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Abstract. A backward slice is a commonly used preprocessing step for scaling
property checking. For large programs though, the reduced size of the slice may
still be too large for verifiers to handle. We propose an aggressive slicing method
that, apart from slicing out the same statements as backward slice, also elimi-
nates computations that only decide whether the point of property assertion is
reachable. However, for precision, we also carefully identify and retain all com-
putations that influence the values of the variables in the property. The resulting
slice, called value slice, is smaller and scales better for property checking than
backward slice.

We carry experiments on property checking of industry strength programs us-
ing three comparable slicing techniques: backward slice, value slice and an even
more aggressive slicing technique called thin slice that retains only those state-
ments on which the variables in the property are data dependent. While back-
ward slicing enables highest precision and thin slice scales best, value slice based
property checking comes close to the best in both scalability and precision. This
makes value slice a good compromise between backward and thin slice for prop-
erty checking.

1 Introduction

Given a program and a set of variables at a program point of interest, program slic-
ing [19] pares the program to contain only those statements that are likely to influence
the values of the variables at that program point. The set of variables and the program
point, taken together, is called the slicing criterion. Several variants of the original slic-
ing technique, called backward slicing, have since been proposed [16]. These have been
used for program understanding, debugging, testing, maintenance, software quality as-
surance and reverse engineering. A survey of applications of program slicing appears
in [5]. This paper focuses on the use of slicing for scaling up property checking.

Among slicing techniques, backward slicing is the natural choice for property check-
ing. While computation of backward slice is efficient and scalable, the size of the slice
is a matter of concern. Empirical studies [11] have shown that the size of the back-
ward slice on an average is about 30% of the program size. This size is still too large
for the analysis of large programs. In addition, the statements sliced out are irrelevant
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1 int main()
2 {
3 int i,j,k,st;
4 int t,u;
5 t=i=j=k=0;
6 st = fn3();
7 while (i<1000)
8 {
9 i= i+ fn2();

10 t = fn1(i,j);
11 if (t>100)
12 {
13 if (st ==1)
14 { j++; k++; }
15 else
16 {j+=2; k+=1;}
17 u = j-k;
18 assert
19 (u==0||u==k);
20 }
21 }
22 return 0;
23 }
24 int fn1();
25 int fn2();
26 int fn3();

(a) Backward slice

1 int main()
2 {
3 int i,j,k,st;
4 int u;
5 j=k=0;
6 st = fn3();
7 while (*)
8 {
9

10

11 if (*)
12 {
13 if (st ==1)
14 { j++; k++; }
15 else
16 {j+=2; k+=1;}
17 u = j-k;
18 assert
19 (u==0||u==k);
20 }
21 }
22 return 0;
23 }
24 // fn1 removed
25 // fn2 removed
26 int fn3();

(b) Value slice

1 int main()
2 {
3 int i,j,k;
4 int u;
5 j=k=0;
6

7 while (*)
8 {
9

10

11 if (*)
12 {
13 if (*)
14 { j++; k++; }
15 else
16 {j+=2; k+=1;}
17 u = j-k;
18 assert
19 (u==0||u==k);
20 }
21 }
22 return 0;
23 }
24 // fn1 removed
25 // fn2 removed
26 // fn3 removed

(c) Thin slice

Fig. 1. Usual backward slice, value slice and thin slice

to the asserted property and their elimination does not reduce the load on the verifier
significantly. To remedy this, we propose an alternate notion of slicing based on the
observation that a backward slice consists of two categories of statements (i) statements
that decide whether the slicing criterion will be reached during execution, and (ii) state-
ments that decide the values of variables in the slicing criterion. Our results show that
the second category of statements, called value-impacting, are often enough for prop-
erty checking. We also show that the size of the slice consisting of value-impacting
statements, called a value slice, is about half the size of the backward slice.

An attempt similar to ours called thin slicing [17] retains only those statements on
which the variables in the slicing criterion are data-dependent. In particular, all condi-
tional statements are eliminated. While this does bring down the size of the slice, unlike
our method it also eliminates some conditional statements that are value-impacting and
thus crucial for property checking.

As a motivating example, Figure 1(a) shows an assert involving u at line 18.
The functions fn1 and fn2 are large and complex but without side effects. Clearly,
a backward slice with the slicing criterion 〈18,u〉 does not eliminate any statement
from the program. SATABS (version 3.0) [8], a robust and scalable predicate abstrac-
tion based property checking tool, times out on this program on a limit of 20 minutes.



Value Slice: A New Slicing Concept for Scalable Property Checking 103

Observe however that the value of u does not depend on the values of i or t. Since
these variables merely decide the reachability of line 18 during execution, the state-
ments computing them are non-value-impacting and thus considered irrelevant. Issues
related to reachability are being addressed in an ongoing work and are beyond the scope
of this paper.

Figure 1(b) shows a slice of the program that captures the computation of every
value of u in the original program. Conditional statements that do not value-impact u
are replaced by a * standing for a randomly chosen boolean value. The resulting slice
is much smaller in comparison to the backward slice (the entire program). SATABS
succeeds in showing that the property is indeed satisfied on the sliced program, and,
by implication, on the original program. On the other hand, the thin slice shown in
Figure 1(c), while smaller in size, is not useful since the property does not hold on the
sliced program. Thus any verifier will produce counterexamples on this slice that will
be spurious on the original program.

