
Christel Baier
Cesare Tinelli (Eds.)

 123

21st International Conference, TACAS 2015
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015
London, UK, April 11–18, 2015, Proceedings

Tools and Algorithms
for the Construction
and Analysis of SystemsLN

CS
 9

03
5

AR
Co

SS

Lecture Notes in Computer Science 9035

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
John C. Mitchell, USA
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA
Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel
C. Pandu Rangan, India
Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Christel Baier · Cesare Tinelli (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems
21st International Conference, TACAS 2015
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015
London, UK, April 11–18, 2015
Proceedings

ABC

Editors
Christel Baier
Technical University of Dresden
Dresden
Germany

Cesare Tinelli
The University of Iowa
Iowa City
Iowa
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-46680-3 ISBN 978-3-662-46681-0 (eBook)
DOI 10.1007/978-3-662-46681-0

Library of Congress Control Number: 2015934133

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Heidelberg New York Dordrecht London
c© Springer-Verlag Berlin Heidelberg 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Foreword

ETAPS 2015 was the 18th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established
in 1998, and this year consisted of six constituting conferences (CC, ESOP, FASE,
FoSSaCS, TACAS, and POST) including five invited speakers and two tutorial speakers.
Prior to and after the main conference, numerous satellite workshops took place and
attracted many researchers from all over the world.

ETAPS is a confederation of several conferences, each with its own Program Com-
mittee and its own Steering Committee (if any). The conferences cover various aspects
of software systems, ranging from theoretical foundations to programming language
developments, compiler advancements, analysis tools, formal approaches to software
engineering, and security. Organizing these conferences into a coherent, highly syn-
chronized conference program enables the participation in an exciting event, having the
possibility to meet many researchers working in different directions in the field, and to
easily attend talks at different conferences.

The six main conferences together received 544 submissions this year, 152 of which
were accepted (including 10 tool demonstration papers), yielding an overall acceptance
rate of 27.9%. I thank all authors for their interest in ETAPS, all reviewers for the peer-
reviewing process, the PC members for their involvement, and in particular the PC Co-
chairs for running this entire intensive process. Last but not least, my congratulations to
all authors of the accepted papers!

ETAPS 2015 was greatly enriched by the invited talks by Daniel Licata (Wesleyan
University, USA) and Catuscia Palamidessi (Inria Saclay and LIX, France), both unify-
ing speakers, and the conference-specific invited speakers [CC] Keshav Pingali (Univer-
sity of Texas, USA), [FoSSaCS] Frank Pfenning (Carnegie Mellon University, USA),
and [TACAS] Wang Yi (Uppsala University, Sweden). Invited tutorials were provided
by Daniel Bernstein (Eindhoven University of Technology, the Netherlands and the Uni-
versity of Illinois at Chicago, USA), and Florent Kirchner (CEA, the Alternative Ener-
gies and Atomic Energy Commission, France). My sincere thanks to all these speakers
for their inspiring talks!

ETAPS 2015 took place in the capital of England, the largest metropolitan area in
the UK and the largest urban zone in the European Union by most measures. ETAPS
2015 was organized by the Queen Mary University of London in cooperation with
the following associations and societies: ETAPS e.V., EATCS (European Association
for Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). It was supported by the following sponsors: Semmle, Winton, Facebook,
Microsoft Research, and Springer-Verlag.

VI Foreword

The organization team comprised:

– General Chairs: Pasquale Malacaria and Nikos Tzevelekos
– Workshops Chair: Paulo Oliva
– Publicity chairs: Michael Tautschnig and Greta Yorsh
– Members: Dino Distefano, Edmund Robinson, and Mehrnoosh Sadrzadeh

The overall planning for ETAPS is the responsibility of the Steering Committee. The
ETAPS Steering Committee consists of an Executive Board (EB) and representatives of
the individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board comprises Gilles Barthe (satellite events, Madrid), Hol-
ger Hermanns (Saarbrücken), Joost-Pieter Katoen (Chair, Aachen and Twente), Gerald
Lüttgen (Treasurer, Bamberg), and Tarmo Uustalu (publicity, Tallinn). Other members of
the Steering Committee are: Christel Baier (Dresden), David Basin (Zurich), Giuseppe
Castagna (Paris), Marsha Chechik (Toronto), Alexander Egyed (Linz), Riccardo Focardi
(Venice), Björn Franke (Edinburgh), Jan Friso Groote (Eindhoven), Reiko Heckel (Le-
icester), Bart Jacobs (Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Christof
Löding (Aachen), Ina Schäfer (Braunschweig), Pasquale Malacaria (London), Tiziana
Margaria (Limerick), Andrew Myers (Boston), Catuscia Palamidessi (Paris), Frank
Piessens (Leuven), Andrew Pitts (Cambridge), Jean-Francois Raskin (Brussels), Don
Sannella (Edinburgh), Vladimiro Sassone (Southampton), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Cesare Tinelli (Iowa City),
Luca Vigano (London), Jan Vitek (Boston), Igor Walukiewicz (Bordeaux), Andrzej Wą-
sowski (Copenhagen), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work to make the 18th
edition of ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and to Springer for their support. Finally, many thanks
to Pasquale and Nikos and their local organization team for all their efforts enabling
ETAPS to take place in London!

January 2015 Joost-Pieter Katoen

Preface

This volume contains the proceedings of the 21st International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2015). The confer-
ence took place during April 13–17, 2015 in the lecture halls of Queen Mary University
of London as part of the 18th European Joint Conferences on Theory and Practice of
Software (ETAPS 2015).

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The confer-
ence aims to bridge the gaps between different communities with this common interest
and support them in their quest to improve the utility, reliability, flexibility, and ef-
ficiency of tools and algorithms for building systems. The research areas covered by
TACAS 2015 include specification and verification techniques, software and hardware
verification, analytical techniques for real-time, hybrid and stochastic systems, analyt-
ical techniques for safety, security and dependability, model checking, theorem prov-
ing, SAT and SMT solving, static and dynamic program analysis, testing, abstraction
techniques for modeling and verification, compositional and refinement-based method-
ologies, system construction and transformation techniques, tool environments and tool
architectures, as well as applications and case studies.

As in former years, TACAS 2015 solicited four types of submissions:

– research papers, identifying and justifying a principled advance to the theoretical
foundations for the construction and analysis of systems, where applicable sup-
ported by experimental validation;

– case-study papers, reporting on case studies and providing information about the
system being studied, the goals of the study, the challenges the system poses to
automated analysis, research methodologies and approaches used, the degree to
which goals were attained, and how the results can be generalized to other problems
and domains;

– regular tool papers, presenting a new tool, a new tool component, or novel exten-
sions to an existing tool, with an emphasis on design and implementation concerns,
including software architecture and core data structures, practical applicability, and
experimental evaluations;

– short tool-demonstration papers, focussing on the usage aspects of tools.

This year, TACAS attracted a total of 164 paper submissions, divided into 105 re-
search papers, 11 case-study papers, 31 regular tool papers, and 17 tool-demonstration
papers. Each submission was refereed by at least three reviewers. In total, 45 papers
were accepted for presentation at the conference: 27 research papers, 2 case-study pa-
pers, 7 regular tool papers, and 9 tool-demonstration papers, with an overall acceptance
rate of 27 %. The acceptance rate for full papers (research, case-study, or regular tool
papers) was 17 %.

TACAS 2015 hosted the 4th International Competition on Software Verification
(SV-COMP), chaired and organized by Dirk Beyer. The competition had a record

VIII Preface

number of participants: 22 verification tools from 13 countries were submitted for the
systematic comparative evaluation. This volume includes an overview of the compe-
tition results, and short papers describing 15 of the participating tools. These papers
were reviewed by a separate Program Committee and each of them was refereed by
four reviewers. A session in the TACAS program was assigned for the presentation of
the results, by the SV-COMP Chair, and of the participating tools, by the developer
teams.

Besides the presentation of the submitted contributions, the program included an
invited talk by Wang Yi (Uppsala University, Sweden) on Scalable Timing Analysis by
Refinement and two plenary invited talks by ETAPS unifying speakers Daniel Licata
(Wesleyan University, US) and Catuscia Palamidessi (Inria Saclay and LIX, France).

We would like to thank all the authors who submitted papers to TACAS 2015, the
Program Committee members and their subreviewers, the TACAS Tool Chair Jaco van
de Pol and the SV-COMP Chair Dirk Beyer. We thank the competition teams for partici-
pating and show casing their tools to the TACAS community. We benefited greatly from
the EasyChair conference management system, which we used to handle the submis-
sion, review, discussion, and proceedings preparation processes. Special thanks go to
Joachim Klein and Dirk Beyer for their assistance in the preparation of these proceed-
ings. Finally, we would like to thank the TACAS Steering Committee and the ETAPS
Steering Committee for their guidance, and the ETAPS 2015 Organizing Committee,
chaired by Pasquale Malacaria and Nikos Tzevelekos, for their assistance.

January 2015 Christel Baier
Cesare Tinelli

Organization

TACAS Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Christel Baier Technical University of Dresden, Germany
Nathalie Bertrand Inria Rennes Bretagne-Atlantique, France
Armin Biere Johannes Kepler University, Austria
Patricia Bouyer LSV, CNRS and ENS Cachan, France
Marsha Chechik University of Toronto, Canada
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Rance Cleaveland University of Maryland, USA
Cindy Eisner IBM Haifa Research Lab, Israel
Uli Fahrenberg IRISA Rennes, France
Hubert Garavel Inria Grenoble Rhône-Alpes, France
Patrice Godefroid Microsoft Research, USA
Susanne Graf Université Joseph Fourier/CNRS/VERIMAG,

France
Orna Grumberg Technion - Israel Institute of Technology, Israel
Arie Gurfinkel Software Engineering Institute, Carnegie

Mellon University, USA
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Holger Hermanns Saarland University, Germany
Reiner Hähnle Technische Universität Darmstadt, Germany
Daniel Kroening Oxford University, UK
Kim Larsen Aalborg University, Denmark
Tiziana Margaria University of Limerick and Lero, the Irish Software

Research Center, Ireland
Ken Mcmillan Microsoft Research, USA
Tobias Nipkow Technische Universität München, Germany
David Parker University of Birmingham, UK
Corina Pasareanu CMU/NASA Ames Research Center, USA
Ruzica Piskac Yale University, USA
Jean-Francois Raskin Université Libre de Bruxelles, Belgium
Philipp Ruemmer Uppsala University, Sweden
Sriram Sankaranarayanan University of Colorado, USA
Scott Smolka Stony Brook University, USA
Bernhard Steffen Technische Universität Dortmund, Germany
Cesare Tinelli The University of Iowa, USA

X Organization

Jaco van de Pol University of Twente, The Netherlands
Helmut Veith Vienna University of Technology, Austria
Willem Visser Stellenbosch University, South Africa
Heike Wehrheim University of Paderborn, Germany
Lenore Zuck University of Illinois at Chicago, USA

SV-COMP Program Committee

Dirk Beyer University of Passau, Germany
Franck Cassez NICTA Sydney, Australia
Matthias Dangl University of Passau, Germany
Bernd Fischer Stellenbosch University, South Africa
Arie Gurfinkel Software Engineering Institute Carnegie

Mellon University, USA
Matthias Heizmann University of Freiburg, Germany
Ton-Chanh Le National University of Singapore, Singapore
Ondrej Lengal Brno University of Technology, Czech Republic
Jeremy Morse University of Bristol, UK
Vadim Mutilin ISP RAS, Russia
Alexander Nutz University of Freiburg, Germany
Gennaro Parlato University of Southampton, UK
Zvonimir Rakamarić University of Utah, USA
Herbert Oliveira Rocha Federal University of Amazonas, Brazil
Pablo Sánchez University of Cantabria, Spain
Thomas Ströder RWTH Aachen University, Germany
Michael Tautschnig Queen Mary University of London, UK
Salvatore La Torre Università degli Studi di Salerno, Italy
Ming-Hsien Tsai Academia Sinica, China
Caterina Urban École normale supérieure Paris, France
Tomas Vojnar Brno University of Technology, Czech Republic
Dexi Wang Tsinghua University, China
Wei Wang New York University, USA

Additional Reviewers

Abdelkader, Karam
Albarghouthi, Aws
Aleksandrowicz, Gadi
Ashok, Vikas
Arbel, Eli
Axelsson, Emil
Bacci, Giorgio
Bacci, Giovanni
Backeman, Peter
Barbot, Benoît

Basset, Nicolas
Bauer, Oliver
Beneš, Nikola
Bodden, Eric
Bogomolov, Sergiy
Boichut, Yohan
Bollig, Benedikt
Bolosteanu, Iulia
Boudjadar, Jalil
Bozzano, Marco

Organization XI

Brenguier, Romain
Brihaye, Thomas
Bruns, Daniel
Bubel, Richard
Butkova, Yuliya
Caillaud, Benoît
Cattaruzza, Dario
Chakarov, Aleksandar
Chaki, Sagar
Chen, Xin
Corzilius, Florian
Csallner, Christoph
D’Souza, Deepak
David, Cristina
DeFrancisco, Richard
Dehnert, Christian
Delaune, Stephanie
Dimitrova, Rayna
Din, Crystal Chang
Doko, Marko
Doyen, Laurent
Eckhardt, Jonas
Egly, Uwe
Estievenart, Morgane
Evrard, Hugues
Fedyukovich, Grigory
Fernandes Pires, Anthony
Ferrer Fioriti, Luis María
Filieri, Antonio
Filiot, Emmanuel
Flores Montoya, Antonio E.
Fournier, Paulin
Frehse, Goran
Fröhlich, Andreas
Gardy, Patrick
Gario, Marco
Gay, Simon
Geldenhuys, Jaco
Gibson-Robinson, Thomas
Given-Wilson, Thomas
Golden, Bat-Chen
Graf-Brill, Alexander
Grebing, Sarah
Griggio, Alberto
Grinchtein, Olga
Gu, Ronghui

Haddad, Axel
Haesaert, Sofie
Hahn, Ernst Moritz
Hanazumi, Simone
Hartmanns, Arnd
Hashemi, Vahid
Hatefi, Hassan
Hentschel, Martin
Heule, Marijn
Hoenicke, Jochen
Holík, Lukáš
Holzer, Andreas
Hostettler, Steve
Howar, Falk
Irfan, Ahmed
Isberner, Malte
Islam, Md. Ariful
Ivrii, Alexander
Jansen, Nils
Jeffrey, Alan
Jegourel, Cyrille
Jimborean, Alexandra
Jobstmann, Barbara
Joshi, Saurabh
Kahsai, Temesghen
Keidar-Barner, Sharon
Khamespanah, Ehsan
Kim, Jin Hyun
Kinder, Johannes
King, Tim
Kloos, Johannes
Komuravelli, Anvesh
Konnov, Igor
Kopetzki, Dawid
Kotek, Tomer
Krčál, Jan
Kremer, Gereon
Kremer, Steve
Krishna, Siddharth
Křetínský, Jan
Lampka, Kai
Lang, Frédéric
Legay, Axel
Lengal, Ondrej
Leucker, Martin
Markey, Nicolas

XII Organization

Martins, Ruben
Mateescu, Radu
Matteplackel, Raj Mohan
Maubert, Bastien
Meller, Yael
Mihaila, Bogdan
Mikučionis, Marius
Mover, Sergio
Mukherjee, Rajdeep
Murthy, Abhishek
Nadel, Alexander
Nakata, Keiko
Namjoshi, Kedar
Naujokat, Stefan
Navas, Jorge A
Nepomnyachiy, Sergey
Nevo, Ziv
Nies, Gilles
Norman, Gethin
Olesen, Mads Chr.
Orni, Avigail
Oualhadj, Youssouf
Pavese, Esteban
Perevoshchikov, Vitaly
Perez, Guillermo
Phan, Quoc-Sang
Pidan, Dmitry
Platzer, André
Poetzl, Daniel
Poulsen, Danny Bøgsted
Quaas, Karin
Quilbeuf, Jean
Radhakrishna, Arjun
Randour, Mickael
Ratschan, Stefan
Remke, Anne
Reynier, Pierre-Alain
Rodriguez, Cesar
Roveri, Marco
Rungta, Neha
Rusinowitch, Michael
Rüthing, Oliver
Sankur, Ocan
Schordan, Markus
Schrammel, Peter

Schupp, Stefan
Schwartz-Narbonne, Daniel
Seidl, Martina
Sen, Koushik
Servais, Frédéric
Serwe, Wendelin
Sharma, Subodh
Sheinvald, Sarai
Shoham, Sharon
Sieunarine, Clint
Sokolsky, Oleg
Song, Lei
Sosnovich, Adi
Spegni, Francesco
Srba, Jiří
Srivathsan, B
Stigge, Martin
Stoller, Scott
Stratulat, Sorin
Taankvist, Jakob Haahr
Tautschnig, Michael
Tkachuk, Oksana
Tonetta, Stefano
Traonouez, Louis-Marie
Tzoref-Brill, Rachel
Van Der Merwe, Brink
Van Staden, Stephan
Vizel, Yakir
Vujosevic Janicic, Milena
Wachter, Björn
Wang, Xiaoyin
Wasser, Nathan
Weissenbacher, Georg
Wenzel, Makarius
Widder, Josef
Wies, Thomas
Wimmer, Ralf
Worrell, James
Xiao, Xusheng
Xue, Bingtian
Yang, Junxing
Yorav, Karen
Zeljić, Aleksandar
Zufferey, Damien
Zuleger, Florian

Contents

Invited Talk

Scalable Timing Analysis with Refinement . 3
Nan Guan, Yue Tang, Jakaria Abdullah, Martin Stigge, and Wang Yi

Hybrid Systems

A Formally Verified Hybrid System for the Next-Generation Airborne
Collision Avoidance System . 21

Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas,
Ryan Gardner, Aurora Schmidt, Erik Zawadzki, and André Platzer

Verified Reachability Analysis of Continuous Systems 37
Fabian Immler

HyComp: An SMT-Based Model Checker for Hybrid Systems 52
Alessandro Cimatti, Alberto Griggio, Sergio Mover,
and Stefano Tonetta

C2E2: A Verification Tool for Stateflow Models . 68
Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan,
and Matthew Potok

Program Analysis

Non-cumulative Resource Analysis . 85
Elvira Albert, Jesús Correas Fernández, and Guillermo Román-Dı́ez

Value Slice: A New Slicing Concept for Scalable Property Checking 101
Shrawan Kumar, Amitabha Sanyal, and Uday P. Khedker

A Method for Improving the Precision and Coverage of Atomicity
Violation Predictions . 116

Reng Zeng, Zhuo Sun, Su Liu, and Xudong He

Commutativity of Reducers . 131
Yu-Fang Chen, Chih-Duo Hong, Nishant Sinha, and Bow-Yaw Wang

Verification and Abstraction

Inferring Simple Solutions to Recursion-Free Horn Clauses via
Sampling . 149

Hiroshi Unno and Tachio Terauchi

XIV Contents

Analysis of Dynamic Process Networks . 164
Kedar S. Namjoshi and Richard J. Trefler

Tool Demonstrations

MULTIGAIN: A Controller Synthesis Tool for MDPs with Multiple
Mean-Payoff Objectives . 181

Tomáš Brázdil, Krishnendu Chatterjee, Vojtěch Forejt,
and Antońın Kučera

syntMaskFT: A Tool for Synthesizing Masking Fault-Tolerant Programs
from Deontic Specifications . 188

Ramiro Demasi, Pablo F. Castro, Nicolás Ricci,
Thomas S.E. Maibaum, and Nazareno Aguirre

vZ - An Optimizing SMT Solver . 194
Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein

dReach: δ-Reachability Analysis for Hybrid Systems 200
Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke

Uppaal Stratego . 206
Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen,
Marius Mikučionis, and Jakob Haahr Taankvist

BINSEC: Binary Code Analysis with Low-Level Regions 212
Adel Djoudi and Sébastien Bardin

Insight: An Open Binary Analysis Framework . 218
Emmanuel Fleury, Olivier Ly, Gérald Point, and Aymeric Vincent

SAM: The Static Analysis Module of the MAVERIC Mobile App
Security Verification Platform . 225

Alessandro Armando, Gianluca Bocci, Giantonio Chiarelli,
Gabriele Costa, Gabriele De Maglie, Rocco Mammoliti,
and Alessio Merlo

Symbolic Model-Checking Using ITS-Tools . 231
Yann Thierry-Mieg

Stochastic Models

Semantic Importance Sampling for Statistical Model Checking 241
Jeffery P. Hansen, Lutz Wrage, Sagar Chaki, Dionisio de Niz,
and Mark Klein

Contents XV

Strategy Synthesis for Stochastic Games with Multiple Long-Run
Objectives . 256

Nicolas Basset, Marta Kwiatkowska, Ufuk Topcu,
and Clemens Wiltsche

FAUST2: Formal Abstractions of Uncountable-STate STochastic
Processes . 272

Sadegh Esmaeil Zadeh Soudjani, Caspar Gevaerts,
and Alessandro Abate

SAT and SMT

Linearly Ordered Attribute Grammar Scheduling Using SAT-Solving . . . 289
Jeroen Bransen, L. Thomas van Binsbergen, Koen Claessen,
and Atze Dijkstra

On Parallel Scalable Uniform SAT Witness Generation 304
Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel,
Sanjit A. Seshia, and Moshe Y. Vardi

Approximate Counting in SMT and Value Estimation for Probabilistic
Programs . 320

Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

Pushing the Envelope of Optimization Modulo Theories with
Linear-Arithmetic Cost Functions . 335

Roberto Sebastiani and Patrick Trentin

Partial Order Reduction, Bisimulation and Fairness

Stateless Model Checking for TSO and PSO . 353
Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig,
Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas

GPU Accelerated Strong and Branching Bisimilarity Checking 368
Anton Wijs

Fairness for Infinite-State Systems . 384
Byron Cook, Heidy Khlaaf, and Nir Piterman

Competition on Software Verification

Software Verification and Verifiable Witnesses . 401
Dirk Beyer

XVI Contents

AProVE: Termination and Memory Safety of C Programs (Competition
Contribution) . 417

Thomas Ströder, Cornelius Aschermann, Florian Frohn,
Jera Hensel, and Jürgen Giesl

Cascade (Competition Contribution) . 420
Wei Wang and Clark Barrett

CPAchecker with Support for Recursive Programs and Floating-Point
Arithmetic . 423

Matthias Dangl, Stefan Löwe, and Philipp Wendler

CPArec: Verifying Recursive Programs via Source-to-Source Program
Transformation (Competition Contribution) . 426

Yu-Fang Chen, Chiao Hsieh, Ming-Hsien Tsai, Bow-Yaw Wang,
and Farn Wang

FramewORk for Embedded System verificaTion (Competition
Contribution) . 429

Pablo Gonzalez-de-Aledo and Pablo Sanchez

Forester: Shape Analysis Using Tree Automata (Competition
Contribution) . 432

Lukáš Hoĺık, Martin Hruška, Ondřej Lengál, Adam Rogalewicz,
Jǐŕı Šimáček, and Tomáš Vojnar

MU-CSeq 0.3: Sequentialization by Read-Implicit and Coarse-Grained
Memory Unwindings (Competition Contribution) . 436

Ermenegildo Tomasco, Omar Inverso, Bernd Fischer,
Salvatore La Torre, and Gennaro Parlato

Perentie: Modular Trace Refinement and Selective Value Tracking
(Competition Contribution) . 439

Franck Cassez, Takashi Matsuoka, Edward Pierzchalski,
and Nathan Smyth

Predator Hunting Party (Competition Contribution) 443
Petr Muller, Petr Peringer, and Tomáš Vojnar

SeaHorn: A Framework for Verifying C Programs (Competition
Contribution) . 447

Arie Gurfinkel, Temesghen Kahsai, and Jorge A. Navas

SMACK+Corral: A Modular Verifier (Competition Contribution) 451
Arvind Haran, Montgomery Carter, Michael Emmi, Akash Lal,
Shaz Qadeer, and Zvonimir Rakamarić

Contents XVII

Ultimate Automizer with Array Interpolation
(Competition Contribution) . 455

Matthias Heizmann, Daniel Dietsch, Jan Leike, Betim Musa,
and Andreas Podelski

Ultimate Kojak with Memory Safety Checks
(Competition Contribution) . 458

Alexander Nutz, Daniel Dietsch, Mostafa Mahmoud Mohamed,
and Andreas Podelski

Unbounded Lazy-CSeq: A Lazy Sequentialization Tool for C Programs
with Unbounded Context Switches (Competition Contribution) 461

Truc L. Nguyen, Bernd Fischer, Salvatore La Torre,
and Gennaro Parlato

FuncTion: An Abstract Domain Functor for Termination
(Competition Contribution) . 464

Caterina Urban

Parameter Synthesis

Model Checking Gene Regulatory Networks . 469
Mirco Giacobbe, Călin C. Guet, Ashutosh Gupta,
Thomas A. Henzinger, Tiago Paixão, and Tatjana Petrov

Symbolic Quantitative Robustness Analysis of Timed Automata 484
Ocan Sankur

Program Synthesis

Pattern-Based Refinement of Assume-Guarantee Specifications in
Reactive Synthesis . 501

Rajeev Alur, Salar Moarref, and Ufuk Topcu

Assume-Guarantee Synthesis for Concurrent Reactive Programs with
Partial Information . 517

Roderick Bloem, Krishnendu Chatterjee, Swen Jacobs,
and Robert Könighofer

Shield Synthesis: Runtime Enforcement for Reactive Systems 533
Roderick Bloem, Bettina Könighofer, Robert Könighofer,
and Chao Wang

Program and Runtime Verification

Verifying Concurrent Programs by Memory Unwinding 551
Ermenegildo Tomasco, Omar Inverso, Bernd Fischer,
Salvatore La Torre, and Gennaro Parlato

XVIII Contents

AutoProof: Auto-Active Functional Verification of Object-Oriented
Programs . 566

Julian Tschannen, Carlo A. Furia, Martin Nordio,
and Nadia Polikarpova

An LTL Proof System for Runtime Verification . 581
Clare Cini and Adrian Francalanza

MARQ: Monitoring at Runtime with QEA . 596
Giles Reger, Helena Cuenca Cruz, and David Rydeheard

Temporal Logic and Automata

Parallel Explicit Model Checking for Generalized Bchi Automata 613
Etienne Renault, Alexandre Duret-Lutz, Fabrice Kordon,
and Denis Poitrenaud

Limit Deterministic and Probabilistic Automata for LTL\GU 628
Dileep Kini and Mahesh Viswanathan

Saturation-Based Incremental LTL Model Checking with Inductive
Proofs . 643

Vince Molnár, Dániel Darvas, András Vörös, and Tamás Bartha

Nested Antichains for WS1S . 658
Tomáš Fiedor, Lukáš Hoĺık, Ondřej Lengál, and Tomáš Vojnar

Model Checking

Sylvan: Multi-core Decision Diagrams . 677
Tom van Dijk and Jaco van de Pol

LTSmin: High-Performance Language-Independent Model Checking 692
Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol,
Stefan Blom, and Tom van Dijk

Using a Formal Model to Improve Verification of a Cache-Coherent
System-on-Chip . 708

Abderahman Kriouile and Wendelin Serwe

Author Index . 723

Invited Talk

Scalable Timing Analysis with Refinement

Nan Guan1, Yue Tang1, Jakaria Abdullah2, Martin Stigge2, and Wang Yi1,2

1 Northeastern University, China
2 Uppsala University, Sweden

Abstract. Traditional timing analysis techniques rely on composing
system-level worst-case behavior with local worst-case behaviors of indi-
vidual components. In many complex real-time systems, no single local
worst-case behavior exists for each component and it generally requires
to enumerate all the combinations of individual local behaviors to find
the global worst case. This paper presents a scalable timing analysis tech-
nique based on abstraction refinement, which provides effective guidance
to significantly prune away state space and quickly verify the desired tim-
ing properties. We first establish the general framework of the method,
and then apply it to solve the analysis problem for several different real-
time task models.

Keywords: Real-time systems, timing analysis, scalability, digraph real-
time task model.

1 Introduction

A real-time system is often described by a collection of recurring tasks, each
of which repeatedly activates workload with fixed periods [10]. The analysis
problem of this simple task model has been well-studied and efficient techniques
exist. The key idea is to identify the worst-case behavior of each single task,
and the system-level worst-case behavior is composed by the local worst-case
behaviors of individual tasks.

To meet the increasing requirements on functionality and quality of service,
real-time systems become more and more complex. For example, the workload
activation pattern of a task may change from time to time depending on the sys-
tem state. A major challenge is that there is no single local worst-case behavior
of each task. Several candidate behaviors of a task may be incomparable, and
it is generally necessary to enumerate and analyze all the combinations of the
candidate behaviors of all tasks to figure out which particular combination is the
worst. This leads to combinatorial state space explosion. It has been proved that
the analysis problem of even very simple task models is strongly coNP-hard [14],
as long as each task has multiple candidate behaviors that can potentially lead
to the system-level worst case. Existing analysis techniques for such systems all
suffer serious combinatorial state space explosion and are highly non-scalable.

This paper presents a timing analysis technique based on refinement to ad-
dress the above challenge. For each task, we construct a tree-like structural state

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 3–18, 2015.
DOI: 10.1007/978-3-662-46681-0_1

4 N. Guan et al.

space, where each leave corresponds to a concrete behavior of the task and each
node in the tree over-approximates its children. Then the analysis is performed
with the tree structures of all tasks in a top-down manner, starting with the
combination of roots, i.e., the most coarse approximation, and being iteratively
refined by moving down to the leaves. This provides us effective guidance to sig-
nificantly prune away state space and quickly find the exact system-level worst-
case behavior. This method is applicable to timing analysis problems for a wide
range of real-time task models. In this paper, we first establish the general frame-
work of refinement-based analysis, then apply it to three different real-time task
models, namely the rate-adaptive real-time task model [4], the digraph real-time
task model [12] and its extension with synchronization. We also present a tool
suit currently under development, which is used for complex real-time systems
modeling and efficient analysis based on techniques presented in this paper.

2 Behaviors, Abstractions and Refinement

A system Sys consists of a finite number of components, Sys = 〈C1, · · · ,Cn〉.
Each component is defined as a finite set of concrete behaviors over domain
D. Semantically, a component Ci is a subset of D. We use πi, π

′
i, · · · ∈ Ci to

represent the concrete behaviors of component Ci. A concrete system behavior
Π = 〈π1, · · · , πn〉 is a combination of concrete behaviors of individual compo-
nents, and thus system Sys is defined by a subset of domain Dn.

We analyze the performance of the system (or a particular component in the
system), which is defined over a set of performance metrics P that forms a total
order 〈P ,�〉. For two elements ω, ω′ ∈ P , ω � ω′ means that performance ω
is at least as bad as ω′. For example, if we use “worst-case response time” as
the performance metrics, then the performance is defined over the real number
set, P = R, and the total order relation � is the numerical comparison “≥”.
Moreover, we use ω � ω′ to denote that performance ω is strictly worse than ω′

(e.g., the numerical comparison “>”). Given a concrete system behavior Π , the
evaluation function Evl(Π) returns the performance of interest for Π .

We aim at hard real-time systems, for which we are interested in the worst-
case performance ω of the system:

ω = max
∀Π∈Sys

{Evl(Π)} (1)

where “max” denotes the maximum element of a set according to total order
�, i.e., p = max(p, p′) if and only if p� p′. If the worst-case performance meets
the required timing properties, the system is guaranteed to honor the timing
constraints under any circumstance at runtime.

Directly using Equation (1) to calculate the worst-case performance, we shall
enumerate

∏n
i=1 |Ci| different system behaviors, which is highly intractable ex-

cept for very small task systems.

Scalable Timing Analysis with Refinement 5

2.1 Abstraction Tree

We define a superset of the concrete behaviors of each task and conduct the
analysis with these supersets. The supersets, though lead to a even larger state
space, have certain structure that helps us to effectively prune away a large
portion of the state space and quickly come to the desired worst-case behavior.

Formally, for each component defined by Ci in the system 〈C1, · · · ,Cn〉, we
construct a join-semilattice 〈C̃i,�,�〉, where C̃i is a superset of Ci within domain

D, i.e., Ci ⊆ C̃i ⊆ D. We call elements in C̃i \ Ci the abstract behaviors of Ci.
The partial order � is defined as follows: For any πi, π

′
i ∈ D, πi � π′

i (called πi

dominates π′
i) if and only if

∀〈π1, · · · , πi−1, πi+1, · · · , πn〉 ∈ Dn :

Evl(〈π1, · · · , πi, · · · , πn〉)� Evl(〈π1, · · · , π′
i, · · · , πn〉)

The � operator gets an upper bound of the two operands according to �, and
thus p � q � p and p � q � q.

Fig. 1. Two possible abstraction trees of a component, where white nodes are concrete
behaviors and grey nodes are abstract behaviors

Within the join-semilattice 〈C̃i,�,�〉, we can construct a binary abstraction
tree according to the following rules:

– Each concrete behavior corresponds to one leave in the tree.
– The parent is the join (by �) of its two children.

Note that the abstraction tree of a component is in general not unique, i.e., the
abstraction tree for a task can be constructed in different ways, as long as the
above rules are satisfied. For example, Figure 1 shows two possible abstraction
trees of a component with 4 concrete behaviors. Different abstraction trees may
lead to different efficiency of the analysis procedure in the following.

2.2 Refinement-Based Analysis

The refinement-based analysis uses the abstraction tree of each component, and
a prioritized working list Q. Each element in the working list records a system
behavior, i.e., a combination of behaviors from different abstraction trees. The
priority is ordered according to the evaluation result of the system behavior: the
worse performance the higher priority. The pseudo-code of the analysis algorithm

6 N. Guan et al.

is shown in Figure 2. The analysis procedure is performed in a top-down manner,
starting with the combination of the root of each abstraction tree. Each time
we take and remove the highest-priority system behavior, i.e., the first element,
from Q, and generate two new system behaviors by replacing one component’s
behavior by its children in the corresponding abstraction tree (the refine(Π)
routine). Then we evaluate these new system behaviors and add them to Q, with
proper order according to the evaluation results. This procedure iterates, until
the highest priority element in Q is a combination of leaves. Then the evaluation
result of this concrete system behavior is the desired worst-case performance.

1: Q ← ∅
2: Q.add(Π,Evl(Π))
3: while Π is abstract do
4: (Π ′,Π ′′) ← refine(Π)
5: Q.add(Π ′,Evl(Π ′))
6: Q.add(Π ′′,Evl(Π ′′))
7: Π ← Q.pophead()
8: end while
9: return Evl(Π)

Fig. 2. Pseudo-code of the refinement-based analysis algorithm

In the refinement routine refine(Π), Π is replaced by new system behaviors
in which some component behavior is replaced by a node that is one step fur-
ther from the root in the corresponding tree. So after a finite number steps of
refinement, all elements in Q consist of only concrete behaviors (leaves), up on
which the algorithm must terminate.

At any step of the algorithm, for a concrete system behavior Π that leads to
the worst-case performance (Evl(Π) = ω), there exists an element Π ′ in Q such
that each behavior in Π ′ is an ascent of the corresponding concrete behavior
in Π , so we have Evl(Π ′) � ω. On the other hand, due to the ordering rule
of elements in Q, the evaluation result ω of the head element in Q satisfies
ω � Evl(Π ′), and thus ω � ω. When the algorithm terminates, the return value
ω is the evaluation result of a concrete system behavior, which implies ω � ω.
In summary, we have ω = ω, i.e., the return value of the algorithm is the exact
worst-case performance.

2.3 Early Termination

At any step during the execution of the algorithm in Figure 2, the evaluation re-
sult of the head ofQ is an over-approximation of ω, and as the algorithm continues
the result becomes more and more precise. In the design procedure, it is possible
that the designer realized that the worst-case performance is guaranteed to sat-
isfy the requirement even with an over-approximated estimation. For example,

Scalable Timing Analysis with Refinement 7

in schedulability analysis one can safely claim the system is valid when the over-
approximate estimation of the worst-case response times are already smaller than
the deadlines. In this case, we add the following codes

1: if Evl(Π) is satisfactory then
2: return Evl(Π)
3: end if

before line 4 in the algorithm of Figure 2 to let the algorithm terminate earlier.

3 Rate-Adaptive Tasks

In some real-time systems, task activation may depend on the system state.
For example, in automotive applications, some tasks are linked to rotation, thus
their activation rate is proportional to the angular velocity of a specific device
[4,11,5]. To avoid overload, a common practice adopted in automotive applica-
tions is to let tasks execute less functionality with higher activation rates, which
is formulated as the rate-adaptive task system in the following section.

3.1 Rate-Adaptive Task Model

We consider a task set τ of n independent rate-adaptive tasks (components)
{T1, T2, · · · , Tn}. Each task Ti hasmi different configurations, and it is character-
ized by a worst-case execution time (WCET) vector ei = {e1i , · · · , emi

i }, a period
vector pi = {p1i , · · · , pmi

i }, and a relative deadline vector di = {d1i , · · · , dmi

i }. We
assume tasks have constrained deadlines, i.e., ∀a ∈ [1,mi] : d

a
i ≤ pai . At runtime a

task may use one of these mi configurations, i.e., use 〈eai , pai , dai 〉, a ∈ [1,mi], and
behaves like a regular periodic task with this particular parameter setting. Note
that we do not consider dynamic transition among different configurations.

We use the static-priority scheduling algorithm to schedule jobs released by
all tasks. Each task is assigned a static priority in a priori, and each of its
released job inherits this priority. We assume tasks are ordered in decreasing
priority order, i.e., Ti’s priority is higher than Tj ’s iff i < j. At each time instant
at runtime, the job with the highest priority among all the jobs that have been
released but not finished yet is selected for execution. The performance metric we
are interested in is the worst-case response time, i.e., the maximal delay between
the release and the finishing time of a job, of each task with each configuration.

3.2 Analysis of Worst-Case Response Times

The worst-case response time of each task with each configuration can be an-
alyzed independently. Therefore, without loss of generality, in the following we
focus on the analysis of task Ti and only consider one configuration 〈ei, pi, di〉
(superscript omitted for simplicity).

Given a configuration 〈eaj , paj , dai 〉, the maximal workload released by task Tj

during time interval of size t can be precisely represented by function rfa(t) [8]:

rfa(t) :=
⌈
t/paj

⌉
× eaj

8 N. Guan et al.

We use rfa(t) as a concrete behavior of task Tj (a leave in the abstraction tree)
corresponding to configuration 〈eaj , paj , daj 〉.

The partial order � among behaviors is defined as follows:

rfa � rfa′ ⇔ ∀t > 0, rfa(t) ≥ rfa′(t)

The join operator � is is defined as:

rfa = rfa′ � rfa′′ ⇔ ∀t > 0, rfa(t) = max(rfa′ (t), rfa′′ (t))

We use rf = 〈rfa1 · · · rfan〉 to denote a behavior of the system (only considering
higher-priority tasks). The evaluation function Evl(rf) is defined as

Evl(rf) = min
t>0

⎧
⎨

⎩
t

∣
∣
∣
∣
∣
∣
ei +

∑

rfaj
∈rf

rfaj (t) ≤ t

⎫
⎬

⎭

With the join operator and the evaluation function defined above, we can
thus construct the abstraction tree of each task and perform refinement-based
analysis by the algorithm in Figure 2, to calculate the worst-case response time
of the task and the configuration under analysis.

4 Graph-Based Real-Time Tasks

Many real-time systems may have different workload activation states and switch
among them at runtime. State transition systems can usually be modeled by
graphs. In this section we consider a very general real-time workload represen-
tation, the Digraph Real-Time (DRT) task model [12], which models workload
activation patterns by arbitrary directed graphs.

4.1 The DRT Task Model

A task system consists of n independent DRT tasks (components) {T1, · · · , Tn}.
A task T is represented by a directed graph G(T) = (V (T), E(T)) with V (T)
denoting the set of vertices and E(T) the set of edges of the graph. The vertices
V (T) = {v1, · · · , vn} represent the types of all jobs that can be released by
T . Each vertex v is labeled with a tuple 〈e(v), d(v)〉, where e(v) ∈ N denotes
the worst-case execution time (WCET), d(v) ∈ N denotes the relative deadline.
We implicitly assume the relation e(v) ≤ d(v) for all job types v. The edges of
G(T) represent the order in which jobs generated by T are released. Each edge
(u, v) ∈ E(T) is labeled with p(u, v) ∈ N denoting the minimum inter-release
separation time between u and v. Deadlines are constrained, i.e., for each vertex
u we have d(u) ≤ p(u, v) for all edges (u, v).

A job J is represented by a tuple (r, e) consisting of an absolute release time
r and an execution time e. The semantics of a DRT task system is defined as the
set of job sequences it may generate: σ = [(r0, e0), (r1, e1), ...] is a job sequence
if all jobs are monotonically ordered by release times, i.e., ri ≤ rj for i ≤ j. A
job sequence σ = [(r0, e0), (r1, e1), ...] is generated by T if π = (v0, v1, · · ·) is a
path in G(T) and for all i ≥ 0:

Scalable Timing Analysis with Refinement 9

Fig. 3. A DRT task

1. ri+1 − ri ≥ p(vi, vi+1) and
2. ei ≤ e(vi)

Combining the job sequences of individual tasks results in a job sequence of the
task set.

Figure 3 shows an example to illustrate the semantics of DRT tasks. When
the system starts, T releases its first run-time job by an arbitrary vertex. Then
the released sequence corresponds to a particular direct path through G(T).
Consider the job sequence σ = [(2, 3), (10, 1), (25, 4), (37, 1)] which corresponds
to path π = (v1, v2, v3, v2) in G(T). Note that this example demonstrates the
“sporadic” behavior allowed by the semantics of the DRT model. The first job
in σ (corresponds to v1) is released at time 2, and the second job in σ (v2) is
released 2 time units later than its earliest possible release time, while the job
of v3 and the second job of v2 are released as early as possible.

We still use the static-priority scheduling algorithm to schedule jobs. The
performance metric we are interested in is the worst-case response time of each
vertex (job type) of each task.

4.2 Analysis of Worst-Case Response Time

Since the relative deadline of each vertex is no larger than the inter-release sep-
aration of all of its outgoing edges, in any feasible task system each vertex must
be finished before the release of its successor vertices. Therefore, the analysis of
each vertex within one task can be performed independently. In the following,
we focus on the analysis of a particular vertex v of task T .

The response time of a vertex v is decided by the job sequences released
by higher-priority tasks and the workload of itself. Therefore, to calculate the
worst-case response time of v, conceptually, we should enumerate all the pos-
sible combinations of job sequences from each higher-priority task. Among the
job sequences of a task, only the ones with minimal release separation and max-
imal execution demand (WCET) of vertices can possibly lead to the worst-case
response time, each of which corresponds to a path in the task graph.

The workload of a path π can be abstracted with a request function [15],
which for each t returns the maximal accumulated execution requirement of all
jobs that π may release until time t (suppose the first job of π is released at time
0). For a path π = (v0, · · · , vl) through the graph G(T) of a task T , we define
its request function as

10 N. Guan et al.

rfπ(t) := max{ e(π′) | π′ is prefix of π and p(π′) < t }

where e(π) :=
∑l

i=0 e(vi) and p(π) :=
∑l−1

i=0 p(vi, vi+1). We use rfπ(t) as a
concrete behavior of task Tj (a leave in the abstraction tree) corresponding to
path π. Note that to analyze the worst-case response time of vertex v, we only
need to look into time intervals of size up to d(v), since otherwise v deems to
be unschedulable. The number of different paths that can be generated by G(T)
in a bounded time interval is finite, so there are only finite number of concrete
behaviors of a task.

The partial order � among behaviors is defined as follows:

rfπ � rfπ′ ⇔ ∀t ∈ (0, d(v)], rfπ(t) ≥ rfπ′(t)

The join operator � is is defined as:

rfπ = rfπ′ � rfπ′′ ⇔ ∀t ∈ (0, d(v)], rfπ(t) = max(rfπ′ (t), rfπ′′ (t))

We use rf = 〈rfπ1 · · · rfπn〉 to denote a behavior of the system (only considering
higher-priority tasks). The evaluation function Evl(rf) is defined as

Evl(rf) = min
t>0

⎧
⎨

⎩
t

∣
∣
∣
∣
∣
∣
e(v) +

∑

rfπi
∈rf

rfπi(t) ≤ t

⎫
⎬

⎭

where e(v) is the WCET of the analyzed vertex itself.
With the join operator and the evaluation function, we can thus construct

the abstraction tree of each task and perform refinement-based analysis by the
algorithm in Figure 2, to calculate the worst-case response time of v.

5 Digraph Tasks with Synchronization

In last two sections, tasks are assumed to be independent from each other, so
it is easy to compose the system behaviors with individual component behav-
iors and can easily fit into the refinement-based analysis framework. In this
section, we extend the DRT task model with synchronization. We show that
the refinement-based analysis framework can also be applied to systems where
strong inter-component dependency exists. The key is to construct proper be-
havior representation to capture interactions among components in the abstract
domain.

5.1 DRT with Synchronization

Assume a finite number of communication channels {ch1, · · · chx}, through which
tasks can send or receive signals and thus synchronize with each other. Sending a
signal through channel ch is denoted by ch!, while receiving a signal is denoted by
ch?. We call both sending and receiving operations synchronization operations.

Scalable Timing Analysis with Refinement 11

We call ch! the dual operation of ch? and vice versa. We use dual(a) to denote
the dual operation of a, e.g. dual(ch!) = ch?. We use OP to denote the set of all
synchronization operations in the system, which includes a pair of both sending
and receiving operations for each channel and an null operation ϕ denoting that
a vertex does not synchronize with others.

Each vertex v in a task graph is marked by a single synchronization operation
(either sending or receiving), denoted by op(v). The release of a job by vertex v is
synchronized with other jobs (from other tasks) marked with the dual operation
of op(v), i.e., v can release a job only if another vertex marked with dual(op(v))
is also eligible to release a job.

Figure 4 gives an example illustrating the semantics of the synchronization op-
erations. The vertical dashed lines denote the time points at which the minimal
inter-release separation constraints are satisfied. During the shadowed time in-
tervals, a vertex waits for its dual operation to release a job. The vertical arrows
denote actual job release times. Note that inter-release separation is counted rel-
ative to the actual release time of the previous job (the vertical arrows), rather
than the time points when the previous inter-release separation constraint is
satisfied (the dashed lines). It is allowed that at some time point a vertex v
can synchronize with multiple vertices from different tasks. In this case, v non-
deterministically chooses one of them for synchronization. In the example of
Figure 4, at time 11 both task T2 and T3 can synchronize with T1. The figure
shows one possible running sequence where task T1 chooses to synchronize with
T2, and the third vertex of T3 continues to wait.

Fig. 4. An example illustrating the semantics of synchronization operations

5.2 Analysis of Worst-Case Response Time

Similar to Section 4, the analysis of each vertex within one task can be performed
independently, so in the following we focus on the analysis of a particular vertex
v of task T . Recall that in an independent DRT task system, the response time
of a vertex only depends on higher-priority tasks and its own workload. However,
when synchronization is added, the response time of a vertex also depends on
lower-priority tasks, which can affect the execution of higher-priority tasks by
synchronization operations.

We define the behavior corresponding to a path π in task graph G(T) as a
pair bhvπ = 〈erfπ , pstπ〉, where

erfπ(t, o) =

{
rfπ(t) if o = op(fv(π, t))
0 otherwise

, pstπ(t, o) =

{
{π} if o = op(fv(π, t))
∅ otherwise

12 N. Guan et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. An example illustrating the join of two behaviors and the update of system
behaviors. (a) and (b) are two paths (of the same task) and the graphical representation
of their behaviors; (c) shows the join of behaviors in (a) and (b); (d) is an (abstract)
behavior of another task; (e) and (f) are the results of Update of (c) and (d); (g) and (h)
are the results of fixing the inconsistency and redundancy in (e) and (f) by Set2Func.

Scalable Timing Analysis with Refinement 13

fv(π, t) returns the last vertex vi along path π = {v0, v1, · · · } that is possible to
release a job at time t (the path starts at time 0 and t > 0):

fv(π, t) = vm s.t.

(
m∑

i=0

p(vi−1, vi) < t ∧
m+1∑

i=0

p(vi−1, vi) ≥ t

)

where we let p(v−1, v0) = 0 for consistency. Figure 5-(a) and (b) show the graph-
ical representation of the behaviors of two paths π1 and π2.

The partial order � among behaviors is defined as follows:

〈erfπ, pstπ〉 � 〈erfπ′ , pstπ′〉 ⇔
∀t ∈ (0, d(v)], ∀o ∈ OP : erfπ(t, o) ≥ erfπ′(t, o) ∧ pstπ(t, o) ⊇ pstπ′(t, o)

The join operator � is defined as:

〈erfπ, pstπ〉 = 〈erfπ′ , pstπ′〉 � 〈erfπ′′ , pstπ′′〉 ⇔

∀t ∈ (0, d(v)], ∀o ∈ OP :

{
erfπ(t, o) = max (erfπ′(t, o), erfπ′′(t, o))
pstπ(t, o) = pstπ′(t, o) ∪ pstπ′′(t, o)

Figure 5-(c) shows the resulting abstract behavior of joining the two concrete
behaviors in Figure 5-(a) and (b). Graphically, a behavior 〈erfπ , pstπ〉 can also
be represented by a set of segments, each segment s = 〈start, end, o, pst〉 having
a start time start, an ending time end, a synchronization operation o and a
path set pst. Let bhv = {bhv1, · · · , bhvn} be the function representation of a
system behavior. Then bhv can be converted to the corresponding segment-
set representation by S = Func2Set(bhv), and the inverse conversion is bhv =
Set2Func(S).

1: S ← Func2Set(bhv)
2: Update(S)
3: bhv ← Set2Func(S)
4: erf ← the subset of behaviors in bhv.erf of higher priority tasks.
5: R ← min

t>0
{t|e(v) + sum(t)}, where

sum(t) ←
∑

erfT ∈erf

{
max
∀o∈OP

{erfT (t, o)}
}

6: return R

Fig. 6. Pseudo-code of Evl(bhv)

If bhv consists of only concrete behaviors, the evaluation with bhv can be per-
formed by “simulating” the release and execution sequence of the corresponding
paths, which will not be further discussed here. The interesting case is when bhv
is an abstract system behavior, the evaluation function for which is defined by
the algorithm in Figure 6. The release of vertices may wait for extra delay due
to synchronization operations. If we use individual task behaviors to calculate

14 N. Guan et al.

the maximal possible workload of each task independently and sum them up as
the total system workload (as in last section), the evaluation result will be very
pessimistic. To improve evaluation precision with abstract behaviors, we use the
Update function to also consider the extra release delay due to synchronization
in abstract behaviors, the pseudo-code of which is shown in Figure 7.

1: S′ ← ∅
2: while S �= S′ do
3: S′ ← S
4: for all STi ∈ S do
5: for all s ∈ STi : s.o �= ∅ do
6: Φ = {ss | Tj ∈ τ \ {Ti} ∧ ss ∈ STj ∧ ss.o = dual(s.o)}
7: if Φ = ∅ then
8: t′ = +∞
9: else
10: t′ = min

ss∈Φ
{ss.start}

11: end if
12: � ← max(t′ − s.start, 0)
13: for all s′ ∈ STi : s′.start ≥ s.start ∧ s′.pst ⊆ s.pst do
14: s′.start = s′.start+�
15: s′.end = s′.end +�
16: end for
17: end for
18: end for
19: end while
20: return

Fig. 7. Pseudo-code of Update(S)

Update(S) iteratively updates the abstract behavior of each task. At each step,
the algorithm tries to shift a segment s to right by looking for the earliest eligible
time point t′ of dual(s.o) in all other tasks. If t′ is later than the start time of
s, s should be shifted to start at t′, and all later segments that depend on s in
concrete behaviors also shift rightwards correspondingly. This procedure repeats
until a global fixed point is reached. Figure 5-(e) and (f) show the resulting
segment sets by applying the above procedure to the segment sets in Figure
5-(c) and (d).

Shifting some of the segments in S may lead to inconsistency and redun-
dancy regarding the represented concrete behaviors. For example, in Figure 5-
(e) there is no segment covering time interval [3, 4). This is because segment
〈3, 4, a!, {π1, π2}〉 is shifted to right. To resolve this, we shall extend segment
〈0, 4, φ, {π2}〉 to cover [3, 4). Also in Figure 5-(e), time interval [13, 15) is cov-
ered by two segments both with b? and path π1. In this case, the lower segment
is redundant and should be merged into the upper one. Function Set2Func ad-
dresses these inconsistencies and redundancies and transfer the segment sets to
well-defined function representations of behaviors.

Scalable Timing Analysis with Refinement 15

6 Experiments

In this section, we briefly report some experiment results with the DRT task
model described in Section 4. Experiments are conducted with randomly gener-
ated DRT task sets. To generate a task, a random number of vertices is created
with edges connecting them according to a specified branching degree. The fol-
lowing table gives details of the used parameter ranges, where p denotes inter-
release separation between two vertices, e and d denotes the WCET and relative
deadline of a vertex, respectively.

Table 1. Parameter ranges

vertices out-degree p d/p e/d

[5, 10] [1, 3] [100, 300] [0.5, 1] [0, 0.07]

Feasible task sets created by this method have sizes up to about 20 tasks
with over 100 individual job types in total. For evaluating the effectiveness of
the abstraction refinement scheme, we capture for each call to the refinement-
base analysis how many system behaviors have been analyzed. We compare this
number with the total number of system behaviors, i.e., all the combinations of
individual task behaviors. This ratio indicates how much computational work
the refinement scheme saves, compared to a naive brute-force style test.

Fig. 8. Tested versus total number of system behaviors

We capture 105 samples and show our results in Figure 8. We see that the
combinatorial abstraction refinement scheme saves work in the order of several
magnitudes. More details of the experiments can be found in [13].

7 Tool

TIMES [1] is a tool suit for schedulability analysis of complex real-time systems,
in which task systems are modeled with task automata [6] that are essentially

16 N. Guan et al.

timed automata [3], and the analysis problems are solved using the UPPAAL
model checker [9]. The TIMES modeling language based on timed automata
provides powerful expressiveness, but also limits the scalability of the tool due
to the high complexity of verification problems for timed automata.

Currently we are developing a new version of TIMES based on the less expres-
sive DRT task model and several scalable timing analysis techniques developed
recently (including the refinement-based analysis in this paper). Note that a
DRT task is in fact a task automaton with one clock, where only lower bounds
on the clock are allowed to use in expressing timing constraints on job releases.
The new TIMES is expected to have much higher analysis efficiency and can deal
with large-scale realistic systems. The tool offers the following main features:

Fig. 9. Tool Architecture

– Editor to graphically model a system and the abstract behaviour of its
environment. Workload is modeled as a set of DRT tasks, and different DRT
tasks can synchronize with each other by communication channels and/or
semaphores. System resource is modeled with a topology of processing and
communication units, and each unit is associated with a service curve [16].
The users can choose the scheduling policy on each unit.

– Simulator to visualize the system behavior as Gant charts and message
sequence charts. The simulator can be used to randomly generate possible
execution traces, or alternatively the user can control the execution by select-
ing the transitions to be taken. The simulator can also be used to visualize
error traces produced in the analysis phase.

– Analyzer to check various properties of the system model, including fea-
sibility, scheduability, worst-case response time (WCRT), end-to-end delay
and buffer requirement.

The tool architecture is depicted in Figure 9. The tool consists of two main
parts, a Graphical User Interface (GUI) and an analysis engine. The GUI con-
sists of editors, simulator and analyzer as described above, and uses XML to

Scalable Timing Analysis with Refinement 17

represent the system descriptions both internally and externally. The analy-
sis engine consists of four parts. The Abstraction module transform the DRT
workload models into abstract representations such as demand bound functions
(DBF) [2] and request bound functions (RBF) [15]. The transformation is very
efficient, based on the path abstraction technique proposed in [12]. The Refine-
ment module is the core of the engine, which uses the framework in this paper
to iteratively obtain tighter and tighter analysis results until the property of
interest is proved/disproved. At each step of the analysis, it invokes either the
Analysis module for traditional WCRT analysis and schedulability test, or in-
vokes the Finitary RTC module for efficient system-wide performance analysis
using Finitary Real-Time Calculus [7] in the presence of a distributed platform.

Acknowledgement. This work is partially supported by NSF of China (No.
61300022 and 61370076).

References

1. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES - A tool for
modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens, P.
(eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002)

2. Baruah, S.K., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of the 11th Real-Time Systems Symposium
(RTSS) (1990)

3. Bengtsson, J.E., Yi, W.: Timed automata: Semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004)

4. Buttazzo, G.C., Bini, E., Buttle, D.: Rate-adaptive tasks: Model, analysis, and
design issues. Technical Report (2013)

5. Davis, R.I., Feld, T., Pollex, V., Slomka, F.: Schedulability tests for tasks with
variable rate-dependent behaviour under fixed priority scheduling. In: the 20th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)
(2014)

6. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability, de-
cidability and undecidability. Information and Computation (2007)

7. Guan, N., Yi, W.: Finitary real-time calculus: Efficient performance analysis of
distributed embedded systems. Proceedings of the IEEE 34th Real-Time Systems
Symposium (RTSS) (2013)

8. Joseph, M., Pandya, P.K.: Finding response times in a real-time system. The Com-
puter Journal (1986)

9. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer, STTT (1997)

10. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM (1973)

11. Pollex, V., Feld, T., Slomka, F., Margull, U., Mader, R., Wirrer, G.: Sufficient
real-time analysis for an engine control unit with constant angular velocities. In:
Design, Automation and Test Conference in Europe (DATE) (2013)

18 N. Guan et al.

12. Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:
Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pp. 71–80. IEEE (2011)

13. Martin, Stigge, N.G., Yi, W.: Refinement-based exact response-time analysis. In:
the 26th EUROMICRO Conference on Real-Time Systems (ECRTS) (2014)

14. Martin Stigge and Wang Yi. Hardness results for static priority real-time schedul-
ing. In: Proceedings of the 24th Euromicro Conference on Real-Time Systems
(ECRTS), pp. 189–198. IEEE (2012)

15. Stigge, M., Yi, W.: Combinatorial abstraction refinement for feasibility analysis. In:
Procedings of the 34th IEEE Real-Time Systems Symposium (RTSS), pp. 340–349
(2013)

16. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: Proc. Inti. Symposium on Circuits and Systems (2000)

Hybrid Systems

A Formally Verified Hybrid System for the
Next-Generation Airborne Collision Avoidance System�

Jean-Baptiste Jeannin1, Khalil Ghorbal1, Yanni Kouskoulas2, Ryan Gardner2,
Aurora Schmidt2, Erik Zawadzki1, and André Platzer1

1 Carnegie Mellon University
2 The Johns Hopkins University Applied Physics Laboratory

Abstract. The Next-Generation Airborne Collision Avoidance System (ACAS X)
is intended to be installed on all large aircraft to give advice to pilots and prevent
mid-air collisions with other aircraft. It is currently being developed by the Fed-
eral Aviation Administration (FAA). In this paper we determine the geometric
configurations under which the advice given by ACAS X is safe under a precise
set of assumptions and formally verify these configurations using hybrid systems
theorem proving techniques. We conduct an initial examination of the current
version of the real ACAS X system and discuss some cases where our safety
theorem conflicts with the actual advisory given by that version, demonstrating
how formal, hybrid approaches are helping ensure the safety of ACAS X. Our
approach is general and could also be used to identify unsafe advice issued by
other collision avoidance systems or confirm their safety.

1 Introduction

With growing air traffic, the airspace becomes more crowded, and the risk of airborne
collisions between aircraft increases. In the 1970s, after a series of mid-air collisions,
the Federal Aviation Administration (FAA) decided to develop an onboard collision
avoidance system: the Traffic Alert and Collision Avoidance System (TCAS). This pro-
gram had great success, and prevented many mid-air collisions over the years. Some
accidents still happened; for example, a collision over Überlingen in 2002 occurred due
to conflicting orders between TCAS and air traffic control. Airspace management will
evolve significantly over the next decade with the introduction of the next-generation air
traffic management system; this will create new requirements for collision avoidance.
To meet these new requirements, the FAA has decided to develop a new system: the
Next-Generation Airborne Collision Avoidance System, known as ACAS X [4,9,13].

Like TCAS, ACAS X avoids collisions by giving vertical guidance to an aircraft’s
pilot. A typical scenario involves two aircraft: the ownship where ACAS X is installed,
and another aircraft called the intruder that is at risk of colliding with the ownship.

� This research was conducted under the sponsorship of the Federal Aviation Administration
Traffic Alert & Collision Avoidance System (TCAS) Program Office (PO) AJM-233 under
contract number DTFAWA-11-C-00074. Additionally, support for the basic verification tech-
nology used as a foundation for this research was provided by the National Science Foundation
under NSF CAREER Award CNS-1054246.

© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 21–36, 2015.
DOI: 10.1007/978-3-662-46681-0_2

22 J.-B. Jeannin et al.

Table 1. Sample advisories and their modeling variables; full table in Technical Report [10]

ACAS X Specification [12] Our model
Vertical Rate Range Strength Delay Sign Advisory

Advisory Min (ft/min) Max (ft/min) ar dp (s) w ḣf (ft/min)
DNC −∞ 0 g/4 5 −1 0

MCL current +∞ g/4 5 +1 current
CL1500 +1500 +∞ g/4 5 +1 +1500

SCL2500 +2500 +∞ g/3 3 +1 +2500

COC −∞ +∞ Not applicable

ACAS X is designed to avoid Near Mid-Air Collisions (NMACs), situations where two
aircraft come within rp = 500 ft horizontally and hp = 100 ft vertically [13] of each
other. The NMAC definition describes a volume centered around the ownship, shaped
like a hockey puck of radius rp and half-height hp.

In order to be accepted by pilots, and thus operationally suitable, ACAS X needs to
strike a balance between giving advice that helps pilots avoid collisions but also mini-
mizes interruptions. These goals oppose each other, and cannot both be perfectly met in
the presence of unknown pilot behavior. This paper focuses on precisely characterizing
the circumstances in which ACAS X gives advice that is safe. An integral part of the
ACAS X development process, this work is intended to help ensure that the design of
ACAS X is correct, potentially by identifying ways it should be adjusted.

Airborne Collision Avoidance System ACAS X. In order to prevent an NMAC with
other aircraft, ACAS X uses various sensors to determine the position of the ownship, as
well as the positions of any intruders [5]. It computes its estimate of the best pilot action
by linearly interpolating a precomputed table of actions, and, if appropriate, issuing an
advisory to avoid potential collisions [6] through a visual display and a voice message.

An advisory is a request to the pilot of the ownship to alter or maintain her vertical
speed. ACAS X advisories are strictly vertical, and never request any horizontal ma-
neuvering. Table 1 shows a sample of the advisories ACAS X can issue. For example,
Do-Not-Climb (DNC) requests that the pilot not climb, and Climb-1500 (CL1500) re-
quests that the pilot climb at more than 1500 ft/min. ACAS X can issue a total of 16
different advisories plus Clear-of-Conflict (COC), which indicates that no action is nec-
essary. To comply with an advisory, the pilot must adjust her vertical rate to fall within
the corresponding vertical rate range. Based on previous research [12], the pilot is as-
sumed to do so using a vertical acceleration of strength at least ar starting after a delay
of at most dp after the advisory has been announced by ACAS X.

At the heart of ACAS X is a table whose domain describes possible configurations
for the current state of an encounter, and whose range is a set of scores for each possible
action [12,14]. The table is obtained from a Markov Decision Process (MDP) approxi-
mating the dynamics of the system in a discretization of the state-space, and optimized
using dynamic programming to maximize the expected value of events over all future
paths for each action [12]. Near Mid-Air Collision events, for example, are associated
with large negative values and issuing an advisory is associated with a small negative
value. The policy is to choose the action with the highest expected value from a multi-

A Formally Verified Hybrid System for ACAS X 23

linear interpolation of grid points in this table. ACAS X uses this table, along with some
heuristics, to determine the best action to take for the geometry in which it finds itself.

Identifying Formally Verified Safe Regions. Since ACAS X involves both discrete
advisories to the pilot and continuous dynamics of aircraft, it is natural to formally ver-
ify it using hybrid systems. However the complexity of ACAS X, which uses at its core
a large lookup table—defining 29,212,664 interpolation regions within a 5-dimensional
state-space—makes the direct use of hybrid systems verification techniques intractable.
Our approach is different. It identifies safe regions in the state space of the system where
the current positions and velocities of the aircraft ensure that a particular advisory, if
followed, prevents all possible NMACs. Then it compares these regions to the configu-
rations where the ACAS X table returns this same advisory. Moreover our safe regions
are symbolic in their parameters, and can thus be easily adapted to new parameters.

Our results provide independent characterizations of the ACAS X behavior to pro-
vide a clear and complete picture of its performance. Our method can be used by the
ACAS X development team in two ways. It provides a mathematical proof—with re-
spect to a model—that ACAS X is absolutely safe for some configurations of the air-
craft. Additionally, when ACAS X is not safe, it is able to identify unsafe or unexpected
behaviors and suggests ways of correcting them.

Our approach of formally deriving safe regions then comparing them to the behavior
of an industrial system is, as far as we are aware, the first of its kind in the formal
verification of hybrid systems. The approach may be valuable for verifying or assessing
properties of other systems with similar complexities, or also using large lookup tables,
which is a common challenge in practice. Finally, the constraints we identified for safety
are fairly general and could be used to analyze other collision avoidance systems.

The paper is organized as follows. After an overview of the method in Sect. 2, we
start with a simple two-dimensional model assuming immediate reaction of the pilot
in Sect. 3. We extend the model to account for the reaction time of the pilot in Sect. 4,
and extend the results to a three-dimensional model in Sect. 5. In Sect. 6, we conduct
an initial analysis of ACAS X whereby we compare the advisory recommended by a
core component of ACAS X with our safe regions, identifying the circumstances where
safety of those ACAS X advisories is guaranteed within our model.

2 Overview of the ACAS X Modelling Approach

To construct a safe region of an advisory for an aircraft, imagine following all allow-
able trajectories of the ownship relative to the intruder, accounting for every possible
position of the ownship and its surrounding puck at every future moment in time. The
union of all such positions of the puck describes a potentially unsafe region; for each
point there exists a trajectory that results in an NMAC. Dually, if the intruder is outside
this set, i.e., in the safe region, an NMAC cannot occur in the model.

Fig. 1 depicts an example of a head-on encounter and its associated safe region for
the advisory CL1500, projected in a vertical plane with both aircraft. It is plotted in a
frame fixed to the intruder and centered at the initial position of the ownship. The own-
ship, surrounded by the puck, starts at position 1 and traces out a trajectory following

24 J.-B. Jeannin et al.

Fig. 1. Trajectory of ownship (red) and safe region for the intruder (green), immediate response

the red curve. It first accelerates vertically with g/4 until reaching the desired verti-
cal velocity of +1500 ft/min at position 3. It then climbs at +1500 ft/min, respecting
the specification of Table 1. The green safe-region indicates starting points in the state
space for which the aircraft will remain safe for the duration of the encounter. Note that
no safe region exists above the trajectory since the ownship could accelerate vertically
at greater than g/4 or climb more than +1500 ft/min, in accordance with Table 1.

Model of Dynamics. Let us consider an encounter between two planes—ownship O
and intruder I , as portrayed in Fig. 2. Following the notation of the ACAS X commu-
nity [12], let r be the horizontal distance between the aircraft and h the height of the
intruder relative to the ownship. We assume that the relative horizontal velocity �rv of
the intruder with respect to the ownship is constant throughout the encounter. I.e., from
a top view, the planes follow straight-line trajectories. Let θv be the non-directed angle
between �rv and the line segment �r. In the vertical dimension, we assume that the own-
ship’s vertical velocity ḣ0 can vary at any moment, while the intruder’s vertical velocity
ḣ1 is fixed throughout the encounter. Moreover, we assume that the magnitude of the
vertical acceleration of the ownship cannot exceed ad in absolute value.

For a typical encounter, r varies between 0 nmi and 7 nmi,1 h between −4,000 ft
and 4,000 ft, rv between 0kts and 1,000 kts, and ḣ0 and ḣ1 between −5,000 ft/min
and +5,000 ft/min. The acceleration ad is usually g/2, where g is Earth’s gravitational
acceleration. The NMAC puck has radius rp = 500 ft and half-height hp = 100 ft.

Model of Advisories. Recall that ACAS X prevents NMACs by giving advisories to
the ownship’s pilot. Every advisory, except COC, has a vertical rate range of the form
(−∞, ḣf] or [ḣf ,+∞) for some vertical rate ḣf (Table 1), which we call the target
vertical velocity. We model any advisory by its corresponding target vertical velocity
ḣf , and a binary variable w for its orientation, whose value is −1 if the vertical rate
range of the advisory is (−∞, ḣf] and +1 if it is [ḣf ,+∞). This symbolic encoding
can represent many advisories and is robust to changes in the ACAS X advisory set.

1 We use units most common in the aerospace community, even though they are not part of the
international system, including nautical miles nmi (1,852 metres), knots kts (nautical miles per
hour), feet ft (0.3048meter) and minutes min (60seconds).

A Formally Verified Hybrid System for ACAS X 25

O

I

�rv
rp

�r

O

I ḣ0 ḣ1

rp

hp

θv

Fig. 2. Top view (left) and side view (right) of an encounter, with NMAC puck in gray

Following ACAS X design work [12], we assume that the ownship pilot complies
with each advisory within dp seconds, and that she accelerates with acceleration at least
ar to reach the target vertical velocity.

3 Safe Region for an Immediate Pilot Response

We present in this section a simplified version of the dynamics from Sect. 2. We give a
hybrid model for this simplified system and prove its safety. The new assumptions will
be relaxed in later sections to achieve the safety verification of the full model of Sect. 2.

Model. In this section, we assume that the ownship and intruder are flying head-
on (θv = 180◦). We also assume that the pilot reacts immediately to any advisory
(dp = 0 s), and that the advisory COC is not allowed. These assumptions will be re-
laxed in Sect. 4 and Sect. 5. We assume that r is a scalar: if r ≥ 0 then the ownship is
flying towards the intruder, otherwise it is flying away from it. Both cases could require
an advisory. Since the ownship and intruder are flying head-on with straight line trajec-
tories, there exists a vertical plane containing both their trajectories. In this plane, the
puck becomes a rectangle centered around the ownship, of width 2rp and height 2hp,
and there is an NMAC if and only if the intruder is in this rectangle (in gray on Fig. 1).

Differential Dynamic Logic and KeYmaera. We model our system using Differen-
tial Dynamic Logic dL [17,18,19], a logic for reasoning about hybrid programs. The
logic dL allows discrete assignments, control structures, and execution of differential
equations. It is implemented in the theorem prover KeYmaera [21], that we use to ver-
ify our safe regions with respect to our models. All the KeYmaera models and proofs
of this paper can be found at http://www.ls.cs.cmu.edu/pub/acasx.zip,
and statistics in Technical Report [10].

The dL formula for the model that we use in this section is given in Eq. (1).

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ ar > 0 ∧ (w = −1 ∨ w = 1) ∧ Cimpl(r, h, ḣ0) →
2 [((?true ∪ ḣf := ∗; (w := −1 ∪ w := 1); ?Cimpl(r, h, ḣ0); advisory := (w, ḣf));

3 a := ∗; {r′ = −rv, h
′ = −ḣ0, ḣ

′
0 = a & wḣ0 ≥ wḣf ∨ wa ≥ ar}

4)∗] (|r| > rp ∨ |h| > hp)

(1)

This formula of the form p → [α]q says all executions of program α starting in a state
satisfying logical formula p end up in a state satisfying q. It is akin to the Hoare triple
{p}α{q} with precondition p and postcondition q. The precondition in Eq. (1) imposes
constraints on several constants, as well as the formula Cimpl(r, h, ḣ0) (defined below)

http://www.ls.cs.cmu.edu/pub/acasx.zip

26 J.-B. Jeannin et al.

that forces the intruder to be in a safe region for an initial advisory (w, ḣf). We cannot
guarantee safety if the intruder starts initially in an unsafe region. The postcondition
encodes absence of NMAC. Line 2 expresses the action of the ACAS X system. The
nondeterministic choice operator ∪ expresses that the system can either continue with
the same advisory by doing nothing—just testing ?true—this ensures it always has a
valid choice and cannot get stuck. Otherwise it can choose a new advisory (w, ḣf) that
passes the safety condition Cimpl(r, h, ḣ0)—advisory will be the next message to the
pilot. Line 3 expresses the action of the ownship, first nondeterministically choosing an
arbitrary acceleration (a := ∗) then following the continuous dynamics. The evolution
of the variables r, h and ḣ0 is expressed by a differential equation, and requires (using
the operator &) that the ownship evolves towards its target vertical velocity ḣf at ac-
celeration ar (condition wa ≥ ar), unless it has already reached vertical velocity ḣf

(condition wḣ0 ≥ wḣf). Finally, the star ∗ on line 4 indicates that the program can be
repeated any number of times, allowing the system to go through several advisories.

Implicit Formulation of the Safe Region. As explained in Sect. 2, we use a frame
fixed to the intruder and with its origin at the initial position of the ownship (see Fig. 1).

First case: if w = +1 and ḣf ≥ ḣ0. Fig. 1 shows, in red, a possible trajectory of
an ownship following exactly the requirements of ACAS X. This nominal trajectory
of the ownship is denoted by N . The pilot reacts immediately, and the ownship starts
accelerating vertically with acceleration ar until reaching the target vertical velocity
ḣf—describing a parabola—then climbs at vertical velocity ḣf along a straight line.
Horizontally, the relative velocity rv remains constant. Integrating the differential equa-
tions in Eq. (1) line 3, the ownship position (rt, ht) at time t along N is given by:

(rt, ht) =

⎧
⎨

⎩

(
rvt ,

ar

2 t2 + ḣ0t
)

if 0 ≤ t <
ḣf−ḣ0

ar
(a)

(
rvt , ḣf t− (ḣf−ḣ0)

2

2ar

)
if ḣf−ḣ0

ar
≤ t (b)

(2)

Recall that in the ACAS X specification, the ownship moves vertically with accel-
eration of at least ar, then continues with vertical velocity of at least ḣf . Therefore
all possible future positions of the ownship are above the red nominal trajectory. An
intruder is safe if its position is always either to the side of or under any puck centered
on a point in N , that is:

∀t.∀rt.∀ht.
(
(rt, ht) ∈ N → |r − rt| > rp ∨ h− ht < −hp

)
(3)

We call this formulation the implicit formulation of the safe region. It does not give
explicit equations for the safe region border, but expresses them instead implicitly with
respect to the nominal trajectory.

Generalization. The reasoning above is generalized to the case where ḣf < ḣ0, and
symmetrically to the case w = −1. The most general implicit formulation of the safe
region is Cimpl in Fig. 3, and verified to be safe in KeYmaera:

Theorem 1 (Correctness of implicit safe regions). The dL formula given in Eq. (1) is
valid. That is as long as the advisories obey formula Cimpl there will be no NMAC.

A Formally Verified Hybrid System for ACAS X 27

Implicit formulation

A(t, ht, ḣ0) ≡
(
0 ≤ t <

max(0, w(ḣf − ḣ0))

ar
∧ ht =

war

2
t2 + ḣ0t

)

∨
(

t ≥ max(0, w(ḣf − ḣ0))

ar
∧ ht = ḣf t− wmax(0, w(ḣf − ḣ0))

2

2ar

)

Cimpl(r, h, ḣ0) ≡ ∀t.∀rt.∀ht.

(
rt = rvt ∧ A(t, ht, ḣ0)

→ (|r − rt| > rp ∨ w(h− ht) < −hp)

)

Explicit formulation

case1(r, ḣ0) ≡ −rp ≤ r < −rp − rv min(0, wḣ0)

ar

bound1(r, h, ḣ0) ≡ wr2vh <
ar

2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

case2(r, ḣ0) ≡ −rp − rv min(0, wḣ0)

ar
≤ r ≤ rp − rv min(0, wḣ0)

ar

bound2(r, h, ḣ0) ≡ wh < −min(0, wḣ0)
2

2ar
− hp

case3(r, ḣ0) ≡ rp − rv min(0, wḣ0)

ar
< r ≤ rp +

rv max(0, w(ḣf − ḣ0))

ar

bound3(r, h, ḣ0) ≡ wr2vh <
ar

2
(r − rp)

2 + wrvḣ0(r − rp)− r2vhp

case4(r, ḣ0) ≡ rp +
rv max(0, w(ḣf − ḣ0))

ar
< r

bound4(r, h, ḣ0) ≡ (rv = 0) ∨
(
wrvh < wḣf (r − rp)− rv max(0, w(ḣf − ḣ0))

2

2ar
− rvhp

)

case5(r, ḣ0) ≡ −rp ≤ r < −rp +
rv max(0, w(ḣf − ḣ0))

ar

bound5(r, h, ḣ0) ≡ wr2vh <
ar

2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

case6(r, ḣ0) ≡ −rp +
rv max(0, w(ḣf − ḣ0))

ar
≤ r

bound6(r, h, ḣ0) ≡ (rv = 0 ∧ r > rp)

∨
(
wrvh < wḣf (r + rp)− rv max(0, w(ḣf − ḣ0))

2

2ar
− rvhp

)

Cexpl(r, h, ḣ0) ≡
(
wḣf ≥ 0 →

4∧

i=1

(casei(r, ḣ0) → boundi(r, h, ḣ0))

)

∧
(
wḣf < 0 →

6∧

i=5

(casei(r, ḣ0) → boundi(r, h, ḣ0))

)

Fig. 3. Implicit and explicit formulations of the safe region for an immediate response

28 J.-B. Jeannin et al.

Explicit Formulation of the Safe Region. The implicit formulation of the safe region
gives an intuitive understanding of where it is safe for the intruder to be. However,
because it still contains quantifiers, its use comes at the extra cost of eliminating the
quantifiers. An efficient comparison with the ACAS X table, as described in Sect. 6,
can only be achieved with a quantifier-free, explicit formulation, that we present in this
section. We show that both formulations are equivalent. As for the implicit formulation,
we derive the equations for one representative case before generalizing them.

First case: if w = +1, rv > 0, ḣ0 < 0 and ḣf ≥ 0. We are in the case shown in
Fig. 1 and described in detail above. The nominal trajectory N is given by Eq. (2)(a)
and Eq. (2)(b). The boundary of the (green) safe region in Fig. 1 is drawn by either the
bottom left hand corner, the bottom side or the bottom right hand corner of the puck.
This boundary can be characterized by a set of equations:

0. positions left of the puck’s initial position (r < −rp) are in the safe region;
1. then the boundary follows the bottom left hand corner of the puck as it is going

down the parabola of Eq. (2)(a); therefore for −rp ≤ r < −rp − rv ḣ0

ar
, the position

(r, h) is safe if and only if h < ar

2r2v
(r + rp)

2 + ḣ0

rv
(r + rp)− hp;

2. following this, the boundary is along the bottom side of the puck as it is at the
bottom of the parabola of Eq. (2)(a); therefore for −rp − rv ḣ0

a ≤ r ≤ rp − rv ḣ0

ar
,

the position (r, h) is in the safe region if and only if h < − ḣ2
0

2ar
− hp;

3. then the boundary follows the bottom right hand corner of the puck as it is going

up the parabola of Eq. (2)(a); therefore for rp − rv ḣ0

ar
< r ≤ rp +

rv(ḣf−ḣ0)
ar

, the

position (r, h) is safe if and only if h < ar

2r2v
(r − rp)

2 + ḣ0

rv
(r − rp)− hp;

4. finally the boundary follows the bottom right hand corner of the puck as it is going

up the straight line of Eq. (2)(b); therefore for rp +
rv(ḣf−ḣ0)

ar
< r, the position

(r, h) is in the safe region if and only if h <
ḣf

rv
(r − rp)− (ḣf−ḣ0)

2

2ar
− hp.

Generalization. The general case is given in the formula Cexpl of Fig. 3. The cases 1-
4 and their associated bounds are for the case wḣf ≥ 0, whereas cases 5 and 6 and
associated bounds are for wḣf < 0. We again use KeYmaera to formally prove that this
explicit safe region formulation is equivalent to its implicit counterpart.

Lemma 1 (Correctness of explicit safe regions). If w = ±1, rp ≥ 0, hp > 0, rv ≥ 0

and ar > 0, then the conditions Cimpl(r, h, ḣ0) and Cexpl(r, h, ḣ0) are equivalent.

4 Safe Region for a Delayed Pilot Response

We generalize the model of Sect. 3 to account for a non-deterministic, non-zero pilot
delay, and for periods of time where the system does not issue an advisory (i.e., COC).

A Formally Verified Hybrid System for ACAS X 29

Model. In this section, we still assume that the ownship and intruder are flying head-
on (θv = 180◦). We use the same conventions as in Sect. 3 for r and rv . The model
includes an initial period where there is no compliance with any advisory—the ownship
accelerates non-deterministically (within limits) in the vertical direction. As before, we
derive the safe regions by considering all possible positions of the ownship’s puck in all
possible trajectories that might evolve in the encounter. To represent pilot delay for an
advisory, the model assumes an immediate advisory, and period of non-compliance dp,
representing the time it takes the pilot to respond. To represent COC, the model looks
for a safe advisory it can issue d� in the future if necessary, (d� being the system delay,
and shortest COC) so the period of non-compliance is dp + d�.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ ar > 0 ∧ ad ≥ ∧dp ≥ 0 ∧ d� ≥ 0

2 ∧(w = −1 ∨ w = 1) ∧Dimpl(r, h, ḣ0, d) →
3 [(

(
?true ∪ ḣf := ∗; (w := −1 ∪ w := 1);

4 (d := dp; ?Dimpl(r, h, ḣ0, d); advisory := (w, ḣf) ∪
5 d := dp + d�; ?Dimpl(r, h, ḣ0, d); advisory := COC)

)
;

6 a := ∗; ?(wa ≥ −ad); t� := 0;

7 {r′ = −rv, h
′ = −ḣ0, ḣ

′
0 = a,d′ = −1, t′� = 1 &

8 (t� ≤ d�) ∧ (d ≤ 0 → wḣ0 ≥ wḣf ∨wa ≥ ar)}
9)∗] (|r| > rp ∨ |h| > hp)

(4)

We modify the model of Eq. (1) to capture these new ideas, and obtain the model of
Eq. (4), highlighting the differences in bold. The structure, precondition (lines 1 and 2)
and postcondition (line 9) are similar. The clock d, if positive, represents the amount
of time until the ownship pilot must respond to the current advisory to remain safe.
Lines 3 to 5 represent the actions of the ACAS X system. As before, the system can
continue with the same advisory (?true). Otherwise it can select a safe advisory (w, ḣf)
to be applied after at most delay dp; or it can safely remain silent, displaying COC, if it
knows an advisory (w, ḣf) that is safe if applied after delay dp + d�. In line 6, the pilot
non-deterministically chooses an acceleration (a := ∗), within some limit (wa ≥ −ad).
The set of differential equations in line 7 describes the system’s dynamics, and the
conditions in line 8 use the clock t� to ensure that continuous time does not evolve
longer than system delay d� without a system response (t� ≤ d�). Those conditions
also ensure that when d ≤ 0 the pilot starts complying with the advisory. The model
is structured so that the pilot can safely delay responding to an advisory for up to dp,
and to an advisory associated with COC for up to dp + d�—considering upper bounds
on the reaction delay is necessary to get a formal proof of safety. Because of the loop
in our model (line 9), the safety guarantees of this theorem apply to encounters whose
advisories change as the encounter evolves, encounters with periods of no advisory, and
encounters where the pilot exhibits some non-deterministic behavior.

In the rest of the section we use the same approach as in Sect. 3: we first derive
an implicit formulation, then an equivalent explicit formulation of the safe region, and
prove that the safe region guarantees that the intruder cannot cause an NMAC.

Formulations of the Safe Region. As in Sect. 3, let us place ourselves in the referential
centered on the current position of the ownship and where the intruder is fixed, and let us

30 J.-B. Jeannin et al.

Fig. 4. Trajectory of the ownship (red) and safe region for the intruder (green), delayed response

first assume that the ownship receives an advisory (w, ḣf) such that w = +1, and that
d ≥ 0. Let us focus on the period of time before the pilot reacts, which we henceforth
call delay. During the delay, the ownship can take any vertical acceleration less than ad
in absolute value, therefore its nominal trajectory Nd is to accelerate the opposite way
of the advisory, at acceleration −ad. Horizontally, its speed is constant at rv . It thus
describes a delay parabola, in red on Fig. 4, and its position (rt, ht) along the nominal

trajectory for 0 ≤ t < d is given by (rt, ht) =
(
rvt,−ad

2 t2 + ḣ0t
)

.

After the delay, i.e., after time d, the nominal trajectory Nd is the same as a nominal
trajectory N from Sect. 3, translated by time d and by its position at time d given by
rd = rt(d) and hd = ht(d), and starting with vertical velocity ḣd = ḣ0 − add. As in
Sect. 3, we can now express the implicit formulation of the safe region:

∀t.∀rt.∀ht.
(
(rt, ht) ∈ Nd → |r − rt| > rp ∨ h− ht < −hp

)

Symmetrically, the reasoning of this section extends to the case where w = −1. More-
over, we can handle cases where d < 0, i.e., after the pilot has reacted, by replacing d
by max(0, d). The generalized implicit formulation of the safe region is given as Dimpl

in Fig. 5. Note that it involves the expression A(t−max(0, d), ht− hd, ḣd) from Fig. 3
capturing the implicit safe region of Sect. 3 translated by time max(0, d), vertical height
hd, and starting at vertical speed ḣd. It is proved correct in KeYmaera.

Theorem 2 (Correctness of delayed safe regions). The dL formula given in Eq. (4) is
valid. That is as long as the advisories obey formula Dimpl there will be no NMAC.

Similarly as in Sect. 4, we determine an explicit formulation of the safe region, called
Dexpl in Fig. 5 based on Fig. 3, and prove it correct in KeYmaera.

Lemma 2 (Correctness of delayed explicit safe regions). If w = −1 or w = +1,
rp ≥ 0, hp > 0, rv ≥ 0, ar > 0, ad ≥ 0, dp ≥ 0 and d� ≥ 0 then the two conditions
Dimpl(r, h, ḣ0, d) and Dexpl(r, h, ḣ0, d) are equivalent.

5 Reduction from 3D Dynamics to 2D Dynamics

In this section, we show that, with respect to our assumptions, any 3-dimensional en-
counter (Sect. 2) can be reduced to a 2-dimensional encounter (Sect. 3) without loss of
generality. This is done using a change of reference frame and a dimension reduction.

A Formally Verified Hybrid System for ACAS X 31

Implicit formulation

B(t, ht, ḣ0, d) ≡ 0 ≤ t < max(0, d) ∧ ht = −wad

2
t2 + ḣ0t

const ≡ hd = −wad

2
max(0, d)2 + ḣ0 max(0, d) ∧ ḣd − ḣ0 = −wad max(0, d)

Dimpl(r, h, ḣ0, d) ≡ ∀t.∀rt.∀ht.∀hd.∀ḣd.
(
rt = rvt ∧ (B(t, ht, ḣ0, d) ∨ const ∧A(t−max(0, d), ht − hd, ḣd))

→ (|r − rt| > rp ∨ w(h− ht) < −hp)
)

Explicit formulation

rd = rv max(0, d) ḣd = ḣ0 − wad max(0, d)

hd = −wad

2
max(0, d)2 + ḣ0 max(0, d)

case7(r) ≡ −rp ≤ r ≤ rp bound7(r, h) ≡ wh < −hp

case8(r) ≡ rp < r ≤ rd + rp case9(r) ≡ −rp ≤ r < rd − rp

bound8(r, h) ≡ wr2vh < −ad

2
(r − rp)

2 + wrvḣ0(r − rp)− r2vhp

bound9(r, h) ≡ wr2vh < −ad

2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

Dexpl(r, h, ḣ0, d) ≡
(

9∧

i=7

(casei(r) → boundi(r, h))

)
∧ Cexpl(r − rd, h− hd, ḣd)

Fig. 5. Implicit and explicit formulations of the safe region for a delayed response

For the sake of clarity, let us use a reference frame (O,�i,�j,�k) fixed to the ownship
(O). In this reference frame, the position of an intruder I is represented by the tuple
(x, y, h), and the differential equation system that governs its motion is given by ẋ =
rx, ẏ = ry , ḧ = a, where rx, ry and a remain constant as time evolves. Therefore, the
motion of the encounter can be decoupled into a 2-dimensional horizontal encounter in
the reference frame (O,�i,�j) (horizontal plane) and a 1-dimensional vertical encounter
in the reference frame (O,�k). In what follows, we reduce the horizontal encounter from
a 2-dimensional motion to a 1-dimensional motion, thereby simplifying the problem
conceptually and computationally by reducing its number of variables.

O

I

�r

−�rv

�i

�j

�i′
�j′
O′

s

n

Fig. 6. Top view of the two reference frames

Fig. 6 depicts a top view of a generic
encounter. We denote by �r the position,
and �rv the velocity, of the intruder relative
to the ownship, and by rv ≥ 0 the norm
of �rv .

First suppose rv > 0. The idea is to
choose a reference frame (O′,�i′,�j′) in
which one axis �i′ is aligned with �rv, such
that no relative motion happens in the
other direction �j′. Its fixed center O′ is de-
fined as the orthogonal projection of point

32 J.-B. Jeannin et al.

O on the direction of �rv. The unit vector�i′ is defined as �rv
rv

, and �j′ is a unit such that

(O′,�i′,�j′) is positively oriented.
Let �v|O (resp. �v|O′) denote the coordinates of a vector �v relative to the reference

frame (O,�i,�j) (resp. (O′,�i′,�j′)). Then, the coordinates for �r and �rv are: �r|O = (x, y),
�rv|O = (rx, ry), �r|O′ = (s, n) and �rv|O′ = (−rv, 0). The scalar product �r · �rv and the
cross product �r × �rv are independent of the horizontal reference frame, therefore:

xrx + yry = −srv xry − yrx = nrv (5)

Given rx and ry , Eqns. (5) imply that the coordinates (x, y) are uniquely determined
by the choice of (s, n), as long as rv �= 0 (using r2v = r2x + r2y). For any 2-dimensional
configuration, the encounter can thus be considered a head-on encounter where s plays
the role of r and where a new puck radius, denoted sp, plays the role of rp.

Let us now determine the radius sp of the dimension-reduced encounter, and prove
that the absence of NMAC in (O,�i,�j)—characterized by r2 > r2p—is equivalent to the

absence of NMAC in (O′,�i′,�j′)—characterized by s2 > s2p. Using (5):

r2vr
2 = r2v(x

2 + y2) = (xrx + yry)
2 + (xry − yrx)

2 = r2v(s
2 + n2) .

Since rv �= 0, this implies r2 = s2+n2. Therefore, r2 > r2p if and only if s2+n2 > r2p
or equivalently s2 > r2p − n2. If r2p − n2 < 0, the direction of the vector �rv does not
intersect the puck, the inequality s2 > r2p−n2 is trivially true, and the encounter is safe.
If r2p −n2 ≥ 0, we choose the new puck radius sp for the dimension-reduced encounter

as sp =
√
rp2 − n2 ≥ 0, and the safety condition in (O′,�i′,�j′) becomes s2 ≥ s2p.

When θv = 180◦, one has s = r, n = 0 and sp = rp as in Sect. 3–4.
As the encounter evolves in (O,�i,�j) along ẋ = rx, ẏ = ry , its dimension-reduced

version evolves in (O′,�i′,�j′) along the differential equations ṡ = −rv, ṅ = 0, obtained
by differentiating Eqns. (5) and canceling rv. The following proposition, proved in
KeYmaera, combines both dynamics and shows that the absence of an NMAC of radius
rp in (O,�i,�j) is equivalent to the absence of an NMAC of radius sp in (O′,�i′,�j′).

Proposition 1 (Horizontal Reduction). The following dL formula is valid
(
xrx + yry = −srv ∧ xry − yrx = nrv ∧ x2 + y2 = n2 + s2 ∧ r2v = r2x + r2y

)

→ [ẋ = rx, ẏ = ry , ṡ = −rv, ṅ = 0]
(
x2 + y2 > r2p ↔ s2 > r2p − n2

)
(6)

Observe that the horizontal NMAC condition in (O′,�i′,�j′) only depends on the change
of one variable rather than two. The proposition also applies to the special case rv = 0.
In this case the origin O′ is no longer defined, and Eqns. (5) are trivially true. The
variables s and n are constants (ṡ = 0, ṅ = 0), their initial values are only restricted by
the condition n2 + s2 = x2 + y2 in the assumption of the proposition, but they are not
unique. When the relative position between the two aircraft does not evolve over time,
if the intruder is at a safe distance initially, the encounter is still safe for all time.

6 Initial Examination of the Safety of ACAS X

In this section, we use Theorem 1 to check the safety of advisories given by ACAS X.
We focus on Run 12 (July 2014) of the optimized logic tables, a core component of

A Formally Verified Hybrid System for ACAS X 33

Table 2. Summary of the points of the state space at which we examined ACAS X

Range Relative speed Angle Relative Vertical rates Previous
r (ft) rv (ft/s) θv (degrees) altitude h (ft) ḣ0, ḣ1 (ft/s) advisory

Min value 1,500 100 180◦ -4,000 -41.67 None
Max value 200,000 2,200 180◦ 4,000 41.67 None
Number of values 80 10 1 33 132 1

Fig. 7. Original ownship path (cyan) and intruder path (red) vs. ownship responding to a do-not-
climb (DNC) advisory issued by the ACAS X tables in starting state: r = 4,000 ft, rv = 200 ft/s,
θv = 180◦, h = 600 ft, ḣ0 = 1,980 ft/min, ḣ1 = −1,500 ft/min.

ACAS X. The full policy of the system is built on these lookup tables and incorpo-
rates additional components to handle various operational scenarios. We compare the
ACAS X table to the explicit regions where the pilot reacts immediately (Sect. 3). For
a given initial state of an encounter, we query the first advisory issued by ACAS X
and check its safety as identified in Theorem 1. In a real scenario, ACAS X could later
strengthen or reverse the first advisory as the encounter evolves. But the safety of the
first advisory is critical from an operational prospective as later changes are undesirable.

Our initial analysis considers a nominal set of discrete states—summarized in Ta-
ble 2—of the ACAS X MDP model where no advisory has yet been issued. All com-
pared states are head-on encounters: in a sense, they are the most obviously dangerous
configurations. For those states, the ACAS X advisories are compared against the safe
regions stated in Fig. 3. Overall, 4,461,600 discrete states were examined, among which
44,306 states (1.2%) did not meet the conditions of Fig. 3: 11,524 of these were unre-
solvable, i.e., the intruder was too close for any advisory to avoid NMAC; while 32,782
could have been resolved with a different safe advisory that satisfies Theorem 1.

Our analysis led to the identification of unexpected behavior in the ACAS X lookup
tables. In some cases, the ACAS X advisory seems to induce an NMAC (Fig. 7), i.e.,
if the initial advisory is not strengthened or reverted later, an NMAC will occur. In
other cases, the advisory does not seem to have any benefit, that is flying at vertical
rates disallowed by the advisory would actually avoid NMAC while not all allowed
vertical rates are safe. Of course, such unsafe advisories would be disallowed by our
safe regions. Notice that these behaviors are not necessarily all deemed undesirable,

34 J.-B. Jeannin et al.

as ACAS X tries to minimize alerting the pilot unless it has to do so; for some cases,
ACAS X will strengthen the advisory later and hence does not issue a disruptive alert
immediately. Fig. 7 depicts a typical example where the ACAS X advisory induces an
NMAC. The ownship is flying from the left and the intruder from the right. As time
counts down, the intruder evolves towards the ownship and an NMAC happens at t = 0.
The original path of the ownship does not lead to an NMAC. However, ACAS X gives a
Do-Not-Climb advisory. If the pilot, following this advisory, decides to stop climbing,
its trajectory will cause an NMAC. (Other examples are in Technical Report [10].)

The development of the safe regions gave an insight into possible improvements for
the ACAS X system. Although we are not analyzing the complete system, nor the subse-
quent advisories, we automatically pointed out some subregions of the state space worth
looking at. Some of those problems were independently identified by the ACAS X team
using simulation-based testing, and will be addressed in subsequent revisions of the sys-
tem. When extended to check contiguous regions of the state space, our approach will
have the potential for a complete analysis of the system over all potential encounter
configurations, thereby reducing vulnerability to the sampling of encounter scenarios.

7 Related Work

Kochenderfer and Chryssanthacopoulos [12] describe the design of the ACAS X lookup-
tables. Their principled approach, based on optimizing an MDP, guarantees the selec-
tion of optimal advisories according to a cost model. The state space and dynamics are
discretized. Their notion of optimality depends on costs assigned to various events.

Von Essen and Giannakopoulou [3] use probabilistic model-checking to analyze an
MDP based on [12]. They investigate the probability of several undesirable events oc-
curring. Because they ostensibly analyze an MDP, their work inherits many of the as-
sumptions of ACAS X, including discretized dynamics. Their analysis depends heavily
on the MDP considered and thus needs to be redone on every version of ACAS X.

Lygeros and Lynch [16] use hybrid techniques to formally verify the TCAS conflict
resolution algorithms. They assume—rather than prove—that TCAS ends up in a state
where one aircraft has a climbing advisory and the other a descending advisory. They
then prove (by hand) a lower bound on the vertical separation of both aircraft at the point
of closest approach. In contrast, we do not assume anything on ACAS X’s advisories.

Holland et al. [9] and Chludzinski [1] simulate large numbers of encounters, includ-
ing tracks from recorded flight data, to evaluate the performance of ACAS X. These
simulations account for high-fidelity details of an encounter, but they only cover a finite
set of the continuous state space with no formal guarantees.

Tomlin et al. [22], Platzer and Clarke [20], Loos et al. [15] and more recently Ghor-
bal et al. [8] use hybrid systems approaches to design safe horizontal maneuvers for
collision avoidance. Dowek et al. [2] and Galdino et al. [7] describe and verify in the
PVS theorem prover a collision avoidance system of their design called KB3D.

Overall, our approach is different from previous complementary work in that:

– unlike [3,12], we rely on an independent model from the one used to design ACAS X;
– unlike [2,7,8,15,20,22] we analyze an independent industrial system and not a safe-

by-design system;

A Formally Verified Hybrid System for ACAS X 35

– unlike [2,3,7] our analysis uses realistic, continuous dynamics;
– unlike [16,22] we provide universal safe regions that can be reused for new versions

of ACAS X or even for new systems;
– unlike [1,9,11,16,22], we provide mechanized proofs of correctness of our model.

8 Conclusion and Future Work

We developed a general strategy for analyzing the safety of complicated, real-world
collision avoidance systems, and applied it to ACAS X. Our strategy identifies safe
regions where an advisory is proved to always keep the aircraft clear of NMAC, under
some assumptions. We identified states where ACAS X is provably safe, and fed others
showing unexpected behaviors back to the ACAS X development team. The identified
safe regions are independent from the version of ACAS X and can thus be reused for
future versions. In future work, we plan to extend our hybrid model to account for
curved trajectories of both aircraft as well as vertical acceleration of the intruder.

Acknowledgments. The authors would like to warmly thank Stefan Mitsch and Jan-
David Quesel for their support of the KeYmaera tool. The authors would also like to
thank Jeff Brush, Jessica Holland, Robert Klaus, Barbara Kobzik-Juul, Mykel Kochen-
derfer, Ted Londner, Sarah Loos, Ed Morehouse, Wes Olson, Michael Owen, Joshua
Silbermann, Neal Suchy, and the ACAS X development team for interesting remarks.

References

1. Chludzinski, B.J.: Evaluation of TCAS II version 7.1 using the FAA fast-time encounter
generator model. Tech. Rep. ATC-346, MIT Lincoln Laboratory (April 2009)

2. Dowek, G., Muñoz, C., Carreño, V.: Provably safe coordinated strategy for distributed con-
flict resolution. In: AIAA Guidance Navigation, and Control Conference and Exhibit (2005)

3. von Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne collision avoid-
ance system. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413,
pp. 620–635. Springer, Heidelberg (2014)

4. Federal Aviation Administration: Introduction to TCAS II, version 7.1 (February 2011)
5. Federal Aviation Administration TCAS Program Office: Algorithm design description for

the surveillance and tracking module of ACAS X, run12 (July 2014)
6. Federal Aviation Administration TCAS Program Office: Algorithm design description for

the threat resolution module of ACAS X, version 3 Rev. 1 (May 2014)
7. Galdino, A.L., Muñoz, C., Ayala-Rincón, M.: Formal verification of an optimal air traffic

conflict resolution and recovery algorithm. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC
2007. LNCS, vol. 4576, pp. 177–188. Springer, Heidelberg (2007)

8. Ghorbal, K., Jeannin, J.B., Zawadzki, E., Platzer, A., Gordon, G.J., Capell, P.: Hybrid theo-
rem proving of aerospace systems: Applications and challenges. Journal of Aerospace Infor-
mation Systems (2014)

9. Holland, J.E., Kochenderfer, M.J., Olson, W.A.: Optimizing the next generation collision
avoidance system for safe, suitable, and acceptable operational performance. Air Traffic Con-
trol Quarterly (2014)

36 J.-B. Jeannin et al.

10. Jeannin, J.B., Ghorbal, K., Kouskoulas, Y., Garnder, R., Schmidt, A., Zawadzki, E., Platzer,
A.: A formally verified hybrid system for the next-generation airborne collision avoid-
ance system. Tech. Rep. CMU-CS-14-138, School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA (2014), http://reports-archive.adm.cs.cmu.
edu/anon/2014/CMU-CS-14-138.pdfKeYmaera files available at
http://www.ls.cs.cmu.edu/pub/acasx.zip

11. Kochenderfer, M.J., Espindle, L.P., Kuchar, J.K., Griffith, J.D.: Correlated encounter model
for cooperative aircraft in the national airspace system version 1.0. Tech. Rep. ATC-344,
MIT Lincoln Laboratory (October 2008)

12. Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Robust airborne collision avoidance through
dynamic programming. Tech. Rep. ATC-371, MIT Lincoln Laboratory (January 2010)

13. Kochenderfer, M.J., Holland, J.E., Chryssanthacopoulos, J.P.: Next generation airborne col-
lision avoidance system. Lincoln Laboratory Journal 19(1), 17–33 (2012)

14. Kochenderfer, M.J., Monath, N.: Compression of optimal value functions for Markov deci-
sion processes. In: Data Compression Conference, Snowbird, Utah (2013)

15. Loos, S.M., Renshaw, D.W., Platzer, A.: Formal verification of distributed aircraft con-
trollers. In: HSCC, pp. 125–130. ACM (2013)

16. Lygeros, J., Lynch, N.: On the formal verification of the TCAS conflict resolution algorithms.
In: IEEE Decision and Control, vol. 2, pp. 1829–1834. IEEE (1997)

17. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189
(2008)

18. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Springer (2010)

19. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)
20. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers:

A case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562.
Springer, Heidelberg (2009)

21. Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems (Sys-
tem description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

22. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: A study in
multiagent hybrid systems. IEEE Transactions on Automatic Control 43(4), 509–521 (1998)

http://reports-archive.adm.cs.cmu.edu/anon/2014/CMU-CS-14-138.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2014/CMU-CS-14-138.pdf
http://www.ls.cs.cmu.edu/pub/acasx.zip

Verified Reachability Analysis
of Continuous Systems

Fabian Immler�

Institut für Informatik, Technische Universität München
immler@in.tum.de

Abstract. Ordinary differential equations (ODEs) are often used to
model the dynamics of (often safety-critical) continuous systems.

This work presents the formal verification of an algorithm for reach-
ability analysis in continuous systems. The algorithm features adaptive
Runge-Kutta methods and rigorous numerics based on affine arithmetic.
It is proved to be sound with respect to the existing formalization of
ODEs in Isabelle/HOL. Optimizations like splitting, intersecting and
collecting reachable sets are necessary to analyze chaotic systems. Ex-
periments demonstrate the practical usability of our developments.

Keywords: Numerical Analysis, Rigorous Numerics, Validated Numer-
ics, Ordinary Differential Equation, Continuous System, Interactive The-
orem Proving.

1 Introduction

Many real-world systems with continuous dynamics can be modeled with or-
dinary differential equations (ODEs). An important task is to determine for a
set of initial states all reachable states. This requires to compute enclosures
for solutions of ODEs, which is done by tools for guaranteed integration (e.g.,
VNODE-LP [21] or COSY [5]) and also by tools for reachability analysis of hy-
brid systems (with the state-of-the-art tool for linear dynamics SpaceEx [13] and
tools supporting non-linear dynamics like Flow* [9], HySAT/iSAT [12], or Ari-
adne [4]). Such tools aim at computing safe overapproximations, an intended use
is often the analysis of safety-critical systems. Therefore any effort to improve
the level of rigor is valuable, and such efforts have been undertaken already:
Nedialkov [21] implemented VNODE-LP using literate programming such that
correctness of the code can be examined by human experts. Taylor models, which
are used to represent reachable sets in COSY, Flow*, and Ariadne, have been
formalized in theorem provers in the context of Ariadne [10] but also as a generic
means for validated numerics [8,25].

Here we present the formal verification of an algorithm for reachability anal-
ysis of continuous systems. The algorithm splits, reduces and collects reachable

� Supported by the DFG RTG 1480 (PUMA).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 37–51, 2015.
DOI: 10.1007/978-3-662-46681-0_3

38 F. Immler

sets during the analysis, crucial features for being able to analyze chaotic sys-
tems. Propagation of reachable sets is implemented using higher-order Runge-
Kutta methods with adaptive step size control. The formal verification of all
those algorithms is a novel contribution and a qualitative improvement on the
level of trust that can be put into reachability analysis of continuous systems.
Experiments show that our algorithms allow to analyze low-dimensional, non-
linear systems that are out of reach for many of the existing tools. Nevertheless,
our work should not be considered a rival to the existing tools or concepts, which
are more mature and flexible. We would rather like to demonstrate that formal
verification does not exclude competitive performance.

We build on our formalization of affine arithmetic and the Euler method [15].
The verification is carried out with respect to the theory of ODEs in the in-
teractive theorem prover Isabelle/HOL [22]. Every definition and theorem we
display in this document possesses a formally proved and mechanically checked
counterpart. The development is available in the Archive of Formal Proofs [18].

1.1 Related Work: ODEs and ITPs

In addition to the previously mentioned work on analysis of continuous systems,
there also exists related work on differential equations formalized in theorem
provers: Spitters and Makarov [20] implement Picard iteration to calculate solu-
tions of ODEs in the interactive theorem prover Coq, but restricted to relatively
short existence intervals. Boldo et al. [6] approximate the solution of one par-
ticular partial differential equation with a C-program and verify its correctness
in Coq. Platzer [23] uses a different approach in that he does not do numerical
analysis but uses differential invariants to reason symbolically about dynamical
systems in a proof assistant.

2 Main Ideas

In what follows, we consider the problem of computing reachable sets for systems
defined by an autonomous ODE ẋ = f(x) with f : Rn → R

n. We denote the
solution depending on initial condition x0 and time t with ϕ(x0, t). Reachability
analysis aims at computing (or overapproximating) all states of the system that
are reachable from some set of initial states X0 ⊆ R

n within a time horizon
T ⊆ R, i.e., the set ϕ(X0, T).

We will start by illustrating the main ingredients of our algorithm for reach-
ability analysis. We do not claim originality for those ideas, however combining
all of them for numerically solving ODEs and especially formally verifying them
is, to the best of our knowledge, a novel contribution.

Rigorous Numerics. First of all, in any numerical computation, continuous, real-
valued quantities are approximated with finite precision. One therefore needs to
cope with round-off errors. Reasoning about them explicitly gets very tedious.
We therefore take the approach of set-based computing, or rigorous numerics:

Verified Reachability Analysis of Continuous Systems 39

The idea is to compute with sets instead of single values and abstract all kinds of
errors (including round-off) by including them into the set. The data structure
we choose is affine forms, they represent sets called zonotopes and have been
successfully applied in hybrid systems analysis [14].

Guaranteed Runge-Kutta Methods with Step Size Adaptation. Bouissou et al. [7]
presented the idea to turn “classical” numerical Algorithms into guaranteed
methods by using affine arithmetic. They illustrated their approach on a stiff
(i.e., numerical approximations requiring very small step sizes in parts of the
state space) ODE, which makes adaptive step size control necessary. In gen-
eral, automatic step size adaptation improves the performance of any numerical
method, as it avoids wasting computational time on “easy” parts of the solution
and maintains high accuracy on “hard” parts of the solution.

Splitting. Zonotopes are convex sets, this leads of course to loss of precision
when non-convex sets need to be enclosed. But non-linear dynamics produce
non-convex sets, which is why a purely zonotope based approach is likely to
fail because of more and more increasing overapproximations. The immediate
approach is to split the sets before they grow too large, and have the union of
smaller sets represent the larger non-convex set.

Reduction. While splitting sets allows to maintain precision in the presence of
non-convex sets, it leads to problems when the dynamics produce large sets.
Especially when analyzing chaotic systems, small initial sets expand rapidly –
due to the dynamics of the system, not necessarily because of inaccurate com-
putations. This may produce a prohibitively large number of split sets. Any
possibility to reduce the size of reachable sets therefore is a valuable improve-
ment because it helps to reduce the number of sets. Our method is based on
the idea that whenever a reachable set flows through a hyperplane, it can be
reduced to the intersection with that hyperplane. We got the idea of reducing to
transversal hyperplanes from Tucker’s [24] algorithm, which reduces reachable
sets after every step to axis-perpendicular hyperplanes. Bak [3] also proposed to
perform reductions transversal to the flow. But in his setting, the user needs to
come up with suitable reductions.

3 Verification

We formalize all of the previous “main ideas” using the interactive theorem
prover Isabelle/HOL [22]. We build on Isabelle/HOL’s library for multivariate
analysis and the formalization of ODEs [17]. Our algorithms are formalized as
monadic programs using Lammich’s [19] framework. In such programs, we write
x ← y to bind x to the result of y, which may also fail. We write x ∈ X to
choose an arbitrary element x from the set X .

40 F. Immler

3.1 Reachability in Continuous Systems

In order to verify our algorithms, we need of course a specification. We assume a
continuous system where the evolution is governed by a continuous flow ϕ(x, t),
i.e., ϕ(ϕ(x0, t), s) = ϕ(x0, t + s). We formalize reachability with the ternary
predicate �, where X �CX Y holds if the evolution flows every point of X ⊆ R

n

to Y ⊆ R
n and does not leave the set CX in the meantime.

X �CX Y := ∀x ∈ X. ∃t ≥ 0. ϕ(t, x0) ∈ Y ∧ (∀0 ≤ s ≤ t. ϕ(s, x0) ∈ CX)

CX can therefore be used to describe safety properties during the reachability
analysis. This predicate allows to easily combine steps in reachability analysis
according to the rule X �CX Y ∧ Y �CY Z =⇒ X �(CX∪CY) Z.

3.2 Rigorous Numerics: Affine Arithmetic

Rigorous (or guaranteed) numerics means computing with sets that guarantee to
enclose the quantities of interest. The most basic data structure to represent sets
is intervals, but those suffer from the wrapping effect – enclosing rotated boxes
with boxes leads to large overapproximations. Moreover dependencies between
variables are lost, e.g. for an enclosure x ∈ [−1; 1], the term x − x evaluates to
[−2; 2] in interval arithmetic.

Affine arithmetic [11] improves over interval arithmetic by tracking linear
dependencies. For this one utilizes affine forms, represented by a list of generators
〈a0, . . . , ak〉 with ai ∈ R

n. An affine form is the formal expression a0+
∑

0<i≤k εi ·
ai where the formal variables εi are called noise symbols. The set γ〈a0, . . . , ak〉
represented by an affine form is called a zonotope and is given as the set of
all elements when the formal variables εi range over [−1; 1]: γ〈a0, . . . , ak〉 =
{a0 +

∑
0<i≤k εi · ai | −1 ≤ εi ≤ 1}

Affine forms track linear dependencies, because the formal variables are treated
symbolically. Examining the dependency problem from before, if we have the
affine form 1 · ε1 representing the enclosure x ∈ γ(1 · ε1) = [−1; 1], then evalu-
ating x − x in affine arithmetic yields 1 · ε1 − 1 · ε1 = 0 · ε1. The result repre-
sents therefore the exact quantity {0}. Any linear operation A : Rn → R

n can
be represented exactly, as it distributes over the generators of the affine form:
A(γ(〈a0, . . . , ak〉)) = γ〈Aa0, . . . , Aak〉. Nonlinear operations like multiplication
or division are linearized, adding the linearization error as a new noise symbol.
Provided with safe estimations on round-off errors, those can be included in
computations with affine forms as well. In general, all kinds of uncertainties can
be added using Minkowski addition X ⊕ Y = {x + y | x ∈ X ∧ y ∈ Y }, which
can be implemented efficiently for affine forms by taking a disjoint union of the
generators.

3.3 Guaranteed Runge-Kutta Methods

Having presented the background on rigorous numerics, we will now concentrate
on solving ODEs numerically. A classical approach is given by Runge-Kutta

Verified Reachability Analysis of Continuous Systems 41

methods, which approximate the solution in a series of discrete steps in time.
We assume from now on an autonomous ODE ẋ = f(x) and f ∈ C2(Rn,Rn)
twice continuously differentiable. Recall that we denote the solution for initial
value x0 at time t with ϕ(x0, t). Runge-Kutta methods are one-step methods:
they discretize the time into a grid of times t0, . . . , ti, . . . with step size hi =
ti+1 − ti and compute a series of steps xi ≈ ϕ(x0, ti). The discretization error
|ϕ(xi, hi) − xi| is obtained via Taylor series expansions of the solution and the
Runge-Kutta method.

Runge-Kutta methods can be turned into guaranteed methods by evaluating
the approximate steps using rigorous numerics, e.g., in affine arithmetic. To be
guaranteed, it is necessary to explicitly include the discretization error in the
set representation. In order to obtain a safe estimate for the discretization error,
one first needs to prove that the solution exists for the desired step and find an
a-priori bound on the solution.

A unique solution for an initial value x0 exists for stepsize h if the iteration
given by the Picard operator Ph : C∞([0; h],Rn) → C∞([0; h],Rn) with Ph(ϕ) =
(t �→ xn+

∫ t

0 f(ϕ(s))ds) has a unique fixed point, which can be reduced to finding
a post fixed point for an overapproximating operator Qh : P(Rn) → P(Rn) with
Qh(X) = Xn + [0; h] · f(X).

cert-stepsize is defined to choose a step size h and iterate Qh until a post
fixed point C is reached, i.e., Qh(C) ⊆ C. If that does not succeed, the iteration
restarts with a smaller step size. cert-stepsize returns the chosen step size and the
post fixed point, which certifies the existence of a unique solution for the chosen
step size. The post fixed point also gives an a-priori bound on the solution:

Theorem 1 (Certification of Step). If x0 ∈ X0 and cert-stepsize(X0) =
(h, C), then there exists a unique solution ϕ(x0, [0; h]) ⊆ C.

The most basic Runge-Kutta method is the method of Euler, it approximates
the solution ϕ(x0, h) with the linear function with the slope given by the ODE f
at instant t: ϕ(x0, h) ≈ x0 + h · f(x0). The right-hand side of this approximation
is exactly the first two terms of a Taylor series expansion of the solution ϕ. When
evaluating f at different points, one can achieve that the Taylor series expansions
match up to higher order, which is the idea of Runge-Kutta methods.

We verified a generic two-stage Runge-Kutta method rk2h(x) = x + h · ψh(x),
with ψh(x) = (1 − 1

2p)f(x) + 1
2pf(x + hpf(x)). Then rk2h(x0) approximates the

solution: |ϕ(x0, h) − rk2h(x0)| ∈ O(h3). We assume 0 < p ≤ 1 for the parameter
p, one can choose e.g., p = 1, to obtain the classical method of Heun.

For non-guaranteed methods, it suffices to show via Taylor series expansions
of ϕ and rk2h that the solution and Runge-Kutta approximation differ by some
remainder term in O(h3). For a guaranteed method, an explicit estimate for the
remainder term is needed, which requires higher derivatives of f . We denote
by f ′(x) : Rn → R

n the derivative (the linear mapping given by the Jacobian
matrix) of f at x and with f ′′(x) : R

n → R
n → R

n the derivative of f ′ (a
bilinear mapping).

42 F. Immler

Algorithm 1. Step of Runge-Kutta method
1: function rkstep(X0)
2: (h, C) ← cert-stepsize(X0)
3: R ← rk2-remainderh(X0, C)
4: C′ ← rk2-remainder[0;h](X0, C)
5: X1 ← rk2h(X0) ⊕ R
6: XC ← rk2[0;h](X0) ⊕ C′

7: ε ← width(R)
8: return (h, ε, X1, XC)

When we set I = [0; 1] and T = [0; h] as enclosures for the occurring mean
values, the following expression for the remainder term can be deduced and
proved correct:

rk2-remainderh(X, XC) := h3

6
f ′′(XC

)(
f(XC)

)(
f(XC)

)
+

+ h3

6
f ′(XC

)(
f ′(XC)(f(XC)) − h3p

4
f ′′(X + hpIf(X)

)(
f(X)

)(
f(X)

)

Theorem 2 (Remainder of Two-Stage Runge-Kutta). If ϕ(x0, t) ∈ X and
ϕ(x0, T) ⊆ XC , then ϕ(x0, h) − rk2h(X) ∈ rk2-remainderh(X, XC).

With Algorithm 1, rkstep, we compute one step of the guaranteed Runge-
Kutta method: C is a first, rough enclosure for the solution over the interval
[0; h], which is used to compute a tighter enclosure XC over the interval and
an even tighter one X1 at the time instant h. The algorithm then satisfies the
following specification, which follows from Theorems 1 and 2.

Theorem 3 (Step of Runge-Kutta Method). Assume x0 ∈ X0 and
rkstep(X0) = (h, ε, X1, XC). Then there exists a unique solution ϕ(x0, [0; h]) ⊆
XC with ϕ(x0, h) ∈ X1, or in terms of the reachability predicate X0 �XC X1.

Note that the computation (in particular for rk2-remainder) requires the higher
derivatives f ′, f ′′ of f , which Isabelle/HOL can automatically derive from the
symbolic representation of f . The quantity ε did not occur in the specification.
It gives the size of the remainder term, the discretization error. We can therefore
use ε to guide step size control in section 3.7.

3.4 Splitting

In the previous section we had developed the analysis of the discretization
error, which is unfortunately not the only source of error. Errors are intro-
duced due to linearization of operations on affine forms: non-convex sets are
enclosed in the convex zonotopes. These errors are quadratic in the size of
the zonotope, acceptable precision can therefore be maintained if the size of
the zonotopes is kept small. Zonotopes generated by 〈a0, . . . , an〉 can be split

Verified Reachability Analysis of Continuous Systems 43

H

X0

X1

XC

I

Fig. 1. Idealized reduction

H
I

A0

HI

A1

dI

dA

HA

d

Fig. 2. Selection of hyperplanes

by halving one of the generators ai, i.e., setting split (〈a0, . . . , an〉, i) = (〈a0 −
ai/2, a1, . . . , ai−1, ai/2, ai+1, . . . , an〉, 〈a0 + ai/2, a1, . . . , ai−1, ai/2, ai+1, . . . , an〉)
The range of the resulting zonotopes encloses the range of the argument, which
follows from the definition of γ.

Theorem 4 (Splitting). split(X) = (Y, Z) =⇒ γ(X) ⊆ γ(Y) ∪ γ(Z).

3.5 Reduction of Reachable Sets

Too many splits impair performance, which is why the size of the reachable
sets must be reduced whenever possible. The idea is to reduce reachable sets by
looking at how the flow passes through a given hyperplane H .

The general idea is to start with a reachable set X0 above the hyperplane and
perform one Runge-Kutta step rkstep(X0) = (h, ε, X1, XC) towards a reachable
set X1 below the hyperplane, see Figure 1. The enclosure for the flow between
X0 and X1 is given by XC , which means that every flow that eventually reaches
X1 has to pass through the intersection I := XC ∩H . Therefore the computation
of reachable sets can continue with I instead of X1, which is of advantage if I is
smaller than X1.

However, the situation is in general a bit more complicated because X1 cannot
be guaranteed to lie below H , or only with very large step sizes. Also the dynam-
ics might just “scratch” the hyperplane, i.e., not completely passing through it.
To cope with those difficulties, Algorithm 2 is used to compute the intersection
of the flow from reachable set X0 with the hyperplane H : it iterates Runge-Kutta
steps until the set has passed through H . It also allows to abort the iteration if
e.g., the flow has changed its dominating direction during the iteration.

The relation between the reachable set and the computed intersection can be
expressed with the reachability predicate X �CX Y . In addition, we write H≥

for the half-plane above H . This allows to specify the outcome of intersect-flow:
Every flow starting from X above the half-plane reaches the intersection.

Theorem 5 (Intersection of Flow from X with Hyperplane H).
intersect-flow(X, H) = (A, X , I) =⇒ (

X ∩ H≥)
�X

(
A ∪ ⋃

I∈I I
)

44 F. Immler

Algorithm 2. Intersection of Flow from X with Hyperplane H

1: function intersect-flow(X, H)
2: I, X = ∅
3: while ¬(X below H) ∧ ¬abort(X) do
4: (h, ε, X1, XC) ← rkstep(X)
5: I ← I ∪ {XC ∩ H} � intersection of zonotope with hyperplane
6: X ← X ∪ {XC}
7: X ← X1

8: return (X, X , I)

The crucial step of Algorithm 2 is the computation of the intersection of
the zonotope XC with the hyperplane H in line 5, which can only be done
approximately. The verification of this is a nontrivial task [16].

3.6 Summarization of Intersections

When the intersection is computed by flowing the reachable set through the hy-
perplane step by step, we get a set I consisting of individual intersections Ii.
Many of the sets Ii usually overlap, in order to avoid redundant enclosures, it is
desirable to remove the overlaps. Ideally, this could be done using set difference,
an operation under which zonotopes are not closed. Therefore an overapproxi-
mation has to suffice. The overapproximation lays a grid of (hyper-)rectangles
Rk = [r−

k ; r+k] over the interval enclosure [I−; I+] of
⋃

I∈I I: [I−; I+] =
⋃

k Rk.
Then we shrink every element Rk to R′

k such that the union still encloses I:
R′

k = Rk ∩ [r′−
k ; r′+

k] where [r′−
k ; r′+

k] is the interval enclosure of
⋃

i. Ii∩Rk
=∅ Ii,
i.e. the union of all Ii that overlap with Rk. This process might even remove
some of the sets R′

k.
The only important proposition to prove is that the so computed collection is

a safe overapproximation, i.e., we have the following theorem:

Theorem 6 (Summarization of Intersections).
⋃

I∈I I ⊆ ⋃
k R′

k

3.7 Reachability Analysis

Up to now, we only considered single steps of the reachability analysis, either
a Runge-Kutta step, or reducing a reachable set onto a hyperplane. In order to
compute reachable sets for larger time intervals, these steps need to be iterated.

The whole reachability analysis algorithm consists again of several parts: The
first part, flow-towards-plane, iterates Runge-Kutta steps to flow a collection
of reachable sets towards a given hyperplane. This iteration includes step-size
adaption, splitting of zonotopes, and finally the intersection. flow-towards-plane
takes place in a loop of reach that decides which plane to flow to next.

Flowing towards One Plane. The loop of Algorithm 3, flow-towards-plane,
maintains three kinds of sets: Flowing sets F , intersected sets I and aborted

Verified Reachability Analysis of Continuous Systems 45

Algorithm 3. Flowing Towards one Plane
1: function flow-towards-plane(F0, H)
2: F ← F0, I ← ∅, A ← ∅
3: while F �= ∅ do
4: (X, h) ∈ F
5: F ← F \ {X}
6: if width(X) ≥ max-width then � splitting is needed
7: (X, Y) ← split(X)
8: F ← F ∪ {(X, h), (Y, h)}
9: else

10: (h, ε, X1, XC) ← rkstep(X)
11: assert(safe(XC))
12: if reject(ε) then F ← F ∪ {(X, h/2)} � step size control
13: else if XC ∩ H �= ∅ then
14: (A, X , I′) ← intersect-flow(X, H)
15: assert(safe(X))
16: A ← A ∪ {A}; I ← I ∪ I′

17: else if abort(X) then � abort when direction of flow changes
18: A ← A ∪ {X}
19: else F ← F ∪ {(X, adapt-stepsize(h, ε))} � step size control
20: return (A, I)

sets A, all reachable sets are checked to be safe with respect to some given
specification in the loop (lines 12,17). The sets in F are associated with a step
size h. All sets are supposed to flow towards a given plane H . Inside the loop,
flow-towards-plane decides if sets need to be split (line 7), it performs a Runge-
Kutta step in line 11 and decides from the discretization error ε whether the step
size was too large and needs to be rejected (line 13). If close to the hyperplane,
an intersection is performed. Sets may also be aborted when the direction of the
flow changes (line 19). If otherwise successful, the step size is allowed to grow in
line 22, depending on the discretization error.

Assuming that
⋃

F ∈F0
F ⊆ H≥, the invariant that the algorithm maintains

in its while loop is given in the following theorem.

Theorem 7 (Invariant of flow-towards-plane).
(⋃

F ∈F0
F

)
�safe

((⋃
X∈(A∪F) X ∩ H≥) ∪ (⋃

I∈I I ∩ H
))

The flows ending in A or F can be restricted to the half-space above, because the
parts of the sets below the plane is taken care of by the intersection. They need
to be restricted because it cannot be guaranteed that they are always above H
(splitting might introduce overapproximations). The flows to the intersections
I need to be restricted to the plane, because the computed sets can also be
overapproximations.

Flowing from Plane to Plane. Algorithm flow-towards-plane(F0, H) flows
reachable sets from F0 towards a plane H and returns sets I that intersect the

46 F. Immler

Algorithm 4. Reachability from Plane to Plane
1: function reach(F0)
2: H ← choose-plane(F0, d), X ← ∅,F ← {(F0, H)}
3: while F �= ∅ do
4: (F , H) ∈ F
5: F ← F \ {F}
6: (A, I) ← flow-towards-plane(F , H)
7: HA ← choose-plane(A, 0) � aborted sets – collect as soon as possible
8: HI ← choose-plane(I, d) � regular intersection – collect after distance d
9: if abort(H) then X ← X ∪ I

10: else F ← F ∪ (I, HI)
11: F ← F ∪ (A, HA)
12: return X

plane H and sets A that have been aborted before. Then choose-plane selects
different planes that determine where the sets in I and A supposed to flow next.
We sketch choose-plane only informally: For the sets in I, one determines the
strongest direction dI imposed by the dynamics and has them flow towards a
plane located a certain distance d in the strongest direction and perpendicular to
that direction (Figure 2). For the aborted sets in A, one similarly determines the
strongest direction dA, but places the plane directly next to the sets. Reducing
the sets with intersections directly after switching the direction of the flow turned
out to be an effective means to keep the reachable sets small. For simplicity, we
only choose axis-perpendicular hyperplanes: experiments have suggested that
arbitrary hyperplanes do not necessarily lead to better performance.

The final result for our reachability Algorithm 4 reads as follows: if the algo-
rithm reach(F0) returns X , then the sets from F0 flow towards X , passing only
through safe sets:

Theorem 8. reach(F0) = X =⇒ (⋃
F ∈F0

F
)
�safe

(⋃
X∈X X

)
.

4 Implementation

We presented our algorithms on an abstract level, but refined them (still veri-
fied in Isabelle/HOL) towards an executable specification, using Lammich’s [19]
framework. From the executable specification, Isabelle/HOL allows to generate
Standard ML code. When executing it, we have to trust the (mostly syntac-
tic) translation from terms in Isabelle/HOL to Standard ML. We also trust the
compiler (PolyML 5.5.2) together with its library for big integers.

The working sets I, F , A,F in Algorithms 2, 3, and 4 for example are imple-
mented using lists. Their elements, the reachable sets X , A, I are represented
by affine forms, which are represented by the list of their generators 〈a0, . . . , ak〉.
Most of the generators of an affine form are zero, which is why affine forms are
represented more efficiently as sparse lists. Moreover we keep the invariant that
the sparse lists are sorted, which allows for efficient implementation of binary

Verified Reachability Analysis of Continuous Systems 47

Fig. 3. Van-der-Pol, w = 175

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-4 -2 0 2 4 6 8 10 12 14

z
x

Fig. 4. Least (inner) and most (outer) chaotic
IVP of the Lorenz system under study

operations like addition or multiplication. Real numbers are implemented using
pairs of integers m, e ∈ Z, which represent the real number m · 2e. For these
idealized floating point numbers, rounding is performed explicitly.

The abstract algorithms we presented here consist of roughly 300 lines of code
in our abstract formalization. Including the library for affine arithmetic and real
numbers, the generated code consists of more than 5500 lines. The verification
of the algorithms presented here can be estimated with approximately 4500 lines
of code, but this number does not include the mathematical background theory
about ODEs, which consists of about 6000 lines.

5 Experiments

We evaluate the performance and capabilities of our algorithm on small, classical
examples of nonlinear ODEs and compare our implementation with VNODE-LP
(version 0.3) and the Taylor model based tool Flow* (version 1.2). Both tools
perform neither splitting nor some sort of reduction. We also try to do com-
parisons with Bak’s [3] approach, which we call Flow*-PI: Bak experiments in
Flow* with manually declaring hyperplanes (“pseudo-invariants”) for reduction.
Recall that in contrast to Flow*-PI, our algorithm determines the hyperplanes
for reductions automatically.

Van-der-Pol. For the Van-der-Pol oscillator (Figure 3, plotted from the output of
our verified algorithm), which is given by the ODE ẋ = y; ẏ = (1−x2)y−x, we
consider initial value problems x0 ∈ 1.25 + w · [0, 0.01], y0 ∈ [2.28; 2.32] and vary
the size of the initial set with the parameter w. For w = 30, Althoff [1] reports a
run-time of 23 seconds. Since different parameters (e.g., step size, order of Taylor
models, error tolerance) can be chosen for the different tools, it is hard to perform
an objective comparison. We tried to be fair by setting the parameters to result

48 F. Immler

 0

 20

 40

 60

 80

 100

 120

 1 10 100

tim
e

[s
]

size of initial set

VNODE
flow*

flow*-PI
RK2+S+R

Fig. 5. Run-time for growing initial sets of
the Van-der-Pol system

 10

 100

 1000

 0 2 4 6 8 10 12

tim
e

[s
]

IVP #

flow*
flow*-PI

RK2
RK2+R
RK2+S

RK2+S+R
Euler+S+R

Fig. 6. Run-time for increasingly chaotic
initial value problems of the Lorenz system

in comparable step sizes (0.01) for Flow* and our algorithm. An adaptive order
of 4-6 seemed like the best compromise between performance and accuracy for
Flow*, a further parameter is 10−5 for the remainder estimation.

Figure 5 summarizes the results of our experimentation: it shows the run-
time for VNODE-LP, Flow*, Flow*-PI and our tool RK2+S+R (splitting and
reduction enabled). Failed attempts are set to 120 seconds. VNODE-LP can
only handle small initial sets. The tool Flow* can handle initial sets up to size
w = 50, and takes between 3 and 8 seconds. For the same problems, our tool
takes between 10 and 18 seconds. It scales with larger initial sets and is the only
one that can handle w ∈ {125, 175}. This is due to the very effective reduction
taking place at x ≈ 1.5, when y ≈ −1, as can be seen in Figure 3. Manually
inserting hyperplanes for reduction at y = 0 and x = 1.5 allows Flow*-PI to
integrate w = 75 in 24 seconds. We were unable to come up with hyperplanes
that would allow Flow*-PI integration for larger values of w.

Lorenz. Consider the classical Lorenz system ẋ = 11.8x − 0.29(x + y)z; ẏ =
−22.8y + 0.29(x + y)z; ż = −2.67z + (x + y)(2.2x − 1.3y) in Jordan normal
form. We experiment with 13 initial sets of width 0.005 along the line segment
between (0.74, 2.21, 27) and (1.5, 2.25, 27). The dynamics exhibits with smaller
values for x more and more chaotic behavior. Enclosures of the least and most
chaotic problem (computed with our verified algorithm) are depicted in Figure 4.

We toggle the different optimizations of our tool in order to study their respec-
tive effects. Moreover we compare our tool with Flow* and Flow*-PI (VNODE-
LP fails to integrate any of those problems). For Flow*-PI, we chose to reduce
at x = 2, z = 27, and x = 6, which gives reductions similar to our algorithm:
compare Figure 4, where one can see reductions at x ≈ 1.5 (at z ≈ 5) and z = 27
(at x ≈ 13). The results are summarized in Figure 6 and we interpret them as
follows. Flow* is fastest, but fails on the three most chaotic problems. Flow*-PI
allows to solve one additional problem. The Runge-Kutta method with reduction
and splitting (RK2+S+R) allows to solve all of the problems, utilizing the Euler-
method (Euler+S+R) shows similar scaling behavior but is less efficient. Just
RK2 and RK2 with reduction (RK2+R) are more efficient when the dynamics
is less chaotic, but promptly fail (similar to Flow*) when chaos takes over. In

Verified Reachability Analysis of Continuous Systems 49

Table 1. Comparison for two particular IVPs of the Lorenz system

IVP method step size time [s] error(x)

#8: (0.94, 2.16, 27) rk2, 10−5 7 · 10−4 194 0.14
rk2, 2 · 10−4 2 · 10−3 67 0.24
rk2, 2 · 10−2 5 · 10−4 286 0.9

Flow* 5 · 10−3 13 0.02
Flow*-PI 5 · 10−3 16 0.3

#10: (0.79, 2.14, 27) rk2, 10−5 2 · 10−4 595 0.3
rk2, 2 · 10−4 6 · 10−4 241 0.5
rk2, 2 · 10−2 1 · 10−4 1648 1.3

Flow* 5 · 10−4 121 5.8
Flow*-PI 5 · 10−4 106 0.5

summary, this shows that splitting is essential for handling chaotic systems, but
(as can be seen at RK2+S) does not scale without reduction.

For another comparison, we study the effect of different strategies for step-
size adaptation: we vary the threshold of discretization error for rejecting steps
between 10−5, 10−4, 10−2. Table 1 shows that (at least for good performance) a
compromise needs to be found: small local errors require more, smaller steps, but
allowing for too large local errors results in larger sets, therefore more splitting
and worse performance.

Comparing the performance of rk2, 2 · 10−4 with Flow* and Flow*-PI in Ta-
ble 1, we can see that on the easier problem #8, Flow* is very efficient: it achieves
better precision despite larger step size. On the more complicated problem #10,
Flow* fails to achieve the same accuracy, because the reachable sets grow too
large. This problem is successfully addressed by the reductions performed in
Flow*-PI and our method. Compared with Flow*-PI, our method achieves with
slightly larger step sizes the same accuracy, it is a bit more than twice as slow,
but it does not need manual interaction for choosing the reductions.

6 Conclusion

We presented a formally verified analyzer for continuous systems given by ODEs.
Its performance is in the range of other, non-verified tools, and even scales bet-
ter than them in the presence of large initial sets and chaotic dynamics. More
importantly, our algorithm introduces a new level of mathematical rigor and
therefore trust to analyzers for continuous systems.

Discussion. There is no single best approach to reachability analysis of ODEs,
therefore many of our design decisions were guided heuristically. Optimizations
like splitting and reduction to hyperplanes are only effective for low-dimensional
systems. Concerning splitting of reachable sets, an alternative could be to use
a more complex data structure like Taylor models that directly represent non-
convex sets. It seems, however, that splitting is also necessary for Taylor model

50 F. Immler

based analysis tools, as could be seen in section 5. Another possibility to re-
duce the reachable sets without geometric intersections has been proposed by
Althoff [2], but it depends on the problem at hand which one is more efficient
and/or precise.

Future work. Since we support intersection of reachable sets with hyperplanes,
we should be able to generalize the approach to handle switching surfaces of
hybrid systems. Moreover we aim to propagate more topological information (e.g.
partial derivatives) of the flow in order to be able to certify the computations
for the existence of the Lorenz-attractor [24].

Acknowledgements. I would like to thank the anonymous reviewers for their
helpful feedback and in particular for pointing me to Bak’s work [3].

References

1. Althoff, M.: Reachability analysis of nonlinear systems using conservative polyno-
mialization and non-convex sets. In: Proceedings of the 16th International Con-
ference on Hybrid Systems: Computation and Control, HSCC 2013, pp. 173–182.
ACM, New York (2013)

2. Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reacha-
bility analysis of hybrid systems. In: Proceedings of the 15th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC 2012, pp. 45–54.
ACM, New York (2012)

3. Bak, S.: Reducing the wrapping effect in flowpipe construction using pseudo-
invariants. In: Proceedings of the 4th ACM SIGBED International Workshop on
Design, Modeling, and Evaluation of Cyber-Physical Systems, CyPhy 2014, pp.
40–43. ACM, New York (2014)

4. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid au-
tomata. In: Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems (MTNS 2006), Kyoto, Japan (July 2006)

5. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliable Computing 4(4), 361–369
(1998)

6. Boldo, S., Clment, F., Fillitre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: A comprehensive mechanized proof of a C program.
Journal of Automated Reasoning 50(4), 423–456 (2013)

7. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynam-
ical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.)
NFM 2013. LNCS, vol. 7871, pp. 108–123. Springer, Heidelberg (2013)

8. Brisebarre, N., Joldeş, M., Martin-Dorel, É., Mayero, M., Muller, J.-M., Paşca, I.,
Rideau, L., Théry, L.: Rigorous polynomial approximation using Taylor models in
Coq. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 85–99.
Springer, Heidelberg (2012)

9. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

Verified Reachability Analysis of Continuous Systems 51

10. Collins, P., Niqui, M., Revol, N.: A validated real function calculus. Mathematics
in Computer Science 5(4), 437–467 (2011)

11. de Figueiredo, L., Stolfi, J.: Affine arithmetic: Concepts and applications. Numer-
ical Algorithms 37(1-4), 147–158 (2004)

12. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)

13. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

14. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005)

15. Immler, F.: Formally verified computation of enclosures of solutions of ordinary
differential equations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS,
vol. 8430, pp. 113–127. Springer, Heidelberg (2014)

16. Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersection.
In: Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP
2015, pp. 129–136. ACM, New York (2015)

17. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isa-
belle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 377–
392. Springer, Heidelberg (2012)

18. Immler, F., Hölzl, J.: Ordinary differential equations. Archive of Formal Proofs
(February 2015), Formal proof development,
http://afp.sf.net/devel-entries/Ordinary_Differential_Equations.shtml

19. Lammich, P.: Refinement for monadic programs. Archive of Formal Proofs (2012),
Formal proof development, http://afp.sf.net/entries/Refine_Monadic.shtml

20. Makarov, E., Spitters, B.: The Picard algorithm for ordinary differential equations
in Coq. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 463–468. Springer, Heidelberg (2013)

21. Nedialkov, N.: Implementing a rigorous ODE solver through literate programming.
In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with
Uncertainties, Mathematical Engineering, vol. 3, pp. 3–19. Springer, Heidelberg
(2011)

22. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

23. Platzer, A.: The complete proof theory of hybrid systems. In: Proceedings of the
2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science, LICS
2012, pp. 541–550. IEEE Computer Society, Washington, DC (2012)

24. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Foundations of
Computational Mathematics 2(1), 53–117 (2002)

25. Zumkeller, R.: Formal global optimisation with Taylor models. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 408–422. Springer,
Heidelberg (2006)

http://afp.sf.net/devel-entries/Ordinary_Differential_Equations.shtml
http://afp.sf.net/entries/Refine_Monadic.shtml

HYCOMP: An SMT-Based Model Checker
for Hybrid Systems�

Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta

Fondazione Bruno Kessler
{cimatti,griggio,mover,tonettas}@fbk.eu

Abstract. HYCOMP is a model checker for hybrid systems based on Satisfi-
ability Modulo Theories (SMT). HYCOMP takes as input networks of hybrid
automata specified using the HyDI symbolic language. HYCOMP relies on the
encoding of the network into an infinite-state transition system, which can be an-
alyzed using SMT-based verification techniques (e.g. BMC, K-induction, IC3).
The tool features specialized encodings of the automata network and can dis-
cretize various kinds of dynamics.

HYCOMP can verify invariant and LTL properties, and scenario specifications;
it can also perform synthesis of parameters ensuring the satisfaction of a given
(invariant) property. All these features are provided either through specialized
algorithms, as in the case of scenario or LTL verification, or applying off-the-
shelf algorithms based on SMT. We describe the tool in terms of functionalities,
architecture, and implementation, and we present the results of an experimental
evaluation.

1 Introduction

Embedded systems (e.g. control systems for railways, avionics, and space) feature the
interaction of discrete systems with the environment by means of controlled and mon-
itored variables that evolve continuously in time. The validation and verification of
embedded systems designs must often take into account a model of the continuous
evolution of such variables. Hybrid systems [26] are a clean modeling framework for
embedded systems because they exhibit both continuous transitions ruled by flow con-
ditions and discrete changes represented with logical formulas.

A fundamental step in the design of these systems is the validation and verifica-
tion of the models, performed by checking specifications expressed e.g. as invariants,
temporal-logic formulas, or scenarios. In spite of the undecidability of these problems,
several verification techniques have been developed and have proved to be applicable
in a wide number of cases. An emerging approach to the verification of hybrid systems
is the application of techniques based on Satisfiability Modulo Theories (SMT). The
hybrid system is encoded into a symbolic transition system and reachability problems
are represented by means of first-order formulas, which can then be solved with SMT-
based techniques. Thanks to the strong progress in the field of SMT, these approaches
are increasingly applied in real settings.

� This work was carried out within the D-MILS project, which is partially funded under the
European Commission’s Seventh Framework Programme (FP7).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 52–67, 2015.
DOI: 10.1007/978-3-662-46681-0_4

HYCOMP: An SMT-Based Model Checker for Hybrid Systems 53

In this paper we present HYCOMP, a symbolic model checker for hybrid systems.
HYCOMP is built on top of the NUXMV model checker [9], and implements various
verification techniques based on SMT. HYCOMP takes as input networks of hybrid au-
tomata specified using the HyDI symbolic language [15]. HYCOMP relies on the encod-
ing of the network into an infinite-state transition system, which can then be analyzed
using various SMT-based verification techniques provided by NUXMV (e.g. BMC, K-
induction, IC3). The tool features specialized encodings of the automata network and
can discretize various kinds of dynamics. HYCOMP can verify invariant and LTL prop-
erties [14], and scenario specifications [16]; it can also perform synthesis of parameters
ensuring the satisfaction of a given (invariant) property [12]. The tool has been used as a
research platform for developing novel verification techniques, both for hybrid systems
[8,16,14,33,17] as well as for more general infinite-state systems [12,13]. Moreover,
it has been used in different projects, both industrial and research-oriented ones (such
the ESA-funded projects IRONCAP and HASDEL, and the FP7 project MISSA). In
these projects HYCOMP turned out to be really useful to support the analysis of asyn-
chronous systems (also in the discrete case, as a front-end to NUXMV) and to solve
expressive verification problems (e.g. to verify temporal properties of real-time sys-
tems). The tool is freely available for non-commercial use and can be downloaded at
http://hycomp.fbk.eu. In this paper, we focus on the technical details about
HYCOMP as a tool.

Related tools. There exist several related tools and languages for the verification of hy-
brid systems. These tools are mainly focused on the verification of invariants and most
of them compute an overapproximation of the set of the reachable states. HYTECH [24]
is a model checker for linear hybrid automata, which represents the continuous part of
the reachable states using polyhedra. PHAVER [21] and SPACEEX [22] model affine
continuous dynamics with inputs. They check invariant properties computing an ap-
proximation of the set of the reachable states using different techniques (polyhedra and
support functions). Other model checkers, HSOLVER [36], D/DT [3] and ARIADNE [6],
FLOW* [10], verify invariants of non-linear hybrid systems.

KEYMAERA [35] is a theorem prover for hybrid systems. It can handle non-linear
hybrid systems, with symbolic parameters and an unbounded number of components.
Opposed to HYCOMP, it may require a manual user intervention during the proof pro-
cess and it supports a subset of LTL properties.

HybridSAL [37] is very similar to HYCOMP. The tool encodes linear hybrid systems
as infinite-state transition systems, which can be verified using the SAL [32] model
checker. HybridSAL also implements other abstraction techniques (e.g. See [40]), but
it does not implement the quantifier free encoding for polynomial hybrid systems. The
tool cannot prove LTL properties, it does not provide verification algorithms that ex-
ploit the hybrid automata network, and is not integrated with the efficient invariant
verification algorithms of NUXMV (e.g. IC3).

In the fragment of timed automata, the reference tool is UPPAAL [5]. It supports
the model checking of a subset of TCTL (Timed Computation Tree Logic) properties.
The reachability is explicit in the discrete states of the automata. The tool does not
handle hybrid systems and LTL properties. Moreover, UPPAAL does not allow the user
to model parametric designs.

http://hycomp.fbk.eu

54 A. Cimatti et al.

ATMOC is an SMT-based model checker for invariant [30], LTL [28] and MITL [29]
properties for symbolic timed automata.

MCMT [23] and PASSEL [27] are two other SMT-based tools for verifying parame-
terized systems composed by timed or linear hybrid automata. They differ since the fo-
cus is on systems with an infinite number of processes, which HYCOMP cannot handle.
They cannot verify LTL and scenario specification, while only MCMT can synthesize
parameters. Neither of them can analyze systems with complex dynamics.

Outline. In §2, we give a brief overview of the HyDI modeling language. In §3 we
describe the tool functionalities; we provide implementation details in §4, and in §5 we
present results of an empirical evaluation of HYCOMP wrt. related state-of-the-art tools.
We conclude the paper in §6.

2 Modeling Language

Overview. The input language of HYCOMP is HYDI [15] (Hybrid automata with DIs-
crete interaction). A HYDI program describes a network of hybrid automata interacting
with standard discrete synchronizations. HYDI extends the language of the NUXMV

model checker (which in turn extends the language of the NUSMV model checker with
infinite domain types) with specific constructs related to the hybrid semantics and to
the synchronization of asynchronous processes. The network is defined in the main
module, which declares a set of processes (defined by instantiations of modules) and
a set of synchronizations. The modules contain the definition of the hybrid behavior.
The discrete-time part is described with a set of discrete variables (e.g., Boolean, inte-
ger, real) and a set of formulas representing the initial states, the invariant conditions,
and transition relation. The continuous-time part is described with continuous variables,
flow and urgent conditions.

A simple example. Figure 1 shows a small example of communicating tanks specified
in HYDI. Each tank has an input and output flow of water. The input water flows only
in one of the tanks and when this tank is full, a valve switches the water flow to the
other tank. While one tank is being filled with new water, the other is being emptied
since there is always a flow of water that goes out of each tank.

More specifically, tank1 and tank2 are two instances of the module Tank, which
is instantiated with different values of the parameters. These are a flag initial, which
chooses which tank initially takes the incoming water, the maximum input flow, and
the minimum output flow. The synchronizations connect the event noflowin of tank1,
which represents the stop of flow in tank1, with the event flowin, which starts the flow
in tank2, and vice versa.

The discrete state space of each tank is described with two variables: state and
flow. The state variable represents the condition of the tank to be empty, full, or half -
empty/full (either filling or emptying). The flow variable is a Boolean that represents if
there is or not an input flow of water. The continuous variables q, inq, outq represent
the quantity of water that is present in the tank, the incoming quantity and the outgoing
quantity, respectively.

