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Abstract. Let d > 1 be an integer and R: be a finite ring whose ele-
ments are called block. A d-block universal hash over R; is a vector
of d multivariate polynomials in message and key block such that the
maximum differential probability of the hash function is “low”. T'wo such
single block hashes are pseudo dot-product (PDP) hash and Bernstein-
Rabin-Winograd (BRW) hash which require § multiplications for n mes-
sage blocks. The Toeplitz construction and d independent invocations of
PDP are d-block hash outputs which require d x § multiplications. How-
ever, here we show that at least (d — 1) + § multiplications are neces-
sary to compute a universal hash over n message blocks. We construct a
d-block universal hash, called EHC, which requires the matching (d—1)+%
multiplications for d < 4. Hence it is optimum and our lower bound is
tight when d < 4. It has similar parllelizibility, key size like Toeplitz and
so it can be used as a light-weight universal hash.

Keywords: Universal hash -+ AXU hash - Multivariate polynomial -
Error correcting code - Vandermonde matrix - Toeplitz hash

1 Introduction

Universal hash function and its close variants AU hash [10,13,40,42,43] are
used as building blocks of several cryptographic constructions, e.g., message
authentication codes [10,49], domain extension of pseudorandom functions [2,4],
extractors [15,32] and quasi-randomness [44]. It also has close connection with
error correcting codes and other combinatorial objects [13,43].

Informally, a universal hash function h takes two inputs, a key k and a
message m of arbitrary length, and produces a fized-length output hi(m) :=
h(k,m). For a universal (or AU) hash function h the following holds: for any
two distinct messages mq, ma, the collision probability Pr[hg(mi) = hg(ms2)] (or
differential probability maxgs Pr[hs(m1) — hg(mse) = 4]) is small for an uniformly
chosen key k. Formal definitions can be found in Sect. 2.

A very popular application of universal hash is to obtain a domain extension
of pseudorandom function (or PRF) and message authentication code (or MAC).
Let f be a PRF over fixed length input. When h has low collision probability,
the composition function foh is a PRF [4] over arbitrary length. Thus h behaves
© International Association for Cryptologic Research 2015

C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 489-508, 2015.
DOI: 10.1007/978-3-662-46706-0_25



490 M. Nandi

as a preprocessor to reduce the problem of designing arbitrary size input PRF
to a fixed small size input PRF. Similarly, we can show that mapping (N, M) to
f(N) @ h(M) is a MAC [6] over arbitrary length messages when N is used as a
nonce (i.e., not repeating) and h has low differential probability. These methods
are only useful when we process long message and use a much faster h (than a
PRF f). So our main question of this paper is that how fast a universal hash
function could be in a reasonable computational model?

MULTIPLICATION COMPLEXITY. The above question has been answered [26,28]
in terms of order in different circuit level computational models, e.g., branch-
ing model. In this paper, we consider “multiplication complexity” in “algebraic
computation model” [24] in which a polynomial or a rational function is com-
puted by using addition and multiplication (or division) over an underlying ring
(or a field) Ry in a sequence (see Definition 4 for more details). For example,
to compute x1x2 + x1x3, we can compute it as vy + v, where v; = x122 and
vy = x123. This computation requires two multiplications. However, the same
polynomial can be computed as x1(z2 + x3) which requires only one multipli-
cation. We define multiplication complexity of a multivariate polynomial as the
minimum number of multiplications required for all possible computations of H.
The multiplication complexities of some standard multivariate polynomials have
been studied before and a brief survey is given in Appendix. Our target question
of this paper is to obtain a lower bound of multiplication complexities among
all AU hash functions and to show the tightness of the bound by producing
an example.

1.1 Our Contribution and Outline of the Paper

In the following we assume a universal hash function hashes all messages from
R{ to R¢ (usually d = 1) and hence multiplication complexity is measured in
terms of ¢ and d.

OPTIMALITY OF PSEUDO DOT-PRODUCT AND BRW HASH. In this paper we
prove that a hash function with low differential probability must have
multiplication complexity at least ¢/2 (see Theorem 3 in Sect. 5). We show
it by proving contrapositive. If a function has multiplication complexity ¢ < £/2
then there are 2¢ multiplicands. As we have £ message blocks and key blocks
are linear in multiplicands we are able to solve for two distinct messages from
R{ which map to all 2c multiplicands identically for all keys. Hence differential
probability is one. Even though the lower bound seems intuitive, to the best
of our knowledge, it was not known before. The pseudo dot-product [46] based
hash PDP (e.g. NMH hash [14], NMH™* [14], NH [4] and others [8,21]) defined as
(for even ¢)

PDPy, .. ke (ma,...,me) = (ma + k1) (me + k2) + -+ - + (me—1 + ke—1) (me + ki)

and Bernstein-Rabin-Winograd or BRW hash [7,36] are two known examples
which achieve this bound (¢/2 multiplications for £ message blocks).
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OPTIMALITY OF MULTIPLE BLOCK HASH. We also extend this bound for multiple
block hash outputs (such as Toeplitz construction [26] or independent applica-
tions of a single block hash function). To compute

(Hy := x129 + w324, Hy:= 2123 + T214),

we can compute H; by two multiplications (it can be shown that H; or Hs
individually can not be computed in one multiplication only) and then compute
Hy = (x1+x4)(x2 +x3) — Hy by one multiplication. Similarly for d polynomials
Hy,...,H; (with individual multiplication complexity ¢) there is a scope of
computing all d polynomials simultaneously in less than cd multiplications. In
Theorem 5 (Sect.5), we prove that to obtain d block hash outputs on ¢
block messages, we need at least (d — 1) + /2 multiplications.

