
Insight: An Open Binary Analysis Framework

Emmanuel Fleury1, Olivier Ly1, Gérald Point2, and Aymeric Vincent3

LaBRI, UMR 5800, Talence, France
1Université de Bordeaux, Talence, France

2CNRS, Talence, France
3INP Bordeaux Aquitaine, Talence, France

{emmanuel.fleury,olivier.ly,gerald.point,aymeric.vincent}@labri.fr

Abstract. We present Insight, a framework for binary program anal-
ysis and two tools provided with it: CFGRecovery and iii.

Insight is intended to be a full environment for analyzing, interact-
ing and verifying executable programs. Insight is able to translate x86,
x86-64 and msp430 binary code to our intermediate representation and
execute it symbolically in an abstract domain where each variable (regis-
ter, memory cell) is substituted by a formula representing all its possible
values along the current execution path.

CFGRecovery aims at automatically rebuilding the program control
flow based only on the executable file. It heavily relies on SMT solvers.

iii provides an interactive and a (Python) programmable interface
to a coherent set of features from the Insight framework. It behaves
like a debugger except that the execution traces that are examined are
symbolic and cover a collection of possible concrete executions at once.
For example, iii allows to perform an interactive reconstruction of the
CFG.

Keywords: binary analysis, CFG recovery, symbolic debugging.

1 Introduction

Nowadays, finding complex bugs automatically has become fruitful and use-
ful. Yet, most of software analysis techniques rely on the fact that a complete
blueprint of the program is available (full specifications, formal design docu-
ments, source code) at a level of abstraction suitable for analysis.

A recent interest has been shown in analyzing executable programs with no
prior knowledge of their internals [11,2,4]. These efforts have been essentially
pushed forward by the need to get some trust on external binary-only software,
or analyzing potentially malicious software.

But, one of the main problems of binary analysis is to rebuild a correct control
flow graph of the program which can be made difficult to recover because of data-
entanglement, self-modifying code, or other binary specific effects (intentional
or not) linked to this specific format. It is needed because most, if not all, the
analysis techniques require the control flow graph to operate, which means that
the recovery of the control flow comes before any other usual analysis. Moreover,

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 218–224, 2015.
DOI: 10.1007/978-3-662-46681-0_18



Insight: An Open Binary Analysis Framework 219

depending on the completeness and the accuracy of the recovery, the analysis
may succeed or fail. Thus, in order to leverage existing techniques on higher-level
code, the first step will be to recover the control flow as accurately as possible.

A few pioneers of binary analysis already made advances on recovery tech-
niques [7,12]. But, recent works [11,2,4] led to new approaches for both recovery
and/or analysis on binary programs and the design of new tools: McVeto [14],
CodeSurfer/x86 [1], OSMOSE [4], Jakstab [10], or frameworks: BitBlaze [13],
BAP [6], Otawa [3]. Yet, few of these tools are actually open platforms which
could be used by the community to ease the cumbersome steps of working on
binary programs for new researchers in this field.

Insight is a framework, including a library and tools, aiming to provide an
environment to perform binary analysis for verification purposes. Yet, even if
our first intent was binary verification, one may use the framework for other
goals such as program control flow extraction, reverse engineering, decompila-
tion, . . . As a first step, we built a complete chain of modules that can be used to
extract concrete or symbolic traces of the binary program in a simulated envi-
ronment, translate it into our intermediate representation and perform analyses
on it.

These modules have been combined into two tools that are now part of the
framework: CFGRecovery, an automated tool to recover the control flow of
the binary program and the Insight Interactive Inspector (iii), an interactive
tool working as a debugger to execute and interact with both the original binary
program and its intermediate representation.

Insight was started during the BINCOA ANR-funded project [5]. The frame-
work is not currently focused on performance, and on small programs of a few
kilobytes, a couple of minutes of computation on an Intel Core i5 laptop are
to be expected to recover the control flow graph using Mathsat [8] as the SMT
solver. Starting stepping through a program of any size under iii is immedi-
ate. Insight, CFGRecovery and iii are freely available with an open source
2-clause BSD license (visit http://insight.labri.fr).

