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Preface

The 21st International Workshop on Fast Software Encryption (FSE 2014) was held in
London March 3–5, 2014. The workshop was organized in cooperation with the Inter-
national Association for Cryptologic Research, and took place at London’s Natural History
Museum. The workshop had 156 registered participants, of which 31 were students.

The FSE 2014 Program Committee comprised 26 members, and counted on the
support of 75 external reviewers. We received 99 valid submissions, and each sub-
mission was reviewed by at least three PC members. After more than two months of
deliberation and discussions, a total of 31 papers were accepted. This has been the
highest number of accepted papers for an FSE so far, driven by the rather high quality
of submissions. We are very grateful to all PC members and reviewers for their effort
and contribution to the selection of an outstanding program of original articles in
symmetric cryptography.

Besides the 31 selected talks, the workshop program also included two invited talks:
Thomas Johansson from Lund University spoke on the application of low weight
polynomials in cryptography; Thomas Ristenpart from the University of Wisconsin-
Madison closed the workshop with the talk “New Encryption Primitives for Uncertain
Times.” The workshop also featured a rump session, chaired by Dan Bernstein and
Tanja Lange, with several short informal presentations.

As it is tradition, the FSE 2014 Program Committee was asked to select the best
submissions to the workshop, based on their scientific quality and contribution. Two
submissions received the award for best papers: “Direct Construction of Recursive
MDS Diffusion Layers using Shortened BCH Codes” by Daniel Augot and Matthieu
Finiasz, and “Differential-Linear Cryptanalysis Revisited” by Céline Blondeau, Gregor
Leander, and Kaisa Nyberg. The two papers also received a special solicitation for
submission to the Journal of Cryptology.

In addition to the authors, PC members, and external reviewers, several other people
contributed to the success of FSE 2014: colleagues, students, and supporting staff at
DTU and Royal Holloway (in particular Claire Hudson); Shai Halevi, Greg Rose and
abhi shelat at the IACR; the members of the FSE Steering Committee; Anne Kramer at
Springer; and staff at the Natural History Museum. We were also fortunate to count on
the financial support of four sponsors (CESG, KPMG, NXP, and Visa Europe), which
made it possible to hold the event in such an impressive venue. We are very grateful to
you all for your support.

It was a great honor to have been in charge of the organization of FSE 2014 and to
coordinate the selection of its scientific program. It gave us the opportunity to work
with a number of outstanding researchers and professionals in the cryptographic
community; we were very pleased with its success and greatly enjoyed it. We hope the
reader also enjoys the papers in these proceedings.

January 2015 Carlos Cid
Christian Rechberger
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Direct Construction of Recursive MDS Diffusion
Layers Using Shortened BCH Codes

Daniel Augot1 and Matthieu Finiasz2(B)

1 INRIA - LIX UMR 7161 X-CNRS, Paris, France
2 CryptoExperts, Paris, France

finiasz@gmail.com

Abstract. MDS matrices allow to build optimal linear diffusion layers in
block ciphers. However, MDS matrices cannot be sparse and usually have
a large description, inducing costly software/hardware implementations.
Recursive MDS matrices allow to solve this problem by focusing on MDS
matrices that can be computed as a power of a simple companion matrix,
thus having a compact description suitable even for constrained environ-
ments. However, up to now, finding recursive MDS matrices required to
perform an exhaustive search on families of companion matrices, thus
limiting the size of MDS matrices one could look for. In this article
we propose a new direct construction based on shortened BCH codes,
allowing to efficiently construct such matrices for whatever parameters.
Unfortunately, not all recursive MDS matrices can be obtained from
BCH codes, and our algorithm is not always guaranteed to find the best
matrices for a given set of parameters.

Keywords: Linear diffusion · Recursive MDS matrices · BCH codes

1 Introduction

Diffusion layers are a central part of most block cipher constructions. There are
many options when designing a diffusion layer, but linear diffusion is usually
a good choice as it can be efficient and is easy to analyze. The quality of a
linear diffusion layer is connected to its branch number [3]: the minimum over
all possible nonzero inputs of the sum of the Hamming weights of the input and
the corresponding output of this diffusion layer. A high branch number implies
that changing a single bit of the input will change the output a lot, which is
exactly what one expects from a good diffusion layer. Before going into more
details on how to build linear diffusion with a high branch number, let us recall
some elements of coding theory.

Linear Diffusion and Coding Theory. A linear code Γ of dimension k and
length n over Fq (denoted as an [n, k]q code) is a vectorial subspace of dimension
k of (Fq)n. Elements of Γ are called code words. The minimal distance d of a
code is the minimum over all nonzero code words c ∈ Γ of the Hamming weight
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 3–17, 2015.
DOI: 10.1007/978-3-662-46706-0 1



4 D. Augot and M. Finiasz

of c. A [n, k]q code of minimal distance d will be denoted as an [n, k, d]q code.
A generator matrix G of a code is any k ×n matrix over Fq formed by a basis of
the vectorial subspace Γ . We say a generator matrix is in systematic form when
it contains (usually on the left-most positions) the k × k identity matrix Ik. The
non-systematic part (or redundancy part) of G is the k × (n− k) matrix next to
this identity matrix.

Now, suppose a linear diffusion layer of a block cipher is defined by an invert-
ible matrix M of size k × k over Fq, so that an input x ∈ (Fq)k yields an output
y ∈ (Fq)k with y = x × M . Then, the k × 2k generator matrix GM having M
as its non-systematic part (the matrix defined as the concatenation of the k × k
identity matrix Ik and of M , as GM = [Ik | M ]) generates a [2k, k]q code ΓM

whose minimal distance is exactly the branch number of M . Indeed, a code word
c = x × GM in ΓM is the concatenation of an input x to the diffusion layer and
the corresponding output y = x × M . So the Hamming weight of every code
word is the sum of the Hamming weights of an input and its output.

Optimal linear diffusion can thus be obtained by using codes with the largest
possible minimal distance, namely maximum distance separable (MDS) codes.
A [n, k]q code is called MDS if its minimal distance is d = n−k+1. By extension,
we will say that a matrix M is MDS when its concatenation with the identity
matrix yields a generating matrix GM of an MDS code ΓM . In the context of
diffusion where n = 2k being MDS means that d = k + 1: changing a single
element in the input of the diffusion layer will change all the elements in its
output.

We also recall the MDS conjecture: if there exists an [n, k]q MDS code, mean-
ing an MDS code of length n and dimension k over Fq, then n ≤ q + 1, except
for particular cases which are not relevant to our context. All along this article
we will assume that this conjecture holds [8].

Note on Vector Representation. In coding theory, vectors are usually represented
as rows (with y = x × M), as we have done for the moment. In cryptography,
however, they are more often represented as columns (with y = MT × x). Luck-
ily, the transposed of an MDS matrix is also MDS, so if GM defines an MDS
code, both M and MT can be used as MDS diffusion matrices. In the rest of the
article we will use the column representation, which people used to the AES and
the MixColumns operation are more familiar with: the diffusion layer defined by
a matrix M computes y = M × x. This way, the branch number of M is the
minimal distance of the code generated by GMT = [Ik | MT ]. However, in order
to avoid matrix transpositions, we will rather check whether GM = [Ik | M ]
generates an MDS code or not.

Recursive MDS Matrices. MDS matrices offer optimal linear diffusion, but
in general, they do not allow for a very compact description. Indeed, the non-
systematic part M of an MDS generator matrix cannot contain any 0 element1.
1 If the non-systematic part M of an MDS generator matrix contained a 0, then

the line of GM containing this zero would have Hamming weight ≤ k, which is in
contradiction with the minimal distance of the code. More generally, for an MDS
code ΓM , for any i ≤ k all the i × i minors of M must be non-zero.
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These matrices can never be sparse and applying such a matrix to its input
requires a full matrix multiplication for the diffusion. Several different techniques
have been studied to obtain simpler MDS matrices, a well known example being
circulant matrices (or modifications of circulant matrices) as used in the AES [4]
or FOX [7]. Recently a new construction has been proposed: the so-called recur-
sive MDS matrices, that were for example used in Photon [5] or LED [6]. These
matrices have the property that they can be expressed as a power of a compan-
ion matrix C. For example, in Photon, using the same decimal representation of
elements of F256 as in [5]:

M =

⎛
⎜⎜⎝

1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11

⎞
⎟⎟⎠ = C4, with C =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

⎞
⎟⎟⎠ = Companion(1, 2, 1, 4).

The advantage of such matrices is that they are particularly well suited for
lightweight implementations: the diffusion layer can be implemented as a linear
feedback shift register that is clocked 4 times (or more generally k times), using a
very small number of gates in hardware implementations, or a very small amount
of memory for software. The inverse of the diffusion layer also benefits from a
similar structure, see Eq. (1) for a particular case.

Outline. In the next section, we will present previous methods that have been
used to find recursive MDS matrices. Then, in Sect. 3, we will introduce BCH
codes and shortened BCH codes, show that they too can yield recursive MDS
matrices, and give a direct construction of such matrices. In Sect. 4 we will then
describe an algorithm to explore all BCH codes and the MDS diffusion layers
they yield for given parameters. We will conclude with a few experimental results.

2 Exhaustive Search for Recursive MDS Matrices

Exhaustive search for recursive MDS matrices can be quite straightforward:

– pick some parameters: the matrix size k and the field size q = 2s,
– loop through all companion matrices C of size k over Fq,
– for each C, computes its k-th power and check if it is MDS.

However, this technique is very expensive as there are many companion matrices
(2ks, which could be 2128 for an 128-bit cipher) and checking if a matrix is MDS
is also expensive (the number of minors to compute is exponential in k). Also,
it does not specially explore the most efficient matrices first. In the Photon
example, the matrix uses very sparse coefficients (the field elements represented
by 1, 2 and 4) to make the implementation of their operations on inputs even
more efficient. Exhaustive search should focus on such matrices.
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Following this idea, Sajadieh et al. [9] proposed to split the search in two.
Their companion matrices are symbolic matrices C(X) which have coefficients in
the polynomial ring Fq[X] where X is an indeterminate, which will be substituted
later by some F2-linear operator L of Fq. Then their search space is reduced to
symbolic companion matrices C(X) whose coefficients are small degree polyno-
mials in X (small degree polynomials will always yield a rather efficient matrix).
Once C(X) is raised to the power k, to get D(X) = C(X)k, the matrix D(X)
will give an MDS matrix D(L) when evaluated at a particular L, if for all i ≤ k,
all its i × i minors evaluated at L are invertible matrices (non-zero is enough
in a field, but now the coefficients are F2-linear operators). Indeed, for a sym-
bolic matrix D(X), the minors are polynomials in X, and their evaluation at a
particular linear operator L needs to be invertible matrices.

This way, for each matrix C(X) explored during the search, the minors of all
sizes of D(X) = C(X)k are computed: some matrices have minors equal to the
null polynomial and can never be made MDS when X is substituted by a linear
operator L, for the others this gives (many) algebraic polynomials in X which
must not vanish when evaluated at L, for the k-th power D(L) to be MDS. Then,
the second phase of the search of Sajadieh et al. is to look for efficient operators L
such that all the above minors are non zero when evaluated at L. The advantage
of this technique is that it finds specially efficient recursive MDS matrices, but
the computations of the minors of symbolic matrices can be pretty heavy, because
of the growth of the degree of the intermediate polynomials involved. In the case
of Photon, the matrix could be found as C = Companion(1, L, 1, L2) where L is
the multiplication by the field element represented by 2.

Continuing this idea and focusing on hardware implementation, Wu, Wang,
and Wu [11] were able to find recursive MDS matrices using an impressively
small number of XOR gates. They used a technique similar to Sajadieh et al.,
first searching for symbolic matrices with a list of polynomials having to be
invertible when evaluated in L, then finding an F2-linear operator L using a
single XOR operation and with a minimal polynomial not among the list of
polynomials that have to be invertible.

Then, looking for larger recursive MDS matrices, Augot and Finiasz [1] pro-
posed to get rid of the expensive symbolic computations involved in this tech-
nique by choosing the minimal polynomial of L before the search of companion
matrices C(X). Then, all computation can be done in a finite field (modulo the
chosen minimal polynomial of L), making them much faster. Of course, assum-
ing the MDS conjecture holds, the length of the code cannot be larger than the
size of the field plus one, so for an L with irreducible minimal polynomial of
degree s, the field is of size q = 2s, and k must verify 2k ≤ 2s + 1. Larger MDS
matrices will require an operator L with a higher degree minimal polynomial.
Also, in the case where the bound given by the MDS conjecture is almost met
(when k = 2s−1), Augot and Finiasz noted that all companion matrices found
had some kind of symmetry: if the k-th power of Companion(1, c1, c2, . . . , ck−1)
is MDS, then ci = ck−i for all 1 ≤ i ≤ k−1

2 .
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2.1 An Interesting Example

One of the symmetric MDS matrices found by Augot and Finiasz [1] for k = 8
and Fq = F16 is

C = Companion(1, α3, α4, α12, α8, α12, α4, α3)

with α4+α+1 = 0. As we will see later, there is a strong link between companion
matrices and the associated polynomial, here

PC(X) = 1 + α3X + α4X2 + α12X3 + α8X4 + α12X5 + α4X6 + α3X7 + X8.

In this example, this polynomial factors into terms of degree two:

PC(X) = (1 + α2X + X2)(1 + α4X + X2)(1 + α8X + X2)(1 + α9X + X2),

meaning that PC(X) is split in a degree-2 extension of F16, the field F256.
If we now consider PC(X) in F256[X], which we can, since F16 is a subfield of

F256, and look for its roots in F256, we find that there are 8 roots in F256, which,
for a certain primitive 255-th root of unity β ∈ F256, are

[β5, β6, β7, β8, β9, β10, β11, β12].

This indicates a strong connection with BCH codes that we will now study.

3 Cyclic Codes, BCH Codes, and Shortening

Before jumping to BCH codes, we must first note a few things that are true for
any cyclic code and not only BCH codes. For more details on the definition and
properties of cyclic codes, the reader can refer to [8].

3.1 A Systematic Representation of Cyclic Codes

An [n, k]q code is said to be cyclic if a cyclic shift of any element of the code
remains in the code. For example, the code defined by the following generator
matrix G over F2 is cyclic:

G =

⎛
⎜⎜⎝

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎞
⎟⎟⎠ .

A cyclic shift to the right of the last line of G gives (1, 0, 0, 0, 1, 0, 1) which is the
sum of the first, third and last lines of G, thus remains in the code: G indeed
generates a cyclic code.

Cyclic codes can also be defined in terms of polynomials: (1, 0, 1, 1, 0, 0, 0)
corresponds to 1 + X2 + X3 and a cyclic shift to the right is a multiplication by
X modulo Xn−1. This way, cyclic codes can be seen as ideals of Fq[X]/(Xn−1),
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Fig. 1. An LFSR corresponding to the companion matrix C of polynomial g(X) =
Xk + ck−1X

k−1 + ... + c0. Clocking it k times is equivalent to applying Ck to its
internal state.

meaning that each cyclic code Γ can be defined by a generator polynomial g(X)
such that Γ =< g(X) > and g(X) divides Xn − 1. Then, the code defined by
g(X) has dimension k = n−deg(g). In our example, g(X) = 1+X2 +X3, which
divides X7 − 1, and the code is indeed of dimension 4.

Any multiple of g(X) is in the code, so for any polynomial P (X) of degree
less than n, the polynomial P (X) − (P (X)mod g(X)) is in the code. Using
this property with P (X) = Xi for i ∈ [deg(g), n − 1], we obtain an interesting
systematic form for any cyclic code generator matrix:

G =

⎛
⎜⎜⎝

−X3 mod g(X) 1 0 0 0
−X4 mod g(X) 0 1 0 0
−X5 mod g(X) 0 0 1 0
−X6 mod g(X) 0 0 0 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 0 1

⎞
⎟⎟⎠ .

This form is exactly what we are looking for when searching for powers
of companion matrices. Indeed, if we associate the companion matrix C =
Companion(c0, . . . , ck−1) to the polynomial g(X) = Xk + ck−1X

k−1 + · · · + c0,
then the successive powers of C are (continuing with our example where k = 3):

C =

⎛
⎝

0 1 0
0 0 1

−X3 mod g(X)

⎞
⎠, C2 =

⎛
⎝

0 0 1
−X3 mod g(X)
−X4 mod g(X)

⎞
⎠, C3 =

⎛
⎝

−X3 mod g(X)
−X4 mod g(X)
−X5 mod g(X)

⎞
⎠.

To build recursive MDS matrices we thus simply need to build MDS cyclic codes
with suitable parameters and their corresponding g(X).

Note that a multiplication by a companion matrix can also be expressed in
terms of LFSR. Initializing the LFSR of Fig. 1 with a vector and clocking it
once corresponds to the multiplication of this vector by C. Clocking it k times
corresponds to the multiplication by M = Ck. We will continue using the matrix
representation in the rest of the paper, but most results could also be expressed
in terms of LFSR.

3.2 BCH Codes and Shortened BCH Codes

In general, given a generator polynomial g(X), computing the minimal distance
of the associated cyclic code is a hard problem. For instance, the code generated
by g(X) = 1 + X2 + X3 in the example of the previous section has minimal
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distance 3, but even for such small examples it is not necessarily immediate to
find the minimum distance. Nonetheless, lower bounds exist for some specific
constructions. This is the case for BCH codes, as described for example in [8].

Definition 1 (BCH codes). A BCH code over Fq is defined using an ele-
ment β in some extension Fqm of Fq. First, pick integers � and d and take
the (d − 1) consecutive powers β�, β�+1, . . . , β�+d−2 of β, then compute g(X) =
lcm(MinFq

(β�), . . . ,MinFq
(β�+d−2)), where MinFq

(β�) is the minimal polynomial
of β� over Fq.

The cyclic code over Fq of length ord(β) defined by g(X) is called a BCH
code, it has dimension (ord(β) − deg(g)) and has minimal distance at least d.
We write this as being an [ord(β), ord(β) − deg(g),≥ d]q code.

For such a BCH code to be MDS, g(X) must have degree exactly d − 1 (for a
cyclic code deg(g(X)) = n − k and for an MDS code d = n − k + 1, so an MDS
BCH code necessarily verifies deg(g(X)) = d − 1). Seeing that g(X) already has
d−1 roots over Fqm , it cannot have any other roots. This means that the powers
β�+j , j = 0, . . . , d − 2, must all be conjugates of each other.

The Need for Shortening. When building diffusion layers, the input and
output of the diffusion generally have the same size (otherwise inversion might
be a problem), so we need codes of length 2k and dimension k. In terms of BCH
codes, this translates into using k consecutive powers of an element β of order
2k, and having g(X) of degree k. Of course, elements of even order do not exist
in extensions of F2, so this is not possible. Instead of using full length BCH
codes, we thus use shortened BCH codes.

Definition 2 (Shortened code). Given a [n, k, d]q code Γ , and a set I of z
indices {i1, . . . , iz}, the shortened code ΓI of C at indices from I is the set of
words from Γ which are zero at positions i1, . . . , iz, and whose zero coordinates
are deleted, thus effectively shortening these words by z positions. The shortened
code ΓI has length n − z, dimension ≥ k − z and minimal distance ≥ d.

If Γ is MDS, then d = n−k+1 and ΓI will necessarily be an [n−z, k−z, d]q MDS
code, as neither the dimension nor the minimal distance can increase without
breaking the Singleton bound [10].

We can thus look for [2k + z, k + z, k + 1]q BCH codes and shorten them
on z positions to obtain our MDS codes. However, shortened BCH codes are
no longer cyclic, so the shortening has to be done in a way that conserves the
recursive structure. This is easy to achieve by using the previous systematic
representation and shortening on the last positions. Starting from g(X) of degree
k, which divides X2k+z − 1, we get a generating matrix:

G =

⎛
⎜⎜⎝

Xk mod g(X) 1 0 0 0
Xk+1 mod g(X) 0 1 0 0

· · · · · ·
X2k+z−1 mod g(X) 0 0 0 1

⎞
⎟⎟⎠ .

︸ ︷︷ ︸
size k+z
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Shortening the code on the z last positions will maintain the systematic form
and simply remove the z last lines to obtain:

GI =

⎛
⎜⎜⎝

Xk mod g(X) 1 0 0 0
Xk+1 mod g(X) 0 1 0 0

· · · · · ·
X2k−1 mod g(X) 0 0 0 1

⎞
⎟⎟⎠ .

︸ ︷︷ ︸
size k

As said above, when G generates an MDS code, then GI also generates an MDS
code, and this is (up to a permutation of the two k × k blocks, that will not
affect the MDS property) exactly what we are looking for: a recursive MDS
matrix defined by the companion matrix associated to the polynomial g(X).

3.3 Direct Construction of Recursive MDS Matrices

From this result, in the case where q = 2s, we can deduce a direct construction of
recursive MDS matrices based on MDS BCH codes that were already described
in [8], Chap. 11, Sect. 5. We first pick a β of order q + 1. As q + 1 divides q2 − 1,
β is always in Fq2 , the degree-2 extension of Fq. Then, apart from β0 = 1, all
powers of β have minimal polynomials of degree 2: since β is of order q +1, each
βi has a conjugate βqi = β−i which is the second root of MinFq

(βi). From there,
it is easy to build a [q + 1, q + 1 − k, k + 1]q MDS BCH code for any value of
k ≤ q

2 .

– If k is even, we need to select k consecutive powers of β that are conjugates
by pairs: if βi is selected, βq+1−i is selected too. We thus select all the powers
βi with i ∈ [ q−k

2 + 1, q+k
2 ], grouped around q+1

2 .
– If k is odd, we need to select β0 as well. We thus select all the powers βi with

i ∈ [−k−1
2 , k−1

2 ], grouped around 0.

In both cases, we get a polynomial g(X) of degree k defining an MDS BCH code
of length q + 1. We can then shorten this code on z = (q + 1 − 2k) positions and
obtain the [2k, k, k+1]q MDS code we were looking for. The non-systematic part
of the generator matrix of this code is the k-th power of the companion matrix
defined by g(X).

Also, as the conjugate of βi is its inverse, g(X) enjoys the same symmetry
as the example of Sect. 2.1: Xkg(X−1) = g(X). This explains the symmetry
observed in [1]. Furthermore, the companion matrix associated to g(X) thus
has at most k

2 different coefficients and can be implemented with at most k
2

multiplications.
Finally, by cycling over all β of order q + 1, in the case where 2k = q we

were able to recover with this direct construction all the solutions found in [1]
through exhaustive search. We conjecture that when 2k = q, the only recursive
MDS matrices that exist come from these shortened BCH codes.
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4 An Algorithm to Find All MDS BCH Codes

We have seen that shortened BCH codes allow to directly build recursive MDS
matrices. However, when building a block cipher, the designer usually has some
parameters in mind (say, a diffusion layer on k symbols of s bits each) and wants
the best diffusion layer matching these parameters. Our direct construction gives
good solutions, but cannot guarantee they are the best. So the designer needs
an algorithm that will enumerate all possible matrices and let him pick the most
suitable one. For this, we will consider BCH codes where β is a (2k + z)-th root
of unity and not only a (2k + 1)-th root of unity as in the direct construction.
First, there are a few constraints to consider.

Field Multiplication or F2-linearity? The designer has to choose the type of lin-
earity he wants for his diffusion layer. If he wants (standard) linearity over F2s ,
then the BCH code has to be built over F2s (or a subfield of F2s , but the con-
struction is the same). However, as in the Sajadieh et al. [9] or the Wu et al. [11]
constructions, he could choose to use an F2-linear operator L. Assuming L has
an irreducible minimal polynomial of degree s′ ≤ s (see [1] for how to deal with
non-irreducible minimal polynomials), then he needs to build a BCH code over
F2s′ . This choice is up to the designer but does not change anything to the rest
of the algorithm, so we will assume s′ = s.

The MDS Conjecture. Our shortened BCH construction starts by building an
MDS code of length 2k + z over F2s . The MDS conjecture tells us that 2k + z ≤
2s + 1 must hold. When k = 2s−1, z = 1 is the only choice. In general, we
can choose any z ∈ [1, 2s + 1 − 2k], so the algorithm will need to try all these
possibilities.

Minimal Polynomials of Roots of Unity. The β involved in the BCH construction
is a (2k + z)-th root of unity, and g(X) is formed as the product of minimal
polynomials of powers of β. First, (2k + z)-th roots of unity must exist, meaning
2k + z must be odd (or more generally coprime with q when q is not 2s). Then,
when factorizing X2k+z − 1, the minimal polynomials of the βi are factors of
this decomposition, and g(X) is the product of some of these factors. It must
thus be possible to obtain a polynomial of degree k this way. This is not always
possible: for example, X23 − 1 decomposes over F28 in a factor of degree 1 and
two factors of degree 11 and very few values of k can be obtained. However, this
last condition is rather complex to integrate in an algorithm and it will be easier
to simply not take it into account.

4.1 A Simple Algorithm

For given parameters k and q = 2s we propose to use Algorithm 1 (Fig. 2)
to enumerate all possible recursive MDS matrices coming from shortened BCH
codes. This algorithm explores all code lengths from 2k+1 to q+1, meaning that
the number of shortened columns can be much larger than the final code we are
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aiming for. Instead of computing minimal polynomials and their least common
multiple as in the definition of BCH codes we directly compute

∏k−1
j=0 (X −β�+j)

and check if it is in Fq[X]. This allows the algorithm to be more efficient and also
makes upper bounding its complexity much easier. The following lemma shows
that the two formulations are equivalent.

Lemma 1. A BCH code over Fq defined by the d − 1 roots [β�, ..., β�+d−2] is
MDS, if and only if P (X) =

∏d−2
j=0(X − β�+j) is in Fq[X]. In this case, g(X) =

lcm
(
MinFq

(β�), ...,MinFq
(β�+d−2)

)
is equal to P (X).

Proof. We have seen that a BCH code is MDS if and only if g(X) is of degree
d − 1 exactly. Also, g(X) is always a multiple of P (X).

First, assume we have an MDS BCH code. Then g(X) is of degree d − 1 and
is a multiple of P (X) which is also of degree d − 1. So, up to a scalar factor,
g(X) = P (X) and P (X) ∈ Fq[X].

Conversly, assume we have a BCH code such that P (X) ∈ Fq[X]. Then, for
any j ∈ [0, d−2], P (X) is a polynomial in Fq[X] having β�+j as a root, so P (X)
is a multiple of MinFq

(β�+j). Therefore, g(X) divides P (X) and, as P (X) also
divides g(X), we have g(X) = P (X). g(X) thus has degree d − 1 and the code
is MDS. ��

4.2 Complexity

The previous algorithm simply tests all possible candidates without trying to be
smart about which could be eliminated faster. It also finds each solution several
times (typically for β and β−1), and finds some equivalent solutions (applying
α �→ α2 on all coefficients of the polynomial preserves the MDS property, so each
equivalence class is found s times).

The product at line 7 does not have to be fully recomputed for each value
of �. It can be computed once for � = 0, then one division by (X − β�) and one
multiplication by (X − β�+k) are enough to update it at each iteration. This
update costs O(k) operations in the extension of Fq containing α. The whole
loop on � can thus be executed in O((2k + z)k) operations in the extension field.

The number of β for which the loop has to be done is Euler’s phi function
ϕ(2k+z) which is smaller than (2k+z), itself smaller than q, and there are q−2k

2 +
1 values of z to test. This gives an overall complexity of O(q2k(q−2k)) operations
in an extension of Fq. This extension is of degree at most 2k + z, so operations
are at most on q log q bits in this extension and cost at most O(q2(log q)2). This
gives an upper bound on the total complexity of O

(
q4k(q − 2k)(log q)2

)
binary

operations, a degree-6 polynomial in k and q. This is a quite expensive, but as we
will see in the next section, this algorithms runs fast enough for most practical
parameters. It should also be possible to accelerate this algorithm using more
elaborate computer algebra techniques.
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Fig. 2. Algorithm searching for MDS BCH codes

5 Experimental Results

We implemented Algorithm 1 in Magma [2] (see the code in Appendix A) and
ran it for various parameters.

5.1 The Extremal Case: 2k = 2s

First, we ran the algorithm for parameters on the bound given by the MDS
conjecture, that is, when 2k = 2s. These are the parameters that were studied
by Augot and Finiasz in [1]. It took their algorithm 80 days of CPU time to
perform the exhaustive search with parameters k = 16 and s = 5 and find
the same 10 solutions that our new algorithm finds in a few milliseconds. The
timings and number of solutions we obtained are summarized in Table 1. We
were also able to find much larger MDS diffusion layers. For example, we could
deal with k = 128 elements of s = 8 bits, which maybe is probably too large
to be practical, even with a recursive structure and the nice symmetry. Below
are the logs in base α (with α8 + α4 + α3 + α2 + 1 = 0) of the last line of the
companion matrix of an example of such 1024-bit diffusion:

[0, 83, 25, 136, 62, 8, 73, 112, 253, 110, 246, 156, 53, 1, 41, 73, 5, 93, 190, 253, 149,

98, 125, 124, 149, 94, 100, 41, 37, 183, 81, 6, 242, 74, 252, 104, 57, 117, 55, 224,

153, 130, 77, 156, 192, 176, 52, 133, 218, 59, 158, 18, 228, 89, 218, 126, 146,

210, 217, 18, 84, 209, 30, 123,97, 123, . . . [ symmetric ] . . . , 83]
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Table 1. Experimental results for parameters on the bound given by MDS conjecture.
The value “Diff. bits” is the size in bits of the corresponding diffusion layer. The number
of solutions is given as both the raw number and the number of distinct equivalence
classes.

k s Diff. Solutions Time

bits Num. Classes

4 3 12 3 1 <0.01 s

8 4 32 8 2 <0.01 s

16 5 80 10 2 <0.01 s

32 6 192 24 4 ∼0.02 s

64 7 448 42 6 ∼0.07 s

128 8 1024 128 16 ∼0.52 s

256 9 2304 162 18 ∼1.71 s

Table 2. Experimental results for other interesting parameters. The Reg. solutions
refer to regular solutions where the constant term of the polynomial is 1.

k s Diff. Solutions Time

bits Num. Reg.

4 4 16 68 12 ∼0.02 s

4 8 32 20180 252 ∼37 s

8 8 64 20120 248 ∼44 s

16 8 128 19984 240 ∼55 s

32 8 256 19168 224 ∼80 s

5.2 The General Case

We also ran some computations for other interesting parameters, typically for
values of k and s that are both powers of 2 as it is often the case in block ciphers.
The results we obtained are summarized in Table 2. Note that for these solutions
the number of shortened positions is sometime huge: for k = 4 and s = 8 one can
start from a [257, 253, 5]256 BCH code and shorten it on 249 positions to obtain
a [8, 4, 5]256 code. We counted both the total number of solutions we found and
the number of regular solutions where the constant term of the polynomial is 1.
Regular solutions are particularly interesting as the diffusion and its inverse
share the same coefficients:

Companion(1, c1, . . . , ck−1)−1 =

⎛
⎜⎜⎝

0 1 0. . .
0 0 1
1 c1 ck−1

⎞
⎟⎟⎠

−1

=

⎛
⎜⎜⎝

c1 ck−1 1
1 0 0. . .
0 1 0

⎞
⎟⎟⎠ . (1)
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In the case of symmetric solutions (like those from Sect. 3.3), encryption and
decryption can even use the exact same circuit by simply reversing the order of
the input and output symbols. Here are some examples of what we found:

– for parameters k = 4 and s = 4, with α such that α4 +α+1 = 0, the matrices
Companion(1, α3, α, α3)4 and Companion(α3 + α, 1, α, α3)4 are MDS.

– for parameters k = 4 and s = 8, with α such that α8 + α4 + α3 + α2 + 1 = 0,
the matrices Companion(1, α3, α−1, α3)4, Companion(1, α3 +α2, α3, α3 +α2)4,
and Companion(α + 1, 1, α202 + 1, α202)4 are MDS.

The reader might note the absence of larger fields in Table 2. One could for
example want to obtain a 128-bit diffusion layer using k = 8 symbols of s = 16
bits. However, going through all the possible values of z and � takes too long
with q = 216. Our algorithm is too naive, and an algorithm enumerating the
divisors of X2k+z − 1 of degree k and checking if they correspond to BCH codes
could be faster in this case. Otherwise, it is always possible to use the direct
construction given in Sect. 3.3.

5.3 Further Work

As we have seen, for most parameters, this algorithm runs fast enough to find
all recursive MDS matrices coming from BCH codes. However, not all recursive
MDS matrices come from a BCH code.

– First, there are other classes of cyclic codes that are MDS and could be short-
ened in a similar way. Any such class of codes can directly be plugged into
our algorithm, searching for polynomials g(X) having another structure than
roots that are consecutive powers of β.

– Then, there also are cyclic codes which are not MDS, but become MDS once
they are shortened. These will be much harder to track as they do not have to
obey the MDS conjecture and can have a much larger length before shortening.

For this reason, we are not always able (yet) to find the most efficient matrices
with our algorithm. For example, the matrix used in Photon corresponds to a
cyclic code of length 224 −1 over F28 which is not MDS. We know that this code
has minimum distance 3, and its distance grows to 5 when shortened from the
length 224 − 1 to the length 8.

However, for some parameters, our algorithm is able to find very nice
solutions. For k = 4 and α verifying α5 + α2 + 1 = 0 (a primitive element
of F25 , or an F2-linear operator with this minimal polynomial), the matrix
Companion(1, α, α−1, α) found by Algorithm 1 yields an MDS diffusion layer.
This is especially nice because it is possible to build simple F2-linear opera-
tors that also have a simple inverse, and this solution is symmetric meaning the
inverse diffusion can use the same circuit as the diffusion itself.
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6 Conclusion

The main result of this article is the understanding that recursive MDS matri-
ces can be obtained directly from shortened MDS cyclic codes. From this, we
derive both a direct construction and a very simple algorithm, based on the enu-
meration of BCH codes, that allows to efficiently find recursive MDS matrices
for any diffusion and symbol sizes. These constructions do not always find all
existing recursive MDS matrices and can thus miss some interesting solutions.
As part of our future works, we will continue to investigate this problem, trying
to understand what properties the other solutions have and how we can extend
our algorithm to find them all. A first step is to elucidate the Photon matrix in
terms of cyclic codes which are not BCH codes, hopefully finding a direct con-
struction of this matrix. However, in the same way as computing the minimal
distance of a cyclic code is difficult, it might turn out that finding all recursive
MDS matrices of a given size is a hard problem.
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A Magma Code

Here is the Magma code for Algorithm 1. Simply run BCH(k,s) to get the set of
all polynomials of degree k over F2s that yield MDS diffusion layers on ks bits.
Of course, these polynomials have to be written as companion matrices which
then have to be raised to the power k to obtain the final MDS matrices.

BCH := function(k,s)
q := 2^s;
F := GF(q);
P := PolynomialRing(F);
S := { };
for z:=1 to q+1-2*k by 2 do

a := RootOfUnity(2*k+z, F);
Pext<X> := PolynomialRing(Parent(a));
for i:=0 to 2*k+z-1 do

b := a^i;
if Order(b) eq (2*k+z) then

g := &*[(X-b^l): l in [-1..k-2]];
for l in [0..2*k+z-2] do

g := (g*(X-b^(l+k-1))) div (X-b^(l-1));
if IsCoercible(P,g) then

Include(~S, P!g);
end if;

end for;
end if;

end for;
end for;
return S;

end function;
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Abstract. Side-channel analysis is an important issue for the security of
embedded cryptographic devices, and masking is one of the most investi-
gated solutions to mitigate such attacks. In this context, efficient masking
has recently been considered as a possible criteria for new block cipher
designs. Previous proposals in this direction were applicable to different
types of masking schemes (e.g. Boolean and polynomial). In this paper,
we study possible optimizations when specializing the designs to Boolean
masking. For this purpose, we first observe that bitslice ciphers have
interesting properties for improving both the efficiency and the regular-
ity of masked software implementations. Next we specify a family of block
ciphers (denoted as LS-designs) that can systematically take advantage
of bitslicing in a principled manner. Eventually, we evaluate both the
security and performance of such designs and two of their instances,
confirming excellent properties for physically secure applications.

1 Introduction

Lightweight cryptography has been an active research area over the last 10 years.
Many innovative ciphers have been proposed in order to optimize various perfor-
mance criteria. Recently, resistance against side-channel attacks has been con-
sidered as an additional optimization goal for low-cost ciphers, as exemplified
by the algorithms PICARO [41] and Zorro [20]. Both proposals aim at leading
to efficient masked implementations (i.e. where all the computations are per-
formed on shared secrets). Starting from the observation that the performance
overheads in such implementations primarily come from non-linear operations,
Piret et al. [41] first investigated how to reduce their amount by considering
non-bijective S-boxes. Next, Gérard et al. [20] further exploited “irregular” SPN
structures, i.e. where not all the state goes through the (bijective again1) S-boxes
in each round. Both examples lead to performance gains over the AES Rijndael,
which become more significant as the number of shares increases.

1 Motivated by the recent results in [51], showing that non-bijective S-boxes lead to
easily exploitable targets for generic (non-profiled) Differential Power Analysis.
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These previous works lead to several useful observations regarding the rela-
tion between masking and the linear/non-linear operations used in block ciphers.
In this paper, we aim to complement them by focusing on two important scopes
for further research they left open. First from the performance point-of-view, both
PICARO and Zorro minimize the number of field multiplications per encrypted
plaintext. This is a natural direction as it leads to improvements applicable to both
Boolean [45] and polynomial [43] masking schemes. Yet, further specialization to
Boolean masking could potentially lead to additional gains. For example, the S-
boxes of lightweight ciphers PRESENT [7] and NOEKEON [15] require three mul-
tiplications in GF (16), which makes them less suitable than Zorro and PICARO
for polynomial masking. But they have efficient representations minimizing the
number of AND gates which could be exploited in Boolean masked implementa-
tions. Next from the security point-of-view, both designs are based on somewhat
unusual Feistel/SPN structures (in order to deal with non-bijective S-boxes in [41],
and to minimize the number of S-boxes per round in [20]). So another (quite prag-
matic) open question is whether we can design ciphers for efficient masking based
on more standard techniques (e.g. directly exploiting the wide-trail strategy [16]
as other lightweight algorithms).

In this context, we base our investigations on two additional observations.
First, Boolean masking is particularly efficient when applied to operations that
are linear over GF (2) (since such operations can be performed independently
on each share). As a result, and in contrast with many existing block ciphers,
it appears interesting to have linear diffusion layers implemented as look-up
tables, since they can be straightforwardly exploited for any number of shares2.
Second, since our focus is on software implementations, we also have a strong
incentive for simple and regular designs, where computations are always per-
formed on well aligned data. For example, manipulating bits and bytes such as
in PRESENT raises additional challenges for the implementers (to guarantee
that the bit manipulations do not leak more information than the byte ones).
These observations combine into the conclusion that a bitslice cipher with look-
up table-based diffusion layers and non-linear S-boxes with efficient gate-level
representation seems an excellent candidate for efficient Boolean masked soft-
ware implementations.

Following, our contributions are threefold. First, we separately analyze S-
boxes and linear layers meeting the previous objectives, and compare a num-
ber of constructions from the cryptanalytic and efficient masking point-of-view.
Interestingly, this part of our study confirms the previous observation that if
side-channel resistance via masking is added as a block cipher design criteria,
the balance between linear and non-linear operations has to be changed towards
more linear ones. Such investigations open a large space of possible ciphers that
we define as LS-designs (essentially made of a combination of look-up table-based
L-boxes and bitslice S-boxes). We then argue that such designs have interesting
properties for efficient masking. For this purpose and for concreteness, we specify
two instances of 128-bit block ciphers and analyze their security against a num-
ber of standard cryptanalytic techniques. Doing so, we paid attention to make

2 Masking non-linear look-up tables has a cost that is quadratic in this number [11].
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our studies as generic as possible (i.e. leading to conclusions for LS-designs rather
than for their instances). We also considered the impact of choosing involutive or
non-involutive components, and show that the first ones mainly lead the security
guarantees provided by the wide-trail strategy to be tighter. Eventually, we com-
pare the performances of our two exemplary instances with the ones of the AES,
PICARO, Zorro and NOEKEON on an 8-bit microcontroller (and argue that
they also behave well on desktop CPUs with SIMD units). Overall, these results
confirm the interest of bitslice ciphers in the context of physically secure imple-
mentations, as hinted in [14]. While the instances of designs we suggest are
not yet optimal (because of the hardness of finding optimal L- and S-boxes)
and do require more analysis, their performances are comparable to (or slightly
better than) the ones of NOEKEON, which is known to have an extremely
compact gate-level representation [29]. Therefore, we believe LS-designs formal-
ize an interesting family of ciphers combining excellent performances (also for
unprotected implementations), strong security guaranties, regularity/simplicity
and efficient masking, i.e. properties that generally benefit to resistance against
side-channel attacks and are also appealing for more general applications.

2 Design Rationale

2.1 Bitslice S-Boxes

In this first subsection, we analyze various S-boxes having an efficient bitslice
representation. Our comparisons will consider various sizes (namely 4-bit, 8-bit
and 16-bit), in order to study their tradeoff with the different diffusion layers
in the next subsection. They will also take into account both standard crypto-
graphic properties (such as the non-linearity, differential profile and algebraic
degree of which the definitions are recalled in Appendix A) and masking effi-
ciency considerations. For this purpose, and following the techniques in [26], we
will simply consider the number of AND and XOR gates needed for each S-box.
As already mentioned, the cost of XOR gates is linear in the number of shares
in the masking scheme, while it is quadratic for AND gates (which will therefore
count as a more important criterion in our evaluations). Note that since we are
only interested in non-linear S-boxes, each Boolean function defining them has
to be linearly independent of the other ones. As a result, we need at least the
same number of AND gates as the output size of the S-box to reach this goal.

Why Bitslicing? In Appendix B, we recall the method to perform secure non-
linear operations first proposed in [26] and generalized to extension fields in [45].
From Algorithm 2, it is easy to see that the difference of performances between
Boolean and polynomial masking can (at least partially) be explained by the
implementation efficiency of the underlying non-linear operation. For example,
an AND gate can usually be performed in a single clock cycle on most computing
devices. By contrast, a field multiplication generally requires the use of log/alog
tables (if large fields are considered) which will typically account for 20 to 40
clock cycles in embedded microcontrollers [22]. These numbers can be improved
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Fig. 1. (a) Non involutive 4-bit S-box with optimal bitslice representation. (b) Involu-
tive 4-bit S-box with optimal bitslice representation. (c) Construction of 8-bit S-boxes
from 4-bit ones as in the Whirlpool hash function [44]. (d) Construction of 2s-bit
S-boxes from s-bit ones as in the MISTY block cipher [36].

when small fields are considered, e.g. multiplication can tabulated if elements are
represented with less than 4 bits, but even in this case the non-linear operations
will require 3 to 5 cycles. As a result, masking at the gate-level in a bitslice
manner as we investigate next should bring performance improvements.

We now present a couple of S-boxes with efficient gate-level representation.
The main challenge is that the enumeration of S-boxes is rapidly out of reach
as their size increases. Besides, finding the best gate-level description of a large
S-box is also a hard problem. As a result, we will start from the 4-bit case for
which exhaustive analysis is possible, and then take advantage of heuristics from
the block cipher literature, in order to turn these 4-bit S-box into larger ones.

4-Bit S-Boxes. An exhaustive search of optimal bitslice S-boxes can be found
in [48]. Its main result is that the so-called “Class 13” is the best option for this
purpose, and can be implemented with 4 non-linear gates and a total of 9 instruc-
tions, with the best differential and linear probabilities that can be reached. It
is represented in Fig. 1(a). Its only limitation is that it is not involutive. We ran
a similar exhaustive search with a slightly larger instruction set (including nor
gates, nand gates, and more copy instructions) while restricting the number of
non-linear gates to 4. As a result, we could find an involutive S-box with similar
properties as the Class 13 one: it is represented in Fig. 1(b). Note that the use
of Toffoli gates (defined in [47]) allows to see this S-box as a generalized Feistel
network, which explains the involution property.
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Table 1. Comparison of our different S-box proposals.

# AND # XOR size Invol. deg(S) Prdiff Prlin

NOEKEON 4 7 4 Yes 3 2−2 2−1

Class 13 [48] 4 4 4 No 3 2−2 2−1

Figure 1(b) 4 4 4 Yes 3 2−2 2−1

AES [9] 32 83 8 No 7 2−6 2−3

Whirlpool + Class 13 16 41 8 No 6 2−4.68 2−2

Whirlpool + Fig. 1(b) 16 42 8 No 6 2−4.68 2−2

MISTY + Class13 12 24 8 Yes 6 2−4 2−2

MISTY + Fig. 1(b) 12 24 8 Yes 5 2−4 2−2

MISTY + 3/5-bit S-boxes 11 25 8 No 5 2−4 2−2

MISTY2 + Class13 36 96 16 Yes 13 2−8 2−4

From 4-Bit S-Boxes to Larger Ones. Various constructions can be consid-
ered for this purpose, ranging from ad hoc (scaling 4-bit S-boxes to 8-bit ones)
to generic solutions (scaling s-bit S-boxes to 2s-bit ones). As in [20], we analyzed
a couple of natural candidates and report on the most interesting results.

In the first (ad hoc) case, we considered a proposal coming from the Whirlpool
hash function (which only requires four 4-bit S-boxes) and generalized it by
considering a linear layer between the two levels of S-boxes (see Fig. 1(c)). Since
our goal is to minimize the number of AND gates, such a solution was better
than proposals with six 4-bit S-boxes as in the KHAZAD block cipher [1].

Alternatively, we looked at Feistel networks such as used in the MISTY block
cipher [36] and represented in Fig. 1(d). A minimum of three rounds were con-
sidered in order to avoid trivial weaknesses with respect to linear and differential
cryptanalyses. One advantage of such a construction is that it directly gives rise
to involutive components. Besides, it has been shown that three rounds of such
a network allow squaring the linear and differential probabilities of the round
function, on average over the keys. Note however that the impact of this averag-
ing only appears for 16-bit (or larger) S-boxes (i.e. when applying the MISTY
structure twice, recursively), because the impact of the linear hull effect only
becomes significant from this size on [40]. The exhaustive search over all the 16-
bit S-boxes having the structure of Fig. 1(d) was too computationally intensive
and we only report on the best candidate we found. Note that for 8-bit S-boxes,
we additionally investigated unbalanced Feistel networks built from 3- and 5-
bit ones (as also proposed with the MISTY cipher), which provided a slightly
improved non-involutive candidate (with one less AND gate).

The results of our different S-box searches are summarized in Table 1. For
comparison purposes, we also reported the same metrics for the NOEKEON
S-box, and the bitslice representation of the AES S-box proposed in [9].

2.2 Table-Based Diffusion Layers

In a bitslice implementation of a block cipher, the same register i holds the i-th
bit of several S-box inputs/outputs. In this context, we are interested in linear
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diffusion boxes (next denoted as L-boxes) that mix bits inside these registers
and can be applied to them in parallel. From an implementation point of view,
computing an L-box will just correspond to a table access. Yet, and compared to
the usual case of non-linear tables, we benefit from more flexibility. Namely, since
the table is linear, it can be decomposed into several smaller tables. This can be
useful in order to only store tables that are adapted to the memory characteristics
of the target platform. For instance, a 16-bit L-box can be implemented as four
8-bit to 8-bit look-up tables and two XORs. Our comparisons of diffusion layers
will mainly be based on the branch number. Thanks to this number, we can
directly evaluate the linear and differential properties of any design based on
a combination of S-boxes and L-boxes according to the wide-trail strategy. We
define the branch number of an L-box L as:

B(L) = min
x�=0

(|x| + |L(x)|).

It follows that the linear branch number and the differential branch number
of our diffusion layer is also B(L). This guarantees that any non-trivial trail
in two consecutive cipher rounds will have at least B(L) active S-boxes (see
[16, Theorem 1]). Note that an l-bit L-box with branch-number b is equivalent to
a binary linear code with parameters [2l, l, b] (length 2l, dimension l, distance b).
Therefore, we can use results from coding theory to design our L-boxes, such
as [21].

8-bit L-boxes. The highest branch number possible for an 8-bit L-box is 5.
We ran an exhaustive search and we found 225.2 candidates with such a branch
number, including 33 involutions. They activate at least 5/16 of the S-boxes.

16-bit L-boxes. The highest branch number possible for a 16-bit L-box is
8. It is not feasible to run an exhaustive search, but there are several known
codes with parameters [16, 8, 8]. In particular, it is possible to build a quite
structured 16-bit involution with branch number 8 from a systematic generator
of the Reed-Muller code RM(2, 5), as represented in the left part of the figure
below (a non-involutive candidate is given on the right part of the same figure).
This kind of L-boxes activates at least one fourth of the S-boxes over two rounds.

32-bit L-boxes. For a 32-bit L-box, the optimal branch number is not known.
The best known code gives a branch number of 12, and the known upper bound
shows that it is impossible to reach a branch number higher than 16. Therefore
the best known option will only activate 12/64 of the S-boxes.

We show a comparison of the best known L-box diffusion layer and the AES
diffusion layer in Table 2. This shows that L-box diffusion layers do not have
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Table 2. Comparison of linear layers.

# S-boxes Active S-boxes

8-bit L-box 8 5/16 (31.25 %)

16-bit L-box 16 8/32 (25 %)

32-bit L-box 32 12/64 (18.75 %)

AES linear layer 16 25/64 (39.06 %)

security bounds as good as AES-like diffusion layers (mainly because they are
obtained over two rounds rather than four), but the ability to use a bitslice
implementation is an important advantage for side-channel resistance.

Alternatively if the state is considered as a vector of elements over a larger
field (the S-box outputs), the diffusion layer can be written as a binary matrix.
This approach has been used previously, e.g. in the design of ARIA [33].

2.3 Which S-Box with Which L-Box?

The composition of s-bit S-boxes and l-bit L-boxes directly gives rise to various
candidate n = l × s-bit ciphers. In this subsection, we illustrate the tradeoffs
resulting from these choices in a 64-bit case (with 8-bit and 16-bit L-boxes).

4-bit S-box and 16-bit L-box. Using the components described previously,
the best involutive S-box requires 4 linear operations and 4 non-linear ones, and
achieves Prdiff = 2−2 and Prlin = 2−1. Therefore, we need at least 32 active
S-boxes to have a secure cipher. Since we have 8 active S-boxes every 2 rounds
using a 16-bit L-box, this corresponds to at least 8 rounds. In an 8-bit CPU, it
would require 64 non-linear operations, 128 XORs and 128 table look-ups.

8-bit S-box and 8-bit L-box. Using the components described previously, the
best involutive S-box requires 24 linear operations and 12 non-linear operations,
and achieves Prdiff = 2−4 and Prlin = 2−2. Therefore, we need at least 16 active
S-boxes to have a secure cipher. Since we have 5 active S-boxes every 2 rounds
using a 8-bit L-box, this corresponds to roughly 6 rounds. In an 8-bit CPU, it
would require 72 non-linear operations, 144 XORs and 48 table look-ups.

Interestingly, we can see that the first option requires a total of 320 ele-
mentary operations, to be compared with only 264 ones for the second one. By
contrast, the first option has a reduced number of non-linear operations, which
will gradually dominate if a masked implementation with large number of shares
is considered. While somewhat specific, this example confirms the trend already
observed in [20] that the ratio between the amount of linear and non-linear oper-
ations increases in block ciphers that are easier to mask. Besides, it also shows
that a small L-box can activate a larger proportion of the S-boxes, but these
larger S-boxes are generally more expensive (if they are selected to have good
cryptographic properties). In this 64-bit comparison, the two effects are of sim-
ilar magnitude, but the conclusion is of course dependent on the block cipher
size and on the knowledge we have about large bitslice S-boxes and L-boxes.
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Algorithm 1. LS-design with l-bit L-boxes and s-bit S-boxes (n = l · s)
x ← P ⊕ K; � x is a s × l bits matrix
for 0 ≤ r < Nr do

for 0 ≤ i < l do � S-box Layer
x[i, �] = S[x[i, �]];

end for
for 0 ≤ j < s do � L-box Layer

x[�, j] = L[x[�, j]];
end for
x ← x ⊕ K ⊕ C(r); � Key addition and round constant

end for
return x

3 LS-designs Specifications

Following the previous section, we can define LS-designs as the family of block
ciphers specified in Algorithm 1. The description directly suggests simplicity and
regularity as one important advantage of such ciphers: instances can be charac-
terized by selecting a bitslice S-box S, an L-box L, a number of rounds Nr and
constants C(r). In the next sections, we will consider two 128-bit instances of
LS-designs in order to illustrate their security against cryptanalysis and good
implementation properties. The bit-size was chosen both because of the obser-
vations in [49] and in order to be comparable with NOEKEON (which is among
the best ciphers published so far for efficient bitslice representation).

Involutive instance (Robin). We take the S-box denoted as “MISTY + Class13”
from Table 1 and the involutive L-box in Sect. 2.2. The cipher has 16 rounds and
constants are computed as [L(i) 0 . . . 0] with i the round index.

Non-involutive instance (Fantomas). We take the S-box denoted as “MISTY
+ 3/5-bit S-boxes” from Table 1 and the non-involutive L-box in Sect. 2.2. The
cipher has 12 rounds and uses the same constants as Robin.

4 Security Evaluation

We now investigate the security properties of LS-designs, trying to extract gen-
eral conclusions that apply to our family of ciphers in the first place. For con-
creteness, we will also consider more specific claims related to the aforementioned
instances. In this respect, we note that Robin and Fantomas were specified with
slightly different goals. Namely, the first one aims to have security margins simi-
lar to NOEKEON, while the second was mainly defined in order to illustrate the
impact of choosing involutive components with respect to the efficiency limits
that can be expected with LS-designs. Note that we aim for single-key security
in both cases (i.e. exclude related-key and chosen key attacks from our claims).
In particular, there is a simple related-differential with a single active S-box per
round if the state difference can be corrected using a key difference.
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4.1 Security Against Linear and Differential Cryptanalysis

As explained in Sect. 2.2, the structure of the cipher gives a simple upper bound
on the maximum probability of differential characteristics, and the maximum
bias of linear trails. Any two-round trail activates at least B(L) S-boxes, and
this gives the following bounds for any 2r-round trail:

Prlin(2r) ≤ Prmax
lin (S)r·B(L), Prdiff(2r) ≤ Prmax

diff (S)r·B(L). (1)

With the parameters of Sect. 3, this gives:

Prlin(2r) ≤ 2−16·r, Prdiff(2r) ≤ 2−32·r.

Such bounds prevent simple linear and differential attacks based on a trail over
more than 8 rounds. We use 16 (resp. 12) rounds in Robin (resp. Fantomas), so
as to have a good (resp. less conservative) security margin. We now study the
tightness of these bounds, and how to build optimal differential/linear trails.

Product Trails for Robin. To study differential and linear trails, we first con-
sider a set of special states that can be written as the tensor product of an s-bit
vector (corresponding to the S-box input and denoted with Greek letters) and an
l-bit vector (corresponding to the L-box input and denoted with Latin letters):

α ⊗ x =

⎡
⎢⎢⎢⎢⎢⎣

α0x0 α0x1 α0x2 α0x3 α0x4 · · · α0xl

α1x0 α1x1 α1x2 α1x3 α1x4 α1xl

α2x0 α2x1 α2x2 α2x3 α2x4 · · · α2xl

...
...

. . .
...

αsx0 αsx1 αsx2 αsx3 αsx4 · · · αsxl

⎤
⎥⎥⎥⎥⎥⎦

.

For those states, the S-box layer and the L-box layer act independently:

S − layer(α ⊗ x) = S(α) ⊗ x, L − layer(α ⊗ x) = α ⊗ L(x).

Hence we have the same behavior for differences and for linear masks. Namely,
we can build differential characteristics (resp. linear trails) where the differences
(resp. selection masks) are written as tensor products. In particular, if L[x] = y,
and α � β with probability p through the S-box, then x ⊗ α � y ⊗ β through
one round with probability p|x|, where |x| denotes the Hamming weight of x.

When the cipher is built as an involution, we further have β � α with
probability p, and L[y] = x, hence y ⊗ β � x ⊗ α through one round with
probability p|y|, giving an iterated two-round trail (as illustrated with a toy
example in Fig. 2). If α, β, x, and y are chosen optimally, this path reaches the
security bound of Eq. (1), hence showing that the bound is tight. Using the
parameters of Robin, optimal choices of α and β give p = 2−4, while optimal
choices of x and y give |x| + |y| = 8. This directly leads to a two-round iterated
differential characteristic with probability 2−32 (or 2−128 for 8 rounds), and a
two-round iterated linear trail with bias 2−16 (or 2−64 for 8 rounds).
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SB LB SB LB

x ⊗ α
p=2−2

x ⊗ β y ⊗ β
p=2−6

y ⊗ α x ⊗ α

Fig. 2. Toy example of product trail for an involution-based 32-bit cipher, with α =
0110, β = 1101, x = 00100000, y = 11000101, Pr[α � β] = 2−2.

Truncated Differentials. Since the L-layer and the S-layer operate indepen-
dently on product states, there are many trails with the same active S-boxes but
with different inputs and outputs. As long as all the S-boxes in a round have
the same output difference, the state is a product state, and all these differences
contribute to the same truncated trail. The space of such product states is quite
small and we can search exhaustively for the best truncated differential using
product trails. We note that there could be better truncated trails but it seems
that the product trails are dominant when we consider an involution.

For Robin, the best truncated trails start with a single active S-box, and have
alternatively 1 and 7 active S-boxes. A round with a single active S-box has a
probability one (to follow the truncated trail), and a round with 7 active S-boxes
has a probability of 2−28.5 if the input difference is random (if it comes from
a previous round, the probability is slightly skewed). The best such trails for 8
and 9 rounds have a probability of 2−112.1, while the best trails for 10 and 11
rounds have a probability of 2−139.8. These results can be used in a truncated
differential attack as follows. If one takes a pair of states with a single active
S-box, there will be a single active S-box (the same one) after 9 rounds with
probability 2−112. By using a structure of 256 plaintexts with 120 bits set to
a fixed value and the last S-box input taking all possible values, we obtain 215

different pairs with a single active S-box. This gives 2112 input pairs if we collect
297 such structures, and we expect one pair with only one active S-box in the
output. Since such events only happen with probability 2−120 with a random
function, we don’t expect any false positive after 2112 pairs. As a result, we have
a distinguisher for 9 rounds with a cost of 2104. We additionally expect that this
distinguisher can be extended to a few more rounds using partial decryption.

From Involutive to Non-involutive Components. If we do not restrict the
design to involutive S- and L-boxes, we can hope that the bound given by Eq. (1)
will not be tight. More precisely, we expect that there should not be any trail
reaching the minimal number of active S-boxes with the optimal probability for
every S-box transition. For this purpose, we first count the number of active
S-boxes for truncated trails. That is, for each state we only care about which
columns are non-zero and build all the possible transitions. In this context,
it is important to note that a truncated input to the diffusion layer can give
several different truncated outputs, and does not necessarily behave linearly. For
instance, if we start from 00101000, we have to consider five possible transitions:

L[00101000], L[00100000] ∨ L[00001000], L[00101000] ∨ L[00100000],
L[00101000] ∨ L[00001000], L[00101000] ∨ L[00100000] ∨ L[00001000].
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More generally, the possible transitions are of the following form:

x0 ∨ x1 ∨ . . . ∨ xl � L[x0] ∨ L[x1] ∨ . . . ∨ L[xl]

Non-linear transitions will usually lead to states with more active columns,
but the extra degrees of freedom from the non-linearity allow better trails than
the product trails with only linear transitions. For l = 8, we ran an exhaustive
search over all L-boxes with branch number 5, and found that the best ones
give trails with at least 53 active S-boxes for 16 rounds (rather than 40 active
S-boxes when L is an involution). For l = 16, building all the possible transitions
for a fixed L-box is already a hard problem, so we cannot test many different
L-boxes. We ran a randomized search by permuting the lines and columns of the
RM(2, 5) systematic generator used in Sect. 2.2. The best non-involutive L-box
we found (given in Sect. 2.2) gives truncated trails with at least 64 active S-boxes
over 12 rounds. More precisely, we can compute the minimum number of active
S-boxes with an involutive L-box and our best non-involutive L-box as:

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Involutive 1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64

Non-involutive 1 8 12 20 24 30 34 40 46 52 58 64 68 74 80 86

If we consider a 64-bit cipher with l = 16 and s = 4, we can go further in the
analysis and find the best differential trails with completely instantiated differ-
ences. We expect that this will again improve the upper bound on the probabil-
ity of trails, because in general it is not possible to select a specific difference so
that all S-box transitions have maximal probability. We ran this search using an
A∗ algorithm [24], with some additional ideas from Matsui’s branch-and-bound
algorithm [35]. We used the best truncated trails as heuristic estimate for future
path-cost in A∗, and refined it by computing the best trails with increasing num-
bers of rounds. Once we know the probability of the best instantiated r-round
trail, we update the heuristic if some truncated r-round trails were expected
to have a higher probability. Doing so, we found that some choices of L-box
and S-box give 6-round trails with probability at most 2−64 and 8-round trails
with probability at most 2−90 (the candidate L-box in Sect. 2.2 together with
S-box S = {6, 1, 0, 7, E, 4, F, D, 5, B, 2, C, 3, 8, A, 9} is an example). These values
should be compared with 2−48 (resp. 2−64) if L and S are restricted to involu-
tions, and to the previous bound of 2−56 (resp. 2−80) for the same components
using the analysis with truncated trails. This indicates that LS-designs based on
involutive components require about 4/3 as many rounds as with non-involutive
components to reach a similar security level for these parameters (l = 16 and
s = 4). The computation took several days and dozens of gigabytes of RAM.
We believe it gives a good indication about the relative security of involutive vs.
non-involutive ciphers that should also be valid with larger S-boxes, even though
we cannot run the search for optimal trails with l = 16 and s = 8 in practice.
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Application to Fantomas. Using our search for truncated trail, we have found
the following bounds for linear and differential trails on Fantomas:

Prlin(6) ≤ 2−56, Prdiff(6) ≤ 2−112,

Prlin(7) ≤ 2−68, Prdiff(7) ≤ 2−136.

These bounds imply that simple linear and differential attacks on Fantomas can
only work with trails over 6 rounds or less, and we have a security margin of
6 rounds. We expect that this bound is not tight, as shown by our analysis of
instantiated trails on a 64-bit LS-design (but we cannot run a similar analysis
on Fantomas in practice). In addition, we note that the best attack on Robin is
based on a truncated differential corresponding to several simple trails, but this
effect will be quite limited for Fantomas because optimal trails do not have the
strong structure of product trails (on 6 rounds, the best truncated differential
using a collection of product trails has a probability of 2−117).

Impossible Differentials. We finally searched for a class of impossible differ-
entials where we do not use the S-boxes properties, i.e. we only considered which
S-boxes are active at each round, and we used the possible transitions of the lin-
ear layer combined with the fact that the S-box is a bijection. This search is
similar to the search for truncated trails described above, and the hardest part
is again to build all the possible transitions through L operations. We found
that the longest impossible differential for Robin and Fantomas (in this class)
only spans three rounds. For Robin, there are are 48420 impossible input-output
patterns, an example is given by 0000000000000001 �� 000000000000010. For
Fantomas, there are 35951 impossible differentials, an example is given by
0000000000000001 �� 000000000000001. We can compare this result with sim-
ilar results on the AES. The best known impossible differential is in this class
of impossible differentials and spans four rounds. Since our diffusion layer mixes
all the 16 S-box input every round, it makes sense to have shorter impossible
differentials.

4.2 Generic Attacks Against Even-Mansour Ciphers

In 1991, a simple block cipher design was proposed by Even and Mansour, using
only one permutation and two different key values [19]. It was later revisited
in [19] and extended towards key-alternating ciphers by using n permutations
and n + 1 key values. One special case of such ciphers is the Single-key Even-
Mansour (SEM) scheme, which is defined by using n permutations together
with one key. Due to their simplicity, these designs have attracted the attention
of several cryptanalysts, and various published results apply to their generic
versions [12,17,18] or particular instances such as LED or Zorro [23,27,37,38].

Since LS-designs correspond to SEM schemes, we discuss the applicability of
these previous results to our case study. In particular, and although we do not
claim security against related-key and chosen-key attacks, we briefly look at these
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Fig. 3. Three-round related-key characteristic for LS-designs.

adversarial scenarios in a generic manner. Starting with chosen-key differentials,
the attacker can not only control the n-bit input value but also the n-bit key
value. As a result, the number of freedom degrees he has is doubled (to 2n)
compared to the standard differential cryptanalysis. We know from Sect. 4.1
that the best differential characteristics for LS-designs have probability:

Prdiff(2r) ≤ Prmax
diff (S)r×B(L).

Therefore, it is possible to mount an attack for 2r rounds if 2−2n ≤ Prdiff(2r).
Taking the example of Robin, the best 2-round characteristic has probability
2−32 and the number of freedom degrees equals 256. Thus, in the worst case it
could be possible to attack 8 · 2 = 16 rounds by using all degrees of freedom.
Similar observations can be made in the related-key setting. Namely, by applying
the results from [38], the best differential characteristic over two rounds can be
extended to three rounds for LS-designs (as represented in Fig. 3). Hence, the
required number of rounds to achieve n-bit security will increase by 50%.

4.3 Algebraic Attacks

In algebraic cryptanalysis, a cipher is expressed as a large system of non-linear
equations (typically over GF (2)) and a solution for the system is searched.
Although it is possible to describe any algorithm in terms of multivariate equa-
tions, solving them is an NP-hard problem already for quadratic ones. The pre-
cise complexity of algebraic cryptanalysis is difficult to evaluate and security
against these attacks is usually argued by exhibiting the size and number of
unknowns in the systems, together with a reasoning about the cipher’s algebraic
degree.

S-boxes in LS-designs can be described in the same number of equations as
the number of non-linear gates. Let e denote the number of non-linear gates, l
denote the size of the L-box and Nr by the number of rounds. Then, the entire
system for a fixed key LS-design consists of (Nr ·e ·128/l) quadratic equations in
(Nr · 128 · 2) variables. That leads to 3072 equations in 4096 variables for Robin
and 2112 equations in 3072 variables for Fantomas (the AES has 6400 equations
in 2560 variables). We expect these numbers to be sufficient for both instances to
be secure against algebraic attacks, in view of the time and memory complexities
needed to solve small-scale AES variants presented in [10]. As for the algebraic
degree, we used the work [8] to compute the cumulative algebraic degree in
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function of the number of rounds. This algebraic degree reaches maximum after
five rounds for both Robin and Fantomas, in which case a partition of size 2127

is required to construct zero-sum distinguishers. More precisely, we have:

# of rounds 1 2 3 4 5 6 7 8

Robin 6 36 112 125 127 127 127 127

Fantomas 5 25 110 125 127 127 127 127

4.4 Other Cryptanalyses

We use round constants to make all rounds different and prevent slide attacks [6]
(that are based on the self-similarity of the round function). Rotational crypt-
analysis [30] is a powerful technique against Addition-Rotation-XOR (ARX)-
based block ciphers. But the application of S-box operations in LS-designs makes
this attack unlikely to succeed. Integral cryptanalysis or square attacks [13] are
primarily purposed for word-oriented ciphers but can be adapted to bitslice
ones. Our analyses suggest that up to 4 rounds of Robin or Fantomas can be
targeted in this way (which also leaves comfortable security margins). Even-
tually, boomerang attacks [50] assume that we can find two characteristics for
(2·r1+1) and (2·r2+1) rounds in the target algorithms. By using Eq. (1), we can
approximate these probabilities as Pr(2 · r + 1) ≤ Prmax

diff (S)r×B(L)+1. Hence, the
probability of a boomerang distinguisher becomes Prmax

diff (S)2·((r1+r2)×B(L)+2),
which must be better than 2−n. Setting the parameters of Robin or Fantomas in
this equation, we find 2(r1 + r2) + 2 < 5.5 and the attack works for at most five
rounds. Therefore, boomerang attacks should not a concern for LS-designs.

5 Performance Evaluations

The main objective of LS-designs is to allow efficient and secure software imple-
mentations for 8-bit micro-controllers. Therefore, we first report on the per-
formances of protected implementations of Robin and Fantomas on an Atmel
ATmega644p micro-controller, together with the AES, Zorro, PICARO and
NOEKEON3. The results in Fig. 4 (given for different number of shares in the
masking scheme) show that the performances of Robin and NOEKEON (both
involutive ciphers) are remarkably close. They confirm that bitslice ciphers opti-
mized for Boolean masking allow more efficient implementations that previously
obtained, e.g. with the AES, Zorro or PICARO. They also illustrate the addi-
tional gains that can be obtained by considering non-involutive components (e.g.
with Fantomas). Combined with a highly regular design, with all operations
operating on well-aligned 8-bit data, we believe this evaluation supports the
conclusion that LS-designs are promising ciphers for side-channel resistance.
3 LED and PRESENT have the same number of non-linear gates, but encrypt only

64-bit. So we do not expect them to bring improvements in our masked setting.
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Besides, we also found that LS-designs are very efficient on desktop CPUs
with large SIMD units, at least for unprotected implementations. Taking the
example of Fantomas in counter mode, we can evaluate several inputs in parallel
and use the full width of SIMD units. Let us describe in more details an imple-
mentation using SSSE3 instructions with 128-bit registers. We will compute 16
instances of Fantomas in parallel (with 16 different plaintexts), using 16 SSE reg-
isters, every register containing one byte from each copy of Fantomas (8 registers
for the high order bytes, and 8 other registers the low order bytes). The S-box
layers compute two sets of 128 S-boxes in parallel, using 128-bit wide bitwise
operations; this takes 96 instruction. For the L-box layer, we use the pshufb
instruction as a 4-bit to 8-bit look-up table. The 16-bit L-box is decomposed
as eight 4-bit to 8-bit look-up tables and 6 XORs4; our implementation requires
280 instructions to compute 16 parallel linear layers (i.e. 128 16-bit L-boxes).
With these figures, our implementation of Fantomas runs at 6.3 cycles/byte (for
long messages) on a Core i7 CPU (Nehalem micro-architecture). Thanks to the
pshufb instruction, the L-box layer is not subject to cache timing attacks.

As a point of comparison, the bitsliced AES implementation of Käsper and
Schwabe [28] would take respectively 326 and 102 cycles for the same number of
S-boxes and linear layers (the full AES takes 6.9 cycles/byte on the same CPU –
this is the faster known implementation of AES of this CPU). On the one hand
our S-box is much easier to implement in a bitslice way than the AES S-box, since
it was one of our design goals. On the other hand, our linear-layer is optimized for
a table-based implementation, and more complex than that of the AES. It can
still be implemented rather efficiently, but it becomes the dominant factor in this
implementation. This shows that LS-designs can reach performances comparable

4 This can be reduced to seven table look-ups for Robin, thanks to the L-box structure.



LS-Designs: Bitslice Encryption for Efficient Masked 33

Table 3. Implementation results with a parallel mode for long messages.

Fantomas Robin AES

w/o AES-NI [28] w/AES-NI

ARM Cortex A15 14.2 18.1 17.8 N/A

Atom 33.3 43.5 17 N/A

Core i7 Nehalem 6.3 8.1 6.9 N/A

Core i7 Ivy Bridge 4.2 5.5 5.4 1.3

to the AES on high-end CPUs, excluding implementations using hardware AES
instructions (Table 3). We also expect reasonable performances on Atom or ARM
Cortex-A CPUs, which are used in some embedded systems and include a good
vector engine with a permutation instruction (SSSE3 and NEON, respectively).
Moreover, the latest Intel CPUs support 256-bit wide SIMD operation using
AVX2 operations; we expect that this will give even better performances5.

6 Open Problems

This paper introduces LS-designs as an interesting family of secure and efficient
block ciphers, with good properties for masked implementations. Since their
instantiation mainly depends on the selection of good S- and L-boxes, a natural
scope for further research is to find better such components, in particular for
large bit-sizes (e.g. 8-bit and more for S-boxes, 32-bit and more for L-boxes).
Improvements in these lines would directly lead to more optimized ciphers.

Besides, our current investigations mainly considered software implementa-
tions. But the efficient gate-level representation of Robin and Fantomas makes
them potentially suitable for hardware implementations as well. As a result, it
would be interesting to study their threshold implementations, and to compare
the resulting performances with other algorithms that are efficient in this setting,
such as NOEKEON again [39] or more recent designs like FIDES [5].
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A S-Boxes Cryptanalytic Properties

We consider the S-box S : F2n → F2n as a vector of Boolean functions S =
(f0, . . . , fn−1), fi : F2n → F2. For x ∈ F2n and u ∈ F

n
2 , the notation xu stands

for the product
∏n−1

i=0 xui
i , with the convention 00 = 1. The cardinality of a set

A, is denoted by #A. For two elements a, b ∈ F2n , we denote the dot product
as: a.b =

∑n−1
i=0 aibi. Hw(.) denotes the Hamming weight function.

Non-linearity. We use the Walsh transform and spectrum to evaluate the corre-
lation of a linear approximation (a, b) �= (0, 0). Their definitions are given below.

Definition 1. Walsh transform of a Boolean vector S:

WS(a, b) =
∑

x∈F2n

(−1)a.x+b.S(x).

Definition 2. Walsh spectrum of a Boolean vector S:

ΩS = {WS(a, b)|a, b ∈ F2n , (a, b) �= (0, 0)}.

The smaller is the maximum of ΩS , the stronger is the S-box regarding linear
cryptanalysis [34]. In particular, a value max(ΩS) for the Walsh spectrum of S
implies that its best linear approximation has probability Prlin = max(ΩS)

2n .

Differential profile. We similarly use the differential spectrum to evaluate the
resistance of an S-box against differential cryptanalysis [4].

Definition 3. Differential spectrum of a Boolean vector S:

ΔS = {#{X|S(X + a) = S(X) + b}|a, b ∈ F2n , (a, b) �= (0, 0)}.

The smaller is the maximum of ΔS, the strongest is the S-box regarding differ-
ential cryptanalysis. In particular, a value max(ΔS) for the differential spectrum
of S implies that its best differential has probability Prdiff = max(ΔS)

2n .
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Algebraic degree. Although the tools for analyzing algebraic attacks are not as
advanced as for linear and differential ones, the algebraic degree is generally
considered as a good indicator of security against them. Moreover, having a
non-maximal algebraic degree allows distinguishing a function from a random
one. For any Boolean function, the algebraic degree can be defined as follows.

Definition 4. Algebraic degree of a boolean function f . A Boolean function f
can be uniquely represented using its Algebraic Normal Form (ANF):

f(x) =
∑
u∈F

n
2

auxu.

The algebraic degree of f is defined as:

deg(f) = max
u∈F

n
2

{Hw(u), au �= 0} .

Definition 5. Algebraic degree of a Boolean vector S. The algebraic degree of a
vector is defined as the maximum degree of its coordinates:

deg(S) = max
0≤i<n

deg(fi).

B Secure Computation of Non-linear Operations

In this section, we use the notation ∈R F to mean that a value is chosen uniformly
in F and · denotes the non-linear operation of F, i.e. the field multiplication for
extensions of F2 and the AND operator for vector spaces over F2.

Algorithm 2. Non linear operation performed on two masked secrets x and y

Require: Shares (xi)i and (yi)i satisfying ⊕ixi = x and ⊕iyi = y.
Ensure: Shares (wi)i satisfying ⊕iwi = x · y.
1: for i from 0 to d do
2: for j from i + 1 to d do
3: ri,j ∈R F;
4: ri,j ← (ri,j ⊕ xi · yj) ⊕ xj · yi;
5: end for
6: end for
7: for i from 0 to d do
8: wi ← xi · yi;
9: for j from 0 to d, j �= i do

10: wi ← wi ⊕ ri,j ;
11: end for
12: end for
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1 Introduction

Pseudorandom functions (PRFs) are fundamental objects in symmetric cryp-
tography, which are frequently used in the construction of higher-level objects
like block ciphers, message authentication codes, and encryption. A PRF takes
as arguments a “key” and an input string of a particular length, and determin-
istically produces an output string of a particular (possibly different) length.
Informally, over the choice of a random (and secret) key that is used for all
inputs, a PRF cannot be efficiently distinguished from a truly random function
via adaptive oracle (i.e., “black-box”) access.

Constructions of PRFs have historically fallen into two broad classes: theo-
retically sound designs that admit security proofs under mathematically natural
intractability assumptions (e.g., [BM82,BBS86,GGM84,NR95,NR97,NRR00]),
and designs whose conjectured security is supported by the lack of any known
effective cryptanalytic attack (e.g., DES [NIS77], AES [DR02], and countless
others). Constructions of the latter type can be very fast and are dominant
in practice, but their internal complexity and lack of rigorous security reduc-
tions may increase their risk of succumbing to new kinds of attacks, especially
for very strong and subtle security notions like PRFs. And while theoretically
sound designs tend to be mathematically elegant, they have so far been far too
inefficient or otherwise impractical for real-world use.

Mathematical simplicity is sometimes viewed as a weakness in terms of
security, because underlying “structure” can sometimes be used as a lever for
non-trivial attacks. On the other hand, a number of recently proposed appli-
cations of PRFs, requiring properties such as efficient homomorphic evalua-
tion [ACPR13] or “key-homomorphism” [BLMR13], demonstrate that PRFs
with algebraic structure can deliver significant performance advantages over
those that lack such structure (in some cases offering an improvement of several
orders of magnitude; see for instance [ACPR13] vs. [GHS12,CCK+13]).

At the heart of these recent developments is a new class of candidate PRFs
constructed by Banerjee, Peikert and Rosen (BPR) [BPR12], which enjoy useful
algebraic structure, and may help to bridge the gap between theoretical sound-
ness and practical efficiency. The BPR constructions are based on the pseudo-
randomness properties of rounded subset-products in suitable polynomial rings.
BPR give evidence for the asymptotic security of their constructions, proving
them secure under well-studied hardness assumptions like “learning with errors”
LWE [Reg05,Pei09] and its ring variant ring-LWE [LPR10], and by implication,
worst-case problems on point lattices.

1.1 The SPRING Family of Pseudorandom Functions

One of the main constructions in [BPR12] is a class of PRF candidates that we
call SPRING, which is short for “subset-product with rounding over a ring.” Let
n be a power of two, and let R denote the polynomial ring R := Z[X]/(Xn +1),
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which is known as the 2nth cyclotomic ring.1 For a positive integer p, let Rp

denote the quotient ring

Rp := R/pR = Zp[X]/(Xn + 1),

i.e., the ring of polynomials in X with coefficients in Zp, where addition and
multiplication are modulo both Xn + 1 and p. (For ring elements r(X) in R
or Rp, we usually suppress the indeterminate X.) We often identify r ∈ Rp with
the vector r ∈ Z

n
p of its n coefficients in some canonical order. Let R∗

p denote
the multiplicative group of units (invertible elements) in Rp.

For a positive integer k, the SPRING family is the set of functions Fa,s :
{0, 1}k → {0, 1}m indexed by a unit a ∈ R∗

p and a vector s = (s1, . . . , sk) ∈ (R∗
p)

k

of units. The function is defined as the “rounded subset-product”

Fa,s(x1, . . . , xk) := S

(
a ·

k∏
i=1

sxi
i

)
, (1)

where S : Rp → {0, 1}m for some m ≤ n is an appropriate “rounding” function.
For example, BPR uses the rounding function �·�2 : Rp → R2 ≡ Z

n
2 that maps

each of its input’s n coefficients to Z2 = {0, 1}, depending on whether the coef-
ficient is closer modulo p to 0 or to p/2. (Formally, each coefficient b ∈ Zp is
mapped to � 2

p · b� ∈ Z2.)
It is proved in [BPR12] that when a and the si are drawn from appropriate

distributions, and p is sufficiently large, the above function family is a secure
PRF family assuming that the “ring learning with errors” (ring-LWE) prob-
lem [LPR10] is hard in Rp. This proof is strong evidence that the family has a
sound design and is indeed a secure PRF, at least in an asymptotic sense. The
intuition behind the security argument is that the rounding hides all but the
most-significant bits of the product a · ∏

i sxi
i , and the rounded-off bits can be

seen as a kind of “small” error (though one that is generated deterministically
from the subset-product, rather than as an independent random variable as in
the LWE problem). And indeed, (ring-)LWE and related “noisy learning” assump-
tions state that noisy products with secret ring elements are indistinguishable
from truly uniform values.

We stress that the known proof of security (under ring-LWE) requires the
modulus p to be very large, i.e., exponential in the input length k. Yet as dis-
cussed in [BPR12], the large modulus appears to be an artifact of the proof
technique, and the family appears not to require such large parameters for con-
crete security. Indeed, based on the state of the art in attacks on “noisy learning”
problems like (ring-)LWE, it is reasonable to conjecture that the SPRING func-
tions can be secure for rather small moduli p and appropriate rounding functions
(see Sect. 4 for further details).

1 It is the 2nth cyclotomic ring because the complex roots of Xn + 1 are all the 2nth
primitive roots of unity. The BPR functions can be defined over other cyclotomic
rings as well, but in this work we restrict to powers of two for simplicity and efficiency.
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1.2 Our Contributions

In this work we give two new, optimized instantiations of the SPRING PRF
family for parameters that offer high levels of concrete security against known
classes of attacks, and provide very high-performance software implementations.

Because we aim to design practical functions, we instantiate the SPRING
family with relatively small moduli p, rather than the large ones required by the
theoretical security reductions from [BPR12]. This allows us to follow the same
basic construction paradigm as in [BPR12], while taking advantage of the fast
integer arithmetic operations supported by modern processors. We instantiate
the parameters as various (but not all) combinations of

n = 128, p ∈ {257, 514}, k ∈ {64, 128},

which (as explained below in Sect. 1.3) yields attractive performance, and allows
for a comfortable margin of security. The choice of modulus p ∈ {257, 514} is
akin to the one made in SWIFFT, for a practical instantiation of a theoreti-
cally sound lattice-based collision-resistant hash function [LMPR08]. Also as in
SWIFFT, our implementations build on Fast Fourier Transform-like algorithms
modulo q = 257.

Working with small moduli p requires adjusting the rounding function S(·)
in the SPRING construction so that its output on a uniformly random element
of R∗

p does not have any noticeable bias (which otherwise would clearly render
the function insecure as a PRF). We use rounding functions of the form S(b) =
G(�b�2), where �·�2 : Rp → R2 is the usual coefficient-wise rounding function
that provides (conjectured) indistinguishability from a potentially biased random
function, and G : R2 → {0, 1}m for some m ≤ n is an appropriate post-processing
function that reduces or removes the bias. (In [BPR12], G is effectively the
identity function, because a huge modulus p ensures no noticeable bias in the
rounded output.)

For each value of the modulus p ∈ {257, 514} we have a different con-
crete instantiation, which we respectively call SPRING-BCH and SPRING-CRT.
These instantiations differ mainly in the computation of the subset-products in
R∗

p, and in the definition of the bias-reducing function G.

SPRING-BCH. In this instantiation, we use an odd modulus p = q = 257,
which admits very fast subset-product computations in R∗

q using Fast Fourier
Transform-type techniques (as mentioned above). However, because p is odd, the
usual rounding function �·�2 : Rp → R2 has bias 1/q on each of the output coeffi-
cients (bits). To reduce this bias, the function G multiplies the 128-dimensional,
1/q-biased bit vector by the 64 × 128 generator matrix of a binary (extended)
BCH error-correcting code with parameters [n,m, d] = [128, 64, 22], yielding a
syndrome with respect to the dual code. This simple and very fast “determin-
istic extraction” procedure (proposed in [AR13]) reduces the bias exponentially
in the distance d = 22 of the code, and yields a 64-dimensional vector that is
2−145-far from uniform when applied to a 128-dimensional bit vector of indepen-
dent 1/q-biased bits. However, this comes at the cost of outputting m = 64 bits
instead of n = 128, as determined by the rate m/n of the code.
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SPRING-CRT. In this instantiation, we use an even modulus p = 2q = 514, and
decompose the subset-product computation over R∗

2q into its “Chinese remain-
der” components R∗

2 and R∗
q . For the R∗

q component we use the same eval-
uation strategy as in SPRING-BCH, but for fast subset-products in the R∗

2

component we need new techniques. We prove that the multiplicative group R∗
2

decomposes into n/2 small cyclic groups, having power-of-two orders at most n.
We also give explicit “sparse” generators for these cyclic components, and devise
fast algorithms for converting between the “cyclic” representation (as a vector
of exponents with respect to the generators) and the standard polynomial one.
These tools allow us to transform a subset-product in R∗

2 into a subset-sum of
vectors of (small) exponents with respect to the generators, followed by one fast
conversion from the resulting vector of exponents to the polynomial it represents.

For rounding R∗
2q, we show that standard rounding of a uniformly random

element of R∗
2q to R2 directly yields n− 1 independent and unbiased bits, so our

function G simply outputs these bits. The main advantage over SPRING-BCH is
the larger output size (almost twice as many bits), and hence larger throughput,
and in the simpler and tighter analysis of the bias. On the other hand, we also
show that the CRT decomposition of R∗

2q can be exploited somewhat in attacks,
by effectively canceling out the R∗

2 component and recognizing the bias of the
rounded R∗

q component. Fortunately, for our parameters the best attacks of this
type appear to take almost 2128 bit operations, and around 2119 space.

We refer to Sects. 2 and 3 for further details on these instantiations, and to
Sect. 4 for a concrete security analysis.

1.3 Implementations and Performance

We implement the two variants of SPRING described above, both for standalone
evaluations on single inputs, and in a counter-like (CTR) mode that is able to
amortize much of the work across consecutive evaluations. For the counter itself
we use the Gray code, which is a simple way of ordering the strings in {0, 1}k so
that successive strings differ in only one position. Then when running SPRING in
counter mode, each successive subset-product can be computed from the previous
one with just one more multiplication by either a seed element or its inverse.
More precisely, we store the currently computed subset-product b := a

∏n
i=1 sxi

i .
(The Gray code starts with 0k, so the initial subset-product is simply a.) If the
next input x′ flips the ith bit of x, then we update the old subset-product to
b′ = b · si if xi = 0, otherwise b′ = b · s−1

i .
For the SPRING-CRT instantiation, which works in R∗

2q
∼= R∗

2 × R∗
q , we use

two methods for computing (subset-)products in the R∗
2 component. The first

uses the cyclic decomposition of R∗
2 as described above, and is the fastest method

we have found for computing a standalone subset-product “from scratch.” The
other method uses the native “carryless polynomial multiplication” (PCLMUL)
instruction available in recent Intel processors, and/or precomputed tables, for
single multiplications in the Gray code counter mode.
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We benchmarked our implementations on a range of CPUs with several differ-
ent microarchitectures. As a point of reference, we use the highly optimized AES
benchmarks from eBACS [eBA], and the bitsliced implementation for Käsper and
Schwabe [KS09]. We report our performances measures in Table 1, using high-
end desktop processors (Core i7), and small embedded CPUs found in tablets
and smart-phones (Atom and ARM Cortex). Even though the architectures of
those machine are quite different, our results are very consistent: in counter
mode, SPRING-BCH is between 8 and 10 times slower than AES (as measured
by output throughput), while SPRING-CRT is about 4.5 times slower than AES
(disregarding AES implementation with AES-NI when they are available). We
expect similar results on other CPUs with similar SIMD engines. Finally, we
mention that the very latest Intel CPUs (Haswell microarchitecture) include a
new 256-bit wide SIMD engine with support for integer operations (AVX2). We
expect that an AVX2 implementation of SPRING would run about twice as fast
on those processors, yielding very compelling performance.

Table 1. Implementation results for SPRING-BCH and SPRING-CRT with n = 128, in
both standalone and Gray code counter mode (CTR). Speeds are presented in processor
cycles per output byte, and are compared with the best known AES implementations.

SPRING-BCH SPRING-CRT AES-CTR

Standalone CTR Standalone CTR w/o AES-NI w/AES-NI

ARM Cortex A15 220 170 250 77 17.8 N/A

Atom 247 137 235 76 17 N/A

Core i7 Nehalem 74 60 76 29.5 6.9 N/A

Core i7 Ivy Bridge 60 46 62 23.5 5.4 1.3

1.4 Organization

The rest of the paper is organized as follows. We discuss the details of the
SPRING-BCH and SPRING-CRT instantiations in Sects. 2 and 3 respectively.
We follow by analyzing the concrete security of our instantiations against known
attacks in Sect. 4.1, expanding on one class of combinatorial attacks on SPRING-
CRT in Sect. 4.2. Finally, we present certain implementation details and code
optimizations in Sect. 5.

2 SPRING-BCH

Here we describe our first instantiation, SPRING-BCH, which works over R∗
q for

a suitable prime q, and uses a BCH code for reducing the bias of the rounded
subset-product.
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2.1 Fast Subset Product in Rq

Efficient operations in the ring Rq were given in prior work by Lyubashevsky
et al. [LMPR08] (following [Mic02,PR06,LM06]). They give a Chinese Remain-
der decomposition of this ring as Rq

∼= Z
n
q , for prime q = 1 (mod 2n), and gave

fast FFT-like algorithms for converting between (the standard polynomial rep-
resentation of) Rq and Z

n
q . In particular, the multiplicative group of units R∗

q

is isomorphic to (Z∗
q)

n. Since Z
∗
q is cyclic and of order q − 1, a subset-product

in Rq reduces to a subset-sum of n-dimensional vectors of exponents modulo
q − 1 (with respect to some generator of Z∗

q). Once the final vector of exponents
have been computed, the corresponding element in Z

n
q can be computed by table

lookups, and finally converted to its polynomial representation via the FFT-like
algorithm from [LMPR08].

2.2 Rounding via BCH Code

Since q is odd, the usual rounding function �·�2 : Rq → R2, when applied to a
random input in Rq, outputs a ring element in R2 whose (bit) coefficients are
independent and have bias 1/q. In this subsection we define a function G : R2 →
{0, 1}m that dramatically reduces this bias using a BCH code.

Definition 1 ([NN90]). The bias of a distribution X ∈ {0, 1}m with respect to
I ⊆ [m] is defined as

biasI(X) =
∣∣∣Pr

[⊕
i∈I

xi = 0
]

− Pr
[⊕

i∈I

xi = 1
]∣∣∣.

Let max-bias(X) denote the maximal bias of X over all nonempty I ⊆ [m].

Theorem 1 ([NN90]). Let X ∈ {0, 1}m be a random variable. Then

2 · Δ(X,Um) ≤
√

2m · max-bias(X)

where Δ(X,Um) denotes the statistical difference of X from the uniform distri-
bution on m bits.

Proposition 1 ([AR13]). Let G be a generator matrix of a binary linear code
with parameters [n,m, d], and let D ∈ {0, 1}n be a distribution of independent
bits such that bias{i}(D) ≤ ε for every i ∈ [n]. Then max-bias(G · D) ≤ εd.

From the above we get that when applied to a random input b ∈ Rq, the statisti-
cal distance of the distribution S(b) from uniform is at most (1/q)d

√
2m/2. Note

that in SPRING-BCH, we are actually applying G to �b�2 for a random unit
b ∈ R∗

q , in which case the coefficients of �b�2 are not quite independent. Since we
are anyway only heuristically modeling the subset-products as uniformly ran-
dom and independent, we believe that it is safe to heuristically assume that G
provides low bias in our instantiation.
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In terms of implementation, generator matrices of BCH codes over GF (2)
are preferable, since the rows of the matrix are cyclic shifts of a single row,
which facilitates fast implementation. We note that n is a power of 2, and any
BCH code over GF (2) is of length 2t − 1 for some integer t. To make the matrix
compatible with an n that is a power of two, we use the extended-BCH code,
which is obtained in a standard way by appending a parity bit to the codewords,
and increases the code distance d by one. We finally note that for our chosen
parameters n = 128,m = 64, the BCH code with parameters [127, 64, 21] and its
extension with parameters [128, 64, 22] have the largest known minimum distance
for these specific rates.

3 SPRING-CRT

We now describe our second instantiation, called SPRING-CRT, which uses
unbiased rounding on an even modulus of the form p = 2q, where q is an odd
prime as in the instantiation from the previous section.

By the Chinese Remainder Theorem, the natural ring homomorphism R2q →
R2 × Rq is a ring isomorphism, and moreover, there is an explicit map which
lets us convert back and forth between the two representations. Specifically, it
is easy to verify that the pair (b2, bq) ∈ R2 × Rq corresponds to

b = q · b̄2 + (q + 1) · b̄q (mod 2q) (2)

for arbitrary b̄2, b̄q ∈ R2q such that b̄2 = b2 (mod 2) and b̄q = bq (mod q). The
CRT isomorphism also induces a group isomorphism between R∗

2q and R∗
2 × R∗

q ,
and thus lets us represent the seed elements and their subset-products as pairs
in R∗

2 × R∗
q . We compute products in the R∗

q component as detailed in Sect. 2.1
above. In the following subsections, we define an unbiased rounding function
from R∗

2q to R2, and give fast algorithms for computing products in the R∗
2

component.

3.1 Unbiased Rounding of R∗
2q

We start by describing how the rounding function from R2q to R2 can be com-
puted directly from the Chinese remainder components (b2, bq) ∈ R2 × Rq of a
given b ∈ R2q. As above, let b̄q, b̄2 ∈ R2q denote arbitrary mod-2q representatives
of b2, bq. By Eq. (2) and the definition of the rounding function �·� : R2q → R2,

�b�2 =
⌊
q(b̄q + b̄2) + b̄q

⌉
2

=
⌊
(b̄q + b̄2) + b̄q/q�.

If we choose the coefficients of b̄q from [−q/2, q/2) ∩ Z, then each coefficient of
b̄q/q is in the interval [−1/2, 1/2), so

�b�2 = b̄q + b̄2 mod 2. (3)

Equivalently, the coefficient vector of �b�2 is the exclusive-or of the coefficient
vector of b̄2 and the least-significant bits of the coefficients of b̄q.
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In SPRING-CRT, we need an unbiased rounding function S from the unit
group R∗

2q
∼= R∗

2×R∗
q to R2. An element of R2, viewed as a polynomial, is a unit if

and only if the sum of its coefficients is odd. So for a uniformly random element
of R∗

2, any fixed choice of n − 1 coefficients (e.g., all but the constant term)
are uniformly random and independent, and the remaining one is determined.
Because of Eq. (3) above, any fixed choice of n−1 coefficients of b̄2 are uniformly
random and independent, over the random choice of b2 ∈ R∗

2 alone. Therefore,
we define our generalized rounding function on b ∈ R∗

2q to output a fixed n − 1
bits of �b�2 ∈ R2, which is perfectly unbiased.

Note that the above argument depends only on the random choice of the
R∗

2 component, and doesn’t use any of the randomness in the R∗
q component.

Using such an argument, n−1 independent and unbiased bits is the most we can
possibly obtain. Since the number of units in R∗

2q is exactly (q−1)n ·2n−1, which
is divisible by 2n, it seems plausible that there could exist a rounding function
that outputs n (nearly) unbiased bits given a random unit in R∗

2q, but so far we
have not been able to find such a function. The main difficulty seems to be that
the coefficients of the representative b̄q are noticeably biased modulo 2.

3.2 Fast Arithmetic in R∗
2

We now give an algebraic decomposition of the group R∗
2, and present fast algo-

rithms for performing subset-products and associated arithmetic operations.
The following theorem says that the unit group R∗

2 decomposes into the
product of several small cyclic components, having power-of-2 orders at most n.
Due to space constraints, a proof is deferred to the full version.

Theorem 2. Define g0,0 = 1+(1+x) and gi,k = 1+(1+x)2
i+k for 1 ≤ i < lg(n)

and odd k ∈ {1, . . . , 2i}. Then

R∗
2

∼= C
n/4
2 × C

n/8
4 × . . . × C1

n/2 × C1
n =

lg(n)−1∏
i=1

C2j−i−1

2i × Cn, (4)

with each gi,k being a generator of one of the Cn/2i cyclic components.

There are several ways of representing elements in R∗
2, which each allow

for certain arithmetic operations to be performed more or less efficiently. We
use the following three representations, the first of which is very good for fast
multiplication, and the last of which is used for rounding. (As we shall see, the
middle one is a convenient intermediate representation.)

1. Using the cyclic decomposition given in Theorem 2, we can represent an
element by its tuple of integer exponents with respect to the generators gi,k.
We call this the exponent representation.

2. We can represent elements in R2 by their vectors of Z2-coefficients with
respect to what we call the radix basis {(1+x)i}0≤i<n. (An element is in R∗

2

if and only if its coefficient for the basis element (1+x)0 = 1 is 1.) The name
of this basis arises from the fact that (1 + x)n = 1 + xn = 0 (mod 2), and
therefore the coefficients can be thought of as digits in the “radix” 1 + x.
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3. Finally, elements in R2 can be represented by their vectors of Z2-coefficients
with respect to the power basis {xi}0≤i<n, i.e., in the usual way as polyno-
mials in x.

We now give algorithms for efficiently converting from the exponent rep-
resentation to the power representation, using the radix representation as an
intermediary.

From exponents to radix basis. We first make a few useful observations about
the radix basis, and how powers of the generators gi,k look in this basis.

1. In the radix basis, multiplication by an element of the form (1 + x)j corre-
sponds to shifting the input’s coefficient vector j places (and discarding the
“top” j coefficients), since (1 + x)n = 0 in R2. Therefore, multiplication by
1 + (1 + x)j corresponds to taking the exclusive-or of the input’s coefficient
vector with that vector shifted by j positions.

2. For any j and �, we have that (1 + (1 + x)j)2
�

= 1 + (1 + x)j·2� ∈ R∗
2, since

the intermediate binomial coefficients
(
2�

i

)
for 0 < i < 2� are all even.

3. Raising any generator gi,k to half its order yields g
n/2i+1

i,k = 1 + (1 + x)j ,
where j = n/2 + (n/2i+1)k. Moreover, the product of any two elements of
this type, for n/2 ≤ j1, j2 < n, is

(1 + (1 + x)j1)(1 + (1 + x)j2) = 1 + (1 + x)j1 + (1 + x)j2 .

Thus, a subset-product of elements of this type can be computed as
∏

j∈I(1+
(1 + x)j) = 1 +

∑
j∈I(1 + x)j , for any I ⊆ {n/2, . . . , n − 1}.

Now let the exponent representation of some b ∈ R∗
2 be {ei,k}, where each

ei,k denotes the exponent of the generator gi,k. Write ei,k =
∑lg(n)−i−1

�=0 ei,k,� ·2�,
i.e., each ei,k,� is the �th bit of ei,k, and observe that

g
ei,k

i,k =
lg(n)−i−1∏

�=0

(
g2

�

i,k

)ei,k,�

, (5)

where we know by Item 2 above that g2
�

i,k = 1 + (1 + x)(2
i+k)·2�

.
We can now describe the algorithm that converts from exponent to radix rep-

resentation. We effectively decompose the given powers ei,k of gi,k according to
Eq. (5), which we can then compute by Items 1 and 2 above. We note that Item 3
lets us handle all the most significant bits of all the exponents very quickly in one
shot. (This yields a practical but not asymptotic improvement over handling these
bits more naively.) The precise details are given in Algorithm 1 below.

If the length of the coefficient vector is considered to be the word-size, then
apart from the most significant bits of the exponents (which are handled in
one word operation in total), the other bits are handled in one shift-and-XOR
operation each, which is a constant number of word operations each. Since the
exponents take n − 1 bits in total, the algorithm performs a total of O(n) word
operations. (Since each word is n bits long, the bit complexity of Algorithm 1 is
O(n2).)
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Algorithm 1. Algorithm to convert from exponent to radix representation
1: Input: Exponents ei,k ∈ [0, n/2i) for positive odd k < 2i when 0 < i < lg(n), and

k = 0 when i = 0. � Let ei,k,� denote the �th bit of ei,k.
2: Output: A bit vector b ∈ Z

n
2 representing the coefficients of b in the radix basis.

3: b ← (1, 0, . . . , 0) � Initialize the vector b to represent 1 ∈ R∗
2

4: for every valid (i, k) pair do
5: if ei,k,lg(n)−i−1 = 1 then
6: b[n/2 + k · n/2i+1] ← 1
7: end if
8: end for
9: for every valid (i, k) pair do

10: for � = (lg(n) − 2) − i down to 0 do
11: if ei,k,� = 1 then
12: b ← b ⊕ (b � ((2i + k) · 2�)) � The shift-and-XOR operation.
13: end if
14: end for
15: end for

From radix basis to power basis. For the second step, we have a bit vector b ∈ Z
n
2

representing some b ∈ R2 with respect to the radix basis, and wish to convert to
the power basis. We express b as follows:

b =
n−1∑
i=0

bi(1 + x)i =
n/2−1∑

i=0

bi(1 + x)i + (1 + x)n/2

n/2−1∑
i=0

bi+n/2(1 + x)i

=
n/2−1∑

i=0

bi(1 + x)i + (1 + xn/2)
n/2−1∑

i=0

bi+n/2(1 + x)i (6)

=

(
n/2−1∑

i=0

(bi + bi+n/2)(1 + x)i

)
+ xn/2

n/2−1∑
i=0

bi+n/2(1 + x)i (mod 2), (7)

where (6) follows from the fact that (1 + x)2
j

= 1 + x2j

(mod 2) (since
(
2j

i

)
is

even for every 0 < i < 2j), and n is a power of 2. Converting the n-bit vector b
therefore reduces to two conversions of n/2-bit vectors, namely, the top half of
b and the exclusive-or of the top and bottom halves of b. This directly yields
a simple divide-and-conquer algorithm to transform the coefficient vector b in
place, which is detailed in Algorithm 2 below. The number of bit operations
follows the simple recursive equation T (n) = 2T (n/2) + n/2, which solves to
T (n) = O(n log n).

4 Security Analysis

In this section we analyze the security of our construction against known classes
of attacks, and introduce new attacks specific to the structure of R2q.
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Algorithm 2. Algorithm to transform from radix basis to power basis of R2

1: procedure Radix-to-Power(b, f, �)
Input: array b, index f and length � � The initial call is made with f = 0 and � = n
Output: subvector b[f, f + � − 1] converted to power basis
2: if � > 1 then
3: for i = 0 to �/2 − 1 do
4: b[f + i] ← b[f + i] ⊕ b[f + �/2 + i]
5: end for
6: Radix-to-Power(b, f, �/2)
7: Radix-to-Power(b, f + �/2, �/2)
8: end if
9: end procedure

4.1 Overview of Known Attacks

The concrete security of the SPRING PRF for practical parameters is not well
understood, but to date there are no known attacks that nontrivially exploit the
internal subset-product structure. As discussed earlier, the SPRING construc-
tion follows the paradigm from [BPR12], which results in a PRF that is secure
against all efficient adversaries, assuming the hardness of the (ring-)LWE prob-
lem (appropriately parameterized). Informally, the ring-LWE problem asks the
adversary to distinguish many pairs (ai, bi) ∈ Rp × Rp, where each ai is chosen
uniformly and bi ≈ ai · s is its noisy product with a secret ring element s, from
uniformly random pairs. The BPR security reductions make two assumptions
that do not hold in our instantiations: (1) the parameter p is exponential in the
input length k of the PRF, and (2) the seed elements si are all “small” ring
elements in R; more precisely, they are drawn from the error distribution from
the underlying ring-LWE assumption. However, as we shall see in what follows,
relaxing these requirements do not appear to introduce any concrete attacks
against the function family.

For the sake of modeling certain attacks against SPRING, we can think of
it as a LWE-type learning problem. The difference here is that all ring elements
output by SPRING have rounding errors in them, whereas ring-LWE releases
the multiplicand a without any error. In this respect, attacking SPRING seems
potentially harder than attacking ring-LWE.

The main classes of attacks against noisy learning problems akin to LWE are:
(1) brute-force attacks on the secret, (2) combinatorial-type attacks following
[BKW03,Wag02,MR09], (3) lattice reduction attacks, and (4) algebraic attacks
following [AG11]. We consider each of these in turn. We note that the lattice and
algebraic attack strategies described below apply to (ring-)LWE with our parame-
ters. It is not clear whether these attacks will adapt to SPRING, where multipli-
cands are not known exactly, but to be conservative we assume that they might.
While most of these attacks take a prohibitively large amount of time and/or
space (more than 2200), one kind of birthday-type attack technique performs
reasonably well against SPRING-CRT. Even in this case, its running time is nearly
2128 bit operations and its space requirements are about 2119, when n = 128.
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Brute-force and combinatorial attacks. A brute-force attack involves searching
for a secret si ∈ R∗

p, or for the round-off terms in enough samples to uniquely
determine an si. The secret and round-off terms come from sets of size at least
(p/2)n, which is prohibitively large for all our parameters. Combinatorial (or
“generalized birthday”) attacks on noisy learning problems [BKW03,Wag02]
work by drawing an huge number of samples and finding (via birthday collisions)
small combinations that sum to lie in a small enough subgroup, then testing
whether the noise can be detected. This works for small error rates because the
small combinations still retain small error terms. In the case of SPRING-CRT,
this style of attack looks the most promising, and a concrete attack in this vein
is developed further in Sect. 4.2.

Lattice attacks. Lattice attacks on (ring-)LWE typically work by casting it as a
bounded-distance decoding (BDD) problem on a certain class of random lattices
(see for instance [MR09,LP11,LN13,vdPS13]). At a high level, the attack draws
a sufficiently large number L of samples (ai, bi) ∈ Rp × Rp, so that the secret
(in the LWE case) is uniquely determined with good probability. With error rate
1/2, we need L ≥ lg(p/2) by a simple information-theoretic argument. The attack
collects the samples into vectors a, b ∈ RL

p , and considers the “p-ary” lattice L
of dimension N = nL (over Z) corresponding to the set of vectors s ·a ∈ RL

p for
all s ∈ Rp. It then attempts to determine whether b is sufficiently close to L,
which corresponds to whether (ai, bi) are LWE samples or uniform. In our setting,
because the error rate 1/2 is so large, the distance from b to L (in the LWE case)
is nearly the minimum distance of the lattice, up to a constant factor no larger
than four (this is a conservative bound). Therefore, for the attack to succeed it
needs to solve BDD (or the shortest vector problem SVP) on L to within an very
small constant approximation factor. For the parameters in our instantiations,
the lattice dimension is at least N ≥ n lg(p/2) ≥ 896 (and likely more). For this
setting, the state of the art in BDD and SVP algorithms [CN11,LN13,MV10],
take time at least 20.48N ≥ 2430, and likely more. Moreover, the SVP algorithm
of [MV10], which appears to provide the best heuristic runtime in this setting,
as a most conservative estimate requires space at least 20.18N ≥ 2160.

Algebraic attacks. Finally, the algebraic “linearization” attack of Arora and
Ge [AG11] yields a lower bound on p for security. The attack is applicable when
every coefficient of every error term is guaranteed to belong to a known set
of size d; in our setting, d = p/2. The attack requires at least N/n ring-LWE
samples to set up and solve a dense linear system of dimension N , where

N =
(

n + d

n

)
≈ 2(n+d)·H(n/(n+d))

and H(δ) = −δ lg(δ)−(1−δ) lg(1−δ) is the binary entropy function for δ ∈ (0, 1).
Therefore, the attack requires time and space at least N2, which is at least 2384

for even the most aggressive of all our parameters.
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4.2 Birthday-Type Attack on SPRING-CRT

We now describe a specific birthday-type attack on SPRING-CRT, which exploits
the structure of the ring R2q. The main idea is to cancel out the R2 component
and to detect the bias in the remaining Rq component.

To do this, we first split the input x into two parts, as x = y‖z for y, z of cer-
tain lengths. Then the SPRING-CRT function (for simplicity, without dropping
a bit after rounding) can be written as

F (y‖z) = �a · Sy · Sz�2,

where Sy and Sz respectively represent the subset product of the keys si indi-
cated by the bits of y and z.

The basic goal in the attack is to try to find values y and y′ such that Sy = Sy′

mod 2. If we have two such values, then a ·Sy ·Sz = a ·Sy′ ·Sz mod 2 for any z,
so the R2 component of the output will be the same for the inputs y‖z and y′‖z.
By Eq. (3) in Sect. 3.1, this implies that in F (y‖z) ⊕ F (y′‖z), the respective R2

components cancel each other out. Since rounding of a uniform element in Rq

has a bias of 1/q in each coefficient, the bits of F (y‖z)⊕F (y′‖z) will be the sum
of two biased bits, i.e., the bias is 1/q2. This can be detected using q4/4 pairs of
output bits (with varying z).

If we repeat the test for 2n different choices of (y, y′), with high probability,
one choice satisfies Sy + Sy′ = 0 mod 2, and we would be able to detect the
bias by the method detailed above. (By contrast, the test would not detect such
bias in a truly random function, with high probability.) We can collect the data
for the attack with 2n/2 distinct choices of y and y′, each of them using q4/(4n)
values of z. This requires 2n/2 ·q4/(4n) queries and space, and a time complexity
of 2n · q4/2.

Generalizing the attack. We can generalize this analysis using y and y′ such
that (Sy + Sy′)2 = 0 mod 2. This implies that the Sy,2 + Sy′,2 is a multiple of
xn/2 + 1, where Sy,2 = Sy mod 2 and similarly for Sy′,2. Thus, ci and ci+n/2,
the coefficients of xi and xn+i/2 respectively in Sy,2 + Sy′,2, are the same. This
implies that if we XOR the lower and upper halves of F (y‖z) ⊕ F (y′‖z), we can
effectively remove the R2 component as above, and then can recognize the bias
in the Rq component. Since we sum four bits to remove the R2 component, we
reduce the bias, but a random pair y, y′ satisfies the condition with probability
2−n/2 instead of 2−n. This gives an attack with query and space complexity
2n/4 ·q8/(4n) and time complexity 2n/2 ·q8/4. This can be generalized further: if
we use y and y′ such that (Sy + Sy′)t = 0 mod 2 (for t a power of 2), we reach
a time complexity of 2n/t · q4t/(2t).

With q = 257 and n = 128, our best attack on SPRING-CRT (using t = 2)
has time complexity roughly 264+64−2 = 2126, and query and space complexity
roughly 2n/2 · q8/(4n) ≈ 2119.
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5 Implementation Details

The SPRING design is targeted for efficient implementation using SIMD instruc-
tions, and a well-optimized implemention allows us to reach throughputs that
are not too far from those of classical symmetric-key constructions.

SIMD instructions perform a given operation on multiple data in parallel.
Processors with a SIMD engine usually come with a set of dedicated registers,
which can contain a vector of integers or floating point data, and the SIMD
instruction set computes arithmetic operations in parallel on the vectors ele-
ments, e.g., addition, multiplication, bitwise operations, rotations, etc. as well
as some permutations of the vector elements. SIMD instructions were introduced
in personal computers to improve the efficiency of multimedia computations, and
are now very widely available. SIMD engines with 128-bit wide vectors are avail-
able on all desktop processors (SSE2 on x86/x86 64, Altivec on PowerPC, NEON
on ARM), and even on embedded platforms such as smart-phones and tablets,
with ARM Cortex-A or Intel Atom. Very recently, Intel has introduced AVX2,
with integer operations on 256-bit SIMD vectors.

We implemented the two instantiations of SPRING defined in Sects. 2 and 3.
SPRING-BCH involves a subset-product in R∗

q , followed by rounding and bias
reduction (using the BCH code), while SPRING-CRT involves a subset product
in R∗

2q followed by rounding. As described in Sect. 3.1, this can be implemented
as separate subset-products in R∗

2 and R∗
q , followed by an extraction of the least

significant bits in the R∗
q component and an exclusive-or with the R∗

2 compo-
nent. For each version, we have an implementation of the PRF with standalone
subset-products, and an amortized implementation in Gray code counter mode
where we just perform one ring multiplication before each rounding operation.
In the following subsections we explain how to efficiently implement the main
operations.

5.1 Computations in R∗
2

Subset-sum and conversion from exponent to power basis. We use the cyclic
decomposition of R∗

2 given in Theorem 2, and store the key in exponent repre-
sentation, so that the subset-product is a subset-sum of the exponents. A poly-
nomial in R2 (of degree less than 128) is represented by 32 one-bit indices, 16
two-bit indices, 8 three-bit indices, 4 four-bit indices, 2 five-bit indices, 1 six-
bit index, and 1 seven-bit index. We store all 64 indices as 8-bit integers, and
use SIMD instructions to compute the sum. Since all the cyclic groups have an
order that is a power of 2, we can use 8-bit additions, and remove the extra
bits at the end. The conversion to the power basis is done using Algorithms 1
and 2. Algorithm 2 is rewritten iteratively using shift, mask and xor instructions,
taking advantage of the inherent parallelism of bitwise operations, as shown in
Algorithm 3.
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Algorithm 3. Iterative version of Algorithm 2 using the parallelism of bitwise
operations
1: procedure Radix-to-Power(b)
Input: 128-bit vector b
2: b ← b ⊕ (b ∧ 0xffffffffffffffff0000000000000000) � 64
3: b ← b ⊕ (b ∧ 0xffffffff00000000ffffffff00000000) � 32
4: b ← b ⊕ (b ∧ 0xffff0000ffff0000ffff0000ffff0000) � 16
5: b ← b ⊕ (b ∧ 0xff00ff00ff00ff00ff00ff00ff00ff00) � 8
6: b ← b ⊕ (b ∧ 0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0) � 4
7: b ← b ⊕ (b ∧ 0xcccccccccccccccccccccccccccccccc) � 2
8: b ← b ⊕ (b ∧ 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa) � 1
9: end procedure

Polynomial multiplication. In counter mode, we found it more efficient to com-
pute a single ring multiplication directly than to use the exponent representation.

On recent Intel CPUs (starting from the Westemere architecture introduced
in 2010) and AMD CPUs (starting from the Bulldozer architecture introduced
in 2011), there is a carry-less multiplication operation, pclmulqdq, that com-
putes a 64-bit polynomial multiplication modulo two. This gives a very efficient
implementation of the R2 multiplication.

Alternatively, we take take advantage of the fact that one of the operands
is always a polynomial from the key (or its inverse). Therefore, we can see it as
a multiplication by a fixed element in R2, which is a linear operation. We can
precompute tables corresponding to this linear operation with 8-bit subsets of
the input range, and compute the full multiplication using n/8 table accesses
and xors.

More precisely, we precompute z · s for all polynomials z of degree less than
8, and we write a degree-128 polynomial z as z0 + x8 · z1 + · · · + x120 · z15, where
all the zi are of degree at most 7. Then we can compute z · s as (z0 · s) + x8 ·
(z1 · s)+ · · ·+x120 · (z15 · s), which requires only 16 table accesses, rotations, and
xors. This trick takes about 1MB of extra memory to store the tables, but this
is negligible on the platforms we target.

5.2 Computations in R∗
257

Following [LMPR08], we use the Chinese Remainder Theorem isomorphism of
the ring Rq

∼= Z
n
q when q = 1 (mod 2n) is prime. A product in Rq therefore cor-

responds to a component-wise multiplication of vectors in Z
n
q . Moreover, there

are fast FFT-like algorithms, often called “number theoretic transforms” (NTT),
for converting between the polynomial representation of Rq and the n-fold prod-
uct ring Z

n
q .

Subset-sum and conversion. Since the ring elements we multiply are all part
of the key, we can generate and store them as vectors in the product ring Z

n
q .

Moreover, since these elements are all unit, their entries in Z
n
q are non-zero, and
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we can actually store the discrete logarithms of the entries (with respect to some
generator of Z∗

q), so that the subset-product becomes a subset-sum.
Exponentiation by the final summed exponents can be implemented with a

simple table lookup. However, we found a slightly more efficient version using
vector permutation (pshufb in SSSE3) instructions as a 4-bit to 8-bit parallel
table lookup. We use the fact that ga+16×b = ga · (g16)b, where a and b are both
4-bit values, and we use 4-bit to 8-bit tables for gx and (g16)x.

Product and conversion. In Gray code counter mode, we do not use the expo-
nent representation, because a point-wise multiplication is more efficient than a
point-wise addition followed by exponentiations. This is because the point-wise
multiplication can be parallelized easily while the exponentiation requires either
serial table lookups, or a more complex sequence of SIMD operations.

NTT. The bottleneck of our function is the NTT computation, therefore we
have to optimize this part aggressively. In our implementation, we reuse the
code from the SIMD hash function [LBF08] which happens to use the same
parameters as the transformation needed in SPRING. The main tricks used in
this implementation are:

Representation of elements. Element in Z257 are stored as signed 16-bit words.
The choice of the modulus 257 allows an efficient implementation of the field
operations, because 257 is a prime and 256 = −1 (mod 257). Moreover, Z∗

257 is
a cyclic group of 256 elements, where the subset sum of the logarithms can be
computed with a simple 8-bit addition.

Reduction. We use (x&255) - (x>>8) to do a partial reduction modulo 257,
with the output in [−127, 383]. When a full reduction to a smaller range is
needed, we subtract 257 to values greater than 128 to reduce the range to
[−128, 128]. This can be performed completely with SIMD instructions and does
not require any division. We note that it is not necessary to perform a reduction
after each field operation, because we have some extra bits in a 16-bit word; we
have to study the NTT algorithm to find out where reductions are needed.

Multiplication. To compute a multiplication in Z257, we reduce both operands to
[−128, 128], and the result can be computed with a single 16-bit multiplication
without any overflow.

Using a two-dimensional NTT. Because SIMD instructions compute the same
operation on each element of the vectors, we do not use the classical radix-2 NTT
algorithm. Instead, we rewrite the one-dimensional NTT as a two-dimensional
one. In our implementation, we rewrite an NTT of size 64 as a two-dimensional
NTT of size 8×8. The input data is seen as a 8×8 matrix, and the computation
of the NTT64 is done in three steps:

– First we compute 8 parallel NTT8 on the columns of the matrix using a deci-
mation in time algorithm.
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– We multiply by the twiddle factors, transpose the matrix, and permute the
row and the columns following the bit reversal order.

– Then we compute 8 parallel NTT8 on the columns of the matrix using a
decimation in frequency algorithm.

The first and the last step are easy to parallelize with SIMD instructions because
they compute the same transformation on 8 independent inputs. Moreover, the
root of unity used in the NTT8 is 4, so the multiplications needed for the NTT8

are simply bit shifts. The transposition can be implemented using merge oper-
ations available on most SIMD instruction sets (e.g., punpcklwd/punpckhwd in
SSE).

For the 128-dimensional NTT, we reused the code of the NTT64, and we have
to perform an extra layer of butterfly operations and multiplications by twiddle
factors (we decompose the NTT128 as an NTT64 and a NTT2).

5.3 Reducing Bias with a BCH Code

After rounding the R257 computation output, we are left with a n-dimensional
vector over Z2, each element with a bias of 1/257. We apply the generator
polynomial of a BCH code in order to reduce the output’s bias. Specifically,
for the case of n = 128 we apply the extension using a parity bit on the BCH
code with parameters [127, 64, 21] in order to gain a generator for a code with
distance 22. Therefore, the whole computation is done using just a few shift and
xor instructions, and one final negate instruction. We use the BCH generator
polynomial

1 + x2 + x7 + x8 + x10 + x12 + x14 + x15 + x16 + x23 + x25 + x27 + x28 + x30 + x31

+x32 + x33 + x37 + x38 + x39 + x40 + x41 + x42 + x44 + x45 + x48 + x58 + x61 + x63

since it matches our desired code parameters and has a minimal number of
nonzero coefficients. The output is 64 bits which makes consecutive outputs easy
to maintain in a packed array of 64-bit words. We note that if the PCLMUL
instruction is available, we can apply the generator polynomial on 127 rounded
output bits immediately by xoring outputs of such two instructions.
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Abstract. Recent years have seen considerable interest in lightweight
cryptography. One particular consequence is a renewed study of meet-in-
the-middle attacks, which aim to exploit the relatively simple key sched-
ules often encountered in lightweight ciphers. In this paper we propose
a new technique to extend the number of rounds covered by a meet-in-
the-middle attack, called a match box. Furthermore, we demonstrate the
use of this technique on the lightweight cipher KATAN, and obtain the
best attack to date on all versions of KATAN. Specifically, we are able to
attack 153 of the 254 rounds of KATAN32 with low data requirements,
improving on the previous best attack on 115 rounds which requires the
entire codebook.

Keywords: Cryptanalysis · Meet-in-the-middle · Biclique · Match box ·
KATAN

1 Introduction

Over the past few years, ultra-lightweight embedded systems such as RFID tags
and sensor nodes have become increasingly common. Many such devices require
cryptography, typically for authentication purposes. However, traditional ciphers
such as AES were not primarily designed for use in this context. Highly con-
strained devices impose a very small hardware footprint; on the other hand,
they typically do not require a security level as high as that offered by AES.

To cater for this need, a number of lightweight ciphers have been developed,
such as PRESENT [5], KATAN [7], LED [9], or Simon [2]. These ciphers aim
to offer a trade-off between security and the constraints of embedded systems.
This is often achieved by innovative designs that look to push the boundaries
of traditional ciphers. The security of these new designs needs to be carefully
assessed; in this process, new cryptanalytic techniques have emerged.

In particular, there has been a resurgence in the study of meet-in-the-middle
attacks in the context of block ciphers [6,10]. This type of attack requires a fairly
simple key schedule, and is rarely applicable to traditional ciphers. However,
many lightweight ciphers rely on simple round functions and key schedules, which
are compensated by a high number of rounds. This makes them good targets for
meet-in-the-middle attacks.
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 61–81, 2015.
DOI: 10.1007/978-3-662-46706-0 4
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Our Contribution. In this paper, we propose a new way to extend meet-in-
the-middle attacks, which we call a match box. This technique may be seen as a
form of sieve-in-the-middle [8] or three-subset meet-int-the-middle attack [6], in
that it extends the rounds covered in the middle section of the attack. It does
so by relying on a large precomputed lookup table with a special structure. As
such, it is also a form of time/memory trade-off.

We demonstrate this technique on the lightweight block cipher KATAN. As
a result, we improve on previous results on all three versions of KATAN, both in
terms of number of rounds as well as data requirements. Of independent interest
is our construction of bicliques on KATAN, which takes full advantage of the
linearity of the key schedule, and improves on previous attacks with negligible
memory requirements

Related Work. Previous results on KATAN include a conditional differential
analysis by Knellwolf, Meier and Naya-Plasencia [11,12] and a differential crypt-
analysis of 115 rounds of KATAN32 by Albrecht and Leander [1]. In [10], Isobe
and Shibutani describe meet-in-the-middle attacks on reduced versions of all
three variants of KATAN. The attack that reaches the highest number of rounds
on all three versions is a multidimensional meet-in-the-middle attack by Zhu
and Gong [15]. However, this attack may be regarded as an optimized exhaus-
tive search, as it involves performing a partial encryption under every possible
value of the key.

Table 1 gives a summary of these results, including our own.

PT CTr1 r2

v

K1 K2

Fig. 1. Meet-in-the-middle attack.

2 Meet-in-the-Middle Attacks

2.1 Meet-in-the-Middle Framework

A meet-in-the-middle attack assumes that a few bits v of internal state may be
computed from a plaintext by using a portion K1 of the key; and that these same
bits v may also be computed from the corresponding ciphertext with a portion
K2 of the key. The attack uses one plaintext/ciphertext pair as follows (Fig. 1):
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Table 1. Summary of results.

Model Data Memory Time Rounds Reference

KATAN32 CP 222 - 222 78 [11]

KP 138 275 277 110 [10]

CP 232 - 279 115 [1]

KP 3 279.58 279.30 175 [15]

KP 4 25 277.5 121 Sect. 4.3

CP 27 25 277.5 131 Sect. 4.5

CP 25 276 278.5 153 Sect. 4.7

KATAN48 CP 234 - 234 70 [11]

KP 128 278 278 100 [10]

KP 2 279.00 279.45 130 [15]

KP 4 25 277.5 110 Sect. 4.3

CP 26 25 277.5 114 Sect. 4.5

CP 25 276 278.5 129 Sect. 4.7

KATAN64 CP 235 - 235 68 [11]

KP 116 277.5 277.5 94 [10]

KP 2 279.00 279.45 112 [15]

KP 4 25 277.5 102 Sect. 4.3

CP 27 25 277.5 107 Sect. 4.5

CP 25 274 278.5 119 Sect. 4.7

– For each partial key k∩ ∈ K∩ = K1 ∩ K2
1:

• For each partial key k1 ∈ K1 extending k∩, v is computed. For each
possible value of v, the k1’s leading to that value are stored in a table.

• For each partial key k2 ∈ K2, v is computed. The k1’s leading to this
same v are retrieved from the previous table. Each k2 merged with each
k1 leading to the same v provides a candidate master key.

The actual encryption key is necessarily among candidate keys. Indeed, for
the actual key, encryption from the plaintext and decryption from the ciphertext
are mirrors of each other, and agree on the intermediate value v. If we denote by
|v| the size of v, candidate keys form a proportion 2−|v| of the total key space.

In order to compute the actual encryption key, it remains to test candidate
keys against enough plaintext/ciphertext pairs to ensure only one key remains.
Each plaintext/ciphertext pair divides the number of candidates keys by 2|B|,
where |B| denotes the block size. Thus, in order to have only one key left,
�|K|/|B|� pairs are necessary on average, where |K| denotes the key size.

1 This notation assumes, for the sake of simplicity, that the key schedule is linear (cf.
Sect. 4.2). In general, the requirement is that once K∩ is guessed, the remaining
information in K1, and the remaining information in K2 should be independent.
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In the end, the attack complexity in number of encryptions is:

2|K∩| ·
(
2|K1−K∩| · r1

r
+ 2|K2−K∩| · r2

r

)
+

�|K|/|B|�−1∑
i=0

2|K|−|v|−i|B| (1)

where r1 is the number of rounds in the encryption direction, r2 is the number
of rounds in the decryption direction, and r = r1 + r2.

Simultaneous Matching. As we have seen, overall, meet-in-the-middle attacks
proceed in two stages: a key filtering stage that produces key candidates, fol-
lowed by a verification stage that tests the key candidates against a few plain-
text/ciphertext pairs. This division in two stages is reflected in the complexity
of the attack. The complexity of the first stage is determined mostly by the sizes
of K1 and K2; the complexity of the second stage depends only on the size of v
(for a fixed cipher).

Directly tweaking the size of v is one way to try and evenly spread the
load between the two stages. However, increasing v will often disproportionately
impact the sizes of K1 and K2. Simultaneous matching provides a very efficient
alternate way of increasing the size of v. The idea is to use n plaintext/ciphertext
pairs instead of just one. For each guess of K1 and K2, we concatenate the v’s
produced by each pair in order to have a larger global v, and use that for
matching, as before.

In other words, what we are doing is perform a standard meet-in-the-middle
attack, but on a cipher formed by n parallel applications of the basic cipher.
This increases only linearly the complexity of the first stage, while exponentially
decreasing the complexity of the second stage.

Indirect Matching. With the newfound interest in meet-in-the-middle attack
occasioned by lightweight ciphers, a number of techniques originally developed
for the cryptanalysis of hash functions have been adapted to meet-in-the-middle
attacks on block ciphers. A short survey of these techniques has already been
presented in, for example [14], and is out of the scope of this article. Still, we
briefly mention one of these techniques, namely indirect matching, as we will use
it later on KATAN. We also generalize this technique slightly.

In a regular meet-in-the-middle attack, some value v of the internal state is
computed from the left as e(k1) and from the right as d(k2), where e and d are
essentially a partial encryption and decryption. Keys are filtered by checking
e(k1) = d(k2). Now assume some key bit k in k1 only has a linear impact on the
value of e(k1), i.e. e(k1) = e′(k′

1) ⊕ k, where k′
1 is k1 minus the knowledge of k.

Then if knowledge of k is included in K2, the equality in the middle e(k1) = d(k2)
may be rewritten as e′(k′

1) = d(k2) ⊕ k = d′(k2). In this way, guessing k is
no longer necessary in the encryption direction, and the associated complexity
decreases accordingly.

Here, we assumed that k is included in K2, i.e. k is in K∩ since it is already
in K1. But we can get the same benefit even if k is in K1 − K∩: the only real
requirement is that it linearly impacts e(k1). To show this, the proof is a little
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more elaborate than in the previous case. Assume that k is in K1 − K∩, and
write e(k1) = e′(k′

1) ⊕ k as before.
Up to now, k1 together with k2 was assumed to contain knowledge of the

entire key. We guessed k1 from the left, then k2 from the right and matched
compatible guesses by checking e(k1) = d(k2). Instead, we are now going to
guess k′

1 from the left and k2 from the right, so the combination of the two does
not encompass the entire key (k is missing). Furthermore, all guesses of k′

1 and
k2 are compatible. However, for each pair of guesses, we set k = e(k′

1) ⊕ d(k2),
and the combination of k′

1, k2 and k gives us one candidate master key.
Thus, the number of candidate master keys is unchanged. However, we need

not guess k from the left, and the complexity of guessing k1 is reduced accord-
ingly. Thus the benefit is exactly the same as in the case where k belonged to K∩.
Note that we remain compatible with simultaneous matching: if we use several
plaintext/cipherext pairs, they all must agree on k, which yields the usual filter
on the candidate master keys.

3 Match Box

We now introduce the match box technique. This technique fits within the gen-
eral sieve-in-the-middle framework introduced in [8], which we recall here.

3.1 Sieve-in-the-Middle

Let us still denote by K∩ the information on the key common to K1 and K2;
furthermore, let K ′

1 (resp. K ′
2) be the proper part of K1 (resp. K2), i.e. the

part not already in K∩. In a standard meet-in-the-middle attack, a few bits of
internal state l are computed from the left by guessing k1 ∈ K1, then the same
bits r are computed from the right by guessing k2 ∈ K2. Valid key candidates
are determined by checking l = r.

However it would often be desirable to compute a few bits of information l
from the left and r from the right, and discriminate keys by checking R(l, r)
for some general relation R expressing that l and r are compatible. It arises
naturally if, say, l and r contain partial information about the internal state on
either side of an S-box. In that case, R(l, r) holds iff there exists an input/output
pair of the S-box such that the input extends l, and the output extends r (Fig. 2).

When applying this idea, the following problem arises. Once having guessed
k∩ ∈ K∩, the natural way to proceed would be to compute l and r for each
k′
1 ∈ K ′

1 and k′
2 ∈ K ′

2 respectively, and exhaustively test R(l, r) for every pair
(k′

1, k
′
2). However, this would amount to a brute force search since K∩ ×K ′

1×K ′
2

is in fact the entire key. It should be noted that there is no completely general
solution to this problem, since R does need to be tested for every pair (l, r)
yielded by every (k′

1, k
′
2).

In the sieve-in-the-middle paper, this issue is solved by using merging algo-
rithms originally introduced in [13]. These algorithms tend to assume, roughly,
that the size of l is less than the size of K ′

1 (divided by a sieving factor).
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K1 K2 K1 K2match ?

l r

l r

l r

l r

l r

l = 1

l = 0

r = 1

r = 0

B. ExhaustiveA. Standard

Fig. 2. Comparison of standard and exhaustive matching.

We refer the reader to [8] for a complete explanation of merging techniques.
What we propose is a different way of matching l and r while avoiding exhaus-
tive search, which we call a match box.

3.2 Match Box

As we have mentioned in the previous section, the aim of the match box technique
is to find compatible partial keys k1 and k2, such that the corresponding l and
r satisfy a relation R. The idea is to move the computation of R outside of
the loop on K∩. In order to do this, we anticipate and precompute all possible
matchings between l and r. We start with an example.

Consider the situation depicted on Fig. 3. Here, l contains some partial infor-
mation l′ about the internal state entering an S-box. At the output of this S-box,
some round key is added, and r contains the entire state after the key addition.
Now assume that the round key may be decomposed as a sum of some f1(k′

1)
depending on k′

1 ∈ K ′
1, and some f2(k2) depending on k2 ∈ K2. Note that

this is automatically true if the key schedule is linear. Since K2 is known when
computing from the right, the component f2(k2) may be directly added into r.

So in this situation, l = (l′, k′
1) and r are compatible iff S−1(r ⊕ f1(k′

1))
equals l′ (wherever l′ is defined). If r is larger than k′

2, since k′
1 is included in l,

S

rl′

⊕

⊕K

K1 K2

Fig. 3. A typical situation where a match box can apply.
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l is also larger than k′
1, and a merging technique in the style of [8] cannot apply.

However, a match box is possible.
In general, assume that l = (l′, k′

1) contains the partial key k′
1 ∈ K ′

1 plus
some extra bits of information l′, and r is as before. In order to anticipate all
possible computations in the middle, we consider the function f : k′

1 �→ l′ as a
whole. For each value of this function, and each value of r, we can precompute
a list of the k′

1’s leading to l′’s such that l′, k′
1, and r are compatible. Formally,

let us denote by L′ the set of values of l′, and by R the set of values of r. Then
we precompute the following table, which we call a “match box”:

M : L′K′
1 → K ′R

1

f �→ (
r �→ {k′

1 : R(l, r)})with l = (k′
1, f(k′

1))

This table takes as input a function f : K ′
1 → L′, and produces as output

the function that to each r associates all compatible k′
1’s. Once this table has

been precomputed, the attack proceeds as follows:

– For each k∩ ∈ K∩:
• For each k′

1 ∈ K ′
1, l

′ is computed. This yields a function f : K ′
1 → L′,

from which we obtain M(f).
• For each k′

2 ∈ K ′
2, r is computed. Candidate master keys are those corre-

sponding to the pairs (k′
1, k

′
2) for each k′

1 in M(f)(r).

The main limitation of this technique is the size of the table, which is approx-
imated by:

2|l′||K′
1|+|r|+|K′

1|

In particular, the size of K ′
1 (in terms of number of bits) must be exponentially

small compared to the size of K. This is not surprising, since we are moving all
computations of R outside of the loop on K∩: this constraint expresses the fact
that there must be less possible situations in the middle than the size of the
loop, otherwise we gain nothing.

3.3 Compressing R
Looking more closely at the example in the previous section, the natural way to
write R is in the form: ⎧⎪⎪⎨

⎪⎪⎩

l′1 = f1(k′
1, r)

l′2 = f2(k′
1, r)

. . .
l′|l′| = f|l′|(k′

1, r)

(2)

where the fi’s are boolean functions.
In this situation, each fi is a boolean function of k′

1, so it may be written as a
polynomial in the bits of k′

1. As such, each fi can be fully expressed by no more
than 2|k′

1| coefficients (fn
i )

n<2|k′
1| . This is beneficial as long as |l′| · 2|k′

1| < |r|,
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i.e. there are less fn
i ’s than bits of r. In this manner, r is effectively shortened

to |l′| · 2|k′
1|.

The only limit is the size and complexity necessary to build the table con-
verting r into the fn

i ’s. Note that in general, r is more or less a set of internal
state bits, with potentially some partial keys added in; so computing r and the
fi’s is akin to a partial encryption. In that case, for a given r, the fn

i ’s can
be indirectly computed by evaluating the fi’s for all values of k′

1. In this way,
for each r and each i, the value of the fn

i ’s can be computed in at most 2|k′
1|

encryption equivalents.

4 Application to KATAN

KATAN is an ultra-lightweight block cipher presented by Christophe de Cannière,
Orr Dunkelman and Miroslav Knežević at CHES 2009 [7]. Its design is inspired
by the stream cipher Trivium, and relies on two nonlinear feedback registers.
This is rather unique for a block cipher, and makes the cryptanalysis of KATAN
especially interesting, since it indirectly evaluates the strength of this type of
design.

In [7] the authors describe two families of block ciphers, KATAN and KTAN-
TAN, which only differ in their key schedule. In KATAN, the key is stored in a
register, while in KTANTAN, it is hardcoded into the circuit. The trade-off is
that while the key cannot be modified, the circuit area is significantly reduced
by avoiding the need for a register dedicated to the storage of the key. However,
KTANTAN been broken [6,14], mostly due to weaknesses in its key schedule.
Hereafter we focus solely on KATAN.

4.1 Description of KATAN

KATAN is a family of three block ciphers with block sizes 32, 48, and 64 bits,
denoted by KATAN32, KATAN48, and KATAN64 respectively. In all cases the
key size is 80 bits, and the total number of rounds is 254. We begin by giving a
brief description of KATAN32. KATAN48 and KATAN64 are very similar, as we
shall see. We refer the reader to [7] for more details about the design of KATAN.

Key Schedule. The master key is loaded into a 80-bit linear feedback register
(rk0, . . . , rk79), and new round keys are generated by the linear feedback relation:

rki+80 = rki ⊕ rki+19 ⊕ rki+30 ⊕ rki+67, 0 ≤ i ≤ 428 (3)

Round Function. The 32-bit plaintext is loaded into two registers A and B of
sizes 13 and 19 bits. The round function depicted on Fig. 4 is then applied 254
times, where cn is a round constant defined by (c0, . . . , c7) = (1, . . . , 1, 0) and
ci+8 = ci ⊕ ci+1 ⊕ ci+3 ⊕ ci+5.

Formally, KATAN32 encryption may be defined as follows. By an (resp. bn),
we denote the bit entering register A (resp. B) at round n. Hence, after round
n, the content of register A is (an−12, . . . , an), and the content of register B
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+rk2n

+ + + +

× × cn

+
rk2n+1

+ + + +

× ×

A

B 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19

Fig. 4. Round function of KATAN32.

is (bn−18, . . . , bn). By convention, the plaintext is (a−13, . . . , a−1, b−19, . . . , b−1).
Then encryption is recursively defined by:

{
an = bn−19 ⊕ bn−8 ⊕ bn−11 · bn−13 ⊕ bn−4 · bn−9 ⊕ rk2n+1

bn = an−13 ⊕ an−8 ⊕ cn · an−4 ⊕ an−6 · an−9 ⊕ rk2n
(4)

and the ciphertext is (a241, . . . , a253, b235, . . . , b253).

KATAN48. KATAN48 uses two registers of sizes 19 and 29 bits. The registers
are updated twice per round by the following feedback relation, using the same
round keys:

{
an = bn−29 ⊕ bn−20 ⊕ bn−14 · bn−22 ⊕ bn−7 · bn−16 ⊕ rk2·�n

2 �+1

bn = an−19 ⊕ an−13 ⊕ cn · an−7 ⊕ an−8 · an−16 ⊕ rk2·�n
2 �

After 254 rounds, the ciphertext is (a489, . . . , a507, b479, . . . , b507).

KATAN64. KATAN64 uses two registers of sizes 25 and 39 bits. The registers
are updated three times per round by the following feedback relation, using the
same round keys:

{
an = bn−39 ⊕ bn−26 ⊕ bn−22 · bn−34 ⊕ bn−10 · bn−15 ⊕ rk2·� n

3 �+1

bn = an−25 ⊕ an−16 ⊕ cn · an−10 ⊕ an−12 · an−21 ⊕ rk2·� n
3 �

After 254 rounds, the ciphertext is (a737, . . . , a761, b723, . . . , b761).

4.2 Linear Key Partition

We now introduce a few notions that will prove useful to mount a meet-in-the-
middle attack against KATAN. Let RK1 (resp. RK2) denote the set of round
keys necessary to compute some fixed bits of internal state at an intermediate
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round from the left (resp. from the right). The first step of a meet-in-the-middle
attack is to guess the bits of information on the master key common to RK1

and RK2 (see Sect. 2.1). Hence it is necessary to define an intersection of RK1

and RK2 in terms of bits of information on the master key.
In general, this intersection may be impossible to define. In [10], a generic

solution is proposed: all round keys are regarded as independent, i.e. the master
key is redefined as the union of all round keys. This yields good results on various
lightweight ciphers, including KATAN. However, it has a significant impact on
the attack complexity. This can be avoided when the key schedule is linear:
indeed, in that case, the intersection of RK1 and RK2 can be cleanly defined,
as we now show for KATAN.

Let us regard a master key of KATAN as a vector in E = (Z/2Z)80. The
value of the master key corresponds to the coordinates of this vector along the
canonical basis. Each round key is a linear combination of bits of the master
key; that is, it is the image of the master key through some map (xi) �→ ∑

λixi,
i.e. a linear functional on E. Let us denote by L(E) the space of linear function-
als on E.

From this standpoint, the information carried by RK1 (resp. RK2) is the
value of the master key on the subspace EK1 (resp. EK2) of L(E) generated by
the round keys of RK1 (resp. RK2). Let EK∩ = EK1 ∩ EK2 . Then the bits of
information on the master key common to RK1 and RK2 are exactly the value
of the key on the functionals of EK∩ .

Let us choose an arbitrary basis B∩ of EK∩ , and extend it to a basis B1 of
EK1 , and B2 of EK2 . Then in concrete terms a partial key in K∩ is a mapping
B∩ → {0, 1}; likewise, K1 and K2 are regarded as the set of mappings B1 →
{0, 1} and B2 → {0, 1} respectively. We are now able to apply the meet-in-the-
middle attack framework exactly as it was presented in Sect. 2.1.

In the remainder, it will always be assumed that B = B1 ∪ B2 is a basis
for the whole space L(E). In particular, knowledge of the value of a key on B
amounts to knowing the entire key; it will be convenient at times to identify the
key space with {0, 1}B , which we will denote by K, by analogy with K1 and K2.

4.3 Key Dependencies

A first step towards building a meet-in-the-middle attack is to choose a value v
extracted from an internal state at an intermediate round to serve as a meeting
point. In order to make this choice, it is necessary to evaluate which key bits are
necessary to compute v from the plaintext, and from the ciphertext (presumably
for some reduced version of the cipher). We have carried out this computation
using an algorithm similar to Algorithm 1 in [10].

The principle of such an algorithm is that once some round key enters the
state, the impacted bit is marked as depending on that key. Then this depen-
dency is propagated along the cipher each time this internal state bit affects
other internal state bits. In our case, because we will use indirect matching, we
keep track separately of key bits whose impact is linear, and those whose impact
is nonlinear.
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Table 2. Key dependency of the bit at position 9 (middle) of register B.

KATAN32 Encryption (starting from round 0):

Number of rounds 58 59 60 61 62 63 64 65 66

Dimension of nonlinear 70 71 75 77 78 80 78 79 80
key space linear 2 2 2 2 2 0 1 1 0

KATAN32 Decryption (starting from round 254):

Number of rounds 57 58 59 60 61 62 63 64 65

Dimension of nonlinear 68 70 72 73 75 76 78 79 80
key space linear 4 3 3 2 1 1 0 0 0

By nature, such an analysis follows a worst case scenario, i.e. it assumes any
key bit than could possibly affect an internal state bit, does. In reality, fortuitous
simplifications may occur. However, in the case of KATAN, our algorithm was
precise enough that experimental tests observed the same dependencies between
internal state bits and key bits. Table 2 shows our results for KATAN32.

Basic Meet-in-the-Middle Attack Against KATAN. With what we have
so far, we can mount a first meet-in-the-middle attack against KATAN. While
this is not the best attack we will propose, it is still worth mentioning because
it has a simple description, requires only known plaintexts and minimal data
requirements, and improves on previously published attacks.

For KATAN32, if we aim at a complexity around 277, we can attack 60+61 =
121 rounds (cf. Table 2). The meeting point is b50 (which is indeed at position
9 of register B after 60 rounds). The dimensions of K1, K2, K∩ are 75, 75, 70
respectively (after ignoring linear contributions thanks to indirect matching).
We use 4 plaintext/ciphertext pairs for simultaneous matching to ensure that
the key verification stage is in 276. Using (1), and taking into account that we
use 4 plaintext/ciphertext pairs, the overall complexity is:

4 ·
(

275 · 60
121

+ 275 · 61
121

)
+

2∑
i=0

276−32i ≈ 277.5

In a similar way, we can attack 56+54 = 110 rounds of KATAN48, and 51+51 =
102 rounds of KATAN64, both of them with 4 plaintext/ciphertext pairs and
complexity 277.5.

4.4 Bicliques

The number of rounds covered by a meet-in-the-middle attack may be extended
by a biclique. This technique was also originally developed for the cryptanalysis
of hash functions [4], and first applied to block ciphers in [3] to produce an
accelerated key search against AES. Such a search requires all possible keys to
be tried, but each try costs significantly less than a full encryption.
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However, bicliques may also be used in the context of a traditional attack,
where not all keys are tried. This is the model known as “long bicliques” in
[3], and corresponds to [4] for hash functions. We will use this approach against
KATAN, and so we recall it here briefly.

Definition 1. A biclique is a triple ((Ai)i≤n, (Bi)i≤n, (Ki,j)i,j≤n), where the
Ai’s are internal states at some round a, the Bi’s are internal states at some
round b, and the (Ki,j)’s are keys satisfying the following property:

∀i, j ≤ n, Enca→b
Ki,j

(Ai) = Bj

where Enca→b
Ki,j

denotes encryption from round a to round b with key Ki,j.

A0 C0

Ai Ci

B0 K∗,0 K0,∗

Bj K∗,j

Ki,∗
Ki,j v

match

Encryption DecryptionBiclique

Fig. 5. A meet-in-the-middle attack and compatible biclique.

For simplicity, assume a = 0, and we have a biclique covering rounds a
to b as in the above definition. In order to construct an attack up to round
r, the remaining rounds from b to r must be covered by a meet-in-the-middle
attack. Furthermore, the biclique and the meet-in-the-middle segments must be
compatible in the following sense. Let Ci be the ciphertext corresponding to Ai

after r encryption rounds, et v be the internal value used as a meeting point for
the meet-in-the-middle attack. Let Ki,∗ denote the partial information on the
key expressing the fact that it is one of the Ki,j ’s, for fixed i and variable j. Let
K∗,j be defined in the same way.

Then the biclique and the meet-in-the-middle segments of the attack are
compatible iff the middle value v can be computed starting from Bj with only
knowledge of K∗,j , and from Ci with only knowledge of Ki,∗. The situation is
illustrated on Fig. 5. This requirement is quite restrictive. However, it becomes
easier to enforce if the key schedule is linear, as we shall see with KATAN.

Attack process.

– For each partial key k∩ ∈ K∩ =
⋃

Ki,∗ ∩ K∗,j :
• For each j ≤ n, v is computed starting from Bj using K∗,j . For each

possible value of v, the j’s leading to that value are stored in a table.
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• For each i ≤ n, v is computed starting from Ci using Ki,∗. The j’s leading
to this same v are retrieved from the previous table. For each pair (i, j)
leading to the same v, Ki,j is a candidate master key.

If the actual encryption key is among the Ki,j ’s, then it is necessarily a candidate.
Indeed, encryption by Ki,j will follow the path depicted on Fig. 5. As with a
standard meet-in-the-middle attack, it remains to test candidate keys on a few
additional plaintext/ciphertext pairs to single out the right key. This step is
unchanged. Finally, to ensure that the actual key is among the Ki,j ’s, the key
space must be covered by bicliques, and the previous attack is repeated for each
biclique.

Construction of a biclique varies depending on the cipher, but in general the
construction cost is negligible with respect to the global complexity. Note that
it is implicitly assumed that the construction of a biclique on a set of keys Ki,j

does not imply that each key be computed, i.e. there is a structure. The overall
complexity is then the same as that of the meet-in-the middle segment if it were
simply applied to a fixed plaintext/ciphertext pair.

4.5 Bicliques on KATAN

We have presented bicliques in the previous section. It remains to show how to
construct bicliques on KATAN. Once again, it all comes down to the linearity
of the key schedule, and the weak non-linearity of the cipher reduced to a few
rounds. In fact, these two properties make it possible to adjoin a biclique to
any pre-existing, arbitrary meet-in-the-middle attack, in a compatible manner.
Furthermore, a single biclique will suffice to cover the entire key space.

Assume we have a pre-existing meet-in-the-middle attack, with the notation
of the previous sections. Recall that K∩ (resp. K1, K2) are regarded as maps
B∩ → {0, 1} (resp. B1 → {0, 1}, B2 → {0, 1}). Let us denote by K ′

1 (resp.
K ′

2) the proper part of K1 (resp. K2) with respect to K∩, i.e. its restriction to
B1 − B∩ (resp. B1 − B∩).

Let us denote by Encka→bM and Deckb→aM the encryption and decryption of
a message M between rounds a and b with key k. We extend this notation to
the case where k is a partial key (i.e. an element of K1, K ′

1, K2, K ′
2, or K∩) by

completing the key by 0 on the rest of B. In addition, for k ∈ K, let us write
k1 ∈ K1 for its restriction to B1, and define in a similar way k′

1, k2, and k′
2.

Finally, let k(i) denote the value of the i-th round key generated by k; again, if
k is only partially defined, it is completed by 0 on the rest of the basis B.

Definition 2. Let :

Bicn(K1,K2) = ((Ak2 : k2 ∈ K2), (Bk1 : k1 ∈ K1),K ′
2 ⊕ K1)

With : Ak2 = Deck
′
2

n→0(0)

Bk1 = Enck1
0→n(0)

where 0 is the null block. Observe that Ak2 is decrypted by the projection k′
2.



74 T. Fuhr and B. Minaud

Proposition 1. For each version of KATAN, there exists n > 0 such that for
any K1, K2, Bicn(K1,K2) is a biclique. That is, for k ∈ K, with k1 and k2 its
projections on K1 and K2:

Enck0→n(Ak2) = Bk1 (5)

Proof. The proof is essentially the same for all three versions of KATAN. For the
sake of simplicity, we only present the proof for KATAN32. It will be convenient
to designate bits in each register by their position, in the order depicted on
Fig. 4.

We claim that the proposition holds for n = 10. The core of the proof lies in
the following property:

∀i ≤ 10, Enck0→i(Ak2) = Enck1
0→i(0) ⊕ Deck

′
2

10→i(0) (6)

For i = 10, this equation becomes:

Enck0→10(Ak2) = Enck1
0→10(0) = Bk1

which is precisely what we want to prove. So (6) implies the proposition. We are
going to prove (6) by recursion on 0 ≤ i ≤ 10.

For i = 0, (6) yields the definition of Ak2 , so it holds. Assume that it holds
for some round i < 10. When we step forward one encryption round, since we are
dealing with shift registers, the equality remains true everywhere, except possibly
on the two new bits entering the registers (at positions 0 and 19 on Fig. 4). Let
us show for instance that the equality remains true for the bit entering register
B (position 0). Let us denote by f the feedback function from register A into
register B.

Then for the bit entering register B, (6) at round i + 1 means:

f
(
Enck0→i(Ak2)

) ⊕ k(i) = f
(
Enck1

0→i(0)
) ⊕ k1(i) ⊕ f

(
Deck

′
2

10→i(0)
) ⊕ k′

2(i) (7)

where k(i) denotes the value of the i-th round key generated by key k. Since
k = k1 ⊕ k′

2, using the recursion hypothesis, we get:

f
(
Enck1

0→i(0) ⊕ Deck
′
2

10→i(0)
)

= f
(
Enck1

0→i(0)
) ⊕ f

(
Deck

′
2

10→i(0)
)

(8)

Since f is nonlinear, this is not automatically true. However, the only non-
linear interaction in f is a multiplication of bits 24 and 27. Now observe that
Enck1

0→i(0) is 0 on bits 19 + i, . . . , 31, and Deck
′
2

10→i(0) is 0 on bits 19, . . . , 21 + i.
Hence for n ≤ 5, Enck1

0→i(0) is 0 on bits 24 and 27, and for n ≥ 6, Deck
′
2

10→i(0) is
0 on bits 24 et 27.

Assume for instance we are in the first case. Then in (8), bits 24 and 27 are
equal for Enck1

0→i(0) ⊕ Deck
′
2

10→i(0) and Deck
′
2

10→i(0), and null for the last term,
thus the only nonlinear component of f has the same contribution on each side
of the equation. On the rest f is linear, so we are done. ��
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In essence, there is only one multiplication on register A of KATAN32, between
bits 24 and 27. By restricting ourselves to 13 − (27 − 24) = 10 rounds, where
13 is the length of register A, we ensure that there is no nonlinear interaction
between the bits of Bk1 dependent on k1, and the bits of Ak′

2
dependent on

k′
2. With register B the same computation yields 19 − max(12 − 10, 8 − 3) =

14 rounds. That is why we can build a biclique of length 10 on KATAN32.
The same reasoning shows that we can build bicliques of length 5 on KATAN48,
and 5 again on KATAN64.

Building Several Bicliques. Later on, we will want to use simultaneous match-
ing (cf. Sect. 2.1). For this purpose, we need several distinct bicliques, and the
previous proposition only gives us one. Fortunately, it is possible to build new
distinct bicliques on the same model as that of Proposition 1, by adding para-
meters to Definition 2. There are several ways to proceed. In particular, it is
possible to either modify the bits of Ak2 that do not actually depend on k2,
or those that do. We only describe the second option, as it is enough for our
purpose.

Pick any arbitrary key kP as parameter. In fact, only the first ten pairs
of round keys derived from kP will have an impact, so we have 20 degrees of
freedom. Then define Ak2 and Bk1 by:

Ak2 = Deck
′
2⊕kP

n→0 (0)

Bk1 = Enck1⊕kP
0→n (0)

and replace the recursion Eq. (6) in the proof by:

∀i ≤ 10, Enck0→i(Ak2) = Enck1⊕kP
0→i (0) ⊕ Deck

′
2⊕kP

10→i (0)

The proof is exactly the same, except in (7), the contribution of kP on the
right-hand side cancels itself out.

Biclique Attack Against KATAN. In Sect. 4.3, we attacked 121 rounds of
KATAN32. If we use four bicliques instead of four plaintext/ciphertext pairs, we
gain an additional 10 rounds, as explained in the previous section. Meanwhile,
the core of the attack remains the same, except we meet on b60 starting from
round 10, instead of b50 starting from round 0. In particular, the complexity is
unchanged. However we now require chosen plaintexts. Because the dimension
of K ′

2 is 5, each biclique requires 25 chosen plaintexts, so the data requirements
increase to 4 · 25 = 27. The attack covers 131 rounds with complexity 277.5. In
the same way, we can extend the previous attacks on KATAN48 and KATAN64
respectively to 114 rounds with 26 CP, and 107 rounds with 27 CP, both with
complexity 277.5.

4.6 Match Box

We now explain how the match box technique applies to KATAN32. Variants for
KATAN48 and KATAN64 will be very similar. Assume we are meeting in the
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middle on b62 (this will be the case in the final attack). The idea is that we are
going to isolate round keys whose impact on the value of b62 when computing
from the right can be evaluated with knowledge of only a few bits of information.
We do not consider round keys whose impact is only linear however, since those
can be ignored thanks to indirect matching.

When decrypting from the right, the value of b62 is (cf. (4)):

b62 = a81 ⊕ b73 ⊕ b68 · b70 ⊕ b72 · b77 ⊕ rk163

= x0 ⊕ b68 · b70 with x0 = a81 ⊕ b73 ⊕ b72 · b77 ⊕ rk163 (9)

Let us further decompose b68 and b70 in the above formula as:

b68 = x1 ⊕ rk175, (x1 = a87 ⊕ b89 ⊕ b76 · b74 ⊕ b83 · b78)
b70 = x2 ⊕ rk179, (x2 = a89 ⊕ b91 ⊕ b78 · b76 ⊕ b85 · b80)

Since K2 ⊕K ′
1 = K, each round key rkn may be written as rkn = rk2

n ⊕rk1′
n ,

with rk2
n ∈ K2 and rk1′

n ∈ K ′
1. We define r as:

r0 = x0

r1 = x1 ⊕ rk2
175

r2 = x2 ⊕ rk2
179

Putting everything together, l contains a0 = b62 computed from the left, as
well as k′

1 ∈ K ′
1; and r is (r0, r1, r2). The matching relation R(l, r) witnessing

the fact that computations from either side agree on b62 is:

R(l, r) : l0 = r0 ⊕ (r1 ⊕ k′
1(rk

1′
175)) · (r2 ⊕ k′

1(rk
1′
179))

Note that this is merely a rewriting of (9), where the contribution of round
keys 175 and 179 has been isolated, and then split in order to extract their K ′

1

component.
What we have gained in this example is that round keys 175 and 179 no

longer need to be known when computing from the right. This decreases the
dimension of K2 by two, and thus spares a factor 22 when guessing its value.
Moreover this gain can be spent in order to extend the attack to one more round.
Indeed, we can now append one extra round at the end of the (reduced) cipher,
and simply add the two bits of round key for that round into K2. This increases
the dimension of K2 by two, back to its original value. Then the attack proceeds
as before. In short, every time we are able to decrease the dimension of K2 by
two by needing less round keys in order to compute r62, we can re-increase it in
order to extend the attack to one more round.

Thus, to extend the attack further, we need only isolate the contribution of
more round keys in (9), as we have done we round keys 175 and 179. The limit
is the size of r, which impacts the size of the match box table. For example,
the next step would be to expand b72 · b77 in x0, in the same manner we have
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Table 3. Sizes of r sufficient to spare a certain number of round keys.

KATAN32 (starting from r62):

|r| 3 5 7 9 11 15 17 23 27 31 39 43 53 61 65 71 73

Round keys 2 5 7 9 10 12 13 16 18 20 23 24 28 30 32 34 35

KATAN48 (starting from r109):

|r| 5 9 17 21 25 27 35 43 55 63 73

Round keys 3 5 7 8 10 12 14 16 18 20 22

KATAN64 (starting from r153):

|r| 7 11 15 17 25 33 45 65 71

Round keys 3 5 7 8 10 12 14 17 18

previously expanded b68 · b70 in b62. That is, we develop the expression of these
two bits according to (4), making round keys rk183 and rk193 appear:

b72 = x3 ⊕ rk183, (x3 = a91 ⊕ b93 ⊕ b78 · b80 ⊕ b82 · b87)
b77 = x4 ⊕ rk193, (x4 = a96 ⊕ b98 ⊕ b83 · b85 ⊕ b87 · b92)

We now define a new 5-bit r by:

r′
0 = x0 ⊕ b72 · b77 = a81 ⊕ b73 ⊕ rk163

r1 = x1 ⊕ rk2
175

r2 = x2 ⊕ rk2
179

r3 = x3 ⊕ rk2
183

r4 = x4 ⊕ rk2
193

And the relation R(l, r) becomes:

l0 = r′
0 ⊕ (

r1 ⊕ k′
1(rk

1′
175)

) · (r2 ⊕ k′
1(rk

1′
179)

) ⊕ (
r3 ⊕ k′

1(rk
1′
183)

) · (r4 ⊕ k′
1(rk

1′
193)

)

It so happens that rk175 and rk179 (as well as rk183 and rk193) only appear
in one place in the development of b62. Due to the diffusion of the cipher, later
round keys will appear in several places in the expansion of b62. As a result the
“cost” for each new round key in terms of the increase in the size of r will grow.
In order to choose which round keys to isolate, we have implemented a greedy
algorithm that essentially adds the cheapest round key (in terms of the growth
of r) at each step. Results are shown on Table 3.

Note that this table only indicates the number of round keys spared. One can
expect that every two round keys spared gains one round, but this is dependent
on the two round keys being linearly independent of the rest of K2. This in turn
depends on which round keys are in K2, i.e. which rounds are covered by K2.
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4.7 Final Attack

In this section, we describe the final version of the attack we propose against
KATAN32, combining all components from the previous sections. We aim at hav-
ing K1 and K2 both of dimension 77. Starting from round 10 after the biclique,
this allows us to cover 62 rounds in the forward direction. This corresponds to
meeting on b62 (i.e. position 9 of register B after 72 rounds). The number of
rounds covered in the backwards direction will depend on the match box. We
will ensure that in the end, the dimension of K ′

1 is 3.

Compression Table (cf. Sect. 3.3). We have |k′
1| = 3, so 2|k′

1| = 8, which makes
it worthwhile to use the compression technique. We want to build a compression
table C converting a r of size greater than 8 into 8 fn’s. Note that we meet on
a single bit, so there is only one line in (2), which is why we talk about fn’s
and not fn

i ’s. On the other hand, we will use simultaneous matching on three
bicliques, but always on the same bit, so the conversion from r into the fn’s is
the same for each pair: we only need one compression table.

As observed in Sect. 3.3, for each r, the fn’s can be computed with 2|k′
1|

partial encryptions. Hence for KATAN32 we can choose r = 73 (see Table 3),
yielding a table of size 276 in complexity 276. This spares 35 round keys in the
decryption direction. In the end, we can begin the backwards computation from
round 153.

Match Box (cf. Sect. 4.6). We perform simultaneous matching on b62 for 3
distinct bicliques; l′ contains the value of b62 computed from the left for each
biclique, so |l| = 3. Meanwhile r contains the 8 bits fn computed from the right,
again for each biclique, hence |r| = 8 × 3 = 24. This yields a match box table of
size 23

3+24+3 = 254 in less than 254 encryptions. Note that both the compression
table and the match box table are absolute precomputations, in the sense that
they do not depend on the actual plaintext/ciphertext pairs and need only be
built once.

In the end, we attack 153 rounds: the first 10 are covered by the bicliques;
the next 71 are the forward part of the meet-in-the-middle attack; the next 19
are covered by the match box; and the final 53 are the backwards part of the
meet-in-the-middle attack. See the Appendix for the list of round keys involved
in K1 and K2 and the list of round keys spared by using the match box.

Attack process.

– Precompute the compression table C.
– Precompute the match box M .
– For each partial key k∩ ∈ K∩:

• For each partial key k′
1, knowing k1 = k∩ ⊕ k′

1, compute b62 from the left
for each biclique, and denote their concatenation by l′.
This yields a function F : k′

1 → l′. Retrieve M(F ).
• For each partial key k′

2:
∗ For each biclique, knowing k2 = k∩ ⊕ k′

2, compute the 31-bit r from
the right for that biclique. Convert it into 8 bits fn through C.
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∗ Having done this for all 3 bicliques, the concatenation of the fn’s
makes up the 24-bit r entry of the match box. Match k′

2 with the k′
1’s

in M(F )(r) to form candidate master keys.
– Test candidates master keys on 3 plaintext/ciphertext pairs as in a standard

meet-in-the-middle attack. This should be done on the fly.

The overall attack complexity is:

274 + 254 + 3 ·
(

277 · 62
153

+ 277 · 81
153

)
+

2∑
i=0

277−32i ≈ 278.5

For KATAN48, aiming at the same complexity, we can cover 57 + 56 = 113
rounds with the meet-in-the-middle section, 5 rounds with the bicliques, and
an additional 11 rounds with the match box, for a total of 129 rounds. For
KATAN64, the bicliques cover 5 rounds as well, the match box 9, and the meet-
in-the-middle portion of the attack reaches 52 + 53 = 105 rounds, for a total of
119 rounds. The complexity and data requirements are shown on Table 1.

5 Conclusion

In this paper, we presented a new technique to extend meet-in-the-middle attacks.
This technique makes it possible to extend the middle portion of the attack with
no increase in the overall complexity, but at the cost of significant precompu-
tation. As such, it is a form of time/memory trade-off. We have applied this
technique to the lightweight cipher KATAN, and significantly improve on previ-
ous results on this cipher.
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Appendix: Additional Details for the Attack on KATAN32

• K1 contains the following 80 round keys (dimension 77):
{20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 93, 94, 96, 97, 98, 100, 104, 107, 113}.
The following keys have a linear contribution: {92, 99, 109, 124}.

• K2 contains the following 81 round keys (dimension 77):
{213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 238, 239, 240,
241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274,
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275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291,
292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305}.
The following keys have a linear contribution: {163, 185, 188, 198}.

• The following 35 round keys are spared by the match box:
{175, 179, 183, 187, 191, 193, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205,
206, 207, 208, 209, 210, 211, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232,
234, 236}.
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Abstract. In this paper, we investigate the properties of iterative non-
injective functions and the security of primitives where they are used.
First, we introduce the Collision Probability Spectrum (cps) parameter
to quantify how far from a permutation a function is. In particular, we
show that the output size decreases linearly with the number of itera-
tions whereas the collision trees grow quadratically.

Secondly, we investigate the t-sponge construction and show how cer-
tain cps and rate values lead to an improved preimage attack on long
messages. As an example, we find collisions for the gluon-64 internal
function, approximate its cps, and show an attack that violates the
security claims. For instance, if a message ends with a sequence of 1 Mb
(respectively 1 Gb) of zeros, then our preimage search takes time 2115.3

(respectively 2105.3) instead of 2128.

Keywords: Random function · Collision probability spectrum ·
Collision tree · T-sponge · GLUON · Collision search

1 Introduction

Consider a function g : S → S where S is some finite space of size 2N and suppose
that it is not a permutation, i.e. that it has collisions. It is well known that for
a random g the complexity of a collision search is of 2N/2 calls to g. However,
not only the collision search complexity but also some related problems are not
well studied when collisions have a certain structure, which is the case in several
designs [1,2]. It might be clear that iterating such a function may lead to an
entropy loss, but again, the scale of this loss and its implications on the security
of stream ciphers and hash functions is not well known or underestimated. In
this paper we introduce a particular parameter called the Collision Probability
Spectrum (cps), which is based on the number of solutions for the following
equation

g(a + y) = g(a). (1)

We study the cps for several designs and show, as an illustration of our methodol-
ogy, a preimage attack on the sponge-based lightweight hash function gluon-64.
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Related work. Bellare and Kohno [3] studied how the number of preimages to
g(a) affects the complexity of the collision search with the notion of balance of a
function. In [4], Flajolet and Odlyzko studied several characteristics of random
mappings, in particular the distribution of preimage sizes, the cycle size and
the size of the iterated image. Their result was applied by Hong and Kim [5]
to the mickey [1] cipher. Indeed, they found experimentally that the size of
the iterated images of this function was essentially the size of the space divided
by the number of iterations, a behavior which they showed experimentally to
correspond to the prediction of Flajolet et al. However, the resulting attacks
were found to be less efficient than the simple collision search [6], though they
allow a time/memory trade-off.

Overview of our results. We introduce the Collision Probability Spectrum para-
meter which quantifies how many solutions Eq. (1) has on average and inves-
tigate its consequences over the iterated images and preimages of S by g. We
assume that the composition of two such functions has certain properties, which
is formalized as an independence assumption. For a large class of mappings two
important facts are proved in Theorem2 (a reader may refer to Fig. 1):

– First, the size of the iterated image of g is inversely proportional with the
number i of iterations:

|gi(S)| ∼ |S|
κ
2 · i

,

where κ depends on the cps and where i has to be smaller than
√|S| —

otherwise, the result does not hold because of the cycles in the functionnal
graph.

– Second, an element y ∈ gi(S) is the root of a collision tree consisting in
elements xl such that any of g(xl), g2(xl), . . . , gi(xl) is equal to y. The average
size of this tree is νi:

νi ∼ κ

4
· i2,

with the same restriction on i: i <
√|S|.

Then we discuss the security of the t-sponge construction provided the cps
of the update function. We amend the collision search bound in the flat sponge
claim [7]:

P =
Q2

2c+1
·
(
1 +

κ − 1
2r

)
,

where c is the capacity and r is the rate of the sponge.
Next, in Theorem 6, we show for small r an improved preimage attack with

complexity
2c · 2r+2/(κz),

where z is the number of zero bytes in the end of the hashed message (actually,
any constant suffices).

