Branching Heuristics in Differential Collision
Search with Applications to SHA-512

Maria Eichlseder®), Florian Mendel, and Martin Schliffer

TAIK, Graz University of Technology, Graz, Austria
maria.eichlseder@iaik.tugraz.at

Abstract. In this work, we present practical semi-free-start collisions
for SHA-512 on up to 38 (out of 80) steps with complexity 2°®. The
best previously published result was on 24 steps. The attack is based on
extending local collisions as proposed by Mendel et al. in their Eurocrypt
2013 attack on SHA-256. However, for SHA-512, the search space is too
large for direct application of these techniques. We achieve our result
by improving the branching heuristic of the guess-and-determine app-
roach to find differential characteristics and conforming message pairs.
Experiments show that for smaller problems like 27 steps of SHA-512,
the heuristic can also speed up the collision search by a factor of 22°.

Keywords: Hash functions - Cryptanalysis - SHA-512 - Collision attack -
Guess-and-determine attack - Branching heuristic

1 Introduction

Since 2005, many collision attacks have been shown for commonly used and
standardized hash functions. In particular, the collision attacks of Wang et al.
[41,42] on MD5 and SHA-1 have convinced many cryptographers that these
widely deployed hash functions can no longer be considered secure. As a con-
sequence, NIST has proposed the transition from SHA-1 to the SHA-2 family.
Many companies and organization follow this advice and have already migrated
to SHA-2. Even more might do so, since Keccak [33] has not been standardized
as SHA-3 yet and SHA-2 is faster on several platforms. In particular, SHA-512
is much faster than both SHA-256 and Keccak on most 64-bit platforms [2]. For
this reason, it has been suggested to use a truncated version of SHA-512 even
for 256-bit hash values [38]. NIST also defines this variant, called SHA-512/256,
in FIPS 180-4 [32].

Nevertheless, not many cryptanalytic results on SHA-512 have been published
in the last few years. The security of SHA-512 against preimage attacks was first
studied by Aoki et al. in [1]. They presented a preimage attack on 46 out of
80 steps. This was later extended to 50 steps by Khovratovich et al. in [19]. Recently,
Li et al. showed that particular preimage attacks can also be used to construct a
free-start collision attack for up to 57 steps of SHA-512 in [24]. However, all attacks
are only slightly faster than the respective generic attack complexities.

© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 473-488, 2015.
DOI: 10.1007/978-3-662-46706-0_24

474 M. Eichlseder et al.

The currently best known practical collision attack on both the SHA-512 hash
and compression function is for 24 steps. It has been published independently by
Indesteege et al. [16] and by Sanadhya and Sarkar [36]. Both attacks are trivial
extensions of the attack strategy of Nikoli¢ and Biryukov [34] which applies to
both SHA-256 and SHA-512. Recently, Mendel et al. [27,29] demonstrated how
to extend these attacks to get collisions for the SHA-256 compression function
on up to 38 steps with practical complexity.

The attacks by Mendel et al. use a guess-and-determine based automatic
search tool to find differential characteristics and conforming message pairs for
reduced SHA-256. Since the first publication by De Canniere and Rechberger on
SHA-1 in [7], such tools have been constantly improved [21,22,27,29]. Neverthe-
less, the increased search space of SHA-512 (due to larger word sizes) prevented
successful attacks without the application of new ideas.

To handle the larger search space of SHA-512, we propose a new branching
heuristic for the guess-and-determine strategy used in these attacks. Our app-
roach is inspired from related ideas in SAT solvers [15,23]. The heuristic performs
a randomized look-ahead selection of candidates which should be guessed first.
Using this approach, we can detect contradictions earlier and reduce the search
space faster. More specifically, we are able to speed up the search on SHA-512
by a factor of about 22° (for 27 steps), which allows us to construct practical
collisions for 38 steps with a complexity of 240-5.

The remainder of this paper is structured as follows. We first give a high-
level overview of our attack strategy and related work in Sect. 2. In Sect. 3, we
discuss branching heuristics used in SAT solvers and propose our new look-ahead
branching heuristic for differential cryptanalysis tools. In Sect. 4, we demonstrate
the application of the heuristic to SHA-512 and present a practical semi-free-
start collision for 38 steps. Finally, we conclude in Sect. 5.

2 DMotivation

In this section, we give a brief overview on the differential cryptanalysis of hash
functions and how the guess-and-determine approach is used to search for differ-
ential characteristics. Furthermore, we provide a high-level view on optimization
options to improve this search.

2.1 The Search for Differential Characteristics

A differential attack consists of two main parts: constructing a differential char-
acteristic and finding a confirming message pair. Since the attacks by Wang et al.
[40-42], these parts are further divided to improve the overall attack complexity
as follows:

— Find a differential characteristic
1. Construct the high-probability part of a characteristic.
2. Determine the low-probability part of a characteristic.