CONSTRUCTION WITH MATCHING COMPLEXITY. So far, no construction is known
achieving this lower bound for d > 1. Note that both Toeplitz and independent
invocation applied to the PDP requires £d/2 multiplications.! So there is a possi-
bility of scope of a hash construction having better multiplication complexity. In
this paper, for d < 4 we provide a d-block A-universal hash, called xxx EHC
or encode-hash-combiner (see Algorithm 1, in Sect. 4). The main ingredient of
the construction was introduced in [17]. Here, we first encode the input using an
efficiently computable linear error correcting code [27] with minimum distance d
so that codewords for different inputs will differ in at least d places; then we feed
the i*" encoded symbol (e.g., a pair of blocks for PDP) through its underlying
universal hash function (e.g., PDP which requires one multiplication for a symbol
or two blocks); and then apply another efficient linear combiner to the all hash out-
puts to obtain the final d block hash outputs. The optimization in [17] is entirely
aimed at linear-time asymptotic encodings [41], which don’t have much connec-
tion to concrete performance. Moreover, codewords can not be computed in online
manner with small buffer and requires at least ¢-blocks of memory (in addition to
input and output size). This is the possible reason that community has not found
any interest to implement it (even for smaller ¢, i.e. for small messages).

Our choice of code and combiners (satisfying some desired property) are based
on Vandermonde matrices which can be computed with small buffer. Number of
multiplication will essentially depend on size of codewords and due to choice of
MDS code we need exactly (d — 1) + ¢/2 multiplications. Hence, the construction
is optimum and our bound is tight. In terms of key size and parallelizibilty, both
Toeplitz and EHC are similar. The idea trivially does not extend for d > 4 as we
do not find any appropriate error correcting code with distance d > 5.

2 Definitions: Universal and A-universal Hash Function

AU Hash Function. A hash function h is a (K, D, R)-family of functions
{hi, := h(k,-) : D — R}pex defined on its domain or message space D, taking

L Applying the Theorem 1 in [47], we can prove that these constructions have multipli-
cation complexity ¢d/2.



492 M. Nandi

values on a group R, called output space and indexed by the key space K.
Usual choices of R are (i) Z, (the field of modulo a prime p), (ii) Zow (the ring
of modulo 2%) (iii) Fon (Galois field of size 2") and (iv) R{ with coordinate
wise operation, where R; is one of the previous choices. In the last example
when d > 1, h is also called multi or d-block hash. An element of R (or R; for
the multi-block) is called block. In general, we write Ry even for d = 1. However,
the output space is always denoted by R = R, d > 1. Except for (Z,)?, R can
be viewed as the set {0,1}" by using the canonical encodings and we say that
hash size is N.

Definition 1 (e-AU hash function). A (K, D, R)-family h is called e-AU
(universal) hash function if for any two distinct x and 2’ in D and a § € R,
the §-differential probability diff,, s[x, 2'] := Prk[hk(z)—hk(z') = ] < € where
the random variable K is uniformly distributed over the set K.

Unless mentioned explicitly, we always mean key K to be chosen uniformly from
its key space. The mazimum 6-differential probability over all possible of two
distinct inputs z, 2’ is denoted by Ay, 5. The mazimum differential probability
Ap, = maxs Ay, 5. If the addition is bit-wise xor “@” on R = {0, 1}V, we call the
hash family e-AXU (almost-xor-universal) hash function [37].

Universal Hash Function. When § = 0, the 0-differential event is equivalent
to collision. So we write diff}, o[z, z'] and Ay, ¢ by coll, [z, 2] and coll;, respectively
and we call them collision probabilities.

Definition 2 (e-U hash function). A hash family h is called e-universal (or
€-U) if coll, := max, £, Prx[hk(z) = hk(2')] <e.

Balanced Hash Function. We call h e-balanced [23,31] on a subset D’ C
D if Prlhk(z) = y] < eforall x € D', y € R.If D' = D then we call it
e-balanced. Note that € is always at least 1/|R| for e-AU (shown in [43]) and
e-balanced function (easy to check from definition) but not necessarily for an e-U
hash function [43]. An e-balanced functions are useful to prove e-AU property
whenever hg’s are linear [23]. More precisely, for a linear hash, e- AU is equivalent
to e-balanced function on R\ {0}.

3 Analysis Methods of Universal Hash Functions

In this section all messages (and possibly key) blocks are elements of the under-
lying field R; of size q.
3.1 Multi-linear Hash and Poly-Hash

The hash mapping (mq,...,m;) — my - Ky 4+ -+ + my - K; can be shown to be
q~1-AU hash function.? It is known as multi-linear hash ML[13,49]. Later MMH

2 One can also prove it by applying Lemma, 2 as it is a sum hash.
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was proposed [14] with a performance record. It is a multi-linear hash with a
specific choice of Ry = Zas4 and a post-processor. All these constructions above
requires (at least) ¢ multiplications and ¢ many independent key blocks.

By counting roots of a polynomial, one can show that (mq,...,mg) — my -
K+my K2+ +my-Klis an £ x ¢~ '-AU hash function. This is known
as poly-hash [3,9,45]. Some examples are Ghash used in GCM [22], poly1305 [6],
polyQ, polyR [25] (combination of two poly-hashes), and others [18,20] etc. The
speed report of these constructions are given in [30,40].

