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Abstract. Traditional timing analysis techniques rely on composing
system-level worst-case behavior with local worst-case behaviors of indi-
vidual components. In many complex real-time systems, no single local
worst-case behavior exists for each component and it generally requires
to enumerate all the combinations of individual local behaviors to find
the global worst case. This paper presents a scalable timing analysis tech-
nique based on abstraction refinement, which provides effective guidance
to significantly prune away state space and quickly verify the desired tim-
ing properties. We first establish the general framework of the method,
and then apply it to solve the analysis problem for several different real-
time task models.

Keywords: Real-time systems, timing analysis, scalability, digraph real-
time task model.

1 Introduction

A real-time system is often described by a collection of recurring tasks, each
of which repeatedly activates workload with fixed periods [10]. The analysis
problem of this simple task model has been well-studied and efficient techniques
exist. The key idea is to identify the worst-case behavior of each single task,
and the system-level worst-case behavior is composed by the local worst-case
behaviors of individual tasks.

To meet the increasing requirements on functionality and quality of service,
real-time systems become more and more complex. For example, the workload
activation pattern of a task may change from time to time depending on the sys-
tem state. A major challenge is that there is no single local worst-case behavior
of each task. Several candidate behaviors of a task may be incomparable, and
it is generally necessary to enumerate and analyze all the combinations of the
candidate behaviors of all tasks to figure out which particular combination is the
worst. This leads to combinatorial state space explosion. It has been proved that
the analysis problem of even very simple task models is strongly coNP-hard [14],
as long as each task has multiple candidate behaviors that can potentially lead
to the system-level worst case. Existing analysis techniques for such systems all
suffer serious combinatorial state space explosion and are highly non-scalable.

This paper presents a timing analysis technique based on refinement to ad-
dress the above challenge. For each task, we construct a tree-like structural state
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space, where each leave corresponds to a concrete behavior of the task and each
node in the tree over-approximates its children. Then the analysis is performed
with the tree structures of all tasks in a top-down manner, starting with the
combination of roots, i.e., the most coarse approximation, and being iteratively
refined by moving down to the leaves. This provides us effective guidance to sig-
nificantly prune away state space and quickly find the exact system-level worst-
case behavior. This method is applicable to timing analysis problems for a wide
range of real-time task models. In this paper, we first establish the general frame-
work of refinement-based analysis, then apply it to three different real-time task
models, namely the rate-adaptive real-time task model [4], the digraph real-time
task model [12] and its extension with synchronization. We also present a tool
suit currently under development, which is used for complex real-time systems
modeling and efficient analysis based on techniques presented in this paper.

2 Behaviors, Abstractions and Refinement

A system Sys consists of a finite number of components, Sys = (Cy,---,Cp).
Each component is defined as a finite set of concrete behaviors over domain
D. Semantically, a component C; is a subset of D. We use m;, 7, -- € C; to
represent the concrete behaviors of component C;. A concrete system behavior
II = (m, -+ ,m,) is a combination of concrete behaviors of individual compo-
nents, and thus system Sys is defined by a subset of domain D™.

We analyze the performance of the system (or a particular component in the
system), which is defined over a set of performance metrics P that forms a total
order (P,r>). For two elements w,w’ € P, w > w’ means that performance w
is at least as bad as w’. For example, if we use “worst-case response time” as
the performance metrics, then the performance is defined over the real number
set, P = R, and the total order relation > is the numerical comparison “>”.
Moreover, we use w > w’ to denote that performance w is strictly worse than w’
(e.g., the numerical comparison “>"). Given a concrete system behavior I7, the
evaluation function Evl(IT) returns the performance of interest for I7.

We aim at hard real-time systems, for which we are interested in the worst-
case performance w of the system:

w= max {EVI(I)} (1)

where “max” denotes the maximum element of a set according to total order
>, i.e.,, p = max(p,p’) if and only if p &> p’. If the worst-case performance meets
the required timing properties, the system is guaranteed to honor the timing
constraints under any circumstance at runtime.