Branching Heuristics in Differential Collision Search 475

— Find a conforming message pair
3. Use message modification in low-probability part.
4. Perform random trials in high-probability part.

We provide significant improvements in finding dense low-probability differen-
tial characteristics. To motivate our work, we first provide an overview of previ-
ously published methods and show how we improve upon these methods using
improvements in the guess-and-determine approach.

Constructing the differential characteristic for the low-probability part is one
of the most difficult tasks in a differential attack. The main reason is that such
low-probability characteristics are usually very dense and have many (hidden)
relations which need to be taken into account. Wang et al. found the dense
low-probability characteristics for the attacks on MD4, MD5, RIPEMD, SHA-0
and SHA-1 mostly by hand [40-42]. However, for more complex hash func-
tions, such an approach is infeasible. Therefore, (semi-)automatic approaches
have been published soon afterwards [7,37]. These approaches have then been
refined in a number of publications. Recently, more sophisticated approaches
have been proposed that enable attacks on more complex hash functions such as
SHA-256 [27,29] among many others [20,22,26,28]. All these approaches (includ-
ing the search by hand) follow the guess-and-determine strategy.

2.2 The Guess-and-Determine Approach

The basic idea of the search algorithm is to pick and guess previously unre-
stricted bits. After each guess, the information gained from these restrictions is
propagated to other bits. If an inconsistency occurs, the algorithm backtracks
to an earlier state of the search and tries to correct it. Similar to [27], we denote
these three parts of the search by decision (guessing), deduction (propagation),
and backtracking (correction). Then, the search algorithm proceeds as in Algo-
rithm 1 given below.

Algorithm 1. Guess-and-Determine Search Algorithm

Let U be a set of undetermined bits
while U contains undetermined bits do
Decision (Guessing)
1. pick an undetermined bit (randomly or heuristically)
2. impose new constraints on this bit
Deduction (Propagation)
3. propagate the new information to other variables and equations
4. if an inconsistency is detected, start backtracking,
else continue with step 1
Backtracking (Correction)
5. try a different choice for the decision bit and continue with step 3.
6. if all choices result in inconsistencies,
undo guesses until this critical bit can be resolved

476 M. Eichlseder et al.

This procedure can also be visualized by a search tree, which is traversed by
depth first search. The branching strategy decides on which variable to split the
tree next and thus defines the tree’s shape. Typically, the complete tree is much
too large for complete traversal, so it is crucial that more promising branches
are visited first. In addition, the backtracking algorithm can skip parts of the
tree in favor of exploring more distant parts. This makes the search incomplete,
but in practice greatly improves the performance.

The challenge in finding a long differential characteristic lies in the fine-
tuning of the search algorithm. There are many possible variations, and details
can determine whether the search succeeds or fails.

2.3 Improving the Guess-and-Determine Approach

Basically, a guess-and-determine is just a repetition of two steps: first, guess the
value of some unknowns and second, determine the value of as many unknowns
as possible. However, in practice more details need to be considered to mount
successful guess-and-determine attacks on complex hash functions. The most
important points to consider are given as follows:

1. Problem Description: The complexity of a guess-and-determine attack can
be significantly improved if we first optimize the problem description. For
example, first constructing a characteristic and then searching for a message
pair is already such an optimization. Additionally, the choice of intermediate
variables and a good starting point are crucial for a guess-and-determine
attack to succeed.

2. Guessing Strategy: Instead of randomly guessing variables, using high-level
information can lead to much better guesses. For example, by preferring bits
(or even words) with no differences, characteristics tend to get sparser, have
a higher probability, and conforming message pairs are more likely to exist.

3. Branching Rules: In every iteration, the guess-and-determine algorithm
needs to decide which branch of the search tree to follow. Using a good branch-
ing heuristic, contradictions can be found faster and the search space can be
reduced more quickly.

4. Propagation: Every time a variable is guessed, we need to check whether
the guess is invalid, or new information on other variables can be determined.
There is a trade-off between the effort we spend in this step and simply guess-
ing more bits. Different propagation methods for ARX-based hash functions
are covered in detail in [9,21,22,27].

5. Backtracking: To recover from bad search spaces which do not contain many
solutions anymore, we need to backtrack. Two extreme options are perform-
ing a complete restart or examining the complete search space. A successful
backtracking strategy for SHA-2 has been published in [27].

The first two points are very specific to a given problem and cannot be solved in
general. In our attacks on SHA-512, a good starting point is constructed using
improved local collisions, similar as in the attack on SHA-256 in [29]. The last two

Branching Heuristics in Differential Collision Search 477

points have already been covered in a number of publications. Additional efforts
in these points did not improve the guess-and-determine attack on SHA-512. This
leaves the branching rules which have not been optimized yet. In the following,
we show that a good branching heuristic can significantly improve the efficiency
of a guess-and-determine attack.