HYCOMP: An SMT-Based Model Checker for Hybrid Systems 55

MODULE main
VAR tank1: Tank(TRUE,2,1);

tank2: Tank(FALSE,2,1);
SYNC tank1,tank2

EVENTS flowin,noflowin;
SYNC tank1,tank2

EVENTS noflowin,flowin;

MODULE Tank(initial, maxin, minout)
EVENT flowin, noflowin, tau;
VAR state: {empty, half, full};

flow: boolean; inq: continuous;
q: continuous; outq: continuous;

INIT q=0 & (initial <-> flow)
INVAR q>=0 & q<=100 &

(state=empty -> q=0) &
(state=full -> q=100)

TRANS
(EVENT=flowin -> (next(flow)=TRUE &

next(state)=state))&
(EVENT=noflowin -> (state=full &

next(flow)=FALSE &
next(state)=state))&

(EVENT=tau -> (next(flow)=flow)) &
next(q)=q

FLOW
((state=empty & !flow) -> der(q)=0) &
(!(state=empty & !flow) ->

der(q)=der(inq)-der(outq));
FLOW
(!flow -> (der(inq)=0)) &
(flow -> (der(inq)>0 &

der(inq)<=maxin))&
der(outq)>=minout

Fig. 1. A small HYDI example

Fig. 2. A possible execution of the tank1 process
in the tank example. The lower part shows the se-
quence of transitions and discrete states. In the up-
per part, the quantity q is plotted against time (the
dash line represents the quantity in the other tank).

Any transition satisfying the tran-
sition and invariant conditions is
valid. Therefore, the state variable can
change only with an internal tau event;
when q is 0 then it can pass from
half to empty and backwards, while
when q is 100 the state can pass from
half to full and backwards; when the
tank receives the event flowin the flow
variable becomes true; when the tank
is full, it triggers the event noflowin
switching the flow variable to false.
Note how the symbolic representation
allows a compact definition of dis-
crete states (there are implicitly six
discrete states in the example) and dis-
crete transitions (six in the example).

The derivative of q is always given
by the difference between the rate of
water flowing in and the rate of water
flowing out. The water flowing in the tank is zero if the flow variable is false, otherwise
it is positive and not greater than a maxin value that is passed as parameter to the tank
module. The rate of water flowing out is instead always greater than another parameter
named maxout.

Intuitively, the system performs discrete and continuous transitions. In the former
case, the variables evolve according to the invariant and transition conditions. In the lat-
ter case, the discrete variables do not change, while the continuous variables change
according to the invariant and flow conditions (with an implicit elapsing of time).

56 A. Cimatti et al.

For example, Figure 2 shows a trace of tank1 that starts from the state empty with
flow=TRUE and q=0; then a tau transition changes the state into half ; then a timed
transition makes q reach the value 100 and another tau transition changes the state into
full; in this state, tank1 can synchronize with tank2 switching flow into FALSE. Now a
tau transition change the state to half, and another timed transition makes q reach the
value 0. The trace continues in this way oscillating the quantity q between 0 and 100.

Supported continuous dynamics. HYCOMP supports different types of flow conditions.
Each type enables different kinds of verification. In particular, we distinguish among
the following classes of hybrid systems:

– Hybrid systems with linear constraints (see [26]), also known as linear hybrid au-
tomata, where the flow condition is given by symbolic constraints over the deriva-
tives of continuous variables.

– Hybrid systems with linear ODE (see [31,22]), also known as linear hybrid systems
where the flow condition is defined by a system of linear Ordinary Differential
Equations (ODE).

– Hybrid systems with polynomial dynamics (see [20]): hybrid systems such that the
continuous evolution is described with a function over time, thus without using
derivatives.

In the first two cases, the flow condition is in the form φ(VD) → ψ(VC , V̇C) where
φ(VD) is a formula over the discrete variables defining where the flow is valid, while
ψ(VC , V̇C) is a formula over the continuous variables and their derivatives defining the
actual dynamics. Both φ and ψ are restricted to linear arithmetic.

In the case of hybrid systems with linear constraints, ψ is a conjunction of equali-
ties or inequalities over derivatives only (thus, without occurrences of continuous vari-
ables). The tank example falls in this class. In the case of hybrid systems with linear
ODEs, ψ is a conjunction of equalities over both derivatives and continuous variables.
The case of hybrid systems with polynomial dynamics, are supported with another key-
word EXPLICIT_FLOW, which must be followed by an equality defining the next value
of a continuous variable after a timed transition as a polynomial of the delta variable
representing the elapsed time.

Supported synchronizations. Synchronizations specify if two events of two processes
must happen at the same time. If two events are not synchronized, they interleave. Such
synchronization is quite standard in automata theory and process algebra. It has been
generalized with guards to restrict when the synchronization can happen.

Processes can share variables through the passage of parameters in the instantiations.
However, they are limited to read the variables of other processes. This permits an easy
identification of when the variables do not change even if the transitions are described
with a generic relation (compared to a more restrictive functional description).

In order to capture the semantics of some design languages, it is necessary to enrich
the synchronization with further constraints that specify a particular policy scheduling
the interaction of the processes. For this reason, it is possible to specify a scheduler in
the main module of the HYDI program in terms of state variables, initial and transition
conditions. These conditions may predicate over the events of the processes.

HYCOMP: An SMT-Based Model Checker for Hybrid Systems 57

HyDI file Parsing
Hybrid

Automata
Network

Discretization ITS network
Interleaving
encoding

ITS
Hybrid

Automata
Network

Fig. 3. Encoding process

3 Description of Tool Functionalities

3.1 Encodings

HYCOMP implements the encoding of a hybrid automata network into Infinite-state
Transition Systems (ITSs). The encoding process, shown in Figure 3, is constituted of
two main phases: the discretization and the interleaving encoding. The input of this
process is a HYDI program, while the resulting transition system can be exported into
the NUXMV format. If the input HYDI program is purely discrete, HYCOMP supports
an alternative flow in the encoding process, which can parse a discrete HYDI file into a
discrete asynchronous network of components, thus bypassing the discretization phase.
The discretization phase encodes the continuous variables, the flow and urgent condi-
tions of the hybrid automata network into a network of discrete ITSs. In the interleaving
encoding, the tool translates the interleaving of the transition systems of the network and
their synchronization constraints into a synchronous composition. We refer the reader
to [15,34] for the formalizaion with proofs of correctness of the encoding process.

Discretization of a process. The discretization phase translates each HYDI process Pc

into a discrete HYDI process Pd (a process with no continuous variables, no flow and
urgent conditions). Continuous variables are converted into discrete real variables and
an additional real variable delta is introduced to represent the amount of time elapsed in
the continuous transition. Moreover, Pc defines an additional event value timed, which
labels the discrete transition of Pc that encodes the continuous transition of Pd.

The definition of the timed transition ensures that all the discrete variables of Pc do
not change, that the amount of time elapsed is non-negative, and that the continuous
variables evolve according to the flow condition and the delta variable. The different
types of supported dynamics described in Section 2 are handled in different ways.

In the linear hybrid automata case, the predicate of the flow condition are a linear
combination of the first derivatives of the continuous variables (i.e.

∑
x∈X ẋ+ a ≤ 0).

The discretization encodes a linear combination as a formula Pd that relates the change
of values of the variables to the amount of time elapsed delta. For the tank example,
we have the following discretization:

TRANS (EVENT = timed) -> (
(delta=0 -> (next(q)=q & next(inq)=inq & next(outq)=outq)) &
((state=empty & !flow) -> next(q)=q) &
(!(state=empty & !flow) -> (

next(q)-q=next(inq)-inq-next(outq)+outq)) &
(!flow -> (next(inq)=inq)) &
(flow -> (next(inq)-inq > 0 & next(inq)-inq <= delta*maxin)) &
next(outq)-outq >= delta*minout)

58 A. Cimatti et al.

In the linear hybrid automata we just encode the invariant condition of Pc as INVAR in
Pd. The encoding is correct due to the convexity of invariant conditions (that is enforced
in the HYDI syntax).

In the polynomial hybrid system case, the input model already defines an explicit so-
lution in function of delta. HYCOMP can also compute a polynomial explicit solution
in delta for some linear hybrid systems. The capabilities of the tool are limited to a
very simple case, where the explicit solution can be obtained by substitution (e.g. given
ẋ = y, ẏ = 1 we can easily compute y(t) = t+ y(0) and x(t) = 1

2 t
2 + y(0)t+ x(0)).

Due to the possible non-linearity of the solution the invariant may be violated for some
value 0 < ε < delta, even if the invariant is convex and it holds on the interval points (0
and delta). For this reason, HYCOMP implements a specialized encoding [17], which
limits the duration of the timed transition in order to always observe the points where
the invariant changes its truth value.

For linear hybrid systems, HYCOMP implements the time-aware relational abstrac-
tion encoding of [33]. The idea of relational abstraction is to obtain a formulaR(X,X ′)
such that, if there is a trajectory from v to v′ in the linear system, then v, v′ is a model
for R(X,X ′). R(X,X ′) over-approximates the original hybrid system and thus the
resulting encoding can be used to prove safety properties.

The discretization process encodes the URGENT conditions that can be expressed
in HYDI. An URGENT condition is a formula U(V), where V are discrete variables,
such that if U(V) holds time cannot elapse. HYCOMP encodes the urgent condition as
TRANS U(V) -> delta = 0.

The discretization process can be controlled by two additional options. The first op-
tion automatically adds a clock variable time that keeps track of the total amount of
time elapsed in the system. The variable may complicate some verification algorithms
(e.g. the BMC algorithm for LTL properties is completely unuseful when using this en-
coding, since in the transition system there are no more infinite paths where the value
of the time diverges), but it may be necessary for other algorithms (e.g. the one based
on local-time semantic and K-zeno). The second option removes from the encoding the
possibility to have a path with two consecutive continuous transitions1. In this case the
encoding adds an additional Boolean variable b, which records if the last transition was
the time elapse (EVENT = timed -> next(b)) and forbids two consecutive time elapses
(EVENT = timed -> !b).

Discretization of the network. HYCOMP can perform two different encodings of hybrid
automata networks, one based on global-time semantics and the other on local-time
semantics [4]. The global-time semantic captures the standard semantic of a network
of hybrid automata: time elapses in all the automata in the network and for the same
duration. Instead, in the local-time semantic each automaton keeps the total amount
of time elapsed in a local clock variable, which is incremented independently by each
automaton. In this way, time may elapse in one automaton but not in the others. The
encoding also forces that, when automata synchronize, they must also agree on the value
of their local time clocks. The same condition on clocks is also required at the end of
a run.

1 The option is not sound for the encoding of polynomial hybrid systems.

HYCOMP: An SMT-Based Model Checker for Hybrid Systems 59

Global-time and local-time semantic are encoded using synchronization constraints.
For the global-time semantic, HYCOMP adds a strong synchronization constraint be-
tween each pair of automata in the network. For the tank example, it would add the
following SYNC constraint:

SYNC tank1,tank2 EVENTS timed, timed
CONDITION tank1.delta = tank2.delta;

The CONDITION constraint must hold when there is the synchronization.
HYCOMP encodes the local-time semantic changing each synchronization condition

and invariant property of the system. The encoding forces that the local time variable
of the automata must have the same value when there is a synchronization. In the tank
example, HYCOMP would create the following SYNC constraints:

SYNC tank1, tank2 EVENTS flowin, noflowin
CONDITION tank1.time = tank2.time;

SYNC tank1, tank2 EVENTS noflowin, flowin
CONDITION tank1.time = tank2.time;

The same condition about time has to be enforced also on INVARSPEC properties. HY-
COMP encodes each property INVARSPEC P as INVARSPEC S -> P, where S encodes the
equality of all the local time variables of the network processes.

Interleaving encoding. In order to convert the asynchronous composition of the pro-
cesses into a synchronous composition, HYCOMP adds to each process an additional
event, stutter. This represents an additional transition where the process remains in the
same state while the other processes move. Then, HYCOMP encodes the synchroniza-
tion constraints as an additional global TRANS constraints. The encoding of the first SYNC
declaration of the tank example is:

TRANS tank1.EVENT = flowin <-> tank2.EVENT = noflowin

HYCOMP provides two additional options. The step semantic relaxes the interleav-
ing encoding allowing to execute in parallel several independent transitions. The other
option allows to generate an encoding partitioned by the values of the EVENT variable.

3.2 Verification

HYCOMP provides the possibility to verify different kinds of properties, namely in-
variants, LTL, and scenario specifications. These are based on different verification al-
gorithms, which work either directly on the network of asynchronous ITSs (scenario
verification, BMC using shallow synchronization) or on the synchronous transition sys-
tem (BMC, IC3, K-induction).

Invariant Properties. HYCOMP implements several algorithms to verify invariant
properties. The property is expressed as a first-order formula over the state variables
of the hybrid automata network. The tool can either prove or falsify the property and,
in the latter case, construct a finite path that witnesses the violation.

60 A. Cimatti et al.

HYCOMP verifies invariant properties by using several SMT-based algorithms imple-
mented in NUXMV: IC3, K-induction, their combination with implicit predicate abstrac-
tion [38,13] and Bounded Model Checking (BMC). HYCOMP implements specialized
BMC encodings for networks of hybrid automata: the tool implements a BMC encod-
ing that alternates continuous and discrete transitions [1] and the shallow synchroniza-
tion encoding [8], which exploits local-time semantic to obtain shorter counterexample
paths.

We note that all the verification algorithms are enabled when the encoding is ex-
pressed in Linear Real Arithmetic Theory. This is the case if the hybrid automaton is
linear or when using time-aware relational abstraction, but it is not the case for polyno-
mial hybrid systems. The limitation is due to the integration of an SMT solver support-
ing the Theory of Reals (i.e. support for polynomials), since the tool only provides an
experimental implementation of BMC that uses the Z3 or ISAT 2 SMT-solvers3.

LTL Properties. The tool allows the user to verify LTL properties interpreted over
discrete sequences of states. It implements a specialized algorithm, K-zeno [14], which
is based on a reduction of liveness to the reachability of an accepting condition and
excludes Zeno paths (unrealistic paths where time does not diverge) from the analysis.

HYCOMP allows the user to call the NUXMV BMC algorithms for LTL verification
to find a violation to the LTL property. However, in this case the Zeno paths of the
hybrid automata are excluded in the encoding of the hybrid automata network using a
fairness condition (i.e. a condition that holds infinitely often) that enforces the diver-
gence of time. Note that the BMC algorithms will only find lasso-shaped paths.

Scenario Specifications. The last kind of specification verified by HYCOMP are sce-
narios: a scenario allows a user to specify the exchange of messages in a network of
hybrid automata. The scenario specifications supported by HYCOMP are a variant of
Message Sequence Charts (MSC). For all the automata in the network, an MSC defines
a sequence of events (i.e. labels of the automata) and constraints evaluated when an
event happens (e.g. the system must execute an event within a given amount of time).
The MSC is feasible if there exists a path in the hybrid automata network that simulates
it and that also satisfies the MSC constraints. Otherwise, the MSC is unfeasible.

HYCOMP implements two different approaches to verify scenario specifications. In
one approach, the tool reduces the problem of scenario verification to a reachability
problem, using an automaton to monitor the MSC feasibility. The other approach [16]
exploits local-time semantic and consists of a specialized BMC encoding of the prob-
lem. The approach may either find a witness of feasibility or prove that a scenario is not
feasible, using a variant of K-induction.

3.3 Parameter Synthesis

The tool allows the user to synthesize the set of parameter values of the system that
guarantee its safe behavior. For example, the tool may be used to automatically syn-

2 http://z3.codeplex.com, http://projects.avacs.org/projects/isat
3 HYCOMP does not link or distribute Z3 or ISAT, which should be installed by the end user.

http://z3.codeplex.com
http://projects.avacs.org/projects/isat

HYCOMP: An SMT-Based Model Checker for Hybrid Systems 61

Parser Network Dynamics BMC

Translate Scenario CMD LTL

HyComp

NuSMV nuXmv MathSAT LAPACK

Fig. 4. HYCOMP architecture

thesize timeout values or deadlines that the system must guarantee (e.g. the maximum
timeout to send a packet in a communication protocol).

In our framework, parameters are specified as FROZENVAR (a variable that never change
its value during the system execution) and the safe behavior as an invariant property.
The tool returns a formula of the parameters that represents the (possibly non-convex)
feasible region of parameters.

HYCOMP uses the parameter synthesis algorithm implemented in NUXMV [12].

4 Tool Architecture and Implementation Details

4.1 Architecture

In Figure 4 we show the architecture of the tool. HYCOMP uses as libraries the model
checkers NUSMV and NUXMV [9] and the MathSAT [18] SMT solver.

HYCOMP uses several data structures and functions from NUSMV: its formula rep-
resentation and manipulation package, its type system, its functions for flattening of
hierarchical modules and its representation of transition systems.

HYCOMP uses the SMT-based algorithms implemented in NUXMV (e.g. IC3, K-
induction, BMC, parameter synthesis) and also the NUXMV front-end to MathSAT.
The front-end exposes the MathSAT functionalities (satisfiability check, incremental
interface, extraction of unsat cores and interpolants), provides an automatic declaration
of the variables in the solver and an automatic conversion from different formula rep-
resentations (NUXMV and MathSAT representations). Finally HYCOMP also uses the
linear algebra library LAPACKE4 for the computation of relational abstractions.

The internal architecture of the tool is represented in the upper part of Figure 4. The
tool is divided in packages that clearly separate different functionalities. The parser
package is used to parse and type check a HYDI file. The results of this phase is a
network of hybrid automata. The data structures that represent networks of hybrid au-
tomata and of transition systems are defined in the network package. All the encod-
ing process is contained in the translate package, which also provides the functions to
discretize continuous dynamics. Different representations of a continuous system and
functions used to manipulate them are defined in the dynamics package. The verification
algorithms for LTL verification is implemented in the ltl package, while the specialized
BMC algorithms are implemented in the bmc package. Finally, the package scenario

4 http://www.netlib.org/lapack/

http://www.netlib.org/lapack/

62 A. Cimatti et al.

implements the scenario verification algorithms and the cmd package provides the user
commands that directly call the NUXMV algorithms (e.g. IC3, parameter synthesis).

4.2 Implementation Details

Network representation. HYCOMP represents asynchronous network of processes,
which can be either hybrid automata or transition systems. The data structure is ag-
nostic of the process type and provides common functionalities to represent and ma-
nipulate synchronization constraints. One of these is the computation of the transitive
closure of synchronizations (in HYDI, if there is a synchronization between the event
a of p1 and the event b of p2, and another synchronization between the event b of p2
and the event c of p3, then there is an implicit synchronization between a of p1 and c
of p3). HYCOMP represents the graph of synchronizations, where nodes are processes
and undirected edges are synchronizations, and computes its transitive closure.

Mapback of results. While the user is aware of the existence of the various encoding
phases, the tool hides all the artifacts of the encoding. This is important to avoid misun-
derstanding and allows for modifying the encoding in the future. The encoding phases
keep a map from a symbol in the source model to its correspondent symbol in the en-
coding (e.g. a continuous variable is mapped to the real variable used in the discrete
encoding). Since we have several transformations (discretization and encoding of inter-
leaving) we have several maps, which can be composed and inverted, to map the results
obtained during verification (e.g. counterexample paths) to the original model.

Symbolic enumeration of discrete locations. The discretization in the case of linear
hybrid systems requires to reason on a system of ODEs. Since the input is symbolic,
HYCOMP has to enumerate the set of discrete locations and, for each one of them,
compute the correspondent system of ODEs. For example, consider the following FLOW:

FLOW der(x) = x & (b -> der(y) = 1) & (!b -> der(y) = 0);

If b is true, then the linear system is der(x) = x & der(y) = 1, otherwise we have
der(x) = x & der(y) = 0. HYCOMP enumerates all the possible disjoint subsets of
discrete locations using MathSAT. The idea is to use an additional Boolean variable
for each discrete condition in the flow declarations (e.g. the variable f0 for TRUE, f1
for b and f2 for !b), encoding that the variable is true if and only if the condition is
true (e.g. f0 <-> TRUE && f1 <-> b && f2 <-> !b). Then, MathSAT enumerates all
the possible satisfying partial models formed by the Boolean variables (in the example
they are f0 & f1 & !f2 and f0 & !f1 & f2). Each partial model identifies a symbolic
discrete location where the FLOW is a system of ODEs.

5 Experimental Evaluation

We show an experimental comparison on the verification of invariant properties on
timed and linear hybrid automata. This comparison is novel and complements the com-
parisons for LTL, scenario verification, and parameter synthesis presented in previous
papers [14,16,12].

HYCOMP: An SMT-Based Model Checker for Hybrid Systems 63

IC3-IA IC3-IA-ALT UPPAAL UPPAAL-RED

#p time #p time #p time #p time
Csma-cd 12 2608.94 14 258.22 6 18.50 6 251.96
Fischer 8 1466 14 476.88 11 312.48 11 401.67
FischerSAL 6 258.15 5 463.92 11 356.49 11 451.35
HDDI 14 220.77 14 224.55 14 2.21 14 3.07
Lynch-Mahata 8 1710.81 6 494.12 11 416.69 11 534.05
All instances 48 6265 53 1918 53 1106 53 1642

Fig. 5. Results on mutual exclusion properties.
#p is the total number of instances solved and
time the time in seconds took to solve them.

 10

 20

 30

 40

 50

 0.1 1 10 100 1000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Total time (sec.)

IC3-IA
IC3-IA-ALT

UPPAAL
UPPAAL-RED

Fig. 6. Cumulative plot on mutex proper-
ties

The main goal of the experimental evaluation is to position the tool with respect to
the existing state of the art and not to evaluate the algorithms. For the latter goal, one
would need more benchmarks and properties.

All the experiments have been performed on a cluster of 64-bit Linux machines with
a 2.7 Ghz Intel Xeon X5650 CPU, with a memory limit of 4Gb and a time limit of 900
seconds. The HYCOMP tool and the benchmarks used in the experiments are available
at https://es.fbk.eu/people/mover/tests/tacas15hycomp.tar.bz2.

5.1 Timed Automata

We compared HYCOMP with UPPAAL [5] on timed automata benchmarks obtained ei-
ther from the UPPAAL or the MCMT [23] distributions, converting the benchmark in
the HYDI language. We selected the following benchmarks: the Fischer protocol, one
of its variant, FischerSAL, the Csma-cd protocol, the HDDI protocol and the Lynch-
Mahata protocol. For each benchmark we checked the mutual exclusion property and
we generated several invariant properties, which specify that a specific configuration of
locations in the network is not reachable. We generated several instances of the bench-
marks increasing the number of processes.

For HYCOMP, we run IC3 with implicit predicate abstraction (IC3-IA), the BMC
implementation that alternates timed and discrete transitions (BMC) and IC3 on the
encoding that avoids two consecutive timed transition (IC3-IA-ALT). In all the cases,
we used the global-time semantic. For UPPAAL, we used two different configurations5:
in the first one (UPPAAL) we used Different Bounded Matrices representation, while in
the second one (UPPAAL-RED) we used the minimal constraint systems representation.

In Figure 6 and Table 5 we show the comparison on the mutual exclusion properties.
We see that UPPAAL is generally faster than IC3-IA-ALT and IC3-IA. In detail, IC3-
IA and IC3-IA-ALT outperform UPPAAL on two benchmarks, while they are worse on
the other three: there are several instances that can be solved by UPPAAL and not by
HYCOMP and vice-versa.

In Figure 7 we show the results verifying the automatically generated properties.
UPPAAL solves more instances (325 in 14581 sec.) than IC3-IA-ALT (290 in 4776 sec).

5 In both cases we used the version 4.0.14 of UPPAAL with the options “-n 0, -o 0, -s 1”.

https://es.fbk.eu/people/mover/tests/tacas15hycomp.tar.bz2

64 A. Cimatti et al.

 50

 100

 150

 200

 250

 300

 0.1 1 10 100 1000 10000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Total time (sec.)

IC3-IA
IC3-IA-ALT

UPPAAL
UPPAAL-RED

(b) All the properties

 20

 40

 60

 80

 100

 120

 140

 0.1 1 10 100 1000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Total time (sec.)

IC3-IA
IC3-IA-ALT

UPPAAL
UPPAAL-RED

BMC-ALT

(b) Unsafe properties

Fig. 7. Cumulative plot on the automatically generated properties

IC3-IA IC3-IA-ALT SPACEEX

#p time #p time #p time
Distributed Controller 14 402.56 14 451.08 1 0.69
Fischer 5 905.82 5 558.49 3 74.73
Nuclear Reactor 14 783.02, 14 96.67 1 26.99
Navigation safe 28 1823.25 28 1768.78 28 43.76
Navigation-double safe 17 3213.59 16 3198.29 13 1599.16
Navigation unsafe 28 3280.17 28 4525.07 28 43.74
Navigation-double unsafe 17 4722.68 13 2438.36 14 2496.69
All instances 123 15131 118 13037 46 1745

Fig. 8. Results on LHA benchmarks. #p is the total
number of instances solved and time the time in sec-
onds took to solve them.

 20

 40

 60

 80

 100

 120

 0.1 1 10 100 1000 10000

of

 in
st

an
ce

s

time

IC3-IA
IC3-IA-ALT

spaceex

Fig. 9. Cumulative plot for LHA
benchmarks

If we focus on unsafe properties, we see that IC3-IA (155 in 983 sec.) and IC3-IA-ALT
(149 in 2274 sec.) are more effective than UPPAAL (146 in 3426 sec.).

5.2 Linear Hybrid Automata

We compared HYCOMP and SPACEEX [22] on the verification of invariant properties of
the following linear hybrid automata benchmarks: an LHA version of the Fischer pro-
tocol [2], the control of nuclear reactor of [39] (Nuclear Reactor), the model of a robot
controller [25] (Distributed Controller) and two LHA variants (Navigation, Navigation-
double) of the navigation benchmark [19]. Navigation models describe the movement
of an object in an nxn grid of square cells, which will eventually reach a stable region.
Navigation-double is a variant with two grids and two objects.

For all the benchmarks, except the navigation ones, we checked a mutual exclusion
property and we generated several instances increasing the number of components in
the network. For Navigation and Navigation-double, we increased the number of cells
in the grid and considered a safe and an unsafe property (the object is in the stability
region after or before a given time).

For HYCOMP, we run IC3-IA and IC3-IA-ALT, while for SPACEEX we used the
phaver scenario. We show the results of the comparison in Figure 9 and Table 8.

HYCOMP: An SMT-Based Model Checker for Hybrid Systems 65

6 Conclusion

We presented HYCOMP, an SMT-based model checker for hybrid systems. The tool fea-
tures an expressive input language and a rich set of functionalities, such as verification
of invariant and LTL properties, verification of scenario specifications and parameter
synthesis. We demonstrated the potential of the tool, showing its competitiveness with
the state of the art.

We plan to develop HYCOMP in several directions, adding algorithms for abstraction-
refinement in presence of complex dynamics, integrating more expressive specifications
such as HRELTL and improving the underlying SMT-based verification algorithms. We
also have plans to integrate HYCOMP in analysis tools for safety assessment (XSAP [7])
and contract-based design (OCRA [11]).

References

1. Ábrahám, E., Becker, B., Klaedtke, F., Steffen, M.: Optimizing bounded model checking for
linear hybrid systems. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 396–412.
Springer, Heidelberg (2005)

2. Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of hybrid sys-
tems. Theor. Comput. Sci. 354(2), 250–271 (2006)

3. Asarin, E., Dang, T., Maler, O.: The d/dt Tool for Verification of Hybrid Systems. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Hei-
delberg (2002)

4. Bengtsson, J.E., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems.
In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500.
Springer, Heidelberg (1998)

5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal - a tool suite for
automatic verification of real-time systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.)
HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

6. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume guarantee
verification of nonlinear hybrid systems with ariadne. International Journal of Robust and
Nonlinear Control 24(4), 699–724 (2014)

7. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA Safety Analysis Platform. STTT 9(1),
5–24 (2007)

8. Bu, L., Cimatti, A., Li, X., Mover, S., Tonetta, S.: Model checking of hybrid systems using
shallow synchronization. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010. LNCS,
vol. 6117, pp. 155–169. Springer, Heidelberg (2010)

9. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S.,
Roveri, M., Tonetta, S.: The NUXMV Symbolic Model Checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg (2014)

10. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid sys-
tems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer,
Heidelberg (2013)

11. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the refinement of temporal
contracts. In: ASE, pp. 702–705 (2013)

12. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In: FMCAD,
pp. 165–168 (2013)

66 A. Cimatti et al.

13. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit predicate
abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413,
pp. 46–61. Springer, Heidelberg (2014)

14. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Verifying LTL properties of hybrid systems
with K-LIVENESS. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 424–440.
Springer, Heidelberg (2014)

15. Cimatti, A., Mover, S., Tonetta, S.: Hydi: A language for symbolic hybrid systems with
discrete interaction. In: EUROMICRO-SEAA, pp. 275–278 (2011)

16. Cimatti, A., Mover, S., Tonetta, S.: Smt-based scenario verification for hybrid systems. For-
mal Methods in System Design 42(1), 46–66 (2013)

17. Cimatti, A., Mover, S., Tonetta, S.: Quantifier-free encoding of invariants for hybrid systems.
Formal Methods in System Design 45(2), 165–188 (2014)

18. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT solver. In:
Piterman, N., Smolka, S. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Hei-
delberg (2013)

19. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas,
G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)

20. Fränzle, M.: What Will Be Eventually True of Polynomial Hybrid Automata? In: Kobayashi,
N., Babu, C. S. (eds.) TACS 2001. LNCS, vol. 2215, pp. 340–359. Springer, Heidelberg
(2001)

21. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT 10(3),
263–279 (2008)

22. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrish-
nan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg
(2011)

23. Ghilardi, S., Ranise, S.: MCMT: A model checker modulo theories. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg (2010)

24. Henzinger, T.A., Ho, P., Wong-Toi, H.: HYTECH: A Model Checker for Hybrid Systems.
STTT 1(1-2), 110–122 (1997)

25. Henzinger, T.A., Ho, P.H.: Hytech: The cornell hybrid technology tool. In: Antsaklis, P.J.,
Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, pp. 265–293. Springer,
Heidelberg (1995)

26. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)
27. Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata net-

works. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE 2012. LNCS, vol. 7273, pp. 18–34.
Springer, Heidelberg (2012)

28. Kindermann, R., Junttila, T., Niemelä, I.: Beyond Lassos: Complete SMT-Based Bounded
Model Checking for Timed Automata. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and
FMOODS 2012. LNCS, vol. 7273, pp. 84–100. Springer, Heidelberg (2012)

29. Kindermann, R., Junttila, T.A., Niemelä, I.: Bounded Model Checking of an MITL Fragment
for Timed Automata. In: ACSD, pp. 216–225 (2013)

30. Kindermann, R., Junttila, T.A., Niemelä, I.: Smt-based induction methods for timed systems.
In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 171–187.
Springer, Heidelberg (2012)

31. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic Reachability Computation for Families of
Linear Vector Fields. J. Symb. Comput. 32(3), 231–253 (2001)

32. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500. Springer, Heidelberg
(2004)

HYCOMP: An SMT-Based Model Checker for Hybrid Systems 67

33. Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions for hybrid
systems. In: EMSOFT, pp. 1–10 (2013)

34. Mover, S.: Verification of Hybrid Systems using Satisfiability Modulo Theories. Ph.D. thesis,
University of Trento (2014)

35. Platzer, A., Quesel, J.-D.: KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (Sys-
tem Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

36. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based
abstraction refinement. ACM Trans. Embedded Comput. Syst. 6(1) (2007)

37. Tiwari, A.: HybridSAL Relational Abstracter. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)

38. Tonetta, S.: Abstract model checking without computing the abstraction. In: Cavalcanti, A.,
Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 89–105. Springer, Heidelberg (2009)

39. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with bdd-like data-
structures. IEEE Trans. Software Eng. 31(1), 38–51 (2005)

40. Zutshi, A., Sankaranarayanan, S., Tiwari, A.: Timed Relational Abstractions for Sampled
Data Control Systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 343–361. Springer, Heidelberg (2012)

C2E2: A Verification Tool for Stateflow Models

Parasara Sridhar Duggirala1, Sayan Mitra2, Mahesh Viswanathan1,
and Matthew Potok2

1 Department of Computer Science, University of Illinois at Urbana Champaign
{duggira3,vmahesh}@illinois.edu

2 Department of Electrical and Computer Engineering,
University of Illinois at Urbana Champaign

mitras@illinois.edu

Abstract. Mathworks’ Stateflow is a predominant environment for modeling
embedded and cyber-physical systems where control software interacts with phys-
ical processes. We present Compare-Execute-Check-Engine (C2E2)—a verifica-
tion tool for continuous and hybrid Stateflow models. It checks bounded time
invariant properties of models with nonlinear dynamics, and discrete transitions
with guards and resets. C2E2 transforms the model, generates simulations using
a validated numerical solver, and then computes reachtube over-approximations
with increasing precision. For this last step it uses annotations that have to be
added to the model. These annotations are extensions of proof certificates stud-
ied in Control Theory and can be automatically obtained for linear dynamics.
The C2E2 algorithm is sound and it is guaranteed to terminate if the system is
robustly safe (or unsafe) with respect to perturbations of guards and invariants
of the model. We present the architecture of C2E2, its workflow, and examples
illustrating its potential role in model-based design, verification, and validation.

1 Introduction

Cyber-physical systems (CPS) are systems that involve the close interaction between
a software controller and a physical plant. The state of the physical plant evolves con-
tinuously with time and is often modeled using ordinary differential equations (ODE).
The software controller, on the other hand, evolves through discrete steps and these
steps influence the evolution of the physical process. This results in a “hybrid” behavior
of discrete and continuous steps that makes the formal analysis of these models par-
ticularly challenging, so much so, that even models that are mathematically extremely
simple are computationally intractable. In addition, many physical plants have compli-
cated continuous dynamics that are described by nonlinear differential equations. Such
plants, even without any interaction with a controlling software, are often unamenable
to automated analysis.

On the other hand, the widespread deployment of CPS in safety critical scenarios
like automotives, avionics, and medical devices, have made formal, automated analysis
of such systems necessary. This is evident from the extensive activity in the research
community [20,19,7]. Given the challenges of formally verifying CPS, the sole analysis
technique that is commonly used to analyze nonlinear systems is numerical simulation.
However, given the large, uncountable space of behaviors, using numerical simulations

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 68–82, 2015.
DOI: 10.1007/978-3-662-46681-0_5

C2E2: A Verification Tool for Stateflow Models 69

to discover design flaws is like searching for a needle in the proverbial haystack. In
this paper we present a tool C2E2 (Compare-Execute-Check-Engine) that leverages the
power of numerical simulations to formally prove or disprove the safety of CPS over a
bounded time interval.

Systems analyzed by C2E2 are described using MathworksTM StateflowTM diagrams.
Stateflow is the predominant, even de facto standard, environment for designing and
developing embedded and CPS both in the industry and in academia. C2E2 interprets
Stateflow designs as hybrid automata [14], which is a popular mathematical model, with
precise semantics, for describing CPS. The models given as input to C2E2 must be an-
notated. The annotations here are similar in spirit to code assertions and contracts used
in the software verification domain. Each mode in the Stateflow diagram has to be anno-
tated with what we call a discrepancy function by the user. Discrepancy functions are a
generalization of several proof certificates used in control theory for analyzing conver-
gence and divergence of trajectories. In [8] we define discrepancy functions and discuss
how they can be computed automatically for a reasonably expressive class of models.
C2E2 transforms the input model and compiles it with a numerical simulation library
to produce a validated simulator for the model. This simulator is then used for comput-
ing increasingly precise reach set over-approximations until it proves or disproves the
bounded time safety property.

Our simulation based verification approach underlying C2E2, was first presented
in [8] and was subsequently used for a significant case study in [9]. The current paper
outlines several enhancements to the C2E2 tool that have been made since then. First
the verification algorithm presented in [8] only worked for switched systems 1 where
the time of mode switches is explicitly given in the input. In this paper, we extend the
algorithm to analyze “full hybrid automata”, i.e., continuous variables can be reset on
mode switches, and mode switches take place based on enabling guards rather than
explicitly given times. These theoretical improvements enable us to use C2E2 on a
new set of examples. We report our experience in using C2E2 on these examples and
its performance as experimental results. Next, C2E2 has been engineered to be more
robust, moving from an in-house prototype, to something that can be used by the wider
academic community. Finally, the tool now has a few additional features that make for
a better user experience. First, it has been integrated with Stateflow, to make it useful
for a wider community. Second, it can be used through a graphical user interface. And
lastly, visualization tools have been added to enable users to plot various aspects of the
reachable state space.

1.1 Related Work

Tools for verifying CPS vary widely based on the complexity of the complexity of the
continuous dynamics. Uppaal [15], HyTech [11], and SpaceEx [10] are tools verifying
timed automata, rectangular hybrid automata and linear hybrid automata respectively.
Current tools available for verifying nonlinear dynamics are d/dt [2], Flow* [5] and
Ariadne [3]. Typically these tools use symbolic methods for computing reachable set

1 Switched system here refers to a design where the state of the physical plant does not change
when a discrete transition is taken.

70 P.S. Duggirala et al.

of states (or their overapproximations) from a given initial set for inferring safety of
the system. Such tools provide formal soundness guarantees, however, do not provide
relative completeness. Further, these tools do not analyze Stateflow models and hence
a user has to specify model in the a specific input language, which requires additional
learning curve for using these tools.

Given the popularity of Simulink-Stateflow framework to model CPS, there are sev-
eral MATLAB based tools which verify such models. Breach [7] uses sensitivity anal-
ysis for analyzing MTL properties of systems using simulations. This analysis is sound
and relatively complete for linear systems, but does not provide formal guarantees for
nonlinear systems. S-Taliro [19] is a falsification engine that searches for counterexam-
ples using Monte-Carlo techniques and hence provides only probabilistic guarantees.
STRONG [6] uses robustness analysis for coverage of all executions from the initial set,
using Lyapunov functions, however cannot handle nonlinear systems. C2E2, although
requires additional annotations, can handle nonlinear systems specified in Stateflow and
provide rigorous soundness and completeness guarantees. The simulation based verifi-
cation algorithm in [8] has been extended for more general properties in [9] and to
networked input output systems in [13].

2 Hybrid Models and Safety Verification

Hybrid automata is a convenient and widely used mathematical framework for model-
ing CPS. One of its key features is that it combines two distinct modeling styles, namely,
differential equations and automata. For CPS, this enables the physical environment to
be modeled by differential equations and software and communication to modeled by
discrete state transitions.

Figure 1(a) shows an example of a simplified hybrid model of cardiac cell with a
pacemaker created using Mathworks’ Stateflow. The pacemaker has two modes or lo-
cations of operation: in the stimOn mode the cell is electrically stimulated by the pace-
maker, and in stimOff the stimulus is absent. The continuous variables u and v model
certain electrical properties of the cell. The stimulus is applied to the cell at regular time
intervals as measured by the clock t. The resulting evolution of one of the continuous
variables over time is shown in Figure 1(b).

Although there is no published formal semantics of Stateflow models, it is standard
to consider them as hybrid automata [17,12,7]. Let us denote the set of all the variables
(both continuous and discrete) in the model as the set V . This set includes a special
variable loc to denote the current location. In this case, loc can be either stimOff or
stimOn. The rest of the variables in V are continuous and real-valued. The set of all
possible valuations of all variables in V is denoted as val(V)—this defines the set of
states of the model. The continuous evolution of the variables is modeled by trajecto-
ries. A single trajectory τ is a function τ : [0, t] → val(V), where t ≥ 0 is the duration
τ . The state of the system at a given time t in τ is τ(t), and the value of a particular
variable v ∈ V at that state is denoted by τ(t).v. A set of trajectories is specified by
differential equations involving the continuous variables (see, for example, Figure 1). A
trajectory τ satisfies an ordinary differential equation (ODE) v̇ = f(v) if at each time

C2E2: A Verification Tool for Stateflow Models 71

(a) Model. (b) Behavior.

Fig. 1. (a) Simplified StateflowTM model of a cardiac cell and a pacemaker. (b) A simulation of
the model from an initial state.

t in the domain of the trajectory, d(τ(t).v)
dt = f(τ(t).v). When f is a nice2 function, the

ODE has a unique solution for a given initial state and a duration. With different initial
states and time bounds, an ODE defines a set of trajectories.

The discrete transitions between the two locations are specified by a set A of actions
(see Figure 1). An action a ∈ A is enabled at a state whenever the state satisfies a special
predicate Guarda that is associated with the action. The discrete transition from the
location stimOn to stimOff is enabled only when t >= 5, that is the clock has counted
5 units in stimOn. When the system takes a discrete transition, the new state of the
system after the transition is defined by a function Reseta that maps the old state to
a new state (and possibly a new location). For example, the reset function for stimOn
to stimOff sets t = 0, loc = stimOff , and leaves the other continuous variables u
and v unchanged. All of these components together defines the behavior of the hybrid
automaton in terms of a sequence of alternating trajectories and transitions.

Definition 1. A Hybrid Automaton (HA) A is a tuple 〈V, Loc,A,D, T 〉 where

(a) V = X ∪ {loc} is a set of variables. Here loc is a discrete variable of finite type
Loc. Valuations of loc are called locations. Each x ∈ X is a continuous variable
of type R. Elements of val(V) are called states.

(b) A is a finite set of actions or transition labels.
(c) D ⊆ val(V) × A × val(V) is the set of discrete transitions. A discrete transition

(v, a,v′) ∈ D is written as v
a→ v′. The discrete transitions are specified by finitely

many guards and reset maps involving V .
(d) T is a set of trajectories for X which is closed under suffix, prefix and concatena-

tion (see [14] for details). For each l ∈ Loc, a set of trajectories Tl for location l
are specified by differential equations El and an invariant Il ⊆ val(X). Over any
trajectory τ ∈ Tl, loc remains constant and the variables in X evolve according to
El such that for all at each time in the domain of τ , τ(t) satisfies the invariant Il.

An execution of a hybrid automaton A records all the information (about variables)
over a particular run. Formally, an execution is an alternating sequence of trajectories

2 For example, Lipschitz continuous or smooth. A continuous function f : Rn × R → R is
smooth if all its higher derivatives and partial derivatives exist and are also continuous. It has
a Lipschitz constant K ≥ 0 if for every x1, x2 ∈ R

n, ||f(x1)− f(x2)|| ≤ K||x1 − x2||.

72 P.S. Duggirala et al.

and actions σ = τ0a1τ1 . . . where each τi is a closed trajectory and τi(t)
ai+1→ τi+1(0),

where t is the last time point in τi. The duration of an execution is the total duration
of all the trajectories. The set of all executions is denoted as execs(A). In this paper,
we only consider executions with bounded number of switches and with bounded du-
ration. Given a set of initial states Θ ⊆ val(V), the set of executions from Θ are those
executions in execs(A) with their first state, τ0(0), in Θ. The set of executions start-
ing from Θ of duration at most T and with at most N transitions will be denoted as
execs(A, Θ, T,N).

Definition 2 (Safe and Unsafe). Given a hybrid automaton A with an initial set Θ,
unsafe set U , time bound T , and transition bound N , it is said to be unsafe, if there
exists an execution τ0a1 . . . τk ∈ execs(A, Θ, T,N) such that τk(t) ∈ U , where t is
the last time point in τk. Otherwise, A is said to be safe.

Our algorithm for safety verification as well as its analysis relies heavily on the
notion of distance between continuous states and trajectories of the automaton. To state
our results formally, we need to introduce a we notations first. For a vector x ∈ R

n, ||x||
denotes the �2 norm. For x1, x2 ∈ R

n, ||x1 − x2|| is the Euclidean distance between
the points. For δ > 0, Bδ(x1) ⊆ R

n denotes the set of points that is a closed ball of
radius δ centered at x1. For a set S ⊆ R

n, Bδ(S) = ∪x∈SBδ(x). Bδ(S) expands S by
δ. We will find it convenient to also define the notion of shrinking S by δ: For δ < 0,
and S ⊆ R

n, Bδ(S) = {x ∈ S |B−δ(x) ⊆ S}. For a bounded set S, a δ-cover of S is
a finite collection of balls X = {Bδ(xi)}mi=1 such that S ⊆

⋃m
i=1 Bδ(xi). Its diameter

dia(S)
Δ
= supx1,x2∈S ||x1 − x2||.

Definition 3 (Perturbing a Hybrid Automaton). Given a hybrid automaton A =
〈V, Loc,A,D, T 〉, we define an ε-perturbation of A as a new automaton Aε that has
identical components as A, except, (a) for each location � ∈ Loc, IAε

� = Bε(I
A
�) and

(b) for each action a ∈ A, GuardAε
a = Bε(GuardA

a).

Here IAloc is the invariant of the location of a hybrid automaton A and GuardA
a denotes

the guard set for action a. The definition permits ε < 0 for perturbation of a hybrid au-
tomaton. Informally, a positive perturbation of a hybrid automaton A bloats the invari-
ants and guard sets and therefore enlarges the set of executions. A negative perturbation
on the other hand, shrinks the invariants and the guards and therefore reduces the set of
executions.

Definition 4 (Robust Safety and Unsafety). Given a hybrid automaton A with an
initial set Θ, unsafe set U , time bound T , and bound on discrete transitions N , it is
said to be robustly safe if and only if ∃ε > 0, such that Aε, with initial set Θε, unsafe
set Uε, time bound T , and transition bound N is safe. It is said to be robustly unsafe if
and only if ∃ε < 0 such that Aε, with initial set Θε, unsafe set Uε, time bound T , and
transition bound N , is unsafe.

For safety verification C2E2 expects the users to provide annotations for the ODEs
defining the trajectories of the hybrid automaton in question. These annotations are
called discrepancy function. For a differential equation ẋ = f(x, t), the general defini-
tion of discrepancy function is given in [8]. In this paper, we consider a special form of
discrepancy function given in Definition 5.

C2E2: A Verification Tool for Stateflow Models 73

Definition 5. Given a differential equation ẋ = f(x), the tuple 〈K, γ〉 is called an
exponential discrepancy function for the dynamics, if and only if for any two trajectories
τ1, τ2 satisfying the differential equation, it holds that:

||τ1(t)− τ2(t)|| ≤ K||τ1(0)− τ2(0)||eγt (1)

We call K as the multiplicity factor and γ as the exponential factor of the annotation.

Along with the input models, we expect the user to specify the discrepancy function
by providing values for 〈K, γ〉. Also, if the differential equation is Lipschitz continuous
with constant L, then 〈K, γ〉 = 〈1, L〉 would be a valid annotation. In Figure 1, the
annotations for both the locations are provided as 〈K, γ〉 = 〈3.8,−0.2〉.

3 Verifying Hybrid Systems from Simulations

We give an overview of the verification algorithm implemented in C2E2. In brief, the
algorithm generates a cover of the initial set (a collection of regions) and then performs
four steps repeatedly until it reaches a safe/unsafe decision for each region in the cover
or its refinement. In making this decision, it generates a simulation from the center of the
region and then bloats this simulation by a factor computed from the given annotation
to compute an over-approximation of the reachable states. If the over-approximation
decides safe/unsafe then it moves on to another region in the cover, otherwise, it refines
the cover to obtain better over-approximation of the reachable states. These operations
are performed by several subroutines which we describe next.

3.1 Building Blocks

The first building block for the algorithm is a subroutine called valSim that generates
validated simulations for the individual dynamical systems or locations of the hybrid
automaton. Given a trajectory τ starting from a given state, valSim subroutine computes
overapproximation of τ with specific error.

Definition 6 (Validated Simulation). Given an error bound ε > 0, a time step h > 0,
a time bound T = (k + 1)h, and an initial state x0, an (x0, ε, h, T)-simulation of
the differential equation ẋ = f(x) is a sequence of sets of continuous states ρ =
R0, R1, . . . , Rk such that (a) for any i in the sequence dia(Ri) ≤ ε , and (b) for any
time t in the interval [ih, (i+1)h], the solution from x0 at time t is in Ri, i.e., τ(t) ∈ Ri.

The subroutine valSim(x0, h, T, f) returns a tuple 〈ρ, ε〉 such that ρ is an (x0, ε,
h, T)-simulation. In C2E2, validated simulation engines such as VNODE-LP [18] and
CAPD [4] are used for implementing valSim . For the completeness of our algorithm,
we require that the error ε can be made arbitrarily small by decreasing h. In systems
with finite precision arithmetic, simulation engines produce accurate simulations up to
the order of 10−7, and also there are libraries supporting arbitrary precision integra-
tion for some differential equations. Next, the computeReachTube subroutine: it uses
simulations to compute over-approximations of a set of trajectories from a set of initial
states.

74 P.S. Duggirala et al.

Definition 7 (Overapproximate Reach Tube). For a set of initial states S, error bound
ε > 0, time step h > 0, and T = (k + 1)h, an (S, ε, h, T)-reachtube of the differen-
tial equation ẋ = f(x) is a sequence ψ = R0, R1, . . . , Rk such that (a) for any i in
the sequence dia(Ri) ≤ ε, (b) for any trajectory starting τ from S and for each time
t ∈ [ih, (i+ 1)h], τ(t) ∈ Ri.

If S is large and ε is small then the strict inclusion may preclude a (S, ε, h, T)-reachtube
from existing. To compute reachtubes from a compact set S centered at x0,
computeReachTube performs the following three steps:

1. 〈ρ, ε1〉 ← valSim(x0, h, T, f), let ρ = R0, . . . , Rk.
2. ε2 = sup{K||x1−x2||eγt | x1, x2 ∈ S, t ∈ [0, T]}, where 〈K, γ〉 is the annotation

for the dynamics given by f .
3. ψ = Bε2(R1), . . . , Bε2(Rk).

From Definition 5 it follows that ψ is a (S, ε1+ ε2, h, T)-reachtube. It can be shown [8]
that ε → 0 as δ → 0 and h → 0. In summary, the subroutine call computeReachTube
(S, h, T, f) returns 〈ψ, ε〉 using the above steps. To provide formal guarantees from
reachtube over-approximations, we need to distinguish when a given reachtube must
satisfy a predicate P from when it may satisfy it. The next subroutine tagRegion tags
each region in a reachtube with respect to a given predicate.

Definition 8 (Tagging). Given two sets R,P ⊆ R
n the subroutine tagRegion(R,P)

returns must , may or ⊥ such that, (a) if R ⊆ P , then return must , (b) if R ∩ P �= ∅
and R � P then return may , and (c) otherwise (R ∩ P = ∅), return tag = ⊥.

The above subroutines are used for over-approximating reach sets and deciding
safety for individual differential equations of individual locations of a hybrid automa-
ton. In order to reason about invariants, guards, and resets which are essential for cap-
turing the hybrid behavior of mode switches, we have to (a) detect the reachable states
that satisfy the respective location invariants and (b) identify the states from which loca-
tion switches or transitions can occur. The next subroutine invariantPrefix (ψ, S) takes
a reachtube and a set S and returns the longest contiguous prefix of ψ that intersects
with S. This is later used in solving problem (a).

Definition 9 (Invariant Prefix). Given a reachtube ψ = R0, . . . , Rk and a set S,
invariantPrefix (ψ, S) returns the longest sequence φ = 〈R0, tag0〉 . . . 〈Rm, tagm〉,
such that ∀0 ≤ i ≤ m, tagi = must when ∀j ≤ i, tagRegion(Rj , S) = must and
tagi = may when ∀j ≤ i, tagRegion(Rj , S) �= ⊥ and ∃l ≤ i, tagRegion(Rl, S) =
may . That is, if m < k, then tagRegion(Rm+1, S) = ⊥.

Intuitively, a region Ri is tagged must in an invariant prefix, if all the regions be-
fore Ri (including itself) are contained within the set S. It is tagged may if all the
regions before it have nonempty intersection with S, and at least one of them (in-
cluding itself) is not contained within the set S. Given a reachtube ψ from a set Q,
φ = invariantPrefix (ψ, Invloc) returns the over-approximation of the valid set of tra-
jectories from Q that respect the invariant of the location loc of the hybrid automaton.
If a region Ri in φ is tagged must , then there exists at least one trajectory from Q that

C2E2: A Verification Tool for Stateflow Models 75

can reach Ri. Also, the set of all reachable states from Q that satisfy the invariant are
contained in φ. Subroutine checkSafety checks whether such an invariant prefix φ is
safe with respect to an unsafe set U . It defined as:

checkSafety(φ, U) =

⎧
⎪⎨

⎪⎩

safe, if ∀〈R, ·〉 ∈ φ,⊥ = tagRegion(R,U)

unsafe , if ∃〈R,must〉 ∈ φ,must = tagRegion(R,U)

unknown, otherwise

Notice that φ is inferred to be safe only when all the regions in the invariant prefix
are tagged ⊥ with respect to U (i.e. empty intersection). It is unsafe only when there
is a must region in the invariant prefix is contained within U . This is the core of the
soundness argument for the verification algorithm, i.e., if checkSafety(φ, U) returns
safe or unsafe, then indeed that is the correct answer for the set of initial states covered
by φ.

The final subroutine nextRegions computes over-approximation of the reachable
states that serve as the initial states in a new location after a transition to it. A dis-
crete transition a is enabled at the instance trajectory τ satisfies the guard condition
Guarda and the state after the discrete transition is obtained by applying the reset map
Reseta. Given a sequence of tagged regions, the subroutine nextRegions returns the
tagged set of reachable regions after a discrete transition.

Definition 10 (Next Regions). Given φ = 〈R0, tag0〉, . . . , 〈Rm, tagm〉, a sequence
of tagged regions, the subroutine nextRegions(φ) returns a set of tagged regions R.
〈R′, tag ′〉 ∈ R if and only if there exists an action a of the automaton and a region Ri

in φ such that R′ = Reseta(Ri) and one of the following conditions hold:

(a) Ri ⊆ Guarda, tagi = must , tag ′ = must .
(b) Ri ∩Guarda �= ∅, Ri � Guarda, tagi = must , tag ′ = may .
(c) Ri ∩Guarda �= ∅, tagi = may , tag ′ = may.

A tagged region 〈R′, tag ′〉 ∈ R is labeled must only when the region Ri is a must
region and is contained within the Guarda. In all other cases, the region is tagged may
when Ri ∩Guarda �= ∅. This ensures that a regions tagged must are indeed reachable
after the discrete transition, and all the regions tagged may contain the reachable states
after the discrete transition.

3.2 Verification Algorithm

The C2E2 algorithm for verification is given in Algorithm 1. Lines 4 - 17 implement the
main loop that computes a cover of the initial set, computes the overapproximation of
reachtube, checks safety, and refines the cover if needed. The subroutine taggedCover
(line 3), first computes a cover of S (Θ in the first iteration) with sets of δ diameter
and tags them (with tagRegion) with respect to S. The resulting tagged sets are col-
lected in X . We add additional attributes to each tagged region: T ime tracks the time
of the trajectory leading to a region,Loc tracks its current location, and Switches tracks
the number of discrete transitions taken. Although not explicitly mentioned in the al-
gorithm, we update the tags for regions in the reachtube based on the time taken by

76 P.S. Duggirala et al.

trajectories and the discrete transitions encountered during verification. The algorithm
checks whether all the executions of hybrid automaton from the regions in the cover of
the initial set are safe or unsafe. If it is safe, then the region is removed from the set S
(line 13); if it is unsafe, then the algorithm returns unsafe (line 10); and if it is neither
then the cover is refined (line 15).

For each of the regions in the tagged δ-cover of the initial set, the inner loop (lines 6 -
11) computes over-approximations of the reachable states. The subroutine
computeReachTube (line 7) computes an overapproximation of all the trajectories
starting from the tagged region in the initial set cover. Subroutine invariantPrefix
(line 8) computes φ, an overapproximation of the valid set of trajectories which re-
spect the invariant of the current location. Safety of φ is checked using the subrou-
tine checkSafety (line 9). The regions in φ where discrete transitions are enabled and
the initial states for the trajectories in the next location are computed in subroutine
nextRegions (line 10). This loop continues until either the time bound for verification
or the bound for number of discrete transitions is satisfied.

The reachtubes computed in lines 7, 8 are an overapproximation of all the reachable
states of hybrid automaton A, given in Lemma 1. The regions in the reachtubes are
must only when they satisfy the invariant of each location and completely contained
within the guard set it follows that these regions are reachable by at least one execution
of A, given as Lemma 2. For the set of regions R tagged may , it follows that ε =
max{dia(R)|R ∈ R} bloating of the invariants and guard sets would ensure that these
regions are also reachable, given in Lemma 3. As the reachtubes can be made arbitrarily
precise by decreasing the time step and the initial partitioning, it follows that given any
ε, the precision of reachtubes can be bounded by ε by using small values for δ and h.
Lemma 1 helps in proving soundness and Lemmas 2 and 3 help in proving relative
completeness. This guarantees that if the system is robustly safe, then the algorithm
terminates and returns safe, and if the system is robustly unsafe, then the algorithm
terminates and returns unsafe, given in Theorem 1.

Lemma 1. All the regions R tagged may or must in φ (line 7 of algorithm 1) contains
the reachable set of states of hybrid automaton A starting from Θ within T time and N
discrete transitions.

Lemma 2. If a region R is tagged must in φ (line 7 of algorithm 1), then there exists
at least one execution of A from the initial set Θ that reaches R within T time and N
discrete transitions.

Lemma 3. Let R, be the set of all regions tagged may in φ (line 7 of algorithm 1) and
ε = max{dia(R)|R ∈ R}. Given any region R ∈ R, there exists at least one execution
of Aε from the initial set Θε that reaches R within T time and N discrete transitions.

Theorem 1 (Soundness and Relative Completeness). Given initial set Θ, unsafe set
U , time bound T , bound on discrete transitions N , and hybrid automaton A, if the
algorithm 1 returns safe or unsafe, then the system A is safe or unsafe. The algorithm
will always terminate whenever the system is either robustly safe or robustly unsafe.

C2E2: A Verification Tool for Stateflow Models 77

input : A, Θ, U , T , N
output: System is safe or unsafe

1 S ← Θ; h ← h0; δ ← δ0;
2 while S �= ∅ do
3 X ← taggedCover (S, δ) ;
4 for elem ∈ X do
5 QC ← {elem};
6 for e ∈ QC ∧ e.T ime < T ∧ e.Switches < N do
7 〈ψ, ε〉 ← computeReachTube(e.R, e.Loc, h, T − e.T ime) ;
8 φ ← invariantPrefix (ψ, Inve.Loc) ;
9 result ← checkSafety(φ,U) ;

10 if result == safe then QC ← QC ∪ nextRegions(φ) else if
result == unsafe ∧ elem.tag == must then return unsafe else break

11 end
12 if result == safe then
13 S ← S \ elem.R ;
14 else
15 δ ← δ/2; h ← h/2 ;
16 end
17 end
18 end
19 return safe;

Algorithm 1. Algorithm for safety verification of hybrid automata using simula-
tions and annotations.

4 C2E2: Internals and User Experience

4.1 Architecture of C2E2

The architecture for C2E2 is shown in Figure 2. The front end parses the input mod-
els, connects to the verification engine, provides a property editor and a plotter. It is
developed in Python and vastly extends the Hylink parser [17] for Stateflow models.
The verification algorithm (Algorithm 1) is implemented in C++. The front end parses
the input model file (.mdl or .hyxml) into an intermediate format and generates the sim-
ulation code. The properties are obtained from the input file or from the user through
the front end’s GUI. The simulation code is compiled using a validated simulation en-
gine provided by Computer Assisted Proofs in Dynamic Groups (CAPD) library [4].
This compiled code and the property are read by the C2E2 verification algorithm which
also uses the GLPK libraries. The verification result and the computed reachable set are
read by the front end for display and visualization. This modular architecture allows
us to extend the functionality of the tool to new types of models (such as Simulink,
DAEs), different simulation engines (for example, Boost, VNODE-LP), and alternative
checkers (such as Z3).

78 P.S. Duggirala et al.

Fig. 2. Architecture of C2E2

4.2 Models, Properties, and Annotations

C2E23 takes as input annotated Stateflow models (such as in Figure 1(a)) with ODEs
(possibly nonlinear) and discrete transitions defined by guards and resets. The guards
have to be conjunctions of polynomial predicates over the state variables and the reset
maps have to be polynomial real-valued functions. The properties can be specified in the
.hyxml model files or using the GUI. C2E2 can verify bounded time safety properties
specified by a time bound, a polyhedral set of initial states and another set of unsafe
states.

Annotations. The user has to write annotations for each ODE in the model. This is done
by specifying the multiplicity factor K and the exponential factor γ as comments in the
Stateflow model, shown in Figure 1(a). For a broad range of nonlinear systems such
annotations can be found. We illustrate with some examples.

Example 1. Consider a linear system ẋ = Ax, where all the eigenvalues of matrix A
is nonzero. Let λm be the maximum among the real parts of all the eigenvalues of
A. Then, for any two trajectories τ1 and τ2 of the linear system ||τ1(t) − τ2(t)|| ≤
||A||eλmt||τ1(0) − τ2(0)|| is an annotation. Here the matrix norm ||A|| is defined as
sup{xTAx | ||x|| = 1} and it can be computed using semidefinite programming. The
input format would be K = ||A|| and γ = λm.

Example 2. Consider the differential equation in stimOn mode of the cardiac cell ex-
ample: u̇ = (0.1 − u)(u − 1)u − v and v̇ = u − 2v. By computing the maximum
eigenvalues of the Jacobian matrix of the differential equation and the maximum norm
of the contraction metric [16], we get that ||τ1(t)−τ2(t)|| ≤ 3.8e−0.2t||τ1.(0)−τ2.(0)||
as an annotation. The input is specified as K = 3.8 and γ = −0.2.

Example 3. Consider the differential equation ẋ = 1+x2y−2.5x; ẏ = 1.5x−x2y−y.
By analyzing the auxiliary system (x1, y1) and (x2, y2), using the incremental stabil-
ity [1], we have that

d

dt
[(x1 − x2)

2 + 2(x1 − x2)(y1 − y2) + (y1 − y2)
2] = −2(x1 − x2 + y1 − y2)

2 < 0.

3 https://publish.illinois.edu/c2e2-tool/

https://publish.illinois.edu/c2e2-tool/

C2E2: A Verification Tool for Stateflow Models 79

Therefore, for trajectories τ1 and τ2 of the differential equations it hence follows that
(τ1(t).x− τ2(t).x)

2+2(τ1(t).x− τ2(t).x)(τ1(t).y− τ2(t).y)+ (τ1(t).y− τ2(t).y)
2 ≤

(x1−x2)
2+2(x1−x2)(y1−y2)+(y1−y2)

2 where (x1, y1) and (x2, y2) are the initial
states of τ1 and τ2 respectively. The function ||τ1(t)− τ2(t)|| ≤ 2||τ1(0)− τ2(0)||e0×t

is an annotation and is specified as K = 2, γ = 0.

4.3 User Experience

In this section, we discuss the C2E2 interface for handling verification, properties and
visualization. The users can add, edit, copy, delete or verify several properties. As each
property is edited, the smart parser provides real-time feedback about syntax errors
and unbounded initial sets (Figure 3(b)). Once properties are edited the verifier can
be launched. Visual representation of reachable states and locations can aid debugging
process. To this end, we have integrated a visualizer into C2E2 for plotting the pro-
jections of the reachable states. Once a property has been verified, the user can plot the
valuations of variables against time or valuations of pairs of variables (phase plots). The
unsafe set is projected on the set of plotting variables. The property parser and visual-
izer uses the Parma Polyhedra Library4 and matplotlib5. Example plot for the cardiac
cell is shown in Figure 3(c).

(a) Model. (b) Property. (c) Reachable Set.

Fig. 3. Figure showing a snippet of cardiac cell model in (a), property dialog for specifying prop-
erties in (b), plot of reachable set for cardiac cell model in (c)

4.4 Stateflow Model Semantics

The annotated Stateflow models when given as input are interpreted as hybrid automaton
as C2E2. Nondeterminism, which is allowed in hybrid automata framework is prohib-
ited in Stateflow models. All the discrete transitions in Stateflow models are determinis-
tic and are interpreted as “urgent” i.e. a transition is taken by the system as soon as it is
enabled. In our front end, we construct hybrid automaton for Stateflow models respect-
ing the “urgent” semantics. Under such interpretation, the guard sets are only allowed

4 http://bugseng.com/products/ppl/
5 http://matplotlib.org/

http://bugseng.com/products/ppl/
http://matplotlib.org/

80 P.S. Duggirala et al.

to be hyperplanes. In general, the verification algorithm in Section 3 may not terminate
for such guard conditions. We therefore use a heuristic and verify an ε perturbed model
of the Stateflow model to ensure termination of verification algorithm.

4.5 Experiments

Simulation based verification approach for annotated models has been demonstrated to
outperform other verification tool such as Flow* and Ariadne in [8]. In this paper, we
present the verification results for some of the nonlinear and linear hybrid automata
benchmarks in Table 1. The annotations for each of these benchmarks have been ob-
tained by procedures given in Section 4.2. All the experiments have been performed on
Intel i-7 Quad core processor with 8GB ram running Ubuntu 11.10.

Table 1. Experimental Results for benchmark examples. Vars: Number of Variables, Num. Loc.
: Number of discrete locations in hybrid automata, TH: Time Horizon for Verification, VT (sec)
: Verification time for C2E2 in seconds, Result: Verification result of C2E2.

Benchmark Vars. Num. Loc. TH VT (sec) Result

Cardiac Cell 3 2 15 17.74 safe

Cardiac Cell 3 2 15 1.91 unsafe

Nonlinear Navigation 4 4 2.0 124.10 safe

Nonlinear Navigation 4 4 2.0 4.94 unsafe

Inverted Pendulum 2 1 10 1.27 safe

Inverted Pendulum 2 1 10 1.32 unsafe

Navigation Benchmark 4 4 2.0 94.35 safe

Navigation Benchmark 4 4 2.0 4.74 unsafe

This early termination strategy for unsafe behavior of the system (Algorithm 1,
line 10) when the system is unsafe is reflected in Table 1. On standard examples C2E2
can successfully verify these systems within the order of minutes and also handle non-
linear differential equations with trigonometric functions of inverted pendulum.

5 Conclusions and Future Work

C2E2 presented in this paper is a tool for verifying a broad class of hybrid and dy-
namical systems models. It uses validated simulations and model annotations to prove
the most commonly encountered type of properties, namely bounded-time invariants. It
can handle models created using the Stateflow environment that is the de facto standard
in embedded control design and implementation. The improvements presented in this
paper beyond the version of [8], include the complete support for hybrid models imple-
mented in a new algorithm and the supporting theory, the new user interface for editing

C2E2: A Verification Tool for Stateflow Models 81

properties, and the reachtube plotting function. The tool is freely available for academic
and research use from https://publish.illinois.edu/c2e2-tool/.

Our future plans include implementation of features to support temporal precedence
properties [9] and compositional reasoning [13,12]. Another avenue of work leverages
the “embarrassing parallelism” in the simulation-based approach. We anticipate that the
C2E2’s architecture and its open interfaces, for example, the .hyxml input format, text-
based representation of reachtubes, will support research and eduction in embedded
and hybrid systems community by helping explore new ideas in modeling, verification,
synthesis, and and testing.

Acknowledgements. The authors were supported by the National Science Foundation
research grant CSR 1016791.

References

1. Angeli, D.: A lyapunov approach to incremental stability properties. IEEE Transactions on
Automatic Control (2000)

2. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Hei-
delberg (2002)

3. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.:
Ariadne: a framework for reachability analysis of hybrid automata. In: International Sympo-
sium on Mathematical Theory of Networks and Systems, MNTS (2006)

4. CAPD. Computer assisted proofs in dynamic groups,
http://capd.ii.uj.edu.pl/index.php

5. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid sys-
tems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer,
Heidelberg (2013)

6. Deng, Y., Rajhans, A., Julius, A.A.: STRONG: A trajectory-based verification toolbox for
hybrid systems. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013.
LNCS, vol. 8054, pp. 165–168. Springer, Heidelberg (2013)

7. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hybrid systems. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer,
Heidelberg (2010)

8. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from execu-
tions. In: International Conference on Embedded Software, EMSOFT (2013)

9. Duggirala, P.S., Wang, L., Mitra, S., Viswanathan, M., Muñoz, C.: Temporal precedence
checking for switched models and its application to a parallel landing protocol. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 215–229. Springer, Heidelberg
(2014)

10. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrish-
nan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg
(2011)

11. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)

12. Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification of non-
linear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 373–390. Springer, Heidelberg (2014)

https://publish.illinois.edu/c2e2-tool/
http://capd.ii.uj.edu.pl/index.php

82 P.S. Duggirala et al.

13. Huang, Z., Mitra, S.: Proofs from simulations and modular annotations. In: International
Conference on Hybrid Systems: Computation and Control, pp. 183–192 (2014)

14. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata.
Synthesis Lectures on Computer Science. Morgan Kaufmann (November 2005)

15. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal on Software
Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

16. Lohmiller, W., Slotine, J.J.E.: On contraction analysis for non-linear systems. Automatica
(1998)

17. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification and synthesis
from simulink/stateflow models. In: International Conference on Hybrid Systems: Computa-
tion and Control, HSCC (2011)

18. Nedialkov, N.: VNODE-LP: Validated solutions for initial value problem for ODEs. Techni-
cal report, Department of Computing and Software, McMaster University (2006)

19. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancic, F., Gupta, A., Pappas, G.: Monte-
carlo techniques for falsification of temporal properties of non-linear hybrid systems. In:
International Conference on Hybrid Systems: Computation and Control HSCC (2010)

20. Zou, L., Zhan, N., Wang, S., Franzle, M., Qin, S.: Verifying simulink diagrams via a hybrid
hoare logic prover. In: International Conference on Embedded Software EMSOFT (2013)

Program Analysis

Non-cumulative Resource Analysis

Elvira Albert1, Jesús Correas Fernández1, and Guillermo Román-Dı́ez2

1 DSIC, Complutense University of Madrid, Spain
2 DLSIIS, Technical University of Madrid, Spain

Abstract. Existing cost analysis frameworks have been defined for cu-
mulative resources which keep on increasing along the computation. Tra-
ditional cumulative resources are execution time, number of executed
steps, amount of memory allocated, and energy consumption.
Non-cumulative resources are acquired and (possibly) released along the
execution. Examples of non-cumulative cost are memory usage in the
presence of garbage collection, number of connections established that
are later closed, or resources requested to a virtual host which are re-
leased after using them. We present, to the best of our knowledge, the
first generic static analysis framework to infer an upper bound on the
peak cost for non-cumulative types of resources. Our analysis comprises
several components: (1) a pre-analysis to infer when resources are being
used simultaneously, (2) a program-point resource analysis which infers
an upper bound on the cost at the points of interest (namely the points
where resources are acquired) and (3) the elimination from the upper
bounds obtained in (2) of those resources accumulated that are not used
simultaneously. We report on a prototype implementation of our analysis
that can be used on a simple imperative language.

1 Introduction

Cost analysis (a.k.a. resource analysis) aims at statically (without executing the
program) inferring upper bounds on the resource consumption of the program
as functions of the input data sizes. Traditional resources (e.g., time, steps,
memory allocation, number of calls) are cumulative, i.e., they always increase
along the execution. Ideally, a cost analysis framework is generic on the type
of resource that the user wants to measure so that the resource of interest is a
parameter of the analysis. Several generic cost analysis frameworks have been
defined for cumulative resources using different formalisms. In particular, the
classical framework based on recurrence relations has been used to define a cost
analysis for a Java-like language [2]; approaches based on program invariants are
defined in [11,14]; type systems have been presented in [15].

Non-cumulative resources are first acquired and then released. Typical exam-
ples are memory usage in the presence of garbage collection, maximum number
of connections established simultaneously, the size of the stack of activation
records, etc. The problem is nowadays also very relevant in virtualized systems,
as in cloud computing, in which resources are acquired when needed and released
after being used. It is recognized that non-cumulative resources introduce new

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 85–100, 2015.
DOI: 10.1007/978-3-662-46681-0_6

86 E. Albert, J.C. Fernández, and G. Román-Dı́ez

challenges in resource analysis [5,12]. This is because the resource consumption
can increase and decrease along the computation, and it is not enough to rea-
son on the final state of the execution, but rather the upper bound on the cost
can happen at any intermediate step. We use the term peak cost to denote such
maximum cost of the program execution for non-cumulative resources.

While the problem of inferring the peak cost has been studied in the context of
memory usage for specific models of garbage collection [5,8,12], a generic frame-
work to estimate the non-cumulative cost does not exist yet. The contribution
of this paper is a generic resource analysis framework for a today’s imperative
language enriched with instructions to acquire and release resources. Thus, our
framework can be instantiated to measure any type of non-cumulative resource
that is acquired and (optionally) freed. The analysis is defined in two steps which
are our main contributions: (1) We first infer the sets of resources which can be
in use simultaneously (i.e., they have been both acquired and none of them re-
leased at some point of the execution). This process is formalized as a static
analysis that (over-)approximates the sets of acquire instructions that can be
in use simultaneously, allowing us to capture the simultaneous use of resources
in the execution. (2) We then perform a program-point resource analysis which
infers an upper bound on the cost at the points of interest, namely the points at
which the resources are acquired. From such upper bounds, we can obtain the
peak cost by just eliminating the cost due to acquire instructions that do not
happen simultaneously with the others (according to the analysis information
gathered at step 1). Additionally, we describe an extension of the framework
which can improve the accuracy of the upper bounds by accounting only once
the cost introduced at program points where resources are allocated and re-
leased repeatedly. Finally, we illustrate how the framework can be extended to
get upper bounds for programs that allocate different kinds of resources.

We demonstrate the accuracy and feasibility of our approach by implementing
a prototype analyzer for a simple imperative language. Preliminary experiments
show that the non-cumulative resource analysis achieves gains up to 92.9% (on
average 53.9%) in comparison to a cumulative resource analysis. The analysis
can be used online from a web interface at http://costa.ls.fi.upm.es/noncu.

2 The Notion of Peak Cost

We start by defining the notion of peak cost that we aim at over-approximating
by means of static analysis in the concrete setting.

2.1 The Language

The framework is developed on a language which is deliberately simple to define
the analysis in a clear way. Complex features of modern languages like mutable
variables, class, inheritance, exceptions, etc. must be considered by the under-
lying resource analysis used as a black box by our approach (and there are a
number of approaches to handle them [2,5,11]). Thus they are handled implic-
itly in our setting. For the sake of simplicity, the set Types is defined as {int}.

http://costa.ls.fi.upm.es/noncu

Non-cumulative Resource Analysis 87

(1)
r = eval(e, tv), tr′ = tr[y �→ 〈r, app〉],H ′ = H ∪ {|〈id, y, app, r〉|}

〈id,m, pp ≡ y = acquire (e); s, tv, tr〉 ·A;H � 〈id,m, s, tv, tr′〉 · A;H ′

(2)
〈r, app′〉 = tr(y), tr′ = tr[y �→ ⊥],H ′ = H \ {|〈id, y, app′ , r〉|}

〈id,m, pp ≡ release y; s, tv, tr〉 · A;H � 〈id,m, s, tv, tr′〉 ·A;H ′

Fig. 1. Language Semantics for resource allocation and release

We have resource variables used to refer to the resources allocated by an ac-
quire instruction. A program consists of a set of methods whose definition takes
the form t m (t1v1, . . . tnvn){s} where t ∈ Types is the type returned by the
method, v1, . . . , vn are the input parameters of types t1, . . . , tn ∈ Types and s is
a sequence of instructions that adheres to the following grammar:

e ::= x |n | e+ e | e ∗ e | e− e b ::= e > e | e == e | b ∧ b | b ∨ b | !b s ::= i | i; s
i ::= x=e |x=m(z) | return x | if b then s1 else s2 |while b {s} | y = acquire (e) | release y

We assume that resource variables, named y, are local to methods and they can-
not be passed as input parameters nor returned by methods (otherwise tracking
such references is more complex, while it is not relevant to the main ideas in
the paper). We assume that the program includes a main(x) method, where x
are the input parameters, from which the execution starts. The instruction y
= acquire (e) allocates the amount of resources stated by the expression e. The
instruction release y releases the resources allocated at the last acquire associated
to y. If a resource variable is reused without releasing its resources, the reference
to such resources is lost and they cannot be released any longer.

Example 1. Fig. 2 shows to the left a method m (abbreviation of main) that
allocates resources at lines 2 (L2 for short) and L4. The resources allocated
at L2 are released at L5. In addition, method m invokes method q at L3 and
L6. For simplicity, we assume that m is called using positive values for n and s
and the expressions k1, k2, k3 are constant integer values. As it is not relevant,
we do not include the return instruction at the end of the methods. Method q
executes a while loop where k2 units are allocated at L10 and such resources
are not released. Thus, these resources escape from the scope of the loop and
the method, i.e., they leak upon exit of the loop and return of the method.
Besides, the program allocates w units at L11. As we have two calls to q, the
input parameter w will take the value s or s+4. The resources allocated at L11
are released at L12 and do not escape from the loop execution. In addition, at
L15 we have an additional, non-released, acquire of k3 units.

A program state is of the form AS;H , where AS is a stack of activation records
andH is a resource handler. Each activation record is of the form 〈id,m, s, tv, tr〉,
where id is a unique identifier, m is the name of the method, s is the sequence
of instructions to be executed, tv is a variable mapping and tr is a resource
variable mapping. When resources are allocated in m, tr maps the correspond-
ing resource variable to a tuple of the form 〈r, app〉, where r is the amount of
resources allocated and app is the program point of the instruction where the re-
sources have been allocated. The resource handler H is a multiset which stores

88 E. Albert, J.C. Fernández, and G. Román-Dı́ez

1 m (int n, int s){
2 1© x=acquire(k1);
3 q(n,s);
4 2© y=acquire(s);
5 release x;
6 q(n+2, s+4);
7 }
8 q (int i , int w){
9 while(i > 0) {

10 3© z=acquire(k2);
11 4© r=acquire(w);
12 release r ;
13 i = i − 1;
14 }
15 5© t=acquire(k3);
16 }

x:k1

L2

S1

z:k2

x:k1

L10

S2

r:s

z:k2

x:k1

L11

S3

z:k2

x:k1

L12

S4

z:k2

z:k2

x:k1

L10

S5

r:s

z:k2

z:k2

x:k1

L11

S6

z:k2

z:k2

x:k1

L12

S7

. . .

r:s

z:k2

:n
z:k2

x:k1

L11

S8

t:k3

z:k2

:n
z:k2

x:k1

L15

S9

t:k3

zn:k2 n times

x:k1

L16

S10

t:k3

zn:k2

x:k1

L4

S11

y:s

t:k3

zn:k2

x:k1x:k1

L4

S12

y:s

t:k3

zn:k2

L5

S13

z:k2

y:s

t:k3

zn:k2

L10

S14

r:s+4

z:k2

y:s

t:k3

zn:k2

L11

S15

. . .

r:s+4

z:k2

:n+2

z:k2

y:s

t:k3

zn:k2

L11

S16

z:k2

:n+2

z:k2

y:s

t:k3

zn:k2

L14

S17

t:k3

z:k2

:n+2

z:k2

y:s

t:k3

zn:k2

L13

S18

n + 2

Fig. 2. Running Example

the resources allocated so far, containing elements of the form 〈id, y, app, r〉,
where id is the activation record identifier, y is the variable name, app is the
program point of the acquire and r is the amount of resources allocated. Fig. 1
shows, in a rewriting-based style, the rules that are relevant for the resource con-
sumption. The semantics of the remaining instructions is standard. Intuitively,
rule (1) evaluates the expression e and adds a new element to H . As H stores
the resources allocated so far, it might contain identical tuples. Moreover, the
resource variable mapping tr is updated with variable y linked to 〈r, app〉. Rule
(2) takes the information stored in tr for y, i.e. 〈r, app〉, and removes from H
one instance of the corresponding element. In addition, variable y is updated to
point to ⊥, which means that y does not have any resources associated. When
the execution performs a release on a variable that maps to ⊥ (because no ac-
quire has been performed or because it has already been released), the resources
state is not modified. Execution starts from a main method and an initial state
S0 = 〈0,main, body(main), tv(x), ∅〉; ∅, where tv(x) is the variable mapping ini-
tialized with the values of the input parameters. Complete executions are of the
form S0 � S1 � . . . � Sn where Sn corresponds to the last state. Infinite traces
correspond to non-terminating executions.

Example 2. To the right of Fig. 2 we depict the evolution of the resources ac-
cumulated in H . We use Si, to refer to the execution state i and, below each
state, we include the program line which is executed at such state. For each
state we show the elements stored in H but, for simplicity, we do not include
in the figure the id nor app. At S1, H accumulates k1 units due to the acquire
at L2. S2, S3 and S4 depict H along the first iteration of the loop, where k2
units are acquired and not released from z. Moreover, within the loop, s units
are acquired at L11 and released from r at L12. At S5, which corresponds to the
second iteration of the loop, we reuse the resource variable z and we have two
identical elements in H . As the loop iterates n times, at the last iteration (S9)

Non-cumulative Resource Analysis 89

we have (n−1)∗k1 units that have lost their reference. Additionally, k3 extra
units pointed by t are allocated at S9. At S10, which corresponds to the end of
the execution of the method, n∗k2+k3 units escape from the first execution of
q and they are no longer available to be released. We represent such escaped
resources with light grey color. For brevity, we use zn:k2 to represent n instances
of the element z:k2. At S12 we acquire s resources and we release the k1 units
pointed by x at S13. At S14 we start a new execution of method q.

2.2 Definition of Peak Cost

Let us formally define the notion of peak cost in the concrete setting. The peak
cost corresponds to the maximum amount of resources that are used simultane-
ously. We use Hi to refer to the multiset H at Si, and we use Ri to denote the
amount of resources contained in Hi, i.e., Ri =

∑
{r | 〈 , , , r〉 ∈ Hi}. By ’ ’, we

mean any possible value. In the next definition, we use Ri to define the notion
of peak cost for an execution trace.

Definition 1 (Concrete Peak Cost). The peak cost of an execution trace t≡S0

�Sn of a program P on input values x is defined as P(x)=max({Ri | Si∈t}).

Example 3. According to the evolution of H shown to the right of Fig. 2, the
maximum value of Ri could be reached at four different states, S8, S12, S16

and S18. We ignore those states where H is subsumed by other states as they
cannot be maximal. For instance, states S1 to S7 or S9 are subsumed by S8;
or S12 contains S10, S11 and S13. Thus, P(n, s)=max(R8, R12, R16, R18), where
R8 = k1+n∗k2+s, R12 = k1+n∗k2+k3+s, R16 = n∗k2+k3+s+(n+2)∗k2+(s+4), and
R18=n∗k2+k3+s+(n+2)∗k2+k3. Thus, the peak cost of the example depends not
only on the input parameters n, s, but also on the values of k1, k2, k3.

3 Simultaneous Resource Analysis

The simultaneous resource analysis (SRA) is used to infer the sets of acquire
instructions that can be simultaneously in use. The abstract state of the SRA
consists of two sets C and H. The set C contains elements of the form y:app
indicating that the resource variable y is linked to the acquire instruction at
program point pp. Since it is not always possible to relate the acquire instruc-
tion to its corresponding resource variable, we use �:app to represent that some
resources have been acquired at app but the analysis has lost the variable linked
to app. The set H is a set of sets, such that each set contains those app that are
simultaneously alive in an abstract state of the analysis. Let us introduce some
notation. We use m̈ to refer to the program point after the return instruction
of method m. We use Cpp (resp. Hpp) to denote the value of C (resp. H) after
processing the instruction at program point pp. A(C) is the set {app | :app ∈ C}
that contains all app in C. The operation H1 	 H2, where H1 and H2 are sets
of sets, first applies H = H1 ∪ H2, and then removes those sets in H that are
contained in another set in H.

The analysis of each method m abstractly executes its instructions, by ap-
plying the transfer function τ in Fig. 3, such that the abstract state at each

90 E. Albert, J.C. Fernández, and G. Román-Dı́ez

(1) τ (pp : y=acquire(), 〈C,H〉) = 〈C[y:app′/ � :app′] ∪ {y:app},H {A(C) ∪ {app}}〉
(2) τ (pp : release y, 〈C,H〉) = 〈C \ {y:app},H〉
(3) τ (pp : m(), 〈C,H〉) = 〈C ∪ Cm̈[x:app′/ � :app′],H {A(C) ∪M | M ∈ Hm̈}〉
(4) τ (pp : b, 〈C,H〉) = 〈C,H〉

Fig. 3. Transfer Function of the Simultaneous Resource Analysis

program point describes the status of all acquire instructions executed so far.
The set C is used to infer the local effect of the acquire and release instructions
within a method. The set H is used to accumulate the information of the ac-
quire instructions that might have been in use simultaneously. Let us explain
the different cases of the transfer function τ . The execution of acquire, case (1),
links the acquire to the resource variable y by adding {y:app} to C. As a resource
variable can only point to one acquire instruction, in (1) we update any existing
y:app′ by removing the previous link to y and replacing it by �. In addition, rule
(1) performs the operation {A(C) ∪ {app}} 	 H to capture in H the acquired
resources simultaneously in use at this point. In (2) we remove the last acquire
instruction pointed to by the resource variable y. When a method is invoked (rule
(3)), we add to C those resources that might escape from m (Cm̈) but replacing
their resource variables in m by � (as resource variables are local). Additionally,
at (3), all sets in Hm̈ are joined with A(C) to capture the resources that might
have been simultaneously alive in the execution of m. The resulting sets of such
operation are added to H. We define the � operation between two abstract states
〈C1,H1〉 � 〈C2,H2〉 as 〈C1 ∪ C2,H1 	H2〉. The analysis of while loops requires it-
erating until a fixpoint is reached. As the number of acquire instructions and the
number of resource variables in the program are finite, widening is not needed.

Example 4. Let us apply the SRA to the running example. To avoid cluttering
the expressions, instead of the line numbers, we use ai to refer to the acquire at
the program point marked with i© in Fig. 2. For instance, a1 refers to the acquire
marked with 1© at L2. We use Cl (resp. Hl) to denote the set C (resp. H) at line
l. Let us see the results of the SRA for some selected program points.

C2 = {x:a1} H2 = {{a1}}
C3 = {x:a1, �:a3, �:a5} H3 = {{a1, a3, a4}, {a1, a3, a5}}
C4 = {x:a1, �:a3, �:a5, y:a2} H4 = {{a1, a3, a4}, {a1, a3, a5, a2}}
C5 = {�:a3, �:a5, y:a2} H5 = {{a1, a3, a4}, {a1, a3, a5, a2}}
C6 = Cm̈ = {�:a3, �:a5, y:a2} H6=Hm̈={{a1, a3, a4}, {a1, a3, a5, a2}, {a2, a3, a4, a5} *©}
C10 = {�:a3, z:a3} H10 = {{a3, a4}}
C11 = {�:a3, z:a3, r:a4} H11 = {{a3, a4}}
C12 = C14 = {�:a3, z:a3} H12 = H14 = {{a3, a4}}
C15 = Cq̈ = {�:a3, z:a3, t:a5} H15 = Hq̈ = {{a3, a4}, {a3, a5}}
We can see that C11 is the only program point where a4 is alive as it is released
at L12. On the contrary, as a3 is not released within the loop, we include �:a3 in
C10−C14, and it escapes from the loop and from q. AsH gathers all app that might
be alive at any program point, when the fixpoint is reached, H10 −H14 contain
the set {a3, a4}. The computation of Hq̈ is done by means of the operation
A(Cq̈)	H14, that is, Hq̈={{a3, a5}}	 {{a3, a4}}={{a3, a5}, {a3, a4}}, capturing

Non-cumulative Resource Analysis 91

that a3, a4, a5 are not simultaneously in use at any state of q. Moreover, we can
see in Cq̈ that the resources allocated at a3 and a5 escape from the execution
of q. Let us continue with the computation of C3 and H3. Firstly, �:a3 and
�:a5 are added to C3. Secondly, H3 is computed by adding C2={a1} to all sets
in Hq̈. To compute C4, the analysis adds y:a2 to C3. The computation of H4

adds {a1, a3, a5, a2} to H3, and replaces {a1, a3, a5} because it is a subset of
{a1, a3, a5, a2}. Finally, to obtain H6, the set A(C6)={a3, a5, a2} is added to
the sets in Hq̈, resulting in the set T = {{a2, a3, a4, a5}, {a2, a3, a5}}. Then H6

is obtained by computing H5 	 T . Note that {a2, a3, a5} is not in H6 as it is
contained in a set of H5.

Theorem 1 (Soundness). Given an execution trace t ≡ S0� . . .�Sn of a
program P on input values x, for any state Si ∈ t, we have that:

(a) ∃ H ∈ H ¨main. A(Hi) ⊆ H where A(Hi) = {app | 〈 , , app, 〉 ∈ Hi};
(b) if ∃〈 , , app, 〉 ∈ Hn then :app ∈ C ¨main

4 Non-cumulative Resource Analysis

In this section we present our approach to use the information obtained in Sec. 3
to infer the peak cost of the execution. The first part, Sec. 4.1, consists in per-
forming a program-point resource analysis in which we are able to infer the
resources acquired at the points of interest. In Sec. 4.2, we discard from the
upper bound obtained before those resources which are not used simultaneously.

4.1 Program-Point Resource Analysis

Our goal is to distinguish within the upper bounds (UB) obtained by resource
analysis the amount of resources acquired at a given program point. To do so, we
rely on the notion of cost center (CC) [1]. Originally, CCs were introduced for
the analysis of distributed systems, such that, each CC is a symbolic expression
of the form c(o) where o is a location identifier used to separate the cost of
each distributed location. Essentially, the resource analysis assigns the cost of
an instruction inst to the distributed location o by multiplying the cost due
to the execution of the instruction, denoted cost(inst) in a generic way, by the
cost center of the location c(o), i.e., cost(inst)∗c(o). This way, the UBs that the
analysis obtains are of the form

∑
c(oi)∗Ci, where each oi is a location identifier

and Ci is the total cost accumulated at this location.
Importantly, the notion of CC can be used in a more general way to define the

granularity of a cost analyzer, i.e., the kind of separation that we want to observe
in the UBs. In our concrete application, the expressions of the cost centers oi
will refer to the program points of interest. Thus, we are defining a resource
analyzer that provides the resource consumption at program point level, i.e., a
program point resource analysis. In particular, we define a CC for each acquire
instruction in the program. Thus, CCs are of the form c(app) for each instruction
pp :acquire(e). In essence, the analyzer every time that accounts for the cost of
executing an acquire instruction multiplies such cost by its corresponding cost
center. The amount of resources allocated at the instruction pp :acquire(e) is

92 E. Albert, J.C. Fernández, and G. Román-Dı́ez

accumulated as an expression of the form c(app)∗nat(e), where nat(e) is a function
that returns e if e>0 and 0 otherwise. We wrap the expression e with nat because
this way the analyzer treats it as a non-negative expression whose cost we want to
maximize, and computes the worst case of such expression (technical details can
be found in [2]). The cost analyzer computes an upper bound for the total cost
of executing P as an expression of the form UP (x̄)=

∑n
i=1 c(ai)∗Ci, where Ci is

a cost expression that bounds the resources allocated by the acquire instructions
of the program. We omit the subscript in U when it is clear from the context. If
one is interested in the amount of resources allocated by one particular acquire
instruction app, denoted U(x̄)|app

, we simply replace all c(app′) with pp �= pp′ by
0 and c(app) by 1. We extend it to sets as U(x̄)|S =

∑

app∈S

U(x̄)|app
.

Example 5. The program point UB for the running example is:

U(n, s) =
e1︷ ︸︸ ︷

c(a1)∗k1 +
e2︷ ︸︸ ︷

c(a2)∗nat(s) +
e3︷ ︸︸ ︷

nat(n) ∗ (c(a3)∗k2 + c(a4)∗nat(s)) + c(a5)∗k3 +
nat(n+2) ∗ (c(a3)∗k2 + c(a4)∗nat(s+4)) + c(a5)∗k3︸ ︷︷ ︸

e4

We have a CC for each acquire instruction in the program multiplied by the
amount of resources allocated by the corresponding acquire. In the examples,
we do not wrap constants in nat because constant values do not need to be
maximized, e.g. in the subexpression e1 which corresponds to the cost of L2.
The subexpression e2 corresponds to L4 where s units are allocated. Expression
e3 corresponds to the first call to q, where the loop iterates nat(n) times and
consumes c(a3)∗k2 (L10) and c(a4)∗nat(s) (L11) resources for each iteration,
plus the final acquire at L15, which allocates c(a5)∗k3 resources. The cost of the
second call to q is captured by e4, where the number of iterations is bounded by
nat(n+2) and nat(s+4) resources are allocated. e4 also includes the cost allocated
at L15. Let us continue by using U(n, s) to compute the resources allocated at a
particular location, e.g. a4, denoted by U(n, s)|a4

. To do so, we replace c(a4) by
1 and the rest of c() by 0. Thus, U(n, s)|a4 = nat(n)∗nat(s)+nat(n+2)∗nat(s+4).
Similarly, given the set of program points {a3, a5}, we have U(n, s)|{a3,a5} =

U(n, s)|{a3} + U(n, s)|{a5} = nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3.

4.2 Inference of Peak Cost

We can now put all pieces together. The SRA described in Sec. 3 allows us
to infer the acquire instructions which could be allocated simultaneously. Such
information is gathered in the set H of the SRA. In fact, the set H at the last
program point of the program, namely ¨main, collects all possible states of the
resource allocation during program execution. Using this set we define the notion
of peak cost as the maximum of the UBs computed for each possible set in H ¨main.

Definition 2 (Peak Cost). The peak cost of a program P (x), denoted P̂(x),

is defined as P̂(x) = max({U(x)|H | H ∈ H ¨main }).
Intuitively, for each H in H ¨main, we compute its restricted UB, U(x)|H, by re-
moving from U(x) the cost due to acquire instructions that are not in H, i.e.,
those acquire that were not active simultaneously with the elements in h.

Non-cumulative Resource Analysis 93

Example 6. ByusingHm̈= {{a1, a3, a4}, {a1, a3, a5, a2}, {a2, a3, a4, a5}}, thepeak
cost of m is the maximum of the expressions:

U(n, s)|{a1,a3,a4}= k1 + nat(n)∗(k2 + nat(s)) + nat(n+2)∗(k2 + nat(s+4))
U(n, s)|{a1,a3,a5,a2}= k1 + nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3
U(n, s)|{a2,a3,a4,a5}= nat(s)+nat(n)∗(k2+nat(s)) + k3 + nat(n+2)∗(k2+nat(s+4))+k3

Each UB expression over-approximates the value of R for the different states seen
in Ex. 3 that could determine the concrete peak cost, namely U(n, s)|{a1,a3,a4}
over-approximates the resource consumption at state S8, U(n, s)|{a1,a3,a5,a2} cor-
responds to S12, and U(n, s)|{a2,a3,a4,a5} bounds S16 and S18.

Theorem 2 (Soundness). P(x) ≤ P̂(x).

5 Extensions of the Basic Framework

In this section we discuss several extensions to our basic framework. First,
Sec. 5.1 discusses how context-sensitive analysis can improve the accuracy of
the results. Sec. 5.2 describes an improvement for handling transient acquire in-
structions, i.e., those resources which are allocated and released repeatedly but
only one of all allocations is in use at a time. Finally, Sec. 5.3 introduces the
extension of the framework to handle several kinds of resources.

5.1 Context-Sensitivity

Establishing the granularity of the analysis at the level of program points may
lead to a loss of precision. This is because the computation of the SRA and the
resource analysis are not able to distinguish if an acquire instruction is executed
multiple times from different contexts. As a consequence, all resource usage
associated to a given app is accumulated in a single CC.

Example 7. The set Hm̈ computed in Ex. 4 includes a4 in two different sets.
The first set corresponds to the first call to q (L3), where s units are allocated,
whereas the second set corresponds to the second call (L6), and where s+4 units
are allocated. Observe that the SRA of m does not distinguish such situation as
both executions of L11 are represented as a single program point a4. The same
occurs in the computation of the UBs. In Ex. 6 we have computed U(n, s)|a4 =

nat(n)∗nat(s)+nat(n+2)∗nat(s+4), which accounts for the resources acquired at
L11. Note that U(n, s)|a4 does not separate the cost of the different calls to q.

Intuitively, this loss of precision can be detected by checking if the call graph of
the program contains convergence nodes, i.e., methods that have more than one
incoming edge because they are invoked from different contexts. In such case,
we can use standard techniques for context-sensitive analysis [16], e.g., method
replication. In particular, the program can be rewritten by creating a different
copy of the method for each incoming edge. Method replication guarantees that
the calling contexts are not merged unless they correspond to a method call
within a loop (or transitively from a loop). In the latter case, we indeed need to
merge them and obtain the worst-case cost of all iterations, as the underlying
resource analysis [2] already does.

94 E. Albert, J.C. Fernández, and G. Román-Dı́ez

Example 8. As q is called at L3 and L6, the application of the context-sensitive
replication builds up a program with two methods: q 1 (from the call at L3) and
q 2 (from L6). In addition, the modified version of m, denoted m’, calls q 1 at L3
and q 2 at L6. We use a31 (resp. a32) to refer to the acquire at L10 for the replica
q 1 (resp. q 2). The SRA for m’ returns: Hm̈′ = {{a1, a31, a41}, {a1, a31, a51, a2},
{a31, a51, a2, a32, a42}, {a31, a51, a2, a32, a52}} and Cm̈′ = {a2, a31, a32, a51, a52}.
Observe that the set marked with *© in Ex. 4 is now split in two different sets,
which precisely capture the states S16 and S18 of Fig. 2. Moreover, we distinguish
a41, a42 and a51, a52 that allow us to separate the different calls to q, which is
crucial for accounting the peak cost more accurately. The UB for m’ is:

Um′(n, s)=c(a1)∗k1+c(a2)∗nat(s)+ nat(n)∗(c(a31)∗k2+c(a41)∗nat(s)) + c(a51)∗k3+
nat(n+2)∗(c(a32)∗k2+c(a42)∗nat(s+4))+c(a52)∗k3

In contrast to Um(n, s)|a4 , shown in Ex. 5, now we can compute Um′(n, s)|a41 =

nat(n)∗nat(s) and Um′(n, s)|a42 = nat(n+2)∗nat(s+4). P̂m′(n, s) is the maximum of:

Um′(n, s)|{a1,a31,a41}= k1 + nat(n)∗(k2 + nat(s)) [S8]
Um′(n, s)|{a1,a31,a51,a2}= k1 + nat(s) + nat(n)∗k2 + k3 [S12]

Um′(n, s)|{a31,a51,a2,a32,a42}= nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗(k2+nat(s+4)) [S16]
Um′(n, s)|{a31,a51,a2,a32,a52}= nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3 [S18]

To the right of the UB expressions above we show their corresponding state of
Fig. 2. In contrast to Ex. 6, now we have a one-to-one correspondence, and thus
P̂m′(n, s) is more accurate than P̂m(n, s) in Ex. 6.

5.2 Handling Transient Resource Allocations

A complementary optimization with that in Sec. 5.1 can be performed when
resources are acquired and released multiple times along the execution of the
program within loops (or recursion). We use the notion of transient acquire to
refer to an acquire(e) instruction at app that is executed and released repeatedly
but in such a way that the resources allocated by different executions of app
never coexist. As the UBs of Sec. 4 are computed by multiplying the number
of times that each acquire instruction is executed by the worst case cost of each
execution, the fact that the allocations of a transient acquire do not coexist is
not accurately captured by the UB.

Example 9. Let us focus on the acquire a4 of the running example. Although a4
is executed multiple times within the loop, each allocation does not escape from
the corresponding iteration because it is released at L12. To the right of Fig. 2
we can see that states S3, S6, S8, S15 and S16 include the cost allocated by a4
only once (elements in dark grey). Thus, a4 is a transient acquire. In spite of this,
we compute Um′(n, s)|a41

=nat(n)∗nat(s), which accounts for the cost allocated at
a41 as many times as a41 might be executed. Certainly, Um′(n, s)|a41

is a sound
but imprecise approximation for the cost allocated by a41.

We can improve the accuracy of the UBs for a transient acquire app by including
its worst case cost only once. We start by identifying when app is transient in
the concrete setting. Intuitively, if app is transient the resources allocated at app
do not leak. Thus, in the last state of the execution, Sn, no resource allocated
at app remains in Hn (see the semantics at Fig. 1).

Non-cumulative Resource Analysis 95

Definition 3 (Transient Acquire). Given a program P , an acquire instruction
app is transient if for every execution trace of P , S1� . . .�Sn, 〈 , , app, 〉 �∈ Hn.

Example 10. In Fig. 2 we can see that a1 and a4 (shown in dark grey) are
transient because their resources are always released at L5 and L12, resp.

In order to count the cost of a transient acquire only once, we use a particular
instantiation of the cost analysis described in Sec. 4.1 to determine an UB on
the number of times that such acquire might be executed. We use Uc to denote
such UB which is computed by replacing the expression Ci (see Sec. 4.1) by 1
in the computation of U . Assuming that U and Uc have been approximated by
the same cost analyzer, we gain precision by obtaining the cost associated to a
transient acquire instruction using its singleton cost.

Definition 4 (Singleton Cost). Given app we define its singleton cost as
Ũ(x)|app = U(x)|app/Uc(x)|app if :app �∈ C ¨main and Ũ(x)|app = U(x)|app , otherwise.
Intuitively, when app is transient, its singleton cost is obtained dividing the accu-
mulated UB by the number of times that app is executed. If it is not transient, we
must keep the accumulated UB. According to Def. 3 and Th. 1(b), if app �∈ C ¨main,

then app is transient, and so we can perform the division. We use P̃ to refer to

the peak cost obtained by using Ũ instead of U . In general, given a set of app, we

use Ũm′ |S to refer to the UBs computed using the singleton cost of each app ∈ S.

Example 11. Let us continue with the context-sensitive replica of the running
example, m’. We start by computing Uc

m′(n, s)|a41 = nat(n) and Um′(n, s)|a41 =

nat(n) ∗ nat(s). As we can see in Ex. 8, a41, a42 �∈ Cm̈′ , then Ũm′(n, s)|a41 = nat(s)

which is the worst case of executing a41 only once. For a42 we have Ũm′(n, s)|a42 =
nat(s+4). Regarding the remaining acquire instructions, either they cannot be

divided, or can be divided by 1. Thus, we have that P̃m′(n, s) is the maximum
of the following expressions:

Ũm′(n, s)|{a1,a31,a41} = k1 + nat(n)∗k2 + nat(s) [S8]

Ũm′(n, s)|{a1,a31,a51,a2} = k1 + nat(s) + nat(n)∗k2 + k3 [S12]

Ũm′(n, s)|{a31,a51,a2,a32,a42} = nat(s) + nat(n)∗k2 + k3 + nat(s+4) [S16]

Ũm′(n, s)|{a31,a51,a2,a32,a52} = nat(s) + nat(n)∗k2 + k3 + nat(n+2)∗k2 + k3 [S18]

Theorem 3 (Soundness). Given a program P (x) and its context-sensitive

replica P ′(x), we have that PP (x) ≤ P̃P ′(x).

5.3 Handling Different Resources Simultaneously

Our goal is now to allow allocation of different types of resources in the pro-
gram (e.g., we want to infer the heap space usage and the number of simulta-
neous connections to a database). To this purpose, we extend the instruction
acquire(e) (see Sec. 2.1) with an additional parameter which determines the
kind of resource to be allocated, i.e., acquire(res,e). Such extension does not re-
quire any modification to the semantics. We define the function type(app) which
returns the type of resource allocated at app. Now, we extend Def. 1 to con-
sider the resource of interest. We use Ri(res) to refer to the following value
Ri(res) =

∑
{r | 〈 , , app, r〉 ∈ Hi ∧ type(app) = res}.

96 E. Albert, J.C. Fernández, and G. Román-Dı́ez

Definition 5 (Concrete Peak Cost). Given a resource res, the peak cost of
an execution trace t of program P (x, res) is P(x, res) = max({Ri(res)|Si ∈ t}).

Interestingly, such extension does not require any modification neither to the
SRA of Sec. 3 nor to the program point resource analysis of Sec. 4. This is
due to the fact that the analysis works at the level of program points and
one program point can only allocate one particular type of resource. We de-
fine R(res) as the set of program points that allocate resources of type res, i.e.,
R(res)={app | type(app)=res}. Thus, we extend the notion of peak cost of Def. 2

with the type of resource, i.e., P̂(x, res)=max({U(x)|H∩R(res) | H ∈ H ¨main}). Ob-
serve that the only difference with Def. 2 is in the intersection H∩R(res) which
restricts the considered acquire when computing the UBs. One relevant aspect is
that by computing the UB only once, we are able to obtain the peak cost for dif-
ferent types of resources by restricting the UB for each resource of interest. The
extension of Th. 2 and Th. 3 to include a particular resource is straightforward.

Example 12. Let us modify the acquire instructions of the running example
in Fig. 2 to add the resource to be allocated. Now we have that L2 is x =
acquire(hd,k1) and L11 is r = acquire(hd,w), where hd is a type of resource. We
assume that L4, L10, L15 allocate a different type of resource, e.g. a resource of
type mem. Then, using the context-sensitive replica of the program, we have that
R(hd) = {a1, a41, a42}, andR(mem) = {a2, a31, a32, a51, a52}. Now, using the UB
from Ex. 11, we have that P̂(n, s, hd)m’ is the maximum of the expressions:

Ũm′(n, s,hd)|{a1,a31,a41}∩R(hd) = k1+nat(s) [S8]

Ũm′(n, s, hd)|{a1,a31,a51,a2}∩R(hd) = k1 [S12]

Ũm′(n, s, hd)|{a31,a51,a2,a32,a42}∩R(hd) = nat(s+4) [S16]

Ũm′(n, s, hd)|{a31,a51,a2,a32,a52}∩R(hd) = 0 [S18]

6 Experimental Evaluation

We have implemented a prototype peak cost analyzer for simple sequential pro-
grams that follow the syntax of Sec. 2.1, but that besides use a functional lan-
guage to define data types (the use of functions does not require any conceptual
modification to our basic analysis). This language corresponds to the sequential
sublanguage of ABS [13], a language which besides has concurrency features that
are ignored by our analyzer. To perform the experiments, our analyzer has been
applied to some programs written in ABS: BBuffer, a bounded-buffer for com-
municating producers and consumers; MailServer, a client-server system; Chat, a
chat application; DistHT, an implementation of a hash table; BookShop, a book
shop application; and PeerToPeer, a peer-to-peer network.

The non-cumulative resource that we measure is the peak of the size of the
stack of activation records. For each method executed, an activation record is
created, and later removed when the method terminates. The size might depend
on the arguments used in the call, as due to the use of functional data structures,
when a method is invoked, the data structures (used as parameters) are passed
and stored. This aspect is interesting because we can measure the peak size, not

Non-cumulative Resource Analysis 97

Table 1. Experimental Evaluation (times in seconds)

Benchmark #l #e Tn Tc %n %c %s %cn %sn %sc

BBuffer 105 3125 0.93 1.07 4.9 35.7 43.9 32.1 40.6 15.7

MailServer 115 3375 9.58 1.23 16.0 42.4 58.2 30.2 47.1 27.6

Chat 302 2500 0.58 0.58 69.9 69.9 92.9 0.0 74.8 74.8

DistHT 353 2500 0.68 2.27 40.2 82.8 84.8 71.2 74.6 10.7

BookShop 353 4096 2.22 2.41 6.5 6.5 32.4 0.0 27.9 27.9

PeerToPeer 240 4.09 5.62 11.86 0.4 8.8 11.4 8.5 11.1 3.0

23.0 41.0 53.9 23.7 46.0 26.6

only due to activation records whose size is constant, but also measure the size
of the data structures used in the invocations, and take them into account.

In order to evaluate our analysis we have obtained different UBs on the size
of the stack of activation records and compared their precision. In particular,
we have compared the UBs obtained by the resource analysis of [2] (a cumula-
tive cost analyzer), our basic non-cumulative approach (Sec. 4.2), the context-
sensitive extension of Sec. 5.1 and the UBs obtained by using the singleton cost
of each acquire as described in Sec. 5.2. In order to obtain concrete values for the
gains, we have evaluated the UB expressions for different combinations of the
input arguments and computed the average. For a concrete input arguments x,
we compute the gain of P̂(x) w.r.t. U(x) using the formula (1−P̂(x)/U(x))∗100.
In order to compute the sizes of the activation records of the methods, we have
modified each method of the benchmarks by including in the beginning of the
method one acquire and one release at the end of each method to free it. Let
us illustrate it with an example, if we have a method Int m (Data d,Int i) {Int
j=i+1}, we modify it to {x=acquire(1+1+d+1+1); Int j=i+1; release x;}. The
addends of the expression 1+1+d+1+1 correspond to: the pointer to the acti-
vation record, the size of the returned value (1 unit), the size of the information
received through d (d units), the size of i (1 unit), and the size of j (1 unit). The
instruction release(x) releases all resources. Experiments have been performed
on an Intel Core i5 (1.8GHz, 4GB RAM), running OSX 10.8.

Table 1 summarizes the results obtained. Columns #l and #e show, resp.,
the number of lines of code and the number of input argument combinations
evaluated. Columns Tn, Tc show, resp., the time (in seconds) to perform the
basic non-cumulative analysis and the context-sensitive non-cumulative analy-
sis. Columns %n, %c, %s show, resp., the gain of the non-cumulative resource
analysis, its context-sensitive extension and the singleton cost extension w.r.t.
the cumulative analysis. Column %cn shows the gain of P̂ applied to the context
sensitive replica of the program w.r.t. its application to the original program.
Columns %sn and %sc show, resp., the gain of P̃ w.r.t. P̂ , and w.r.t. P̂ applied
to the context sensitive replica of the program. The last row shows the average
of the results. As regards analysis times, we argue that the time taken by the an-
alyzer is reasonable and the context-sensitive approach although more expensive
is feasible. As regards precision, we can observe that the gains obtained by the
non-cumulative analyses are significant w.r.t. the cumulative resource analysis.
As it can be expected, P̃ shows the best results with gains from 11% to 93%.

98 E. Albert, J.C. Fernández, and G. Román-Dı́ez

The non-cumulative analysis and its context-sensitive version also present sig-
nificant gains, on average 23% and 41% respectively. The improvement gained
by applying non-cumulative analysis to the context-sensitive extension is also
relevant, a gain of 23.7%. As resources are released in all methods, we achieve
a significant improvement with P̃, from 46% to 26.6% on average. All in all, we
argue that the experimental evaluation shows the accuracy of non-cumulative
resource analysis and the precision gained with its extensions.

7 Conclusions and Related Work

To the best of our knowledge, this is the first generic framework to infer the peak
of the resource consumption of sequential imperative programs. The crux of the
framework is an analysis to infer the resources that might be used simultaneously
along the execution. This analysis is formalized as a data-flow analysis over a
finite domain of sets of resources. The inference is followed by a program-point
resource analysis which defines the resource consumption at the level of the
program points at which resources are acquired.

Previous work on non-cumulative cost analysis of sequential imperative pro-
grams has been focused on the particular resource of memory consumption with
garbage collection, while our approach is generic on the kind of non-cumulative
cost that one wants to measure. Our framework can be used to redefine previous
analyses of heap space usage [5] into the standard cost analysis setting. Depend-
ing on the particular garbage collection strategy, the release instruction will be
placed at one point or another. For instance, if one uses scope-based garbage
collection, all release instructions are placed just before the method return in-
struction and our framework can be applied. If one wants to use a liveness-based
garbage collection, then the liveness analysis determines where the release in-
structions should go, and our analysis is then applied. The important point to
note is that these analyses [5] provided a solution based on the generation of
non-standard cost relations specific to the problem of memory consumption.
It thus cannot be generalized to other kind of non-cumulative resources. Non-
cumulative resource analysis, by means of the use of malloc and free, is studied
at [9], but the approach is limited to constant resource consumption. Several
analyses around the RAML tool [12] also assume the existence of acquire and
release instructions and the application of our framework to this setting is an
interesting topic for further research. The differences between amortized cost
analysis and a standard cost analysis are discussed in [6,10]. Also, we want to
study the recasting of [7] into our generic framework.

Recent work defines an analysis to infer the peak cost of distributed systems
[3]. There are two fundamental differences with our work: (1) [3] is developed
for cumulative resources, and the extension to non-cumulative resources is not
studied there and (2) [3] considers a concurrent distributed language, while our
focus is on sequential programs. There is nevertheless a similarity with our work
in the elimination from the total cost of elements that do not happen simulta-
neously. However, in the case of [3] this information is gathered by a complex
may-happen-in-parallel analysis [4] which infers the interleavings that may occur

Non-cumulative Resource Analysis 99

during the execution followed by a post-process in which a graph is built and
its cliques are used to detect when several tasks can be executing concurrently.
In our case, we are able to detect when resources are used simultaneously by
means of a simpler analysis defined as a standard data-flow analysis on a finite
domain. Besides, the upper bounds in [3] are obtained by a task-level resource
analysis since in their case they want to obtain the resource consumption at the
granularity of tasks rather than at program point granularity. As in our case,
the use of context sensitive analysis [16] can improve the accuracy of the results.

Acknowledgments. This work was funded partially by the EU project FP7-ICT-

610582ENVISAGE:EngineeringVirtualizedServices (http://www.envisage-project.eu),

by the Spanish project TIN2012-38137, and by the CM project S2013/ICE-3006.

References

1. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: Static Analyzer for Con-
current Objects. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS).
LNCS, vol. 8413, pp. 562–567. Springer, Heidelberg (2014)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

3. Albert, E., Correas, J., Román-Dı́ez, G.: Peak Cost Analysis of Distributed Sys-
tems. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis. LNCS, vol. 8723, pp.
18–33. Springer, Heidelberg (2014)

4. Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-Parallel
in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS
2012. LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)

5. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Parametric Inference of Memory Re-
quirements for Garbage Collected Languages. In: ISMM 2010, pp. 121–130 (2010)

6. Alonso-Blas, D.E., Genaim, S.: On the Limits of the Classical Approach to Cost
Analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421.
Springer, Heidelberg (2012)

7. Braberman, V., Fernández, F., Garbervetsky, D., Yovine, S.: Parametric Prediction
of Heap Memory Requirements. In: ISMM 2008, pp. 141–150. ACM (2008)

8. Braberman, V.A., Garbervetsky, D., Hym, S., Yovine, S.: Summary-based inference
of quantitative bounds of live heap objects. SCP 92, 56–84 (2014)

9. Cook, B., Gupta, A., Magill, S., Rybalchenko, A., Simsa, J., Singh, S., Vafeiadis,
V.: Finding heap-bounds for hardware synthesis. In: FMCAD 2009, pp. 205–212
(2009)

10. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 275–295.
Springer, Heidelberg (2014)

11. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Esti-
mation of Program Computational Complexity. In: POPL 2009, pp. 127–139. ACM
(2009)

12. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: POPL 2013, pp. 185–197. ACM (2003)

100 E. Albert, J.C. Fernández, and G. Román-Dı́ez

13. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

14. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 745–761. Springer, Heidelberg (2014)

15. Trinder, P.W., Cole, M.I., Hammond, K., Loidl, H.W., Michaelson, G.: Resource
analyses for parallel and distributed coordination. CCPE 25(3), 309–348 (2013)

16. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI, pp. 131–144. ACM (2004)

Value Slice: A New Slicing Concept
for Scalable Property Checking

Shrawan Kumar1,�, Amitabha Sanyal2, and Uday P. Khedker2

1 Tata Consultancy Services Ltd, Pune, India
shrawan.kumar@tcs.com

2 IIT Bombay, Mumbai 400076, India
{as,uday}@cse.iitb.ac.in

Abstract. A backward slice is a commonly used preprocessing step for scaling
property checking. For large programs though, the reduced size of the slice may
still be too large for verifiers to handle. We propose an aggressive slicing method
that, apart from slicing out the same statements as backward slice, also elimi-
nates computations that only decide whether the point of property assertion is
reachable. However, for precision, we also carefully identify and retain all com-
putations that influence the values of the variables in the property. The resulting
slice, called value slice, is smaller and scales better for property checking than
backward slice.

We carry experiments on property checking of industry strength programs us-
ing three comparable slicing techniques: backward slice, value slice and an even
more aggressive slicing technique called thin slice that retains only those state-
ments on which the variables in the property are data dependent. While back-
ward slicing enables highest precision and thin slice scales best, value slice based
property checking comes close to the best in both scalability and precision. This
makes value slice a good compromise between backward and thin slice for prop-
erty checking.

1 Introduction

Given a program and a set of variables at a program point of interest, program slic-
ing [19] pares the program to contain only those statements that are likely to influence
the values of the variables at that program point. The set of variables and the program
point, taken together, is called the slicing criterion. Several variants of the original slic-
ing technique, called backward slicing, have since been proposed [16]. These have been
used for program understanding, debugging, testing, maintenance, software quality as-
surance and reverse engineering. A survey of applications of program slicing appears
in [5]. This paper focuses on the use of slicing for scaling up property checking.

Among slicing techniques, backward slicing is the natural choice for property check-
ing. While computation of backward slice is efficient and scalable, the size of the slice
is a matter of concern. Empirical studies [11] have shown that the size of the back-
ward slice on an average is about 30% of the program size. This size is still too large
for the analysis of large programs. In addition, the statements sliced out are irrelevant

� Also research scholar at IIT Bombay. This work is part of his doctoral dissertation.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 101–115, 2015.
DOI: 10.1007/978-3-662-46681-0_7

102 S. Kumar, A. Sanyal, and U.P. Khedker

1 int main()
2 {
3 int i,j,k,st;
4 int t,u;
5 t=i=j=k=0;
6 st = fn3();
7 while (i<1000)
8 {
9 i= i+ fn2();

10 t = fn1(i,j);
11 if (t>100)
12 {
13 if (st ==1)
14 { j++; k++; }
15 else
16 {j+=2; k+=1;}
17 u = j-k;
18 assert
19 (u==0||u==k);
20 }
21 }
22 return 0;
23 }
24 int fn1();
25 int fn2();
26 int fn3();

(a) Backward slice

1 int main()
2 {
3 int i,j,k,st;
4 int u;
5 j=k=0;
6 st = fn3();
7 while (*)
8 {
9

10

11 if (*)
12 {
13 if (st ==1)
14 { j++; k++; }
15 else
16 {j+=2; k+=1;}
17 u = j-k;
18 assert
19 (u==0||u==k);
20 }
21 }
22 return 0;
23 }
24 // fn1 removed
25 // fn2 removed
26 int fn3();

(b) Value slice

1 int main()
2 {
3 int i,j,k;
4 int u;
5 j=k=0;
6

7 while (*)
8 {
9

10

11 if (*)
12 {
13 if (*)
14 { j++; k++; }
15 else
16 {j+=2; k+=1;}
17 u = j-k;
18 assert
19 (u==0||u==k);
20 }
21 }
22 return 0;
23 }
24 // fn1 removed
25 // fn2 removed
26 // fn3 removed

(c) Thin slice

Fig. 1. Usual backward slice, value slice and thin slice

to the asserted property and their elimination does not reduce the load on the verifier
significantly. To remedy this, we propose an alternate notion of slicing based on the
observation that a backward slice consists of two categories of statements (i) statements
that decide whether the slicing criterion will be reached during execution, and (ii) state-
ments that decide the values of variables in the slicing criterion. Our results show that
the second category of statements, called value-impacting, are often enough for prop-
erty checking. We also show that the size of the slice consisting of value-impacting
statements, called a value slice, is about half the size of the backward slice.

An attempt similar to ours called thin slicing [17] retains only those statements on
which the variables in the slicing criterion are data-dependent. In particular, all condi-
tional statements are eliminated. While this does bring down the size of the slice, unlike
our method it also eliminates some conditional statements that are value-impacting and
thus crucial for property checking.

As a motivating example, Figure 1(a) shows an assert involving u at line 18.
The functions fn1 and fn2 are large and complex but without side effects. Clearly,
a backward slice with the slicing criterion 〈18,u〉 does not eliminate any statement
from the program. SATABS (version 3.0) [8], a robust and scalable predicate abstrac-
tion based property checking tool, times out on this program on a limit of 20 minutes.

Value Slice: A New Slicing Concept for Scalable Property Checking 103

Observe however that the value of u does not depend on the values of i or t. Since
these variables merely decide the reachability of line 18 during execution, the state-
ments computing them are non-value-impacting and thus considered irrelevant. Issues
related to reachability are being addressed in an ongoing work and are beyond the scope
of this paper.

Figure 1(b) shows a slice of the program that captures the computation of every
value of u in the original program. Conditional statements that do not value-impact u
are replaced by a * standing for a randomly chosen boolean value. The resulting slice
is much smaller in comparison to the backward slice (the entire program). SATABS
succeeds in showing that the property is indeed satisfied on the sliced program, and,
by implication, on the original program. On the other hand, the thin slice shown in
Figure 1(c), while smaller in size, is not useful since the property does not hold on the
sliced program. Thus any verifier will produce counterexamples on this slice that will
be spurious on the original program.

The contributions of this paper are:

1. We define a new notion of slicing called value slice and propose a worklist based
algorithm for its computation. The algorithm is shown to be correct by construction.

2. We describe the results of experiments on property checking based on the three
comparable slicing methods—backward, value and thin slices. We show that on
both criteria, scalability and precision, value slice based property checking yields
results that are close to the best among the three slicing methods.

We conclude that as a slicing technique for increasing the scalability of property check-
ing, value slice represents a sweet spot between backward and thin slice.

2 Background

We shall present our ideas in the context of imperative programs made of assignments,
conditional statements (the conditions being without side-effects), while loops, and
function calls. We allow break and continue statements in loops. However, we restrict
ourselves to goto-less programs with single-entry loops and two-way branching condi-
tional statements; it makes for an easier formal treatment of our method without losing
expressibility. We also allow the full range of C-types including arrays and pointers.

Our analysis will be based on a model of the program called the control flow graph
(CFG) [1]. A CFG is a pair 〈N,E〉, where N is a set of nodes representing atomic
statements, i.e. assignment statements and conditions (also called predicates) of the
program1. Further, (n1, n2) ∈ E, if there is a possible flow of control from n1 to n2

without any intervening node. We use n1 → n2 and n1
b→ n2 to denote unconditional

and conditional edges, where b ∈ {true, false} indicates the branch outcome. Each
statement (or node) is associated with a unique label l that represents the program point
just before the statement. Often we shall refer to a node by its label. In addition, each
CFG is assumed to have two distinguished nodes with labels ENTRY and EXIT . Ex-
cept for ENTRY and EXIT , there is a one-to-one correspondence between the nodes

1 For the rest of the paper, a statement will mean an atomic statement.

104 S. Kumar, A. Sanyal, and U.P. Khedker

of the CFG and the statements of the program. Thus we shall use the terms statement
and node interchangeably.

2.1 Program States and Traces

Let Var be the set of variables in a program P and Val be the set of possible values
which the variables in Var can take. A program state is a map σ : Var → Val such that
σ(v) denotes the value of v in the program state σ. Given X ⊆ Var , a X-restriction of
σ, denoted as �σ�X , is a map X → Val such that ∀x ∈ X.�σ�X(x) = σ(x). Finally,
an execution state is a pair 〈l, σ〉, where σ is a program state and l is the label of a
CFG node. The execution of a program is a sequence of execution states starting with
〈ENTRY, σ0〉, where σ0 is the initial program state. We assume that the next state is
given by a function T , i.e. for each execution state 〈l, σ〉, the next state is T (〈l, σ〉).

A trace is a (possibly infinite) sequence of execution states [〈li, σi〉], i ≥ 0, where
l0 = ENTRY, σ0 is an initial program state, and 〈li+1, σi+1〉 = T (〈li, σi〉) for all i ≥ 0.
When the trace sequence is finite and ends with an execution state 〈EXIT, σ〉, it is called
a terminating trace. We shall only consider terminating traces in the rest of the paper.

2.2 Data and Control Dependence

A definition d of a variable v in a node n is said to be a reaching definition [1] for a
label l, if there is a control flow path from n to l devoid of any other definition of v. A
variable x at label l is said to be data dependent on a definition d of x, if d is a reaching
definition for l. Given a set of variables X and a label l, the set of definitions that the
variables in X are dependent on is denoted by DU(l, X).

Backward slicing algorithms are implemented efficiently using post-dominance and
control dependence [10,12]. A node n2 post-dominates a node n1 if every path from n1

to EXIT contains n2. If, in addition, n1 �= n2, then n2 is said to strictly post-dominate
n1. A node n is control dependent on an edge c

b→ n′, denoted c
b� n, if n post-

dominates n′, and n does not strictly post-dominate c. If the label b is not important in
a context, it is elided.

The transitive closure of control dependences, i.e. a chain of control dependences
starting with the predicate c and edge b and ending with the node n is denoted as c b� n.
Note that because of return and break statements, it is possible to have both c

b� n

and c
b′� n, where b �= b′.

2.3 Subprogram and Backward Slice

The basis for slicing is a slicing criterion defined as a pair Υ = 〈l, V 〉, where l is a
statement label and V ⊆ Var is a set of variables. The slicing criterion represents our
interest in the values of the variables in V just before the execution of the statement at
l. Let REF (s) denote the set of variables referred in a node s. Given a statement s with
label l′, we will use LV (s) to denote the slicing criterion 〈l′, REF (s)〉.

A subprogram of P is a program formed by deleting some statements from P while
retaining its structure. This means if a statement enclosed by a predicate c in P is

Value Slice: A New Slicing Concept for Scalable Property Checking 105

included in the subprogram, then so is c itself. Given a program P and a slicing criterion
with location l, an augmented program is obtained by inserting a SKIP (do nothing)
statement at l. Clearly, an augmented program has the same behavior as the original
program. In the sequel, we shall assume that our programs are augmented. Finally, we
shall assume that program points of the same statement in the original program and the
slice are represented by the same label.

Assume for the rest of this section that the slicing criterion is Υ = 〈l, V 〉. Given a
program P , we define SC-execution states to be the execution states of P with label
l. For a subprogram to be called a backward slice, there should be a relation between
the traces of the program and the slice on the same input when we restrict the traces to
their SC-execution states. We call a trace thus restricted as a sub-trace. We say that the
two sub-traces [(l, σi)], 1 ≤ i ≤ k and [(l, σ′

i)], 1 ≤ i ≤ k′ are SC-equivalent wrt Υ , if
k = k′, and for each i between 1 and k, �σi�V = �σ′

i�V .
Let Tr(P, I, Υ) denote the sub-trace of a program P on input I for the slicing crite-

rion Υ . We now define P ′ to be a backward slice of P with respect to Υ , if for all inputs
I , Tr(P, I, Υ) and Tr(P ′, I, Υ) are SC-equivalent. As we shall see later, for the same
input the sub-traces of the program and its value-slice may not be of the same length.
We therefore need a weaker notion of SC-equivalence. We say that a pair of sub-traces
[(l, σi)], 1 ≤ i ≤ k and [(l, σ′

i)], 1 ≤ i ≤ k′ are weak-SC-equivalent wrt Υ , if for each
i between 1 and min(k, k′), �σi�V = �σ′

i�V . The value min(k, k′) is called the trace
observation window for the pair of sub-traces.

3 Value Slice

Given a slicing criterion 〈l, V 〉, a value slice is the answer to the question: “Which
statements can possibly influence the values of the variables in V observed at l”?

The answer to this question for P1 in Figure 2 for the slicing criterion 〈17, {y}〉 is
as follows: y at 17 gets its value from x through the assignment at 15. x, in turn, gets its
value from the definitions at 14 and 8, and both of these can reach 15. Thus 8, 14 and
15 are in the value slice. The predicate c2 at 13 is also in the value slice, since, of the
values generated at 14 and 8, the value that actually reaches line 15 is decided by c2.
Finally, line 10, where c2 itself is computed, is also in the value slice. The resulting
program is P2 without the lines shaded gray.

Although P2 (ignoring gray lines) contains all statements required to answer the
question posed earlier for the slicing criterion 〈17, {y}〉, it is not suitable for property
checking. The reason is that apart from the statements that decide the values of vari-
ables at the slicing criterion, we also need to explicate the CFG paths along which the
computations of these values take place. Therefore, if a statement in the slice is control
dependent on a predicate that, by itself, does not influence values of the variables in the
slicing criterion, the predicate is retained in the slice in an abstract form. This brings
the predicates at lines 16 and 11 into the value slice but replaced by ‘*’ indicating a
non-deterministic branch. We call such predicates abstract predicates. Note, however,
that if none of the statements that are transitively control dependent on a predicate are
included in the slice, the predicate itself can be eliminated.

106 S. Kumar, A. Sanyal, and U.P. Khedker

1 proc(int z)
2 {
3 int w;
4 int x;
5 int y;
6 int c1;
7 int c2;
8 x = z;
9 c1=fn1();

10 c2=fn2();
11 if (c1)
12 {
13 if (c2)
14 x=z+5;
15 y = x;
16 if(x<10)
17 w = y;
18 }
19 }

(a) P1

1 proc(int z)
2 {
3 int w;
4 int x;
5 int y;
6

7 int c2;
8 x = z;
9

10 c2=fn2();
11 if (*)
12 {
13 if (c2)
14 x = z+5;
15 y = x;
16 if (*)
17 w = y;
18 }
19 }

(b) P2

1 proc1(int x)
2 {
3 int i,c1;
4 c1=fn1(x);
5 while (c1)
6 {
7 i=0;
8 x=0;
9 while(i<4)

10 {
11 if (i%2==0)
12 x = x+3;
13 else
14 y = x;
15 i++;
16 }
17 c1=fn1(x);
18 }
19 }

(c) P3

1 proc1(int x)
2 {
3 int i;
4

5 while (*)
6 {
7 i=0;
8 x=0;
9 while(i<4)

10 {
11 if (i%2==0)
12 x = x+3;
13 else
14 y = x;
15 i++;
16 }
17

18 }
19 }

(d) P4

Fig. 2. Various forms of value slices

In the context of property checking, the inclusion of c2 in a concrete form at line
13 is a crucial difference between value slice and thin-slice2. As an example, assume
that when P1 is executed with v as the initial value of z, c2 evaluates to false and
the value reaching y at 17 is also v. For the same initial value of z, the value slice P2
will also assign the same value v to y. However, if we abstract c2 as ‘*’, the resulting
program may produce a trace which assigns the value v+5 to y at line 17. To avoid such
spurious counterexamples, we retain the predicate c2 at line 13 in a concrete form.

To generalize this point, consider the execution of P3 in Figure 2. Assuming that the
outer loop executes twice for an input, the sub-trace for 〈14, {x}〉 is [〈14, 3〉, 〈14, 6〉,
〈14, 3〉, 〈14, 6〉]. However, if the predicates of both the whiles are abstracted, then one
of the sub-traces generated is [〈14, 3〉, 〈14, 3〉]. The two sub-trace do not match in that
they are not weak-SC-equivalent. On the other hand, program P4 in which only the
outer loop predicate is abstracted, produces as a sub-trace zero or more repetitions of
[〈14, 3〉, 〈14, 6〉]. We therefore include the predicate i<4 in the value slice for the slic-
ing criterion 〈14, {x}〉. The predicate i%2==0 is also in the value slice by a similar
argument. In summary, for the same input, the sub-traces of a value-slice and the origi-
nal program are required to be weak-SC-equivalent. Based on these considerations, we
now specify the conditions to be satisfied by a value slice.

Definition 1. (Value-slice) A value slice PV of a program P for a slicing criterion
〈l, V 〉 satisfies the following conditions:
1. PV is a subprogram of P with some predicates in abstract form.

2 For comparison in the context of property checking, predicate c2, which would have been
eliminated in the thin-slice, is retained in an abstract form.

Value Slice: A New Slicing Concept for Scalable Property Checking 107

2. If P terminates with trace τ on an input, then there should exist a trace τ ′ of PV on
the same input which is SC-equivalent to τ .
3. If P terminates with trace τ on an input, then every trace τ ′ of PV on the same input
should be weak-SC-equivalent to τ .

3.1 Value-Impacting Statements

While the trace-based definition is good from a semantic point of view, we present a
definition that will enable us to statically identify the set of statements that should nec-
essarily be in the value slice in concrete form. We call such statements value-impacting
and define the term shortly. As mentioned in the background section, we shall use the
term “node” to also mean atomic statements.

Definition 2. (Value-impacting Node) A node s value-impacts Υ = 〈l, V 〉, if any of the
following conditions hold:
1. s is an assignment in DU(Υ).
2. s is an assignment, and there exists a node t such that t value-impacts Υ and s is in
DU(LV (t)).
3. s is a predicate c from which there exist paths π1 and π2 starting with the out-edges
of c and ending at the first occurrence of l. Further, there exists a node t �= c such that
t value-impacts Υ , and (a) t is the first value-impacting node along π1 (b) t is not the
first value-impacting node along π2.

A triplet 〈π1, π2, t〉 due to which a predicate c satisfies rule (3) will be called a
witness for c being value-impacting. As an illustration, consider the slicing criterion
〈14, {x}〉 for P3 in Figure 2. Statements 12 and 8 are value-impacting because of rules
1 and 2. Interestingly, the predicates i%2==0 and i<4 are value-impacting because of
rule 3 with witnesses 〈π1 : 11

t→ 12 → 15 → 9 t→ 11 f→ 14, π2 : 11
f→ 14, 12〉 and

〈π1: 9
t→ 11 f→ 14, π2: 9

f→ 17 → 5 t→ 7 → 8 → 9 t→ 11 f→ 14, 11〉. Clearly, if a
node s value-impacts Υ then there is a path from s to l.

Let V I(Υ) be the set of value-impacting nodes of Υ . Let the set of abstract pred-
icates AP (Υ) consist of predicates that are not by themselves value-impacting, but
on which other value-impacting nodes are transitively control dependent. We construct
a subprogram PVS of P by choosing the statements in V I(Υ) ∪ AP (Υ) along with
SKIP and ENTRY. The predicates in AP (Υ) appear in PVS in abstract form. We claim
that PVS is a value slice. Clearly condition 1 of Definition 1 is satisfied. To show that
PVS satisfies conditions 2 and 3, we shall first prove a lemma which shows that if
the traces of the original program and the value slice on the same input are restricted
to executions states involving value-impacting statements, then they match each other
when compared to the extent of the trace with the smaller length. In the lemmas below,
AVI denotes the set of concrete statements in PVS . Further, for s ∈ AVI , AREF (s)
denotes REF (s) when s ∈ VI (Υ), V when s is SKIP and ∅ when s is ENTRY.

Lemma 1. Let τ and τ ′ be traces of the programs P and PVS for an input I . Assume
that τs = [〈li, σi〉], i ≥ 1 and and τ ′s = [〈l′j , σ′

j〉], j ≥ 1 are restrictions of τ and τ ′ to
the statements in AVI . Let k be the minimum of the number of elements in τs and τ ′s.
Then for all i ≤ k, li = l′i and �σi�Zi = �σ′

i�Zi , where Zi = AREF (li).

108 S. Kumar, A. Sanyal, and U.P. Khedker

Proof. We shall prove the lemma by induction on the common label index i of the two
traces. Obviously i ≤ k, else the lemma is vacuously true.
Base step : i = 1. The lemma holds trivially as l1 = l′1 = ENTRY and σ1 = σ′

1 = I .
Induction step: Let the hypothesis be true for i. Since �σi�Zi = �σ′

i�Zi , the edges
followed from li and l′i in τ and τ ′ are the same. Assume li+1 �= l′i+1. This is only
possible if (a) there is a predicate c in the original program which has been abstracted
in the value slice, (b) the path from li to li+1 goes through one of the out-edges b1 of c,
and (c) the path from l′i to l′i+1 goes through the other out-edge b2 of c. Obviously, there
are paths π1 and π2 from c to l through b1 and c to l through b2, and li+1 and l′i+1 are the
first value-impacting statements on π1 and π2 respectively. Therefore, the predicate c is
value-impacting and cannot be abstracted in the value-slice, a contradiction. Therefore,
li+1 = l′i+1.

Now suppose that for some variable x ∈ Zi+1, σi+1(x) �= σ′
i+1(x). Then there must

be a statement d which provides the value of x at li+1; x does not get its value from the
input I . This implies d is a value-impacting statement. Clearly, d occurs before li+1 and
thus it either also occurs before li or is li itself. By induction hypothesis, d must also be
there in τ ′ and therefore σi+1(x) = σ′

i+1(x). �

The following lemma implies that condition 2 of Definition 1 holds for PVS .

Lemma 2. Let τ be a finite trace for program P for an input I . Let τ ′ = [〈li, σi〉],
1 ≤ i ≤ k, be the sub-sequence of τ restricted to the nodes in PVS . Then for every
prefix of τ ′ there is a prefix τ ′′ = [〈l′i, σ′

i〉] of some trace of PVS for the same input I ,
such that for all i, 1 ≤ i ≤ k, (a) li = l′i, (b) if li is in AVI (Υ), then �σi�Zi = �σ′

i�Zi ,
where Zi = AREF (li).

Proof. Consider a sub-sequence τ ′ of an arbitrary trace. Let the length of the sub-
sequence be k. Let τ ′i be the prefix of τ ′ with length i. The proof is by induction on
the length i of the prefix τ ′i .
Base step: i = 1 The lemma holds trivially as [〈ENTRY, I〉] is the only prefix of
length 1 for any trace of P as well as PVS .
Induction step: Assume that the statement of the lemma holds for prefixes of τ ′ of
length up to i. Consider a prefix τ ′i+1 of length i+1 ≤ k. By induction hypothesis, there
exists a trace of PVS , which has a prefix τ ′′i of length i and for which statement of the
lemma holds with respect to the prefix τ ′i . If the node li in τ ′i+1 (and in τ ′i) is an abstract
predicate in AP (Υ), then program control reaching the predicate can take either branch.
Otherwise li ∈ AVI (Υ), and �σi�Zi = �σ′

i�Zi by the induction hypothesis. Thus for
any edge taken out of li in τ ′, l′i in τ ′′i can be made to take the same edge out. Assume
this edge extends τ ′′i to τ ′′i+1 by taking l′i to l′i+1.

We claim that there exists a trace of PVS , having τ ′′i+1 as its prefix, such that li+1 =
l′i+1. If not, the divergence must be because of some condition c after li and before li+1

in τ ′. But then c � li+1 and therefore c ∈ PVS . This means that there is a trace of
PVS such that li+1 = l′i+1. Further, by Lemma 1, if li+1 ∈ AVI (Υ), �σi+1�Zi+1 =
�σ′

i+1�Zi+1 . �

Now consider sub-traces of P and PVS for an arbitrary input I . Using Lemma 1, it
is easy to show by an induction on the length of the trace observation window that

Value Slice: A New Slicing Concept for Scalable Property Checking 109

b1 b2

d

c

n1

n2

π1 π2

×

(a)

b1
u,w

b2

d

c

t π1 π2

l

(b)

b1
b2

d

c

t,w
uπ1
π2

l

(c)

b1 b2

d

c

t π1 π2

l

(d)

Fig. 3. (a) A property of CFG paths. (b)-(d) Situations that make a predicate value-impacting. In
Fig (c), path π1 is c → t → d → c → u → l.

the sub-traces of P and PVS are weak-SC-equivalent. Therefore the third condition in
Definition 1 holds, and we claim that:

Theorem 1. The abstract subprogram PVS is a value slice.

3.2 Relating Value-Impacting Statements to Data and Control Dependences

Figure 3 shows certain situations that we shall refer to in subsequent discussions. c
denotes a predicate having two outgoing edges b1 and b2 that start the paths π1 (solid
line) and π2 (thick dashed line). l denotes the node of the slicing criterion. We begin by
mentioning a property of the programs under consideration. In figure (a), d is the first
node common to π1 and π2. Since our program model does not allow arbitrary jumps,
the following property, illustrated in Figure 3 (a), holds:
Prop: Let π1 and π2 be disjoint paths from a predicate c to a node d, and let n1 and n2

be nodes on these paths distinct from d. Then there cannot exist a path from n1 to n2.
It is clear that the most challenging part of value slice computation is the computa-

tion of value-impacting predicates. Given a predicate c, we now identify necessary and
sufficient conditions for c to value-impact Υ = 〈l, V 〉.

Consider P1 of Fig. 2. The predicate c2 is value-impacting for the slicing criterion
〈15, {x}〉. Observe in this case that line 15 is not control dependent on c2 while the
value-impacting assignment at line 14 is control dependent on c2. We generalize this
observation, illustrated in Figure 3 (b), to obtain the first necessary condition for a
predicate c to be value-impacting:

cond1: If l is not transitively control dependent on c, then a value-impacting node
t �= c is control dependent on c.

Notice that cond1 is also corroborated for the slicing criterion 〈17, {y}〉, with predicate
c1 as c and the predicate at line 13 as t.

Now consider P3 in which i<4 is value-impacting for 〈14, {x}〉. In this case line 14
is transitively control dependent on i<4 through the true out-edge. The value-impacting
assignment for this criterion at line 8 is reachable through the false-edge of predicate

110 S. Kumar, A. Sanyal, and U.P. Khedker

i<4, as both are in a cycle 9 f→ 17 → 5 t→ 7 → 8 → 9. The predicate i%2==0 is also
value-impacting for 〈14, {x}〉, and line 14 is control dependent on i%2==0 through
the false out-edge. Moreover, the value-impacting assignment at line 12 is control de-
pendent on predicate i%2==0 through the true out-edge. This observation, generalized
in Figure 3 (c), gives the second necessary condition for c to be value-impacting:

cond2: If l is transitively control dependent on c through only one out-edge, say
b2, then there is a value-impacting node t �= c such that t is not transitively control
dependent on c through b2 and c and t are in a cycle.

There is a third condition cond3 which covers the case when l is transitively control
dependent on c through both out-edges, as shown through Figure 3 (d). As mentioned
earlier, this happens when some of the branches emanating from a predicate do not
merge back due to return statements.

cond3: If l is transitively control dependent on c through both edges, then there is
a value-impacting node t �= c which is transitively control dependent on c through
exactly one edge.

Note that the antecedent of exactly one of the three conditions cond1, cond2 and cond3
always holds. Therefore, for the conjunction of these conditions to hold, only the con-
dition with true antecedent needs to hold; the other two will hold vacuously. We will
now show that conjunction of cond1, cond2 and cond3 is a necessary and sufficient
condition for c to be value-impacting and can thus be used for obtaining a sound and
precise value slice. But we first prove a property of the witness of a value-impacting
predicate.

Lemma 3. Let c be a value-impacting node for the slicing criterion 〈l, V 〉 with a wit-
ness 〈π1, π2, u〉. Then, at least one of π1 or π2 must have a value-impacting node before
any common node appearing on both π1 and π2.

Proof. Let π′
1 and π′

2 be the disjoint prefixes of π1 and π2 ending with a common node
d (possibly l itself). Assume that both π′

1 and π′
2 have no value-impacting statements

before d. Obviously, u �= d otherwise, contrary to our assumption, c will not be value-
impacting. Since u is not the first value-impacting on π2, π2 must diverge from π1 after
d but before u. The divergence point will have to be a predicate, say c′. It is easy to see
that c′ will be a value impacting node on π1 before u, a contradiction. �

We now show that the conjunction of cond1, cond2 and cond3 is a necessary criterion
for a predicate c to be value-impacting.

Lemma 4. Given a slicing criterion Υ = 〈l, V 〉 and a value-impacting predicate c,
conditions cond1, cond2 and cond3 hold.

Proof.

1. Let 〈π1, π2, u〉 be the witness for c to be a value-impacting statement for l. Since
l is not transitively control dependent on c, the situation must be as depicted in
Figure 3 (b), where d is the immediate post-dominator of c. By Lemma 3, at least

Value Slice: A New Slicing Concept for Scalable Property Checking 111

one of π1 or π2 must have the first value-impacting node w before d. First assume
that w lies on the segment of π1. Obviously, w = u and w must post-dominate the
out-edge b1. In addition, by Prop, w can not strictly post-dominate the out-edge b2.
Thus w is the required t. The case of w lying on the segment of π2 can be argued
similarly.

2. Assume that l is transitively control dependent on c through the out-edge b2 only.
Since c is value-impacting, by Prop, the situation resembles Figure 3 (c) and the
witness is either 〈π1, π2, w〉 or 〈π2, π1, u〉. If the witness is 〈π2, π1, u〉, then there
must be a value-impacting node t �= u in the looping segment c to c of π1. If the
witness is 〈π1, π2, w〉, then t = w and t must once again be in the c to c segment of
π2. In both cases, t is not transitively control dependent on c through b2 and is in a
cycle with c.

3. Assume that l is transitively control dependent on c through both out-edges b1 and
b2. Since c is value-impacting, there will be a witness with paths π1 and π2 as
shown in Figure 3 (d). By Lemma 3, there is a value-impacting statement t on π1 or
π2 before d. Without loss of generality, we assume that t is on π1 and it is first value
impacting statement on π1. By Prop, t has to be transitively control dependent on
c through b1 and only through b1. �

We now show that the conjunction of cond1, cond2 and cond3 is also a sufficient con-
dition.

Lemma 5. Given a slicing criterion Υ = 〈l, V 〉 and a predicate c such that the condi-
tions cond1, cond2 and cond3 hold, c is value-impacting for Υ .

Proof. In each case we shall identify a witness for c to be value-impacting for Υ .

1. Assume that l is not transitively control dependent on c and t is control dependent
on c through the b1 edge. Clearly, t post-dominates edge b1. Consider the first value-
impacting statement u between c and t (u may be the same as t). Then the required
witness is 〈π1, π2, u〉 as shown in Figure 3 (b).

2. Assume l is transitively control dependent on c through only one of the edges, say
b2. Also assume that there is a node t that is not transitively control dependent on c
through b2 and that c and t are in a cycle. Then the witness is 〈π1, π2, t〉, as shown
in Figure 3 (c).

3. Now assume that l is transitively control dependent on c through both edges and t
is transitively control dependent on c through the b1 edge only. Then the witness is
〈π1, π2, t

′〉, as shown in Figure 3 (d), where t′ is first value impacting node on π1

and may be same as t. �

4 Value Slice Computation

Given a program dependence graph (PDG) [10], representing data and control depen-
dences in the program, it is easy to compute value-impacting assignments using Defini-
tion 2. In addition, Lemmas 4 and 5 can be used to identify value-impacting predicates.
These value-impacting assignments and predicates are augmented with abstract predi-
cates to obtain the value-slice. A minor implementation detail is that a predicate with

112 S. Kumar, A. Sanyal, and U.P. Khedker

1: function compVI (l, V)
2: begin
3: lct = tcd(l, true)
4: lcf = tcd(l, false)
5: vi = ∅
6: wl = DU(l, V)
7: while wl is not empty do
8: choose an element t from wl
9: ic = iConds(t, lct, lcf)

10: vi = vi ∪ {t}
11: wl = (wl \ {t}) ∪
12: ((ic ∪DU(LV (t))) \ vi)
13: end while
14: return vi
15: end

1: function iConds(t, lct, lcf)
2: begin
3: tct = tcd(t, true)
4: tcf = tcd(t, false)
5: dc = cd(t)
6: cnd1 = dc \ (lct ∪ lcf)
7: cndt2 = (lct \ tct) ∩ incycle(t)
8: cndf2 = (lcf \ tcf) ∩ incycle(t)
9: cndt3 = lct ∩ lcf ∩ (tct \ tcf)

10: cndf3 = lct ∩ lcf ∩ (tcf \ tct)
11: return (cnd1 ∪ cndt2 ∪ cndf2 ∪
12: cndt3 ∪ cndf3)
13: end

Fig. 4. Algorithm to compute VI

the reaching definitions of all its variables in VI is retained in concrete form, even if
the predicate itself is not in VI . Abstracting the predicate in this case would not result
in a decrease in the size of the slice. Note that the precision of the slice depends on the
precision of the PDG; given a precise PDG, the value slice exactly matches PVS .

Figure 4 gives an algorithm to compute VI (〈l ,V 〉). We use tcd(t, b) to denote
{c | c b� t} and cd(t) to denote {c | c � t}. We compute tcd and cd from the PDG
of the program. In addition, incycle(t) is the set of predicates which are in a cycle
with t. The worklist wl in the algorithm contains value-impacting statements which
have not been explored, i.e. they have not been used to find other value-impacting
statements. vi contains value-impacting statements which have been explored. Given
a value-impacting statement t, ic is the set of predicates and DU(LV (t)) the set of as-
signments that become value-impacting because of t. ic is computed using the function
iConds which encodes cond1, cond2 and cond3 in a straightforward manner. As an
example, cnd1, the encoding of cond1, computes the set of predicates c which become
value-impacting because t is directly control dependent on c and l is not transitively
control dependent on c.