Directly using Equation (1) to calculate the worst-case performance, we shall
enumerate []}", |C;| different system behaviors, which is highly intractable ex-
cept for very small task systems.
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2.1 Abstraction Tree

We define a superset of the concrete behaviors of each task and conduct the
analysis with these supersets. The supersets, though lead to a even larger state
space, have certain structure that helps us to effectively prune away a large
portion of the state space and quickly come to the desired worst-case behavior.

Formally, for each component defined by C; in the system (Cy,---,C,), we

construct a join-semilattice (C;, »=, L), where C; is a superset of C; within domain
D, ie, C; C C; € D. We call elements in C; \ C; the abstract behaviors of C;.

The partial order = is defined as follows: For any m;, 7, € D, m; = 7, (called m;
dominates ) if and only if
v<7Tla ce T 1, i1, ,7Tn> eD":
EV|(<7T1a cr g Tyttt 37Tn>) IZ EV|(<7Tla e aﬂ-;a e a7T'n>)

The U operator gets an upper bound of the two operands according to =, and
thus pUg >=pand plUq = q.

Fig. 1. Two possible abstraction trees of a component, where white nodes are concrete
behaviors and grey nodes are abstract behaviors

Within the join-semilattice (EZ, =, ), we can construct a binary abstraction
tree according to the following rules:

— Each concrete behavior corresponds to one leave in the tree.
— The parent is the join (by U) of its two children.

Note that the abstraction tree of a component is in general not unique, i.e., the
abstraction tree for a task can be constructed in different ways, as long as the
above rules are satisfied. For example, Figure 1 shows two possible abstraction
trees of a component with 4 concrete behaviors. Different abstraction trees may
lead to different efficiency of the analysis procedure in the following.

2.2 Refinement-Based Analysis

The refinement-based analysis uses the abstraction tree of each component, and
a prioritized working list Q. Each element in the working list records a system
behavior, i.e., a combination of behaviors from different abstraction trees. The
priority is ordered according to the evaluation result of the system behavior: the
worse performance the higher priority. The pseudo-code of the analysis algorithm
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is shown in Figure 2. The analysis procedure is performed in a top-down manner,
starting with the combination of the root of each abstraction tree. Each time
we take and remove the highest-priority system behavior, i.e., the first element,
from Q, and generate two new system behaviors by replacing one component’s
behavior by its children in the corresponding abstraction tree (the refine(II)
routine). Then we evaluate these new system behaviors and add them to Q, with
proper order according to the evaluation results. This procedure iterates, until
the highest priority element in Q is a combination of leaves. Then the evaluation
result of this concrete system behavior is the desired worst-case performance.

Q10

Q.add(II, EvI(II))

while I7 is abstract do
', ") < refine(I)
Q.add(Il', EvI(IT"))
Q.add(Il”  EvI(IT'"))
IT <+ Q.pophead|)

end while

return Evl(IT)

Fig. 2. Pseudo-code of the refinement-based analysis algorithm

In the refinement routine refine(II), II is replaced by new system behaviors
in which some component behavior is replaced by a node that is one step fur-
ther from the root in the corresponding tree. So after a finite number steps of
refinement, all elements in Q consist of only concrete behaviors (leaves), up on
which the algorithm must terminate.

At any step of the algorithm, for a concrete system behavior IT that leads to
the worst-case performance (Evl(IT) = w), there exists an element IT’ in Q such
that each behavior in IT’ is an ascent of the corresponding concrete behavior
in IT, so we have EvI(II') > w. On the other hand, due to the ordering rule
of elements in @, the evaluation result w of the head element in Q satisfies
w > EvI(IT'), and thus w > w. When the algorithm terminates, the return value
w is the evaluation result of a concrete system behavior, which implies w > w.
In summary, we have w = w, i.e., the return value of the algorithm is the exact
worst-case performance.

