the current ST;, E;): For this node, add 8 equa-
tions to the system F;, which equate the corresponding 8 bits in S7; to
zero. Denote the (yet undetermined) output set of this node as OUT}.

— If the dimension of the null-space of E; is 0 (i.e., there is no non-zero
solution to the system, and thus no matching characteristic), delete
this node and set OUT; = 0.

— Otherwise, the dimension of the null-space is greater than 0. If s =
t — 1 (i.e., we finished iterating over all the S-boxes of the current
round), then set ST; 1 = L(ST;) (i.e., update the symbolic state
ST;+1 according to the linear function of the cipher, L), also set
E;11 = E;. Recursively call PPS(i 4+ 1,0, ca, ST; 41, Fi11) and set
OUT; according to the returned output.

— Otherwise, the dimension of the null-space is greater than 0, and
s <t —1. Recursively call PPS(i,s + 1,ca, ST;, E;) and set OUT;
according to the returned output.

3. If ca = a (i.e., we have reached the maximum number of active S-boxes),
return OUT;.

4. Otherwise (ca < a) allocate a node ns for the case that S-box with
index s in round ¢ is active (duplicating the current ST;, F;): For this
node, replace the corresponding 8 linear combinations in S7T; with newly
allocated variables. Denote the (yet undetermined) output set for this
node as OUTs.

— If s =t—1 (i.e., we finished iterating over all the S-boxes of the cur-
rent round i), then set ST;+1 = L(ST;) and E;; = E;. Recursively
call PPS(i+ 1,0,ca 4+ 1,8T;4+1, Ei11) and set OUT, according to
the returned output.

— Otherwise, s < t — 1. Recursively call PPS(i,s+ 1,ca+ 1, ST;, E;)
and set OUT5, according to the returned output.

5. Return OUT; |JOUTs.

3 Generic Key-Recovery Algorithm for Differential
Attacks on PSP Networks

In this section we present a key recovery algorithm for differential attacks exploit-
ing the small number ¢ of S-boxes in each round of the cipher. As in Section 2, we

Cryptanalysis of SP Networks with Partial Non-Linear Layers 325

describe the algorithm on the example of an AES-like cipher, in which a 128-bit
state is represented as a 4-by-4 matrix of bytes, and the S-boxes (which are the
only non-linear operation) act on ¢ bytes in each round. We show that given an
r-round differential characteristic with probability p, one can attack r + |16/¢]
rounds (i.e., [16/¢] rounds in addition to the characteristic) with data and time
complexity of only about 2-p~!, using negligible memory. First, we present an
overview of the algorithm, and then we give a more detailed description.

3.1 An Overview of the Algorithm

For sake of simplicity, we assume that ¢ divides 16, but the algorithm can be
easily adapted to any value of . We denote the intermediate difference of the
characteristic after ¢ rounds by 4A;, and thus the characteristic determines A; for
i € {0,1,...,r}. The algorithm requires the encryption of p~! plaintext pairs
with input difference 4g, and thus we expect that at least one of them is a
right pair (i.e., follows the characteristic) with high probability. However, since
we only have the output after r + 16/t rounds, there are no obvious filtering
conditions on the ciphertext pair, and a trivial differential attack would fail to
distinguish between right and wrong pairs.

In order to work around this problem, we first note that given the actual
values at the output of round r + 16/, there is, on average, only one 128-bit key
that leads to the fixed difference of A,.® In this attack, we efficiently find the
key suggestion (or suggestions in general) for each of the p~! ciphertext pairs,
and then we perform a trial encryption in order to test whether it is the correct
key. Hence, we show that instead of determining the right pair, it is sufficient to
efficiently attach a candidate key to each pair.

Our strategy resembles “Attack-C” of Albrecht and Cid [1]. In Attack-C, the
adversary tests suggestions for the key, obtained by solving non-linear equations
constructed using the fixed final difference of the characteristic and each of the
ciphertexts pairs. In our case, we use a similar strategy, but without directly
solving any non-linear equation. Instead, we use a linearization technique similar
to the technique used in our search algorithm to determine the candidate key
efficiently by solving two systems of linear equations.

