
Non-cumulative Resource Analysis

Elvira Albert1, Jesús Correas Fernández1, and Guillermo Román-Dı́ez2

1 DSIC, Complutense University of Madrid, Spain
2 DLSIIS, Technical University of Madrid, Spain

Abstract. Existing cost analysis frameworks have been defined for cu-
mulative resources which keep on increasing along the computation. Tra-
ditional cumulative resources are execution time, number of executed
steps, amount of memory allocated, and energy consumption.
Non-cumulative resources are acquired and (possibly) released along the
execution. Examples of non-cumulative cost are memory usage in the
presence of garbage collection, number of connections established that
are later closed, or resources requested to a virtual host which are re-
leased after using them. We present, to the best of our knowledge, the
first generic static analysis framework to infer an upper bound on the
peak cost for non-cumulative types of resources. Our analysis comprises
several components: (1) a pre-analysis to infer when resources are being
used simultaneously, (2) a program-point resource analysis which infers
an upper bound on the cost at the points of interest (namely the points
where resources are acquired) and (3) the elimination from the upper
bounds obtained in (2) of those resources accumulated that are not used
simultaneously. We report on a prototype implementation of our analysis
that can be used on a simple imperative language.

1 Introduction

Cost analysis (a.k.a. resource analysis) aims at statically (without executing the
program) inferring upper bounds on the resource consumption of the program
as functions of the input data sizes. Traditional resources (e.g., time, steps,
memory allocation, number of calls) are cumulative, i.e., they always increase
along the execution. Ideally, a cost analysis framework is generic on the type
of resource that the user wants to measure so that the resource of interest is a
parameter of the analysis. Several generic cost analysis frameworks have been
defined for cumulative resources using different formalisms. In particular, the
classical framework based on recurrence relations has been used to define a cost
analysis for a Java-like language [2]; approaches based on program invariants are
defined in [11,14]; type systems have been presented in [15].

Non-cumulative resources are first acquired and then released. Typical exam-
ples are memory usage in the presence of garbage collection, maximum number
of connections established simultaneously, the size of the stack of activation
records, etc. The problem is nowadays also very relevant in virtualized systems,
as in cloud computing, in which resources are acquired when needed and released
after being used. It is recognized that non-cumulative resources introduce new

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 85–100, 2015.
DOI: 10.1007/978-3-662-46681-0_6

86 E. Albert, J.C. Fernández, and G. Román-Dı́ez

challenges in resource analysis [5,12]. This is because the resource consumption
can increase and decrease along the computation, and it is not enough to rea-
son on the final state of the execution, but rather the upper bound on the cost
can happen at any intermediate step. We use the term peak cost to denote such
maximum cost of the program execution for non-cumulative resources.

While the problem of inferring the peak cost has been studied in the context of
memory usage for specific models of garbage collection [5,8,12], a generic frame-
work to estimate the non-cumulative cost does not exist yet. The contribution
of this paper is a generic resource analysis framework for a today’s imperative
language enriched with instructions to acquire and release resources. Thus, our
framework can be instantiated to measure any type of non-cumulative resource
that is acquired and (optionally) freed. The analysis is defined in two steps which
are our main contributions: (1) We first infer the sets of resources which can be
in use simultaneously (i.e., they have been both acquired and none of them re-
leased at some point of the execution). This process is formalized as a static
analysis that (over-)approximates the sets of acquire instructions that can be
in use simultaneously, allowing us to capture the simultaneous use of resources
in the execution. (2) We then perform a program-point resource analysis which
infers an upper bound on the cost at the points of interest, namely the points at
which the resources are acquired. From such upper bounds, we can obtain the
peak cost by just eliminating the cost due to acquire instructions that do not
happen simultaneously with the others (according to the analysis information
gathered at step 1). Additionally, we describe an extension of the framework
which can improve the accuracy of the upper bounds by accounting only once
the cost introduced at program points where resources are allocated and re-
leased repeatedly. Finally, we illustrate how the framework can be extended to
get upper bounds for programs that allocate different kinds of resources.

We demonstrate the accuracy and feasibility of our approach by implementing
a prototype analyzer for a simple imperative language. Preliminary experiments
show that the non-cumulative resource analysis achieves gains up to 92.9% (on
average 53.9%) in comparison to a cumulative resource analysis. The analysis
can be used online from a web interface at http://costa.ls.fi.upm.es/noncu.

2 The Notion of Peak Cost

We start by defining the notion of peak cost that we aim at over-approximating
by means of static analysis in the concrete setting.

2.1 The Language

The framework is developed on a language which is deliberately simple to define
the analysis in a clear way. Complex features of modern languages like mutable
variables, class, inheritance, exceptions, etc. must be considered by the under-
lying resource analysis used as a black box by our approach (and there are a
number of approaches to handle them [2,5,11]). Thus they are handled implic-
itly in our setting. For the sake of simplicity, the set Types is defined as {int}.

http://costa.ls.fi.upm.es/noncu

Non-cumulative Resource Analysis 87

(1)
r = eval(e, tv), tr′ = tr[y �→ 〈r, app〉],H ′ = H ∪ {|〈id, y, app, r〉|}

〈id,m, pp ≡ y = acquire (e); s, tv, tr〉 ·A;H � 〈id,m, s, tv, tr′〉 · A;H ′

(2)
〈r, app′〉 = tr(y), tr′ = tr[y �→ ⊥],H ′ = H \ {|〈id, y, app′ , r〉|}

〈id,m, pp ≡ release y; s, tv, tr〉 · A;H � 〈id,m, s, tv, tr′〉 ·A;H ′

Fig. 1. Language Semantics for resource allocation and release

We have resource variables used to refer to the resources allocated by an ac-
quire instruction. A program consists of a set of methods whose definition takes
the form t m (t1v1, . . . tnvn){s} where t ∈ Types is the type returned by the
method, v1, . . . , vn are the input parameters of types t1, . . . , tn ∈ Types and s is
a sequence of instructions that adheres to the following grammar:

e ::= x |n | e+ e | e ∗ e | e− e b ::= e > e | e == e | b ∧ b | b ∨ b | !b s ::= i | i; s
i ::= x=e |x=m(z) | return x | if b then s1 else s2 |while b {s} | y = acquire (e) | release y

We assume that resource variables, named y, are local to methods and they can-
not be passed as input parameters nor returned by methods (otherwise tracking
such references is more complex, while it is not relevant to the main ideas in
the paper). We assume that the program includes a main(x) method, where x
are the input parameters, from which the execution starts. The instruction y
= acquire (e) allocates the amount of resources stated by the expression e. The
instruction release y releases the resources allocated at the last acquire associated
to y. If a resource variable is reused without releasing its resources, the reference
to such resources is lost and they cannot be released any longer.