2.3 Early Termination

At any step during the execution of the algorithm in Figure 2, the evaluation re-
sult of the head of Q is an over-approximation of w, and as the algorithm continues
the result becomes more and more precise. In the design procedure, it is possible
that the designer realized that the worst-case performance is guaranteed to sat-
isfy the requirement even with an over-approximated estimation. For example,
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in schedulability analysis one can safely claim the system is valid when the over-
approximate estimation of the worst-case response times are already smaller than
the deadlines. In this case, we add the following codes

1: if Evl(II) is satisfactory then

2:  return EvI(IT)

3: end if
before line 4 in the algorithm of Figure 2 to let the algorithm terminate earlier.

3 Rate-Adaptive Tasks

In some real-time systems, task activation may depend on the system state.
For example, in automotive applications, some tasks are linked to rotation, thus
their activation rate is proportional to the angular velocity of a specific device
[4,11,5]. To avoid overload, a common practice adopted in automotive applica-
tions is to let tasks execute less functionality with higher activation rates, which
is formulated as the rate-adaptive task system in the following section.

3.1 Rate-Adaptive Task Model

We consider a task set 7 of n independent rate-adaptive tasks (components)
{T1,Ts,- - ,T,}. Each task T; has m; different configurations, and it is character-
ized by a worst-case execution time (WCET) vector e; = {e},--- , e}, a period
vector p; = {p},--- ,pI"*}, and a relative deadline vector d; = {d},--- ,d"*}. We
assume tasks have constrained deadlines, i.e., Va € [1,m;] : d? < p?. At runtime a
task may use one of these m,; configurations, i.e., use (e?, p?,d?), a € [1,m;], and
behaves like a regular periodic task with this particular parameter setting. Note
that we do not consider dynamic transition among different configurations.

We use the static-priority scheduling algorithm to schedule jobs released by
all tasks. Each task is assigned a static priority in a priori, and each of its
released job inherits this priority. We assume tasks are ordered in decreasing
priority order, i.e., T;’s priority is higher than T}’s iff i < j. At each time instant
at runtime, the job with the highest priority among all the jobs that have been
released but not finished yet is selected for execution. The performance metric we
are interested in is the worst-case response time, i.e., the maximal delay between
the release and the finishing time of a job, of each task with each configuration.

3.2 Analysis of Worst-Case Response Times

The worst-case response time of each task with each configuration can be an-
alyzed independently. Therefore, without loss of generality, in the following we
focus on the analysis of task T; and only consider one configuration (e;, p;, d;)
(superscript omitted for simplicity).

Given a configuration (e?, o d?), the maximal workload released by task T;
during time interval of size ¢ can be precisely represented by function rf,(t) [8]:

rfa(t) := [t/pf] x €
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We use 7f,(t) as a concrete behavior of task T; (a leave in the abstraction tree)
corresponding to configuration (e$, p$, d$).
The partial order = among behaviors is defined as follows:

rfo = rfa < Yt > 0,7fo(t) > 1o (t)
The join operator LI is is defined as:
rfo = 1fo Urfar & YVt > 0,7rf(t) = max(rfy (L), rfa (1))

We use rf = (rf, - - - rfa,) to denote a behavior of the system (only considering
higher-priority tasks). The evaluation function Evl(rf) is defined as

Evi(rf) = Digl t e+ Z rfa,; () <t

rfaj erf

With the join operator and the evaluation function defined above, we can
thus construct the abstraction tree of each task and perform refinement-based
analysis by the algorithm in Figure 2, to calculate the worst-case response time
of the task and the configuration under analysis.

4 Graph-Based Real-Time Tasks

Many real-time systems may have different workload activation states and switch
among them at runtime. State transition systems can usually be modeled by
graphs. In this section we consider a very general real-time workload represen-
tation, the Digraph Real-Time (DRT) task model [12], which models workload
activation patterns by arbitrary directed graphs.

4.1 The DRT Task Model

A task system consists of n independent DRT tasks (components) {7y, - ,T,}.
A task T is represented by a directed graph G(T') = (V(T), E(T)) with V(T)
denoting the set of vertices and E(T') the set of edges of the graph. The vertices
V(T) = {v1, -+ ,vn} represent the types of all jobs that can be released by
T. Each vertex v is labeled with a tuple (e(v),d(v)), where e(v) € N denotes
the worst-case execution time (WCET), d(v) € N denotes the relative deadline.
We implicitly assume the relation e(v) < d(v) for all job types v. The edges of
G(T) represent the order in which jobs generated by T are released. Each edge
(u,v) € E(T) is labeled with p(u,v) € N denoting the minimum inter-release
separation time between v and v. Deadlines are constrained, i.e., for each vertex
u we have d(u) < p(u,v) for all edges (u,v).