Bernstein-Rabin-Winograd hash or BRW [7,36] hash is a multi-variate poly-
nomial hash which is non-linear in message blocks. It requires ¢/2 multiplication
and one key. As the algorithm is recursive and binary tree based, it requires
O(log ¢) storage. This construction uses minimum number of keys (single block)
and requires minimum number of multiplications (as we show in Theorem 3 of

Sect. 5).

3.2 Composition of Universal Hashes

Given an ej-universal (IC, D, D')-hash function h and es-AU (K', D', Ry)-hash
function A’ the composition hash function defined below

(R o h)g (m) = hy (hi(m)), Ym € D

is (€1 + €2)-AU-hash function on D. Whenever h’ is assumed to be only es-U
hash function, the composition is (€1 +€2)-U-hash function [40]. This composition
results are useful to play with domain and range for different choices and has
been used in several constructions [4,25,39].

3.3 Pseudo Dot-Product

The notion of pseudo dot product hash is introduced for preprocessing some
cost in matrix multiplications [46]. The construction NMH [14] uses this idea.
NMH* and NH are variants of these construction. Later on NH has been modified
to propose some more constructions [8,19,21,31]. A general form of pseudo dot-
product PDP is (m;+Kj)(mae+Ka)+. ..+ (me—1+Ke—1)(me+XK,) which is same
as multi-linear hash plus a function of messages and a function of keys separately.
The main advantage of PDP is that, unlike multi-linear hash, it requires ¢/2
multiplications to hash ¢ message blocks. We first prove a general statement
which is used to prove AU property of PDP.

Lemma 1. Let h be an e-AU (K, D, Ry)-hash function where Ry is an additive
group. Then the following (K, D, Ry)-hash function h’/

hi(m) = hi(m) + f (k) + g(m). (1)

is e-AU hash function for any two functions f and g mapping to R;.
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Proof. For any m # m’ and §, hj, (m)—h} (m') = § implies that hy(m)—hi(m') =
8" =38+ g(m') — g(m). So for all m # m’ and 9,

Pr[h}.(m) — hj(m') = §] < max Prlhk(m) — hx(m') =8'] < e

and hence the result follows. O

Corollary 1 (Pseudo dot-product hash). Let Ry be a field of size q. The
hash function (m1,ma,...,mg) — (m1+Ky)(mo+Kso)+. . .4 (me—1+Ke—1)(me+
Ky) is ¢~1-AU hash function for a fived £.

Corollary 2 (Square hash [11]). Let Ry be a field of size q. The hash function
(my,ma,...,myg) — (m1+Kq)2 4+ + (my+Ky)? is ¢~ 1-AU hash function for
a fized £.

3.4 Message Space Extension: Sum Hash Construction

Now we provide some easy generic tools to hash larger message. Let h be an
e-AU hash function from D to R; with key space L. A hash function is called
sum hash (based on h), denoted h*"™ if it is defined as

R (mas . ma) = D (ma), 2)
=1

The multi-linear hash ML and PDP are two examples of sum-hash.

Lemma 2. If h is an e-AU hash function from D to Ry with key space K then
hs"™ s an e-AU (K%, D*®, Ry)-hash function.

Proof. One can verify it in a straightforward manner once we condition all keys
K;’s except a key K; for which m; # m/ (the i*" elements of two distinct inputs
m and m'). O

Universal Hash for Variable Length. The above sum-hash is defined for
a fixed number of message blocks. Now we define a method which works for
arbitrary domain D := {0,1}=*. To achieve this, we need a padding rule which
maps D to DT = U;>1D?. A padding rule pad : D — D7 is called D’-restricted
if it is an injective function and for all m € D and pad(m) = (mq,...,ms) we
have mg, € D’.

Lemma 3 (Extension for D := {0,1}=%). Let h be an e-AU (K, D, Ry)-hash
function and e-balanced on D' C D and pad : D — D=L be a D'-restricted
padding rule. The sum-hash hP*5"  defined below, is an e-AU (K {0,1}=t, Ry)-
hash function.

BRI (m) = 3 i, (i), pad(m) = (my, ... my) ®)
=1
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The proof is similar to fixed length sum-hash except that for two messages with
different block numbers. In this case, the larger message uses an independent
key for the last block which is not used for the shorter message and hence the
result follows by using balanced property of the hash.

Remark 1. Note that ML is clearly not universal hash function for variable length
messages. It is a sum hash applied on the hash m - K which is not balanced on
the field R; (the 0 message maps to 0 with probability one). However, it is ¢~ !-
balanced for Ry \ {0}. Hence for any padding rule pad which is injective and
the last block is not zero will lead to an universal hash for ML construction. For
example, the popular “10-padding” pads a bit 1 and then a sequence of zeros, if
required, to make it a tuple of the binary field elements. This ensures that the

last block has the bit 1 and hence it is non-zero.

The pseudo dot-product is 2¢~*-balanced on R; and hence any injective padding
rule for PDP will give a 2¢7'-AU hash function.

An Alternative Method: Hashing Length. A generic way to handle arbi-
trary length is as follows: Let h be an e-AU hash function on D;, 1 < i < r
and h' be an e AU hash function on {1,2,...,7}. Then the hash function
Hy, 1 (m) = hi(m)+hj, (i) where m € D is an e- AU hash function on D := U; D;.
We apply this approach in our construction to define over arbitrary messages.