The contributions of this paper are:

1. We define a new notion of slicing called value slice and propose a worklist based
algorithm for its computation. The algorithm is shown to be correct by construction.

2. We describe the results of experiments on property checking based on the three
comparable slicing methods—backward, value and thin slices. We show that on
both criteria, scalability and precision, value slice based property checking yields
results that are close to the best among the three slicing methods.

We conclude that as a slicing technique for increasing the scalability of property check-
ing, value slice represents a sweet spot between backward and thin slice.

2 Background

We shall present our ideas in the context of imperative programs made of assignments,
conditional statements (the conditions being without side-effects), while loops, and
function calls. We allow break and continue statements in loops. However, we restrict
ourselves to goto-less programs with single-entry loops and two-way branching condi-
tional statements; it makes for an easier formal treatment of our method without losing
expressibility. We also allow the full range of C-types including arrays and pointers.

Our analysis will be based on a model of the program called the control flow graph
(CFG) [1]. A CFG is a pair 〈N,E〉, where N is a set of nodes representing atomic
statements, i.e. assignment statements and conditions (also called predicates) of the
program1. Further, (n1, n2) ∈ E, if there is a possible flow of control from n1 to n2

without any intervening node. We use n1 → n2 and n1
b→ n2 to denote unconditional

and conditional edges, where b ∈ {true, false} indicates the branch outcome. Each
statement (or node) is associated with a unique label l that represents the program point
just before the statement. Often we shall refer to a node by its label. In addition, each
CFG is assumed to have two distinguished nodes with labels ENTRY and EXIT . Ex-
cept for ENTRY and EXIT , there is a one-to-one correspondence between the nodes

1 For the rest of the paper, a statement will mean an atomic statement.



104 S. Kumar, A. Sanyal, and U.P. Khedker

of the CFG and the statements of the program. Thus we shall use the terms statement
and node interchangeably.

2.1 Program States and Traces

Let Var be the set of variables in a program P and Val be the set of possible values
which the variables in Var can take. A program state is a map σ : Var → Val such that
σ(v) denotes the value of v in the program state σ. Given X ⊆ Var , a X-restriction of
σ, denoted as �σ�X , is a map X → Val such that ∀x ∈ X.�σ�X(x) = σ(x). Finally,
an execution state is a pair 〈l, σ〉, where σ is a program state and l is the label of a
CFG node. The execution of a program is a sequence of execution states starting with
〈ENTRY, σ0〉, where σ0 is the initial program state. We assume that the next state is
given by a function T , i.e. for each execution state 〈l, σ〉, the next state is T (〈l, σ〉).

A trace is a (possibly infinite) sequence of execution states [〈li, σi〉], i ≥ 0, where
l0 = ENTRY, σ0 is an initial program state, and 〈li+1, σi+1〉 = T (〈li, σi〉) for all i ≥ 0.
When the trace sequence is finite and ends with an execution state 〈EXIT, σ〉, it is called
a terminating trace. We shall only consider terminating traces in the rest of the paper.

2.2 Data and Control Dependence

A definition d of a variable v in a node n is said to be a reaching definition [1] for a
label l, if there is a control flow path from n to l devoid of any other definition of v. A
variable x at label l is said to be data dependent on a definition d of x, if d is a reaching
definition for l. Given a set of variables X and a label l, the set of definitions that the
variables in X are dependent on is denoted by DU(l, X).

Backward slicing algorithms are implemented efficiently using post-dominance and
control dependence [10,12]. A node n2 post-dominates a node n1 if every path from n1

to EXIT contains n2. If, in addition, n1 �= n2, then n2 is said to strictly post-dominate
n1. A node n is control dependent on an edge c

b→ n′, denoted c
b� n, if n post-

dominates n′, and n does not strictly post-dominate c. If the label b is not important in
a context, it is elided.

The transitive closure of control dependences, i.e. a chain of control dependences
starting with the predicate c and edge b and ending with the node n is denoted as c b� n.
Note that because of return and break statements, it is possible to have both c

b� n

and c
b′� n, where b �= b′.

2.3 Subprogram and Backward Slice

The basis for slicing is a slicing criterion defined as a pair Υ = 〈l, V 〉, where l is a
statement label and V ⊆ Var is a set of variables. The slicing criterion represents our
interest in the values of the variables in V just before the execution of the statement at
l. Let REF (s) denote the set of variables referred in a node s. Given a statement s with
label l′, we will use LV (s) to denote the slicing criterion 〈l′, REF (s)〉.

A subprogram of P is a program formed by deleting some statements from P while
retaining its structure. This means if a statement enclosed by a predicate c in P is
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included in the subprogram, then so is c itself. Given a program P and a slicing criterion
with location l, an augmented program is obtained by inserting a SKIP (do nothing)
statement at l. Clearly, an augmented program has the same behavior as the original
program. In the sequel, we shall assume that our programs are augmented. Finally, we
shall assume that program points of the same statement in the original program and the
slice are represented by the same label.