Assume there are E edges and N nodes in the CFG of which C are predicates.
Since a node goes into the worklist at most once, the while loop in compVI iterates
at most N times. Further, let there be Ed data dependence and Ec control dependence
edges in the PDG, adding to Ep = Ed + Ec edges. The sets lct and lcf can be pre-
computed in O(C) time and stored in O(C) space, so that membership of these sets
can be checked in constant time. Further, Tarjan’s algorithm [18] can be used to find all
strongly connected components (SCCs) in a CFG in O(E + N) time, from which we
can pre-compute incycle(t). This takes O(N × C) time and O(N × C) space. Thus
c ∈ incycle(t) can also be checked in constant time.

It is clear that each data dependent edge will be traversed at most once during the
entire run of compVI . Similarly, because of dc and cnd1, each control dependent edge
will also be visited at most once during execution of compVI . The computation of tct.
tcf , cnd2 and cnd3 all require O(C) time. So the overall complexity of the algorithm is
O(E+N)+O(N×C)+O(Ec+Ed) ≈ O(N×C)+O(Ep). Note that backward slice

Value Slice: A New Slicing Concept for Scalable Property Checking 113

Prg KLOC Asserts

Backward
Slice Value Slice Thin Slice Scale

up (%)
Precision
loss (%)

Y N ? Y N NS ? Y N NS ? Back. Value Thin Value Thin
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s)
icecast 18 27 3 0 24 8 9 0 10 0 21 8 6 11 63 78 0 38
navi1 41 58 39 0 19 38 5 3 15 25 14 10 19 67 74 67 7 26
navi2 52 68 44 0 24 52 4 2 12 40 16 10 12 65 82 82 4 18
navi3 50 80 59 7 14 55 16 6 9 31 43 32 6 83 89 93 8 43
navi4 166 70 17 0 53 28 4 0 38 27 24 7 19 24 46 73 0 14
navi5 156 70 16 2 52 24 5 0 41 25 24 10 21 26 41 70 0 20
navi6 162 70 25 0 45 42 1 0 27 15 32 26 23 36 61 67 0 55
navi7 350 60 11 0 49 18 0 0 42 11 25 3 24 18 30 60 0 8
navi8 366 56 20 2 34 38 2 0 16 27 20 12 9 39 71 84 0 26
navi9 159 50 13 0 37 22 1 0 27 13 22 13 15 26 46 70 0 37

Average 39 60 74 2 29

Fig. 5. Scalability and precision of property checking based on different kinds of slices. Y and N
stand for ’yes’ and ’no’ answers returned by the property checker. ? stands for ’no decision’ and
NS stands for a ’no’ that is known to be spurious.

computation has a complexity of O(Ep). Since in the worst case O(Ep) = O(N ×N),
the worst case complexity is the same for backward slice and value slice.

5 Implementation and Measurements

We have built a scalable property checking tool based on value slicing3. Our implemen-
tation supports full version of C including pointers, structures, arrays, heap allocation
and function calls. Following custom, the heap is abstracted in terms of allocation points
and arrays are summarized to a single abstract element. However, structures are field
sensitive:x.a and x.b are treated as separate entities. Pointers are handled using a flow
sensitive but context insensitive points-to analysis. We first construct an intraprocedural
PDG for each function, using the algorithm of Billardi and Pingali [4] to construct the
control dependence graph. The PDGs are then linked and interprocedurally valid data
and control dependences computed using the method by Horwitz et. al. [12].

We carried out our experiments on 3.0 GHz Intel Core2Duo processor with 2 GB
RAM and 32 bit OS. We chose SATABS (version 3.0) [8] as the verifier for its robust-
ness and its scalability. We experimented on one open source application, icecast, and
60 modules of varying sizes of a proprietary code base of a large automotive navigation
system, grouped into nine groups: navi1 to navi9. Average size of individual modules
in these groups varied from 6 KLOC to 61 KLOC. We checked for the “array index out
of bounds” property on these programs. The size and the number of asserts for each
group of program are shown in the table. For each chosen instance, we computed back-
ward slice, value slice and thin slice. All three slices were submitted to SATABS, with
a time-out limit of three minutes and three kinds of outcomes were recorded: Property

3 Implemented on top of PRISM, a static analyzer generator developed at TRDDC, Pune [14,7].

114 S. Kumar, A. Sanyal, and U.P. Khedker

satisfied (Y), property failed (N), and no decision(?). The possible reasons for the last
outcome are time-out, too many iterations, or SATABS failing due to some other causes.

The Y answers of all three slices are correct by construction of the slice. Similarly,
an N answer for the backward slice is also correct. However, in case of a value or thin
slice, if an assert with an N answer is also recorded as a Y during property checking
with the other two slices, it is also recorded as being a spurious N (NS in the table).
Scalability, given by (Y + N)/(Y + N+?) is the ratio of definite outcomes over all
outcomes. Loss of precision is the ratio of outcomes that are known to be spurious over
all definite outcomes (NS/(Y +N)). The results are presented in Figure 5.

From the results, it is obvious that both value and thin slice help in scaling up prop-
erty checking, with thin slice having a small advantage (14%) over value slice. However,
compared to the backward slice, the precision drops considerably (29%) in the case of
thin slice, while there is only a marginal drop (2%) for value slice. This implies that
refinement will be required in many more cases with thin slice as compared to value
slice. We also expect refinement cycles to be shorter for value slice because of fewer
abstractions. This shows that value slice is a good compromise between backward and
thin slices as it provides considerable scalability with only a marginal loss in precision.

6 Related Work

Following the introduction of backward slicing by Weiser [19], several variations of
slicing have been proposed. Notable among these are forward slicing [3], chopping [13],
and assertion based slicing [6,9,2]. Restricted to the slicing criterion, all these tech-
niques produce slices with behaviours equivalent to the original program. Dynamic
slice [15] matches the behaviour of the original program for a run over a specific input.

Thin slicing [17], used for debugging, is the first approach that produces a slice
whose behaviour differs from the original program with respect to the slicing criterion.
A thin slice retains only those statements that the variables in the slicing criterion are
data dependent on and abstracts out all predicates. This approach comes closest to our
method. While this results in smaller slices, our experiments show that the slices are too
imprecise for property checking. Interestingly, the authors do mention the importance of
identifying the predicates that we include in the value slice in a concrete form. However
it is done manually during debugging.

7 Conclusion

Slicing is an obvious pre-processing step before submitting a program to a verifier for
property checking. For this purpose, backward slice has been the choice so far, since
its behaviour exactly matches the behaviour of the original program with respect to the
property being checked. In this paper, we have suggested a more aggressive form of slic-
ing called value slice which slices out statements affecting reachability of the assertion
point and retains just those statements which influence the values of the property vari-
ables. Property checking with value slice is more scalable than backward slice. How-
ever, our method also carefully identifies and retains certain predicates due to which
property checking with value slice is more precise than an even more aggressive form

Value Slice: A New Slicing Concept for Scalable Property Checking 115

of slicing called thin slice. Indeed, our experiments show that on both axes of compar-
ison, scalability and precision, value slice based property checking comes close to the
best performer of the three comparable forms of slicing that we have considered.

An overall property checking process could include refinement steps on getting a
failure answer. If the counterexample generated by the verifier turns out to be spurious,
one can use its trace to choose an abstract predicate that can be concretized. At worst,
the refinement process could end in a backward slice. An alternate single step refine-
ment process could use the backward slice directly to determine whether the negative
answer is genuine. Our experiments also show that the size of the value slice is on the
average about 50% of the size of the backward slice. Thus value slices can also be used
for program understanding and debugging.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, & Tools.
Pearson Education, Inc. (2006)

2. Barros, J.B., da Cruz, D., Henriques, P.R., Pinto, J.S.: Assertion-based slicing and slice
graphs. In: Proceedings of SEFM (2010)

3. Bergeretti, J.-F., Carré, B.A.: Information-flow and data-flow analysis of while-programs.
ACM Trans. Program. Lang. Syst. 7(1), 37–61 (1985)

4. Bilardi, G., Pingali, K.: A framework for generalized control dependence. In: Proceedings of
PLDI (1996)

5. Binkley, D.W., Gallagher, K.B.: Program slicing. Advances in Computers 43, 1–50 (1996)
6. Canfora, G., Cimitile, A., De Lucia, A.: Conditioned program slicing. Information & Soft-

ware Technology 40(11-12), 595–607 (1998)
7. Chimdyalwar, B., Kumar, S.: Effective false positive filtering for evolving software. In: Pro-

ceedings of ISEC (2011)
8. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate abstraction

for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 570–
574. Springer, Heidelberg (2005)

9. Comuzzi, J.J., Hart, J.M.: Program slicing using weakest preconditions. In: Gaudel, M.-C.,
Wing, J.M. (eds.) FME 1996. LNCS, vol. 1051, pp. 557–575. Springer, Heidelberg (1996)

10. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

11. Gold, N., Harman, M.: An empirical study of static program slice size. ACM Trans. on
Software Engineering and Methodology (TOSEM) 16 (2007)

12. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. SIG-
PLAN Not. 23, 35–46 (1988)

13. Jackson, D., Rollins, E.J.: Chopping: A generalization of slicing. Technical report, Pitts-
burgh, PA, USA (1994)

14. Khare, S., Saraswat, S., Kumar, S.: Static program analysis of large embedded code base: an
experience. In: Proceedings of ISEC (2011)

15. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163 (1988)
16. Silva, J.: A vocabulary of program slicing-based techniques. ACM Comput. Surv. 44(3), 1–

41 (2012)
17. Sridharan, M., Fink, S.J., Bodik, R.: Thin slicing. In: Proceedings of PLDI (2007)
18. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160

(1972)
19. Weiser, M.: Program slicing. In: Proceedings of ICSE (1981)

A Method for Improving the Precision
and Coverage of Atomicity Violation Predictions

Reng Zeng, Zhuo Sun, Su Liu, and Xudong He

School of Computing and Information Sciences
Florida International University

Miami, Florida 33199, USA
{rzeng001,zsun003,sliu002,hex}@cis.fiu.edu

Abstract. Atomicity violations are the most common non-deadlock con-
currency bugs, which have been extensively studied in recent years. Since
detecting the actual occurrences of atomicity violations is extremely hard
and exhaustive testing of a multi-threaded program is in general impossi-
ble, many predictive methods have been proposed, which make error pre-
dictions based on a small number of instrumented interleaved executions.
Predictive methods often make tradeoffs between precision and cover-
age. An over-approximate predictive method ensures coverage but lacks
precision and thus may report a large number of false bugs. An under-
approximate predictive method ensures precision but lacks coverage and
thus can miss significant real bugs. This paper presents a post-prediction
analysis method for improving the precision of the prediction results ob-
tained through over-approximation while achieving better coverage than
that obtained through under-approximation. Our method analyzes and
filters the prediction results of over-approximation by evaluating a sub-
set of read-after-write relationships without enforcing all of them as in
existing under-approximation methods. Our post-prediction method is
a static analysis method on the predicted traces from dynamic instru-
mentation of C/C++ executable, and is faster than dynamic replaying
methods for ensuring precision.

1 Introduction

Multi-threaded programs are prone to bugs due to concurrency. Concurrency
bugs are hard to find and reproduce due to the large number of interleavings.
Most non-deadlock concurrency bugs are atomicity violation bugs due to the un-
protected accesses of shared variables by multiple threads. Existing approaches
for detecting atomicity violation can be static or dynamic. Static approaches
[6] usually suffer from a large number of false positives due to concurrency and
pointer aliasing. Dynamic approaches include monitor based methods that re-
quire atomicity violations to manifest during monitored runs [11][5][19], and
predictive methods that explore atomicity violations in alternative interleavings
extracted from some sample instrumented runs [17][18][4][1].

Predictive methods use either (1) under-approximate models ([15][16][1][14]):
the set of extracted interleavings with the exact same read-after-write relation-
ships as in the instrumented runs, which are a subset of all feasible interleavings;

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 116–130, 2015.
DOI: 10.1007/978-3-662-46681-0_8

A Method for Improving the Precision and Coverage of AV Predictions 117

or (2) over-approximate models ([21][17][8][7][20]): the set of all possible inter-
leavings extracted from the instrumented runs, which may not be feasible in
the original program due to data constraints and ad-hoc synchronization. Hence
predictive methods based on under-approximate models have inadequate cover-
age and predictive methods based on over-approximate models lack precision.
Many predictive methods mentioned above made tradeoffs between precision
and coverage. Figure 1 shows the relationships between various predictive meth-
ods in terms of precision and coverage. Although precise coverage captures the
exact bugs in a multi-threaded program and thus is ideal, it cannot be achieved
practically. Our method AVFilter and replaying methods are not independent
predictive methods, but post-prediction analysis methods. A replaying method
can eliminate false bugs, but incurs heavy runtime overhead and may not be
able to produce the exact same execution sequence as an instrumented run due
to nondeterminism [2][9][10].

Fig. 1. Relationships of predictive methods on coverage and precision, in which a
larger circle shows more coverage and the circles within the precise coverage do not
contain false predictions.
UA - Under-approximate methods [15][16][1][14].
OA - Over-approximate methods [21][17][8][7][20], e.g. Figures 2, and 6.
AVFilter - Post-prediction analysis method in this paper.
Replay - Methods in [17] of rescheduling violation traces predicted by OA methods
Precise Coverage - Precise coverage [18] captures the exact bugs in a multi-threaded
program.

This paper presents a post-prediction analysis method AVFilter for improv-
ing the precision of the prediction results obtained through over-approximation
while achieving better coverage than that obtained from under-approximation
methods. The method checks and filters the results of over-approximation by
evaluating a subset of critical read-after-write relationships without enforcing
all of them as in under-approximation methods.

2 Preliminaries

A multi-threaded program P has a set of threads and a set of shared vari-
ables. An instrumented execution σ = s1, ..., sn of P is a sequence of executed

118 R. Zeng et al.

Table 1. Limited coverage of prediction using under-approximate (UA) models for two
threads (Superscript denotes the thread number T1 or T2)

Observed
Execution

Possible
Alternative
Execution

Description of Unserializability or Missed Reason

C
ov

er
ed

R1R1W 2 R1W 2R1 Two reading accesses read from different writes
R1W 1W 2 R1W 2W 1 Forwarded writing access in T2 is overwritten
W 1W 1W 2 W 1W 2W 1 Forwarded writing access in T2 is overwritten
R2W 1W 2 W 1R2W 2 An intermediate value is read
W 2W 1W 1 W 1W 2W 1 Forwarded writing access in T1 is overwritten

M
is

se
d

W 1R1W 2 W 1W 2R1 Intra-thread read-after-write in T1 prohibits
interleaved writing in T2

W 1W 1R2 W 1R2W 1 Inter-thread read-after-write prohibits forwarded
reading in T2

W 2R1R1 R1W 2R1 Inter-thread read-after-write prohibits forwarded
reading in T1

W 2W 1R1 W 1W 2R1 Intra-thread read-after-write in T1 prohibits
interleaved writing in T2

W 2R1W 1 R1W 2W 1 Inter-thread read-after-write prohibits forwarded
reading in T1

statements. A trace is the projection of an execution to a sequence of anno-
tated shared variable accesses and synchronization events. Formally, a trace,
τ = e1, ..., em is a sequence of events where each event ei(1 ≤ i ≤ m) is a tuple
〈seqi, tidi, actioni, bri〉 in which seqi is an increasing sequence number, tidi is a
thread handle, actioni is either an atomic shared variable access or a synchro-
nization event, and bri is the number of branches between ei and its immediate
preceding event within the same thread. Given a trace τ = e1, ..., em, a partial
order thread model (Eτ ,≺) can be defined, where Eτ is the set of events occur-
ring in τ and ≺ is a causal relation on Eτ . The causal relation ≺ respects all
constraints of synchronization primitives and program orders within individual
threads. Thus (Eτ ,≺) captures a set of alternative interleaving traces derived
from the original trace τ . A trace τ ′ in (Eτ ,≺) is feasible if and only if it is a
projection of a feasible execution σ′ of P . The strength of the causal relation ≺
affects the number of possible interleaved traces in (Eτ ,≺).

Definition 1. (Under-approximate models) When the exact same read-after-
write relation on all shared variables in τ is enforced in ≺, every trace τ ′∈(Eτ ,≺)
is feasible. Such a partial order thread model (Eτ ,≺) is called under-approximate.

Definition 2. (Over-approximate models) When not the exact same read-after-
write relation on all shared variables in τ is enforced in ≺, some trace τ ′ ∈
(Eτ ,≺) may not be feasible. Such a partial order thread model (Eτ ,≺) is called
over-approximate.

An atomicity violation bug is caused by a broken order of accesses to a shared
variable x within one thread by another thread. Most atomicity violation bugs

A Method for Improving the Precision and Coverage of AV Predictions 119

involve only three accesses to a shared variable within two threads based on the
study in [11], in which 101 out of 105 bugs involved only two threads. Thus
existing methods for atomicity violation detection and prediction work on every
shared variable within every pair of threads incrementally. Furthermore, these
methods assume sequential consistent memory such that the logic order of the
program execution is respected in physical machine execution. Table 1 shows ten
interleaving scenarios of three accesses to a shared variable between two threads
that result in atomicity violations, among which only five can be predicted by
methods using under-approximate models while other five are missed due to
some broken read-after-write relationship within three accesses. Our method
can predict each of scenarios above.

3 AVFilter: Performing Post-prediction Static Analysis

AVFilter works on over-approximate models from a given trace τ to remove
false predictions so that the remaining atomicity violation predictions are all
feasible. These remaining feasible atomicity violation predictions cover all the
predictions obtained from predictive methods using under-approximate models
of τ . This analysis method is general and is applicable to the prediction results
from many existing predictive methods using over-approximate models. The only
information needed is an instrumented trace τ and three memory accesses in τ
that forms an atomicity violation pattern [21][18].

3.1 Data Constraints Causing False Predictions

Data constraints are data dependencies that can make a predicted atomicity
violation trace infeasible. Typical data constraints include branch conditions
dependent on shared variables and queue accesses dependent on shared indexing
variables. In real-world applications, data dependency can be quite complicated
and appear in various obscure ways. Figure 2 shows a reformatted code snippet
from Apache web server, which gives an example of data constraints. Figure 2(a)

Fig. 2. A false positive due to a data constraint (reformatted code snippet from Apache
web server)

120 R. Zeng et al.

shows a trace of an instrumented execution, in which shared variable index is
read in line 7 and line 8 after its writing in line 3, and hence there are data
dependencies in two pairs of accesses to index: line 3 and line 7, line 3 and
line 8. Figure 2(b) shows a trace with a predicted atomicity violation pattern
in which line 10 has a writing access to the shared memory item in Thread T2
between the reading access (line 1R) and the writing access (line 1W) in Thread
T1. However, both pairs of accesses to index above are broken, which make the
memory access in line 10 in the predicted trace infeasible.

A solution to deal with data constraints requires a precise and complete par-
tial order thread model extracted from an instrumented trace. The precision
ensures the feasibility of any predicted atomicity violation in the partial order
thread model, and the completeness requires any feasible atomicity violation be
captured in the partial order thread model. Enforcing all the exact read-after-
write relationships of the instrumented trace in the partial order thread model
can ensure the precision of the partial order thread model. Several methods
[16][14] introduced the exact read-after-write relationships as a simple solution
to ensure the precision. However, the data constraints imposed by the exact
read-after-write relationships are too strong, thus make the resulting partial or-
der thread model over restrictive and under-approximate.

3.2 Problem Formulation

During post-prediction analysis, any predicted atomicity violation trace is an
alternative interleaving respecting the same causal relations imposed by the
synchronization events as the original instrumented trace. Thus we can view
a trace as a sequence of atomic (reading or writing) accesses without synchro-
nization events to simplify the discussion. Let τ = at11 , at22 , ..., atnn be a sequence
of atomic accesses to share variables in an interleaved execution of two threads,
in which a superscript indicates the thread an event belongs to, thus ti ∈ {1, 2}
for 1 ≤ i ≤ n; and a subscript indicates the occurrence position of an event in
the interleaving trace.

Over-approximate predictive methods in [21][11][17] are based on three-access
atomicity violation patterns. Table 1 gives all possible atomicity violation pat-
terns after reordering the event in thread 2 to occur between the two events in
thread 1. Although the above methods check only a pair of threads, they are
applicable to many threads by checking every pair of threads on every shared
variable one at a time.

A predicted atomicity violation trace is τ ′ = ..., a1i′ , ..., a
2
j′ , ...,a

1
k′ , ... with

atomicity violation pattern a1i′ , a
2
j′ , a

1
k′ which are three consecutive accesses to

a shared variable x. τ ′ is the result of reordering some accesses in a given
original instrumented trace τ where (1) τ = ..., a1i , ..., a

1
k,..., a

2
j , ... or (2) τ =

..., a2j , ..., a
1
i , ..., a

1
k, Events a1i′ , a

2
j′ , a

1
k′ in τ ′ correspond to the exact same

events a1i , a
2
j , a

1
k in τ. Accesses other than a1i′ , a

2
j′ , a

1
k′ are not explicitly iden-

tified in τ ′ but may also be reordered due to the reordering of a1i , a2j , a1k in τ . τ ′
may not be feasible due to the violation of some read-after-write relationship in

A Method for Improving the Precision and Coverage of AV Predictions 121

τ . τ ′ is feasible if its prefix up to a1k′ is feasible since anything happens after a1k′

does not affect the feasibility of τ ′.

3.3 Our Method

Our method works on the predicted traces that already contained all synchro-
nization information. The underlying idea of our method is to check whether
any reordered event inside the violation pattern a1i′ , ..., a

2
j′ , ...,a

1
k′ in τ ′ can break

some critical read-after-write relationship inside the subsequence a1i , ..., a
1
k,..., a

2
j

in situation (1) or the subsequence a1j , ..., a
1
i ,..., a

2
k in situation (2) in the instru-

mented trace τ . Before reordering, a2j may happen after a1k as in situation (1),
or before a1i as in situation (2). Let a ��� b denote event a occurs before event
b, We explain our checking idea for situation (1), i.e. a1i ��� a1k ��� a2j (the
checking idea for situation (2) is similar). In Figures 3, 4 and 5, w and r are
used to describe a read-after-write relationship with regard to either a different
shared variable or the same shared variable accessed in a1i′ , a

2
j′ , a

1
k′ . In Figure 3,

a reading event r2 is moved forward due to the reordering of a2j , thus breaking
the read-after-write relationship between w1 and r2.

Fig. 3. Read-after-write relationship is broken, assuming a1
i ��� a1

k ��� a2
j and a moved

forward reading event r2 before a1
k′ , r2∈τ (a1

k, a
2
j)

In Figures 4 and 5, Prev(a2j) denotes the immediate preceding access to
the same shared variable as a2j . In Figure 4, due to the reordered a1i′ , a

2
j′ , a

1
k′ ,

Prev(a2j) is moved forward to happen before a1i′ , thus r2 is moved forward to
happen before w1, causing the breaking of the read-after-write relationship be-
tween w1 and r2.

In Figure 5, due to the reordered a1i′ , a
2
j′ , a

1
k′ , Prev(a2j) is moved forward to

happen before a1i′ , thus w2 is moved forward to happen before r1, causing the
breaking of the read-after-write relationship between r1 and its original defining
writing access.

Lemmas 1 and 2 identify all the cases in which a reordered event may affect
the feasibility of τ ′. Let τ(a, b) be accesses in τ that occur after a and before
b, τ [a, b) be accesses in τ(a, b) including a, and τ(a, b] be accesses in τ(a, b)

122 R. Zeng et al.

Fig. 4. Read-after-write relationship is broken, assuming a1
i ��� a1

k ��� a2
j and a moved

forward reading event before a1
i′ ,r

2 ∈ τ (a1
i , P rev(a2

j)]

Fig. 5. Read-after-write relationship is broken, assuming a1
i ��� a1

k ��� a2
j and a moved

forward writing event w2, w2∈τ (a1
i , P rev(a2

j)]

including b, Prev(ai) denote the immediate preceding atomic access to the same
shared variable as a in thread i, and Next(ai) denote the immediate succeeding
atomic access to the same shared variable as a in thread i.

Lemma 1. Given a predicted atomicity violation trace τ ′ = ..., a1i′ , ..., a
2
j′ , ...,

a1k′ , ... with atomicity violation pattern a1i′ ,a
2
j′ , a

1
k′ with regard to a shared variable

x, and the original instrumented trace τ = ..., a1i , ..., a
1
k, ..., a

2
j , τ ′ can be infea-

sible due to a violated data constraint caused by only one of the following cases
(1) a moved forward reading event in thread 2: r2∈τ(a1k, a2j) and r2 ��� a1k′ ; (2) a
moved forward reading event in thread 2: r2 ∈ τ(a1i , P rev(a2j)] and r2 ��� a1i′ ; or
(3) a moved forward writing event in thread 2: w2∈τ(a1i , P rev(a2j)], w2 ��� a1i′
and the existence of a branch instruction between τ [a1i , a

1
k).

The proof of the lemma is omitted due to limited space. Note a moved forward
writing event in thread 2: w2∈τ [Prev(a2j), a

1
k) and w2 ��� a1k′ can break some

read-after-write relationship after a1k′ , but does not affect the feasibility of τ ′.
Figure 2 shows an example of case (1) in Lemma 1, where the predicted

atomicity violation trace τ ′ in (b) is infeasible. In (b) line 1R is a1i′ , line 10 is a2j′ ,
line 1W is a1k′ , and line 7 is the moved forward reading r. The read-after-write
relationship with line 3 is broken. As a result, the condition in line 7 is true and
Wait is executed that makes τ ′ infeasible.

A Method for Improving the Precision and Coverage of AV Predictions 123

Lemma 2. Given a predicted atomicity violation trace τ ′ = ..., a1i′ , ..., a
2
j′ , ...,

a1k′ , ... with atomicity violation pattern a1i′ ,a
2
j′ , a

1
k′ with regard to a shared vari-

able x, and the original instrumented trace τ = ..., a2j , ..., a
1
i , ..., a

1
k, τ ′ can

be infeasible due to a violated data constraint caused by only one of the fol-
lowing cases (1) a moved forward reading event in thread 1: r1∈τ(a2j , a1i] and
r1 ��� a2j′ ; (2) a moved forward reading event in thread 1: r1 ∈ τ(Next(a2j), a

1
k)],

r1 ��� Next(a2j′), and the existence of some branch instruction between τ [a1i , a
1
k).

The proof of this lemma is omitted due to limited space. Note any moved
forward writing event in thread 1 does not affect the feasibility of τ ′.

Fig. 6. A false positive due to local dependency

Figure 6 shows an example of case (1) in Lemma 2, where the predicted
atomicity violation trace τ ′ in (b) is infeasible. In (b), line 3 is a1i′ , line 2 is a2j′ ,
line 5 is a1k′ , and line 3 is the moved forward reading r1∈τ(a2j , a1i]. The broken
read-after-write relationship from line 2 now reads a new value 0 in line 3. As a
result, b1k′ cannot be executed and thus τ ′ is infeasible.

Our method is realized in the following Algorithm 1. An instrumented trace
contains a sequence of events, and each event is defined by a thread identifier tid,
a memory access type (read or write) rw, a shared variable var, and the number
br of branches between this event and its immediate preceding event within the
same thread. Other fields in an instrumented trace are omitted here without
affecting the post-prediction analysis. An atomicity violation prediction is based
on an atomicity violation pattern a1i′ , a

2
j′ , a

1
k′ involving two threads 1 and 2. The

algorithm analyzes the feasibility of a predicted violation according to Lemmas
1 and 2. The complexity is linear to the size of trace, and note the algorithm
only needs to check the subsequence containing the three accesses a1i , a2j , a1k. Five
true returns in the algorithm correspond to the five cases in Lemmas 1 and 2.

3.4 Comparison with Precise Coverage and the Coverage of
Under-Approximate Methods

As shown in Figure 1, the coverage of our method AVFilter is a subset of the
precise coverage and a superset of the coverage of under-approximate methods.

124 R. Zeng et al.

Algorithm 1. Algorithm of post-prediction analysis
Input: τ : seq → (tidseq , rwseq , varseq, brseq), and three seq: ...a1

i ..., ...a2
j ..., ...a1

k...
that contain accesses relevant to a violation pattern a1

i′ , a
2
j′ , a

1
k′ in τ ′.

Output: Whether a predicted violation maybe infeasible.
1: if a2

j > a1
i then

2: prev ← max(seq) where tidseq = 2∧varseq = vara2
j
∧seq < a2

j

3: for r ∈ (a1
i , prev] ∪ (a1

k, a
2
j) ∧ rwr = read ∧ tidr = 2 do

4: w = max(seq) where rwseq = write ∧ varseq = varr ∧ seq < r
5: if r ∈ (a1

i , prev] ∧ w > a1
i ∧ tidw = 1 then

6: return True
7: end if
8: if r ∈ (a1

k, a
2
j) ∧ w > a1

k ∧ tidw = 1 then
9: return True

10: end if
11: end for
12: for r ∈ [a1

i , a
1
k) ∧ rwr = read ∧ tidr = 1 do

13: w = min(seq) where rwseq = write ∧ varseq = varr ∧ seq > r ∧ tidw = 2
14: if w ≤ prev ∧ ∃seq � (r < seq < a1

k) ∧ (tidseq = 1) ∧ brseq > 0 then
15: return True
16: end if
17: end for
18: end if
19: if a2

j < a1
i then

20: for r ∈ (a2
j , a

1
i] ∧ rwr = read ∧ tidr = 1 do

21: w = max(seq) where rwseq = write ∧ varseq = varr ∧ seq < r
22: if w ≥ a2

j ∧ tidw = 2 then
23: return True
24: end if
25: end for
26: next ← min(seq) where tidseq = 2∧varseq = vara2

j
∧seq > a2

j

27: for r ∈ (a1
i , a

1
k) ∧ rwr = read ∧ tidr = 1 do

28: w = max(seq) where rwseq = write ∧ varseq = varr ∧ seq < r ∧ tidw = 2
29: if w > next ∧ ∃seq � (r < seq < a1

k) ∧ (tidseq = 1) ∧ brseq > 0 then
30: return True
31: end if
32: end for
33: end if
34: return False

A Method for Improving the Precision and Coverage of AV Predictions 125

No False Positives with Better Coverage than Under-Approximate
Methods. Lemmas 1 and 2 define the necessary conditions that a violated data
constraint can cause a predicted atomicity violation trace infeasible. Thus Lem-
mas 1 and 2 have ensured that any surviving predicted atomicity violation trace
is a feasible one, assuming a predictive method such as [21] preserved all con-
trol constraints. Under-approximate methods ensure precision by eliminating all
traces breaking any read-after-write relationships. Our post-prediction analysis
method ensures precision while eliminating only a subset of predicted atomic-
ity violation traces breaking certain read-after-write relationships in the original
instrumented trace.

Potential False Negatives. The false prediction shown in Figure 6 becomes
a real one if the initial value of variable x is changed to 1, which is treated as
infeasible by our method. The predicted traces often only contain the access
information on shared variables while omitting the access information of local
variables and the potential dependencies between shared and local variables. It
is not possible to determine with certainty whether a trace with some broken
read-after-write relationship is feasible or not without exploring the complex
inter-variable dependencies in the actual program. Therefore, we treat those
traces containing broken read-after-write relationship as infeasible to ensure the
soundness of our method.

4 Experiments and Evaluation

We have implemented the proposed algorithm in a prototype tool based on
the tool in [21] and conducted several experiments on a PC with dual core
2.33GHz CPU and 2GB memory. In the following subsections, we show the
benefits of AVFilter in terms of improving precision, ensuring coverage, and
achieving scalability.

Improving Precision

We evaluate our algorithm using as many benchmarks as available from the ex-
isting state of the art works [11][17][18]. [11] uses C based Apache web server
and C++ based MySQL database, [17] uses small Java programs and Java based
Apache ftp server, and [18] uses a few small C programs. We first run our tool [21]
on three C/C++ benchmark programs to obtain predictive atomicity violations.
Since our tool [21] implements an over-approximate method, the number of pre-
dicted atomicity violations should be representative in other over-approximate
methods such as [11][17]. We then run AVFilter on the predicted atomicity vio-
lations obtained from [21] to eliminate potential false positives.

The experiment results using Apache web server, FFmpeg, and MySQL
database are shown in Table 2, and the experiment results using the bench-
marks in [18] are shown in Table 3. The experiment result of Apache ftp server
of [17] is listed in the table for comparison purpose that shows our method is

126 R. Zeng et al.

Table 2. Experimental results using real world programs

Program
Size

Events
in Trace

OA AVFilter AVFilter-
time

Replay-
time

Apache web server 2.0.48 (C) 1.5 MB 140532 155 1 12.1 sec -
Apache ftp server (Java) [17] 53 KB - 109 - - 2.27 hrs

FFmpeg 2.0 (C) 41 MB 550352 29 0 11.6 sec -
MySQL 4.0.12 (C++) 7 MB 3273281 5202 1 4322 sec -

much faster than using replaying methods to achieve precision. Our algorithm
has shown tremendous improvement on prediction precision.

In Table 2, both Apache web server and MySQL have a known atomicity vi-
olation bug but FFmpeg does not. The first column Program Size gives the size
of the executable, the second column Events in Trace lists the number of events
in the instrumented trace; the third column OA contains the number of predicted
atomicity violations using the over-approximatemethod in [21]; the fourth column
AVFilter is the number of predicted atomicity violations after the post-prediction
analysis using AVFilter; the fifth column AVFilter-time is the time in seconds
to perform post-prediction analysis; the last column shows the replaying time in
hours to replay all predictions.

Ensuring Coverage

In Table 3, Programs atom001 and atom002 have atomicity violations that are
extracted from a real bug [12]. Their modified versions without atomicity vi-
olations are atom001a and atom002a. Other programs are Linux/Pthreads/C
implementation of the parameterized bank example [3], in which program bank-
av-8 has atomicity violations; program bank-sav-8 adds a condition variable as
a partial fix without avoiding all atomicity violations for any shared variable;
and program bank-nav-8 adds a transaction lock to remove all atomicity vi-
olations. The first three columns provide the statistics of programs, in which
svars-causing-av is the number of shared variables causing predicted atomicity
violations. The next two columns provide the statistics of our method, which uses
the results of an over-approximate method in [21]. OA-svars is the number of
shared variables causing predicted atomicity violations using over-approximate
methods, AVFilter-svars is the number of shared variables causing predicted
atomicity violations after post-prediction analysis using AVFilter. Note that a
single shared variable may generate many possible atomicity violation traces,
which can often be eliminated by a single fix. We count shared variables in
AVFilter-svars that have at least one feasible predicted violation trace. The last
column UA-avs is the number of predicted atomicity violation traces generated
by under-approximate methods that enforce the exact same read-after-write re-
lation on all shared variables in an instrumented trace.

One shared variable in atom002 is missed due to read-after-write relation-
ships on other shared variables. Our method cannot decide whether it is feasible
because the value of a shared variable or a local variable depends on the value

A Method for Improving the Precision and Coverage of AV Predictions 127

Table 3. Experimental results on precision and coverage using the benchmark in [18]

Program Our method UA methods
name threads svars-causing-av OA-svars AVFilter-svars UA-avs

atom001 3 1 1 1 0
atom001a 3 0 1 0 0
atom002 3 1 1 0 0
atom002a 3 0 1 0 0
bank-av-8 9 8 8 8 0
bank-sav-8 9 8 8 8 0
bank-nav-8 9 0 8 0 0

of another shared variable. [18] collects and encodes all program information in
CTP and thus can detect it. From the experiment results in Table 3, It can be
seen that under-approximate methods miss feasible atomicity violations.

Achieving Scalability

We compare the running time to CTP [18] in Figure 7, based on statistics pro-
vided in [18] as CTP is not publicly available.

The running times, under negligible hardware differences, in Figure 7 show
that our method’s scalability is promising compared to those of the symbolic
method CTP [18]. When the size of programs grows, e.g. bank-nav-8 containing
more code than others, the formulas built in CTP also grow bigger and require
more time to be solved. Our method stops as soon as a broken read-after-write
relationship defined in Lemmas 1 or 2 is detected, and incurs insignificant time
increase when the size of a program grows and thus can handle much larger
programs.

atom001 atom001a atom002 atom002a bank−av−8 bank−sav−8 bank−nav−8
0.01

0.1

1

10

100

Programs

T
im

e
to

 c
he

ck
 (

se
co

nd
s)

AVFilter
CTP

Experimental results compared to CTP

Fig. 7. Performance compared to CTP [18]

128 R. Zeng et al.

Our method is also evaluated using the complete Apache web server, MySQL
database and FFmpeg audio/video codec library, as shown in Table 2, and is
applicable to large scale programs.

5 Related Works

Predictive methods based on under-approximate models such as [16][1][14] ad-
mit only interleaving traces with the exact same read-after-write relations on
all shared variables as in the instrumented executions to achieve precision; how-
ever, the constraints imposed by the read-after-write relations are too strong,
which make the derived partial order thread models over restrictive and thus
exclude many feasible alternative interleaving traces. Predictive methods based
on over-approximate models such as [21][17][8][7][20] admit not only all feasible
interleaving traces but also infeasible interleaving traces due to data constraints
and ad-hoc synchronization, and thus can make imprecise false predictions. [15]
allows broken read-after-write relations but prohibits the thread with such a read
event to continue, hence can be considered as using under-approximate model.

CTP [18] is an analysis tool applicable to the predicted atomicity violation
traces generated by over-approximate methods, thus is the most relevant work to
ours. CTP achieves precision and complete coverage by using the values of shared
variables and local variables in the predicted atomicity violation trace, which
requires heavy instrumentation and the static analysis of the complete source
code. Our method explores ways to improve precision and to ensure coverage
while avoiding heavy instrumentation and the static analysis of source code.

Some tools use replaying methods to ensure precision. Penelope [17] instru-
ments the scheduler to follow a predicted schedule, from which it gets a set of
threads and the number of steps that each thread should take before the next
context switch. Only after execution reaches the point of the violation pattern,
the scheduler releases all threads to their normal execution. Before the execu-
tion reaches the violation point, it incurs the same overhead as an instrumented
execution, in addition to the overhead of instrumenting scheduler. CHESS [13]
is a systematic and deterministic testing tool for concurrent programs, which
takes complete control over scheduling of threads; however, its scheduler is non-
preemptive and therefore cannot model the behavior of a real scheduler that may
preempt a thread at any point during its execution. Following the exact same
schedule of a predicted atomicity violation trace still cannot guarantee perfect
replaying since perfect replaying is impossible without capturing all sources of
nondeterminism, as demonstrated in [2][9][10].

6 Conclusion

Predictive methods for atomicity violations need to consider the tradeoffs be-
tween precision and coverage. This paper presents a post-prediction analysis
method AVFilter to improve the precision of predicted atomicity violation traces
generated from over-approximate methods and to achieve better coverage than

A Method for Improving the Precision and Coverage of AV Predictions 129

that obtained from under-approximate methods. AVFilter covers all ten scenar-
ios in Table 1. AVFilter is general and is applicable to the prediction results
from many existing predictive methods using over-approximate models. AVFil-
ter does not rely on the instrumentation of local variables and the analysis of
source code, and thus is scalable and applicable to large programs.

Acknowledgements. This work was partially supported by the NSF of U.S.
under award HRD-0833093. Reng has also been supported by a Dissertation
Year Fellowship of Florida International University.

References

1. Chen, F., Serbanuta, T.F., Rosu, G.: jPredictor: a predictive runtime analysis
tool for java. In: Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, pp. 221–230 (2008)

2. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: ReVirt: enabling in-
trusion analysis through virtual-machine logging and replay. In: Proceedings of the
5th Symposium on Operating Systems Design and Implementation (OSDI 2002),
Boston, MA, USA, pp. 211–224 (2002)

3. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In:
Proceedings of the 17th International Symposium on Parallel and Distributed Pro-
cessing, IPDPS 2003 (2003)

4. Farzan, A., Madhusudan, P.: The complexity of predicting atomicity violations. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 155–169.
Springer, Heidelberg (2009)

5. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic
atomicity checker for multithreaded programs. In: Proceedings of the 2008 ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2008), Tucson, AZ, USA, pp. 293–303 (2008)

6. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: Proceedings
of the 2003 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2003), San Diego, CA, USA, pp. 338–349 (2003)

7. Ganai, M.K.: Scalable and precise symbolic analysis for atomicity violations. In:
Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), Lawrence, KS, USA, pp. 123–132 (2011)

8. Kahlon, V., Wang, C.: Universal causality graphs: A precise happens-before model
for detecting bugs in concurrent programs. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 434–449. Springer, Heidelberg (2010)

9. Konuru, R., Srinivasan, H., Choi, J.D.: Deterministic replay of distributed java
applications. In: Proceedings of 14th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2000), Cancun, Mexico, pp. 219–227 (2000)

10. Liu, X., Lin, W., Pan, A., Zhang, Z.: WiDS checker: combating bugs in distributed
systems. In: Proceedings of the 4th USENIX Conference on Networked Systems
Design and Implementation (NSDI 2007), Cambridge, MA, USA, pp. 19–19 (2007)

11. Lu, S., Park, S., Zhou, Y.: Finding Atomicity-Violation bugs through unserializable
interleaving testing. IEEE Transactions on Software Engineering 38(4), 844–860
(2011)

130 R. Zeng et al.

12. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: detecting atomicity violations via access
interleaving invariants. In: Proceedings of the 12th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS
2006), San Jose, CA, USA, pp. 37–48 (2006)

13. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (OSDI
2008), San Diego, CA, USA, pp. 267–280 (2008)

14. Sen, K., Roşu, G., Agha, G.: Detecting errors in multithreaded programs by gen-
eralized predictive analysis of executions. In: Steffen, M., Zavattaro, G. (eds.)
FMOODS 2005. LNCS, vol. 3535, pp. 211–226. Springer, Heidelberg (2005)

15. Şerbănuţă, T.F., Chen, F., Roşu, G.: Maximal causal models for sequentially con-
sistent systems. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp.
136–150. Springer, Heidelberg (2013)

16. Sinha, A., Malik, S., Wang, C., Gupta, A.: Predictive analysis for detecting seri-
alizability violations through trace segmentation. In: Proceedings of the 9th Inter-
national Conference on Formal Methods and Models for Codesign (MEMOCODE
2011), Cambridge, UK, pp. 99–108 (2011)

17. Sorrentino, F., Farzan, A., Madhusudan, P.: Penelope: weaving threads to expose
atomicity violations. In: Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2010), Santa Fe, NM,
USA, pp. 37–46 (2010)

18. Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-based symbolic analysis for
atomicity violations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 328–342. Springer, Heidelberg (2010)

19. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs.
IEEE Transactions on Software Engineering 32, 93–110 (2006)

20. Yi, J., Sadowski, C., Flanagan, C.: SideTrack: generalizing dynamic atomicity anal-
ysis. In: Proceedings of the 7th Workshop on Parallel and Distributed Systems:
Testing, Analysis, and Debugging (PADTAD 2009), Chicago, IL, USA, pp. 8:1–
8:10 (2009)

21. Zeng, R., Sun, Z., Liu, S., He, X.: McPatom: A predictive analysis tool for atomicity
violation using model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 191–207. Springer, Heidelberg (2012)

Commutativity of Reducers�

Yu-Fang Chen1, Chih-Duo Hong1, Nishant Sinha2, and Bow-Yaw Wang1

1 Institute of Information Science, Academia Sinica, Taiwan
2 IBM Research, India

Abstract. In the Map-Reduce programming model for data parallel computa-
tion, a reducer computes an output from a list of input values associated with a
key. The inputs however may not arrive at a reducer in a fixed order due to non-
determinism in transmitting key-value pairs over the network. This gives rise to
the reducer commutativity problem, that is, is the reducer computation indepen-
dent of the order of its inputs? In this paper, we study the reducer commutativity
problem formally. We introduce a syntactic subset of integer programs termed in-
teger reducers to model real-world reducers. In spite of syntactic restrictions, we
show that checking commutativity of integer reducers over unbounded lists of ex-
act integers is undecidable. It remains undecidable even with input lists of a fixed
length. The problem however becomes decidable for reducers over unbounded
input lists of bounded integers. We propose an efficient reduction of commutativ-
ity checking to conventional assertion checking and report experimental results
using various off-the-shelf program analyzers.

1 Introduction

Map-Reduce is a widely adopted programming model for data-parallel computation
such as those in a cloud computing environment. The computation consists of two key
phases: map and reduce. Each phase is carried out by a number of map and reduce
instances called mappers and reducers respectively. A mapper takes a key-value pair
as input and produces zero or more output key-value pairs. The output pairs produced
by all mappers are shuffled by a load-balancing algorithm and delivered to appropriate
reducers. A reducer iterates through the input values associated with a particular key and
produces an output key-value pair. Consider the example which counts frequencies of
each word in a distributed file system. A mapper takes an input pair (filename, content)
and produces an output pair (w, 1) for each word w in content. A reducer then receives
an input pair (w, [1; 1; · · · ; 1]) and returns an output pair (w, n) where n is the sum of
values associated with the word w, equivalently, the frequency of the word w.

Due to the deployment of mappers/reducers, load-balancing algorithm and network
latency, the order of values received by a reducer is not fixed. If a reducer computes
different outputs for different input orders (namely, it is not commutative), the Map-
Reduce program may yield different results on different runs. This makes such pro-
grams hard to debug and even cause errors. The commutativity problem for a reducer

� This work was partially supported by the Ministry of Science and Technology of Taiwan (102-
2221-E-001 -016 -MY3, 103-2221-E-001 -019 -MY3, and 103-2221-E-001 -020 -MY3).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 131–146, 2015.
DOI: 10.1007/978-3-662-46681-0_9

132 Y.-F. Chen et al.

program R is to check if the computation of R is commutative over its (possibly un-
bounded) list of inputs. A recent study [19] found that the majority of analyzed real-life
reducers are in fact non-commutative. Somewhat surprisingly, the problem of formally
checking commutativity of reducers however has attracted little attention.

At a first glance, the commutativity problem for arbitrary reducers appears to be un-
decidable by the Rice’s theorem. Yet reducers are seldom Turing machines in practice.
Most real-world reducers simply iterate through their input list and compute their out-
puts; they do not have complicated control or data flows. Therefore, one wonders if the
commutativity problem for such reducers can be decided for practical purposes.

On the other hand, because real-world reducers have a simple structure, perhaps
manual inspection is enough to decide if a reducer is commutative? Consider the two
sample reducers dis and rangesum shown below (in C syntax, simplified by omitting
the key input). Both reducers compute the average of a selected set of elements from
the input array x of length N and are very similar structurally. However, note that dis
is commutative while rangesum is not: dis selects elements from x which are greater
than 1000, while rangesum selects elements at index more than 1000. Checking com-
mutativity of such reducers manually can be tricky. Automated tool support is required.

int dis (int x[N]) {
int i = 0, ret = 0, cnt = 0;
for (i = 0; i < N; i++) {
if (x[i] > 1000){

ret = ret + x[i];
cnt = cnt + 1;

}
}
if (cnt !=0) return ret / cnt;
else return 0;

}

int rangesum (int x[N]) {
int i, ret = 0, cnt = 0;
for (i = 0; i < N; i++) {
if (i > 1000){

ret = ret + x[i];
cnt = cnt + 1;

}
}
if (cnt !=0) return ret / cnt;
else return 0;

}

In this paper, we investigate the problem of reducer commutativity checking for-
mally. To model real-world reducers, we introduce integer reducers, a syntactically re-
stricted class of loopy programs over integer variables. In addition to assignments and
conditional branches, a reducer contains an iterator to loop over inputs. Two operations
are allowed on the iterator: next, which moves the iterator to the subsequent element
in the input list; and initialize, which moves the iterator to the beginning of input list.
Integer reducers do not allocate memory and are assumed to always terminate. In spite
of these restrictions, we believe that integer reducers can capture the core computation
of real-world reducers faithfully. The paper makes the following contributions:

– Via a reduction from solving Diophantine equations, we first show that checking
the commutativity of integer reducers over exact integers with unbounded lengths
of input lists is undecidable. The problem remains undecidable even with a bounded
number of input values.

– Most reducer programs do not use exact integers in practice. We investigate the prob-
lem of checking reducer commutativity over bounded integers but with unbounded
lengths of input lists. This problem turns out to be decidable. Using automata- and
group-theoretic constructions, we reduce the commutativity checking problem to the
language equivalence problem over two-way deterministic finite automata.

– Finally, we reduce the reducer commutativity problem to program assertion check-
ing. The reduction applies to arbitrary reducers instances with input lists of a bounded

Commutativity of Reducers 133

length. It enables checking the commutativity of real-world reducers automatically
using off-the-shelf program analyzers. We present an evaluation of different program
analysis techniques for checking reducer commutativity.

Related Work. Previous work on commutativity [17,15,6] has focused on checking if
interface operations on a shared data structure commute, often to enable better paral-
lelization. Their approach is event-centric, that is, it checks for independence of oper-
ations on data with arbitrary shapes. In contrast, our approach is data-centric: we use
group-theoretic reductions on ordered data collections for efficient checking.

A recent survey [19] points out the abundance of non-commutative reducers in indus-
trial Map-Reduce deployments. Previous approaches to checking reducer commutativ-
ity use black-box testing [20] and symbolic execution [4]. They generate large number
of tests using permutations of the input and verify that the output is same. This does not
scale even for small input sizes. Checking commutativity of reducers may be seen as
a specific form of regression checking [10,7] where the two versions are identical ex-
cept permuting the input order. The work in [11] proposes a static analysis technique to
check re-orderings in the data-flow architecture consisting of multiple map and reduce
phases using read or write conflicts between different phases. It does not consider the
data commutativity problem.

The paper is organized as follows. We review basic notions in Sec. 2. Sec. 3 presents a
formal model for reducers and a definition of the commutativity problem. It is followed
by the undecidability result (Sec. 4). We then consider reducers with only bounded inte-
gers in Sec. 5. Sec. 6 shows the commutativity problem for bounded integer reducers is
decidable. Sec. 7 gives the experimental results. We conclude in Sec. 8.

2 Preliminaries

Let Z,Z+,N denote the set of integers, positive integers, and non-negative integers
respectively. Define n = {1, 2, . . . , n} when n ∈ Z

+. A permutation on n is a one-
to-one and onto mapping from n to n. The set of permutations on n is denoted by Sn.
It can be shown that Sn is a group (called the symmetric group on n letters) under the
functional composition. Let l1, l2, . . . , lm ∈ Z. We write [l1; l2; · · · ; lm] to denote the
integer list consisting of the elements l1, l2, . . . , lm. For an integer list �, the notations
|�|, hd(�), and tl(�) denote the length, head, and tail of � respectively. The function
empty(�) returns 1 if � is empty; otherwise, it returns 0. For instance, hd([0; 1; 2]) = 0,
tl([0; 1; 2]) = [1; 2], and empty(tl([0; 1; 2])) = 0.

We define the semantics of reducer programs using transition systems. A transition
system T = 〈S,−→〉 consists of a (possibly infinite) set S of states and a transition
relation −→⊆ S × S. For s, t ∈ S, we write s −→ t for (s, t) ∈→.

A two-way deterministic finite automaton (2DFA) M = 〈Q,Σ,Δ, q0, F 〉 consists
of a finite state set Q, a finite alphabet Σ, a transition function Δ : Q × Σ → Q ×
{L,R,−}, an initial state q0 ∈ Q, and an accepting set F ⊆ Q. A 2DFA has a read-only
tape and a read head to indicate the current symbol on the tape. If Δ(q, a) = (q′, γ),
M at the state q reading the symbol a transits to the state q′. It then moves its read head
to the left, right, or same position when γ is L, R, or − respectively. A configuration
of M is of the form wqv where w ∈ Σ∗, v ∈ Σ+, and q ∈ Q; it indicates that M is

134 Y.-F. Chen et al.

at the state q and reading the first symbol of v. The initial configuration of M on input
w is q0w. For any qf ∈ F , a ∈ Σ, and w ∈ Σ∗, wqfa is an accepting configuration.
M accepts a string w ∈ Σ∗ if M starts from the initial configuration on input w and
reaches an accepting configuration. Define L(M) = {w : M accepts w}. A 2DFA can
be algorithmically translated to a classical deterministic finite automata accepting the
same language [16]. It hence recognizes a regular language.

Theorem 1. Let M = 〈Q,Σ,Δ, q0, F 〉 be a 2DFA. L(M) is regular.

2.1 Facts about Symmetric Groups

We will need notations and facts from basic group theory. Let x1, x2, . . . , xk ∈ n be
distinct. The notation (x1 x2 · · · xk) denotes a permutation function on n such that
x1 �→ x2, x2 �→ x3, . . . , xk−1 �→ xk, and xk �→ x1. Define τk = (1 2 · · · k).
Theorem 2 ([12]). For every σ ∈ Sn, σ is equal to a composition of τ2 and τn.

For � = [l1; l2; · · · ; lm] and σ ∈ Sm, define σ(�) = [lσ(1); lσ(2); · · · ; lσ(m)]. For
example, τ3([3; 2; 1]) = [2; 1; 3]. The following proposition will be useful.

Proposition 1. Let A be a set of lists. The following are equivalent:

1. for every � ∈ A with |�| > 1, both τ2(�) and τ|�|(�) are in A;
2. for every � ∈ A and σ ∈ S|�|, σ(�) is in A.

In other words, to check whether all permutations of a list belong to a set, it suffices
to check two specific permutations by Proposition 1.

3 Integer Reducers

Map-Reduce is a programming model for data parallel computation. Programmers can
choose to implement map and reduce phases in a programming language of their choice.
In order to analyze real-world reducers, we give a formal model to characterize the
essence of reducers. Our model allows to describe the computation of reducers and
investigate their commutativity.

A reducer receives a key k and a non-empty list of values associated with k as input; it
returns a key-value pair as an output. We are interested in checking whether the output is
independent of the order of input list. Since both input and output keys are not essential,
they are ignored in our model. Most data parallel computation moreover deals with
numerical values [19] We assume that both input and output values are integers. To
access values in a input list, our model has iterators adopted from modern programming
languages. A reducer performs its core computation by iterating over the input list.

Reducers are represented by control flow graphs. Let Var denote the set of integer
variables. Define the syntax of commands Cmd as follows.

v ∈ Var
�
= x | y | z | · · ·

e ∈ Exp
�
= e = e | e>e | ! e | e && e | · · · | −2 | −1 | 0 | 1 | 2 | · · · | v | e+e | e×e |

cur() | end()
c ∈ Cmd

�
= v := e | init() | next() | assume e | return e

Commutativity of Reducers 135

In addition to standard expressions and commands, the command assume e blocks
the computation when e evaluates to false. The command init() initializes the iterator
by pointing to the first input value in the list. The expression cur() returns the current
input value pointed to by the iterator. The next() command updates the iterator by
pointing to the next input value. The expression end() returns 1 if the iterator is at the
end of the list; it returns 0 otherwise.

A control flow graph (CFG) G = 〈N,E, cmd, ns, ne〉 consists of a finite set of
nodes N , a set of edges E ⊆ N × N , a command labeling function cmd : E → Cmd,
a start node ns ∈ N , and an end node ne ∈ N . The start node has no incoming edges.
The end node has no outgoing edges and exactly one incoming edge. The only incoming
edge of the end node is the only edge labeled with a return command. Without loss
of generality, we assume that the first command is always init() and all variables
are initialized to 0. Moreover, edges with the same source must all be labeled assume

commands; the Boolean expressions in these assume commands must be exhaustive
and exclusive. In other words, we only consider deterministic reducers.

ns

n1 n2 n3 n5 n7

ne

n4

n6

init()

m := current() n := current() assume m > n

assume (end() = 1)

return massume !(m > n) m := n

assume (end() = 0)next()

Fig. 1. A max Reducer

Figure 1 shows the CFG of a reducer. After the iterator is initialized, the reducer
stores the first input value in the variable m. For each input value, it stores the value in
n. If m is not greater than n, the reducer updates the variable m. It then checks if there
are more input values. If so, the reducer performs a next() command and examines the
next input value. Otherwise, m is returned. The reducer thus computes the maximum
value of the input list.

In order to define the semantics of reducers, we assume a set of reserved variables
r = {vals, iter, result}. The reserved variable vals contains the list of input val-
ues; result contains the output value. The reserved variable iter is a list; it is used to
model the iterator for input values. A reserved valuation maps each reserved variable
to a value. Val [r] denotes the set of reserved valuations.

In addition to reserved variables, a reducer has a finite set of program variables x. A
program valuation assigns integers to program variables. Val [x] is the set of program
valuations. For ρ ∈ Val [r], η ∈ Val [x], and e ∈ Exp, define [|e|]ρ,η as follows.

[|n|]ρ,η
�
= n [|x|]ρ,η

�
= η(x)

[|e0+e1|]ρ,η
�
= [|e0|]ρ,η + [|e1|]ρ,η [|e0×e1|]ρ,η

�
= [|e0|]ρ,η × [|e1|]ρ,η

[|!e|]ρ,η
�
= ¬[|e|]ρ,η [|e0 && e1|]ρ,η

�
= [|e0|]ρ,η ∧ [|e1|]ρ,η

[|e0=e1|]ρ,η
�
= [|e0|]ρ,η = [|e1|]ρ,η [|e0>e1|]ρ,η

�
= [|e0|]ρ,η > [|e1|]ρ,η

[|cur()|]ρ,η
�
= hd(ρ(iter)) [|end()|]ρ,η

�
= empty(tl(ρ(iter)))

136 Y.-F. Chen et al.

Let G = 〈N,E, cmd, ns, ne〉 be a CFG. Define CmdG = {cmd(m,n) : (m,n) ∈
E}. We first define the exact integer semantics of G. IntReducerG is a transition
system 〈Q,−→〉 where Q = N ×Val [r]×Val [x] and −→ is defined as follows.

(m, ρ, η) −→ (n, ρ, η[x �→ [|e|]ρ,η]) if cmd(m,n) is x := e
(m, ρ, η) −→ (n, ρ[iter �→ ρ(vals)], η) if cmd(m,n) is init()
(m, ρ, η) −→ (n, ρ[iter �→ tl(ρ(iter))], η) if cmd(m,n) is next()
(m, ρ, η) −→ (n, ρ[result �→ [|e|]ρ,η], η) if cmd(m,n) is return e
(m, ρ, η) −→ (n, ρ, η) if cmd(m,n) is assume e and [|e|]ρ,η = tt

On an init() command, IntReducerG re-initializes the reserved variable iter

with the input values in inputs. The head of iter is the current input value of the
iterator. On a next() command, iter discards the head and hence moves to the next
input value. If iter is the empty list, no more input values remain to be read. Finally,
he reserved variable result records the output value on the return command.

For (n, ρ, η), (n′, ρ′, η′) ∈ Q, we write (n, ρ, η)
∗−→ (n′, ρ′, η′) if there are states

(ni, ρi, ηi) such that (n, ρ, η) = (n1, ρ1, η1), (n′, ρ′, η′) = (nk+1, ρk+1, ηk+1), and
for every 1 ≤ i ≤ k, (ni, ρi, ηi) −→ (ni+1, ρi+1, ηi+1). Since variables are initialized
to 0, let ρ0 ∈ Val [r] and η0 ∈ Val [x] be constant 0 valuations. For any non-empty list
� of integers, IntReducerG returns r on � if (ns, ρ0[vals �→ �], η0)

∗−→ (ne, ρ
′, η′)

and ρ′(result) = r. The elements in � are the input values. The returned value r is an
output value. We will also write IntReducerG(�) for the output value on �.

The commutativity problem for integer reducers is the following: given an integer re-
ducer IntReducerG, decide whether IntReducerG(�) is equal to IntReducerG(σ(�))
for every non-empty list � of input values and every permutation σ ∈ S|�|.

4 Undecidability of Commutativity for Integer Reducers

By Rice’s theorem, the commutativity problem for Turing machines is undecidable. In
practice, reducers must terminate and are often simple processes running on commodity
machines. In this section, we show that the commutativity problem is undecidable even
for a very restricted class of integer reducers which can iterate through each input value
at most once. Such reducers are called single-pass integer reducers.

Undecidability is obtained by a reduction from the Diophantine problem. Let x1, x2,
. . . , xm be variables. A Diophantine equation over x1, x2, . . . , xm is of the form

p(x1, x2, . . . , xm) =

D∑

δ=0

∑

δ1+δ2+···+δm=δ

cδ1,δ2,...,δmxδ1
1 xδ2

2 · · ·xδm
m = 0

where δi ∈ N for every 1 ≤ i ≤ m and D is a constant. A system of k Diophantine
equations S(x1, x2, . . . , xm) over x1, x2, . . . , xm consists of k Diophantine equations
pj(x1, x2, . . . , xm) = 0 where 1 ≤ j ≤ k. A solution to a system of k Diophantine
equations S(x1, x2, . . . , xm) is a tuple of integers i1, i2, . . . , im such that
pj(i1, i2, . . . , im) = 0 for every 1 ≤ j ≤ k. The Diophantine problem is to determine
whether a given system of Diophantine equations has a solution.

Commutativity of Reducers 137

Theorem 3 ([13]). The Diophantine problem is undecidable.

Given a system of Diophantine equations, it is straightforward to construct a single-
pass integer reducer to check whether the input list of integers is a solution to the system.
If the input list is indeed a solution, the reducer returns 1; otherwise, it returns 0. Hence
if the given system has no solution, the reducer always returns 0 on any permutation of
an input list. Note that the reducer is also commutative when the given system is trivially
solved. Our construction introduces two additional variables to make the reducer not
commutative on any solvable systems of Diophantine equations.

Theorem 4. Commutativity problem for single-pass integer reducers is undecidable.

4.1 Single-Pass Reducers over Fixed-Length Inputs

The commutativity problem for single-pass integer reducers is undecidable. It is there-
fore impossible to verify whether an arbitrary integer reducer produces the same output
on the same input values in different orders. In the hope of identifying a decidable sub-
problem, we consider the commutativity problem with a fixed number of input values.
The m-commutativity problem for integer reducers is the following: given an integer
reducer IntReducerG, determine whether IntReducerG(�) = IntReducerG(σ(�))
for every list of input values � of length m and σ ∈ Sm. Because solving Diophan-
tine equations with 9 non-negative variables is undecidable [12], the m-commutativity
problem is undecidable when m ≥ 11.

Theorem 5. The m-commutativity problem of single-pass integer reducers is undecid-
able when m ≥ 11.

4.2 From m-Commutativity to Program Analysis

l1 := ∗; l2 := ∗; . . . lm := ∗;

x1 := l1; x2 := l2; . . . xm := lm;
ret :=IntReducerG([x1; x2; . . . ; xm]);

x1 := l2; x2 := l1; x3 := l3; . . . xm := lm;
ret2 :=IntReducerG([x1; x2; . . . ; xm]);
assert (ret = ret2);

x1 := l2; x2 := l3; . . . xm−1 := lm; xm := l1;
retm:=IntReducerG([x1; x2; . . . ; xm]);
assert (ret = retm);

Fig. 2. Checking m-Commutativity

Since it is impossible to solve
the m-commutativity problem
completely, we propose a sound
but incomplete solution to the
problem. For any m input val-
ues, the naı̈ve solution is to
check whether an integer re-
ducer returns the same output
value on all permutations of the
m input values. Since the num-
ber of permutations grows ex-
ponentially, the solution clearly
is impractical. A more effective
technique is needed.

Our idea is to apply the
group-theoretic reduction from Proposition 1. Figure 2 shows a program that realizes
the idea. In the program, the expression ∗ denotes a non-deterministic value. The pro-
gram starts with m non-deterministic integer values in l1, l2, . . . , lm. It stores the re-
sult of IntReducerG([l1; l2; . . . ; lm]) in ret. The program then computes the results

138 Y.-F. Chen et al.

of IntReducerG(τ2([l1; l2; . . . ; lm])) and IntReducerG(τm([l1; l2; . . . ; lm])). If
both results are equal to ret for every input values, IntReducerG is m-commutative.

Theorem 6. If assertions in Figure 2 hold for all computation, IntReducerG is m-
commutative.

Theorem 6 gives a sound but incomplete technique for the m-commutativity prob-
lem. Using off-the-shelf program analyzers, we can verify whether the assertions in
Figure 2 always hold for all computation. If program analyzers establish both asser-
tions, we conclude that IntReducerG is m-commutativity.

5 Bounded Integer Reducers

The commutativity problem for integer reducers is undecidable (Theorem 4). Unde-
cidability persists even if the number of input values is fixed (Theorem 5). One may
conjecture that the number of input values is irrelevant to undecidability of the commu-
tativity problem. What induces undecidability of the problem then?

Exact integers induce undecidability in computational problems such as the Dio-
phantine problem. However, in most programming languages, exact integers are not
supported natively. Consequently, real-world reducers seldom use exact integers. It is
thus more faithful to consider reducers with only bounded integers.

Fix d ∈ Z
+. Define Zd = {0, 1, . . . , d− 1}. Recall that r = {vals, iter, result}

are reserved variables. A bounded reserved valuation assigns the reserved variables
vals, iter lists of values in Zd, and result a value in Zd; a bounded program val-
uation maps x to Zd. We write BVal [r] and BVal [x] for the sets of bounded re-
served valuations and bounded program valuations respectively. For every ρ ∈ BVal [r],
η ∈ BVal [x], and e ∈ Exp, define �|e|ρ,η as follows.

�|n|ρ,η
�
= n mod d �|x|ρ,η

�
= η(x)

�|e0+e1|ρ,η
�
= �|e0|ρ,η + �|e1|ρ,η mod d

�|e0×e1|ρ,η
�
= �|e0|ρ,η × �|e1|ρ,η mod d

�|!e|ρ,η
�
= ¬�|e|ρ,η �|e0 && e1|ρ,η

�
= �|e0|ρ,η ∧ �|e1|ρ,η

�|e0=e1|ρ,η
�
= �|e0|ρ,η = �|e1|ρ,η �|e0>e1|ρ,η

�
= �|e0|ρ,η > �|e1|ρ,η

�|cur()|ρ,η
�
= hd(ρ(iter)) �|end()|ρ,η

�
= empty(tl(ρ(iter)))

Let G = 〈N,E, cmd, ns, ne〉 be a CFG over program variablesx. We now define the
bounded integer semantics of G. BoundedReducerG is a transition system 〈Q, ↪−→〉
where Q = N × BVal [r]× BVal [x] and the following transition relation ↪−→:

(m, ρ, η) ↪−→ (n, ρ, η[x �→ �|e|ρ,η]) if cmd(m,n) is x := e
(m, ρ, η) ↪−→ (n, ρ[iter �→ ρ(vals)], η) if cmd(m,n) is init()
(m, ρ, η) ↪−→ (n, ρ[iter �→ tl(ρ(iter))], η) if cmd(m,n) is next()
(m, ρ, η) ↪−→ (n, ρ[result �→ �|e|ρ,η], η) if cmd(m,n) is return e
(m, ρ, η) ↪−→ (n, ρ, η) if cmd(m,n) is assume e and �|e|ρ,η = tt

Commutativity of Reducers 139

Except that expressions are evaluated in modular arithmetic, BoundedReducerG be-

haves exactly the same as the integer reducer IntReducerG. We write (n, ρ, η)
∗
↪→

(n′, ρ′, η′) if there are (n1, ρ1, η1) = (n, ρ, η) and (nk+1, ρk+1, ηk+1) = (n′, ρ′, η′)
such that (ni, ρi, ηi) ↪→ (ni+1, ρi+1, ηi+1) for every 1 ≤ i ≤ k. For any non-empty
list � of values in Zd, the bounded integer reducer BoundedReducerG returns r on �

if (ns, ρ0[vals �→ �], η0)
∗
↪→ (ne, ρ

′, η′) and ρ′(result) = r. BoundedReducerG(�)
denotes the output value r returned by BoundedReducerG on the list � of input values.

Note that the number of input values is unbounded.BoundedReducerG is an infinite-
state transition system due to the reserved variables vals and iter. On the other hand,
all program variables and the reserved variable result can only have finitely many
different values. We will exploit this fact to attain our decidability result.

6 Deciding Commutativity of Bounded Integer Reducers

We present an automata-theoretic technique to solve the commutativity problem for
bounded integer reducers. Although bounded integer reducers receive input lists of ar-
bitrary lengths, their computation can be summarized by 2DFA exactly. Based on the
2DFA characterizing the computation of a bounded integer reducer, we construct an-
other 2DFA to summarize the computation of the reducer on permuted input values.
Using Proposition 1, we reduce the commutativity problem for bounded integer reduc-
ers to the language equivalence problem for 2DFA. Since language equivalence problem
of 2DFA is decidable, checking bounded integer reducer commutativity is decidable.

More precisely, let G be a CFG, m > 0, and l1, l2, . . . , lm, r ∈ Zd. We con-
struct a 2DFA AG such that it accepts the string �l1l2 · · · lm � r exactly when the
bounded integer reducer BoundedReducerG returns r on the list [l1; l2; . . . ; lm]. For
clarity, we say li is the i-th input value of AG, which is in fact the i-th input value
of BoundedReducerG. We use the read-only tape as the reserved vals variable. Two
additional reserved variables cur and end are introduced for the cur() and end() ex-
pressions. On a return command,AG stores the returned value in the reserved result

variable. If the last symbol r of the input string is equal to result, AG accepts the in-
put. Otherwise, it rejects the input. More concretely, let s = {cur, end, result} be
reserved variables and G = 〈N,E, cmd, ns, ne〉 a CFG over program variables x. A
finite reserved valuation maps s to Zd; a finite program valuation maps x to Zd. We
write FVal [s] and FVal [x] for the sets of finite reserved valuations and finite program
valuations respectively. Note that FVal [s] and FVal [x] are finite sets since s, x, Zd are
finite. For every ρ ∈ FVal [s], η ∈ FVal [x], and e ∈ Exp, define {|e|}ρ,η as follows.

{|n|}ρ,η
�
= n mod d {|x|}ρ,η

�
= η(x)

{|e0+e1|}ρ,η
�
= {|e0|}ρ,η + {|e1|}ρ,η mod d

{|e0×e1|}ρ,η
�
= {|e0|}ρ,η × {|e1|}ρ,η mod d

{|!e|}ρ,η
�
= ¬{|e|}ρ,η {|e0 && e1|}ρ,η

�
= {|e0|}ρ,η ∧ {|e1|}ρ,η

{|e0=e1|}ρ,η
�
= {|e0|}ρ,η = {|e1|}ρ,η {|e0>e1|}ρ,η

�
= {|e0|}ρ,η > {|e1|}ρ,η

{|cur()|}ρ,η
�
= ρ(cur) {|end()|}ρ,η

�
= ρ(end)

140 Y.-F. Chen et al.

m

n

�
m, qnor , ρ, η

n, qnor , ρ, η[x �→ {|e|}ρ,η]
x:=e −/−

(a) Assignments

When {|e|}ρ,η = tt

m

n

�
m, qnor , ρ, η

n, qnor , ρ, η

assume e −/−

(b) assume Commands

m

n

�

m,qnor , ρ, η

n, qreturn0 , ρ[result �→ {|e|}ρ,η], η

n, qreturn1 , ρ[result �→ {|e|}ρ,η], η

n, qf , ρ[result �→ {|e|}ρ,η], η n, qerr , ρ[result �→ {|e|}ρ,η], η

return e

−/− �/R

�/R

a/−, ρ(result) = a a/−, ρ(result) �= a

(c) return Commands

Fig. 3. Construction of AG

A state of AG is a quadruple (n, q, ρ, η) where n is a node in G, q is a control
state, ρ is a finite reserved valuation, and η is a finite program valuation. The control
state qnor means the “normal” operation mode. For an assignment command in G, AG

simulates the assignment in its finite states (Figure 3a). For an assume command, AG

has a transition exactly when the assumed expression evaluated to tt (Figure 3b). For
a return command, AG stores the returned value in result and enters the control
state qreturn0 . AG then moves its read head to the right until it sees the � symbol
(Figure 3c)2. On the � symbol, AG enters the control state qreturn1 and compares the
last symbol a with the returned value. It enters the accepting state qf if they are equal.

For an init() command, AG initializes the iterator at the control state qrewind by
moving its read head to the left until the � symbol is read. AG then moves its read head
to the first input value, sets end to 0 and enters the control state qnext0 to update the
reserved variable current (Figure 4a). For the next() command, AG enters qnext0 to
update the value of current (Figure 4b). At the control state qnext0 , the symbol under
its read head is the next input value. If end is 1, AG enters the error control state qerr
immediately. Otherwise, it updates the reserved variable cur, moves its read head to the
right, and checks if there are more input values at the control state qnext1 . If the symbol
is �, AG sets end to 1 and enters the normal operation mode (Figure 4c).

Lemma 1. Let BoundedReducerG be a bounded integer reducer for a CFG G =
〈N,E, cmd, ns, ne〉, m > 0, and l1, l2, . . . , lm, r ∈ Zd. Then

L(AG) = {�l1l2 · · · lm � r : BoundedReducerG([l1; l2; · · · ; lm]) = r}.

The commutativity problem for bounded integer reducers asks us to check whether
a given bounded integer reducer returns the same output value on any permutation of

2 α denotes any symbol other than α.

Commutativity of Reducers 141

m

n

�

m, qnor , ρ, η

n, qrewind , ρ, η

n, qnext0 , ρ[end �→ 0], η

init()

−/−
�/L

�/R

(a) init() Commands

m

n

�
m, qnor , ρ, η

n, qnext0 , ρ, η

next() −/−

(b) next() Commands

When ρ(end) = 1

n, qnext0 , ρ, η n, qerr , ρ, η

When ρ(end) = 0

n, qnext0 , ρ, η n, qnext1 , ρ[cur �→ a], η

n, qnor , ρ[cur �→ a,end �→ 1], ηn, qnor , ρ[cur �→ a,end �→ 0], η

−/−

a/R

�/−�/−

(c) Next input Value

Fig. 4. Construction of AG (continued)

input values. Applying Proposition 1, it suffices to consider two particular permuta-
tions. We have shown that the computation of a bounded integer reducer can be sum-
marized by a 2DFA. Our proof strategy hence is to summarize the computation of the
given bounded integer reducer on permuted input values by two 2DFA. We compare
the computation of a bounded integer reducer on original and permuted input values by
checking if the two 2DFA accept the same language.

We will generalize the construction of AG to define another 2DFA named Aτ2
G for

the computation on permuted input values. Consider a non-empty list of input values
� = [l1; l2; · · · ; lm] with m > 1. The 2DFA Aτ2

G will accept the string �l1l2 · · · lm � r
where r is BoundedReducerG(τ2(�)) and BoundedReducerG is the bounded integer
reducer for the CFG G. Our construction uses additional reserved variables to store the
first two input values. Aτ2

G also has two new control states to indicate whether the first
two input values are to be read. Since the construction of Aτ2

G is more complicated, we
skip its description due to page limit.

Lemma 2. Let BoundedReducerG be a bounded integer reducer for a CFG G =
〈N,E, cmd, ns, ne〉, m > 0, and l1, l2, . . . , lm, r ∈ Zd. Then

L(Aτ2
G) = {�l1l2 · · · lm � r : BoundedReducerG(τ2([l1; l2; · · · ; lm])) = r}.

Lemma 3. LetBoundedReducerG be a bounded integer reducer for a CFGG= 〈N,E,
cmd, ns, ne〉. The languages L(Aτ2

G) = L(AG) if and only if BoundedReducerG(�) =
BoundedReducerG(τ2(�)) for every non-empty list � of values in Zd.

Based on the construction of AG, we construct another 2DFA named Aτ∗
G which

characterizes the computation of the given bounded integer reducer BoundedReducerG
on input values in a different permutation. More precisely, for any non-empty list of
input values � = [l1; l2; · · · ; l|�|], Aτ∗

G accepts the string �l1l2 · · · l|�| � r where r is

142 Y.-F. Chen et al.

BoundedReducerG(τ|�|(�)). For the string �l1l2 · · · l|�| � r on Aτ∗
G ’s tape, we want to

summarize the computation of BoundedReducerG on [l2; l3; · · · ; l|�|; l1]. Observe that
l2 is the 2nd input value of Aτ∗

G and the 1st input value of BoundedReducerG on τ|�|(�).
A state of Aτ∗

G is a quadruple (n, q, ρ, η) where n is a node in G, q is a control state,
ρ is a finite reserved valuation, and η is a finite program valuation. In addition to s, Aτ∗

G

has the reserved variable fst to memorize the first input value of Aτ∗
G . It also has three

new control states: q0 for initialization, qnor for the normal operation mode, and qlast
for the case where the last input value of BoundedReducerG on τ|�|(�) has been read.

m

n

�
m, q, ρ, η

n, qnext , ρ, η

if q = qnor

n, qerr , ρ, η

if q = qlast

next() −/− −/−

(a) next() Commands

m

n

�

m, q, ρ, η

n, qrewind0 , ρ, η

n, qrewind1 , ρ[end �→ 0], η

n, qnext , ρ[end �→ 0], η

init()

−/−
�/L

�/R

−/R

(b) init() Commands

Fig. 5. Construction of Aτ∗
G

Aτ∗
G starts by storing its first input value in the reserved variable fst and moving

to the normal operation mode qnor . To initialize the iterator, Aτ∗
G moves its read head

and stores the first input value of BoundedReducerG on τ|�|(�) in the reserved vari-
able cur. Retrieving the next input value of BoundedReducerG on τ|�|(�) is slightly
different. If there are more input values, Aτ∗

G moves its read head to the right and up-
dates cur accordingly. Otherwise, the first input value of Aτ∗

G is the last input value of
BoundedReducerG on τ|�|(�). A

τ∗
G sets cur to the value of fst and enters qlast .

More concretely, Aτ∗
G transits to the control state qnext if it is in the normal operation

mode qnor for a next() command. It enters the error state qerr when the last input value
of BoundedReducerG on τ|�|(�) has been read (Figure 5a). For an init() command,
Aτ∗

G moves its read head to the second input value of Aτ∗
G . Since the second input value

of Aτ∗
G is the first input value of BoundedReducerG on τ|�|(�), A

τ∗
G sets end to 0 and

enters the control state qnext to update the reserved variable cur (Figure 5b).

n, q0, ρ, η

n, qinit , ρ, η

n, qnor , ρ[fst �→ a], η

�/R

a/−

(a) Initialization

n, qnext , ρ, η

n, qnor , ρ[cur �→ a], η

n, qlast , ρ[cur �→ ρ(fst), end �→ 1], η

a/R, a �= �
�/−

(b) Next input Value

Fig. 6. Construction of Aτ∗
G (continued)

Commutativity of Reducers 143

Figure 6a shows the initialization step. Aτ∗
G simply stores its first input value in the

reserved variable fst and transits to the normal operation model qnor . The auxiliary
control state qnext retrieves the next input value of BoundedReducerG on τ|�|(�) (Fig-
ure 6b). If there are more input values of Aτ∗

G , Aτ∗
G updates cur, moves its read head to

the right, and transits to the normal operation mode qnor . If Aτ∗
G reaches the end of its

input values, the first input value of Aτ∗
G is the last input value of BoundedReducerG

on τ|�|(�). A
τ∗
G hence updates cur to the value of fst, sets end to 1, and transits to qlast .

Lemma 4. Let BoundedReducerG be a bounded integer reducer for a CFG G =
〈N,E, cmd, ns, ne〉, m > 0, and l1, l2, . . . , lm, r ∈ Zd. Then

L(Aτ∗
G) = {�l1l2 · · · lm � r : BoundedReducerG(τm([l1; l2; · · · ; lm])) = r}.

Lemma 5. LetBoundedReducerG be a bounded integer reducer for a CFGG= 〈N,E,
cmd, ns, ne〉. The languages L(AG) = L(Aτ∗

G) if and only if BoundedReducerG(�) =
BoundedReducerG(τ|�|(�)) for every non-empty list � of values in Zd.

By Proposition 1, Lemma 3 and 5, we have the following theorem:

Theorem 7. Let BoundedReducerG be a bounded integer reducer for a CFG G =
〈N,E, cmd, ns, ne〉. L(AG) = L(Aτ2

G) = L(Aτ∗
G) if and only if BoundedReducerG(�)

= BoundedReducerG(σ(�)) for every non-empty list � of values in Zd and σ ∈ S|�|.

The next result follows from decidability of 2DFA language equivalence problem.

Theorem 8. The commutativity problem for bounded integer reducers is decidable.

7 Experiments

The reduction in Sec. 4.2 allows us to use any off-the-shelf program analyzer to check
commutativity of reducers. Given a reducer, we construct a program by the reduction
and verify its assertions by program analyzers. This section evaluates the performance
of state-of-the-art program analyzers for checking commutativity.

We compare CBMC [3], KLEE [2], CPACHECKER [1], and our prototype tool,
SYMRED. Two configurations of CPACHECKER are used: predicate abstraction au-
tomated with interpolation and abstract interpretation using octagon domain. CBMC
is a bounded model checker for C programs over bounded machine integers. The tools
KLEE and SYMRED implement symbolic execution techniques: KLEE symbolically ex-
ecutes one path at-a-time while SYMRED constructs multi-path reducer summaries us-
ing symbolic execution and precise data-flow merging [18]. The tool KLEE uses STP [8]
while SYMRED uses Z3 [5] as the underlying solver.

All experiments were conducted on a Xeon 3.07GHz Linux Ubuntu workstation with
16GB memory (Table 1). The symbol (TO) denotes timeout (5 minutes). The symbol
(F) denotes that an incorrect result is reported. We found that KLEE cannot handle
programs with division on some benchmarks; such cases are shown with the symbol -.

Our benchmarks consist of a set of 5 reducer programs in C, parameterized over the
length of the input list (from 5 to 100). All the benchmark reducers but rangesum

144 Y.-F. Chen et al.

are commutative. The first three sets of benchmarks compute respectively the sum,
average, and max value of the list. The benchmark sep computes the difference of
the occurrences of even and odd numbers in the list. The example dis computes the

Table 1. Experimental Results

CBMC CPA-Pred. CPA-Oct. SYMRED KLEE

sum5.c 43 64 3(F) 0.2 0.02
sum10.c TO TO 3(F) 0.4 0.02
sum20.c TO TO 3(F) 1 0.03
sum40.c TO TO 3(F) 1 0.04
sum60.c TO TO 4(F) 2 0.1
avg5.c TO TO 3(F) 0.3 -
avg10.c TO TO 3(F) 0.4 -
avg20.c TO TO 3(F) 0.8 -
avg40.c TO TO 3(F) 1 -
avg60.c TO TO 3(F) 2 -
max5.c 3 TO 3(F) 0.5 6
max10.c 215 TO 5(F) 7 102
max20.c TO TO 6(F) 103 TO
max40.c TO TO 7(F) 288 TO
max60.c TO TO 9(F) TO TO
sep5.c 0.2 21 4(F) 0.5 0.1
sep10.c 0.3 TO 8(F) 2 5
sep20.c 2 TO 202(F) 22 TO
sep40.c 26 TO TO 21 TO
sep60.c TO TO TO 22 TO
dis5.c TO 3 4(F) 1 -
dis10.c TO TO 5(F) 3 -
dis20.c TO TO 9(F) TO -
dis40.c TO TO 24(F) TO -
dis60.c TO TO 67(F) TO -

rangesum5.c 0.1 5 3 0.3 -
rangesum10.c 0.1 8 3 0.5 -
rangesum20.c 2 18 3 0.9 -
rangesum40.c 4 25 4 2 -
rangesum60.c 5 TO 4 2 -

average of input values greater than
100000. The example rangesum com-
putes the average of input values
of index greater than a half of the
list length. We model input lists as
bounded arrays and the iteration as a
while loop with an index variable.

CPACHECKER with predicate ab-
straction generates predicates by inter-
polating incorrect error traces to sep-
arate reachable states and bad states.
Benchmark sets such as sum and avg

contain no branch conditions and has
only one symbolic trace. Here, it suf-
fices to check the satisfiability and
compute interpolant of the single trace
formula. Still, the verifier cannot scale
to large input lists for these examples.

CPACHECKER with abstract inter-
pretation over octagon domain fin-
ishes in seconds on all benchmarks but
reports false positives on all commu-
tative ones. We observe that a suitable
abstract domain for checking commu-
tativity should simultaneously support
(a) permutations of the input list (b)
numerical properties such as the sum of the input list, and (c) equivalence between nu-
merical values. Although individual domains for numerical properties of lists [9] and
program equivalence [14] exist, we are not aware of any domain combining both simul-
taneously.

Reducers with addition and division operations in general are difficult for CBMC.
The avg and div benchmarks use divisions and the tool cannot handle cases with input
lists of length more than 5. The sep benchmark does not use divisions. CBMC scales
better on this benchmark. For rangesum, CBMC catches the bug in seconds.

The two symbolic execution based approaches, KLEE and SYMRED, seem to be
more effective for commutativity checking. SYMRED performs better than KLEE on
sep and max, both containing branches. We believe this is because SYMRED avoids
KLEE-like path enumeration using precise symbolic merges with ite (if-then-else) ex-
pressions at join locations. Loop iterations produce nested ite expressions. Although
simplification of such expressions reduces the actual solver time on most benchmarks, it
fails to curb the blowup for the dis benchmark. Therefore, better heuristics are needed
to check reducer commutativity for unbounded input sizes.

Commutativity of Reducers 145

8 Conclusions

We present tractability results on the commutativity problem for reducers by analyzing
a syntactically restricted class of integer reducers. We show that deciding commutativity
of single-pass reducer over exact integers is undecidable via a reduction from solving
Diophantine equation. Undecidability holds even if reducers receive only a bounded
number of input values. We further show that the problem is decidable for reducers
over unbounded input list over bounded integers via a reduction to language equiva-
lence checking of 2DFA. A practical solution to commutativity checking is provided
via a reduction to assertion checking using group-theoretic reduction. We evaluate the
performance of multiple program analyzers on parameterized problem instances. In fu-
ture, we plan to investigate better heuristics and exploit more structural properties of
real-world reducers for solving the problem for unbounded inputs over exact integers.

References

1. Beyer, D., Keremoglu, M.E.: CPACHECKER: A tool for configurable software verifica-
tion. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184–190.
Springer, Heidelberg (2011)

2. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: OSDI, pp. 209–224. ACM (2008)

3. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,
Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

4. Csallner, C., Fegaras, L., Li, C.: New ideas track: testing MapReduce-style programs. In:
FSE, pp. 504–507 (2011)

5. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

6. Dimitrov, D., Raychev, V., Vechev, M., Koskinen, E.: Commutativity race detection. In:
PLDI, p. 33. ACM (2014)

7. Felsing, D., Grebing, S., Klebanov, V., Rummer, P., Ulbrich, M.: Automating regression ver-
ification. In: ASE, pp. 349–360 (2014)

8. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Heidelberg (2007)

9. Halbwachs, N., Peron, M.: Discovering properties about arrays in simple programs. In: PLDI
(2008)

10. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly comparing
programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE 2013. LNCS,
vol. 7898, pp. 282–299. Springer, Heidelberg (2013)

11. Hueske, F., Peters, M., Sax, M.J., Rheinländer, A., Bergmann, R., Krettek, A., Tzoumas, K.:
Opening the black boxes in data flow optimization. VLDB Endowment 5(11) (2012)

12. Hungerford, T.W.: Algebra. Graduate Texts in Mathematics, vol. 73. Springer (2003)
13. Jones, J.P.: Universal diophantine equation. Journal of Symbolic Logic 47(3) (1982)
14. Kovacs, M., Seidl, H., Finkbeiner, B.: Relational abstract interpretation for the verification

of 2-hypersafety properties. In: CCS, pp. 211–222. ACM (2013)
15. Kulkarni, M., Nguyen, D., Prountzos, D., Sui, X., Pingali, K.: Exploiting the commutativity

lattice. ACM SIGPLAN Notices 46(6) (2011)

146 Y.-F. Chen et al.

16. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal Res. Dev.
3(2) (1959)

17. Rinard, M., Diniz, P.C.: Commutativity analysis: A new analysis technique for parallelizing
compilers. TOPLAS 19(6), 942–991 (1997)

18. Sinha, N., Singhania, N., Chandra, S., Sridharan, M.: Alternate and learn: Finding wit-
nesses without looking all over. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 599–615. Springer, Heidelberg (2012)

19. Xiao, T., Zhang, J., Zhou, H., Guo, Z., McDirmid, S., Lin, W., Chen, W., Zhou, L.: Nonde-
terminism in MapReduce considered harmful? an empirical study on non-commutative ag-
gregators in MapReduce programs. In: Companion Proceedings of ICSE, pp. 44–53 (2014)

20. Xu, Z., Hirzel, M., Rothermel, G.: Semantic characterization of MapReduce workloads. In:
IISWC, pp. 87–97 (2013)

Verification and Abstraction

Inferring Simple Solutions to Recursion-Free

Horn Clauses via Sampling�

Hiroshi Unno1 and Tachio Terauchi2

1 University of Tsukuba, Tsukuba, Japan
uhiro@cs.tsukuba.ac.jp
2 JAIST, Nomi, Japan
terauchi@jaist.ac.jp

Abstract. Recursion-free Horn-clause constraints have received much
recent attention in the verification community. It extends Craig interpo-
lation, and is proposed as a unifying formalism for expressing abstrac-
tion refinement. In abstraction refinement, it is often desirable to infer
“simple” refinements, and researchers have studied techniques for infer-
ring simple Craig interpolants. Drawing on the line of work, this paper
presents a technique for inferring simple solutions to recursion-free Horn-
clause constraints. Our contribution is a constraint solving algorithm
that lazily samples fragments of the given constraints whose solution
spaces are used to form a simple solution for the whole. We have imple-
mented a prototype of the constraint solving algorithm in a verification
tool, and have confirmed that it is able to infer simple solutions that aid
the verification process.

1 Introduction

In program verification, Craig interpolation [3] is a technique for discovering
predicates that can be used to prove the correctness of the given program. For
example, in predicate abstraction, interpolants from the formula representing
the counterexample are used as predicates to refute the counterexample [7], and
in lazy abstraction via interpolation, interpolants from the formula represent-
ing the program unwinding are used to construct sufficient loop invariants [12].
In general, there is more than one interpolant that can be inferred from the
same formula, and which interpolant is inferred can significantly affect the per-
formance of the client verifier. The “goodness” of an interpolant is an elusive
characteristic, and while there is not yet a definite measure, it has been sug-
gested that simple interpolants often work better (perhaps justified by the belief
that correct programs tend to be correct for simple reasons, per Occam’s ra-
zor). Recently, researchers have proposed to infer simple interpolants between a
pair of formulas by sampling conjunctions of atoms from each formula, inferring
their interpolant, and repeating the process until the interpolant for the whole

� This work was supported by MEXT Kakenhi 23220001, 26330082, 25280023, and
25730035.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 149–163, 2015.
DOI: 10.1007/978-3-662-46681-0_10

150 H. Unno and T. Terauchi

is found [17,1]. By inferring simple interpolants for the samples that are likely
to generalize, the method efficiently infers a simple interpolant for the whole.

In this paper, we extend the idea to inferring simple solution to recursion-free
Horn-clause constraints. Recently, recursion-free Horn-clause constraints have
received much attention in the verification community as they generalize in-
terpolation and can express the predicate discovery process of a wide variety
of software verifiers (imperative, procedural, higher-order functional, concur-
rent, etc. [20,18,6,5,4,14,2,19]).1 We emphasize that inferring a simple solution
to recursion-free Horn-clause constraints is non-trivial and cannot be done by
simply applying the methods for interpolation, because one must look simultane-
ously for simple predicates to be assigned to each predicate variable in the given
constraints that together satisfy the constraints (e.g., it cannot be done by just
iteratively applying interpolation as a blackbox process [20,18]).

The key ideas in our approach are to 1.) maintain as samples conjunctive
recursion-free Horn-clause constraint that only contain clauses whose formula
part is a conjunction of atoms, 2.) infer a simple solution to the samples via
a novel decompositional approach (cf. Sections 3.1–3.3), and 3.) check if the
solution inferred for the samples is also a solution for the whole, and if not,
obtain a new sample as a counterexample and repeat the process. Finally, 4.)
instead of computing a concrete solution for each subproblem, we compute an
abstract solution space representing a possibly infinite set of solutions, thereby
making the process more likely to be able to find a simple solution for the whole.

Related Work. Besides the above sampling-based approaches to inferring sim-
ple interpolants that inspired this work, previous research has proposed to infer
simple interpolants by post-processing the proof (of |= φ1 ⇒ φ2) in a proof-based
interpolation [8].

To our knowledge, this paper is the first work on inferring simple solutions to
recursion-free Horn-clause constraints. Existing approaches to solving recursion-
free Horn-clause constraints can be classified into two types: the iterative ap-
proach that uses interpolation as a blackbox process to solve the constraints one
predicate variable at a time [20,18], and the constraint-expansion approach that
reduces the problem to tree interpolation (equivalently, solving “tree-like” con-
straints) [11,13,14]. As remarked above, the iterative approach is unsuited for
inferring simple solutions because a solution inferred for one predicate variable
can affect the rest and block the discovery of a simple solution for the whole.
The constraint-expansion approach is also unsuited for inferring simple solutions
because it makes exponentially many copies of predicate variables whose solu-
tions are conjuncted to form the solution for the original, thereby resulting in a
complex solution (see also the discussion in Section 3.1).

Paper Organization. The rest of the paper is organized as follows. Section 2
presents preliminary definitions. Section 3 and its subsections describe the new
constraint solving algorithm in a top-down manner. We first present the top-

1 Interpolation between φ1 and φ2 is equivalent to solving the Horn-clause constraint
{P (x̃)⇐φ1,⊥⇐P (x̃) ∧ ¬φ2} where {x̃} = fvs(φ1) ∩ fvs(φ2).

Inferring Simple Solutions to Recursion-Free Horn Clauses via Sampling 151

level process in Section 3. Section 3.1 describes the sub-algorithm for inferring
simple solutions for samples. As we explain there in more detail, inferring simple
solutions to samples requires its own innovations as simply applying the exist-
ing approaches can produce complex solutions. To this end, we present a novel
approach where the problem is decomposed into smaller subproblems for which
simple solutions can be found easily and combined to form a simple solution for
the whole sample set. We describe the approach in detail in Sections 3.1–3.3.
We report on a preliminary implementation and experiment results in Section 4,
and conclude the paper in Section 5. The extended report [21] contains extra
materials and omitted proofs.

2 Preliminaries

A formula φ in the signature of quantifier-free linear rational arithmetic (QFLRA)
is a Boolean combination of atoms. An atom (or literal) p is an inequality of the
form t1 ≥ t2 or t1 > t2 where ti are terms. A term t is either a variable x, a
rational constant r, a multiplication of a term by a rational constant r · t, or a
summation of terms t1 + t2. We write ⊥ and � respectively for contradiction
and tautology. A predicate variable application a is of the form P (t̃) where P is
a predicate variable of the arity |t̃|. We write ar(P) for the arity of P .

A Horn clause (or simply clause) hc is defined to be of the form a0 ⇐ a1 ∧
· · · ∧ an ∧ φ. We call a0 (resp. a1 ∧ · · · ∧ an ∧ φ) the head (resp. body) of hc.
We write fvs(hc) (resp. fvs(φ)) for the set of term variables in hc (resp. φ). We
write pvL(hc) for the predicate variable occurring on the left hand side of ⇐
and pvsR(hc) for the set of predicate variables occurring in the right hand side
of ⇐. We write pvs(hc) for the set of predicate variables occurring in hc (i.e.,
pvs(hc) = {pvL(hc)} ∪ pvsR(hc)).

We define a Horn clause constraint set (HCCS) to be a pair (H, P⊥) where
H is a finite set of clauses and P⊥ is a predicate variable in H with ar(P⊥) =
0 (intuitively, P⊥ is implicitly constrained by the clause ⊥⇐P⊥()). We de-
fine fvs(H) =

⋃
hc∈H fvs(hc). We define pvs(H) =

⋃
hc∈H pvs(hc), pvsL(H) =

{pvL(hc) | hc ∈ H}, pvsR(H) =
⋃

hc∈H pvsR(hc), roots(H) = pvsL(H)\pvsR(H),
inters(H) = pvsL(H) ∩ pvsR(H), and leaves(H) = pvsR(H) \ pvsL(H). We say
that H is single-root if roots(H) is singleton, and write root(H) for P such that
{P} = roots(H).

Concrete and Abstract Solutions. A predicate substitution θ is a finite map
from predicate variables P to predicates of the form λ(x1, . . . , xar(P)).φ such that
fvs(φ) ⊆ {x1, . . . , xar(P)}. Given an HCCS (H, P⊥), a predicate substitution θ
with pvs(H) ⊆ dom(θ) is called a solution of H if |= θ(hc) for each hc ∈ H and
|= ⊥⇐ θ(P⊥)(). We write θ |= (H, P⊥) when θ is a solution of (H, P⊥).

We define abstract solution space that represents a possibly infinite set of
solutions. To this end, we define formula template ψ to be a formula but with
the grammar extended to include terms of the form c · t where c is an unknown
coefficient variable. We define an abstract solution space S to be a pair (Θ, φ)
where Θ is a finite map from predicate variables P to predicate templates of

152 H. Unno and T. Terauchi

the form λ(x1, . . . , xar(P)).ψ and φ is a (non-template) QFLRA formula over
unknowns. For S = (Θ, φ) and P ∈ dom(Θ), we write S(P) for Θ(P). We
say that a concrete solution θ is an instance of an abstract solution space (Θ, φ),
written θ � (Θ, φ), if dom(θ) = dom(Θ) and there exists a map σ from unknowns
to rationals such that |= σ(φ) and for all P ∈ dom(θ), θ(P) = σ(Θ(P)). We write
S′ � S if for all θ, θ � S′ implies θ � S. We write S′ �P S if S′ � S and S′(P)
contains no unknowns.

Horn Clause Constraint Kinds. The dependency relation �H is defined to be
the relation that, for all P,Q ∈ pvs(H), Q�H P if and only if Q(t̃1)⇐ a ∧ · · · ∧
P (t̃2)∧· · ·∧φ ∈ H. We write �∗H for the reflexive transitive closure of �H and �+H
for the transitive closure of �H. We say that P is recursive if P �+H P . We say that
P is head-joining (resp. body-joining) if P occurs more than once in the left (resp.
right) hand sides of clauses in H. We write recpvs(H), hjnpvs(H), and bjnpvs(H)
respectively for the set of recursive, head-joining, and body-joining predicate
variables in H. We say that H is recursion-free if recpvs(H) = ∅, is body-disjoint
if bjnpvs(H) = ∅, and is head-disjoint if hjnpvs(H) = ∅.2 We say that H is
conjunctive if for each hc ∈ H, the formula part of hc is a conjunction of literals.
We say that a single-rootH is connected if for any P ∈ pvs(H), root(H) �∗H P . We
extend the notions to HCCSs in the obvious way (e.g., (H, P⊥) is recursion-free
if H is recursion-free).

Any Horn clause set in this paper will be recursion-free. Therefore, in what
follows, we restrict ourselves to recursion-free Horn clause sets and HCCSs and
omit the redundant qualifier “recursion-free”.

Example 1. Consider the HCCS (Hex1, P⊥) where Hex1 is the set of clauses
below.

P (x, y, z) ⇐ x ≥ z ∧ y ≥ 2− z
Q(x, y) ⇐ P (x, y, z) ∧ (z = 0 ∨ z = 1 ∨ z = 2)

P⊥() ⇐ Q(x, y) ∧Q(−x,−y)

We have recpvs(Hex1) = ∅, hjnpvs(Hex1) = ∅, and bjnpvs(Hex1) = {Q}, and so
the HCCS is recursion-free and head-disjoint but neither conjunctive nor body-
disjoint. (An equality t1 = t2 is t1 ≥ t2 ∧ t2 ≥ t1.)

A solution for the HCCS, θex1, and an abstract solution space for the HCCS,
(Θex1, φex1) are shown below. Note that θex1 � (Θex1, φex1).

θex1(P) = λ(x, y, z).x+ y ≥ 2
θex1(Q) = λ(x, y).x + y ≥ 1

θex1(P⊥) = λ().⊥

Θex1(P) = λ(x, y, z).c0 + c1 · x+ c2 · y ≥ 0
Θex1(Q) = λ(x, y).x + y ≥ 1

Θex1(P⊥) = λ().⊥
φex1 ≡ 0 < c1 = c2 ≤ −co ≤ 2 · c1

3 The Top-Level Procedure

Figure 1 shows the top-level procedure of the constraint solving algorithm Asolve

which takes as input an HCCS (H, P⊥) and returns its solution or detects that it

2 The terminologies are adopted from [14,13].

Inferring Simple Solutions to Recursion-Free Horn Clauses via Sampling 153

is unsolvable. As remarked in Section 1, the algorithm looks for a simple solution
of the given HCCS by lazy sampling. Asolve initializes the sample set Samples to
∅ (line 2), and repeats the loop (lines 3-12) until convergence. The loop first calls
the sub-algorithmAsamp on the HCCS (Samples, P⊥) to find an abstract space of
solutions to the current sample set. If no solution is found for the samples, then
no solution exists for the whole constraint set (H, P⊥) either, and we exit the
loop (line 5). Otherwise, an abstract solution space S for the samples is inferred,
and we pick a concrete instance θ of S (line 7) as the candidate solution. If θ
is a solution for the whole then we return it as the inferred solution (line 8).
Otherwise, there is a clause in H, say P (t̃)⇐

∧
ã ∧ φ, that is unsatisfied and a

model σ in which the clause is invalid with θ. From the clause and σ, we obtain
the conjunctive clause P (t̃)⇐

∧
ã∧

∧
C(φ, σ) as the new sample to be added to

the sample set (line 12). Here, C(φ, σ) is the set of atoms representing the part
of φ where σ holds true, and is defined as follows.

C(φ, σ) = {p | p occurs in φ and σ |= p} ∪ {¬p | p occurs in φ and σ |= ¬p}

Intuitively, the added sample clause represents a portion of the input HCCS that
is not yet covered by the solution found for the current sample set.

01: Asolve((H, P⊥)) =
02: Samples := ∅;
03: while true do
04: match Asamp((Samples, P⊥)) with
05: NoSol → return NoSol
06: | Sol(S) →
07: let θ � S in
08: if θ |= (H, P⊥) then
09: return Sol(θ)
10: else

11: let σ, P (t̃)⇐∧
ã ∧ φ ∈ H

where σ
|= θ(
∧

ã ∧ φ ⇒ P (t̃)) in
12: Samples :=

Samples ∪ {P (t̃)⇐∧
ã ∧∧

C(φ, σ)}

Fig. 1. The Top-Level Procedure

By construction, the sam-
ple HCCS (Samples, P⊥) is al-
ways conjunctive. The sub-
algorithm Asamp , whose de-
tails are deferred to Sec-
tion 3.1, takes the conjunctive
HCCS (Samples, P⊥) and in-
fers an abstract space of so-
lutions for it. Next, we show
the correctness of Asolve , as-
suming that Asamp works cor-
rectly (i.e., it returns a non-
empty abstract solution space
to the input conjunctive HCCS
if it is solvable and otherwise
returns NoSol). Let D(φ) =
{C(φ, σ) | σ |= φ}. Let (D(H), P⊥) be the conjunctive HCCS obtained by replac-
ing each clause a⇐

∧
ã ∧ φ in H with the clauses {a⇐

∧
ã ∧

∧
C | C ∈ D(φ)}.

Note that, becauseD(φ) is finite, D(H) is also finite and (D(H), P⊥) is an HCCS.
Also, the following can be shown from the fact that |= φ ⇔

∨
C∈D(φ)

∧
C.

Lemma 1. θ is a solution of (H, P⊥) if and only if it is a solution of (D(H), P⊥).

We can also show that, in each loop iteration, the added sample is not in the
current sample set, and therefore the sample set grows monotonically as the loop
progresses, as stated in the following lemma.

Lemma 2. Suppose θ |= (Samples, P⊥), σ |=
∧

θ(ã) ∧ φ, and σ �|= θ(P)(t̃).
Then, P (t̃)⇐ ã ∧

∧
C(φ, σ) /∈ Samples.

154 H. Unno and T. Terauchi

From the lemmas, we show the correctness ofAsolve , stated in the theorem below.

Theorem 1 (Correctness of Asolve). GivenanHCCS (H, P⊥),Asolve((H, P⊥))
returns a solution of (H, P⊥) if (H, P⊥) is solvable, and otherwise returns NoSol.

A reader may wonder why Asolve does not directly check if there exists a
solution to the input HCCS from the entire abstract solution space S returned by
Asamp (i.e., check ∃θ � S.θ |= (H, P⊥)) and infer new samples by using the entire
S if not. We opt against the approach because checking ∃θ � S.θ |= (H, P⊥)
requires an expensive non-linear constraint solving. Instead, we let Asolve choose
a concrete solution from S to be used as a candidate.3

Example 2. Consider running Asolve on the HCCS (Hex1, P⊥) from Example 1.
Suppose that at some iteration, Samples = {P (x, y, z)⇐x ≥ z ∧ y ≥ 2 −
z,Q(x, y)⇐P (x, y, z)∧z = 0, P⊥()⇐Q(x, y)∧Q(−x,−y)}, and Asamp returned
some abstract solution space S given (Samples, P⊥).

Let θ � S be the candidate solution chosen at line 7 where θ = {P �→
λ(x, y, z).y ≥ 2 − z,Q �→ λ(x, y).y ≥ 2, P⊥ �→ λ().⊥}. Because θ �|= (Hex1, P⊥),
we obtain a new sample. A possible sample obtained here isQ(x, y)⇐P (x, y, z)∧
z = 2. Adding the new sample to Samples, in the next loop iteration, as we shall
detail in Example 3, Asamp returns an abstract solution space containing the
solution θex1 shown in Example 1. �

3.1 The Sub-Algorithm Asamp

01: Asamp((H, P⊥)) =
02: S := ({P⊥ → λ().⊥} ∪ {P → λx̃.� | P ∈ Q},�)

where Q = roots(H) \ {P⊥};
03: WorkSet := initWS(H);
04: while WorkSet
= ∅ do
05: let H′ ∈ WorkSet

where root(H′) /∈ ⋃
H∈WorkSet pvsR(H) in

06: WorkSet := WorkSet \ {H′};
07: let S′ �root(H′) S in S := S′;
08: let C,LMap = MkCnsts(H′, S,H) in
09: for each (H′′, P ′

⊥) ∈ C do
10: match Ahj ((H′′, P ′

⊥)) with
11: NoSol → return NoSol
12: | Sol(S′) →
13: S := combSol∧(S′, S,LMap)
14: return Sol(S)

Fig. 2. The Sub-Algorithm Asamp

Asamp takes as input a
conjunctive HCCS, and re-
turns a non-empty ab-
stract space of its solu-
tions if it is solvable and
otherwise returns NoSol.
As remarked before, Asamp

looks for simple solutions
that are likely to generalize
when given to the upper-
procedureAsolve to be used
as a candidate solution for
the whole.

The internal workings
of Asamp are quite intri-
cate. The subtlety comes
from body-joining predi-
cate variables and head-
joining predicate variables. Indeed, as we shall show in Section 3.3, inferring

3 Perhaps a somewhat subtle aspect of Asolve is that it is guaranteed to terminate and
return a correct result despite only considering one concrete solution from the set of
solutions returned by Asamp in each iteration.

Inferring Simple Solutions to Recursion-Free Horn Clauses via Sampling 155

a simple solution to a conjunctive body-and-head-disjoint HCCS is easy in that
such an HCCS has either no solution or a simple solution where each predicate
contains just one atom. Asamp decomposes the problem into easily solvable parts
and combines their solutions to obtain a simple solution for the whole. The key
to the success is to do a coarse decomposition so that there are few subproblems
to be solved and the solutions to be combined, thereby resulting in a simple
solution for the whole sample set.

Figure 2 shows the overview of Asamp . Given the input conjunctive HCCS
(H, P⊥), we initialize the abstract solution space S to map P⊥ to λ().⊥ and
the other root predicate variables P ∈ roots(H) \ {P⊥} to λ(x1, . . . , xar(P)).�
(line 2), and initialize the work set WorkSet to initWS(H) which is the coarsest
connected sets of clauses that partition H and are body-joined only at the roots
and the leaves (informally, initWS(H) partitions H into body-disjoint “trees”).
Formally, initWS(H) = {{hc ∈ H | P �∗

(H,R\{P}) pvL(hc)} | P ∈ R} where R =

(bjnpvs(H) ∩ pvsL(H)) ∪ roots(H), and Q�(H,R′) R if and only if Q�H R and
Q �∈ R′. As we show in the lemma below, initWS(H) is indeed the coarsest
connected partition of H that is body-joined only at the roots and the leaves.

Lemma 3. initWS(H) is the smallest set X that satisfies: 1. H =
⋃
X, 2.

∀H1,H2 ∈ X.H1 ∩ H2 = ∅, 3. ∀H′ ∈ X. H′ is connected, and 4. ∀H′ ∈
X. bjnpvs(H) ∩ inters(H′) = ∅.

Then, we solve each element ofWorkSet by calling Ahj , starting from the root-
most one that contains P⊥, and recording the inferred solutions in S (lines 4-
13). Ahj is a sub-algorithm that, given a conjunctive body-disjoint (but possibly
head-joined) HCCS, infers its solution if it is solvable and otherwise returns
NoSol. The detailed description of Ahj is deferred to Section 3.2.

To invoke Ahj on an element H′ ∈ WorkSet, Asamp first partially concretizes
the current abstract solution space S so that it maps root(H′) to a concrete
predicate (line 7), and then uses MkCnsts to convert H′ into the set of the
conjunctive body-disjoint HCCSs C (line 8). MkCnsts also returns LMap that
maps the copied leaf predicate variables in C to the originals in H′. Formally,
MkCnsts(H′, S,H) constructs C and LMap as follows. Let H′

lcpy be H′ with

each leaf predicate variable application P (t̃) replaced by Pcpy(t̃) for a fresh
predicate variable Pcpy . LMap is the map from the fresh predicate variable
Pcpy to the original P that it replaced. Let Prt = root(H′) and S(Prt) =
λx̃.¬

∨n
i=1 φi where each φi is a conjunction of literals. Then, C is the set of

HCCSs {(H′
lcpy ∪Hlcsts ∪ {P ′

⊥()⇐Prt (x̃) ∧ φi}, P ′
⊥) | i ∈ {1, . . . , n}} where P ′

⊥
is a fresh predicate variable and Hlcsts is the set of clauses below.

{P (x̃)⇐φi | P ∈ dom(LMap)
lsol(H,LMap(P)) = λx̃.

∨m
i=1 φi where each φi is conjunction of literals}

Here, lsol(H, P) is the predicate expressing the “lower-bound” solution of P that
is implied by H, and it is defined recursively as follows.

lsol(H, P) = λx̃.
∨{

φ ∧
∧m

i=1 lsol(H, Ri)(t̃i) | P (x̃)⇐φ ∧
∧m

i=1 Ri(t̃i) ∈ H
}

156 H. Unno and T. Terauchi

Intuitively, MkCnsts(H′, S,H) substitutes the solution S(root(H′)) for root(H′)
in H′, adds the constraints required for the leaf predicate variables, and expands
the constraint so that the result is a set of conjunctive body-disjoint HCCSs.

The solution inferred for each constraint in C is combined and recorded in
the abstract solution space S (line 12). The solution combination operation
combSol∧ combines the abstract solutions by conjuncting the constraints over
the unknowns and conjuncting the predicate templates point-wise, using LMap
to conjunct the solutions for the copied leaf predicates into the original. Formally,
combSol∧((Θ,ψ), (Θ′, ψ′),LMap) = (combL(Θ,LMap) ∧Θ′, ψ ∧ ψ′) where

combL(Θ,LMap) = {P �→ Θ(P) | P /∈ ran(LMap)}
∪{P �→

∧
LMap(P ′)=P Θ(P ′) | P ∈ ran(LMap)}

We show the correctness of Asamp assuming that Ahj works correctly (i.e.,
it returns a non-empty abstract solution space to the input conjunctive body-
disjoint HCCS if it is solvable and otherwise returns NoSol).

Theorem 2 (Correctness of Asamp). Given a conjunctive HCCS (H, P⊥),
Asamp((H, P⊥)) returns a non-empty abstract solution space of (H, P⊥) if (H, P⊥)
is solvable, and otherwise it returns NoSol.

We note that it is possible to solve a conjunctive (or non-conjunctive) HCCS
more directly by expanding the HCCS to eliminate body-joining and head-
joining predicate variables so that it is reduced to a tree-like form [11,13,14].
However, the approach makes exponentially many copies of predicate variables
whose solutions are conjuncted to form the solution of the original, which of-
ten results in complex solutions. Asamp avoids complicating the solution by only
making linearly many copies of predicate variables and only copying body-joining
predicate variables (assuming that simple solutions are inferred for the root
and body-joining predicate variables), and is therefore more likely to infer sim-
ple solutions for the whole.4 In Section 4, we compare our approach with the
constraint-expansion approach and show that our approach infers simpler solu-
tions that aid the verification process.5

Also, in the implementation, we optimize the solution combination operation
combSol∧ so that instead of always taking the conjunction of the inferred so-
lutions as described above, we eagerly apply constraint solving to reduce the
number of atoms in the combined abstract solution space whenever possible
(cf. Example 3).

Example 3. Let (Hex2, P⊥) be the HCCS (Samples, P⊥) given to Asamp in the
last iteration of Asolve in Example 2. S is initialized to ({P⊥ �→ λ().⊥},�).

4 Our approach still exponentially expands the constraints, due to lsol(·). It only avoids
(always) making exponentially many copies of the predicate variables.

5 The comparison is with Asolve for solving the whole HCCS and not with Asamp that
is just used to solve a sample set.

Inferring Simple Solutions to Recursion-Free Horn Clauses via Sampling 157

Because, bjnpvs(Hex2) = {P,Q}, initWS(Hex2) = {H1,H2,H3} where

H1 = {P⊥()⇐Q(x, y) ∧Q(−x,−y)}
H2 = {Q(x, y)⇐P (x, y, z) ∧ z = 0, Q(x, y)⇐P (x, y, z) ∧ z = 2}
H3 = {P (x, y, z)⇐x ≥ z ∧ y ≥ 2− z}

H1 is chosen as the first element to be solved from the workset, and we have
MkCnsts(H1, S,H) = ({(Hex3, P

′
⊥)},LMap) where LMap = {Q1 �→ Q,Q2 �→ Q}

and Hex3 is the set of clauses below.

{Qi(x, y)⇐ x ≥ 0 ∧ y ≥ 2, Qi(x, y)⇐x ≥ 2 ∧ y ≥ 0 | i = 1, 2}∪
{P⊥()⇐Q1(x, y) ∧Q2(−x,−y), P ′

⊥ ⇐P⊥() ∧ ¬⊥}

Asamp then applies Ahj to (Hex3, P
′
⊥) and obtains an abstract solution space

S1 = (Θex3, φex3) (see Example 4 for details) where

Θex3 =
{Qi �→ λ(x, y).ci,0 + ci,1 · x+ ci,2 · y ≥ 0 | i = 1, 2}∪
{P⊥ �→ λ().⊥, P ′

⊥ �→ λ().⊥}

φex3 ≡ c1,0 + c2,0 < 0 ∧ c1,1 = c2,1 ≥ 0 ∧ c1,2 = c2,2 ≥ 0∧∧
i=1,2(ci,0 ≥ −2 · ci,2 ∧ ci,0 ≥ −2 · ci,1)

Asamp then combines the solution space to update S to combSol∧(S1, S,LMap) =
({P⊥ �→ λ().⊥, Q �→ λ(x, y).c1,0 + c1,1 · x+ c1,2 · y ≥ 0∧ c2,0 + c2,1 · x+ c2,2 · y ≥
0}, φex3). In the implementation, we eagerly apply constraint solving to reduce
the number of atoms in the combined solution space. In this example, we check if
σuni(φex3) is satisfiable where σuni = {c2,i �→ c1,i | i = 0, 1, 2}, and if so updates
S to ({P⊥ �→ λ().⊥, Q �→ λ(x, y).c1,0 + c1,1 ·x+ c1,2 · y ≥ 0}, σuni(φex3)) instead.
Here, σuni(φex3) = c1,0 < 0∧ c1,1 ≥ 0∧ c1,2 ≥ 0∧ c1,0 ≥ −2 · c1,2∧ c1,0 ≥ −2 · c1,1
which is satisfiable.

Next, Asamp chooses H2 to solve. It updates the space S so that S(Q) is
concrete. For example, S(Q) = λ(x, y).x+y ≥ 1. Then, it solves H2 and updates
S by proceeding similarly to the case for H1. Lastly, H3 is solved, and Asamp

returns the solution space (θex1,�) from Example 1. �

3.2 The Sub-Algorithm Ahj

Ahj takes as input a conjunctive body-disjoint (but possibly head-joined) HCCS.
To infer simple solutions to the given HCCS, Ahj first checks if the given HCCS
has a solution in the simplest space that maps each predicate variable to a predi-
cate consisting of a single atom, that we call an atomic solution, and decomposing
the HCCS into smaller subparts containing less head-joining predicate variables
if no atomic solution is found. Ahj calls itself recursively to do the decomposition
until a solution is found, and the solution spaces of the decomposed subparts are
combined to form the solution space for the whole. The key observation here is
that, as we shall show in Lemma 4, a conjunctive body-disjoint HCCS with no
head-joining predicate variable (i.e., is head-disjoint) is guaranteed to either has
an atomic solution or no solution at all. Therefore, the decomposition process is
guaranteed to converge to either find a solution or detect that the input HCCS
is unsolvable.

158 H. Unno and T. Terauchi

01: Ahj ((H, P⊥)) =
02: match Aatom ((H, P⊥)) with
03: Sol(S) → return Sol(S)
04: | NoSol →
05: if hjnpvs(H) = ∅ then
06: return NoSol
07: else
08: let H1, H2 = Decomp(H) in
09: match Ahj ((H1, P⊥)), Ahj ((H2, P⊥)) with
10: NoSol, | , NoSol → return NoSol
11: | Sol(S1), Sol(S2) → Sol(combSol∨(S1, S2))

Fig. 3. The Sub-Algorithm Ahj

Figure 3 shows the
overview of Ahj . Ahj first
calls Aatom , whose de-
tails are deferred to Sec-
tion 3.3, to check if there
exists an atomic solution
to the given HCCS. If so,
then it returns the in-
ferred space of atomic so-
lutions (line 3). Other-
wise, it checks if the given
HCCS is head-disjoint. If
so, then there can be no
solution to the given HCCS, and we return NoSol (line 6). Otherwise, we pick
a head-joining predicate variable, say P , and decompose the H into H1 and H2

such that H1 and H2 split the clauses in H whose head is P (along with their
“subtree” clauses). (The details of the decomposition is quite intricate and de-
ferred to later in the section.) Then, we call Ahj recursively to infer the solutions
for the subparts H1 and H2. If either part is found to be unsolvable, then we
return NoSol (line 10). Otherwise, we combine the returned solution spaces for
the subparts to obtain the solution space for the whole (line 11). The combina-
tion operation combSol∨ is analogous to combSol∧ used in Asamp except that we
take a point-wise disjunction of the solutions as opposed to taking a conjunc-
tion (and that there is no management of the copied leaf predicate variables).
More formally, combSol∨((Θ,ψ), (Θ′, ψ′)) = (Θ ∨Θ′, ψ ∧ψ′) where Θ∨Θ′ is the
point-wise disjunction of Θ and Θ′. As with combSol∧, in the implementation, we
eagerly apply constraint solving to reduce the number of atoms in the combined
solution space instead of always taking the disjunction.

We describe the details of the decomposition operation Decomp. As remarked
above, the role of Decomp is to decompose the input HCCS into parts that
contain fewer clauses that are head-joined. This is done by selecting some head-
joining predicate variable and making two copies of the original that split the
portion of the subtrees reachable from the selected predicate variable. More
formally, given a non-head-disjoint H, Decomp(H) returns (H1,H2) as follows.
We pick some head-joining predicate variable P ∈ hjnpvs(H). Let HP be the set
of clauses in H having P as the head. We partition HP into non-empty disjoint
subsets H′

1 and H′
2. For each H′

i (i ∈ {1, 2}), let H′′
i be the set of clauses in H

whose head is Q where R�∗H Q for some predicate variable R that appears in
the body of a clause in H′

i. Then, we set Hi = H \ (H′
i ∪H′′

i).
We show the correctness ofAhj , assuming that the sub-algorithmAatom works

correctly. As we show in Section 3.3, Aatom checks if there exists an atomic
solution to the conjunctive body-disjoint (but possibly head-joined) HCCS given
as the input, and it is guaranteed to return a non-empty abstract solution space
if the given HCCS is solvable and head-disjoint. Then, the following theorem
follows from the property ofDecomp and combSol∨ and the fact that the recursive

Inferring Simple Solutions to Recursion-Free Horn Clauses via Sampling 159

decompositions may happen only as many times as the number of head-joined
clauses in the input HCCS.

Theorem 3 (Correctness of Ahj). Given a conjunctive body-disjoint HCCS
(H, P⊥), Ahj ((H, P⊥)) returns a non-empty abstract solution space of (H, P⊥)
if (H, P⊥) is solvable, and otherwise it returns NoSol.

The above description of Decomp leaves freedom on how to actually do the
decomposition, that is, which head-joining predicate variable to select and how
to split the subtrees reachable from the selected predicate variable. While Theo-
rem 3 holds true regardless of how the decomposition is done, choosing a coarse
decomposition is important for inferring a simple solution. To this end, in the
implementation described in Section 4, we choose the decomposition by analyz-
ing the reason for Aatom ’s failure on finding an atomic solution (cf. line 2) which
is returned as an unsatisfiable core of the constraints that Aatom attempted to
solve. In addition, instead of doing the recursive decompositions independently
for the parts H1 and H2 as in Figure 3, we synchronize the decompositions in
the recursive call branches to minimize the unnecessary decompositions.6

Example 4. Recall (Hex3, P
′
⊥) from Example 3. (Hex3, P

′
⊥) has an atomic solu-

tion, and therefore, the first call to Aatom by Ahj (line 3) immediately succeeds
and returns an abstract solution space. Here, the returned abstraction solution
space is (Hex3, P

′
⊥) from Example 3 (see Example 5 for details).

3.3 The Sub-Algorithm Aatom

As remarked in Section 3.2, Aatom decides if there exists an atomic solution to
the given conjunctive body-disjoint HCCS, and returns a non-empty abstract
solution space of atomic solutions if so. Given the input HCCS (H, P⊥), Aatom

prepares the atomic solution template ΘH that maps each predicate variable

P ∈ pvs(H) to the formula template of the form λ(x1, . . . , xar(P)).c0 +Σ
ar(P)
i=1 ci ·

xi ≥ 0 where ci’s are fresh unknowns.7 Then, it generates the constraint φH =
constr(ΘH, (H, P⊥)) = c < 0∧

∧
hc∈H constr(ΘH, hc) where ΘH(P⊥) = λ().c ≥ 0

and constr(ΘH, hc) is defined as follows; for hc = a0 ⇐
∧�

i=1 ai ∧
∧q

i=1 pi with
fvs(hc) = {x1, . . . , xm},

constr(ΘH, hc) =
∧q

i=1 αi ≥ 0 ∧
∧m

j=0 t0,j = (
∑�

i=1 ti,j) + (
∑q

i=1 αi · ri,j)

where α1, . . . , αq are fresh unknowns, and ΘH(ai) and pi are respectively ti,0 +∑m
j=1 ti,j · xj ≥ 0 (for i ∈ {0, . . . , �}) and ri,0 +

∑m
j=1 ri,j · xj ≥ 0 (for i ∈

{1, . . . , q}) for some linear terms over unknowns ti,j and rational constants ri,j .
Note that φH is a QFLRA formula over unknowns (i.e., it contains no variable
or product of unknowns).

6 Decomp is similar in spirit to the sample set “split” operation from [1].
7 For simplicity, in this section, we only consider non-strict inequality atoms. Strict
inequalities can be handled similarly by using the Motzkin’s transposition theorem
instead of the Farkas’ lemma (cf. the extended report [21]).

160 H. Unno and T. Terauchi

Then, Aatom checks if φH is satisfiable, that is, if there exists an assignment σ
to the unknowns such that |= σ(φH), and if so, returns (ΘH, φH) as the abstract
solution space. Otherwise, it detects that (H, P⊥) has no atomic solution and
returns NoSol. We state and prove the correctness of Aatom .

Theorem 4 (Correctness of Aatom). Given a conjunctive body-disjoint HCCS
(H, P⊥), Aatom((H, P⊥)) returns a non-empty abstract atomic solution space S
of (H, P⊥) if (H, P⊥) has an atomic solution, and otherwise returns NoSol.

Also, the following holds by the Farkas’ lemma [16].

Lemma 4. A conjunctive body-disjoint and head-disjoint HCCS either has an
atomic solution or no solution.

Therefore,Aatom completely decides the solvability of a conjunctive body-disjoint
head-disjoint HCCS. In general, a solvable conjunctive body-disjoint (but not
head-disjoint) HCCS may not be atomically solvable. For example, (H, P⊥)
where H = {P (x, y)⇐x ≤ 0 ∧ y ≤ 1, P (x, y)⇐x ≤ 1 ∧ y ≤ 0, P⊥()⇐P (x, y) ∧
x > 0 ∧ y > 0} is solvable but has no atomic solution. Thus, when Aatom fails
to find an atomic solution to such an HCCS, the information is propagated back
to Ahj to decompose some head-joined clauses.

Example 5. Consider the HCCS (Hex3, P
′
⊥) from Example 3 (note that it is

head-disjoint). Aatom prepares the atomic solution template ΘHex3 = {Qi �→
λ(x, y).ci,0+ ci,1 ·x+ ci,2 ·y ≥ 0 | i = 1, 2}∪{P⊥ �→ λ().c3,0 ≥ 0, P ′

⊥ �→ λ().c4,0 ≥
0} and generates the constraint constr(ΘHex3 , (Hex3, P

′
⊥)):

c4,0 < 0 ∧ α1, α2 ≥ 0 ∧ c4,0 = c3,0 + α1 ∧ c3,0 = c1,0 + c2,0 + α2∧
0 = c1,1 − c2,1 ∧ 0 = c1,2 − c2,2∧
∧

i=1,2

(
αi,1, αi,2, αi,3 ≥ 0 ∧ ci,0 = −2 · αi,2 + αi,3 ∧ ci,1 = αi,1 ∧ ci,2 = αi,2∧
αi,4, αi,5, αi,6 ≥ 0 ∧ ci,0 = −2 · αi,4 + αi,6 ∧ ci,1 = αi,4 ∧ ci,2 = αi,5

)

In the constraint generation, we add the tautology 1 ≥ 0 to the body of each
clause. This often widens the obtained solution space. After satisfiability checking
and simplification, Aatom returns the abstract solution space (Θex3, φex3) given
in Example 3. �

4 Implementation and Experiments

We have implemented a prototype of the new constraint solving algorithmAsolve .
We use the linear programming tool GLPK (http://www.gnu.org/software/
glpk) for the linear constraint solving that is used to operate on abstract solution
spaces, and Z3 (http://z3.codeplex.com) for the unsat core generation in Ahj

and for checking the candidate solution against the whole HCCS in Asolve . We
use the objective function in linear programming to find a model with small
valuations to further bias towards simple solutions.

We use the constraint solver as the backend of the MoCHi software model
checker [9]. MoCHi verifies assertion safety of OCaml programs via predicate

http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk
http://z3.codeplex.com

Inferring Simple Solutions to Recursion-Free Horn Clauses via Sampling 161

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

Ai
te

r

Asolve

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

Ae
xp

an
d

Asolve

1

8

64

512

4096

1 8 64 512 4096

Ai
te

r

Asolve

1

8

64

512

4096

1 8 64 512 4096

Ae
xp

an
d

Asolve

Fig. 4. Run time (upper) and solution size (lower) comparisons of the HCCS solving
algorithms on benchmarks HCCSs

abstraction, higher-order model checking, and CEGAR. MoCHi is a good plat-
form for experimenting with the constraint solver because the Horn-clause con-
straints solved there often have a complex structure. (Intuitively, this is because
the constraints express the flow of data in the program to be verified, and data
often flow in a complex way in a functional program, e.g., passed to and returned
from recursive functions, captured in closures, etc.)

We compare the new algorithm Asolve with two other algorithms, Aiter and
Aexpand . Aiter is an implementation of the iterative approach to solving
HCCS [20,18], and is also used in the previous work on MoCHi [9,15,22,10].
Aexpand is an implementation of the constraint-expansion approach [4,14] in
which the given HCCS is first expanded into a body-disjoint head-disjoint HCCS
and the iterative algorithm is used to solve the resulting HCCS. (See also Re-
lated Work in Section 1.)

We have ran the three algorithms on 327 HCCSs generated by running MoCHi
with Asolve on 139 benchmark programs, most of which are taken from the pre-
vious work on MoCHi [9,15,22,10]. We measured the time spent on solving each
HCCS by each algorithm as well as the size of the inferred solution (the sum
of the syntactic sizes of the predicates). We also compare the overall verifica-
tion speed of MoCHi when using the three algorithms on the 139 benchmark

162 H. Unno and T. Terauchi

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

Ai
te

r

Asolve

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

Ae
xp

an
d

Asolve

Fig. 5. Run time comparison of the HCCS solving algorithms on benchmarks programs

programs. The experiments were conducted on a machine with 2.69 GHz i7-
4600U processor with 16 GB of RAM, with the time limit of 100 seconds. The
benchmark programs, the benchmark HCCSs and the experiment results are
available online [21].

Figure 4 shows the scatter plots that compare the run times and the solution
sizes ofAsolve , Aiter , and Aexpand on each of the 318 benchmark HCCSs. The run
time plots show that, on most instances, Asolve is slower than Aiter and Aexpand

due to the additional effort to find a simple solution. The plots also show that
Asolve is sometimes faster than the other two. The behavior is attributed to the
fact that Asolve is sometimes able to find a solution for the whole by sampling
a very small fraction of the given HCCS, and the fact that Aiter and Aexpand

(after the expansion) uses the iterative approach which can be sometimes slow
on large instances. The solution size plots show that Asolve is able to compute
smaller solutions than the other two on most instances.

Figure 5 shows the plots comparing the run times of the overall verification
process on each of the 139 benchmark programs for each constraint solving
algorithm. The plots show that, with the new algorithm Asolve , MoCHi is able to
verify significantly more programs within the time limit than with the other two
algorithms. The plots also show that the heavier cost of constraint solving in the
new algorithm is often compensated by the better predicates inferred, thereby
allowing the overall verification speed to match those of the other algorithms
even on instances that the other algorithms were able to verify in time.

5 Conclusion

We have presented a new approach to solving recursion-free Horn-clause con-
straints. Our approach is inspired by the sampling-based approach to infer-
ring simple interpolants [17,1] and is geared toward inferring simple solutions.
We have shown that the new approach is effective at inferring simple solutions
that are useful to program verification.

Inferring Simple Solutions to Recursion-Free Horn Clauses via Sampling 163

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013)

2. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp.
105–125. Springer, Heidelberg (2013)

3. Craig, W.: Linear reasoning. a new form of the herbrand-gentzen theorem. The
Journal of Symbolic Logic 22(03), 250–268 (1957)

4. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI, pp. 405–416. ACM (2012)

5. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for
verifying multi-threaded programs. In: POPL, pp. 331–344. ACM (2011)

6. Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free horn clauses over
LI+UIF. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 188–203. Springer,
Heidelberg (2011)

7. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244. ACM (2004)

8. Hoder, K., Kovács, L., Voronkov, A.: Playing in the grey area of proofs. In: POPL,
pp. 259–272. ACM (2012)

9. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: PLDI, pp. 222–233. ACM (2011)

10. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination
verification for higher-order functional programs. In: Shao, Z. (ed.) ESOP 2014
(ETAPS). LNCS, vol. 8410, pp. 392–411. Springer, Heidelberg (2014)

11. McMillan, K., Rybalchenko, A.: Computing relational fixed points using interpo-
lation. Technical Report MSR-TR-2013-6 (January 2013)

12. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

13. Rümmer, P., Hojjat, H., Kuncak, V.: Classifying and solving horn clauses for veri-
fication. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp.
1–21. Springer, Heidelberg (2014)

14. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013)

15. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: PEPM, pp. 53–62. ACM (2013)

16. Schrijver, A.: Theory of linear and integer programming. Wiley (1998)
17. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,

Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012)

18. Terauchi, T.: Dependent types from counterexamples. In: POPL, pp. 119–130.
ACM (2010)

19. Terauchi, T., Unno, H.: Relaxed stratification: A new approach to practical com-
plete predicate refinement. In: ESOP (2015) (to appear)

20. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: PPDP,
pp. 277–288. ACM (2009)

21. Unno, H., Terauchi, T.: Inferring simple solutions to recursion-free horn clauses via
sampling. In: 2015, http://www.cs.tsukuba.ac.jp/~uhiro

22. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification
of higher-order functional programs. In: POPL, pp. 75–86. ACM (2013)

http://www.cs.tsukuba.ac.jp/~uhiro

Analysis of Dynamic Process Networks

Kedar S. Namjoshi1,� and Richard J. Trefler2,��

1 Bell Laboratories, Alcatel-Lucent, Murray Hill, NJ, USA
kedar@research.bell-labs.com

2 University of Waterloo, Waterloo, Ontario, Canada
trefler@cs.uwaterloo.ca

Abstract. We formulate a method to compute global invariants of dy-
namic process networks. In these networks, inter-process connectivity
may be altered by an adversary at any point in time. Dynamic networks
serve as models for ad-hoc and sensor-network protocols. The analysis
combines elements of compositional reasoning, symmetry reduction, and
abstraction. Together, they allow a small “cutoff” network to represent
arbitrarily large networks. A compositional invariant computed on the
small network generalizes to a parametric invariant of the shape “for all
networks and all processes: property p holds of each process and its local
neighborhood.” We illustrate this method by showing how to compute
useful invariants for a simple dining philosophers protocol, and the latest
version of the ad-hoc routing protocol AODV (version 2).

1 Introduction

For communication protocols, model checking is typically applied to small net-
work instances to detect errors. Full correctness requires analyzing networks of
arbitrary size. This is, in general, an undecidable problem. Our work considers
the question of analyzing the behavior of a dynamic process network. In a dy-
namic network, an adversary can modify the structure of the network at any
time by adding or dropping nodes and connections. Dynamic process networks
are practically relevant, as they may be used to model ad-hoc and sensor-network
protocols, which usually operate under adversarial conditions.

The analysis question is mathematically challenging, as verification of a dy-
namic network requires showing correctness for an unbounded family of net-
works. Consider, say, a dynamic ring network. Starting with a two-node ring,
dynamic changes result in rings of arbitrary size. It is interesting that showing

� Supported, in part, by DARPA under agreement number FA8750-12-C-0166. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

�� Supported in part by Natural Sciences and Engineering Research Council of Canada
Discovery and Collaborative Research and Development Grants.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 164–178, 2015.
DOI: 10.1007/978-3-662-46681-0_11

Analysis of Dynamic Process Networks 165

parametric correctness (i.e., for all fixed rings) does not suffice. For instance,
consider a valid state of a dining philosophers’ protocol where eating philoso-
phers are separated by a non-eating philosopher. Removing the middle node
and collapsing the ring creates an invalid state with adjacent eating philoso-
phers. Protocols on dynamic networks typically incorporate recovery actions to
be taken on adjacency changes so as to avoid such erroneous outcomes.

In this work, we propose a new approach to this challenging verification ques-
tion. Our analysis method combines elements of compositional reasoning, sym-
metry reduction and abstraction. To motivate these ingredients, consider that
in a dynamic network, global invariants must be maintained in the face of ad-
versarial, unpredictable changes. Hence, the coupling between process states is
likely to be weak, which is just the situation where compositional analysis is
most effective. In order to obtain a uniform invariant which applies to all nodes,
it is necessary to abstract from differences between node neighborhoods (such as
the number of neighbors). This is achieved by neighborhood abstraction, which
induces local symmetries between nodes. Local symmetries suffice to ensure that
compositional invariants are isomorphic across all nodes in a network family.

In a nutshell, the method works as follows: First, one picks a small representa-
tive instance R, and sets up a collection of local (i.e., neighborhood) symmetries
between nodes from arbitrary instances and nodes of R. Next, a compositional
invariant is calculated for R. Local symmetries guarantee that the compositional
invariant for R generalizes appropriately to all instances. Dynamic changes are
handled by showing that they do not violate the compositional invariant. For
a property P that is preserved by the symmetries, it follows that P holds of
all instances if it holds for R. The result is a universally quantified, inductive
invariant, of the form “for all networks and all processes: property P holds of
each process and its local neighborhood.”

The method is only partly automated. The specification of symmetries is
done manually, while the compositional calculation on R is automatic. As the
symmetries concern only the neighborhood of a node, in our experience, it is not
too difficult to determine a good set of symmetries. We illustrate this through
two protocols: the first is a Dining Philosophers protocol, modified to operate
over dynamic graphs; the second is a model of the AODV protocol used for
routing in ad-hoc networks (we analyze the latest version, AODVv2 [2]).

Known methods for analyzing dynamic networks operate with sets of graphs
of arbitrary size. Termination is ensured either through heuristics which recog-
nize graph patterns [27] or through results from the theory of well quasi ordering
(WQO) [13]. Our method is rather different, simpler to implement and, we be-
lieve, closer to intuition. Many interesting parametric verification questions are
undecidable on general graphs and ad-hoc networks [14]. The AODV proto-
col has gone through several versions. Earlier analyses targeted AODV [1] and
DYMO [27]. We analyze the latest version (AODV version 2), which is quite
different from the original. In the course of constructing a formal model, we
noticed a correctness issue, which has been acknowledged by the authors. Our
proofs apply to the corrected protocol.

166 K.S. Namjoshi and R.J. Trefler

2 Dynamic Networks and Compositional Reasoning

We define the computational model of a dynamic process network, focusing on
dynamic changes. We then define the rules to validate a proposed compositional
invariant. Abstraction and symmetry properties are treated in Section 3.

Fig. 1. A ring network. Nodes are represented by circles, edges by boxes, and links by
lines connecting them. The neighborhood of a node is shown as a dashed ellipse.

We begin with an informal overview. A process network is defined by a process
template and a way of instantiating the template on a communication graph.
Every node of the graph is associated with a process. The transitions of a process
depend on its internal state and the state on its adjacent edges. Hence, processes
communicate by reading and modifying state on shared edges. In a dynamic
setting, at any point in time, an adversary can modify the network by adding or
deleting a node-edge link, or by adding or removing isolated nodes and edges. A
process has the capability to react instantaneously and atomically to a change in
the neighborhood of its node. In the following, we define these concepts precisely.

2.1 Networks, Assignment, and States

A network, G, is defined as the tuple (N,E,L), where N is a set of nodes, E is
a set of edges, and L ⊆ (N × E) ∪ (E × N) is a set of node-edge links. (Note
that an edge is not just a pair of nodes, but an element in its own right.) The
network in Figure 1 shows a ring system. Each element has a color. Edge e is
an output edge for node m if (m, e) is a link, and an input edge if (e,m) is a
link. In either case, we say that e is adjacent to m. The neighborhood of a node

Analysis of Dynamic Process Networks 167

m, written nbd(G,m), is formed by m together with its adjacent edges. Node m
points to node n if an output edge of m is adjacent to n.

An assignment to a network specifies a domain of values for each edge, and
a process for each node. A process assigned to a node n with k adjacent edges
has the structure (S, S0, T), where S is a set of states defined as the Cartesian
product SI × E1 × . . . Ek, where SI is the internal state set, and E1, . . . , Ek

are the domains of the adjacent edges, S0 is a set of initial states, and T is a
transition relation, a subset of S × S. We refer to several types of states:

– A global state is a vector formed by specifying an internal state for the
process on each node and by a value from the domain of each edge

– A local state for node n with adjacent edges e1, . . . , eK is a vector formed
by specifying an internal state for the process assigned to n, and by a value
from the domain of each of the edges e1, . . . , eK

– An internal state for node n is an internal state of the process assigned to n
– A joint state for nodes m,n is written as a pair [a, b] where a is a local state

for m, and b is a local state for n, and a and b have identical values for every
edge e that is adjacent to both m and n. Joint states are used to formulate
interference between processes.

For a global state s, we write s[n] for the internal state of node n, s[nbd(G,n)]
for the local state of node n, and s[e] for the value on edge e.

2.2 Semantics: Static and Dynamic

A network can transition from a global state s to global state t by the action of a
single process, say at node n. This action may change at most the local state of
node n, so Tn relates s[nbd(G,n)] to t[nbd(G,n)]. Moreover, t[e] = s[e] for every
edge that is not adjacent to n, and t[m] = s[m] for every node m �= n. The set of
initial global states is denoted I. For a family of networks, we assume that there
is an initial global state for every network in the family. The projection of states
in I on m, the set of initial local states for m, is denoted by Im, which must
be a subset of the initial states of that process. The global transition graph is
induced by interleaving transitions from individual processes, starting from an
initial state.

Adversarial actions change the underlying network graph. We consider the
following actions:

– addition or removal of a link
– addition or removal of an isolated node (i.e., one without adjacent edges)
– addition or removal of an isolated edge (i.e., one without adjacent nodes)

To allow a process to react to a link addition or removal, we specify transitions
link(n, e) (link addition) and unlink(n, e) (link removal) for node n and edge e.
These transitions operate on the local state of node n after the change.

To account for graph (and hence, state vector) changes, we introduce the
concept of a configuration, which is a pair (G, s), where G is the network graph

168 K.S. Namjoshi and R.J. Trefler

and s is a global state of G. In a static transition, the graph stays constant, so
the corresponding change is from a configuration (G, s) to (G, t). For a dynamic
change, the graph also changes as does the global state. This is detailed below
for two representative changes, the other cases are similar.

– Addition of a link (n, e) in a graph G = (N,E,L) and state s. The new
configuration is (G′, s′). The new network G′ is given by N ′ = N , E′ = E,
and L′ = L∪{(n, e)}. The new state s′ is the successor of s by the link (n, e)
transition at node n, taken in the configuration (G′, s).

– Addition of an isolated node n in a graph G = (N,E,L) and state s. The
new configuration is (G′, s′). The new network G′ has node set N ′ = N∪{n},
edge set E′ = E and links L′ = L. The new state s′ is such that s′[x] = s[x]
for each element (node or edge) of G, and s′[n] is an initial state of the
process assigned to n.

2.3 Inductive and Compositional Invariants

An invariant for a dynamic network is a set of configurations which includes
all the configurations reachable from a set of initial configurations. This set is
inductive if it is closed under all transitions. A compositional invariant is an
inductive invariant of a special shape and satisfying a special set of constraints.
It is formed as the conjunction of a number of local invariants, one for each
process in a network. Thus, we use (G,n) to identify the process at node n in
network G, and write θ(G,n) as the set of local states for (G,n) which form its
local invariant. These sets (viewed equivalently as predicates) must satisfy the
following conditions. For all (G,n):

– (Initiality) All initial states of the process at (G,n) are in θ(G,n)
– (Step) θ(G,n) is closed under transitions of the process at (G,n)
– (Non-interference) If node m points to node n in G, for any joint state [b, a]

of (m,n) where a ∈ θ(G,n) and b ∈ θ(G,m): if T(G,m) transforms [b, a] to
[b′, a′], then a′ ∈ θ(G,n).

Remark 1. Notational conventions are inspired by [15]. Sets are represented as
predicates. The notation [ϕ] indicates that the formula ϕ is valid.

In addition, there are conditions to be met for dynamic changes. Let G be
the original network and let G′ be the network obtained by adding a (fresh) link
between node n and edge e. Two constraints arise from link addition (similar
constraints arise for other dynamic actions):

– θ is preserved by the action link(n, e) at n. I.e., for any valuation a for
nbd(G,n) and any value v for edge e: if a ∈ θ(G,n) and link(n, e) transforms
(a, v) to (a′, v′), then (a′, v′) ∈ θ(G′, n).

– Interference due to the link action must preserve θ for any node m that is
pointed to by n. I.e., for any joint state [b, a] of (m,n) where a ∈ θ(G,n) and
b ∈ θ(G,m), and any valuation v for edge e: if link(n, e) transforms ([b, a], v)
to ([b′, a′], v′), then b′ ∈ θ(G′,m).

Analysis of Dynamic Process Networks 169

Theorem 1. If the compositional constraints hold, the assertion ξ = (∀G,n :
θ(G,n)) is an inductive invariant of the dynamic network.

Consider θ as a vector (or a map) from network-node pairs (G,n) to sets of
local states. The set of vectors forms a complete lattice, with vectors ordered
point-wise by the subset relation. The constraints form a set of simultaneous im-
plications of the form [F(G,n)(θ) ⇒ θ(G,n)], where F is monotonic in θ. Hence,
there is a least solution by the Knaster-Tarski theorem. The least solution to
the first three constraints alone is the strongest “non-dynamic” compositional
invariant, denoted Σ∗. The least solution to all constraints is the strongest dy-
namic compositional invariant, which we denote by Δ∗. Note that Δ∗ is weaker
than Σ∗ as it must satisfy the non-dynamic constraints.

3 Symmetry Reduction

We show how to define and use localized neighborhood symmetries to reduce
the computation of a compositional invariant to a small set of representative
processes. This technique applies equally well to a single network or to a family
of networks.

3.1 Fixed Networks

Fix a network G and a process assignment. The local symmetries of the network
are defined as a relation B with entries of the form (m,β, n), where β is itself
a relation between the local state spaces of processes m and n. Intuitively, β
relates similar neighborhood states. The relationB should satisfy some structural
properties:

– (Identity) For everym, there is an entry (m,β,m) in B. For every such entry,
β is an equivalence relation

– (Symmetry) If (m,β, n) ∈ B then (n, β−1,m) ∈ B
– (Transitivity) if (m,β, n) and (n, γ, k) are in B, then (n, β; γ, k) is in B

It follows that the orbit relation m ∼ n, which holds if (m,β, n) is in B for some
β, is an equivalence.

Definition 1. Local Symmetry

A relation B satisfying the structural conditions forms a local symmetry if, for
every (m,β, n) in B, any step or interference transition of m can be simulated
by a step or interference transition of n. More precisely, the following forward-
simulation properties hold.

– (initial match) For every initial state x of the process at m, there is an initial
state y of the process at n such that (x, y) ∈ β.

– (local simulation) If (x, y) ∈ β and there is a transition (x, x′) in Tm, then
either there is y′ such that (y, y′) is in Tn and (x′, y′) ∈ β, or there is a
neighbor j of n and a state b of j which is reachable by j-steps alone such
that there is a joint (j, n) transition ([b, y], [b′, y′]) due to Tj and (x′, y′) ∈ β.

170 K.S. Namjoshi and R.J. Trefler

– (interference simulation) If (x, y) ∈ β, and i is a neighbor ofm, and there is a
joint (i,m) transition ([a, x], [a′, x′]) due to Ti, then either there is a neighbor
j of n for which (i, γ, j) is in B and for every b such that (a, b) ∈ γ, there
is a joint (j, n) transition ([b, y], [b′, y′]) due to Tj, such that (x′, y′) ∈ β, or
there is a transition (y, y′) in Tn such that (x′, y′) ∈ β.

Remark 2. We refer to this notion as a symmetry as it is the semantic form of a
structural local symmetry definition formulated in [23]. The earlier formulation is
in terms of network structure, as a groupoid, a set of tuples of the form (m,β, n),
where β is an isomorphism on the graph neighborhoods of nodes m and n. While
that is more obviously a structural symmetry, it is limiting since it does not allow
defining symmetries up to an abstraction.