3.5 Toeplitz Construction: A Method for Multi-block Hash

One straightforward method to have a d-block universal hash is to apply d
independent invocation of universal hash h. More precisely, for d independent
keys K1, ..., Ky, we define a d-block hash as h(¥) = (hk, (m),..., hk,(m)). We
call it block-wise hash. It is easy to see that if h is e-U (or AU) then h(4) is €?-U
(or AU) hash function. The construction has d times larger key size. However,
for a sum-hash A%"™ we can apply Toeplitz construction, denoted h7*¢, which
requires only d additional key blocks where h is an e-AU (K, D, R)-hash function.

hi 4 ma, . mg) = hi, (ma) + hig,yy (m2) + .o+ iy, o (me), 1<i<d. (4)

We define h%;’inHd_l(m) = (hT, .., hg’d). Note that it requires d — 1 addi-
tional keys than the sum construction for single-block hash. However the num-
ber of hash computations is multiplied by d times. Later we propose a better
approach for a d-block construction which requires much less multiplications.

Lemma 4. h is e-AU (K, D, Ry)-hash = hT+? is ¢d-AU (K'*4-1 D' RY)-hash.

Proof. For two distinct messages m # m’ it must differ at some index. Let 4
be the first index where they differ i.e., m; # m} and m; = m},...,mj—1 =
m}_,. Now condition all keys except K’ := (K,,...,K;y4—1). Denote H; and
H] for the i** block hash outputs for the messages m and m/ respectively. Now,

Hy — H), = 04 leads a differential equation of h for the key K;14—1 and so this
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would contribute probability e. Condition on any such K;;4_1, the previous
equation Hq_1 — H;_| = 64—1 can be expressed as an differential equation of
K,1+4—2 and so on. The result follows once we multiply all these probabilities. O

The above proof argument has similarities in solving a system of upper triangular
linear equations. So we start from solving the last equation and once we solve it
we move to the previous one and so on until we solve the first one.

Toeplitz Construction Applied to an Arbitrary Length. Now we describe
how Toeplitz construction can be used for arbitrary length inputs. If h is e-
balanced on a set D’ C D then we need a padding rule which maps a binary
string to (my,...,ms) € D® such that m, € D’. This condition is same as sum
hash construction for arbitrary length.

Lemma 5 (Toeplitz construction for D := {0,1}<%). Let h be an e-AU
(K, D, Ry)-hash function and e-reqular on D' C D and pad be D'-restricted. Then
the Toeplitz hash hT-%P2d(m) = hT4(pad(m)) is an e-AU (KF+4=1 {0, 1}, RY)
hash function.

The proof is similar to the fixed length proof and hence we skip the proof. The
10-padding rule (as mentioned for ML hash) for Toeplitz construction in ML
can be used [38]. Similarly, for PDP one can use any injective padding rule.
Generalized linear hash [38], LFSR-based hash [23], CRC construction or Divi-
sion hash [23,40], Generalized division hash [40], Bucket hash [37], a variant of
Toeplitz construction [31] etc. are some other examples of multi-block hash.

4 Our Constructions

4.1 Error-Correcting Coding

Let A be an alphabet. Any injective function e : D — A" is called an encoding
function of length n. Any element in the image of the encoding function is called
code word. For any two elements = (z1,...,2,),y = (Y1,...,Yn) € A" we
define hamming distance dpam(z,y) = [{i : ©; # yi}|, the number of places
two n-tuples differ. We can extend the definition for arbitrary size. Let z =
(x1,...,2n) € A"y = (Y1,...,Ym) € A™ where m < n. We define d, . (z,y) =
(n —m) 4+ dpam (2, y) where ' = (z1,...,2m).

Definition 3. The minimum distance for an encoding function e : D — ASE .=
Ui< A" is defined as d(e) 2 minyzyrep Ay, (e(M), e(M')).

We know from coding theory that for any coding e : A¥ — A" we have d(e) <
n —k+ 1 (singleton bound). Moreover, there is a linear code® e, called MDS or
maximum distance separable code, such that d(e) = n—k+ 1. However, if we
consider sequence of MDS codes applied to different length the combined coding

3 There is a generator matrix Ggxn over the field F such that e(z) = = - G.
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may have minimum distance only one since we may find two distinct messages
M, M’ such that e(M) = (z1,...,%m) and e(M') = (z1,...,Tm, Tm+1)- If the
generator matrix of MDS code is of the systematic form G = (I}, : Sy (n—r)) With
identity matrix Ij then S is called MDS matrix. A characterization of MDS matrix
is that every square sub-matrix has full rank. There are some known systematic
form of MDS code based on Vandermonde matrix [5]. We call a matrix Sy (n—)
d-MDS if every square submatrix of size d has full rank. Thus, S is a MDS matrix
if and only if it is &-MDS for all 1 < d < min{k,n — k}. Now we give examples of
MDS and d-MDS matrix using a general form of Vandermonde matrix.

Vandermonde Matrix. We first define a general form of Vandermonde matrix
Vi = Vy(ai,...,ay) over a finite field F, where d < n are positive integers and
ai,...,aq, are distinct elements of the field. It is an d x n matrix whose (i, j)*®
entry is aéfl. If n = d then the matrix is invertible and it is popularly known as
Vandermonde matrix, denoted V (a, . . ., as). Moreover note that any r’ columns
of V; are linearly independent where v’ < d. In particular, Vy is a d-MDS matrix.

Lemma 6. The matriz Vy defined above for n distinct elements oy, ..., a, is
d-MDS matriz.

Proof. Let us take d columns i1, ...,i4 then the submatrix is the Vandermonde
matrix of size d with d distinct elements a;, , . .., &;,. As the Vandermonde matrix
is invertible the result follows. O

4.2 A General Construction
Let d > 1 be an integer. Our construction has three basic components.

(1) Let e be an error correcting code from a message space D to ASL with the
minimum distance d.

(2) Let h: K x A — R; be an e-AU and e-balanced hash function.