3 Branching Heuristics

Branching rules are one of the essential ingredients for guess-and-determine
attacks. They define how the search algorithm selects the next variable to guess,
and which guess values to try first for this variable. The branching rule aims
to keep the search runtime as short as possible. Depending on whether the cur-
rent partial assignment is correct (satisfiable) or contradictory, this means either
that a satisfying solution is found as soon as possible, or that the contradiction is
detected quickly. In the latter case, this corresponds to identifying a conflicting
subset of unassigned variables and branching on these first in order to prune the
search tree. The search trees traversed by different branching rules can vary dras-
tically in size, from constant (for unsatisfiable problems) or linear (for satisfiable
problems) to exponential in the number of variables [35].

This section first discusses existing branching rules used in general-purpose
SAT solvers and for the cryptanalysis of hash functions. Afterwards, we introduce
our randomized look-ahead heuristic.

3.1 Branching Heuristics in SAT Solvers

Most general-purpose SAT solvers are based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [6], a guess-and-determine approach for satisfiability
problems given in conjunctive normal form (CNF). The problem of choosing
optimal branching variables and corresponding assignments for DPLL algorithms
has been proven to be both NP-hard and coNP-hard [25]. However, there is a
variety of commonly implemented branching rules based on different heuristics to
evaluate the urgency or relevance of potential branching variables. In addition,
meta-rules to select different branching rules depending on the situation and
search history have been proposed [13].

Commonly used SAT branching rules can be categorized according to their
target heuristic (current properties, look-ahead or history analysis), their out-
put (a single branching variable/literal or a preselection of candidate variables)
and their randomness (deterministic or randomized). Popularly used heuristics
include the following;:

— Uniformly random. A random unassigned variable is picked with uniform
distribution. This approach is computationally cheapest. Many modern SAT
solvers apply this rule with a small probability and otherwise use a more
informed choice. In differential cryptanalysis, this is the most typical rule.

478 M. Eichlseder et al.

— Small clauses. The earliest heuristics greedily favor variables that appear
in many small clauses. The rationale for this choice is twofold. First, smaller
clauses need to be fulfilled “more urgently” since there are fewer options left
that avoid contradictions. Second, even if the guessed literal evaluates to false
in binary clauses, unit propagation ensues and curtails the search tree.

Example heuristics of this category include Bshm’s rule [3], MOM (max-
imum occurrences on clauses of minimum size) [10], and the Jeroslaw-Wang
rules [17]. The latter, for example, assign weights w(c) to clauses ¢ that
decrease exponentially with the clause length |c|. Each literal (OS-JW) or
variable (TW-JW) scores according to the weight sum of all clauses it appears
in, and the best literal or variable is picked for guessing.

More recently, small clauses have been used as a preselection heuristic for
more expensive look-ahead rules. In differential guess-and-determine attacks,
two-bit conditions [27] play a related role. This preselection heuristic also favors
variables with a higher number of closely coupled undetermined variables.

— Literal count. These heuristics ignore the clause size and simply count
unresolved clauses linked to a variable. Examples include DLCS and DLIS
as introduced by the GRASP solver [39]. It makes sense in CNF problems,
where satisfying one literal resolves the complete clause. This does not apply,
for example, for the xor-chains typically found in hash functions. Instead,
this heuristic would create a large amount of (hidden) dependencies and
reduce the remaining freedom without the positive effect of immediate
propagation.

— Conflict driven. A more popular variation of literal counting is VSIDS, first
implemented in Chaff [30] and later included in MiniSAT [8] and others. Here,
the initial literal score of each variable decays over time via multiplication with
a constant § < 1. However, scores are refreshed (bumped) with occurrences
in newly learned clauses from the CDCL process. Effectively, the score keeps
track of recent contradictions involving the variable. Critical variables with
many recent contradictions are guessed first.

The BerkMin solver extends this concept to bump not only variables from
learned clauses, but from any clauses involved in the resolution process [12].

In differential attacks, the backtracking strategy [27] provides a similar
behaviour.

— Look-ahead. Instead of judging current properties of the formula or the pre-
vious search history, look-ahead heuristics analyse the actual effects of branch-
ing in a candidate variable [15,23]. For example, the Satz solver performs Unit
Propagation Look-Ahead: both possible assigments for each free variable are
tested for consequences of this decision and the caused unit propagations. If
one of two assignments causes a contradiction, the other is fixed; if both are
contradictory, backtracking is started; and if both seem valid, the variable v
is assigned score

M(v) = w(-w) - w) - 1024 + w(—w) + w(v),

Branching Heuristics in Differential Collision Search 479

where w(¥) is typically the number of new binary clauses caused by the prop-
agation of literal ¢ € {v, —w}.