Definition 2. For a relation R and a set Y , let 〈R〉Y be the set of elements
which have an R-successor in Y . I.e., 〈R〉Y = {x | xRy for some y in Y }.
Theorem 2. (Symmetry Theorem) Let B be a local symmetry on G. Let θ∗

be the strongest compositional invariant on G. Then, for every m,n such that
(m,β, n) is in B, it is the case that [θ∗m ⇒ 〈β〉θ∗n].
Proof: From the chaotic iteration theorem [9], every fair schedule of updates
computes the least fixpoint. We use a schedule where the initialization is done
first; then the schedule alternates a single transition step for all processes, and
a single interference step for all processes. This proof applies to a non-dynamic
network.

The proof is by induction on fixpoint stages. Assume that the statement is
true for every state in θk. Now consider m,n such that (m,β, n) is in B and let
x′ be in θk+1

m but not in θkm.
[Basis] If x′ is an initial state of m, the claim holds by the initial match condition.
[Induction: Step] Suppose that x′ is a successor of a state x in θkm. By the
inductive hypothesis, there is a state y in θ∗n such that xβy. In the first case of
local simulation, there is a transition (y, y′) in Tn such that x′βy′. In that case,
y′ is also in θ∗n by its closure under step transitions. In the other case, there is a
neighbor j of n and a reachable state b of j such that there is a joint transition
([b, y], [b′, y′]) of Tj and (x′, y′) ∈ β. As b is reachable through step transitions
alone, it must be in θ∗j , so that [b, y] is a joint state which satisfies θ∗j and θ∗n.
By closure of θ∗ under interference, the state y′ is in θ∗n.
[Induction: Interference] Now suppose that x′ is obtained through interference.
I.e., there is a transition Ti, for some neighbor i of m, from a joint state [a, x]
to joint state [a′, x′], where a ∈ θki and x is in θkm. By the inductive hypothesis,
there is a state y in θ∗n such that xβy. The first case of interference simulation
ensures that there is a neighbor j of n such that (i, γ, j) is in B, and for all b such
that (a, b) ∈ γ, there is a transition ([b, y], [b′, y′]) due to Tj where (x′, y′) ∈ β.
By the induction hypothesis, as a ∈ θki , there is some b ∈ θ∗j which is related to
a by γ. For that b, the joint state [b, y] satisfies θ∗j and θ∗n so, by closure under
interference, y′ is in θ∗n. The other case of interference simulation ensures that
there is a transition (y, y′) in Tn such that (x′, y′) ∈ β; in that case, y′ is in θ∗n
by closure under step transitions. EndProof.

Analysis of Dynamic Process Networks 171

Note that the claim holds also if single-step conditions are replaced with
stuttering (i.e., where a single step is matched by a possibly empty path). We
will use this relaxation for the examples.

Corollary 1. Let P be a property of local states. If (m,β, n) is in symmetry B,
and P is invariant under β, then [θ∗m ⇒ P] if, and only if, [θ∗n ⇒ P].

Equivalence reduction. From the structural properties of B, the relation ∼ is an
equivalence relation. Hence, in order to check a property that is invariant under
all the β-relations in B, by Corollary 1, it suffices to compute the θ components
for a representative of each equivalence class of ∼. Therefore, for a fixed network,
the use of local symmetries can substantially reduce the number of fixpoint
computations. (We show in an earlier work [23] that for a ring network with K
nodes, it suffices to compute only one component of the fixpoint instead of allK.)
Moreover, it suggests that, for a parameterized or dynamic network, symmetries
that span members of a network family can be used to reduce the problem of
checking a property for all instances to checking it for a small, fixed-size set of
representative instances. We consider this next.

3.2 Parameterized and Dynamic Network Families

We apply the local symmetry definitions to a family of networks by redefining
the symmetry relation to relate two nodes in (possibly) different networks. I.e.,
the relation consists of triples ((G,m), β, (H,n)). We immediately obtain the
analogues of Theorem 2 and Corollary 1 for a parametric network family.

Theorem 3. Let B be a local symmetry on a parametric network family. Let θ∗

be the strongest compositional invariant. Then, for every (G,m) and (H,n) such
that ((G,m), β, (H,n)) is in B, it is the case that [θ∗(G,m) ⇒ 〈β〉θ∗(H,n)].

Corollary 2. Let P be a property of local states. If ((G,m), β, (H,n)) is in
symmetry B, and P is invariant under β, then [θ∗(G,m) ⇒ P] if, and only if,
[θ∗(H,n) ⇒ P].

An example of this reduction is as follows. Consider a family of ring networks
{Ri}, where the process at each node is the same regardless of ring size. Then
the relation β connects (Rk,m) with (Rl, n) precisely if the local state of m in
the ring Rk is identical to the local state of n in ring Rl. For any property P
which depends only on local states, the two nodes will satisfy P in the same way,
by Corollary 2. Moreover, as any two nodes are connected by a local symmetry,
all nodes in the family fall into a single equivalence class. Hence, it suffices
to compute a compositional invariant for a 2-node ring instance and check the
property P for that instance in order to deduce that it holds for the entire family.

We would like to extend this form of reasoning to dynamic networks. In order
to do so, we make the following assumption:

– (React) Any reaction to a dynamic change preserves the non-dynamic invari-
ant. Formally, let Σ∗ be the strongest non-dynamic compositional invariant.

172 K.S. Namjoshi and R.J. Trefler

Consider a node (G,m) and a dynamic change at m or at one of its neigh-
bors which changes the graph to G′. If, before the reaction, (G,m) and its
neighbors have local states in Σ∗, then the local state of m after the reaction
is in Σ∗(G′,m).

We believe that this is a reasonable assumption. A protocol designer must
place a node in a “safe” local state after a dynamic change. It is reasonable to
imagine that this safe state is one that is known to be a locally reachable state
and, therefore, belongs to Σ∗. As we show in the following section, our example
protocols satisfy this assumption.

Theorem 4. Under the React assumption, the strongest compositional invariant
for the non-dynamic and the dynamic systems are identical.

Proof Sketch: Recall that Σ∗ denotes the strongest non-dynamic compositional
invariant, and Δ∗ the strongest dynamic compositional invariant. As the initial
configurations cover all graphs, Σ∗(G,m) and Δ∗(G,m) are non-empty for all
nodes (G,m).

The constraints defining validity of a compositional invariant for the dynamic
case are an extension of those for the non-dynamic case. Hence, Δ∗ is also a
non-dynamic compositional invariant. Therefore, Σ∗ is below Δ∗ (point-wise).

We use React to show the other direction. The proof is by induction on the
fixpoint stages. The claim is that, at stage k, Δk is below Σ∗ for all components.
This is true initially as Δ0 is the set of initial states. Assume that it is true
at stage k. The step and interference updates are common to both and, as the
update function is monotonic, the hypothesis continues to hold at the next stage.
In the dynamic setting,Δk+1 is also updated as the result of reactions to network
changes at node (G,m) or at one of its neighbors. By the induction hypotheses,
the originating states are in Δk, and therefore in Σ∗. By the React assumption,
the resulting local state for (G′,m) is also in Σ∗(G′,m). Hence, the hypothesis
continues to hold at stage k + 1. A newly added node begins at an initial state,
which is already covered in Σ∗; a deleted node has no effect. EndProof.

This theorem lets us reduce the dynamic case to the non-dynamic, parame-
terized case. I.e., we can apply symmetry reductions as illustrated by the ring
network example. We show in the following section how this applies to the two
protocols we consider in this work.

4 Applications

In this section, we show how two dynamic protocols may be analyzed using the
following procedure, based on the theory laid out in the previous sections:

1. Define a symmetry B for the entire network family, with finitely many equiv-
alence classes

2. Find a representative network instance, R, whose nodes cover all of the
equivalence classes

3. Compute the strongest non-dynamic compositional invariant for R.

Analysis of Dynamic Process Networks 173

4. Check that the React assumption is satisfied for all nodes in the family. In
order to do so, it suffices to show that every reaction which results in a state
of (G′,m) is related to a state in the invariant of the representative instance.

Let property P be invariant under the symmetries in B. By Corollary 2, if P
holds of Σ∗(R, k) for all nodes k in R, it holds of all nodes in the entire family.

The first two steps are not automated, but one may consider some guidelines.
If the network family has graphs with nodes of arbitrary degree, the symmetry
relation must abstract from the degree of the node. A localized abstraction of
the state space may be needed if the space is large or unbounded. The symmetry
and React conditions could be checked with an SMT solver or a theorem prover.
The fixpoint computation of Σ∗ for the representative network can be done
automatically if the local state space is finite.

4.1 Dynamic Dining Philosophers Protocol

A non-dynamic version which operates on arbitrary networks was analyzed in
[24]; here, we consider modifications to respond to dynamic network changes.

The basic protocol. The protocol has a number of similar processes operating on
an arbitrary network. Every edge on the network models a shared “fork”. The
edge between nodes i and j is called fij or, equivalently, fji. Its value is one of
{i, j,⊥}. Node i is said to own the fork fij if fij = i; node j owns this fork if
fij = j; and the fork is available if fij = ⊥. The process at node i goes through
the internal states T (thinking), H (hungry), E (eating), and R (release). Let
nbr(i, j, G) be a predicate true for nodes i, j in network G if the two nodes share
an edge. The transitions for the process at node i are as follows.

– A transition from T to H is always enabled.
– In state H , the process acquires forks, but may also choose to release them

• (acquire fork) if nbr(i, j, G) and fij = ⊥, set fij := i,
• (release fork) if nbr(i, j, G) and fij = i, set fij := ⊥, and
• (to-eat) if (∀j : nbr(i, j, G) : fij = i), then change state to E.

– A transition from E to R is always enabled.
– In state R, the process releases its owned forks.

• (release fork) if nbr(i, j, G) and fij = i, set fij := ⊥
• (to-think) if (∀j : nbr(i, j, G) : fij �= i), change state to T

The initial state of the system is one where all processes are in state T and all
forks are available (i.e., have value ⊥). The desired safety property is that there
is no reachable global state where neighboring processes are in the state E.

Responding to Dynamic Network Changes. The protocol is safe for a fixed net-
work. It is, however, unsafe under dynamic changes. For instance, the addition
of a fresh link changes the nbr relation, and can cause two processes both of
which are in their eating (E) state to become adjacent, violating safety. To
avoid this possibility, the link transition is defined so that if a process is eating,

174 K.S. Namjoshi and R.J. Trefler

it moves back to hungry (H), without releasing its forks; otherwise, the state is
unchanged. The removal of a link cannot violate safety; in fact, it may make a
hungry process eligible to eat, if all remaining edges are owned by that process.
Hence, the unlink transition keeps the local state unchanged. The initial state
of a newly added node is thinking (T).

Symmetry Reduction. We show (informally) how to carry out the steps described
previously. Define the symmetry B with entries ((G,m), β, (H,n)) for all G,H
and nodes m in G and n in H , where β is defined as follows. Local states x of
(G,m) and y of (H,n) are related by β if they have the same internal state (i.e.,
one of T,H,E,R), and node m owns all of its neighboring forks if, and only if,
node n owns all of its neighboring forks. This meets the structural conditions on
B, and there is a single equivalence class for the orbit relation (as every node is
related to every other node).

We now sketch the check for simulation, which holds under stuttering. For
instance, state x of (G,m) may be one where node m is hungry and has acquired
2 out of 4 neighboring forks, while state y of (H,n) is a state where node n is
hungry and has acquired 6 out of 7 neighboring forks. An interference transition
ofm which results in it being granted one additional fork is matched by y (i.e., by
a stuttering step), while an interference transition of n which results in it being
granted the last remaining fork is matched by a sequence of two interference
transitions from x.

The representative system consists of the smallest instance, a two-node ring.
Its strongest compositional invariant can be calculated automatically. This as-
serts (cf. [24]) that, for each node, if the node is in state E, it owns all neighboring
forks. By Theorem 3, this assertion holds for all nodes in the family.

Finally, we have to check the React assumption which allows a reduction from
dynamic to parametric analysis. As outlined earlier in this section, we consider
dynamic transitions where the origin state is related to the invariant of the rep-
resentative system. For a link removal, the local state does not change. The
interesting case is where the local state is E. Since the origin state of node m
is related to the representative invariant, node m must own all forks. Removing
one fork does not change this property, and the resulting state is also in the rep-
resentative invariant. For link addition, the protocol moves to a non-E internal
state, which trivially belongs to the representative invariant.

It follows by Theorem 4 that the same invariant holds for the dynamic system.
It follows that neighboring nodes cannot be in state E, as that would imply (from
the invariant) the existence of a shared edge which is owned by both nodes, a
contradiction.

4.2 Analyzing the AODV Protocol

AODV is used to establish routes in a mobile ad-hoc network. The first version
of this protocol [1] was analyzed in [6] with theorem proving, model checking and
(manual) abstraction, in [10], using predicate abstraction on the global state (al-
though this version omits sequence numbering, which is used to handle dynamic

Analysis of Dynamic Process Networks 175

changes) and recently in [19], using process algebra. The property of interest is
whether the protocol can be put into a state where there is a routing loop. We
analyzed the latest version of AODV, called AODVv2 [2]. Enough has changed
that these earlier proofs are no longer applicable to the new version. In the course
of our modeling, we discovered an error in the AODVv2 protocol (in the han-
dling of broken routes) and suggested a fix. The authors have acknowledged the
error, and accepted the fix. The following analysis is for the corrected protocol.

The AODV protocol is used in a network where nodes are mobile, so that
connectivity between two nodes may change at any time. The protocol is used to
establish a route from a source node S to a target node T . The source floods the
network with RREQs (route requests). When an RREQ reaches T , it responds
with an RREP (route reply) message, which makes its way back to S through the
request tree created during the RREQ flood. Unlike the earlier version, AODVv2
maintains two entries for each route: one pointing back to S, the other pointing
back to T . Each entry has a next-hop field, a hop-count (more generally, a route
cost), and a sequence number. The intuition is that higher sequence numbers
indicate newer routes, while lower hop-counts indicate shorter routes. Thus, there
is a natural way to compare routes. We say that a route x is “better than” a
route y if (seqx,−hopx) is lexicographically strictly greater than (seqy,−hopy).
I.e., if seqx > seqy or if seqx = seqy and hopx < hopy. In this situation, we also
say that route y is “worse” than route x. We write this relationship as y ≺ x.

The methodology developed so far considers a node as the focal point. One
could as well consider a pair of adjacent nodes as the focal point, so that the
invariant assertions have the form θ(G, (m, e, n)) where m and n are adjacent in
G with a single shared edge e. The concepts, compositional constraints, and the-
orems carry over in a straightforward way. For instance, a local state of (m, e, n)
is interfered with by transitions at nodes which are adjacent to m and n.

As sequence numbers and hop-count are both unbounded, we need to compute
compositional invariants under an abstraction. The natural abstraction, given
the intuition, is to relate routes using the better-than relation, and to keep track
of whether m is the next-hop of n. We define a relation β between (G, (m, e, n))
and (H, (k, f, l)) as follows. Local states x and y are related in β if, and only if,
the internal states are the same, and corresponding pairs of route entries (e.g.,
those for (m,n) and (k, l); and for (m, e) and (k, f)) are related in the same way
using the better-than relation, and next-hop relations are also comparable. For
a small, 3 process network, the compositional invariant shows that rm re, and
if m is the next-hop for n, then rm � rn. (The notation ri represents the route
entry for node or edge i.)

We then check that the symmetry simulation conditions hold, limiting atten-
tion to states which are related by β to states in the compositional invariant
for the representative. The React conditions also hold, as the only reaction of
the protocol to a deleted edge is to mark a route which follows that edge as
being broken, and to send RERR (error) messages to adjacent nodes. As the re-
actions do not modify the actual route entries, they preserve the compositional

176 K.S. Namjoshi and R.J. Trefler

invariant. From the symmetry theorem, the invariant for the representative net-
work extends to the entire dynamic system.

5 Related Work and Conclusions

Compositional analysis has a long history and a large literature (cf. [11]); we
refer here only to the most directly related work. The fixpoint definition used in
this paper is a fully compositional (i.e., assume-guarantee) form of the Owicki-
Gries method [25]. Parameterized verification is undecidable in general [5], but
decidability results are known (cf. [18,16]), and several semi-decision procedures
have been developed. Typically, these approximate the infinite family of net-
works with finitary objects, for instance, the finite basis for upward-closed sets
from well-quasi-orderings [3] and finite-state transducers [20]. These objects are,
however, complex: mathematically and in terms of practical manipulation. A
number of recent papers [26,22,23,24,4] have shown that the substantially sim-
pler methods of localized analysis can be used to show parametric correctness
for a number of non-trivial protocols.

The new contribution of this work is to provide a localized method to show the
correctness of protocols which operate on dynamic networks. This requires two
key steps. First, it is necessary to define new compositional constraints which cor-
respond to actions taken by a protocol in response to dynamic changes. Second,
as the set of possible networks is infinite, it is necessary to collapse the reasoning
on to a representative network through the use of localized symmetries, induced
by abstractions. The result of compositional analysis on the representative gen-
eralizes to a quantified inductive invariant which holds for the entire dynamic
network family.

There are several other approaches to the analysis of dynamic and ad-hoc
networks. The work in [7] shows that Hoare triples for restricted logics are
decidable. Work in [14,12] applies well-quasi-ordering (wqo) theory to ad-hoc
networks, while the algorithm of [13] relies on symbolic forward exploration.
Reasoning with these approaches is in terms of global states. The methods given
here are localized in nature, which ensures simple representation and calcula-
tions, carried out with a small number of abstract processes. Also, as argued in
the introduction, the dynamic nature of the changes contributes to the effective-
ness of compositional reasoning.

The single abstract process view is also found in the network grammar method
[28] and the environment abstraction method [8] for analysis of parametric pro-
tocols. In [21], the techniques in [17] are extended to dynamically changing sys-
tems represented with graph grammars. Despite the high-level similarities to
these methods, our approach differs in being grounded in compositional analysis
and in its ability to analyze dynamic changes.

In this work, we put forward a straightforward analysis framework for dynamic
network protocols, and show that it suffices to construct correctness proofs for
two non-trivial protocols, over an infinite set of possible networks. This strength-
ens the conjecture which originally inspired this work: that dynamic network

Analysis of Dynamic Process Networks 177

protocols must be loosely coupled, and hence especially amenable to composi-
tional analysis. The simplicity and naturalness of the symmetry relations for the
two protocols lead us to believe that there is much scope for heuristic methods
which automatically determine an appropriate symmetry relation.

References

1. Ad Hoc On-Demand Distance Vector (AODV) Routing. Internet Draft, IETF Mo-
bile Ad hoc Networks Working Group

2. Dynamic MANET On-demand (AODVv2) Routing. Internet Draft, IETF Mobile
Ad hoc Networks Working Group,
http://datatracker.ietf.org/doc/draft-ietf-manet-aodvv2/

3. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321. IEEE Computer Society (1996)

4. Abdulla, P.A., Haziza, F., Hoĺık, L.: All for the price of few. In: Giacobazzi, R.,
Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495.
Springer, Heidelberg (2013)

5. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

6. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538–576 (2002)

7. Bouajjani, A., Jurski, Y., Sighireanu, M.: A generic framework for reasoning about
dynamic networks of infinite-state processes. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 690–705. Springer, Heidelberg (2007)

8. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameter-
ized verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, pp. 126–141. Springer, Heidelberg (2006)

9. Cousot, P., Cousot, R.: Automatic synthesis of optimal invariant assertions: math-
ematical foundations. In: ACM Symposium on Artificial Intelligence & Program-
ming Languages, vol. 12(8), pp. 1–12. ACM, Rochester (1977)

10. Das, S., Dill, D.L.: Counter-example based predicate discovery in predicate abstrac-
tion. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp.
19–32. Springer, Heidelberg (2002)

11. de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press (2001)

12. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of
parameterized reachability in reconfigurable broadcast networks. In: FSTTCS.
LIPIcs, vol. 18, pp. 289–300. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2012)

13. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of safety
properties in ad hoc network protocols. In: PACO. EPTCS, vol. 60, pp. 56–65
(2011)

14. Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of ad hoc networks with
node and communication failures. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and
FMOODS 2012. LNCS, vol. 7273, pp. 235–250. Springer, Heidelberg (2012)

15. Dijkstra, E., Scholten, C.: Predicate Calculus and Program Semantics. Springer
(1990)

http://datatracker.ietf.org/doc/draft-ietf-manet-aodvv2/

178 K.S. Namjoshi and R.J. Trefler

16. Emerson, E., Namjoshi, K.: Reasoning about rings. In: ACM Symposium on Prin-
ciples of Programming Languages (1995)

17. Emerson, E.A., Trefler, R.J., Wahl, T.: Reducing model checking of the few to the
one. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 94–113.
Springer, Heidelberg (2006)

18. German, S., Sistla, A.: Reasoning about systems with many processes. Journal of
the ACM (1992)

19. Höfner, P., van Glabbeek, R.J., Tan, W.L., Portmann, M., McIver, A., Fehnker,
A.: A rigorous analysis of aodv and its variants. In: MSWiM, pp. 203–212. ACM
(2012)

20. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich ssertional languages. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254,
pp. 424–435. Springer, Heidelberg (1997)

21. Langari, Z., Trefler, R.: Symmetry for the analysis of dynamic systems. In: NASA
Formal Methods 2011, pp. 252–266 (2011)

22. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized sys-
tems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313.
Springer, Heidelberg (2007)

23. Namjoshi, K.S., Trefler, R.J.: Local symmetry and compositional verification. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 348–362.
Springer, Heidelberg (2012)

24. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks.
In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 496–514. Springer, Heidelberg (2013)

25. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM 19(5), 279–285 (1976)

26. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001)

27. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modelling and verification
of ad hoc routing protocols. LNCS, pp. 18–32 (2008)

28. Shtadler, Z., Grumberg, O.: Network grammars, communication behaviors and
automatic verification. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 151–
165. Springer, Heidelberg (1990)

Tool Demonstrations

MultiGain: A Controller Synthesis Tool for

MDPs with Multiple Mean-Payoff Objectives

Tomáš Brázdil1, Krishnendu Chatterjee2, Vojtěch Forejt3, and Antońın Kučera1

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 IST Austria

3 Department of Computer Science, University of Oxford, UK

Abstract. We present MultiGain, a tool to synthesize strategies for
Markov decision processes (MDPs) with multiple mean-payoff objectives.
Our models are described in PRISM, and our tool uses the existing in-
terface and simulator of PRISM. Our tool extends PRISM by adding
novel algorithms for multiple mean-payoff objectives, and also provides
features such as (i) generating strategies and exploring them for simula-
tion, and checking them with respect to other properties; and (ii) gen-
erating an approximate Pareto curve for two mean-payoff objectives. In
addition, we present a new practical algorithm for the analysis of MDPs
with multiple mean-payoff objectives under memoryless strategies.

1 Introduction

Markov decision processes (MDPs) are a standard model for analysis of proba-
bilistic systems with non-determinism [12], with a wide range of applications [5].
In each state of an MDP, a controller chooses one of several actions (the nonde-
terministic choices), and the current state and action gives a probability distribu-
tion over the successor states. One classical objective used to study quantitative
properties of systems is the limit-average (or mean-payoff) objective, where a
reward (or cost) is associated with each transition and the objective assigns to
every run the average of the rewards over the run. MDPs with single mean-payoff
objectives have been well studied in the literature (see, e.g., [14]). However, in
many modeling domains, there is not a single goal to be optimized, but multi-
ple, potentially interdependent and conflicting goals. For example, in designing a
computer system, the goal is to maximize average performance while minimizing
average power consumption. Similarly, in an inventory management system, the
goal is to optimize several dependent costs for maintaining each kind of prod-
uct. The complexity of MDPs with multiple mean-payoff objectives was studied
in [6].

In this paper we present MultiGain, which is, to the best of our knowl-
edge, the first tool for synthesis of controller strategies in MDPs with multiple
mean-payoff objectives. The MDPs and the mean-payoff objectives are specified
in the well-known PRISM modelling language. Our contributions are as follows:
(1) we extend PRISM with novel algorithms for multiple mean-payoff objectives
from [6]; (2) develop on the results of [6] to synthesize strategies, and explore

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 181–187, 2015.
DOI: 10.1007/978-3-662-46681-0_12

182 T. Brázdil et al.

them for simulation, and check them with respect to other properties (as done in
PRISM-games [9]); and (3) for the important special case of two mean-payoff ob-
jectives we provide the feature to visualize the approximate Pareto curve (where
the Pareto curve represents the “trade-off” curve and consists of solutions that
are not strictly dominated by any other solution). Finally, we present a new
practical approach for analysis of MDPs with multiple mean-payoff objectives
under memoryless strategies: previously an NP bound was shown in [8] by guess-
ing all bottom strongly connected components (BSCCs) of the MDP graph for
a memoryless strategy and this gave an exponential enumerative algorithm; in
contrast, we present a linear reduction to solving a boolean combination of linear
constraints (which is a special class of mixed integer linear programming where
the integer variables are binary).

2 Definitions

MDPs and Strategies. An MDP G = (S,A,Act , δ) consists of (i) a finite set
S of states; (ii) a finite set A of actions, (iii) an action enabledness function
Act : S → 2A \ {∅} that assigns to each state s the set Act(s) of actions enabled
at s, and (iv) a transition function δ : S ×A → dist(S) that given a state s and
an action a ∈ Act(s) gives a probability distribution over the successor states
(dist(S) denotes all probability distributions over S). W.l.o.g. we assume that
every action is enabled in exactly one state, and we denote this state Src(a).
Thus, we will assume that δ : A → dist(S). Strategies describe how to choose
the next action given a finite path (of state and action pairs) in the MDP. A
strategy consists of a set of memory elements to remember the history of the
paths. The memory elements are updated stochastically in each transition, and
the next action is chosen probabilistically (among enabled actions) based on the
current state and current memory [6]. A strategy is memoryless if it depends
only on the current state.

Multiple Mean-payoff Objectives. A single mean-payoff objective consists
of a reward function r that assigns a real-valued reward r(s, a) to every state
s and action a enabled in s, and the mean-payoff objective mp(r) assigns to
every infinite path (or run) the long-run average of the rewards of the path,

i.e., for π = (s0a0s1a1 . . .) we have mp(r)(π) = lim infn→∞ 1
n ·

∑n−1
i=0 r(si, ai).

In multiple mean-payoff objectives, there are k reward functions r1, r2, . . . , rk,
and each reward function ri defines the respective mean-payoff objective mp(ri).
Given a strategy σ and a random variableX , we denote by E

σ
s [X] the expectation

of the σ w.r.t.X , given a starting state s. Thus for a mean-payoff objectivemp(r),
the expected mean-payoff is Eσ

s [mp(r)].

Synthesis Questions. The relevant questions in analysis of MDPs with mul-
tiple objectives are as follows: (1) (Existence). Given an MDP with k reward
functions, starting state s0, and a vector v = (v1, v2, . . . , vk) of k real-values,
the existence question asks whether there exists a strategy σ such that for all
1 ≤ i ≤ k we have E

σ
s0 [mp(ri)] ≥ vi. (2) (Synthesis). If the answer to the exis-

tence question is yes, the synthesis question asks for a witness strategy to satisfy

MultiGain: A Controller Synthesis Tool for MDPs 183

the existence question. An optimization question related to multiple objectives
is the computation of the Pareto-curve (or the trade-off curve), where the Pareto
curve consists of vectors v such that the answer to the existence question is yes,
and for all vectors v′ that strictly dominate v (i.e., v′ is at least v in all dimen-
sions and strictly greater in at least one dimension) the answer to the existence
question is no.

3 Algorithms and Implementation

We first recall the existing results for MDPs with multiple mean-payoff objec-
tives [6], and then describe our implementation and extensions. Before present-
ing the existing results, we first recall the notion of maximal end-components in
MDPs.

Maximal End-components. A pair (T,B) with ∅ �= T ⊆ S and B ⊆⋃
t∈T Act(t) is an end component of G if (1) for all a ∈ B, whenever δ(a)(s′) > 0

then s′ ∈ T ; and (2) for all s, t ∈ T there is a finite path from s to t such that
all states and actions that appear in the path belong to T and B, respectively.
An end component (T,B) is a maximal end component (MEC) if it is maximal
wrt. pointwise subset ordering. An MDP is unichain if for all B ⊆ A satisfying
B ∩Act(s) �= ∅ for any s ∈ S we have that (S,B) is a MEC. Given an MDP, we
denote SMEC the set of states s that are contained within a MEC.

Result From [6]. The results of [6] showed that (i) the existence question can
be answered in polynomial time, by reduction to linear programming; (ii) if there
exists a strategy for the existence problem, then there exists a witness strategy
with only two-memory states. It also established that if the MDP is unichain,
then memoryless strategies are sufficient. The polynomial-time algorithm is as
follows: it was shown in [6] that the answer to the existence problem is yes iff
there exists a non-negative solution to the system of linear inequalities given in
Fig. 1.

Syntax and Semantics. Our tool accepts PRISM MDP models as input, see
[1] for details. The multi-objective properties are expressed as multi(list) or
mlessmulti(list) where list is a comma separated list of mean-payoff reward
properties, which can be boolean, e.g. R{’r1’}>=0.5 [S], and in the case of

1s0(s) +
∑

a∈A ya · δ(a)(s) = ∑
a∈Act(s) ya + ys for all s ∈ S (1)

∑
s∈SMEC

ys = 1 (2)
∑

s∈C ys =
∑

a∈A∩C xa for all MECs C of G (3)
∑

a∈A xa · δ(a)(s) = ∑
a∈Act(s) xa for all s ∈ S (4)

∑
a∈A xa · ri(a) ≥ vi for all 1 ≤ i ≤ k (5)

Fig. 1. System L of linear inequalities (here 1s0(s) is 1 if s=s0, and 0 otherwise)

184 T. Brázdil et al.

multi also numerical, e.g. R{’r2’}min=? [S]. In the reward properties, S stands
for steady-state, following PRISM’s terminology.

If all properties in the list are boolean, the multi-objective property
multi(list) is also boolean and is true iff there is a strategy under which all
given reward properties in the list are simultaneously satisfied. If there is a sin-
gle numerical query, the multi-objective query intuitively asks for the maximal
achievable reward of the numerical reward query, subject to the restriction given
by the boolean queries. We also allow two numerical queries; in such caseMulti-

Gain generates a Pareto curve. The semantics of mlessmulti follows the same
pattern, the only difference being that only memoryless (randomised) strategies
are being considered. The reason we don’t allow numerical reward properties in
mlessmulti is that the supremum among all memoryless strategies might not
be realised.

Implementation of Existence Question. We have implemented the algo-
rithm of [6]. Our implementation takes as input an MDP with multiple mean-
payoff objectives and a value vector v, and computes the linear inequalities of
Fig. 1 or a mixed integer linear programming (MILP) extension in case of mem-
oryless strategies. The system of linear inequalities is solved with LPsolve [2] or
Gurobi [3].

Implementation of the Synthesis Question.We now describe how to obtain
witness strategies. Assume that the linear program from Fig. 1 has a solution,
where a solution to a variable z is denoted by z. We construct a new linear
program, comprising Eq. 1 together with the equations ys =

∑
a∈Act(s) xa for all

s ∈ SMEC.
Let ẑ denote a solution to variables z in this linear program. The stochastic-

update strategy is defined to have 2 memory states (“transient” and “recur-
rent”), with the transition function defined to be σt (s)(a) = ŷa/

∑
b∈Act(s) ŷb

and σr (s)(a) = xa/
∑

b∈Act(s) xb, and the probability of switching from “tran-

sient” to “recurrent” state upon entering s being ŷs/(
∑

a∈Act(s) ŷa + ŷs). The

correctness of the witness construction follows from [6].

MILP for Memoryless Strategies. For memoryless strategies, the current
upper bound is NP [8] and the previous algorithm enumerates all possible BSCCs
under a memoryless strategy. We present a polynomial-time reduction to solving
a boolean combination of linear constraints, that can be easily encoded using
MILP with binary variables [16]. The key requirement for memoryless strategies
is that a state can either be recurrent or transient. For the existence question
restricted to memoryless strategies we modify the linear constraints from Fig. 1
as follows: (i) we add constraints; for all states s and actions b ∈ Act(s): yb >
0 =⇒ (xb > 0∨

∑
a∈Act(Src(b)) xa = 0); (ii) we replace constraint (3) from Fig. 1

by constraints that for all states s: ys =
∑

a∈Act(s) xa. The constraint (ii) is a

strengthening of constraint (3), as the above constraint implies constraint (3).
Further details are in [7].

Approximate Pareto Curve for Two Objectives. To generate a Pareto
curve, we successively compute solutions to several linear programs for a single

MultiGain: A Controller Synthesis Tool for MDPs 185

Fig. 2. Screenshot of MultiGain (largely inheriting from the PRISM GUI)

mean-payoff objective, where every time the objective is obtained as a weighted
sum of the objectives for which the Pareto curve is generated. The weights are
selected in a way similar to [11], allowing us to obtain the approximation of the
curve.

Unlike the PRISM implementation for multi-objective cumulative rewards,
our tool is able to generate the Pareto curve for objectives of the form
multi(R{’r1’}max=?[S], R{’r2’}max=? [S], R{’r3’}>=0.5 [S]) where the
objectives to be optimised are subject to restrictions given by other rewards.

Features of Our Tool. In summary, our tool extends PRISM by developing
algorithms to solve MDPs with multiple mean-payoff objectives. Along with
the algorithm from [6] we have also implemented a visual representation of
the Pareto curve for two-dimensional objectives. The implementation utilises
a multi-objective visualisation available in PRISM for cumulative reward and
LTL objectives.

In addition, we adapted a feature from PRISM-games [9] which allows the user
to generate strategies, so that they can be explored and investigated by simula-
tion. A product (Markov chain) of an MDP and a strategy can be constructed,
allowing the user to employ it for verification of other properties.

The tool is available at http://qav.cs.ox.ac.uk/multigain/, and the
source code is provided under GPL. For licencing reasons, Gurobi is not in-
cluded with the download, but it can be added manually by following provided
steps.

4 Experimental Results: Case Studies

We have evaluated our tool on two standard case studies, adapted from [1], and
also mention other applications where our tool could be used.

http://qav.cs.ox.ac.uk/multigain/

186 T. Brázdil et al.

Table 1. Experimental results. For space reasons, the [S] argument to R is omitted

model para.
property MDP LP total solving

value
(A: multi(. . .), B: mlessmulti(. . .)) states vars (binary) rows time (s) time (s)

phil

3 A: R{"think"}max=?,R{"eat"}>=0.3 956 6344 1915 0.23 0.08 2.119
3 B: R{"think"}>=2.11,R{"eat"}>=0.3 956 12553 (6344) 11773 209.9 209.7 true
3 B: R{"think"}>=2.12,R{"eat"}>=0.3 956 12553 (6344) 11773 20.9 20.7 false
4 A: R{"think"}max=?,R{"eat"}>=1 9440 80368 18883 4.4 3.8 2.429
5 A: R{"think"}max=?,R{"eat"}>=1 93068 967168 186139 616.0 606.4 3.429

mutex
3 A: R{"try"}max=?[S], R{"crit"}>=0.2 27766 119038 55535 214.9 212.7 2.679
4 A: R{"try"}max=?[S], R{"crit"}>=0.3 668836 3010308 1337675 t/o t/o t/o
4 A: R{"try"}>=3.5[S], R{"crit"}>=0.3 668836 3010308 1337676 4126 4073 true

Dining philosophers is a case study based on the algorithm of [10], which ex-
tends Lehmann and Rabin’s randomised solution [13] to the dining philosophers
problem so that there is no requirement for fairness assumptions. The constant
N gives the number of philosophers. We use two reward structures, think and
eat for the number of philosophers currently thinking and eating, respectively.

Randomised Mutual Exclusionmodels a solution to the mutual exclusion problem
by [15]. The parameter N gives the number of processes competing for the access
to the critical section. Here we defined reward structures try and crit for the
number of processes that are currently trying to access the critical section, and
those which are in it, currently (the latter number obviously never being more
than 1).

Evaluation. The statistics for some of our experiments are given in Table 1
(the complete results are available from the tool’s website). The experiments
were run on a 2.66GHz PC with 4GB RAM, the LP solver used was Gurobi and
the timeout (“t/o”) was set to 2 hours. We observed that our approach scales
to mid-size models, the main limitation being the LP solver.

Other Applications. We mention two applications which are solved using
MDPs with multiple mean-payoff objectives. (A) The problem of synthesis from
incompatible specifications was considered in [17]. Given a set of specifications
ϕ1, ϕ2, . . . , ϕk that cannot be all satisfied together, the goal is to synthesize a
system such that for all 1 ≤ i ≤ k the distance to specification ϕi is at most vi.
In adversarial environments the problem reduces to games and for probabilis-
tic environments to MDPs, with multiple mean-payoff objectives [17]. (B) The
problem of synthesis of steady state distributions for ergodic MDPs was consid-
ered in [4]. The problem can be modeled with multiple mean-payoff objectives
by considering indicator reward functions rs, for each state s, that assign re-
ward 1 to every action enabled in s and 0 to all other actions. The steady state
distribution synthesis question of [4] then reduces to the existence question for
multiple mean-payoff MDPs.

Concluding Remarks. We presented the first tool for analysis of MDPs with
multiple mean-payoff objectives. The limiting factor is the LP solver, and so an
interesting direction would be to extend the results of [18] to multiple objectives.

MultiGain: A Controller Synthesis Tool for MDPs 187

Acknowledgements. The authors were in part supported by Austrian Science
Fund (FWF) Grant No P23499- N23, FWF NFN Grant No S11407-N23 (RiSE),
ERC Start grant (279307: Graph Games) and the research centre Institute for
Theoretical Computer Science (ITI), grant No. P202/12/G061.

References

1. http://www.prismmodelchecker.org/

2. http://sourceforge.net/projects/lpsolve/

3. http://www.gurobi.com

4. Akshay, S., Bertrand, N., Haddad, S., Hélouët, L.: The steady-state control problem
for markov decision processes. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio,
P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 290–304. Springer, Heidelberg (2013)

5. Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)
6. Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Two views on multi-

ple mean-payoff objectives in Markov decision processes. In: LICS 2011, pp. 33–42.
IEEE Computer Society (2011)

7. Brázdil, T., Chatterjee, K., Forejt, V., Kučera, A.: MultiGain: A controller syn-
thesis tool for mdps with multiple mean-payoff objectives. CoRR, abs/1501.03093
(2015)

8. Chatterjee, K.: Markov decision processes with multiple long-run average objec-
tives. In: FSTTCS, pp. 473–484 (2007)

9. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: A
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 185–191. Springer, Hei-
delberg (2013)

10. Duflot, M., Fribourg, L., Picaronny, C.: Randomized dining philosophers without
fairness assumption. Distributed Computing 17(1), 65–76 (2004)

11. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 317–332. Springer, Heidelberg (2012)

12. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press (1960)
13. Lehmann, D., Rabin, M.: On the advantage of free choice: A symmetric and fully

distributed solution to the dining philosophers problem. In: POPL 1981 (1981)
14. Puterman, M.L.: Markov Decision Processes. J. Wiley and Sons (1994)
15. Rabin, M.: N-process mutual exclusion with bounded waiting by 4 log2 N-valued

shared variable. Journal of Computer and System Sciences 25(1), 66–75 (1982)
16. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons

(1998)
17. Černý, P., Gopi, S., Henzinger, T.A., Radhakrishna, A., Totla, N.: Synthesis from

incompatible specifications. In: EMSOFT, pp. 53–62 (2012)
18. Wimmer, R., Braitling, B., Becker, B., Hahn, E.M., Crouzen, P., Hermanns, H.,

Dhama, A., Theel, O.E.: Symblicit calculation of long-run averages for concurrent
probabilistic systems. In: QEST, pp. 27–36. IEEE Computer Society Press (2010)

http://www.prismmodelchecker.org/
http://sourceforge.net/projects/lpsolve/
http://www.gurobi.com

syntMaskFT: A Tool for Synthesizing Masking

Fault-Tolerant Programs from Deontic
Specifications

Ramiro Demasi1,�, Pablo F. Castro3,4,��, Nicolás Ricci3,4,��,
Thomas S.E. Maibaum2, and Nazareno Aguirre3,4,��

1 Fondazione Bruno Kessler, Trento, Italy
demasi@fbk.eu

2 Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada
tom@maibaum.org

3 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina

{pcastro,nricci,naguirre}@dc.exa.unrc.edu.ar
4 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. In this paper we introduce syntMaskFT, a tool that synthe-
sizes fault-tolerant programs from specifications written in a fragment of
branching time logic with deontic operators, designed for specifying fault-
tolerant systems.The tool focuses onproducingmasking tolerantprograms,
that is, programs that during a failure mask faults in such a way that they
cannot be observed by the environment. It is based on an algorithm we
have introduced in previous work, and shown to be sound and complete.
syntMaskFT takes a specification and automatically determines whether a
masking fault-tolerant component is realizable; in such a case, a descrip-
tion of the component is produced together with the maximal set of faults
that can be supported for this level of tolerance. We present the ideas be-
hind the tool by means of a simple example, and also report the result of
experiments realized with more complex case studies.

Keywords: Fault-tolerance, Program synthesis, Temporal logics, Deon-
tic logics.

1 Introduction

Critical systems, i.e., systems that are involved in serious or vital activities such
as medical procedures (e.g., software for medical devices) or the control of vehi-
cles (e.g., software controllers in the automotive and the avionics industries) are

� My contribution to this paper was made during my PhD studies at McMaster Univer-
sity, supported by a Fellowship from the IBM Canada Centre for Advanced Studies,
in support of the Automotive Partnership Canada funded project NECSIS.

�� This work was partially supported by the Argentinian Agency for Scientific and
Technological Promotion (ANPCyT), through grants PICT 2012 No. 1298 and PICT
2013 No. 0080; and by the MEALS project (EU FP7 programme, grant agreement
No. 295261).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 188–193, 2015.
DOI: 10.1007/978-3-662-46681-0_13

syntMaskFT: A Tool for Synthesizing Masking Fault-Tolerant Programs 189

subject to a variety of potential failures. In many cases, these failures are not
the result of software defects; instead, these may be the result of environmen-
tal conditions, such as power outages, electronic noise, or the physical failure of
devices, that are not straightforward to avoid. The seriousness of the activities
in which critical systems are involved makes it necessary to mitigate the effect
of such failures. Therefore, the problem of guaranteeing through verification a
certain degree of fault-tolerance, ensuring that systems will not be corrupted
or degraded below a certain level despite the occurrence of faults, has gained
considerable attention in recent years. Moreover, given the complexity of these
systems and their properties, automated verification techniques for fault-tolerant
systems are becoming increasingly important. While verification is (usually) a
posteriori, a related automated alternative is synthesis. Various automated sys-
tem analysis techniques (e.g., SAT and automata based techniques) have been
recently adapted for system synthesis, i.e., the task of automatically obtaining a
correct-by-construction implementation from a system specification [1,2].

Despite the growing research on system synthesis, the availability of tools for
fault-tolerant system synthesis is still low. In this paper we present syntMaskFT,
a tool for synthesizing masking fault-tolerant programs from deontic logic speci-
fications. The theoretical foundations of the tool were put forward in [4,5]. In this
paper, we concentrate on masking fault-tolerance which intuitively corresponds
to the case in which the system is able to completely mask faults, not allow-
ing these to have any observable consequences for the users. Roughly speaking,
our synthesis algorithm takes as input a component specification, and automati-
cally determines whether a component with masking fault-tolerance is realizable
or not. In case such a fault-tolerant component is feasible, its implementation,
together with the maximal set of faults supported for this level of tolerance,
are automatically computed. A distinguishing feature of the tool is the use of
Deontic Logic. These logics enrich standard (temporal) modalities with opera-
tors such as obligation and permission, making it possible to distinguish between
normal and abnormal system behavior. In our approach, the logical specification
of the component is given in dCTL-, a fragment of a branching time temporal
logic with deontic operators [3], especially designed for fault-tolerant component
specification. Let us emphasize that in our approach faults are declaratively em-
bedded in the logical specification, where these are understood as violations to
the obligations prescribing the behavior of the system. Thereby, we can inject
faults automatically from deontic formula violations. Regarding the engine of
our tool, it is based on a tableau-based method for deriving a finite state model
from a dCTL- specification, with simulation algorithms for calculating masking
fault-tolerance. Finally, we have conducted a series of experiments to test the
performance of syntMaskFT in practice.

2 dCTL

The logic dCTL is an extension of Computation Tree Logic (CTL), with its novel
part being the deontic operatorsO(ψ) (obligation) andP(ψ) (permission), which

190 R. Demasi et al.

are applied to a path formula ψ. Most importantly, the deontic operators allow
us to declaratively distinguish the normative (correct, without faults) part of
the system from its non-normative (faulty) part; an example of its use is shown
below. The tool deals with a fragment of dCTL (named dCTL-), described in the
following BNF style grammar:

Φ ::= � | pi | ¬Φ | Φ → Φ | A(Ψ) | E(Ψ) | O(Ψ) | P(Ψ)
Ψ ::= XΦ | Φ U Φ | Φ W Φ

The standard boolean operators and the CTL quantifiers A and E have the usual
semantics. Deontic operators have the following meaning:O(ψ): the path formula
ψ is obliged in every future state, reachable via non-faulty transitions ;P(ψ): there
exists a normal execution, i.e., not involving faults, starting from the current
state and along which the path formula ψ holds. These operators allow one to
capture the intended behavior of the system when no faults are present. We
present a simple example to illustrate the use of this logic to specify systems.
The semantics of the logic is given via colored Kripke structures. A colored Kripke
structure is a 5-tuple 〈S, I, R, L,N〉, where S is a finite set of states, I ⊆ S is
a set of initial states, R ⊆ S × S is a transition relation, L : S → ℘(AP) is a
labeling function indicating which propositions are true in each state, andN ⊆ S
is a set of normal, or “green” states. The complement of N is the set of “red”,
abnormal or faulty, states. Arcs leading to abnormal states can be thought of as
faulty transitions, or simply faults (see Fig.1).

Example 1. Consider a memory cell that stores a bit of information and supports
reading and writing operations. A state in this system maintains the current
value of the memory cell, writing allows one to change this value, and reading
returns the stored value. A property that one might associate with this model is
that the value read from the cell coincides with that of the last writing performed
in the system. Moreover, a potential fault occurs when a cell unexpectedly loses
its charge, and its stored value turns into another one. A typical technique to
deal with this situation is redundancy: use three memory bits instead of one.
Writing operations are performed simultaneously on the three bits. Reading, on
the other hand, returns the value that is repeated at least twice in the memory
bits; this is known as voting, and the value read is written back to the three bits.

We take the following approach to model this system: each state is described
by variables r and w, which record the value stored in the system (taking voting
into account) and the last writing operation performed, respectively. First, note
that variable w is only used to enable the verification of properties of the model,
thus this variable will not be present in any implementation of the memory.
The state also maintains the values of the three bits that constitute the system,
captured by boolean variables c0, c1 and c2. Part of the specification together
with the associated intuition, is shown below:

– O(r ↔ w), the value read from the cell ought to coincide with the last writing
performed.

– O((c0 ∧ c1 ∧ c2) ∨ (¬c0 ∧ ¬c1 ∧ ¬c2)), a safety property of the system: the
three bits should coincide,

syntMaskFT: A Tool for Synthesizing Masking Fault-Tolerant Programs 191

– AG(¬r ↔ ((¬c0 ∧ ¬c1) ∨ (¬c0 ∧ ¬c2) ∨ (¬c1 ∧ ¬c2))), the reading of a 0
corresponds to the value read in the majority.

We also note that we consider variables r, w as the interface of our memory cell,
that is, the observable information of this specification. In particular, note the
deontic formula given above; the first one states that we should read the same
value that was written, and the second one says that, when no faults are present,
the three bits of the cell coincide, otherwise a fault has occurred.

3 Masking Fault-Tolerance

Intuitively, a system is said to be masking fault-tolerant when the faulty behavior
is masked in such a way that it cannot be observed by the user. In [6], Gärtner
gives a more rigorous definition of masking fault-tolerance: a system is masking
tolerant when it continues satisfying its specification even under the occurrence
of faults. In [4], we propose to capture the notion of masking by means of sim-
ulation relations; here we introduce this idea by means of the memory example.
Consider the colored Kripke structure in Figure 1 (where red states and arrows

111/11

000/00

101/11

c0 ∧ c1 ∧ c2 ∧ r ∧ w →
c0, c1, c2, r,w := ¬c0,¬c1,¬c2,¬r,¬w

c0 ∧ c1 ∧ c2 ∧ r ∧ w → skip
¬c0 ∧ ¬c1 ∧ ¬c2 ∧ ¬r ∧ ¬w →

c0, c1, c2, r,w := ¬c0,¬c1,¬c2,¬r,¬w
¬c0 ∧ ¬c1 ∧ ¬c2 ∧ ¬r ∧ ¬w → skip
[c0 ∧ c1 ∧ c2 ∧ r ∧ w → c1 := ¬c1]
c0 ∧ ¬c1 ∧ c2 ∧ r ∧ w → c1 := ¬c1

Fig. 1. Colored Structure and Guarded Program for Memory Cell

are depicted using dotted lines), this structure is a model of the system described
in Example 1, where the circle labeled with 111/11 represents the state where
all the bits are on, and r and w are set to true, and similarly for the other states.
In this example a fault changing one bit is taken into account (the faulty state is
drawn using dotted lines). Note that this model can also be described by using
a simple guarded language; this is illustrated on the right in the same figure;
note that in this case the faulty action is enclosed within brackets. We said that
this structure is making fault-tolerant, since the faulty state is masked by the
nonfaulty ones. Indeed, taking into account the variables in the interface (r, w
in this case), one cannot observe any difference in comparison to the normal
behavior of the program (the fault is masked by the redundancy of bits).

192 R. Demasi et al.

Lexer

Parser

Front End

Tableau
construction

Pruning Rules

Preprocessing

Injection of
Faults

Masking
Simulation
Algorithms

Fault Analysis

dSpec Fault-Tolerant
Program

Fig. 2. The Architecture of syntMaskFT

4 The Tool syntMaskFT

The main goal of syntMaskFT is, given a specification, to return the descrip-
tion of a system that masks a maximum number of faults. The description of
the system can be given in two ways: a colored Kripke structure, or a simple
description using a guarded command language in the style shown in the fig-
ure above. To this end, the tool uses a SAT method for dCTL- together with
a simulation relation to prune the state space. The architecture of syntMaskFT
is illustrated in Figure 2. The input of syntMaskFT is a deontic specification
dSpec, composed of an interface, an init-spec, and a normal-spec. interface is
described by a subset of the state variables, which, intuitively, form the visible
part of the system; init-spec and normal-spec are dCTL- formulas, where the for-
mer specifies the initial states of the system, and the latter specifies properties
that are required to hold in all states that are reachable from the initial states.
Initially, syntMaskFT reads a deontic specification dSpec as an input file, which
is then tokenized (Lexer) and parsed to obtain abstract syntax trees according
to the dCTL- expression grammar (Parser). The abstract syntax trees are stored
as elements of a set of dCTL- formulas. The preprocessing component constructs
an initial tableau TN for the input dSpec based on a dCTL- SAT procedure.
Pruning rules are applied to the the tableau TN in order to remove all nodes
that are either propositionally inconsistent, do not have enough successors, or
are labeled with a CTL or deontic eventuality formula which is not fulfilled. This
process returns as a result true, if dSpec is satisfiable, or false, in the case
dSpec is unsatisfiable. If dSpec is satisfiable, it has a finite model that is em-
bedded in the tableau TN . Assuming a positive result from the dCTL- decision
procedure for dSpec, the next step is to perform a fault analysis. In this phase,
faults are injected into the tableau in the first place, where faults are understood
as (all possible) violations to the deontic obligations imposed in the description
of the correct behavior of the system. Subsequently, a masking simulation algo-
rithm (taking into account the input interface) is executed in order to remove
those nodes from the tableau that cannot be masked. Finally, the tableau TF is
unravelled into a masking fault-tolerant program implementing dSpec.

syntMaskFT: A Tool for Synthesizing Masking Fault-Tolerant Programs 193

Table 1. Experimental results

Name Faults Injected faults unmasked/removed Time in sec

Byzantine Agreement 7 4 0.20
Token Ring 220 150 111.85

N-Modular-Redundancy 410 260 535.91
Memory Cell 100 70 10.13

5 Implementation and Evaluation

The syntMaskFT tool is implemented in Java. All experiments have been con-
ducted on a computer with a 2.9 Ghz Intel Core i5 with 4 GB of memory.

We have performed experiments to test the performance of our tool in prac-
tice. A well-known case study in the fault-tolerant community is the Byzantine
agreement problem, formalized in [7]. We have specified this example in dCTL-
and synthesized a solution for one general and three lieutenants. Another ex-
periment that we have performed is N-Modular-Redundancy (NMR), a form of
modular redundancy in which N systems perform a process whose results are
processed by a majority-voting system to produce a single output. An NMR
system can tolerate up to n module failures, where n = (N − 1)/2. For this
case study, we have evaluated 5-modular-redundancy using our tool. Our third
experiment involves an adaptation of a case study from [2], a token ring for solv-
ing distributed mutual exclusion, where processes 0 . . .N are organized in a ring
with the token being circulated along the ring in a fixed direction. We have syn-
thesized a token ring for four processes and an identical result to that reported in
[2]. Finally, our last experiment is the memory cell presented in Example 1. Table
1 summarizes the experimental results on these models, reporting the number of
faults injected and removed to achieve masking tolerance, and running times.

syntMaskFT is free software. Documentation and installation instructions can
be found at https://code.google.com/p/synt-mask-ft/.

References

1. Attie, P.C., Arora, A., Emerson, E.A.: Synthesis of fault-tolerant concurrent pro-
grams. ACM Trans. Program. Lang. Syst. 26(1) (2004)

2. Bonakdarpour, B., Kulkarni, S., Abujarad, F.: Symbolic synthesis of masking fault-
tolerant distributed programs. Distributed Computing 25(1) (2012)

3. Castro, P.F., Kilmurray, C., Acosta, A., Aguirre, N.: dCTL: A Branching Time
Temporal Logic for Fault-Tolerant System Verification. In: Proc. of SEFM (2011)

4. Demasi, R., Castro, P.F., Maibaum, T.S.E., Aguirre, N.: Characterizing Fault-
Tolerant Systems by Means of Simulation Relations. In: Proc. of IFM (2013)

5. Demasi, R., Castro, P.F., Maibaum, T.S.E., Aguirre, N.: Synthesizing Fault-Tolerant
Systems from Deontic Specifications. In: Proc. of ATVA (2013)

6. Gärtner, F.: Fundamentals of Fault-Tolerant Distributed Computing in Asyn-
chronous Environments. ACM Comput. Surv. 31(1) (1999)

7. Lamport, L., Merz, S.: Specifying and Verifying Fault-Tolerant Systems. In: Proc.
of FTRTFT (1994)

https://code.google.com/p/synt-mask-ft/

νZ - An Optimizing SMT Solver

Nikolaj Bjørner1, Anh-Dung Phan2, and Lars Fleckenstein3

1 Microsoft Research, Redmond, WA, USA
2 DTU Compute, Technical University of Denmark

3 Microsoft Dynamics, Vedbæk, Denmark
nbjorner@microsoft.com, padu@dtu.dk, LarsFleckenstein@outlook.com

Abstract. νZ is a part of the SMT solver Z3. It allows users to pose
and solve optimization problems modulo theories. Many SMT applica-
tions use models to provide satisfying assignments, and a growing num-
ber of these build on top of Z3 to get optimal assignments with respect
to objective functions. νZ provides a portfolio of approaches for solving
linear optimization problems over SMT formulas, MaxSMT, and their
combinations. Objective functions are combined as either Pareto fronts,
lexicographically, or each objective is optimized independently. We de-
scribe usage scenarios of νZ, outline the tool architecture that allows
dispatching problems to special purpose solvers, and examine use cases.

1 An Invitation to νZ

νZ extends the functionality of Z3 [7] to include optimization objectives. It allows
users to solve SMT constraints and at the same time formulate optimality criteria
for the solutions. It relieves users of Z3 from writing their own loops around the
solver to find optimal values. The solver integrates state-of-the-art algorithms
for optimization, and it extends some of these algorithms with its own twists: For
example, it includes direct support for difference logic solvers, it uses Simplex
over non-standard numbers to find unbounded constraints, and it applies an
incremental version of the MaxRes [11] algorithm for MaxSAT solving.

(declare-fun x () Int)

(declare-fun y () Int)

(assert (and (< y 5) (< x 2)))

(assert (< (- y x) 1))

(maximize (+ x y))

(check-sat)

(get-model)

To give a first idea, we can ask to
optimize the term x+y under the con-
straints y < 5 ∧ x < 2 and y − x < 1
using the SMT query to the right.
The optimal answer is given as 2 and
νZ returns a model where x = y =
1. The example shows the maximize

command that is added to the SMT-
LIB [13] syntax.

1.1 Optimization Commands

The full set of commands νZ adds to SMT-LIB are:

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 194–199, 2015.
DOI: 10.1007/978-3-662-46681-0_14

νZ - An Optimizing SMT Solver 195

(declare-fun x () Int)

(declare-fun y () Int)

(define-fun a1 () Bool (> x 0))

(define-fun a2 () Bool (< x y))

(assert (=> a2 a1))

(assert-soft a2 :dweight 3.1)

(assert-soft (not a1) :weight 5)

(check-sat)

(get-model)

Fig. 1. Maximize 3.1 · a2+ 5 · a1. νZ finds
a solution where y ≤ x ≤ 0

(declare-fun x () Int)

(declare-fun y () Int)

(assert (= (+ x y) 10))

(assert (>= x 0))

(assert (>= y 0))

(maximize x)

(maximize y)

(set-option :opt.priority box)

(check-sat)

Fig. 2. νZ produces two independent op-
tima x = 10, respectively y = 10

– (maximize t) - instruct the solver to maximize t . The type of the term t

can be either Integer, Real or Bit-vector.
– (minimize t) - instruct the solver to minimize t .
– (assert-soft F [:weight n | :dweight d] [:id id]) - assert soft con-

straint F , optionally with an integral weight n or a decimal weight d . If no
weight is given, the default weight is 1 (1.0). Decimal and integral weights
can be mixed freely. Soft constraints can be furthermore tagged with an
optional name id. This enables combining multiple different soft objectives.
Fig. 1 illustrates a use with soft constraints.

1.2 Combining Objectives

Multiple objectives can be combined using lexicographic, Pareto fronts or as
independent box objectives.

Lexicographic Combinations: By default, νZ maximizes objectives t1, t2
subject to the constraint F using a lexicographic combination. It finds a model
M , such that M satisfies F and the pair 〈M(t1),M(t2)〉 is lexicographically
maximal. In other words, there is no model M ′ of F , such that either M ′(t1) >
M(t1) or M

′(t1) = M(t1), M
′(t2) > M(t2).

Pareto Fronts: Again, given two maximization objectives t1, t2, the set of
Pareto fronts under F are the set of models M1, . . . ,Mi, . . . ,Mj, . . ., such that
either Mi(t1) > Mj(t1) or Mi(t2) > Mj(t2), and at the same time either
Mi(t1) < Mj(t1) or Mi(t2) < Mj(t2); and for each Mi, there is no M ′ that dom-
inates Mi. νZ uses the Guided Improvement Algorithm [14] to produce multiple
objectives. Fig. 3 illustrates a use where Pareto combination is specified.

Boxes: Box objectives, illustrated in Fig.2 are used to specify independent op-
tima subject to a formula F . They are used in the Symba tool [9]. The box
combination of objectives t1, t2 requires up to two models M1,M2 of F , such
that M1(t1) is the maximal value of t1 and M2(t2) is the maximal value for t2.

196 N. Bjørner, A.-D. Phan, and L. Fleckenstein

1.3 Programming Optimization

The optimization features are available over Z3’s programmatic APIs for C,
C++, Java, .NET, and Python. There is furthermore a library available as an
example that plugs into the Microsoft Solver Foundation (MSF). Fig. 3 shows
an example using the Python API to generate Pareto optimal solutions. Fig. 4
shows an OML model used by MSF.

x, y = Ints(’x y’)

opt = Optimize()

opt.set(priority=’pareto’)

opt.add(x + y == 10, x >= 0, y >= 0)

mx = opt.maximize(x)

my = opt.maximize(y)

while opt.check() == sat:

print mx.value(), my.value()

Fig. 3. Pareto optimization in Python.
νZ produces all 11 Pareto fronts.

Model[

Decisions[

Reals[-Infinity, Infinity], xs, xl],

Constraints[

limits -> 0 <= xs & 0 <= xl,

BoxWood -> xs + 3 * xl <= 200,

Lathe -> 3 * xs + 2 * xl <= 160],

Goals[

Maximize[$ -> 5 * xs + 20 * xl]]]

Fig. 4. OML model used by MSF

1.4 MILP, MaxSAT, CP and SMT

Efficient mixed integer linear solvers are backbones of several highly tuned tools,
such as CPLEX and Gurobi, used in operations research contexts. Being able to
state and solve optimization objectives in the context of logical constraints has
also been well recognized in the SMT community [12,5,15,8] and it is a recurring
feature request for Z3 as well. We briefly outline a use case in Section 4, and
through this experience we observed a need for more abstract and flexible ways of
modeling problems than exposed by OML used by the Microsoft Solver Founda-
tion (MSF), where flexible Boolean combinations of constraints, which empower
end-users to refine models, are afterthoughts. By making νZ generally available,
we hope to make it easier for existing users to use Z3, for instance [2], and to fuel
further applications that benefit from the flexibility and expressive power of Z3’s
SMT engines, including theory support and quantifiers, with the convenience of
built-in support for (reasonably tuned) optimization algorithms. In return, we
anticipate that new applications from SMT users can inspire advances in ar-
eas such as non-linear arithmetic, mixed symbolic/numerical algorithms, and
combinations with Horn clauses.

1.5 Resources

The full source code of νZ is available with Z3 from http://z3.codeplex.com,
the sources compile on all main platforms, there is an online tutorial on http://

rise4fun.com/z3opt/tutorial/, and a companion paper [3] describes details
of algorithms used in νZ.

http://z3.codeplex.com
http://rise4fun.com/z3opt/tutorial/
http://rise4fun.com/z3opt/tutorial/

νZ - An Optimizing SMT Solver 197

2 Architecture

Fig. 5 gives an architectural overview of νZ. The input SMT formulas and ob-
jectives are rewritten and simplified using a custom strategy that detects 0-1
integer variables and rewrites these into Pseudo-Boolean Optimization (PBO)
constraints. Objective functions over 0-1 variables are rewritten as MaxSAT
problems1. If there are multiple objectives, then νZ orchestrates calls into the
SMT or SAT cores. For box constraints over reals, νZ combines all linear arith-
metic objectives and invokes a single instance of the OptSMT engine; for lexico-
graphic combinations of soft constraints, νZ invokes the MaxSAT engine using
multiple calls.

0-1 constraints
⇒ PBO

SMT formula
with objectives

Combination of
objective functions

OptSMT: Arithmetic MaxSMT: Soft Constraints

PB and
Cost solvers

SMT solver SAT solver

Fig. 5. νZ system architecture

3 Internals

OptSMT: We have augmented Z3’s dual Simplex core with a primal phase
that finds maximal assignments for reals. It also improves bounds on integers as
long as the improvements are integral. It is used, similarly to [15,9], to improve
values of objective functions. A similar primal Simplex solver is also accessible
to Z3’s difference logic engines. νZ discovers unbounded objectives by using
non-standard arithmetic: It checks if t ≥ ∞ is feasible, over the extension field
R∪{ε,∞ := 1/ε}. This contrasts the approach proposed in [9] that uses a search
through hyper-planes extracted from inequalities.

νZ also contains a Pseudo-Boolean theory solver. It borrows from [4,1] for
simplification, generating conflict clauses, and incrementally compiling into small
sorting circuits. It also adds an option to prune branches using dual simplex.

MaxSMT: νZ implements several engines forMaxSAT.These includeWMax [12],
MaxRes [11],BCD2 [10],MaxHS [6].WMaxuses a specialized theory solver ofcosts,
also explored in [5]. The solver associates penalties with a set of tracked proposi-
tional variables. It thenmonitors the truth assignments to these variables, as given

1 Using the correspondence: maximize c1 · x1 + c2 · x2 ≡ (assert-soft x1 :weight c1),
(assert-soft x2 :weight c2).

198 N. Bjørner, A.-D. Phan, and L. Fleckenstein

by the SAT solver. The cost is incremented when a tracked variable is assigned to
false. The solver creates a conflict clause when the cost exceeds the current opti-
mal value.WMax can be interrupted at any point with a current upper bound. Our
implementation of MaxRes generally performs much better than WMax. MaxRes
increments a lower boundwhen there is an unsatisfiable core of the soft constraints.
It then replaces the coreF1, . . . , Fk withnewsoft constraintsF ′

1, F
′
2, . . . , F

′
k−1 using

the equations:

F ′
1 = F2 ∨ F1, F ′

2 = F3 ∨ (F1 ∧ F2), . . . , F ′
k−1 = Fk ∨ ((F1 ∧ F2) ∧ . . .∧ Fk−1) .

SAT: νZ reduces Pseudo-Boolean formulas to propositional SAT by converting
cardinality constraints using sorting circuits, using a Shannon decomposition
(BDDs) of simple PB inequalities and falling back to bit-vector constraints on
inequalities where the BDD conversion is too expensive. This transformation is
available by ensuring that the option :opt.enable sat is true. For benchmarks
that can be fully reduced to propositional SAT, MaxRes uses Z3’s SAT solver.

4 A Use for νZ

As a driving scenario for νZ we used an experimental warehouse manager in the
context of Microsoft Dynamics AX. The objective is to reduce cost by optimizing
how shipments are distributed on trucks, reducing the number of trucks, the
distance traveled by the truck while maximizing the amount of goods delivered.
AX can deliver the standard constraints and cost functions, e.g., weight and
volume of a truck, but users often want to be more specific. For example, frozen
foods need to be in a cooled truck and cannot be packed together with chemicals.
The expressive power and convenience of SMT is useful: these constraints can
be formulated as a Boolean combination of linear constraints over 0-1 variables,
while the objective functions we considered could be expressed as lexicographic
combinations of a couple of cost functions. Such cost functions are expected to
evolve when users learn more about their usages. The abstraction layer of the
models provides this flexibility.

Table 1. Evaluation of νZ on selected examples

Source Category Solved instances Time

MaxSAT 2014 wpms industrial track MaxSAT 361/410 0.5-1800s

MaxSAT 2014 pms industrial track MaxSAT 406/568 0.5-1800s

Longest Paths MaxSAT bb 8/8 <0.05s

Longest Paths MaxSAT chat 34/34 1-36s

DAL Allocation challenge PBO SampleA&B 96/96 0.02-6s

Symba [9] LRA 2435/2435 0.2s-36s

OptiMathSAT [15] LRA 9 non-random 0.5-20s

http://maxsat.ia.udl.cat/benchmarks/
http://maxsat.ia.udl.cat/benchmarks/
http://www.lifl.fr/LION9/challenge.php

νZ - An Optimizing SMT Solver 199

4.1 Experience

We evaluated νZ on a cross-section of benchmarks used in MaxSAT competi-
tions, from Z3 users, and from recent publications. Table 1 summarizes a se-
lected evaluation. Motivating examples from users included strategy scheduling
for Vampire (MaxSAT) that are easy with the new MaxSAT engine, but used to
be hard for the bisection search used by Vampire. Likewise, Cezary Kaliszyk has
used Z3 to tune his portfolio solver using linear arithmetic constraints. His sys-
tems are significantly more challenging (take days to run). In this case WMax
offers partial solutions during search. Elvira Albert tried using Z3 for finding
longest paths, her benchmarks are called bb (≈300 clauses), chat (≈3K clauses)
and p2p (≈30K clauses), and we summarize timing for bb and chat below; the
p2p category times out.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Carbonell, E.R.: A parametric approach
for smaller and better encodings of cardinality constraints. In: CP (2013)

2. Becker, K., Schätz, B., Armbruster, M., Buckl, C.: A formal model for constraint-
based deployment calculation and analysis for fault-tolerant systems. In: SEFM,
pp. 205–219 (2014)

3. Bjørner, N., Phan, A.-D.: νZ - Maximal Satisfaction with Z3. In: SCSS (2014)
4. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. IEEE Trans.

on CAD of Integrated Circuits and Systems 24(3), 305–317 (2005)
5. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability

modulo the theory of costs: Foundations and applications. In: TACAS (2010)
6. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.

In: CP, pp. 247–262 (2013)
7. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS (2008)
8. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving

Non-termination Using Max-SMT. In: CAV, pp. 779–796 (2014)
9. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-

mization with SMT solvers. In: POPL, pp. 607–618 (2014)
10. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to Core-Guided Binary

Search for MaxSAT. In: SAT, pp. 284–297 (2012)
11. Narodytska, N., Bacchus, F.: Maximum Satisfiability Using Core-Guided MaxSAT

Resolution. In: AAAI, pp. 2717–2723 (2014)
12. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Prob-

lems. In: SAT, pp. 156–169 (2006)
13. Ranise, S., Tinelli, C.: The SMT Library, SMT-LIB (2006), http://www.SMT-LIB.

org

14. Rayside, D., Estler, H.-C., Jackson, D.: The Guided Improvement Algorithm. Tech-
nical Report MIT-CSAIL-TR-2009-033. MIT (2009)

15. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) Cost Functions. In:
IJCAR, pp. 484–498 (2012)

http://www.SMT-LIB.org
http://www.SMT-LIB.org

dReach: δ-Reachability Analysis

for Hybrid Systems

Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke

Computer Science Department, Carnegie Mellon University, USA

Abstract. dReach is a bounded reachability analysis tool for nonlinear
hybrid systems. It encodes reachability problems of hybrid systems to
first-order formulas over real numbers, which are solved by delta-decision
procedures in the SMT solver dReal. In this way, dReach is able to handle
a wide range of highly nonlinear hybrid systems. It has scaled well on
various realistic models from biomedical and robotics applications.

1 Introduction

dReach is a bounded reachability analysis tool for hybrid systems. It encodes
bounded reachability problems of hybrid systems as first-order formulas over the
real numbers, and solves them using δ-decision procedures in the SMT solver
dReal [12]. dReach is able to handle a wide range of highly nonlinear hybrid
systems [16,13,15,3]. Figure 1 highlights some of its features: on the left is an
example of some nonlinear dynamics that dReach can handle, and on the right
a visualized counterexample generated by dReach on this model.

It is well-known that the standard bounded reachability problems for sim-
ple hybrid systems are already highly undecidable [2]. Instead, we work in the
framework of δ-reachability of hybrid systems [10]. Here δ is an arbitrary pos-
itive rational number, provided by the user to specify the bound on numerical
errors that can be tolerated in the analysis. For a hybrid system H and an unsafe
region unsafe (both encoded as logic formulas), the δ-reachability problem asks
for one of the following answers:

– safe: H cannot reach unsafe.
– δ-unsafe: Hδ can reach unsafeδ.

Here, Hδ and unsafeδ encode (δ-bounded) overapproximations of H and unsafe,
defined explicitly as their syntactic variants.It is important to note that the defi-
nition makes the answers no weaker than standard reachability: When safe is the
answer, we know for certain that H does not reach the unsafe region (no δ is in-
volved); when δ-unsafe is the answer, we know that there exists some δ-bounded
perturbation of the system that can render it unsafe. Since δ can be chosen to
be very small, δ-unsafe answers in fact discover robustness problem in the sys-
tem, which should be regarded as unsafe indeed. We have proved that bounded
δ-reachabilty is decidable for a wide range of nonlinear hybrid systems, even

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 200–205, 2015.
DOI: 10.1007/978-3-662-46681-0_15

dReach: δ-Reachability Analysis for Hybrid Systems 201

y
z

z
dx

z

z
m

x
z

z
m

kz

zk
k

kz

zk
k

dt

dv

zz

dt

dz

y
z

z
dx

z

z
m

dt

dy

x
z

z
m

kz

zk
k

kz

zk
k

dt

dx

yy

xx

yy

xx

00
1

0
1

4

3
3

2

1
1

0

00
1

0
1

4

3
3

2

1
1

11

1)1()1(

11

1)1()1(

(a) An example of nonlinear hybrid sys-
tem model: off-treatment mode of the
prostate cancer treatment model [16]

(b) Visualization of a generated counterex-
ample. Change in the shade of colors rep-
resents discrete mode changes.

Fig. 1. An example of nonlinear dynamics and counterexample-generation

with reasonable complexity bounds [10]. This framework provides the formal
correctness guarantees of dReach.

Apart from solving δ-reachability, the following key features of dReach distin-
guish it from other existing tools in this domain [7,9,1,8,14,5,6].

1. Expressiveness. dReach allows the user to describe hybrid systems using
first-order logic formulas over real numbers with a wide range of nonlinear
functions. This allows the user to specify the continuous flows using highly
nonlinear differential equations, and the jump and reset conditions with com-
plex Boolean combinations of nonlinear constraints. dReach also faithfully
translates mode invariants into ∃∀ logic formulas, which can be directly
solved under certain restrictions on the invariants.

2. Property-guided search. dReach maintains logical encodings (the same ap-
proach as [6]), whose size is linear in the size of the inputs, of the reachable
states of a hybrid system [10]. The tool searches for concrete counterexamples
to falsify the reachability properties, instead of overapproximating the full
reachable states. This avoids the usual state explosion problem in reachable
set computation, because the full set of states does not need to be explicitly
stored. This change is analogous to the difference between SAT-based model
checking and BDD-based symbolic model checking.

3. Tight integration of symbolic reasoning and numerical solving. dReach del-
egates the reasoning on discrete mode changes to SAT solvers, and uses
numerical constraint solving to handle nonlinear dynamics. As a result, it
can combine the full power of both symbolic reasoning and numerical analy-
sis algorithms. In particular, all existing tools for reachable set computation
can be easily plugged-in as engines for solving the continuous part of the
dynamics, while logic reasoning tools can overcome the difficulty in handling
complex mode transitions.

The paper is structured as follows.We describe the system architecture in Section
2, and give some details about the logical encoding in the tool in Section 3. We
then explain the input format and usage in Section 4.

202 S. Kong et al.

dReach

Hybrid System
Model + Specification

(drh)

BMC
Encoder

dReal

SMT2
formula

Numerical Error (δ)

Maximum Jump Depth
(k)

δ-SAT

UNSAT

δ-reachable
+ Counterexample

(Visualization)

Unreachable
+ Proofs
 (partial)

DPLL<T>

SAT
Solver

ICP Solver

ODE
Solver

Fig. 2. Architecture of dReach: It consists of an bounded model-checking module and
an SMT solver, dReal. In the first phase, the Encoder module translates an input
hybrid system into a logic formula. In the second phase, an SMT solver, dReal, solves
the encoded δ-reachability problem using a solving framework that combines DPLL(T),
Interval Constraint Propagation, and reliable (interval-based) numerical integration.

2 System Description

The system architecture of dReach is given in Figure 2. We ask the user to
provide the following input file and two parameters:

– The input file specifies the hybrid system, the reachability properties in
question, and some time bounds on the continuous flow in each mode. The
grammar is described in Section 4.1.

– A bound on the number of mode changes.
– A numerical error bound δ.

From these inputs, dReach generates a logical encoding that involves existential
quantification and universal quantification on the time variables. The logical en-
coding is compact, always linear in the size of the inputs. The tool then makes
iterative calls to the underlying solver dReal [12] to decide the reachability prop-
erties. When the answer is δ-reachable, dReach generates a counterexample and
its visualization. When the answer is unreachable, no numerical error is involved
and a (partial, for now) logical proof of unsatisfiability can be provided [11].

3 Logical Encoding of Reachability

The details of our encoding scheme is given in [10]. Here we focus on explaining
how differential equations and the universal quantifications generated by mode
invariants are encoded, as an extension of the SMT-LIB [4] standard. Although
such formulas are automatically generated by dReach from the hybrid system
descrpition, the explanation below can be helpful for understanding the inner
mechanism of our solver.

dReach: δ-Reachability Analysis for Hybrid Systems 203

Encoding Integrations. In each mode of a hybrid system, we need to specify
continuous flows defined by systems of ordinary differential equations. We extend
SMT-LIB with a command define-ode to define such systems. For instance, we
use define-ode as follows to assign a name flow1 to a group of ODE, dx

dt = v

and dv
dt = −x2.

(define-ode flow1 ((= d/dt[x] v) (= d/dt[v] (- 0 (ˆ x 2)))))

We then allow integration terms in the formula. We view the solution of system
of differential equations as a constraint between the initial-state variables, time
duration, and the end-state variables. We can then write

(= [x_t_1 ... x_t_n] (integral 0 t [x_0_1 ... x_0_n] flow_i)),

to represent x = x0 +
∫ t

0 flow i(x(s))ds. Note that we do not need to explicitly
mention x(s) as a function in the encoding, which can be inferred by the solver.

Universal Quantification for Mode Invariant Constriants. To encode mode in-
variants in hybrid systems, we need ∃∀t-formulas [13] which is a restricted form of
∃∀ formula where the universal quantifications are limited to the time variables.
In drh, we introduce a new keyword forall t to encode ∃∀t formulas. Given a
time bound [0, timei], mode invariant f at mode n is encoded into (forall t n

[0 time i] f).

4 Using dReach

4.1 Input Format

The input format for describing hybrid systems and reachability properties con-
sists of five sections: macro definitions, variable declarations, mode definitions,
and initial condition, and goals. We focus on intuitive explanations here. Figure 3
shows how to describe a small example hybrid system, an inelastic bouncing ball
with air resistance.

– In macro definitions, we allows users to define macros in C preprocessor style
which can be used in the following sections. Macro expansions occur before
the other parts are processed.

– A variable declaration specifies a real variable and its domain in a real in-
terval. dReach requires special declaration for time variable, to specify the
upperbound of time duration.

– A mode definition consists of mode id, mode invariant, flow, and jump. id is
a unique positive interger assigned to a mode. An invariant is a conjuction
of logic formulae which must always hold in a mode. A flow describes the
continuous dynamics of a mode by providing a set of ODEs. The first formula
of jump is interpreted as a guard, a logic formula specifying a condition to
make a transition. Note that this allows a transition but does not force it.
The second argument of jump, n denotes the target mode-id. The last one is
reset, a logic formula connecting the old and new values for the transition.

204 S. Kong et al.

1 #define D 0.45
2 #define K 0.9
3 [0, 15] x; [9.8] g; [-18, 18] v; [0, 3] time;
4 { mode 1;
5 invt: (v <= 0); (x >= 0);
6 flow: d/dt[x] = v; d/dt[v] = -g - (D * v ˆ 2);
7 jump: (x = 0) ==> @2 (and (x’ = x) (v’ = - K * v)); }
8 { mode 2;
9 invt: (v >= 0); (x >= 0);

10 flow: d/dt[x] = v; d/dt[v] = -g + (D * v ˆ 2);
11 jump: (v = 0) ==> @1 (and (x’ = x) (v’ = v)); }
12 init: @1 (and (x >= 5) (v = 0));
13 goal: @1 (and (x >= 0.45));

Fig. 3. An example of drh format: Inelastic bouncing ball with air resistance. Lines
1 and 2 define a drag coefficient D = 0.45 and an elastic coefficient K = 0.9. Line 3
declares variables x, g, v, and time. At lines 4 - 7 and 8 - 11, we define two modes –
the falling and the bouncing-back modes respectively. At line 12, we specify the hybrid
system to start at mode 1 (@1) with initial condition satisfying x ≥ 5 ∧ v = 0. At line
13, it asks whether we can have a trajectory ending at mode 1 (@1) while the height of
the ball is higher than 0.45.

– initial-condition specifies the initial mode of a hybrid system and its initial
configuration. goal shares the same syntactic structure of initial-condition.

4.2 Command Line Options

dReach follows the standard unix command-line usage:

dReach <options> <drh file>

It has the following options:

– If -k <N> is used, set the unrolling bound k asN (Default: 3). It also provides
-u <N> and -l <N> options to specify upper- and lower-bounds of unrolling
bound.

– If --precision <p> is used, use precision p (Default: 0.001).
– If --visualize is set, dReach generates extra visualization data.

We have a web-based visualization toolkit1 which processes the generated visu-
alization data and shows the counterexample trajectory. It provides a way to
navigate and zoom-in/out trajectories which helps understand and debug the
target hybrid system better.

1 The detailed instructions are available at https://github.com/dreal/dreal/blob/
master/doc/ode-visualization.md

https://github.com/dreal/dreal/blob/master/doc/ode-visualization.md
https://github.com/dreal/dreal/blob/master/doc/ode-visualization.md

dReach: δ-Reachability Analysis for Hybrid Systems 205

References

1. Althoff, M., Krogh, B.H.: Reachability analysis of nonlinear differential-algebraic
systems. IEEE Trans. Automat. Contr. 59(2), 371–383 (2014)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993)

3. Asad, H.U., Jones, K.D., Surre, F.: Verifying robust frequency domain properties
of non linear oscillators using SMT. In: 17th International Symposium on Design
and Diagnostics of Electronic Circuits Systems, pp. 306–309 (April 2014)

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories, Edinburgh, UK (2010)

5. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: RTSS, pp. 183–192 (2012)

6. Cimatti, A., Mover, S., Tonetta, S.: Smt-based verification of hybrid systems.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
Toronto, Ontario, Canada, July 22-26 (2012)

7. Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic
analysis of probabilistic hybrid automata. J. Log. Algebr. Program. 79(7), 436–466
(2010)

8. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past hyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

9. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

10. Gao, S., Kong, S., Chen, W., Clarke, E.M.: Delta-complete analysis for bounded
reachability of hybrid systems. CoRR, abs/1404.7171 (2014)

11. Gao, S., Kong, S., Clarke, E.: Proof generation from delta-decisions. In: SYNASC
(2014)

12. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: CADE, pp. 208–214 (2013)

13. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: FMCAD,
pp. 105–112 (2013)

14. Herde, C., Eggers, A., Fränzle, M., Teige, T.: Analysis of hybrid systems using
hysat. In: ICONS, pp. 196–201 (2008)

15. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.: Simulation-
guided lyapunov analysis for hybrid dynamical systems. In: HSCC 2014, Berlin,
Germany, April 15-17, pp. 133–142 (2014)

16. Liu, B., Kong, S., Gao, S., Zuliani, P., Clarke, E.: Parameter identification using
delta-decisions for biological hybrid systems. In: CMSB (2014)

Uppaal Stratego
�

Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen,
Marius Mikučionis, and Jakob Haahr Taankvist

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg Øst, Denmark

Abstract. Uppaal Stratego is a novel tool which facilitates genera-
tion, optimization, comparison as well as consequence and performance ex-
ploration of strategies for stochastic priced timed games in a user-friendly
manner. The tool allows for efficient and flexible “strategy-space” explo-
ration before adaptation in a final implementation by maintaining strate-
gies as first class objects in the model-checking query language. The paper
describes the strategies and their properties, construction and transforma-
tion algorithms and a typical tool usage scenario.

1 Introduction

Model checking may be used to verify that a proposed controller prevents an
environment from causing dangerous situations while, at the same time, operat-
ing in a desirable manner. This approach has been successfully pursued in the
setting of systems modeled as finite-state automata, timed automata, and prob-
abilistic automata of various types with nuSMV [7], FDR [11], Uppaal [3] and
PRISM [13] as prime examples of model checking tools supporting the above
mentioned formalisms. Most recently the simulation-based method of statistical
model checking has been introduced in Uppaal SMC [4], allowing for highly
scaleable analysis of fully stochastic Sriced Timed Automata with respect to a
wide range of performance properties. For instance, expected waiting-time and
cost, and time-bounded and cost reachability probabilities, may be estimated
(and tested) with an arbitrary precision and high degree of confidence. Com-
bined with the symbolic model checking of Uppaal this enables an adequate
analysis of mixed critical systems, where certain (safety) properties must hold
with absolute certainty, whereas for other quantitative (performance) properties
a reasonably good estimation may suffice, see e.g. [10].

Rather than verifying a proposed controller, synthesis – when possible – allows
an algorithmic construction of a controller which is guaranteed to ensure that the
resulting systems will satisfy the desired correctness properties. The extension
of controller synthesis to timed and hybrid games started in the 90s with the
seminal work of Pnueli et al. [1,14] on controller synthesis for timed games where

� The research has received funding from the European FET projects SENSATION
and CASSTING, the ARTEMIS project MBAT as well as the Sino-Danish Basic
Research Center IDEA4CPS.

© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 206–211, 2015.
DOI: 10.1007/978-3-662-46681-0_16

http://www.sensation-project.eu/
http://www.cassting-project.eu/
http://www.mbat-artemis.eu/

Uppaal Stratego 207

the synthesis problem was proven decidable by a symbolic dynamic programming
technique. In Uppaal Tiga [2,5] an efficient on-the-fly algorithm for synthesis of
reachability and safety objectives for timed games has been implemented, with
a number of successful industrial applications having been made including zone-
based climate control for pig-stables [12] and controllers for hydraulic pumps with
60% improvement in energy-consumption compared with industrial practice at
the time [6, 15].

However, once a strategy has been synthesized for a given objective no further
analysis has been supported so far. In particular it has not been possible to make
a deeper examination of a synthesized strategy in terms of other additional
properties that may or may not hold under the strategy. Neither has it been
possible to optimize a synthesized non-deterministic safety strategy with respect
to desired performance measures. Both of these issues have been addressed by
the authors in recent work [8, 9], and in this paper we present the tool Uppaal

Stratego which combines these techniques to generate, optimize, compare and
explore consequences and performance of strategies synthesized for stochastic
priced timed games in a user-friendly manner. In particular, the tool allows for
efficient and flexible “strategy-space” exploration before adaptation in a final
implementation.

Uppaal Stratego
1 integrates Uppaal and the two branches Uppaal SMC

[4] (statistical model checking), Uppaal Tiga [2] (synthesis for timed games)
and the method proposed in [9] (synthesis of near optimal schedulers) into one
tool suite. Uppaal Stratego comes with an extended query language where
strategies are first class objects that may be constructed, compared, optimized
and used when performing (statistical) model checking of a game under the
constraints of a given synthesized strategy.

Consider the jobshop scheduling problem shown in Fig. 1 which models a
number of persons sharing a newspaper. Each task process reads a section of
the paper, whereas only one person can read a particular section at a time.
Each reader wants to read the newspaper in different orders, and the stochastic
environment chooses how long it takes to read each section. This makes the
problem a problem of finding a strategy, rather than finding a static scheduler
as in the classical jobshop scheduling problem.

Fig. 1. Uppaal Stratego template of a single person reading a newspaper

1
Uppaal Stratego is available at http://people.cs.aau.dk/~marius/stratego/

http://people.cs.aau.dk/~marius/stratego/

208 A. David et al.

Figure 1 shows a stochastic priced timed game (SPTG) which models one
person reading the newspaper. The circles are locations and the arrows are tran-
sitions. The solid arrows are transitions controlled by the controller and the
dashed are transitions controlled by the stochastic environment. The model re-
flects the reading of the four sections in the preferred order (here comics, sport,
local and economy) for the preferred amount of time. In the top locations the
person is waiting for the next section to become available; here four Boolean
variables are used to ensure mutex on the reading of a section. In the bottom
locations, the person is reading the particular section for a duration given by a
uniform distribution on the given interval, e.g. [10,11] for our person’s reading of
sport. The stopwatch WTime is only running in the waiting locations thus effec-
tively measuring the accumulated time when the person is waiting to read. Given
a complete model with several persons constantly competing for the sections, we
are interested in synthesizing strategies for several multi-objectives, e.g. syn-
thesize a strategy ensuring that all persons have completed reading within 100
minutes, and then minimize the expected waiting time for our preferred person.

2 Games, Automata and Properties

Using the features of Uppaal Stratego we can analyze the SPTG in Fig. 1. In-
ternally, Uppaal Stratego has different models and representations of strate-
gies, an overview of these and their relations are given in Fig. 2. The model seen
in Fig. 1 is a SPTG, as WTime is a cost function or price with location dependent
rate (here 0 or 1), and we assume that environment takes transitions according
to a uniform distribution over time.

As shown in Fig. 2 we can abstract a SPTG into a timed game (TGA). This
abstraction is obtained simply by ignoring the prices and stochasticity in the
model. Note that since prices are observers, this abstraction does not affect
the possible behavior of the model, but merely forgets the likelihood and cost of
various behaviors. The abstraction maps a 11/2-player game, where the opponent
is stochastic into a 2-player game with an antagonistic opponent.

Given a TGA (G) we can use Uppaal Tiga to synthesize a strategy σ (ei-
ther deterministic or non-deterministic). This strategy can, when put in parallel
with the TGA, G|σ, be model-checked in the same way as usual in Uppaal. We

P
Stochastic Priced Timed Game

P|σ σ◦

Strategy

P|σ◦

Statistical Model Checking
Stochastic Priced Timed Automata

G
Timed Game

σ
Strategy

G|σ

(Statistical) Model Checking
Timed Automata

Abstraction

Synthesis

φ

Synthesis
Uppaal Tiga

φ

Fig. 2. Overview of models and their relations. The lines show different actions. The
dashed lines show that we use the object.

Uppaal Stratego 209

can also use the strategy in a SPTG P , and obtain P|σ. Under a strategy it
is possible to do statistical model checking (estimation of probability and cost,
and comparison), which enables us to observe the behavior and performance of
the strategy when we assume that the environment is purely stochastic. This
also allows us to use to use prices under σ, even though they were not consid-
ered in the synthesis of σ. From both P and P|σ learning is possible using the
method proposed in [9]. The learning algorithm uses a simulation based method
for learning near-optimal strategies for a given price metric. If σ is the most
permissive strategy guaranteeing some goal, then the learning algorithm can op-
timize under this strategy, and we will get a strategy σ◦ which is near-optimal
but still has the guarantees of σ. As the last step we can construct P|σ◦, which
we can then do statistical model checking on.

3 Strategies

In Uppaal Stratego we operate three different kinds of strategies, all mem-
oryless. Non-deterministic strategies are strategies which give a set of actions
in each state, with the most permissive strategy – when it exists – offering the
largest set of choices. In the case of timed games, most permissive strategies ex-
ist for safety and time-bounded reachability objectives. Deterministic strategies
give one action in each state. Stochastic strategies give a distribution over the set
of actions in each state. Fig. 3 shows how strategies are generated and used. For
generating strategies, we can use Uppaal Tiga or the method proposed in [9]
on SPTGs. Uppaal Tiga generates (most permissive) non-deterministic or de-
terministic strategies. The method proposed in [9] generates strategies which
are deterministic. A strategy generated with Uppaal Stratego can undergo
different investigations: model checking, statistical model checking and learning.
Learning consume non-deterministic strategies (potentially multiple actions per
state) and may produce a deterministic one by selecting a single action for each
state, such that the final deterministic strategy is optimized towards some goal.
Figure 3 shows that currently it is possible to model check only under symbol-
ically synthesized strategies (as opposed to optimized ones) as symbolic model
checking requires the strategy to be represented entirely in terms of zones (con-
straint systems over clock values and their differences). Statistical model check-
ing can only be done under stochastic strategies. All deterministic strategies can
be thought of as stochastic by assigning a probability of 1 to the one choice.

Model

Optimization [9]
Statistical MC
Uppaal SMC

Symbolic synthesis
Uppaal Tiga

Symbolic MC
Uppaal

Near-optimal Strategies [9]Uppaal Tiga Strategies

Fig. 3. Overview of algorithms and data structures in Uppaal Stratego

210 A. David et al.

To evaluate non-deterministic strategies statistically we applying a stochastic
uniform distribution over the non-deterministic choices.

4 Query Language

We let strategies become first class citizens by introducing strategy assignment
strategy S = and strategy usage under S where S is an identifier. These are
applied to the queries already used in Uppaal,Uppaal Tiga andUppaal SMC
as well as those proposed in [9]. An overview of these queries is given in Table 1.
Notice that we changed the syntax of the queries presented in [9]. Recall the
example with the four authors sharing a newspaper as presented in Fig. 1. We
compute a strategy for Kim to reach his plane within one hour on line 1 in Fig. 4.
Respecting this, we find that Marius cannot join, as the query on line 2 is not
satisfied. Instead, we optimize that Peter joins in on line 3 ([<=60] is a bound
on how long the simulations we learn from used can be). Finally, line 4 estimates
that Jakob is done with probability ≥0.9 under Peter’s optimizations.

Table 1. Types of queries

Uppaal
Safety A[] prop under NS

Liveness A<> prop under NS

Tiga
Guarantee objective strategy NS = control: A<> prop

Guarantee objective strategy NS = control: A[] prop

SMC
Evaluation Pr[bound](<> prop) under SS

Expected value E[bound;int](min: prop) under SS

Simulations simulate int [bound]{expr1,expr2} under SS

[9]
Minimize objective strategy DS = minE (expr) [bound]: <> prop under NS

Maximize objective strategy DS = maxE (expr) [bound]: <> prop under NS

Fig. 4. Uppaal Stratego queries and results for the model in Fig. 1

References

1. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and
timed systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS
1994. LNCS, vol. 999, Springer, Heidelberg (1995)

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

Uppaal Stratego 211

3. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: Proceedings of the 3rd International Conference on
the Quantitative Evaluation of Systems, QEST 2006, IEEE Computer Society,
Washington, DC (2006)

4. Bulychev, P.E., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata. In:
Proceedings 10th Workshop on Quantitative Aspects of Programming Languages
and Systems, QAPL 2012, Tallinn, Estonia. EPTCS, vol. 85 (March 2012)

5. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

6. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic
synthesis of robust and optimal controllers – an industrial case study. In: Majum-
dar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer,
Heidelberg (2009)

7. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p.
359. Springer, Heidelberg (2002)

8. David, A., Fang, H., Larsen, K.G., Zhang, Z.: Verification and performance evalu-
ation of timed game strategies. In: Legay, A., Bozga, M. (eds.) FORMATS 2014.
LNCS, vol. 8711, pp. 100–114. Springer, Heidelberg (2014)

9. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G.,
Taankvist, J.H.: On time with minimal expected cost! In: Cassez, F., Raskin, J.-F.
(eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Heidelberg (2014)

10. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of herschel-
planck revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012)

11. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — A
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

12. Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthesis
for climate controller using uppaal tiga. In: Raskin, J.-F., Thiagarajan, P.S. (eds.)
FORMATS 2007. LNCS, vol. 4763, pp. 227–240. Springer, Heidelberg (2007)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

14. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, Springer,
Heidelberg (1995)

15. Zhao, H., Zhan, N., Kapur, D., Larsen, K.G.: A ”hybrid” approach for synthesizing
optimal controllers of hybrid systems: A case study of the oil pump industrial
example (2012)

BINSEC: Binary Code Analysis
with Low-Level Regions�

Adel Djoudi and Sébastien Bardin

CEA, LIST, Gif-sur-Yvette, F-91191, France
first.name@cea.fr

Abstract. This article presents the open source BINSEC platform for (formal)
binary-level code analysis. The platform is based on an extension of the DBA In-
termediate Representation, and it is composed of three main modules: a front-end
including several syntactic disassembly algorithms and heavy simplification of
the resulting IR, a simulator supporting the recent low-level region-based mem-
ory model, and a generic static analysis module.

1 Introduction

Binary-level program analysis has gained interest in these last years in order to address
the problems of analyzing closed-source software or mobile code (including malware)
and detecting compiler-induced bugs. Not requiring source code makes such analysis
widely applicable.

The goal of BINSEC is to ease the development of binary code analyzers by provid-
ing an open formal model for binary programs and an open-source platform allowing
to share front-ends and ISA support. Like other platforms such as BAP [7], GDSL [12],
Jakstab [11] or OSMOSE [3,4], our platform disassembles binary code and translates
the resulting machine instructions into an intermediate language, which is then ana-
lyzed. The main novelties of BINSEC are the following:

– an extended Intermediate Representation (IR) providing abstraction and specifica-
tion mechanisms (Section 2), contrary to the very operational nature of previous
proposals [5,7,9,13];

– a low-level region-based semantics [2], allowing both an abstract view of the mem-
ory and the ability to simulate correctly many native codes (Section 3.3);

– a simplification engine able to remove a large part of flag operations (Section 3.2).

BINSEC is open-source (lgpl), it is written in OCaml and it is available at
http://sebastien.bardin.free.fr/binsec/.

2 Intermediate Representation: Extended DBA

DBA Model. Dynamic Bit-vector Automata (DBA) [5] have been proposed as a generic
and concise formal model for low-level programs. They offer the following advantages:

� Work partially funded by French ANR (project BINSEC, grant ANR-12-INSE-0002).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 212–217, 2015.
DOI: 10.1007/978-3-662-46681-0_17

BINSEC: Binary Code Analysis with Low-Level Regions 213

(1) an architecture-independent formalism, (2) a very concise set of instructions and
operators, and (3) a simple semantics, without any implicit side-effect. They have been
used for modeling PowerPC and a few other architectures in previous binary-level an-
alyzers [3,4,6]. Note that floating-point arithmetic, multi-thread and self-modification
are currently outside of the scope of DBA.

The key ingredients of the formalism are the following: a DBA program manipu-
lates a finite set of global variables ranging over bitvectors (registers) and an array of
bitvectors of size 8 (memory); all bitvector sizes are statically known; a single machine
instruction is decoded into a block of DBA instructions - including intermediate com-
putations and temporary variables.

Extended DBA Model. While DBA have shown to be useful in the analysis of safety-
critical systems [1], they lack abstraction and specification mechanisms in order to
handle binary-level analysis over large non-critical codes 1. We propose the following
improvements:

– more abstract operations (malloc, nondet) together with basic specification mech-
anisms (assume, assert), see Figure 1;

– a more abstract low-level region-based semantics [2], representing memory as a dy-
namic collection of disjoint arrays (constant, stack, malloc(id)) while being
able to simulate precisely many low-level programs, see Section 4;

– access permissions for read, write and execute operations; permissions are de-
fined on region zones, i.e. region partitions defined by (user-given) predicates;

– tags on instructions and variables for embedding useful information available at
decoding, such as <tmp> or <flag> for variables and <call> or <ret> for jumps.

Instructions
– lhs := rhs, goto addr
– goto addr < call, ret, none >
– goto expr < call, ret, none >
– ite(cond)? goto addr : goto addr’
– lhs := malloc(size), goto addr
– free(expr), goto addr
– lhs := nondet(size), goto addr
– assert(cond), goto addr
– assume(cond), goto addr
– stop < ok, ko, none >

Expressions
– e{i .. j}, extu,s(e,n), e :: e

– @(expr,
→
k), @(expr,

←
k)

– e {+,−,×, /u,s,%u,s} e
– e {<u,s,≤u,s,=, �=,≥u,s, >u,s} e
– e {∧,∨,⊕, <<,>>u,s} e, !e

Fig. 1. Extended DBA instructions

3 Platform Overview

BINSEC is designed around three basic services, depicted in Figure 2: (1) a front-end
translating executable codes into DBA programs (loading, decoding, syntactic disas-
sembly, support of DBA stubs) and simplifying them; (2) a simulator for extended
DBA, supporting three different memory models (flat, standard regions [8], low-level
regions [2]); and finally (3) a generic static analysis engine (in progress) allowing safe
CFG recovery.

1 This drawback is common to other formal IRs such as REIL [9], RREIL [13] and BAP [7].

214 A. Djoudi and S. Bardin

Fig. 2. BINSEC platform

3.1 Front-End

Loading and Decoding. The main service here is a decoding function taking a (virtual)
address and returning a block of DBA instructions simulating the semantics of the cor-
responding machine code instruction. The platform currently supports the ELF format
(a PE loader is in progress) and a decoder for x86-32 is provided. The following fea-
tures are supported: all prefixes but wait and lock, all basic instructions (380 instr.)
and all mmx instructions not involving floating-point registers (100 instr.).

Disassembly. The goal of disassembly is to give the semantics of the whole executable
file. This is a very hard problem because of dynamic jumps [6,10,11]. We provide im-
plementations of the most common solutions: (1) recursive disassembly, with the pos-
sibility to specify some jump targets; (2) linear sweep disassembly (typically used by
objdump) with instruction-wise or byte-wise granularity, the later allowing to disas-
semble overlapping instructions; (3) a combination of recursive and linear sweep dis-
assembly, mimicking the approach of IDA pro; and finally (4) a combination of recur-
sive disassembly with dynamic execution, where jump targets are discovered through
simulation.

Formal Stubs. A formal stub is a block of DBA instructions that will be inserted at
some address of the retrieved program, either in place of the result of the decoder
(@replace) or in combination with it (@insert). This feature is useful either when
the corresponding code is not available (analysis of object files rather than executable
files), or for abstracting parts of the code (typically, library functions). A stub for
libc/malloc function is described in Figure 3.

@replace : 0 x b 7 f f f 4 1 4 {
tmp<32> := nonde t (3 2) ; // abstracting a failure condition, typically out of memory
i f (tmp = 0<32>) goto l 1 e l s e goto l 2 ;

l 1 : eax<32> := 0<32>; goto l 3 ; // failure, result is NULL
l 2 : eax<32> := ma l loc (@[es p + 4<32> ,<− ,4]); // DBA malloc, with size read on stack

assume ((eax modu 4<32>) = 0<32>); // alignment constraint
l 3 : esp<32> := e s p + 4<32>; // stack cleanup

goto @[es p − 4<32>,<−,4]; // jump to return address (call-site) retrieved from the stack
}

Fig. 3. A stub for libc/malloc

BINSEC: Binary Code Analysis with Low-Level Regions 215

3.2 Simplifications

Simplifications discard unused DBA instructions, typically those instructions model-
ing flag updates. The goal is to help later analyzes, either automatic or human-based.
We essentially try to simplify temporary variables and flag variables, identified through
DBA tags. We rely on rewriting rules (instruction-wise), constant propagation and elim-
ination of temporary variables (block-wise), and liveness analysis for flag elimination
(inter-block). The method removes up to 75% of flag operations (cf. Section 4).

3.3 Memory Model and Simulation

Memory Models. We provide a partitioned memory model in the vein of CompCert [8],
with values of the form (r, val) where r is a region symbol - the base, and val is a
bitvector - the offset (Cst being a special region symbol acting as 0). This modeling
is very adapted for managing dynamically allocated memory and allows robust formal
analyzes thanks to implicit partitioning of memory. However, most operations are il-
legal with pure regions [8], e.g. (r1, v1) − (r2, v2) is undefined when r1 �= r2 and
r2 �= Cst. Unfortunately, undefined patterns are found in common libc programs,
such as memmove or memcopy, and, even worst, they can also be introduced at compile-
time. For instance, an instruction x = if (!x) then 1 else 0; can be compiled
as follows (assuming x is stored in eax):

neg eax // eax := -eax. CF := 0 if source operand (eax) is 0; otherwise CF := 1
sbb eax, eax // eax := eax - (eax + CF) = -CF
inc eax // eax := eax + 1 = -CF + 1

The compiler performs here an optimization called branchless conditional in order to
optimize instruction pipelining. In a region-based model, the result of the first neg
instruction is undefined when the input is a pointer value, i.e. r �= Cst. Low-level
region-based models [2] have been introduced recently to address this issue by allowing
some reasoning over region symbols.

Simulation. We provide simulation and random testing modes supporting all features
of extended DBA. Three different memory models can be selected: (a) flat model (mem-
ory as a single array), (b) standard region-based model and (c) low-level region-based
model. Interestingly, all models are implemented in a unified way, pure regions and flat
model being viewed as restrictions of low-level regions.

3.4 Static Analysis Interface

We provide a generic fixpoint computation for abstract domains given as lattices, al-
lowing one to quickly prototype binary-level analyzers. The current implementation
offers the following advantages: (1) tight interleaving of syntactic disassembly with
value analysis [6,11], allowing sound resolution of indirect jumps; (2) the possibility
to restrict a priori the set of possible jump targets (closed mode) by providing a finite
set of acceptable targets; (3) a degraded mode, in the vein of [10], where the analyzer
switches to an unsound analysis whenever a jump or a memory operation cannot be
resolved precisely enough. The interface is currently limited to non-relational abstract

216 A. Djoudi and S. Bardin

domains. We plan to extend it quickly to relational domains and to provide implemen-
tations of the most common domains.

4 Experiments

We evaluate our implementation on two main criteria: the impact of low-level regions
and the effectiveness of our simplifications. Simplifications are performed over standard
Unix programs, while experiments on low-level regions are carried upon a collection
of small- to medium-size procedures (up to 5,000 machine instructions) from libc and
the VeriSec benchmark2. All experiments are performed on an Intel Core i5 3.20Ghz.

Benefits of Simplifications. Results are presented in Table 1 and summarized in Ta-
ble 2. Simplifications allow a global reduction of instructions of 24%, and (most im-
portant) flag assignments are reduced by about 73%, which is interesting because these
operations are complex to handle in analyzers. Simplified DBA programs are in aver-
age 2.5x larger than native codes (3.3x larger without simplifications) 3. This is pretty
close to the minimal ratio between DBA and machine code, since an inter-block goto

is added to each DBA block.

Table 1. Evaluating DBA optimization

program native DBA simplified DBA
loc loc † ko loc time red

bash 166K 558K 5 402K 10.65m 27.95%
cat 7303 23K 0 18K 16.62s 20.55%
echo 3345 10K 0 8181 6.39s 22.38%
less 23K 80K 5 56K 89.31s 29.03%
ls 18K 63K 6 45K 83.42s 27.38%
mkdir 7329 24K 5 18K 23.65s 27.08%
netstat 16K 50K 3 41K 68.48s 17.43%
ps 11125 36K 0 28K 47.90s 21.38%
pwd 3581 11K 0 8942 9.77s 21.47%
rm 9186 30K 16 23K 31.13s 22.52%
sed 9993 32K 0 24K 37.50s 24.24%
tar 64K 212K 7 159K 5.2m 25.26%
touch 7944 26K 0 19K 30.02s 25.75%
uname 3271 10K 0 8131 8.89s 21.68%

† ko: # unsupported instructions

Table 2. Average reductions

DBA vs asm 3.3x
(no simpl)

dba instr 24.00%
reduction tmp assign 21.89%

flag assign 73.17%

DBA vs asm 2.5x
(simpl)

DBA vs asm: ratio between # DBA instructions and #
machine instructions

Benefits of Low-level Regions. We compare both memory models on their ability to
provide defined concrete semantics on the benchmark programs. These programs con-
tain some patterns that illustrate illegal operations in standard region-based model. Re-
sults are summarized in Table 3, where we also provide time information w.r.t. the
flat memory model. The standard region-based model succeeds in only 1/20 example,
while low-level regions succeed in 20/20 examples. It seems that low-level regions are
absolutely necessary in order to give a (useful) non-flat semantics to binary programs.

2 Available at https://se.cs.toronto.edu/index.php/Verisec Suite
3 Simon et al. report a 7x size increase for GDSL/RREIL, and a 3.5x size increase after simpli-

fications [12].

BINSEC: Binary Code Analysis with Low-Level Regions 217

Table 3. Simulation with three different memory models

program standard low-level flat

regions regions
aligned calloc x � 4.73s 0.0003s
llpointer arithmetic x � 3.51s 0.01s
malloc x � 0.62s 0.008s
memcpy x � 0.001s 0.003
memmove x � 0.49s 0.01s
mmap x � 0.03s 0.02s
neg sbb inc x � 2.81s 2.82s
pointer arithmetic x � 0.02s 0.02s
pointer logical x � 0.12s 0.001
pointer or int x � 0.07s 0.0006s

success 0/10 10/10 10/10

program standard low-level flat

regions regions
test or pointer 1.08s � 1.09s 1.09s
loops x � 1.006s 1.07s
full x � 5.76s 5.73s
istrstr x � 5.54s 5.77s
istrstr loops x � 5.40s 5.61s
istrstr2 loops x � 5.27s 5.64s
parse config x � 3.83s 4.12s
guard random index x � 0.14s 0.13
guard strstr x � 5.53s 5.53s
guard strchr x � 2.98s 3.02s

success 1/10 10/10 10/10

5 Future Work

We plan to extend very quickly our framework with more decoders (PowerPC, ARM) and
loaders (PE). We also plan to extend the static analysis interface and add basic facilities
for symbolic execution, taking low-level memory regions into account.

References
1. Bardin, S., Baufreton, P., Cornuet, N., Herrmann, P., Labbé, S.: Binary-level Testing of Em-

bedded Programs. In: QSIC 2013. IEEE, Los Alamitos (2013)
2. Besson, F., Blazy, S., Wilke, P.: A Precise and Abstract Memory Model for C Using Sym-

bolic Values. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 449–468. Springer,
Heidelberg (2014)

3. Bardin, S., Herrmann, P.: Structural Testing of Executables. In: ICST 2008. IEEE, Los
Alamitos (2013)

4. Bardin, S., Herrmann, P.: OSMOSE: Automatic Structural Testing of Executables. Softw.
Test., Verif. Reliab. 21(1), 29–54 (2011)

5. Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, R., Vincent, A.: The BINCOA Frame-
work for Binary Code Analysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 165–170. Springer, Heidelberg (2011)

6. Bardin, S., Herrmann, P., Védrine, F.: Refinement-Based CFG Reconstruction from Unstruc-
tured Programs. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 54–69.
Springer, Heidelberg (2011)

7. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A Binary Analysis Platform. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 463–469. Springer,
Heidelberg (2011)

8. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model. In: Program
Logics for Certified Compilers. Cambridge University Press (2014)

9. Dullien, T., Porst, S.: REIL: A platform-independent intermediate representation of disas-
sembled code for static code analysis. In: CanSecWest 2009 (2009)

10. Kinder, J., Kravchenko, D.: Alternating Control Flow Reconstruction. In: Kuncak, V., Ry-
balchenko,A. (eds.)VMCAI2012.LNCS,vol.7148,pp.267–282.Springer,Heidelberg(2012)

11. Kinder, J., Veith, H.: Jakstab: A static analysis platform for binaries. In: Gupta, A., Malik, S.
(eds.) CAV 2008. LNCS, vol. 5123, pp. 423–427. Springer, Heidelberg (2008)

12. Simon, A., Kranz, J.: The GDSL toolkit: Generating Frontends for the Analysis of Machine
Code. In: PPREW 2014. ACM, New York (2014)

13. Sepp, A., Mihaila, B., Simon, A.: Precise Static Analysis of Binaries by Extracting Relational
Information. In: WCRE 2011, IEEE, Los Alamitos (2011)

Insight: An Open Binary Analysis Framework

Emmanuel Fleury1, Olivier Ly1, Gérald Point2, and Aymeric Vincent3

LaBRI, UMR 5800, Talence, France
1Université de Bordeaux, Talence, France

2CNRS, Talence, France
3INP Bordeaux Aquitaine, Talence, France

{emmanuel.fleury,olivier.ly,gerald.point,aymeric.vincent}@labri.fr

Abstract. We present Insight, a framework for binary program anal-
ysis and two tools provided with it: CFGRecovery and iii.

Insight is intended to be a full environment for analyzing, interact-
ing and verifying executable programs. Insight is able to translate x86,
x86-64 and msp430 binary code to our intermediate representation and
execute it symbolically in an abstract domain where each variable (regis-
ter, memory cell) is substituted by a formula representing all its possible
values along the current execution path.

CFGRecovery aims at automatically rebuilding the program control
flow based only on the executable file. It heavily relies on SMT solvers.

iii provides an interactive and a (Python) programmable interface
to a coherent set of features from the Insight framework. It behaves
like a debugger except that the execution traces that are examined are
symbolic and cover a collection of possible concrete executions at once.
For example, iii allows to perform an interactive reconstruction of the
CFG.

Keywords: binary analysis, CFG recovery, symbolic debugging.

1 Introduction

Nowadays, finding complex bugs automatically has become fruitful and use-
ful. Yet, most of software analysis techniques rely on the fact that a complete
blueprint of the program is available (full specifications, formal design docu-
ments, source code) at a level of abstraction suitable for analysis.

A recent interest has been shown in analyzing executable programs with no
prior knowledge of their internals [11,2,4]. These efforts have been essentially
pushed forward by the need to get some trust on external binary-only software,
or analyzing potentially malicious software.

But, one of the main problems of binary analysis is to rebuild a correct control
flow graph of the program which can be made difficult to recover because of data-
entanglement, self-modifying code, or other binary specific effects (intentional
or not) linked to this specific format. It is needed because most, if not all, the
analysis techniques require the control flow graph to operate, which means that
the recovery of the control flow comes before any other usual analysis. Moreover,

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 218–224, 2015.
DOI: 10.1007/978-3-662-46681-0_18

Insight: An Open Binary Analysis Framework 219

depending on the completeness and the accuracy of the recovery, the analysis
may succeed or fail. Thus, in order to leverage existing techniques on higher-level
code, the first step will be to recover the control flow as accurately as possible.

A few pioneers of binary analysis already made advances on recovery tech-
niques [7,12]. But, recent works [11,2,4] led to new approaches for both recovery
and/or analysis on binary programs and the design of new tools: McVeto [14],
CodeSurfer/x86 [1], OSMOSE [4], Jakstab [10], or frameworks: BitBlaze [13],
BAP [6], Otawa [3]. Yet, few of these tools are actually open platforms which
could be used by the community to ease the cumbersome steps of working on
binary programs for new researchers in this field.

Insight is a framework, including a library and tools, aiming to provide an
environment to perform binary analysis for verification purposes. Yet, even if
our first intent was binary verification, one may use the framework for other
goals such as program control flow extraction, reverse engineering, decompila-
tion, . . . As a first step, we built a complete chain of modules that can be used to
extract concrete or symbolic traces of the binary program in a simulated envi-
ronment, translate it into our intermediate representation and perform analyses
on it.

These modules have been combined into two tools that are now part of the
framework: CFGRecovery, an automated tool to recover the control flow of
the binary program and the Insight Interactive Inspector (iii), an interactive
tool working as a debugger to execute and interact with both the original binary
program and its intermediate representation.

Insight was started during the BINCOA ANR-funded project [5]. The frame-
work is not currently focused on performance, and on small programs of a few
kilobytes, a couple of minutes of computation on an Intel Core i5 laptop are
to be expected to recover the control flow graph using Mathsat [8] as the SMT
solver. Starting stepping through a program of any size under iii is immedi-
ate. Insight, CFGRecovery and iii are freely available with an open source
2-clause BSD license (visit http://insight.labri.fr).

In the following we first present the library, then the tools, and we conclude
with future research directions.

2 The Insight Library

The Insight library gathers all the functions, data structures and algorithms
that allow to build tools for binary analysis. It includes primitives to handle our
intermediate representation, which is called the microcode, the functions used to
extract and translate the original assembly into microcode and a way to execute
it within a simulated environment on a given abstract domain.

2.1 Insight’s Microcode

Binary instructions are translated into an architecture-independent representa-
tion called microcode. Fig. 1 gives an example of microcode. The microcode is an

http://insight.labri.fr

220 E. Fleury et al.

oriented graph whose nodes are labelled with addresses (e.g. [0x0,0]) and edges
with a guard (<<...>>) and an instruction (e.g. an assignment var:=expr).

The addresses which label nodes are composed of two parts: a global address
which corresponds to the address as seen by the binary program, and a local
sub-address which allows to translate one assembly instruction into a sub-graph.
The guards are formulae with a boolean value, and the edge can exist in the
semantics of the microcode in a given context only if the guard evaluates to true
in that context.

[0x0,0]@asm=push eax@

[0x0,1]

[0x1,0]@asm=je 0x5@

[0x3,0]@asm=jmp *eax@

[0x5,0]@asm=pop eax@

[0x5,1]

[0x6,0]@...@

esp{0;32}:=(SUB esp{0;32} 0x4{0;32}){0;32}

[esp{0;32}]{0;32}:=eax{0;32}

<<zf{0;1}>>

<<(NOT zf{0;1}){0;32}>>

eax{0;32}:=[esp{0;32}]{0;32}

eax{0;32}:=[esp{0;32}]{0;32}

Fig. 1. Microcode example (from x86 asm)

There are three types of instruc-
tions: a skip instruction which does
nothing but go to its successor (e.g.
at [0x1,0] a conditional jump); all
static jumps are implemented with
a skip instruction. An assignment
which assigns the value of an ex-
pression to a l-value (e.g. eax is as-
signed to at [0x5,0]). And, a dy-
namic jump which has no succes-
sor in the graph but provides an ex-
pression determining the global ad-
dress where execution should con-
tinue (eg. at [0x3,0] a jump to the
value of eax).

Expressions can use a variety of
bitvector operators (addition, bits
extraction, . . .), and base operands
are made of constants, variables,
and memory references. Every sub-
expression includes the possibility of extracting a bitvector. This way, sub-
bitvectors of variables and memory references constitute acceptable l-values and
are legitimate expressions.

2.2 Microcode Providers and Handling

One of the very appealing features of Insight is its ability to load a binary
program and translate it into microcode. This feature is provided thanks to
GNU’s libbfd which allows to open almost any executable container format (e.g.
ELF, PE-COFF). Translation from binary assembly instructions into microcode
is provided by Insight itself, but uses the GNU libopcodes as a first step.
This translation is currently implemented almost fully for 32-bit x86, 64-bit x86
and 16-bit MSP430. Yet, it is important to notice that only integer datatypes
are supported (no floating point, SIMD, . . .) as is the case of the other binary
analysis software that we know of.

A handful of classes are used to represent a microcode program. In order to
ease creation of microcode and thus the writing of decoders, a very simple API is
provided to add microcode instructions to a program. Furthermore, a very useful

Insight: An Open Binary Analysis Framework 221

feature is the ability to annotate almost any object of microcode. For example, a
microcode node corresponding to a given address can be annotated by the textual
representation of the assembly instruction at that address; dynamic jumps can
be annotated by their potential targets; and so on. This gives a homogeneous
place for analyses to store their results and helps provide the end-user with
information related to a given microcode part.

2.3 Simulation on Domains

Mainly, two domains are provided: a “concrete” domain which allows computa-
tions of a single value per l-value and provides the usual operations on bitvectors.
And, a “symbolic” domain which represents sets of values thanks to assertions
constraining variables and memory elements. Two additional toy domains are
also provided: the “sets” domain which uses sets of concrete values to repre-
sent possible values, and the “intervals” domain which uses a pair of integers to
represent an interval of concrete values.

The simulation on the symbolic domain is the one we massively rely on for
recovering the control flow of the program. Indeed, we use symbolic execution to
collect program traces and build a microcode program from it. This technique
has already been used for many other purposes like automatic software testing [4]
or processor microcode verification [9].

More precisely, symbolic execution is performed by the simulation engine that
will execute every step of the program assuming symbolic values for inputs rather
than concrete ones. Our symbolic domain is the set of all the (quantifier free)
bitvector arithmetic formulae, which allows to represent exactly the semantics
of assembly instructions.

3 CFGRecovery

CFGRecovery is a tool dedicated to the recovery of the control flow of an
executable program in the most accurate way, only based on the binary form
of the program. Several classical disassembly strategies may be chosen (linear
sweep, recursive traversal). But, our main disassembly method is to use an under-
approximation strategy using symbolic execution in order to avoid spurious ex-
ecution traces and to output a possibly incomplete but trusted control flow
graph. A very simple example is given in Fig. 2, it shows the disassembly of code
with instruction overlapping obfuscation using objdump on the left, and with
CFGRecovery on the right. Note that CFGRecovery is accurate.

4 Insight’s Interactive Inspector (iii)

Insight’s interactive inspector (iii) is a cross-debugger using an abstract do-
main to represent memory and register values. The iii tool is a Python inter-
preter enriched with Insight library features. As for CFGRecovery, it can

222 E. Fleury et al.

instruction_overlapping-i386: file format elf32-i386
Disassembly of section .text:

08048098 <_start>:
8048098: b8 00 03 c1 bb mov $0xbbc10300,%eax
804809d: b9 00 00 00 05 mov $0x5000000,%ecx
80480a2: 01 c8 add %ecx,%eax
80480a4: eb f4 jmp 804809a <_start+0x2>
80480a6: 01 d8 add %ebx,%eax
80480a8: bb 00 00 00 00 mov $0x0,%ebx
80480ad: b8 01 00 00 00 mov $0x1,%eax
80480b2: cd 80 int $0x80

1a. objdump (linear sweep) disassembly.

 8048098 : mov $0xbbc10300,%eax
 804809d : mov $0x5000000,%ecx
 80480a2 : add %ecx,%eax
 80480a4 : jmp 0x804809a

 804809a : add %ecx,%eax
 804809c : mov $0xb9,%ebx
 80480a1 : add $0xf4ebc801,%eax
 80480a6 : add %ebx,%eax
 80480a8 : mov $0x0,%ebx
 80480ad : mov $0x1,%eax
 80480b2 : int $0x80

1b. CFGRecovery disassembly.

Fig. 2. Example of code disassembled by objdump (1a) and CFGRecovery (1b)

load binary executable files and simulate them over any domain supported by
the framework.

The basic principle of operation of iii is that a microcode program is contin-
uously maintained in memory and is enriched by explicit loading of microcode,
or by exploring a binary executable using symbolic execution. At each step, an
edge of the microcode is followed, and any location which is encountered and
not yet part of the microcode will be added to it.

#0 #1

 61d4df : insight-stub/__libc_start_main

 4028a0 : push %r15
 4028a2 : push %r14
 4028a4 : push %r13
 4028a6 : push %r12
 4028a8 : push %rbp
 4028a9 : push %rbx
 4028aa : mov %edi,%ebx
 4028ac : mov %rsi,%rbp
 4028af : sub $0x398,%rsp
 4028b6 : mov (%rsi),%rdi
 4028b9 : mov %fs:0x28,%rax
 4028c2 : mov %rax,0x388(%rsp)
 4028ca : xor %eax,%eax
 4028cc : callq 0x40d770

 40d770 : test %rdi,%rdi
 40d773 : push %rbx
 40d774 : mov %rdi,%rbx

 40d777 : je 0x40d7e3

0x40d7e3 0x40d779

Fig. 3. iii CFG exploration

Many usual debugger commands are available
in iii, possibly adapted to its specificities. For ex-
ample, the step() function follows the microcode
edges associated with a full assembly instruction,
but also the microstep() function follows just
one edge of the microcode. Another example is
the cont() function which will continue until one
of the usual conditions occurs (breakpoint or “end
of program”) or when non-determinism is encoun-
tered, in which case the user is asked to select
which edge to follow.

It is also possible to load microcode stubs at
any address in the code prior to reaching that ad-
dress. We usually use stubs to replace a call to
an external procedure by a simplified model of
it. These stubs can be loaded at a given address
and “folded” into this global address by letting the
stub loader replace all other global addresses by
local addresses. This allows to preserve global ad-
dress space whose usage is dictated by the binary
program.

At any moment, the (symbolic) content of memory and registers can be dis-
played similarly to what can be done in a debugger. The current microcode can
also be displayed graphically with the current microcode node in the simulation
trace highlighted, and hotkeys allow to call functions like step() to extend the
trace from within the graph. See Fig. 3.

Insight: An Open Binary Analysis Framework 223

5 Future Directions

Insight has now reached a level of achievement that allows to extract a coherent
microcode model from possibly complex software and interact with it. Many new
ideas can be explored with the framework and we hope the community will take
advantage of this massive open source code base. We intend to further research
on topics such as self-modifying code, loop summarization, and verification. Also
practical usage of the framework for reverse engineering purposes is a promising
lead.

Acknowledgments. We would like to thank all the contributors, and especially
R. Tabary for his work on Insight and also for the crackme example used in
the demo.

References

1. Balakrishnan, G., Gruian, R., Reps, T., Teitelbaum, T.: CodeSurfer/x86—A plat-
form for analyzing x86 executables. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443,
pp. 250–254. Springer, Heidelberg (2005)

2. Balakrishnan, G., Reps, T.: WYSINWYX: What You See Is Not What You eX-
ecute. Journal of ACM Transactions on Programming Languages and Systems
(TOPLAS) 32 (2010)

3. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: An open toolbox
for adaptive WCET analysis. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T.
(eds.) SEUS 2010. LNCS, vol. 6399, pp. 35–46. Springer, Heidelberg (2010)

4. Bardin, S., Herrmann, P.: OSMOSE: automatic structural testing of executables.
Software Testing, Verification and Reliability 21(1), 29–54 (2011)

5. Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, R., Vincent, A.: The BINCOA
framework for binary code analysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 165–170. Springer, Heidelberg (2011)

6. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis
platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 463–469. Springer, Heidelberg (2011)

7. Cifuentes, C.: Reverse Compilation Techniques. Ph.D. thesis, Queensland Univer-
sity of Technology, Department of Computer Science (1994)

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

9. Franzn, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in
symbolic execution of microcode. In: Proc. of Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD 2010), pp. 121–128. IEEE (2010)

10. Kinder, J., Veith, H.: Jakstab: A static analysis platform for binaries. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 423–427. Springer, Heidelberg
(2008)

11. Kinder, J., Zuleger, F., Veith, H.: An abstract interpretation-based framework for
control flow reconstruction from binaries. In: Jones, N.D., Müller-Olm, M. (eds.)
VMCAI 2009. LNCS, vol. 5403, pp. 214–228. Springer, Heidelberg (2009)

224 E. Fleury et al.

12. Mycroft, A.: Type-based decompilation (or program reconstruction via type re-
construction). In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 208–223.
Springer, Heidelberg (1999)

13. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Zhenkai, K.M.G.a.L.,
James, N., Pongsin, P., Prateek, S.: BitBlaze: A new approach to computer se-
curity via binary analysis. In: Proc. of Int. Conf. on Information Systems Security
(ICISS). LNCS, pp. 1–25. Springer, Heidelberg (2008)

14. Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T.,
Reps, T.: Directed proof generation for machine code. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 288–305. Springer, Heidelberg
(2010)

SAM: The Static Analysis Module

of the MAVERIC Mobile App Security
Verification Platform

Alessandro Armando1,2, Gianluca Bocci3, Giantonio Chiarelli3,
Gabriele Costa1, Gabriele De Maglie1, Rocco Mammoliti3, and Alessio Merlo1

1 DIBRIS, University of Genova, Italy
name.surname@unige.it

2 Bruno Kessler Foundation, Trento, Italy
armando@fbk.eu

3 Poste Italiane, Roma, Italy
{boccigi2,chiare96,mammoliti.rocco}@posteitaliane.it

Abstract. The tremendous success of the mobile application paradigm
is due to the ease with which new applications are uploaded by devel-
opers, distributed through the application markets (e.g. Google Play),
and finally installed by the users. Yet, the very same model is causing
serious security concerns, since users have no or little means to ascer-
tain the trustworthiness of the applications they install on their devices.
To protect their customers, Poste Italiane has defined the Mobile Ap-
plication Verification Cluster (MAVERIC), a process for the systematic
security analysis of third-party mobile apps that leverage the online ser-
vices provided by the company (e.g. home banking, parcel tracking). We
present SAM, a toolkit that supports this process by automating a num-
ber of operations including reverse engineering, privilege analysis, and
automatic verification of security properties. We introduce the function-
alities of SAM through a demonstration of the platform applied to real
Android applications.

1 Introduction

Mobile devices are becoming the main access point for many security-critical
online services (e.g., e-Banking). Handling valuable resources and data, they
are appealing targets for security attacks. In this context, mobile applications
represent a major threat. Smartphones retrieve and install software packages
from unknown, possibly malicious sources. However, most of the modern mobile
operating systems try to regulate the software distribution, therefore mitigating
the associated risk, by means of trusted repositories, called application stores,
e.g., Google Play and Apple Store. Major service providers, including Poste
Italiane, participate in this ecosystem both directly, i.e., by publishing their
Apps, and indirectly, i.e., through third-party apps that access web services
offered by Poste Italiane. The ability to tell apart benign applications from
malicious or flawed ones is therefore a primary goal for Poste Italiane. In fact,

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 225–230, 2015.
DOI: 10.1007/978-3-662-46681-0_19

226 A. Armando et al.

the latter malicious or flawed application run on the customer’s mobile devices
may severely affect the security of the transactions as well as the privacy of
the customer. To tackle the challenge Poste Italiane is developing the Mobile
Application Verification Cluster (MAVERIC), a unified verification framework
that provides automated support to a number of key activities ranging from
mobile app verification to legal analysis. Security experts at the Poste Italiane
Computer Emergency Response Team (CERT) are already using MAVERIC to
systematically assess the security of the Poste Italiane mobile apps ecosystem.

In this paper we introduce the Static Analysis Module (SAM), a core compo-
nent of the MAVERIC architecture. SAM integrates some state-of-the-art static
analysis techniques for mobile application packages (APKs) and produces a de-
tailed security assessment report containing statistics, properties of the analyzed
application, and a number of additional artefacts.

The paper is structured as follows. Section 2 presents the architecture of the
SAM, Section 3 describes the components of the module and Section 4 provides
a brief overview of the MAVERIC web application. Finally, Section 5 concludes
the paper.

2 MAVERIC and SAM

Static software analysis is a complex and multifaceted task. In most cases, static
analysis methods have a precise scope. For instance, malware detection [6] aims
at discovering whether an application carries malicious code. Instead, code re-
view [7] applies to software sources for finding flaws in implementations. As they
target different aspects and resources, the available static analysis techniques
are often complementary and can be combined to extend their potential to new
emerging scenarios. SAM integrates different static analysis approaches to sup-
port the automatic assessment of Android applications.

The architecture of MAVERIC is depicted in Fig. 1. MAVERIC leverages
AppVet [9] to orchestrate a number of fully automated security analysis tech-
niques. AppVet is open-source web service developed by NIST that supports
the integration of mobile application analysis tools. It must be noted that Ap-
pVet supports basic logging and data management functionalities, but it does
not include any analysis component. MAVERIC extends AppVet with several
new modules and tools. Among them, SAM implements a set of components
supporting the systematic security assessment of Android applications. In the
near future, MAVERIC will be extended with further modules targeting other
aspects of the security analysis of mobile applications such as the dynamic and
legal analyses. Below, we briefly introduce the SAM sub-modules and their role.

Reverse Engineering. It gets the APK file containing the Android app and
retrieves general information about the APK and its content (i.e., devel-
oper, version, release date, etc.). Moreover, it rebuilds the source code and
computes metrics and statistics on it.

Permission Checking. It infers permission requests and usage from both the
manifest file and the application code.

The SAM of the MAVERIC Mobile App Security Verification Platform 227

Fig. 1. Architecture of the MAVERIC platform

Code Review. It verifies whether the APK code contains some common vul-
nerabilities by comparing it with a list of known ones.

Malware Analysis. It processes the APK looking for malware components and
known, malicious patterns.

Application Verification. It checks whether the APK complies with a secu-
rity policy (specified by the analyst).

The results of the analysis are provided back to the analysts in the form of
artefacts (e.g. analysis reports). In the next section, we detail the SAM sub-
modules and we report their development status.

3 Static Analysis Techniques

In this section we present the techniques supported by SAM.

Reverse Engineering. The reverse engineering module relies on few tools for
APK inspection and Java bytecode decompilation. Used software include An-
droguard (https://code.google.com/p/androguard/), APKTool (https://
code.google.com/p/android-apktool/), DEX2JAR (https://code.google.
com/p/dex2jar/) and CFR (http://www.benf.org/other/cfr/). This module
recreates the resources that the developer used to build the APK. They include
source code, configuration files and other resources (multimedia contents, binary
data, etc.).

The extracted code is processed for finding whether the application uses native
libraries, dynamic class loading or code reflection. Although not always danger-
ous, these features might cause a security breach. For instance, native code can
evade VM security checks (as it is directly executed by the OS).

For each class file, the reverse engineering module returns the size in KB, the
number of methods and fields. Also, it assigns an obfuscation score o ∈ [0, 1]

https://code.google.com/p/androguard/
https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
https://code.google.com/p/dex2jar/
https://code.google.com/p/dex2jar/
http://www.benf.org/other/cfr/

228 A. Armando et al.

heuristically computed. Intuitively, o indicates the ease to perform a manual
inspection of the app code, e.g., o = 1 stands for heavily obfuscated code. The
heuristic function considers syntactic properties like length and variation of vari-
able, method and class names.

Permission Checking. The permission checking module retrieves and pro-
cesses the sets of permissions requested (R) and used (U) by the APK. The ele-
ments of R and U are listed along with their protection level (obtained from the
API specification, see http://developer.android.com/training/articles/

security-tips.html). The protection level ranges over {SignatureOrSystem,
System, Dangerous, Normal}. Typically, higher values, e.g., SignatureOrSystem,
denote permissions needed to access valuable resources or critical functionalities.

The module also computes the relation between U and R. Ideally, applications
should statically declare exactly all the permissions they need at runtime, i.e.,
U = R. Instead, if R \U �= ∅ some permissions are requested but not used. This
means that the application is somehow over-privileged. Although not necessarily
dangerous, this case is in contrast with the least privilege principle [5]. Finally,
if U \R �= ∅ some permissions used by the code are not declared. This condition
can lead to runtime issues. As a matter of fact, when an unprivileged piece of
code attempts an access, a security error is fired. The application carrying these
instructions1, is terminated with a security exception. Although the permissions
could be obtained dynamically, e.g., granted by a another app, the application
is behaving differently from what is declared in its manifest.

Malware Analysis. Malware detection has a long standing tradition and sev-
eral approaches exist. A common technique is the signature-based detection, con-
sisting in a comparison between application fingerprints against large databases
of known malware [8]. Other methods include analysis of program semantics [3]
and runtime behavioural checking [10]. These techniques consider different per-
spectives and can be applied to a single APK for obtaining a multi-dimensional
malware profile. The malware analysis module can interact with third-party on-
line malware detection services to do this. For instance, VirusTotal (https://
www.virustotal.com/) is a state-of-the-art web application orchestrating sev-
eral malware analysis tools and listing their output. Other, similar services are
NVISO ApkScan (http://apkscan.nviso.be/) and MARBLE Scan (http://
www.marblesecurity.com/).

Application Verification. The application verification module exploits model
checking [4] to verify that an APK complies with a policy defined as a temporal
property. The module proceeds by extracting a model of the app and verifying
whether it satisfies the policy or not. Models are generated by extracting control
flow graphs and by translating them into labeled transition systems. Policies
are specified through a specification language called ConSpec [1], i.e., a pol-
icy language already exploited in both verification and monitoring frameworks.
ConSpec uses a Java-like syntax for defining an abstract security controller.

1 Notice that if such code is unreachable, the application includes unneeded elements
which is often suspect.

http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
https://www.virustotal.com/
https://www.virustotal.com/
http://apkscan.nviso.be/
http://www.marblesecurity.com/
http://www.marblesecurity.com/

The SAM of the MAVERIC Mobile App Security Verification Platform 229

The controller consists of a sequence of event-guarded rules. When one of the
events takes place, the controller changes its state (defined through a set of
variables) according to a statement associated to the rule. Model checking is
carried out by Spin (http://spinroot.com/), a state-of-the-art model checker.
A similar application verification approach was used in [2] where a prototype im-
plementation analysed hundreds of Android applications against a BYOD policy
of the US Government.

Secure Code Review. Code review aims at discovering known vulnerabili-
ties and dangerous code patterns. A source of such patterns is provided by the
OWASP top ten (available at https://www.owasp.org/). Although some of the
reported vulnerabilities cannot be detected by only considering a mobile applica-
tion, e.g., M1: Weak Server Side Controls, part of them are localized in the APK
code. For instance, M2: Insecure Data Storage describes how certain APIs can
be misused by applications storing critical data in the file system. The dangerous
behaviour can be encoded and verified with techniques analogous to those used
for application verification (see above). For the time being, four of the OWASP
top ten vulnerabilities have been encoded in ConSpec and are checked against
the target applications.

4 MAVERIC Web Application

The MAVERIC platform is available at https://130.251.1.32:80/maveric.
Anonymous users can log in through the credentials username: guest and
password: guest. After user authentication, the application shows the main
screen as depicted in Figure 2.

Fig. 2. The main screen of the MAVERIC web application

From the main screen, users can read the existing reports (accessible from the
right panel after selecting an entry from the list). Moreover, users can submit
new APKs for the analysis. After submitting a new app, the web application
displays the progress of the analyses. When one of the sub-modules terminates,
its report is accessible through the Result link next to the module name.

http://spinroot.com/
https://www.owasp.org/
https://130.251.1.32:80/maveric

230 A. Armando et al.

5 Conclusion

This paper presented SAM, the static analysis module of the MAVERIC plat-
form. SAM provides security analysts with several functionalities for the security
assessment of mobile applications. We described each of the components partici-
pating in the module and showed how they contribute to the integrated analysis
process. Although it is still under development, SAM can be already applied to
the security analysis of mobile code.

References

1. Aktug, I., Naliuka, K.: ConSpec – A formal language for policy specification. Sci-
ence of Computer Programming 74(1-2), 2–12 (2008) Special Issue on Security and
Trust

2. Armando, A., Costa, G., Merlo, A., Verderame, L.: Enabling BYOD Through Se-
cure Meta-market. In: Proceedings of the 2014 ACM Conference on Security and
Privacy in Wireless & Mobile Networks, WiSec 2014, pp. 219–230. ACM, New York
(2014)

3. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-Aware
Malware Detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy, SP 2005, pp. 32–46. IEEE Computer Society, Washington, DC (2005)

4. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

5. Denning, P.J.: Fault tolerant operating systems. ACM Comput. Surv. 8(4),
359–389 (1976)

6. Idika, M.: A Survey of Malware Detection Techniques. Technical report, Purdue
University (February 2007)

7. McGraw, G.: Automated Code Review Tools for Security. Computer 41(12),
108–111 (2008)

8. McGraw, G., Morrisett, G.: Attacking malicious code: A report to the infosec
research council. IEEE Softw. 17(5), 33–41 (2000)

9. Quirolgico, S., Voas, J., Kuhn, R.: Vetting Mobile Apps. IT Professional 13(4),
9–11 (2011)

10. Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., Zhou, S.:
Specification-based Anomaly Detection: A New Approach for Detecting Network
Intrusions. In: Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, CCS 2002, pp. 265–274. ACM, New York (2002)

Symbolic Model-Checking Using ITS-Tools

Yann Thierry-Mieg

Sorbonne Universités, UPMC Univ. Paris 6, LIP6, and CNRS UMR 7606,
4 place Jussieu, F-75252 Paris Cedex 05, France

yann.thierry-mieg@lip6.fr

Abstract. We present verification toolset ITS-tools, featuring a symbolic model-
checking back-end engine based on hierarchical set decision diagrams (SDD) that
supports reachability, CTL and LTL model-checking and a user-friendly eclipse
based front-end. Using model transformations to a Guarded Action Language
(GAL) as intermediate format, ITS-tools can analyze third party (Uppaal, Spin,
Divine...) specifications.

1 Introduction

ITS-tools is a symbolic model-checker relying on state of the art decision diagram (DD)
technology. It offers model-checking (CTL, LTL) of large concurrent specifications ex-
pressed in a variety of formalisms: communicating process (Promela, DVE), timed
specifications (Uppaal timed automata, time Petri nets) and high-level Petri nets. We
are focused on verification of (large) globally asynchronous locally synchronous spec-
ifications, an area where DD naturally excel due to independent variations of (small)
parts of the state signature.

We leverage model transformation technology to support model-checking of domain
specific languages (DSL). Models are transformed to the Guarded Action Language
(GAL), a simple yet expressive language with finite Kripke structure semantics.

Most of this paper is a discussion of the elements visible in Fig. 1. The top of the
figure corresponds to the front-end (sections 2, 3), and is embedded in Eclipse, while
the bottom of the figure corresponds to the back end (sections 4, 5).

2 Guarded Action Language

We define GAL as a pivot language that essentially describes a generator for a labeled
finite Kripke structure using a C like syntax. This simple yet expressive language makes
no assumptions on the existence of high-level concepts such as processes or channels.
While direct modeling in GAL is possible (and a rich eclipse based editor is provided),
the language is mainly intended to be the target of a model transformation from a (high-
level) language closer to the end-users.

A GAL model contains a set of integer variables and fixed size integer arrays defin-
ing its state, and a set of guarded transitions bearing a label chosen from a finite set. We
use C 32 bit signed integer semantics, with overflow effects; this ensures all variables
have a finite (if large 232) domain. GAL offers a rich signature consisting of all C opera-
tors for manipulation of the int and boolean data type and of arrays (including nested

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 231–237, 2015.
DOI: 10.1007/978-3-662-46681-0_20

232 Y. Thierry-Mieg

libITS
Instan able Transi on System [TACAS 09]

Parametric GAL

Guarded Ac on LanguageExtended Table
Format

 . etf

its-ltl
Fully Symbolic [EL 01,OWCTY 02]

Hybrid [ATVA11]
Stu ering [ACSD 08, TACAS14]

Discrete me
unit step or

essen al state

instan ate

Linear Time Logic
Property Speci ca on Language

Time Petri Nets

Romeo TinaLTSmin

Verdict,
Shortest trace(s),
Explana on (CTL),

Sta s cs,
GraphViz dot

libDDD
Split -Equiv [CAV13] Auto Satura on [ATPN08],
Hierarchy [FORTE05] Homomorphisms [ATPN 02]

its-reach

Reachability or
Invariant Predicate

 . prop

its-ctl
Forward CTL [ICCAD 96]

Computa on Tree
Logic

Spot
 [IJCCBS 14]

M
odel-to-M

odel
transform

a
ons

Th
ird-party

too
ls and

form
ats

Sym
bolic kernel

M
odel checking

Spin

Promela

. pml

Divine

DiVinE

. dve

High-Level Petri
nets

iso-iec
15909

. pnml

Timed automata

Uppaal

. xta . tpn

.gal

. gal

. ltl .psl

. ctl

. txt

simplify

Fig. 1. Architecture of ITS-tools. Square boxes are files, rounded boxes are tools

array expressions). There is no explicit support for pointers, though they can be simu-
lated with an array heap and indexes into it. In any state (i.e. an assignment of values
to the variables and array cells of the GAL) a transition whose boolean guard predicate
is true can fire executing the statements of its body in a single atomic step. The body
of the transition is a sequence of statements, assigning new values to variables using
an arithmetic expression on current variable values. A special call(λ) statement allows
to execute the body of any transition bearing label λ, modeling non-determinism as a
label based synchronization of behaviors. A special fixpoint instruction is provided al-
lowing to express modal µ-calculus least and greatest fixpoints thus giving the language
a potent expressive power.

Parametric GAL specifications may contain parameters, that are defined over a finite
range. These parameters can be used in transition definitions, compactly representing
similar alternatives. They can also be used to define finite iterations (for loop), and as
symbolic constants where appropriate. Parameters do not increase expressive power,
the symbolic kernel does not know about them, as specifications are instantiated be-
fore model-checking. The tool applies rewriting strategies on parametric transitions
before instantiation, in many cases avoiding the polynomial blowup in size resulting
from a naive parameter instantiation. Rewriting rules that perform static simplifications
(constant identification...) of a GAL benefit all input formalisms.

Symbolic Model-Checking Using ITS-Tools 233

Model to Model Transformations. Model-driven engineering (MDE) proposes to de-
fine domain specific languages (DSL), which contain a limited set of domain concepts
[28]. This input is then transformed using model transformation technology to produce
executable artifacts, tests, documentation or to perform specific validations. In this con-
text GAL is designed as a convenient target formally expressing model semantics. We
thus provide an EMF [1] compliant meta-model of GAL that can be used to leverage
standard meta-modeling tools to write model to model transformations. This reduces the
adoption cost of using formal validation as a step of the software engineering process.

3 Third-Party Support

We have implemented translations to GAL for several popular formalisms used by third
party tools. We rely on XText for several of these: with this tool we define the grammar
and meta-model of an existing formalisms, and it generates a rich code editor (context
sensitive code completion, on the fly error detection,...) for the target language. The ed-
itor obtained after some customization is then often superior to that of the original tool.
We applied this approach for the DVE language of DiVinE [5], the Promela language
of Spin [3] and the Timed Automata of Uppaal [4] (in Uppaal’s native XTA syntax).

The translation for DVE (succinctly presented in [13]) is quite direct, since the lan-
guage has few syntactic constructs, and they are almost all covered by GAL. Channels
are modeled as arrays, process give rise to a variable that reflects the state they are in.
Similarly, the translation for Promela presents no real technical difficulty, although a
first analysis of Promela code is necessary to build the underlying control flow graph
(giving an automaton for each process). We currently do not support functions and the
C fragment of Promela.

Discrete Time. The support for TA and TPN uses discrete time assumptions. Note that
analysis in the discrete setting has been shown to be equivalent to analysis in a dense
time setting provided all constraints in the automata are of the form x ≤ k but not x < k
[21,8]. For both of these formalisms, we build a transition that represents a one time
unit delay and updates clocks appropriately. This transition is in fact a sequence of tests
for each clock, checking if an urgent time constraint is reached (time cannot elapse),
if the clock is active (increment its counter) or if it is inactive either because it will be
reset before being read again, or because it has reached a value greater than any it could
be tested against before a reset (do nothing).

A translation from high-level Petri nets (HLPN) conforming with the recent iso stan-
dard (thus produced by a variety of tools) is also available. HLPN are roughly to Place/-
Transition nets what parametric GAL are to GAL: they are not more expressive (if all
data types are finite) but they are much more compact and readable. Interestingly, the
instantiation of GAL parameters is often much less explosive than the translation from
HLPN to P/T nets: synchronizations of independent behaviors (e.g. interaction between
a server S and a client C) can be represented using a sequence of call(λ) in GAL, where
the P/T net must explicitly have a transition for each possible synchronization choice.

234 Y. Thierry-Mieg

4 Symbolic Kernel

ITS-tools use symbolic representations of sets of states using decision diagrams to face
the combinatorial state space explosion of finite concurrent systems. Its kernel is lib-
DDD, a C++ decision diagram library supporting Data Decision Diagrams (DDD [15])
and hierarchical Set Decision Diagrams (SDD [16]). Operations on these decision di-
agrams are encoded using homomorphisms [15], giving a user great flexibility and ex-
pressive power. The library can automatically and dynamically rewrite these operations
to produce saturation effects in least fixpoint computations [20]. The Split-equiv algo-
rithm introduced in [13] enables efficient evaluation of complex expressions including
array subscripts and arithmetic, a feature heavily used to symbolically encode the se-
mantics of GAL.

libITS is a C++ library built on top of libDDD, offering a simple and uniform API
to write symbolic model checking algorithms for any system that can be described as
an Instantiable Transition System (ITS). An ITS is essentially a labeled transition sys-
tem with successor and predecessor functions described as operating on sets of states,
and a boolean predicate function enabling state based logic reasoning. The tool sup-
ports compositions of labeled transition systems by directly using hierarchy in the state
representation reflecting the composition [27]. libITS has native adapters for several
formalisms (not represented on the figure), we focus in this paper on GAL.

ETF Support. A native ETF to ITS adapter is provided with libITS, supporting this out-
put format of LTSmin. ETF files [10] represent the semantics of a finite Kripke structure
in a format adapted to symbolic manipulation. This allows to analyze (CTL, LTL) mod-
els expressed in the many formalisms that LTSmin supports, provided generation of
ETF succeeds (essentially if LTSmin can compute all reachable states).

5 Model-Checking

Using the ITS API we have built several model-checking tools. The tool its-reach can
compute reachable states, and shortest witness paths (one or more if so desired) to target
states designated by a boolean predicate. In a discrete time setting, this can be used to
compute best or worst case time bounds on runs. It can also perform bounded depth
exploration of a state space (a.k.a. bounded model-checking). It implements several
heuristics to compute a static variable order for the input model.

The tool its-ctl performs verification of CTL properties (though fairness constraints
are currently not supported). It reuses a component of VIS [11], a model-checking tool
for verification and synthesis of gate level specifications, to transform input formulae
into forward CTL form [22]. Forward CTL often allows (but not always) to use the
forward transition relation alone, which is easier to compute than the backward (prede-
cessor) transition relation. Hence forward CTL verification is more efficient in general,
and furthermore many subproblems can be solved using least fixpoints (e.g. Forward
Until) that benefit from automatic saturation at DD level.

