

© Springer-Verlag Berlin Heidelberg 2015
R. Intan et al. (Eds.): ICSIIT 2015, CCIS 516, pp. 89–97, 2015.
DOI: 10.1007/978-3-662-46742-8_8

ACO-LS Algorithm for Solving No-wait Flow Shop
Scheduling Problem

Ong Andre Wahyu Riyanto1,* and Budi Santosa2

1Department of Industrial Engineering, University of Wijaya Putra
Jl.Raya Benowo No. 1-3, Surabaya-60197, Indonesia

2Department of Industrial Engineering, Institut Teknologi Sepuluh Nopember,
Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia

ongandre@uwp.ac.id

Abstract. In this paper, we propose a metaheuristic approach for the no-wait
flow shop scheduling problem with respect to the makespan criterion. In the li-
terature, this problem is known NP-hard type. In the literature, several algo-
rithms have been proposed to solve this problem. We propose a hybridization of
ant colony optimization (ACO) algorithm with local search (LS) in order to
solve this scheduling problem, and then we call this as ACO-LS algorithm. This
local search technique contributes to improve the quality of the resulting solu-
tions. In addition, the mechanism of insert-remove technique is developed to
help the searching of solution escape from the local optimum. The proposed al-
gorithm is tested with the 31 well-known flow shop benchmark instance. The
computational results based on well-known benchmarks and statistical perfor-
mance comparisons are also reported. It is shown that the proposed ACO-LS
algorithm is more effective than hybrid differential evolution (HDE) algorithm
[Qian B., et.al, Computer & Industrial Engineering, 2009].

Keywords: Metaheuristic, No-wait flow shop scheduling, Makespan, Ant Co-
lony Optimization, Local search.

1 Introduction

Production scheduling is one of the critical issues in the planning and manufacturing
process (Pezella, et al., 2008). Scheduling problem focused on how to allocate ma-
chines to perform a collection of activities in a period of time in order to optimize a
certain objective (Pinedo, 2012). In this paper, we study with the basic n-job m-
machine no-wait flow shop scheduling problem. In a no-wait flow shop scheduling
problem, there are n jobs in which each job has m operations and must be processed
on a set of series machines continually. Once a job is started on the first machine, it
must be processed through all machines without any interruption. No-wait flow
shop scheduling problem is a kind of scheduling problem which has important
applications including chemical processing (Rajendran, 1994), food processing
(Hall and Sriskandarayah, 1996), steel production and pharmaceutical processing
(Grabowski & Pempera, 2000). Given the processing time of each job in each

90 O.A.W. Riyanto and B. Santosa

machine, the no-wait flow shop scheduling problem is to find a set of schedules to
optimize a certain objective.

In this study, we consider the makespan as optimization objective. This problem is
denoted as ݑ݉ݎ݌|ܨ, ݋݊ െ The no-wait flow shop scheduling problem .ݔܽ݉ܥ|ݐ݅ܽݓ
with single objective is NP-hard (Garey and Johnson, 1979). Therefore, many re-
searchers are interested to investigate the finding of the near optimal solution by ap-
plying heuristic and metaheuristic algorithms which can find the near optimal solu-
tion in reasonable computational time.

The no-wait flow shop scheduling problem with makespan criterion has attracted
the attention by many researchers. Qian, et. al (2009) proposed HDE for the no-wait
flow shop scheduling problem with the makespan criterion and showed that the solu-
tion obtained by their HDE algorithms are superior to the ones given by other
previous algorithms. Laha and Sapkal (2011) proposed constructive heuristic for the
no-wait flow shop scheduling problem with the total flow time criterion and show that
there is a significant improvement in solution quality over the existing heuristic.
Chaudhry and Mahmood (2012) proprosed a general purpose spreadsheet based
genetic algorithm (GA) for solving the no-wait flow shop scheduling problem with
the minimization of makespan.

In this paper we develop a hybridization between algorithm of ant colony optimiza-
tion (ACO) with technique of local search (LS) in order to solve the no-wait flow
shop scheduling problem with the makespan criterion. Then we call this as ACO-LS
algorithm.

The rest of the paper is organised as follows: Section 2 introduces briefly the no-
wait flow shop scheduling problem, followed by problem and formulation. In Section
3, ACO is briefly presented, and Section 4, gives the proposed ACO-LS details as
implemented in this paper. Experimental results are given in Section 5. The last sec-
tion of the paper presents conclusions.