Finally, we construct an attack on gluon-64. Aided with a SAT-solver, we
find collisions for the update function and demonstrate a preimage attack of
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complexity 2105 for a message ending with 1 GByte of zeros, which violate the
claimed preimage resistance level of 128 bits.

Structure. This paper is organized as follows. We introduce our theoretical frame-
work in Sect. 2 and discuss its application to existing primitives. We investigate
the security of t-sponge against collision and preimage search in Sect. 3. Finally,
in Sect. 4, we obtain inner-collisions of the update function of gluon-64 with
the help of a SAT-solver and show a preimage attack. For the sake of concision,
the proofs are moved to AppendixA.

Notations. We denote by |E| and #E the size of a set E, by P[ω] the probability

of an event ω and by a
$← E the fact that a is drawn uniformly at random from

a set E.

2 Theoretical Framework

In this section we introduce a model of random functions and highlight its differ-
ence with the usual approach. We then give several properties of the (iterated)
images and preimages of an element by such functions.

2.1 Collision Probability Spectrum and Function Model

Definition 1 (Collision Probability Spectrum). Let S be a finite space and
let g : S → S be a function. We denote ck the probability that the following
equation has exactly k solutions for a ∈ S picked uniformly at random in S:

g(a + x) = g(a), (2)

so that
ck = P[#{x ∈ S, g(a + x) = g(a)} = k | a

$← S] (3)

The solutions x of this equation are called vanishing differences. The set of all the
elements a of S such that Eq. (2) has exactly k solutions is denoted Vk. Finally,
the set C = {ck}k≥1 is the Collision Probability Spectrum (cps) of g.

An equivalent definition of the cps is that it is the probability distribution of
the number of solutions of Eq. 2. We now make some remarks regarding these
definitions:

– Since 0 is always a solution of Eq. (2), we have that c0 = 0.
– If g is a permutation, then C(g) = {c1 = 1, ck = 0 for k > 1}.
– The input space can be partitioned in the following way: S =

⋃∞
k=1 Vk. Fur-

thermore, the output space can be partitioned as g(S) =
⋃∞

k=1 g(Vk). This is
also a disjoint union. Indeed, y ∈ g(Vk) has exactly k preimages, by definition.

– The size of g(Vk) is |g(Vk)| = |S| · ck/k because to each element in g(Vk)
correspond k elements in Vk (see Fig. 2). As a consequence,

|g(S)| = |S| ·
∞∑

k=1

ck

k
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S
g(S)

g2(S)

g3(S)

g4(S)

Fig. 1. Collision trees and output shrinkage of iterative non-injective functions. The
dots represent elements of S and there is an edge from x to y if g(x) = y. Here,
g(a + x) = g(a) always has exactly 3 solutions.

2.2 Composition of Functions with Known CPS

The most interesting application of our theory is the properties of iterative con-
structions where the iterated function has some known cps. However, to make
meaningful and correct statements about composition of such functions, some
independency must be assumed.

Assumption 1 (Independence Assumption). Let g be a function with cps
C. Then there is no correlation between the events x ∈ Vj and g(x) ∈ Vk for
any j, k.

This assumption, as we will see, holds for a few (but not for all) real primi-
tives. For the rest of the paper, we implicitly assume that it holds unless stated
otherwise.

Definition 2. Suppose g is a function on S. Then �i defined as

�i =
|S|

|gi(S)|
is called the shrinking ratio of g.

Our first theorem allows to compute the shrinking ratio of the composition of
two functions with given cps.

Theorem 1. Let g and g′ be functions with cps C = {ck}k≥1 and C′ = {c′k}k≥1,
respectively. Then the shrinking ratio of the composition g ◦ g′ is computed as
follows:

�1(g ◦ g′) =
( 1

�1
−

∞∑
k=1

ck

k

(
1 − 1

�′
1

)k
)−1

.

In particular, when g′ = gi:

�i+1 =
( 1

�1
−

∞∑
k=1

ck

k

(
1 − 1

�i

)k
)−1

.
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V1 V2

g(V1) g(V2)

S

g(S) S\g(S)

Fig. 2. The effect of g with cps {c1 = c2 = 1/2} on S.

A detailed proof is given in AppendixA.1 but we provide a high level view of its
structure.

Proof Sketch 1. We consider an element x0 ∈ g′(S) such that there exists {x0, ...,
xk} with g(xl) = g(x0), i.e. x0 ∈ Vk+1. The number of solutions of g(x0 +
x) = g(x0) in g′(S) for x0 drawn at random in g′(S) ∩ Vk+1 follows a binomial
distribution (m, k, 1/�′

1) as xl ∈ g′(S) with probability |g′(S)|/|S| = 1/�′
1.

Using this observation, we can compute the probability that g(x0+x) = g(x0)
has m solutions in g′(S) for all m: if it has m+1 solutions, then it must be that
x0 ∈ Vk+1 and that only m of the k non zero solutions “made it” to g′(S).
Then, we deduce the size of the image of g′(S) by g, i.e. we give an expression
of �1(g ◦ g′).

Using this theorem, we can give the asymptotic behavior of �i and of the size
of the collision trees as i increases while remaining small enough so that g(x)
is not on a cycle. The results stated below have been checked experimentally
on the functions for which the independence assumption presumably holds. We
need two more definitions.

Definition 3. Suppose g is a function on S with cps C. Then

– κ(C) is the collision average of g — the average number of non-zero solutions
of Eq. (2): κ =

∑
k≥1 ck · k − 1.

– νi(g) is the average tree size of g — the average number of elements in a
collision tree rooted in gi(S). Formally, it is the average number of pairs
(xl, kl) ∈ S × [1, i] such that gkl(xl) = y for y ∈ gi(S).

Theorem 2. Let g be a function with cps C, then for i <
√|S| the shrinking

ratio and the average tree size are approximated as follows for large enough i:

�i ∼ κ

2
· i, νi ∼ κ

4
· i2.

Proof Sketch 2. The asymptotic behaviour of �i can be deduced by using The-
orem 1 with g′ = gi and then using the finite expansion of (1 − 1/�i)k to see
that �i+1 = �i +κ/2. For νi, we simply note that νi =

∑i
k=1 �k. More details are

given in AppendixA.2.
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Finally, we define the following quantities in the same way as Flajolet et al. [4].

Definition 4. We call cycle length and tail length, denoted respectively μ and
λ, the average smallest values such that

gλ(x) = gλ+μ(x)

for x drawn uniformly at random in S.
Experiments (see Appendix A.3) lead us to the following conjecture.

Conjecture 1. Let g be a function of S with cps C. Experimentally, we found
the following values for the tail length λ and the cycle length μ:

λ ∼
√

π

8 · κ
|S|, μ ∼

√
π

8 · κ
|S|.

2.3 Independence Assumption in Practice

In this Section, we investigate some results from the literature about particular
functions and see how relevant our model is. A summary of this Section is given
in Table 1.

Table 1. Characteristics derived from the cps of some functions.

Function κ �1 �i/i νi/i2 Reference for the cps

mickey’s update function 0.625 1.407 2−1.7 2−2.7 [8]

Random mapping 1 1.582 2−1 2−2 [4]

gluon-64’s update function 6.982 3.578 21.8 20.8 Sect. 4.2

Random Mappings. The authors of [4] study random mappings and give the
probability that some x ∈ S has r preimages by a random mapping g. From this
we deduce that the cps of a random function is given by the Poisson distribution
with λ = 1:

C = {e−1/(k − 1)!}k≥1.

Our framework implies

κ = 1 and �1 = 1/(1 − e−1) and �i+1 = 1/
(
1 − exp(−1/�i)

)

which fits the results of [4](see also Appendix A.1). The authors of [5] observed
that

log2(�i) ≈ log2(i) − 1,

which also corresponds to κ = 1. Finally, the trail and cycle length given in
Conjecture 1 match those predicted by [4] if we replace κ by 1.
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A5/1. The update function of A5/1 does not satisfy the independence assump-
tion. The author of [2] computed its cps and established that

�1 = 1.6, κ = 1.25,

If the assumption held, then the probability for an element in S to be in g100(S)
would be about 2−6, which is very different from the 2−2.5 actually observed by
Biryukov et al. [9]. The reason is that the update function A5/1 may keep one
of its three LFSR’s untouched, which means that x ∈ Vj and g(x) ∈ Vk are not
independent events in its case.

MICKEY. The update function of the mickey [1] stream-ciphers (v1 and v2)
fits our model. Hong and Kim [5] performed some experiments on the first version
of mickey and, in particular, estimated the size of g2

k

(S) for several values of
k. Their results are coherent with our model. For instance, they observed that
log2(�i) (which they denote by EL(f i)) is approximated as

log2(�i) ≈ log2(i) − 1.8

The constant term 1.8 implies

κ/2 ≈ 2−1.8.

In turn, from the cps values computed in [8](actually, the values ck/k) we obtain
the theoretical value

κ = 0.625,

which corresponds to a difference of about 7 % with the experiments in [5].

3 Improved Collision and Preimage Search

In this section we explore generic collision and preimage search methods in their
application to functions with fixed collision spectrum.

3.1 Basic Collision Search

First, we reformulate the result from Bellare and Kohno [3] with our notation.

Theorem 3 [3]. Let g be a function with CPS C, and let κ be its collision
average. Then the birthday collision attack on g requires about

Q =

√
|S|

κ + 1
. (4)

queries to g.
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The original paper [3] used the parameter balance of g, denoted μ(g), which is
computed as

μ(g) = log|g(S)|
( |S|2∑

y∈S |g−1(y)|2
)

(5)

If we know the cps of g, the balance can be expressed as follows:

μ(g) ≈ 1 − log2
( ∑∞

k=1 k · ck
)

+ log2
( ∑∞

k=1 ck/k
)

log2
(|S|) . (6)

If Conjecture 1 holds, then the memory-less collision search based on Floyd’s
cycle finding algorithm should be

√
κ as fast as in the case of a random function.

3.2 Collision Attacks on T-sponge

Now we demonstrate that the entropy loss because of collisions in the t-sponge
construction, though observable, can be mitigated by a large rate parameter.

Sponge Construction. The sponge construction [7] is characterised by its rate
r, its capacity c and its update function g. It is based on an internal state of size
r + c where, at each round, r bits of the message are xor-ed. Then the sponge
alternates the application of g function with the message injection until the
message has been entirely absorbed. The digest is then squeezed by extracting
r bits of the internal state and applying the update function to the internal
state again. This is repeated as many times as necessary to obtain a digest of
desired length. A representation of a sponge is given in Fig. 3. The sponge-based
hash function is indifferentiable from a random oracle in the random-function
model up to 2c/2 queries to g [10]. If g is not a permutation, the sponge is called
transformative sponge or t-sponge.

We denote a sponge-based hash function by H : F∗
2 → F

rj
2 , the internal state

space by S = F
r+c
2 , and the update function by g : S → S.

Collision Search in T-sponge. The following theorem shows that to get a
significant speed-up in the collision search, the collision average κ should be at
least of the same magnitude as 2r.

Theorem 4. Let g be a random mapping from F
r+c
2 with cps C. Let H be a

t-sponge of capacity c and rate r updated with g. Then the probability of success
of a brute-force collision attack on H is

P =
Q2

2c+1
·
(
1 +

κ − 1
2r

)

where Q is the number of queries to g.
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Id g g g g g

1 k k+1 k+j

c

r

m1 mk

⊕ ⊕
d1 dj

Fig. 3. Principle of a sponge construction. The message m is sliced into k blocks of r
bits and “absorbed” during the first phase. Then, the j blocks of size r constituting
the digest h are “squeezed”.

The proof of Theorem 4 is in AppendixA.4. For a completely random map-
ping we have κ = 1, so that the theorem has the same form as in [7].

Nevertheless, since in practice the functions are not drawn at random from
the set of all functions, it is of interest to be able to predict the effect of their
properties over the security they provide. In particular, we see that a function
with κ > 1 does not exactly provide c/2 bits of security against birthday attacks.
Such functions can be found in real cryptographic primitives, see Sect. 4. How-
ever, we also immediately see that this effect is small since typical value of κ are
of order of magnitude 1, 10 being already rather bad, while 2r is at least in the
hundreds. The designers of a t-sponge need not really worry about the number
of collisions in the update function if the rate is high enough.

3.3 Improved Preimage Attack

Principle of the Iterated Preimage Attacks. Consider a set {gk}k∈K of
random functions of S with cps’s {Ck}k∈K and a fixed starting point x0 ∈ S
and let {k1, ..., kl} be a set of l elements of K. We call keyed walk the sequence

(
x1 = gk1(x0), x2 = gk2(x1), ..., xl = gkl

(xl−1) = d
)
.

and it can for instance correspond to the successive values of the internal state
of a t-sponge or of a Davies-Meyer based Merkle-Damg̊ard hash function as
we discuss in the next sections. Consider a keyed walk directed by a sequence
{k1, k2, ..., α, α, ..., α} ending with z copies of the same symbol α. Then, intu-
itively, much entropy will have been lost because of the z iterations of gα so that
it should be easier to find a second sequence of keys leading to the same final
value. This is formalized by the next theorem and a graphical representation of
the phenomena we use is given in Fig. 4.
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Collision tree

−z
α (d)

Fig. 4. The two targets of the iterated preimage attacks on d where d is in gz
α(S) and

z = 5. Different colors correspond to different function calls (Color figure online).

Theorem 5. Let {gk}k∈K be a set of random mappings of S with cps’s {Ck}k∈K
and consider a sequence {k1, k2, ..., α, ..., α} of l keys from K ending with z iden-
tical keys α. Given the final value d of the corresponding keyed walk, the value
of α and the number z, it is possible to find, for large enough z:

1. a keyed walk ending in d in time |S| · 4/(κz),
2. a keyed walk ending in d after precisely z calls to gα in time |S| · 2/κ.

where κ is the collision average of Cα.

Proof. Let d be the final element in the walk. From the structure of the walk, we
know that d ∈ gz

α(S). Using Theorem 2, we know that there are (κ/2)·z elements
in g−z

α (d) and that the collision tree rooted at d contains (κ/4) · z2 elements.
Therefore, such an element of g−z

α (d) is found with probability κ · z/(|S| · 2) and
an element in the collision tree with probability κ · z2/(|S| · 4).

However, in both cases, we need to call gα z times to know if the element we
picked at random is mapped to d after exactly z iterations of gα (first case) or
at most z iterations (second case). Therefore, finding an element in the collision
tree (first case) requires |S| · z/(κ · z2/4) = |S| · 4/(κz) calls to gα and finding an
element in g−z

α (d) requires |S| · z/(κ · z/2) = |S| · 2/κ. 
�
Note that these attacks can be generalized to the case where the end of the mes-
sage is periodic instead of constant, i.e. if it ends with z copies of (α1, α2, ..., αp).
We simply need to replace gα by g′ = gα1 ◦ ... ◦ gαp

. The κ involved in the
complexity computations is then that of g′, i.e.

∑p
i=1 κi where κi is the collision

average of gαi
(see Lemma 2 in Sect. 5). The constraint on z being large is only

such that we can assume that z has the asymptotical behaviours described in
Theorem 2.
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Application to a T-sponge. Hashing a message with a t-sponge can be seen
as performing a keyed walk where the keys are the message blocks of length r
and the initial value x0 is the all-zero vector. The function gk is gk(x) = g(x⊕k)
where k is set to zero after its r first bits and g is the update function of the
t-sponge. Clearly, gk has the same cps as g.

While the flat sponge claim provides a good description of the security offered
by a sponge (be it a t-sponge or a p-sponge) against collision search and, for
p-sponge, against second preimage search, there is a gap between the number of
queries it allows and the best algorithm known for preimage search. In particular,
there is to the best of our knowledge no algorithm allowing a preimage search
with complexity below 2c calls to the sponge function.1 Theorem 6 bridges the
gap between the 2c/2 bound of the flat sponge claim and the 2c bound for
preimage search by applying Theorem 5 to the t-sponge structure.

Theorem 6. Let H be a t-sponge with update function g, and let κ be the
collision average of g. Let M be a message such that its last z injections to the
sponge are identical. Then a preimage to H(M) can be found with complexity

2c · 2r+2/(κz)

Such messages can be quite common. For instance, the last z calls of g can
be blank calls for the sole purpose to slow down the hashing as suggested by
NIST [12].2 Such an attack can be prevented by setting an upper-bound of about
2r+2/κ for the length of the message which in turn means that r has to be high
in a t-sponge.

Similarity to the Herding Attack. This attack was introduced in [13] and
is also refered to as the Nostradamus attack. In a herding attack, an attacker
commits to a digest d and, when given a challenge P , has to find a suffix S such
that H(P ||S) = d. To achieve this she builds, during an offline phase, a so-called
diamond structure which is essentially a binary collision tree with 2� nodes and
rooted at d. The nodes of the tree contain the value of the internal state as well
as the message block which needs to be absorbed to go to its child. During the
online phase, she uses the diamond to find efficiently the suffix S: all she has to
do is find a way to reach any of the 2�+1 − 1 nodes in the diamond from the
given starting point.

Application to a Merkle-Damg̊ard Construction. When a block cipher
is used in Davies-Meyer mode to build a Merkle-Damg̊ard-based hash function,
1 This case corresponds to the case where the attacker inverts the squeezing operations

in time 2c to retrieve the last internal state of the sponge before the squeezing and
then uses a meet-in-the middle approach to find a valid message leading to this
internal state in time 2c/2 (see [11]). Furthermore, this second step cannot be carried
out in the case of a t-sponge since the update function cannot be inverted.

2 Here, we consider that the message hashed is of a length equal to a multiple of r
to begin with, so that the padding consisting in appending a one to the end of the
message can be seen as part of the squeezing.
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the successive chaining values hi ∈ S are obtained from the previous one and the
i-th message block: hi = Emi

(hi−1)⊕hi−1 = gmi
(hi−1). Because of the feedback

of hi−1, we do not expect gk to be a permutation and, therefore, expect such
a construction to be vulnerable to iterated preimage attacks. The padding used
for Merkle-Damg̊ard constructions usually takes into account the length of the
message so that we need a message of the same length. Therefore, it is not
enough to aim at an element in the collision tree, we need to find an element
which is precisely in g−z

α (d) so that a preimage search requires 2N+1/κ: if the
cps of gk is such that κ > 2 then the iterated preimage attack is more efficient
than brute-force. Furthermore, if there is an efficient way around the padding
(e.g., with expandable messages [14]), the efficiency becomes 2N+2/(κz) where
N is the size of the internal state of the hash function.

4 Preimage Attack on GLUON-64

4.1 The GLUON Family of Hash Functions

Introduced in [15], the gluon family of hash functions consists of three members
corresponding to different security levels: gluon-64, gluon-80 and gluon-112.
They have a t-sponge structure and have characteristics summarized in Table 2.

Table 2. Characteristics of the hash functions of the gluon family.

name rate r capacity c collision search preimage search

gluon-64 8 128 264 2128

gluon-80 16 160 280 2160

gluon-112 32 224 2112 2224

The function g used to update the internal state has the same structure in
the three cases. It can be seen as a stream-cipher based on a Feedback with
Carry Shift Register (fcsr). The concept of fcsr has evolved through time
as the first stream-cipher [16] based on a component bearing this name got
broken [17]. When we talk about fcsr in this paper, we refer to the last version
of this structure, i.e. the one used in X-FCSR v2 [18] and, of course, gluon. For
example, the algebraic representation of the fcsr used by gluon-64 is given in
Fig. 5.

A fcsr is made of w cells of r bits. Each cell may be on the receiving end of a
feedback. If the cell i receives no feed-backs, then its content at time t + 1 is the
content of the cell of index i + 1 at time t. Consider now that the cell i receives
a feedback. This cell contains an additional memory to store the value of the
carry from one clock to the next. The content of the cell at time t is denoted mt

i

and that of the carry register ct
i. Since it receives a feedback there are a cell of

index j and a value of shift s (possibly equal to zero) such that:

mt+1
i = mt

i+1 +
(
mt

j  s
)

+ ct
i

ct+1
i = mt

i+1 · (
mt

j  s
)

+ mt
i+1 · ct

i +
(
mt

j  s
) · ct

i
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Fig. 5. Algebraic representation of the fcsr used in gluon-64. Blue arrows correspond
to feed-backs shifted to the right and red ones to the left. The value of the shift is given
by the label of the arrow (Color figure online).

where “ s” is a C-style notation for the shift of the content of a cell by s bits
to the left (or |s| bits to the right if s ≤ 0) and + and · are respectively the
bitwise addition and multiplication in F

r
2.

The update function of every member of the gluon family is made of three
steps: padding of the input and loading in a fcsr (pad), clocking of the fcsr
(ρ) and filtering Φ. We describe these steps separately.

Pad. The internal state of the sponge is of size r(w−1), so that r(w−1) = r+c.
The padding consists simply in appending a block of r bits all equal to one
to the end of the internal state. The rw bits thus obtained are then loaded
in a fcsr with an internal state made of w cells of size r. All the carries of
the fcsr are set to zero. This operation is denoted pad : Fr+c

2 → F
rw
2 × F

rw
2

as the output is made of the main register and the carry register of the fcsr.
ρd+4. The fcsr is clocked d+4 times. One clocking is denoted ρ : Frw

2 ×F
rw
2 →

F
rw
2 × F

rw
2 .

Φ. The output of g is extracted r bits by r bits using the following method: fixed
words of the main register are rotated and then xor-ed to obtain r bits and
then the fcsr is clocked. This operation is repeated w − 1 times so as to
have r(w − 1) = r + c bits of output. The action of clocking the fcsr w − 1
times while filtering r bits each time is denoted Φ : Frw

2 × F
rw
2 → F

r+c
2 .

Overall, g is equal to Φ◦ρd+4◦pad. The function pad is a bijection and we shall
consider that the restriction of Φ over the set of the pairs main register/carry
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register reachable after d + 4 calls to ρ starting in the image of pad is collision-
free. The designers of gluon claim:

After a few iterations from an initial state, the automaton is in a periodic
sequence of states of length P . The average number of required iterations
to be in such a state is experimentally less than log2(n), where n is the
size of the main register [...] This leads to consider a function [g] which is
really close to a permutation from {0, 1}b into itself because the surjective
part of the construction is really limited once the function [g] acts on
the main cycle.

However, what happens during these first rounds, before the main cycle is
reached? It is possible to encode the equation

(ρk ◦ pad)(a + x) = (ρk ◦ pad)(x) (7)

for a fixed a into a CNF-formula solvable by a SAT-solver as long as k is not too
big, say 10. The encoding is fairly straight-forward and we shall not go into the
details for the sake of concision. Note that solving the equation (ρk ◦pad)(x) = y
using a SAT-solver is fast, meaning that it is possible to run a fcsr backward.
However, we tried encoding the filtering so as to solve (Φ ◦ ρk ◦ pad)(x) = y but
no SAT-solver was able to handle the corresponding CNF-formula — we killed
the process after 1 week of running time for gluon-112 (simplest filtering of the
three), and for k = 1 instead of k = d + 4 = 46.

We solved (7) for many values of a and for k = 10 for each member of the
gluon family. While no non-zero solutions were found for any a for gluon-80
and gluon-112, it turns out that (7) has many solutions for gluon-64. We used
Algorithm 1 to find to which Vk any element a ∈ S belongs by enumerating all
the values of x such that (7) holds. It works by solving (7) for x, thus (possibly)
finding a solution x1; then solving (7) with the constraint that the solution must
be different from x1, thus (possibly) finding x2, etc. until no more solutions can
be found. If there are k such x �= 0, then a is in Vk+1.

4.2 CPS and Preimage Attack on GLUON-64

We ran Algorithm 1 for gluon-64 on 24,000 different elements chosen uniformly
at random in S = F

r+c
2 . This allowed us to approximate the cps of the update

function. Our results are Fig. 6.
We deduce that c1 = 0.065, �1 = 3.578 and κ = 6.982 which are much worse

than what one should expect from a random function, namely c1 = e−1 ≈ 0.368,
�1 = 1/(1 − e−1) ≈ 1.582 and κ = 1. This means that finding a preimage in
a scheme equivalent to appending z identical words at the end of the message
has a complexity of 2136+2/(6.982 · z) = 2128 · (146.7/z). For z > 147, this is
more efficient than classical brute-force. The complexities for some values of
z < 2(r+c)/2 = 268 are given in Table 3 (Fig. 7).
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Fig. 6. Approximation of the cps of the function used by gluon-64 to update its
internal state over 24,000 random elements of F136

2 . Note that non-zero ck were observed
well after k = 20.

Table 3. Complexity C of a preimage search for d = H(m) where H is gluon-64 and
m is unkown except for the z identical bytes in its end.

z log2(C)

147 b 127.99

500 b 126.23

1 kb 125.23

1 Mb 115.27

1 Gb 105.30

109 Gb 75.19

5 Other Properties of CPS

The cps of a function is preserved by some transformation as shown in Lemma 1.
The collision average of g1 ◦ g2 has a simple expression given in Lemma 2.

Lemma 1. Let g be a function with cps C, P : S → S be a permutation and
J : S → S be injective over g(S). Then g′ = J ◦ g ◦ P has cps C as well.

Proof. Since J is injective over g(S), we have g′(y) = g′(a) if and only if
g(P (y)) = g(P (a)). Since the events “g′(y) = g′(a) has k solutions” and “g(x) =
g(P (a)) has k solutions” have the same probability, namely ck, we see that g
and g′ have the same cps. 
�
Lemma 2. Let g1 have collision average κ1 and g2 have collision average κ2.
Then g1 ◦ g2 has collision average κ1 + κ2.

Proof. Suppose that (g2◦g1)(x) = (g2◦g1)(y) with x �= y. There are two distinct
ways this could happen:
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Fig. 7. Evolution of the number of possible values for the internal state of gluon-64
when a message block is absorbed (thick vertical arrow) or when it absorbs a constant
several times (thin vertical arrow) z = 3 times.

– if g1(x) = g1(y), which happens in κ1 cases on average,
– or if g1(x) �= g1(y) but g2

(
g1(x)

)
= g2

(
g1(y)

)
. There are on average κ2/�1

solutions for g2(X) = g2(Y ) in g1(S) where �1 is the shrinking ratio of g1.
However, each of these solutions is the image of �1 elements of S by g1.

Overall, the equation has κ1 + �1 · κ2/�1 = κ1 + κ2 solutions, which proves
the lemma. 
�
Note that Lemma 2 had to hold at least for g1 = g2 because otherwise we
would have had a contradiction with the asymptotic behaviour of �i described
in Theorem 2.

6 Conclusion

We introduced the notion of cps and of the collision average κ, which is com-
puted from the cps. The collision average value determines the shrinking ratio
and the collision tree size of an iterative construction, and hence directly affects
their security, in particular preimage and collision resistance.

We have showed that the t-sponge is a fragile object when the rate parameter
is small. For instance, preimages to long messages of specific structure become
much easier to find. We gave specific recommendations for the designers of such
constructions. Hopefully, our framework might become a useful tool in the design.

Finally, we demonstrated a practical application of our methodology. Aided
with a SAT-solver, we found collisions for the gluon-64 update function and
then approximated its cps and the collision average κ. We showed that for not
so long messages of 1 Gigabyte a preimage can be found with complexity 2105

compared to the security claim of 2128, and shortcut attacks are possible for
messages of only a kilobyte long.

Acknowledgement. The authors thank the designers of the GLUON family of hash
functions for providing a reference implementation, Alex Biryukov for very helpful
discussions and the anonymous reviewers for their comments.
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A Proofs and Experiments

A.1 Proof of the Iterated Values of �i

Let us prove Theorem 1.

Proof. We shall look at the effect multiple iterations of g have over sets {x0, ..., xk}
where g(xj) = g(xj′) for all j, j′.

Let x0 be in g′(S) and such that there are k other elements {x1, ..., xk} such
that g(x0) = g(xj), i.e. x ∈ Vk+1.

As every element in S is in g′(S) with probability only 1/�′
1, the number of

elements colliding with x in g′(S) follows a binomial distribution with parameters
(m, k, 1/�′

1) (we consider that the output of g′ are uniformly distributed over S
and that they are independent from one another). Thus, there are m elements
colliding with x ∈ g′(S) with probability

(
k
m

)
(1/�′

1)
m(1 − 1/�′

1)
k−m. Let Cm+1

be the probability that g(x0 + x) = g(x0) has m non-zero solutions in g′(S)
knowing that x0 ∈ g′(S):

Cm+1 =
∞∑

k=m

ck+1

(
k

m

)( 1
�′
1

)m(
1 − 1

�′
1

)k−m

. (A.1)

Furthermore, we have:

�′
1

�1(g ◦ g′)
=

|(g ◦ g′)(S)|
|g′(S)| =

∞∑
m=1

Cm

m
,

and so:

�′
1

�1(g ◦ g′)
=

∞∑
m=1

1
m

∞∑
k=m−1

ck+1

(
k

m − 1

)( 1
�′
1

)m−1(
1 − 1

�′
1

)k−m+1

=
∞∑

k=0

k∑
m=0

ck+1

m + 1

(
k

m

)( 1
�′
1

)m(
1 − 1

�′
1

)k−m

.

This expression can be simplified because
(

k
m

)
/(m+1) =

(
k+1
m+1

)
/(k+1), so that:

�′
1

�1(g ◦ g′)
=

∞∑
k=0

ck+1

k + 1

k∑
m=0

(
k + 1
m + 1

)( 1
�′
1

)m(
1 − 1

�′
1

)k−m

=
∞∑

k=0

ck+1

k + 1

k+1∑
m=1

(
k + 1

m

)( 1
�′
1

)m−1(
1 − 1

�′
1

)k−(m−1)

=
∞∑

k=0

ck+1 · �′
1

k + 1

( k+1∑
m=0

(
k + 1

m

)( 1
�′
1

)m(
1 − 1

�′
1

)k+1−m

− (
1 − 1

�′
1

)k+1
)
.
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Note that
∑k+1

m=0

(
k+1
m

)(
1
�′
1

)m(
1 − 1

�′
1

)k+1−m

= 1 (binomial theorem), so in the
end we obtain:

1
�1(g ◦ g′)

=
∞∑

k=0

ck+1

k + 1

(
1 − (

1 − 1
�′
1

)k+1
)

=
∞∑

k=1

ck

k

(
1 − (

1 − 1
�′
1

)k
)

=
1
�1

−
∞∑

k=1

ck

k

(
1 − 1

�′
1

)k

which proves the Theorem. 
�
Note that this result is coherent with the one found by [4] in the case of random
functions, i.e. when {ck}k≥1 = {e−1/

(
(k − 1)!

)}k≥1. Indeed, they prove that

1
�i+1

= 1 − exp
(−1

�i

)
,

which is the same as the one we found:

1
�i+1

=
∞∑

k=1

ck

k

(
1 − (

1 − 1
�i

)k
)

= e−1
∞∑

k=1

1
k!

(
1 − (

1 − 1
�i

)k
)

= 1 − exp
(−1

�i

)
.

A.2 Proof of the Asymptotic Behaviors

Theorem 1 gives the recurrence relation �i satisfies so we can prove its asymptotic
behavior.

Proof. Since �i is obviously increasing (the output space keeps shrinking and we
keep i < 2n/2 to remain away from the main cycle) we have, for large enough i:

1
�i+1

=
∞∑

k=1

ck

k

(
1 − (

1 − k

�i
+

k(k − 1)
2 · �2i

+ o(�−2
i )

))

=
1
�i

∞∑
k=1

ck
(
1 − k − 1

2 · �i
+ o(�−1

i )
)
,

so that we have:

�i

�i+1
=

∞∑
k=1

ck −
∞∑

k=1

ck · (k − 1)
2 · �i

+ o(�−1
i )

= 1 − κ/2
�i

+ o(�−1
i )
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which in turns implies

�i+1 =
�i

1 − κ/2
�i

+ o(�−1
i )

= �i +
κ

2
+ o(1),

so that �i = κ
2 · i + o(i). This observation concludes the proof of the behavior

of �i.
Let us now look at νi. There are on average �w elements reaching y ∈ gw(S)

in exactly w iterations. Since gi(S) ⊆ gw(S) for all w ≤ i, we have that y ∈ gi(S)
is reached, on average, by:

– �1 elements in exactly 1 iteration,
– �2 elements in exactly 2 iterations,

...
– �i elements in exactly i iterations.

Overall, there are on average
∑i

w=1 �w ≈ ∑i
w=1(κ/2)w ≈ (κ/4)i2 elements

reaching y ∈ gi(S) after at most i iterations of g. 
�

A.3 Experimental Justification of Conjecture 1

For every N between 12 and 17 included, we generated 100 functions with a
given cps and, for each of them, we picked 40 elements at random in F

N
2 and

computed λ/2N/2 and μ/2N/2 for each of them (24,000 data points for each
cps). The average of these values for cps’s corresponding to different values of
κ are given in Fig. 8. As we can see, both λ/2N/2 and μ/2N/2 are almost equal
to

√
π/(8κ), which is equivalent to Conjecture 1 being correct.

Fig. 8. Average value of λ/2N/2 and μ/2N/2 for different κ.
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A.4 Proof of the Effect of the CPS on a T-sponge

Proof. Our proof is a modified version of the one used by Bertoni et al. in the
paper where they introduced the sponge construction [7]. In particular, we use
the same terminology: we call the elements of F

c+r
2 “nodes” and we partition

the space according to the value of the bits in the capacity to obtain 2c “super-
nodes”, each containing 2r nodes. There is an oriented edge from node x to
node y if and only if y = g(x). Finding a collision in H boils down to finding
two different paths in this graph starting from points in the super-node with
capacity zero to an identical super-node.

We shall study the fan-in and the fan-out of these super-nodes, the fan-in of
a super-node being the number of edges going to it and the fan-out the number
of edges going out of it. In this framework, the fan-out of each super-node is 2r.
However, the number of edges going in each super-node is not constant. Consider
some super-node Y made of nodes y1, ..., y2r . Each yi has a fan-in F (yi) so that
the F (yi)’s are independent and identically distributed random variables with
the distribution

P[F (yi) = k] =
ck

k
if k ≥ 1 , P[F (yi) = 0] = 1 − 1

�1

which has a mean equal to 1 and a variance equal to κ.
The value of the fan-in of the super-node Y is the sum of the fan-in’s of its

nodes:

F (Y ) =
2r∑

i=1

F (yi).

We consider that 2r is large enough to apply the central limit theorem so that
F (Y ) is normally distributed with mean equal to 2r and variance equal to κ ·2r.

Consider now the set Nk of all the super-nodes with fan-in equal to k; in
other words the set of the super-nodes with exactly k preimages. It has a size
equal to |Nk| = 2cG(k) where

G(k) =
1√

2π · κ · 2r
· exp

( − 1
2

· (k − 2r)2

κ · 2r

)

and the Nk’s form a partition of the space of the super-nodes. Consider some
node x1: the probability that its image by g is in a super-node of Nk is

P[g(x1) ∈ Nk] =
k

2c+r
· |Nk| =

k

2r
· G(k)

Let V be the super-node g(x1) is in. The probability that a second element
x2 �= x1 is such that g(x2) is in the same super-node as g(x1) is the probability
that x2 is at the beginning of one of the k − 1 edges going to V which are not
the one starting at x1. Therefore, the probability that g(x1) and g(x2) are in the
same super-node V knowing that V ∈ Nk is

P[g(x1), g(x2) ∈ V | V ∈ Nk] =
k − 1
2c+r

· k

2r
· G(k)
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so that the probability that g(x1) and g(x2) have the same capacity bits for x1

and x2 chosen uniformly at random is

P[g(x1), g(x2) ∈ V ] =
∞∑

k=0

k(k − 1)
2c+2r

· G(k) ≈ (2r)2 + κ · 2r − 2r

2c+2r
.

Therefore, the probability of success of a collision search performed by absorbing
Q messages at random until two internal states with the same capacity bits are
observed is

P[success of collision search] ≈
(

Q

2

)
22r + 2r(κ − 1)

2c+2r
≈ Q2

2c+1
· (

1 +
κ − 1

2r

)
.


�

B Algorithms

Algorithm 1. Enumerating all the solutions of g(a + δ) = g(a).
D = empty list
b = 0
while b < rw − 1 do

F = CNF(ρ1
k) + CNF(ρ2

k) + CNF(ρ1
k(x) = ρ2

k(y))
F = F + CNF(x = a) + CNF(xb + yb = 1)
for δ in D do

F = F + CNF(x + y �= δ)
end for
if SAT-solver concludes that F is satisfiable then

Retrieve y from the assignment and append x + y to D
else

b = b + 1 � We move on only when this bit is exhaustively used
end if

end while
Return D
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Abstract. The all-subkeys recovery (ASR) attack is an extension of the
meet-in-the-middle attack, which allows evaluating the security of a block
cipher without analyzing its key scheduling function. Combining the ASR
attack with some advanced techniques such as the function reduction and
the repetitive ASR attack, we show the improved ASR attacks on the
7-round reduced FOX64 and FOX128. Moreover, the improved ASR attacks
on the 119-, 105- and 99-round reduced KATAN32, KATAN48 and KATAN64,
and the 42-round reduced SHACAL-2 are also presented, respectively. As
far as we know, all of those attacks are the best single-key attacks with
respect to the number of attacked rounds in literature.

Keywords: Block cipher · Meet-in-the-middle attack · All-subkeys
recovery attack

1 Introduction

Since the meet-in-the-middle (MITM) attack was applied to KTANTAN [7], a lot of
its improvements have been introduced such as the splice-and-cut technique [4],
the initial structure [24], the biclique cryptanalysis [6,19], the internal state guess
[10,14], the sieve-in-the-middle technique [9] and the parallel-cut technique [23].
Since the MITM attack basically exploits the weakness in the key scheduling func-
tion, it was believed that a block cipher having a strong key scheduling function
has enough immunity against the MITM attack.

Isobe and Shibutani proposed the all-subkeys recovery (ASR) approach at
SAC 2012 as an extension of the MITM attack [16], and showed several best attacks
on block ciphers having relatively complex key scheduling function including
CAST-128 [1], SHACAL-2 [13], FOX [18] and KATAN [8]. One of the advantages of
the ASR attack compared to the basic MITM attack is that it does not need to
take the key scheduling function into account, since it recovers all subkeys instead
of the master key. Thus, it has been shown that the MITM attack may be more
applicable to block ciphers. Moreover, the ASR approach enables us to evaluate
the lower bounds on the security against key recovery attack for a block cipher
structure, since the ASR attack is applicable independently from the underlying
key scheduling function. For Feistel schemes, such lower bounds were shown by

c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 104–126, 2015.
DOI: 10.1007/978-3-662-46706-0 6
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Table 1. Summary of attacks on FOX64/128, KATAN32/48/64 and SHACAL-2 (single-key
setting)

Algorithm Attack type # attacked rounds Time Memory Data Reference

FOX64 Integral 5 2109.4 Not given 29 CP [26]a

Impossible Diff. 5 280 Not given 240 CP [27]a

ASR 6 2124 2124 15 CP This paper

ASR 7 2124 2123 230.9 CP This paper

FOX128 Integral 5 2205.6 Not given 29 CP [26]

Impossible Diff. 5 2144 Not given 272 CP [27]

ASR 5 2228 2228 14 KP [16]

ASR 6 2221 2221 26 CP This paper

ASR 7 2242 2242 263 CP This paper

KATAN32 ASR 110 277 275.1 138 KP [16]

Differential 114 277 Not given 231.9 CP [2]

ASR 119 279.1 279.1 144 CP This paper

KATAN48 ASR 100 278 278 128 KP [16]

ASR 105 279.1 279.1 144 CP This paper

KATAN64 ASR 94 277.1 279.1 116 KP [16]

ASR 99 279.1 279.1 142 CP This paper

SHACAL-2 ASR 41 2500 2492 244 KP [16]

ASR 42 2508 2508 225 CP This paper
aWhile the 6- and 7-round attacks on FOX64 were presented in [26,27], the time complex-
ities of both attacks exceed 2128. Similarly, the optimized exhaustive key-searches on the
KATAN family were presented in [28].

using the ASR attack with a couple of its improvements such as the function reduc-
tion in [17]. For instance, the function reduction reduces the number of subkeys
required to compute the matching state by exploiting degrees of freedom of plain-
text/ciphertext pairs. Then, the number of attacked rounds can be increased by
the ASR attack. Therefore, in order to more precisely evaluate the security of a
block cipher against the ASR attack, the following natural question arises: Are
those advanced techniques applicable to other structures such as Lai-Massey and
LFSR-type schemes?

In this paper, we first apply the function reduction technique to Lai-Massey,
LFSR-type and source-heavy generalized Feistel schemes to extend the ASR
attacks on those structures. Then, we further improve the attacks on those
structures by exploiting structure dependent properties and optimizing data com-
plexity in the function reduction. For instance, the ASR attack with the function
reduction on FOX can be improved by using the keyless one-round relation in Lai-
Massey scheme. Moreover, combined with the repetitive ASR approach, which
optimizes the data complexity when using the function reduction, the attack on
FOX can be further improved. Those results are summarized in Table 1. As far as
we know, all of the results given by this paper are the best single-key attacks with
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respect to the number of attacked rounds in literature1 We emphasize that our
improvements keep the basic concept of the ASR attack, which enables us to eval-
uate the security of a block cipher without analyzing its key scheduling function.
Therefore, our results are considered as not only the best single-key attacks on the
specific block ciphers but also the lower bounds on the security of the target block
cipher structures independently from key scheduling functions.

The rest of this paper is organized as follows. Section 2 briefly reviews
the previously shown techniques including the all-subkeys recovery approach, the
function reduction and the repetitive all-subkeys recovery approach. The improved
all-subkeys recovery attacks on FOX64/128, KATAN32/48/64 and SHACAL-2 are
presented in Sects. 3, 4 and 5, respectively. Finally, we conclude in Sect. 6.

2 Preliminary

2.1 All-Subkeys Recovery Approach [16]

The all-subkeys recovery (ASR) attack was proposed in [16] as an extension of
the meet-in-the-middle (MITM) attack. Unlike the basic MITM attack, the ASR
attack is guessing all-subkeys instead of the master key so that the attack can be
constructed independently from the underlying key scheduling function.

Let us briefly review the procedure of the ASR attack. First, an attacker deter-
mines an s-bit matching state S in a target n-bit block cipher consisting of R
rounds. The state S can be computed from a plaintext P and a set of subkey bits
K(1) by a function F(1) as S = F(1)(P,K(1)). Similarly, S can be computed from
the corresponding ciphertext C and another set of subkey bits K(2) by a function
F(2) as S = F−1

(2) (C,K(2)). Let K(3) be a set of the remaining subkey bits, i.e.,
|K(1)|+|K(2)|+|K(3)| = R·�, where � denotes the size of each subkey. For a plaintext
P and the corresponding ciphertext C, the equation F(1)(P,K(1)) = F−1

(2) (C,K(2))
holds when the guessed subkey bits K(1) and K(2) are correct. Since K(1) and K(2)

can be guessed independently, we can efficiently filter out the incorrect subkeys
from the key candidates. After this process, it is expected that there will be 2R·�−s

key candidates. Note that the number of key candidates can be reduced by par-
allel performing the matching with additional plaintext/ciphertext pairs. In fact,
using N plaintext/ciphertext pairs, the number of key candidates is reduced to
2R·�−N ·s, as long as N ≤ (|K(1)| + |K(2)|)/s. Finally, the attacker exhaustively
searches the correct key from the remaining key candidates. The required compu-
tations (i.e. the number of encryption function calls) of the attack in total Ccomp

is estimated as

Ccomp = max(2|K(1)|, 2|K(2)|) × N + 2R·�−N ·s. (1)

The number of required plaintext/ciphertext pairs is max(N, �(R·�−N ·s)/n�),
where n is the block size of the target cipher. The required memory is about
min(2|K(1)|, 2|K(2)|)×N blocks, which is the cost of the table used for the matching.
1 In the related-key setting, the attacks on the 174-, 145-, 130- and 44-round reduced
KATAN32, KATAN48, KATAN64 and SHACAL-2 were presented, respectively [15,20].
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2.2 Improvements on All-Subkeys Recovery Approach

In the ASR attack, the number of the subkeys required to compute the state S from
P or C, i.e., K(1) or K(2), is usually dominant parameter in the required complexi-
ties. Thus, in general, reducing those subkeys K1 and K2 will make the ASR attack
applicable to more rounds. In the followings, we briefly review and introduce a cou-
ple of techniques to reduce such subkeys required to compute the matching state.

Function Reduction Technique. For Feistel ciphers, the function reduction
technique that directly reduces the number of involved subkeys was introduced
in [17]. The basic concept of the function reduction is that fixing some plaintext
bits, ciphertext bits or both by exploiting degrees of freedom of a plaintext/
ciphertext pair allows an attacker to regard a key dependent variable as a new
subkey. As a result, substantial subkeys required to compute the matching state
are reduced. By using the function reduction, the lower bounds on the security
of several Feistel ciphers against generic key recovery attacks were given in [17].
Note that a similar approach was presented in [11] for directly guessing interme-
diate state values, while in the function reduction, equivalently transformed key
values are guessed.

Suppose that the i-th round state Si is computed from the (i − 1)-th round
state Si−1 XORed with the i-th round subkey Ki by the i-th round function Gi,
i.e., Si = Gi(Ki⊕Si−1). For clear understanding, we divide the function reduction
into two parts: a key linearization and an equivalent transform as follows.

– Key Linearization. Since the i-th round function Gi is a non-linear func-
tion, the i-th round subkey Ki cannot pass through Gi by an equivalent trans-
form. The key linearization technique, which is a part of the function reduction,
exploits the degree of freedom of plaintexts/ciphertexts to express Si as a linear
relation of Si−1 and Ki, i.e., Si = Li(Si−1,Ki), where Li is a linear function.
Once Si is represented by a linear relation of Si−1 and Ki, Ki can be forwardly
moved to a next non-linear function by an equivalent transform. Note that, if
the splice-and-cut technique [4] is used with the key linearization, Ki can be
divided into both forward and backward directions.

– Equivalent Transform. After the key linearization, the i-th round subkey
Ki is replaced with a new subkey K ′

i to pass through a non-linear function.
However, in order to reduce the involved subkey bits on the trails to the match-
ing state, all-subkeys on the trails affected by K ′

i are also replaced with new
variables by an equivalent transform. Consequently, the number of subkeys
required to compute the matching state can be reduced. For the Feistel ciphers,
it is easily done by replacing all-subkeys in the even numbered rounds Kj with
K ′

j(= K ′
1 ⊕ Kj), where j is even.

The splice-and-cut technique [4], which was originally presented in the attack
of the two-key triple DES [21], was well used in the recent meet-in-the-middle
attacks [3,6,7,19,24]. It regards that the first and last rounds are consecutive by
exploiting degree of freedom of plaintext/ciphertexts, and thus any round can be
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the start point. In general, the splice-and-cut technique is useful to analyze the
specific block cipher that key-dependency varies depending on the chunk separa-
tion. However, in the ASR approach, the splice-and-cut technique does not work
effectively, since the ASR treats all-subkeys as independent variables to evaluate
the security independently from the key scheduling function. On the other hand,
the function reduction exploits degrees of freedom of plaintexts/ciphertexts to
reduce subkey bits required to compute the matching state, and does not use rela-
tions among subkeys. Therefore, the function reduction technique is more useful
and suitable for the ASR approach than the splice-and-cut technique. However,
as mentioned in the description of the key linearization, the combined use of the
splice-and-cut and the function reduction in the key linearization is also possible,
e.g. the attack on Feistel-1 [17] and the attack on SHACAL-2 in this paper.

Repetitive All-Subkeys Recovery Approach. Since the function reduction
exploits the degree of freedom of plaintexts/ciphertexts, it sometimes causes an
attack infeasible due to lack of available data. For such cases, we introduce a vari-
ant of the all-subkeys recovery approach called repetitive all-subkeys recovery app-
roach that repeatedly applies the all-subkeys recovery todetect the correct key.The
variant can reduce the required data for each all-subkeys recovery phase, though
the total amount of the required data is unchanged. Note that a similar technique,
called inner loop technique, was used in [5,23] for reducing the memory require-
ments. The repetitive all-subkeys recovery approach is described as follows.

1. Mount the ASR attack with N plaintext/ciphertexts, where N is supposed to
be less than (|K(1)| + |K(2)|)/s, then put the remaining key candidates into a
table T1. The number of expected candidates is |K(1)| + |K(2)| − N · s.

2. Repeatedly mount the ASR attack with different N plaintext/ciphertexts. If
the remaining candidate match with ones in T1, such candidates are put into
another table T2. The number of expected candidates is |K(1)|+ |K(2)|−2 ·N ·s.

3. Repeat the above processes until the correct key is found, i.e., M = (|K(1)| +
|K(2)|)/(N · s) times.

When the above procedure is repeated M (≥ 2) times, the computational costs
to detect K(1) and K(2) are estimated as

Ccomp = (max(2|K(1)|, 2|K(2)|) × N)× M + (2|K(1)|+|K(2)|−N ·s)+

· · · + (2|K(1)|+|K(2)|−(M−1)·N ·s).

While the required data in total is (|K(1)|+ |K(2)|)/s (= ((|K(1)|+ |K(2)|)/(M ·s)) ·
M), each ASR approach is done with N = (|K(1)| + |K(2)|)/(M · s) data, which is
M times less than that required in the basic ASR attack. The required memory is
about max(2|K(1)|+|K(2)|−N ·s,min(2|K(1)|, 2|K(2)|)×N) blocks, which is the cost for
the table used in the matching. We demonstrate the effectiveness of the proposed
variant in the attack on the reduced FOX in Sect. 3.
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3 Improved All-Subkeys Recovery Attacks
on FOX64 and FOX128

In this section, we present the improved ASR attacks using the function reduction
and the repetitive ASR approach on the 6- and 7-round reduced FOX64 and FOX128
block ciphers. After short descriptions of FOX64 and FOX128, the function reduction
on FOX64 is presented. Then, we show how to construct the attack on the 6-round
FOX64, and how to extend it to the 7-round variant by using the repetitive ASR
approach. Similarly, the function reduction on FOX128, the attack on the 6-round
FOX128, and the attack on the 7-round FOX128 with the repetitive ASR approach
are introduced, respectively.

3.1 Descriptions of FOX64 and FOX128

FOX [18], also known as IDEA-NXT, is a family of block ciphers designed by Junod
and Vaudenay in 2004. FOX employs a Lai-Massey scheme including two variants
referred as FOX64 and FOX128 (see Fig. 1).

FOX64 is a 64-bit block cipher consisting of a 16-round Lai-Massey scheme with
a 128-bit key.The i-th round 64-bit input state is denoted as two 32-bitwords (Li−1

||Ri−1).The i-th round function updates the input state using the 64-bit i-th round
key Ki as follows:

(Li||Ri) = (or(Li−1 ⊕ f32(Li−1 ⊕ Ri−1,Ki))||Ri−1 ⊕ f32(Li−1 ⊕ Ri−1,Ki)),

where or(x0||x1) = (x1||(x0⊕x1)) for 16-bit x0, x1. f32 outputs a 32-bit data from
a32-bit inputX and two32-bit subkeysLKi andRKi as (sigma4(mu4(sigma4(X⊕
LKi)) ⊕ RKi) ⊕LKi), where sigma4 denotes the S-box layer consisting of four 8-
bit S-boxes and mu4 denotes the 4 × 4 MDS matrix. Two 32-bit subkeys LKi and
RKi are derived from Ki as Ki = (LKi||RKi).

FOX128 is a 128-bit block cipher consisting of a 16-round modified Lai-Massey
scheme with a 256-bit key. The i-th round 128-bit input state is denoted as four
32-bit words (LLi−1 || LRi−1 || RLi−1 || RRi−1). The i-th round function updates
the input state using the 128-bit i-th round key Ki as follows:

f32 f64 KiKi

ororor

FOX64 FOX128

Li−1 Ri−1

Li Ri

LLi−1 LRi−1 RLi−1RRi−1

LLi LRi RLi RRi

Fig. 1. Round functions of FOX64 and FOX128
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(LLi||LRi) = (or(LLi−1 ⊕ φL)||LRi−1 ⊕ φL),
(RLi||RRi) = (or(RLi−1 ⊕ φR)||RRi−1 ⊕ φR),

where (φL||φR) = f64((LLi−1 ⊕ LRi−1)||(RLi−1 ⊕ RRi−1),Ki). f64 outputs a
64-bit data from a 64-bit input X and two 64-bit subkeys LKi and RKi as (sigma8
(mu8(sigma8(X ⊕ LKi)) ⊕ RKi) ⊕LKi), where sigma8 denotes the S-box layer
consisting of eight 8-bit S-boxes and mu8 denotes the 8×8 MDS matrix. Two 64-bit
subkeys LKi and RKi are derived from Ki as Ki = (LKi||RKi).

3.2 Function Reduction on FOX64

KeyLinearization (Fig. 2). If the value of L0⊕R0 is fixed to a constant CON1,
the input of f32 is fixed as f32(CON1,K1). By regarding f32(CON1,K1) as a 32-
bit new key K ′

1, K ′
1 is XORed to L0 and R0. Since or is a linear operation, the

state after the first round is expressed as (L1||R1) = (or(L0) ⊕ OK ′
1)||(R0 ⊕ K ′

1),
where OK ′

1 = or(K ′
1) (see Fig. 2). This implies that the first round keys linearly

affect L1 and R1.

Equivalent Transform (Fig. 3). In the second round, OK ′
1 and K ′

1 are XORed
with LK2 in the first and last operations of f32 function. Let LK ′

2 = LK2 ⊕ K ′
1 ⊕

OK ′
1, K1′′ = K1′ ⊕ LK2, and OK1′′ = or(OK ′1 ⊕ LK2) be new keys. Then f32

function contains K ′
2 (= LK ′

2||RL2), and K ′′
1 and OK1′′ linearly affect outputs of

the second round.
In the third round, OK ′′

1 and K ′′
1 are also XORed with LK3 in the first and last

operations of f32 function. Let LK ′
3 = LK3 ⊕ K ′′

1 ⊕ OK ′′
1 , K1′′′ = K1′′ ⊕ LK2,

and OK1′′′ = or(OK ′′1 ⊕ LK2) be new keys (see Fig. 3).
Note that the same technique can be applied to the inverse of FOX64, because

the round function of FOX64 has the involution property.

3.3 Attack on the 6-Round FOX64

In this attack, we use the following one-round keyless linear relation of the Lai-
Massey construction.

or−1(Li+1) ⊕ Ri+1 = Li ⊕ Ri.

f32 K1 or

or

L0L0

L1L1

R0 = CON1 ⊕ L0R0 = CON1 ⊕ L0

R1R1

OK1
= or(f32(CON1, K1))

K1 = f32(CON1, K1)

Fig. 2. Key linearization of FOX64



Improved All-Subkeys Recovery Attacks 111

From this equation, the 16-bit relation is obtained as follows

((L(1)
4 ⊕ L

(3)
4 )||L(3)

4 ) ⊕ (R(3)
4 ||R(1)

4 ) = (L(3)
3 ||L(1)

3 ) ⊕ (R(3)
3 ||R(1)

3 ),

where L
(j)
i and R

(j)
i are the j-th byte of Li and Ri, respectively, and L

(3)
i and

R
(3)
i are the most significant bytes ,i.e., Li = {L

(3)
i ||L(2)

i ||L(1)
i ||L(0)

i } and Ri =
{R

(3)
i ||R(2)

i ||R(1)
i ||R(0)

i }.

Forward Computation in F(1): For given {K ′
2, LK ′

3, RK
′(3)
3 , RK

′(1)
3 , K

′′′(3)
1 ,

K
′′′(1)
1 , OK

′′′(3)
1 , OK

′′′(1)
1 }, (L(3)

3 ||L(1)
3 )⊕ (R(3)

3 ||R(1)
3 ) is computable. Since (K ′′′(3)

1

|| K
′′′(1)
1 ) and (OK

′′′(3)
1 ||OK

′′′(1)
1 ) linearly affect (L(3)

3 ||L(1)
3 ) and (R(3)

3 ||R(1)
3 ),

respectively, we can regard (K ′′′(3)
1 ||K ′′′(1)

1 ) ⊕ (OK
′′′(3)
1 ||OK

′′′(1)
1 ) as a new 16-bit

key XORK1. Then, (L(3)
3 ||L(1)

3 ) ⊕ (R(3)
3 ||R(1)

3 ) is obtained from 112(= 64 + 32 +
8+8) bits of the key {K ′

2, LK ′
3, RK

′(3)
3 , RK

′(1)
3 } and linearly-dependent 16-bit key

XORK1.

BackwardComputation inF(2): ((L
(1)
4 ⊕L

(3)
4 )||L(3)

4 )⊕(R(3)
4 ||R(1)

4 ) is obtained
from 112 (=64 + 32 + 16) bits of the key {K6, LK5, RK

(1)
5 , RK

(3)
5 }. Using the

indirect matching technique [3], 8 bits out of 16 bits of XORK1 are moved to the
left half of the matching equation. Then, the left and right halves of the equation
contains 120 bits of the key, i.e., |K(1)| = |K(2)| = 120.

Evaluation. When the parameter N = 15, the time complexity for finding the
involved 240-bit key is estimated as

Ccomp = max(2120, 2120) × 15 + 2240−15·16 = 2124.

The required data for the attack is only 15 (=max(15, �(240−15 ·16)/64�)) chosen
plaintext/ciphertext pairs, and the required memory is estimated as about 2124

(=min(2120, 2120) × 15) blocks.

3.4 Attack on the 7-Round FOX64

If the function reduction is applied as well in the backward direction, the 7-round
attack is feasible, i.e., the relation of L7 ⊕ R7 is fixed to a constant CON2. Due
to the involution property of the FOX64 round function, ((L(1)

4 ⊕ L
(3)
4 ) || L

(3)
4 )

⊕ (R(3)
4 ||R(1)

4 ) is also obtained from 112 (= 64 + 32 + 8 + 8) bits of the key and
linearly-dependent 16-bit keyXORK2. In this attack,we further regardXORK1⊕
XORK2 as a 16-bit new key. Then, similar to the attack on the 6-round FOX64,
the left and right halves of the equation contain 120 bits of the key, i.e., |K(1)| =
|K(2)| = 120.
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f32

f32

f32

f32

f32

or

or

or

or

or

or

K1

K2

K3

K2

K3

K1OK1

L0L0 R0 = CON1 ⊕ L0R0 = CON1 ⊕ L0

LK2

LK3

RK2

RK3

s s s s

s s s s

s s s s

s s s s

K1 = f32(CON1, K1)
OK1 = or(K1)
LK2 = LK2 ⊕ K1 ⊕ OK1
K1 = K1 ⊕ LK2
OK1 = or(OK1 ⊕ LK2)
LK3 = LK3 ⊕ K1 ⊕ OK1
K1 = K1 ⊕ LK3
OK1 = or(OK1 ⊕ LK3)
K2 = LK2||RK2
K3 = LK3||RK3

Fig. 3. Function reduction of FOX64

RepetitiveASRApproach. Recall that plaintexts and ciphertexts need to sat-
isfy the 32-bit relations,L0⊕R0 = CON1 andL7⊕R7 = CON2. The required data
for finding such pairs is equivalently estimated as the game that an attacker finds
32-bit multicollisions by 32-bit-restricted inputs. It has been known that an n-bit
t-multicollision is found in t!1/t · 2n·(t−1)/t random data with high probability [25].

In the basic ASR approach, at least 15(= 240/16) multicollisions are necessary
to detect the 240-bit involved key. To obtain such pairs with a high probability,
it require 232.55(= 15!1/15 · 232·(14)/15) plaintext/ciphertext pairs. However, it is
infeasible, since the degree of freedom of plaintexts is only 32 bits.

In order to overcome this problem, we utilize the repetitive all-subkeys recovery
approach with M = 2 variant. In each all-subkeys recovery phase, the required
data is reduced to 8 and 7. Then, such eight 32-bit multicollisions are obtained
from 229.9 plaintext/ciphertext pairs with a high probability. Thus, we can obtain
the required data by exploiting free 32 bits.

Evaluation. The time complexity for finding the involved 240 bits key is esti-
mated as

Ccomp = (max(2120, 2120) × 8) × 2 + (2240−8·16) = 2124.

The remaining 208(= 448 − 240) bits are obtained by recursively applying all-
subkeys recovery attacks. The time complexity for this phase is roughly estimated
as 2106(=208/2+2) using 4 (= �208/64�) plaintext/ciphertext pairs.

The required data is 230.9(= 229.9 × 2) plaintext/ciphertext pairs, and the
required memory is about 2123 (=max(2240−128,min(2120, 2120) × 8)) blocks.

3.5 Function Reduction on FOX128

KeyLinearization (Fig. 4). If two 16-bit relations of LL0⊕LR0 and RL0⊕RR0

are fixed to CON1 and CON2, respectively, the input of f64 is fixed as f64(CON1
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f64
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f64

f64

f64

oror

oror

oror

oror

oror

oror

K1

K2

K3

K2

K3

LL0LL0
RL0RL0

LR1LR1 RR1RR1
= CON1= CON1 = CON2= CON2

OKL1 OKR1

KL1

KR1

KL1||KR1 = f64(CON1||CON2, K1)
OKL1 = or(KL1)
OKR1 = or(KR1)

LK2 = LK2⊕
((OKL1 ⊕ KL1)||(OKR1 ⊕ KR1))

LK2 = LKL2||LKR2
KL1 = KL1 ⊕ LKL2
KR1 = KR1 ⊕ LKR2
OKL1 = or(OKL1 ⊕ LKL2)
OKR1 = or(OKR1 ⊕ LKR2)
K2 = LK2||RK2

LK3 = LK3⊕
((OKL1 ⊕ KL1 )||(OKR1 ⊕ KR1 ))

LK3 = LKL3||LKR3
KL1 = KL1 ⊕ LKL3
KR1 = KR1 ⊕ LKR3
OKL1 = or(OKL1 ⊕ LKL3)
OKR1 = or(OKR1 ⊕ LKR3
K3 = LK3||RK3
RK3 = RKL3||RKR3

Fig. 4. Function reduction of FOX128

|| CON2,K1). By regarding f64(CON1||CON2,K1) as a 64-bit new key K ′
1 =

KL′
1||KR′

1, KL′
1 and KR′

1 are XORed to {LR0 and LR0} and {RR0 and RR0},
respectively. The state after the first round is expressed as follows (see Fig. 4).

(LL1||LR1||RL1||RR1) = (or(LL0) ⊕ OKL′
1)||(LR0 ⊕ KL′

1)||(or(RL0) ⊕
OKR′

1)||(RR0 ⊕ KR′
1),

whereOKL′
1 = or(KL′

1) andOKR′
1 = or(KR′

1). This implies that the first round
keys linearly affect LL1, LR1, RL1 and RR1.

Equivalent Transform (Fig. 4). The equivalent transform is done similar to
FOX64 as shown in Fig. 4.

3.6 Attack on the 6-Round FOX128

We use the following one-round keyless linear relation of the modified Lai-Massey
construction,

or−1(LLi+1) ⊕ LRi+1 = LLi ⊕ LRi.

From this equation, the 16-bit relation is obtained as follows:

((LL
(1)
4 ⊕ LL

(3)
4 )||LL

(3)
4 ) ⊕ (LR

(3)
4 ||LR

(1)
4 ) = (LL

(3)
3 ||LL

(1)
3 ) ⊕ (LR

(3)
3 ||LR

(1)
3 ).

Forward Computation in F(1): For given {K ′
2, LK ′

3, RKL
′(3)
3 , RKL

′(1)
3 ,

KL
′′′(3)
1 , KL

′′′(1)
1 , OKL

′′′(3)
1 , OKL

′′′(1)
1 }, (LL

(3)
3 ||LL

(1)
3 ) ⊕ (LR

(3)
3 ||LR

(1)
3 ) is com-

putable. Since (KL
′′′(3)
1 ||KL

′′′(1)
1 ) and (OKL

′′′(3)
1 ||OKL

′′′(1)
1 ) linearly affect the
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matching states (LL
(3)
3 ||LL

(1)
3 ) and (LR

(3)
3 ||LR

(1)
3 ), respectively, we are able to

regard (LK
′′′(3)
1 ||LK

′′′(1)
1 ) ⊕ (OKL

′′′(3)
1 ||OKL

′′′(1)
1 ) as a new 16-bit key XORK1.

Then, (LL
(3)
3 ||LL

(1)
3 ) ⊕ (LR

(3)
3 ||LR

(1)
3 ) is obtained from 208(= 128 + 64 + 8 + 8)

bits of the key {K ′
2, LK ′

3, RKL
′(3)
3 , RKL

′(1)
3 } and linearly-dependent 16 bits key

XORK1.

Backward Computation inF(2): ((LL
(1)
4 ⊕ LL

(3)
4 )||LL

(3)
4 ) ⊕ (LR

(3)
4 ||LR

(1)
4 ) is

obtained from 208(= 128 + 64 + 16) bits of the key {K6, LK5, RKL
(1)
5 , RKL

(3)
5 }.

Using the indirect matching technique, 8 bits out of 16-bit XORK1 are moved to
the left half of thematching equation.Then, the left and right halves of the equation
contain 216 bits of the key, i.e., |K(1)| = |K(2)| = 216.

Evaluation. When the parameter N = 26, the time complexity for the involved
432 bits is estimated as

Ccomp = max(2216, 2216) × 26 = 2221.

The remaining 352 (= 768 − 416) bits are obtained by recursively applying the
all-subkeys recovery attack. The time complexity for determining the remaining
subkeys is roughly estimated as 2177.6(=352/2+1.6) using 2 (= �352/128�) plain-
text/ciphertext pairs.

The required data is only 26 chosen plaintext/ciphertext pairs, and the required
memory is about 2221(= min(2216, 2216) × 26) blocks.

3.7 Attack on the 7-Round FOX128

If the function reduction is also used in the backward direction, the 7-round attack
is feasible, i.e., two 16-bit relations of LL7⊕LR7 and RL7⊕RR7 are fixed to CON3

and CON4, respectively.
Due to the involution property of the FOX128 round function, ((LL

(1)
4 ⊕ LL

(3)
4 )

|| LL
(3)
4 ) ⊕ (LR

(3)
4 ||LR

(1)
4 ) is also obtained from 208(= 128+64+8+8) bits of the

key and linearly-dependent 16 bits key XORK2. In this attack, we further regard
XORK1⊕XORK2 as a 16 bit new key. Then, similar to the attack on the 6-round
FOX128, the left and right halves of the equation contain 216 bits of the key, i.e.,
|K(1)| = |K(2)| = 216.

RepetitiveASRApproach. Recall that plaintexts and ciphertexts need to sat-
isfy 64-bit (32 × 2) relations, LL0 ⊕ LR0 and RL0 ⊕ RR0, and LL7 ⊕ LR7 and
RL7 ⊕ RR7, respectively. The cost is equivalently estimated as the game that an
attacker finds 64-bit multicollisions with 64-bit-restricted inputs.

In the basic ASR approach, at least 27(= 432/16) multicollisions are needed
to detect the 432-bit involved key. To obtain such pairs with a high probability, it
requires 265.1(= 27!1/27 ·264·(26)/27) pairs. However, it is infeasible, since the degree
of freedom of plaintexts is only 64 bits.
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We utilize the repetitive all-subkeys recovery approach with M = 2 variant.
In each all-subkeys recovery phase, the required data is reduced to 13 and 14. Such
14 64-bit multicollisions are obtained, given 262.0 plaintext/ciphertext pairs with
high probability.

Evaluation. The time complexity for finding involved 432 bits of the key is esti-
mated as

Ccomp = (max(2216, 2216) × 14) × 2 + 2432−16·14 = 2224.

The remaining 480(= 896− 432) bits are obtained by recursively applying the all-
subkeys recovery attack. The time complexity for this phase is roughly estimated
as 2242(=480/2+2) using 4 (= �480/128�) plaintext/ciphertext pairs.

The required data is 263.0(= 262.0 × 2) plaintext/ciphertext pairs, and the
required memory is about 2242 blocks.

4 Improved All-Subkeys Recovery Attacks on
KATAN32/48/64

In this section, we show that the function reduction techniques are applicable to
KATAN32/48/64, thenwe improve theASRattacksonKATAN32/48/64blockciphers
by 9, 5 and 5 rounds, respectively.

After a short description of KATAN, we show how to apply the function reduction
toKATAN32 in detail.Then, thedetailed explanation for the attack on the 119-round
reduced KATAN32 is given. For KATAN48 and KATAN64, the detailed explanations for
applying the function reductions are omitted, since the analysis is done similar to
KATAN32.

4.1 Description of KATAN

KATAN [8] family is a feedback shift register-based block cipher consisting of three
variants: KATAN32, KATAN48 and KATAN64whose block sizes are 32-, 48- and 64-bit,
respectively. All of the KATAN ciphers use the same key schedule accepting an 80-bit
key and 254 rounds. The plaintext is loaded into two shift registers L1 and L2. In
each round, L1 and L2 are shifted by one bit, and the least significant bits of L1 and
L2 are updated by fb(L2) and fa(L1), respectively. The bit functions fa and fb are
defined as follows:

fa(L1) = L1[x1] ⊕ L1[x2] ⊕ (L1[x3] · L1[x4]) ⊕ (L1[x5] · IR) ⊕ k2i,

fb(L2) = L2[y1] ⊕ L2[y2] ⊕ (L2[y3] · L2[y4]) ⊕ (L2[y5] · L2[y6]) ⊕ k2i+1,

where L[x] denotes the x-th bit of L, IR denotes the round constant, and k2i

and k2i+1 denote the 2-bit i-th round key. Note that for KATAN family, the round
number starts from 0 instead of 1, i.e., KATAN family consists of round functions
starting from the 0-th round to the 253-th round. Li

1 or Li
2 denote the i-th round
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Table 2. Parameters of KATAN family

Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3

KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6

KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

registers L1 or L2, respectively. Let IRi be the i-th round constant. For KATAN48
or KATAN64, in each round, the above procedure is iterated twice or three times,
respectively. All of the parameters for the KATAN ciphers are listed in Table 2.

The key scheduling function of KATAN ciphers copies the 80-bit user-provided
key to k0, ..., k79, where ki ∈ {0, 1}. Then, the remaining 428 bits of the round keys
are generated as follows:

ki = ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 for i = 80, ..., 507.

4.2 Function Reduction on KATAN32

Key Linearization. In the i-th round function of KATAN32, two key bits k2i and
k2i+1 are linearly inserted into states Li

1[0] and Li
2[0], respectively, these states

are not updated in the i-th round. Thus, the key linearization technique is not
necessary.

Equivalent Transform. Let us consider how linearly-inserted key bits are used
in the following round functions. For instance, k1 is linearly inserted to L1

1[0], and
the updated state L1

1[0] is described as (X[0] ⊕ k1), where X[i] is defined as

X[i] = L0
2[18 − i] ⊕ L0

2[7 − i] ⊕ (L0
2[12 − i] · L0

2[10 − i]) ⊕ (L0
2[8 − i] · L0

2[3 − i]),

where L0
2[−i] = Li

2[0]. For computing fa(L1), the state L1
1[0] = (X[0]⊕ k1) is used

in the following five positions,

– L4
2[3] : ((X[0]⊕k1) ·IR4) is XORed with k8. If X[0] is fixed to a constant CON1,

a new key k′
8 is defined as ((CON1 ⊕ k1) · IR4) ⊕ k8.

– L6
2[5] : ((X[0]⊕k1)·L6

1[8])= ((X[0]⊕k1)·L0
1[2]) isXORedwithk12. IfL0

1[2] is also
fixed to a constantCON2, a newkeyk′

12 is defined as ((CON1⊕k1)·CON2)⊕k12.
– L8

2[7] : (X[0] ⊕ k1) is directly XORed with k16. A new key k′
16 is defined as

(CON1 ⊕ k1) ⊕ k16.
– L9

2[8] : ((X[0] ⊕ k1) · L9
1[5]) = ((X[0] ⊕ k1) · (X[3] ⊕ k7)) is XORed with k18.

If X[3] is also fixed to a constant CON3, a new key k′
18 is defined as ((CON1 ⊕

k1) · (CON3 ⊕ k7)) ⊕ k18.
– L13

2 [12] : (X[0] ⊕ k1) is directly XORed with k26. A new key k′
26 is defined as

(CON1 ⊕ k1) ⊕ k26.

Thus, by fixing X[0], L0
1[2] and X[3] to constants and defining new key bits k′

8, k
′
12,

k′
16, k′

18 and k′
26, we can omit one key bit k1, i.e., we can compute without k1 in

the forward direction. Note that CON1, CON2 and CON3 are not restricted to
constant values. Even if CON1, CON2 and CON3 are expressed by only key bits,
we can define new keys in the same manner.
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Table 3. Conditions for 8-bit function reductions

Key bit State bits to be fixed

k1 X[0], L0
1[2], X[3]

k3 X[1], L0
1[1], X[4]

k5 X[2], L0
1[0], X[5]

k7 X[3], X[0], X[6]

k9 X[4], X[1], X[7]

k11 X[5], X[2], X[8]

k13 X[6], X[3], X[9]

k15 X[7], X[4], X[10]

Conditions for Function Reduction. Table 3 shows conditions for 8-bit func-
tion reductions. If these 14 bits of L0

1[0], L0
1[2], L0

1[2], X[0], . . . , X[10] are fixed to
constants or expressed by only key bits, then we can eliminate 8 bits of the key, k1,
k3, k5, k7, k9, k11, k13 and k15, in the forward computation of KATAN32.

Let us explain how to controlX[0] andX[10] by exploiting thedegree of freedom
of plaintexts. X[0] to X[10] are expressed as follows:

X[0] = L0
2[18] ⊕ L0

2[7] ⊕ (L0
2[12] · L0

2[10]) ⊕ (L0
2[8] · L0

2[3]),

X[1] = L0
2[17] ⊕ L0

2[6] ⊕ (L0
2[11] · L0

2[9]) ⊕ (L0
2[7] · L0

2[2]),

X[2] = L0
2[16] ⊕ L0

2[5] ⊕ (L0
2[10] · L0

2[8]) ⊕ (L0
2[6] · L0

2[1]),

X[3] = L0
2[15] ⊕ L0

2[4] ⊕ (L0
2[9] · L0

2[7]) ⊕ (L0
2[5] · L0

2[0]),

X[4] = L0
2[14] ⊕ L0

2[3] ⊕ (L0
2[8] · L0

2[6]) ⊕ (L0
2[4] · (Y [0] ⊕ k0)),

X[5] = L0
2[13] ⊕ L0

2[2] ⊕ (L0
2[7] · L0

2[5]) ⊕ (L0
2[3] · (Y [1] ⊕ k2)),

X[6] = L0
2[12] ⊕ L0

2[1] ⊕ (L0
2[6] · L0

2[4]) ⊕ (L0
2[2] · (Y [2] ⊕ k4)),

X[7] = L0
2[11] ⊕ L0

2[0] ⊕ (L0
2[5] · L0

2[3]) ⊕ (L0
2[1] · (Y [3] ⊕ k6)),

X[8] = L0
2[10] ⊕ (Y [0] ⊕ k0) ⊕ (L0

2[4] · L0
2[2]) ⊕ (L0

2[0] · (Y [4] ⊕ k8)),

X[9] = L0
2[9] ⊕ (Y [1] ⊕ k2) ⊕ (L0

2[3] · L0
2[1]) ⊕ ((Y [0] ⊕ k0) · (Y [5] ⊕ k10),

X[10] = L0
2[8] ⊕ (Y [2] ⊕ k4) ⊕ (L0

2[2] · L0
2[0]) ⊕ ((Y [1] ⊕ k2) · (Y [6] ⊕ k12),

where
Y [0] = L0

1[12] ⊕ L0
1[7] ⊕ (L0

1[5] · L0
1[8]) ⊕ (L0

1[3] · IR0),

Y [1] = L0
1[11] ⊕ L0

1[6] ⊕ (L0
1[4] · L0

1[7]) ⊕ (L0
1[2] · IR1),

Y [2] = L0
1[10] ⊕ L0

1[5] ⊕ (L0
1[3] · L0

1[6]) ⊕ (L0
1[1] · IR2),

Y [3] = L0
1[9] ⊕ L0

1[4] ⊕ (L0
1[2] · L0

1[5]) ⊕ (L0
1[0] · IR3),

Y [4] = L0
1[8] ⊕ L0

1[3] ⊕ (L0
1[1] · L0

1[4]) ⊕ (X[0] · IR4),
Y [5] = L0

1[7] ⊕ L0
1[2] ⊕ (L0

1[0] · L0
1[3]) ⊕ (X[1] · IR5),

Y [6] = L0
1[6] ⊕ L0

1[1] ⊕ (X[0] · L1[2]) ⊕ (X[2] · IR6).

X[0], . . . ,X[3] are easily fixed to constants by controlling 4bits ofL0
2[18],L0

2[17],
L0
2[16] and L0

2[15] (4-bit condition). X[4], . . . ,X[8] contain key bits in AND oper-
ations. If L0

2[4] = L0
2[3] = L0

2[2] = L0
2[1] = L0

2[0] = 0, those key bits are omitted
from the equations (5-bit condition). Then X[4] to X[7] are also fixed to constants
by controlling 4 bits of L0

2[14], L0
2[13], L0

2[12] and L0
2[11] (4 bit condition). In X[8],

k0 is also linearly inserted. If (L0
2[10]⊕Y [0]⊕(L0

2[4]·L0
2[2])) is fixed to a constant by
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controlling L0
2[10], then X[8] is expressed as the form of CON ⊕k0, which depends

only on key bits, where CON is an arbitrary constant.
In X[9] and X[10], 4 bits of Y [0], Y [1], Y [5] and Y [6] are needed to be fixed.

These values are controlled by L0
1[12], L0

1[11], L0
1[7] and L0

1[6]. If the other bits are
fixed by L0

2[9] and L0
2[8], X[9] and X[10] are expressed by only key bits.

Therefore, if plaintexts satisfy 23(= 3 + 4 + 5 + 4 + 1 + 4 + 2) bit conditions
described in Table 3, 8 bits of the key are able to be omitted when mounting the
ASR attack.

Procedure forCreatingPlaintexts. We show how to create plaintexts satisfy-
ing the conditions. By using the equations of X[0] to X[10] and Y [0] to Y [6], such
plaintexts are easily obtained as follows.

1. Set 18 predetermined values of L0
1[0], L0

1[1], L0
1[2], X[0], . . . ,X[10], Y [0], Y [1],

Y [5] and Y [6].
2. Choose values of free 9 bits of L0

2[5], L0
2[6], L0

2[7], L0
1[3], L0

1[4], L0
1[5], L0

1[8], L0
1[9]

and L0
1[10].

3. Obtain L0
2[8], . . . , L0

2[13] from equations of X[5], . . . , X[10], and L0
1[6] and L0

1[7]
from equations of Y [5] and Y [6], respectively.

4. Obtain L0
2[14], . . . , L0

2[18] from equations of X[0], . . . , X[4], and L0
1[11] and

L0
1[12] from equations of Y [0] and Y [1], respectively.

5. Repeat steps 2 to 4 until the required number of plaintexts are obtained.

4.3 Attacks on 119-Round KATAN32

Let us consider the 119-round variant of KATAN32 starting from the first (0-th)
round. In this attack, L69

2 [18] is chosen as the matching state.

ForwardComputation inF(1):L69
2 [18] depends on 83 subkey bits. This implies

that L69
2 [18] can be computed by a plaintext P and 83 bits of subkeys. More specif-

ically, L69
2 [18] = F(1)(P,K(1)), where K(1) ∈ {k0, ..., k70, k72, . . ., k76, k80, k83,

k84, k85, k89, k93, k100} and |K(1)| = 83. If the function reduction technique with
the 23-bit condition of plaintexts is used, 8 bits of {k1, k3, k5, k7, k9, k11, k13, k15}
can be omitted in computations of F(1). Thus, L69

2 [18] is computable with 75(=
83 − 8) bits. In addition, since 4 bits of {k68, k75, k85, k100} linearly affect L69

2 [18],
we can regard k68 ⊕ k75 ⊕ k85 ⊕ k100 as a new key kf . Thus, 72(= 75 − 4 + 1) bits
are involved in the forward computation.

Backward Computation in F(2): In the backward computation starting
from the 118-th round, the matching state L69

2 [18] is computed as L69
2 [18] =

F−1
(2) (C,K(2)), where K(2) ∈ {k138, k150, k154, k158, k160, k162, k165, k166, k168, k170,

k172, . . . k237}, and |K(2)| = 76. Since 4 bits of {k138, k160, k165, k175} linearly affect
L69
2 [18], we can regard k138 ⊕ k160 ⊕ k165 ⊕ k175 as a new key kb. Furthermore,

by the indirect matching, kb is moved to the forward computation, then kb ⊕ kf is
regarded as a new key in F(1). Thus, 72(= 76−4) bits are involved in the backward
computation.
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Evaluation. For the 119-round reduced KATAN32, the matching state S is cho-
sen as L69

2 [18] (1-bit state). When N = 144 (≤ (72 + 72)/1), the time complexity
for finding K(1) and K(2) is estimated as

Ccomp = max(272, 272) × 144 = 279.1.

The required data is only 144 chosen plaintext/ciphertext pairs in which the 23 bits
of each plaintext satisfy conditions. The required memory is about 279.1 blocks.

Finally, we need to find the remaining 94(= 119 × 2 − 144) bits of subkeys by
using the simpleMITMapproach in the settingwhereK(1) andK(2) are known.The
time complexity and the required memory for this process are roughly estimated
as 249(= 248 + 246) and 246 blocks, respectively. These costs are obviously much
less than those of finding K(1) and K(2).

4.4 Function Reduction on KATAN48

Table 4 shows conditions for 4-bit function reductions, where X ′[i] is defined as:

X ′[i] = L0
2[28 − i] ⊕ L0

2[19 − i] ⊕ (L0
2[21 − i] · L0

2[13 − i]) ⊕ (L0
2[15 − i] · L0

2[6 − i]).

If these values are fixed to target constants, we can eliminate the key bits in the
computation of KATAN48.

Table 4. Conditions for 4-bit function reductions

Key bit State bits to be fixed

k1 X ′[0], X ′[1], L0
1[6], L0

1[7], X ′[8], X ′[9]

k3 X ′[2], X ′[3], L0
1[4], L0

1[5], X ′[10], X ′[11]

k5 X ′[4], X ′[5], L0
1[2], L0

1[3], X ′[12], X ′[13]

k7 X ′[6], X ′[7], L0
1[0], L0

1[1], X ′[14], X ′[15]

X ′[0], . . . , X ′[6] are fixed by controlling 7 bits of L0
2[22], . . . , L0

2[28] (7 bit con-
dition). X ′[7], . . . ,X ′[15] contain key bits in AND operations. If L0

2[8] = L0
2[7] =

, . . . ,= L0
2[1] = L0

2[0] = 0, these key bits are omitted from these equations (9 bit
condition). Then X ′[7], . . . , X ′[15] are also fixed by controlling 9 bits of L0

2[13], . . . ,
L0
2[21] (9 bit condition).

Therefore, if plaintexts satisfy 33 (= 8 + 7 + 9 + 9) bit conditions described in
Table 4, 4 bits of the key are able to be omitted when mounting the ASR attack.

4.5 Attacks on 105-Round KATAN48

Let us consider the 105-round variant of KATAN48 starting from the first (0-th)
round. In this attack, L61

2 [28] is chosen as the matching state.
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ForwardComputation inF(1):L61
2 [28] depends on 79 subkey bits. This implies

that L61
2 [28] can be computed by a plaintext P and 79 bits of subkeys. More specifi-

cally, L61
2 [28] = F(1)(P,K(1)), where K(1) ∈ {k0, ..., k68, k70, k71, k72, k75, k77, k78,

k81, k85, k87, k92} and |K(1)| = 79. If the function reduction technique with the
33-bit condition of plaintexts is used, 4 bits of k1, k3, k5, k7 can be omitted in com-
putations of F(1). Thus, L61

2 [28] is computable with 75(= 79− 4) bits. In addition,
3 bits of {k75, k81, k92} linearly affect L61

2 [28]. Thus, we can regard k75 ⊕ k81 ⊕ k92
as a new key. By using indirect matching, kf = k75 ⊕ k81 ⊕ k92 is moved to F(2).
Then, 72(= 75 − 3) bits are involved in the forward computation.

Backward Computation in F(2): In the backward computation starting from
the104-th round, thematching stateL61

2 [28] is computedasL61
2 [28]=F−1

(2) (C,K(2)),
where K(2) ∈ {k122, k128, k130, k134, k136, k138, k140, k141, k142, k144, . . . k209}, and
|K(2)| = 75. 4 bits of {k122, k130, k140, k141} linearly affect L61

2 [28]. Thus, we can
regard kb = k122 ⊕ k130 ⊕ k140 ⊕ k141 as a new key. Furthermore, we define kf ⊕ kb

as a new key. Then, 72(= 75−4+1) bits are involved in the backward computation.

Evaluation. For the 105-round reduced KATAN48, the matching state S is chosen
as L61

2 [28] (1-bit state). When N = 144 (≤ (72 + 72)/1), the time complexity for
finding K(1) and K(2) is estimated as

Ccomp = max(272, 272) × 144 = 279.1.

The requireddata is only 144 chosenplaintext/ciphertext pairs.The requiredmem-
ory is about 279.1 blocks.

Finally, we need to find the remaining 66 (= 105 × 2 − 144) bits of subkeys by
using the simpleMITMapproach in the settingwhereK(1) andK(2) are known.The
time complexity and the required memory for this process are roughly estimated
as 234(= 234 + 232) and 232 blocks, respectively. These costs are obviously much
less than those of finding K(1) and K(2).

4.6 Function Reduction on KATAN64

Table 5 shows conditions for 2-bit function reductions, where X ′′[i] is defined as:

X ′′[i] = L0
2[38 − i] ⊕ L0

2[25 − i] ⊕ (L0
2[33 − i] · L0

2[21 − i]) ⊕ (L0
2[14 − i] · L0

2[9 − i]).

If these values are fixed to target constants, we can eliminate the key bits in the
computation of KATAN64.

Table 5. Conditions for 2-bit function reductions

Key bit State bits to be fixed

k1 X ′′[0], X ′′[1], X ′′[2], L0
1[6], L0

1[7], L0
1[8], X ′′[9], X ′′[10], X ′′[11],

k3 X ′′[3], X ′′[4], X ′′[5], L0
1[3], L0

1[4], L0
1[5], X ′′[12], X ′′[13], X ′′[14],
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X ′′[0], . . . , X ′′[9] are fixed by controlling 10 bits of L0
2[29], . . . , L0

2[38] (10 bit
condition). X ′′[10], . . ., X ′′[14] contain key bits in AND operations. If L0

2[4] =
, . . . ,= L0

2[0] = 0, these key bits are omitted from these equations (5 bit condition).
Then X ′′[10], . . . ,X ′′[14] are also fixed by controlling 5 bits L0

2[18], ..., L0
2[23] (5 bit

condition).
Therefore, if plaintexts satisfy 29(= 9 + 10 + 5 + 5) bit conditions described in

Table 5, 2 bits of the key are able to be omitted when mounting the ASR attack.

4.7 Attacks on 99-Round KATAN64

Letus consider the 99-roundvariant ofKATAN64 starting fromthefirst (0-th) round.
In this attack, L57

2 [38] is chosen as the matching state.

ForwardComputation inF(1):L57
2 [38] depends on 74 subkey bits. This implies

that L57
2 [38] can be computed by a plaintext P and 74 bits of subkeys. More specif-

ically, L57
2 [38] = F(1)(P,K(1)), where K(1) ∈ {k0, ..., k66, k70, k71, k72, k75, k77, k81,

k88} and |K(1)| = 74. If the function reduction technique with the 29-bit condition
of plaintexts is used, 2 bits of k1, k3 can be omitted in computations of F(1). Thus,
L57
2 [38] is computable with 72(= 74 − 2) bits. In addition, 3 bits of {k71, k77, k88}

linearly affect L57
2 [38]. Thus, we can regard k71 ⊕ k77 ⊕ k88 as a new key. Then,

70(= 72 − 3 + 1) bits are involved in the forward computation.

Backward Computation in F(2): In the backward computation starting from
the 98-th round, thematching stateL57

2 [38] is computedasL57
2 [38] = F−1

(2) (C,K(2)),
where K(2) ∈ {k114, k116, k120, k122, k124, k126, k128, k130, . . . k197}, and |K(2)| = 75.
3 bits of {k114, k122, k131} linearly affectL57

2 [38]. Thus,we can consider k114⊕k122⊕
k131 as a newkey, andmove it to the forward computation by the indirectmatching.
Then, 72(= 75 − 3) bits are involved in the backward computation.

Evaluation. For the 99-round reduced KATAN64, the matching state S is chosen
as L57

2 [38] (1-bit state).
When N = 142 (≤ (72 + 70)/1), the time complexity for finding K(1) and K(2)

is estimated as
Ccomp = max(272, 270) × 142 = 279.1.

The requireddata is only 142 chosenplaintext/ciphertext pairs.The requiredmem-
ory is about 277.1 blocks.

Finally, we need to find the remaining 56(= 99 × 2 − 142) bits of subkeys by
using the simpleMITMapproach in the settingwhereK(1) andK(2) are known.The
time complexity and the required memory for this process are roughly estimated
as 228 and 228 blocks, respectively. These costs are obviously much less than those
of finding K(1) and K(2).

5 ImprovedAll-Subkeys RecoveryAttack on SHACAL-2

This section presents the ASR attacks on SHACAL-2 with the function reduction
techniques. Then, we propose a 42-round attack on SHACAL-2, based on the 41-
round attack on SHACAL-2 [13].
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5.1 Description of SHACAL-2

SHACAL-2 [13] is a 256-bit block cipher based on the compression function of SHA-
256 [12]. It was submitted to the NESSIE project and selected in the NESSIE port-
folio [22].

SHACAL-2 inputs the plaintext to the compression function as the chaining
variable, and inputs the key to the compression function as the message block.
First, a 256-bit plaintext is divided into eight 32-bit words A0, B0, C0, D0, E0,
F0, G0 and H0. Then, the state update function updates eight 32-bit variables, Ai,
Bi, ..., Gi, Hi in 64 steps as follows:

T1 = Hi � Σ1(Ei) � Ch(Ei, Fi, Gi) � Ki � Wi,

T2 = Σ0(Ai) � Maj(Ai, Bi, Ci),
Ai+1 = T1 � T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di � T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi,

where Ki is the i-th step constant, Wi is the i-th step key (32-bit), and the functions
Ch, Maj, Σ0 and Σ1 are given as follows:

Ch(X,Y,Z) = XY ⊕ XZ,

Maj(X,Y,Z) = XY ⊕ Y Z ⊕ XZ,

Σ0(X) = (X ≫ 2) ⊕ (X ≫ 13) ⊕ (X ≫ 22),
Σ1(X) = (X ≫ 6) ⊕ (X ≫ 11) ⊕ (X ≫ 25).

After 64 steps, the function outputs eight 32-bitwordsA64,B64,C64,D64,E64,F64,
G64 and H64 as the 256-bit ciphertext. Hereafter pi denotes the i-th step state, i.e.,
pi = Ai||Bi||...||Hi.

The key scheduling function of SHACAL-2 takes a variable length key up to
512 bits as the inputs, then outputs 64 32-bit step keys. First, the 512-bit input
key is copied to 16 32-bit words W0, W1, ..., W15. If the size of the input key is
shorter than 512 bits, the key is padded with zeros. Then, the key scheduling func-
tion generates 48 32-bit step keys (W16, ...,W63) from the 512-bit key (W0, ...,W15)
as follows:

Wi = σ1(Wi−2) � Wi−7 � σ0(Wi−15) � Wi−16, (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are defined by

σ0(X) = (X ≫ 7) ⊕ (X ≫ 18) ⊕ (X � 3),
σ1(X) = (X ≫ 17) ⊕ (X ≫ 19) ⊕ (X � 10).

5.2 Function Reduction on SHACAL-2

In the round function of SHACAL-2, a round key Wi is inserted to the state Ti by
an arithmetic addition operation. We show that the splice and cut framework is
applicable by using the partial key linearization technique.
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The computation of T1 is expressed as

T1 = (Hi � Wi) � Σ1(Ei) � Ch(Ei, Fi, Gi) � Ki.

In a straight way, the computation of (Hi � Wi) is not divided into two parts
as (HLi � WLi)||(HRi � WRi) due to the carry bit between these computations,
where HLi and WLi denote the higher x-bits of Hi and Wi, respectively, and HRi

and WRi are the lower (32−x)-bits of Hi and Wi. If HRi is fixed to 0, it is equiva-
lent to (HLi �WLi)||(HLi ⊕WRi). Then, it allows us to independently compute
these two parts without dealing with carry bits. Therefore, by using the splice and
cut framework, 32 key bits of one round is divided into forward and backward com-
putations as shown in Fig. 5.

However, we can not reduce the number of involved key bits by using an equiv-
alent transform. It is because that the involved 32-bit key Wi is used at least eight
times in the forward and backward directions. In order to fully control values in
each state, more than 512(32 × 8) bits of conditions are required.

HLi||HRi HRiHLi

WLi||WRi WLi WRi

Fig. 5. Splice and cut of SHACAL-2

5.3 Attacks on 42-Round SHACAL-2

We show that the splice and cut framework [4] is applicable to SHACAL-2 by using
the key linearization technique. Then we extend the 41-round attack [16] by one
more round. In particular, the splice and cut technique is done in the first round,
and the higher 15 bits are move to the backward computation, and the lower 17 bits
are move to the forward computation. Then we choose the lowest 1 bit of A17 as the
matching point.

Forward Computation in F(1): The lowest 1 bit of A17 can be computed from
the 16-th state p16 and the lowest 1 bit of W16, since the other bits of W16 are not
affected to the lower 1 bit of A17. Thus, the matching state S (the lowest 1 bit
of A17) is calculated as S = F(1)(P,K(1)), where K(1) ∈ {the lower 17 bits of
W0,W1, ...,W15, the lowest 1 bit of W16} and |K(1)| = 498(= 32 × 15 + 1 + 17).

Backward Computation in F(2): We utilize the following observation [16].

Observation 1. The lower t bits of Aj−10 are obtained from the j-th state pj and
the lower t bits of three subkeys Wj−1, Wj−2 and Wj−3.

FromObservation 1, thematching stateS (the lowest 1 bit ofA17) can be computed
as S = F−1

(2) (C,K(2)), where K(2) ∈ {the higher 15 bits of W0, W27, ...,W41, the
lowest 1 bits of W24, W25 and W26}. Thus, |K(2)| = 498(= 32 × 15 + 1 × 3 + 15).
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Evaluation. The matching state S is the lowest 1 bit of A17, |K(1)| = 498 and
|K(2)| = 498. Thus, using 996 chosen plaintext/ciphertext pairs (i.e. N = 244 ≤
(498 + 498)/1), the time complexity for finding all-subkeys is estimated as

Ccomp = max(2498, 2498) × 996 + 21344−996 = 2508.

The required data is 225(= 996 × 215) chosen plaintext/ciphertext pairs, since
15 bits of plaintext are not controlled in the backward computation when using the
splice and cut technique. The required memory is 2508(= min(2498, 2498) × 996)
blocks.

6 Conclusion

The concept of the ASR attack is quite simple, which recovers all-subkeys instead
of the master key, but useful to evaluate the security of block cipher structures
without analyzing key scheduling functions. Thus, it is valuable to study its im-
provements to design a secure block cipher. We first observed the function reduc-
tion technique, which improved the ASR attack and was originally applied to
Feistel schemes. Then, with some improvements such as the repetitive ASR app-
roach, we applied the function reduction to other block cipher structures includ-
ing Lai-Massey, generalized Lai-Massey, LFSR-type and source-heavy generalized
Feistel schemes.

As applications of our approach, we presented the improved ASR attacks on
the 7-, 7-, 119-, 105-, 99-, and 42-round reduced FOX64, FOX128, KATAN32, KATAN48,
KATAN64 and SHACAL-2. All of our results updated the number of attacked rounds
by the previously known best attacks. We emphasize that our attacks work inde-
pendently from the structure of the key scheduling function. In other words,
strengthening the key scheduling function does not improve the security against
our attack. It implies that our results give the lower bounds on the security of the
target structures such as Lai-Massey scheme rather than the specific block ciphers
against generic key recovery attack. Therefore, we believe that our results are use-
ful for a deeper understanding the security of the block cipher structures.
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Abstract. This paper focuses on key-recovery attacks on 9-round AES-

192 and AES-256 under single-key model with the framework of the

meet-in-the-middle attack. A new technique named key-dependent sieve

is introduced to further reduce the size of lookup table of the attack, and

the 9-round AES-192 is broken with 2121 chosen plaintexts, 2187.5 9-round

encryptions and 2185 128-bit words of memory. If the attack starts from

the third round, the complexities would be further reduced by a factor of

16. Moreover, the whole attack is split up into a series of weak-key attacks.

Then the memory complexity of the attack is saved significantly when we

execute these weak attacks in streaming mode. This method is also applied

to reduce the memory complexity of the attack on 9-round AES-256.

Keywords: AES · Block cipher · Meet-in-the-Middle Attack · Differ-

ential characteristic

1 Introduction

The block cipher Rijndael was designed by Daemen and Rijmen in 1997, and
was selected as the Advanced Encryption Standard (AES) in 2001 by NIST. It
is a Substitution-Permutation Network (SPN) with variable key length of 128,
192, 256, which are denoted as AES-128, AES-192 and AES-256, respectively.

For the reason of its importance and popularity, the security of AES has
attracted a great amount of attention from worldwide cryptology researchers.
Many methods of cryptanalysis were applied to attack AES in previous years,
such as impossible differential attack [15,16,19], SQUARE attack [5], collision
attack [13], meet-in-the-middle attack [6–9,11,18], biclique attack [4], related-
key attack and chosen-key distinguishing [1–3,12]. Although the attacks under
c© International Association for Cryptologic Research 2015
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related-key model, could be used to break the full versions of AES-192 and
AES-256 based on exploiting the key schedule [1–3], but such attacks require a
very powerful assumption that the adversary can ask to modify the unknown key
used in the encryption. So related-key attacks are widely used as an important
method to estimate the security of a block cipher, but are not regarded as a real
threat to the application of a cipher in practice. For the attacks under single-
key model, up to now, the best attacks except the biclique method could reach
to 7-round for AES-128, 8-round for AES-192 and 9-round for AES-256. The
biclique method was used to attack the full AES with a marginal complexity over
exhaustive search by Bogdanov, Khovratovich and Rechberger at ASIACRYPT
2012 [4].

In this paper, we focus on the meet-in-the-middle attack (MITM) in the
single-key model, which was deeply researched in recent years, and now may
be the most efficient attack on all versions of AES [9]. The meet-in-the-middle
attack was first proposed by Diffie and Hellman to attack DES [10]. For AES
cipher, this method was introduced by Demirci and Selçuk at FSE 2008 [6] to
improve the collision attack proposed by Gilbert and Minier [13]. They con-
structed a 4-round distinguisher to attack the 7-round and 8-round AES. The
attack needs a small data complexity of 234, but requires a large memory of
225×8 to set up precomputation table determined by 25 intermediated variable
bytes. The number of parameters could be reduced to 24 bytes, if one considers
to store the differentials instead of values in precomputation table. Combined
with data/time/memory tradeoff, this attack was applied to analyse 7-round
AES-192 and 8-round AES-256.

At ASIACRYPT 2010, Dunkelman, Keller and Shamir [11] exploited the
differential enumeration and multiset ideas for MITM attacks to reduce the high
memory complexity in the precomputation phase. Indeed, they showed that if a
pair conforms to a truncated differential characteristic, the number of the desired
24 intermediated variable bytes will be reduced to 16. Since this attack reduces
the memory complexity with the expense of increasing the data complexity to
make a pair conform to the differential characteristic, it may be seen as a new
data/time/memory tradeoff. Furthermore, Derbez, Fouque and Jean presented a
significant improvement of Dunkelman et al.’s attack at EUROCRYPT 2013 [9].
Using the rebound-like idea, they showed that many values in precomputation
table are not reached at all under the constraint of the truncated differential.
Actually, the size of precomputation table is determined by 10-byte parameters.
Based on the 4-round distinguisher, they gave the most efficient attacks on 7-
round AES-128 and 8-round AES-192/256. Besides, they introduced a 5-round
distinguisher to analyse 9-round AES-256.

Our Contribution. Although the MITM attack has been improved and per-
fected a lot by Dunkelman et al. and Derbez et al. [9,11], we notice that some key
relations could be further exploited to improve the results of previous attacks.
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In this paper, based on the properties of the key schedule, we construct a stronger
5-round distinguisher, which supports us to give more efficient attacks on 9-round
AES-192/256.

In [9], Derbez et al. proposed a 5-round distinguisher of AES with the mem-
ory complexity of 2208, so it seems infeasible for the attack on AES-192. However,
by studying the key relationship of the distinguisher, we find that many values
in the previous precomputation table could be filtered, and the size of the table
is only 2192. Especially, if the attack starts from the third round, the size of
precomputation table would be further reduced by a factor of 28. Subsequently,
combing with the classic data/time/memory trade-off, we present an attack on
9-round AES-192 with about 2121 chosen plaintexts, 2187.5 encryptions and 2185

128-bit storages. For the attack on AES-192 starting from the third round, the
data, time and memory complexities are reduced to 2117, 2183.5 and 2181, respec-
tively. Since the new technique takes advantage of the subkeys involved in dis-
tinguisher as the filter conditions to reduce the size of precomputation table, we
call it key-dependent sieve.

In the second part of the paper, we show that the whole attack is able to be
sorted into a series of weak-key attacks by using of the shared key information in
the online and offline phases, where every weak-key attack takes an independent
sub-table included in the precomputation table. That supports us to reduce
the memory complexity of the attack without any cost of the data and time
complexities, since we can perform the attack in streaming mode by working
on each weak attack independently and releasing the memories afterwards. For
9-round attacks on AES-192 and AES-256, the memory complexities are reduced
by 28 and 232 times, respectively. Although the data and time complexities are
not reduced in such case, it is meaningful for us to save the memory requirement
of the attack, specially, for the attack that the memory complexity takes over
the dominant term.

Table 1 summaries our results along with some major previous results of AES-
192 and AES-256 under single-key model. The rest of this paper is organized as
follows. Section 2 gives a brief description of AES and some related works. In
Sect. 3, we propose the single-key attacks on 9-round AES-192. Section 4 presents
an interesting method to reduce the memory complexity of the attack. Finally,
we conclude the paper in Sect. 5.

2 Preliminaries

This section first gives a brief description of AES and denotes some notations
and definitions used throughout the paper. Finally, we introduce some related
works of AES with meet-in-the-middle attack.
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Table 1. Summary of the Attacks on AES-192/256 in the Single-key Model

Cipher Rounds Attack Type Data Time Memory Source

AES-192 8 MITM 2113 2172 2129 [11]

8 MITM 2113 2172 282 [9]

8 MITM 2113 2140 2130 [8]

9 Bicliques 280 2188.8 28 [4]

9 MITM 2121 2187.5 2185 Sect. 3.2

9 MITM 2121 2186.5 2177.5 Sect. 4.1

9 (3-11) MITM 2117 2183.5 2181 Sect. 3.3

9 (3-11) MITM 2117 2182.5 2165.5 Sect. 4.1

Full Bicliques 280 2189.4 28 [4]

AES-256 8 MITM 2113 2196 2129 [11]

8 MITM 2113 2196 282 [9]

8 MITM 2102.83 2156 2140.17 [8]

9 Bicliques 2120 2251.9 28 [4]

9 MITM 2120 2203 2203 [9]

9 MITM 2121 2203.5 2169.9 Sect. 4.2

Full Bicliques 240 2254.4 28 [4]

2.1 A Brief Description of AES

The advanced encryption standard (AES) [17] is a 128-bit block cipher, which
uses variable key sizes and the number of rounds (Nr) depend on the key sizes,
i.e., 10 rounds for 128-bit key size, 12 rounds for 192-bit key size and 14 rounds
for 256-bit key size. The 128-bit internal state is treated as a byte matrix of
size 4 × 4, and each byte represents a value in GF (28). The round function is
composed of four basic operations:

– SubBytes (SB) is a nonlinear byte-wise substitution that applies an 8 by 8
S-box to every byte.

– ShiftRows (SR) is a linear operation that rotates on the left of the i−th row
by i bytes.

– MixColumns (MC) is a matrix multiplication over a finite field applied to each
column.

– AddRoundKey (ARK) is an exclusive-or operation with the round subkey.

Before the first round an additional whitening ARK operation is performed, and
in the last round the MC operation is omitted.

The key schedule of AES expands the master key to Nr + 1 128-bit subkeys.
The subkey array is denoted by w[0, · · · , 4×Nr+3], where each word w[·] consists
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32 bits. Let the number of words for master key is denoted by Nk, e.g., Nk = 6
for AES-192. Then the first Nk words of w[·] are filled with the master key. The
remaining words are defined as follows:

– For i = Nk to 4 × Nr + 3 do the following:
• If i ≡ 0 mod Nk, then w[i] = w[i−Nk]⊕SB(w[i−1] ≪ 8)⊕Rcon[i/Nk],
• else if Nk = 8 and i ≡ 4 mod 8, then w[i] = w[i − Nk] ⊕ SB(w[i − 1]),
• Otherwise w[i] = w[i − Nk] ⊕ w[i − 1].

where ≪ represents left rotation, ⊕ denotes the bit-wise exclusive OR (XOR)
and Rcon[·] is an array of fixed constants. For more details about AES, we refer
to [17].

2.2 Notations and Definitions

In this paper, the plaintext and ciphertext are denoted by P and C. The symbols
Xi, Yi, Zi and Wi denote the internal states before SB, SR, MC and ARK
operations in the round-i (0 ≤ i ≤ Nr − 1), respectively. The subkey of round i

is denoted by ki, the first key (whitening) is denoted by k−1. We use the symbol
ui to represent the equivalent key with ui = MC−1(ki).

A 128-bit internal state A is represented as a 4 × 4 byte matrix. The symbol
A[i] is used to express a byte of A, where i is the ordering of bytes (i = 0, · · · , 15).
The symbol A[i, · · · , j] represents the i−th byte to the j−th byte of A.

As in previous works, the δ−set utilized in this paper is defined as follows.

Definition 1 (δ−set, [5]). The δ−set is a set of 28 AES states that one byte
traverses all values (the active byte) and the other bytes are constants (the inac-
tive bytes).

We denote the δ−set as (X0, · · · ,X255). Usually, we consider to encrypt a δ−set
by a function EK and select the i−th byte of the ciphertexts as the output value
(0 ≤ i ≤ 15), then the corresponding 28 output bytes form a 2048-bit vector
EK(X0)[i]‖ · · · ‖EK(X255)[i] with ordered arrangement, where ‖ represents the
bit string concatenation. Another important concept is the multiset, which was
introduced by Dunkelman et al. in [11].

Definition 2 (Multiset of bytes [11]). A multiset generalizes the set concept
by allowing elements to appear more than once. Here, a multiset of 256 bytes
can take as many as (511255) ≈ 2506.7 different values.

Property 1. (Differential property of S−box [11]) Given the input and output
differences of the SubBytes operation, there exists a pair of actual values on
average to satisfy these differences. This property is also applied to the inversion
of SubBytes operation.
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The time complexity of the attack in this paper is measured with the unit of
an equivalent encryption operation of the 9-round AES. The memory complexity
is measured with the unit of a block size (128-bit). It is emphasized that we count
all operations performed during the attack, in particular, the time and memory
requirements in precomputation phase.

2.3 Related Works

In this section, we recall the previously MITM attacks on AES. Firstly, we
introduce the Demirci and Selçuk attack. Then two improvements given by
Dunkelman et al. and Derbez et al. are shown briefly.

Demirci and Selçuk Attack. Combining the MITM method, Demirci and
Selçuk improved the collision attack [13] on AES. They treated the cipher E as
EK = E2

K2
◦ Em ◦ E1

K1
, and built a distinguisher in Em based on the following

4-round AES property.

Property 2. Consider the encryption of a δ−set through four full AES rounds.
For each of the 16 bytes of the state, the ordered sequence of 256 values of
that byte in the corresponding ciphertexts is fully determined by just 25 byte
parameters. Consequently, for any fixed byte position, there are at most 2200

possible sequences when we consider all the possible choices of keys and δ-sets
(out of 22048 theoretically value).

These parameters are composed of some intermediate states of a message of
the δ−set, which are determined by the positions of the active byte and the
corresponding output byte. If the active byte is located in X1[0] and the output
byte is selected in X5[0], then, as described in Fig. 1, the 25-byte parameter is
X2[0, 1, 2, 3]‖X3[0, · · · , 15]‖X4[0, 5, 10, 15]‖X5[0]. When the values in the output
sequence were substituted by the corresponding differences, the value X5[0] could
be omitted and the number of parameter reduces to 24.

Z1

SBMC

ARK

,

,

SB SR

MC ARK ,

SR

MC ARK

SB

SR

X2 X3 Y3 X4 Z4X1

SB

SR

MC

ARK

X5

Fig. 1. The 4-round AES distinguisher used in [13], the gray cells represent 25-byte

parameter

On the basic of Property 2, they gave the MITM attacks on 7-round and
8-round AES-256, respectively. For the attack on 7-round AES, one round and
2 rounds are extended in the top and bottom of the 4-round Em, respectively.
The attack is divided into two phases, precomputation phase and online phase.
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1. Precomputation phase: compute all 2200 values of the sequence given in Prop-
erty 2, and store them in a hash table.

2. Online phase:
(a) Encrypt a structure of 232 chosen plaintexts such that the main diagonal

can take all the 232 possible values and the remaining bytes are constant.
(b) Guess values of the related subkeys in E1, and construct a δ-set. Then

partially decrypt to get the corresponding 256 plaintexts.
(c) Obtain the corresponding plaintext-ciphertext pairs from the collection

data. Then guess the related subkeys in E2, and partially decrypt the cip-
hertexts to get the corresponding 256-byte value of the output sequence
of Em.

(d) If a sequence value lies in the precomputation table, the guessed related
subkeys in E1 and E2 may be right key.

(e) Exhaustive search the remaining subkeys to obtain the right key.

The data complexity of the attack in the online phase is only about 232, but
the memory and time complexities for precomputation phase are too large. So
the data/time/memory tradeoff was used in their work to reduce the complexities
in the precomputation phase, which makes the attack to apply to 7-round AES-
192. However, the time complexity in the online phase is very large, then it is
impossible to rebalance for 8-round AES-192 in their work.

Dunkelman et al.’s Attack. At ASIACRYPT 2010, Dunkelman, Keller and
Shamir [11] proposed some interesting techniques to improve the Demirci and
Selçuk attack. Firstly, they proposed to use the multiset to replace the ordered
sequence for the output byte, since it is enough to distinguish a proper value
from the random sequences. Secondly, a novel idea named differential enumera-
tion technique was introduced to reduce the memory complexity in the precom-
putation phase, at the expense of increasing the data complexity. The main idea
of this technique is to fix some values of intermediate parameters by using of
the truncated differential. They showed that if one considers to encrypt a δ−set
after four full-rounds of AES, in the case of that a message of the δ−set belongs
to a pair conforming the particular 4-round truncated differential characteristic
described as in Fig. 2, then the corresponding output value of multiset only takes
about 2128 possible values. Note that the gray cells in Fig. 2 are active bytes,
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MC

ARK

X5

Fig. 2. The truncated differential characteristic of 4-round AES used in [11]
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while the white cells are inactive. Indeed, it is obvious that when a pair conforms
the truncated differential as in Fig. 2, the state X3 only takes about 264 different
values.

Hence, there are about 2128 possible values stored in the precomputation
phase. In the online phase, more plaintexts should be chosen to make sure there
exists a pair in content with the truncated differential. Thus, the data complexity
is 2113 chosen plaintexts. This attack procedure is similar to Demirci and Selçuk
attack, but a step to look for a pair satisfying the truncated differential is added,
and the δ−set is constructed only for such pair. Finally, they gave attacks on
the 7-round AES-128 and 8-round AES-192/256. Actually, the attack can be
regarded as a special data/time/memory tradeoff.

Derbez et al.’s Attack. More recently, Derbez, Fouque and Jean presented
a significant improvement to Dunkelman et al.’s attack at EUROCRYPT 2013
[9]. Combining with the rebound-like view of the cipher, they showed that the
number of possible values of precomputation table in Dunkelman et al.’s attack
could be further reduced. In their work, if a message of δ−set belongs to a pair
conforming the 4-round truncated differential characteristic outlined in Fig. 2,
the value of multiset is only determined by 10-byte variables of intermediate
state ΔZ1[0]‖X2[0, 1, 2, 3]‖ΔX5[0]‖Z4[0, 1, 2, 3]. In other words, there are only
about 280 possible sequences of multiset to be stored in precomputation table.
Then they improved the attacks on 7-round AES-128 and 8-round AES-192/256.
Further, they proposed to use the truncated differential characteristic which
contains two active byte in X1, to balance the time and memory complexities of
the attack.
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X2 X3 X4 X5 Z5X1
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X6

,SB SR

MC

MC ,SB SR

MC

u2 k3 k4

Fig. 3. The truncated differential characteristic of 5-round AES used in [9]

Moreover, they proposed to use a 5-round distinguisher to attack 9-round
AES-256. The corresponding truncated differential characteristic is outlined in
Fig. 3, where the value of multiset is determined by 26-byte parameters

ΔZ1[0]‖X2[0, 1, 2, 3]‖X3[0, · · · , 15]‖ΔX6[0]‖Z5[0, 1, 2, 3].
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It is interesting that a value of the 192-bit subkey is known for each value of
multiset in precomputation table. For the above differential characteristic, the
192-bit deduced subkey is u2[0, 7, 10, 13]‖k3[0, · · · , 15]‖k4[0, 5, 10, 15].

3 The Improved Attacks on 9-Round AES-192

In this section, we apply the improved 5-round distinguisher to attack 9-round
AES-192. It turns out that, the size of hash table in precomputation phase is able
to be reduced to 2192 from 2208. More importantly, if the 5-round distinguisher
starts from the fourth round, the size of hash table would be reduced to 2184.

3.1 Key-Dependent Sieve and 5-Round Distinguisher of AES-192

It is obvious that the memory complexity and time complexity in the precompu-
tation phase are the bottlenecks of the MITM attack on AES. Nevertheless, we
find that some key relations are valuable to reduce the complexity in the precom-
putation phase, where the same key information is deduced by two approaches,
the parameters and the key schedule. Then both of them may be not equal since
two approaches are absolutely independent. This makes us to filter the redun-
dant values of precomputation table and makes it possible to attack on 9-round
AES-192.

We review the 5-round distinguisher proposed by Derbez et al. in [9]. Since
the size of lookup table is determined by 26 parameters, it seems infeasible
to attack 9-round AES-192. However, by the key schedule of AES-192, it is
obviously that the knowledge of k3 allows to deduce the column 0 and 1 of
k2. That means the value of the equivalent subkey u2[0, 7] is computed by k3.
However, u2[0, 7] is already deduced by the 26-byte parameter for each value of
the multiset seen Fig. 3. Thus there exists a contradiction between u2[0, 7] and k3.
In other words, if a possible value of the multiset is correct, the value of u2[0, 7]
must be equal to the equivalent value deduced from k3, which happens with a
probability of 2−16. Therefore, the size of look up table is about 2208

216 for 5-round
distinguisher of AES-192. Because our technique filtering the wrong states is
based on the key relationship, so we call it key-dependent sieve. Combined with
data/time/memory tradeoff, we apply the 5-round distinguisher to attack 9-
round AES-192. However, the time complexity of precomputation phase is too
large for all possible values of lookup table, that is about 2192×28 computations.
So we introduce an improved 5-round distinguisher of AES-192 in the sequel.

The 5-round differential characteristic utilized in our attack is described in
Fig. 4, where the position of the active byte is defined in W0[12], and the output
value of sequence is located in Y6[6].
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Fig. 4. The truncated differential characteristic of the 5-round AES-192

Proposition 1. Consider the encryption of the first 25 values (W 0
0 , · · · ,W 31

0 ) of
the δ−set through 5-round AES-192, in the case of that a message pair (W0,W

′
0)

of the δ−set conforms to the truncated differential characteristic outlined in
Fig. 4, then the corresponding 256-bit ordered sequence Y 0

6 [6]‖ · · · ‖Y 31
6 [6] only

takes about 2192 values (out of 2256 theoretically value).

Proof. We give a brief proof of this proposition. For the encryptions of the first 25

values of the δ−set, it is easier to conclude that the output sequence Y 0
6 ‖ · · · ‖Y 31

6

is determined by the 43-byte variable

W0[12]‖X1[12]‖X2[12, · · · , 15]‖X3[0, · · · , 15]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14]‖k5[6].

However, if a pair conforms the truncated differential characteristic outlined in
Fig. 4, the 40-byte value

X2[12, · · · , 15]‖X3[0, · · · , 15]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14]

is determined by the 26-byte variable

ΔZ1[12]‖X2[12, 13, 14, 15]‖X3[0, · · · , 15]‖Z5[4, 5, 6, 7]‖ΔX6[6].

Here, the knowledge of ΔZ1[12]‖X2[12, 13, 14, 15]‖X3[0, · · · , 15] supports to com-
pute the intermediate difference ΔX4. For the backward direction, the knowledge
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of Z5[4, 5, 6, 7]‖ΔX6[6] supports to compute ΔY4. Then according to Property 1,
we get one value of intermediate state X4‖Y4 on average for the fixed difference
ΔX4‖ΔY4. Apparently, the 192-bit value of subkey u2[3, 6, 9, 12]‖k3[0, · · · , 15]‖
k4[3, 4, 9, 14] is also deduced for every 26-byte variable. According to key sched-
ule of AES-192, we can compute the other value u2[3, 6] form k3. By the key-
dependent sieve, there are 2192 possible values for 26-byte parameters.

By the key schedule, the value of subkey denoted by triangles in Fig. 4 are
deduced by the value of the 192-bit subkey denoted by blackspot in Fig. 4. Here,
we only focus on the subkey k0[12]‖k1[12, 13, 14, 15]‖k5[6]. For any 26-byte para-
meter, k1[12, 13, 14, 15] is used to compute X1[12], and k0[12] is used to compute
W0[12]. Besides, the values of X6[6] and Y6[6] are computed by the value of k5[6].
Therefore, the whole 43-byte variable is deduced by 26-byte parameter. So there
are 2192 possible values of 43-byte variables, which means the number of possible
sequences Y 0

6 [6]‖ · · · ‖Y 31
6 [6] is approximately 2192. �	

Note that in Derbez et al.’s attack, the multiset technique was used to omit
the influence of 16-bit subkey belongs to k0 and k5. If the truncated differential
characteristic is selected as in Fig. 4, the 16-bit subkey would be k0[12]‖k5[6].
Here, we prove that such 16-bit information could be deduced by 192-bit subkey
u2[3, 6, 9, 12]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14]. Then we extend the distinguisher to the
W0 in the forward, and Y6 in the backward. Thus, we use an ordered sequence
instead of the multiset. For the output value of encrypting the δ−set, the ordered
sequence includes 2048-bit information, while a multiset only contains about 507-
bit information. Indeed, only the first 32-byte value of the δ−set is enough to
distinguish a proper sequence with the probability of 2192

2256 = 2−64, and the data
and time complexities are reduced by 23 times in the attack.

3.2 The Key Recovery Attack on 9-Round AES-192

We propose an attack on 9-round AES-192 by adding one round on the top and
three rounds on the bottom of the 5-round distinguisher (Fig. 5). The attack is
composed of two phases: precomputation phase and online phase. In the precom-
putation phase, we get all possible 256-bit sequences described as Proposition 1
by using the rebound-like technique, which is described as follows.

Precomputation Phase. For each 128-bit k3, do the following steps.

1. Compute the subkey u2[3, 6]‖k1[12, 13, 14, 15]‖k0[12] by the key schedule.
2. Traverse ΔX6[2]‖Z5[4, 5, 6, 7] to compute ΔX5[3, 4, 9, 14]‖X5[3, 4, 9, 14], and

store X5[3, 4, 9, 14] in a table T0 indexed by ΔX5[3, 4, 9, 14]. There are about
28 values of X5[3, 4, 9, 14] for each index.

3. For all 64-bit value of difference ΔY2[12, · · · , 15]‖ΔX5[3, 4, 9, 14], we apply the
super-sbox technique [14] to connect the differences ΔY2[12, · · · , 15] and
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Fig. 5. The attack on 9-round AES-192

ΔX5[3, 4, 9, 14], and deduce the intermediate value X3‖W4. Then Y2[14, 15] is
obtained by X3 and u2[3, 6]. Store these values with the index of 48-bit value
ΔY2[12, · · · , 15]‖Y2[14, 15] in a table T1. There are about 216 values of
ΔX5[3, 4, 9, 14]‖X3‖W4[3, 4, 9, 14] corresponding to the index ΔY2[12, · · · , 15]
‖Y2[14, 15].

4. For each ΔZ1[12]‖X2[12, 13, 14, 15], execute the following substeps.
(a) Compute the state X1[12]‖W0[12]‖ΔY2[12, 13, 14, 15]‖Y2[12, 13, 14, 15].
(b) Then look up the table T1 to get about 216 values ΔX5[3, 4, 9, 14]‖X3‖

W4[3, 4, 9, 14] by the values of ΔY2[12, 13, 14, 15]‖Y2[14, 15]. And get the
equivalent subkey u2[9, 12].

(c) For each value of ΔX5[3, 4, 9, 14]‖X3‖W4[3, 4, 9, 14], we get 28 values of
X5[3, 4, 9, 14] by accessing the table T0. Then compute k4[3, 4, 9, 14] and
k5[6]. Here we get 43-byte variable W0[12]‖X1[12]‖X2[12, · · · , 15]‖
X3[0, · · · , 15]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14]‖k5[6].

(d) Construct the δ−set, and compute the corresponding sequence Y 0
6 [6]‖ · · ·

‖Y 31
6 [6], and store them in a hash table H.

Online Phase. In the online phase, we need to find at least a pair satisfying
the truncated differential characteristic, then construct the δ−set, and obtain
the first 32 bytes output value of it. Finally, detect whether it belongs to the
precomputation table. The attack procedure is described as follows.

1. Encrypt 281 structures of 232 plaintexts, such that P [1, 6, 11, 12] takes all
32-bit values and other bytes are constants. There are 2144 pairs totally.

2. For each pair, do the following substeps.
(a) Guess the difference value ΔY7[12, 13, 14, 15], and compute the subkey u8

(or k8, if the last MC operation is omitted). Then deduce u7[3, 6].
(b) Compute the difference ΔX7[14, 15], delete the wrong guesses which don’t

lead to ΔZ6[12, 13, 15] = 0, there are about 224 guesses remaining after
this step.
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(c) For each remaining guess, deduce subkey u7[9, 12].
(d) Guess the difference ΔW0[12], and compute the subkey k−1[1, 6, 11, 12].

3. For each deduced subkey, select one message of the pair and get the value
W0[12]. Then change the value of W0[12] to be (0, · · · , 31) and compute plain-
texts (P 0, · · · , P 31). Query their corresponding ciphertexts, and get the cor-
responding sequence Y 0

6 [6]‖ · · · ‖Y 31
6 [6] by partial decryption. Note that the

equivalent subkey u6[14] is deduced by u8 in such case.
4. Find the right subkeys by verifying whether the sequence lies in table H.

There are about 2176×2−64 subkeys remaining in the end. Then exhaustively
search for u7[8, 10, 11, 13, 14, 15] to find the real key, which needs about 2160

encryptions.

Complexity Analysis. In the precomputation phase, each value of the δ−set
needs about 2-round AES computations. Then the time complexity of the pre-
computation phase is about 2192 × 25 × 2−2.2 = 2194.8 9-round AES encryp-
tions, which also needs about 2193 128-bit words of memory to store all possible
sequences. The time complexity of the online phase is dominated by step 3,
where the computation of each value in the δ−set needs about 1.5-round AES
encryptions. So the time complexity of the online phase is equivalent to 2144 ×
232×25×2−2.6 = 2178.4 9-round encryptions. The attack needs about 2113 chosen
plaintexts.

Data/Time/Memory Tradeoff. With data/time/memory tradeoff, the adver-
sary only needs to precompute a fraction 2−8 of possible sequences, then the time
complexity is about 2184×25×2−2.2 = 2186.8 9-round computations. The memory
complexity reduces to 2193×2−8

= 2185. But in the online phase, the adversary
will repeat the attack 28 times to offset the probability of the failure, that means
the attack becomes probabilistic. So the data complexity increases to 2121 cho-
sen plaintexts, and the time complexity increase to 2178.4 × 28 = 2186.4 9-round
encryptions. In total, including the precomputation phase, time complexity is
approximately 2187.5.

3.3 The Attack on 9-round AES-192 from the Third Round

We observe that the memory complexity will be reduced again when the 5-
round distinguisher is mounted to rounds 4-9 in order to attack the reduced-
round AES-192 from rounds 3 to 11. The same truncated differential charac-
teristic outlined in Fig. 4 is used in the attack, except to move all intermediate
states after two rounds. Then the 5-round distinguisher is from the state W2

to the state Y8. Similar to the Proposition 1, we consider to encrypt a δ−set
(W 0

2 , · · · ,W 255
2 ) after 5-round AES-192. If a message pair of the δ-set satis-

fies the expected truncated differential characteristic, then there are about 2192

possible values of sequence Y 0
8 ‖ · · · ‖Y 255

8 . Corresponding, the 176-bit subkey
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u4[9, 12]‖k5[0, · · · , 15]‖k6[3, 4, 9, 14] is deduced for each sequence. Here, u4[3, 6]
are omitted, which can be deduced from k5.

However, as described in Fig. 6, we find that k6[4] are deduced by the values
of k5[1] and k6[9], which may be contradicted with the known value k6[4] for each
sequence, where the right half in Fig. 6 is the original key schedule of AES-192,
and the left half is its equivalent value vi = MC−1(wi). Note that there exist
the following relations for the equivalent key vi if i ≥ 6.

– If i ≡ 0 mod 6, then v[i] = v[i − 6] ⊕ MC−1(SB(MC(w[i − 1]) ≪ 8)) ⊕
MC−1(Rcon[i/6]),

– Else v[i] = v[i − 6] ⊕ v[i − 1].

So there are only about 2184 possible sequences remaining after eliminating the
incorrect states in such case.

18 23w w–

24 29w w–

30 35w w–

18 23v v–

24 29v v–

30 35v v–

M
C

-1

M
CS

M
C

-1

M
CS

MC-1

MC-1

MC-1

S

S

4k

5k

Fig. 6. The key relationship of the attack on AES-192 starting from the third round

The attack procedure is similar to the attack of subsect. 3.2. The precompu-
tation table is constructed as follows. For each 128-bit difference ΔX6, do the
following steps.

1. Traverse the 40-bit difference ΔY3[12]‖ΔY4[12, 13, 14, 15] to deduce the states
X4[12, 13, 14, 15]‖X5‖W5‖u4[3, 6, 9, 12]. Store these states in a hash table T1

with the 24-bit index

(Z5[7] ⊕ Z5[11] ⊕ u4[3])‖(Z5[10] ⊕ Z5[14] ⊕ u4[6])‖W5[1].

2. Traverse the 40-bit difference ΔX8[6]‖ΔX7[3, 4, 9, 14] to deduce the inter-
mediate states X7[3, 4, 9, 14]‖X6‖W6‖k6[3, 4, 9, 14]. Compute the 24-bit value
(MC(X6)[7] ⊕ MC(X6)[11])‖(MC(X6)[10] ⊕ MC(X6)[14])‖(X6[1] ⊕ k6[9] ⊕
S(k6[4])⊕Rcon[4][1]). Then access the hash table T1 with 24-bit value to get
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the states X4[12, 13, 14, 15]‖X5‖W5‖u4[3, 6, 9, 12]. There are about 216 states
in table T1 for each index. In total, we collect 256 correct states which satisfy

⎧⎪⎪⎨
⎪⎪⎩

u4[3] = u5[7] ⊕ u5[11],

u4[6] = u5[10] ⊕ u5[14],

k5[1] = k6[9] ⊕ S(k6[4]) ⊕ Rcon[4][1].

3. Construct the δ−set, compute the corresponding sequence Y 0
8 [6]‖ · · · ‖Y 31

8 [6],
and store them in a hash table.

Complexity Analysis. The time complexity of this phase is equivalent to 2184×
25 × 2−2.2 = 2186.8 9-round encryptions, the memory complexity is about 2184 ×
2 = 2185 128-bit storages. The online phase is exactly the same procedure of the
attack in Sect. 3.2, which needs about 2113 chosen plaintexts and 2178.4 9-round
encryptions.

Data/Time/Memory Tradeoff. We precompute a fraction 2−4 possible
sequences, then the time complexity of the attack in the online phase is about
2178.4 × 24 = 2182.4 9-round encryptions. The memory complexity decreases to
2185 × 2−4 = 2181 128-bit, and the data complexity increases to 2117 chosen
plaintexts. In additional, we need 2182.8 9-round encryptions to compute all pos-
sible sequences in precomputation phase, then the time complexity including the
precomputation is about 2183.5 9-round encryptions.

4 Reducing the Memory Complexity with Weak-Key

Attacks

It is known that there exists a subkey k′ for every sequence in precomputation
table. In other view, such a value k′ could be regarded as an extensional char-
acteristic of the sequence. In Sect. 3, we use the property of self-contradictory
phenomenon of the k′ to reduce the number of possible sequences. In this section,
by investigating more properties of this information, we show that the memory
complexity could be further reduced without increasing the data and time com-
plexities.

We denote the subkey guessed in the online phase as k̂ . It is obvious there
exist some linear relations in k′ and k̂. Assuming m bits value k̃ ⊂ (k′ ∩ k̂),
we first split the precomputation table with the index of k̃ into 2m sub-tables.
Thus, in the online phase, for each guessed subkey k̂ and its sequence, instead
of checking all precomputation table, we only need to detect a sub-table in the
line with the index value k̃. Furthermore, we also split the sequences computed
in the online phase to 2m subsets with the same index k̃. Then for all sequences
belong to a subset, we only need to detect a sub-table, and it is meaningless to
check whether they belong to other sub-tables.
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Thus, the whole attack could be sorted into 2m sub-attacks. Each sub-attack
contains a sub-table of precomputation, and all of these attacks are independent
each other. Since each sub-attack is worked under a fixed value of m-bit key
information, which is also seen as a weak-key attack. Assuming C is the time
(or memory) complexity of the whole attack, then it is evident to see that the
time (or memory) complexity for every weak-key attack is C/2m, but the data
and time complexities of the whole attack don’t change at all. Nevertheless, if
all weak-key attacks are worked in the streaming model, the memory complexity
could be reduced by 2m times since the storages could be reused for each weak-
key attack. However, the whole precomputation table could not be reused in
such case.

4.1 Reducing the Memory Complexity for Attacks on 9-Round
AES-192

We take into account the application of this method to the attack on 9-round
AES-192, where k′ is 176-bit subkey u2[9, 12]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14], and k̂

is the 176-bit subkey u8[0, · · · , 15]‖u7[9, 12]‖k−1[1, 6, 11, 12]. It is not difficult to
see that the set k′ ∪ k̂ contains the whole information of 192-bit master key, and
the set k′ ∩ k̂ contains 160-bit information. We use 8-bit information k−1[6] as
the index to split the attack to 28 weak-key attacks, where

k−1[6] = SB(k3[1] ⊕ k3[5]) ⊕ k3[10] ⊕ k3[14] ⊕ Rcon[2][2].

The attack procedure is very simple. We first split 2128 possible value of k3 to 28

subsets with the index value k−1[6]. Then for each weak-key attack with a fixed
value k−1[6], do as follows.

1. For the corresponding subset of k3, do as described in Sect. 3.2 to construct
the sub-table H′.

2. For 2113 plaintexts, guess 24-bit subkey k−1[1, 11, 12], and collect all pairs
satisfying ΔW0[13, 14, 15] = 0.

3. For every pair guess the difference ΔY6[6].
4. Guess ΔY7[14, 15] to deduce the subkey u7[3, 6]‖u8[0, 1, 4, 7, 10, 11, 13, 14], and

only keep the value which satisfies u7[3] = u8[7]⊕u8[11] and u7[6] = u8[10]⊕
u8[14]. There is one value of ΔY7[14, 15] along with its subkey remain on
average for every ΔY6[6].

5. Guess ΔY7[12, 13] to deduce the subkey u7[9, 12]‖u8[2, 3, 5, 6, 8, 9, 12, 15].
6. Construct the δ−set, compute the corresponding sequence, and check whether

they belongs to H′.
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Complexity Analysis. For each weak-key attack, the time complexity of step 1
is about 2184 ×25 ×2−2.2 = 2186.8, the memory complexity is about 2185 128-bit.
For step 2 to step 6, the time complexity is about 2168 × 25 × 2−2.6 = 2170.4. By
data/time/memory tradeoff, we precompute a fraction 2−8 possible sequences,
the time complexity is about 2179.5 9-round encryptions, the memory complexity
could be reduced to 2177 128-bit spaces. In total, the complexity is still 2179.5×28

9-round encryptions, approximately.

Reducing the Time Complexity by a Half. By investigating the information
of k′ ∩ k̂, we learn that the 64-bit information is identified out of 160-bit informa-
tion, that is k−1[6]‖k−1[11]‖u1[12]‖u3[1]‖k4[4, 5, 6]‖k5[11]. Then each sequence of
the distinguisher is represented by the first 16 bytes of the δ−set along with above
64-bit information and 176-bit k′. Hence, for each sequence computed in the
online phase, we get k′ by the 192-bit index Y 0

6 [6]‖ · · · ‖Y 15
6 [6]‖k−1[6, 11]‖u1[12]‖

u3[1]‖k4[4, 5, 6]‖k5[11], and sieve the right key by verifying the consistency of
k′ and k̂. The probability of this filter is about 264

2160 = 2−96. Thus, the time
complexity of the attack is reduced by a half, but the memory complexity is
increased to 2192 × 21.5 = 2193.5, which is used to store 368-bit information
Y 0
6 [6]‖ · · · ‖Y 15

6 [6]‖k−1[6, 11]‖u1[12]‖u3[1]‖k4[4, 5, 6]‖k5[11]‖k′ in such case. Com-
bined with data/time/memory tradeoff and weak-key method, the time complex-
ity of the attack is about 2186.5, the memory complexity is about 2177.5.

The Attack Starting from the Third Round. For the attack starting from
the third round, the 16-bit shared information k1[6, 11] could be used as the index
to convert the attack to 216 weak-key attacks, where k1[6] = k5[2]⊕k5[6]⊕k5[14]
and k1[11] = k5[7]⊕k5[11]⊕k6[3]. The attack procedure is similar to above attack,
in use of the data/time/memory tradeoff, the memory complexity of the attack
is reduced to 2165 128-bit spaces. If we use the information k′ ∩ k̂ instead of
partial value of the sequence, the time complexity would be reduced to 2182.5,
and the memory complexity is about 2165.5.

4.2 Reducing the Memory Complexity for the Attack on AES-256

This attack is based on the 5-round distinguisher, where the active byte of the
δ−set is defined in W0[3], and the output value is located in Y6[7].

Proposition 2. If one encrypts the first 32 values (W 0
0 , · · · ,W 31

0 ) of the δ−set
through 5-round AES-256, assuming a pair of the δ−set satisfying the expected
truncated differential characteristic, then the sequence Y 0

6 [6]‖ · · · ‖Y 31
6 [6] along

with a 192-bit subkey u2[1, 4, 11, 14]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14] takes about 2208

values.
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According to the generic attack, we need to precompute all possible values of
sequence Y 0

6 [6]‖ · · · ‖Y 31
6 [6]. Then in the online phase, we collect 2144 pairs, and

find a pair satisfying the differential path for each 192-bit subkey k−1[0, 5, 10, 15]
‖k8‖u7[2, 5, 8, 15]. After that, construct the δ−set, compute the sequence
Y 0
6 [6]‖ · · · ‖Y 31

6 [6], and check whether it belongs to precomputation table. Finally,
detect the consistency of u2[1, 4, 11, 14]‖k3[0, · · · , 15]‖k4[3, 4, 9, 14] and
k−1[0, 5, 10, 15]‖k8‖u7[2, 5, 8, 15] to retrieve the correct key. Then the time com-
plexity in precomputation phase is about 2208 × 25 × 2−2.2 = 2210.8. The mem-
ory complexity is about 2209.9 128-bit words of memory, where we need to
store 448-bit information. In online phase, the time complexity is about 2192 ×
25 × 2−2.6 = 2194.4. The data complexity is about 2113 chosen plaintexts. By
data/time/memory tradeoff, we precompute a fraction 2−8 possible sequences,
then the data, time and memory complexities are 2121, 2203.5 and 2201.9, respec-
tively. Here, we consider to use the 32-bit information k−1[10, 15]‖k4[9, 14] to
convert the attack to 232 weak-key attacks, then the memory complexity reduces
to 2169.9. Note that the subkey k−1[10, 15] and k4[9, 14] are linear dependent on
k3 and k8, respectively.

5 Conclusion

In this paper, we take advantage of some subkey relations in the truncated dif-
ferential to reduce the memory complexity of meet-in-the-middle attack, which
is the bottleneck of this kind of attack. For 9-round AES-192, the 16-bit subkey
conditions are obtained in the construction of the δ-set sequence. Based on this,
we propose the 9-round attack on AES-192. In particular, when the 9-round
attack starts from the third round of AES, the time complexity is 2182.4 9-round
encryption, the data complexity is 2117 chosen plaintexts, and the memory com-
plexity is 2181 blocks. Moreover, combining the key relations between the inline
phase and online phase, we introduce an interesting method to decompose the
whole attack into a series of weak-key attacks, which helps to reduce the mem-
ory complexity of the attack without increasing the data and time complexities.
To the best of our knowledge, these attacks are the most efficient results in
single-key model for 9-round AES-192 and AES-256.
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Abstract. We define and analyze the security of a blockcipher mode of
operation, CLOC, for provably secure authenticated encryption with asso-
ciated data. The design of CLOC aims at optimizing previous schemes,
CCM, EAX, and EAX-prime, in terms of the implementation overhead
beyond the blockcipher, the precomputation complexity, and the mem-
ory requirement. With these features, CLOC is suitable for handling short
input data, say 16 bytes, without needing precomputation nor large mem-
ory. This property is especially beneficial to small microprocessors, where
the word size is typically 8 bits or 16 bits, and there are significant restric-
tions in the size and the number of registers. CLOC uses a variant of CFB
mode in its encryption part and a variant of CBC MAC in the authen-
tication part. We introduce various design techniques in order to achieve
the above mentioned design goals. We prove CLOC secure, in a reduction-
based provable security paradigm, under the assumption that the block-
cipher is a pseudorandom permutation. We also present our preliminary
implementation results.

Keywords: CLOC · Blockcipher · Authenticated encryption with asso-
ciated data · Security analysis · Efficiency analysis

1 Introduction

Background. An authenticated encryption with associated data scheme (AEAD)
is a symmetric key cryptographic primitive that provides both confidentiality and
integrity of plaintexts, and integrity of associated data. There are several ways of
designing AEADs, and we focus on a design based on a blockcipher. CCM [39]
was proposed by Whiting, Housley, and Ferguson for use within the IEEE 802.11
standard for Wireless LANs. It is adopted as NIST recommendation [16], and is
broadly used in practice [9,20,21]. The mode is 2-pass, meaning that we run two
algorithms, one for encryption and one for authentication. It is provably secure [25],
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 149–167, 2015.
DOI: 10.1007/978-3-662-46706-0 8
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but CCM suffers from a number of limitations, most notably it is not on-line; the
encryption process cannot be started until knowing the whole input data. There
are other issues in CCM [35], and EAX was proposed by Bellare, Rogaway, and
Wagner to overcome these limitations [13]. EAX is included in ISO 19772 [9], and it
has a number of attractive features; it is simple as it uses CMAC and CTR mode in
a black-box manner, and it was designed by taking provable security into consider-
ation. However, it has several implementation costs, and EAX-prime was designed
by Moise, Beroset, Phinney, and Burns [31] to reduce the costs. It was designed to
reduce the number of blockcipher calls both in precomputation and in processing
the input data, to eliminate the key dependent constants, also called masks, to
reduce memory requirement to store them, and to unify the associated data and
the nonce, which contributes to reduce the memory requirement and the number
of blockcipher calls as well. However, a practical attack was pointed out against
EAX-prime [30], showing that it is not a secure AEAD. Later, Minematsu, Lucks,
and Iwata proposed a variant of EAX called EAX+, which has similar complexity
as EAX-prime and is provably secure as EAX [29].

Presumably, though not clearly stated in the document [31], the most signifi-
cant advantage of EAX-prime over original EAX (and CCM) is its efficient
handling of short input data with small memory. As EAX-prime needs only one
blockcipher call in precomputation whereas EAX needs three calls, EAX-prime
gains the performance for short (say 16 bytes) input data, in particular if precom-
putation is difficult due to a limited amount of memory, or frequent key changes,
or both. The performance for short input data is important for many practical
applications, most notably for low-power wireless sensor networks, since messages
are typically short to suppress the energy consumption of sensor nodes, which are
usually battery-powered. For example, Zigbee [8] limits the maximum message
length to be 127 bytes, and Bluetooth low energy limits the length to 47 bytes [4].
Another example is Electronic Product Code (EPC), which is a replacement of
bar-code using RFID tags, and it typically has 96 bits [5].

Our Contributions. In this paper, we present a mode of operation, CLOC (which
stands for Compact Low-Overhead CFB, and is pronounced as “clock”), to meet
the demand. The design of CLOC aims at optimizing previous schemes, CCM,
EAX, and EAX-prime, in terms of the implementation overhead beyond the block-
cipher, the precomputation complexity, and the memory requirement. CLOC is
sequential and its asymptotic performance (i.e. for long input data) is compara-
ble to CCM, EAX, and EAX-prime. However, CLOC has a unique feature in its
low overhead computation. CLOC works without any precomputation beyond the
key scheduling of the blockcipher. Specifically, we do not need any blockcipher
calls nor generating a key dependent table. This contributes to the improvement
of the performance for short input data. For example, when the input data con-
sists of 1-block nonce, 1-block associated data, and 1-block plaintext, CLOC needs
4 blockcipher calls, while we need 5 or 6 calls in CCM, 7 calls (where 3 out of 7
can be precomputed) in EAX, and 5 calls (where 1 out of 5 can be precomputed)
in EAX-prime. We focus on provably secure schemes, but for comparison, there
are lightweight AE schemes including ALE [15] and Fides [14], where ALE needs
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44 AES rounds which amount to 4.4 AES calls (10 out of 44 AES rounds can be
precomputed), and Fides needs 33 round function calls, where the round function
is similar to that of AES but has larger state. This property of CLOC is partic-
ularly beneficial for embedded devices since the internal blockcipher is relatively
slow due to limited computing power. Moreover, CLOC can be implemented using
only two state blocks, i.e. the working memory of 2n bits with an n-bit blockci-
pher, except those needed for interfacing and blockcipher invocations. We do not
aware of any provably secure AE mode with on-line capability to work with such a
small amount of memory, and this property makes CLOC even suitable for small
processors.

Important properties of CLOC can be summarized as follows.

1. It is a nonce-based authenticated encryption with associated data (AEAD).
2. It uses only the encryption of the blockcipher both for encryption and

decryption.
3. It makes �|N |/n�+�|A|/n�+2�|M |/n� blockcipher calls for a nonce N , associ-

ated data A, and a plaintext M , when |A| ≥ 1, where |X| is the length of X in
bits and n is the block length in bits of the blockcipher. No precomputation is
needed. We note that in CLOC, 1 ≤ |N | ≤ n − 1 holds (hence we always have
�|N |/n� = 1), and when |A| = 0, it needs �|N |/n� + 1 + 2�|M |/n� blockcipher
calls.

4. It works with two state blocks (i.e. 2n bits).

We introduce various design techniques in order to achieve the above mentioned
design goals. We introduce tweak functions which are used to update the inter-
nal state at several points in the encryption and the decryption. While bit-wise
operations, such as a constant multiplication over GF(2n), are often employed
in majority of previous schemes, considering the performance for small devices,
we completely eliminate bit-wise operations. Instead, our tweak functions con-
sist of word-wise permutations and xor’s. As a result, each tweak function can be
described by using a 4 × 4 binary matrix.

The use of word-wise permutations and xor’s to update a mask or a key depen-
dent constant was discussed in [22,29], and the approach was applied on CMAC
and EAX. Here we use them directly to update the internal state, instead of updat-
ing a key dependent constant and xoring it to the state. This was employed for
example in designs of MACs [32,40] using bit shift operations. The techniques
introduced here seem to be worth for other areas, e.g., in designing MACs, and
thus it may be of independent interest.

We also introduce bit-fixing functions. CFB mode leaks input and output pairs
of the underlying blockcipher, which may result in the loss of security. We use the
functions to logically separate the encryption part and the authentication part of
CLOC.

With these techniques, we prove CLOC secure, in a reduction-based provable
security paradigm, under the assumption that the blockcipher is a pseudorandom
permutation. For security notions, CLOC fulfills the standard security notions for
nonce-based AEADs, i.e., the privacy and the authenticity under nonce-respecting
adversaries [34]. Furthermore, we prove that the authenticity notion holds even for
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Table 1. Comparison of AE modes, for a-block associated data and m-block plaintext
with one-block nonce, where a ≥ 1

Property◦ CCM [16] GCM [17] EAX [13] EAX-prime [31] OCB3 [26] CLOC

Calls a + 2m + 2† m + 1‡ a + 2m + 1 a + 2m + 1§ a + m + 1† a + 2m + 1

Setup 0 1 3 1 1 0

On-line No Yes Yes Yes Yes Yes

Static AD No Yes Yes Yes Yes Yes

Parallel No Yes No No Yes No

Primitive E E, GHASH E E E, D E

PRIV/AUTH� O(2n/2)[25] O(2n/2)[24] O(2n/2)[13] O(1)[30] O(2n/2)[26] O(2n/2)

N-AUTH� � 2n/2[18,19] O(1)[18] O(1)[18] O(1)[30] O(1)[18] O(2n/2)

◦ “Setup” shows the number of blockcipher calls for setup, “Static AD” shows if efficient handling

of static associated data is possible, “Parallel” shows if the blockcipher calls are parallelizable, and

“Primitive” shows the components of the mode. E is the encryption of the blockcipher and D is the

decryption.

† May have additional one call

‡ Plus a + m multiplications over GF(2n) for GHASH

§ Nonce and associated data are concatenated to form a 2-block “cleartext”

� Attack workload of nonce-respecting adversaries to break the privacy notion or the authenticity notion

� Attack workload of nonce-reusing adversaries to break the authenticity notion

nonce-reusing adversaries, where only a small number of schemes achieve this goal,
and most of known modes do fail to provide [18]. See Table 1 for a brief comparison
of CLOC to other AEADs.

2 Preliminaries

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For an
integer � ≥ 0, let {0, 1}� be the set of all bit strings of � bits. For X,Y ∈ {0, 1}∗,
we write X ‖Y , (X,Y ), or simply XY to denote their concatenation. For � ≥ 0,
we write 0� ∈ {0, 1}� to denote the bit string that consists of � zeros, and 1� ∈
{0, 1}� to denote the bit string that consists of � ones. For X ∈ {0, 1}∗, |X| is its
length in bits, and for � ≥ 1, |X|� = �|X|/�� is the length in �-bit blocks. For X ∈
{0, 1}∗ and � ≥ 0 such that |X| ≥ �, msb�(X) is the most significant (the leftmost)
� bits of X. For instance we have msb1(1100) = 1 and msb3(1100) = 110. For X ∈
{0, 1}∗ and � ≥ 1, we write its partition into �-bit blocks as (X[1], . . . ,X[x]) �←
X, which is defined as follows. If X = ε, then x = 1 and X[1] �← X, where
X[1] = ε. Otherwise X[1], . . . , X[x] ∈ {0, 1}∗ are unique bit strings such that
X[1] ‖ · · · ‖X[x] = X, |X[1]| = · · · = |X[x − 1]| = �, and 1 ≤ |X[x]| ≤ �. For a
finite set X , X

$← X means that X is chosen uniformly random from X .
In what follows, we fix a block length n and a blockcipher E : KE × {0, 1}n →

{0, 1}n, where KE is a non-empty set of keys. Let Perm(n) be the set of all per-
mutations over {0, 1}n. We write EK ∈ Perm(n) for the permutation specified by
K ∈ KE , and C = EK(M) for the ciphertext of plaintext M ∈ {0, 1}n under key
K ∈ KE .

3 Specification of CLOC

CLOC takes three parameters, a blockcipher E : KE ×{0, 1}n → {0, 1}n, a nonce
length �N , and a tag length τ . We require 1 ≤ �N ≤ n − 1 and 1 ≤ τ ≤ n. We also
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require that n/4 is an integer. We write CLOC[E, �N , τ ] for CLOC that is parame-
terized by E, �N , and τ , and we often omit the parameters if they are irrelevant or
they are clear from the context. CLOC[E, �N , τ ] = (CLOC-E , CLOC-D) consists
of the encryption algorithm CLOC-E and the decryption algorithm CLOC-D.

CLOC-E and CLOC-D have the following syntax.
{

CLOC-E : KCLOC × NCLOC × ACLOC × MCLOC → CT CLOC

CLOC-D : KCLOC × NCLOC × ACLOC × CT CLOC → MCLOC ∪ {⊥}

KCLOC = KE is the key space, which is identical to the key space of the under-
lying blockcipher, NCLOC = {0, 1}�N is the nonce space, ACLOC = {0, 1}∗ is
the associated data space, MCLOC = {0, 1}∗ is the plaintext space, CT CLOC =
CCLOC × TCLOC is the ciphertext space, where CCLOC = {0, 1}∗ and TCLOC =
{0, 1}τ is the tag space, and ⊥ �∈ MCLOC is the distinguished reject symbol.
We write (C, T ) ← CLOC-EK(N,A,M) and M ← CLOC-DK(N,A,C, T ) or
⊥ ← CLOC-DK(N,A,C, T ), where (C, T ) ∈ CT CLOC is a ciphertext, and we
also call C ∈ CCLOC a ciphertext.

CLOC-E and CLOC-D are defined in Fig. 1. In these algorithms, we use four
subroutines, HASH, PRF, ENC, and DEC. They have the following syntax.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

HASH : KCLOC × NCLOC × ACLOC → {0, 1}n

PRF : KCLOC × {0, 1}n × CCLOC → TCLOC

ENC : KCLOC × {0, 1}n × MCLOC → CCLOC

DEC : KCLOC × {0, 1}n × CCLOC → MCLOC

These subroutines are defined in Fig. 2, and illustrated in Figs. 3, 4, and 5. In the
figures, i is the identity function, and i(X) = X for all X ∈ {0, 1}n. In the subrou-
tines, we use the one-zero padding function ozp : {0, 1}∗ → {0, 1}∗, the bit-fixing
functions fix0, fix1 : {0, 1}∗ → {0, 1}∗, and five tweak functions f1, f2, g1, g2, and
h, which are functions over {0, 1}n.

The one-zero padding function ozp is used to adjust the length of an input
string so that the total length becomes a positive multiple of n bits. For X ∈
{0, 1}∗, ozp(X) is defined as ozp(X) = X if |X| = �n for some � ≥ 1, and
ozp(X) = X ‖ 10n−1−(|X| mod n) otherwise. We note that ozp(ε) = 10n−1, and
we also note that, in general, the function is not invertible.

The bit-fixing functions fix0 and fix1 are used to fix the most significant bit of
an input string to zero and one, respectively. For X ∈ {0, 1}∗, fix0(X) is defined as
fix0(X) = X ∧ 01|X|−1, and fix1(X) is defined as fix1(X) = X ∨ 10|X|−1, where ∧
and∨ are the bit-wiseANDoperation, and the bit-wiseORoperation, respectively.

The tweak function h is used in HASH if the most significant bit of ozp(A[1]) is
zero. Weuse f1 and f2 inHASH andPRF, where f1 is used if the last input block is full
(i.e., if |A[a]| = n or |C[m]| = n) and f2 is used otherwise. We use g1 and g2 in PRF,
where we use g1 if the second argument of the input is the empty string (i.e., |C| =
0), and otherwise we use g2. Now for X ∈ {0, 1}n, let (X[1],X[2],X[3],X[4]) n/4←
X. Then f1, f2, g1, g2, and h are defined as follows.
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Fig. 1. Pseudocode of the encryption and the decryption algorithms of CLOC

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(X) = (X[1, 3],X[2, 4],X[1, 2, 3],X[2, 3, 4])
f2(X) = (X[2],X[3],X[4],X[1, 2])
g1(X) = (X[3],X[4],X[1, 2],X[2, 3])
g2(X) = (X[2],X[3],X[4],X[1, 2])
h(X) = (X[1, 2],X[2, 3],X[3, 4],X[1, 2, 4])

Here X[a, b] stands for X[a] ⊕ X[b] and X[a, b, c] stands for X[a] ⊕ X[b] ⊕ X[c].
Alternatively the tweak functions can be specified by a matrix. Let

M =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ (1)

be a 4 × 4 binary matrix, and let Mi for i ≥ 0 be exponentiations of M, where
M0 denotes the identity matrix. Then we have f1(X) = X · M8, f2(X) = X · M,
g1(X) = X·M2, g2(X) = X·M, and h(X) = X·M4, whereX = (X[1],X[2],X[3],
X[4]) is interpreted as a vector.

The design rationale for the tweak functions is explained in Sect. 4.

4 Design Rationale

Overall Structure. At abstract level CLOC is a straightforward combination of
CFB mode and CBC MAC, where CBC MAC is called twice for processing associ-
ated data and a ciphertext, and CFB mode is called once to generate a ciphertext.
However, when we want to achieve low-overhead computation and small memory
consumption, we found that any other combination of a basic encryption mode
and a MAC mode did not work. For instance, we could not use CTR mode or OFB
mode, as they require one state block in processing a plaintext to hold a counter
value or a blockcipher output. We then realized that combining CFB mode and
CBC MAC was not an easy task. Since we avoid using two keys or using block-
cipher pre-calls, such as L = EK(0n) used in EAX, we could not computation-
ally separate CFB mode and CBC MAC via input masking, such as Galois-field
doubling (2iL for the i-th block, where 2L denotes the multiplication of 2 and L
in GF(2n)) [13,33]. This implies that CFB mode leaks input and output pairs of
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Fig. 2. Subroutines used in the encryption and decryption algorithms of CLOC

the blockcipher calls, which can be freely used to guess or fake the internal chain-
ing value of CBC MAC, leading to a break of the scheme. Lucks [28] proposed an
AEAD scheme based on CFB mode, called CCFB. However, the problem is not
relevant to CCFB due to the difference in the global structure. To overcome this
obstacle in composition, we introduced the bit-fixing functions. Their role is to
absolutely separate the input blocks of the blockcipher in CFB mode and the first
input block of CBC MAC. This imposes the most significant one bit of the input
of CBC MAC being fixed to 0, implying one-bit input loss. The set of five tweak
functions, which is another tool we introduced in this paper, is used to compen-
sate for this information loss. It also works to compensate the information loss
caused by padding functions applied to the last input block to CBC MAC. A sim-
ilar technique can be found in literature [32,40], however, the previous works only
considered MACs and the tweak functions required bit operations.

In the following we explain the specific requirements for the tweak functions.
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if |A[1]| = n, then f1, else f2

if msb1(ozp(A[1])) = 1, then h, else i

if |A[a]| = n, then f1, else f2

if msb1(A[1]) = 1, then h, else i

Fig. 3. V ← HASHK(N,A) for 0 ≤ |A| ≤ n (left) and |A| ≥ n + 1 (right)
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Fig. 4. C ← ENCK(V,M) for |M | ≥ 1 (left), and DECK(V,C) for |C| ≥ 1 (right)
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Fig. 5. T ← PRFK(V,C) for |C| = 0 (left) and |C| ≥ 1 (right)
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i ⊕ f1
i ⊕ g1f1
i ⊕ g1f1h
i ⊕ g2f1
i ⊕ g2f1h
i ⊕ f1h
i ⊕ f2
i ⊕ g1f2
i ⊕ g1f2h
i ⊕ g2f2
i ⊕ g2f2h

i ⊕ f2h
i ⊕ h
i ⊕ g1

i ⊕ g2

f1 ⊕ g1f1h
f1 ⊕ g2f1h
f1 ⊕ f2
f1 ⊕ g1f2
f1 ⊕ g1f2h
f1 ⊕ g2f2
f1 ⊕ g2f2h

f1 ⊕ f2h
f2 ⊕ g1f1
f2 ⊕ g1f1h
f2 ⊕ g2f1
f2 ⊕ g2f1h
f2 ⊕ f1h
f2 ⊕ g1f2h
f2 ⊕ g2f2h
g1 ⊕ g2

h ⊕ f1
h ⊕ g1f1

h ⊕ g2f1
h ⊕ f2
h ⊕ g1f2
h ⊕ g2f2
g1f1 ⊕ f1h
g1f1 ⊕ g2f1h
g1f1 ⊕ g2f2
g1f1 ⊕ g2f2h
g1f1 ⊕ f2h
g2f1 ⊕ g1f1h
g2f1 ⊕ f1h

g2f1 ⊕ g1f2h
g2f1 ⊕ f2h
g1f2 ⊕ g2f1
g1f2 ⊕ g2f1h
g1f2 ⊕ f1h
g1f2 ⊕ g2f2h
g1f2 ⊕ f2h
g2f2 ⊕ g1f1h
g2f2 ⊕ f1h
g2f2 ⊕ g1f2h
g2f2 ⊕ f2h

Fig. 6. Differential probability constraints of f1, f2, g1, g2, and h

Definition of f1, f2, g1, g2, and h. These functions are defined to meet the fol-
lowing properties. First, they have the additive property. That is, for any z ∈
{f1, f2, g1, g2, h}, we have z(X ⊕X ′) = z(X)⊕ z(X ′) for all X,X ′ ∈ {0, 1}n. Next,
these functions are invertible over {0, 1}n. For any z ∈ {f1, f2, g1, g2, h}, we have
z ∈ Perm(n). Finally, they satisfy the differential probability constraints specified
in Fig. 6. Let z be a function in Fig. 6. Then we require that, for any Y ∈ {0, 1}n,
Pr[z(K) = Y ] = 1/2n, where the probability is taken over K

$← {0, 1}n. When z is
of the form z = z′ ⊕ z′′, then z(K) stands for z′(K)⊕ z′′(K). When z is of the form
z = z′z′′, then z(K) stands for z′(z′′(K)). Recall that we define i as i(K) = K.

Choosing Tweak Functions. Finding simple and word-wise tweak functions ful-
filling all properties is not a trivial task. We start with matrix M of (1), which is
invertible and has order 15 (i.e. M15 = M0), and test all combinations of the form
(f1, f2, g1, g2, h) = (i1, . . . , i5) ∈ {1, . . . , 14}5, where i1 = 2 means f1(X) = X ·M2,
using a computer. There are 864 candidates out of 537,824 fulfilling the differen-
tial probability constraints of Fig. 6. The complexity increases as the index of M
grows, when we implement the tweak function by iterating M, which seems suit-
able for hardware. For software we would directly implement Mi using a word-
wise permutation and xor, and in this case we observe slight irregular, but similar
phenomena (e.g. M1 needs one xor while M3 needs three xor’s). Figure 7 shows
Mi and the Feistel-like implementations using a word-wise permutation and xor.
It shows that, except for M5 and M10, we have a simple implementation using at
most four xor’s. Based on these observations, we simply define the cost of comput-
ing Mi as i for 1 ≤ i ≤ 7 and 15 − i for 8 ≤ i ≤ 14, and define fcost(i1, . . . , i5) as

(
i1 × 1

16
+ i2 × 15

16

)
× 2 + i4 + i5 × 1

2
.

This corresponds to the expected total cost for given (i1, . . . , i5), where associated
data and a plaintext are assumed to be non-empty byte strings of random lengths
(as we expect the standard use of CLOC is AEAD, not MAC), and we also assume
that the most significant bit of the associated data is random. Then there remains
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⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎠

⎛
⎜⎝

0 0 1 0
0 0 1 1
1 0 0 1
0 1 0 0

⎞
⎟⎠

⎛
⎜⎝

0 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 1
1 1 0 1
0 1 1 0
0 0 1 1

⎞
⎟⎠

⎛
⎜⎝

0 0 1 1
1 0 1 0
1 1 0 1
0 1 1 0

⎞
⎟⎠

⎛
⎜⎝

0 1 1 0
0 1 0 1
1 0 1 0
1 1 0 1

⎞
⎟⎠

⎛
⎜⎝

1 1 0 1
1 0 1 1
0 1 0 1
1 0 1 0

⎞
⎟⎠

⎛
⎜⎝

1 0 1 0
0 1 1 1
1 0 1 1
0 1 0 1

⎞
⎟⎠

⎛
⎜⎝

0 1 0 1
1 1 1 1
0 1 1 1
1 0 1 1

⎞
⎟⎠

⎛
⎜⎝

1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1

⎞
⎟⎠

⎛
⎜⎝

0 1 1 1
1 1 0 0
1 1 1 0
1 1 1 1

⎞
⎟⎠

⎛
⎜⎝

1 1 1 1
1 0 0 0
1 1 0 0
1 1 1 0

⎞
⎟⎠

⎛
⎜⎝

1 1 1 0
0 0 0 1
1 0 0 0
1 1 0 0

⎞
⎟⎠

⎛
⎜⎝

1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎠

M0 M1 M2 M3

M4 M5 M6 M7

M8 M9 M10 M11

M12 M13 M14

Fig. 7. Matrix exponentiations for the tweak functions

only two candidates giving the minimum value of fcost, which are (i1, . . . , i5) =
(8, 1, 2, 1, 4) and (8, 1, 6, 1, 4). As smaller i3 is better, we choose the former as the
sole winner. We also tested other matrices, say the one replacing the forth column
of M by the transposition of (1, 0, 1, 0), but no better solution was found.

We note that M8 = M2 ⊕ M0 and M4 = M1 ⊕ M0 hold, implying that we
have f1(X) = g1(X) ⊕ X and h(X) = f2(X) ⊕ X = g2(X) ⊕ X, which may be
useful in some implementations.

5 Security of CLOC

In this section, we define the security notions of a blockcipher and CLOC, and
present our security theorems.

PRP Notion. We assume that the blockcipher E : KE × {0, 1}n → {0, 1}n is a
pseudo-random permutation, or a PRP [27]. We say that P is a random permu-
tation if P

$← Perm(n), and define

Advprp
E (A) def= Pr

[
AEK(·) ⇒ 1

]
− Pr

[
AP (·) ⇒ 1

]
,
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where the first probability is taken over K
$← KE and the randomness of A, and

the last is over P
$← Perm(n) and A. We write CLOC[Perm(n), �N , τ ] for CLOC

that uses P as EK , and the encryption and decryption algorithms are written as
CLOC-EP and CLOC-DP . We also consider CLOC that uses a random function as
EK , which is naturally defined as the invertibility of EK is irrelevant in the defini-
tion of CLOC. Let Rand(n) be the set of all functions from {0, 1}n to {0, 1}n, and
we say that R is a random function if R

$← Rand(n). We write CLOC[Rand(n),
�N , τ ] for CLOC that uses R as EK , and its encryption and decryption algorithms
are written as CLOC-ER and CLOC-DR.

Privacy Notion. We define the privacy notion for CLOC[E, �N , τ ] = (CLOC-E ,
CLOC-D). This notion captures the indistinguishably of a nonce-respecting
adversary in a chosen plaintext attack setting [34]. We consider an adversary A
that has access to the CLOC encryption oracle, or a random-bits oracle. The
encryption oracle takes (N,A,M) ∈ NCLOC × ACLOC × MCLOC as input and
returns (C, T ) ← CLOC-EK(N,A,M). The random-bits oracle, $-oracle, takes
(N,A,M) ∈ NCLOC × ACLOC × MCLOC as input and returns a random string
(C, T ) $← {0, 1}|M |+τ . We define the privacy advantage as

Advpriv
CLOC[E,�N ,τ ](A) def= Pr

[
ACLOC-EK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]
,

where the first probability is taken over K
$← KCLOC and the randomness of A, and

the last is over the random-bits oracle andA.We assume thatA in the privacy game
is nonce-respecting, that is, A does not make two queries with the same nonce.

Privacy Theorem. Let A be an adversary that makes q queries, and suppose that
the queries are (N1, A1,M1), . . . , (Nq, Aq,Mq). Then we define the total associated
data length as a1 + · · ·+aq, and the total plaintext length as m1 + · · ·+mq, where
(Ai[1], . . . , Ai[ai])

n← Ai and (Mi[1], . . . , Mi[mi])
n← Mi. We have the following

information theoretic result.

Theorem 1. Let Perm(n), �N , and τ be the parameters of CLOC. Let A be an
adversary that makes at most q queries, where the total associated data length
is at most σA, and the total plaintext length is at most σM . Then we have
Advpriv

CLOC[Perm(n),�N ,τ ](A) ≤ 5σ2
priv/2n, where σpriv = q + σA + 2σM .

A proof overview is given in Sect. 6, and a complete proof is presented in
[23, Appendix A]. If we use a blockcipher E, which is secure in the sense of the PRP
notion, instead of Perm(n), then the corresponding complexity theoretic result can
be shown by a standard argument. See e.g. [11]. We note that the privacy of CLOC
is broken if the nonce is reused.

Authenticity Notion. We next define the authenticity notion, which captures the
unforgeability of an adversary in a chosen ciphertext attack setting [34]. We con-
sider a strong adversary that can repeat the same nonce multiple times. Let A
be an adversary that has access to the CLOC encryption oracle and the CLOC
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decryption oracle. The encryption oracle is defined as above. The decryption ora-
cle takes (N,A,C, T ) ∈ NCLOC × ACLOC × CCLOC × TCLOC as input and returns
M ← CLOC-DK(N,A,C, T ) or ⊥ ← CLOC-DK(N,A,C, T ). The authenticity
advantage is defined as

Advauth
CLOC[E,�N ,τ ](A) def= Pr

[
ACLOC-EK(·,·,·),CLOC-DK(·,·,·,·) forges

]
,

where the probability is taken over K
$← KCLOC and the randomness of A, and the

adversary forges if the decryption oracle returns a bit string (other than ⊥) for a
query (N,A,C, T ), but (C, T ) was not previously returned to A from the encryp-
tion oracle for a query (N,A,M). The adversary A in the authenticity game is not
necessarily nonce-respecting, and A can make two or more queries with the same
nonce. Specifically, A can repeat using the same nonce for encryption queries,
a nonce used for encryption queries can be used for decryption queries and vice-
versa, and the same nonce can be repeated for decryption queries. Without loss
of generality, we assume that A does not make trivial queries, i.e., if the encryp-
tion oracle returns (C, T ) for a query (N,A,M), then A does not make a query
(N,A,C, T ) to the decryption oracle, and A does not repeat a query.

