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Abstract. We present MultiGain, a tool to synthesize strategies for
Markov decision processes (MDPs) with multiple mean-payoff objectives.
Our models are described in PRISM, and our tool uses the existing in-
terface and simulator of PRISM. Our tool extends PRISM by adding
novel algorithms for multiple mean-payoff objectives, and also provides
features such as (i) generating strategies and exploring them for simula-
tion, and checking them with respect to other properties; and (ii) gen-
erating an approximate Pareto curve for two mean-payoff objectives. In
addition, we present a new practical algorithm for the analysis of MDPs
with multiple mean-payoff objectives under memoryless strategies.

1 Introduction

Markov decision processes (MDPs) are a standard model for analysis of proba-
bilistic systems with non-determinism [12], with a wide range of applications [5].
In each state of an MDP, a controller chooses one of several actions (the nonde-
terministic choices), and the current state and action gives a probability distribu-
tion over the successor states. One classical objective used to study quantitative
properties of systems is the limit-average (or mean-payoff) objective, where a
reward (or cost) is associated with each transition and the objective assigns to
every run the average of the rewards over the run. MDPs with single mean-payoff
objectives have been well studied in the literature (see, e.g., [14]). However, in
many modeling domains, there is not a single goal to be optimized, but multi-
ple, potentially interdependent and conflicting goals. For example, in designing a
computer system, the goal is to maximize average performance while minimizing
average power consumption. Similarly, in an inventory management system, the
goal is to optimize several dependent costs for maintaining each kind of prod-
uct. The complexity of MDPs with multiple mean-payoff objectives was studied
in [6].

In this paper we present MultiGain, which is, to the best of our knowl-
edge, the first tool for synthesis of controller strategies in MDPs with multiple
mean-payoff objectives. The MDPs and the mean-payoff objectives are specified
in the well-known PRISM modelling language. Our contributions are as follows:
(1) we extend PRISM with novel algorithms for multiple mean-payoff objectives
from [6]; (2) develop on the results of [6] to synthesize strategies, and explore
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them for simulation, and check them with respect to other properties (as done in
PRISM-games [9]); and (3) for the important special case of two mean-payoff ob-
jectives we provide the feature to visualize the approximate Pareto curve (where
the Pareto curve represents the “trade-off” curve and consists of solutions that
are not strictly dominated by any other solution). Finally, we present a new
practical approach for analysis of MDPs with multiple mean-payoff objectives
under memoryless strategies: previously an NP bound was shown in [8] by guess-
ing all bottom strongly connected components (BSCCs) of the MDP graph for
a memoryless strategy and this gave an exponential enumerative algorithm; in
contrast, we present a linear reduction to solving a boolean combination of linear
constraints (which is a special class of mixed integer linear programming where
the integer variables are binary).

2 Definitions

MDPs and Strategies. An MDP G = (S,A,Act , δ) consists of (i) a finite set
S of states; (ii) a finite set A of actions, (iii) an action enabledness function
Act : S → 2A \ {∅} that assigns to each state s the set Act(s) of actions enabled
at s, and (iv) a transition function δ : S ×A → dist(S) that given a state s and
an action a ∈ Act(s) gives a probability distribution over the successor states
(dist(S) denotes all probability distributions over S). W.l.o.g. we assume that
every action is enabled in exactly one state, and we denote this state Src(a).
Thus, we will assume that δ : A → dist(S). Strategies describe how to choose
the next action given a finite path (of state and action pairs) in the MDP. A
strategy consists of a set of memory elements to remember the history of the
paths. The memory elements are updated stochastically in each transition, and
the next action is chosen probabilistically (among enabled actions) based on the
current state and current memory [6]. A strategy is memoryless if it depends
only on the current state.

