A Reliable Covert Communication Scheme
Based on VoIP Steganography

Harrison Neal and Hala ElAarag(g)

Department of Mathematics and Computer Science, Stetson University,
DeLand, FL, USA
{hneal, helaarag}@stetson. edu

Abstract. Steganography is the science of hiding information in such a way that
an adversary wouldn’t know it existed. A significant amount of research has been
done in this field for non-real time mediums. Research on real time mediums, for
example Voice over Internet Protocol (VoIP), isn’t as mature. In this paper, we
propose an algorithm that enables data hiding in G.711, the most commonly used
voice codec for VoIP devices, while gracefully handling packet loss. This would
allow two telephone users to covertly transfer multiple pieces of arbitrary
information between their respective systems in a reliable manner. We use
important performance metrics to evaluate our algorithm, namely, throughput,
noise-to-signal ratio and the Perceptual Evaluation of Speech Quality algorithm.
We demonstrate that our algorithm performs well compared to other algorithms
proposed in the literature in real world environments, where packet loss is
inevitable, by maintaining high throughput and good speech quality.

Keywords: VoIP - G.711 - Steganography : Covert communication

1 Introduction

Steganography is the science of hiding messages so to appear as if they don’t exist.
This is usually achieved by either modifying part of a communication that wasn’t
intended to hold meaningful data for the user, or by subtly modifying meaningful data
to contain a second message [1]. Many early papers on steganography focused on
hiding secret information in images, videos and audio. With the rapid expansion of the
Internet, later research described hiding data in protocol headers [2]. As interest in
steganography has increased, research on steganography within VoIP streams and other
real-time media has also increased. One example of recent research in this area is a
method by Ito, Abe and Suzuki [3], which uses G.726 in tandem with G.711 to
determine a tolerable amount of distortion in the G.711 stream. In their paper, Ito et al.
[14] neglected to mention scenarios involving packet loss. As G.726 is a stateful codec,
the output is dependent on all previous and current inputs. Should a packet be lost, the
state and outputs between the sender and receiver are no longer guaranteed to be
equivalent. Without this guarantee, hidden data can no longer be reliably retrieved from
the stream. We propose an algorithm that uses a similar technique to that of Ito et al.
[14], but allowing for continued reliable retrieval from the stream after a packet has
been lost. Some preliminary results have been published in [19, 20]. The rest of the

© Springer-Verlag Berlin Heidelberg 2015
Y.Q. Shi (Ed.): Transactions on DHMS X, LNCS 8948, pp. 55-68, 2015.
DOI: 10.1007/978-3-662-46739-8_4

56 H. Neal and H. ElAarag

paper is organized as follows. In Sect. 2, we give a background about the G.711 codec.
Section 3 presents the related work in the literature, while Sect. 4 explains our proposed
packet loss tolerant algorithm. In Sect. 5 we demonstrate the evaluation of our algo-
rithm. Finally, we conclude our paper in Sect. 6.

2 Background

G.711 is the oldest voice codec in use not only by today’s VoIP systems but also
domestic public switching telephone networks (PSTNs) [5]. Some standardization
authorities consider G.711 mandatory for VoIP devices as a codec common to all
systems for interoperability [6]. In regards to steganography, there appears to be a
much greater wealth of available research on G.711 as opposed to other voice codecs.
For these reasons, we opt to have our VolIP client use only G.711.

slabcdefghijkl — s111abed
sOlabcdefghijk — s110abcd
s00labcdefghij — s101labcd

s0000001abcdef — s001abed
s0000000abedef — s000abed

Fig. 1. Output of G.711 codec from signed linear audio input, prior to inversion of every other bit