2 No Wait Flow Shop Scheduling Problem

The no-wait flow shop scheduling problem can be described as follows: given the
processing time ݌ሺ݅, ݆ሻ of job ݅ on machine ݆, each of ݊ jobs will be sequentially
processed on machine 1, 2, ..., ݉. At any time, each machine can process at most one
job and each job can be processed on at most one machine. The sequence in which the
jobs are to be processed is the same for each machine. To meet the no-wait restric-
tions, the completion time of a job on given machine must be equal to the starting
time of the job on the next machine. In other words, there must be no waiting time
between the processing of any consecutive operations of each ݊ jobs. The problem is
to find a sequence that the given criteria, i.e., makespan is optimized.

Let ൌ ሺߨଵ, ௡ߨ ,ଶߨ) denote the schedule or permutation of jobs to be processed, ܮሺߨ௝ିଵ, ,can be calculated as follows (Qian ܮ ௝ିଵ restricted by the no-wait constraint. Thenߨ ௝ andߨ ௝) the minimum delay on the first machine between the start of jobߨ
et. al, 2009): ܮሺߨ௝ିଵ, ,௝ିଵߨሺ݌ =(௝ߨ 1)൅݉ܽ0ൣݔ, ଶஸ௞ஸ௠ ௠௔௫ ൛∑ ,௝ିଵߨሺ݌ ݄ሻ௞௛ୀଶ െ ∑ ,௝ߨሺ݌ ݄ሻ௞ିଵ௛ୀଵ ൟ൧ (1)

 ACO-LS Algorith

Thus, the makespan can ܥ
where ௦ܲ௨௠ ሺߨ௡ሻ ൌ ∑௠௞ୀଵ

Fig. 1 shows an exampl

m=4

Fig. 1. No-wait

3 Structure of An

Ant Colony Optimization
Marco Dorigo in the early 1
used by real ants for finding
shown in figure 2. Ant com
pheromones. Ants commu
their trails. Other ants perc
where pheromone concentr
chosen path, which makes
the shortest path. This analo
combinatorial optimization

Fig. 2. Basic ant behavior: 1)
paths to go around the obstacle

The general procedure of

hm for Solving No-wait Flow Shop Scheduling Problem

defined as follows : ܥ௠௔௫ ൌ ∑ ,௝ିଵߨ൫ܮ ௝൯ߨ ൅ ௦ܲ௨௠ ሺߨ௡ሻ௡௝ୀଵ ,௡ߨሺ݌ ݇ሻଵ

le of no-wait flow shop scheduling problem with n=4

Flow Shop Scheduling Problem with n=4 and m=4

t Colony Optimization

(ACO) is a class of metaheuristic approach proposed
1990s. The main idea ACO is to mimic the pheromone t
g a nearest trail between their nest and the food sources

mmunication is accomplished through chemicals that cal
unicate to one another by laying down pheromones alo
ceive the presence of pheromone and tend to follow pa
ration is higher. New pheromone will be released on
it more attractive for next ants. Shortly, all ants will se
ogy was applied to find the best solution to the problem
such as scheduling problem.

)Ants in a pheromone trail between nest and food. 2) Ants
e. 3) A new pheromone trail is formed along the shorter path.

f ACO algorithm is described as follows :

91

(2)

and

d by
trail
s, as
lled
ong
aths
the

elect
m of

find

92 O.A.W. Riyanto and B. Santosa

3.1 Heuristic Information

The heuristic information value is also initialized at the initialization step. The use of
heuristic information to direct the ants’ probabilistic solution construction is impor-
tant because it provide problem specific knowledge. Heuristic information used in this
study is the distance between two jobs SPIRIT (Sequencing Problem Involving a
Resolution by Integrated Taboo Search Techniques) rule presented by Widmer
and Hertz (1989). We modify SPIRIT method for no-wait flow shop scheduling prob-
lem. The distance between the start of job ߨ௝ and ߨ௝ିଵ , ݀ሺߨ௝ିଵ, ௝) is given by theߨ
following equation: ݀ሺߨ௝ିଵ, ,௝ିଵߨሺܮ = (௝ߨ ௝) (3)ߨ

() ()ππππη
jj

jj d ,
1,

1
1

−
−

= (4)

3.2 Solution Construction

In the iterative step, an ants colony determines starting jobs. Each ant repeatedly ap-
plies the state transition rule to select the next processing job up to a complete sche-
dule is formed. When building a schedule, both the heuristic information and phero-
mone amount are used to choose the next job. While constructing the schedule, an ant
also decreases the amount of pheromone between selected jobs by applying the local
updating rule to vary other ants schedule and to avoid in leading to local optima.