(3) For each | > d, let V4; be a d-MDS matrix (any d columns are linearly
independent) of dimension d x [ whose entries are from R;.

We define a hash on D which is a composition of three basic steps encoding
or expansion, block-wise-Hash and a linear combination. We apply the encoding
function e to expand the message m € D to an I-tuple (my,...,m;) € Al In
this process we ensure at least d places would differ for two distinct messages.
Then we apply the hash h alphabet-wise to obtain h := (hq,..., k). Finally,
we apply a linear combiner on the hash blocks to obtain d-block hash output
Va,i - h. We call this general construction method EHC or encode-hash-combiner.
The description of it is given in Algorithm 1.

Theorem 1. If e has minimum distance d (i.e. d(e) = d) and h is e-AU and
e-balanced function then the extend function H is €-A universal hash function.
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Input: me D
Output: H € R}
Key: (ki,...,k1) € KE

Algorithm EHC(m)

1 e(m) = (ma,...,m;) € AL \\ Apply encoding function
2 Forallj=1tol \\ Apply hash block-wise.

3 hj = hx,; (m;)

a H=Vy; (h1,..., )" \\ Apply d-MDS combiner .

5 Return H

Algorithm 1. A General A-universal hash construction. It uses an error cor-
recting code e : D — R} with a minimum distance d, a family of d-MDS matrix
Vixi, I > d, and AU hash h from A to Ry with key space K.

Proof. Let m #m’ and = e(m) = (mq,...,my), &’ =e(m’) = (z4,...,2}). By
definition of minimum distance of e, d*(e(m), e(m’)) > d. W.l.o.g we assume that
I >0 and i; <...<igq <[ are distinct indices at which the encoded messages
differ. We condition all keys except Kj,,...,K;,. Now for any 6 € R{, H(m) —
H(m') = & implies that V - (ak, ,...,ax,, )" =  where ak,, = hx,, (my,;) —
hxk,, (mg,) if i; <U' (we use AU property), otherwise, ak,, = hxk,, (my;) (we use
balancedness property). Moreover, V' is the sub-matrix of Vy; with the columns
i1,.-.,%q- Note that V is invertible and hence given differential event is equivalent
to (ax, ;- - ,aKid)t’" = V1.6 = ¢ Since K;,’s are independent Pr[aKij =] <
€ (because h is e-AU hash and e balanced function). So the differential probability
of H is at most €. O

Remark 2. Note that the only non-linear part in key and message blocks appears
in underlying hash computations. As the error correcting code and combiners
are linear we only need to apply constant multiplications (which is also a linear
function). For appropriate choices of constants, such as primitive element of the
field R;, the constant multiplication is much more efficient compare to non-
constant multiplication.

4.3 Specific Instantiations

Specific Instantiations for Fixed Length. Let d = 4. Let R, be the Galois
field of size 2" and « be a primitive element. Note that R? can also be viewed as
the Galois field of size 22" and let 3 be a its primitive element. The following cod-
ing function Cy has minimum distance 4. Cy(my,...,m;) = (my, ..., Mg, Myy1,
M2, Mys) where

- M1 = @l mg,
- mypo = @, m;F ! and
- Miy3 = 691 miﬁz(z_l)_

Let [ = t+3. The base hash function hy, y(z,2") = (z®k)-(z'®k’) mapping R? —
Ry with key space R?. It is the pseudo-dot -product hash. Finally the d-MDS
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matrix can be replaced by Vandermonde matrix Vy; := Vi(l,a,02,...,a)
wher a.

Proposition 1. The coding Cy defined above has minimum distance 4 over the
alphabet R? for a fized length encoded message.

Proof. This coding has systemic form (I : S) where S = V(1, 3, 3?). It is known
that S is 3-MDS matrix. Now we show that it is also 1-MDS and 2-MDS matrix.
Showing 1-MDS matrix is obvious as every entry of the matrix is non-zero. To
show that S is 2-MDS we need to choose two columns of the three columns. If
we include the first column then the sub-matrix is again a Vandermonde matrix.
If we choose the last two columns and 7; and i;h rows then the determinant of
the sub-matrix is g1 +i2=2(3iz — gir), 0

It is easy to see that if we drop the last column or last two columns we have
error correcting code with distance 3 and 2 respectively. Similarly, one can have
a specific instantiation with d = 2. We do not know so far any coding function
for d > 4 which can be efficiently computed for any arbitrary length input in
an online manner without storing the whole message. However, for short mes-
sages one can apply some pre-specified MDS codes. Note that it is not necessary
to apply MDS code. However, applying MDS-code make the key size and the
number of multiplication as low as possible.

Variable Length AU Hash. The above construction works for fixed size input.
Note that Cy does not have minimum distance (with extended definition) four
for arbitrary length blocks. However, with the extended definition of distance,
we observe that Cy has minimum distance over Dy := U;=¢ mod 4R}. Similarly,
it has minimum distance 4 over Dy, Dy and Ds. Let KW, K®) ¢ K be dedicated
keys for length, i.e. not used to process message. Now we define our hash function
ECH" for arbitrary length message m as follows.

ECH*(m) = ECH(m) + by - KW 4 by - K@ by, by € {0,1},1 = by 4 2b, mod 4

where e(m) = Al. Basically, we hash the length of codeword modulo 4. To
analyze it works, we consider three cases for e(m) € D; and e(m') € Dj.

1. If j = 4’ then the previous theorem for fixed length works.
2. If j # j' then the differential probability will be low due to the hash b -
K® + by - K@ applied to two different two-bit string (b1, by).