Example 1. Fig. 2 shows to the left a method m (abbreviation of main) that
allocates resources at lines 2 (L2 for short) and L4. The resources allocated
at L2 are released at L5. In addition, method m invokes method q at L3 and
L6. For simplicity, we assume that m is called using positive values for n and s
and the expressions k1, k2, k3 are constant integer values. As it is not relevant,
we do not include the return instruction at the end of the methods. Method q
executes a while loop where k2 units are allocated at L10 and such resources
are not released. Thus, these resources escape from the scope of the loop and
the method, i.e., they leak upon exit of the loop and return of the method.
Besides, the program allocates w units at L11. As we have two calls to q, the
input parameter w will take the value s or s+4. The resources allocated at L11
are released at L12 and do not escape from the loop execution. In addition, at
L15 we have an additional, non-released, acquire of k3 units.

A program state is of the form AS;H , where AS is a stack of activation records
andH is a resource handler. Each activation record is of the form 〈id,m, s, tv, tr〉,
where id is a unique identifier, m is the name of the method, s is the sequence
of instructions to be executed, tv is a variable mapping and tr is a resource
variable mapping. When resources are allocated in m, tr maps the correspond-
ing resource variable to a tuple of the form 〈r, app〉, where r is the amount of
resources allocated and app is the program point of the instruction where the re-
sources have been allocated. The resource handler H is a multiset which stores

88 E. Albert, J.C. Fernández, and G. Román-Dı́ez

1 m (int n, int s){
2 1© x=acquire(k1);
3 q(n,s);
4 2© y=acquire(s);
5 release x;
6 q(n+2, s+4);
7 }
8 q (int i , int w){
9 while(i > 0) {

10 3© z=acquire(k2);
11 4© r=acquire(w);
12 release r ;
13 i = i − 1;
14 }
15 5© t=acquire(k3);
16 }

x:k1

L2

S1

z:k2

x:k1

L10

S2

r:s

z:k2

x:k1

L11

S3

z:k2

x:k1

L12

S4

z:k2

z:k2

x:k1

L10

S5

r:s

z:k2

z:k2

x:k1

L11

S6

z:k2

z:k2

x:k1

L12

S7

. . .

r:s

z:k2

:n
z:k2

x:k1

L11

S8

t:k3

z:k2

:n
z:k2

x:k1

L15

S9

t:k3

zn:k2 n times

x:k1

L16

S10

t:k3

zn:k2

x:k1

L4

S11

y:s

t:k3

zn:k2

x:k1x:k1

L4

S12

y:s

t:k3

zn:k2

L5

S13

z:k2

y:s

t:k3

zn:k2

L10

S14

r:s+4

z:k2

y:s

t:k3

zn:k2

L11

S15

. . .

r:s+4

z:k2

:n+2

z:k2

y:s

t:k3

zn:k2

L11

S16

z:k2

:n+2

z:k2

y:s

t:k3

zn:k2

L14

S17

t:k3

z:k2

:n+2

z:k2

y:s

t:k3

zn:k2

L13

S18

n + 2

Fig. 2. Running Example

the resources allocated so far, containing elements of the form 〈id, y, app, r〉,
where id is the activation record identifier, y is the variable name, app is the
program point of the acquire and r is the amount of resources allocated. Fig. 1
shows, in a rewriting-based style, the rules that are relevant for the resource con-
sumption. The semantics of the remaining instructions is standard. Intuitively,
rule (1) evaluates the expression e and adds a new element to H . As H stores
the resources allocated so far, it might contain identical tuples. Moreover, the
resource variable mapping tr is updated with variable y linked to 〈r, app〉. Rule
(2) takes the information stored in tr for y, i.e. 〈r, app〉, and removes from H
one instance of the corresponding element. In addition, variable y is updated to
point to ⊥, which means that y does not have any resources associated. When
the execution performs a release on a variable that maps to ⊥ (because no ac-
quire has been performed or because it has already been released), the resources
state is not modified. Execution starts from a main method and an initial state
S0 = 〈0,main, body(main), tv(x), ∅〉; ∅, where tv(x) is the variable mapping ini-
tialized with the values of the input parameters. Complete executions are of the
form S0 � S1 � . . . � Sn where Sn corresponds to the last state. Infinite traces
correspond to non-terminating executions.

Example 2. To the right of Fig. 2 we depict the evolution of the resources ac-
cumulated in H . We use Si, to refer to the execution state i and, below each
state, we include the program line which is executed at such state. For each
state we show the elements stored in H but, for simplicity, we do not include
in the figure the id nor app. At S1, H accumulates k1 units due to the acquire
at L2. S2, S3 and S4 depict H along the first iteration of the loop, where k2
units are acquired and not released from z. Moreover, within the loop, s units
are acquired at L11 and released from r at L12. At S5, which corresponds to the
second iteration of the loop, we reuse the resource variable z and we have two
identical elements in H . As the loop iterates n times, at the last iteration (S9)

Non-cumulative Resource Analysis 89

we have (n−1)∗k1 units that have lost their reference. Additionally, k3 extra
units pointed by t are allocated at S9. At S10, which corresponds to the end of
the execution of the method, n∗k2+k3 units escape from the first execution of
q and they are no longer available to be released. We represent such escaped
resources with light grey color. For brevity, we use zn:k2 to represent n instances
of the element z:k2. At S12 we acquire s resources and we release the k1 units
pointed by x at S13. At S14 we start a new execution of method q.