— Locality. To limit the candidates for expensive look-ahead calculations, the
candidate variables can be limited to those occurring in recently changed
(reduced) clauses, as implemented in the marchdl solver [14].

Not all of these rules are suitable for general Boolean satisfiability problems that
are not given in CNF format, as already indicated in the list above. In particular,
if the propagation and learning process differs from the standard SAT case, the
above rules can be counterproductive. On the positive side, dedicated solvers for
specific applications can apply domain-specific knowledge to guide the search
process.

3.2 The Look-Ahead Branching Heuristic

The branching strategy is one of the most promising areas for optimization
in differential cryptanalysis tools based on tree search. Ideally, the branching
strategy quickly navigates towards a valid assignment of variables and avoids
subtrees without solutions. For detecting invalid subtrees, the branching strategy
relies on the propagation method to detect contradictions as soon as possible.
However, the propagation procedure can not only be used to decide whether
previous guesses were contradictory. In addition, we also want to apply it to
guide the branching strategy. The goal of this interaction is to minimize the size
of the search tree in order to find solutions faster.

The basic principles of our implementation of the look-ahead branching
heuristic are given by the following two observations:

— Productive propagation is good. Guessing a variable where propagation
of the value determines (many) other variables can have multiple advantages
compared to variables with less propagation. The most immediate effect is
that the remaining search space is reduced. If more variables are determined
right now, they will not create unnecessary subtrees for guessing later. The
overall tree size and thus the complexity of the remaining search is reduced.

— Contradictions are even better. Of course, the overall search aims to find
non-contradictory assignments. Nevertheless, discovering contradictory value
assignments in the current subtree is consistently helpful for the remaining
search. If only one of two possible value assignments is contradictory, the
variable certainly needs to be fixed to the other value. If both values are
contradictory, we must already have made an error with a previous guess and
need to backtrack immediately. In both cases, it is clearly better to address
the conflicting bit sooner rather than later.

Note that the first criterion is not beyond controversy. In particular, limiting
the search space at the same time reduces the remaining degrees of freedom.

480 M. Eichlseder et al.

If one value assigned to a specific bit propagates better than the second possible
value, then, intuitively speaking, the probability for a solution in the remaining
search space for the first option is lower than for the second value.

3.3 Implementation of the Look-Ahead Branching Heuristic

In order to implement the criteria above in a practical branching heuristic, we
use a look-ahead approach related to the Unit-Propagation Look-Ahead (UPLA)
used in some SAT solvers. When the branching rule needs to select the next
variable to guess, each candidate is in turn evaluated.

In more detail, for each candidate, a value is tentatively assigned and the
propagation method is applied to determine the consequences of this assignment.
If a contradiction occurs, this candidate is selected immediately. Otherwise, the
number of propagated variables is calculated. If it is better than the previously
favorite candidate, this variable becomes the new favorite.

There are two performance-related problems with this basic approach. First,
performing the look-ahead propagation for all free variables is very costly. Sec-
ond, the basic UPLA approach includes no randomization. However, we need
randomization since a complete search of the tree is typically computationally
infeasible in differential cryptanalysis. Instead, large tree parts are skipped and
the search is restarted regularly. To avoid becoming lost in the same search
branches over and over again, it is essential that the branching strategy is suffi-
ciently randomized.

We address both problems at once by selecting only a random subset of vari-
ables for closer evaluation. Our branching heuristic is summarized in Algorithm 2.

Algorithm 2. Look-ahead branching heuristic for differential cryptanalysis
Let U be a set of undetermined bits and smax the limit of look-ahead candidates.
repeat

Guessing
1. pick a bit v € U randomly and increment s
2. impose new constraints on this bit v
Propagation
3. propagate the new information to other variables and equations
4. if an inconsistency is detected, return v as the decision bit
else count the number m of additional variables that were assigned due to
this guess and save the pair (v,m) in a list L.
Update
5. remove all variables that were assigned due to the guess v from the set U
6. undo all changes to restore the original assignment
until U is empty or s > Smax
return v* from L with the highest score m as the decision bit

The size of the randomly selected subset is an essential parameter for the
success of the heuristic. To limit the look-ahead costs, we limit the maximum

Branching Heuristics in Differential Collision Search 481

subset size by a constant number that is chosen in the beginning of the search
procedure, depending on the specific problem instance. In order to also provide
sufficient randomization, we additionally bound the size relative to the current
number of unguessed variables.

Beside the subset size, the decision which individual variables to select for
look-ahead plays a role. UPLA-based solvers use a pre-selection of interesting
candidates, for example by locality criteria. In our case, the search performance
can be greatly improved by only guessing bits of specific hash function words and
favoring bits with more two-bit conditions or bits involved in recent conflicts.
However, the selection must remain sufficiently randomized.