The algorithm first “linearizes” the last 16/t rounds by expressing the output
difference A, 16/¢ as a linear combination of the fixed difference A, and some
auxiliary variables. We start with the difference A, and examine its evolution
through round r + 1. Since there are ¢t S-boxes in round r + 1, after the S-box
layer there are (at most) 8¢ unknown bits. Hence, we add 8¢ variables to denote
this difference so that A, ; can be expressed as a linear combination of A, and
these 8t variables.” We continue through rounds r + 2,7 + 3,...,r + 16/t, and

8 When partially decrypting the two ciphertexts through the last 16/t rounds until
round r with a random key, their intermediate difference is equal to A, with prob-
ability 27128,

9 Note that unlike the characteristic search algorithm, there is no need for 128 initial
variables, since the “initial” difference A, is fixed.

326 A. Bar-On et al.

finally we obtain a representation of A, |/, as a linear combination of A, and
8t-(16/t) = 128 variables. Note that this procedure does not depend on the
actual ciphertexts, and can be performed during preprocessing. After obtaining
the p~! ciphertext pairs, we plug the output difference A, 16 /¢ into the system
of equations, find all the 128 intermediate variables, and thus all intermediate
differences Ay 1,..., Ay 116/6-1-

After the differential sequence is determined, we can efficiently obtain the
corresponding key suggestions to test. This is due to the fact that the determined
differential transitions for the (16/t) -t = 16 S-boxes give us the actual possible
transition values (as each input/output difference suggests on average a single
actual value). Assuming that the subkeys are interleaved with the state by a
XOR operation (as in most SP networks), this gives 128 linear equations in the
subkey bits, which are usually sufficient to recover the key easily.'?

We note that the number of additional rounds can be further increased from
16/t if the differential characteristic is chosen such that its output difference
A, forces some S-boxes in the next rounds to be inactive. In such a case, the
number of auxiliary variables in the linearization stage is decreased, and thus,
more rounds can be covered by 128 auxiliary variables. As will be shown in
Section 5, this is the case in our attack on Zorro, where the r-round characteristic
is chosen such that out of the 8 S-boxes in rounds (r 4+ 1) and (r + 2), only four
are active. As a result, rather than attacking r + 16/4 = r 4+ 4 rounds, we are
able to break r 4 5 rounds with the same complexity.

The full details of the algorithm are given below. Its data complexity is
2-p~! chosen plaintexts and its time complexity is a bit more than 2-p~! (and
is estimated as 4 - p~1), since the analysis of each encrypted pair is very efficient
(it essentially involves solving two small sets of linear equations). The algorithm
requires negligible memory to store two small matrices.

3.2 A Detailed Description of the Algorithm

In order to avoid abundance of variables, we assume that the number of S-boxes
in each round is ¢ = 4 (as in Zorro), and thus the attack targets r + 4 rounds.
The algorithm can be easily adapted to any value of .

The Main Key-Recovery Algorithm. The algorithm makes use of two aux-
iliary matrices, A; and As, that are independent of the actual key and data, and
are computed during preprocessing (to be described below).

— Given the 96 x 128 matrix A;, and A, 4, the 96-bit vector A; - A, 44 describes
all the 12 -8 = 96 unknown output differences for the S-boxes of rounds r+1,
r 4+ 2 and r 4+ 3. Note that once the output differences of these 12 S-boxes
are known, computing the full A, 1, A, 5 and A, 3 can be done by simple
linear algebra.

10 1f the key schedule is linear (as in Zorro), this can be done instantly by solving a
system of linear equations. For more complex key schedules like that of AES, the
key can typically be easily recovered by a guess-and-determine procedure.

Cryptanalysis of SP Networks with Partial Non-Linear Layers 327

— Given the 128 x (128 + 256) matrix Ay, and a (128 4 256)-bit vector v
(comprised of the 128-bit ciphertext, and 2-(32-4) = 256-bit input-output
values of all the S-boxes of the last 4 rounds), the product Ay -v gives a
suggestion of the 128-bit key K.

The full algorithm is as follows:

1. Compute the matrices A; and As (as described below).
2. Ask for the encryptions of p~! plaintext pairs with input difference Ag.

For each pair (P,C) and (P’,C"):

(a) Compute A, 14 = C®C’, and then calculate Ay - A, 4. This allows
to compute the input-output differences of the 16 S-boxes in rounds
r+1,r+2,r+3,r+4.

(b) Check for each of the 16 S-boxes, whether the input-output differ-
ence transitions are possible according to the difference distribution
table. If any of them is impossible, discard this pair and analyze the
next pair by going back to Step 2.