As illustrated in Fig. 1, the G.711 codec takes signed linear audio samples at 8 kHz [7].
For each sample, the codec outputs one byte (eight bits); this results in a 64 kbits/s bit rate.
There are three components in the output: the sign (positive or negative, represented by s
in Fig. 1), the magnitude on a logarithmic scale and a sub-magnitude on a linear scale
(represented by abcd in the figure). The first bit of output is the sign bit and is identical to
the sign bit from the input. The second through fourth output bits represent the magnitude
of the input on a logarithmic scale. The codec checks the linear sample input for how
many “0” bits follow the sign bit before a “1” bit is found, with more “0” bits before the
first “1” implying a lesser magnitude. If a “1” bit immediately follows the sign bit, the
codec adds “111” to the output. If “01” immediately follows the sign bit, the codec adds
“110” to the output, signifying a lesser magnitude than if “1” immediately followed the
sign bit. This pattern continues until the case where at least seven consecutive “0” bits
follow the sign bit, which would result in an output of “000” for logarithmic magnitude.
The remaining 4 bits of output are set to the first four bits in the input that follow the bits
used to determine logarithmic magnitude. In transit, systems typically invert every other
bit — xor 01010101 (0 x 55) — this is not shown in the figure for simplicity.

3 Related Work

Much work has been done in regards to steganography. They could be classified into
two categories. One hides data within TCP/IP packets and the other hides data within the
application. The first category allows great flexibility in trying to secretly transmit data.

A Reliable Covert Communication Scheme 57

Ahsan and Kundur [8] showed some simple approaches to manipulating headers in IP
packets and reordering packets in such a way that data could be encoded secretly.
Reordering packets, while certainly acceptable in many scenarios, would likely create
too much jitter for real time communications. Murdoch and Lewis [2] noted that prior
work had evaluated the ability for one to use a given TCP or IP field for steganographic
purposes, but had neglected to properly evaluate if such manipulation might be more
obvious to active wardens. These are people who are familiar with typical TCP traffic on
their network, have reason to suspect steganography is taking place and are actively
inspecting traffic to look for deviations from the expected typical traffic. Murdoch and
Lewis [2] then showed a steganographic approach using initial sequence numbers that
takes into consideration methods used by popular operating systems and that would be
indistinguishable from packets normally generated by those hosts. This, however, lacks
suitability for our purposes, as VoIP typically utilizes UDP. Further, the throughput that
could be achieved by only modifying a single packet over the lifetime of a connection is,
while incredibly covert, insufficient for our intentions.

In the second category, research has been proposed to hide information on the
application level with a focus on audio applications such as those running VolP.
Mazurczyk and Lubacz [9] suggested a method they dubbed Lost Audio paCKets
steganography, or LACK. LACK functions by intercepting audio packets at a given
interval, replacing the audio payload with data to be transmitted covertly, holding the
packet for an interval long enough for a receiver to consider it lost, optionally adding
additional jitter to avoid being caught by a simple statistical analysis, and finally
sending the modified packet. The interval at which LACK intercepts packets should be
based on which audio codec is in use and what rate of packet loss for that codec would
result in unacceptable quality; that is to say, LACK is adjustable for any given codec.
Optionally, this interval can also be adjusted based on the expected call duration (which
can be estimated based on statistics and refined as the call progresses) and amount of
data needed to be sent. Mazurczyk [10] thereafter tested the method, showing that
G.711 appeared best suited for use with LACK, both due to it having the highest bit
rate amongst the codecs tested and it encountering the least degradation of quality as
the ratio of lost to total packets increased. At a packet interception rate of 5 %, which
would probably lure the attention of someone observing traffic, G.711 still maintained
fair mean opinion scores on listening quality objective (MOS-LQO) while achieving
3.2 kbits/s of covert traffic. There is a concern that a mechanism should be in place to
ensure packets arriving late on purpose and packets arriving late due to other reasons
beyond our control can be differentiated; the jitter introduced in the interval at which
packets will be delayed and modified could be produced by a pseudorandom number
generator (PRNG) with a seed known to both parties. There is also a concern that a
mechanism needs to exist for recovering lost steganographic packets. Additionally,
there is an expectation that there is a single static message of known length, which is
used during the optional step of regulating the interception interval based on expected
call duration and message length. Hamdaqa and Tahvildari [11] suggest ReLACK,
which operates in very similar fashion to LACK, but uses a modified version of
Shamir’s Secret Sharing Scheme [12] on the message being transmitted, increasing the
message size to the degree necessary for a specified fault-tolerance, which could be the
amount of data that can be comfortably transmitted with LACK without unacceptable

58 H. Neal and H. ElAarag

quality loss. With this scheme applied, if the receiver obtains at least as much data as
was in the original message, the original message can be reconstructed, which
addresses the possible issue of lost data. However, if the receiver doesn’t obtain at least
as much data as was in the original message, the entire message is lost.