A job J is represented by a tuple (r, e) consisting of an absolute release time
r and an execution time e. The semantics of a DRT task system is defined as the
set of job sequences it may generate: o = [(ro, €9), (r1,€1), ...] i a job sequence
if all jobs are monotonically ordered by release times, i.e., ; < r; for i < j. A
job sequence o = [(r9, €p), (r1,€1),...] is generated by T if 7 = (v, v1,---) is a
path in G(T) and for all 4 > 0:
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6 (3,6)

Fig. 3. A DRT task

1. ri41 — 7 > p(vi,vi41) and
2. e; <e(v;)

Combining the job sequences of individual tasks results in a job sequence of the
task set.

Figure 3 shows an example to illustrate the semantics of DRT tasks. When
the system starts, T releases its first run-time job by an arbitrary vertex. Then
the released sequence corresponds to a particular direct path through G(T).
Consider the job sequence o = [(2,3), (10, 1), (25,4), (37,1)] which corresponds
to path m = (v, v2,vs,v2) in G(T'). Note that this example demonstrates the
“sporadic” behavior allowed by the semantics of the DRT model. The first job
in o (corresponds to vy) is released at time 2, and the second job in o (vg) is
released 2 time units later than its earliest possible release time, while the job
of v3 and the second job of vy are released as early as possible.

We still use the static-priority scheduling algorithm to schedule jobs. The
performance metric we are interested in is the worst-case response time of each
vertex (job type) of each task.

4.2 Analysis of Worst-Case Response Time

Since the relative deadline of each vertex is no larger than the inter-release sep-
aration of all of its outgoing edges, in any feasible task system each vertex must
be finished before the release of its successor vertices. Therefore, the analysis of
each vertex within one task can be performed independently. In the following,
we focus on the analysis of a particular vertex v of task T'.

The response time of a vertex v is decided by the job sequences released
by higher-priority tasks and the workload of itself. Therefore, to calculate the
worst-case response time of v, conceptually, we should enumerate all the pos-
sible combinations of job sequences from each higher-priority task. Among the
job sequences of a task, only the ones with minimal release separation and max-
imal execution demand (WCET) of vertices can possibly lead to the worst-case
response time, each of which corresponds to a path in the task graph.

The workload of a path 7 can be abstracted with a request function [15],
which for each t returns the maximal accumulated execution requirement of all
jobs that m may release until time ¢ (suppose the first job of 7 is released at time
0). For a path = = (v, - ,v;) through the graph G(T') of a task T, we define
its request function as
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7fx(t) := max{ e(r’) | n’ is prefix of 7 and p(7’) <t}

where e(m) = Zi:o e(v;) and p(w) := Zi;é p(vi,viy1). We use rfr(t) as a
concrete behavior of task T (a leave in the abstraction tree) corresponding to
path 7. Note that to analyze the worst-case response time of vertex v, we only
need to look into time intervals of size up to d(v), since otherwise v deems to
be unschedulable. The number of different paths that can be generated by G(T')
in a bounded time interval is finite, so there are only finite number of concrete
behaviors of a task.
The partial order = among behaviors is defined as follows:

rfn = rfn & VL€ (0,d(0)], rfx(t) > rfa(t)
The join operator LI is is defined as:
Tfr = tfa Urfrr & Yt € (0,d(0)], rfr(t) = max(rfq (t), rfzr (t))

We use rf = (rfq, - -rfx,) to denote a behavior of the system (only considering
higher-priority tasks). The evaluation function Evl(rf) is defined as

Evi(rf) = Digl t|e(v)+ Z rfa () <t

Tf’rri erf

where e(v) is the WCET of the analyzed vertex itself.