Theorem 2. Ifh is an e-AU hash function then the construction EHC is e?-AU
hash function for variable length inputs.

5 Lower Bound on Multiplications or Non-Linear
Operations

A polynomial can be computed through a sequence of addition and multiplica-
tion. Moreover, we can combine all consecutive additions to a linear function.
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When we multiply the multiplicands can be expressed as linear functions of all
the variables and previously computed multiplication results. For example, poly
hash H := mg + km1 + k*mq can be computed through the following sequence
of computations.

v1:k~m2,v2:(v1+m1)~k,H:v2+mo.

Definition 4 An algebraic computation. A is defined by the tuple of linear

functions (L1, ..., Lo, Lt ..., Ld) where La;_1 and Lo; are linear functions over
variables m = (mq,...,my), k= (k1,..., ks),v1,...,0i—1, 1 <i <t and L*’s are
linear over m,k and vy,...,vs. When we identify v; by Lo;_1 - Lo; recursively

1 <i<t, L' are multivariate polynomials (MVP). We call t the multiplication
complexity of A.

We also say that A computes the d-tuple of function H := (L',..., L%). Multi-
plication complexity of H is defined as the minimum multiplication complexity
of all algebraic computation which computes the d polynomials H. Note that
while counting multiplication complexity, we ignore the constant multiplications
which are required in computing L. This is fine when we are interested in pro-
viding lower bounds. However, for a concrete construction, one should clearly
mention the constant multiplications also as it could be significant for a large
number of such multiplications.

Let R be a ring. A linear function in the variables zi,...,xs over R is a
function of the form L(z1,...,zs) = ag + a121 + ... + asxs where a; € R. We
denote the constant term ag by cz,. We also simply write the linear function by
L(z) where x = (x1,...,x5) is the vector of variables. We add or subtract two
vectors coordinate-wise. Note that if ¢, = 0 then L(z — 2') = L(z) — L(a').

Notation. We denote the partial sum ayz1 +. ..+ a;x; by L{z[1..7]] where z[1..7]
represents x1,...,x;. If L is a linear function in the vectors of variables z and
y then clearly, L = ay + L[z] + L[y]. Now we state two useful lemmas which
would be used to prove lower bounds of multiplication complexities of universal
hashes.

Lemma 7 [43]. Let H be a e-AU hash function from S to T then e > ﬁ
Lemma 8. Let R be a finite ring. Let V : K x M = R be a hash function and
L is a linear function on R'. For any functions f and g, the following keyed
function H

H(K, z) = L(V(K,2)) + f(z) + g(K)

is e-AU hash function if V is e-AU hash function. Moreover, € > \1%\*'

Proof. By above lemma we have x # z’ and ¢; such that Prg[V(K,z) —
V(K,2') = &] > ﬁ Let 6 = L(61) + (f(z) — f(2')) and hence V(K,z) —
V(K,2') =6, = H(K,z) — H(K,z') = 0. This proves the result. O
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5.1 Minimum Number of Multiplications for AU Hash Function

Now we show our first lower bound on the number of multiplications for a AU
hash function over a field F which is computable by addition and multiplication.
Clearly, it must be a multivariate polynomial in key and message block and we
call it multivariate polynomial or MVP hash function. The theorem shows that
a AU MVP hash function requiring s multiplications can process at most 2s
blocks of messages. In other words, any MVP hash function computable in s
multiplications processing 2s + 1 message blocks has differential probability one.
Intuitive reason is that if we multiply s times then there are 2s many linear
functions of message m only. Thus, mapping 2s + 1 blocks to 2s linear functions
would not be injective and hence we can find a collision. The detail follows.

Theorem 3. Let H(K, my,...,m;) be a MVP hash computable by using s mul-
tiplications with 2s + 1 < I. Then there are two distinct vectors a,a’ € F! and
0 € F such that H(K,a) = H(K,a') 4 6. for all keys K

Proof. As H can be computed by s multiplications we have 2s+1 linear functions

l1,0s,...,05s and L such that ¢5;_1 and f5; are linear functions over m, K and
V1,...,V;_1 Where v; = fg;_1 - £9;. Moreover, L is a linear function over m, K
and v = (v1,...,vs) with H = L. Note that there are 2s many linear equations
£;[m]’s (the partial linear functions on x only) over at least 2s + 1 variables
mq, ..., m;, we must have a non-zero solution A € F! of ¢;[m]’s. More precisely,

there is non-zero A € F! such that £;[A] = 0 for all 1 < i < 2s. Let a € F! be
any vector and @’ = a + A. Let us denote v;(K,a) and v;(K,a’) by v; and v}
respectively.

Claim: v; = v} for all 1 <7 <.
We prove the claim by induction on ¢. Note that

= (fl[a] +£1[K] + C[l) . (Eg[a] +£2[K] —+ 652)

and similarly for v{. We already know that ¢ [a] = ¢1[a’], £2[a] = ¢2]a’] and hence
v1 = v]. Suppose the result is true for all j < i. Then,

v; = (oi—1a] + Lo 1 [K] 4+ Loi_1[v1, ..., vi—1] + co;)

X(Egi[a] + KQZ[K] + Ezi[vl, C ,1)2;1] + ng)

and similarly for v;. By using equality ¢9;_1[a] = Egl 1[a’] and fo;[a] = a;]a’],
and the induction hypothesis vy = v{,...,v,—1 = v}_; we have v; = v].