While finding appropriate solution, after the ant k chooses the next job to move to
by applying the state transition rule, selected job is added into tabu list. Until the last
job is selected, the procedure is repeated.

3.3 State Transition Rule

In the process of schedule constructed, the ant k in job i selects the job j (݅ ് ݆ሻ to
move by applying the following state transition rule:

 ݆ ൌ ൝ arg max௨אSౡ ሺ௜ሻ ൜ሾ߬ሺ݅, ሻሿఈݑ ቂη ሺ݅, ሻቃఉൠݑ if ݍ ൑ otherwise (5) ܬ ଴ݍ

where, ߬ሺ݅, ሻݑ is the amount of pheromone trail on edge ሺ݅, .ሻݑ η݁ݎ݄ܹ݁ ሺ݅, ሻݑ ൌ1 ,ሺ݅ߜ ⁄ሻݑ is the inverse of the distance ߜሺ݅, ሻ between job i and job u denotes theݑ
reciprocal of a cost measure between nodes i and u. In the no-wait flow shop schedul-
ing problem, ߜሺ݅, ,௝ିଵߨሻ is identical with ݀ሺݑ ௝). ܵ௞ሺ݅ሻ is the set of feasible jobsߨ
to be selected by ant k in job i. It is clear that the set of feasible jobs not contained in
tabu. ߙ is a parameter that allow a user to control the relative importance of phero-
mone trail ሺߙ ൐ 0ሻ. ߚ is a parameter that determines the relative importance of heu-
ristic information. ሺߚ ൐ 0ሻ, q is a value chosen randomly with uniform probability in

 ACO-LS Algorithm for Solving No-wait Flow Shop Scheduling Problem 93

[0,1] and ݍ଴ is a parameter that determines the relative importance of exploitation
versus exploration ሺ0 ൑ ଴ݍ ൑ 1ሻ. ܬ is a random variable selected according to the
following random-proportional rule probability distribution, which is the probability
with that ant k chooses to move from job i to job j:
௞ሺ௜,௝ሻ݌ ൌ ۔ۖەۖ

ۓ ሾఛሺ௜,௝ሻሿഀቂη ሺ௜,௝ሻቃഁ
∑ ሺ௜ሻሾఛሺ௜,௨ሻሿഀቂη ሺ௜,௨ሻቃഁೠאೄೖ if ݆ א ܵ௞ሺ݅ሻܽ0 otherwise (6)

3.4 Pheromone Trail Update

While an ant construct a schedule, an ant decreases the level of pheromone trail be-
tween selected jobs by applying the update rule. The update rules consists of two
terms: the first, is the evaporation of the existing pheromone (local updating rule) ; the
second, is the amount of added pheromone on the trail (global updating rule). The
local updating rule is formulated as follows :

 ߬ሺ݅, ݆ሻ ൌ ሺ1 െ ሻ݈ߩ · ߬ሺ݅, ݆ሻ ൅ ݈ߩ · ߬଴ (7)

where, ߬଴ is the initial pheromone level and ݈ߩ ሺ0 ൏ ݈ߩ ൏ 1ሻ is the local pheromone
evaporation parameter.

After all ants completed their schedules then global updating rule is performed.
Global updating rule provides a greater amount of pheromone trail for between adja-
cent jobs of the best schedule. The pheromone trail level is updated as follows:

 ߬ሺ݅, ݆ሻ ൌ ሺ1 െ ሻ݃ߩ · ߬ሺ݅, ݆ሻ ൅ ݃ߩ · ∆߬ሺ݅, ݆ሻ (8)

where,

 ∆߬ሺ݅, ݆ሻ ൌ ൜ሺܮ௕ሻିଵ ݂݅ ሺ݅, ݆ሻԖ best schedule0 otherwise (9)

In the Eq. (8), ݃ߩሺ0 ൏ ݃ߩ ൏ 1ሻ is the evaporation parameter of global
updating rule and ܮ௕ is the objective function value of the best schedule until the
current iteration.

4 Proposed Ant Colony Optimization – Local Search (ACO-LS)

The main advantages such as ACO metaheuristic approach is able to find the near
optimal solution in reasonable computational time.