Assume for the rest of this section that the slicing criterion is Υ = 〈l, V 〉. Given a
program P , we define SC-execution states to be the execution states of P with label
l. For a subprogram to be called a backward slice, there should be a relation between
the traces of the program and the slice on the same input when we restrict the traces to
their SC-execution states. We call a trace thus restricted as a sub-trace. We say that the
two sub-traces [(l, σi)], 1 ≤ i ≤ k and [(l, σ′

i)], 1 ≤ i ≤ k′ are SC-equivalent wrt Υ , if
k = k′, and for each i between 1 and k, �σi�V = �σ′

i�V .
Let Tr(P, I, Υ ) denote the sub-trace of a program P on input I for the slicing crite-

rion Υ . We now define P ′ to be a backward slice of P with respect to Υ , if for all inputs
I , Tr(P, I, Υ ) and Tr(P ′, I, Υ ) are SC-equivalent. As we shall see later, for the same
input the sub-traces of the program and its value-slice may not be of the same length.
We therefore need a weaker notion of SC-equivalence. We say that a pair of sub-traces
[(l, σi)], 1 ≤ i ≤ k and [(l, σ′

i)], 1 ≤ i ≤ k′ are weak-SC-equivalent wrt Υ , if for each
i between 1 and min(k, k′), �σi�V = �σ′

i�V . The value min(k, k′) is called the trace
observation window for the pair of sub-traces.

3 Value Slice

Given a slicing criterion 〈l, V 〉, a value slice is the answer to the question: “Which
statements can possibly influence the values of the variables in V observed at l”?

The answer to this question for P1 in Figure 2 for the slicing criterion 〈17, {y}〉 is
as follows: y at 17 gets its value from x through the assignment at 15. x, in turn, gets its
value from the definitions at 14 and 8, and both of these can reach 15. Thus 8, 14 and
15 are in the value slice. The predicate c2 at 13 is also in the value slice, since, of the
values generated at 14 and 8, the value that actually reaches line 15 is decided by c2.
Finally, line 10, where c2 itself is computed, is also in the value slice. The resulting
program is P2 without the lines shaded gray.

Although P2 (ignoring gray lines) contains all statements required to answer the
question posed earlier for the slicing criterion 〈17, {y}〉, it is not suitable for property
checking. The reason is that apart from the statements that decide the values of vari-
ables at the slicing criterion, we also need to explicate the CFG paths along which the
computations of these values take place. Therefore, if a statement in the slice is control
dependent on a predicate that, by itself, does not influence values of the variables in the
slicing criterion, the predicate is retained in the slice in an abstract form. This brings
the predicates at lines 16 and 11 into the value slice but replaced by ‘*’ indicating a
non-deterministic branch. We call such predicates abstract predicates. Note, however,
that if none of the statements that are transitively control dependent on a predicate are
included in the slice, the predicate itself can be eliminated.
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1 proc(int z)
2 {
3 int w;
4 int x;
5 int y;
6 int c1;
7 int c2;
8 x = z;
9 c1=fn1();

10 c2=fn2();
11 if (c1)
12 {
13 if (c2)
14 x=z+5;
15 y = x;
16 if(x<10)
17 w = y;
18 }
19 }

(a) P1

1 proc(int z)
2 {
3 int w;
4 int x;
5 int y;
6

7 int c2;
8 x = z;
9

10 c2=fn2();
11 if (*)
12 {
13 if (c2)
14 x = z+5;
15 y = x;
16 if (*)
17 w = y;
18 }
19 }

(b) P2

1 proc1(int x)
2 {
3 int i,c1;
4 c1=fn1(x);
5 while (c1)
6 {
7 i=0;
8 x=0;
9 while(i<4)

10 {
11 if (i%2==0)
12 x = x+3;
13 else
14 y = x;
15 i++;
16 }
17 c1=fn1(x);
18 }
19 }

(c) P3

1 proc1(int x)
2 {
3 int i;
4

5 while (*)
6 {
7 i=0;
8 x=0;
9 while(i<4)

10 {
11 if (i%2==0)
12 x = x+3;
13 else
14 y = x;
15 i++;
16 }
17

18 }
19 }

(d) P4

Fig. 2. Various forms of value slices

In the context of property checking, the inclusion of c2 in a concrete form at line
13 is a crucial difference between value slice and thin-slice2. As an example, assume
that when P1 is executed with v as the initial value of z, c2 evaluates to false and
the value reaching y at 17 is also v. For the same initial value of z, the value slice P2
will also assign the same value v to y. However, if we abstract c2 as ‘*’, the resulting
program may produce a trace which assigns the value v+5 to y at line 17. To avoid such
spurious counterexamples, we retain the predicate c2 at line 13 in a concrete form.