(¢) Compute according to the difference distribution table, a list of
vectors List, containing 2-(32-4) = 256-bit vectors, specifying all
the possible input-output values of all the 16 S-boxes of the last 4
rounds.

(d) For each 256-bit vector in List, denoted by w:

i. Denote by v the (128 4-256)-bit vector, comprised of the 128-bit
ciphertext C, and the 256-bit vector w (specifying the input-
output values for all the S-boxes of the last 4 rounds). Obtain
a suggestion for the key K by computing product A, - v.

ii. Test the key using a trial encryption, and if it succeeds, return
it.

Complexity Analysis. The data complexity of the attack is 2-p~! chosen

plaintexts. For each plaintext-ciphertext pair, we perform some simple linear
algebra operations, whose complexity is generally proportional to a full cipher
evaluation.!! As noted in the beginning of this section, we expect to test only 1
key per plaintext pair, and thus we can estimate the time complexity of the attack
to be slightly higher than 2- p~! cipher evaluations (given that the preprocessing
complexity is negligible compared to p~1).

The memory complexity of the attack is less than 2'° words of 128 bits,
required in order to store A; and As. Note that the elements of List can be
generated “on-the-fly”, and we do not need to store them.

Calculating the Differential Transitions from the Output Difference.
This preprocessing algorithm is given as input A, (which is known from the

11 We can further reduce the complexity of the linear algebra using various low-level
techniques (e.g., by using Gray-Codes), but these are out of the scope of this paper.

328 A. Bar-On et al.

characteristic) and computes the 96 x 128 matrix A; defined above. The algo-
rithm symbolically maintains the state difference of round i (4;), denoted by
ST; (which is initialized for ¢ = r with the known A,.).

1. For each round ¢ € {r,r + 1,7 + 2,7 + 3}:

(a) Given ST;, compute ST;11 by allocating 4 -8 = 32 new linear vari-
ables for the output of the 4 S-boxes of round i+ 1, and then symbol-
ically applying the linear layer L, obtaining ST;11 = L(ST;) (i.e., a
symbolic representation of A;qq).

2. Given the 128 computed symbolic expressions ST,.14 (as functions of a
total of 4 -32 = 128 linear variables), invert the 128 x 128 matrix.
This gives a matrix which calculates the S-box output differences of
rounds » + 1, r + 2 and 7 + 3 (and r + 4) as functions of A,14 (note
that we do not actually need to allocate the 32 variables for A, 4 in
order to compute this matrix). Denote by A; the first 96 rows of this
matrix (calculating the S-box output differences of rounds r + 1, r 4 2
and r + 3).

Calculating the Key From the Ciphertext and S-box Transition Val-
ues. This preprocessing algorithm computes the 128 x (128 + 256) matrix A,
defined above. The algorithm first symbolically describes all the (32-4) = 128
S-box output values in the decryption process of a (symbolic) ciphertext C),
as linear combinations of the 128 variables of C', the 128 variables of K, and
the (32-4) = 128 input values of all the intermediate S-boxes. This is done
by iteratively computing the symbolic description of the values obtained in the
decryption process of C' through rounds r+4,r+3,r+2,r+1 (from the decryp-
tion side), and expressing for each round, the outputs of the S-box transitions
as linear combinations of the previous variables. Finally, the algorithm performs
Gaussian elimination to express the 128 variables of the key as linear combina-
tions in terms of the other 128 + 256 variables, giving the matrix As.

As the idea of this algorithm is very similar to the one of the previous algo-
rithm (which computes A1), we do not give its full description in this paper.

4 Key-Recovery Algorithm for Linear Attacks on PSP
Networks

In this section we present a key recovery algorithm for linear attacks exploiting
the small number ¢ of S-boxes in each round. We show that given an r-round
linear characteristic with bias ¢, one can attack r 4+ £ rounds (i.e., £ rounds
in addition to the characteristic) with data complexity'? of c¢-¢~2, time com-

12 The value of ¢ is determined by the amount of recovered subkey material and the
desired success rate according to the formula suggested by Selcuk in [15] or its
refinements from [5]. For example, for ¢ = 4 (32-bit subkey) and success rate of 84%,
we need to fix ¢ = 3.7. For the full 128-bit key and success rate of 78.8% we need to
fixc="7.

Cryptanalysis of SP Networks with Partial Non-Linear Layers 329

plexity of ¢=2 + t£- 288 and memory complexity of min(c-q=2,28%). As in
the differential case, the algorithm is based on linearization of the rounds after
the characteristic. An additional tool used here is a variant of the partial sums
technique introduced by Ferguson et al. [9].