Multiple Mean-payoff Objectives. A single mean-payoff objective consists
of a reward function r that assigns a real-valued reward r(s, a) to every state
s and action a enabled in s, and the mean-payoff objective mp(r) assigns to
every infinite path (or run) the long-run average of the rewards of the path,

i.e., for π = (s0a0s1a1 . . .) we have mp(r)(π) = lim infn→∞ 1
n · ∑n−1

i=0 r(si, ai).
In multiple mean-payoff objectives, there are k reward functions r1, r2, . . . , rk,
and each reward function ri defines the respective mean-payoff objective mp(ri).
Given a strategy σ and a random variableX , we denote by E

σ
s [X ] the expectation

of the σ w.r.t.X , given a starting state s. Thus for a mean-payoff objectivemp(r),
the expected mean-payoff is Eσ

s [mp(r)].

Synthesis Questions. The relevant questions in analysis of MDPs with mul-
tiple objectives are as follows: (1) (Existence). Given an MDP with k reward
functions, starting state s0, and a vector v = (v1, v2, . . . , vk) of k real-values,
the existence question asks whether there exists a strategy σ such that for all
1 ≤ i ≤ k we have E

σ
s0 [mp(ri)] ≥ vi. (2) (Synthesis). If the answer to the exis-

tence question is yes, the synthesis question asks for a witness strategy to satisfy
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the existence question. An optimization question related to multiple objectives
is the computation of the Pareto-curve (or the trade-off curve), where the Pareto
curve consists of vectors v such that the answer to the existence question is yes,
and for all vectors v′ that strictly dominate v (i.e., v′ is at least v in all dimen-
sions and strictly greater in at least one dimension) the answer to the existence
question is no.

3 Algorithms and Implementation

We first recall the existing results for MDPs with multiple mean-payoff objec-
tives [6], and then describe our implementation and extensions. Before present-
ing the existing results, we first recall the notion of maximal end-components in
MDPs.

Maximal End-components. A pair (T,B) with ∅ �= T ⊆ S and B ⊆⋃
t∈T Act(t) is an end component of G if (1) for all a ∈ B, whenever δ(a)(s′) > 0

then s′ ∈ T ; and (2) for all s, t ∈ T there is a finite path from s to t such that
all states and actions that appear in the path belong to T and B, respectively.
An end component (T,B) is a maximal end component (MEC) if it is maximal
wrt. pointwise subset ordering. An MDP is unichain if for all B ⊆ A satisfying
B ∩Act(s) �= ∅ for any s ∈ S we have that (S,B) is a MEC. Given an MDP, we
denote SMEC the set of states s that are contained within a MEC.

Result From [6]. The results of [6] showed that (i) the existence question can
be answered in polynomial time, by reduction to linear programming; (ii) if there
exists a strategy for the existence problem, then there exists a witness strategy
with only two-memory states. It also established that if the MDP is unichain,
then memoryless strategies are sufficient. The polynomial-time algorithm is as
follows: it was shown in [6] that the answer to the existence problem is yes iff
there exists a non-negative solution to the system of linear inequalities given in
Fig. 1.

Syntax and Semantics. Our tool accepts PRISM MDP models as input, see
[1] for details. The multi-objective properties are expressed as multi(list) or
mlessmulti(list) where list is a comma separated list of mean-payoff reward
properties, which can be boolean, e.g. R{’r1’}>=0.5 [S], and in the case of

1s0(s) +
∑

a∈A ya · δ(a)(s) = ∑
a∈Act(s) ya + ys for all s ∈ S (1)

∑
s∈SMEC

ys = 1 (2)
∑

s∈C ys =
∑

a∈A∩C xa for all MECs C of G (3)
∑

a∈A xa · δ(a)(s) = ∑
a∈Act(s) xa for all s ∈ S (4)

∑
a∈A xa · ri(a) ≥ vi for all 1 ≤ i ≤ k (5)

Fig. 1. System L of linear inequalities (here 1s0(s) is 1 if s=s0, and 0 otherwise)
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multi also numerical, e.g. R{’r2’}min=? [S]. In the reward properties, S stands
for steady-state, following PRISM’s terminology.