Additionally, we do not explicitly evaluate variables that were already deter-
mined by the propagation procedure of one of the previous candidates. We mark
these as evaluated without calculating a separate look-ahead and without consid-
ering them as favorite candidates, since their score is at most as good as the bit
that triggered their propagation (at least with respect to one of the assignment
options).

4 Application to SHA-512

In this section, we discuss the application of our look-ahead branching heuristics
to SHA-512. As a result, we are able to construct the first practical collision
on the reduced SHA-512 compression function for 38 out of 80 steps. The best
previously published result was on 24 steps.

4.1 Brief Description of SHA-512

SHA-512 is an iterated hash function that processes 1024-bit input message
blocks and produces a 512-bit hash value. In the following, we briefly describe
the hash function. It basically consists of two parts: the message expansion and
the state update transformation. A detailed description of the hash function is
given in [31].

Message Expansion. The message expansion of SHA-512 splits the 1024-bit
message block into 16 64-bit words M; and expands them into 80 expanded
message words W; as follows:

W, — M; 0<i<16
v Jl(Wifz) + W7+ UO(Wifls) + Wi_16 16 <17 < 80

The functions og(z) and o1 () are given by

o) =(>1)e@>8)d(z>71)
oi(z) = (z>>19) (x> 61) & (z > 6).

482 M. Eichlseder et al.

State Update Transformation. The state update transformation starts from
a (fixed) initial value IV of 8 64-bit words A_y4,...,A_1,F_4,...,FE_1 and
updates them in 80 steps. In each step one expanded message word W; is used
to compute the two state variables E; and A; as follows:

E,=A 4+ E_4+ 2 (E_1)+IF(E;_1,E,_9,Ei_3) + K, + W,
A =FE; — A4+ Yo(Ai—1) + MAJ(A;—1, Ai—2, Ai_3).

For the definition of the step constants K; we refer to [31]. The bitwise
Boolean functions IF and MAJ used in each step are defined by

IF(z,y,z) =2 ANy@axANzdz
MAJ(z,y,2) = ANy®yAzDx Az,

and the linear functions Yy and X; are defined as follows:

Yo(z)=(z>>28)@ (x>>34) ® (z > 39)
Yi(z) = (z>>14) @ (z >> 18) @ (z >> 41).

After the last step of the state update transformation, the initial values are
added to the output values of the last step (Davies-Meyer construction). The
result is the final hash value or the initial value for the next message block.

4.2 Extending the Attacks on SHA-256 to SHA-512

For our collision attacks on SHA-512, we use the same strategy as in the attack on
SHA-256 in [29]. Since the message expansion and state update transformation is
the same (except for larger word sizes and different rotation values in X;, 0;), we
can use similar local collisions (with differences in the same message words)
to construct semi-free-start collisions for the compression function on up to
38 steps.

The starting point for 38 steps uses a local collision which spans 18 steps,
with differences in 6 expanded message words (Wr, Wg, Wig, Wis, Was, Way).
For more details on how to select the starting point, we refer to [29]. Once the
starting point is fixed, the main task is to find a differential characteristic and
confirming message pair for this 18-step local collision.

By using the same guessing, backtracking and propagation strategy, we did
not find any results for 38 steps of SHA-512. Due to the large word size and
thus, larger search space, contradictions are detected much later in SHA-512.
We have tried different approaches on every level, but did not succeed in finding
any valid differential characteristics. The solution was to optimize the branching
strategy to detect on one hand contradictions earlier and on the other side to
reduce the search space faster.

Branching Heuristics in Differential Collision Search 483

4.3 Improving the Search Using Look-Ahead Branching

To improve the search algorithm, we use the look-ahead branching heuristic
proposed in Sect. 3.3. As discussed there, the choice of the subset size sy ax is
critical for the behaviour of the heuristic. We have evaluated different variants
of the heuristic and get the best results for a limit of sy, = 16. Larger values of
Smax further reduce the tree depth, but due to the additional cost for evaluating
more candidates, this does not improve the overall runtime.

Additionally, with larger subset sizes, the search tends to visit very similar
subtrees again and again after each restart. This is particularly critical if the
search space is limited to a few words, as in the focused search strategy described
below. For other hash functions with larger states sizes or less focused search
strategies, the optimal value for sp,.x may be very different.

Similar to [29], the guess-and-determine attack is separated into three stages.
The rules of the guessing strategy are given in Table 1 and the three stages are
summarized as follows:

Stage 1:
We first search for a consistent differential characteristic in the message
expansion. Hence, we only add unconstrained bits (‘?’) and difference bits
(‘x’) of W to the set U.