Other methods in the literature attempt to subtly manipulate audio data as opposed
to manipulating the flow of that audio data across the network and outright replacing
the audio. One of the simplest approaches to steganography for many mediums is to
tamper with the least significant bit (LSB) of each unit of data [21]. The sender simply
replaces the LSB of a unit with the desired hidden bit to send, and the receiver reads the
sent LSB. When using the LSB method, you expect that the modification of the least
significant portion of the data will be negligible and go unnoticed by any observing
parties.

An approach by Aoki [16] works in similar fashion to LSB in a special case. G.711
can transmit both a +0 and —0 signal, and Aoki’s [16] algorithm takes advantage of this
by using the sign bit as least significant when the magnitude is 0. This technique is
virtually lossless in terms of audio quality, but quickly becomes ineffective in areas
with moderate background noise. Additionally, Aoki [16] created a semi-lossless
method, which works by increasing the absolute magnitude of all non-zero samples by
a variable amount, j, allowing zero-magnitude samples to have both their sign bit and
true LSBs manipulated for storing hidden data.

Among recent literature, both the method by Miao and Huang [13] and the method
by Ito et al. [14] appear promising. While throughput of secret data would be dependent
on many factors, including the nature of the audio being used as cover traffic, both of
these methods advertise fairly good throughput. Miao and Huang [13] created an
approach that isn’t related to LSB-tampering. Their approach works by embedding
more data in groups of samples that vary wildly (rapid fluctuations in sound samples)
and less data in groups of samples that remain consistent and where distortions might
be more apparent. For each group of N samples, the approach treats each G.711 sample
as a sign bit followed by a seven bit magnitude integer, and obtains the average for the
N samples. It then, for all but one sample, determines the difference between that
sample and the average, and plans to embed a number of hidden bits equal to the log of
the absolute value of the difference in that sample, rounded down. The sample will then
be modified to equal the average plus an altered difference that will contain the hidden
bits. The altered difference will be the sum of two numbers: some integer with a bit
length equal to the number of bits to hide, plus two raised to the number of bits to hide.
Finally, the one sample that was originally excluded will be manipulated to restore the
average signed magnitude of the group back to the average originally calculated before
anything was modified. This allows for a receiver to properly determine the number of
bits that would be hidden in each sample, and subtract the correct average to recover
the hidden integer in each sample.

The approach by Ito [14] uses a lower bit rate codec, G.726, in conjunction with
G.711. The algorithm tests how many least significant bits of output from G.711 can be
freely manipulated before transcoding to the lower bit rate codec begins producing
different results. This assures the quality of the G.711 samples will at least match that
of the lower bit rate codec. As both the sender and receiver for a given audio stream can
use the same method to determine how many bits can be tampered with freely before

A Reliable Covert Communication Scheme 59

unacceptable degradation would result, both the sender and receiver would come to the
same conclusion and retrieve the correct tampered bits.

4 Packet Loss Tolerant Algorithm

In this section, we propose a new data hiding algorithm that is based on the algorithm
proposed by Ito et al. [14] but has two main improvements in terms of reliability and
throughput. The method suggested by Ito et al. [14] neglected to account for packet
loss. As the lower bit rate codec Ito [14] used maintained state (that is, all inputs prior
to the current sample being processed can affect the current output), it assumed that
state would always match at the sender and receiver. If a scenario included packet loss
as a feasible possibility, the sender and receiver would no longer have a guarantee of
identical states if the entire audio stream was being considered. That is to say, should
any packet loss occur when using the algorithm by Ito et al. [14], any hidden data
starting with the first lost packet and extending to the end of the stream would be lost.
As such, our proposed algorithm performs the information hiding on a packet-
per-packet basis (resetting the state of the codec with each packet) as opposed to the
entire stream of audio.