Authenticity Theorem. Let A be an adversary that makes q encryption queries
and q′ decryption queries. Let (N1, A1,M1), . . . , (Nq, Aq,Mq) be the encryption
queries, and (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A′

q′ , C ′
q′ , T ′

q′) be the decryption queries.
Thenwedefine the total associateddata length in encryptionqueries asa1+· · ·+aq,
the total plaintext length as m1 + · · · + mq, the total associated data length in
decryption queries as a′

1+· · ·+a′
q′ , and the total ciphertext length asm′

1+· · ·+m′
q′ ,

where (Ai[1], . . . , Ai[ai])
n← Ai, (Mi[1], . . . ,Mi[mi])

n← Mi, (A′
i[1], . . . , A′

i[a
′
i])

n←
A′

i, and (C ′
i[1], . . . , C ′

i[m
′
i])

n← C ′
i. We have the following information theoretic

result.

Theorem 2. Let Perm(n), �N , and τ be the parameters of CLOC. Let A be an
adversary thatmakes atmost q encryption queries andatmost q′ decryption queries,
where the total associated data length in encryption queries is at most σA, the
total plaintext length is at most σM , the total associated data length in decryption
queries is at most σA′ , and the total ciphertext length is at most σC′ . Then we have
Advauth

CLOC[Perm(n),�N ,τ ](A) ≤ 5σ2
auth/2n + q′/2τ , where σauth = q + σA + 2σM +

q′ + σA′ + σC′ .

A proof overview is given in Sect. 6, and a complete proof is presented in
[23, Appendix A]. As in the privacy case, if we use a blockcipher E secure in the
sense of the PRP notion, then we obtain the corresponding complexity theoretic
result by a standard argument in, e.g., [11].

6 Overview of Security Proofs

PRP/PRF Switching. The first step is to replace the random permutation P in
CLOC[Perm(n), �N , τ ]witha randomfunctionR, anduse thePRP/PRFswitching
lemma [12] to obtain the followingdifferences.
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{
Advpriv

CLOC[Perm(n),�N ,τ ](A) − Advpriv
CLOC[Rand(n),�N ,τ ](A)

Advauth
CLOC[Perm(n),�N ,τ ](A) − Advauth

CLOC[Rand(n),�N ,τ ](A)

Defining Q1, . . . , Q26 and CLOC2. We define twenty six functions Q1, . . . , Q26 :
{0, 1}n → {0, 1}n based on R, K1, K2, and K3, where K1,K2,K3

$← {0, 1}n

are three independent random n-bit strings. We also define a modified version of
CLOC[Rand(n), �N , τ ] called CLOC2[�N , τ ], which uses Q = (Q1, . . . , Q26) as ora-
cles. Q and CLOC2 are designed so that CLOC-ER and CLOC2-EQ are the same
algorithms, CLOC-DR and CLOC2-DQ are the same algorithms (except that
CLOC2-DQ is used for the verification only, and it does not output a plaintext even
if the verification succeeds), and Q1, . . . , Q26 are indistinguishable from
F1, . . . , F26, which are independent random functions. We then have

{
Advpriv

CLOC[Rand(n),�N ,τ ](A) = Advpriv
CLOC2[�N ,τ ](A),

Advauth
CLOC[Rand(n),�N ,τ ](A) = Advauth

CLOC2[�N ,τ ](A),

and we show the distinguishing probability of Q = (Q1, . . . , Q26) and F =
(F1, . . . , F26) in [23, Lemma 1]. However, the indistinguishability does not hold for
arbitrary adversaries. We formalize an input-respecting adversary, and our indis-
tinguishability result in [23, Lemma 1] holds only for these adversaries.

The three random strings, K1,K2, and K3, are secret keys from the adversary’s
perspective, and we introduce them to show the indistinguishability between Q
and F . For instance we know that the input fix0(ozp(A[1])) to produce SH[1] in
HASHK(N,A) (The 2nd line of HASHK(N,A) in Fig. 2) never collides with the
input fix1(C[i]) to produce SE[i + 1] in ENCK(V,M) (The 8th line of ENCK(V,M)
in Fig. 2), and hence we can safely assume that they are independent. Likewise, we
show that the collision probability between fix0(ozp(A[1])) and, say, SH[i−1]⊕A[i]
in HASHK(N,A) (The 7th line of HASHK(N,A) in Fig. 2) is low, and the three
random strings are introduced to help this argument.

Defining CLOC3. We define another version of CLOC[Rand(n), �N , τ ] called
CLOC3[�N , τ ]. It uses F = (F1, . . . , F26) as oracles, and the encryption algo-
rithm CLOC3-EF and the decryption algorithm CLOC3-DF are obtained from
CLOC2-EQ and CLOC2-DQ by replacing Q1, . . . , Q26 with F1, . . . , F26, respec-
tively. We use [23, Lemma 1] to obtain the following differences.

{
Advpriv

CLOC2[�N ,τ ](A) − Advpriv
CLOC3[�N ,τ ](A)

Advauth
CLOC2[�N ,τ ](A) − Advauth

CLOC3[�N ,τ ](A)

The simulations work with input-respecting adversaries, and hence [23, Lemma 1]
is sufficient for our purpose.

Indistinguishability of (HASH3,HASH3′,HASH3′′). We then consider three sub-
routines HASH3, HASH3′, and HASH3′′ in CLOC3[�N , τ ]. HASH3 roughly cor-
responds to a function that computes SE[1] from (N,A) in CLOC[E, �N , τ ], i.e.,
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EK(HASHK(N,A)). HASH3′ computes the tag T when |C| = 0, i.e., this function
roughly corresponds to msbτ (EK(g1(HASHK(N,A)))). HASH3′′ computes SP[0]
from (N,A), which is used when |C| ≥ 1, i.e., EK(g2(HASHK(N,A))). Then in
[23, Lemma 2], we show that these functions are indistinguishable from three inde-
pendent random functions HASH4, HASH4′, and HASH4′′.

Defining CLOC4. We define another version of CLOC[Rand(n), �N , τ ], called
CLOC4[�N , τ ]. This is obtained by replacing HASH3, HASH3′, and HASH3′′ in
CLOC3 with HASH4, HASH4′, and HASH4′′, respectively. We use [23, Lemma 2]
to obtain the following differences.

{
Advpriv

CLOC3[�N ,τ ](A) − Advpriv
CLOC4[�N ,τ ](A)

Advauth
CLOC3[�N ,τ ](A) − Advauth

CLOC4[�N ,τ ](A)

Indistinguishability of PRF4. We then consider a subroutine called PRF4 in
CLOC4.This function outputs a tagT from (N,A,C), and internally usesHASH4′,
HASH4′′, F24, F25, and F26. We show in [23, Lemma 3] that this function is indis-
tinguishable from a random function PRF5.

Defining CLOC5. We define our final version of CLOC[Rand(n), �N , τ ], called
CLOC5[�N , τ ], which is obtained from CLOC4 by replacing PRF4with PRF5. This
function is used in both encryption and decryption, and we obtain the following
differences from [23, Lemma 3].

{
Advpriv

CLOC4[�N ,τ ](A) − Advpriv
CLOC5[�N ,τ ](A)

Advauth
CLOC4[�N ,τ ](A) − Advauth

CLOC5[�N ,τ ](A)

Privacy and Authenticity of CLOC5. Finally, we analyze the privacy and the
authenticity ofCLOC5 in [23, Lemma4].The privacy result shows the upper bound
on Advpriv

CLOC5[�N ,τ ](A), and the proof is reduced to bounding the collision proba-
bility among the input values of the random functionwhich is used to encrypt plain-
texts. The authenticity result shows the upper bound on Advauth

CLOC5[�N ,τ ](A), and
its proof is simple and the result is obtained from the fact that the adversary, even
if the nonce is reused, has to guess the output of a random function PRF5 for the
input that was not queried before.

We finally obtain the proofs of Theorems 1 and 2 by combining the above dif-
ferences between advantage functions.

7 Software Implementation

We first tested CLOC on a general-purpose CPU. It is interesting to note that the
encryptionprocess and tag generation canbedone in parallel, which could speedup
theoverall computationbya factor close to 2 for longplaintexts, then thefinal speed
could be close to that of encryption only in serial mode. To show that, we imple-
mented CLOC instantiated with AES-128 using the AES new instruction set, and
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tested against Intel processor, Core i5-3427U 1.80GHz (Ivy Bridge) [6]. It is known
that Intel’s AES instruction allows fast parallel processing (up to 4 or 8 blocks),
and we used this technique for two parallel inputs to AES. The tested speed for
long plaintexts (more than 220 blocks) is around 4.9 cycles per byte (cpb), while
AES-128 encrypts at a speed of 4.3 cpb in serial mode. In Table 2, we provide the
test vectors.

We then tested CLOC on embedded software. We used an 8-bit microproces-
sor, Atmel AVR ATmega128 [2]. For comparison we also implemented EAX [13],
EAX-prime [31], and OCB3 [26]. For OCB3 we used a byte-oriented code from [7].
OCB3 needs relatively large precomputation for GF doublings, but we modify the
code so that the doublings are on-line, since large precomputation may not be suit-
able to handle short input data for microprocessors. We also considered GCM for
comparison, however, recent studies show that GCM does not perform well on con-
strained devices (see e.g. [10,38]), hence we decided not to include it. All modes are
written in C and combined with AES-128. Our AES code is taken from [3], which is
written in assembler. AES runs at 156.7 cpb for encryption, 196.8 cpb for decryp-
tion, both without key scheduling, and the key scheduling runs at 1,979 cycles.
Our codes are complied with Atmel Studio 6 available from [2]. Cycles counts are
measured on the simulator of Atmel Studio 6. Table 3 shows the implementation
result. ROM denotes the object size in bytes. The speed is measured based on the
scenario of non-static associated data, i.e., we excluded key setup and other com-
putations before processing associated data and a nonce, defined as “Init”, and
figures for Data b denote cycles per byte to process a b-byte plaintext. In EAX,
“Init” includes the computation of EK(0n), EK(0n−11), and EK(0n−210). The
length of associated data is fixed to 16 bytes except for EAX-prime, and for EAX-
prime, we use 32-byte “cleartext,” which can be regarded as the combination of
associated data and a nonce [31]. For OCB3 we also measured the decryption per-
formance, whereas those of CLOC, EAX, and EAX-prime are almost the same
as encryption, since CLOC, EAX and EAX-prime require only forward direction
of the underlying blockcipher. The result shows a superior performance of CLOC
for short input data, up to around 128 bytes, which would be sufficiently long for

Table 2. Test vector of CLOC instantiated with AES-128

Length (bytes) Value (in hex)

Key 16 00102030405060708090a0b0c0d0e0f0

Associated data 14 ff0102030405060708090a0b0c0d

Nonce 12 00112233445566778899aabb

Plaintext 30 86012204ccebf09ad5305ea8967aebd0

0dd9c05cbde9407ff1ef52f043a2

Ciphertext 30 ebd908c23eac555dee406434fb2cffd4

e1bee4401002063e2d13cdf9df3b

Tag 16 6621dae27674aa6fbc303426824b2c05
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Table 3. Software implementation on ATmega128

ROM (bytes) RAM (bytes) Init (cycles) Speed (cycles/byte)

Data 16 32 64 96 128 256

CLOC 2980 362 1999 750.1 549.0 448.4 414.9 398.2 373.0

EAX 2772 402 12996 913.6 632.5 490.8 443.6 419.9 384.5

EAX-prime 2588 421 5102 908.7 638.7 496.6 449.3 425.6 390.1

OCB-E 5010 971 4956 1217.5 736.1 495.5 412.2 375.1 315.0

OCB-D 5010 971 4955 1252.2 773.4 534.0 451.2 414.3 354.4

low-powerwireless networks, aswementioned in Sect. 1.We alsomeasure theRAM
usage of the AVR implementations, using a public tool [41], based on data of 16
bytes. It is clear to see that CLOC requires much less RAM than OCB3.

8 Hardware Implementation

Although the primary focus of CLOC is embedded software, we also implemented
CLOC on hardware to see basic performance figures. We used Altera FPGA,
Cyclone IV GX (EP4CGX110DF31C7) [1], and implemented CLOC using AES-
128. AES implementation is round-based, and the S-box of AES is based on a com-
posite field [37]. For reference we also wrote EAX for the same device, using the
same AES. Both CLOC and EAX use one AES core for encryption and authen-
tication. In EAX implementation, all input masks are stored to registers. Table 4
shows the results. The size is measured by the number of logic elements (LEs). Our
implementation is not optimized. Still, these figures show that CLOC has slightly
smaller size and faster speed than EAX. Table 4 lacks other important modes, in
particular OCB. A more comprehensive comparison and optimized implementa-
tion for short input data are interesting future topics.

Table 4. Hardware implementation. Throughput figures of CLOC and EAX are mea-
sured for 8-block plaintexts with one-block associated data.

Size (LE) Max. Freq. (MHz) Throughput (Mbit/sec)

CLOC 5628 82.1 400.7

EAX 6453 61.3 342.2

AES Enc. 3175 98.7 971.7

9 Conclusions

We presented a blockcipher mode of operation called CLOC for authenticated
encryption with associated data. It uses a variant of CFB mode in its encryption
part and a variant of CBC MAC in the authentication part. The scheme efficiently
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handles short input data without heavy precomputation nor large memory, and
it is suitable for use in microprocessors. We proved CLOC secure, in a reduction-
based provable security paradigm, under the assumption that the blockcipher is
a pseudorandom permutation. We also presented our preliminary implementation
results.

It would be interesting to see improved implementation results using possibly
lightweight blockciphers.
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Abstract. The domain of lightweight cryptography focuses on crypto-
graphic algorithms for extremely constrained devices. It is very costly
to avoid nonce reuse in such environments, because this requires either
a hardware source of randomness, or non-volatile memory to store a
counter. At the same time, a lot of cryptographic schemes actually require
the nonce assumption for their security. In this paper, we propose APE
as the first permutation-based authenticated encryption scheme that is
resistant against nonce misuse. We formally prove that APE is secure,
based on the security of the underlying permutation. To decrypt, APE
processes the ciphertext blocks in reverse order, and uses inverse permu-
tation calls. APE therefore requires a permutation that is both efficient
for forward and inverse calls. We instantiate APE with the permutations
of three recent lightweight hash function designs: Quark, Photon, and
Spongent. For any of these permutations, an implementation that sup-
ports both encryption and decryption requires less than 1.9 kGE and
2.8 kGE for 80-bit and 128-bit security levels, respectively.

Keywords: APE · Authenticated encryption · Sponge function · Online ·
Deterministic · Permutation-based · Misuse resistant

1 Introduction

In constrained environments, conventional solutions to cryptographic problems
are prohibitively expensive to implement. Lightweight cryptography deals with
cryptographic algorithms within the stringent requirements imposed by devices
such as low-cost smart cards, sensor networks, and electronic body implants
where energy, power, or hardware area consumption can be heavily restricted.

Although symmetric-key cryptography predominantly makes use of solutions
based on block ciphers, recently permutation-based constructions [9] are gaining
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 168–186, 2015.
DOI: 10.1007/978-3-662-46706-0 9
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traction for a wide range of platforms, and on lightweight devices in particular.
Lightweight permutation-based hash functions include Gluon [6], Photon [19],
Quark [2,3], and Spongent [11].

Lightweight applications in practice require not only hash functions but also
secret-key cryptographic functions, such as authenticated encryption (AE). AE is
a cryptographic primitive that guarantees two security goals: privacy and integrity.
The prevalent solutions in this direction are block cipher based [24,28,31].
Permutation-based AE schemes were only recently proposed, such as the deter-
ministic key-wrap scheme [21] of Khovratovich and SpongeWrap [7,10] of the
Keccak team.

These two constructions unfortunately have their limitations. With the key-
wrap scheme [21], the message length is restricted to one block by design. While
sufficient for key wrapping [29], this construction cannot handle arbitrary-length
data and is therefore not a full AE scheme. SpongeWrap [7,10] can encrypt
messages of varying lengths but relies on the uniqueness of the nonce value:
failure to ensure so makes it possible to reuse the keystream of the encryption.
For example, if a pair of plaintexts share a common prefix, the XOR of the first
pair of plaintext blocks after this common prefix is leaked.

In Rogaway’s security formalism of nonce-based encryption [26,27], the nonce
is considered to be unique for every evaluation. While this approach has theo-
retical merits, in practice it is challenging to ensure that a nonce is never reused.
This is especially the case in lightweight cryptography, as a nonce is realized
either by keeping a state (and correctly updating it) or by providing a hardware
source of randomness. Indeed, nonce misuse is a security threat in plenty of prac-
tical applications, not necessarily limited to the lightweight setting. Examples
include flawed implementations of nonces [13,15,22,23,32], bad management of
nonces by the user, and backup resets or virtual machine clones when the nonce
is stored as a counter.

Nonce misuse resistance has become an important criterion in the design of
AE schemes. The CAESAR competition [14] considers misuse resistance in detail
for their selection of a portfolio of AE algorithms. The problem of nonce misuse
has also been addressed by the recent deterministic AE scheme SIV [29], by the
online AE scheme McOE [18], and in part by the aforementioned deterministic
key-wrap scheme [21]. However, there are currently no permutation-based AE
schemes that are resistant to nonce misuse.

Our Contributions. In this work we introduce APE (Authenticated Permuta-
tion-based Encryption). APE is the first permutation-based and nonce misuse
resistant authenticated encryption scheme. APE is inspired by SpongeWrap
[7,10], but differs in several fundamental aspects in order to achieve misuse
resistance. Most importantly, in APE the ciphertexts are extracted from the
state, whereas SpongeWrap generates a keystream to perform the encryption.
APE encryption processes data in an online manner, whereas decryption is done
backwards using the inverse of the permutation. APE is formally introduced in
Sect. 3. Here, we initially focus on associated data and messages of an integral
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number of blocks. In AppendixA, we show how APE can be generalized at
almost no extra cost to handle fractional associated data and message blocks.

We prove that APE achieves privacy and integrity up to about 2c/2 queries,
where c is the capacity parameter of APE. This result is proven in two different
models: first, in Sect. 4, we prove security of APE in the ideal permutation model,
where the underlying permutation is assumed to behave perfectly random. Next,
in Sect. 5, we consider APE with block ciphers, which is a generalization of APE
where the permutation with surrounding key XORs is replaced with a block
cipher call. We use the results from the ideal model to prove that APE with
block ciphers is secure in the standard model up to roughly 2c/2 queries as well.

APE is designed to be well suited for lightweight applications. However, APE
decrypts in inverse direction and requires an efficiently invertible permutation.
In Sect. 6, we implement APE in less than 1.9 kGE and 2.8 kGE for 80-bit and
128-bit security respectively with the permutations of Quark, Photon, and
Spongent. The results indicate that including the inverses of these permuta-
tions only leads to a marginal increase of the size of the implementation when
compared to the cost of providing a hardware source of randomness to generate
nonces.

2 Notation

Set R := {0, 1}r and C := {0, 1}c. Given two strings A and B, we use A‖B and
AB interchangeably, so for example AB = A‖B ∈ R × C ∼= {0, 1}r+c. Given
X ∈ R × C, Xr denotes its projection onto R, also known as its rate part,
and Xc denotes its projection onto C, or capacity part. We write 0 ∈ R for a
shorthand for 00 · · · 0 ∈ R and 1 ∈ C for 00 · · · 01 ∈ C. The symbol ⊕ denotes
the bitwise XOR operation of two (or more) strings.

An element of R is called a block. Let R∗ denote the set of strings whose
length is a multiple of r, with at most 2c/2 blocks. This explicit bound of 2c/2 is
needed in order to define a random function as being sampled over a finite set
of functions. Note that the bounds we prove become trivial for queries of length
2c/2 blocks. Similarly, let R+ denote the set of strings whose length is a positive
multiple of r, with at most 2c/2 blocks. Given M ∈ R+, we divide it into blocks
and write M [1]M [2] · · · M [w] ← M , where each M [i] is a block and w the block
length of the string M .

Let A be some class of adversaries. For convenience, we use the notation

ΔA[f, g] := sup
A∈A

∣∣Pr[Af = 1] − Pr[Ag = 1]
∣∣

to denote the supremum of the distinguishing advantages over all adversaries
distinguishing f and g. Providing access to multiple algorithms is denoted with
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Fig. 1. The APE mode of operation (encryption). If there is no associated data (A =
∅), we have Vr := 0 and Vc := K.

a comma, e.g. Δ[f1, f2 ; g1, g2] denotes distinguishing the combination of f1 and
f2 from the combination of g1 and g2.

3 APE Authenticated Encryption Mode

We now define our APE mode for the case of plaintexts and associated data of
length a multiple of the block size. We refer to Sect. A for the generalization of
APE to fractional data blocks. APE iterates a fixed permutation p : R × C →
R×C in a way similar to the sponge construction. The permutation p is the only
underlying cryptographic primitive used by APE. A diagram of APE is given in
Fig. 1 and an algorithmic description in Fig. 2.

The encryption algorithm E takes as input a key K ∈ K = C, associated data
A ∈ R∗, and a message M ∈ R+, and returns a ciphertext C ∈ R+ and a tag
T ∈ C, as (C, T ) ← EK(A,M). On the other hand, D takes as input a key K ∈ C,
associated data A ∈ R∗, a ciphertext C ∈ R+, and a tag T ∈ C, and returns
either a message M ∈ R+ or the reject symbol ⊥, as M/⊥ ← DK(A,C, T ). The
two functionalities are sound, in the sense that whenever we encrypt a message as
(C, T ) ← EK(A,M), we always get the message back, not ⊥, via the decryption
process M ← DK(A,C, T ).

In APE, the inclusion of a nonce is optional. If a nonce is required, it can
be included as part of the associated data. Care must be taken when allowing
nonces of varying lengths, as the nonce and the associated data should be clearly
distinguishable.
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Fig. 2. The encryption EK(A, M) and decryption DK(A, C, T ) algorithms of APE.

4 Privacy and Integrity of APE

We prove that APE satisfies privacy under chosen plaintext attacks (CPA) and
integrity security up to about c/2 bits. Before doing so, in Sect. 4.1 we present
the security model, where we formalize the notion of an ideal online function, and
where we introduce the CPA and integrity security definitions. Then, privacy is
proven in Sect. 4.2 and integrity in Sect. 4.3. The security results in this section
assume that the underlying permutation p is ideal. Later, in Sect. 5, we consider
the security of APE with block ciphers in the standard model.

4.1 Security Model

Let Perm(n) be the set of all permutations on n bits. By ⊥, we denote a function
that returns ⊥ on every input. When writing x

$← X for some finite set X we
mean that x is sampled uniformly from X. To avoid confusion, for X ∈ R × C
we sometimes write [X]c := Xc to denote the projection of X onto C.
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Online functions were first introduced in [4]. We deviate slightly from their
approach by explicitly defining our ideal online function in terms of random
functions.

Definition 1 (Ideal Online Function). Let g : R∗ × R∗ → R and g′ : R∗ ×
R∗ → C be random functions. Then, on input of (A,M) with w = |M |/r, we
define $ : R∗ × R+ → R+ × C as

$(A,M [1]‖M [2]‖ · · · ‖M [w]) = (C[1]‖C[2]‖ · · · ‖C[w], T ),

where

C[j] = g(A,M [1]‖ · · · ‖M [j]) for j = 1, . . . , w,

T = g′(A,M).

Notice that the above function is actually online: prefixes of outputs remain the
same if prefixes of the inputs remain constant. Furthermore, if the associated
data in the ideal online function is unique for each invocation of the function,
then we achieve full privacy. This is because the inputs to g and g′ will then be
unique for each invocation, and since g and g′ are random functions, we get out-
puts that are independent and uniformly distributed. By comparing our scheme
to the above ideal online function we will automatically achieve the notions
of CPA security and integrity from Rogaway and Zhang [30] and Fleischmann
et al. [18].

Definition 2. Let Π = (K, E ,D) denote an AE scheme. The CPA advantage of
a distinguisher D is defined as

Advcpa
Π (D) =

∣∣∣∣∣∣∣

Pr
[
p

$← Perm(r + c) , K
$← K : DEK ,⊥,p,p−1

= 1
]
−

Pr
[
p

$← Perm(r + c) : D$,⊥,p,p−1
= 1

]

∣∣∣∣∣∣∣
.

By Advcpa
Π (q,m) we denote the supremum taken over all distinguishers making

q queries of total length m blocks.

Definition 3. Let Π = (K, E ,D) denote an AE scheme. The integrity advantage
of a distinguisher D is defined as

Advint
Π (D) =

∣∣∣∣∣∣∣

Pr
[
p

$← Perm(r + c) , K
$← K : DEK ,DK ,p,p−1

= 1
]
−

Pr
[
p

$← Perm(r + c) , K
$← K : DEK ,⊥,p,p−1

= 1
]

∣∣∣∣∣∣∣
.

We assume that the distinguisher does not make a decryption query (A,C, T ) if
it ever obtained (C, T ) ← EK(A,M) for some M . By Advint

Π (q,m) we denote
the supremum taken over all distinguishers making q queries of total length m
blocks.



174 E. Andreeva et al.

4.2 Privacy

In this section, we present a privacy security proof for APE.

Theorem 1. Let Π = (K, E ,D) be the APE construction. Then,

Advcpa
Π (q,m) ≤ m2

2r+c
+

m(m + 1)
2c

.

Proof. We consider the strongest possible type of distinguishers: let D be any
information-theoretic distinguisher which has unbounded computational power
and whose complexity is measured solely by the number of queries it makes to
its oracles. Without loss of generality, we restrict ourselves to distinguishers that
do not ask “trivial” queries, queries to which it knows the answer in advance.

As a first step, we make a PRP-PRF switch [5]: we move from random per-
mutation (p, p−1) to a primitive (f, f−1) defined as follows. This primitive main-
tains an initially empty list of responses, F , and we denote its domain/range by
dom(F)/rng(F). Now, on a non-trivial forward query f(x), the response y is
randomly drawn from R×C. The primitive aborts if y happens to be in rng(F)
already; otherwise, the fresh tuple (x, y) is added to F . Similarly for inverse
queries to f−1. Clearly, (p, p−1) and (f, f−1) behave identically as long as the
latter does not abort. Given that the distinguisher makes at most q queries of
total length m blocks (each block corresponds to a new (f, f−1)-query), such an
abort happens with probability at most

(
m
2

)
/2r+c ≤ m2/2r+c+1. We apply this

PRP-PRF switch to both the ideal and the real world, and hence we find

ΔD(EK ,⊥, p, p−1; $,⊥, p, p−1) ≤ m2

2r+c
+ ΔD(EK ,⊥, f, f−1; $,⊥, f, f−1). (1)

In the remainder, we consider D to have oracle access to one of the two worlds:
(F, f, f−1), where F ∈ {EK , $} (without loss of generality we can drop the ⊥).

If f is called by D then we call this a direct f -query, and similar for direct
f−1-queries. A call of f by EK (as a result of D calling EK) is called an indirect
f -query. When we do not specify whether an f -query is indirect or direct, we
mean that it could be either. Note that indirect queries do not occur in the
random world ($, f, f−1). Every indirect f -query has a sequence of associated
data blocks and message blocks leading up to it (from the EK-query calling it);
we call this sequence the message chain associated to the indirect f -query.

Let Qi denote the set of all prefixes of all queries made by D to its F -
oracle before the ith (f, f−1)-query, where a query (A,M) results in prefixes
{A[1], A[1]‖A[2], . . . , A‖M}. Regarding all direct queries before the ith query,
we denote by Xdir

i the set of all capacity values input to f -queries or output of
f−1-queries. For example, a direct forward query y ← f(x) adds [x]c to Xdir

i

and a direct inverse query x ← f−1(y) adds [x]c to Xdir
i . Similarly, by X ind

i we
denote the set of all capacity values input to indirect f -queries before the ith
f -query. We write Xi = Xdir

i ∪ X ind
i , and initialize X ind

0 = {K}.
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We define event Ei = Edir-X
i ∪ Eind-X

i , where

Edir-X
i : direct query y ← f(x) or x ← f−1(y) satisfies [x]c ∈ X ind

i ∪ X ind
i ⊕ 1,

Eind-X
i : indirect query f(x) with message chain (A,M) /∈ Qi satisfies

[f(x)]c ∈ Xi ∪ Xi ⊕ 1.

We furthermore define

Êi := Ei ∩ ⋂i−1
j=1 Ej , and E :=

⋃m
i=1 Êi, (2)

where Ej is the complement of Ej .
Now, the remainder of the proof is divided as follows. In Lemma 1 we will

prove that (EK , f, f−1) and ($, f, f−1) are indistinguishable as long as E does
not occur. From (1) and the fundamental lemma of game playing [5] we find

Advcpa
Π (q,m) ≤ m2

2r+c
+ Pr[DEK ,f,f−1

sets E].

Then, in Lemma 2, we will prove that Pr[DEK ,f,f−1
sets E] ≤ m(m + 1)

2c
, which

completes the proof. �
Lemma 1. Given that E does not occur, (EK , f, f−1) and ($, f, f−1) are indis-
tinguishable.

Proof. Note that in the ideal world, each direct f -query is new, and is answered
with a uniformly randomly drawn response. Now, consider a direct query f(x)
in the real world. As the distinguisher does not make trivial queries, it does not
coincide with any previous direct query. Additionally, if [x]c ∈ X ind

i ∪ X ind
i ⊕ 1,

where f(x) is the ith f -query, then this would trigger Edir-X
i , hence we can

assume [x]c /∈ X ind
i ∪ X ind

i ⊕ 1. This means that the query f(x) is truly new,
and its value is independently and uniformly distributed. The same reasoning
applies to f−1-queries. Therefore, we only need to consider queries to the big
oracle F ∈ {EK , $}. Let (A,M) be a query made by the distinguisher. Denote
by w the number of blocks of M . Denote the corresponding ciphertext and tag
by (C, T ).

First consider the case (A,M [1]‖ · · · ‖M [j]) ∈ Qi for some j ∈ {0, . . . , w} and
assume j is maximal (we will come back to the case of (A, ∗) �∈ Qi later in the
proof). Let (A′,M ′) be the corresponding earlier query, so M [1]‖ · · · ‖M [j] =
M ′[1]‖ · · · ‖M ′[j], and denote its ciphertext and tag by (C ′, T ′) and block length
by w′. Clearly, in the ideal world ($, f, f−1), we have C[i] = C ′[i] for i = 1, . . . , j,
but C[i] for i = j + 1, . . . , w and T are uniformly randomly drawn. We will
consider how these values are distributed in the real world (EK , f, f−1). We first
consider the general case j < w, the case j = w is discussed afterwards.

1. C[1], . . . , C[j]. Also in the real world, these values equal C ′[1], . . . , C ′[j], which
follows clearly from the specification of EK . Note that in particular, the state
value V equals V ′ after the jth round.
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2. C[j + 1]. We make a distinction between j > 0 and j = 0, and start with
the former case. Write the indirect query corresponding to the jth round as
f(x). The input of the (j +1)th query will be f(x)⊕ (M [j +1], 0). Note that
(A,M ′‖M [j + 1]) �∈ Q, as this would contradict the fact that j is maximal.
Now, assume this (j +1)th query has already been made before, i.e. [f(x)]c ∈
Xdir∪X ind. This may be the case (it may even date from before the evaluation
of (A,M ′)), but at this particular time the capacity part [f(x)]c did not hit
any element from Xdir ∪ X ind (otherwise it would have triggered Eind-X).
After this query has been made, there has not been any newer indirect query
or any newer direct query whose capacity part hit [f(x)]c (both cases would
have triggered Edir-X ∪Eind-X). Thus, the query corresponding to the (j+1)th
round is generated independently and uniformly at random.

Now, in the case j = 0, V denotes the state right after the hashing of A
(V = (0,K) if A = ∅). The same story as before applies with the difference
that now the input to the (j + 1)th query is V ⊕ (M [j + 1], 1). Here we use
that by E, no other query hit X ind

j ⊕ 1 (for direct queries) or Xj ⊕ 1 (for
indirect queries) in the meanwhile, and that X ind is initialized with {K}.

3. C[j + 2], . . . , C[w]. By the above argument, the indirect query made in the
(j +1)th round of (A,M), say f(x) for the sake of presentation, is responded
with a uniformly random answer. This query would have triggered Eind-X

if [f(x)]c ∈ Xi. Therefore, we know that also the (j + 2)th query is truly
random and so is C[j + 2]. The same reasoning applies up to C[w].

4. T . The same reasoning applies: the previous query is responded with a truly
random answer f(x). Consequently T = [f(x)]c ⊕ K is random too.

A special treatment is needed for j = w. In this case, C[1], . . . , C[w] equals
C ′[1], . . . , C ′[w] by construction, but the query producing T is not new. Yet, the
distinguisher never made that query itself by virtue of Edir-X , so it never learnt
T ⊕ K. Besides, due to the absence of indirect capacity collisions, Eind-X , every
f -query will produce a tag at most once. This means that T will look uniformly
random to the distinguisher, as it would look if it were produced by $.

Finally, we consider the case (A, ∗) �∈ Qi, hence this is the first time a query
for this particular associated data A is made. Then, the above reasoning carries
over for j = 0 with the simplification that if A �= ∅, the value Vc right after the
hashing of A can be considered new. �

Lemma 2. Pr[DEK ,f,f−1
sets E] ≤ m(m + 1)

2c
.

Proof. Inspired by (2), we start bounding Pr[Ei ∩ ⋂i−1
j=1 Ej ] for i ∈ {1, . . . , m}.

Clearly,

Pr[Ei ∩ ⋂i−1
j=1 Ej ] ≤ Pr[Ei | ⋂i−1

j=1 Ej ].

Therefore, we assume
⋂i−1

j=1 Ej and consider the probability the ith query trig-
gers Ei.
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If the ith query is a direct (forward or inverse) query, it triggers Edir-X
i if the

distinguisher guesses (in case of forward) or hits (in case of inverse) a capacity
part in X ind

i ∪ X ind
i ⊕ 1, which happens with probability at most 2|X ind

i |/2c.
On the other hand, if the ith query is a new indirect query (i.e. for which
(A,M) /∈ Qi) it triggers Eind-X

i if [f(x)]c ∈ Xi ∪ Xi ⊕ 1. This occurs with
probability at most 2|Xi|/2c.

As the query is either direct or indirect, we could take the maximum of both
values. Given that |X ind

i | ≤ |Xi| ≤ i, we find:

Pr[Ei | ⋂i−1
j=1 Ej ] ≤ 2i

2c
.

The result is now obtained by summing over i = 1, . . . , m (as in (2)). �

4.3 Integrity

In this section, we present an integrity security proof for APE.

Theorem 2. Let Π = (K, E ,D) be the APE construction. Then,

Advint
Π (q,m) ≤ m2

2r+c
+

2m(m + 1)
2c

.

Proof. The basic idea of the proof is the same as for Theorem 1. Again, let D
be any information-theoretic distinguisher. By the PRP-PRF switch, we find

ΔD(EK ,DK , p, p−1; EK ,⊥, p, p−1) ≤ m2

2r+c
+ ΔD(EK ,DK , f, f−1; EK ,⊥, f, f−1).

(3)

We consider D to have oracle access to one of the two worlds: (EK , F, f, f−1),
where F ∈ {DK ,⊥}.

We use the same notation as in Theorem 1, but slightly more involved defini-
tions are required and we re-introduce them. If f is called by D then we call this
a direct f -query, and similar for direct f−1-queries. A call of f by EK or DK (as
a result of D calling them) is called an indirect f -query, and similar for indirect
f−1-queries (via DK). Every indirect f -query has a sequence of associated data
blocks and/or message blocks leading up to it (from the EK- or DK-query calling
it); we call this sequence the message chain associated to the indirect f -query.
Every indirect f−1-query has a tag and a sequence of ciphertext blocks leading
up to it, and we call this sequence the associated ciphertext chain.

Let Qi denote the set of all prefixes of all queries made by D to its EK-
oracle before the ith (f, f−1)-query, where an EK-query (A,M) results in prefixes
{A[1], A[1]‖A[2], . . . , A‖M}. In this set, we also include {A[1], . . . , A} for an F -
query (A,C, T ). Let Q−1

i denote the set of all suffixes of all queries made by D to
its F -oracle before the ith query, where an F -query (A,C, T ) results in suffixes
{C[w]‖T,C[w − 1]‖C[w]‖T, . . . , C‖T}. (The tag value T is included here for
technical reasons.) Regarding all direct queries before the ith query, we denote
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by Xdir
i the set of all capacity values input to f -queries or output of f−1-queries,

and by Y dir
i the set of all capacity values input to f−1-queries or output of f -

queries. For example, a direct forward query y ← f(x) adds [x]c to Xdir
i and [y]c

to Y dir
i . The sets X ind

i and Y ind
i are defined similarly. We write Xi = Xdir

i ∪X ind
i

and Yi = Y dir
i ∪ Y ind

i , and initialize X ind
0 = Y ind

0 = {K}.
We define event Ei = Edir-X

i ∪Eind-X
i ∪Edir-Y

i ∪Eind-Y
i , where Edir-X

i and Eind-X
i

are as in the proof of Theorem 1 with the renewed definitions of the sets, and where

Edir-Y
i : direct query y ← f(x) or x ← f−1(y) satisfies [y]c ∈ Y ind

i ∪ Y ind
i ⊕ 1,

Eind-Y
i : indirect query f−1(y) with ciphertext chain (C, T ) /∈ Q−1

i satisfies

[f−1(y)]c ∈ Yi ∪ Yi ⊕ 1 or [y]c ∈ Y dir
i ⊕ K.

Definitions Êi and E are as before. The latter condition of Eind-Y
i , [y]c ∈ Y dir

i ⊕K,
covers the case the distinguisher obtains the key by making a direct inverse query
and a DK-query.

Now, the remainder of the proof is divided as follows. In Lemma 3 we will prove
that (EK ,DK , f, f−1) and (EK ,⊥, f, f−1) are indistinguishable as long as E does
not occur. From (3) and the fundamental lemma of game playing [5] we find

Advcpa
Π (q,m) ≤ m2

2r+c
+ Pr[DEK ,DK ,f,f−1

sets E].

Then, in Lemma 4, we will prove that Pr[DEK ,DK ,f,f−1
sets E] ≤ 2m(m + 1)

2c
,

which completes the proof. �
Lemma 3. Given that E does not occur, (EK ,DK , f, f−1) and (EK ,⊥, f, f−1)
are indistinguishable.

Proof. The proof is given in the full version [1]. It is similar to the proof of
Lemma 1. �

Lemma 4. Pr[DEK ,DK ,f,f−1
sets E] ≤ 2m(m + 1)

2c
.

Proof. The proof is given in the full version [1]. It is similar to the proof of
Lemma 2. �

5 Standard Model Security of APE

As is conventionally done for existing permutation-based designs, our proof for
APE assumes that the underlying permutation is ideal. By considering a gen-
eralized version of APE, we now provide a standard model security argument
for our scheme. Inspired by [16], we note that APE can also be described as
a block cipher based design: we drop the key additions at the beginning and
end, and replace the permutations with a keyed block cipher EK defined by
EK := KpK := ⊕0‖K ◦ p ◦ ⊕0‖K . (One can view EK as the Even-Mansour [17]
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block cipher with partial key addition.) We remark that this is, indeed, an
equivalent description of APE if the block cipher is replaced by KpK. In our
notation we denote APE as described and based on some block cipher E by
Π ′ = (K, EE ,DE). We first give the privacy and integrity definitions in the stan-
dard model and then show that our results of Theorems 1 and 2 easily translate
to a standard model security of Π ′.

Definition 4. Let E be a block cipher, and let Π ′ = (K, EE ,DE) denote an AE
scheme. The CPA advantage of a distinguisher D is defined as

Advcpa
Π′ (D) =

∣∣∣Pr
[
K

$← K : DEE
K = 1

]
− Pr

[
D$ = 1

]∣∣∣ .

By Advcpa
Π′ (t, q,m) we denote the supremum taken over all distinguishers run-

ning in time t and making q queries of total length m blocks. Alternatively, we
write Advcpa

Π′ (t, q,m) = Δt
q,m(EE

K ; $) as in Definition 2 with the inclusion of t.

Definition 5. Let E be a block cipher, and let Π ′ = (K, EE ,DE) denote an AE
scheme. The integrity advantage of a distinguisher D is defined as

Advint
Π′(D) =

∣∣∣Pr
[
K

$← K : DEE
K ,DE

K = 1
]

− Pr
[
K

$← K : DEE
K ,⊥ = 1

]∣∣∣ .

By Advint
Π′(t, q,m) we denote the supremum taken over all distinguishers running

in time t and making q queries of total length m blocks. Alternatively, we write
Advint

Π′(t, q,m) = Δt
q,m(EE

K ,DE
K ; EE

K ,⊥) as in Definition 3 with the inclusion of t.

In both definitions we refer to the rate of Π ′, the number of block cipher calls per
message block, as ρ. Furthermore, we need the notion of strong pseudorandom
permutation, or prp±1, security of E.

Definition 6. Let E be a block cipher. The prp±1 advantage of a distinguisher
D is defined as

Advprp±1
E (D) =

∣∣∣∣∣∣∣

Pr
[
K

$← K : DEK ,E−1
K = 1

]
−

Pr
[
π

$← Perm(r + c) : Dπ,π−1
= 1

]

∣∣∣∣∣∣∣
.

By Advprp±1
E (t, q) we denote the maximum advantage taken over all distinguish-

ers that run in time t and make q queries.

We demonstrate that the standard model security of APE with block ciphers is
implied by the results of Sect. 4. To this end we introduce two propositions, one
with respect to the integrity and one with respect to the privacy of Π ′.

Proposition 1. Let E be a block cipher.

Advint
Π′(t, q,m) ≤ m2

2r+c
+

2m(m + 1)
2c

+ 2Advprp±1
E (t′, ρm).



180 E. Andreeva et al.

Proof. Let K
$← K. Let E be a publicly available block cipher and π, p

$←
Perm(r + c) be random permutations. We first switch from E to random π:

Δt
q,m(EE

K ,DE
K ; EE

K ,⊥) ≤ Δt
q,m(EE

K ,DE
K ; Eπ

K ,Dπ
K) + Δt

q,m(Eπ
K ,Dπ

K ; Eπ
K ,⊥)

+ Δt
q,m(Eπ

K ,⊥; EE
K ,⊥)

≤ Δt
q,m(Eπ

K ,Dπ
K ; Eπ

K ,⊥) + 2Advprp±1
E (t′, ρm),

where t′ ≈ t. As π is a random permutation, we could give the distinguisher
unlimited time (effectively considering information-theoretic distinguishers), and
the bound simplifies to:

Δt
q,m(EE

K ,DE
K ; EE

K ,⊥) ≤ Δq,m(Eπ
K ,Dπ

K ; Eπ
K ,⊥) + 2Advprp±1

E (t′, ρm).

For the remaining Δ-term:

Δq,m(Eπ
K , Dπ

K ; Eπ
K , ⊥) ≤ Δq,m(Eπ

K , Dπ
K ; EKpK

K , DKpK
K )

+ Δq,m(EKpK
K , DKpK

K ; EKpK
K , ⊥) + Δq,m(EKpK

K , ⊥; Eπ
K , ⊥)

≤ 0 + Δq,m(EKpK
K , DKpK

K ; EKpK
K , ⊥) + 0,

where we use that π and KpK are identically distributed as π and p are ran-
dom permutations and K is random and unknown. The middle term equals
Advint

Π (q,m) with the difference that the distinguisher cannot access p. A dis-
tinguisher would only benefit from such additional access, thus:

Δq,m(EKpK
K ,DKpK

K ; EKpK
K ,⊥) ≤ Advint

Π (q,m),

which is bounded in Theorem 2. This completes the proof. �
Proposition 2. Let E be a block cipher.

Advcpa
Π′ (t, q,m) ≤ m2

2r+c
+

1m(m + 1)
2c

+ Advprp±1
E (t′, ρm).

Proof. The proof is a straightforward simplification of the proof of Proposition 1,
and therefore omitted. �

6 Hardware Implementation

We implement APE with the permutations ofPhoton [19],Quark [3], andSpon-
gent [11]. The results are given in Table 1. We use these permutations without any
modifications to investigate the hardware performance of APE. As the designs of
Photon, Quark, and Spongent follow the hermetic sponge strategy [8], the
underlying permutations are assumed to be indistinguishable from random per-
mutations. This assumption is necessary in order to achieve the claimed privacy
(Theorem 1) and integrity (Theorem 2) security bounds. Since APE is designed
for constrained devices, we focus on a security level of 80 and 128 bits, which cor-
respond to a capacity of 160 or 256 bits, respectively. One exception is APE based



APE: Authenticated Permutation-Based Encryption 181

on Quark: since Quark is not equipped with a version for 128 bits of security we
resort to a permutation that offers 112 bits of security. The versions of Photon
and Spongent with 80 bits of security are implemented with a 4-bit serialization,
which means that we implement one 4-bit S-box. For the versions with higher secu-
rity, we use an 8-bit serialization which requires two 4-bit S-boxes for Spongent
and one 8-bit S-box for Photon. Unlike Photon and Spongent, the round per-
mutation of Quark is based on Feedback Shift Registers (FSRs). Hence it is pos-
sible to update one bit per clock cycle, and in our implementation we choose to do
so for area efficiency.

As APE decrypts in reverse order and requires the inverse permutation, for
each of the algorithms (Photon, Quark, and Spongent) we have provided
both an encryption-only implementation and an implementation with encryption
and decryption. In brief, we have implemented APE as follows. The initial state
is XORed with the first data inserted nibble by nibble (or byte by byte, or bit
by bit). After each permutation evaluation, the resulting ciphertext is output as
the new data is inserted in the same clock cycle. At the end of the iteration, the
entire state is output and the capacity part is XORed with the key to generate
the tag. Similarly, for decryption, the first state corresponds to the ciphertext
concatenated with an XOR of the key and the tag, and at the end authenticity
is verified.

For the hardware implementation results in Table 1, we used ModelSim to
verify the functionality of the designs and Synopsys Design Vision D-2010.03-SP4
for synthesis. We used Faraday Standard Cell Library based on UMC 0.18μm
and open-cell 45nm NANGATE [25] library. As main observations, we see that
APE with an encryption and decryption mode can be implemented with less
than 1.9 kGE and 2.8 kGE for 80-bit and 128-bit security respectively.

When implemented with the same permutation, encryption-only implemen-
tations of SpongeWrap and APE will have similar implementation figures. This
is because in both constructions, the processing of every message block requires
one XOR with the rate part and one permutation function call. We recall that
the crucial difference between SpongeWrap and APE is that APE provides nonce
misuse resistance. For the decryption operation, the cost of misuse resistance for
APE is that the backwards permutation must be implemented as well.

As shown in Table 1, the overhead of implementing both p and p−1 is at most
283 GE on our 45 nm implementation. For devices without non-volatile memory,
this overhead is very low compared to the cost of providing a hardware source
of randomness to generate nonces.

Note that the permutation-based schemes are implemented on 180 nm and
45 nm CMOS, whereas for the block cipher based schemes, lightweight implemen-
tations on 65 nm CMOS are provided. Therefore, we cannot compare these imple-
mentations directly. Also note that the clock frequencies of the implementations
differ, which lead to different throughput figures. However, it seems that APE
and ALE have similar performance figures and APE is smaller than ASC-1 A,
ASC-1 B and AES-CCM.
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Table 1. APE is implemented using the Photon, Quark, and Spongent permu-
tations. For each algorithm, we provide an encryption-only implementation, as well
as one that does both encryption and decryption (denoted as “e/d”). The area fig-
ures depend on the library that we have used: Area A refers to UMC 180 nm, Area B
refers to NANGATE 45 nm. Our overview also includes lightweight implementations of
the authenticated encryption schemes ALE [12], ASC-1 [20], and AES-CCM [31]. We
remark that the clock frequency of the APE implementations is 100 kHz, compared to
20 MHz for the other ciphers.

7 Conclusions

In this paper, we introduced APE, the first misuse resistant permutation-based
AE scheme. We proved that APE provides security and integrity up to the
birthday bound of the capacity, in the ideal permutation model. We show that
the security of APE in the ideal permutation model implies the security of APE
with block ciphers in the standard model. This not only ensures security of APE
when its underlying primitive is considered an ideal permutation, but also allows
to employ it with any secure block cipher of specific form. To achieve misuse
resistance, the decryption of APE as a permutation-based construction uses the
inverse permutation to decrypt in a backwards manner. The advantage of having
backwards decryption is that if the tag or last ciphertext block is missing, then
decryption is impossible. Our hardware implementations of APE show that it is
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well-suited for lightweight applications. In fact, using any of the permutations
of Quark, Photon, and Spongent, less than 1.9 kGE (80-bit security) and
less than 2.8 kGE (128-bit security) is required for an implementation of APE
that supports both encryption and decryption. Due to its resistance against
nonce reuse and its low area requirements in hardware, APE is suitable for
environments where it is prohibitively expensive to require non-volatile memory
or a hardware source of randomness.
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A APE for Fractional Data

The APE description of Sect. 3 should only be used when the application can
guarantee that the length of the plaintext and the associated data is always a
multiple of the block size r. In this section, we explain how to adjust APE to
handle fractional plaintext and associated data. This is done by applying ‘10*’-
padding to all plaintext and associate data (fractional or not).

The extension of APE to fractional associated data is given in Fig. 3, and
to fractional messages in Fig. 4. We elaborate on the extension for fractional
messages (the extension for fractional associated data being similar). Split a
message M into r-bit blocks, where the last block M [w] is possibly incomplete.
We distinguish among three cases:

– |M [w]| ≤ r − 1 and w = 1. The procedure can be seen in the top part of
Fig. 4. Note that the corresponding ciphertext will be r bits. This is required
for decryption to be possible;

– |M [w]| ≤ r − 1 and w ≥ 2. The procedure is depicted in the bottom part of
Fig. 4. Note that the ciphertext C[w − 1] is of size equal to M [w]. The reason
we opt for this design property is the following: despite M [w] being smaller
than r bits, we require its corresponding ciphertext to be r bits for decryption
to be possible. As a toll, the extended APE generates ciphertext C[w − 1] to
be of size equal to M [w];

– |M [w]| = r. In this special case where M consists of integral message blocks,
we nevertheless need a padding. However, instead of occupying an extra mes-
sage block for this, the ‘10*’-padding spills over into the capacity. This can be
seen as an XOR of 10 · · · 00 into the capacity part of the state. We recall the
reader of the fact that the ⊕1 in the beginning of the function is a shorthand
notation for ⊕00 · · · 01, and hence, these values do not cancel each other out.

The adjustments have no influence on the decryption algorithm D, except if
|M | ≤ r for which a slightly more elaborate function is needed. Note that the
spilling of the padding in case |M [w]| = r causes security to degrade by half a
bit: intuitively, APE is left with a capacity of c′ = c − 1 bits. We have opted for
this degrading over an efficiency loss due to an additional round.

The proofs of security of APE with fractional data can be found in the full
version of this paper [1].
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Fig. 3. A generalization of APE that can handle fractional associated data blocks.

Fig. 4. A generalization of APE that can handle fractional message blocks.
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Abstract. We present a new, misuse-resistant scheme for online authen-
ticated encryption, following the framework set forth by Fleischmann
et al. (FSE 2012). Our scheme, COBRA, is roughly as efficient as the
GCM mode of operation for nonce-based authenticated encryption, per-
forming one block cipher call plus one finite field multiplication per mes-
sage block in a parallelizable way. The major difference from GCM is that
COBRA preserves privacy up to prefix under nonce repetition. However,
COBRA only provides authenticity against nonce-respecting adversaries.
As compared to COPA (ASIACRYPT 2013), our new scheme requires no
block cipher inverse and hence enjoys provable security under a weaker
assumption about the underlying block cipher. In addition, COBRA can
possibly perform better than COPA on platforms where finite field mul-
tiplication can be implemented faster than the block cipher in use, since
COBRA essentially replaces half of the block cipher calls in COPA with
finite field multiplications.

Keywords: COPA · OTR · GCM · Feistel network · ManTiCore ·
Authenticated online cipher · Deterministic · Finite-field multiplication

1 Introduction

Authenticated encryption (AE) schemes target the security goals of privacy and
integrity. The field of AE has received more interest in the light of the recently
announced CAESAR competition [9]. In the target scope of the competition fall
secure and efficient AE algorithms for specific or possibly multiple environments.

While AE can securely be achieved by combining a probabilistic encryption
scheme and a message authentication code using Bellare and Namprempre’s
generic composition [6], this approach comes at the cost of using two keys, one for
encryption and one for authentication. This and further efficiency optimization
reasons have led to the development of many dedicated nonce-based AE solutions
such as CCM [33], CWC [20], EAX [7], GCM [23], IACBC [18], IAPM [18],
OCB1-3 [21,27,29], and OTR [24].
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Of these schemes, today GCM is the most widely deployed. GCM has been
standardized by many organizations including ANSI, IEEE, ISO/IEC, and NIST.
GCM has also been adopted by major cryptographic protocols such as IPsec,
SSH, and TLS/SSL.

One advantage of GCM is that it performs well on Intel CPUs. According
to Gladman [13], GCM outperforms CCM, CWC, and EAX on Intel P3/P4 and
AMD 64(32/64) processors, if a 64 K table is used with GCM. This is mostly
due to the fact that finite-field multiplication over GF(2128) can be implemented
efficiently on these platforms so that it runs faster than serial AES or hashing
modulo 2127 − 1.

There are several ways of parallelizing the polynomial hashing in GCM [14].
For example, instead of performing finite-field multiplications sequentially by
Horner’s rule as

(((
X[1]L⊕X[2]

)
L⊕X[3]

)
L⊕X[4]

)
L, one precomputes L2, L3

and L4, stores them in a table, and then computes the hash in a parallelizable
way as X[1]L4+X[2]L3+X[3]L2+X[4]L. Here L denotes the key of polynomial
hashing and X[i] the data blocks.

On more recent Intel CPUs such as Nehalem and Sandy Bridge, finite-
field multiplication runs slower than AES [21]. Note that these processors are
equipped with dedicated instruction sets, PCLMULQDQ for finite-field multi-
plication and AES-NI for AES block cipher computation. However, according
to the latest report by Gueron [15] PCLMULQDQ is now more efficient on the
latest Haswell processor, making finite-field multiplication over GF(2128) faster
than AES block cipher computation. This also makes GCM still attractive for
use on Intel platforms.

Another advantage of GCM is the fact that it does not require the block
cipher inverse. This contrasts sharply with schemes like OCB, where the cipher
inverse is necessary for decryption. Besides the extra cost to implement the
inverse algorithm, the problem is that the security proof needs to rely on a
stronger assumption about the underlying block cipher if its inverse is used
by the scheme. This issue has been discussed for OCB [5] and has led to the
invention of OTR [24].

Given these features and its wide-spread use, GCM is often considered as a
reference AE mode of operation. In fact, the call for submissions of the CAESAR
competition [9] requires that authors “must explain, in particular, why users
should prefer this cipher over AES-GCM.”

All of the above-mentioned dedicated schemes are proven secure in a nonce-
respecting model — formalism proposed by Rogaway [28] — where an adversary
is limited to making encryption queries only with non-repeating nonce values.
For the cases when nonce values do repeat, none of these AE schemes provides
any formal security guarantees. Indeed, all of these schemes, including the latest
OTR, can be “attacked” under nonce repetition, as described by Fleischmann
et al. [12].

Nonce repetition can, however, occur in practice due to the fact that the
nonce is chosen by the application programmer rather than the scheme itself
as discussed by Fleishmann et al. [12]. Examples of nonce repetition are flawed
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implementations [8,10,19,22,34], bad management of nonces by the user, and
backup resets or virtual machine clones when the nonce is stored as a counter.

One way to address these situations is to design AE schemes which pro-
vide misuse resistance in a model where the adversary can perform queries with
repeating nonces. Such schemes include the deterministic AE solutions SIV [30],
BTM [16], and HBS [17], and also the authenticated online ciphers McOE-G [12],
APE [2], and COPA [3]. The latter schemes are more efficient (need to process
the message just once), even though the security under nonce repetition is limited
to indistinguishability up to a common prefix.

We note that we are missing a “GCM-like” authenticated online cipher.
McOE-G makes one block cipher call plus one finite-field multiplication per
message block, but it is inherently sequential and not parallelizable like GCM.
APE is permutation-based and sequential. COPA is parallelizable, but it makes
two block cipher calls per message block. Moreover, all of these schemes require
the inverse primitive calls for decryption. In this paper, therefore, we set out to
propose a new authenticated online cipher whose efficiency is comparable to that
of GCM.

Our Results. We present a secure and efficient solution for AE, which we
name COBRA. A formal description of COBRA for integral message blocks is
given in Sect. 3, and it is depicted in Figs. 2 and 3. (A description of COBRA
for arbitrary-length messages is given in Appendix A).

Design. At first glance our design may seem to combine characteristics of the
COPA [3] and OTR [24] designs. Indeed, to ensure misuse-resistance we include
features from COPA and then substitute the parallelization procedures with
the two-round balanced Feistel structure as proposed by Minematsu [24] in OTR.
The latter design decision enables the use of just a single type of primitive,
namely a block cipher in the forward encryption direction, without losing paral-
lelizability, for efficiently authenticating and encrypting at the same time using
polynomial hashing. It also allows for a scheme that does not need the inverse
of the block cipher in decryption.

However, the construction of COBRA is not motivated by the mere combi-
nation of the two designs. Indeed, the employment of the Feistel network seems
necessary for efficiently authenticating and encrypting at the same time using
polynomial hashing. It also allows for a scheme that does not need the inverse
of the block cipher in decryption. In order to achieve integrity of COBRA, we
utilize the checksum of intermediate state values of the Feistel structure, which is
similar to a technique proposed by Anderson et al. in their ManTiCore design [1].

Security. In Sect. 4, we prove that COBRA is secure against chosen-plaintext
attacks (CPA) and against forgery up to approximately 2n/2 queries, where n is
the block length of the underlying cipher. Our result for privacy covers nonce-
repeating attackers. This contrasts sharply with GCM whose security collapses
once the nonce is repeated. Note that authenticity of COBRA requires nonce-
respecting attackers.
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Our new scheme requires no block cipher inverse and hence enjoys provable
security under the pseudo-random permutation (PRP) assumption about the
underlying block cipher. This is not the case for COPA, whose security proof
relies on a stronger assumption about the block cipher.

Our proof itself is simplified by decomposing COBRA into smaller parts
which are dealt with individually. The main idea here is to turn a call to the
block cipher into a call to a tweakable cipher which we instantiate with Rogaway’s
XE [27] construction. COBRA utilizes universal hashing (finite-field multiplica-
tion) and produces the tag using intermediate values of the Feistel networks.
These differences make COBRA’s proof slightly simpler than that of COPA.

Efficiency. The efficiency of COBRA is comparable to that GCM. That is, they
both perform one block cipher call plus one finite field multiplication per message
block in a parallelizable way.

As compared to COPA, COBRA saves the cost of implementing the inverse
of the underlying block cipher. COBRA performs potentially better than COPA
on platforms where the finite-field multiplication runs faster than the underlying
block cipher call. Such CPUs include Intel’s latest Haswell processor, where a
128-bit multiplication using the PCLMULQDQ instruction set runs faster than
one AES call even using the AES-NI instruction set, hence essentially faster than
any other block cipher implemented.

Attack on Previous Scheme. In the period between acceptance and publica-
tion of this paper, Nandi found an attack on the authenticity of the scheme using
a nonce-repeating adversary [25]. As a result we have reduced the security claim
of authenticity from being secure against nonce-repeating adversaries to being
secure against nonce-respecting adversaries and we have made a small adjustment
in the processing of the nonce to accomplish this security level: instead of multi-
plying the nonce with the message blocks, we use it in the block cipher call to
create the secret value L. This does not change the privacy proof and authenticity
is achieved for the same reason that authenticity is achieved in OTR.

2 Preliminaries

By ({0, 1}n)+ we denote the set of strings whose length is a positive multiple
of n bits. Given two strings A and B, we use A ‖ B and AB interchangeably
to denote the concatenation of A and B. For A ∈ {0, 1}∗, by A10∗ we denote
the string with a 1 appended, and then padded with zeros until its length is a
multiple of n. If X is a string with length a multiple of n, by X[i] we denote the
ith n-bit block of X. The length of a string X is denoted by |X|.

A block cipher E : K×{0, 1}n → {0, 1}n is a function that takes as input a key
k ∈ K and a plaintext M ∈ {0, 1}n, and produces a ciphertext C = E(k,M).
We sometimes write Ek(·) = E(k, ·). For a fixed key k, a block cipher is a
permutation on n bits.

We can view the set {0, 1}n of bit strings as the finite field GF(2n) consisting of
2n elements. To this end, we represent an element of GF(2n) as a polynomial over
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the field GF(2) of degree less than n, and a string an−1an−2 · · · a1a0 ∈ {0, 1}n

corresponds to the polynomial an−1xn−1 + an−2xn−2 + · · · + a1x+ a0 ∈ GF(2n).
The addition in the field is simply addition of polynomials over GF(2) (i.e., bitwise
XOR, denoted by ⊕). To define multiplication in the field, we fix an irreducible
polynomial f(x) of degree n over the field GF(2). For a(x), b(x) ∈ GF(2n), their
product is defined as a(x)b(x) mod f(x) — polynomial multiplication over the
field GF(2) reduced modulo f(x). We simply write a(x)b(x) and a(x) ·b(x) to mean
the product in the field GF(2n), and denote the multiplication by ⊗.

The set {0, 1}n can alternatively be regarded as a set of integers ranging
from 0 through 2n − 1, where a string an−1an−2 · · · a1a0 ∈ {0, 1}n corresponds
to the integer an−12n−1 +an−22n−2 + · · ·+a12+a0 ∈ [0, 2n −1]. Based on these
conversions, we often simply write elements of GF(2n) as integers. For example,
“2” means x and “3” means x + 1. When we write multiplications such as 2 · 3,
we mean those in the field GF(2n).

3 Specification

In this section we give the specification of our scheme COBRA. Here we define
COBRA for messages whose length is a positive multiple of 2n, where n denotes
the block length of the underlying block cipher. The case of fractional messages
is given in AppendixA.

Let E : K × {0, 1}n → {0, 1}n be an n-bit block cipher. COBRA consists of
two functionalities, an encryption function E and a decryption function D:

E : K × {0, 1}n−1 × {0, 1}∗ × ({0, 1}2n)+ → ({0, 1}2n)+ × {0, 1}n,

D : K × {0, 1}n−1 × {0, 1}∗ × ({0, 1}2n)+ × {0, 1}n → ({0, 1}2n)+ ∪ {⊥}.

The function E takes as input a key K, a nonce N , associated data A, and a
message M , and returns a ciphertext C and tag T : (C, T ) ← E(K,N,A,M). The
decryption function D also gets a ciphertext C and tag T in addition to a key,
nonce and associated data; it outputs M if the tag is correct and ⊥ otherwise,
which we denote as M/⊥ ← D(K,N,A,C, T ).

On input of a key K, nonce N , associated data A, and a message M padded
into n-bit blocks M [1]M [2] · · · M [2d] (resp., a ciphertext C = C[1]C[2] · · · C[2d]
and tag T ), the function E (resp., D) is defined in Fig. 1. Note that the functions
are sound: for any K,N,A,M we have M ← D(K,N,A, E(K,N,A,M)). For the
case the associated data A is of length at most 4n and the message is of length
at most 6n, the function E is depicted in Figs. 2 and 3.

4 Security

We briefly settle some notation for the security analysis in Sect. 4.1. In Sect. 4.2,
we introduce some preliminary results related to COBRA. Confidentiality of
COBRA is then proven in Sect. 4.3, and integrity in Sect. 4.4.
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COBRA-Encrypt E [E](N, A, M):

L ← Ek(N 1), Σ ← 0
τ ← 4L, V ← L
for i = 1, . . . , d do

V ← V ⊕ M [2i − 1]
C[2i − 1] ← V
V ← (V ⊗ L) ⊕ M [2i]
C[2i] ← V
ρ ← Ek(τ ⊕ C[2i])
Σ ← Σ ⊕ ρ
C[2i − 1] ← ρ ⊕ C[2i − 1]
σ ← Ek(τ ⊕ L ⊕ C[2i − 1])
Σ ← Σ ⊕ σ
C[2i] ← σ ⊕ C[2i]
if i < d then

V ← V ⊗ L
τ ← 2τ

end if
end for

U ←ProcessAD[E](A)
T ←ComputeTag[E](L, τ, Σ, N, U)
return (C, T )

COBRA-Decrypt D[E](N, A, C, T ):

L ← Ek(N 1), Σ ← 0
τ ← 4L, V ← L
for i = 1, . . . , d do

σ ← Ek(τ ⊕ L ⊕ C[2i − 1])
Σ ← Σ ⊕ σ
M [2i] ← σ ⊕ C[2i]
ρ ← Ek(τ ⊕ M [2i])
Σ ← Σ ⊕ ρ
V ← ρ ⊕ C[2i − 1]
M [2i − 1] ← V ⊕ V
V ← V ⊗ L
V ← M [2i]
M [2i] ← V ⊕ M [2i]
if i < d then

V ← V ⊗ L
τ ← 2τ

end if
end for

U ←ProcessAD[E](A)
T ←ComputeTag[E](L, τ, Σ, N, U)
return T = T ? M : ⊥

ProcessAD[E](A):

X ← A 10∗

J ← Ek(0)
U ← J
for i = 1, . . . , |X|/n − 1 do

U ← (U ⊕ X[i]) ⊗ J
end for
U ← Ek(2J ⊕ U ⊕ X[c])
return U

ComputeTag[E](L, τ, Σ, N, U):

τ ← 3(τ ⊕ L)
T ← Ek(τ ⊕ Σ)
τ ← 3τ
T ← Ek(τ ⊕ T ⊕ N ⊕ U)
return T

Fig. 1. COBRA.
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Fig. 2. Processing plaintext. Note that L′ is defined in Fig. 3 below.
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Fig. 3. Processing associated data (top), computing the tag (bottom left), and the
secret values (bottom right).

4.1 Notation

When writing x
$← X for some finite set X we mean that x is sampled uniformly

from X. We write Pr
[
A

∣∣ B]
to denote the probability of event A given B.

Say that M ∈ {0, 1}2n�. We write M [1]M [2] · · · M [2�] n←− M to denote the
blocks that make up M , and M̂ [1]M̂ [2] · · · M̂ [�] 2n←− M to denote the fragments
that make up M . Note that a fragment is made of two blocks: M̂ [i] = M [2i−1] ‖
M [2i].

For convenience, we use the notation

Δ
D

(f ; g) :=
∣∣Pr[Df = 1] − Pr[Dg = 1]

∣∣ (1)

to denote the distinguishing advantages of adversary D in distinguishing oracles
f and g, where the notation DO indicates the value output by D after interacting
with oracle O. The probabilities are defined over the random coins used in the
oracles and the random coins of the adversary, if any. If a class of distinguishers
is described by some parameters, e.g. the number of queries q, then by Δq(f ; g)
we denote the supremum of ΔD(f ; g) over all distinguishers D in this class of
adversaries. Multiple oracles are separated by a comma or given by a set, e.g.
Δ(f1, f2 ; g1, g2) or Δ({f1, f2} ; {g1, g2}) denotes distinguishing the combination
of f1 and f2 from the combination of g1 and g2.

A uniform random function (URF) from m bits to n bits is a uniformly
distributed random variable over the set of all functions from {0, 1}m to {0, 1}n.
A uniform random permutation (URP) on n bits is a uniformly distributed
random variable over the set of all permutations on n bits.
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Definition 1. Let E be a block cipher. Let π be a URP on n bits. The prp
advantage of a distinguisher D is defined as

Advprp
E (D) = Δ

D
(Ek ; π).

Here, D is a distinguisher with oracle access to either Ek or π. The probabilities
are taken over k

$← K, the randomness of π, and random coins of D, if any.
By Advprp

E (t, q) we denote the maximum advantage taken over all distinguishers
that run in time t and make q queries.

4.2 Preliminary Results

The input to each block cipher call in COBRA is first XORed with one of the
following masks:

{2J, 2iL, 2iL ⊕ L, 3(2iL ⊕ L), 32(2iL ⊕ L)}, (2)

where i ≥ 2, J := Ek(0) and L := Ek(1). As a result, each block cipher call can
be viewed as a call to an XE construction [27]. Note that by using the doubling
method from [27], we can produce many different values of the mask from the
secret values J and L. Specifically, we adopt the tweaks used in [24], allowing us
to replace each of the XEs with independent URFs.

Lemma 1 ([24,27]). Let T denote some set of indices such that τ → μτ maps all
indices to all tweaks injectively. The permutations {Ek(μτ ⊕·)}τ∈T are indistin-
guishable from independent URFs

{
ϕτ

}
τ∈T . Specifically, let D be a distinguisher

running in time t and making at most q queries, then

Δ
D

({Ek(μτ ⊕ ·)}τ∈T ; {ϕτ}τ∈T ) ≤ 5q2

2n
+ Advprp

E (D′),

where D′ is a distinguisher with running time similar to D, making 2q queries.

In Fig. 4 one can see a description of COBRA where the XE constructions are
replaced with URFs, where the URFs are labeled α (replacing the XE construc-
tion in ProcessAD), βN

i , γN
i for i ≥ 1 and all N (replacing them in COBRA-

Encrypt and COBRA-Decrypt), and δN
1 , δN

2 for all N (replacing them in
ComputeTag). Throughout, we will denote this scheme by E ′.

We can describe E ′ as a sequence of functions each computing one ciphertext
fragment, a function computing the tag, and a function processing the associated
data. More formally:

Definition 2. Say that E ′ maps (N,A,M) to (C, T ). Define fi : {0, 1}n ×
{0, 1}2ni → {0, 1}2n to be the function mapping (N, M̂ [1] · · · M̂ [i]) to Ĉ[i], h :
{0, 1}∗ → {0, 1}n the function mapping A to U (where U is as shown in Fig. 4),
and f ′ : {0, 1}n×{0, 1}∗×({0, 1}2n)+ → {0, 1}n the function mapping (N,A,M)
to T .

As a second step,we replace the associated data computationh in E ′ with aURFΩ:
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Lemma 2. Let Ω : {0, 1}∗ → {0, 1}n be a URF and let D be a distinguisher
making at most q queries each of length less than nl, then

Δ
D

(h ; Ω) ≤ lq2

2n
.

Proof. The URF α generates independent, uniformly distributed values as long
as its inputs are unique. The only issue is when two different A’s map to the same
input to α, which itself reduces to finding zeros of a polynomial in J of degree at
most l. Since J is an independent, uniformly distributed value generated using a
URP, and polynomials of degree l have at most l distinct zeroes, the probability
that a pair of plaintexts collides is l/2n. By allowing the adversary to make q
queries we get our desired bound. �
We define E to be E ′ with h replaced by Ω. In other words, E corresponds to
COBRA where (i) the XE constructions have been replaced with independent
URFs, and (ii) h has been replaced with Ω. Formally, we obtain the following
result for E.
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Fig. 4. Construction with independent URFs.

Proposition 1. Let (E ,D) denote COBRA and let D be a distinguisher making
at most q queries each of length less than 2n�, then

Δ
D

(Ek ; E) ≤ 5(2�q + 2q)2

2n
+

2�q2

2n
+ Advprp

E (D′),

where the probability is taken over k
$← K and the URFs in E, and D′ is a

distinguisher with running time similar to D, making 4�q + 4q queries.

Proof. We first apply Lemma 1, where we note that one query by D leads to at
most 2� + 2 block cipher calls, and then Lemma2 to get the desired result. �
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Using Proposition 1, we will prove confidentiality of COBRA in Sect. 4.3 and
integrity in Sect. 4.4. For the proof of confidentiality, we present an additional
elementary lemma:

Lemma 3. Say f1, g1 are random functions independent of each other, and that
f2, g2 are independent random functions as well. Let D be a distinguisher for
{f1, g1} and {f2, g2} making qf queries to the fi oracles and qg queries to the gi

oracle. Then there exist distinguishers Df and Dg such that

Δ
D

(f1, g1 ; f2, g2) ≤ Δ
Df

(f1 ; f2) + Δ
Dg

(g1 ; g2),

where Df makes qf queries and Dg makes qg queries.

4.3 Confidentiality

We adopt the definitions of security given in [3], yet rather than comparing our
scheme to a random variable over the set of all online permutations, we explicitly
describe an ideal online function in terms of URFs.

Definition 3 (Ideal Online Function). Let gi : {0, 1}n ×{0, 1}2ni → {0, 1}2n

be URFs and let g′ : {0, 1}n × {0, 1}∗ × ({0, 1}2n)+ → {0, 1}n be a URF. We
define $ : {0, 1}n × {0, 1}∗ × ({0, 1}2n)+ → ({0, 1}2n)+ × {0, 1}n as

$(N,A,M) = g1(N, M̂ [1]) ‖ g2(N, M̂ [1]M̂ [2]) ‖ · · · ‖ g�(N,M) ‖ g′(N,A,M)

where M̂ [1]M̂ [2] · · · M̂ [�] 2n←− M .

Definition 4 (IND-CPA). Let E be an encryption scheme. The IND-CPA
advantage of a distinguisher D relative to E is given by

Advcpa
E (D) := Δ

D
(Ek ; $),

where k
$← K and $ is as defined in Definition 3.

Theorem 1. Let E denote COBRA and let D be a distinguisher running in
time t and making at most q queries to E, each of length less than 2n�, then

Advcpa
E (D) ≤ 22(� + 1)2q2

2n
+ Advprp

E (D′),

where D′ is a distinguisher with running time similar to D, making 4�q + 4q
queries.

Proof. Let D be a distinguisher running in time t and making at most q queries
each of length less than 2n�. As a first step, we move from E to E, where the
underlying XE constructions are replaced by independent URFs, and h by Ω.
By Proposition 1:

Δ
D

(Ek ; E) ≤ 5(2�q + 2q)2

2n
+

2q2�

2n
+ Advprp

E (D′), (3)
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where D′ has running time similar to D and makes at most 4�q + 4q queries.
Next, note that the fi’s and f ′ (cf. Definition 2) are independent functions, as
their underlying URFs βN

i , γN
i , δN

i are independent functions. By Lemma 3:

Δ
D

(E ; $) ≤ Δ
Dt

(f ′ ; g′) +
�−1∑
i=1

Δ
Di

(fi ; gi). (4)

for some Dt that makes at most q queries of total length less than 2n� and Di

(for i ∈ {1, . . . , � − 1}) that makes at most q queries (of fixed length). A bound
on ΔDi

(fi ; gi) for arbitrary i is derived in Lemma 4. In Lemma 5 we compute a
bound on ΔDt

(f ′ ; g′). We find:

Δ
D

(E ; $) ≤ q2(2� + 3)
2n

+
�−1∑
i=1

q22(2i + 1)
2n

=
q2(2� + 3)

2n
+

q22(�2 − 1)
2n

. (5)

The proof is completed by simplifying the obtained bound. �
Lemma 4. Let Di be a distinguisher making at most q queries, then

Δ
Di

(fi ; gi) ≤ 2(2i + 1)q2

2n
.

Proof. The proof is similar to that of Lemma 2. We use that the inputs to the
URFs are polynomials of degree at most 2i+1, and that fi consists of two URFs
βN

i and γN
i . �

Lemma 5. Let Dt be a distinguisher making at most q queries each of length
less than 2n�, then

Δ
Dt

(f ′ ; g′) ≤ (2� + 3)q2

2n
.

Proof. Without loss of generality, we may assume that the distinguisher does
not make repeat queries. Say that {(N1, A1,M1), . . . , (Ni, Ai,Mi)} is the query
history. We consider what happens on query (N∗, A∗,M∗).

Let Ui := Ω(Ai) and let Σi denote input to δNi
1 (see Fig. 4). Let U∗ and Σ∗

be the corresponding values for (N∗, A∗,M∗). We compute the probability that

U∗ ⊕ δN∗
1 (Σ∗) ⊕ N∗ = Uj ⊕ δ

Nj

1 (Σj) ⊕ Nj (6)

for some j for which 1 ≤ j ≤ i.

1. If A∗ �= Aj then U∗ is independent of Uj ⊕ δ
Nj

1 (Σj) ⊕ δN∗
1 (Σ∗) ⊕ N∗ ⊕ Nj ,

hence the probability that Eq. (6) is satisfied is not more than 1/2n.
2. If A∗ = Aj , then U∗ = Uj and we focus on the probability that

δN∗
1 (Σ∗) ⊕ N∗ = δ

Nj

1 (Σj) ⊕ Nj . (7)
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(a) If M∗ = Mj , then Σ∗ = Σj and Eq. (7) reduces to δN∗
1 (Σ∗) ⊕ δ

Nj

1 (Σ∗) =
N∗ ⊕ Nj . Since we do not allow repeat queries N∗ �= Nj , and so this
occurs with probability 1/2n.

(b) Say that M∗ �= Mj , and let ρ∗ and ρj denote the output of the last call
to β made when processing M∗ and Mj , respectively. If ρ∗ and ρj are
independent, then Σ∗ = Σj with probability 1/2n. If Σ∗ �= Σj , then
δN∗
1 (Σ∗) and δ

Nj

1 (Σj) are independent (and also independent of N∗ and
Nj), hence the probability of Eq. (7) being true is upper bounded by 2/2n.
The probability that ρ∗ and ρj are not independent is upper bounded by
the probability of having a collision in the inputs to the last β call (and
only if M∗ and Mj are the same length), which is (2� + 1)/2n.

Putting our results together we get that

Pr(Eq. (6) holds) ≤ max
{

1
2n

,
2� + 1

2n
+

2
2n

}
=

2� + 3
2n

. (8)

This means that the probability that U∗ ⊕δN∗
1 (Σ∗)⊕N∗ collides with any of the

previous Uj ⊕δ
Nj

1 (Σj)⊕Nj is upper bounded by q(2�+3)
2n . As long as the input to

δ2 is unique, the tag produced is uniform and independent of all previous values,
hence f ′ remains indistinguishable from g′. Summing over all queries, we get the
desired bound. �

4.4 Integrity

Definition 5. Let E be an AE scheme. The integrity advantage of a distin-
guisher D relative to E is given by

Advint
E (D) := Δ

D
(Ek,Dk ; Ek,⊥),

where k
$← K and ⊥ is a function that responds with ⊥ on every query. We

assume that the distinguisher does not make queries of the form Dk(N,A,C, T ),
where (C, T ) = Ek(N,A,M) for some previously queried (N,A,M) and that it
does not query Ek twice under the same nonce.

Theorem 2. Let E denote COBRA and let D be a distinguisher running in time
t and making at most q queries to E and qf forgery attempts, each of length less
than 2n�, then

Advint
E (D) ≤ (3q + 1)qf

2n
+

22(� + 1)2q2

2n
+ Advprp

E (D′),

where D′ is a distinguisher with running time similar to D, making 4�q + 4q
queries.

Proof. As with the proof of confidentiality, we use Proposition 1 to switch to E.
We first focus on adversaries with one forgery attempt, with (N∗, A∗, C∗, T ∗)
being the attempt. Let {(N1, A1,M1), . . . , (Nq, Aq,Mq)} denote the history of
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queries made by the adversary to the encryption oracle, where (Ci, Ti) is the
output corresponding to (Ni, Ai,Mi) and each Ni is distinct. Let Ui := Ω(Ai),
U∗ := Ω(A∗), and let Σi denote the input to δNi

1 during the computation of
(Ni, Ai,Mi); define Σ∗ similarly. Note that

δNi
2

(
Ui ⊕ δNi

1 (Σi) ⊕ Ni

)
= Ti, (9)

and similarly for T ∗.
If

U∗ ⊕ δN∗
1 (Σ∗) ⊕ N∗ �= Ui ⊕ δNi

1 (Σi) ⊕ Ni (10)

for all i, then the input to δ2 is distinct from all previous inputs to δ2, hence the
output of δ2 from the forgery query is uniformly distributed and independent
of T ∗, which means that the forgery will be successful with probability at most
1/2n. Hence we focus on computing the probability that there is an i resulting
in a collision in the δ2 input.

Fix an i such that 1 ≤ i ≤ q. We compute the probability that

U∗ ⊕ δN∗
1 (Σ∗) ⊕ N∗ = Ui ⊕ δNi

1 (Σi) ⊕ Ni. (11)

1. If A∗ �= Ai, then U∗ is uniformly distributed and independent of Ui, hence
the probability that Eq. (11) is satisfied is bounded above by 1/2n.

2. If A∗ = Ai, then U∗ = Ui and we focus on the probability that

δN∗
1 (Σ∗) ⊕ N∗ = δNi

1 (Σi) ⊕ Ni. (12)

(a) If C∗ = Cj , Eq. (12) reduces to

δN∗
1 (Σ∗) ⊕ N∗ = δNi

1 (Σ∗) ⊕ Ni. (13)

Since A∗ = Aj , then either N∗ �= Ni, in which case we only get a successful
forgery with probability 1/2n, or N∗ = Nj and T ∗ �= Tj , in which case
we get a failed forgery attempt as well.

(b) Say that C∗ �= Cj , and that they differ at the mth fragment, i.e. Ĉ∗[m] �=
Ĉj [m]. We also assume that N∗ = Nj , because if N∗ �= Nj then the tags
are independent of each other since they are produced by independent
URFs δN∗

2 and δ
Nj

2 .
Since N∗ = Nj , and Nj does not equal any of the other Ni, Σ∗ is indepen-
dent of all Σi for i �= j. If C∗[2m−1] = Cj [2m−1], then C∗[2m] �= Cj [2m],
hence the inputs to βN∗

m for C∗ and Cj are different. This means that
Σ∗ = Σj with probability at most 1/2n, hence δ1(Σ∗) = δ1(Σj) with
probability at most 2/2n. If δN∗

1 (Σ∗) �= δ
Nj

1 (Σj), then Eq. (12) is satis-
fied with probability at most 1/2n since N∗ and Ni are independent of
the outputs of δ1. If C∗[2m − 1] �= Cj [2m − 1], we can apply the same
reasoning.
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Putting the above results together, we get that the probability of Eq. (11) being
satisfied is bounded above by 3/2n. Hence, the probability that there exists an
i satisfying (11) is bounded above by 3q/2n. The probability that the forgery is
successful is thus bounded above by 3q/2n + 1/2n.

Generalizing to adversaries which can make up to qf forgery queries as
explained in Andreeva et al. [4], we have our desired bound. �

5 Future Work

We shall implement COBRA and compare its software performance with GCM
and COPA. It is interesting to see how much of an overhead COBRA actually
has over GCM on a specific platform, possibly due to the Feistel network, larger
state, extra mask generation, and the reverse order of multplication and block
cipher call.
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A COBRA for Arbitrary-Length Messages

We use ciphertext stealing [31] in order to deal with messages of arbitrary length.
Let M be a message where M [1]M [2] · · · M [2� − 1]M [2�] = M and |M [i]| = n
for 1 ≤ i < 2� − 1.

A.1 � > 1, |M [2� − 1]| = n, and 0 < |M [2�]| < n

We start by computing the ciphertext of M [1] · · · M [2� − 2] as is usually done
in COBRA, resulting in C[1] · · · C[2� − 2]. Let M∗ denote the rightmost |M [2�]|
bits of C[2� − 2], and we write C[2� − 2] = C ′[2� − 2]M∗. Then we compute the
final ciphertext fragment C[2� − 1]C[2�] using M [2� − 1]M [2�]M∗ as our “new”
final message fragment, using different tweaks for the final block cipher calls.
The resulting ciphertext is

C[1] · · · C[2� − 3]C ′[2� − 2]C[2� − 1]C[2�]. (A.1)

https://groups.google.com/d/msg/crypto-competitions/nhqcgEThcPc/ryvKY7lfMhMJ
https://groups.google.com/d/msg/crypto-competitions/nhqcgEThcPc/ryvKY7lfMhMJ
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Fig. 5. Messages where the last block is not of full length, i.e. 0 < |M [2�]| < n. Here
M∗ is “stolen” from ciphertext block C[2� − 2] and used in the input to the final
fragment.

Fig. 5 shows a diagram of the process. Note that we can recover M∗ with just
knowledge of C[2� − 1] and C[2�]:

M [2�]M∗ =
[
C[2�] ⊕ Ek,τ2(C[2� − 1])

]
⊕

([
Ek,τ1

(
C[2�] ⊕ Ek,τ2(C[2� − 1])

) ⊕ C[2� − 1]
]

⊗ L
)

,

where Ek,τ1(x) := Ek(x ⊕ 7 · 2�L′) and Ek,τ2(x) := Ek(x ⊕ 7 · (2�L′ ⊕ L)).

A.2 � > 2 and 0 < |M [2� − 1]| ≤ n

When there is no last block M [2�], we replace it with the preceding ciphertext
block, C[2� − 2]. Then we steal ciphertext M∗ of length |M [2� − 1]| from the
ciphertext block C[2� − 4] such that C[2� − 4] = C ′[2� − 4]M∗. The rest of the
computation is similar to the previous case (Sect. A.1) and is depicted in Fig. 6.

A.3 |M | ≤ 3n

The above methods only work for messages of length greater than 3n (otherwise
there is no ciphertext to steal from). We need to use different techniques in
order to deal with shortest messages. For 2n < |M | ≤ 3n we can use a technique
similar as to what is used in COPA [3]. Instead of using XLS [26] which uses
the inverse block cipher, we can use HCH [11] in order to compute the output
as follows:

C[1]C[2]T ′ ← E(M [1]M [2]) (A.2)
C[3]T ← HCH(M [3]T ′), (A.3)

where E denotes COBRA and the final output of the scheme is C[1]C[2]C[3]T .
For n < |M | < 2n we can use the tag-splitting method: we first compute

C[1]C[2]T ← E(M [1]M [2]10∗), (A.4)
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Fig. 6. Messages where the last fragment is of length less than or equal to n, i.e.
0 < |M [2�− 1]| ≤ n. Here M∗ is stolen from ciphertext block C[2�− 4] and used in the
input to the final fragment together with ciphertext fragment C[2� − 2].

then remove part of the tag so that the length of the output is equal to the
length of the input. Here, again, E is COBRA, except different tweaks must be
used from the case in which |M | = 2n.
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Abstract. Correct authenticated decryption requires the receiver to
buffer the decrypted message until the authenticity check has been per-
formed. In high-speed networks, which must handle large message frames
at low latency, this behavior becomes practically infeasible. This paper
proposes CCA-secure on-line ciphers as a practical alternative to AE
schemes since the former provide some defense against malicious mes-
sage modifications. Unfortunately, all published on-line ciphers so far
are either inherently sequential, or lack a CCA-security proof.

This paper introduces POE, a family of on-line ciphers that combines
provable security against chosen-ciphertext attacks with pipelineability
to support efficient implementations. POE combines a block cipher and
an ε-AXU family of hash functions. Different instantiations of POE are
given, based on different universal hash functions and suitable for differ-
ent platforms. Moreover, this paper introduces POET, a provably secure
on-line AE scheme, which inherits pipelineability and chosen-ciphertext-
security from POE and provides additional resistance against nonce-
misuse attacks.

Keywords: On-line cipher · Chosen-ciphertext security · Authenticated
encryption

1 Introduction

Authenticated Encryption (AE) schemes (such as EAX [8], GCM [31], OCB [28],
etc.) perform an authentication check on the entire ciphertext before they out-
put a decrypted message. This practice is inherent in the idea of authenticated
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encryption and part of its strength. However, it is incompatible with settings
that pose demanding performance requirements (e.g., high speed, low latency,
long messages).

One example for such settings are Optical Transport Networks (OTNs) [24],
in which the links between multiple network channels must be capable of trans-
mitting, multiplexing, and switching between immense data streams in a fast
and secure manner. OTNs are characterized by high throughput rates of up
to 100 Gbps, low latencies in the order of a few clock cycles, and large message
frames of up to 64 kB. At that size, a mode of operation of a 128-bit block cipher
would require over 4,096 clock cycles to complete a decryption—which exceeds
the allowed latency in OTN systems by far.

In such uses of AE, implementations have to pass along (part of) a decrypted
message before validating its authenticity; if the message later turns out to be
invalid, this fact will be discovered and reported, but only after some infor-
mation has been leaked. The literature calls this practice decryption misuse
[19], and describes severe vulnerabilities for conventional AE schemes. A chosen-
ciphertext adversary can exploit it to determine unknown plaintexts, or to intro-
duce forged message fragments that may get passed to the application and are
processed before the authentication check is completed. As a consequence, com-
mon existing AE schemes do not suit well in this environment. To overcome
this issue, this work considers authenticated encryption schemes that provide
robustness against decryption misuse through on-line chosen-ciphertext security
(OPRP-CCA) [5]. Implementations of AE schemes that allow decryption mis-
use abound, even when latency is not a consideration. For example, many soft-
ware libraries provide access to encryption and decryption operations through a
stream-oriented interface that consists of functions for initialization, updating,
and finalization. In these interfaces the decrypt-update function can be called
multiple times.1 Every invocation of this function performs decryption misuse,
because it releases the would-be plaintext before completing the authentication
check. This type of interface is incompatible with existing authenticated encryp-
tion schemes. But its use is widespread, well-established and will not easily go
away.

Decryption-MisuseResistance.An encryption scheme is called non-malleable
if any change to a ciphertext causes its entire post-decryption plaintext to
be pseudorandom [18]. We call such a scheme decryption-misuse-resistant since
the decryption of manipulated ciphertext results in uncontrollable random noise.
Unfortunately, non-malleability and on-line encryption are mutually exclusive:
if an adversary manipulates the i-th block of a ciphertext, an on-line encryption
scheme leaves the previous (i− 1) blocks unchanged. But OPRP-CCA-security is
the strongest form of non-malleability and decryption-misuse resistance an on-
line cipher can provide: if an adversary manipulates the i-th block, all plaintext
blocks starting from the i-th one will become pseudorandom.

The concept of decryption-misuse-resistant AE schemes is controversial. Dur-
ing the Dagstuhl Seminar on Symmetric Cryptography in January 2014 some
1 For example, see the OpenSSL EVP DecryptUpdate function [44].
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researchers were worried about the risk of advertising decryption-misuse resis-
tance as a feature for AE schemes since it could invite application programmers
to improperly implement authenticated decryption. Of course, misuse must be
avoided where possible, e.g., by user education. Nevertheless, decryption misuse is
common in practice,2 as our example of OTNs illustrates. The choice for the cryp-
tograph is to either deal with decryption misuse, or to abandon AE completely.

Support for Intermediate Tags. Beyond limiting the harm of decryption
misuse OPRP-CCA-secure on-line ciphers allow another desirable feature: Inter-
mediate tags [9] allow the receiver to early detect if parts of a decrypted message
are invalid—which is handy when authenticating large messages. They can be
integrated easily into an OPRP-CCA-secure on-line cipher by adding some form
of well-formed redundancy (e.g., fixed constants or non- cryptographic check-
sums) to the plaintexts. For example, the headers of IP, TCP, or UDP [36–38]
packets already contain a 16-bit checksum each, which is verified by the receiver
and/or network routers. In OTNs, a single 64-kB message frame consists of mul-
tiple IP packets. Due to the low-latency constraints, receiving routers cannot
buffer incoming messages until the authentication check has finished and must
forward the first packets to their destination. However, they can test the packets’
checksums to detect forgery attempts early. Hence, OPRP-CCA-security ensures
that false TCP/IP packets only pass with probability of at most 2−16.

Previous Work and Contributions. An ideal on-line cipher should be both
IND-CCA-secure and non- sequential, i.e., parallelizable or pipelineable.3 Already
in 1978 Campbell published an early on-line cipher, called Infinite Garble Exten-
sion (IGE), which is far from complying with current security goals. In 2000 Knud-
sen [26] proposed his Accumulated Block Chaining (ABC) mode. In their landmark
paper from 2001 Bellare et al. [5] coined the term of and security notions for on-line
ciphers, and presented two instances, HCBC-1 and HCBC-2, based on the combi-
nation of a block cipher and a keyed hash function. Both constructions are inheritly
sequential—HCBC-2 was slightly slower than HCBC-1, but provided additional
IND-CCA-security. In 2002 Rivest, Liskov and Wagner [29,30] presented a non-
sequential, tweakable on-line cipher, called TIE. However, TIE could not provide
CCA-security due to a counter-based tweak input. In 2003 Halevi and Rogaway [22]
proposed theEME approach (encryption-mix-encryption),which has inspired sev-
eral on-line cipher designs since then. EME is a symmetric design concept that con-
sists of five layers: an initial whitening step, an ECB layer, a linear mixing, a second
ECB layer, and a final whitening. In 2004 Boldyrea and Taseombut [11] proposed
security notions for on-line authenthentication ciphers, and the HPCBC mode as
an instantiation. In 2007 and 2008Nandi proposed further on-line ciphers similar to
that of Bellare et al. [32,33]. In the same year the IEEE standardized the XTS [23]

2 As is nonce misuse: considering security under nonce-misuse has been a novelty a few
years ago [40], but has become an established design goal nowadays.

3 We call an operation f pipelineable if it can be split into multiple parts f = f2 ◦ f1,
s.t. f1 can process the (i + 1)-th input block before f2 has finished processing the i-th
block.
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Table 1. Classification of on-line encryption schemes.

Sequential Non-sequential

CCA-insecure ABC [26], CBC [34],
CFB [34], HCBC-1 [5],
IGE [12], OFB [34],
TC [30], TC1 [41]

COPE [3], CTR [17],
ECB [34], TIE [30],
XTS [23]

CCA-secure APE(X) [4], CMC [21],
HCBC-2 [5], MCBC [33],
McOE [19], MHCBC [33],
TC2/3 [41]

POE

mode of operation for disk encryption; however, which also lacked CCA-security.
In 2011 Rogaway and Zhang [41] described methods to construct secure on-line
ciphers from tweakable block ciphers. However, it is easy to see that all mentioned
schemes until here are either inherently sequential or CCA-insecure. Table 1 shows
a summarized classification.

Contribution.This paper introduces the Pipelineable On-line Encryption (POE,
hereafter) family of on-line ciphers, which consists of an ECB layer that is wrapped
by two chaining layers of a keyed family of ε-AXU hash functions. The result-
ing construction is provably IND-CCA-secure and pipelineable, i.e., POE allows to
process neighboring input blocks efficiently. To address different platforms, this
work proposes three instantiations of POE, based on the AES as cipher and dif-
ferent families of universal hash functions. Furthermore, we show that POE can be
easily transformed into an OPRP-CCA-secure, robust on-line AE (OAE) scheme,
called Pipelineable On-line Encryption with Tag (POET hereafter), using well-
studied methods from [19].

Recent Related Work. To the best of our knowledge, only four nonce-misuse-
resistant OAE schemes were published prior to this work:4 (1) McOE [19],
(2) APE(X) [4], (3) COPA [3], and (4) ELmE [15].McOE is a TC3-like design that
was introduced at FSE 2012, and pioneered nonce-misuse resistance as a consid-
erable feature for OAE schemes; APE(X), COPA, and ELmE are recent designs,
where APE(X) bases on the Sponge, and COPA as well as ELmE on the EME
design. McOE and APE(X) provide OPRP-CCA-security, but work inherently
sequential, COPA and ELmE are parallelizable, and may outperform POET when
running on high- end hardware or multi-core systems. However, the EME structure
implies that both require two block-cipher calls for each message block, whereas
POE and POET employ only a single cipher and two hash-function calls. Hence,
we expect POET to perform better than EME-based designs on medium- and low-
end systems with few cores and no native AES instructions. Moreover, we illus-
trate in Appendix A that EME- based designs lose the OPRP-CCA-security in the

4 Regarding the state before the CAESAR submission deadline. The research inspired by
the CAESAR competition brought multiple further constructions that can be added
to this list, including but not limited to COBRA, ELmD, or AEZ.
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decryption-misuse setting, which disqualifies COPA and ELmE for the OTN appli-
cation scenario. More generally, Datta and Nandi [16] showed recently that EME
constructions with linear mixing can not provide IND-CCA-security. Therefore,
POET represents the first non-sequential OAE scheme with resistance against both
nonce and decryption misuse.

Outline. The remainder of this work is structured as follows. Section 2 recalls
the preliminary information about universal hash functions, on-line ciphers, and
AE schemes that is necessary for this work. In Sect. 3, we propose the POE fam-
ily of on-line ciphers and prove its security against chosen-plaintext and chosen-
ciphertext attacks. Thereupon, Sect. 4, introduces POET, and provides a proof for
the security against chosen-ciphertext attacks. Section 5 proposes three practical
instantiations for POE and POET. Finally, we draw a conclusion in Sect. 6.

2 Preliminaries

This section revisits the well- known definitions of universal hash-function fami-
lies from Carter and Wegman [13,43], as well as notions for on-line ciphers from
Bellare et al. [5,6]. Prior, Table 2 summarizes the general notions.

2.1 Notions for Universal Hash Functions

Definition 1 (ε-Almost-(XOR-)Universal Hash Functions). Let m,n ≥ 1
be integers. Let H = {H : {0, 1}m → {0, 1}n} be a family of hash functions.
We call H ε-almost-universal (ε-AU) if for all X,X ′ ∈ {0, 1}m, X �= X ′:

Pr
H

[H $←− H : H(X) = H(X ′)] ≤ ε.

Table 2. Notions used throughout this paper.

N Nonce (initial value)

M Plaintext message

C Ciphertext

K User-given secret key

|X| Length of X in bits

n Block length in bits

k Key length in bits

Xi i-th block of a value X

X || Y Concatenation of two values X and Y

X Set X

X
$←− X X is a uniformly at random chosen sample from X .



210 F. Abed et al.

We call H ε-almost-XOR-universal (ε-AXU) if for all X,X ′ ∈ {0, 1}m, Y ∈
{0, 1}n, X �= X ′:

Pr
H

[H $←− H : H(X) ⊕ H(X ′) = Y ] ≤ ε.

Boesgaard et al. [10] showed that an ε-AXU family of hash functions can be reduced
to a family of ε-AU hash functions by the following theorem:

Theorem 1 (Theorem 3 from [10]). Let m,n ≥ 1 be integers. Let H = {H :
{0, 1}m → {0, 1}n} be a family of ε-AXU hash functions. Then, the familiy H′ =
{H ′ : {0, 1}m × {0, 1}n → {0, 1}n} with H ′(X,Y ) = H(X) ⊕ Y is ε-AU.

2.2 Notions for On-line Ciphers

BlockCiphers.A block cipher is a keyed family of n-bit permutations E:{0, 1}k×
{0, 1}n → {0, 1}n which takes a k-bit key K and an n-bit message M and outputs
an n-bit ciphertext C. We define Block(k, n) as the set of all (k, n)-bit block ciphers
for n > 0. For any E ∈ Block(k, n) and a fixed key K ∈ {0, 1}k, the encryption of a
message M is defined by EK(M), and the decryption is defined as the inverse func-
tion, i.e., E−1

K (M). For any key K ∈ {0, 1}k, it applies that E−1
K (EK(M)) = M .

Definition 2 (On-line Cipher). Let k, n ≥ 1 be integers and let Γ : {0, 1}k ×
({0, 1}n)∗ → ({0, 1}n)∗ be a keyed family of n-bit permutations which takes a k-
bit key K and a message M of an arbitrary number of n-bit blocks, and outputs a
ciphertext C consisting of the same number of n-bit blocks as M . We call Γ an on-
line cipher iff the encryption of message block Mi, for all i ∈ [1, |M |/n], depends
only on the blocks M1, . . . , Mi.

A secure cipher should behave like a random permutation. It is easy to see that
on-line ciphers cannot guarantee this property since the encryption of message
block Mi does not depend onMi+1. The on-line behavior implies that two messages
M,M ′ that share an m-block common prefix are always encrypted to two cipher-
texts C,C ′ that also share an m-block common prefix. Hence, an on-line cipher Γ
is called secure iff no ciphertext reveals any further information about a plaintext
than its length and the longest common prefix with previous messages. For a formal
definition of the longest common prefix of two messages, we refer to [19].

Definition 3 (On-line Permutation). Let i, j, �, n ≥ 1 be integers. Let Fi :
({0, 1}n)i → {0, 1}n be a family of indexed n-bit permutations, i.e., for a fixed
index j ∈ ({0, 1}n)i−1 it applies that Fi(j, ·) is a permutation. We define an n-bit
on-line permutation P : ({0, 1}n)� → ({0, 1}n)� as a composition of � permutations
F1 ∪ F2 ∪ . . . ∪ F�. An �-block message M = (M1, . . . , M�) is mapped to an �-block
output C = (C1, . . . , C�) by

Ci = Fi(M1 || . . . || Mi−1,Mi), ∀i ∈ [1, �].
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Remark 1. For any two �-block inputs M,M ′, with M �= M ′, that share an exactly
m-block common prefix M1 || . . . || Mm, the corresponding outputs C = P (M),
C ′ = P (M ′) satisfy Ci = C ′

i for all i ∈ [1,m] and m ≤ �. However, it applies that
Cm+1 �= C ′

m+1, and all further blocks Ci, C
′
i, with i ∈ [m + 2, �], are likely to be

different.

In the following, we denote by OPermn the set of all n-bit on-line permutations.
Furthermore, we denote by P

$←− OPermn that P is chosen as a random on-line
permutation. Note that a random on-line permutation can be efficiently imple-
mented by lazy-sampling.

On-line Authenticated Encryption Scheme (With Associated Data).
An authenticated encryption scheme is a triple Π = (K, E ,D). K denotes a
key-generation procedure that returns a randomly chosen key K; the encryption
algorithm EK(H,M) and its inverse decryption algorithm DK(H,C, T ) are deter-
ministic algorithms, where H denotes the header, M the message, T the authen-
tication tag, and C the ciphertext, with H,M,C ∈ ({0, 1}n)∗ and T ∈ {0, 1}n.
We define that the final header block is a nonce. E always outputs a ciphertext C,
and D outputs either the plaintext M that corresponds to C, or ⊥ if the authen-
tication tag T is invalid. Note that we call an authenticated encryption scheme
Π = (K, E ,D) on-line if E is an on-line cipher and D is its inverse operation.

3 The On-line Cipher POE

This section introduces the POE family of on-line ciphers and shows that it is
secure against chosen-plaintext and chosen-ciphertext attacks.

3.1 Definition of POE

Definition 4 (POE). Let k, n ≥ 1 be integers, E: {0, 1}k × {0, 1}n → {0, 1}n a
block cipher, and F : {0, 1}k × {0, 1}n → {0, 1}n a family of keyed ε-AXU hash
functions. Furthermore, let Fi : {0, 1}ni → {0, 1}n be iε-AXU family of hash func-
tions defined as follows:

F0 = F (1); Fi(M) = F (Fi−1(M1, . . . , Mi−1) ⊕ Mi) i ∈ N
+.

Let K,K1,K2 ∈ {0, 1}k denote three pair-wise independent keys. Then, we define
the encryption of POE and its inverse as shown in Algorithm1.

A schematic illustration of the encryption algorithm is given in Fig. 1.

3.2 Security Notions for On-line Ciphers

The IND-SPRP-security of a block cipher E is defined by the success probability of
an adversary A to distinguish the output of E,E−1 from that of an n-bit random
permutation π.
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Fig. 1. The encryption process for an m-block message M with POE.

Algorithm 1. Procedures Encrypt and Decrypt for POE.
Encrypt(M)
1: m ← |M |/n, X0 ← 1, Y0 ← 1
2: for i = 1, . . . , m do
3: Xi ← FK1(Xi−1) ⊕ Mi

4: Yi ← EK(Xi)
5: Ci ← FK2(Yi−1) ⊕ Yi

6: end for
7: return (C1 || . . . || Cm)

Decrypt(C)
11: m ← |C|/n, X0 ← 1, Y0 ← 1
12: for i = 1, . . . , m do
13: Yi ← FK2(Yi−1) ⊕ Ci

14: Xi ← E−1
K (Yi)

15: Mi ← FK1(Xi−1) ⊕ Xi

16: end for
17: return (M1 || . . . || Mm)

Definition 5 (IND-SPRP-Security). LetE ∈ Block(k, n) denote a block cipher
and E−1 its inverse. Let Permn be the set of all n-bit permutations. The IND-SPRP
advantage of A against E is then defined by

AdvIND-SPRP
E,E−1 (A) ≤

∣∣∣Pr
[
AE(·),E−1(·) ⇒ 1

]
− Pr

[
Aπ(·),π−1(·) ⇒ 1

]∣∣∣,

where the probabilities are taken over K
$←− {0, 1}k and π

$←− Permn. We define
AdvIND-SPRP

E,E−1 (q, t) as the maximum advantage over all IND-SPRP-adversaries A
on E that run in time at most t and make at most q queries to the available oracles.

We borrow theOPRP-CCA notion from Bellare et al. [5,6]. TheOPRP-CCA-security
specifies the maximal advantage of an adversary A with access to an encryption
and decryption oracle to distinguish the outputs of a on-line cipher Γ under a ran-
domly chosen key K from that of a random permutation.

Definition 6 (OPRP-CCA-Security). Let K a k-bit key, P a random on-line
permutation, and Γ : {0, 1}k × ({0, 1}n)∗ → ({0, 1}n)∗ be an on-line cipher. Then,
we define the OPRP-CCA-advantage of an adversary A by

AdvOPRP-CCA
Γ (A) =

∣∣∣Pr
[
AΓK(·),Γ−1

K (·) ⇒ 1
]

− Pr
[
AP (·),P−1(·) ⇒ 1

]∣∣∣ , (1)
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where the probabilities are taken over K
$←− K and P

$←− OPermn. Further, we define
AdvOPRP-CCA

Γ (q, �, t) as the maximum advantage over all adversaries A that run in
time at most t, and make at most q queries of total length of at most � blocks to the
available oracles.

Bellare and Namprempre showed in [7] that IND-CCA-security implies non-
malleable chosen-ciphertext-security (NM-CCA). Hence, OPRP-CCA implies weak
non-malleability, i.e., an adversary that manipulates the i-th ciphertext block can-
not distinguish the (i + 1)-th, (i + 2)-th,. . . ciphertext blocks of Γ from random.

3.3 OPRP-CCA-Security of POE

Theorem 2. Let E: {0, 1}k × {0, 1}n → {0, 1}n be a block cipher and E−1 its

inverse operation. Let π
$←− Permn denote an n-bit random permutation that was

chosen uniformly from random, and let π−1 denote its inverse. Then, it holds that

AdvOPRP-CCA
POEE,E−1

(q, �, t) ≤ �2ε +
�2

2n − �
+ AdvIND-SPRP

E,E−1 (�,O(t)). (2)

Proof. Let A be an OPRP-CCA-adversary with access to an oracle O, which
responds either with real encryption/decryptions using POEEK ,E−1

K
or a random

on-line permutation P , as given in Definition 6. We say that A collects its queries
and the corresponding oracle response as tuples (M,C) in a query history Q.
Wlog., we assume that A will not make queries to which it already knows the
answer.

It is easy to see that we can rewrite Eq. (1) as (cf. [19], Sect. 4):

AdvOPRP-CCA
POEE,E−1

(A) ≤
∣∣∣Pr

[
APOEE ,POE−1

E−1 ⇒ 1
]

− Pr
[
APOEπ,POE−1

π−1 ⇒ 1
]∣∣∣ (3)

+
∣∣∣Pr

[
APOEπ,POE−1

π−1 ⇒ 1
]

− Pr
[
AP (·),P−1(·) ⇒ 1

]∣∣∣. (4)

It is easy to see that Eq. (3) can be upper bounded by

AdvIND-SPRP
E,E−1 (�,O(t)).

It remains to study the difference in (4), which refers to the advantage of A
to distinguish POE instantiated with an n-bit random permutation π from P . We
can identify two cases from the structure of POE: (1) collisions between internal
values of POE occur (COLL), or (2) no collisions occur (NOCOLL). From the law
of total probability follows that we can rewrite (4) as

∣∣∣Pr
[
APOEπ,POE−1

π−1 ⇒ 1
]

− Pr
[
AP (·),P−1(·) ⇒ 1

]∣∣∣
≤ Pr [COLL] · Pr [COLLWIN] + Pr [¬COLL] · Pr [NOCOLLWIN] ,

with

Pr [COLLWIN] =
∣∣∣Pr

[
APOEπ,POE−1

π−1 ⇒ 1 |COLL
]

− Pr
[
AP (·),P−1(·) ⇒ 1

]∣∣∣,
Pr [NOCOLLWIN]=

∣∣∣Pr
[
APOEπ,POE−1

π−1 ⇒ 1 | ¬COLL
]
−Pr

[
AP (·),P−1(·) ⇒ 1

]∣∣∣.
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For the sake of simplicity, we upper bound Pr [COLLWIN] and Pr [¬COLL] by 1.
Thus, we only have to look at Pr [COLL] and Pr [NOCOLLWIN].

Case 1: COLL. In this case, A tries to distinguish POE from random by exploit-
ing some collision between internal values. Since π is a random permutation, any
fresh (i.e., not previously queried) input to π(·) or π−1(·) produces a random out-
put and therefore:

1. For any fresh Xi, the result of π(Xi) ⊕ FK2(Yi−1) will be random.
2. For any fresh Yi, the result of π−1(Yi) ⊕ FK1(Xi−1) will be random.

We obtain two possible subcases: a collision between internal values in the top
row occurred (COLLtop), or a collision between in internal values in the bottom
row occurred (COLLbot). COLL then represents the event that either (or both)
subcases occurred.

COLL = COLLtop ∨ COLLbot.

Subcase 1.1: COLLtop. By an internal collision in the top row, we refer to the
event that Xi = X ′

j for two distinct tuples (Xi−1,Mi) and (X ′
j−1,M

′
j), with

i, j ≥ 1:

Xi = FK1(Xi−1) ⊕ Mi, and X ′
j = FK1(X

′
j−1) ⊕ M ′

j .

Since F is an ε-AXU family of hash functions, the family F ′ of hash functions

F ′
K1

(Xi−1,Mi) := FK1(Xi−1) ⊕ Mi

is ε-AU (cf. Theorem 1). Thus, the probability of a top-row collision for at most �
queried message blocks can be upper bounded by

Pr [COLLtop] =
�(� − 1)

2
· ε ≤ �2

2
ε.

Subcase 1.2: COLLbot. We define a bottom-row collision as the event that two
distinct tuples (Yi−1, Ci) and (Y ′

j−1, C
′
j) produce the same values Yi = Y ′

j , with

Yi = FK2(Yi−1) ⊕ EK(Xi), and Y ′
j = FK2(Y

′
j−1) ⊕ EK(X ′

j).

Due to the symmetric structure of POE, the analysis for bottom-row collisions is
similar to that of top-row collisions. Thus, the probability for this event can also
be upper bounded by

Pr [COLLbot] =
�(� − 1)

2
· ε ≤ �2

2
ε.

Hence, we can upper bound Pr [COLL] ≤ Pr [COLLtop] + Pr [COLLtop] ≤ �2ε.

Case 2: NOCOLLWIN. Next, we regard the case that A shall distinguish
(POEπ,POE−1

π−1) from (P (·), P−1(·))whenno internal collisions occur.We can gen-
eralize that each pair of tuples (M,C), (M ′, C ′) ∈ Q shares a common prefix of 0
to min(|M |, |M ′|)/n blocks. Wlog., say that the pair M,M ′ ∈ Q shares an i-block
common prefix, i.e., Mj = M ′

j , ∀j ∈ [1, i], and Mi+1 �= M ′
i+1. In the following,
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we study the difference in the behavior of POE and P for three subcases: (2.1) for
the message blocks in the common prefix, M1, . . . , Mi, (2.2) for the (i+1)-th block,
or (2.3) for the message blocks after the (i + 1)-th one.

Subcase 2.1: Common Prefix. Since an OPERM is deterministic, input and
output behaviors of (POEπ,POE−1

π−1) and (P ·, P−1(·)) are identical for the com-
mon prefix. Hence, the advantage for A in this subcase is 0.

Subcase 2.2: Directly After the CommonPrefix. Since Mj = M ′
j , ∀j ∈ [1, i],

it must hold in the real case that Yi = Y ′
i and Xi = X ′

i. From Mi+1 �= M ′
i+1 follows

Ci+1 = π(FK1(Xi)⊕Mi+1)⊕FK2(Yi) �= π(FK1(X
′
i)⊕M ′

i+1)⊕FK2(Y
′
i ) = C ′

i+1.

Since π is a random permutation, Ci+1, C ′
i+1 are chosen uniformly at ran-

dom in the real case. In the random case P is used with two different prefixes
M1 || . . . || Mi+1 and M ′

1 || . . . || M ′
i+1. Since P is an OPERM, Ci+1 �= C ′

i+1 also
must hold in this case. Hence, the advantage for A in this subcase is also 0.

Subcase 2.3: After the (i + 1)-th Message Block. In the random case, each
query output is chosen uniformly at random from {0, 1}n. However, in the real
world each output of either an encryption or a decryption query is chosen uni-
formly at random from the set {0, 1}n \ Q. This means that in the real case POE
loses randomness with every query. We can upper bound the success probability
of an adversar to distinguish POE from a random OPERM by

�2

2n − �
.

Our claim in Eq. (2) follows from summing up the individual terms. ��

4 The On-line AE Scheme POET

For McOE, Fleischmann et al. [19] showed that an OPRP-CCA-secure on-line
cipher can be easily transformed into an on-line AEAD scheme that is resistant
against nonce and decryption misuse. This section shows how to apply their app-
roach to transform POE into a nonce- misuse-resistant AE scheme for messages
whose lengths are a multiple of the block length.

4.1 Definition of POET

Definition 7 (POET). Let k, n ≥ 1 be integers. Let POET = (K, E ,D) be an AE
scheme, E: {0, 1}k × {0, 1}∗ → {0, 1}∗ a block cipher, and F: {0, 1}n × {0, 1}n →
{0, 1}n a family of keyed ε-AXU hash functions. Furthermore, let Fi: {0, 1}ni →
{0, 1}n be iε-AXU family of hash functions defined as follows:

F0 = F (1); Fi(M) = F (Fi−1(M1, . . . , Mi−1) ⊕ Mi) i ∈ N
+.

Let H be the header (including the nonce as its final block), M the message, T
the authentication tag, and C the ciphertext, with H,M,C ∈ ({0, 1}n)∗ and T ∈
{0, 1}n. Then, we define encryption and decryption algorithms of POET as shown
in Algorithm 2.
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Algorithm 2. Procedures Encrypt and Decrypt for POET.
Encrypt(H, M)

101: X0 ← Y0 ← 1, m ← |M|
n

h ← |H|
n

102: for i ← 1, . . . , h do
103: Xi ← FK1(Xi−1) ⊕ Hi

104: Yi ← EK(Xi)
105: end for
106: τ ← FK2(Yh−1) ⊕ Yh

107: Mm ← Mm ⊕ EK(|M |)
108: for i ← 1, . . . , m do
109: j ← i + h
110: Xj ← FK1(Xj−1) ⊕ Mi

111: Yj ← EK(Xj)
112: Ci ← FK2(Yj−1) ⊕ Yj

113: end for
114: j ← m + h
115: Xj+1 ← FK1(Xj) ⊕ τ
116: T ← FK2(Yj) ⊕ EK(Xj+1)
117: return (C1 || . . . || Cm, T )

Decrypt(H, C, T )

201: X0 ← Y0 ← 1, m ← |C|
n

h ← |H|
n

202: for i ← 1, . . . , h do
203: Xi ← FK1(Xi−1) ⊕ Hi

204: Yi ← EK(Xi)
205: end for
206: τ ← FK2(Yh−1) ⊕ Yh

207: for i ← 1, . . . , m do
208: j ← i + h
209: Yj ← FK2(Yj−1) ⊕ Ci

210: Xj ← E−1
K (Yj)

211: Mi ← FK1(Xj−1) ⊕ Xj

212: end for
213: Mm ← Mm ⊕ EK(|C|)
214: j ← m + h
215: Xj+1 ← FK1(Xj) ⊕ τ
216: T ′ ← FK2(Yj) ⊕ EK(Xj+1)
217: if T = T ′ then
218: return (M1 || . . . || Mm)
219: end if
220: return ⊥

A schematic illustration of the encryption algorithm is given in Fig. 2.

Remark 2. POET uses the common 10*-padding for headers |H| whose length is
not a multiple of n. As a result, H consists of at least a single block, and the
entire header can be seen as a nonce. For messages whose length is not a mul-
tiple of the block size, POET borrows the provably secure tag-splitting approach
from McOE [19]. Therefore, it is sufficient to prove the OCCA3-security only for
messages whose length is a multiple of the block size.

4.2 Security Notions for On-line AE Schemes

We define an on-line authenticated encryption scheme Π to be OCCA3-secure iff it
provides both OPRP-CPA and INT-CTXT security. Note that we explicitly regard
nonce-ignoring adversaries which are allowed to use a nonce multiple times, similar
to the security notions of integrity for authenticated encryption schemes in [19].
In the next part, we briefly revisit the formal definitions of INT-CTXT andOCCA3.

The INT-CTXT-advantage of an adversary A is given by the success probability
of winning the game GINT-CTXT that is defined in Fig. 3. Thus, we obtain

AdvINT-CTXT
Π (A) ≤ Pr

[AGINT-CTXT ⇒ 1
]
, (5)

where AdvINT-CTXT
Π (q, �, t) is the maximum advantage over all INT-CTXT adver-

saries A that run in time at most t, and make at most q queries with a total length
of at most � blocks to the available oracles.
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Fig. 2. The encryption process for an m-block message M of POET.

Definition 8 (OCCA3-Security). Let Π = (K, E ,D) be an on-line authenti-
cated encryption scheme. Then, the OCCA3-advantage of an adversary A is upper
bounded by

AdvOCCA3
Π (A) ≤ AdvOPRP-CPA

Π (q, �, t) + AdvINT-CTXT
Π (q, �, t). (6)

The OCCA3-advantage of Π, AdvOCCA3
Π (q, �, t), is then defined by the maximum

advantage of all adversaries A that run in time at most t, and make at most q
queries of a total length of at most � blocks to the available oracles.

Note that an OPRP-CPA-adversary A on some encryption scheme Γ can always
be used by an OPRP-CCA-adversary A’ on Γ that inherits the advantage of A.
In reverse direction, an upper bound for the OPRP-CCA-advantage of Γ is always
an upper bound for the OPRP-CPA-advantage of Γ .

4.3 OCCA3-Security of POET

Theorem 3. Let Π = (K, E ,D) be a POET scheme as defined in Definition 7.
Then, it applies that

AdvOCCA3
Π (q, �, t) ≤ 2 (� + 2q)2 ε +

(� + 2q)2 + q

2n − (� + 2q)
+ 2AdvIND-SPRP

E,E−1 (� + 2q,O(t)).

Fig. 3. The GINT-CTXT game for an authenticated encryption scheme Π = (K, E , D).
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Proof. Theproof follows fromTheorem2and thebound for the INT-CTXT-security
of POET. Due to the lack of space we omit the proof for the latter in this version
and refer the reader to Lemma 1 in the full version of this paper [2]. Since Theo-
rem 2 yields an upper bound for theOPRP-CCA-advantage onPOE, it also provides
an upper bound for theOPRP-CPA-advantage onPOET. Though, � (the number of
encrypted message and header blocks from Theorem 2) must be replaced by (�+2q)
since the tag-generation process of POET includes two additional block-cipher calls
per query. ��

5 Key Derivation and Instantiations

5.1 Key Derivation

POE and POET require three internal keys: one key K for the block cipher, and
two keys K1 and K2 for the two instances of F . Since our goal was to put no further
restrictions on the used hash function families, we borrowed the idea from [25] to
obtain pair-wise independent keys. At setup, the user supplies a k-bit secret key
L. The further keys are then derived from L by encrypting three distinct constants
const0, const1, const2 with E:

K ← EL(const0), K1 ← EL(const1), K2 ← EL(const2).

For simplicity, we recommend const0 = 1, const1 = 2, const2 = 3. Therefore,
under the assumption that E is a PRP-secure block cipher, we can ensure to obtain
independent keys for the block-cipher and hash-function calls.

5.2 ε-AXU Hash Functions

We recommend to instantiate POE/POET with AES-128 as block cipher. For the
ε-AXU families of hash functions F , we propose three suitable instantiations in
the following.

POE/POET with Four-Round AES. When trying to minimize the implemen-
tation footprint, it may be desirable to have an encryption scheme based on only a
single primitive. Furthermore, maximizing the throughput is often critical. There-
fore, POE/POET with the first four rounds of the AES as a family of keyed hash
functions may be an excellent choice for restricted devices and/or devices with
support for AES native instructions. The drawback of this solution would be a
slightly lower number than the common 264 message blocks that can be processed
under the same key. As shown by Daemen et al. in [14], four-round AES is a family
of ε-AXU hash functions—under the reasonable assumption that all used round
keys are independent—with

ε ≤ 1.88 · 2−114 ≈ 2−113.

This implies that at most � 256 message blocks can be encrypted or decrypted
under the same key.
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POE/POET with Full-Round AES. As a more conservative variant we pro-
pose the full AES-128 for the family of hash functions. Under the common PRF
assumption—where we assume that AES is indistinguishable from a random 128-
bit permutation, this constructions yields ε ≈ 2−128.

POE/POET with Galois-Field Multiplications. In addition, one can use a
multiplication in GF (2128), similar to that in AES-GCM [31], as a universal hash
function. This approach yields an ε ≈ 2−128. Moreover, POE and POET can be
fully parallelized with Galois-Field multiplications. For instance, consider a mes-
sage of at least four blocks, M1 || . . . || M4. Using Galois- Field multiplications,
the input for the second block-cipher call is K2 + KM1 + M2. Instead of sequen-
tially multiplying with K, adding M3, multiplying with K and adding M4, one
can compute in parallel:

– For the third block-cipher call: K · (K2 + KM1 + M2) + M3.
– For the fourth block-cipher call: K2 · (K2 + KM1 + M2) + KM3 + M4.

This approach increases the total number of multiplications, but decreases the
latency. Given c cores, and c subsequent message blocks to process, this approach
reduces the latency from c hash-function calls to O(log c). This approach is used,
e.g., in carry-lookahead adders, GCM [31], or CWC [27].

When using multiplications in GF (2128), one has to consider the risk of weak
keys and forgery polynomials. At FSE’12 Saarinen [42] pointed out that, since
2128 − 1 is not prime and produces 29 smooth- order multiplicative groups, one
can obtain a weak key with probability 2−96 that allows to efficiently construct a
forgery. Saarinen’s observation was generalized by Procter and Cid at FSE’13 [39]
who showed that an adversary can choose an arbitrary message as a polynomial
q(x) with a preferably high degree and no repeated roots. Then, it can create two
messages M,M ′ that collide with p = #roots of q(x)

2128 . As a result of their work,
any key can be considered potentially weak. After the FSE’14, Abdelraheem et al.
[1] applied the observations of Procter and Cid to the version of POET that was
submitted to the CAESAR competition, and showed that one could build forgeries
for POET with Galois-Field multiplication with success probability between 2−96

and 2−66. Therefore, we recommend to use (round-reduced) AES for hashing in
POET in favor to a Galois-Field multiplication.

6 Conclusion

This paper presented POE, the first family of on-line ciphers which is both non-
sequential and provably OPRP-CCA-secure. Its design combines two layers of
ε-AXU hashing and a wrapped layer of ECB encryption.

Most on-line AE schemes have a significant latency since they must buffer a
would-be plaintext until the tag has been been verified. The latency can be signifi-
cantly decreased when the would-be plaintext is passed beforehand – however, this
approach raises security issues when applied to AE schemes that lack OPRP-CCA-
security, i.e., an adversary could obtain partial control about the would-be plain-
text, even when these include additional checksums. On the other hand, previous
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OPRP-CCA-secure encryption schemes were inherently sequential. POE is well-
suited for high-speed networks that require performant, low-latency encryption
of large message frames, especially when classical authenticated decryption would
increase latency significantly. Our application scenario targets optical transport
networks (OTNs), but the latency imposed by authenticated decryption is an issue
for other applications as well. In general, POE is an option for such applications.

We proposed three instantiations, where we recommended the AES as block
cipher and either four-round AES, full AES, or a multiplication in GF (2128)
as ε-AXU families of hash functions. Additionally, we presented POET, a state-
of-the-art on-line authenticated encryption scheme, which inherits the chosen-
ciphertext-security and pipelineability from POE. Concluding, POET combines
pipelineability with misuse-resistance in a novel way, at the cost of only a single
block-cipher and two additional hash-function calls per message block.

Acknowledgments. We thank all reviewers of the FSE 2014 for their helpful com-
ments and Daniel J. Bernstein and Tetsu Iwata for fruitful discussions. Finally, we thank
Jian Guo, Jérémy Jean, Thomas Peyrin, and Lei Wang who pointed out a mismatch bet-
ween the specified and the analyzed version of POET in the pre-proceedings version [20].
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A Observations on COPE

COPE is a parallelizable on-line cipher designed by Andreeva et al. [3] and is the
underlying construction of the AE scheme COPA. A formal description is given as
follows. Let E ∈ Block and a fixed key K ∈ {0, 1}k. Then, COPE and its inverse
are defined as shown in Algorithm3.
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Algorithm 3. Definition of COPE following [3].
Encrypt(M)
1: L ← EK(0), Δ0 ← 3L, Δ1 ← 2L
2: Y0 ← L
3: for i = 1, . . . , � do
4: Xi ← EK(Mi ⊕ Δ0)
5: Yi ← Xi ⊕ Yi−1

6: Ci ← EK(Yi) ⊕ Δ1

7: Δ0 ← 2Δ0, Δ1 ← 2Δ1

8: end for
9: return (C1 || . . . || C�)

Decrypt(C)
11: L ← EK(0), Δ0 ← 3L, Δ1 ← 2L
12: X0 ← L
13: for i = 1, . . . , � do
14: Yi ← E−1

K (Ci ⊕ Δ1)
15: Xi ← Yi ⊕ Xi−1

16: Mi ← E−1
K (Xi) ⊕ Δ0

17: Δ0 ← 2Δ0, Δ1 ← 2Δ1

18: end for
19: return (M1 || . . . || M�)

In the following we show that COPE is not OPRP-CCA-secure.

OPRP-CCA-Attack. Let A be an OPRP-CCA adversary that communicates with
two oracles EK and DK . Let Ma �= Mb two distinct message blocks. Then, we
denote Ya = EK(Ma ⊕ Δ0) ⊕ L and Yb = EK(Mb ⊕ Δ0) ⊕ L.

1. First, A sends the encryption query (Ma,Mc) to E , which responds with (Ca,
C(a,c)). In the “real” setting, it holds that

Xc = EK(Mc ⊕ 2Δ0), Y(a,c) = Ya ⊕ Xc, C(a,c) = EK(Y(a,c) ⊕ 2Δ1).

2. Next, A requests the encryption of (Mb,Mc) and obtains (Cb, C(b,c)). It holds
that

Xc = EK(Mc ⊕ 2Δ0), Y(b,c) = Yb ⊕ Xc, C(b,c) = EK(Y(b,c) ⊕ 2Δ1).

3. Then, A requests the decryption of the tuple (Ca, C(b,c)), and D responds with
(Ma,M(a,bc)).

Y(b,c) = E−1
K (C(b,c) ⊕ 2Δ1), X(a,bc) = Y(b,c) ⊕ Ya = Yb ⊕ Xc ⊕ Ya.

4. Finally, A sends the decryption query (Cb, C(a,c)) and obtains (Mb,M(b,ac)).
It applies that

Y(a,c) = E−1
K (C(a,c) ⊕ 2Δ1), X(b,ac) = Y(a,c) ⊕ Yb = Ya ⊕ Xc ⊕ Yb = X(a,bc).

From X(a,bc) = X(b,ac) follows that M(a,bc) = M(b,ac) in the real case. Hence,
A returns true if M(a,bc) = M(b,ac) and false otherwise, and can distinguish
COPE from a random OPERM with probability 1 − 2−n.

Discussion. Our observation is also applicable to the on-line cipher of ELmE –
or more generally to any on-line EME cipher with linear mixing layer. We want to
stress that the shown attack does not invalidate any of the stated security claims
of COPE or ELmE. However, our observation points out the importance of keep-
ing the would-be plaintexts secret—otherwise, linear EME schemes can neither
protect the data privacy of messages anymore. Therefore, one can not consider
such designs secure in the decryption-misuse setting, which makes them a subop-
timal choice for high-speed networks with low-latency requirements. Nevertheless,
it remains an open research question if this property is undesired for further prac-
tical use cases.
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Abstract. FIDES is a lightweight authenticated cipher, presented at
CHES 2013. The cipher has two version, providing either 80-bit or 96-
bit security. In this paper, we describe internal state-recovery attacks
on both versions of FIDES, and show that once we recover the internal
state, we can use it to immediately forge any message. Our attacks are
based on a guess-and-determine algorithm, exploiting the slow diffusion
of the internal linear transformation of FIDES. The attacks have time
complexities of 275 and 290 for FIDES-80 and FIDES-96, respectively, use
a very small amount of memory, and their most distinctive feature is
their very low data complexity: the attacks require at most 24 bytes of
an arbitrary plaintext and its corresponding ciphertext, in order to break
the cipher with probability 1.

Keywords: Authenticated encryption · FIDES · Cryptanalysis · Guess-
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1 Introduction

The design and analysis of authenticated encryption primitives have recently
become major research areas in cryptography, mostly driven by the NIST-funded
CAESAR competition for authenticated encryption [6]. At CHES 2013, the new
lightweight authenticated cipher FIDES was proposed by Bilgin et al. [2], provid-
ing an online single-pass nonce-based authenticated encryption algorithm. The
cipher claims to simultaneously maintain a highly competitive footprint and a
time-efficient implementation.

The cipher has two versions, FIDES-80 and FIDES-96, which have similar
designs, but differ according to their key sizes, and thus according to the security
level they provide. For each version, the same security level (80 bits for FIDES-80
and 96 bits FIDES-96) is claimed against all key recovery, internal state recovery,
and forgery attacks, under the assumption that the attacker cannot obtain the
encryptions of two different messages with the same key/nonce pair.
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The structure of FIDES is similar to the duplex sponge construction [1],
having a secret internal state, where the encryption/authentication process alter-
nates between input of message blocks and applications of unkeyed permuta-
tions to the state. The computation of the ciphertext is based on the notion of
leak-extraction, formalized in the design document of the stream cipher LEX [3].
Namely, between the applications of the permutations, parts of the secret inter-
nal state are extracted (leaked), and used as a key-stream which is XORed
with the plaintext to produce the ciphertext. The notion of leak-extraction was
also borrowed by ALE, which (similarly to FIDES) is another recently proposed
authenticated encryption primitive, presented at FSE 2013 [4]. However, despite
the novelty of the leak-extraction idea, it is quite risky. Indeed, both the LEX
stream cipher and ALE were broken using differential cryptanalysis techniques
that exploit the leakage data available to the attacker [5,9–11].

The main idea in differential attacks on standard iterated block ciphers is to
find a differential characteristic which covers most rounds of the cipher, and gives
the ability to distinguish them from a random function. Once the data has been
collected, the key of the cipher can be recovered using a guess-and-determine
algorithm: we guess a partial round subkey and exploit the limited diffusion of
its last few rounds in order to partially decrypt the ciphertexts and verify the
guess using the distinguisher.

In order to avoid differential distinguishers on FIDES, its internal non-linear
components (i.e., its S-Boxes) were carefully chosen to offer optimal resistance
against differential attacks. Indeed, as the authors of FIDES dedicate a large por-
tion of the design document to analyze its resistance against differential crypt-
analysis, it is clear that this consideration played a crucial role in the design
of FIDES. On the other hand, no analysis is given as to the strength of FIDES
against “pure” non-statistical guess-and-determine attacks. Seemingly, this is
not required, as modern block ciphers are typically designed using many itera-
tive rounds, providing sufficient diffusion. This ensures that guess-and-determine
attacks can only penetrate a small fraction of the rounds, and thus such attacks
on block ciphers are quite rare.

Although most block ciphers do not require special countermeasures against
guess-and-determine attacks, FIDES is an authenticated cipher based on leak-
extraction and is therefore far from a typical block cipher. Indeed, since the
attacker obtains partial information on the internal state during the encryption
process, such schemes need to be designed very carefully in order to avoid state-
recovery attacks. In the case of FIDES, the designers chose a linear transformation
with non-optimal diffusion due to efficiency considerations, exposing its internal
state even further to guess-and-determine attacks.

In this paper, we show how to exploit the weakness in the linear transforma-
tion of FIDES in order to mount guess-and-determine state-recovery attacks on
both of its versions: we start by guessing a relatively small number of internal
state variables, and the slow diffusion of the linear transformation enables us to
propagate this limited knowledge in order to calculate other variables, eventually
recovering the full state.
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Our state-recovery attacks clearly contradict the security claims of the design-
ers regarding the resistance of the cipher against such attacks. However, a state-
recovery attack on an authenticated cipher does not directly compromise the
security of its users. Nevertheless, as we show in this paper, once we obtain its
internal state, two additional design properties of FIDES immediately allow us to
mount a forgery attack and forge any message. Thus, in the case of FIDES, the
resistance against state-recovery attacks is crucial to the security of its users.

The most simple state-recovery attacks we present in this paper are “pure”
guess-and-determine attacks which do not involve any statistical analysis that
requires a large amount of data in order to distinguish the correct guess from
the incorrect ones. As a result, the attacks are very close to the unicity bound,
i.e., they require no more than 24 bytes of an arbitrary plaintext and its corre-
sponding ciphertext in order to fully recover the state (and thus forge any mes-
sage) faster than exhaustive search, using a very small amount of memory. More
specifically, for FIDES-80, our basic attack has a time complexity of 275 compu-
tations (compared to 280 for exhaustive search) and a memory complexity of 215,
and for FIDES-96, our basic attack has a time complexity of 290 computations
(compared to 296 for exhaustive search) and a memory complexity of 218.

In addition to the basic attacks described in this paper, we also provide
optimized attacks in the extended version [8] of this paper, which allow to mount
faster state-recovery attacks, by exploiting t-way collisions on the output that
exist when we can collect more data. In particular, we show how to recover the
internal state and thus forge messages in reduced time complexities of 273 and
288 computations for FIDES-80 and FIDES-96, respectively. A summary of these
attacks is given in Table 1.

While the idea of the basic guess-and-determine attack is very simple, finding
such attacks is a highly non-trivial task. Indeed, our attack includes several
phases in which we guess the value of a subset of variables and propagate the
information to another set of variables. In some of these phases, the information
cannot be propagated using simple relations (directly derived from the FIDES
internal round function), but is rather propagated in a complex way using meet-
in-the-middle algorithms that exploit pre-computed look-up tables. It is therefore
clear that the search space for such multi-phase attacks is huge. Luckily, we could
use the publicly-available automated tool of [5], which was especially designed in
order to aid searching for efficient attacks of this type. However, as it is mostly
the case with such generic tools, we had to fine-tune it using many trials in which
we artificially added external constraints in order reduce the search space and
eventually find an efficient attack.

The rest of the paper is organized as follows. In Sect. 2, we give a brief
description of FIDES, and in Sect. 3, we describe its design properties that we
exploit in our attacks. In particular, we show in this section how to utilize any
state-recovery attack in order to forge arbitrary messages. In Sect. 4, we give an
overview of our basic state-recovery attack, and describe its details in Sect. 5.
Finally, we conclude in Sect. 6.
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Table 1. Summary of our state-recovery/forgery attacks

Cipher Time Data Memory Reference

FIDES-80 275 1 KP 215 Section 4

FIDES-96 290 1 KP 218 Section 4

FIDES-80 273 264 KP 264 Extended version [8]

FIDES-96 288 277 KP 277 Extended version [8]

KP: Known plaintext.

2 Description of FIDES

The lightweight authenticated cipher FIDES [2] was published at CHES 2013 by
Bilgin et al. It uses a secret key K and a public nonce N in order to encrypt and
authenticate a message M into the ciphertext C, and optionally authenticate
at the same time some padded associated data A. At the end of the encryption
process, an authentication tag T is generated and transmitted in the clear, along
with C and N , for decryption by the other party.

FIDES comes in two versions: FIDES-80 and FIDES-96, having similar designs,
but providing different levels of security. These versions are characterized by an
internal nibble (word) size of c bits, where c = 5 in FIDES-80 and c = 6 in
FIDES-96. The key K of FIDES is of size 16c bits (80 bits for FIDES-80 and
96 bits for FIDES-96), and similarly, the nonce N and the tag T are also 16c-bit
strings.

Internal State. The design of FIDES is influenced by the AES [7]. Its internal
state X is represented as a matrix of 4×8 nibbles of c bits, where X[i, j] denotes
the nibble located at row i ∈ {0, 1, 2, 3} and column j ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

The encryption process of FIDES has three phases, as described below.

Initialization. The state is first initialized with the 16c-bit secret key K, con-
catenated with a 16c-bit nonce N . Then, the FIDES round function is applied
16 times to the state. Finally, K is XORed again into the left half of the state
(columns 0, 1, 2 and 3).

Encryption/Authentication Process. After the initialization phase, the
associated data is processed1 and the message is encrypted in blocks of 2c bits.
In order to encrypt a plaintext block, the two nibbles X[3, 0] and X[3, 2] (see
Fig. 1) are extracted and XORed with the current plaintext block to produce the
corresponding ciphertext block. Then, the c-bit halves of the (original) plaintext
block are XORed into X[3, 0] and X[3, 2], respectively. Finally, the round func-
tion is applied.
1 Since our attacks do not use any associated data, we do not elaborate on its

processing.
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Fig. 1. The 32c-bit internal state of FIDES, where X[3, 0] and X[3, 2] act as
input/output during the encryption process.

Fig. 2. The encryption/authentication process of FIDES.

Finalization. After all the message blocks have been processed, the round
function is applied 16 more times to the internal state, and finally its left half
(columns 0, 1, 2 and 3) is outputted as the tag T .

The full encryption/authentication process in visualized in Fig. 2. We note
that in order to decrypt, a similar process is performed, where the ciphertext
is XORed with the leaked nibbles in order to decrypt and obtain the message
block, which is then XORed into the state. Finally, the tag is calculated and
validated against the one received.

Description of the Round Function. The round function of FIDES uses
AES-like transformations (see Fig. 3).

At the beginning of round i, the two nibbles of the message block Mi are
processed and injected to produce the state Xi. The SubBytes (SB) transforma-
tion applies a non-linear S-Box S to each nibble of the state Xi independently,
and the ShiftRows (SR) transformation rotates the r’th row by τ [r] positions
to the left, where τ = [0, 1, 2, 7]. This produces a state that we denote by Yi.
The state is then updated to the state Wi by applying the linear transformation
MixColumns (MC), which left-multiplies each column of Yi independently by the
binary matrix M:

M =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ .
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Fig. 3. The round function of FIDES.

Finally, the AddConstant (AC) transformation XORs a 32-nibble round-
dependent constant RCi (where RCi[�, j] denotes the nibble at position (�, j))
into the state Wi to produce the initial state of the next round, Xi+1. Since
we assume that both the round constants and the message blocks are known
to us, we can obtain an equivalent scheme by removing the message injections
and “embedding” them to the round constants, XORed into the state at the end
of the previous round. Thus, for the sake of simplicity, we ignore the message
injections in the rest of this paper.

We note that since our attack is structural, it is independent of the particular
choices of S-boxes and round-constants of FIDES. Thus, we omit their description,
which can be found in [2].2

3 Design Properties of FIDES Exploited in Our Attacks

In this section, we emphasize the properties of FIDES that we exploit in our
attacks. First, we describe two basic linear properties of the round function
that are extensively used in our state-recovery attack. Then, we describe two
design properties of FIDES, and use them to show that any state-recovery attack
immediately enables the attacker to forge any message.

3.1 Properties of the MixColumns Transformation

The binary matrix M (that defines the MixColumns transformation) has a branch
number of 4. This implies that there are linear dependencies between 4 nibbles
of x and y = Mx (where x = [x0, x1, x2, x3] and y = [y0, y1, y2, y3]):

Property 1. For all i, j ∈ {0, 1, 2, 3} such that i �= j: xi ⊕ xj = yi ⊕ yj .

Property 2. For all i ∈ {0, 1, 2, 3}: xi+3 = yi ⊕ xi+1 ⊕ xi+2 (where addition is
performed modulo 4), and (analogously): yi+3 = xi ⊕ yi+1 ⊕ yi+2.

Such equalities are extremely useful in guess-and-determine attacks on AES-based
schemes, where the attacker guesses a few internal nibbles of various states and
tries to determine the values of as many nibbles as possible in order to verify
his guesses. Indeed, as the branch number of M is 4, it is possible to determine
the value of an unknown nibble of x or y, given the values of only 3 out of the
4 nibbles in an equation above.
2 In fact, the round-constants are also not defined in the specifications.
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We note that the maximal possible branch number for a 4×4 matrix is 5 (the
AES MixColumns transformation was especially designed to have this property).
Interestingly, the matrix M of FIDES was not be designed to have the maximal
branch number due to implementation efficiency considerations. As we demon-
strate in our attack, this is a significant design-flaw. Indeed, we use the two
properties above more than 150 times in order to mount a state-recovery attack
which is faster than exhaustive search.

3.2 Properties Exploited in Forgery Attacks

In this section, we show that a state-recovery attack enables the attacker to
forge any message. This is a result of two design properties (refer to Sect. 2 for
details):

Property 3. The initial internal state of FIDES is computed using a secret key K
and a public nonce N , and does not depend on the encrypted message.

Property 4. Once the internal state has been recovered, the rest of the compu-
tation (including the tag generation process) does not depend on K, and can be
fully simulated for any message.

As a result of Property 3, once we recover the internal state generated by one
(K,N) pair in the encryption process of an arbitrary plaintext M , we can imme-
diately deduce it for the encryption of any other plaintext M ′, encrypted using
the same (K,N) pair. Combined with Property 4, a state-recovery attack there-
fore enables to immediately forge any message by simulating the encryption
process and computing the produced tag.

We note that the design of FIDES places a restriction on the encryption device,
such that it cannot send two different messages with the same (K,N) pair. How-
ever, the ciphertexts decrypted by the decryption device are not restricted in such
a way, namely, the device is allowed to decrypt two ciphertexts with the same
(K,N) pair (assuming that their tag is valid). Thus, our attacks are applicable
in the weak known plaintext model, and do not require advanced capabilities
(such as intercepting messages, required in man-in-the-middle attacks).

4 Overview of the State-Recovery Attack

In this section, we give an overview of our state-recovery attack on both ver-
sions of FIDES, distinguished by the nibble size of c bits. As any meaningful
attack must be more efficient than exhaustive search, we first formalize the state-
recovery problem for FIDES and analyze the simple exhaustive search algorithm.

The State-Recovery Problem and Exhaustive Search. The input to
the state-recovery problem is a message M , its corresponding ciphertext C,
encrypted using a key/nonce pair (K,N), and the actual value of the nonce N .3

3 One may also include the tag of the message in the inputs to the state-recovery
problem, however, we do not require it.



Cryptanalysis of FIDES 231

The goal of this problem is to recover X0, which denotes the 32 nibbles of the
initial state obtained after the initialization of FIDES with the (K,N) pair. In
order to recover the initial state, it is possible to exhaustively enumerate the 232c

possibilities for X0 and check if each one of them encrypts4 M to C. However,
a much more efficient exhaustive search procedure is to enumerate all the 216c

possibilities for the key. Since the nonce is known, one executes the initialization
procedure of FIDES for each value of the key, obtains a suggestion for X0, and
then uses it to verify that M is indeed encrypted to C.

Complexity Evaluation of Our Attack. As shown above, the time complex-
ity of (efficient) exhaustive search for X0 is about 216c iterations (or time-units),
where in each iteration, FIDES is initialized using 16 round function evaluations
(and additional few rounds in order to verify that M is indeed encrypted to C).
As described in the detailed attack (Sect. 5), compared to exhaustive search, the
time complexity of our state-recovery attack is only 215c time-units. Moreover,
in each such time-unit, we perform computations on c-bit nibbles that are equiv-
alent to only about nine FIDES round function evaluations (in addition to a few
memory look-ups). However, as this smaller time-unit does not give our attack
an additional significant advantage over exhaustive search, we ignore it in the
remainder of this paper, and assume for the sake of simplicity that our attack
uses the exhaustive search time-unit.

In terms of memory, the basic unit that we use contains 32 nibbles, which is
the size of the FIDES internal state.

4.1 The Main Procedure of Our Attack

The attack uses the knowledge of a single 9-block known-plaintext message
M0|| · · · ||M8, and we denote by C0|| · · · ||C8 the associated ciphertext. Thus,
according to the design of FIDES (see (Sect. 2), we have the knowledge of two nib-
bles of c bits in 9 consecutive internal states X0, . . . , X8, linked by 8 rounds. The
attack enumerates in 215c computations the expected number of 2(32−2×9)×c =
214c valid states (i.e., solutions) which can possibly produce C0|| · · · ||C8. By
using additional output (given by additional ciphertext blocks, or by the tag
corresponding to the message), we can post-filter these states and recover the
correct internal state X0 (which allows us to determine all Xi for i ≥ 0) with a
time complexity of 215c computations. This is less than the time complexity of
exhaustive search by a factor of 2c.

The main procedure of the attack is given in Algorithm1, where the nibble
sets N1, N ′

1, N2 and N ′
2 are defined in Sect. 5.

The first step (Step 1 – lines 2,3) consists of an initial guess-and-determine
phase. The following two steps (Step 2a – line 4 and Step 2b – line 5) construct
the look-up tables T1 and T2, respectively. These two steps are independent of
each other, however, both of them depend on Step 1. In the final steps of the
4 Recall that after the initialization, the encryption process does not depend on K,

and thus X0 fully determines the result of the encryption.
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Algorithm 1. Main Procedure of the State-Recovery Attack.
1: function StateRecovery
2: Guess nibbles of N1 # Step 1 – |N1| =12 nibbles
3: Determine values for nibbles of N ′

1 # Step 1
4: Construct table T1 # Step 2a – 23c operations
5: Construct table T2 # Step 2b – 23c operations
6: Guess nibbles of N2 # Step 3a – |N2| =3 nibbles
7: Determine values for nibbles of N ′

2 # Step 3a
8: Use table T1 to determine additional nibbles # Step 3b
9: Use table T2 to determine internal state # Step 3c

10: if all output nibbles are consistent then # p = 2−c

11: return State # 212c+3c−c = 214c states

attack, we perform an additional guess-and-determine phase (Step 3a – lines 6,7),
use the look-up table T1 in order to determine the values of additional nibbles
(Step 3b – line 8), and use the look-up table T2 in order to determine the full
state (Step 3c – line 9). Finally, we post-filter the remaining states (line 10) to
return the 214c valid states. We note that these states are returned and post-
filtered “on-the-fly”, and thus the memory complexity of the attack is only 23c

(which is the size of the look-up tables T1 and T2).

4.2 The Structure of the Steps in Our Attack

In general, all the steps of the attack are comprised of guessing/enumerating the
values of several nibbles of the internal states X0, . . . , X8, and then propagating
the knowledge forwards and backwards through the states. The knowledge prop-
agation uses a small number of simple equalities E (formally defined in Sect. 4)
that are derived from the internal mappings of FIDES.

As X0, . . . , X8 contain hundreds of nibbles, our attack uses hundreds of com-
putations on the nibbles in order to propagate the knowledge through the states.
As a result, manual verification of the attack is rather tedious. On the other hand,
it is important to stress that automatic verification of the attack is rather sim-
ple, as one needs to program the main procedure of Algorithm1 with the nibbles
that are guessed/enumerated in each step. The program greedily propagates the
knowledge through the states using E, until X0 is recovered.

Despite the simplicity of the automatic verification, we still aim to give the
reader a good intuition of how the knowledge is propagated throughout the attack
without listing all of its calculations in the text (which would make the paper very
difficult to read). Thus, we provide in the next section figures that visualize the
determined nibbles of the state after each step. In the extended version [8], we
additionally provide in tables that describe some of the low-level calculations.
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The Look-up Tables T1 and T2. We conclude this section with a remark
regarding the look-up tables T1 and T2: as each one of these look-up tables
is constructed using simple equalities, it may raise the concern that they do
not contribute to the attack. Namely, it may seem possible to simply guess the
15 nibbles of N1 and N2 in the outer loop of the attack and recover the inter-
nal state by propagating the knowledge using simple equations. However, the
data that the look-up tables store is inverted and indexed in a way which can-
not be described using simple equations. In fact, the look-up tables are used in
meet-in-the-middle algorithms (Steps 3b and 3c) in order to propagate the infor-
mation in a more complex way.

5 Details of the State-Recovery Attack

In this section, we describe in detail all the steps of the attack. For each step,
we use a figure that visualizes the nibbles of the state that we guess or enumer-
ate, and the nibbles that we determine using E. For the sake of completeness,
we additionally provide in the extended version [8] of this paper, tables that
describe how we use the equalities of E in each step.

We partition E into two groups, E1 and E2, where E = E1

⋃
E2. The first

group E1 contains equalities that are directly derived from the FIDES internal
mappings AddConstant,SubBytes,ShiftRows (applied independently to each nib-
ble) and MixColumns (applied independently to each column), in addition to
their inverses. The equalities of E1 can only be directly applied to a single nibble
or a column of the state. The second group E2 contains the linear equalities of
Sect. 3.1. These equalities are somewhat less “trivial” as they can be used in sev-
eral ways in order to factor out an unknown variable (or a linear combination of
variables), and express it as a linear combination of variables from one column
of a state or two columns of two states, linked by MixColumns.

5.1 Step 1: Initial Guess-and-Determine

We start by guessing the values of the following 12 nibbles that define the set
N1 (see hatched nibbles in Fig. 4):

N1
def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X3[0, 0],X3[0, 1],X3[0, 2],X3[3, 1],
X4[1, 0],X4[1, 1],X4[1, 2],
X5[0, 0],X5[0, 1],X5[0, 2],
X6[0, 0],X6[3, 1]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Then, we propagate their values throughout the state. All the nibbles determined
at the end of this step define the nibble-set N ′

1, and are given in Fig. 4.
We note that Step 1 depends on the known leaked nibbles Xi[3, 0] and Xi[3, 2]

for 1 ≤ i ≤ 7. However, this step is independent of the values of X0[3, 0], X0[3, 2],
X8[3, 0] and X8[3, 2].

In total, given the 18 leaked nibbles, we expect about 2(32−18)c = 214c con-
forming internal states, and thus after we guess the values of 12 nibbles, we expect
to reduce the number of solutions to 2(14−12)c = 22c. In the sequel, we describe
how to enumerate these 22c solutions in 23c computations and 23c memory.
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Fig. 4. Step 1: initial guess-and-determine.

5.2 Step 2a: Construction of T1

In this step, we use the values of the nibbles of N1 ∪N ′
1 to construct the look-up

table T1, which contains 23c entries. During its construction, we enumerate all
the possible values of the 3 nibbles X1[2, 1], X2[2, 0] and X2[1, 7], and for each
such value, we calculate and store the values described in Fig. 5. As an index to
the table, we choose the following triplet of independent linear relations of the
computed nibbles

(
W1[1, 7] ⊕ Y1[2, 7], Y1[1, 0] ⊕ W1[2, 0], Y2[1, 6] ⊕ Y2[2, 6]

)
.

We note that unlike Step 1, this step depends on the value of the known
nibble X0[3, 0].
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Fig. 5. Step 2a: construction of T1.

5.3 Step 2b: Construction of T2

In this step, we use the values of the nibbles of N1 ∪ N ′
1 to construct the second

look-up table T2, which (similarly to T1) contains 23c entries. During its construc-
tion, we enumerate all the possible values of the 3 nibbles X4[1, 6], X5[1, 4] and
X6[2, 4], and for each such value, we calculate and store the values described in
Fig. 6. As an index to the table, we choose the following triplet of nibbles/linear
relations of the computed nibbles

(
W3[1, 6] ⊕ W3[2, 6], Y4[2, 5], Y7[1, 0] ⊕ Y7[2, 0]

)
.

We note that this step depends on the value of X8[3, 0] (unlike Step 1 and
Step 2a).

5.4 Step 3a: Final Guess-and-Determine

In this step, we guess 3 additional nibbles to the 12 initial ones (see hatched
nibbles on Fig. 7):

N2
def=

{
X1[0, 3], X1[1, 3], X3[2, 7]

}
.

Their values allow to determine all the values marked in gray on Fig. 7, which
define the set N ′

2. We note that unlike the previous steps, this step depends on
the value of the leaked nibble X0[3, 2].

5.5 Step 3b: Table T1 Look-Up

In this step, we perform a look-up in table T1 in order to determine the values
of additional nibbles, and then propagate the knowledge further through the
internal state. We access T1 using the determined values of W1[0, 7] ⊕ W1[3, 7],
W1[1, 0] ⊕ Y1[2, 0] and W2[1, 6] ⊕ W2[2, 6] (see nibbles �, � and • in Fig. 8).
Indeed, using the properties of the matrix M:

W1[0, 7] ⊕ W1[3, 7] = Y1[2, 7] ⊕ W1[1, 7]
W1[1, 0] ⊕ Y1[2, 0] = Y1[1, 0] ⊕ W1[2, 0]

W2[1, 6] ⊕ W2[2, 6] = Y2[1, 6] ⊕ Y2[2, 6],
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Fig. 6. Step 2b: construction of T2.

where the right-hand sides define the elements of the index triplet to the table T1.
As T1 contains 23c entries, we expect one match on average for each table look-
up, which immediately determines all the additional hatched values in Fig. 8.

After the table T1 look-up, we propagate the additional knowledge through
the internal states.

5.6 Step 3c: Table T2 Look-Up and State Recovery

In this step, we perform a look-up in table T2 in order to determine the val-
ues of additional nibbles, and then propagate the knowledge further through
the internal states in order to fully recover them. We access T2 using the three
determined values Y3[1, 6] ⊕ Y3[2, 6], Y4[2, 5] and Y7[0, 0] ⊕ W7[3, 0]. The nibble
Y4[2, 5] is an element of the index triplet to the table T2, and for the two other
elements (using the properties of the matrix M), we have:
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Fig. 7. Step 3a: three more nibbles are guessed to determine more values.

Y3[1, 6] ⊕ Y3[2, 6] = W3[1, 6] ⊕ W3[2, 6]
Y7[0, 0] ⊕ W7[3, 0] = Y7[1, 0] ⊕ Y7[2, 0],

where the right-hand sides for the two equations define the two remaining ele-
ments of the index triplet to the look-up table T2. As T2 contains 23c entries, we
expect one match on average for each table look-up, which immediately deter-
mines all the additional values marked on Fig. 9.

After the table T2 look-up, we propagate the additional knowledge through
the internal states, which allows us to recover them fully (for the nibbles deter-
mine using the properties of the matrix M. Namely, we fully recover X4 by the
following operations:
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W3[0, 6] = Y3[1, 6] ⊕ W3[2, 6] ⊕ W3[3, 6]
X4[0, 6] = W3[0, 6] ⊕ RC3[0, 6]
Y4[0, 5] = W4[1, 5] ⊕ Y4[2, 5] ⊕ Y4[3, 5]

X4[0, 5] = S−1(Y4[0, 5])
W3[3, 5] = W3[0, 5] ⊕ W3[1, 5] ⊕ Y3[2, 5]
X4[3, 5] = W3[3, 5] ⊕ RC3[3, 5].

Given X4, we can compute all the states forwards and backwards.

Post-Filtering. Once the internal state is fully determined, we verify that the
additional output X8[3, 2] matches its leaked value. Indeed, the 18 leaked nibbles
have all been used in the attack, with the exception of the very last one, X8[3, 2].
As this match occurs with probability 2−c, the algorithm indeed enumerates the

Fig. 8. Step 3b: table T1 look-up.
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Fig. 9. Step 3c: table T2 look-up and state recovery

214c internal states that produce the 18 leaked nibbles in about 2(12+3)c = 215c

computations, using a memory of about 23c elements. Finally, we can post-filter
the solutions further using additional output (given by additional ciphertext
blocks, or by the tag corresponding to the message).

6 Conclusions and Open Problems

In this paper, we presented state-recovery attacks on both versions of FIDES, and
showed how to use them in order to forge messages. Our attacks use a guess-
and-determine algorithm in order to break the security of the primitive given
very little data and a small amount of memory.

A simple way to repair FIDES such that it would resist our attacks, is to
use a linear transformation with a branch number of 5. However, this would
have a negative impact on the efficiency of the implementation, and moreover,
it is unclear whether such a change would guarantee resistance against different
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(perhaps more complex) guess-and-determine attacks. In general, although the
leak-extraction notion allows building cryptosystems with very efficient imple-
mentations, designing such systems which also offer a large security margin
remains a challenging task for the future. In particular, it would be very inter-
esting to design such cryptosystems which provably resist guess-and-determine
attacks, such as the ones presented in this paper.
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Abstract. We study the security of key-alternating Feistel ciphers, a
class of key-alternating ciphers with a Feistel structure. Alternatively,
this may be viewed as the study of Feistel ciphers where the pseudo-
random round functions are of the form Fi(x ⊕ ki), where ki is the
(secret) round key and Fi is a public random function that the adver-
sary is allowed to query in a black-box way. Interestingly, our results can
be seen as a generalization of traditional results à la Luby-Rackoff in
the sense that we can derive results for this model by simply letting the
number of queries of the adversary to the public random functions Fi

be zero in our general bounds. We make an extensive use of the cou-
pling technique. In particular (and as a result of independent interest),
we improve the analysis of the coupling probability for balanced Feistel
schemes previously carried out by Hoang and Rogaway (CRYPTO 2010).

Keywords: Block cipher · Key-alternating cipher · Feistel cipher ·
Coupling · Provable security

1 Introduction

Block Ciphers. Block cipher designs roughly fall in two main classes, namely
Feistel networks and substitution-permutation networks (SPNs). The primary
security notion when studying a block cipher is pseudorandomness: it should be
impossible except with negligible probability for any adversary with reasonable
resources which has black-box access to a permutation oracle (and potentially
its inverse) to distinguish whether it is interacting with the block cipher with a
uniformly random key, or with a truly random permutation. Since proving upper
bounds on the distinguishing advantage of a general adversary for a concrete
block cipher seems out of reach of current techniques, research has focused on
proving results by idealizing some components of the block cipher.
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For Feistel networks, most of the provable security work falls in what is usu-
ally named the Luby-Rackoff framework, in reference to the seminal work of
Luby and Rackoff [11]. In this setting, the round functions of the Feistel scheme
are idealized as being uniformly random (and secret). Such results can be directly
transposed to the case where the round functions are pseudorandom via a com-
position theorem (but again proving any lower bound for the pseudorandomness
of some concrete function family is out of reach of current techniques). Starting
from the Luby-Rackoff result that the 3-round Feistel scheme is a pseudorandom
permutation [11], and the proof by Patarin [17] that four rounds yield a strong
pseudorandom permutation (where strong means that inverse queries to the per-
mutation oracle are allowed), a long series of work established refined bounds
for larger number of rounds [8,12,13,18,19,22].

For SPN ciphers, provable security results were for a long time limited to
resistance to specific attacks such as differential and linear attacks [3]. Recently
though, a number of results have been obtained for the ideal key-alternating
cipher, a.k.a. iterated Even-Mansour cipher. An r-round key-alternating cipher
is specified by r public permutations on n bits P0, . . . , Pr−1, and encrypts a
plaintext x as

y = kr ⊕ Pr−1(kr−1 ⊕ Pr−2(· · · P0(k0 ⊕ x) · · · )) ,

where (k0, . . . , kr) are r + 1 keys of n bits. When r = 1, this construction was
analyzed and its security established up to O(2n/2) queries by Even and Man-
sour [6] in the random permutation model for P0, i.e. when the permutation
P0 is a random permutation oracle to which the adversary can make direct
and inverse queries. Subsequently, a number of papers improved this seminal
result to larger numbers of rounds [1,9,21], culminating with the proof by Chen
and Steinberger [2] that the r-round ideal key-alternating cipher is secure up to
O(2

rn
r+1 ) adaptive, chosen plaintext and ciphertext queries (which is optimal

since it matches the best known attack).

Our Contribution. In this work, we study the security of Feistel networks in
a setting where the round functions are random and public (meaning that the
adversary can make oracle queries to these functions), and an independent round
key is xored before each round function. In other words, the state at round i is
updated according to (xL, xR) �→ (xR, xL ⊕ Fi(xR ⊕ ki)), where xL and xR are
respectively the left and right n-bit halves of the state, and ki is an n-bit round
key. In a sense, this can be seen as transposing the setting of recent works on
the ideal key-alternating cipher (which uses the random permutation model) to
Feistel ciphers (in the random function model). For this reason, we call such a
design a key-alternating Feistel cipher (KAF cipher for short). In fact, one can
easily see that two rounds of a key-alternating Feistel cipher can be rewritten
as a (single-key) one-round Even-Mansour cipher, where the permutation P is a
two-round (public and un-keyed) Feistel scheme (see Fig. 2). When we want to
insist that we consider the model where the round functions Fi are uniformly
random public functions, we talk of the ideal KAF cipher. Hence, the setting we
consider departs from the usual Luby-Rackoff framework in two ways: on one
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hand, we consider “complex” round functions (random function oracles), but on
the other hand we consider the simplest keying procedure, namely xoring.

In this setting, the resources of the adversary are measured by the maximal
number qe of queries to the permutation oracle (and its inverse for strong pseudo-
randomness), and the maximal number qf of queries to each round function. In
the special case where qf = 0 (i.e. the adversary has not access to the random
round functions), one exactly recovers the more usual Luby-Rackoff setting, so
that our analysis allows to directly derive results for this framework as well by
letting qf be zero.

Our analysis is based on a coupling argument, a well-known tool from the the-
ory of Markov chains. Its use in cryptography has been pioneered by Mironov [15]
for the analysis of the shuffle of the RC4 stream cipher, and later by Morris et al.
for the analysis of maximally unbalanced Feistel schemes [16]. Later use of this
technique includes [8,9]. The work of Hoang and Rogaway [8] is particularly rel-
evant to this paper since they analyzed (among other variants) balanced Feistel
schemes, although only in the traditional Luby-Rackoff setting.

Our bounds show that an ideal KAF cipher with r rounds ensures security
up to O(2

tn
t+1 ) queries of the adversary, where

– t = � r
3� for non-adaptive chosen-plaintext (NCPA) adversaries;

– t = � r
6� for adaptive chosen-plaintext and ciphertext (CCA) adversaries.

In the Luby-Rackoff setting (qf = 0), we improve on the previous work
of Hoang and Rogaway [8] thanks to a more careful analysis of the coupling
argument. Namely we show that the ideal LR cipher is CCA-secure up to O(2

tn
t+1 )

queries, where t = � r−1
4 �. The best proven security bound in the Luby-Rackoff

setting remains due to Patarin [19], who showed that the 6-round Feistel cipher
is secure up to O(2n) queries against CCA distinguishers. However his analysis
is much more complicated and does not seem to be directly transposable to the
case of KAF ciphers. We feel that the simplicity of the coupling argument is an
attractive feature in addition to being immediately applicable to KAF ciphers.

Other Related Work. We are only aware of two previous works in a setting
similar to ours. The first is a paper by Ramzan and Reyzin [20], who showed
that the 4-round Feistel construction remains (strongly) pseudorandom when the
adversary is given oracle access to the two middle round functions. This setting
is somehow intermediate between the Luby-Rackoff and the KAF setting. The
second paper is by Gentry and Ramzan [7], who showed that the public random
permutation of the Even-Mansour cipher x �→ k1 ⊕ P (k0 ⊕ x) can be replaced
by a 4-round public Feistel scheme, and the resulting construction is still a
strong pseudorandom permutation. While their result shows how to construct
a strong pseudorandom permutation from only four public random functions
(while we need six rounds of Feistel and hence six random functions to get
the same result in this paper), their analysis only yields a O(2n/2) security
bound. On the contrary, our bounds improve asymptotically with the number of
rounds, approaching the information-theoretic bound of O(2n) queries. In fact,
our results are the first ones beyond the birthday bound for KAF ciphers.
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Organization. We start with some definitions and preliminaries in Sect. 2. In
Sect. 3, we prove a probabilistic lemma which will be useful later to study the
coupling probability for Feistel schemes. This result might be of independent
interest. Finally, Sect. 4 contains our main results about the security of ideal KAF
ciphers and Luby-Rackoff ciphers. Some proofs have been omitted for reasons of
space and can be found in the full version of the paper [10].

2 Preliminaries

2.1 General Notation

In all the following, we fix an integer n ≥ 1. Given an integer q ≥ 1 and a set
S, we denote (S)∗q the set of all q-tuples of pairwise distinct elements of S. We
denote [i; j] the set of integers k such that i ≤ k ≤ j.

The set of functions of n bits to n bits will be denoted Fn. Let F =
(F0, . . . , Fr−1) ∈ (Fn)r be a tuple of functions, and u = (u0, . . . , ur−1) and
v = (v0, . . . , vr−1) where for i = 0, . . . , r − 1, ui = (u1

i , . . . , u
q
i ) ∈ ({0, 1}n)q and

vi = (v1
i , . . . , vq

i ) ∈ ({0, 1}n)q are q-tuples of n-bit strings. We write Fi(ui) = vi

as a shorthand to mean that Fi(u
j
i ) = vj

i for all j = 1, . . . , q, and F (u) = v as a
shorthand to mean that Fi(ui) = vi for all i = 0, . . . , r − 1.

2.2 Definitions

Given a function F from {0, 1}n to {0, 1}n and a n-bit key k, the one-round
keyed Feistel permutation is the permutation on {0, 1}2n defined as:

ΨF
k (xL, xR) = (xR, xL ⊕ F (xR ⊕ k)) ,

where xL and xR are respectively the left and right n-bit halves of the input.
A key-alternating Feistel cipher (KAF cipher for short) with r rounds is spec-

ified by r public round functions F0, . . . , Fr−1 from {0, 1}n to {0, 1}n, and will
be denoted KAFF0,...Fr−1 . It has key-space ({0, 1}n)r and message space {0, 1}2n.
It maps a key (k0, . . . , kr−1) and a plaintext x to the ciphertext defined as:

KAFF0,...Fr−1((k0, . . . , kr−1), x) = Ψ
Fr−1
kr−1

◦ · · · ◦ ΨF0
k0

(x) .