Stage 2:
We continue with the search for a differential characteristic in the state
update. Hence, we add all unconstrained bits (‘?’) and difference bits (‘x’)
of A and F to the set U. We pick decision bits more often from A, since this
results in sparser characteristics for A. Experiments have shown that in this
case, confirming message pairs are easier to find in the last stage.

Stage 3:
In the last stage, we search for confirming message pairs by guessing bits
without difference (‘-’). We only pick decision bits of A, E and W which
are constrained by two-bit conditions, similar as in [27]. This serves as a
preselection heuristic for the branching look-ahead.

Table 1. Decision rules in different search stages.

Stage | Decision bit Decision rule
Probability | Choice 1 | Choice 2
1-2 |7 1 - X
1
N /2 u n
1/2 n u
1 0 1
3 - /2
/g 1 0

484 M. Eichlseder et al.

4.4 Results

Using the improvements in the branching heuristic proposed in the previous
section, we are able to find semi-free-start collisions for SHA-512 on up to 38
steps. Finding a differential characteristic together with a conforming message
pair took 5441s (~1.5h) on a cluster with 40 CPUs. This corresponds to a
complexity of about 2495 evaluations of the SHA-512 compression function. The
colliding message pair is given in Table2 and the differential characteristic is
shown in Table 3.

Table 2. Example of a semi-free-start collision for 38 steps of SHA-512.

ho

e8626£53a3771964
89166a0c022ffc40

22ae427b8c5065790
c2c49c30e629239f

c8fd5a1628£c3337
d1fa8bd692843025

0£362d297£82f987
ad4bbab4c797ebec

610519a88£0d2809
85450b73549b2085
92114cb9d2f4cd9b
£32ae6a0070a8d2e

3addc83f01c8b179
7296b5291£31c0d9
34a3198b79871212
755aabcada87e894

84afa7a2772c6141
£c978d9624e2c2cc
cca7f43154e38081
4b9bd7df3c94b667

adb539854e64c9cce
fffffffffffffffe
ac0598a589168fel
65291f2b80cc8c51

610519a88£0d2809
85450b73549b2085
92114cb9d2f4cd9c
£32ae6a0070a8d2e

3addc83£01c8b179
7296b5291£31c0d9
34a3198b79871212
755aabcada87e894

84afa7a2772c6141
£c978d9624e2c2cc
cca8143154e38079
4b9bd7df3c94b667

ad539854e64c9cce
0000000000000001
ac0598a589168fel
65291f2b80cc8c50

Am

0000000000000000
0000000000000000
0000000000000007
0000000000000000

0000000000000000
0000000000000000
0000000000000000
0000000000000000

0000000000000000
0000000000000000
000£e000000000£8
0000000000000000

0000000000000000
fEEfEEFELEFEEFES
0000000000000000
0000000000000001

hiy

946a28eedc3b2ff6
2406aae9d58504b4

c4573d0al13eab6268
89b237932b061ba8

11£07b04b06900dd
663402cb4bb1972c

897c606e4053bbed
d99c062dce945423

To show the benefit of our new look-ahead branching heuristic, we have
performed some comparisons. Without look-ahead branching, we were able to
find a semi-free-start collision for 27 steps of SHA-512 using 4 days on a cluster
with 40 nodes, which corresponds to a complexity of about 246>, Using look-
ahead branching with sp.x = 16 we can find differential characteristics with
conforming message pairs within seconds on a standard PC (complexity 226-%).

The heuristic can also be used to improve the search complexity for prim-
itives with a smaller state to a certain extent. For example, experiments show
a speedup of more than an order of magnitude for attacks on 27 or 38 steps
of SHA-256. However, due to the heuristic nature of the improvement and the
general sensitivity of the search procedure to different parameters, the effects
are hard to quantify.

Unfortunately, we were not able to extend the semi-free-start collisions to
collision attacks on the hash function. The main reason is that the resulting
differential characteristics are quite dense and we do not have enough freedom
to match the IV with practical complexity.