Our packet loss tolerant algorithm consists of three main functions. A function,
tamperableBits, that determines the number of bits that could be tampered with without
significantly affecting the quality of the audio, a function for embedding secret infor-
mation into an outgoing audio stream and another for retrieving embedded secret infor-
mation from an incoming audio stream. The pseudo code for determining a reasonable
number of tamperable bits without significant distortion for a given sample is shown in
Fig. 2. tamperableBits takes in a G.711 sample and a G.726 state. It outputs an updated
G.726 state and the number of bits that can be tampered in the G.711 sample provided.
The function named processCodec takes in a G.711 sample, along with the state of the
G.726 codec, and outputs both an updated G.726 state and a G.726 output sample. In
tamperableBits, the sample is first transcoded to the lower-bit rate codec without alter-
ation. If the absolute value of the transcoding output is as high as possible (given the
signed integers that can be represented with the number of bits used per sample by the
lower-bit rate codec), this may suggest an overflow has occurred; that is, that the distortion
between the expected value and the actual value is too large to be represented. If this is the
case, the output from the lower-bit rate codec can’t be used to judge what samples are
similar, and the safe option is to assume no bits should be tampered. If this isn’t the case,
two copies of the sample are made. The least significant bit is set to 1 on the first copy and
cleared (set to 0) on the second copy, we then test if transcoding both altered copies
produce the same output. If so, the least significant bit can be tampered, and this check can
be repeated for more significant bits in the linear sub-magnitude.

Pseudocode for embedding secret information into an outgoing audio stream is
shown in Fig. 3. Prior to sending a VoIP packet with audio, it should be intercepted.
First, a new state should be constructed for the lower-bitrate codec. Then, for every
sample, the number of bits that can be freely tampered is determined by the tamper-
ableBits algorithm explained above, and the bits are replaced.

60 H. Neal and H. ElAarag

// This function should take in a g711 sample prepared for transmission

// (every other bit inverted — 0x55) and the state for a lower-bit rate codec.
// 1t should output a sample transcoded with the lower-bit rate codec, and a
// modified state for the lower-bit rate codec.

function processCodec: IN g711, INOUT state, OUT codecOutput

// This function should take in a g711 sample not prepared for transmission

// and the state for a lower-bit rate codec. It should output the number of bits

// that can be freely modified before it would affect the output from transcoding
// to the lower-bit rate codec, along with the new state of the codec after

// processing a sample representing the lowest modified sample possible.

function tamperableBits: IN sample, INOUT codecState, OUT bits {
bits «— 0
lowTamper < bitwise sample xor 0x55
highTamper < bitwise sample xor 0x55
mask < 1
lastLowState «— codecState
checkMaxDistort < call processCodec: g711 < lowTamper, state <> lastLowState
if (absolute value of checkMaxDistort is less than the highest possible) {
do {
lowTamper « bitwise lowTamper xor 0x55
highTamper < bitwise highTamper xor 0x55
lowTamper < bitwise lowTamper and not mask
highTamper < bitwise highTamper or mask
lowTamper < bitwise lowTamper xor 0x55
highTamper <« bitwise highTamper xor 0x55
mask <— mask bitwise shifted left 1
stateCopy «— codecState
highResult < call processCodec: g711 « highTamper, state <> stateCopy
stateCopy < codecState
lowResult < call processCodec: g711 « lowTamper, state < stateCopy
if (lowResult doesn’t equal highResult) {

break do-while
}

lastLowState < stateCopy
bits « bits + 1
} while (bits is less than 4)
}

codecState < lastLowState

Fig. 2. Method to determine number of bits that can be manipulated

The pseudo code for retrieving embedded secret information from an incoming
audio stream is similar. For each sample the number of bits that could be freely
tampered is determined then extracted as illustrated in Fig. 4.