To generalize this point, consider the execution of P3 in Figure 2. Assuming that the
outer loop executes twice for an input, the sub-trace for 〈14, {x}〉 is [〈14, 3〉, 〈14, 6〉,
〈14, 3〉, 〈14, 6〉]. However, if the predicates of both the whiles are abstracted, then one
of the sub-traces generated is [〈14, 3〉, 〈14, 3〉]. The two sub-trace do not match in that
they are not weak-SC-equivalent. On the other hand, program P4 in which only the
outer loop predicate is abstracted, produces as a sub-trace zero or more repetitions of
[〈14, 3〉, 〈14, 6〉]. We therefore include the predicate i<4 in the value slice for the slic-
ing criterion 〈14, {x}〉. The predicate i%2==0 is also in the value slice by a similar
argument. In summary, for the same input, the sub-traces of a value-slice and the origi-
nal program are required to be weak-SC-equivalent. Based on these considerations, we
now specify the conditions to be satisfied by a value slice.

Definition 1. (Value-slice) A value slice PV of a program P for a slicing criterion
〈l, V 〉 satisfies the following conditions:
1. PV is a subprogram of P with some predicates in abstract form.

2 For comparison in the context of property checking, predicate c2, which would have been
eliminated in the thin-slice, is retained in an abstract form.
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2. If P terminates with trace τ on an input, then there should exist a trace τ ′ of PV on
the same input which is SC-equivalent to τ .
3. If P terminates with trace τ on an input, then every trace τ ′ of PV on the same input
should be weak-SC-equivalent to τ .

3.1 Value-Impacting Statements

While the trace-based definition is good from a semantic point of view, we present a
definition that will enable us to statically identify the set of statements that should nec-
essarily be in the value slice in concrete form. We call such statements value-impacting
and define the term shortly. As mentioned in the background section, we shall use the
term “node” to also mean atomic statements.

Definition 2. (Value-impacting Node) A node s value-impacts Υ = 〈l, V 〉, if any of the
following conditions hold:
1. s is an assignment in DU(Υ ).
2. s is an assignment, and there exists a node t such that t value-impacts Υ and s is in
DU(LV (t)).
3. s is a predicate c from which there exist paths π1 and π2 starting with the out-edges
of c and ending at the first occurrence of l. Further, there exists a node t �= c such that
t value-impacts Υ , and (a) t is the first value-impacting node along π1 (b) t is not the
first value-impacting node along π2.

A triplet 〈π1, π2, t〉 due to which a predicate c satisfies rule (3) will be called a
witness for c being value-impacting. As an illustration, consider the slicing criterion
〈14, {x}〉 for P3 in Figure 2. Statements 12 and 8 are value-impacting because of rules
1 and 2. Interestingly, the predicates i%2==0 and i<4 are value-impacting because of
rule 3 with witnesses 〈π1 : 11

t→ 12 → 15 → 9 t→ 11 f→ 14, π2 : 11
f→ 14, 12〉 and

〈π1: 9
t→ 11 f→ 14, π2: 9

f→ 17 → 5 t→ 7 → 8 → 9 t→ 11 f→ 14, 11〉. Clearly, if a
node s value-impacts Υ then there is a path from s to l.

Let V I(Υ ) be the set of value-impacting nodes of Υ . Let the set of abstract pred-
icates AP (Υ ) consist of predicates that are not by themselves value-impacting, but
on which other value-impacting nodes are transitively control dependent. We construct
a subprogram PVS of P by choosing the statements in V I(Υ ) ∪ AP (Υ ) along with
SKIP and ENTRY. The predicates in AP (Υ ) appear in PVS in abstract form. We claim
that PVS is a value slice. Clearly condition 1 of Definition 1 is satisfied. To show that
PVS satisfies conditions 2 and 3, we shall first prove a lemma which shows that if
the traces of the original program and the value slice on the same input are restricted
to executions states involving value-impacting statements, then they match each other
when compared to the extent of the trace with the smaller length. In the lemmas below,
AVI denotes the set of concrete statements in PVS . Further, for s ∈ AVI , AREF (s)
denotes REF (s) when s ∈ VI (Υ ), V when s is SKIP and ∅ when s is ENTRY.

Lemma 1. Let τ and τ ′ be traces of the programs P and PVS for an input I . Assume
that τs = [〈li, σi〉], i ≥ 1 and and τ ′s = [〈l′j , σ′

j〉], j ≥ 1 are restrictions of τ and τ ′ to
the statements in AVI . Let k be the minimum of the number of elements in τs and τ ′s.
Then for all i ≤ k, li = l′i and �σi�Zi = �σ′

i�Zi , where Zi = AREF (li).
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Proof. We shall prove the lemma by induction on the common label index i of the two
traces. Obviously i ≤ k, else the lemma is vacuously true.
Base step : i = 1. The lemma holds trivially as l1 = l′1 = ENTRY and σ1 = σ′

1 = I .
Induction step: Let the hypothesis be true for i. Since �σi�Zi = �σ′

i�Zi , the edges
followed from li and l′i in τ and τ ′ are the same. Assume li+1 �= l′i+1. This is only
possible if (a) there is a predicate c in the original program which has been abstracted
in the value slice, (b) the path from li to li+1 goes through one of the out-edges b1 of c,
and (c) the path from l′i to l′i+1 goes through the other out-edge b2 of c. Obviously, there
are paths π1 and π2 from c to l through b1 and c to l through b2, and li+1 and l′i+1 are the
first value-impacting statements on π1 and π2 respectively. Therefore, the predicate c is
value-impacting and cannot be abstracted in the value-slice, a contradiction. Therefore,
li+1 = l′i+1.