485

Differential Collision Search

ics in

Branching Heurist

L€

o¢
ce
ve
I
&3
e
0¢
62
4
L2
9z
4
Ve
£
00000000000000000000000000C 44
TITTTTTTITTTITITTT-TITTTTTTT T1T====1 e
T 1117 T0T0TOT000T000T0000 02
T 61
TuOO00000T0T00000T====T0=TTTTOTITTT0=======-=-=====0--=-00----=0 8T
UTTTTTOTTO0TO00TTOTTT=0T I NANNUNNNNNUNNNNNNNUQQT==0T0====T0~===1T LT
005005 TT20TONET TANQT TEATEQQ T ININATANNATANANNT] 0= ONT-0T 0= o
T=T71==1=0-17=0-00=T=T7=00-T0000==00TOTTTTTTTO0TOTTOTOT===N0-T==TU (98
100 0T=T1=T=1=1T=T==11====00T0T00T0TTT0TTT0T====0T-0-=0T jas
T100-0UUQOTN=NQONTININQ =NQUTQONOT=TONO0=UQT TOUUUNUQOQQNT=TOT TU==UT| €1
0: UUNT==UQNOTTOUQOT=TOTTON0TT=-T===1T0NNT0TTUQ=0U=0U=-110==0==00TTT" cl
T TOUQTOTON=TTTNUNQNQUUQTANTOQUNUTQTONNOTTTOUTTOTONTTO0TTO0TOTTTT= 1T
0N0-TTUQTNTUQOTO=UTUTNUQ=TNTUT=ONTTQNQN=NNT Q=N N =UNUQT (8
T00Z=T 1IN TUT00=TH005==0U=1u== T1 T UU0=0nTOTOUOONOTAN00=0T00T - 6
00---=| 001-=TT=TT000000=T=0=T="10=TTT=00===TTT0=T T T=QUNUUQQUUUNT=0=00T -
NelU-z=T==]--T===-=-===-==1-=10----=-00==-10==-0T000=-00; Q- | unu. L
1=0-—- T0TT===-T 9
0-T G
v
3
4
T
0
-
-
o
-
M Il v :

* (PP SITYSTY STOTIPUOD 41q-0Mm] YHIM $31q) Sdogs Q¢ 09 PAINPaI ZTG-YHS JO UOISI[[0D-118)S-09.1j-TUIS © 10] OTISLIO)ORIRTD [RIJUSIOHI(] *§ WEMB

486 M. Eichlseder et al.

5 Conclusions

In this work, we have improved the best semi-free-start collisions on SHA-512
from 24 to 38 steps. Our attack has a practical complexity of 240° and we
have shown a colliding message pair. We get this result by applying the semi-
free-start collision attack on 38 steps of SHA-256 to SHA-512. However, due to
the increased word size, and hence increased search space, a straight-forward
extension was not possible.

To get these results we have analyzed possible improvements in the guess-and-
determine approach to find differential characteristics and conforming message
pairs. We got the best results by optimizing the branching heuristic using ideas
from SAT solvers. Our heuristic performs a randomized look-ahead selection of
candidates which should be guessed first.

Future work includes to apply the look-ahead heuristic to more complex des-
igns. Also, other techniques from SAT solvers may improve guess-and-determine
attacks in differential cryptanalysis. However, a direct application of SAT solver
techniques without taking high-level information on differential cryptanalysis into
account is usually not successful. Finally, an open question is how to use our new
results to improve the collision attacks on the SHA-512 hash function.

Acknowledgments. The work has been supported in part by the Secure Information
Technology Center-Austria (A-SIT), by the Austrian Government through the research
program FIT-IT Trust in IT Systems (Project SePAG, Project Number 835919), and
by the European Commission through the FP7 Joint Technology Initiatives (Call
ARTEMIS-2012-1, Project Arrowhead, Grant Agreement Number 332987).

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp.
578-597. Springer, Heidelberg (2009)

2. Bernstein, D.J., Lange, T.: eBASH: ECRYPT benchmarking of all submitted
hashes, January 2011. http://bench.cr.yp.to/ebash.html

3. Buro, M., Kleine-Biining, H.: Report on a SAT competition. Bull. Eur. Assoc.
Theor. Comput. Sci. 49, 143-151 (1993)

4. Canteaut, A. (ed.): FSE 2012. LNCS, vol. 7549. Springer, Heidelberg (2012)

5. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

6. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394-397 (1962)

7. De Canniere, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. LNCS, vol. 4284,
pp- 1-20. Springer, Heidelberg (2006)

8. Eén, N., Sorensson, N.: An extensible SAT-solver. In: Giunchiglia and Tacchella
[11], pp. 502-518

9. Eichlseder, M., Mendel, F., Nad, T., Rijmen, V., Schlaffer, M.: Linear propagation
in efficient guess-and-determine attacks. In: Budaghyan, L., Helleseth, T., Parker,
M. G. (eds.) WCC (2013). http://www.selmer.uib.no/WCC2013/

http://bench.cr.yp.to/ebash.html
http://www.selmer.uib.no/WCC2013/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Branching Heuristics in Differential Collision Search 487

Freeman, J.W.: Improvements to propositional satisfiability search algorithms.
Ph.D. thesis, Departement of computer and Information science, University of
Pennsylvania, Philadelphia (1995)

Giunchiglia, E., Tacchella, A. (eds.): SAT 2003. LNCS, vol. 2919. Springer,
Heidelberg (2004)

Goldberg, E.I., Novikov, Y.: BerkMin: a fast and robust SAT-solver. In: DATE,
pp. 142-149. IEEE Computer Society (2002)

Herbstritt, M., Becker, B.: Conflict-based selection of branching rules. In:
Giunchiglia and Tacchella [11], pp. 441-451