A 1-Round Attack. For sake of clarity, we first present the algorithm in the
case of { = 1. Thus, we want to attack r + 1 rounds exploiting an r-round
linear characteristic. We denote the mask of the characteristic after ¢ rounds by
£2;, determining (2; for ¢ € {0,1,...,r}. The algorithm works by asking for the
encryptions of ¢- g2 arbitrary plaintexts, and thus we expect to obtain a strong
linear distinguisher after r rounds.

Obviously, the naive attack (guessing the last subkey and checking whether
the linear relation holds) is worse than exhaustive key search for a 128-bit cipher,
since the last round subkey consists of 128 bits. A better approach is to exchange
the order of operations in the final round, such that the final key addition is
performed right after the S-box layer, and the final linear layer becomes the
last operation in the encryption process. This can be done by replacing the final
round subkey with an equivalent key.'® As a result, in order to compute §2, - X,
where X, denotes the state after round r, it is sufficient to guess only the 8t
equivalent subkey bits that affect the S-boxes of the last round. Thus, the attack
complexity is reduced to 23 .¢72.

The next optimization is useful when c-¢=2 > 28! (as in the case of Zorro).
We write (2, = g ® (128_s¢, namely, we divide the mask (2. between two
masks — one that affects only the 8t bits in the S-boxes, and all the rest
(as a result 2g;- 2108+ = 0). If two “ciphertexts” (i.e., partially decrypted
ciphertexts through the linear layer L, which in the case of AES is composed
of MC and SR) have the same value in the bits masked by (2, then for any
key guess, they yield the same value for 2s;-X,. Hence, we count for each
of the 8¢ bits that enter the S-box, how many times they were suggested (if
- P®128_g¢ - X, = 0, we increment the counter corresponding to the 8t bits,
and if 2y - P® 2198 _gt - X, = 1, we decrement this counter). After counting how
many times an 8¢-bit value is suggested (again, compensating for the difference
in the values of {2y - P ® (21958_s; - X,-), we can analyze the 8¢-bit value itself, and
just increment/decrement the observed bias by the value of its corresponding
counter. The resulting attack algorithm is as follows:

. Initialize 28 counters to zero.
. Collect c-q~? plaintext/ciphertext pairs (P;, C;).
. For each ciphertext C;, compute Z; = L~(C;).
. For each pair (P;, Z;):
— If 2y P® (2198_s¢ - Z; = 0, increment the counter corresponding to
the value of the 8t bits of Z;.

=N

13 This procedure is common in attacks on AES, where the equivalent key is defined
by K = SR™Y(MC™'(K)), or in our notations K = L™ (K).

330 A. Bar-On et al.

— Else, decrement the counter corresponding to the value of the 8t
bits of Zi~
5. For all 8t key bits guess:

(a) Initialize a bias counter to 0.

(b) For any value of the 8t bits masked by {2g;, use the guess of the key
bits to evaluate 2g; - X, .

(c) If £2¢¢ - X, = 0, add to the bias counter, the counter associated with
the 8t “ciphertext” bits, otherwise, decrement by the same value.

(d) Output the key with the maximal bias from 0.

The advantage of this approach over the previous one is that the expensive
partial decryption step is done only 28 times, rather than c-g¢~2 times. The
time complexity of the algorithm is c-¢~2 + 228! and its memory complexity
is min(c-¢g~2,28%).

The algorithm can be further refined by dividing the key guessing procedure
into ¢ steps using the partial-sum technique. In the first step, we guess only the
8 subkey bits corresponding to a single S-box and partially decrypt only through
this S-box, summing over the relevant counters. After this step, there are only
28(=1) possible values (for the 8(¢ — 1) bits, as the 8 bits corresponding to the
“guessed” S-box are merged into a single entry). This process can be repeated
for the next 8 subkey bits, until all 8¢ equivalent subkey bits are guessed. As the
complexity of each of these stages is 28+ operations, the overall time complex-
ity of the attack becomes c-q~2 + 2318 operations. The memory complexity
remains min(c- g2, 28%).