With the join operator and the evaluation function, we can thus construct
the abstraction tree of each task and perform refinement-based analysis by the
algorithm in Figure 2, to calculate the worst-case response time of v.

5 Digraph Tasks with Synchronization

In last two sections, tasks are assumed to be independent from each other, so
it is easy to compose the system behaviors with individual component behav-
iors and can easily fit into the refinement-based analysis framework. In this
section, we extend the DRT task model with synchronization. We show that
the refinement-based analysis framework can also be applied to systems where
strong inter-component dependency exists. The key is to construct proper be-
havior representation to capture interactions among components in the abstract
domain.

5.1 DRT with Synchronization

Assume a finite number of communication channels {chy, - - - ch, }, through which
tasks can send or receive signals and thus synchronize with each other. Sending a
signal through channel ch is denoted by ch!, while receiving a signal is denoted by
ch?. We call both sending and receiving operations synchronization operations.
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We call ch! the dual operation of ch? and vice versa. We use dual(a) to denote
the dual operation of a, e.g. dual(ch!) = ch?. We use OP to denote the set of all
synchronization operations in the system, which includes a pair of both sending
and receiving operations for each channel and an null operation ¢ denoting that
a vertex does not synchronize with others.

Each vertex v in a task graph is marked by a single synchronization operation
(either sending or receiving), denoted by op(v). The release of a job by vertex v is
synchronized with other jobs (from other tasks) marked with the dual operation
of op(v), i.e., v can release a job only if another vertex marked with dual(op(v))
is also eligible to release a job.

Figure 4 gives an example illustrating the semantics of the synchronization op-
erations. The vertical dashed lines denote the time points at which the minimal
inter-release separation constraints are satisfied. During the shadowed time in-
tervals, a vertex waits for its dual operation to release a job. The vertical arrows
denote actual job release times. Note that inter-release separation is counted rel-
ative to the actual release time of the previous job (the vertical arrows), rather
than the time points when the previous inter-release separation constraint is
satisfied (the dashed lines). It is allowed that at some time point a vertex v
can synchronize with multiple vertices from different tasks. In this case, v non-
deterministically chooses one of them for synchronization. In the example of
Figure 4, at time 11 both task Tb and T3 can synchronize with T7. The figure
shows one possible running sequence where task T; chooses to synchronize with
T5, and the third vertex of T3 continues to wait.

»
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Fig. 4. An example illustrating the semantics of synchronization operations

5.2 Analysis of Worst-Case Response Time

Similar to Section 4, the analysis of each vertex within one task can be performed
independently, so in the following we focus on the analysis of a particular vertex
v of task T'. Recall that in an independent DRT task system, the response time
of a vertex only depends on higher-priority tasks and its own workload. However,
when synchronization is added, the response time of a vertex also depends on
lower-priority tasks, which can affect the execution of higher-priority tasks by
synchronization operations.

We define the behavior corresponding to a path 7 in task graph G(T) as a
pair bhv, = (erfr, pst,), where

erfu(t,0) = {gfﬂ(t) ifo=op(fo(m 1)) g = {{w} if 0 = op(fu(m,t))

otherwise 0 otherwise
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Fig.5. An example illustrating the join of two behaviors and the update of system
behaviors. (a) and (b) are two paths (of the same task) and the graphical representation
of their behaviors; (c) shows the join of behaviors in (a) and (b); (d) is an (abstract)
behavior of another task; (e) and (f) are the results of Update of (c) and (d); (g) and (h)
are the results of fixing the inconsistency and redundancy in (e) and (f) by Set2Func.
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fv(m,t) returns the last vertex v; along path = = {vg, v1,---} that is possible to
release a job at time ¢ (the path starts at time 0 and ¢ > 0):

m m—+1
fo(m,t) = vy, s.t. (Zp(vi_l,vi) <tA Z P(vi1,v;) > t>
i=0 i=0

where we let p(v_1,vg) = 0 for consistency. Figure 5-(a) and (b) show the graph-
ical representation of the behaviors of two paths 7 and .
The partial order = among behaviors is defined as follows:

<€Tf7r,p$t71—> = <6Tf7r’ap8t7r’> =
Yt € (0,d(v)],Yo € OP : erfr(t,0) > erfr (t,0) A pstr(t,0) D pst(t,0)

The join operator LI is defined as:

(erfr,pstr) = (erfa, pstyr) U (erfpr,pstar) <

[ erfr(t,0) = max (erfa (t,0), erfr(t,0))
vt € (0,d(v)], Yo € OP: {pstﬂ(t,o) = pst(t,0) Upst(t,0)

Figure 5-(c¢) shows the resulting abstract behavior of joining the two concrete
behaviors in Figure 5-(a) and (b). Graphically, a behavior (erfr,pstr) can also
be represented by a set of segments, each segment s = (start, end, o, pst) having
a start time start, an ending time end, a synchronization operation o and a
path set pst. Let bhv = {bhvy,--- ,bhv,} be the function representation of a
system behavior. Then bhv can be converted to the corresponding segment-
set representation by S = Func2Set(bhv), and the inverse conversion is bhv =
Set2Func(S).

S < Func2Set(bhv)

Update(S)

bhv < Set2Func(S)

erf < the subset of behaviors in bhv.erf of higher priority tasks.
R+ Ig;iél{t\e(v) + sum(t)}, where

sum(t) + Z {vrglggp {erfT(t,o)}}
erfpr€erf
6: return R

Fig. 6. Pseudo-code of Evl(bhv)

If bhv consists of only concrete behaviors, the evaluation with bhv can be per-
formed by “simulating” the release and execution sequence of the corresponding
paths, which will not be further discussed here. The interesting case is when bhv
is an abstract system behavior, the evaluation function for which is defined by
the algorithm in Figure 6. The release of vertices may wait for extra delay due
to synchronization operations. If we use individual task behaviors to calculate
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the maximal possible workload of each task independently and sum them up as
the total system workload (as in last section), the evaluation result will be very
pessimistic. To improve evaluation precision with abstract behaviors, we use the
Update function to also consider the extra release delay due to synchronization
in abstract behaviors, the pseudo-code of which is shown in Figure 7.

1: 8«0

2: while S # 5’ do

3 S« S

4:  for all S;; € S do

5: for all s € S7, : s.o # () do
6: @ ={ss | Tj € T\ {Ti} A ss € St; A ss.0= dual(s.0)}
7 if & = () then

8 t' = +oo

9: else

/ .

10: t = glé%{ss‘start}

11: end if

12: A « max(t' — s.start,0)
13: for all s’ € Sy, : s'.start > s.start A s'.pst C s.pst do
14: s'.start = s'.start + A
15: s'.end = s’.end + A
16: end for

17: end for

18:  end for

19: end while
20: return

Fig. 7. Pseudo-code of Update(S)

Update(.S) iteratively updates the abstract behavior of each task. At each step,
the algorithm tries to shift a segment s to right by looking for the earliest eligible
time point ¢’ of dual(s.o) in all other tasks. If ¢’ is later than the start time of
s, s should be shifted to start at ¢, and all later segments that depend on s in
concrete behaviors also shift rightwards correspondingly. This procedure repeats
until a global fixed point is reached. Figure 5-(¢) and (f) show the resulting
segment sets by applying the above procedure to the segment sets in Figure
5-(c) and (d).

Shifting some of the segments in S may lead to inconsistency and redun-
dancy regarding the represented concrete behaviors. For example, in Figure 5-
(e) there is no segment covering time interval [3,4). This is because segment
(3,4,al,{m,m2}) is shifted to right. To resolve this, we shall extend segment
(0,4, ¢, {m2}) to cover [3,4). Also in Figure 5-(e), time interval [13,15) is cov-
ered by two segments both with 57 and path 1. In this case, the lower segment
is redundant and should be merged into the upper one. Function Set2Func ad-
dresses these inconsistencies and redundancies and transfer the segment sets to
well-defined function representations of behaviors.
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6 Experiments

In this section, we briefly report some experiment results with the DRT task
model described in Section 4. Experiments are conducted with randomly gener-
ated DRT task sets. To generate a task, a random number of vertices is created
with edges connecting them according to a specified branching degree. The fol-
lowing table gives details of the used parameter ranges, where p denotes inter-
release separation between two vertices, e and d denotes the WCET and relative
deadline of a vertex, respectively.