If all properties in the list are boolean, the multi-objective property
multi(list) is also boolean and is true iff there is a strategy under which all
given reward properties in the list are simultaneously satisfied. If there is a sin-
gle numerical query, the multi-objective query intuitively asks for the maximal
achievable reward of the numerical reward query, subject to the restriction given
by the boolean queries. We also allow two numerical queries; in such caseMulti-
Gain generates a Pareto curve. The semantics of mlessmulti follows the same
pattern, the only difference being that only memoryless (randomised) strategies
are being considered. The reason we don’t allow numerical reward properties in
mlessmulti is that the supremum among all memoryless strategies might not
be realised.

Implementation of Existence Question. We have implemented the algo-
rithm of [6]. Our implementation takes as input an MDP with multiple mean-
payoff objectives and a value vector v, and computes the linear inequalities of
Fig. 1 or a mixed integer linear programming (MILP) extension in case of mem-
oryless strategies. The system of linear inequalities is solved with LPsolve [2] or
Gurobi [3].

Implementation of the Synthesis Question.We now describe how to obtain
witness strategies. Assume that the linear program from Fig. 1 has a solution,
where a solution to a variable z is denoted by z. We construct a new linear
program, comprising Eq. 1 together with the equations ys =

∑
a∈Act(s) xa for all

s ∈ SMEC.
Let ẑ denote a solution to variables z in this linear program. The stochastic-

update strategy is defined to have 2 memory states (“transient” and “recur-
rent”), with the transition function defined to be σt (s)(a) = ŷa/

∑
b∈Act(s) ŷb

and σr (s)(a) = xa/
∑

b∈Act(s) xb, and the probability of switching from “tran-

sient” to “recurrent” state upon entering s being ŷs/(
∑

a∈Act(s) ŷa + ŷs). The

correctness of the witness construction follows from [6].

MILP for Memoryless Strategies. For memoryless strategies, the current
upper bound is NP [8] and the previous algorithm enumerates all possible BSCCs
under a memoryless strategy. We present a polynomial-time reduction to solving
a boolean combination of linear constraints, that can be easily encoded using
MILP with binary variables [16]. The key requirement for memoryless strategies
is that a state can either be recurrent or transient. For the existence question
restricted to memoryless strategies we modify the linear constraints from Fig. 1
as follows: (i) we add constraints; for all states s and actions b ∈ Act(s): yb >
0 =⇒ (xb > 0∨∑

a∈Act(Src(b)) xa = 0); (ii) we replace constraint (3) from Fig. 1

by constraints that for all states s: ys =
∑

a∈Act(s) xa. The constraint (ii) is a

strengthening of constraint (3), as the above constraint implies constraint (3).
Further details are in [7].

Approximate Pareto Curve for Two Objectives. To generate a Pareto
curve, we successively compute solutions to several linear programs for a single
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Fig. 2. Screenshot of MultiGain (largely inheriting from the PRISM GUI)

mean-payoff objective, where every time the objective is obtained as a weighted
sum of the objectives for which the Pareto curve is generated. The weights are
selected in a way similar to [11], allowing us to obtain the approximation of the
curve.

Unlike the PRISM implementation for multi-objective cumulative rewards,
our tool is able to generate the Pareto curve for objectives of the form
multi(R{’r1’}max=?[S], R{’r2’}max=? [S], R{’r3’}>=0.5 [S]) where the
objectives to be optimised are subject to restrictions given by other rewards.

Features of Our Tool. In summary, our tool extends PRISM by developing
algorithms to solve MDPs with multiple mean-payoff objectives. Along with
the algorithm from [6] we have also implemented a visual representation of
the Pareto curve for two-dimensional objectives. The implementation utilises
a multi-objective visualisation available in PRISM for cumulative reward and
LTL objectives.