The structure of proposed ACO can be describe as follows :

1. Initialize the pheromone trails, heuristic information, and parameters
2. Iteration :

2.1 Ant colonies determine the starting jobs ;
2.2 Each ant constructs a complete solution ;

94 O.A.W. Riyanto and B. Santosa

Repeat
 Applying state transition rule for selecting the next jobs

 Until complete jobs
2.3 Improve the solution by local search

3. Cycle. If the maximum number of iterations is reached, then the iteration stops. If
not then go back to step 2.

4. Return best solution found

 Local Search

ACO algorithm can perform better to find solution when combined with a local
search algorithm (Yagmahan and Yenisey, 2010). In this study, we propose a local
search procedure as follows:

Step 1:
Determine one best solution of job sequence ߨ௜_଴
Step 2:
Choose randomly ݑ and ݒ, where ݑ ് ௜ߨ ;ݒ ൌ ,௜ߨሺݐݎ݁ݏ݊݅ ,ݑ . ሻݒ
Step 3:
Set loop=0 ݌݋݋݈ ࢋ࢒࢏ࢎࢃ ൏ ݊ כ ሺ݊ െ 1ሻ
ݐ݊ݑ݋ܿ ൌ 0;
 max_݉݁݀݋݄ݐ ൌ ൏ ݐ݊ݑ݋ܿ ࢋ࢒࢏ࢎࢃ ;3 max _݉݁݀݋݄ݐ
 Choose randomly ݑ and ݑ ,ݒ ് ;ݒ
,௜ߨሺݐݎ݁ݏ݊݅ =௜_ଵߨ ,ݑ ; ሻݒ
 if ݂൫ߨ௜_ଵ൯ ൏ ݂ሺߨ௜ሻ,
 then ߨ௜ ൌ ; ௜_ଵߨ ݐ݊ݑ݋ܿ ൌ 0;
 if ݂൫ߨ௜_ଵ൯ ൐ ݂ሺߨ௜ሻ,
 then ߨ௜ ൌ ; ௜ߨ ݐ݊ݑ݋ܿ ൌ ݐ݊ݑ݋ܿ ൅ 1;
,ݑ ݕ݈݉݋݀݊ܽݎ ݁ݏ݋݋݄ܿ ,ݒ ,ݎ ; ݏ ݑ ് ݒ ് ݎ ് ;ݏ
௜_ଵߨ ൌ ,௜ߨሺ݁ݒ݋݉݁ݎ ,ݑ ሻ ՜ݒ ,௜ߨሺ݁ݒ݋݉݁ݎ ,ݎ ;ሻݏ
 i݂൫ߨ௜_ଵ൯ ൏ ݂ሺߨ௜ሻ,
 then ߨ௜ ൌ ݐ݊ݑ݋ܿ ;௜_ଵߨ ൌ 0;
 if ݂൫ߨ௜_ଵ൯ ൐ ݂ሺߨ௜ሻ,
 then ߨ௜ ൌ ; ௜ߨ ݐ݊ݑ݋ܿ ൌ ݐ݊ݑ݋ܿ ൅ 1;
 choose randomly ݐ, ,ݑ ,ݒ ,ݍ ,ݎ t് u് ;ݏ ݒ ് ݍ ് r് ݏ;
௜_ଵߨ ൌ ,௜ߨሺ݁ݒ݋݉݁ݎ ,ݐ ,ݑ ሻ ՜ݒ ,௜ߨሺ݁ݒ݋݉݁ݎ ,ݍ ,ݎ ;ሻݏ
 if ݂൫ߨ௜_ଵ൯ ൏ ݂ሺߨ௜ሻ,
 then ߨ௜ ൌ ݐ݊ݑ݋ܿ ;௜_ଵߨ ൌ 0;
 if ݂൫ߨ௜_ଵ൯ ൐ ݂ሺߨ௜ሻ,
 then ߨ௜ ൌ ; ௜ߨ ݐ݊ݑ݋ܿ ൌ ݐ݊ݑ݋ܿ ൅ 1;
 end
end