Finally, we note that when the key addition layer is composed of XOR, we can
optimize the parity evaluations by applying the algorithm of [6]. This algorithm,
based on Fast Fourier Transform, allows computing the biases of all combinations
of values and keys for a single S-box in time 3-8-2% = 226 rather than 2! as
in a straightforward implementation. Hence, the time complexity of our attack
becomes ¢ g2 + t28¢+46,

An /-Round Attack. In order to extend the attack to r+¢ rounds, we linearize
the last £ encryption rounds. Namely, we represent the bits of the state X, as a
linear function of the ciphertext bits and 8t/ auxiliary variables (similarly to the
differential attack, we add 8 variables each time an active S-box is encountered).
As in the case £ = 1, we observe that if two partially decrypted ciphertexts
agree on 8t¢ bits, then they agree also on (2, - X,. Hence, we can group the
ciphertexts into 2% sets according to the values of these bits, and execute the
same algorithm as in the case of £ = 1.

The complexity of the attack is D = c-¢~2 known plaintexts, M =
min(c-¢~2,28%) 128-bit memory blocks, and T = c-q~2 + t£-28+46 opera-
tions, where each operation is less than a single round decryption.

We note that the complexity of the attack can be further reduced if the
linear characteristic is chosen in such a way that only ¢’ of the active S-boxes in
round 7 + 1 affect the output mask (2, - X,.. In such a case, the number of sets
to which we group the ciphertexts is reduced to 28(({=D+) "and the attack’s

Cryptanalysis of SP Networks with Partial Non-Linear Layers 331

complexity is reduced accordingly. As described in Appendix A, this is the case
in our linear attack on Zorro, where only 2 of the 4 active S-boxes in the last
round affect the output mask. This also changes the memory complexity to
M = min(c-q2,28tE=1+8t")

5 Practical Cryptanalysis of the Full Zorro

In this section we apply our generic algorithms to the lightweight block cipher
Zorro.

5.1 Description of Zorro

Zorro is an AES-based 128-bit lightweight block cipher proposed by Gérard et
al. at CHES 2013 [10]. The cipher executes 24 AES-like rounds, where the key
schedule simply adds the 128-bit master key every four rounds, as shown at the
top of Figure 2.

Each Zorro round is made of four AES-like operations, namely SB*, AC, SR
and M C (see the bottom of Figure 2). SR and MC are exactly the same as the
ones used in AES, whereas AC for round ¢ adds the four constants (4,4,7, < 3)
to the 4 bytes of the first row. The main difference of Zorro from the AES is its
non-linear operation SB*, which contains only 4 S-boxes (instead of 16), located
in the first row of the state matrix. Moreover, the actual 8 x 8 S-box is different
than the one used in AES. However, as the S-box implantation has only a limited
effect on our results, we refer the interested reader to the design document [10]
for its specification.

% 4 rounds }—?\’ 4 rounds }—*?—*’ 4 rounds }—*?—“’ 4 rounds F?—*’ 4 rounds }—?\’ 4 rounds }—*?—*
K Y K K K K K K

1 step

—
o
w
IS

row 1

row 2 6| 7|8]| sB AC SR 1| wmc

row 3

row 4

w
9 [=
N

column 1 |22 | wo|w

Fig. 2. The Key Schedule and Round Function of Zorro

332 A. Bar-On et al.

Summary of Attacks on Zorro. Table 1 summarizes the previously published
and our new attacks on full Zorro.!* We note that although the (independent and
concurrent) work of Rasoolzadeh et al. [14] exploited the same characteristics as
we do (that were found by them manually), their attack complexities are higher
by a factor of 2!2, due to the use of inferior attack techniques.

Table 1. Previous, Independent and New Key-Recovery Attacks on Full Zorro

’Source‘ Time ‘ Data ‘ Memory ‘ Technique ‘
’ [16] ‘ 2112ﬁ‘ 2112 cp ‘ negligible ‘ Differential ‘
[14] T [~ 2% T1[255-12 Cp 217 Differential
[14] T| 25785 [2%5# KP 217 Linear
Sec. 5.2| 2% [215 CP 210 Differential

App. A| 2% [2® KP 217 Linear

KP - Known plaintext, CP - Chosen plaintext

t The results were obtained concurrently and indepen-
dently of ours.

T The reported time complexities of [14,16] are lower.
However, in order to calculate the time complexity,
we take into account the time required for generat-
ing the data.

5.2 Differential Cryptanalysis of Full Zorro

In order to mount a differential attack on Zorro, we first apply the differential
characteristic search algorithm of Section 2.2, and then use the key recovery
technique of Section 3.

