
SeaHorn: A Framework for Verifying C Programs
(Competition Contribution)�

Arie Gurfinkel1, Temesghen Kahsai2, and Jorge A. Navas3

1 Software Engineering Institute / CMU, USA
2 NASA Ames Research Center / CMU, USA
3 NASA Ames Research Center / SGT, USA

Abstract. SeaHorn is a framework and tool for verification of safety
properties in C programs. The distinguishing feature of SeaHorn is
its modular design that separates how program semantics is represented
from the verification engine. This paper describes its verification ap-
proach as well as the instructions on how to install and use it.

1 Verification Approach

SeaHorn is a framework and a tool for verification of safety properties for C
programs. It is parameterized by the semantic representation of the program
using Horn constraints and by the verification engine that leverages the latest
advances made in constraint solving and Abstract Interpretation. The design of
SeaHorn provides users with an extensible and customizable environment for
experimenting and implementing with new software verification techniques.

int x = 1;
int y = 0;
while (∗) {

x = x+ y;
y = y + 1;

}
assert(x ≥ y);

Consider the simple program on the left. Using SeaHorn we
encode it using, for instance, classical Hoare Logic:

(x = 1 ∧ y = 0) → I(x, y)

(I(x, y) ∧ x′ = x+ y ∧ y′ = y + 1) → I(x′, y′)
(I(x, y) ∧ x < y) → false

These logic formulas corresponding to the rule for while loops
are indeed a set of recursive Horn clauses. Thus, the problem
of proving whether the program is safe is reduced to checking

whether these Horn clauses are satisfiable. Fortunately, they can be solved by a
means of solvers (e.g., [5]), thus leveraging recent advances in Horn constraint
solving.
� This material is based upon work funded and supported by NASA Contract No.

NNX14AI09G, NSF Award No. 1422705 and by the Department of Defense under
Contract No. FA8721-05-C-0003 with CMU for the operation of SEI, an FFRDC.
Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the United
States Department of Defense. This material has been approved for public release
and unlimited distribution. DM-0001865.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 447–450, 2015.
DOI: 10.1007/978-3-662-46681-0_41



448 A. Gurfinkel, T. Kahsai, and J.A. Navas

Fig. 1. Overview of SeaHorn architecture

2 Software Architecture

SeaHorn is implemented in C++ in the LLVM compiler infrastructure [6]. The
overall approach is illustrated in Figure 1.

Preprocessing. To pre-process the competition benchmark, we utilize the front-
end that was originally developed for UFO [1]. First, the input C program is pre-
processed with CIL1 to insert line markings for counterexamples, define missing
functions, and initialize all local variables. Second, the result is translated into
LLVM Intermediate Representation (IR), called bitcode, using llvm-gcc. Next,
we perform compiler optimizations and preprocessing to simplify the verification
task. As a preprocessing step, we further initialize any uninitialized registers us-
ing non-deterministic functions. This is used to bridge the gap between the veri-
fication semantics (which assumes a non-deterministic assignment) and compiler
semantics, which tries to take advantage of the undefined behavior of uninitial-
ized variables to perform code optimizations. We perform a number of program
simplifications such as function inlining, static single assignment (SSA) form,
dead code elimination, etc. Finally, we use a variant of Data Structure Analysis
(DSA), an alias analysis that infers disjoint heap regions used to identify each
memory access within a certain region.

Invariant Generation. Inductive invariants can be computed from the byte-
code using a given abstract domain. SeaHorn uses the IKOS library [2] which
is a collection of abstract domains and fixpoint iteration algorithms. SeaHorn
runs in parallel with (using classical intervals) and without invariant generation.

Horn-Clause Encoding. Next, we translate bytecode to Horn constraints
which acts as a very suitable intermediate representation for verification. Sea-
Horn is parametric on the semantics used for encoding. Currently, SeaHorn
provides a Horn-clause style encoding based on small-step semantics [7] as well as
a more efficient large-block encoding [3]. For the competition, we always use the
1 http://www.cs.berkeley.edu/~necula/cil/

http://www.cs.berkeley.edu/~necula/cil/


SeaHorn: A Framework for Verifying C Programs 449

large-block encoding. The level of precision of the encoding can be also tuned.
The options are: only registers (integer scalars), registers and pointer addresses
(without content), and all of the above plus memory content (using theory of
arrays). We use for the competition the latter which is the most precise level.

Horn-Clause Verification. SeaHorn is also parameterized by the solver. For
the competition, SeaHorn uses pdr engine implemented in Z3 [4]. For the
competition we improve pdr using invariants computed by IKOS. To motivate
this decision, let us come back to our example described above. pdr alone can
discover x ≥ y but it does not terminate, however, if populated with the inductive
invariant y ≥ 0, computed by IKOS, it proves it immediately.

3 Strength and Weaknesses

SeaHorn uses linear arithmetic to reason about scalars and pointer addresses,
and theory of arrays for memory contents. However, SeaHorn provides little or
no support for reasoning about dynamic linked data structures, bit-level preci-
sion, or concurrency. Another weakness of SeaHorn is inherited from the UFO
front-end which relies on multiple tools: LLVM 2.6, LLVM 2.9, and CIL. The
main strength of SeaHorn lies on its parameterized nature allowing experi-
menting with different encodings to model new semantics aspects, abstractions
and verification algorithms.

4 Tool Setup

SeaHorn is available for download from https://bitbucket.org/lememta/
seahorn/wiki/Home. SeaHorn is provided as a set of binaries and libraries for
Linux x86-64 architecture. The options for running the tool are:

./bin/seahorn-svcomp-par.py [-m64] [--cex=CEX] [--spec=SPEC] INPUT

where -m64 turns on 64-bit model, CEX is the destination directory for the
witness file, SPEC is the property file, and INPUT is a C file. If it terminates
the output of SeaHorn is “Result TRUE” when the program is safe, “Result
FALSE”, when a counterexample is found or “Result UNKNOWN”, otherwise.

References

1. Albarghouthi, A., Gurfinkel, A., Li, Y., Chaki, S., Chechik, M.: UFO: Verification
with interpolants and abstract interpretation. In: Piterman, N., Smolka, S.A. (eds.)
TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 637–640. Springer, Heidelberg
(2013)

2. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: A framework for static analysis
based on abstract interpretation. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 271–277. Springer, Heidelberg (2014)

https://bitbucket.org/lememta/seahorn/wiki/Home
https://bitbucket.org/lememta/seahorn/wiki/Home


450 A. Gurfinkel, T. Kahsai, and J.A. Navas

3. Gurfinkel, A., Chaki, S., Sapra, S.: Efficient predicate abstraction of program sum-
maries. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011.
LNCS, vol. 6617, pp. 131–145. Springer, Heidelberg (2011)

4. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

5. Hoder, K., Bjørner, N., de Moura, L.: µZ– an efficient engine for fixed points with
constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 457–462. Springer, Heidelberg (2011)

6. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO. pp. 75–88 (2004)

7. Peralta, J.C., Gallagher, J.P., Saglam, H.: Analysis of imperative programs through
analysis of constraint logic programs. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503,
pp. 246–261. Springer, Heidelberg (1998)


	SeaHorn: A Framework for Verifying C Programs (Competition Contribution)
	1 Verification Approach
	2 Software Architecture
	3 Strength and Weaknesses
	4 Tool Setup