In the following we first present the library, then the tools, and we conclude
with future research directions.

2 The Insight Library

The Insight library gathers all the functions, data structures and algorithms
that allow to build tools for binary analysis. It includes primitives to handle our
intermediate representation, which is called the microcode, the functions used to
extract and translate the original assembly into microcode and a way to execute
it within a simulated environment on a given abstract domain.

2.1 Insight’s Microcode

Binary instructions are translated into an architecture-independent representa-
tion called microcode. Fig. 1 gives an example of microcode. The microcode is an

http://insight.labri.fr


220 E. Fleury et al.

oriented graph whose nodes are labelled with addresses (e.g. [0x0,0]) and edges
with a guard (<<...>>) and an instruction (e.g. an assignment var:=expr).

The addresses which label nodes are composed of two parts: a global address
which corresponds to the address as seen by the binary program, and a local
sub-address which allows to translate one assembly instruction into a sub-graph.
The guards are formulae with a boolean value, and the edge can exist in the
semantics of the microcode in a given context only if the guard evaluates to true
in that context.

[0x0,0]@asm=push eax@

[0x0,1]

[0x1,0]@asm=je 0x5@

[0x3,0]@asm=jmp *eax@

[0x5,0]@asm=pop eax@

[0x5,1]

[0x6,0]@...@

esp{0;32}:=(SUB esp{0;32} 0x4{0;32}){0;32}

[esp{0;32}]{0;32}:=eax{0;32}

<<zf{0;1}>>

<<(NOT zf{0;1}){0;32}>>

eax{0;32}:=[esp{0;32}]{0;32}

eax{0;32}:=[esp{0;32}]{0;32}

Fig. 1. Microcode example (from x86 asm)

There are three types of instruc-
tions: a skip instruction which does
nothing but go to its successor (e.g.
at [0x1,0] a conditional jump); all
static jumps are implemented with
a skip instruction. An assignment
which assigns the value of an ex-
pression to a l-value (e.g. eax is as-
signed to at [0x5,0]). And, a dy-
namic jump which has no succes-
sor in the graph but provides an ex-
pression determining the global ad-
dress where execution should con-
tinue (eg. at [0x3,0] a jump to the
value of eax).

Expressions can use a variety of
bitvector operators (addition, bits
extraction, . . . ), and base operands
are made of constants, variables,
and memory references. Every sub-
expression includes the possibility of extracting a bitvector. This way, sub-
bitvectors of variables and memory references constitute acceptable l-values and
are legitimate expressions.

2.2 Microcode Providers and Handling

One of the very appealing features of Insight is its ability to load a binary
program and translate it into microcode. This feature is provided thanks to
GNU’s libbfd which allows to open almost any executable container format (e.g.
ELF, PE-COFF). Translation from binary assembly instructions into microcode
is provided by Insight itself, but uses the GNU libopcodes as a first step.
This translation is currently implemented almost fully for 32-bit x86, 64-bit x86
and 16-bit MSP430. Yet, it is important to notice that only integer datatypes
are supported (no floating point, SIMD, . . . ) as is the case of the other binary
analysis software that we know of.

A handful of classes are used to represent a microcode program. In order to
ease creation of microcode and thus the writing of decoders, a very simple API is
provided to add microcode instructions to a program. Furthermore, a very useful



Insight: An Open Binary Analysis Framework 221

feature is the ability to annotate almost any object of microcode. For example, a
microcode node corresponding to a given address can be annotated by the textual
representation of the assembly instruction at that address; dynamic jumps can
be annotated by their potential targets; and so on. This gives a homogeneous
place for analyses to store their results and helps provide the end-user with
information related to a given microcode part.

2.3 Simulation on Domains

Mainly, two domains are provided: a “concrete” domain which allows computa-
tions of a single value per l-value and provides the usual operations on bitvectors.
And, a “symbolic” domain which represents sets of values thanks to assertions
constraining variables and memory elements. Two additional toy domains are
also provided: the “sets” domain which uses sets of concrete values to repre-
sent possible values, and the “intervals” domain which uses a pair of integers to
represent an interval of concrete values.