2.2 Definition of Peak Cost

Let us formally define the notion of peak cost in the concrete setting. The peak
cost corresponds to the maximum amount of resources that are used simultane-
ously. We use Hi to refer to the multiset H at Si, and we use Ri to denote the
amount of resources contained in Hi, i.e., Ri =

∑{r | 〈 , , , r〉 ∈ Hi}. By ’ ’, we
mean any possible value. In the next definition, we use Ri to define the notion
of peak cost for an execution trace.

Definition 1 (Concrete Peak Cost). The peak cost of an execution trace t≡S0

�Sn of a program P on input values x is defined as P(x)=max({Ri | Si∈t}).
Example 3. According to the evolution of H shown to the right of Fig. 2, the
maximum value of Ri could be reached at four different states, S8, S12, S16

and S18. We ignore those states where H is subsumed by other states as they
cannot be maximal. For instance, states S1 to S7 or S9 are subsumed by S8;
or S12 contains S10, S11 and S13. Thus, P(n, s)=max(R8, R12, R16, R18), where
R8 = k1+n∗k2+s, R12 = k1+n∗k2+k3+s, R16 = n∗k2+k3+s+(n+2)∗k2+(s+4), and
R18=n∗k2+k3+s+(n+2)∗k2+k3. Thus, the peak cost of the example depends not
only on the input parameters n, s, but also on the values of k1, k2, k3.

3 Simultaneous Resource Analysis

The simultaneous resource analysis (SRA) is used to infer the sets of acquire
instructions that can be simultaneously in use. The abstract state of the SRA
consists of two sets C and H. The set C contains elements of the form y:app
indicating that the resource variable y is linked to the acquire instruction at
program point pp. Since it is not always possible to relate the acquire instruc-
tion to its corresponding resource variable, we use �:app to represent that some
resources have been acquired at app but the analysis has lost the variable linked
to app. The set H is a set of sets, such that each set contains those app that are
simultaneously alive in an abstract state of the analysis. Let us introduce some
notation. We use m̈ to refer to the program point after the return instruction
of method m. We use Cpp (resp. Hpp) to denote the value of C (resp. H) after
processing the instruction at program point pp. A(C) is the set {app | :app ∈ C}
that contains all app in C. The operation H1 	 H2, where H1 and H2 are sets
of sets, first applies H = H1 ∪ H2, and then removes those sets in H that are
contained in another set in H.

The analysis of each method m abstractly executes its instructions, by ap-
plying the transfer function τ in Fig. 3, such that the abstract state at each

90 E. Albert, J.C. Fernández, and G. Román-Dı́ez

(1) τ (pp : y=acquire(), 〈C,H〉) = 〈C[y:app′/ � :app′] ∪ {y:app},H
 {A(C) ∪ {app}}〉
(2) τ (pp : release y, 〈C,H〉) = 〈C \ {y:app},H〉
(3) τ (pp : m(), 〈C,H〉) = 〈C ∪ Cm̈[x:app′/ � :app′],H
 {A(C) ∪M | M ∈ Hm̈}〉
(4) τ (pp : b, 〈C,H〉) = 〈C,H〉

Fig. 3. Transfer Function of the Simultaneous Resource Analysis

program point describes the status of all acquire instructions executed so far.
The set C is used to infer the local effect of the acquire and release instructions
within a method. The set H is used to accumulate the information of the ac-
quire instructions that might have been in use simultaneously. Let us explain
the different cases of the transfer function τ . The execution of acquire, case (1),
links the acquire to the resource variable y by adding {y:app} to C. As a resource
variable can only point to one acquire instruction, in (1) we update any existing
y:app′ by removing the previous link to y and replacing it by �. In addition, rule
(1) performs the operation {A(C) ∪ {app}} 	 H to capture in H the acquired
resources simultaneously in use at this point. In (2) we remove the last acquire
instruction pointed to by the resource variable y. When a method is invoked (rule
(3)), we add to C those resources that might escape from m (Cm̈) but replacing
their resource variables in m by � (as resource variables are local). Additionally,
at (3), all sets in Hm̈ are joined with A(C) to capture the resources that might
have been simultaneously alive in the execution of m. The resulting sets of such
operation are added to H. We define the � operation between two abstract states
〈C1,H1〉 � 〈C2,H2〉 as 〈C1 ∪ C2,H1 	H2〉. The analysis of while loops requires it-
erating until a fixpoint is reached. As the number of acquire instructions and the
number of resource variables in the program are finite, widening is not needed.

Example 4. Let us apply the SRA to the running example. To avoid cluttering
the expressions, instead of the line numbers, we use ai to refer to the acquire at
the program point marked with i© in Fig. 2. For instance, a1 refers to the acquire
marked with 1© at L2. We use Cl (resp. Hl) to denote the set C (resp. H) at line
l. Let us see the results of the SRA for some selected program points.

C2 = {x:a1} H2 = {{a1}}
C3 = {x:a1, �:a3, �:a5} H3 = {{a1, a3, a4}, {a1, a3, a5}}
C4 = {x:a1, �:a3, �:a5, y:a2} H4 = {{a1, a3, a4}, {a1, a3, a5, a2}}
C5 = {�:a3, �:a5, y:a2} H5 = {{a1, a3, a4}, {a1, a3, a5, a2}}
C6 = Cm̈ = {�:a3, �:a5, y:a2} H6=Hm̈={{a1, a3, a4}, {a1, a3, a5, a2}, {a2, a3, a4, a5} *©}
C10 = {�:a3, z:a3} H10 = {{a3, a4}}
C11 = {�:a3, z:a3, r:a4} H11 = {{a3, a4}}
C12 = C14 = {�:a3, z:a3} H12 = H14 = {{a3, a4}}
C15 = Cq̈ = {�:a3, z:a3, t:a5} H15 = Hq̈ = {{a3, a4}, {a3, a5}}
We can see that C11 is the only program point where a4 is alive as it is released
at L12. On the contrary, as a3 is not released within the loop, we include �:a3 in
C10−C14, and it escapes from the loop and from q. AsH gathers all app that might
be alive at any program point, when the fixpoint is reached, H10 −H14 contain
the set {a3, a4}. The computation of Hq̈ is done by means of the operation
A(Cq̈)	H14, that is, Hq̈={{a3, a5}}	 {{a3, a4}}={{a3, a5}, {a3, a4}}, capturing