Now suppose that for some variable x ∈ Zi+1, σi+1(x) �= σ′
i+1(x). Then there must

be a statement d which provides the value of x at li+1; x does not get its value from the
input I . This implies d is a value-impacting statement. Clearly, d occurs before li+1 and
thus it either also occurs before li or is li itself. By induction hypothesis, d must also be
there in τ ′ and therefore σi+1(x) = σ′

i+1(x). �

The following lemma implies that condition 2 of Definition 1 holds for PVS .

Lemma 2. Let τ be a finite trace for program P for an input I . Let τ ′ = [〈li, σi〉],
1 ≤ i ≤ k, be the sub-sequence of τ restricted to the nodes in PVS . Then for every
prefix of τ ′ there is a prefix τ ′′ = [〈l′i, σ′

i〉] of some trace of PVS for the same input I ,
such that for all i, 1 ≤ i ≤ k, (a) li = l′i, (b) if li is in AVI (Υ ), then �σi�Zi = �σ′

i�Zi ,
where Zi = AREF (li).

Proof. Consider a sub-sequence τ ′ of an arbitrary trace. Let the length of the sub-
sequence be k. Let τ ′i be the prefix of τ ′ with length i. The proof is by induction on
the length i of the prefix τ ′i .
Base step: i = 1 The lemma holds trivially as [〈ENTRY, I〉] is the only prefix of
length 1 for any trace of P as well as PVS .
Induction step: Assume that the statement of the lemma holds for prefixes of τ ′ of
length up to i. Consider a prefix τ ′i+1 of length i+1 ≤ k. By induction hypothesis, there
exists a trace of PVS , which has a prefix τ ′′i of length i and for which statement of the
lemma holds with respect to the prefix τ ′i . If the node li in τ ′i+1 (and in τ ′i ) is an abstract
predicate in AP (Υ ), then program control reaching the predicate can take either branch.
Otherwise li ∈ AVI (Υ ), and �σi�Zi = �σ′

i�Zi by the induction hypothesis. Thus for
any edge taken out of li in τ ′, l′i in τ ′′i can be made to take the same edge out. Assume
this edge extends τ ′′i to τ ′′i+1 by taking l′i to l′i+1.

We claim that there exists a trace of PVS , having τ ′′i+1 as its prefix, such that li+1 =
l′i+1. If not, the divergence must be because of some condition c after li and before li+1

in τ ′. But then c � li+1 and therefore c ∈ PVS . This means that there is a trace of
PVS such that li+1 = l′i+1. Further, by Lemma 1, if li+1 ∈ AVI (Υ ), �σi+1�Zi+1 =
�σ′

i+1�Zi+1 . �

Now consider sub-traces of P and PVS for an arbitrary input I . Using Lemma 1, it
is easy to show by an induction on the length of the trace observation window that
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Fig. 3. (a) A property of CFG paths. (b)-(d) Situations that make a predicate value-impacting. In
Fig (c), path π1 is c → t → d → c → u → l.

the sub-traces of P and PVS are weak-SC-equivalent. Therefore the third condition in
Definition 1 holds, and we claim that:

Theorem 1. The abstract subprogram PVS is a value slice.

3.2 Relating Value-Impacting Statements to Data and Control Dependences

Figure 3 shows certain situations that we shall refer to in subsequent discussions. c
denotes a predicate having two outgoing edges b1 and b2 that start the paths π1 (solid
line) and π2 (thick dashed line). l denotes the node of the slicing criterion. We begin by
mentioning a property of the programs under consideration. In figure (a), d is the first
node common to π1 and π2. Since our program model does not allow arbitrary jumps,
the following property, illustrated in Figure 3 (a), holds:
Prop: Let π1 and π2 be disjoint paths from a predicate c to a node d, and let n1 and n2

be nodes on these paths distinct from d. Then there cannot exist a path from n1 to n2.
It is clear that the most challenging part of value slice computation is the computa-

tion of value-impacting predicates. Given a predicate c, we now identify necessary and
sufficient conditions for c to value-impact Υ = 〈l, V 〉.

Consider P1 of Fig. 2. The predicate c2 is value-impacting for the slicing criterion
〈15, {x}〉. Observe in this case that line 15 is not control dependent on c2 while the
value-impacting assignment at line 14 is control dependent on c2. We generalize this
observation, illustrated in Figure 3 (b), to obtain the first necessary condition for a
predicate c to be value-impacting:

cond1: If l is not transitively control dependent on c, then a value-impacting node
t �= c is control dependent on c.

Notice that cond1 is also corroborated for the slicing criterion 〈17, {y}〉, with predicate
c1 as c and the predicate at line 13 as t.