The simulation on the symbolic domain is the one we massively rely on for
recovering the control flow of the program. Indeed, we use symbolic execution to
collect program traces and build a microcode program from it. This technique
has already been used for many other purposes like automatic software testing [4]
or processor microcode verification [9].

More precisely, symbolic execution is performed by the simulation engine that
will execute every step of the program assuming symbolic values for inputs rather
than concrete ones. Our symbolic domain is the set of all the (quantifier free)
bitvector arithmetic formulae, which allows to represent exactly the semantics
of assembly instructions.

3 CFGRecovery

CFGRecovery is a tool dedicated to the recovery of the control flow of an
executable program in the most accurate way, only based on the binary form
of the program. Several classical disassembly strategies may be chosen (linear
sweep, recursive traversal). But, our main disassembly method is to use an under-
approximation strategy using symbolic execution in order to avoid spurious ex-
ecution traces and to output a possibly incomplete but trusted control flow
graph. A very simple example is given in Fig. 2, it shows the disassembly of code
with instruction overlapping obfuscation using objdump on the left, and with
CFGRecovery on the right. Note that CFGRecovery is accurate.

4 Insight’s Interactive Inspector (iii)

Insight’s interactive inspector (iii) is a cross-debugger using an abstract do-
main to represent memory and register values. The iii tool is a Python inter-
preter enriched with Insight library features. As for CFGRecovery, it can



222 E. Fleury et al.

instruction_overlapping-i386: file format elf32-i386
Disassembly of section .text:

08048098 <_start>:
8048098: b8 00 03 c1 bb mov $0xbbc10300,%eax
804809d: b9 00 00 00 05 mov $0x5000000,%ecx
80480a2: 01 c8 add %ecx,%eax
80480a4: eb f4 jmp 804809a <_start+0x2>
80480a6: 01 d8 add %ebx,%eax
80480a8: bb 00 00 00 00 mov $0x0,%ebx
80480ad: b8 01 00 00 00 mov $0x1,%eax
80480b2: cd 80 int $0x80

1a. objdump (linear sweep) disassembly.

 8048098 : mov    $0xbbc10300,%eax
 804809d : mov    $0x5000000,%ecx
 80480a2 : add    %ecx,%eax
 80480a4 : jmp    0x804809a

 804809a : add    %ecx,%eax
 804809c : mov    $0xb9,%ebx
 80480a1 : add    $0xf4ebc801,%eax
 80480a6 : add    %ebx,%eax
 80480a8 : mov    $0x0,%ebx
 80480ad : mov    $0x1,%eax
 80480b2 : int    $0x80

1b. CFGRecovery disassembly.

Fig. 2. Example of code disassembled by objdump (1a) and CFGRecovery (1b)

load binary executable files and simulate them over any domain supported by
the framework.

The basic principle of operation of iii is that a microcode program is contin-
uously maintained in memory and is enriched by explicit loading of microcode,
or by exploring a binary executable using symbolic execution. At each step, an
edge of the microcode is followed, and any location which is encountered and
not yet part of the microcode will be added to it.

#0 #1

  61d4df : insight-stub/__libc_start_main

  4028a0 : push   %r15
  4028a2 : push   %r14
  4028a4 : push   %r13
  4028a6 : push   %r12
  4028a8 : push   %rbp
  4028a9 : push   %rbx
  4028aa : mov    %edi,%ebx
  4028ac : mov    %rsi,%rbp
  4028af : sub    $0x398,%rsp
  4028b6 : mov    (%rsi),%rdi
  4028b9 : mov    %fs:0x28,%rax
  4028c2 : mov    %rax,0x388(%rsp)
  4028ca : xor    %eax,%eax
  4028cc : callq  0x40d770

  40d770 : test   %rdi,%rdi
  40d773 : push   %rbx
  40d774 : mov    %rdi,%rbx

  40d777 : je     0x40d7e3

0x40d7e3 0x40d779

Fig. 3. iii CFG exploration

Many usual debugger commands are available
in iii, possibly adapted to its specificities. For ex-
ample, the step() function follows the microcode
edges associated with a full assembly instruction,
but also the microstep() function follows just
one edge of the microcode. Another example is
the cont() function which will continue until one
of the usual conditions occurs (breakpoint or “end
of program”) or when non-determinism is encoun-
tered, in which case the user is asked to select
which edge to follow.