Non-cumulative Resource Analysis 91

that a3, a4, a5 are not simultaneously in use at any state of q. Moreover, we can
see in Cq̈ that the resources allocated at a3 and a5 escape from the execution
of q. Let us continue with the computation of C3 and H3. Firstly, �:a3 and
�:a5 are added to C3. Secondly, H3 is computed by adding C2={a1} to all sets
in Hq̈. To compute C4, the analysis adds y:a2 to C3. The computation of H4

adds {a1, a3, a5, a2} to H3, and replaces {a1, a3, a5} because it is a subset of
{a1, a3, a5, a2}. Finally, to obtain H6, the set A(C6)={a3, a5, a2} is added to
the sets in Hq̈, resulting in the set T = {{a2, a3, a4, a5}, {a2, a3, a5}}. Then H6

is obtained by computing H5 	 T . Note that {a2, a3, a5} is not in H6 as it is
contained in a set of H5.

Theorem 1 (Soundness). Given an execution trace t ≡ S0� . . .�Sn of a
program P on input values x, for any state Si ∈ t, we have that:

(a) ∃ H ∈ H ¨main. A(Hi) ⊆ H where A(Hi) = {app | 〈 , , app, 〉 ∈ Hi};
(b) if ∃〈 , , app, 〉 ∈ Hn then :app ∈ C ¨main

4 Non-cumulative Resource Analysis

In this section we present our approach to use the information obtained in Sec. 3
to infer the peak cost of the execution. The first part, Sec. 4.1, consists in per-
forming a program-point resource analysis in which we are able to infer the
resources acquired at the points of interest. In Sec. 4.2, we discard from the
upper bound obtained before those resources which are not used simultaneously.

4.1 Program-Point Resource Analysis

Our goal is to distinguish within the upper bounds (UB) obtained by resource
analysis the amount of resources acquired at a given program point. To do so, we
rely on the notion of cost center (CC) [1]. Originally, CCs were introduced for
the analysis of distributed systems, such that, each CC is a symbolic expression
of the form c(o) where o is a location identifier used to separate the cost of
each distributed location. Essentially, the resource analysis assigns the cost of
an instruction inst to the distributed location o by multiplying the cost due
to the execution of the instruction, denoted cost(inst) in a generic way, by the
cost center of the location c(o), i.e., cost(inst)∗c(o). This way, the UBs that the
analysis obtains are of the form

∑
c(oi)∗Ci, where each oi is a location identifier

and Ci is the total cost accumulated at this location.
Importantly, the notion of CC can be used in a more general way to define the

granularity of a cost analyzer, i.e., the kind of separation that we want to observe
in the UBs. In our concrete application, the expressions of the cost centers oi
will refer to the program points of interest. Thus, we are defining a resource
analyzer that provides the resource consumption at program point level, i.e., a
program point resource analysis. In particular, we define a CC for each acquire
instruction in the program. Thus, CCs are of the form c(app) for each instruction
pp :acquire(e). In essence, the analyzer every time that accounts for the cost of
executing an acquire instruction multiplies such cost by its corresponding cost
center. The amount of resources allocated at the instruction pp :acquire(e) is

92 E. Albert, J.C. Fernández, and G. Román-Dı́ez

accumulated as an expression of the form c(app)∗nat(e), where nat(e) is a function
that returns e if e>0 and 0 otherwise. We wrap the expression e with nat because
this way the analyzer treats it as a non-negative expression whose cost we want to
maximize, and computes the worst case of such expression (technical details can
be found in [2]). The cost analyzer computes an upper bound for the total cost
of executing P as an expression of the form UP (x̄)=

∑n
i=1 c(ai)∗Ci, where Ci is

a cost expression that bounds the resources allocated by the acquire instructions
of the program. We omit the subscript in U when it is clear from the context. If
one is interested in the amount of resources allocated by one particular acquire
instruction app, denoted U(x̄)|app

, we simply replace all c(app′) with pp �= pp′ by
0 and c(app) by 1. We extend it to sets as U(x̄)|S =

∑

app∈S

U(x̄)|app
.

Example 5. The program point UB for the running example is:

U(n, s) =
e1

︷ ︸︸ ︷

c(a1)∗k1 +
e2

︷ ︸︸ ︷

c(a2)∗nat(s) +
e3

︷ ︸︸ ︷

nat(n) ∗ (c(a3)∗k2 + c(a4)∗nat(s)) + c(a5)∗k3 +
nat(n+2) ∗ (c(a3)∗k2 + c(a4)∗nat(s+4)) + c(a5)∗k3
︸ ︷︷ ︸

e4

We have a CC for each acquire instruction in the program multiplied by the
amount of resources allocated by the corresponding acquire. In the examples,
we do not wrap constants in nat because constant values do not need to be
maximized, e.g. in the subexpression e1 which corresponds to the cost of L2.
The subexpression e2 corresponds to L4 where s units are allocated. Expression
e3 corresponds to the first call to q, where the loop iterates nat(n) times and
consumes c(a3)∗k2 (L10) and c(a4)∗nat(s) (L11) resources for each iteration,
plus the final acquire at L15, which allocates c(a5)∗k3 resources. The cost of the
second call to q is captured by e4, where the number of iterations is bounded by
nat(n+2) and nat(s+4) resources are allocated. e4 also includes the cost allocated
at L15. Let us continue by using U(n, s) to compute the resources allocated at a
particular location, e.g. a4, denoted by U(n, s)|a4

. To do so, we replace c(a4) by
1 and the rest of c() by 0. Thus, U(n, s)|a4 = nat(n)∗nat(s)+nat(n+2)∗nat(s+4).
Similarly, given the set of program points {a3, a5}, we have U(n, s)|{a3,a5} =

U(n, s)|{a3} + U(n, s)|{a5} = nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3.