We will denote KAF
F0,...Fr−1
k0,...,kr−1

the permutation on {0, 1}2n mapping a plaintext
x to KAFF1,...Fr ((k0, . . . , kr−1), x). When the number of rounds is clear, we sim-
ply denote F = (F0, . . . , Fr−1) and k = (k0, . . . , kr−1), and KAFFk the 2n-bit
permutation specified by round functions F and round keys k.

As already noted in [4], a KAF cipher with an even number of rounds can
be seen as a special case of a (permutation-based) key-alternating cipher, also
known as an iterated Even-Mansour cipher. Indeed, two rounds of a KAF cipher
can be rewritten as (see Fig. 2):

Ψ
Fi+1
ki+1

◦ ΨFi

ki
(x) = (ki+1‖ki) ⊕ Ψ

Fi+1
0 ◦ ΨFi

0 ((ki+1‖ki) ⊕ x) .
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Fig. 1. Notations used for a r-round KAF cipher.

Here Ψ
Fi+1
0 ◦ ΨFi

0 is the un-keyed two-round Feistel permutation with round
functions Fi and Fi+1. Hence this permutation is public since the two round
functions Fi and Fi+1 are public oracles. Recall that the (single-key) Even-
Mansour cipher on 2n bits is defined from a public permutation P on 2n bits
as E(k, x) = k ⊕ P (k ⊕ x), where k is the 2n-bit key and x the 2n-bit plaintext
[5,6]. Hence, a 2r′-round KAF cipher with round functions (F0, . . . , F2r′−1) and
round keys (k0, . . . , k2r′−1) can be seen as an r′-round key-alternating cipher,
where the i-th permutation, i = 0, . . . , r′ −1, is the (un-keyed) two-round Feistel
scheme with round functions F2i and F2i+1, and the sequence of 2n-bit keys is
(k̃0, k̃0⊕k̃1, . . . , k̃r′−2⊕k̃r′−1, k̃r′−1) with k̃i = k2i+1‖k2i. (This is more accurately
described as the cascade of r′ single-key one-round Even-Mansour ciphers.)

As already mentioned in introduction, the iterated Even-Mansour cipher
has been subject to extensive security analysis recently (these works often con-
sider the case where all keys are independent, but virtually all the results, in
particular [2,9], apply to the cascade of single-key one-round Even-Mansour
schemes). However, these results cannot be transposed to the case of KAF ciphers
since they are a special sub-case of the general construction, and hence a ded-
icated analysis is required. In particular, note that even though the single-key
one-round Even-Mansour cipher with a 2n-bit permutation is provably secure
up to O(2n) queries against CCA distinguishers, the two-round ideal KAF
cipher is easily distinguishable from a random permutation with only two cho-
sen plaintext queries (namely: query the encryption oracle on (xL, xR) and
(x′

L, xR), and check whether the respective ciphertexts (yL, yR) and (y′
L, y′

R)
satisfy yL ⊕ y′

L = xL ⊕ x′
L).
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Fig. 2. An alternative view of two rounds of a KAF cipher.

2.3 Security Notions

In order to study the pseudorandomness of KAF ciphers, we will consider dis-
tinguishers D interacting with r function oracles F = (F0, . . . , Fr−1) from n bits
to n bits and a 2n-bit permutation oracle (and potentially its inverse) which
is either the KAF cipher KAFFk specified by F with a uniformly random key
k = (k0, . . . , kr−1), or a perfectly random permutation P (independent from F ).
A (qe, qf )-distinguisher is a distinguisher that makes at most qe queries to the
permutation oracle and at most qf queries to each round function F0, . . . , Fr−1.
We will consider only computationally unbounded distinguishers. As usual we
restrict ourself wlog to deterministic distinguishers that never make redundant
queries and always make the maximal number of allowed queries to each oracle.

As in [9], we will define two types of distinguishers, depending on the way
it can make its queries to the oracles, namely non-adaptive chosen-plaintext
(NCPA) distinguishers, and (adaptive) chosen-plaintext and ciphertext (CCA)
distinguishers. We stress that the distinction adaptive/non-adaptive only refers
to the queries to the permutation oracle. We now give the precise definitions of
these two classes of distinguishers.

Definition 1. A (qe, qf )-NCPA distinguisher runs in two phases:

1. in a first phase, it makes exactly qf queries to each round function Fi. These
queries can be adaptive.

2. in a second phase, it chooses a tuple of qe non-adaptive forward queries
x = (x1, . . . , xqe) to the permutation oracle, and receives the corresponding
answers. By non-adaptive queries, we mean that all queries must be cho-
sen before receiving any answer from the permutation oracle, however these
queries may depend on the answers received in the previous phase from the
round function oracles Fi.

A (qe, qf )-CCA distinguisher is the most general one: it makes adaptively qf

queries to each round function Fi and qe forward or backward queries to the
permutation oracle, in any order (in particular it may interleave queries to the
permutation oracle and to the round function oracles).

In all the following, the probability of an event E when D interacts with (F , P )
where P is a random permutation independent from the uniformly random round
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functions F will simply be denoted Pr∗[E], whereas the probability of an event E
when D interacts with (F , KAFFk ), where the key k = (k0, . . . , kr−1) is uniformly
random, will simply be denoted Pr[E]. With these notations, the advantage of
a distinguisher D is defined as |Pr[D(1n) = 1] − Pr∗[D(1n) = 1]| (we omit
the oracles in this notation since they can be deduced from the notation Pr[·]
or Pr∗[·]). The maximum advantage of a (qe, qf )-ATK-distinguisher against the
ideal r-round KAF cipher with n-bit round functions (where ATK is NCPA or
CCA) will be denoted Advatk

KAF[n,r](qe, qf ).
When qf = 0, i.e. in the setting where the distinguisher is not allowed to

query the round functions, it is not hard to see that the round keys k0, . . . , kr−1

do not add any security, so that they can all be taken equal to zero. Hence
we are brought back to the usual security framework à la Luby-Rackoff, where
the round functions are uniformly random and play the role of the secret key
(in other words, the key space in this setting is (Fn)r, where Fn is the set of all
functions from n bits to n bits). In that case, our definitions of an NCPA and a
CCA distinguisher correspond to the usual definitions of pseudorandomness of a
blockcipher in the standard model (i.e. when no additional oracles are involved).
In order to emphasize that this setting is qualitatively different, we will denote
Advatk

LR[n,r](qe) the advantage of a (qe, qf = 0)-ATK-distinguisher against the
ideal r-round Luby-Rackoff cipher.

To sum up, we consider in a single framework two flavors of Feistel ciphers:
Luby-Rackoff ciphers, where the round functions are random and secret, and
key-alternating Feistel ciphers, where round functions are of the type Fi(x⊕ki),
where ki is a secret round key and Fi a public random function oracle.

2.4 Statistical Distance and Coupling

Given a finite event space Ω and two probability distributions μ and ν defined on
Ω, the statistical distance (or total variation distance) between μ and ν, denoted
‖μ − ν‖ is defined as:

‖μ − ν‖ =
1
2

∑
x∈Ω

|μ(x) − ν(x)| .

A coupling of μ and ν is a distribution λ on Ω × Ω such that for all x ∈ Ω,∑
y∈Ω λ(x, y) = μ(x) and for all y ∈ Ω,

∑
x∈Ω λ(x, y) = ν(y). In other words,

λ is a joint distribution whose marginal distributions are resp. μ and ν. The
fundamental result of the coupling technique is the following one. See e.g. [9] for
a proof.

Lemma 1 (Coupling Lemma). Let μ and ν be probability distributions on
a finite event space Ω, let λ be a coupling of μ and ν, and let (X,Y ) ∼ λ
(i.e. (X,Y ) is a random variable sampled according to distribution λ). Then
‖μ − ν‖ ≤ Pr[X = Y ].
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3 A Useful Probabilistic Lemma

Readers may skip this section at first reading and come back after Lemma 11.
In all the following, we interchangeably use the notation AiAj to denote the
intersection Ai ∩ Aj of two events, and more generally Ai1Ai2 · · · Aik to denote
Ai1 ∩ Ai2 ∩ · · · ∩ Aik .

In this section, we consider the following problem: for r ≥ 2, let A1, . . . , Ar

be events defined over the same probability space Ω, satisfying the following
“negative dependence” condition:

Definition 2. Let p ∈]0, 1[. A sequence of events A1, . . . , Ar is said to be p-
negatively dependent if for any i ∈ [1; r] and any subset S ⊆ [1; i − 1], one has:

Pr

⎡
⎣Ai

∣∣∣∣
⋂
j∈S

Aj

⎤
⎦ ≤ p ,

with the convention that an empty intersection is the certain event Ω (hence, in
particular Pr[Ai] ≤ p for i ∈ [1; r]).

We denote Cr the event Cr = ∩r−1
i=1 (Ai ∪ Ai+1), or in a more eloquent form:

Cr = (A1 ∪ A2)(A2 ∪ A3) · · · (Ar−2 ∪ Ar−1)(Ar−1 ∪ Ar) .

Our goal is to find an upper bound on the probability Pr [Cr] of this event. Note
that Cr is an event in conjunctive normal form, which is not directly amenable to
deriving an adequate upper bound. However, once written in disjunctive normal
form, one can easily upper bound its probability using the following simple fact:

Lemma 2. Let A1, . . . , Ar be p-negatively dependent events. Then for any k ∈
[1; r] and any distinct integers i1, . . . , ik in [1; r] one has:

Pr [Ai1 · · · Aik ] ≤ pk .

Proof. By induction on k. ��
In the following, for a sequence α ∈ {0, 1}r−1, we denote αi the i-th bit of α. By
developing straightforwardly event Cr, one obtains the following expression.

Lemma 3.
r−1⋂
i=1

(Ai ∪ Ai+1) =
⋃

α∈{0,1}r−1

r−1⋂
i=1

Ai+αi
.

Proof. By induction on r. ��
For any sequence α ∈ {0, 1}r−1, we will denote Br,α = ∩r−1

i=1 Ai+αi
, so that

Cr = ∪α∈{0,1}r−1Br,α. Depending on α, Br,α may be the intersection of strictly
less than r−1 events (e.g. as soon as αi = 1 and αi+1 = 0 for some i). Moreover,
for two distinct sequences α and α′, it may happen that Br,α ⊂ Br,α′ . Consider
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for example the simple case r = 3. Then B3,00 = A1 ∩ A2 and B3,10 = A2 ∩
A2 = A2, so that B3,00 ⊂ B3,10 (see Table 1 for the developed and “reduced”
disjunctive form of Cr for r up to 8). This motivates the following definition of
irreducible sequences, which informally characterize the “minimal” set of events
Br,α covering Cr.

Definition 3. We define the set of irreducible sequences as the following regular
language (λ denotes the empty string):

I = {λ, 0}{10, 100}∗{λ, 1} .

In other words, irreducible sequences are obtained by concatenating possibly a
single 0, then the two patterns 10 and 100 arbitrarily, and finally possibly a
single 1. Sequences in {0, 1}∗ \ I are called reducible. We denote Ir the set of
irreducible sequences of length r.

It is easy to see that irreducible sequences are exactly sequences α such that 0α
does not contain three consecutive zeros or two consecutive ones, but we will not
need this characterization here.

The usefulness of irreducible sequences comes from the following lemma.

Lemma 4. Pr[Cr] ≤ ∑
α∈Ir−1

Pr[Br,α].

Proof. We show by induction on r that Cr ⊆ ∪α∈Ir−1Br,α, from which the
lemma follows by the union bound. We first show it directly for r = 2, 3, 4. This
trivially holds for r = 2 since C2 = A1 ∪A2 = B2,0 ∪B2,1 and the two sequences
0 and 1 are irreducible. For r = 3, we have:

C3 = (A1 ∪ A2)(A2 ∪ A3) ⊆ A1A3 ∪ A2 = B3,01 ∪ B3,10 ,

from which the result follows since 01 and 10 are irreducible while 00 and 11 are
reducible. For r = 4, we have

C4 = (A1 ∪ A2)(A2 ∪ A3)(A3 ∪ A4) ⊆ A1A3 ∪ A2A3 ∪ A2A4

⊆ B4,010 ∪ B4,100 ∪ B4,101 ,

from which the result follows since 010, 100, and 101 are the only irreducible
sequences of length 3.

Let us now show the result for r ≥ 5, assuming that the result holds for r−1.
We have:

Cr = Cr−1 ∩ (Ar−1 ∪ Ar) ⊆ (∪α∈Ir−2Br−1,α

) ∩ (Ar−1 ∪ Ar)

⊆ (∪α∈Ir−2Br,α0

) ∪ (∪α∈Ir−2Br,α1

)

Hence, it suffices to show that for any irreducible α ∈ Ir−2 such that α0, resp.
α1, is reducible, there is an irreducible ᾱ ∈ Ir−1 such that Br,α0 ⊆ Br,ᾱ, resp.
Br,α1 ⊆ Br,ᾱ. We distinguish three cases depending on the form of α ∈ Ir−2. Note
that since we assume r − 2 ≥ 3, α contains at least a pattern 10 or 100, so that
either α = α′10, or α = α′100, or α = α′1, with α′ ∈ {λ, 0}{10, 100}∗ in each case.
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– Case 1: α = α′10; in that case, we see that both α0 = α′100 and α1 = α′101
are irreducible, so there is nothing to prove.

– Case 2: α = α′100; in that case, α1 = α′1001 is irreducible, so there is nothing
to prove for α1. On the other hand, α0 = α′1000 is reducible. Let ᾱ = α′1010.
Note that ᾱ is irreducible. Moreover:

Br,α0 = Br,α′1000 = Br−4,α′ ∩ Ar−3Ar−2Ar−1

Br,ᾱ = Br,α′1010 = Br−4,α′ ∩ Ar−3Ar−1 ,

so that Br,α0 ⊆ Br,ᾱ.
– Case 3: α = α′1; in that case, α0 = α′10 is irreducible, so there is nothing to

prove for α0. On the other hand, α1 = α′11 is reducible. Let ᾱ = α′10. Note
that ᾱ is irreducible. Moreover:

Br,α1 = Br,α′11 = Br−2,α′ ∩ Ar−1Ar

Br,ᾱ = Br,α′10 = Br−2,α′ ∩ Ar−1 ,

so that Br,α1 ⊆ Br,ᾱ.

Hence Cr ⊆ ∪α∈Ir−1Br,α, which concludes the proof. ��
We now give an upper bound for the probability of events Br,α for irreducible
sequences α. For this, we introduce the following definition.

Definition 4. The weight of a sequence α ∈ {0, 1}∗, denoted w(α), is the num-
ber of patterns 10 it contains (i.e. the number of integers i such that αi = 1 and
αi+1 = 0).

Lemma 5. Let α ∈ {0, 1}r−1 be an irreducible sequence. Then:

Pr[Br,α] ≤ pr−1−w(α) .

Proof. Let k = w(α). By definition, there are exactly k distinct integers i1 <
. . . < ik such that for each i ∈ {i1, . . . , ik} we have αi = 1 and αi+1 = 0, which
implies Ai+αi

Ai+1+αi+1 = Ai+1 = Ai+αi
. Hence we see that:

Br,α ⊆
r−1⋂
i=1

i�=i1+1,...,ik+1

Ai+αi
,

which implies the result by Lemma 2 since the event on the right hand side is
the intersection of exactly r − 1 − k distinct events Aj . ��
It remains to count the number of irreducible sequences of a given weight.

Lemma 6. The number of irreducible sequences of length r and weight k is(
k+2
r−2k

)
. Moreover the minimal and maximal weights of an irreducible sequence

are respectively kmin = � r−2
3 � and kmax = � r

2�.
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Proof. Let a and b denote respectively the number of patterns 10 and 100 in an
irreducible sequence. Clearly the weight k of the sequence satisfies k = a + b.
Moreover, depending on whether the sequence starts with a single 0 and ends
with a single 1, we have the following relation between a and b and the length r
of the sequence:

– for sequences of the form λ{10, 100}∗λ, one has 2a + 3b = r
– for sequences of the form 0{10, 100}∗λ or λ{10, 100}∗1, one has 2a+3b = r−1
– for sequences of the form 0{10, 100}∗1, one has 2a + 3b = r − 2

Denoting r′ = r, r−1 or r−2 depending on the case, we always have 2a+3b = r′,
which combined with a + b = k yields b = r′ − 2k. For each case the number
of possible sequences is

(
a+b

b

)
=

(
k

r′−2k

)
. Hence the total number of irreducible

sequences of length r and weight k is:
(

k

r − 2k

)
+ 2

(
k

r − 1 − 2k

)
+

(
k

r − 2 − 2k

)
=

(
k + 2
r − 2k

)
.

The minimal and maximal weights of an irreducible sequence directly follows
from the condition 0 ≤ r − 2k ≤ k + 2 for

(
k+2
r−2k

)
to be non-zero. This concludes

the proof. ��
We are now ready to state and prove the main result of this section, namely the
following upper bound for Pr[Cr].

Lemma 7. Let A1, . . . , Ar be p-negatively dependent events. Then:

Pr

[
r−1⋂
i=1

(Ai ∪ Ai+1)

]
≤

� 2r
3 �∑

k=� r
2 �

(
r + 1 − k

2r − 3k

)
pk .

Proof. Combining Lemmas 4, 5, and 6 (note that we apply this last lemma to
sequences of length r − 1), we have:

Pr[Cr] ≤
� r−1

2 �∑

k=	 r−3
3 


(
k + 2

r − 1 − 2k

)
pr−1−k .

which after the change of variable r − 1 − k ← k′ yields the desired bound. ��
We checked Lemma 7 by directly expanding and reducing the conjunctive normal
form of Cr for small values of r (see Table 1 for the upper bound obtained for
values of r up to 8).

4 Application to the Security of Key-Alternating Feistel
Ciphers

4.1 Coupling for Non-adaptive Distinguishers

We will first bound the advantage against the r-round ideal KAF cipher KAF[n, r]
of any NCPA distinguisher making at most qe queries to the cipher and qf queries
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Table 1. Disjunctive normal form of event Cr and upper bound on Pr [Cr] for r up to 8.

r Cr (developed and reduced) Pr[Cr] upper bound

2 A1 ∪ A2 2p

3 A1A3 ∪ A2 p + p2

4 A1A3 ∪ A2A3 ∪ A2A4 3p2

5 A1A3A4 ∪ A1A3A5 ∪ A2A3A5 ∪ A2A4 p2 + 3p3

6 A1A3A4A6 ∪ A1A3A5 ∪ A2A3A5 ∪ A2A4A5 ∪ A2A4A6 4p3 + p4

7
A1A3A4A6 ∪ A1A3A5A6 ∪ A1A3A5A7 ∪ A2A3A5A6∪

A2A3A5A7 ∪ A2A4A5A7 ∪ A2A4A6

p3 + 6p4

8

A1A3A4A6A7 ∪ A1A3A4A6A8 ∪ A1A3A5A6A8∪
A1A3A5A7 ∪ A2A3A5A6A8 ∪ A2A3A5A7∪
A2A4A5A7 ∪ A2A4A6A7 ∪ A2A4A6A8

5p4 + 4p5

to each round function. For this we will upper bound the statistical distance
between the outputs of the KAF cipher, conditioned on partial information about
round functions obtained through the oracle queries to F0, . . . , Fr−1, and the
uniform distribution on ({0, 1}2n)∗qe .

For any tuples u = (u0, . . . , ur−1) and v = (v0, . . . , vr−1) with ui, vi ∈
({0, 1}n)qf , and x ∈ ({0, 1}2n)∗qe , we denote μx,u,v the distribution of the
qe-tuple y = KAFFk (x) when the key k = (k0, . . . , kr−1) is uniformly random,
and the round functions F = (F0, . . . , Fr−1) are uniformly random among func-
tions satisfying F (u) = v. In the Luby-Rackoff setting (qf = 0), we sometimes
simply denote this distribution μx. We also denote μ∗ the uniform distribution
over ({0, 1}2n)∗qe . Then we have the following lemma. Its proof is standard and
very similar to the proof of [9, Lemma 4], and therefore omitted.

Lemma 8. Let qe, qf be positive integers. Assume that there exists α such that
for any tuples u = (u0, . . . , ur−1), v = (v0, . . . , vr−1) with ui, vi ∈ ({0, 1}n)qf ,
and x ∈ ({0, 1}2n)∗qe , we have ‖μx,u,v − μ∗‖ ≤ α. Then Advncpa

KAF[n,r](qe, qf ) ≤ α.

In the remainder of this section, we will establish an upper bound α on ‖μx,u,v −
μ∗‖ by using a coupling argument similar to the one of Hoang and Rogaway [8]
(and an improved analysis of this coupling in the Luby-Rackoff setting). In
all the following, we fix tuples u = (u0, . . . , ur−1), v = (v0, . . . , vr−1) with
ui = (u1

i , . . . , u
qf
i ) ∈ ({0, 1}n)qf and vi = (v1

i , . . . , v
qf
i ) ∈ ({0, 1}n)qf , and

x = (x1, . . . , xqe) ∈ ({0, 1}2n)∗qe .
For 0 ≤ � ≤ qe −1, we denote ν� the distribution of the (�+1) outputs of the

KAF cipher when it receives inputs (x1, . . . , x�, x�+1), and ν∗
� the distribution of

the (� + 1) outputs of the KAF cipher when it receives inputs (x1, . . . , x�, z�+1),
where z�+1 is uniformly distributed over {0, 1}2n \ {x1, . . . , x�} (in both cases
the key k = (k0, . . . , kr−1) is uniformly random, and the round functions F =
(F0, . . . , Fr−1) are uniformly random among functions satisfying F (u) = v).
Then we have the following lemma, whose proof is similar to the one of [16,
Lemma 2] (this lemma is not specific to our setting, and applies to any block
cipher).
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Lemma 9. ‖μx,u,v − μ∗‖ ≤ ∑qe−1
�=0 ‖ν� − ν∗

� ‖.
Proof. Deferred to the full version of the paper [10]. ��
We now turn to upper bounding ‖ν� − ν∗

� ‖ for 0 ≤ � ≤ qe − 1. Our goal is to
describe a coupling of ν� and ν∗

� , i.e. a joint distribution on pairs of (� + 1)-
tuples of 2n-bit strings, whose marginal distributions are ν� and ν∗

� . For this,
we consider two KAF ciphers in parallel. The first one, KAFFk , takes as inputs
(x1, . . . , x�, x�+1), while the second one, KAFF

′
k′ , where F ′ = (F ′

0, . . . , F
′
r−1), takes

as inputs (x1, . . . , x�, z�+1), where z�+1 is any value in {0, 1}2n \{x1, . . . , x�} (we
upper bound the statistical distance between the outputs of the two systems for
any z�+1, from which it follows that the same upper bound holds when z�+1

is uniformly random in {0, 1}2n \ {x1, . . . , x�}). We assume that k is uniformly
random and F is uniformly random among function tuples satisfying F (u) = v,
and we will define k′ and F ′ so that they also satisfy these properties. This will
ensure that the marginal distribution of the outputs of the first KAF cipher is
ν�, and the marginal distribution of the outputs of the second KAF cipher is ν∗

� .

The coupling. We now explain how the coupling of the two KAF ciphers is
defined. First, the round keys in the second KAF cipher are the same as in the
first one, namely k′ = k. For 1 ≤ j ≤ �+1, let xj

−1 and xj
0 denote respectively the

left and right n-bit halves of xj and for 1 ≤ i ≤ r let xj
i be recursively defined as

xj
i = xj

i−2⊕Fi−1(x
j
i−1⊕ki−1) (see Fig. 1). For any 1 ≤ j ≤ � and any 0 ≤ i ≤ r−1,

we simply set F ′
i (x

j
i ⊕ ki) = Fi(x

j
i ⊕ ki) (note that this is consistent with the

condition F ′(u) = v in case some value xj
i ⊕ ki belongs to ui = (u1

i , . . . , u
qf
i ),

the set of queries of the distinguisher to the i-th round function). Since the �
first queries to the second KAF cipher are the same as the queries made to the
first KAF cipher, this ensures that the � first outputs of both ciphers are equal.
It remains to explain how the (�+1)-th queries are coupled. Let z�+1

−1 and z�+1
0 be

respectively the left and right n-bit halves of z�+1. We will define recursively for
1 ≤ i ≤ r the round values z�+1

i = z�+1
i−2 ⊕ F ′

i−1(z
�+1
i−1 ⊕ ki−1). For this, we define

two bad events which may happen at round 0 ≤ i ≤ r − 1 in each KAF cipher.
We say that XColli happens if x�+1

i ⊕ ki is equal to xj
i ⊕ ki for some 1 ≤ j ≤ �

(i.e. the input value to the i-th round function when enciphering x�+1 collides
with the input value to the i-th round function when enciphering some previous
query xj). We say that FColli happens if x�+1

i ⊕ ki ∈ ui (i.e. the input value to
the i-th round function when enciphering x�+1 is equal to one of the oracle queries
made to Fi by the distinguisher). We simply denote Colli = XColli ∪ FColli.
Similarly, we say that XColl′

i happens if z�+1
i ⊕ ki is equal to xj

i ⊕ ki for some
1 ≤ j ≤ �, that FColl′

i happens if z�+1
i ⊕ ki ∈ ui, and we denote Coll′

i =
XColl′

i ∪ FColl′
i. Then, for i = 0, . . . , r − 1, we define F ′

i (z
�+1
i ⊕ ki) as follows:

(1) if Coll′
i happens, then F ′

i (z
�+1
i ⊕ki) is already defined (either because z�+1

i ⊕
ki = xj

i ⊕ ki for some j ≤ �, or by the constraint F ′(u) = v);
(2) if Coll′

i does not happen but Colli happens, F ′
i (z

�+1
i ⊕ki) is chosen uniformly

at random;
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(3) if neither Colli nor Coll′
i happens, then we define F ′

i (z
�+1
i ⊕ ki) so that

z�+1
i+1 = x�+1

i+1 , namely:

F ′
i (z

�+1
i ⊕ ki) = z�+1

i−1 ⊕ x�+1
i−1 ⊕ Fi(x�+1

i ⊕ ki) .

One can check that the round functions F ′ in the second KAF cipher are uni-
formly random among functions tuples satisfying F ′(u) = v. This is clear when
F ′

i (z
�+1
i ⊕ki) is defined according to rule (1) or (2). When F ′

i (z
�+1
i ⊕ki) is defined

according to rule (3), then Fi(x�+1
i ⊕ ki) is uniformly random since Colli does

not happen, so that F ′
i (z

�+1
i ⊕ki) is uniformly random as well. This implies that

the outputs of the second KAF cipher are distributed according to ν∗
� as wanted.

We say that the coupling is successful if all the outputs of both KAF ciphers
are equal. Since the � first outputs are aways equal by definition of the coupling,
this is simply equivalent to having z�+1

r−1 = x�+1
r−1 and z�+1

r = x�+1
r .

The following lemma simply states the key idea of a coupling argument: if
the states just after round i when enciphering x�+1 in the first cipher and z�+1

in the second cipher, namely (x�+1
i , x�+1

i+1) and (z�+1
i , z�+1

i+1 ), are equal, then they
remain equal after any subsequent round so that the coupling is successful.

Lemma 10. If there exists i ≤ r − 1 such that z�+1
i = x�+1

i and z�+1
i+1 = x�+1

i+1 ,
then the coupling is successful.

Proof. We proceed by reverse induction. If i = r − 1, there is nothing to prove.
Fix i < r − 1, and assume that the property is satisfied for i + 1. Then, if
z�+1

i = x�+1
i and z�+1

i+1 = x�+1
i+1 , we simply have to prove that z�+1

i+2 = x�+1
i+2 and

the coupling will be successful by the induction hypothesis.
Assume first that Coll′

i+1 happens, namely z�+1
i+1 ⊕ki+1 is equal to xj

i+1⊕ki+1

for some 1 ≤ j ≤ � or to uj′
i+1 for some 1 ≤ j′ ≤ qf . In both cases we see that

F ′
i+1(z

�+1
i+1 ⊕ ki+1) = Fi+1(x�+1

i+1 ⊕ ki+1), so that

z�+1
i+2 = z�+1

i ⊕ F ′
i+1(z

�+1
i+1 ⊕ ki+1) = x�+1

i ⊕ Fi+1(x�+1
i+1 ⊕ ki+1) = x�+1

i+2 .

When Coll′
i+1 does not happen, then Colli+1 does not happen either since we

assume x�+1
i+1 = z�+1

i+1 , so that by definition of the coupling F ′
i+1(z

l+1
i+1 ⊕ ki+1) is

chosen such that z�+1
i+2 = x�+1

i+2 . ��
The following lemma states that if neither Colli nor Coll′

i happen for two
consecutive rounds, then the coupling is successful. Note that in general we
cannot use round 0 to try to couple since we cannot prevent the distinguisher
from choosing x�+1 such that x�+1

0 = xj
0 for some j ≤ �, in which case Coll0

happens with probability 1.

Lemma 11. For i ∈ [1; r − 1], define Ai = Colli ∪ Coll′
i. Let Fail be the event

that the coupling does not succeed. Then:

Pr [Fail] ≤ Pr

[
r−2⋂
i=1

(Ai ∪ Ai+1)

]
.
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Proof. Fix i ∈ [1; r − 2]. We will show that ¬(Ai ∪ Ai+1) =⇒ ¬Fail. Indeed, if
none of the events Colli, Coll′

i, Colli+1, and Coll′
i+1 happens, then by defini-

tion of the coupling F ′
i (z

�+1
i ⊕ki) and F ′

i+1(z
�+1
i+1 ⊕ki+1) are chosen such that one

has z�+1
i+1 = x�+1

i+1 and z�+1
i+2 = x�+1

i+2 . By Lemma 10, this implies that the coupling
is successful. We just proved that ¬Fail ⊃ ∪r−2

i=1 ¬(Ai ∪ Ai+1), which yields the
result by negation. ��
Hence, the probability that the coupling fails is exactly the probability of event
Cr−1 that we studied in Sect. 3. At this point, the analysis differs for the KAF
and the Luby-Rackoff settings. Indeed, in the LR setting, we can show that
events Ai are p-negatively dependent, whereas this does not hold in the KAF
setting.

4.2 The KAF Setting

In the KAF setting, we cannot show that events Ai are p-negatively dependent.
However, they satisfy some weaker form of negative dependence.

Lemma 12. For any i ∈ [1; r − 1] and any subset S ⊆ [1; i − 2], one has:

Pr [Ai| ∩s∈S As] ≤ 2(� + 2qf )
2n

.

Proof. We need to prove that for any i ∈ [1; r − 1] and any subset S ⊆ [1; i − 2],
one has:

Pr
[
Colli ∪ Coll′

i

∣∣∣ ∩s∈S As

]
≤ 2(� + 2qf )

2n
.

We upper bound the conditional probability of Colli, the reasoning for Coll′
i

being similar. Recall that XColli is the event that x�+1
i ⊕ ki is equal to xj

i ⊕ ki

for some j ∈ [1; �], and FColli is the event that x�+1
i ⊕ki is equal to uj′

i for some
j′ ∈ [1; qf ], and that Colli = XColli ∪ FColli.

We first consider the probability of FColli. Since ki is uniformly random and
independent from ∩s∈SAs, this probability is at most qf/2n.

We now consider the probability of XColli, i.e. that x�+1
i ⊕ ki = xj

i ⊕ ki for
some j ∈ [1; �]. Note that this is equivalent to

x�+1
i−2 ⊕ Fi−1(x�+1

i−1 ⊕ ki−1) = xj
i−2 ⊕ Fi−1(x

j
i−1 ⊕ ki−1) . (1)

Here, we face the problem that conditioned on FColli−1, Fi−1(x�+1
i−1 ⊕ ki−1) is

not random because of the constraint F (u) = v. Hence, denoting B = ∩s∈SAs,
we write:

Pr [XColli|B] = Pr[XColli|B ∩ FColli−1] Pr [FColli−1|B]

+ Pr
[
XColli|B ∩ FColli−1

]
Pr

[
FColli−1|B

]

≤ Pr[FColli−1|B] + Pr
[
XColli|B ∩ FColli−1

]
.
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Since ki−1 is random and independent from B = ∩s∈SAs (recall that S ⊆
[1; i − 2]), we have Pr [FColli−1|B] ≤ qf/2n. To upper bound the second prob-
ability, note that if x�+1

i−1 = xj
i−1, then necessarily x�+1

i = xj
i since otherwise

this would contradict the hypothesis that queries x�+1 and xj are distinct. If
x�+1

i−1 = xj
i−1, then conditioned on FColli−1, Fi−1(x�+1

i−1 ⊕ ki−1) is uniformly ran-
dom and equation (1) is satisfied with probability at most 2−n for each j, so
that summing over j ∈ [1; �] we obtain Pr

[
XColli|B ∩ FColli−1

] ≤ �/2n. Hence
we have that Pr[Colli] ≤ (� + 2qf )/2n. The reasoning and the bound are the
same for the probability that Coll′

i happens, hence the result. ��
Lemma 13. Let qe, qf be positive integers. Then for any tuples x ∈ ({0, 1}2n)∗qe

and u = (u0, . . . , ur−1), v = (v0, . . . , vr−1) with ui, vi ∈ ({0, 1}n)qf , one has:

‖μx,u,v − μ∗‖ ≤ 4t

t + 1
(qe + 2qf )t+1

2tn
with t =

⌊r

3

⌋
.

Proof. Using successively the Coupling Lemma (Lemmas 1), Lemmas 11, and 12,
one has:

‖ν� − ν∗
� ‖ ≤ Pr [Fail] ≤ Pr

[
r−2⋂
i=1

(Ai ∪ Ai+1)

]

≤ Pr
[
(A1 ∪ A2)(A4 ∪ A5) · · · (A3·� r

3 �−2 ∪ A3·� r
3 �−1)

]

≤
(

4(� + 2qf )
2n

)t

with t =
⌊r

3

⌋
.

Hence, by Lemma 9, we have for any tuples x, u, v:

‖μx,u,v − μ∗‖ ≤
qe−1∑
�=0

‖ν� − ν∗
� ‖ ≤ 4t

2tn

qe−1∑
�=0

(� + 2qf )t

≤ 4t

2tn

∫ qe

�=0

(� + 2qf )t
d� ≤ 4t

t + 1
(qe + 2qf )t+1

2tn
,

which concludes the proof. ��
Finally, combining Lemmas 8 and 13, we obtain the following bound for the
NCPA-security of the ideal KAF cipher.

Theorem 1. Let qe, qf be positive integers. Then:

Advncpa
KAF[n,r](qe, qf ) ≤ 4t

t + 1
(qe + 2qf )t+1

2tn
with t =

⌊r

3

⌋
.

Hence, the ideal KAF cipher with r rounds ensures NCPA-security up to O(2
tn
t+1 )

queries of the adversary for t = � r
3�.
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4.3 The Luby-Rackoff Setting

In the Luby-Rackoff setting, events Ai can be shown to be p-negatively depen-
dent. This will allow to use the results of Sect. 3 to upper bound the probability
that the coupling fails.

Lemma 14. In the Luby-Rackoff setting (qf = 0), events A1, . . . , Ar−1 are
p-negatively dependent for p = 2�

2n .

Proof. We need to prove that for any i ∈ [1; r − 1] and any subset S ⊆ [1; i − 1],
one has:

Pr
[
Colli ∪ Coll′

i

∣∣∣ ∩s∈S As

]
≤ 2�

2n
.

In the Luby-Rackoff setting, qf = 0 so that events FColli and FColl′
i cannot

happen. Hence, we simply have to consider events XColli and XColl′
i. Event

XColli happens if x�+1
i ⊕ ki = xj

i ⊕ ki for some j ∈ [1; �]. Note that this is
equivalent to

x�+1
i−2 ⊕ Fi−1(x�+1

i−1 ⊕ ki−1) = xj
i−2 ⊕ Fi−1(x

j
i−1 ⊕ ki−1) .

If x�+1
i−1 = xj

i−1, then this happens with probability at most 2−n since in the LR
setting Fi−1 is uniformly random and independent of ∩s∈SAs. If x�+1

i−1 = xj
i−1,

then necessarily x�+1
i = xj

i since otherwise this would contradict the hypothesis
that queries x�+1 and xj are distinct.1 Summing over j ∈ [1; �], the probability of
XColli is at most �/2n. The reasoning is similar for the probability that XColl′

i

happens, hence the result. ��
This allows to use Lemma 7 to upper bound the probability that the coupling
fails.

Lemma 15. Let qe be a positive integer. Then for any tuple x ∈ ({0, 1}2n)∗qe ,
one has:

‖μx − μ∗‖ ≤
� 2r−2

3 �∑

t=� r−1
2 �

2t

t + 1

(
r − t

2r − 2 − 3t

)
qt+1
e

2tn
.

Proof. Using successively the Coupling Lemma (Lemma 1), Lemmas 11, and 7
combined with Lemma 14, one has (note that we apply Lemma 7 with r − 1
rather than r):

‖ν� − ν∗
� ‖ ≤ Pr [Fail] ≤ Pr

[
r−2⋂
i=1

(Ai ∪ Ai+1)

]
≤

� 2r−2
3 �∑

t=� r−1
2 �

(
r − t

2r − 2 − 3t

)(
2�

2n

)t

.

1 Note that whether x�+1
i−1 and xj

i−1 are distinct or not depends on ∩s∈SAs, so that

the event x�+1
i = xj

i is not independent from ∩s∈SAs.
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Hence, by Lemma 9, we have for any tuple x ∈ ({0, 1}2n)∗qe :

‖μx − μ∗‖ ≤
qe−1∑
�=0

‖ν� − ν∗
� ‖ ≤

� 2r−2
3 �∑

t=� r−1
2 �

(
r − t

2r − 2 − 3t

) qe−1∑
�=0

(
2�

2n

)t

≤
� 2r−2

3 �∑

t=� r−1
2 �

(
r − t

2r − 2 − 3t

)(
2
2n

)t ∫ qe

�=0

�td�

≤
� 2r−2

3 �∑

t=� r−1
2 �

2t

t + 1

(
r − t

2r − 2 − 3t

)
qt+1
e

2tn
,

which concludes the proof. ��
Finally, combining Lemmas 8 and 15, we obtain the following bound for the
NCPA-security of the ideal LR cipher.

Theorem 2. Let qe be a positive integer. Then:

Advncpa
LR[n,r](qe) ≤

� 2r−2
3 �∑

t=� r−1
2 �

2t

t + 1

(
r − t

2r − 2 − 3t

)
qt+1
e

2tn
.

The bound in this theorem is dominated by the term corresponding to t =
�(r−1)/2�. In particular, when r = 2r′ +1, the coefficient of this leading term is
simply 2r′

, so that the dominating term is simply 2r′
qr′+1
e /2r′n. (Incidentally, this

is exactly the bound that was proved in [9] for the r′-round Even-Mansour cipher
with n-bit permutations.) In other words, against NCPA-distinguishers, the ideal
LR cipher is secure up to O(2

tn
t+1 ) queries of the adversary with t = �(r − 1)/2�.

Comparison with the Hoang-Rogaway (HR) bound. In [8], Hoang and
Rogaway proved the following bound for the security of the ideal Luby-Rackoff
cipher LR[n, r]:

Advncpa
LR[n,r](qe) ≤ 4t

t + 1
qt+1
e

2tn
with t =

⌊r

3

⌋
.

In a nutshell, their analysis of the coupling probability proceeds as follows: they
show that the probability not to couple over three rounds is at most 4�/2n, and
then iterate the process for the next three rounds, etc. In effect, they prove an
additional security margin only every three rounds. Our analysis of the coupling
probability is tighter: we roughly get the same bonus every two rounds, hence
substantially ameliorating the security bound. For example, for three rounds,
both the HR bound and our bound show that the advantage is upper bounded
by 2q2e/2n (which is exactly the original Luby-Rackoff bound). While for five
rounds the HR bound does not improve, ours already shows that the advantage
is upper bounded by 4q3e/22n, while the HR bound yields a O(q3e/22n)-security
bound only for six rounds. See also Fig. 3 for a concrete comparison of the two
bounds once leveraged to CCA-security.
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Fig. 3. Proven CCA-security for the ideal Luby-Rackoff cipher LR[n, r] as a function
of log2(qe), the log of the number of adversary’s queries (left: n = 32, right: n = 64).
The dashed lines depict the Hoang-Rogaway bound [8], while the solid lines depict the
bound proven in this paper. On each graph, the two leftmost curves are for r = 24
while the two rightmost curves are for r = 96.

4.4 Adaptive Distinguishers

In order to prove security against CCA distinguishers, we use the classical
strategy (which was already used in all previous works using a coupling argu-
ment [8,9,16]) of composing two NCPA-secure ciphers. This is justified by the
following lemma.

Lemma 16 ([14]). If G and H are two blockciphers with the same message
space, then for any q:

Advcca
H−1◦G(q) ≤ Advncpa

G (q) + Advncpa
H (q) ,

where in H−1 ◦ G the two block ciphers are independently keyed.

Unfortunately, this result was only proved in the standard model (i.e. when the
block ciphers do not depend on additional oracles), which allows us to use it
only in the Luby-Rackoff setting.

Theorem 3. Let qe be a positive integer. Then:

Advcca
LR[n,2r′−1](qe) ≤

� 2r′−2
3 �∑

t=� r′−1
2 �

2t+1

t + 1

(
r′ − t

2r′ − 2 − 3t

)
qt+1
e

2tn
.

Proof. Let Rev be the operation defined as Rev(xL, xR) = (xR, xL). Then, as
already noticed in [13], a (2r′ − 1)-round Feistel scheme with round functions
F0, . . . , F2r′−2 can be written as Rev◦H−1◦G, where G and H are r′-round Feistel
schemes. This can be seen by writing the middle round function Fr′−1 as the xor
of two independent round functions F ′

r′−1 ⊕ F ′′
r′−1 (clearly, this does not change

the distribution of the outputs of the system): then G is the Feistel scheme
with round functions F0, . . . , Fr′−2, F

′
r′−1, while H is the Feistel scheme with

round functions F2r′−2, . . . , Fr′ , F ′′
r′−1. The result then follows from Lemma 16

and Theorem 2 (clearly composing with Rev does not change the advantage). ��
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For a 2r′-round Luby-Rackoff cipher, we get the same bound as for 2r′−1 rounds.
Again, the bound in this theorem is dominated by the term corresponding to
t = �(r′ − 1)/2�. Hence, this shows that an r-round Luby-Rackoff cipher ensures
CCA-security up to O(2

tn
t+1 ) queries, where t =

⌊
�(r+1)/2�−1

2

⌋
= � r−1

4 �.
For KAF ciphers, since we cannot apply Lemma 16 directly because the

cipher depends on additional oracles, we will appeal to the same strategy as
in [9], which relies on the following lemma, a refinement to Lemma 8.

Lemma 17. Let GF and HF ′
be two block ciphers with the same message space,

where GF and HF ′
depend respectively on oracles F = (F0, . . . , Fr−1) and F ′ =

(F ′
0, . . . , F

′
r′−1) (this might be arbitrary oracles, not necessarily random func-

tions). Assume that there exists αG such that for any tuple x ∈ (MsgSp(G))∗qe

and any tuples u = (u0, . . . , ur−1) and v = (v0, . . . , vr−1) where ui ∈ (Dom(Fi))qf

and vi ∈ (Rng(Fi))qf , one has ‖μG
x,u,v − μ∗‖ ≤ αG, and that there exists αH

such that for any tuple x′ ∈ (MsgSp(H))∗qe and any tuples u′ = (u′
0, . . . , u

′
r−1)

and v′ = (v′
0, . . . , v

′
r−1) where u′

i ∈ (Dom(F ′
i ))

qf and v′
i ∈ (Rng(F ′

i ))
qf , one has

‖μH
x′,u′,v′ − μ∗‖ ≤ αH .
(Here, MsgSp(E) is the message space of block cipher E, Dom(F ) and Rng(F )

are respectively the domain and the range of the oracle F , and the distributions
are defined as in Sect. 4.1, namely μG

x,u,v is the distribution of the outputs of GF

when receiving inputs x, conditioned on F (u) = v, and μH
x′,u′,v′ is the distribution

of the outputs of HF ′
when receiving inputs x′, conditioned on F ′(u′) = v′.)

Then:
Advcca

(HF ′ )−1◦GF (qe, qf ) ≤ 2(
√

αG +
√

αH) .

Proof. Deferred to the full version of the paper [10]. ��
Theorem 4. Let qe, qf be positive integers. Then:

Advcca
KAF[n,2r′](qe, qf ) ≤ 4

(
4t

t + 1
(qe + 2qf )t+1

2tn

)1/2

with t =
⌊

r′

3

⌋
.

Proof. Since in this context the distinguisher has oracle access to the round
functions, we cannot use the same trick as in the proof of Theorem 3 of writing
the middle round function of a (2r′ − 1)-round Feistel scheme as the xor of two
independent functions. Hence, we consider a 2r′-round KAF cipher. First, we
note that all the results of Sect. 4.1 apply mutatis mutandis to the inverse of
a KAF cipher, i.e. when the state at round i is updated according (xL, xR) �→
(xR⊕Fi(xL⊕ki), xL). Hence, we can see this 2r′-round KAF cipher as the cascade
of an r′-round KAF cipher and the inverse of the inverse of an independent r′-
round KAF cipher. The result then follows directly by combining Lemmas 13
and 17. ��
For a (2r′ + 1)-round KAF cipher, we get the same bound as for a 2r′-round
KAF cipher. Hence, a r-round KAF cipher ensures CCA-security up to O(2

tn
t+1 )

queries in total, where t =
⌊

�r/2�
3

⌋
=

⌊
r
6

⌋
.



Security Analysis of Key-Alternating Feistel Ciphers 263

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.,
Tischhauser, E.: Key-alternating ciphers in a provable setting: encryption using
a small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

2. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Berlin (2002)

4. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptol. 1(3), 221–242 (2007)

5. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

6. Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom
Permutation. J. Cryptol. 10(3), 151–162 (1997)

7. Gentry, C., Ramzan, Z.: Eliminating random permutation oracles in the even-
mansour cipher. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 32–47.
Springer, Heidelberg (2004)

8. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)

9. Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis of the
iterated even-mansour cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

10. Lampe, R., Seurin, Y.: Security Analysis of Key-Alternating Feistel Ciphers. Full
version of this paper. http://eprint.iacr.org/2014

11. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from
Pseudorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

12. Maurer, U.M.: A simplified and generalized treatment of luby-rackoff pseudoran-
dom permutation generators. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 239–255. Springer, Heidelberg (1993)

13. Maurer, U.M., Pietrzak, K.: The security of many-roundluby-rackoff pseudo-
random permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 544–561. Springer, Heidelberg (2003)

14. Maurer, U.M., Pietrzak, K., Renner, R.S.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer,
Heidelberg (2007)

15. Mironov, I.: (Not So) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

16. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer,
Heidelberg (2009)

17. Patarin, J.: Pseudorandom permutations based on the DES scheme. In: Charpin,
P., Cohen, G. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193–204. Springer,
Heidelberg (1991)

18. Patarin, J.: Security of random feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)

http://eprint.iacr.org/2014


264 R. Lampe and Y. Seurin

19. Patarin, J.: Security of balanced and unbalanced Feistel Schemes with Linear Non
Equalities (2010). http://eprint.iacr.org/2010/293

20. Ramzan, Z., Reyzin, L.: On the round security of symmetric-key cryptographic
primitives. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 376–393.
Springer, Heidelberg (2000)

21. Steinberger, J.: Improved Security Bounds for Key-Alternating Ciphers via
Hellinger Distance. IACR Cryptology ePrint Archive, Report 2012/481 (2012).
http://eprint.iacr.org/2012/481

22. Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. J. Cryptol. 16(4),
249–286 (2003)

http://eprint.iacr.org/2010/293
http://eprint.iacr.org/2012/481


The Related-Key Analysis
of Feistel Constructions

Manuel Barbosa1(B) and Pooya Farshim2

1 HASLab – INESC TEC and Universidade do Minho, Braga, Portugal
mbb@di.uminho.pt

2 Fachbereich Informatik, Technische Universität Darmstadt, Darmstadt, Germany
farshim@cased.de

Abstract. It is well known that the classical three- and four-round Feistel
constructions are provably secure under chosen-plaintext and chosen-
ciphertext attacks, respectively. However, irrespective of the number of
rounds, no Feistel construction can resist related-key attacks where the
keys can be offset by a constant. In this paper we show that, under
suitable reuse of round keys, security under related-key attacks can be
provably attained. Our modification is simpler and more efficient than
alternatives obtained using generic transforms, namely the PRG trans-
form of Bellare and Cash (CRYPTO 2010) and its random-oracle ana-
logue outlined by Lucks (FSE 2004). Additionally we formalize Luck’s
transform and show that it does not always work if related keys are
derived in an oracle-dependent way, and then prove it sound under appro-
priate restrictions.

Keywords: Feistel construction · Luby–rackoff · Related-key attack ·
Pseudorandom permutation · Random oracle

1 Introduction

Cryptographic algorithms deployed in the real world are subject to a multitude
of threats. Many of these threats are accounted for in the theoretical security
analysis carried out by cryptographers, but not all. Indeed, many documented
cases [14,15,32,39] show that theoretically secure cryptographic algorithms can
be vulnerable to relatively simple physical attacks, when these exploit imple-
mentation aspects that were abstracted away in the security analysis. For this
reason, an enormous research effort has been undertaken in recent years to bridge
the gap between physical security and theoretical security.

An important part of this effort has been dedicated to related-key attacks
(RKA), which were first identified by Knudsen and Biham [9,27] as an impor-
tant risk on implementations of block ciphers and symmetric-key cryptosystems.
The idea behind these attacks is as follows. The security of cryptographic algo-
rithms depends fundamentally on keeping secret keys hidden from attackers for
extended periods of time. For this reason, secret keys are typically stored and

c© International Association for Cryptologic Research 2015
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manipulated in protected memory areas and dedicated hardware components.
If these mechanisms can be influenced by intrusive techniques (such as fault
injection [2]) an adversary may be able to disturb the value of a secret key and
observe results computed using the manipulated (likely correlated) key value.

Since the original work of Knudsen and Biham, there have been many re-
ported cases of successful related-key cryptanalysis [8,10,28], and notably of the
Advanced Encryption Standard (AES) [11,12]. These results led to the consen-
sual view that RKA resilience should be a standard design goal for low-level
cryptographic primitives such as block ciphers and hash functions. For example,
in the recent SHA-3 competition, candidates were analyzed with respect to such
attacks (c.f. the work of Khovratovich et al. [26]), which played an important
role in the selection process.

The importance of including RKA security as a design goal for basic crypto-
graphic components is further heightened by the fact that such low-level prim-
itives are often assumed to provide RKA security when used in higher-level
protocols. Prominent examples are the key derivation procedures in standard
protocols such as EMV [16] and the 3GPP integrity and confidentiality algo-
rithms [25], where efficiency considerations lead to the use of the same block
cipher under closely related keys. Similar assumptions arise in constructions of
tweakable ciphers [29], where a block cipher is called on keys which are offset by
xor-ing tweak values.

Provable RKA security. Bellare and Kohno [6] initiated the theoretical
treatment of security under related-key attacks by proposing definitions for
RKA-secure pseudorandom functions (PRFs) and pseudorandom permutations
(PRPs), and presenting possibility and impossibility results for these primitives.
The models proposed in [6] were extended by Albrecht et al. [1] to address the
possibility of oracle-dependent attacks in idealized models of computation.

Various important positive results for provably RKA-secure constructions
of complex cryptographic primitives were subsequently published in the lit-
erature. Bellare and Cash [4] obtained a breakthrough result by presenting a
concrete construction of an RKA-secure pseudorandom function based on stan-
dard computational assumptions and in the standard model. Bellare, Cash, and
Miller [5] present a comprehensive treatment of RKA security for various cryp-
tographic primitives, focusing on the problem of leveraging the RKA resilience
of one primitive to construct RKA-secure instances of another. In particular,
Bellare et al. present a generic transformation in which an RKA-secure pseudo-
random generator can be used to convert instances of standard primitives such
as digital signatures and identity-based encryption into RKA-secure ones. Con-
crete constructions of RKA-secure public-key primitives were given by Wee and
by Bellare et al. in [7,42].

Feistel networks. A Feistel network [17,18] is a construction that permits
obtaining an efficiently computable and invertible permutation from an efficiently
computable function. The network is a cascade of simple Feistel permutations,
each relying on a round function (f , g, and h) mapping bit strings of length n
to outputs of the same length. Here the input and output are shown as tuples
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Fig. 1. A three-round Feistel network.

(L,R) and (L′, R′), where each component is a string of length n. For any num-
ber of rounds, these networks provide an invertible permutation over bit strings
of length 2n. Figure 1 shows an example of a Feistel network with three rounds.

Feistel networks (and generalized variants such as those discussed by Hoang
and Rogaway in [23]) have been extensively used in the construction of symmetric
cryptosystems (and even asymmetric ones such as RSA-OAEP), since the notable
case of the Data Encryption Standard (DES) in the 1970s [18]. In particular, a mul-
titude of block ciphers include Feistel-like constructions in their design, including
GOST, MYSTY1, Skipjack, BEAR / LION, CAST-256, RC6, and MARS [38]. For
this reason, the security properties of Feistel networks received significant atten-
tion in the last decades.

Security of the Feistel construction. In their seminal paper, Luby and
Rackoff [30] showed that instantiating the round functions in a Feistel construc-
tion with independently keyed secure PRFs is sufficient to obtain a secure PRP.
For three rounds of cascading, this result applies when the adversary has access
to results of forward computations (i.e., under chosen-plaintext attacks), and for
four rounds, the result holds even if the adversary can additionally observe the
results of inverse computations (i.e., under chosen-ciphertext attacks).

Following Luby and Rackoff’s result, many subsequent works looked at the
security of Feistel networks and generalized variants thereof. Important results
were obtained with respect to the efficiency of the construction, for example
by reducing the necessary key material (c.f. the work of Patarin [36]) and by
weakening the security assumptions for some of the round functions as in the
work of Naor and Reingold in [35]. In a different direction, the security offered by
Feistel networks with increasing numbers of rounds was precisely characterized
in a sequence of works by Vaudenay [41], Maurer and Pietrzak [33], Patarin [37]
and Hoang and Rogaway [23]. Holenstein, Künzler, and Tessaro [24] used the
Feistel construction with fourteen rounds to establish the equivalence of the
random-oracle and the ideal-cipher models in a broad range of applications via
the indifferentiability framework.

RKA security of Feistel networks. Despite this large body of work on the
provable security of the Feistel construction and the positive results on the RKA
security of advanced cryptographic primitives referred above, the RKA security
of the Feistel construction has received little attention. Indeed, to the best of
our knowledge, only the work of Bellare and Kohno [6] touches upon this topic,
where a strong negative result is shown: the Feistel construction irrespective of
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the number of rounds is vulnerable to related-key attacks, provided that the
attacker is able to modify as little as a single bit in the key used in the last
round function.1

Referring to Fig. 1, the attacker would proceed as follows. It would first
observe the output (L′

1, R
′
1) of the permutation computed on an input (L,R).

Then, the adversary would modify round function h to some other function h′

by manipulating its key, and observe the output (L′
2, R

′
2) computed over the

same input. The adversary can now determine whether it is interacting with an
ideal permutation or not: If interacting with Feistel, the outputs will always sat-
isfy L′

1 = L′
2, whereas in for an ideal (keyed) permutation the two outputs will

be different with overwhelming probability. This attack is possible whenever the
adversary is able to independently tweak the round function of the output stage
in the network, independently of the number of rounds, and even if the round
functions are instantiated with RKA-secure PRFs.

This vulnerability is relevant for practical applications of Feistel construc-
tions, since many important cryptanalytic results such as those presented by
Biryukov et al. [11,12] can be described as utilizing related keys that are derived
by xor-ing the original key with a constant. This in particular permits an
attacker to selectively modify the secret key for the output round in a Feistel
network and break the security of the construction. In this work we initiate the
treatment of provable RKA security of the Feistel constructions. Our main result
is to prove is that specific instances of Feistel networks that reuse round keys
offer intrinsic RKA security against practically relevant classes of RKD func-
tions, and thus overcome the negative result by Bellare and Kohno described
above. We now present our contributions in more detail.

Contributions. Lucks [31] proposes a general solution to the RKA security
of any cryptographic primitive in the random-oracle model: hash the secret key
before applying it to the cryptosystem. The intuition is that, modeling the hash
function as a random oracle, any modification to the secret key will result in a
new independent key to be used in the cryptosystem, confining the RKA adver-
sary to standard attacks. The RKA-secure PRG transform of Bellare, Cash, and
Miller (BCM) [5] that we discussed above can be seen as a special standard-
model analogue of this transform. Somewhat surprisingly, we show that the
original random oracle transform does not always result in an RKA-secure con-
struction. We amend this by first showing that, under certain restrictions on
the RKD set, the random oracle is an RKA-secure PRG, and then extending
the BCM result to the random-oracle model. The set of necessary restrictions
is permissive enough to include offsetting keys by constants (even if those keys
were hashed!) as a particular case. This solution, however, in addition to relying
on strong assumptions on the hash function, gives rise to decreased efficiency
with respect to the original primitive.

Moreover, the above result only applies to a transformed construction and
says nothing about the RKA security of Feistel constructions (which could be
1 Note that this does not contradict the aforementioned fourteen-round indifferentia-

bility result as the RKA security game is multi-stage.
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present in the construction of the hash function itself!). We therefore revisit the
Bellare–Kohno (BK) negative result and complement it by characterizing the
class of RKA-attacks that can be sustained by three and four rounds Feistel
networks with independent round keys (i.e., the original Luby–Rackoff construc-
tions). The class of tolerated attacks is highly restrictive and, in particular, it
excludes the xor-with-constants set. (This was to be expected, since the BK
attack can be launched using these RKD functions.)

We next consider variants of Feistel constructions in which the keys to round
functions in different stages of the network may be reused. These variants were
already proposed in the literature (c.f. the work by Patarin [36]) due to the
efficiency and security benefits of reducing the necessary secret key material.
However, we observe that key reuse has the added effect of limiting the power of
an RKA-adversary in targeting individual round keys. We build on this intuition
to obtain our main results: we show that Feistel networks with three (respectively
four) rounds can be proven CPA (respectively CCA) RKA secure by relying on
an RKA-secure PRF and using specific key assignments that reuse some of the
round keys.

Intuitively, our selection of key reusing assignments can be described as fol-
lows. It is well known that reusing the same keys in all rounds of the Feistel
network or, more generally, any palindromic assignment of the keys, leads to
totally insecure constructions. Also, the BK attack rules out key assignments
where the key to the output round (in both forward and inverse computations)
can be independently thwarted. These restrictions leave few plausible key assign-
ments for intrinsic RKA security of three- and four-round Feistel networks. From
these candidates we selected two specific assignments based on two PRF keys
K1 and K2: we consider the key assignment (K1,K2,K2) for the three-round
variant, and the (K1,K2,K1,K2) key assignment for the four-round variant. We
prove that the three-round variant is CPA secure and that the four-round vari-
ant is CCA secure, both in the RKA setting, assuming that the underlying PRF
is RKA secure, and that the RKD set satisfies natural restrictions akin to those
adopted, e.g., in [6].

Our results require no other modification to the original constructions in addi-
tion to the key assignment and therefore come with minimal modifications to
deployed implementations.2 Put differently, we are able to prove the RKA secu-
rity of the three-stage (CPA) and four-stage (CCA) Luby–Rackoff constructions,
whilst reducing the amount of key material and therefore potentially improving
the efficiency of the resulting implementations.

For practical applications, the most important aspect of our results is perhaps
that they cover the standard classes RKD functions considered in literature,
namely those which offset the key by xor-ing a constant. However, for the sake
of generality our presentation relies on a slightly more abstract framework, where
we characterize the covered classes of covered RKD functions by defining a set
of sufficient restrictions that they must satisfy. This approach also enables a
clearer and more modular presentation. For example, as an intermediate step,

2 Albeit imposing a stronger security assumption on the underlying PRF.
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we formalize a notion of multi-key RKA security that may be of independent
interest, and relate it to the standard single-key variant.

From a foundational perspective, our result can be seen as one bringing
RKA security analysis to the classical constructions of pseudorandom objects.
Goldberg and Liskov [19] study this question for building RKA-secure pseudo-
random generators (where the seed is interpreted as the key) from one-way
functions via Goldreich–Levin [20]. However, the natural questions of transform-
ing RKA-secure PRGs to RKA-secure PRFs via the GGM construction [21] or
RKA-secure PRFs to PRPs via the Luby–Rackoff constructions [30] have not
been addressed yet. Our results can been seen as giving a positive answer to the
latter question.

2 Preliminaries

Notation. We write x ← y for the action of assigning the value y to the variable
x. We write x1, . . . , xn ←$ X for sampling x1, . . . , xn from a finite set X uniformly
at random. If A is a probabilistic algorithm we denote the action of running A
on inputs x1, . . . , xn with independently chosen coins, and assigning the result
to y1, . . . , yn by y1, . . . , yn ←$ A(x1, . . . , xn). For a vector x = (x1, . . . , xn), we
define x|i = xi. We let [n] := {1, . . . , n}. A function ε(λ) is negligible if |ε(λ)| ∈
λ−ω(1). ppt as usual abbreviates probabilistic polynomial-time.

Keyed functions and permutations. Let Domλ, Rngλ, and KSpλ be three
families of finite sets parametrized by a security parameter λ ∈ N. We denote the
set of all functions ρ : Domλ −→ Rngλ by Func(Domλ,Rngλ). A keyed function is
a set of functions in Func(Domλ,Rngλ) indexed by the elements of the key space
KSpλ. We denote the set of all keyed functions by Func(KSpλ,Domλ,Rngλ). By
the ideal keyed function, we mean the family of distributions corresponding to
choosing a function uniformly at random from Func(KSpλ,Domλ,Rngλ). The
random oracle is the ideal keyed function where KSpλ for each λ ∈ N contains a
single key. We denote the set of all permutations on Domλ by Perm(Domλ). Note
that each permutation uniquely defines its inverse permutation (which is also a
member of this set). We define a family of keyed permutations analogously by
indexing a set of permutations according to keys in some space KSpλ. We denote
the set of all such keyed permutations by Perm(KSpλ,Domλ). The ideal keyed
permutation (a.k.a. the ideal cipher) is defined as the family of distributions that
choose a random element of Perm(KSpλ,Domλ).

Pseudorandom function and permutation family. A pseudorandom func-
tion family PRF := {PRFλ}λ∈N is a family of efficiently implementable keyed
functions, i.e., functions PRFλ : KSpλ × Domλ −→ Domλ, where PRPλ can be
computed in polynomial time in λ, together with an efficient procedure for sam-
pling of keys and domain points which by a slight abuse of notation we denote
by KSp(1λ) and Dom(1λ), respectively. A pseudorandom permutation family is
defined analogously with the extra requirement that the inverse of each permu-
tation in the family is also efficiently computable.
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3 RKA-Secure Pseudorandom Functions
and Permutations

In this section we introduce the formal framework in which we will analyze the
RKA security of Feistel constructions. We begin by formalizing the notion of
a family of related-key deriving (RKD) functions, which will parametrize our
RKA security notions. Subsequently we introduce a generalization of the stan-
dard security model for RKA-secure pseudorandom functions and permutations
to a scenario where multiple secret keys may be present in the system and influ-
ence the secret key derived by an RKD function. This is the natural setting for
analyzing Feistel networks, as they use multiple instances of the same PRF.

Family of RKD sets. A family of n-ary related-key deriving (RKD) sets Φ is
a family of RKD sets {Φλ} consisting of RKD functions φ (viewed as circuits)
which map an n-tuple of keys in some key space KSpλ to a new key in KSpλ,
i.e., φ : KSpn

λ → KSpλ. Throughout the paper we assume that membership in
any RKD set can be efficiently decided.

Multi-key RKA security. Let PRP := {PRPλ : KSpλ ×Domλ −→ Domλ} be
a PRP family and let Φ := {Φλ} be a family of n-ary RKD sets where the implicit
key space of the RKD functions in Φλ is KSpλ. Let game RKCCAPRP,A,Φ(1λ) be
as shown in Fig. 2. We say that PRP is Φ-RKCCA secure if the advantage of any
legitimate ppt adversary A defined as

Advrkcca
PRP,A,Φ(λ) := 2 · Pr

[
RKCCAPRP,A,Φ(1λ)

] − 1

is negligible as a function of λ. An adversary is legitimate if it queries the RKFn
and RKFn−1 oracles with functions φ in Φλ only.3 We say PRP is Φ-RKCPA
secure if the above advantage is negligible for any legitimate ppt adversary A
that never queries its RKFn−1 oracle.

In the full version [3] of this paper we prove that under the following natural
(but strong) restriction on RKD sets, the single-key and multi-key RKA models
are equivalent: we impose that any φ ∈ Φλ is of the form φ : (K1, . . . , Kn) �→
ψ(Ki), where i ∈ [n] and ψ : KSpλ −→ KSpλ is a unary RKD function.

RKCCAPRP,A,Φ(1λ):

b ←$ {0, 1}
π ←$ Perm(KSpλ,Domλ)

K1, . . . , Kn ←$ KSp(1λ)

b′ ←$ ARKFN,RKFN−1
(1λ)

Return (b′ = b)

RKFN(φ, x):

K′ ← φ(K1, . . . , Kn)
If b = 0 Return π(K′, x)
Return PRP(K′x)

RKFN−1(φ, x):

K′ ← φ(K1, . . . , Kn)
If b = 0 Return π−1(K′, x)
Return PRP−1(K′, x)

Fig. 2. Game defining the Φ-RKCCA security of a PRP.

3 Throughout the paper, we assume all the adversaries are, in this sense, legitimate.
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Remark. The multi-key RKA model for PRFs (under chosen-plaintext attacks) is
recovered when π is sampled from Func(KSpλ,Domλ,Rngλ) and oracle RKFn−1

is no longer present. When n = 1, we recover the single-key RKA model for PRPs
and PRFs as in [6]. The standard model for PRPs/PRFs is one where the RKD sets
Φλ contain the identity functions idλ : KSpλ −→ KSpλ; K �→ K only. The above
definition is not the strongest multi-key security model that one can envision. (For
instance consider a model where the adversary can choose the arity n.) However,
since the applications that we will be considering in this paper have a fixed number
of keys, the simpler definition above is sufficient for our purposes.

4 The Random-Oracle Transform

One way to transform a standard pseudorandom permutation to one which
resists related-key attacks is to hash the PRP key before using it in the con-
struction [31]. We call this the “Hash-then-PRP” transform. Bellare and Cash [4,
Theorem 6.1] prove the soundness of this approach in the standard model for
a restricted class of RKD functions, when the hash function is replaced by an
RKA-secure pseudorandom generator. At first sight it appears that an ideal hash
function (i.e., the random oracle) should be a valid instantiation of this construc-
tion. However, in the random-oracle model (ROM) the security proof should be
carried out in a setting where all parties have access to the random oracle (which
models the hash function). In this section we consider the implications of this
observation, and show that the random oracle does not always give rise to a good
instantiation of the construction. We provide a set of sufficient conditions that
allows us to formally prove that the heuristic transform is sound in the ROM.

RKA-secure PRG in ROM.4 We define an oracle RKD function to be a circuit
which contains special oracle gates, and we write an n-ary oracle RKD function
as φH : KSpn → KSp. Families of oracle RKD sets are defined in the obvious way.

Let PRGH : Dom −→ Rng be a pseudorandom generator in the ROM. Let
game RKAPRG,A,Φ be as shown in Fig. 3. We say that PRG is Φ-RKA secure if

RKAPRG,A,Φ(1λ):

ρ ←$ Func(Dom,Rng)
H ←$ Func(Dom′,Rng′)
K1, . . . , Kn ←$ Dom(1λ)
b ←$ {0, 1}
b′ ←$ ARKFN,RO(1λ)
Return (b′ = b)

RKFN(φ):

K′ ← φH(K1, . . . , Kn)
If b = 0 Return ρ(K′)
Return PRGH(K′)

RO(X):

Return H(X)

Fig. 3. Game defining the Φ-RKA security of a PRG. An adversary is legitimate if it
queries RKFn with a φ ∈ Φλ only.

4 We remark that this game can also be seen as extension of correlated-input secure
hashing [22] to the random-oracle model.
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the advantage of any ppt adversary A as defined below is negligible in λ.

Advrka
PRG,Φ,A(λ) := 2 · Pr

[
RKAPRF,A,Φ(1λ)

] − 1 .

The question that we wish to answer is under which conditions does the random
oracle itself (i.e., when PRGH(X) := H(X)) constitute an RKA-secure PRG. The
attack we now show and the ensuing discussion demonstrate that this is only
the case if we exclude certain forms of oracle-dependent related-key attacks.

The attack. Consider a unary RKD set containing the identity function and
an oracle-dependent RKD function φH [1]: Φ := {id : K �→ K, φH : K �→
H(K)}. Here, H denotes the random oracle. Now consider an adversary that first
requests a PRG value of the seed by querying id to the RKFn oracle. It receives as
response a value y which is either H(K), when b = 1, or ρ(K) when b = 0, where
ρ is an independent random oracle. The adversary now queries y to RO to get a
new value z which is either H(H(K)) or H(ρ(K)). Finally, the adversary queries
φH to RKFn to get a value z′ which is either H(H(K)) or ρ(H(K)). Now, when
b = 1, then z = z′ with probability 1. When b = 0 the values z and z′ would only
match if H(ρ(K)) = ρ(H(K)). The probability of this event is negligible, so the
adversary wins with overwhelming probability by returning (z = z′).

We now define a sufficient set of restrictions on oracle RKD sets that allow
us to prove a ROM analogue of the result by Bellare and Cash [4]. Intuitively the
restrictions are strong enough to rule out attacks that follow the above pattern.

Output unpredictability. A family of oracle RKD sets Φ is output unpre-
dictable (UP) if the following definition of advantage is negligible in λ for any
ppt adversary A outputting a list of RKD functions and a list of keys.

Advup
A,Φ(λ) := Pr [∃ (φ,K∗) ∈ L1 × L2 s.t. φH(K) = K∗ :

H ←$ Func(KSp,KSp);K←$ KSpn; (L1, L2)←$ AH(1λ)
]

Claw-freeness. A family of oracle RKD sets Φ is claw-free (CF) if the following
definition of advantage is negligible in λ for any ppt adversary A outputting a
list of RKD functions.

Advcf
A,Φ(λ) := Pr [∃ φH

1 , φH
2 ∈ L s.t. φH

1 (K) = φH
2 (K) ∧ φH

1 �= φH
2 :

H ←$ Func(KSp,KSp);K←$ KSpn; L←$ AH(1λ)
]

Query independence. A family of oracle RKD sets Φ is query independent
(QI) if the following definition of advantage is negligible in λ for any ppt adver-
sary A outputting a list of RKD functions.

Advqi
A,Φ(λ) := Pr [∃φH

1 , φH
2 ∈ L s.t. φH

1 (K) ∈ Qry[φH
2 (K)] :

H ←$ Func(KSp,KSp);K←$ KSpn; L←$ AH(1λ)
]

Here, Qry[φH
2 (K)] denotes the set of queries placed to H by φH

2 when run on a
vector of keys K. Note that RKD functions φH

1 and φH
2 need not be distinct.
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We recover the standard (non-oracle) definition of output unpredictability
and claw-freeness [6], when the RKD functions do not make any oracle queries:
the random oracle can be simulated using lazy sampling. Query independence is
trivially satisfied for such non-oracle RKD functions.

We now prove that the random oracle is an RKA-secure pseudorandom gen-
erator under the above restrictions on the oracle RKD set, and then build on this
result to establish security of the Hash-then-PRP transform in the random oracle
model. Looking ahead, this result allows us to take a Luby–Rackoff PRP and
generically transform it to obtain an RKA-secure PRP. In subsequent sections
we will explore less intrusive, more efficient alternatives that take advantage of
the inner structure of the Feistel construction.

Theorem 1 (RKA Security of the Random Oracle). Let Φ be a family
of oracle RKD sets. For any Φ-RKCCA adversary A against the pseudorandom
generator PRGH(K) := H(K), there are adversaries A1, A2, and A3 such that

Advrkcpa
PRG,A,Φ(λ) ≤ Advup

A1,Φ(λ) + 2 · Advcf
A2,Φ(λ) + Advqi

A3,Φ(λ) ,

Proof (Sketch). We give only the intuition; the details of the proof can be found
in the full version. Assume, without loss of generality, that the adversary never
places repeat queries to its RKFn and RO oracles. Let Game0 denote the RKA
game where H is used in the RKFn oracle (i.e., the challenge bit is 1).

We modify Game0 to Game1 by implementing the H oracle in theRKFn oracle
in a forgetful way (i.e., we won’t keep track of repetitions), but leaving it unchanged
for the explicit queries made through RO and the indirect queries placed by the
oracle RKD functions. Note that in this game the adversary receives independently
and uniformly distributed strings from either of its oracles.

Games Game0 and Game1 are identical unless one of the following events takes
place: (1) A repeat H query is placed as a result of an explicit RO query and
an output of an oracle RKD function queried to RKFn: this leads to a violation
of the output unpredictability. (2) There is a repeat query to H as a result of
two distinct RKFn queries: this leads to a claw-freeness break. (3) There is a
repeat H query as a result of a query to RKFn and an indirect query placed by
an oracle RKD function to H: this breaks the query-independence property.

We now modify Game1 to Game2 by changing the forgetful oracle and imple-
menting it using an independently chosen (non-forgetful) random oracle. The
games are identical unless there is a claw among the RKD functions queried to
RKFn, which by the above analysis happens with negligible probability. Finally
note that Game2 is identical to the RKA game conditioned on b = 0.5 
�
In the full version we state and prove the analogue of the RKA-secure PRG
transform of Bellare, Cash, and Miller [5], which in combination with Theorem 1
establishes security of the Hash-then-PRP transform in the random oracle model.

5 This transition my be avoided by observing that Game0 and Game2 are also identical
until the same bad events which separate Game0 and Game1.
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5 The Feistel Construction

In this section we recall the formal definitions related to the Feistel constructions
and introduce the notion of key assignment. We also establish a general result
that permits shifting the analysis of Feistel networks with any number of rounds
where the round functions are instantiated with an RKA-secure PRF to a more
convenient setting where the round functions are instantiated with the ideal
keyed function.

Feistel networks. The one-round Feistel construction and its inverse with
respect to a function f is defined as

F[f ](L,R) := (R,L ⊕ f(R)) and F−1[f ](L,R) := (R ⊕ f(L), L) .

The n-round Feistel construction with respect to functions f1, . . . , fn is defined
recursively via the following equations (see Fig. 1 for a pictorial representation).

F[f1, . . . , fn](L,R) := F[f2, . . . , fn](F[f1](L,R)) ,

F−1[f1, . . . , fn](L,R) := F−1[f1, . . . , fn−1](F−1[fn](L,R))

Typically, functions fi(·) are implemented using a PRF under independently
generated keys K1, . . . , Kn. In our analysis we will also consider the conceptual
setting in which these functions are instantiated by an ideal keyed function ρ,
again under independently generated keys K1, . . . , Kn. In this case we denote
the constructions by FPRF[K1, . . . , Kn] and Fρ[K1, . . . , Kn], respectively.

Key assignment. A key assignment is a family of circuits κλ : KSpλ −→ KSpn,
where KSp is an arbitrary key space. Given κ := {κλ} and K ∈ KSpλ, we
consider the associated n-round Feistel construction FPRF[κ(K)]. When the key
K ∈ KSpλ is randomly generated, we denote the construct by FPRF[κ]. For
example, the Hash-then-PRP transform of the previous section can be viewed
as FPRF[H]. We are, however, interested in simple key assignments of the form
κ : (K1, . . . , Km) �→ (Ki1 , . . . , Kin

), where i1, . . . , in are fixed indices in [m]. We
will therefore compactly write the Feistel construction associated to the sim-
ple key assignment above by FPRF[i1, . . . , in]. For example, when κ(K1,K2) :=
(K1,K2,K2), the associated Feistel construction is written as FPRF[1, 2, 2].

When the round functions in a 3-round Feistel construction are instantiated
with a PRF under independent keys, we obtain the classic CPA-secure Luby–
Rackoff pseudorandom permutation. When 4 rounds are used, we obtain its
CCA-secure counterpart. As stated in the introduction, Bellare and Kohno [6]
observed that if an adversary can arbitrarily tamper with the key used in the
last round of any Feistel network, then a successful related-key attack is possible
(even if the underlying PRF is RKA secure).

As discussed in the previous section, by applying the Hash-then-PRP trans-
form to the Luby–Rackoff construction, we can obtain a PRP which resists
related-key attacks. The underlying PRG can be instantiated in the standard
model via an RKA-secure PRF (e.g., that used in the Luby–Rackoff construc-
tion) as suggested in [4] or, outside the standard model, using random oracles.
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Both transformations, however, come with two major drawbacks. The first
drawback is the performance penalty. The standard-model approach incurs a
total of six PRF computations in the 3-round network: 3 calls to generate the
keys and another 3 to compute the PRP.6 (The total number of calls is eight for
the CCA case.) Note that the amortized complexity of the construction cannot be
brought down back to 3 by storing the generated keys, as related-key attacks can
be applied to these keys. In the ROM transform (on top of strong assumptions)
the penalty will be smaller if the hash function is more efficient than the PRF.
However, this leads to a second drawback: the transform is software/hardware
intrusive, as extra circuitry for the implementation key-derivation procedure
need to be added.

For these reasons, in the remainder of the paper, we will consider more effi-
cient alternatives to obtaining RKA-secure PRPs by exploring directly the struc-
ture of Feistel constructions via simple key assignments. Before doing so, we
prove a general theorem that allows us to move from the security analysis of a
Feistel construction with respect to an RKA-secure PRF to a setting in which
the round functions are instantiated by the ideal keyed function. Our result holds
for any number of rounds and any key assignment.

Theorem 2 (Computational RKA Transition). Let Φ be a family of RKD
sets containing functions of the form KSpm −→ KSpm and let κ : KSpm −→
KSpn be a key assignment. Define Ψ := ∪i(κ ◦ Φ)i, where (κ ◦ Φ)i is the RKD
set obtained by composing function in Φ by κ on the right and then projecting
to i-th component for 1 ≤ i ≤ n. Let ρ denote the ideal keyed function, and let
PRF denote be a pseudorandom function. Then for any ppt adversary A against
the Φ-RKCCA security of FPRF[κ], there is an adversary B against the Ψ-RKCPA
security of PRF such that

Advrkcca
FPRF[κ],A,Φ(λ) ≤ Advrkcca

Fρ[κ],A,Φ(λ) + Advrkcpa
PRF,B,Ψ(λ).

An analogous result holds for Φ-RKCPA adversaries.

Proof (Sketch). We start with the Φ-RKCCA game for FPRF[κ] and replace all
n rounds function in the Feistel construction with an ideal keyed function. Any
change in an adversary A’s advantage in the two games can be used to break the
(multi-key) Ψ-RKCCA security of PRF via an adversary B. Algorithm B runs A
and answers its forward queries to the Feistel construction as follows. On input
(φ, x) where φ ∈ Φ, algorithm B sets ψ1 := (κ ◦ φ)|1 and calls the RKFn oracle
on (ψ1, x) to get x1. It then sets ψ2 := (κ ◦ φ)|2, queries RKFn on (ψ2, x1)
to get x2. Algorithm B continues in this way for all n rounds and returns the
final output. Backward queries can be also handled similarly using RKFn in
the reverse direction. Clearly, according to the challenge bit b used in the Ψ-
RKCPA game, B simulates the Φ-RKCCA game with the same challenge bit b for
algorithm A. 
�
6 The overall tightness of security obtained via [4, Theorem 6.1] is also worse than

what we obtain here, although it is possible that it can be improved via a direct
analysis.
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6 CPA Security: The 3-Round Constructions

As we discussed in the Introduction, no palindromic assignment of keys in a
three-round Feistel construction can result in a CPA-secure PRP, since the con-
struction in the forward direction can be used to compute inverses, and a trivial
distinguishing attack emerges. Moreover, if the key used in the third round is
independent of those used in first and second rounds, then the BK attack applies.
Under these restriction, for simple key assignments and up to relabeling of the
indices, we are left with only one 3-round construction which can potentially
achieve CPA security under related-key attacks: FPRF[1, 2, 2].

The main proof of this section is an information-theoretic argument showing
that Fρ[1, 2, 2] is Φ-RKCPA secure for Φ’s which are claw-free and switch-free.
Combined with Theorem 2 in the previous section, this implies that FPRF[1, 2, 2]
offers intrinsic RKA-resilience, in the sense that it permits leveraging the RKA-
security properties of its underlying PRF.

For the security proof in this and the next sections we need to rely on an
additional restriction on RKD sets.

Switch-freeness. A family of RKD sets Φ with arity n > 2 is called switch-
free (SF) if the advantage of any ppt adversary A as defined below is negligible
as a function of λ.

Advsf
A,Φ(λ) := Pr [(∃φ1, φ2 ∈ L)(∃i �= j ∈ [n]) φ1(K)|i = φ2(K)|j:

K←$ KSpn; L←$ A(1λ)
]

We note that the switch-free and claw-free properties are in general incom-
parable. Consider, for example, the set consisting of id and a function which
agrees with id on all but one point. This set is switch-free but not claw-free.
Conversely, consider the set consisting of id and the map (K1,K2) �→ (K2,K1).
This set is claw-free but not switch-free.

Theorem 3 (Fρ[1, 2, 2] Security). LetΦ be a family of RKD sets. TheFρ[1, 2, 2]
construction is Φ-RKCPA secure in the ideal keyed function model if Φ is claw-fee
and switch-free. More precisely, for every Φ-RKCPA adversary A placing at most
Q(λ) queries to RKFn, there exist adversaries B1 and B2 such that

Advrkcpa
Fρ[1,2,2],A,Φ(λ) ≤ Advrf/rp

A,Φ (λ) + 2Advsf
B1,Φ(λ) + 4Advcf

B2,Φ(λ) +
25Q(λ)2

|Domλ| .

Proof (Intuition).We give a high-level description of the proof and refer the reader
to the full version for the full details. We assume, without loss of generality, that
the adversary is non-repeating in the sense that it not place redundant repeat
queries to its oracle. We start with the Φ-RKCPA game, and consider an modi-
fied game where the round functions are implemented as follows. The first round
is implemented using a consistent ideal keyed function (as in the original construc-
tion). The second and third round functions, however, will be forgetful and return
independent random values on each invocation irrespective of the input values.
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Note that the outputs of the network computed according to this game are ran-
dom, and, by an appropriate strengthening of the classical PRP/PRF switching
lemma (given in the full version), they are also indistinguishable from an ideal
keyed permutation. Furthermore, in this game the values of the outputs of the
first round function remain hidden as they are masked by random values gener-
ated in the third round.

Now the game above differs from the original CPA game due to inconsisten-
cies occurring in computing round function values both across and within the
same round, when the adversary is able to cause collisions in round function
inputs in the original CPA game that are ignored in the game above. There
are five such pairs of inconsistencies possible (we keep track of queries to the
first round, so inconsistencies wont happen here). If there is a collision in inputs,
which include the keys, to the first and second or first and third rounds, then the
keys collide and this event leads to a violation of switch-freeness. Now suppose
the inconsistency is due to a collision between the inputs to the third round func-
tion. Since the outputs of the second round function are randomly chosen at each
invocation, this event happens with probability roughly Q(λ)2/|Domλ| by the
birthday bound. Collisions between the inputs to the second and third rounds
also happen with negligible probably as the outputs of the first round remain
hidden from the adversary. Finally, we are left with collisions in the inputs to the
second round function. Note that this means that the keys input to this func-
tion are identical. Now if the keys or right halves of the inputs used in the first
round in the two colliding queries were different, then the outputs of the first
round function would be random and independent, and a collision would happen
with a negligible probability (as first-round outputs are hidden). If the keys and
right halves were identical, a collision can only take place if the left halves are
also identical. However, due to the non-repeating condition, in this case we must
have that the queried RKD functions are distinct, and consequently a claw in
the RKD set is discovered. 
�
We emphasize that we do not claim the switch-free and claw-free restrictions
are necessary for non-existence of attacks. On the other hand, these restrictions
are akin to those adopted in previous works on RKA security, and do not overly
constrain the practical applicability of our results. For example, the n-ary RKD
sets for xor-ing with constants defined by

Φ⊕
m := {φC1,...,Cm

: (K1, . . . , Km) �→ (K1 ⊕ C1, . . . , Km ⊕ Cm) :
(C1, . . . , Cm) ∈ KSpm}

can be easily shown to satisfy these restrictions. Unpredictability follows from
the fact that each map in the set induces a permutation over the keys (and
hence output distribution is uniform). For claw-freeness suppose we are given
two distinct RKD functions. Suppose they differ in their i-th component, i.e.,
Ci �= C ′

i. Then, since the keys Ki and Kj are chosen independently and uniformly
at random, the probability that the i-th output keys match, i.e., that Ki ⊕
Ci = Kj ⊕ C ′

i, is negligible. Switch-freeness follows from a similar argument.
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Note finally that the restrictions needed for the reduction to the RKA security
of the underlying PRF are easily shown to be satisfied by the above set, as the
key assignment is simple. We obtain the following corollary.

Corollary 1. FPRF[1, 2, 2] is a Φ⊕
2 -RKCPA-secure pseudorandom permutation,

if PRF is a Φ⊕
1 -RKCPA-secure PRF.

In the full version we characterize the RKA security of the original three-round
Luby–Rackoff construction, where three independent round keys are used.

7 CCA Security: The 4-Round Constructions

It is well known that the Fρ[1, 2, 3] construction is CCA insecure. For example, the
attacker can proceed as follows: 1) Choose arbitrary L,R,L′, query RKFn(L,R)
to obtain C1 and query RKFn(L′, R) to obtain C2; 2) Query RKFn−1(C2 ⊕
(0, L ⊕ L′)) to obtain C3; 3) Check if (C1 ⊕ C2 ⊕ Swap(C3)) is same as R. The
same attack applies to all Feistel networks with three rounds, independently of
the key assignment, and so there is no hope that such constructions can achieve
any form of CCA security.

In this section we investigate the CCA security of 4-round constructions
under related-key attacks. Due to the generic related-key attacks that we listed
in the previous section (insecurity of palindromic key assignment and tampering
with the last key), and the fact the in the CCA model the construction can be
accessed in both the forward and backward directions, the only candidates than
can potentially satisfy RKCCA security are: Fρ[1, 1, 2, 1], its inverse Fρ[1, 2, 1, 1],
Fρ[1, 1, 2, 2], Fρ[1, 2, 1, 2], and Fρ[1, 2, 3, 1]. In this work, we look at Fρ[1, 2, 1, 2].

The proof of RKCCA security for the F[1, 2, 1, 2] construction, as in the
RKCPA case, has two components: a computational part allowing transition
from PRFs to ideal keyed functions, and an information-theoretic argument that
establishes security when the construction is instantiated with an ideal keyed
function. The first part of the proof follows from Theorem 2. We now prove the
second part.

Theorem 4 (F[1, 2, 1, 2] Security). Let Φ be a family of RKD sets. Suppose
Φ is claw-fee and switch-free. Then the Fρ[1, 2, 1, 2] construction is Φ-RKCPA
secure in the ideal keyed function model. More precisely, for every Φ-RKCCA
adversary A placing at most Q(λ) queries to RKFn or RKFn−1, there are B1

and B2 such that

Advrkcca
Fρ[1,2,1,2],A,Φ(λ) ≤ Advrf/rp

A,Φ (λ) + 2Advsf
B1,Φ(λ) + 8Advcf

B2,Φ(λ) +
28Q(λ)2

|Domλ| .

Proof (Intuition). We give a high-level description of the proof and refer the
reader to the full version for the full details. The proof follows the same structure
as Theorem 3, but it is slightly more complex due to the possibility of collisions
occurring in the inputs of the round functions when they are used in the RKFn
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and RKFn−1 oracles. We assume, without loss of generality, that the adversary
is non-repeating in the sense that it does not place repeat queries to either of
its oracles, does not decipher an enciphered value, and does not enciphered a
deciphered value.

We start with the Φ-RKCCA game where the round functions faithfully imple-
ment an ideal keyed function. We then consider a game where all round functions
are implemented in a forgetful way except that (1) the input round function
in RKFn is consistent and also keeps track of the entries contributed from
RKFn−1’s output round; and (2) the input round function in RKFn−1 is con-
sistent and also keeps track of the entries contributed from RKFn’s output
round. In this game the output values of the construction are random and hence
indistinguishable from those from an ideal keyed permutation by the PRP/PRF
switching lemma. Furthermore, the outputs of the input round functions in the
RKFn and RKFn−1 oracles remain hidden as they are masked by the forgetful
action of the remaining round functions.

As in the CPA setting, we need to keep track of collisions in the inputs to
various pairs of round functions with lead to inconsistencies, as follows. (1) First
forward and fourth backward rounds are consistent with previous queries due to
their implementation. (2) Collisions between even and odd numbered round func-
tions in both directions happen with negligible probability due to switch-freeness.
(3) Inputs to the third and fourth forward rounds collide with negligible probabil-
ity with the previous inputs of all other round functions due to the randomness of
their respective inputs. A similar argument applies to the first and second back-
ward rounds. (4) Collisions between first forward and third forward/backward
rounds happen with negligible probability as the outputs of the fourth back-
ward round are random and remain hidden from the adversary. A similar
argument applies to the fourth/second rounds in the backward direction. (5) Col-
lisions between second forward and fourth forward/backward rounds happen
with negligible probability as outputs of the first forward round are random and
remain hidden. A similar argument applies to the second round in the backward
direction. (6) Finally, collisions between the second forward round and itself or
second backward can be bounded using the fact that outputs of the first forward
round are random remain hidden, combined with claw-freeness, similarly to the
CPA case. A similar argument applies to the third backward round. 
�
As in the CPA setting, the family Φ⊕

4 satisfies all the prerequisites required for
the reduction to the RKA security of the underlying PRF and we obtain the
following corollary.

Corollary 2. FPRF[1, 2, 1, 2] is a Φ⊕
2 -RKCCA-secure PRP, if the underlying PRF

is a Φ⊕
1 -RKCCA-secure PRF.

In the full version we give a positive result for the RKA security of the original
4-round Luby–Rackoff construction.
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8 Directions for Further Research

This works takes a first step in the construction of RKA-secure symmetric cryp-
tosystems based on Feistel networks, and leaves open a number of directions for
future research. From a conceptual point of view, the RKA-security of many-
round Feistel networks (including beyond-birthday-type concrete security) are
important open questions. From a practical point of view, the RKA security
of alternative constructions of PRPs such as generalized Feistel networks [23]
and key-alternating ciphers [13], along with their potential (dis)advantages over
Feistel networks are another interesting direction for future work.

We conclude the paper with a conjecture about the RKA security of Feistel
networks with respect to arbitrary numbers of rounds and key assignments,
which generalizes the CCA characterization studied in [34], and generalizes our
result in Sect. 7 to the other plausible key assignments.

Conjecture. Let n > 3 be an integer, κ : KSpm −→ KSpn be a simple key
assignment, and Φ be a family of RKD sets consisting of functions φ : KSpm −→
KSpm. Suppose that the following requirements are satisfied.

1. κ ◦ Φ is output unpredictable and claw-free.
2. (κ,Φ) is palindrome-fee: for any φ, φ′ ∈ Φ the probability over a random

(K1, . . . , Km) that κ ◦ φ′(K1, . . . , Km) = σ ◦ κ ◦ φ(K1, . . . , Km) is negligible,
where σ(K1, . . . , Km) := (Km, . . . , K1).

3. (κ,Φ) is first-key repeating: for any distinct φ, φ′ ∈ Φ the probability over a
random (K1, . . . , Km) that [κ ◦ φ(K1, . . . , Km)]1 �= [κ ◦ φ′(K1, . . . , Km)]1 and
[κ ◦ φ(K1, . . . , Km)]i = [κ ◦ φ′(K1, . . . , Km)]i for all 1 < i ≤ n is small.

4. (κ,Φ) is last-key repeating: for any distinct φ, φ′ ∈ Φ the probability over a
random (K1, . . . , Km) that [κ◦φ(K1, . . . , Km)]n �= [κ◦φ′(K1, . . . , Km)]n and
[κ ◦ φ(K1, . . . , Km)]i = [κ ◦ φ′(K1, . . . , Km)]i for all 1 ≤ i < n is small.

Then the Fρ[κ] construction is Φ-RKCCA secure in the ideal keyed function model
and hence, combined with Theorem 2, the FPRF[κ] construction is Φ-RKCCA
secure for a Ψ-RKCPA-secure PRF, for Ψ as in the statement of Theorem 2.

We note that among the above restrictions claw-freeness is the only require-
ment which is not known to be necessary. Hence we obtain an “almost” character-
ization. Note, however, that the RKA security of a deterministic cryptosystems
seems difficult to be established without assuming claw-freeness (nevertheless,
cf. [5] for a weaker ICR notion). The conjecture strengthens and extends some
of the results presented in the previous sections.
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26. Khovratovich, D., Nikolić, I., Rechberger, C.: Rotational rebound attacks on
reduced skein. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 1–19.
Springer, Heidelberg (2010)

27. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Seberry, J., Zheng, Y. (eds.)
Advances in Cryptology – AUSCRYPT ’92. LNCS, vol. 718, pp. 196–208. Springer,
Heidelberg (1993)

28. Knudsen, L.R., Kohno, T.: Analysis of RMAC. In: Johansson, T. (ed.) FSE 2003.
LNCS, vol. 2887, pp. 182–191. Springer, Heidelberg (2003)

29. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, p. 31. Springer, Heidelberg (2002)

30. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

31. Lucks, S.: Ciphers secure against related-key attacks. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004)

32. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

33. Maurer, U., Pietrzak, K.: The security of many-round luby-rackoff pseudo-random
permutations. In: Biham, Eli (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 544–
561. Springer, Heidelberg (2003)

34. Nandi, M.: The characterization of luby-rackoff and its optimum single-key vari-
ants. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp.
82–97. Springer, Heidelberg (2010)

35. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

36. Patarin, J.: How to construct pseudorandom permutations and super pseudoran-
dom permutations from one single pseudorandom functions. In: Rueppel, R.A.
(ed.) Advances in Cryptology – EUROCRYPT 1992. LNCS, vol. 658, pp. 256–266.
Springer, Heidelberg (1992)

37. Patarin, J.: Security of random feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)

38. Piret, G.: Block Ciphers: Security Proofs, Cryptanalysis, Design, and Fault
Attacks. Ph.D. Thesis, Université Catholique de Louvain (2005)
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Abstract. Given k independent pseudorandom permutations f1, . . . , fk

over {0, 1}n, it is natural to define a pseudorandom function by XORing
the permutations: f1 ⊕ . . . ⊕ fk. In [9] Stefan Lucks studied the security
of this PRF. In this paper we improve the security bounds of [9] by using
different proof techniques.

Keywords: Pseudorandom functions · Pseudorandom permutations ·
Security beyond the birthday bound · Luby-Rackoff backwards

1 Introduction

Much research dealt with constructing cryptographic operations from other
ones: Levin [6] got “pseudorandom bit generators” from “one-way functions”,
then Goldreich, Goldwasser and Micali [4] constructed pseudorandom functions
(PRFs) from “pseudorandom bit generators”. In [1], Aiello and Venkatesan stud-
ied how to construct PRFs from smaller PRFs. Luby and Rackoff [7] dealt with
the problem of getting pseudorandom permutations (PRPs) from PRFs; fur-
ther work about their construction can be found in [8,11]. Our article focuses
on the reverse problem of converting PRPs into PRFs named “Luby-Rackoff
backwards” which was first considered in [3]. This problem is obvious if we are
interested in an asymptotical polynomial versus non polynomial security model
(since a PRP is then a PRF), but not if we are interested in achieving more
optimal and concrete security bounds. More precisely, the loss of security when
regarding a PRP as a PRF comes from the “birthday attack” which can dis-
tinguish a random permutation from a random function of n bits to n bits in
2

n
2 operations and 2

n
2 queries. Therefore different ways to build PRF from PRP

with a security above 2
n
2 and by performing very few computations have been

suggested (see [2,3,5,9]). One of the simplest way is to XOR k independent
pseudorandom permutations with k ≥ 2. In [9] (Theorem 2, p.474) Stefan Lucks
proved, with a simple proof, that the XOR of k independant PRPs gives a PRF
with security at least in O

(
2

k
k+1 n

)
. In [2,12] difficult analyses of k = 2 are

given, with proofs that the security is good when the number of queries is lower
than O (

2n

n2/3

)
or O (2n). For k ≥ 3 there is a significant gap between the proven

security of [9] and the best attacks of [13].
c© International Association for Cryptologic Research 2015
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In this paper we reduce this gap by improving the proven security for the
XOR of k permutations, k ≥ 3. Constructions with k ≥ 3 instead of k = 2
are interesting for various reasons. First, our proofs are much simpler than the
proofs of [2,12]. Second, in many cryptographic applications the size n of the
blocks cannot be chosen by the designer of the algorithm since it is imposed by
the application. Then it is interesting to have another parameter to decrease the
proven advantage of any adversary to a value as small as wanted with a simple
construction. Our proof technique is based on the “coefficient H technique” of
Patarin (cf [14]). However we only use the first steps (and not all the refine-
ments) in order to keep very simple proofs with still better security results than
previously known; we could achieve tighter bounds by using the full technique,
but it would require more computations (such as [15]).

Related Problems. In [10] the security of the XOR of two public permutations
are studied (i.e. indifferentiability instead of indistinguishability).

Organisation of the Paper. Section. 2 presents the notations and basic def-
initions that are used in this paper. In Sects. 3 and 4, two security bounds are
shown with different techniques (respectively the “Hσ coefficient” technique and
the “H coefficient” technique). Then both these results are compared to the one
from [9] in the last section.

2 Preliminaries

We denote In the set of n−bits strings and Jq
n the subset of Iq

n of values (xi)1≤i≤q

satisfying xi �= xj ,∀i �= j. We denote Fn the set of functions from In to In and
Bn the set of permutations of In. The notation x ∈R E stands for “x is chosen
randomly with a uniform distribution in E”.

An adversary A trying to distinguish between f1 ⊕ . . . ⊕ fk, where fi ∈R Bn

for each i ∈ {1, . . . , k}, from a random function F ∈R Fn is considered to have
access to an oracle Q. This oracle either simulates F or f1 ⊕ . . . ⊕ fk. A chooses
inputs x ∈ {0, 1}n; then Q responds Q(x) ∈ {0, 1}n. After at most q queries,
A outputs A(Q) ∈ {0, 1}. A(Q) is then seen as a random variable over {0, 1}.
This is an adaptative chosen plaintext attack (cpa). To measure the pseudo-
randomness of the XOR of k permutations one must evaluate the advantage
Advcpa

A,f1⊕...⊕fk
of an adversary A which is defined as

Advcpa
A,f1⊕...⊕fk

= |Pr[A(f1 ⊕ . . . ⊕ fk) = 1] − Pr[A(F ) = 1]|.
We write Advcpa

f1⊕...⊕fk
for the maximal advantage any adversary can get when

trying to distinguish the XOR of k random permutations from a random function.

3 Security Bound from the Hσ Technique

3.1 Linking the Advantage to a Combinatorial Problem

Let k ≥ 2. We use Theorem 3 from [14]:
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Theorem 1. Let α, β ∈ R
+ and q ∈ N \ {0}. Let E be a subset of Iq

n such that
|E| ≥ (1−β)2nq. Suppose that, for each sequence (ai)1≤i≤q, (bi)1≤i≤q ∈ Jq

n, with
(bi)1≤i≤q ∈ E:

H(a, b) ≥ (1 − α)
|Bn|k
2nq

,

with H(a, b) the number of (f1, . . . , fk) ∈ Bk
n such that:

∀i, 1 ≤ i ≤ q, (f1 ⊕ . . . ⊕ fk)(ai) = bi.

Then:

Advcpa
f1⊕...⊕fk

≤ α + β.

For every b ∈ Jq
n, let hq(b) be the number of sequences x1, x2, . . . , xk−1 ∈ Jq

n

such that x1 ⊕ . . . ⊕ xk−1 ⊕ b ∈ Jq
n then

Lemma 1. For all a, b ∈ Jq
n:

H(a, b) = hq(b)
|Bn|k(

2n × · · · × (2n − q + 1)
)k

.

Proof. The number H(a, b) can be seen as the sum, over the sequences x1, x2, . . . ,
xk−1 ∈ Jq

n such that x1 ⊕ . . . ⊕ xk−1 ⊕ b ∈ Jq
n, of the number of f1, . . . , fk ∈ Bn

satisfying the equations fj(ai) = xj
i for all j ≤ k−1, i ≤ q and fk(ai) = x1

i ⊕. . .⊕
xk−1

i ⊕ bi,∀i ≤ q. Then, for each choices of x1, . . . , xk−1, each fj is a uniformly

random permutation fixed on q points so H(a, b) = hq(b)
(

|Bn|
2n×···×(2n−q+1)

)k

,
which also shows that H(a, b) does not depend of a. �	

We now see hq as a random variable over b ∈R Iq
n. The security of the XOR

of k permutations is closely related to the variance and the expectancy of this
random variable:

Lemma 2. The advantage satisfies:

Advcpa
f1⊕...⊕fk

≤ 2

(
V [hq]
E [hq]

2

)1/3

. (1)

Proof. For all a, we define H(a) the random variable over b equal to H(a, b).
The Bienayme-Chebyshev’s inequality yields:

∀ε > 0,Pr [|H(a) − E [H(a)]| ≤ ε] ≥ 1 − V [H(a)]
ε2

.

Taking ε = αE [H(a)]:

∀α > 0,Pr [|H(a) − E [H(a)]| ≤ αE [H(a)]] ≥ 1 − V [H(a)]
α2E [H(a)]2

.
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Then

∀α > 0,Pr [H(a) ≥ (1 − α)E [H(a)]] ≥ 1 − V [H(a)]
α2E [H(a)]2

.

Thus, defining E = {(bi)1≤i≤q|H(a, b) ≥ (1 − α)E [H(a)]}, Theorem 1 yields:

∀α > 0,Advcpa
f1⊕...⊕fk

≤ α +
V [H(a)]

α2E [H(a)]2
.

Then, with α =
(

V[H(a)]

E[H(a)]2

)1/3

:

Advcpa
f1⊕...⊕fk

≤ 2

(
V [H(a)]
E [H(a)]2

)1/3

= 2

(
V [hq]
E [hq]

2

)1/3

.

�	
Lemma 3. The mean of hq satisfies:

E [hq] =

[
2n(2n − 1) . . . (2n − q + 1)

]k

2nq
.

Proof. This result generalizes a theorem found in [12]. We define δx, with x =
(x1, . . . , xk−1) ∈ (Jq

n)k−1, a random variable over b such that δx = 1 if x1, . . . ,
xk−1, b ⊕ x1 ⊕ · · · ⊕ xk−1 ∈ Jq

n and δx = 0 otherwise. It’s clear that hq =∑
x∈(Jq

n)k−1

δx, then

E [hq] =
∑

x∈(Jq
n)k−1

E [δx]

=
∑

x∈(Jq
n)k−1

Pr
[
the bi ⊕ x1

i ⊕ . . . ⊕ xk−1
i are pairwise distinct

]

=
∑

x∈(Jq
n)k−1

2n(2n − 1) . . . (2n − q + 1)
2nq

= |Jq
n|k−1 × 2n(2n − 1) . . . (2n − q + 1)

2nq

=

[
2n(2n − 1) . . . (2n − q + 1)

]k

2nq
.

�	
We now focus on the variance of hq.

3.2 Study of V [hq]

Wedenoteλq thenumber of sequences g1, . . . , g2k ∈ Jq
n such that g1 ⊕ · · · ⊕ g2k = 0.

These conditions will be referred to as the λq conditions. This is 2k sequences of q
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pairwise distinct elements and q equations so, we could expect λq to be close to

Uq :=
(2n(2n − 1)(2n − q + 1))2k

22nq
.

We see in the next lemma that the problem of knowing how close λq is from Uq

is at the core of the computation of the advantage.

Lemma 4. The advantage satisfies:

Advcpa
f1⊕...⊕fk

≤ 2
(

λq

Uq
− 1

)1/3

.

Proof. We know that hq =
∑

x δx with the sum being over x ∈ (Jq
n)k−1, so the

linearity of the expected value operator yields:

V [hq] = E

⎡
⎣

(∑
x

δx − E [hq]

)2
⎤
⎦

= E

⎡
⎣

(∑
x

δx

)2

− 2

(∑
x

δx

)
E [hq] + E [hq]

2

⎤
⎦

= E

[(∑
x

δx

) (∑
x′

δx′

)]
− 2E

[∑
x

δx

]
E [hq] + E [hq]

2

= E

⎡
⎣∑

x,x′
δxδx′

⎤
⎦ − E [hq]

2
,

the sum being over x, x′ ∈ (Jq
n)k−1. Then:

E

⎡
⎣∑

x,x′
δxδx′

⎤
⎦ =

1
2nq

∑
b,x,x′

δx(b)δx′(b).

We know that δx(b)δx′(b), with x, x′ ∈ (Jq
n)k−1, equals 1 if and only if b⊕x1⊕· · ·⊕

xk−1 ∈ Jq
n and b⊕x′1⊕· · ·⊕x′k−1 ∈ Jq

n. If we change variables like this: gi := xi

and gi+k−1 := x′i for all 1 ≤ i ≤ k − 1 and g2k−1 := b ⊕ x1 ⊕ · · · ⊕ xk−1, g2k :=
b ⊕ x′1 ⊕ · · · ⊕ x′k−1, we see that

∑
b,x,x′ δx(b)δx′(b) is equal to λq. Then:

V [hq] =
λq

2nq
− E [hq]

2

=
λq − Uq

2nq
since E [hq]

2 =
Uq

2nq
.
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Moreover, using Lemma 2:

Advcpa
f1⊕...⊕fk

≤ 2

(
V [hq]
E [hq]

2

)1/3

≤ 2
(

λq − Uq

Uq

)1/3

≤ 2
(

λq

Uq
− 1

)1/3

.

�	
The strategy we follow is to evaluate recursively, more and more accurately,

the coefficients λα for 1 ≤ α ≤ q.

3.3 First Evaluation of λα

By definition, λα+1 is the number of tuples g1, . . . , g2k ∈ Jα+1
n such that:

1. the λα conditions hold,
2. for all 1 ≤ j ≤ 2k, gj

α+1 �∈ {gj
i , 1 ≤ i ≤ α},

3. g1α+1 ⊕ · · · ⊕ g2k
α+1 = 0. (Eα+1)

Hence there are 2kα equations that should not be verified. For 1 ≤ i ≤ 2kα,
we denote βi the i-th such equation. Let Bi be the set of tuples (g1, . . . , g2k)
which satisfy the λα conditions, the equation (Eα+1) and the equation βi, for
1 ≤ i ≤ 2kα. Then:

λα+1 = 2(2k−1)nλα −
∣∣∣∣∣
2kα⋃
i=1

Bi

∣∣∣∣∣ .

Using the inclusion-exclusion principle:

λα+1 = 2(2k−1)nλα +
2kα∑
l=1

(−1)l
∑

i1<...<il

|Bi1 ∩ . . . ∩ Bil
|.

When more than 2k + 1 equations βi are considered, at least two of them use
the same variable, for example g1α+1 = g11 and g1α+1 = g12 , which is impossible
according to the λα conditions. Thus:

λα+1 = 2(2k−1)nλα +
2k∑
l=1

(−1)l
∑

i1<...<il

|Bi1 ∩ . . . ∩ Bil
|. (2)

Now, we study every kind of intersection.
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• 1 equation:

The βi equation fixes the value of one new variable, whereas the others are
free, so:

|Bi| = 2(2k−2)nλα

and there exists 2kα such sets.

• l equations (2 ≤ l ≤ 2k − 1):

Such an intersection is non-empty if every equation βi uses a different new vari-
able. In this case, l new variables are fixed and the others remain free. Thus,

|Bi1 ∩ . . . ∩ Bil
| = 2(2k−1−l)nλα

and there are
(

2k
�

)
αk such non-empty intersections.

• 2k equations:

Like before, such a set is non-empty if every equation βi uses a different new
variable. In this case, the set Bi1 ∩ . . . ∩ Bi2k

is composed of tuples such that
g1α+1 = g1i1 , . . . , g

2k
α+1 = g2k

i2k
and the equation (Eα+1) implies that:

g1i1 ⊕ · · · ⊕ g2k
i2k

= 0.

We denote X this equation and λ′
α(X) the size of |Bi1 ∩ . . . ∩ Bi2k

|. There are
3 possible cases:

– If the 2k indexes in X are equal then X is always true. There are α possibilities
and λ′

α(X) = λα.
– If 2k − 1 indexes are equal and the last is different, then λ′

α(X) = 0 since X
is in contradiction with λα. There are 2kα(α − 1) possibilities.

– We denote S the set of equations X that are not of the previous types. We
denote λ′

α = maxS λ′
α(X).

Hence, thanks to (2), one has:

λα+1 = 2(2k−1)nλα − 2kαλα +
2k−1∑
�=2

(
2k
�

)
(−1)lαl2(2k−1−�)nλα +

∑
X

λ′
α(X)

=

(
22kn − 2kα2n +

2k−1∑
�=2

(
2k
�

)
(−1)lαl2(2k−�)n

)
λα

2n
+ αλα +

∑
X∈S

λ′
α(X)

≤
(
(2n − α)2k − α2k + 2nα

)
λα

2n
+

(
α2k − α − 2kα(α − 1)

)
λ′

α

We denote εα = 2nλ′
α

λα
− 1, so:

2nλα+1

λα
≤ (2n − α)2k − α2k + 2nα +

2nλ′
α

λα
× (α2k − α − 2kα(α − 1))

≤ (2n − α)2k + 2nα − α − 2kα(α − 1) + εα × (α2k − α − 2kα(α − 1))
≤ (2n − α)2k − 2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))
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3.4 Relation Between the Advantage and εα

Lemma 5. For every m ≥ 1, the advantage satisfies:

Adv
cpa
f1⊕...⊕fk

≤ 2

⎛
⎝

m−1∏
α=1

(
1 +

−2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))

(2n − α)2k

)
− 1

⎞
⎠

1/3

.

Proof. We know that
2nUα+1

Uα
= (2n − α)2k,

and the result of the previous section yields:

λα+1

Uα+1
≤ λα

Uα

(
(2n − α)2k − 2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))

(2n − α)2k

)

≤ λα

Uα

(
1 +

−2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))

(2n − α)2k

)

Since U1 = λ1 = 2(2k−1)n:

λm

Um
≤

m−1∏
α=1

(
1 +

−2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))
(2n − α)2k

)

And Lemma 4 ends the proof. �	

3.5 First Approximation of εα

Before evaluating εα, we need a technical lemma:

Lemma 6. For every α ∈ {2, . . . , m}, one has:

1 − 2kα

2n
≤ λα

2(2k−1)nλα−1
≤ 1. (3)

Proof. We consider g1, . . . , g2k ∈ Jα
n satisfying the conditions λα−1. To satisfy

the conditions λα, there are (2n − (α − 1)) possibilities for each g1α, . . . , g2k−2
α

and there are 2(α − 1) non-equalities left: g2k−1
α �= g2k−1

i and g2k
α �= g2k

i for all
i ≤ α − 1. Since g2k

α = g1α ⊕ · · · ⊕ g2k−1
α , one sees these 2(α − 1) non-equalities as

equations on g2k−1
α . So, there are between 2n −2(α−1) and 2n − (α−1) possible

choices for g2k−1
α and 1 choice for g2k

α . Then:

λα−1(2n − (α − 1))2k−2(2n − 2(α − 1)) ≤ λα ≤ λα−1(2n − (α − 1))2k−1

which is equivalent to:
(

1 − α − 1
2n

)2k−2 (
1 − 2(α − 1)

2n

)
≤ λα

2(2k−1)nλα−1
≤

(
1 − α − 1

2n

)2k−1

.

Since the left term is bigger than 1 − 2kα
2n and the right term is inferior to 1, it

ends the proof. �	
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Lemma 7. Every value λ′
α(X) with X ∈ S satisfies:

2nλ′
α(X)
λα

≤ 1 +
2kα(

1 − 2kα
2n

)
2n

.

Proof. We now express λ′
α in terms of λα−1. Without loss of generality, we

suppose that X involves g1α, otherwise we can just reorder the variables. Let i
be any index such that gi

α is not involved in X (this is possible since X ∈ S).
Let g1, . . . , g2k ∈ Jα

n such that the λα−1 conditions are satisfied. We now count
λ′

α(X). There are at most 2n −(α−1) possible choices for each gj
α, j �= 1, i. After

we made these choices, there are two variables left: g1α and gi
α. Since gi

α is not
involved in X, there is only, at most, one possible choice for g1α and there is, at
most, one possible choice for gi

α using the equation g1α ⊕ · · · ⊕ g2k
α = 0. Then:

λ′
α(X) ≤ (2n − (α − 1))2k−2λα−1.

Applying Lemma 6, one finds that:

λ′
α(X) ≤ (2n − (α − 1))2k−2

(
1

1 − 2kα
2n

)
λα

2(2k−1)n

Since 2n − α − 1 ≤ 2n and 1
1− 2kα

2n
= 1 + 2kα

(1− 2kα
2n )2n

, this ends the proof. �	

Remark: These two technical lemmas formalize the intuition that, when one
equation is added to the system, one degree of freedom is lost and this divides
the number of possible solutions by around 2n.

Finally

εα ≤ 2kα(
1 − 2kα

2n

)
2n

.

First notice that if q ≤ 2n

2k , −2kα2 + α(2n) ≥ 0. Then, from Lemma 5,

Adv
cpa
f1⊕...⊕fk

≤ 2

⎛
⎝

q−1∏
α=1

(
1 +

−2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))

(2n − α)2k

)
− 1

⎞
⎠

1/3

.

If q ≤ 2n

2k , all the terms of the product are greater than 1 and

Adv
cpa
f1⊕...⊕fk

≤ 2

⎛
⎝

q−1∏
α=1

⎛
⎝1 +

−2kα2 + α(2n + 2k − 1)

(2n − α)2k
+

2kα × (α2k − 2kα2 + α(2k − 1))(
1 − 2kα

2n

)
2n × (2n − α)2k

⎞
⎠− 1

⎞
⎠

1/3

≤ 2

⎛
⎝

q−1∏
α=1

⎛
⎝1 +

α2n

(2n − α)2k
+

2kα2k+1
(
1 − 2kα

2n

)
2n(2n − α)2k

⎞
⎠− 1

⎞
⎠

1/3

≤ 2

⎛
⎝
⎛
⎝1 +

q2n

(2n − q)2k
+

2kq2k+1
(
1 − 2kq

2n

)
2n(2n − q)2k

⎞
⎠

q

− 1

⎞
⎠

1/3

.

Thus we have proven that:
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Theorem 2 (Upper Bound of the Advantage Using Hσ). The maximal
advantage an adversary can get using q queries, with q ≤ 2n

2k verifies:

Advcpa
f1⊕...⊕fk

≤ 2

⎛
⎝

⎛
⎝1 +

q2n

(2n − q)2k
+

2kq2k+1

(
1 − 2kq

2n

)
2n(2n − q)2k

⎞
⎠

q

− 1

⎞
⎠

1/3

.

Notice that

Advcpa
f1⊕...⊕fk

� 2

(
q2

2(2k−1)n(1 − q
2n )2k

+
2kq2k+2

2(2k+1)n(1 − 6kq
2n )

)1/3

.

Since k ≥ 3 and q ≤ 2n, the first term is negligible in front of 1. Moreover, when
q2k+2 � 2(2k+1)n, Advcpa

f1⊕...⊕fk
� 1. Hence we have proven that the XOR of k

permutations is safe as long as q � 2
2k+1
2k+2n with this first technique.

4 Security Bound from the Standard H Technique

We now use the “standard H technique”, i.e. proofs from the general result (the
Corollary 8) below. In this section, E[hq] is noted h̃q to lighten the notations.

Corollary 8. Let α > 0. If, for every sequence b = (bi)1≤i≤q ∈ Iq
n

hq(b) ≥ (1 − α)h̃q,

then

Advcpa
f1⊕...⊕fk

≤ α.

Proof. This result comes immediately from Theorem 1 with β = 0 and Lemmas
1 and 3. �	

4.1 First Approximation

Let us study hα

h̃α
.

One has:

h̃α+1 = h̃α
(2n − α)k

2n
.

We now evaluate hα+1 from hα. From the definition of hα (see Sect. 3.1), we see
that hα+1 is the number of sequence (P j

i )1≤i≤m,1≤j≤k such that:

– the hα conditions hold;
– P 1

α+1 ⊕ . . . ⊕ P k
α+1 = bα+1, this equation will be called X;

– P j
α+1 �= P j

i for every 1 ≤ i ≤ α, 1 ≤ j ≤ k.
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Let βi, 1 ≤ kα be the kα equations which should be false. Let, for 1 ≤ i ≤ kα,
Bi be the set of the

(
P j

i

)
1≤i≤α+1,1≤j≤k

for which the hα conditions and the

equation βi hold.
From the inclusion-exclusion principle, we get:

hα+1 = 2(k−1)nhα − | ∪kα
i=1 Bi|

= 2(k−1)nhα +
∑

1≤l≤kα

(−1)l
∑

i1<...<il

|Bi1 ∩ . . . ∩ Bil
|.

When k + 1 sets are intersected, at least two equations will use the same P j
α+1

variable, which is in contradiction with hα. Thus,

hα+1 = 2(k−1)nhα +
∑

1≤l≤k

(−1)l
∑

i1<...<il

|Bi1 ∩ . . . ∩ Bil
|. (4)

We study the number of possible messages in function of the number of sets in
the intersection.

• l equations, 1 ≤ l ≤ k − 1:

If we want |Bi1 ∩. . .∩Bil
| �= 0, every new βi equation should bring a new variable

P j
α+1. In this case, X and βi fix l + 1 variables, the remaining ones are free, so

|Bi1 ∩ . . . ∩ Bil
| = 2(k−l−1)nhα and

∑
i1<...<il

|Bi1 ∩ . . . ∩ Bil
| =

(
k
l

)
αl2(k−l−1)nhα

• k equations:

As well as above, in order to have |Bi1 ∩ . . .∩Bik
| �= 0, there must be an equation

in every new variable:
P j

α+1 = P j
ij

, 1 ≤ j ≤ k.

So the condition P 1
α+1 ⊕ . . . ⊕ P k

α+1 = bα+1 becomes:

P 1
i1 ⊕ . . . ⊕ P k

ik
= bα+1.

Let h′
α(b1, . . . , bα+1)(i1, . . . , ik) or h′

α(i1, . . . , ik) the number of (P j
i )1≤i≤α,1≤j≤k ∈

Ikα
n such that:

– the conditions hα hold,
– P 1

i1
⊕ . . . ⊕ P k

ik
= bα+1.

Let Y (i1, . . . , ik) be this equality. Thus
∑

i1<...<ik

|Bi1 ∩ . . . ∩ Bik
| =

∑
1≤i1,...,ik≤α

h′
α(i1, . . . , ik).
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From (4), we have:

hα+1 =
(2n − α)k − (−1)kαk

2n
hα + (−1)k

∑
1≤i1,...,ik≤α

h′
α(i1, . . . , ik). (5)

Remark: if k is even, one has:

hα+1 ≥ hα

(
(2n − α)k − αk

2n

)
.

So
hα+1

h̃α+1

≥ hα

h̃α

(
1 − αk

(2n − α)k

)
.

As h1 = h̃1 = 2(k−1)n,

hq ≥ h̃q

(
1 − qk

(2n − q)k

)q

≥ h̃q

(
1 − qk+1

(2n − q)k

)

Then, using Corollary 8,

Advcpa
f1⊕...⊕fk

≤ qk+1

(2n − q)k
.

The upper bound we get in this case is in the same order of magnitude as the
one from [9]. If we study more closely h′

α, we will get a better inequality.

4.2 Second Approximation

In this section, we suppose that k ≥ 3.
Let M = {i, 1 ≤ i ≤ α, bi = bα+1}. If i ∈ M , we have h′

α(i, . . . , i) = hα

and if i �∈ M , h′
α(i, . . . , i) = 0. Furthermore, in order to be compatible with

hα, if i ∈ M , for each 1 ≤ j ≤ α, i �= j, h′
α(j, i, . . . , i) = h′

α(i, j, . . . , i) =
. . . = h′

α(i, . . . , i, j) = 0. Let I be the set of the tuples that do not satisfy these
requirements. Then |I| = αk − α − k|M |(α − 1). By applying (5), one gets:

hα+1 =
(2n − α)k − (−1)kαk + (−1)k2n|M |

2n
hα + (−1)k

∑
(i1,...,ik)∈I

h′
α(i1, . . . , ik).

(6)
We now need a technical lemma:

Lemma 9. If i = (i1, . . . , ik) ∈ I,

1 − 3α

(2n − α)(1 − α
2n )

≤ 2nh′
α(i1, . . . , ik)

hα
≤ 1

1 − 3α
2n

.
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Proof. Without loss of generality, we can suppose that i1 = α and i2 = α − 1
(because we can reorder the queries). Let us evaluate h′

α and hα from hα−2. To
get hα from hα−2, we have 2k new variables P j

α−1 and P j
α, 1 ≤ j ≤ k, such that:

– P 1
α ⊕ . . . ⊕ P k

α = bα,
– P 1

α−1 ⊕ . . . ⊕ P k
α−1 = bα−1,

– ∀j, 1 ≤ j ≤ k, ∀i, 1 ≤ i ≤ α − 2, P j
α−1 �= P j

i ,

– ∀j, 1 ≤ j ≤ k, ∀i, 1 ≤ i ≤ α − 1, P j
α �= P j

i .

We decide that the first equation will fix P 1
α−1 and the next one P 1

α. For j ≥ 3,
we have respectively 2n − (α − 2) and 2n − (α − 1) possibilities for P j

α−1 and
P j

α. When these messages have been chosen, only P 2
α−1 and P 2

α remain, and they
must satisfy:

– P 2
α−1 �= P 2

i , 1 ≤ i ≤ α − 2,
– P 2

α−1 �= P 1
i ⊕ bα−1 ⊕ P 3

α−1 ⊕ . . . ⊕ P k
α−1, 1 ≤ i ≤ α − 2,

– P 2
α �= P 2

i , 1 ≤ i ≤ α − 1,
– P 2

α �= P 1
i ⊕ bα ⊕ P 3

α ⊕ . . . ⊕ P k
α , 1 ≤ i ≤ α − 1.

There are for P 2
α−1 between 2n − 2(α− 2) and 2n − (α− 2) choices and for P 2

α−1

between 2n − 2(α − 1) and 2n − (α − 1). Thus

(2n − (α − 2))k−2(2n − (α − 1))k−2(2n − 2(α − 2))(2n − 2(α − 1)) ≤ hα

hα−2
, (7)

hα

hα−2
≤ (2n − (α − 2))k−1(2n − (α − 1))k−1. (8)

In order to go from hα−2 to h′
α, we also have 2k new variables P j

α−1 and P j
α,

1 ≤ j ≤ k, such that:

– P 1
α−1 ⊕ . . . ⊕ P k

α−1 = bα−1,
– P 1

α = bα+1 ⊕ P 2
α−1 ⊕ P 3

i3
⊕ . . . ⊕ P k

ik
,

– P 1
α ⊕ . . . ⊕ P k

α = bα,
– ∀j, 1 ≤ j ≤ k, ∀i, 1 ≤ i ≤ α − 2, P j

α−1 �= P j
i ,

– ∀j, 1 ≤ j ≤ k, ∀i, 1 ≤ i ≤ α − 1, P j
α �= P j

i .

We have, for j ≥ 4, respectively 2n − (α − 2) and 2n − (α − 1) possibilities for
P j

α−1 and P j
α. From these 3 equalities, we can fix the following variables:

1. P 1
α−1 = bα−1 ⊕ P 2

α−1 ⊕ . . . ⊕ P k
α−1,

2. P 1
α = bα+1 ⊕ P 2

α−1 ⊕ P 3
i3

⊕ . . . ⊕ P k
ik

,

3. P 2
α = (bα+1 ⊕ bα) ⊕ P 2

α−1 ⊕ (P 3
i3

⊕ P 3
α) ⊕ . . . ⊕ (P k

ik
⊕ P k

α).

Then

– the condition ∀i, 1 ≤ i ≤ α − 2, P 1
α−1 �= P 1

i becomes:

∀i, 1 ≤ i ≤ α − 2, P 2
α−1 �= P 1

i ⊕ bα−1 ⊕ P 3
α−1 ⊕ . . . ⊕ P k

α−1,

– ∀i, 1 ≤ i ≤ α − 1, P 1
α �= P 1

i becomes:

∀i, 1 ≤ i ≤ α − 1, P 2
α−1 �= bα+1 ⊕ P 1

i ⊕ P 3
i3 ⊕ . . . ⊕ P k

ik
,
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– ∀i, 1 ≤ i ≤ α − 2, P 2
α �= P 1

i becomes:

∀i, 1 ≤ i ≤ α − 2, P 2
α−1 �= (bα+1 ⊕ bα) ⊕ P 2

i ⊕ (P 3
i3

⊕ P 3
α) ⊕ . . . ⊕ (P k

ik
⊕ P k

α)

For P 2
α �= P 2

α−1, there are two cases. If i3 = . . . = ik = α, since (i1, . . . , ik) ∈ I,
we have bα+1 �= bα and this non-equality is automatically verified. Else, this
means that there is an index 3 ≤ j ≤ k such that ij �= α, e.g. j = 3. Then
P 2

α �= P 2
α−1 becomes:

P 3
α �= (bα+1 ⊕ bα) ⊕ P 3

i3 ⊕ . . . ⊕ (P k
ik

⊕ P k
α).

Thus, after the other messages have been chosen, there are between 2n − α and
2n − (α − 1) possibilities for P 3

α, 2n − (α − 2) possibilities for P 3
α−1 and finally

between 2n − (4α − 7) and 2n − (α − 2) possibilities for P 2
α−1. Then

(2n − (α − 2))k−2(2n − (α − 1))k−3(2n − α)(2n − (4α − 7)) ≤ h′
α

hα−2
(9)

(2n − (α − 2))k−1(2n − (α − 1))k−2 ≥ h′
α

hα−2
. (10)

From 7 and 9 we can deduce the following inequalities that allow us to get the
result we want:

2nh′
α

hα−2
≥ 2n (2n−4α+7)(2n−α)

(2n−(α−2))(2n−(α−1))2 ,

2nh′
α

hα−2
≤ 2n 2n−(α−2)

(2n−2(α−2))(2n−2(α−1)).

�	
Remark: if we suppose α < 2n

12 , we get

0 < 1 − 12α

2n
≤ 2nh′

α(i1, . . . , ik)
hα

≤ 1 +
3α

2n − 3α
. (11)

One has:

hα+1

h̃α+1

=
hα

h̃α

⎛
⎝1 +

(−1)k+1αk

(2n − α)k
+ (−1)k 2n|M |

(2n − α)k
+ (−1)k

∑ 2nh′
α

hα

(2n − α)k

⎞
⎠ (12)

=
hα

h̃α

(1 − Aα) (13)

where

Aα :=
(−1)kαk

(2n − α)k
− (−1)k 2n|M |

(2n − α)k
− (−1)k

∑ 2nh′
α

hα

(2n − α)k
.

Lemma 10. If q < 2n

12 ,

Aα ≤ k.2nα

(2n − α)k
+ 12

αk+1

(2n − 3α)(2n − α)k
.
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Proof. We have to study Aα according to the parity of k.

• k even:

Aα ≤ αk

(2n − α)k
− 2n|M |

(2n − α)k
− (αk − α − k|M |(α − 1))(1 − 12α

2n )
(2n − α)k

≤ − 2n|M |
(2n − α)k

+
(α + k|M |(α − 1))(1 − 12α

2n )
(2n − α)k

+ 12
αk+1

2n(2n − α)k

≤ k.α2

(2n − α)k
+ 12

αk+1

2n(2n − α)k

• k odd:

Aα ≤ − αk

(2n − α)k
+

2n|M |
(2n − α)k

+
(αk − α − k|M |(α − 1))(1 + 3α

2n−3α )
(2n − α)k

≤ 2n|M |
(2n − α)k

− (α + k|M |(α − 1))(1 + 3α
2n−3α )

(2n − α)k
+

3αk+1

(2n − α)k(2n − 3α)

≤ 2nα

(2n − α)k
+

3αk+1

(2n − α)k(2n − 3α)

So, in both cases,

Aα ≤ k.2nα

(2n − α)k
+ 12

αk+1

(2n − 3α)(2n − α)k
,

�	
From this lemma and 12,

hα+1

h̃α+1

≥ hα

h̃α

(
1 − k.2nα

(2n − α)k
− 12

αk+1

(2n − 3α)(2n − α)k

)
.

Since h1 = h̃1, we get:

hq

h̃q

≥
(

1 − k2nq

(2n − q)k
− 12

qk+1

(2n − 3q)(2n − q)k

)q

≥ 1 − kq2.2n

(2n − q)k
− 12

qk+2

(2n − 3q)(2n − q)k
.

Thus, with Corollary 8, we have proven that, when q < 2n

12 :

Advcpa
f1⊕...⊕fk

≤ kq2.2n

(2n − q)k
+ 12

qk+2

(2n − 3q)(2n − q)k
(14)

≤ kq2

2(k−1)n(1 − k q
2n )

+ 12
qk+2

2(k+1)n(1 − (k + 3) q
2n )

. (15)

Hence we get the following result:
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Table 1. Comparison of the bounds on the advantage from 3 techniques

Technique Upper bound for Advcpa
f1⊕...⊕fk

Order of magnitude

S. Lucks 2−k(n−1) ∑
0≤i<q

ik O
(

qk+1

2k(n−1)

)

H kq2

2(k−1)n(1−k q
2n )

+ 12 qk+2

2(k+1)n(1−(k+3) q
2n )

O
(

qk+2

2(k+1)n

)

Hσ 2

(
q2

2(2k−1)n(1− q
2n )2k + 2kq2k+2

2(2k+1)n(1− 6kq
2n )

)1/3

O

((
k q2k+2

2(2k+1)n

)1/3
)

Table 2. Upper bound plotted versus the logarithm of q

Table 3. Upper bound plotted versus the logarithm of q: comparison between H and Hσ

Theorem 3 (Upper Bound for the Advantage with the Standard H
Technique). Let k ≥ 3 and q < 2n

12 . The advantage to distinguish, with q
queries, the XOR of k bijections from a function f ∈R Fn satisfies:

Advcpa
f1⊕...⊕fk

≤ kq2

2(k−1)n(1 − k q
2n )

+ 12
qk+2

2(k+1)n(1 − (k + 3) q
2n )

.
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Since k ≥ 3, the first term is negligible when q � 2n. This theorem shows that
the XOR of k bijections is indistinguishable when q � 2

k+1
k+2n. This upper bound

on q is worse than the previous one, but if q � 2
k+2
k+4n (i.e. for small values of q)

this new upper bound on the advantage is actually better.

5 Conclusion

This table regroups our results and the previous one from S. Lucks in [9], with
order of magnitudes for these bounds beyond the birthday bound
(Tables 1, 2 and 3):

The upper bound we got with the coefficients H technique is smaller than the
one from [9] by a factor q

2n . The one we proved with the coefficients Hσ technique

allows us to have Advcpa
f1⊕...⊕fk

� 1 when q � 2
2k+1
2k+2n instead of q � 2

k
k+1n

for [9]. For example with k = 3 we have proven that Advcpa
f1⊕...⊕fk

� 1 when
q � 2

7
8n instead of q � 2

3
4n. However, when q is fixed and k increases, the upper

bound from the H technique becomes better than the one from Hσ. This graph
shows the evolution of the order of magnitude of these three upper bounds in
function of the logarithm of q, with k = 5 and n = 40:

Here is a more accurate view of the region where the curves from H and Hσ

intersect:
This illustrates that, depending on the value of q, our best bound can be

the one from Sect. 3 or the one from Sect. 4. Moreover, the curve from [9] does
not appear in this second graph because its values were much higher than ours
(around 6 · 10−4 whereas the bounds from this article are around 4 · 10−7 in this
graph). This shows why the two techniques studied in this paper are both useful.

References

1. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transforma-
tions. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320.
Springer, Heidelberg (1996)

2. Bellare, M., Impagliazzo, R.: A Tool for Obtaining Tighter Security Analyses of
Pseudorandom Function Based Constructions, with Applications to PRP to PRF
Conversion. ePrint Archive 1999/024: Listing for 1999 (1999)

3. Bellare, M., Krovetz, T., Rogaway, P.: Luby-rackoff backwards: increasing security
by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998)

4. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

5. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 370. Springer, Heidelberg
(1998)

6. Levin, L.: One way functions and pseudorandom generators. Combinatorica 7(4),
357–363 (1987)

7. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)



302 B. Cogliati et al.

8. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

9. Lucks, S.: The sum of PRPs is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000)

10. Mandal, A., Patarin, J., Nachef, V.: Indifferentiability beyond the birthday bound
for the XOR of two public random permutations. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 69–81. Springer, Heidelberg (2010)

11. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

12. Patarin, J.: A proof of security in O(2n) for the XOR of two random permutation.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer,
Heidelberg (2008)

13. Patarin, J.: Generic Attacks for the XOR of k Random Permutations. Available
on eprint (2008)

14. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

15. Patarin, J.: Security in O(2n) for the XOR of Two Random Permutations - Proof
with the standard H technique - Available on eprint (2013)



Impact of ANSI X9.24-1:2009 Key Check Value
on ISO/IEC 9797-1:2011 MACs

Tetsu Iwata1(B) and Lei Wang2

1 Nagoya University, Nagoya, Japan
iwata@cse.nagoya-u.ac.jp

2 Nanyang Technological University, Singapore, Singapore
wang.lei@ntu.edu.sg

Abstract. ANSI X9.24-1:2009 specifies the key check value, which is
used to verify the integrity of the blockcipher key. This value is defined
as the most significant bits of the ciphertext of the zero block, and is
assumed to be publicly known data for verification. ISO/IEC 9797-1:2011
illustrates a total of ten CBC MACs, where one of these MACs, the basic
CBC MAC, is widely known to be insecure. In this paper, we consider the
remaining nine CBC MACs and derive the quantitative security impact
of using the key check value. We first show attacks against five MACs
by taking advantage of the knowledge of the key check value. We then
prove that the analysis is tight, in a concrete security paradigm. For the
remaining four MACs, we prove that the standard birthday bound still
holds even with the presence of the key check value. As a result, we
obtain a complete characterization of the impact of using ANSI X9.24-1
key check value with the ISO/IEC 9797-1 MACs.

Keywords: ANSI X9.24-1:2009 · Key check value · ISO/IEC
9797-1:2011 · CBC MAC · Proof of security

1 Introduction

Background. A Message Authentication Code, or a MAC, is a fundamental cryp-
tographic primitive to ensure the authenticity of messages. A MAC is a keyed
function that takes a message as its input and produces a fixed length string
called a tag. The tag is then used to verify the integrity of the message, i.e., the
message is indeed originated from the intended party who shares the key.

There are several ways of constructing MACs, and CBC MAC is a widely used
MAC based on a blockcipher. While the basic CBC MAC has a proof of security
when it is used for messages of one fixed length [4,6], it is known that it allows the
so called length-extension attack when the message length can vary. To avoid
the weakness, several variants of CBC MAC were proposed. ISO/IEC 9797-
1:2011 [14] specifies six different versions of CBC MACs, where each MAC is
defined by specifying the final iteration and the output transformation. The six
MACs are further classified by specifying the key derivation method and the
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 303–322, 2015.
DOI: 10.1007/978-3-662-46706-0 16
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padding method, and Annex C in [14] illustrates a total of ten different CBC
MACs depending on the choice of these methods.

ANSI X9.24-1:2009 [2] specifies the manual and automated management of
keying material used for financial services. The services include point-of-sale
(POS) transactions (debit and credit), automated teller machine (ATM) trans-
actions, messages among terminals and financial institutions, and interchange
messages among acquirers, switches, and card issuers [2]. Annex C in [2] sug-
gests the use of the key check value for the integrity verification of the blockcipher
key. Let EK : {0, 1}n → {0, 1}n be a blockcipher with a key K. ANSI X9.24-1
suggests to use the most significant s bits of EK(0n), a ciphertext of the zero
block, as the key check value for the key K, where E is DES or TDES [3] and s is
16 or 24. That is, the key check value, KCV, is defined as KCV = msbs(EK(0n)).
The value KCV is then used to verify the integrity of K, or as the ID for K.
Therefore, KCV is treated as a public value and it can be transmitted, sent, or
stored in clear. This implies that an adversary has chance to learn this value.

In some MACs and other blockcipher modes of operation, the value EK(0n)
is used to derive the “sub-key.” For example, MAC5 in [14], also known as
CMAC [11], uses this value as a sub-key that has to be kept secret from the
adversaries. Other examples that use EK(0n) as a sub-key include GCM [12,22],
PMAC [7,28], and OCB [28,30]. MAC5 has the proof of security [15,16], while
disclosing a part of EK(0n) is not taken into account in the proof, and it is
anticipated that there is some security loss when it is used with the key check
value. Indeed, [2,11] give an explicit warning that the value EK(0n) has to
be kept secret, but there is no prior work that derives the security loss in a
quantitative way, which is the main question solved in the present paper.

Contributions. We consider the security of ten MACs, CBC MAC and its vari-
ants, specified in [14], in the presence of the key check value. We first consider
MAC2.1, which is also known as EMAC [9]. Petrank and Rackoff showed that
it is a secure MAC [25]. The security bound without the use of the key check
value is O(σ2/2n) [25] assuming that the underlying blockcipher satisfies an
appropriate security notion, where σ is the total length of queries in blocks
made by the adversary, and n is the block size of the underlying blockcipher in
bits. This implies that the adversary needs to make Ω(2n/2) queries in order to
make a forgery. In its specification, the value EK(0n) does not appear as in the
case for MAC5. However, based on a similar technique to the one in [18], we
present attacks with O(2(n−s)/2) queries when it is used with the s-bit key check
value. For MAC5, the security bound without the use of the key check value is
O(σ2/2n) [15,16]. We show that almost the same attacks against MAC2.1 can
be used to attack MAC5 with O(2(n−s)/2) queries when it is used with the s-bit
key check value. We point out that similar attacks can be used against MAC2.2
(EMAC [9]), MAC3 (ANSI retail MAC [1]), and MAC6.2 (FCBC [8]).

We then formalize a security notion of a variant of a pseudorandom function
that captures the key check value, and for these five MACs, we prove that the
analysis is tight. That is, under the appropriate assumption about the underlying
blockcipher, we show that the adversary actually needs to make Ω(2(n−s)/2)
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queries in order to mount the attacks. For the remaining four MACs, MAC1.2,
MAC4.1 (MacDES [19]), MAC4.2 (MacDES [19]), and MAC6.1 (FCBC [8]), the
situation is quite different. Even if the key check value consists of the entire n
bits of EK(0n), we show that the standard birthday bound still holds, and there
is almost no security loss for these MACs. As a result, we obtain a complete
characterization of the impact of using ANSI X9.24-1 key check value with the
ISO/IEC 9797-1 MACs. See Table 1 for the summary of this paper. In the table,
the block size of the underlying blockcpher is n bits, s is the bit length of the key
check value, and σ is the total length of queries in blocks made by the adversary.
All results for MAC1.1 are widely known. Results on existential forgeries for
MAC1.2, MAC4.1, MAC4.2, and MAC6.1 follow from [14,27]. The attacks are
possible without using the key check value. We note that there are other attacks
for all these MACs, e.g., a key recovery attack. See [14,29] for more details.

We also discuss several generic ways to avoid the security loss in the presence
of the key check value.

Remarks. We argue that our security bounds, both O(σ2/2n−s) and O(σ2/2n),
are non-trivial, in the sense that there are blockcipher modes of operation that
become completely insecure if the key check value is used. For instance consider
the CTR encryption mode where the initial counter value starts with 0n. It is not
hard to see that the adversary succeeds in distinguishing between a ciphertext
and a random string of the same length as the ciphertext even if the key check
value consists of one bit.

We remark that the presence of the key check value can be considered as a
special case of leakage of the internal state. Leakage resilient MACs are proposed,
e.g., in [10,21]. In contrast to designing new schemes, the purpose of this paper
is to analyze the security of widely standardized and deployed MACs when used
with the key check value, a common practice in financial applications.

We also remark that this paper does not show the analysis of MACs in the
older version of ISO/IEC 9797-1 that was published in 1999 [13]. Specifically,
MAC5 and MAC6 in the 2011 version are different from those in the 1999 version.
We leave the analyses of these MACs as open questions.

2 Preliminaries

For a finite set X , X
$← X means that an element X is chosen from X uniformly

at random. Let {0, 1}∗ be the set of all finite bit strings including the empty
string. If X,Y ∈ {0, 1}∗ are equal-length strings then X⊕Y is their bitwise xor. If
X,Y ∈ {0, 1}∗ are strings then X ‖Y , or simply XY , denote their concatenation.
If X ∈ {0, 1}∗ is a string then |X| denotes its length in bits. Throughout the
paper we fix the block size n. Typical values of n are 64 and 128. We let {0, 1}n be
a set of all bit strings of n bits. For a string X ∈ {0, 1}n� with � ≥ 1, the partition
X[1] · · · X[�] of X are defined as the unique strings satisfying the conditions
X[1] ‖ · · · ‖X[�] = X and |X[1]| = · · · = |X[�]| = n. We write X[1] · · · X[�] n← X.
For an n-bit string X = Xn · · · X2X1 ∈ {0, 1}n, X � 1 = Xn−1 · · · X2X10 is the
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Table 1. Summary of the results. All results are in the presence of the key check value.
The figures in the “known” column indicate the required number of known message
and tag pairs, and “chosen” indicates the number of chosen message and tag pairs.

MAC Existential forgery Selective forgery Security bound

Known Chosen Reference Known Chosen Reference [Sect. 6]

MAC1.1 1 0 folklore 1 1 folklore —

MAC1.2 O(2n/2) 1 [14,27] — — O(σ2/2n)

MAC2.1 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

MAC2.2 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

MAC3 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

MAC4.1 O(2n/2) 1 [14,27] — — O(σ2/2n)

MAC4.2 O(2n/2) 1 [14,27] — — O(σ2/2n)

MAC5 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

MAC6.1 O(2n/2) 1 [14,27] — — O(σ2/2n)

MAC6.2 1 O(2(n−s)/2) [Sect. 5] 0 O(2(n−s)/2) [Sect. 5] O(σ2/2n−s)

left shift of X by 1 bit. For a positive integer � and a string X such that � ≤ |X|,
msb�(X) is the leftmost � bits of the string X, and lsb�(X) is the rightmost �
bits of X. For non-negative integers � and n such that � < 2n, binn(�) is an n-bit
binary representation of �.

A blockcipher is a family of permutations. We write E : {0, 1}k × {0, 1}n →
{0, 1}n for a blockcipher, where K ∈ {0, 1}k is a key and EK(·) = E(K, ·) is
the permutation over {0, 1}n specified by K. We write Perm(n) for the set of all
permutations over {0, 1}n, and Rand(n) for the set of all functions from {0, 1}n

to {0, 1}n.
A MAC is a keyed function MK . It takes an input message M ∈ {0, 1}∗ and

outputs a tag T ∈ {0, 1}τ . The value τ is called a tag length, and we consider the
case τ = n. An adversary A against the MAC is an algorithm that has access to
the MAC oracle, MK , and outputs a forgery, which is a pair of a message and a
tag, (M∗, T ∗). A can be a probabilistic algorithm or a deterministic algorithm.
We say A forges if T ∗ was not previously returned from the MAC oracle in a
response to a query M∗.

3 ISO/IEC 9797-1:2011 MACs

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. The basic CBC MAC is
defined in Fig. 1. It takes a message M as input, where |M | is a positive multiple
of n, and returns an n-bit tag T . We write T ← CBCK(M). The specification
of the MACs defined in ISO/IEC 9797-1:2011 [14] is in Fig. 2, and illustrated
in Fig. 3. The subroutines KD, double, pad1, pad2, and pad3 are specified in
Fig. 1. KD is a key derivation function and is used in MAC6.1. double is a dou-
bling operation in GF(2n) and is used in MAC5. We note that L is defined as
double(EK(0n)). pad1, pad2, and pad3 are functions for padding. Our descrip-
tion may seem to be different from the ones in [14] in appearance, but they are
carefully distilled for simpler presentation, and they are the same algorithms as
specified in [14].
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Algorithm CBCK(M)

1. Y [0] ← 0n

2. M [1] · · ·M [m]
n← M

3. for i ← 1 to m do
4. X[i] ← Y [i − 1] ⊕ M [i]
5. Y [i] ← EK(X[i])
6. T ← Y [m]
7. return T

Subroutine KD(K)

1. ← k/n
2. for i ← 1 to do
3. K [i] ← EK(binn(i))
4. K [i] ← EK(binn( + i))
5. K ← msbk(K [1] · · ·K [ ])
6. K ← msbk(K [1] · · ·K [ ])
7. return (K ,K )

Subroutine double(L)

1. if msb1(L) = 0 then
2. L ← L 1
3. else
4. L ← (L 1) ⊕ constantn
5. return L

Subroutine pad1(M)

1. M ← M 1 0n−1−(|M| mod n)

2. return M

Subroutine pad2(M)

1. if (|M | > 0) ∧ (|M | mod n = 0) then
2. M ← binn(|M |) M
3. else
4. M ← binn(|M |) M 0n−(|M| mod n)

5. return M

Subroutine pad3(L,M)

1. if (|M | = 0) ∨ (|M | mod n > 0) then
2. M ← pad1(M)
3. L ← double(L)
4. M [1] · · ·M [m]

n← M
5. M [m] ← M [m] ⊕ L
6. return M [1] · · ·M [m]

Fig. 1. Pseudocode of the basic CBC MAC, and the subroutines used in the defin-
ition of MACs in ISO/IEC 9797-1. In KD(K), � + i is the arithmetic addition of �
and i. In double(L), constantn is an n-bit constant that depends on n. For example,
constant64 = 0x0 · · · 01b and constant128 = 0x0 · · · 087. When M is the empty string,
we have pad2(M) = 02n.

A total of six MACs are specified in [14]. The ten MACs in Fig. 2 are taken
from [14, Annex C, Table C.1], which are specified as the concrete choices of
the final iteration, the output transformation, and the padding method. For all
MACs except for MAC4.1, they take a message M ∈ {0, 1}∗ as their input,
while MAC4.1 takes a message M such that |M | ≥ n as input. All these ten
MACs return an n-bit tag T (we only consider the case where the tag con-
sists of a full n-bit string). The key derivation method is not specified in [14,
Annex C, Table C.1]. In MAC2.1, following the examples in [14, Annex B.3],
we let K ′ ← K ⊕ (0xf0f0 · · · f0). We also have a similar key derivation in
MAC4.1 and MAC4.2, and in these algorithms, k = |K| is assumed to be a
multiple of 8. In MAC6.1, following [14, Annex B.7, NOTE 2 in Sect. 7.7], we
let (K ′,K ′′) ← KD(K).

4 ANSI X9.24:2009 Key Check Value

In [2], the key check value is defined as follows.
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Algorithm MAC1.1K(M)

1. M ← pad1(M)
2. T ← CBCK(M)
3. return T

Algorithm MAC1.2K(M)

1. M ← pad2(M)
2. T ← CBCK(M)
3. return T

Algorithm MAC2.1K(M)

1. K ← K ⊕ (0xf0f0 · · · f0)
2. M ← pad1(M)
3. S ← CBCK(M)
4. T ← EK (S)
5. return T

Algorithm MAC2.2K,K (M)

1. M ← pad1(M)
2. S ← CBCK(M)
3. T ← EK (S)
4. return T

Algorithm MAC3K,K (M)

1. M ← pad1(M)
2. S ← CBCK(M)
3. T ← EK(E−1

K (S))
4. return T

Algorithm MAC4.1K,K (M)

1. K ← K ⊕ (0xf0f0 · · · f0)
2. M [1] · · ·M [m]

n← pad1(M)
3. M [2] ← EK (EK(M [1])) ⊕ M [2]
4. S ← CBCK(M [2] · · ·M [m])
5. T ← EK (S)
6. return T

Algorithm MAC4.2K,K (M)

1. K ← K ⊕ (0xf0f0 · · · f0)
2. M [1] · · ·M [m]

n← pad2(M)
3. M [2] ← EK (EK(M [1])) ⊕ M [2]
4. S ← CBCK(M [2] · · ·M [m])
5. T ← EK (S)
6. return T

Algorithm MAC5K(M)

1. L ← double(EK(0n))
2. M ← pad3(L,M)
3. T ← CBCK(M)
4. return T

Algorithm MAC6.1K(M)

1. (K ,K ) ← KD(K)
2. M [1] · · ·M [m]

n← pad1(M)
3. S ← 0n

4. if m ≥ 2 then
5. S ← CBCK (M [1] · · ·M [m − 1])
6. T ← EK (S ⊕ M [m])
7. return T

Algorithm MAC6.2K,K (M)

1. M [1] · · ·M [m]
n← pad1(M)

2. S ← 0n

3. if m ≥ 2 then
4. S ← CBCK(M [1] · · ·M [m − 1])
5. T ← EK (S ⊕ M [m])
6. return T

Fig. 2. Pseudocode of the ISO/IEC 9797-1 MACs

“The optional check values, as mentioned in notes 2 and 3 above, are the
left-most six hexadecimal digits from the ciphertext produced by using
the DEA in ECB mode to encrypt to 64-bit binary zero value with the
subject key or key component. The check value process may be simplified
operationally, while still retaining reliability, by limiting the check value
to the left-most four or six hexadecimal digits of the ciphertext. (Using
the truncated check value may provide additional security in that the
ciphertext which could be used for exhaustive key determination would
be unavailable.)”
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M [1]

EK EKEK

M [2] M [3]10∗

T

EK

M [1]

EK EKEK

M [2]

T

M [3]0∗

M [1]

EK EKEK

M [2] M [3]10∗

T

EK EK

EK

M [1]

EK EKEK

M [2]

T

EK EK

M [3]0∗

M [1]

EK EKEK

M [2] M [3]10∗

T

EK

M [1]

EK EK

M [2] M [3]10∗

T

EK

M [1]

EK EKEK

M [2] M [3]10∗

L

M [1]

EK EKEK

M [2] M [3]10∗

T

E−1
K

EK

T

binn(|M |)

binn(|M |)

double(L)

MAC6.1K(M)/MAC6.2K,K (M)MAC5K(M)

MAC4.1K,K (M) MAC4.2K,K (M)

MAC3K,K (M)MAC2.1K(M)/MAC2.2K,K (M)

MAC1.2K(M)MAC1.1K(M)

Fig. 3. Illustrations of the ISO/IEC 9797-1 MACs for M = M [1]M [2]M [3], where
|M [1]| = |M [2]| = n and 1 ≤ |M [3]| ≤ n − 1. In MAC6.1, (EK , EK′) is replaced with
(EK′ , EK′′).
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The key check value for the 56-bit key K is thus msb24(DESK(064)) or
msb16(DESK(064)). The key check value is used to verify the integrity of K
or as the ID for K in financial services including banking systems. The value
is inherently a public value for verification, and it may be transmitted, sent or
stored in clear, which implies that an adversary can learn this value.

In [2], the key check value is defined for DES or TDES, 64-bit blockciphers.
However, other documents do not limit the block size being 64 bits. For example,
the key check value of AES, a 128-bit blockcipher, is mentioned in [23]. MACs
in [14] can be used with AES, and the document gives a warning about the use
of the key check value. A similar warning can be found in [11,12], where AES
can be used. Although it is not clear how the key check value is defined for
AES in these documents, in this paper, for generality, we naturally extend the
definition to any blockcipher E and allow other lengths of the key check value.
For a blockcipher EK : {0, 1}n → {0, 1}n with key K ∈ {0, 1}k and an integer s
such that 0 ≤ s ≤ n, we define the key check value, KCV, as

KCV = msbs(EK(0n)).

We leave s as a parameter that can be defined by a user of the blockcipher.
Now suppose that a MAC internally uses the blockcipher E and the key

space of the MAC is ({0, 1}k)w for some integer w ≥ 1. That is, a total of w
blockcipher keys K1, . . . , Kw ∈ {0, 1}k are used in the MAC, and it is built from
EK1 , . . . , EKw

. Then we define the key check value of the MAC as

KCV = (msbs(EK1(0
n)), . . . ,msbs(EKw

(0n))).

Specifically, if the MAC uses single blockcipher key K, which corresponds to
MAC1.1, MAC1.2, MAC2.1, MAC5, and MAC6.1, then the adversary is given
KCV = msbs(EK(0n)). For the remaining MACs that use two blockcipher keys K
and K ′, i.e., for MAC2.2, MAC3, MAC4.1, MAC4.2, and MAC6.2, the adversary
is given KCV = (msbs(EK(0n)),msbs(EK′(0n))).

5 Security Analysis

5.1 Security Analysis for Case s = n

We first consider the most extreme case s = n to illustrate the impact.

Existential Forgery Against MAC2.1. Let KCV = msbs(EK(0n)) be the key
check value given to the adversary A, where s = n. Let M be any message, and
T = MAC2.1K(M) be the corresponding tag. A is given the known message and
tag pair (M,T ). If |M | ≥ n, then A defines M∗ as

M∗ = 0n ‖KCV ‖ · · · ‖KCV ‖KCV ⊕ msbn(M) ‖ lsb|M |−n(M).

We see that all these messages, regardless of the number of the intermediate
KCV blocks, share the same tag T , and therefore, (M∗, T ) is a valid forgery.



Impact of ANSI X9.24-1:2009 Key Check Value 311

We next consider the case 0 ≤ |M | < n. We assume that pad1(M) 
= KCV.
Then there exists some M ′ such that 0 ≤ |M ′| < n and pad1(M ′) = pad1(M) ⊕
KCV. We then define M∗ as

M∗ = 0n ‖KCV ‖ · · · ‖KCV ‖M ′, (1)

and it can be easily verified that (M∗, T ) is a valid forgery. If pad1(M) = KCV,
then M ′ in (1), and hence M∗, cannot be defined and the attack does not work.
However, there is at most one such M , and thus A can simply ask for the second
known message and tag pair to mount the attack.

Therefore, MAC2.1 allows existential forgeries if the adversary knows any
message and tag pair (M,T ), where pad1(M) 
= KCV.

Selective Forgery Against MAC2.1. Almost the same idea can be used for a
selective forgery against MAC2.1. Let M∗ be a message that A tries to forge.
We show that A is able to obtain the correct tag for M∗ with one chosen message
and tag pair, provided that pad1(M∗) 
= KCV. Now A defines M as

M =
{

0n ‖KCV ⊕ msbn(M∗) ‖ lsb|M∗|−n(M∗) if |M∗| ≥ n,
0n ‖M ′ else,

where M ′ is a string that satisfies 0 ≤ |M ′| < n and pad1(M ′) = pad1(M∗) ⊕
KCV. Then A asks M to its MAC oracle and obtains T = MAC2.1K(M). We
see that (M∗, T ) is a valid forgery.

We remark that if pad1(M∗) = KCV, then this particular M∗ does not seem
to allow attacks.

Existential/Selective Forgeries Against MAC5. As in the case for MAC2.1,
A is given KCV = EK(0n). We see that existential and selective forgeries against
MAC2.1 are irrelevant to the operations on the last message block, and almost
the same attacks can be applied against MAC5.

Besides these attacks, there are other trivial attacks on MAC5. Recall that
KCV = EK(0n) is used to compute the value of L. With KCV, A can compute
both L = double(EK(0n)) and double(double(EK(0n))). This implies that, from
A’s view point, MAC5 is essentially reduced to MAC1.1, and therefore almost
the same attacks against MAC1.1 in AppendixA work for MAC5.

There are subtle differences due to the padding rule of MAC5, but the mod-
ification is rather straightforward and we thus omit the details.

Existential/Selective Forgeries Against Other MACs. We point out that very
similar attacks against MAC2.1 can be applied on MAC2.2, MAC3, and MAC6.2.
For MAC2.2, A is given KCV = (EK(0n), EK′(0n)), but the attacks are possible
by using only EK(0n). For MAC3, we see that the attacks against MAC2.1
are irrelevant to the operations on the last message block, and thus the same
attacks can be applied. With the same reasoning these attacks can be applied
on MAC6.2.
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5.2 Security Analysis for Case s < n

We next consider the case s < n.

Existential/Selective Forgeries Against MAC2.1. The adversary A has access to
the MAC2.1K(·) oracle. Let KCV = msbs(EK(0n)) be the key check value given
to A. We first derive the value of EK(0n).

Let r = 2(n−s)/2. A first chooses r random strings rand1, . . . , randr, where
|randi| = n − s for all 1 ≤ i ≤ r and randi 
= randj for all 1 ≤ i < j ≤ r.
Similarly, A chooses r random strings rand′

1, . . . , rand
′
r, where |rand′

i| = n− s for
all 1 ≤ i ≤ r and rand′

i 
= rand′
j for all 1 ≤ i < j ≤ r. Let Mi = 0n ‖ (0s ‖ randi)

and M ′
i = (KCV ‖ rand′

i). A then makes 2r queries, M1, . . . , Mr,M
′
1, . . . , M

′
r,

to its oracle and obtains T1, . . . , Tr, T
′
1, . . . , T

′
r, where Ti = MAC2.1K(Mi) and

T ′
i = MAC2.1K(M ′

i).
Then it is easy to see that we have pad1(Mi) = 0n ‖ (0s ‖ randi) ‖ 10n−1 and

pad1(M ′
i) = (KCV ‖ rand′

i) ‖ 10n−1. Let (Xi[1],Xi[2],Xi[3]) be the input sequence
of EK in the computation of MAC2.1K(Mi), and (Yi[1], Yi[2], Yi[3]) be the cor-
responding output sequence. Similarly, let (X ′

i[1],X ′
i[2]) and (Y ′

i [1], Y ′
i [2]) be the

input and output sequences of EK in the computation of MAC2.1K(M ′
i). We

have {
Xi[1] = 0n,Xi[2] = Yi[1] ⊕ (0s ‖ randi),Xi[3] = Yi[2] ⊕ 10n−1,

Yi[1] = EK(Xi[1]), Yi[2] = EK(Xi[2]), Yi[3] = EK(Xi[3]).

Similarly, we have
{

X ′
i[1] = (KCV ‖ rand′

i),X
′
i[2] = Y ′

i [1] ⊕ 10n−1,

Y ′
i [1] = EK(X ′

i[1]), Y ′
i [2] = EK(X ′

i[2]).

Note that Yi[3] = EK(Xi[3]) = Si and Y ′
i [2] = EK(X ′

i[2]) = S′
i. We also note

that EK′(Si) = Ti and EK′(S′
i) = T ′

i hold.
We claim that, with a high probability, there exists a pair of indices (j, j′)

such that Tj = T ′
j′ . To see this, we have Tj = T ′

j′ if and only if Xj [3] = X ′
j′ [2]

since EK and EK′ are permutations. Now Xj [3] = X ′
j′ [2] holds if and only if

Yj [2] = Y ′
j′ [1] since the same value, 10n−1, is xor-ed. Then Yj [2] = Y ′

j′ [1] holds
if and only if Xj [2] = X ′

j′ [1] from the invertibility of EK , and this is equivalent
to EK(0n) ⊕ (0s ‖ randj) = (KCV ‖ rand′

j′). Now the last condition is equivalent
to lsbn−s(EK(0n)) ⊕ randj = rand′

j′ , since KCV = msbs(EK(0n)), and from the
standard birthday paradox, we have the claim.

Let (j, j′) be the pair of indices such that Tj = T ′
j′ . Observe that A can now

retrieve the value of EK(0n) since we have EK(0n) = (KCV ‖ randj ⊕ rand′
j′).

With the knowledge of EK(0n), A can produce arbitrarily number of existen-
tial forgeries with one known message and tag pair, and can produce a selective
forgery with one chosen message and tag pair, as described in Sect. 5.1. There-
fore, MAC2.1 allows existential forgeries with 2 · 2(n−s)/2 chosen messages and
one known message, and it allows selective forgery with 1 + 2 · 2(n−s)/2 chosen
messages.
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Existential/Selective Forgeries Against MAC5. As in the case for MAC2.1,
A is given KCV = msbs(EK(0n)). We see that exactly the same procedure can
be used to retrieve the value of EK(0n), which is also used to compute a value
of L. Therefore, MAC5 allows existential forgeries with 2 · 2(n−s)/2 chosen mes-
sages and one known message, and it allows selective forgery with 1+2 ·2(n−s)/2

chosen messages.
Besides these attacks, since L is now known to the adversary, the standard

length-extension attack in AppendixA can be used to attack MAC5.

Existential/Selective Forgeries Against Other MACs. We remark that similar
attacks can be used against MAC2.2, MAC3, and MAC6.2. These MACs allow
existential forgeries with 2 · 2(n−s)/2 chosen messages and one known message,
and they allow selective forgeries with 1 + 2 · 2(n−s)/2 chosen messages.

We note that the attacks presented in this section cannot be used against
MAC1.2, MAC4.1, MAC4.2, and MAC6.1 even if s = n.

6 Provable Security Results

We present the provable security results for the nine ISO/IEC 9797-1 MACs.

Security Definition for MACs. Let MK1,...,Kw
: {0, 1}∗ → {0, 1}n be a MAC

with key space ({0, 1}k)w for some w ≥ 1. An adversary A is an algorithm that
outputs a bit. We consider the following game. First, A is given the key check
value KCV = (msbs(EK1(0

n)), . . . ,msbs(EKw
(0n))). Then A is given access to an

oracle, which is either the MAC oracle or the ideal random oracle. The MAC ora-
cle MK1,...,Kw

takes a message M as the input and returns T = MK1,...,Kw
(M).

The random oracle R takes a message M to return a random string T . We define

Advprf-kcv
M (A) = Pr

[
A ← KCV,AMK1,...,Kw (·) ⇒ 1

]

− Pr
[
A ← KCV,AR(·) ⇒ 1

]
,

where the first probability is taken over the choices of K1, . . . , Kw and A’s coin,
and the last is over the choices of K1, . . . , Kw used for KCV, the random oracle,
and A’s coin.

Specifically, if M uses single blockcipher key K, i.e., if M ∈ {MAC1.1,
MAC1.2,MAC2.1,MAC5,MAC6.1}, then A is given KCV = msbs(EK(0n)), and
we consider

Advprf-kcv
M (A) = Pr

[
A ← KCV,AMK(·) ⇒ 1

]
− Pr

[
A ← KCV,AR(·) ⇒ 1

]
.

For M with two blockcipher keys K and K ′, i.e., for M ∈ {MAC2.2,MAC3,
MAC4.1,MAC4.2,MAC6.2}, then KCV = (msbs(EK(0n)),msbs(EK′(0n))) and
we consider

Advprf-kcv
M (A) = Pr

[
A ← KCV,AMK,K′ (·) ⇒ 1

]
− Pr

[
A ← KCV,AR(·) ⇒ 1

]
.



314 T. Iwata and L. Wang

We write Advprf-kcv
M (t, q, σ) = maxA Advprf-kcv

M (A), where the maximum is
taken over adversaries A whose time complexity, number of queries, and query
complexity are at most t, q, and σ, respectively. For the time complexity, we fix
a model of computation and a choice of encoding, and it includes the running
time and the code size. The query complexity is the total length in blocks of
the padded queries made to the oracle. For instance if we consider an adversary
A attacking MAC1.2 and if A makes queries M1, . . . , Mq, then the query com-
plexity is

∑
1≤i≤q |pad2(Mi)|/n. Without loss of generality, we exclude the trivial

queries, and we apply this convention to all adversaries in this paper.
We note that the above definitions capture the security of a MAC as a pseudo-

random function, or a PRF, in the presence of KCV. It is well known that PRFs
are secure MACs, see e.g. [4].

Security Definition for Blockciphers. We consider three security notions for the
underlying blockcipher [5,20]. Let EK : {0, 1}n → {0, 1}n be a blockcipher, E−1

K

be its inverse, P, P ′ : {0, 1}n → {0, 1}n be two independent random permuta-
tions, and P−1 be the inverse of P . An adversary A is an algorithm that outputs
a bit. For A, we define

Advprp
E (A) = Pr

[
AEK(·) ⇒ 1

]
− Pr

[
AP (·) ⇒ 1

]
,

Advsprp
E (A) = Pr

[
AEK(·),E−1

K (·) ⇒ 1
]

− Pr
[
AP (·),P −1(·) ⇒ 1

]
,

Advprp-rka
E (A) = Pr

[
AEK(·),EK′ (·) ⇒ 1

]
− Pr

[
AP (·),P ′(·) ⇒ 1

]
,

where K ′ = K ⊕ (0xf0f0 · · · f0). The last one is a particular form of related
key attacks [5]. We fix a model of computation and a choice of encoding, and
write Advprp

E (t, σ) = maxA Advprp
E (A), Advsprp

E (t, σ) = maxA Advsprp
E (A),

and Advprp-rka
E (t, σ) = maxA Advprp-rka

E (A), where the maximum is taken over
adversaries A whose time complexity is at most t and whose query complexity
is at most σ. The query complexity is the total number of queries made to the
oracles.

Theorem Statement. Let M[E] be a MAC M, where E : {0, 1}k × {0, 1}n →
{0, 1}n is used as the underlying blockcipher. We have the following result.

Theorem 1. Fix t, q, and σ, where q, σ ≥ 1. Then the following bounds hold.

Advprf-kcv
MAC1.2[E](t, q, σ) ≤ Advprp

E (t′, σ + 1) + n/2n/2 + 7.5σ2/2n, (2)

Advprf-kcv
MAC2.1[E](t, q, σ) ≤ Advprp-rka

E (t′, q + σ + 1) + 3.5σ2/2n−s, (3)

Advprf-kcv
MAC2.2[E](t, q, σ) ≤ 2Advprp

E (t′, σ + 1) + 8σ2/2n−s, (4)

Advprf-kcv
MAC3[E](t, q, σ) ≤ 2Advsprp

E (t′, q + σ + 1) + 23.5σ2/2n−s, (5)

Advprf-kcv
MAC4.1[E](t, q, σ) ≤ 2Advprp-rka

E (t′, 2σ + 1) + 11.5σ2/2n, (6)
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Advprf-kcv
MAC4.2[E](t, q, σ) ≤ 2Advprp-rka

E (t′, 2σ + 1) + 11.5σ2/2n, (7)

Advprf-kcv
MAC5[E](t, q, σ) ≤ Advprp

E (t′, σ + 1) + 5σ2/2n−s, (8)

Advprf-kcv
MAC6.1[E](t, q, σ) ≤ 2Advprp

E (t′, σ + 1) + Advprp
E (t′′, 2� + 1)

+ 8σ2/2n + 4.5�2/2n, (9)

Advprf-kcv
MAC6.2[E](t, q, σ) ≤ 2Advprp

E (t′, σ + 1) + 8σ2/2n−s, (10)

where t′ = t + O(σ), t′′ = t + O(� + σ), and � = �k/n.
A proof overview is presented in Sect. 7, and the proof is presented in [17].