Thus, V : K x F! — F*, mapping (K, z) to (v1(K,x),...,vs(K,x)) has colli-
sion probability 1. The hash function H (K, x) is defined as L[ (K,z)|+ LIK]+
Liz] + cr. So by using Lemma 8 the result follows. O

Corollary 3. The pseudo dot product hash PDP is optimum in number of mul-
tiplications.
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Remark 3.

1. The above result holds even if we ignore the cost involving key only, such
as stretching the key by using pseudorandom bit generator or squaring the
key (it does for BRW hash) etc. Hence the BRW hash is also optimum if key
processing is allowed.

2. From the proof one can actually efficiently construct a,a’ and 6. We only need
to solve 2s equations ¢;[z]. By previous remark, the result can be similarly
extended if we ignore cost involving message only, e.g., we apply crypto-
graphic hash to message blocks. More precisely, v; is defined as product of f;
and g; where f; = fl(z)+ f2(K)+ f3(v1,...,vi_1) and similarly g;. By using
non-injectivity of  — (f1,91,.-., fs, gs) we can argue that there are distinct
a and a’ such that the f; and g; values for @ and a’ are same. However, this
gives an existential proof of @ and @’ (which is sufficient to conclude the above
theorem).

3. Our bound is applicable when we replace multiplication by any function.
More precisely, we have the following result.

Theorem 4. Let H(z1,...,2,Y1,-..,Yk) be a function where x1, ..., x;, y1,
..., yr are variables. Let f; : F¥ xF™ — T be some functions, 1 < i < m. Suppose
H(-)) can be computed by s; invocations of fi, 1 <i <m. Ifl > . s;r;+1 then
there are two distinct vectors a = (a1, ...,a;) and o’ = (a},...,a)) from F' and
0 € F such that

H(aayl7"'7yk) :H(a’/7y17'~'ayk)+67 vy17"'ayk~

The proof is similar to the above theorem and hence we skip.

Now we extend our first theorem to a multi-block hash output, e.g. Toeplitz
hash function. So we work in the field F however, the hash output is an element
of F¢ for some d > 1. Thus, it can be written as (Hy, ..., Hy). Again we restrict
to those hash functions which can be computed by adding and multiplying (like
previous remark, we will allow any processing involving message or key only).
So H; is a MVP hash function and we call H to be d-MVP hash function.

Theorem 5. Let H = (Hy,...,Hy) be a vector of d polynomials in m = (mq,
., my) and K over a field F which can be computed by s multiplications.
If I > 2(s—r)+ 1 with r < d, then there are a # d, elements of F" and
0 € F such that )
PFK[HK(Q) = HK(G/) + 5] Z W
Proof. Suppose H can be computed by exactly s multiplications then we have
2s 4 d linear functions ¢1,%s,...,f2s and Ly, ..., Ly such that

(i) £2;—1 and fo; are linear functions over m, K and vy,...,v;_1
(11) vy = 622'_1 . 621' and
(iii) L;’s are linear functions over z,y and v = (v1,...,vs).
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Moreover, H; = L; for all 1 < ¢ < d. The linear functions ¢; and L; can be
written as £;[m] + £;[K] + £;[v] + ¢, and L;[m] + L;[K] + L;[v] + ¢, .

The first 2(s — r) many linear equations ¢;[m]’s over at least 2(s — r) + 1
variables. Hence these will have a non-zero solution A € F'. Let a be any vector
and ' = a+ A. Tt is easy to see that v;(a, K) = v;(d/, K) for all i < s—r (similar
to proof of Theorem 3). Now consider the mapping f : F¥ — F” mapping

K (vs_ry1(a, K) —vs_py1(a, K),...,vs(a, K) — vs(a’, K)).

There must exist §; € F" such that Prg[f(K) = &;] > Wl‘r. Now we define
0 = (L;[M] — L;[M'] + L;((0,...,0,81));. For this choice of a,a’ and § the result

holds. This completes the proof. a

Corollary 4. The construction EHC is optimum when a MDS error correct-
ing code is used. Thus the specific instantiations of EHC, given in Sect. .3, is
optimum for d-block hash outputs, 2 < d < 4.

6 Conclusion and Research Problem

We already know that there is a close connection between error correcting code
and universal hash. Here we apply error correcting code and Vandermonde
matrix to construct a multi-block universal hash which require minimum num-
ber of multiplication. The minimum is guaranteed by showing a lower bound on
the number of multiplication required. Previously in different context the lower
bound on the number of multiplication has been considered. In this paper for the
first time we study “concrete lower bound” (in terms of order a lower bound was
known) for universal hash function. Similar lower bound was known for compu-
tations of polynomial of specific forms. See Appendix for a brief survey on it.
However, we would like to note that those results can not be directly applicable
as the contexts are differ ent.

To get a lower bound we take the popular algebraic computation model in
which the time of multiplications are separated. We try to equate all the linear
functions which are multiplied. Our construction performs better than Toeplitz
construction in terms of number of multiplication.

This paper studies the relationship between complexity and security of uni-
versal hash. There are some relationship known for complexity and key-size
however the picture is incomplete. Moreover, nothing is known involving these
three important parameters: (i) security level, (ii) complexity, and (iii) key size.
This could be possible future research direction in this topic. Our construction
optimizes d block hash output for sum hash functions. It would be interesting
to see how one adopts this for multi block polynomial hash using few keys.