4.2 Inference of Peak Cost

We can now put all pieces together. The SRA described in Sec. 3 allows us
to infer the acquire instructions which could be allocated simultaneously. Such
information is gathered in the set H of the SRA. In fact, the set H at the last
program point of the program, namely ¨main, collects all possible states of the
resource allocation during program execution. Using this set we define the notion
of peak cost as the maximum of the UBs computed for each possible set in H ¨main.

Definition 2 (Peak Cost). The peak cost of a program P (x), denoted P̂(x),

is defined as P̂(x) = max({U(x)|H | H ∈ H ¨main }).
Intuitively, for each H in H ¨main, we compute its restricted UB, U(x)|H, by re-
moving from U(x) the cost due to acquire instructions that are not in H, i.e.,
those acquire that were not active simultaneously with the elements in h.

Non-cumulative Resource Analysis 93

Example 6. ByusingHm̈= {{a1, a3, a4}, {a1, a3, a5, a2}, {a2, a3, a4, a5}}, thepeak
cost of m is the maximum of the expressions:

U(n, s)|{a1,a3,a4}= k1 + nat(n)∗(k2 + nat(s)) + nat(n+2)∗(k2 + nat(s+4))
U(n, s)|{a1,a3,a5,a2}= k1 + nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3
U(n, s)|{a2,a3,a4,a5}= nat(s)+nat(n)∗(k2+nat(s)) + k3 + nat(n+2)∗(k2+nat(s+4))+k3

Each UB expression over-approximates the value of R for the different states seen
in Ex. 3 that could determine the concrete peak cost, namely U(n, s)|{a1,a3,a4}
over-approximates the resource consumption at state S8, U(n, s)|{a1,a3,a5,a2} cor-
responds to S12, and U(n, s)|{a2,a3,a4,a5} bounds S16 and S18.

Theorem 2 (Soundness). P(x) ≤ P̂(x).

5 Extensions of the Basic Framework

In this section we discuss several extensions to our basic framework. First,
Sec. 5.1 discusses how context-sensitive analysis can improve the accuracy of
the results. Sec. 5.2 describes an improvement for handling transient acquire in-
structions, i.e., those resources which are allocated and released repeatedly but
only one of all allocations is in use at a time. Finally, Sec. 5.3 introduces the
extension of the framework to handle several kinds of resources.

5.1 Context-Sensitivity

Establishing the granularity of the analysis at the level of program points may
lead to a loss of precision. This is because the computation of the SRA and the
resource analysis are not able to distinguish if an acquire instruction is executed
multiple times from different contexts. As a consequence, all resource usage
associated to a given app is accumulated in a single CC.

Example 7. The set Hm̈ computed in Ex. 4 includes a4 in two different sets.
The first set corresponds to the first call to q (L3), where s units are allocated,
whereas the second set corresponds to the second call (L6), and where s+4 units
are allocated. Observe that the SRA of m does not distinguish such situation as
both executions of L11 are represented as a single program point a4. The same
occurs in the computation of the UBs. In Ex. 6 we have computed U(n, s)|a4 =

nat(n)∗nat(s)+nat(n+2)∗nat(s+4), which accounts for the resources acquired at
L11. Note that U(n, s)|a4 does not separate the cost of the different calls to q.

Intuitively, this loss of precision can be detected by checking if the call graph of
the program contains convergence nodes, i.e., methods that have more than one
incoming edge because they are invoked from different contexts. In such case,
we can use standard techniques for context-sensitive analysis [16], e.g., method
replication. In particular, the program can be rewritten by creating a different
copy of the method for each incoming edge. Method replication guarantees that
the calling contexts are not merged unless they correspond to a method call
within a loop (or transitively from a loop). In the latter case, we indeed need to
merge them and obtain the worst-case cost of all iterations, as the underlying
resource analysis [2] already does.

94 E. Albert, J.C. Fernández, and G. Román-Dı́ez

Example 8. As q is called at L3 and L6, the application of the context-sensitive
replication builds up a program with two methods: q 1 (from the call at L3) and
q 2 (from L6). In addition, the modified version of m, denoted m’, calls q 1 at L3
and q 2 at L6. We use a31 (resp. a32) to refer to the acquire at L10 for the replica
q 1 (resp. q 2). The SRA for m’ returns: Hm̈′ = {{a1, a31, a41}, {a1, a31, a51, a2},
{a31, a51, a2, a32, a42}, {a31, a51, a2, a32, a52}} and Cm̈′ = {a2, a31, a32, a51, a52}.
Observe that the set marked with *© in Ex. 4 is now split in two different sets,
which precisely capture the states S16 and S18 of Fig. 2. Moreover, we distinguish
a41, a42 and a51, a52 that allow us to separate the different calls to q, which is
crucial for accounting the peak cost more accurately. The UB for m’ is:

Um′(n, s)=c(a1)∗k1+c(a2)∗nat(s)+ nat(n)∗(c(a31)∗k2+c(a41)∗nat(s)) + c(a51)∗k3+
nat(n+2)∗(c(a32)∗k2+c(a42)∗nat(s+4))+c(a52)∗k3

In contrast to Um(n, s)|a4 , shown in Ex. 5, now we can compute Um′(n, s)|a41 =

nat(n)∗nat(s) and Um′(n, s)|a42 = nat(n+2)∗nat(s+4). P̂m′(n, s) is the maximum of:

Um′(n, s)|{a1,a31,a41}= k1 + nat(n)∗(k2 + nat(s)) [S8]
Um′(n, s)|{a1,a31,a51,a2}= k1 + nat(s) + nat(n)∗k2 + k3 [S12]

Um′(n, s)|{a31,a51,a2,a32,a42}= nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗(k2+nat(s+4)) [S16]
Um′(n, s)|{a31,a51,a2,a32,a52}= nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3 [S18]

To the right of the UB expressions above we show their corresponding state of
Fig. 2. In contrast to Ex. 6, now we have a one-to-one correspondence, and thus
P̂m′(n, s) is more accurate than P̂m(n, s) in Ex. 6.