Discussions. For the assumption about the underlying blockcipher, we require
the security against related key attacks for MAC2.1, MAC4.1, and MAC4.2.
These are the MACs that use K ′ = K ⊕ (0xf0f0 · · · f0). MAC3 is the only
MAC that requires the strong pseudorandomness assumption, as it uses the
inverse of the blockcipher. The remaining MACs, MAC1.2, MAC2.2, MAC5,
MAC6.1, and MAC6.2, need the standard pseudorandomness assumption.

For the security bound, we see that MAC1.2, MAC4.1, MAC4.2, and MAC6.1
have the standard birthday bound that does not depend on s. This implies that
the security bounds for these MACs remain unchanged even if the key check
value consists of the entire n bits. Other MACs, MAC2.1, MAC2.2, MAC3,
MAC5, and MAC6.2, have the security loss by s/2 bits. With respect to the
term n/2n/2 in MAC1.2, we do not know if it can be removed, but there is an
attack with the suggested success probability with two queries and the birthday
query complexity. See AppendixB. We also note that the use of � in MAC6.1
comes from the use of the key derivation function.

We argue that, if s stays relatively small as specified in [2], depending on
applications, these MACs can still be used in practice. See Table 2 for the
expected number of blocks of queries to attack these MACs.

7 Proof Overview of Theorem1

Although nine MACs in Theorem1 share the same basic structure of CBC
MAC, the security proofs are different in details. Our proof of Theorem1 can
be divided into five cases, MAC1.2, MAC2.1, MAC3, MAC4.1, and MAC5. The
proofs for MAC2.2, MAC6.1, and MAC6.2 are similar to that of MAC2.1. The
proof for MAC4.2 follows from that of MAC4.1. The first step is to replace
the blockcipher with a random permutation. This will introduce Advprp

E (t′, σ′),
Advprp-rka

E (t′, σ′), or Advsprp
E (t′, σ′) depending on the usage of the underlying

blockcipher. We then replace the random permutation with a random function.
This will introduce a term O(σ2/2n). The rest of the proofs are different depend-
ing on the MACs.
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Table 2. Required number of blocks of queries to mount attacks against MAC2.1,
MAC2.2, MAC3, MAC5, and MAC6.2

n = 64 n = 128

s = 0 s = 16 s = 24 s = 0 s = 16 s = 24 s = 32 s = 48

232 224 220 264 256 252 248 240

Case MAC1.2. The analysis of MAC1.2 is quite involved. We define a number
of oracles. Let M be an �-bit message. After applying the padding, we have
M [1] · · · M [m] n← pad2(M), where m = ��/n+1. Then we define an oracle that
is only used to encrypt the j-th block M [j]. That is, our oracles are parameterized
by � and j, and a specific oracle is used only for encrypting the j-th block of an
�-bit message M . By doing so, we eliminate the interaction between KCV and the
MAC computation part, except for a rare case of computing a tag for the empty
string. We proceed by showing that MAC1.2, instantiated with such oracles, is
indistinguishable from the MAC1.2 that is based on a single random function.
We then show that CBC MAC that uses independent random functions for every
block is indistinguishable from a random function.

Case MAC2.1, MAC2.2, MAC6.1, and MAC6.2. For MAC2.1, we make use of
the following lemma, where CBCF (M) is the CBC MAC value of M where a
random function F : {0, 1}n → {0, 1}n is used as the underlying blockcipher.

Lemma 1. For any KCV ∈ {0, 1}s, M ∈ {0, 1}mn, and M ′ ∈ {0, 1}m′n, where
m,m′ ≥ 1 and M 
= M ′, we have

Pr[CBCF (M) = CBCF (M ′) | msbs(F (0n)) = KCV] ≤ mm′ + max{m,m′}
2n−s

.

Proof. To simplify the notation, let E1 be the event CBCF (M) = CBCF (M ′).
Similarly, let E2 be the event msbs(F (0n)) = KCV. Now [8, Lemma 3] shows that
Pr[E1] ≤ (mm′ + max{m,m′})/2n. We also have Pr[E2] = 1/2s. We have the
claimed bound from the two probabilities and the Bayes’ theorem as

Pr[E1 | E2] =
Pr[E1 ∧ E2]

Pr[E2]
≤ Pr[E1]

Pr[E2]
≤ mm′ + max{m,m′}

2n−s
,

and this completes the proof. ��
The proof of MAC2.1 is obtained by bounding the probability that we have a
collision at the input of the last random function, which can be derived by using
Lemma 1. We use the following lemma in the proof of MAC2.2.

Lemma 2. For any KCV ∈ {0, 1}s, constant ∈ {0, 1}n, and M ∈ {0, 1}mn,
where m ≥ 1, we have

Pr[CBCF (M) = constant | msbs(F (0n)) = KCV] ≤ 2(m + 1)
2n−s

.
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Proof. Let M̃ ← M ‖ constant and M̃ ′ ← 0n. We see that if CBCF (M) =
constant holds, then we have CBCF (M̃) = CBCF (M̃ ′). By applying Lemma1 to
M̃ and M̃ ′, the upper bound of Pr[CBCF (M) = constant | msbs(F (0n)) = KCV]
is obtained as

Pr[CBCF (M̃) = CBCF (M̃ ′) | msbs(F (0n)) = KCV] ≤ 2(m + 1)
2n−s

,

which completes the proof. ��
The proof of MAC2.2 closely follows that of MAC2.1, and we consider the addi-
tional event that we have 0n at the input of the last random function. We use
Lemma 2 to derive a bound on the probability. The proof for MAC6.2 is similar
to that of MAC2.2, and the proof of MAC6.1 is obtained by using the result of
MAC6.2 without the key check value.

Case MAC3. Let F be a random function that replaces EK , and P ′ be a random
permutation that replaces EK′ . Let Q(X) = F (P ′−1(F (X))) and G be a random
function. The core of the proof of MAC3 lies in proving that three oracles Q =
(P ′(·), F (·), Q(·)) are indistinguishable from three oracles G = (P ′(·), F (·), G(·)).
We show this when the domain of the first oracle, P ′, is restricted to {0n}. We
only need P ′ to generate the key check value, and hence it is sufficient for our
purpose. We then replace the call of Q(X) for the final block by G(X), and the
rest of the proof follows from those of MAC2.2 and MAC6.2.

CaseMAC4.1 andMAC4.2. We define five oracles, Q = (Q1(·), . . . , Q5(·)). We use
Q1 and Q2 to obtain the key check value. For a query M , we let M [1] · · · M [m] n←
pad1(M), and we use Q3 to encrypt M [1], Q4 to encrypt blocks that correspond to
M [2], . . . , M [m − 1], and Q5 to encrypt the last block that corresponds to M [m].
We show that these oracles can be used to simulate MAC4.1, and we also show that
they are indistinguishable from five independent random functions. Therefore, this
eliminates the interaction between the key check value and the MAC computation.
The rest of the proof is similar to that of MAC2.1, and the proof of MAC4.2 follows
from that of MAC4.1.

Case MAC5. For MAC5, we define seven oracles, Q = (Q1(·), . . . , Q7(·)). We use
Q1 for the key check value. Q2 is used for the first block, Q3 is used for the middle
blocks, and we use four oracles Q4, . . . , Q7 for the final block, depending on the
length of the input. We show that these oracles can be used to simulate MAC5,
and that they are indistinguishable from seven independent random functions.
Then the MAC computation becomes independent from the key check value,
and the proof follows.

8 Possible Fixes

There are applications where the security loss from using the key check value is
not an issue. For instance the key check value may be computed on a master
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key, and MACs are computed with session keys that are derived from the master
key in a cryptographically strong way, and the master key may never be used to
compute the MAC.

For other applications that need to fix the issue of reduction in security, one
possible option is to change the specification of the scheme, or the other is to
change the definition of the key check value. Since the latter seems to be imprac-
tical in view of the long history and the wide spread deployment of the standard,
we discuss the former option. We present two generic solutions, meaning that
they do not harm the provable security of the mode of operation, and they work
for MACs, encryption modes, and authenticated encryption modes.

We can always use the key derivation function used in MAC6.1 even when the
underlying blockcipher uses n-bit keys. Specifically, consider the case of MAC5,
or CMAC, with 128-bit key AES. In this case, AESK(0n) is used as the key
check value and AESK(·) is used in the actual computation of the tag. Instead,
one can use AESK(0n) as the key check value, derive K ′ as K ′ ← AESK(0n−11),
and use AESK′(·) in computing the tag. Under the assumption that AES is a
pseudorandom permutation, the key check value and AESK′(·) are independent,
and thus the original security proof of MAC5 carries over.

The above solution introduces an additional key scheduling process, and we
present another solution without it. Let K and K ′ be two independent keys for
a blockcipher E. If we use EK(0n) to derive the key check value and EK′(·)
for the mode of operation, then this clearly does not harm the provable secu-
rity. Now consider a blockcipher E′

K defined as E′
K(X) = EK(X ⊕ L) ⊕ L,

where L = EK(0n−11). Then similarly to XEX construction [28], under the
assumption that E is a strong pseudorandom permutation, the pairs of oracles
(EK(·), EK′(·), E−1

K′ (·)) and (EK(·), E′
K(·), E′−1

K (·)) are indistinguishable if the
first (leftmost) oracle takes only one value, 0n, as the input. Therefore, we can
use EK(0n) to derive the key check value, and use E′

K(·) and E′−1
K (·) for the

mode of operation. If the mode of operation is provably secure with the pseudo-
randomness assumption, we can use E′′

K defined as E′′
K(X) = EK(X ⊕L), where

L = EK(0n−11), instead of E′
K . In this case, similarly to the proof of XE con-

struction [28], (EK(·), EK′(·)) and (EK(·), E′′
K(·)) are indistinguishable if the

first oracle takes only 0n as the input. Therefore, we can use EK(0n) to derive
the key check value, and use E′′

K(·) for the mode of operation.

9 Conclusions

We have investigated the use of ANSI X9.24-1 key check value with the MACs
specified in ISO/IEC 9797-1. MAC1.1 is widely known to be insecure, and we
showed attacks against five MACs, out of nine MACs, by taking advantage of
the knowledge of the key check value. We also showed that, for these five MACs,
the analysis is tight and the attack cannot be improved. The results suggest that
using the key check value does result in a security loss by s/2 bits, but it does not
result in a total security loss. This indicates that, depending on the applications
and the length of the key check value, they can still be used in practice even in
the presence of the key check value, as the security impact is limited as long as s
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is not large, say 16 or 24 as suggested in [2]. For the remaining four MACs, the
security impact of using the key check value is small, even if the key check value
consists of the entire block. We also presented possible ways to fix the issue of
the security loss.

It would be interesting to see the impact of the key check value on the security
of other blockcipher modes of operation e.g., MAC5 and MAC6 in the 1999 version
of ISO/IEC 9797-1 [13], and it would also be interesting to see a more efficient way
to fix the issue of the security loss, possibly a solution that depends on the mode
of operation. Finally, some stronger security bounds than the standard birthday
bound are known for several MACs [24,26], and it would be interesting to see if
similar bounds can be obtained in the presence of the key check value.
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A Attacks Against MAC1.1

It is widely known that MAC1.1 is not secure for variable length messages. These
attacks are known as the length-extension attack. We here recall these attacks
for completeness.

Existential Forgery Against MAC1.1. Let (M,T ) be a known message and tag
pair, where T = MAC1.1K(M). We show that existential forgeries are possible
provided that pad1(M) 
= T holds. If |M | ≥ n then define

M∗ = pad1(M) ‖M ′ ‖ · · · ‖M ′ ‖T ⊕ msbn(M) ‖ lsb|M |−n(M),

where M ′ = T ⊕msbn(pad1(M)) ‖ lsb|pad1(M)|−n(pad1(M)). If 0 ≤ |M | < n then
define

M∗ = pad1(M) ‖T ⊕ pad1(M) ‖ · · · ‖T ⊕ pad1(M) ‖M ′′,

where M ′′ is a string that satisfies 0 ≤ |M ′′| < n and pad1(M ′′) = T ⊕pad1(M).
We see that T is the correct tag for all M∗ defined above.

Selective Forgery Against MAC1.1. Let M∗ be the message that A tries to
forge. The following selective forgery attack uses one known message and tag
pair and one chosen message and tag pair. Let (M1, T1) be the known message
and tag pair, where T1 = MAC1.1K(M1). We assume that M1 
= M∗ and T1 
=
pad1(M∗). If M1 = M∗ holds, then the attack fails, and if T1 = pad1(M∗), then
A can ask for a different known message and tag pair. Let M2 be

M2 =
{
pad1(M1) ‖T1 ⊕ msbn(M∗) ‖ lsb|M∗|−n(M∗) if |M∗| ≥ n
pad1(M1) ‖M ′ else

where M ′ is a string that satisfies 0 ≤ |M ′| < n and pad1(M ′) = T1⊕pad1(M∗).
Next, A asks M2 to its MAC oracle and obtains T2 = MAC1.1K(M2). We see
that T2 is a valid tag for M∗.

B Existential Forgery Against MAC1.2

Let s = n. We show an existential forgery against MAC1.2 with a success prob-
ability of about n/2n/2, and the query complexity of about 2n/2. Our adversary
makes one query to the MAC oracle and one verification query. Now A is given
KCV = EK(0n). Denote the integer representation of KCV as int(KCV), i.e.,
int(KCV) is an integer Z such that binn(Z) = KCV. Let ε be the empty string,
and V = MAC1.2K(ε) be the corresponding tag. Note that pad2(ε) = 0n‖0n and
hence V = EK(0n ⊕ EK(0n)) = EK(KCV). A makes a query ε to the MAC1.2
oracle and receives the value of V . Next, A defines M as

M = V ‖KCV ‖ · · · ‖KCV ‖ 0m,
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where 0 < m ≤ n and int(KCV) = |M |. Then, it holds that

pad2(M) = KCV ‖V ‖KCV ‖ · · · ‖KCV ‖ 0n.

Recall that V = EK(KCV) and KCV = EK(0n). We see that V is the correct tag
for M defined as above.

Now we evaluate the complexity of the above attack. It is dominated by
the verification of (M,V ), and hence the query complexity is about int(KCV)/n.
Since we are interested in attacks with complexity below 2n/2, it is necessary
that we have int(KCV) < n2n/2, which holds with a probability of n/2n/2 as the
value of KCV is uniformly random.

Overall this existential forgery attack can be applied to MAC1.2 with a
probability of n/2n/2.
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Abstract. We conduct an analysis of the RC4 algorithm as it is used
in the IEEE WPA/TKIP wireless standard. In that standard, RC4 keys
are computed on a per-frame basis, with specific key bytes being set to
known values that depend on 2 bytes of the WPA frame counter (called
the TSC). We observe very large, TSC-dependent biases in the RC4
keystream when the algorithm is keyed according to the WPA specifica-
tion. These biases permit us to mount an effective statistical, plaintext-
recovering attack in the situation where the same plaintext is encrypted
in many different frames (the so-called “broadcast attack” setting). We
assess the practical impact of these attacks on WPA/TKIP.

1 Introduction

The cryptographic mechanisms that aim at protecting transmitted data in mod-
ern wireless computer networks have seen an ongoing evolution. Most prominent
are the results of the IEEE 802.11 standardization effort; amongst others, IEEE
introduced Wired Equivalent Privacy (WEP) in 1999, Wi-Fi Protected Access
(WPA) in 2003, and WPA2 in 2004.

In a nutshell, the WEP protocol [1] works as follows: when a message m
is to be transmitted, a CRC32 checksum is appended to it and the resulting
string encrypted using RC4; the corresponding packet-specific RC4 key consists
of the concatenation of a monotonically increasing sequence number and a shared
secret. Practical attacks against integrity, authenticity, and secrecy of transmit-
ted data were reported soon after the publication of WEP, exploiting a wide
range of shortcomings of the protocol (including short sequence numbers, lack
of randomization, linearity of both RC4 encryption and CRC32, and others) [4].
Refined versions of these attacks [5,19,21] rely on advanced cryptanalysis of
RC4 and are based on the fact that the (public) packet sequence number is part
of the encryption key. Today, WEP is considered fully broken, and its usage is
discouraged even in the IEEE 802.11 standard itself.

To counter these attacks, IEEE decided to redesign the cryptographic com-
ponents of their wireless standards from scratch. Indeed, the WPA2 standard
mandates support for encryption based on the AES block cipher running in CCM
mode instead of on RC4 [2]. However, as most wireless devices implement their

This is the proceedings version. The full version can be found at https://eprint.iacr.
org/2013/748.
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core cryptographic routines directly in silicon, switching from WEP to WPA2
also requires the replacement of hardware in all involved network computers and
access points. In order to mitigate these costs, IEEE additionally proposed the
Temporal Key Integrity Protocol (TKIP) as part of the WPA standard as an
intermediate solution1. The design of WPA/TKIP is by intention quite close to
that of the original WEP, so that all required modifications can be implemented
using only firmware updates. Indeed, WPA/TKIP also encrypts packets using
RC4, but with (supposedly) better per-packet keys.

The intention of IEEE was that WPA/TKIP should only be a temporary
standard during the transition to WPA2. Indeed, it was recently announced
that IEEE will deprecate WPA/TKIP in 2014. Yet use of WPA/TKIP is still
widespread. For example, the 2013 paper [23] reported that 71 % of 6803 different
IEEE 802.11 networks surveyed still permit WPA/TKIP, with 19 % of those
networks using encryption only allowing WPA/TKIP. Given its widespread use,
and the spurred on by the WEP fiasco, WPA/TKIP has received a good deal of
attention from researchers, including [7,13,14,19,20,22,23].

WPA/TKIP requires the 16-byte RC4 key K = (K0, . . . , K15) used to encrypt
a frame to be generated in a very specific way from the temporal encryption key
TK (128 bits), the TKIP sequence counter TSC (48 bits, incremented for each
frame that is transmitted), and the transmitter address TA (48 bits). Specifi-
cally, K is computed via a so-called ‘key mixing’ procedure, which we write as
K ← KM(TA, TK, TSC). Internally, KM implements key derivation by mixing together
its inputs using a custom 8-round Feistel cipher whose round function relies on
the AES S-boxes. Key K is derived from the output of this routine, with some
structure added to “preclude the use of known RC4 weak keys” [2]. More pre-
cisely, writing TSC = (TSC0, TSC1, . . . , TSC5), i.e., the least-significant byte on the
left, we have

K0 = TSC1 K1 = (TSC1 | 0x20) & 0x7f K2 = TSC0 (1)

and K3, . . . , K15 being assigned from the output of the Feistel cipher. Notably
here, bytes K0, K1, K2 depend only on bytes TSC0 and TSC1 of TSC. Moreover, the
bits of TSC1 are used twice. So the bytes of K have more structure than they
would if they were chosen with uniform distribution (as is the case when RC4
is used in TLS, for example); in addition, as TSC values are public information,
partial information about K might be known to attackers.

Recently, AlFardan et al. [3] showed that RC4 with uniformly distributed keys
(as in TLS) is biased in its initial keystream bytes, and that these biases can be
exploited in passive attacks to recover plaintext. More specifically, they worked
in the broadcast or multi-session setting, wherein the same plaintext is repeat-
edly encrypted under different, independent keys. This setting is readily realised
for TLS protecting web traffic by using JavaScript code running in the client’s
browser to automatically generate the required encryptions, with the target plain-
text being a secure cookie belonging to the client. AlFardan et al. [3] presented two
1 Note that the WPA2 standard has optional support for TKIP for backward compat-

ibility.
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attacks on RC4 in TLS, one based on single-byte biases in the initial keystream
bytes, the other based on the long-term Fluhrer-McGrew double-byte biases [6].
The first attack proceeds on a simple statistical basis: given enough ciphertext
samples encrypting the same plaintext, one may proceed position by position, by
simply trying each possibility for plaintext byte Pr (in position r), recovering the
corresponding keystream bytes Kr, and then selecting as the output plaintext
byte Pr the one for which the induced distribution on the keystream bytes has
the highest likelihood when compared to an empirical estimate of the distribution
for that position. This attack, therefore, requires the attacker to first build a good
estimate of the keystream distribution in each output position r; this was done
in [3] using 244 random RC4 keys to get very accurate estimates of the keystream
byte distributions.

It is natural to ask whether the same techniques might be deployed against
other applications of the RC4 algorithm. In this paper, we address that question
for WPA/TKIP.

1.1 Overview of Results

We begin by simply applying the single-byte plaintext recovery attack of AlFardan
et al. [3] to RC4 with keys generated according to the TKIP specification, as
described above. More exactly, we build a keystream estimate using 241 RC4
keys obtained by considering 219 random choices for TK and TA, and then 222

TSC values (implemented as a counter with a random starting value). We then
simulate the single-byte bias attack of [3], again generating the RC4 keys and
ciphertexts according to the TKIP specification. This not only produces encour-
aging results in terms of plaintext recovery, but also reveals intriguing behaviour
in the biases and in the plaintext recovery rates. The keystream biases that we
observe exhibit more complex behaviour than for the random 16-byte RC4 keys
used in TLS and that were considered in [3] (see in particular, Figs. 2, 3 and
4 in Sect. 3 below). This makes plaintext recovery easier in some positions, but
harder in others when compared to the case of TLS.

In this first approach, the keystream estimates are calculated averaging over
the values of the pair (TSC0, TSC1), whereas it might be expected that there
would also be keystream biases that depend on the specific values of TSC0 and
TSC1 because of the way the TKIP key K in turn depends on these bytes. Thus
it seems reasonable that, even though we have already observed significant and
exploitable biases in the course of developing our first attack on TKIP, quite
different and/or bigger biases might be found by sampling over keystreams for
keys having specific values for the TSC pair (TSC0, TSC1). In fact, we discover that
the keystream distributions are not just different for different (TSC0, TSC1) pairs –
they are radically different. Moreover, very large biases in the RC4 keystream
distributions appear, much larger than were observed in our first analysis. In a
sense, these larger and different biases disappear to leave a different set of much
smaller biases behind when one averages over the TSC pair (TSC0, TSC1) as in our
first attack.
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These (TSC0, TSC1)-dependent biases can be exploited to build a second, more
powerful attack, which, at a high level, works as follows:

1. Bin the available ciphertexts into 216 bins according to the value of the TSC
pair (TSC0, TSC1). This binning is possible in TKIP because the TSC field is
sent in the clear in each frame’s header.

2. Perform a likelihood analysis of plaintext candidates for each of the bins.
3. Combine the resulting plaintext likelihood estimates for the different bins in

a statistically sound procedure to get an estimate of the overall likelihood for
each plaintext.

Essentially, while our first analysis effectively averages out any (TSC0, TSC1)-
specific behaviour, our second, more delicate analysis exploits it to the full. We
refer to this attack as a (TSC0, TSC1) binning attack.

This second approach once again requires the computation of keystream
biases, but now we need a good estimate of the distribution of keystream bytes
in each output position r (1 ≤ r ≤ 256)2 for each of the 216 (TSC0, TSC1) pairs,
a dataset containing 232 items. To gain a similar level of accuracy for each
(TSC0, TSC1) pair as we obtained for our first attack, we would need to com-
pute statistics for around 256 RC4 keystreams. This is currently well beyond
our computational reach: generating 240 RC4 keystreams currently takes about
4 days on our 16-core machine, and gives estimates for keystream biases based
on only 224 RC4 keystreams for each of the 216 (TSC0, TSC1) pairs, while the
desired computation would be 216 times larger (estimated at 222 core days). The
estimates for the biases that we get from 224 RC4 keystreams per (TSC0, TSC1)
pair are somewhat noisy, in the sense that they do not accurately reflect the
true keystream distributions except when there are large biases present. And,
unfortunately, our experience is that using a noisy set of keystream estimates
introduces inaccuracies into our plaintext recovery attacks which substantially
reduces their success rates.

We present and investigate two methods to compensate for the problem of
not having very accurate estimates of the keystream biases for each (TSC0, TSC1)
pair:

1. TSC1 is used to set two of the TKIP RC4 key bytes, so one may suspect that
the keystream biases would be particularly dependent on this single byte of
TSC. We therefore carry out the approach suggested above, but computing 28

keystream estimates, one for each value of TSC1, instead of the original 216

estimates. In our experiments, we use 232 keystreams to obtain each estimate,
bringing the total computation up to that of 240 RC4 keystreams. In the
attack, we then bin the available ciphertexts into 28 bins according to the
known value of TSC1, perform our likelihood analysis for each bin, and then
combine the results. We refer to this attack as a TSC1 binning attack.

2 We focus on the keystream distributions in the first 256 bytes because we did not
observe significant biases beyond these bytes in our experiments, with the exception
of byte 257.
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2. Based on a computation with 224 RC4 keystreams for each of the 216 (TSC0,
TSC1) pairs, and confirmed by larger computations for specific (TSC0, TSC1)
pairs, we have observed that there are many very large biases present in the
(TSC0, TSC1)-specific keystreams. For example, while the typical bias observed
in our first (TSC-averaged) analysis is on the order of ±2−16, we find that there
are many thousands of (TSC0, TSC1)-specific biases on the order of ±2−12 and
larger. (See Fig. 7(a) for a pictorial representation of the numbers of such
large biases across all (TSC0, TSC1) pairs in each position.) Heuristically, these
biases might be expected to dominate the plaintext recovery procedure. We
therefore “de-noise” our keystream distribution estimates by applying a cut-
off procedure to them, setting all probability estimates that fall within a
threshold around 2−8 to an average value, and leaving those that lie outside
that threshold untouched. We then execute our binning attack using these
idealised keystream estimates.

Of course, these two methods can be combined, and we examine the effect of
doing so on the success rate of our plaintext recovery attacks.

As we shall see in Sect. 5, our attacks are effective. For example, using just
the first method above with 226 ciphertexts, we obtain an average success rate
of 65 % in recovering each of the first 256 bytes of plaintext. The rate rises to
higher than 90 % in even positions, this improvement being due to the presence
of particularly large and TSC1-specific RC4 keystream biases in the even positions
when TKIP keys are used.

1.2 Related Work

In independent and concurrent work, Sen Gupta et al. [16] have identified biases
in WPA that are TSC-dependent, and speculated that there may be correla-
tions between keystream bytes and linear combinations of the known key bytes
K0, K1, K2 (which are computed exclusively from the TSC). This is similar to our
approach. However, they did not perform a systematic search for biases, and did
not apply them to plaintext recovery except in positions 1, 2, 3, 256 and 257.
Their approach to plaintext recovery uses an ad hoc approach, with each linear
combination being used to compute a keystream estimate, which then suggests
a plaintext byte. Our approach is likelihood-based, and takes the reverse app-
roach: for every possibility for the plaintext byte, and each (TSC0, TSC1) pair
(or TSC1 value), we compute the likelihood of the resulting induced keystream
estimate, and combine these estimates to select the plaintext having the highest
likelihood. Note that this recovery algorithm is optimal.

1.3 Paper Organisation

Section 2 provides further background on the RC4 stream cipher and its use in
WPA. Section 3 reports biases in RC4 keystreams when RC4 is keyed according
to the WPA specification, comparing biases for random-TSC WPA keys with
biases for keys generated according to specific values of TSC1 and (TSC0, TSC1).
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Algorithm 1. Key schedule (KSA)
input : key K of l bytes
output: initial internal state st0
begin

for i = 0 to 255 do
S[i] ← i

j ← 0
for i = 0 to 255 do

j ← j + S[i] + K[i mod l]
swap(S[i],S[j])

i, j ← 0
st0 ← (i, j,S)
return st0

Algorithm 2. Keystream generator (PRGA)
input : internal state str
output: keystream byte Zr+1

updated internal state str+1

begin
parse (i, j,S) ← str
i ← i + 1
j ← j + S[i]
swap(S[i],S[j])
Zr+1 ← S[S[i] + S[j]]
str+1 ← (i, j,S)
return (Zr+1, str+1)

Fig. 1. Algorithms implementing the RC4 stream cipher. All additions are performed
modulo 256.

Section 4 describes our plaintext recovery attacks on WPA that exploit these
biases. We evaluate the attacks in Sect. 5 via simulation. Finally, Sect. 6 discusses
the impact of and countermeasures to our attacks.

2 Further Background

2.1 The RC4 Stream Cipher

The stream cipher RC4, originally designed by Ron Rivest, became public in 1994
and found application in a wide variety of cryptosystems; well-known examples
include SSL/TLS, WEP [1], WPA [2], and some Kerberos-related encryption
modes [8]. RC4 has a remarkably short description and is extremely fast when
implemented in software. However, these advantages come at the price of lowered
security: several weaknesses have been identified in RC4 [5,6,9–11,17–19,24].

Technically, RC4 consists of two algorithms: a key scheduling algorithm (KSA)
and a pseudo-random generation algorithm (PRGA), which are specified in
Algorithms 1 and 2 (Fig. 1). The KSA takes as input a key K, typically a byte-
array of length between 5 and 32 (i.e., 40–256 bits), and produces the initial
internal state st0 = (i, j,S), where S is the canonical representation of a per-
mutation on the set [0, 255] as an array of bytes, and i, j are indices into this
array. The PRGA will, given an internal state str, output ‘the next’ keystream
byte Zr+1, together with the updated internal state str+1.

2.2 WPA

We describe the cryptographic operation of WPA when RC4 is selected as the
encryption method (referred to as TKIP). Our description is not complete, but
provides sufficient detail to enable our subsequent attacks to be understood. We
refer the reader to our introduction for an explanation of how TKIP generates
its per-frame key K as a function K ← KM(TA, TK, TSC) of the temporal encryption
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key TK (128 bits), the TKIP sequence counter TSC (48 bits), and the transmitter
address TA (48 bits). The per-frame key K is then used to produce an RC4
keystream, following the above description. The initialisation of RC4 in WPA
is the standard one for this algorithm. Notably, none of the initial keystream
bytes is discarded when RC4 is used in WPA, despite these bytes having known
weaknesses.

The TKIP plaintext (consisting of the frame payload, a 64-bit MAC value
MIC , and a 32-bit Integrity Check Vector ICV) is then XORed in a byte-by-byte
fashion with the RC4 keystream, i.e., the ciphertext bytes are computed as

Cr = Pr ⊕ Zr for r = 1, 2, 3, . . . ,

where Pr are the individual bytes of P , and Zr are the RC4 keystream bytes.
The data transmitted over the air then has the form

HDR||C,

where C is the concatenation of the bytes Cr and HDR is the unencrypted frame
header.

3 Biases in the RC4 Keystream for WPA Keys

In the context of our analysis, we need to assess the strength of biases in the RC4
output streams for the keys K output by KM. If strong biases exist, then an attack
on WPA is likely to be feasible using the ideas sketched in the introduction. That
is, in a setting where the same plaintext message is repeatedly transmitted in a
WPA-protected wireless network, one can expect that this plaintext is (at least
partially) recoverable.

3.1 Fully Aggregated Biases for TKIP

We first experimentally determined single-byte keystream biases in WPA, with-
out regard to TSC values (as would be consumed in a direct application of the
attack from [3]). We refer to the biases obtained as being fully aggregated biases,
since they are computed by using random TSC values and hence can be consid-
ered as being generated by aggregating over all (TSC0, TSC1) pairs (in contrast to
the (TSC0, TSC1)-pair-specific biases that we consider below). More precisely, we
implemented the KM key derivation function, verified it against the test vectors
from [2, Annex M.1.2], and computed keys

KM(TA, TK, TSC), KM(TA, TK, TSC + 1), . . . , KM(TA, TK, TSC + (222 − 1))

for 219 random assignments of variables TA, TK, TSC, aiming at modelling a realis-
tic application of TKIP. Considering all resulting 241 RC4 keys, we measured the
distribution of keystream bytes at positions 1–256. Independently, from the set of
all keys K consistent with Eq. (1), we generated 241 random keys (i.e., with ran-
dom TSC, but also setting K3, . . . , K15 randomly instead of using the Feistel cipher).
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(a) Biases at position Z1 (b) Biases at position Z17

(c) Biases at position Z33 (d) Biases at position Z49

Fig. 2. Measured distribution of the TKIP keystream at positions Z1, Z17, Z33, and
Z49 (blue). These estimates were obtained by considering more than 241 KM-generated
keys. For reference, we overlay the biases of the RC4 keystream with random 128-bit
keys (red) (Color figure online).

We identified the corresponding keystream distributions at the same positions.
We observed that the difference between these two sets of distributions is small,
allowing us to make the assumption that the action of the Feistel cipher does not
affect the output distribution of RC4. We hence base all of our further observations
on statistics obtained from random keys conforming with (1). Here, and through-
out, we use AES with a fixed key in counter mode to generate any random values
needed (so that they are in fact pseudorandom, and we are relying on AES being
a good block cipher to ensure our keys are well distributed).

In contrast to the internal Feistel cipher of KM, the structure on RC4 keys
implied by Eq. (1) has a significant influence on the aggregated biases in TKIP.
For instance, at positions 17, 33, 49, 65, 81, and 97 (i.e., 16k + 1 for small k),
new peaks in the distribution show up that do not appear in RC4 with random
128-bit keys. For the distributions at positions 17, 33, and 49 see Fig. 2(b), (c),
and (d). Even more extreme is the difference at position 1, shown in Fig. 2(a).
It is also interesting to observe how the bias towards 0x00 behaves in the TKIP
case: the probability Pr(Zr = 0x00) is persistently smaller than in the case of
random 128-bit keys at positions 2–32 and 128–160, whereas for the other posi-
tions its value alternates from byte to byte between being significantly larger and
being significantly smaller than the corresponding probabilitiy for uniform keys.
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Fig. 3. Strength of the bias towards 0x00 of TKIP keystream bytes at positions 1–256
(blue). The red line corresponds to the biases of RC4 with random 128-bit keys (Color
figure online).
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Fig. 4. Pictorial representation of biases in RC4 keystreams for random 128-bit keys
and for TKIP keys, for different positions (x-axis) and byte values (y-axis). For each
position we encode the bias in the keystream for the (position, value) combination as a
colour; in figures (a) and (b) the colouring scheme encodes the absolute biases, i.e., the
absolute difference between the occurring probabilities and the (expected) probabil-
ity 1/256, scaled up by a factor of 216, capped to a maximum of 0.5. In figure (c), the
colour encodes the difference between the absolute biases arising for random 128-bit
keys and for TKIP keys, scaled up by a factor of 216 and capped to the range [−0.5, 0.5]
(Color figure online).

This is illustrated in Fig. 3, which compares the strength of the bias towards 0x00
for TKIP and for random 128-bit RC4 keys. Finally, to make it easier to com-
pare the TKIP-specific biases with the biases for random 128-bit keys in [3],
we present Fig. 4, in which we depict side-by-side the full set of biases for both
cases. Figure 4(c) shows the differences between the two sets of biases; blue and
red pixels show the places where the biases differ significantly.

It is an interesting theoretical problem to explain the differences between RC4
biases for random 128-bit keys and TKIP keys (though we stress that having
such an explanation does not affect the performance of our attacks to follow).
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3.2 (TSC0, TSC1)-pair-specific Biases for TKIP

As explained in the introduction, we wish to examine how the biases in RC4
keystreams for TKIP keys depend on the (TSC0, TSC1) byte pair used in defin-
ing the keys. For each (TSC0, TSC1) pair, we computed 224 RC4 keystreams by
assigning the bytes K0, K1, K2 according to the (TSC0, TSC1) pair (as per the
specification, see Eq. (1)) and assigning the remaining 13 key bytes at random.

Using each set of 224 RC4 keys, we then computed the distribution of
keystream bytes at positions 1–256, giving a dataset containing 256 keystream
byte distributions for each of the 216 (TSC0, TSC1) pairs. Of course, it is not pos-
sible to represent such a large dataset in full here, but we provide two small
samples in Figs. 5 and 6. The former shows how the distribution of keystream
byte Z1 depends heavily on the value of the (TSC0, TSC1) pair. The latter shows
how different is the distribution of keystream bytes in a variety of positions for a
specific (TSC0, TSC1) pair, (0x00, 0x00), when compared to the fully aggregated

Fig. 5. Measured distribution of the TKIP RC4 keystream at position Z1 for
(TSC0, TSC1) pairs (0x00, 0x00), (0x00, 0x20), (0x8F, 0x34), (0xFF, 0xFF) (blue). These
estimates were obtained by considering more than 236 keys per (TSC0, TSC1) pair. For
reference, we overlay the corresponding fully aggregated TKIP keystream biases (red)
(Color figure online).
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(a) Biases at position Z17 (b) Biases at position Z33

(c) Biases at position Z129 (d) Biases at position Z256

Fig. 6. Measured distribution of the TKIP keystream at positions Z17, Z33, Z129, Z256

for (TSC0, TSC1) pair (0x00, 0x00) (blue; see Fig. 5(a) for distribution of Z1). These
estimates were obtained by considering more than 236 keys per TSC pair. For reference,
we overlay the corresponding fully aggregated TKIP keystream biases (red) (Color
figure online).

results reported above. This is indicative that plaintext recovery attacks that
focus on exploiting biases arising for individual (TSC0, TSC1) pairs may perform
better than those working with fully aggregated biases.

Our plaintext recovery attacks to be presented in Sect. 4 proceed on a position-
by-position basis, and can be expected to work well in a given position r if there are
large biases in that position over the different (TSC0, TSC1) pairs. Figure 7(a) shows
that large biases are indeed plentiful and well-spread over the keystream positions.
For instance, it reveals that the 256 strongest biases at positions 1–128 have a value
of about 2−11, with a couple of exceptions where strengths of more than 2−10 can
be reported. Even more impressive are the many thousands of biases of strength
> 2−10 at positions 1–3. Also for position 256 many thousands of relatively strong
biases do exist. The interesting structure in intervals 32–128 and 160–256, where
positions with strong biases alternate with positions having no strong biases, will
considerably affect the recovery rate of our attacks, as we will see. To conclude,
the numbers of large biases seen is significantly larger than one would expect if the
keystream bytes were uniformly random. For example, with 224 keystreams per
(TSC0, TSC1) pair, we would expect the count for each byte value in each position
to follow a (roughly) Normal distribution with mean 216 and standard deviation σ
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Fig. 7. Pictorial representation of the number of large biases in TKIP keystream dis-
tributions across different positions in the keystream. For each position we show the
strengths of the largest biases, sorted in descending order (largest bias on the bot-
tom line). The colouring scheme encodes the absolute difference between the occurring
probabilities and the (expected) probability 1/256, scaled up by a factor of 216, capped
to a maximum of 64 (Color figure online).

approximately 28. We would then expect the number of counts outside the range[
216 − 210, 216 + 210

]
(i.e., outside the 4σ range) to be roughly 0.2 %, whereas the

actual rate of such counts is about 1.5–2 % for at least half of the positions, and
for some positions even larger.

We recall from the introduction our hunch that the TKIP keystream biases
would be particularly dependent on the single byte TSC1. To test this, we used our
bias data for all (TSC0, TSC1) pairs to compute TSC0-aggregated biases, that is, we
aggregated our previous data over TSC0 values to obtain 28 different keystream
distributions for positions 1–256, one distribution for each value of TSC1. Effec-
tively, this gives us distribution estimates based on 232 keystreams for each value
of TSC1. We then compared the original distributions to the TSC0-aggregated data.

An indication towards the correctness of our hunch is provided by Fig. 7(b)
that reports strengths of biases similarly to Fig. 7(a) – however aggregating over
TSC0 values as described. Indeed, both the obvious similarity of the graphs and
the applied scaling factor of 256 along the y-axis are exactly as expected when
assuming that each strong bias in the aggregated counts appears 256 times in
the plain (unaggregated) counts. This suggests that our hunch concerning the
relative importance of TSC1 is correct, and gives weight to the idea of considering
TSC0-aggregated biases in our plaintext recovery attack (the first of our two
methods designed to compensate for the problem of not having very accurate
keystream bias estimates as mentioned in the introduction).

Given a fixed position in the keystream, our attack on TKIP works best if
there are strong biases for many (TSC0, TSC1) combinations (or TSC1 values) for
that position. In practice, only TKIP frames with such TSC values will contribute
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Fig. 8. Pictorial representation of the correlation between position in TKIP keystream,
TSC1 value (respectively, byte value), and the corresponding strength of the largest
occurring bias. The colouring scheme encodes the absolute difference between the occur-
ring probabilities and the (expected) probability 1/256, scaled up by a factor of 216,
capped to a maximum of 2 (Color figure online).

noticeably to plaintext recovery. While Fig. 7(a) and (b) tell us that quite large
biases do exist almost everywhere in the first 256 positions of the RC4 keystream
for some TSC values, it is yet unclear for which TSC values they occur. We provide
Fig. 8(a) and (b) to shed more light on the distribution of ‘bias-friendly’ TSC
values. We see that for positions 1–3, 16–17, 32–33, 48–49, 64–65, 80–81, and
96–97 strong biases exist for more than 50 % of all TSC1 values. Orthogonally
to that, a TSC1 value of 127 guarantees strong biases in the first 128 keystream
positions. Further, it is quite interesting to trace the origin of the alternating
behaviour in Fig. 7(a) and (b) at position ranges 32–128 and 160–256. Finally,
note the strong tendency at positions 1–128 of the TKIP cipher to produce byte
values 128 and 129, and also value 65 at positions 1–64.

Again, we note that finding the underlying reasons for the observed bias
behaviours in TKIP keystreams is an interesting theoretical problem.

4 Plaintext Recovery Attacks

4.1 The Attack of AlFardan et al.

The idea behind the single-byte bias attack of AlFardan et al. [3] is to first
obtain a detailed picture of the distributions of RC4 keystream bytes Zr, for all
positions r of interest, by gathering statistics from keystreams generated using
a large number of independent keys. That is, for all r, we (empirically) estimate

pr,k := Pr(Zr = k), k = 0x00, . . . , 0xFF,
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where the probability is taken over a random choice of the RC4 encryption key.
In [3], these keys were taken to be random 128-bit values, reflecting how session
keys are set in TLS; for TKIP, these keys should be generated according to the
procedure described in Sect. 3.1.

The second step in the approach of [3] is to use the pr,k estimates to recover
plaintext using a maximum-likelihood approach, as follows. Suppose we have S
ciphertexts C1, . . . , CS available for our attack (for the r-th byte of ciphertext
Cj we write Cj,r). For any fixed position r and any candidate plaintext byte μ

for that position, vector (N (µ)
0x00, . . . , N

(µ)
0xFF) with

N
(µ)
k = |{j | Cj,r = k ⊕ μ}1≤j≤S | (0x00 ≤ k ≤ 0xFF)

represents the distribution on Zr required to obtain the observed ciphertext bytes
{Cj,r}1≤j≤S by encrypting μ. We compare these induced distributions (one for
each possible μ) with the accurate distribution pr,0x00, . . . , pr,0xFF and interpret a
close match as an indication for the corresponding plaintext candidate μ being
the correct one, i.e., Pr = μ. More formally, we observe that the probability λµ

that plaintext byte μ is encrypted to ciphertext bytes {Cj,r}1≤j≤S follows a
multinomial distribution:

λµ =
S!

N
(µ)
0x00! · · · N (µ)

0xFF!

∏
k∈{0x00,...,0xFF}

p
N

(µ)
k

r,k . (2)

The approach of [3] then determines the (optimal) maximum-likelihood plaintext
byte value μ by computing λµ for all 0x00 ≤ μ ≤ 0xFF and identifying μ such that
λµ is largest. Algorithm 3 more formally specifies the described attack, incorpo-
rating some optimizations discussed in [3] (in particular, as the fraction in Eq. (2)
is independent of μ, we compute the λµ values only up to that constant; in fact,
we actually compute and compare log λµ, rather than λµ).

4.2 Attack Based on (TSC0, TSC1) Pair Binning

We next discuss our extension of the attack in Algorithm 3 that uses the single-
byte RC4 biases, along with their strengths, on a per (TSC0, TSC1) pair basis.
For ease of notation, we let TSC denote the pair (TSC0, TSC1) in mathematical
expressions.

The idea is to first obtain a detailed picture of the distributions of RC4
keystream bytes Zr, for all positions r in some range, on a per (TSC0, TSC1) pair
basis, by gathering statistics from keystreams generated using a large number
of keys (224 per (TSC0, TSC1) pair in our case). That is, for all r in our selected
range, we now estimate

pTSC,r,k := Pr(Zr = k), TSC = (0x00, 0x00), . . . , (0xFF, 0xFF), k = 0x00, . . . , 0xFF

where the probability is taken over the random choice of the RC4 encryption
key K, subject to the structure on K0, K1, K2 induced by TSC = (TSC0, TSC1).

Using these biases pTSC,r,k, in a second step, plaintext can be recovered using
a variation of the preceding maximum-likelihood approach, as follows.
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Algorithm 3. Single-byte bias attack from [3]
input : {Cj}1≤j≤S – S independent encryptions of fixed plaintext P

r – byte position
(pr,k)0x00≤k≤0xFF – keystream distribution at position r

output: P ∗
r – estimate for plaintext byte Pr

begin
N0x00 ← 0, . . . , N0xFF ← 0
for j = 1 to S do

NCj,r ← NCj,r + 1

for μ = 0x00 to 0xFF do
for k = 0x00 to 0xFF do

N
(µ)
k ← Nk⊕µ

λµ ←∑0xFF

k=0x00 N
(µ)
k log pr,k

P ∗
r ← arg maxµ∈{0x00,...,0xFF} λµ

return P ∗
r

Suppose we have S ciphertexts C1, . . . , CS available for our attack. We par-
tition these into 216 groups according to the value of the (TSC0, TSC1) pair; for
convenience, we assume the resulting bins of ciphertexts are all of equal size
T = S/216, but this need not be the case. Let the bin of ciphertexts associated
with a particular TSC = (TSC0, TSC1) pair be denoted STSC and have members
CTSC,j for j = 1, . . . , T ; we denote the byte at position r of CTSC,j by CTSC,j,r. For
any fixed position r and any candidate plaintext byte μ for that position, vector
(N (µ)

TSC,0x00
, . . . , N

(µ)

TSC,0xFF
) with

N
(µ)

TSC,k
= |{j | CTSC,j,r = k ⊕ μ}1≤j≤T | (0x00 ≤ k ≤ 0xFF)

represents the distribution on Zr required to obtain the observed ciphertext bytes
{CTSC,j,r}1≤j≤T for bin STSC by encrypting μ. We compare these induced distri-
butions (one for each possible μ and for each possible (TSC0, TSC1) pair) with
the accurate distribution pTSC,r,0x00, . . . , pTSC,r,0xFF and interpret a close match as
being an indication for the corresponding plaintext candidate μ being the cor-
rect one, i.e., Pr = μ, in bin STSC. The probability λTSC,µ that plaintext byte μ is
encrypted to ciphertext bytes {CTSC,j,r}1≤j≤T in bin STSC now follows a multino-
mial distribution:

λTSC,µ =
T !

N
(µ)

TSC,0x00
! · · · N (µ)

TSC,0xFF
!

∏
k∈{0x00,...,0xFF}

p
N

(µ)
TSC,k

TSC,r,k
. (3)

The probability that plaintext byte μ is encrypted to ciphertext bytes
{CTSC,j,r}1≤j≤T across all bins STSC can then be precisely calculated as

λµ =
∏

(0x00,0x00)≤TSC≤(0xFF,0xFF)

λTSC,µ .
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By computing λµ for all 0x00 ≤ μ ≤ 0xFF, and identifying μ such that λµ

is largest, we determine the (optimal) maximum-likelihood plaintext byte value.
This informal description, together with some optimisations that we describe
next, is specified in algorithmic form in Algorithm 4.

Observe that, for each fixed position r and set of ciphertexts {CTSC,j,r}1≤j≤T ,

values N
(µ)

TSC,k
can be computed from values N

(µ′)
TSC,k

by equation N
(µ)

TSC,k
=

N
(µ′)
TSC,k⊕µ′⊕µ

, for all k. In other words, for a fixed (TSC0, TSC1) pair, vectors

(N (µ)

TSC,0x00
, . . . , N

(µ)

TSC,0xFF
) and (N (µ′)

TSC,0x00
, . . . , N

(µ′)
TSC,0xFF

) are permutations of each

other; by consequence, the term T !/(N (µ)

TSC,0x00
! · · · N (µ)

TSC,0xFF
!) in Eq. (3) is a con-

stant for each choice of μ (but not necessarily constant across different values for
the (TSC0, TSC1) pair). If T is fixed (as we assume it to be), then the T ! terms
can all be omitted from all calculations. Furthermore, computing and comparing
log(λTSC,µ) and log(λµ) instead of λTSC,µ and λµ makes the computation more
efficient and accuracy easier to maintain.

Comparing with Algorithm 3, we see that our new Algorithm 4, at its core,
runs Algorithm 3 once for each (TSC0, TSC1) pair, and then combines the resulting
likelihood estimates λTSC,µ to obtain the final estimate λµ for plaintext candidate
μ. Some care is needed, however, to use the correct scaling factors (T ! and
N

(µ)

TSC,0x00
! · · · N (µ)

TSC,0xFF
!) for each (TSC0, TSC1) pair.

4.3 Attack Based on Aggregation Over TSC0 Values

As mentioned in the introduction, one method of coping with noisy estimates
for the probabilities pTSC,r,k is to consider aggregation of biases over TSC0. This
is supported by the experiments reported in Sect. 3.2, where we saw that there is
broad agreement between the TSC0-aggregated data and the data for individual
(TSC0, TSC1) pairs.

It is not difficult to see how to modify Algorithm 4 to work with 28 bins,
one for each value of TSC1, instead of 216 bins. The execution of the modified
algorithm becomes in practice faster, since each estimate for a plaintext byte
μ now only involves calculation of λTSC,µ over 28 TSC1 values instead of 216

(TSC0, TSC1) pair values.

4.4 Further Optimizations

In specific settingswhere the attacker has a priori information about the encrypted
plaintext the performance of Algorithms 3 and 4 can be further improved. Here,
the considerations are similar to those in [3] and so we omit further discussion.

5 Experimental Results

In this section, we report on the results obtained by simulating the plaintext
recovery attacks described in Sect. 4. To be exact, we did not mount the attacks
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Algorithm 4. Plaintext recovery attack using (TSC0, TSC1) binning
input : {CTSC,j}(0x00,0x00)≤TSC≤(0xFF,0xFF),1≤j≤T – S = 216 · T independent

encryptions of fixed plaintext P
r – byte position
(pTSC,r,k)(0x00,0x00)≤TSC≤(0xFF,0xFF),0x00≤k≤0xFF – keystream distributions for

all (TSC0, TSC1) pairs at position r
output: P ∗

r – estimate for plaintext byte Pr

begin
N(0x00,0x00),0x00 ← 0, . . . , N(0xFF,0xFF),0xFF ← 0
for TSC = (0x00, 0x00) to (0xFF, 0xFF) do

for j = 1 to T do
k ← CTSC,j,r

NTSC,k ← NTSC,k + 1

for TSC = (0x00, 0x00) to (0xFF, 0xFF) do
FTSC ←∑0x00≤j≤0xFF log((NTSC,j)!)

for μ = 0x00 to 0xFF do
for k = 0x00 to 0xFF do

N
(µ)

TSC,k
← NTSC,k⊕µ

λTSC,µ ← −FTSC +
∑0xFF

k=0x00 N
(µ)

TSC,k
log(pTSC,r,k)

for μ = 0x00 to 0xFF do
λµ ←∑(0x00,0x00)≤TSC≤(0xFF,0xFF) λTSC,µ

P ∗
r ← arg maxµ∈{0x00,...,0xFF} λµ

return P ∗
r

against real TKIP traffic, but instead generated TKIP ciphertexts corresponding
to a plaintext consisting of 0x00 bytes and then tested our attacks’ abilities to
recover this plaintext.

5.1 Attack Using Fully Aggregated Biases

We first ran 256 times the attack in Algorithm 3 for each of S = 224, 226, 228, 230

simulated frames to estimate the attack’s success rate.Weused the fully aggregated
biases described in Sect. 3.1 in the attack. The results are shown in Fig. 9(a)–(d),
which display the success rate of recovering the correct plaintext byte versus the
byte position r in the keystream. Some notable features of these figures are:

– With S = 226 frames, the first 55 plaintext bytes are recovered with rate
at least 50 % per byte. Comparing Fig. 9(b) with the corresponding Fig. 5(a)
from [3] created for random 128-bit keys reveals that many plaintext bytes
are recovered with a significantly higher rate in the TKIP case, leading to a
higher average recovery rate.

– With S = 230 frames, the first 130 plaintext bytes are recovered with rate
close to 100 %; the first 211 bytes are recovered with rate at least 50 %. Note
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(a) 224 frames (b) 226 frames

(c) 228 frames (d) 230 frames

Fig. 9. Success rate for 256 runs of attack based on fully aggregated TKIP biases using
224, 226, 228 and 230 simulated frames (4, 16, 64, and 256 keys generating 222 frames
each).

again that, while according to Fig. 5(c) in [3] for random 128-bit keys the first
251 bytes are recovered with at least 50 % probability, in the TKIP case many
plaintext bytes are recovered with significantly higher probability.

– Independently of the number S of considered frames, the recovery rate is
highly correlated with the strength of the bias towards 0x00 at the same
position: to see this, compare Fig. 9(a)–(d) with Fig. 3.

By comparing Fig. 9 with the corresponding figures in [3], we observe that the
structure on keys enforced by (1), which was aiming to ‘preclude the use of known
RC4 weak keys’ [2] (to prevent WEP key recovery), effectively allows easier
recovery of plaintext bytes than with uniform keys, at least in some positions.

5.2 Attacks Using TSC Binning

Secondly, we simulated the attack based on (TSC0, TSC1) pair binning described
in Algorithm 4, as well as the variant of the attack described in Sect. 4.3 which
aggregates the biases over all TSC0 values. For both attacks, we used per-output-
byte probabilities {pTSC,r,k}1≤r≤256,0x00≤k≤0xFF derived from the keystream dis-
tribution estimate described in Sect. 3.2. Recall that this estimate was generated
based on 224 RC4 keystreams for each of the 216 (TSC0, TSC1) pairs. To judge
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(a) Attack based on (TSC0, TSC1) pair
binning using non-idealised keystream
distribution estimate.

(b) Attack based on (TSC0, TSC1) pair
binning using idealised keystream distri-
bution estimate.

(c) Attack based on aggregation of TSC0
values using non-idealised keystream dis-
tribution estimate.

(d) Attack based on aggregation of TSC0
values using idealised keystream distri-
bution estimate.

Fig. 10. Success rate for attacks on TKIP based on (TSC0, TSC1) pair binning and
aggregation of TSC0 values, for both idealised and non-idealised keystream distribution
estimates. All success rates are based on 256 runs of each attack using 224 simulated
frames.

the effect of noise in the keystream distribution estimate, we furthermore simu-
lated the attacks using an idealised estimate. Specifically, we used a modified set
of per-output-byte probabilities {p′

TSC,r,k
}1≤r≤256,0x00≤k≤0xFF for which all prob-

abilities corresponding to a bias below a threshold of four times the standard
deviation for a normal distribution were replaced by the average value of these
probabilities. All of the simulations were done for 224 frames and each attack
was run 256 times. The resulting recovery rates are shown in Fig. 10(a)–(d). We
make the following observations:

– The recovery rate for all byte positions improves significantly for the attack
based on full (TSC0, TSC1) binning when using an idealised keystream distrib-
ution estimate. This indicates that the level of noise in our keystream distri-
bution estimate based on 224 RC4 keystreams for each (TSC0, TSC1) pairs has
an adverse effect on the recovery rate and is too significant for the binning
attack to work optimally.
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– The recovery rate for the attack based on aggregation over TSC0 values is
very similar when using idealised and non-idealised keystream distribution
estimates. The recovery rate in the latter case is in fact slightly higher than in
the former. This indicates that the idealisation, using a threshold of four times
the standard deviation of the normal distribution, removes structure from the
keystream distribution estimate that would otherwise improve the recovery
rate, and that the level of noise does not have a significant effect on the
recovery rate. Note that when aggregating over all TSC0 values, the keystream
distribution estimate for each TSC1 value is based on 232 RC4 keystreams.

– The recovery rate for the attack based on aggregation over all TSC0 values is
noticeably higher than the recovery rate for the attack based on full (TSC0, TSC1)
binning, even if using an idealised keystream distribution estimate in the latter
case.

Based on the above observations, we decided to study in more detail the
attack based on aggregation over all TSC0 values using a non-idealised keystream
estimate. Specifically, we ran the simulation of this attack 256 times for S = 220,
222, 224, 226, 228 simulated frames. The resulting recovery rates can be seen in
Figs. 10(c) and 11(a)–(d). We observe the following:

(a) 220 frames (b) 222 frames

(c) 226 frames (d) 228 frames

Fig. 11. Success rate for attack on TKIP based on aggregation of TSC0 values for 256
simulations, each using 220, 222, 226, and 228 frames. See Fig. 10(c) for the success rate
for 224 frames.
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– Even with as few as S = 220 frames, a few positions of the plaintext are
correctly recovered with high probability. In particular, byte positions 1, 2
and 256 are recovered with a rate of 100 %, whereas positions that are low
multiples of 16 are recovered with a rate higher than 50 %.

– With S = 222 frames, 26 positions are recovered with a rate higher than 80 %,
and the average recovery rate is 24 %. In comparison, for 224 frames, the attack
using fully aggregated biases recovers only 7 positions with a rate higher than
80 % and has an average recovery rate of 13 % (cf. Fig. 9(a)). Furthermore,
the recovery rate for even positions is comparable to that of the attack using
fully aggregated biases for 226 frames (cf. Fig. 9(b)).

– With S = 226 frames, 146 positions are recovered with a rate higher than
80 %, and the average recovery rate has increased to 65 %. This is similar to
the corresponding numbers for the attack using fully aggregated biases, but
with 228 frames. The recovery rate for the even positions has furthermore
increased to 90 %.

– For up to S = 226 frames, the number of positions recovered with a rate above
80 % and the average recovery rate seems to exceed or match the correspond-
ing numbers for the attack using fully aggregated biases with four times the
number of frames. For even positions, the number of frames required in the
attack using fully aggregated biases to get comparable recovery rates seems
to be a factor of 16 larger.

To enable easy comparison of the different attacks, Fig. 12(a) shows the recov-
ery rate for 224 frames for both the attack using fully aggregated biases and the
attack based on aggregation of TSC0 values, and Fig. 12(b) shows the average
recovery rates of the two attacks as the number of frames increases. As can
be seen from these figures and the comparisons made above, the attack based on
aggregation of TSC0 values is noticeably more successful in correctly recovering
the correct plaintext bytes, in particular at even plaintext positions.

(a) Recovery rate for 224 frames. (b) Average recovery rate.

Fig. 12. Comparison of attack using fully aggregated biases (red) and attack based
on aggregation over all TSC0 values (blue). Figure (a) shows the recovery rates of the
two attacks for 256 runs each with 224 simulated frames. Figure (b) shows the average
recovery rates of the two attacks. The dashed lines correspond to the average recovery
rates for even positions (Color figure online).
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6 Practical Impact, Countermeasures and Open
Problems

We have shown that plaintext recovery for RC4 in WPA is possible for the first
256 bytes of a frame, provided sufficiently many independent encryptions of the
same plaintext are available. Certainly, the security level provided by RC4 is far
below the strength implied by the 128-bit key in WPA. We are confident that
the attacks could be improved further by using more accurate estimates of the
TKIP keystream distributions in our full (TSC0, TSC1) binning attack; obtaining
these estimates is simply a matter of computation.

6.1 Practical Impact

Concerning the practical impact of our attacks, we note that WPA frames are
quite likely to contain fixed, but known bytes, as well as fixed but unknown
bytes. Examples of the former were already used in keystream recovery attacks
against TKIP, as a prelude to MIC key recovery and frame injection attacks—
see, for example, [20,23]. The latter would be suitable targets for our attacks and
would include fields in IP, UDP and TCP headers, such as source and destination
IP addresses, the IP header protocol field, and UDP and TCP port numbers.
Another target of potential interest would be passwords or cookies in HTTP
traffic (that are not already protected with TLS), with Javascript running in a
browser as in [3] providing one possible mechanism to generate the traffic needed
in the attacks.

We do not claim that our work enables practical attacks against WPA, in
the same way that the work of [20,23] does, for example. Rather our work unveils
some fundamental weaknesses in the way in which RC4 is employed in WPA which
make it easier to attack in the broadcast setting than should be the case. In this
sense, our paper places limits on the security that can be achieved by WPA.

Our work does bear further comparison with previous attacks on WPA, how-
ever. In particular, we stress that our attacks are passive, ciphertext-only attacks,
with modest ciphertext requirements. This contrasts with the active attacks
of [20,23] and the known-plaintext attack of [19]. The active attacks are rate-
limited, in that they cannot recover more than 1 byte of plaintext per minute
(this is because of peculiarities of the way in which WPA reacts to MAC errors).
The attack of [19] requires 238 known plaintexts and has complexity 296. On the
other hand, our attacks have a repeated (but unknown) plaintext requirement
and can only target the initial bytes in a frame; furthermore, we only recover
plaintext, in contrast to the key-recovery attack of [19].

6.2 Countermeasures

There are some countermeasures to the attacks. These include:

– Discarding the initial keystream bytes output by RC4, as recommended in [12]
(but then double-byte-bias attacks like those developed in [3] may still be
applicable).
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– Changing the manner in which WPA’s RC4 keys are computed (but then the
analysis of RC4 in TLS from [3] might apply, so security might be increased,
but not all known attacks eliminated).

– Abandoning TKIP and switching to CCMP, a confidentiality mode that is
based on the CCM authenticated encryption scheme.

Of these, the third is the only one that can be recommended, since the first
two would still leave vulnerabilities and would require further changes to the
WPA/TKIP specification.

6.3 Open Problems

Open problems suggested by this paper include:

– Carrying out a larger-scale computation to obtain more accurate estimates of
the per (TSC0, TSC1) pair keystream distributions, and investigating the effect
of using these better estimates in our (TSC0, TSC1) binning attack.

– Explaining the genesis of the RC4 keystream biases when TKIP keys are
used. This has already been completed to some extent for the case of random
128-bit keys (as used in TLS) in [15], and it seems plausible that similar
techniques could be deployed for the TKIP case. Indeed, recent progress on
this problem has been made in [16]. A full theoretical description of the TKIP
biases would obviate the need for extensive computations to establish the
keystream distributions.

– Extending the 2-byte plaintext recovery attack of [3] to TKIP. This would,
potentially, enable plaintext recovery attacks beyond the first 256 positions
in each frame. It is also possible that there are strong dependencies between
adjacent pairs of keystream bytes in the initial positions. A large computation
would be needed to test this.

– Exploring whether it is possible to combine our attack methods with those
of [19] to avoid the onerous known plaintext requirements of those previous
attacks, and investigating whether it is possible to improve TKIP TK key
recovery attacks further by using TSC-specific biases.

– Studying other applications of RC4 in which the RC4 key is changed fre-
quently.

Acknowledgements. We thank Jon Hart of the ISG at RHUL for his assistance with
computing infrastructure. The research of the authors was supported by an EPSRC
Leadership Fellowship, EP/H005455/1.

References

1. Wireless LAN medium access control (MAC) and physical layer (PHY) specifica-
tion (1997)

2. Wireless LAN medium access control (MAC) and physical layer (PHY) specifica-
tion: Amendment 6: Medium access control (MAC) security enhancements (2004)



348 K.G. Paterson et al.

3. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: USENIX Security (2013). https://www.usenix.
org/conference/usenixsecurity13/security-rc4-tls

4. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the
insecurity of 802.11. In: Rose, C. (ed.) MOBICOM, pp. 180–189. ACM, New York
(2001)

5. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algo-
rithm of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 1–24. Springer, Heidelberg (2001)

6. Fluhrer, S.R., McGrew, D.: Statistical analysis of the alleged RC4 keystream gen-
erator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer,
Heidelberg (2001)

7. Halvorsen, F.M., Haugen, O., Eian, M., Mjølsnes, S.F.: An improved attack on
TKIP. In: Jøsang, A., Maseng, T., Knapskog, S.J. (eds.) NordSec 2009. LNCS,
vol. 5838, pp. 120–132. Springer, Heidelberg (2009)

8. Jaganathan, K., Zhu, L., Brezak, J.: The RC4-HMAC Kerberos Encryption Types
Used by Microsoft Windows. RFC 4757 (Informational), December 2006. http://
www.ietf.org/rfc/rfc4757.txt

9. Maitra, S., Paul, G., Sen Gupta, S.: Attack on broadcast RC4 revisited. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 199–217. Springer, Heidelberg (2011)

10. Mantin, I.: Predicting and distinguishing attacks on RC4 keystream generator. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005)

11. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

12. Mironov, I.: (Not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

13. Moen, V., Raddum, H., Hole, K.J.: Weaknesses in the temporal key hash of WPA.
Mob. Comput. Commun. Rev. 8(2), 76–83 (2004)

14. Morii, M., Todo, Y.: Cryptanalysis for RC4 and breaking WEP/WPA-TKIP.
IEICE Trans. 94–D(11), 2087–2094 (2011)

15. Sarkar, S., Sen Gupta, S., Paul, G., Maitra, S.: Proving TLS-attack related open
biases of RC4. Cryptology ePrint Archive, Report 2013/502 (2013). http://eprint.
iacr.org/

16. Sen Gupta, S., Maitra, S., Meier, W., Paul, G., Sarkar, S.: Some results on RC4
in WPA. Cryptology ePrint Archive, Report 2013/476 (2013). http://eprint.iacr.
org/

17. Sen Gupta, S., Maitra, S., Paul, G., Sarkar, S.: (Non-) random sequences from
(non-) random permutations - analysis of RC4 stream cipher. J. Cryptol. 27(1),
67–108 (2014)

18. Sepehrdad, P., Vaudenay, S., Vuagnoux, M.: Discovery and exploitation of new
biases in RC4. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 74–91. Springer, Heidelberg (2011)

19. Sepehrdad, P., Vaudenay, S., Vuagnoux, M.: Statistical attack on RC4. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 343–363. Springer,
Heidelberg (2011)

20. Tews, E., Beck, M.: Practical attacks against WEP and WPA. In: Basin, D.A.,
Capkun, S., Lee, W. (eds.) WISEC, pp. 79–86. ACM (2009)

21. Tews, E., Weinmann, R.-P., Pyshkin, A.: Breaking 104 bit WEP in less than 60
seconds. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867,
pp. 188–202. Springer, Heidelberg (2008)

https://www.usenix.org/conference/usenixsecurity13/security-rc4-tls
https://www.usenix.org/conference/usenixsecurity13/security-rc4-tls
http://www.ietf.org/rfc/rfc4757.txt
http://www.ietf.org/rfc/rfc4757.txt
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


Plaintext Recovery Attacks Against WPA/TKIP 349

22. Todo, Y., Ozawa, Y., Ohigashi, T., Morii, M.: Falsification attacks against WPA-
TKIP in a realistic environment. IEICE Trans. 95–D(2), 588–595 (2012)

23. Vanhoef, M., Piessens, F.: Practical verification of WPA-TKIP vulnerabilities. In:
Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.G. (eds.) ASIACCS, pp. 427–436.
ACM (2013)

24. Vaudenay, S., Vuagnoux, M.: Passive–only key recovery attacks on RC4. In: Adams,
C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 344–359. Springer,
Heidelberg (2007)



Dependence in IV-Related Bytes of RC4 Key
Enhances Vulnerabilities in WPA

Sourav Sen Gupta1(B), Subhamoy Maitra1, Willi Meier2, Goutam Paul1,
and Santanu Sarkar3

1 Indian Statistical Institute, Kolkata, India
sg.sourav@gmail.com,{subho,goutam.paul}@isical.ac.in

2 FHNW, Windisch, Switzerland
willi.meier@fhnw.ch

3 Chennai Mathematical Institute, Chennai, India
sarkar.santanu.bir@gmail.com

Abstract. The first three bytes of the RC4 key in WPA are public as
they are derived from the public parameter IV, and this derivation leads
to a strong mutual dependence between the first two bytes of the RC4
key. In this paper, we provide a disciplined study of RC4 biases resulting
specifically in such a scenario. Motivated by the work of AlFardan et al.
(2013), we first prove the interesting sawtooth distribution of the first byte
inWPA and the similar nature for the biases in the initial keystream bytes
towards zero. As we note, this sawtooth characteristics of these biases
surface due to the dependence of the first two bytes of the RC4 key in
WPA, both derived from the same byte of the IV. Our result on the nature
of the first keystream byte provides a significantly improved distinguisher
for RC4 used in WPA than what had been presented by Sepehrdad et al.
(2011–2012). Further, we revisit the correlation of initial keystream bytes
in WPA to the first three bytes of the RC4 key. As these bytes are known
from the IV, one can obtain new as well as significantly improved biases in
WPA than the absolute biases exploited earlier by AlFardan et al. or Isobe
et al. We notice that the correlations of the keystream bytes with publicly
known IV values of WPA potentially strengthen the practical plaintext
recovery attack on the protocol.

Keywords: RC4 · WPA · Bias · Key correlation · Plaintext recovery

1 Introduction

The RC4 stream cipher and several modifications thereof (incorporated in vari-
ous security protocols) have undergone rigorous analysis in cryptographic litera-
ture. The importance and timeliness of this topic is evident from the rich history
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of research in RC4 over the last two decades. Among the several directions of
cryptanalytic research in this area, the two most important aspects have been

1. correlation between the keystream bytes with absolute values, and
2. correlation between the keystream bytes with the Key and/or IV.

The results under item 1 have been extensively used in the broadcast attack
model, and some important results in this area can be found in [1,6,8,9,11,19].
These biases directly work on the generic RC4 cipher [6] as well when RC4 is
used in protocols like WPA and TLS [1]. In particular, the work of [1] received
a lot of attention due to its impact on commercial protocols.

The results under item 2 explains how the RC4 keystream bytes may leak
information regarding the secret key bytes. While there exist extensive research
results in this area [8,13–15,19], no convincing key-recovery attack is yet avail-
able on RC4 using these biases. However, these biases work quite well in attacking
protocols where some part of the RC4 key is derived from the public IV, as in
the case of WEP [3,4,7,21,22,24].

To resist such attacks against WEP, the WPA [5] protocol had been proposed,
where an incremental change in the IV results in a convoluted transformation
of the remaining portion of the RC4 key. The two most recent and prominent
attacks against WPA have been proposed by Sepehrdad et al. [20] and AlFardan
et al. [1]. While the attack of [1] is based on the broadcast model for plaintext
recovery, the work of [20] exploits certain weaknesses in the WPA key schedule
to mount a key recovery attack with complexity 296, less than the exhaustive
key search effort of 2104. Before we proceed further to explain our contributions
in this paper, let us describe RC4 and its usage in the WPA protocol.

We omit the mention of TKIP and refer to the WPA/TKIP protocol sim-
ply as WPA in this paper. In addition, we abuse the notation to refer to the
instantiation of RC4 in this protocol as WPA, in contrast to standalone RC4.

1.1 Description of RC4

The RC4 cipher consists of a Key Scheduling Algorithm (KSA) and a Pseudo-
random Generation Algorithm (PRGA). The internal state of RC4 is obtained
as a permutation of N = 256 bytes, and the KSA produces the initial pseudoran-
dom permutation of RC4 by scrambling an identity permutation using the secret
key k. The secret key k of RC4 is of length typically between 5 to 32 bytes, which
generates the expanded key K of length N = 256 bytes by simple repetition. If
the length of the secret key k = k0, . . . , kl−1 is l bytes (typically 5 ≤ l ≤ 32),
then the expanded key K is constructed as K[i] = kimodl for 0 ≤ i ≤ N −1. The
initial permutation produced by the KSA acts as an input to the next procedure
PRGA that generates the keystream, as depicted in Fig. 1.

For round r = 1, 2, . . . of RC4 PRGA, we denote the indices by ir, jr, the
keystream output byte by Zr, and the permutations before and after the swap by
Sr−1 and Sr respectively. All additions (subtractions) in context of RC4 are to
be considered as ‘addition (subtraction) modulo N ’, and all equalities in context
of RC4 are to be considered as ‘congruent modulo N ’.
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RC4 KSA
(rounds = 256)

K[i] = k[i mod l]

j = j + S[i] +K[i]

Swap S[i] ↔ S[j]

i = i+ 1

S
(identity)

k

i = 0

j = 0

S
(after KSA)

i = 0

j = 0

Fig. 1. Description of RC4 stream cipher.

1.2 Description of WPA

IEEE 802.11 standard protocol for WiFi security used to be Wired Equivalent
Privacy (WEP), which was replaced by Wi-Fi Protected Access (WPA) in 2004.
Both WEP and WPA use RC4 as their core cipher, and the WPA protocol can
be thought of as a wrapper on top of WEP to provide good key mixing features.
WPA introduces a key hashing module in the original WEP design to defend
against the Fluhrer, Mantin and Shamir attack [4]. It also includes a message
integrity feature and a key management scheme to avoid key reuse.

TKIP Key Schedule. WPA uses a 16-byte secret key for RC4 PRNG, the
core encryption module of the system. This RC4 secret key RC4KEY is generated
through a key schedule procedure known as TKIP [5], which takes as input a
128-bit temporal key TK (shared between the parties), transmitter’s 48-bit MAC
address TA and a 48-bit initialization vector IV, and passes those through two
phases to obtain the final RC4 secret key.

In Phase 1, a 80-bit key P1K is generated from TK, TA and IV32, the upper
32 bits of the IV, using an unbalanced Feistel cipher with 80-bit block and 128-
bit key structure. In Phase 2, the 128-bit RC4KEY is generated from TK, P1K
(from Phase 1) and IV16, the lower 16 bits of the IV. In this phase, TK and P1K
are mixed (using a temporary key PPK) to construct the last 104 bits (13 bytes)
of the RC4KEY, and the first 24 bits (3 bytes) of the RC4KEY are constructed
directly from the IV16, as follows [5, Annex H.1].

RC4KEY[0] = Hi8(IV16); /* top byte of IV16 */
RC4KEY[1] = (Hi8(IV16) | 0x20) & 0x7F; /* avoid FMS attack */
RC4KEY[2] = Lo8(IV16); /* low byte of IV16 */

In the above expression, Hi8(IV16) and Lo8(IV16) indicate the top and lower
bytes of IV16, respectively. RC4KEY[0] and RC4KEY[2] are simply two parts
of the counter IV16, while RC4KEY[1] is purposefully constructed to avoid the
known WEP attack by Fluhrer, Mantin and Shamir [4]. Once the 128-byte
(16-byte) RC4KEY is prepared, it is directly used for encryption in the RC4
PRNG core of the protocol.
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1.3 Contributions of This Paper

There is a growing concern regarding how far we should study the combinatorial
nature of RC4 and protocols based on it. However, we can not help but notice the
glaring implications of such studies in mounting practical attacks on commercial
protocols that still handle a bulk of everyday network traffic. In this backdrop,
we present the motivation and contribution of our paper as follows.

Motivation. To the best of our knowledge, the dependence of the first two
bytes of the RC4 key, constructed from the public parameter IV during WPA
key schedule, has not been studied thoroughly from a combinatorial viewpoint.
We draw our motivation from two important questions in this direction.

1. How do the biases of keystream bytes towards absolute values differ for RC4
in WPA compared to those in case of generic RC4?

2. Are there any exploitable correlations between the keystream bytes and the
first three key bytes of RC4 derived from the IV in WPA?

Contribution. Our results provide the first disciplined study of keystream non-
randomness in RC4 when used in WPA. The study contains explanation of exist-
ing biases as well as discovery of new ones. The results have diverse applications
in different cryptanalytic results, ranging from the best WPA distinguisher to
improved broadcast attack against WPA.

Specific Outcomes of our First Motivation. We provide theoretical justification
of some experimental observations on WPA, made by AlFardan et al. [1], to
obtain further insight into such observations.

– In Sect. 2.3, we derive the complete sawtooth distribution of the first
keystream byte Z1 when RC4 is executed with IV’s as in WPA.

– The biases in Z1 gives a method to distinguish the keystream of WPA from
that of generic RC4, with a packet complexity of approximately 219. Note that
WPA may be considered as a ‘mode of operation’ for RC4, and our observation
shows that this mode statistically deviates from the core cipher, where the
deviation is visible with a considerably less number of packets. The previously
known distinguisher of [20], first presented in Eurocrypt 2011, achieves a 0.5
probability of success in distinguishing WPA from generic RC4 with time
complexity 243 and packet complexity 240. Later in [18], the distinguisher was
improved to achieve 0.5 probability of success in distinguishing WPA with
time complexity 242 and packet complexity 242.

– In Sect. 2.4, we show how the initial keystream bytes Z3, . . . , Z255 of WPA are
biased towards zero following a similar sawtooth pattern, and in Sect. 2.5, we
provide a theoretical estimate for (Zr = r) better than [6].

Specific Outcomes of our Second Motivation. All biases of the keystream bytes
in WPA presented in [1] are correlated to absolute values in [0, 255], and the
experimental study discovers that they are mostly of the order of 1/N2 over the
probability of random association 1/N . Indeed these are not of the same level
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as the bias in the event (Z2 = 0), which is of the order 1/N over the probability
of random association 1/N , as proved in [11]. However, it is well known that
there are quite a few significant biases of the keystream bytes with the initial
key bytes of RC4 [7,8,13–15,17,19]. The first three bytes of the RC4 key in WPA
are derived from the public parameter IV, and thus the correlation of keystream
bytes with any combination of the first three RC4 key bytes can be successfully
exploited in broadcast attack against WPA. Our investigations in this direction
reveal the following results.

– There exist high biases in the keystream bytes Z1, Z2, Z3, Z256, Z257 towards
the first three ‘public’ (IV-derived) bytes of the RC4 key in WPA. For the first
time in the literature, we discover such hugely significant biases, matching the
order of the (Z2 = 0) bias [11], even in the case of WPA.

– In a broadcast setting, we could recover the aforesaid bytes of the plaintext
with probability close to 1 using only 221 samples, in contrast with the existing
works [1,6] that require 230 samples for the same bytes.

– We explore some new biases in this line and present a detailed study on the
correlations of the keystream bytes with different IV combinations in WPA.

– We also discover a new absolute bias at the keystream byte Z259, the farthest
known so far among the initial keystream bytes to have a significant bias.

An independent work [12] in a similar direction is to appear in FSE 2014.

2 Biases in WPA Resulting from TKIP Key Schedule

The first three bytes of the RC4 key in WPA is derived as in Eq. (1).

K[0] = (IV16 >> 8) & 0xFF K[2] = IV16 & 0xFF

K[1] = ((IV16 >> 8) | 0x20) & 0x7F (1)

Note that a 2-byte IV16 is expanded to the initial 3 bytes of the key (Fig. 2), and
the first two key bytes K[0] and K[1] have 6 bits in common, apart from the two
fixed bits in K[1]. The third key byte K[2] is independent of the first two bytes
of the key. Thus, TKIP can generate only 216, and not 224, distinct values for
the first 3 bytes of the RC4 secret key – a loss in entropy that we believe may
result into some non-random behavior in the initial phases of the cipher.

2.1 Bias in K[0] + K[1] for WPA

As K[0] and K[1] share 6 bits from the common source Hi8(IV16), we first take
a look at their sum, K[0] + K[1], for potential non-randomness. We notice that

1. K[0] + K[1] must always be even, as K[0] and K[1] have the same LSB.
2. K[1] can never exceed 127 as its MSB is 0. It can not even attain all possible

values below 127, as its 6-th bit (from LSB side) is fixed at 1.
3. Values of K[1] and K[0] + K[1] strictly depend on the value/range of K[0].
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Hi8(IV16) Lo8(IV16)

0 1

K[0] K[1] K[2]

Fig. 2. Expansion of WPA IV16 into the first three bytes of the RC4 key.

These restrictions result in corresponding conditions on the range of K[1]
and K[0]+K[1], depending on the range of K[0]. The complete set of conditions
on the respective ranges is shown in Table 1, which results in a consolidated
probability distribution of K[0] + K[1] as described in Theorem 1.

Theorem 1. The probability distribution of the sum of first two bytes of the RC4
key generated by TKIP key schedule in WPA, i.e., the distribution of Pr(K[0] +
K[1] = v) for v = 0, 1, . . . , 255, is as in Table 1:

Pr(K[0] + K[1] = v) = 0 if v is odd;
Pr(K[0] + K[1] = v) = 0 if v is even and v ∈ [0, 31] ∪ [128, 159];
Pr(K[0] + K[1] = v) = 2/256 if v is even and

v ∈ [32, 63] ∪ [96, 127] ∪ [160, 191] ∪ [224, 255];
Pr(K[0] + K[1] = v) = 4/256 if v is even and v ∈ [64, 95] ∪ [192, 223].

Proof. The value of K[0] + K[1] is always even, as discussed earlier. The value
and range of K[1], and hence that of K[0]+K[1], depends on the range of K[0];

Table 1. Probability distribution of K[0] +K[1] resulting due to TKIP key schedule.

K[0] K[1] (depends on K[0]) K[0] +K[1] (only even) K[0] +K[1] Prob.

Range Value Range Value Range (only even) (0 if odd)

0 – 31 K[0] + 32 32 – 63 2K[0] + 32 32 – 95 0 – 31 0

32 – 63 K[0] 32 – 63 2K[0] 64 – 127 32 – 63 2/256

64 – 95 K[0] + 32 96 – 127 2K[0] + 32 160 – 223 64 – 95 4/256

96 – 127 K[0] 96 – 127 2K[0] 192 – 255 96 – 127 2/256

128 – 159 K[0] − 96 32 – 63 2K[0] − 96 160 – 233 128 – 159 0

160 – 191 K[0] − 128 32 – 63 2K[0] − 128 192 – 255 160 – 191 2/256

192 – 223 K[0] − 96 96 – 127 2K[0] − 96 32 – 95 192 – 223 4/256

224 – 255 K[0] − 128 96 – 127 2K[0] − 128 64 – 127 224 – 255 2/256



356 S. Sen Gupta et al.

shown in Table 1. The probability distribution of K[0] + K[1] may be calculated
directly from this dependence pattern; also shown in Table 1. One may check

(128 × 0)︸ ︷︷ ︸
odd values

+
(

16 × 0 + 16 × 2
256

+ 16 × 4
256

+16 × 2
256

+ 16 × 0 + 16 × 2
256

+ 16 × 4
256

+ 16 × 2
256

)
= 1,

to validate the consistency of the probability distribution of K[0] + K[1]. �

2.2 Bias in RC4 PRGA Initial Permutation S0 for WPA

In 2007, Paul and Maitra [13] proved the famous Roos’ biases [15], which state
that the initial bytes of the permutation S0 are biased towards the secret key
bytes. S0[0] is biased towards K[0], which is uniformly distributed, identical to
the lower half of the counter IV16. For S0[1] however, we get the following result.

Theorem 2. In case of WPA, the probability distribution of (S0[1] = v) for
v = 0, 1, . . . , N − 1, after the completion of KSA, is given as

Pr(S0[1] = v) = α · Pr(K[0] + K[1] = v − 1)
+ (1 − α) · (1 − Pr(K[0] + K[1] = v − 1)) · Pr(S0[1] = v)RC4

+
(1 − α)
N − 1

·
∑
x�=v

Pr(K[0] + K[1] = x − 1) · Pr(S0[1] = x)RC4,

where α = 1/N +(1−1/N)N+2, and the probability terms Pr(S0[1] = v)RC4 and
Pr(S0[1] = x)RC4 refer to the corresponding values in generic RC4.

Proof. From the proof of Roos’ biases in [13], we know that the initial permuta-
tion byte S0[1] is biased towards K[0] + K[1] + 1 with a probability Pr(S0[1] =
K[0]+K[1]+1) ≈ 1/N +(1−1/N)N+2 = α, say. Thus we write the probability
distribution of S0[1] = v in case of WPA as follows.

Pr(S0[1] = v) = Pr(S0[1] = v ∧ K[0] + K[1] + 1 = v)

+
∑
x�=v

Pr(S0[1] = v ∧ K[0] + K[1] + 1 = x)

The first event (S0[1] = v ∧ K[0] + K[1] + 1 = v) occurs if and only if the
independent events (S0[1] = K[0] + K[1] + 1) and (K[0] + K[1] = v − 1) occur
simultaneously. This happens with probability α ·Pr(K[0]+K[1] = v −1) where
α is due to Roos’ bias, and the second term is obtained from Theorem1.

On the other hand, the event (S0[1] = v ∧ K[0] + K[1] + 1 = x) for x �= v
may be further decomposed as follows

Pr(S0[1] = v ∧ S0[1] = K[0] + K[1] + 1 ∧ K[0] + K[1] + 1 = x)
+ Pr(S0[1] = v ∧ S0[1] �= K[0] + K[1] + 1 ∧ K[0] + K[1] + 1 = x).
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The first term denotes an impossible condition (probability 0), and the second
term can be computed as Pr(K[0]+K[1] = x− 1) ·Pr(S0[1] �= K[0]+K[1]+ 1) ·
Pr(S0[1] = v | S0[1] �= x), that is, as

(1−α) ·Pr(K[0]+K[1] = x−1) ·(Pr(S0[1] = v)RC4+Pr(S0[1] = x)RC4/(N −1)),

where we assume that (S0[1] = v) and (S0[1] = x) occur exactly as in generic
RC4 when S0[1] �= K[0] + K[1] + 1, with appropriate probability normalization.
We get the result after due simplification of the summation over x �= v. �

For N = 256, as in WPA and RC4, we get α ≈ 0.368 in Theorem 2. The prob-
abilities Pr(K[0] + K[1] = v − 1) and Pr(K[0] + K[1] = x − 1) are taken from
Theorem 1, and the probabilities Pr(S0[1] = v)RC4 and Pr(S0[1] = x)RC4 are
taken from Proposition 1, derived in [10, Theorem 6.2.1].

Proposition 1 (from [10]). After RC4 KSA, for 0 ≤ u ≤ N−1, 0 ≤ v ≤ N−1,

Pr(S0[u] = v) =

⎧⎪⎪⎨
⎪⎪⎩

1
N

((
N−1
N

)v
+

(
1 − (

N−1
N

)v) (
N−1
N

)N−u−1
)

, if v ≤ u;

1
N

((
N−1
N

)N−u−1
+

(
N−1
N

)v)
, if v > u.

The theoretical distribution of S0[1] in WPA, thus produced from Theorem2,
is shown in Fig. 3. This distribution closely matches our experimental data, and
differs significantly from the one for generic RC4 (as derived in [10]).

2.3 Bias in the First Keystream Byte Z1 of WPA

Recall that in the first round of RC4 PRGA, the initial permutation entry S0[1]
serves as j1 = S0[i1] = S0[1], and plays an important role in determining the

Fig. 3. Theoretical plot for Pr(S0[1] = v) for RC4 and WPA, where v = 0, . . . , 255.
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first keystream byte Z1 = S1[S1[i1] + S1[j1]] = S1[S0[S0[1]] + S0[1]]. In fact, we
know that S0[1] is prominent in the distribution of Z1 proved by Sen Gupta et
al. in [17, Theorem 13]. We reproduce the distribution as follows.

Proposition 2 (from [17]). The probability distribution of the first output byte
of RC4 keystream is as follows, where v ∈ {0, . . . , N − 1}, Lv = {0, 1, . . . , N −
1} \ {1, v} and Tv,X = {0, 1, . . . , N − 1} \ {0,X, 1 − X, v}.

Pr(Z1 = v) = Qv +
∑

X∈Lv

∑
Y ∈Tv,X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = v);

Qv =

⎧⎪⎪⎨
⎪⎪⎩

Pr(S0[1] = 1 ∧ S0[2] = 0), if v = 0;
Pr(S0[1] = 0 ∧ S0[0] = 1), if v = 1;
Pr(S0[1] = 1 ∧ S0[2] = v) + Pr(S0[1] = v ∧ S0[v] = 0)

+ Pr(S0[1] = 1 − v ∧ S0[1 − v] = v), otherwise.

We consider two cases while computing the numeric values of Pr(Z1 = v). If
the initial permutation S0 of RC4 PRGA is constructed from the regular KSA
with random key, the probabilities Pr(S0[u] = v) closely follow the distribution
proved by Mantin in [10, Theorem 6.2.1]. However, if the initial permutation
S0 originates from RC4 KSA using TKIP-generated keys, as in the case with
WPA, then Pr(S0[1] = v) must be computed using Theorem 2, including its
idiosyncratic biases for WPA shown in Fig. 3.

We compute the exact probabilities Pr(Z1 = v) for RC4 and WPA using the
estimation strategy of joint probabilities proposed in [17]; particularly estimat-
ing the joint probabilities Pr(S0[X] = A ∧ S0[Y ] = B) as Pr(S0[X] = A) ·
(Pr(S0[Y ] = B) + Pr(S0[Y ] = A)/(N − 1)). The distribution of S0[1] = v is
considered independently in each case. This results in two different distribu-
tions of Z1; one for generic RC4 (same as [17]) and the other for RC4 in WPA.

Fig. 4. Theoretical plot for Pr(Z1 = v) for RC4 and WPA, where v = 0, . . . , 255.
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Figure 4 displays the two distributions, clearly pointing out the bias resulting
in the PRGA as a result of TKIP key schedule, and shows that the theoretical
distribution for WPA closely matches our experimental data.

Note that the patterns of these two theoretical distributions closely match
the recent experimental observations of AlFardan et al. [1] (Fig. 10(a) in the full
online version of the paper). The only difference is that there exist keylength
dependent spikes at Z1 = 129 for the observations in [1], as the experiments
were done using 16-byte keys; whereas in our theoretical analysis, we disregard
the keylength dependence altogether, and prove a general distribution of Z1.

In fact, if WPA had employed RC4 with full-length 256-byte secret keys,
where the first three bytes of the key K[0],K[1],K[2] were constructed from the
IV using TKIP key schedule principle (as in Eq. (1)), the pattern of the bias
in Z1 for WPA would have been the same. We have independently verified our
theoretical results through experiments involving secret keys of various lengths.

Distinguishing WPA. We attempt to combine the values of Z1 in suitable sub-
sets of the support interval {0, 1, . . . , 255} to construct a distinguisher between
WPA and generic RC4. The structure of the event considered for distinguishing
WPA from RC4 in this case is ‘eS : (Z1 ∈ S) where S ⊆ {0, 1, . . . , 255}’. The
subset S may be quite large, and thus the base probability p = Pr(eS) in either
distribution is not essentially small. In such a case, the distinguisher complexity
may be estimated as O(1−p

pq2 ).
Now we may define a suitable set S for the target distinguishing event. As

most of higher biases are for even values of the first byte, we assume that the
distributions of WPA and RC4 differ the most in cases when Z1 takes an even
value. Based on this intuition, we pick the set S as the set of all even values
{0, 2, 4, . . . , 254} within the range; thus defining the distinguishing event as

eS : (Z1 = 2k for k = 0, 1, . . . , 127).

From our theoretical results on the distribution of Z1 in WPA and RC4, as
proved in Sect. 2.3, we estimate the following probabilities:

p = Pr(eS) in RC4 & ≈ 0.4999946
p(1 + q) = Pr(eS) in WPA & ≈ 0.5007041

}
⇒ q ≈ 0.001419 ≈ 0.363/N.

For N = 256, we require an estimated 8N2 = 219 keystream packets to distin-
guish WPA from generic RC4 with more than 70 % probability of success. This
is the best distinguisher of WPA to date, improving the previous distinguishers
of packet complexity more than 240, identified by Sepehrdad et al. [18,20].

It may be noted that some distinguishers of RC4 (compared to uniform ran-
dom generators) remain equally effective in its WPA ‘mode of operation’, like
the distinguisher based on (Z2 = 0). However, the sawtooth pattern of Z1 is
unique to WPA, and is not present in original RC4.
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2.4 Bias Towards Zero in Bytes Z3, . . . , Z255 of WPA

We extend the effect of the bias in S0 of WPA to the biases in the initial
keystream bytes towards zero. Maitra et al. [9] proved the biases of the ini-
tial keystream bytes Z3, . . . , Z255 towards zero, and we reproduce their result
from [17, Theorem14] in Proposition 3, as follows.

Proposition 3 (from [17]). For RC4 PRGA rounds 3 ≤ r ≤ N − 1, the
probability that Zr = 0 is given by:

Pr(Zr = 0) ≈ 1
N

+
cr
N2

, where

cr =

⎧⎨
⎩

N
N−1 (N · Pr(Sr−1[r] = r) − 1) − N−2

N−1 , for r = 3;

N
N−1 (N · Pr(Sr−1[r] = r) − 1) , otherwise.

In [17], the computation of Pr(Zr = 0) depended on the computation of
Pr(Sr−1[r] = r), which in turn required the distributions of initial permutations
S0 and S1 of RC4 PRGA (details in [17, Corollary 2] and [17, Lemma 1]).

We consider two cases – one in which the initial permutation S0 is generated
by generic RC4 KSA using random keys, and the other where S0 is biased (Fig. 3)
for using RC4 with keys originating from TKIP. These two cases produce two
different distributions of Pr(Zr = 0) for r = 3, . . . , 255. The patterns closely
match the experimental observations of AlFardan et al. [1] (Fig. 11 in the full
online version of the paper) as well as our experimental data, as shown in Fig. 5.

2.5 Bias in (Zr = R) for WPA

Significant biases in the event (Zr = r) for r = 3, . . . , 255 have recently surfaced
in the context of plaintext recovery attack on RC4 [1,6], and these biases are

Fig. 5. Theoretical plot for Pr(Zr = 0) for RC4 and WPA, where r = 3, . . . , 255.
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found to be more prominent than the previous ones for certain values of r. Isobe
et al. identified these biases and attempted a proof in [6, Theorem 8], but the
estimates did not ‘exactly coincide with the experimental values’. Considering
the significance of these biases in cryptanalysis of RC4, we explore an alternative
avenue to estimate them, as detailed in Theorem 3.

Theorem 3. For RC4 PRGA rounds 3 ≤ r ≤ N −1, the probability that Zr = r
is approximately

Pr(Zr = r) =
1
N

+ Pr(S0[1] = r) · 1
N

(
1 − 1

N

) (
1 − r − 2

N

)(
1 − 2

N

)r−3

.

Proof. The major path leading to the target event is as follows.

– Suppose that S0[1] = r, i.e., j1 = r and j2 = r + S1[2]. This ensures that
S1[r] = r after the first round of PRGA, and S2[j2] = S1[2] after the second.

– Suppose that j2 �= 3, . . . , r, which occurs with probability
(
1 − r−2

N

)
. This

ensures that ir does not touch either of the locations r or j2 till round r − 1.
– Suppose that none of the indices j3, . . . , jr−1 touches either of the locations r

or j2. This happens with probability
(
1 − 2

N

)r−3 as j2 �= r, and ensures that
after round r − 1, we have Sr−1[r] = r and Sr−1[j2] = S1[2].

– Finally, suppose that jr = j2, which holds with probability 1/N . This ensures
that after round r, we have Sr[r] = S1[2] and Sr[j2] = r.

– The final state results in Zr = Sr[r + S1[2]] = Sr[j2] = r with probability 1.

Considering the above events to be independent, the probability that the main
path holds is given by α = Pr(S0[1] = r) · 1

N

(
1 − r−2

N

) (
1 − 2

N

)r−3. If the above
path does not occur, then we assume that the event (Zr = r) happens due to
random association, with probability 1/N . Thus we can compute the target prob-
ability as Pr(Zr = r) ≈ α + (1 − α) 1

N , and get the result. �

Figure 6 (upper plot) displays our theoretical result in comparison with that of
Isobe et al. [6], where the experimental data for RC4 has been obtained from
the authors of [1], and the values of Pr(S0[1] = r) are obtained from Mantin’s
distribution [10] for S0. It is evident that our theoretical values match the exper-
imental data better than that of [6]. Note that the experimental values are for
RC4 with 16-byte secret keys, and hence the data is non-smooth (with small
spikes) at certain points. In contrast, the theoretical values of our result is for
general RC4 with full-length secret keys, thus making the curve smooth.

It is interesting to note that RC4 in WPA exhibits enhanced non-random
behavior in the events (Zr = r), as shown in Fig. 6 (lower plot) for 232 runs of
WPA. However, substituting the distribution of S0 for WPA in our theoretical
result (or that of [6]) does not match the experimental observations, and we
believe that further investigation in this direction is necessary to settle the issue.
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Fig. 6. Plot of Pr(Zr = r) for RC4 and WPA, where r = 3, . . . , 255. The experimental
data for RC4 in these plots are obtained from the authors of [1].

3 Correlation of the Keystream Bytes with IV in WPA

The weaknesses in the WPA key schedule have recently been exploited twice in
the literature of RC4 cryptanalysis – first by Sepehrdad et al. [18,20] and then by
AlFardan et al. [1]. While Sepehrdad et al. [18,20] attacked the inner workings of
the WPA key schedule to devise a key recovery attack with complexity 296, the
recent work of AlFardan et al. [1] mounted a plaintext recovery attack on WPA
by exploiting the biases of the keystream bytes towards absolute values. It was
shown that the WPA key schedule, designed to prevent key recovery attacks,
unintentionally made the plaintext recovery attack on RC4 even simpler. In this
section, we target a third direction of attack – exploiting correlations of the
keystream bytes towards the IV to perform plaintext recovery of WPA.

In WPA, the first three bytes of the RC4 key, K[0],K[1],K[2], are derived
from the IV. For the u-th recipient in a broadcast setting, let us denote these
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bytes by Ku[i] where i = 0, 1, 2 and 1 ≤ u ≤ n. Note that the values of Ku[i] are
publicly known, and hence these could be exploited towards plaintext recovery
attacks in case they have prominent correlations with the keystream bytes.

In this section, we will investigate for significant correlations between the
keystream output bytes Zr of WPA and certain linear combinations of the bytes
{K[0],K[1],K[2]}. Let us assume that the number of such correlations with
probability significantly different from 1/N = 1/256 for the keystream byte Zr

is bounded above by Qr. In this setting, we shall denote the corresponding linear
combinations as Lr,q(K[0],K[1],K[2]), where q = 1, 2, . . . , Qr.

In Table 2, we list the most significant correlations of this kind for RC4
keystream bytes. Some of these are already known in the literature, and the ones
identified by us will be pointed out clearly in the course of this discussion. The
references for most of these biases can be found in [18, Figure 4.9]. We know that
the bytes K[0] and K[1] are dependent in WPA, and hence the biases observed
in RC4 may vary in case of WPA. Thus we first present detailed experimental
data in Table 2 to explain the scenario. ‘WPA (part)’ denotes WPA with the
first 3 key bytes constructed from the IV and next 13 key bytes chosen randomly,
and ‘WPA (full)’ denotes WPA with first 3 key bytes constructed from the IV
and next 13 key bytes generated by TKIP. We notice that ‘WPA (part)’ models
‘WPA (full)’ quite well, also observed earlier by [1].

In Table 2, note that there are certain cases where the biases in RC4 and
WPA are not the same. In fact, there are some cases where the biases are in the
opposite direction. There are also a few situations where there exist prominent
biases in some cases but none in the others. Let us explain a couple of cases.

Table 2. Linear correlations observed between the keystream bytes and key of RC4
and WPA with 232 samples. Probability of random association is 1/256 ≈ 0.003906.

Byte Linear combinations [18, Fig. 4.9] Our Experiments

RC4 WPA (part) WPA (full)

Z1 L1,1 = −K[0]−K[1] 0.005304 0.005264 0.005334 0.005338

L1,2 = K[0] 0.004367 0.004325 0.004179 0.004179

L1,3 = K[0] +K[1] +K[2] + 3 0.005214 0.005220 0.004684 0.004633

L1,4 = K[0] +K[1] + 1 0.004072 0.004025 0.003761 0.003760

L1,5 = K[0]−K[1]− 1 0.004100 0.004083 0.003905 0.003905

L1,6 = K[2] + 3 0.004461 0.004428 0.003904 0.003902

L1,7 = −K[0]−K[1] +K[2] + 3 0.004458 0.004424 0.003903 0.003903

Z2 L2,1 = −1−K[0]−K[1]−K[2] 0.005316 0.005298 0.005304 0.005303

L2,2 = −K[1]−K[2]− 3 0.005348 0.005303 0.005313 0.005314

L2,3 = K[1] +K[2] + 3 0.005341 0.005304 0.005315 0.005315

L2,4 = K[0] +K[1] +K[2] + 3 0.002512 0.002507 0.002505 0.002503

Z3 L3,1 = K[0] +K[1] +K[2] + 3 0.004436 0.004401 0.004406 0.004405

Z256 L256,1 = −K[0] 0.004450 0.004427 0.004430 0.004429

L256,2 = −K[1] – 0.003907 0.004037 0.004036

Z257 L257,1 = −K[0]−K[1] 0.004115 0.004096 0.004095 0.004094
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Correlation of L1,4: Let us first point out the contrast when the correlation of Z1

is studied with K[0]+K[1]+ 1. This is positive for RC4, but negative for WPA.
In [19], it has been observed experimentally that Z1 has a positive bias towards
K[0] + K[1] + 1. This bias has been explained in [16] by considering two paths.
The first path considers the scenario when Z1 is always equal to K[0]+K[1]+1,
which requires the condition K[1] = N − 1 to be satisfied. However in WPA,
the most significant bit of K[1] is zero, and thus K[1] cannot be equal to N − 1.
So this path does not contribute to the event Z1 = K[0] + K[1] + 1 in WPA.
For the other path, it is assumed in [16] that Pr(Z1 = K[0] + K[1] + 1) = 1/N
when K[1] �= N − 1. The experimental results in [16] show that this value is
actually (1/N −4/N2) for RC4. However in WPA, this value is even lower, close
to (1/N − 9.5/N2). Hence the contrast in the biases between RC4 and WPA.

Correlation of L256,2: Consider the case where Z256 has no bias towards (−K[1])
in RC4, but it is biased in WPA. The reason is that Pr(K[1] = K[0]) = 1/4 in
WPA, and thus we can write P (Z256 = −K[1]) ≈ 0.25 × P (Z256 = −K[0]) +
0.75 × 1/N = 0.25 × 0.004029 + 0.75/256 ≈ 0.004036, which matches with the
experiment. This does not occur in RC4 as Pr(K[1] = K[0]) = 1/N is insignifi-
cant in that case due to independent values of K[0] and K[1].

3.1 Improvement in Broadcast Attack for WPA

We present a significantly improved broadcast attack against WPA over the exist-
ing works. In [6], only RC4 was studied and thus the idea of using the IV of WPA
did not arise. In [1], broadcast attack on WPA has been mounted similar to that
on TLS (which is almost equivalent to traditional RC4) and the correlations of
the keystream bytes with the IV of WPA have not been explored at all. Exploit-
ing the IV correlations significantly improves the recovery of the plaintext bytes
{1, 3, 256, 257} in broadcast attack on WPA.

Existing Attacks. In [6], the first byte was obtained using the conditional
probability P (Z1 = 0|Z2 = 0); thus the order of samples required would be
Ω(N2). The biases in bytes {3, 256, 257} are of the order of 1/N2 over the random
association probability of 1/N ; thus the order of samples required would be
Ω(N3) if one carries out the broadcast attack on RC4 as in [6]. The broadcast
attack on WPA presented in [1] also considers biases to absolute values and those
biases are again of the order of 1/N2 over the random association probability
1/N . In this case as well, Ω(N3) samples will be required to mount the attack.
For actual broadcast attack, the constant involved in the order notation is quite
high (around 26) in order to attain a success probability close to 1.

Our Attack. Contrary to the existing approaches, our correlations between the
keystream bytes and K[0],K[1],K[2] are of the order of 1/N over the random
association probability 1/N , and thus we require only Ω(N) samples to mount
the broadcast attack in theory. It has been pointed out in [1] that the WPA
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IV structure actually allows more efficient recovery of plaintext bytes in some
positions than with uniform keys in RC4. However, they could only obtain prac-
tical results with 224 samples or more to achieve a certain probability of success.
In fact, the requirement was around 230 samples for a success probability close
to 1. We show that the WPA IV structure actually provides significantly better
results (much lower number of samples) for certain plaintext bytes.

In the broadcast scenario, we obtain ciphertext bytes C
(u)
r corresponding to

various keystream bytes Z
(u)
r and fixed message bytes Mr. For each user u, we

substitute the Ku[i] values in our list of Lr,q to obtain Qr many votes for Z
(u)
r .

With absolute biases in RC4, the idea of [6] was to use the maximum (or a few
top votes) for Zi to obtain the target plaintext, but these votes could not be
accumulated. In [1], the idea of multinomial distribution allowed the biases of
Zi to all possible absolute values to be utilized cumulatively. However, this idea
does not work in our case as there is no immediate way to represent the linear
combinations of the IV in the form of a probability distribution.

We do not use the votes for all Qr relations of Z
(u)
r ; we choose the votes

corresponding to a few relations out of Lr,q, and merge those votes for all
users. These votes in turn provide us with votes for the target plaintext byte
Mr. For Z1, we get the best result using two relations, while in other cases,
we obtain the finest results using only the best biases in Lr,q. After merging
the chosen votes, we consider the byte with the maximum votes as the probable
plaintext byte M̂r. Table 3 presents our experimental results for broadcast attack.
The success probability in each case is close to 1, and we have attained success in
every practical experiment we performed with the claimed packet complexities.

We show the (Z2 = 0) case to illustrate that while the theoretical complexity
of obtaining the byte in broadcast attack is only Ω(N), it requires 214 samples to
reach a success probability close to 1. Our results show significant improvements
for recovering the four plaintext bytes {1, 3, 256, 257}, where the existing works
require around 230 samples to achieve the same success probability. It remains
an open problem to utilize all biases in Lr,q simultaneously in this attack.

Table 3. Experimental results for our plaintext recovery attack.

Byte Event Complexity

Z1 Z1 = −K[0] − K[1], 5 · 213 ≈ 215.322

Z1 = K[0] +K[1] +K[2] + 3

Z2 Z2 = 0 214

Z3 Z3 = K[0] +K[1] +K[2] + 3 219

Z256 Z256 = −K[0] 219

Z257 Z257 = −K[0] − K[1] 221
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3.2 New Key Correlations in WPA

To strengthen the set of biases applicable towards a plaintext recovery attack
against WPA, we investigated for correlations of the keystream bytes in WPA to
the IV in the general linear form for the events (Zr = a·K[0]+b·K[1]+c·K[2]+d).
In particular, we tried with a, b, c ∈ {−1, 0, 1} and d ∈ {−3,−2,−1, 0, 1, 2, 3}.
As the first three bytes of the key, K[0],K[1],K[2], are known parameters, these
biases may be added to the set of known biases for Zr, and this may potentially
result in a stronger plaintext recovery attack on WPA.

In line of discussion in Sect. 2.1, one may easily note that the distribution
of K[0] ± K[1] ± 1 is not uniform at all. We specifically identify three cases, as
presented in Fig. 7, after an experimentation with 235 samples, where we identify
many biases of the order of μ/N2 over random association (μ > 0.3). Towards
sharpening the broadcast attack against WPA, these biases need to be explored
in more details and it would be an interesting open question how to use these
biases in conjunction with the absolute biases as explained in [1].

3.3 Absolute Bias in Z259

In [1,6], several new biases were identified in the first 257 bytes of RC4, and
exploited in broadcast attack. In [6,23], the long term biases of RC4 were
exploited to mount broadcast attack on later bytes. However, it may be inter-
esting to find absolute biases little farther than byte 257, if they are better than
using the long term biases, or if they could be used in conjunction with the long
term biases. In this regard, we present a new bias at round N+3 = 259, described
in Theorem 4. To the best of our knowledge, this is the farthest absolute bias in
the initial keystream bytes of RC4 that is of the order of O(1/N2) over 1/N .

Theorem 4. The probability that the (N + 3)-th keystream byte of RC4 is 3 is
approximately Pr(ZN+3 = 3) = 1/N + 0.18/N2.

Proof. The main path leading to the target event is as follows.

– Start with S0[1] = 3 and S0[2] = 0 to obtain S3[2] = 3 and S3[3] = 0 after the
third round, with probability 1.

– Suppose that none of j4, . . . , jN+1 touches the locations {2, 3} and jN+2 �= 3.
This happens with probability

(
1 − 2

N

)N−2 (
1 − 1

N

)
, and eventually leads to

ZN+3 = 3 with probability 1.

Considering the above events to be independent, the probability that the
main path holds is given by α = Pr (S0[1] = 3 ∧ S0[2] = 0)

(
1 − 2

N

)N−2 (
1 − 1

N

)
.

If it does not occur, we assume that ZN+3 = 3 holds due to random association,
with probability 1/N . Using [10, Theorem 6.2.1] for Pr (S0[1] = 3 ∧ S0[2] = 0),
we compute Pr(ZN+3 = 3) ≈ α + (1 − α) · (1/N) ≈ 1/N + 0.18/N2. �

Experiments with 233 random keys show that Pr(ZN+3 = 3) = 0.003909, both
in the case of RC4 and WPA; thus conforming to the theoretical value.
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Fig. 7. Linear correlations between the IV and the initial keystream bytes of WPA.
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4 Conclusion

In this paper, we present various non-randomness results on RC4 when used in
the WPA protocol. We analyze several biases of RC4 and also note how they
evolve in WPA as the initial three key bytes are derived from the IV. We prove
the interesting sawtooth distribution of the first byte and the similar nature for
the biases in (Zr = 0), as pointed out in [1]. We also improve the theoretical
estimate for the (Zr = r) bias of RC4 to obtain better results than [6].

In another direction, we revisit the correlation of certain keystream bytes to
the first three IV bytes in WPA and we notice that they provide much higher
biases than what had been presented in [1]. This improves the broadcast attack
on WPA significantly towards obtaining certain plaintext bytes. Our combina-
torial results complement the existing literature in understanding the reason
of some interesting empirical biases in WPA, as well as in adding some new
observations and biases in the scenario of broadcast attack against WPA.

Acknowledgments. We are thankful to the anonymous reviewers of FSE 2014 for
their detailed review reports containing invaluable feedback, which helped in substan-
tially improving the technical and editorial quality of our paper.
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Abstract. This paper aims to enhance the application of slide attack
which is one of the most well-known cryptanalysis methods using self-
similarity of a block cipher. The typical countermeasure against slide
cryptanalysis is to use round-dependent constants. We present a new
probabilistic technique and show how to overcome round-dependent con-
stants in a slide attack against a block cipher based on the general Even-
Mansour scheme with a single key. Our technique can potentially break
more rounds than any previously known cryptanalysis for a specific class
of block ciphers. We show employing round constants is not always suffi-
cient to provide security against slide variant cryptanalysis, but also the
relation between the round constants should be taken into account. To
demonstrate the impact of our model we provide analysis of two round-
reduced block ciphers LED-64 and Zorro, presented in CHES 2011 and
CHES 2013, respectively. As a first application we recover the key for 16
rounds of Zorro. This result improves the best cryptanalysis presented by
the designers which could be applied upto 12 rounds of its 24 rounds. In
the case of LED-64 the cryptanalysis leads to the best results on 2-step
reduced LED-64 in the known-plaintext model.

Keywords: Block cipher · Slide attack · Zorro · LED-64 · Even-mansour

1 Introduction

Block ciphers can be attacked using a large variety of attacks employing different
properties of the ciphers. Statistical cryptanalysis like differential [4] and linear
[25] attacks make use of non-randomness characteristics of the cipher and the
complexity of the attack is increased by adding more rounds to the cipher. In
contrast, self-similarity cryptanalysis techniques are applicable on a small class
of block ciphers and the complexity of the attacks is usually independent of the
number of rounds. Self-similarity attacks exploit the weakness of the key schedule
rather than non-random statistical properties of the cipher. Slide cryptanalysis is
a well-known example of such techniques and it utilizes the symmetry properties
of the cipher [7]. If an iterative block cipher with identical round functions has
a periodic key schedule, it can be presented as a cascade of repeated copies of
a single function Fk with an identical key k, where Fk consists of one or more
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 373–389, 2015.
DOI: 10.1007/978-3-662-46706-0 19
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rounds of the cipher. Slide attacks are based on the observation that if two
plaintexts P and P ′ satisfy the relation P ′ = Fk(P ) then C ′ = Fk(C) holds for
free. Such a pair ((P,C), (P ′, C ′)) is called the slid pair. Given a slid pair the
security of the cipher is reduced to finding the key for the function Fk in the
known plaintext model. In general, 2n/2 known plaintexts are required to find
at least one slid pair for an n-bit block cipher. The total time complexity of the
cryptanalysis consists of the complexities of three steps: preparing the required
data, detecting a slid pair, and finally obtaining the key from the slide pair.

Slide attacks and other self-similarity cryptanalysis can be prevented by a
careful design of a key schedule. But a strong key schedule cannot be achieved
for free. It has impact on latency, power consumption and size of the implemen-
tation. Therefore the designers of lightweight ciphers such as PRINTcipher [23],
LED [20], PRINCE [11] and Zorro [17], adopted another direction to establish
security against self-similarity cryptanalysis. They introduced round-dependent
constants added to the data input at each round to make the rounds different.
Then a single master key is simply added after every fixed number of rounds
called as step. Even if in such a construction each step has the same structure
and the key used at every step is the same, the computation at each step is
varied by the round constants. In this manner, the slide cryptanalysis can be
prevented.

Such a cipher construction can be seen as an instance of the generalized
Even-Mansour scheme [15] with a single key. It is defined as C = EK(P ) =
Fs(· · · F2(F1(P ⊕ K) ⊕ K) ⊕ K · · · ⊕ K) where Fi are constructed as cascades
of the same fixed permutations but with different round constants. In this work,
we investigate the security of this cipher structure and develop a new statistical
variant of slide cryptanalysis. The idea is to slide one instance of encryption
against another instance of encryption by one step and investigate, if for a pair
((P,C), (P ′, C ′)) it would be possible to predict, with significant probability,
the difference C ⊕ Fs(C ′ ⊕ K) given the difference P ′ ⊕ F1(P ⊕ K). By taking
a probabilistic approach we can circumvent the devastating effect of different
round constants in the deterministic slide cryptanalysis.

Potentially, the described attack has two main advantages compared to the
classical differential cryptanalysis. The first one is that the attacker has more
freedom to control the active S-boxes. If the difference in the round constants
and data are identical, they cancel each other, which leads to a smaller number
of active S-boxes in the characteristic. Example of such a situation is given in
Sect. 4.2 for LED-64. While it is proved that the normal differential characteristic
over four rounds has at least 25 S-boxes, we can find differential characteristics of
LED-64 over four iterative rounds which in our slide setting have just 13 active
S-boxes. We also note that even if we exploit a kind of related-key differential
characteristics, our attack is in the single-key model, since we exploit the relation
between the round constants instead of keys to control the differential pattern.
The second merit is the existence of an efficient key-recovery method for our
model. As each step of our target ciphers consists of several rounds, it makes it
hard to convert a distinguisher to the key-recovery attack over more steps by
guessing just a part of the key. But we present an efficient method to obtain the
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key of s steps of the cipher based on the differential property in slide mode for
s − 1 steps.

To demonstrate the effect of our statistical slide framework, we apply key-
recovery attack on block ciphers LED-64 and Zorro. We present a key-recovery
cryptanalysis on a reduced 16-round version, while the best previous key-recovery
cryptanalysis is on 12 rounds. Also we present a novel cryptanalysis on 2-reduced
steps of LED-64 which leads to the best attack on this version of the cipher in
the known-plaintext model. Our results and the previous results are summarized
in Table 1.

Table 1. Summary of single-key attacks on round-reduced LED-64 and Zorro

Cipher Attack Type Steps Data Time Memory Source

Zorro Impossible differential 2.5 2115CP 2115 2115 [17]

Meet-in-the-middle 3 22KP 2104 - [17]

Probabilistic slide 4 2123.62KP 2123.8 2123.62 Sect. 4.1

Probabilistic slide 4 2121.59KP 2124.23 2121.59 Sect. 4.1

Internal differentiala 6 254.25CP 254.25 254.25 [19]

LED-64 Meet-in-the-middle 2 28CP 256 211 [21]

Meet-in-the-middle 2 216CP 248 217 [13]

Meet-in-the-middle 2 248KP 248 248 [13]

Generic 2 245KP 260.1 260 [14]

Probabilistic slide 2 245.5KP 246.5 246.5 Sect. 4.2

Probabilistic slide 2 241.5KP 251.5 242.5 Sect. 4.2

Generic 3 249KP 260.2 260 [14]
aThis attack is applicable just on 264 keys (out of 2128), CP – Chosen Plain-
texts, KP – Known Plaintext.

Some previous cryptanalysis of LED-64 do not exploit any specific property
of the cipher. In [27] it is shown that the behavior of the function x ⊕ F (x), for
a random permutation F , is not ideally random and they exploit this fact in a
generic attack on the EM-construction with two alternative keys. The result is
improved in [14] via a generic attack on a 3-step EM-construction with a single
key. This attack is independent of the permutations but has high complexity. An
accelerated exhaustive search for 2-step reduced version of LED-64 is presented
in [21] in the chosen-plaintext model. Our attack requires only known plaintext
and has much lower time complexity. Recently, parallel to our work, an advanced
meet-in-the-middle cryptanalysis is presented for a 2-step version of LED-64 in
IACR Eprint Archive [13], but is slightly slower than our cryptanalysis in known-
plaintext model.

Zorro was presented recently at CHES 2013. It is a tweaked version of the
standard block cipher AES and targets on efficient masking to establish side-
channel security with better performance. The best key-recovery cryptanalysis
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Fig. 1. Slide cryptanalysis

so far was presented by the designers in the classical single-key model. It is
a meet-in-the-middle attack on 12 rounds. We carry out the first third-party
cryptanalysis of Zorro and mount a key-recovery cryptanalysis on 16 rounds of
Zorro. Let us also mention that simultaneously a cryptanalysis of the full Zorro
is presented in [19]. It works for a fraction 264 out of 2128 keys in the weak-key
model and requires chosen plaintexts, whereas our result work for all keys in
known-plaintext model.

This paper is organized as follows. In Sect. 2, we start by recalling the typical
slide cryptanalysis and previous works, and then continue to introduce the basic
concepts of our method. In Sect. 3, we describe the target ciphers Zorro and LED
briefly. Section 4 gives an overview of our strategy to construct a distinguisher
followed by applications of the probabilistic slide cryptanalysis on step-reduced
Zorro and LED-64. We conclude in Sect. 5.

2 Slide Cryptanalysis

2.1 Basic Idea

A typical block cipher can be described as a cipher with iteration of a key-
dependent function called as round. Each round is a keyed permutation Rki

(X),
where ki is the ith round key derived from the master key using a key schedule.
More precisely, the encryption procedure of the n-bit plaintext P via the iterated
application of r rounds is described as Xi = Rki

(Xi−1), for i = 1, · · · , r where X0

and Xr represents plaintext P and corresponding ciphertext C respectively. Let
us assume that the cipher can be represented as an iteration of a single permuta-
tion Fk. Depending on the key-schedule this permutation may consist of one or
more rounds of the cipher. If plaintexts P and P ′ satisfy the relation P ′ = Fk(P ),
then C ′ = Fk(C) holds for free independently of the number of rounds as illus-
trated in Fig. 1. A pair ((P,C), (P ′, C ′)) with this property is called a slid pair.
For an n-bit block cipher P ′ = F (P ) occurs with probability 2−n. Given 2n/2

plaintext-ciphertexts (P,C) there exists 2n pairs which emphasize to expect one
slide pair. To convert the distinguisher to a key-recovery cryptanalysis the only
requirement for Fk is to be weak enough against known-plaintext cryptanalysis.

2.2 Previous Works

Since the basic slide cryptanalysis is a too restrictive approach, several develop-
ments have been proposed to enhance the basic idea. Two advanced techniques
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termed as sliding with a twist and complementation slide are presented by
Biryukov and Wagner [8]. If two keys are used alternatively in a Feistel cipher,
then we can slide two instances of encryption against each other by one round to
cancel the difference between the keys by the complementation slide property.
In slide-with-a-twist cryptanalysis an instance of decryption is slid against an
instance of encryption. This technique is applicable on another class of ciphers.

This idea is extended to introduce a weak key class of involution block ciphers
in [5]. In [28] Feistel ciphers with independent pre- and post-whitening keys are
studied and shown that there is a cryptanalysis with time and data complexity
n2n/2+1. Furuya uses the observation presented in [8] that if (P, P ′) is a slid pair,
then (FK(P ), FK(P ′)) is also a slid pair. This technique provides more known
plaintexts to mount efficient slide cryptanalysis on more complicated functions
FK [16]. Biham et al. pursue another direction which allows to find a slid pair
much faster with the cost of almost the whole codebook [3]. As another direction
slide cryptanalysis can be leveraged to a distinguisher on hash functions as it is
done for the inner component of SHA-1 [30]. It does not seem useful for collision
or (second) preimage cryptanalysis but works for distinguishing and also key
recovery in MAC mode [18].

To the best of our knowledge, this paper is the first application of proba-
bilistic slide cryptanalysis in the single-key model. In [8] it is suggested to use
a differential property of the identical function to find the key from a slid pair
which is a different approach and have not been applied in practice. Also in
[29] the method of realigning slide cryptanalysis is presented to pass the middle
round in a nondeterministic way in related-key scenario.

2.3 Probabilistic Slide Cryptanalysis

In this section we present our new technique which combines a usual slide attack
with differential type characteristics. We focus our attention to an n-bit block
cipher with general Even-Mansour construction that consists of s different per-
mutations and one key. Analogically to the basic slide distinguisher we consider
an encryption instance and slide it against another instance of the same encryp-
tion by one step. Due to the differences between round functions the basic slide
cryptanalysis is not applicable. Assume there exists a sequence of differences
D = {Δr : 0 ≤ r ≤ s−1} such that Pr[Fr(x)⊕Fr−1(x⊕Δr−2) = Δr−1] = 2−pr−1

where 0 ≤ pr and 2 ≤ r ≤ s. Thanks to the equality of keys we obtain a differen-
tial type characteristic by concatenating the differences in D. This characteristic
has probability 2−p =

∏s−1
r=1 2−pr . So Fs−1 ◦ · · · ◦F1(x)⊕Fs ◦ · · · ◦F2(x⊕Δin) =

Δout holds with probability 2−p where Δin = Δ0 and Δout = Δs−1 as illustrated
in Fig. 2. In other words, if a pair (P, P ′) satisfies F1(P ⊕ K) ⊕ P ′ = Δin then
C ⊕ F−1

s (C ′ ⊕ K) = Δout occurs with the probability 2−p.
Analogously to the usual slide attack, such a pair for which the characteristic

holds is called the right slid pair. Given 2m = 2n/2+p/2 known plaintext there
exist 2n+p pairs of which 2p are expected to satisfy the relation F1(P ⊕K)⊕P ′ =
Δin for the unknown key. The right slid pairs are among them. Since the input
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Fig. 2. Slide cryptanalysis on general Even-Mansour scheme with one key

difference Δin yields the output Δout with probability 2−p, we expect to get one
right slid pair for the characteristic.

Key-Recovery. Next we describe the key-recovery algorithm. For a correct slid
pair ((P,C), (P ′, C ′)) we have

C ′ ⊕ Fs(C ⊕ Δout) = K = P ⊕ F−1
1 (Δin ⊕ P ′, )

where K is the correct key. So the correct slid pair satisfies the relation

C ′ ⊕ F−1
1 (Δin ⊕ P ′) = P ⊕ Fs(C ⊕ Δout).

We utilize this property to find a slid pair efficiently by storing these values in
hash tables for all plaintext-ciphertext pairs. The attack procedure is as follows:

1. Ask for the encryption of 2m = 2n/2+p/2 arbitrary plaintexts.
2. For all plaintext-ciphertext pairs (P,C) compute the value of C ⊕ F−1

1 (P ⊕
Δin) and store the computed value with the corresponding C in the hash
table T1. Sort them according to the value C ⊕ F−1

1 (P ⊕ Δin).
3. For all plaintext-ciphertext pairs (P,C) compute the value of P ⊕ Fs(Δout ⊕

C) and store the computed value with C in the hash table T2. Sort them
according to the value P ⊕ Fs(Δout ⊕ C). Keep some (P,C) pairs to test the
key candidates.

4. For each collision in the hash tables T1 and T2 find corresponding ciphertexts
C and C ′ then compute a key candidate K = C ′ ⊕Fs(C ⊕Δout). Use a (P,C)
to test the key.

Step 1 requires 2m full encryptions. To prepare each hash tables we compute
one step of the cipher for all known plaintexts. So Step 2 and Step 3 requires
totally 2 · 2m/r full encryptions. We expect to have 22m−n = 2p key candidates
to try in Step 4 which requires 2p encryptions. The total time complexity is
2m + 2m+1/r + 2p. To perform the attack, one needs two hash tables T1 and T2

to store 2m ordered pairs of n-bit values in both T1 and T2.
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More Output Differences. In this part we study the improvements of the
described distinguisher. A natural improvement is to consider a differential
instead of a single differential characteristic, and try to improve the estimate
of the differential probability.

Another approach is to consider L different output differences Δi
out, i ∈

{1, · · · , L}, to decrease the data requirement by increasing the total probability.
This comes with the cost of repeating the attack algorithm L times and a small
increase in the memory requirement. Without loss of generality we can assume
that each output difference Δi

out occurs with equal probability 2−p for a fixed
input difference Δin, that is, if F1(P ⊕K)⊕P ′ = Δin, then C ⊕F−1

r (C ′ ⊕K) =
Δi

out holds with probability 2−p, for all i ∈ {1, · · · , L}. If the probabilities are
not equal, order the output differences in the decreasing order according to their
probabilities.

The attack procedure is described as follows:

1. Get encryptions C of 2m arbitrary plaintexts P .
2. For all pairs (P,C) compute the value of C ⊕ F−1

1 (P ⊕ Δin) and store the
computed value with P and C in a hash table T1. Sort them according to the
value C ⊕ F−1

1 (P ⊕ Δin).
3. for i ∈ {0, · · · , 2�}

3.1 Allocate 2 · 2m memory for the hash table T2.
3.2 For all plaintext-ciphertext pairs (P,C) compute the value of P⊕Fs(Δi

out⊕
C) and store the computed value and the corresponding C in the hash table
T2. Sort them based on the value P ⊕ Fs(Δi

out ⊕ C).
3.3 For each collision in the hash tables T1 and T2 find corresponding cipher-

texts C and C ′ then compute the key candidate as K = C ′⊕Fs(C⊕Δi
out).

Given some P and C, test the key.
3.4 If all key candidates are wrong, free the allocated memory of T2.

We denote by � the logarithm of L. Since Pr[C ⊕ F−1
r (C ′ ⊕ K) = Δi

out, for some
i ∈ {1, · · · , 2�}|F1(P ⊕ K) ⊕ P ′ = Δin] = 2�−p the attack requires 2m =
2n/2+(p−�)/2 known plaintexts. Time complexity is 2m+2m/r+2�(2m/r+22m−n)
encryptions which is dominated by 2�(2m/r + 22m−n). Given L output differ-
ences, any number of them can be used in the attack allowing trade-off between
data and time complexity. The memory requirement is the same for all L > 1.
To perform the attack, one needs two hash tables T1 and T2 where T1 is used to
store 2m triplets of n-bit values and T2 to store 2m ordered pairs n-bit values.

3 Target Ciphers

In this section we present a brief description of the block ciphers to be analyzed.
We describe first the block cipher Zorro and continue with the description of the
block cipher LED, and finally introduce the notation to be used in this paper.
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3.1 Description of Zorro

Zorro is a 128-bit block cipher and supports 128-bit key. The state can be illus-
trated as a 4× 4 matrix where each cell represents a byte. Zorro is a generalized
Even-Mansour cipher consisting 6 steps. There exist no key schedule and after
each step the same key is xored to the state. Each step is composed of 4 rounds.
One round consists of four transformations. One is the adding of the round
constant and the other three are borrowed from the AES and applied in the
following order.

1. SubCells: A byte-wise transformation that applies an 8-bit S-box to each
byte of the first row.

2. AddConstants: XOR operation between the first row of the state and the
current round constant. Let r be the number of the current round represented
as a byte, for 1 ≤ r ≤ 24. Then the round constant is defined as r ‖ r ‖ r ‖
r � 3.

3. ShiftRows: A linear transformation that cyclically shifts the i’th row i bytes
to the left.

4. MixColumns: A linear transformation represented by a 4 × 4 matrix over
GF (28).

The last two operations are exactly like in the AES. For the definition of S-box
and more details we refer to [17].

3.2 Description of LED

LED is a 64-bit block cipher. Two main variants of the cipher are LED-64 and
LED-128, which support the key sizes 64 and 128, respectively. The 64-bit state is
represented by a 4×4 matrix, where each cell represents a nibble in GF (24). The
construction of LED-64 is a generalized Even-Mansour with one key and 8 steps.
Each step includes four rounds. Each round consists of four transformations of
which three are inspired by the AES.

1. AddConstants adds a round-dependent constant to the state. To construct
the round constants one proceeds as follows. A string of six bits (rc5, rc4, rc3,
rc2, rc1, rc0) is initialized to zero. Then at each round, the bits are shifted to
the left by one position, and the new value of rc0 is computed as rc5⊕rc4⊕1.
Let us denote by (ks7, ks6, ...ks0) the bits of the byte that represents the key
size. Then the corresponding round constant is defined as follows.

ks7||ks6||ks5||ks4 0||rc5||rc4||rc3 0 0

ks7||ks6||ks5||ks4 ⊕ 1 0||rc2||rc1||rc0 0 0

ks3||ks2||ks1 ⊕ 1||ks0 0||rc5||rc4||rc3 0 0

ks3||ks2||ks1 ⊕ 1||ks0 ⊕ 1 0||rc2||rc1||rc0 0 0
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Table 2. S-box of LED

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S-box(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

2. SubCells applies the same 4-bit to 4-bit S-box given in Table 2 in parallel
on each of the 16 nibbles of the state.

3. ShiftRows cyclically rotates the i’th row by i nibble(s) to the left.

4. MixColumns multiplies each column by an MDS matrix M =

⎡
⎢⎢⎣
4 1 2 2
8 6 5 6
B E A 9
2 2 F B

⎤
⎥⎥⎦,

over the field GF (24) under the polynomial x4 + x + 1.

3.3 Notations

Thanks to the similarity of Zorro and LED we can use almost the same notations
to describe the states or operations for both ciphers. We represent the state as
a 4 × 4 matrix where each cell is a byte or a nibble in Zorro and LED, respec-
tively. We denote by XI

r the input of the r’th round while XS
r ,XR

r , XM
r and

XA
r denote the intermediate states after the application of SubCells, ShiftRows,

MixColumns and AddConstants operations in the r’th round, respectively. We
also denote the cell in the ith row and jth column of the state X by X(i + 4j),
where 0 ≤ i, j ≤ 4. This notation is illustrated in Fig. 3.

X(0)

X(4)

X(8)

X(12)

X(1)

X(5)

X(9)

X(13)

X(2)

X(6)

X(10)

X(14)

X(3)

X(7)

X(11)

X(15)

Fig. 3. State representation of Zorro and LED

Each step of Zorro and LED has four rounds. In our cryptanalysis, we
slide two instances of encryption against each other by one step and compare
their states. Let us denote by RCr the round constant in r’th round and by
DRCr the difference between round constants in the rounds r and r + 4. Then
DRCr = RCr ⊕ RCr+4. Let us note that in Zorro this difference has only four
non-zero bytes DRCr(0, 1, 2, 3) on the first row. Similarly, the round constant
difference DRCr of LED can have non-zero nibbles only on the second column
DRCr(1, 5, 9, 13). Throughout the paper SC, SR, MC and AC stands for Sub-
Cells, ShiftRows, MixColumns and AddConstants operations.
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4 Applications of the Probabilistic Slide Cryptanalysis

Our aim is to find a differential type characteristic with high probability between
two slid instances of the cipher as depicted in Fig. 2. Finding differential charac-
teristics have the highest probability among all possible choices is a challenging
task as a general problem since even an automatic search for the whole space
is not feasible. There are some techniques to make this simpler and speed up
the search effectively. Matsui presents an algorithm to find the best differential
characteristic and linear approximation in [26]. The algorithm uses a branch-
and-bound method recursively to find the r-round characteristic of DES with
highest probability based on the best r − 1-round characteristics. The algorithm
is not feasible for all ciphers but the main principles of the algorithm have been
adopted widely in several works (for example look at [1,6,9,10]). The probability
of differential characteristic is proportional to the number of involved active S-
boxes. One direction in the word-oriented block ciphers and hash functions is to
find a general pattern of active and inactive differences holds in the cipher prop-
erties such that the number of active S-boxes is as small as possible. Next the
differential characteristic with specific differential values for the existence pattern
can be found by guess-and-determine methods. In this section we explore this
approach for two block ciphers Zorro and LED-64 to construct a distinguisher
described in Sect. 2.3 for each cipher separately and proceed by applying key-
recovery cryptanalysis. We use the notations introduced in Sect. 3.3 to denote
the various intermediate states X of the encryption process of P to C. We use
similar notation for the pair (P ′, C ′) but now with X ′.

4.1 Slide Cryptanalysis on Zorro

We start by an observation about the degrees of freedom of constructing a 2-
round differential characteristic of Zorro block cipher. Let us consider a non-zero
difference X ′I

r (i)⊕XI
r+4(i) where 0 ≤ i ≤ 3. After the S-box operation it may be

transferred to a difference such that at the end of the round X ′M
r (i)⊕XM

r+4(i) = 0
which indicates that we can bypass the next round in the same byte position
for free. So potentially for a given differential characteristic on r − 1 rounds
we can extend it over two more rounds with the cost of at most four active
S-boxes. We use the following procedure to specify difference X ′S

r (i) ⊕ XS
r+4(i)

such that X ′M
r (i) and XM

r+4(i) have identical values. Since SC and AC operations
do not change the differences in the last three rows, the differences in the bytes
X ′R

r (i + 4, i + 8, i + 12) ⊕ XR
r+4(i + 4, i + 8, i + 12) are determined. By assuming

X ′M
r (i) ⊕ XM

r+4(i) = 0, four bytes of the input and output of the Mixcolumn
matrix are known and we are able to obtain the difference value X ′R

r (i)⊕XR
r+4(i).

After that X ′S
r (i) ⊕ XS

r+4 can be determined by coring X ′R
r (i) ⊕ XR

r+4(i) with
DRCr(i). This procedure is illustrated in Fig. 4, where we denote the bytes with
known differences by ‘∗’ and aim to find unknown differences denoted by ‘?’.

Since about one half of all S-box differentials exist, to construct a 2-round
differential characteristic as described, a fraction of 2−4 choices can match the
conditions of four S-boxes. We can start with an initial state such that the bytes
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Fig. 4. Two rounds differential characteristic pattern with four active S-boxes

in the first row have no difference. Since there exist 296 different states we expect
296−2r states to satisfy the pattern of r-rounds. This shows that even for the
full round cipher there exist numerous candidates. A naive question arises how
one can exploit these degrees of freedom to create a differential characteristic
which has still less active S-boxes. Our choice is to select the difference value
Δin = X ′I

1 ⊕ XI
5 such that the first three rounds have no active S-boxes. The

first row after MC has no difference with probability around 2−8×4 = 2−32. So
if we start with a state by no difference in the first row a fraction 2−32×2 out
of 296 states can bypass two more rounds with probability one. While trying
all 296 states is not feasible as is described in [17] we can find these 3-round
characteristics efficiently by utilizing an alternative method. In the remainder of
this part we take a detailed look at this technique summarized in Algorithm 1.

We aim to find a 3-round characteristic that holds with probability one.
If we guess the difference of bytes X ′I

2 (i + 4, i + 8) ⊕ XI
6 (i + 4, i + 8) located

in the i’th column where 0 ≤ i ≤ 3, the difference of the third active byte
X ′I

2 (i + 12) ⊕ XI
6 (i + 12) in the same column can be obtained considering the

Mixcolumn matrices of the first round. Hence we can find two first columns
of X ′I

2 ⊕ XI
6 by guessing only four bytes X ′I

2 (4, 5, 8, 9) ⊕ XI
6 (4, 5, 8, 9). Con-

sequently X ′R
2 (7, 10, 11, 14) ⊕ XR

6 (7, 10, 11, 14) would be known after SR. By
assumption X ′M

2 (2, 3) ⊕ XM
6 (2, 3) = 0 and using MixColumn matrices of the

second round, difference X ′R
2 (7, 14) ⊕ XR

6 (7, 14) can be found. We save the val-
ues XI

2 (4, 8, 9, 13) ⊕ X ′I
6 (4, 8, 9, 13) in the row indexed by X ′I

2 (5, 7, 12, 14) ⊕
XI

6 (5, 7, 12, 14) in the hash table T1. Similarly in a separate computation by
guessing four bytes X ′I

2 (6, 7, 10, 11)⊕XI
6 (6, 7, 10, 11) the differences of four more

bytes X ′I
2 (5, 12, 14, 15) ⊕ XI

6 (5, 12, 14, 15) are obtained. We save the values
X ′I

2 (6, 10, 11, 15) ⊕ XI
6 (6, 10, 11, 15) in the row indexed by X ′I

2 (5, 7, 12, 14) ⊕
XI

2 (5, 7, 12, 14) in the hash table T2. Matching two hash tables leads to find-
ing all 3-round differential characteristics which have probability one.

Key Recovery. For all 232 states obtained from Algorithm 1 we extend the
characteristic by two rounds iteratively. The best differential characteristic we
found for 12 rounds has probability Pr[X ′I

13 ⊕ XI
17 = Δout|X ′I

1 ⊕ XI
5 = Δin] =

2−119.24 where the values Δin and Δout with the details of characteristic are
given in Appendix A.2. It leads to the the key-recovery cryptanalysis described
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Algorithm 1. Finding 3-round characteristics of Zorro with probability one
for all X ′I

2 (4, 8) ⊕ XI
6 (4, 8) do

Find X ′I
2 (12) ⊕ XI

6 (12) using the MixColumn matrix of the first round.
for all X ′I

2 (5, 9) ⊕ XI
6 (5, 9) do

Find X ′I
2 (13) ⊕ XI

6 (13) using the MixColumn matrix of the first round.
Find X ′I

2 (7, 14) ⊕ XI
6 (7, 14) using the MixColumn matrix of the second round.

Save the value X ′I
2 (4, 8, 9, 13) ⊕ XI

6 (4, 8, 9, 13) in the row is indexed by
X ′I

2 (5, 7, 12, 14) ⊕ XI
6 (5, 7, 12, 14) in T1.

end for
end for
for all X ′I

2 (6, 10) ⊕ XI
6 (6, 10) do

Find X ′I
2 (14) ⊕ XI

6 (14)using the MixColumn matrix of the first round.
for all X ′I

2 (7, 11) ⊕ XI
6 (7, 11) do

Find X ′I
2 (15) ⊕ XI

6 (15)using the MixColumn matrix of the first round.
Find X ′I

2 (5, 12) ⊕ XI
6 (5, 12)using the MixColumn matrix of the second round.

Save the value X ′I
2 (6, 10, 11, 15) ⊕ XI

6 (6, 10, 11, 15) in the row is indexed by
X ′I

2 (5, 7, 12, 14) ⊕ XI
6 (5, 7, 12, 14) in T2.

end for
end for

in Sect. 2.3 on 16-reduced round of Zorro. The attack requires 264+59.62 = 2123.62

known plaintexts and the time complexity is 2123.62 +2124.62/4+2119.24 	 2123.8

encryptions. To reduce the data complexity we can allow degrees of freedom for
an active S-box in the last round of the characteristic. There exist 25 different
α ∈ GF (28) such that Pr[S(x) ⊕ S(x ⊕ 0x76) = α] = 2−6. Let us consider the
same characteristic in Appendix A.2 while XS

16(1)⊕X ′S
12(1) = α. The probability

for such a characteristic is 2−113.82 · (25 · 2−6) = 2−115.17 which indicates that
the data complexity decreases to 264+57.59 = 2121.59 with the cost of increasing
the time complexity to 25 · (2121.59/4 + 2115.17) 	 2124.23 encryptions.

4.2 Slide Cryptanalysis of LED-64

Let us recall that the difference between RCr and RCr+4 of LED-64 has nonzero
value only in the second column. Then we start by looking at the state after AC
in an arbitrary round r to investigate different scenarios. Since we are inter-
ested in characteristic with less active S-boxes, one may think the best case
happens when all active nibbles in X ′I

r ⊕ XI
r+4 get canceled by the difference

DRCr to bypass SC with probability one. We note it can activate four nib-
bles X ′A

r+1(1, 5, 9, 13) ⊕ XA
r+5(1, 5, 9, 13). Next each active nibble propagates to

a different column after SR and makes all nibbles active at X ′M
r+1 ⊕ XM

r+5,
which is against our goal. Another choice is to have just one active nibble
X ′A

r (1) ⊕ XA
r+4(1) such that after MC it transfers to four nibbles which cancel

the three out of four nibbles differences injected by round constants in the next
round. It can be considered as an iterative 1-round characteristic. After testing
this approach we found that due to the differences between round constants we
cannot utilize this iteratively for the round constants chosen by the designers,
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because it works just for one round. So we chose a moderate strategy to find the
best pattern. First we try to hesitate activate the nibbles from the first, third
and forth columns of X ′I

r ⊕XI
r+4 since we cannot cancel them by the differences

of round constants. Secondly we aim to cancel as many nibbles in the second
column as possible. To find the best pattern we start from the middle rounds
and try to extend it in both backward and forward directions. It is proved in [20]
that any differential characteristic over four consecutive rounds of the cipher has
at least 25 active S-boxes and probability at most 2−50. Thanks to the differ-
ences in the round-constants, the best characteristic we found for four rounds has
probability 2−27 and just 13 active S-boxes. This demonstrates the superiority
of our model in comparison with differential cryptanalysis of LED-64.

Key Recovery. The 4-round differential characteristic illustrated in Appen-
dix A.1 has probability 2−27. This property enables us to retrieve the key of
8-round reduced of LED-64 with the same technique described in Sect. 2.3. The
cryptanalysis requires 232+13.5 = 245.5 known plaintexts and the time complexity
is roughly 245.5 +246.5/2+227 	 246.5 encryptions. To have less data complexity
we can consider a truncated type differential for the last round. The differences
2, c, d and 6 can be transferred through the S-box to the set of differences A1 =
{3, 5, 6, a, c, d, e}, A2 = {2, 5, 7, 8, 9, a, e}, A3 = {1, 2, 3, 4, 7, a, b} and A4 =
{2, 6, 8, b, c, f} respectively. If XI

5 ⊕P ′ = Δin holds for the given Δin in Appen-
dix A.1 then the truncated difference XS

8 ⊕ X ′S
4 ∈ {0a1000a2000a3000a400|

ai ∈ Ai, 1 ≤ i ≤ 4} with its corresponding truncated difference Δout = XM
8 ⊕

X ′M
4 holds with probability 2−19. Using this characteristic the data complexity

decreases to 232+9.5 = 241.5 known plaintexts while the time complexity increases
to 6 · 73(241.5/2 + 219) 	 251.5 encryptions.

5 Conclusion

In this paper we provide a new insight into slide cryptanalysis which is illus-
trated by cryptanalysis of step-reduced block ciphers Zorro and LED-64. We
describe a new framework to enhance slide cryptanalysis against general Even-
Mansour scheme with one key in a probabilistic setting. Our method exploits
some features from related-key differential cryptanalysis to build a kind of differ-
ential characteristic that is applicable in the single key model. In the related-key
cryptanalysis model [2,22] one can consider the encryption under unknown secret
keys but with a determined difference, which allows attacker to control the data
difference by differences injected by the key difference. The probabilistic slide
cryptanalysis presented in this paper is inspired by the same idea but instead of
using two different keys it slides a copy of encryption to take advantage of the
round constant differences in a single key model. Since known statistical crypt-
analysis is not affected by the values of round constants, choosing their values
usually has not been taken into account by the designers of block ciphers (for
example look at [24,31]). In this work we shed more light on how round con-
stants can potentially weaken the security of the cipher. One possible direction
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of future research is to inquire the application of probabilistic slide cryptanalysis
against other block ciphers based on the general Even-Mansour scheme with a
single key like PRINCE, PRINTcipher and 3-WAY [12].
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A Appendix

A.1 Characteristic Used for Cryptanalysis of LED-64

State Difference Probability

Δin = XI
5 ⊕ P ′ 0250060b33010700

XA
5 ⊕ X ′A

1 0150000b30010100

XS
5 ⊕ X ′S

1 07c0000860070900 2−12

XR
5 ⊕ X ′R

1 07c0008007600090

XM
5 ⊕ X ′M

1 0100051007000500

XA
6 ⊕ X ′A

2 0600001000000000

XS
6 ⊕ X ′S

2 0c0000d000000000 2−5

XR
6 ⊕ X ′R

2 0c000d0000000000

XM
6 ⊕ X ′M

2 0800020007000200

XA
7 ⊕ X ′A

3 0f00000000000000

XS
7 ⊕ X ′S

3 0100000000000000 2−2

XR
7 ⊕ X ′R

3 0100000000000000

XM
7 ⊕ X ′M

3 040008000b000200

XA
8 ⊕ X ′A

4 02000c000d000600

XS
8 ⊕ X ′S

4 0500050002000b00 2−8

XR
8 ⊕ X ′R

4 05005000000200b0

Δout = XM
8 ⊕ X ′M

4 5754defa31c7aa9d

A.2 Characteristic Used for Cryptanalysis of Zorro

State Difference Probability

Δin = XI
5 ⊕ P ′ 00000000d52c6f72120a92b50c8c2eee

XS
5 ⊕ X ′S

1 00000000d52c6f72120a92b50c8c2eee 1

XA
5 ⊕ XA

1 04040420d52c6f72120a92b50c8c2eee

XR
5 ⊕ X ′R

1 040404202c6f72d592b5120aee0c8c2e

XM
5 ⊕ X ′M

1 000000001f125aa13e0edd9375ce6fe3

XS
6 ⊕ X ′S

2 000000001f125aa13e0edd9375ce6fe3 1

XA
6 ⊕ X ′A

2 040404201f125aa13e0edd9375ce6fe3

XR
6 ⊕ X ′R

2 04040420125aa11fdd933e0ee375ce6f

XM
6 ⊕ X ′M

2 00000000bf6bd16389fc90921e2f14af

(Continued)
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(Continued)

State Difference Probability
XS

7 ⊕ X ′S
3 00000000bf6bd16389fc90921e2f14af 1

XA
7 ⊕ X ′A

3 04040420bf6bd16389fc90921e2f14af
XR

7 ⊕ X ′R
3 040404206bd163bf909289fcaf1e2f14

XM
7 ⊕ X ′M

3 8aec0b72d60e6d4ebec81f40b273b80b
XS

8 ⊕ X ′S
4 0fa38ee5d60e6d4ebec81f40b273b80b 2−24.41

XA
8 ⊕ X ′A

4 03af8285d60e6d4ebec81f40b273b80b
XR

8 ⊕ X ′R
4 03af82850e6d4ed61f40bec80bb273b8

XM
8 ⊕ X ′M

4 000000003507b4c92e8f3e0b02b88be1
XS

9 ⊕ X ′S
5 000000003507b4c92e8f3e0b02b88be1 1

XA
9 ⊕ X ′A

5 0c0c0c603507b4c92e8f3e0b02b88be1
XR

9 ⊕ X ′R
5 0c0c0c6007b4c9353e0b2e8fe102b88b

XM
9 ⊕ X ′M

5 ced6ce9ba1604f0b4fa84ad6f4af9817
XS

10 ⊕ X ′S
6 fff8ff04a1604f0b4fa84ad6f4af9817 2−26

XA
10 ⊕ X ′A

6 f3f4f364a1604f0b4fa84ad6f4af9817
XR

10 ⊕ X ′R
6 f3f4f364604f0ba14ad64fa817f4af98

XM
10 ⊕ X ′M

6 00000000faff9b463e0b8c3d0a6d0f8e
XS

11 ⊕ X ′S
7 00000000faff9b463e0b8c3d0a6d0f8e 1

XA
11 ⊕ X ′A

7 0c0c0c60faff9b463e0b8c3d0a6d0f8e
XR

11 ⊕ X ′R
7 0c0c0c60ff9b46fa8c3d3e0b8e0a6d0f

XM
11 ⊕ X ′M

7 009981d1e86caf9d79f3819d60a6b64f
XS

12 ⊕ X ′S
8 0082b813e86caf9d79f3819d60a6b64f 2−21

XA
12 ⊕ X ′A

8 0486bc33e86caf9d79f3819d60a6b64f
XR

12 ⊕ X ′R
8 0486bc336caf9de8819d79f34f60a6b6

XM
12 ⊕ X ′M

8 720000000b1fb040a0a822e77f636c39
XS

13 ⊕ X ′S
9 190000000b1fb040a0a822e77f636c39 2−6

XA
13 ⊕ X ′A

9 1d0404200b1fb040a0a822e77f636c39
XR

13 ⊕ X ′R
9 1d0404201fb0400b22e7a0a8397f636c

XM
13 ⊕ X ′M

9 005b0b997c321cb90de0bad468a52a1b
XS

14 ⊕ X ′S
10 004838077c321cb90de0bad468a52a1b 2−19

XA
14 ⊕ X ′A

10 044c3c277c321cb90de0bad468a52a1b
XR

14 ⊕ X ′R
10 044c3c27321cb97cbad40de01b68a52a

XM
14 ⊕ X ′M

10 ff000000ae7be7ce745b6bfeb2cca1a1
XS

15 ⊕ X ′S
11 aa000000ae7be7ce745b6bfeb2cca1a1 2−7

XA
15 ⊕ X ′A

11 ae040420ae7be7ce745b6bfeb2cca1a1
XR

15 ⊕ X ′R
11 ae0404207be7ceae6bfe745ba1b2cca1

XM
15 ⊕ X ′M

11 0076f953447ad32bfbc96dc0a06a35cc
XS

16 ⊕ X ′S
12 000b84ed447ad32bfbc96dc0a06a35cc 2−15.83

XA
16 ⊕ X ′A

12 1c17980d447ad32bfbc96dc0a06a35cc
XR

16 ⊕ X ′R
12 1c17980d7ad32b446dc0fbc9cca06a35

Δout = XM
16 ⊕ X ′M

12 1720c72a9351b2f0f3a4e09fb071b7f0
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Abstract. In this paper, we present advanced meet-in-the-middle
(MITM) attacks against the lightweight block cipher LED-64, improving
the best known attacks on several step-reduced variants of the cipher
in both single-key and related-key models. In particular, we present a
known-plaintext attack on 2-step LED-64 with complexity of 248 and
a related-key attack on 3-step LED-64 with complexity of 249. In both
cases, the previously known attacks have complexity of 260, i.e., only 16
times faster than exhaustive key search.

While our attacks are applied to the specific scheme of LED-64, they
contain several general methodological contributions: First, we present
the linear key sieve technique, which allows to exploit linear dependencies
between key bits to obtain filtering conditions in MITM attacks on block
ciphers. While similar ideas have been previously used in the domain of
hash functions, this is the first time that such a technique is applied
in block cipher cryptanalysis. As a second contribution, we demonstrate
for the first time that a splice-and-cut attack (which so far seemed to
be an inherently chosen-plaintext technique) can be used in the known-
plaintext model, with data complexity which is significantly below the
code-book size. Finally, we extend the differential MITM attack on AES-
based designs, and apply it independently in two stages from both sides
of the cipher, while using the linear key sieve and other enhancements.

Keywords: Cryptanalysis · LED · AES · Even-Mansour · Meet-in-the-
middle attack · Splice-and-cut · Known plaintext splice-and-cut

1 Introduction

Meet-in-the-middle (MITM) attacks on block ciphers were first introduced more
than 30 years ago [18]. A block cipher is vulnerable to such attacks if it is possible
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to independently compute a variable of its inner state from the encryption and
decryption sides without having to guess the full key. The value of this inner vari-
able (or variables) is used to efficiently sieve the key suggestions obtained from
both sides and mount an efficient attack. This motivated block cipher designers
to incorporate relatively complex key schedule algorithms into the design, thus
assuring very quick diffusion of the full key into the state and making the cipher
resistant to MITM attacks. On the other hand, complex key schedule algorithms
are difficult to implement in resource-constrained environments (such as RFID
tags and wireless sensors). Thus, in recent years, with the rise of lightweight cryp-
tography, designers have proposed many schemes with simplified key schedule
algorithms. At the extreme end of the scale lie block ciphers such as LED-64 [13],
Zorro [11] and PRINCE [4] which have no key schedule at all, and simply XOR
the key to the internal state of the cipher several times during the encryption
process.

Naturally, the tendency to simplify the key schedule of block ciphers was
accompanied by the development of interesting new techniques in MITM attacks
in order to break these schemes. One of the most notable techniques is splice-and-
cut [1,20], initially applied to hash functions, but quickly shown to be applicable
to block ciphers as well. Splice-and-cut attacks are adaptations of Merkle and
Hellman’s attack on 2K-3DES [18] to single encryption. The main idea is to
obtain the encryptions of several chosen plaintexts in order to view the first
and the last rounds of the cryptosystem as consecutive rounds. As a result, the
adversary can split the cipher into two parts in an unconventional way, and
mount an efficient MITM attack in cases where such an attack seems difficult
otherwise.

Another important technique used in several MITM attacks exploits the abil-
ity to independently and efficiently compute linear combinations of variables of
the inner state (rather than the actual variables) of the cipher from the encryp-
tion and decryption sides. The MITM attack is then applied through a linear
layer of the block cipher, in the same way as in a number of attacks on SHA-1,
SHA-2 and AES-based designs, e.g., [2,5,14,19]. This technique is often referred
to as indirect partial matching; it also corresponds to the linear case of the
sieve-in-the-middle method, described in [6].

In this paper, we also exploit some additional filtering conditions derived
from the linear dependencies in the key suggestions that are computed from
both sides of the MITM attack. Similar ideas where previously used in MITM
attacks against SHA-1 in [2,15] (which exploited the linear message schedule in
the hash function to obtain filtering conditions). However, this is the first time
that the technique is used in the domain of block ciphers, and we call it a linear
key sieve.

Although we do not expect such linear dependencies to exist in block ciphers
with complex non-linear key schedules, they are much more likely to occur in
lightweight designs with simple key schedules. We apply the linear key sieve
technique to LED-64 [13], and use it to improve some of the best previously
known attacks on step-reduced variants of this block cipher in both the single-
key and related-key models.
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The lightweight block cipher LED was presented at CHES 2011 [13], and due
to its elegant AES-based design, it has been the target of significant cryptanalytic
effort in the past few years. In the single-key chosen plaintext model, the best
previously known attack on 2 steps of LED-64 (reduced from the full 8) was
presented in [14], and we reduce its time complexity from 256 to 248. Both the
previous attack and our new attack apply the splice-and-cut technique in order
to mount a MITM attack on the cipher. The main element that enables us to
improve the previous attack of [14] is the linear key sieve, which we use in order
to filter the key suggestions obtained during the attack in a more efficient way.

In addition to the chosen plaintext attack, we describe a known plaintext
attack on 2-step LED-64 which improves both the time and memory complexities
of the previous best attack1 (presented at Asiacrypt 2013 [8]) from 260 to 248.
The main novelty of this attack is that it uses, for the first time, the splice-
and-cut technique (which seems to require chosen messages in an inherent way2)
in the known plaintext model. Once again, in this attack we use the linear key
sieve technique, and it enables our known plaintext attack to maintain the same
running time as our chosen plaintext attack.

Finally, in the stronger related-key model, we analyze 3-step LED-64, on
which the best previously known attack3 used a classical differential method [17].
In this model, we extend the differential MITM attack4 on AES-based designs
of [5], and apply it in two independent stages from both sides of the cipher. We
use this technique, it in addition to the linear key sieve, in order to improve the
previous attack of [17] in all the complexity parameters of time/memory/data
from 260 to 249. We summarize and compare our results in Table 1.

The paper is organized as follows: in Sect. 2, we briefly describe LED-64, and
in Sect. 3, we describe the notations and conventions that are used in this paper.
Our new chosen plaintext, known plaintext and related-key attacks are described
in Sects. 4, 5 and 6, respectively. Finally, we conclude in Sect. 7.

2 Description of LED-64

LED [13] is a 64-bit block cipher built using several public permutations, inter-
leaved with round-key additions over GF (2) (i.e., XOR operations).

This construction is generally known as iterated Even-Mansour (see Fig. 1),
which generalizes the original one-round construction [10]. In the case of LED,
1 We also mention the attack on 3-step LED-64 given in [8]. However, despite its

theoretical significance, the attack is non-practical with respect to the memory com-
plexity (which is 260) and it is only about 16 times faster than exhaustive search.

2 As explicitly required in the first generic application of the splice-and-cut technique
to block ciphers [22], and in subsequent splice-and-cut attacks on concrete block
ciphers such as in [14].

3 We also mention the related-key attack on 4-step LED-64 given in [17]. However,
despite its theoretic interest, it is very marginal with respect to the time, memory
and data complexities, which are all about 263.

4 Differential MITM is a classical technique used, e.g., in [9], and was recently formal-
ized in [15].
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Table 1. Attacks of step-reduced LED-64

Reference Model Steps Time Data Memory

[17] Single-key 2 260 260 CP 260

[14] Single-key 2 256 28 CP 28

Section 4.2 Single-key 2 248 216 CP 217

Section 5 Single-key 2 248 248 KP 248

[8] Single-key 3 260.2 249 KP 260

[17] Related-Key 3 260 260 CP 260

Section 6.2 Related-Key 3 249 249 CP 249

[17] Related-Key 4 263 263 CP 263

The data complexity is given in chosen plaintexts (CP),
or in known plaintexts (KP).

the public permutations are called steps, and each step is composed of 4 rounds.
A round of LED uses an AES-like design, where given a 64-bit input X, it is
treated as a concatenation of 16 four-bit nibbles X[0]‖X[1]‖ . . . ‖X[15], which
are (conceptually) arranged in a 4 × 4 array:

X[0] X[1] X[2] X[3]

X[4] X[5] X[6] X[7]

X[8] X[9] X[10] X[11]

X[12] X[13] X[14] X[15]

The round function uses 4 AES-like mappings AddConstants (AC), SubCells
(SC), ShiftRows (SR), and MixColumnsSerial (MCS). The structural proper-
ties of these mappings (given below) are similar to those of the AES mappings
AddRoundKey, SubBytes, ShiftRows and MixColumns, respectively, and these
are the only properties which are exploited by our attacks. For the complete
implementation details of the LED mappings, refer to [13].

1. AddConstants adds (over GF(2)) a round-dependent constant to each cell of
the first two columns.

2. SubCells applies a 4-bit Sbox to every cell of the internal state.
3. ShiftRows rotates each cell located in row i by i positions to the left.
4. MixColumnsSerial independently applies an MDS (Maximum Distance Sep-

arable) matrix over GF (24) to each column.

LED has two main variants, LED-64 and LED-128, which differ according to the
key size. In this paper, we are mainly interested in the 64-bit version, which uses
32 rounds (or 8 steps). The key schedule of LED-64 simply adds the 64-bit key
K before rounds 4i + 1 for i = 0, 1, . . . , 7, and again after the final round.
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P
⊕

F1

⊕
F2

⊕
Fi

⊕
Fr

⊕
C

K1 K2 K3 Ki+1 Kr+1

Fig. 1. Iterated Even-Mansour

3 Notations and Conventions

Notations. We denote by Rr the public function of round r of LED-64 (without
the key addition), i.e., given a 64-bit state X, Rr(X) � MCS(SR(SC(AC(X))).
We denote by Fi the public function of step i, i.e., given a 64-bit state X, Fi(X) �
R4i+4(R4i+3(R4i+2(R4i+1(X)))). The functions R−1

r and F−1
i are defined as the

inverses of Rr and Fi, respectively.
Given a plaintext-ciphertext pair (P,C), we denote the state after r encryp-

tion rounds by Xr (e.g., X0 = P and X1 is the state after one round of
LED-64). In order to simplify our notation, we define X̂4i = X4i ⊕ K, and
so Fi(X̂4i) = X4(i+1). In some of our attacks, in addition to obtaining plaintext-
ciphertext pairs, we independently evaluate the public step function Fi (for some
i) on some input states Ŷ4i, and we define Fi(Ŷ4i) = Y4(i+1) (i.e., Ŷ4i = Y4i⊕Ki).

We denote the j’th column of Xi by Xi,|j|, i.e., Xi,|1| is composed of nib-
bles {1, 5, 9, 13}. Similarly, we denote by Xi,|j,l| columns j and l of Xi. We define
two more column-related sets: the first is the diagonal Xi,/j/ which is composed
of the nibbles in Xi corresponding to the places after the ShiftRows operation
on column j, e.g., Xi,/1/ is composed of nibbles {1,4,11,13}. The second set
is inverse diagonal Xi,\j\ which is composed of the nibbles in the positions of
column j after having applied the inverse ShiftRows operation (see Fig. 2).

Conventions. Throughout this paper, we use the standard conventions and
calculate the time complexity of our attacks in terms of evaluations of the full
cipher, while calculating their memory complexity in terms of 64-bit words (since
the block size of LED-64 is 64 bits). Some of the attacks presented in this paper
involve basic linear algebra algorithm (such as solving a system of linear equa-
tions with a few dozen variables5 over GF (2)). Since our attacks execute these

SR SR

X|1|X\1\ X/1/

Fig. 2. An inverse diagonal, a column and a diagonal

5 In order to reduce the O(n3) bit operations required to solve a system of n linear
equations Ax = b in the online phase of the attack, we compute A−1 offline. Given the
vector b in the online phase, we simply compute x = A−1b in O(n2) bit operations.



Improved Linear Sieving Techniques 395

basic linear algebra algorithms no more than a few times per evaluation of the
full cipher, we can ignore them in our time complexity analysis.

4 The Linear Key Sieve Technique – A Chosen Plaintext
Attack on 2-Step LED-64

In this section, we introduce the linear key sieve technique, and apply it (com-
bined with splice-and-cut) to 2-step LED-64. Our attack improves the time com-
plexity of the previously best known attack on 2-step LED-64 [14] (which is based
on the techniques of [19]) from 256 to 248.

To simplify the description of the technique, before presenting the full 2-step
attack, we introduce the linear key sieve in a simple example of a basic MITM
attack on 1-step LED-64.

4.1 A Meet-in-the-Middle Attack on 1-step LED-64

We describe a basic MITM attack on 4-round (1-step) LED-64, using a single
known plaintext-ciphertext pair (P = X0, C = X̂4). The attack is based on a
few simple and well-known observations on AES-based constructions:

1. The order of the linear operations ARK and MCS is interchangeable, i.e.,
MCS−1(ARK−1(C)) = ARK ′−1(MCS−1(C)), where ARK ′ adds the key
K ′ � MCS−1(K) to the state. As in many attacks on AES-based construc-
tions, we can thus apply MCS−1 to the ciphertext C, and “peel-off” the
last-round MCS operation.

2. Given an inverse diagonal Xr,\i\ (at the beginning of any round r), we can
fully compute the diagonal SR(SC(AC(Rr(Xr))))/i/ = MCS−1(Xr+2)/i/
after the first 7 operations. Similarly, given a diagonal MCS−1(Xr+2)/i/, we
can fully compute the inverse diagonal Xr,\i\ after the 7 inverse operations.
Such a permutation, mapping 4 nibbles to 4 nibbles of the state through
a “round and a half” is called a “Super-Sbox” of LED (a term which was
originally defined for AES [7]).

3. Given knowledge of any b1 bits of the state X, we can compute the values of
b1 linear combinations (over GF (2)) on the bits of the state MCS(X).

Observation 2 implies that, given any two inverse diagonals X̂0,\i,j\, we can
compute 32 bits of MCS−1(X2)/i,j/, namely the two diagonals of indices i and j.
Combined with Observation 3, they correspond to 32 linear combinations of the
bits of the state X2, spanning a subspace of dimension 32. Similarly, from the
decryption side, the knowledge of three diagonals of MCS−1(ARK−1(C))/l,m,n/

gives us the knowledge of 48 bits of X2, namely, the corresponding inverse diag-
onals X2,\l,m,n\, as shown in Fig. 3.

Since the full state contains 64 bits, the intersection of these two subspaces
is a linear subspace of dimension6 32 + 48 − 64 = 16. The basis of this subspace
6 In general, the dimension of the intersection can be bigger. However, in AES-based

constructions (where the MixColumns operation is implemented using an MDS
matrix), the dimension of the intersection is exactly 32 + 48 − 64 = 16.
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SR MCS

K

K ′ = MCS−1(K)

P (= X0) X̂0

C (= X̂4)

Match on the linear subspace A

Fig. 3. A meet-in-the-middle attack on 1-Step LED-64

gives rise to 16 linearly independent combinations in the bits of the state X2

(denoted by A, as shown in Fig. 3) whose values are computable independently
from the known 2 inverse diagonals (from the encryption side), and from the
known 3 diagonals (from the decryption side).

The computation of the |A| = 16 joint linear combinations, requires the
knowledge of 16 · 2 = 32 bits of K from one side and 16 · 3 = 48 bits of K ′ =
MCS−1(K) from the other side. For the correct guess of these bits, the values
of the joint linear combintations in A match with probability 1, whereas for an
arbitrary incorrect suggestion, based on standard randomness assumptions, the
values of the linear combinations in A match with probability 2−|A| = 2−16.
Therefore, incorrect suggestions in the MITM attack are discarded (as in the
related attacks of [5,14,19]).

In standard MITM attacks, if one treats the keys K and K ′ as independent,
there are 232+48 = 280 suggestions for the key from both sides. Given the 16 bits
of the sieve on the state, we expect about 264 suggestions to remain, which we
need to further analyze. Thus, in its current form, this attack is not faster than
exhaustive search.

The Linear Key Sieve. A possible solution to the problem of insufficient
filtering is to use an additional plaintext-ciphertext pair, which will offer an
additional 16-bit filtering condition. However, we now introduce the linear key
sieve which provides these 16 bit-conditions with no additional data, by exploit-
ing the linear dependency of K and K ′. This observation (exploited by [2] in
the domain of hash functions, but which [14] did not use) is at the basis of our
improved attack on 2-step LED-64 (described in the next section), and all the
other attacks presented in the paper.