Using the steganography technique we proposed, we can embed secret data of our
choosing into the G.711 stream. Once the audio samples have been modified to contain
our information, multiple samples can be bundled into each Real-Time Protocol (RTP)

A Reliable Covert Communication Scheme 61

// Should return the next bit of data to be secretly embedded.
function nextBitTolnsert: OUT bit

// ' To be run when packets are available:
while (a new packet is available) {
samples < G.711 samples from the packet (every other bit inverted)
state < new state for low bitrate codec
for (each sample in samples) {
noxmit <— bitwise sample xor 0x55
bits < call tamperableBits: sample «— noxmit, codecState < state
mask «— 1
for (i from 1 to bits) {
noxmit <— bitwise noxmit and not mask
insert < call nextBitTolnsert
insert < insert * mask
noxmit <— bitwise noxmit or insert
mask «— mask bitwise shifted left 1

}

sample «— bitwise noxmit xor 0x55

Fig. 3. Method to embed secret data into an audio packet

packet as normal by the VoIP software and sent to their destination. RTP typically uses
UDP, so we risk not receiving a packet either due to a packet not arriving or a packet
arriving with an invalid checksum.

5 [Evaluation

We collected several audio recordings for testing. These audio recordings were grouped
into three categories: no voice with low background noise, high volume voice with low
background noise and high volume voice with moderate background noise. The no
voice with low background noise category had two recordings. The first recording was a
muffled thunderstorm recorded in a sealed building, with volume comparable to light
background noise. The second was computer-generated silence. The high volume voice
with low background noise category included automated voice mail and operator
prompts (VM prompts), and English as a second language study material (ESL). Finally,
the high volume voice with moderate background noise category included our peers
speaking a short story (Peers) and recordings of telephone calls considered of historical
significance and publically available (Historic).
To test the algorithms, we used three performance metrics:

1. Throughput: which is the number of bits of the secret data embedded per second.
2. Noise-to-Signal ratio: which is calculated according to the following equation,

62 H. Neal and H. ElAarag

// Should receive the next bit secretly transmitted for processing.
function nextBitInserted: IN bit

// To be run when packets are available:
while (a new packet is available) {
samples «— G.711 samples from the packet
state <— new state for low bitrate codec
for (each sample in samples) {
noxmit < bitwise sample xor 0x55
bits < call tamperableBits: sample < noxmit, codecState < state
mask «— 1
for (i from 1 to bits) {
recovered < bitwise noxmit and mask
if (recovered equals mask) {
call nextBitInserted: bit — 1
} else {
call nextBitInserted: bit < 0

mask < mask bitwise shifted left 1

H
H
H
Fig. 4. Method to retrieve secret data embedded into an audio packet
2
n A
S { (%) }
n
Where:

S denotes the Signal
e N denotes the Noise
e Ag is the original linear amplitude of a given sound sample (G.711 has 8,000

samples per second)
e Ay is the maximum difference between the amplitude of the original sample and the

sample after embedding the data on a linear scale
e n is the number of samples

3. Perceptual Evaluation of Speech Quality (PESQ): PESQ algorithm [15] com-
pares unmodified and degraded audio in a way that aims to report how degraded a
human would perceive the audio to be. Higher scores are better, with scores of at
least 4 considered good and scores of at least 3 considered acceptable but with
noticeable degradation.

A Reliable Covert Communication Scheme 63

A higher throughput, a higher PESQ and a lower Noise-to-Signal ratio means better
performance.

We first studied the performance of the algorithms in the worst case scenario, where
embedding data would result in the greatest possible noise-to-signal ratio.

For Aoki’s [16] approach, we evaluate it in lossless (LL) and semi-lossless (SLL)
modes. In the former, only the sign bit is manipulated when the magnitude is 0; in the
latter, the sign bit and the least significant bit of the magnitude is manipulated i.e. the
variable j in [16] is set to 1.