Heule, M., van Maaren, H.: March_dl: adding adaptive heuristics and a new branch-
ing strategy. JSAT 2(1-4), 47-59 (2006)

Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Biere, A., van Heule,
M., Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial
Intelligence and Applications, vol. 185, pp. 155-184. IOS Press, Amsterdam (2009)
Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and other non-
random properties for step-reduced SHA-256. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 276-293. Springer, Heidelberg (2009)
Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Ann. Math.
Artif. Intell. 1, 167-187 (1990)

Johansson, T., Nguyen, P.Q. (eds.): EUROCRYPT 2013. LNCS, vol. 7881.
Springer, Heidelberg (2013)

Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut [4], pp. 244-263

Landelle, F., Peyrin, T.: Cryptanalysis of full RIPEMD-128. In: Johansson and
Nguyen [18], pp. 228-244

Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang,
X., Sako, K. (eds.) ASTACRYPT 2012. LNCS, vol. 7658, pp. 226—243. Springer,
Heidelberg (2012)

Leurent, G.: Construction of differential characteristics in ARX designs application
to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 241-258. Springer, Heidelberg (2013)

Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability prob-
lems. In: IJCAI, vol. 1, pp. 366-371. Morgan Kaufmann, San Francisco (1997)
Li, J., Isobe, T., Shibutani, K.: Converting meet-in-the-middle preimage attack
into pseudo collision attack: application to SHA-2. In: Canteaut [4], pp. 264-286
Liberatore, P.: On the complexity of choosing the branching literal in DPLL. Artif.
Intell. 116(1-2), 315-326 (2000)

Mendel, F., Nad, T., Scherz, S., Schliffer, M.: Differential attacks on reduced
Ripemd-160. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483,
pp. 23-38. Springer, Heidelberg (2012)

Mendel, F., Nad, T., Schliffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT
2011. LNCS, vol. 7073, pp. 288-307. Springer, Heidelberg (2011)

Mendel, F., Nad, T., Schlaffer, M.: Finding collisions for round-reduced SM3.
In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 174-188. Springer,
Heidelberg (2013)

Mendel, F., Nad, T., Schlaffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson and Nguyen [18], pp. 262-278

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC, pp. 530-535. ACM (2001)

488

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

M. Eichlseder et al.

National Institute of Standards and Technology. FIPS PUB 180-3: Secure Hash
Standard. Federal Information Processing Standards Publication 180-3, U.S.
Department of Commerce, October 2008. http://www.itl.nist.gov/fipspubs
National Institute of Standards and Technology. FIPS PUB 180-4: Secure Hash
Standard. Federal Information Processing Standards Publication 180-4, U.S.
Department of Commerce, March 2012. http://www.itl.nist.gov/fipspubs
National Institute of Standards and Technology. SHA-3 Selection Announce-
ment, October 2012. http://csrc.nist.gov/groups/ST /hash/sha-3/sha-3_selection_
announcement.pdf

Nikolié, I., Biryukov, A.: Collisions for step-reduced SHA-256. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 1-15. Springer, Heidelberg (2008)

Ouyang, M.: How good are branching rules in DPLL? Discrete Appl. Math. 89(1—
3), 281-286 (1998)

Sanadhya, S.K., Sarkar, P.: New collision attacks against up to 24-step SHA-2.
In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol.
5365, pp. 91-103. Springer, Heidelberg (2008)

Schléffer, M., Oswald, E.: Searching for differential paths in MD4. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 242-261. Springer, Heidelberg (2006)
Shay Gueron, J.W., Johnson, S.: SHA-512/256. Cryptology ePrint Archive, Report
2010/548 (2010). http://eprint.iacr.org/

Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability
algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol.
1695, pp. 62-74. Springer, Heidelberg (1999)

Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer [5], pp. 1-18

Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17-36. Springer, Heidelberg (2005)
Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [5],
pp- 19-35

http://www.itl.nist.gov/fipspubs
http://www.itl.nist.gov/fipspubs
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_selection_announcement.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_selection_announcement.pdf
http://eprint.iacr.org/

	Branching Heuristics in Differential Collision Search with Applications to SHA-512
	1 Introduction
	2 Motivation
	2.1 The Search for Differential Characteristics
	2.2 The Guess-and-Determine Approach
	2.3 Improving the Guess-and-Determine Approach

	3 Branching Heuristics
	3.1 Branching Heuristics in SAT Solvers
	3.2 The Look-Ahead Branching Heuristic
	3.3 Implementation of the Look-Ahead Branching Heuristic

	4 Application to SHA-512
	4.1 Brief Description of SHA-512
	4.2 Extending the Attacks on SHA-256 to SHA-512
	4.3 Improving the Search Using Look-Ahead Branching
	4.4 Results

	5 Conclusions
	References