The tool its-ltl performs hybrid (i.e. that build an explicit graph in which each node
stores a set of states as a decision diagram) or fully symbolic verification of LTL and

Symbolic Model-Checking Using ITS-Tools 235

PSL properties. The transformation of the formula into a (variant of) Büchi automaton
and the emptiness checks of the product for hybrid approaches rely on Spot [24,17],
a library for LTL and PSL model-checking. Fully symbolic model-checking uses for-
ward variants of Emerson-Lei [19] or One-Way Catch Them Young [26]. The hybrid
approaches efficiently exploit saturation and often outperform fully symbolic ones [18].
When the property is stuttering invariant (e.g. LT L\X) we also offer optimized hybrid
[23] and fully symbolic [7] algorithms that exploit saturation.

Other prototypes for solving games [29] and to exploit symmetries [14] on top of
decision diagrams have been built, showing the versatility of the ITS API, but these
tools are not part of the current release.

6 Case Studies and Experiments

In [6] ITS-tools were used to analyze compositions of time Petri nets produced from a
DSL VeriSensor dedicated to wireless sensor network modeling. The specification ana-
lyzed contained around 50 clocks, many of which are concurrently enabled, preventing
analysis by explicit tools such as Tina. With "its-reach" functional properties could be
checked as well as quantitative measures such as worst-case lifetime analysis. In the
Neoppod project [12] the CTL component was used to verify response and consistency
properties of a protocol for a distributed database. Inria’s Atsyra project [25] computes
attack defense trees from a DSL using a model-to-model transformation to GAL.

In terms of raw benchmark power, ITS-tools participated in several editions of the
model-checking contest at Petri nets conference, ranking first place in several categories
[2]. It is compared favorably to LTSmin and to SAT solver Superprove on the bench-
mark BEEM[13]. It outperformed the symbolic tool Smart using its own benchmark
models in [27]. On timed models, comparisons to Uppaal show that we tend to scale
better in number of clocks, but are more sensitive to large bounds on clocks, something
that was reported in previous similar experiments [9].

7 Conclusion

The ITS-tools are freely available from the webpage http://ddd.lip6.fr, offering
easy access to efficient symbolic model-checking for a wide range of formalisms thanks
to the general purpose Guarded Action Language.

Acknowledgements. The ITS-tools is the result of many years of collaborative devel-
opment with both colleagues and students at LIP6, without whom this tool presentation
would not be possible.

References

1. Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/
2. Model checking contest @ petri nets home page, http://mcc.lip6.fr/
3. Spin model checker home page, http://spinroot.com/

http://ddd.lip6.fr
http://www.eclipse.org/modeling/emf/
http://mcc.lip6.fr/
http://spinroot.com/

236 Y. Thierry-Mieg

4. Uppaal home page, http://www.uppaal.org
5. Barnat, J., Brim, L., Havel, V., Havlíček, J., Kriho, J., Lenčo, M., Ročkai, P., Štill, V.,

Weiser, J.: DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded C & C++
Programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 863–868.
Springer, Heidelberg (2013)

6. Ben Maïssa, Y., Kordon, F., Mouline, S., Thierry-Mieg, Y.: Modeling and Analyzing Wireless
Sensor Networks with VeriSensor: an Integrated Workflow. Transactions on Petri Nets and
Other Models of Concurrency (ToPNoC) VIII, 24–47 (2013)

7. Ben Salem, A.E., Duret-Lutz, A., Kordon, F., Thierry-Mieg, Y.: Symbolic model checking of
stutter-invariant properties using generalized testing automata. In: Ábrahám, E., Havelund,
K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 440–454. Springer, Heidelberg
(2014)

8. Beyer, D.: Improvements in BDD-based reachability analysis of timed automata. In: Oliveira,
J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, p. 318. Springer, Heidelberg (2001)

9. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A tool for BDD-based verification of real-time
systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 122–125.
Springer, Heidelberg (2003)

10. Blom, S., van de Pol, J., Weber, M.: LTSMIN: distributed and symbolic reachability. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359. Springer,
Heidelberg (2010)

11. Brayton, R.K., et al.: VIS: A System for Verification and Synthesis. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)

12. Choppy, C., Dedova, A., Evangelista, S., Hong, S., Klai, K., Petrucci, L.: The NEO protocol
for large-scale distributed database systems: Modelling and initial verification. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 145–164. Springer, Heidelberg
(2010)

13. Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Towards distributed software model-
checking using decision diagrams. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 830–845. Springer, Heidelberg (2013)

14. Colange, M., Kordon, F., Thierry-Mieg, Y., Baarir, S.: State Space Analysis using Sym-
metries on Decision Diagrams. In: Application of Concurrency to System Design (ACSD),
pp. 164–172. IEEE Computer Society (2012)

15. Couvreur, J.M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.A.: Data deci-
sion diagrams for Petri net analysis. In: Application and Theory of Petri Nets (ICATPN),
pp. 129–158 (2002)

16. Couvreur, J.M., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model struc-
ture. In: Formal Techniques for Networked and Distributed Systems (FORTE), pp. 443–457
(2005)

17. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. International Journal on Critical
Computer-Based Systems 5(1/2), 31–54 (2014)

18. Duret-Lutz, A., Klai, K., Poitrenaud, D., Thierry-Mieg, Y.: Self-loop aggregation product —
A new hybrid approach to on-the-fly LTL model checking. In: Bultan, T., Hsiung, P.-A. (eds.)
ATVA 2011. LNCS, vol. 6996, pp. 336–350. Springer, Heidelberg (2011)

19. Emerson, E.A., Lei, C.L.: Modalities for model checking: Branching time logic strikes back.
Science of Computer Programming 8(3), 275–306 (1987)

20. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Hierarchical Set Decision Diagrams and Auto-
matic Saturation. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062,
pp. 211–230. Springer, Heidelberg (2008)

21. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.)
ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

http://www.uppaal.org

Symbolic Model-Checking Using ITS-Tools 237

22. Iwashita, H., Nakata, T., Hirose, F.: Ctl model checking based on forward state traversal. In:
Computer-Aided Design (ICCAD). pp. 82–87. IEEE/ACM (1996)

23. Klai, K., Poitrenaud, D.: MC-SOG: An LTL model checker based on symbolic observa-
tion graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062,
pp. 288–306. Springer, Heidelberg (2008)

24. Spot, L.R.D.E.: a library for LTL model-checking, http://spot.lip6.fr/
25. Pinchinat, S., Acher, M., Vojtisek, D.: Towards synthesis of attack trees for supporting

computer-aided risk analysis. In: Workshop on Formal Methods in the Development of Soft-
ware (co-located with SEFM) (2014)

26. Somenzi, F., Ravi, K., Bloem, R.: Analysis of symbolic SCC hull algorithms. In: Aagaard,
M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 88–105. Springer, Heidel-
berg (2002)

27. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical set decision diagrams
and regular models. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 1–15. Springer, Heidelberg (2009)

28. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L., Visser, E.,
Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org (2013)

29. Zhang, Y., Bérard, B., Kordon, F., Thierry-Mieg, Y.: Automated Controllability and Syn-
thesis with Hierarchical Set Decision Diagrams. In: Workshop on Discrete Event Systems
(WODES). pp. 291–296. IFAC/Elsevier, Berlin, Germany (September 2010)

http://spot.lip6.fr/

Stochastic Models

Semantic Importance Sampling

for Statistical Model Checking�

Jeffery P. Hansen, Lutz Wrage, Sagar Chaki, Dionisio de Niz, and Mark Klein

Carnegie Mellon University, Pittsburgh, PA, USA
{jhansen,lwrage,chaki,dio,mk}@sei.cmu.edu

Abstract. Statistical Model Checking (SMC) is a technique, based on
Monte-Carlo simulations, for computing the bounded probability that a
specific event occurs during a stochastic system’s execution. Estimating
the probability of a “rare” event accurately with SMC requires many
simulations. To this end, Importance Sampling (IS) is used to reduce the
simulation effort. Commonly, IS involves “tilting” the parameters of the
original input distribution, which is ineffective if the set of inputs causing
the event (i.e., input-event region) is disjoint. In this paper, we propose
a technique called Semantic Importance Sampling (SIS) to address this
challenge. Using an SMT solver, SIS recursively constructs an abstract
indicator function that over-approximates the input-event region, and
then uses this abstract indicator function to perform SMC with IS. By
using abstraction and SMT solving, SIS thus exposes a new connection
between the verification of non-deterministic and stochastic systems. We
also propose two optimizations that reduce the SMT solving cost of SIS
significantly. Finally, we implement SIS and validate it on several prob-
lems. Our results indicate that SIS reduces simulation effort by multiple
orders of magnitude even in systems with disjoint input-event regions.

1 Introduction

As systems become more complex, there is a growing demand for efficient and
precise techniques to verify correctness of their behavior. In this paper, we target
a common probabilistic verification problem – estimating the probability of an
event Φ (e.g., some sort of failure) during the execution of a system M that
takes stochastic inputs (e.g., sensor readings, task execution times, etc.) Analytic
solutions to this problem (e.g., probabilistic model checking, see Section 2) do
not scale to many real-world systems due to complexity. We focus on an alternate
approach called Statistical Model Checking (SMC) [16], which relies on Monte-
Carlo-based simulations to solve this verification task more scalably.

� This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0002083.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 241–255, 2015.
DOI: 10.1007/978-3-662-46681-0_21

242 J.P. Hansen et al.

Fig. 1. Example of SIS; f = original input distribution; g = tilted distribution; g∗ =
distribution produced by SIS

SMC produces two results – the estimate p̂ of the probability p of Φ and a
measure of precision e. The key challenge in SMC is “simulation explosion” – the
number of simulations required to achieve a high e becomes prohibitively large
if p is small (i.e., Φ is rare). Importance Sampling [11,14] (IS) has been shown
to address this challenge. Suppose the random input x to M has distribution f .
In IS, we first perform SMC under a different input distribution g that makes Φ
more likely (i.e., increases p), and then adjust the result back to f .

Traditionally, importance Sampling is implemented by “tilting” the parame-
ters of the input distributions to increase the likelihood of Φ. However, tilting is
less effective if the set of inputs that cause Φ, i.e., the input-event region denoted
xΦ, is disjoint. For instance, this happens when analyzing a program where Φ
only occurs if the execution follows one of several control-flow paths, each trig-
gered by a distinct input range. Figure 1(a) shows such a case. The actual input
distribution f is uniform in the range [0, 10], and xΦ = [2.99, 3.01]∪ [6.99, 7.01].
Figure 1(b) shows a tilted distribution g uniform in the range [2, 10]. While g
makes Φ more likely than f , it still assigns positive weight to large parts – e.g.,
(3.01, 6.99) – of the input space that do not belong to xΦ.

In this paper, we address this challenge, and make three specific contributions.
First, we develop a new technique to construct more precise input distributions
for IS – such as g∗ shown in Figure 1(c) – even when the input-event region
is disjoint. This technique, which we call Semantic Importance Sampling (SIS),
takes as input a description of M and f , and recursively computes a precise
“over-approximation” of xΦ in the form of an abstract indicator function (AIF).
In each step of the recursion, SIS constructs a verification condition using M
and f and checks its satisfiability with an SMT solver to eliminate parts of the
input space that are not in xΦ. The algorithm outputs an AIF represented by a
set of “input cubes”, i.e., a disjunction of intervals [7] over the input variables
of M. Subsequently, SIS uses the AIF to construct a precise input distribution,
and perform SMC with IS. By using the semantics of M, SIS successfully ap-
plies concepts and techniques used widely in the verification of non-deterministic
systems (such as abstraction, SMT solving, and verification conditions) to the
analysis of stochastic systems, building new bridges between the two disciplines.

Semantic Importance Sampling for SMC 243

The most expensive component of SIS are the calls to the SMT solver. Our
second contribution is two optimizations to SIS that reduce the number of SMT
calls while maintaining correctness. Finally, we implement SIS in a tool called
osmosis and use it to verify a number of stochastic systems with rare events. Our
results indicate that SIS reduces the number of simulations significantly, in some
cases by a factor of over 600, and verification time by an order of magnitude or
more. Furthermore, our optimizations reduce both the number of SMT calls and
overall SMT solving time, typically by a factor of 2. All our tools and examples
are available at andrew.cmu.edu/~schaki/misc/osmosis.zip.

2 Related Work

Probabilistic model checking [15] (PMC) is an automated, algorithmic approach
for computing numerical properties of stochastic systems. In PMC, the system
is modeled as a finite state probabilistic automaton, e.g., a discrete time Markov
chain (DTMC), a continuous time Markov chain (CTMC), or a Markov decision
process (MDP) which is exhaustively explored in the analysis. The property is
expressed as formula in a temporal logic, e.g., probabilistic Computation Tree
Logic (PCTL) [8]. Verification consists of exhaustive exploration of the states-
pace to construct equations which are then solved numerically. In contrast, we
follow the SMC approach, which is based on Monte-Carlo simulations. An ex-
cellent comparison between PMC and SMC is provided by Younes et al. [17].

SMC [16,2] has been applied to a wide variety of systems including stochastic
hybrid automata [4], and real time systems [5]. Methods proposed to increase
SMC performance include importance splitting [10], and importance sampling
[14]. Importance sampling, upon which our approach is based, has been long
known in the statistics literature[11] and has recently come to the attention of the
SMC community[3]. Approaches proposed to finding the importance sampling
bias function include Cross-Entropy Method[2,9] and Coupling [1].

Borges et al., [13] proposes a technique for estimating failure probabilities in
software based on stratified sampling. Their technique differs from ours in that
they partition the input space based on path conditions in the model, whereas
we use an approach that modifies the input distribution.

Luckow et al. [12] have developed techniques for exact and approximate analy-
sis of stochastic systems with non-determinism. They use symbolic execution and
learning to iteratively construct schedulers under which worst-case (or best-case)
behavior of the system is observed. This approach can be seen as an extension
of statistical model checking to concurrent systems. They do not use importance
sampling, and could benefit from our techniques.

3 Background

Consider a system M with finite vector of random inputs x. Assume that M is
deterministic, i.e., its behavior is fixed for a fixed value of x. The SMC problem
is to estimate the probability that M satisfies a property Φ, denoted M |= Φ,

andrew.cmu.edu/~schaki/misc/osmosis.zip

244 J.P. Hansen et al.

given a joint probability distribution f on x, i.e., to estimate p = Pr[M |= Φ].
We assume that whether M |= Φ under input x can be determined by simulating
M for finite time. Specifically, we assume that M is a program that terminates
under all inputs, and M |= Φ under input x iff the execution of M under input
x violates an assertion (representing a desired safety property) in M.

Let us write x ∼ f to mean x is distributed by f . SMC involves a series of
Bernoulli trials, modeling each trial as a Bernoulli random variable having value
1 with probability p, and 0 with probability 1 − p. For each trial i, a random
vector xi ∼ f is generated, and the system M is simulated with input xi to
generate a trace σi. The trial’s outcome is 1 if Φ holds on σi, and 0 otherwise.

Define an indicator function IM|=Φ : x → {0, 1} that returns 1 if M |= Φ
under input x, and 0 otherwise. Then, when x∼f , the probability that M |= Φ
holds will be p = E[IM|=Φ(x)] =

∫
IM|=Φ(x)f(x)dx which can be estimated as:

p̂ =
N∑

i=1

IM|=Φ(xi) (1)

where N is the number of trials and xi ∼ f . We will refer to this estimator as
the Crude Monte-Carlo (CMC) estimator. The precision of p̂ is quantified by its

“relative error” RE(p̂) =

√
Var(p̂)

E[p̂] where Var(p̂) is the variance of the estimator.

It is known[2] that for Bernoulli trials, relative error is related to the number of
trials N and the probability of the event p as:

RE(p̂) =

√
1− p

pN
≈ 1√

pN
N =

1− p

pRE2(p̂)
≈ 1

pRE2(p̂)
(2)

Importance Sampling. From (2) we see that the number of simulations
needed to achieve a fixed precision with SMC increases rapidly as the target
event becomes rarer. Importance Sampling [14] (IS) has been applied [2] to
address this challenge effectively by reducing Var(p̂). The key idea behind IS is
to first simulate M under a different input distribution g to reduce the variance
of the estimator, and then mathematically adjust the result back to the original
distribution f as:

p =

∫

IM|=Φ(x)
f(x)

g(x)
g(x)dx =

∫

IM|=Φ(x)W (x)g(x)dx (3)

where W : x → f(x)
g(x) is a weight function. The estimator for this form is:

p̂ =

N∑

i=1

IM|=Φ(xi)W (xi) (4)

where the xi ∼ g. The biggest challenge in applying IS effectively is choosing
a “good” g that will reduce Var(p̂). Typically this is done by “tilting” f by
changing its distribution parameters (mean, variance etc.) However, as discussed,
tilting is not effective if Φ is disjoint in the input space. In effect, SIS constructs
a good g even in such cases. We describe SIS in detail in the next section.

Semantic Importance Sampling for SMC 245

4 Semantic Importance Sampling

To explain SIS, we begin with a known result [2] that there always exists an
optimal IS distribution:

g�(x) =
IM|=Φ(x)f(x)

p
(5)

for which Var(p̂) = 0, i.e., if IS is done with g = g�, then a single sample is
sufficient to compute p̂. However, there are two challenges to using g� for IS: (i)
g� depends on p, the answer we are actually looking for; and (ii) g� also depends
on the indicator function IM|=Φ, but since this function represents M |= Φ itself,
it may be too complex to represent analytically.

The key insight behind SIS is to construct an abstract indicator function (AIF)
I∗M|=Φ : x → {0, 1} such that: (i) ∀x IM|=Φ(x) = 1 ⇒ I∗M|=Φ(x) = 1; and (ii)

I∗M|=Φ is simple enough to represent analytically. Note that {x | I∗M|=Φ(x) = 1}
is an over-approximation of the set of inputs under which M |= Φ. This AIF
induces the following IS distribution and weight function:

g∗(x) =
I∗M|=Φ(x)f(x)

p∗
(6)

W ∗(x) =
f(x)

g∗(x)
=

f(x)p∗

I∗M|=Φ(x)f(x)
=

p∗

I∗M|=Φ(x)
(7)

where p∗ = E[I∗M|=Φ(x)] is the probability that for an input x∼f , I∗M|=Φ(x) = 1.
Note that as the function I∗M|=Φ approaches IM|=Φ, g

∗ also approaches g�. In
the limit, I∗M|=Φ = IM|=Φ implies g∗ = g�.

Probability Estimation and Relative Error in SIS. Substituting W ∗(x)
from (7) into (4), we get the SIS estimator for p = E[IM|=Φ(x)] given x∼f as:

p̂ =
1

N

N∑

i=1

IM|=Φ(xi)W
∗(xi) =

1

N

N∑

i=1

IM|=Φ(xi)
p∗

I∗M|=Φ(xi)
(8)

with xi ∼ g∗ used in this importance sampled estimator. Note from (6) that
I∗M|=Φ(xi) is always 1 when xi ∼ g∗, thus this term can be dropped from the

summation. Also, since p∗ is a constant (8) simplifies to:

p̂ =
p∗

N

N∑

i=1

IM|=Φ(xi) (9)

This can be split into a raw part and a scalar part as p̂ = p∗ × p̂raw, where:

p̂raw =
1

N

N∑

i=1

IM|=Φ(xi) (10)

Since p̂raw is an unweighted average of Bernoulli random variables, its relative
error can be estimated [2] as:

RE(p̂raw) ≈ 1√
prawN

(11)

246 J.P. Hansen et al.

Furthermore, since p̂ = p∗ × p̂raw, and p∗ is a constant, the relative error for p̂
is the same as the relative error of p̂raw, i.e., RE(p̂) = RE(p̂raw).

4.1 The SIS Algorithm

The SIS algorithm involves the following steps:

1. Recursively construct the AIF I∗M|=Φ.
2. Calculate p∗.
3. Use SMC to estimate p̂raw with desired RE(p̂) = RE(p̂raw), using I∗M|=Φ

to draw random inputs from g∗. Output p̂ = p∗ × p̂raw.

The core of SIS is Step 1, the generation of the AIF. We describe this in
the following sections by first discussing our representation of the AIF, then
describing the recursive algorithm.

AIF as a Cube Set. We assume that the input x to M is a vector of
M independent1, but not necessarily identically distributed random variables.
For each dimension xj in x, let Fj be the Cumulative Distribution Function
(CDF), F−1

j be the inverse CDF (or quantile function), and uj = Fj(xj) be
the quantile domain variable. Now let ξ be an M -dimensional axis-aligned input
domain hypercube defining an interval [lj , hj] on each input variable xj for 1 ≤
j ≤ M . We also define the quantile domain hypercube c defined by the ranges
[Fj(lj), Fj(hj)] for each dimension. We use the notation c = F (ξ) and ξ = F−1(c)
to transform cubes between the input and quantile domains. We will use the
terms input cube and quantile cube to refer to cubes in the input and quantile
domains, respectively. When the term cube is used without qualification we will
assume quantile cubes. We can now represent the AIF in terms of a quantile
cube set C∗ as:

I∗M|=Φ(x) =

{
1 if ∃c ∈ C∗ | F (x) ∈ c
0 otherwise

(12)

where (∀x IM|=Φ(x) = 1) ⇒ (∃c ∈ C∗|F (x) ∈ c) (i.e., all inputs where M |= Φ
holds are covered by some cube in C∗).

Cube Splitting. Let ξU be the input cube defining the support of the input
distribution function f . The corresponding quantile domain cube cU = F (ξU)
will have a range of [0, 1] on each dimension. We call this the level-0 cube. We
write c/j to mean the cube formed by splitting the interval on uj in c in half, and
retaining only the upper half. Similarly, c/j is the result of a similar operation
where the lower half of the interval is retained. Note that we can split on the
same variable multiple times. A level-k cube is the result of k splits on the level-0
cube. For example if cU is the level-0 cube, then cU/1/1 is the level-2 cube in
which the interval for u1 is [0.5, 0.75]. After each split, the probability that an
input drawn from f falls in the result is halved. Thus, the probability of an input
drawn from f falling in a level-k cube is 1

2k
.

1 Non-independent random inputs y are replaced by a function h(x) of independent
random variables x, which is folded into IM|=Φ(y) to yield IM|=Φ(h(x)).

Semantic Importance Sampling for SMC 247

(1) CubeSet aifGen(SMT ϕ,Cube c)
(2) {
(3) if (Solve(ϕ, F−1(c)) == UNSAT) return ∅;
(4) if (level(c) == Lmax) return {c};
(5) int j = (level(c)/G) % M;
(6) Cube c0 = c/j; Cube c1 = c/j;
(7) return aifGen(ϕ, c0) ∪ aifGen(ϕ, c1);
(8) }

Fig. 2. Basic AIF Generation Algorithm; G=variable grouping factor, M=number of
inputs, Lmax=recursion depth limit, Solve = satisfiability check via SMT solver

Recursive AIF Construction. Generation of the AIF I∗M|=Φ is performed
recursively through the hierarchical use of an SMT solver. The basic algorithm
aifGen is shown in Figure 2. It takes as input the SMT representation ϕ of the
indicator function IM|=Φ(x), and the input cube c over which to generate an
abstraction. It is assumed that ϕ is constructed so as to be SAT for inputs x iff
IM|=Φ(x) = 1. Constant Lmax is the maximum recursion depth. aifGen returns
the subset of level-Lmax cubes in C∗ within cube c. C∗ representing the AIF
as defined in (12) can then be determined by calling aifGen, and passing the
level-0 cube cU as c.

The algorithm works as follows. At Line 3, the SMT solver is applied to
the model ϕ over the cube ξ = F−1(c). The cube is applied to the model by
modifying the assertions in the model corresponding to the intervals on the input
variables. The SMT solver can return SAT, UNSAT or UNKNOWN (e.g., if it
times out). If the result is UNSAT, then M |= Φ does not hold in the input
space described by c, and so it returns the empty set. If the result is SAT or
UNKNOWN, we continue with the rest of the algorithm. While an UNKNOWN
result will reduce the efficiency of the algorithm, the result will still be sound.

At Line 4, the level of the current cube c is checked against the specified
maximum recursion depth Lmax. If we are at that maximum recursion depth, we
simply return the set containing just the cube c.

At Line 5, we choose an input variable index on which to split the current cube.
In our current implementation, we simply cycle through the variables round-
robin by using the current level modulo the total number of input variables M .
Integer division by a variable grouping factor G allows us to choose the same
variable G levels in a row before moving to the next variable. It is possible
that other methods of choosing the splitting order may lead to more efficient
abstractions, however we have not yet explored this area.

At Lines 6-7, we split the cube c around the selected variable uj forming the
cubes c0, and c1 for the lower and upper half of the CDF interval on variable uj

in c. We then recursively call the generation algorithm on those two sub-cubes
and return the union of the cube sets returned by each call.

Calculation of p∗. Recall that p∗ = E[I∗M|=Φ(x)] given x ∼ f . Since: (i)

all cubes in the set C∗ returned by aifGen are level-Lmax, (ii) they are non-
overlapping, (iii) there are 2Lmax level-Lmax cubes, and (iv) each cube covers
equal probability in f , then p∗ can be calculated from the ratio of the number
of cubes in C∗ to the total number of level-Lmax cubes as:

248 J.P. Hansen et al.

p∗ =
|C∗|
2Lmax

(13)

4.2 Optimized AIF Generation

The most expensive component of aifGen are the calls to Solve. We now present
two optimizations that can reduce the number of calls.

Optimization 1: Skip on UNSAT. Consider the algorithm in Figure 2.
Notice that at the point where we split the cube at Line 6, we already know
that cube c is not UNSAT. The means that if one of the child cubes c0 or c1
is UNSAT, the other one must be SAT2. To take advantage of this, we modify
the algorithm to take an additional boolean argument assumeSAT indicating we
should skip the call to Solve and assume it returns SAT when assumeSAT is
true. Then we make the first recursive call on c0 with assumeSAT set to false. If
this call returns the empty set, then the result for that half was UNSAT, and
we pass true for assumeSAT when making the recursive call on c1, otherwise we
make the recursive call with assumeSAT set to false and execute Solve as normal.

Optimization 2: Counter-Example Reuse. A second optimization is pos-
sible by making use of the counter-example returned by Solve when the result
is SAT. In this case, we assume that Solve returns, as counter-example, a cube
ξd containing a satisfying solution. We convert ξd to a quantile cube cd = F (ξd).
If cd is completely contained by one of the child cubes in the recursive call, we
can skip the call to Solve for that call. We require cd to be completely contained
since the counter-example cube ξd returned by Solve is a cube in which there
exists a solution to the SMT formula, but not all points in the cube are necessar-
ily a solution. In most cases cd will be contained by one or the other of the child
cubes in the recursive calls, but it is possible that cd could fall on an edge and
thus not be applicable to either recursive call. In this case, it is still possible that
Optimization 1 can apply. We assume that Solve will return the empty cube ∅
when the result is UNKNOWN which will suppress use of this optimization for
the child invocations. It can be shown that if there are k calls to Solve without
this optimization, that there will be

⌊
k
2

⌋
+ 1 with this optimization as long as:

(i) Solve never returns UNKNOWN, and (ii) the counter-example cd returned
by Solve always falls in one of the two sub-cubes. This sets an upper bound of
1/2 on the amount by which calls to Solve can be reduced.

Optimized AIF Generation Algorithm. Figure 3 shows the fully opti-
mized abstract indicator function incorporating both of the optimizations dis-
cussed above. Line 3 tests for conditions that allow us to skip the SMT check.
In the case that we are skipping a check, we can pass the existing cd to the child
recursive calls since it may apply to one of those calls as well. When doing the
SMT check with Solve at Line 4, we include an additional return parameter ξd
in which the counter-example cube is returned. We assume that the empty cube
∅ is returned if the result is not SAT. At Line 5 we convert the input cube ξd

2 It could be UNKNOWN if result from cube c is UNKNOWN, but without loss of
soundness we treat an UNKNOWN as SAT for the purpose of this optimization.

Semantic Importance Sampling for SMC 249

(1) CubeSet aifGen(SMT I,Cube c,boolean assumeSAT,Cube cd)
(2) {
(3) if (!assumeSAT && cd != ∅ && !(cd ⊆ c)) {
(4) if (Solve(I, F−1(c), &xid) == UNSAT) return ∅;
(5) cd = F (ξd);
(6) }
(7) if (level(c) == Lmax) return {c};
(8) int j = (level(c)/G) % M;
(9) Cube c0 = c/j; Cube c1 = c/j;
(10) CubeSet s0 = aifGen(I, c0, false, cd);
(11) CubeSet s1 = ∅;
(12) if (s0 == ∅) s1 = aifGen(I, c1, true, cd);
(13) else s1 = aifGen(I, c1, false, cd);
(14) return s0 ∪ s1;
(15) }

Fig. 3. Optimized Abstract Indicator Function (AIF) Generation Algorithm;
G=variable grouping factor, M=number of input, Lmax=recursion depth limit

to a quantile cube cd. Lines 12 to 13 implement Optimization 1. If s0 = ∅, then
the result of the test for c0 was UNSAT and we can assume that the test for c1
will be SAT.

4.3 Statistical Model Checking

After generating the AIF I∗M|=Φ, and computing p∗ with (13), the last step in
SIS is the actual SMC. As previously mentioned, we draw samples from the
distribution g∗ as defined in (6), then use (10) to estimate the raw probability
p̂raw and scale this by p∗.

Random Input Generation. To generate a random input from g∗, we rec-
ognize that this is the equivalent of generating an input x from f and accepting
only those for which I∗M|=Φ(x) = 1. We do this by first randomly selecting a
cube c from C∗ with uniform probability since each cube has equal probability
of containing a sample drawn from f . We then choose a uniform vector u ∈ c
and use the inverse CDF to generate the input vector as x = F−1(u).

No. Of Samples. From (2), the number of samples N∗ needed to estimate
p̂raw is:

N∗ =
1− praw

prawRE2(p̂raw)
=

1− p/p∗

p/p∗RE2(p̂raw)
(14)

From (9), we know that RE(p̂) = RE(p̂raw). Assuming small p and p∗ p, the
speedup due to SIS can be estimated as:

N

N∗ =

1−p
pRE2(p̂)

1−p/p∗
p/p∗RE2(p̂raw)

=
1− p

p∗ − p
≈ 1

p∗
(15)

5 Osmosis

We implemented SIS in a tool called osmosis. The input to osmosis is a descrip-
tion of M in an annotated version of C, with the target property Φ defined as

250 J.P. Hansen et al.

.c model

SMT2

Prob.
dists

Dynamic
Exec (.so) gcc

Verification
Cond. Gen.

Syntactic
Extraction

 dReal
+ Refinement

 Monte-Carlo

Fig. 4. Architecture of osmosis Tool

ASSERT() statements. osmosis calculates the probability of an ASSERT() failure
via SIS, using dReal[6] as the back-end SMT solver.

Osmosis Architecture. Figure 4 shows the architecture of osmosis. The
input model is processed by: (i) gcc to generate a dynamic executable; (ii) a
syntactic extractor which looks for //@dist declarations to determine the input
space and distributions; and (iii) a verification condition generator that generates
an SMT formula corresponding to the C model. Then aifGen (from Figure 2 or
Figure 3) is used to build the AIF I∗M|=Φ. This AIF is used to calculate p∗, and
in conjunction with the dynamically loaded executable for M to estimate p̂raw
and RE(p̂raw). Finally, p̂ is calculated using p∗ and p̂raw.

Osmosis Input Format. Figure 5(a) shows an example osmosis input
model. The annotations at Lines 4 and 5 indicate the inputs to the model.
Line 4 defines a random input named “a” with a uniform distribution between
0 and 5. Line 5 defines a random input named “b” with a normal distribution
with mean 3, standard deviation 1 which has been censored to be between 0 and
5. Where appropriate, we refer to the model input collectively as the vector x.

There are two special functions/macros in osmosis models: (i) ASSERT() de-
fines a condition that is expected to be true; and (ii) INPUT_D() accesses a
random input declared in an annotation. The suffix _D on INPUT_D() indicates
the return type of double. In Figure 5(a), Lines 8 and 9 access inputs “a” and
“b” and place them in C variables also named “a” and “b”. Some computations
are performed on lines 10 and 11, then finally an assertion is made on Line 13.
The #include on Line 1, allows the model include the special osmosis functions
to be compiled by a standard compiler such as gcc for use in the SMC phase.

SMT Generation. In order to implement Solve, osmosis translates the C
model into a verification condition represented as an SMT formula ϕ, which
is in essence, a representation of the indicator function IM|=Φ, i.e., any input
value x satisfies ϕ iff IM|=Φ(x) = 1. In constructing ϕ, stochastic inputs defined
by the //@dist annotations in the C model use the same variable name as the
declaration. The model is also converted to single-static-assignment form so that
each local variable is assigned once. A generation number is appended to each
variable name and is incremented for each assignment to that variable.

Conditional (if) statements are translated by generating a variable for the
condition, then translating both branches as consequences of implications of the

Semantic Importance Sampling for SMC 251

(1) #include "osmosis_model.h"
(2)
(3)
(4) //@dist a=uniform(min=0,max=5)
(5) //@dist b=normal(mean=3,std=1,

min=0,max=5)
(6) void model()
(7) {
(8) double a = INPUT_D("a");
(9) double b = INPUT_D("b");
(10) double c = a + b;
(11) double d = (a - b)/2.0;
(12)
(13) ASSERT(sin(c)*cos(d) <= 0.999);
(14) }

(1) (set-logic QF_NRA)
(2) (declare-fun a () Real)
(3) (declare-fun b () Real)
(4) (declare-fun a_1 () Real)
(5) (declare-fun b_1 () Real)
(6) (declare-fun c_1 () Real)
(7) (declare-fun d_1 () Real)
(8) (assert (>= a 0))
(9) (assert (<= a 5))
(10) (assert (>= b 0))
(11) (assert (<= b 5))
(12) (assert (= a_1 a))
(13) (assert (= b_1 b))
(14) (assert (= c_1 (+ a_1 b_1)))
(15) (assert (= d_1 (/ (- a_1 b_1) 2)))
(16) (assert (not (<= (* (sin c_1)

(cos d_1)) 0.999)))
(17) (check-sat)
(18) (exit)

(a) (b)

if (a > b)
a = cos(a*b);

(assert (= _C1 (> a_1 b_1)))
(assert (or (not _C1) (= a_2 (cos (* a_1 b_1)))))
(assert (or _C1 (= a_2 a_1)))

(c) (d)

Fig. 5. (a) osmosis Input Example; (b) SMT for osmosis Input Example; (c) a con-
ditional statement; and (d) its translation to SMT

condition, or the compliment of the condition. If there are differing numbers
of assignments to a variable in the branches, then an additional assertion is
added to reconcile the generation numbers of the variables. For example, the
C statement in Figure 5(c) generates the SMT assertions in Figure 5(d). Loop
(while and for) statements are unrolled and must include an annotation to
indicate the maximum loop count. Note that the construction of ϕ is effective
and linear in the size of the model.

Finally, ASSERT() conditions are negated since we are interested in testing
if there are any inputs that can result in an assertion failure. All ASSERT()

statements are merged into a single SMT assertion comprised of a disjunction
of the compliments of the expressions in the C input model.

Figure 5(b) shows the ϕ generated from the M given in Figure 5(a). Line
8 through 11 define the intervals in the stochastic inputs. Lines 12 and 13 are
the assignments from the stochastic inputs to the local C variables from Lines
8 and 9 of the input model. Lines 14 and 15 correspond to the local variables
assignments in Lines 10 and 11 of the C model. Finally, Line 16 is derived from
the ASSERT() statement on Line 13 of the C model.

Monte-Carlo Simulation. The final step of osmosis is Monte-Carlo simu-
lation to estimate p̂raw using (10). Each Bernoulli trial in this simulation is con-
ducted by directly executing the dynamically loadable executable of the model.
The model source file is compiled by gcc, dynamically loaded, then repeatedly
called for each trial. Before each execution a random vector x∼g∗ is generated
as described above and used to initialize a global array. A global flag variable
indicating success/failure is also cleared. The function INPUT_D() indexes and re-
turns a value from the input array. The ASSERT() statement tests the condition,

252 J.P. Hansen et al.

Table 1. AIF Generation Results; In=number of inputs; Lmax=recursion depth limit;
G=variable grouping factor, Time=generation time in seconds; none, 1, 2 and 1+2
indicate which optimizations were used

dReal Calls Time
Name In Lmax/G p∗ 1/p∗ none 1 2 1+2 none 1+2

simple 2
10/1 5.859 × 10−3 169 49 38 26 26 0.15 0.1
12/1 2.197 × 10−3 455 73 57 40 40 0.21 0.1

hockey 2
10/1 3.516 × 10−2 28.4 255 213 142 137 315 228
12/1 1.148 × 10−2 87.1 391 328 214 211 364 255

backoff 6
10/4 1.797 × 10−1 5.6 479 451 240 240 33 14
12/4 1.797 × 10−1 5.6 1583 1551 792 792 61 28

bounce 2
10/1 2.997 × 10−2 33 117 86 59 59 91 53
12/1 1.221 × 10−2 81 221 163 111 111 150 84

and if the condition fails it sets the global flag to true and returns. Success or
failure of the trial is recorded based on the value of the flag variable. Trials result-
ing in an ASSERT() fail correspond to inputs xi where IM|=Φ(xi) = 1, and those
where the ASSERT() does not fail correspond to inputs where IM|=Φ(xi) = 0.
Trials are conducted until a target relative error is met.

6 Results

To evaluate our technique, we tried osmosis on the following problems:

Simple. The example problem from Figure 5a.
Hockey. An air hockey puck is given a random impulse from a random direction.

We test if it stops on a target after zero or more bounces.
Backoff. An exponential backoff problem in which two senders attempt up to 3

communications. Failure occurs if transmission for either exceeds a deadline.
Bounce. A ball is launched at a random initial angle and velocity. We test if it

falls in a small hole after potentially bouncing a number of times.

Each of these problems has the characteristic that the failure region is disjoint
in the input space. For example, in the hockey problem there are multiple paths
by which the puck can reach the target. All experiments were performed under
Linux Ubuntu 12.04 on a 2.2GHz Intel Core i7 machine with 16 Gb of RAM.
We used a 60 second timeout for each call to dReal (after which it returns
UNKNOWN). However, we experienced no timeouts on any of our test problems.

Table 1 shows the results for AIF generation. For each example, we adjust
the recursion depth limit and the variable grouping factor (number of successive
times each input is split while recursing). We used a larger G for the “backoff”
example because we observed that a higher G improves performance for models
with many inputs. Recall from (15) that 1/p∗ is an estimate for the expected
speedup N

N∗ of SIS versus Crude Monte-Carlo (CMC). Note that while we use
Lmax to limit the recursion depth while generating the AIF, a breadth-first

Semantic Importance Sampling for SMC 253

implementation of aifGen could potentially use p∗, terminating when we have
achieved a sufficient gain, or when there is insufficient improvement from one
level to the next. The four columns under “dReal Calls” show the number of
calls that were made to dReal using no optimization, using Optimization 1 only,
using Optimization 2 only and using both optimizations (see Section 4.2).

We see that both optimizations are effective at reducing the number of calls,
but that Optimization 2 performs better, reducing the number of calls as well as
total SMT solving time by half in most cases. Also, while there is some benefit to
using both optimizations together, the additional advantage is relatively small.
This is because when using both optimizations together, Optimization 1 can only
be applied when the counter-example employed by Optimization 2 falls on a cube
boundary, or when analysis of a parent cube timed out and is UNKNOWN.

Finally, the “Time” column shows the time to generate I∗M|=Φ in seconds.

Times using no optimization (none), and using both optimizations (1+2) are
shown to demonstrate the impact of the optimization techniques. Note that in
our current implementation, we do not parallelize the calls to dReal, which could
lead to additional gains.

Table 2. SMC Results; RE = RE(p̂)=target relative error; G=grouping factor

Time (sec.)
Name RE Lmax/G p̂ N N/N∗ SMC total

simple

0.01

CMC 5.95 × 10−4 1.68 × 107 – 6 6
10/1 5.89 × 10−4 8.95 × 104 187 <0.1 0.1
12/1 6.03 × 10−4 2.64 × 104 636 <0.1 0.1

0.001

CMC 5.910 × 10−4 1.69 × 109 – 580 580
10/1 5.910 × 10−4 8.92 × 106 189 4 4.1
12/1 5.910 × 10−4 2.72 × 106 304 1 1.1

hockey

0.01

CMC 6.18 × 10−4 1.58 × 107 – 6.8 6.8
10/1 6.18 × 10−4 5.59 × 105 28.3 0.3 228.3
12/1 6.22 × 10−4 1.74 × 105 90.1 0.1 255.1

0.001

CMC 6.215 × 10−4 1.61 × 109 – 687 687
10/1 6.214 × 10−4 5.56 × 107 29.0 25 253
12/1 6.212 × 10−4 1.74 × 107 92.5 8 263

backoff

0.01

CMC 1.21 × 10−4 8.24 × 107 – 25 25
10/4 1.20 × 10−4 1.50 × 107 5.5 6 20
12/4 1.21 × 10−4 1.50 × 107 5.5 6 34

0.001

CMC 1.193 × 10−4 8.38 × 109 – 2,593 2,593
10/4 1.190 × 10−4 1.51 × 109 5.5 553 567
12/4 1.194 × 10−4 1.50 × 109 5.6 543 571

bounce

0.01

CMC 2.96 × 10−5 3.337 × 108 – 133 133
10/4 3.00 × 10−5 8.464 × 106 39 4.1 57.1
12/4 2.97 × 10−5 4.104 × 106 81 2.0 86.1

0.001

CMC 2.989 × 10−5 3.345 × 1010 – 13,619 13,619
10/4 2.993 × 10−5 8.474 × 108 39.5 432 485
12/4 2.994 × 10−5 4.068 × 108 82 209 293

254 J.P. Hansen et al.

Table 2 shows the results from the SMC phase of osmosis. For each sample
problem, we show the results for target relative errors (RE) of 0.01 and 0.001.
At each target RE, we compare CMC with SIS using two different recursion
depth limits as shown in the Lmax/G column. The probability estimate for each
experiment is shown in the p̂ column. We see that the estimates for CMC and
SIS are very close for each problem, and that as expected the agreement for
those at a relative error of 0.001 are closest.

The column labeled N shows the number of samples needed to achieve the
target relative error for each experiment, and the column labeled N/N∗ shows
the improvement of SIS over CMC. We can see improvements ranging from a
factor of 5 to a factor of over 600. When we compare the measured N/N∗ to
the values predicted by 1/p∗ in Table 1, we see good agreement. For example, in
the “hockey” problem with a recursion depth of 10, we got 28.4 as the predicted
improvement, compared to measured improvements of 28.3 for a target RE of
0.01 and 29.0 for a target RE of 0.001. Note our predictor is based on the
assumption that p∗ p, and so is slightly less accurate for examples such as
“simple” where this does not hold.

That last two columns show the verification time for the SMC phase alone, and
for the total time including the abstract indicator function generation time shown
in Table 1. We see that SIS outperforms CMC in all cases where verification
is expensive, often by an order of magnitude or more. Also since the cost for
generating the abstract indicator function is fixed regardless of the target RE,
there will always be some target RE for which SIS outperforms CMC.

7 Conclusion

Statistical model checking (SMC) is a prominent approach for rigorous analysis
of stochastic systems using Monte-Carlo simulations. In this paper, we devel-
oped a new technique, called Semantic Importance Sampling (SIS), to advance
the state-of-the art in applying SMC to compute the probability of a rare event
using a small number of simulations. SIS uses the semantics of the target system
to recursively compute an abstract indicator function (AIF), which is subse-
quently employed to perform SMC. We also present two optimizations to SIS
that reduce the number of calls to SMT solvers needed to compute the AIF.
We have implemented SIS in a tool called osmosis, and experimented with a
number of examples. Our results indicate that SIS reduces cost of SMC by or-
ders of magnitude, and our optimizations, in combination, reduce the cost of
SMT solving by half. We believe that extending SIS to analyze stochastic sys-
tems compositionally, and combining it with symbolic simulation techniques, are
important directions for future research.

Semantic Importance Sampling for SMC 255

References

1. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 331–346. Springer, Heidelberg (2012)

2. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011)

3. Reijsbergen, D., et al.: Rare event simulation for highly dependable systems with
fast repairs. In: Proceedings of the 7th International Conference on Quantitative
Evaluation of Systems (2010)

4. David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.: Optimizing
Control Strategy Using Statistical Model Checking. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367. Springer, Heidelberg (2013)

5. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for Statistical
Model Checking of Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

6. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT Solver for Nonlinear Theories over
the Reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 208–214.
Springer, Heidelberg (2013)

7. Gurfinkel, A., Chaki, S.: Boxes: A Symbolic Abstract Domain of Boxes. In: Cousot,
R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010)

8. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing (FACJ) 6(5), 512–535 (1994)

9. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012)

10. Jegourel, C., Legay, A., Sedwards, S.: Importance Splitting for Statistical Model
Checking Rare Properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 576–591. Springer, Heidelberg (2013)

11. Kahn, H.: Stochastic (monte carlo) attenuation analysis. Tech. Rep. P-88, Rand
Corp. (1949)

12. Luckow, K.S., Pasareanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and
approximate probabilistic symbolic execution for nondeterministic programs. In:
Proc. of ASE (2014)

13. Borges, M., et al.: Compositional solution space quantification for probabilistics
software analysis. In: Proceedings of PLDI: Programming Language Design and
Implementation (June 2014)

14. Srinivasan, R.: Importance Sampling: Applications in Communications and Detec-
tion. Engineering online library, Springer (2002)

15. Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric
systems. Ph.D. thesis, University of Nijmegen, the Netherlands (2002)

16. Younes, H.L.S.: Verification and planning for stochastic processes with asyn-
chronous events. Ph.D. thesis, Carnegie Mellon University (2004)

17. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-
tical probabilistic model checking. STTT 8(3), 216–228 (2006)

Strategy Synthesis for Stochastic Games

with Multiple Long-Run Objectives

Nicolas Basset1, Marta Kwiatkowska1, Ufuk Topcu2, and Clemens Wiltsche1

1 Department of Computer Science, University of Oxford, United Kingdom
2 Department of Electrical and Systems Engineering,

University of Pennsylvania, USA

Abstract. We consider turn-based stochastic games whose winning con-
ditions are conjunctions of satisfaction objectives for long-run average re-
wards, and address the problem of finding a strategy that almost surely
maintains the averages above a given multi-dimensional threshold vec-
tor. We show that strategies constructed from Pareto set approximations
of expected energy objectives are ε-optimal for the corresponding aver-
age rewards. We further apply our methods to compositional strategy
synthesis for multi-component stochastic games that leverages compo-
sition rules for probabilistic automata, which we extend for long-run
ratio rewards with fairness. We implement the techniques and illustrate
our methods on a case study of automated compositional synthesis of
controllers for aircraft primary electric power distribution networks that
ensure a given level of reliability.

1 Introduction

Reactive systems must continually interact with the changing environment. Since
it is assumed that they should never terminate, their desirable behaviours are
typically specified over infinite executions. Reactive systems are naturally mod-
elled using games, which distinguish between the controllable and uncontrollable
events. Stochastic games [13], in particular, allow one to specify uncertainty of
outcomes by means of probability distributions. When such models are addition-
ally annotated by rewards that represent, e.g., energy usage and time passage,
quantitative objectives and analysis techniques are needed to ensure their cor-
rectness. Often, not just a single objective is under consideration, but several,
potentially conflicting, objectives must be satisfied, for example maximising both
throughput and latency of a network.

In our previous work [6,7], we formulated multi-objective expected total re-
ward properties for stochastic games with certain terminating conditions and
showed how ε-optimal strategies can be approximated. Expected total rewards,
however, are unable to express long-run average (also called mean-payoff) proper-
ties of reactive systems. Another important class of properties are ratio rewards,
with which one can state, e.g., speed (distance per time unit) or fuel efficiency
(distance per unit of fuel). In this paper we consider controller synthesis for the

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 256–271, 2015.
DOI: 10.1007/978-3-662-46681-0_22

Strategy Synthesis for Stochastic Games with Multiple Long-Run Objectives 257

general class of turn-based stochastic games whose winning conditions are con-
junctions of satisfaction objectives for long-run average rewards. We represent
the controllable and uncontrollable actions by Player ♦ and Player �, respec-
tively, and address the problem of finding a strategy to satisfy such long-run
objectives almost surely for Player ♦ against all choices of Player �. These ob-
jectives can be used to specify behaviours that guarantee that the probability
density is above a threshold, in several dimensions, and the executions actually
satisfy the objective we are interested in, which is important for, e.g., reliability
and availability analysis. In contrast, expected rewards average the reward over
different probabilistic outcomes, possibly with arbitrarily high variance, and thus
it may be the case that none of the paths actually satisfy the objective.

Satisfaction Objectives. The specifications we consider are quantitative, in
the sense that they are required to maintain the rewards above a certain thresh-
old, and we are interested in almost sure satisfaction, that is, this condition on
the rewards is satisfied with probability one. The problem we study generalises
the setting of stopping games with multiple satisfaction objectives, which for LTL
specifications can be solved via reduction to expected total rewards [7], while
our methods are applicable to general turn-based stochastic games. In stopping
games, objectives defined using total rewards are appropriate, since existence
of the limits is ensured by termination; however, total rewards may diverge for
reactive systems, and hence we cannot reduce our problem to total rewards.

Strategy Synthesis. Stochastic games with multiple objectives have been stud-
ied in [9], where determinacy under long-run objectives (including ours) is shown
(but without strategy construction). However, in general, the winning strategies
are history-dependent, requiring infinite memory, which is already the case for
Markov decision processes [4]. We restrict to finite memory strategies and utilise
the stochastic memory update representation of [6]. For approximating expected
total rewards in games, one can construct strategies (in particular, their mem-
ory update representation) after finitely many iterations from the difference be-
tween achievable values of successive states [7], but long-run properties erase all
transient behaviours, and so, in general, we cannot use the achievable values
for strategy construction. Inspired by [5], we use expected energy objectives to
compute the strategies. These objectives are meaningful in their own right to
express that, at every step, the average over some resource requirement does
not exceed a certain budget, i.e. some sequences of operations are allowed to
violate the budget constraint, as long as they are balanced by other sequences
of operations. Consider, for example, sequences of stock market transactions: it
is desirable that the expected capital never drops below zero (or some higher
value), which can be balanced by credit for individual transactions below the
threshold. Synthesis via expected energy objectives yields strategies that not
only achieve the required target, but we also obtain a bound on the maximum
expected deviation at any step by virtue of the bounded energy. Then, given an
achievable target v for mean-payoff, the target 0 is ε-achievable by an energy
objective with rewards shifted by −v, and the same strategy achieves v − ε for
the mean-payoff objective under discussion.

258 N. Basset et al.

Compositional Synthesis. In our previous work [3], we proposed a synchro-
nising parallel composition for stochastic games that enables a compositional
approach to controller synthesis that significantly outperforms the monolithic
method. The strategy for the composition of games is derived from the strategies
synthesised for the individual components. To apply these methods for a class of
objectives (e.g. total rewards), one must (i) show that the objectives are defined
on traces, i.e. synchronisation of actions is sufficient for information sharing; (ii)
provide compositional verification rules for probabilistic automata (e.g. assume-
guarantee rules); and (iii) provide synthesis methods for single component games.
We address these points for long-run average objectives, extending [10] for (ii),
enabling compositional synthesis for ratio rewards. A key characteristic of the
rules is the use of fairness, which requires that no component is prevented from
making progress. The methods of [3] were presented with total rewards, where
(trivial) fairness was only guaranteed through synchronised termination.

Case Study. We implement the methods and demonstrate their scalability and
usefulness via a case study that concerns the control of the electric power dis-
tribution on aircraft [11]. In avionics, the transition to more-electric aircraft
has been brought about by advances in electronics technology, reducing take-
off weight and power consumption. We extend the (non-quantitative) game-
theoretic approach of [16] to the stochastic games setting with multiple long-run
satisfaction objectives, where the behaviour of generators is described stochas-
tically. We demonstrate how our approach yields controllers that ensure given
reliability levels and higher uptimes than those reported in [16].

Contributions. Our main contributions are as follows.

– We show that expected energy objectives enable synthesis of ε-optimal finite-
memory strategies for almost sure satisfaction of average rewards (Theo-
rem 2).

– We propose a semi-algorithm to construct ε-optimal strategies using stochas-
tically updated memory (Theorem 1).

– We extend compositional rules to specifications defined on traces, and hence
show how to utilise ratio rewards in compositional synthesis (Theorem 3).

– We demonstrate compositional synthesis using long-run objectives via a case
study of an aircraft electric power distribution network.

RelatedWork. For Markov decision processes (MDPs), multi-dimensional long-
run objectives for satisfaction and expectation were studied in [4], and expected
ratio rewards in [15]. Satisfaction for long-run properties in stochastic games is
the subject of [9]; in particular, they present algorithms for combining a single
mean-payoff with a Büchi objective, which rely on the non-quantitative nature
of the Büchi objective, and hence cannot be straightforwardly extended to sev-
eral mean-payoff objectives that we consider. Non-stochastic games with energy
objectives have been considered, for example, in [5], where it is assumed that
Player � plays deterministically, in contrast to our approach that permits the
use of stochasticity. Our almost sure satisfaction objectives are related to the
concept of quantiles in [1], in that they correspond to 1-quantiles, but here we

Strategy Synthesis for Stochastic Games with Multiple Long-Run Objectives 259

consider mean-payoff objectives for games. An extended version of this paper,
including proofs, can be found in [2].

2 Preliminaries

Notation. A discrete probability distribution (or distribution) over a (countable)
set Q is a function μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1; its support supp(μ)

is {q ∈ Q |μ(q) > 0}. We denote by D(Q) the set of all distributions over Q with
finite support. A distribution μ ∈ D(Q) is Dirac if μ(q) = 1 for some q ∈ Q, and
if the context is clear we just write q to denote such a distribution μ.

We work with the usual metric-space topology on R
n. The downward closure

of a set X is defined as dwc(X)
def
= {y | ∃x ∈ X .y ≤ x}. A set X ⊆ R

n is
convex if for all x1,x2 ∈ X , and all α ∈ [0, 1], αx1 + (1 − α)x2 ∈ X ; its
convex hull conv(X) is the smallest convex set containing X . Given a set X ,
α ×X denotes the set {α · x |x ∈ X}. The Minkowski sum of sets X and Y is

X + Y
def
= {x + y |x ∈ X,x ∈ Y }. We refer to the sth component of a vector

v by vs and [v]s. We write ε to denote the vector (ε, ε, . . . , ε). For a vector x
(resp. vector of sets Z) and a scalar ε, define x+ ε by [x + ε]s = xs + ε (resp.

[Z + ε]s
def
= Zs + ε) for all components s of x (resp. Z), where, for a set X , let

X + ε
def
= {x+ ε |x ∈ X}. For vectors x and y, x · y denotes their dot-product,

and x • y denotes component-wise multiplication.

Stochastic Games. We consider turn-based action-labelled stochastic two-
player games (henceforth simply called games), which distinguish two types of
nondeterminism, each controlled by a separate player. Player ♦ represents the
controllable part for which we want to synthesise a strategy, while Player �
represents the uncontrollable environment.

Definition 1. A game G is a tuple 〈S, (S♦, S�), ς0,A,−→〉, where S is a finite
set of states partitioned into Player ♦ states S♦ and Player � states S�; ς0 ∈ S
is an initial state; A is a finite set of actions; and −→⊆ S × (A∪ {τ})×D(S)
is a transition relation, such that, for all s, {(s, a, μ) ∈−→} is finite.

We write s
a−→ μ for a transition (s, a, μ) ∈−→. The action labels A on tran-

sitions model observable behaviours, whereas τ can be seen as internal: it can-
not be used in winning conditions and is not synchronised in the composition.

We denote the set of moves (also called stochastic states) by S©
def
= {(a, μ) ∈

A × D(S) | ∃s ∈ S . s
a−→ μ}, and let S = S ∪ S©. Let the set of successors of

s ∈ S be succ(s)
def
= {(a, μ) ∈ S© | s a−→ μ} ∪ {t ∈ S |μ(t) > 0 with s = (a, μ)}.

A probabilistic automaton (PA, [12]) is a game with S♦ = ∅, and a discrete-time
Markov chain (DTMC) is a PA with |succ(s)| = 1 for all s ∈ S.

A finite (infinite) path λ = s0(a0, μ0)s1(a1, μ1)s2 . . . is a finite (infinite) se-

quence of alternating states and moves, such that for all i ≥ 0, si
ai−→ μi and

μi(si+1) > 0. A finite path λ ends in a state, denoted last(λ). A finite (infi-
nite) trace is a finite (infinite) sequence of actions. Given a path, its trace is

the sequence of actions along λ, with τ projected out. Formally, trace(λ)
def
=

260 N. Basset et al.

proj{τ}(a0a1 . . .), where, for α ⊆ A ∪ {τ}, projα is the morphism defined by
projα(a) = a if a �∈ α, and ε (the empty trace) otherwise.

Strategies. Nondeterminism for each player is resolved by a strategy, which
maps finite paths to distributions over moves. For PAs, we do not speak of player
strategies, and implicitly consider strategies of Player �. Here we use an alter-
native, equivalent formulation of strategies using stochastic memory update [4].

Definition 2. A Player ♦ strategy π is a tuple 〈M, πu, πc, α〉, where M is a
countable set of memory elements; πu : M × S → D(M) is a memory update
function; πc : S♦ ×M → D(S) is a next move function s.t. πc(s,m)(t) > 0 only
if t ∈ succ(s); and α : S → D(M) defines for each state of G an initial memory
distribution. A Player � strategy σ is defined in an analogous manner.

A strategy is finite-memory if |M| is finite. Applying a strategy pair (π, σ) to
a game G yields an induced DTMC Gπ,σ [7]; an induced DTMC contains only
reachable states and moves, but retains the entire action alphabet of G.

Probability Measures and Expectations. The cylinder set of a finite path
λ (resp. finite trace w ∈ A∗) is the set of infinite paths (resp. traces) with prefix
λ (resp. w). For a finite path λ = s0(a0, μ0)s1(a1, μ1) . . . sn in a DTMC D we

define PrD,s0(λ), the measure of its cylinder set, by PrD,s0(λ)
def
=

∏n−1
i=0 μi(si+1),

and write Prπ,σG,s for PrGπ,σ,s. For a finite trace w, paths(w) denotes the set of
minimal finite paths with trace w, i.e. λ ∈ paths(w) if trace(λ) = w and there
is no path λ′ �= λ with trace(λ′) = w and λ′ being a prefix of λ. The measure

of the cylinder set of w is P̃rD,s(w)
def
=

∑
λ∈paths(w) PrD,s(λ), and we call P̃rD,s

the trace distribution of D. The measures uniquely extend to infinite paths due
to Carathéodory’s extension theorem. We denote the set of infinite paths of D
starting at s by ΩD,s. The expectation of a function ρ : ΩD,s → R

n±∞ over

infinite paths in a DTMC D is ED,s[ρ]
def
=

∫
λ∈ΩD,s

ρ(λ)dPrD,s(λ).

Rewards. A reward structure (with n-dimensions) of a game is a partial function
r : S → R (r : S → R

n). A reward structure r is defined on actions Ar if
r(a, μ) = r(a, μ′) for all moves (a, μ), (a, μ′) ∈ S© such that a ∈ Ar, and r(s) = 0
otherwise; and if the context is clear we consider it as a total function r : Ar → R

for Ar ⊆ A. Given an n-dimensional reward structure r : S → R
n, and a vector

v ∈ R
n, define the reward structure r−v by [r−v]s

def
= r(s)−v for all s ∈ S. For

a path λ = s0s1 . . . and a reward structure r we define rewN (r)(λ)
def
=

∑N
i=0 r(si),

for N ≥ 0; the average reward is mp(r)(λ)
def
= lim infN→∞ 1

N+1 rew
N (r)(λ); given

a reward structure c such that, for all s ∈ S, c(s) ≥ 0 and, for all bottom strongly
connected components (BSCCs) B ofD, there is a state s in B such that c(s) > 0,

the ratio reward is ratio(r/c)(w)
def
= lim infN→∞ rewN (r)(w)/(1+rewN (c)(w)). If

D has finite state space, the lim inf of the above rewards can be replaced by the
true limit in the expectation, as it is almost surely defined. Further, the above
rewards straightforwardly extend to multiple dimensions using vectors.

Specifications and Objectives. A specification ϕ is a predicate on path distri-
butions, and we write D |= ϕ if ϕ(PrD,ς0) holds. We say that a Player ♦ strategy
π wins for a specification ϕ in a game G, written π |= ϕ, if, for all Player �

Strategy Synthesis for Stochastic Games with Multiple Long-Run Objectives 261

ς0

(0,−1)

(−1, 0)

s1

(6, 4)

(8, 0)

s2

s3 (2, 4)

s4 (4, 2)

ς0

s1(0, 2) s2 (2, 0)

Fig. 1. Example games. Moves and states for Player ♦ and Player � are shown as ◦, ♦
and � resp.; two-dimensional rewards shown where non-zero.

strategies σ, Gπ,σ |= ϕ, and say that ϕ is achievable if such a winning strategy
exists. A specification ϕ is defined on traces of A if ϕ(P̃rD,ς0) = ϕ(P̃rD′,ς′0) for

all DTMCs D,D′ such that P̃rD,ς0(w) = P̃rD′,ς′0(w) for all traces w ∈ A∗.
A DTMC D satisfies an expected energy specification EEs(r) if there exists v0

such that ED,s[rew
N (r)] ≥ v0 for all N ≥ 0; D satisfies EE(r) if, for every state

s of D, D satisfies EEs(r). An almost sure average (resp. ratio) reward objective
for target v is Pmps(r)(v) ≡ PrD,s(mp(r) ≥ v) = 1 (resp. Pratios(r)(v) ≡
PrD,s(ratio(r/c) ≥ v) = 1). If the rewards r and c are understood, we omit
them and write just Pmps(v) and Pratios(v). By using n-dimensional reward
structures, we require that a strategy achieves the conjunction of the objectives
defined on the individual dimensions. Minimisation is supported by inverting
signs of rewards. Given an objective ϕ with target vector v, denote by ϕ[x] the
objective ϕ with v substituted by x. A target v ∈ R

n is a Pareto vector if
ϕ[v − ε] is achievable for all ε > 0, and ϕ[v + ε] is not achievable for any ε > 0.
The downward closure of the set of all such vectors is called a Pareto set.

Example. Consider the game in Figure 1 (left), showing a stochastic game with
a two-dimensional reward structure. Player ♦ can achieve Pmpς0(3, 0) if going left
at ς0, and Pmpς0(1, 1) if choosing either move to the right, since then s3 and s4
are almost surely reached. Furthermore, achieving an expected mean-payoff does
not guarantee achieving almost-sure satisfaction in general: the Player ♦ strategy
going up right from ς0 achieves an expected mean-payoff of at least (1, 1.5),
which by the above argument cannot be achieved almost surely. Also, synthesis
in MDPs [4,15] can utilise the fact that the strategy controls reachability of end-
components; e.g., if all states in the game of Figure 1 (left) are controlled by
Player ♦, (3, 2) is almost surely achievable.

3 Strategy Synthesis for Average Rewards

We consider the problem of computing ε-optimal strategies for almost sure
average reward objectives Pmpς0(v). Note that, for any v ≥ 0, the objective
Pmpς0(r)(v) is equivalent to Pmpς0(r − v)(0), i.e. with the rewards shifted by
−v. Hence, from now on we assume w.l.o.g. that the objectives have target 0.

262 N. Basset et al.

3.1 Expected Energy Objectives

We show how synthesis for almost sure average reward objectives reduces to
synthesis for expected energy objectives. Applying finite-memory strategies to
games results in finite induced DTMCs. Infinite memory may be required for
winning strategies of Player ♦ [4]; here we synthesise only finite-memory strate-
gies for Player ♦, in which case only finite memory for Player � is sufficient:

Lemma 1. A finite-memory Player ♦ strategy is winning for the objective EE(r)
(resp. Pmpς0(r)(v)) if it wins against all finite-memory Player � strategies.

We now state our key reduction lemma to show that almost sure average reward
objectives can be ε-approximated by considering EE objectives.

Lemma 2. Given a finite-memory strategy π for Player ♦, the following hold:

(i) if π satisfies EE(r), then π satisfies Pmpς0(r)(0); and
(ii) if π satisfies Pmpς0(r)(0), then, for all ε > 0, π satisfies EE(r + ε).

Our method described in Theorem 2 below allows us to compute EE(r + ε),
and hence, by virtue of Lemma 2(i), derive ε-optimal strategies for Pmpς0(0).
Item (ii) of Lemma 2 guarantees completeness of our method, in the sense that,
for any vector v such that Pmpς0(r)(v) is achievable, we compute an ε-optimal
strategy; however, if v is not achievable, our algorithm does not terminate.

3.2 Strategy Construction

We define a value iteration method that in k iterations computes the sets Xk
s

of shortfall vectors at state s, so that for any v0 ∈ Xk
s , Player ♦ can keep the

expected energy above v0 during k steps of the game. Moreover, if successive
sets Xk+1

s and Xk
s satisfy Xk

s � Xk+1
s + ε, where A � B ⇔ dwc(A) ⊆ dwc(B),

then we can construct a finite-memory strategy for EE(r+ ε) using Theorem 1.

Value Iteration. Let BoxM
def
= [−M, 0]n. The M -downward closure of a set

X is BoxM ∩ dwc(X). Let PM
c (X) be the set of convex closed M -downward-

closed subsets of X . Let LM
def
= (PM

c (BoxM))|S|, endow it with the partial order

X ⊆ Y ⇔ ∀s ∈ S .Xs ⊆ Ys, and add the top element � def
= Box

|S|
M . For a fixed

M , define the operator FM : LM → LM by [FM (X)]s
def
= BoxM ∩dwc(Ys), where

Ys
def
= r(s) +

⎧
⎪⎨

⎪⎩

conv(
⋃

t∈succ(s) Xt) if s ∈ S♦
⋂

t∈succ(s) Xt if s ∈ S�
∑

t∈supp(μ)μ(t)×Xt if s = (a, μ) ∈ S©.

The operator FM reflects what Player ♦ can achieve in the respective state types.
In s ∈ S♦, Player ♦ can achieve the values in successors (union), and can ran-
domise between them (convex hull). In s ∈ S�, Player ♦ can achieve only val-
ues that are in all successors (intersection), since Player � can pick arbitrarily.

Strategy Synthesis for Stochastic Games with Multiple Long-Run Objectives 263

X
k−1
t1

X
k−1
t2

Xk
s

−6 −4 −2

−6

−4

−2

r1

r2

−M

−M

(a) Player ♦ state s.

X
k−1
t1

X
k−1
t2

Xk
s

−6 −4 −2

−6

−4

−2

r1

r2

−M

−M

(b) Player � state s.

X
k−1
t1

X
k−1
t2

Xk
s

−6 −4 −2

−6

−4

−2

r1

r2

−M

−M

(c) Move s ∈ S©.

Fig. 2. Value iteration and strategy construction, for state s with successors t1, t2, and
reward r1(s) = 0.5, r2(s) = 0. The Pareto set under-approximation Xk

s is computed
from Xk−1

t1
and Xk−1

t2
. To achieve a point p ∈ Ck

s , the strategy updates its memory as

follows: for s ∈ S�, for all t ∈ succ(s), p− r(s) ∈ conv(Ck−1
t); for s ∈ S♦ ∪ S©, there

exist successors t ∈ succ(s) and a distribution α s.t. p − r(s) ∈ ∑
t α(t) × conv(Ck

t),
where, for s = (a, μ) ∈ S©, we fix α = μ. As F is order preserving, it is sufficient to
use Xl

t instead of Xk
t for any l ≥ k.

Lastly, in s ∈ S©, Player ♦ can achieve values with the prescribed distribution.
FM is closely related to our operator for expected total rewards in [6], but here
we cut off values above zero with BoxM , similarly to the controllable predeces-
sor operator of [5] for computing energy in non-stochastic games. BoxM ensures
that the strategy we construct in Theorem 1 below never allows the energy to
diverge in any reachable state. For example, in Figure 1 (right), for v = (12 ,

1
2),

EEς0(r − v) is achievable while, for the states s ∈ {s1, s2}, EEs(r − v) is not.
Since one of s1 or s2 must be reached, EE(r − v) is not achievable, disallowing
the use of Lemma 2(i); and indeed, Pmpς0(v) is not achievable. Bounding with
M allows us to use a geometric argument in Lemma 3 below, replacing the fi-
nite lattice arguments of [5], since our theory is more involved as it reflects the
continuous essence of randomisation.

We show in the following proposition that FM defines a monotonic fixpoint
computation and that it converges to the greatest fixpoint of FM . Its proof relies
on Scott-continuity of FM , and invokes the Kleene fixpoint theorem.

Proposition 1. FM is order-preserving, � ⊇ FM (�) ⊇ F 2
M (�) ⊇ · · · , and the

greatest fixpoint fix(FM) exists and is equal to limk→∞ F k
M (�) = ∩k≥0F

k
M (�).

Further, we use FM to compute the set of shortfall vectors required for Player ♦ to
win for EEs(r) via a value iteration with relative stopping criterion defined using

ε, see Lemma 3 below. Denote Xk def
= F k

M (�). The value iteration is illustrated in
Figure 2: at iteration k, the setXk

s of possible shortfalls until k steps is computed
from the corresponding setsXk−1

t for successors t ∈ succ(s) of s at iteration k−1.
The values are restricted to be within BoxM , so that obtaining an empty set at
a state s in the value iteration is an indicator of divergence at s. Any state that
must be avoided by Player ♦ yields an empty set. For instance, in Figure 1 (left),
with target (1, 1) the value iteration diverges at s1 for any M ≥ 0, but at ς0,

264 N. Basset et al.

Player ♦ can go to the right to avoid accessing s1. The following proposition
ensures completeness of our method, stated in Theorem 2 below.

Proposition 2. If EE(r) is achievable then [fix(FM)]ς0 �= ∅ for some M ≥ 0.

Proof (Sketch). First, we consider the expected enrgy of finite DTMCs, where,
at every step, we cut off the positive values. This entails that the sequence of
the resulting truncated non-positive expected energies decreases and converges
toward a limit vector u whose coordinates are finite if EE(r) is satisfied. We
show that, when EE(r) is satisfied by a strategy π, there is a global lower bound
−M on every coordinate of the limit vector u for the DTMC Gπ,σ induced by
any Player � strategy σ. We show that, for this choice of M , the fixpoint of FM

for the game G is non-empty in every state reachable under π. We conclude that
[fix(FM)]ς0 �= ∅ for some M ≥ 0 whenever EE(r) is achievable.

Lemma 3. Given M and ε, for every non-increasing sequence (X i) of elements

of LM there exists k ≤ k∗∗ def
=

[
2n((�M

ε �+ 2)2 + 2)
]|S|

such that Xk � Xk+1+ε.

Proof (Sketch). We first consider a single state s, and construct a graph with
vertices from the sequence of sets (X i), and edges indicating dimensions where
the distance is at least ε. Interpreting each dimension as a colour, we use a

Ramseyan argument to find the bound k∗ def
= n · ((�M

ε � + 2)2 + 2) for a single

state. To find the bound k∗∗ def
= (2k∗)|S|, which is for all states, we extract

successive subsequences of {1, 2, . . . , k∗∗} def
= I0 ⊇ I1 ⊇ · · · ⊇ I|S|, where going

from Ii to Ii+1 means that one additional state has the desired property, and
such that the invariant |Ii+1| ≥ |Ii|/(2k∗) is satisfied. At the end I|S| contains
at least one index k ≤ k∗∗ for which all states have the desired property.

Strategy Construction. The strategies are constructed so that their memory
corresponds to the extreme points of the sets computed by F k

M (�). The strategies
stochastically update their memory, and so the expectation of their memory
elements corresponds to an expectation over such extreme points.

Let Ck
s be the set of extreme points of dwc(Xk

s), for all k ≥ 0 (since Xk ∈ LM ,
the sets Xk

s are closed). For any point p ∈ Xk
s , there is some q ≥ p that can

be obtained by a convex combination of points in Ck
s , and so the strategy we

construct uses Ck
s as memory, randomising to attain the convex combination q.

Note that the sets Ck
s are finite, yielding finite-memory strategies.

If Xk+1
ς0 �= ∅ and Xk � Xk+1 + ε for some k ∈ N and ε ≥ 0, we can construct

a Player ♦ strategy π for EE(r + ε). Denote by T ⊆ S the set of states s for

which Xk+1
s �= ∅. For l ≥ 1, define the standard l-simplex by Δl def

= {B ∈
[0, 1]l |

∑
β∈B β = 1}. The memory M

def
=

⋃
s∈T {(s,p) |p ∈ Ck

s } is initialised

according to α, defined by α(s)
def
= [(s, qs

0) → βs
0 , . . . , (s, q

s
n) → βs

n], where βs ∈
Δn, and, for all 1 ≤ i ≤ n, qs

i ∈ Ck
s . The update πu and next move function πc

are defined as follows: at state s with memory (s,p), for all t ∈ succ(s), pick n
vectors qt

i ∈ Ck
t for 1 ≤ i ≤ n, with coefficients βt ∈ Δn, such that

Strategy Synthesis for Stochastic Games with Multiple Long-Run Objectives 265

Algorithm 1. PMP Strategy Synthesis

1: function SynthPMP(G, r, v, ε)
2: Set the reward structure to r − v + ε

2
; let k ← 0; M ← 2; X0 ← �;

3: while true do
4: while Xk �	 Xk+1 + ε

2
do

5: k ← k + 1; Xk+1 ← FM (Xk);

6: if Xk
ς0 �= ∅ then

7: Construct π for ε
2
and any v0 ∈ Ck

ς0 using Theorem 1; return π
8: else
9: k ← 0; M ← M2;

– for s ∈ S♦, there is γ ∈ Δ|succ(s)∩T |, such that
∑

t γt ·
∑

i β
t
i ·qt

i ≥ p−r(s)−ε;
– for s ∈ S�, for all t ∈ succ(s),

∑
i β

t
i · qt

i ≥ p− r(s)− ε; and
– for s = (a, μ) ∈ S©, we have

∑
t∈supp(μ) μ(t) ·

∑
i β

t
i · qt

i ≥ p− r(s)− ε;

and, for all t ∈ succ(s), let πu((s,p), t)(t, q
t
i)

def
= βt

i for all i, and πc(s, (s,p))(t)
def
=

γt if s ∈ S♦.

Theorem 1. If Xk+1
ς0 �= ∅ and Xk � Xk+1 + ε for some k ∈ N and ε ≥ 0, then

the Player ♦ strategy constructed above is finite-memory and wins for EE(r+ε).

Proof (Sketch). We show the strategy is well-defined, i.e. the relevant extreme
points and coefficients exist, which is a consequence of Xk � Xk+1+ ε. We then
show that, when entering a state so with a memory po, the expected memory
from this state after N steps is above po−ED,so [rew

N (r)]−Nε. As the memory
is always non-positive, this implies that ED,so [rew

N (r + ε)] ≥ po ≥ −M for
every state so with memory po, for every N . We conclude that EE(r+ ε) holds.

3.3 Strategy Synthesis Algorithm

Given a game G, a reward structure r with target vector v, and ε > 0, the semi-
algorithm given in Algorithm 1 computes a strategy winning for Pmpς0(r)(v−ε).

Theorem 2. Whenever v is in the Pareto set of Pmpς0(r), then Algorithm 1
terminates with a finite-memory ε-optimal strategy.

Proof (Sketch). Since v is in the Pareto set of the almost sure average reward
objective, by Lemma 2(ii) the objective EE(r−v + ε

2) is achievable, and, by
Proposition 2, there exists an M such that fix(FM) is nonempty. The condition
in Line 6 is then satisfied as ∅ �= [fix(FM)]ς0 ⊆ Xk

ς0 . Further, due to the bound
M on the size of the box BoxM in the value iteration, the inner loop terminates
after a finite number of steps, as shown in Lemma 3. Then, by Theorem 1, the
strategy constructed in Line 7 (with degradation factor ε

2 for the reward r−v+ ε
2)

satisfies EE(r−v + ε), and hence, using Lemma 2(i), Pmpς0(r)(v − ε).

266 N. Basset et al.

4 Compositional Synthesis

In order to synthesise strategies compositionally, we introduced in [3] a composi-
tion of games, and showed that assume-guarantee rules for PAs can be applied in
synthesis for games: whenever there is a PA verification rule, the corresponding
game synthesis rule has the same form and side-conditions (Theorem 1 of [3]).
We present a PA assume-guarantee rule for ratio rewards. The PA rules in [10]
only support total expected rewards, while our rule works with any specification
defined on traces, and in particular with ratio rewards (Proposition 4).

Ratio Rewards. Ratio rewards ratio(r/c) generalise average rewards mp(r),
since, to express the latter, we let c(s) = 1 for all s ∈ S. The following proposition
states that to solve Pratioς0(r/c)(v) it suffices to solve Pmpς0(r)(v • c).

Proposition 3. A finite-memory Player ♦ strategy π satisfies Pratioς0(r/c)(v)
if and only if it satisfies Pmpς0(r)(v • c).

Fairness. Given a composed PA M = ‖i∈I M i, a strategy σ is fair if at least
one action of each component Mi is chosen infinitely often with probability 1.
We write M |=f ϕ if, for all fair strategies σ, Mσ |= ϕ.

Theorem 3. Given compatible PAs M1 and M2, specifications ϕG1 and ϕG2

defined on traces of AGi ⊆ Ai for i ∈ {1, 2}, then the following is sound:

M1 |=f ϕG1 M2 |=f ϕG2

M1 ‖ M2 |=f ϕG1 ∧ ϕG2
.

To use Theorem 3, we show that objectives using total or ratio rewards are
defined on traces over some subset of actions.

Proposition 4. If n-dimensional reward structures r and c are defined on ac-
tions Ar and Ac, respectively, then objectives using ratio rewards ratio(r/c) are
defined on traces of Ar ∪ Ac.

Note that average rewards are not defined over traces in general, since its di-
visor counts the transitions, irrespective of whether the specification takes them
into account. In particular, when composing systems, the additional transitions
in between those originally counted skew the value of the average rewards. More-
over, τ -transitions are counted, but do not appear in the traces.

5 A Case Study: Aircraft Power Distribution

We demonstrate our synthesis methods on a case study for the control of the
electrical power system of a more-electric aircraft [11], see Figure 3(a). Power is to
be routed from generators to buses (and loads attached to them) by controlling
the contactors (i.e. controllable switches) connecting the network nodes. Our
models are based on a game-theoretic study of the same control problem in [16],
where the control objective is to ensure the buses are powered, while avoiding

Strategy Synthesis for Stochastic Games with Multiple Long-Run Objectives 267

G1

c1
B1

c3

B2
G2 c2

c4

c8

G3

c5
B3

c7

B4
G4 c6

HVAC Left (G�)

HVAC Right (Gr)

I

(a) Single-line diagram.

s1 Each generator pow-
ered independently
w.p. pg .

. . .

s2

set (G1, G2)
every Nth iteration

s2

Set contactor inten-
tion. If cint4 = 1 (in-
terface opens), enforce

cint1 = cint2 = 0 (isolate
generators).

τ

s3 Resolve contactor in-
tention.

. . .
set (cint1 , cint2 , cint3 , cint4)

cdeli :=0 if cinti changed

s4
Actions indicating sta-
tus of buses. Interface
delivers power from
right (Ion

r) w.p. ion.

ci:=cinti

cdeli ++

if cdeli < delmax

s5 s′5 Shared actions for in-
terface; y ∈ {on, off}.

status status

s′1 s′′1

Ionr &Iy� Ioffr &Iy�

(b) HVAC Left (G�).

Fig. 3. Aircraft electric power system, adapted from a Honeywell, Inc. patent [11]. The
single-line diagram of the full power system (a) shows how power from the generators
(Gi) can be routed to the buses (Bi) through the contactors (ci). The left HVAC
subsystem model G� is shown in (b), and Gr is symmetric. Ix� and Iyr is the interface
status on the left and right side, resp., where x, y stand for either “on” or “off”. One
iteration of the reactive loop goes from s1 to s5 and starts again at s1, potentially with
some variables changed, indicated as s′1 or s′′1 .

unsafe configurations. The controllers have to take into account that contactors
have delays, and the generators available in the system may be reconfigured, or
even exhibit failures. We show that, by incorporating stochasticity in the models
derived from the reliability statistics of the generators, controllers synthesised
from ratio rewards achieve better uptimes compared to those reported in [16].

5.1 Model

The system comprises several components, each consisting of buses and gener-
ators, and we consider the high-voltage AC (HVAC) subsystem, shown in Fig-
ure 3(a), where the dashed boxes represent the components set out in [11]. These
components are physically separated for reliability, and hence allow limited in-
teraction and communication. Since the system is reactive, i.e. the aircraft is to
be controlled continually, we use long-run properties to specify correctness.

The game models and control objectives in [16] are specified using LTL proper-
ties. We extend their models to stochastic games with quantitative specifications,
where the contactors are controlled by Player ♦ and the contactor dynamics and
the interfaces are controlled by Player �, and compose them by means of the
synchronising parallel composition of [3]. The advantage of stochasticity is that

268 N. Basset et al.

the reliability specifications desired in [16] can be faithfully encoded. Further,
games allow us to model truly adversarial behaviour (e.g. uncontrollable contac-
tor dynamics), as well as nondeterministic interleaving in the composition.

Contactors, Buses and Generators. We derive the models based on the
LTL description of [16]: the status of the buses and generators are kept in
Boolean variables B1, . . . , B4 and G1, . . . , G4 resp., and their truth value rep-
resents whether the bus or generator is powered; the contactor status is kept in
Boolean variables c1, . . . , c8, and their truth value represents if the correspond-
ing contactor lets the current flow. For instance, if in G� the generator G1 is
on but G2 is off, the controller needs to switch the contactors c1 and c3 on, in
order to power both buses B1 and B2. At the same time, short circuits from con-
necting generators to each other must be avoided, e.g. contactors c1, c2 and c3
cannot be on at the same time, as this configuration connects G1 and G2. The
contactors are, for example, solid state power controllers [14], which typically
have non-negligible reaction times with respect to the times the buses should be
powered. Hence, as in [16], we model that Player ♦ can only set the intent cinti

of contactor i, and only after some delay is the contactor status ci set to this
intent. For the purposes of this demonstration, we only model a delayed turn-off
time, as it is typically larger than the turn-on time (e.g. 40 ms, the turn-off time
reported in [8]). Whether or not a contactor is delayed is controlled by Player �.

Interface. The components can deliver power to each other via the interface
I, see Figure 3(a), which is bidirectional, i.e. power can flow both ways. The
original design in [11] does not include connector c8, and so c4 has to ensure
that no short circuits occur over the interface: if B3 is powered, c4 may only
connect if B2 is unpowered, and vice versa; hence, c4 can only be on if both B2

and B3 are unpowered. By adding c8, we break this cyclic dependence.
Actions shared between components model transmission of power. The actions

Ixr and Iy� for x, y ∈ {on, off} model whether power is delivered via the interface
from the right or left, respectively, or not. Hence, power flows from left to right
via c8, and from right to left via c4; and we ensure via the contactors that power
cannot flow in the other direction, preventing short circuits.

Reactive Loop. We model each component as an infinite loop of Player � and
Player ♦ actions. One iteration of the loop, called time step, represents one time
unit T , and the system steps through several stages, corresponding to the states
in G� (and Gr): in s1 the status of the generators is set every Nth time step; in s2
the controller sets the contactors; in s3 the delay is chosen nondeterministically;
in s4 actions specify whether both buses are powered, and whether a failure
occurs; and in s5 information is transmitted over the interface. The τ -labelled
Dirac transitions precede all Player ♦ states to enable composition [3].

Generator Assumptions. We assume that the generator status remains the
same for N time steps, i.e. after 0, N , 2N , . . . steps the status may change, with
the generators each powered with probability pg, independently from each other.
N and pg can be obtained from the mean-time-to-failure of the generators. This
is in contrast to [16], where, due to non-probabilistic modelling, the strongest
assumption is that generators do not fail at the same time.

Strategy Synthesis for Stochastic Games with Multiple Long-Run Objectives 269

Table 1. Performance statistics, for various choices of b (bus uptime), f (failure rate),
ion (interface uptime), and model and algorithm parameters. A minus (−) for ion

means the interface is not used. The Pareto and Strategy columns show the times for
EE Pareto set computation and strategy construction, respectively.

Target Model Params. Algorithm Params. Runtime [s]
b f ion N delmax pg |S| ε k Pareto Strategy

0.90 0.01 − 0 0 0.8 1152 0.001 20 25 0.29
0.85 0.01 − 3 1 0.8 15200 0.001 65 1100 2.9
0.90 0.01 − 3 1 0.8 15200 0.001 118 2100 2.1

0.90 0.01 0.6 0 0 0.8 2432 0.01 15 52 0.53
0.95 0.01 0.6 0 0 0.8 2432 0.01 15 49 0.46
0.90 0.01 0.6 2 1 0.8 24744 0.01 80 4300 4.80

5.2 Specifications and Results

The main objective is to maximise uptime of the buses, while avoiding failures
due to short circuits, as in [16]. Hence, the controller has to react to the gener-
ator status, and cannot just leave all contactors connected. The properties are
specified as ratio rewards, since we are interested in the proportion of time the
buses are powered. To use Theorem 3, we attach all rewards to the status actions
or the synchronised actions Ix� and Iyr . Moreover, every time step, the reward
structure t attaches T to these actions to measure the progress of time.

The reward structure “buses�” (resp. “busesr”) assigns T for each time unit
both buses of G� (resp. Gr) are powered; and the reward structure “fail�” (resp.
“failr”) assigns 1 for every time unit a short circuit occurs in G� (resp. Gr).
Since the synchronised actions Ionr and Ion� are taken whenever power is de-
livered over the interface, we attach reward structures, with the same name,
assigning T whenever the corresponding action is taken. For each component
x ∈ {�, r}, the objectives are to keep the uptime of the buses above b, i.e.
P bus
x ≡ Pratioς0(busesx/t)(b); to keep the failure rate below f , i.e. P safe

x ≡
Pratioς0(−failx/t)(−f), where minimisation is expressed using negation; and, if
used, to keep the interface uptime above ion, i.e. P int

x ≡ Pratioς0(I
on
x /t)(ion). We

hence consider the specification P bus
x ∧P safe

x ∧P int
x , for x ∈ {�, r}. Using the rule

from Theorem 3 in Theorem 1 of [3], we obtain the strategy composed of the in-
dividual strategies to control the full system, satisfying P bus

� ∧P safe
� ∧P bus

r ∧P safe
r ,

i.e. both components are safe and the buses are powered.

Strategy Synthesis. We implement the algorithms of this paper as an ex-
tension of our multi-objective strategy synthesis tool of [7], using a compact
representation of the polyhedra F k

M (�). Table 1 shows, for several parameter
choices, the experimental results, which were obtained on a 2.8 GHz PC with 32
GB RAM. In [16], the uptime objective was encoded in LTL by requiring that
buses are powered at least every Kth time step, yielding an uptime for the buses
of 1/K, which translates to an uptime of 20% (by letting K = 5). In contrast, us-
ing stochastic games we can utilise the statistics of the generator reliability, and
obtain bus uptimes of up to 95% for generator health pg = 0.8. For the models

270 N. Basset et al.

without delay, the synthesised strategies approximate memoryless deterministic
strategies but when adding delay, randomisation is introduced in the memory
updates. The model will be included in a forthcoming release of our tool.

6 Conclusion

We synthesise strategies for almost sure satisfaction of multi-dimensional aver-
age and ratio objectives, and demonstrate their application to assume-guarantee
controller synthesis. It would be interesting to study the complexity class of the
problem considered here. Satisfaction for arbitrary thresholds is subject to fur-
ther research. Solutions involving an oracle computing the almost-sure winning
region [9] would need to be adapted to handle our ε-approximations. Moreover,
we are interested in strategies for disjunctions of satisfaction objectives.

Acknowledgements. Part of this work was sponsored by ERC AdG-246967
VERIWARE, and AFOSR grant FA9550-12-1-0302, ONR grant N000141310778.

References

1. Baier, C., Dubslaff, C., Klüppelholz, S., Leuschner, L.: Energy-utility analysis for
resilient systems using probabilistic model checking. In: Ciardo, G., Kindler, E.
(eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 20–39. Springer, Heidelberg (2014)

2. Basset, N., Kwiatkowska, M., Topcu, U., Wiltsche, C.: Strategy synthesis for
stochastic games with multiple long-run objectives. Technical Report RR-14-10,
University of Oxford (2014)

3. Basset, N., Kwiatkowska, M., Wiltsche, C.: Compositional controller synthesis for
stochastic games. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704,
pp. 173–187. Springer, Heidelberg (2014)

4. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on mul-
tiple mean-payoff objectives in Markov decision processes. LMCS 10(1) (2014)

5. Chatterjee, K., Randour, M., Raskin, J.F.: Strategy synthesis for multi-dimensional
quantitative objectives. Acta Inf. 51(3-4), 129–163 (2014)

6. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013)

7. Chen, T., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: Synthesis for multi-
objective stochastic games: An application to autonomous urban driving. In: Joshi,
K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054,
pp. 322–337. Springer, Heidelberg (2013)

8. Automation Direct. Part number AD-SSR610-AC-280A, Relays and Timers, Book
2 (14.1), eRL-45 (2014)

9. Gimbert, H., Horn, F.: Solving simple stochastic tail games. In: SODA, pp. 847–862.
SIAM (2010)

10. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Compositional probabilistic
verification through multi-objective model checking. I&C, 232:38–65 (2013)

11. Michalko, R.G.: Electrical starting, generation, conversion and distribution system
architecture for a more electric vehicle, US Patent 7,439,634 (2008)

Strategy Synthesis for Stochastic Games with Multiple Long-Run Objectives 271

12. Segala, R.: Modelling and Verification of Randomized Distributed Real Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology (1995)

13. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. USA 39(10), 1095 (1953)
14. Sinnett, M.: 787 no-bleed systems: saving fuel and enhancing operational efficien-

cies. Aero Quarterly, 6–11 (2007)
15. von Essen, C.: Quantitative Verification and Synthesis. PhD thesis, VERIMAG

(2014)
16. Xu, H., Topcu, U., Murray, R.M.: Reactive protocols for aircraft electric power

distribution. In: CDC. IEEE (2012)

FAUST2: Formal Abstractions

of Uncountable-STate STochastic Processes

Sadegh Esmaeil Zadeh Soudjani1, Caspar Gevaerts1, and Alessandro Abate2,1,�

1 Delft Center for Systems and Control (DCSC),
TU Delft – Delft University of Technology, Delft, The Netherlands

S.EsmaeilZadehSoudjani@tudelft.nl
2 Department of Computer Science, University of Oxford, Oxford, United Kingdom

alessandro.abate@cs.ox.ac.uk

Abstract. FAUST2 is a software tool that generates formal abstractions
of (possibly non-deterministic) discrete-time Markov processes (dtMP)
defined over uncountable (continuous) state spaces. A dtMP model is
specified in MATLAB and abstracted as a finite-state Markov chain or
a Markov decision process. The abstraction procedure runs in MATLAB
and employs parallel computations and fast manipulations based on vec-
tor calculus, which allows scaling beyond state-of-the-art alternatives.
The abstract model is formally put in relationship with the concrete
dtMP via a user-defined maximum threshold on the approximation er-
ror introduced by the abstraction procedure. FAUST2 allows exporting
the abstract model to well-known probabilistic model checkers, such as
PRISM or MRMC. Alternatively, it can handle internally the computa-
tion of PCTL properties (e.g. safety or reach-avoid) over the abstract
model. FAUST2 allows refining the outcomes of the verification proce-
dures over the concrete dtMP in view of the quantified and tunable
error, which depends on the dtMP dynamics and on the given formula.
The toolbox is available at

http://sourceforge.net/projects/faust2/

1 Models: Discrete-Time Markov Processes

We consider a discrete-time Markov process (dtMP) s(k), k ∈ N ∪ {0} defined
over a general state space, such as a finite-dimensional Euclidean domain [1]
or a hybrid state space [2]. The model is denoted by the pair S = (S, Ts).
S is a continuous (uncountable) but bounded state space, e.g. S ⊂ R

n, n <
∞. We denote by B(S) the associated sigma algebra and refer the reader to
[2, 3] for details on measurability and topological considerations. The conditional
stochastic kernel Ts : B(S)×S → [0, 1] assigns to each point s ∈ S a probability
measure Ts(·|s), so that for any set A ∈ B(S), k ∈ N ∪ {0},

P(s(k + 1) ∈ A|s(k) = s) =

∫

A

Ts(ds̄|s).

� This work has been supported by the European Commission STREP project MoVeS
257005 and IAPP project AMBI 324432, and by the John Fell OUP Research Fund.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 272–286, 2015.
DOI: 10.1007/978-3-662-46681-0_23

FAUST2: Formal Abstractions of Uncountable-STate STochastic Processes 273

We refer to the code or to the case study for a modeling example. The software
allows handling the relevant instance of Stochastic Hybrid Systems (SHS). SHS
are discrete-time Markov processes evolving over hybrid state spaces. The hybrid
state s = (q, x) of SHS has two components: q ∈ Q is the discrete part, and
x ∈ R

nq is the continuous part. The state space of the SHS is the (disjoint) union
of continuous spaces associated to the discrete locations S ⊂ ∪q∈Q{q} × R

nq .
The formal definition and characterization of the conditional stochastic kernel
of a SHS, along its theoretical analysis and formal verification, are discussed in
detail in [2, 4–9].

Implementation: FAUST2 in implemented in MATLAB and its user in-
teraction is enhanced by a Graphical User Interface as in Figure 1. A dtMP
model is fed into FAUST2 as follows. Select the Formula free option in the box
Problem selection 1 in Figure 1, and enter the bounds on the state space S as a
n× 2 matrix in the prompt Domain in box 8 . Alternatively if the user presses
the button Select 8 , a pop-up window prompts the user to enter the lower and
upper values of the box-shaped bounds of the state space. The transition kernel
Ts can be specified by the user (select User-defined 2) in an m-file, entered in
the text-box Name of kernel function, or loaded by pressing the button Search
for file 7 . Please open the files ./Templates/SymbolicKernel.m for a template
and ExampleKernel.m for an instance of kernel Ts. As a special case, the class
of affine dynamical systems with additive Gaussian noise is described by the dif-
ference equation s(k+1) = As(k)+B+η(k), where η(·) ∼ N (0, Sigma). (Refer to
the Case Study on how to express the difference equation as a stochastic kernel.)
For this common instance, the user can select the option Linear Gaussian model
in the box Kernel distribution 2 , and input properly-sized matrices A,B,Sigma

in the MATLAB workspace. FAUST2 also handles Gaussian dynamical models
s(k + 1) = f(s(k)) + g(s(k))η(k) with nonlinear drift and variance: select the
bottom option in box 2 and enter the symbolic function [f g] via box 7 . �	

The software also handles models with non-determinism [9], here regarded as
external and as such accessible: a controlled dtMP is a tuple S = (S,U , Ts),
where S is as before, U is a continuous control space (e.g. a bounded set in R

m),
and Ts is a Borel-measurable stochastic kernel Ts : B(S)×S ×U → [0, 1], which
assigns to any state s ∈ S and input u ∈ U a probability measure Ts(·|s, u).

Implementation: In order to specify a non-deterministic model in FAUST2,
tick the relevant check Controlled/non-deterministic model 3 , and enter the
bounds on the space U as a m× 2 matrix in the window Input set 8 . �	

2 Formal Finite-State Abstractions of dtMP Models

This section discusses the basic procedure to approximate a dtMP S = (S, Ts)
as a finite-state Markov chain (MC) P = (P , Tp), as implemented in FAUST2.
P = {z1, z2, . . . , zp} is a finite set of abstract states of cardinality p, and Tp :
P×P → [0, 1] is a transition probability matrix over the finite space P : Tp(z, z

′)
characterizes the probability of transitioning from state z to state z′. The finite

274 S. Esmaeil Zadeh Soudjani, C. Gevaerts, and A. Abate

1
6

2
7

3 4 5

8

9 1
0

1
1

1
3

1
2

1
4

Fig. 1. Graphical User Interface of FAUST2. Overlaid numbered boxes refer to specific
description in the text.

FAUST2: Formal Abstractions of Uncountable-STate STochastic Processes 275

state space of P is constructed by (arbitrarily) partitioning the state space of S
and selecting a representative point in each partition set to make up the states in
P . The probability of transitioning from (abstract) state z to state z′, Tp(z, z

′), is
computed by marginalizing the stochastic kernel Ts of S, namely computing the
probability of jumping from state z to any point in the (concrete) partition set
corresponding to the (abstract) state z′. Algorithm 1 describes the abstraction
of model S as a finite-state MC P [6]. In Algorithm 1, Ξ : P → 2S represents a
set-valued map that associates to any point zi ∈ P the corresponding partition
set Ai ⊆ S, whereas the map ξ : 2S → P relates any point s or set in S to the
corresponding discrete state in P .

Algorithm 1. Abstraction of dtMP S by MC P

Require: input dtMP S = (S , Ts)
1: Select a finite partition of the state space S as S = ∪p

i=1Ai (Ai are non-overlapping)

2: For each Ai, select an arbitrary representative point zi ∈ Ai, {zi} = ξ(Ai)
3: Define P = {zi, i = 1, ..., p} as the finite state space of the MC P
4: Compute the transition probability matrix Tp(z, z

′) = Ts(Ξ(z′)|z) for all z, z′ ∈ P
Ensure: output MC P = (P , Tp)

Consider the representation of the kernel Ts by its density function ts : S×S →
R

≥0, namely Ts(ds
′|s) = ts(s

′|s)ds′ for any s, s′ ∈ S. The abstraction error over
the next-step probability distribution introduced by Algorithm 1 depends on the
regularity of function ts: assuming that ts is Lipschitz continuous, namely that
there is a finite positive constant hs such that

|ts(s̄|s)− ts(s̄|s′)| ≤ hs ‖s− s′‖ , ∀s, s′, s̄ ∈ S, (1)

then the next-step error is E = hsδsL (S), where δs is the max diameter of
the state-space partition sets and L (S) is the volume of the state space [6].
When interested in working over a finite, N -step time horizon, the error results
in the quantity EN . Notice that the error can be reduced via δs by considering
a finer partition, which on the other hand results in a MC P with a larger state
space. It is evidently key to obtain error bounds that are as tight as possible: the
error bounds on the abstraction can be improved in three different ways [8, 10].
First, by computing a local version of the error; second, by leveraging continuity
requirements that go beyond the Lipschitz condition raised in (1); and, finally,
by normalizing possibly ill-conditioned dynamics operating on heterogeneous
spatial scales.

Implementation: FAUST2 enables the user to enter the time horizon N
of interest (box Number of time steps 5), and a threshold on the maximum
allowed error (box Desired abstraction error 5). The software generates a Markov
chain with the desired accuracy by pressing the button Generate the abstraction
6 . Among other messages, the user is prompted with an estimated running

276 S. Esmaeil Zadeh Soudjani, C. Gevaerts, and A. Abate

time, which is based on an over-approximation of the Lipschitz constant of the
kernel, on a uniform partitioning of the space S1, and on the availability of
parallelization procedures in MATLAB, and is asked whether to proceed. �	

In the case of a non-deterministic dtMP, the input space is also partitioned
as U = ∪q

i=1Ui, and arbitrary points ui ∈ Ui are selected. The dtMP S is
abstracted as a Markov decision process (MDP) P = (P ,Up, Tp), where now
the finite input space is Up = {u1, u2, . . . , uq}, and Tp(u, z, z

′) = Ts(Ξ(z′)|z, u)
for all z, z′ ∈ P , u ∈ Up. The abstraction error can be formally quantified as
E = 2(hsδs + huδu)L (S), where δu is the max diameter of the input-space
partitions and hu is the Lipschitz constant of the density function with respect
to the inputs, that is |ts(s̄|s, u)− ts(s̄|s, u′)| ≤ hu ‖u− u′‖, ∀u, u′ ∈ U , s, s̄ ∈ S.

Implementation: The user may tick the check in 3 to indicate that the
dtMP is controlled (non-deterministic), specify a box-shaped domain for the
input in box Input set 8 , enter a time horizon in box Number of time steps
5 , and require an error threshold in box Desired abstraction error 5 . FAUST2

automatically generates an MDP according to the relevant formula on the error.
Notice that the quantification of the abstraction error requires state and input

spaces to be bounded. In the case of an unbounded state space, the user should
truncate it to a bounded, box-shaped domain: selecting the Formula free option
in the box Problem selection 1 , the domain is prompted in box Domain 8 .
Algorithm 1 is automatically adjusted by assigning an absorbing abstract state
to the truncated part of the state space. For details please see [10, 11].

The user may select one of two options in the box Gridding procedure 4 ,
dealing with adaptive gridding. FAUST2 generates partition sets based on local
computation of the error, as follows: a rather course partition of the state space is
initially selected and the corresponding local errors are computed; the partition
is sequentially refined by splitting the sets if the maximum local error is greater
than the threshold entered by the user in box 5 . In the step, the partition
can be refined by splitting the partition set with the largest local error, which
results in an abstraction with the least number of states but requires a larger
computational time (cf. [10, Algorithm 3]); alternatively, FAUST2 obtains faster
generation time by splitting all the sets with local errors greater than threshold
(cf. [10, Algorithm 4]). Both procedures are guaranteed to result, after a finite
number of steps, in the desired selected error. We plan to implement an anytime
algorithm option, as possible for the discussed adaptive gridding procedures.
This option enables the user to externally interrupt the refinement procedure
at any time, and returns the last computed abstract model together with its
associated error bound. �	

The states of the abstract model P may be labeled. The state labeling map
L : P → Σ, where Σ is a finite alphabet, is defined by a set of linear inequalities:
for any α ∈ Σ the user characterizes the set of states L−1(α) as the intersection
of half-planes (say, as a box or a simplex): the software automatically determines

1 At the moment we assume to have selected options Uniform gridding and Lipschitz
via integral among the lists in box 4 . Comments on further options are in Section 3.

FAUST2: Formal Abstractions of Uncountable-STate STochastic Processes 277

all points z ∈ P belonging to set L−1(α). The obtained labeled finite-state model
can be automatically exported to well-known model checkers, such as PRISM
and MRMC [12, 13], for further analysis. In view of the discussed error bounds,
the outcomes of the model checking procedures over the abstract model P may
be refined over the concrete dtMP S – more details can be found in [6, 11].

Implementation: Labels are introduced in FAUST2 as follows: suppose
that the intersection of half-planes Aαz ≤ Bα (where Aα, Bα are properly-sized
matrices) tags states z by label α ∈ Σ. The user may add such a label by pressing

button Add 10 and subsequently entering symbol α and matrices Aα, Bα in the
pop-up window. The user can also edit or remove any previously defined label
using buttons Edit, Remove in 10 , respectively. The button States with selected

label 10 shows the sets associated to the active label over the plot in 13 .

The user may click the buttons in 11 to export the abstracted model to
PRISM or to MRMC. Alternatively, FAUST2 is designed to automatically check
or optimize over quantitative, non-nested PCTL properties, without relying on
external model checkers: Section 3 elaborates on this capability. �	

3 Formula-Dependent Abstractions for Verification

Algorithm 1, presented in Section 2, can be employed to abstract a dtMP as
a finite-state MC/MDP, and to directly check it against properties such as
probabilistic invariance or reach-avoid, that is over (quantitative, non-nested)
bounded-until specifications in PCTL [14]. Next, we detail this procedure for
the finite-horizon probabilistic invariance (a.k.a. safety) problem, which can be
formalized as follows. Consider a bounded continuous set A ∈ B(S) representing
the set of safe states. Compute the probability that an execution of S, associ-
ated with an initial condition s0 ∈ S remains within set A during the finite time
horizon [0, N], that is ps0(A) := P{s(k) ∈ A for all k ∈ [0, N]|s(0) = s0}.

The quantity ps0(A) can be employed to characterize the satisfiability set of
a corresponding bounded-until PCTL formula, namely

s0 |= P∼ε{true U≤N(S\A)} ⇔ ps0(A) � 1− ε,

where S\A is the complement ofA over S, true is a state formula valid everywhere
on S, the inequality operator∼∈ {>,≥, <,≤}, and� represents its complement.

FAUST2 formally approximates the computation of ps0(A), ∀s0 ∈ S, as fol-
lows. S is abstracted as an MC P via Algorithm 1: the bounded safe set A is
partitioned as A = ∪p−1

i=1Ai; representative points zi ∈ Ai are selected and, along
with an extra absorbing variable φ for S\A, make up the state space P ; the tran-
sition probability matrix Tp is obtained by marginalizing the concrete kernel Ts.
Given the obtained discrete-time MC P = (P , Tp) and considering the finite safe
set Ap = {z1, . . . , zp−1} ⊂ P , FAUST2 internally computes the safety probability
overP via dynamic programming [6], along with the associated abstraction error
which is now tailored over the PCTL formula of interest.

Implementation: The user may select option PCTL Safety in the list within
box 1 , enter the boundaries of the Safe set within box 8 , and press button 6 to

278 S. Esmaeil Zadeh Soudjani, C. Gevaerts, and A. Abate

proceed obtaining the abstraction and computing the probability of the selected
formula. The computed value of ps0(A) is displayed in box Probability given s0 14 ,

for any user-selected initial state s0 that is input in box Initial condition s0 14 .

The user can optionally press button Properties of s0 14 to get more information
about the concrete state s0, including the related discrete state z = ξ(Ξ(s)) of
the MC, as well as the associated labels. Furthermore, the quantity ps0(A) can
be plotted, as a function of the initial state s0, by pressing buttons Plot grid and
Color grid in 13 . Clearly these outputs are exclusively available for models of
dimensions n = 1, 2, 3. �	

It is of interest to obtain tight bounds on the error associated to the abstrac-
tion procedure since, given a user-defined error threshold, tighter bounds would
generate abstract models P with fewer states. The abstraction error bound in
FAUST2, tailored around the discussed safety problem, can be efficiently de-
creased under different types of regularity assumptions on the conditional density
function of the dtMP S [10]. For instance, in contrast to the global continuity
assumption in (1), if ts is locally Lipschitz continuous as

|ts(s̄|s)− ts(s̄|s′)| ≤ h(i, j) ‖s− s′‖ , ∀s̄ ∈ Aj , ∀s, s′ ∈ Ai, (2)

(here sets Ai form a partition of A, as from Algorithm 1) then the error is

|ps0(A)− pp0(Ap)| ≤ max{γiδi|i = 1, ..., p}, (3)

where pp0(Ap) is initialized at the discrete state p0 = ξ(s0) ∈ Ap. Here δi
is the diameter of the set Ai ⊂ A, and the constants γi are given by γi =
N

∑m
j=1 h(i, j)L (Aj). Since h(i, j) ≤ hs, the obtained error in (3) is smaller

than the older quantity NhsδsL (S). Notice that the structure of the error in
(3) leads to gridding algorithms for abstraction that are adapted to the formula
and can be made sequential [10]: FAUST2 initializes the procedure with coarse
partition sets (resulting in a small MC abstraction but with a large approxi-
mation error), and sequentially refines the partitions adaptively where the local
errors are high (leading to an MC abstraction with increasing state space), until
the global error becomes less than a user-defined threshold.

Implementation: FAUST2 allows the user to select three different gridding
procedures in box Gridding procedure 4 : the reader is referred to [10] for the
details of these three options. The Uniform gridding option leads to a one-shot
(non sequential) procedure, as already discussed in Section 2, whereas the two
Adaptive gridding options result in sequential and adaptive procedures leading
to better errors and to smaller abstractions, but in general requiring more com-
putation time. The error bound quantification hinges on the constant in the
right-hand side of (2), which can be computed differently as in box Assumptions
on kernel 4 : tighter errors lead to longer computations [10]. In order to provide
full control on the chosen inputs, for any possible selection of gridding procedure,
desired abstraction error, and error bound computation, the user is prompted in
a pop-up window with an estimated running time, and asked whether to proceed.

FAUST2: Formal Abstractions of Uncountable-STate STochastic Processes 279

This range of algorithms and procedures are also implemented for probabilis-
tic reach-avoid (constrained reachability) problems, which are encompassed by
general bounded-until PCTL formulas P∼ε{Φ U≤NΨ}. The user can select this
option in box Problem selection 1 , and is asked to input sets Φ, Ψ as safe and
target sets in the texts in box 8 .

Let us remark that the described abstraction algorithms and procedures are
also available for the formula-free abstraction discussed in Section 2. �	

The safety problem for a controlled dtMP [9] is defined as follows. Consider the
class of deterministic Markov policies π = (μ0, μ1, . . .), where the functions μk :
S → U are properly measurable deterministic functions. The safety probability
for a controlled dtMP under a given policy π is given by

pπs0(A) := P{s(k) ∈ A for all k ∈ [0, N]|s(0) = s0, u(k + 1) = μk(s(k))}.

The safety problem deals with the computation of the maximally safe deter-
ministic Markov policy π∗, such that pπ

∗
s0 (A) = supπ p

π
s0(A), ∀s0 ∈ A. Similarly

we can compute the minimally safe policy, or an optimal policy related to the
reach-avoid problem (defined with the bounded-until operator).

Implementation: FAUST2 computes a suboptimal policy for a given prob-
lem over an MDP, with a given threshold on the distance to the optimal safety
probability, and quantifies the corresponding approximate quantity pπ

∗
s0 (A). The

approximate optimal policy can be stored by pushing button Save results 12 ,
which provides the user with two options: either storing it in the disk as a .mat
file, or loading it to the workspace. �	

4 Accessing and Testing FAUST2

The toolbox is available at

http://sourceforge.net/projects/faust2/

We have successfully tested the toolbox with MATLAB R2012a, R2012b, R2013a,
R2013b, on machines running Windows 7, Apple OSX 10.9, and Linux Open-
SUSE. FAUST2 exploits the command integral of MATLAB (introduced in ver-
sion R2012a) for numerical integrations. (The previous versions of MATLAB
contain instruction quad and its variations, which will be removed in the future
versions of MATLAB – we have thus opted for the most up-to-date version.)
Optimization and symbolic computation toolboxes of MATLAB are necessary.
FAUST2 automatically checks the presence of these packages and displays an
error to the user in their absence. The software also takes the advantage of the
MATLAB parallel computation toolbox if present. The use of parallel computa-
tion toolbox is currently disabled for Apple operating systems due to a conflict.

Please download FAUST2 from Sourceforge. The files are organized in the
main folder as follows: the sub-folder Autonomous Models contains the codes
for deterministic systems (without input); the sub-folder Controlled Models

280 S. Esmaeil Zadeh Soudjani, C. Gevaerts, and A. Abate

includes the codes for non-deterministic systems (input dependent); the sub-
folder Templates contains templates and examples for the definition of symbolic
conditional density functions; the sub-folder Case Study contains the files used
in the next Section to test the software on a practical study. The file README can
be opened with your preferred text editor and contains instructions on how to
set up and run the software. Alternatively, FAUST2 can be tested on a case study
as elaborated in the next Section. Please set the current directory of MATLAB
to the folder where the software is stored and run FAUST2.m from the MATLAB
command line.

5 Case Study

In this section we apply FAUST2 to compute optimal control strategies for the
known room temperature regulation benchmark [15]. Probabilistic models for
the underlying dynamics are based on [16] and on [2]. We consider the temper-
ature regulation in multiple rooms via cooling water circulation. The amount
of extracted heat is changed via a flow-control valve. Then the input signal is
the percentage of the valve in the open position. The dynamics of the room
temperature evolve in discrete time according to the equations

s1(k + 1) = s1(k) +
Δ

Cra
((s2(k)− s1(k))kcwu(k) + (Ta − s1(k))kout) + ηra(k),

s2(k + 1) = s2(k) +
Δ

Ccw
((s1(k)− s2(k))kcwu(k) +Q) + ηcw(k), (4)

where s1 is the air temperature inside the room, s2 is the cooling water temper-
ature, Ta is the ambient temperature, Δ is the discrete sampling time [min],
and ηra(·), ηcw(·) are stationary, independent random processes with normal
distributions N (0, σ2

raΔ) and N (0, σ2
cwΔ), respectively. Equations (4) can be

encompassed in the condensed two-dimensional model

s(k + 1) = f(s(k), u(k)) + η(k), η(·) ∼ N (0, Ση),

which results in a stochastic kernel that is a Gaussian conditional distribution
N (f(s, u), Ση), where Ση = diag(Δ[σ2

ra, σ
2
cw]). The file Chiller Kernel 2d.m

appearing with the release of the software, provides numerical values and phys-
ical interpretations of the parameters in equations (4), as well as the symbolic
structure of the conditional density function. The dynamical model in (4) can be
as well extended to a two-room temperature control (which results in a three-
dimensional model), and its conditional density function can be found in file
Chiller Kernel 3d.m. We will run FAUST2 on both 2D and 3D setups.

We are interested in keeping the temperature of the room(s) within a given
temperature interval over a fixed time horizon: this can be easily stated as a
(probabilistic) safety problem, where we maximize over the feasible inputs to
the model. We instantiate and compute this problem over the model above as
described in the main text, while providing a step-by-step guide to the user.

FAUST2: Formal Abstractions of Uncountable-STate STochastic Processes 281

In order to select the problem and import the model in FAUST2, please
follow these steps: select PCTL Safety in box 1 , choose User-defined in box
2 , tick the check-box 3 to indicate a controlled model, and write the name
Chiller Kernel 2d.m in the text of box 7 to load the density function of the
two-dimensional model (4).

In the next stage we perform the abstraction and compute the quantity of in-
terest (maximal safety probability). Select the most straightforward (but coars-
est) abstraction algorithm, by choosing options Uniform gridding and Lipschitz
via integral in 4 . Proceed entering the problem parameters as follows: input the
number of time steps as 3 and select a desired abstraction error equal to 0.5 in
box 5 ; enter the safe temperature interval A as [19.7,20.3; 4.7,5.3], as well
as the input space U as [0,1] in the text within box 8 .

At this point the software can proceed with the main computations. Please
press the button in box 6 , in order to generate the abstract MDP, to compute
the optimal policy and the related maximal safety probability. When the compu-
tation is complete, let us proceed with some post-processing: press the buttons
Plot grid and Color grid in box 13 , to generate Figure 2 (left) representing the
maximal safety probability. The result of the computation can be stored for fur-
ther analysis by pressing button 12 : for instance Figure 2 (right) is generated
by retrieving the optimal state-dependent Markov policy at step N − 1. The ob-
tained abstract MDP has 144 states and 33 input actions. The experiment has
been run in MATLAB 8.4 (R2014b) equipped with parallel computation toolbox
on a 12-core Intel Xeon 3.47 GHz PC with 24 GB of memory and Windows 7
operating system. The initial estimate of the required time and the actual simu-
lation time were 5.2 and 3.5 minutes, respectively. The simulation time includes
both the generation of the abstract MDP and optimization over the input action.

19.8
19.9

20
20.1

20.2

4.8
4.9

5
5.1

5.2

0.1

0.2

0.3

0.4

0.5

0.6

s1s2

u
(s
)

Fig. 2. Room temperature control problem. Left: obtained uniform partition of the
safe set, along with optimal safety probability for each partition set (color bar on the
right). The safety probability is equal to zero over the complement of the safe set.
Right: optimal Markov policy at step N − 1, as a function of the model states.

282 S. Esmaeil Zadeh Soudjani, C. Gevaerts, and A. Abate

A similar procedure can be followed to study the same probabilistic safety
problem over a two-room temperature control, instantiated via the density func-
tion Chiller Kernel 3d.m. Figure 3 presents the outcomes obtained using the
Adaptive gridding and Lipschitz via integral options, selected in box 4 . The ab-
straction parameters used in this problem is as follows: number of time steps
3, safe temperature interval [19.5,20.5; 19.5,20.5; 4.5,5.5], input space
[0,1; 0,1]. We have selected a large abstraction error equal to 12 in box 5 to
be able to visualize the adaptive grid generated by the software. The obtained
abstract MDP has 45 states and 64 input actions. The experiment has been run
on the same computer. The initial estimate of the required time and the actual
simulation time were 20.7 and 26.2 minutes, respectively. The user can select a
smaller error, at the likely cost of a larger computation time. For this case study,
the implemented approach allows for the applicability of the abstraction tech-
nique at least to models with dimension 6 (that is, with 6 continuous variables),
which is beyond the performance of currently available discretization-based ap-
proaches. The reader interested in detailed computational benchmarks for the
presented techniques is referred to [8, 10].

19.519.619.719.819.92020.120.220.320.420.5

19.5

20

20.5

4.6

4.8

5

5.2

5.4

s1

s2

s 3

10

12

14

16

18

20

22

24

26

Prob. [%]

Fig. 3. Two-room temperature control problem. Obtained partition of the safe set,
together (bar) with optimal safety probability.

6 Summary of the Commands in the Graphical User
Interface

We provide a summary of the commands of the GUI in FAUST2, as they appear
in the boxes highlighted in Figure 1.

FAUST2: Formal Abstractions of Uncountable-STate STochastic Processes 283

1 The box Problem selection provides a list with three options: select Formula
free to obtain an abstraction of the model which can be exported to PRISM
or to MRMC for further analysis; choose PCTL Safety in order to abstract
the model and compute a safety probability; or opt for PCTL Reach-Avoid
to get the abstraction tailored around the computation of the reach-avoid
probability.

2 The box Kernel distribution gives three options in a list: select Linear Gaus-
sian model if the model belongs to the class of Linear Gaussian difference
equations (cf. Section 1) and define matrices A,B,Sigma in the MATLAB
workspace; choose Non-linear Gaussian model if the process noise is Gaussian
and the drift and variance are non-linear (cf. Section 1), enter the drift and
variance as a single symbolic function with two outputs via box 7 ; otherwise
choose User-defined and enter your kernel as a symbolic function using 7 .

3 Check this box if the model is non-deterministic (controlled).
4 Box Gridding procedure provides three options: select Uniform gridding to gen-

erate a grid based on global Lipschitz constant h (cf. Section 2), where the
state space is partitioned uniformly along each dimension; choose Adaptive
gridding: local->local to generate the grid adaptively based on local Lipschitz
constants h(i, j) (cf. Section 3), where the size of partition sets is smaller
where the local error is higher; select Adaptive gridding: local->global to gen-
erate the grid adaptively based on local Lipschitz constants h(i) (cf. [10]).
The first option is likely to generate the largest number of partition sets and
to be the fastest in the generation of the grid. The second option is likely to
generate the smallest number of partition sets but to be the slowest in the
grid generation. For the detailed comparison of these gridding procedures,
please see [10].

The box Assumptions on kernel provides three choices: option Lipschitz
via integral requires the density function ts(s̄|s) to be Lipschitz continuous
with respect to the current state s, and the quantity Tp(z, z

′) = Ts(Ξ(z′)|z)
is used in the marginalization (integration) step; option Lipschitz via sam-
ple requires the density function ts(s̄|s) to be Lipschitz continuous with re-
spect to both current and the next states s, s̄, and the quantity Tp(z, z

′) =
Ts(z

′|z)L (Ξ(z′)) is used in the marginalization step; option Max-Min does
not require any continuity assumption, but takes longer time in the compu-
tation of the error.

5 The time horizon of the desired PCTL formula or of the problem of interest,
and the required upper bound on the abstraction error should be input in
these two boxes. For the case of formula-free abstraction you may enter 1 as
the number of time steps.

6 Press this button after entering the necessary data to generate the abstrac-
tion: this runs the main code. First, various checks are done to ensure the
correctness of the inputed data. Then the partition sets are generated via
gridding, the transition matrix is calculated, and the probability and the
optimal policy are computed if applicable.

7 This box is activated for options User-defined and Non-linear Gaussian model
in 2 . For the first option, the conditional density function must be an m-file

284 S. Esmaeil Zadeh Soudjani, C. Gevaerts, and A. Abate

that generates ts(s̄|s, u) symbolically. Please refer to SymbolicKernel.m for
a template and ExampleKernel.m for an example. The name of kernel func-
tion should be entered in the text-box or the function should be loaded by
pressing the button Search for file. For the option Non-linear Gaussian model,
the non-linear drift and variance must be specified as a single symbolic func-
tion with two outputs. Please refer to NonLinKernel.m for a template and
NonLinKernelExample.m for an example.

8 If the Formula-free option is selected in 1 , the user can enter the bounds
of the state space in the first of the boxes, named Domain. In case any of
the additional two options in 1 are selected, the boundaries of the safe set
should be entered in the first text-box named Safe set. If the PCTL Reach-
Avoid option in 1 is selected, the second box is activated and the boundaries
of the target set should be entered in the text-box named Target set. If the
model is non-deterministic and the check in box 3 is ticked, the third box
is also activated and the boundaries of the Input space may be entered in
the box named Input set. In all cases the boundaries are to be given as
a matrix with two columns, where the first and second columns contain
lower and upper bounds, respectively. Alternatively, the user can press the
Select button and separately enter the lower and upper bounds in the pop-up
window.

9 The resulting error of the abstraction procedure, which is less than or equal
to the desired abstraction error introduced in 5 . This box shows the error
associated to the abstracted model.

10 The user can add, remove, or edit labels associated to the abstract states.
The set of states with any label α ∈ Σ can be represented by the intersection
of half-planes Aαz ≤ Bα. In order to tag these states with the associated
label, the user presses button Add and subsequently enters symbol α and
matrices Aα, Bα in a pop-up window. The user can also edit or remove any
previously defined label by activating its symbol in the static-box and using
buttons Edit, Remove. The button States with selected label will show the set
of states associated with the active label in 13 . Adding labels is essential in
particular for exporting the result to PRISM or to MRMC.

11 The abstracted Markov chain or MDP can be exported to PRISM or to
MRMC using these buttons. FAUST2 enables two ways of exporting the
result to PRISM: as a .prism format that is suitable for its GUI, or as the
combination of .tra and .sta files, which are appropriate for the command
line.

12 Use this button to store the results. A pop-up window appears after pushing
the button and the user can opt for storing the date over the workspace, or
in memory as an .mat file.

13 The user can plot the generated grid for the state space using the first
button. Pressing this button opens a new window showing the partitioned
input space for the controlled model. The solution of the safety and of the
reach-avoid probability can also be visualized by pressing the second button.
This option obviously works exclusively for dimensions n = 1, 2, 3.

FAUST2: Formal Abstractions of Uncountable-STate STochastic Processes 285

14 The user can enter any initial state s0 in the first box and calculate the
safety or the reach-avoid probability of the model starting from that initial
state, by pressing the button Calculate. The button Properties of s0 gives the
abstracted state associated to s0, namely z = ξ(Ξ(s0)) (cf. Algorithm 1),
and all the labels assigned to this state.

7 Extensions and Outlook

There are a number of enticing extensions we are planning to work on, with the
objective of rendering FAUST2 widely useful and easily deployable.

FAUST2 is presently implemented in MATLAB, which is the modeling soft-
ware of choice in a number of engineering areas. We plan to improve part of
its functionalities employing a faster, lower-level programming language, and to
enhance the seamless integration with model checking tools.

Furthermore, we plan to extend the functionality of FAUST2 by allowing for
general label-dependent partitioning, and we are exploring the implementation
with differently shaped partitioning sets [10]. We moreover plan to extend the
applicability of FAUST2 to models with discontinuous and degenerate [17, 18]
kernels, to implement higher-order approximations [19], to include abstraction
techniques specialized for stochastic max-plus linear systems [20], to embed for-
mal truncations of the model dynamics [21], and to refine techniques and al-
gorithms for non-deterministic (control-dependent) models. Finally, we plan to
look into implementing in the tool bounds for infinite horizon properties, as
currently investigated theoretically.

References

1. Meyn, S., Tweedie, R.: Markov chains and stochastic stability. Springer (1993)

2. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008)

3. Bertsekas, D., Shreve, S.: Stochastic Optimal Control: The Discrete-Time Case.
Athena Scientific (1996)

4. Abate, A., Amin, S., Prandini, M., Lygeros, J., Sastry, S.: Computational ap-
proaches to reachability analysis of stochastic hybrid systems. In: Bemporad, A.,
Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 4–17. Springer,
Heidelberg (2007)

5. Summers, S., Lygeros, J.: Verification of discrete time stochastic hybrid systems:
A stochastic reach-avoid decision problem. Automatica 46(12), 1951–1961 (2010)

6. Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking
of stochastic hybrid systems. European Journal of Control 6, 624–641 (2010)

7. Abate, A., Katoen, J.P., Mereacre, A.: Quantitative automata model checking of
autonomous stochastic hybrid systems. In: ACM Proceedings of the 14th Interna-
tional Conference on Hybrid Systems: Computation and Control, Chicago, IL, pp.
83–92 (2011)

286 S. Esmaeil Zadeh Soudjani, C. Gevaerts, and A. Abate

8. Esmaeil Zadeh Soudjani, S., Abate, A.: Adaptive gridding for abstraction and
verification of stochastic hybrid systems. In: Proceedings of the 8th International
Conference on Quantitative Evaluation of Systems, pp. 59–69 (September 2011)

9. Tkachev, I., Mereacre, A., Katoen, J., Abate, A.: Quantitative automata-based
controller synthesis for non-autonomous stochastic hybrid systems. In: Proceedings
of the 16th international conference on Hybrid Systems: Computation and Control,
HSCC 2013, pp. 293–302 (2013)

10. Esmaeil Zadeh Soudjani, S., Abate, A.: Adaptive and sequential gridding proce-
dures for the abstraction and verification of stochastic processes. SIAM Journal on
Applied Dynamical Systems 12(2), 921–956 (2013)

11. Tkachev, I., Abate, A.: Formula-free Finite Abstractions for Linear Temporal Ver-
ification of Stochastic Hybrid Systems. In: Proceedings of the 16th International
Conference on Hybrid Systems: Computation and Control, Philadelphia, PA, pp.
283–292 (April 2013)

12. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

13. Katoen, J.P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In:
IEEE Proceedings of the International Conference on Quantitative Evaluation of
Systems, Los Alamos, CA, USA, pp. 243–244 (2005)

14. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

15. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004)

16. Malhamé, R., Chong, C.: Electric load model synthesis by diffusion approximation
of a high-order hybrid-state stochastic system. IEEE Transactions on Automatic
Control 30(9), 854–860 (1985)

17. Esmaeil Zadeh Soudjani, S., Abate, A.: Probabilistic invariance of mixed
deterministic-stochastic dynamical systems. In: ACM Proceedings of the 15th In-
ternational Conference on Hybrid Systems: Computation and Control, Beijing,
PRC, pp. 207–216 (April 2012)

18. Esmaeil Zadeh Soudjani, S., Abate, A.: Probabilistic reach-avoid computation for
partially-degenerate stochastic processes. IEEE Transactions on Automatic Con-
trol 59(2), 528–534 (2014)

19. Esmaeil Zadeh Soudjani, S., Abate, A.: Higher-Order Approximations for Verifica-
tion of Stochastic Hybrid Systems. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, vol. 7561, pp. 416–434. Springer, Heidelberg (2012)

20. Adzkiya, D., Esmaeil Zadeh Soudjani, S., Abate, A.: Finite Abstractions of Stochas-
tic Max-Plus-Linear Systems. In: Norman, G., Sanders, W. (eds.) QEST 2014.
LNCS, vol. 8657, pp. 74–89. Springer, Heidelberg (2014)

21. Esmaeil Zadeh Soudjani, S., Abate, A.: Precise Approximations of the Probabil-
ity Distribution of a Markov Process in Time: An Application to Probabilistic
Invariance. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 547–561. Springer, Heidelberg (2014)

SAT and SMT

Linearly Ordered Attribute Grammar Scheduling
Using SAT-Solving

Jeroen Bransen1, L. Thomas van Binsbergen2,1, Koen Claessen3,
and Atze Dijkstra1

1 Utrecht University, Utrecht, The Netherlands
{J.Bransen,atze}@uu.nl

2 Royal Holloway, University of London, Egham, UK
ltvanbinsbergen@acm.org

3 Chalmers University of Technology, Gothenburg, Sweden
koen@chalmers.se

Abstract. Many computations over trees can be specified using at-
tribute grammars. Compilers for attribute grammars need to find an
evaluation order (or schedule) in order to generate efficient code. For the
class of linearly ordered attribute grammars such a schedule can be found
statically, but this problem is known to be NP-hard.

In this paper, we show how to encode linearly ordered attribute gram-
mar scheduling as a SAT-problem. For such grammars it is necessary to
ensure that the dependency graph is cycle free, which we approach in a
novel way by transforming the dependency graph to a chordal graph al-
lowing the cycle freeness to be efficiently expressed and computed using
SAT solvers.

There are two main advantages to using a SAT-solver for scheduling:
(1) the scheduling algorithm runs faster than existing scheduling algo-
rithms on real-world examples, and (2) by adding extra constraints we
obtain fine-grained control over the resulting schedule, thereby enabling
new scheduling optimisations.

Keywords: Attribute Grammars, static analysis, SAT-solving.

1 Introduction

Attribute Grammars [Knuth, 1968] are a formalism for describing the semantics
of context-free languages, thereby making them suitable for the construction of
compilers. Examples of compilers written using attribute grammars are the Java
compiler JastAddJ [Ekman and Hedin, 2007], and the Haskell compiler UHC
[Dijkstra et al., 2009]. The use of attribute grammars in the UHC motivates this
paper and as such UHC is a real world test case for evaluating the effectiveness
of the given approach.

An attribute grammar essentially describes computations over trees, also
known as folds or catamorphisms. Although the attribute grammar defines ex-
actly what should be computed, it does not define when values should be com-
puted. It is therefore up to the attribute grammar compiler (the compiler that

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 289–303, 2015.
DOI: 10.1007/978-3-662-46681-0_24

290 J. Bransen et al.

translates the attribute grammar definition into a runtime evaluator) to find an
evaluation order. Such an evaluation order or schedule should satisfy the depen-
dencies induced by the specification of attribute computations in the attribute
grammar definition and must be found statically, which means that for the given
grammar an evaluation order should be found such that for every finite abstract
syntax tree of the grammar the evaluation order should compute all values in
a finite number of steps. Specifically, no cyclic data dependencies may occur at
runtime for any given parse tree.

The class of ordered attribute grammars [Kastens, 1980] is a well-known sub-
class of attribute grammars for which a polynomial time scheduling algorithm
exists. However, despite what the name suggests there exist attribute grammars
for which a static evaluation order can be found that do not belong to the class
of ordered attribute grammars. In our work on compiler construction we often
encountered such grammars, giving rise to the need of other scheduling algo-
rithms [Bransen et al., 2012, Van Binsbergen et al., 2015]. We therefore look at
the class of linearly ordered attribute grammars in this paper, which is the largest
class of attribute grammars for which a static evaluation order can be found. The
problem of statically finding such evaluation order is known to be NP-complete
[Engelfriet and Filè, 1982].

1.1 Summary

We solve the linearly ordered attribute grammar scheduling problem by translat-
ing it into the Boolean satisfiability problem (SAT), the standard NP-complete
problem [Cook, 1971]. Even though the worst case runtime of all known SAT-
solving algorithms is exponential in the input size, many SAT-solvers work very
well in practice [Claessen et al., 2009]. By translating into the SAT problem we
can therefore use an efficient existing SAT-solver to solve our problem, and even
benefit from future improvements in the SAT-community. In our implementation
we use MiniSat1 [Eén and Sörensson, 2004].

The core of the scheduling problem consists of finding a total order on the
nodes of a set of dependency graphs (directed acyclic graphs) such that all direct
dependencies, which are coming from the input grammar, are satisfied. However,
there is interplay between the different dependency graphs caused by the order
that is found in one dependency graph resulting in indirect dependencies that
need to be satisfied in another dependency graph. This interplay of dependencies,
which is explained later in detail, is what makes the problem hard.

To encode this problem in SAT we represent each edge in the dependency
graphs as a Boolean variable, with its value indicating the direction of the
edge. For the direct dependencies the value is already set, but for the rest of
the variables the SAT-solver may choose the direction of the edge. Ensuring
cycle-freeness requires us to encode transitivity with SAT-constraints, which in
the straight-forward solution leads to a number of extra constraints cubic in
the number of variables. To avoid that problem we make our graphs chordal
1 http://minisat.se

http://minisat.se

Linearly Ordered Attribute Grammar Scheduling Using SAT-Solving 291

[Dirac, 1961]. In a chordal graph every cycle of size > 3 contains an edge be-
tween two non-adjacent nodes in the cycle. In other words, if there exists a cycle
in the graph, there must also exist a cycle of at most three nodes. This allows
us to encode cycle freeness more efficiently by only disallowing cycles of length
three. Chordality has been used previously to encode equality logic in SAT us-
ing undirected graphs [Bryant and Velev, 2002]; to our knowledge this is the first
application of chordality to express cycle-freeness of directed graphs.

Apart from the fact that this translation into the SAT problem helps in effi-
ciently (in practice) solving the scheduling problem, there also is another benefit:
it is now possible to encode extra constraints on the resulting schedule. We show
two scheduling optimisations that are interesting from an attribute grammar
point of view, for which the optimal schedule can be found efficiently by ex-
pressing the optimisation in the SAT problem.

1.2 Overview

In this paper we make the following main contributions:

– We show how to encode the problem of scheduling linearly ordered attribute
grammars as a SAT problem

– We show that chordal graphs can be used to encode cycle-freeness in SAT
problems

– We show how certain attribute grammar optimisations can be encoded as
part of the formulation of the SAT problem

Furthermore, we have implemented the described techniques in the UUAGC2

[Swierstra et al., 1999] and show that the technique works well in practice for
the UHC.

The outline of the paper is as follows. We start in Section 2 and Section 3 by
explaining linearly ordered attribute grammars and the difficulties in scheduling
in more detail. We then describe the translation into the SAT problem in Sec-
tion 4 and show the effectiveness of our approach in Section 5. In Section 6 we
describe the two attribute grammar optimisations and finally in Section 7 we
discuss some problems and conclude.

2 Attribute Grammars

An attribute grammar consists of three parts: a context-free grammar, a set
of attribute definitions and a set of semantic functions. Instead of a context-
free grammar describing the concrete syntax of the language, we feel that it is
more intuitive to visualise the grammar as describing the abstract syntax tree
of the language. We therefore say that an attribute grammar consists of a set of
algebraic data types describing the abstract syntax, a set of attribute definitions
and a set of semantic functions. The attribute definitions and semantic functions
describe how values should be computed over the abstract syntax tree.
2 http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

292 J. Bransen et al.

In the rest of this paper we stick to the usual attribute grammar terminology,
so with a nonterminal we mean a type, and a production is a constructor of
that type. Furthermore, the name lhs (short for left-hand side) refers to the
constructor itself, while the children of a production have separate names. As
this paper is about scheduling and data dependencies, we do not explain the
syntax of the semantic functions here, but it is important to remark that these
functions define how the value of a certain attribute can be computed from other
attributes.

There are two types of attributes: inherited attributes with values that are
passed from a parent to its children, and synthesized attributes with values that
are passed from the children to their parents. In the pictures we draw inherited
attributes on the left side of a node, and the synthesized attributes on its right
side.

Bin

lhs:Tree
a1 a2 a3 a4

l:Tree
a1 a2 a3 a4

r:Tree
a1 a2 a3 a4

Leaf

lhs:Tree
a1 a2 a3 a4

Fig. 1. Example attribute grammar for binary trees with two inherited and two syn-
thesized attributes

In Figure 1 we show an example attribute grammar with one nonterminal
Tree which has two productions: Bin and Leaf. The Bin production has two
children named l and r, both of the type Tree, and Leaf has no children. The
Tree nonterminal has four attributes: two inherited attributes a1 and a2 and two
synthesized attributes a3 and a4.

The figure shows production dependency graphs, one for every production of
the grammar. A set of semantic function definitions are given by the programmer
for every production. The definitions specify how the synthesized attributes of a
nonterminal are calculated in each of the different productions of that nontermi-
nal. In semantic function definitions the inherited attributes of the nonterminal
can be used as well as the synthesized attributes of its children. The attributes
that are available to use, coloured gray in the picture, we call the input attributes.
Besides the semantic functions of the synthesized attributes of the parent node,
the semantic functions of the inherited attributes of the children need to be de-
fined. The attributes that require a definition, coloured white in the picture, we
call the output attributes. Note that with a semantic function definition for all
output attributes we know how to compute all attributes as every input attribute
is an output attribute of another node3.
3 Except for the inherited attributes of the root node. Its values need to be given as

an argument to the semantic evaluator.

Linearly Ordered Attribute Grammar Scheduling Using SAT-Solving 293

Although we talk about dependency graphs in the context of scheduling, we
actually draw the edges in the other direction. The edges in the picture rep-
resent data flow, which from an attribute grammar perspective is much more
intuitive. For example, in the Bin production the attribute a1 of the child r is
computed from a1 from the parent and a3 from the child l. The edges are thus
always directed from an input attribute to an output attribute, and the actual
dependency graph can be obtained by reversing all edges. The edges that follow
directly from the source code are the direct dependencies.

3 Linearly Ordered Attribute Grammars

Given an attribute grammar definition the attribute grammar compiler generates
a runtime evaluator that takes an abstract syntax tree as input and computes all
attribute values. There are two approaches for doing the scheduling: at runtime
(dynamic) or at compile time (static).

For dynamic scheduling one could rely on existing machinery for lazy evalu-
ation, for example in Haskell, which is the approach taken by [Saraiva, 1999].
There the attribute grammar definitions are translated into lazy Haskell func-
tions in a straightforward way by producing functions that take the inherited
attributes as argument and return the synthesized attributes. Whenever an in-
herited attribute (indirectly) depends on the value of a synthesized attribute,
this means the function has a cyclic definition, which is no problem for lan-
guages with lazy semantics, and can actually result in efficient code [Bird, 1984].

There are two problems with dynamic scheduling. First, whenever the at-
tribute grammar contains a true cyclic definition, the evaluator enters an infi-
nite loop at runtime. However, these cycles could have been detected at compile
time! Furthermore, the code needs lazy functions while with the static scheduling
strict evaluators can be generated, leading to more efficient code in practice.

For static scheduling efficient evaluators can be generated, but the problem
is that static scheduling is hard. In [Kastens, 1980] a polynomial time algorithm
is given for static scheduling of the class of ordered attribute grammars, but
unfortunately we often encounter attribute grammars outside of that class. All
our attribute grammars do however fall in the class of linearly ordered attribute
grammars, which is the largest class of attribute grammars for which a static
schedule can be found. Although the scheduling is NP-complete, we have imple-
mented a backtracking algorithm in earlier work [Van Binsbergen et al., 2015]
that is feasible in practice. However, in this paper we show that we can do bet-
ter by creating an algorithm that is faster and allows for different optimisations
on the resulting schedule.

Conceptually, static scheduling of linearly ordered attribute grammars is not
very complex. For each nonterminal a total order should be found on its at-
tributes, such that all production dependency graphs all cycle free. However,
because a nonterminal can have multiple productions and a production can have
children of different types, choices made on the order of attributes of one non-
terminal can influence the order of attributes in another nonterminal.

294 J. Bransen et al.

In order to encode this we also construct a nonterminal dependency graph.
This graph contains all attributes that are defined for the corresponding nonter-
minal and the edges in this graph must define a total order on the attributes.
Furthermore, the edges in the nonterminal dependency graph should agree with
the (indirect) dependencies from the production dependency graphs such that
no cycles exist.

The nonterminal dependency graphs and production dependency graphs are
consistent if 1) whenever there is a path from attribute a to b in a production
dependency graph then there needs to be an edge from a to b in the nonterminal
dependency graph in which a and b occur4 and 2) if there is an edge from a to
b in a nonterminal dependency graph then there needs to be an edge from a to
b for all occurrences of a and b in the production dependency graphs.

Bin

lhs:Tree
a1 a2 a3 a4

l:Tree
a1 a2 a3 a4

r:Tree
a1 a2 a3 a4

Fig. 2. Production dependency graph for Bin for the order a2 → a4 → a1 → a3

Figure 2 shows the production dependency graph of the production Bin with a
complete order on the attributes. In this case there is only a single nonterminal
so both the parent and the child nodes have the same attribute order, made
explicit by extra edges from the nonterminal dependency graph. Because this
dependency graph is still cycle free after adding the edges for the complete order
and the same holds for the Leaf production, the order a2 → a4 → a1 → a3 is a
valid schedule for the nonterminal Tree.

To find the total order we add edges to the nonterminal dependency graph
and rely on the SAT-solver to determine their direction. Instead of adding an
edge for all possible pairs of attributes it is sufficient to add an edge for all pairs
of inherited and synthesized attributes. The order described by an assignment
to these variables is not (always) total as there might be pairs of attributes,
which attributes are either both inherited or both synthesized, without a relative
ordering. This is not a problem as the evaluation order for such pairs can be
chosen arbitrarily.

4 There is no such nonterminal dependency graph if the two attributes belong to
different nodes.

Linearly Ordered Attribute Grammar Scheduling Using SAT-Solving 295

4 Translation into SAT

To represent the scheduling problem as a Boolean formula we introduce a variable
for each edge, indicating the direction of the edge. The direct dependencies
coming from the source code are constants, but for the rest of the edges the
SAT-solver can decide on the direction. However, the encoding has been chosen
in such way that a valid assignment of the variables corresponds to a valid
schedule.

Our algorithm has the following steps:

1. Construct a nonterminal dependency graph for each nonterminal and add
an edge between all pairs of inherited and synthesized attributes

2. Construct a production dependency graph for each production and add an
edge for every direct dependency

3. Make all graphs chordal
4. Introduce a SAT variable for each edge in any of the graphs including the

chords added in step 3. Variables of edges between attributes of the same
nonterminal must be shared between nonterminal dependency graphs and
production dependency graphs

5. Set the value of all variables corresponding to direct dependencies
6. Exclude all cycles of length three by adding constraints
7. Optionally add extra constraints for optimisations

The first two steps have been explained in the previous sections. Step 3 is ex-
plained below, step 4 is trivial, and step 5 and 6 follow from the explanation
below. Finally step 7 is explained in Section 6.

4.1 Chordal Graphs

A chordal graph is an undirected graph in which each cycle of length > 3 contains
a chord. A chord is an edge between two nodes in the cycle that are not adjacent.
As a consequence each cycle of length > 3 can be split up into two smaller cycles,
so if a chordal graph contains a cycle it must also contain a cycle of size three.
Chordal graphs are therefore sometimes also referred to as triangulated graphs.

n

s

w e

↗

↖ ↙

↘

�

Fig. 3. There can not exists a cycle w-n-e-s without either a cycle n-s-w or n-e-s

296 J. Bransen et al.

In our case the graphs are directed, but we can still apply the same trick! In
Figure 3 we illustrate how to use chordal graphs to exclude cycles. If there exists
a cycle of length four, then it is not possible to choose a direction for the edge
between n and s without introducing a cycle of length three. Hence, if we make
our graph chordal by adding edges which may have an arbitrary direction and
explicitly exclude all cycles of length three, we ensure that no cycles can exist
at all.

4.2 Chordal Graph Construction

There are several algorithms for making a graph chordal. We use an algorithm
based on the following alternative definition of a chordal graph:

Definition 1. An undirected graph G is chordal if and only if it has a perfect
elimination order. A perfect elimination order is an ordering v1, . . . , vn of the
vertices of G such that in the graph G[v1, . . . , vi], ∀(i) (1 ≤ i ≤ n), the vertex vi
is simplicial. A vertex v is called simplicial in a graph G if the neighbourhood
of v forms a connected component in G. The neighbourhood of v are all vertices
w such that there exists an edge between v and w. The graph G[v1, . . . , vi] is
the induced subgraph of G containing only the vertices vi, . . . , vi and the edges
between these vertices.

From this definition we can construct the following algorithm for making a
graph chordal:

1. While the graph still contains vertices:
(a) Select a vertex v from the graph
(b) For every pair (a, b) of unconnected vertices in the neighbourhood of v:

i. Add the edge (a ↔ b) to the graph
(c) Remove v, and all edges connected to v, from the graph.

One important open question in this algorithm is the order in which the
vertices should be chosen. In Section 5.1 we show the results for several heuristics
that we have implemented and tried on the UHC. We would like to remark that
regardless of the heuristic used, this approach always leads to much smaller SAT
problems than encoding transitivity in the SAT problem for ruling out cycles.

4.3 Finding the Schedule

When the constructed Boolean formula is given to the SAT-solver, the result
is either that the formula is not satisfiable, meaning that no schedule can been
found, or satisfiable, meaning that there is a schedule. It is not hard to see that
the formula is satisfiable if and only if there exists a valid schedule for the given
attribute grammar definition, and in this paper we give no formal proof of this
claim.

In the case where the formula is satisfiable, we obviously want to find the
result. From the SAT solver we can ask for the truth value of each variable in

Linearly Ordered Attribute Grammar Scheduling Using SAT-Solving 297

the solution, so when our algorithm keeps the connection between edges and
variables we can complete our directed graph and trivially find the complete
order for all attributes from that. The constraints guarantee that this graph
contains no cycles.

4.4 Shared Edges

One important implementation detail is that of shared edges. As explained, the
nonterminal dependency graphs and the production dependency graphs share the
edges that define the order of the attributes. Because each edge is represented
by a variable in the SAT problem we can simply encode this by assigning the
same variable to the shared edges.

However, as we also make both graphs chordal, the edges added to make the
graphs chordal can also be shared. This is exactly what our implementation does,
such that the SAT problem is kept as small as possible. The implementation is
therefore slightly more complicated than explained in the previous sections.

5 Empirical Results

We use the Utrecht Haskell Compiler (UHC) [Dijkstra et al., 2009] as the main
test case for our work. The source code of the UHC consists of several attribute
grammar definitions together with Haskell code. The biggest attribute gram-
mar in the UHC, called MainAG, consists of 30 nonterminals, 134 productions,
1332 attributes (44.4 per nonterminal) and 9766 dependencies and is the biggest
attribute grammar we know of.

We have compiled several attribute grammars using the Utrecht University
Attribute Grammar Compiler (UUAGC) [Swierstra et al., 1999], in which we
have implemented our approach. Apart from our SAT approach there are three
other scheduling algorithms that have been implemented to which we can com-
pare our approach:

– Kastens : the algorithm from [Kastens, 1980] which only works for ordered
attribute grammars, of which most examples are not a member.

– Kennedy-Warren: The algorithm from [Kennedy and Warren, 1976] that we
have implemented in the UUAGC before [Bransen et al., 2012] is an al-
gorithm that schedules all absolutely noncircular attribute grammars, an
even larger class than the linearly ordered attribute grammars. However,
the scheduling is not completely static so the generated evaluator also does
part of the scheduling at runtime.

– LOAG-backtrack : we have also implemented a backtracking algorithm for
linearly ordered attribute grammars [Van Binsbergen et al., 2015], based on
Kastens’ algorithm. This algorithm solves exactly the same scheduling prob-
lem as the SAT approach described in this paper and uses exponential time
in worst case. In case of the MainAG no backtracking is required to find a
schedule.

298 J. Bransen et al.

Table 1. Comparison of the four scheduling algorithms

Algorithm Kastens’ Kennedy-Warren LOAG-backtrack LOAG-SAT
UHC MainAG - 33s 13s 9s
Asil Test - 1.8s 4.4s 3.4s
Asil ByteCode - 0.6s 29.4s 2.8s
Asil PrettyTree - 390ms 536ms 585ms
Asil InsertLabels - 314ms 440ms 452ms
UUAGC CodeGeneration - 348ms 580ms 382ms
Pigeonhole principle - 107ms 1970ms 191ms
Helium TS_Analyse 190ms 226ms 235ms 278ms

In Table 1 we show the compilation times for the examples for the four differ-
ent algorithms. All times include parsing of the attribute grammar description,
code generation and adding chords, which is what takes most time in the SAT
approach. The SAT-solver takes less than a second to find a solution in all cases.