 ACO-LS Algorithm for Solving No-wait Flow Shop Scheduling Problem 95

Step 3:
if ݂ሺߨ௜ሻ ൏ ݂൫ߨ௜_଴൯,
 then ߨ௜_଴ ൌ ;௜ߨ
if ݂ሺߨ௜ሻ ൏ ݂൫ߨ௜_଴൯,
 then ߨ௜_଴ ൌ ;௜_଴ߨ
Where : n is set of all the job. ߨ௜ is sequence of n job. While ݐ, ,ݑ ,ݒ ,ݍ ,ݎ is the ݏ

position of a job in the sequence ߨ௜ .
Termination Criteria

 Termination criteria using the maximum number of iterations

Table 1. Comparison of HDE and ACO-LS

RAJ HDE ACO-LS
Problem n,m C* BRE ARE WRE BRE ARE WRE

Car1 11,5 8142 0.00 0.00 0.00 0.00 0.00 0.27
Car2 13,4 8242 0.00 0.00 0.06 0.00 0.00 0.00
Car3 12,5 8866 0.00 0.03 0.08 0.00 0.00 0.08
Car4 14,4 9195 0.00 1.15 2.41 0.00 0.06 0.68
Car5 10,6 9159 0.00 0.00 0.00 0.39 0.64 2.23
Car6 8,9 9690 0.00 0.00 0.00 0.00 0.00 0.00
Car7 7,7 7705 0.00 0.00 0.00 0.00 0.00 0.00
Car8 8,8 9372 0.00 0.00 0.00 0.00 0.00 0.00
Rec01 20,5 1590 -3.71 -3.50 -3.14 -4.03 -3.88 -3.83
Rec03 20,5 1457 -6.59 -5.33 -3.77 -6.59 -6.23 -4.99
Rec05 20,5 1637 -7.70 -6.76 -5.86 -7.64 -7.35 -7.20
Rec07 20,10 2119 -3.59 -3.19 -1.27 -3.63 -3.55 -3.44
Rec09 20,10 2141 -4.58 -4.30 -3.60 -4.62 -4.56 -4.31
Rec11 20,10 1946 -3.34 -3.00 -2.21 -3.34 -2.90 -2.21
Rec13 20,15 2709 -5.76 -4.72 -3.32 -6.05 -5.73 -4.89
Rec15 20,15 2691 -6.02 -5.89 -5.39 -6.02 -5.98 -6.25
Rec17 20,15 2740 -5.58 -5.55 -5.47 -5.58 -5.50 -5.44
Rec19 30,10 3157 -7.73 -6.76 -6.34 -9.72 -8.78 -8.01
Rec21 30,10 3015 -4.61 -3.74 -3.32 -6.27 -6.10 -6.07
Rec23 30,10 3030 -8.71 -7.69 -7.19 -10.89 -10.16 -9.92
Rec25 30,15 3835 -4.64 -4.02 -3.60 -6.31 -5.67 -5.44
Rec27 30,15 3655 -3.97 -3.07 -2.71 -6.10 -5.39 -4.89
Rec29 30,15 3583 -6.61 -5.98 -5.44 -8.15 -7.60 -7.23
Rec31 50,10 4631 -3.95 -3.22 -2.92 -5.92 -4.95 -3.67
Rec33 50,10 4770 -2.37 -1.82 -1.26 -3.86 -2.48 -0.76
Rec35 50,10 4718 -3.98 -3.77 -3.39 -5.26 -3.86 -1.82
Rec37 75,20 8979 -7.57 -7.25 -6.97 -8.56 -7.39 -6.57
Rec39 75,20 9158 -3.53 -3.07 -2.86 -5.43 -4.36 -2.89
Rec41 75,20 9344 -5.15 -4.84 -4.54 -6.93 -6.09 -4.89
Hel1 100,10 780 -5.26 -4.73 -4.36 -6.92 -5.81 -5.09
Hel2 20,10 189 -5.29 -4.23 -1.59 -5.29 -4.92 -4.30
Average -3.88 -3.40 -2.84 -4.60 -4.15 -3.58

96 O.A.W. Riyanto and B. Santosa

5 Experimental Result

In this section, the results of computational experiments performed are presented to
evaluate the performance of proposed ACO-LS. The performance of the proposed
ACO-LS is tested with numerical simulations are carried out with 31 well-studied
benchmark contributed to the OR-Library (http://www.people.brunel.ac.uk/-
mastjjb/jeb/info.html). The first 8 problems are called Car1, Car 2 through Car8 by
Carlier (1978). The second 21 problem are called Rec01, Rec03 through Rec41by
Reeves (1995). The last two problem Hel1 and Hel2 by Heller (1960). The perfor-
mance of ACO-LS using test problem is compared with HDE algorithm proposed by
Qian, et. al (2009). All algorithms are coded in matlab 2009a and run on PC with 2
GHz Intel Core 2 Duo processor and 2 GB RAM memory. For fair comparison, HDE
algorithm are executed on the same PC and let HDE algorithm run at the same time as
ACO-LS. Each benchmark is independently run 20 time for comparison. Where C*
denotes the references makespan produced by the famous RAJ heuristic (Rajendran,
1994). BRE denotes the best relative percentage error to C*. ARE denotes the average
relative percentage error to C*, and WRE denotes the worst relative percentage error
to C*. The statistical results are reported in table 1.