In the view of the performance, the ongoing future research of us is to have
a lightweight implementation of the universal hash function.
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Appendix: Brief Survey on the Computation
ofagt+aijx+...+a,x™

We provide a brief survey on the lower bound of multiplications for computing
a polynomial. Note that our interest in this paper is to provide a lower bound
on number of multiplications for computing a multi variate polynomial which is
an universal hash. Even though these two issues are very much related (some of
the ideas in proving results are also similar), some immediate differences can be
noted. For example, the existing bounds depend on the degree of the polynomials
whereas we provide bound on the number of message blocks (degree could be arbi-
trarily higher). The existing works consider multivariate polynomials which has a
special form: P(ag, ..., an, &1, .., Tm) = ao+ Y1y @i Pi(z1, T2, . .., Tp,) where
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®,;’s are rational functions of =1, ..., z,,. For an universal hash, the lower bound
of our paper works for any multivariate polynomial (or even rational functions).

The function z" can be computed in at most 2[log, n| multiplications by
using well known “square and multiply” algorithm. One can also compute 1 +
T+ ...+ 2" using at most 2[10g2 n| multiplications, one division and two
subtractlons since it is same as “;fl whenever  # 1. These are some simple
examples of polynomials and there are some specific methods to simplify some
polynomials. How does one can compute “generically’ an arbitrary polynomial
f@) =ap+ a1z + ...+ anz™, a; € R (an underlying ring or field), of degree
n with minimal number of operations, mainly multiplication and division? By
generically we mean an algorithm which takes any a;’s and x as its inputs and
computes the polynomial f(x) (similar to an algorithm in uniform model). We
know Horner’s rule [16]* to compute f(z) in n multiplications and n additions.

§MINIMUM NUMBER OF MULTIPLICATIONS. Can we do better than n multipli-
cations for computing an arbitrary polynomial? Or, can we prove that there are
some polynomials for which n multiplications and division are necessary? The
above question regarding the minimum number of multiplications to compute a
given polynomial of small degree, was first investigated by Ostrowski [33]. He
showed that at least n multiplications are required to evaluate a polynomial
f(x) of degree n for 1 <n < 4. The results were further proved for any positive
integer n by Pan [34] and a more general statement by Winograd [47]. Moreover,
even if divisions are allowed, at least n multiplications/divisions are necessary to
evaluate it. Belega [1] moreover proved that at least n additions or subtractions
are required to compute f.

SGENERAL STATEMENT. The general statement by Winograd gives a lower bound
for computation of any multivariate polynomial of the form

Plag,...,an,T1,...,Tm) = ag + E a; - Di(x1,29, ..., Tm)

where @;’s are rational functions of 1, ..., ;. If the rank (the maximum num-
ber of linear independent elements) of the set S = {1,P1,...,P,} is u+ 1 then
at least w multiplication and division are necessary. In particular, when m = 1,
®@;(x1) = 2} we have P = f(x1) and u = n. Thus, the result of Pan [34] is a
simple corollary of it. When m = n, ®;(z1,...,2,) = 2; and ag = 0 we have the
classical dot-product a; - x1+ ...+ a, -, and the rank is again n+ 1. So it also
proves that to compute the dot-product we need at least n multiplications.

SEVALUATION OF A GIVEN POLYNOMIAL WITH PREPROCESSING. In the above
results all types of multiplications are counted. More formally, the computation
of the multivariate polynomial F'(ag,...,an,z) = ag+a1z+...+a,z" have been
considered in which coefficients are treated as variables or inputs of algorithms.

4 Around 1669, Isaac Newton used the same idea which was later known as Newton’s
method of root finding (see 4.6.4, page 486 of [24]).
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One of the main motivations of the above issue is to evaluate approximation poly-
nomials of some non-algebraic functions, such as trigonometric functions. As the
polynomials (i.e., a;’s) are known before hand, one can do some preprocessing
or adaptation on coefficients to reduce some multiplications. To capture this
notion, one can still consider the computation of F' but the operations involv-
ing only a;’s are said to be the preprocessing of a;’s. Knuth [24] (see Theorem
E, 4.6.4), Eve [12], Motzkin [29] and Pan [34] provide methods for F' requiring
[ 5] multiplications ignoring the cost of preprocessing. However, these require
preprocessing of finding roots of higher degree equations which involves a lot of
computation and may not be exact due to numerical approximation. However, it
is an one-time cost and is based on only coeflicients. Later on, whenever we want
to compute the polynomial for a given x, it can be computed faster requiring
about [ %] multiplications. Rabin-Winograd [36] and Paterson-Stockmeyer [35]
provide methods which require rational preprocessing on coefficients (i.e., com-
puting rational functions of coefficients only) and afterwards about 5 + O(logn)
multiplications for a given x.

§MINIMUM NUMBER OF MULTIPLICATIONS AFTER PREPROCESSING. We have
already seen that total n multiplication is necessary to compute F' generically
and Horner’s rule is one algorithm which shows the tightness of the lower bound.
Similarly, with preprocessing, [n/2] multiplications for computing the mul-
tivariate polynomial F' has been proved to be optimum by Motzkin [29]
and later on a more general statement by Winograd [47,48]. The bound [n/2]
does not work for computing a known polynomial f since multiplication by con-
stant could be replaced by addition, e.g. in Z, a; - =z + ...+ = (a; times). In
fact, Paterson and Stockmeyer [35] provided methods which require about
O(y/n) multiplications and showed the bound is optimum. Note that this
method does not compute the polynomial generically which means that for every
polynomial f(z) = ap+ai1x+...+ apz™ there is an algorithm Cy, . ,, depend-
ing on the coeflicients which computes f(z) given z in O(y/n) multiplications.
This result and those by [29,36,47,48] (one algorithm works for F, i.e. for all
polynomials f) can be compared with non-uniform and uniform complexity of
Turing machine respectively. This justifies two different bounds of computation
of a polynomial.
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