The other test cases we have used for testing are the UUAGC itself, Asil
[Middelkoop et al., 2012] which is a byte code instrumenter, the Helium compiler
[Heeren et al., 2003] which is a Haskell compiler specifically intended for students
learning Haskell, and an encoding of the Pigeonhole principle. We removed one
clause in such way there exists exactly one valid schedule, resulting in an artificial
attribute grammar that is hard to schedule.

5.1 Chordal Graph Heuristics

As explained in Section 4.2 we need to find an order in which to handle the
vertices such that the resulting SAT problem is as small as possible. In Table 2
we show the results of different heuristics for the MainAG of the UHC. In this
table we use three different sets: D is the set of direct dependencies (step 2,
Section 4), C is the set of edges that are added to make the graph chordal (step
3, Section 4) and S is the set of edge between all inherited and synthesized
pairs (step 1, Section 4). For each of the sets we take only the edges in the
neighbourhood of v for comparison.

6 Optimisations

We have shown that expressing the scheduling problem as a SAT problem and
using an existing SAT-solver can improve the running time of the scheduling,
but that is not the only advantage. In the SAT problem one can easily add
extra constraints to further influence the resulting schedule. In Section 6.2 and
Section 6.3 we show two of such optimisations that are useful from an attribute
grammar perspective. These optimisations have not been implemented in the
release version of the UUAGC, but we have run preliminary experiments to
verify that they work as expected.

Linearly Ordered Attribute Grammar Scheduling Using SAT-Solving 299

Table 2. Table showing the number of clauses and variables required for solving the
MainAG of the UHC, selecting the next vertex in the elimination order based on
different ways to compare neighbourhoods

Order #Clauses #Vars Ratio
(| D |, | S |, | C |) 21,307,812 374,792 57.85
(| D |, | C |, | S |) 8,301,557 220,690 37.62
(| S |, | D |, | C |) 12,477,519 287,151 43.45
(| S |, | C |, | D |) 8,910,379 241,853 36.84
(| C |, | D |, | S |) 3,004,705 137,277 21.89
(| C |, | S |, | D |) 3,359,910 156,795 21.43
(| D | + | S |, | C |) 12,424,635 386,323 32.16
(| D |, | S | + | C |) 8,244,600 219,869 37.50
(| D | + | C |, | S |) 2,930,922 135,654 21.61
(| S |, | D | + | C |) 8,574,307 236,348 36.28
(| S | + | C |, | D |) 3,480,866 157,089 22.16
(| C |, | D | + | S |) 3,392,930 157,568 21.53
(| C | + | D | + | S |) 3,424,001 148,724 23.02

(3∗ | S | ∗(| D | + | C |) + (| D | ∗ | C |)2) 2,679,772 127,768 20.97

6.1 Interacting with the Solver

Instead of directly expressing all constraints in the initial SAT problem, we use
a different trick for implementing the two optimisations: interacting with the
solver. After the initial scheduling problem has been solved, we can ask for the
truth value of all variables to construct the schedule. MiniSat also keeps some
state in memory that allows us to add extra constraints to the problem, and ask
for a new solution. In this way we can start with an initial solution and interact
with the solver until some optimum has been reached.

6.2 Minimising Visits

The result of the static scheduling is a runtime evaluator that computes the
values of the attributes for a given abstract syntax tree. The total order for
each nonterminal defines in what order attributes should be computed, but in
the implementation of the evaluator we make use of a slightly bigger unit of
computation: a visit.

A visit is an evaluation step in the runtime evaluator that takes the values of
a (possibly empty) set of inherited attributes and produces a (non-empty) set
of synthesized attributes. In order to compute these values, visits to the child
nodes may happen, and at the top of the tree the wrapping code invokes all
visits of the top node one by one.

Because invoking a visit at runtime may have a certain overhead, we would
like the number of visits to be as small as possible. In other words, in the total
order on the attributes we would like to minimise the number of places where a

300 J. Bransen et al.

synthesized attribute is followed by an inherited attribute, because that is the
location where a new visit needs to be performed.

It is theoretically impossible to minimise the total number of visits performed
for the full abstract syntax tree, because at compile-time we do not have a
concrete abstract syntax tree at hand and only know about the grammar. We
therefore try to minimise the maximum number of visits for any nonterminal,
which is the number of alternating pairs of inherited and synthesized attributes
in the total order.

In our algorithm, we use efficient counting constraints, expressed in the SAT
solver using sorting networks [Swierstra et al., 1999]. This enables us to count
the number of true literals in a given set of literals, and express constraints
about this number. A standard procedure for finding a solution for which the
minimal number of literals in such a set is true can be implemented on top of a
SAT-solver using a simple loop.

We use the following algorithm for minimising the maximal number of visits:

1. Construct the initial SAT problem and solve
2. Construct the set of all production rules P
3. Construct counting networks that count the number of visits V (p) for all

production rules p in P
4. Count the number of visits for each production rule in the current solution;

let M be the maximum value
5. Repeat while M > 0:

(a) Add constraints that express that for all productions p in P : V (p) ≤ M
(b) Construct a counting network that counts how many production rules p

have V (p) = M
(c) Compute a solution for which this number is minimised using the loop

described above
(d) Remove all p in P for which now V (p) = M from the set P
(e) Compute the new maximum value M of V (p) for all p left in P

The above algorithm features a complicated combination of counting net-
works; one network for each production rule, and one network for each corre-
sponding output of these networks. Still, the procedure finds optimal solutions
very quickly in practice, in times that are negligible and not practically measur-
able compared to the time of generating the initial SAT-problem. The number
of iterations for the minimisation loops has never been more than 5 in any of
our problems.

The algorithm is guaranteed to find the global optimum. For our largest ex-
ample, the solution found had a total of 130 visits, which was 29 visits less in
total than the previously known optimum, found using backtracking heuristics.

One could criticise the usefulness of this particular optimisation for attribute
grammars. Indeed, details in how one should optimise the number of visits de-
pend very much on the kind of trees we are going to run the compiled code on.
Our point is that we can easily express variants of optimisations. For example,
we can also minimise the sum of all visits using a similar (but simpler) procedure
to the one above. Again, the running time of that procedure is very short.

Linearly Ordered Attribute Grammar Scheduling Using SAT-Solving 301

6.3 Eager Attributes

Another optimisation is the ability to define eager attributes. Eager attributes are
attributes that should be computed as soon as possible, and must be annotated
by the attribute grammar programmer as such. We would like our scheduling
algorithm then to schedule them as early as possible in the total order.

As an example, in a typical compiler there is an attribute containing the
errors that occur in compilation. When running the compiler one is typically
first interested in knowing if there are any errors; if so they must be printed to
the screen and the compiler can stop its compilation. If there are no errors, then
all other work that is not strictly necessary for the generation of errors can be
done to complete the compilation.

In order to schedule a given attribute as early as possible, we are going to
partition all attributes contained in the grammar into two sets E (for early) and
L (for late). The idea is that E contains all attributes that may be needed to
be computed before the eager attribute (i.e. there exist production rules which
require this), and L contains all attributes that we can definitely compute after
knowing the eager attribute (i.e. no production rule requires any attribute in L
for computing the eager attribute). We want to find a schedule for which the
size of E is minimal.

To compute this, we introduce a SAT variable E(a) for every attribute a, that
expresses whether or not a is in E or not. We set E(a) to be true for the initial
eager attribute a. We go over the graphs for the nonterminals and production
rules, and generates constraints that express that whenever a points to b and we
have E(b), then we also need E(a).

Finally, we use a counting network for all literals E(a), and ask for a solution
that minimises the number of literals in E.

We have run this algorithm on every output attribute of the top-level non-
terminal of all our examples. For our largest grammar, the hardest output to
compute took 1 second. So, while a harder optimisation than the previous one,
it is very doable in practice.

One can imagine other variants of this optimisation, where we have a set of
eager attributes, or a combination of eager and late attributes. At the time of
the writing of this paper, we have not experimented with such variants yet.

7 Discussion and Conclusion

We have explained the difficulties in attribute grammar scheduling and shown
how to solve this problem using a SAT-solver. The given approach has been
implemented and tested on a full-scale compiler built using attribute grammars.
Results show that the algorithm works faster than other approaches.

In the translation into the SAT-problem we have used a novel technique for
ruling out cycles in the SAT problem using chordal graphs. Existing work on
chordality for expressing equality logic [Bryant and Velev, 2002] was the inspi-
ration for this technique. Using chordal graphs makes the problems much smaller

302 J. Bransen et al.

than directly ruling out cycles, while encoding the same restrictions. We believe
that this technique is applicable in other problems using SAT-solvers as well.

Furthermore, we have shown that expressing the problem as a SAT problem
has the advantage that extra constraints can be added. We illustrated this with
two possible properties of the resulting schedule that an attribute grammar pro-
grammer may want to influence. Even though this makes the scheduling problem
potentially harder, as the algorithm is left fewer choices, the solution is found
very fast in all practical cases we have tried.

Another benefit of this approach that the attribute grammar scheduling can
benefit from breakthroughs in the SAT community. The more efficient SAT
solvers become, the better the attribute grammar scheduling becomes leading to
larger and larger attribute grammars that are feasible to schedule.

One problem with the current approach in contrast to most other scheduling
algorithms is the unpredictability. SAT-solvers use certain heuristics to quickly
find solutions in many applications, but it can theoretically happen that for a
certain attribute grammar the SAT problem that is generated is not suitable
for these heuristics. A seemingly innocent change in the attribute grammar def-
inition could therefore theoretically lead to a large increase in compile time.
However, we have not encountered this problem and we believe that this situa-
tion is unlikely to happen because of the maturity of the SAT-solvers.

All in all, we believe that this approach fully solves the basic scheduling prob-
lem in an elegant way. There are ample possibilities for improving the resulting
schedules based on attribute grammar knowledge like the two discussed in Sec-
tion 6, so we have also made room for future improvements in the scheduling
and compilation of attribute grammars.

References

[van Binsbergen et al., 2015] van Binsbergen, L.T., Bransen, J., Dijkstra, A.: Linearly
ordered attribute grammars: With automatic augmenting dependency selection.
In: Proceedings of the 2015 Workshop on Partial Evaluation and Program Manip-
ulation, PEPM 2015, pp. 49–60. ACM, New York (2015)

[Bird, 1984] Bird, R.S.: Using circular programs to eliminate multiple traversals of
data. Acta Informatica 21, 239–250 (1984)

[Bransen et al., 2012] Bransen, J., Middelkoop, A., Dijkstra, A., Swierstra, S.D.: The
Kennedy-Warren algorithm revisited: Ordering attribute grammars. In: Russo, C.,
Zhou, N.-F. (eds.) PADL 2012. LNCS, vol. 7149, pp. 183–197. Springer, Heidelberg
(2012)

[Bryant and Velev, 2002] Bryant, R.E., Velev, M.N.: Boolean satisfiability with tran-
sitivity constraints. ACM Trans. Comput. Logic 3(4), 604–627 (2002)

[Claessen et al., 2009] Claessen, K., Een, N., Sheeran, M., Sörensson, N., Voronov,
A., Åkesson, K.: Sat-solving in practice. Discrete Event Dynamic Systems 19(4),
495–524 (2009)

[Swierstra et al., 1999] Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 154–172.
Springer, Heidelberg (2010)

Linearly Ordered Attribute Grammar Scheduling Using SAT-Solving 303

[Cook, 1971] Cook, S.A.: The complexity of theorem-proving procedures. In: Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971,
pp. 151–158. ACM, New York (1971)

[Dijkstra et al., 2009] Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of the
Utrecht Haskell Compiler. In: Proceedings of the 2nd ACM SIGPLAN Symposium
on Haskell, Haskell 2009, pp. 93–104. ACM, New York (2009)

[Dirac, 1961] Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25,
71–76 (1961)

[Eén and Sörensson, 2004] Eén, N., Sörensson, N.: An extensible SAT-solver. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518.
Springer, Heidelberg (2004)

[Ekman and Hedin, 2007] Ekman, T., Hedin, G.: The JastAdd extensible Java com-
piler. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems and Applications, OOPSLA 2007, pp. 1–18. ACM,
New York (2007)

[Engelfriet and Filè, 1982] Engelfriet, J., Filè, G.: Simple multi-visit attribute gram-
mars. Journal of Computer and System Sciences 24(3), 283–314 (1982)

[Heeren et al., 2003] Heeren, B., Leijen, D., van IJzendoorn, A.: Helium, for learning
haskell. In: Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell, Haskell
2003, pp. 62–71. ACM, New York (2003)

[Kastens, 1980] Kastens, U.: Ordered attributed grammars. Acta Informatica 13(3),
229–256 (1980)

[Kennedy and Warren, 1976] Kennedy, K., Warren, S.K.: Automatic generation of effi-
cient evaluators for attribute grammars. In: Proceedings of the 3rd ACM SIGACT-
SIGPLAN Symposium on Principles on Programming Languages, POPL 1976, pp.
32–49. ACM, New York (1976)

[Knuth, 1968] Knuth, D.E.: Semantics of context-free languages. Mathematical Sys-
tems Theory 2(2), 127–145 (1968)

[Middelkoop et al., 2012] Middelkoop, A., Elyasov, A.B., Prasetya, W.: Functional in-
strumentation of actionscript programs with asil. In: Gill, A., Hage, J. (eds.) IFL
2011. LNCS, vol. 7257, pp. 1–16. Springer, Heidelberg (2012)

[Saraiva, 1999] Saraiva, J.: Purely Functional Implementation of Attribute Grammars:
Zuiver Functionele Implementatie Van Attributengrammatica’s. IPA dissertation
series. IPA (1999)

[Swierstra et al., 1999] Swierstra, S.D., Alcocer, P.R.A.: Designing and implementing
combinator languages. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS,
vol. 1608, pp. 150–206. Springer, Heidelberg (1999)

On Parallel Scalable Uniform SAT Witness

Generation�,��

Supratik Chakraborty1, Daniel J. Fremont2, Kuldeep S. Meel3,
Sanjit A. Seshia2, and Moshe Y. Vardi3

1 Indian Institute of Technology, Bombay
2 University of California, Berkeley

3 Department of Computer Science, Rice University

Abstract. Constrained-random verification (CRV) is widely used in in-
dustry for validating hardware designs. The effectiveness of CRV depends
on the uniformity of test stimuli generated from a given set of constraints.
Most existing techniques sacrifice either uniformity or scalability when
generating stimuli. While recent work based on random hash functions
has shown that it is possible to generate almost uniform stimuli from
constraints with 100,000+ variables, the performance still falls short of
today’s industrial requirements. In this paper, we focus on pushing the
performance frontier of uniform stimulus generation further. We present
a random hashing-based, easily parallelizable algorithm, UniGen2, for
sampling solutions of propositional constraints. UniGen2 provides strong
and relevant theoretical guarantees in the context of CRV, while also of-
fering significantly improved performance compared to existing almost-
uniform generators. Experiments on a diverse set of benchmarks show
that UniGen2 achieves an average speedup of about 20× over a state-of-
the-art sampling algorithm, even when running on a single core. More-
over, experiments with multiple cores show that UniGen2 achieves a
near-linear speedup in the number of cores, thereby boosting perfor-
mance even further.

1 Introduction

Functional verification is concerned with the verification and validation of a
Design Under Verification (DUV) with respect to design specifications. With

� The full version is available at http://www.cs.rice.edu/CS/Verification/

Projects/UniGen/
�� The authors would like to thank Suguman Bansal and Karthik Murthy for

valuable comments on the earlier drafts, Armando Solar-Lezama for bench-
marks, and Mate Soos for tweaking CMS to support UniGen2. This work
was supported in part by NSF grants CNS 1049862, CCF-1139011, CCF-
1139138, by NSF Expeditions in Computing project ”ExCAPE: Expeditions
in Computer Augmented Program Engineering”, by BSF grant 9800096, by
a gift from Intel, by a grant from Board of Research in Nuclear Sciences,
India, by the Shared University Grid at Rice funded by NSF under Grant
EIA-0216467 and a partnership between Rice University, Sun Microsystems,
and Sigma Solutions, Inc., and by TerraSwarm, one of six centers of STARnet, a
Semiconductor Research Corporation program sponsored by MARCO and DARPA.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 304–319, 2015.
DOI: 10.1007/978-3-662-46681-0_25

http://www.cs.rice.edu/CS/Verification/Projects/UniGen/
http://www.cs.rice.edu/CS/Verification/Projects/UniGen/

On Parallel Scalable Uniform SAT Witness Generation 305

the increasing complexity of DUVs, functional verification has become one of the
most challenging and time-consuming steps in design validation [3]. In view of the
high computational cost of formal verification, simulation-based techniques have
been extensively employed in industrial practice. The success of such techniques
depends on the quality of input stimuli with which the design is simulated. The
generation of high-quality stimuli that uncover hidden bugs continues to be a
challenging problem even today [21].

The problem of high-quality stimulus generation has led to the emergence of
constrained-random simulation, also known as constrained-random verification
(CRV) [22]. In CRV, a verification engineer is tasked with the construction of
verification scenarios, expressed as constraints over stimuli. Typically, construct-
ing these scenarios involves applying past user experience, inputs from design
engineers, and domain-specific knowledge. A constraint solver is then invoked
to generate random stimuli satisfying the constraints. Since the distribution of
errors in the design is not known a priori, each random stimulus is just as likely
to produce an error as any other. Therefore, achieving a uniformly random dis-
tribution over stimuli satisfying the constraints is highly desirable.

While constraint-solving technologies have witnessed significant advancements
over the last decade, methods of generating uniformly distributed solutions still
face huge scalability hurdles. This has been observed repeatedly in the litera-
ture [6] and by industry practitioners1. In this paper, we take a step towards
remedying the current situation by proposing an easily parallelizable sampling
algorithm for Boolean constraints that provides strong theoretical guarantees
(similar to those provided by an almost-uniform generator) in the context of
CRV, and also runs significantly faster than current state-of-the-art techniques
on a diverse set of benchmark problems.

Since constraints arising in CRV can often be encoded as propositional formu-
lae in conjunctive normal form (CNF), we focus on almost-uniform sampling of
satisfying assignments of CNF formulae (known as SAT witnesses). This problem
has been extensively studied in both theoretical and practical contexts, and has
many applications, including probabilistic reasoning, approximate model count-
ing, and Markov logic networks [4]. Until recently, approaches to solving this
problem belonged to one of two classes: those which provide strong guarantees
of uniformity but scale poorly [2,24], and those which scale to large problem
instances but rely on heuristics and hence offer very weak or no uniformity guar-
antees [11,16,14].

Recently, Chakraborty, Meel, and Vardi [4] proposed a new algorithmic ap-
proach to bridge the gap between these two extremes. The main idea behind
their approach is to use universal hashing in order to partition the space of
witnesses into roughly equal “cells”. Under an appropriate partitioning scheme,
choosing a random witness from a randomly chosen cell provides strong unifor-
mity guarantees. The most recent instance of this approach is called UniGen [6].
While UniGen scales to formulae much larger than those that can be handled

1 Private Communication: R. Kurshan.

306 S. Chakraborty et al.

by previous state-of-the-art techniques, the runtime performance of UniGen still
falls short of industry requirements.

Since the end of Dennard scaling, there has been a strong revival of interest in
parallelizing a wide variety of algorithms to achieve improved performance [10].
One of the main goals in parallel-algorithm design is to achieve a speedup nearly
linear in the number of processors, which requires the avoidance of dependencies
among different parts of the algorithm [8]. Most of the sampling algorithms
used for uniform witness generation fail to meet this criterion, and are hence
not easily parallelizable. In contrast, the algorithm proposed in this paper is
inherently parallelizable, and achieves a near-linear speedup.

Our primary contribution is a new algorithm, UniGen2, that addresses key
performance deficiencies of UniGen. Significantly, UniGen2 generates many more
samples (witnesses) per iteration compared to UniGen, thereby reducing the
number of SAT calls required per sample to a constant. While this weakens
the guarantee of independence among samples, we show that this does not hurt
the primary objective of CRV. Specifically, we prove that UniGen2 provides al-
most as strong guarantees as UniGen with respect to discovery of bugs in a CRV
setting. On the practical front, we present an implementation of UniGen2, and
show by means of extensive experiments that it significantly outperforms exist-
ing state-of-the-art algorithms, while generating sample distributions that are
indistinguishable from those generated by an ideal uniform sampler. UniGen2 is
also inherently parallelizable, and we have implemented a parallel version of it.
Our experiments show that parallel UniGen2 achieves a near-linear speedup with
the number of cores.

2 Notation and Preliminaries

Let F denote a Boolean formula in conjunctive normal form (CNF), and let X be
the set of variables appearing in F . The set X is called the support of F . Given
a set of variables S ⊆ X and an assignment σ of truth values to the variables
in X , we write σ↓S for the projection of σ onto S. A satisfying assignment or
witness of F is an assignment that makes F evaluate to true. We denote the set
of all witnesses of F by RF and the projection of RF on S by RF↓S . For the
rest of the paper, we use S to denote the sampling set, the set of variables on
which we desire assignments to be projected. Even when no projection is desired
explicitly, S can often be restricted to a small subset of X , called an independent
support (see [6] for details) such that |RF | = |RF↓S |. For notational simplicity,
we omit mentioning F and S when they are clear from the context.

We use Pr [X] to denote the probability of event X . We say that a set
of events {X1, X2, . . . , Xn} are (l, u) almost-independent almost-identically dis-
tributed (henceforth, called (l, u)-a.a.d.) if ∀i ∈ {1, . . . n}, l ≤ Pr[Xi] ≤ u and
l ≤ Pr[Xi|({X1, . . . , Xn} \Xi)] ≤ u. Note that this notion is similar to that of
independently identically distributed (i.i.d.) events, but somewhat weaker.

Given a Boolean formula F and sampling set S, a probabilistic generator of
witnesses of F is a probabilistic algorithm that generates a random element of

On Parallel Scalable Uniform SAT Witness Generation 307

RF↓S . A uniform generator Gu(·, ·) is a probabilistic generator that guarantees
Pr [Gu(F, S) = y] = 1/|RF↓S|, for every y ∈ RF↓S . An almost-uniform generator
Gau(·, ·, ·) relaxes the above guarantees, ensuring only that 1/((1 + ε)|RF↓S |) ≤
Pr [Gau(F, S, ε) = y] ≤ (1 + ε)/|RF↓S | for every y ∈ RF↓S and tolerance ε (> 0).
Probabilistic generators are allowed to occasionally “fail” by returning no witness
although RF↓S �= ∅. The failure probability must be bounded by a constant
strictly less than 1.

A special class of hash functions, called r-wise independent hash functions,
play a crucial role in our work. Let n,m and r be positive integers, and let
H(n,m, r) denote a family of r-wise independent hash functions mapping {0, 1}n

to {0, 1}m. We use h
R←− H(n,m, r) to denote the probability space obtained by

choosing a hash function h uniformly at random from H(n,m, r). The property
of r-wise independence guarantees that for all α1, . . . αr ∈ {0, 1}m and for all

distinct y1, . . . yr ∈ {0, 1}n, Pr [
∧r

i=1 h(yi) = αi : h
R←− H(n,m, r)

]
= 2−mr. For

every α ∈ {0, 1}m and h ∈ H(n,m, r), let h−1(α) denote the set {y ∈ {0, 1}n |
h(y) = α}. Given RF↓S ⊆ {0, 1}|S| and h ∈ H(|S|,m, r), we use RF↓S,h,α to
denote the set RF↓S ∩ h−1(α). If we keep h fixed and let α range over {0, 1}m,
the corresponding sets RF↓S,h,α form a partition of RF↓S .

We use a particular class of hash functions from {0, 1}m to {0, 1}n, denoted by
Hxor(n,m), which is defined as follows. Let h : {0, 1}m → {0, 1}n be a hash func-
tion, y be a vector in {0, 1}m and h(y)[i] be the ith component of the vector h(y).
The family Hxor(n,m) is defined as {h | h(y)[i] = ai,0 ⊕ (

⊕n
k=1 ai,k · y[k]), ai,j ∈

{0, 1}, 1 ≤ i ≤ m, 0 ≤ j ≤ n}, where ⊕ denotes XOR. By choosing values of ai,j
randomly and independently, we can choose a random function from Hxor(n,m).
It was shown in [12] that the family Hxor(n,m) is 3-wise independent.

3 Related Work

Uniform generation of SAT witnesses was studied by Jerrum, Valiant, and Vazi-
rani [15], who showed that the problem can be solved in probabilistic polynomial
time, given access to a ΣP

2 oracle. In addition, they showed that almost-uniform
generation is polynomially inter-reducible with approximate model counting.
Bellare, Goldreich, and Petrank [2] improved this result and provided an algo-
rithm in BPPNP. Unfortunately, their algorithm fails to scale beyond few tens of
variables in practice [4]. A completely different approach to uniform generation
of SAT witnesses is due to Yuan et al. [24], wherein a sample is generated by
performing a random walk over a weighted binary decision diagram (WBDD).
The high space requirement of this technique limits its applicability in practice.

In several settings (some industrial), generation of stimuli for CRV is typically
done via heuristic methods that provide very weak or no guarantees of unifor-
mity. One of the earliest such approaches was to randomly seed a SAT solver [19].
While this is simple in principle, the distributions generated by random seeding
have been shown to be highly skewed in practice [17]. An alternative approach
focusing on the generation of “diverse” solutions was proposed by Nadel [20],
but it also fails to provide theoretical guarantees of coverage.

308 S. Chakraborty et al.

Markov Chain Monte Carlo (MCMC) algorithms, such as those based on sim-
ulated annealing or the Metropolis-Hastings algorithm, have been studied ex-
tensively in the literature [18] in the context of generating samples from a prob-
ability space. The eventual convergence to the target distribution for MCMC
methods is often impractically slow in practice under mild requirements. Most
MCMC-based sampling tools therefore use heuristic adaptations [17,16] to im-
prove performance and reduce correlation between samples. Unfortunately, these
heuristics significantly weaken or even destroy the theoretical guarantees.

Interval propagation [14] has been used extensively in industrial practice to
achieve scalable stimulus generation. Techniques based on interval propagation,
however, generate highly non-uniform distributions. Recent efforts via the con-
version of constraints into belief networks [11,7] have also failed to achieve the
desired balance between performance and guarantees of uniformity.

Recently, several random hashing-based techniques have been proposed to
bridge the wide gap between scalable algorithms and those that give strong guar-
antees of uniformity when sampling witnesses of propositional constraints [4,6,9].
Hashing-based sampling techniques were originally pioneered by Sipser [23] and
further used by Jerrum et al [15], and Bellare et al [2]. The key idea in hashing-
based techniques is to first partition the space of satisfying assignments into
small “cells” of roughly equal size using r-wise independent hash functions (for
a suitable value of r), and then randomly choose a solution from a randomly
picked cell. Bellare et al. showed that by choosing r = n (where the propositional
constraint has n variables), we can guarantee uniform generation. The resulting
algorithm, however, does not scale in practice. Chakraborty, Meel, and Vardi [4]
subsequently showed that with r = 3, a significantly more scalable near-uniform
generator named UniWit can be designed. Building on the principle underlying
UniWit, Ermon et al. [9] suggested further algorithmic improvements to uniform
generation of witnesses.

Recently, Chakraborty et al. proposed a new algorithm named UniGen [5],
which improves upon the ideas of UniWit. In particular, UniGen provides stronger
guarantees of uniformity by exploiting a deep connection between approximate
counting and almost-uniform sampling [15]. Furthermore,UniGen has been shown
to scale to formulae with hundreds of thousands of variables. Even so, UniGen is
typically 2-3 orders of magnitude slower than a single call to a SAT solver and
therefore, its runtime performance falls short of the performance of heuristic
methods commonly employed in industry to generate stimuli for CRV 2. In this
paper, we offer several improvements to UniGen and obtain an algorithm with
substantially improved performance that can be further scaled by parallelization
to match the requirements of industry.

2 A random-constrained test case generator is typically allowed to be 10× slower than
a constraint solver (private communication with industry expert W. Hung).

On Parallel Scalable Uniform SAT Witness Generation 309

4 A Parallel SAT Sampler

In this section, we first motivate the need for sampling solutions of constraints
in parallel, and then provide technical details of our algorithm, named UniGen2.

Parallelization. While simulation-based verification typically involves running
in parallel many simulations with different input stimuli, the generation of these
stimuli is often done sequentially. This is because existing approaches to stimu-
lus generation are not efficiently parallelizable without degrading guarantees of
uniformity. For example, approaches based on random seeding of a SAT solver
maintain information about which regions of the solution space have already
been explored, since choosing random seeds is often not good enough to steer
the solver towards new regions of the solution space [17]. Different threads gener-
ating solutions must therefore communicate with each other, impeding efficient
parallelization. In MCMC-based approaches, to generate independent samples
in parallel, each thread has to take a random walk until a stationary distribu-
tion is reached. The length of this walk is often impractically long in the case of
combinatorial spaces with complex internal structure [9]. Heuristics to speed up
MCMC-based techniques destroy guarantees of uniformity even in the sequential
case [17]. Methods based on random walks on WBDDs are amenable to paral-
lelization, but they are known not to scale beyond a few hundred variables. The
lack of techniques for sampling solutions of constraints in parallel while preserv-
ing guarantees of effectiveness in finding bugs is therefore a major impediment
to high-performance CRV.

The algorithm UniGen2 presented in this section takes a step forward in ad-
dressing the above problem. It has an initial preprocessing step that is sequential
but low-overhead, followed by inherently parallelizable sampling steps. It gener-
ates samples (stimuli) that are provably nearly as effective as those generated
by an almost-uniform sampler for purposes of detecting a bug. Furthermore, our
experiments demonstrate that a parallel implementation of UniGen2 achieves a
near-linear speedup in the number of processor cores. Given that current prac-
titioners are forced to trade guarantees of effectiveness in bug hunting for scal-
ability, the above properties of UniGen2 are significant. Specifically, they enable
a new paradigm of CRV wherein parallel stimulus generation and simulation
can provide the required runtime performance while also providing theoretical
guarantees.

Algorithm. Our algorithm, named UniGen2, bears some structural similarities
with the UniGen algorithm proposed earlier in [6]. Nevertheless, there are key
differences that allow UniGen2 to outperform UniGen significantly. Like UniGen,
UniGen2 takes a CNF formula F , a sampling set S and a tolerance ε (that is
chosen to be at least 6.84 for technical reasons). Note that the formula F and
set S uniquely define the solution set RF↓S .

Similarly to UniGen, UniGen2 works by partitioning RF↓S into “cells” using
random hash functions, then randomly selecting a cell by adding appropriate
constraints to F . If the chosen cell has the right size (where the acceptable size

310 S. Chakraborty et al.

range depends on the desired tolerance ε), we can enumerate all the solutions
in it and return a uniform random sample from among them. Unlike UniGen,
however, UniGen2 samples multiple times from the same cell. This decreases the
generation time per sample by a large factor (about 10× in our experiments),
while preserving strong guarantees of effectiveness of the samples in finding bugs.

Algorithm 1. EstimateParameters(F, S, ε)

/* Returns (hashBits, loThresh,hiThresh) as required by GenerateSamples */
1: Find κ ∈ (0, 1) such that ε = (1 + κ)(7.44 + 0.392

(1−κ)2
)− 1

2: pivot ←
⌈
4.03

(
1 + 1

κ

)2⌉

3: hiThresh ← ⌈
1 +

√
2(1 + κ)pivot

⌉
; loThresh ←

⌊
1√

2(1+κ)
pivot

⌋

4: i ← 0
5: while i < n do
6: i ← i+ 1
7: Choose h at random from Hxor(|S|, i)
8: Choose α at random from {0, 1}i
9: Y ← BSAT(F ∧ (h(S) = α), 61, S)
10: if 1 ≤ |Y | ≤ 60 then
11: return (round (log |Y |+ i+ log 1.8− log pivot) , loThresh, hiThresh)

12: return ⊥

Algorithm 2. GenerateSamples(F, S, hashBits, loThresh, hiThresh)

1: Pick an order V of the values {hashBits− 2,hashBits− 1, hashBits}
2: for i ∈ V do
3: Choose h at random from Hxor(|S|, i)
4: Choose α at random from {0, 1}i
5: Y ← BSAT(F ∧ (h(S) = α), hiThresh, S)
6: if (loThresh ≤ |Y | < hiThresh) then
7: return loThresh distinct random elements of Y
8: return ⊥

UniGen2 is an algorithmic framework that operates in two stages: the first
stage, EstimateParameters (Algorithm 1), performs low-overhead one-time pre-
processing for a given F , S, and ε to compute numerical parameters ‘hashBits’,
‘loThresh’, and ‘hiThresh’. The quantity hashBits controls how many cells RF↓S
will be partitioned into, while loThresh and hiThresh delineate the range of ac-
ceptable sizes for a cell. In the second stage, GenerateSamples (Algorithm 2) uses
these parameters to generate loThresh samples. If more samples are required,
GenerateSamples is simply called again with the same parameters. Theorem 3
below shows that invoking GenerateSamples multiple times does not cause the
loss of any theoretical guarantees. We now explain the operation of the two
subroutines in detail.

On Parallel Scalable Uniform SAT Witness Generation 311

Lines 1–3 of EstimateParameters compute numerical parameters based on the
tolerance ε which are used by GenerateSamples. The variable ‘pivot’ can be
thought of as the ideal cell size we are aiming for, while as mentioned above
‘loThresh’ and ‘hiThresh’ define the allowed size range around this ideal. For
simplicity of exposition, we assume that |RF↓S | > max(60, hiThresh). If not,
there are very few solutions and we can do uniform sampling by enumerating all
of them as in UniGen [6].

Lines 4–11 of EstimateParameters compute ‘hashBits’, an estimate of the num-
ber of hash functions required so that the corresponding partition of RF↓S (into
2hashBits cells) has cells of the desired size. This is done along the same lines
as in UniGen, which used an approximate model counter such as ApproxMC [5].
The procedure invokes a SAT solver through the function BSAT(φ,m, S). This
returns a set, consisting of models of the formula φ which all differ on the set of
variables S, that has size m. If there is no such set of size m, the function returns
a maximal set. If the estimation procedure fails, EstimateParameters returns ⊥
on line 12. In practice, it would be called repeatedly until it succeeds. Theorem 1
below shows that on average few repetitions are needed for EstimateParameters
to succeed, and this is borne out in practice.

The second stage of UniGen2, named GenerateSamples, begins on lines 1–2 by
picking a hash count i close to hashBits, then selecting a random hash function
from the family Hxor(|S|, i) on line 3. On line 4 we pick a random output value
α, so that the constraint h(S) = α picks out a random cell. Then, on line 5 we
invoke BSAT on F with this additional constraint, obtaining at most hiThresh
elements Y of the cell. If |Y | < hiThresh then we have enumerated every element
of RF↓S in the cell, and if |Y | ≥ loThresh the cell is large enough for us to get
a good sample. So if loThresh ≤ |Y | < hiThresh, we randomly select loThresh
elements of Y and return them on line 7.

If the number of elements of RF↓S in the chosen cell is too large or too small,
we choose a new hash count on line 2. Note that line 1 can pick an arbitrary
order for the three hash counts to be tried, since our analysis of UniGen2 does
not depend on the order. This allows us to use an optimization where if we run
GenerateSamples multiple times, we choose an order which starts with the value
of i that was successful in the previous invocation of GenerateSamples. Since
hashBits is only an estimate of the correct value for i, in many benchmarks on
which we experimented, UniGen2 initially failed to generate a cell of the right size
with i = hashBits−2, but then succeeded with i = hashBits−1. In such scenarios,
beginning with i = hashBits−1 in subsequent iterations saves considerable time.
This heuristic is similar in spirit to “leapfrogging” in ApproxMC [5] and UniWit
[4], but does not compromise the theoretical guarantees of UniGen2 in any way.

If all three hash values tried on line 2 fail to generate a correctly-sized cell,
GenerateSamples fails and returns ⊥ on line 8. Theorem 1 below shows that this
happens with probability at most 0.38. Otherwise, UniGen2 completes by return-
ing loThresh samples.

312 S. Chakraborty et al.

Parallelization of UniGen2.As described above,UniGen2 operates in two stages:
EstimateParameters is initially called to do one-time preprocessing, and then
GenerateSamples is called to do the actual sampling. To generate N samples,
we can invoke EstimateParameters once, and then GenerateSamples N/loThresh
times, since each of the latter calls generates loThresh samples (unless it fails).
Furthermore, each invocation of GenerateSamples is completely independent of
the others. Thus if we have k processor cores, we can just performN/(k·loThresh)
invocations of GenerateSamples on each. There is no need for any inter-thread
communication: the “leapfrogging” heuristic for choosing the order on line 1 can
simply be done on a per-thread basis. This gives us a linear speedup in the
number of cores k, since the per-thread work (excluding the initial preprocess-
ing) is proportional to 1/k. Furthermore, Theorem 3 below shows that assuming
each thread has its own source of randomness, performing multiple invocations
of GenerateSamples in parallel does not alter its guarantees of uniformity. This
means that UniGen2 can scale to an arbitrary number of processor cores as more
samples are desired, while not sacrificing any theoretical guarantees.

5 Analysis

In this section, we present a theoretical analysis of the uniformity, effectiveness
in discovering bugs, and runtime performance of UniGen2. For lack of space,
we defer all proofs to the full version. For technical reasons, we assume that
ε > 6.84. Our first result bounds the failure probabilities of EstimateParameters
and GenerateSamples.

Theorem 1. EstimateParameters and GenerateSamples return ⊥ with probabili-
ties at most 0.009 and 0.38 respectively.

Next we show that a single invocation of GenerateSamples provides guarantees
nearly as strong as those of an almost-uniform generator.

Theorem 2. For given F , S, and ε, let L be the set of samples generated using
UniGen2 with a single call to GenerateSamples. Then for each y ∈ RF↓S, we have

loThresh

(1 + ε)|RF↓S |
≤ Pr[y ∈ L] ≤ 1.02 · (1 + ε)

loThresh

|RF↓S |
.

Now we demonstrate that these guarantees extend to the case when
GenerateSamples is called multiple times, sequentially or in parallel.

Theorem 3. For given F , S, and ε, and for hashBits, loThresh, and hiThresh
as estimated by EstimateParameters, let GenerateSamples be called N times with
these parameters in an arbitrary parallel or sequential interleaving. Let Ey,i de-
note the event that y ∈ RF↓S is generated in the ith call to GenerateSamples. Then

the events Ey,i are (l, u)-a.a.d. with l = loThresh
(1+ε)|RF↓S | and u = 1.02·(1+ε)loThresh

|RF↓S| .

Next we show that the above result establishes very strong guarantees on the
effectiveness of UniGen2 in discovering bugs in the CRV context. In this context,

On Parallel Scalable Uniform SAT Witness Generation 313

the objective of uniform generation is to maximize the probability of discovering
a bug by using a diverse set of samples. Let us denote the fraction of stimuli
that trigger a bug by f , i.e. if B is the set of stimuli that trigger a bug, then
f = |B|/|RF↓S |. Furthermore, if N is the desired number of stimuli we wish to
generate, we want to minimize the failure probability, i.e. the probability that
the N randomly generated stimuli fail to intersect the set B. If the stimuli are
generated uniformly, the failure probability is (1 − f)N . Using binomial expan-
sion, the failure probability can be shown to decrease exponentially in N , with
decay rate of f (henceforth denoted as failure decay rate). We can evaluate the
effectiveness of a stimulus-generation method by comparing the failure decay
rate it achieves to that of a uniform generator. Alternatively, given some δ > 0,
we can ask how many samples are needed to ensure that the failure probability
is at most δ. Normalizing by the number of samples needed by an ideal uni-
form generator gives the relative number of samples needed to find a bug. Our
next theorem shows that UniGen2 is as effective as an almost-uniform generator
according to both of these metrics but needs many fewer SAT calls.

Theorem 4. Given F , S, ε, and B ⊆ RF↓S, let f = |B|/|RF↓S | < 0.8, ν =
1
2 (1 + ε)f , and ν̂ = 1.02 · loThresh · ν < 1. Then we have the following bounds:

generator type uniform UniGen UniGen2

failure decay rate f f
1+ε

(1− ν̂) f
1+ε

relative # of samples needed 1 (1 + ν)(1 + ε) 1+ν̂
1−ν̂

(1 + ε)

relative expected # of SAT calls 1 3·hiThresh(1+ν)(1+ε)
0.52

3·hiThresh
0.62·loThresh

1+ν̂
1−ν̂

(1 + ε)

If 8.09 ≤ ε ≤ 242 and f ≤ 1/1000, then UniGen2 uses fewer SAT calls than
UniGen on average.

Thus under reasonable conditions such as occur in industrial applications,
UniGen2 is more efficient than UniGen at finding bugs. We illustrate the sig-
nificance of this improvement with an example. Suppose 1 in 104 inputs causes
a bug. Then to find a bug with probability 1/2, we would need approximately
6.93 · 103 uniformly generated samples. To achieve the same target, we would
need approximately 1.17 · 105 samples from an almost-uniform generator like
UniGen, and approximately 1.20 · 105 samples from UniGen2, using a tolerance
(ε) of 16 in both cases. However, since UniGen2 picks multiple samples from
each cell, it needs fewer SAT calls. In fact, the expected number of calls made by
UniGen2 is only 3.38 ·106, compared to 4.35 ·107 for UniGen – an order of magni-
tude difference! Therefore, UniGen2 provides as strong guarantees as UniGen in
terms of its ability to discover bugs in CRV, while requiring far fewer SAT calls.
Note that while the rest of our results hold for ε > 6.84, our guarantee of fewer
expected SAT calls in UniGen2 holds for a subrange of values of ε, as indicated
in Theorem 4.

Finally, since the ratio of hiThresh to loThresh can be bounded from above,
we have the following result.

314 S. Chakraborty et al.

Theorem 5. There exists a fixed constant λ = 40 such that for every F , S, and
ε, the expected number of SAT queries made by UniGen2 per generated sample is
at most λ.

In contrast, the number of SAT calls per generated sample in UniGen is propor-
tional to hiThresh and thus to ε−2. An upper bound on the expected number
of SAT queries makes it possible for UniGen2 to approach the performance of
heuristic methods like random seeding of SAT solvers, which make only one SAT
query per generated sample (but fail to provide any theoretical guarantees).

6 Evaluation

To evaluate the performance of UniGen2, we built a prototype implementation
in C++ that employs the solver CryptoMiniSAT [1] to handle CNF-SAT aug-
mented with XORs efficiently3. We conducted an extensive set of experiments
on diverse public domain benchmarks, seeking to answer the following questions:

1. How does UniGen2’s runtime performance compare to that of UniGen, a state-
of-the-art almost-uniform SAT sampler?

2. How does the performance of parallel UniGen2 scale with the # of cores?
3. How does the distribution of samples generated by UniGen2 compare with

the ideal distribution?
4. Does parallelization affect the uniformity of the distribution of the samples?

Our experiments showed that UniGen2 outperforms UniGen by a factor of about
20× in terms of runtime. The distribution generated by UniGen2 is statistically
indistinguishable from that generated by an ideal uniform sampler. Finally, the
runtime performance of parallel UniGen2 scales linearly with the number of cores,
while its output distribution continues to remain uniform.

6.1 Experimental Setup

We conducted experiments on a heterogeneous set of benchmarks used in earlier
related work [6]. The benchmarks consisted of ISCAS89 circuits augmented with
parity conditions on randomly chosen subsets of outputs and next-state variables,
constraints arising in bounded model checking, bit-blasted versions of SMTLib
benchmarks, and problems arising from automated program synthesis. For each
benchmark, the sampling set S was either taken to be the independent support
of the formula or was provided by the corresponding source. Experiments were
conducted on a total of 200+ benchmarks. We present results for only a subset of
representative benchmarks here. A detailed list of all the benchmarks is available
in the Appendix.

For purposes of comparison, we also ran experiments with UniGen [6], a state-
of-the-art almost-uniform SAT witness generator. We employed the Mersenne

3 The tool (with source code) is available at
http://www.cs.rice.edu/CS/Verification/Projects/UniGen/

http://www.cs.rice.edu/CS/Verification/Projects/UniGen/

On Parallel Scalable Uniform SAT Witness Generation 315

Twister to generate pseudo-random numbers, and each thread was seeded in-
dependently using the C++ class random device. Both tools used an overall
timeout of 20 hours, and a BSAT timeout of 2500 seconds. All experiments used
ε = 16, corresponding to loThresh = 11 and hiThresh = 64. The experiments
were conducted on a high-performance computer cluster, where each node had
a 12-core, 2.83 GHz Intel Xeon processor, with 4GB of main memory per core.

6.2 Results

Runtime Performance. We compared the runtime performance of UniGen2
with that of UniGen for all our benchmarks. For each benchmark, we generated
between 1000 and 10000 samples (depending on the size of the benchmark)
and computed the average time taken to generate a sample on a single core. The
results of these experiments for a representative subset of benchmarks are shown
in Table 1. The columns in this table give the benchmark name, the number
of variables and clauses, the size of the sampling set, the success probability
of UniGen2, and finally the average runtime per sample for both UniGen2 and
UniGen in seconds. The success probability of UniGen2 was computed as the
fraction of calls to GenerateSamples that successfully generated samples.

Table 1. Runtime performance comparison of UniGen2 and UniGen (on a single core)

UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

s1238a 3 2 686 1850 32 1.0 0.3 7.17
s1196a 3 2 690 1805 32 1.0 0.23 4.54
s832a 15 7 693 2017 23 1.0 0.04 0.51
case 1 b12 2 827 2725 45 1.0 0.24 6.77
squaring16 1627 5835 72 1.0 4.16 79.12
squaring7 1628 5837 72 1.0 0.79 21.98

doublyLinkedList 6890 26918 37 1.0 0.04 1.23
LoginService2 11511 41411 36 1.0 0.05 0.55

Sort 12125 49611 52 1.0 4.15 82.8
20 15475 60994 51 1.0 19.08 270.78

enqueue 16466 58515 42 1.0 0.87 14.67
Karatsuba 19594 82417 41 1.0 5.86 80.29
lltraversal 39912 167842 23 1.0 0.18 4.86
llreverse 63797 257657 25 1.0 0.73 7.59

diagStencil new 94607 2838579 78 1.0 3.53 60.18
tutorial3 486193 2598178 31 1.0 58.41 805.33

demo2 new 777009 3649893 45 1.0 3.47 40.33

Table 1 clearly shows that UniGen2 significantly outperforms UniGen on all
types of benchmarks, even when run on a single core. Over the entire set of 200+
benchmarks, UniGen2’s runtime performance was about 20× better than that of
UniGen on average (using the geometric mean). The observed performance gain
can be attributed to two factors. First, UniGen2 generates loThresh (11 in our
experiments) samples from every cell instead of just 1 in the case of UniGen. This
provides a speedup of about 10×. Second, as explained in Section 4, UniGen2

316 S. Chakraborty et al.

uses “leapfrogging” to optimize the order in which the values of i in line 2 of
Algorithm 2 are chosen. In contrast, UniGen uses a fixed order. This provides an
additional average speedup of 2× in our experiments. Note also that the success
probability of UniGen2 is consistently very close to 1 across the entire set of
benchmarks.

Parallel Speedup. To measure the effect of parallelization on runtime perfor-
mance, we ran the parallel version of UniGen2 with 1 to 12 processor cores on
our benchmarks. In each experiment with C cores, we generated 2500 samples
per core, and computed the C-core resource usage as the ratio of the average
individual core runtime to the total number of samples (i.e. C × 2500). We av-
eraged our computations over 7 identical runs. The speedup for C cores was
then computed as the ratio of 1-core resource usage to C-core resource usage.
Figure 1 shows how the speedup varies with the number of cores for a subset
of our benchmarks. The figure illustrates that parallel UniGen2 generally scales
almost linearly with the number of processor cores.

To obtain an estimate of how close UniGen2’s performance is to real-world re-
quirements (roughly 10× slowdown compared to a simple SAT call), we measured
the slowdown of UniGen2 (and UniGen) running on a single core relative to a sim-
ple SAT call on the input formula. The (geometric) mean slowdown for UniGen2
turned out to be 21 compared to 470 for UniGen. This shows that UniGen2 run-
ning in parallel on 2–4 cores comes close to matching the requirements of CRV
in industrial practice.

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12

S
pe

ed
up

Cores

s1238a_7_4
s953a_3_2

s1196a_7_4
squaring10
squaring7
squaring8

enqueue
LoginService2

karatsuba
Sort

LLReverse

Fig. 1. Effect of parallelization on the runtime performance of UniGen2

Uniformity Comparison. To measure the quality of the distribution generated
by UniGen2 and parallel UniGen2 in practice, we implemented an ideal sampler,
henceforth denoted as IS. Given a formula F , the sampler IS first enumerates all
witnesses in RF↓S , and then picks an element of RF↓S uniformly at random. We
compared the distribution generated by IS with that generated by UniGen2 run
sequentially, and with that generated by UniGen2 run in parallel on 12 cores.

On Parallel Scalable Uniform SAT Witness Generation 317

In the last case, the samples generated by all the cores were aggregated before
comparing the distributions. We had to restrict the experiments for comparing
distributions to a small subset of our benchmarks, specifically those which had
less than 100, 000 solutions. We generated a large number N (≥ 4 × 106) of
samples for each benchmark using each of IS, sequential UniGen2, and paral-
lel UniGen2. Since we chose N much larger than |RF↓S |, all witnesses occurred
multiple times in the list of samples. We then computed the frequency of genera-
tion of individual witnesses, and grouped witnesses appearing the same number
of times together. Plotting the distribution of frequencies — that is, plotting
points (x, y) to indicate that each of x distinct witnesses were generated y times
— gives a convenient way to visualize the distribution of the samples. Figure 2
depicts this for one representative benchmark (case110, with 16,384 solutions).
It is clear from Figure 2 that the distribution generated by UniGen2 is practically
indistinguishable from that of IS. Furthermore, the quality of the distribution
is not affected by parallelization. Similar observations also hold for the other
benchmarks for which we were able to enumerate all solutions. For the example
shown in Fig. 2, the Jensen-Shannon distance between the distributions from
sequential UniGen2 and IS is 0.049, while the corresponding figure for parallel
UniGen2 and IS is 0.052. These small Jensen-Shannon distances make the distri-
bution of UniGen2 (whether sequential or parallel) indistinguishable from that
of IS (See Section IV(C) of [13]).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 180 200 220 240 260 280 300

Oc
cu

rr
en

ce
s

Solution Count

Ideal
ScalGen

ParaScalGen

Fig. 2. Uniformity comparison between an ideal sampler (IS), UniGen2, and parallel
UniGen2. Results from benchmark ‘case110’ with N = 4 · 106.

7 Conclusion

Constrained-random simulation has been the workhorse of functional verification
for the past few decades. In this paper, we introduced a new algorithm, UniGen2,
that outperforms state-of-the-art techniques by a factor of about 20×. UniGen2

318 S. Chakraborty et al.

trades off independence of samples for speed while still providing strong guar-
antees of discovering bugs with high probability. Furthermore, we showed that
the parallel version of UniGen2 achieves a linear speedup with increasing num-
ber of cores. This suggests a new paradigm for constrained-random verification,
wherein we can obtain the required runtime performance through parallelization
without losing guarantees of effectiveness in finding bugs.

References

1. CryptoMiniSAT, http://www.msoos.org/cryptominisat2/
2. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using

an NP-oracle. Information and Computation 163(2), 510–526 (2000)
3. Bening, L., Foster, H.: Principles of verifiable RTL design – A functional coding

style supporting verification processes. Springer (2001)
4. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator

of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 608–623. Springer, Heidelberg (2013)

5. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg
(2013)

6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
SAT-witness generator. In: Proc. of DAC, pp. 1–6 (2014)

7. Dechter, R., Kask, K., Bin, E., Emek, R.: Generating random solutions for con-
straint satisfaction problems. In: AAAI, pp. 15–21 (2002)

8. Eager, D.L., Zahorjan, J., Lazowska, E.D.: Speedup versus efficiency in parallel
systems. IEEE Trans. on Computers 38(3), 408–423 (1989)

9. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Embed and project: Discrete
sampling with universal hashing. In: Proc. of NIPS (2013)

10. Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. In: Proc. of ISCA, pp. 365–376 (2011)

11. Gogate, V., Dechter, R.: A new algorithm for sampling CSP solutions uniformly at
random. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 711–715. Springer,
Heidelberg (2006)

12. Gomes, C.P., Sabharwal, A., Selman, B.: Near uniform sampling of combinatorial
spaces using XOR constraints. In: Proc. of NIPS, pp. 670–676 (2007)

13. Grosse, I., Bernaola-Galván, P., Carpena, P., Román-Roldán, R., Oliver, J., Stan-
ley, E.: Analysis of symbolic sequences using the Jensen-Shannon divergence. Phys-
ical Review E 65(4), 41905 (2002)

14. Iyer, M.A.: Race: A word-level ATPG-based constraints solver system for smart
random simulation. In: Proc. of ITC, pp. 299–308. Citeseer (2003)

15. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. TCS 43(2-3), 169–188 (1986)

16. Kitchen, N.: Markov Chain Monte Carlo Stimulus Generation for Constrained Ran-
dom Simulation. PhD thesis, University of California, Berkeley (2010)

17. Kitchen, N., Kuehlmann, A.: Stimulus generation for constrained random simula-
tion. In: Proc. of ICCAD, pp. 258–265 (2007)

18. Madras, N.: Lectures on Monte Carlo Methods. Fields Institute Monographs,
vol. 16. AMS (2002)

http://www.msoos.org/cryptominisat2/

On Parallel Scalable Uniform SAT Witness Generation 319

19. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proc. of DAC, pp. 530–535. ACM (2001)

20. Nadel, A.: Generating diverse solutions in SAT. In: Sakallah, K.A., Simon, L. (eds.)
SAT 2011. LNCS, vol. 6695, pp. 287–301. Springer, Heidelberg (2011)

21. Naveh, R., Metodi, A.: Beyond feasibility: CP usage in constrained-random func-
tional hardware verification. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp.
823–831. Springer, Heidelberg (2013)

22. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. In: Proc. of
AAAI, pp. 1720–1727 (2006)

23. Sipser, M.: A complexity theoretic approach to randomness. In: Proc. of STOC,
pp. 330–335 (1983)

24. Yuan, J., Aziz, A., Pixley, C., Albin, K.: Simplifying Boolean constraint solving
for random simulation vector generation. TCAD 23(3), 412–420 (2004)

Approximate Counting in SMT

and Value Estimation for Probabilistic Programs

Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

Max Planck Institute for Software Systems (MPI-SWS), Germany
{dch,rayna,rupak}@mpi-sws.org

Abstract. #SMT, or model counting for logical theories, is a well-
known hard problem that generalizes such tasks as counting the number
of satisfying assignments to a Boolean formula and computing the vol-
ume of a polytope. In the realm of satisfiability modulo theories (SMT)
there is a growing need for model counting solvers, coming from sev-
eral application domains (quantitative information flow, static analysis
of probabilistic programs). In this paper, we show a reduction from an
approximate version of #SMT to SMT.

We focus on the theories of integer arithmetic and linear real arith-
metic. We propose model counting algorithms that provide approximate
solutions with formal bounds on the approximation error. They run in
polynomial time and make a polynomial number of queries to the SMT
solver for the underlying theory, exploiting “for free” the sophisticated
heuristics implemented within modern SMT solvers. We have imple-
mented the algorithms and used them to solve a value estimation problem
for a model of loop-free probabilistic programs with nondeterminism.

1 Introduction

Satisfiability modulo theories (SMT) is nowadays ubiquitous, and the research
landscape is not only enjoying the success of existing SMT solvers, but also
generating demand for new features. In particular, there is a growing need for
model counting solvers; for example, questions in quantitative information flow
and in static analysis of probabilistic programs are naturally cast as instances
of model counting problems for appropriate logical theories [15,25,28].

We define the #SMT problem that generalizes several model counting ques-
tions relative to logical theories, such as computing the number of satisfying
assignments to a Boolean formula (#SAT) and computing the volume of a
bounded polyhedron in a finite-dimensional real vector space. Specifically, to de-
fine model counting modulo a measured theory, first suppose every variable in a
logical formula comes with a domain which is also a measure space. Assume that,
for every logical formula ϕ in the theory, the set of its models �ϕ� is measurable
with respect to the product measure; the model counting (or #SMT) problem
then asks, given ϕ, to compute the measure of �ϕ�, called the model count of ϕ.

In our work we focus on the model counting problems for theories of bounded
integer arithmetic and linear real arithmetic. These problems are complete for
the complexity class #P, so fast exact algorithms are unlikely to exist.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 320–334, 2015.
DOI: 10.1007/978-3-662-46681-0_26

Approximate Counting in SMT 321

We extend to the realm of SMT the well-known hashing approach from the
world of #SAT, which reduces approximate versions of counting to decision
problems. From a theoretical perspective, we solve a model counting problem
with a resource-bounded algorithm that has access to an oracle for the decision
problem. From a practical perspective, we show how to use unmodified existing
SMT solvers to obtain approximate solutions to model-counting problems. This
reduces an approximate version of #SMT to SMT.

Specifically, for integer arithmetic (not necessarily linear), we give a random-
ized algorithm that approximates the model count of a given formula ϕ to within
a multiplicative factor (1+ε) for any given ε > 0. The algorithm makes O(1ε |ϕ|)
SMT queries of size at most O(1

ε2 |ϕ|2) where |ϕ| is the size of ϕ.
For linear real arithmetic, we give a randomized algorithm that approximates

the model count with an additive error γN , where N is the volume of a box
containing all models of the formula, and the coefficient γ is part of the input.
The number of steps of the algorithm and the number of SMT queries (modulo
the combined theory of integer and linear real arithmetic) are again polynomial.

As an application, we show how to solve the value estimation problem [28] for
a model of loop-free probabilistic programs with nondeterminism.

Techniques. Approximation of #P functions by randomized algorithms has a
rich history in complexity theory [31,34,21,20]. Jerrum, Valiant, and Vazirani [21]
described a hashing-basedBPPNPprocedure to approximately compute any #P
function, and noted that this procedure already appeared implicitly in previous
papers by Sipser [30] and Stockmeyer [31]. The procedure works with encoded
computations of a Turing machine and is thus unlikely to perform well in prac-
tice. Instead, we show a direct reduction from approximate model counting to
SMT solving, which allows us to retain the structure of the original formula.
An alternate approach could eagerly encode #SMT problems into #SAT, but
experience with SMT solvers suggests that a “lazy” approach may be preferable
for some problems.

For the theory of linear real arithmetic, we also need an ingredient to handle
continuous domains. Dyer and Frieze [11] suggested a discretization that intro-
duces bounded additive error; this placed approximate volume computation for
polytopes—or, in logical terms, approximate model counting for quantifier-free
linear real arithmetic—in #P. Motivated by the application in the analysis of
probabilistic programs, we extend this technique to handle formulas with existen-
tially quantified variables. To this end, we prove a geometric result that bounds
the effect of projections: this gives us an approximate model counting proce-
dure for existentially quantified linear arithmetic formulas. Note that applying
quantifier elimination as a preprocessing step may make the resulting formula
exponential; instead, our approach works directly on the original formula that
contains existentially quantified variables.

We have implemented our algorithm on top of the Z3 SMT solver and applied
it to formulas encoding the value estimation problem for probabilistic programs.
Our initial experience suggests that simple randomized algorithms using off-the-
shelf SMT solvers can be reasonably effective.

322 D. Chistikov, R. Dimitrova, and R. Majumdar

Related Work. #SMT is a well-known hard problem whose instances have
been studied before, e. g., in volume computation [11], in enumeration of lattice
points in integer polyhedra [1], and as #SAT [17]. Indeed, very simple sub-
problems, such as counting the number of satisfying assignments of a Boolean
formula or computing the volume of a union of axis-parallel rectangles in R

n are
already #P-hard (see Section 2 below).

Existing techniques for #SMT either incorporate model counting primi-
tives into propositional reasoning [26,35] or are based on enumerative combi-
natorics [23,25,15]. Typically, exact algorithms [23,26,15] are exponential in the
worst case, whereas approximate algorithms [25,35] lack provable performance
guarantees. In contrast to exact counting techniques, our procedure is easily im-
plementable and uses “for free” the sophisticated heuristics built in off-the-shelf
SMT solvers. Although the solutions it produces are not exact, they provably
meet user-provided requirements on approximation quality. This is achieved by
extending the hashing approach from SAT [16,17,7,13] to the SMT context.

A famous result of Dyer, Frieze, and Kannan [12] states that the volume of a
convex polyhedron can be approximated with a multiplicative error in probabilis-
tic polynomial time (without the need for an SMT solver). In our application,
analysis of probabilistic programs, we wish to compute the volume of a projection
of a Boolean combination of polyhedra; in general, it is, of course, non-convex.
Thus, we cannot apply the volume estimation algorithm of [12], so we turn to the
“generic” approximation of #P using an NP oracle instead. Our #SMT pro-
cedure for linear real arithmetic allows an additive error in the approximation;
it is unknown if the exact volume of a polytope has a small representation [11].

An alternative approach to approximate #SMT is to apply Monte Carlo
methods for volume estimation. They can easily handle complicated measures
for which there is limited symbolic reasoning available. Like the hashing tech-
nique, this approach is also exponential in the worst case [20]: suppose the volume
in question, p, is very small and the required precision is a constant multiple of p.
In this case, Chernoff bound arguments would suggest the need for Ω(1p) sam-
ples; the hashing approach, in contrast, will perform well. So, while in “regular”
settings (when p is non-vanishing) the Monte Carlo approach performs better,
“singular” settings (when p is close to zero) are better handled by the hashing
approach. The two techniques, therefore, are complementary to each other.

Contributions. We extend, from SAT to SMT, the hashing approach to ap-
proximate model counting:
1. We formulate the notion of a measured theory (Section 2) that gives a unified

framework for model-counting problems.
2. For the theory of bounded integer arithmetic, we provide a direct reduction

(Theorem 1 in Section 2) from approximate counting to SMT.
3. For the theory of bounded linear real arithmetic, we give a technical con-

struction (Lemma 1 in subsection 3.2) that lets us extend the results of
Dyer and Frieze to the case when the polytope is given as a projection of
a Boolean combination of polytopes; this leads to an approximate model
counting procedure for this theory (Theorem 2 in Section 2).

Approximate Counting in SMT 323

4. As an application, we solve the value estimation problem for small loop-free
probabilistic programs with nondeterminism (Section 4).

An extended version of the paper is available as [8].

2 The #SMT Problem

We present a framework for a uniform treatment of model counting both in
discrete theories like SAT (where it is literally counting models) and in linear
real arithmetic (where it is really volume computation for polyhedra). We then
introduce the notion of approximation and show an algorithm for approximate
model counting by reduction to SMT.

Preliminaries: Counting Problems and #P. A relation R ⊆ Σ∗ × Σ∗ is
a p-relation if (1) there exists a polynomial p(n) such that if (x, y) ∈ R then
|y| = p(|x|) and (2) the predicate (x, y) ∈ R can be checked in deterministic
polynomial time in the size of x. Intuitively, a p-relation relates inputs x to
solutions y. It is easy to see that a decision problem L belongs to NP if there is
a p-relation R such that L = {x | ∃y.R(x, y)}.

A counting problem is a function that maps Σ∗ to N. A counting problem
f : Σ∗ → N belongs to the class #P if there exists a p-relation R such that
f(x) = |{y | R(x, y)}|, i. e., the class #P consists of functions that count the
number of solutions to a p-relation [33]. Completeness in #P is with respect to
Turing reductions; the same term is also (ab)used to encompass problems that
reduce to a fixed number of queries to a #P function (see, e. g., [11]).

#SAT is an example of a #P-complete problem: it asks for the number of
satisfying assignments to a Boolean formula in CNF [33]. Remarkably, #P char-
acterizes the computational complexity not only of “discrete” problems, but also
of problems involving real-valued variables: approximate volume computation
(with additive error) for bounded rational polyhedra in R

k is #P-complete [11].

Measured Theories and #SMT. Suppose T is a logical theory. Let ϕ(x)
be a formula in this theory with free first-order variables x = (x1, . . . , xk). As-
sume that T comes with a fixed interpretation, which specifies domains of the
variables, denoted D1, . . . , Dk, and assigns a meaning to predicates and function
symbols in the signature of T . Then a tuple a = (a1, . . . , ak) ∈ D1 × . . . ×Dk

is called a model of ϕ if the sentence ϕ(a1, . . . , ak) holds, i. e., if a |=T ϕ(x). We
denote the set of all models of a formula ϕ(x) by �ϕ�; the satisfiability problem
for T asks, for a formula ϕ given as input, whether �ϕ� �= ∅.

Consider the special cases of (propositional) SAT and linear real arithmetic.
For SAT, atomic predicates are of the form xi = b, for b ∈ {0, 1}, the domain
Di of each xi is {0, 1}, and formulas are propositional formulas in conjunctive
normal form. For linear real arithmetic, atomic predicates are of the form c1x1+
. . .+ ckxk � d, for c1, . . . , ck, d ∈ R, the domain Di of each xi is R, and formulas
are conjunctions of atomic predicates. Sets �ϕ� in these cases are the set of
satisfying assignments and the polyhedron itself, respectively.

Suppose the domainsD1, . . . , Dk given by the fixed interpretation are measure
spaces: each Di is associated with a σ-algebra Fi ⊆ 2Di and a measure μi : Fi →

324 D. Chistikov, R. Dimitrova, and R. Majumdar

R. This means, by definition, that Fi and μi satisfy the following properties:
Fi contains ∅ and is closed under complement and countable unions, and μi is
non-negative, assigns 0 to ∅, and is σ-additive.

In our special cases, these spaces are as follows. For SAT, each Fi is the set
of all subsets of Di = {0, 1}, and μi(A) is simply the number of elements in A.
For linear real arithmetic, each Fi is the set of all Borel subsets of Di = R, and
μi is the Lebesgue measure.

Assume that each measure μi is σ-finite, that is, the domain Di is a countable
union of measurable sets (i. e., of elements of Fi, and so with finite measure
associated with them). This condition, which holds for both special cases, implies
that the Cartesian product D1× . . .×Dk is measurable with respect to a unique
product measure μ, defined as follows. A set A ⊆ D1 × . . . × Dk is measurable
(that is, μ assigns a value to A) if and only if A is an element of the smallest
σ-algebra that contains all sets of the form A1 × . . .× Ak, with Ai ∈ Fi for all
i. For all such sets, it holds that μ(A1 × . . .×Ak) = μ1(A1) . . . μk(Ak).

In our special cases, the product measure μ(A) of a set A is the number of
elements in A ⊆ {0, 1}k and the volume of A ⊆ R

k, respectively.
We say that the theory T is measured if for every formula ϕ(x) in T with free

(first-order) variables x = (x1, . . . , xk) the set �ϕ� is measurable. We define the
model count of a formula ϕ as mc(ϕ) = μ(�ϕ�). Naturally, if the measures in a
measured theory can assume non-integer values, the model count of a formula
is not necessarily an integer. With every measured theory we associate a model
counting problem, denoted #SMT[T]: the input is a logical formula ϕ(x) in T ,
and the goal is to compute the value mc(ϕ).

The #SAT and volume computation problems are just special cases as in-
tended, since mc(ϕ) is equal to the number of satisfying assignments of a Boolean
formula and to the volume of a polyhedron, respectively.

Approximate Model Counting. We now introduce approximate #SMT and
show how approximate #SMT reduces to SMT. For our purposes, a randomized
algorithm is an algorithm that uses internal coin-tossing. We always assume,
whenever we use the term, that, for each possible input x to A, the overall
probability, over the internal coin tosses r, that A outputs a wrong answer is at
most 1/4. (This error probability 1/4 can be reduced to any smaller α > 0, by
taking the median across O(logα−1) independent runs of A.)

We say that a randomized algorithm A approximates a real-valued functional
problem C : Σ∗ → R with an additive error if A takes as input an x ∈ Σ∗ and a
rational number γ > 0 and produces an output A(x, γ) such that

Pr
[
|A(x, γ) − C(x)| � γ U(x)

]
� 3/4,

where U : Σ∗ → R is some specific and efficiently computable upper bound on
the absolute value of C(x), i. e., |C(x)| � U(x), that comes with the problem C.
Similarly, A approximates a (possibly real-valued) functional problem C : Σ∗ →
R with a multiplicative error if A takes as input an x ∈ Σ∗ and a rational number
ε > 0 and produces an output A(x, ε) such that

Pr
[
(1 + ε)−1C(x) � A(x, ε) � (1 + ε) C(x)

]
� 3/4.

Approximate Counting in SMT 325

The computation time is usually considered relative to |x|+γ−1 or |x|+ ε−1, re-
spectively (note the inverse of the admissible error). Polynomial-time algorithms
that achieve approximations with a multiplicative error are also known as fully
polynomial-time randomized approximation schemes (FPRAS) [21].

Algorithms can be equipped with oracles solving auxiliary problems, with
the intuition that an external solver (say, for SAT) is invoked. In theoretical
considerations, the definition of the running time of such an algorithm takes into
account the preparation of queries to the oracle (just as any other computation),
but not the answer to a query—it is returned within a single time step. Oracles
may be defined as solving some specific problems (say, SAT) as well as any
problems from a class (say, from NP). The following result is well-known.

Proposition 1 (generic approximate counting [21,31]). Let C : Σ∗ → N

be any member of #P. There exists a polynomial-time randomized algorithm A
which, using an NP-oracle, approximates C with a multiplicative error.

In the rest of this section, we present our results on the complexity of model
counting problems,#SMT[T], for measured theories. For these problems, we de-
velop randomized polynomial-time approximation algorithms equipped with or-
acles, in the flavour of Proposition 1. We describe the proof ideas in Section 3. We
relate the theories to value estimation problems of probabilistic programs later
in Section 4; our implementation substitutes an appropriate solver for the oracle.

Integer arithmetic. By IA we denote the bounded version of integer arithmetic:
each free variable xi of a formula ϕ(x1, . . . , xk) comes with a bounded domain
Di = [ai, bi] ⊆ Z, where ai, bi ∈ Z. We use the counting measure | · | : A ⊆ Z �→
|A|, so the model count mc(ϕ) of a formula ϕ is the number of its models. In
the formulas, we allow existential (but not universal) quantifiers at the top level.
The model counting problem for IA is #P-complete.

Theorem 1. The model counting problem for IA can be approximated with a
multiplicative error by a polynomial-time randomized algorithm that has oracle
access to satisfiability of formulas in IA.

Linear real arithmetic. By RA we denote the bounded version of linear real
arithmetic, with possible existential (but not universal) quantifiers at the top
level. Each free variable xi of a formula ϕ(x1, . . . , xk) comes with a bounded
domain Di = [ai, bi] ⊆ R, where ai, bi ∈ R. The associated measure is the
standard Lebesgue measure, and the model count mc(ϕ) of a formula ϕ is the
volume of its set of models. (Since we consider linear constraints, any quantifier-
free formula defines a finite union of polytopes. It is an easy geometric fact
that its projection on a set of variables will again be a finite union of bounded
polytopes. Thus, existential quantification involves only finite unions.)

In the model counting problem for RA, the a priori upper bound U on the
solution is

∏k
i=1(bi−ai); additive approximation of the problem is #P-complete.

Theorem 2. The model counting problem for RA can be approximated with an
additive error by a polynomial-time randomized algorithm that has oracle access
to satisfiability of formulas in IA+ RA (the combined theory of IA and RA).

326 D. Chistikov, R. Dimitrova, and R. Majumdar

3 Proof Techniques

3.1 Approximate Discrete Model Counting

We now explain the idea behind Theorem 1. Let ϕ(x) be an input formula in IA
and x = (x1, . . . , xk) free variables of ϕ. Suppose M is a big enough integer such
that all models of ϕ have components not exceeding M , i. e., �ϕ� ⊆ [0,M]k.

Our approach to approximating mc(ϕ) = |�ϕ�| follows the construction in
Jerrum et al. [21], which builds upon the following observation. Suppose our
goal is to find a value v such that v � mc(ϕ) � 2v, and we have an oracle E , for
“Estimate”, answering questions of the form mc(ϕ) �? N . Then it is sufficient
to make such queries to E for N = Nm = 2m, m = 0, . . . , k log(M + 1), and the
overall algorithm design is reduced to implementing such an oracle efficiently.

It turns out that this can be done with the help of hashing. Suppose that a
hash function h, taken at random from some family H, maps elements of [0,M]k

to {0, 1}m. If the family H is chosen appropriately, then each potential model w
is mapped by h to, say, 0m with probability 2−m; moreover, one should expect
that any set S ⊆ [0,M]k of size d has roughly 2−m · d elements in h−1(0m) =
{w ∈ [0,M]k | h(w) = 0m}. In other words, if |S| � 2m, then S ∩ h−1(0m) is
non-empty with high probability, and if |S|
 2m, then S ∩ h−1(0m) is empty
with high probability. Distinguishing between empty and non-empty sets is, in
its turn, a satisfiability question and, as such, can be entrusted to the IA solver.
As a result, we reduced the approximation of the model count of ϕ to a series of
satisfiability questions in IA.

Our algorithm posts these questions as SMT queries of the form

ϕ(x) ∧ t(x, x′) ∧ (h′(x′) = 0m), (1)

where x and x′ are tuples of integer variables, each component of x′ is either 0
or 1, the formula t(x, x′) says that x′ is binary encoding of x, and the IA formula
h′(x′) = 0m encodes the computation of the hash function h on input x′.

Algorithm 1 is the basis of our implementation. It returns a value v that
satisfies the inequalities (1 + ε)−1mc(ϕ) � v � (1 + ε)mc(ϕ) with probability
at least 1− α. Algorithm 1 uses a set of parameters to discharge “small” values
by enumeration in the SMT solver (parameters a, p) and to optimally query
the solver for larger instances (parameters B, q, r). The procedure E given as
Algorithm 2 asks the SMT solver for IA to produce a satisfying assignments
(for a positive integer parameter a) to formulas of the form (1) by calling the
procedure SMT. The constant B in the algorithm is defined by B = ((

√
a+ 1+

1)/(
√
a+ 1−1))2. To achieve the required precision with the desired probability,

the algorithm makes q copies of the formula, constructing a formula with k′

Boolean variables, and does a majority vote over r calls to the procedure E ,
where

q =
⌈ 1 + logB

2 log(1 + ε)

⌉
and r =

⌈
8 ln

(
k′ − logB − 2 log(

√
B − 1)� − 3

α

)
⌉
.

Approximate Counting in SMT 327

Algorithm 1. Approximate model counting for IA

Input: formula ϕ(x) in IA
Output: value v ∈ N

Parameters: ε ∈ (0, 1), /* approximation factor */

α ∈ (0, 1), /* error probability */

a ∈ N /* enumeration limit for SMT solver */

Pick B, q, p, r based on parameters (see text);
ψ(x, x′) = ϕ(x) ∧ t(x, x′);
ψq(x,x

′) = ψ(x1, x′1) ∧ ψ(x2, x′2) ∧ . . . ∧ ψ(xq, x′q);
if (e := SMT(ψq, p+ 1)) ≤ p then return q

√
e;

k′ := number of bits in x′;
for m = 1, . . . , k′ + 1 do

c := 0; /* majority vote counter */

for j = 1, . . . , r do
if E(ψq, k

′,m, a) then c := c+ 1;

if c ≤ r/2 then break;

return q

√
2(m+3/2)

√
B

(
√

B−1)2

Algorithm 2. Satisfiability “oracle” E
Input: formula ψq(x,x

′) in IA; k′,m, a ∈ N

Output: true or false
h′ := pick-hash(k′,m);
ψh′(x,x′) = ψq(x,x

′) ∧ (h′(x′) = 0m);
return (SMT(ψh′ , a) ≥ a) /* check if ψh′ has at least a assignments */

For formulas ϕ with up to p1/q models, where p = 2 �4/(
√
B− 1)2�, Algorithm 1

returns precisely the model count mc(ϕ) computed by the procedure SMT
which repeatedly calls the solver, counting the number of models up to p+ 1.

The family of hash functions H used by pick-hash needs to satisfy the condi-
tion of pairwise independence: for any two distinct vectors x1, x2 ∈ [0,M]k and
any two strings w1, w2 ∈ {0, 1}m, the probability that a random function h from
H satisfies h(x1) = w1 and h(x2) = w2 is equal to 1/22m. There are several con-
structions for pairwise independent hash functions; we employ a commonly used
family, that of random XOR constraints [34,2,17,6]. Given k′ and m, the family
contains (in binary encoding) all functions h′ = (h′

1, . . . , h
′
m) : {0, 1}k′ → {0, 1}m

with h′
i(x1 . . . , xk′) = ai,0 +

∑k′

j=1 ai,jxj , where ai,j ∈ {0, 1} for all i and + is
the XOR operator (addition in GF(2)). By randomly choosing the coefficients
ai,j we get a random hash function from this family. The size of each query is
thus bounded by O(1

ε2 |ϕ|2), where |ϕ| is the size of the original formula ϕ, and
there will be at most O(1ε |ϕ|) queries in total.

328 D. Chistikov, R. Dimitrova, and R. Majumdar

3.2 Approximate Continuous Model Counting

In this subsection we explain the idea behind Theorem 2. Let ϕ be a formula
in RA; using appropriate scaling, we can assume without loss of generality that
all the variables share the same domain. Suppose �ϕ� ⊆ [0,M]k and fix some γ,
with the prospect of finding a value v that is at most ε = γMk away from mc(ϕ)
(we take Mk as the value of the upper bound U in the definition of additive
approximation). We show below how to reduce this task of continuous model
counting to additive approximation of a model counting problem for a formula
with a discrete set of possible models, which, in turn, will be reduced to that of
multiplicative approximation.

We first show how to reduce our continuous problem to a discrete one. Divide
the cube [0,M]k into sk small cubes with side δ each, δ = M/s. For each y =
(y1, . . . , yk) ∈ {0, 1, . . . , s − 1}k, set ψ′(y) = 1 if at least one point of the cube
C(y) = {yjδ � xj � (yj + 1) δ, 1 � j � k} satisfies ϕ; that is, if C(y) ∩ �ϕ� �= ∅.

Imagine that we have a formula ψ such that ψ(y) = ψ′(y) for all y ∈
{0, 1, . . . , s − 1}k, and let ψ be written in a theory with a uniform measure
that assigns “weight” M/s to each point yj ∈ {0, 1, . . . , s − 1}; one can think
of these weights as coefficients in numerical integration. From the technique of
Dyer and Frieze [11, Theorem 2] it follows that for a quantifier-free ϕ and an
appropriate value of s the inequality |mc(ψ)−mc(ϕ)| � ε/2 holds.

Indeed, Dyer and Frieze prove a statement of this form in the context of
volume computation of a polyhedron, defined by a system of inequalities Ax � b.
However, they actually show a stronger statement: given a collection of m hyper-
planes in R

k and a set [0,M]k, an appropriate setting of s will ensure that out of
sk cubes with side δ = M/s only a small number J will be cut, i. e., intersected
by some hyperplane. More precisely, if s =

⌈
mk2Mk/(ε/2)

⌉
, then this number

J will satisfy the inequality δk · J � ε/2. Thus, the total volume of cut cubes
is at most ε/2, and so, in our terms, we have |mc(ψ)−mc(ϕ)| � ε/2 as desired.

However, in our case the formula ϕ need not be quantifier-free and may con-
tain existential quantifiers at the top level. If ϕ(x) = ∃u.Φ(x, u) where Φ is
quantifier-free, then the constraints that can “cut” the x-cubes are not neces-
sarily inequalities from Φ. These constraints can rather arise from projections
of constraints on variables x and, what makes the problem more difficult, their
combinations. However, we are able to prove the following statement:

Lemma 1. The number J̄ of points y ∈ {0, 1, . . . , s− 1}k for which cubes C(y)
are cut satisfies δ̄k · J̄ � ε/2 if δ̄ = M/s̄, where s̄ =

⌈
2m̄+2kk2Mk/(ε/2)

⌉
=⌈

2m̄+2kk2/(γ/2)
⌉
and m̄ is the number of atomic predicates in Φ.

A consequence of the lemma is that the choice of s̄ ensures that the formula
ψ(y) = ∃x.(ϕ(x) ∧ x ∈ C(y)) written in the combined theory IA+ RA satisfies
the inequality |mc(ψ) − mc(ϕ)| � ε/2. Here we associate the domain of each
free variable yj ∈ {0, 1, . . . , s̄− 1} with the uniform measure μj(v) = M/s̄. Note
that the value of s̄ chosen in Lemma 1 will still keep the number of steps of our
algorithm polynomial in the size of the input, because the number of bits needed
to store the integer index along each axis is �log(s̄+ 1)� and not s̄ itself.

Approximate Counting in SMT 329

As a result, it remains to approximate mc(ψ) with additive error of at most
ε′ = ε/2 = γMk/2, which can be done by invoking the procedure from Theorem 1
that delivers approximation with multiplicative error β = ε′/Mk = γ/2.

4 Value Estimation for Probabilistic Programs

4.1 The Value Estimation Problem

We now describe an application of approximate model counting to probabilistic
programs. Probabilistic programming models extend “usual” nondeterministic
programs with the ability to sample values from a distribution and condition
the behavior of the program based on observations [18]. Intuitively, probabilistic
programs extend an imperative programming language like C with two con-
structs: a nondeterministic assignment to a variable from a range of values, and
a probabilistic assignment that sets a variable to a random value sampled from
a distribution. Designed as a modeling framework, probabilistic programs are
typically treated as descriptions of probability distributions and not meant to
be implemented as usual programs.

We consider a core loop-free imperative language extended with probabilistic
statements and with nondeterministic choice:

s ::= x := e | x ∼ Uniform(a, b) | assume(p) | s; s | s[]s | accept | reject.

The statement x := e models (usual) assignment, x ∼ Uniform(a, b) takes a value
uniformly at random from [a, b] and assigns it to x, assume(ϕ) models observa-
tions used to condition a distribution, [] models nondeterministic choice between
statements, and accept and reject are special accepting and rejecting statements.

Under each given assignment to the probabilistic variables, a program accepts
(rejects) if there is an execution path that is compatible with the observations
and goes from the initial state to an accepting (resp., rejecting) statement. Con-
sider all possible outcomes of the probabilistic assignments in a program P .
Restrict attention to those that result in P reaching (nondeterministically) at
least one of accept or reject statements—such elementary outcomes form the set
Term (for “termination”); only these scenarios are compatible with the obser-
vations. Similarly, some of these outcomes may result in the program reaching
(again, nondeterministically) an accept statement—they form the set Accept.
Note that the sets Term and Accept are events in a probability space; define
val(P), the value of P , as the conditional probability Pr[Accept | Term], which

is equal to the ratio Pr[Accept]
Pr[Term] as Accept ⊆ Term. We assume that programs are

well-formed in that Pr [Term] is bounded away from 0.
Now consider a probabilistic program P over a measured theory T , i. e., where

the expressions and predicates come from T . Associate a separate variable r with
each probabilistic assignment in P and denote the corresponding distribution by
dist(r). Let R be the set of all such variables r.

330 D. Chistikov, R. Dimitrova, and R. Majumdar

Proposition 2. There exists a polynomial-time algorithm that, given a program
P over T , constructs logical formulas ϕacc(R) and ϕterm(R) over T such that
Accept = �ϕacc� and Term = �ϕterm�, where each free variable r ∈ R is interpreted
over its domain with measure dist(r). Thus, val(P) = mc(ϕacc)/mc(ϕterm).

Proposition 2 reduces the value estimation problem—i. e., the problem of esti-
mating val(P)—to model counting. For the theories of integer and linear real
arithmetic, we get a #P upper bound on the complexity of value estimation. On
the other hand, value estimation is #P-hard, as it easily encodes#SAT. Finally,
since the model counting problem can be approximated using a polynomial-time
randomized algorithm with a satisfiability oracle, we also get an algorithm for
approximate value estimation.

Proposition 3 (complexity of value estimation).
1. The value estimation problem for loop-free probabilistic programs (over IA

and RA) is #P-complete. The problem is #P-hard already for programs
with Boolean variables only.

2. The value estimation problem for loop-free probabilistic programs over IA can
be approximated with a multiplicative error by a polynomial-time randomized
algorithm that has oracle access to satisfiability of formulas in IA.

3. The value estimation problem for loop-free probabilistic programs over RA
can be approximated with an additive error by a polynomial-time randomized
algorithm that has oracle access to satisfiability of formulas in IA+ RA.

4.2 Evaluation

We have implemented the algorithm from Subsection 3.1 in C++ on top of the
SMT solver Z3 [10]. The SMT solver is used unmodified, with default settings.

Examples. For the evaluation we consider five examples. The first two are
probabilistic programs that use nondeterminism. The remaining examples are
Bayesian networks encoded in our language.

The Monty Hall problem [29] is a classic problem from probability theory. Imag-
ine a television game show with two characters: the player and the host. The
player is facing three doors, numbered 1, 2, and 3; behind one of them is a car,
and behind the other two are goats. The player initially picks one of the doors,
say door i, but does not open it. The host, who knows the position of the car,
then opens another door, say door j with j �= i, and shows a goat behind it. The
player then gets to open one of the remaining doors. There are two available
strategies: stay with the original choice, door i, or switch to the remaining alter-
native, door k �∈ {i, j}. The Monty Hall problem asks, which strategy is better?
It is widely known that, in the standard probabilistic setting of the problem, the
switching strategy is the better one: it has payoff 2/3, i. e., it chooses the door
with the car with probability 2/3; the staying strategy has payoff of only 1/3.
We model this problem as a probabilistic program, where the host’s actions are
modelled using nondeterminism (for details see the extended version [8]).

Approximate Counting in SMT 331

Table 1. Input and algorithm parameters, and running time. The input parameter ε is
the multiplicative approximation factor, α is the desired error probability and a is the
number of satisfying assignments the SMT solver checks for; k′ is the resulting number
of bits and macc and mterm are the maximal hash sizes for ϕacc and ϕterm.

Example ε α a k′ macc mterm time(s) for ϕacc time(s) for ϕterm

Monty Hall (1) 0.2 0.01 1 24 13 20 3.37 4.11

Three prisoners (2) 0.2 0.01 1 36 0 20 0.04 19.84

Alarm (3) 0.5 0.1 20 56 36 49 196.54 132.53

Grass model (4) 0.5 0.1 20 48 34 35 85.71 89.37

Sensitivity est. (5) 0.5 0.1 20 66 56 57 295.09 241.55

The three prisoners problem. Our second example is a problem that appeared
in Martin Gardner’s “Mathematical Games” column in the Scientific American
in 1959. There, one of three prisoners (1, 2, and 3), who are sentenced to death,
is randomly pardoned. The guard gives prisoner 1 the following information: If
2 is pardoned, he gives 1 the name of 3. If 3 is pardoned, he gives him the name
of 2. If 1 is pardoned, he flips a coin to decide whether to name 2 or 3. Provided
that the guard tells prisoner 1 that prisoner 2 is to be executed, determine what
is prisoner 1’s chance to be pardoned?

Pearl’s burglar alarm and grass model. These two examples are classical Bayesian
networks from the literature. Pearl’s burglar alarm example is as given in [18,
Figure 15]; the grass model is taken from [22, Figure 1].

Kidney disease eGFR sensitivity estimation. The last example is a probabilistic
model of a medical diagnostics system with noisy inputs. We considered the pro-
gram given in [18, Figure 11] using a simplified model of the input distributions.
In our setting, we draw the value of the logarithm of the patient’s creatinine
level uniformly from the set {−0.16,−0.09,−0.08, 0, 0.08, 0.09, 0.16, 0.17} (thus
approximating the original lognormal distribution), regardless of the patient’s
gender, and the patient’s age from the interval [30, 80]. The patient’s gender and
ethnicity are distributed in the same way as described in [28].

Results. For each program P , we used our tool to estimate the model count
of the formulas ϕacc and ϕterm; the value val(P) of the program is approximated
by vacc/vterm, where vacc and vterm are the approximate model counts computed
by our tool. Table 1 shows input and algorithm parameters for the considered
examples, as well as running time (in seconds) for computing vacc and vterm. The
approximation factor ε, the bound α on the error probability, and the enumera-
tion limit a for the SMT solver are provided by the user. For examples (1) and
(2), we choose ε to be 0.2, while for the remaining examples we take 0.5. The
chosen value of ε has an impact on the number of copies q of the formula that we
construct, an thus on the number k′ of Boolean variables in the formula given
to the solver. Furthermore, the more satisfying assignments a formula has, the

332 D. Chistikov, R. Dimitrova, and R. Majumdar

larger dimension m of the hash function is reached during the run; macc and
mterm are the maximal values of m reached on the runs on ϕacc and ϕterm.

While our technique can solve these small instances in reasonable time, there
remains much room for improvement. Although SAT solvers can scale to large
instances, it is well known that even a small number of XOR constraints can
quickly exceed the capabilities of state-of-the-art solvers [32]. Since for each m
we add m parity constraints to the formula, we run into the SAT bottleneck:
computing an approximation of mc(ϕacc) for example (4) with ε = 0.3 results in
running time of several hours. (At the same time, exact counting by enumerating
satisfying assignments is not a feasible alternative either: for the formula ϕacc in
example (4), which has more than 400 000 of them, performing this task naively
with Z3 also took several hours.) The efficiency of our approach can benefit
from better handling of XOR constraints in the SMT solver. For example, SAT
solvers such as CryptoMiniSat which deal with XOR constraints efficiently can
scale to over 1K variables [6,5,17]. This, however, requires incorporating such a
SAT solver within Z3.

The scalability needs improvement also in the continuous case, where our
discretization procedure introduces a large number of discrete variables. For
instance, a more realistic model of example (5) would be one in which the
logarithm of the creatinine level is modeled as a continuous random variable.
This would result, after discretization, in formulas with hundreds of Boolean
variables, which appears to be beyond the limit of Z3’s XOR reasoning.

5 Concluding Remarks

Static reasoning questions for probabilistic programs [18,28,19], as well as quan-
titative and probabilistic analysis of software [3,15,14,24], have received a lot of
recent attention. There are two predominant approaches to these questions. The
first one is to perform Monte Carlo sampling of the program [28,3,24,4,27]. To
improve performance, such methods use sophisticated heuristics and variance
reduction techniques, such as stratified sampling in [28,3]. The second approach
is based on reduction to model counting [14,15,26,25], either using off-the-shelf
#SMT solvers or developing #SMT procedures on top of existing tools. An-
other recent approach is based on data flow analysis [9]. Our work introduces
a new dimension of approximation to this area: we reduce program analysis to
#SMT, but carry out a randomized approximation procedure for the count.

By known connections between counting and uniform generation [21,2], our
techniques can be adapted to generate (approximately) uniform random sam-
ples from the set of models of a formula in IA or RA. Uniform generation from
Boolean formulas using hashing techniques was recently implemented and eval-
uated in the context of constrained random testing of hardware [6,5]. We extend
this technique to the SMT setting, which was left as a future direction in [6]
(previously known methods for counting integral points of polytopes [1,15] do
not generalize to the nonlinear theory IA).

Approximate Counting in SMT 333

Further Directions.

Scalability. An extension of the presented techniques may be desirable to cope
with larger instances of#SMT. As argued in subsection 4.2, incorporating XOR-
aware reasoning into Z3 can be an important step in this direction.

Theories. Similar techniques apply to theories other than IA and RA. For
example, our algorithm can be extended to the combined theory of string
constraints and integer arithmetic. While SMT solvers can handle this theory, it
would be nontrivial to design a model counting procedure using the previously
known approach based on generating functions [25].

Distributions. Although the syntax of our probabilistic programs supports only
Uniform, it is easy to simulate other distributions: Bernoulli, uniform with non-
constant boundaries, (approximation of) normal. This, however, will not scale
well, so future work may incorporate non-uniform distributions as a basic prim-
itive. (An important special case covers weighted model counting in SAT, for
which a novel extension of the hashing approach was recently proposed [5].)

Applications. A natural application of the uniform generation technique in the
SMT setting would be a procedure that generates program behaviors uniformly
at random from the space of possible behaviors. (For the model we studied,
program behaviors are trees: the branching comes from nondeterministic choice,
and the random variables are sampled from their respective distributions.)

References

1. Barvinok, A.: A polynomial time algorithm for counting integral points in polyhe-
dra when the dimension is fixed. In: FOCS 1993. ACM (1993)

2. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using
an NP-oracle. Inf. Comput. 163(2), 510–526 (2000)

3. Borges, M., Filieri, A., d’Amorim, M., Pasareanu, C., Visser, W.: Compositional so-
lution space quantification for probabilistic software analysis. In: PLDI, p. 15. ACM
(2014)

4. Chaganty, A., Nori, A., Rajamani, S.: Efficiently sampling probabilistic programs
via program analysis. In: AISTATS. JMLR Proceedings, vol. 31, pp. 153–160.
JMLR.org (2013)

5. Chakraborty,S.,Fremont,D.,Meel,K.,Seshia,S.,Vardi,M.:Distribution-aware sam-
pling and weighted model counting for SAT. In: AAAI 2014, pp. 1722–1730 (2014)

6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator of
SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
608–623. Springer, Heidelberg (2013)

7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg (2013)

8. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and
value estimation for probabilistic programs. CoRR, abs/1411.0659 (2014)

9. Claret, G., Rajamani, S.K., Nori, A.V., Gordon, A.D., Borgström, J.: Bayesian
inference using data flow analysis. In: ESEC/FSE 2013, pp. 92–102 (2013)

10. DeMoura,L.,Bjørner,N.S.:Z3:AnefficientSMTsolver. In:Ramakrishnan,C.R.,Re-
hof, J. (eds.)TACAS2008.LNCS,vol. 4963,pp. 337–340.Springer,Heidelberg (2008)

11. Dyer, M., Frieze, A.: On the complexity of computing the volume of a polyhedron.
SIAM J. Comput. 17(5), 967–974 (1988)

334 D. Chistikov, R. Dimitrova, and R. Majumdar

12. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for ap-
proximating the volume of convex bodies. J. ACM 38(1), 1–17 (1991)

13. Ermon,S.,Gomes,C., Sabharwal,A., Selman,B.:Taming the curse of dimensionality:
Discrete integration by hashing and optimization. In: ICML (2), pp. 334–342 (2013)

14. Filieri, A., Pasareanu, C., Visser, W.: Reliability analysis in symbolic Pathfinder.
In: ICSE, pp. 622–631 (2013)

15. Fredrikson, M., Jha, S.: Satisfiability modulo counting: A new approach for ana-
lyzing privacy properties. In: CSL-LICS, p. 42. ACM (2014)

16. Gomes, C., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model
counting. In: IJCAI, pp. 2293–2299 (2007)

17. Gomes, C., Sabharwal, A., Selman, B.: Model counting. In: Handbook of Satisfi-
ability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 633–654.
IOS Press (2009)

18. Gordon, A., Henzinger, T., Nori, A., Rajamani, S., Samuel, S.: Probabilistic pro-
gramming. In: FOSE 2014, pp. 167–181. ACM (2014)

19. Hur, C.-K., Nori, A., Rajamani, S., Samuel, S.: Slicing probabilistic programs. In:
PLDI, p. 16. ACM (2014)

20. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method: An approach to
approximate counting and integration. In: Approximation Algorithms for NP-hard
Problems, pp. 482–520. PWS Publishing (1996)

21. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial struc-
tures from a uniform distribution. TCS 43, 169–188 (1986)

22. Kiselyov, O., Shan, C.-C.: Monolingual probabilistic programming using general-
ized coroutines. In: UAI, pp. 285–292. AUAI Press (2009)

23. LattE tool, https://www.math.ucdavis.edu/~latte
24. Luckow, K.S., Pasareanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and

approximate probabilistic symbolic execution for nondeterministic programs. In:
ASE 2014, pp. 575–586 (2014)

25. Luu, L., Shinde, S., Saxena, P., Demsky, B.: A model counter for constraints over
unbounded strings. In: PLDI, p. 57. ACM (2014)

26. Ma, F., Liu, S., Zhang, J.: Volume computation for boolean combination of lin-
ear arithmetic constraints. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI),
vol. 5663, pp. 453–468. Springer, Heidelberg (2009)

27. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K., Grossman, D., Ceze, L.:
Expressing and verifying probabilistic assertions. In: PLDI, p. 14. ACMPress (2014)

28. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic
programs: inferring whole program properties from finitely many paths. In: PLDI,
pp. 447–458. ACM (2013)

29. Selvin, S.: A problem in probability. American Statistician 29(1), 67 (1975)
30. Sipser, M.: A complexity-theoretic approach to randomness. In: STOC, pp. 330–335.

ACM (1983)
31. Stockmeyer, L.: On approximation algorithms for #P . SIAM J. of Computing 14,

849–861 (1985)
32. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)
33. Valiant, L.: The complexity of computing the permanent. Theoretical Computer

Science 9, 189–201 (1979)
34. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoretical

Computer Science 47, 85–93 (1986)
35. Zhou, M., He, F., Song, X., He, S., Chen, G., Gu, M.: Estimating the volume of

solution space for satisfiability modulo linear real arithmetic. Theory of Computing
Systems 56(2), 347–371 (2015)

https://www.math.ucdavis.edu/~latte

Pushing the Envelope of Optimization Modulo Theories
with Linear-Arithmetic Cost Functions�

R. Sebastiani and P. Trentin

DISI, University of Trento, Italy

Abstract. In the last decade we have witnessed an impressive progress in the ex-
pressiveness and efficiency of Satisfiability Modulo Theories (SMT) solving tech-
niques. This has brought previously-intractable problems at the reach of
state-of-the-art SMT solvers, in particular in the domain of SW and HW veri-
fication. Many SMT-encodable problems of interest, however, require also the
capability of finding models that are optimal wrt. some cost functions. In previous
work, namely Optimization Modulo Theory with Linear Rational Cost Functions
– OMT(LRA∪ T), we have leveraged SMT solving to handle the minimization
of cost functions on linear arithmetic over the rationals, by means of a combina-
tion of SMT and LP minimization techniques.

In this paper we push the envelope of our OMT approach along three di-
rections: first, we extend it to work with linear arithmetic on the mixed inte-
ger/rational domain, by means of a combination of SMT, LP and ILP minimiza-
tion techniques; second, we develop a multi-objective version of OMT, so that
to handle many cost functions simultaneously or lexicographically; third, we de-
velop an incremental version of OMT, so that to exploit the incrementality of
some OMT-encodable problems. An empirical evaluation performed on OMT-
encoded verification problems demonstrates the usefulness and efficiency of these
extensions.

1 Introduction

In many contexts including automated reasoning (AR) and formal verification (FV)
important decision problems are effectively encoded into and solved as Satisfiability
Modulo Theories (SMT) problems. In the last decade efficient SMT solvers have been
developed, that combine the power of modern conflict-driven clause-learning (CDCL)
SAT solvers with the expressiveness of dedicated decision procedures (T -solvers) for
several first-order theories of practical interest like, e.g., those of linear arithmetic over
the rationals (LRA) or the integers (LIA) or their combination (LRIA), those of
non-linear arithmetic over the reals (NLRA) or the integers (NLIA), of arrays (AR),
of bit-vectors (BV), and their combinations. (See [19,20,3] for an overview.) This has
brought previously-intractable problems at the reach of state-of-the-art SMT solvers, in
particular in the domain of software (SW) and hardware (HW) verification.

Many SMT-encodable problems of interest, however, may require also the capability
of finding models that are optimal wrt. some cost function over arithmetical variables.

� This work is supported by Semiconductor Research Corporation (SRC) under GRC Research
Project 2012-TJ-2266 WOLF. We thank Alberto Griggio for support with MATHSAT5 code.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 335–349, 2015.
DOI: 10.1007/978-3-662-46681-0_27

336 R. Sebastiani and P. Trentin

(See e.g. [22,16,21] for a rich list of such applications.) For instance, in SMT-based
model checking with timed or hybrid systems (e.g. [2,1]) you may want to find execu-
tions which optimize the value of some parameter (e.g., a clock timeout value, or the
total elapsed time) while fulfilling/violating some property (e.g., find the minimum time
interval for a rail-crossing causing a safety violation).

Surprisingly, only few works extending SMT to deal with optimization problems
have been presented in the literature [18,8,22,11,17,9,21,16,15,5] –most of which han-
dle problems which are different to that addressed in this paper [18,8,11,17,9]. (We refer
the reader to the related work section of [21] for a discussion on these approaches.)

Sebastiani and Tomasi [22,21] presented two procedures for adding to SMT(LRA∪
T) the functionality of finding models minimizing some LRA cost variable –T be-
ing some (possibly empty) stably-infinite theory s.t. T and LRA are signature-disjoint.
This problem is referred to as Optimization Modulo Theories with linear cost func-
tions on the rationals, OMT(LRA ∪ T). (If T is the empty theory, then we refer to
it as OMT(LRA).) 1 These procedures combine standard SMT and LP minimization
techniques: the first, called offline, is much simpler to implement, since it uses an incre-
mental SMT solver as a black-box, whilst the second, called inline, embeds the search
for optimum within the CDCL loop schema, and as such it is more sophisticate and effi-
cient, but it requires modifying the code of the SMT solver. In [22,21] these procedures
have been implemented on top of the MATHSAT5 SMT solver [10] into a tool called
OPTIMATHSAT, and an extensive empirical evaluation is presented.

Li et al. [16] extended the OMT(LRA) problem by considering contemporarily
many cost functions for the input formula ϕ, namely {cost1, ..., costk}, so that the
problem consists in enumerating k independent models for ϕ, each minimizing one
specific costi. In [16] they presented a novel offline algorithm for OMT(LRA), and
implemented it into the tool SYMBA. Unlike with the procedures in [22,21], the algo-
rithm described in [16] does not use a LP minimization procedure: rather, a sequence
of blackbox calls to an underlying SMT solver (Z3) allows for finding progressively-
better solutions along some objective direction, either forcing discrete jumps to some
bounds induced by the inequalities in the problem, or proving such objective is un-
bounded. SYMBA is used as backend engine of the SW model checker UFO. 2 An
empirical evaluation on problems derived from SW verification shows the usefulness of
this multiple-cost approach.

Larraz et al. [15] present incomplete SMT(NLIA) and MaxSMT(NLIA) proce-
dures, which use an OMT(LIA) tool as an internal component. The latter procedure,
called BCLT, is described neither in [15] nor in any previous publication; however, it
has been kindly made available to us by their authors upon request, together with a link
to the master student’s thesis describing it. 3

Finally, we have been informed by a reviewer of an invited presentation given by
Bjørner and Phan two months after the submission of this paper [5], describing general
algorithms for optimization in SMT, including MaxSMT, incremental, multi-objective

1 Importantly, both MaxSMT ([18,8,9]) and SMT with pseudo-Boolean constraints and costs [8]
are straightforwardly encoded into OMT [22,21].

2 https://bitbucket.org/arieg/ufo/
3 http://upcommons.upc.edu/pfc/handle/2099.1/14204?locale=en.

https://bitbucket.org/arieg/ufo/
http://upcommons.upc.edu/pfc/handle/2099.1/14204?locale=en

Pushing the Envelope of Optimization Modulo Theories 337

and lexicographic OMT, Pareto-optimality, which are implemented into the tool νZ on
top of Z3. Remarkably, [5] presents specialized procedures for MaxSMT, and enriches
the offline OMT schema of [22,21] with specialized algorithms for unbound-solution
detection and for bound-tightening.

We are not aware of any other OMT tool currently available.
We remark a few facts about the OMT tools in [22,21,16,15]. First, none of them

has an incremental interface, allowing for pushing and popping subformulas (including
definitions of novel cost functions) so that to reuse previous search from one call to
the other; in a FV context this limitation is relevant, because often SMT backends are
called incrementally (e.g., in the previously-mentioned example of SMT-based bounded
model checking of timed&hybrid systems). Second, none of the above tools supports
mixed integer/real optimization, OMT(LRIA). Third, none of the above tools supports
both multi-objective optimization and integer optimization. Finally, neither SYMBA nor
BCLT currently handle combined theories.

In this paper we push the envelope of the OMT(LRA ∪ T) approach of [22,21]
along three directions: (i) we extend it to work also with linear arithmetic on the mixed
integer/rational domain, OMT(LRIA ∪ T), by means of a combination of SMT, LP
and ILP minimization techniques; (ii) we develop a multi-objective version of OMT,
so that to handle many cost functions simultaneously or lexicographically; (iii) we de-
velop an incremental version of OMT, so that to exploit the incrementality of some
OMT-encodable problems. We have implement these novel functionalities in OPTI-
MATHSAT. An empirical evaluation performed on OMT-encoded formal verification
problems demonstrates the usefulness and efficiency of these extensions.

Some more details can be found in an extended version of this paper. 4

Content. The paper is organized as follows: in §2 we provide the necessary background
knowledge on SMT and OMT; in §3 we introduce and discuss the above-mentioned
novel extensions of OMT; in §4 we perform an empirical evaluation of such procedures.

2 Background

2.1 Satisfiability Modulo Theories

We assume a basic background knowledge on first-order logic and on CDCL SAT solv-
ing. We consider some first-order theory T , and we restrict our interest to ground for-
mulas/literals/atoms in the language of T (T -formulas/literals/atoms hereafter).

A theory solver for T , T -solver, is a procedure able to decide the T -satisfiability of
a conjunction/set μ of T -literals. If μ is T -unsatisfiable, then T -solver returns UNSAT

and a set/conjunction η of T -literals in μ which was found T -unsatisfiable; η is called
a T -conflict set, and ¬η a T -conflict clause. If μ is T -satisfiable, then T -solver returns
SAT; it may also be able to return some unassigned T -literal l �∈ μ from a set of all
available T -literals, s.t. {l1, ..., ln} |=T l, where {l1, ..., ln} ⊆ μ. We call this process
T -deduction and (

∨n
i=1 ¬li ∨ l) a T -deduction clause. Notice that T -conflict and T -

deduction clauses are valid in T . We call them T -lemmas.
4 Available at http://optimathsat.disi.unitn.it.

http://optimathsat.disi.unitn.it

338 R. Sebastiani and P. Trentin

Given a T -formula ϕ, the formula ϕp obtained by rewriting each T -atom in ϕ into
a fresh atomic proposition is the Boolean abstraction of ϕ, and ϕ is the refinement of
ϕp. Notationally, we indicate by ϕp and μp the Boolean abstraction of ϕ and μ, and by
ϕ and μ the refinements of ϕp and μp respectively.

In a lazy SMT(T) solver, the Boolean abstraction ϕp of the input formula ϕ is given
as input to a CDCL SAT solver, and whenever a satisfying assignment μp is found s.t.
μp |= ϕp, the corresponding set of T -literals μ is fed to the T -solver; if μ is found
T -consistent, then ϕ is T -consistent; otherwise, T -solver returns a T -conflict set η
causing the inconsistency, so that the clause ¬ηp is used to drive the backjumping and
learning mechanism of the SAT solver. The process proceeds until either a T -consistent
assignment μ is found (ϕ is T -satisfiable), or no more assignments are available (ϕ is
T -unsatisfiable).

Important optimizations are early pruning and T -propagation. The T -solver is in-
voked also when an assignment μ is still under construction: if it is T -unsatisfiable, then
the procedure backtracks, without exploring the (possibly many) extensions of μ; if it
is T -satisfiable, and if the T -solver is able to perform a T -deduction {l1, ..., ln} |=T l,
then l can be unit-propagated, and the T -deduction clause (

∨n
i=1 ¬li ∨ l) can be used

in backjumping and learning. To this extent, in order to maximize the efficiency, most
T -solvers are incremental and backtrackable, that is, they are called via a push&pop
interface, maintaining and reusing the status of the search from one call and the other.

The above schema is a coarse abstraction of the procedures underlying most state-
of-the-art SMT tools. The interested reader is pointed to, e.g., [19,20,3] for details.

2.2 Optimization Modulo Theories

We recall the basic ideas about OMT(LRA ∪ T) and about the inline procedure in
[22,21]. In what follows, T is some stably-infinite theory with equality s.t. LRA and
T are signature-disjoint. (T can be a combination of theories.) We call an Optimiza-
tion Modulo LRA ∪ T problem, OMT(LRA ∪ T), a pair 〈ϕ, cost〉 such that ϕ is an
SMT(LRA ∪ T) formula and cost is an LRA variable occurring in ϕ, representing
the cost to be minimized. The problem consists in finding a LRA-model M for ϕ (if
any) whose value of cost is minimum. We call an Optimization Modulo LRA problem
(OMT(LRA)) an OMT(LRA ∪ T) problem where T is empty. If ϕ is in the form
ϕ′ ∧ (cost < c) [resp. ϕ′ ∧¬(cost < c)] for some value c ∈ Q, then we call c an upper
bound [resp. lower bound] for cost. If ub [resp. lb] is the minimum upper bound [resp.
the maximum lower bound] for ϕ, we also call the interval [lb, ub[the range of cost.

Remark 1. [22,21] explain a general technique to encode an OMT(LRA) problem into
OMT(LRA ∪ T) by exploiting the Delayed Theory Combination technique [6] im-
plemented in MATHSAT5. It is easy to see that this holds also for LIA and LRIA.
Therefore, for the sake of brevity and readability, hereafter we consider the case where
T is the empty theory (OMT(LRA), OMT(LIA) or OMT(LRIA)), referring the
reader to [22,21] for a detailed explanation about how to handle the general case.

In the inline OMT(LRA) schema, the procedure takes as input a pair 〈ϕ, cost〉, plus
optionally values for lb and ub (which are implicitly considered to be −∞ and +∞ if

Pushing the Envelope of Optimization Modulo Theories 339

not present), and returns the model M of minimum cost and its cost u
def
= M(cost);

it returns the value ub and an empty model if ϕ is LRA-inconsistent. The standard
CDCL-based schema of the SMT solver is modified as follows.
Initialization. The variables l, u (defining the current range) are initialized to lb and ub
respectively, the variable pivot (defining the pivot in binary search) is not initialized,
the LRA-atom PIV is initialized to � and the output model M is initialized to be an
empty model.
Range Updating & Pivoting. Every time the search of the CDCL SAT solver gets
back to decision level 0, the range [l, u[is updated s.t. u [resp. l] is assigned the lowest
[resp. highest] value ui [resp. li] such that the atom (cost < ui) [resp. ¬(cost < li)] is
currently assigned at level 0. Then the heuristic function BinSearchMode() is invoked,
which decides whether to run the current step in binary- or in linear-search mode: in
the first case (which can occur only if l > −∞ and u < ∞) a value pivot ∈]l, u[is
computed (e.g. pivot = (l+ u)/2), and the (possibly new) atom PIV

def
= (cost < pivot)

is decided to be true (level 1) by the SAT solver. This temporarily restricts the cost range
to [l, pivot[. Then the CDCL solver proceeds its search, as in §2.1.
Decreasing the Upper Bound. When an assignment μ is generated s.t. μp |= ϕp and
which is found LRA-consistent by LRA-Solver, μ is also fed to LRA-Minimize, re-
turning the minimum cost min of μ; then the unit clause Cµ

def
= (cost < min) is learned

and fed to the backjumping mechanism, which forces the SAT solver to backjump to
level 0, then unit-propagating (cost < min). This restricts the cost range to [l,min[.
LRA-Minimize is embedded within LRA-Solver –it is a simple extension of the LP
algorithm in [12]– so that it is called incrementally after it, without restarting its search
from scratch. Notice that the clauses Cµ ensure progress in the minimization every time
that a new LRA-consistent assignment is generated.
Termination. The procedure terminates when the embedded SMT-solving algorithm
reveals an inconsistency, returning the current values of u and M.

As a result of these modifications, we also have the following typical scenario.
Increasing the Lower Bound. In binary-search mode, when a conflict occurs and the
conflict analysis of the SAT solver produces a conflict clause in the form ¬PIV ∨ ¬η′
s.t. all literals in η′ are assigned true at level 0 (i.e., ϕ∧PIV is LRA-inconsistent), then
the SAT solver backtracks to level 0, unit-propagating ¬PIV. This case permanently
restricts the cost range to [pivot, u[.

Notice that, to guarantee termination, binary-search steps must be interleaved with
linear-search ones infinitely often. We refer the reader to [22,21] for details and for a
description of further improvements to the basic inline procedure.

3 Pushing the Envelope of OMT

3.1 From OMT(LRA) to OMT(LRIA)

We start from the observation that the only LRA-specific components of the inline
OMT(LRA) schema of §2.2 are the T -solving and minimizing procedures. Thus, under
the assumption of having an efficient LRIA-Solver already implemented inside the
embedded SMT solver –like we have in MATHSAT5 [14]– the schema in §2.2 can be

340 R. Sebastiani and P. Trentin

adapted to LRIA by invoking an LRIA-specific minimizing procedure each time a
truth-assignment μ s.t. μp |= ϕp is generated.

Remark 2. Notice that in principle in LIA the minimization step is not strictly nec-
essary if the input problem is lower bounded. In fact, to find the optimum cost value
it would be sufficient to iteratively enumerate and remove each solution found by the
standard implementation of the LIA-Solver, because each step guarantees an improve-
ment of at least 1. Minimizing the cost value at each iteration of the SMT engine,
however, allows for speeding up the optimization search by preventing the current truth
assignment μ from being generated more than once. In addition, the availability of a
specialized LIA-Minimize procedure is essential to recognize unbounded problems.

The problem of implementing an efficient OMT(LRIA) tool reduces thus to that
of implementing an efficient minimizer in LRIA, namely LRIA-Minimize, which
exploits and cooperates in synergy with the other components of the SMT solver. In
particular, it is advisable that LRIA-Minimize is embedded into the LRIA-Solver, so
that it is called incrementally after the latter has checked the LRIA-consistency of the
current assignment μ. (Notice that, e.g., embedding into LRIA-Minimize a MILP tool
from the shelf would not match these requirements.) To this extent, we have investigated
both theoretically and empirically three different schemas of Branch&Bound LRIA-
Minimize procedure, which we call basic, advanced and truncated.

The first step performed by LRIA-Minimize is to check whether cost is lower
bounded. Since a feasible MILP problem is unbounded if and only if its correspond-
ing continuous relaxation is unbounded [7],5 we run LRA-Minimize on the relaxation
of μ. If the relaxed problem if unbounded, then LIA-Minimize returns −∞; otherwise,
LRA-Minimize returns the minimum value of cost in the relaxed problem, which we
set as the current lower bound lb for cost in the original problem. We also initialize the
upper bound ub for cost to the value M(cost), where M is the model returned by the
most recent call to the LRIA-Solver on μ.

Then we explore the solution space by means of an LP-based Branch&Bound pro-
cedure that reduces the original MILP problem to a sequence of smaller sub-problems,
which are solved separately.

Basic Branch&Bound. We describe first a naive version of the Branch&Bound min-
imization procedure. (Since it is very inefficient, we present it only as a baseline for
the other approaches.) We first invoke LRA-Minimize on the relaxation of the current
LRIA problem. If the relaxation is found LRA-unsatisfiable, then also the
original problem is LRIA-unsatisfiable, and the procedure backtracks. Otherwise,
LRA-Minimize returns a minimum-cost model M of cost min. If such solution is
LRIA-compliant, then we can return M and min, setting ub = min. (By “LRIA-
compliant solution” here we mean that the integer variables are all given integer values,
whilst rational variables can be given fractional values.)

Otherwise, we select an integer variable xj which is given a fractional value x∗
j in

M as branching variable, and split the current problem into a pair of complementary
sub-problems, by augmenting them respectively with the linear cuts (xj ≤ x∗

j �) and

5 As in [7], by “continuous relaxation” –henceforth simply “relaxation”– we mean that the inte-
grality constraints on the integer variables are relaxed, so that they can take fractional values.

Pushing the Envelope of Optimization Modulo Theories 341

(xj ≥ �x∗
j �). Then, we separately explore each of these two sub-problems in a recursive

fashion, and we return the best of the two minimum values of cost which is found in
the two branches, with the relative model.

In order to make this exploration more efficient, as the recursive Branch&Bound
search proceeds, we keep updating the upper bound ub to the current best value of cost
corresponding to an LRIA-compliant solution. Then, we can prune all sub-problems
in which the LRA optimum cost value is greater or equal than ub, as they cannot
contain any better solution.

Advanced Branch&Bound. Unlike the basic scheme, the advanced Branch&Bound
is built on top of the LRIA-Solver of MATHSAT5 and takes advantage of all the ad-
vanced features for performance optimization that are already implemented there [14].
In particular, we re-use its very-efficient internal Branch&Bound procedure for LRIA-
solving, which exploits historical information to drive the search and achieves higher
pruning by back-jumping within the Branch&Bound search tree, driven by the analysis
of unsatisfiable cores. (We refer the reader to [14] for details.)

We adapt the LRIA-solving algorithm of [14] to minimization as follows. As be-
fore, the minimization algorithm starts by setting ub = M(cost), M being the model
for μ which was returned by the most recent call to the LRIA-Solver. Then the linear
cut (cost < ub) is pushed on top of the constraint stack of the LRIA-Solver, which
forces the search to look for a better LRIA-compliant solution than the current one.

Then, we use the internal Branch&Bound component of the LRIA-Solver to seek
for a new LRIA-compliant solution. The first key modification is that we invoke
LRA-Minimize on each node of Branch&Bound search tree to ensure that x∗

LP is opti-
mal in the LRA domain. The second modification is that, every time a new solution is
found –whose cost ub improves the previous upper bound by construction– we empty
the stack of LRIA-Solver, push there a new cut in the form (cost < ub) and restart
the search. Since the problem is known to be bounded, there are only a finite number of
LRIA-compliant solutions possible that can be removed from the search space. There-
fore, the set of constraints is guaranteed to eventually become unsatisfiable, and at that
point ub is returned as optimum cost value in μ to the SMT solver, which learns the
unit clause Cµ

def
= (cost < ub).

Truncated Branch&Bound. We have empirically observed that in most cases the
above scheme is effective enough that a single loop of advanced Branch&Bound is
sufficient to find the optimal solution for the current truth assignment μ. However, the
advanced Branch&Bound procedure still performs an additional loop iteration to prove
that such solution is indeed optimal, which causes additional unnecessary overhead. An-
other drawback of advanced B&B is that for degenerate problems the Branch&Bound
technique is very inefficient. In such cases, it is more convenient to interrupt the B&B
search and simply return ub to the SMT solver, s.t. the unit clause Cµ

def
= (cost < ub)

is learned; in fact, in this way we can easily re-use the entire stack of LRIA-Solver
routines in MATHSAT5 to find an improved solution more efficiently.

Therefore, we have implemented a “sub-optimum” variant of LRIA-Minimize in
which the inner LRIA-Solver minimization procedure stops as soon as either it finds
its first solution or it reaches a certain limit on the number of branching steps. The draw-

342 R. Sebastiani and P. Trentin

back of this variant is that, in some cases, it analyzes a truth assignment μ (augmented
with the extra constraint (cost < ub)) more than once.

3.2 Multiple-objective OMT

We generalize the OMT(LRIA) problem to multiple cost functions as follows. A
multiple-cost OMT(LRIA) problem is a pair 〈ϕ, C〉 s.t C def

= {cost1, ..., costk} is a set
of LRIA-variables occurring in ϕ, and consists in finding a set of LRIA-models
{M1, ...,Mk} s.t. each Mi makes costi minimum. We extend the OMT(LRA)
[OMT(LRIA)] procedures of §2.2 and §3.1 to handle multiple-cost problems. The
procedure works in linear-search mode only.6 It takes as input a pair 〈ϕ, C〉 and returns
a list of minimum-cost models {M1, ...,Mk}, plus the corresponding list of minimum
values {u1, ..., uk}. (If ϕ is LRIA-inconsistent, it returns ui = +∞ for every i.)
Initialization. First, we set ui = +∞ for every i, and we set C∗ = C, s.t. C∗ is the list
of currently-active cost functions.
Decreasing the Upper Bound. When an assignment μ is generated s.t. μp |= ϕp and
which is found LRIA-consistent by LRIA-Solver, μ is also fed to LRIA-Minimize.
For each costi ∈ C∗:

(i) LRIA-Minimize finds an LRIA-model M for μ of minimum cost mini;

(ii) if mini is −∞, then there is no more reason to investigate costi, so that we set
ui = −∞ and Mi = M, and costi is dropped from C∗;

(iii) if mini < ui, then we set ui = mini and Mi = M.

As with the single-cost versions, LRIA-Minimize is embedded within LRIA-Solver,
so that it is called incrementally after it, without restarting its search from scratch. After
that, the clause

Cµ
def
=

∨

costi∈C∗
(costi < ui) (1)

is learned, and the CDCL-based SMT solving process proceeds its search. Notice that,
since by construction μ ∧ Cµ |=LRIA ⊥, a theory-driven backjumping step [3] will
occur as soon as μ is extended to assign to true some literal of Cµ.
Termination. The procedure terminates either when C∗ is empty or when ϕ is found
LRIA-inconsistent. (The former case is a subcase of the latter, because it would cause
the generation of an empty clause Cµ (1).)

The clauses Cµ (1) ensure a progress in the minimization of one or more of the
costi’s every time that a new LRIA-consistent assignment is generated. We notice
that, by construction, Cµ is such that μ ∧ Cµ |=LRIA ⊥, so that each μ satisfying
the original version of ϕ can be investigated by the minimizer only once. Since we
have only a finite number of such candidate assignments for ϕ, this guarantees the

6 Since the linear-search versions of the procedures in §2.2 and §3.1 differ only for the fact that
they invoke LRA-Minimize and LRIA-Minimize respectively, here we do not distinguish
between them. We only implicitly make the assumption that the LRIA-Minimize does not
work in truncated mode, so that it is guaranteed to find a minimum in one run. Such assumption
is not strictly necessary, but it makes the explanation easier.

Pushing the Envelope of Optimization Modulo Theories 343

1 2 3 4 5 6 70

1

2

3 \
\
\

$\mu_1

cost1

cost2

ϕ
def
= (1 ≤ y) ∧ (y ≤ 3)
∧ (((1 ≤ x) ∧ (x ≤ 3)) ∨ (x ≥ 4))
∧ (cost1 = −y) ∧ (cost2 = −x− y)

μ1
def
= {(1 ≤ y), (y ≤ 3), (1 ≤ x), (x ≤ 3),

(cost1 = −y), (cost2 = −x− y)}
μ2

def
= {(cost1 = −y), (cost2 = −x− y),

(1 ≤ y), (y ≤ 3), (x ≥ 4),
(cost2 < −6)}

μ2μ1

Fig. 1. In one possible execution over the LRA-formula ϕ, the CDCL-based SMT engine finds
the truth assignment μ1 first, which is found LRA-consistent by the LRA-solver. (For the sake
of readability, we’ve removed from the μi’s the redundant literals like “¬(x ≥ 4)” from μ1.)
Then the minimizer finds the minima min1 = −3, min2 = −6, the upper bounds are updated to
these values, and the clause (cost1 < −3)∨ (cost2 < −6) is learned. The next LRA-consistent
assignment found is necessarily μ2, from which the minimizer finds the minima min1 = −3,
min2 = −∞. Hence cost2 is dropped from C∗, and the unit clause (cost1 < −3) is learned,
making ϕ LRA-inconsistent, so that no more assignment is found and the procedure terminates.
In a luckier execution μ2 \ {(cost2 < −6)} is found first, thus the minimizer finds directly the
minima min1 = −3, min2 = −∞ s.t. (cost1 < −3) is learned, and the procedure terminates
without generating μ1.

termination of the procedure. The correctness and completeness is guaranteed by these
of LRIA-Minimize, which returns the minimum values for each such assignment.

To illustrate the behaviour of our procedure, and to allow for a direct comparison wrt.
the procedure described in [16], in Figure 1 we present its execution on the toy example
LRA-problem in [16]. Notice that, unlike the algorithm in [16], our procedure is driven
by the Boolean search: each time a novel assignment is generated, it eagerly produces
the maximum progress for as many costi’s as possible. The algorithm described in
[16], instead, does not use a LP minimization procedure: rather, a sequence of blackbox
calls to an underlying SMT solver (Z3) allows for finding progressively-better solutions
along some objective direction, either forcing discrete jumps to some bounds induced
by the inequalities in the problem, or proving such objective is unbounded.

The procedure is improved in various ways. First, we notice that the clause Cµ is
strictly stronger than the clause Cµ′ which was generated with the previous truth as-
signment μ′, so that Cµ′ can be safely dropped, keeping only one of such clauses at a
time. This is as if we had only one such clause whose literals are progressively strength-
ened. Second, before step (i), the constraint (costi < ui) can be temporarily pushed
into μ: if LRIA-Minimize returns UNSAT, then there is no chance to improve the cur-
rent value of ui, so that the above constraint can be popped from μ and step (ii) and (iii)
can be skipped for the current costi. Third, in case the condition in step (iii) holds, it is
possible to learn also the LRIA-valid clause (costi < ui) → (costi < u′i) s.t. u′i is the
previous value of ui. This allows for “activating” all previously-learned clauses in the
form ¬(costi < u′i) ∨ C as soon as (costi < ui) is assigned to true.

Lexicographic Combination. As in [5], we easily extend our inline procedure to deal
with the lexicographic combination of multiple costs {cost1, ..., costk}. We start by
looking for a minimum for cost1: as soon as a minimum u1 with its modelM1 is found,

344 R. Sebastiani and P. Trentin

if u1 = −∞ then we stop, otherwise we substitute inside ϕ the unit clause (cost1 < u1)

with (cost1 = u1), we set u2
def
= M1(cost2), and we look for the minimum of cost2 in

the resulting formula. This is repeated until all costi’s have been considered.

3.3 Incremental OMT

Many modern SMT solvers, including MATHSAT5, provide a stack-based incremental
interface, by which it is possible to push/pop sub-formulas φi into a stack of formulas
Φ

def
= {φ1, ..., φk}, and then to check incrementally the satisfiability of

∧k
i=1 φi. The

interface maintains the status of the search from one call to the other, in particular it
records the learned clauses (plus other information). Consequently, when invoked on
Φ, the solver can reuse a clause C which was learned during a previous call on some Φ′

if C was derived only from clauses which are still in Φ.
In particular, in MATHSAT5 incrementality is achieved by first rewriting Φ into

{A1 → φ1, ..., Ak → φk}, each Ai being a fresh Boolean variable, and then by run-
ning the SMT solver under the assumption of the variables {A1, ..., Ak}, in such a way
that every learned clause which is derived from some φi is in the form ¬Ai ∨ C [13].
Thus it is possible to safely keep the learned clause from one call to the other because, if
φi is popped from Φ, then Ai is no more assumed, so that the clause ¬Ai∨C is inactive.
(Such clauses can be garbage-collected from time to time to reduce the overhead.)

Since none of the OMT tools in [22,21,16,15] provides an incremental interface, nor
such paper explains how to achieve it, here we address explicitly the problem of making
OMT incremental.

We start noticing that if (i) the OMT tool is based on the schema in §2.1 or on
its LRIA and multiple-cost extensions of §3.1 and §3.2, and (ii) the embedded SMT
solver has an incremental interface, like that of MATHSAT5, then an OMT tool can be
easily made incremental by exploiting the incremental interface of its SMT solver.

In fact, in our OMT schema all learned clauses are either T -lemmas or they are
derived from T -lemmas and some of the subformulas φi’s, with the exception of the
clauses Cµ

def
= (cost < min) (§2.2) [resp. Cµ

def
= (cost < min) (§3.1) and Cµ

def
=∨

costi∈C∗(costi < ui) (§3.2),] which are “artificially” introduced to ensure progress
in the minimization steps. (This holds also for the unit clauses (PIV) which are learned
in an improved version, see [22,21].) Thus, in order to handle incrementality, it suffices
to drop only these clauses from one OMT call to the other, while preserving all the
others, as with incremental SMT.

In a more elegant variant of this technique, which we have used in our implemen-
tation, at each incremental call to OMT (namely the k-th call) a fresh Boolean vari-
able A(k) is assumed. Whenever a new minimum min is found, the augmented clause
C∗

µ
def
= ¬A(k) ∨ (cost < min) is learned instead of Cµ

def
= (cost < min). In the sub-

sequent calls to OMT, A(k) is no more assumed, so that the augmented clauses C∗
µ’s

which have been learned during the k-th call are no more active.
Notice that in this process reusing the clauses that are learned by the underlying

SMT-solving steps is not the only benefit. In fact also the learned clauses in the form
¬(cost < min) ∨ C which may be produced after learning Cµ

def
= (cost < min) are

preserved to the next OMT calls. (Same discourse holds for the Cµ’s of §3.1 and §3.2.)
In the subsequent calls such clauses are initially inactive, but they can be activated as

Pushing the Envelope of Optimization Modulo Theories 345

soon as the current minimum, namely min′, becomes smaller or equal than min and the
novel clause (cost < min′) is learned, so that (cost < min) can be T -propagated or
(¬(cost < min′) ∨ (cost < min)) can be T -learned. This allows for reusing lots of
previous search.

4 Experimental Evaluation

We have extended OPTIMATHSAT [22,21] by implementing the advanced and trun-
cated B&B OMT(LRIA ∪ T) procedures described in §3.1. On top of that, we have
implemented our techniques for multi-objective OMT (§3.2) —including the lexico-
graphic combination— and incremental OMT (§3.3). Then, we have investigated em-
pirically the efficiency of our new procedures by conducing two different experimental
evaluations, respectively on OMT(LRIA) (§4.1) and on multi-objective and incremen-
tal OMT(LRA) (§4.2). All tests in this section were executed on two identical 8-core
2.20Ghz Xeon machines with 64 GB of RAM and running Linux with 3.8-0-29 kernel,
with an enforced timeout of 1200 seconds.

For every problem in this evaluation, the correctness of the minimum costs found
by OPTIMATHSAT and its competitor tools, namely “min”, have been cross-checked
with the SMT solver Z3, by checking both the inconsistency of ϕ ∧ (cost < min) and
the consistency of ϕ ∧ (cost = min). In all tests, when terminating, all tools returned
the correct results. To make the experiments reproducible, the full-size plots, a Linux
binary of OPTIMATHSAT, the input OMT problems, and the results are available. 7

4.1 Evaluation of OMT(LRIA) Procedures

Here we consider three different configurations of OPTIMATHSAT based on the search
schemas (linear vs. binary vs. adaptive, denoted respectively by “-LIN”, “-BIN” and “-
ADA”) presented in §2.2; the adaptive strategy dynamically switches the search schemas
between linear and binary search, based on the heuristic described in [21]. We run
OPTIMATHSAT both with the advanced and truncated branch&bound minimization
procedures for LRIA presented in §3.1, denoted respectively by “-ADV” and “-TRN”.

In order to have a comparison of OPTIMATHSAT with both νZ and BCLT, in this
experimental evaluation we restricted our focus on OMT(LIA) only. Here we do not
consider SYMBA, since it does not support OMT(LIA). We used as benchmarks a set
of 544 problems derived from SMT-based Bounded Model Checking and K-Induction
on parametric problems, generated via the SAL model checker.8

The results of this evaluation are shown in Figure 2. By looking at the table, we
observe that the best OPTIMATHSAT configuration on these benchmarks is -TRN-ADA,
which uses the truncated branch&bound approach within the LIA-Minimize procedure
with adaptive search scheme. We notice that the differences in performances among the
various configurations of OPTIMATHSAT are small on these specific benchmarks.

7 http://disi.unitn.it/˜trentin/resources/tacas15.tar.gz; BCLT

is available at http://www.lsi.upc.edu/˜oliveras/bclt.gz; SYMBA is
available at https://bitbucket.org/arieg/symba/src; νZ is available at
http://rise4fun.com/z3opt.

8 http://sal.csl.sri.com/

http://disi.unitn.it/~trentin/resources/tacas15.tar.gz
http://www.lsi.upc.edu/~oliveras/bclt.gz
https://bitbucket.org/arieg/symba/src
http://rise4fun.com/z3opt
http://sal.csl.sri.com/

346 R. Sebastiani and P. Trentin

Tool: #inst. #solved #timeout time
BCLT 544 500 44 93040
νZ 544 544 0 36089
OptiM.-adv-lin 544 544 0 91032
OptiM.-adv-bin 544 544 0 99214
OptiM.-adv-ada 544 544 0 88750
OptiM.-trn-lin 544 544 0 91735
OptiM.-trn-bin 544 544 0 99556
OptiM.-trn-ada 544 544 0 88730

Fig. 2. A table comparing the performances of BCLT, νZ and different configurations of OPTI-
MATHSAT on Bounded Model Checking problems

Comparing the OPTIMATHSAT versions against BCLT and νZ , we notice that OPTI-
MATHSATand νZ solve all input formulas regardless of their configuration, νZ having
better time performances, whilst BCLT timeouts on 44 problems.

4.2 Evaluation of Incremental and Multiple-objective OMT

As mentioned in Section §1, so far BCLT does not feature multi-objective OMT, and
neither SYMBA nor BCLT implement incremental OMT. Thus, in order to test the ef-
ficiency of our multiple-objective OMT approach, we compared three versions of OP-
TIMATHSAT against the corresponding versions of νZ and the two best-performing
versions of SYMBA presented in [16], namely SYMBA(100) and SYMBA(40)+OPT-Z3.

So far SYMBA handles only OMT(LRA), without combinations with other theories.
Moreover, it currently does not support strict inequalities inside the input formulas.
Therefore for both comparisons we used as benchmarks the multiple-objective prob-
lems which were proposed in [16] to evaluate SYMBA, which were generated from a
set of C programs used in the 2013 SW Verification Competition.9 Also, SYMBA com-
putes both the minimum and the maximum value for each cost variable, and there is no
way of restricting its focus only on one direction. Consequently, in our tests we have
forced also OPTIMATHSATand νZ to both minimize and maximize each objective.
(More specifically, they had to minimize both costi and −costi, for each costi.)

We tested three different configurations of νZ and OPTIMATHSAT:

– SINGLEOBJECTIVE: each tool is run singularly on the single-objective problems
〈ϕ, costi〉 and 〈ϕ,−costi〉 for each costi, and the cumulative time is taken;

– INCREMENTAL: as above, using the incremental version of each tool, each time
popping the definition of the previous cost and pushing the new one;

– MULTIOBJECTIVE: each tool is run in multi-objective mode with
⋃

i{costi,−costi}.

Figure 3 provides the cumulative plots and the global data of the performance of all
procedures under test, whilst Figure 4 reports pairwise comparisons.

We first compare the different versions of OPTIMATHSAT (see Figure 3 and the first
row of Figure 4). By looking at Figure 3 and at the top-left plot in Figure 4, we observe a
uniform and relevant speedup when passing from non-incremental to incremental OMT.

9 https://bitbucket.org/liyi0630/symba-bench

https://bitbucket.org/liyi0630/symba-bench

Pushing the Envelope of Optimization Modulo Theories 347

Tool: #inst. #solved #timeout time
SYMBA(100) 1103 1091 12 10917
SYMBA(40)+OPT-Z3 1103 1103 0 1128
νZ-multiobjective 1103 1090 13 1761
νZ-incremental 1103 1100 3 8683
νZ-singleobjective 1103 1101 2 10002
optimathsat-multiobjective 1103 1103 0 901
optimathsat-incremental 1103 1103 0 3477
optimathsat-singleobjective 1103 1103 0 16161

Fig. 3. Comparison of different versions of OPTIMATHSAT and SYMBA on the SW verification
problems in [16]. (Notice the logarithmic scale of the vertical axis in the cumulative plots.)

This is explained by the possibility of reusing learned clauses from one call to the other,
saving thus lots of search, as explained in §3.3.

By looking at Figure 3 and at the top-center plot in Figure 4, we observe a uniform
and drastic speedup in performance –about one order of magnitude– when passing from
single-objective to multiple-objective OMT. We also notice (top-right plot in Figure 4)
that this performance is significantly better than that obtained with incremental OMT.
Analogous considerations hold for νZ .

We see two main motivations for this improvement in performance with our multiple-
objective OMT technique: first, every time a novel truth assignment is generated, the
value of many cost functions can be updated, sharing thus lots of Boolean and LRA
search; second, the process of certifying that there is no better solution, which typically
requires a significant part of the overall OMT search [21], here is executed only once.

In the second row of Figure 4 we compare the performances of OPTIMATHSAT-
MULTI-OBJECTIVE against the two versions of SYMBA and νZ -MULTI-OBJECTIVE.
We observe that multi-objective OPTIMATHSAT performs much better than the default
configuration of SYMBA, and significantly better than both SYMBA(40)+OPT-Z3 and
νZ -MULTI-OBJECTIVE.

348 R. Sebastiani and P. Trentin

Fig. 4. First row: pairwise comparisons between different versions of OPTIMATHSAT. Sec-
ond row: pairwise comparisons between OPTIMATHSAT-MULTIOBJECTIVE, the two versions
of SYMBA and νZ-MULTIOBJECTIVE. Third row: “normalized” version of the plots in the sec-
ond row.

We have also wondered how much the relative performances of OPTIMATHSAT,
SYMBA and νZ depend on the relative efficiency of their underlying SMT solvers:
MATHSAT5 for OPTIMATHSAT and Z3 for SYMBA and νZ . Thus we have run both
MATHSAT5 and Z3 on the set of problems ϕ ∧ (cost < min) derived from the orig-
inal benchmarks, and used their timings to divide the respective OPTIMATHSAT and
SYMBA/νZ execution time values.10 These “normalized” results, which are shown in
the bottom row of Figure 4, seem to suggest that the better performances of OPTI-
MATHSAT are not due to better performances of the underlying SMT solver.

References

1. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying Industrial Hybrid Systems
with MathSAT. In: Proc. BMC 2004. ENTCS, vol. 119. Elsevier (2005)

10 That is, each value represents the time taken by each OMT tool on 〈ϕ, costi〉 divided by the
time taken by its underlying SMT solver to solve ϕ ∧ (cost < min).

Pushing the Envelope of Optimization Modulo Theories 349

2. Audemard, G., Cimatti, A., Korniłowicz, A., Sebastiani, R.: SAT-Based Bounded Model
Checking for Timed Systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS,
vol. 2529, Springer, Heidelberg (2002)

3. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Biere
et al. [4], ch. 26, vol. 185, pp. 825–885 (February 2009)

4. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS
Press (February 2009)

5. Bjorner, N., Phan, A.-D.: νZ - Maximal Satisfaction with Z3. In: Proc. SCSS Invited Pre-
sentation, Gammart, Tunisia. EasyChair Proceedings in Computing, EPiC (December 2014),
http://www.easychair.org/publications/?page=862275542

6. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van Rossum, P., Se-
bastiani, R.: Efficient Theory Combination via Boolean Search. Information and Computa-
tion 204(10), 1493–1525 (2006)

7. Byrd, R.H., Goldman, A.J., Heller, M.: Technical Note– Recognizing Unbounded Integer
Programs. Operations Research 35(1) (1987)

8. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability modulo the
theory of costs: Foundations and applications. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A Modular Approach to MaxSAT
Modulo Theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp.
150–165. Springer, Heidelberg (2013)

10. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT solver. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer,
Heidelberg (2013)

11. Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum Satisfying Assignments for SMT.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 394–409. Springer,
Heidelberg (2012)

12. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

14. Griggio, A.: A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic. Jour-
nal on Satisfiability, Boolean Modeling and Computation - JSAT 8, 1–27 (2012)

15. Larraz, D., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: Minimal-Model-Guided Ap-
proaches to Solving Polynomial Constraints and Extensions. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 333–350. Springer, Heidelberg (2014)

16. Li, Y., Albarghouthi, A., Kincad, Z., Gurfinkel, A., Chechik, M.: Symbolic Optimization
with SMT Solvers. In: POPL. ACM Press (2014)

17. Manolios, P., Papavasileiou, V.: ILP modulo theories. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 662–677. Springer, Heidelberg (2013)

18. Nieuwenhuis,R.,Oliveras,A.:OnSATModuloTheoriesandOptimizationProblems. In:Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)

19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from
an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the
ACM 53(6), 937–977 (2006)

20. Sebastiani, R.: Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean Mod-
eling and Computation, JSAT 3(3-4), 141–224 (2007)

21. Sebastiani, R., Tomasi, S.: Optimization Modulo Theories with Linear Rational Costs. To
Appear on ACM Transactions on Computational Logics, TOCL,
http://optimathsat.disi.unitn.it/pages/publications.html

22. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) Cost Functions. In: Gram-
lich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 484–498.
Springer, Heidelberg (2012)

http://www.easychair.org/publications/?page=862275542
http://optimathsat.disi.unitn.it/pages/publications.html

Partial Order Reduction, Bisimulation
and Fairness

Stateless Model Checking for TSO and PSO

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig,
Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas

Dept. of Information Technology, Uppsala University, Sweden

Abstract. We present a technique for efficient stateless model checking of pro-
grams that execute under the relaxed memory models TSO and PSO. The basis for
our technique is a novel representation of executions under TSO and PSO, called
chronological traces. Chronological traces induce a partial order relation on re-
laxed memory executions, capturing dependencies that are needed to represent
the interaction via shared variables. They are optimal in the sense that they only
distinguish computations that are inequivalent under the widely-used representa-
tion by Shasha and Snir. This allows an optimal dynamic partial order reduction
algorithm to explore a minimal number of executions while still guaranteeing full
coverage. We apply our techniques to check, under the TSO and PSO memory
models, LLVM assembly produced for C/pthreads programs. Our experiments
show that our technique reduces the verification effort for relaxed memory mod-
els to be almost that for the standard model of sequential consistency. In many
cases, our implementation significantly outperforms other comparable tools.

1 Introduction

Verification and testing of concurrent programs is difficult, since one must consider all
the different ways in which instructions of different threads can be interleaved. To make
matters worse, most architectures implement relaxed memory models, such as TSO and
PSO [32,4], which make threads interact in even more and subtler ways than by standard
interleaving. For example, a processor may reorder loads and stores by the same thread
if they target different addresses, or it may buffer stores in a local queue.

A successful technique for finding concurrency bugs (i.e., defects that arise only un-
der some thread schedulings), and for verifying their absence, is stateless model check-
ing (SMC) [16], also known as systematic concurrency testing [21,35]. Starting from a
test, i.e., a way to run a program and obtain some expected result, which is terminat-
ing and threadwisely deterministic (e.g. no data-nondeterminism), SMC systematically
explores the set of all thread schedulings that are possible during runs of this test. A
special runtime scheduler drives the SMC exploration by making decisions on schedul-
ing whenever such decisions may affect the interaction between threads, so that the
exploration covers all possible executions and detects any unexpected test results, pro-
gram crashes, or assertion violations. The technique is completely automatic, has no
false positives, does not suffer from memory explosion, and can easily reproduce the
concurrency bugs it detects. SMC has been successfully implemented in tools such as
VeriSoft [17], CHESS [25], and Concuerror [12].

There are two main problems for using SMC in programs that run under relaxed
memory models (RMM). The first problem is that already under the standard model of

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 353–367, 2015.
DOI: 10.1007/978-3-662-46681-0_28

354 P.A. Abdulla et al.

sequential consistency (SC) the number of possible thread schedulings grows exponen-
tially with the length of program execution. This problem has been addressed by partial
order reduction (POR) techniques that achieve coverage of all thread schedulings, by
exploring only a representative subset [34,27,15,13]. POR has been adapted to SMC
in the form of Dynamic Partial Order Reduction (DPOR) [14], which has been further
developed in recent years [29,21,19,28,33,2]. DPOR is based on augmenting each exe-
cution by a happens-before relation, which is a partial order that captures dependencies
between operations of the threads. Two executions can be regarded as equivalent if they
induce the same happens-before relation, and it is therefore sufficient to explore one ex-
ecution in each equivalence class (called a Mazurkiewicz trace [24]). DPOR algorithms
guarantee to explore at least one execution in each equivalence class, thus attaining
full coverage with reduced cost. A recent optimal algorithm [2] guarantees to explore
exactly one execution per equivalence class.

The second problem is that in order to extend SMC to handle relaxed memory mod-
els, the operational semantics of programs must be extended to represent the effects
of RMM. The natural approach is to augment the program state with additional struc-
tures, e.g., store buffers in the case of TSO, that model the effects of RMM [3,5,26].
This causes blow-ups in the number of possible executions, in addition to those pos-
sible under SC. However, most of these additional executions are equivalent to some
SC execution. To efficiently apply SMC to handle RMM, we must therefore extend
DPOR to avoid redundant exploration of equivalent executions. The natural definition
of “equivalent” under RMM can be derived from the abstract representation of execu-
tions due to Shasha and Snir [31], here called Shasha-Snir traces, which is often used in
model checking and runtime verification [18,20,10,11,7,8]. Shasha-Snir traces consist
of an ordering relation between dependent operations, which generalizes the standard
happens-before relation on SC executions; indeed, under SC, the equivalence relation
induced by Shasha-Snir traces coincides with Mazurkiewicz traces. It would thus be
natural to base DPOR for RMM on the happens-before relation induced by Shasha-Snir
traces. However, this relation is in general cyclic (due to reorderings possible under
RMM) and can therefore not be used as a basis for DPOR (since it is not a partial or-
der). To develop an efficient technique for SMC under RMM we therefore need to find
a different representation of executions under RMM. The representation should define
an acyclic happens-before relation. Also, the induced trace equivalence should coincide
with the equivalence induced by Shasha-Snir traces.

Contribution. In this paper, we show how to apply SMC to TSO and PSO in a way
that achieves maximal possible reduction using DPOR, in the sense that redundant ex-
ploration of equivalent executions is avoided. A cornerstone in our contribution is a
novel representation of executions under RMM, called chronological traces, which de-
fine a happens-before relation on the events in a carefully designed representation of
program executions. Chronological traces are a succinct canonical representation of
executions, in the sense that there is a one-to-one correspondence between chronologi-
cal traces and Shasha-Snir traces. Furthermore, the happens-before relation induced by
chronological traces is a partial order, and can therefore be used as a basis for DPOR.
In particular, the Optimal-DPOR algorithm of [2] will explore exactly one execution
per Shasha-Snir trace. In particular, for so-called robust programs that are not affected

Stateless Model Checking for TSO and PSO 355

by RMM (these include data-race-free programs), Optimal-DPOR will explore as many
executions under RMM as under SC: this follows from the one-to-one correspondence
between chronological traces and Mazurkiewicz traces under SC. Furthermore, robust-
ness can itself be considered a correctness criterion, which can also be automatically
checked with our method (by checking whether the number of equivalence classes is
increased when going from SC to RMM).

We show the power of our technique by using it to implement an efficient stateless
model checker, which for C programs with pthreads explores all executions of a test-
case or a program, up to some bounded length. During exploration of an execution, our
implementation generates the corresponding chronological trace. Our implementation
employs the source-DPOR algorithm [2], which is simpler than Optimal-DPOR, but
about equally effective. Our experimental results for analyses under SC, TSO and PSO
of number of intensely racy benchmarks and programs written in C/pthreads, shows that
(i) the effort for verification under TSO and PSO is not much larger than the effort for
verification under SC, and (ii) our implementation compares favourably against CBMC,
a state-of-the-art bounded model checking tool, showing the potential of our approach.

2 Overview of Main Concepts

store: x :=1

load: $r:=y

store: y:=1

load: $s:=x

p q

Fig. 1. A program implementing the
classic idiom of Dekker’s mutual ex-
clusion algorithm

This section informally motivates and explains the
main concepts of the paper. To focus the pre-
sentation, we consider mainly the TSO model.
TSO is relevant because it is implemented in the
widely used x86 as well as SPARC architectures.
We first introduce TSO and its semantics. There-
after we introduce Shasha-Snir traces, which ab-
stractly represent the orderings between dependent
events in an execution. Since Shasha-Snir traces
are cyclic, we introduce an extended representa-
tion of executions, for which a natural happens-before relation is acyclic. We then
describe how this happens-before relation introduces undesirable distinctions between
executions, and how our new representation of chronological traces remove these dis-
tinctions. Finally, we illustrate how a DPOR algorithm exploits the happens-before re-
lation induced by chronological traces to explore only a minimal number of executions,
while still guaranteeing full coverage.