For the algorithm by Ito et al. [14], G.726 could operate at four different bitrates,
namely, 16 kbits/s, 24 kbits/s, 32 kbits/s and 40 kbits/s. Using the 32 kbits/s mode
offered more throughput than the 40 kbits/s mode without much additional noise. Using
24 kbits/s and 16 kbits/s compared to 32 kbits/s again offered additional throughput,
but with a substantial noise increase. We will show results for 32 kbits/s and 24 kbits/s
for both the algorithm by Ito et al. [14] and our algorithm.

For the approach by Miao and Huang [13], we use values of 5 and 13 for N, and a
value of 96 for the maximum lambda. 13 was the N value used in [13] when presenting
results of their algorithm. Their paper suggested that lowering the value of N would
increase hidden throughput at the cost of noise; we chose an N of 5 to see this effect.
The maximum lambda serves as a mechanism to prevent overflow — should any
embedding operation have the potential to cause a sample to vary from the average
magnitude more than the maximum lambda, no bits will be embedded in that sample.
Should the maximum lambda be exceeded when adjusting the sample used to restore
the average, all embedding operations for the entire group will be canceled, and the
audio for the entire group will be unmodified.

5.1 Throughput

Figures 5, 6 and 7 show the average throughput of secret data for no voice with low
background noise recordings, the high volume voice with low background noise and
the high volume voice with moderate background noise categories, respectively. The
Figures assume a no packet loss scenario. Aoki’s [16] algorithms perform well under

10

Average Throughput, kb/s
wv

2
0 [||

Aoki-LL Aoki-SLL Ito-24kb Ito-32kb Miao-n5 Miao-n13 Neal-24kb Neal-32kb

Fig. 5. Average throughput for no voice low background voice recordings

64 H. Neal and H. ElAarag

10

8

7

6

4

3

2

i |

0 4 T T T T T T T

Aoki-LL Aoki-SLL Ito-24kb Ito-32kb Miao-n5 Miao-n13 Neal-24kb Neal-32kb

Average Throughput, kb/s
w

Fig. 6. Average throughput for high voice volume, low background noise recordings

10

8
7
6
4
3
2
1
0 4 T T T T T

Aoki-LL Aoki-SLL Ito-24kb Ito-32kb Miao-n5 Miao-n13 Neal-24kb Neal-32kb

Average Throughput, kb/s
w

Fig. 7. Average throughput for high voice volume, moderate background noise recordings

no voice and low background noise conditions but poorer under high volume voice
conditions. Our algorithm operating at 24 kb/s, outperforms other algorithms under
high volume voice conditions, but poorly with generated silence. For Miao and
Huang’s [13] algorithm, a group of five samples (that is, N = 5) provided better
performance than N = 13 for all recordings with the exception of Thunderstorm; for the
Thunderstorm recording, N = 13 provided much better performance compared to N = 5.

5.2 Noise to Signal Ratio

In Fig. 8, we show average Noise-to-Signal ratios on modified audio files. The method
by Miao and Huang [13] generated the most noise in every instance, with N = 13
generating more noise than N =5. As N =5 also provides better throughput in all but one
case as well as less noise in all cases, the suggestion by Miao and Huang [13] in their
paper to keep N small appears valid. In both recordings from the high volume voice and

A Reliable Covert Communication Scheme 65

moderate background noise category (peers and historic), the algorithm by Ito et al. [14]
and our algorithm generates more noise than Aoki’s [16], but, as shown in Fig. 7, Aoki’s
generates substantially less throughput. In the high volume voice and low background
noise category (VM prompts and ESL), our algorithm generated more noise than Aoki’s
for VM recording and less noise in the ESL recording, but for both recordings Aoki’s
[16] algorithm generated less throughput (see Fig. 6). In the no voice with low back-
ground noise category, Aoki’s [16] algorithm generated more noise than ours, but
generated substantially more throughput (see Fig. 5). Neither Ito et al.’s algorithm [14]
nor our algorithm made any changes for the silence recording, hence not having a data
point in Fig. 8.