It is also possible to load microcode stubs at
any address in the code prior to reaching that ad-
dress. We usually use stubs to replace a call to
an external procedure by a simplified model of
it. These stubs can be loaded at a given address
and “folded” into this global address by letting the
stub loader replace all other global addresses by
local addresses. This allows to preserve global ad-
dress space whose usage is dictated by the binary
program.

At any moment, the (symbolic) content of memory and registers can be dis-
played similarly to what can be done in a debugger. The current microcode can
also be displayed graphically with the current microcode node in the simulation
trace highlighted, and hotkeys allow to call functions like step() to extend the
trace from within the graph. See Fig. 3.



Insight: An Open Binary Analysis Framework 223

5 Future Directions

Insight has now reached a level of achievement that allows to extract a coherent
microcode model from possibly complex software and interact with it. Many new
ideas can be explored with the framework and we hope the community will take
advantage of this massive open source code base. We intend to further research
on topics such as self-modifying code, loop summarization, and verification. Also
practical usage of the framework for reverse engineering purposes is a promising
lead.

Acknowledgments. We would like to thank all the contributors, and especially
R. Tabary for his work on Insight and also for the crackme example used in
the demo.

References

1. Balakrishnan, G., Gruian, R., Reps, T., Teitelbaum, T.: CodeSurfer/x86—A plat-
form for analyzing x86 executables. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443,
pp. 250–254. Springer, Heidelberg (2005)

2. Balakrishnan, G., Reps, T.: WYSINWYX: What You See Is Not What You eX-
ecute. Journal of ACM Transactions on Programming Languages and Systems
(TOPLAS) 32 (2010)

3. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: An open toolbox
for adaptive WCET analysis. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T.
(eds.) SEUS 2010. LNCS, vol. 6399, pp. 35–46. Springer, Heidelberg (2010)

4. Bardin, S., Herrmann, P.: OSMOSE: automatic structural testing of executables.
Software Testing, Verification and Reliability 21(1), 29–54 (2011)

5. Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, R., Vincent, A.: The BINCOA
framework for binary code analysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 165–170. Springer, Heidelberg (2011)

6. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis
platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 463–469. Springer, Heidelberg (2011)

7. Cifuentes, C.: Reverse Compilation Techniques. Ph.D. thesis, Queensland Univer-
sity of Technology, Department of Computer Science (1994)

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

9. Franzn, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in
symbolic execution of microcode. In: Proc. of Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD 2010), pp. 121–128. IEEE (2010)

10. Kinder, J., Veith, H.: Jakstab: A static analysis platform for binaries. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 423–427. Springer, Heidelberg
(2008)

11. Kinder, J., Zuleger, F., Veith, H.: An abstract interpretation-based framework for
control flow reconstruction from binaries. In: Jones, N.D., Müller-Olm, M. (eds.)
VMCAI 2009. LNCS, vol. 5403, pp. 214–228. Springer, Heidelberg (2009)



224 E. Fleury et al.

12. Mycroft, A.: Type-based decompilation (or program reconstruction via type re-
construction). In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 208–223.
Springer, Heidelberg (1999)

13. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Zhenkai, K.M.G.a.L.,
James, N., Pongsin, P., Prateek, S.: BitBlaze: A new approach to computer se-
curity via binary analysis. In: Proc. of Int. Conf. on Information Systems Security
(ICISS). LNCS, pp. 1–25. Springer, Heidelberg (2008)

14. Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T.,
Reps, T.: Directed proof generation for machine code. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 288–305. Springer, Heidelberg
(2010)


	Insight: An Open Binary Analysis Framework
	1 Introduction
	2 The Insight Library
	2.1 Insight's Microcode
	2.2 Microcode Providers and Handling
	2.3 Simulation on Domains

	3 CFGRecovery
	4 Insight's Interactive Inspector (iii)
	5 Future Directions