Now consider P3 in which i<4 is value-impacting for 〈14, {x}〉. In this case line 14
is transitively control dependent on i<4 through the true out-edge. The value-impacting
assignment for this criterion at line 8 is reachable through the false-edge of predicate
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i<4, as both are in a cycle 9 f→ 17 → 5 t→ 7 → 8 → 9. The predicate i%2==0 is also
value-impacting for 〈14, {x}〉, and line 14 is control dependent on i%2==0 through
the false out-edge. Moreover, the value-impacting assignment at line 12 is control de-
pendent on predicate i%2==0 through the true out-edge. This observation, generalized
in Figure 3 (c), gives the second necessary condition for c to be value-impacting:

cond2: If l is transitively control dependent on c through only one out-edge, say
b2, then there is a value-impacting node t �= c such that t is not transitively control
dependent on c through b2 and c and t are in a cycle.

There is a third condition cond3 which covers the case when l is transitively control
dependent on c through both out-edges, as shown through Figure 3 (d). As mentioned
earlier, this happens when some of the branches emanating from a predicate do not
merge back due to return statements.

cond3: If l is transitively control dependent on c through both edges, then there is
a value-impacting node t �= c which is transitively control dependent on c through
exactly one edge.

Note that the antecedent of exactly one of the three conditions cond1, cond2 and cond3
always holds. Therefore, for the conjunction of these conditions to hold, only the con-
dition with true antecedent needs to hold; the other two will hold vacuously. We will
now show that conjunction of cond1, cond2 and cond3 is a necessary and sufficient
condition for c to be value-impacting and can thus be used for obtaining a sound and
precise value slice. But we first prove a property of the witness of a value-impacting
predicate.

Lemma 3. Let c be a value-impacting node for the slicing criterion 〈l, V 〉 with a wit-
ness 〈π1, π2, u〉. Then, at least one of π1 or π2 must have a value-impacting node before
any common node appearing on both π1 and π2.

Proof. Let π′
1 and π′

2 be the disjoint prefixes of π1 and π2 ending with a common node
d (possibly l itself). Assume that both π′

1 and π′
2 have no value-impacting statements

before d. Obviously, u �= d otherwise, contrary to our assumption, c will not be value-
impacting. Since u is not the first value-impacting on π2, π2 must diverge from π1 after
d but before u. The divergence point will have to be a predicate, say c′. It is easy to see
that c′ will be a value impacting node on π1 before u, a contradiction. �

We now show that the conjunction of cond1, cond2 and cond3 is a necessary criterion
for a predicate c to be value-impacting.

Lemma 4. Given a slicing criterion Υ = 〈l, V 〉 and a value-impacting predicate c,
conditions cond1, cond2 and cond3 hold.

Proof.

1. Let 〈π1, π2, u〉 be the witness for c to be a value-impacting statement for l. Since
l is not transitively control dependent on c, the situation must be as depicted in
Figure 3 (b), where d is the immediate post-dominator of c. By Lemma 3, at least
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one of π1 or π2 must have the first value-impacting node w before d. First assume
that w lies on the segment of π1. Obviously, w = u and w must post-dominate the
out-edge b1. In addition, by Prop, w can not strictly post-dominate the out-edge b2.
Thus w is the required t. The case of w lying on the segment of π2 can be argued
similarly.

2. Assume that l is transitively control dependent on c through the out-edge b2 only.
Since c is value-impacting, by Prop, the situation resembles Figure 3 (c) and the
witness is either 〈π1, π2, w〉 or 〈π2, π1, u〉. If the witness is 〈π2, π1, u〉, then there
must be a value-impacting node t �= u in the looping segment c to c of π1. If the
witness is 〈π1, π2, w〉, then t = w and t must once again be in the c to c segment of
π2. In both cases, t is not transitively control dependent on c through b2 and is in a
cycle with c.

3. Assume that l is transitively control dependent on c through both out-edges b1 and
b2. Since c is value-impacting, there will be a witness with paths π1 and π2 as
shown in Figure 3 (d). By Lemma 3, there is a value-impacting statement t on π1 or
π2 before d. Without loss of generality, we assume that t is on π1 and it is first value
impacting statement on π1. By Prop, t has to be transitively control dependent on
c through b1 and only through b1. �

We now show that the conjunction of cond1, cond2 and cond3 is also a sufficient con-
dition.

Lemma 5. Given a slicing criterion Υ = 〈l, V 〉 and a predicate c such that the condi-
tions cond1, cond2 and cond3 hold, c is value-impacting for Υ .

Proof. In each case we shall identify a witness for c to be value-impacting for Υ .

1. Assume that l is not transitively control dependent on c and t is control dependent
on c through the b1 edge. Clearly, t post-dominates edge b1. Consider the first value-
impacting statement u between c and t (u may be the same as t). Then the required
witness is 〈π1, π2, u〉 as shown in Figure 3 (b).

2. Assume l is transitively control dependent on c through only one of the edges, say
b2. Also assume that there is a node t that is not transitively control dependent on c
through b2 and that c and t are in a cycle. Then the witness is 〈π1, π2, t〉, as shown
in Figure 3 (c).