5.2 Handling Transient Resource Allocations

A complementary optimization with that in Sec. 5.1 can be performed when
resources are acquired and released multiple times along the execution of the
program within loops (or recursion). We use the notion of transient acquire to
refer to an acquire(e) instruction at app that is executed and released repeatedly
but in such a way that the resources allocated by different executions of app
never coexist. As the UBs of Sec. 4 are computed by multiplying the number
of times that each acquire instruction is executed by the worst case cost of each
execution, the fact that the allocations of a transient acquire do not coexist is
not accurately captured by the UB.

Example 9. Let us focus on the acquire a4 of the running example. Although a4
is executed multiple times within the loop, each allocation does not escape from
the corresponding iteration because it is released at L12. To the right of Fig. 2
we can see that states S3, S6, S8, S15 and S16 include the cost allocated by a4
only once (elements in dark grey). Thus, a4 is a transient acquire. In spite of this,
we compute Um′(n, s)|a41

=nat(n)∗nat(s), which accounts for the cost allocated at
a41 as many times as a41 might be executed. Certainly, Um′(n, s)|a41

is a sound
but imprecise approximation for the cost allocated by a41.

We can improve the accuracy of the UBs for a transient acquire app by including
its worst case cost only once. We start by identifying when app is transient in
the concrete setting. Intuitively, if app is transient the resources allocated at app
do not leak. Thus, in the last state of the execution, Sn, no resource allocated
at app remains in Hn (see the semantics at Fig. 1).

Non-cumulative Resource Analysis 95

Definition 3 (Transient Acquire). Given a program P , an acquire instruction
app is transient if for every execution trace of P , S1� . . .�Sn, 〈 , , app, 〉 �∈ Hn.

Example 10. In Fig. 2 we can see that a1 and a4 (shown in dark grey) are
transient because their resources are always released at L5 and L12, resp.

In order to count the cost of a transient acquire only once, we use a particular
instantiation of the cost analysis described in Sec. 4.1 to determine an UB on
the number of times that such acquire might be executed. We use Uc to denote
such UB which is computed by replacing the expression Ci (see Sec. 4.1) by 1
in the computation of U . Assuming that U and Uc have been approximated by
the same cost analyzer, we gain precision by obtaining the cost associated to a
transient acquire instruction using its singleton cost.

Definition 4 (Singleton Cost). Given app we define its singleton cost as
˜U(x)|app = U(x)|app/Uc(x)|app if :app �∈ C ¨main and ˜U(x)|app = U(x)|app , otherwise.
Intuitively, when app is transient, its singleton cost is obtained dividing the accu-
mulated UB by the number of times that app is executed. If it is not transient, we
must keep the accumulated UB. According to Def. 3 and Th. 1(b), if app �∈ C ¨main,

then app is transient, and so we can perform the division. We use P̃ to refer to

the peak cost obtained by using Ũ instead of U . In general, given a set of app, we

use Ũm′ |S to refer to the UBs computed using the singleton cost of each app ∈ S.

Example 11. Let us continue with the context-sensitive replica of the running
example, m’. We start by computing Uc

m′(n, s)|a41 = nat(n) and Um′(n, s)|a41 =

nat(n) ∗ nat(s). As we can see in Ex. 8, a41, a42 �∈ Cm̈′ , then Ũm′(n, s)|a41 = nat(s)

which is the worst case of executing a41 only once. For a42 we have Ũm′(n, s)|a42 =
nat(s+4). Regarding the remaining acquire instructions, either they cannot be

divided, or can be divided by 1. Thus, we have that P̃m′(n, s) is the maximum
of the following expressions:

˜Um′(n, s)|{a1,a31,a41} = k1 + nat(n)∗k2 + nat(s) [S8]
˜Um′(n, s)|{a1,a31,a51,a2} = k1 + nat(s) + nat(n)∗k2 + k3 [S12]

˜Um′(n, s)|{a31,a51,a2,a32,a42} = nat(s) + nat(n)∗k2 + k3 + nat(s+4) [S16]
˜Um′(n, s)|{a31,a51,a2,a32,a52} = nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3 [S18]

Theorem 3 (Soundness). Given a program P (x) and its context-sensitive

replica P ′(x), we have that PP (x) ≤ P̃P ′(x).

5.3 Handling Different Resources Simultaneously

Our goal is now to allow allocation of different types of resources in the pro-
gram (e.g., we want to infer the heap space usage and the number of simulta-
neous connections to a database). To this purpose, we extend the instruction
acquire(e) (see Sec. 2.1) with an additional parameter which determines the
kind of resource to be allocated, i.e., acquire(res,e). Such extension does not re-
quire any modification to the semantics. We define the function type(app) which
returns the type of resource allocated at app. Now, we extend Def. 1 to con-
sider the resource of interest. We use Ri(res) to refer to the following value
Ri(res) =

∑{r | 〈 , , app, r〉 ∈ Hi ∧ type(app) = res}.

96 E. Albert, J.C. Fernández, and G. Román-Dı́ez

Definition 5 (Concrete Peak Cost). Given a resource res, the peak cost of
an execution trace t of program P (x, res) is P(x, res) = max({Ri(res)|Si ∈ t}).
Interestingly, such extension does not require any modification neither to the
SRA of Sec. 3 nor to the program point resource analysis of Sec. 4. This is
due to the fact that the analysis works at the level of program points and
one program point can only allocate one particular type of resource. We de-
fine R(res) as the set of program points that allocate resources of type res, i.e.,
R(res)={app | type(app)=res}. Thus, we extend the notion of peak cost of Def. 2

with the type of resource, i.e., P̂(x, res)=max({U(x)|H∩R(res) | H ∈ H ¨main}). Ob-
serve that the only difference with Def. 2 is in the intersection H∩R(res) which
restricts the considered acquire when computing the UBs. One relevant aspect is
that by computing the UB only once, we are able to obtain the peak cost for dif-
ferent types of resources by restricting the UB for each resource of interest. The
extension of Th. 2 and Th. 3 to include a particular resource is straightforward.