Recall that the MITM attack requires 32 bits of K and 48 bits of K ′ =
MCS−1(K), which are linear combinations in the bits of K. Just as the state
subspaces intersect (and allow us to obtain the sieve on the state), so do the two
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linear subspaces spanned by the linear combinations in the bits of K and K ′ that
we guess. The intersection is a linear subspace of dimension 32 + 48 − 64 = 16,
giving rise to 16 linearly independent combinations in the bits of K (denoted
by B3), whose values are computable independently from both sides. The linear
combinations in B3 are used in order to filter our wrong key guesses (for the
right key they agree with probability 1, and for wrong key guesses they agree
with probability 2−|B3|), and thus we call this set of linear combinations a linear
key sieve.

Let B1 be additional 16 linear combinations of K needed for the attack7 (i.e.,
B1 and B3 determine the partial encryption of two inverse diagonals), and let
B2 be additional 32 linear combinations of K ′ needed for the attack (i.e., B2

and B3 determine the partial decryption of three diagonals). Our MITM attack
is composed of an outer loop, iterating over the linear subspace spanned by
B3, where in each iteration, we independently iterate over the linear subspaces
spanned by B1 and B2.8 Thus, we force the key suggestions obtained from both
sides of the attack to agree on B3 (rather than randomly achieving agreement).
The resultant attack (described for two arbitrarily columns i, j in the forward
direction and three arbitrary columns l,m, n in the backward direction) is as
follows:

1. For each value of the 16 linear combinations of B3:
(a) For each value of the 16 linear combinations of B1:

i. Compute K\i,j\, and use it to compute X̂0,\i,j\.
ii. Compute the values of the 16 linear combinations of A, and store them

in a sorted list L, next to the value of the 16 linear combinations of B1.
(b) For each value of the 32 linear combinations of B2:

i. Compute K ′
/l,m,n/, and use it to compute MCS−1(ARK−1(C))/l,m,n/.

ii. Compute the values of the 16 linear combinations of A, and search
for matches in the list L.

iii. For each match:
A. Obtain the value of the 16 linear combinations of B1.
B. Compute K using linear algebra, given the values of B1, B2 and B3.
C. Test K using a trial encryption, and if it succeeds, return the key.

The list L contains 216 values, and thus we expect a single match for each
value of the 16 linear combinations of A in Step 1.(b).ii. This implies that the
expected time complexity of each iteration of Step 1 is about 232, and thus
the expected time complexity of the whole attack is 248, which is faster than
exhaustive search by a factor of 216. The memory complexity of the attack is
about 216, which is required for storing the list L. Note that the memory needed
for storing L in each iteration of Step 1 can be reused.

7 There are many options for the basis B1, and we choose one arbitrarily.
8 We note that the approach of taking out shared bits to an outer loop is a very

common practice in saving memory. The main improvement in this attack compared
to [14] is the fact that we take out shared linear combinations.
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4.2 The Improved Chosen Plaintext Single-Key Attack on 2-Step
LED-64

Our attack on 2-Step LED-64 follows the same general structure as the previous
one of [14,19]. We use the splice-and-cut technique on 4 rounds (1 step) of the
cipher. The advantage of our attack comes from the linear key sieve (missing
from [14]), i.e., using the linear relations between K and K ′ = MCS−1(K).

In order to apply splice-and-cut to 2-step LED-64, we (as in the previous
attack [14]) partition the indices of 64-bit state into two lexicographically ordered
sets, S1 and S2. The attack requires the encryptions of 2|S1| plaintexts P 1, P 2, . . .
in which all the bits of S2 are fixed to zero,9 and the bits of S1 range over all the
possible values. Independently, we evaluate the first 4 key-less rounds of LED-64
(i.e., F1) on 2|S2| inputs Ŷ 1

0 , Ŷ 2
0 , . . . in which the bits of S1 are fixed to zero, and

the bits of S2 range over all the possible values, and obtain the corresponding
outputs Y 1

4 , Y 2
4 , . . ..

The aim of the splice-and-cut technique is to find a plaintext P i = Xi
0 and

an internal state Ŷ j
0 such that X̂i

0 = Xi
0 ⊕ K = Ŷ j

0 . This occurs if and only if
P i and K “agree” on the bits of S1 and Ŷ j

0 and K “agree” on the bits of S2, or
formally P i

|S1
= K|S1 and Ŷ j

0|S2
= K|S2 (where W|S denotes the |S|-bit value of

the word W on the indices of the ordered set S.). In other words, each plaintext
P i is associated with a potential value of K|S1 , and each state Ŷ j

0 is associated
with a potential value of K|S2 . For each value of K, there is only one such correct
pair, and we denote its plaintext by P , and its evaluated state by Ŷ0 = P ⊕ K.
Thus, finding the pair (i, j) is equivalent to recovering the key K.

Consider the correct pair (P, Ŷ0). Applying F1 to Ŷ0 gives Y4 = X4. Thus, if
we consider all F1(Ŷ

j
0 ) = Y j

4 values, one of them is indeed X4. As a result, given
the ciphertext C that corresponds to P and X4, the splice-and-cut technique
reduces the problem to attacking 4 rounds of LED-64. Hence, as shown in Fig. 4,
we choose the bits of S2 to be the 48 bits of 3 inverse diagonals (and thus S1

contains the 16 bits of the remaining inverse diagonal). As a result, we can take
each Y j

4 value (associated with a suggestion for 3 inverse diagonals of K) and
continue its partial encryption (as per Observation 2), resulting in the knowledge
of three diagonals before the MCS operation of round 6, i.e., three diagonals of
MCS−1(Y6). This knowledge gives rise to suggestions for the values of 48 linear
combinations of Y6. Independently, we try all possible values of 32 bits of two

P i

S1

⊕

Y j

S2K

0 0 0
0 0 0

0 00
0 0 0

0
0

0
0

Fig. 4. The sets S1 and S2

9 The technique can be applied in a similar way for any fixed value of the bits of S2.
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Fig. 5. Our improved chosen plaintext attack on 2-step LED-64

diagonals of K ′, and partially decrypt all the ciphertexts to obtain suggestions
of 32 bits of X6.

Now, we can apply the 4-round attack (as Y6 = X6), obtaining a sieve of the
state of 48 + 32 − 64 = 16 linear combinations on the state bits (each indepen-
dently computed from a different side), denoted by A. To obtain more filtering
conditions, we again use the linear key sieve: each ciphertext is associated with
16 bits of K, and thus each suggestion for the 32 bits of X6 is associated with
the values of 16 + 32 = 48 linear combinations on the bits of K. Since each
suggestions for Y6 depends on 48 bits of K, we have 48 + 48 − 64 = 32 linear
combinations which we use as a linear key sieve (denoted by B3). Similarly to
our basic MITM attack, we complement the 32 linear combinations of B3 to
a basis of the subspace spanned by the 48 bits of S2 using 16 additional linear
combinations, denoted by B2. Similarly, we complement B3 to a basis of the
48-dimensional subspace spanned by the 16 bits of S1 and the 32 bits of the 2
diagonals of K ′, using 16 additional linear combinations, denoted by B1.

The attack proceeds as follows (see Fig. 5):

1. Request the encryptions of the 216 plaintexts P i such that P i
\0,1,2\ = 0, and

store all plaintext-ciphertext pairs.
2. For each value of the 32 linear combinations of B3:

(a) For each value of the 16 linear combinations of B2:
i. Using the values of B2 and B3, compute a suggestion for K\0,1,2\.
ii. Let Ŷ j

0 be the state such that Y j
0,\3\ = 0 and Y j

0,\0,1,2\ = K\0,1,2\.

iii. Compute F1(Ŷ
j
0 ) = Y j

4 , and use the partial knowledge of K\0,1,2\ to
obtain a suggestion for the values of the 16 linear combinations of A.
Store the suggestion for the values of A in a sorted list L, next to the
value of B2.

(b) For each value of the 16 linear combinations of B1:
i. Using the values of B1 and B3, compute a suggestion for K\3\ and

K ′
/0,1/.

ii. Let (P i, Ci) be the plaintext-ciphertext pair such that P i
\3\ = K\3\

(recall that P i
\0,1,2\ = 0).

iii. Compute a suggestion for the values of the 16 linear combinations of
A using Ci and K ′

/0,1/.
iv. Search for the suggestion for the values of A in the list L.
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v. For each match, obtain the value of B2, use it to obtain a suggestion
for the key K and test it using a trial encryption. If the trial succeeds,
return the key.

The data complexity of the attack is 216 chosen plaintexts. The memory
complexity of the attack is about 217, required in order to store the plaintext-
ciphertext pairs, and in order to store the list L. Since L contains 216 values
per iteration of Step 2.(a), we expect one match in Step 2.(b).iv, and a total of
216 matches per iteration of Step 2. Thus, the time complexity of an iteration of
Step 2 is equivalent to about 216 2-step LED-64 encryptions, and the total time
complexity of the attack is about 248 encryptions.

5 Known-Plaintext Splice-and-Cut Attack – Application
to 2-Step LED-64

In this section, we describe the first splice-and-cut attack (which was believed
to be inherently a chosen message technique) in the known plaintext model. In
particular, we improve the time and memory complexities of the best attack on
2-step LED-64 [8] in the known plaintext model from 260 to 248. In fact, due to
the efficient sieving techniques, this attack has the same time complexity as our
chosen plaintext attack, presented in the previous section.

The classical chosen-plaintext splice-and-cut attack considers two sets: a set
of plaintexts P i of size 2m and a set of states Ŷ j

0 of size 2n−m such that the set
P i ⊕ Ŷ j

0 covers Fn
2 , i.e., there exists a unique pair (i, j) such that P i ⊕ Ŷ j

0 = K.
However, the coverage of Fn

2 by P i ⊕ Ŷ j
0 cannot be guaranteed with probability

1 if the set of 2m plaintexts (such that 1 � 2m � 2n) is composed of arbitrary
elements. Consequently, in our known-plaintext variant, the existence of some
pair (i, j) such that P i ⊕ Ŷ j

0 = K is now guaranteed with a good probability by
the birthday paradox (assuming that the plaintexts are uniformly distributed).10

The main difficulty in applying our splice-and-cut technique in the known
plaintext model, is that P|S2 is not fixed, and thus we “lose” the association of
an input Ŷ j

0 to a potential value of K|S2 . Consequently, for each Ŷ j
0 , we need to

guess additional key bits in order to obtain the necessary filtering conditions on
Y6. Since an input Ŷ j

0 is now associated with many key guesses, we are forced to
evaluate fewer such inputs in order to obtain an efficient attack. Indeed, while in
the chosen plaintext attack, we evaluated 248 such inputs, here we evaluate only
216 inputs, and for each one we guess the 32 bits of K\0,1\ and obtain a suggestion
for the values of 32 linear combinations on Y6. According to the birthday paradox,
we need 248 known plaintexts-ciphertext pairs (P i, Ci) (i ∈ {1, 2, . . . , 248}) to
obtain with good probability a pair (i, j), such that P i ⊕ Ŷ j

0 = K.
The values Ŷ 1

0 , Ŷ 2
0 , . . . which we evaluate are defined by the 16-dimensional

linear subspace {Ŷ j
0 |MCS−1(Ŷ j

0 )/1,2,3/ = 0}. Thus, a plaintext P i is implicitly

10 We note that in case that the plaintexts are not uniformly distributed, we can
apply a similar attack assuming that the ciphertexts are uniformly distributed (by
exchanging the roles of encryption and decryption).
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associated with a partial key value P i
/1,2,3/ = K ′

/1,2,3/. This implies that we
can partially decrypt Ci in order to obtain the values of 48 bits of Xi

6 with-
out additional key guesses. Note that this is not the traditional way in which
splice-and-cut is applied, as all previous attacks (including our previous chosen
plaintext attack) directly partitioned the bits of the state into two groups S1 and
S2. Instead, in this attack we work with linear subspaces constructed to exploit
the linear dependency between K and K ′ in order to be able to partially decrypt
Ci without additional key guesses (whereas our previous chosen plaintext attack
did not directly exploit this dependency).

As in the chosen plaintext attack, we have a sieve on the state of 32 + 48 −
64 = 16 linear combinations on the bits of X6 = Y6 which are independently
computable from each side, and we denote it by A1. Each value of the linear
combinations of A1, computed from an input Ŷ j

0 , is associated with a suggestion
for K\0,1\, and as a result, we can also compute Y j

0,\0,1\ = Ŷ j
0,\0,1\⊕K\0,1\. Since

P i = Xi
0, the 32-bit value of Y j

0,\0,1\ can be directly matched with each plaintext,

and we denote this sieve by A2. We note that since MCS−1(Ŷ j
0 )/1,2,3/ = 0, then

Y j (and Y j
0,\0,1\), can only attain 216 values, and thus effectively, the 32 bits of

A2 give only 16 bits of filtering.
From the decryption side, each value computed from (P i, Ci) is associated

with a suggestion for K ′
/1,2,3/. Thus, we can identify 32 + 48 − 64 = 16 linear

combinations (i.e., a linear key sieve) which are independently computable from
each side, and we denote this sieve by B. In total, we have 48 bits of filtering, as
A1 gives us 16 bits, A2 (effectively) gives us 16 bits of filtering, and B gives us
additional 16 bits.

The attack proceeds as follows:

1. For each of the 216 possible values of Ŷ j
0 such that MCS−1(Ŷ j

0 )/1,2,3/ = 0:
(a) Compute F1(Ŷ

j
0 ) = Y j

4

(b) For each of the 232 values of K\0,1\:
i. Compute the values of the 16 linear combinations of A1, the values

of the bits of A2, and the values of the 16 linear combinations of B.
Store these values in a sorted list L, next to the values of K\0,1\.

2. For each plaintext-ciphertext pair (P i, Ci):
(a) Assume that K ′

/1,2,3/ = MCS−1(P i)/1,2,3/, compute the values of A1, A2

and B, and search the list L for matches.
(b) For each match, obtain K\0,1\, compute a suggestion for the full key K,

and test it using a trial encryption. If the trial succeeds return the key.

Since we evaluate 216 inputs Ŷ j
0 , we expect that after obtaining the encryp-

tions of about 248 arbitrary plaintexts, we will have a pair (P i, Ŷ j
0 ) satisfying

P i⊕K = Ŷ j
0 , which will enable us to recover the correct key.11 Thus, the expected

11 We note that unlike our chosen plaintext attack (that succeeds in finding the key
with probability 1), our known plaintext attack succeeds with probability of about
0.63, which is the probability suggested by the birthday paradox (given 248 known
plaintext-ciphertext pairs).
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data complexity of the attack is 248 known plaintexts. Since the size of L is 248,
and (effectively) we have 48 bits of filtering conditions, we expect one match for
each plaintext in Step 2.(a), and thus the time and memory complexities of the
attack are 248 as well.

Data/Memory/Time Tradeoffs. The attack can be applied by evaluating
Ŷ 1
0 , Ŷ 2

0 , . . . in a linear subspace {Ŷ j
0 |MCS−1(Ŷ j

0 )/1,2,3/ = const} for any value of
const, with theappropriate changes to thealgorithm.This suggestsdata/memory/
time tradeoffs for the attack, in which we first obtain the plaintext-ciphertext
pairs and store them in memory (thus exchanging the order of some computa-
tions performed in Steps 1 and 2 above). Then, we perform the computations of
Step 1 (previously used in order to build the list L) “on-the-fly”, and search the
stored data for matches according to the filtering conditions.

By using this revised algorithm, we can reduce the amount of known plain-
texts by a factor of 2, repeating the attack once with const = 0, and once for
an arbitrary value const �= 0. In this case, the time complexity of the attack is
increased by a factor of 2, and its memory complexity is reduced by a factor of
2. Similarly, for any d ≤ 16, given 248−d known plaintexts, the time complexity
of the attack increases to 248+d, and its memory complexity decreases to 248−d.
In other words, we can attack the scheme (with a similar success rate) given
D ≤ 248 known plaintexts and time complexity T such that DT = 296 (with
memory M = D).

6 Enhanced Differential Meet-in-the-Middle –
A Related-Key Attack on 3-Step LED

In this section, we describe a related-key attack on 3-step LED-64 using two
related keys. The attack improves the previously best known attack on this
scheme, described in [17], in all the complexities parameters of time/memory/
data from 260 to 249. The 3-step attack uses the linear key sieve technique on
top of a rather involved differential MITM attack. Before describing the full
attack, we describe a simple differential MITM attack on 1-step LED-64 in the
single-key model, which serves as background to our 3-step related-key attack.
We note that in the case of 1-step LED-64, our simple attack is closely related
to the attack on Pelican-MAC described in [5].

6.1 A Differential Single-Key Meet-in-the-Middle Attack on 1-Step
LED-64

The simple differential MITM attack on 4-round (1-step) LED-64 requires 2
chosen plaintexts, and its memory and time complexities are slightly more than
216. In order to obtain an efficient attack, we compute and use the difference
distribution tables for the LED Super-Sboxes (spanning the third round and part
of the fourth round), using similar technique to those published in [7,12,16].
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Namely, given an entry [δin, δout], specifying a 16-bit input/output difference
to the Super-Sbox, the table stores the actual pairs of values that conform to
this entry. A single full table can be easily computed during preprocessing in
232 simple operations, and it requires about 232 words of memory. However, in
this simple attack, the output difference δout to each Super-Sbox is fixed by
the ciphertexts, and thus we only need a single column in each table. Such a
column is computed in the online phase (after obtaining the encryptions of the
plaintexts) in 216 time, using 216 storage.

The details of the attack are given below.

1. Obtain the encryptions of P 1 and P 2, chosen such that (P 1 ⊕ P 2)\0,1,2\ = 0.
2. Denote Δr � X1

r ⊕ X2
r , i.e., Δr is the 64-bit state difference after round r.

3. Compute 3 columns in the difference distribution tables of the LED Super-
Sboxes, corresponding to the output differences specified by the three diago-
nals MCS−1(Δ4)/1,2,3/.

4. For each value of K ′
/0/:

(a) Use C1 to compute X1
2,\0\ and C2 to compute X2

2,\0\, and calculate
Δ2,\0\.

(b) Given Δ2,\0\, and the fact that MCS−1(Δ2)/0,1,2/ = 0, calculate the full
Δ2 by solving a system of linear equations.

(c) Given the input difference Δ2 and MCS−1(Δ4), use the Super-Sbox
(partial) difference distribution tables to obtain the possible values for
ARK ′(MCS−1(C1))/1,2,3/, and use these values to obtain suggestions
for the full K ′, thus obtaining suggestions for K.

(d) Test each suggestion for K using a trial encryption, and if it succeeds
return the key.

Since we expect, on average, a single suggestion for K in Step 3.(c), the time
complexity of Step 3 is about 216, which is the time complexity of the full attack.
The memory complexity is about 216, required in order to store the columns of
the difference distribution tables for the Super-Sboxes.

We note that this attack is faster than the attack of Sect. 4.1 since the collision
on the diagonals of P allows us to obtain a suggestion for the full key after
guessing only 16 key bits (enabling us to compute the full state difference Δ2).
This observation will be further exploited in the next section.

6.2 The Improved Related-Key Attack on 3-Step LED-64

In this section, we describe the details of our related-key attack on 12-round
(3-step) LED-64 which assumes that we can obtain the encryptions of plaintexts
with keys K1 and K2, such that K1 ⊕ K2 = Δ is known (in fact, as explained
below, we only need the ability to partially choose the value of Δ). During the
online phase of the attack, we request the encryptions of 248 chosen plaintexts
encrypted with K1 and 248 (different) chosen plaintexts encrypted with K2. The
time and memory complexities of the attack are about 249.
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Our attack uses the basic framework of [17] for related-key attacks on iterated
Even-Mansour schemes. Namely, we ask for the encryptions of pairs of plaintexts
P i,1 and P i,2 = P i,1 ⊕ Δ, encrypted with K1 and K2 = K1 ⊕ Δ, respectively.
Considering the encryption process of these two plaintexts, the input difference
to the public F1 function is zero, which implies that the output difference of F1

is zero, and after the second key addition, the input difference to F2 is Δ̂4 = Δ
(namely, X̂i,1

4 ⊕ X̂i,2
4 = Δ̂4 = Δ). At this point, our algorithm diverges from

[17] (which assumes that the function F2 has some high-probability differential
characteristic).

Our attack is based on the 4-round differential MITM attack of the previous
section. Here, we apply a similar attack to F3 by processing plaintext pairs whose
ciphertexts collide on a diagonal (before the MCS operation). However, unlike
the 4-round attack, we do not know the input difference to the public function on
which we perform the MITM attack (F3 in this case). Thus, we preprocess F2 by
computing and storing pairs of inputs to this function with an input difference
of Δ, and we use a birthday argument to claim that one of the input pairs will
collide with a plaintext pair with high probability. However, this is insufficient, as
we were not able to find parameters for which the differential MITM algorithm
yields an efficient attack, under the constraint that we store sufficiently many
pairs of inputs to F2 (in order to obtain a collision with a processed plaintext
pair). The problem is that we need to guess too many key bits before we can
compute filtering conditions and eliminate some key guesses.

In order to reduce the number of key guesses, we again exploit collisions on
(inverse) diagonals, but this time at the input of F3. Namely, we require that the
difference at the output of F2 on some (inverse) diagonals cancels out after the
key addition. More specifically, we preprocess F2, and find 231 pairs of inputs
to this function, (Ŷ j,1

4 and Ŷ j,2
4 = Ŷ j,1

4 ⊕ Δ), such that their output difference
is equal to Δ in two inverse diagonals (i.e., (Y j,1

8 ⊕ Y j,2
8 )\0,1\ = Δ\0,1\, imply-

ing that (Ŷ j,1
8 ⊕ Ŷ j,2

8 )\0,1\ = 0). We expect that 231 such pairs indeed exist,
since there are 263 unordered input pairs to F2 with an input difference of Δ,
and based on standard randomness assumptions, about 231 of them satisfy the
32-bit condition on the output difference (a slightly smaller number will only
slightly increase the complexity of the attack). The trivial algorithm to find
these pairs is to exhaustively enumerate all the 263 input pairs, however, this is
wasteful as it requires 264 time (and our model does not allow free precompu-
tation). Instead, we use yet again a MITM approach, and devise an auxiliary
preprocessing algorithm that finds the required pairs in about 248 time. In order
to run efficiently, our algorithm requires that 48 specific bits of Δ are zero, and
thus we have to assume that we can partially choose the key difference12 Δ. The
details of this preprocessing step are specified in Appendix A.

12 The related key attack of [17] required that we can choose the full 64 bits of Δ, so
our attack is slightly more generic.
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Fig. 6. The preprocessing algorithm (depicting differences)

The full preprocessing algorithm (which calls the algorithm of Appendix A)
is given below and depicted in Fig. 6.13 In this attack, we assume that we have
computed during preprocessing the full difference distribution tables for the LED
Super-Sboxes, using about 232 simple operations and 232 memory.

1. Use the auxiliary preprocessing algorithm of Appendix A to obtain 231 pairs
(Ŷ j,1

4 , Ŷ j,2
4 = Ŷ j,1

4 ⊕ Δ), such that (Y j,1
8 ⊕ Y j,2

8 )\0,1\ = Δ\0,1\.
2. For each of the 231 pairs (Ŷ j,1

4 , Ŷ j,2
4 ):

(a) For each value of (K1)\2\:
i. Compute (K2)\2\ = (K1)\2\ ⊕ Δ\2\. Assume that Ŷ j,1

4 is encrypted
with K1 and Ŷ j,2

4 is encrypted with K2, and let Δr = Y j,1
r ⊕ Y j,2

r . Use
the LED Super-Sbox to compute MCS−1(Δ10)/2/ = MCS−1(Y j,1

10 )/2/
⊕ MCS−1(Y j,2

10 )/2/.
ii. Since MCS−1(Δ10)/0,1/ = 0 and MCS−1(Δ10)/2/ is known, we know

48 bits of MCS−1(Δ10). We now assume that Δ10,\0\ = 0, and com-
pute the full MCS−1(Δ10) using linear algebra (as MCS is a linear
operation).

iii. Use the difference distribution table for the LED Super-Sbox, and the
knowledge of Δ̂8 � Ŷ j,1

8 ⊕ Ŷ j,2
8 and MCS−1(Δ10) to compute sugges-

tions for the actual MCS−1(Y j,1
10 )/3/, MCS−1(Y j,2

10 )/3/ and (K1)\3\.
iv. We now have suggestions for 32 bits of K1, 32 bits of MCS−1(Y j,1

10 )
and 32 bits of MCS−1(Y j,2

10 ). During the online phase, we will obtain
suggestions for (specific) 48 bits of K ′

1, 48 bits of Xi,1
10 and 48 bits of

Xi,2
10 (the encryption values of some P i,1 and P i,2 after 10 rounds).

Thus, we can compute the values of a total of 48 linear combinations

13 Since the preprocessing algorithm of this attack is more involved than in the previous
attacks, we describe it separately from the online algorithm.
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to serve as filtering bits: 16 linear combinations on the bits of K1

(a linear key sieve), 16 linear combinations on Y j,1
10 and 16 linear

combinations on Y j,2
10 . We store the values of these linear combinations

in a sorted list L, next to (K1)\2,3\.

As described in Appendix A, the time complexity of Step 1 is about 248

evaluations of 1-step LED. On average, we expect a single suggestion for the
values computed in Step 2.(a).iii (using the difference distribution table of the
LED Super-Sbox). Thus, we perform only a few simple operations for each of
the 231 pairs (computed in Step 1) and the 216 possible values of (K1)\2\, imply-
ing that the total time complexity of the preprocessing algorithm is about 248

evaluations of 1-step LED. In order to slightly reduce the data complexity of
the online algorithm (at the expense of using slightly more memory), we repeat
Step 2.(a) twice for each ordered pair, exchanging the roles of Ŷ j,1

4 and Ŷ j,2
4 (i.e.,

by assuming that Ŷ j,1
4 is encrypted with K2). Thus, the time complexity of the

preprocessing algorithm is about 249 evaluations of 1-step LED, and its memory
complexity is about 249.

The online algorithm of the attack is given below (and depicted in Fig. 7)

1. For 248 arbitrary values of the plaintext P i,1:
(a) Ask for the encryption of P i,1 under the key K1, and for the encryption

of P i,2 = P i,1 ⊕ Δ under the key K2 = K1 ⊕ Δ. Let Λr � Xj,1
r ⊕ Xj,2

r .
(b) Compute C ′i,1 = MCS−1(Ci,1) and C ′i,2 = MCS−1(Ci,1). Check if

(C ′i,1 ⊕ C ′i,2)/0/ = 0, and if not, return to Step 1.
(c) For each value of (K ′

1)/1/:
i. Compute (K ′

2)/1/ = (K ′
1)/1/⊕MCS−1(Δ)/1/ and use the LED Super-

Sbox to compute Λ10,\1\ = Xi,1
10,\1\ ⊕ Xi,2

10,\1\.
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48 state bits found (by Super S-box)

Use guessed and obtained bits to access precomputed table to complete the key guess

Fig. 7. The preprocessing algorithm (depicting differences)
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ii. Assume that MCS−1(Λ10)/0,1/ = 0, and compute Λ10 (using the fact
that Λ10,\0\ = 0 and Λ10,\1\ is known).

iii. Use the difference distribution table for the LED Super-Sbox, and
the knowledge of Λ10 and (C ′j,1 ⊕ C ′j,2) to compute suggestions for
Xi,1

10,\2\, Xi,2
10,\2\ and (K ′

1)/2/, and similarly compute suggestions for

Xi,1
10,\3\, Xi,2

10,\3\ and (K ′
1)/3/.

iv. From the knowledge of 48 bits of K ′
1, 48 bits of Xi,1

10 and 48 bits of
Xi,2

10 , compute the filtering values of the 48 linear combinations, and
look for matches in the list L.

v. For each match, obtain (K1)\2,3\, compute a suggestion for K1 and
test it.

A pair ((P i,1, Ci,1), (P i,2, Ci,2)) passes the 16-bit filtering condition of
Step 1.(b) with probability 2−16, and thus we expect to process about 248−16 =
232 pairs in Step 1.(c). As we store 232 ordered input pairs of values for F2 with
an input difference of Δ, and each of the processed 232 plaintext pairs has a dif-
ference of Δ at the input to F2, we expect a collision between these two groups
of pairs. For such a collision, the assumptions made during the online and pre-
processing algorithms hold (Δ10,\0\ = 0 is assumed in preprocessing Step 2.(a).ii,
and MCS−1(Λ10)/0,1/ = 0 is assumed in online Step 1.(c).ii). Thus, this collision
will yield a match in Step 1.(c).iv, suggesting the correct value of K1.

Since we expect a single suggestion for the values computed in Step 1.(c).iii, we
perform a few simple operations for each of the 232 processed pairs in Step 1.(b)
and the 216 possible values of (K ′

1)/1/, on which we iterate in Step 1.(c). Thus,
the total time complexity of the online algorithm is about 249 evaluations of
1-step LED. Including the preprocessing time, the total time complexity of the
attack is about 249 evaluations of 2-step LED (which is a bit less than 249

evaluations of the full 3-step scheme). The data complexity of the attack is 249,
and its memory complexity is 249, required in order to store the list L.

A Single-Key Attack on a Variant of 2-Step LED with Independent
Keys. Consider a variant of 8-round LED, where the three round keys K1,
K2 and K3 are independent. We now show how to adapt the above attack to
this scheme with about the same time/memory/data complexities. We note that
this construction has a similar structure to the block cipher AES2 [3], which
is composed of two key-less AES-128 permutations such that K1 and K2 are
added before and after the first permutation and K3 is added after the second
permutation. Since our techniques only exploit the AES structure of the LED
step function, this attack can also be applied to AES2, reduced from 20 rounds
to 8 rounds (with the complexity of the attack adjusted to the 128-bit cipher).

In this attack, we select Δ in a similar way to the related-key attack above.
However, in the single-key attack we cannot inject a pair of different messages
such that they have a zero difference at the input to F1. Thus, we now preprocess
F1 (instead of F2) and find 231 pairs of inputs to this function, Ŷ j,1

0 , Ŷ j,2
0 =

Ŷ j,1
0 ⊕Δ, such that (Ŷ j,1

4 ⊕ Ŷ j,2
4 )\0,1\ = 0. Consequently, in the online algorithm,
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we request the encryptions of 248 pairs of plaintexts with an input difference of
Δ, and apply the differential MITM technique to F2.

Another difference between this attack and the previous related-key attack
on LED-64, is that now K1, K2 and K3 are independent, and thus we do not
have any filtering conditions on the key when matching the suggestions during
the MITM phase (i.e., we do not have a linear key sieve). This implies that if
we use only one pair of plaintexts, the complexity of the attack will be at least
264. In order to speed up the attack, we use the same idea used in [8] in the
attack on AES2: we choose an arbitrary non-zero difference Δ′ �= Δ, and ask for
the encryption of another plaintext P i,1 ⊕ Δ′ for each pair P i,1 and P i,1 ⊕ Δ.
Similarly, we attach another evaluation of Ŷ j,1

0 ⊕ Δ′ to each evaluated pair Ŷ j,1
0

and Ŷ j,1
0 ⊕ Δ. This allows us to obtain the required filtering values such that

the attack has similar time/memory/data complexities to the related-key attack.
The full details of the filtering technique are found in [8].

7 Conclusions

In this paper, we introduced various techniques in MITM attacks including the
linear key sieve technique, a known plaintext splice-and-cut attack, and new
techniques for differential MITM. We applied these techniques to step-reduced
LED-64 and obtained the best known results on this block cipher, both in the
single-key and related-key models. Although our techniques are mainly applied
to LED-64, we believe that they will be useful in the analysis of other cryptosys-
tems, in particular AES-based cryptosystems and lightweight block ciphers.
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A The Auxiliary Preprocessing Algorithm of the
Related-Key Attack on 3-Step LED-64

Our goal in the auxiliary preprocessing algorithm is to find (about) 231 pairs
(Ŷ j,1

4 , Ŷ j,2
4 = Ŷ j,1

4 ⊕ Δ), such that (Y j,1
8 ⊕ Y j,2

8 )\0,1\ = Δ\0,1\. In order to run in
time of about 248 evaluations of 1-step LED, we assume that Δ\0,1,2\ = 0, and
the value of Δ\3\ is arbitrary (but non-zero).

Δ (=Δ4)

AC, SC, SR,MCS

AC, SC, SR,MCS

Δ6

AC, SC, SR,MCS

AC, SC, SR

MCS−1(Δ8)

MCS

Δ8

0 0 0
0 0 0

0 00
0 0 0

0 0
00
0 0

00
216 possible diff. 232 differences

i. Find actual values using Super S-box

ii. Check that Δ4 = Δ for actual values
Difference fixed by the adversary

Value enumerated for all 248 combinations

Fig. 8. The auxilary algorithm used in preprocessing (depicting differences)

Let Δr = Y j,1
r ⊕ Y j,2

r . The difference Δ8 can obtain 232 − 1 non-zero values
(since we require that Δ8,\0,1\ = (Y j,1

8 ⊕Y j,2
8 )\0,1\ = Δ\0,1\ = 0), and in addition

MCS−1(Δ6) can obtain (at most) 216−1 non-zero values, implying that Δ6 can
obtain 216 − 1 non-zero values. The algorithm is given below.

1. For each of the possible 216 − 1 non-zero value of Δ6:
(a) For each non-zero value of Δ8 such that Δ8,\0,1\ = 0:

i. Calculate MCS−1(Δ8). Given Δ6, use the difference distribution
tables for the LED Super-Sboxes to obtain the actual values Y j,1

8 , Y j,2
8 .

ii. Compute Ŷ j,1
4 = F−1

2 (Y j,1
8 ) and Ŷ j,2

4 = F−1
2 (Y j,2

8 ), and if (Ŷ j,1
4 ⊕

Ŷ j,2
4 )\3\ = Δ\3\, store the pair.

Since we obtain an average of one value for Y j,1
8 and Y j,2

8 in Step 1.(a).i (when
considering ordered pairs), the expected time complexity of the algorithm is 248.
The condition of Step 1.(a).ii holds for about 2−16 of the pairs, and thus we
expect to return 232 ordered pairs, or 231 unordered pairs as claimed. We note
that it is possible to implement the algorithm such that it always returns (at
least) 231 pairs. This can be achieved by storing all the 248 pairs in Step 1.(a).ii,
and finally setting the value of Δ\3\ to a value for which there is a maximal
number of pairs (Fig. 8).
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Abstract. Block ciphers are arguably the most widely used type of
cryptographic primitives. We are not able to assess the security of a block
cipher as such, but only its security against known attacks. The two main
classes of attacks are linear and differential attacks and their variants.
While a fundamental link between differential and linear cryptanaly-
sis was already given in 1994 by Chabaud and Vaudenay, these attacks
have been studied independently. Only recently, in 2013, Blondeau and
Nyberg used the link to compute the probability of a differential given
the correlations of many linear approximations. On the cryptanalytical
side, differential and linear attacks have been applied on different parts
of the cipher and then combined to one distinguisher over the cipher.
This method is known since 1994 when Langford and Hellman presented
the first differential-linear cryptanalysis of the DES. In this paper we
take the natural step and apply the theoretical link between linear and
differential cryptanalysis to differential-linear cryptanalysis to develop a
concise theory of this method. We give an exact expression of the bias of a
differential-linear approximation in a closed form under the sole assump-
tion that the two parts of the cipher are independent. We also show how,
under a clear assumption, to approximate the bias efficiently, and per-
form experiments on it. In this sense, by stating minimal assumptions,
we hereby complement and unify the previous approaches proposed by
Biham et al. in 2002-2003, Liu et al. in 2009, and Lu in 2012, to the
study of the method of differential-linear cryptanalysis.

Keywords: Block cipher · Differential cryptanalysis · Linear crypt-
analysis · Truncated differential · Multidimensional linear approxima-
tion · Bias of differential-linear approximation

1 Introduction

We are facing a fundamental change with respect to computing and information
technologies. For a few years the computing world has begun to move towards
the “many computers – one user” paradigm, in which the computing devices are
often every day devices – a situation frequently referred to as the Internet of
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Things (IoT). At the same time, security has become an increasingly important
issue for many IoT applications as more and more sensitive personal data is
transferred in a wireless manner. This implies that the use of cryptography
primitives in daily life plays an increasingly crucial role. Among the different
primitives, block ciphers are arguably the most widely used ones.

Great progress has been made in designing and analyzing block ciphers, espe-
cially with the introduction of the AES, but also more recently with many block
ciphers appearing in the area of lightweight cryptography. However, there is still
research on fundamental aspects of these ciphers going on and important ques-
tions are still not understood. For instance we are not able to assess the security
of a block cipher as such, but only its security against known attacks. The two
main classes to be considered here are linear and differential attacks and their
variants.

Differential Cryptanalysis. The first type of attacks that is applicable to
a large set of block ciphers is the differential attack introduced by Biham and
Shamir in [8]. Since its invention in the early nineties several variants, tweaks
and generalizations have been discussed. In 1994, Knudsen introduced so-called
truncated differentials attacks [25]. This relaxation of classical differential attacks
has since then been applied to many (round-reduced) block ciphers. In the same
paper, Knudsen furthermore introduced the concept of higher-order differentials,
an attack vector based on initial consideration by Lai in [27]. Another variant
of differential cryptanalysis (again by Knudsen) is impossible differentials crypt-
analysis which uses differentials with probability zero. This concept, introduced
in [26] has later been successfully applied numerously, e.g. to (almost) break
the cipher Skipjack [3]1. In 1999, Wagner introduced the boomerang attack,
which allows to connect two differentials over parts of a cipher that do not
coincide in the middle. This attack allowed, among others, to break the cipher
COCONUT98 [39]. Later, the boomerang attack itself has been generalized to
amplified boomerang attack [24] and rectangle attack [4].

Linear Cryptanalysis. The second general applicable attack on block ciphers
is the Matsui’s linear attack [34]. Similarly to differential attacks, since its intro-
duction many extensions and improvements have been made, and we mention a
selection here. A more precise estimate for the success probability and the data
complexity are given by Selçuk [38]. The effect of using more than one linear
trail, referred to as linear hulls, has been introduced by Nyberg [37]; see also
Daemen and Rijmen [21]. Multidimensional linear attacks have been studied by
Hermelin, Cho, and Nyberg [23] as a way to further reduce the data complexity
of the basic attack. These approaches have been used for example by Cho [20].
More recently, the zero-correlation attacks introduced by Bogdanov et al. in [15]
have become popular. These attacks, which can be seen as the natural counter-
part of the impossible differential attacks, are based on linear approximations

1 The term impossible differential appeared first in [3].
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with probability exactly 1/2. A further generalization of zero-correlation attacks,
namely attacks based on key-invariant biases, was presented in [13].

Theoretical Links Between Linear and Differential Cryptanalysis. Most
of the work has been done independently for linear and differential cryptanalysis
and there are examples of ciphers that are more resistant against one type than
against the other. However, the concepts are closely related. A first fundamental
link between them was already given in 1994 by Chabaud and Vaudenay (see
[19]), where it was shown that the probability of a differential can be expressed
in terms of a sum of correlations of linear approximations. Interestingly, this link
was for a long time not used in practice due to its large computational complex-
ity. Only in 2013, Blondeau and Nyberg used the link in [11] to compute the
probability of a differential given the correlations of many linear approximations.
As a second result [12], Blondeau and Nyberg generalized the link to the case of
multidimensional linear distinguishers and truncated differential distinguishers.

Differential-Linear Cryptanalysis. On the cryptanalytical side, differential
and linear attacks have been used jointly for the first time by Langford and
Hellman [30]. The basic idea of differential-linear cryptanalysis is to split the
cipher under consideration into two parts. The split should be such that, for
the first part of the cipher there exists a strong truncated differential and for
the second part there exists a strongly biased linear approximation. In [30], the
particular case where the differential over the first part holds with probability one
has been introduced. Later on, Biham et al. [5,29] generalized this attack using
a probabilistic truncated differential on the first rounds of the distinguisher.

More recently in 2012 [33], Lu studied the validity of the model proposed by
Biham et al. with the aim of minimizing the assumptions needed for the validity
of the attack.

Wagner presented ideas towards a unified view of statistical block cipher
cryptanalysis [40]. While concentrating on structural similarities between differ-
ent attacks in a Markov setting he relied, albeit with some doubts, on the pre-
viously made heuristic assumptions under which the differential-linear attacks
had been claimed to work.

It is very remarkable that in none of the previous work on differential-linear
cryptanalysis, the theoretical link presented in [19] between linear and differen-
tial attacks is used to model –and understand better– the general behavior of
differential-linear cryptanalysis.

Our Contribution. In this paper we take the natural step and apply the
theoretical link between linear and differential cryptanalysis to differential-linear
cryptanalysis. This, not surprisingly, has a couple of nice consequences.

To the best of our knowledge, we are, for the first time, able to exactly
express the bias of a differential-linear approximation by a closed expression.
The formula is exact under the sole assumption that the two parts of the cipher
are independent. In particular it is exact when averaging over all round-keys.



414 C. Blondeau et al.

While evaluating this exact expression is (for full-scale ciphers) computa-
tional unfeasible, the formulation given in Theorem 2 allows, under clear assump-
tion, to approximate the bias efficiently. In this sense we hereby complement the
work of Lu by stating minimal assumptions.

Moreover, given this exact expression and –along with this– a deeper under-
standing of differential-linear attacks allows us to substantially generalize the
attack vector. In particular, we study the possibility to take into consideration
the hull of a differential-linear approximation and introduce a multidimensional
generalization of differential-linear cryptanalysis which is defined for multiple
input differences and multidimensional linear output masks.

Note that, we do not propose new concrete attacks. But rather we provide a
sound framework for previous and future work on differential-linear cryptanalysis.

Organization of the Paper. In Sect. 2, we fix our notations and state sev-
eral general results on differential and linear cryptanalysis. The related work is
resumed in Sect. 3. In Sect. 4, we develop the exact expression for the bias of the
differential-linear distinguisher (cf. Theorem 2) and outline its meaning with an
example using the block cipher Serpent. Furthermore, we elaborate more on the
comparison with previous work. In Sect. 5, we derive conditions on how and if it
is possible to obtain good and practical estimations of the exact expression. We
back-up our assumption with experiments using small scale variants of the cipher
PRESENT. Finally, in Sect. 6, we generalize the concept of differential-linear
cryptanalysis to the case of multiple differentials and multiple linear approxima-
tions and derive expressions for the biases and the attack complexities for this
generalization. Sect. 7 concludes the paper.

2 Basics of Linear and Differential Cryptanalysis

2.1 Linear Correlation and Differential Probability

In differential cryptanalysis [8], the attacker is interested in identifying and
exploiting non-uniformity in occurrences of plaintext and ciphertext differences.
Given a vectorial Boolean function F : Fn

2 → F
n
2 , a differential is given by a pair

(δ,Δ) of an input difference δ ∈ F
n
2 and an output difference Δ ∈ F

n
2 and its

probability is defined as

P[δ F→ Δ] = 2−n#{x ∈ F
n
2 |F (x) + F (x + δ) = Δ}.

Linear cryptanalysis [34] uses a linear relation between bits from plaintexts,
corresponding ciphertexts and encryption key. A linear relation of bits of data
x ∈ F

n
2 is determined by a mask a ∈ F

n
2 and is given as a Boolean function

f(x) = a ·x where “ · ” is the natural inner product of the vectors a and x in F
n
2 .

The strength of a linear relation is measured by its correlation.
The correlation of a Boolean function f : Fn

2 → F2 is defined as

cor(f) = cor(f(x)) = 2−n
[
# {x ∈ F

n
2 |f(x) = 0} − # {x ∈ F

n
2 |f(x) = 1}

]
,



Differential-Linear Cryptanalysis Revisited 415

where the quantity within brackets correspond to the Fourier coefficient of f at
zero, and can be computed using the Walsh transform of f , see e.g. [18].

In this paper, a block cipher or a part of it with a fixed key and block size
n is considered as a bijective vector-valued Boolean function F : F

n
2 → F

n
2 .

In the general model of differential-linear cryptanalysis to be built in this paper,
we consider a set of input differences to the cipher which form a linear subspace
of Fn

2 . Given a subspace U of Fn
2 , let us denote by U⊥ the orthogonal subspace

of U with respect to the inner product of Fn
2 . Then

U⊥ = {v ∈ F
n
2 |u · v = 0, for all u ∈ U}.

Let us denote by 0� ∈ F
�
2 the all-zero string of length �. If U = F

s
2 × {0t},

for some positive integers s and t, where s + t = n, then U⊥ = {0s} × F
t
2. In

this manner we obtain a splitting of Fn
2 to two mutually orthogonal subspaces,

whose intersection is {0n}. Another type of example of orthogonal subspaces is
obtained for U = {(0, 0), (1, 1)} × {0n−2}. Then U⊥ = {(0, 0), (1, 1)} × F

n−2
2 , in

which case U ⊂ U⊥. In any case, the dimensions of U and U⊥ add up to n.
A truncated differential [25] over a vectorial Boolean function F : Fn

2 → F
n
2

is a set of ordinary differentials (δ,Δ) where the input differences δ ∈ U⊥ and
the output differences Δ ∈ V ⊥. In this paper we assume that U and V are linear
subspaces of Fn

2 . In this manner, the truncated differential is determined by a
pair of linear spaces U and V . The strength of a truncated differential is often
measured by the number of solutions (x, δ,Δ) ∈ F

n
2 × (U⊥ \ {0}) × V ⊥ to the

equation

F (x + δ) + F (x) = Δ. (1)

To facilitate the derivations in this paper we will use a different but closely
related quantity, which allows the zero difference in the input. It is straightfor-
ward to show that, the number of solutions (x, δ,Δ) ∈ F

n
2 × U⊥ × V ⊥ of (1) can

be computed as
∑

δ∈U⊥,Δ∈V ⊥
#{x ∈ F

n
2 |F (x + δ) + F (x) = Δ}.

We denote by P[U⊥ F→ V ⊥] the probability that a pair of inputs (x, x+δ), where
x is picked uniformly at random in F

n
2 and δ ∈ U⊥, gives an output difference

Δ ∈ V ⊥.

Proposition 1. Let U and V be linear subspaces of Fn
2 , we have

P[U⊥ F→ V ⊥] =
1

2n|U⊥|#{(x, δ,Δ) ∈ F
n
2 × U⊥ × V ⊥ |F (x + δ) + F (x) = Δ}

=
1

|U⊥|
∑

δ∈U⊥, Δ∈V ⊥
P[δ F→ Δ]. (2)
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The probability P[U⊥ F→ V ⊥] which can be expressed in the two different ways
shown in Proposition 1 will be called the truncated differential probability.

Let us denote by P[U⊥\{0} F→ V ⊥] the probability for the truncated differen-
tial derived analogically as above but without allowing the zero input difference.
Then we have the following relation:

|U⊥| · P[U⊥ F→ V ⊥] = 1 + (|U⊥| − 1) · P[U⊥ \ {0} F→ V ⊥]. (3)

In particular, for the ordinary differential probability, we have

P[δ F→ Δ] = 2 · P[sp(δ) F→ Δ] − 1,

for all δ, Δ ∈ F
n
2 , δ �= 0. Here, as well as later in the paper, we use the notation

sp(a) to denote the vector subspace {0, a} ⊂ F
n
2 spanned by a.

Recalling the symmetry of the probability of single differential for a bijective
function F

P[δ F→ Δ] = P[Δ F −1

→ δ],

let us note that the truncated differential probability is not symmetric, except
in the case when |U | = |V |. In general, we have

|U⊥| · P[U⊥ F→ V ⊥] = |V ⊥| · P[V ⊥ F −1

→ U⊥].

Let us recall the link between the differential probabilities and the squared
correlations of linear approximations of vectorial Boolean functions presented by
Chabaud and Vaudenay [19]. In the context of this paper we write it as follows.

P[δ F→ Δ] = 2−n
∑

u∈F
n
2

∑
v∈F

n
2

(−1)u·δ+v·Δcor2 (u · x + v · F (x)) , (4)

where F : Fn
2 → F

n
2 is a vectorial Boolean function, and (δ, Δ) ∈ F

n
2 × F

n
2 . By

applying this link for all δ ∈ U⊥ and Δ ∈ V ⊥ in (2) we obtain the following
result which is a generalization of [11,12].

Theorem 1. The probability of a truncated differential with input differences in
U⊥ and output differences in V ⊥ can be computed as a sum of squared correla-
tions with input masks in U and output masks in V as

P[U⊥ F→ V ⊥] =
1

|V |
∑

u∈U,v∈V

cor2 (u · x + v · F (x)) .

Proof. If for u ∈ F
n
2 we have u · δ = 1 for some δ ∈ U⊥ then the linear

function δ �→ u · δ is non-zero, and hence balanced on U⊥. Thus in this case∑
δ∈U⊥(−1)u·δ = 0. This is not the case exactly if we have u ∈ U , and then∑
δ∈U⊥(−1)u·δ = |U⊥|. Then, applying the same reasoning for all v ∈ F

n
2 gives

the claim. ��
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Corollary 1. For all w ∈ F
n
2 \ {0} and Δ ∈ F

n
2 \ {0} we have

P[Δ F→ sp(w)⊥] =
∑

v∈sp(Δ)⊥
cor2(v · x + w · F (x)).

Proof. From (3) and Theorem 1, we have

P[Δ F→ sp(w)⊥] = 2 · P[sp(Δ) F→ sp(w)⊥] − 1

= 2 · 1
2

·
∑

v∈sp(Δ)⊥,b∈sp(w)

cor2(v · x + b · F (x)) − 1

=
∑

v∈sp(Δ)⊥
cor2(v · x + w · F (x)).

��
2.2 Round Independence

Computation of differential probabilities or linear correlations over an iterated
cipher is often done assuming that the rounds of the cipher behave independently.

Definition 1. Two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are
said to be differentially round independent if for all (δ,Ω) ∈ F

n
2 ×F

n
2 the following

holds

P[δ E→ Ω] =
∑

Δ∈F
n
2

P[δ E0→ Δ]P[Δ E1→ Ω].

Analogically, the parts E0 and E1 are said to be linearly round independent if
for all (u,w) ∈ F

n
2 × F

n
2 the following holds

cor2(u · x + w · E(x)) =
∑
v∈F

n
2

cor2(u · x + v · E0(x))cor2(v · y + w · E1(y)).

It was proved in [2] that the rounds of a Markov cipher [28] are both differentially
and linearly round independent. Next we show that differential and linear round
independence are equivalent concepts for any cipher.

Proposition 2. Two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are
differentially round independent if and only if they are linearly round indepen-
dent.

Proof. Let us start by stating (4) in the following equivalent form
∑
δ∈F

n
2

(−1)u·δP[δ F→ Δ] =
∑
v∈F

n
2

(−1)v·Δcor2 (u · x + v · F (x)) .

This is obtained by applying the inverse Fourier transform to the input difference.
By applying it to the output difference, another equivalent form can be given
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where the first summation is taken over Δ and the second summation over u. We
refer to these equations as partial inverses of (4). A further variant is obtained
by applying the inverse Fourier transform on both differences. We call it the
inverse of (4).

Let us now assume that the parts of the cipher are differentially round inde-
pendent. Then using the inverse of (4) and the assumption of differential round
independence, we get

cor2 (u · x + w · E(x)) = 2−n
∑
δ∈F

n
2

∑
Ω∈F

n
2

(−1)u·δ+w·ΩP[δ E→ Ω]

= 2−n
∑

Δ∈F
n
2

∑
δ∈F

n
2

(−1)u·δP[δ E0→ Δ]
∑

Ω∈F
n
2

(−1)w·ΩP[Δ E1→ Ω].

Then using the both partial inverses of (4) we obtain

cor2 (u · x+ w · E(x))

= 2−n
∑

Δ∈F
n
2

∑

v∈F
n
2

(−1)v·Δcor2(u · x+v · E0(x))
∑

v′∈F
n
2

(−1)v
′·Δcor2

(
v′ · y+w · E1(y)

)

= 2−n
∑

v∈F
n
2

∑

v′∈F
n
2

cor2(u · x+v · E0(x)) cor
2
(
v′ · y+w · E1(y)

)∑

Δ∈F
n
2

(−1)(v+v′)·Δ.

The sum over Δ is non-zero if and only if v = v′ and the value of this sum,
2n, cancels with the factor 2−n. We can then see that the condition of linear
round independence is satisfied. The converse proof is analogous. ��
Few ciphers satisfy round independence in the strict sense of Definition 1. On
the other hand, n-bit ciphers of the form EK(x) = E1(E0(x) + K) with n-bit
key K are round independent on average over the key. For simplicity, the results
given in this paper will be stated in terms of strict round independence, but can
be reformulated using average round independence for such ciphers.

3 Previous Work

Let E : Fn
2 → F

n
2 be a cipher. When applying the technique of differential-linear

cryptanalysis the iterated block cipher is presented as a composition E = E1◦E0

of two parts. The first part E0 is chosen in such a way that there is some strong
truncated differential over E0. Let U and V be the subspaces that define the
truncated differential. Typically, the input difference space U is selected so that
U⊥ is one-dimensional. The output difference space V ⊥ is usually larger. It is
then assumed that there is a strong linear approximation (v, w) over E1, where
v ∈ V , which means that v · Δ = 0 for all Δ ∈ V ⊥.

In this section, we assume that the input-difference space U⊥ is one-
dimensional. Let δ be the sole non-zero element in U⊥. Then the bias of the
differential-linear approximation is defined as

Eδ,w := P[w · (E(x + δ) + E(x)) = 0] − 1
2
.
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In the previous treatments [5,30,33], Eδ,w is evaluated using the Piling-up lemma
[34] by decomposing the Boolean variable w ·(E(x + δ) + E(x)) as a sum of three
variables

w · (E(x + δ) + E(x)) = v · E0(x + δ) + w · E(x + δ)
+ v · (E0(x + δ) + E0(x)) (5)
+ v · E0(x) + w · E(x),

which are assumed to be independent as x varies.
By using the following notation for the involved biases

εv,w = P[v · y + w · E1(y) = 0] − 1
2

εδ,v = P[v · (E0(x + δ) + E0(x)) = 0] − 1
2

= P[δ E0→ sp(v)⊥] − 1
2
, (6)

the Piling-up lemma gives

Eδ,w = 4εδ,vε2v,w. (7)

It remains to determine εδ,v given the truncated differential probability P[δ E0→
V ⊥]. This is where the previous studies differ. In [30], P[δ E0→ V ⊥] = 1, in
which case P[δ E0→ sp(v)⊥] = 1, since v ∈ V . According to Biham et al. [7]
this was generalized first in [29] and later by Biham et al. [5] to the case where
P[δ E0→ V ⊥] < 1. In [5], Biham et al. denote this probability by p′ and by
assuming that when Δ /∈ V ⊥ the parities of v · Δ are balanced they obtain the
estimate

P[δ E0→ sp(v)⊥] ≈ p′ + (1 − p′)
1
2
.

This exact equality holds if p′ = 1. In general, it gives only an approximation,
for the simple reason that if a linear function v · y vanishes in V ⊥, it cannot
be balanced outside V ⊥. The approximation is better, if V ⊥ is small, which
is the case studied in [5]. This approximation becomes worse, however, as V ⊥

increases. The extreme case is sp(v) = V . Then v · y = 1, for all y /∈ V ⊥.
This problem was observed by Lu and suggested to be solved in his study

[33] by restricting to the case where the output difference space of the truncated
differential is the hyperplane sp(v)⊥.

As in practice, V ⊥ is often smaller than a zero space of a linear Boolean
function, we have that P[δ E0→ V ⊥] is less than or equal to P[δ E0→ sp(v)⊥].
It can also be strictly less, in which case replacing the latter by the former
in the estimation of the bias (6) may lead to a wrong result for Eδ,w. Biham
et al. suggest that the other output differences Δ ∈ sp(v) \ V ⊥ may occur with
high probability and affect their approximation and stress the importance to do
experimental verification.

Note that it would be possible to fix the assumption by Biham et al. by
correcting the probability of zero parity outside V ⊥ to (2n−1−|V ⊥|)/(2n−|V ⊥|).
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In [32], the authors mention the possibility of using multiple linear approxi-
mations in order to improve the complexity of a differential-linear distinguisher.
Their study, which is based on the differential-linear model of Biham et al. [6]
and on the multiple linear model of Biryukov et al. [9], assume that the dis-
tinguisher is built from the combination of only one truncated differential with
independent linear approximations.

The goal of this paper is to analyze in more detail what is happening in the
intermediate layer of the differential-linear approximation and take into account
not only more high-probability output differences from E0 but also more, not
necessarily independent, linear approximations over E1. Still, many differences
and linear masks in the intermediate layer must be left out. To handle them in
Theorem 3, we make an assumption analogical to the one of Biham et al. but
corrected.

4 Differential-Linear Hull

The basic tool in examining the intermediate layer between E0 and E1 is the
following theorem. We use the notation Eδ,w and εδ,v introduced in the preceding
section, and denote the correlation of the linear approximation v ·y+w ·E1(y) by
cv,w. Then cv,w = 2εv,w in relation to the notation used in the preceding section.

Theorem 2. Assume that the parts E0 and E1 of the block cipher E = E1 ◦ E0

are independent. Using the notation previously defined, for all δ ∈ F
n
2 \ {0} and

w ∈ F
n
2 \ {0}, we have

Eδ,w =
∑
v∈F

n
2

εδ,vc2v,w. (8)

Proof. First, we apply the assumption of independence to the probability P[δ E→
sp(w)⊥] and then, the link given by Corollary 1 to the differential probability
over E1.

P[δ E→ sp(w)⊥] =
∑

Δ∈F
n
2

P[δ E0→ Δ]P[Δ E1→ sp(w)⊥]

=
∑

Δ∈F
n
2

P[δ E0→ Δ]
∑

v∈sp(Δ)⊥
cor2(v · y + w · E1(y))

=
∑
v∈F

n
2

∑
Δ∈sp(v)⊥

P[δ E0→ Δ]cor2(v · y + w · E1(y))

=
∑
v∈F

n
2

P[δ E0→ sp(v)⊥]cor2(v · y + w · E1(y)),

where changing the order of summation is possible since

{(v,Δ) |Δ ∈ F
n
2 , v ∈ sp(Δ)⊥} = {(v,Δ) | v ∈ F

n
2 , Δ ∈ sp(v)⊥}.

Now by subtracting 1
2 from both of the sides of the obtained equality and using

Parseval’s theorem gives the result. ��
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We call the expression (8) the differential-linear hull of E = E1 ◦ E0. The
differential-linear method has been previously applied in cases, where only one
correlation cv,w has been identified to have a large absolute value but the output
differential space of the truncated differential is smaller than the zero space of v.
Consequently more than one trail must be taken into account when estimating
the bias of the differential-linear approximation. We illustrate this in the context
of an attack on the Serpent cipher [1].

Example on Serpent. Differential-linear cryptanalysis [6,22] which has been
applied to many ciphers, remains with the multidimensional linear cryptanaly-
sis [35,36] the most powerful attack on the Serpent cipher [1]. In this section,
we summarize, in our notation, the distinguisher proposed in [6], on 9 rounds of
Serpent.

To be useful in a key-recovery attack, the distinguisher was defined as starting
from the second round of the cipher. First a truncated differential is defined
on 3 rounds of Serpent. In this attack, only one input difference is taken into
consideration meaning that U⊥ is one-dimensional. The output space of the
truncated differential consists of all differences which have the bits number 1
and 117 equal to zero. Hence it is the orthogonal of the two-dimensional space V
spanned by the bits (taken as basis vectors) number 1 and 117. The truncated
differential probability P[δ E0→ V ⊥] being large, it can, as typically in differential-
linear cryptanalysis, be computed experimentally and was evaluated in [6] to
2−1 + 2−6. The strong linear approximation over the six following rounds has
input mask ν ∈ V where both bits number 1 and 117 are equal to 1. The output
mask is denoted by w. The correlation of this linear approximation is estimated
to cν,w = 2−26.

The resulting differential-linear relation spans over 9 rounds of Serpent. In [6],
its bias was estimated to εδ,νc2ν,w with εδ,ν = 2−7 to obtain

Eδ,w ≈ εδ,νc2ν,w = 2−7 · 2−52. (9)

Later, in [22], another similar distinguisher on Serpent was provided. The only
difference was that a new and stronger truncated differential over the three
rounds of E0 was used.

Our aim is to analyze the conditions under which the approximation (9) is
justified. From Theorem 2 we deduce that Eδ,w can be computed as

Eδ,w =
∑
v∈V

εδ,vc2v,w +
∑

v∈F
n
2 \V

εδ,vc2v,w. (10)

We observe that for the two masks v ∈ V , for which only one bit, either number
1 or 117, is equal to 1, the correlations cv,w are equal to zero. Then it follows that
the first sum on the right side of (10) is, indeed, equal to εδ,νc2ν,w. It remains to
examine under which assumptions the sum (9) is an underestimate of the actual
bias (10). This will be done in a more general setting in Sect. 5.1.
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5 Intermediate Space

5.1 Estimation of the Bias

In this section, we aim to analyze whether we can obtain a good estimate of
the bias of a differential-linear relation. For a better illustration, the analy-
sis provided in this section is based on Theorem 2 where the differential-linear
approximation is defined for one input difference δ and one output mask w. A
generalization of this result for sets of input differences and output masks will
be given in Sect. 6.

In the differential context, it is well known that the expected probability of
a differential is underestimated if we are only able to collect a small number of
differential characteristics relative to the differential.

As recalled in Sect. 3, in the few available analyses in the differential-linear
context, the bias of the differential-linear approximation is estimated as the
combination of one strong truncated differential with one strong linear approx-
imation. In this section, we discuss the possibility of generalizing this result to
obtain a better estimate of the bias Eδ,w by using the hull of a differential-linear
approximation more efficiently. From Theorem 2, we know that an accurate com-
putation of the bias of a differential-linear approximation requires the knowledge
of the correlations over E1 for all input masks v ∈ F

n
2 , which is impossible in

practice for many ciphers.
From Theorem 2 and as given in Eq. (10) the bias of a differential-linear

approximation can be decomposed into two sums with respect to a set V .

Eδ,w =
∑

v∈V,v �=0

εδ,vc2v,w +
∑
v/∈V

εδ,vc2v,w.

Notice that the bias of a different-linear equation can be, as in the linear context,
positive or negative. As the complexity of the underlying attack is independent
of the sign, we talk, as in the linear context, of absolute bias |Eδ,w|.
Assumption 1. Given a set V we assume that

|
∑

v∈V,v �=0

εδ,vc2v,w| ≤ |Eδ,w|,

meaning that |∑v∈V εδ,vc2v,w| is an underestimate of the bias of the differential-
linear approximation with input difference δ and output mask w.

The only way to check if we have an under or over estimate of the actual probabil-
ity consists in experimentally computing the bias of a differential-linear approx-
imation on a reduced number of round of the cipher. These experiments should
be done in respect to the intermediate space V . In [5,6], experiments of this type
where already conducted to check the validity of their results.

If the intermediate space V is large, it is infeasible to compute the biases εδ,v

over E0 or the correlations cv,w over E1 for all v ∈ V . Next, based on the assump-
tion that some probabilities over E0 are equal, we show that

∑
v∈V εδ,vc2v,w can

be estimated from the product of one truncated differential probability with the
capacity of one multidimensional-linear approximation.
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Theorem 3. Let εδ,V = P[δ E0→ V ⊥]− 1
|V | be the bias of a truncated differential

with one non-zero input difference δ and output differences in V ⊥. Further, we
denote by CV,w =

∑
v∈V,v �=0 c2v,w the capacity of the multidimensional linear

approximation with all input masks v in V and one output mask w �= 0.
If then, for all Δ /∈ V ⊥, the probabilities P[δ E0→ Δ] are equal, we have

∑
v∈V

εδ,vc2v,w =
1
2

|V |
|V | − 1

εδ,V CV,w. (11)

Proof. For a purpose of clarity, let us denote Q = P[δ E0→ V ⊥]. We denote
by p the common value of the probabilities P[δ E0→ Δ] for Δ /∈ V ⊥. Then by
∑

Δ∈F
n
2
P[δ E0→ Δ] = 1 we deduce that p =

1 − Q

2n − |V ⊥| .
Since V ⊥ ⊂ sp(v)⊥ holds for all v ∈ V , we have

P[δ E0→ sp(v)⊥] = P[δ E0→ V ⊥] +
∑

Δ∈sp(v)⊥, Δ/∈V ⊥
P[δ E0→ Δ]

= Q + (2n−1 − |V ⊥|) · 1 − Q

2n − |V ⊥| .

Therefore, for all v ∈ V , we have

εδ,v = P[δ E0→ sp(v)⊥] − 1
2

= Q +
(
2n−1 − |V ⊥|) 1 − Q

2n − |V ⊥| − 1
2

=
1
2

· 2nQ − |V ⊥|
2n − |V ⊥| =

1
2

· Q − |V |−1

1 − |V |−1

=
1
2

· |V |
|V | − 1

(
Q − 1

|V |
)

=
1
2

· |V |
|V | − 1

εδ,V .

And we deduce
∑
v∈V

εδ,vcv,w =
1
2

|V |
|V | − 1

εδ,V

∑
v∈V

c2v,w =
1
2

|V |
|V | − 1

εδ,V CV,w.

��
Let us note that if |V | = 2, we have

∑
v∈V εδ,vc2v,w = εδ,V CV,w. The larger the

size of |V |, the closer to
1
2
εδ,V CV,w we are.

5.2 Experiments

The experiments of this section have been performed on a 32-bit scaled version
of PRESENT [14,31] called SmallPresent-[8]. The differential-linear approx-
imations are defined for one input difference δ and one output mask w. To limit
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the number of assumptions, the bias εδ,v and the correlations cv,w are computed
experimentally using 230 plaintexts and averaged over 200 keys. When using
Theorem 2, round independence is only required between E0 and E1.

The purpose of these experiments was to check the accuracy of Assumption 1.
In each of the figures of this section, we plotted as a reference the experimental
bias

Eδ,w = P[δ → sp(w)⊥] − 2−1, (12)

over 8 rounds of SmallPresent-[8] and given a space V , compare it with
∑
v∈V

εδ,vc2v,w. (13)

While experiments have been performed for many differential-linear approx-
imations on 8 rounds of SmallPresent-[8], we present results for the input
difference δ = 0x1 and the output mask w = 0x80000000. The bias of this
differential-linear approximation is positive and we are expecting under Assump-
tion 1 to find that (13) is an underestimate of the actual bias. In Fig. 1, resp. in
Fig. 2, the differentials are taken over 3 rounds, resp. 4 rounds, and the correla-
tions are taken over 5 rounds, resp. 4 rounds of SmallPresent-[8]. The space
V is chosen to be linear.

As the accuracy of these approximations depends mostly on the size of the
intermediate space, we study the evolution of (13) in regards to log(|V |).
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Fig. 1. Estimation of the bias a differential-linear approximation on 3+5 rounds of
SmallPresent-[8] for two different chains of intermediate spaces.

Result of the different experiments show that in the case of SmallPresent-
[8], (13) gives as expected an underestimate of the actual bias Eδ,w. In most of the
cases by increasing the size of the intermediate space V , we have a better estimate
of the bias (in this experiments, the initial spaces V are subset of the larger ones).
Nevertheless as the second sum of (10) is not always positive we observe that this
gain can be somewhat relative. When experiments are conducted for a fixed key
instead of averaged over keys, we strictly observe that (13) is not an increasing
function of |V |.
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In Theorem 3, based on the assumption that for all Δ /∈ V ⊥, the probabilities
P[δ E0→ Δ] are equal, we propose an estimate of (13). This one is relatively easier
to compute since, independently of the size of V , only one truncated differential
probability and one capacity need to be computed. The blue curves in Figs. 1
and 2 correspond to the computation of the expression on the right side of (11).
While this expression seems to be a correct estimate of (13) for V of small size,
the assumption that for all Δ /∈ V ⊥, the probabilities P[δ E0→ Δ] are equal, is
getting less realistic when increasing the size of the space V .
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Fig. 2. Estimation of the bias of a differential-linear approximation on 4+4 rounds of
SmallPresent-[8] for two different chains of intermediate spaces.

This phenomenon also appears when multiplying truncated differential prob-
abilities over rounds of the cipher to obtain the probability of a truncated dis-
tinguisher and has been experimentally tested for instance in [17].

6 Multidimensional Differential-Linear Distinguisher

6.1 The Model

The idea of taking advantage of multiple differentials or multiple linear approxi-
mations is widely spread out in the cryptographic community. To generalize the
results of Sect. 4, let us now consider the case where the space U⊥ of possible
input differences is an arbitrary subspace of Fn

2 . The linear approximation over
E1 is assumed to be multidimensional such that the output masks form a linear
subspace W of Fn

2 . We denote its orthogonal space by W⊥.
The conditions on which it would be possible to combine such a truncated

differential and multidimensional linear approximation to a strong truncated
differential over the full cipher are similar to the ones in the one-dimensional
case expressed in Sect. 5.

We express here the generalization of Theorem 2 to compute the bias

EU,W = P[U⊥ \ {0} E→ W⊥] − 1
|W | , (14)

of a multidimensional differential-linear approximation.
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Theorem 4. Let EU,W as in (14). Assume that the parts E0 and E1 of the block
cipher E = E1 ◦ E0 are independent. Then

EU,W =
2

|W |
∑

v∈F
n
2 ,v �=0

εU,vCv,W , (15)

where εU,v = P[U⊥\{0} E0→ sp(v)⊥]−1/2, and Cv,W =
∑

w∈W,w �=0 cor2(v ·y+w ·
E1(y)), is for v �= 0, the capacity of the multidimensional linear approximation
with input mask v and all nonzero output masks w in W .

Proof. First, let us state the following generalization of Corollary 1. Given a
bijective function F : Fn

2 → F
n
2 , a subspace U ⊂ F

n
2 and a mask vector v ∈ F

n
2 ,

we have

2P[U⊥ F→ sp(v)⊥] − 1 =
∑
u∈U

cor2(u · x + v · F (x)).

Using Theorem 1 to write the truncated differential probability in terms of
squared correlations, we apply this result together with Proposition 2 to obtain

P[U⊥ E→ W⊥] =
1

|W |
∑

u∈U,v∈F
n
2 ,w∈W

cor2(u · x+ v · E0(x))cor
2(v · y + w · E1(y))

=
1

|W |
∑

v∈F
n
2

(
2P[U⊥ E0→ sp(v)⊥] − 1

) ∑

w∈W

cor2(v · y + w · E1(y)).

The next step consists at removing the zero from the possible input differences.
To use relation (3) we multiply the probabilities on the first and second line by

|U | and then subtract 1 =
1

|W |
∑

w∈W

∑
v∈F

n
2
cor2(v · y + w · E1(y)) to get

(|U | − 1)P[U⊥ \ {0} E→ W⊥] =
1

|W |
∑

v∈F
n
2

(
2|U |P[U⊥ E0→ sp(v)⊥] − |U | − 1

)
Cv,W

=
1

|W |
∑

v∈F
n
2

(
2(|U |P[U⊥ E0→ sp(v)⊥] − 1) − |U | + 1

)
Cv,W

=
1

|W |
∑

v∈F
n
2

(
(|U | − 1)(2P[U⊥ \ {0} E0→ sp(v)⊥] − 1)

)
Cv,W .

We obtain the claim by dividing the first and last expression in this chain of
equalities by |U | − 1 and then observing that the term for v = 0 in the last
expression is equal to 1/|W |. ��

6.2 Complexity of a Distinguishing Attack

When the differential-linear approximation is characterized by only one output
mask w, as the data complexity is inverse proportional to the square of the bias
Eδ,w, larger its absolute value is, less costly the underlined distinguishing attack
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is. When using multiple output masks, the differential-linear probability should

be distinguishable from the uniform probability
1

|W | and the data complexity of

the differential-linear distinguisher depends of the number |W | of output masks.
As classically done in the differential context, using multiple input differences
allows the construction of structures and divides the data complexity of the
distinguisher by |U⊥|.
Proposition 3. Using the framework of [10,16,38], the data complexity of a
“multidimensional” differential-linear distinguisher with input differences in U⊥

and output masks in W is proportional to

2
|U⊥|

|W |−1

E2
U,W

=
|W |

2|U⊥|
1

(
∑

v εU,vCv,W )2
. (16)

When increasing the number of output masks, for each v ∈ F
n
2 the capacity

Cv,W increases. In general, the data complexity, as indicated by (16), depends
on the balance between the factor |W | and the effect of the capacity Cv,W on
the squared differential-linear bias.

6.3 Estimation of the Bias

As in the one-dimensional case, we discuss in this section some conditions on
which we can compute the bias of a multidimensional differential-linear approx-
imation. The approach is similar to the one of Sect. 5.

Given a set V , the sum (15) can be decomposed into two sums:

EU,W =
2

|W |
∑

v∈V,v �=0

εU,vCv,W +
2

|W |
∑
v/∈V

εU,vCv,W (17)

Practical computation of the bias of a multidimensional differential-linear
approximation relies on the fact that computing only the first partial sum gives
us an underestimate of the absolute bias |EU,W |.
Assumption 2. We assume that

|EU,W | ≥
∣∣∣∣∣∣

2
|W |

∑
v∈V,v �=0

εU,vCv,W

∣∣∣∣∣∣
.

It is straightforward to generalize Theorem 3 to the multidimensional case.

Corollary 2. Let EU,V = P[U⊥ \ {0} E0→ V ⊥] − 1
|V | be the bias of a truncated

differential with non-zero input differences in U⊥ and output differences in V ⊥.
Further, we denote by CV,W =

∑
w∈W,w �=0

∑
v∈V c2v,w the capacity of the multi-

dimensional linear approximation.
If then, for all Δ /∈ V ⊥ the probabilities P[U⊥ \ {0} E0→ Δ] are equal, we have

2
|W |

∑
v∈V

εU,vCv,W =
1

|W |
|V |

|V | − 1
εU,V CV,W .
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To test the validity of the results presented in this section, similar experiments
than the ones presented in Sect. 5.2 have been conducted on SmallPresent[8].
Conclusion of these experiments are similar to the ones in the one-dimensional
case. In the case of the PRESENT cipher, these experiments show that

∣∣∣∣∣
2

|W |
∑
v∈V

εU,vCv,W

∣∣∣∣∣ ,

is an underestimate of the absolute bias of the multidimensional differential-
linear approximation. As in Sect. 5.2, we observe that the assumption about the
equality of the probabilities P[U⊥ \ {0} E0→ Δ] made in Corollary 2, influences
the computational result when |V | is large.

7 Conclusion

In this paper, we studied and generalized the differential-linear cryptanalysis.
Starting from the observation that any differential-linear relation can be regarded
as a truncated differential or a multidimensional linear approximation we derive
a general expression of its bias based on the link between differential probabilities
and linear correlations provided by Chabaud and Vaudenay.

We also revisit previous studies and applications of differential-linear crypt-
analysis, where the bias of the differential-linear approximation has often been
estimated under some heuristic assumptions, implicitly or explicitly present in
the derivations. We derive our general formula of the bias under the sole assump-
tion of round independence of the parts of the cipher, and identify new addi-
tional assumptions for computing efficient estimates of it. Extensive experiments
have been performed to test the validity of these assumptions. Although no new
applications of differential-linear cryptanalysis are presented in this paper, the
potential and generality of our sound framework is demonstrated by its ability
to explain existing examples of differential-linear cryptanalysis.
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Abstract. In 2013, Borghoff et al. introduced a slender-set linear crypt-
analysis on PRESENT-like ciphers with key-dependent secret S-boxes.
In this paper, we propose an improved slender-set linear attack to
PRESENT-like ciphers with secret S-boxes. We investigate three new
cryptanalytic techniques, and use them to recover the secret S-boxes effi-
ciently. Our first new idea is that we propose a new technique to support
consistency of partitions of the input to the secret S-boxes. Our second
new technique is that we present a more efficient method to recover the
coordinate functions of secret S-boxes based on more information than
that of Borghoff’s attack. The third new technique is that we propose a
method of constructing all correct coordinate function of secret S-boxes
by pruning search algorithm. In particular, we implemented a successful
linear attack on the full round Maya in practice. In our experiments,
the correct S-box can be recovered with 236 known plaintexts, 218.9 time
complexity and negligible memory complexity at a success rate of 87.5 %
based on 200 independent trials. Our attack is the improvement and
sequel of Borghoff’s work on PRESENT-like cipher with secret S-boxes.

Keywords: Block cipher · Linear cryptanalysis ·PRESENT-like · Secret
S-box

1 Introduction

Block ciphers are a class of cryptographic algorithms which are widely used.
After the establishment of Advanced Encryption Standard (AES), there has
been a need for cryptographic solutions which can provide low cost security for
small device, such as RFID tags or sensor networks. This opens up the study
field of lightweight block cipher.

In recent years, many lightweight block ciphers have been developed, such
as mCrypton [14], HIGHT [11], SEA [20], DESXL [13], KATAN [8], MIBS [12].
PRESENT [4] is the most remarkable representative lightweight block cipher. It
is proposed by Bogdanov et al. in CHES 2007. PRESENT cipher is an iterated
31 rounds SPN block cipher with a 64-bit block size. PRESENT has two variants
of key, one with an 80-bit and the other with a 128-bit. Each round of PRESENT
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 431–450, 2015.
DOI: 10.1007/978-3-662-46706-0 22
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cipher has three layers. The first layer is a substitution layer, which consists of
16 parallel applications of the same 4-bit S-box. The second layer is a permu-
tation layer, which consists of a bit-wise permutation of 64-bit. The last layer
is a key addition layer, where a round key is exclusive-ored to the text. Due to
the small 4-bit S-box, bit-wise permutation and Xor addition, PRESENT has a
fast and compact hardware implementation. In recent years, the cryptanalysis
on PRESENT has been actively performed so far. The best known cryptanaly-
sis attack on PRESENT is a linear attack on 26 of the 31 rounds presented by
Cho [9] in CT-RSA 2010. This attack could break the 26 rounds PRESENT with
264 data complexity, 232 memory accesses complexity and 272 time complexity.
Although this attack is hardly to perform in practice, the number of rounds used
should not be dramatically reduced.

In order to strengthen the PRESENT cipher and reduce the number of
rounds, Gomathisankaran and Lee [15] presented a PRESENT-like cipher with
secret S-boxes which is named Maya. The Maya cipher is a 16 rounds SPN
cipher similar to PRESENT. The difference between PRESENT and Maya is
that the substitution layer of Maya consists of 16 different S-boxes which are
key-dependent and unknown.

Linear cryptanalysis [16,17] is a classical tool for analyzing block ciphers. It
was introduced by Matsui in 1993. Since for a random permutation, the proba-
bility of any linear relation between the plaintext and corresponding ciphertext
bits should be balanced at 1/2. But this is not always the same in the case
of block ciphers. The attacker can construct a distinguisher for a key-recovery
attack based on this information leakage.

Nowadays, there are only a few papers investigating the security of PRESENT-
like cipher with secret S-boxes. In 2011, Borghoff et al. [6] proposed a slender-set
differential cryptanalysis of PRESENT-like cipher with randomly chosen secret
S-boxes. In 2013, Borghoff et al. [7] outline how to attack this type of cipher with
a linear attack by using slender-set. However, the slender-set linear cryptanalysis
proposed in [7] was simply described and has something to be improved. In this
paper, we present an improved slender-set linear cryptanalysis on PRESENT-like
cipher.

Our Results. In this paper, we investigate an improved slender-set linear crypt-
analysis of PRESENT-like cipher with secret S-boxes. Our contributions are
threefold. First, we present a new technique to support consistency of partitions
of the input to the secret S-box of the first S-box layer. This modification makes
it possible to transform the original vectors into binary vectors more reasonably.
Our second new idea is that we propose a new method to get the coordinate
functions of secret S-boxes efficiently based on more information. This method
considers all the information that comes from the candidate coordinate functions
together instead of the three longest candidate coordinate functions. The third
new technique is that we present a method of constructing the correct coordi-
nate functions by pruning search algorithm, which can help us to recover the
secret S-boxes more efficiently. Finally, we focus on the settings of PRESENT-
like cipher where the secret S-boxes are key-dependent and are repeated for the
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first and last rounds. We propose an effective method of determining the correct
S-box from the equivalent S-boxes with low time complexity. In particular, we
implemented an improved slender-set linear attack to the full round Maya suc-
cessfully. In our experiments, the correct S-box can be recovered with 236 data
complexity, 218.9 time complexity and negligible memory complexity at a success
rate of 87.5 %. The correct S-box is usually found in less than a few minutes on
a standard PC. Our attack is the improvement and sequel of Borghoff’s work on
PRESENT-like cipher with secret S-boxes.

Related Work. There are lots of design and analysis to ciphers with secret
S-boxes. In 1994, Gilbert and Chauvaud [10] presented a differential attack on
the cipher Khufu which used secret S-boxes. Biham and Biryukov [1] described
methods of strengthening DES, without slowing encryption speed, in which
key-dependency is added by simply XORing key material before and after the
S-boxes calculation. They studied the strengthened version of DES against
exhaustive search, differential, and linear attacks that can be used existing hard-
ware. In 1996, Vaudenay [23] provided a cryptanalysis of reduced-round variants
of Blowfish, in which the S-boxes were randomly generated from the private
key. In 1998, Schneier and Kelsey et al. [19] studied a new encryption algorithm
with key-dependent S-boxes. In 2001, Biryukov and Shamir [2,3] investigated the
security of iterated ciphers, in which the substitutions and permutations are all
secret and key-dependent. In 2009, Borghoff et al. [5] researched on the cipher
C2, which has a secret S-box. In 2011, Szaban and Seredynski [22] proposed
cryptanalysis of a methodology to design dynamic cellular automata (CA)-based
S-boxes. Stoianov [21] presented and analyzed an approach to change the S-boxes
used in the algorithm AES. In 2013, Peng and Jin [18] proposed a cryptanalysis
of a new method to design key-dependent S-boxes by using hyperchaotic Chen
system.

Organization. The paper is organized as follows. Section 2 introduces the struc-
ture of PRESENT-like cipher. Section 3 outlines the slender-set linear attack on
PRESENT-like cipher described in [7]. Section 4 presents our improved slender-
set linear cryptanalysis on PRESENT-like cipher with secret S-boxes. Section 5
gives experimental results of our attack on Maya cipher. Finally, Sect. 6 concludes
the paper.

2 The PRESENT-like Cipher

The PRESENT-like cipher is an n-bit SPN block cipher. The round function
consists of round key, S-boxes and permutations. Assuming that the number of
rounds is N .

(1) Round key K: n-bit round key is Xored to the text.
(2) S-box S: n/m key dependent and different m-bit secret S-boxes.
(3) P-box P: The bit-wise permutation between the S-box layers is public or

secret.
The PRESENT-like cipher can be described in Algorithm 1.
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Algorithm 1. N -rounds PRESENT-like cipher
Require: n-bit plaintext X; main key K
Ensure: n-bit ciphertext C = EK(X)
1: Derive n/m m-bit S-boxes Si and round keys Ki (1 ≤ i ≤ n/m) from K
2: STATE = X
3: for i = 1 to N do
4: Parse STATE as STATE1||STATE2|| · · · ||STATEn/m

5: for j = 1 to n/m do
6: STATEj = Sj(STATEj)
7: Apply bit permutation to STATE
8: Add round key Ki to STATE
9: end for

10: end for
11: return

Maya is a typical example of the PRESENT-like cipher described in Algorithm 1
with n = 64 and m = 4

3 Borghoff’s Slender-Set Linear Attack

In this section, we review the Borghoff’s slender-set linear attack of recovering
the secret S-boxes described in [7]. We call the attack in [7] as Borghoff’s linear
attack for short. First, we introduce some notations and definitions used in this
paper.

3.1 Linear Cryptanalysis

We follow the notations used in [7]. The canonical inner product on Fn
2 is denoted

by 〈·, ·〉, that is

〈(a0, a1, · · · , an−1), (b0, b1, · · · , bn−1)〉 =
n−1∑
i=0

aibi

Given a function H : Fn
2 → Fm

2 , for an m -bit output mask β and an n-bit input
mask α, the bias ε of the linear approximation 〈β,H(x)〉 + 〈α, x〉 is defined by

p(〈β,H(x)〉 + 〈α, x〉 = 0) =
1
2

+ ε

where the probability p is taken over all choices of inputs x. The Walsh or
Fourier-transform of H at the pair (α, β) ∈ Fn

2 × Fm
2 is defined by

Ĥ(α, β) =
∑

x∈Fn
2

(−1)〈β,H(x)〉+〈α,x〉
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The relation between the Fourier transform of H and the bias of a linear approx-
imation is given by

ε =
Ĥ(α, β)

2n+1

Thus to study the bias 〈β,H(x)〉 + 〈α, x〉 is equivalent to study the Fourier-
transform of H at the pair (α, β).

3.2 Brief Description of Borghoff’s Linear Attack

In this section, we introduce the basic principle of Borghoff’s linear Attack. In [7],
Borghoff et al. started with a differential-style attack on PRESENT-like cipher.
They supposed that the characteristics with single-bit differences at the output
of the S-box layer in the first round have a stronger correlation with single-bit
differences at the input to the S-box layer in the last round. They named this
differential attack as the slender-set differential cryptanalysis. Using a similar
hypothesis for linear characteristics, they could get useful information about the
secret S-boxes with the single-bit mask at the output of the S-box layer in the
first round and the low-weight mask at the input of the S-box layer in the last
round. Thus we can name this linear attack as slender-set linear cryptanalysis.
In the following, we outline Borghoff’s linear attack.

Without loss of generality, Borghoff’s linear attack focused on the leftmost
S-box, which is denoted simply by S. All other S-boxes can be processed similarly.
We denote that

F : F 4
2 × F 60

2 → F 64
2 and F (x, y) = c

where the function F is the encryption function that starts after the first layer
of S-boxes, x is the output of the leftmost S-box of the first S-box layer, and
y is concatenation of the outputs of the remaining S-boxes of the first S-box
layer. Thus the Fourier-transform of F at the pair ((α1, α2), β) ∈ F 64

2 × F 64
2 is

denoted by

F̂ (α, β) = F̂ ((α1, α2), β) =
∑

x∈F 4
2

∑
y∈F 60

2

(−1)〈β,F (x,y)〉+〈α1,x〉+〈α2,y〉

In [12], Borghoff et al. used of the bias of the value 〈β, F (x, y)〉 for a fixed values
of x. They denote the corresponding function by

Tx : F 60
2 → F 64

2 and Tx(y) = F (x, y)

and we look at

T̂x(0, β) =
∑

y∈F 60
2

(−1)〈β,Tx(y)〉 =
∑

y∈F 60
2

(−1)〈β,F (x,y)〉

We list two useful lemmas in [7] as follows.
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Lemma 1. [7] With the notation from above, it holds that

24T̂λ(0, β) =
∑

α1∈F 4
2

(−1)〈α1,λ〉F̂ ((α1, 0), β)

Denote the whole encryption function by E. They split its input as before and
consider

E : F 4
2 × F 60

2 → F 64
2 and E(x, y) = c

where x is now the input to the first S-box, and y is the input to all other
S-boxes. They define the function corresponding to fixing x as T ′

x, that is

T ′
x : F 60

2 → F 64
2 and T ′

x(y) = E(x, y)

For a selection of masks β and each possible value of x, they estimate the value
of T ′

x(0, β). This is simply done by encrypting a number of known plaintexts
with the first four bits fixed to x and counting how often the value of

〈β, T ′
x(y)〉 = 〈β,E(x, y)〉

is zero (resp., one). The next lemma is the key for deducing information about
the secret S-box.

Lemma 2. [7] With the notation from above, the bias of 〈β, T ′
x(y)〉 is equal to

the bias of 〈β, TS(x)(y)〉. That is

T̂ ′
x(0, β) = T̂S(x)(0, β)

In [7], they assume that, for a given mask β, there is exactly one mask α such
that F̂ ((α, 0), β) is high while for any ξ �= α the value F̂ ((ξ, 0), β) is close to
zero. According to Lemma 1 and Lemma 2, we have

T̂ ′
x(0, β) = T̂S(x)(0, β) = 2−4

∑
ξ∈F 4

2

(−1)〈ξ,S(x)〉F̂ ((ξ, 0), β)

≈ 2−4(−1)〈α,S(x)〉F̂ ((α, 0), β) (1)

In this way, we can partition the values of x into two equally-sized sets V0 and
V1 depending on the sign of T̂ ′

x(0, β), where Vγ = {x|〈α, S(x)〉 = γ}, γ = 0, 1. If
we get all four linearly independent coordinate functions of secret S-box, such
as (〈2i, S(0)〉, 〈2i, S(1)〉, · · · , 〈2i, S(15)〉), 0 ≤ i ≤ 3, we can recover the secret
S-box. Borghoff’s linear attack is summarized as the following steps:

Step1. Let the output mask β = 04j ||b||060−4j , 0 ≤ j ≤ 15. For every leftmost
input 0 ≤ x ≤ 15 and for every 1 ≤ b ≤ 15, we estimate the value of the counter
T̂ ′

x(0, β) by Eq. (1) after encrypting enough plaintexts.



Improved Slender-Set Linear Cryptanalysis 437

Step2. After 15 vectors Wβ = (T̂ ′
0(0, β), T̂ ′

1(0, β), · · · , T̂ ′
15(0, β)) being retrie-

ved, we identify the three longest vectors using the Euclidean norm as a metric,
as Borghoff et al. assume that these vectors contain the most reliable information.
We transform each of these vectors into a binary vector such that the eight
highest counter values correspond to ‘1’-bits and the remaining correspond to
‘0’-bits.
Step3. We take a majority vote among these three binary vectors to find the
correct coordinate functions of secret S-box.
Step4. We recover the 4-bit secret S-boxes based on four linearly independent
coordinate functions of secret S-boxes.

Through the above steps, we may partition the value of x into two sets Vγ =
{x|〈α, S(x)〉 = γ}, γ = 0, 1. However, the value of α and γ are unknown. Borghoff
et al. pointed out that they might reveal one or more of the sets {x|〈2i, S(x)〉 =
0}, 0 ≤ i ≤ 3 by repeating the steps described above for other value of β =
04j ||b||060−4j with different 0 ≤ j ≤ 15.

However, the linear cryptanalysis proposed in [7] was in less details and has
something to be improved.

First, according to Eq. (1), we can only partition the value of x into two sets
Vγ = {x|〈α, S(x)〉 = γ}, γ = 0, 1 by Borghoff’s linear attack. However, for a fixed
α, the value of γ is unknown, which would cause problems: for a fixed α, we only
know which values of x belonging to the same set, but we still do not know the
values of x belonging to which set. In other words, if one coordinate of the binary
vector is equal to “0”, it dose not mean the corresponding value of coordinate
function is essentially equal to “0”. Furthermore, the sign of F̂ ((α, 0), β) might
be opposite for the same α and the different β. According to Eq. (1), the opposite
sign of F̂ ((α, 0), β) will cause opposite sign of T̂ ′

x(0, β). This makes it possible
to partition the x into different set with the same α and the different β. We did
the same work as Borghoff et al. did. As an example, we carried out this attack
using 225 known plaintexts on the 10 rounds PRESENT-like cipher. The three
longest vectors were these:

(−3138,−2218,−3156, 3146,−2486, 1784,−2974,−3452, 1392, 1602, 2850, 3198,
−3100, 2796,−3458, 1708)

(−2558,−1768,−2022, 2798,−1754, 2538,−1808,−2440, 2784, 2694, 2424, 3378,
−2576, 2378,−2658, 2424)

(3046, 1842, 1730,−2982, 1952,−1600, 2116, 2930,−2426, −2742, −2036, −2440,
2918,−1764, 3112,−1670)

After transforming these vectors into binary vectors as described, one gets

(0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1)

(0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1)

(1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0)
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We can see that the partition of x in the third binary vector is opposite
comparing with that in the first and second binary vectors. This problem will
bring some noise when we recover the correct coordinate functions of secret
S-box with majority vote. To overcome this, we develop a new idea to support
consistency of the partition of x.

Second, due to that Borghoff et al. just used the information from the three
longest vectors, which will lose the information from the candidate binary vec-
tors. Furthermore, the majority vote for getting “true” vector in [7] is not reason-
able and to be perfected. In order to improve the information collection phase,
we present a new method of making full use of information from the 240 output
low-weight masks β = 04j ||b||060−4j , 0 ≤ j ≤ 15, 1 ≤ b ≤ 15 of the S-box layer in
the last round instead of three longest vectors. And we introduce an improved
voting method for constructing the correct candidate coordinate functions.

Third, for PRESENT-like cipher, the experiment shows that we can only get
one correct set {x|〈2i, S(x)〉 = 0}, 0 ≤ i ≤ 3 in most case by using Borghoff’s
linear attack. As an example, we carried out Borghoff’s attack by using 222 to
227 known plaintexts on the 10 rounds PRESENT-like cipher. However, we can
only get one or two correct coordinate functions of secret S-box (see Table 3).
This makes it possible to recover 1 or 2 out of 4 bit information of secret S-box
in most case, but not the 4-bit information about secret S-box. The question is:
How to get more correct coordinate functions of secret S-box as many as possible
with lower data complexity? To overcome this problem, we proposed method of
constructing all correct coordinate functions of secret S-box by using pruning
search algorithm.

4 Improved Slender-Set Linear Cryptanalysis

In this section, we explain the approach of our improved slender-set linear crypt-
analysis of recovering the secret S-box. Comparing with the Borghoff’s linear
attack, there are three main improvements in this paper. First, we present a
new technique to avoid the complementary vectors in the candidate coordinate
functions of secret S-boxes. Second, we propose an efficiently method of getting
full use of all the information coming from the active S-box synthetically. In
other words, we consider all the 15 × 16 = 240 vectors together instead of the
three longest vectors. Third, we introduce an effective filter to construct correct
coordinate functions of secret S-boxes by using pruning search algorithm. The
pruning search algorithm can help us to search the correct coordinate functions
as many as possible with lower complexity. Finally, we focus on the settings where
the S-boxes are key-dependent and are repeated for the first and last rounds.
We investigate an efficient method of recovering the secret S-box uniquely with
a low time complexity.

Notation. Throughout this section, assuming that α is a binary vectors, the
Hamming weight of α is denoted by wt(α). The complementary vector of α is
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denoted by α. The vector Wβ = (T̂ ′
0(0, β), T̂ ′

1(0, β), · · · , T̂ ′
15(0, β)) described in

Sect. 3.2 is called as the original vector.

4.1 Recovering the Correct Coordinate Functions

We start with the first new technique of our improved slender-set linear crypt-
analysis. In Borghoff’s linear attack, the value of corresponding coordinate in
different binary vectors may be different. But the partition of x is valid in one
binary vector. In this case, for a fixed k, we consider to partition x by the dis-
tance between T̂ ′

i (0, β) and T̂ ′
k(0, β), where 0 ≤ i ≤ 15. Without loss of generality,

we let k = 0 in our paper. We propose the notion of relative distance to support
consistency of the partition of x as follows.

Specifically, for every 0 ≤ j ≤ 15, 1 ≤ b ≤ 15 we consider the output
masks β = 04j ||b||060−4j , and we get 15 × 16 = 240 original vectors Wβ =
(T̂ ′

0(0, β), T̂ ′
1(0, β), · · · , T̂ ′

15(0, β)) after encrypting enough plaintexts. For every
β and every 0 ≤ i ≤ 15, we compute the relative distance

R
(i)
β = T̂ ′

0(0, β) − T̂ ′
i (0, β)

between T̂ ′
0(0, β) and T̂ ′

i (0, β). We transform each of these relative distance
vectors (R(0)

β ,R
(1)
β , · · · ,R

(15)
β ) into binary vectors (B(0)

β ,B
(1)
β , · · · ,B

(15)
β ) such

that the eight highest values correspond to “1”-bits and the remaining values
correspond to “0”-bits. If B

(0)
β is equal to “1”, then we transform the vector

(B(0)
β ,B

(1)
β , · · · ,B

(15)
β ) into the complementary vector Bi = (B(0)

β ,B
(1)
β , · · · ,B

(15)
β ).

If B(0)
β is equal to “0”, then we let Bi = (B(0)

β ,B
(1)
β , · · · ,B

(15)
β ).

As an example, we obtained the vectors described in Sect. 3.2. The relative
distance vector are these for the three longest vectors:

(0, 920,−18, 6284, 652, 4922, 164,−314, 4530, 4740, 5988, 6336, 38, 5934,−320, 4846)

(0, 790, 536, 5356, 804, 5096, 750, 118, 5342, 5252, 4982, 5936,−18, 4936,−100, 4982)

(0,−1204,−1316,−6028,−1094,−4646,−930,−116,−5472,−5788,−5082,−5486,

−128,−4810, 66,−4716)

We transform the relative distance vector into binary vectors as follows:

(0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1)

(0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1)

(0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1)

The benefit of this technique is that the value of the first coordinate of binary
vector Bi is identically equal to “0”. By using this method, we can support
consistency of the partition of input x based on the original vector Wβ =
(T̂ ′

0(0, β), T̂ ′
1(0, β) · · · , T̂ ′

15(0, β)).
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After we get the 240 binary vectors Bi, 1 ≤ i ≤ 240, we introduce the second
technique of our improved attack as follows.

We define the distances between two binary vectors Bi and Bj by

DBi,Bj
= wt(Bi ⊕ Bj)

where 1 ≤ i, j ≤ 240 and wt(Bi ⊕ Bj) is the Hamming weight of Bi ⊕ Bj . Due
to the first coordinate of the binary vectors being identically equal to “0”, it
holds that DBi,Bj

�= 0. Thus we can see that DBi,Bj
= 2, 4, 6, 8, 10, 12, 14, 16 and

the number of DBi,Bj
is equal to C2

240 = 28680. For two random vectors α and
β, we present the probability distribution of wt(α ⊕ β) as following lemma.

Lemma 3. With the notation above, let α, β be random vectors and wt(α) =
wt(β) = 8 with α = (0, a1, a2, · · · , a15), β = (0, b1, b2, · · · , b15), ai, bi ∈ {0, 1}, 1 ≤
i ≤ 15. Then the probability of wt(α ⊕ β) = k is equal to

p(wt(α ⊕ β) = k) =
C

(16−k)/2
8 C

(16−k)/2
7

C7
15

where k = 2, 4, 6, 8, 10, 12, 14, 16.

We now compute the probability distribution of wt(α ⊕ β) for two vectors α, β
based on the notation in Lemma 3 (see Table 1).

Table 1. The probability distribution of wt(α ⊕ β) for randomly chosen vectors α, β

k Probability k Probability k Probability k Probability

2 0.1243 % 6 18.2751 % 10 30.4584 % 14 0.8702 %

4 3.0458 % 8 38.0730 % 12 9.1375 % 16 0.0155 %

Due to the method of relative distance, there have no complementary vectors
in the binary vectors. According to Table 1, the expectation of wt(α ⊕ β) is equal
to 8.533 for two random vectors. For two binary vectors, they will be similar to
each other when wt(Bi ⊕ Bj) approximate to 16. Thus we believe the vectors Bi

and Bj would be closer to each other when wt(Bi ⊕ Bj) > 8.
Now we explain our approach for getting the information about secret S-box

from all 240 binary vectors Bβ . We assume that the binary vectors corresponding
the same α are similar to each other. We start with the method of partition Bβ

by using the notion of similarity degree as following definition.

Definition 1. Given 240 binary vectors Bi, 1 ≤ i ≤ 240. Let ξ, τ > 0 and
DBi,Bj

= wt(Bi ⊕ Bj) be the distances between binary vectors Bi and Bj , where
1 ≤ j ≤ 240. The similarity degree of Bi and Bj is defined by

SBi,Bj
= g(Bi, Bj) +

∑
1≤k≤240
k �=i,k �=j

(f(Bi, Bk) + f(Bj , Bk))
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where the function g(Bi, Bj) =
{

ξ, if wt(Bi ⊕ Bj) ≥ t;
0, others.

and f(Bi, Bj) =
{

τ, if wt(Bi ⊕ Bj) ≥ t;
0, others.

According to Definition 1, the similarity degree of Bi and Bj considers not only
the relationship between Bi and Bj but also the relationship from other Bk,
which can help us to collect all the correlation between 240 candidate binary
vectors synthetically with suitable value of t, ξ, τ . Figure 1 shows the form of
similarity degree:

Fig. 1. The form of similarity degree

For 240 candidate binary vectors, we can get C2
240 = 28680 similarity degrees

between the binary vectors Bi and Bj . The higher value of similarity degree, the
stronger correlation between two binary vectors.

In order to recover four coordinate functions of secret S-box, we start with
approach of how to partition the 240 binary vectors into four parts as follows.

Given 240 binary vectors Bi, 1 ≤ i ≤ 240. As can be seen in Table 1, the prob-
ability of DBi,Bj

= 16 is equal to 0.0155 %. Such a small probability means that: If
DBi,Bj

= 16, there must be a very strong correlation between two binary vectors
Bi and Bj . In other words, the binary vectors Bi and Bj should be very close to
the same coordinate function of secret S-box in case of DBi,Bj

= 16. Therefore, we
treat the binary vectors which hold DBi,Bj

= 16 as the priority vectors. Assum-
ing that we construct r priority sets Ωk, 1 ≤ k ≤ r, for every ki, kj ∈ Ωk, it must
hold that DBki

,Bkj
= 16. According to the definition of priority sets, the higher

value of |Ωk|, the more information about one coordinate function of secret S-box.
Therefore, we start with the priority set which the value of |Ωk| is maximal. Let
ki ∈ Ωk. We choose a vector Bki

from the 240 binary vectors and mark Bki
. Then

we sort 240 binary vectors in descending order up to the value of SBki
,Bj

from
j = 1 to j = 240. We check if the vector Bj is marked for every 1 ≤ j ≤ 240. If Bj

is unmarked, We add Bj into the first set Φ1 until |Φ1| = 60. We stop repeating
this method when we have identified four parts Φ1, Φ2, Φ3, Φ4.

Next, we propose the improved voting method of constructing the candidate
coordinate functions of secret S-boxes based on these four sets Φ1, Φ2, Φ3, Φ4.
In [7], Borghoff et al. proposed a majority voting method to get “true” vector
from three longest vectors. It means that the weighting factor of each vector is
considered equal. Compared to Borghoff’s attack, our attack treats the similarity
degree as the weighting factor in voting method as follows.
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Let β = (β0, β1, · · · , β15). For a given set Φl, 1 ≤ l ≤ 4, for each 0 ≤ x ≤ 15,
we compute

vl,x =
∑
α∈Φl

⎛
⎝ ∑

β∈Φl,βx=0

Sα,β −
∑

β∈Φl,βx=1

Sα,β

⎞
⎠

and transform the vectors (vl,0, vl,1, · · · , vl,15) into a binary vector which is
denoted by Vl, such that the eight highest value correspond to “0”-bits and
the remaining correspond to “1”-bits. Our method of finding four candidate
coordinate functions of secret S-boxes is described in Algorithm 2.

Algorithm 2. Finding four candidate coordinate functions of secret S-boxes
Require:

The 240 binary vectors Bi, 1 ≤ i ≤ 240;
The value of t, ξ, τ ;

Ensure: Four candidate coordinate functions V1, V2, V3, V4

1: According to the value of t, ξ, τ , for every 1 ≤ i, j ≤ 240, we compute the similarity
degrees SBi,Bj .

2: Construct r priority sets Ωk, 1 ≤ k ≤ r.
3: Choose binary vector w ∈ Ωk, where the value of |Ωk| is maximal. We mark w and

sort 240 binary vectors in descending order up to the value of Sw,Bj , 1 ≤ j ≤ 240.
4: l = 1
5: while l ≤ 4 do
6: n = 1.
7: for j = 1 to 240 do
8: if Bj is unmarked then
9: Add Bj into the set Φl and n ← n + 1.

10: else if n ≤ 60 then
11: Continue.
12: else
13: Break.
14: end if
15: end for
16: For each 0 ≤ x ≤ 15, we compute

vl,x =
∑

α∈Φl

⎛
⎝ ∑

β∈Φl,βx=0

Sα,β −
∑

β∈Φl,βx=1

Sα,β

⎞
⎠

where β = (β0, β1, · · · , β15). Then we transform the vectors (vl,0, vl,1, · · · , vl,15)
into a binary vector Vl such that the eight highest value correspond to “0”-bits
and the remaining correspond to “1”-bits.

17: l ← l + 1
18: end while
19: return Four candidate coordinate functions V1, V2, V3, V4.

However, in our experiment, the candidate vectors found by Algorithm 2 might
not be complete the correct coordinate functions of secret S-box. In order to
get all information about secret S-box, we propose a method of constructing all
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correct coordinate functions of secret S-box by using pruning search algorithm.
The efficient filtering method in pruning search algorithm is presented as the
following proposition.

Proposition 1. Let r ≤ m, S-box S(x) = (s0(x), s1(x), · · · , sm−1(x)) : {0, 1}m

→ {0, 1}m be a bijective mapping, and t0, t1, · · · , tm−1 be a permutation of
0, 1, · · · ,m − 1. Then it holds that the function h(x) = (st0(x), st1(x), · · · ,
str−1(x)) : {0, 1}m → {0, 1}r is balanced.

In [7], the authors pointed out that the intersections of two correct sets (with
different masks) contain exactly four values. our Proposition 1 extended the
conclusion of their checking correctness.

For every correct vectors Vi = (vi,0, vi,1, · · · , vi,15), 1 ≤ i ≤ r ≤ 4, it holds that

h(x) =
(

0 1 · · · 15
v1,0|| · · · ||vr,0 v1,1|| · · · ||vr,1 · · · v1,15|| · · · ||vr,15

)

is balanced. We call this filter the balance filter. In order to measure the effec-
tiveness of balance filter, we present the probability of random vectors passing
this filter.

Without loss of generality, let ai, bi, ci, di ∈ {0, 1}, 1 ≤ i ≤ 15, A = (0, a1, a2,
· · · , a15), B = (0, b1, b2 · · · , b15), C = (0, c1, c2, · · · , c15), D = (0, d1, d2, · · · , d15)
and wt(A) = wt(B) = wt(C) = wt(D) = 8. Then the probability of A,B,C,D
passing the balance filter is equal to

15!
(C7

15)4
≈ 2−10.36

Such a small probability means the balance filter is a strong filter, and many
wrong candidate coordinate functions may be found by this filter. The pruning
search algorithm of constructing correct coordinate functions of secret S-boxes
by using balance filter is described in Algorithm 3.

In conclusion, our attack for recovering the correct coordinate functions of
secret S-boxes can be described as following steps:

Step1. We get 240 original vectors Wβ = (T̂ ′
0(0, β), T̂ ′

1(0, β), · · · , T̂ ′
15(0, β)) after

encrypting enough plaintexts. For every β, we compute the relative distance R
i
β

between T̂ ′
0(0, β) and T̂ ′

i (0, β).
Step2. Since we have obtained 240 relative distance vectors (R(0)

β ,R
(1)
β , · · · ,R

(15)
β )

in step 1, we transform these vectors into binary vectors Bβ .
Step3. In this step we find four candidate coordinate functions by using Algo-
rithm 2 based on 240 binary vectors Bβ .
Step4. We search all four correct candidate coordinate functions of secret
S-boxes by using Algorithm 3.

After the steps above, though we get four correct sets Vγi
= {x|〈αi, S(x)〉 =

γi}, γi = 0, 1, 0 ≤ i ≤ 3, we still do not know the value of αi, γi. Therefore, we
just recover the equivalent S-boxes of the secret S-boxes. In [7], Borghoff et al.
pointed out that the single-bit mask at the output of the S-box layer in the
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Algorithm 3. Constructing the sets of four candidate correct coordinate func-
tions
Require:

Four candidate coordinate functions V1, V2, V3, V4 searched by Algorithm 2;
The sets Θ

(k)
t , t = 1, 2, 3, 4, k = 2, 4, 6, 8, 10, 12, 14, 16. The vector V

(k)
t,r ∈ Θ

(k)
t , is

the one of the possible vectors with changing k bits compared with the vector Vt

and with wt(V
(k)

t,r ) = 8, where 1 ≤ r ≤ |Θ(k)
t |;

j = 0;
Ensure: The set Ψ of four correct candidate coordinate functions

The Function F (Θ, j, V )
1: j ← j + 1
2: for k is even, k = 2 to 16 do
3: for i = 1 to |Θ(k)

t | do
4: Uj = V

(k)
j,i .

5: if 2 ≤ j < 4 then
6: Check if the vectors U1, · · · , Uj pass the balance filter.
7: if pass the balance filter then
8: do F (Θ, j, V ).
9: else

10: Continue.
11: end if
12: end if
13: if j = 4 then
14: Add {U1, · · · , Uj} into the set Ψ .
15: end if
16: end for
17: end for
18: return The set Ψ of four correct candidate coordinate functions

first round has a stronger correlation with the low-weight mask at the input of
the S-box layer in the last round. It was reasonable to assume that αi was of
weight one. According to this assumption, in order to determine the correct secret
S-box, we should consider 24×4! ≈ 28.6 possible equivalent S-boxes for each 4-bit
S-box in the cipher Maya. Therefore, we need (28.6)16 ≈ 2137.6 time complexity
to recover all 16 secret S-boxes by exhaustive search. It is so large that the
complexity is infeasible. In this paper, we focus on the settings of PRESENT-
like cipher where the S-boxes are key-dependent and are repeated for the first
and last rounds. We present a method of determining all 16 secret S-boxes with
lower time complexity.

4.2 Determining the Secret S-box

In this section, we propose a technique to determine the secret S-boxes from the
equivalent ones. Let S1, S2, · · · , SN be secret S-boxes and S−1

1 , S−1
2 , · · · , S−1

N be
the inverse of these S-boxes. Without the loss of generality, we explain how to
determine the leftmost S-box S1. Assuming that we get m correct coordinate func-
tions of secret S-box Uj = (uj,0, uj,1, · · · , uj,2m−1), Vj = (vj,0, vj,1, · · · , vj,2m−1),
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1 ≤ j ≤ m, for m-bit secret S-boxes S1 and S−1
1 , we denote S1(x) = P1(f1(x) ⊕

k1) and S−1
1 (x) = Q−1

1 (g−1
1 (x)⊕ t1), where 0 ≤ k1, t1 ≤ 2m −1, P1, Q1 are m-bit

permutations and f1, g1 are known functions based on Uj and Vj :

f1(x) =
(

0 1 · · · 2m − 1
u1,0|| · · · ||um,0 u1,1|| · · · ||um,1 · · · u1,2m−1|| · · · ||um,2m−1

)

g1(x) =
(

0 1 · · · 2m − 1
v1,0|| · · · ||vm,0 v1,1|| · · · ||vm,1 · · · v1,2m−1|| · · · ||vm,2m−1

)

With the notations above, if we determine the value of k1, P1 or t1, Q1, we can
recover the secret S-box S1 (or S−1

1 ) uniquely. We propose an efficient filtering
method of determining the value of t1, P1, Q1 as follows.

For every 0 ≤ x ≤ 2m −1, it must hold that P1(f1(x)⊕k1) = g1(Q1(x)⊕ t1).
Then we have

P1f1(x) ⊕ P1k1 = g1(Q1(x) ⊕ t1) and P1f1(0) ⊕ P1k1 = g1(Q1(0) ⊕ t1)

then we have

P1f1(0) ⊕ P1f1(x) ⊕ g1(Q1(0) ⊕ t1) ⊕ g1(Q1(x) ⊕ t1) = 0

and then
P1(f1(0) ⊕ f1(x)) = g1(Q1(0) ⊕ t1) ⊕ g1(Q1(x) ⊕ t1)

where f1, g1 are known functions, t1 is an unknown m-bit constant and P1, Q1 are
unknown m-bit permutation. In order to determine t1, P1, Q1, we guess t1, Q1

by exhaustive search first. If the value of t1 and Q1 are correct, it must hold
that P1 is an m-bit permutation. By using this guess and determine method,
the time complexity of determining one secret S-box can be reduced to 2m × m!
from (2m)2×(m!)2. To the cipher Maya, the complexity to determine one correct
S-box is equal to 24 × 4! ≈ 28.58.

In order to check the correctness of t1 and Q1, we introduce two effective
filters as following definition.

Definition 2. Let 0 ≤ e1, e2 ≤ 2m − 1 , e1 �= e2. Assuming that P1(f1(0) ⊕
f1(x)) = g1(Q1(0) ⊕ t1) ⊕ g1(Q1(x) ⊕ t1), where f1, g1 are known functions, t1 is
an unknown m-bit constant and Q1, P1 are unknown m-bit permutation. If the
value of t1, Q1 are correct, it holds that

g1(Q1(f−1
1 (e1 ⊕ e2 ⊕ f1(0))) ⊕ t1) ⊕ g1(Q1(0) ⊕ t1)

= g1(Q1(f−1
1 (e1 ⊕ f1(0))) ⊕ t1) ⊕ g1(Q1(f−1

1 (e2 ⊕ f1(0))) ⊕ t1)

we name this filter linear filter. Let 0 ≤ ei ≤ 2m − 1 and wt(ei) = 1, 1 ≤ i ≤ r,
it holds that

wt
(
g1(Q1(f−1

1 (ei ⊕ f1(0))) ⊕ t1) ⊕ g1(Q1(0) ⊕ t1)
)

= 1

we name this filter weight filter.
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The linear and weight filter can generalize to more than two elements e1, e2.
In general, given r linearly independent e1, e2, · · · , er, where r ≤ m. For linear
filter, assuming that ai ∈ {0, 1} and at least two of a1, a2, · · · , ar are nonzero,
then the linear combination a1e1 ⊕ a2e2 ⊕ · · ·⊕ arer can obtain one equation for
checking the correctness of t1, Q1. There are 2r −r−1 linear combinations based
on e1, e2, · · · , er, thus we have 2r − r − 1 equations for checking the correctness
of t1, Q1. For weight filter, each ei, wt(ei) = 1, 1 ≤ i ≤ r obtains one equation
for checking the correctness of t1, Q1. Thus we have r equations for checking the
correctness of t1, Q1. In fact, the linear filter is equivalent to P being linear, and
weight filter is equivalent to wt(P (ei)) = 1 with wt(ei) = 1. In order to measure
the effectiveness of linear filter and weight filter, we start with the necessary and
sufficient condition of t1, Q1 passing these two filters as following theorem.

Theorem 1. Let P be an m-bit bijective mapping. The necessary and sufficient
condition of P being a m-bit permutation is that P is linear and for every ei with
wt(ei) = 1, we have wt(P (ei)) = 1.

According to Theorem 1, the case of P being a m-bit permutation is equivalent
to that of t1, Q1 passing the linear filter and weight filter. For an m-bit bijective
mapping P , the probability of P being a bit-wise permutation is equal to 4!/16! ≈
2−39.67. Thus the probability of t1, Q1 passing the linear filter and weight filter
is equal to 2−39.67. Moreover, the number of candidate t1, Q1 is equal to 24×4! ≈
28.58. It means that we can determine the correct t1, Q1 uniquely. Since we have
known the correct t1, Q1, we can calculate P1 uniquely. By using this method, we
can determine the correct S-boxes one by one. The time complexity for recovering
all 16 S-boxes can be reduced to 16 × 24 × 4! ≈ 212.58 from 2137.6.

5 Experiments

In this section, we apply our attack on PRESENT-like cipher in practice and
estimate the success rate and complexity. Our experiment is based on 200 inde-
pendent trials. In our experiment, let τ = 1, ξ = 2, t = 10 (see Definition 1 and
Algorithm 2).

In the sequel, we measure the data complexity in units which are equivalent
to a known plaintext. The dominative time consumption of our attack is the
time cost in the pruning search algorithm (Algorithm 3). Therefore, we measure
the time complexity of our attack in units which are equivalent to an operation
of checking if the vectors passing the balance filter.

In [7], Borghoff et al. pointed out that they carried out the attack using
225 data complexity to 10 rounds Maya. However, the number of correct coor-
dinate functions obtained and success rate were not presented in [7]. We did
the same experiment as Borghoff et al. did on the 10 rounds Maya with 222 to
227 data complexity. Table 2 shows the success rate of finding at least one correct
coordinate function of the secret S-box by using Algorithm 2 in this paper and
using the method in [7]. Table 3 shows more details about the number of correct
coordinate functions and the success rate by Borghoff’s method.
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Table 2. The success rate of finding at least one correct coordinate function of the
secret S-box on 10 rounds Maya with different data complexity by using Algorithm 2
and Borghoff’s method

Data complexity 227 226 225 224 223 222

Algorithm 2 100.0 % 100.0 % 99.5 % 94.0 % 55.0 % 18.5 %

Borghoff’s method 91.5 % 88.0 % 71.0 % 40.5 % 23.0 % 3.5 %

Table 3. The number of correct coordinate functions and success rate with different
data complexity on 10 rounds Maya in [7]

Number of correct coordinate functions 227 226 225 224 223 222

1 37.0 % 55.0 % 63.0 % 36.0 % 22.0 % 3.5 %

2 49.5 % 29.0 % 6.5 % 4.0 % 1.0 % 0.0 %

3 5.0 % 4.0 % 1.5 % 0.5 % 0.0 % 0.0 %

4 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

According to Table 2, the success rate is higher in our improved slender-set linear
attack. It means that we can get more information about the secret S-boxes than
Borghoff’s attack. As can be seen from Table 3, more than two correct coordinate
functions would be recovered by Borghoff’s linear attack in very rare cases with
222 data complexity and even though with 227 data complexity. In order to
recover a 4-bit secret S-box, it requires four linearly independent coordinate
functions. It means that Borghoff’s attack can not get enough information to
recover the secret S-box.

However, after getting one or more correct coordinate functions, being differ-
ent from Borghoff’s attack, our attack can construct all four correct coordinate
functions of secret S-box by using Algorithm 3. Assuming that we get one cor-
rect coordinate function of the secret S-box, the maximal time complexity of
Algorithm 3 is equal to (C7

15)
3 ≈ 237.95. Table 4 shows the time consumption

of Algorithm 3 based on 1 to 3 correct coordinate functions. Our experiment is
based on 200 independent trials.

Table 4. The average time complexity of finding all four correct coordinate functions
of secret S-box by using Algorithm 3 on 10 rounds Maya

Number of known correct coordinate functions Time complexity Cost on stander PC

1 217.78 ≈7 min 12 s

2 214.74 ≈53 s

3 29.35 ≤1 s
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From Table 4, we can find all four correct coordinate functions of secret S-box
in less than a few minutes on a standard PC (at AMD Athlon 7750 Processor
2.7 GHz) after getting one or more correct coordinate functions. To 10 rounds
Maya, we can recover all four correct coordinate functions of secret S-box with
224 data and 217.78 time complexity at success rate 94 % (see Tables 2 and 4).
We apply our attack to 6 to 16 rounds Maya and estimate the data and time
complexity and success rate (see Table 5).

Table 5. The data and time complexity and success rate of recovering all four correct
coordinate functions on 6 to 16 rounds Maya cipher in this paper

Rounds 6 7 8 9 10 11 12 13 14 15 16

Data complexity 216.6 218.1 220.0 222.1 224.0 226.3 227.9 229.5 231 234.2 236

Time complexity 218.4 218.9 217.7 218.7 217.8 218.7 215.2 216.7 218.9 218.7 218.9

Success rate 90.5% 87.5% 88.0% 91.5% 94.0% 89.5% 90.0% 93.0% 91.5% 88.5% 87.5%

From Table 5, we can see that our attack can break 16 rounds Maya with
236 known plaintexts and 218.9 time complexity at success rate 87.5 %. Our
experiments suggest that 30-rounds Maya cipher can be break with approxi-
mately 264 known plaintexts by using our attack.

6 Conclusion

In this paper, we present an improved slender-set linear attack to PRESENT-
like cipher with secret S-boxes. We present three improvements comparing with
Borghoff’s attack. First, we use a new technique to support consistency of par-
titions of the input x to the secret S-boxes of the first S-box layer. Second, a
new technique is proposed by making full use of the information from all the
240 original vectors together instead of the three longest vectors. Third, an effec-
tive filter for constructing correct coordinate functions of secret S-boxes by using
pruning search algorithm is presented. These three techniques can help us to get
the all four correct coordinate functions more efficiently. Finally, we focus on the
settings where the secret S-boxes are key-dependent and are repeated for the first
and last rounds. We propose a filter to determine the correct S-box from equiva-
lent S-boxes with lower time complexity. We describe the practical attack to full
round Maya, as detailed in Table 5. The experiments show that the correct S-box
can be recovered with 236 known plaintexts, 218.9 time complexity and negligible
memory complexity at a success rate of 87.5 % based on 200 independent trials.
Our attack is the improvement and sequel of Borghoff’s work, which is the best
linear attack on PRESENT-like cipher with secret S-boxes up to now.

An interesting open question is to find a more efficient method to recover
the correct coordinate functions of secret S-boxes. In fact, the approximation
by Eq. (1) in Sect. 3.2 could bring too much noise. Furthermore, the theoretical
model for complexity of recovering coordinate functions would be a possible
direction of future work.
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Abstract. Due to the recent emergence of resource-constrained devices,
cryptographers are facing the problem of designing dedicated lightweight
ciphers. KLEIN is one of the resulting primitives, proposed at RFIDSec
in 2011 by Gong et al. This family of software-oriented block ciphers
has an innovative structure, as it combines 4-bit Sboxes with the AES
MixColumn transformation, and has woken up the attention of cryptan-
alysts. Several security analyses have been published, in particular on the
64-bit key version. The best of these results could attack up to 10 rounds
out of the total number of 12. In this paper we propose a new family
of attacks that can cryptanalyze for the first time all the 12 rounds of
the complete version of KLEIN-64. Our attacks use truncated differential
paths and are based both on some of the notions developed in previous
attacks and on our new ideas that allow to considerably improve the
performance. To prove the validity of our attacks, we have implemented
reduced-round versions of them. In particular we were able to reproduce
a practical attack that recovers the whole key on 10 rounds, which also
corresponds to the best practical attack against KLEIN-64.

Keywords: KLEIN · Lightweight block cipher · Truncated differential
cryptanalysis · MixColumn · Key-recovery

1 Introduction

Design of lightweight and secure primitives has become one of the major interests
of the cryptographic community in order to answer the requirements of a large
number of applications, like RFID and wireless sensor networks. Through these
last years an enormous amount of promising such primitives has been proposed,
like PRESENT [7], LED [12], Spongent [6], ARMADILLO [5], PRINCE [8],
PRINTcipher [14], KLEIN [11], LBlock [23] and Twine [22]. Correctly evaluating
the security of these proposals has become a primordial task that merits all
the attention from the community. This has been proved by the big number of
security analyses of the previous primitives that has appeared (to cite a few:
[1,9,10,16,17,19,20]).

On the other hand, most of now-a-days cryptanalysis results are analyses
of round-reduced versions that do not apply to, nor break the full primitive
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studied. This trend could be explained by the recent improvements made by
cryptographers in the last few years - partially resulting from competitions like
AES, SHA-3 and eStream - that gave them solid bases and criteria to build
secure designs. Nevertheless, it is still crucial to make security analyses in order
to filter out the candidates that are not secure enough, and narrow down the list
of available lightweight primitives to recommend the use of the secure ones.

KLEIN [11] is a lightweight block cipher proposed at RFIDSec2011 by Gong
et al. Three versions were proposed for different key sizes: 64 bits, 80 bits and
96 bits, with 12, 16 and 20 rounds respectively. KLEIN is combining the AES
MixColumn operations with 4-bit Sboxes. Since its publication, several cryptana-
lysts have been interested in its analysis and some results on round-reduced ver-
sions have been published [2–4,13,21,24]. So far, the highest number of attacked
rounds was 10 in the 64-bit version (out of 12), 11 out of 16 in the 80-bit version
and 13 out of 20 in the 96-bit version. Recently biclique analyses ([2,3]) appeared,
but we can remark that this analyses require to perform an exhaustive search
on the whole key and that the acceleration factors are very small.

We propose here a family of attacks that successfully exploits the slow diffusion
between higher and lower nibbles in the cipher. They can be applied to the full 12-
round KLEIN-64 with a time and data complexities of 257.07 and 254.5 respectively
(other trade-offs are also possible). They apply to 13 and 14 rounds of KLEIN-80
and KLEIN-96 respectively, improving the previous attacks. We have also been
able to implement some of our attacks, obtaining a practical key-recovery for
10 rounds of KLEIN-64. We recall that previous practical attacks reached at most
8 rounds. We have also been able to implement 8-round attacks with a consider-
ably lower data complexity than previous ones and a faster execution.

The paper is organized as follows: the next two sections introduce KLEIN
family of block ciphers (Sect. 2) and summarize the results of the security analy-
ses that have been done so far and also recall some of their key ideas that are
useful for our analysis (Sect. 3). Section 4 gives a generic description of our fam-
ily of attacks and details the technical improvements we found to reduce the
complexity. Section 5 is dedicated to the possible time-memory-data complexity
trade-offs, and gives 4 examples of it while detailing the best time complexity
attack we found on the 12-round version. Section 6 discusses and provides the
results of the implementations we made to verify our attacks, and presents the
10-round practical attack on KLEIN-64. The paper ends with a conclusion.

2 Description of KLEIN

KLEIN is a family of lightweight block ciphers presented by Gong, Nikova and
Law at RFIDSec2011. By design choice, it is implementation compact and has
low-memory needs both in software and hardware, so it is a suitable family for
resource-limited devices such as RFID tags and wireless sensors.

KLEIN encryption routine is a Substitution-Permutation Network that oper-
ates on 64-bit blocks. Three versions are proposed, denoted KLEIN-64, KLEIN-
80 and KLEIN-96 with key-sizes of 64, 80 and 96 bits and 12, 16 and 20 rounds
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Table 1. KLEIN 4 × 4 Sbox

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] 7 4 a 9 1 f b 0 c 3 2 6 8 e d 5

respectively. Each round is composed of 4 layers: AddRoundKey, SubNibbles,
RotateNibbles and MixNibbles.

More precisely, the state entering a round is first xored with the round-key
through AddRoundKey. The result is then divided in 16 4-bit parts or nibbles that
are all transformed by the same involutive 4 × 4 Sbox represented in Table 1.
KLEIN designers chose this Sbox instead of a byte-wise one to minimize imple-
mentation costs and memory needs.

Then, RotateNibbles rotates the state two bytes to the left and finally
MixNibbles applies Rijndael MixColumn transformation to each half of the
state. Note that this last step is byte-wise while the others can be seen as nibble-
wise. Contrary to Rijndael, the step MixNibbles is not omitted in the last
round. A final whitening key is added at the end of the process so the encryp-
tion routine requires one more key than the number of rounds. The round-keys
are computed from the MasterKey with the KeySchedule algorithm that follows
a Feistel scheme. A complete description of it can be found in [11].

3 Previous Cryptanalysis

Since KLEIN proposal in 2011, several cryptanalysis have been published, mostly
on the KLEIN-64 version: this block cipher has been attacked with differential
cryptanalysis methods up to 8 rounds [4,24] and an integral cryptanalysis was
also proposed in [24] up to 7 rounds. All of these attacks reached the maximal
number of rounds possible using their techniques. In [13] a study of the security
of KLEIN is performed, and some ideas are proposed for trying to reach 9 rounds
without success. The best previous attack on KLEIN-64 was made by Nikolić
et al. in [21] and reached 10 rounds. This attack uses a new technique named the
Parallel-Cut Meet-In-The-Middle (PC MITM) that can also apply to KLEIN-80
(up to 11 rounds) and to KLEIN-96 (up to 13 rounds). A summary of these
results and of our best new ones is done in Table 2, where their complexities,
number of rounds reached and version of the cipher are specified.

Most of the previous attacks took advantage of the almost full independence
between higher and lower nibbles: either to build truncated differential paths
([4,24]) or to split the cipher in two independent subciphers ([21]). More pre-
cisely [4,21,24] pointed out the fact that all encryption layers, with the exception
of MixNibbles, are nibble-wise and do not mix higher nibbles with lower nib-
bles. The two analyses [4,24] also gave an interesting property of the MixColumn
structure, namely:

Proposition 1. [4,24] If the eight nibbles entering MixColumn are of the form
0X0X0X0X, where the wild-card X represents any 4-bit value, then the output
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Table 2. Previous results and some of our new results on KLEIN.

Version of KLEIN Source Rounds Data Time Memory Attacks

KLEIN-64 [24] 7 234.3 245.5 232 Integral

[24] 8 232 246.8 216 Truncated

[4] 8 235 235 - Differential

[21] 10 1 262 260 PC MITM

[3] 12 239 262.84 24.5 Biclique

Sect. 5.1 12 254.5 257.07 216 Differential

KLEIN-80 [24] 8 234.3 277.5 232 Integral

[21] 11 2 274 274 PC MITM

Sect. 5.6 13 252 276 216 Differential

[2] 16 248 279 260 Biclique

KLEIN-96 [21] 13 2 294 282 PC MITM

Sect. 5.6 14 258.4 289.2 216 Differential

[2] 20 232 295.18 260 Biclique

is of the same form if and only if the MSB of the 4 lower nibbles have all the
same value. This case occurs with probability 2−3.

Indeed, the higher nibble from the output of MixColumn belonging to the ith
byte depends on: (a) the 4 higher nibbles from the input and on (b) the xor of
the MSB of the input lower nibble from the ith byte and the MSB of the input
lower nibble from the i+1th byte (mod 4). This information can be expressed as
three quantities of one bit computed with the MSB of the input lower nibbles.
This proposition allows to construct truncated differential paths with important
probabilities leading to efficient distinguishers and key-recovery attacks up to
8 rounds, as the ones used in [4,13,24].

Also, as the pattern of the difference in the input of MixColumn is exactly the
same as the one in the output, this truncated difference allows the attacker
to build an iterative path. In the following, we denote by iterative round a
round of KLEIN that goes from a difference with only lower nibbles active
(0X0X0X0X 0X0X0X0X) to the same type of difference in the output. In [4]
it was claimed that a difference with only lower nibbles active passes through
an iterative round with probability 2−5.82, while in [24] it was computed as 2−6.
We will discuss the value of this probability in the next section.

An attentive study of the KeySchedule led to the following proposition:

Proposition 2. [4,13,21,24] In the KeySchedule algorithm, lower nibbles and
higher nibbles are not mixed: the lower nibbles of any round-key can be computed
directly from the lower nibbles of the master key. The same property holds for
higher nibbles.

Note that in KLEIN-64 case, since each round key is as long as the master key,
the lower nibbles of any round-key can be computed directly from the lower
nibbles of any other round-key.
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This proposition means that the keySchedule can be seen as two independent
and parallel subroutines involving each half of the key bits.

Propositions 1 and 2 are the two main ideas used in [4,13,21,24], that we
recycle and improve in our attacks.

4 Generic Description of Our Attacks

The best previous differential cryptanalyses of KLEIN basically exploited the
iterative truncated differential path over R rounds for building attacks on R+ 1
rounds. No condition was imposed in the last round, making the whole output
active.

Despite this, if we are given two ciphertexts (C,C ′) with a certain difference
Δout, we can easily check if they verify the difference conditions at the output
of round R (i.e., if they form a pair of values that might satisfy the differential
path) without needing to guess any key-bits: we just have to apply to the out-
put difference the linear transformation MixNibbles−1, and check if the higher
nibbles obtained are null, which will occur with a probability of 2−32.

In previous cryptanalysis, since the number of rounds considered was relatively
small, this big sieving of probability 2−32 appearing in the last round was sufficient
to select only the pairs that conform the differential path. The set of possible key-
bits involved in the differential path of the last round was then reduced to the ones
that verify the conditions of round R, by only keeping the keys that generated
higher nibble inputs with zero difference on each MixColumn from round R. Since
this imposes 3 + 3 = 6 bit-conditions as seen in Proposition 1, the number of
possible key-bits involved is basically reduced by 2−6.

In previous attacks several conforming pairs were produced (for example
6 in the 7-round attack) in order to iterate the filtering step of 2−6 and then
recover the involved round-key bits. Contrary to those attacks which require to
keep only the pairs that follow the differential path in the first step, we allow
ourselves to conserve pairs that do not follow the differential path after the
first filtering step. The pairs that verify the 32-bit conditions at round R + 1
but do not satisfy the differential path are called false alarms. The idea is then
to consider separately each candidate set made of one of these pairs and an
associated possible part of the key (only the lower nibbles), i.e. a candidate triplet
(C,C ′, klow), and apply to it several filters to decide if the set is valid, that is if the
pair is conforming the differential path while the considered part of the key is the
correct one. Those several filters consist in using not only the conditions from
the MixNibbles of round R but also the ones from the other rounds. Our sieves
will then consist in checking the conformity of the candidates’ differences going
through all the successive MixNibbles operations, starting from the ciphertexts
and inverting each round or starting from the plaintexts and considering the
rounds in the forward direction. As we show in Sect. 4.3, reaching the next sieve
requires to make a guess of 6 information bits. Since the sieve is of 2−6 in
the case of iterative rounds, the number of remaining candidates is unchanged
after the iterative filters, i.e., on average, for each candidate triplet (C,C ′, klow),
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only one candidate pair (S, S′)r can be associated per iterative round. We will
show how we can reduce the number of candidate triplets by first choosing a
differential path with specific non-iterative first rounds, that provide a more
powerfull filter, and second by comparing the informations obtained from the
plaintexts/ciphertexts and from the filtering process.

The step for recovering the remaining key-bits is usually much cheaper.
In the following, we will explain in detail this attack in a generic way, includ-

ing some technical improvements that have allowed us to reduce the complex-
ities of the attack, and provide a result on the whole 12 rounds of KLEIN-64,
the 64-bit key version, as well as much improved results on the other versions.
We will start by studying in detail the properties and equations derived from
MixNibble, showing how to correctly compute the probabilities of the path, the
cost of inverting each round and of guessing the necessary key-bits. We will also
provide the generic attack procedure with the corresponding complexities. Fur-
ther, in Sect. 5, we present different possible trade-offs of this attack and the
concrete results on the KLEIN ciphers, with one detailed example on the full
64-bit version that will also help the comprehension of the attacks.

4.1 MixNibbles Properties and Detailed Equations

Let us denote the binary decomposition of the byte a by (a0, a1, a2, a3, a4, a5, a6,
a7), where a0 is the MSB and a7 the LSB.

Proposition 3. The values of the lower nibbles outputting MixColumn depend
on the values of the lower nibbles at the input and on 3 quantities computed
from the higher nibbles that we will call 3 information bits. More precisely, to
compute the lower nibbles resulting of the operation MixColumn(a,b,c,d), the
3 information bits are: ⎧⎨

⎩
a0 + b0
b0 + c0
c0 + d0

In particular, a0 + b0 is needed for computing the lower nibble at the first
position, b0 + c0 the one in the second, c0 + d0 the one in the third and d0 + a0,
which is the sum of the three of them, is needed for computing the lower nibble
in the fourth position.

When considering MixColumn−1(a,b,c,d), a similar property holds for the
computation of the output lower nibbles, which requires the following 3 informa-
tion bits in addition to the input lower nibbles:

⎧⎪⎨
⎪⎩

a1 + a2 + b2 + c0 + c1 + c2 + d0 + d2

a1 + b0 + b1 + c1 + d0 + d1

a0 + a1 + a2 + b0 + b2 + c1 + c2 + d2

Similarly and consequently with Proposition 1, the values of the higher nibbles
outputting MixColumn depend on the values of the higher nibbles at the input and
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on 3 quantities computed from the lower nibbles that we will call 3 information
bits. More precisely, to compute the higher nibbles resulting of the operation
MixColumn(a,b,c,d), the 3 information bits are:

⎧⎨
⎩

a4 + b4
b4 + c4
c4 + d4

When considering MixColumn−1(a,b,c,d), a similar property holds for the
computation of the output higher nibbles, which requires the following 3 infor-
mation bits in addition to the input higher nibbles:

⎧⎪⎨
⎪⎩

a5 + a6 + b6 + c4 + c5 + c6 + d4 + d6

a5 + b4 + b5 + c5 + d4 + d5

a4 + a5 + a6 + b4 + b6 + c5 + c6 + d6

(1)

The proof can be found in the full version of this article [15]. This proposi-
tion implies that an attacker that knows the values of the input lower (respec-
tively higher) nibbles, has to guess 6 bits only to compute MixNibbles (or
MixNibbles−1) in its lower (respectively higher) nibbles. Since MixColumn is
linear, Proposition 3 applies both to values and to differences. This proposi-
tion will be used in our attacks for two different things: computing the correct
probabilities of each round, as well as showing how to invert the rounds.

4.2 Probability of One Iterative Round and Other Initial Rounds

As previously said, the probability of one iterative round was correctly pointed
out in [24] as 2−6. In [4] the given probability was 2−5.82. In fact, if no condition
is imposed on the input of one iterative round, the probability of verifying it is
indeed 2−6. We have been able to implement and verify this: we have found a
probability extremely close to 2−6 per iterative round with no special condition
on the input. As 2−6 can be seen as a close lower bound, we will consider this
probability for the iterative rounds without conditions as it is the worst scenario
for the attacker.

The difference in the probability computation can be introduced when, because
of a specific form of the differential path and the branch number of MixColumn
from previous rounds, some input nibbles are active or inactive for sure. This
will change the probability due to the Sbox: as already pointed out in [4], when a
nibble is active with probability one, its probability of outputting a pair of values
with a difference having its MSB to 0 is 7/15, but the probability of having its
MSB to 1 is 8/15. We have correctly taken this into account and conducted
new computations and experiments. All the configurations that we will use in
our analysis are represented in Fig. 2, so we use this figure as reference. We have
obtained the following results for the rounds 1,2,3 and 4 represented in the figure:

– For round 1, as pointed out in [24], there exists only one possible difference
with the 4 active lower nibbles that outputs after MixColumn a difference
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with only one lower nibble active and no difference in the higher nibbles:
(0d0b0e09). The probability of this round is then 2−16, as we want to obtain
a fixed difference after SubNibbles.

– For round 2 we know for sure that we have only one active MixColumn, and in
its input, we have only one active nibble, that will be active with probability
one. This means that the probability of verifying this round is ( 7

15 ) = 2−1.1.
– For round 3 we have both MixColumn active, each with exactly two active

nibbles in its input. The probability for this round is ( 7
15 )4 = 2−4.4, as the

MSB of all the 4 active nibbles need to be 0.
– For round 4 the track of the influence of the branch number starts to be hard

to follow. We have then performed experiments, and we could verify that the
probability of this step is extremely close to 2−6. Though a bit higher, for
the sake of simplicity and for considering the worst case for the attacker, we
consider it to be 2−6 (so the same case as iterative rounds).

4.3 Cost of Inverting One Round

By inverting one iterative round we consider the situation where a pair of values
for the lower nibbles of the output is given and we want to obtain the possible
pairs of values for the lower nibble inputs of that round. The lower nibbles of
the corresponding round-key are supposed known.

To invert round r we are given a candidate (C,C ′, klow), and its associated
candidate pair at round r: (S, S′)r. At the end, we obtain (S, S′)r−1. As the lower
nibbles of the key are known, we will omit AddRoundKey from the explanation,
as we only work on the lower nibbles of the state and it can consequently be
seen as transparent. The cost of inverting one round by using the naive way of
guessing the 6 additional information bits (3 for each MixColumn−1 as explained
in Proposition 3) all at once, and next discarding the ones that do not verify
the conditions of the previous round is of 26. We propose here a procedure for
inverting one round with a cost of 24 instead of 26.

Improved Cost of Inverting One Round. We first consider the case of inverting
one iterative round. We will later see what happens when the round is not
iterative. First, we make the 3-bit guess from the right part of Fig. 1 to compute
MixColumn−1, RotateNibbles−1 and SubNibbles−1 from steps 1, 2 and 3 on
half of the known state of (S, S′)r. Then we have obtained the pair of values
of the two most-left and of the two most-right lower nibbles from (S, S′)r−1,
and with them we can compute the nibble differences a, b, c′, d′ at the output
of MixColumn from step 4 in the figure. With the notations from Sect. 4.1, for
each of the 23 values of the information bits that we have tried, we compute the
following six bits in this exact order: (a5 + a6 + b6, a5 + b4 + b5, a4 + a5 + a6 +
b4 + b6, c

′
4 + c′

5 + c′
6 + d′

4 + d′
6, c

′
5 + d′

4 + d′
5, c

′
5 + c′

6 + d′
6). It is easy to verify that

these quantities correspond each to one half of the last three equations from
Proposition 3, equations that need to be verified in order to have the higher
nibbles inactive in the input of MixColumn. The first three quantities correspond
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Fig. 1. Detail of inverting one round.

to the part of the equations associated to the left MixColumn from Fig. 1, and
the next three, to the right one.

We can store all of these 6-bit values in a list of size 23. Next, we perform
a guess of the 3 bits needed for inverting the other half of (S, S′)r, and we can
compute the nibble differences a′, b′, c, d from the figure. For each one of the 23

values that we try, we compute the following 6 bits, in this order: (c4 + c5 + c6 +
d4 + d6, c5 + d4 + d5, c5 + c6 + d6, a

′
5 + a′

6 + b′
6, a

′
5 + b′

4 + b′
5, a

′
4 + a′

5 + a′
6 + b′

4 + b′
6)

and check if there is a match in the precomputed list, as we know that, for
any MixColumn−1 with no higher nibbles active in the input nor the output,
the three expressions from Eq. (1) must be equal to 0. The associated values
of the match will represent a value for a pair candidate at round r − 1, where
Δ(S, S′)r−1 = (a, b, c, d, a′, b′, c′, d′). A match occurs with probability of 2−6,
as we want to collide on 6 bits. As we have 23 × 23 pairs, on average we can
expect only one value to stay, so only one value on average for (S, S′)r−1 per
candidate triplet as previously announced, so inverting one iterative round does
not increase the number of kept candidates. The cost of this step, given by
applying the instant matching algorithm from [18] is about 23 + 23 = 24.

If the round we want to invert is not iterative, there usually exist more
difference conditions to be verified on the input, as in addition to the previous
six bit conditions, some more differences might have been fixed, like for example
non-active lower input Sboxes (in the non-iterative rounds we have considered in
our study, this is always the case). The cost of inverting is exactly the same (24),
but since there are more equations to verify, the probability that a candidate
pass will be smaller than 2−6: fewer candidates will be kept. The number of
candidates kept is even smaller when we invert the last round since we have to
match both differences and values of the computed half-states.

4.4 Guessing the Necessary Key-Bits

To perform the attack, we consider the pairs of ciphertexts (C,C ′) that verify
the last round condition on 32 bits and we need to guess the values of the lower
nibbles of the key (klow) that verify as well the first round conditions. Then,
we are able to compute the values and differences before the first MixNibbles,
place where we will stop inverting and where we will do the match of values and
differences recovered in the other direction. Proposition 2 shows us that a |k|/2
bit guess (where |k| is the length of the key) of the lower nibbles of the key is
sufficient to obtain all the lower nibbles of all the round-keys.
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We use a divide-and-conquer approach to guess the bits from klow and we are
then able to build the candidates (C,C ′, klow). This technique is similar to the
one proposed for inverting one round. Instead of guessing all the lower nibbles
of one key at the same time, we can perform this guess in an ingenious way that
allows to reduce the computational cost.

We consider the first round of the path (as conditions before MixNibbles
can be tested here without needing to guess any extra bits). From the plain-
texts (from which we obtained the ciphertexts C,C ′) we first consider 4 lower
nibbles that will be the inputs to the same MixColumn, and we guess the sixteen
bits from klow that are xored to this 4 nibbles in the first round. We next com-
pute the inputs of the corresponding MixColumn and we only keep the keys that
fulfill the needed conditions to verify round 1. These conditions will depend on
the specific path considered. For example, in Fig. 2, the conditions of the right
MixColumn from the first round are verified with probability 2−16, as only one
difference can verify them (as explained previously), which means that among
the 216 keybits tried for this half, only one value will verify this part of the path.
We repeat the procedure with the other 4 input lower nibbles and the other 16
key-bits. We combine both partial solutions and we obtain all the 232+p1 possible
candidate triplets derived from (C,C ′), where 2p1 is the probability of verifying
the first round of the path.

The cost in number of encryptions of recovering the candidate triplets for
each pair of ciphertexts considered is then 216 + 216 + 232+p1 × 2|klow|−32, as in
the first round only 32 bits from the lower nibbles intervene, and for realizing
the whole attack we have to guess the remaining ones (for KLEIN-64 the last
factor is 1 as |klow| = 32).

4.5 Generic Description of the Attack Procedure and Complexity

First, we choose a truncated differential path over the desired number of rounds:
several choices are possible, varying with the considered differences in the first
three rounds of the path and leading to different time-memory-data trade-offs,
as we will see in Sect. 5. Note that the size of the truncated difference entering
the first round determines the size of the structures that we can build with the
input plaintexts: if the size is Δin bits, we can build about 22Δin−1 pairs with
2Δin inputs. In the following 2p represents the probability of the whole path,
R is the number of rounds of the differential path and R + 1 is the number of
rounds that we will attack. We denote by 2p1 , 2p2 and 2p3 the probabilities of
the first 3 rounds respectively, p1, p2, p3 ≤ 0. Since one iterative round has a
probability of 2−6 of being verified and because of the forms of the considered
paths, we have p = p1 + p2 + p3 − 6 × (R − 3).

1. Obtaining enough data: With the use of structures, we generate a certain
number of ciphertexts such that we obtain enough pairs to be ensured to
get one that verify our differential path: to obtain the required 2−p pairs, we
encrypt 2−p

22Δin−1 2Δin plaintexts so we perform 2−p

22Δin−1 2Δin encryptions.
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2. Last-round filter: At this point, we can discard some pairs that for sure do
not verify the differential path. As detailed in [4,24], by inverting the output
difference through the last MixColumn we can observe the value of the dif-
ference entering this transformation and then discard the ones that do not
have the higher nibbles inactive. In practice, we construct a sorted list of all
the higher nibbles values obtained by inverting MixColumn from the cipher-
texts of a same structure (without considering the key addition) and look for
collisions. Such a collision occurs with probability 2−32 so there are 2−p−32

remaining pairs of plaintexts.
3. Guess the involved key-bits: For each pair of plaintexts and their associated

ciphertexts that collide at the previous step, we make two 16-bit guesses as
explained in Sect. 4.4 and obtain possible values of the first 8 lower nibbles
of the key. Since the conformity with round 1 is of probability 2p1 it gives
us 2−p−32+32+p1 candidates formed by a pair of plaintexts and the 8 first
lower nibbles of the master key. If the version attacked is KLEIN-64, the
8 lower nibbles correspond to the lower nibbles of the whole key but for
KLEIN-80 and KLEIN-96, we have to make additional guesses to obtain all
the possible lower nibble values. For KLEIN-64, KLEIN-80 and KLEIN-96
we obtain respectively 2−p−32+32+p1 , 2−p−32+32+p1+8 and 2−p−32+32+p1+16

possible candidates (C,C ′, klow). This step requires 2 × 1
12 × 216 encryptions,

and allows us to compute the associated pair of half-states (associated to
each candidate) at the input of the first MixNibbles that already satisfies the
conditions from round 1. We will denote this pair of half-states by (S, S′)∗

1.
4. Inverting the rounds: At this point we start inverting the rounds from the can-

didates that we have obtained, generating possible pairs (S, S′)r for r from R
to 1. That step requires 24 round encryptions per inversion and per triplet,
as detailed in Sect. 4.3. During the iterative rounds, the number of possible
triplets stays the same, contrary to what happens during the non-iterative
rounds where the number of candidates is reduced (see Sect. 4.3). The attack
is performed one triplet at a time. Once we have computed (S, S′)1, we have
to guess the 6 bits needed to invert the first MixNibbles, and next we have to
match values and active differences with the already computed values (S, S′)∗

1.
In the differential paths that we will consider, like the one represented in

Fig. 2, if we denote by 2q the filtering probability obtained when inverting
rounds 2, 3 and 4 (in some cases round 4 or even 3 adds just a filter of 2−6,
but to be general we include it in the special case), the total number of remain-
ing candidates in the end is 2−p−32+32+p1+6×4+q, 2−p−32+32+p1+8+6×4+q and
2−p−32+32+p1+16+6×4+q respectively for KLEIN-64, KLEIN-80 and KLEIN-
96. If the number of remaining candidates is smaller than 2|klow|, as there is
one possible value for klow per candidate, the cost of recovering the key is
smaller than the one of exhaustive search. In practice, after inverting all the
rounds, the number of remaining candidates is currently very small.

The cost of this step is given by the initial candidate triplets 2−p−32+32+p1

multiplied by 24 (cost of inverting), multiplied by the number of inverted
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rounds and by the relative cost to one encryption of each inverted round.
In the next section we will see an illustrative and detailed example of this
computation.

5. Recovering the whole key: Finally, we have to recover the higher nibbles of the
key, which can be done by an exhaustive search or better (as it is explained
in Sect. 4.6), and we have recovered the whole key.

4.6 Higher Nibbles Recovery

To recover the complete key, we can perform a more efficient attack than the
exhaustive search for the remaining key-bits, by deducing information from the
6-bit guesses associated to the candidates that remain after the sieving process.
One more time, each candidate that passes the sieving process will be studied
separately; we make the hypothesis that the candidate is valid so the 6-bit guesses
give us the values that must take certain combinations of intermediate states.

For instance, at the first round, we know the value that must be taken by
the sum of the MSB of the higher nibbles of the state entering the two first
MixColumn. For each possible value of the higher nibbles of the key, we will
compute that state from the plaintext and check this 6-bit condition. The keys
that pass the test will undergo the second sieve resulting from the second round
information bits and so on.

To limit the number of encryptions required to complete this step, we can
one more time use the independences between the 2 half-states during the
MixNibbles operation. We first make a guess on the 16 higher nibbles of the
master key that are added to the 32 middle bits of the state at the first round
and that impact the value of the 32 bits at the output of the left MixColumn. We
then check the 3 corresponding information bits and realise the same operations
for the 16 key bits required to compute the right MixColumn. Since 216 half-state
encryptions are required for each half, the first round filter requires 216 × 1

2 × 2
round encryptions.

Next, as previously said, each round gives a 6-bit filter for the higher nibbles
of the key. For example, for KLEIN-64 the total complexity of the higher nibbles
recovery is of (216 +226 +220 +214 +28 +22)× 1

12 = 222.4 complete encryptions.
This procedure needs to be repeated for each candidate recovered during the
klow search.

5 Different Time-Memory-Data Trade-Offs

Various differential truncated paths are possible, each one leading to different
time-memory-data trade-offs. We have studied many different possibilities and
we present here the 4 cases that have provided better results. The only difference
between them is the shape of the wanted differences in the first three rounds of
the path. We will explain one of them applied to the full 12 rounds of KLEIN-64
in a detailed way as an illustration of the attacks, and next present the other
cases considered, also with results given on the 64-bit key version. In the next
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section we will provide the results obtained with some considered cases in all the
versions of the cipher, for several number of rounds up to the highest number
that could be reached (which is 12, 13 and 14 for the 64-, 80-, and 96-bit versions
respectively).

We recall here that the probability values that we will use are well detailed
and explained in Sect. 4.2.

5.1 Case I

In this case, we consider a truncated differential path that corresponds to the
one in [24]. This path is depicted in Fig. 2, including the details of our attack.
This is the application that will provide us the best time complexity attack on
the full 12 rounds of KLEIN-64.

1. Obtaining enough data: Using Fig. 2 it is easy to verify that the differential
path has a probability of p = 2−16−1.1−4.4−6×8 = 2−69.5 and that Δin = 16.
Here, the probabilities correspond to the ones discussed in Sect. 4.2. We need
to generate pairs such that we can expect with a good probability that one
among them will verify the whole path. Since one structure allows us to
build 216 plaintexts, which lead to 216×(216−1)

2 ≈ 231 pairs, we have to build
269.5−31 = 238.5 structures to have among all the pairs one verifying the
whole path. This step then requires 238.5 ×216 = 254.5 full encryptions, which
correspond to the data complexity of the attack. As it is smaller than 264,
the whole codebook, we can obtain such an amount of plaintexts. Since the
true conforming pair is necessarily composed of 2 plaintexts from the same
structure, one structure can be treated after the other so the required memory
is of 216 plaintexts.

2. Last-round filter: we compare the values obtained when inverting the last
MixNibbles on each ciphertext and keep the pairs that have a difference with
inactive higher nibbles at this point. There remain 269.5−32 = 237.5 candidate
pairs of plaintext. The cost of this step is negligible.

3. Guess the involved key-bits: At this point, we perform the optimized guess of
the lower nibbles of the key, klow, as seen in Sect. 4.4, so we obtain 232−16 ×
237.5 = 253.5 candidates (C,C ′, klow) with (216 × 1

2 × 1
12 ) × 2 encryptions.

So far, we have 216 possible keys klow for each candidate pair (C,C ′). For each
candidate set, we know the values and differences at the input of MixNibbles
of the first round, (S, S′)∗

1, and these values already verify the conditions
imposed through the first MixNibbles.

4. Inverting the rounds: Each time that we obtain one of the 253.5 candidates,
we start inverting rounds and generating the candidate pairs from (S, S′)11
to (S, S′)4 (so we invert 8 rounds). We can see in Fig. 2 that for all of these
rounds, the amount of bits guessed compensates the probability of verifying
the path, and we expect to obtain one pair candidate per round and per
candidate set. As we can see in the figure, the remaining probabilities for
inverting rounds 4, 3, 2 and the MixNibbles transform from round 1 (so to
arrive to the previously computed values (S, S′)∗

1) is 2q = 2−20−13−36 = 2−69.
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Fig. 2. Attack on 12 rounds of KLEIN-64 using case I
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Indeed, the filter probability at the end of round 3 is of 2−(4×4)−4 = 2−20,
since we need to have 4 lower nibbles inactive and two MSB of the 4 active
lower nibbles to 0 and the input of MixNibbles as depicted in Fig. 2.
The probability of the filter at the end of round two is of 2−13 = 2−(3×4)−1

because of the three inactive lower nibbles at the input of the active MixColumn
and the MSB of the active one, and the filter probability at the end of the first
round is of 2−36 = 2−32−4 as we have to collide with the previously forward
computed 32 bits of values and 4 bits of differences.

If we apply the formula from Sect. 4.5, we can compute the number of
remaining candidate triplets as 269.5−32+32−16+6×4−69 = 28.5, meaning also
that we recover only 28.5 possibilities for the 32 bits in klow. The term 26×4

comes from the fact that we have to guess the 6 bits for inverting 4 rounds,
namely rounds 4, 3, 2 and also 1, as we want to match the values in (S, S′)∗

1.
The cost of this step is 269.5−32+32−16 × 2 × 1

2 × 8
12 × (23 + 23) � 256.9

encryptions for the inversion of the first 8 rounds. And for inverting the
remaining 4 rounds, we have a complexity of 253.5× 1

12 ×(23+23)+253.5+6−20×
1
12 × (23 + 23) + 239.5+6−13 × 1

12 × (23 + 23) + 232.5+6 × 1
12 × (23 + 23) � 253.9.

This part of the attack will be the bottleneck of the total time complexity:
256.9 + 253.9 = 257.07.

5. Recovering the whole key: Finally, we recover the higher nibbles with the pro-
cess explained in Sect. 4.6. The cost of this step is 28.5×222.4, so the bottleneck
in terms of time complexity for recovering the whole key is the one of the
previous step.

This version requires a total of 257.07 encryptions, 254.5 data and 216 memory.

5.2 Case II

We use a truncated differential path associated to the path given in [4]
(the value of the input difference is not fixed). As there is only one active nibble
at the beginning of the path, the structures will be the smallest ones that we
will use (size of Δin = 4), and the memory will be very small, while the data
complexity will be bigger than in other cases.

For the case of 12 rounds of KLEIN-64, we have a probability for the path
of 2−1.1−4.4−6×9 = 2−59.5. The amount of data needed is 259.5−7+4 = 256.5, and
the memory needed is 24. The bottleneck in the time complexity is given by
259.5−32+32−1.1 × 2 × 1

2 × 9
12 × (23 + 23) � 261.98. The number of remaining

candidates is 258.39+6−16−4+6−12−1+6−4−32 = 27.39. The time for recovering the
remaining bits of the key is 27.39 × 222.4 = 229.79.

5.3 Case III

This attack uses a path with an iterative round at every round, and Δin is
consequently 32. This attack has low data complexity, but the highest mem-
ory, and not very good time complexity in the case of an attack on 12-round
KLEIN-64.
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For the scenario on 12 rounds of KLEIN-64, the time complexity is very
close to the one of the exhaustive search. We have a probability for the path
of 2−6×11 = 2−66. The amount of data needed is 23+32 = 235, and the memory
needed is 232. The cost of the time bottleneck is given by 266−32+32−6 × 2 × 1

2 ×
11
12 × (23 + 23) = 263.87. The number of remaining candidates is 260+6−64 = 22.
The time for recovering the remaining bits of the key is 22 × 222.4 = 224.4.

5.4 Case IV

In this case, we use a truncated path that starts with a difference of the form
(0X0X000000000X0X), when represented as 16 nibbles. This one has the same
time complexity than the second one, better data and worse memory.

For the case of 12 rounds of KLEIN-64, we have a probability for the path of
2−3−4−6×9 = 2−61. The amount of data needed is 216+30 = 246, and the memory
needed is 216. The bottleneck in the time complexity is given by 261−32+32−3×2×
1
2× 9

12×(23+23) = 261.57. The number of remaining candidates is 261−3+6×3−20−48

= 28. The time for recovering the remaining bits of the key is 28 × 222.4 = 230.4.

5.5 Results on KLEIN-64

The complexity of the 4 different trade-offs presented here are summarized in
Table 3 and depicted on Fig. 3. Table 4 provides the results obtained on KLEIN-
64 using case I for different numbers of rounds.

5.6 Results on KLEIN-80 and KLEIN-96

For KLEIN-80 and 96 we provide in Table 5 the obtained results for several
numbers of rounds using different cases. Case I does not reach a lot of rounds, as
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Fig. 3. Beginnings of the truncated differential paths of our 4 trade-offs
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Table 3. Summary of the probabilities and complexities of our 4 trade-offs

Case p1 p2 p3 Data Time Memory

I −16 −1.1 −4.4 254.5 257 216

II −1.1 −4.4 −6 256.5 262 24

III −6 −6 −6 235 263.9 232

IV −3 −4 −6 246 261.6 216

Table 4. Best time complexities for recovering the whole key for several round-reduced
variants of KLEIN-64

Rounds Data Time Memory

8 230.5 231.7 216

9 236.5 238 216

10 242.5 244.4 216

11 248.5 250.6 216

12 254.5 257.07 216

the data complexity exceeds 264, which is the maximal amount of data available,
after 13 rounds.

6 Implementation and Verification

We have experimentally verified the efficiency of the proposed attacks by imple-
menting some variants in C language. We wrote our own implementation of
KLEIN-64 with look-up tables for MixColumn and its inverse and we verified it
with the test vectors given in KLEIN specifications [11].

We then implemented the attack exactly as described in Sect. 5: the complete
key is recovered in 2 steps with first the search for the lower nibbles with a
truncated differential and then the search for the higher nibbles with an improved
exhaustive search.

In particular, we have been able to implement the first successful practical
attack on KLEIN-64 up to 10 rounds. For this, we have considered case I, the one
having the smallest time complexity and average data and memory needs. We
used several speed-optimization flags and a computer with an Intel(R) Xeon(R)
CPU W3670 at 3.20 GHz (12 MB cache), and with 8 GB of RAM. Our program
shows that the proposed attack works and recovers the correct key.

Below we report the outputs of our program for an attack on 10 rounds. The
field structure refers to the randomly chosen values at the beginning, i.e. the 12
nibbles common to all the plaintexts so that the differences between 2 plaintexts
are only in the first and last 2 lower nibbles. Plaintext 1 and Plaintext 2 form
the conforming pair found that enabled us to determine the lower nibbles of the
key. Once the lower nibbles are found, the higher ones are recovered in a few
seconds.
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Table 5. Best complexities for recovering the whole key for several round-reduced
variants of KLEIN-80 and −96

Version Case Rounds Data Time Memory

80 I 12 254.5 265 216

80 I 13 260.5 271.1 216

80 II 13 262.5 276 24

80 III 13 241 278 232

80 IV 13 252 276 216

96 III 14 247 292 232

96 IV 14 258.4 289.2 216

NB rounds: 10

MasterKeyToFind: 66 a2 fa 17 23 19 39 bd

structure: c0 70 03 39 de 72 30 e0

Plaintext 1: c3 79 03 39 de 72 34 e4

Plaintext 2: c2 77 03 39 de 72 30 e1

lower nibbles found: 06 02 0a 07 03 09 09 0d

Complete Key: 66 a2 fa 17 23 19 39 bd

number of pltxt: 624712959124 i.e.: 2^39.184403

number of false alarms: 4764629 i.e.: 2^22.183932

number of structures: 9532364

time elapsed: 1254407.310000 sec

We checked manually that the 2 returned plaintexts conform the differen-
tial path and compared our theoretical results with the practical ones. First,
we notice that this result required by chance little less data than theoretically
predicted (242.5) and second we notice that the ratio of false alarms meets the
theory: since we encrypted 239.184 plaintexts, we were able to create 254.184 pairs
so we expected a total of 254.184−32 = 222.184 pairs to pass the first test which is
really close to the observed number of false alarms. This experiment takes near
to 15 days.

The experiments on 9-round versions took us an average of 2 days to recover
the complete key. Some of them are detailed in the full version of this paper [15].
Since that experiments were quicker, we were able to do several ones to compute
average values. As for the previous result, some experiments needed less data
than expected theoretically (by chance) but in average on 4 tests 236,483 plain-
texts were encrypted (which is really close to the 236.5 expected), 219,483 false
alarms appeared and 47 h were required.

7 Conclusion

In this paper we propose the first attack on the full version of KLEIN-64. It
improves the previous results from 10 to 12 rounds. For the 80-bit and 96-bit
key versions we have provided several attacks on 13 and 14 rounds respectively.
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We have implemented round-reduced versions of our attacks, and have been able
to verify the theoretical complexities that we have predicted and to validate our
assumptions. In particular, we have successfully implemented an attack on 10
rounds of KLEIN-64. This is the practical attack realized on the highest number
of rounds, as previous results could not reach more than 8 rounds.

The main weakness of the cipher might be the fact that the MixColumn
transformation does not correctly mix higher and lower nibbles, as it is the only
transform that does so. Maybe considering other matrices instead could lead to
a more solid construction. Also, the fact that the KeySchedule does not mix
higher and lower nibbles helps the cryptanalyst to perform a reduced partial key
search, so a stronger KeySchedule could help to prevent the attacks.

We believe that the family of attacks presented, though clearly dedicated to
the cryptanalysis of KLEIN, might apply to other ciphers with big independences
between two parts of the state.
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20. Nikolić, I., Wang, L., Wu, S.: Cryptanalysis of Round-Reduced LED. In: Moriai,
S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 112–130. springer, Heidelberg (2014)

21. Nikolic, I., Wang, L., Wu, S.: The Parallel-Cut Meet-in-the-Middle Attack. Cryp-
tology ePrint Archive, Report 2013/530 (2013). http://eprint.iacr.org/

22. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : A Lightweight
Block Cipher for Multiple Platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

23. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik,
G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

24. Yu, X., Wu, W., Li, Y., Zhang, L.: Cryptanalysis of Reduced-Round KLEIN Block
Cipher. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537,
pp. 237–250. Springer, Heidelberg (2012)

https://into.aalto.fi/download/attachments/9382995/VikashKumarJha_thesis.pdf
https://into.aalto.fi/download/attachments/9382995/VikashKumarJha_thesis.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/


Hash Functions



Branching Heuristics in Differential Collision
Search with Applications to SHA-512

Maria Eichlseder(B), Florian Mendel, and Martin Schläffer
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Abstract. In this work, we present practical semi-free-start collisions
for SHA-512 on up to 38 (out of 80) steps with complexity 240.5. The
best previously published result was on 24 steps. The attack is based on
extending local collisions as proposed by Mendel et al. in their Eurocrypt
2013 attack on SHA-256. However, for SHA-512, the search space is too
large for direct application of these techniques. We achieve our result
by improving the branching heuristic of the guess-and-determine app-
roach to find differential characteristics and conforming message pairs.
Experiments show that for smaller problems like 27 steps of SHA-512,
the heuristic can also speed up the collision search by a factor of 220.

Keywords: Hash functions · Cryptanalysis · SHA-512 · Collision attack ·
Guess-and-determine attack · Branching heuristic

1 Introduction

Since 2005, many collision attacks have been shown for commonly used and
standardized hash functions. In particular, the collision attacks of Wang et al.
[41,42] on MD5 and SHA-1 have convinced many cryptographers that these
widely deployed hash functions can no longer be considered secure. As a con-
sequence, NIST has proposed the transition from SHA-1 to the SHA-2 family.
Many companies and organization follow this advice and have already migrated
to SHA-2. Even more might do so, since Keccak [33] has not been standardized
as SHA-3 yet and SHA-2 is faster on several platforms. In particular, SHA-512
is much faster than both SHA-256 and Keccak on most 64-bit platforms [2]. For
this reason, it has been suggested to use a truncated version of SHA-512 even
for 256-bit hash values [38]. NIST also defines this variant, called SHA-512/256,
in FIPS 180-4 [32].

Nevertheless, not many cryptanalytic results on SHA-512 have been published
in the last few years. The security of SHA-512 against preimage attacks was first
studied by Aoki et al. in [1]. They presented a preimage attack on 46 out of
80 steps.Thiswas later extended to 50 steps byKhovratovich et al. in [19]. Recently,
Li et al. showed that particular preimage attacks can also be used to construct a
free-start collision attack for up to 57 steps of SHA-512 in [24]. However, all attacks
are only slightly faster than the respective generic attack complexities.
c© International Association for Cryptologic Research 2015
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The currently best known practical collision attack on both the SHA-512 hash
and compression function is for 24 steps. It has been published independently by
Indesteege et al. [16] and by Sanadhya and Sarkar [36]. Both attacks are trivial
extensions of the attack strategy of Nikolić and Biryukov [34] which applies to
both SHA-256 and SHA-512. Recently, Mendel et al. [27,29] demonstrated how
to extend these attacks to get collisions for the SHA-256 compression function
on up to 38 steps with practical complexity.

The attacks by Mendel et al. use a guess-and-determine based automatic
search tool to find differential characteristics and conforming message pairs for
reduced SHA-256. Since the first publication by De Cannière and Rechberger on
SHA-1 in [7], such tools have been constantly improved [21,22,27,29]. Neverthe-
less, the increased search space of SHA-512 (due to larger word sizes) prevented
successful attacks without the application of new ideas.