Differential Characteristic Search. We applied the differential search algo-
rithm of Section 2.2 to the full Zorro. The highest probability characteris-
tic for Zorro (for more than 7 rounds) is obtained by concatenating several
instances of the 4-round iterative characteristic described!® in Figure 4 (given in
the appendix). In fact, there are 5 additional linearly-dependent variants (over
GF(2%)) of the presented characteristic with the same probability.

Key Recovery for the Differential Attack. In order to exploit the charac-
teristic in an attack, we extend it up to round 19 (see Figure 4). The resulting
19-round characteristic has 8 active S-boxes in total, and has probability of
(6/ 256)S ~ 2743, We used the optimized version of our characteristic search tool
(pattern-prefix search) to prove that it is the highest probability characteristic
for the full 19 rounds.

4 The table does not include the results of [11], which attack a weak-key class.
!5 We note that similar iterative characteristics were independently found in [14].

Cryptanalysis of SP Networks with Partial Non-Linear Layers 333

A straightforward application of the algorithm presented in Section 3 can
be used to attack 19 + 16/4 = 23 rounds. However, as mentioned in Section 3,
more rounds can be attacked if the characteristic is chosen such that several
S-boxes after the characteristic are inactive, and this is the case here. First, we
observe that the state difference after 19 rounds (i.e., the output difference of the
characteristic) contains 2 inactive S-boxes (see Figure 4). Furthermore, we can
exploit the specific super S-box structure of Zorro (and of AES-based designs
in general), and extend the characteristic with 2 additional inactive S-boxes in
round 20 (see Figure 4). Thus, we have a total of 16 active S-boxes in the last 5
rounds (similarly to 4 fully active Zorro rounds), allowing to attack 5 rounds in
addition to the 19 rounds of the characteristic.

According to Section 3, as the 19-round characteristic has a probability of
about p = 27%3, the data complexity of the attack is about 2-p~! = 2%* chosen
plaintexts, its time complexity is about 2%°, and its memory complexity is less
than 219,

We can reduce the data complexity of the attack by a factor of 6 by using
structures that exploit all the 6 characteristics of probability p = 2743, This
is a common technique in differential cryptanalysis, and was used (for exam-
ple) in [16]. Each structure we use is an affine subspace of dimension 6, which
is constructed from an arbitrary plaintext, by XORing to it all the 2° linear
combinations (over GF(2)) of the 6 initial differences of the characteristics of
probability p = 2743, Thus, the data complexity is reduced by a factor of 6 to
about 2415, The time complexity remains the same, and the memory complexity
remains very small (as each structure contains only 26 elements).

Attack Simulation. The differential attack presented in this section was imple-
mented and fully simulated 11 times on a single desktop PC, each simulation
running for (up to) several days (the fastest took less than 8 hours, whereas the
longest took about 235.5 hours). Table 2 describes the average results of the
simulations, which are very close to the theoretical prediction. More detailed
results are given in Table 3 (in the appendix).

Table 2. Average Simulation Results of Differential Attack on Full Zorro (Versus
Theoretical Estimate)

Result Plaintexts|Structures| Pairs Keys
Encrypted| Analyzed | Analyzed|Suggested
Theory 5115 5355 513 o3
Simulations (Average)| 2% 235-49 21307 213.07

334 A. Bar-On et al.

6 Design of Secure PSP Networks

In this section, we show that the weakness of Zorro is not inherently present
in all PSP networks. We demonstrate this by designing a mild modification of
Zorro that is provably secure against basic differential and linear attacks (such
as those that broke the original Zorro). Finally, we discuss how to choose the
parameter ¢ (i.e., the number of S-boxes in each round) in PSP networks.

In order to quantify what we consider to be a “good” PSP network with
respect to resistance against basic differential and linear attacks, we estimate
the minimal number a of active S-boxes in an r-round characteristic for a very
strong PSP network. Our model constructs an idealized PSP network by choosing
the layer of each round uniformly at random from the space of invertible linear
mappings, and it is therefore expected to provide very fast diffusion.