Example 12. Let us modify the acquire instructions of the running example
in Fig. 2 to add the resource to be allocated. Now we have that L2 is x =
acquire(hd,k1) and L11 is r = acquire(hd,w), where hd is a type of resource. We
assume that L4, L10, L15 allocate a different type of resource, e.g. a resource of
type mem. Then, using the context-sensitive replica of the program, we have that
R(hd) = {a1, a41, a42}, andR(mem) = {a2, a31, a32, a51, a52}. Now, using the UB
from Ex. 11, we have that P̂(n, s, hd)m’ is the maximum of the expressions:

˜Um′(n, s,hd)|{a1,a31,a41}∩R(hd) = k1+nat(s) [S8]
˜Um′(n, s, hd)|{a1,a31,a51,a2}∩R(hd) = k1 [S12]

˜Um′(n, s, hd)|{a31,a51,a2,a32,a42}∩R(hd) = nat(s+4) [S16]
˜Um′(n, s, hd)|{a31,a51,a2,a32,a52}∩R(hd) = 0 [S18]

6 Experimental Evaluation

We have implemented a prototype peak cost analyzer for simple sequential pro-
grams that follow the syntax of Sec. 2.1, but that besides use a functional lan-
guage to define data types (the use of functions does not require any conceptual
modification to our basic analysis). This language corresponds to the sequential
sublanguage of ABS [13], a language which besides has concurrency features that
are ignored by our analyzer. To perform the experiments, our analyzer has been
applied to some programs written in ABS: BBuffer, a bounded-buffer for com-
municating producers and consumers; MailServer, a client-server system; Chat, a
chat application; DistHT, an implementation of a hash table; BookShop, a book
shop application; and PeerToPeer, a peer-to-peer network.

The non-cumulative resource that we measure is the peak of the size of the
stack of activation records. For each method executed, an activation record is
created, and later removed when the method terminates. The size might depend
on the arguments used in the call, as due to the use of functional data structures,
when a method is invoked, the data structures (used as parameters) are passed
and stored. This aspect is interesting because we can measure the peak size, not

Non-cumulative Resource Analysis 97

Table 1. Experimental Evaluation (times in seconds)

Benchmark #l #e Tn Tc %n %c %s %cn %sn %sc

BBuffer 105 3125 0.93 1.07 4.9 35.7 43.9 32.1 40.6 15.7

MailServer 115 3375 9.58 1.23 16.0 42.4 58.2 30.2 47.1 27.6

Chat 302 2500 0.58 0.58 69.9 69.9 92.9 0.0 74.8 74.8

DistHT 353 2500 0.68 2.27 40.2 82.8 84.8 71.2 74.6 10.7

BookShop 353 4096 2.22 2.41 6.5 6.5 32.4 0.0 27.9 27.9

PeerToPeer 240 4.09 5.62 11.86 0.4 8.8 11.4 8.5 11.1 3.0

23.0 41.0 53.9 23.7 46.0 26.6

only due to activation records whose size is constant, but also measure the size
of the data structures used in the invocations, and take them into account.

In order to evaluate our analysis we have obtained different UBs on the size
of the stack of activation records and compared their precision. In particular,
we have compared the UBs obtained by the resource analysis of [2] (a cumula-
tive cost analyzer), our basic non-cumulative approach (Sec. 4.2), the context-
sensitive extension of Sec. 5.1 and the UBs obtained by using the singleton cost
of each acquire as described in Sec. 5.2. In order to obtain concrete values for the
gains, we have evaluated the UB expressions for different combinations of the
input arguments and computed the average. For a concrete input arguments x,
we compute the gain of P̂(x) w.r.t. U(x) using the formula (1−P̂(x)/U(x))∗100.
In order to compute the sizes of the activation records of the methods, we have
modified each method of the benchmarks by including in the beginning of the
method one acquire and one release at the end of each method to free it. Let
us illustrate it with an example, if we have a method Int m (Data d,Int i) {Int
j=i+1}, we modify it to {x=acquire(1+1+d+1+1); Int j=i+1; release x;}. The
addends of the expression 1+1+d+1+1 correspond to: the pointer to the acti-
vation record, the size of the returned value (1 unit), the size of the information
received through d (d units), the size of i (1 unit), and the size of j (1 unit). The
instruction release(x) releases all resources. Experiments have been performed
on an Intel Core i5 (1.8GHz, 4GB RAM), running OSX 10.8.

Table 1 summarizes the results obtained. Columns #l and #e show, resp.,
the number of lines of code and the number of input argument combinations
evaluated. Columns Tn, Tc show, resp., the time (in seconds) to perform the
basic non-cumulative analysis and the context-sensitive non-cumulative analy-
sis. Columns %n, %c, %s show, resp., the gain of the non-cumulative resource
analysis, its context-sensitive extension and the singleton cost extension w.r.t.
the cumulative analysis. Column %cn shows the gain of P̂ applied to the context
sensitive replica of the program w.r.t. its application to the original program.
Columns %sn and %sc show, resp., the gain of P̃ w.r.t. P̂ , and w.r.t. P̂ applied
to the context sensitive replica of the program. The last row shows the average
of the results. As regards analysis times, we argue that the time taken by the an-
alyzer is reasonable and the context-sensitive approach although more expensive
is feasible. As regards precision, we can observe that the gains obtained by the
non-cumulative analyses are significant w.r.t. the cumulative resource analysis.
As it can be expected, P̃ shows the best results with gains from 11% to 93%.