3. Now assume that l is transitively control dependent on c through both edges and t
is transitively control dependent on c through the b1 edge only. Then the witness is
〈π1, π2, t

′〉, as shown in Figure 3 (d), where t′ is first value impacting node on π1

and may be same as t. �

4 Value Slice Computation

Given a program dependence graph (PDG) [10], representing data and control depen-
dences in the program, it is easy to compute value-impacting assignments using Defini-
tion 2. In addition, Lemmas 4 and 5 can be used to identify value-impacting predicates.
These value-impacting assignments and predicates are augmented with abstract predi-
cates to obtain the value-slice. A minor implementation detail is that a predicate with
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1: function compVI (l, V )
2: begin
3: lct = tcd(l, true)
4: lcf = tcd(l, false)
5: vi = ∅
6: wl = DU(l, V )
7: while wl is not empty do
8: choose an element t from wl
9: ic = iConds(t, lct, lcf)

10: vi = vi ∪ {t}
11: wl = (wl \ {t}) ∪
12: ((ic ∪DU(LV (t))) \ vi)
13: end while
14: return vi
15: end

1: function iConds(t, lct, lcf)
2: begin
3: tct = tcd(t, true)
4: tcf = tcd(t, false)
5: dc = cd(t)
6: cnd1 = dc \ (lct ∪ lcf)
7: cndt2 = (lct \ tct) ∩ incycle(t)
8: cndf2 = (lcf \ tcf) ∩ incycle(t)
9: cndt3 = lct ∩ lcf ∩ (tct \ tcf)

10: cndf3 = lct ∩ lcf ∩ (tcf \ tct)
11: return (cnd1 ∪ cndt2 ∪ cndf2 ∪
12: cndt3 ∪ cndf3 )
13: end

Fig. 4. Algorithm to compute VI

the reaching definitions of all its variables in VI is retained in concrete form, even if
the predicate itself is not in VI . Abstracting the predicate in this case would not result
in a decrease in the size of the slice. Note that the precision of the slice depends on the
precision of the PDG; given a precise PDG, the value slice exactly matches PVS .

Figure 4 gives an algorithm to compute VI (〈l ,V 〉). We use tcd(t, b) to denote
{c | c b� t} and cd(t) to denote {c | c � t}. We compute tcd and cd from the PDG
of the program. In addition, incycle(t) is the set of predicates which are in a cycle
with t. The worklist wl in the algorithm contains value-impacting statements which
have not been explored, i.e. they have not been used to find other value-impacting
statements. vi contains value-impacting statements which have been explored. Given
a value-impacting statement t, ic is the set of predicates and DU(LV (t)) the set of as-
signments that become value-impacting because of t. ic is computed using the function
iConds which encodes cond1, cond2 and cond3 in a straightforward manner. As an
example, cnd1, the encoding of cond1, computes the set of predicates c which become
value-impacting because t is directly control dependent on c and l is not transitively
control dependent on c.

Assume there are E edges and N nodes in the CFG of which C are predicates.
Since a node goes into the worklist at most once, the while loop in compVI iterates
at most N times. Further, let there be Ed data dependence and Ec control dependence
edges in the PDG, adding to Ep = Ed + Ec edges. The sets lct and lcf can be pre-
computed in O(C) time and stored in O(C) space, so that membership of these sets
can be checked in constant time. Further, Tarjan’s algorithm [18] can be used to find all
strongly connected components (SCCs) in a CFG in O(E + N) time, from which we
can pre-compute incycle(t). This takes O(N × C) time and O(N × C) space. Thus
c ∈ incycle(t) can also be checked in constant time.

It is clear that each data dependent edge will be traversed at most once during the
entire run of compVI . Similarly, because of dc and cnd1, each control dependent edge
will also be visited at most once during execution of compVI . The computation of tct.
tcf , cnd2 and cnd3 all require O(C) time. So the overall complexity of the algorithm is
O(E+N)+O(N×C)+O(Ec+Ed) ≈ O(N×C)+O(Ep). Note that backward slice
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Prg KLOC Asserts

Backward
Slice Value Slice Thin Slice Scale

up (%)
Precision
loss (%)

Y N ? Y N NS ? Y N NS ? Back. Value Thin Value Thin
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s)
icecast 18 27 3 0 24 8 9 0 10 0 21 8 6 11 63 78 0 38
navi1 41 58 39 0 19 38 5 3 15 25 14 10 19 67 74 67 7 26
navi2 52 68 44 0 24 52 4 2 12 40 16 10 12 65 82 82 4 18
navi3 50 80 59 7 14 55 16 6 9 31 43 32 6 83 89 93 8 43
navi4 166 70 17 0 53 28 4 0 38 27 24 7 19 24 46 73 0 14
navi5 156 70 16 2 52 24 5 0 41 25 24 10 21 26 41 70 0 20
navi6 162 70 25 0 45 42 1 0 27 15 32 26 23 36 61 67 0 55
navi7 350 60 11 0 49 18 0 0 42 11 25 3 24 18 30 60 0 8
navi8 366 56 20 2 34 38 2 0 16 27 20 12 9 39 71 84 0 26
navi9 159 50 13 0 37 22 1 0 27 13 22 13 15 26 46 70 0 37

Average 39 60 74 2 29

Fig. 5. Scalability and precision of property checking based on different kinds of slices. Y and N
stand for ’yes’ and ’no’ answers returned by the property checker. ? stands for ’no decision’ and
NS stands for a ’no’ that is known to be spurious.

computation has a complexity of O(Ep). Since in the worst case O(Ep) = O(N ×N),
the worst case complexity is the same for backward slice and value slice.