To handle the larger search space of SHA-512, we propose a new branching
heuristic for the guess-and-determine strategy used in these attacks. Our app-
roach is inspired from related ideas in SAT solvers [15,23]. The heuristic performs
a randomized look-ahead selection of candidates which should be guessed first.
Using this approach, we can detect contradictions earlier and reduce the search
space faster. More specifically, we are able to speed up the search on SHA-512
by a factor of about 220 (for 27 steps), which allows us to construct practical
collisions for 38 steps with a complexity of 240.5.

The remainder of this paper is structured as follows. We first give a high-
level overview of our attack strategy and related work in Sect. 2. In Sect. 3, we
discuss branching heuristics used in SAT solvers and propose our new look-ahead
branching heuristic for differential cryptanalysis tools. In Sect. 4, we demonstrate
the application of the heuristic to SHA-512 and present a practical semi-free-
start collision for 38 steps. Finally, we conclude in Sect. 5.

2 Motivation

In this section, we give a brief overview on the differential cryptanalysis of hash
functions and how the guess-and-determine approach is used to search for differ-
ential characteristics. Furthermore, we provide a high-level view on optimization
options to improve this search.

2.1 The Search for Differential Characteristics

A differential attack consists of two main parts: constructing a differential char-
acteristic and finding a confirming message pair. Since the attacks by Wang et al.
[40–42], these parts are further divided to improve the overall attack complexity
as follows:

– Find a differential characteristic
1. Construct the high-probability part of a characteristic.
2. Determine the low-probability part of a characteristic.
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– Find a conforming message pair
3. Use message modification in low-probability part.
4. Perform random trials in high-probability part.

We provide significant improvements in finding dense low-probability differen-
tial characteristics. To motivate our work, we first provide an overview of previ-
ously published methods and show how we improve upon these methods using
improvements in the guess-and-determine approach.

Constructing the differential characteristic for the low-probability part is one
of the most difficult tasks in a differential attack. The main reason is that such
low-probability characteristics are usually very dense and have many (hidden)
relations which need to be taken into account. Wang et al. found the dense
low-probability characteristics for the attacks on MD4, MD5, RIPEMD, SHA-0
and SHA-1 mostly by hand [40–42]. However, for more complex hash func-
tions, such an approach is infeasible. Therefore, (semi-)automatic approaches
have been published soon afterwards [7,37]. These approaches have then been
refined in a number of publications. Recently, more sophisticated approaches
have been proposed that enable attacks on more complex hash functions such as
SHA-256 [27,29] among many others [20,22,26,28]. All these approaches (includ-
ing the search by hand) follow the guess-and-determine strategy.

2.2 The Guess-and-Determine Approach

The basic idea of the search algorithm is to pick and guess previously unre-
stricted bits. After each guess, the information gained from these restrictions is
propagated to other bits. If an inconsistency occurs, the algorithm backtracks
to an earlier state of the search and tries to correct it. Similar to [27], we denote
these three parts of the search by decision (guessing), deduction (propagation),
and backtracking (correction). Then, the search algorithm proceeds as in Algo-
rithm 1 given below.

Algorithm 1. Guess-and-Determine Search Algorithm
Let U be a set of undetermined bits
while U contains undetermined bits do

Decision (Guessing)
1. pick an undetermined bit (randomly or heuristically)
2. impose new constraints on this bit

Deduction (Propagation)
3. propagate the new information to other variables and equations
4. if an inconsistency is detected, start backtracking,

else continue with step 1
Backtracking (Correction)

5. try a different choice for the decision bit and continue with step 3.
6. if all choices result in inconsistencies,

undo guesses until this critical bit can be resolved



476 M. Eichlseder et al.

This procedure can also be visualized by a search tree, which is traversed by
depth first search. The branching strategy decides on which variable to split the
tree next and thus defines the tree’s shape. Typically, the complete tree is much
too large for complete traversal, so it is crucial that more promising branches
are visited first. In addition, the backtracking algorithm can skip parts of the
tree in favor of exploring more distant parts. This makes the search incomplete,
but in practice greatly improves the performance.

The challenge in finding a long differential characteristic lies in the fine-
tuning of the search algorithm. There are many possible variations, and details
can determine whether the search succeeds or fails.

2.3 Improving the Guess-and-Determine Approach

Basically, a guess-and-determine is just a repetition of two steps: first, guess the
value of some unknowns and second, determine the value of as many unknowns
as possible. However, in practice more details need to be considered to mount
successful guess-and-determine attacks on complex hash functions. The most
important points to consider are given as follows:

1. Problem Description: The complexity of a guess-and-determine attack can
be significantly improved if we first optimize the problem description. For
example, first constructing a characteristic and then searching for a message
pair is already such an optimization. Additionally, the choice of intermediate
variables and a good starting point are crucial for a guess-and-determine
attack to succeed.

2. Guessing Strategy: Instead of randomly guessing variables, using high-level
information can lead to much better guesses. For example, by preferring bits
(or even words) with no differences, characteristics tend to get sparser, have
a higher probability, and conforming message pairs are more likely to exist.

3. Branching Rules: In every iteration, the guess-and-determine algorithm
needs to decide which branch of the search tree to follow. Using a good branch-
ing heuristic, contradictions can be found faster and the search space can be
reduced more quickly.

4. Propagation: Every time a variable is guessed, we need to check whether
the guess is invalid, or new information on other variables can be determined.
There is a trade-off between the effort we spend in this step and simply guess-
ing more bits. Different propagation methods for ARX-based hash functions
are covered in detail in [9,21,22,27].

5. Backtracking: To recover from bad search spaces which do not contain many
solutions anymore, we need to backtrack. Two extreme options are perform-
ing a complete restart or examining the complete search space. A successful
backtracking strategy for SHA-2 has been published in [27].

The first two points are very specific to a given problem and cannot be solved in
general. In our attacks on SHA-512, a good starting point is constructed using
improved local collisions, similar as in the attack on SHA-256 in [29]. The last two
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points have already been covered in a number of publications. Additional efforts
in these points did not improve the guess-and-determine attack on SHA-512. This
leaves the branching rules which have not been optimized yet. In the following,
we show that a good branching heuristic can significantly improve the efficiency
of a guess-and-determine attack.

3 Branching Heuristics

Branching rules are one of the essential ingredients for guess-and-determine
attacks. They define how the search algorithm selects the next variable to guess,
and which guess values to try first for this variable. The branching rule aims
to keep the search runtime as short as possible. Depending on whether the cur-
rent partial assignment is correct (satisfiable) or contradictory, this means either
that a satisfying solution is found as soon as possible, or that the contradiction is
detected quickly. In the latter case, this corresponds to identifying a conflicting
subset of unassigned variables and branching on these first in order to prune the
search tree. The search trees traversed by different branching rules can vary dras-
tically in size, from constant (for unsatisfiable problems) or linear (for satisfiable
problems) to exponential in the number of variables [35].

This section first discusses existing branching rules used in general-purpose
SAT solvers and for the cryptanalysis of hash functions. Afterwards, we introduce
our randomized look-ahead heuristic.

3.1 Branching Heuristics in SAT Solvers

Most general-purpose SAT solvers are based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [6], a guess-and-determine approach for satisfiability
problems given in conjunctive normal form (CNF). The problem of choosing
optimal branching variables and corresponding assignments for DPLL algorithms
has been proven to be both NP-hard and coNP-hard [25]. However, there is a
variety of commonly implemented branching rules based on different heuristics to
evaluate the urgency or relevance of potential branching variables. In addition,
meta-rules to select different branching rules depending on the situation and
search history have been proposed [13].

Commonly used SAT branching rules can be categorized according to their
target heuristic (current properties, look-ahead or history analysis), their out-
put (a single branching variable/literal or a preselection of candidate variables)
and their randomness (deterministic or randomized). Popularly used heuristics
include the following:

– Uniformly random. A random unassigned variable is picked with uniform
distribution. This approach is computationally cheapest. Many modern SAT
solvers apply this rule with a small probability and otherwise use a more
informed choice. In differential cryptanalysis, this is the most typical rule.
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– Small clauses. The earliest heuristics greedily favor variables that appear
in many small clauses. The rationale for this choice is twofold. First, smaller
clauses need to be fulfilled “more urgently” since there are fewer options left
that avoid contradictions. Second, even if the guessed literal evaluates to false
in binary clauses, unit propagation ensues and curtails the search tree.

Example heuristics of this category include Böhm’s rule [3], MOM (max-
imum occurrences on clauses of minimum size) [10], and the Jeroslaw-Wang
rules [17]. The latter, for example, assign weights w(c) to clauses c that
decrease exponentially with the clause length |c|. Each literal (OS-JW) or
variable (TW-JW) scores according to the weight sum of all clauses it appears
in, and the best literal or variable is picked for guessing.

More recently, small clauses have been used as a preselection heuristic for
more expensive look-ahead rules. In differential guess-and-determine attacks,
two-bit conditions [27] play a related role. This preselection heuristic also favors
variables with a higher number of closely coupled undetermined variables.

– Literal count. These heuristics ignore the clause size and simply count
unresolved clauses linked to a variable. Examples include DLCS and DLIS
as introduced by the GRASP solver [39]. It makes sense in CNF problems,
where satisfying one literal resolves the complete clause. This does not apply,
for example, for the xor-chains typically found in hash functions. Instead,
this heuristic would create a large amount of (hidden) dependencies and
reduce the remaining freedom without the positive effect of immediate
propagation.

– Conflict driven. A more popular variation of literal counting is VSIDS, first
implemented in Chaff [30] and later included in MiniSAT [8] and others. Here,
the initial literal score of each variable decays over time via multiplication with
a constant δ < 1. However, scores are refreshed (bumped) with occurrences
in newly learned clauses from the CDCL process. Effectively, the score keeps
track of recent contradictions involving the variable. Critical variables with
many recent contradictions are guessed first.

The BerkMin solver extends this concept to bump not only variables from
learned clauses, but from any clauses involved in the resolution process [12].

In differential attacks, the backtracking strategy [27] provides a similar
behaviour.

– Look-ahead. Instead of judging current properties of the formula or the pre-
vious search history, look-ahead heuristics analyse the actual effects of branch-
ing in a candidate variable [15,23]. For example, the Satz solver performs Unit
Propagation Look-Ahead: both possible assigments for each free variable are
tested for consequences of this decision and the caused unit propagations. If
one of two assignments causes a contradiction, the other is fixed; if both are
contradictory, backtracking is started; and if both seem valid, the variable v
is assigned score

M(v) = w(¬v) · w(v) · 1024 + w(¬v) + w(v),



Branching Heuristics in Differential Collision Search 479

where w(�) is typically the number of new binary clauses caused by the prop-
agation of literal � ∈ {v,¬v}.

– Locality. To limit the candidates for expensive look-ahead calculations, the
candidate variables can be limited to those occurring in recently changed
(reduced) clauses, as implemented in the marchdl solver [14].

Not all of these rules are suitable for general Boolean satisfiability problems that
are not given in CNF format, as already indicated in the list above. In particular,
if the propagation and learning process differs from the standard SAT case, the
above rules can be counterproductive. On the positive side, dedicated solvers for
specific applications can apply domain-specific knowledge to guide the search
process.

3.2 The Look-Ahead Branching Heuristic

The branching strategy is one of the most promising areas for optimization
in differential cryptanalysis tools based on tree search. Ideally, the branching
strategy quickly navigates towards a valid assignment of variables and avoids
subtrees without solutions. For detecting invalid subtrees, the branching strategy
relies on the propagation method to detect contradictions as soon as possible.
However, the propagation procedure can not only be used to decide whether
previous guesses were contradictory. In addition, we also want to apply it to
guide the branching strategy. The goal of this interaction is to minimize the size
of the search tree in order to find solutions faster.

The basic principles of our implementation of the look-ahead branching
heuristic are given by the following two observations:

– Productive propagation is good. Guessing a variable where propagation
of the value determines (many) other variables can have multiple advantages
compared to variables with less propagation. The most immediate effect is
that the remaining search space is reduced. If more variables are determined
right now, they will not create unnecessary subtrees for guessing later. The
overall tree size and thus the complexity of the remaining search is reduced.

– Contradictions are even better. Of course, the overall search aims to find
non-contradictory assignments. Nevertheless, discovering contradictory value
assignments in the current subtree is consistently helpful for the remaining
search. If only one of two possible value assignments is contradictory, the
variable certainly needs to be fixed to the other value. If both values are
contradictory, we must already have made an error with a previous guess and
need to backtrack immediately. In both cases, it is clearly better to address
the conflicting bit sooner rather than later.

Note that the first criterion is not beyond controversy. In particular, limiting
the search space at the same time reduces the remaining degrees of freedom.
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If one value assigned to a specific bit propagates better than the second possible
value, then, intuitively speaking, the probability for a solution in the remaining
search space for the first option is lower than for the second value.

3.3 Implementation of the Look-Ahead Branching Heuristic

In order to implement the criteria above in a practical branching heuristic, we
use a look-ahead approach related to the Unit-Propagation Look-Ahead (UPLA)
used in some SAT solvers. When the branching rule needs to select the next
variable to guess, each candidate is in turn evaluated.

In more detail, for each candidate, a value is tentatively assigned and the
propagation method is applied to determine the consequences of this assignment.
If a contradiction occurs, this candidate is selected immediately. Otherwise, the
number of propagated variables is calculated. If it is better than the previously
favorite candidate, this variable becomes the new favorite.

There are two performance-related problems with this basic approach. First,
performing the look-ahead propagation for all free variables is very costly. Sec-
ond, the basic UPLA approach includes no randomization. However, we need
randomization since a complete search of the tree is typically computationally
infeasible in differential cryptanalysis. Instead, large tree parts are skipped and
the search is restarted regularly. To avoid becoming lost in the same search
branches over and over again, it is essential that the branching strategy is suffi-
ciently randomized.

We address both problems at once by selecting only a random subset of vari-
ables for closer evaluation. Our branching heuristic is summarized in Algorithm 2.

Algorithm 2. Look-ahead branching heuristic for differential cryptanalysis
Let U be a set of undetermined bits and smax the limit of look-ahead candidates.
repeat

Guessing
1. pick a bit v ∈ U randomly and increment s
2. impose new constraints on this bit v

Propagation
3. propagate the new information to other variables and equations
4. if an inconsistency is detected, return v as the decision bit

else count the number m of additional variables that were assigned due to
this guess and save the pair (v,m) in a list L.

Update
5. remove all variables that were assigned due to the guess v from the set U
6. undo all changes to restore the original assignment

until U is empty or s ≥ smax

return v∗ from L with the highest score m as the decision bit

The size of the randomly selected subset is an essential parameter for the
success of the heuristic. To limit the look-ahead costs, we limit the maximum
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subset size by a constant number that is chosen in the beginning of the search
procedure, depending on the specific problem instance. In order to also provide
sufficient randomization, we additionally bound the size relative to the current
number of unguessed variables.

Beside the subset size, the decision which individual variables to select for
look-ahead plays a role. UPLA-based solvers use a pre-selection of interesting
candidates, for example by locality criteria. In our case, the search performance
can be greatly improved by only guessing bits of specific hash function words and
favoring bits with more two-bit conditions or bits involved in recent conflicts.
However, the selection must remain sufficiently randomized.

Additionally, we do not explicitly evaluate variables that were already deter-
mined by the propagation procedure of one of the previous candidates. We mark
these as evaluated without calculating a separate look-ahead and without consid-
ering them as favorite candidates, since their score is at most as good as the bit
that triggered their propagation (at least with respect to one of the assignment
options).

4 Application to SHA-512

In this section, we discuss the application of our look-ahead branching heuristics
to SHA-512. As a result, we are able to construct the first practical collision
on the reduced SHA-512 compression function for 38 out of 80 steps. The best
previously published result was on 24 steps.

4.1 Brief Description of SHA-512

SHA-512 is an iterated hash function that processes 1024-bit input message
blocks and produces a 512-bit hash value. In the following, we briefly describe
the hash function. It basically consists of two parts: the message expansion and
the state update transformation. A detailed description of the hash function is
given in [31].

Message Expansion. The message expansion of SHA-512 splits the 1024-bit
message block into 16 64-bit words Mi and expands them into 80 expanded
message words Wi as follows:

Wi =
{

Mi 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 16 ≤ i < 80

The functions σ0(x) and σ1(x) are given by

σ0(x) = (x ≫ 1) ⊕ (x ≫ 8) ⊕ (x � 7)
σ1(x) = (x ≫ 19) ⊕ (x ≫ 61) ⊕ (x � 6).
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State Update Transformation. The state update transformation starts from
a (fixed) initial value IV of 8 64-bit words A−4, . . . , A−1, E−4, . . . , E−1 and
updates them in 80 steps. In each step one expanded message word Wi is used
to compute the two state variables Ei and Ai as follows:

Ei = Ai−4 + Ei−4 + Σ1(Ei−1) + IF(Ei−1, Ei−2, Ei−3) + Ki + Wi

Ai = Ei − Ai−4 + Σ0(Ai−1) + MAJ(Ai−1, Ai−2, Ai−3).

For the definition of the step constants Ki we refer to [31]. The bitwise
Boolean functions IF and MAJ used in each step are defined by

IF(x, y, z) = x ∧ y ⊕ x ∧ z ⊕ z

MAJ(x, y, z) = x ∧ y ⊕ y ∧ z ⊕ x ∧ z,

and the linear functions Σ0 and Σ1 are defined as follows:

Σ0(x) = (x ≫ 28) ⊕ (x ≫ 34) ⊕ (x ≫ 39)
Σ1(x) = (x ≫ 14) ⊕ (x ≫ 18) ⊕ (x ≫ 41).

After the last step of the state update transformation, the initial values are
added to the output values of the last step (Davies-Meyer construction). The
result is the final hash value or the initial value for the next message block.

4.2 Extending the Attacks on SHA-256 to SHA-512

For our collision attacks on SHA-512, we use the same strategy as in the attack on
SHA-256 in [29]. Since the message expansion and state update transformation is
the same (except for larger word sizes and different rotation values in Σi, σi), we
can use similar local collisions (with differences in the same message words)
to construct semi-free-start collisions for the compression function on up to
38 steps.

The starting point for 38 steps uses a local collision which spans 18 steps,
with differences in 6 expanded message words (W7,W8,W10,W15,W23,W24).
For more details on how to select the starting point, we refer to [29]. Once the
starting point is fixed, the main task is to find a differential characteristic and
confirming message pair for this 18-step local collision.

By using the same guessing, backtracking and propagation strategy, we did
not find any results for 38 steps of SHA-512. Due to the large word size and
thus, larger search space, contradictions are detected much later in SHA-512.
We have tried different approaches on every level, but did not succeed in finding
any valid differential characteristics. The solution was to optimize the branching
strategy to detect on one hand contradictions earlier and on the other side to
reduce the search space faster.
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4.3 Improving the Search Using Look-Ahead Branching

To improve the search algorithm, we use the look-ahead branching heuristic
proposed in Sect. 3.3. As discussed there, the choice of the subset size smax is
critical for the behaviour of the heuristic. We have evaluated different variants
of the heuristic and get the best results for a limit of smax = 16. Larger values of
smax further reduce the tree depth, but due to the additional cost for evaluating
more candidates, this does not improve the overall runtime.

Additionally, with larger subset sizes, the search tends to visit very similar
subtrees again and again after each restart. This is particularly critical if the
search space is limited to a few words, as in the focused search strategy described
below. For other hash functions with larger states sizes or less focused search
strategies, the optimal value for smax may be very different.

Similar to [29], the guess-and-determine attack is separated into three stages.
The rules of the guessing strategy are given in Table 1 and the three stages are
summarized as follows:

Stage 1:
We first search for a consistent differential characteristic in the message
expansion. Hence, we only add unconstrained bits (‘?’) and difference bits
(‘x’) of W to the set U .

Stage 2:
We continue with the search for a differential characteristic in the state
update. Hence, we add all unconstrained bits (‘?’) and difference bits (‘x’)
of A and E to the set U . We pick decision bits more often from A, since this
results in sparser characteristics for A. Experiments have shown that in this
case, confirming message pairs are easier to find in the last stage.

Stage 3:
In the last stage, we search for confirming message pairs by guessing bits
without difference (‘-’). We only pick decision bits of A, E and W which
are constrained by two-bit conditions, similar as in [27]. This serves as a
preselection heuristic for the branching look-ahead.

Table 1. Decision rules in different search stages.

Stage Decision bit Decision rule

Probability Choice 1 Choice 2
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1/2
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4.4 Results

Using the improvements in the branching heuristic proposed in the previous
section, we are able to find semi-free-start collisions for SHA-512 on up to 38
steps. Finding a differential characteristic together with a conforming message
pair took 5441 s (≈1.5 h) on a cluster with 40 CPUs. This corresponds to a
complexity of about 240.5 evaluations of the SHA-512 compression function. The
colliding message pair is given in Table 2 and the differential characteristic is
shown in Table 3.

Table 2. Example of a semi-free-start collision for 38 steps of SHA-512.

h0 e8626f53a3771964 2ae427b8c5065790 c8fd5a1628fc3337 0f362d297f82f987

89166a0c022ffc40 c2c49c30e629239f d1fa8bd692843025 ad4bba64c797e6ec

m 610519a88f0d2809 3addc83f01c8b179 84afa7a2772c6141 ad539854e64c9cce

85450b73549b2085 7296b5291f31c0d9 fc978d9624e2c2cc fffffffffffffffe

92114cb9d2f4cd9b 34a3198b79871212 cca7f43154e38081 ac0598a589168fe1

f32ae6a0070a8d2e 755aa5cada87e894 4b9bd7df3c94b667 65291f2b80cc8c51

m∗ 610519a88f0d2809 3addc83f01c8b179 84afa7a2772c6141 ad539854e64c9cce

85450b73549b2085 7296b5291f31c0d9 fc978d9624e2c2cc 0000000000000001

92114cb9d2f4cd9c 34a3198b79871212 cca8143154e38079 ac0598a589168fe1

f32ae6a0070a8d2e 755aa5cada87e894 4b9bd7df3c94b667 65291f2b80cc8c50

Δm 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 ffffffffffffffff

0000000000000007 0000000000000000 000fe000000000f8 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000001

h1 946a28eedc3b2ff6 c4573d0a13ea6268 11f07b04b06900dd 897c606e4053bbe4

2406aae9d58504b4 89b237932b061ba8 663402cb4bb1972c d99c062dce945423

To show the benefit of our new look-ahead branching heuristic, we have
performed some comparisons. Without look-ahead branching, we were able to
find a semi-free-start collision for 27 steps of SHA-512 using 4 days on a cluster
with 40 nodes, which corresponds to a complexity of about 246.5. Using look-
ahead branching with smax = 16 we can find differential characteristics with
conforming message pairs within seconds on a standard PC (complexity 226.5).

The heuristic can also be used to improve the search complexity for prim-
itives with a smaller state to a certain extent. For example, experiments show
a speedup of more than an order of magnitude for attacks on 27 or 38 steps
of SHA-256. However, due to the heuristic nature of the improvement and the
general sensitivity of the search procedure to different parameters, the effects
are hard to quantify.

Unfortunately, we were not able to extend the semi-free-start collisions to
collision attacks on the hash function. The main reason is that the resulting
differential characteristics are quite dense and we do not have enough freedom
to match the IV with practical complexity.
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5 Conclusions

In this work, we have improved the best semi-free-start collisions on SHA-512
from 24 to 38 steps. Our attack has a practical complexity of 240.5 and we
have shown a colliding message pair. We get this result by applying the semi-
free-start collision attack on 38 steps of SHA-256 to SHA-512. However, due to
the increased word size, and hence increased search space, a straight-forward
extension was not possible.

To get these results we have analyzed possible improvements in the guess-and-
determine approach to find differential characteristics and conforming message
pairs. We got the best results by optimizing the branching heuristic using ideas
from SAT solvers. Our heuristic performs a randomized look-ahead selection of
candidates which should be guessed first.

Future work includes to apply the look-ahead heuristic to more complex des-
igns. Also, other techniques from SAT solvers may improve guess-and-determine
attacks in differential cryptanalysis. However, a direct application of SAT solver
techniques without taking high-level information on differential cryptanalysis into
account is usually not successful. Finally, an open question is how to use our new
results to improve the collision attacks on the SHA-512 hash function.
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Abstract. Let d ≥ 1 be an integer and R1 be a finite ring whose ele-
ments are called block. A d-block universal hash over R1 is a vector
of d multivariate polynomials in message and key block such that the
maximum differential probability of the hash function is “low”. Two such
single block hashes are pseudo dot-product (PDP) hash and Bernstein-
Rabin-Winograd (BRW) hash which require n

2
multiplications for n mes-

sage blocks. The Toeplitz construction and d independent invocations of
PDP are d-block hash outputs which require d× n

2
multiplications. How-

ever, here we show that at least (d − 1) + n
2

multiplications are neces-
sary to compute a universal hash over n message blocks. We construct a
d-block universal hash, called EHC, which requires the matching (d−1)+ n

2

multiplications for d ≤ 4. Hence it is optimum and our lower bound is
tight when d ≤ 4. It has similar parllelizibility, key size like Toeplitz and
so it can be used as a light-weight universal hash.

Keywords: Universal hash · AXU hash · Multivariate polynomial ·
Error correcting code · Vandermonde matrix · Toeplitz hash

1 Introduction

Universal hash function and its close variants ΔU hash [10,13,40,42,43] are
used as building blocks of several cryptographic constructions, e.g., message
authentication codes [10,49], domain extension of pseudorandom functions [2,4],
extractors [15,32] and quasi-randomness [44]. It also has close connection with
error correcting codes and other combinatorial objects [13,43].

Informally, a universal hash function h takes two inputs, a key k and a
message m of arbitrary length, and produces a fixed-length output hk(m) :=
h(k,m). For a universal (or ΔU) hash function h the following holds: for any
two distinct messages m1,m2, the collision probability Pr[hk(m1) = hk(m2)] (or
differential probability maxδ Pr[hk(m1) − hk(m2) = δ]) is small for an uniformly
chosen key k. Formal definitions can be found in Sect. 2.

A very popular application of universal hash is to obtain a domain extension
of pseudorandom function (or PRF) and message authentication code (or MAC).
Let f be a PRF over fixed length input. When h has low collision probability,
the composition function f ◦h is a PRF [4] over arbitrary length. Thus h behaves
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 489–508, 2015.
DOI: 10.1007/978-3-662-46706-0 25



490 M. Nandi

as a preprocessor to reduce the problem of designing arbitrary size input PRF
to a fixed small size input PRF. Similarly, we can show that mapping (N,M) to
f(N) ⊕ h(M) is a MAC [6] over arbitrary length messages when N is used as a
nonce (i.e., not repeating) and h has low differential probability. These methods
are only useful when we process long message and use a much faster h (than a
PRF f). So our main question of this paper is that how fast a universal hash
function could be in a reasonable computational model?

Multiplication Complexity. The above question has been answered [26,28]
in terms of order in different circuit level computational models, e.g., branch-
ing model. In this paper, we consider “multiplication complexity” in “algebraic
computation model” [24] in which a polynomial or a rational function is com-
puted by using addition and multiplication (or division) over an underlying ring
(or a field) R1 in a sequence (see Definition 4 for more details). For example,
to compute x1x2 + x1x3, we can compute it as v1 + v2 where v1 = x1x2 and
v2 = x1x3. This computation requires two multiplications. However, the same
polynomial can be computed as x1(x2 + x3) which requires only one multipli-
cation. We define multiplication complexity of a multivariate polynomial as the
minimum number of multiplications required for all possible computations of H.
The multiplication complexities of some standard multivariate polynomials have
been studied before and a brief survey is given in Appendix. Our target question
of this paper is to obtain a lower bound of multiplication complexities among
all ΔU hash functions and to show the tightness of the bound by producing
an example.

1.1 Our Contribution and Outline of the Paper

In the following we assume a universal hash function hashes all messages from
R�

1 to Rd
1 (usually d = 1) and hence multiplication complexity is measured in

terms of � and d.

Optimality of pseudo dot-product and BRW hash. In this paper we
prove that a hash function with low differential probability must have
multiplication complexity at least �/2 (see Theorem 3 in Sect. 5). We show
it by proving contrapositive. If a function has multiplication complexity c < �/2
then there are 2c multiplicands. As we have � message blocks and key blocks
are linear in multiplicands we are able to solve for two distinct messages from
R�

1 which map to all 2c multiplicands identically for all keys. Hence differential
probability is one. Even though the lower bound seems intuitive, to the best
of our knowledge, it was not known before. The pseudo dot-product [46] based
hash PDP (e.g. NMH hash [14], NMH∗ [14], NH [4] and others [8,21]) defined as
(for even �)

PDPk1,...,k�
(m1, . . . , m�) = (m1 + k1)(m2 + k2) + · · · + (m�−1 + k�−1)(m� + k�)

and Bernstein-Rabin-Winograd or BRW hash [7,36] are two known examples
which achieve this bound (�/2 multiplications for � message blocks).
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Optimality of multiple block hash. We also extend this bound for multiple
block hash outputs (such as Toeplitz construction [26] or independent applica-
tions of a single block hash function). To compute

(H1 := x1x2 + x3x4, H2 := x1x3 + x2x4),

we can compute H1 by two multiplications (it can be shown that H1 or H2

individually can not be computed in one multiplication only) and then compute
H2 = (x1 +x4)(x2 +x3)−H1 by one multiplication. Similarly for d polynomials
H1, . . . , Hd (with individual multiplication complexity c) there is a scope of
computing all d polynomials simultaneously in less than cd multiplications. In
Theorem 5 (Sect. 5), we prove that to obtain d block hash outputs on �
block messages, we need at least (d − 1) + �/2 multiplications.

ConstructionwithMatchingComplexity. So far, no construction is known
achieving this lower bound for d > 1. Note that both Toeplitz and independent
invocation applied to the PDP requires �d/2 multiplications.1 So there is a possi-
bility of scope of a hash construction having better multiplication complexity. In
this paper, for d ≤ 4 we provide a d-block Δ-universal hash, called xxx EHC
or encode-hash-combiner (see Algorithm 1, in Sect. 4). The main ingredient of
the construction was introduced in [17]. Here, we first encode the input using an
efficiently computable linear error correcting code [27] with minimum distance d
so that codewords for different inputs will differ in at least d places; then we feed
the ith encoded symbol (e.g., a pair of blocks for PDP) through its underlying
universal hash function (e.g., PDP which requires one multiplication for a symbol
or two blocks); and then apply another efficient linear combiner to the all hash out-
puts to obtain the final d block hash outputs. The optimization in [17] is entirely
aimed at linear-time asymptotic encodings [41], which don’t have much connec-
tion to concrete performance. Moreover, codewords can not be computed in online
manner with small buffer and requires at least �-blocks of memory (in addition to
input and output size). This is the possible reason that community has not found
any interest to implement it (even for smaller �, i.e. for small messages).

Our choice of code and combiners (satisfying some desired property) are based
on Vandermonde matrices which can be computed with small buffer. Number of
multiplication will essentially depend on size of codewords and due to choice of
MDS code we need exactly (d − 1) + �/2 multiplications. Hence, the construction
is optimum and our bound is tight. In terms of key size and parallelizibilty, both
Toeplitz and EHC are similar. The idea trivially does not extend for d > 4 as we
do not find any appropriate error correcting code with distance d > 5.

2 Definitions: Universal and Δ-universal Hash Function

ΔU Hash Function. A hash function h is a (K,D,R)-family of functions
{hk := h(k, ·) : D → R}k∈K defined on its domain or message space D, taking
1 Applying the Theorem 1 in [47], we can prove that these constructions have multipli-

cation complexity �d/2.



492 M. Nandi

values on a group R, called output space and indexed by the key space K.
Usual choices of R are (i) Zp (the field of modulo a prime p), (ii) Z2w (the ring
of modulo 2w) (iii) F2n (Galois field of size 2n) and (iv) Rd

1 with coordinate
wise operation, where R1 is one of the previous choices. In the last example
when d > 1, h is also called multi or d-block hash. An element of R (or R1 for
the multi-block) is called block. In general, we write R1 even for d = 1. However,
the output space is always denoted by R = Rd

1, d ≥ 1. Except for (Zp)d, R can
be viewed as the set {0, 1}N by using the canonical encodings and we say that
hash size is N .

Definition 1 (ε-ΔU hash function). A (K,D,R)-family h is called ε-ΔU
(universal) hash function if for any two distinct x and x′ in D and a δ ∈ R,
the δ-differential probability diffh,δ[x, x′] := PrK[hK(x)−hK(x′) = δ] ≤ ε where
the random variable K is uniformly distributed over the set K.

Unless mentioned explicitly, we always mean key K to be chosen uniformly from
its key space. The maximum δ-differential probability over all possible of two
distinct inputs x, x′ is denoted by Δh,δ. The maximum differential probability
Δh := maxδ Δh,δ. If the addition is bit-wise xor “⊕” on R = {0, 1}N, we call the
hash family ε-AXU (almost-xor-universal) hash function [37].

Universal Hash Function. When δ = 0, the 0-differential event is equivalent
to collision. So we write diffh,0[x, x′] and Δh,0 by collh[x, x′] and collh respectively
and we call them collision probabilities.

Definition 2 (ε-U hash function). A hash family h is called ε-universal (or
ε-U) if collh := maxx�=x′ PrK[hK(x) = hK(x′)] ≤ ε.

Balanced Hash Function. We call h ε-balanced [23,31] on a subset D′ ⊆
D if Pr[hK(x) = y] ≤ ε for all x ∈ D′, y ∈ R. If D′ = D then we call it
ε-balanced. Note that ε is always at least 1/|R| for ε-ΔU (shown in [43]) and
ε-balanced function (easy to check from definition) but not necessarily for an ε-U
hash function [43]. An ε-balanced functions are useful to prove ε-ΔU property
whenever hK ’s are linear [23]. More precisely, for a linear hash, ε-ΔU is equivalent
to ε-balanced function on R \ {0}.

3 Analysis Methods of Universal Hash Functions

In this section all messages (and possibly key) blocks are elements of the under-
lying field R1 of size q.

3.1 Multi-linear Hash and Poly-Hash

The hash mapping (m1, . . . , ml) 	→ m1 · K1 + · · · + m� · K� can be shown to be
q−1-ΔU hash function.2 It is known as multi-linear hash ML[13,49]. Later MMH

2 One can also prove it by applying Lemma 2 as it is a sum hash.
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was proposed [14] with a performance record. It is a multi-linear hash with a
specific choice of R1 = Z264 and a post-processor. All these constructions above
requires (at least) � multiplications and � many independent key blocks.

By counting roots of a polynomial, one can show that (m1, . . . , m�) 	→ m1 ·
K + m2 · K2 + · · · + m� · K� is an � × q−1-ΔU hash function. This is known
as poly-hash [3,9,45]. Some examples are Ghash used in GCM [22], poly1305 [6],
polyQ, polyR [25] (combination of two poly-hashes), and others [18,20] etc. The
speed report of these constructions are given in [30,40].

Bernstein-Rabin-Winograd hash or BRW [7,36] hash is a multi-variate poly-
nomial hash which is non-linear in message blocks. It requires �/2 multiplication
and one key. As the algorithm is recursive and binary tree based, it requires
O(log �) storage. This construction uses minimum number of keys (single block)
and requires minimum number of multiplications (as we show in Theorem3 of
Sect. 5).

3.2 Composition of Universal Hashes

Given an ε1-universal (K,D,D′)-hash function h and ε2-ΔU (K′,D′, R1)-hash
function h′ the composition hash function defined below

(h′ ◦ h)k,k′(m) = h′
k′(hk(m)), ∀m ∈ D

is (ε1 + ε2)-ΔU-hash function on D. Whenever h′ is assumed to be only ε2-U
hash function, the composition is (ε1+ε2)-U-hash function [40]. This composition
results are useful to play with domain and range for different choices and has
been used in several constructions [4,25,39].

3.3 Pseudo Dot-Product

The notion of pseudo dot product hash is introduced for preprocessing some
cost in matrix multiplications [46]. The construction NMH [14] uses this idea.
NMH∗ and NH are variants of these construction. Later on NH has been modified
to propose some more constructions [8,19,21,31]. A general form of pseudo dot-
product PDP is (m1+K1)(m2+K2)+. . .+(m�−1+K�−1)(m�+K�) which is same
as multi-linear hash plus a function of messages and a function of keys separately.
The main advantage of PDP is that, unlike multi-linear hash, it requires �/2
multiplications to hash � message blocks. We first prove a general statement
which is used to prove ΔU property of PDP.

Lemma 1. Let h be an ε-ΔU (K,D,R1)-hash function where R1 is an additive
group. Then the following (K,D,R1)-hash function h′

h′
k(m) = hk(m) + f(k) + g(m). (1)

is ε-ΔU hash function for any two functions f and g mapping to R1.
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Proof. For any m �= m′ and δ, h′
k(m)−h′

k(m′) = δ implies that hk(m)−hk(m′) =
δ′ := δ + g(m′) − g(m). So for all m �= m′ and δ,

Pr[h′
k(m) − h′

k(m′) = δ] ≤ max
δ′

Pr[hk(m) − hk(m′) = δ′] ≤ ε

and hence the result follows. �
Corollary 1 (Pseudo dot-product hash). Let R1 be a field of size q. The
hash function (m1,m2, . . . , m�) 	→ (m1+K1)(m2+K2)+. . .+(m�−1+K�−1)(m�+
K�) is q−1-ΔU hash function for a fixed �.

Corollary 2 (Square hash [11]). Let R1 be a field of size q. The hash function
(m1,m2, . . . , m�) 	→ (m1 +K1)2 + · · ·+(m� +K�)2 is q−1-ΔU hash function for
a fixed �.

3.4 Message Space Extension: Sum Hash Construction

Now we provide some easy generic tools to hash larger message. Let h be an
ε-ΔU hash function from D to R1 with key space K. A hash function is called
sum hash (based on h), denoted hsum if it is defined as

hsum
k1,...,ks

(m1, . . . , ms) =
s∑

i=1

hki
(mi), (2)

The multi-linear hash ML and PDP are two examples of sum-hash.

Lemma 2. If h is an ε-ΔU hash function from D to R1 with key space K then
hsum is an ε-ΔU (Ks,Ds, R1)-hash function.

Proof. One can verify it in a straightforward manner once we condition all keys
Kj ’s except a key Ki for which mi �= m′

i (the ith elements of two distinct inputs
m and m′). �

Universal Hash for Variable Length. The above sum-hash is defined for
a fixed number of message blocks. Now we define a method which works for
arbitrary domain D := {0, 1}≤t. To achieve this, we need a padding rule which
maps D to D+ = ∪i≥1D

i. A padding rule pad : D → D+ is called D′-restricted
if it is an injective function and for all m ∈ D and pad(m) = (m1, . . . , ms) we
have ms ∈ D′.

Lemma 3 (Extension for D := {0, 1}≤t). Let h be an ε-ΔU (K,D,R1)-hash
function and ε-balanced on D′ ⊆ D and pad : D → D≤L be a D′-restricted
padding rule. The sum-hash hpad,sum, defined below, is an ε-ΔU (KL,{0, 1}≤t, R1)-
hash function.

hpad,sum
K1,...,KL

(m) =
s∑

i=1

hKi
(mi), pad(m) = (m1, . . . , ms) (3)
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The proof is similar to fixed length sum-hash except that for two messages with
different block numbers. In this case, the larger message uses an independent
key for the last block which is not used for the shorter message and hence the
result follows by using balanced property of the hash.

Remark 1. Note that ML is clearly not universal hash function for variable length
messages. It is a sum hash applied on the hash m · K which is not balanced on
the field R1 (the 0 message maps to 0 with probability one). However, it is q−1-
balanced for R1 \ {0}. Hence for any padding rule pad which is injective and
the last block is not zero will lead to an universal hash for ML construction. For
example, the popular “10-padding” pads a bit 1 and then a sequence of zeros, if
required, to make it a tuple of the binary field elements. This ensures that the
last block has the bit 1 and hence it is non-zero.

The pseudo dot-product is 2q−1-balanced on R1 and hence any injective padding
rule for PDP will give a 2q−1-ΔU hash function.

An Alternative Method: Hashing Length. A generic way to handle arbi-
trary length is as follows: Let h be an ε-ΔU hash function on Di, 1 ≤ i ≤ r
and h′ be an ε-ΔU hash function on {1, 2, . . . , r}. Then the hash function
Hk,k′(m) = hk(m)+h′

k′(i) where m ∈ Di is an ε-ΔU hash function on D := ∪iDi.
We apply this approach in our construction to define over arbitrary messages.

3.5 Toeplitz Construction: A Method for Multi-block Hash

One straightforward method to have a d-block universal hash is to apply d
independent invocation of universal hash h. More precisely, for d independent
keys K1, . . . ,Kd, we define a d-block hash as h(d) = (hK1(m), . . . , hKd

(m)). We
call it block-wise hash. It is easy to see that if h is ε-U (or ΔU) then h(d) is εd-U
(or ΔU) hash function. The construction has d times larger key size. However,
for a sum-hash hsum we can apply Toeplitz construction, denoted hT,d, which
requires only d additional key blocks where h is an ε-ΔU (K,D,R)-hash function.

hT,d
i (m1, . . . , ml) = hKi

(m1) + hKi+1(m2) + . . . + hKl+i−1(ml), 1 ≤ i ≤ d. (4)

We define hT,d
K1,...,Kl+d−1

(m) = (hT,d
1 , . . . , hT,d

d ). Note that it requires d − 1 addi-
tional keys than the sum construction for single-block hash. However the num-
ber of hash computations is multiplied by d times. Later we propose a better
approach for a d-block construction which requires much less multiplications.

Lemma 4. h is ε-ΔU (K,D,R1)-hash ⇒ hT,d is εd-ΔU (Kl+d−1,Dl, Rd
1)-hash.

Proof. For two distinct messages m �= m′ it must differ at some index. Let i
be the first index where they differ i.e., mi �= m′

i and m1 = m′
1, . . . , mi−1 =

m′
i−1. Now condition all keys except K′ := (Ki, . . . ,Ki+d−1). Denote Hi and

H ′
i for the ith block hash outputs for the messages m and m′ respectively. Now,

Hd − H ′
d = δd leads a differential equation of h for the key Ki+d−1 and so this
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would contribute probability ε. Condition on any such Ki+d−1, the previous
equation Hd−1 − H ′

d−1 = δd−1 can be expressed as an differential equation of
Ki+d−2 and so on. The result follows once we multiply all these probabilities. �
The above proof argument has similarities in solving a system of upper triangular
linear equations. So we start from solving the last equation and once we solve it
we move to the previous one and so on until we solve the first one.

Toeplitz Construction Applied to an Arbitrary Length. Now we describe
how Toeplitz construction can be used for arbitrary length inputs. If h is ε-
balanced on a set D′ ⊆ D then we need a padding rule which maps a binary
string to (m1, . . . , ms) ∈ Ds such that ms ∈ D′. This condition is same as sum
hash construction for arbitrary length.

Lemma 5 (Toeplitz construction for D := {0, 1}≤t). Let h be an ε-ΔU
(K,D,R1)-hash function and ε-regular on D′ ⊆ D and pad be D′-restricted. Then
the Toeplitz hash hT,d,pad(m) = hT,d(pad(m)) is an εd-ΔU (KL+d−1, {0, 1}≤t, Rd

1)
hash function.

The proof is similar to the fixed length proof and hence we skip the proof. The
10-padding rule (as mentioned for ML hash) for Toeplitz construction in ML
can be used [38]. Similarly, for PDP one can use any injective padding rule.
Generalized linear hash [38], LFSR-based hash [23], CRC construction or Divi-
sion hash [23,40], Generalized division hash [40], Bucket hash [37], a variant of
Toeplitz construction [31] etc. are some other examples of multi-block hash.

4 Our Constructions

4.1 Error-Correcting Coding

Let A be an alphabet. Any injective function e : D → An is called an encoding
function of length n. Any element in the image of the encoding function is called
code word. For any two elements x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ An we
define hamming distance dham(x, y) = |{i : xi �= yi}|, the number of places
two n-tuples differ. We can extend the definition for arbitrary size. Let x =
(x1, . . . , xn) ∈ An, y = (y1, . . . , ym) ∈ Am where m ≤ n. We define d∗

ham(x, y) =
(n − m) + dham(x′, y) where x′ = (x1, . . . , xm).

Definition 3. The minimum distance for an encoding function e : D → A≤L :=
∪i≤LAi is defined as d(e) Δ= minM �=M ′∈D d∗

ham(e(M), e(M ′)).

We know from coding theory that for any coding e : Ak → An we have d(e) ≤
n − k + 1 (singleton bound). Moreover, there is a linear code3 e, called MDS or
maximum distance separable code, such that d(e) = n−k+1. However, if we
consider sequence of MDS codes applied to different length the combined coding

3 There is a generator matrix Gk×n over the field F such that e(x) = x · G.
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may have minimum distance only one since we may find two distinct messages
M,M ′ such that e(M) = (x1, . . . , xm) and e(M ′) = (x1, . . . , xm, xm+1). If the
generator matrix of MDS code is of the systematic form G = (Ik : Sk×(n−k)) with
identity matrix Ik then S is called MDS matrix. A characterization of MDS matrix
is that every square sub-matrix has full rank. There are some known systematic
form of MDS code based on Vandermonde matrix [5]. We call a matrix Sk×(n−k)

d-MDS if every square submatrix of size d has full rank. Thus, S is a MDS matrix
if and only if it is d-MDS for all 1 ≤ d ≤ min{k, n − k}. Now we give examples of
MDS and d-MDS matrix using a general form of Vandermonde matrix.

Vandermonde Matrix. We first define a general form of Vandermonde matrix
Vd := Vd(α1, . . . , αn) over a finite field Fq where d ≤ n are positive integers and
α1, . . . , αn are distinct elements of the field. It is an d × n matrix whose (i, j)th

entry is αi−1
j . If n = d then the matrix is invertible and it is popularly known as

Vandermonde matrix, denoted V (α1, . . . , αs). Moreover note that any r′ columns
of Vd are linearly independent where r′ ≤ d. In particular, Vd is a d-MDS matrix.

Lemma 6. The matrix Vd defined above for n distinct elements α1, . . . , αn is
d-MDS matrix.

Proof. Let us take d columns i1, . . . , id then the submatrix is the Vandermonde
matrix of size d with d distinct elements αi1 , . . . , αid

. As the Vandermonde matrix
is invertible the result follows. �

4.2 A General Construction

Let d ≥ 1 be an integer. Our construction has three basic components.

(1) Let e be an error correcting code from a message space D to A≤L with the
minimum distance d.

(2) Let h : K × A → R1 be an ε-ΔU and ε-balanced hash function.
(3) For each l ≥ d, let Vd,l be a d-MDS matrix (any d columns are linearly

independent) of dimension d × l whose entries are from R1.

We define a hash on D which is a composition of three basic steps encoding
or expansion, block-wise-Hash and a linear combination. We apply the encoding
function e to expand the message m ∈ D to an l-tuple (m1, . . . , ml) ∈ Al. In
this process we ensure at least d places would differ for two distinct messages.
Then we apply the hash h alphabet-wise to obtain h := (h1, . . . , hl). Finally,
we apply a linear combiner on the hash blocks to obtain d-block hash output
Vd,l ·h. We call this general construction method EHC or encode-hash-combiner.
The description of it is given in Algorithm1.

Theorem 1. If e has minimum distance d (i.e. d(e) = d) and h is ε-ΔU and
ε-balanced function then the extend function H is εd-Δ universal hash function.
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Input: m ∈ D
Output: H ∈ Rd

1

Key: (k1, . . . , kL) ∈ KL

Algorithm EHC(m)

1 e(m) = (m1, . . . , ml) ∈ Al. \\ Apply encoding function
2 For all j = 1 to l \\ Apply hash block-wise.
3 hj = hkj (mj)

4 H = Vd,l · (h1, . . . , hl)
tr \\ Apply d-MDS combiner .

5 Return H

Algorithm 1. A General Δ-universal hash construction. It uses an error cor-
recting code e : D → R+

1 with a minimum distance d, a family of d-MDS matrix
Vd×l, l ≥ d, and ΔU hash h from A to R1 with key space K.

Proof. Let m �= m′ and x = e(m) = (m1, . . . , ml), x′ = e(m′) = (x′
1, . . . , x

′
l). By

definition of minimum distance of e, d∗(e(m), e(m′)) ≥ d. W.l.o.g we assume that
l ≥ l′ and i1 ≤ . . . ≤ id ≤ l are distinct indices at which the encoded messages
differ. We condition all keys except Ki1 , . . . ,Kid

. Now for any δ ∈ Rd
1, H(m) −

H(m′) = δ implies that V · (aKi1
, . . . , aKid

)tr = δ where aKij
= hKij

(mij
) −

hKij
(m′

ij
) if ij ≤ l′ (we use ΔU property), otherwise, aKij

= hKij
(mij

) (we use
balancedness property). Moreover, V is the sub-matrix of Vd,l with the columns
i1, . . . , id. Note that V is invertible and hence given differential event is equivalent
to (aKi1

, . . . , aKid
)tr = V −1 ·δ = δ′. Since Kij

’s are independent Pr[aKij
= δ′

j ] ≤
ε (because h is ε-ΔU hash and ε balanced function). So the differential probability
of H is at most εd. �
Remark 2. Note that the only non-linear part in key and message blocks appears
in underlying hash computations. As the error correcting code and combiners
are linear we only need to apply constant multiplications (which is also a linear
function). For appropriate choices of constants, such as primitive element of the
field R1, the constant multiplication is much more efficient compare to non-
constant multiplication.

4.3 Specific Instantiations

Specific Instantiations for Fixed Length. Let d = 4. Let R1 be the Galois
field of size 2n and α be a primitive element. Note that R2

1 can also be viewed as
the Galois field of size 22n and let β be a its primitive element. The following cod-
ing function C4 has minimum distance 4. C4(m1, . . . , mt) = (m1, . . . , mt,mt+1,
mt+2,mt+3) where

- mt+1 =
⊕

i mi,
- mt+2 =

⊕
i miβ

i−1 and
- mt+3 =

⊕
i miβ

2(i−1).

Let l = t+3. The base hash function hk,k′(x, x′) = (x⊕k)·(x′⊕k′) mapping R2
1 →

R1 with key space R2
1. It is the pseudo-dot -product hash. Finally the d-MDS
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matrix can be replaced by Vandermonde matrix Vd,l := Vd(1, α, α2, . . . , αl)
wher α.

Proposition 1. The coding C4 defined above has minimum distance 4 over the
alphabet R2

1 for a fixed length encoded message.

Proof. This coding has systemic form (I : S) where S = Vl(1, β, β2). It is known
that S is 3-MDS matrix. Now we show that it is also 1-MDS and 2-MDS matrix.
Showing 1-MDS matrix is obvious as every entry of the matrix is non-zero. To
show that S is 2-MDS we need to choose two columns of the three columns. If
we include the first column then the sub-matrix is again a Vandermonde matrix.
If we choose the last two columns and i1 and ith2 rows then the determinant of
the sub-matrix is βi1+i2−2(βi2 − βi1). �
It is easy to see that if we drop the last column or last two columns we have
error correcting code with distance 3 and 2 respectively. Similarly, one can have
a specific instantiation with d = 2. We do not know so far any coding function
for d > 4 which can be efficiently computed for any arbitrary length input in
an online manner without storing the whole message. However, for short mes-
sages one can apply some pre-specified MDS codes. Note that it is not necessary
to apply MDS code. However, applying MDS-code make the key size and the
number of multiplication as low as possible.

Variable Length ΔU Hash. The above construction works for fixed size input.
Note that C4 does not have minimum distance (with extended definition) four
for arbitrary length blocks. However, with the extended definition of distance,
we observe that C4 has minimum distance over D0 := ∪i≡0 mod 4R

i
1. Similarly,

it has minimum distance 4 over D1,D2 and D3. Let K(1),K(2) ∈ K be dedicated
keys for length, i.e. not used to process message. Now we define our hash function
ECH∗ for arbitrary length message m as follows.

ECH∗(m) = ECH(m) + b1 · K(1) + b2 · K(2), b1, b2 ∈ {0, 1}, l ≡ b1 + 2b2 mod 4

where e(m) = Al. Basically, we hash the length of codeword modulo 4. To
analyze it works, we consider three cases for e(m) ∈ Dj and e(m′) ∈ Dj′ .

1. If j = j′ then the previous theorem for fixed length works.
2. If j �= j′ then the differential probability will be low due to the hash b1 ·

K(1) + b2 · K(2) applied to two different two-bit string (b1, b2).

Theorem 2. If h is an ε-ΔU hash function then the construction EHC∗ is εd-ΔU
hash function for variable length inputs.

5 Lower Bound on Multiplications or Non-Linear
Operations

A polynomial can be computed through a sequence of addition and multiplica-
tion. Moreover, we can combine all consecutive additions to a linear function.
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When we multiply the multiplicands can be expressed as linear functions of all
the variables and previously computed multiplication results. For example, poly
hash H := m0 + km1 + k2m2 can be computed through the following sequence
of computations.

v1 = k · m2, v2 = (v1 + m1) · k,H = v2 + m0.

Definition 4 An algebraic computation. A is defined by the tuple of linear
functions (L1, . . . , L2t, L

1, . . . , Ld) where L2i−1 and L2i are linear functions over
variables m = (m1, . . . , ml), k = (k1, . . . , ks), v1, . . . , vi−1, 1 ≤ i ≤ t and Li’s are
linear over m, k and v1, . . . , vt. When we identify vi by L2i−1 · L2i recursively
1 ≤ i ≤ t, Li are multivariate polynomials (MVP). We call t the multiplication
complexity of A.

We also say that A computes the d-tuple of function H := (L1, . . . , Ld). Multi-
plication complexity of H is defined as the minimum multiplication complexity
of all algebraic computation which computes the d polynomials H. Note that
while counting multiplication complexity, we ignore the constant multiplications
which are required in computing L. This is fine when we are interested in pro-
viding lower bounds. However, for a concrete construction, one should clearly
mention the constant multiplications also as it could be significant for a large
number of such multiplications.

Let R be a ring. A linear function in the variables x1, . . . , xs over R is a
function of the form L(x1, . . . , xs) = a0 + a1x1 + . . . + asxs where ai ∈ R. We
denote the constant term a0 by cL. We also simply write the linear function by
L(x) where x = (x1, . . . , xs) is the vector of variables. We add or subtract two
vectors coordinate-wise. Note that if cL = 0 then L(x − x′) = L(x) − L(x′).

Notation. We denote the partial sum a1x1 + . . .+aixi by L[x[1..i]] where x[1..i]
represents x1, . . . , xi. If L is a linear function in the vectors of variables x and
y then clearly, L = aL + L[x] + L[y]. Now we state two useful lemmas which
would be used to prove lower bounds of multiplication complexities of universal
hashes.

Lemma 7 [43]. Let H be a ε-ΔU hash function from S to T then ε ≥ 1
|T | .

Lemma 8. Let R be a finite ring. Let V : K × M ∗→ Rt be a hash function and
L is a linear function on Rt. For any functions f and g, the following keyed
function H

H(K,x) = L(V (K,x)) + f(x) + g(K)

is ε-ΔU hash function if V is ε-ΔU hash function. Moreover, ε ≥ 1
|R|t .

Proof. By above lemma we have x �= x′ and δ1 such that PrK [V (K,x) −
V (K,x′) = δ1] ≥ 1

|T | . Let δ = L(δ1) + (f(x) − f(x′)) and hence V (K,x) −
V (K,x′) = δ1 ⇒ H(K,x) − H(K,x′) = δ. This proves the result. �
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5.1 Minimum Number of Multiplications for ΔU Hash Function

Now we show our first lower bound on the number of multiplications for a ΔU
hash function over a field F which is computable by addition and multiplication.
Clearly, it must be a multivariate polynomial in key and message block and we
call it multivariate polynomial or MVP hash function. The theorem shows that
a ΔU MVP hash function requiring s multiplications can process at most 2s
blocks of messages. In other words, any MVP hash function computable in s
multiplications processing 2s+1 message blocks has differential probability one.
Intuitive reason is that if we multiply s times then there are 2s many linear
functions of message m only. Thus, mapping 2s + 1 blocks to 2s linear functions
would not be injective and hence we can find a collision. The detail follows.

Theorem 3. Let H(K,m1, . . . , ml) be a MVP hash computable by using s mul-
tiplications with 2s + 1 ≤ l. Then there are two distinct vectors a, a′ ∈ F

l and
δ ∈ F such that H(K, a) = H(K, a′) + δ. for all keys K

Proof. As H can be computed by s multiplications we have 2s+1 linear functions
�1, �2, . . . , �2s and L such that �2i−1 and �2i are linear functions over m,K and
v1, . . . , vi−1 where vi = �2i−1 · �2i. Moreover, L is a linear function over m,K
and v = (v1, . . . , vs) with H = L. Note that there are 2s many linear equations
�i[m]’s (the partial linear functions on x only) over at least 2s + 1 variables
m1, . . . , ml, we must have a non-zero solution Δ ∈ F

l of �i[m]’s. More precisely,
there is non-zero Δ ∈ F

l such that �i[Δ] = 0 for all 1 ≤ i ≤ 2s. Let a ∈ F
l be

any vector and a′ = a + Δ. Let us denote vi(K, a) and vi(K, a′) by vi and v′
i

respectively.

Claim: vi = v′
i for all 1 ≤ i ≤ s.

We prove the claim by induction on i. Note that

v1 = (�1[a] + �1[K] + c�1) · (�2[a] + �2[K] + c�2)

and similarly for v′
1. We already know that �1[a] = �1[a′], �2[a] = �2[a′] and hence

v1 = v′
1. Suppose the result is true for all j < i. Then,

vi = (�2i−1[a] + �2i−1[K] + �2i−1[v1, . . . , vi−1] + c�i
)

×(�2i[a] + �2i[K] + �2i[v1, . . . , vi−1] + c�2)

and similarly for v′
i. By using equality �2i−1[a] = �2i−1[a′] and �2i[a] = �2i[a′],

and the induction hypothesis v1 = v′
1, . . . , vi−1 = v′

i−1 we have vi = v′
i.

Thus, V : K × F
l → F

s, mapping (K,x) to (v1(K,x), . . . , vs(K,x)) has colli-
sion probability 1. The hash function H(K,x) is defined as L[V (K,x)]+L[K]+
L[x] + cL. So by using Lemma 8 the result follows. �
Corollary 3. The pseudo dot product hash PDP is optimum in number of mul-
tiplications.
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Remark 3.

1. The above result holds even if we ignore the cost involving key only, such
as stretching the key by using pseudorandom bit generator or squaring the
key (it does for BRW hash) etc. Hence the BRW hash is also optimum if key
processing is allowed.

2. From the proof one can actually efficiently construct a, a′ and δ. We only need
to solve 2s equations �i[x]. By previous remark, the result can be similarly
extended if we ignore cost involving message only, e.g., we apply crypto-
graphic hash to message blocks. More precisely, vi is defined as product of fi

and gi where fi = f1
i (x)+f2

i (K)+f3
i (v1, . . . , vi−1) and similarly gi. By using

non-injectivity of x 	→ (f1, g1, . . . , fs, gs) we can argue that there are distinct
a and a′ such that the fi and gi values for a and a′ are same. However, this
gives an existential proof of a and a′ (which is sufficient to conclude the above
theorem).

3. Our bound is applicable when we replace multiplication by any function.
More precisely, we have the following result.

Theorem 4. Let H(x1, . . . , xl, y1, . . . , yk) be a function where x1, . . ., xl, y1,
. . ., yk are variables. Let fi : Fk×F

ri → F be some functions, 1 ≤ i ≤ m. Suppose
H(·)) can be computed by si invocations of fi, 1 ≤ i ≤ m. If l ≥ ∑

i siri +1 then
there are two distinct vectors a = (a1, . . . , al) and a′ = (a′

1, . . . , a
′
l) from F

l and
δ ∈ F such that

H(a, y1, . . . , yk) = H(a′, y1, . . . , yk) + δ, ∀y1, . . . , yk.

The proof is similar to the above theorem and hence we skip.
Now we extend our first theorem to a multi-block hash output, e.g. Toeplitz

hash function. So we work in the field F however, the hash output is an element
of Fd for some d ≥ 1. Thus, it can be written as (H1, . . . , Hd). Again we restrict
to those hash functions which can be computed by adding and multiplying (like
previous remark, we will allow any processing involving message or key only).
So Hi is a MVP hash function and we call H to be d-MVP hash function.

Theorem 5. Let H = (H1, . . . , Hd) be a vector of d polynomials in m = (m1,
. . ., ml) and K over a field F which can be computed by s multiplications.
If l ≥ 2(s − r) + 1 with r ≤ d, then there are a �= a′, elements of F

r and
δ ∈ F such that

PrK[HK(a) = HK(a′) + δ] ≥ 1
|F|r .

Proof. Suppose H can be computed by exactly s multiplications then we have
2s + d linear functions �1, �2, . . . , �2s and L1, . . . , Ld such that

(i) �2i−1 and �2i are linear functions over m,K and v1, . . . , vi−1

(ii) vi = �2i−1 · �2i and
(iii) Li’s are linear functions over x, y and v = (v1, . . . , vs).
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Moreover, Hi = Li for all 1 ≤ i ≤ d. The linear functions �i and Li can be
written as �i[m] + �i[K] + �i[v] + c�i

and Li[m] + Li[K] + Li[v] + cLi
.

The first 2(s − r) many linear equations �i[m]’s over at least 2(s − r) + 1
variables. Hence these will have a non-zero solution Δ ∈ F

l. Let a be any vector
and a′ = a+Δ. It is easy to see that vi(a,K) = vi(a′,K) for all i ≤ s−r (similar
to proof of Theorem3). Now consider the mapping f : Fk → F

r mapping

K 	→ (vs−r+1(a,K) − vs−r+1(a′,K), . . . , vs(a,K) − vs(a′,K)).

There must exist δ1 ∈ F
r such that PrK [f(K) = δ1] ≥ 1

|F|r . Now we define
δ = (Li[M ]−Li[M ′] +Li((0, . . . , 0, δ1))i. For this choice of a, a′ and δ the result
holds. This completes the proof. �
Corollary 4. The construction EHC is optimum when a MDS error correct-
ing code is used. Thus the specific instantiations of EHC, given in Sect. 4.3, is
optimum for d-block hash outputs, 2 ≤ d ≤ 4.

6 Conclusion and Research Problem

We already know that there is a close connection between error correcting code
and universal hash. Here we apply error correcting code and Vandermonde
matrix to construct a multi-block universal hash which require minimum num-
ber of multiplication. The minimum is guaranteed by showing a lower bound on
the number of multiplication required. Previously in different context the lower
bound on the number of multiplication has been considered. In this paper for the
first time we study “concrete lower bound” (in terms of order a lower bound was
known) for universal hash function. Similar lower bound was known for compu-
tations of polynomial of specific forms. See Appendix for a brief survey on it.
However, we would like to note that those results can not be directly applicable
as the contexts are differ ent.

To get a lower bound we take the popular algebraic computation model in
which the time of multiplications are separated. We try to equate all the linear
functions which are multiplied. Our construction performs better than Toeplitz
construction in terms of number of multiplication.

This paper studies the relationship between complexity and security of uni-
versal hash. There are some relationship known for complexity and key-size
however the picture is incomplete. Moreover, nothing is known involving these
three important parameters: (i) security level, (ii) complexity, and (iii) key size.
This could be possible future research direction in this topic. Our construction
optimizes d block hash output for sum hash functions. It would be interesting
to see how one adopts this for multi block polynomial hash using few keys.

In the view of the performance, the ongoing future research of us is to have
a lightweight implementation of the universal hash function.
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Appendix: Brief Survey on the Computation
of a0 + a1x + . . . + anxn

We provide a brief survey on the lower bound of multiplications for computing
a polynomial. Note that our interest in this paper is to provide a lower bound
on number of multiplications for computing a multi variate polynomial which is
an universal hash. Even though these two issues are very much related (some of
the ideas in proving results are also similar), some immediate differences can be
noted. For example, the existing bounds depend on the degree of the polynomials
whereas we provide bound on the number of message blocks (degree could be arbi-
trarily higher). The existing works consider multivariate polynomials which has a
special form: P (a0, . . . , an, x1, . . . , xm) := a0 +

∑n
i=1 ai ·Φi(x1, x2, . . . , xm) where

http://books.google.co.in/books?id=edldNAEACAAJ
http://books.google.co.in/books?id=edldNAEACAAJ
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Φi’s are rational functions of x1, . . . , xm. For an universal hash, the lower bound
of our paper works for any multivariate polynomial (or even rational functions).

The function xn can be computed in at most 2�log2 n� multiplications by
using well known “square and multiply” algorithm. One can also compute 1 +
x + . . . + xn−1 using at most 2�log2 n� multiplications, one division and two
subtractions since it is same as xn−1

x−1 whenever x �= 1. These are some simple
examples of polynomials and there are some specific methods to simplify some
polynomials. How does one can compute “generically” an arbitrary polynomial
f(x) = a0 + a1x + . . . + anxn, ai ∈ R (an underlying ring or field), of degree
n with minimal number of operations, mainly multiplication and division? By
generically we mean an algorithm which takes any ai’s and x as its inputs and
computes the polynomial f(x) (similar to an algorithm in uniform model). We
know Horner’s rule [16]4 to compute f(x) in n multiplications and n additions.

§Minimum Number of Multiplications. Can we do better than n multipli-
cations for computing an arbitrary polynomial? Or, can we prove that there are
some polynomials for which n multiplications and division are necessary? The
above question regarding the minimum number of multiplications to compute a
given polynomial of small degree, was first investigated by Ostrowski [33]. He
showed that at least n multiplications are required to evaluate a polynomial
f(x) of degree n for 1 ≤ n ≤ 4. The results were further proved for any positive
integer n by Pan [34] and a more general statement by Winograd [47]. Moreover,
even if divisions are allowed, at least n multiplications/divisions are necessary to
evaluate it. Belega [1] moreover proved that at least n additions or subtractions
are required to compute f .

§General statement. The general statement by Winograd gives a lower bound
for computation of any multivariate polynomial of the form

P (a0, . . . , an, x1, . . . , xm) := a0 +
n∑

i=1

ai · Φi(x1, x2, . . . , xm)

where Φi’s are rational functions of x1, . . . , xm. If the rank (the maximum num-
ber of linear independent elements) of the set S = {1, Φ1, . . . , Φn} is u + 1 then
at least u multiplication and division are necessary. In particular, when m = 1,
Φi(x1) = xi

1 we have P = f(x1) and u = n. Thus, the result of Pan [34] is a
simple corollary of it. When m = n, Φi(x1, . . . , xn) = xi and a0 = 0 we have the
classical dot-product a1 ·x1 + . . .+ an ·xn and the rank is again n+1. So it also
proves that to compute the dot-product we need at least n multiplications.

§Evaluation of a given Polynomial with Preprocessing. In the above
results all types of multiplications are counted. More formally, the computation
of the multivariate polynomial F (a0, . . . , an, x) = a0+a1x+. . .+anxn have been
considered in which coefficients are treated as variables or inputs of algorithms.

4 Around 1669, Isaac Newton used the same idea which was later known as Newton’s
method of root finding (see 4.6.4, page 486 of [24]).
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One of the main motivations of the above issue is to evaluate approximation poly-
nomials of some non-algebraic functions, such as trigonometric functions. As the
polynomials (i.e., ai’s) are known before hand, one can do some preprocessing
or adaptation on coefficients to reduce some multiplications. To capture this
notion, one can still consider the computation of F but the operations involv-
ing only ai’s are said to be the preprocessing of ai’s. Knuth [24] (see Theorem
E, 4.6.4), Eve [12], Motzkin [29] and Pan [34] provide methods for F requiring
�n

2 � multiplications ignoring the cost of preprocessing. However, these require
preprocessing of finding roots of higher degree equations which involves a lot of
computation and may not be exact due to numerical approximation. However, it
is an one-time cost and is based on only coefficients. Later on, whenever we want
to compute the polynomial for a given x, it can be computed faster requiring
about �n

2 � multiplications. Rabin-Winograd [36] and Paterson-Stockmeyer [35]
provide methods which require rational preprocessing on coefficients (i.e., com-
puting rational functions of coefficients only) and afterwards about n

2 +O(log n)
multiplications for a given x.

§Minimum Number of Multiplications after Preprocessing. We have
already seen that total n multiplication is necessary to compute F generically
and Horner’s rule is one algorithm which shows the tightness of the lower bound.
Similarly, with preprocessing, �n/2� multiplications for computing the mul-
tivariate polynomial F has been proved to be optimum by Motzkin [29]
and later on a more general statement by Winograd [47,48]. The bound �n/2�
does not work for computing a known polynomial f since multiplication by con-
stant could be replaced by addition, e.g. in Z, ai · x = x + . . . + x (ai times). In
fact, Paterson and Stockmeyer [35] provided methods which require about
O(

√
n) multiplications and showed the bound is optimum. Note that this

method does not compute the polynomial generically which means that for every
polynomial f(x) = a0 +a1x+ . . .+anxn there is an algorithm Ca0,...,an

depend-
ing on the coefficients which computes f(x) given x in O(

√
n) multiplications.

This result and those by [29,36,47,48] (one algorithm works for F , i.e. for all
polynomials f) can be compared with non-uniform and uniform complexity of
Turing machine respectively. This justifies two different bounds of computation
of a polynomial.
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Abstract. In this article, we describe a novel collision attack for up to
5 rounds of the Grøstl hash function. This significantly improves upon
the best previously published results on 3 rounds. By using a new type of
differential trail spanning over more than one message block we are able
to construct collisions for Grøstl-256 on 4 and 5 rounds with complexity
of 267 and 2120, respectively. Both attacks need 264 memory. Due to the
generic nature of our attack we can even construct meaningful collisions
in the chosen-prefix setting with the same attack complexity.
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1 Introduction

In the last few years the cryptanalysis of hash functions has become an important
topic within the cryptographic community. Especially the collision attacks on
the MD4 family of hash functions (MD5, SHA-1) have weakened the security
assumptions of these commonly used hash functions [26–28]. As a consequence
NIST has decided to organize a public competition in order to design a new hash
function, leading to the selection of Keccak as SHA-3 [19].

During the SHA-3 competition, the three classical security requirements
(collision-, preimage- and second-preimage resistance) were not the main target
of cryptanalytic attacks. Most results were published on building blocks such as
the compression function, block cipher or permutation used in a hash function.
Additionally, many distinguishers on these building blocks with minor relevance
in practice were considered. Although these results are important from a theo-
retical point of view, vulnerabilities that can be exploited for the hash function
are certainly more important.

In this work, we present new results on the collision resistance of the SHA-3
finalist Grøstl. Grøstl is an iterated hash function based on design principles
very different from those used in the MD4 family. The compression function of
Grøstl is built from two different permutations that follow the design strategy
of the Advanced Encryption Standard (AES) [3,17]. The simple construction
of the compression function and the byte-oriented design of Grøstl facilitates
the security analysis. In the last years Grøstl has received a large amount of
cryptanalysis. However, most of the analysis focus on the building blocks of
Grøstl and only a few results have been published for the hash function so far.
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 509–521, 2015.
DOI: 10.1007/978-3-662-46706-0 26
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Related Work. Grøstl is one of the SHA-3 candidates that has probably
received the largest amount of cryptanalysis during the competition. Security
analysis of Grøstl was initiated by the design team itself which led to the
rebound attack [15]. Since then, several improvements to the rebound attack
technique have been made, leading to new results on both the hash function [16]
and its underlying components [6,14,22]. For the final round, Grøstl was been
tweaked to thwart internal differential attacks [7,21] and to reduce the impact
of the rebound attack and its extensions.

The best published attacks on the final version of both Grøstl-256 and
Grøstl-512 are collision attacks on 3 rounds of the hash function and on 6
rounds of the compression function [9,23]. Preimage attacks for the compres-
sion function of Grøstl-256 and Grøstl-512 have been shown in [29] for 5 and
8 rounds, respectively. Additionally, non-random properties of the Grøstl per-
mutation have been discussed in [1,8]. For a detailed overview of the existing
attacks on Grøstl we refer to the ECRYPT II SHA-3 Zoo [4].

Our Contribution. By using a new type of differential trail we are able to
show collision attacks on Grøstl for up to 5 rounds. The extension becomes
possible by considering differential trails spanning over more than one message
block to iteratively cancel differences in the chaining variable. Our new attack
combines ideas of the attack on SMASH [13] with the rebound attack [15] on
Grøstl. A similar approach has also been used in the attack on Grindahl [20].
The results are collision attacks on the Grøstl-256 hash function reduced to
4 and 5 rounds with a complexity of 267 and 2120, respectively. Both attacks
have memory requirements of 264. Note that the best previously known collision
attack on the Grøstl hash function was on 3 rounds with a complexity of 264 [23].
We want to note that the same attack also applies to 5 rounds of Grøstl-512.

Additionally, we show that due to the generic nature of our attack we can
construct collisions in the chosen-prefix setting with the same complexity. It
has been demonstrated in [24,25] that chosen-prefix collisions can be exploited
to construct colliding X.509 certificates and a rogue CA certificate for MD5.
Note that in most cases constructing such collisions is more complicated than
constructing (random) collisions. Our results and related work for the Grøstl
hash function are shown in Table 1.

Outline. The paper is structured as follows. In Sect. 2, we give a short descrip-
tion of the Grøstl hash function. The basic attack strategy and the collision

Table 1. Collision attacks on the Grøstl-256 hash function.

Rounds Complexity Memory Reference

3 264 - [23]

4 267 264 This work

5 2120 264 This work
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attack for 4 rounds of the hash function is presented in Sect. 3. In Sect. 4, we
describe the extension of the attack to 5 rounds, and in Sect. 5 the construction
of meaningful collisions is discussed. Finally, we conclude in Sect. 6.

2 Short Description of Grøstl

The hash function Grøstl [5] was one of the 5 finalists in the SHA-3 competition
[18]. Grøstl is an iterated hash function with a compression function built from
two distinct permutations P and Q, which are based on the AES design princi-
ples. In the following, we describe the components of the Grøstl hash function
in more detail.

2.1 The Hash Function

The two main variants, Grøstl-256 and Grøstl-512 are used for hash output
sizes of n = 256 and n = 512 bits. The hash function first pads the input message
M and splits the message into blocks m1,m2, . . . , mt of � bits with � = 512 for
Grøstl-256, and � = 1024 for Grøstl-512. The message blocks are processed
via the compression function f(hi−1,mi) and output transformation Ω(ht). The
size of the chaining value hi is � bits as well.

h0 = IV

hi = f(hi−1,mi) for 1 ≤ i ≤ t

h = Ω(ht).

The compression function f is based on two �-bit permutations P and Q (some-
times denoted by P� and Q�) and is defined as follows:

f(hi−1,mi) = P (hi−1 ⊕ mi) ⊕ Q(mi) ⊕ hi−1.

The output transformation Ω is applied to ht to give the final hash value h of
size n, where truncn(x) discards all but the least significant n bits of x:

Ω(ht) = truncn(P (ht) ⊕ ht).

2.2 The Permutations P and Q

The two permutations P and Q are designed according to the wide trail strat-
egy [2] and their structure is very similar to the AES. In Grøstl-256 each per-
mutation updates an 8×8 state of 64 bytes in 10 rounds. In one round, the round
transformation updates the state by means of the sequence of transformations

MB ◦ SH ◦ SB ◦ AC .

In the following, we briefly describe the round transformations of P and Q used
in the compression function f in more detail.
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AddRoundConstant (AC). In this transformation, the state is modified by com-
bining it with a round constant with a bitwise xor operation. Different constants
are used for the permutations P and Q.

SubBytes (SB). The SubBytes transformation is the same for P and Q and
is the only non-linear transformation of the permutations. It is a permutation
consisting of an S-box applied to each byte of the state. The 8-bit S-box is the
same as in the AES with good cryptographic properties against differential and
linear attacks. For a detailed description of the S-box, we refer to [17].

ShiftBytes (SH). The ShiftBytes transformation is a byte transposition that
cyclically shifts the rows of the state over different offsets. The ShiftBytes trans-
formation is different for the two permutations P and Q.

MixBytes (MB). The MixBytes transformation is a permutation operating on
the state column by column. To be more precise, it is a left-multiplication by
an 8 × 8 MDS matrix over F28 . The coefficients of the matrix are determined
in such a way that the branch number of MixBytes (the smallest nonzero sum
of active input and output bytes of each column) is 9, which is the maximum
possible for a transformation with these dimensions. This transformation is the
same for both permutations P and Q.

2.3 Alternative Description of Grøstl

To simplify the description of attack in the following sections, we use an equiv-
alent alternative description of Grøstl. Let P ′ and Q′ denote the permutation
P and Q without the last application of MixBytes. Then, by setting

h′
0 = MB−1(IV)

h′
i = P ′(MB(h′

i−1) ⊕ mi) ⊕ Q′(mi) ⊕ h′
i−1 for 1 ≤ i ≤ t

h = Ω(MB(h′
t))

with hi = MB(h′
i), we get an equivalent description of Grøstl, where the last

MixBytes transformation of the permutations has been swapped with the XOR
operation of the feed-forward.

3 Collision Attack for 4 Rounds of Grøstl

To get improved attacks on the Grøstl hash function, we view Grøstl as a
strengthened variant of SMASH [10]. The essential difference between the two
designs is that Grøstl employs a second nonlinear permutation Q, where SMASH
employs a scaling by the constant θ, i.e. a linear map (see Fig. 1). The hash func-
tion SMASH has been broken by subsequently controlling the output difference
of the compression function using the linearity of θ. After the application of
257 respectively 513 message blocks, a colliding output difference can be con-
structed [13]. In this section, we show how to achieve the same for 4 rounds of
Grøstl by having differences in only one permutation.
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Fig. 1. The compression function of (a) SMASH and (b) Grøstl.

3.1 The Second-Preimage Attack on SMASH

The second-preimage attack on SMASH presented in [13] is based on the tech-
nique of controllable output differences for the compression function. By care-
fully selecting consecutive message blocks, an attacker can step-by-step convert
an arbitrary starting difference in the chaining variable into an arbitrary output
difference. The attack is deterministic and the number of consecutive controllable
message blocks is equal to the length of the chaining variable. The nonlinearity
of f is made ineffective by strictly controlling its input differences and values.
Controlling the input values of f implies that the input values of the linear map
are determined. Fortunately, for a linear map it suffices to know the input differ-
ence to compute the output difference. The output difference of the linear map
is controlled by the number of message blocks.

3.2 Application to Reduced Grøstl

At the first sight, the attack on SMASH does not apply to Grøstl, because the
strong nonlinearity of P and Q makes it difficult to control the output differences
of both permutations. However, by having no differences in Q, we can use the
whole freedom of the message block to control the differential propagation in P .
Since we cannot control the differences completely, we need to apply a variation
of the technique on SMASH, to get a zero output difference at the compression
function.

Our attack will start from an arbitrary difference in the chaining variable
and convert it into an output difference equal to zero after 9 steps. The first
message block can be selected arbitrarily. The only requirement is a difference
in the message. The next 8 message blocks are fully controlled by the attacker
and must not contain any differences. Then, each of the 8 message blocks is used
to cancel one eighth of the differences at the output of the compression function
to result in a collision at the end (see Fig. 2).
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3.3 Details of the Attack

To simplify the description of the attack we use the alternative description of
Grøstl given in Sect. 2.3. Since the last MixBytes transformation is moved out
of the compression function, the limited set of differences at the output are more
clearly visible.

The core of our collision attack on the reduced hash function are truncated
differential trails with only 8 active bytes at the output of P ′. Two full active
states are placed at the beginning and the number of active bytes for the 4-round
trail are given as follows:

64 r1−→ 64 r2−→ 8 r3−→ 8 r4−→ 8. (1)

For such a truncated trail, we can construct a pair following the trail with an
amortized complexity of 1 (even for a given input differences). We postpone the
detailed explanation how to do so until Sect. 3.4.

The high-level overview of the 4-round attack is shown in Fig. 2. In each
iteration, the differences in 8 bytes are canceled. Since this has a probability
2−64, we need to compute 264 pairs for P ′ (for the given input differences) to
find a right pair that result in the desired output difference. The attack can then
be summarized as follows:

1. Choose arbitrary message blocks m1,m
∗
1 and compute h′

1. Repeat this until
one gets a full active state in h′

1. Note that randomly selected m1,m
∗
1 produce

a full active state in h′
1 with probability at least 3/4.

2. Use a right pair for P ′ following the trail of (1) to cancel 8 bytes of the
difference in the state h′

2, cf. Fig. 2.
3. Use a right pair for P ′ for a rotated variant of the trail of (1) to cancel another

8 bytes of the difference in the state h′
3.

4. Repeat steps 3–4 in total 8 times until a collision has been found in h′
9.

The complexity of the attack is 8 times finding a right pair for P ′ to iteratively
cancel the difference in the state h′

2, . . . , h
′
9. We will show in the following section

that such a right pair can be constructed with complexity of 264, resulting in a
total attack complexity of 8 · 264 = 267.

3.4 Finding a Right Pair for P ′

In this section, we show how to find a right pair for P ′ reduced to 4 rounds
following the truncated differential trail in (1) using the rebound attack [15].
Note that the input difference is fixed by MB(h′

i−1) and we target an output
difference such that 8 bytes of the difference in h′

i can be canceled. Unlike the
classical rebound attack, the inbound phase is placed at the beginning and covers
the first two rounds, while the outbound phase covers the last two rounds.

Using super-box matches [6,11,12], we can find 264 pairs (solutions) for the
inbound phase with a complexity of 264 in time and memory. In the outbound
phase, all these pairs will follow the 4 round truncated differential trail with a
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Fig. 2. Overview of the attack on 4 rounds.
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probability of 1 and one of these 264 pairs will match the desired output difference
(condition on 64 bits). In other words, using the rebound attack we can find a
right pair for P ′ with a complexity of 264 in time and memory.

AC
SH

SB
MB
AC
SB

SH
MB

AC
SB
SH
MB

AC
SB
SH

P ′
0 T ∗

1 T ∗
2 P ′

2 P ′
3 P ′

4

average 1 probability 1

Fig. 3. Truncated differential trail for P ′ used in the attack on 4 rounds.

In order to make the subsequent description of the rebound attack easier, we
swap the SubBytes and ShiftBytes transformation in the first round of permu-
tation P ′ (see Fig. 3). Note that this can always be done without affecting the
output of the round. Then, the attack can be summarized as follows:

1. Compute the input difference of the permutation (P ′
0) forward to state T ∗

1 .
2. Compute all 264 differences of state P ′

2 backward to state T ∗
2 and store them

in a list L.
3. Connect the single difference of state T ∗

1 with the 264 differences of state T ∗
2

using independent super-box matches. For each column c = {0, 1, . . . , 7} we
proceed as follows:
(a) Take all 264 values for column c of state T ∗

1 and compute both values
and differences forward to column c of state T ∗

2 .
(b) Check for matching 8-byte column differences in list L. Since we compute

264 differences forward and have 264 entries in L, we get 264 solutions
(differences and values) for the match. We update L to contain these 264

solutions.
4. For each column and thus, for the whole inbound phase the number of result-

ing solutions is 264. The total complexity is 264 in time and memory.

Since the truncated differential trail in the outbound part (the last 2 rounds)
has probability 1, we get in total 264 pairs following the truncated differential
trail and one of these pairs is expected to be a right pair, i.e. result in the desired
output difference (condition on 64 bits).

4 Extending the Attack to 5 Rounds

In this section, we present a collision attack for the Grøstl-256 hash function
reduced to 5 rounds with a complexity of about 2120 and memory requirements
of 264. The attack is an extension of the attack on 4 rounds. However, since
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the freedom in finding right pairs for the 5-round trail is limited, we need more
message blocks for the attack to succeed. In the attack, we use the following
sequence of active bytes in P ′ (cf. Fig. 4):

64 r1−→ 64 r2−→ 8 r3−→ 1 r4−→ 8 r5−→ 8. (2)

However, it is important to note that for this truncated differential trail (with
a fixed input difference) only 28 pairs exist, in contrast to 264 for the 4 round
trail. This complicates the application of the attack. The complexity of finding
these 28 pairs is 264 using the rebound attack, as described in Sect. 3.4.
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P ′
0 P ′

1 P ′
2 P ′

3 P ′
4 P ′

5

average 1 probability 2−56

Fig. 4. Truncated differential trail for P ′ used in the attack on 5 rounds.

4.1 Details of the Attack

Since we can construct only 28 pairs following the truncated differential trail,
but need to cancel a 64-bit difference at the output of the compression function,
each step of the attack succeeds only with a probability of 2−56. However, this
can be compensated for by using more message blocks in each step of the attack.
Then, the attack can be summarized as follows:

1. Use the rebound attack (cf. Sect. 3.4) to find 28 pairs following the truncated
differential trail. This has a complexity of 264 in time and memory.

2. For each of these 28 pairs check if it can be used to cancel the corresponding
8 bytes of differences in state h′

i. This has a probability of 2−56.
3. If no such right pair exists, then choose arbitrarily one of the 28 pairs and

compute the state h′
i. This generates a new starting point with new differences

for the next iteration, while keeping the same bytes inactive.
4. After 256 new starting points, we expect to find a right pair with the desired

output difference.

Since we need 256 new starting points to cancel the differences in 8 bytes of the
state, the complexity of the attack is equivalent to 8 · 264+56 = 2123 compression
function evaluations. Note that the length of such a colliding message is about
8 · 256 = 259 blocks.
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4.2 Reducing the Length of the Colliding Message Pair

Beside the large time and memory complexity of the attack, one might also
see the length of the colliding message pair as a limiting factor of the attack.
However, the length of the colliding message pair can be significantly reduced
by using a tree-based approach. Instead of choosing only one of the 28 pairs to
generate a new starting point, we can continue with all pairs in parallel. By using
a huge tree with 8 levels and 28 branches at each level, we get (28)8 = 264 nodes
at level 8. One of these 264 nodes will have the desired output difference. This
way, the length of the colliding message pair can be reduced to 8 · 8 + 1 = 65
message blocks.

4.3 Improving the Complexity of the Attack

The complexity of the attack can be slightly improved by using denser charac-
teristics except when canceling the last 8 bytes. Instead of using a truncated
differential trail with a 8 → 1 transition in round 3 of the trail, we can use trun-
cated differential trails with 8 → 8, 8 → 7, . . . , 8 → 2 which have a probability
greater than 2−48. The complexity of the attack is then dominated by the last
iteration where we still need an 8 → 1 transition. This will improve the attack
complexity by a factor of 8 resulting in a total complexity of 2120 compression
function evaluations and 264 memory.

5 Collisions in the Chosen-Prefix Setting

In a collision attack on a hash function an attacker has to find two arbitrary
messages M and M∗ such that H(M) = H(M∗). However, in practice it might
be required that the two messages contain some meaningful information, such
that it can be used to practically compromise a cryptographic system. Such
an example are, for instance, collisions in the chosen-prefix setting, where an
attacker searches for a pair (M,M∗) such that

H(Mpre‖M) = H(M∗
pre‖M∗) (3)

for a chosen-prefix (Mpre,M
∗
pre). In [24,25], it was shown that such a more pow-

erful attack exists for MD5. Moreover, the application of the attack to construct
colliding X.509 certificates and the creation of a rogue certification authority
certificate has been shown.

However, in most cases constructing such collisions is more complicated than
constructing (random) collisions. In the case of MD5 the collision attack in the
chosen-prefix setting has a complexity of 249, while the currently best collision
attack on MD5 has a complexity of 216. However, in Grøstl the collision attack
in the chosen-prefix setting has the same complexity as the collision attack. Due
to the generic nature of the collision attack, differences in the chaining variables
can be canceled efficiently (cf. Sect. 3).
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6 Conclusion

In this work, we have provided new and improved cryptanalysis results for the
Grøstl hash function, which significantly improving on previously known results.
To be more precise, by using a new type of differential trail we were able to show
collision attacks on Grøstl for up to 5 rounds. The extension becomes possible
by considering differential trails spanning over more than one message block.

Moreover, due to the generic nature of our attack we can also construct
meaningful collisions, i.e. collisions in the chosen-prefix setting with the same
complexity. It has been shown in the past that such collisions might be exploited
for instance to construct colliding X.509 certificates.

Although our results do not threaten the security of Grøstl, we believe that
they will lead to a better understanding of the security margin of the hash
function.

Acknowledgments. The work has been supported in part by the Austrian Govern-
ment through the research program COMET (Project SeCoS, Project Number 836628)
and through the research program FIT-IT Trust in IT Systems (Project SePAG, Project
Number 835919), by the Secure Information Technology Center-Austria (A-SIT), and
by the Research Fund KU Leuven, OT/13/071.

References

1. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

2. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES–The Advanced Encryption
Standard. Springer, New York (2002)

4. European Network of Excellence in Cryptology: ECRYPT II SHA-3 Zoo. http://
ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo

5. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
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Abstract. This paper presents differential attacks on Simon and Speck,
two families of lightweight block ciphers that were presented by the U.S.
National Security Agency in June 2013. We describe attacks on up to
slightly more than half the number of rounds. While our analysis is only
of academic interest, it demonstrates the drawback of the intensive opti-
mizations in Simon and Speck.

Keywords: Differential cryptanalysis · Block cipher · Lightweight ·
Simon · Speck

1 Introduction

Due to the continuously growing impact of RFID tags, smartcards, and FPGAs,
cryptographic algorithms which are suitable for resource-constrained devices
become more and more important. Lightweight ciphers are optimized to operate
in such environments which are limited with respect to their memory, battery
supply, and computing power. For these applications, hard- and software effi-
ciency are crucial, and designing cryptographic primitives which preserve secu-
rity under these constraints is a major challenge.

During the last decade, many lightweight ciphers have been developed includ-
ing but not limited to HIGHT [11], KATAN [8], KLEIN [9], L-Block [16], LED [10],
mCrypton [12], PRESENT [6], and PRINCE [7]. In June 2012, Beaulieu et al. from
the U.S. National Security Agency (NSA) contributed to this ongoing research
process with the announcement of two novel families of lightweight cipher fam-
ilies, called Simon and Speck [3]. Both constructions support an uncommonly
large range of block sizes from 32 to 128 and key sizes from 64 to 256 bits in order to
suit a variety of implementations. Simonwas thereby optimized for hardware (like
KATAN, LED, or PRESENT), and Speck for software implementations (such as
KLEIN); though, due to immense optimizations in their round functions, both
cipher families perform well in hard- and software.

Related Work. Due to their simple structure, Simon and Speck were already
target of various cryptanalytical efforts. Alkhzaimi and Lauridsen [2] presented –
parallel to our work – differential attacks on up to 16, 18, 24, 29, and 40 rounds
for Simon with 32-, 48-, 64-, 96-, and 128-bit state size, respectively. In addition,
the authors showed impossible-differential attacks on up to 14, 15, 16, 19, and 22
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 525–545, 2015.
DOI: 10.1007/978-3-662-46706-0 27
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rounds and discussed observations regarding rotational cryptanalysis and weak
keys. Alizadeh et al. [1] recently presented the best linear attacks on Simon,
with attacks on 12, 15, 19, 28, and 35 rounds.

Biryukov and Velichkov [5] followed another promising approach, where they
showed differential characteristics and trails on up to 14, 15, and 21 rounds of
Simon and 9, 10, and 13 rounds of Speck with 32-, 48-, and 64-bit state size,
respectively. The authors adapted Matsui’s algorithm (which can find optimal
differential characteristics for S-box-based ciphers) for ARX constructions by
a concept they called highways and country roads. They pointed out that the
computation of a complete differential distribution table (DDT) is infeasible
for ARX-based primitives. To overcome this challenge, the authors constructed
two partial DDTs: a first one with the characteristics of highest probability
(highways), and a second one with trails of slightly lower probabilities (country
roads) in order to connect and/or improve their previous characteristics.

Contribution and Outline. This paper describes our differential attacks on
Simon and Speck, which are summarized in Table 1. In what follows, Sect. 2
first reviews the necessary details of the encryption functions of Simon and
Speck. Section 3 recaps properties of the differential propagation through their
respective round functions. Section 4 follows up with a description of how we con-
structed differential characteristics through parts of both ciphers, and how to
extend these characteristics over further rounds. We later use these characteris-
tics for basic differential key-recovery attacks, which we explain first for Simon
in Sect. 5. Then, Sect. 6 describes our differential attacks on Speck. Section 7
shows rectangle attacks on Speck. We conclude this work in Sect. 8.

Notions. We follow the notions of [3], where n denotes the word size in bits, 2n
the state size in bits, and the tuple (Lr, Rr) (the left and right parts of) a state
after the encryption of Round r. Further, k represents the length of the secret key.
Furthermore, ⊕ denotes the bit-wise XOR, + the addition modulo 2n, ∧ bit-wise
AND, ∨ bit-wise OR, and x the bit-wise inverse of x. We denote by xi the i-th
least significant bit of value x, and enumerate the bits by x = xn−1xn−2 . . . x1x0.
Alternatively, we write values in typewriter font, i.e., x for hex, and x2 for binary
values, e.g., 1F = 31 and 1102 = 6. Concerning differences, we denote by Δi a
difference with all bits are zero, except for the i-th (least significant) bit, and by
Δi,[j,k,...] a difference where the i-th bit is active and the values of the bits in
square brackets are unknown. Further, we denote a differential characteristic or
trail from an input difference α to an output difference β by α → β.

2 Brief Description of SIMON and SPECK

Simon and Speck are two simple Feistel constructions that apply a combina-
tion of rotation, XOR, and either addition (Speck) or the logical AND (Simon)
iteratively over many rounds. The encryption process of Simon is given in
Algorithm 1, that for Speck in Algorithm 2. Both cipher families are defined
for state sizes 2n and key sizes k: 32/64, 48/72, 48/96, 64/96, 64/128, 96/96,
96/144, 128/128, 128/192, and 128/256.
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Table 1. Summary of our results on Simon and Speck. (*) = the time complexities
assume that we have two independent filtering steps (cf. Remark 1). CP = chosen
plaintexts, † = attack uses chosen ciphertexts.

Cipher Attacked Time Data Memory Success

Rounds (*) (CP) (Bytes) Rate

Differential

Simon32/64 18/32 (0.56) 246.0 231.2 215.0 0.63

Simon48/72 † 19/36 (0.52) 252.0 246.0 220.0 0.98

Simon48/96 † 19/36 (0.52) 276.0 246.0 220.0 0.98

Simon64/96 26/42 (0.61) 263.9 263.0 231.0 0.86

Simon64/128 26/44 (0.59) 294.0 263.0 231.0 0.86

Simon96/96 35/52 (0.67) 293.3 293.2 237.8 0.63

Simon96/144 35/54 (0.64) 2101.1 293.2 237.8 0.63

Simon128/128 46/68 (0.67) 2125.7 2125.6 240.6 0.63

Simon128/192 46/69 (0.66) 2142.0 2125.6 240.6 0.63

Simon128/256 46/72 (0.63) 2206.0 2125.6 240.6 0.63

Differential

Speck32/64 10/22 (0.45) 229.2 229 216 0.99

Speck48/72 12/22 (0.54) 245.3 245 224 0.99

Speck48/96 12/23 (0.52) 245.3 245 224 0.99

Speck64/96 15/26 (0.57) 261.1 261 232 0.99

Speck64/128 15/27 (0.55) 261.1 261 232 0.99

Speck96/96 15/28 (0.51) 289.1 289 248 0.99

Speck96/144 15/29 (0.51) 289.1 289 248 0.99

Speck128/128 16/32 (0.50) 2111.1 2116 264 0.99

Speck128/192 16/33 (0.48) 2111.1 2116 264 0.99

Speck128/256 16/34 (0.47) 2111.1 2116 264 0.99

Rectangle

Speck32/64 11/22 (0.50) 246.7 230.1 237.1 ≈ 1

Speck48/72 12/22 (0.54) 258.8 243.2 245.8 ≈ 1

Speck48/96 12/23 (0.52) 258.8 243.2 245.8 ≈ 1

Speck64/96 14/26 (0.53) 289.4 263.6 265.6 ≈ 1

Speck64/128 14/27 (0.51) 289.4 263.6 265.6 ≈ 1

Speck96/144 16/29 (0.55) 2135.9 290.9 294.5 ≈ 1

Speck128/192 18/33 (0.54) 2182.7 2125.9 2121.9 ≈ 1

Speck128/256 18/34 (0.52) 2182.7 2125.9 2121.9 ≈ 1

For Simon, f : {0, 1}n → {0, 1}n is defined as f(x) := (x ≪ 1) ∧ (x ≪ 8).
The rotation constants in Speck are α = 8 and β = 3 for the most versions of
Speck; only Speck32/64 uses α = 7 and β = 2.
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Algorithm 1. Encryption with Simon.
Input: (L0, R0) ∈ {0, 1}2n

Output: (Lr, Rr) ∈ {0, 1}2n

1: for i = 1, . . . , r do
2: Li ← Ri−1 ⊕ f(Li−1)
3: Li ← Li ⊕ Ki−1 ⊕ (Li−1 ≪ 2)
4: Ri ← Li−1

5: end for
6: return (Lr, Rr)

Algorithm 2. Encryption with Speck.
Input: (L0, R0) ∈ {0, 1}2n

Output: (Lr, Rr) ∈ {0, 1}2n

1: for i = 1, . . . , r do
2: Li ← (Li−1 ≫ α) + Ri−1 mod 2n

3: Li ← Li ⊕ Ki−1

4: Ri ← (Ri−1 ≪ β) ⊕ Li

5: end for
6: return (Lr, Rr)

3 Differential Properties of SIMON and SPECK

Differential Properties for the Round Function of SPECK . For Speck,
one requires only the well-known XOR-differential probabilty of the modular
addition (xdp+), which was studied in detail by Lipmaa and Moriai [13,14].

Definition 1 (XOR-Differential Probabilty of Addition [14]). Let α, β, γ
be fixed n-bit XOR differences, and f(x, y) = x+y mod n. Then, xdp+ is defined
as the probability over all x ∈ {0, 1}n, such that

xdp+(α, β → γ) = 2−2n |{(x, y) : f(x, y) ⊕ f(x ⊕ α, y ⊕ β) = γ}| .

Differential Properties for the Round Function of SIMON . For Simon,
one has to consider the differential probability for the round function f(x). At
the end of this section, we provide an algorithm that yields the set and number
of all possible output differences for a fixed input difference. In the following, we
explain first the differential probability (DP) of logical AND; next, we derive the
DP of AND in combination with rotation, and then consider the DP of AND
with rotationally dependent inputs. We follow the notation by [5].

Property 1 (Absorption of Logical AND). Let x, x′, y, y′ ∈ {0, 1} and f(x, y) =
x ∧ y. Let α = x ⊕ x′, β = y ⊕ y′, γ = f(x, y) ⊕ f(x′, y′). Then, it applies that

Pr[α, β → γ = 0] =
{

1 if α = β = 0,
1/2 otherwise.

Property 1 states that the differential output of the logical AND is biased: if α
and β are 0, then γ must be 0. If α and/or β is 1, there is still a probability of
1/2 that the AND operation will cancel the active bit in the output difference.

Definition 2 (XOR-Differential Probability of AND). Let α, β, γ be fixed
n-bit XOR differences, and let f(x, y) = x ∧ y. The XOR-differential probability
of the logical AND (xdp∧) is the probability over all x, y ∈ {0, 1}n, such that

xdp∧(α, β → γ) = 2−2n |{(x, y) : f(x, y) ⊕ f(x ⊕ α, y ⊕ β) = γ}| .
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Property 2 (XOR-Differential Probability of AND). Let α, β, γ be fixed n-bit
XOR differences and hw(·) the hamming-weight function. Then,

xdp∧(α, β → γ) =
{

0 if γ ∧ α ∨ β �= 0n,
2−hw(α∨β) otherwise.

Property 2 transfers Property 1 from bits to n-bit differences. Only those bits
that are active in α and/or β can be active in γ – each with probability 1/2. This
is reflected by the term (α∨β). If γ contains active bits at other positions, then,
γ ∧ α ∨ β �= 0n and Pr[α, β → γ] = 0. Otherwise, all other possible differences γ
are equally possible. Thus, the term α ∨ β can be interpreted as the definition
of a set of possible output differences, i.e., one can efficiently iterate over all
possible combinations of values for its active bits and will obtain all possible
output differences γ.

Definition 3 (XOR-Differential Probabilty of AND with Rotations).
Let α, β, γ be fixed n-bit XOR differences, r ∈ [0, n − 1] be a fixed rotation
amount, and f(x, y) = x ∧ (y ≪ r). Then, xdp∧,≪ is defined as the probability
over all x, y ∈ {0, 1}n, such that

xdp∧,≪(α, β → γ) = 2−2n |{(x, y) : f(x, y) ⊕ f(x ⊕ α, y ⊕ β) = γ}| .
Since rotation and bit-wise logical AND are linear, we can derive

xdp∧,≪(α, β → γ) =
{

0 if γ ∧ α ∨ (β ≪ r) �= 0n,
2−hw(α∨(β≪r)) otherwise.

We can easily transform f(x) = (x ≪ s) ∧ (x ≪ t), with s, t ∈ [0, n − 1], s �= t
into f(x) = x ∧ (x ≪ r) with r = s − t mod n. In the following, we also take
rotationally dependent inputs into account.

Definition 4 (XOR-Differential Probabilty of AND with Rotationally
Dependent Inputs). Let α, β be fixed n-bit XOR differences, r ∈ [0, n − 1] be
a fixed integer, and f(x) = x ∧ (x ≪ r). Then, xdpx∧(x≪r) is defined as the
probability over all x ∈ {0, 1}n, such that

xdpx∧(x≪r)(α → β) = 2−n |{x : f(x) ⊕ f(x ⊕ α) = β}| .
Property 3 (Differential Propagation of xdpx∧(x≪r)). Let α be fixed n-bit XOR
difference and r ∈ [0, n − 1] be a fixed integer. Let f : {0, 1}n → {0, 1}n be
defined by f(x) = x∧ (x ≪ r). Then, the set of possible output differences β for
xdpx∧(x≪r), can be efficiently computed in O(n) as shown in Algorithm 3.

Example: n = 16, r = 7, α = 0500.Let x, x′ be two 16-bit values which serve as
input to f(x), with x ⊕ x′ = α and β = f(x) ⊕ f(x′). We see that

α = α15 . . . α0 = 00000101 0000000 02 (top)
α ≪ r = α8 . . . α0α15 . . . α9 = 10000000 0000001 02 (bottom)

β = β15 . . . β0 = 1000010∗1000000∗102
Algorithm 3 returns β = 1000010∗1000000∗102, and count = 3. The star symbol
∗ denotes dependent bits and the index ∗i, indicates pairs of bits that are related.
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Algorithm 3. Given a n-bit input difference α, computes the set of possible
output differences β for f(x) = x ∧ (x ≪ r).
Input: α ∈ {0, 1}n {Input difference}
Output: β ∈ {0, 1}n {Set of all possible output differences},

count {# of possible output differences}
β ← 0n, count ← 0
for i ← 0, . . . , n − 1 do

if (αi ∨ α(i+r mod n)) ∧ βi = 0 then {Bit βi can be active}
βi ← 1
count ← count + 1

end if
if αi ∧ α(i−r mod n) ∧ αi+r mod n then {βi = β(i+r mod n)}

βi ← ∗i

βi+r mod n ← ∗i

end if
end for
return (β, count)

– β1 depends on α1 (top) and α10 (bottom), with α1 = 0 and α10 = 1;
– β8 depends on α8 (top) and α1 (bottom), with α1 = 0 and α8 = 1;

From α1 = 0 follows that x2 = x′
2. When x2 = x′

2 = 0 then β1 = β8 = 0;
otherwise, when x2 = x′

2 = 1, it must hold that β1 = β8 = 1. We call β1 and β8

dependent bits. Since β contains four active bits and one pair of them depends on
each other, there are 24−1 = 23 possible output differences defined by β, namely:

{0000, 0102, 0400, 0502, 8000, 8102, 8400, 8502.},

Each difference can be formed by 216−3 = 213 possible pairs (x, x′).

4 Search for Differential Characteristics and Differentials

During our analysis, we applied a two-step approach to find our differentials.
Firstly, we employed Matsui’s algorithm [15] to find some characteristics for the
32-, 48-, and 64-bit versions of Simon:

Simon32/64 Simon48/k Simon64/k

α (Δ5, 0) (Δ8,16, Δ6,14,18) (Δ6, 0)

β (Δ14, 0) (Δ6,14,18,22, Δ20) (Δ6,10,14, Δ12)

Rounds 12 15 20

Pr[α → β] 2−36 2−52 2−70

Secondly, we applied a branch-and-bound search, similar to the approach
of [2]. There, we started from the input difference α and propagated it round-
wise in forward and backward direction. For each round, we collected all possible
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output characteristics α → β and their probability p as a tuple (β, p) in a set
and used them as a starting point for the next round in a depth-first manner.
Therefore, we used Algorithm 3 for Simon and a variant of the Algorithm by
Lipmaa and Moriai [14] for Speck.

Since following each path is infeasible, we pruned the search tree by consid-
ering only characteristics α → β with a probability above a chosen threshold.
Therefore, we used the characteristic found with Matsui’s algorithm as a refer-
ence, i.e., say Matsui’s characteristic had probability p = 2−q after some round
r, we only considered those characteristics β as input to round r + 1 that had a
probability p 	 2−q−thresh. We further pruned the search tree by only storing
a (chosen) maximal number of characteristics.

Every time two differential characteristics lead to the same output difference
β after a round, we merged them to one differential trail and added their prob-
abilities. We emphasize that our characteristics have been found experimentally
and do not necessarily represent the best possible ones. Further, note that we
rely on the assumption that all possible round keys are equally probable and
uniformly distributed for every round.

Extending Differential Characteristics to Attacks. A given differential
can be extended by a few more rounds in a key-recovery attack for any version
of Simon2n/k. Assume, we are given an r-round differential (α, β) → (γ, δ).
Because Simon injects the subkey at the end of the rounds, the adversary itself
can compute the output of f(x) in the first round, choose (β, α ⊕ f(β)) as
input difference and obtains an (r + 1)-round differential with equal probability.
A similar strategy can be applied at the output side. Given an output difference
(γ, δ) after (r + 1) rounds, the difference after (r + 2) rounds is (δ ⊕ f(γ), γ).
Since the subkey in the last round of a characteristic does not affect the output
difference δ⊕f(γ), the adversary can compute f(γ) itself and obtains an (r+2)-
round differential with equal probability.

For the versions 48/72-, 64/96-, 96/144-, and 128/192-bit versions, one can
append a further round by simply guessing its full subkey. The total compu-
tational effort for collecting plaintext-ciphertext pairs and testing all subkey
candidates for the appended round remains significantly smaller than that for
exhaustively searching the full key space. Moreover, for the 32/64-, 48/96-,
64/128-, and 128/256-bit versions, one can append another round by guessing
its subkey.

5 Key-Recovery Attacks on SIMON

In this section we describe a key-recovery attack on round-reduced Simon32/64.
Since attacks on the further variants follow a similar procedure, we specify only
their complexities at the end of this section. For Simon32/64 we use the 13-
round differential characteristic with p ≈ 2−30.2 (see Table 4 in Appendix A)
over the rounds 2 − 14:

Δ1 = (0,Δ6) → (Δ14, 0) = Δ14.
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Note that we can choose the left part of the plaintext pairs P, P ′, s.t. we obtain
the desired difference Δ1 after the first round. We can append four additional
rounds to the end of the cipher, where we will guess in total 18 key bits. From
the obtained ciphertexts, we still know many bits from the truncated trail:

(ΔL15,ΔR15) = (Δ0,[6,15],Δ14),

(ΔL16,ΔR16) = (Δ2,[0,1,7,8,14],Δ0,[6,15]),

(ΔL17,ΔR17) = (Δ4,[0,1,2,3,6,8,9,10,15],Δ2,[0,1,7,8,14]),

(ΔL18,ΔR18) = (Δ6,[14],Δ4,[0,1,2,3,6,8,9,10,15]).

Attack Procedure. The full attacking procedure can be split into a collection,
a pair-filtering, a key-guessing, and a brute-force phase:

Collection Phase
1. Initialize an empty set C = ∅.
2. Choose 230.2 plaintext pairs (Pi, P

′
i ), s.t. their difference after the first

round yields Δ1.
3. Collect their corresponding ciphertext pairs (Ci, C

′
i) from an encryption

oracle, where Ci = EK(Pi) and C ′
i = EK(P ′

i ).
Pair-Filtering Phase

4. For all ciphertext pairs, invert the final round to derive Δ17 and store all
pairs (Ci, C

′
i) with the correct difference at the known bits Δ17 in C. We

know seven bits of ΔL17 and 11 bits of ΔR17. Assuming the differences
Δ17 are uniformly distributed, we can expect 230.2−18 = 212.2 pairs in
average.

Key-Guessing Phase
5. Create a list of counters for all 218 possible values of the round-key bits

K17
0,1,5,7−11,14,15, K16

6−9,13,15, and K15
9,7, and perform the following steps for

each candidate:
– For all pairs (Ci, C

′
i) ∈ C:

– Partially decrypt (Ci, C
′
i) to the state after the encryption of

Round 14. If their difference matches Δ14, increment the counter
for the current key candidate.

6. Output the key candidate(s) which is/are associated to the highest counter
values.

Brute-Force Phase
7. For all bits of K17, K16, K15, and K14 that are not guessed in the previous

steps, perform further encryptions to identify their correct values.

Attack Complexity. The attack requires 231.2 chosen plaintexts. Regarding the
memory complexity, we store 2 · 212.2 texts of 32 bits each, or 215.2 bytes for the
attack. The computational effort for the collection phase, Ccollect, is equivalent
to 230.2 full encryptions performed by the oracle. The filtering effort, Cfilter, is
given by 230.2 one-round decryptions to check 18 bits of Δ17. The effort for the
key-guessing phase, Ckey-guessing, consists of decrypting the remaining pairs for
each of the 218 key candidates over three further rounds.
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Assuming that both filtering steps of the pair-filtering and the key-guessing
phase are independent from each other, we can identify the correct value of the
18 guessed key bits. A trivial brute-force search can find the correct value of the
46 remaining bits of the considered subkeys K14,K15,K16,K17 with about 246

encryptions. The total computational complexity can be estimated by

2 · 230.2︸ ︷︷ ︸
Ccollect

+ 2 · 230.2 · 1
18︸ ︷︷ ︸

Cfilter

+ 2 · 218 · 218 · 3
18︸ ︷︷ ︸

Ckey-guessing

+ 246︸︷︷︸
Cbruteforce

≈ 246 encryptions.

Remark 1. Note that in the case that our assumption would not hold, we still
have a differential that is satisfied with probability p = 2−30.2, and a 32-bit filter
at Δ14. Hence, we can expect to be able to reduce the candidates of the 18 key
bits we guess in the final four rounds to 230.2 · 218 · 2−32 = 216.2, increasing the
complexity of the brute-force step to 246 · 216.2 = 262.2 encryptions, which is still
significantly faster than exhaustive search. In general case, the computational
effort for our attacks would then be dominated by the costs for a simple exhaus-
tive search on the remaining key space. Hence, the time complexities would then
become approximately 2k/(p ·22n) (k = 64, n = 16, p ≈ 2−30.2 for Simon32/64).

Success Rate. Since the probability of a pair to follow our differential is about
2−30.2, the probability that at least one correct pair occurs for the correct key
can be approximated by

1 − Pr[n = 230.2, p = 2−30.2, x ≤ 0] = 1 − 1/e ≈ 0.632.

Similar Attacks on Further Versions. We can apply the same procedure
to further versions of Simon. To cover one additional round, we use chosen
ciphertexts in the attack on Simon48/k. Table 2 summarizes the probabilities,
required number of pairs, known state bits to filter (1st filter), guessed key bits
(key bits), and success rates (where false random shows the probability that
no correct pair occurs during execution of the respective attack, and false real
denotes the probability of a false-positive pair to occur) for each attack. The
differential characteristics for the further version are illustrated in Tables 4, 5
and 6 in Appendix A.

Table 2. Parameters of our differential attacks on Simon. “1st Filter” denotes the
number of bits that can be used to filter out pairs after inverting the final round; key
bits = # guessed key bits; p = Probability of the used differential.

Cipher Rounds Pairs 1st Filter Key Bits Stored pairs p Succ. rate

Simon32/k 18 230.2 18 18 212.2 2−30.2 0.632

Simon48/k 19 245.0 28 20 217.0 2−43.0 0.981

Simon64/k 25 262.0 35 36 227.0 2−61.0 0.863

Simon96/k 35 292.2 59 43 233.2 2−92.2 0.632

Simon128/k 46 2124.6 89 50 235.6 2−124.6 0.632
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6 Differential Attacks on SPECK

In this section we describe our differential analysis of Speck. Since the small
version of Speck (Speck32/64) allows a simple practical verification, in the
following, we only discuss this version in detail. We apply the same strategy to
the remaining family members of Speck and present only their complexities at
the end of this section.

6.1 Key-Recovery Attack on SPECK34/64

We use the characteristic for Speck32/64 from Table 7 in Appendix A with
p ≈ 2−24 over rounds 2 − 9 to mount a 10-round attack.

Δ1 = (Δ5,6,9,11,Δ0,2,9,14) → (Δ1,3,5,15,Δ3,5,7,10,12,14,15) = Δ9.

Attack Procedure. Again, we split the attacking procedure into a collection, a
key-guessing, and a brute-force phase:

Collection Phase
1. Initialize an empty list C = ∅.
2. Choose 228 pairs (Pi, P

′
i ) s.t. their difference after the first round is Δ1.

3. Collect the corresponding ciphertext pairs (Ci, C
′
i) from a decryption oracle,

where Ci = EK(Pi) and C ′
i = EK(P ′

i ). Derive ΔL9
0−3,ΔR9 and store all

pairs (Ci, C
′
i) with ΔL9

0−3 = Δ3 and ΔR9 = Δ3,5,7,10,12,14,15 in the list C.
Key-Guessing Phase

4. Create a list of 212 counters.
5. For all possible values of the 12 key bits K9

4−15:
– For all pairs (Ci, C

′
i) ∈ C:

– Partially decrypt (Ci, C
′
i) to the state after the encryption of Round

9, and derive ΔL9. If ΔL9 = Δ1,3,5,15, then increment the counter
for the current key candidate.

6. Output those keys as potentially correct for which their counter has a value
of at least four.

7. Mark all pairs which yielded the correct Δ9 for the potentially correct key(s)
as correct pairs.

Brute-Force Phase
8. Partially decrypt all correct pairs round by round to get the correct subkey

bits K9
0−3, K8, K7, and K6.

Success Rate. The probability that a pair follows our differential characteristic
is about 2−24. Hence, the probability that no more than three correct pairs occur
when using Speck (i.e., the correct subkey will not be found) is about

Pr[n = 228, p = 2−24, x ≤ 3] ≈ 9.31 · 10−5,

and hence, the success probability of the attack approx. 1 − 9.31 · 10−5 > 0.99.
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Table 3. Parameters of our differential attacks on Speck. “1st Filter” denotes the
number of bits that can be used to filter out pairs after inverting the final round; key
bits = # guessed key bits; p = Probability of the used differential.

Cipher Rounds Pairs 1st Key Stored p Succ.

Filter Bits pairs rate

Speck32/k 10 228 20 12 28 2−24.0 0.99

Speck48/k 12 244 25 23 219 2−40.6 0.99

Speck64/k 15 261 35 29 226 2−58.9 0.99

Speck96/k 15 288 54 42 234 2−84.0 0.99

Speck128/k 16 2115 67 61 248 2−111.1 0.99

Attack Complexity. Our attack on Speck32/64 requires 229 chosen plain-
texts. The computational effort for Ccollect covers 229 full encryptions performed
by an encryption oracle. The filtering effort, Cfilter, is twofold. First, we partially
decrypt all ciphertext pairs over the final round. There, we have a 20-bit filter
from the four least-significant bits of ΔL9 and the full ΔR9. Assuming all differ-
ences occur uniformly at random, we expect to have 228−20 = 28 remaining pairs
afterwards. Thereupon, for 212 values of K9

4−15, we derive the remaining 28 pairs
and derive ΔL9. In the brute-force phase, the adversary partially decrypts the
remaining pairs round by round to identify the correct round keys. Therefore,
the full computational complexity is given by

229︸︷︷︸
Ccollect

+ 229 · 1
10

+ 28 · 212 · 1
10︸ ︷︷ ︸

Cfilter

+
(
24 + 216 + 216 + 216

) · 28 · 1
10︸ ︷︷ ︸

Cbruteforce

≈ 229.16

encryptions. Concerning the memory complexity, we store a list of counters for
all key candidates, which requires 212 bytes for the first filtering phase and 216

bytes for the counters of the round keys in the brute-force phase.
We can apply a similar procedure for the remaining versions of Speck and

obtain the results of Table 3. In all cases, the computational effort is dominated
by the brute-force step. The differentials for the individual versions of Speck can
be found in the Tables 7, 8, 9 and 10 in Appendix A.

7 Rectangle Attacks on SPECK

Boomerangs and Rectangles. Boomerangs and rectangles allow to use two
short differential characteristics with high probabilities instead of a single long
differential. Therefore, one first splits a given cipher E into parts E = E2 ◦
E1, and searches for two differentials α

p−−→
E1

β and γ
q−−→

E2
δ. Next, one collects



536 F. Abed et al.

quartets of plaintexts (P, P ′, Q,Q′) with P ⊕ P ′ = Q ⊕ Q′ = α. In the following
we denote by (R,R′, S, S′) their encryptions after E1 and by (C,C ′,D,D′) their
encryptions after E2.

Each quartet has a probability of p2 that (R,R′, S, S′) fulfils R ⊕ R′ =
S ⊕ S′ = β. We are interested in the case when R ⊕ S = γ since then, it
automatically applies that R′ ⊕ S′ = γ. With probability q2, a ciphertext quar-
tet (C,C ′,D,D′) fulfils C ⊕ D = C ′ ⊕ D′ = δ. In this case, we call it a right
quartet. If an adversary collects m pairs with difference α, then, the expected
number of right quartets according to [4] is:

m2 · 2−n · (pq)2.

Hence, it must apply that pq < 2−n/2 in order to mount an attack on E.
As an improvement Biham et al. proposed in [4] to use quartets with any

possible difference β′ and γ′ in the middle, as long as both pairs in a quartet
share the same difference β′ and γ′ after E1. Thus, the probabilities of p and q
increase to

p̂ =
√∑

β′
Pr[α → β′] and q̂ =

√∑
γ′

Pr[γ′ → δ].

In the remainder of this section, we describe in details a rectangle attack on 11
rounds of Speck32/64. Since our attacks on the further versions of Speck work
similar, we only specify the used trails and their complexities in Tables 11 and
12 in Appendix B.

7.1 Rectangle Attack on SPECK34/64

For the attack on Speck32/64 we use the following trails α → β′ and γ′ → δ:

α = (Δ11,13,Δ4)
p̂ ≥ 2−8.01

−−−−−−→
E1

β′ and γ′ q̂ ≥ 2−4.56

−−−−−−→
E2

(Δ15,Δ1,3,10,15) = δ.

E1 represents the rounds 2–6, and E2 the rounds 7–10. Again, we can split the
attacking procedure into a collection, a key-guessing, and a brute-force phase:

Collection Phase
1. Initialize two empty hash tables C, D, and a list Q.
2. Choose 2(n+2)/2

p̂q̂ = 234/2

2−8.012−4.56 = 229.57 plaintext pairs (P, P ′) s.t. their
difference after the first round is α.

3. Ask for the encryption of (P, P ′) and receive the corresponding ciphertext
pair (C,C ′). Then, partially decrypt C,C ′ over the final round to the state
after Round 10, (R10, R′10) and store the result in C. XOR the right part
of δ to (R10 ⊕ Δ1,3,10,15, R

′10 ⊕ Δ1,3,10,15 and store them in D.
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4. Prior, lookup if there is already an entry in D under the index

(R10 ⊕ Δ1,3,10,15, R
′10 ⊕ Δ1,3,10,15).

If there is, label the existing ciphertext pair in D as (D,D′) and store
the quartet (C,C ′,D,D′) in Q. We can build (229.57)2/2 = 258.14 quartets
from our pairs. Since this event requires a match in 16 bits of the first,
and 16 bits of the second pair, we can expect to have at average a number
of 258.14−32 ≈ 226.14 false positive quartets for which this condition holds.
Since the probability of a right quartet is 22·−8.01+2·−4.56 = 2−25.14, we
can expect 258.14−25.14 = 233 right quartets in addition. We approximate
233 + 226.14 ≈ 233 hereafter.

Filtering Phase
5. Initialize a table T of 216 counters.
6. For all possible values of the subkeys K10:

6.1 Decrypt all quartets over the final round and check whether their dif-
ference ΔL10 is equal to Δ15. If yes, then increment the counter for the
current key candidate in T .

7. Output the key candidate(s) with the maximal count(s) in T .
Brute-Force Phase

8. Partially decrypt the remaining pairs round by round to identify the further
round keys K9, K8, and K7.

Attack Complexity. The attack requires 230.07 chosen plaintexts. We have to
store the corresponding ciphertexts, the remaining 233 quartets, and a list of
216 counters for all round-key candidates. So, we can approximate the required
memory by (230.07+4·233)·32/8+216 ≈ 237.1 bytes. The computational effort for
the collection phase, Ccollect, consists of 230.07 full encryptions performed by the
oracle, and 230.07 half-round decryptions. Additionally, we need 230.07 memory
accesses to look up potential quartets and about 4 · 233 memory accesses in
average to store the remaining quartets.

To use consistent units, we overestimate a memory access by a half-round
computation. In the filtering phase, we have to perform 216 · 4 · 233 = 251 half-
round decryptions to obtain the difference in the left word after Round 10.
Summing up, we obtain a computational effort of

230.07 + (230.07 + 230.07 + 4 · 226.14) · 1
22︸ ︷︷ ︸

Ccollect

+ 251.14 · 1
22︸ ︷︷ ︸

Cfilter

+ 216 + 216 + 216︸ ︷︷ ︸
Cbruteforce

≈ 246.68

encryptions.
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8 Discussion and Conclusion

This work presented differential attacks on round-reduced versions of the Simon
and Speck. Furthermore, we briefly considered rectangle attacks on Speck. We
also studied rectangle attacks on Simon and impossible-differential attacks; how-
ever, we omitted those since they did not improve our results with conventional
differentials.

Our analysis can be seen as a starting point for further research on Simon
and Speck. For Simon, it demonstrates that up to half the number of rounds
are vulnerable against differential attacks due to its highly optimizied round
function. Moreover, the cipher shows a strong differential effect, i.e., there are
many possible characteristics for given input and output difference.

Speck is much closer to previous ARX designs such as ThreeFish than
Simon. However, while ThreeFish has been published four years ago, still only
1/3 of the rounds have been attacked so far, whereas the current analysis of
Speck already threatened the security of up to half of the rounds little time
after publication. Moreover, any new analysis method on addition-based ARX
would be a threat to both NSA constructions as well. In conclusion, we can
learn from Simon that ARX designs should incorporate additions to provide
reasonably fast diffusion.

Acknowledgments. We thank all reviewers of the FSE 2014 for their helpful com-
ments and furthermore, we would like to thank Christian Forler, Ivica Nikolić, Douglas
Shors, and Vesselin Velichkov for fruitful discussions.
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A Differential Characteristics for SIMON and SPECK

We use the following notions for the tables in this section. Each table contains
at least a differential characteristic for one version of Simon or Speck. We
denote by

∑
the total probability of the full characteristic, and by

∑
acc the

accumulated probability of all found trails from start to end difference.
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Table 4. Differential characteristics for Simon32/64 and Simon48/k.

Rd. Simon32/64 Simon48/k

ΔLi ΔRi log2(p) ΔLi ΔRi log2(p)

0 0 Δ6 Δ8,16 Δ6,14,18

1 Δ6 0 0 Δ6,10,14 Δ8,16 −4

2 Δ8 Δ6 −2 Δ12 Δ6,10,14 −6

3 Δ6,10 Δ8 −2 Δ6,10 Δ12 −2

4 Δ12 Δ6,10 −4 Δ8 Δ6,10 −4

5 Δ6,10,14 Δ12 −2 Δ6 Δ8 −2

6 Δ0,8 Δ6,10,14 −6 0 Δ6 −2

7 Δ2,6,14 Δ0,8 −4 Δ6 0 0

8 Δ4 Δ2,6,14 −6 Δ8 Δ6 −2

9 Δ2,14 Δ4 −2 Δ6,10 Δ8 −2

10 Δ0 Δ2,14 −4 Δ12 Δ6,10 −4

11 Δ14 Δ0 −2 Δ6,10,14 Δ12 −2

12 0 Δ14 −2 Δ8,15,16 Δ6,10,14 −6

13 Δ14 0 0 Δ6,14,18 Δ8,15,16 −6

14 Δ20 Δ6,14,18 −6

15 Δ6,14,18,22 Δ20 −2

Σ −36 −50

Σacc −30.22 −43.01

Table 5. Differential characteristics for Simon64/k.

Rd. ΔLi ΔRi log2(p) Rd. ΔLi ΔRi log2(p)

0 Δ8 Δ6,10 11 Δ6,14,17,18 Δ14,15,20 −6

1 Δ6 Δ8 −2 12 Δ8,16 Δ6,14,17,18 −8

2 0 Δ6 −2 13 Δ6,10,14 Δ8,16 −4

3 Δ6 0 0 14 Δ12 Δ6,10,14 −6

4 Δ7,8,14 Δ6 −2 15 Δ6,10 Δ12 −2

5 Δ6,10,16 Δ7,8,14 −6 16 Δ8 Δ6,10 −4

6 Δ12 Δ6,10,16 −6 17 Δ6 Δ8 −2

7 Δ6,10,14,16 Δ12 −2 18 0 Δ6 −2

8 Δ8,15,16,22 Δ6,10,14,16 −8 19 Δ6 0 0

9 Δ6,14,18 Δ8,15,16,22 −8 20 Δ8 Δ6 −2

10 Δ14,15,20 Δ6,14,18 −6 21 Δ6,10 Δ8 −2

Σ −80

Σacc −61.01
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Table 6. Differential characteristics for Simon96/k and Simon128/k.

Rd. Simon96/k Simon128/k

ΔLi ΔRi log2(p) ΔLi ΔRi log2(p)

0 Δ20 Δ6,14,18,22 Δ12 Δ6,10,14

1 Δ6,14,18 Δ20 −2 Δ6,10 Δ12 −2

2 Δ8,16 Δ6,14,18 −6 Δ8 Δ6,10 −4

3 Δ6,10,14 Δ8,16 −4 Δ6 Δ8 −2

4 Δ12 Δ6,10,14 −6 0 Δ6 −2

5 Δ6,10 Δ12 −2 Δ6 0 0

6 Δ8 Δ6,10 −4 Δ8 Δ6 −2

7 Δ6 Δ8 −2 Δ6,10 Δ8 −2

8 0 Δ6 −2 Δ12 Δ6,10 −4

9 Δ6 0 0 Δ6,10,14 Δ12 −2

10 Δ8 Δ6 −2 Δ8,15,16 Δ6,10,14 −6

11 Δ6,10 Δ8 −2 Δ6,14,18 Δ8,15,16 −6

12 Δ12 Δ6,10 −4 Δ14,15,20 Δ6,14,18 −6

13 Δ6,10,14 Δ12 −2 Δ6,14,17,18 Δ14,15,20 −6

14 Δ8,15,16 Δ6,10,14 −6 Δ8,16 Δ6,14,17,18 −8

15 Δ6,14,18 Δ8,15,16 −6 Δ6,10,14 Δ8,16 −4

(Continued)
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Table 6. (Continued)

Rd. Simon96/k Simon128/k

ΔLi ΔRi log2(p) ΔLi ΔRi log2(p)

16 Δ14,15,20 Δ6,14,18 −6 Δ12 Δ6,10,14 −6

17 Δ6,14,17,18 Δ14,15,20 −6 Δ6,10 Δ12 −2

18 Δ8,16 Δ6,14,17,18 −8 Δ8 Δ6,10 −4

19 Δ6,10,14 Δ8,16 −4 Δ6 Δ8 −2

20 Δ12 Δ6,10,14 −6 0 Δ6 −2

21 Δ6,10 Δ12 −2 Δ6 0 0

22 Δ8 Δ6,10 −4 Δ8 Δ6 −2

23 Δ6 Δ8 −2 Δ6,10 Δ8 −2

24 0 Δ6 −2 Δ12 Δ6,10 −4

25 Δ6 0 0 Δ6,10,14 Δ12 −2

26 Δ8 Δ6 −2 Δ8,15,16 Δ6,10,14 −6

27 Δ6,10 Δ8 −2 Δ6,14,18 Δ8,15,16 −6

28 Δ12 Δ6,10 −4 Δ14,15,20 Δ6,14,18 −6

29 Δ6,10,14 Δ12 −2 Δ6,14,17,18 Δ14,15,20 −6

30 Δ8,16 Δ6,10,14 −6 Δ8,16 Δ6,14,17,18 −8

31 Δ6,10,14 Δ8,16 −4

32 Δ12 Δ6,10,14 −6

33 Δ6,10 Δ12 −2

34 Δ8 Δ6,10 −4

35 Δ6 Δ8 −2

36 0 Δ6 −2

37 Δ6 0 0

38 Δ8 Δ6 −2

39 Δ6,10 Δ8 −2

40 Δ12 Δ6,10 −4

41 Δ6,10,14 Δ12 −2

Σ −106 −144

Σacc −92.2 −124.6
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Table 7. Differential characteristics for Speck32/64 and Speck48/k.

Rd. Speck32/64 Speck48/k

ΔLi ΔRi log2(p) ΔLi ΔRi log2(p)

0 Δ5,6,9,11 Δ0,2,9,14 Δ0,8,9,11,19,22 Δ0,3,14,16,19

1 Δ0,4,9 Δ2,9,11 −5 Δ1,11,12,19 Δ1,3,6,11,17,22 −8

2 Δ11,13 Δ4 −4 Δ1,4,6,22 Δ9,14,20,22 −7

3 Δ6 0 −2 Δ9,17,23 Δ1,9,12 −5

4 Δ15 Δ15 0 Δ12,15 Δ4 −4

5 Δ8,15 Δ1,8,15 −1 Δ7 0 −2

6 Δ15 Δ1,3,10,15 −2 Δ23 Δ23 0

7 Δ1,3,8,10,15 Δ5,8,10,12,15 −4 Δ15,23 Δ2,15,23 −1

8 Δ1,3,5,15 Δ3,5,7,10,12,14,15 −6 Δ2,7,23 Δ5,7,18,23 −3

9 Δ3,5,7,8,15 Δ0,1,3,8,9,12,14,15 −7 Δ5,7,15 Δ2,5,7,8,10,15,21 −4

10 Δ2,5,8,10,15,23 Δ0,2,11,13,15,18,23 −7

Σ −31 −41

Σacc −30.99 −40.55

Table 8. Differential characteristic for Speck96/k.

Rd. ΔLi ΔRi log2(p)

0 Δ1,5,7,19,29,37,41,43,45 Δ0,11,19,21,22,29,32,33,37,41,44,45

1 Δ0,19,22,32,35,44,47 Δ3,14,19,24,25,36,40 −13

2 Δ3,11,19,25,27,39 Δ3,6,11,17,19,22,25,28,43 −10

3 Δ6,22,25,28,31 Δ9,14,20,46 −10

4 Δ9,17,23 Δ1,9,12 −6

5 Δ12,15 Δ4 −4

6 Δ7 0 −2

7 Δ47 Δ47 0

8 Δ39,47 Δ2,39,47 −1

9 Δ2,31,47 Δ5,31,42,47 −3

10 Δ5,23,31,39,47 Δ2,5,8,23,31,34,39,45,47 −5

11 Δ2,5,8,15,34,47 Δ0,11,15,26,37,42,47 −9

12 Δ7,11,15,37,39,45,47 Δ2,3,7,11,14,15,18,29,37,39,40,47 −9

13 Δ2,11,14,15,18,31,40 Δ5,6,10,11,15,17,21,31,32,42,43 −12

Σ −84

Σacc −83.98
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Table 9. Differential characteristic for Speck64/k.

Rd. ΔLi ΔRi log2(p) Rd. ΔLi ΔRi log2(p)

0 Δ5,21,24,27,30 Δ8,13,19,29 7 Δ4,6,7,14,22,30 Δ1,4,6,14,17,22,28,30 −7

1 Δ8,16,22 Δ0,8,11 −6 8 Δ1,4,7,17,31 Δ9,20,25 −9

2 Δ11,14 Δ3 −4 9 Δ20,23,28,31 Δ12,20,31 −5

3 Δ6 0 −2 10 Δ15,23,31 Δ2,31 −4

4 Δ30 Δ30 −1 11 Δ2,7,15,23,31 Δ5,7,15,23,31 −4

5 Δ22,30 Δ1,22,30 −2 12 Δ5,26 Δ2,5,8,10,18 −5

6 Δ1,14,30 Δ4,14,25,30 −4 13 Δ2,5,8,10,29 Δ2,10,11,13,21,29 −6

Σ −59

Σacc −58.9

Table 10. Differential characteristic for Speck128/k.

Rd. ΔLi ΔRi log2(p)

0 Δ5,10,16,26,27,35,37,42,48,49,54,58,60 Δ2,5,18,34,37,46,49,50

1 Δ5,8,19,27,29,37,40,41,49,52,61 Δ19,21,27,29,41,53,61 −16

2 Δ0,11,22,27,28,32,33,44 Δ11,24,27,30,33,56 −13

3 Δ3,11,14,19,25,27,30,33,36 Δ3,11,19,25,59 −12

4 Δ6,17,22,28 Δ14,17,62 −9

5 Δ9,17,20 Δ1,9 −5

6 Δ12 Δ4 −3

7 0 Δ7 −1

8 Δ7 Δ7,10 −1

9 Δ7,10,63 Δ7,13,63 −2

10 Δ2,7,13,55 Δ7,10,13,16,55 −4

11 Δ5,7,10,13,16,47,55,58,63 Δ5,7,19,47,55,63 −8

12 Δ2,7,8,19,39,50,61 Δ7,10,19,22,39,58,61 −10

13 Δ0,7,10,19,22,31,39,42,53,61,63 Δ7,13,19,25,31,39,53,63 −13

14 Δ2,7,11,13,14,19,23,25,34,39,45,55,56 Δ7,10,11,13,14,16,19,22,23,25,28,39,42,45,55 −15

Σ −112

Σacc −111.16
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B Rectangle Attacks on SPECK

Table 11. Parameters of our rectangle attacks onSpeck2n/k. p̂ denotes the accumu-
lated probability of the characteristics over E1, q̂ the probability of characteristics over
E2. Note that we prepend one round before E1 and append one round after E2 in our
attacks.

Cipher Rounds p̂ q̂

Attacked E1 E2

Speck32/64 11/22 5 4 2−8.01 2−4.56

Speck48/72 12/22 5 5 2−9.06 2−9.11

Speck48/96 12/23 5 5 2−9.06 2−9.11

Speck64/96 14/26 6 6 2−15.02 2−14.58

Speck64/128 14/27 6 6 2−15.02 2−14.58

Speck96/144 16/29 7 7 2−22.46 2−19.39

Speck128/192 18/33 8 8 2−28.47 2−28.39

Speck128/256 18/34 8 8 2−28.47 2−28.39

Table 12. Differential characteristics for our rectangle attacks on the individual ver-
sions of Speck. α denotes the input differences, δ the output differences.

Cipher α δ

Speck32/64 (Δ11,13, Δ4) (Δ15, Δ1,3,10,15)

Speck48/k (Δ12,15, Δ4) (Δ2,7,23, Δ5,7,18,23)

Speck64/k (Δ9,17,20, Δ1,9) (Δ1,14,30, Δ4,14,25,30)

Speck96/k (Δ9,17,23, Δ1,9,12) (Δ5,23,31,39,47, Δ2,5,8,23,31,34,39,45,47)

Speck128/k (Δ6,22,25,28,31, Δ9,14,20,62) (Δ2,5,8,31,50,63, Δ0,11,31,42,53,58,63)
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Abstract. In this paper we continue the previous line of research on
the analysis of the differential properties of the lightweight block ciphers
Simon and Speck. We apply a recently proposed technique for auto-
matic search for differential trails in ARX ciphers and improve the trails
in Simon32 and Simon48 previously reported as best. We further extend
the search technique for the case of differentials and improve the best
previously reported differentials on Simon32, Simon48 and Simon64 by
exploiting more effectively the strong differential effect of the cipher. We
also present improved trails and differentials on Speck32, Speck48 and
Speck64. Using these new results we improve the currently best known
attacks on several versions of Simon and Speck. A second major con-
tribution of the paper is a graph based algorithm (linear time) for the
computation of the exact differential probability of the main building
block of Simon: an AND operation preceded by two bitwise shift oper-
ations. This gives us a better insight into the differential property of
the Simon round function and differential effect in the cipher. Our algo-
rithm is general and works for any rotation constants. The presented
techniques are generic and are therefore applicable to a broader class of
ARX designs.

Keywords: Symmetric-key · Differential trail · Tools for cryptanalysis ·
Automatic search · ARX · Simon · Speck · Lightweight ciphers

1 Introduction

The past decade in technology has been marked by the ever decreasing size of
computing devices. This, in combination with their increasingly ubiquitous use
e.g. as smart devices, wearable systems, as part of the Internet of Things [12],
has enabled humans to perform everyday activities more efficiently. At the same
time these new technologies have also created new security challenges.

An important problem today is the design of cryptographic algorithms that are
both efficient and secure, have small memory footprint and are low-cost and easy
to implement and deploy on multiple platforms. Finding an optimal compromise
between these, often conflicting, requirements is the difficult area researched by
the field of lightweight cryptography. The applications of lightweight cryptographic
c© International Association for Cryptologic Research 2015
C. Cid and C. Rechberger (Eds.): FSE 2014, LNCS 8540, pp. 546–570, 2015.
DOI: 10.1007/978-3-662-46706-0 28
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algorithms vary from mobile devices, through RFID tags to electronic locks and
their importance is likely to continue increasing in the future.

To address the persistent need for secure and efficient lightweight primi-
tives, numerous proposals have been made in the past few years. In the area of
symmetric-key encryption some of the more prominent block ciphers that were
proposed are: Present [6], Piccolo [17], Klein [9], Twine [19], Katan and
Ktantan [7], LED [10], HIGHT [11] and CLEFIA [18].

Most recently, in June 2013, yet two more algorithms have been put forth by
researchers from the National Security Agency (NSA) of the USA – the block
ciphers Simon and Speck [4]. Compared to their predecessors, the latter two
have very competitive performance, small memory footprint and beat most exist-
ing lightweight ciphers in terms of efficiency and compactness. Furthermore, the
two designs are very simple and elegant. They are both built on the ARX philos-
ophy [13,20], using only basic arithmetic operations such as modular addition,
XOR, bitwise AND and bit rotation.

Evidence of the performance and implementation advantages of Simon and
Speck exists in the form of extensive results and comparisons to existing light-
weight algorithms described in the design document [4]. However the latter does
not provide any security evaluation of the two ciphers and no analysis of their
cryptographic strength is given. Recently several external cryptanalytic results
on Simon and Speck became available: [1–3]. The first two in particular analyze
the differential properties of the ciphers and describe key-recovery attacks on
reduced round variants.

Our Contribution. In this paper we further investigate the differential behavior
of block ciphers Simon and Speck. We apply a recently proposed technique for
automatic search for differential trails in ARX ciphers called threshold search [5].
We find better differential trails on Simon32 and Simon48 than the ones reported
by [2] and claimed to be the best and, we confirm the trail on Simon64. Improved
trails that cover one round more than the previously reported best trails [1] on
Speck32, Speck48 and Speck64 are found. We further extend the threshold
search technique for finding differentials. With the new tool we improve the dif-
ferentials on Simon32, Simon48 and Simon64 reported by [2] and we present
new differentials on Speck32, Speck48 and Speck64. We use these new results
to improve the currently best known attacks on several versions of Simon and
Speck.

The second major contribution of the paper is an efficient algorithm for the
computation of the differential probabilities (DP) of the bitwise AND operation –
the single source of non-linearity in the round function of Simon. We describe
algorithms for the computation of the exact DP of AND with independent inputs
and rotationally dependent inputs (one input is equal to the rotation of the
other one) as used in Simon. In addition, methods for computing the maximum
DP over all inputs and over all outputs of the AND operation are also proposed.
All described algorithms have linear time complexity in the word size. These
algorithms are used in the threshold search and in the differential search tool for
Simon.
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Table 1. Summary of attacks on Simon and Speck. All listed attacks are chosen-
plaintext.

Cipher Key Size #Rounds #Rounds Time Data Time Data

Total Attacked Sects. 7, 8 Sects. 7, 8 [1,2] [1,2]

Simon32 64 32 18 262a
231.2

64 32 19 234 231.5

64 32 19 240 231

Simon48 72 36 19 246 246 252 246

72 36 20 252 246

96 36 19 269 246 276 246

96 36 20 275 246

Simon64 96 42 26 289 263 294b
263

128 44 26 2121 263 2126c
263

Speck32 64 22 10 229.2 229

64 22 11 255 231

Speck48 72/96 22 12 243 243 245.3 245

Speck64 96/128 26 15 261.1 261

96 26 16 280 263

96 26 16 273 264

128 27 16 280 263

128 27 16 273 264

a,b,cDiffers from [2]

Finally, we briefly comment on the strong differential effect in Simon – a
property already noted in [3]. In addition we provide new insights into the clus-
tering of differential trails that causes this effect. A summary of the main results
from the search on trails and differentials is provided in Table 2. Note that in this
table is mentioned a figure for the time complexity of the attacks on Simon32
and Simon64 described in [2] that we were not able to verify (Table 1).1

The outline of the paper is as follows. We begin with Sect. 2 where the XOR
differential probability of the AND operation is analyzed. Next in Sect. 3 are pre-
sented techniques for searching for trails and differentials in ARX algorithms.
The block ciphers Simon and Speck are briefly described in Sect. 4. Full differ-
ential trails are presented in Sect. 5. Finally, in Sect. 6 we comment on the strong
differential effect of Simon. Section 9 concludes the paper.

A few words on notation: with xi is denoted the i-th bit of the n-bit word x (x0

is the LSB); xi represents the modulo-2 complementation of xi i.e. xi = xi ⊕ 1;
the symbols ∧ and ∨ denote respectively bitwise logical AND and OR operations;
the left and right rotation of the bits of x by r positions is denoted respectively

1 Since with one good pair in all the data the counting phase does not give the attacker
unique partial key.
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with x ≪ r and x ≫ r; |S| represents the cardinality of the set S. The
concatenation of the bit strings x and y is denoted by x|y.

2 The XOR Differential Probability of AND

2.1 Independent Inputs

Definition 1 (xdp& with independent inputs). Let α, β and γ be fixed n-bit
XOR differences. The XOR differential probability (DP) of the logical AND operation
(xdp&) is the probability with which α and β propagate to γ through the AND

operation, computed over all pairs of n-bit inputs (x, y):

xdp&(α, β → γ) = 2−2n · |{(x, y) : ((x ⊕ α) ∧ (y ⊕ β)) ⊕ (x ∧ y) = γ}| . (1)

In the remaining of the text the acronym DP will be used to denote XOR differ-
ential probability unless specified otherwise. When the input differences α and β

Table 2. Summary of the best found differential trails and differentials in Simon and
Speck;

Cipher # rounds log2p, trail log2p, diff # trails ref

Simon32 12 −34 Sect. 5

−36 [2]

13 −36 −29.69 45083 Sect. 5

−28.56 Experimentala Sect. 5

−36 −30.20 [2]

Simon48 15 −48 −42.11 112573 Sect. 5

−52 −43.01 [2]

Simon64 20 −70 −58.07 533163 Sect. 5

−70 −59.01 [2]

21 −72 −60.40 450536 Sect. 5

−72 −61.01 [2]

Speck32 8 −24 −24 1 Sect. 5

−24 −24 1 [1]

9 −31 −31 1 Sect. 5

Speck48 10 −40 −39.75 137 Sect. 5

−40.55 [1]

11 −47 −46.48 384 Sect. 5

Speck64 13 −58 −57.67 198 Sect. 5

−58.90 [1]

14 −60 −59.02 934 Sect. 5
aMeasured as the average prob.over 128 keys chosen at random and using
the full codebook.
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are independent, the DP xdp∧(α, β → γ) can be efficiently computed according
to the following theorem.

Theorem 1. For fixed n-bit XOR differences α, β and γ the probability xdp&

(α, β → γ) is equal to

xdp&(α, β → γ) = 2−n ·
n−1∏
i=0

(
(2 · (αi ∧ βi ∧ γi)) ∨ (αi ∧ βi)

)
∧ (αi ∧ βi ∧ γi) .

(2)

Proof. Note that xdp&(α, β → γ) = 0 ⇐⇒ ∃i : 0 ≤ i < n : (αi ∧ βi ∧ γi) = 1.
Therefore whenever the probability is zero, the term (αi ∧ βi ∧ γi) evaluates to
zero and hence the right hand-side of (2) is also zero. If the probability is non-
zero and αi = βi = γi = 0 at bit position i then (αi ∧ βi ∧ γi) = 1 which is
multiplied by the number of valid pairs (xi, yi) (cf. Definition 1) i.e. 4 . If αi 
= βi

then exactly two pairs (xi, yi) satisfy the differential at bit position i irrespective
of the value of γi. In this case (αi ∧ βi) = 1 and it is multiplied by the number
of valid pairs (xi, yi) which is 2. Therefore for non-zero probability, the product
on the right-hand size of (2) is a multiple of 2n. The latter cancels with the term
2−2n (cf. Definition 1) and so the final expression is multiplied by 2−n. ��
Theorem 1 implies the following corollary.

Corollary 1. Given n-bit input differences α, β and output difference γ, the
probability xdp&(α, β → γ) can be computed in O(n) time.

Proof. Follows directly from Theorem 1. ��

2.2 Rotationally Dependent Inputs

Note that when the inputs to the AND operation are dependent on each other, the
DP computed with Theorem 1 is not accurate. In particular, let the two inputs
x, y to AND be such that y = (x ≪ r). So, an input XOR difference α applied to x
will result into an input difference (α ≪ r) to y. Considering the dependencies
between the input variables, the DP in this case is defined as follows:

Definition 2 (xdp& with dependent inputs). For a fixed rotation constant
r and n-bit input difference α, the DP of the bitwise AND operation is defined as

xdp&(α, (α ≪ r) → γ)
= 2−n · ∣∣{x :

(
x ∧ (x ≪ r)

) ⊕ (
(x ⊕ α) ∧ ((x ⊕ α) ≪ r)

)
= γ}∣∣ . (3)

In the following part of this section we describe a method for the computation
of the probability xdp&(α, (α ≪ r) → γ) (3) in linear time in the word size n.
We begin by stating several necessary definitions and lemmas.

A cycle of length t is a special subset of the set of indices I = {0, 1, . . . , n−1}
(= Zn) indicating the bit positions of an n-bit word x (index 0 denotes the LS
bit of x). More formally:
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Definition 3. A cycle of length t is a set of bit indices Ci = {i, i+r, i+2r, . . . , i+
(t − 1)r} ⊆ I, where t ∈ N is such that i + tr = i mod (n) and i is the smallest
element of Ci.

In a cycle Ci of length t, i + (s − 1)r is said to be preceding element to i + sr
(1 < s < t). Moreover, i + (t − 1)r is preceding element to i. Since each Ci for
i ∈ I is an equivalence class, I can be partitioned into disjoint cycles:

Lemma 1. For fixed r ∈ I, Ci ∩ Cj = ∅ iff i 
= j : 0 ≤ i, j < n and, I =
⋃

Ci.

Example 1. For n = 8 and r = 2 there are exactly 2 cycles each having length
t = 4: C0 = {0, 2, 4, 6} and C1 = {1, 3, 5, 7}.

By Definition 2, computing the probability xdp& is equivalent to counting the
number of values x that satisfy the differential (α, (α ≪ r) → γ). For sim-
plicity, let r be such that the set of bit indices I of x has a single cycle C0 =
{0, r, 2r, . . . , n−r}. Within this cycle the bits of the input and output differences
are represented as a sequence of 3-tuples in the following way:

(α0, α(n−r), γ0), (αr, α0, γr), (α2r, αr, γ2r), . . . , (α(n−r), α(t−1)r, γ(n−r)) . (4)

Note that in sequence (4), for each 3-tuple the index of the second element is a
preceding index of the index of the first element.

Example 2. Let n = 5 and r = 2. Consider the input differences α = α4α3α2α1α0

and (α ≪ 2) = α2α1α0α4α3 and the output difference γ = γ4γ3γ2γ1γ0. In this
case there is a single cycle C0 of length t = 5: C0 = {0, 1, 2, 3, 4}. The corre-
sponding sequence of 3-tuples is:

(α0, α3, γ0), (α2, α0, γ2), (α4, α2, γ4), (α1, α4, γ1), (α3, α1, γ3) . (5)

The difference 3-tuples in (4) are satisfied by a number of possible bit assign-
ments of x at the corresponding positions: (x0, xn−r), (xr, x0), (x2r, xr), . . . ,
(xn−r, x(t−1)r). In order to efficiently count the number of such assignments we
use a variant of the technique proposed in [15] for the computation of the DP of
modular addition and XOR.

Any 2-tuple of bits of the form (xsr, x(s−1)r) can have 4 values {(0, 0), (0, 1),
(1, 0), (1, 1)}, where (0 ≤ s ≤ n − 1). These are viewed as a nodes of a graph.
In total, for the full word length n the graph has 4n nodes. A valid assignment
of two consecutive 2-tuples (xsr, x(s−1)r) and (x(s+1)r, xsr), (0 ≤ s < n − 1) is
represented as a directed edge between the corresponding nodes. In this way we
can construct a directed acyclic graph (DAG) composed of (n − 1) edge-disjoint
bipartite subgraphs. Each bipartite subgraph is formed by the nodes from two
consecutive 2-tuples of bits of x and the edges between them. A valid path from
an initial node (x0, xn−r) to a final node (xn−r, xn−2r) in the DAG corresponds
to a value of x that satisfies the differential (α, (α ≪ r) → γ). A path is said to
be valid iff the initial and final nodes (x0, xn−r) and (xn−r, xn−2r) are consistent
i.e. the value assigned to xn−r in both nodes is the same.
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The DAG constructed as explained above is represented as a sequence of
4 × 4 adjacency matrices, each corresponding to one bipartite subgraph. Com-
puting the probability xdp∧ is then equivalent to counting the number of valid
paths in the DAG. This can be performed in linear time in the word size by a
sequence of (n − 1) multiplications of adjacency matrices. If the number of such
paths is N , the final probability xdp&(α, β → γ) is N

2n . This process is further
illustrated with the Example 3.

In case of more than one cycle the described process can be performed inde-
pendently for each cycle Cj , 0 ≤ j < m due to the fact that all cycles are disjoint
(cf. Lemma 1). Let Nj be the number of paths in the DAG for the j-th cycle.
Then the DP is given by

∏m
1 Nj

2n .

Example 3. Assume the same setting as in Example 2: n = 5, r = 2 and let
α = 001102 and γ = 000002. Consider the resulting sequence of 3-tuples (5). In the
DAG (Fig. 1), the dependency between the bits of x corresponding to two consec-
utive 3-tuples must be satisfied. For example, an edge between (x0, x3) = (0, 1)
corresponding to (α0, α3, γ0) = (1, 0, 0) and (x2, x0) = (1, 0) corresponding to
(α2, α0, γ2) = (0, 1, 0) is drawn, because x0 = 0 for both the nodes. However there
is no edge between (x2, x0) = (0, 0) and (x4, x2) = (0, 1) since, x0 is not equal for
both the nodes.

Fig. 1. DAG used in the computation of xdp&(α, (α ≪ r) → γ) for n = 5, r = 2,
α = 001102, γ = 000002. Every path composed of thick edges is a valid path and hence
a valid assignment of bits of x. The fading nodes denote the bit assignments of x which
do not satisfy the input output difference

A valid path from an initial node (corresponding to the first 3-tuple (α0, α3, γ0)
in the sequence (5)) to a final node (corresponding to the last 3-tuple (α3, α1, γ3))
in this graph is equivalent to a value of x that satisfies the differential. A valid
path implies that the initial and final nodes are consistent with each other. For
example, no path from the initial node (x0, x3) = (0, 1) is valid, because, all final
node have x3 = 0. Since the total number of valid paths in the graph is N = 4
the DP is 4

25 = 0.125.

The method for the computation of the probability xdp&(α, β → γ) described
above supports the following proposition.

Proposition 1. For fixed n-bit differences α and γ, the probability xdp&

(α, (α ≪ r) → γ) can be computed in O(n) time.
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Impossible Input-Output Difference. For a given (α, γ) an impossible dif-
ference can be of two types. Any input/output difference which leads to a differ-
ence 3-tuple (αi, αi−r, γi) = (0, 0, 1), is an impossible input/output difference.
The other types of input difference can be detected while computing the prob-
ability of the corresponding difference. Note that in the corresponding DAG, a
path can be invalid even if every bipartite directed subgraph valid, e.g. (α, γ) =
(111112, 000002). The following DAG shows this case.

Fig. 2. DAG used in the computation of xdp&(111112, (111112 ≪ 2) → 000002).
Both the paths, composed of thick edges and dashed edges, are invalid path, since
there is contradiction in the bit value x3. However, each directed bipartite subgraph is
independently valid.

Proposition 2. For a fixed n-bit input difference α and rotation r,

DPmax(α) = maxγ xdp&(α, α ≪ r → γ) (6)

can be computed in O(n) time.

Finally, we note that the approach described above bears some similarity to the
technique proposed in [15] for the computation of the DP of modular addition
and XOR. Similarly to [15] we also map the problem of computing differential
probabilities to the well-studied problem in graph theory of counting the number
of paths in a graph. Apart from this similarity however, we would like to stress
that the described method is fundamentally different than [15]. In the latter
the nodes of the graph represent information that is propagated over the bit
positions (namely, the carries and borrows resulting from the modular addition)
and the edges represent the actual values of the pairs. In our case, the nodes of
the graph represent the values of the pairs, while the edges describe the valid
connections between the bits of those values so that the correct dependence due
to the rotation operation is preserved.

3 Automatic Search for Trails and Differentials

3.1 Threshold Search

In [14] Matsui proposed a practical algorithm for finding the best differential
trail for the DES block cipher. Given the best trail on i rounds and an over-
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estimation of the best probability for i + 1 rounds the algorithm finds the best
trail on i + 1 rounds. Starting from i = 1 these steps are repeated recursively
until i + 1 = n. In the process, the differential probabilities of the non-linear
components of the target cipher (the S-boxes in the case of DES) are obtained
from a pre-computed difference distribution table (DDT). The differentials for
the i-th round are then processed in sorted order by probability. For each, the
recursion proceeds to round i + 1) only if the estimated probability of the trail
for n rounds is equal to- or greater than the initial estimate.

Recently, in [5] a variant of Matsui’s algorithm is proposed which is applicable
to the class of ARX ciphers. What is special about the latter is that they do not
have S-boxes. Instead they rely on basic arithmetic operations such as addition
modulo n to achieve non-linearity. Computing a full DDT for the modular addition
operation would require 4 × 23n bytes of memory and is therefore impractical for
n > 16. To address this, in [5] a partial DDT (pDDT) rather than the full DDT is
computed. A pDDT contains (a fraction of) all differentials that have probability
above a fixed probability threshold (hence the name – threshold search).

Since some (possibly many) differentials are missing from the initial (also called
primary) pDDT, at some point during the search it is likely that for a given input
difference the algorithm will require a matching differential that is not present in
the primary pDDT. Such differentials are computed on-demand and are stored in
a secondary pDDT maintained dynamically during the search.

In order to prevent the size of the secondary pDDT from exploding while at
the same time keeping the probability of the constructed trails high, [5] further
introduce the notion of highways and country roads – resp. high and lowprobability
differentials (w.r.t. the fixed threshold). Every differential from the primary pDDT
is a highway while every differential from the secondary pDDT is a country road.

To further control the size of the country roads table, additional restrictions
on the considered differences can be added. For example, it may be required that
every country road at given round i is such that there is at least one transition
at round i + 1 that is a highway. This reduces the number of possible country
roads while at the same time ensures that the considered paths have relatively
high probability. This condition has been applied in the trail search for Simon.
Another restriction can be on the Hamming weight of the considered differences.
Such restriction has been applied in the differential search on Speck.

Several parameters control the performance of the threshold search technique.
The most important ones are the probability threshold, which determines which
differentials are considered as highways and the maximum size of the primary
pDDT (note that it may be infeasible to compute and/or store all differentials
that have probability above the threshold). The probability threshold influences
the probability of the final trail: the lower the threshold, the more paths are con-
sidered and hence the more likely to find a high probability trail. At the same time,
with the increase of the number of explored paths, the complexity of the algorithm
also grows and hence it takes longer to terminate. The maximum size of the pri-
mary pDDT determines the precomputation time and the memory requirements
for the algorithm.
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3.2 Extension to Differentials

We further extend the method outlined above to the case of differentials. Given
the best trail found by the threshold search and the corresponding array of best
found probabilities for each round, a differential search proceeds according to the
above strategy but always starting from the same input difference (corresponding
to the best found trail). At every round are explored only paths whose estimated
probabilities are by at most a factor ε away from best probability (e.g. ε = 2−15).
For example, let Bi : 1 ≤ i ≤ n be the probabilities of the best found differen-
tials resp. for 1, 2, . . . , n rounds computed with the threshold search. Denote with
p1, p2, . . . , pr−1 the probabilities of a partially constructed trail up to round r−1.
At round r the differential search will explore all transitions that have probability
pr ≥ (εBn)/(p1 . . . pr−1Bn−r). A pseudocode of this procedure applied to Simon
is listed in Algorithm 1.

Algorithm 1. Search for clusters of trails belonging to the same differential.
Input: T = (T0, . . . , Tn): the best found trail for n rounds with prob. Bn; B = (B1, B2, . . . , Bn): probs.

of best found trails for up to n rounds; r: current round; H: pDDT (the highway table) for the non-linear

component f of the round function (e.g. for SIMON f(x) = (x ≪ 1) ∧ (x ≪ 8); for SPECK f is the

modular addition); ε: the algorithm searches for trails with probs. at most ε times worse than the best

found prob.

Output: Cluster of trails Ω for the differential (T0 = (α0, β0) → Tn = (αn, βn)) and probabilitty

pΩ(T0 → Tn) ≥ Bn.

1: (α0, β0) ← T0; (αn, βn) ← Tn; Ω ← T ; T ← ∅; pΩ ← Bn; r ← 1// Initialization

2: procedure cluster trails(n, r, αr−1, βr−1, H, T, Ω, pΩ) do

3: if r = n then

4: // If at last round and trail matches output diff. add it to cluster and update the probability

5: if Tn = (αn, βn) then

6: add T to Ω; pΩ ← pΩ + Bn; T ← ∅
7: return

8: if r = 0 then

9: p0 = 1; T ← T0 = (α0, β0, p0).

10: C ← ∅ // Initialize the country roads table

11: pr,min ← (εBn)/(p1p2 · · · pr−1Bn−r) // The min. permissible probability for the new trail

12: for all γr : (pr(αr−1
f−→ γr) ≥ pr,min) ∧ ((αr−1, γr, pr) /∈ H) do

13: add (αr−1, γr, pr) to C // Update country roads table

14: for all (α, γ, p) : α = αr−1 in H and all (α, γ, p) in C do

15: pr ← p, Bn ← p1p2 . . . prBn−r

16: // Proceed to next round only if the estimated prob. is at most ε times worse than the best

17: if Bn ≥ (εBn) then

18: αr = γr ⊕ βr−1 ⊕ (αr−1 ≪ 2); βr ← αr−1
19: add Tr = (αr, βr, pr) to T

20: call cluster trails(n, r + 1, αr, βr, H, T, Ω, pΩ)

21: return Ω, pΩ

Note that a somewhat similar branch-and-bound approach has been applied
by [1–3] to search for differentials in Simon. The main difference is that accord-
ing to the cited technique, at every round is maintained an array of the best
differentials encountered so far ranked by probability. The search proceeds to
the next round by considering the top N such differentials.

In our approach instead of storing intermediate differentials, we prune the
search tree by limiting the search to an ε region within the best found probability,
since the latter is already known from the threshold search.



556 A. Biryukov et al.

Note that although the proposed technique searches for differentials starting
with best trail found with the threshold search, it can easily be modified to search
for multiple input and output differences, while keeping track of the best one.
Finally, in order to improve the efficiency, the differential search can be further
parametrized by limiting the maximum Hamming weight of the differences.

4 Description of SIMON and SPECK

The Simon and Speck families of lightweight block ciphers are defined for word
sizes n = 16, 24, 32, 48 and 64 bits. The key is composed of m n-bit words for
m = 2, 3, 4 (i.e. the key size mn varies between 64 and 256 bits) depending on
the word size n. The block cipher instances corresponding to a fixed word size n
(block size 2n) and key size mn are denoted by Simon2n/mn and Speck2n/mn.

Fig. 3. SIMON round function Fig. 4. SPECK round function

Block cipher Simon has Feistel structure and its round function under a fixed
round key k is defined on inputs x and y as:

Rk(x, y) = ((y ⊕ f(x) ⊕ k), x). (7)

The function f(·) is defined as f(x) = ((x ≪ 1) ∧ (x ≪ 8)) ⊕ (x ≪ 2), where
the symbol ∧ denotes the logical AND operation.

Block cipher Speck has structure similar to Threefish – the block cipher
used in the hash function Skein [8]. Its round function under a fixed round key
k is defined on inputs x and y as:

Rk(x, y) = (fk(x, y), fk(x, y) ⊕ (y ≪ β)), (8)

where the function fk(·, ·) is defined as fk(x, y) = ((x ≫ α)+y)⊕k. The rotation
constants are α = 7, β = 2 for block size 32 bits and α = 8, β = 3 for all other
block sizes. Although Speck is not a Feistel cipher itself, it can be represented
as a composition of two Feistel maps as described in [4]. The round functions of
Simon and Speck are shown in Figs. 3 and 4 respectively. The number of rounds,
block size and key size of the block ciphers are summarized in Tables 3 and 4.
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Table 3. Parameters for Simon

Block size Key size Key words Rounds

32 64 4 32

48 72 3 36
96 4 36

64 96 3 42

128 4 44

Table 4. Parameters for Speck

Block size Key size Key words Rounds

32 64 4 22

48 72 3 22
96 4 23

64 96 3 26

128 4 27

5 Application to SIMON and SPECK

The trails obtained by using the threshold search technique and the differentials
found with differential search tool (both described in Sect. 3) are presented in
this section. The best found trails for Simon and Speck are shown respectively
on Tables 5 and 6. In the tables,

∑
r log2pr represents the probability of a sin-

gle trail obtained as the sum of the probabilities of its transitions; pdiff is the
probability of the corresponding differential and #trails is the number of trails
clustered in the differential; max HW is the maximum Hamming weight allowed
for the differences during the search; pthres is the probability threshold used in
the threshold search algorithm and pDDT denotes the number of elements in
the partial DDT.

Note that all trails shown in Tables 5 and 6 were found using the technique
described in Sect. 3 by starting the search from the top round and proceeding
downwards. The only exception is the trail on Speck48. Since this trail begins
with a very low probability transition, when starting the search from the first
round, it was computationally feasible to construct the shown trail only up to
round 6. The full trail on 11 rounds shown in Table 6 was found by starting the
search from a middle round (round 6) as has also been done in [1].

6 Differential Effect in SIMON

The clustering of multiple trails satisfying the same input/output difference
(differential effect) in Simon can be visualized by the digraph in Fig. 9. It
depicts a cluster of more than 275 000 trails satisfying the 21 round differen-
tial (4000000, 11000000) 21R−−→ (11000000, 4000000). The thickness of an edge
in the digraph is proportional to the probability of the corresponding input and
output difference connected by this edge.

An interesting property clearly visible in the digraph in Fig. 9 is that it is
composed of multiple smaller subgraphs positioned at alternate levels. Each such
subgraph represents a biclique. Clearly, the bigger the number and size of such
bicliques, the stronger the differential effect would be and hence the larger the
probability of the differential. Therefore, the ability to obtain good estimation
of the probability of a given differential for Simon is intimately related to the
ability to identify and characterize such complete bipartite subgraphs. Thus we
take a closer look into those special structures below.
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Fig. 5. Example of a bipartite subgraph embedded in the differential (graph) of
Simon32.

Table 5. Differential trails for Simon32, Simon48 and Simon64.

Simon32 Simon32 Simon48 Simon64

r ΔL ΔR log2p ΔL ΔR log2p ΔL ΔR log2p ΔL ΔR log2p

0 400 1900 −0 0 40 −0 200020 80088 −0 4000000 11000000 −0

1 100 400 −2 40 0 −0 880008 200020 −4 1000000 4000000 −2

2 0 100 −2 100 40 −2 2 880008 −6 0 1000000 −2

3 100 0 −0 440 100 −2 880000 2 −2 1000000 0 −0

4 400 100 −2 1000 440 −4 200000 880000 −4 4000000 1000000 −2

5 1100 400 −2 4440 1000 −2 80000 200000 −2 11000000 4000000 −2

6 4200 1100 −4 101 4440 −6 0 80000 −2 60000000 11000000 −4

7 1D01 4200 −4 4044 101 −4 80000 0 −0 51000001 60000000 −4

8 500 1D01 −8 10 4044 −6 200000 80000 −2 4000004 51000001 −8

9 100 500 −3 4004 10 −2 880000 200000 −2 41000011 4000004 −4

10 100 100 −2 1 4004 −4 2 880000 −4 0 41000011 −8

11 500 100 −2 4000 1 −2 880008 2 −2 41000011 0 −0

12 1500 500 −3 0 4000 −2 200020 880008 −6 4000004 41000011 −8

13 4000 0 −0 80088 200020 −4 51000001 4000004 −4

14 200 80088 −6 60000000 51000001 −8

15 80888 200 −2 11000000 60000000 −4

16 4000000 11000000 −4

17 1000000 4000000 −2

18 0 1000000 −2

19 1000000 0 −0

20 4000000 1000000 −2

21 11000000 4000000 −2
∑

r log2pr −34 −36 −48 −72

log2pdiff −34.00 −29.69 −42.11 −60.40

#trails 1 45083 112573 450536

log2pthres −4.05 −4.05 −4.05 −4.05

pDDT 128 128 128 128

Time: 36 min 47 min 132 min > 778 min.

In Fig. 5 is shown an example of a complete bipartite subgraph (biclique)
similar to the ones composing the digraph in Fig. 9. Note that each node has the
same left input difference ΔL due to the Feistel structure of Simon.