98 E. Albert, J.C. Fernández, and G. Román-Dı́ez

The non-cumulative analysis and its context-sensitive version also present sig-
nificant gains, on average 23% and 41% respectively. The improvement gained
by applying non-cumulative analysis to the context-sensitive extension is also
relevant, a gain of 23.7%. As resources are released in all methods, we achieve
a significant improvement with P̃, from 46% to 26.6% on average. All in all, we
argue that the experimental evaluation shows the accuracy of non-cumulative
resource analysis and the precision gained with its extensions.

7 Conclusions and Related Work

To the best of our knowledge, this is the first generic framework to infer the peak
of the resource consumption of sequential imperative programs. The crux of the
framework is an analysis to infer the resources that might be used simultaneously
along the execution. This analysis is formalized as a data-flow analysis over a
finite domain of sets of resources. The inference is followed by a program-point
resource analysis which defines the resource consumption at the level of the
program points at which resources are acquired.

Previous work on non-cumulative cost analysis of sequential imperative pro-
grams has been focused on the particular resource of memory consumption with
garbage collection, while our approach is generic on the kind of non-cumulative
cost that one wants to measure. Our framework can be used to redefine previous
analyses of heap space usage [5] into the standard cost analysis setting. Depend-
ing on the particular garbage collection strategy, the release instruction will be
placed at one point or another. For instance, if one uses scope-based garbage
collection, all release instructions are placed just before the method return in-
struction and our framework can be applied. If one wants to use a liveness-based
garbage collection, then the liveness analysis determines where the release in-
structions should go, and our analysis is then applied. The important point to
note is that these analyses [5] provided a solution based on the generation of
non-standard cost relations specific to the problem of memory consumption.
It thus cannot be generalized to other kind of non-cumulative resources. Non-
cumulative resource analysis, by means of the use of malloc and free, is studied
at [9], but the approach is limited to constant resource consumption. Several
analyses around the RAML tool [12] also assume the existence of acquire and
release instructions and the application of our framework to this setting is an
interesting topic for further research. The differences between amortized cost
analysis and a standard cost analysis are discussed in [6,10]. Also, we want to
study the recasting of [7] into our generic framework.

Recent work defines an analysis to infer the peak cost of distributed systems
[3]. There are two fundamental differences with our work: (1) [3] is developed
for cumulative resources, and the extension to non-cumulative resources is not
studied there and (2) [3] considers a concurrent distributed language, while our
focus is on sequential programs. There is nevertheless a similarity with our work
in the elimination from the total cost of elements that do not happen simulta-
neously. However, in the case of [3] this information is gathered by a complex
may-happen-in-parallel analysis [4] which infers the interleavings that may occur

Non-cumulative Resource Analysis 99

during the execution followed by a post-process in which a graph is built and
its cliques are used to detect when several tasks can be executing concurrently.
In our case, we are able to detect when resources are used simultaneously by
means of a simpler analysis defined as a standard data-flow analysis on a finite
domain. Besides, the upper bounds in [3] are obtained by a task-level resource
analysis since in their case they want to obtain the resource consumption at the
granularity of tasks rather than at program point granularity. As in our case,
the use of context sensitive analysis [16] can improve the accuracy of the results.

Acknowledgments. This work was funded partially by the EU project FP7-ICT-

610582ENVISAGE:EngineeringVirtualizedServices (http://www.envisage-project.eu),

by the Spanish project TIN2012-38137, and by the CM project S2013/ICE-3006.

References

1. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: Static Analyzer for Con-
current Objects. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS).
LNCS, vol. 8413, pp. 562–567. Springer, Heidelberg (2014)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

3. Albert, E., Correas, J., Román-Dı́ez, G.: Peak Cost Analysis of Distributed Sys-
tems. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis. LNCS, vol. 8723, pp.
18–33. Springer, Heidelberg (2014)

4. Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-Parallel
in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS
2012. LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)

5. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Parametric Inference of Memory Re-
quirements for Garbage Collected Languages. In: ISMM 2010, pp. 121–130 (2010)

6. Alonso-Blas, D.E., Genaim, S.: On the Limits of the Classical Approach to Cost
Analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421.
Springer, Heidelberg (2012)

7. Braberman, V., Fernández, F., Garbervetsky, D., Yovine, S.: Parametric Prediction
of Heap Memory Requirements. In: ISMM 2008, pp. 141–150. ACM (2008)

8. Braberman, V.A., Garbervetsky, D., Hym, S., Yovine, S.: Summary-based inference
of quantitative bounds of live heap objects. SCP 92, 56–84 (2014)

9. Cook, B., Gupta, A., Magill, S., Rybalchenko, A., Simsa, J., Singh, S., Vafeiadis,
V.: Finding heap-bounds for hardware synthesis. In: FMCAD 2009, pp. 205–212
(2009)

10. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 275–295.
Springer, Heidelberg (2014)

11. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Esti-
mation of Program Computational Complexity. In: POPL 2009, pp. 127–139. ACM
(2009)

12. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: POPL 2013, pp. 185–197. ACM (2003)

100 E. Albert, J.C. Fernández, and G. Román-Dı́ez

13. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

14. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 745–761. Springer, Heidelberg (2014)

15. Trinder, P.W., Cole, M.I., Hammond, K., Loidl, H.W., Michaelson, G.: Resource
analyses for parallel and distributed coordination. CCPE 25(3), 309–348 (2013)

16. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI, pp. 131–144. ACM (2004)

	Non-cumulative Resource Analysis
	1
Introduction
	2
The Notion of Peak Cost
	2.1 The Language

	2.2
Definition of Peak Cost

	3
Simultaneous Resource Analysis
	4
Non-cumulative Resource Analysis
	4.1
Program-Point Resource Analysis
	4.2
Inference of Peak Cost

	5
Extensions of the Basic Framework
	5.1
Context-Sensitivity
	5.2
Handling Transient Resource Allocations
	5.3
Handling Different Resources Simultaneously

	6
Experimental Evaluation
	7
Conclusions and Related Work