Table 1. Parameter ranges

vertices  out-degree P d/p e/d
[5, 10] (1, 3] [100,300] [0.5,1] [0,0.07]

Feasible task sets created by this method have sizes up to about 20 tasks
with over 100 individual job types in total. For evaluating the effectiveness of
the abstraction refinement scheme, we capture for each call to the refinement-
base analysis how many system behaviors have been analyzed. We compare this
number with the total number of system behaviors, i.e., all the combinations of
individual task behaviors. This ratio indicates how much computational work
the refinement scheme saves, compared to a naive brute-force style test.

10%

10

Tested Combinations

100 %----- SERREE feeesas AREELE FSRCEET SECTEE oo

10° 10! 10? 10° 10* 10° 10° 107
Total Combinations

Fig. 8. Tested versus total number of system behaviors

We capture 105 samples and show our results in Figure 8. We see that the
combinatorial abstraction refinement scheme saves work in the order of several
magnitudes. More details of the experiments can be found in [13].

7 Tool

TIMES [1] is a tool suit for schedulability analysis of complex real-time systems,
in which task systems are modeled with task automata [6] that are essentially
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timed automata [3], and the analysis problems are solved using the UPPAAL
model checker [9]. The TIMES modeling language based on timed automata
provides powerful expressiveness, but also limits the scalability of the tool due
to the high complexity of verification problems for timed automata.

Currently we are developing a new version of TIMES based on the less expres-
sive DRT task model and several scalable timing analysis techniques developed
recently (including the refinement-based analysis in this paper). Note that a
DRT task is in fact a task automaton with one clock, where only lower bounds
on the clock are allowed to use in expressing timing constraints on job releases.
The new TIMES is expected to have much higher analysis efficiency and can deal
with large-scale realistic systems. The tool offers the following main features:

GUI Engine

Editor A

| nalysis

Refinement

| Finitary RTC

e 2

Workload Models
DRT, etc.

Abstraction
DBF, arrival curve

Resource Models
service curve, etc.

Scheduling Policy
FPS, EDF, etc.

Analyzer
N * feasiblity
Simulator * schedulability
* random simulation *WCRT
* trace generation * end-to-end delay
* buffer requirement

Fig. 9. Tool Architecture

— Editor to graphically model a system and the abstract behaviour of its
environment. Workload is modeled as a set of DRT tasks, and different DRT
tasks can synchronize with each other by communication channels and/or
semaphores. System resource is modeled with a topology of processing and
communication units, and each unit is associated with a service curve [16].
The users can choose the scheduling policy on each unit.

— Simulator to visualize the system behavior as Gant charts and message
sequence charts. The simulator can be used to randomly generate possible
execution traces, or alternatively the user can control the execution by select-
ing the transitions to be taken. The simulator can also be used to visualize
error traces produced in the analysis phase.

— Analyzer to check various properties of the system model, including fea-
sibility, scheduability, worst-case response time (WCRT), end-to-end delay
and buffer requirement.

The tool architecture is depicted in Figure 9. The tool consists of two main
parts, a Graphical User Interface (GUI) and an analysis engine. The GUI con-
sists of editors, simulator and analyzer as described above, and uses XML to
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represent the system descriptions both internally and externally. The analy-
sis engine consists of four parts. The Abstraction module transform the DRT
workload models into abstract representations such as demand bound functions
(DBF) [2] and request bound functions (RBF) [15]. The transformation is very
efficient, based on the path abstraction technique proposed in [12]. The Refine-
ment module is the core of the engine, which uses the framework in this paper
to iteratively obtain tighter and tighter analysis results until the property of
interest is proved/disproved. At each step of the analysis, it invokes either the
Analysis module for traditional WCRT analysis and schedulability test, or in-
vokes the Finitary RTC module for efficient system-wide performance analysis
using Finitary Real-Time Calculus [7] in the presence of a distributed platform.
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