Consider the pair of left and right input differences (Δi
L,Δi

R) = (11, 106)
(hexadecimal values). Through the non-linear component f(x) = (x ≪ 1) ∧
(x ≪ 8) of the round function, the difference Δi

L = 11 propagates to a set of
output differences. This set has the form ∇ = 000* 000* 00*0 00*0, where ∗
can take values 0/1. Note that for some assignments of the ∗ bits, the result-
ing difference may have zero probability as was explained in Sect. 2.2, Fig. 2.
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Table 6. Differential trails for Speck32, Speck48 and Speck64.

Speck32 Speck48 Speck64

r ΔL ΔR log2p ΔL ΔR log2p ΔL ΔR log2p

0 8054 A900 −0 202040 82921 −0 9 1000000 −0

1 0 A402 −3 480901 94009 −7 8000000 0 −2

2 A402 3408 −3 80802 42084A −7 80000 80000 −1

3 50C0 80E0 −8 400052 504200 −7 80800 480800 −2

4 181 203 −4 820200 1202 −5 480008 2084008 −4

5 C 800 −5 9000 10 −4 6080808 164A0848 −7

6 2000 0 −3 80 0 −2 F2400040 40104200 −13

7 40 40 −1 800000 800000 −0 820200 1202 −8

8 8040 8140 −1 808000 808004 −1 9000 10 −4

9 40 542 −2 800084 8400A0 −3 80 0 −2

10 80A0 2085A4 −4 80000000 80000000 −0

11 808424 84A905 −7 80800000 80800004 −1

12 80008004 84008020 −3

13 808080A0 A08481A4 −5

14 40024 4200D01 −8∑
r log2pr −30 −47 −60

log2pdiff −30.00 −46.48 −59.02

#trails 1 384 934

max HW 7 7 7

log2pthres −5.00 −5.00 −5.00

pDDT 230 230 230

Time: ≈240min ≈260min > 207 min.

For ∇ = {0122, 0102, 0120} three distinct output differences Δi+1
L from one

round of Simon are produced. They are shown as the three lower level nodes in
Fig. 5 and are obtained as ∇ ⊕ ((Δi

L ≪ 2) ⊕ Δi
R) = ∇ ⊕ (44) ⊕ Δi

R.
Another node with the same input difference Δi

L to the round function, but
with different right difference Δi

R e.g. (Δi
L,Δi

R) = (11, 104) (see Fig. 5) produces
a corresponding set of output differences ∇′, which may or may not have common
elements with ∇ in general. For example, in this case ∇′ = {0100, 0120, 0122}
produced by the node (11, 104). In either case though, ∇ and ∇′ may still
produce the same set of output differences (Δi+1

L ,Δi+1
R ). When this happens

then a biclique is formed. This is shown in Fig. 5 where both ∇ and ∇′ result in
the same set of output differences (Δi+1

L ,Δi+1
R ) ∈ {(4, 11), (26, 11), (6, 11)}.

In general, when the sets ∇, ∇′ produced from two different pairs of input
differences have high (and possibly equal) probabilities, the complete subgraphs
that are formed as a result, have thick edges (corresponding to high probability).
Such subgraphs contribute to the clustering of differential trails in Simon.

Note that the described subgraphs may not be formed for all possible ele-
ments in ∇ of an arbitrary node since, as already mentioned, some of them may
propagate with 0 probability through the non-linear component f . Further-
more, because the complete bipartite subgraphs depend on the input differences,
they can not occur at arbitrary positions in the digraph (Fig. 9). The frequent
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occurrence of such special subgraph structures in Simon in large numbers is the
main cause for the strong differential effect observed experimentally using the
tool for differential search.

7 Key Recovery Attack on SIMON32

In this section we describe a key recovery attack on Simon32 with 64 bit key.
The input difference to Round-r is denoted as Δr−1 and, bit positions i1, i2, .., it
of x as x[i1, i2, .., it]. Also Kr denotes the round key for the Round-(r + 1) and
Er denotes the encryption function used with r rounds.

7.1 Attack on 19 Rounds

To attack 19 rounds of SIMON32 we add 2 rounds on top and 4 rounds at
the bottom of a set of four 13 round differentials. For this attack consider the
following 13 round differentials

D1 : (2000, 8000) → (2000, 0)
D2 : (4000, 0001) → (4000, 0)
D3 : (0004, 0010) → (0004, 0)
D4 : (0008, 0020) → (0008, 0)

each having probability ≈2−28.5. The truncated difference at the beginning of
Round-0, for the above mentioned differentials look as following:

(00*0 0000 1*00 0000, **00 001* *0*0 0000)
(0*00 0001 *000 0000, *000 01** 0*00 000*)
(0001 *000 0000 0*00, 01** 0*00 000* *000)
(001* 0000 0000 *000, 1**0 *000 00** 0000)

Observing the active and inactive bit positions of the above truncated differen-
tials we can construct a set 225 plaintexts where each P = (PL, PR) ∈ P has 9
bits, e.g. PL[0, 1, 4, 5, 9, 10, 15], PR[1, 2] fixed to an arbitrary value. We can iden-
tify 225 pairs of plaintexts (for each differential) from P so that the pairs satisfy
the corresponding (Δ2

L,Δ2
R) after two rounds of encryption. For this we need to

guess the following round-key bits – (D1)K0[8, 6], (D2)K0[9, 7], (D3)K0[13, 11],
(D4)K0[14, 12]. Hence with 4 key guesses, 4 sets of 223 pairs of plaintexts corre-
sponding to a differential Di can be identified (where each pair in a set follows
the top 2-round differential obtained from Di). Note that by varying some fixed
bits of plaintexts in P we can identify 230.5 pairs for each differential and for
each (2 bits) key guess.

Each set of identified 230.5 pairs of plaintexts is filtered by verifying the fixed
bits of the corresponding truncated difference Δ18. This reduces the number
of pairs to 230.5−18 = 212.5 for each differential. In order to partially decrypt
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each pair of ciphertext it is necessary to guess the following key bits (and linear
combinations of key bits) from last 3 rounds.

DK
1 = {K18,K17[3, 5 − 8, 12, 14],K16[6] ⊕ K17[4],K16[4] ⊕ K17[2]} (9)

DK
2 = {K18,K17[4, 6 − 9, 13, 15],K16[7] ⊕ K17[5],K16[5] ⊕ K17[3]} (10)

DK
3 = {K18,K17[8, 10 − 13, 1, 3],K16[11] ⊕ K17[9],K16[9] ⊕ K17[7]} (11)

DK
4 = {K18,K17[9, 11 − 14, 2, 4],K16[12] ⊕ K17[10],K16[10] ⊕ K17[8]} (12)

In each differential we need to guess 25 bits (and linear combination of bits)
from last 3 round-keys. So, for any differential Di it is necessary to guess: 25 +
2 (from K0) = 27 bits. For key recovery attack let us first consider the two
differentials D1 and D2. Note that there are 19 bits common between DK

1 and
DK

2 . For detecting the correct key we maintain an array of counters of size 227 for
each D1 and D2. A counter is incremented when it is correctly verified using a
partially decrypted pair of plaintexts by comparing with corresponding Δ15.
For each differential D1 and D2, we expect to have (227 × 212.5)/214 = 225.5

increments. We expect approximately 4 correct pairs for each differential and
the probability of a counter being incremented is 1/22. So, it is expected to have
( 1
4 )4 × 225.5 = 217.5 counters with 4 increments for each case. Let these two sets

of counters be T1 and T2. Since DK
1 and DK

2 has 19 common key bits, after
combining T1 and T2 we expect to obtain 217.5 × (217.5/219) = 216 candidates
for 19 + 6 + 6 + 4 = 35 bits. Let us denote this set of counters as T ′ (Fig. 6).

Next we partially decrypt 212 pairs of ciphertexts corresponding to D3 to
verify the difference Δ15 for each 27 bit key guess. As described previously, we
maintain an array of 227 counters. A counter is incremented when it is verified
correctly by a pair of ciphertexts. The expected number of counters having value
4 is 217.5. Let us denote this set of counters as T3. DK

3 and DK
1 ∪ DK

2 has
20 common round-key bits. Hence, combining T3 and T ′ we expect to get 216 ×
(217.5/220) = 213.5 candidates for 35 + (25 + 2 − 20) = 42 round-key bits (out
of which 36 bits correspond to last 3 round keys).

Using the fourth differential D4 in a similar way we obtain 29 candidates for
42+(25−22)+2 = 47 bits of round-keys, from which we can determine 39 bits
of last 3 round-keys.

In order to recover the key we should know all the last 4 round-keys. For the
remaining 64 − 39 = 25 bits of last four round-keys we use exhaustive search.
Hence the total number of key guesses is 29+25 = 234 (Fig. 7).

Attack Complexity. The time complexity for encrypting plaintexts is 231.5.
In the key guessing phase 212 filtered pairs are decrypted for last 4 rounds for
each 225 key guesses. This is done for each differential. The partial decryption
of ciphertext pairs (and increment of the counters) can be done in steps with
partial key guess at each step of the last four rounds. This is done by filtering
(due to the fixed bits of the truncated differences) at the beginning of Round-16
to Round-18. The complexity for this process is given as:

4 · 4 · (212.5 · 216 + 212.5 · 29 · 27 + 212.5 · 22 · 22) · 1
19

≈ 233 (13)
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For identifying the 230.5 pairs with 4 key guesses for each differential requires
231.5 · 22 = 233.5 two round encryptions. The complexity due to this part is
233.5 × 4 × (2/19) ≈ 232. Hence the total complexity of the attack is ≈ 234.

We also show attacks on round-reduced Simon48 and Simon64. The details
of these attacks are described in Appendixes (C and D).

8 Key Recovery Attack on SPECK32

In this section we describe a chosen plaintext (CP) attack on 11 rounds of
Speck32 using the same notations as in Sect. 7. To attack Speck32 we use
the 9 round differential trail with probability 2−30 given in Table 6. We add one
round (Round-1) at the top of the trail and one round at the bottom (Round-11)

Fig. 6. Truncated difference (in binary notation) in the last 4 rounds of the 18 and 19
round key-recovery attacks on Simon32.
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of the trail to cover 11 rounds in total. If we encrypt 230 pairs of plaintexts such
that (Δ1

L = 8054, Δ1
R = A900), then it is expected to produce 230 × 1

230 = 1
pair of plaintext satisfying the input/output differences at Round-2 and Round-
10 and, 230 × 1

228 = 4 pairs of plaintexts satisfying the input/output differences
at Round-2 and Round-9 (Fig. 8).

The key recovery attack is performed according to the following steps:

1. Filtering: The least significant 7 bits of difference after the modular addition
at Round-10 are always 100 0000. This implies that Δ10 should be of the form
**** **** *100 0000, where * denotes unknown bit values. Hence 230 pairs
of plaintext/ciphertexts can be filtered by unrolling the output difference of
ciphertexts and verifying the 7 bits of Δ10. This reduces the number of pairs
to 230−7 = 223.

Fig. 7. Top 2 rounds in the attack of Simon32

Fig. 8. Differential trail for Round-10 and Round-11 in SPECK32
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Fig. 9. Clustering of multiple trails satisfying the 21 round differential
(4000000, 11000000) → (11000000, 4000000) in Simon64. The thickness of the
edges between two nodes is proportional to the number of right pairs that follow the
differential. The graph depicts more than 275 000 differential trails in total.
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2. Partial Key Guessing: For the filtered pairs, we guess all 16 bits of K10 and
11 bits of K9(e.g. K9[5−15]) and, one carry bit at bit position 5 (in the mod-
ular addition at Round-10). For each of these 228 partial key (and carry bit)
guess we keep a counter. A counter is incremented if after partially decrypt-
ing (last 2 rounds) a pair of ciphertexts satisfies the difference (Δ9

L,Δ9
R) =

(8040, 8140). This will result in (228 × 223)/225 = 226 increments of all the
counters. Probability of a counter getting incremented is 226/228 = 1

22 and,
4 pairs are expected to satisfy the condition at the end of Round-9. Hence,
number of counters incremented by 4 are 226 × ( 1

22 )4 = 218.
3. Exhaustive Search: For the remaining 64 − 27 = 37 bits from the last rounds

keys K9,K8,K7 we use exhaustive search.

Attack Complexity. The complexity for decrypting of 223 ciphertext pairs for
each 228 guesses of key bits and carry bit is, (228 ·223) · 1

11 ≈ 247. The total number
of key guesses is 218 · 237 = 255. Hence, total complexity is dominated by ≈255.

With the same attack strategy, we also attack Speck48 and Speck64. The
details of those attacks are described in Appendixes (A and B).

9 Conclusion

In this paper were presented new results on the differential analysis of lightweight
block ciphers Simon and Speck. In particular, by applying new techniques for
the automatic search of trails and differentials in ARX ciphers, several previous
results were improved. Those improvements were further used to mount the cur-
rently best known attacks on several versions of Simon and Speck. In addition
an efficient algorithm for the computation of the DP of the AND operation was
presented. A detailed analysis of the strong differential effect in Simon was given
and the reason for it was analyzed. The described methods are general and are
therefore applicable to other ARX designs.
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Appendix

A Attack on SPECK48

To attack Speck48, with key size 72, we use 10 round differential in table with
probability 2−39.46. By adding one round at the top and one round at the bottom
we can attack 12 rounds of the cipher. We encrypt 242 pairs of plaintext so that
they satisfy the input difference (202040, 82921) at the beginning of Round-2.
The expected number of good pairs at the end of Round-11 is ≈ 4. By partially
decrypt the last round, 242 pairs of plaintext is filtered to yield 242−25 = 217

pairs of plaintexts. Next, we guess 24 bits of the last round key and decrypt
the last round. If we keep a counter for each key guess, which are incremented
when a key is suggested as correct candidate by a pair of cipher texts, then the
total number of increment is (224 × 217)/223 = 218. Since, the probability of
a counter having an increment is 218/224 = 1

26 , we expect exactly one counter
having 4 increments, which corresponds to the correct key. By guessing the next
two round key successively in the same way we can recover the whole key. The
complexity due to the key guessing phase of attack is: 218 × 224 × 1

12 + 218 ×
224 × 2

12 + 218 × 224 × 3
12 = 241. Hence, the total complexity is 241 + 243 ≈ 243.

In order to attack Speck48 with key size 96 bit, we should recover the last
four round keys. The attack can be performed in the similar way as described
above. However, we need to proceed one more round from the bottom during
the key guessing phase. The complexity for this phase is: 218 × 224 × 1

12 + 218 ×
224 × 2

12 + 218 × 224 × 3
12 + 218 × 224 × 4

12 ≈ 242. Hence, the overall complexity
remains the same as before.

B Attack on SPECK64

To attack Speck64 with key size 96, we use the 14 round differential trail
obtained by threshold search method. To attack 16 rounds of the cipher we
add one round at the top and one round at the bottom. 262 pairs of plaintexts
are chosen so that they satisfy the input difference (9, 1000000) to Round-2.
Since probability of 14 round differential is 2−60, it is expected to have approx-
imately 4 good pairs at the end of Round-15. Note that the difference at the
end of Round-15 is (ΔL,ΔR) = (40024, 4200d01). So, the difference after mod-
ular addition at Round-16 should have the least significant bit active. Using this
together with Δ15

R (input difference on the right to round-16) we filter out some
pairs of cipher texts (obtained from the 262 chosen plaintext pairs) by using
the partial difference at the end of Round-15. 262−33 = 229 pairs are left after
filtering. We guess the round key K15 by keeping an array of counter for each
guess and, a counter is incremented when it is verified with the fixed difference
after partial decryption of pair of cipher texts. Total number of increments is
given as (232 × 229)/231 = 230. Since probability of a counter being incremented
once is 22, we expect 1

(22)4 × 230 = 222 counters having 4 increments. Each of
these 222 counter corresponds to a candidate for round key K15. In order to
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recover the key we need to know the round keys K14 and K13. So, we proceed
by guessing K14. But, in this phase we maintain an array of 254 counters, each
for 222+32 = 254 possible key candidates for K15, K14. Expected number of
increments of the counters is: (222 × 229 × 232)/232 = 251. The number of cor-
rect pair after decrypting the cipher-text pairs for last two rounds is expected
to be 22 · 28 = 210. Hence, after this phase we will get one key candidate for
K15,K14 (total 64 bits). Recall that for recovering the key we need to know
the last 3 round-keys. For K13 we use exhaustive search which requires 232 key
guessings.

Attack Complexity. The complexity of the attack is dominated by the key
guessing phase. The complexity during this process is given as

232 × 230 × 1
16

+ 222 × 230 × 232 × 1.5
16

≈ 280

Hence the attack complexity is dominated by 280.
The attack on Speck64 with 128 bit key can be performed in a similar way

as described above. However, in this case we need to know the last four round
keys. Hence, we perform the partial decryption of ciphertext pairs by guessing a
round-key for one more round. The complexity for the key guessing and verifying
with fixed difference after partial decryption is

(232 × 230 × 1
16

+ 222 × 230 × 232 × 1.5
16

+ 232 × 222 × 3
16

) ≈ 280

Hence in this case also the complexity of the attack is ≈ 280.
Note that for both 128 bit and 96 bit key sizes the complexity can be reduced

to ≈273 if we use the full code book i.e. 264 data.

C Attack on SIMON48

C.1 Attacking 19 Rounds

We use the 15 round differential in Table 5 to attack 19 rounds of Simon48,
with key size 72. We add one round on top of this differential and 3 rounds at
the end. Since, the probability of the differential is 2−42.11, using 245 pairs of
chosen plaintexts we expect to get approximately 8 good pairs at end of Round-
16. Propagating the difference (80888, 200) through Round-17 and Round-18
we get a truncated difference Δ17

L = (001* *000 *01* *00* 001* *000) and
Δ′ = (**** *00* 0*** *0*0 1*** *000), where Δ′ is the output difference
before XORing of round-key and Δ17

L ≪ 2. Using this truncated difference and
unrolling the differences from Round-19 we can filter the plaintext/ciphertext
pairs. This leaves 245−25 = 220 pairs of plaintexts.

By guessing 29 round-key bits K18[1 − 6, 8 − 23],K17[0, 4, 10, 12, 14, 18, 20]
and, a linear combination K17[2] ⊕ K18[0] we can partially decrypt a pair of
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ciphertexts to verify Δ16 = (80888, 200) This is done by maintaining an array of
230 counters. A counter is incremented when it is suggested by a plaintext pair.
Hence, the total number of increment is (230 ×220)/223 = 227, implying that the
number of counters incremented by 8 is expected to be ( 1

23 )8 × 227 = 23. For
the remaining (72− 30) = 42 bits of the last three round-keys we use exhaustive
search. Hence the total number of key guesses is 242 · 23 = 245.

AttackComplexity. The complexity for encrypting plaintexts is 246. During the
guessing process of 30 bits of key(and linear combination) complexity is given as

(221 × 222 + 221 × 27 × 27) × 1
19

≈ 239

Hence the complexity is ≈ 246.
For attacking Simon48 with key size 96 bits, we use the same technique

described above. However in this case we need to know last 4 round-keys. So,
after the first stage of the key guessing, we will be left with 96 − 30 = 66 bits to
guess. For this we use exhaustive search and, the total number of key guesses is
266+3 = 269.

C.2 Attacking 20 Rounds

To attack 20 rounds of the cipher we use the same technique used for Simon32.
The idea is to add 2 rounds on top of the 15 round differential instead of
1 round. If the difference to Round-3 Δ3 = (200020, 80088), is propagated
through Round-2 and Round-1, the we get

Δ0
L = 000* 0000 *000 *01* 000* *000

Δ0
R = ***0 *0** 00** ***0 1*** 1000

We construct a set of plaintexts P of size 220 by varying the bit positions in P =
(PL, PR) corresponding to * in all possible ways and keeping other bit positions
fixed to an arbitrary value. Using this set P and guessing 6 bits of the round
key K0 we can identify 220 pairs which satisfy the input difference to Round-3.
Now by varying the fixed bit positions(225 times) we can identify 245 pairs of
plaintexts satisfying the input difference to Round-3. Next we perform the attack
as described before (on 19 rounds) for each key guess of K0. The complexity of
the attack will be roughly 26 × 246 = 252 and 26 × 269 = 275 for key size 72 and
96 respectively.

D Attack on SIMON64

D.1 Attack on 26 Rounds

To attack Simon64, with key size 96, we use the 21 round differential with prob-
ability 2−60.53 (see Table 2). We add one round on the top and 4 rounds at the
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bottom of the differential. Since the probability of the differential is 2−60.53, using
262 pairs of chosen plaintexts we expect to get approximately 2−3 good pairs at
end of Round-22. Propagating the difference (Δ22

L ,Δ22
R ) = (11000000, 4000000)

through Round-23, Round-24 and Round-25 we get a truncated difference with
35 known bits, input to Round-26:

Δ25
R = (**01 **01 0000 0000 000* 000* 0**0 0**1)

Δ25
L = (*0** *1*0 000* 000* 0**0 0*** **0* ****)

Using this truncated difference and unrolling the differences from Round-26
we can filter the plaintext/ciphertext pairs. This leaves 262−35 = 227 pairs of
plaintexts. By guessing 49 round-key bits

Round − 26 : K25[0 − 15, 17 − 31]

Round − 25 : K24[0, 2 − 5, 7, 9, 11, 13, 16, 20, 22, 23, 25, 27, 29, 30]

Round − 24 : K23[31]

and linear combinations of round-key bits K23[3] ⊕ K24[1], K23[17] ⊕ K24[15],
K23[21] ⊕ K24[19] we can partially decrypt a pair of ciphertexts to verify
(Δ22

L ,Δ22
R ) = (11000000, 4000000). This is done by maintaining an array of

252 counters. A counter is incremented when it is suggested by a plaintext pair.
Hence, the total number of increments is (252×227)/229 = 250, implying that the
number of counters incremented by 2 is expected to be (250/252)2 = ( 1

22 )2×249 =
245. For the remaining 44 bits of the last three round-keys we use exhaustive
search. Hence the total number of key guesses is 245 · 244 = 289.

Attack Complexity. For partial decryption part of the attack the complexity is

(228 × 231 + 228 × 216 × 217 + 228 × 216 × 27 × 24) × 1
26

≈ 259.

Hence the complexity is dominated by the total number of key guessing part,
which is ≈289.

For attacking Simon64 with key size 128 bits, we use the same technique
described above. However in this case we need to know the last 4 round-keys.
So, after the first stage of the key guessing, we will be left with 128 − 52 = 76
bits to guess. For this we use exhaustive search and, the total number of key
guesses is 245+76 = 2121.
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Abstract. A main contribution of this paper is an improved analysis
against HMAC instantiating with reduced Whirlpool. It recovers equiva-
lent keys, which are often denoted as Kin and Kout, of HMAC with 7-round
Whirlpool, while the previous best attack can work only for 6 rounds.
Our approach is applying the meet-in-the-middle (MITM) attack on AES

to recover MAC keys of Whirlpool. Several techniques are proposed to
bypass different attack scenarios between a block cipher and a MAC, e.g.,
the chosen plaintext model of the MITM attacks on AES cannot be used
for HMAC-Whirlpool. Besides, a larger state size and different key sched-
ule designs of Whirlpool leave us a lot of room to study. As a result,
equivalent keys of HMAC with 7-round Whirlpool are recovered with a
complexity of (Data, Time, Memory) = (2481.7, 2482.3, 2481).
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1 Introduction

A cryptographic hash function is a public algorithm that compresses arbitrary
long messages into short and random digests. An important application is a
Message Authentication Code (MAC). A MAC is a keyed algorithm that takes a
secret key and an arbitrary long message as input, and produces a short random
string as the tag. The tag provides the authenticity and the integrity for the
original messages. In this paper, we mainly study the security of one dedicated
hash-based MAC, HMAC based on the hash function Whirlpool.

Whirlpool was proposed by Barreto and Rijmen in 2000 [1]. Its security
was evaluated and approved by NESSIE [2]. Moreover, Whirlpool has been
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internationally standardized by ISO/IEC, and practically implemented in vari-
ous cryptographic software libraries such as Crypto++ [3]. Many cryptanalysis
results have been published on Whirlpool [4–9]. Particularly, collision attack
and preimage attacks on Whirlpool hash function reach 5 and 6 rounds out of
10 rounds respectively [5,9]. Moreover, a distinguisher on full-round Whirlpool
compression function was found in [5]. Although it is an interesting and beau-
tiful attack, the security impact of such a distinguisher seems limited. Thus
Whirlpool still stands secure after receiving more than 10 years consecutive
analysis from worldwide cryptanalysts.

The HMAC scheme was designed by Bellare et al. in 1996 [10], and becomes
the most well-known hash-based MAC scheme. HMAC has been standardized by
many international standardization organizations including ANSI, IETF, ISO
and NIST. Also it has been widely deployed in various practical protocols includ-
ing SSL, TLS and IPSec. Cryptanalysts have been continuously evaluating the
security of both HMAC and HMAC based on dedicated hash functions. Generic
attacks on HMAC include [11–14]. The attacks on HMAC with popular dedicated
hash functions can be found in [15–21].

Due to the important roles of Whirlpool and HMAC in current cryptogra-
phy as briefly described above, the security evaluation of HMAC-Whirlpool is
important and interesting. Very recently in October 2013, ENISA (The Euro-
pean Union Agency for Network and Information Security) published a report
for recommending cryptographic algorithms [22]. In particular, the report rec-
ommends (for future applications in industry) three dedicated hash functions
with Whirlpool included, and two hash-based MAC with HMAC included. So it can
be expected that HMAC-Whirlpool is going to have more applications in indus-
try in the coming years, Thus HMAC-Whirlpool should receive a careful security
evaluation from the cryptographic community in advance.

The first cryptanalysis of HMAC-Whirlpool was published by Guo et al. [23],
which is also the only algorithmic security evaluation on HMAC-Whirlpool so
far to our best knowledge. They proposed key recovery attacks on HMAC with
Whirlpool reduced to 5 and 6 rounds out of 10 rounds.

Our Contributions. This paper presents improved analysis on HMAC-
Whirlpool. HMAC, from the original key K, derives two keys Kin and Kout which
are usually referred to as equivalent keys. If both Kin and Kout are recovered, an
adversary can perform the universal forgery attack. In this paper, we present an
equivalent key recovery attack on HMAC with 7-round Whirlpool, which extends
the number of attacked rounds by one round compared with previous work [23].

The design of Whirlpool is based on the AES block cipher. Our idea is apply-
ing the recent meet-in-the-middle (MITM) attack on 7-round AES [24,25] to
recover MAC keys of 7-round Whirlpool. The analysis seems quite simple at a
short glance, however, such an extension is not trivial at all due to differences of
attack scenarios between a block cipher and a MAC. For example, MITM attacks
on AES work under the chosen plaintext model, while the input message for
the outer function of HMAC is a hash digest of the inner function, which cannot
be chosen by the attacker. The output of AES block cipher, i.e. ciphertext, can
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Table 1. Summarization of key-recovery results on HMAC-Whirlpool

Key type #Rounds Complexity Reference

Time Memory Data

Original key 5 2402 2384 2384 [23]

6 2496 2448 2384 [23]

Equivalent keys 5 2448 2377 2321 [23]

6 2451 2448 2384 [23]

7 2482.3 2481 2481.7 Ours

be observed by the attacker, while the output of the intermediate compression
function in HMAC cannot be observed. Besides, a larger state size and different
key schedule designs of Whirlpool leave us a lot of room to study.

A summary of our results and previous key recovery attacks is given in
Table 1. Our attack can also be applied to NMAC-Whirlpool. It is interesting
to recall that the current best collision and preimage attacks on Whirlpool hash
function reach only 6 rounds. Such a phenomenon is not common particularly for
key recovery attacks. For example, key recovery attack on HMAC-SHA-1 reaches
only 34 rounds out of 80 rounds [18], while collision attack on SHA-1 hash func-
tion reaches full rounds [26] and preimage attack reaches 57 rounds [27].

Throughout this paper, we target HMAC-Whirlpool that uses a 512-bit key
and produces full size, i.e., 512-bit, tags. Targeting this case has theoretical
interests since HMAC is defined to use a key of any bit size. Moreover, HMAC
instantiating with a key size of one block of an underlying hash function (512
bits for Whirlpool) and with full size tags is utilized in cryptographic protocols.
One example is HMAC-based Extract-and-Expand Key Derivation Function [28].

Besides HMAC, we briefly discuss other MACs. For Prefix-MAC with 7-round
Whirlpool, we can also recover the equivalent key. On the other hand, for LPMAC
with 7-round Whirlpool, we cannot recover the equivalent key. Nevertheless, we
modify the attack procedure and manage to launch universal forgery attack.

Organization of the Rest Paper. Section 2 describes previous related works.
Section 3 presents an overview of our attack on HMAC with 7-round
Whirlpool. Section 4 describes the details of our attacks and shows the appli-
cation to other MAC. Finally we conclude the paper in Sect. 5.

2 Related Work

2.1 Whirlpool Hash Function

Whirlpool [1] takes any message with less than 2256 bits as input, and outputs
a 512-bit hash value. It adopts the Merkle-Damg̊ard structure. The input mes-
sage M is padded into a multiple of 512 bits. The 256-bit binary expression of
the bit length � is padded according to the MD-strengthening, i.e. M‖1‖0∗‖�.
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The padded message is divided into 512-bit blocks M0‖M1‖ · · · ‖MN−1. Let Hn

be a 512-bit chaining variable. First, an initial value IV is assigned to H0. Then,
Hn+1 ← CF(Hn,Mn) is computed for n = 0, 1, . . . , N − 1, where CF is a com-
pression function. HN is produced as the hash value of M .

The compression function CF consists of an AES-based block-cipher Ek with
the Miyaguchi-Preneel mode, which takes a 512-bit chaining variable Hi as a key
and a 512-bit message block Mi as a plaintext. The output of CF is computed
by Hn+1 ← EHi

(Mi) ⊕ Mi ⊕ Hi. Inside the block cipher Ek, an internal state
is represented by an 8 ∗ 8 byte array. At first, Hi is assigned to the key value
k−1, and Mi is assigned to the plaintext s−1. Then, the whitening operation
with the master key k−1 is performed and the result is stored into a variable
s0, i.e. s0 ← k−1 ⊕ s−1. The cipher generates ten 512-bit subkeys k0, k1, . . . , k9
from k−1 by the key schedule function, and updates s0 through ten rounds with
generated subkeys. The computation of the block cipher output s10 is as follows:

Key Schedule: kn ← AC ◦ MR ◦ SC ◦ SB(kn−1), for n = 0, 1, . . . , 9,

Data Processing: sn ← AK ◦ MR ◦ SC ◦ SB(sn−1), for n = 0, 1, . . . , 9,

where the details of each operation are as follows.

– SubBytes (SB): apply the AES S-Box to each byte.
– ShiftColumns (SC): cyclically shift the j-th column downwards by j bytes.
– MixRows (MR): multiply each row of the state matrix by an MDS matrix.
– AddRoundConstant (AC): XOR a 512-bit pre-specified constant.
– AddRoundKey (AK): XOR a 512-bit subkey kn.

We sometimes swap the order of MR and AC for the key schedule and MR and
AK for the data processing. In this case, the AK operation XORs MR−1(kn).
Hereafter, we denote MR−1(kn) by un.

Notations. The byte position in the i-th row and the j-th column of state S is
denoted by two-dimensional integers S[i][j], where 0 ≤ i, j ≤ 7. We denote the
initial state for round n by xn. Internal states immediately after SB, SC and
MR in round n are denoted by yn, zn and wn, respectively. We often denote
several byte positions by using comma, e.g., 8 bytes in the top row of state S
are denoted by S[0][0, 1, . . . , 7]. We also use the following notations:

– S[row(i)]: 8 byte-positions in the i-th row of state S,
– S[SC(row(i))]: 8 byte-positions which SC is applied to S[row(i)],
– S[SC−1(row(i))]: 8 byte-positions which SC−1 is applied to S[row(i)].

We use H to denote a hash function, and CF(ch,M) to denote a compression
function. For the ease of notation, M may be of multiple blocks, then CF acts
the same as hash function H except no padding.

2.2 Hash Based MACs

HMAC and NMAC. HMAC and NMAC [29] are hash-based MACs proposed by Bellare
et al. [10,30]. NMAC requires two keys Kin and Kout while HMAC requires only a
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single key K, and generates two equivalent keys by processing K ⊕ ipad and
K ⊕ opad, where opad and ipad are two public constants. Let H be a hash
function. Also, let H(IV, ·) represent that the initial value of H is IV. On an
input message M , NMAC and HMAC computes the tag value as

NMAC-HKin,Kout
(M) = H(

Kout,H(Kin,M)
)
,

HMAC-HK(M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)).

Prefix-MAC and LPMAC. Prefix-MAC is a classical MAC construction [31], which
computes a tag of message M by H(K‖M). It is known to be vulnerable against
the length extension attack, i.e., from a given pair of message and tag (M, t), the
attacker can forge the tag for M‖x for any x. However, no generic attack is known
in terms of the key recovery. We suppose that the prefix K is processed indepen-
dently of M , i.e., the tag is computed by H(K‖pad‖M) in which pad is a padding
string and the size of K‖pad is a multiple of the block size. LPMAC is a strength-
ened version of Prefix-MAC [31] so that the length-extension attack is prevented.
Let � be the input message size. A tag is computed by H(K‖�‖pad‖M), where
the size of K‖�‖pad is a multiple of the block size.

2.3 Generic Internal State Recovery Attack on HMAC

Leurent et al. [14] provide a generic inner state recovery attack against HMAC/NMAC
with time complexity 23n/4. The result is that, hin = CF(IV,K‖M2n/4

p ) can be
recovered, with M2n/4

p satisfying the padding rule, and of about 2n/4 blocks. We
can then recover inner state CF(IV,K‖M1

p ), with M1
p of one block. This can be

done through detecting colliding tags, i.e., we randomly choose 2n/2 messages x,
x′ independently so that the two messages M2n/4

p ‖x and x′ follow the padding
rules, and query their tags, denoted as t and t′, respectively. When t and t′

collide, the chance that they collide at inner hash, i.e., h′
in = CF(IV,K‖x′) =

CF(IV,K‖M2n/4

p ‖x) = CF(hin, x) is roughly 1/3.

2.4 6-Round Key Recovery Attack on HMAC-Whirlpool

The first cryptanalysis of HMAC-Whirlpool was published by Guo et al. [23],
which showed a key recovery attack on HMAC reduced to 6 rounds. They first
apply the generic internal state recovery in Sect. 2.3, and then find a message
pair satisfying a particular differential characteristic. The fact that the pair sat-
isfies the characteristic reduces a possible differential patterns of internal states.
This allows an attacker to exhaustively guess internal state values and differ-
ences, and the correct guess is identified by the MITM attack. On one hand, the
MITM attack in [23] is a classic type which divides the computation into two
independent sub-functions, e.g., [32–35]. On the other hand, the MITM attacks
on AES later explained in Sect. 2.5 are based on a different framework,
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2.5 Meet-In-The-Middle Attack on AES

The unified view of a series of MITM attacks on AES [24,25,36,37] is well-
summarized in [24]. The concept of δ-set takes an important role of the attack.

Definition 1 (δ-set [38]). Let a δ-set be a set of 256 states that are all different
in one state bytes (the active byte) and all equal in the other state bytes (the
inactive bytes).

The number of active bytes in the δ-set is often increased, e.g., [39]. It is easy
to extend the concept of the δ-set to deal with multi-active bytes.

Definition 2 (n-δ-set). Let an n-δ-set be a set of (256)n states that are all
different in n state bytes and all equal in the other state bytes.

The MITM attack divides the cipher into three parts:

s0 −→ (sn1 −→ sn2) −→ slast,

so that the middle part can satisfy a certain property, which is later verified with
the partial encryption for the first part and the partial decryption for the last
part. The general attack consists of the following five successive steps:

Precomputation Phase

1. A lookup table T is built which contains all the possible sequences constructed
from a δ-set such that one message verifies the property for the middle part.

Online Phase

2. Through the oracle query, candidates of the plaintext-ciphertext pair that
satisfies the target property for the middle part are searched.

3. For each candidate pair, subkeys for the first part that achieves the property
for the middle part are guessed, and then the internal state value at the
beginning of the middle part, sn1 , is modified so that a δ-set containing a
state value verifying the desired property is constructed.

4. With the guessed subkeys for the first part, the δ-set at sn1 is decrypted
to obtain the corresponding plaintexts. Those plaintexts are queried to the
encryption oracle, and the corresponding ciphertexts are obtained.

5. Finally, subkeys for the last part are guessed, and the obtained ciphertexts
associated by the δ-set at sn1 are partially decrypted through the last part
and tested whether it belongs to T .

If the analyzed pair is the right one and the guessed subkeys are right ones,
the result of Step 5 belongs to T with probability 1, and the key is recovered.
Because of Step 4, the attack is a chosen plaintext attack.

Previous work consider a function f : {0, 1}8 → {0, 1}8 that maps the active
byte value of a δ-set to another byte of the state after four rounds, sn2 . Gilbert
and Minier [37] found that an ordered sequence (f(0), . . . , f(255)) for AES four
rounds are parameterized only by 25 bytes, which takes significantly smaller
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z1 x2 z2 x3 z3 x4 z4 x5

u1 u2 k3 k4

Fig. 1. 4-round differential characteristic for MITM attacks on AES [25]. Grey bytes
are active. Subkey bytes represented by bold square are the ones used as parameters.

space, i.e., 225·8 = 2200, than the theoretically possible space, 28·28 = 22048.
Considering the difference (f(0)−f(0), f(1)−f(0), . . . , f(255)−f(0)), the attack
is improved so that the function is parameterized only by 24 bytes. Also note
that the effect of the filtering with T is strong enough even with a fraction of
(f(0), . . . , f(255)). On average, storing (f(0), . . . , f(31)) is enough to make the
key space sufficiently small. Such optimization was discussed in [40].

Dunkelman et al. introduced the four-round truncated differential charac-
teristic in the middle part [25], which is shown in Fig. 1. The characteristic is
parameterized only by 16 bytes, i.e., the states x3 and z3 can only take 232 dif-
ferences each so that the number of solutions for these two states is 264. Then,
at most 4 bytes in u2 and 4 bytes in k3 can affect the characteristic. Hence,
the number of paired state values (z1, z′

1) satisfying the characteristic is at most
2128. For each of such (z1, z′

1), the attacker constructs the δ-set at x1 and can
compute the 1-byte difference at x5. They also introduced the concept of the
multiset rather than the ordered sequence. This enables the attacker to avoid
guessing 1 subkey byte at the online phase, i.e., the partial decryption at the
online phase becomes from x1 to plaintext instead of from z1 to plaintext, which
avoids guessing 1 subkey byte to bypass the SB operation between x1 and z1.
Because the theoretically possible numbers of multisets with 256 elements is
2467.6, the 2128 possible patterns for AES is significantly small, which is enough
to filter out all the noise.

The latest attack by Derbez et al. [24] is an improvement of the attack in [25].
They found that the four-round characteristic in Fig. 1 is parameterized only by
10 bytes, i.e., the number of solutions for the characteristic is at most 280. They
also consider the multi-active bytes at z1 and multi-differential characteristics
for the middle four-round characteristic so that the active byte positions of z1
and x5 can take any of

(
4
2

)
patterns and

(
4
1

)
patterns respectively.

3 Overview of Our Attacks

This section gives a high level overview of our attacks on HMAC with 7-round
Whirlpool. The HMAC computation structure in our attack is shown in the upper
half of Fig. 2. Our goal is to recover the two equivalent keys Kin and Kout.

In the mode-of-operation level, we follow the approach of the previous work
[23]. Namely, with the generic attack [14], we first find a single-block message Mp
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Fig. 2. Overall strategy Fig. 3. Optimized choice for table inputs

whose compression function output h′
in is recovered. The knowledge of h′

in, for
any message of the form Mp‖x, allows the attacker to compute the input value
for the outer hash function, Mout. We then recover the output value of the first
compression function in the outer hash function, v, from the observed tag value, t.
By iterating this procedure, the attacker collects many pairs of (Mout, v). We
then recover EKout

by using our compression function analysis approach which
will be explained in the next paragraph. Once EKout

is recovered, Kin can be
recovered by the same analysis as Kout.

In the compression function level, to recover Kout or Kin, we plan to extend
the recent 7-round MITM attack on AES [24] to attack HMAC-Whirlpool. More
precisely, the first message block in the inner and the outer hash functions are
computed as EKin

(M)⊕M ⊕Kin and EKout
(M)⊕M ⊕Kout respectively, where

EKin
and EKout

are two AES-like block ciphers. The target values Kin and Kout

are used as the key for the AES-like block ciphers. Therefore, by regarding the
input value of the inner/outer hash functions as the plaintext and by regarding
the output value as the ciphertext, Kin and Kout should be recovered by applying
the MITM attack on AES. However, immediately we find that such an extension
is not trivial at all because of the following differences in the attack scenarios.

• The control ability of the attacker on choosing plaintexts is different. Particu-
larly for the outer hash function in HMAC-Whirlpool, the input message is the
inner hash digest, and thus cannot be chosen by the attacker.

• The knowledge of the ciphertext is different. In HMAC Whirlpool, the output
is the intermediate hash values, which are confidential to the attacker.

• The state size is different. Whirlpool has a larger state size then AES. This
yields both advantages and disadvantages for the attack.

• The key schedule function is different. Several research, in the context of hash
function, show that the similar diffusions between the key schedule and the
data processing of Whirlpool is easier to analyze than AES [5,9,23].

3.1 On Recovering Ciphertexts: Generating Conversion Table

Recall Fig. 2. To recover Kout, the corresponding value of v is necessary. However,
due to the additional padding block Pout, the attacker cannot observe v.
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We solve this problem by generating a conversion table denoted by Tc. Note
that Pout is a fixed value because the input message length to the outer hash
function is always the same (512 bits). We then precompute t ← CF(v, Pout) for
many choices of v, and store pairs of (v, t) as a look-up table. Later at online
phase, v can be recovered by matching the observed t and the elements in Tc.

Suppose 2z pairs of (v, t) are generated to construct Tc. Then, for any Mout,
we can recover the v from t with probability about 2z−512.

3.2 On Choosing Plaintexts

Mout can be computed but cannot be chosen by the attacker. Therefore, the cho-
sen plaintext attack cannot be used to recover Kout by analyzing CF(Kout,Mout).
This is crucial to apply the previous MITM attack on AES [24].

We solve this problem by converting the attack into the known plaintext
attack. In the previous procedure in Sect. 2.5, queries are made in Step 2 and
Step 4. Regarding Step 2, the previous work used the structure, while we generate
more plaintexts at random so that the difference is satisfied probabilistically.

Converting Step 4 to the known plaintext attack is much harder. The previous
attack on AES uses 256 plaintexts for the δ-set, and the corresponding multiset is
queried. Without the chosen plaintext model, we cannot guarantee that all 256
plaintexts for the δ-set are known. To solve this problem, we use an n-δ-set with
a relatively big n instead of a δ-set. Because n is big, we can obtain sufficient
information even only with a fraction of the 28n plaintexts.

3.3 On Large State Size

A large state size is easier to analyze than a small state size. For example, guess-
ing one row of a subkey requires only 1/8 of the entire key space for Whirlpool
while it is 1/4 for AES. Then, we have more choices of attack parameters e.g., the
number of active bytes in the n-δ-set, the number of active rows in the input and
output, etc.. As a side-effect, identifying the best parameters becomes harder.
We optimize the attack with exhaustively trying all parameters by programming.

The theoretical number of multisets for 256 elements is 2467.6, which is
unlikely to occur on AES-128 where the attack complexity is below 2128. However,
the key space of HMAC-Whirlpool is 2512, hence we sometimes cannot filter out
all the noise. This problem can be solved by the weak key schedule of Whirlpool.

3.4 On Key Schedule

Recall the attack on AES in Fig. 1. For AES, 4-byte values in u2 and k3 do not
reveal any other subkey byte in u1 and k4, respectively. However, for Whirlpool,
8 bytes for each inverse diagonal in u2[SR(row(i))] and 8 bytes for each diago-
nal in k3[SR−1(row(i))] reveal 8 bytes of u1[row(i)] and 8 bytes of k4[row(i)],
respectively. This means, we do not need previous smart ideas of [25,36], i.e.,
when we generate a look-up table for the middle 4-round characteristic for each
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parameter, we can compute rows of x5 and rows of x1. Hence, each element in
the look-up table Tδ can be an ordered sequence of values instead of a multiset of
differences. This also gives us another advantage that the theoretically possible
numbers of ordered sequences is much larger than the multisets. As explained
before, 2467.6 possibilities of multisets are not enough to analyze Whirlpool with
a 512-bit key. By using the ordered sequence, this problem can be avoided.

3.5 Overview of the Attack

We detect that using the 4-round differential characteristic 12 → 24 → 64 →
8 → 1 for the middle 4 rounds optimizes the attack on Whirlpool. The entire
differential characteristic is constructed by extending this middle 4-round char-
acteristic by 1 round in backwards and 2 rounds in forwards. The number of
solutions to satisfy the characteristic is 2370. We then construct a 12-δ-set for
each of all possible 2370 pairs, and store them as a look-up table Tδ.

Precomputation Phase

0. A conversion table Tc, containing 2z pairs of (v, t) is generated. Hereafter, for
any Mout, we can recover the v from t with probability 2z−512.

1. A lookup table Tδ is built which contains all possible 2370 pairs satisfying the
middle 4-round characteristic. For each of 2370 pairs, a 12-δ-set is constructed
at sn1 , and an ordered sequence of 296 values f(0), . . . , f(296 − 1) that map
12 bytes values at sn−1 to 1 byte value at sn−2 is stored.

Online Phase

2. 2Q random messages of the form Mp‖M1 are queried, and only the ones whose
t belongs to Tc are picked. The number of expected (Mout, v) is 2Q+(z−512). To
find candidate pairs satisfying the middle 4-round differential characteristic,
we make about 22(Q+(z−512))−1 pairs of (Mout, v), and only pick the ones
satisfying the input and output differential forms.

3. For each candidate pair, subkeys for the first part and also for the last part
that satisfy the middle 4-round characteristic are exhaustively guessed.

4. The internal state value at the beginning of the middle part, sn1 , is modified
so that a 12-δ-set is constructed. With the guessed subkeys for the first part,
the 12-δ-set at sn1 is decrypted to the plaintext Mout. If Mout belongs to the
ones generated at Step 2, the corresponding v is recovered and (Mout, v) is
stored as data associated with a fraction of the 12-δ-set.

5. Finally, with the guessed subkeys for the last part, each of the obtained v
is partially decrypted and tested whether it belongs to Tδ. Note that the
obtained (p, v) at online is the data associated with only a fraction of the
12-δ-set. Which of f(0), . . . , f(296 − 1) is used for the match cannot be fixed,
and thus we cannot properly sort the elements in Tδ so that the match can
be done only with 1 computation. We later solve this problem in Sect. 4.
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Fig. 4. Differential characteristic used in our 7-round attack.

4 Recovering Kin and Kout of HMAC/NMAC-Whirlpool

We first apply the generic internal state recovery attack by Leurent et al. [14]
to find a single-block message Mp and its compression function output h′

in.
As described in Sect. 3.1, in order to invert the last compression function call

of the outer layer and recover the output of the attacked compression function,
we build a conversion table of size 2512−z, for some z ≥ 0 to be decided later.
It is important to note that, the attacker is not able to choose the Mout, the
output of the inner layer, and Mout plays the role similar to “plaintext” for block
ciphers in our attack. Hence, our attack setting for the key recovery is similar
to the “known-plaintext” attack for block ciphers. Also, due to collisions of the
compression function, the chance that a lookup gives the right v is of probability
1−1/e. At the moment, the input values v of the conversion table are randomly
chosen, later we show how the choices of v can be used to optimize the overall
attack.

4.1 The 4-Round Differential Characteristic

Our attack follows the previous MITM attacks on AES, which relies on a 4-
round differential characteristic, from state y1 of round 2 to x5 of round 6 of the
Whirlpool compression function, as depicted in Fig. 4. The number of active
bytes, in gray color, follows 12 → 24 → 64 → 8 → 1. Let us denote the set
of bytes at positions [0][0, 1, 2], [1][0, 1, 7], [2][0, 6, 7], [3][5, 6, 7] as Bin, and byte
at position [0][0] as Bout, then the input/output differences of the middle 4-
round characteristic can be simply denoted as y1[Bin] and x5[Bout]. With this
characteristic, one round and two rounds are added before and after it, to form
the 7-round Whirlpool as the attack target.
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Fig. 5. Derived state and key bytes from the differential characteristic.

4.2 Computing the δ-set Table

Based on the 4-round differential characteristic above, we build the δ-set table,
denoted as Tδ. Given a difference Δy1[Bin], and a state value of first three rows of
x2, denoted as x2[row(0, 1, 2)], both value and difference in active bytes of z2 can
be derived, followed by difference in active bytes of w2 and x3. Similarly, given
a difference Δx5[Bout] and state value of z4[row(0)], Δx4[SC−1(row(0))] can be
obtained, followed by Δy3. For each pair of (Δx3,Δy3), one solution of state
value x3 and y3 is expected on average. With actual values in the active bytes
of z2 and w2, u2[SC(row(0, 1, 2))] can be derived. Due to the diffusion property
of the key schedule, we can further derive other key bytes, i.e., k1[row(0, 1, 2)].
Similarly k3[SC−1(row(0))] is derived and we can further derive k4[row(0)]. We
denote all the subkey bytes obtained as kob. Due to the newly recovered kob, we
can further compute more bytes in the data processing part. Finally, both value
and difference in all active bytes of the 4-round characteristic can be determined.
All the recovered state and key bytes can be found in Fig. 5.

These state information at every round of the differential characteristic allows
to derive the value of x5[Bout] from any Δ′y1[Bin], even if Δ′y1[Bin] does
not follow the characteristic. We briefly illustrate it here. Given Δ′y1[Bin] and
x2[row(0, 1, 2)], both difference and actual values of x2[row(0, 1, 2)] can be
obtained, followed by difference in active bytes of y2, z2, w2 and x3. Together
with actual value of x3, we derive difference in y3, z3, w3 and x4. Note, for an
arbitrary given Δ′y1[Bin], the difference in w3 and x4 may not follow the char-
acteristic any more. However, since we only care about the difference in those
active bytes in gray, i.e., Δx4[SC−1(row(0))], those unwanted bytes values can
be discarded. Together with actual value of x4[SC−1(row(0))], derive the differ-
ences in the first row of z4, w4 and x5. Together with actual value of x5[Bout],
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Algorithm 1. Construction of the δ-set table
1: Empty a lookup table Tδ.
2: for all 12 bytes differences in Δy1[Bin] and 24 bytes values of x2[row(0, 1, 2)] do
3: Deduce differences in x3.
4: for all 1 byte differences in Δx5[Bout] and 8 bytes values of z4[row(0)] do
5: Deduce differences in y3.
6: Use the differential property of SBox to deduce the values in x3, x

′
3, y3, y

′
3.

7: Deduce kob and all state values of the active bytes of the characteristic.
8: Empty an ordered sequence M .
9: for all 12 bytes values in y1[Bin] do // construct 12-δ-set at y1

10: Compute the corresponding x5[Bout] and add it to M .
11: end for
12: Add M to the lookup table Tδ, indexed by (Δy1[Bin], Δx5[Bout],

x2[row(0, 1, 2)], z4[row(0)]), M and kob as entry values.
13: end for
14: end for
15: Output: Tδ of 2456 entries. //2360 indices each containing 296 relations of M

one can get the value of x′
5[Bout]. The details of the δ-set table computation are

shown in Algorithm 1.

4.3 The Online Phase

For Step 2 of the procedure in Sect. 3.5, we search for paired message candidates
satisfying the middle 4-round characteristic. To ensure at least one pair follows
the entire 7-round characteristic as in Fig. 4, we count the number of conditions
of the 7-round characteristic, there are 32 bytes conditions in the input state,
20 bytes for z0 → w0, 56 bytes for z3 → w3, 7 bytes for z4 → w4, and the rest is
almost for free. In total 115 bytes = 920 bits, hence we need 2(920+1)/2 
 2461

random inputs to generate enough pairs. The overall data complexity will be
2461 × 2512−z.

With the provided data (p, v) with p as input and v as output of the attacked
compression function, we filter the pairs according to the input/output differ-
ences, i.e., Δp[SC−1(row(4, 5, 6, 7))] = 0, and output difference follows the pat-
tern in w6 as in Fig. 4, i.e., ΔMR−1(p+v)[SC(row(1, 2, . . . , 7))] = 0. We sort all
the data according to the value of these non-active bytes, and find the right pairs,
as done in the first for loop in Algorithm 2. A randomly generated pair satisfies
both the input and output differences with a probability of 2−256−448 = 2−704.
Hence, 2920−704 = 2216 candidate pairs will remain.

For Step 3 of the online phase as in Sect. 3.5, with any pair (p, v) and (p′, v′),
we partially encrypt the p, p′ by 1 round, and decrypt v, v′ by 2 rounds. To do
that, we guess the whitening key bytes k−1[SC−1(row(0, 1, 2, 3))] in a linear space
of size 212∗8 = 296 so that w0 fulfills the desired difference pattern. Note that the
guess can be done diagonal wise independently. For example, one can guess 3
bytes ([0][0], [7][1], [6][2]) of the first diagonal in k−1 first, compute both difference
and value of these three bytes in x0, followed by the difference in w0[row(0)],
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backwards compute the other 5 byte differences in the first diagonal of x0, from
which the other 5 byte value in the first diagonal of k−1 can be derived. Repeat
the same procedure for the other diagonals, hence each key guess can be done
in computation 1. Due to the similarity of the round function and key schedule,
k0[row(0, 1, 2, 3)] can be derived from k−1[SC−1(row(0, 1, 2, 3))], then both state
value and difference of y1[row(0, 1, 2, 3)] can be obtained. Similarly, one can guess
u6 ⊕ u−1[SC(row(0))] and u5[0][0], and compute the Δx5[0][0]. For each given
(p, v), (p′, v′) pair, there will be 28 guessed keys u6⊕u−1[SC(row(0))] on average
making it follow the characteristic. Overall, with each data pair, we guessed 14-
byte key values. The total number of candidates so far is 2216+112 = 2328 pairs.

For Step 4 as in Sect. 3.5, with each candidate pair, the 12-δ-set is constructed
with respect to y1[Bin]. With the guessed subkeys k−1[SC−1(row(0, 1, 2, 3))] and
k0[row(0, 1, 2, 3)], 296 state values in the set are decrypted to the plaintext. Each
of 296 plaintexts are tested if the corresponding v is stored in Step 2. Because 2461

(p, v) relations are generated, the probability of having the corresponding v is
2461−512 = 2−51. Therefore, 296−51 = 245 plaintexts can have the corresponding
v and stored as Df that is associated with a fraction of the 12-δ-set. Note that
we do not need to use all these 245 elements in the 12-δ-set. Instead, we will
select 28 elements from them for the attack steps later.

For Step 5 as in Sect. 3.5, together with the guessed subkeys u6 ⊕ u−1

[SC(row(0))] and u5[0][0], x5[Bout] is computed from the output values of 28

selected texts in Df . Denote them as M = {(x1
1, x

1
5), . . . , (x

28

1 , x28

5 )}. Finally, we
can check if 28 elements of y1[Bin] and x5[Bout] match with one of elements
in the precomputed look-up table Tδ. However, because Tδ is not sorted with
respect to the 28 elements, the match cannot be done with 1 computation.

The precomputation table Tδ is ordered by the index (Δy1, x2[row(0, 1, 2)], z4
[row(0)],Δx5). For each pair analyzed in the online phase, we have the knowledge
of Δy1 and Δx5. Moreover, we have the knowledge of y1[row(0, 1, 2, 3)] and
k0[row(0, 1, 2, 3)]. If we switch the computation order of MR and AC in round
2 and let w′

1 = z1 ⊕ u1, then we have x2 = MR(w′
1). From y1[row(0, 1, 2, 3)]

and k0[row(0, 1, 2, 3)], we can compute 12 bytes of w′
1[row(0, 1, 2)]. Then we

exhaustively guess all the remaining 12 bytes of w′
1[row(0, 1, 2)], which gives

us the value of x2[row(0, 1, 2)]. We also exhaustively guess all the values of
z4[row(0)]. Actually we need to guess the values of z4[0][1, 2, · · · , 7] only, since
we guessed u5[0][0] and computed z5[0][0], z4[0][0] can be derived from these
two values. This gives us in total 2152 index of Tδ. Then we look up Tδ to get
the corresponding 12-δ-set for each index. After that, we look up xi

5 for xi
1 in

the 12-δ-set, and match it to the value of xi
1 in previously computed M for all

1 ≤ i ≤ 28. We adopt early aborting technique when we look up the 12-δ-set.
Namely if the xi

1 in the 12-δ-set is not equal to xi
1 in M , we immediately abort

and will not match for the remaining elements. By using aborting technique,
the number of table looking up for matching M to each 12-δ-set can be counted
as one on average. Overall, it needs 2152 table lookups to match one M to the
table Tδ.



Equivalent Key Recovery Attacks Against HMAC and NMAC 585

Algorithm 2. Online phase: attack on 7-round Whirlpool compression function
1: Input 1: Tδ obtained from Algorithm 1.
2: Input 2: Conversion table Tc of size 2z.
3: Input 3: 2d (p, t) pairs, with p input message block, and t the corresponding tag.
4: Look up the table Tc for all t, and obtain 2z+d−512 (p, v) pairs.
5: Empty a temporary table T .
6: for obtained (p, v) do
7: index ← MR−1(p ⊕ v)[SC(row(1, 2, 3, 4, 5, 6, 7))] and p[SC−1(row(4, 5, 6, 7))].
8: Add (p, t) to T [index].
9: end for

10: for all collisions in T, i.e., pair (p, v) and (p′, v′) do
11: for all k−1[SC−1(row(0, 1, 2, 3))] s.t. Δw0[SC−1(row(4, 5, 6, 7))] = 0 do
12: Construct a 12-δ-set D at y1 by modifying 12 active bytes in y1[Bin].
13: Decrypt 296 elements in D to the plaintext p, and check if p is stored in Tc.
14: If stored, add (p, v) to Df , which is associated to a fraction of 12-δ-set.
15: for all (u6 ⊕ u−1)[SC(row(0))] s.t. Δz5[0][1, . . . , 7] = 0 do
16: Decrypt each element in Df to obtain w5[row(0)].
17: for all values of u5[0][0] do
18: Decrypt each element in Df to obtain w5[0][0].
19: Construct the ordered sequence M for Df .
20: Compute 12 bytes of w′

1 = z1 ⊕ u1: [0][0, 5, 6, 7], [1][0, 1, 6, 7], [2][0, 1, 2, 7].
21: for all values of the 12 bytes of w′

1: [0][1, 2, 3, 4], [1][2, 3, 4, 5], [2][3, 4, 5, 6],
22: and z4[row(0)]
23: compute x2[row(0, 1, 2)] and construct the index of Tδ:
24: (Δy1[Bin], x2[row(0, 1, 2)], Δ5[0][0], z4[row(0)]).
25: Get 12-δ-set with the index in Tδ.
26: Match M to 12-δ-set.
27: if M ∈ Tδ, then
28: Exhaustively search the right key, Output: K if found.
29: end if
30: end for
31: end for
32: end for
33: end for
34: end for

The probability of the false positive, i.e., the probability of two random 28

ordered byte relations happen to match is 2−8·28 , which is negligible. Hence, only
the right pair and the right subkey guesses can be detected. The details of the
online phase attack is shown in Algorithm 2.

4.4 Complexities and Optimization

Optimizing the Conversion Table. We note that the conversion table is
of size 2z, and the inputs were randomly chosen from the overall 2512 choices.
We found that, by carefully choosing the inputs, i.e., the output v of the attacked
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compression function, we are able to reduce the conditions of the 7-round
differential characteristic, by forcing v, then the w6 as in Fig. 4, into a subspace.
We know w6 = MR−1(v ⊕ p ⊕ k−1). Since our trick is row wise, we will take
the first row as an example. We need Δw6[0][1, 2, 3, 4, 5, 6, 7] = 0, and we know
there is no difference in k−1 and Δp[row(0)] only takes 232 values when it follows
the characteristic. We force Δv[row(0)] to be MR(Δw6[0][0]) ⊕ Δp[0][0, 1, 2, 3],
so that when we do MR−1(Δp ⊕ v), the Δw6[row(0)] is forced into a space of
240 v.s. 264, this increases the chance Δw6[row(0)] to be the right pattern by a
factor of 224. Note this forces the choices of v[0] into a space of 240 out of 264,
we can apply the same trick to other rows, in the meanwhile, we need to ensure
at least 2z candidates of v are left for the conversion table.

By choosing balanced parameters z = 481, and d = 481, the overall complex-
ity for data, and memory are 2481, and time 2481. Due to the false-positive of the
conversion table, the data complexity increases by a factor of (1 − 1/e)−1 = 20.7

to 2481.7, and time complexity by a factor of (1 − 1/e)−2 = 21.3 to 2482.3.

Computer Search. There are several parameters, which affect the overall
attack complexities, including:

1. r1, c1, for number of active rows and columns in state z1, respectively.
2. r2, c2, for number of active rows and columns in state x5, respectively.
3. size of conversion table, denoted as ct = log2(Tc).

We can derive the attack complexities from these parameters in different phases:

1. The conversion table costs Memory = Time = 2ct

2. The number of conditions for the entire 7-round characteristic are: (8−c1)×64
for the input messages, c1 × (8 − r1) × 8 for z0 → w0 transition, (8 − r2) ×
64 for z3 → w3 transition, (8 − c2) × 8 for z4 → w4 transition. The trick
with the conversion table saves ccon = 512 − ct − �(512 − ct)/(64 − 8 ×
c1)� × c2 × 8 bits conditions. Denote the overall number of conditions in bits
as cdiff , we then need 2cdiff pairs to have at least one pair following the
differential characteristic, due to the loss in the conversion table, overall the
data complexity is Time = Data = 2(cdiff+1)/2+512−ct .

3. The size of δ-set table Tδ is computed as follows. There are r1×c1×8+r2×c2×8
bits in input/output differences, for each of them, we need to guess r1 × 64 +
r2 × 64 state bits, and r1 × c1 × 8 bits state value in y1 for the full δ-set. The
overall number of bits is log2(Tδ) = r1×c1×16+r2×c2×8+r1×64+r2×64.

4. At online phase, we filter (8 − c1) × 64 conditions in message, and (8 − c2) ×
64 − ccon in ciphertext, and number of pairs left for online phase is cpair =
cd − (8 − c1) × 64 − (8 − c2) × 64 + ccon. For each pair, we guessed ckey =
r1 × c1 × 8 + r2 × c2 × 8 number of key bits. For each of the considered
combination, we guessed cmat = r1 × 64 − r1 × c1 × 8 × 2 + r2 × 64 bits in the
matching stage, the overall time complexity is 2cpair+ckey+cmat .

By a bruteforce search over all possible choices of the r1, c1, r2, c2 and ct, we find
the best parameters, r1 = 3, c1 = 4, r2 = 1, c2 = 1, ct = 481 as presented already,
give the best complexity 2481.7 and 2481 for Data,Memory and 2482.3 for Time.
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4.5 Recovering Kin and Application to Prefix MAC

The attack setting for recovering Kin is different from Kout. The NMAC computa-
tion H(

Kout,H(Kin,M)) can be derived to CF(IV,Kout‖CF(Kin,M‖Pin)‖Pout),
with M of full blocks, Pin and Pout for padding blocks for inner and outer layer,
respectively. When M be of a fixed length, the Pin and Pout are fixed. With
knowledge of Kout, the computation after processing M contains no secret, let
us denote it as g, i.e., the expression is simplified to g ◦ CF(Kin,M). To recover
Kin, the setting is a little bit different from that for recovering Kout. Here, we
are able to choose the message M , the setting is similar to “chosen plaintext”
attack to block ciphers. As done in previous attacks against AES, we choose the
M in structures, where in each structure, the non-active bytes are fixed to a
constant, and all possibilities in active bytes are taken. Refer to Fig. 4, one fixes
bytes in M [SR−1(row(4, 5, 6, 7))] to a constant and the rest of the bytes take all
2256 possibilities. In this way, the pairs from the same structure will have dif-
ference pattern in message automatically fulfilled. With help of this, the overall
complexities of the attack can be reduced to 2465 for time, data and memory
with 27 differential characteristics.

It is interesting to note that the equivalent key for Prefix MAC can be recov-
ered in exactly the same way. For LPMAC, K ′

eq = CF(IV,K‖�‖pad) can also be
recovered in the same way too. However, recovering Keq = CF(IV,K) requires
inverting the compression function CF since K ′

eq = CF(Keq, �‖pad), which is
currently unknown for Whirlpool reduced to 7 rounds. Hence, in case of LPMAC,
we are able to launch universal forgery attack only.

5 Conclusion

Based on very recent advances in generic state recovery attacks on HMAC/NMAC,
and meet-in-the-middle attacks against AES, we present equivalent key recovery
attacks against HMAC/NMAC with Whirlpool reduced to 7 rounds. We also showed
the application to Prefix-MAC, including LPMAC. This improves one round over the
existing work on HMAC/NMAC-Whirlpool, and interestingly, the number attacked
already exceeds that for collision and preimage attack against the Whirlpool
hash function itself. One reason is that, collision attacks with complexity at or
beyond the birthday bound 2n/2 did not attract much attention in history, and
these collisions were found to reveal information about the internal state, and
also the key material in MAC applications. Due to the full block key size, the
security level is expected to be higher than that of collision resistance, these
collisions become essentially helpful to carry out our attacks.

Future work. It is interesting to note that length of the message plays an
important role in our attacks. The current generic attacks rely on queries of long
message, from 2n/4 to 2n/2 blocks, or the complexities approach 2n when the
message length tends to 1 block. Some of the hash function such as current NIST
standard SHA-256, supports messages with length up to 264 bits, shorter than
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2n/4 blocks. This simple restriction may stop the attack or bring the attack com-
plexity close to 2n for many other hash functions as well. The second restriction
is the length of the given message to be forged, in settings of forgery attacks.
In many protocols using hash function based MAC, the message used can be
very short, e.g., one or two blocks. This won’t stop our attacks since we focus on
attacks against the compression function, which is a key advantage of our attack
over the recent generic attacks. Progress in state recovery with low complexity
and short messages will remove the dependency of our attack from the need of
long message.

Our attacks do not apply to Sandwich MAC [41], i.e., H(K‖p‖M‖p′‖K ′)
with p, p′ paddings, and Envelope MAC [42], i.e., H(K‖p‖M‖p′‖K). One can
still carry out the internal state recovery attack for long message between the
two keys, however it is then not possible to convert it to a state recovery attack
for short message, since the padding p′ will be different. In our attacks, the
recovered Kin and Kout play a role similar to key, while in Sandwich MAC, K ′

(or the second K in Envelope MAC) appears in message block, and could not
be recovered since it plays a role as “plaintext”, which is currently not explored
in attacks against AES-like ciphers. For the same reason, we did not recover the
master key of HMAC. It will be interesting to see any progress in this direction.
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Abstract. PRINCE is a lightweight block cipher proposed by Borghoff
et al. at Asiacrypt 2012. Due to its originality, novel design and low num-
ber of rounds, it has already attracted the attention of a large number of
cryptanalysts. Several results on reduced versions have been published
to date; the best one is an attack on 8 rounds out of the total number
of 12. In this paper we improve this result by two rounds: we provide
an attack on 10 rounds of the cipher with a data complexity of 257.94

and a time complexity of 260.62, corresponding to 118.56 security bits,
instead of 126 for the generic attacks. Our attack uses multiple differen-
tials and exploits some properties of PRINCE for recovering the whole
key. PRINCE is defined as a member of a family of ciphers, differing
by the choice of an Sbox among a distinguished set. We also show that
the security offered by all the members of the family is not equivalent,
by identifying an Sbox for which our attack can be extended up to 11
rounds with a data complexity of 259.81 and a time complexity of 262.43.

Keywords: Differential cryptanalysis · PRINCE · Multiple differen-
tials · Key-recovery

1 Introduction

The area of lightweight primitives has drawn considerable attention over the last
years, due to the need of low-cost cryptosystems for several emerging applications
like RFID tags and sensor networks. The strong demand from industry has
led to the design of a large number of lightweight block ciphers, with different
implementation features. Among the best studied proposals are the ISO/IEC
standards PRESENT [4] and CLEFIA [16], as well as LBlock [19], TWINE [18],
LED [12] and KLEIN [11]. In this context, the need for a significant cryptanalysis
effort is obvious. The demand from industry for clearly recommended lightweight
ciphers requires that the large number of these potential candidates be narrowed
down. Since the trade-off between the performance and the security is a major
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issue for lightweight primitives, it is also very important to estimate the security
margin of these ciphers, to determine for instance if some rounds need to be
added, or if some can be omitted for achieving a given security level.

Recently, at Asiacrypt 2012, a new lightweight cipher named PRINCE has
been proposed by Borghoff et al. [5]. This block cipher, which aims at low-latency
encryption, has already received a lot of attention from the community, mainly
due to its simplicity, originality and low number of rounds. These results include
some small improvements upon the generic attack against the full cipher (that
implies a reduction from 2127 to 2126 of the claimed security bound on the prod-
uct Data × Time of the data and time complexities for any attack) [1,13]. Against
round-reduced versions of PRINCE, the best attack published so far applies to
8 rounds (out of 12) [8] and an attack against 9 rounds has been described very
recently [14]. Also some analysis of the building block PRINCEcore and some
interesting results have been obtained on a variant of PRINCE using a chosen
weak constant α [13,17]. However, this constant is not a parameter of the design
of PRINCE. An attack in the multi-user setting has also been presented in [9].

In this paper, we propose a differential-type attack on round-reduced
PRINCE that increases the number of analyzed rounds to 10 rounds, without
modifying the constants or building-blocks in the cipher. It is a multiple differen-
tial attack, based on a principle similar to the one in [15], that we have combined
with a sophisticated key recovery method specific for PRINCE. The fact that
the linear layer in PRINCE is based on the same design strategy as the AES
aims at making it resistant to classical differential attacks. In particular, due to
the branch number of the linear transformation, any differential characteristic
over four consecutive rounds has at least 16 active Sboxes, implying that the
probability of any differential characteristic over the 12 rounds is at most 2−96.
Nevertheless, our attack exploits the following four properties coming from the
main features of PRINCE:

– there exist many differentials for the round function with 4 active Sboxes and
with an activity pattern having a particular shape (the active nibbles are the
corners of a square);

– several of the characteristics obtained by iterating these round differentials
have the same input and the same output differences, leading to some r-
round differentials whose probability is much higher than the probability of a
single characteristic;

– for a given pair of input and output activity patterns, we find several good
differentials, which can be exploited together in a multiple differential attack,
as proposed in [2,3];

– because of the particular shape of the activity patterns, these differentials can
be extended by two rounds in each direction. Indeed, for some fixed input and
output activity patterns, the active nibbles only depend on half of the bits of
the plaintext and of the ciphertext, and on 66 of the 128 key bits.

Altogether, these four properties enable us to describe the first attack on 10-
round PRINCE, which requires 257.94 chosen plaintexts, with time complexity
less that 260.61 encryptions, leading to a product Data × Time around 2118.56.
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Table 1. Summary of all attacks on PRINCE in the single-key setting, including the
attacks presented in this paper.

Part of PRINCE Source Rounds Data Time D × T Memory Attacks

PRINCE [13] 6 216 264 280 216 Integral

[8] 8 1 2123 2123 220 Sieve-in-the-middle

[14] 9 257 264 2121 257.3 Meet-in-the-middle

Section 6 9 246.89 251.21 298.10 252.21 Multiple differentiala

Section 6 10 257.94 260.62 2118.56 261.52 Multiple differentiala

PRINCE(chosen α) [13] 12 241 241 282 - Boomerang

PRINCEcore [13] 6 216 230 246 216 Integral

[1] 12 240 262.72 2102.72 28 Biclique

PRINCE-Family Section 6 10 250.42 253.61 2104.03 254.00 Multiple differentiala

(modified Sbox) Section 6 11 259.81 262.43 2122.24 263.39 Multiple differentiala

aMemory complexity figures can be slightly larger than time complexities due to the relative cost

between an encryption and a memory access.

Another interesting issue is that, besides PRINCE, the designers have pro-
posed a whole family of ciphers, named the PRINCE-Family, which differ in
their 4 × 4 Sbox only. Since the Sbox of any member in the PRINCE-Family
guarantees the same resistance to classical attacks, including differential attacks,
all those ciphers seem to offer a similar security. Here, we show that it is not
the case since all these Sboxes do not have the same behaviour regarding our
attack. In particular, we exhibit a member of the PRINCE-Family for which
up to 11 rounds can be attacked with data and time complexity satisfying
Data × Time = 2122.24. The complexities of our attacks and a comparison with
the previous results are given in Table 1.

The paper is organized as follows. After a description of PRINCE in Sects. 2
and 3 exhibits some differential paths with 4 active nibbles per round only, and
gives a lower bound on the probabilities of some related differentials. Section 4
shows how these r-round differentials can be extended by two rounds at the
beginning and by two rounds at the end, in a way such that some key bits
can be recovered. Some experimental results supporting the previously made
assumptions are presented in Sect. 5. Section 6 discusses and presents the results
on 9 and 10 rounds of PRINCE and of some other element in the PRINCE-
Family.

2 The PRINCE Block Cipher

PRINCE operates on 64-bit blocks and uses a 128-bit key composed of two 64-bit
elements, K0 and K1. Its structure is depicted on Fig. 1.

PRINCE is based on the so-called FX-construction: two whitening keys
Win = (K0 ⊕ K1) and Wout = (K ′

0 ⊕ K1) are XORed respectively to the input
and to the output of a 12-round core cipher, named PRINCEcore, parametrized
by K1 only. The value of K ′

0 involved in the post-whitening key is derived from
K0 by K ′

0 = (K0 ≫ 1) ⊕ (K0 � 63).
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⊕ R ⊕ · · · R S M ′ S−1⊕ R−1⊕ · · · ⊕ R−1 ⊕
K0⊕K1⊕RC0

K1⊕RC1 K1⊕RC5 K1⊕RC6 K1⊕RC10

K′
0⊕K1⊕RC11

M ′S SR M ′ S−1SR−1

Fig. 1. Structure of PRINCE.

The internal state of the cipher is represented by a 4 × 16 binary matrix. The
lower right corner of this matrix is the least significant bit of the input, while the
upper left corner is the bit of index 63. This 4 × 16 binary matrix can also be
seen as a 4 × 4 matrix of nibbles. In this case, the nibbles are numbered by their
positions in the matrix, where the rows (resp. the columns) are numbered from
top to bottom (resp. from left to right). The precise numbering of bit positions
and nibbles is depicted on Fig. 2. We adopt the following notation. For a 64-bit
state, plaintext or ciphertext value W , when W is seen as a matrix of nibbles,
W j designates column j of W , and W i,j designates the nibble at row i and
column j. Wi designates the bit at position i. For a 64-bit key value K, Ki

designates the bit of K at position i. For a general 64-bit value W and a set of
bit indexes E, WE designates the set of bits of W at bit positions in the set E.

The round function is then composed of:

– a non-linear layer S corresponding to 16 parallel applications of a 4 × 4 Sbox
σ, which operates on the 16 nibbles of the internal state.

– a linear layer SR ◦ M ′, where M ′ is the parallel application of 4 involutive
MixColumn transformations, each operating on 16 bits. The same transfor-
mation is applied on first and last (resp. on second and third) columns of
the state. This transformation is then followed by a permutation SR of the
16 nibbles which is similar to the AES ShiftRows operation: in the 4×4 matrix
of nibbles, the row of index i is rotated by i positions to the left.

– the addition of a round constant RCi and of the subkey K1.

The first 5 rounds in PRINCE correspond to the previously described round per-
mutation R, while the last 5 rounds are defined by the inverse permutation R−1.

60616263 44454647 28293031 12131415
56575859 40414243 24252627 891011
52535455 36373839 20212223 4567
48495051 32333435 16171819 0123

Row 0
Row 1
Row 2
Row 3

Column 0 Column 1 Column 2 Column 3

Bits numbering

0,0 0,1 0,20,3
1,0 1,1 1,21,3
2,02,12,22,3
3,0 3,1 3,23,3

Nibbles numbering

Fig. 2. Numbering of nibbles and bits of the internal state.
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The middle round corresponds to the successive applications of S, M ′ and S−1

(see Fig. 1).
One of the main features of PRINCEcore is that decryption can be imple-

mented by the same circuit as encryption, but under another key. This comes
from the fact that the 12 round constants satisfy RCi ⊕ RC11−i = α for 0 ≤
i ≤ 11, where α is a fixed constant, implying that decryption under key K1

corresponds to encryption under key K1 ⊕ α.

Round-Reduced Versions of PRINCE. The number of rounds in PRINCE corre-
sponds to the number of nonlinear layers. There are 12 rounds for the full cipher.
Round-reduced versions are defined in a similar way: if the overall number of
rounds r is even, the numbers of rounds before and after the middle transforma-
tion are the same, while they differ by 1 when r is odd.

Some Observations on the Linear Layer. We note that M ′ can be expressed as
the parallel application of 16 independent transformations operating on one col-
umn of bits of the internal state. These 4-bit transformations have the following
form:

x =

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎝

wt(x) mod 2
wt(x) mod 2
wt(x) mod 2
wt(x) mod 2

⎞
⎟⎟⎠ ⊕ Rotni

⎛
⎜⎜⎝

x4

x3

x2

x1

⎞
⎟⎟⎠,

where wt(x) is the Hamming weight of x and Rotni
denotes some rotation by

ni positions to the top. In other words, M ′ is the composition of three simple
columnwise operations: the inversion of the order of the four bits, followed by a
bitwise rotation, completed by the addition of the parity of the column to each
bit of the column. The whole linear layer when the weight of each column is even
is depicted in the appendix of [7].

3 Differentials with 4 Active Nibbles for PRINCEcore

We now study some differentials for PRINCEcore with particular activity pat-
terns, and we compute a lower bound on their probabilities.

In the following, we denote by R the permutation corresponding to S ◦ SR ◦
M ′. Evaluating the difference propagation through R enables to evaluate the dif-
ference propagation through one round R of PRINCEcore since key and round
constant additions do not alter the differences. To assess the probability of char-
acteristics over several rounds, we will consider that the transition probabilities
in different rounds are independent. Due to the absence of key addition around
the middle M ′ layer, we apply a specific analysis to the surrounding non-linear
layers. We denote by Ssbox the permutation S−1◦M ′ ◦S, which covers one Super
Sbox, as defined in [10]. Here, we study some differentials for the function

Fr1+r2+2 =
(
R−1

)r2 ◦ M ′ ◦ SR−1 ◦ Ssbox ◦ SR ◦ M ′ ◦ Rr1 ,
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which should also be good differentials for FK1
r1+r2+2, the function obtained by

considering (r1 + r2 + 2) rounds of PRINCEcore, with constants, key additions,
and an additional linear layer at the beginning and at the end.

In the following, the internal state is seen as a 4 × 4 matrix of nibbles
numbered according to Fig. 2. Since any differential characteristic over four con-
secutive rounds has at least 16 active Sboxes [6, Theorem 2], we here focus on
differential characteristics with four active Sboxes in each round. We show that
several such characteristics can be built, and we additionally exhibit such charac-
teristics sharing their input and output differences. In other words, we are able to
find a lower bound on the probability of some differentials which include several
differential characteristics with the lowest possible number of active Sboxes.

The crucial observation is that the diffusion in the linear layer is ensured by
the addition of the parity in M ′. In order to build some characteristics with a
low number of active Sboxes, we focus on the differences with four active nibbles
located in two columns, such that the two active nibbles in the same column
are identical. This ensures that no diffusion of the differences takes place since
the corresponding parity bits are inactive. We further restrict the differences
considered to those whose active nibbles are the corners of a 3 × 3 square, i.e.,
the positions of the four active nibbles in the 4 × 4 internal state are of the form
(i, c), (i+2, c), (i, c+2) and (i+2, c+2) for some i and c in {0, 1}. A difference
satisfying these properties will be called valid.

There are exactly four square activity patterns and each of them is denoted
by [i, c] with the minimal values of i and c. In the following, any valid difference is
then characterized by its activity pattern [i, c] and by the two differences (δ1, δ2)
where δ1 (resp. δ2) denotes the difference which appears in Column c (resp. in
Column (c + 2)).

3.1 Computing the Transition Probabilities

There are exactly 152 = 225 valid differences for each activity pattern. We now
determine when a valid difference can be mapped into another valid difference
by R = S ◦ SR ◦ M ′. Since S operates on the nibbles independently, it does not
affect the activity pattern. Then, we need to determine when a square activity
pattern can be transformed into another square activity pattern by the linear
layer SR ◦ M ′. It can be easily checked that this situation occurs if and only if
the nibble differences (δ1, δ2) belong to the 18 pairs of the form

(δ1, δ2) ∈ (Δ1 × Δ2) ∪ (Δ2 × Δ1) with Δ1 = {1, 4, 5} and Δ2 = {2, 8, 10}.

Then, there are exactly 4 × 2 × 9 = 72 nonzero valid differences which are
mapped by SR◦M ′ to a difference with a square activity pattern. The resulting
differences have equal nibble differences on the square pattern diagonals. An
example of such a propagation is depicted on Fig. 3. Therefore, a valid input
difference with active nibbles (δ1, δ2) can be mapped by R to a valid difference
with active nibbles (δ′

1, δ
′
2) if and only if the following four transitions for the

Sbox are valid: δ1 �→ δ′
1, δ2 �→ δ′

2, δ1 �→ δ′
2 and δ2 �→ δ′

1. Then, the probability
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Fig. 3. Propagation of a valid input difference over one round R when (δ1, δ2) ∈ Δ1×Δ2

(if (δ1, δ2) ∈ Δ2 × Δ1, the above sequence [0, 0] → [1, 0] → [1, 1] → [1, 1] of square
activity patterns would be replaced by [0, 0] → [0, 0] → [0, 0] → [0, 0]).

of the transition (δ1, δ2) �→ (δ′
1, δ

′
2) for R does not vary when the roles of δ1

and δ2 are inverted, or when the roles of δ′
1 and δ′

2 are inverted. This important
property will be exploited in the attack. Thus, we consider the 9 × 9 transition
matrix μ whose entry at the intersection of Row (δ1, δ2) ∈ Δ1 ×Δ2 and Column
(δ′

1, δ
′
2) ∈ Δ1 × Δ2 is the product of the four probabilities:

p(δ1, δ
′
1)p(δ2, δ

′
1)p(δ1, δ

′
2)p(δ2, δ

′
2),

where
p(δ, δ′) = PrX [σ(X ⊕ δ) ⊕ σ(X) = δ′]

and σ is the 4 × 4 Sbox used in PRINCE. Now, for a given input activity
pattern, all 9 (δ1, δ2) in Δ1 × Δ2 lead to the same output activity pattern,
while all 9 (δ1, δ2) in Δ2 × Δ1 lead to another one. Then, the whole 72 × 72
transition matrix can be written as the Kronecker product1 A ⊗ μ, where the
8 × 8 matrix A encodes the transition between the 4 square activity patterns,
together with the fact that δ belongs either to Δ1 × Δ2 or to Δ2 × Δ1, and the
9 × 9 matrix μ encodes transition between values of δ ∈ Δ1 × Δ2. The values
of these two matrices are given in [7]. Thus, the transition matrix corresponding
to r iterations of R is given by

(A ⊗ μ)r = (Ar ⊗ μr).

In the same way, we can define the matrices B and ν that correspond to the
middle round M ′ ◦ SR−1 ◦ Ssbox ◦ SR ◦ M ′. Note that due to the involutivity of
Ssbox, ν is symmetric. Obviously, the transition matrix for R−1 is the transpose
of the transition matrix for R, i.e.,

(A ⊗ μ)T = (AT ⊗ μT ).

It eventually follows that the transition matrix for Fr1+r2+2 is
(
Ar1B(Ar2)T ⊗ μr1ν(μr2)T

)
.

1 The Kronecker product of an m × n matrix A and a p × q matrix B is the mp × nq
block matrix whose block at Position (i, j) equals Ai,jB.
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It can be checked that AB = B(A)T = J , where J is the matrix with all
entries equal to 1. Since all rows and all columns of A have weight 2, we deduce
that AJ = 2J and JAT = 2J , implying that, for any r1 + r2 ≥ 1,

Ar1B(Ar2)T = 2r1+r2−1J.

It follows that, for any valid input difference defined by Δin = (δ1, δ2) and
with any given input activity pattern, the probability that the output difference
is a valid difference Δout = (δ′

1, δ
′
2) with a given output activity pattern is

2r1+r2−1
(
μr1ν(μr2)T

)
i,j

where i and j are the row and column indices corresponding to Δin and Δout.
It is worth noticing that this probability depends on (Δin,Δout) only, and is
independent from the input and output square activity patterns.

3.2 Results for the Sbox Used in PRINCE

By computing μr1ν(μr2)T , we get the following results for the Sbox used in
PRINCE (the transition matrices are given in the appendix of [7]).

– For r1 = r2 = 2, i.e., for six rounds, the highest coefficient of the matrix
μ2ν(μ2)T is 2−70 × 1536. Then, the best differential has probability

2−70 × 1536 × 23 ≈ 2−56.42.

This probability is obtained for four differentials, namely (Δin,Δout) ∈ {(1, 2),
(2, 1)} × {(1, 2), (2, 1)}, and for any fixed input and output activity patterns.

– For r1 = 1 and r2 = 2, the probability of the best differential is 2−47.42. For
r1 = 2 and r2 = 1, the transition matrix μ2ν(μ)T is obviously the transpose
of the previous one, leading to the same maximal transition probability.

3.3 Results for Another Sbox Used in the PRINCE-Family

The PRINCE-family consists of all ciphers defined as PRINCE but with an Sbox
σ which can be chosen among eight 4 × 4 Sboxes and all the affinely equivalent
transformations (see Appendix B in [6]). All these Sboxes are expected to have
the same properties regarding classical differential attacks. However, when we
focus on the valid differentials with square activity patterns, these Sboxes do
not have the same behaviour. We have searched for some Sbox minimizing the
complexity of the attack described in the next section. An optimal Sbox in that
sense, linearly equivalent to Sbox S5 from [6], is

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

σ[x] 0 A 6 5 8 D 3 4 7 C 2 E 9 F B 1

For this Sbox, we get the following results (the corresponding transition
matrices are given in [7]).
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– For r1 = r2 = 2, i.e., for six rounds, the highest probability is obtained for
four differentials, namely when (Δin,Δout) ∈ {(5, 2), (2, 5)} × {(5, 2), (2, 5)}.
The corresponding probability is 2−50.

– For r1 = 2 and r2 = 3, i.e., for seven rounds, the probability of the best
differential is 2−58.

4 Key Recovery on Round Reduced Versions of PRINCE

In this section we show how the previously described differentials can be extended
by up to 4 full rounds, in order to recover the key of reduced variants of PRINCE,
in a chosen-plaintext scenario.

4.1 General Principle

Our attack applies to r rounds of PRINCE with r > 4. We call reduced cipher, the
cipher derived from r rounds of PRINCEcore by removing, both at the beginning
and at the end of the cipher, one full round and an additional nonlinear layer.
Therefore, the reduced cipher corresponds to the (r − 4)-round function defined
in the previous section FK1

r1+r2+2 with r1 + r2 + 2 = r − 4 and |r1 − r2| ≤ 1. Our
attack exploits together several differentials with the same input and output
activity patterns for the reduced cipher, as proposed in [2,3]. Indeed, there exist
several differentials with the same square activity pattern which have similar
probabilities. In particular, if (δ1, δ2) �→ (δ′

1, δ
′
2) holds with probability p, so do

(δ2, δ1) �→ (δ′
1, δ

′
2), (δ1, δ2) �→ (δ′

2, δ
′
1) and (δ2, δ1) �→ (δ′

2, δ
′
1).

These square differentials for (r − 4) rounds of the reduced cipher can be
exploited to perform a key-recovery attack on r rounds of PRINCE. Actually,
due to the very simple key schedule of PRINCE, the knowledge of 66 key bits
only (out of 128) allows to determine whether a given plaintext-ciphertext pair
corresponds to a pair of input and output of the reduced cipher which follows
one of the considered differentials. Moreover, there is an efficient procedure for
deriving, from each plaintext-ciphertext pair, the list of all partial key candidates
which lead to one of the expected differentials for the reduced cipher. Assuming
the considered differentials have good probabilities, the correct partial key is then
suggested with higher probability than the other ones. Our attack then follows
the general principle of statistical attacks on block ciphers: the first part is a
distillation phase which counts how many times the partial keys are suggested
by the available plaintext-ciphertext pairs. Then the analysis phase selects the
partial keys suggested by at least τ pairs, where the threshold τ is a parameter of
the attack. The search phase eventually consists in finding the key of the cipher
from the identified list of partial keys.

For the sake of clarity, we first focus on input and output differences cor-
responding to the [0, 0]-activity pattern. From now on, we denote by Δ =
(Δin,Δout) a differential with input and output having the [0, 0]-activity pattern,
and by ptrue(Δ) its transition probability. We consider a set Σ of D such dif-
ferentials. Σin denotes the set of all input differences Δin such that (Δin,Δout)
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Fig. 4. Extension of the reduced cipher square differentials. The blue (resp. red) nibbles
correspond to plaintext/ciphertext column 0 (resp. 2). The colored nibbles of the states
can be recovered from the corresponding colored nibbles of the key material, plaintext
and ciphertext. In the cipher states, full colored nibbles indicate active nibbles, emptied
colored nibbles and empty nibbles indicate no difference (Color figure online).

belongs to Σ for some Δout. Similarly, Σout is the set of all output differences
in Σ. The sizes of these sets are denoted by Din and Dout respectively.

4.2 Extension of the Reduced Cipher Square Differentials

Construction of Structures. Our attack makes use of structures of plaintexts.
A structure SP 1,P 3 is a set of 232 pairs of plaintexts and ciphertexts, defined as
follows. Columns 1 and 3 of all the plaintexts in the structure share the same
values P 1 and P 3, while Columns 0 and 2 take all the (216)2 = 232 possible
values. Building such a structure requires 232 encryption queries.

Let us consider any differential Δ = (Δin,Δout) in Σ. For any plaintext
P in the structure, we denote by X the (unknown) value obtained during the
encryption of P after addition of the whitening key Win, and by U the (unknown)
value at the beginning of the reduced cipher. Similarly, with any ciphertext C
we associate the value Y before the addition of the whitening key Wout and the
value V at the end of the reduced cipher (see Fig. 4).

Then, the plaintext PΔ corresponding to U ⊕ Δin has the same value as
P on Columns 1 and 3. Indeed these columns do not depend on the active
nibbles of Δin when computing backwards as shown on Fig. 4. Therefore, PΔ

lies in the same structure as P . The subset of all 231(232 − 1) pairs of distinct
plaintexts obtained from SP 1,P 3 can be partitioned into subsets of 231 pairs,
each corresponding to a given difference at the beginning of the reduced cipher.
As a consequence, there are exactly 231 pairs of distinct plaintexts from SP 1,P 3
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which lead to any given input difference Δin ∈ Σin for the reduced cipher. We
can build Ns such structures for a cost of N = 232Ns chosen plaintexts.

Right Pairs and Candidate Pairs. When considering the target key, the pairs
that follow one of the differentials in Σ are called right pairs. Their number is
about

Ntrue = 231Ns

∑
Δ∈Σ

ptrue(Δ) =
N

2
ptrue where ptrue =

∑
Δ∈Σ

ptrue(Δ), (1)

i.e., ptrue is the sum of the probabilities of all the differentials in Σ.
For the right pairs, the difference at the end of the reduced cipher has the

[0, 0]-activity pattern. Then, it can be seen on Fig. 4 that this difference can
propagate only to Columns 0 and 2 of the ciphertexts. Thus, our criterion to
detect potential right pairs is a collision on Columns 1 and 3 of the ciphertexts.
All pairs with ciphertexts colliding on Columns 1 and 3 are named candidate
pairs. Obviously, all right pairs belong to the set of candidate pairs. However,
about 263Ns possible pairs can be obtained from the Ns structures, and each
of those fulfills the criterion with probability 2−32. Therefore we have about
F = 231Ns candidate pairs.

Guessing Key Bits. For any given candidate pair (P, P ′, C, C ′), it can be
easily seen that the difference U ⊕U ′ at the beginning of the reduced cipher can
be recovered from the plaintexts and from Columns 0 and 2 of the pre-whitening
key Win = K0 ⊕ K1 and from four nibbles of K1 (the colored nibbles in Fig. 4),
namely the bits K

[20;23]∪[28;31]∪[52;55]∪[60;63]
1 . Similarly, the difference at the end

of the reduced cipher depends on the ciphertexts, on the same four nibbles of K1

and also on Columns 0 and 2 of the post-whitening key Wout = K ′
0 ⊕ K1.

Since the two whitening keys are related by some simple formula deduced
from the fact that K ′

0 = (K0 ≫ 1) ⊕ (K0 � 63), the following property can be
easily proved by induction.

Property 1. Let j and 	 be two indices with 0 ≤ j ≤ 	 ≤ 63. From the knowledge
of K�

1 (or K�+1
0 , with K64

0 = K0
0 ) and W

[j;�]
in and W

[j;�]
out , one can derive linearly

the values of K
[j;�]
0 and K

[j;�]
1 (with a perturbation by K63

0 at bit position 0).
Using Property 1, it is easy to establish that the key material required to

ensure a candidate pair follows a differential corresponds to 66 information bits
of the key: bits K

[16;31]∪[48;63]
1 and bits K

0∪[16;32]∪[48;63]
0 .

Distillation Phase Overview. Taking into account the structure used by the
attack, the distillation phase basic principle is given in Algorithm 1.

We show in the following subsections how the partial keys corresponding
to candidate pairs can be identified efficiently during the distillation phase. We
remark that a second distillation phase can be performed by considering another
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Algorithm 1. Distillation phase of the attack.
for all Ns structures of plaintexts do

for all pairs (P, P ′) in the structure such that (C1 ⊕ C′1 = C3 ⊕ C′3) = 0 do
for all 66-bit partial keys k which lead to (U ⊕ U ′, V ⊕ V ′) ∈ Σ do

Increment the counter Nk

input-output activity pattern for the differentials of the reduced cipher, and we
study the distribution of the counters Nk as a function of the data complexity
and a threshold parameter τ .

4.3 Identification of Key Candidates in the Distillation Phase

Overview. The attack described above can be performed only if, for each can-
didate pair, the partial keys which lead to a differential in Σ for the reduced
cipher can be efficiently determined. Finding these key candidates is not a triv-
ial task in the general case. In the following, we describe a method to achieve it
with a time complexity close to D encryptions per candidate pair, where D is
the number of differentials considered in the attack.

First, let us remark that the first (resp. last) two rounds of the cipher, before
the beginning (resp. the end) of the reduced cipher FK1

r1+r2+2, act independently
on the different columns (or diagonals) of the state, as depicted on Fig. 4. Thus,
for every differential Δ ∈ Σ, for column i ∈ {0, 2} and for every partial values of
K1 (K1,a or K1,b), one can precompute all compatible input-output column pairs
(Xi,Xi⊕ΔXi, Y i, Y i⊕ΔY i) for the cipher without its pre- and post-whitening,
as detailed in the precomputation step paragraph below.

Then, the processing step successively examines all candidate pairs of
plaintext-ciphertext for all considered differentials of the reduced cipher. Since
the whitening keys satisfy Win = P ⊕ X and Wout = C ⊕ Y , the precomputed
tables enable us to determine all partial values of the whitening keys which can
lead to a differential in Σ for the reduced cipher. Among these whitening keys,
further filtering is required to ensure constraints stemming from the key schedule
are satisfied.

Now, we describe in details how lists can be precomputed and carefully
merged in order to reduce the complexity of the attack. The list elements are
tuples of values. We will assume that the lists are sorted lexicographically after
being generated.

Precomputation Step. At the input of the reduced cipher, the four active
nibbles can be divided into two pairs. Indeed, referring to Fig. 4, column X0

(resp. X2) of X can be computed from the two blue (resp. red) active nibbles
of U , the two blue (resp. red) nibbles of K1 and two additional inactive nibbles
in the blue (resp. red) column after the M ′ layer. Therefore, we precompute
the following lists: for all Δin = (δ1, δ2) ∈ Σin, Lin,a

Δin
is composed of triples

(K1,a,ΔX0,X0) where X0 and ΔX0 are two 16-bit elements and K1,a is an
8-bit part of K1 corresponding to its two blue nibbles on Fig. 4. The values X0
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and (X0 ⊕ ΔX0) are the values on Column 0 of some internal states X and X ′

which lead to Δin on the blue nibbles at the input of the reduced cipher given
K1,a. Similarly, Lin,b

Δin
contains triples (K1,b,ΔX2,X2) where K1,b corresponds to

the two red nibbles of K1, and X2 and (X2⊕ΔX2) are the values on Column 2 of
some X and X ′ which lead to Δin on the red nibbles at the input of the reduced
cipher. The detailed algorithm for computing Lin,a

Δin
is given in Algorithm 2.

Algorithm 2. Precomputation step of the distillation phase
L ← {(z0, z2, z

′
0, z

′
2) ∈ (F4

2)
4 : σ(z0) ⊕ σ(z′

0) = δ1 and σ(z2) ⊕ σ(z′
2) = δ2 with

(δ1, δ2) = Δin}
for all (z, z′) in L do

for all K1,a = (k0,0, k2,2) corresponding to the two blue nibbles of K1 do
for all pairs of nibbles (z1, z3) do

X0 ← S−1(M ′(z0 ⊕ k0,0 ⊕ RC0,0
4−r1

, z1, z2 ⊕ k2,2 ⊕ RC2,2
4−r1

, z3)) ⊕ RC0
3−r1

ΔX0 ← X0⊕S−1(M ′(z′
0⊕k0,0⊕RC0,0

4−r1
, z1, z

′
2⊕k2,2⊕RC2,2

4−r1
, z3))⊕RC0

3−r1

Add (K1,a, ΔX0, X0) to Lin,a
Δin

The first list L has size exactly 28. Then, each list Lin,a
Δin

contains 224 elements,
as well as the lists Lin,b

Δin
. Similarly, we compute the 2Dout lists Lout,a

Δout
and Lout,b

Δout
,

each of size 224 elements, which correspond to the possible pairs of values for Y
and Y ′ on Column 0 and Column 2, respectively.

For a PRINCE computation, the eight bits of K1 involved in Lout,a
Δout

(resp.
in Lout,b

Δout
) are the same as the ones involved in Lin,a

Δin
(resp. in Lin,b

Δin
). Therefore,

the lists sharing the same key bits can be merged. For any Δ = (Δin,Δout), the
two lists Lin,a

Δin
and Lout,a

Δout
then lead to a list La

Δ of size 240 composed of tuples
(ΔX0,ΔY 0, T,K1,a,X0, Y 0). T is a 3-bit linear tag appended to each element
of the list, whose role will be explained later. The overall time complexity of this
merging process is proportional to 240D. The memory required for storing the
D lists La

Δ corresponds to 240D elements of 75 bits. Similarly, the lists Lin,b
Δin

and
Lout,b

Δout
are merged into D lists Lb

Δ of size 240.

Processing Step. We now explain how, for each candidate pair, (P, P ′, C, C ′),
we compute all partial keys which lead to a differential in Σ for the reduced
cipher. Since all possible values for Columns 0 and 2 of (X,X ′, Y, Y ′) have been
precomputed and P ⊕ P ′ = X ⊕ X ′, C ⊕ C ′ = Y ⊕ Y ′, the precomputed lists
provide us with the list of all possible values for the whitening keys Win =
K0 ⊕ K1 and Wout = K ′

0 ⊕ K1 on Columns 0 and 2, along with co-determined
values of some bits of Columns 0 and 2 of K1.

Moreover, since for all i = 0 we have Xi ⊕ Pi = Ki
0 ⊕ Ki

1 and Yi ⊕ Ci =
Ki+1

0 ⊕ Ki
1, we also deduce the following relation between P,C,X, Y and K1:

Pi ⊕ Ci−1 = Xi ⊕ Yi−1 ⊕ Ki
1 ⊕ Ki−1

1 . (2)
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For each element in one of the lists La
Δ, the right-hand term in the previous

relation is known for 61 ≤ i ≤ 63 since the nibble in Position (0, 0) of K1

belongs to K1,a. This is the 3-bit value, denoted by T , included in the tuples
in La

Δ. Then, for each candidate pair examined in the attack, the corresponding
value of (Pi ⊕Ci−1), 61 ≤ i ≤ 63 is compared with T . The number of candidates
for the value of W 0

in is then divided by a factor 8, on average. Similarly, the 3-bit
value corresponding to the right-hand side of (2) for 28 ≤ i ≤ 31 is included
in each element of Lb

Δ. The 66-bit keys corresponding to a given candidate
pair are then computed through Algorithm 3. The principle of this algorithm
is to generate lists Li, i ∈ {0, 2} containing partial key values affecting mainly
Column i and compatible with Column i of the considered candidate pair, to
compute the key bits shared by elements in both lists, and finally to merge the
two lists according to the shared bit values.

Algorithm 3. Processing step of the distillation phase
Input: a candidate pair (P, P ′, C, C′)
B ← (Pi ⊕ Ci−1, 61 ≤ i ≤ 63); B′ ← (Pi ⊕ Ci−1, 29 ≤ i ≤ 31).
for all Δ ∈ Σ do

L0 = ∅, L2 = ∅
for all elements in La

Δ of the form (P 0 ⊕ P ′0, C0 ⊕ C′0, B, K1,a, X0, Y 0) do
W 0

in ← X0 ⊕ P 0; W 0
out ← Y 0 ⊕ C0.

Compute K
[52;55]
1 with Property 1 starting from K60

1 ∈ K1,a.

Add (K
[52;55]
1 , K

[20;23]
1 , W 0

in, W 0
out, K

63
1 ) to L0 (K

[20;23]
1 is a nibble of K1,a).

for all elements in Lb
Δ of the form (P 2 ⊕ P ′2, C2 ⊕ C′2, B′, K1,b, X

2, Y 2) do
W 2

in ← X2 ⊕ P 2; W 2
out ← Y 2 ⊕ C2.

Compute K
[20;23]
1 with Property 1 starting from K28

1 ∈ K1,b.

Add (K
[52;55]
1 , K

[20;23]
1 , W 2

in, W 2
out, K

31
1 ) to L2 (K

[52;55]
1 is a nibble of K1,b).

for all pairs of elements in L0, L2 matching on their first two entries do
Increment the counter Nk, with k = (W 0

in, W 2
in, W 0

out, W
2
out, K63

1 , K31
1 )

For Δ ∈ Σ, the number of elements in lists La
Δ and Lb

Δ, which take a given
value on the first 3 values (ΔX,ΔY and T ) of their tuple, amounting to 35 bits,
is 25 on average. For each of these elements, we need to compute 4 bits by a
simple linear relation. The final merging step between L0 and L2 leads to 22 key
candidates on average. It requires to sort the two lists according to their first
two values, which can be done in linear time, for a cost of 26.

Thus the average complexity of Algorithm 3 is 26D elementary operations
and the average number of partial key candidates found for each candidate pair
is 2−8 × (25)2D = 4D.

4.4 Iterating the Distillation Phase for Recovering the Whole Key

We have shown how to perform a distillation phase leveraging differentials with
input and output [0, 0]-activity patterns. It extracts information about the num-
ber of values taken by 66 key bits from structures of plaintext-ciphertext pairs.
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We now remark that a second distillation phase can be performed, by adapt-
ing the procedure described in previous subsections to the case of [0, 1]-activity
pattern instead of the [0, 0]-activity pattern. Then, the bits of the key involved
in the computation of the active nibbles cover mainly Columns 1 and 3 (instead
of 0 and 2).

In this second distillation phase, the conformity of a plaintext-ciphertext pair
to one of the differentials in Σ can also be checked by guessing key nibbles and
whitening keys columns. They can be shown to be equivalent to 66 bits of key
information: bits K

[1;15]∪[32;47]
1 , K

[1;16]∪[32;48]
0 , K0

0 ⊕ K63
0 , and K0

1 ⊕ K63
0 .

Then, each of the 128 key bits is involved in at least one of the distillation
phases. Each distillation phase restricts the value taken by about half of the key.

4.5 Complexity Analysis

Distillation Phase Complexity. For reasons of symmetry, the number of
differentials D that we take into account and the corresponding probabilities
ptrue are the same in both parts. We also take in both cases the same value for
the number of structures Ns. In each distillation step, Algorithm 3 is applied
once for each candidate pair. Since the time complexity of the distillation phases
is assessed in elementary operations (xor on 4 bits), the comparison with the
complexity of the generic attack is not easy. We argue that the search for all
partial key candidates for each candidate pair and each differential, which has
been estimated to be 26 operations, is less costly than one full encryption. Indeed,
each of the 11 applications of the linear layer M ′ required by a single encryption
consists of four linear transformations on 16 bits. This obviously corresponds to
more than 28 binary xors. Then, the time complexity of the distillation phase
satisfies

Time1 = 2 × 231Ns × 26D elementary operations ≤ 2Ntrue

ptrue
D encryptions.

Since each distillation phase requires specific structures, we have

Data = 2 × 232Ns =
4Ntrue

ptrue
.

The memory complexity of our attack comes essentially from the storage of
partial key candidates counters during the distillation phase. It is worth noticing
that the total number of partial key candidates considered during the distillation
is bounded by 4D × 231Ns. Using an appropriate data structure to access the
counters, the memory required is then bounded by

Memory ≤ 4D × Ntrue

ptrue
.

Search Phase Complexity. We now want to determine to what extent the
statistic on the keys resulting from the distillation phases reduces the size of the
search space.
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All counters Nk correspond to the sum of some basic counters Nk(P, P ′, C, C ′),
one for each candidate pair. These basic counters are defined as

Nk(P, P ′, C, C ′) =
{

1 if (U ⊕ U ′, V ⊕ V ′) ∈ Σ
0 otherwise.

The basic counters for wrong keys follow a Bernoulli distribution. Indeed, let us
consider any wrong key k. For each candidate pair, columns P 1, P ′1, P 3 and P ′3

are chosen according to the structure and C1 = C ′1 and C3 = C ′3. The values of
columns 0 and 2 of P , P ′, C and C ′ are distributed uniformly among pairs that
fulfill P = P ′ and C = C ′. The values of active diagonals at the beginning and
at the end of the reduced cipher when encrypting P, P ′ and decrypting C,C ′

under key k follow the same distribution. The counter Nk is incremented if one
of the D differences in Σ occurs at the beginning and at the end of the reduced
cipher, which happens with probability (232 − 1)−2D ≈ 2−64D = pfalse.

For the right key guess, the average value of Nk is Ntrue. Let us choose
a threshold τ = Ntrue/η. If τ decreases, the success probability of the attack
increases, but so does the number of wrong keys reaching the threshold. The-
orem 3 of [2] gives an estimation of the probability that a wrong key reaches
this threshold, using accurate bounds for the tail distribution of the counter val-
ues for wrong keys. Using our notation, this estimation leads to Pr[Nk ≥ τ ] ≈
G(ptrue/ηDin, pfalse/Din, τ), where

G(x, y, t) = e
−tD(x||y)

x

[
x(1 − y)

(x − y)
√

2πt(1 − x)
+

1√
8πt

]
,

and D(x||y) = x log
(

x
y

)
+ (1 − x) log

(
1−x
1−y

)
is the Kullback-Leibler divergence.

Taking into account that ptrue � 1 and pfalse � 1, and denoting by ρ the
ratio pfalse/ptrue, it can be shown that

Pr[Nk ≥ Ntrue] ≈ (ηρ)τeτ(1−ηρ) 1√
2πτ

(
1
2

+
1

1 − ηρ

)
≈ 3(e · ηρ)τ

√
8πτ

,

as in most cases, pfalse � ptrue/η.
After the two distillation phases, the whole key is eventually recovered by a

search phase which only examines the keys having their two 66-bit restrictions
above the threshold. These keys can be easily found by merging the two lists of
partial keys which share the same value on the following 4 bits: K48

0 ,K32
0 ,K16

0

and (K0
0 ⊕ K63

0 ).
The complexity, Time2, of the search phase corresponds to one encryption

under each key whose score reaches the threshold in both distillation phases.
There are approximately 2 × 262 wrong keys that collide with the right key on
all the 66 key bits involved in one of the distillation phases, therefore

Time2 ≈ 2128

(
3(e · ηρ)τ

√
8πτ

)2

+ 263 3(e · ηρ)τ

√
8πτ

≈ 2125 9(e · ηρ)2τ

πτ
.
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Overall Complexity. Taking into account the complexity of distillation and
search phases, we get

Data × (Time1 + Time2) =
8N2

trueD

p2
true

+
9 × 2127Ntrue

π · ptrue · τ

(
e · pfalse · Ntrue

ptrue · τ

)2τ

.

Memory. The distillation phase is the only phase having a large memory
requirement, thus the memory complexity is

Memory = 4D
Ntrue

ptrue
= D · Data.

4.6 Success Probability of the Attack

We now estimate the success probability of our attack. For each distillation
phase, there are t = 263ptrue right pairs, that might follow one of the differentials
in Σ. Provided t does not exceed 216, these pairs all belong to different structures
with a high probability. Therefore, t is a good estimation of the number of
structures (out of the 232 possible choices) that contain at least one valid pair
for each of the distillation phases.

During the attack, the adversary chooses Ns structures out of 232 in both
phases, and succeeds if each set of Ns structures contains at least τ right pairs.
The probability that a set of Ns structures contains exactly u right pairs can
be approximated by the probability that it contains exactly u structures chosen
among those containing a right pair. By summing for u ≥ τ , and assuming
independence of the two phases, this leads to the following estimation of the
probability of success:

P (Ns, τ) =

⎛
⎝∑

u≥τ

(
t
u

)(
232−t
Ns−u

)
(
232

Ns

)
⎞
⎠

2

=

⎛
⎝∑

u≥τ

(
Ns

u

)(
232−Ns

t−u

)
(
232

t

)
⎞
⎠

2

. (3)

5 Experimental Estimation of ptrue

In this section we display some experimental results that validate our attack
strategy. Indeed, the complexity evaluation of our attack heavily relies on the
estimation of the value of ptrue. However, this estimation highly relies on the
assumption that the differential transitions between the rounds are independent.
In the case of PRINCE, as the round keys are all identical, this assumption is
questionable. Therefore we have validated our approach by the following exper-
iments.

In the next section, we show that, based on theoretical estimations of ptrue

and of the time and memory complexities, the best choice of parameters for
attacking 10 rounds of PRINCE are Ntrue = 6 and D = 12. This attack then
makes use of 24 differentials over 6 rounds, 12 in each distillation phase. Each of
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Fig. 5. Number of message pairs following one of the 16 differentials for both distillation
phases for the 1000 keys tested

these differentials have been determined by aggregating several differential paths
with a high probability over 6 rounds.

We have implemented an algorithm that computes exhaustively the pairs of
messages which follow one of these differential paths, given one value of the key.
As a result, we obtain a lower bound on the number of pairs that follow one of
the 12 differentials for each distillation phase.

We ran our program on 1000 randomly chosen keys. The results are depicted
on Fig. 5, where the x-coordinate (resp. the y-coordinate) represents the number
of pairs following one of the differentials involved in the first (resp. the second)
distillation phase. Following our theoretical estimation, the average number of
pairs should be

∑
263ptrue(Δ) = ptrue263 = 800 for each phase. In our experi-

ments we observe an average value of 869 pairs for the first phase and 861 pairs
for the second phase. This tends to show that the differentials we have identified
are followed with probabilities slightly higher than estimated.

6 Results

In this section we apply the previously described attack to several variants of
PRINCE. Using the study of the differential properties of PRINCE displayed
in Sect. 3, we still have to select some parameters for our attack, namely D
(the number of differentials we take into account), τ (the threshold score for
key candidates), and Ntrue (the estimated score of the right keys). By choosing
τ = Ntrue, the right key reaches τ in each distillation phase with probability
close to 0.5, leading to an almost constant success probability of 0.25.

Then, our goal is to find the values of D and Ntrue that minimize the product
Comp = Data × (Time1 + Time2).

The following table summarizes our most significant results. We focus on
9-round and 10-round versions of PRINCE with the original Sbox. We also
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emphasize that some members of the PRINCE-family are more vulnerable by
presenting results obtained with the modified Sbox defined in Sect. 3. It is worth
noticing that, in all cases, ptrue is much higher than the false alarm probability
pfalse = 2−64D.

Cipher Rounds D ptrue Ntrue Data Time1 Time2 Comp

PRINCE original Sbox 9 40 2−43.30 3 246.89 251.21 241.34 298.10

PRINCE original Sbox 10 12 2−53.36 6 257.94 260.53 256.54 2118.56

PRINCE modified Sbox 10 12 2−46.83 3 250.42 253 252.08 2104.03

PRINCE modified Sbox 11 12 2−54.81 8 259.81 262.40 256.92 2122.24

Our choice of parameters has been optimized for τ = Ntrue. If we increase
the amount of data, keeping the same threshold value would highly increase the
complexity of the search phase. A better strategy may then consist in increasing
the threshold but keeping it less than Ntrue. In this case, we increase the success
probability of the attack. For example, with the previous parameters, if the
amount of available data is Data = 259.7 (instead of 257.94), Ntrue increases from
6 to 20. Then, choosing τ = 7 leads to an overall complexity of Comp = 2120,
and a success probability of 0.85 as given by Eq. (3).
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Abstract. We study the problem of efficient (sub-linear) fuzzy search
on encrypted outsourced data, in the symmetric-key setting. In particu-
lar, a user who stores encrypted data on a remote untrusted server forms
queries that enable the server to efficiently locate the records containing
the requested keywords, even though the user may misspell keywords
or provide noisy data in the query. We define an appropriate primitive,
for a general closeness function on the message space, that we call effi-
ciently fuzzy-searchable encryption (EFSE). Next we identify an optimal
security notion for EFSE. We demonstrate that existing schemes do not
meet our security definition and propose a new scheme that we prove
secure under basic assumptions. Unfortunately, the scheme requires large
ciphertext length, but we show that, in a sense, this space-inefficiency
is unavoidable for a general, optimally-secure scheme. Seeking the right
balance between efficiency and security, we then show how to construct
schemes that are more efficient and satisfy a weaker security notion that
we propose. To illustrate, we present and analyze a more space-efficient
scheme for supporting fuzzy search on biometric data that achieves the
weaker notion.

1 Introduction

Motivation and Related Work. Cloud storage, which is a remote storage
accessed over a network, has moved from hype to reality and is currently experi-
encing explosive growth. One of the major challenges in cloud storage adoption is
providing security against the untrusted server without compromising function-
ality and efficiency. Numerous works have addressed the problem of symmetric
searchable encryption in recent years, e.g. [2,9,12,13,23]. The solutions differ
in the level of security and efficiency they provide, however most of them only
support exact-match queries.

These solutions, however, are not suitable for practical situations where
queried keywords differ slightly from those corresponding to stored encrypted
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data. A user can use different spellings over time, such as “1 800 555-66-77” and
“1(800)555 66 77”. Google queries can tolerate typos, but such functionality is
much more challenging to support when the data is encrypted. Moreover, data
can be inherently noisy, e.g. for biometric identification: investigators querying
a criminal database using data from a crime scene should allow for “fuzziness”
in fingerprint readings and witness description of the suspect. In this work we
consider the problem of efficient (sub-linear) search on encrypted data that sup-
ports fuzzy search queries. Sub-linear and, in particular, logarithmic-time search
is essential because a linear scan of the whole data is unacceptable for any
application dealing with large databases. Typically, this requirement for efficient
search is irreconcilable with achieving a conventional “strong” security notion.
But practitioners are willing to compromise security for functionality and thus it
is important to identify suitable (possibly “weak”) levels of security and provide
provably-secure solutions.

Several recent papers pertain to fuzzy searchable encryption. The scheme
from [18] is designed to address the general problem, though it lacks formal secu-
rity analysis and we later show that, in spite of being space-inefficient, its security
is not strong enough. The construction from [1], as well as the related schemes
for the public-key setting [10,11] and the recent work [16] for the symmetric-key
setting require the user to know all the data in advance, analyze the entire data
and pre-compute the index before data outsourcing. This requirement is unsuit-
able for many broad applications, such as when data is frequently updated or
streaming. The paper [25] motivates and discusses the problem of fuzzy search,
but does not provide any solutions. Fully homomorphic encryption [14,24] could
be used to implement fuzzy search queries; however, even a (future) computa-
tionally efficient FHE scheme would require search time linear in the length of
the database. Hence the task of finding a provably-secure efficient (sub-linear)
fuzzy encryption scheme supporting on-the-fly encryption has been open prior
to our work.

The major contribution of this work is to initiate the study of a highly
relevant problem, efficient fuzzy encryption, from a cryptographic (provable-
security) standpoint. It should be viewed as a “first step” in this effort and
should not be considered a complete treatment of the subject, which has strong
possibilities for future directions of research. Nevertheless, our work provides the
foundations for the study of the subject, including basic definitions, impossibility
results, and basic schemes. Our work continues a line of recent research on study-
ing encryption schemes providing more functionality while satisfying weaker
security notions, such as deterministic, order-preserving, format-preserving,
property-preserving, predicate, and functional encryption [3,6,9,15,17,21].

We now give an overview of our results.

Defining closeness. To even define our problem, we first need to establish
what “close” means for messages. At its core, closeness is a function assigning a
value (“close”, “far,” or “near”) to any pair of messages from a space. Thus, we
introduce the concept of a closeness domain which consists of a domain along
with a closeness function.
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Efficiently fuzzy-searchable encryption and its security. Next we
define the central primitive, efficiently fuzzy-searchable encryption (EFSE),
defined on a closeness domain. In addition to the standard functions of a sym-
metric encryption scheme, an EFSE scheme should provide a public function
that takes a ciphertext and returns all ciphertexts in a database that are equal
or close to (but none that are far from) the queried ciphertext. We also allow
for optional false-positives, i.e. the function may return ciphertexts of some near
messages. Furthermore, this function should be sub-linearly efficient. We then
discuss the details of how a user and the server perform search using an EFSE
scheme. We note that an EFSE scheme leaks equality and “closeness” of queried
messages in order to provide efficient exact-match and fuzzy search. Thus, an
optimal security notion for EFSE would be a natural relaxation of the stan-
dard IND-CPA security definition prohibiting queries that trivially exploit this
leakage of closeness and equality—we call this optimal security indistinguishabil-
ity under same-closeness-pattern chosen-plaintext attacks (IND-CLS-CPA) and
define it formally.

Template EFSE construction and its security. For generality and con-
venience, we propose a general template EFSE construction providing the basis
of all specific EFSE constructions that we discuss later. The template construc-
tion, which is inspired by the scheme from [18], formalizes and extends their
construction by building an EFSE scheme from three elements, listed with secu-
rity notions as follows.

1. An efficient searchable encryption (ESE) scheme, which was defined in [2]
and is essentially a symmetric encryption that leaks equality, and is thus is
a generalization of deterministic encryption; the relevant security notion is
indistinguishability under distinct chosen-plaintext attack or IND-DCPA [4].

2. A closeness-preserving tagging function that maps domain elements to “tags”
so that only close messages map to overlapping tags; the relevant security
condition is called consistency.

3. A batch-encoding family, each instance of which maps batches of elements
according to a deterministic function from domain to range; the relevant
security notion is privacy-preserving under chosen batch attacks (PP-CBA)
and is related to IND-DCPA.

Note that the latter two primitives and their security notions are novel.
The template schemeworks as follows: a ciphertext contains anESE-encryption

of the message, as well as a batch-encoding of all of the message’s “tags,” as
defined by the closeness-preserving tagging function. The ESE-encryption leaks
equality, and the batch-encoded tags leak closeness. We show that a scheme based
on the template is secure if the ESE scheme is IND-DCPA-secure, the batch-
encoding family is collision-free and PP-CBA-secure, and the tagging function is
consistent. We also suggest how to instantiate an IND-DCPA-secure ESE scheme
and a PP-CBA-secure batch-encoding family out of blockciphers for use in con-
structions, leaving the remaining task of finding a consistent tagging function
(discussed later, individually for each particular scheme.)
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Analysis of scheme from [18]. Next, we present the first cryptographic secu-
rity analysis of the scheme from [18] (which was missing a formal definition of
security and proof.) We first define a scheme based on our template construction
that is essentially equivalent, in that the scheme’s core component is a tagging
function that for a message outputs its “neighbors,” i.e. the other messages in the
message space that are close to a message. However, this tagging function is not
consistent in general, which means that this construction is not IND-CLS-CPA-
secure in general: to prove this, we present a simple efficient adversary with high
advantage. The attack exploits a simple observation that looking at two encoded
tags one can with high probability tell how many neighbors the associated mes-
sages share. Leaking such information is not required for the functionality of
EFSE and hence is a security breach according to our definition. We also note
that the scheme from [18], besides being IND-CLS-CPA-insecure, is not very effi-
cient in terms of ciphertext length. The constructions we propose target either
strong security with the same efficiency, or much improved efficiency (with a
necessarily weaker security guarantee.)

New optimally-secure construction. We propose a new general EFSE
scheme. It relies on the notion of the closeness graph, whose vertices are the
unique elements of the message space, and edges indicate closeness between
elements. Defined according to the template model, the tagging function for this
scheme sends a message to its set of incident edges (rather than neighboring
vertices á la [18]) in the closeness graph. This tagging function is consistent, and
so the scheme is IND-CLS-CPA-secure assuming the other components of the
scheme satisfy the appropriate security notions.

One might worry that our construction is rather inefficient in the ciphertext
length, which is linear in the maximum degree of the closeness graph. How-
ever we show that an EFSE scheme that works on general closeness domains
(i.e. the scheme’s algorithms do not depend on the structure of the closeness
domain) must, in fact, require ciphertext length linear in the maximum degree
of the closeness graph. The argument is information theoretic and relies on the
functionality, rather than security, of the primitive. Thus, in achieving EFSE on
arbitrarily-defined closeness domains the new IND-CLS-CPA-secure construc-
tion is (asymptotically) space-optimal, and moreover optimally secure.

Constructions with improved efficiency. In many (even most?) practical
applications, vertices of the closeness graph have massive degrees. Degrees can
even be infinite, e.g. on continuous spaces—consider, for example, searching a
massive database of website access-records for one that accessed a webpage at
approximately 6:59:59.95 PM on May 20, 2012 (where the time query must be
fuzzy to account for inherent lag-time in the network)—here, depending on the
granularity of measurements and the closeness tolerance, there could be a huge
number of neighbors. This situation can grow even worse for multi-dimensional
spaces, as the number of “close neighbors” increases exponentially with dimen-
sionality for closeness defined on a metric. Consider, for example, querying a
criminal database with a large array of biometric measurements taken from a
crime scene, in an attempt to find suspects—here, multi-dimensional closeness
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(closeness in every measurement) is needed, and if there are (say) a few dozen
measurements, and even a narrow definition of closeness in each, the number of
neighbors could again be huge. In such situations our optimally-secure scheme,
as well as the less-secure scheme from [18], are unacceptably inefficient—and the
aforementioned lower bound result shows that we cannot expect to do better for
arbitrary domains.

We seek the right balance between the desired efficiency and security of
EFSE, and look at closeness domains with a well-defined structure. We argue
that IND-CLS-CPA-security is too strong to be useful in characterizing EFSEs
on “non-rigid” closeness domains (where near messages could be encrypted to
either close or far ciphertexts), and so to do this we introduce a new security
definition. The new definition requires schemes to hide all information about
plaintexts except nearness and a certain aspect of “local structure”—essentially,
messages’ offsets from a predetermined fixed regular lattice L on the space.
Importantly, this implies that no major relative information (i.e., nothing above
the least-significant-bit level) is leaked about a pair of “disconnected messages,”
that is, messages that cannot be connected through a chain of near known cor-
responding ciphertext pairs. Hence, we call this notion macrostructure-security.
Note that this security may be useful in applications such as the website access-
record and biometric matching examples above, where it is not a big deal to
reveal aspects of local structure (does it matter if an adversary knows, say, the
least significant bits relating to biometric measurements in the criminal data-
base?) but it is important to hide large differences between messages.

Our security definition and construction strategy focus on a practical choice of
domains with associated metric and close, near, and far distance thresholds, that
we call metric closeness domains; in particular, we consider real multidimensional
space. Critically, on these domains, closeness is defined in a “regular” manner
across the space—namely, for any regular lattice in the space, closeness is invari-
ant under translation by a lattice vector. The security definition is then defined
in terms of a fixed lattice, demanding that nothing is leaked except “local struc-
ture” of near clusters of messages with respect to the lattice. To provide a blueprint
for building specific schemes, we introduce the concept of an “anchor radius”for
a metric closeness domain and a lattice, and use it to construct a tagging func-
tion to build an EFSE via our usual template. We show that a valid anchor radius
implies an EFSE construction that is macrostructure-secure. Then, to enhance
understanding, we present a practical example, filling in details of the blueprint
to build a (relatively) space-efficient, macrostructure-secure EFSE scheme sup-
porting fuzzy search on fingerprint data. Finally, in the full version [8], we observe
that an efficient scheme that probabilistically acts like an EFSE scheme can be
constructed out of locality-sensitive hash (LSH) functions. But the theory behind
these schemes and their security is beyond the scope of this work.

Future work. Our work provides the basis for cryptographic study of fuzzy-
searchable encryption. Our template constructions invite exploration of more
efficient schemes that will automatically satisfy our security notions. In addition,
future studies might achieve more efficient and secure schemes—circumventing
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our impossibility result by defining closeness and EFSE primitives in a differ-
ent manner. For instance, one could consider only closeness domains with certain
natural structure, or closeness could be defined quantitatively or probabilistically.

2 Preliminaries

We let LR (left-or-right) denote the “selector” that on input m0,m1, b returns
mb. For x ∈ Z, the notation [x] denotes the set {1, 2, . . . , x}. In some of the
algorithm descriptions, for ease and clarity of analysis, we use abstract set
notation. In a practical implementation, the sets can be implemented by some
specialized data structure, or by vectors/lists with a common predetermined
order (e.g., numerical order.) We recall the syntax and security for symmet-
ric encryption in the full version of the paper [8]. We wait until Sect. 4 to
define efficiently searchable encryption, privacy-preserving batch-encoding, and
closeness-preserving tagging functions. Here, we introduce a metric space, close-
ness domains and associated graph-theoretical concepts.

Metric spaces. (D, d) is a metric space if D is a set and d (the metric) is a
real-valued function on D × D such that for all x, y, z ∈ D,

d(x, y) ≥ 0 d(x, y) = 0 iff x = y

d(x, y) = d(y, x) d(x, z) ≤ d(x, y) + d(y, z).

Closeness domain. We refer to the pair Λ = (D,Cl) as a closeness domain if

1. D is a (finite or infinite) set, called the domain or message space;
2. Cl is the closeness function that takes a pair of messages and outputs a

member of {eq, close, near, far}, so that Cl is symmetric (i.e., Cl(m,m′) =
Cl(m′,m) for all m,m′ ∈ D) and Cl(m,m′) = eq if and only if m = m′.

According to the output of Cl, we say a pair of messages is equal, close, near,
or far. Note that a closeness domain can be defined by describing which distinct
message pairs of a domain D are close and which are far (the rest are then
near.) For convenience, we say Λ is rigid if Cl(m,m′) ∈ {close, far} for all
m �= m′ ∈ D. When these quantities exist, the degree of a message m in Λ
is Δm = |{m′ ∈ D | Cl(m,m′) = close}|, and the max degree of Λ is Δ =
maxm∈DΔm.

As a special case, let d be a metric1 on domain D, and let δ > 0. The met-
ric closeness domain

(
D,MδC,δF

d

)
on domain D with respect to metric d, close

threshold δC ≥ 0, and far threshold δF ≥ δC, has the following closeness func-

tion: for distinct m,m′ ∈ D, MδC,δF

d =

{
close if d(m,m′) ≤ δC ;
far if d(m,m′) > δF.

For instance,

1 So in particular, d obeys the triangle inequality.



Efficient Fuzzy Search on Encrypted Data 619

(
{0, 1}80,M1,2

Ham

)
, where Ham is Hamming distance, is a closeness domain of all

length-80 strings where strings differing in 1 bit are close, differing in 2 bits are
near, and differing in more than 2 bits are far.

Closeness and nearness graph, induced subgraph. Let Λ = (D,Cl) be a
closeness domain, VΛ = D and

EC
Λ = {{u, v} | u �= v ∈ VΛ and Cl(u, v) = close} ;

EN
Λ = {{u, v} | u �= v ∈ VΛ and Cl(u, v) ∈ {close, near}} .

Then GC
Λ = (D, EC

Λ) is the closeness graph and GN
Λ = (D, EN

Λ) is the nearness graph
of Λ. For graph G = (V, E) and H ⊆ V let G(H) = (H, E(H)) be the subgraph
induced by H where E(H) = {{u, v} ∈ E | u, v ∈ H}.

3 Efficiently Fuzzy-Searchable Symmetric Encryption

We now define our main primitive and show how can it be used for efficient
search. Following that, we formulate the optimal level of security for EFSE
schemes.

Defining Efficiently Fuzzy-Searchable Encryption. FSE = (K, Enc,
Dec, makeDS, fuzzyQ) is a structured fuzzy-searchable symmetric encryption
(StructFSE) scheme on closeness domain Λ = (D,Cl) if (K, Enc,Dec) is a sym-
metric encryption scheme on D, and for any key K output by K,

– makeDS takes a set of ciphertexts C (the database) encrypted under K and
outputs a data structure DSC;

– fuzzyQ, given database C, data structure DSC, and query ciphertext c, outputs
two subsets E,F of C such that

E = Ceq(c) and Cclose(c) ⊆ F ⊆ Cnear(c),

where for m = Dec(K, c), m′ = Dec(K, c′),
⎧⎪⎨
⎪⎩

Ceq(c) = {c′ ∈ C | Cl(m,m′) = eq}
Cclose(c) = {c′ ∈ C | Cl(m,m′) = close}.

Cnear(c) = {c′ ∈ C | Cl(m,m′) ∈ {close, near}}.

One could easily relax the above syntax to not require the returned ciphertexts
to equal those from the database. This would allow one to consider, for example,
schemes based on homomorphic encryption. We stick with a stricter definition
for simplicity. To ease discussion, for implicit fixed key K we say that ciphertexts
c and c′ are close (respectively, far) if their decryptions m = Dec(K, c) and m′ =
Dec(K, c′) are close (far). Notice that in a StructFSE scheme, fuzzyQ(C, DSC, c)
returns all ciphertexts in C close to c and no ciphertexts far from c. Any near
ciphertext may be returned as well—these can be thought of as “legal false
positives” in a fuzzy search query. In this sense, FSE on a rigid closeness domain
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cannot have any false positives. But of course, even on a non-rigid domain, we
must limit false positives to ensure efficiency.

We say StructFSE scheme FSE = (K, Enc,Dec, makeDS, fuzzyQ) is an effi-
ciently fuzzy searchable symmetric encryption (EFSE) scheme if for any (suf-
ficiently large) database C, data structure DSC, key K generated by K, and
query ciphertext c with |Cclose(c)| sub-linear in the size of C, the running time
of fuzzyQC,DSC

(c) is sub-linear in the size of C. Notice this condition on the
running time limits the number of false positives for a fuzzy query.

We note that EFSE defined for rigid domains makes a special case of property-
preserving encryption from [21] (for the property of “closeness”), but the general
case of EFSE does not seem to fit the class of schemes from [21].

Using an EFSE scheme. Let FSE = (K, Enc,Dec, makeDS, fuzzyQ) be an EFSE
scheme and K a valid key. In a practical scenario, let C be the set of cipher-
texts currently in an encrypted database, encrypted under K. The server runs
makeDS(C) to create a data structure DSC, and upon a new query c = EncK(m),
runs fuzzyQ(C, DSC, c) and returns the results, E and F, to the user. By cor-
rectness of the scheme, F consists of all ciphertexts in C whose messages are
close to m, and no ciphertexts whose messages are far from m. Since the scheme
is efficient, such a query will take time sub-linear in the size of the database C
(assuming the number of close messages itself is also sub-linear in the size of C.)
Also note that the scheme supports efficient exact-match search through E.

As a side note, in a practical implementation, additional functions (e.g. add,
remove, edit) would be useful to efficiently update the data structure as the
database changes. In our analysis, we are less focused on efficiency of the data
structure maintenance, so for simplicity we just let the (possibly inefficient)
function makeDS construct the data structure from the entire database. And we
leave it as an interesting open problem for future work to extend and realize the
primitive so that “closeness” be specified during encryption.

Finally, observe that the “difficult” part of building an EFSE scheme is ensur-
ing that fuzzyQ is efficient. Thus, the construction of Enc might as well be
designed with the efficiency of fuzzyQ in mind. In our constructions, as detailed
in Sect. 4, ciphertexts outputted by Enc will contain “encoded tags” such that
ciphertexts of close messages share a common encoded tag. Thus, indexing
ciphertexts by encoded tags in an efficiently searchable data structure, like a
binary search tree, leads to an efficient construction of fuzzyQ.

Optimal Security for EFSE schemes. We construct the following indistin-
guishability-based security definition, called IND-CLS-CPA2, for analyzing the
security of EFSE schemes. Intuitively, this notion is identical to IND-CPA with
the additional condition that left-right queries have the same closeness pattern
(in the second requirement below.)

Definition 1. Let FSE be an EFSE scheme on closeness domain Λ = (D,Cl).
For bit b ∈ {0, 1} and adversary A, let Expind-cls-cpa-b

FSE (A) be the standard
2 We do not study chosen-ciphertext security here as it can be achieved using the

encrypt-then-MAC method [5].
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IND-CPA experiment Expind-cpa-b
FSE (A) recalled in Fig. 1, but with the follow-

ing restriction: if (m1
0,m

1
1), . . . , (mq

0,m
q
1) are the queries A makes to its LR

encryption oracle Enc(K, LR(·, ·, b)), then

1. |mi
0| = |mi

1| for all i ∈ [q];
2. for all i, j ∈ [q], Cl(mi

0,m
j
0) = Cl(mi

1,m
j
1).

For an adversary A, define its IND-CLS-CPA advantage against FSE as

Advind-cls-cpa
FSE (A) = Pr

[
Expind-cls-cpa-1

FSE (A)=1
]
−Pr

[
Expind-cls-cpa-0

FSE (A)=1
]
.

We say that FSE is indistinguishable under same-closeness-pattern chosen-
plaintext attacks (IND-CLS-CPA-secure) if the IND-CLS-CPA advantage of any
adversary against FSE is small3,4.

Experiment Expind-cpa-b
SE (A)

K
$← K

b′ $← AEnc(K,LR(·,·,b))

Return b′ .

Fig. 1. The IND-CPA experiment.

It should be apparent that IND-CLS-CPA-
security is optimal for EFSE schemes on
rigid closeness domains: revealing equal-
ity/closeness patterns of LR-queries is
unavoidable as an adversary can run the
(public) fuzzyQ function on ciphertexts to
test for equality and closeness. It may seem
that the optimal security definition on gen-

eral closeness domains, where fuzzyQ is given flexibility over near message pairs,
should not allow distinguishing near messages as it is not needed for search
functionality. However, while a stronger security definition than IND-CLS-CPA
would be possible, the notion would necessarily depend on the scheme’s con-
struction, i.e., the left-right query restriction would rely on how fuzzyQ sends
near message pairs to close or far ciphertexts. To define a security notion that
is independent from the construction of fuzzyQ, the IND-CLS-CPA experiment
forces left-right query pairs to match near-to-near, as fuzzyQ is permitted to
distinguish near ciphertexts from close and far ciphertexts.

4 Template Tag-Encoding Construction for EFSE

In this somewhat technical section, we build up to a general construction of an
EFSE scheme given a valid “tagging function” on the desired closeness domain.
In addition, we show that under certain conditions, the scheme is IND-CLS-CPA-
secure. First, though, we define several primitives, along with relevant security
3 We use the informal term “small” because the main building blocks of symmetric

cryptography, blockciphers, have keys of fixed length in practice. Thus, instead of
requiring advantages to be negligible in a security parameter, we leave appropriate
concrete bounds to be determined on a case-by-case basis depending on the appli-
cation.

4 According to our definitions, advantage can be negative; note that “small” refers to
an advantage close to zero. For every adversary with negative advantage there is one
with positive advantage, who just outputs the complement bit.
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notions, that will be components of the construction. The primitives are: efficient
searchable encryption (ESE) schemes [2], closeness-preserving tagging functions,
and privacy-preserving batch-encoding families. We emphasize that, despite the
technical language, these primitives are conceptually simple and can be instanti-
ated in natural ways—the formalism is simply aimed to achieve fuller generality
in isolating theoretical requirements from possible instantiations.

Efficient searchable encryption and security. The ESE scheme prim-
itive [2] is recalled in the full version [8]. Intuitively, an ESE is an encryption
scheme that “leaks equality,” that is, there is a (public) way to tell if two cipher-
texts are encryptions of the same message. In particular, deterministic functions
F , G are provided such that if c1 and c2 are both encryptions of m under key
K, G(c1) = F (K,m) = G(c2) (and this is unlikely if c1 and c2 are encryptions
of different messages.) The appropriate security notion for ESE was defined
by [4] and is called indistinguishability under distinct chosen plaintext attacks
(IND-DCPA)—it is also recalled in the full version [8]. The notion is identical to
IND-CPA except that LR-queries must have the same “equality pattern” (and so
avoiding the obvious attack, as ESE leaks equality.) Note that any PRF implies
an IND-DCPA-secure ESE scheme [4] so there are many options for instantiation.

Closeness-preserving tagging functions. Fix a closeness domain Λ = (D,
Cl). Let TagUniv be a (finite or infinite) set and let Tags : D → 2TagUniv be a
function assigning a subset of TagUniv to every domain element. We call Tags a
closeness-preserving tagging function (CPTF) from Λ into TagUniv if for every
x, y ∈ D with Cl(x, y) = close, there exists t ∈ TagUniv such that t ∈ Tags(x)∩
Tags(y); and for every x, y ∈ D with Cl(x, y) = far, Tags(x) ∩ Tags(y) = ∅.

Further, a CPTF Tags is consistent with respect to closeness domain Λ if
for any message sets

{
m1

0, . . . , m
q
0

}
and

{
m1

1, . . . , m
q
1

}
having the same closeness

pattern5, we have
∣∣∣⋂i∈[q] Tags(m

i
0)

∣∣∣ =
∣∣∣⋂i∈[q] Tags(m

i
1)

∣∣∣. Consistency can be
understood intuitively as follows: whenever a set of messages has the same close-
ness pattern as another set of messages, each set should have the same number
of common tags.

Examples of CPTFs are integral to our constructions and several are intro-
duced in the remainder of this paper.

Privacy-preserving batch-encoding. We say that F = (K, En) is an encod-
ing family on domain D and range R if K outputs random keys and En takes a key
K and an element of D and outputs an element of R such that En(K, ·) is a (deter-
ministic) function from D to R. We further say that FBen = (KBen, En, Ben) is a
batch-encoding family if (KBen, En) is an encoding family and Ben takes a key K
and a set of elements M ⊆ D and outputs {En(K,m) | m ∈ M}. Given a function
family (K′, En′) it is easy to construct a batch-encoding family (KBen, En, Ben):
let KBen = K′ and En = En′, and define Ben(K, ·) to take a set of messages, run
En(K, ·) on each, and return the set of results.

5 That is, Cl(mi
0,m

j
0) = Cl(mi

1,m
j
1) for all i, j ∈ [q].
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Experiment Exppp-cba-b
FBen

(A)

K
$← KBen

b′ $← ABen(K,LR(·,·,b))

Return b′ ,

Fig. 2. The PP-CBA experiment.

We say that a encoding family (KBen, En)
or a batch-encoding family (KBen, En, Ben) is
collision-free if for any key K, En(K, ·) is
one-to-one on D. Now, we define security
for batch-encoding families. Called privacy-
preserving under chosen batch attacks, it
is essentially the IND-DCPA generalized to
objects of the batch-encoding primitive.

Definition 2. Let FBen = (KBen, En, Ben) be a batch-encoding family on domain
D and range R. For an adversary A and b ∈ {0, 1} consider the experiment
defined in Fig. 2, where it is required that, if (M1

0 ,M1
1 ), . . . , (Mq

0 ,Mq
1 ) are the

queries that A makes to its LR-batch-encoding oracle (note: each M i
j is a set of

elements of D), for all I ⊆ [q] we have
∣∣⋂

i∈I M i
0

∣∣ =
∣∣⋂

i∈I M i
1

∣∣ .
For an adversary A, define its PP-CBA advantage against FBen as

Advpp-cba
FBen

(A) = Pr
[
Exppp-cba-1

FBen
(A) = 1

]
− Pr

[
Exppp-cba-0

FBen
(A) = 1

]
.

We say that FBen is privacy-preserving under chosen batch attacks (PP-CBA-
secure) if the PP-CBA advantage of any adversary against FBen is small.

Notice that the requirement rules out an obvious attack: suppose to the con-
trary that, without loss of generality, the adversary could query (M1

0 , M1
1 ), . . . ,

(Mq
0 ,Mq

1 ) with
∣∣∣⋂i∈[q] M

i
0

∣∣∣ >
∣∣∣⋂i∈[q] M

i
1

∣∣∣ . If En(K, ·) is collision-free,∣∣∣⋂i∈[q] Ben(K,M i
b)

∣∣∣ =
∣∣∣⋂i∈[q]{En(K,m) | m ∈ M i

b}
∣∣∣ =

∣∣∣⋂i∈[q] M
i
b

∣∣∣ , so by com-

puting
∣∣∣⋂i∈[q] Ben(K,M i

b)
∣∣∣ from the oracle responses the adversary can identify b.

On how to instantiate a privacy-preserving, collision-free batch-
encoding scheme. Anticipating that our EFSE constructs will use PP-
CBA-secure batch-encoding schemes, how can we construct one? In fact, a
PP-CBA-secure batch-encoding scheme can be created straightforwardly out of
a pseudorandom function (PRF), as we now demonstrate.

Let PRF = (KPRF,FPRF) be a function family on domain D to some range R.
Let FBen = (KBen, En, Ben) where KBen = KPRF, En = FPRF, and Ben is defined in
the standard way using En as described above. We claim that if PRF is a PRF,
then FBen is PP-CBA-secure. See the following result, which is proved in [8].

Proposition 1. For FBen constructed as above out of function family PRF, and
any adversary A, there exist PRF adversaries F0 and F1 such that

Advpp-cba
FBen

(A) = Advprf
PRF(F0) + Advprf

PRF(F1).

Further, if A submits queries of total length γ to its oracle, then F1 and F2 each
submit queries of total length γ to their oracles as well.
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FSEEtag[Tags,FBen, ESE] = (K, Enc,Dec, makeDS, fuzzyQ) where

– K runsKBen
$← KBen andKESE

$← KESE, and returns KBen‖KESE.
– Enc(KBen‖KESE,m) runs Tm ← Tags(m) ; Etags ← Ben(KBen, Tm) ; cR ←

EncESE(KESE,m), and returns c ← Etags‖cR.
– Dec(KBen‖KESE, c) parses c as Etags‖cR and returns DecESE(KESE, cR).
– makeDS(C) initializes an efficient self-balancing search tree T representing an asso-

ciative array from elements of REn to ciphertexts. For each ciphertext c ∈ C parsed
as c = Etags‖cR, and for each t ∈ Etags, add the node (t �→ c) to T . Output
DSC ← T .

– fuzzyQC,DSC
(c) parses c as Etags‖cR and interprets DSC as search tree T . Let

E,F = ∅. For each t ∈ Etags, search T for nodes indexed by t; for any (t �→ c′)
that exist, parse c′ = Etags′‖c′

R. Then, if G(cR) = G(c′
R), add c′ to E; otherwise,

add c′ to F. Return E,F.

Fig. 3. General tag-encoding construction of a StructFSE scheme given Tags, FBen, ESE.

As will soon become clear, what we actually need is a PP-CBA-secure
collision-free batch-encoding scheme, a natural extension of a IND-DCPA deter-
ministic encryption scheme. To theoretically achieve collision resistance,
a pseudorandom permutation (PRP) would be necessary. But concretely, statis-
tical collision resistance should suffice—i.e. on random inputs, a collision occurs
after

√|R| inputs with probability approximately 1/2. We suggest using any
blockcipher (permutation) that is a PRF (and thus PP-CBA-secure), though
one may have to augment the blockcipher into a variable-input-length blockci-
pher [7] as described in [20], or into an encryption scheme like those of [2,22].

Template tag-encoding EFSE construction. We now provide a general
“template” construction for an EFSE scheme given a closeness-preserving tag-
ging function Tags, batch-encoding family FBen, and ESE scheme ESE. We remark
that this template is a generalization of the technique used in [18], though we
have expanded, formalized, and refined it significantly. All forthcoming EFSE
constructions use this general construction as a template.

Let Λ = (D,Cl) be a closeness domain, Tags a function from D to subsets of
a set TagUniv, FBen = (KBen, En, Ben) a batch-encoding family on domain DEn =
TagUniv and range REn, and ESE = (KESE, EncESE,DecESE, F,G) an ESE scheme
on D. Then we define a general tag-encoding StructFSE scheme
FSEEtag[Tags,FBen, ESE] in Fig. 3.

Conditions for correctness and efficiency. The following result, proved
in [8], establishes conditions under which the template construction is a valid
StructFSE scheme and when it is EFSE.

Theorem 1. If FBen is collision-free and Tags is closeness-preserving, then the
scheme FSEEtag[Tags,FBen, ESE] is StructFSE. In addition, it is an EFSE scheme
if Tags, FBen, and ESE are efficient and μ = maxm |Tags(m)| is small.
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Conditions for optimal security. Now, fix a closeness domain Λ = (D,Cl),
and let Tags be a CPTF from Λ into a set TagUniv, FBen a collision-free batch-
encoding family on TagUniv, and ESE an ESE scheme on D, so that FSEEtag[Tags,
FBen, ESE] is a valid StructFSE scheme by Theorem 1. The next result, proved in
[8], gives sufficient conditions for FSEEtag[Tags,FBen, ESE] to be IND-CLS-CPA-
secure.

Theorem 2. If Tags is consistent with respect to Λ, μ = maxm |Tags(m)| is
small, FBen is PP-CBA-secure, and ESE is IND-DCPA-secure, then FSEEtag[Tags,
FBen, ESE] is IND-CLS-CPA-secure.

Finally, the following result, proved in [8], shows that consistency of Tags is a
necessary condition for the template scheme to be IND-CLS-CPA-secure.

Theorem 3. If Tags is not consistent, then valid EFSE FSEEtag[Tags,FBen, ESE]
is not IND-CLS-CPA-secure.

Summing up, if CPTF Tags is consistent, μ = maxm |Tags(m)| is small, batch-
encoding oracle FBen is PP-CBA-secure and collision-free, and ESE scheme ESE
is IND-DCPA-secure, then FSEEtag[Tags,FBen, ESE] is a valid, (optimally) IND-
CLS-CPA-secure EFSE. If Tags is not consistent, the scheme is not IND-CLS-
CPA-secure.

5 Toward an Optimally-Secure Scheme

We now seek an EFSE construction achieving the optimal level of security, IND-
CLS-CPA, as defined in Definition 1. First, we show that the only previously
existing candidate is, in general, not IND-CLS-CPA-secure due to Theorem 3.
Then, we construct the first IND-CLS-CPA-secure EFSE scheme using the tem-
plate from Sect. 4. Finally, we show that in a sense, the space-inefficiency of the
secure scheme is necessary to accommodate general closeness domains.

Analysis of an EFSE scheme similar to [18]. The only previously existing
EFSE-type scheme is presented in [18]. As noted, the basic structure of our
template tag-encoding scheme is a generalization of their method, so it is natural
to define a tag-encoding scheme in our model that captures the essence of (and
perhaps improves) the [18] scheme. Here we show that this scheme has poor
space-efficiency (length of ciphertext linear in the degree of a message) and
yet fails to achieve IND-CLS-CPA-security. (Moreover, it only works on certain
closeness domains.) In contrast, the schemes we develop in later sections either
achieve IND-CLS-CPA-security, or have much better space-efficiency.

In [18], the authors construct several variants of a fuzzy-searchable scheme;
here we present a variant/generalization6. This construction only works on close-
ness domains Λ = (D,Cl) with the following constraint: for any m1,m2 ∈ D, if
6 There are minor differences—notably, FSEtagNbs uses an IND-DCPA-secure ESE

rather than a (stronger) IND-CPA-secure scheme, but this is not an issue as [18]
leaks equality already through its encoding strategy. Moreover, we could instantiate
FSEtagNbs with an IND-CPA-secure scheme in place of ESE and the attack described
would still work, since the attack exploits the FBen-tagged neighbors, not ESE. Other
differences in [18] are inconsequential to the analysis.
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Cl(m1,m2) = far, then there exists no m with Cl(m1,m) = Cl(m2,m) = close.
(In particular, this generally rules out rigid closeness domains.) We define the
neighbor set of an element m to be Nbm = {m′ ∈ D | m′ �= m,Cl(m,m′) =
close}. Define TagNbs : D → VΛ as TagNbs(m) = Nbm ∪ {m}, where VΛ is the
power set of D.

Note that if Cl(m,m′) = close then TagNbs(m) ∩ TagNbs(m′) ⊇ {m,m′} �=
∅, and if Cl(m,m′) = far, TagNbs(m) ∩ TagNbs(m′) = ∅ by the condition on
Λ, so TagNbs is a CPTF on Λ. Let FBen be a collision-free batch-encoding
family on VΛ and ESE an ESE scheme on D, and define FSEtagNbs to be
FSEEtag[TagNbs,FBen, ESE] as per Fig. 3. If the max degree Δ = maxm∈D |Nbm| of
Λ is small, FSEtagNbs is an EFSE. However, the ciphertext size is linear in Δ.

We claim that FSEtagNbs is IND-CLS-CPA-insecure for the closeness domains
considered by [18], as well as most other conceivably useful domains. Suppose,
for example, that the closeness domain has two pairs of close messages with
different numbers of common close neighbors: i.e.,

Cl(m0,m2) = Cl(m1,m2) = close ; |Nbm0 ∩ Nbm2 | �= |Nbm1 ∩ Nbm2 |. (1)

Then the condition of Theorem 3 is satisfied for q = 2, so that FSEtagNbs is
IND-CLS-CPA-insecure for any domain having m0,m1,m2 that satisfy (1).

The schemes of [18] are, essentially, instantiations of FSEtagNbs on closeness
domains defined in terms of keywords and edit distance (the minimum number
of operations—insertions, deletions, substitutions—required to transform one
string into the other.) If δ > 2 is the threshold edit distance, take m2 to be any
message of length at least δ +1. Let m0 be m2 but with the first letter changed.
Let m1 be m2 but with the last δ letters changed. Then m0 and m2 share more
neighbors than m1 and m2 share, so these messages satisfy (1) and FSEtagNbs
is IND-CLS-CPA-insecure in this case.

Construction of the first secure EFSE scheme. We now improve on
the scheme of [18] and construct an EFSE scheme that is IND-CLS-CPA-secure
even on rigid closeness domains. Let Λ = (D,Cl) be a closeness domain with D
finite. Let GΛ = (VΛ, EΛ) be the closeness graph of Λ. For m ∈ D, let Em =
{{m,m′} ∈ EΛ | m′ ∈ VΛ} be the set of incident edges to m in GΛ, and note that
message degree Δm = |Em| and max degree Δ = maxm∈D Δm.

So that all messages have the same number of close neighbors, we introduce
dummy messages. Construct a new graph Gdum = (Vdum, Edum) where Vdum = VΛ ∪
{w1, . . . , wΔ}, and Edum consists of all edges in EΛ, plus for any m ∈ VΛ, if
Δ − Δm > 0 then let Edum also contain edges {m,w1}, . . . , {m,wΔ−Δm

}. We call
these additional edges dummy edges and w1, . . . , wΔ dummy vertices. Gdum is thus
a graph in which every element of VΛ ⊂ Vdum has degree Δ.

Define TagEdges : D → Edum as TagEdges(m) = {e ∈ Edum | m ∈ e}. Note: if
Cl(m,m′) = close then TagEdges(m) ∩ TagEdges(m′) ⊇ {{m,m′}} �= ∅; and if
Cl(m,m′) = far then TagEdges(m)∩TagEdges(m′) = ∅. So TagEdges is a CPTF.

Let FBen be a collision-free batch-encoding family on domain Edum and some
range REn, and let ESE be an ESE scheme on D. Define the StructFSE scheme
FSEtagEdges as FSEEtag[TagEdges,FBen, ESE] according to Fig. 3. Notice that for
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all m ∈ D, |TagEdges(m)| ≤ Δ. So, if Λ has small max degree, FSEtagEdges is
efficient.

Now, Theorem 4 provides the security guarantee of FSEtagEdges. The proof
is in [8], and simply shows the main condition of Theorem 2 (i.e., consistency of
TagEdges) is satisfied in this case.

Theorem 4. If the max degree Δ of the closeness domain is small, and if ESE
is IND-DCPA-secure and FBen is PP-CBA-secure, then FSEtagEdges is IND-
CLS-CPA-secure.

Recall that certain blockcipher-based constructions (discussed earlier) satisfy the
necessary efficiency, security, and functionality conditions for ESE and FBen. The
final missing piece to achieve an efficient IND-CLS-CPA-secure scheme is that
TagEdges should be efficient; i.e., for any message m ∈ D it should be easy to
compute Em. Thus, FSEtagEdges is an IND-CLS-CPA-secure EFSE scheme on
Λ if the following two conditions hold:

(1) the max degree of Λ is small;
(2) Em is predetermined or calculated on-the-fly.

Of course, whether these conditions are satisfied depends on the closeness domain
Λ. It is an interesting question to identify when (1) holds, and how to achieve (2)
in those situations. However, the possibilities are wide-ranging and so we leave
this as a topic of future research.

Now, we have successfully created a IND-CLS-CPA-secure scheme, but at
what cost? It is apparent that, even if the max degree Δ is small enough for the
scheme to be efficient, its size can lead to huge space-inefficiency, since cipher-
texts in FSEtagEdges have length linear in Δ. And Δ could certainly be quite
large—for instance, on a dense or high-dimensional metric closeness domain,
even a small threshold supplies each message with many close neighbors.

Nevertheless, if we desire a general FSE construction to work on arbitrary
closeness domains, such long ciphertexts are necessary. We explain in the follow-
ing section.

Lower bound on ciphertext length of an FSE scheme for general
closeness domains. Notice that our FSEtagEdges scheme is defined indepen-
dently of the closeness graph—in particular, the algorithms makeDS and fuzzyQ
did not exploit any special structure of the closeness graph. In the following
result, we show that to have such a scheme construction that is valid for “gen-
eral” closeness domains, it requires ciphertext length linear in the max degree
of the closeness domain. Moreover, note that this is an informational theoretic
requirement, and relies only on functionality, rather than security, of the schemes.
The proof of the theorem is in [8].

Theorem 5. Let D be a fixed domain and Δ an integer with 2 ≤ Δ � |D|.
There exists a family of closeness domains {Λi = (D,Cli)}i∈I , each with max
degree at most Δ, so that if {FSEi}i∈I is a family of FSE schemes on the
respective closeness domains that have common makeDS and fuzzyQ algorithms
and a common ciphertext space, then the ciphertext length is at least Δ/2.
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The bound on ciphertext length asymptotically matches the space-efficiency of
scheme FSEtagEdges from the previous section, demonstrating that FSEtagEdges
is “best-possible” for FSE schemes that work on general closeness domains.

6 Space-Efficient Schemes

Theorem 5 indicates that it is costly to construct EFSE schemes on general
closeness domains. A natural question is whether we can improve efficiency by
focusing on closeness domains that have nice structure. In particular, to avoid
the strict conditions leading to Theorem 5 we should consider non-rigid closeness
domains, where near message pairs enable “false positives” in a fuzzy query.
However, note that if an adversary has any probabilistic edge in distinguishing
near message pairs that lead to false positives and those that don’t, he can
easily break IND-CLS-CPA-security. To avoid such an attack, one must force the
probability a near message pair is sent to a close ciphertext pair to be uniform
over all near message pairs. But this negates the flexibility advantage of near
messages—we expect an EFSE scheme satisfying this uniformity condition on
near pairs would be as inefficient as the FSEtagEdges scheme. Thus, it appears
that IND-CLS-CPA-security is too strong for more efficient EFSEs to achieve,
even on non-rigid closeness domains. So to evaluate more efficient schemes, we
need a new, weaker notion of security.

Intuitively, what information must a EFSE scheme on a non-rigid closeness
domain Λ leak, given that some number of ciphertexts are known? Let H be
the set of messages corresponding to known ciphertexts. For two messages in
the same component of the induced nearness subgraph GN

Λ(H) (we say they are
in the same nearness component) an EFSE is designed so that anyone might
discover this fact by running fuzzyQ on their ciphertexts. So, by using EFSE we
automatically give up a large amount of information about messages in the same
nearness component (namely, their link through a chain of known near pairs.)
It is a natural step to consider allowing more information leakage relating mes-
sages within the same nearness component, while protecting as much as possible
about messages in different components, and hiding the “general location” of a
message in the domain. We also might restrict our view to schemes on “regu-
lar” closeness domains—that is, domains where message closeness is defined in a
similar manner in all parts of the space. Otherwise, irregularities in the domain
would inherently reveal message locations.

Toward this end, we focus on real �-dimensional domains where closeness
of messages is defined regularly throughout the space. In particular, there is a
regular lattice L such that the closeness function is invariant by L-translations.
Our new security notion then requires schemes to hide all information about
plaintexts in different nearness components except for their “local structure”
with respect to this lattice. The important implication is that nothing major
(i.e., only “local structure”) is revealed about the relationship between a pair of
disconnected messages (i.e., messages that cannot be connected through a chain
of near known corresponding ciphertext pairs). Hence, it is a sort of “macrostruc-
ture security” across disconnected nearness components.
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In this section and related sections deferred to the full version [8], we focus
on schemes achieving this security on certain metric closeness domains over R

�.
Suppose we can select a lattice L ⊂ R

� and “anchor radius” ρ > 0 so that close
messages are each within distance ρ of a common lattice point, and far messages
are not. Then an obvious tagging strategy is to send a message to its anchor
points: the lattice points within distance ρ of the message. We prove that the
resulting scheme is secure with respect to L under the new definition. This new
“macrostructure-secure” construction leads to a more detailed discussion that is
relegated to the full version [8]. There, we pose an optimization problem related
to the general construction, present some simple scheme constructions and a way
to stitch simple constructions together to build useful schemes, then describe a
practical instantiation of the scheme for fuzzy search on biometric data. Finally,
in [8] we propose a direction of further research toward “probabilistic EFSE”
schemes built out of locality-sensitive hash functions.

6.1 Macrostructure Security on Lattice-Regular Closeness Domains

Our new notion of security will apply to closeness domains over R
� for which

closeness is defined in a “regular” manner over the entire space. We characterize
this regularity using a regular lattice on R

�. Then, the security notion will hide
everything about plaintexts except for how they locally relate to this regular
lattice.

Lattice-regular closeness domains. Let L be a regular lattice in R
�, that

is, a set of vectors characterized as all integer combinations of a finite set of
linearly independent basis vectors. We say a closeness domain Λ = (R�,Cl) is
L-regular if for any x,y ∈ R

� and any w ∈ L, Cl(x,y) = Cl(x + w,y + w).
That is, closeness relations are invariant under translation by any lattice vector.
We say L is a regularity lattice of Λ. Also, if z = x + w for some x, z ∈ R

� and
w ∈ L, we say that x and z are in the same L-class and that w is the L-witness
from x to z.

Macrostructure security. Let L be a regular lattice on R
� and let Λ =(

R
�,Cl

)
be a L-regular closeness domain on R

�. The security notion is as follows.

Definition 3. Let FSE = (K, Enc,Dec, makeDS, fuzzyQ) be an EFSE scheme on
L-regular closeness domain Λ. For an adversary A and b ∈ {0, 1}, let
Expind-nrL-cpa-b

FSE (A) be identical to IND-CPA experiment Expind-cpa-b
FSE (A) in

Fig. 1, but with the restriction: for LR-queries (mi
0,m

i
1), i ∈ [q] made by the

adversary, letting H0 = {m1
0, . . . , m

q
0} and H1 = {m1

1, . . . , m
q
1}, require

1. |mi
0| = |mi

1| for all i ∈ [q];
2. ∀i ∈ [q], mi

0 and mi
1 are in the same L-class; furthermore, the L-witness from

mi
0 to mi

1 is also the L-witness from mj
0 to mj

1 whenever mi
0 and mj

0 are in
the same connected component of GN

Λ(H0).
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For an adversary A, define its IND-NRL-CPA advantage against FSE as

Advind-nrL-cpa
FSE (A)=Pr

[
Expind-nrL-cpa-1

FSE (A)=1
]
−Pr

[
Expind-nrL-cpa-0

FSE (A)=1
]
.

We say that FSE is indistinguishable under same-nearness-component-L-
class chosen-plaintext attacks (IND-NRL-CPA-secure) or, alternatively, macro-
structure-secure with respect to anchor lattice L (MacroStruct-L-secure) if the
IND-NRL-CPA advantage of any adversary against FSE is small.

The second LR-query requirement asks that a left-query component of GN
Λ(H0)

is a L-translation (translation by a vector in L) of the corresponding right-query
component of GN

Λ(H1). This implies that left and right queries have the same
equality/closeness pattern, which we can see by the following. If mi

0 = mj
0 then

these messages are in the same nearness component (as they are the same vertex)
so ∃l ∈ L with mi

1 = mi
0 + l = mj

0 + l = mj
1. If Cl(mi

0,m
j
0) ∈ {close, near}

then these messages are in the same nearness component so ∃l ∈ L with mi
1 =

mi
0 + l, mj

1 = mj
0 + l, implying d(mi

1,m
j
1) = d(mi

1 + l,mj
1 + l) = d(mi

0,m
j
0), so

Cl(mi
1,m

j
1) = Cl(mi

0,m
j
0). Thus, MacroStruct-L-security is clearly weaker than

IND-CLS-CPA-security.
Returning to the big picture, an MacroStruct-L-secure scheme may leak how

all messages in a nearness component lie with respect to nearby points in the
regularity lattice. However, since the lattice itself is regular, no information is
leaked about where those nearby lattice points actually are. Thus, for messages in
different nearness components, an adversary learns nothing about the distance
between them, or their approximate locations in the space, besides some bits
with low significance, and that the distance is above δF (which is by design.)

Practitioners should be aware that, depending on the application, Macro-
Struct-L-security is not always an appropriate security guarantee. For instance,
consider a scenario where IP addresses are encrypted by a MacroStruct-L-secure
scheme and the lattice points are IP addresses with the final byte equal to 0. The
scheme could possibly leak the last byte of each IP address, perhaps revealing
the particular types of conversants in IP traffic data. In general, when the “least
significant” bits of data contain sensitive information, MacroStruct-L-security
may not be enough.

6.2 General Macrostructure-Secure Construction
on Metric Closeness Domains

We aim to construct space-efficient EFSE schemes that meet our new notion of
MacroStruct-L-security for some regularity lattice. For practicality, we focus on
the metric closeness domain on R

�, Euclidean metric d, close threshold δC > 0,
and far threshold δF ≥ δC, i.e., Λ =

(
R

�,MδC,δF

d

)
. Notice that Λ is L-regular for

any lattice L ⊂ R
�. We now define a few useful objects that will play a leading

role in the general construction. Then, the construction follows.

Anchor radii and points. Fix a lattice L in R
�. For ρ > 0, we say that ρ is an

anchor radius on closeness domain Λ and lattice L, and {v ∈ L | d(m,v) ≤ ρ} is



Efficient Fuzzy Search on Encrypted Data 631

the set of anchor points of message m, if (1) any two close messages m,m′ ∈ D
have a common anchor point, and (2) any two far messages m,m′ ∈ D have no
common anchor points.

General macrostructure-secure construction and its security. If ρ is
an anchor radius on Λ and L, then TagsAncρ

L : R� → L defined as TagsAncρ
L(m) =

{v ∈ L | d(m,v) ≤ ρ} is a CPTF on Λ, as condition (1) implies that whenever
d(m,m′) ≤ δC, there exists v ∈ L such that TagsAncρ

L(m) ∩ TagsAncρ
L(m′) ⊇

{v}; and condition (2) implies TagsAncρ
L(m) ∩ TagsAncρ

L(m′) = ∅ whenever
d(m,m′) > δF. Thus, if ρ is an anchor radius on Λ and L, FBen = (KBen, En, Ben)
is a collision-free batch-encoding family on domain DEn = L, and ESE is an ESE
scheme on D, then the scheme FSEtagAncρ

L = FSEEtag[TagsAnc
ρ
L,FBen, ESE] is a

StructFSE scheme by Theorem 1. The following result is proved in [8].

Theorem 6. FSEtagAncρ
L defined ias above isMacroStruct-L-secure provided ESE

is IND-DCPA-secure, FBen is PP-CBA-secure, μ = max
m∈D

|{v ∈ L | d(m,v) ≤ ρ}|
is small, and we can efficiently compute anchor points.

Together, Theorem 1 and Theorem 6 say that if we can find an anchor radius ρ
on closeness domain Λ and lattice L such that the maximum number of anchor
points μ is small, and we can efficiently compute anchor points, FSEtagAncρ

L as
constructed above is an MacroStruct-L-secure EFSE scheme on Λ.

Note that the problem of finding a given message’s anchor points is essentially
the ρ-close vectors problem (ρ-CVP) on the appropriate parameters. Unfortu-
nately, this problem is harder (assuming fixed maximum number of anchor points
μ) then the standard closest vector problem with unlimited preprocessing, which
has been shown to be NP-hard in general [19]. Thus, to ensure both efficiency and
security in our specific constructions, it is vital to demonstrate how to efficiently
compute anchor points.

The general “anchor-point” construction presented above provides a template
for defining macrostructure-secure schemes. In the full version [8], we analyze
some of the ramifications and possibilities. First, we pose the general open prob-
lem of how to choose anchor lattice and anchor radius to optimize space-efficiency
and flexibility of a scheme. We next present several specific schemes, and iden-
tify how to stitch methods together to create a scheme supporting “conjunctive”
closeness. Then, to enhance understanding, we describe and analyze a scheme for
a practical application: supporting fuzzy search on biometric (fingerprint) data.
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