In addition, we adapted a feature from PRISM-games [9] which allows the user
to generate strategies, so that they can be explored and investigated by simula-
tion. A product (Markov chain) of an MDP and a strategy can be constructed,
allowing the user to employ it for verification of other properties.

The tool is available at http://qav.cs.ox.ac.uk/multigain/, and the
source code is provided under GPL. For licencing reasons, Gurobi is not in-
cluded with the download, but it can be added manually by following provided
steps.

4 Experimental Results: Case Studies

We have evaluated our tool on two standard case studies, adapted from [1], and
also mention other applications where our tool could be used.

http://qav.cs.ox.ac.uk/multigain/
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Table 1. Experimental results. For space reasons, the [S] argument to R is omitted

model para.
property MDP LP total solving

value
(A: multi(. . . ), B: mlessmulti(. . . )) states vars (binary) rows time (s) time (s)

phil

3 A: R{"think"}max=?,R{"eat"}>=0.3 956 6344 1915 0.23 0.08 2.119
3 B: R{"think"}>=2.11,R{"eat"}>=0.3 956 12553 (6344) 11773 209.9 209.7 true
3 B: R{"think"}>=2.12,R{"eat"}>=0.3 956 12553 (6344) 11773 20.9 20.7 false
4 A: R{"think"}max=?,R{"eat"}>=1 9440 80368 18883 4.4 3.8 2.429
5 A: R{"think"}max=?,R{"eat"}>=1 93068 967168 186139 616.0 606.4 3.429

mutex
3 A: R{"try"}max=?[S], R{"crit"}>=0.2 27766 119038 55535 214.9 212.7 2.679
4 A: R{"try"}max=?[S], R{"crit"}>=0.3 668836 3010308 1337675 t/o t/o t/o
4 A: R{"try"}>=3.5[S], R{"crit"}>=0.3 668836 3010308 1337676 4126 4073 true

Dining philosophers is a case study based on the algorithm of [10], which ex-
tends Lehmann and Rabin’s randomised solution [13] to the dining philosophers
problem so that there is no requirement for fairness assumptions. The constant
N gives the number of philosophers. We use two reward structures, think and
eat for the number of philosophers currently thinking and eating, respectively.

Randomised Mutual Exclusionmodels a solution to the mutual exclusion problem
by [15]. The parameter N gives the number of processes competing for the access
to the critical section. Here we defined reward structures try and crit for the
number of processes that are currently trying to access the critical section, and
those which are in it, currently (the latter number obviously never being more
than 1).

Evaluation. The statistics for some of our experiments are given in Table 1
(the complete results are available from the tool’s website). The experiments
were run on a 2.66GHz PC with 4GB RAM, the LP solver used was Gurobi and
the timeout (“t/o”) was set to 2 hours. We observed that our approach scales
to mid-size models, the main limitation being the LP solver.

Other Applications. We mention two applications which are solved using
MDPs with multiple mean-payoff objectives. (A) The problem of synthesis from
incompatible specifications was considered in [17]. Given a set of specifications
ϕ1, ϕ2, . . . , ϕk that cannot be all satisfied together, the goal is to synthesize a
system such that for all 1 ≤ i ≤ k the distance to specification ϕi is at most vi.
In adversarial environments the problem reduces to games and for probabilis-
tic environments to MDPs, with multiple mean-payoff objectives [17]. (B) The
problem of synthesis of steady state distributions for ergodic MDPs was consid-
ered in [4]. The problem can be modeled with multiple mean-payoff objectives
by considering indicator reward functions rs, for each state s, that assign re-
ward 1 to every action enabled in s and 0 to all other actions. The steady state
distribution synthesis question of [4] then reduces to the existence question for
multiple mean-payoff MDPs.

Concluding Remarks. We presented the first tool for analysis of MDPs with
multiple mean-payoff objectives. The limiting factor is the LP solver, and so an
interesting direction would be to extend the results of [18] to multiple objectives.
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for markov decision processes. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio,
P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 290–304. Springer, Heidelberg (2013)

5. Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)
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