It can be seen from table 1 that the BRE, ARE, and WRE values performed by
ACO-LS are much better than those obtained by HDE almost for all benchmark.

6 Conclusion

In this paper, we have presented an ACO-LS algorithm for the no-wait flow shop
scheduling problem with the objective of minimizing makespan criterion. Based on
the computational experimentation, the proposed ACO-LS algorithm gives
comparable performance as that of HDE algorithm for small problem sizes, whereas,
there is significant improvement in solution quality for large problem sizes. To the
best our knowledge, this is the first report to apply ACO-LS algorithm for no-wait
flow shop scheduling problems with makespan. In future work, we will extend the
ACO-LS algorithm to the scheduling problem with two or more objectives.

Acknowledgments. This research is funded by DP2M Ditjen Dikti with the grants
scheme of Pekerti (Nomor: 009/SP2H/P/K7/KM/2014, 19 May 2014). We would like
to thank you for DP2M Ditjen Dikti, Kopertis 7, and LPPM-UWP.

References

1. Chaudhry, I.A., Mahmood, S.: No-wait Flowshop Scheduling Using Genetic Algorithm.
In: Proceedings of the World Congress on Engineering, vol. 3 (2012)

2. Carlier, J.: Ordonnancements a contraintes disjonctives. RAIRO-Operations Research-
Recherche Opérationnelle 12(4), 333–350 (1978)

3. Grabowski, J., Pempera, J.: Sequencing of jobs in some production system. European
Journal of Operational Research 125(3), 535–550 (2000)

 ACO-LS Algorithm for Solving No-wait Flow Shop Scheduling Problem 97

4. Garey, M.R., Johnson, D.S.: Computers and intractability, aguide to the theory of NP-
completeness. Freeman, San Francisco (1979)

5. Hall, N.G., Sriskandarajah, C.: A survey of machine scheduling problems with blocking
and no-wait in process. Operations Research 44(3), 510–525 (1996)

6. Heller, J.: Some numerical experiments for an M× J flow shop and its decision-theoretical
aspects. Operations Research 8(2), 178–184 (1960)

7. Laha, D., Sapkal, S.U.: An efficient heuristic algorithm for m-machine no-wait flow shops.
In: Proceedings of the International MultiConference of Engineers and Computer Scien-
tists, vol. 1 (2011)

8. Pinedo, M.L.: Scheduling: theory, algorithms, and systems. Springer (2012)
9. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-shop

scheduling problem. Computers & Operations Research 35(10), 3202–3212 (2008)
10. Qian, B., Wang, L., Hu, R., Huang, D.X., Wang, X.: A DE-based approach to no-wait

flow-shop scheduling. Computers & Industrial Engineering 57(3), 787–805 (2009)
11. Rajendran, C.: A no-wait flowshop scheduling heuristic to minimize makespan. Journal of

the Operational Research Society, 472–478 (1994)
12. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers & Operations Re-

search 22(1), 5–13 (1995)
13. Rajendran, C.: A no-wait flowshop scheduling heuristic to minimize makespan. Journal of

the Operational Research Society, 472–478 (1994)
14. Widmer, M., Hertz, A.: A new heuristic method for the flow shop sequencing problem.

European Journal of Operational Research 41(2), 186–193 (1989)
15. Yagmahan, B., Yenisey, M.M.: A multi-objective ant colony system algorithm for flow

shop scheduling problem. Expert Systems with Applications 37(2), 1361–1368 (2010)

	ACO-LS Algorithm for Solving No-wait Flow Shop Scheduling Problem
	1 Introduction
	2 No Wait Flow Shop Scheduling Problem
	3 Structure of An t Colony Optimization
	3.1 Heuristic Information
	3.2 Solution Construction
	3.3 State Transition Rule
	3.4 Pheromone Trail Update

	4 Proposed Ant Colony Optimization – Local Search (ACO-LS)
	5 Experimental Result
	6 Conclusion
	References