5 Implementation and Measurements

We have built a scalable property checking tool based on value slicing3. Our implemen-
tation supports full version of C including pointers, structures, arrays, heap allocation
and function calls. Following custom, the heap is abstracted in terms of allocation points
and arrays are summarized to a single abstract element. However, structures are field
sensitive:x.a and x.b are treated as separate entities. Pointers are handled using a flow
sensitive but context insensitive points-to analysis. We first construct an intraprocedural
PDG for each function, using the algorithm of Billardi and Pingali [4] to construct the
control dependence graph. The PDGs are then linked and interprocedurally valid data
and control dependences computed using the method by Horwitz et. al. [12].

We carried out our experiments on 3.0 GHz Intel Core2Duo processor with 2 GB
RAM and 32 bit OS. We chose SATABS (version 3.0) [8] as the verifier for its robust-
ness and its scalability. We experimented on one open source application, icecast, and
60 modules of varying sizes of a proprietary code base of a large automotive navigation
system, grouped into nine groups: navi1 to navi9. Average size of individual modules
in these groups varied from 6 KLOC to 61 KLOC. We checked for the “array index out
of bounds” property on these programs. The size and the number of asserts for each
group of program are shown in the table. For each chosen instance, we computed back-
ward slice, value slice and thin slice. All three slices were submitted to SATABS, with
a time-out limit of three minutes and three kinds of outcomes were recorded: Property

3 Implemented on top of PRISM, a static analyzer generator developed at TRDDC, Pune [14,7].
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satisfied (Y ), property failed (N ), and no decision(?). The possible reasons for the last
outcome are time-out, too many iterations, or SATABS failing due to some other causes.

The Y answers of all three slices are correct by construction of the slice. Similarly,
an N answer for the backward slice is also correct. However, in case of a value or thin
slice, if an assert with an N answer is also recorded as a Y during property checking
with the other two slices, it is also recorded as being a spurious N (NS in the table).
Scalability, given by (Y + N)/(Y + N+?) is the ratio of definite outcomes over all
outcomes. Loss of precision is the ratio of outcomes that are known to be spurious over
all definite outcomes (NS/(Y +N )). The results are presented in Figure 5.

From the results, it is obvious that both value and thin slice help in scaling up prop-
erty checking, with thin slice having a small advantage (14%) over value slice. However,
compared to the backward slice, the precision drops considerably (29%) in the case of
thin slice, while there is only a marginal drop (2%) for value slice. This implies that
refinement will be required in many more cases with thin slice as compared to value
slice. We also expect refinement cycles to be shorter for value slice because of fewer
abstractions. This shows that value slice is a good compromise between backward and
thin slices as it provides considerable scalability with only a marginal loss in precision.

6 Related Work

Following the introduction of backward slicing by Weiser [19], several variations of
slicing have been proposed. Notable among these are forward slicing [3], chopping [13],
and assertion based slicing [6,9,2]. Restricted to the slicing criterion, all these tech-
niques produce slices with behaviours equivalent to the original program. Dynamic
slice [15] matches the behaviour of the original program for a run over a specific input.

Thin slicing [17], used for debugging, is the first approach that produces a slice
whose behaviour differs from the original program with respect to the slicing criterion.
A thin slice retains only those statements that the variables in the slicing criterion are
data dependent on and abstracts out all predicates. This approach comes closest to our
method. While this results in smaller slices, our experiments show that the slices are too
imprecise for property checking. Interestingly, the authors do mention the importance of
identifying the predicates that we include in the value slice in a concrete form. However
it is done manually during debugging.

7 Conclusion

Slicing is an obvious pre-processing step before submitting a program to a verifier for
property checking. For this purpose, backward slice has been the choice so far, since
its behaviour exactly matches the behaviour of the original program with respect to the
property being checked. In this paper, we have suggested a more aggressive form of slic-
ing called value slice which slices out statements affecting reachability of the assertion
point and retains just those statements which influence the values of the property vari-
ables. Property checking with value slice is more scalable than backward slice. How-
ever, our method also carefully identifies and retains certain predicates due to which
property checking with value slice is more precise than an even more aggressive form
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of slicing called thin slice. Indeed, our experiments show that on both axes of compar-
ison, scalability and precision, value slice based property checking comes close to the
best performer of the three comparable forms of slicing that we have considered.

An overall property checking process could include refinement steps on getting a
failure answer. If the counterexample generated by the verifier turns out to be spurious,
one can use its trace to choose an abstract predicate that can be concretized. At worst,
the refinement process could end in a backward slice. An alternate single step refine-
ment process could use the backward slice directly to determine whether the negative
answer is genuine. Our experiments also show that the size of the value slice is on the
average about 50% of the size of the backward slice. Thus value slices can also be used
for program understanding and debugging.
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