5.3 Audio Quality

In Fig. 9, we show PESQ results. Aoki’s [16] algorithms score at least 3.0 in all cases
and above 4.0 in recordings from the high voice volume with moderate background
noise category, suggesting acceptable to good audio quality. Both our and Ito’s
algorithm consistently score above 4, suggesting consistent good quality. Miao and
Huang [13] ’s method produced modified audio that scored less than 3.0 for multiple
(though not all) recordings, suggesting poor to adequate quality.

100

10

[N

Average Noise-to-Signal Ratio

°
o

0.01 +
Peers Historic VM Prompts ESL Silence Thunder

W Aoki-LL Aoki-SLL ~ m Ito-24kb Ito-32kb W Miao-n5 B Miao-n13 Neal-24kb Neal-32kb

Fig. 8. Average noise-to-signal ratio for recordings

5.4 Effects of Packet Loss

In a more practical scenario where packet loss can occur, the algorithm by Ito et al. [14]
quickly levels off and fails to reliably transmit any further data, while our algorithm
continue transmitting with graceful degradation as shown in Fig. 10.

66 H. Neal and H. ElAarag

PESQ Score

Peers Historic VM Prompts ESL Silence Thunder
W Aoki-LL = Aoki-SLL m Ito-24kb Ito-32kb W Miao-n5 ® Miao-n13 Neal-24kb = Neal-32kb

Fig. 9. PESQ scores for recordings

o

F

! — —lee
~
2
= 6 -
3
g N
®5
3
g N\
I'E4 \
.
&3
o \
>
<2
) . H <>
0 T T |
0 1 2 5

Packets lost per second

et AOKI-SLL =i 1t0-32kb === Neal-32kb

Fig. 10. VM Prompts Sample considering packet loss for 5 s

6 Conclusion and Future Work

In this paper we not only proposed a new algorithm to hide data in a Voice over IP
stream but also evaluated several suggested algorithms in this field from the literature,
namely those by Aoki [16], Miao and Huang [13] and Ito et al. [14]. As far as our
knowledge, this research offers the most comprehensive performance analysis of VoIP
steganography algorithms as far as the number of algorithms considered and the

A Reliable Covert Communication Scheme 67

performance metrics used. Our evaluation shows that the algorithm by Aoki [16]
worked nicely in no voice conditions but far less favorably otherwise compared to
other algorithms. On the other hand, other methods do not produce any throughput with
artificial silence, while Aoki’s [16] method excels. The method by Miao and Huang
[13] tends to perform better with a lower N value but generates excessive noise.

We proposed an algorithm based on the work of Ito et al. [14] that dealt with packet
loss more appropriately. Our experiments show that our proposed algorithm has several
advantages over algorithms found in the literature. The most important advantage is
that, unlike other algorithms, it can be used in a practical environment where packet
loss is inevitable. It maintains high throughput, low noise levels and high PESQ scores.
That is, it maintains a good audio quality on par with or superior to other algorithms
found in the literature, in addition, it gracefully degrades as packet loss rate increases.

One drawback of the proposed method is that, similar to all other LSB based
steganography techniques, it can be detected by a good steganalysis program.

As VoIP conversations can involve both voice and video, one could extend this
research to embed the data not only into the audio stream but also the video stream for a
given call, if applicable.

References

1. Artz, D.: Digital steganography: hiding data within data. IEEE Internet Comput. 5, 75-80
(2001)

2. Murdoch, S.J., Lewis, S.: Embedding covert channels into TCP/IP. In: Barni, M.,
Herrera-Joancomarti, J., Katzenbeisser, S., Pérez-Gonzalez, F. (eds.) IH 2005. LNCS, vol.
3727, pp. 247-261. Springer, Heidelberg (2005)

3. Tian, H., et al.: An adaptive steganography scheme for voice over IP. Huazhong University
of Science & Technology, University of Nebraska, Tsinghua University (2009) doi:10.1109/
ISCAS.2009.5118414