As described in Section 2, an r-round characteristic with a active S-boxes
gives rise to a system of 8(¢r — a) linear equations in 8(16 + a) variables (using
the notations of Section 2). Based on our randomness assumption, we expect a
solution when 8(16 + a) > 8(tr — a), or equivalently, a > (¢-r — 16)/2. Namely,
an r-round characteristic for an idealized PSP network is expected to have at
least (t-r — 16)/2 active S-boxes.!6 We note that this inequality is somewhat
oversimplified, as it does not take into account the fact that we have many
possible patterns, whereas we are looking for only one valid characteristic. On
the other hand, depending on the actual S-box, not all solutions are valid for a
given cipher. As these two considerations have opposite effects on a, and their
total effect seems relatively small for large values of r, we consider the formula
a > (t-r—16)/2 to be a reasonable measure for a “good” PSP Network. As an
extreme case, consider AES for which ¢t = 16. Plugging r = 4 into the formula, we
estimate that 4-round AES can be designed to have at least ¢ > (16-4—16)/2 =
24 active S-boxes in any characteristic. Indeed, it is known that the minimal
number of active S-boxes in a 4-round characteristic of AES is 25 (see [7]), and
thus our estimate is very close in this case.

6.1 Analysis of a Concrete PSP Network

We now construct a PSP Network which (roughly) satisfies the formula a >
(t-r —16)/2 for large values of r, thus providing significantly better resistance
against basic differential and linear attacks compared to Zorro. According to
the full version of this paper [2], in order to avoid the weakness of Zorro, our
scheme has to deviate from the AES-based design strategy. More specifically,
this appendix shows that any AES-based PSP network (with small ¢) is likely
to have 4-round iterative characteristics with a high probably. The reason for
the inherent weakness of AES-based PSP networks is subtle and is detailed in

16 This formula is somewhat more conservative (from the point of view of the designer)
compared to the one obtained in [10], that seems to underestimate the number of
degrees of freedom available in the construction of the characteristic, thus obtaining
larger values of a.

Cryptanalysis of SP Networks with Partial Non-Linear Layers 335

the full version of this paper [2]. Very roughly, this weakness stems from the
combination of the two properties below:

1. Any MDS circulant MixColumn matrix, MC, raised to the power of 4 (i.e.,
(MC)*) has a large space of eigenvectors (“almost fixed-points”) that satisfy
MC*(x) = ax for an appropriately chosen eigenvalue scalar a.

2. The order of ShiftRows is 4 (i.e., (SR)? is the identity).

Therefore, in order to avoid the high probability 4-round iterative character-
istics of the type shown in Figure 4, our scheme has to deviate from the AES
design strategy by changing at least one of the two properties above. In our
tweaked scheme, we slightly change the ShiftRows operation such that its order
is greater than 4, as described below. Furthermore, in order to avoid additional
types of iterative characteristics (namely, characteristics presented in [16], which
are independent of ShiftRows), we also change the locations of the S-boxes, and
place them on the diagonal instead of the first row.

The modified variant of ShiftRows (denoted as SR*) is described in Figure 3
and works as follows: The action of SR* on rows 1,3 and 4 is the same as in
the original ShiftRows. On the other hand, only the first 3 bytes of row 2 are
cyclically rotated by 1 (whereas the 4’th byte remains unchanged at its position),
and it is easy to see that the order of SR* is 3 -4 = 12. We note that this modified
variant provides slightly weaker local diffusion compared to AES-based designs.
However, we now show that globally, this modification significantly strengthens
the resistance of the scheme against standard differential and linear attacks.

1123 4 1123 4
51678 SR* 71568
—_—
9|10 11|12 1112 9|10
13114 15| 16 16| 13| 14| 15

Fig. 3. Modified ShiftRows

We first consider 11 rounds of the tweaked scheme and estimate its strength
in our ideal model by plugging ¢ = 4 and r = 11 into the formula a > (t-r —
16)/2, obtaining @ > (4-11 — 16)/2 = 14. However, a more careful analysis
reveals that there are many possible 11-round patterns with 13 active S-boxes
((11154) > 23%) each giving rise to a system with 8- (16 + 13) = 8-29 variables
and 8-(44 — 13) = 8-31 equations, which has a solution with non-negligible
probability of 28" (29-31) = 2=16 Therefore, 13-round characteristics can also be
expected, slightly deviating from the generic formula when we do not consider
post-filtering according to the cipher’s S-box.

336 A. Bar-On et al.

Using the characteristic search tool presented in Section 2, we were able
to prove that there exists no characteristic (or linear mask) with at most 12
active S-boxes (regardless of the cipher’s specific S-box). Considering 13 active
S-boxes, there exist only a few dozens of possible characteristics for the cipher.
Consequently, the behavior of the 11-round scheme closely matches our ideal one,
and we conclude that it has no particular weakness against standard differential