TSO — an Introduction. TSO relaxes the ordering between stores and subsequent loads
to different memory locations. This can be explained operationally by equipping each
thread with a store buffer [30], which is a FIFO queue that contains pending store oper-
ations. When a thread executes a store instruction, the store does not immediately affect
memory. Instead it is delayed and enqueued in the store buffer. Nondeterministically,
at some later point an update event occurs, dequeueing the oldest store from the store
buffer and updating the memory correspondingly. Load instructions take effect imme-
diately, without being delayed. Usually a load reads a value from memory. However, if
the store buffer of the same thread contains a store to the same memory location, the
value is instead taken from the store in the store buffer.

356 P.A. Abdulla et al.

p: store: x :=1 // Enqueue store

p: load: $r:=y // Load value 0

q: store: y:=1 // Enqueue store

q: update // y = 1 in memory

q: load: $s:=x // Load value 0

p: update // x = 1 in memory

Fig. 2. An execution of the program in Fig. 1.
Notice that $r = $s = 0 at the end.

To see why this buffering semantics
may cause unexpected program behav-
iors, consider the small program in Fig. 1.
It consists of two threads p and q. The
thread p first stores 1 to the memory loca-
tion x, and then loads the value at memory
location y into its register $r. The thread q
is similar. All memory locations and reg-
isters are assumed to have initial values 0.
It is easy to see that under the SC semantics, it is impossible for the program to ter-
minate in a state where both registers $r and $s hold the value 0. However, under the
buffering semantics of TSO, such a final state is possible. Fig. 2 shows one such pro-
gram execution. We see that the store to x happens at the beginning of the execution, but
does not take effect with respect to memory until the very end of the execution. Thus
the store to x and the load to y appear to take effect in an order opposite to how they
occur in the program code. This allows the execution to terminate with $r = $s = 0.

Shasha-Snir Traces for TSO. Partial order reduction is based on the idea of capturing
the possible orderings between dependent operations of different threads by means of a
happens-before relation. When threads interact via shared variables, two instructions are
considered dependent if they access the same global variable, and at least one is a write.
For relaxed memory models, Shasha and Snir [31] introduced an abstract representation
of executions, here referred to as Shasha-Snir traces, which captures such dependencies
in a natural way. Shasha-Snir traces induce equivalence classes of executions. Under
sequential consistency, those classes coincide with the Mazurkiewicz traces. Under a
relaxed memory model, there are also additional Shasha-Snir traces corresponding to
the non-sequentially consistent executions.

store: x :=1

load: $r:=y

store: y:=1

load: $s:=x

p q

Fig. 3. The Shasha-Snir trace corre-
sponding to the execution in Fig. 2

A Shasha-Snir trace is a directed graph, where
edges capture observed event orderings. The
nodes in a Shasha-Snir trace are the executed in-
structions. For each thread, there are edges be-
tween each pair of subsequent instructions, cre-
ating a total order for each thread. For two in-
structions i and j in different threads, there is an
edge i → j in a trace when i causally precedes j.
This happens when j reads a value that was writ-
ten by i, when i reads a memory location that is
subsequently updated by j, or when i and j are subsequent writes to the same memory
location. In Fig. 3 we show the Shasha-Snir trace for the execution in Fig. 2.

Making the Happens-Before Relation Acyclic. Shasha-Snir traces naturally represent
the dependencies between operations in an execution, and are therefore a natural basis
for applying DPOR. However, a major problem is that the happens-before relation in-
duced by the edges is in general cyclic, and thus not a partial order. This can be seen
already in the graph in Fig. 3. This problem can be addressed by adding nodes that
represent explicit update events. That would be natural since such events occur in the

Stateless Model Checking for TSO and PSO 357

representation of the execution in Fig. 2. When we consider the edges of the Shasha-
Snir trace, we observe that although there is a conflict between p : load: $r:=y and
q : store: y:=1, swapping their order in the execution in Fig. 2 has no observable ef-
fect; the load still gets the same value from memory. Therefore, we should only be
concerned with the order of the load relative to the update event q : update.

store: x :=1

load: $r:=y

update

store: y:=1

load: $s:=x

update

p q

Fig. 4. A trace for the execution in Fig. 2 where
updates are separated from stores

These observations suggest to define
a representation of traces that separates
stores from updates. In Fig. 4 we have re-
drawn the trace from Fig. 3. Updates are
separated from stores, and we order up-
dates, rather than stores, with operations
of other threads. Thus, there are edges
between updates to and loads from the
same memory location, and between two
updates to the same memory location. In
Fig. 4, there is an edge from each store to
the corresponding update, reflecting the principle that the update cannot occur before
the store. There are edges between loads and updates of the same memory location, re-
flecting that swapping their order will affect the observed values. However, notice that
for this program there are no edges between the updates and loads of the same thread,
since they access different memory locations.

Chronological Traces for TSO. Although the new representation is a valid partial order,
it will in many cases distinguish executions that are semantically equivalent according
to the Shasha-Snir traces. The reason for this is TSO buffer forwarding: When a thread
executes a load to a memory location x, it will first check its store buffer. If the buffer
contains a store to x, then the load returns the value of the newest such store buffer entry
instead of loading the value from memory. This causes problems for a happens-before
relation that orders all updates and loads of the same memory location.

store: x:=1

load: $r:=x

store: x:=2

p q

Fig. 5. A program illustrating
buffer forwarding

For example, consider the program shown in Fig. 5.
Any execution of this program will have two updates
and one load to x. Those accesses can be permuted in
six different ways. Fig. 6(a), 6(b) and 6(c) show three of
the corresponding happens-before relations. In Fig. 6(a)
and 6(b) the load is satisfied by buffer forwarding, and
in 6(c) by a read from memory. These three relations
all correspond to the same Shasha-Snir trace, shown in
Fig. 7(a), and they all have the same observable behav-
ior, since the value of the load is obtained from the same store. Hence, we should find a
representation of executions that does not distinguish between these three cases.

We can now describe chronological traces, our representation which solves the above
problems, by omitting some of the edges, leaving some nodes unrelated. More precisely,
edges between loads and updates should be omitted in the following cases.

1. A load is never related to an update originating in the same thread. This captures
the intuition that swapping the order of such a load and update has no effect other

358 P.A. Abdulla et al.

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(a)

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(b)

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(c)

Fig. 6. Three redundant happens-before relations for Fig. 5

store: x:=1

load: $r:=x

store: x:=2

p q

(a) A Shasha-Snir trace corresponding
to all three traces of Fig. 6

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(b) The three traces can be merged into this
single trace

Fig. 7. Traces unifying the ones in Fig. 6

than changing a load from memory into a load of the same value from buffer, as
seen when comparing Fig. 6(b) and 6(c).

2. A load ld from a memory location x by a thread p is never related to an update by
an another thread q, if the update by q precedes some update to x originating in a
store by p that precedes ld. This is because the value written by the update of q is
effectively hidden to the load ld by the update to x by p. Thus, when we compare
Fig. 6(a) and 6(b), we see that the order between the update by q and the load is
irrelevant, since the update by q is hidden by the update by p (note that the update
by p originates in a store that precedes the load).

When we apply these rules to the example of Fig. 5, all of the three representations in
Fig. 6(a), 6(b), and 6(c) merge into a single representation shown in Fig. 7(b). In total,
we reduce the number of distinguished cases for the program from six to three. This is
indeed the minimal number of cases that must be distinguished by any representation,
since the different cases result in different values being loaded by the load instruction
or different values in memory at the end of the execution. Our proposed representation
is optimal for the programs in Fig. 1 and 5. In Theorem 1 of Section 3 we will show
that such an optimality result holds in general.

Chronological Traces for PSO. The TSO and PSO memory models are very similar.
Adapting our techniques to PSO is done by slightly altering the definition of chrono-
logical traces. The details can be found in our technical report [1].

DPOR Based on Chronological Traces. Here, we illustrate how stateless model check-
ing performs DPOR based on chronological traces, in order to explore one execution
per chronological trace. As example, we use the small program of Fig. 5.

Stateless Model Checking for TSO and PSO 359

The algorithm initially explores an arbitrary execution of the program, and simul-
taneously generates the corresponding chronological trace. In our example, this ex-
ecution can be the one shown in Fig. 8(a), along with its chronological trace. The
algorithm then finds those edges of the chronological trace that can be reversed by
changing the thread scheduling of the execution. In Fig. 8(a), the reversible edges are
the ones from p : update to q : update, and from p : load: $r:=x to q : update. For
each such edge, the program is executed with this edge reversed. Reversing an edge
can potentially lead to a completely different continuation of the execution, which
must then be explored.

In the example, reversing the edge from p : load: $r:=x to q : update will generate
the execution and chronological trace in Fig. 8(b). Notice that the new execution is
observably different from the previous one: the load reads the value 2 instead of 1.

The chronological traces in both Fig. 8(a) and 8(b) display a reversible edge from
p : update to q : update. The algorithm therefore initiates an execution where q :
update is performed before p : update. The algorithm will generate the execution and
chronological trace in Fig. 8(c).

Notice that the only reversible edge in Fig. 8(c) is the one from q : update to p :
update. However, executing p : update before q : update has already been explored
in Fig. 8(a) and Fig. 8(b). Since there are no more edges that can be reversed, SMC
terminates, having examined precisely the three chronological traces that exist for the
program of Fig. 5.

p: store: x:=1
p: update
p: load: $r:=x

q: store: x:=2
q: update

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(a)

p: store: x:=1
p: update

q: store: x:=2
q: update

p: load: $r:=x

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(b)

p: store: x:=1
q: store: x:=2
q: update

p: update
p: load: $r:=x

store: x:=1

load: $r:=x

update

store: x:=2

update

p q

(c)

Fig. 8. How SMC with DPOR explores the program of Fig. 5

3 Formalization

In this section we summarize our formalization of the concepts of Section 2. We intro-
duce our representation of program executions, define chronological traces, formalize
Shasha-Snir traces for TSO, and prove a one-to-one correspondence between chrono-
logical traces and Shasha-Snir traces. The formalization is self-contained, but for lack
of space, we sometimes use precise English rather than formal notation. A more fully
formalized version, and theorem proofs, can be found in our technical report [1].

360 P.A. Abdulla et al.

Parallel Programs. We consider parallel programs consisting of a number of threads
that run in parallel, each executing a deterministic code, written in an assembly-like
programming language. The language includes instructions store: x:=$r, load: $r:=x,
and fence. Other instructions do not access memory, and their precise syntax and se-
mantics are ignored for brevity. Here, and in the remainder of this text, x, y, z are used
to name memory locations, u, v, w are used to name values, and $r, $s, $t are used to
name processor registers. We use TID to denote the set of all thread identifiers.

Formal TSO Semantics. We formalize the TSO model by an operational semantics.
Define a configuration as a pair (L,M), where M maps memory locations to values,
and L maps each thread p to a local configuration of the form L(p) = (R,B), where R
is the state of local registers and program counter of p, and B is the contents of the store
buffer of p. This content is a word over pairs (x, v) of memory locations and values.
We let the notation B(x) denote the value v such that (x, v) is the rightmost pair in B of
form (x,). If there is no such pair in B, then B(x) =⊥.

In order to accommodate memory updates in our operational semantics, we assume
that for each thread p ∈ TID, there is an auxiliary thread upd(p), which nondeter-
ministically performs memory updates from the store buffer of p. We use AuxTID =
{upd(p)|p ∈ TID} to denote the set of auxiliary thread identifiers. We use p and q to
refer to real or auxiliary threads in TID ∪ AuxTID as convenient.

For configurations c = (L,M) and c′ = (L′,M′), we write c
p−→ c′ to denote that

from configuration c, thread p can execute its next instruction, thereby changing the
configuration into c′. Let L(p) = (R,B), and Rpc be obtained from R by advancing the
program counter after p executes its next instruction. Depending on this next instruction
op, we have the following cases.

Store: If op has the form store: x:=$r, then c
p−→ c′ iff M′ = M and L

′ = L[p ←↩
(Rpc,B · (x, v))] where v = R($r), i.e., instead of updating the memory, we insert the
entry (x, v) at the end of the store buffer of the thread.

Load: If op has the form load: $r:=x, then M
′ = M and either

1. (From memory) B(x) =⊥ and L
′ = L[p ←↩ (Rpc[$r ←↩ M(x)],B)], i.e., there is

no entry for x in the thread’s own store buffer, so the value is read from memory, or
2. (Buffer forwarding) B(x) �=⊥ and L

′ = L[p ←↩ (Rpc[$r ←↩ B(x)],B)], i.e., p
reads the value of x from its latest entry in its store buffer.

Fence: If op has the form fence, then c
p−→ c′ iff B = ε and M

′ = M and L
′ = L[p ←↩

(Rpc,B)]. A fence can only be executed when the store buffer of the thread is empty.

Update: In addition to instructions which are executed by the threads, at any point
when a store buffer is non-empty, an update event may nondeterministically occur. The
memory is then updated according to the oldest (leftmost) letter in the store buffer,
and that letter is removed from the buffer. To formalize this, we will assume that the

auxiliary thread upd(p) executes a pseudo-instruction u(x). We then say that c
upd(p)−−−−→

c′ iff B = (x, v) · B′ for some x, v, B′ and M
′ = M[x ←↩ v] and L

′ = L[p ←↩ (R,B′)].

Stateless Model Checking for TSO and PSO 361

Program Executions. A program execution is a sequence c0
p1−→ c1

p2−→ · · · pn−→ cn
of configurations related by transitions labelled by actual or auxiliary thread IDs. Since
each transition of each program thread (including the auxiliary threads of form upd(q))
is deterministic, a program run is uniquely determined by its sequence of thread IDs. We
will therefore define an execution as a word of events. Each event represents a transition
in the execution as a triple (p, i, j), where p is a regular or auxiliary thread executing an
instruction i (which can possibly be an update), and the natural number j is such that
the event is the jth event of p in the execution.

Chronological Traces. We can now introduce the main conceptual contribution of the
paper, viz. chronological traces. For an execution τ we define its chronological trace
TC(τ) as a directed graph 〈V,E〉. The vertices V are all the events in τ (both events
representing instructions and events representing updates). The edges are the union of
six relations: E = →po

τ ∪ →su
τ ∪→uu

τ ∪→src-ct
τ ∪→cf-ct

τ ∪→uf
τ . These edge relations

are defined as follows, for two arbitrary events e = (p, i, j), e′ = (p′, i′, j′) ∈ V :

Program Order: e→po
τ e′ iff p = p′ and j′ = j + 1, i.e., e and e′ are consecutive events

of the same thread.

Store to Update: e→su
τ e

′ iff e′ is the update event corresponding to the store e.

Update to Update: e→uu
τ e′ iff i = u(x) and i′ = u(x) for some x, and e and e′ are

consecutive updates to the memory location x.

Source: e→src-ct
τ e′ iff e′ is a load which reads the value of the update event e, which

is from a different process. Notice that this definition excludes the possibility of p =
upd(p′); a load is never src-related to an update from the same thread.

Conflict: e→cf-ct
τ e′ iff e′ is the update that overwrites the value read by e.

Update to Fence: e→uf
τ e

′ iff i = u(x) for some x, and i′ = fence and p = upd(p′)
and e is the latest update by p which occurs before e′ in τ . The intuition here is that the
fence cannot be executed until all pending updates of the same thread have been flushed
from the buffer. Hence the updates are ordered before the fence, and the chronological
trace has an edge from the last of these updates to the fence event.

Shasha-Snir Traces. We will now formalize Shasha-Snir traces, and prove that chrono-
logical traces are equivalent to Shasha-Snir traces, in the sense that they induce the same
equivalence relation on executions. We first recall the definition of Shasha-Snir traces.
We follow the formalization by Bouajjani et al. [8].

First, we introduce the notion of a completed execution: An execution τ is completed
when all stores have reached memory by means of a corresponding update event. In the
context of Shasha-Snir traces, we will restrict ourselves to completed executions.

For a completed execution τ , we define the Shasha-Snir trace of τ as the graph
T (τ) = 〈V,E〉 where V is the set of all non-update events (p, i, j) in τ (i.e., i �= u(x)
for all x). The edges E is the union of four relations E = →po

τ ∪→st
τ ∪→src-ss

τ ∪→cf-ss
τ ,

where →po
τ (program order) is the same as for Chronological traces, and where, letting

e = (p, i, j) and e′ = (p′, i′, j′):

362 P.A. Abdulla et al.

Store Order: e→st
τ e

′ iff i and i′ are two stores, whose corresponding updates are con-
secutive updates to the same memory location. I.e., store order defines a total order on
all the stores to each memory location, based on the order in which they reach memory.

Source: e→src-ss
τ e′ iff e′ is a load which reads its value from e, via memory or by buffer

forwarding.

Conflict: e→cf-ss
τ e′ iff e′ is the store which overwrites the value read by e.

We are now ready to state the equivalence theorem.

Theorem 1. (Equivalence of Shasha-Snir Traces and Chronological Traces) For a
given program P with two completed executions τ, τ ′, it holds that T (τ) = T (τ ′) iff
TC(τ) = TC(τ ′).

DPOR for TSO. A DPOR algorithm can exploit Chronological traces to perform state-
less model checking of programs that execute under TSO (and PSO), as illustrated at the
end of Section 2. The explored executions follow the semantics of TSO in Section 3. For
each execution, its happens-before relation, which is the transitive closure of the edge
relation E = →po

τ ∪→su
τ ∪→uu

τ ∪→src-ct
τ ∪→cf-ct

τ ∪→uf
τ of the corresponding chrono-

logical trace, is computed on the fly. This happens-before relation can in principle be
exploited by any DPOR algorithm to explore at least one execution per equivalence
class induced by Shasha-Snir traces. We state the following theorem of correctness.

Theorem 2. (Correctness of DPOR Algorithms) The algorithms Source-DPOR and
Optimal-DPOR of [2], based on the happens-before relation induced by chronological
traces, explore at least one execution per equivalence class induced by Shasha-Snir
traces. Moreover, Optimal-DPOR explores exactly one execution per equivalence class.

4 Implementation

To show the effectiveness of our techniques we have implemented a stateless model
checker for C programs. The tool, called Nidhugg, is available as open source at
https://github.com/nidhugg/nidhugg. Major design decisions have been that
Nidhugg: (i) should not be bound to a specific hardware architecture and (ii) should use
an existing, mature implementation of C semantics, not implement its own. Our choice
was to use the LLVM compiler infrastructure [23] and work at the level of its interme-
diate representation (IR). LLVM IR is low-level and allows us to analyze assembly-like
but target-independent code which is produced after employing all optimizations and
transformations that the LLVM compiler performs till this stage.

Nidhugg detects assertion violations and robustness violations that occur under the
selected memory model. We implement the Source-DPOR algorithm from Abdulla
et al. [2], adapted to relaxed memory in the manner described in this paper. Before
applying Source-DPOR, each spin loop is replaced by an equivalent single load and as-
sume statement. This substantially improves the performance of Source-DPOR, since
a waiting spin loop may generate a huge number of improductive loads, all returning

https://github.com/nidhugg/nidhugg

Stateless Model Checking for TSO and PSO 363

the same wrong value; all of these loads will cause races, which will cause the number
of explored traces to explode. Exploration of program executions is performed by in-
terpretation of LLVM IR, based on the interpreter lli which is distributed with LLVM.
We support concurrency through the pthreads library. This is done by hooking calls to
pthread functions, and executing changes to the execution stacks (adding new threads,
joining, etc.) as appropriate within the interpreter.

5 Experimental Results

We have applied our implementation to several intensely racy benchmarks, all imple-
mented in C/pthreads. They include classical benchmarks, such as Dekker’s, Lamport’s
(fast) and Peterson’s mutual exclusion algorithms. Others, such as indexer.c, are de-
signed to showcase races that are hard to identify statically. Yet others (stack safe.c) use
pthread mutexes to entirely avoid races. Lamport’s algorithm and stack safe.c originate
from the TACAS Competition on Software Verification (SV-COMP). Some benchmarks
originate from industrial code: apr 1.c, apr 2.c, pgsql.c and parker.c.

We show the results of our tool Nidhugg in Table 1. For comparison we also in-
clude the results of two other analysis tools, CBMC [6] and goto-instrument [5], which
also target C programs under relaxed memory. The techniques of goto-instrument and
CBMC are described in more detail in Section 6.

All experiments were run on a machine equipped with a 3 GHz Intel i7 processor and
6 GB RAM running 64-bit Linux. We use version 4.9 of goto-instrument and CBMC.
The benchmarks have been tweaked to work for all tools, in communication with the
developers of CBMC and goto-instrument. All benchmarks are available at https://
github.com/nidhugg/benchmarks_tacas2015.

Table 1 shows that our technique performs well compared to the other tools for most
of the examples. We will briefly highlight a few interesting results.

We see that in most cases Nidhugg pays a very modest performance price when
going from sequential consistency to TSO and PSO. The explanation is that the num-
ber of executions explored by our stateless model checker is close to the number of
Shasha-Snir traces, which increases very modestly when going from sequential consis-
tency to TSO and PSO for typical benchmarks. Consider for example the benchmark
stack safe.c, which is robust, and therefore has equally many Shasha-Snir traces (and
hence also chronological traces) under all three memory models. Our technique is able
to benefit from this, and has almost the same run time under TSO and PSO as under SC.

We also see that our implementation compares favourably against CBMC, a state-
of-the-art bounded model checking tool, and goto-instrument. For several benchmarks,
our implementation is several orders of magnitude faster.

The effect of the optimization to replace each spin loop by a load and assume state-
ment can be seen in the pgsql.c benchmark. For comparison, we also include the bench-
mark pgsql bnd.c, where the spin loop has been modified such that Nidhugg fails to
automatically replace it by an assume statement.

The only other benchmark where Nidhugg is not faster is fib true.c. The benchmark
has two threads that perform the actual work, and one separate thread that checks the
correctness of the computed value, causing many races, as in the case of spin loops.

https://github.com/nidhugg/benchmarks_tacas2015
https://github.com/nidhugg/benchmarks_tacas2015

364 P.A. Abdulla et al.

Table 1. Analysis times (in seconds) for our implementation Nidhugg, as well as CBMC and
goto-instrument under the SC, TSO and PSO memory models. Stars (*) indicate that the analy-
sis discovered an error in the benchmark. A t/o entry means that the tool did not terminate within
10 minutes. An ! entry means that the tool crashed. Struck-out entries mean that the tool gave the
wrong result. In the fence column, a dash (-) means that no fences have been added to the bench-
mark, a memory model indicates that fences have been (manually) added to make the benchmark
correct under that and stronger memory models. The LB column shows the loop unrolling depth.
Superior run times are shown in bold face.

CBMC goto-instrument Nidhugg

fence LB SC TSO PSO SC TSO PSO SC TSO PSO

apr 1.c - 5 t/o t/o t/o t/o ! ! 5.88 6.06 16.98
apr 2.c - 5 t/o t/o t/o ! ! ! 2.60 2.20 5.39
dcl singleton.c - 7 5.95 31.47 *18.01 5.33 5.36 *0.18 0.08 0.08 *0.08
dcl singleton.c pso 7 5.88 30.98 29.45 5.20 5.18 5.17 0.08 0.08 0.08
dekker.c - 10 2.42 *3.17 *2.84 1.68 *4.00 *220.11 0.10 *0.11 *0.09
dekker.c tso 10 2.39 5.65 *3.51 1.62 297.62 t/o 0.11 0.12 *0.08
dekker.c pso 10 2.55 5.31 4.83 1.72 428.86 t/o 0.11 0.12 0.12
fib false.c - - *1.63 *3.38 *3.00 *1.60 *1.58 *1.56 *2.39 *5.57 *6.20
fib false join.c - - *0.98 *1.10 *1.91 *1.31 *0.88 *0.80 *0.32 *0.62 *0.71
fib true.c - - 6.28 9.39 7.72 6.32 7.63 7.62 25.83 75.06 86.32
fib true join.c - - 6.61 8.37 10.81 7.09 5.94 5.92 1.20 2.88 3.19
indexer.c - 5 193.01 210.42 214.03 191.88 70.42 69.38 0.10 0.09 0.09
lamport.c - 8 7.78 *11.63 *10.53 6.89 t/o t/o 0.08 *0.08 *0.08
lamport.c tso 8 7.60 26.31 *15.85 6.80 513.67 t/o 0.09 0.08 *0.07
lamport.c pso 8 7.72 30.92 27.51 7.43 t/o t/o 0.08 0.08 0.08
parker.c - 10 12.34 *91.99 *86.10 11.63 9.70 9.65 1.50 *0.09 *0.08
parker.c pso 10 12.72 141.24 166.75 11.76 10.66 10.64 1.50 1.92 2.94
peterson.c - - 0.35 *0.38 *0.35 0.18 *0.20 *0.21 0.07 *0.07 *0.07
peterson.c tso - 0.35 0.39 *0.35 0.19 0.18 0.56 0.07 0.07 *0.07
peterson.c pso - 0.35 0.41 0.40 0.18 0.18 0.19 0.07 0.07 0.08
pgsql.c - 8 19.80 60.66 *4.63 21.03 46.57 *296.77 0.08 0.07 *0.08
pgsql.c pso 8 23.93 71.15 121.51 19.04 t/o t/o 0.07 0.07 0.08
pgsql bnd.c pso (4) 3.57 9.55 12.68 3.59 t/o t/o 89.44 106.04 112.60
stack safe.c - - 44.53 516.01 496.36 45.11 42.39 42.50 0.34 0.36 0.43
stack unsafe.c - - *1.40 *1.87 *2.08 *1.00 *0.81 *0.79 *0.08 *0.08 *0.09
szymanski.c - - 0.40 *0.44 *0.43 0.23 *0.89 *1.16 0.07 *0.13 *0.07
szymanski.c tso - 0.40 0.50 *0.43 0.23 0.23 2.48 0.08 0.08 *0.07
szymanski.c pso - 0.39 0.50 0.49 0.23 0.24 0.24 0.08 0.08 0.08

Stateless Model Checking for TSO and PSO 365

We show with the benchmark fib true join.c that in this case, the problem can be alle-
viated by forcing the threads to join before checking the result.

Most benchmarks in Table 1 are small program cores, ranging from 36 to 118 lines
of C code, exhibiting complicated synchronization patterns. To show that our technique
is also applicable to real life code, we include the benchmarks apr 1.c and apr 2.c.
They each contain approximately 8000 lines of code taken from the Apache Portable
Runtime library, and exercise the library primitives for thread management, locking, and
memory pools. Nidhugg is able to analyze the code within a few seconds. We notice
that despite the benchmarks being robust, the analysis under PSO suffers a slowdown
of about three times compared to TSO. This is because the benchmarks access a large
number of different memory locations. Since PSO semantics require one store buffer
per memory location, this affects analysis under PSO more than under SC and TSO.

6 Related Work

To the best of our knowledge, our work is the first to apply stateless model checking
techniques to the setting of relaxed memory models; see e.g. [2] for a recent survey
of related work on stateless model checking and dynamic partial order reduction tech-
niques. There have been many works dedicated to the verification and checking of pro-
grams running under RMM (e.g., [18,20,22,3,10,11,7,8,9,36]). Some of them propose
precise analyses for checking safety properties or robustness of finite-state programs un-
der TSO (e.g., [3,8]). Others describe monitoring and testing techniques for programs
under RMM (e.g., [10,11,22]). There are also a number of efforts to design bounded
model checking techniques for programs under RMM (e.g., [36,9]) which encode the
verification problem in SAT.

The two closest works to ours are those presented in [6,5]. The first of them [6] de-
velops a bounded model checking technique that can be applied to different memory
models (e.g., TSO, PSO, and Power). That technique makes use of the fact that the
trace of a program under RMM can be viewed as a partially ordered set. This results
in a bounded model checking technique aware of the underlying memory model when
constructing the SMT/SAT formula. The second line of work reduces the verification
problem of a program under RMM to verification under SC of a program constructed
by a code transformation [5]. This technique tries to encode the effect of the RMM
semantics by augmenting the input program with buffers and queues. This work in-
troduces also the notion of Xtop objects. Although an Xtop object is a valid acyclic
representation of Shasha-Snir traces, it will in many cases distinguish executions that
are semantically equivalent according to the Shasha-Snir traces. This is never the case
for chronological traces. An extensive experimental comparison with the corresponding
tools [6,5] under the TSO and PSO memory models was given in Section 5.

7 Concluding Remarks

We have presented the first technique for efficient stateless model checking which is
aware of the underlying relaxed memory model. To this end we have introduced chrono-
logical traces which are novel representations of executions under the TSO and PSO

366 P.A. Abdulla et al.

memory models, and induce a happens-before relation that is a partial order and can
be used as a basis for DPOR. Furthermore, we have established a strict one-to-one
correspondence between chronological and Shasha-Snir traces. Nidhugg, our publicly
available tool, detects bugs in LLVM assembly code produced for C/pthreads programs
and can be instantiated to the SC, TSO, and PSO memory models. We have applied
Nidhugg to several programs, both benchmarks and of considerable size, and our ex-
perimental results show that our technique offers significantly better performance than
both CBMC and goto-instrument in many cases.

We plan to extend Nidhugg to more memory models such as Power, ARM, and the
C/C++ memory model. This will require to adapt the definition chronological traces to
them in order to also guarantee the one-to-one correspondence with Shasha-Snir traces.

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.: Stateless
model checking for TSO and PSO (2015) arXiv:1501.02069

2. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order reduction.
In: POPL, pp. 373–384. ACM (2014)

3. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-example guided
fence insertion under TSO. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 204–219. Springer, Heidelberg (2012)

4. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial. Com-
puter 29(12), 66–76 (1996)

5. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak mem-
ory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

6. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded model check-
ing of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 141–157. Springer, Heidelberg (2013)

7. Alglave, J., Maranget, L.: Stability in weak memory models. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg (2011)

8. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness against TSO.
In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 533–553. Springer,
Heidelberg (2013)

9. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: Checking consistency of concurrent
data types on relaxed memory models. In: PLDI, pp. 12–21. ACM (2007)

10. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory mod-
els. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120. Springer,
Heidelberg (2008)

11. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential consistency
for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 11–25. Springer, Heidelberg (2011)

12. Christakis, M., Gotovos, A., Sagonas, K.: Systematic testing for detecting concurrency errors
in Erlang programs. In: ICST, pp. 154–163. IEEE (2013)

13. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order
techniques. STTT 2(3), 279–287 (1999)

14. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: POPL, pp. 110–121. ACM (2005)

15. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)

Stateless Model Checking for TSO and PSO 367

16. Godefroid, P.: Model checking for programming languages using VeriSoft. In: POPL, pp.
174–186. ACM (1997)

17. Godefroid, P.: Software model checking: The VeriSoft approach. Formal Methods in System
Design 26(2), 77–101 (2005)

18. Krishnamurthy, A., Yelick, K.A.: Analyses and optimizations for shared address space pro-
grams. J. Parallel Distrib. Comput. 38(2), 130–144 (1996)

19. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Evaluating ordering heuristics for
dynamic partial-order reduction techniques. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE
2010. LNCS, vol. 6013, pp. 308–322. Springer, Heidelberg (2010)

20. Lee, J., Padua, D.A.: Hiding relaxed memory consistency with a compiler. IEEE Trans. Com-
puters 50(8), 824–833 (2001)

21. Lei, Y., Carver, R.: Reachability testing of concurrent programs. IEEE Trans. Softw.
Eng. 32(6), 382–403 (2006)

22. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis for relaxed
memory models. In: PLDI, pp. 429–440. ACM (2012)

23. The LLVM compiler infrastructure, http://llvm.org
24. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986.

LNCS, vol. 255, Springer, Heidelberg (1987)
25. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P., Neamtiu, I.: Finding and repro-

ducing heisenbugs in concurrent programs. In: OSDI, pp. 267–280. USENIX (2008)
26. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO (relaxed

memory order). In: SPAA, pp. 34–41. ACM (1995)
27. Peled, D.: All from one, one for all, on model-checking using representatives. In: Courcou-

betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)
28. Saarikivi, O., Kähkönen, K., Heljanko, K.: Improving dynamic partial order reductions for

concolic testing. In: ACSD. IEEE (2012)
29. Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing of multi-

threaded programs. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 166–182.
Springer, Heidelberg (2007)

30. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: A rigorous and us-
able programmer’s model for x86 multiprocessors. Comm. of the ACM 53(7), 89–97 (2010)

31. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share memory.
ACM Trans. on Programming Languages and Systems 10(2), 282–312 (1988)

32. SPARC International, Inc. The SPARC Architecture Manual Version 9 (1994)
33. Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha, G.: TransDPOR:

A novel dynamic partial-order reduction technique for testing actor programs. In: Giese, H.,
Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 219–234. Springer,
Heidelberg (2012)

34. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) APN
1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

35. Wang, C., Said, M., Gupta, A.: Coverage guided systematic concurrency testing. In: ICSE,
pp. 221–230. ACM (2011)

36. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: A framework for axiomatic
and executable specifications of memory consistency models. In: IPDPS. IEEE (2004)

http://llvm.org

GPU Accelerated Strong and Branching
Bisimilarity Checking

Anton Wijs1,2,�

1 RWTH Aachen University, Germany
2 Eindhoven University of Technology, The Netherlands

Abstract. Bisimilarity checking is an important operation to perform
explicit-state model checking when the state space of a model under ver-
ification has already been generated. It can be applied in various ways:
reduction of a state space w.r.t. a particular flavour of bisimilarity, or
checking that two given state spaces are bisimilar. Bisimilarity checking
is a computationally intensive task, and over the years, several algo-
rithms have been presented, both sequential, i.e. single-threaded, and
parallel, the latter either relying on shared memory or message-passing.
In this work, we first present a novel way to check strong bisimilarity
on general-purpose graphics processing units (GPUs), and show experi-
mentally that an implementation of it for CUDA-enabled GPUs is com-
petitive with other parallel techniques that run either on a GPU or use
message-passing on a multi-core system. Building on this, we propose,
to the best of our knowledge, the first many-core branching bisimilarity
checking algorithm, an implementation of which shows speedups compa-
rable to our strong bisimilarity checking approach.

1 Introduction

Model checking [2] is a formal verification technique to ensure that a model
satisfies desired functional properties. There are essentially two ways to perform
it; on-the-fly, which means that properties are being checked while the model is
being analysed, i.e. while its state space is explored, and offline, in which first
the state space is fully generated and subsequently properties are checked on
it. For the latter case, it is desirable to be able to compare and minimise state
spaces, to allow for faster property checking. In action-based model checking,
Labelled Transition Systems (Ltss) are often used to formalise state spaces, and
(some flavour of) bisimilarity is used to compare and minimise them. Checking
bisimilarity of Ltss is a computationally intensive operation, and over the years,
several algorithms have been proposed, e.g. [17,20,15,19].

Graphics Processing Units (GPUs) have been used in recent years to dra-
matically speed up computations. For model checking, algorithms have been
� This work was sponsored by the NWO Exacte Wetenschappen, EW (NWO Physical

Sciences Division) for the use of supercomputer facilities, with financial support
from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands
Organisation for Scientific Research, NWO).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 368–383, 2015.
DOI: 10.1007/978-3-662-46681-0_29

GPU Accelerated Strong and Branching Bisimilarity Checking 369

presented to use GPUs for several critical operations, such as on-the-fly state
space exploration [4,23], offline property checking [3,8,9,22], counterexample gen-
eration [27], state space decomposition [24], but strong bisimilarity checking has
not received much attention, and branching bisimilarity [14] has received none.
In this paper, we propose new algorithms for these operations, in the latter case
only assuming that the Ltss do not contain cycles of internal behaviour.

Structure of the paper. In Section 2, we present the basic notions used in this
paper. Section 3 contains a discussion of the typical GPU setting, and explains
how to encode the required input. In Section 4, we present our new algorithms,
and Section 5 contains our experimental results. Finally, related work is discussed
in Section 6, and Conclusions are drawn in Section 7.

2 Preliminaries

In this section, we discuss the basic notions involved to understand the problem,
namely labelled transition systems, strong and branching bisimilarity, and the
existing basic approaches to check strong and branching bisimilarity.

Labelled Transition Systems. We use Labelled Transition Systems (Ltss) to rep-
resent the semantics of finite-state systems. They are action-based descriptions,
indicating how a system can change state by performing particular actions. An
Lts G is a tuple 〈S,A, T , s〉, where S is a (finite) set of states, A is a set of
actions or labels (including the invisible action τ), T ⊆ S ×A×S is a transition
relation, and s ∈ S is the initial state. Actions in A are denoted by a, b, c, etc.
We use s1

a−→ s2 to denote 〈s1, a, s2〉 ∈ T . If s1
a−→ s2, this means that in G, an

action a can be performed in state s1, leading to state s2. With T (s), we refer
to the set of states that can be reached by following a single outgoing transition
of s. Finally, the special action τ is used to denote internal behaviour of the
system, and s1 =⇒ s2 indicates that it is possible to move from s1 to s2 via 0 or
more τ -transition, i.e. =⇒ is the reflexive, transitive closure of τ−→.
Strong Bisimilarity. The first equivalence relation between Ltss that we consider
in this paper is strong bisimilarity.

Definition 1 (Strong Bisimulation). A binary relation R ⊆ S×S is a strong
bisimulation if R is symmetric and s R t implies that if s a−→ s′ then t

a−→ t′ with
s′R t′.

Two states s and t are bisimilar, denoted by s ↔ t, if there is a strong
bisimulation relation R such that s R t.

In this paper, when trying to construct a bisimulation relation, we are always
interested in the largest bisimulation. Strong bisimilarity is closed under arbi-
trary union, so this largest relation is the combination of all relations that can
be constructed.

The problem of checking strong bisimilarity for Ltss when |A| = 1 corre-
sponds with the single function coarsest partition problem. The most widely
known algorithms to solve this problem is by Paige & Tarjan (PT) [20] and

370 A. Wijs

by Kanellakis & Smolka (KS) [17], and both can be extended for the multiple
functions coarsest partition problem, to handle Ltss with multiple actions.

A bisimilarity checking algorithm can be used both to minimise an Lts, by
reducing all bisimilar states to a single state in the output Lts, and to compare
two Ltss G1 = 〈S1,A1, T1, s1〉, G2 = 〈S2,A2, T2, s2〉. The latter boils down to
checking whether s1 and s2 end up being bisimilar after checking bisimilarity
on the combined Lts 〈S1 ∪S2,A1 ∪A2, T1 ∪ T2, s1〉 (for convenience, we assume
that S1 ∩ S2 = ∅).

We proceed with explaining the basic mechanism to check bisimilarity that
we use in the remainder of this paper, which is partition refinement. In fact, this
mechanism is the so-called “naive” reduction algorithm1 mentioned by Kanellakis
& Smolka [17], since it has been shown in the past to be suitable for paralleli-
sation and, unlike PT, it can be extended straightforwardly for branching and
weak bisimilarity [19]. We further motivate the use of this mechanism in Section 3
after the explanation of the GPU basics.

A partition of S is a set of m disjoint state sets called blocks Bi (1 ≤ i ≤ m)
such that

⋃
1≤i≤m Bi = S. A partition refinement algorithm takes as input a

partition, analyses it, and produces as output a refinement of that partition. A
partition π′ is a refinement of π iff every block of π′ is contained in a block of π.

The idea behind using partition refinement for bisimilarity checking is that
initially, a partition π consisting of a single block B = S is defined, which
is then further refined on the criterion whether states in the same block can
be distinguished w.r.t. π until no further refining can be done. The resulting
partition then represents a bisimulation relation: two states s, t are bisimilar iff
they are in the same block.

The problem of checking strong bisimilarity of Ltss with multiple transition
labels, i.e. the multi-function coarsest partition problem, can now be formalised
as follows:

Definition 2 (Strong Bisimilarity Checking Problem). Given an Lts G =
〈S,A, T , s〉 and an initial partition π0 = {S}, find a partition π such that:
1. ∀B ∈ π, s, t ∈ B, a ∈ A, B′ ∈ π. (∃s′ ∈ B′.s a−→ s′ ⇐⇒ ∃t′ ∈ B′.t a−→ t′);
2. No partition π′ �= π can be constructed which refines π and satisfies 1.

Blom et al. [5,6,7] and Orzan [19] define the notion of a signature of a state,
to reason about condition 1 in Def. 2. The signature sigπ(s) of a state s in a
partition π encodes which transitions can be taken from s and to which blocks
in π they lead. In the following definition of sigπ(s), we interpret a partition π
as a function π : S → N:

sigπ(s) = {(a, π(s′)) | s a−→ s′}

In each iteration of a partition refinement algorithm, we can now check for each
block B ∈ π and each two states s, t ∈ B whether sigπ(s) = sigπ(t). If so, then

1 In [17], some optimisations on this algorithm are presented. How well these are
applicable in a GPU setting remains to be investigated.

GPU Accelerated Strong and Branching Bisimilarity Checking 371

Algorithm 1. Partition refinement with signatures
Require: G = 〈S,A, T , s〉, π = {S}

stable ← false
2: while ¬stable do

for all B ∈ π do
4: π′ ← (π \ {B}) ∪ {B1, . . . , Bm},

with
⋃

1≤i≤m Bi = B ∧ ∀1 ≤ i, j ≤ m.∀s ∈ Bi, t ∈ Bj .(i = j ⇐⇒ sigπ(s) = sigπ(t))

6: if π = π′ then
π ← π′

8: else
stable ← true

they should remain in the same block; if not, then B needs to be split. See Alg. 1
for this procedure.

Branching Bisimilarity. The second relation we consider is branching bisimi-
larity [14]. It is sensitive to internal behaviour while preserving the branching
structure of an Lts, meaning that it preserves the potential to perform actions,
even when internal behaviour is involved. It has several nice properties, among
which are the facts that temporal logics such as the Hennessy-Milner logic with
an until operator and CTL∗-X characterise it [12].

Definition 3 (Branching Bisimulation). A binary relation R ⊆ S × S is a
branching bisimulation if R is symmetric and s R t implies that if s a−→ s′ then
– either a = τ with s′R t;
– or t=⇒ t̂

a−→ t′ with s R t̂ and s′R t′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a
branching bisimulation R such that s R t. Again, as in the case for strong bisim-
ilarity, we are interested in the largest branching bisimulation when checking
branching bisimilarity in an Lts.

A well-known property of branching bisimilarity is called stuttering, which
plays an important role when constructing an algorithm to check branching
bisimilarity of Ltss:

Definition 4 (Stuttering [14]). Let R be the largest branching bisimulation
relating states in G =〈S,A, T , s〉. If s τ−→ s1

τ−→ s2
τ−→ · · · τ−→ sn

τ−→ s′ (n ≥ 0) is
a path such that there is a t ∈ S with s R t and s′R t, then for all 1 ≤ i ≤ n,
we have si R t.

Def. 4 defines the notion of an inert τ-path, or inert path, in which all inter-
mediate states are branching bisimilar with each other. Alg. 1 can in principle be
used directly for checking branching bisimilarity if we redefine sigπ(s) as sigbπ(s),
where s

π
=⇒ ŝ expresses that there exists a τ -path between states s, ŝ which is

inert w.r.t. π:

sigbπ(s) = {(a, π(s′)) | ∃ŝ ∈ π(s).s
π
=⇒ ŝ

a−→ s′ ∧ (a �= τ ∨ π(s) �= π(s′))}

In the case of branching bisimilarity, τ -transitions are either inert (or silent)
or not, depending on whether following the transitions results in losing potential

372 A. Wijs

behaviour. This defines whether the source and target states of a τ -transition
are branching bisimilar or not. Consider the Lts shown in Fig. 2. From s1, a τ -
transition to s7 can be done, in which we have a c-loop, and a τ -transition to state
s3. The latter transition is inert, since also in s3, a τ -transition can be done to a
state, s6, which is branching bisimilar to s7. In other words, s3 can simulate the
behaviour of s1. However, in line with the stuttering property, inertness applies
to transitive closures of τ -transitions. In the example, also s0

s−→1 is inert, since
the a-transition from s0 can be simulated by s3. Hence, we have s0 ↔b s1 ↔b s3.

The definition of sigbπ(s) actually refers to π-inertness which means that both
the source and target state of a τ -transition are in the same block in π. The
added complication when checking branching bisimilarity w.r.t. strong is hence
that closures of τ -transitions that are π-inert need to be taken into account.
Because of this, the problem of checking branching bisimilarity is also known as
the multiple functions coarsest partition with stuttering problem.

In the algorithm by Browne et al. [10] for checking stuttering equivalence,
in every iteration, it needs to be checked whether for two states s and t the
behaviour reachable via inert paths is equivalent, in order to establish that s
and t are equivalent. This means that for each pair of possibly equivalent states,
inert paths need to be reexplored. The complexity of the algorithm is O(|S|5).

In the algorithm by Groote & Vaandrager (GV) [15], reexploration of inert
paths is avoided, and its complexity is O(|S| · (|S|+ |T |)). There, a pair of blocks
(B,B′) must be identified such that there both is a state in B with a transition
to B′, and there is no bottom state in B with a transition to B′. A state in B is
a bottom state when it has no transition to a state in B. If such a pair of blocks
can be found, then B must be split. This splitting criterion is directly based on
the previously mentioned observation that a τ -path is inert iff it leads to a state
which can simulate all behaviour of the intermediate states. Because of this, GV
requires that no τ -cycles are present. This is not an important restriction, since
compressing τ -cycles into individual states can be done in O(|T |) [1].

After the next section, explaining the basics of GPUs, we return to check-
ing bisimilarity, focussing on existing approaches for many-core settings, and
motivating our approach.

3 GPU Basics

In this paper, we focus on NVIDIA GPU architectures and the Compute Unified
Device Architecture (CUDA) interface. However, our algorithms can be straight-
forwardly applied to any architecture with massive hardware multithreading and
the SIMT (Single Instruction Multiple Threads) model.

CUDA is NVIDIA’s interface to program GPUs. It extends C and Fortran.
We use the C extension. CUDA includes special declarations to explicitly place
variables in the various types of memory (see Figure 1), predefined keywords
to refer to the IDs of individual threads and blocks of threads, synchronisation
statements, a run time API for memory management, and statements to define

GPU Accelerated Strong and Branching Bisimilarity Checking 373

and launch GPU functions, known as kernels. In this section we give a brief
overview of CUDA. More details can be found in, for instance, [9,23].

CUDA Programming Model. A CUDA program consists of a host program run-
ning on the Central Processing Unit (CPU) and a (collection of) CUDA kernels.
Kernels describe the parallel parts of the program and are executed many times
in parallel by different threads on the GPU device. They are launched from the
host. Often at most one kernel can be launched at a time, but there are also
GPUs that allow running multiple different kernels concurrently. When launch-
ing a kernel, the number of threads that should execute it needs to be specified.
All those threads execute the same kernel, i.e. code. Each thread is executed by a
streaming processor (SP), see Figure 1. In general, GPU threads are grouped in
blocks of a predefined size, usually a power of two. A block of threads is assigned
to a multiprocessor.

Multiprocessor 1
SP SP

SP SP

SP SP

SP SP

Shared memory

Multiprocessor N

SP SP

SP SP

SP SP

SP SP

Shared memory

· · · · · · · · ·· · · · · ·

L1 & L2 cache

Global memory

128B 128B

Fig. 1. Hardware model of CUDA GPUs

CUDA Memory Model. Threads
have access to different kinds of
memory. Each thread has a number
of on-chip registers that allow fast
access. Furthermore, threads within
a block can together use the shared
memory of a multiprocessor, which
is also on-chip and fast. Finally,
all blocks have access to the global
memory which is large (currently up
to 12 GB), but slow, since it is off-
chip. Two caches called L1 and L2
are used to cache data read from the
global memory. The host has read
and write access to the global mem-
ory, which allows it to be used for communication between the host and the
kernel.

GPU Architecture. A GPU contains a set of streaming multiprocessors (SMs),
and each of those contains a set of SPs. The NVIDIA Kepler K20m, which we
used for our experiments, has 13 SMs, each having 192 SPs, which is in total
2496 SPs. Furthermore, it has 5 GB global memory.

CUDA Execution Model. Threads are executed using the SIMT model. This
means that each thread is executed independently with its own instruction ad-
dress and local state (registers and local memory), but their execution is organ-
ised in groups of 32 called warps. The threads in a warp execute instructions in
lock-step, i.e. they share a program counter. If the memory accesses of threads
in a warp can be grouped together physically, i.e. if the accesses are coalesced,
then the data can be obtained using a single fetch, which greatly improves the
runtime compared to fetching physically separate data. When checking bisimi-
larity on state spaces, though, the required access to transitions is expected to be

374 A. Wijs

0 2 4 4 7 7 7 8 9offsets
τ a τ τ a b τ c cTlbls
s1 s2 s3 s7 s4 s5 s6 s6 s7Ttgts

s0

s1 s2

s3 s7

s4 s5 s6

τ a

τ τ

a
b

τ
c

c

Fig. 2. An example Lts and its encoding in offsets, Tlbls and Ttgts arrays

irregular. This poses the challenge of reducing the number of irregular memory
accesses despite of that fact.

Lts Representation. In order to check bisimilarity of Ltss on a GPU, we first
need to find a suitable encoding of them to store the input data in the global
memory. For this, we use a representation similar to those used to compactly
describe sparse graphs. Fig. 2 shows an example of such an encoding of the Lts
on the right. Three arrays are used to store the information. The first one, offsets ,
holds for every state i the start and end indices of its outgoing transitions in the
other two arrays at offsets [i] and offsets [i + 1], respectively. Arrays Tlbls and
Ttgts provide a list of the outgoing transitions, in particular their action labels
and target states, respectively. In practice, actions are encoded by an integer,
with τ = 0, a = 1, etc. To give an example, the transitions of s1 can be found
from offsets [1] up to offsets [2], i.e. at positions 2 and 3, in Tlbls and Ttgts .
Finally, it should be noted that the outgoing transitions of each state have been
sorted by label lexicographically, with τ the smallest element. We will use this
to our advantage later on, when we explain our multi-way splitting procedure.

Finally, we note that in the following, when we refer to an array entry as
being locked, we mean that its highest bit has been set. In general, we use 32-bit
integers to store data elements. Even if we reserve the highest bit of each entry,
we can still refer to 231 states. In a connected Lts, this means that we will also
have at least 231−1 transitions. Since transitions take two integers to store each
(in Tlbls and Ttgts), an Lts of that size would not fit in current GPUs anyway.

4 Many-Core Bisimilarity Checking

Strong Bisimilarity. The algorithm by Lee & Rajasekaran (LR) [18] is the first
that has been proposed to check strong bisimilarity on SIMT architectures, and
is based on KS. We discuss the main approach of it here since we will justify the
choices we made for our algorithm w.r.t. LR, and since we have an experimental
comparison between CUDA-implementations of LR (made by us) and the new
algorithm in Section 5.

Table 1 shows an example situation when running LR on the Lts in Fig. 2.
A number of arrays are used here. First of all, not listed in the table, a B

GPU Accelerated Strong and Branching Bisimilarity Checking 375

Table 1. Running LR on the Lts in Figure 2

P (0,s0) (0,s3) (0,s4) (1,s1) (1,s6) (2,s2) (2,s5) (2,s7) -
V 0 1 2 0 1 0 1 2 -

TSIZE 2 3 0 2 1 0 0 1 -
Lsrc B[s0] B[s0] B[s3] B[s3] B[s3] B[s1] B[s1] B[s6] B[s7]
Llbl τ a τ a b τ τ c c
Lidx 0 0 1 1 1 0 0 1 2
Ltgt B[s1] B[s2] B[s6] B[s4] B[s5] B[s3] B[s7] B[s6] B[s7]

array is maintained indicating to which block each state i belongs. With this, a
partition array P is constructed consisting of tuples (B[i], i), which is then sorted
in parallel on B[i] (initially, if we have a single block, no sorting is required).
Next, a V array is filled assigning to each state i a block local ID between 0 and
|B[i]|, i.e. an identifier local to the block it is in, which can be done using P . The
order in which the states appear in P determines array TSIZE ; the latter must
be filled with the number of outgoing transitions of each corresponding state in
P , which can be done in parallel using P and offsets . Finally, after obtaining
absolute offsets using TSIZE , the L arrays are filled, listing the transitions in
the Lts w.r.t. the current partition in the order of the states in P . Besides source
and target block and the label, also the block local ID of the source is added in
Lidx . Note that from L we can now directly learn the signature of each state.

Once L is filled, it is lexicographically sorted. Because the block local IDs
have been included, this means that all transitions of a state are still next to
each other, but now also sorted by label and target block. After removing dupli-
cate entries in parallel, we have essentially made sure that the lists of outgoing
transitions can be interpreted as sets. Then, the most interesting operation is
performed, namely the comparison of signatures. For this, LR compares in par-
allel the signature of each state i with the one of state i − V [i], i.e. of the state
with block local ID 0 of the same block. This signature can directly be found
using V . When the signatures are equal, nothing is done, but when they are
not, a new block ID x is created and state i is assigned to it, i.e. B[i] is set to
x. How new block IDs should be chosen in parallel is not mentioned in [18], in
fact, they split blocks sequentially, but we chose for the following mechanism:
threads working on the same block and finding states that must be split off to
select a new block ID first check whether TSIZE [i −V [i]] is locked, i.e. whether
its highest bit is set, and if not, lock it atomically. Only one thread will succeed
in doing so, which will subsequently try to atomically increment a global ID
counter. Once it succeeds, it stores the new value in TSIZE [i−V [i]]. After that,
the other threads read this value and learn the new block ID.

LR is a typical SIMT application; all data is stored in arrays, and the threads
manipulate these on a one-on-one basis, i.e. n threads work on arrays of size n.
Moreover, LR uses a number of parallel operations, such as sorting and perform-
ing segmented scans, that are available in standard GPU libraries. For instance,
we have implemented LR using the Thrust library. However, we chose to design
an algorithm which is very different from this one, based on the following ideas:
1. Comparing states with a specific ‘first’ state is very suitable for a GPU, since

it allows for threads to check locally whether their state needs to move to

376 A. Wijs

another block, but we observe that this can be any state, and found a way
to select such a first state, which we from now on will call a representative,
without sorting. This allows for more coalesced memory access when threads
can be assigned to consecutive states as opposed to consecutive elements of
P . The order of states in P can be considered random.

2. Maintaining L requires many (expensive) memory accesses, and the involved
reads and writes are not coalesced, due to the randomness imposed by the
structure of the Lts. We chose to directly have each thread use the infor-
mation from Tlbls , Ttgts and B concerning the involved transitions of both
its assigned state and the associated representative, and construct the sig-
natures in its local registers, which allows for fast comparisons, and reduces
the memory requirements from 6 · |S|+ 8 · |T | to 2 · |S|+ 2 · |T |.

3. If we start with a single block, which is not considered in [18], then each
iteration except the last one produces exactly one new block. This does not
scale well. In [16], a multi-way splitting procedure is proposed, but it is based
on the entire signature of states, and not very suitable for our representative
selection. We propose a multi-way splitting mechanism that is compatible.

The new algorithm. First, we will explain multi-way representative selection. In
Fig. 3, part of the initial situation is shown when applying our algorithm on the
Lts in Fig. 2. Initially, states are not in any block, indicated by B[i] = ‘-’.

0 3 s3 s7 s4 s5 s6 s6 s7Ttgts

τ a τ τ a b τ c cTlbls
− − − − − − − − −B

t0 t1 t3

Fig. 3. Representative selection

Each thread ti checks if state si needs to
move to a new block, which is indicated by
the highest bit in offsets [i] being set. Then,
they read a predetermined outgoing transi-
tion label of si. This is handled globally us-
ing variable labelcounter ; if labelcounter = j ,
this means that every thread reads the label
of the j-th transition. Let us call this label �.
Whenever j > |T (si)|, we say that � = 0. Us-

ing B[i] (interpreting ‘-’ as 0) and �, ti computes a hash value h = ((B[i] ·N)+�)
mod |T |, with N the number of different labels in the Lts. Next, Ttgts is tem-
porarily reused to serve as a hash table, and thread i tries to atomically write
a locked i to cell Ttgts [h]. Only one thread will succeed in doing so per cell.
The one that does has now successfully promoted its state to representative of
a new block, and the other threads, knowing that they have failed since they
encountered a locked entry, read the representative ID from Ttgts [h] and store
it in their B cells. Note that in general, h can be larger than |Ttgts |. Since we
want no threads to meet in Ttgts that do not represent states from the same
block, the selection procedure is actually done in several iterations, shifting the
range of the hash table each iteration by |Ttgts |. This way of selecting allows
using state IDs as block IDs, which is possible since the blocks are disjoint.

The selection procedure uses a form of multi-way splitting, i.e. splitting a block
at once into more than two blocks, when possible, by ensuring that threads which
encounter different transition labels try to atomically write to different cells in
Ttgts . Note that in Section 3, we mentioned that the outgoing transitions of

GPU Accelerated Strong and Branching Bisimilarity Checking 377

each state are in Tlbls sorted by label. This means that initially, if two states
do not have the same first label, then they cannot be bisimilar, and can hence
immediately be moved to different blocks. In the next iteration, we know that in
each block Bi, all the states must have the same label on their first transition,
so we focus on the second transition, and so on. Hence, in order for this to be
effective, we use labelcounter to change the splitting criterion, which works as
long as we have not reached the end of the transition list of at least one state.

Algorithm 2 Many-core bisimilarity checking
Require: G = 〈S,A, T , s〉, π = {S}

stable ← false
2: while ¬stable do

labelcounter ← (labelcounter + 1) mod |T |
4: device stable ← true

selectRepresentatives ≪ |S| ≫ (labelcounter)
6: postprocessElection ≪ |T | ≫ ()

while continue do
8: device continue ← false

propagateBlockIDs ≪ |S| ≫ ()
10: continue ← device continue

markNoninertTaus()
12: compareSignatures ≪ |S| ≫ ()

stable ← device stable

Alg. 2 without the boxed
code presents an overview of
the entire strong bisimilarity
checking procedure. We use
the CUDA notation ≪ n ≫
to indicate that n threads exe-
cute a given kernel. Once new
representatives have been se-
lected at line 5, postprocessing
is performed to recreate the
original Ttgts array. This can
be done efficiently, since the el-
ements that were removed during representative selection have been temporarily
moved to the B array cells of the new representatives. At line 12, each block of
threads fetches a consecutive tile of transitions from the global memory and
stores it in the shared memory. Each thread i then does the following:
– It reads the outgoing transitions of si from the shared memory;
– It fetches B[si] from the global memory;
– It employs its warp to fetch the transitions of B[si] in a number of coalesced

memory accesses, and stores all these transitions into its local registers;
– It looks up the block IDs of the corresponding target states;
– Finally, sigπ(si) and sigπ(B[si]) are compared.

This procedure results in the highest bit of offsets [i] being set, and the global
variable device stable being set to false iff the signatures are not equal. The con-
tent of device stable is read by the host at line 13, after which another iteration
is started or not, depending on its value.
Branching Bisimilarity. For branching bisimilarity, we need to handle the pres-
ence of inert paths, as mentioned in Section 2. Without doing so, Alg. 2 would
after line 6 provide an incorrect representation of which blocks can be reached
from each state, resulting in the signatures comparison at line 12 going wrong. To
check branching bisimilarity, we therefore add a procedure to propagate block
IDs over τ -transitions which can be considered inert at the current iteration.
This is similar to the approach in the algorithm by Blom & Van de Pol [7].2

By definition, τ -transitions are inert w.r.t. a partition π iff their source and tar-
get states are in the same block. However, if we want threads to locally compare
their state with the corresponding block representative, without looking beyond

2 An alternative would be to try to port GV to GPUs, but GV requires several linked
lists, and therefore dynamic memory allocation, making it less suitable for GPUs.

378 A. Wijs

their outgoing transitions (which would lead to expensive searching through the
global memory), then it cannot be ensured that source and target states are al-
ways in the same block. For example, consider the Lts in Fig. 2. Say we perform
the initial representative selection without multiway splitting, and states s1 and
s3 end up in the same block with s1 as representative. Then a direct comparison
of the two states would reveal that they have unequal signatures, even though
transition s1

τ−→ s3 is inert. On the other hand, s1
τ−→ s7 is not inert, so these

cases must be distinguishable by the checking algorithm.
To resolve this, we define the notion of a visible signature sigπ(s) = {(a, π(s′)) |

s
a−→ s′ ∧ a �= τ}, and use the label τ to denote a visible τ -transition. Visible τ -

transitions are also included in a visible signature, but initially, all τ -transitions
are invisible. This means that in our branching bisimilarity checking algorithm
(for an overview, see Alg. 2 with the boxed code), we initially select representa-
tives and compare signatures based on signatures without τ -transitions.

After representative selection, it must be checked whether τ -transitions are
possibly π-inert, and if they are, the block IDs of their target states should
be propagated to their source states, making the latter propagating states. The
condition for a τ -transition to be possibly π-inert directly corresponds with the
observation made in Section 2 that inert τ -paths must end in a state which can
simulate all previously potential behaviour. The following is a relevant lemma.

Lemma 1. A state can reach at most one block via π-inert τ-paths.

Proof. Say that from a state s two blocks B1, B2 can be reached via π-inert
τ -paths, leading to states s′ ∈ B1, s′′ ∈ B2. Since each subsequently discovered
partition will be a refinement of π, we must have that s′ �↔b s′′. But then, we
must have that s ↔b s′ and s ↔b s′′. From the facts that s′ �↔b s′′ and that
branching bisimilarity is an equivalence, we derive a contradiction. ��

Definition 5 (Inertness condition and propagating state). A transition
s

τ−→ s′ is possibly π-inert, and s is a propagating state, iff
– either s′ is not propagating, and (sigπ(s) \ {(s, τ, π(s′))}) ⊆ sigπ(s

′);
– or s′ is propagating, and (sigπ(s) \ {(s, τ, π(s′))}) ⊆ sigπ(B[s′]).

The first alternative in Def. 5 refers to the case that the target state s′ is not
propagating. In that case, its visible signature should be a superset of sigπ(s)
minus τ -transitions leading to π(s′), i.e. s′ should be able to simulate s. Note
that this uses Lemma 1: all τ -transitions leading to blocks different from π(s′)
in the signature of s are involved in the comparison, since a τ -transition to π(s′)
can only be π-inert if all other τ -transitions to different blocks are not. The
second alternative enables propagating results over τ -paths. If s′ is propagating,
then the signature of the representative B[s′] must be taken into account.

In Alg. 2, at lines 7-10, all possibly π-inert τ -transitions are detected, and we
mark the source states as propagating using one bit. If a state s has multiple
possibly π-inert τ -transitions to different blocks, we define B[s] =‘-’ and mark s
propagating. The latter is a conservative action; we refrain from propagating a
block ID until we can detect a single block as being reachable via inert τ -paths.

GPU Accelerated Strong and Branching Bisimilarity Checking 379

 1

 10

 100

 1000

 10000

 100000

a b c d e f g h p q r

ru
nt

im
e

(s
ec

.)

models

GPU(ms)
GPU(ss)

LR
LTSmin(4c)

LTSmin(16c)
LTSmin(32c)

 1

 10

 100

 1000

 10000

 100000

i j k l m n o p q r

ru
nt

im
e

(s
ec

.)

models

GPU(ms)
LTSmin(4c)

LTSmin(16c)
LTSmin(32c)

Fig. 4. Strong and branching bisimilarity checking runtimes (sec.)

When propagation finishes, τ -transitions that are not π-inert are relabelled
to τ at line 11, thereby adding them to the visible signatures. The signature
comparison at line 12 now only concerns the non-propagating states.

Completeness of the algorithm follows from the inertness criterion (Section 2)
and the fact that τ -transitions are conservatively marked visible (as long as we
do not mark inert τ -transitions as visible, our partition has the largest branching
bisimulation as a refinement). Finally, if in any iteration, a state must be moved
from ‘-’ to a block, then it must be added to a new block, i.e. one does not need
to find an existing suitable block. That this is correct is shown next.

Lemma 2. Say that state s has been marked non-propagating in iteration i > 0,
when we have partition π. Then it should be added to a new block not in π.

Proof. By reasoning towards a contradiction. Consider that when s is marked
non-propagating, there already exists a block B′ with representative t to which
it should be added. Then, in iterations j < i, s still had at least one possibly π-
inert τ -transition. Let us call the block reachable via that transition B′′, and say
that sigπ(s) = T ∪{(τ, B′′)}, with T some set of (action, block)-pairs. Because s
should be added to B′, we must have that t has the same signature as s, hence
sigπ(t) = T ∪ {(τ, B′′)}. But then, also t must have been propagating in j < i,
contradicting the assumption that before i, t already represented a block. ��

Complexity of the algorithms. If we assume that we can launch |S| and |T |
threads, then each kernel in Alg. 2 can be performed in O(1). Hence, strong
bisimilarity checking can be done in O(|S|), since worst-case, |S| iterations are
required. In addition, branching bisimilarity checking requires worst-case a prop-
agation procedure of |S| iterations, so its complexity is O(|S|2).

5 Experimental Results

In this section, we present some of our experimental comparisons of various GPU
setups, and with the LTSmin toolset, which is the only toolset we are aware of

380 A. Wijs

that offers parallel strong and branching bisimilarity checking, and therefore
allows us to experimentally compare our implementations with the scalability of
CPU approaches.3 LTSmin offers implementations of the algorithms by Blom
et al. [5,6,7]. In this section, we report on a comparison with the algorithms
from [5,6]. For the GPU experiments, we used an NVIDIA K20m with 5 GB
memory on a machine with an Intel E5-2620 2.0 GHz CPU running CentOS
Linux. For the CPU experiments with LTSmin 2.0, we used a machine with an
Amd Opteron 6172 processor with 48 cores, 192 GB RAM, running Debian
6.0.7.

Table 2. Benchmark set

id Model #st. #tr. #ss #sb

a BRP250 219m 266m 101m n.a.

b coin8.3 87m 583m 20m n.a.

c cwi_33949 33m 165m 122k n.a.

d cwi_7838 8m 59m 1m n.a.

e diningcrypt14 18m 164m 18m n.a.

f firewire_dl800.36 129m 294m 34m n.a.

g mutualex7.13 76m 654m 76m n.a.

h SCSI_C_6 74m 404m 74m n.a.

i BRP250 h2 219m 266m n.a. 19k

j cwi_33949 h1 33m 165m n.a. 12k

k cwi_33949 h2 32m 158m n.a. 3k

l diningcrypt14 h2 2m 16m n.a. 497k

m firewire_dl800.36 h2 129m 294m n.a. 26m

n mutualex7.13 h1 76m 613m n.a. 41m

o mutualex7.13 h2 76m 562m n.a. 32m

p vasy_6020 6m 19m 7k 256

q vasy_6120 6m 11m 6k 349

r vasy_8082 8m 43m 408 290

Table 2 shows the characteristics of each
Lts, namely 1) number of states, 2) num-
ber of transitions, 3) number of states in
the strongly reduced Lts, and 4) number
of states in the branching reduced Lts.
Note that in some cases, no reduction can
be achieved, which is an interesting worst-
case scenario for our experiments. The mod-
els the Ltss stem from have been taken
from various sources, namely the Beem
database [21], the CADP toolbox [13], the
mCRL2 toolset [11], and the website of
Prism.4 To produce cases for branching
bisimilarity checking, we wrote a tool to au-
tomatically relabel a predefined number of
transitions to τ . In the cases suffixed with
h1 roughly 25% of the transitions have the
label τ , while in the h2 Ltss this is 50%.

Fig. 4 presents the runtimes we measured
(in seconds) for strong and branching bisim-
ilarity checking, on the left and the right,
respectively. We used the following setups:

a CUDA implementation of our algorithms with (GPU(ms)) and without
(GPU(ss)) multi-way splitting, a CUDA-version of LR, and the LTSmin tool
Ltsmin-reduce-dist running with 4, 16, and 32 cores, which we refer to as
LTSmin from now on. In those cases where no result is given for a particular
tool and model, the tool ran either out of memory (the CPU tools) or out of
time (the GPU tools) on the aforementioned machine.

First of all, considering our algorithm, the positive effect of multiway split-
ting is apparent, it can speed up the checking by 2 to 50 times, and as expected,
since it allows the checking to finish in fewer iterations. Second of all, notice
that LR is clearly slower than our approach, in those cases that LR could ac-
tually be run, due to its higher memory requirements. These findings support

3 For a list of all the experiments, and the relevant source code and models, see
http://www.win.tue.nl/~awijs/GPUreduce

4 http://www.prismmodelchecker.org

http://www.win.tue.nl/~awijs/GPUreduce
http://www.prismmodelchecker.org

GPU Accelerated Strong and Branching Bisimilarity Checking 381

the hypothesis that our new approach performs better than LR on modern GPU
architectures. In a number of cases, our tool achieves runtimes comparable to
the 16-core LTSmin setup. Given that LTSmin scales nicely, this is encourag-
ing. Since the multiway splitting in our approach is more limited to the one in
LTSmin, involving a specific transition label as opposed to entire signatures,
our tool in particular performs worse when LTSmin can aggressively use mul-
tiway splitting. Finally, it is worth noting that sometimes, LTSmin runs out of
memory. Storing signatures explicitly is more memory consuming than recreating
them every time, but of course, one needs the parallel computation power for the
recreation not to be a drawback. Since LTSmin does not exploit shared memory,
but keeps the memory separated per worker, this also means that increasing the
number of workers tends to increase the presence of redundant information.

6 Related Work

Blom et al. [5,6,7,19] use the aforementioned signatures to distinguish states for
distributed bisimilarity checking. In each iteration, the signatures are placed in
a hash table, and used as block IDs to refine the partition. On GPUs, however,
storing full signatures is very hard, requiring dynamic memory allocation.

Zhang & Smolka [28] propose a parallelisation of KS where threads commu-
nicate via message-passing. Such an approach cannot easily be migrated to the
GPU setting, since message-passing among threads running on the same GPU
does not naturally fit the GPU computation model. On the other hand, one could
use message passing between GPUs that together try to check bisimilarity.

Jeong et al. [16] propose a parallel KS algorithm along the lines of [18] with
multi-way splitting, but there is a probability that wrong results are obtained.

7 Conclusions

We presented new algorithms to perform strong and branching bisimilarity check-
ing on GPUs. Experiments demonstrate that significant speedups can be achieved.
As future work, we will try to further optimise the algorithms. There is still po-
tential to avoid signature comparisons in specific cases. Furthermore, we will con-
sider employing GPUs for other applications of model checking, for instance to
find near-optimal schedules (e.g. [26]) and quantitative analysis (e.g. [25]).

References

1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley (1974)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Barnat, J., Bauch, P., Brim, L., Češka, M.: Designing Fast LTL Model Checking

Algorithms for Many-Core GPUs. J. Parall. Distrib. Comput. 72, 1083–1097 (2012)
4. Bartocci, E., DeFrancisco, R., Smolka, S.: Towards a GPGPU-parallel SPIN Model

Checker. In: SPIN, pp. 87–96. ACM (2014)

382 A. Wijs

5. Blom, S., Orzan, S.: Distributed Branching Bisimulation Reduction of State Spaces.
In: FMICS. ENTCS, vol. 80, pp. 109–123. Elsevier (2003)

6. Blom, S., Orzan, S.: A Distributed Algorithm for Strong Bisimulation Reduction
of State Spaces. STTT 7(1), 74–86 (2005)

7. Blom, S., van de Pol, J.: Distributed Branching Bisimulation Minimization by
Inductive Signatures. In: PDMC. EPTCS, vol. 14, pp. 32–46. Open Publishing
Association (2009)

8. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: GPU-PRISM: An Extension
of PRISM for General Purpose Graphics Processing Units. In: PDMC 2010, pp.
17–19. IEEE (2010)

9. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel Probabilistic Model
Checking on General Purpose Graphic Processors. STTT 13(1), 21–35 (2011)

10. Browne, M., Clarke, E.M., Grumberg, O.: Characterizing Finite Kripke Structures
in Propositional Temporal Logic. TCS 59, 115–131 (1988)

11. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An Overview of the mCRL2 Toolset and Its Recent
Advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 199–213. Springer, Heidelberg (2013)

12. De Nicola, R., Vaandrager, F.: Three Logics for Branching Bisimulation. Journal
of the ACM 42(2), 458–487 (1995)

13. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

14. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM 43(3), 555–600 (1996)

15. Groote, J., Vaandrager, F.: An Efficient Algorithm for Branching Bisimulation and
Stuttering Equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp.
626–638. Springer, Heidelberg (1990)

16. Jeong, C., Kim, Y., Oh, Y., Kim, H.: A Faster Parallel Implementation of the
Kanellakis-Smolka Algorithm for Bisimilarity Checking. In: ICS (1998)

17. Kanellakis, P., Smolka, S.: CCS Expressions, Finite State Processes, and Three
Problems of Equivalence. In: PODC, pp. 228–240. ACM (1983)

18. Lee, I., Rajasekaran, S.: A Parallel Algorithm for Relational Coarsest Partition
Problems and Its Implementation. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818,
pp. 404–414. Springer, Heidelberg (1994)

19. Orzan, S.: On Distributed Verification and Verified Distribution. Ph.D. thesis, Free
University of Amsterdam (2004)

20. Paige, R., Tarjan, R.: A Linear Time Algorithm to Solve the Single Function Coars-
est Partition Problem. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp.
371–379. Springer, Heidelberg (1984)

21. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

22. Wijs, A.J., Bošnački, D.: Improving GPU Sparse Matrix-Vector Multiplication for
Probabilistic Model Checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 98–116. Springer, Heidelberg (2012)

23. Wijs, A., Bošnački, D.: GPUexplore: Many-Core On-The-Fly State Space Explo-
ration Using GPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 233–247. Springer, Heidelberg (2014)

GPU Accelerated Strong and Branching Bisimilarity Checking 383

24. Wijs, A., Katoen, J.-P., Bošnački, D.: GPU-Based Graph Decomposition into
Strongly Connected and Maximal End Components. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 310–326. Springer, Heidelberg (2014)

25. Wijs, A.J., Lisser, B.: Distributed Extended Beam Search for Quantitative Model
Checking. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI),
vol. 4428, pp. 166–184. Springer, Heidelberg (2007)

26. Wijs, A., van de Pol, J., Bortnik, E.: Solving Scheduling Problems by Untimed
Model Checking - The Clinical Chemical Analyser Case Study. In: FMICS, pp.
54–61. ACM (2005)

27. Wu, Z., Liu, Y., Liang, Y., Sun, J.: GPU Accelerated Counterexample Generation
in LTL Model Checking. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 413–429. Springer, Heidelberg (2014)

28. Zhang, S., Smolka, S.: Towards Efficient Parallelization of Equivalence Checking
Algorithms. In: FORTE, North-Holland. IFIP Transactions, vol. C-10, pp. 121–135
(1992)

Fairness for Infinite-State Systems

Byron Cook1, Heidy Khlaaf1, and Nir Piterman2

1 University College London, London, UK
2 University of Leicester, Leicester, UK

Abstract. In this paper we introduce the first known tool for symbol-
ically proving fair -CTL properties of (infinite-state) integer programs.
Our solution is based on a reduction to existing techniques for fairness-
free CTL model checking via the use of infinite non-deterministic branch-
ing to symbolically partition fair from unfair executions. We show the
viability of our approach in practice using examples drawn from device
drivers and algorithms utilizing shared resources.

1 Introduction

In model checking, fairness allows us to bridge between linear-time (a.k.a. trace-
based) and branching-time (a.k.a. state-based) reasoning. Fairness is crucial, for
example, to Vardi & Wolper’s automata-theoretic technique for LTL verifica-
tion [25]. Furthermore, when proving state-based CTL properties, we must often
use fairness to model trace-based assumptions about the environment both in
a sequential setting, and when reasoning about concurrent environments, where
fairness is used to abstract away the scheduler.

In this paper we introduce the first-known fair-CTL model checking technique
for (infinite-state) integer programs. Our solution reduces fair-CTL to fairness-
free CTL using prophecy variables to encode a partition of fair from unfair
paths. Cognoscenti may at first find this result surprising. It is well known that
fair termination of Turing machines cannot be reduced to termination of Turing
machines. The former is Σ1

1 -complete and the latter is RE-complete [18].1 For
similar reasons fair-CTL model checking of Turing machines cannot be reduced
to CTL model checking of Turing machines. The key to our reduction is the use
of infinite non-deterministic branching when model checking fairness-free CTL.
As a consequence, in the context of infinite branching, fair and fairness-free CTL
are equally difficult (and similarly for termination).

Motivation. Current techniques for model checking CTL properties provide no
support for verification of fair-CTL, thus excluding a large set of branching-time
liveness properties necessitating fairness. These properties are often imperative
to verifying the liveness of systems such as Windows kernel APIs that acquire
resources and APIs that release resources. Below are properties which can be
expressed in fair-CTL, but not CTL nor LTL. We write these properties in CTL*,

1 Sometimes termination refers to universal termination, which entails termination for
all possible inputs. This is a harder problem and is co-RERE-complete.

© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 384–398, 2015.
DOI: 10.1007/978-3-662-46681-0_30

Fairness for Infinite-State Systems 385

a superset of both CTL and LTL2. For brevity, we write Ω for GFp→GFq. A state
property is indicated by ϕ (i.e., a combination of assertions on the states of the
program) and p and q are subsets of program states, constituting our fairness
requirement (infinitely often p implies infinitely often q).

The property E[Ω ∧ Gϕ] generalizes fair non-termination, that is, there ex-
ists an infinite fair computation all of whose states satisfy the property ϕ. The
property A

[
Ω → G[ϕ1 → A(Ω → Fϕ2)]

]
indicates that on every fair path, every

ϕ1 state is later followed by a ϕ2 state. We will later verify it for a Windows
device driver, indicating that a lock will always eventually be released in the
case that a call to a lock occurs, provided that whenever we continue to call
a Windows API repeatedly, it will eventually return a desired value (fairness).
Similarly, A

[
Ω → G[ϕ1 → A(Ω → FE(Ω ∧ Gϕ2))]

]
dictates that on every fair

path whenever a ϕ1 state is reached, on all possible futures there is a state which
is a possible fair future and ϕ2 is always satisfied. For example, one may wish to
verify that there will be a possible active fair continuation of a server, and that
it will continue to effectively serve if sockets are successfully opened.3

Furthermore, fair-CTL model checking is rudimentary to the well known tech-
nique of verifying LTL in the finite-state setting [25]. A fair-CTL model checker
for infinite-state systems would thus enable us to implement the automata-
theoretic approach to linear-time model checking by reducing it to fair-CTL
model checking as is done in the finite-state setting.

Fairness is also crucial to the verification of concurrent programs, as well-
established techniques such as [7] reduce concurrent liveness verification to a
sequential verification task. Thread-modular reductions of concurrent to sequen-
tial programs often require a concept of fairness when the resulting sequential
proof obligation is a progress property such as wait-freedom, lock-freedom, or
obstruction-freedom. Moreover, obstruction freedom cannot be expressed in LTL
without additional assumptions. With our technique we can build tools for au-
tomatically proving these sequential reductions using fair-CTL model checking.

Related Work. Support for fairness in finite and other decidable settings has been
well studied. Tools for these settings (e.g. NuSMV for finite state systems [5,6],
Moped and PuMoc for pushdown automata [23,24], Prism for probabilistic
timed automata [19], and Uppaal for timed automata [15]) provide support for
fairness constraints. Proof systems for the verification of temporal properties of
fair systems (e.g., [3], [21]) also exist. However, such systems require users to
construct auxiliary assertions and participate in the proof process.

Contrarily, we seek to automatically verify the undecidable general class of
(infinite-state) integer programs supporting both control-sensitive and numerical
properties. Additionally, some of these tools do not fully support CTL model
checking, as they do not reliably support mixtures of nested universal/existential
path quantifiers, etc. The tools which consider full CTL and the general class of

2 These properties expressed in terms of the fair path quantifiers Ef and Af are
EfGϕ,AfG(ϕ1 → AfFϕ2), and AfG(ϕ1 → Af F EfGϕ2), respectively.

3 Notice that our definition of fair CTL considers finite paths. Thus, all path quan-
tifications above range over finite paths as well.

386 B. Cook, H. Khlaaf, and N. Piterman

integer programs as we do are [2], [10], and [12]. However, these tools provide
no support for verifying fair-CTL.

When we consider the general class of integer programs, the use of infinite non-
determinism to encode fairness policies has been previously utilized by Olderog
et al. [1]. However, they do not rely on nondeterminism alone but require re-
finement of the introduced nondeterminism to derive concrete schedulers which
enforce a given fairness policy. Thus, their technique relies on the ability to force
the occurrence of fair events whenever needed by the reduction. We support
general fairness constraints, rather than just fair scheduling. The ability to force
the occurrence of fair events is too strong for our needs. Indeed, in the context
of model checking we rely on the program continuing a normal execution until
the “natural” fulfillment of the fairness constraint.

An analysis of fair discrete systems which separates reasoning pertaining to
fairness and well-foundedness through the use of inductive transition invariants
was introduced in [20]. Their strategy is the basis of the support for fairness
added to Terminator [8]. However, this approach relies on the computation
of transition invariants [22], whereas our approach does not. We have recently
shown that, in practice, state-based techniques that circumvent the computa-
tion of transition invariants perform significantly better [14]. Additionally, a
technique utilized to reduce LTL model checking to fairness-free CTL model
checking introduced by [11] is largely incomplete, as it does not sufficiently de-
terminize all possible branching traces. Note that these methodologies are used
to verify fairness and liveness constraints expressible within linear temporal logic,
and are thus not applicable to verify fair branching-time logic or branching-time
logic. Indeed, this was part of our motivation for studying alternative approaches
to model checking with fairness.

2 Preliminaries

Transition Systems. A transition system is M = (S, S0, R, L), where S is a
countable set of states, S0 ⊆ S a set of initial states, R ⊆ S × S a transition
relation, and L : S → 2AP a labeling function associating a set of propositions
with every state s ∈ S. A trace or a path of a transition system is either a
finite or infinite sequence of states. The set of infinite traces starting at s ∈ S,
denoted by Π∞(s), is the set of sequences (s0, s1, . . .) such that s0 = s and ∀i ≥
0. (si, si+1) ∈ R. The set of finite traces starting at s ∈ S, denoted by Πf (s), is
the set of sequences (s0, s1, . . . , sj) such that s0 = s, j ≥ 0, ∀i < j. (si, si+1) ∈ R,
and ∀s ∈ S. (sj , s) /∈ R. Finally, the set of maximal traces starting at s, denoted
by Πm(s), is the set Π∞(s) ∪Πf (s). For a path π, we denote the length of said
path by |π|, which is ω in case that π is infinite.

Computation Tree Logic (CTL). We are interested in verifying state-based
properties in computation tree logic (CTL). Our definition of CTL differs slightly
from previous work, as it takes into account finite (maximal) paths. This seman-
tics allows us to specify properties such as termination without requiring special

Fairness for Infinite-State Systems 387

α(s)

M, s |=m α

¬α(s)
M, s |=m ¬α

M, s |= ϕ1 M, s |= ϕ2

M, s |=m ϕ1 ∧ ϕ2

M, s |= ϕ1 ∨ M, s |= ϕ2

M, s |=m ϕ1 ∨ ϕ2

∀π = (s0, s1, ...) ∈ Πm(s). M, s1 |= ϕ

M, s |=m AXϕ

∃π = (s0, s1, ...) ∈ Πm(s). M, s1 |= ϕ

M, s |=m EXϕ

∀π = (s0, s1, ...) ∈ Πm(s). (∀i ∈ [0, |π|). M, si |= ϕ1)∨
(∃j ∈ [0, |π|). M, sj |= ϕ2 ∧ ∀i ∈ [0, j). M, si |= ϕ1)

M, s |=m A[ϕ1Wϕ2]

∀π = (s0, s1, ...) ∈ Πm(s).
(∃j ∈ [0, |π|). M, sj |= ϕ)

M, s |=m AFϕ

∃π = (s0, s1, ...) ∈ Πm(s).
(∃j ∈ [0, |π|). M, sj |= ϕ2 ∧ ∀i ∈ [0, j). M, si |= ϕ1)

M, s |=m E[ϕ1Uϕ2]

∃π = (s0, s1, ...) ∈ Πm(s).
(∀i ∈ [0, |π|). M, si |= ϕ)

M, s |=m EGϕ

Fig. 1. Semantics of CTL: |=m

atomic propositions to hold at program exit points, as proposed by Cook et al.
in [13], and to reason about a transformation that introduces many finite paths.

A CTL formula is of the form:

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | AFϕ | A[ϕWϕ] | EXϕ | EGϕ | E[ϕUϕ],

where α ∈ AP is an atomic proposition. We assume that formulae are written in
negation normal form, in which negation only occurs next to atomic propositions.
We introduce AG,AU,EF, and EW as syntactic sugar as usual. A formula is in
ACTL if it uses only universal operators, i.e., AX, AW, AF, AU, or AG.

Fig. 1 defines when a CTL property ϕ holds in a state s ∈ S of a transition
system M . We say that ϕ holds in M , denoted M |=m ϕ, if ∀s ∈ S0. M, s |=m ϕ.

Fair CTL. For a transition systemM , a fairness condition is Ω = (p, q), where
p, q ⊆ S. When fairness is part of the transition system we denote it as M =
(S, S0, R, L,Ω). We still include Ω as a separate component in transformations
and algorithms for emphasis. We freely confuse between assertions over program
variables and sets of states that satisfy them. An infinite path π is unfair under
Ω if states from p occur infinitely often along π but states from q occur finitely
often. Otherwise, π is fair. The condition Ω denotes a strong fairness constraint.
Weak fairness constraints can be trivially expressed by Ω = (true, q), that is,
states from q must occur infinitely often. Equivalently, π is fair if it satisfies the
LTL formula π |= (GFp → GFq). For a transition system M = (S, S0, R, L,Ω),
an infinite path π, we denote M,π |= Ω if π is fair [17]. We consider strong
fairness with one pair of sets of states. Extending our results to strong fairness
over multiple pairs is simple and omitted for clarity of exposition.

For a transition system M and a CTL property ϕ, the definition of when ϕ
holds in a state s ∈ S is defined as in Fig. 1 except that Πm(s) is redefined to be
Πf ∪{π ∈ Π∞ | M,π |= Ω}. We use the notation |=Ω+ when expressing fairness,

388 B. Cook, H. Khlaaf, and N. Piterman

Fair((S,S0, R, L), (p, q)) � (SΩ, S0
Ω, RΩ , LΩ) where

SΩ = S × N
⎛

⎝
(¬p ∧ n′ ≤ n)∨
(p ∧ n′ < n)∨

q

⎞

⎠RΩ = {((s, n), (s′, n′)) | (s, s′) ∈ R}∧
S0
Ω = S0 × N

LΩ(s, n) = L(s)

Fig. 2. Fair takes a system (S, S0, R,L) and a fairness constraint (p, q) where p, q ⊆ S,
and returns a new system (SΩ , S0

Ω, RΩ , LΩ). Note that n ≥ 0 is implicit, as n ∈ N.

that is, we say that ϕ holds in M , denoted by M |=Ω+ ϕ, if ∀s ∈ S0.M, s |=Ω+ ϕ.
When clear from the context, we may omit M and simply write s |=Ω+ ϕ or
s |=m ϕ.

3 Fair-CTL Model Checking

In this section we present a procedure for reducing fair-CTL model checking to
CTL model checking. The procedure builds on a transformation of infinite-state
programs by adding a prophecy variable that truncates unfair paths. We start
by presenting the transformation, followed by a program’s adaptation for using
said transformation, and subsequently the model-checking procedure.

In Fig. 2, we propose a reduction Fair(M,Ω) that encodes an instantiation of
the fairness constraint within a transition system. When given a transition sys-
tem (S, S0, R, L,Ω), where Ω = (p, q) is a strong-fairness constraint, Fair(M,Ω)
returns a new transition system (without fairness) that, through the use of a
prophecy variable n, infers all possible paths that satisfy the fairness constraint,
while avoiding all paths violating the fairness policy. Intuitively, n is decreased
whenever a transition imposing p ∧ n′ < n is taken. Since n ∈ N, n cannot de-
crease infinitely often, thus enforcing the eventual invalidation of the transition
p∧ n′ < n. Therefore, RΩ would only allow a transition to proceed if q holds or
¬p∧n′ ≤ n holds. That is, either q occurs infinitely often or p will occur finitely
often. Note that a q-transition imposes no constraints on n′, which effectively
resets n′ to an arbitrary value. Recall that extending our results to multiple
fairness constraints is simple and omitted for clarity of exposition.

The conversion of M with fairness constraint Ω to Fair(M,Ω) involves the
truncation of paths due to the wrong estimation of the number of p-s until q.
This means that Fair(M,Ω) can include (maximal) finite paths that are prefixes
of unfair infinite paths. So when model checking CTL we have to ensure that
these paths do not interfere with the validity of our model checking procedure.
Hence, we distinguish between maximal (finite) paths that occur in M and those
introduced by our reduction. We do this by adding a proposition t to mark
all original “valid” termination states prior to the reduction in Fig. 2 and by
adjusting the CTL specification. These are presented in Section 3.3. We first
provide high-level understanding of our approach through an example.

Fairness for Infinite-State Systems 389

�1 �2

τ1 : x′ = 0

τ2 : m ≤ 0
x′ = x

τ3 : m > 0
m′ = m
x′ = x

τ4 : x′ = 1
m′ = m

�1 �2

τ1 : x′ = 0

τ2 : m ≤ 0 ∧
rΩ
x′ = x

τ3 : m > 0 ∧ rΩ
m′ = m
x′ = x

τ4 : rΩ
x′ = 1
m′ = m

rΩ : { (¬τ2 ∧ n′ ≤ n) ∨ (τ2 ∧ n′ < n) ∨m > 0 } ∧ n ≥ 0

(a) (b)

Fig. 3. Reducing a transition system with the fair CTL property AG(x = 0 → AF(x =
1)) and the fairness constraint GF τ2 → GF m > 0. The original transition system is
represented in (a), followed by the application of our fairness reduction in (b).

3.1 Illustrative Example

Consider the example in Fig. 3 for the fair CTL property AG(x = 0 → AF(x =
1)) and the fairness constraint GF τ2 → GF m > 0 for the initial transition
system introduced in (a). We demonstrate the resulting transformation for this
infinite-state program, which allows us to reduce fair model checking to model
checking. By applying Fair(M,Ω) from Fig. 2, we obtain (b) where each original
transition, τ2, τ3, and τ4, are adjoined with restrictions such that {(¬τ2 ∧ n′ ≤
n) ∨ (τ2 ∧ n′ < n) ∨m > 0 } ∧ n ≥ 0 holds. That is, we wish to restrict our
transition relations such that if τ2 is visited infinitely often, then the variable m
must be positive infinitely often. In τ2, the unconstrained variable m indicates
that the variable m is being assigned to a nondeterministic value, thus with
every iteration of the loop, m acquires a new value. In the original transition
system, τ2 can be taken infinitely often given said non-determinism, however in
(b), such a case is not possible. The transition τ2 in (b) now requires that n
be decreased on every iteration. Since n ∈ N, n cannot be decreased infinitely
often, causing the eventual restriction to the transition τ2. Such an incidence
is categorized as a finite path that is a prefix of some unfair infinite paths. As
previously mentioned, we will later discuss how such paths are disregarded. This
leaves only paths where the prophecy variable “guessed” correctly. That is, it
prophesized a value such that τ3 is reached, thus allowing our property to hold.

3.2 Prefixes of Infinite Paths

We explain how to distinguish between maximal (finite) paths that occur in M ,
and those that are prefixes of unfair infinite paths introduced by our reduction.
Consider a transition system M = (S, S0, R, L,Ω), where Ω = (p, q), and let
ϕ be a CTL formula. Let t be an atomic proposition not appearing in L or
ϕ. The transformation that marks “valid” termination states is Term(M, t) =
(S, S0, R

′, L′, Ω′), where R′ = R∪{(s, s) | ∀s′.(s, s′) /∈ R}, Ω′ = (p, q∨t) and for
a state s we set L′(s) = L(s)∪{t} if ∀s′ . (s, s′) /∈ R and L′(s) = L(s) otherwise.

390 B. Cook, H. Khlaaf, and N. Piterman

Term(α, t) ::= α
Term(ϕ1 ∧ ϕ2, t) ::= Term(ϕ1, t) ∧Term(ϕ2, t)
Term(ϕ1 ∨ ϕ2, t) ::= Term(ϕ1, t) ∨Term(ϕ2, t)

Term(EXϕ, t) ::= ¬t ∧ EX(Term(ϕ, t))
Term(AXϕ, t) ::= t ∨ AX(Term(ϕ, t))
Term(EGϕ, t) ::= EGTerm(ϕ, t)
Term(AFϕ, t) ::= AFTerm(ϕ, t)

Term(A[ϕ1Wϕ2], t) ::= A[Term(ϕ1, t) W Term(ϕ2, t)]
Term(E[ϕ1Uϕ2], t) ::= E[Term(ϕ1, t) U Term(ϕ2, t)]

Fig. 4. Transformation Term(ϕ, t)

That is, we eliminate all finite paths in Term(M, t) by instrumenting self
loops and adding the proposition t on all terminal states. The fairness constraint
is adjusted to include paths that end in such states. We now adjust the CTL
formula ϕ that we wish to verify on M . Recall that t does not appear in ϕ. Now
let Term(ϕ, t) denote the CTL formula transformation in Fig. 4.

The combination of the two transformations maintains the validity of a CTL
formula in a given system.

Theorem 1. M |=Ω+ ϕ ⇔ Term(M, t) |=Ω+ Term(ϕ, t)

Proof Sketch (full proof in [9]). For every fair path of Term(M, t), we
show that it corresponds to a maximal path in M and vice versa. The proof then
proceeds by induction on the structure of the formula. For existential formulas,
witnesses are translated between the models. For universal formulas, we consider
arbitrary paths and translate them between the models. �

After having marked the “valid” termination points in M by using the trans-
formation Term(M, t), we must ensure that our fair-CTL model-checking pro-
cedure ignores “invalid” finite paths in Fair(M,Ω). The finite paths that need
to be removed from consideration are those that arise by wrong prediction of
the prophecy variable n. The formula term = AFAX false holds in a state s iff all
paths from s are finite. We denote its negation EGEX true by ¬term. Intuitively,
when considering a state (s, n) of Fair(M,Ω), if (s, n) satisfies term, then (s, n)
is part of a wrong prediction. If (s, n) satisfies ¬term, then (s, n) is part of a
correct prediction. Further on, we will set up our model checking technique such
that universal path formulas ignore violations that occur on terminating paths
(which correspond to wrong predictions) and existential path formulas use only
non-terminating paths (which correspond to correct predictions).

3.3 Fair-CTL Model Checking

We use Fair(M,Ω) to handle fair-CTL model checking. Our procedure employs
an existing CTL model checking algorithm for infinite-state systems. We assume
that the CTL model checking algorithm returns an assertion characterizing all

Fairness for Infinite-State Systems 391

1 let FairCTL(M,Ω,ϕ) : assertion =

2

3 match(ϕ) with

4 | Q ϕ1 OP ϕ2

5 | ϕ1 bool OP ϕ2 →
6 aϕ1 = FairCTL(M,Ω,ϕ1);
7 aϕ2 = FairCTL(M,Ω,ϕ2)
8 | Q OP ϕ1 →
9 aϕ1 = FairCTL(M,Ω,ϕ1)

10 | α →
11 aϕ1 = α
12

13 match(ϕ) with

14 | E ϕ1Uϕ2 →
15 ϕ′ = E[aϕ1U(aϕ2 ∧ ¬term)]
16 | E Gϕ1 →
17 ϕ′ = EG(aϕ1 ∧ ¬term)
18 | E Xϕ1 →
19 ϕ′ = EX(aϕ1 ∧ ¬term)
20 | A ϕ1Wϕ2 →
21 ϕ′ = A[aϕ1 W(aϕ2 ∨ term)]

22

23 | A Fϕ1 →
24 ϕ′ = AF(aϕ1 ∨ term)
25 | A Xϕ1 →
26 ϕ′ = AX(aϕ1 ∨ term)
27 | ϕ1 bool OP ϕ2 →
28 ϕ′ = aϕ1 bool OP aϕ2

29 | α →
30 ϕ′ = aϕ1

31

32 M ′ = Fair(M,Ω)

33 a = CTL(M ′, ϕ′)
34

35 match(ϕ) with

36 | E ϕ′ →
37 return ∃n ≥ 0 . a
38 | A ϕ′ →
39 return ∀n ≥ 0 . a
40 | →
41 return a

Fig. 5. Our procedure FairCTL(M,Ω,ϕ) which employs both an existing CTL model
checker and the reduction Fair(M,Ω). An assertion characterizing the states in which
ϕ holds under the fairness constraint Ω is returned.

1 let Verify(M,Ω,ϕ) : bool =

2

3 a = FairCTL(Term(M, t), Ω, Term(ϕ, t))
4 return S0 ⇒ a

Fig. 6. CTL model checking procedure Verify, which utilizes the subroutine in Fig. 5
to verify if a CTL property ϕ holds over M under the fairness constraints Ω

the states in which a CTL formula holds. Tools proposed by Beyene et al. [2]
and Cook et al. [10] support this functionality. We denote such CTL verification
tools by CTL(M,ϕ), where M is a transition system and ϕ a CTL formula.

Our procedure adapting Fair(M,Ω) is presented in Fig. 5. Given a transition
system M , a fairness constraint Ω, and a CTL formula ϕ, FairCTL returns
an assertion characterizing the states in which ϕ fairly holds. Initially, our pro-
cedure is called by Verify in Fig. 6 where M and ϕ are initially transformed
by Term(M, t) and Term(ϕ, t) discussed in Section 3.2. That is, Term(M, t)
marks all “valid” termination states in M to distinguish between maximal (fi-
nite) paths that occur in M and those introduced by our reduction. Term(ϕ, t)
allows us to disregard all aforementioned finite paths, as we only consider infinite
paths, which correspond to a fair path in the original system.

Our procedure then begins by recursively enumerating over each CTL sub-
property, wherein we attain an assertion characterizing all the states in which
the sub-property holds under the fairness constraint Ω. These assertions will

392 B. Cook, H. Khlaaf, and N. Piterman

subsequently replace their corresponding CTL sub-properties as shown on lines
15,17,19, and so on. A new CTL formula ϕ′ is then acquired by adding an appro-
priate termination or non-termination clause (lines 13-30). This clause allows us
to ignore finite paths that are prefixes of unfair infinite paths. Recall that other
finite paths were turned infinite and marked by the proposition t in Term(M, t).

Ultimately, our reduction Fair(M,Ω) is utilized on line 32, where we trans-
form the input transition system M according to Fig. 2. With our modified
CTL formula ϕ′ and transition system M ′, we call upon the existing CTL model
checking algorithm to return an assertion characterizing all the states in which
the formula holds. The returned assertion is then examined on lines 35-39 to
determine whether or not ϕ′ holds under the fairness constraint Ω. If the prop-
erty is existential, then it is sufficient that there exists at least one value of the
prophecy variable such that the property holds. If the property is universal, then
the property must hold for all possible values of the prophecy variable.

We state the correctness and completeness of our model checking procedure.

Theorem 2. For every CTL formula ϕ and every transition system M with no
terminating states we have M |=Ω+ ϕ ⇔ S0 → FairCTL (M,Ω,ϕ).

Proof Sketch (full proof in [9]). We show that every infinite path in
Fair(M,Ω) starting in (s, n) for some n ∈ N corresponds to an infinite path
in M starting in s satisfying Ω, and vice versa. From this correspondence of fair
paths in M and infinite paths in Fair(M,Ω), we can safely disregard all the
newly introduced finite paths given a transition system with no finite paths (i.e.,
Term(M, t)). �

We then proceed to show by induction on the structure of the formula that
the assertion returned by FairCTL(M,Ω,ϕ) characterizes the set of states of
M that satisfy ϕ. For a universal property, we show that if it holds from s in M
then it(s modified form) holds from (s, n) for every n in Fair(M,Ω) and vice
versa. For an existential property, we show that if it holds from s in M then its
modified form holds from (s, n) for some n in Fair(M,Ω) and vice versa.

Corollary 1. For every CTL formula ϕ and every transition system M we have
M |=Ω+ ϕ ⇔ Verify(M,Ω,ϕ) returns true.

Proof. Verify calls FairCTL on Term(M, t) and Term(ϕ, t). It follows that
Term(M, t) has no terminating states and hence Theorem 2 applies to it. By
Theorem 1, the mutual transformation ofM to Term(M, t) and ϕ to Term(ϕ, t)
preserves whether or not M |=Ω+ . The corollary follows. �

4 Fair-ACTL Model Checking

In this section we show that in the case that we are only interested in universal
path properties, i.e., formulas in ACTL, there is a simpler approach to fair-
CTL model checking. In this simpler case, we can solely use the transformation
Fair(M,Ω). Just like in FairCTL, we still must ignore truncated paths that

Fairness for Infinite-State Systems 393

NTerm(α) ::= α
NTerm(ϕ1 ∧ ϕ2) ::= NTerm(ϕ1) ∧NTerm(ϕ2)
NTerm(ϕ1 ∨ ϕ2) ::= NTerm(ϕ1) ∨NTerm(ϕ2)

NTerm(AXϕ) ::= AX(NTerm(ϕ) ∨ term)
NTerm(AFϕ) ::= AF(NTerm(ϕ) ∨ term)

NTerm(A[ϕ1Wϕ2]) ::= A[NTerm(ϕ1) W (NTerm(ϕ2) ∨ term)]

Fig. 7. Transformation NTerm()

m0 m1 m2 m3

s−1 s0

r, p

s1

p

s2

p

s3

p

Fig. 8. A system showing that ECTL model checking is more complicated

correspond to wrong predictions. However, in this case, this can be done by a
formula transformation.

Let NTerm(ϕ) denote the transformation in Figure 7. The transformation
ensures that universal path quantification ignores states that lie on finite paths
that are due to wrong estimations of the number of p-s until q. Using this trans-
formation, it is possible to reduce fair-ACTL model checking to (A)CTL model
checking over Fair(M,Ω). Formally, this is stated in the following theorem.

Theorem 3. For every ACTL formula ϕ and every transition system M with
no terminating states, we have M |=Ω+ ϕ ⇔ Fair(M,Ω) |= NTerm(ϕ) ∨ term.

Proof Sketch (full proof in [9]). The proof proceeds by induction on the
structure of the formula. We show that if the property holds from s in M then
for every n the (modified) property holds from (s, n) in Fair(M,Ω) and vice
versa. Note that the initial states of Fair(M,Ω) are all the initial states of M
annotated by all possible options of n ∈ N. It follows that the combination of all
transformations reduce fair ACTL model checking to ACTL model checking. �

Corollary 2. For every ACTL formula ϕ we have

M |=Ω+ ϕ ⇔ Fair(Term(M, t), Ω) |= NTerm(Term(ϕ, t)) ∨ term

Proof. As Term(M, t) produces a transition system with no terminating states
and Term(ϕ, t) converts an ACTL formula to an ACTL formula, the proof then
follows from Theorem 1 and Theorem 3. �

The direct reduction presented in Theorem 3 works well for ACTL but does
not work for existential properties. We now demonstrate why Fig. 2 is not
sufficient to handle existential properties alone. Consider the transition sys-
tem M in Figure 8, the fairness constraint Ω = {(p, q)}, and the property

394 B. Cook, H. Khlaaf, and N. Piterman

EG(¬p ∧ EFr). One can see that M,m0 |=Ω+ EG(¬p ∧ EFr). Indeed, from each
state si there is a unique path that eventually reaches s0, where it satisfies r, and
then continues to s−1, where p does not hold. As the path visits finitely many p
states it is clearly fair. So, every state mi satisfies EFr by considering the path
mi, si, si−1, . . . , s0, s−1, Then the fair path m0,m1, . . . satisfies EG(¬p∧EFr).
On the other hand, it is clear that no other path satisfies EG(¬p ∧ EFr).

Now consider the transformation Fair(M,Ω) and consider model checking
of EG(¬p ∧ EFr). In Fair(M,Ω) there is no path that satisfies this property.
To see this, consider the transition system Fair(M,Ω) and a value n ∈ N.
For every value of n the path (m0, n), (m1, n), (m2, n), . . . is an infinite path in
Fair(M,Ω) as it never visits p. This path does not satisfy EG(¬p∧EFr). Consider
some state (mj , nj) reachable from (m0, n) for j > 2n. The only infinite paths
starting from (mj , nj) are paths that never visit the states si. Indeed, paths that
visit si are terminated as they visit too many p states. Thus, for every n ∈ N

we have (m0, n) �|= EG(¬p ∧ EFr). Finite paths in Fair(M,Ω) are those of the
form (m0, n0), . . . , (mi, ni), (si, ni+1), Such paths clearly cannot satisfy the
property EG(¬p ∧ EFr) as the states si do satisfy p. Allowing existential paths
to ignore fairness is clearly unsound. We note also that in Fair(M,Ω) we have
(m0, n) |= NTerm(AF(p ∨ AG¬r)).

Reducing Fair Termination to Termination. Given the importance of termina-
tion as a system property, we emphasize the reduction of fair termination to
termination. Note that termination can be expressed in ACTL as AFAX false,
thus the results in Corollary 2 allow us to reduce fair termination to model
checking (without fairness). Intuitively, a state that satisfies AX false is a state
with no successors. Hence, every path that reaches a state with no successors
is a finite path. Here, we demonstrate that for infinite-state infinite-branching
systems, fair termination can be reduced to termination.

A transition system M terminates if for every initial state s ∈ S0 we have
Π∞(s) = ∅. System M fair-terminates under fairness Ω if for every initial state
s ∈ S0 and every π ∈ Π∞(s) we have π �|= Ω, i.e., all infinite paths are unfair.

The following corollary follows from the proof of Theorem 3, where we estab-
lish a correspondence between fair paths of M and infinite paths of Fair(M,Ω).

Corollary 3. M fair terminates iff Fair(M,Ω) terminates.

Recall that the reduction relies on transition systems having an infinite branching
degree. For transition systems with finite-branching degree, we cannot reduce
fair termination of finite-branching programs to termination of finite-branching
programs, as the former is Σ1

1 -complete and the latter is RE-complete [18].

5 Example

Consider the example in Fig. 9.We will demonstrate the resulting transformations
which will disprove the CTL property EG x ≤ 0 under the weak fairness constraint
GF true→ GF y≥ 1 for the initial transition system introduced in (a).We begin by
executingVerify in Fig. 6. InVerify the transition system in (a) is transformed

Fairness for Infinite-State Systems 395

�1

�2

τ1 : 0 ≤ y′ ≤ 1
x′ = x+ y

τ2 : x′ = x
y′ = y

(a)

�1t

�2

τ3 : false

τ4 : true

τ1 : 0 ≤ y′ ≤ 1
{ (¬true ∧ n′ ≤ n) ∨
(true ∧ n′ < n) ∨ y ≥ 1 } ∧
n ≥ 0
x′ = x+ y

τ2 : { (¬true ∧ n′ ≤ n) ∨
(true ∧ n′ < n) ∨ y ≥ 1 } ∧
n ≥ 0
x′ = x
y′ = y

(b)

Fig. 9. Verifying a transition system with the CTL property EG x ≤ 0 and the weak
fairness constraint GF true → GF y ≥ 1. The original transition system is represented
in (a), followed by the application of our fairness reduction in (b).

according toTerm(M, t) and the CTL formula EG x ≤ 0 is transformed according
toTerm(M, t), as discussed in 3.2. Our main procedureFairCTL in Fig. 5 is then
called. First, we recursively enumerate over the most inner sub-property x ≤ 0,
wherein x ≤ 0 is returned as it is our base case. In lines 13-30, a new CTL for-
mula ϕ′ is then acquired by adding an appropriate termination or non-termination
clause. This clause allows us to ignore finite paths that are prefixes of some unfair
infinite paths, that is, those that have not been marked by Term(M, t). We then
obtain (b) in Fig. 9 by applying Fair(M,Ω) from Fig. 2 on line 32. Thus, we must
restrict each transition such that { (¬true ∧ n′ ≤ n) ∨ (true ∧ n′ < n) ∨ y ≥
1 } ∧ n ≥ 0 holds. This can be seen in transitions τ1 and τ2.

Recall that Fair(M,Ω) can include (maximal) finite paths that are prefixes
of unfair infinite paths. We thus have to ensure that these paths do not interfere
with the validity of our model checking procedure. We have shown how to dis-
tinguish between maximal (finite) paths that occur in M and those introduced
by our transformation in Theorem 1. This is demonstrated by τ3 and τ4 in (b):
in τ3 we simply take the negation of the loop invariant (in this case it is false), as
it would indicate a terminating path given that no other transitions follow the
loop termination. In τ4 we instrument a self loop and add the proposition t to
eliminate all terminal states. Additionally, utilizing Term(ϕ, t) on EG x ≤ 0 al-
lows us to disregard all aforementioned marked finite paths, as we only consider
infinite paths which correspond to a fair path in the original system.

On line 33, a CTL model checker is then employed with the transition system
in (b) and the CTL formula ϕ′. We then apply tools provided by Beyene et al. [2]
and Cook et al. [10]to the transformation introduced to verify CTL for infinite-
state systems. An assertion characterizing the states in which ϕ′ holds is returned

396 B. Cook, H. Khlaaf, and N. Piterman

Program LOC Property FC Time(s) Result

WDD1 20 AG(BlockInits() ⇒ AF UnblockInits()) Yes 14.4 �
WDD1 20 AG(BlockInits() ⇒ AF UnblockInits()) No 2.1 χ

WDD2 374 AG(AcqSpinLock() ⇒ AF RelSpinLock()) Yes 18.8 �
WDD2 374 AG(AcqSpinLock() ⇒ AF RelSpinLock()) No 14.1 χ

WDD3 58 AF(EnCritRegion() ⇒ EG ExCritRegion()) Yes 12.5 χ

WDD3 58 AF(EnCritRegion() ⇒ EG ExCritRegion()) No 9.6 �
WDD4 302 AG(added socket > 0 ⇒ AFEG STATUS OK) Yes 30.2 �
WDD4 302 AG(added socket > 0 ⇒ AFEG STATUS OK) No 72.4 χ

Bakery 37 AG(Noncritical ⇒ AF Critical) Yes 2.9 �
Bakery 37 AG(Noncritical ⇒ AF Critical) No 16.4 χ

Prod-Cons 30 AG(pi > 0 ⇒ AF qi <= 0) Yes 18.5 �
Prod-Cons 30 AG(pi > 0 ⇒ AF qi <= 0) No 5.5 χ

Chain 48 AG(x ≥ 8 ⇒ AF x = 0) Yes 1.8 �
Chain 48 AG(x ≥ 8 ⇒ AF x = 0) No 4.7 χ

Fig. 10. Experimental evaluations of infinite-state programs such as Windows device
drivers (WDD) and concurrent systems, which were reduced to non-deterministic se-
quential programs via [7]. Each program is tested for both the success of a branching-
time liveness property with a fairness constraint and its failure due to a lack of fairness.
A � represents the existence of a validity proof, while χ represents the existence of a
counterexample. We denote the lines of code in our program by LOC and the fairness
constraint by FC. There exist no competing tools available for comparison.

and then further examined on lines 36 and 37, where it is discovered that this
property does not hold due to the restrictive fairness constraint applied to the
existential CTL property. The weak fairness constraint requires that infinitely
often y ≥ 1 holds, which interferes with the existential property that EG x ≤ 0.
This shows that for the existential fragment of CTL, fairness constraints restrict
the transition relations required to prove an existential property. This can be
beneficial when attempting to disprove systems and their negations.

6 Experiments

In this section we demonstrate the results of preliminary experiments with a
prototype implementation. We applied our tool to several small programs: a
classical mutual exclusion algorithm as well as code fragments drawn from device
drivers. Our implementation is based on an extension to T2 [4], [14], [10].4 As
previously discussed, there are currently no known tools supporting fair-CTL for
infinite-state systems, thus we are not able to make experimental comparisons.

Fig. 10 shows experimental evaluations of sequential Windows device drivers
(WDD) and various concurrent systems5. WDD1 uses the fairness constraint
GF(IoCreateDevice.exit{1}) ⇒ GF(status = SUCCESS), while WDD2 and 3
utilize the same fairness constraint in relation to checking the acquisition and
release of spin locks and the entrance and exit of critical regions, respectively.

4
T2 can be acquired at http://research.microsoft.com/en-us/projects/t2/

5 Benchmarks can be found at http://heidyk.com/experiments.html

http://research.microsoft.com/en-us/projects/t2/
http://heidyk.com/experiments.html

Fairness for Infinite-State Systems 397

WDD4 requires a weak fairness constraint indicating that STATUS OK will hold a
value of true infinitely often, that is, whenever sockets are successfully opened,
the server will eventually return a successful status infinitely often.

Note that the initially concurrent programs are reduced to sequential pro-
grams via [7], which uses rely-guarantee reasoning to reduce multi-threaded ver-
ification to liveness. We verify the traditional Bakery algorithm, requiring that
any thread requesting access to the critical region will eventually be granted the
right to do so. The producer-consumer algorithm requires that any amount of
input data produced, must be eventually consumed. The Chain benchmark con-
sists of a chain of threads, where each thread decreases its own counter, but the
next thread in the chain can counteract, and increase the counter of the previous
thread, thus only the last thread in the chain can be be decremented uncondi-
tionally. These algorithms are verified on 2, 4, and 8 threads, respectively.

For the the existential fragment of CTL, fairness constraints can often restrict
the transition relations required to prove an existential property, as demon-
strated by WDD3. For universal CTL properties, fairness policies can assist in
enforcing properties to hold that previously did not. Thus, our tool allows us to
both prove and disprove the negation of each of the properties.

7 Discussion

We have described the first-known fair-CTL model checking technique for integer
based infinite-state programs. Our approach is based on a reduction to existing
techniques for fairness-free CTL model checking. The reduction relies on utilizing
prophecy variables to introduce additional information into the state-space of the
program under consideration. This allows fairness-free CTL proving techniques
to reason only about fair executions. Our implementation seamlessly builds upon
existing CTL proving techniques, resulting in experiments which demonstrate
the practical viability of our approach.

Furthermore, our technique allows us to bridge between linear-time (LTL) and
branching-time (CTL) reasoning. Not only so, but a seamless integration between
LTL and CTL reasoning may make way for further extensions supporting CTL*
verification of infinite-state programs [16]. We hope to further examine both the
viability and practicality of such an extension.

We include the definition of fair-CTL considering only infinite paths and show
how to change transition systems to use either definition in our technical report
which can be acquired at [9]. Additionally, we show how to modify the proof
system to incorporate an alternative approach to CTL verification advocated by
Cook & Koskinen [12].

References

1. Apt, K., Olderog, E.: Fairness in parallel programs: The transformational approach.
In: ACM TOPLAS, vol. 10 (1988)

2. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn
clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–882.
Springer, Heidelberg (2013)

3. Bjørner, N., Browne, A., Colón, M., Finkbeiner, B., Manna, Z., Sipma, H., Uribe, T.:
Verifying temporalproperties of reactive systems:A step tutorial. FMSD16(3) (2000)

398 B. Cook, H. Khlaaf, and N. Piterman

4. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013)

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p.
359. Springer, Heidelberg (2002)

6. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM TOPLAS 8(2) (1986)

7. Cook, B., Gotsman, A., Parkinson, M., Vafeiadis, V.: Proving that non-blocking
algorithms don’t block. In: POPL. ACM (2009)

8. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.: Proving that
programs eventually do something good. In: POPL. ACM (2007)

9. Cook, B., Khlaaf, H., Piterman, N.: Fairness for infinite-state systems. TR
RN/14/11, UCL (2014)

10. Rybina, T., Voronkov, A.: Faster temporal reasoning for infinite-state programs.
In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 546–573.
Springer, Heidelberg (2003)

11. Cook, B., Koskinen, E.:Making prophecieswith decision predicates. In: POPL.ACM
(2011)

12. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: PLDI.
ACM (2013)

13. Cook, B., Koskinen, E., Vardi, M.: Temporal property verification as a program
analysis task. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 333–348. Springer, Heidelberg (2011)

14. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013)

15. David, A., H̊akansson, J., Larsen, K.G., Pettersson, P.: Model checking timed au-
tomata with priorities using DBM subtraction. In: Asarin, E., Bouyer, P. (eds.)
FORMATS 2006. LNCS, vol. 4202, pp. 128–142. Springer, Heidelberg (2006)

16. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. J. ACM 33(1) (January 1986)

17. Emerson, E.A., Lei, C.-L.: Temporal reasoning under generalized fairness con-
straints. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210,
pp. 21–36. Springer, Heidelberg (1985)

18. Harel, D.: Effective transformations on infinite trees, with applications to high
undecidability, dominoes and fairness. J. ACM 33, 224–248 (1986)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

20. Pnueli, A., Podelski, A., Rybalchenko, A.: Separating fairness and well-foundedness
for the analysis of fair discrete systems. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 124–139. Springer, Heidelberg (2005)

21. Pnueli, A., Sa’ar, Y.: All you need is compassion. In: Logozzo, F., Peled, D.A., Zuck,
L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 233–247. Springer, Heidelberg (2008)

22. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS (2004)
23. Schwoon, S.: Moped - A Model-Checker for Pushdown Systems (2002),

http://www7.in.tum.de/~schwoon/moped
24. Song, F., Touili, T.: Pushdown model checking for malware detection. In:

ESEC/FSE (2013)
25. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. I&C 115(1), 1–37

(1994)

http://www7.in.tum.de/~schwoon/moped

Competition on Software Verification

Software Verification and Verifiable Witnesses
(Report on SV-COMP 2015)

Dirk Beyer

University of Passau, Germany

Abstract. SV-COMP 2015 marks the start of a new epoch of software
verification: In the 4th Competition on Software Verification, software ver-
ifiers produced for each reported property violation a machine-readable
error witness in a common exchange format (so far restricted to reacha-
bility properties of sequential programs without recursion). Error paths
were reported previously, but always in different, incompatible formats,
often insufficient to reproduce the identified bug, and thus, useless to the
user. The common exchange format and the support by a large set of ver-
ification tools that use the format will make a big difference: One verifier
can re-verify the witnesses produced by another verifier, visual error-path
navigation tools can be developed, and here in the competition, we use
witness checking to make sure that a verifier that claimed a found bug,
had really found a valid error path. The other two changes to SV-COMP
that we made this time were (a) the addition of the new property, a set of
verification tasks, and ranking category for termination verification, and
(b) the addition of two new categories for reachability analysis: Arrays
and Floats. SV-COMP 2015, the fourth edition of the thorough compara-
tive evaluation of fully-automatic software verifiers, reports effectiveness
and efficiency results of the state of the art in software verification. The
competition used 5 803 verification tasks, more than double the number
of SV-COMP’14. Most impressively, the number of participating verifiers
increased from 15 to 22 verification systems, including 13 new entries.

1 Introduction
The Competition on Software Verification (SV-COMP) 1 is a service to the ver-
ification community that consists of two parts: (a) the collection of verification
tasks that the community of researchers in the area of software verification finds
interesting and challenging, and (b) the systematic comparative evaluation of the
relevant state-of-the-art tool implementations for automatic software verification
with respect to effectiveness and efficiency.
Repository of Verification Tasks. The benchmark repository of SV-COMP 2 serves
as collection of verification tasks that represent the current interest and abilities of
tools for software verification. For the purpose of the competition, all verification
tasks that are suitable for the competition are arranged into categories, accord-
ing to the characteristics of the programs and the properties to be verified. The
1 http://sv-comp.sosy-lab.org
2 https://svn.sosy-lab.org/software/sv-benchmarks/trunk

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 401–416, 2015.
DOI: 10.1007/978-3-662-46681-0_31

http://sv-comp.sosy-lab.org
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/

402 D. Beyer

assignment is discussed in the community, implemented by the competition chair,
and finally approved by the competition jury. For the 2015 edition of SV-COMP,
a total of 13 categories were defined, selected from verification tasks written in the
programming language C. The SV-COMP repository also contains tasks written
in Java 3 and as Horn clauses 4, but those were not used in SV-COMP.

Comparative Experimental Evaluation. This report concentrates on describing
the rules, definitions, results, and on providing other interesting information
about the setup and execution of the competition experiments. The main objec-
tives that the community and organizer would like to achieve by running yearly
competitions are the following:
1. provide an overview of the state of the art in software-verification technology

and increase visibility of the most recent software verifiers,
2. establish a repository of software-verification tasks that can freely and pub-

licly be used as standard benchmark suite for evaluating verification software,
3. establish standards that make it possible to compare different verification

tools including a property language and formats for the results, and
4. accelerate the transfer of new verification technology to industrial practice.

The competition serves Objective (1) very well, which is witnessed by the past
competition sessions at TACAS being among the best-attended ETAPS sessions,
and by the large number of participating verification teams. Objective (2) is also
served well: the repository was rapidly growing in the last years and reached a
considerable size; many publications on algorithms for software verification base
the experimental evaluation on the established verification benchmarks from the
SV-COMP repository, and thus, it becomes a standard for evaluating new algo-
rithms to use the SV-COMP collection. SV-COMP 2015 was a big step forward
with respect to Objective (3). It was requested since long that verification
witnesses should be given in a common format and can be accepted only if
re-validated automatically by an independent witness checker. We have worked
towards verifiable witnesses with success, but there is a lot of work left to be
done. Whether or not SV-COMP serves well towards Objective (4) cannot be
evaluated here.

Related Competitions. There are two other competitions in the field of software
verification in general: RERS 5 and VerifyThis 6. In difference to the RERS Chal-
lenges, SV-COMP is an experimental evaluation that is performed on dedicated
machines, which provide the same limited amount of resources to each verifica-
tion tool. In difference to the VerifyThis Competitions, SV-COMP focuses on
evaluating tools for fully-automatic verification of program source code in a stan-
dard programming language. A more comprehensive list of other competitions
was given in the previous report [3].

3 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/java
4 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses
5 http://rers-challenge.org
6 http://etaps2015.verifythis.org

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/java/
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/
http://rers-challenge.org
http://etaps2015.verifythis.org

Software Verification and Verifiable Witnesses 403

2 Procedure

The procedure for the competition organization was the same as in previous
editions of SV-COMP [1,2,3], consisting of the three phases (1) benchmark sub-
mission (collect and classify new verification tasks), (2) training (teams inspect
verification tasks and train their verifiers), and (3) evaluation (verification runs
with all competition candidates and review of the system descriptions by the
competition jury). Again, SV-COMP was an open competition, i.e., the verifi-
cation tasks were known before the participating verifiers were submitted, such
that there were no surprises and developers were able to train the verifiers. All
systems and their descriptions have been archived on the SV-COMP web site
and stamped for identification with SHA hash values. All teams received the
preliminary results of their verifier for approval, before the results were publicly
announced. This time, there was no demonstration category.

3 Definitions, Formats, and Rules

The specification of the various properties was streamlined last year, such that it
was easy to extend the property language to express reachability using function
calls instead of C labels in the source code of the verification tasks, which elimi-
nates completely the need of C labels in the verification tasks. Most importantly,
we introduced a syntax for error witnesses (more details are given below). The
definition of verification task was not changed (taken from [3]).

Verification Tasks. A verification task consists of a C program and a property.
A verification run is a non-interactive execution of a competition candidate on
a single verification task, in order to check whether the following statement is
correct: “The program satisfies the property.” The result of a verification run is
a triple (answer, witness, time). answer is one of the following outcomes:

TRUE: The property is satisfied (i.e., no path that violates the property exists).
FALSE: The property is violated (i.e., there exists a path that violates the

property) and a counterexample path is produced and reported as witness.
UNKNOWN: The tool cannot decide the problem, or terminates abnormally,

or exhausts the computing resources time or memory (i.e., the competition
candidate does not succeed in computing an
answer TRUE or FALSE).

witness is explained below in an own sub-section. time is measured as consumed
CPU time until the verifier terminates, including the consumed CPU time of all
processes that the verifier started [4]. If the wall time was larger than the CPU
time, then the time is set to the wall time. If time is equal to or larger than
the time limit (15 min), then the verifier is terminated and the answer is set to
‘timeout’ (and interpreted as UNKNOWN).

The verification tasks were partitioned into twelve separate categories and
one category Overall that contains all verification tasks. The categories, their
defining category-set files, and the contained programs are explained under
Verification Tasks on the competition web site.

http://sv-comp.sosy-lab.org/2015/benchmarks.php

404 D. Beyer

Table 1. Formulas used in the competition, together with their interpretation

Formula Interpretation
G ! call(foo()) A call to function foo is not reachable on any finite execution of

the program.
G valid-free All memory deallocations are valid (counterexample: invalid free).

More precisely: There exists no finite execution of the program
on which an invalid memory deallocation occurs.

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs.

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists
no finite execution of the program on which the program lost
track of some previously allocated memory.

F end All program executions are finite and end on proposition end
(counterexample: infinite loop). More precisely: There exists
no execution of the program on which the program never
terminates.

Properties. The specification to be verified is stored in a file that is given
as parameter to the verifier. In the repository, the specifications are available
as .prp files in the respective directories of the benchmark categories.

The definition init(main()) gives the initial states of the program by a call of
function main (with no parameters). The definition LTL(f) specifies that formula
f holds at every initial state of the program. The LTL (linear-time temporal logic)
operator G f means that f globally holds (i.e., everywhere during the program
execution), and the operator F f means that f eventually holds (i.e., at some
point during the program execution). The proposition call(foo) is true if a call
to the function foo is reached, and the proposition end is true if the program
execution terminates (e.g., return of function main, program exit, abort).
Call Unreachability. The reachability property perror is encoded in the program
source code using a call to function __VERIFIER_error(), expressed using the
following specification (the interpretation of the LTL formula is given in Table 1):

CHECK(init(main()), LTL(G ! call(__VERIFIER_error())))

Memory Safety. The memory-safety property pmemsafety (only used in one cat-
egory) consists of three partial properties and is expressed using the following
specification (interpretation of formulas given in Table 1):

CHECK(init(main()), LTL(G valid-free))
CHECK(init(main()), LTL(G valid-deref))
CHECK(init(main()), LTL(G valid-memtrack))

The verification result FALSE for the property pmemsafety is re-
quired to include the violated partial property: FALSE(p), with
p ∈ {pvalid−free, pvalid−deref, pvalid−memtrack}, means that the (partial) prop-
erty p is violated. According to the requirements for verification tasks, all

Software Verification and Verifiable Witnesses 405

programs in category MemorySafety violate at most one (partial) property
p ∈ {pvalid−free, pvalid−deref , pvalid−memtrack}. Per convention, functions malloc
and alloca are assumed to always return a valid pointer, i.e., the memory
allocation never fails, and function free always deallocates the memory and
makes the pointer invalid for further dereferences. Further assumptions are
explained under Definitions and Rules on the competition web site.
Program Termination. The termination property ptermination (only used in one
category) is based on the proposition end and expressed using the following
specification (interpretation in Table 1):

CHECK(init(main()), LTL(F end))

Verifiable Witnesses. For the first time in the history of software verification
(of real-world, C programs),7 we defined a formal, machine-readable format for
error witnesses and required the verifiers to produce automatically-verifiable wit-
nesses for the counterexample path that is part of the result triple as witness.
This new rule was applied to the categories with reachability properties and veri-
fication tasks of sequential programs without recursion. If an error path required
recursive function calls or heap operations, the witness was not checked.

We represent witnesses as automata. Formally, a witness automaton consists of
states and transitions, where each transition is annotated with data that can be
used to match program executions. A data annotation can be (a) a token number
(position in the token stream that the parser receives), (b) an assumption (for
example, the assumption a = 1; means that program variable a has value 1),
(c) a line number and a file name, (d) a function call or return, and (e) a piece
of source-code syntax. More details are given on a web page.8

A witness checker is a software verifier that analyzes the synchronized product
of the program with the witness automaton, where transitions are synchronized
using program operations and transition annotations. This means that the wit-
ness automaton observes the program paths that the verifier wants to explore: if
the operation on the program path does not match the transition of the witness
automaton, then the verifier is forbidden to explore that path further; if the
operation on the program path matches, then the witness automaton and the
program proceed to the next state, possibly restricting the program’s state such
that the assumptions given in the data annotation are satisfied.

In SV-COMP, the time limit for a validation run was set to 10 % of the CPU
time for a verification run, i.e., the witness checker was limited to 90 s. If the
witness checker did not succeed in the given amount of time, then most likely the
witness was not concrete enough (time for validation can be a quality indicator).

7 There was research already on reusing previously computed error paths, but by the same tool
and in particular, using tool-specific formats: for example, Esbmc was extended to reproduce
errors via instantiated code [21], and CPAchecker was used to re-check previously computed
error paths by interpreting them as automata that control the state-space search [5]. The
competition on termination uses CPF: http://cl-informatik.uibk.ac.at/software/cpf .

8 http://sv-comp.sosy-lab.org/2015/witnesses

http://sv-comp.sosy-lab.org/2015/rules.php
http://cl-informatik.uibk.ac.at/software/cpf
http://sv-comp.sosy-lab.org/2015/witnesses

406 D. Beyer

Table 2. Scoring schema for SV-COMP 2015 (penalties increased, cf. [3])

Reported result Points Description
UNKNOWN 0 Failure to compute verification result
FALSE correct +1 Violation of property in program was correctly found
FALSE incorrect −6 Violation reported but property holds (false alarm)
TRUE correct +2 Correct program reported to satisfy property
TRUE incorrect −12 Incorrect program reported as correct (wrong proofs)

Machine-readable witnesses in a common exchange format have the following
advantages for the competition:

– Witness Validation: The answer FALSE is only accepted if the witness can
be validated by an automatic witness checker.

– Witness Inspection: If a verifier found an error in a verification task that was
previously assumed to have expected outcome TRUE, the witness that was
produced could immediately be validated with two different verifiers (one
explicit-value-based and one SAT-based).

Outside the competition, the following examples are among the many useful
applications of witnesses in a common format:

– Witness Database: Witnesses can be stored in databases as later source of
information.

– Bug Report: Witnesses can be a useful attachment for bug reports, in order
to precisely report to the developers what the erroneous behavior is.

– Bug Confirmation: To gain more confidence that a bug is indeed present, the
error witness can be re-confirmed with a different verifier, perhaps using a
completely different technology.

– Re-Verification: If the result FALSE was established, the error witness can
later be reused to re-establish the verification result with much less resources,
for example, if the program source code is slightly changed and the developer
is interested if the same bug still exists in a later version of the program [5].

Evaluation by Scores and Run Time. The scoring schema was changed in
order to increase the penalty for wrong results (in comparison to the previous
edition of the competition by a factor of 1.5). The overview is given in Table 2.
The ranking is decided based on the sum of points and for equal sum of points
according to success run time, which is the total CPU time over all verification
tasks for which the verifier reported a correct verification result. Opting-out
from Categories and Computation of Score for Meta Categories were defined as
in SV-COMP 2013 [2]. The Competition Jury consists again of the chair and one
member of each participating team. Team representatives of the jury are listed
in Table 3.

Software Verification and Verifiable Witnesses 407

Table 3. Competition candidates with their system-description references and repre-
senting jury members

Competition candidate Ref. Jury member Affiliation
AProVE [23] Thomas Ströder RWTH Aachen, Germany
Beagle Dexi Wang Tsinghua U, China
Blast [22] Vadim Mutilin ISPRAS, Russia
Cascade [26] Wei Wang New York U, USA
Cbmc [15] Michael Tautschnig Queen Mary U London, UK
CPAchecker [8] Matthias Dangl U Passau, Germany
CPArec [7] Ming-Hsien Tsai Academia Sinica, Taiwan
Esbmc [17] Jeremy Morse U Bristol, UK
Forest [9] Pablo Sanchez U Cantabria, Spain
Forester [13] Ondřej Lengál Brno UT, Czech Republic
FuncTion [25] Caterina Urban ENS Paris, France
HipTnt+ [16] Ton-Chanh Le NUS, Singapore
Lazy-CSeq [14] Gennaro Parlato U Southampton, UK
Map2Check Herbert O. Rocha FUA, Brazil
MU-CSeq [24] Bernd Fischer Stellenbosch U, South Africa
Perentie [6] Franck Cassez Macquarie U/NICTA, Australia
PredatorHP [18] Tomáš Vojnar Brno UT, Czech Republic
SeaHorn [10] Arie Gurfinkel SEI, USA
Smack+Corral [11] Zvonimir Rakamarić U Utah, USA
UltiAutomizer [12] Matthias Heizmann U Freiburg, Germany
UltiKojak [20] Alexander Nutz U Freiburg, Germany
Unb-Lazy-CSeq [19] Salvatore La Torre U Salerno, Italy

4 Results and Discussion
The results of the competition experiments represent the state of the art in fully-
automatic and publicly-available software-verification tools. The report shows
the improvements of the last year, in terms of effectiveness (number of verifica-
tion tasks that can be solved, correctness of the results, as accumulated in the
score) and efficiency (resource consumption in terms of CPU time). The results
that are presented in this article were approved by the participating teams.

Participating Verifiers. Table 3 provides an overview of the participating
competition candidates and Table 4 lists the features and technologies that are
used in the verification tools.

Technical Resources. The technical setup for running the experiments was
similar to last year [3], except that we used eight, newer machines. All verifica-
tion runs were natively executed on dedicated unloaded compute servers with a
3.4 GHz 64-bit Quad-Core CPU (Intel i7-4770) and a GNU/Linux operating sys-
tem (x86_64-linux). The machines had 33 GB of RAM, of which exactly 15 GB
(memory limit) were made available to the verifiers. The run-time limit for each
verification run was 15 min of CPU time. The run-time limit for each witness
check was set to 1.5 min of CPU time. The tables report the run time in seconds
of CPU time; all measured values are rounded to two significant digits.

408 D. Beyer

Table 4. Technologies and features that the verification tools offer

Verifier C
E
G

A
R

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

S
ym

b
ol

ic
E
xe

cu
ti

on

B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

k-
In

d
u
ct

io
n

P
ro

p
er

ty
-D

ir
ec

te
d

R
ea

ch
ab

il
it
y

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

N
u
m

er
ic

al
In

te
rv

al
A

n
al

ys
is

S
h
ap

e
A

n
al

ys
is

S
ep

ar
at

io
n

L
og

ic

B
it

-P
re

ci
se

A
n
al

ys
is

A
R

G
-B

as
ed

A
n
al

ys
is

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

A
u
to

m
at

a-
B

as
ed

A
n
al

ys
is

C
on

cu
rr

en
cy

S
u
p
p
or

t

R
an

ki
n
g

F
u
n
ct

io
n
s

AProVE ✓ ✓ ✓ ✓ ✓

Beagle ✓ ✓ ✓

Blast ✓ ✓ ✓ ✓ ✓ ✓

Cascade ✓ ✓ ✓

Cbmc ✓ ✓ ✓ ✓

CPAchecker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPArec ✓ ✓ ✓ ✓ ✓

Esbmc ✓ ✓ ✓ ✓

Forest ✓ ✓ ✓

Forester ✓ ✓

FuncTion ✓ ✓

HipTnt+ ✓ ✓

Lazy-CSeq ✓ ✓ ✓

Map2Check ✓ ✓

MU-CSeq ✓ ✓ ✓

Perentie ✓ ✓ ✓ ✓ ✓

PredatorHP ✓

SeaHorn ✓ ✓ ✓ ✓ ✓ ✓

Smack+Corral ✓ ✓ ✓

UltiAutomizer ✓ ✓ ✓ ✓ ✓ ✓

UltiKojak ✓ ✓ ✓ ✓ ✓

Unb-Lazy-CSeq ✓ ✓ ✓ ✓ ✓ ✓

Software Verification and Verifiable Witnesses 409

Table 5. Quantitative overview over all results Part 1 (score / CPU time)

Verifier
Repr. jury member A

rr
ay

s
14

5
po

in
ts

86
ta

sk
s

B
it
V
ec

to
rs

83
po

in
ts

47
ta

sk
s

C
on

cu
rr

en
t

1
22

2
po

in
ts

1
00

3
ta

sk
s

C
on

tr
F
lo
w

3
12

2
po

in
ts

1
92

7
ta

sk
s

D
ev

ic
eD

ri
v.

3
09

7
po

in
ts

1
65

0
ta

sk
s

F
lo
at

s
14

0
po

in
ts

81
ta

sk
s

H
ea

p
M

an
ip

.
13

5
po

in
ts

80
ta

sk
s

AProVE

T. Ströder, Germany

Beagle 4
D. Wang, China 58 s

Blast 983 2 736
V. Mutilin, Russia 33 000 s 11 000 s

Cascade 52 537 70
W. Wang, USA 16 000 s 43 000 s 6 000 s

Cbmc -134 68 1 039 158 2 293 129 100
M. Tautschnig, UK 2 500 s 1 800 s 78 000 s 570 000 s 380 000 s 15 000 s 13 000 s

CPAchecker 2 58 0 2 317 2 572 78 96
M. Dangl, Germany 62 s 870 s 0 s 47 000 s 39 000 s 5 000 s 930 s

CPArec

M.-H. Tsai, Taiwan

Esbmc -206 69 1 014 1 968 2 281 -12 79
J. Morse, UK 5.5 s 470 s 13 000 s 59 000 s 36 000 s 5 300 s 37 s

Forest

P. Sanchez, Spain

Forester 32
O. Lengál, Czechia 1.8 s

FuncTion

C. Urban, France

HipTnt+
T.-C. Le, Singapore

Lazy-CSeq 1 222
G. Parlato, UK 5 600 s

Map2Check

H. O. Rocha, Brazil

MU-CSeq 1 222
B. Fischer, ZA 16 000 s

Perentie

F. Cassez, Australia

PredatorHP 111
T. Vojnar, Czechia 140 s

SeaHorn 0 -80 -8 973 2 169 2 657 -164 -37
A. Gurfinkel, USA 0.61 s 550 s 42 s 30 000 s 16 000 s 5.9 s 14 s

Smack+Corral 48 1 691 2 507 109
Z. Rakamarić, USA 400 s 78 000 s 72 000 s 820 s

UltiAutomizer 2 5 1 887 274 84
M. Heizmann, Germany 6.4 s 170 s 54 000 s 850 s 460 s

UltiKojak 2 -62 872 82 84
A. Nutz, Germany 5.9 s 120 s 10 000 s 270 s 420 s

Unb-Lazy-CSeq 984
S. La Torre, Italy 36 000 s

410 D. Beyer

Table 6. Quantitative overview over all results Part 2 (score / CPU time)

Verifier
Repr. jury member M

em
S
af
et

y
36

1
po

in
ts

20
5

ta
sk

s

R
ec

u
rs
iv
e

40
po

in
ts

24
ta

sk
s

S
eq

u
en

ti
al

36
4

po
in

ts
26

1
ta

sk
s

S
im

p
le

68
po

in
ts

46
ta

sk
s

T
er

m
in

at
io
n

74
2

po
in

ts
39

3
ta

sk
s

O
ve

ra
ll

9
56

2
po

in
ts

5
80

3
ta

sk
s

AProVE 610
T. Ströder, Germany 5 400 s

Beagle 6
D. Wang, China 22 s

Blast 32
V. Mutilin, Russia 4 200 s

Cascade 200
W. Wang, USA 82 000 s

Cbmc -433 0 -171 51 1 731
M. Tautschnig, UK 14 000 s 10 000 s 39 000 s 16 000 s 1 100 000 s

CPAchecker 326 16 130 54 0 4 889
M. Dangl, Germany 5 700 s 31 s 11 000 s 4 000 s 0 s 110 000 s

CPArec 18
M.-H. Tsai, Taiwan 140 s

Esbmc 193 29 -2 161
J. Morse, UK 9 600 s 990 s 130 000 s

Forest

P. Sanchez, Spain

Forester 22
O. Lengál, Czechia 25 s

FuncTion 350
C. Urban, France 61 s

HipTnt+ 545
T.-C. Le, Singapore 300 s

Lazy-CSeq

G. Parlato, UK

Map2Check 28
H. O. Rocha, Brazil 2 100 s

MU-CSeq

B. Fischer, ZA

Perentie

F. Cassez, Australia

PredatorHP 221
T. Vojnar, Czechia 460 s

SeaHorn 0 -88 -59 65 0 -6 228
A. Gurfinkel, USA 0 s 2.3 s 5 800 s 1 400 s 0 s 53 000 s

Smack+Corral 27 51
Z. Rakamarić, USA 2 300 s 5 100 s

UltiAutomizer 95 25 15 0 565 2 301
M. Heizmann, Germany 13 000 s 310 s 8 600 s 1 800 s 8 600 s 87 000 s

UltiKojak 66 10 -10 3 231
A. Nutz, Germany 4 800 s 220 s 7 000 s 140 s 23 000 s

Unb-Lazy-CSeq

S. La Torre, Italy

Software Verification and Verifiable Witnesses 411

Table 7. Overview of the top-three verifiers for each category (CPU time in s)

Rank Candidate Score CPU Solved False Wrong
Time Tasks Alarms Proofs

Arrays
1 Smack+Corral 48 400 51 7 1
2 UltiKojak 2 5.9 1
3 UltiAutomizer 2 6.4 1

BitVectors
1 Esbmc 69 470 45 1
2 Cbmc 68 1 800 44 1
3 CPAchecker 58 870 40 1

Concurrency
1 Lazy-CSeq 1222 5 600 1003
2 MU-CSeq 1 222 16 000 1003
3 Cbmc 1 039 78 000 848 1 1

ControlFlow
1 CPAchecker 2317 47 000 1302 2 2
2 SeaHorn 2 169 30 000 1014 5 2
3 Esbmc 1 968 59 000 1212 36

DeviceDrivers64
1 Blast 2736 11 000 1 481 5 9
2 SeaHorn 2 657 16 000 1 440 3 12
3 CPAchecker 2 572 39 000 1 390 17 4

Floats
1 Cbmc 129 15 000 74
2 CPAchecker 78 5 100 54 2
3 Esbmc −12 5 300 27 7 2

HeapManipulation
1 PredatorHP 111 140 68
2 Smack+Corral 109 820 76 3
3 Cbmc 100 13 000 69 2

MemorySafety
1 CPAchecker 326 5 700 199 4
2 PredatorHP 221 460 134 1
3 Cascade 200 82 000 154 2 5

Recursive
1 Smack+Corral 27 2 300 23 1
2 UltiAutomizer 25 310 16
3 CPArec 18 140 12

SequentializedConcurrency
1 Esbmc 193 9 600 144 2
2 CPAchecker 130 11 000 113 1
3 UltiAutomizer 15 8 600 51 9

Simple
1 SeaHorn 65 1 400 44
2 CPAchecker 54 4 000 32
3 Smack+Corral 51 5 100 43 2

Termination
1 AProVE 610 5 400 305
2 UltiAutomizer 565 8 600 304 1
3 HipTnt+ 545 300 290

Overall
1 CPAchecker 4889 110 000 3 211 29 7
2 UltiAutomizer 2 301 87 000 1 453 21 3
3 Cbmc 1 731 1 100 000 4 056 77 453

412 D. Beyer

One complete competition run (each candidate on all selected categories ac-
cording to the opt-outs) consisted of 49 855 verification runs and 4 151 witness
checks. The consumed total CPU time for one competition run required a total
of 119 days of CPU time for the verifiers and 1 day for the witness checker. Each
tool was executed at least twice, in order to make sure the results are accurate
and not contradicting in any sense. Not counted in the above measures on the
dedicated competition machines are the preparation runs that were required to
find out if the verifiers are successfully installed and running. Other machines
with a slightly different specification were used for those test runs while the eight
dedicated machines were occupied by the official competition runs.

Quantitative Results. Tables 5 and 6 present a quantitative overview over
all tools and all categories (Forest and Perentie participated only in subcate-
gory Loops). The format of the table is similar to those of previous SV-COMP
editions [3]: The tools are listed in alphabetical order; every table cell for competi-
tion results lists the score in the first row and the CPU time for successful runs in
the second row. We indicated the top-three candidates by formatting their score
in bold face and in larger font size. An empty table cell means that the verifier
opted-out from the respective category. For the calculation of the score and for
the ranking, the scoring schema in Table 2 was applied, the scores for the meta
categories Overall and ControlFlow (consisting of several sub-categories) were
computed using normalized scores as defined in the report for SV-COMP’13 [2].

Table 7 reports the top-three verifiers for each category. The run time (col-
umn ‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved
Tasks’). The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of
verification tasks for which the tool reported wrong results: reporting an error
path but the property holds (false positive) and claiming that the program fulfills
the property although it actually contains a bug (false negative), respectively.

Score-Based Quantile Functions for Quality Assessment. Score-based
quantile functions [2] are helpful for visualizing results of comparative evalua-
tions. The competition web page 9 includes such a plot for each category; Fig. 1
illustrates only the category Overall (all verification tasks). Six verifiers partici-
pated in category Overall, for which the quantile plot shows the overall perfor-
mance over all categories (scores for meta categories are normalized [2]).

Overall Quality Measured in Scores (Right End of Graph). CPAchecker is the
winner of this category: the x-coordinate of the right-most data point represents
the highest total score (and thus, the total value) of the completed verification
work (cf. Table 7; right-most x-coordinates match the score values in the table).

Amount of Incorrect Verification Work (Left End of Graph). The left-most data
points of the quantile functions represent the total negative score of a verifier (x-
coordinate), i.e., amount of incorrect and misleading verification work. Verifiers
should start with a score close to zero; UltiAutomizer and CPAchecker are
best in this aspect (also the right-most columns of category Overall in Table 7

9 http://sv-comp.sosy-lab.org/2015/results

http://sv-comp.sosy-lab.org/2015/results

Software Verification and Verifiable Witnesses 413

 1

 10

 100

 1000
Ti

m
e

in
 s

CBMC
CPAchecker

ESBMC
SeaHorn

UAutomizer
UKojak

-10000 -8000 -6000 -4000 -2000 0 2000 4000
Accumulated score

Fig. 1. Quantile functions for category Overall. We plot all data points (x, y) such
that the maximum run time of the n fastest correct verification runs is y and x is the
accumulated score of all incorrect results and those n correct results. A logarithmic
scale is used for the time range from 1 s to 1000 s, and a linear scale is used for the
time range between 0 s and 1 s.

report this: only 21 and 29 false alarms, respectively, and only 3 and 7 wrong
proofs, for a total of 5 803 verification tasks).
Amount of Correct Verification Work (Length of Graph). The length of the graph
indicates the amount of correct results: for example, Cbmc and Esbmc both
produce a large amount of correct results.
Characteristics of the Verification Tools. The plot visualizations also help under-
standing how the verifiers work internally: (1) The y-coordinate of the left-most
data point refers to the ‘easiest’ verification task for the verifier. We can see
that verifiers that are based on a Java virtual machine need some start-up time
(CPAchecker, UltiAutomizer, and UltiKojak). (2) The y-coordinate of the
right-most data point refers to the successfully solved verification task that the
verifier spent most time on (this is mostly just below the time limit). We can read
the ranking of verifiers in this category from right to left. (3) The area below a
graph is proportional to the accumulated CPU time for successfully solved tasks.
We can identify the most resource-efficient verifiers by looking at the right-most
graphs and those closest to the x-axis. (4) Also the shape of the graph can give in-
teresting insights: From Cbmc’s horizontal line just below the time limit at 850 s,
we can see that this bounded model checker returns a result just before the time
limit is reached. The quantile plot for CPAchecker shows an interesting bend at
60 s of run time, where the verifier suddenly switches gears: it gives up with one
strategy (without abstraction) performs an internal restart and proceeds using
another strategy (with abstraction and CEGAR-based refinement).

414 D. Beyer

Robustness, Soundness, and Completeness. The best tools of each cate-
gory show that state-of-the-art verification technology is quite advanced already:
Table 7 (last two columns) reports a low number of wrong verification results,
with a few exceptions. Cbmc and Esbmc are the two verifiers that produce the
most wrong safety proofs (missed bugs): both of them are bounded model check-
ers. In three categories, the top-three verifiers did not report any wrong proof.

Verifiable Witnesses. One of the objectives of program verification is to provide
a witness for the verification result. This was an open problem of verification tech-
nology: there was no commonly supported witness format yet, and the verifiers
were not producing accurate witnesses that could be automatically assessed for
validity. SV-COMP 2015 changed this (restricted to error witnesses for now): all
verifiers that participated in categories that required witness validation supported
the common exchange format for error witnesses, and produced error paths in that
format. We used a witness checker to validate the obtained error paths.