4. Yongfeng, H., Bo, X., Honghua, X.: Implementation of covert communication based on
steganography. Department of Electronic Engineering, Tsinghua University, Beijing (2008).
doi:10.1109/ITH-MSP.2008.174

5. Karapantazis, S., Pavlidou, F.-N.: VoIP: a comprehensive survey on a promising
technology. Thessaloniki (2009). doi:10.1016/j.comnet.2009.03.010

6. International Telecommunication Union: Packet-based multimedia communications
(Recommendation ITU-T H.323) (2009)

7. International Telecommunication Union: Pulse Code Modulation (PCM) of Voice
Frequencies (ITU-T Recommendation G.711) (1993)

8. Ahsan, K., Kundur, D.: Practical data hiding in TCP/IP. University of Toronto, Toronto
(2002). 1-58113-000-0/00/0000

9. Mazurczyk, W., Lubacz, J.: LACK - a VoIP steganographic method. Institute of
Telecommunications, Warsaw University, Warsaw (2009). doi:10.1007/s11235-009-9245-y

10. Mazurczyk, W.: Lost audio packets steganography: the first practical evaluation. Warsaw
University of Technology, Institute of Telecommunications, Warsaw, arXiv:1107.4076v1
(2011)

11. Hamdaqa, M., Tahvildari, L.: ReLACK: a reliable VoIP steganography approach. In: IEEE
Fifth International Conference on Secure Software Integration and Reliability Improvement,
Jeju Island, pp. 189-197 (2011)

http://dx.doi.org/10.1109/ISCAS.2009.5118414
http://dx.doi.org/10.1109/ISCAS.2009.5118414
http://dx.doi.org/10.1109/IIH-MSP.2008.174
http://dx.doi.org/10.1016/j.comnet.2009.03.010
http://dx.doi.org/10.1007/s11235-009-9245-y

68

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

H. Neal and H. ElAarag

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)

Miao, R., Huang, Y.: An approach of covert communication based on the adaptive
steganography scheme on voice over IP. Department of Electronic Engineering, Tsinghua
University, Beijing (2011). ISBN: 978-1-61284-231-8

Ito, A., Abe, S., Suzuki, Y.: Information hiding for G.711 speech based on substitution of
least significant bits and estimation of tolerable distortion. Tohoku University, Sendai
(2009). ISBN: 978-1-4244-2354-5

International Telecommunication Union: Perceptual evaluation of speech quality
(Recommendation ITU-T P.862) (2001)

Aoki, N.: A band extension technique for G.711 speech using steganography. IEICE Trans.
Commun. E89-B(6), 1896-1898 (2006)

International Telecommunication Union: Perceptual objective listening quality assessment
(ITU-T Recommendation P.863) (2011)

CenturyLink: CenturyLink IP Network Statistics, December 2011. https://kai02.centurylink.
com/PtapRpts/Public/BackboneReport.aspx

Neal, H., ElAarag, H.: A packet loss tolerant algorithm for information hiding in voice over
IP. In: Proceedings of IEEE Southeast Conference, Orlando, FL, 15-18 March 2012
ElAarag, H., Neal, H.: Performance analysis of current data hiding algorithms for VoIP. In:
Proceedings of the Communication and Networking Simulation Symposium, Spring
Simulation Multiconference, San Diego, CA, 7-10 April 2013

Latzenbeisser, S.: Information Hiding Techniques for Steganography and Digital Watermarking.
Artech House, New York (2000)

https://kai02.centurylink.com/PtapRpts/Public/BackboneReport.aspx
https://kai02.centurylink.com/PtapRpts/Public/BackboneReport.aspx

	A Reliable Covert Communication Scheme Based on VoIP Steganography
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Packet Loss Tolerant Algorithm
	5 Evaluation
	5.1 Throughput
	5.2 Noise to Signal Ratio
	5.3 Audio Quality
	5.4 Effects of Packet Loss

	6 Conclusion and Future Work
	References