5 Conclusion
The 4th edition of the Competition on Software Verification was successful in
several respects: (1) We introduced verifiable witnesses (the verifiers produced
error paths in a common exchange format, which made it possible to validate
a given error path by using a separate witness checker). (2) We had a record
number of 22 participating verification tools from 13 countries. (3) The reposi-
tory of verification tasks was extended by two new categories: Arrays and Floats.
(4) The properties to be verified were extended by a liveness property: Termina-
tion. (5) The total number of verification tasks in the competition run was dou-
bled (compared to SV-COMP’14) to a total of 5 803 verification tasks. Besides
the above-mentioned success measures, SV-COMP serves as a yearly overview
of the state of the art in software verification, and witnesses an enormous pace
of development of new theory, data structures and algorithms, and tool imple-
mentations that analyze real C code. As in previous years, the organizer and the
jury made sure that the competition follows the high quality standards of the
TACAS conference, in particular to respect the important principles of fairness,
community support, transparency, and technical accuracy.

Acknowledgement. We thank K. Friedberger for his support during the eval-
uation phase and for his work on the benchmarking infrastructure, the competi-
tion jury for making sure that the competition is well-grounded in the community,
and the teams for making SV-COMP possible through their participation.

References
1. Beyer, D.: Competition on software verification (SV-COMP). In: Flanagan, C.,

König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012)

2. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 594–609. Springer, Heidelberg (2013)

Software Verification and Verifiable Witnesses 415

3. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg (2014)

4. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement (2015)
(unpublished manuscript)

5. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model checking,
precision reuse, and verification witnesses. In: Bartocci, E., Ramakrishnan, C.R.
(eds.) SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer, Heidelberg (2013)

6. Cassez, F., Matsuoka, T., Pierzchalski, E., Smyth, N.: Perentie: Modular trace
refinement and selective value tracking (Competition contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 438–441. Springer, Heidelberg
(2015)

7. Chen, Y.-F., Hsieh, C., Tsai, M.-H., Wang, B.-Y., Wang, F.: CPArec: Verifying re-
cursive programs via source-to-source program transformation (Competition contri-
bution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 425–427.
Springer, Heidelberg (2015)

8. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive pro-
grams and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 422–424. Springer, Heidelberg (2015)

9. Gonzalez-de-Aledo, P., Sanchez, P.: FramewORk for embedded system verificaTion
(Competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 428–430. Springer, Heidelberg (2015)

10. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: A framework for verifying C pro-
grams (Competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 446–449. Springer, Heidelberg (2015)

11. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:
SMACK+Corral: A modular verifier (Competition contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 450–453. Springer, Heidel-
berg (2015)

12. Heizmann, M., Dietsch, D., Leike, J., Musa, B., Podelski, A.: Ultimate Automizer
with Array Interpolation (Competition contribution). In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 454–456. Springer, Heidelberg (2015)

13. Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forester:
Shape analysis using tree automata large (Competition contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 431–434. Springer, Heidelberg
(2015)

14. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A
lazy sequentialization tool for C (Competition contribution). In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 398–401. Springer, Hei-
delberg (2014)

15. Kroening, D., Tautschnig, M.: CBMC: C bounded model checker (Competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 389–391. Springer, Heidelberg (2014)

16. Le, T.C., Qin, S., Chin, W.-N.: Termination and non-termination specification
inference In: PLDI 2015. ACM (2015) (unpublished manuscript)

17. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22 (Com-
petition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 405–407. Springer, Heidelberg (2014)

18. Muller, P., Peringer, P., Vojnar, T.: Predator hunting party (Competition contribu-
tion). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 442–445.
Springer, Heidelberg (2015)

416 D. Beyer

19. Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Unbounded Lazy-CSeq: A lazy
sequentialization tool for C programs with unbounded context switches (Competi-
tion contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 460–462. Springer, Heidelberg (2015)

20. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate Kojak (Competition
Contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
457–459. Springer, Heidelberg (2015)

21. Rocha, H., Barreto, R., Cordeiro, L., Neto, A.D.: Understanding programming bugs
in ANSI-C software using bounded model checking counter-examples. In: Derrick,
J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 128–
142. Springer, Heidelberg (2012)

22. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with Blast 2.7 (Com-
petition contribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 525–527. Springer, Heidelberg (2012)

23. Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: AProVE: Termination
and memory safety of C programs (Competition contribution). In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 416–418. Springer, Heidelberg (2015)

24. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq 0.3: Se-
quentialization by read-implicit and coarse-grained memory unwindings (Competi-
tion contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 435–437. Springer, Heidelberg (2015)

25. Urban, C.: FuncTion: An abstract domain functor for termination (Competition
contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
463–465. Springer, Heidelberg (2015)

26. Wang, W., Barrett, C.: Cascade (Competition contribution). In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 419–421. Springer, Heidelberg (2015)

AProVE: Termination and Memory Safety

of C Programs�

(Competition Contribution)

Thomas Ströder, Cornelius Aschermann, Florian Frohn, Jera Hensel,
and Jürgen Giesl

RWTH Aachen University, Germany

Abstract. AProVE is a system for automatic termination and complex-
ity proofs of C, Java, Haskell, Prolog, and term rewrite systems. The
particular strength of AProVE when analyzing C is its capability to rea-
son about pointer arithmetic combined with direct memory accesses (as,
e.g., in standard implementations of string algorithms). As a prerequisite
for termination, AProVE also proves memory safety of C programs.

1 Verification Approach and Software Architecture

To analyze programs with explicit pointer arithmetic, one has to handle the
interplay between addresses and the values they point to. AProVE uses an ap-
proach based on symbolic execution and abstraction to transform the input
program into a symbolic execution graph that over-approximates all possible
program runs. Language-specific features (such as pointer arithmetic in C) are
handled when generating this graph. The nodes of the symbolic execution graph
are abstract states that represent sets of actual program states, and paths in the
graph correspond to evaluations in the program. To keep the graph finite, we
use abstraction to replace several states at the same program location by a more
general new state. To formalize abstract states, we introduce a novel abstract do-
main that can track allocated memory in detail. An important advantage of our
domain is that although it is based on separation logic, standard integer SMT
solving can be used for all reasoning needed in our approach. Thus, the rules for
symbolic execution and generalization of states can easily be automated.

In C, violating memory safety (i.e., accessing non-allocated memory) leads to
undefined (and possibly non-terminating) behavior. So to prove termination of C
programs with low-level memory access, one must also ensure memory safety.
Hence, during the construction of the symbolic execution graph, we also prove
memory safety of the program. In a similar way, one could also prove other safety
properties by checking that the graph has no path from initial to “unsafe” states.

After verifying memory safety, the graph is automatically transformed into an
integer rewrite system (IRS) whose termination is analyzed afterwards. In this
way, the same termination techniques in the back-end of AProVE are used for ter-
mination analysis of different programming languages in the front-end. A graph-
ical overview of AProVE’s architecture is shown on the next page. Details on

� Supported by DFG grant GI 274/6-1 and Research Training Group 1298 (AlgoSyn).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 417–419, 2015.
DOI: 10.1007/978-3-662-46681-0_32

418 T. Ströder et al.

Java

C

Haskell

Prolog

Symbolic
Execution
Graph

IRS
Termination

Complexity

Safety
︸ ︷︷ ︸

Front-End

︸ ︷︷ ︸
Back-End

our approach for analyzing
C programs can be found
in [9]. In [7], we explain
the use of AProVE for
other programming lan-
guages and give references to our corresponding papers on the underlying theory.

2 Strengths and Weaknesses

The strength of our approach for C is that it handles algorithms where the control
flow depends on explicit pointer arithmetic and on detailed information about the
contents of addresses, whereas most other tools fail for such algorithms. More-
over, in contrast to AProVE, most other termination provers ignore the problem
of memory safety and just prove termination under the assumption that the pro-
gram is memory safe. The success of AProVE at the annual international Termi-
nation Competition1 shows that our rewriting-based approach is well suited for
termination analysis of real-world programming languages. Here, AProVE won
almost all categories related to termination of Java, Haskell, Prolog, and to ter-
mination or innermost runtime complexity of rewriting. Moreover, AProVE was
the most powerful tool for termination analysis of C (the competition had such a
category for the first time in 2014). At SV-COMP, AProVE already participated
very successfully in 2014 when the competition featured a demonstration cate-
gory for termination of C programs for the first time. This year, AProVE won the
termination category of SV-COMP by proving termination for 305 of the 395
programs in this category (44 of the remaining programs are non-terminating,
thus AProVE was successful on approx. 87% of the terminating ones).

On the other hand, since AProVE constructs symbolic execution graphs to
prove memory safety and to infer suitable invariants needed for termination
proofs, its runtime is often higher than that of other tools. Moreover, since sym-
bolic execution graphs over-approximate the set of actual program runs, AProVE
currently cannot disprove termination or memory safety.2 A further weakness is
that we only handle algorithms with integers and pointers, but no struct types
yet, and that we assume integers to be unbounded. This is why AProVE cur-
rently only participates in the termination category, since this category assumes
unbounded integers and the examples in this category do not contain structs.
Finally, as our approach is targeted toward termination, up to now we did not
implement support for other forms of safety besides memory safety.

3 Setup and Configuration

AProVE is developed by the “Programming Languages and Verification” group
led by Jürgen Giesl at RWTH Aachen University. AProVE’s main website is [1].

1 http://www.termination-portal.org/wiki/Termination_Competition
2 AProVE already proves non-termination of term rewriting and Java. We are currently
working on adapting these techniques to the abstract domain used for C programs.

http://www.termination-portal.org/wiki/Termination_Competition

AProVE: Termination and Memory Safety of C Programs 419

Here, AProVE can be downloaded as a command-line tool or as a plug-in for
the popular Eclipse software development environment [5]. In this way, AProVE
can already be applied during program construction. Moreover, AProVE can also
be accessed directly via a web interface. The website [1] also contains a list of
external tools used by AProVE and a list of present and past contributors.

The particular version for analyzing C programs according to the SV-COMP
format can be downloaded from the following URL. In this version, we disabled
the check for memory safety, since it was agreed that only memory safe programs
will be included in the termination category of SV-COMP.

http://aprove.informatik.rwth-aachen.de/eval/Pointer/AProVE.zip

All files from this archive have to be extracted into one folder. AProVE is im-
plemented in Java and needs a Java 7 Runtime Environment. To avoid handling
the intricacies of C, we analyze programs in the platform-independent intermedi-
ate representation of the LLVM compilation framework [8] and AProVE requires
the Clang compiler Version 2.9 [2] to translate C sources to LLVM. To solve the
arising search problems in the back-end, AProVE needs the satisfiability checkers
Z3 [3], Yices [4], and MiniSAT [6]. Moreover, extending the path environment is
necessary so that AProVE can find the corresponding programs.

AProVE participated in the category “Termination”. It can be invoked for C
files using the following call pattern. Here, <problemFile> is the C file to be
analyzed for termination of the call main(), while <outputFile> is a file where
AProVE should store its proof (or proof attempt).

./AProVE.sh <problemFile> <outputFile>
AProVE prints TRUE on the standard output if it can prove termination.

Otherwise it prints UNKNOWN. As mentioned, currently, AProVE is not able to
disprove termination for C programs, so AProVE does not print FALSE.

References

1. AProVE, http://aprove.informatik.rwth-aachen.de/
2. Clang, http://clang.llvm.org/
3. deMoura, L.,Bjørner,N.: Z3:An efficient SMTsolver. In:Ramakrishnan,C.R.,Rehof,

J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
4. Dutertre, B., de Moura, L.: The Yices SMT solver (2006),

http://yices.csl.sri.com/tool-paper.pdf
5. Eclipse, http://www.eclipse.org/
6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.

(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
7. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M.,

Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termination
of programs automatically with AProVE. In: Demri, S., Kapur, D., Weidenbach, C.
(eds.) IJCAR 2014. LNCS, vol. 8562, pp. 184–191. Springer, Heidelberg (2014)

8. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004, pp. 55–88. IEEE (2004)

9. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-
Kamp, P.: Proving termination and memory safety for programs with pointer
arithmetic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS,
vol. 8562, pp. 208–223. Springer, Heidelberg (2014)

http://aprove.informatik.rwth-aachen.de/
http://clang.llvm.org/
http://yices.csl.sri.com/tool-paper.pdf
http://www.eclipse.org/

Cascade

(Competition Contribution)

Wei Wang and Clark Barrett

New York University, New York, United States

Abstract. Cascade is a static program analysis tool developed at New
York University. It uses bounded model checking to generate verification
conditions and checks them using an SMT solver which either produces
a proof of correctness or gives a concrete trace showing how an assertion
can fail. It supports the majority of standard C features except for float-
ing point. A distinguishing feature of Cascade is that its analysis uses a
memory model which divides up memory into several partitions based
on alias information.

1 Verification Approach

Boundedmodel checking (BMC) [4] is an efficientmethod to detect bugs automat-
ically. The technique constructs a formula that encodes a program up to a user-
specified bound. A memory model is a crucial part of the encoding in bounded
model checking of programs, determining how the contents of and modifications
to memory are represented. The most precise model is a flat model, which repre-
sents memory as a single array of bytes. However, this model typically does not
scale well because the solver cannot easily infer which regions are disjoint.

Cascade uses a novel partition memory model. The main idea of this model
is to split the memory according to the alias information acquired by incorpo-
rating a Steensgaard points-to analysis module [8]. This ensures that variables
and dynamically allocated regions that may alias end up in the same parti-
tion. Each partition is modeled using a separate array. The memory partitioning
significantly eases the burden of reasoning about disjointness and thus scales
much better than the flat memory model, while the points-to-analysis approach
ensures the soundness of modeling type-unsafe behaviors in C.

2 System Architecture

Cascade [9] is implemented in Java. The overall framework is illustrated in Fig-
ure 1. The C front-end converts a C program into an abstract syntax tree using
a parser built using the xtc parser generator [6]. Both the core module and pre-
processing module take the abstract syntax tree as input. In the preprocessing
module, the points-to analysis is performed for each function in the C program
without function-inlining or loop-unrolling. All the alias groups and the points-
to relations among them are discovered here. The core module uses symbolic

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 420–422, 2015.
DOI: 10.1007/978-3-662-46681-0_33

Cascade 421

execution [2, 3, 7] over the abstract syntax tree to build verification conditions
as a SMT formula. Currently, it takes the approach of simple forward execution.
The partition memory model is built based on the alias information generated at
the preprocessing step. Verification conditions are discharged by an SMT solver.
Cascade currently supports both CVC4 [1] and Z3 [5].

Fig. 1. Cascade framework

3 Strength and Weaknesses of the Approach

Cascade supports arbitrary user assertions, including reachability of labels in
the C-code. Furthermore, it can detect bugs related to memory safety, including
invalid memory accesses, invalid memory frees and memory leaks. In SV-COMP
2015, these checks are only enabled for the MemorySafety category. Cascade
relies on loop unrolling and function inlining, and so it may perform poorly if
either of these steps are required to be too large. In the competition, Cascade uses
successively larger unrolls until a fixed bound of 1024 is reached, or a violation
is detected, or a timeout is reached. Note that we set a timeout of 850 seconds.
We also use a fixed function-inlining depth of 2. For memory safety checking,
we use a different set of parameters: the maximum unroll is 200 and the inline
depth is 5. If no error is found or the ERROR label cannot be reached within the
maximum bounds, Cascade will report SAFE. Otherwise, it will report UNSAFE
and the witness will be dumped in the GraphML format.

4 Tool Setup and Configuration

The version of Cascade submitted to SV-COMP 2015 can be downloaded at:

http://cascade.cims.nyu.edu/bin/sv-comp-2015-4113-cvc4-patch.tar.gz

http://cascade.cims.nyu.edu/bin/sv-comp-2015-4113-cvc4-patch.tar.gz

422 W. Wang and C. Barrett

This version uses CVC4 as the back-end solver. Cascade requires JVM version
1.7.0. The archive unzips to a directory called sv-comp-2015-4113-patch
which contains a script called run cascade bmc. The script should be run from
the sv-comp-2015-4113-patch directory as follows:

run_cascade_bmc -trace <c-benchmark>

where c-benchmark is the name of the C file to be analyzed. The results are
printed on stdout and should be interpreted as follows:

– if the last line printed is UNSAFE, this should be interpreted as FALSE;
– if the last line printed is UNSAFE:p <prop> this should be intepreted as
FALSE(<prop>);

– otherwise, if the last word printed is SAFE, this should be interpreted as
TRUE;

– any other result should be interpreted as UNKNOWN.

For results that correspond to FALSE, a witness is dumped to the file:

out/<benchmark-name>/witness.graphml.

where <benchmark-name> is the filename of the C benchmark that was checked
without the path prefix.

In the competition, Cascade will participate in the following categories: Bit
Vectors, Control Flow and Integer Variables, Heap Manipulation, and Memory
Safety. We will not participate in the others for various reasons including lack
of support for function pointers and concurrency.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

2. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model check-
ing using SAT procedures instead of BDDs. In: Proceedings of Design Automation
Conference (DAC 1999), vol. 317, pp. 226–320 (1999)

3. Brand, D., Joyner, W.H.: Verification of protocols using symbolic execution. Com-
put. Networks 2, 351 (1978)

4. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Hei-
delberg (2004)

5. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS, pp. 337–340
(2008)

6. Grimm, R.: Rats!, a parser generator supporting extensible syntax (2009)
7. King, J.C.: Symbolic execution and program testing. Communications of the

ACM 385, 226–394 (1976)
8. Steensgaard, B.: Points-to analysis in almost linear time. In: ACM Symposium on

Principles of Programming Languages, pp. 32–41 (1996)
9. Wang, W., Barrett, C., Wies, T.: Cascade 2.0. In: McMillan, K.L., Rival, X. (eds.)

VMCAI 2014. LNCS, vol. 8318, pp. 142–160. Springer, Heidelberg (2014)

CPAchecker with Support for Recursive

Programs and Floating-Point Arithmetic

(Competition Contribution)

Matthias Dangl, Stefan Löwe, and Philipp Wendler

University of Passau, Passau, Germany

Abstract. We submit to SV-COMP’15 the software-verification frame-
work CPAchecker. The submitted configuration is a combination of
seven different analyses, based on explicit-value analysis, k-induction,
predicate analysis, and concrete memory graphs. These analyses use
concepts such as CEGAR, lazy abstraction, interpolation, adjustable-
block encoding, bounded model checking, invariant generation, and block-
abstraction memoization. Found counterexamples are cross-checked by a
bit-precise analysis. The combination of several different analyses copes
well with the diversity of the verification tasks in SV-COMP.

1 Software Architecture

CPAchecker is a software verification framework built on the concept of Config-

urable Program Analysis (CPA). One of the main design goals of the frame-
work is to ease the development of new analyses and verification approaches.
The CPAs available in the framework can be recombined on a per-demand basis
by only passing the according configuration parameters to CPAchecker, with-
out the need of changes in the implementation. Commonly needed tasks, like
tracking of program counter, call stack, and function-pointer values, are also
implemented as separate CPAs, and may assist the main CPAs, such as the
predicate analysis. The framework provides a front-end based on the C-parser
of the Eclipse CDT project (http://www.eclipse.org/cdt/), and an interface to
SMT solvers (MathSAT5 (http://mathsat.fbk.eu/) in our submission) for solv-
ing and interpolation.

2 Verification Approach

The configuration used by CPAchecker in this year’s SV-COMP is con-
ceptually similar to last year [4]: a sequential combination of five analy-
ses [2], as shown in Fig. 1, with the addition of an analysis based on
k-induction using continuously-refined auxiliary invariants [1] and the limi-
tation of the predicate analysis to a single ABE-l configuration. Each anal-
ysis runs for a predefined time, and if it does not return a result within
the time bounds, the next analysis is started. Whenever one of the analyses
finds a counterexample, it is cross-checked and if deemed infeasible, the anal-
ysis that is currently running gets terminated and the next one takes over.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 423–425, 2015.
DOI: 10.1007/978-3-662-46681-0_34

http://www.eclipse.org/cdt/
http://mathsat.fbk.eu/

424 M. Dangl, S. Löwe, and P. Wendler

Value
Analysis

false

Value
Analysis

Interpolation

Predicate
Analysis

BitPrecise

true

unknown

Predicate
Analysis

spurious

k-Induction

unknown

 unknown

unknown

 unknown

unknown

 true

 true

 true

 true

 true

spurious

spurious

spurious

spurious

false

false

false

false

false

Fig. 1. Sequential combination to
verify reachability properties

The time limit for each of the first three anal-
yses is 60 s and the predicate analysis has no
time limit. Similarly to last year, the coun-
terexample checks are done by a bit-precise
predicate analysis for the first four analy-
ses, and the bounded model checker CBMC

(http://www.cprover.org/cbmc) for the last
analysis. In order to support the category
“Floats”, we have added support for pre-
cisely modeling the floating-point arithmetic
to the predicate analysis (the value analysis
cannot model non-deterministic values pre-
cisely enough to solve the programs in this
category). This was made possible because
the SMT solver MathSAT5 now supports
floating-point arithmetic as an SMT theory,
and CPAchecker leverages this by appropri-
ately encoding most of the floating-point se-
mantics of C in SMT formulae. Interpolation
for floats is not yet supported, but not nec-
essary for most programs in this category.

In two cases we deviate from the described
configuration and use specialized approaches.
As last year, we use a bounded analysis
based on concrete memory graphs for ver-
ifying memory safety properties. For recur-
sive programs, we use the predicate analysis
with an extension of block-abstraction mem-
oization [5], which uses two operators reduce
and expand to remove information from the

abstract state when entering a block (typically a function or loop body) if this in-
formation is not necessary inside the block, and restoring this information when
leaving the block again. This allows a more efficient analysis and caching of the
results for analyzed blocks. We extended this approach to support recursion (a
recursive function call creates a new block). Together with an implementation
of nested interpolation this allows the predicate analysis to analyze recursive
programs with unbounded depth.

3 Strengths and Weaknesses

The sequential combination of several analyses coveringdifferent abstract domains
allows CPAchecker to be competitive on a wide range of benchmarks. The bit-
precise analyses help to minimize the number of wrong answers to only 0.6% of all
programs. Improvements over last year’s version include handling of floating-point
arithmetic using MathSAT, the addition of an analysis based on k-induction with
continuously-refined invariant generation [1], a novel interpolation routine for the

http://www.cprover.org/cbmc

CPAchecker with Support for Recursive Programs 425

value domain [3], and the use of an extension of block-abstractionmemoization [5]
as an analysis-independent framework for supporting recursive programs. Weak-
nesses of CPAchecker are the missing support for concurrent programs and for
checking termination. An abstraction technique for memory graphs would allow a
more efficient analysis in the categories “Arrays” and “MemorySafety”.

4 Setup and Configuration

CPAchecker is available at http://cpachecker.sosy-lab.org and needs a Java 7
runtime environment. We submit version 1.3.10-svcomp15 for all categories.
The command line for running CPAchecker is

scripts/cpa.sh -sv-comp15 -disable-java-assertions -heap 10000m -spec property.prp program.i

Please add the parameter -64 for C programs assuming a 64-bit environment,
and -setprop cpa.predicate.handlePointerAliasing=false for the simple
memory model. For machines with less RAM, the amount of memory given to
the Java VM needs to be set accordingly by the parameter -heap. CPAchecker

will print the verification result and the name of the output directory to the
console. In case CPAchecker finds a property violation the witness is written
to the file named witness.graphml within this directory.

5 Project and Contributors

CPAchecker is an open-source project being developed by the members of
the Software Systems Lab, led by Dirk Beyer, at the University of Passau.
CPAchecker is used and extended by the members of the Institute for System
Programming of the Russian Academy of Sciences, the Universities of Pader-
born, Darmstadt and Vienna, as well as at Verimag, Grenoble. We would like to
thank all contributors for their work on CPAchecker. The full list can be found
at http://cpachecker.sosy-lab.org.

References

1. Beyer, D., Dangl, M., Wendler, P.: Combining k-induction with continuously-refined
invariants. Technical Report MIP-1503, University of Passau. arXiv:1502.00096 (Jan-
uary 2015), http://arxiv.org/abs/1502.00096

2. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model check-
ing: A technique to pass information between verifiers. In: Proc. FSE 2012. ACM,
NewYork (2012)

3. Beyer, D., Löwe, S., Wendler, P.: Domain-type-guided refinement selection
based on sliced path prefixes. Technical Report MIP-1501, University of Passau.
arXiv:1502.00045 (January 2015), http://arxiv.org/abs/1502.00045

4. Löwe, S., Mandrykin, M., Wendler, P.: CPAchecker with sequential combination of
explicit-value analyses and predicate analyses. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 392–394. Springer, Heidelberg (2014)

5. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoiza-
tion. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 332–347.
Springer, Heidelberg (2012)

http://cpachecker.sosy-lab.org
http://cpachecker.sosy-lab.org
http://arxiv.org/abs/1502.00096
http://arxiv.org/abs/1502.00045

CPAREC: Verifying Recursive Programs

via Source-to-Source Program Transformation

(Competition Contribution)

Yu-Fang Chen1, Chiao Hsieh1,2,�, Ming-Hsien Tsai1,
Bow-Yaw Wang1, and Farn Wang2

1 Institute of Information Science, Academia Sinica, Taiwan
2 Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan

bridge@iis.sinica.edu.tw

Abstract. CPArec is a tool for verifying recursive C programs via
source-to-source program transformation. It uses a recursion-free pro-
gram analyzer CPAChecker as a black box and computes function
summaries from the inductive invariants generated by CPAChecker.
Such function summaries enable CPArec to check recursive programs.

1 Verification Approach

The CPArec tool handles recursive programs by an iterative source-to-source
transformation technique proposed in [2]. In each iteration, it transforms the
original recursive program P into a non-recursive program P ′ that under-
approximates the behaviors of P . The program P ′ will be sent to a black box
program verifier V that does not support recursion. If an assertion violation in
the program P ′ is found by the verifier V , it also indicates an assertion violation
in the program P . Otherwise, the verifier should generate an inductive invariant
as a proof for the unreachability of the assertion violation, from which CPArec

extracts candidates of function summaries.
Based on recursive rule of Hoare logic and fix-point theorem [3], CPArec

reduces the problem of checking the correctness of function summary candidates
again to assertion checking. More specifically, it first replaces all function calls in
P with the corresponding function summary candidates and obtain a new non-
recursive program P ′′. Then it checks if all behaviors of P ′′ are included in the
behaviors encoded in the function summary candidate of P . This step is again
handled by a source-to-source program transformation with some additional as-
sertions added. If the verifier V reports that all assertions are not violated, then
CPArec found correct function summaries and thus proved the correctness of
P . Otherwise, it produces a more refined version of P by unwinding the func-
tion calls and proceeds to the next iteration of the verification procedure. The
execution flow of CPArec can be found in Figure 1.

� Corresponding author.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 426–428, 2015.
DOI: 10.1007/978-3-662-46681-0_35

CPArec: Verifying Recursive Programs 427

Analyzer
Intra-proc.
Program

Summary
Candidates

Check
Recursive
Program

FALSE

TRUE

Error

Under-approx.

Pass, Compute Summaries
Er
ro
r,
Re
fin
e

Pass

Fig. 1. The Execution Flow of CPArec

2 Software Architecture

Currently,CPArec uses CPAChecker (over 140 thousands lines of Java code)
as the underlying program analyzer [1]. CPArec contains 1256 lines of OCaml

code for syntactic source-to-source transformation using the CIL [4] library. The
rest of the algorithm is implemented in 705 lines of Python code. Among them
only 270 lines are for extracting function summaries. Since syntactic transfor-
mation is independent of the underlying program analyzer, only about 14% of
the code need to be rewritten should another analyzer be employed. When ex-
tracting summaries from inductive invariants, we sometimes need to quantify
out additional variables that are neither formal parameters nor return variables.
CPArec uses the tool RedLog [5] for quantifier elimination.

3 Strengths and Weaknesses

Compared with other analysis algorithms for recursive programs, the one imple-
mented in CPArec is very lightweight. It only performs syntactic transformation
and requires standard functionalities from underlying intraprocedure program
analyzers. Moreover, our technique is very modular. Any intraprocedural ana-
lyzer providing proofs of inductive invariants can be employed by our tool. With
the interface between CPArec and the program analyzers described in the pre-
vious section, incorporating recursive analysis with existing program analyzers
thus only requires minimal implementation efforts. Recursive analysis hence ben-
efits from future advanced intraprocedural analysis with little cost through our
lightweight and modular technique.

On the other hand, we suffer the same limitation as the black-box analyzer. For
instance, using CPAChecker, we can only produce linear summaries. However,
in the recursive category of the competition, several examples require non-linear
summaries for proving correctness. Moreover, we get the modularity for the
price of losing some flexibility. For example, we cannot optimize the way that

428 Y.-F. Chen et al.

the underlying program analyzer constructs the trace formula and sends to SMT
solver. This step potentially can reduce the number of variables that we need to
quantify out and may improve performance.

4 Setup and Configuration

CPArec is available at

https://github.com/fmlab-iis/cparec

The submitted version is v0.1-alpha. The simplest way to execute CPArec

is to first download the binary from the web-site. To setup the environment in
Ubuntu 12.04 64-bit, JAVA Runtime, Python 2.7, the Python Networkx package,
and the Python PyGraphviz package are required. Run following command to
install above packages in Ubuntu 12.04 64-bit:

sudo apt-get install openjdk-7-jre python python-networkx python-pygraphviz

To process a benchmark example program.c, one should use the following script:

python <path_to_cparec>cparec/main.py program.c

No further parameters are needed. CPArec will print the verification result to
the console. We will only participate in the recursive category of the competition.

5 Software Project and Contributors

CPArec is an open-source project from the programming language and formal
method (PLFM) group at the Institute of Information Science, Academia Sinica,
Taiwan. The main contributors are the authors of this paper. The programs are
written by Chiao Hsieh and Ming-Hsien Tsai.

References

1. Beyer, D., Keremoglu, M.E.: cPAchecker: A tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

2. Chen, Y.-F., Hsieh, C., Tsai, M.-H., Wang, B.-Y., Wang, F.: Verifying recursive
programs using intraprocedural analyzers. In: Müller-Olm, M., Seidl, H. (eds.) Static
Analysis. LNCS, vol. 8723, pp. 118–133. Springer, Heidelberg (2014)

3. Clarke, E.M.: Program invariants as fixed points. In: 18th Annual Symposium on
Foundations of Computer Science, pp. 18–29. IEEE (1977)

4. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, p. 213. Springer, Heidelberg (2002)

5. Redlog, http://www.redlog.eu/

http://www.redlog.eu/

FramewORk for Embedded System verificaTion

(Competition Contribution)

Pablo Gonzalez-de-Aledo and Pablo Sanchez

University of Cantabria, Santander (Cantabria), Spain
{pabloga,sanchez}@teisa.unican.es

Abstract. Forest is a bounded model checker that implements sym-
bolic execution on top of the LLVM intermediate language and is able to
detect errors in programs developed in C. Forest transforms a program
into a set of SMT formulas describing each feasible path and decides
these formulas with an SMT solver. This enables it to prove the satisfia-
bility of reachability conditions such as the ones presented in SV-COMP.
Forest implements different ways of representing SMT formulas: linear
arithmetic, polynomials and generic bit-accurate and not bit-accurate
representations.

1 Overview

As many bounded model checkers, to verify a property for a given piece of code,
Forest unfolds the execution of the code up to a certain depth and trans-
forms each path into an SMT formula. Before this transformation, assertions
and special functions are converted into conditions, so verification clauses can
be expressed as reachability properties (in the SV-COMP framework, if a state
can be reached from the start of the main procedure in which an LTL clause
can be satisfied, then the program is unsafe). The transformation from source to
SMT can be done using different theories (integers, linear formulas, polynomials,
etc.), and formulas can be decided using different solvers (Boolector, Z3, CVC4
...). For the competition, the theory of integers and real numbers has been cho-
sen, and formulas are decided with Z3 [3]. This is a trade-off between accuracy
and solving time.

2 Architecture

As a framework for automated program verification through symbolic execution,
verification under Forest comprises the following steps, which are illustrated
in Figure 1.

1. Configuration: The ‘forest’ binary orchestrates the remaining tools and
steps, and configures the framework according to command-line parameters
or configuration files (xml files).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 429–431, 2015.
DOI: 10.1007/978-3-662-46681-0_36

430 P. Gonzalez-de-Aledo and P. Sanchez

Fig. 1. Forest architecture

2. Front-End and intermediate representation: As a front-end we use
llvm-gcc, which transforms the source code to an llvm intermediate rep-
resentation. In this representation, branch instructions are performed in two
steps; first the result of the comparison is stored in a register. This register
is then used in a jump instruction to implement the branch. This unifies
comparisons so they can be handled as binary instructions.

3. Annotation: The intermediate representation is transformed via a transfor-
mation pass that instruments every operation with calls to back-end func-
tions. These back-end functions dynamically compute the strongest post-
condition from the ‘start’ state for every instruction so the effect of this
instruction in the state can be considered when running the program.

4. Static Heuristic: The control-flow-graph of the intermediate representation
is obtained and a heuristic is computed indicating possible paths from the
entry point of the program to the destination. Yen’s algorithm [1] is used to
compute the k-shortest paths from entry to error location.

5. Linking: The transformed intermediate representation is linked with a ver-
ification library. This library implements the semantics of every operation
in the intermediate representation and performs the symbolic execution as
explained in the following step.

6. Execution: When executed, the program forks on every condition encoun-
tered in execution and the heuristic computed in step 4 is used to guide the
exploration toward the error location. The A* algorithm [4] is used to search
for paths between entry and error. While the program is run, the inserted
functions from step 3 compute the strongest post-condition from the start-
ing state, and this condition is passed to an SMT solver when a conditional
branch is encountered. The effect of forking the execution on every branch
instruction is that the program “unfolds” into a binary tree in which every
process executes a different feasible path. Feasible paths are then added to
A* set of candidate paths to continue exploration.

3 Strenghts and Weaknesses

As a bounded model checker, Forest cannot generate proofs of correctness for
unbounded programs. In these cases, we unfold the loops up to a certain depth,

FramewORk for Embedded System verificaTion 431

and check for satisfiability in an under-approximation of the program possible
behaviours. This may be unsound in certain benchmarks such as array call3,
where Forest fail to detect the error due to this limitation. Orthogonally to this
problem, approximating the behavior of variables with integers and real types
can also produce errors. This happens in the test ‘verisec sendmail’, in which
the reachability of the error state depends on an integer overflow. This bug is
not detected using integer representation but can be spotted if we use the option
-solver bitvector. The strengths of symbolic execution are its applicability
in a wide spectrum of applications, the possibility of obtaining partial results
and the speed of finding bugs when the program has some.

4 Tool Setup

The version of Forest submitted to the competition can be downloaded exe-
cuting the following command in a x86 64 Linux machine

wget teisa.unican.es/forest/images/install.sh -O - | bash

This should download and execute a script that installs the tool in the current
path and performs some tests. A correct installation can be assessed if all tests
are correct and terminate in time. The command-line options to be used in SV-
COMP have been condensed to the ‘-svcomp’ parameter. The file to analyse can
be indicated with ‘-file’. Complete installation instructions can be obtained
removing the tailing ‘| bash’ from the previous command.

5 Software Project

Forest is maintained by Pablo González de Aledo. This work has been sup-
ported by Project TEC2011-28666-C04-02 and grant BES-2012-055572, awarded
by the Spanish Ministry of Economy and Competitivity. We gratefully acknowl-
edge the help of Franck Cassez for the revision of this article and for his pertinent
advice, and Fernando Herrera for testing the tool under different Linux distri-
butions and machines.

References

1. Yen, J.Y.: An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. The Quarterly of Applied Mathematics 27, 526–530

2. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis
& transformation. In: International Symposium on Code Generation and Optimiza-
tion 2004, pp. 75–86 (2004)

3. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

4. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths. IEEE Transactions on Systems Science and Cyber-
netics SSC4 4, 100–107 (1968)

Forester: Shape Analysis Using Tree Automata
(Competition Contribution)

Lukáš Holı́k, Martin Hruška, Ondřej Lengál,

Adam Rogalewicz, Jiřı́ Šimáček, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. Forester is a tool for shape analysis of programs with complex dy-
namic data structures—including various flavours of lists (such as singly/doubly
linked lists, nested lists, or skip lists) as well as trees and other complex data
structures—that uses an abstract domain based on finite tree automata. This pa-
per gives a brief description of the verification approach of Forester and discusses
its strong and weak points revealed during its participation in SV-COMP’15.

1 Verification Approach

Forester is a tool for (sound) shape analysis of programs with complex dynamic data
structures, such as various flavours of lists (including singly/doubly linked lists, nested
lists, or skip lists) as well as trees and other complex data structures. The used abstract
domain contains forest automata, a generalization of finite tree automata, described
in [1,2]. The approach attempts to combine the strong points of two other approaches:
(i) the scalability of separation logic [3], which is due to the concept of separation
allowing local reasoning about disjoint parts of the program heap, and (ii) the flexibility
of abstract regular tree model checking (ARTMC) [4], which uses finite tree automata
for symbolic representation of the sets of reachable heap graphs.

The heap representation is based on the forest decomposition of the heap. This is
a representation of the heap by a tuple of trees such that the roots of the trees corre-
spond to the cut-points of the graph. A cut-point is a node that is either referenced from
a program variable or that has more than one incoming edge. The trees in the tuple are
free of cut-points and their leaves contain either non-pointer values or explicit refer-
ences to roots of other trees. To represent sets of heaps—the elements of the concrete
domain—instead of a tuple of trees Forester uses a tuple of tree automata, the so-called
forest automaton. Each tree automaton represents a set of cut-point-free trees; the heap
graphs represented by a forest automaton can be constructed from the forest automaton
by taking a tree from the language of every tree automaton and connecting the refer-
ences in the leaves of the trees to the roots of the referenced trees.

We associate an abstract transformer manipulating forest automata with every con-
crete operation. Joins are handled precisely (we split the execution and proceed in the
verification run for each branch independently). The abstraction operator, called on loop
points, is based on the finite height abstraction from ARTMC [4], and its main idea is
to introduce loops in the tree automata to allow for a representation of infinite sets of
trees with regular structure.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 432–435, 2015.
DOI: 10.1007/978-3-662-46681-0_37

Forester: Shape Analysis Using Tree Automata 433

In order to be able to verify programs manipulating heaps where the number of cut-
points is unbounded, we use hierarchical forest automata. These are forest automata
that can use other (lower-level) forest automata as symbols, in a hierarchy of a finite
height. These lower-level forest automata are called boxes. A box is essentially used
to represent a repeated structure of the heap graph that contains some cut-points. The
boxes to be used in a verification run are devised using the learning algorithm from [2].

In order to use Forester, it is necessary to properly model all external functions;
Forester itself implements models of the two basic functions for memory allocation,
malloc and free.

2 Tool Architecture

Forester is implemented in C++ as a GCC plugin that uses the Code Listener [5] infras-
tructure as the front-end for preprocessing the intermediate representation used in GCC
(called GIMPLE) into a compiler-independent representation. Further, it uses the VATA
library [6] as the back-end for manipulating tree automata. Forester translates the input
program obtained from Code Listener into its internal representation, in which every
program statement is represented by a sequence of abstract transformers that manipu-
late the symbolic representation of the program. The translated program is then subject
to symbolic execution, during which Forester detects memory errors (invalid derefer-
ences or frees, occurrence of garbage) and reachability of an error line.

3 Strengths and Weaknesses

The main strong point of Forester is that it gives sound results on all verification tasks
that we run. In particular, Forester was able to find shape invariants for the most difficult
programs in the Memory Safety category, i.e. programs manipulating 2 and 3 level skip
lists, trees (including the Deutsch-Schorr-Waite tree traversal algorithm), and (nested)
singly/doubly linked lists.

However, the overall performance of Forester on the benchmarks of SV-COMP’15
was significantly hindered by the following two causes. The first cause is the still quite
high degree of immaturity of Forester in dealing with real-life C code with all its
caveats—in the case Forester encounters some unsupported feature of C (such as the
union data type, function pointers, or the use of arrays), it returns the UNKNOWN
answer. The other cause is the incompleteness of the verification procedure and the cur-
rent inability of the tool to distinguish spurious counterexamples from real ones; if a po-
tentially spurious counterexample is found by Forester, it again returns UNKNOWN.
However, it is possible to use the option --false to switch Forester into a mode in
which it reports all found counterexamples and allows their subsequent analysis, either
by a user or by e.g. a bug hunter.

434 L. Holı́k et al.

4 Tool Setup and Configuration

An archive with the source code of the Forester competition release1 can be down-
loaded from the project web page. The file README-FORESTER-SVCOMP-2015 in
the root directory of the archive contains information about how to build and run the
tool. After Forester is successfully built, the fa build directory contains a Python
script sv comp run.py that executes the tool and transforms its output to the format
expected by SV-COMP. The script expects the path to the file with the program under
verification as an argument; further, the path to a file with a description of the prop-
erties to be verified can be specified using the --properties option. For the case
the answer of Forester is FALSE (i.e. a real error is encountered in the program under
verification), Forester returns the name of the property that has been violated. More-
over, a mandatory --trace option is required to specify the path to the file where
the witness leading from the entry point to the statement that caused the violation is to
be saved. On the other hand, if Forester finds a shape invariant of the program without
encountering a property violation, it returns TRUE.

Furthermore, if the --time option is given, Forester also writes to the standard
output the CPU time that the verification run took. It is also possible to generate graph-
ical representations of abstract program configurations at some line of code into a se-
quence of files named according to the template filename-XXXX.dot by inserting
the statement VERIFIER plot("filename") to the desired line of code in the
processed program.

Forester participates in the following two categories of SV-COMP’15: Heap Manip-
ulation and Memory Safety.

5 Software Project and Conclusion

Forester is developed by the VeriFIT group at Brno University of Technology and dis-
tributed under the GNU General Public License version 3. The source code of Forester
is in a git repository shared with Predator (a memory analyzer based on symbolic
memory graphs [7]), which is developed in the same group.

This is the first submission of Forester to SV-COMP. In the future, we wish to focus
on the following two points: (a) extending the set of the supported features of C, and
(b) developing the ability to properly identify spurious counterexamples and to use them
to refine the abstraction used.

Acknowledgement. This work was supported by the Czech Science Foundation
(projects 14-11384S and 202/13/37876P), the BUT FIT project FIT-S-14-2486, and the
EU/Czech IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/
forester/download/forester-2014-10-31-9d3ad64.tar.gz

http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/download/forester-2014-10-31-9d3ad64.tar.gz
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/download/forester-2014-10-31-9d3ad64.tar.gz

Forester: Shape Analysis Using Tree Automata 435

References

1. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata for verifi-
cation of heap manipulation. Formal Methods in System Design 41(1) (2012)

2. Holı́k, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully automated shape analysis
based on forest automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 740–755. Springer, Heidelberg (2013)

3. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

4. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree) model check-
ing. International Journal on Software Tools for Technology Transfer 14(2) (2012)

5. Dudka, K., Peringer, P., Vojnar, T.: An easy to use infrastructure for building static analysis
tools. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011, Part
I. LNCS, vol. 6927, pp. 527–534. Springer, Heidelberg (2012)

6. Lengál, O., Šimáček, J., Vojnar, T.: VATA: A library for efficient manipulation of non-
deterministic tree automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 79–94. Springer, Heidelberg (2012)

7. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list manipulation. In:
Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 215–237. Springer,
Heidelberg (2013)

MU-CSeq 0.3: Sequentialization by Read-Implicit
and Coarse-Grained Memory Unwindings�

(Competition Contribution)

Ermenegildo Tomasco1,��, Omar Inverso1, Bernd Fischer2,
Salvatore La Torre3, and Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, UK
2 Division of Computer Science, Stellenbosch University, South Africa

3 Dipartimento di Informatica, Università di Salerno, Italy
et1m11@ecs.soton.ac.uk

Abstract. We describe a new CSeq module that implements improved algo-
rithms for the verification of multi-threaded C programs with dynamic thread
creation. It is based on sequentializing the programs according to a guessed se-
quence of write operations in the shared memory (memory unwinding, MU). The
original algorithm (implemented in MU-CSeq 0.1) stores the values of all shared
variables for each write (read-explicit fine-grained MU), which requires multiple
copies of the shared variables. Our new algorithms store only the writes (read-
implicit MU) or only a subset of the writes (coarse-grained MU), which reduces
the memory footprint of the unwinding and so allows larger unwinding bounds.

1 Introduction

Sequentializations translate concurrent programs into sequential ones while preserving
a given verification property (e.g., reachability). They reuse sequential verification tools
and offer many advantages, such as the ability to focus on the concurrency aspects of
a language, to quickly experiment with different approaches, and to build robust verifi-
cation tools with less effort. We develop the CSeq tool as a modular sequentialization
framework [1,2] for multi-threaded C programs with dynamic thread creation. It con-
tains modules for the Lal/Reps scheme [5], a lazy sequentialization scheme aimed at
bounded model checking [3,4], and a memory unwinding scheme [6].

A memory unwinding (MU) is an explicit representation of the write operations into
the shared memory as a sequence that contains for each write the writing thread, the
variable, and the written value. We can vary which writes are represented and thus ex-
posed to the other threads, which leads to different strategies with different performance
characteristics. In a fine-grained MU every write operation is represented explicitly and
individually. In a coarse-grained MU we only represent a subset of the writes and group
together multiple writes (by exposing for each group only the last write for each vari-
able). In an intra-thread MU the writes in one group are all executed by one thread;
the writes not represented can thus be seen as having been superseded by subsequent
writes in the same context. In an inter-thread MU the writes in one group can come
from different threads, thus summarizing the effect of multiple context switches.
� Partially supported by EPSRC EP/M008991/1, INDAM-GNCS 2014, and MIUR-FARB 2012-

2014 grants.
�� Corresponding author.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 436–438, 2015.
DOI: 10.1007/978-3-662-46681-0_38

Sequentialization by Read-Implicit and Coarse-Grained Memory Unwindings 437

2 Verification Approach

Overview. Our approach can be seen as an eager sequentialization of the original con-
current program P over the unwound memory. We first guess an n-memory unwinding
of P , i.e., a sequence w1 . . . wn identifying the threads, the shared variables and the
values involved in the write operations of P . We then simulate all runs of P that are
compatible with this guess. For the simulation, each thread is translated into a simula-
tion function where write and read accesses over the shared memory are replaced by
operations over the unwound memory. The simulation functions are executed sequen-
tially, starting from the main function; each thread creation is translated into a call to
the corresponding simulation function. All context switches are implicitly simulated
through the MU. We adapt this general sequentialization scheme with different imple-
mentations, in particular for the functions to read from / write into the shared memory
and for dynamic thread creation. The details can be found in [7].

Fine-Grained MU. In this approach, all the writes of a P run are considered meaningful
to the other threads and thus exposed. We store each of them individually in the memory
unwinding, with three arrays reporting respectively for each position the writing thread,
the variable name and the written value. For an efficient implementation of the MU
API functions, we also store some additional data such as the index of the last write
performed in the simulation and a table containing, for each position and thread t, the
position of next write of t in the memory unwinding.

We distinguish between the read-explicit and the read-implicit schemes. In the first
case, all shared variables are replicated at each position of the sequence; we used this
schema in MU-CSeq 0.1 [6]. Its main feature is that the value of each shared variable
can be read directly at each step. It thus trades memory consumption for a simple logic
in the implementation of the MU API. In the second scheme, at each position in the
sequence, we copy only the shared variable that is modified by the corresponding write.
The implementation of the MU API becomes more involved, but it yields an effective
gain when the number of shared variables is large compared to the number of writes.
We have also mixed the two schemes into a third one that is read-explicit for scalar
variables and read-implicit for the arrays.

Coarse-Grained MU. In this approach, we store at each position of the sequence a par-
tial mapping from the shared variables to values, with the meaning that the variables in
the domain of the mapping are modified from the previous position and the value given
by the mapping is their value at this position. A variable that is modified at position
i + 1 could also be modified between positions i and i + 1 by other writes that are not
exposed in the sequence. Thus, by exposing only some of the writes of a run (1) we
restrict the number of possible runs that can match a MU (in fact, the unexposed writes
cannot be read externally, and thus some possible interleavings of the threads are ruled
out) and (2) we handle larger number of writes by nondeterministically deeming only
some of them as interesting for the other threads.

In this approach we also distinguish between the cases in which either only one
(intra-thread coarse-grained MU) or multiple (inter-thread coarse-grained MU)
threads are allowed to modify the variables. Both variants can be realized as read-
implicit, read-explicit and mixed schemes.

438 E. Tomasco et al.

3 Architecture, Tool Setup, and Configuration
Architecture. MU-CSeq 0.3 is implemented as source-to-source transformations in
Python, within the CSeq framework. This uses thepycparser (v2.10,github.com/
eliben/pycparser) to parse a C program into an abstract syntax tree (AST), and
then traverses the AST to construct a sequentialized version, as outlined above. The re-
sulting program can be processed independently by any verification tool for C, but we
have only tested MU-CSeq 0.3 with CBMC (v4.9 revision 4648,www.cprover.org/
cbmc/). For the competition we use a wrapper script that bundles up the translation and
calls CBMC for verification. The wrapper returns the output from CBMC.

We use a simple syntactic analysis of the program to determine which schema and
parameters we use. In particular, if the program contains arrays we use the mixed fine-
grained MU with parameters -w25 -t10 -f2 -u2 -thl0; here w (resp., t) is the
bound on the number of write operations (resp., of spawned threads), f is the un-
wind bound for for and u is the unwind bound for the remaining loops, and thl
is the bound on the number of threads that are spawned in any while-loop. If the
program contains more than 30 assignments but no loop, or a pthread create
inside a for-loop, we switch to the inter-thread coarse-grained MU, with parameters
-w2 -t52 -f52 -u1 -thl0. In all other cases we use again the first schema but
with parameters -w23 -t10 -f12 -u1 -thl3. We use a timeout of 850 seconds,
and interpret the single case where this timeout applies as true.
Availability and Installation. MU-CSeq 0.3 is available at http://users.ecs.
soton.ac.uk/gp4/cseq/mu-cseq-0.3.zip; it also requires installation of
the pycparser. CBMC must be installed in the same directory as MU-CSeq.
Call. MU-CSeq should be called in the installation directory as follows: mu-cseq.py
-i file --spec specfile --witness logfile.
Strengths and Weaknesses. MU-CSeq participates only in the concurrency category.
It returns the correct answers for all problems in this category, but is slower than Lazy-
CSeq, thus winning the Silver medal.

References
1. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Sequentialization Tool for C. In: Piterman, N.,

Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 616–618. Springer, Hei-
delberg (2013)

2. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Concurrency Pre-Processor for Sequential C
Verification Tools. In: ASE, pp. 710–713 (2013)

3. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A Lazy Sequen-
tialization Tool for C. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 398–401. Springer, Heidelberg (2014)

4. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded Model Checking of
Multi-threaded C Programs via Lazy Sequentialization. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 585–602. Springer, Heidelberg (2014)

5. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequential analy-
sis. Formal Methods in System Design 35(1), 73–97 (2009)

6. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq: Sequentialization
of C Programs by Shared Memory Unwindings. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 402–404. Springer, Heidelberg (2014)

7. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying Concurrent Programs
by Memory Unwinding. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
551–565. Springer, Heidelberg (2015)

Perentie: Modular Trace Refinement

and Selective Value Tracking

(Competition Contribution)

Franck Cassez1,2, Takashi Matsuoka1,
Edward Pierzchalski1, and Nathan Smyth1

1 NICTA�, Sydney, Australia
2 Macquarie University and UNSW, Sydney, Australia

Abstract. Perentie is a software analysis tool based on iterative
refinement of trace abstraction: if the refinement process terminates, the
program is either declared correct or a counterexample is provided and
the program is incorrect.

1 Overview

Perentie is a software analysis tool based on iterative refinement of trace ab-
straction [1,2], which is a CEGAR-like automata-based technique. The control
flow graph (CFG) of a program is viewed as a finite automaton. The accepting
states of the CFG are the states reached after a program assertion is violated.
This finite automaton generates a language, the trace abstraction, of traces that
are sequences of uninterpreted instructions. Consequently, all the (uninterpreted)
traces accepted by the CFG are error traces leading to an error state.

Checking whether a program is correct amounts to determining whether the
language of the CFG contains a feasible error trace. This is performed by an
iterative refinement of the trace abstraction.

Our version of refinement of trace abstraction builds on top of our modular
inter-procedural analysis algorithm [3]. Moreover, as the iterative refinement
may not terminate, Perentie limits the number of iterations of the refinement
phase and if it is inconclusive, it complements it with a second more precise
refinement analysis, where it tracks the values of some variables that precisely

� NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program. This material is based on research sponsored by Air Force Research Labo-
ratory and the Defense Advanced Research Projects Agency (DARPA) under agree-
ment number FA8750-12-9-0179. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Air Force Research Laboratory, the
Defense Advanced Research Projects Agency or the U.S. Government.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 439–442, 2015.
DOI: 10.1007/978-3-662-46681-0_39

440 F. Cassez et al.

define some branching conditions. If this second phase is inconclusive as well, the
overall analysis is inconclusive (output is UNKNOWN), otherwise the correctness
status of the program is settled (TRUE, FALSE).

2 Software Architecture

Perentie’s core engine is developed in Scala. Perentie is flexible and can be
configured from the command line by setting a maximum number of iterations
for the first refinement phase, and a maximum state space size for the second
phase. In this second phase, where some variable values are tracked, the state
space may become infinite and this is why we set a bound to ensure termination.

Front end: The front end parser is built on top of the Edison Design Group
(EDG) parser. It reads a C source file and generates an XML representation of
the C program. The representation is passed on to our own XML parser (written
in Scala) that builds a CFG for every function in the source file.

Middle end: Perentie implements a library for manipulating automata in-
cluding operations like product, union, (lazy) complement, DFS. This allows to
extract candidate witness (uninterpreted) error traces from the CFG. Feasibil-
ity of a trace is checked using an SMT-solver by encoding the trace in static
single assignment (SSA) form into a logical formula and checking for satisfia-
bility. When the trace is infeasible, an interpolant automaton [1,3] is computed
from a sequence of interpolants [1]. The standard construction requires an inter-
polating SMT-theorem prover to compute the interpolants from the infeasible
trace. As those theorem provers are generally unable to produce interpolants for
formulas containing arrays, we have implemented an alternative construction in
the style of the weakest pre-condition computation that can compute inductive
interpolants, and thus handle programs with arrays.

Back end: Perentie uses SMTInterpol [4] to check satisfiability of SSA formu-
las. When a program does not contain array variables, it is also used to generate
inductive interpolants. Our software architecture is designed to accommodate
any SMTLIB2 compliant solver and Z3 is currently being interfaced (although
too late to be used for this competition).

3 Strengths and Weaknesses

This first version of Perentie has limited capabilities in terms of supported data
structures. Pointers or structs, or arrays of non-integer type are not supported
yet, and Perentie will abort the parsing phase with an inconclusive result.
Moreover, data types such as unsigned int are treated as int, and we assume
unbounded integers. Although our analysis is sound with unbounded integers,
it may generate some false negatives when the actual data type is a bounded
integer (overflows/underflows are ignored).

Perentie: Modular Trace Refinement and Selective Value Tracking 441

One of the major strengths Perentie is that it can discover loop invariants
and prove correctness (generate Hoare triples) for programs with parameterised
loop bounds (e.g., in the loop-new sub-category). The drawback is that to com-
pute useful loop invariants, an interpolating SMT-solver is needed. For the time
being, SMTInterpol [4] supports interpolants only for the theory of Linear
Integer Arithmetic. This prevents us from automatically discovering good loop
invariants when the SMT-solver theory does not support interpolation, e.g., when
arrays or non-linear arithmetic expressions are used in the program1. Another
nice feature of Perentie is its modular analysis [3] that avoids inlining function
calls but this feature is not exercised in SV-COMP 2015.

4 Set Up and Configuration

Participation statement: Perentie opts-out from all categories (including Over-
all) and participates in the Loops.set sub-category of the Control Flow and Integer
Variables category.

Set up and configuration: Perentie is available at http://ssrg.nicta.com.au/
projects/software-verification/perentie/. The submitted version to SV-
COMP 2015 is version 2014-10-31. The current version of Perentie requires a
64-bit (x86-64) Linux system, Java (JRE) 6 or higher and gcc. Command line us-
age is bash perentie.sh <c-file>. Usage, set up and configuration is described
in the README.txt file in the tarball. For this competition, we use Perentie in
sound2 mode: when we can determine the result TRUE/FALSE, we output it, oth-
erwise our analysis is inconclusive (parse errors, unsupported data types, theory
not supported by the solver) and the output is UNKNOWN.

5 Software Project and Contributors

Perentie is developed and hosted by NICTA, Australia, and is currently closed
source software. We would like to thank Pablo Gonzalez de Aledo Marugan,
University of Cantabria, Spain, for helpful discussions.

References

1. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009)

2. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 36–52. Springer, Heidelberg (2013)

1 This happens only a handful of times in the Loop category.
2 Due to our assumption that integers are unbounded, our analysis is sound only when
no overflows occur. Two programs do have overflows related bugs and results in false
negatives in our analysis.

442 F. Cassez et al.

3. Cassez, F., Müller, C., Burnett, K.: Summary-based inter-procedural analysis via
modular trace refinement. In: FSTTCS 2014, LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, New Dehli, India, December 15-17, vol. 29, pp. 545–556
(2014)

4. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT Solver. In:
Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254. Springer,
Heidelberg (2012)

Predator Hunting Party (Competition Contribution)

Petr Muller, Petr Peringer, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. This paper introduces PredatorHP (Predator Hunting Party), a pro-
gram verifier built on top of the Predator shape analyser, and discusses its partici-
pation in the SV-COMP’15 software verification competition. Predator is a sound
shape analyser dealing with C programs with lists implemented via low-level
pointer operations. PredatorHP uses Predator to prove programs safe while at the
same time using several bounded versions of Predator for bug hunting.

1 The Underlying Verification Approach

At the heart of PredatorHP there is the Predator shape analyser [2]. The main aim of
Predator is sound shape analysis of sequential, non-recursive C programs that use low-
level pointer operations for working efficiently with various kinds of linked lists. Preda-
tor supports many advanced uses of pointer arithmetics, address alignment, and block
operations common in highly optimized system code, such as operating system kernels,
drivers, memory allocators, and the like.

Predator is based on abstract interpretation with the abstract domain of symbolic
memory graphs (SMGs) [2]. In a nutshell, SMGs consist of two kinds of nodes—
namely, individual memory regions and uninterrupted list segments—and two kinds
of edges, in particular, the so-called has-value and points-to edges. SMGs were inspired
by separation logic with higher-order list predicates but with an added support for low-
level memory operations. Moreover, all the needed algorithms for dealing with SMGs
(symbolic execution of program statements, the join operator, widening in the form of
abstraction, entailment checking) were newly designed to be as efficient as possible
by leveraging the graph structure of SMGs. The most essential role is played by the
join operator: both abstraction and entailment checking are built on top of it. Predator
supports inter-procedural analysis by means of function summaries.

Recently, a new extension of Predator was implemented [1]. It uses the Predator ker-
nel for transforming programs with list containers implemented by low-level pointer
operations into equivalent programs with high-level container operations, which can be
useful, e.g., for code understanding, easier verification, parallelisation, optimisation, etc.

2 From Predator to Predator Hunting Party

Predator is implemented as a GCC plug-in, which provides it with an industrial-strength
compiler front-end. In particular, GCC is used to pre-process the input programs and to
compile them into an intermediate representation (known as GIMPLE), which is further
transformed into a bit more concise representation of the Code Listener framework [3]
over which Predator runs. Predator is written in C++ with a use of the Boost libraries,
mainly to enable using legacy compilers for building it.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 443–446, 2015.
DOI: 10.1007/978-3-662-46681-0_40

444 P. Muller, P. Peringer, and T. Vojnar

Predator requires all external functions used in an analysed program to be properly
modelled wrt. memory safety in order to exclude any side effects that could possibly
break soundness of the analysis. The distribution of Predator includes models of some
memory manipulating functions (like malloc, free, memset, memcpy, etc.).

PredatorHP is implemented as a Python script which runs several instances of Preda-
tor in parallel and composes the results they produce into the final verification verdict.
In particular, PredatorHP first starts four Predators: One of them is the original Predator
that soundly over-approximates the behaviour of the input program—we denote it as
the Predator verifier below. Apart from that, three further Predators are started which
are modified as follows: Their join operator is reduced to joining SMGs equal up to
isomorphism, they use no list abstraction, and they use a bounded depth-first search to
traverse the state space. They use bounds of 400, 700, and 1000 GIMPLE instructions,
and so we call them as Predator DFS hunters 400, 700, and 1000, respectively.

If the Predator verifier claims a program correct, so does PredatorHP, and it kills all
other Predators. If the Predator verifier claims a program incorrect, its verdict is ignored
since it can be a false alarm (and, moreover, it is highly non-trivial to check whether it is
false or not due to the involved use of list abstractions and joins). If one of the Predator
DFS hunters finds an error, PredatorHP kills all other Predators and claims the program
incorrect, using the trace provided by the DFS hunter who found the error.1 If a DFS
hunter claims a program correct, its verdict is ignored since it may be unsound.

In case the Predator verifier claims a program incorrect and no Predator DFS hunter
finds an error within the appropriate bound, then PredatorHP starts one more Predator—
a Predator BFS hunter. The BFS hunter does not use list abstraction and its join is
reduced to equivalence up to isomorphism, but it performs an unlimited breadth-first
search. If it manages to find an error within the SV-COMP’15 time budget, PredatorHP
claims the program incorrect (note that without a time limit, the BFS hunter is guar-
anteed to find every error). If the BFS hunter finishes and does not find an error, the
program is claimed correct. Otherwise, the verdict “unknown” is obtained.

3 Strengths and Weaknesses

The main strength of Predator lies in its sound treatment of heap manipulation. Un-
like for various bounded model checkers, when Predator claims a program safe, all
its possible behaviours are indeed safe. At the same time, Predator is also quite effi-
cient. On the other hand, due to using over-approximation, it can easily generate false
alarms. This danger was greatly reduced in PredatorHP by combining the sound Preda-
tor verifier with Predator hunters. This way, false alarms caused by abstraction are often
suppressed, and a program claimed possibly unsafe by Predator can even be proved cor-
rect if its behaviour is bounded. Unfortunately, true error warnings can sometimes be
also suppressed, resulting in a neutral “unknown” answer. However, overall, the balance
is positive: about twice more false than true alarms were prevented on the SV-COMP
benchmarks in the two categories where PredatorHP competes. The benefit is further

1 The obtained trace can still be spurious due to the harsh abstraction of non-pointer data by
Predator: All such data, apart from integers up to some fixed bound, are abstracted away.

Predator Hunting Party (Competition Contribution) 445

amplified by the SV-COMP scoring scheme, which rewards preventing a wrong answer
over keeping a correct one.

The improvement manifested mainly in the MemorySafety category, containing test-
cases causing list abstractions in Predator to produce false alarms. By preventing all
but a single one, while keeping all correct answers, PredatorHP is much more reliable
than Predator alone. PredatorHP reduced false positives even for remaining SV-COMP
categories, but unfortunately not enough to allow us to successfully participate in these.

The main weakness of PredatorHP is inherited from Predator, and it is the same as in
previous years of SV-COMP. Namely, it is a rather weak support of non-pointer data and
missing models of some library functions, which has not changed since SV-COMP’14.
That is why, PredatorHP is participating in the MemorySafety and HeapManipulation
categories only. Even within these categories, PredatorHP loses some points due to
imprecise treatment of non-pointer data, leading to false alarms. The only other reason
for Predator losing points in the MemorySafety and HeapManipulation categories is the
fact that it cannot handle tree-like data structures and skip lists. In fact, it can handle
them in a bounded way (i.e., in the same way as bounded model checkers)2, but we
have decided not to “harvest” easy points by sacrificing soundness of the verifier.

4 Tool Setup and Configuration

The source code of the PredatorHP release used in the competition can be downloaded
from the project web page3. The file README-SVCOMP-2015 included in the archive
describes how to build PredatorHP from source code and how to apply the tool on
the competition benchmarks. After successfully building the tool from sources, a script
named predatorHP.py can be invoked, once for each input program. The script
takes a verification task file as a single positional argument. Paths to both the property
file and the desired witness file are accepted via long options. The verification outcome
is printed to the standard output. The script does not impose any resource limits other
than terminating its child processes when they are no longer needed.

5 Software Project and Contributors

Predator is an open source software project developed at Brno University of Technology
(BUT) and distributed under the GNU General Public License version 3. The main
author of Predator is Kamil Dudka. Besides Kamil and the PredatorHP team, numerous
external contributors are listed in the docs/THANKS file in the distribution of Predator.
Collaboration on further development of Predator (e.g., better support of non-pointer
data, handling of incomplete code, support of tree data structures, etc.) is welcome.

2 According to our experiments, if we interpreted the fact that no error was found by any Preda-
tor DFS hunter such that the program is correct, we could successfully handle all programs
manipulating trees and skip lists present in the SV-COMP’15 benchmark.

3 http://www.fit.vutbr.cz/research/groups/verifit/tools/
predator-hp

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp

446 P. Muller, P. Peringer, and T. Vojnar

Acknowledgement. The work was supported by the Czech Science Foundation project
14-11384S, the internal BUT project FIT-S-14-2486, and the EU/Czech IT4Innovations
Centre of Excellence project CZ.1.05/1.1.00/02.0070.

References

1. Dudka, K., Holı́k, L., Peringer, P., Trtı́k, M., Vojnar, T.: From Pointers to Containers. Under
submission (2015)

2. Dudka, K., Peringer, P., Vojnar, T.: Byte-Precise Verification of Low-Level List Manipulation.
In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 215–237. Springer,
Heidelberg (2013)

3. Dudka, K., Peringer, P., Vojnar, T.: An Easy to Use Infrastructure for Building Static Analysis
Tools. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011, Part
I. LNCS, vol. 6927, pp. 527–534. Springer, Heidelberg (2012)

SeaHorn: A Framework for Verifying C Programs
(Competition Contribution)�

Arie Gurfinkel1, Temesghen Kahsai2, and Jorge A. Navas3

1 Software Engineering Institute / CMU, USA
2 NASA Ames Research Center / CMU, USA
3 NASA Ames Research Center / SGT, USA

Abstract. SeaHorn is a framework and tool for verification of safety
properties in C programs. The distinguishing feature of SeaHorn is
its modular design that separates how program semantics is represented
from the verification engine. This paper describes its verification ap-
proach as well as the instructions on how to install and use it.

1 Verification Approach

SeaHorn is a framework and a tool for verification of safety properties for C
programs. It is parameterized by the semantic representation of the program
using Horn constraints and by the verification engine that leverages the latest
advances made in constraint solving and Abstract Interpretation. The design of
SeaHorn provides users with an extensible and customizable environment for
experimenting and implementing with new software verification techniques.

int x = 1;
int y = 0;
while (∗) {

x = x+ y;
y = y + 1;

}
assert(x ≥ y);

Consider the simple program on the left. Using SeaHorn we
encode it using, for instance, classical Hoare Logic:

(x = 1 ∧ y = 0) → I(x, y)

(I(x, y) ∧ x′ = x+ y ∧ y′ = y + 1) → I(x′, y′)
(I(x, y) ∧ x < y) → false

These logic formulas corresponding to the rule for while loops
are indeed a set of recursive Horn clauses. Thus, the problem
of proving whether the program is safe is reduced to checking

whether these Horn clauses are satisfiable. Fortunately, they can be solved by a
means of solvers (e.g., [5]), thus leveraging recent advances in Horn constraint
solving.
� This material is based upon work funded and supported by NASA Contract No.

NNX14AI09G, NSF Award No. 1422705 and by the Department of Defense under
Contract No. FA8721-05-C-0003 with CMU for the operation of SEI, an FFRDC.
Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the United
States Department of Defense. This material has been approved for public release
and unlimited distribution. DM-0001865.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 447–450, 2015.
DOI: 10.1007/978-3-662-46681-0_41

448 A. Gurfinkel, T. Kahsai, and J.A. Navas

Fig. 1. Overview of SeaHorn architecture

2 Software Architecture

SeaHorn is implemented in C++ in the LLVM compiler infrastructure [6]. The
overall approach is illustrated in Figure 1.

Preprocessing. To pre-process the competition benchmark, we utilize the front-
end that was originally developed for UFO [1]. First, the input C program is pre-
processed with CIL1 to insert line markings for counterexamples, define missing
functions, and initialize all local variables. Second, the result is translated into
LLVM Intermediate Representation (IR), called bitcode, using llvm-gcc. Next,
we perform compiler optimizations and preprocessing to simplify the verification
task. As a preprocessing step, we further initialize any uninitialized registers us-
ing non-deterministic functions. This is used to bridge the gap between the veri-
fication semantics (which assumes a non-deterministic assignment) and compiler
semantics, which tries to take advantage of the undefined behavior of uninitial-
ized variables to perform code optimizations. We perform a number of program
simplifications such as function inlining, static single assignment (SSA) form,
dead code elimination, etc. Finally, we use a variant of Data Structure Analysis
(DSA), an alias analysis that infers disjoint heap regions used to identify each
memory access within a certain region.

Invariant Generation. Inductive invariants can be computed from the byte-
code using a given abstract domain. SeaHorn uses the IKOS library [2] which
is a collection of abstract domains and fixpoint iteration algorithms. SeaHorn
runs in parallel with (using classical intervals) and without invariant generation.

Horn-Clause Encoding. Next, we translate bytecode to Horn constraints
which acts as a very suitable intermediate representation for verification. Sea-
Horn is parametric on the semantics used for encoding. Currently, SeaHorn
provides a Horn-clause style encoding based on small-step semantics [7] as well as
a more efficient large-block encoding [3]. For the competition, we always use the
1 http://www.cs.berkeley.edu/~necula/cil/

http://www.cs.berkeley.edu/~necula/cil/

SeaHorn: A Framework for Verifying C Programs 449

large-block encoding. The level of precision of the encoding can be also tuned.
The options are: only registers (integer scalars), registers and pointer addresses
(without content), and all of the above plus memory content (using theory of
arrays). We use for the competition the latter which is the most precise level.

Horn-Clause Verification. SeaHorn is also parameterized by the solver. For
the competition, SeaHorn uses pdr engine implemented in Z3 [4]. For the
competition we improve pdr using invariants computed by IKOS. To motivate
this decision, let us come back to our example described above. pdr alone can
discover x ≥ y but it does not terminate, however, if populated with the inductive
invariant y ≥ 0, computed by IKOS, it proves it immediately.

3 Strength and Weaknesses

SeaHorn uses linear arithmetic to reason about scalars and pointer addresses,
and theory of arrays for memory contents. However, SeaHorn provides little or
no support for reasoning about dynamic linked data structures, bit-level preci-
sion, or concurrency. Another weakness of SeaHorn is inherited from the UFO
front-end which relies on multiple tools: LLVM 2.6, LLVM 2.9, and CIL. The
main strength of SeaHorn lies on its parameterized nature allowing experi-
menting with different encodings to model new semantics aspects, abstractions
and verification algorithms.

4 Tool Setup

SeaHorn is available for download from https://bitbucket.org/lememta/
seahorn/wiki/Home. SeaHorn is provided as a set of binaries and libraries for
Linux x86-64 architecture. The options for running the tool are:

./bin/seahorn-svcomp-par.py [-m64] [--cex=CEX] [--spec=SPEC] INPUT

where -m64 turns on 64-bit model, CEX is the destination directory for the
witness file, SPEC is the property file, and INPUT is a C file. If it terminates
the output of SeaHorn is “Result TRUE” when the program is safe, “Result
FALSE”, when a counterexample is found or “Result UNKNOWN”, otherwise.

References

1. Albarghouthi, A., Gurfinkel, A., Li, Y., Chaki, S., Chechik, M.: UFO: Verification
with interpolants and abstract interpretation. In: Piterman, N., Smolka, S.A. (eds.)
TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 637–640. Springer, Heidelberg
(2013)

2. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: A framework for static analysis
based on abstract interpretation. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 271–277. Springer, Heidelberg (2014)

https://bitbucket.org/lememta/seahorn/wiki/Home
https://bitbucket.org/lememta/seahorn/wiki/Home

450 A. Gurfinkel, T. Kahsai, and J.A. Navas

3. Gurfinkel, A., Chaki, S., Sapra, S.: Efficient predicate abstraction of program sum-
maries. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011.
LNCS, vol. 6617, pp. 131–145. Springer, Heidelberg (2011)

4. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

5. Hoder, K., Bjørner, N., de Moura, L.: µZ– an efficient engine for fixed points with
constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 457–462. Springer, Heidelberg (2011)

6. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO. pp. 75–88 (2004)

7. Peralta, J.C., Gallagher, J.P., Saglam, H.: Analysis of imperative programs through
analysis of constraint logic programs. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503,
pp. 246–261. Springer, Heidelberg (1998)

SMACK+Corral: A Modular Verifier�

(Competition Contribution)

Arvind Haran1, Montgomery Carter1, Michael Emmi2,
Akash Lal3, Shaz Qadeer3, and Zvonimir Rakamarić1

1 School of Computing, University of Utah, USA
zvonimir@cs.utah.edu

2 IMDEA Software Institute, Spain
michael.emmi@imdea.org

3 Microsoft Research, India & USA
akashl@microsoft.com

Abstract. SMACK and Corral are two components of a modular toolchain for
verifying C programs. Together they exploit state-of-the-art compiler technolo-
gies and theorem provers to simplify and dispatch verification conditions.

1 Verification Approach

SMACK [3] is a translator from the LLVM compiler’s intermediate representation (IR)
into the Boogie intermediate verification language (IVL) [1]. Sourcing LLVM exploits a
number of frontends, optimizations, and analyses. Targeting Boogie exploits a canonical
platform which simplifies verifier implementations.

Corral [2] is a verifier for the Boogie IVL which views programs as control flow over
any SMT-encodable expression language. Corral delegates semantic reasoning to SMT
solvers, and in minimizing syntactic program assumptions, it is compatible with any
theory supported by the underlying solvers.

SMACK+Corral leverages multiple theories to encode various C-language features.
We can model memory in array theory, non-linear operations with uninterpreted func-
tions, fixed-width words in bitvector theory, and arbitrary-length words in linear arith-
metic. Though we make no attempt to generate inductive invariants, we can use any
invariant generator as a pre-pass; if proved sound, the resulting invariants are injected
into the program as assumptions which help Corral narrow its search.

2 Software Architecture

Figure 1 depicts the SMACK+Corral architecture. We leverage the LLVM1 compiler’s
Clang C language family frontend to generate LLVM IR, an assembly-like language
in single static assignment (SSA) form targeted by frontends for a diverse spectrum
of languages (e.g., Java, JavaScript, Haskell, Erlang, Fortran) which is a convenient

� Partially supported by NSF award CCF 1346756 and a Microsoft Research SEIF award.
1 http://llvm.org and http://clang.llvm.org

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 451–454, 2015.
DOI: 10.1007/978-3-662-46681-0_42

http://llvm.org
http://clang.llvm.org

452 A. Haran et al.

SMACK

LLVM

Clang

optimize

analysis

refinement

Corral
variable

abstraction

stratified
inlining

LLVM
bitcode

Boogie
code

C code

abstract
program

Fig. 1. The SMACK+Corral architecture

representation for code optimization. We then exploit LLVM to perform several code
optimizations including control-flow graph simplification, constant propagation, and
memory-to-register promotion. Collectively these optimizations can substantially sim-
plify the source C program with fewer control locations and memory operations.

SMACK translates from the LLVM IR to the Boogie intermediate verification lan-
guage (IVL). The Boogie IVL is a simple imperative language with well-defined, clean,
and mathematically-focused semantics which is a convenient representation for soft-
ware verifiers. Internally, SMACK leverages LLVM pointer-aliasing analyses to con-
struct effective encodings of pointer and memory operations into Boogie, e.g., to avoid
encoding program memory as one single array expression, which would be difficult for
back-end verifiers to reason about.

Corral attempts to prove reachability of assertion violations in the Boogie program
generated by SMACK lazily, in a goal-directed manner, to reduce pressure on the un-
derlying theorem prover. Corral abstracts the input program via variable abstraction,
attempting to identify a minimal set of global variables impacting the verification con-
dition, and stratified inlining, attempting to identify a minimal unrolling of program
loops and recursion impacting the verification condition. When necessary, Corral re-
fines these abstractions by tracking additional global variables and further unrolling.

3 Strengths and Weaknesses of the Approach

Speaking generally, the main incentives of our approach are modularity and the ex-
ploitation of scalable technologies. Sourcing LLVM IR exploits a rapidly-growing fron-
tier of LLVM frontends, encompassing a diverse set of languages including C/C++,
Java, Haskell, Erlang, Python, Ruby, Ada, and Fortran. In addition, we benefit from
code simplifications made by LLVM’s optimizer, including constant propagation and
CFG simplification, as well as readily-available analyses, including LLVM’s pointer
analyses. SMACK’s translation to Boogie IVL exploits a canonical platform which
simplifies the implementation of verifiers like Corral due to Boogie’s minimal syntax
and mathematically-focused expression language. Finally, by cleverly exploiting the
power of efficient satisfiability modulo theories (SMT) solvers, Corral is able to scale
up to complex verification queries on large programs. The general weaknesses of our

SMACK+Corral: A Modular Verifier 453

approach are currently the limited support for proving programs correct, and the limited
support for certain C-language features such as floating-point and bitwise operations.

4 Tool Setup and Configuration

Our SV-COMP 2015 submission2 contains a prebuilt Linux binary without external
dependencies, and is run by invoking the top-level script smack-svcomp.sh. The fol-
lowing command line options should be provided for SV-COMP benchmarks:

--outputdir specifies a path where temporary files are generated;
--errorwitness specifies the file name for an output error witness;
--m64 must be set on 64-bit benchmarks, such as Device Drivers Linux 64-bit.

For example, SMACK is invoked on a C benchmark file b.c by running

smack-svcomp.sh b.c --outputdir /scratch --errorwitness /tmp/w.xml

the result of which is either TRUE, UNKNOWN, or FALSE(REACH), in which case an error
witness is written to /tmp/w.xml.

SV-COMP Categories: Arrays, Control Flow and Integer Variables, Device Drivers
Linux 64-bit, Heap Manipulation/Dynamic Data Structures, Recursive, and Simple.

Note: We preprocess SV-COMP benchmarks by removing #N-source-lines,
#pragma, and #line, since tokenization breaks otherwise. The SV-COMP error wit-
ness checker must do the same for token numbers to match. We provide a simple Python
script called replacer.py with our binary to perform this transformation.

5 Software Project and Contributors

SMACK is an MIT-licensed open-source project hosted by GitHub3 developed and main-
tained by Michael Emmi of the IMDEA Software Institute and Zvonimir Rakamarić of
the University of Utah, with additional contributions from Montgomery Carter, Arvind
Haran, and Pantazis Deligiannis. SMACK is also hosted by Microsoft’s rise4fun4 web-
site, which allows installation-free use. Corral is an Apache 2.0-licensed open-source
project hosted by CodePlex5 developed and maintained by Akash Lal and Shaz Qadeer of
Microsoft Research. Corral is distributed with Microsoft’s Static Driver Verifier,
included in the Windows Driver Development Kit. Both SMACK and Corral are
components of the Q modular verification-technology ecosystem6.

2 http://soarlab.org/smack/smack-corral.tar.gz
3 https://github.com/smackers/smack
4 http://rise4fun.com/SMACK
5 http://corral.codeplex.com
6 http://research.microsoft.com/en-us/projects/verifierq

http://soarlab.org/smack/smack-corral.tar.gz
https://github.com/smackers/smack
http://rise4fun.com/SMACK
http://corral.codeplex.com
http://research.microsoft.com/en-us/projects/verifierq

454 A. Haran et al.

References

1. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking object-
oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research (2005)

2. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In: Madhusudan,
P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443. Springer, Heidelberg (2012)

3. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from verifier im-
plementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 106–113.
Springer, Heidelberg (2014)

Ultimate Automizer with Array Interpolation

(Competition Contribution)

Matthias Heizmann1, Daniel Dietsch1, Jan Leike2, Betim Musa1,
and Andreas Podelski1

1 University of Freiburg, Germany
2 The Australian National University

Abstract. Ultimate Automizer is a software verification tool that is
able to analyze reachability of an error label, memory safety, and termi-
nation of C programs. For all three tasks, our tool follows an automata-
based approach where interpolation is used to compute proofs for traces.
The interpolants are generated via a new scheme that requires only the
post operator, unsatisfiable cores and live variable analysis. This new
scheme enables our tool to use the SMT theory of arrays in combination
with interpolation.

1 Verification Approach

While analyzing a C program, Ultimate Automizer first applies several pre-
processing steps and then executes an automata-based verification algorithm.

In a first step, the C program is translated into a Boogie program [7]. The
resulting Boogie program uses arrays to model the heap of the system, but does
not need any quantified axioms. Next, the Boogie program is translated into an
interprocedural control flow graph whose edges are labeled with code blocks of
the Boogie program.

Our verification algorithm [3] iteratively takes sample traces that lead to the
error location of the program and analyzes their feasibility. If the sample trace
is infeasible, we compute for this trace an infeasibility proof in form of a Hoare
annotation. Next, we take this proof and compute the largest set of traces whose
infeasibility can be proven with the assertions from the Hoare annotation [3]. We
continue until we find a sample trace that is a counterexample to the correctness
of the program or until we have shown infeasibility for all error traces.

For computations on sets of traces we use automata. We consider the control
flow graph of the program as an automaton and use the error location as an
accepting state. The search for new sample traces is implemented as an emptiness
check on the differences between all traces and the traces whose infeasibility has
been proven. The infeasibility of a trace is checked by an SMT solver and the
Hoare annotation for a trace is generated via interpolation. For programs with
several (possibly recursive) procedures we use automata over nested words and
nested interpolants [2].

Compared to last year’s version, our tool received several improvements and
optimizations. We list two major innovations in the following paragraphs.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 455–457, 2015.
DOI: 10.1007/978-3-662-46681-0_43

456 M. Heizmann et al.

Array Interpolation. We generate sequences of interpolants for traces using a
new interpolation scheme [8] that is theory-independent and can hence be ap-
plied for the AUFLIRA SMT theory which we use. Our interpolation scheme uses
only the post operator and two additional modules. The first module uses an
unsatisfiable core to abstract the trace to the core reason of its infeasibility.
The second module uses a live variable analysis to project interpolants to the
variables that are live at the corresponding position in the trace.

Termination Analysis. For termination analysis, we follow an automata-based
approach [4] in which we consider infinite traces and use Büchi automata for
computations on sets of traces. We use the tool Ultimate LassoRanker

1 to
analyze termination of lasso-shaped infinite traces. Ultimate LassoRanker

uses constraint solving to synthesize ranking functions as termination proofs [6]
and infinite program executions as nontermination proofs [5]. In this competition
we use a setting where the constraints are linear arithmetic SMT formulas and
we use SMTInterpol [1] to check satisfiability of these constraints.

2 Strength and Weaknesses

Modeling the heap of the C program via arrays allows us to support a large
number of C’s language features in a sound way. However, e.g., if the C program
contains casts of pointers, our tool yet often says “unsupported syntax”. Because
of our array interpolation, our main verification algorithm is able to handle all
programs with the same interpolation-based technique. The price that we have to
pay is that we are unable to infer certain kinds of invariants, e.g., we are unable
to infer quantified invariants that state that all elements of a list are zero.

However, the modularity of our approach allows us to integrate different tech-
niques while verifying a single program. We use our automata representation to
decompose the program into sets of traces. For each set, the correctness proof
can be constructed with a completely different technique or tool. The implemen-
tation of this integration is part of our current work.

3 Software Project

Ultimate Automizer is one toolchain of the Ultimate framework.Ultimate

provides several plugins and libraries that allowone to build tools for programanal-
ysis. In the context of Ultimate Automizer, the most noteworthy components
are: the above mentioned translation from C programs to Boogie programs, the
above mentioned toolUltimate LassoRanker, an interface that allows plugins
to communicate with any SMT-LIBv2 compatible SMT solver, and theUltimate

AutomataLibrary. This library provides operations on (Büchi) nestedword au-
tomata like, e.g., complementation, emptiness checking, or minimization.

The development of Ultimate was started at the University of Freiburg.
Meanwhile, Ultimate received contributions from more than 30 developers.
Several toolchains of Ultimate are available on our server via a web interface.
1 http://ultimate.informatik.uni-freiburg.de/LassoRanker/

http://ultimate.informatik.uni-freiburg.de/LassoRanker/

Ultimate Automizer with Array Interpolation 457

4 Tool Setup and Configuration

Our competition candidate requires that the SMT solver Z32 is installed and the
Z3 binary is included in your PATH environment. Our competition candidate
is available online3 The zip archive in which Ultimate Automizer is shipped,
contains the Python script Ultimate.py, which wraps input and output of our
tool for the competition. In order to check if the C file inputfile satisfies the
property specified by the SV-COMP property file prop.prp, you have to invoke
the Python script as follows.

python Ultimate.py prop.prp inputfile 32bit|64bit simple|precise

The third argument defines the architecture for which the property is checked
(either 32bit or 64bit). The fourth argument defines which SV-COMP memory
model is assumed for the input file (either simple or precise).

The result is written to stdout and the output of Ultimate Automizer is
written to the file Ultimate.log. If the checked property does not hold, a human
readable counterexample is written to UltimateCounterExample.errorpath

and an error witness (in the format defined in the SV-COMP rules) is writ-
ten to witness.graphml. All three files are written to the working directory.

References

1. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver. In:
Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254. Springer,
Heidelberg (2012)

2. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Hermenegildo,
M.V., Palsberg, J. (eds.) POPL, pp. 471–482. ACM (2010)

3. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 36–52. Springer, Heidelberg (2013)

4. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning ter-
minating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 797–813. Springer, Heidelberg (2014)

5. Leike, J., Heizmann, M.: Geometric series as nontermination arguments for linear
lasso programs. In: WST, pp. 55–59 (2014)

6. Leike, J., Heizmann, M.: Ranking templates for linear loops. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 172–186. Springer,
Heidelberg (2014)

7. Leino, K.R.M.: This is Boogie 2. Manuscript working draft. Microsoft Research,
Redmond (June 2008),
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

8. Musa, B.: Trace abstraction with unsatisfiable cores. Bachelor’s thesis, University
of Freiburg, Germany (2013)

2 https://z3.codeplex.com/ (We used the version z3-4.3.3.f50a8b0a59ff-x64.)
3 https://ultimate.informatik.uni-freiburg.de/automizer/

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
https://z3.codeplex.com/
https://ultimate.informatik.uni-freiburg.de/automizer/

ULTIMATE KOJAK with Memory Safety Checks

(Competition Contribution)

Alexander Nutz�, Daniel Dietsch, Mostafa Mahmoud Mohamed,
and Andreas Podelski

University of Freiburg
{nutz,dietsch,amin,podelski}@informatik.uni-freiburg.de

Abstract. Ultimate Kojak is a symbolic software model checker im-
plemented in the Ultimate framework. It follows the CEGAR approach
and uses Craig interpolants to refine an overapproximation of the pro-
gram until it can either prove safety or has found a real counterexample.

This year’s version features a new refinement algorithm, a precise
treatment of heap memory, which allows us to deal with pointer aliasing
and to participate in the memsafety category, and an improved inter-
polants generator.

1 Verification Approach

Ultimate Kojak starts verification by constructing a program graph for the
input program. Nodes in the program graph are labelled with formulae that rep-
resent abstract program states, the edges are labelled with transition formulae.
Procedure calls and returns are represented by special edges such that the pro-
gram graph can be seen as a nested word automaton [4]. A failed emptiness check
on this automaton yields an error path as a nested word. From the error path
we build an SMT formula that is satisfiable if and only if the path is feasible.
If the error path formula is satisfiable, we retrieve a model from the solver and
translate the path together with the model back to an error witness. If the error
path formula is unsatisfiable, we start our interpolant generator which uses an
unsatisfiable core that the solver yields together with strongest post computation
and live variable analysis to obtain a nested interpolant for the error path.

For refining the graph, we employ the Impulse (working title) algorithm [7].
In the first step of the refinement, we make a copy of each node on the error path,
this copy’s formula is conjoined with the interpolant formula we obtained for this
position in the trace. We also make copies of the outgoing edges of each copied
node. At first, we let them point to their original target. In the second step of the
refinement, we attempt to redirect edges nodes with a stronger invariant formula
such that, in the end, we may disconnect the initial location in the graph from
the error location as soon as possible. These steps are depicted in Figure 1.

� Corresponding author.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 458–460, 2015.
DOI: 10.1007/978-3-662-46681-0_44

http://swt.informatik.uni-freiburg.de/staff/nutz
http://swt.informatik.uni-freiburg.de/staff/dietsch
http://swt.informatik.uni-freiburg.de/staff/amin
http://swt.informatik.uni-freiburg.de/staff/podelski

ULTIMATE KOJAK with Memory Safety Checks 459

· · ·

· · ·

(�, Inv)

· · ·

· · ·

ϕ1 ϕi

ϕ

ϕj ϕn

· · ·

(�, Inv ∧ I)(�, Inv)

· · ·

ϕj ϕn
ϕ

ϕ1 ϕi

ϕ ϕj ϕn

· · ·

(�, Inv ∧ I)(�, Inv)

· · ·

ϕj ϕn ϕ

ϕ1 ϕi

ϕ ϕj ϕn

Fig. 1. The steps of the Impulse algorithm. Left: before refinement. Middle: after
copying the node (�, Inv). Right: after redirecting. Note that only edges corresponding
to valid Hoare triples (in this picture: all) are redirected.

For dealing with memory safety properties, pointer aliasing and related prob-
lems, we make use of a simple but sufficient model of the heap used by C pro-
grams: A cell (byte) in the heap has its value stored in either an (SMT) integer
array, an (SMT) real array or a pointer array. We use additional arrays to store
which memory cells are allocated. Those are updated according to the specifica-
tions we introduce for malloc, free, and related procedures. Our memory safety
checks are implemented by adding additional specifications to these procedures.

2 Software Architecture

Ultimate Kojak is a toolchain in the Ultimate framework. Ultimate is a
framework for program analysis and software model checking. It is kept modular
such that all tools based on it may use a common infrastructure which, among
others, consists of an interface to a SMT-LIBv2 compliant SMT solver, access
to interpolation algorithms [2,6], a C parser and translator from C to Boogie
[5], other parsers (for Boogie and AutomataScript, an language for describing
automata), a plugin that builds a program graph from a Boogie program, a
plugin which does large block encoding [1]. Furthermore, Ultimate provides
an integration into Eclipse CDT that lets users verify their C programs directly
from their IDE and also displays resulting error paths like a debugger.

3 Discussion – Strengths and Weaknesses

Our memory model is simple but sound. The solving algorithm is conceptually
sound, too, so we expect to have only correct results. However, the memory model
provides no further analysis of the heap, for instance for making restrictions
on which pointers may be aliases. That may be a weakness with regards to
scalability. Another disadvantage of the memory model is that it is only byte-
precise. Thus we cannot deal with bitfields at the moment.

We hope that the new Impulse algorithm needs fewer solver calls and thus
scales better than the refinement algorithm we used before which relied on split-
ting and slicing [3].

460 A. Nutz et al.

4 Tool Setup and Configuration

Ultimate Kojak will compete in all categories of SV-COMP 2015 except 2.
Bitvectors 3. Concurrency, 11. Floats and 12. Termination.

The competition version of Ultimate Kojak is available from

https://ultimate.informatik.uni-freiburg.de/kojak/

An installation of the SMT solver Z3 is required.1

The downloaded archive contains a Python script Ultimate.py that provides
support for the SVCOMP-compatible input and output of the tool. The directory
where the content of the archive lies has to be used as the working directory of
the tool. The verification is started by the following command.

python Ultimate.py prop.prp inputfile 32bit|64bit simple|precise

After a successful run, the script produces the following files:

– Ultimate.log A log file containing all output of Ultimate Kojak during
the verification run.

– UltimateCounterExample.errorpath If we found a counterexample, a hu-
man readable version of it will be written to this file.

– witness.graphml This file contains an error witness as specified by the
SV-COMP rules2 in GraphML.

References

1. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model
checking via large-block encoding. In: FMCAD, pp. 25–32. IEEE (2009)

2. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver. In:
Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254. Springer,
Heidelberg (2012)

3. Ermis, E., Hoenicke, J., Podelski, A.: Splitting via interpolants. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 186–201. Springer, Hei-
delberg (2012)

4. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Hermenegildo,
M.V., Palsberg, J. (eds.) POPL, pp. 471–482. ACM (2010)

5. Leino, K.R.M.: This is Boogie 2. Manuscript working draft. Microsoft Research,
Redmond (2008),
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

6. Musa, B.: Trace abstraction with unsatisfiable cores. Bachelor’s thesis, University
of Freiburg, Germany (2013)

7. Nutz, A.: Impulse: a new interpolating software model checker. Master’s thesis,
University of Freiburg, Germany (2011)

1 We currently use version z3-4.3.3.f50a8b0a59ff-x64 from
http://z3.codeplex.com/downloads/get/924047 , the directory .../z3/bin must be
in the PATH.

2 http://www.sosy-lab.org/~dbeyer/cpa-witnesses/

https://ultimate.informatik.uni-freiburg.de/kojak/
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://z3.codeplex.com/downloads/get/924047
http://www.sosy-lab.org/~dbeyer/cpa-witnesses/

Unbounded Lazy-CSeq: A Lazy Sequentialization Tool
for C Programs with Unbounded Context Switches�

(Competition Contribution)

Truc L. Nguyen1, Bernd Fischer2, Salvatore La Torre3, and Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, UK
2 Division of Computer Science, Stellenbosch University, South Africa
3 Dipartimento di Informatica, Università degli Studi di Salerno, Italy

tnl2g10@soton.ac.uk

Abstract. We describe a new CSeq module for the verification of multi-threaded
C programs with dynamic thread creation. This module implements a variation of
the lazy sequentialization algorithm implemented in Lazy-CSeq. The main nov-
elty is that we now support an unbounded number of context switches and allow
unbounded loops, while the number of allowed threads still remains bounded.
This is achieved by a modified sequentialization transformation and the use of
the CPAchecker as sequential verification backend.

1 Introduction

The tool CSeq [2,3] is a modular framework for the verification of multi-threaded C
programs with dynamic thread creation that is based on sequentialization: the concur-
rent input program is translated into a corresponding sequential program, which is then
verified using existing verification tools for sequential programs. Modules of CSeq im-
plement different eager sequentialization schemes [2,3,7,8] and lazy sequentialization
schemes targeted to bounded model checking [4,5].

The module Lazy-CSeq [5] implements a lazy sequentialization for bounded pro-
grams that avoids the recomputation of local states of the first lazy scheme [6]. It allows
us to explore all runs of the original concurrent program up to a bounded number of
context switches (arranged in rounds of a round-robin schedule). The new module UL-
CSeq described here removes two limitations of this schema: it no longer bounds the
number of rounds, and it can handle unbounded programs. In particular, while we still
bound the number of threads in a run and the depth of the recursion in recursive func-
tion calls we keep the loops (i.e., we do not unroll them), as long as they do not contain
thread creation statements. The resulting program has a finite control flow graph and
thus is suitable for the tool CPAchecker [1] that we use in our experiments.

2 Verification Approach

Overview. Our sequentialization scheme bounds the number of possible threads in the
program, which is achieved indirectly by finite unrolling of the loops that contain thread
� Partially supported by EPSRC grant no. EP/M008991/1, INDAM-GNCS 2014 grant and

MIUR-FARB 2012-2014 grants.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 461–463, 2015.
DOI: 10.1007/978-3-662-46681-0_45

462 T.L. Nguyen et al.

creation statements. It runs the threads for an unbouded number of rounds, scheduling
them in a round-robin fashion until all the threads terminate. The overall structure of
the sequentialized program thus has a main driver and a simulation function for each
thread. The purpose of the driver is to repeatedly call, in an infinite while-loop, the
thread simulation functions according to a round-robin schedule. In each iteration an
entire round of contexts (one for each thread) is executed.

For each thread, we maintain the program locations at which the previous round’s
context switch has happened and thus the computation must resume in the next round.
To ensure the correctness of resuming from previous context switch, we also keep a
global variable to store each thread’s current mode (i.e., resume, execute, or suspend) in
the simulation: To avoid the recomputation of the local states when a thread is resumed,
we declare its local variables as static (i.e., persistent) and keep track of the program
counter for each thread.

Heap allocation needs no special treatment during the sequentialization and can be
delegated entirely to the backend model checker.

Thread Translation. The sequentialized program also contains a thread simulation
function for each thread instance (including the original main). The code shared by
multiple threads is duplicated for each of them such that each thread has its own code,
and in particular, its own copy of the thread-local variables.

In the translation, we inject a guard for each statement to control the resumption,
execution, and suspension of each thread. The injected code is
if (__cs_simulate == 1 || /* execute */

(__cs_simulate == 0 && __cs_pc_1 == current_pc)){/*resume*/
__cs_simulate = 1;
if (__VERIFIER_nondet_bool()){ /* context switch guess */

__cs_pc_1 = current_pc; /* save program location */
__cs_simulate = 2; } /* suspend this thread */

else { /* execute statement */ }
}

On resuming, this control code makes the function to skip all statements up to the
program counter value at the last context switch. On positioning at the corresponding
statement, the mode changes to execution, and the statements are executed until a con-
text switch happens, and then the mode changes to suspend. In this mode, we skip the
instructions until returning to the main driver. Context switches are nondeterministi-
cally guessed in the execution mode before each statement is executed.If- and while-
statements also require the injection of similar code to guard the control flow conditions.

3 Architecture, Implementation, and Availability

Architecture. UL-CSeq is implemented as a source-to-source transformation tool in
Python (v2.7.1). It uses thepycparser (v2.10,https://github.com/eliben/
pycparser) to parse a C program into an abstract syntax tree (AST). The sequential-
ized program can then be processed independently by any sequential verification tool
for C. UL-CSeq has been tested with CPAchecker (v1.3.4, http://cpachecker.
sosy-lab.org/).

https://github.com/eliben/pycparser
https://github.com/eliben/pycparser
http://cpachecker.sosy-lab.org/
http://cpachecker.sosy-lab.org/

Unbounded Lazy-CSeq: A Lazy Sequentialization Tool 463

A small script bundles up translation and verification. The script first invokes the
translation which sequentializes the concurrent program, and then calls the CPAchecker
to analyze the sequentialized program as follows: cpa.sh -timelimit
86400 -heap 12000M -preprocess -stats -predicateAnalysis
-outputpath output. The script returns TRUE (safe) or FALSE (unsafe) accord-
ing to the analysis of CPAchecker.
Availability and Installation. UL-CSeq can be downloaded from this link http://
users.ecs.soton.ac.uk/gp4/cseq/ul-cseq-svcomp15.tar.gz; it al-
so requires installation of the pycparser. In the competition we used CPAchecker as
a sequential verification backend; this must be installed in the directory of UL-CSeq.
CPAchecker also requires the installation of Java Runtime Environment. For the compe-
tition, a compressed version of CPAchecker is included, and it can beused when unzipped.
Call. Since UL-CSeq is not a full verification tool but only a concurrency pre-processor,
we only compete in the Concurrency category. Here, it should be called in the
installation directory as follows: ./UL-CSeq.py -i file --spec specfile
--witness logfile.
Strengths and Weaknesses. UL-CSeq’s main strength compared to Lazy-CSeq and
MU-CSeq is that, due to the use of the CPAchecker as backed, a TRUE result now
represents an actual correctness proof (at least if the number of threads in the program
is bounded), and not just a failure to find an error. Its main weakness is that this is
slower than the approach taken in Lazy-CSeq and MU-CSeq, resulting in a relatively
large number of timeouts, and a lower overall score. Moreover, we still need to bound
the number of threads a priori.

References
1. Beyer, D., Keremoglu, M.E.: CPACHECKER: A Tool for Configurable Software Verification.

In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184–190. Springer,
Heidelberg (2011)

2. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Sequentialization Tool for C. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 616–618. Springer,
Heidelberg (2013)

3. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Concurrency Pre-Processor for Sequential C
Verification Tools. In: ASE, pp. 710–713 (2013)

4. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A Lazy Sequen-
tialization Tool for C. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 398–401. Springer, Heidelberg (2014)

5. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded Model Checking of
Multi-threaded C Programs via Lazy Sequentialization. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 585–602. Springer, Heidelberg (2014)

6. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent reachability
to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
477–492. Springer, Heidelberg (2009)

7. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq: Sequentialization
of C Programs by Shared Memory Unwindings. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 402–404. Springer, Heidelberg (2014)

8. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying Concurrent Programs
by Memory Unwinding. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
551–565. Springer, Heidelberg (2015)

http://users.ecs.soton.ac.uk/gp4/cseq/ul-cseq-svcomp15.tar.gz
http://users.ecs.soton.ac.uk/gp4/cseq/ul-cseq-svcomp15.tar.gz

FuncTion:

An Abstract Domain Functor for Termination�

(Competition Contribution)

Caterina Urban

ÉNS and CNRS and INRIA, France
urban@di.ens.fr

Abstract. FuncTion is a research prototype static analyzer designed for
proving (conditional) termination of C programs. The tool automatically
infers piecewise-defined ranking functions (and sufficient preconditions
for termination) by means of abstract interpretation. It combines a vari-
ety of abstract domains in order to balance the precision and cost of the
analysis.

1 Verification Approach

FuncTion is a prototype implementation of our analysis method and abstract
domains described in [6,7,8].

Our analysis method follows the traditional approach for proving program ter-
mination bymeans of a well-founded argument or ranking function (i.e., a function
from the states of a program to a well-ordered set whose value decreases during
program execution). We build a ranking function for a program in an incremental
way: we start from the program final states, where the function has value zero
(and is undefined elsewhere); then, we add states to the domain of the function, re-
tracing the program backwards and counting the maximum number of performed
program steps as value of the function. In [2], Cousot and Cousot formalize this in-
tuition into a sound and complete termination semantics, which is systematically
derived by abstract interpretation of the program operational trace semantics.

In order to achieve an effective static analysis, we further abstract this seman-
tics by means of piecewise-defined ranking functions. The analysis consists of two
phases: a forward reachability analysis, followed by a backward termination analy-
sis. Each phase proceeds by structural induction on the program syntax, iterating
loops until stabilization. In case of nested loops, the analyses stabilize the inner
loop for each iteration of the outer loop.

The forward analysis computes, at each program control point, an over-
approximation of the set of program states that can be reached at these pro-
gram points by considering all possible program executions. This provides a first
over-approximation of the domain of the program ranking functions.

� The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement no. 269335 (ARTEMIS project MBAT) (see
Article II.9. of the JU Grant Agreement).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 464–466, 2015.
DOI: 10.1007/978-3-662-46681-0_46

FuncTion: An Abstract Domain Functor for Termination 465

The backward analysis computes, at each program control point, a piecewise-
defined ranking function whose domain is (a subset of) the set of reachable states
identified by the forward analysis, and whose value represents an upper bound on
the number of program execution steps remaining before termination. The start-
ing point is the constant function equal to zero at the program final control point.
The piecewise-definition of the ranking functions is semantic-based and dynamic:
during the analysis, pieces are split by tests, modified by assignments, and joined
when merging control flows. In order to minimize the cost of the analysis, a widen-
ing limits the number of maintained pieces. The domain of the ranking function
at the program initial control point provides a sufficient precondition for program
termination: all program executions starting from a state in the domain of the
ranking function are terminating.

2 Software Architecture

FuncTion is written in OCaml. For parsing C programs, we use our own ad-hoc
parser generated using Menhir1. The available abstract domains for the forward
reachability analysis are the numerical abstract domains of intervals [1], octagons
[5], and convex polyhedra [3] provided by the APRON library [4]. The abstract
domains used for the backward termination analysis are implemented on top of the
APRON library: the piecewise-defined ranking functions are represented as deci-
sion trees [8]; the nodes of the decision trees are interval, octagonal, or polyhedral
linear constraints, and the paths towards the leaves induce the piecewise-definition
of the ranking functions; the leaves of the decision trees represent the value of
the ranking functions as affine functions or ordinal-valued functions [7]. For the
competition, we have chosen convex polyhedra for the reachability analysis and
polyhedral linear constraints for the decision trees in the termination analysis.

3 Strengths and Weaknesses

A strength of FuncTion is its modular architecture: a variety of abstract domains
are combined in order to balance the precision and cost of the analysis. An immedi-
ate consequence is the potential for improvements of the analysis by simply adding
new abstract domains to the analyzer. However, FuncTion is still a research pro-
totype, and so far it lacks any abstract domain for shape analysis: it provides only
a limited support for arrays and pointers. Therefore, FuncTion is able to analyze
only 83% of the SV-COMP 2015 benchmark test cases.

Moreover, the analyzer fails to prove termination of a significant number of
terminating tests cases mainly due to a näıve widening operator [6,8]. We have yet
to integrate state-of-the-art widening operators.

We emphasize the soundness of the analysis, which is confirmed by the absence
of reported false negatives (i.e., reported termination for a non-terminating pro-
gram) on the benchmark of SV-COMP 2015. On the other hand, FuncTion does

1 http://cristal.inria.fr/~fpottier/menhir/

http://cristal.inria.fr/~fpottier/menhir/

466 C. Urban

not report non-termination (i.e., it does not answer FALSE) for now, which causes
a fair loss of score.

Finally, we argue that the ability of FuncTion to find significative preconditions
for program termination is an important feature, which unfortunately is not taken
into account in the competition.

4 Tool Setup and Configuration

The competition candidate for SV-COMP 2015 can be downloaded from:

http://www.di.ens.fr/~urban/sv-comp2015.zip.

FuncTion is only participating in the Termination category of SV-COMP 2015.
The competition candidate can be invoked using the following call pattern:

./function <file>

where <file> is the path to the C file to be analyzed for termination of the func-
tion main(). The analyzer prints TRUE on the standard output in case it can
successfully prove termination. Otherwise, it prints UNKNOWN.

5 Software Project and Contributors

FuncTion has been developed as part of the author’s PhD thesis. A web interface
is available: http://www.di.ens.fr/~urban/FuncTion.html.

Grateful acknowledgements go to Antoine Miné for publishing the source code
of his prototype2, which helped to speed up the initial development of FuncTion.

References

1. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs.
In: International Symposium on Programming, pp. 106–130 (1976)

2. Cousot, P., Cousot, R.: An Abstract Interpretation Framework for Termination. In:
POPL, pp. 245–258 (2012)

3. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among
Variables of a Program. In: POPL, pp. 84–96 (1978)

4. Jeannet, B., Miné, A.: apron: A library of numerical abstract domains for
static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661–667. Springer, Heidelberg (2009)

5. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

6. Urban, C.: The abstract domain of segmented ranking functions. In: Logozzo,
F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 43–62. Springer,
Heidelberg (2013)

7. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions.
In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 412–431. Springer,
Heidelberg (2014)

8. Urban, C., Miné, A.: A decision tree abstract domain for proving conditional
termination. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis. LNCS, vol. 8723,
pp. 302–318. Springer, Heidelberg (2014)

2 http://www.di.ens.fr/~mine/banal/

http://www.di.ens.fr/~urban/sv-comp2015.zip
http://www.di.ens.fr/~urban/FuncTion.html
http://www.di.ens.fr/~mine/banal/

Parameter Synthesis

Model Checking Gene Regulatory Networks�

Mirco Giacobbe1, Călin C. Guet1, Ashutosh Gupta1,2, Thomas A. Henzinger1,
Tiago Paixão1, and Tatjana Petrov1

1 IST Austria, Austria
2 TIFR, India

Abstract. The behaviour of gene regulatory networks (GRNs) is typi-
cally analysed using simulation-based statistical testing-like methods. In
this paper, we demonstrate that we can replace this approach by a formal
verification-like method that gives higher assurance and scalability. We
focus on Wagner’s weighted GRN model with varying weights, which is
used in evolutionary biology. In the model, weight parameters represent
the gene interaction strength that may change due to genetic mutations.
For a property of interest, we synthesise the constraints over the param-
eter space that represent the set of GRNs satisfying the property. We
experimentally show that our parameter synthesis procedure computes
the mutational robustness of GRNs –an important problem of interest
in evolutionary biology– more efficiently than the classical simulation
method. We specify the property in linear temporal logics. We employ
symbolic bounded model checking and SMT solving to compute the space
of GRNs that satisfy the property, which amounts to synthesizing a set
of linear constraints on the weights.

1 Introduction

Gene regulatory networks (GRNs) are one of the most prevalent and fundamental
type of biological networks whose main actors are genes regulating other genes.
A topology of a GRN is represented by a graph of interactions among a finite set
of genes, where nodes represent genes, and edges denote the type of regulation
(activation or repression) between the genes, if any. In [21], Wagner introduced
a simple but useful model for GRNs that captures important features of GRNs.
In the model, a system state specifies the activity of each gene as a Boolean
value. The system is executed in discrete time steps, and all gene values are
synchronously and deterministically updated: a gene active at time n affects the
value of its neighbouring genes at time n+1. This effect is modelled through two

� This research was supported by the European Research Council (ERC) under grant
267989 (QUAREM), the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE) and Z211-N23 (Wittgenstein Award), the European Union’s SAGE grant
agreement no. 618091, ERC Advanced Grant ERC-2009-AdG-250152, the People
Programme (Marie Curie Actions) of the European Union’s Seventh Framework
Programme (FP7/2007-2013) under REA grant agreement no. 291734, and the SNSF
Early Postdoc.Mobility Fellowship, the grant number P2EZP2 148797.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 469–483, 2015.
DOI: 10.1007/978-3-662-46681-0_47

470 M. Giacobbe et al.

kinds of parameters: threshold parameters assigned to each gene, which specify
the strength necessary to sustain the gene’s activity, and weight parameters
assigned to pairs of genes, which denote the strength of their directed effect.

Some properties of GRNs can be expressed in linear temporal logic (LTL)
(such as reaching a steady-state), where atomic propositions are modelled by
gene values. A single GRN may or may not satisfy a property of interest. Biolo-
gists are often interested in the behavior of populations of GRNs, and in presence
of environmental perturbations. For example, the parameters of GRNs from a
population may change from one generation to another due to mutations, and
the distribution over the different GRNs in a population changes accordingly.
We refer to the set of GRNs obtained by varying parameters on a fixed topol-
ogy as GRN Space. For a given population of GRNs instantiated from a GRN
Space, typical quantities of interest refer to the long-run average behavior. For
example, robustness refers to the averaged satisfiability of the property within a
population of GRNs, after an extended number of generations. In this context,
Wagner’s model of GRN has been used to show that mutational robustness can
gradually evolve in GRNs [10], that sexual reproduction can enhance robust-
ness to recombination [1], or to predict the phenotypic effect of mutations [17].
The computational analysis used in these studies relies on explicitly executing
GRNs, with the purpose of checking if they satisfy the property. Then, in order
to compute the robustness of a population of GRNs, the satisfaction check must
be performed repeatedly for many different GRNs. In other words, robustness
is estimated by statistically sampling GRNs from the GRN Space and executing
each of them until the property is (dis)proven. In this work, we pursue formal
analysis of Wagner’s GRNs which allows to avoid repeated executions of GRNs,
and to compute mutational robustness with higher assurance and scalability.

In this paper, we present a novel method for synthesizing the space of param-
eters which characterize GRNs that satisfy a given property. These constraints
eliminate the need of explicitly executing the GRN to check the satisfaction of the
property. Importantly, the synthesized parameter constraints allow to efficiently
answer questions that are very difficult or impossible to answer by simulation,
e.g. emptiness check or parameter sensitivity analysis. In this work, we chose
to demonstrate how the synthesized constraints can be used to compute the
robustness of a population of GRNs with respect to genetic mutations. Since
constraint evaluation is usually faster than executing a GRN, the constraints
pre-computation enables faster computation of robustness. This further allows
to compute the robustness with higher precision, within the same computational
time. Moreover, it sometimes becomes possible to replace the statistical sampling
with the exact computation of robustness.

In our method, for a given GRN Space and LTL property, we used SMT
solving and bounded model checking to generate a set of constraints such that a
GRN satisfies the LTL property if and only if its weight parameters satisfy the
constraints. The key insight in this method is that the obtained constraints are
complex Boolean combinations of linear inequalities. Solving linear constraints
has been the focus of both industry and academia for some time. However, the

Model Checking Gene Regulatory Networks 471

technology for solving linear constraints with Boolean structure, namely SMT
solving, has matured only in the last decade [3]. This technology has enabled us
to successfully apply an SMT solver to generate the desired constraints.

We have built a tool which computes the constraints for a given GRN Space
and a property expressed in a fragment of LTL. In order to demonstrate the
effectiveness of our method, we computed the robustness of five GRNs listed
in [8], and for three GRNs known to exhibit oscillatory behavior. We first syn-
thesized the constraints and then we used them to estimate robustness based
on statistical sampling of GRNs from the GRN space. Then, in order to com-
pare the performance with the simulation-based methods, we implemented the
approximate computation of robustness, where the satisfiability of the property
is verified by executing the GRNs explicitly. The results show that in six out
of eight tested networks, the pre-computation of constraints provides greater
efficiency, performing up to three times faster than the simulation method.

Related Work. Formal verification techniques are already used for aiding var-
ious aspects of biological research [12,16,15,22]. In particular, the robustness of
models of biochemical systems with respect to temporal properties has been
studied [18,6,19]. Our work is, to the best of our knowledge, the first applica-
tion of formal verification to studying the evolution of mutational robustness
of gene regulatory networks and, as such, it opens up a novel application area
for the formal verification community. As previously discussed, with respect to
related studies in evolutionary biology, our method can offer a higher degree of
assurance, more accuracy, and better scalability than the traditional, simulation-
based approaches. In addition, while the mutational robustness has been studied
only for invariant properties, our method allows to compute the mutational ro-
bustness for non-trivial temporal properties that are expressible in LTL, such as
bistability or oscillations between gene states.

1.1 Motivating Example

In the following, we will illustrate the main idea of the paper on an example of a
GRN Space T generated from the GRN network shown in Fig. 1(a). Two genes
A and B inhibit each other, and both genes have a self-activating loop. The
parameters (iA, iB) represent constant inputs, which we assume to be regulated
by some other genes that are not presented in the figure. Each of the genes is as-
signed a threshold value (tA, tB), and each edge is assigned a weight (wAA,wAB ,
wBA, wBB). The dynamics of a GRN-individual chosen from T depends on these
parameters. Genes are in either active or inactive state, which we represent with
Boolean variables. For a given initial state of all genes, and for fixed values of
weights and thresholds, the values of all genes evolve deterministically in discrete
time-steps that are synchronized over all genes. Let a (resp. b) be the Boolean
variable representing the activity of gene A (resp. B). We denote a GRN state by
a pair (a, b). Let τ be the function that governs the dynamics of G (see Def. 3):

τ(a, b) = (iA + awAA − bwBA > tA, iB + bwBB − awAB > tB)

472 M. Giacobbe et al.

A B

tA tB

wAB

wAA

wBA

wBB

iA iB

01 00

10 11

α0, β1

α0, β̄1

ᾱ0, β̄1 ᾱ0, β1

α1, β0
10-1

10+0

10+1

10+2

10+3

10+5 10+6 10+7

tim
e[

s]

misa

of samples

evaluation
execution

(a) (b) (c)

Fig. 1. Motivating example. a) The topology of a GRN with mutual inhibition of genes
A and B. b) The labelled transition system where labels denote the linear constraints
which enable the transition. α0, α1, β0, and β1 denote linear atomic formulas iA −
wBA ≤ tA, iB + wBB > tB, iB − wAB ≤ tB , and iA + wAA > tA respectively. c)
Run-times comparison between execution method (dashed lines) and our evaluation
method (solid lines).

The next state of a gene is the result of arithmetically adding the influence from
other active genes.

The topology of mutually inhibiting pair of genes is known to be bistable:
whenever one gene is highly expressed and the other is barely expressed, the
system remains stable [13,19]. The bistability property can be written as the
following LTL formula (see Def. 4):

(A ∧ ¬B =⇒ �(A ∧ ¬B)) ∧ (¬A ∧B =⇒ �(¬A ∧B)).

Let us fix values for parameters tA = tB = 0.6, wAB = wBA = wBB = 0.3,
and iA = iB = 2

3 . Then, we can check that a GRN is bistable by executing
the GRN. Indeed, for the given parameter values, the states (0, 1) and (1, 0) are
fixed points of τ . In other words, the GRN with those parameter values have
two stable states: if they start in state (0, 1) (resp. (1, 0)), they remain there.
Now let us choose iA = 2

3 , iB = 1
3 . Again, by executing the GRN, we can

conclude that it does not satisfy the property: at state (0, 1), B does not have
sufficiently strong activation to surpass its threshold and the system jumps to
(0, 0). Intuitively, since the external activation of B is too small, the phenotype
has changed to a single stable state. In general, it is not hard to inspect that
the bistability property will be met by any choice of parameters satisfying the
following constraints:

{iA − wBA ≤ tA, iA + wAA > tA, iB − wAB ≤ tB , iB + wBB > tB}. (1)

Let’s now suppose that we want to compute the robustness of T in presence
of variations on edges due to mutations. Then, for each possible value of param-
eters, one needs to verify if the respective GRN satisfies the property. Using the
constraints (1), one may verify GRNs without executing them.

Our method automatizes this idea to any given GRN topology and any prop-
erty specified in LTL. We first encode T as a parametrized labelled transition

Model Checking Gene Regulatory Networks 473

system, partly shown in Fig. 1(b). Our implementation does not explicitly con-
struct this transition system, nor executes the GRNs (the implementation is
described in Section 5). Then, we apply symbolic model checking to compute
the constraints which represent the space of GRN’s from T that satisfy the
bi-stability property.

To illustrate the scalability of our method in comparison with the standard
methods, in Fig. 1(c), we compare the performance of computing the muta-
tional robustness with and without precomputing the constraints (referred to
as evaluation and execution method respectively). We choose a mutation model
such that each parameter takes 13 possible values distributed according to the
binomial distribution (see Appendix in [14] for more details on the mutation
model). We estimate the robustness value by statistical sampling of the possible
parameter values. For a small number of samples, our method is slower because
we spend extra time in computing the constraints. However, more samples may
be necessary for achieving the desired precision. As the number of samples in-
creases, our method becomes faster, because each evaluation of the constraints
is two times faster than checking bistability by executing GRN-individuals. For
1.2× 105 many simulations, execution and evaluation methods take same total
time, and the robustness value estimated from these many samples lies in the
interval (0.8871, 0.8907) with 95% confidence. Hence, for this GRN, if one needs
better precision for the robustness value, our method is preferred.

One may think that for this example, we may compute exact robustness be-
cause the number of parameter values is only 136 (four weights and two inputs).
For simplicity of illustration, we chose this example, and we later present ex-
amples with a much larger space of parameters, for which exact computation of
robustness is infeasible.

2 Preliminaries

In this section, we start by defining a GRN Space, which will serve to specify
common features for GRNs from the same population. These common features
are types of gene interactions (topology), constant parameters (thresholds), and
ranges of parameter values that are subject to some environmental perturbation
(weights). Then, we formally introduce a model of an individual GRN from the
GRN Space and temporal logic to express its properties.

2.1 GRN Space

The key characteristics of the behaviour of a GRN are typically summarised
by a directed graph where nodes represent genes and edges denote the type of
regulation between the genes. A regulation edge is either activation (one gene’s
activity increases the activity of the other gene) or repression (one gene’s activity
decreases the activity of the other gene) [20]. In Wagner’s model of a GRN, in
addition to the activation types between genes, each gene is assigned a threshold
and each edge (pair of genes) is assigned a weight. The threshold of a gene

474 M. Giacobbe et al.

models the amount of activation level necessary to sustain activity of the gene.
The weight on an edge quantifies the influence of the source gene on destination
gene of the edge by means of a non-negative rational number.

We extend the Wagner’s model by allowing a range of values for weight pa-
rameters. We call our model GRN Space, denoting that all GRNs instantiated
from that space share the same topology, and their parameters fall into given
ranges. We assume that each gene always has some minimum level of expression
without any external influence. In the model, this constant input is incorpo-
rated by a special gene which is always active, and activates all other genes from
the network. The weight on the edge between the special gene and some other
gene represents the minimum level of activation. The minimal activation is also
subject to perturbation.

Definition 1 (GRN Space) . A gene regulatory network space is given by a
tuple T = (G, gin, , , t, wmax,W), where

– G = {g1, . . . , gd} is a finite ordered set of genes,
– gin ∈ G is the special gene used to model the constant input for all genes,
– ⊆ G ×G is the activation relation such that ∀g ∈ G \ {gin} (gin, g) ∈

and ∀g (g, gin) /∈ ,
– ⊆ G×G is the repression relation such that ∩ = ∅∧∀g (g, gin) /∈ ,
– t : G → Q is the threshold function such that ∀g ∈ G \ {gin} t(g) ≥ 0 and

t(gin) < 0,
– wmax : (∪) → Q≥0 is the maximum value of an activation/repression,
– W = P((∪) → Q≥0) assigns a set of possible weight functions to each

activation/inhibition relation, so that w ∈ W ⇒ ∀(g, g′) ∈ ∪ w(g, g′) ≤
wmax(g, g′).

2.2 GRN-individual

Definition 2 (GRN-individual). A GRN-individual G is a pair (T,w), where
w ∈ W is a weight function from the GRN Space.

A state σ : G → B of a GRN-individual G = (T,w) denotes the activation state
of each gene in terms of a Boolean value. Let Σ(G) (resp. Σ(T)) denote the set
of all states of G (resp. T), such that σ(gin) = true. The GRN model executes
in discrete time steps by updating all the activation states synchronously and
deterministically according to the following rule: a gene is active at next time if
and only if the total influence on that gene, from genes active at current time,
surpasses its threshold.

Definition 3 (Semantics of a GRN-individual). A run of a GRN-indivi-
dual G = (T,w) is an infinite sequence of states σ0, σ1, . . . such that σn ∈ Σ(G)
and τ(σn) = σn+1 for all n ≥ 0, where τ : Σ(G) → Σ(G) is a deterministic
transition function defined by

τ(σ) := λg′.

⎡

⎣
∑

{g|σ(g)∧(g,g′)∈ }
w(g) −

∑

{g|σ(g)∧(g,g′)∈ }
w(g) > t(g′)

⎤

⎦ . (2)

Model Checking Gene Regulatory Networks 475

The language of G, denoted by �G�, is a set of all possible runs of G. Note that
a GRN-individual does not specify the initial state. Therefore, �G� may contain
more than one run.

2.3 Temporal Properties

A GRN exists in a living organism to exhibit certain behaviors. Here we present
a linear temporal logic (LTL) to express the expected behaviors of GRNs.

Definition 4 (Syntax of Linear Temporal Logic) . The language of linear
temporal logic fomulae is given by the grammar ϕ ::= g | (¬ϕ) | (ϕ∨ϕ) | (ϕUϕ),
where g ∈ G is a gene.

Linear temporal properties are evaluated over all (in)finite runs of states from
Σ(G). Let us consider a run r = σ1, σ2, σ3, · · · ∈ Σ(G)∗ ∪Σ(G)∞. Let ri be the
suffix of r after i states and ri is the ith state of r. The satisfaction relation |=
between a run and an LTL formula is defined as follows:

r |= g if r1(g), r |= ¬ϕ if r �|= ϕ, r |= ϕ1 ∨ ϕ2 if r |= ϕ1 or r |= ϕ2,

r |= (ϕ1Uϕ2) if ∃i.ri |= ϕ2 and ∀j ≤ i.rj |= ϕ1.

Note that if |r| < i then ri has no meaning. In such a situation, the above
semantics returns undefined, i.e., r is too short to decide the LTL formula. We
say a language L |= ϕ if for each run r ∈ L, r |= ϕ, and a GRN G |= ϕ if
L�G� |= ϕ. Let ♦ϕ be shorthand of trueUϕ and �ϕ be shorthand of ¬♦¬ϕ.

Note that we did not include next operator in the definition of LTL. This is
because a GRN does not expect something is to be done in strictly next cycle.

3 Algorithm for Parameter Synthesis

In this section we present an algorithm for synthesising the weights’ space cor-
responding to a given property in linear temporal logic. The method combines
LTL model checking [2] and satisfiability modulo theory (SMT) solving [4].

The method operates in two steps. First, we represent any GRN-individual
from the GRN Space with a parametrized transition system: a transition ex-
ists between every two states, and it is labelled by linear constraints, that are
necessary and sufficient constraints to enable that transition in a concrete GRN-
individual (for example, see Fig. 1b). We say that a run of the parametrized
transition system is feasible if the conjunction of all the constraints labelled along
the run is satisfiable. Second, we search for all the feasible runs that satisfy the
desired LTL property and we record the constraints collected along them. The
disjunction of such run constraints fully characterises the regions of weights
which ensure that LTL property holds in the respective GRN-individual.

Let V = {v1, . . . , vn} be a finite set of variable names. For some rationals
k1, . . . , kn ∈ Q, let k1v1 + · · · + knvn + t > 0 and k1v1 + · · · + knvn + t ≥ 0 be
strict and non-strict linear inequalities over V , respectively. Let polyhedra(V)
be the set of all finite conjunctions of linear inequalities over V .

476 M. Giacobbe et al.

Definition 5 (Parametrized Transition System). For a given GRN Space
T and a rational parameters map v : G → V , the parametrized transition system
(T, v) is a labelled transition system (Σ(T), Φ), where the labeling of the edges
Φ : Σ(T)×Σ(T) → polyhedra(V) is defined as follows:

Φ := λσσ′.
∧

g′∈G

⎡

⎣
∑

{g|σ(g)∧(g,g′)∈ }
v(g) −

∑

{g|σ(g)∧(g,g′)∈ }
v(g) > t(g′) ⇐⇒ σ′(g′)

⎤

⎦ .

Φ(σ, σ′) says that a gene g′ is active in σ′ iff the weighted sum of activation and
suppression activity of the regulators of g′ is above its threshold.

A run of (T, v) is a sequence of states σ0, σ1, . . . such that σn ∈ Σ(T) for all
n ≥ 0, and Φ(σ0, σ1)∧Φ(σ1, σ2)∧ . . . is said to be the run constraint of the run.
A run is feasible if its run constraint is satisfiable. We denote by �(T, v)� the set
of feasible traces for (T, v). For a weight function w, let Φ(σ, σ′)[w/v] denote the
formula obtained by substituting v by w and let (T, v)[w/v] = (Σ(T), Φ′), where
Φ′(σ, σ′) = Φ(σ, σ′)[w/v] for each σ, σ′ ∈ Σ(T).

In the following text, we refer to the parametrized transition system (T, v)
and an LTL property ϕ. Moreover, we denote the run constraint of run r =
σ0, σ1, . . . ∈ �(T, v)� by cons(r).

Lemma 1. For a weight function w, the set of feasible runs of (T, v)[w/v] is
equal to �(T,w)�.

The proof of the above lemma follows from the definition of the semantics
for GRN-individual. Note that the run constraints are conjunctions of linear
inequalities. Therefore, we apply efficient SMT solvers to analyze (T, v).

3.1 Constraint Generation via Model Checking

Now our goal is to synthesize the constraints over v which characterise exactly
the set of weight functions w, for which (T,w) satisfies ϕ. Each feasible run
violating ϕ reports a set of constraints which weight parameters should avoid.
Once all runs violating ϕ are accounted for, the desired region of weights is
completely characterized. More explicitly, the desired space of weights is obtained
by conjuncting negations of run constraints of all feasible runs that satisfy ¬ϕ.

In Fig. 2, we present our algorithm GenCons for the constraint generation.
GenCons unfolds (T, v) in depth-first-order manner to search for runs which
satisfy ¬ϕ. At line 3, GenCons calls recursive function GenConsRec to do the
unfolding for each state in Σ(T). GenConsRec takes six input parameters. The
parameter run.σ and runCons are the states of the currently traced run and its
respective run constraint. The third parameter are the constraints, collected due
to the discovery of counterexamples, i.e., runs which violate ϕ. The forth, fifth
and sixth parameter are the description of the input transition system and the
LTL property ϕ. Since GRN-individuals have deterministic transitions, we only
need to look for the lassos upto length |Σ(T)| for LTL model checking. Therefore,
we execute the loop at line 7 only if the run.σ has length smaller than |Σ(T)|.

Model Checking Gene Regulatory Networks 477

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

function GenCons((T, v) = (Σ(T), Φ), ϕ)
begin
goodCons := true
for each σ ∈ Σ(T) do
goodCons := GenConsRec(σ, true, goodCons,Σ(T), Φ, ϕ)
done
return goodCons
end

function GenConsRec(run.σ, runCons, goodCons,Σ(T), Φ, ϕ)
begin
if |run.σ| < |Σ(T)| then

for each σ′ ∈ Σ(T) do
runCons′ := runCons ∧ Φ(σ, σ′)
if goodCons ∧ runCons′ is sat then

if run.σσ′ |= ¬ϕ then (∗ check may return undef ∗)
goodCons := goodCons ∧ ¬runCons′

else
goodCons := GenConsRec(run.σσ′, runCons′, goodCons,Σ(T), Φ, ϕ)

done
return goodCons

end

Fig. 2. Counterexample guided computation of the mutation space feasible wrt. ϕ. Let
“.” be an operator that appends two sequences. run.σσ′ |= ¬ϕ can be implemented
by converting ¬ϕ into a Büchi automaton and searching for an accepting run over
run.σσ′. However, a finite path may be too short to decide whether ϕ holds or not. In
that case, the condition at line 10 fails. Since (T, v) is finite, the finite runs are bound
to form lassos within |Σ(T)| steps. If a finite run forms a lasso, then the truth value of
run.σσ′ |= ¬ϕ will be determined.

The loop iterates over each state in Σ(T). The condition at line 9 checks if
run.σσ′ is feasible and, if it is not, the loop goes to another iteration. Otherwise,
the condition at line 10 checks if run.σσ′ |= ¬ϕ. Note that run.σσ′ |= ¬ϕ may
also return undefined because the run may be too short to decide the LTL
property. If the condition returns true, we add negation of the run constraint
in goodCons. Otherwise, we make a recursive call to extend the run at line
13. goodCons tells us the set of values of v for which we have discovered no
counterexample. GenCons returns goodCons at the end.

Since run constraints are always a conjunction of linear inequalities, goodCons
is a conjunction of clauses over linear inequalities. Therefore, we can apply effi-
cient SMT technology to evaluate the condition at line 9. The following theorem
states that the algorithm GenCons computes the parameter region which sat-
isfies property ϕ.

Theorem 1. For every weight function w ∈ W , the desired set of weight func-
tions for which a GRN-individual satisfies ϕ equals the weight functions which
satisfy the constraints returned by GenCons:

478 M. Giacobbe et al.

(T,w) |= ϕ iff w |= GenCons((T, v), ϕ).

Proof. The statement amounts to showing that the sets A = {w | (T,w) |=
ϕ} and B =

⋂
r∈�(T,v)�∧r|=¬ϕ{w | w |= ¬cons(r)} are equivalent. Notice that

W \A =
⋃

r∈�(T,v)�∧r|=¬ϕ{w | w |= cons(r)} = W \B.

We use the above presentation of the algorithm for easy readability. However,
our implementation differs significantly from the presentation. We follow the
encoding of [7] to encode the path exploration as a bounded-model checking
problem. Further details about implementation are available in Section 5. The
algorithm has exponential complexity in the size of T . However, one may view
the above procedure as the clause learning in SMT solvers, where clauses are
learnt when the LTL formula is violated [23]. Similar to SMT solvers, in practice,
this algorithm may not suffer from the worst-case complexity.

Example 1. The GRN osc3 (shown in Fig. 3) was the model of a pioneering
work in synthetic biology [11], and it is known to provide oscillatory behaviour:
each gene should alternate its expression between ‘on’ and ‘off’ state:

ϕ3 =
∧

v∈{A,B,C}(v ⇒ ♦¬v) ∧ (¬v ⇒ ♦v).

The solutions are the constraints: (T,w) |= ϕ3 iff (iA > tA) ∧ (iB > tB) ∧
(iC > tC) ∧ (iB − wAB ≤ tB) ∧ (iC − wBC ≤ tC) ∧ (iA − wCA ≤ tA).

4 Computing Robustness

In this section, we present an application of our parameter synthesis algorithm,
namely computing robustness of GRNs in presence of mutations. To this end,
we formalize GRN-population and its robustness. Then, we present a method to
compute the robustness using our synthesized parameters.

A GRN-population models a large number of GRN-individuals with varying
weights. All the GRN-individuals are defined over the same GRN Space, hence
they differ only in their weight functions. The GRN-population is characterised
by the GRN Space T and a probability distribution over the weight functions. In
the experimental section, we will use the range of weightsW and the distribution
π based on the mutation model outlined in the Appendix in [14].

Definition 6 (GRN-population). A GRN-population is a pair Z = (T, π),
where π : W → [0, 1] is a probability distribution over all weight functions from
the GRN Space T , i.e.,

∑
w∈W π(w) = 1.

We write ϕ(Z) ∈ [0, 1] to denote an expectation that a GRN instantiated
from a GRN-population Z = (T, π) satisfies ϕ. The value ϕ(Z) is in the interval
[0, 1] and we call it robustness.

Model Checking Gene Regulatory Networks 479

Definition 7 (Robustness). Let Z = (T, π) be a GRN-population, and ϕ be
an LTL formula which expresses the desired LTL property. Then, the robustness
of Z with respect to the property ϕ is given by

ϕ(Z) :=
∑

{w|�(T,w)�|=ϕ} π(w)

The above definition extends that of [10], because it allows for expressing any
LTL property as a phenotype, and hence it can capture more complex properties
such as oscillatory behaviour. In the following, we will present an algorithm for
computing the robustness, which employs algorithm GenCons.

4.1 Evaluating Robustness

Let us suppose we get a GRN-population Z = (T, π) and LTL property ϕ
as input to compute robustness. For small size of GRN Space T , robustness
can be computed by explicitly enumerating all the GRN-individuals from T ,
and verifying each GRN-individual against ϕ. The probabilities of all satisfying
GRN-individuals are added up. However, the exhaustive enumeration of the
GRN Space is often intractable due to a large range of weight functions W in
T . In those cases, the robustness is estimated statistically: a number of GRN-
individuals are sampled from T according to the distribution π, and the fraction
of satisfying GRN-individuals is stored. The sampling experiment is repeated a
number of times, and the mean (respectively variance) of the stored values are
reported as robustness (respectively precision).

Depending on how a sampled GRN-individual is verified against the LTL
property, we have two methods:

– In the first method, which we will call execution method, each sampled GRN-
individual is verified by executing the GRN-individual from all initial states
and checking if each run satisfies ϕ;

– In the second method, which we will call evaluation method, the constraints
are first precomputed with GenCons, and each sampled GRN-individual is
verified by evaluating the constraints.

Clearly, the time of computing the constraints initially renders the evaluation
method less efficient. This cost is amortized when verifying a GRN-individual by
constraint evaluation is faster than by execution. In the experimental section, we
compare the overall performance of the two approaches on a number of GRNs
from literature.

5 Experimental Results

We implemented a tool which synthesizes the parameter constraints for a given
LTL property (see Section 3), and the methods for computing the mutational
robustness (see Section 4.1). We ran our tool on a set of GRNs from the literature.

480 M. Giacobbe et al.

Property Space size

mi: Y Z (Y Z̄=⇒�Y Z̄) ∧ (ZȲ =⇒�ZȲ) 4225

misa: Y Z (Y Z̄=⇒�Y Z̄) ∧ (ZȲ =⇒�ZȲ) 105625

qi:

Y Z

RS

(Y SZ̄R̄ =⇒ �Y SZ̄R̄) ∧
(Ȳ S̄ZR =⇒ �Ȳ S̄ZR)

≈ 109

cc:
S Z

X

R T
♦�X ∨ ♦�X̄ ≈ 1010

ncc:

Q S

Z

RP

Y
(Y QSZ̄P̄ R̄=⇒�Y QSZ̄P̄ R̄) ∧
(Ȳ Q̄S̄ZPR=⇒�Ȳ Q̄S̄ZPR)

≈ 1018

oscN:
XN

X1

X2

X1=⇒♦X̄1 ∧ X̄1=⇒♦X1 ∧
X2=⇒♦X̄2 ∧ X̄2=⇒♦X2 ∧
. . .
XN =⇒♦X̄N ∧ X̄N =⇒♦XN

3:274625
5:≈ 109

7:≈ 1012

Fig. 3. GRN benchmarks. mi, misa (mutual inhibition), qi (quad inhibition), and ncc

(cell cycle switch) satisfy different forms of bistability. For the networks ci (cell cycle
switch), the value of gene eventually stabilizes [9]. In osc3, also known as the repres-
silator [11], the gene values alternate. osc5 and osc7 (not shown) are generalizations
of osc3, and also exhibit oscilating behavior.

5.1 Implementation

Our implementation does not explicitly construct the parametrised transition
system described in Section 3 (Dfn. 5 and Alg. 2). Instead, we encode the
bounded model-checking (Alg. 2) as a satisfiability problem, and we use an
SMT solver to efficiently find goodCons. More concretely, we initially build a
formula which encodes the parametrized transition system and it is satisfied if
and only if some run of (T, v) satisfies ¬ϕ. If the encoding formula is satisfiable,
the constraints cons(r) along the run are collected, and ¬cons(r) is added to
goodCons. Then, we expand the encoding formula by adding ¬cons(r), so as to
rule out finding the same run again. We continue the search until no satisfying
assignment of the encoding formula can be found. The algorithm always termi-
nates because the validity of the property is always decided on finite runs (as
explained in Section 3).

The implementation involves 8k lines of C++ and we use Z3 SMT solver as
the solving engine. We use CUDD to reduce the size of the Boolean structure of
the resulting formula. We ran the experiments on a GridEngine managed cluster
system. The tool is available online1.

1 http://pub.ist.ac.at/~mgiacobbe/grnmc.tar.gz

http://pub.ist.ac.at/~mgiacobbe/grnmc.tar.gz

Model Checking Gene Regulatory Networks 481

0.57

0.82

1.00

1.62

2.01

3.08

mi misa qi cc ncc osc3osc5osc7~r
at

io
 e

xe
cu

tio
n/

co
ns

tr
ai

nt
 e

va
lu

at
io

n

10-1

10+0

10+1

10+2

10+3

10+4

10+5 10+6 10+7 10+8

tim
e[

s]

misa

of samples

evaluation
execution

10+0

10+1

10+2

10+3

10+4

10+5 10+6 10+7 10+8

tim
e[

s]

cc

of samples

evaluation
execution

10-1

10+0

10+1

10+2

10+3

10+4

10+5 10+6 10+7 10+8

tim
e[

s]

mi

of samples

evaluation
execution

10+0

10+1

10+2

10+3

10+4

10+5 10+6 10+7 10+8

tim
e[

s]

qi

of samples

evaluation
execution

10+0

10+1

10+2

10+3

10+4

10+5 10+6 10+7 10+8

tim
e[

s]

ncc

of samples

evaluation
execution

10-1

10+0

10+1

10+2

10+3

10+4

10+5 10+6 10+7 10+8

tim
e[

s]

osc3

of samples

evaluation
execution

10+0

10+1

10+2

10+3

10+4

10+5 10+6 10+7 10+8

tim
e[

s]

osc5

of samples

evaluation
execution

10+0

10+1

10+2

10+3

10+4

10+5 10+6 10+7 10+8

tim
e[

s]

osc7

of samples

evaluation
execution

Fig. 4. The comparison in performance when mutational robustness is statistically
estimated, and a property check is performed either by evaluation, or by execution
(see Section 4.1 for the description of the two methods). The bar (top-left) shows the
ratio of average times needed to verify the property of one sampled GRN-individual.
For example, for osc7, the performance of evaluation method is more than three times
faster. The other graphs show how the robustness computation time depends on the
total number of sampled GRNs (in order to obtain robustness and to estimate the
precision, we computed the mean of 100 experiments, each containing a number of
samples ranging from 103 to 106). The graph is shown in log-log scale. The non-linear
slope of the evaluation method is most notable in examples mcc and osc7, and it is due
to the longer time used for compute the constraints.

5.2 Performance Evaluation

We chose eight GRN topologies as benchmarks for our tool. The benchmarks are
presented in Fig. 3. The first five of the GRN topologies are collected from [8].
On these benchmarks we check for the steady-state properties. On the final three
GRN topologies, we check for the oscillatory behavior. The results are presented
in Fig. 4.

We ran the robustness computation by the evaluation and execution meth-
ods (the methods are described in Section 4.1). In order to obtain robustness
and to estimate the precision, we computed the mean of 100 experiments, each
containing a number of samples ranging from 103 to 106. The total computation
time in the execution methods linearly depends on the number of samples used.

482 M. Giacobbe et al.

The total computation time in the evaluation method depends linearly on the
number of samples, but initially needs time to compute the constraints. Techni-
cally, the time needed to compute robustness by execution method is tex = kexp,
and the time needed to compute robustness by evaluation approach tev = kevp+
tc, where p represents the total number of samples used, tc is the time to compute
the constraints, and kex (resp. kev) is the time needed to verify the property by
evaluation (resp. execution). We used linear regression to estimate the parame-
ters kex and kev, and we present the ratio kex

kev
in top-left position of Fig. 4. The

results indicate that on six out of eight tested networks, evaluation is more effi-
cient than execution. For some networks, such as osc7, the time for computing
the constraints is large, and the gain in performance becomes visible only once
the number of samples is larger than 106.

6 Conclusion and Discussion

We pursued formal analysis of Wagner’s GRN model, which allows symbolic
reasoning about the behavior of GRNs under parameter perturbations. More pre-
cisely, for a given space of GRNs and a property specified in LTL, we have synthe-
sized the space of parameters for which the concrete, individual GRN from a given
space satisfies the property. The resulting space of parameters is represented by
complex linear inequalities. In our analysis, we encoded a boundedmodel-checking
search into a satisfiability problem, and we used efficient SMT solvers to find the
desired constraints. We demonstrated that these constraints can be used to effi-
ciently compute the mutational robustness of populations of GRNs. Our results
have shown the cases in which the computation can be three times faster than the
standard (simulation) techniques employed in computational biology.

While computing mutational robustness is one of the applications of our syn-
thesized constraints, the constraints allow to efficiently answer many other ques-
tions that are very difficult or impossible to answer by executing the sampled
GRNs. In our future work, we aim to work on further applications of our method,
such as parameter sensitivity analysis for Wagner’s model. Moreover, we plan to
work on the method for exact computation of robustness by applying the point
counting algorithm [5].

Wagner’s GRN model is maybe the simplest dynamical model of a GRN –
there are many ways to add expressiveness to it: for example, by incorporating
multi-state expression level of genes, non-determinism, asynchronous updates,
stochasticity. We are planning to study these variations and chart the territory
of applicability of our method.

References

1. Azevedo, R.B.R., Lohaus, R., Srinivasan, S., Dang, K.K., Burch, C.L.: Sexual re-
production selects for robustness and negative epistasis in artificial gene networks.
Nature 440(7080), 87–90 (2006)

2. Baier, C., Katoen, J.-P.: Principles of model checking, pp. 1–975. MIT Press (2008)

Model Checking Gene Regulatory Networks 483

3. Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A.: 6 years of SMT-
COMP. Journal of Automated Reasoning 50(3), 243–277 (2013)

4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. Handbook of satisfiability 185, 825–885 (2009)

5. Barvinok, A., Pommersheim, J.E.: An algorithmic theory of lattice points in poly-
hedra. New perspectives in algebraic combinatorics 38, 91–147 (1999)

6. Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with
parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007)

7. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in computers 58, 117–148 (2003)

8. Cardelli, L.: Morphisms of reaction networks that couple structure to function.
BMC Systems Biology 8(1), 84 (2014)

9. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Scientific reports 2 (2012)

10. Ciliberti, S., Martin, O.C., Wagner, A.: Robustness can evolve gradually in complex
regulatory gene networks with varying topology. PLoS Computational Biology 3(2)
(2007)

11. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regu-
lators. Nature 403(6767), 335–338 (2000)

12. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11),
1239–1249 (2007)

13. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch
in escherichia coli. Nature 403(6767), 339–342 (2000)

14. Giacobbe, M., Guet, C.C., Gupta, A., Henzinger, T.A., Paixao, T., Petrov, T.:
Model checking gene regulatory networks. arXiv preprint arXiv:1410.7704 (2014)

15. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

16. Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in
systems biology. ACM SIGMETRICS Performance Evaluation Review 35(4), 14–21
(2008)

17. MacCarthy, T., Seymour, R., Pomiankowski, A.: The evolutionary potential of the
drosophila sex determination gene network. Journal of Theoretical Biology 225(4),
461–468 (2003)

18. Mateescu, R., Monteiro, P.T., Dumas, E., Jong, H.D.: Ctrl: Extension of ctl with
regular expressions and fairness operators to verify genetic regulatory networks.
Theoretical Computer Science 412(26), 2854–2883 (2011)

19. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for
robustness analysis with applications to synthetic gene networks. Bioinformat-
ics 25(12), i169–i178 (2009)

20. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling.
BMC Bioinformatics 8(Suppl 6), S9 (2007)

21. Wagner, A.: Does evolutionary plasticity evolve? Evolution, 50(3), 1008–1023
(1996)

22. Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H.: SMT-based analysis
of biological computation. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013.
LNCS, vol. 7871, pp. 78–92. Springer, Heidelberg (2013)

23. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven
learning in a boolean satisfiability solver. In: Computer Aided Verification, pp.
279–285. IEEE Press (2001)

Symbolic Quantitative Robustness Analysis

of Timed Automata�

Ocan Sankur

Université Libre de Bruxelles, Brussels, Belgium

Abstract. We study the robust safety problem for timed automata un-
der guard imprecisions which consists in computing an imprecision pa-
rameter under which a safety specification holds. We give a symbolic
semi-algorithm for the problem based on a parametric data structure,
and evaluate its performance in comparison with a recently published
one, and with a binary search on enlargement values.

1 Introduction

Timed automata [2] are a well-established formal model for real-time systems.
They can be used to model systems as finite automata, while using, in addition, a
finite number of clocks to impose timing constraints on the transitions. Efficient
model checking algorithms have been developed and implemented in tools such as
Uppaal [6], IF [12]. Timed automata are, however, abstract models, and therefore
make idealistic assumptions on timings, such as perfect continuity of clocks,
infinite-precision time measures and instantaneous reaction times.

As for any abstract formalism, once desired properties of a system are proven
on the model, a crucial question that remains is the robustness of these properties
against the assumptions that have been made. What is the extent to which the
assumptions behind the model can be relaxed while a given property still holds?

In this work, we are interested in the robustness against timing imprecisions.
An important amount of work has been done in the timed automata literature
to endow timed automata with a realistic semantics, and take imprecisions into
account, e.g. [18,15,1]. The works [24] and [14] showed that perturbations on
clocks, i.e. imprecisions or clock drifts, regardless of how small they are, may
drastically change the behavior in some models. These observations mean that
there is a need for verification tools to check the robustness of timed automata,
that is, whether the behavior of a given timed automaton is preserved in the
presence of perturbations, and to compute safe bounds on such perturbations.

We consider the robustness of timed automata for safety properties under
timing imprecisions modeled by guard enlargement, consisting in relaxing each
guard of the form x ∈ [a, b] to x ∈ [a − δ, b + δ] where δ is a parameter. Our
goal is to decide if for some δ > 0, the enlarged timed automaton satisfies its
specification (Problem 1), and if this is the case, compute a safe upper bound

� Supported by the ERC starting grant inVEST (FP7-279499).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 484–498, 2015.
DOI: 10.1007/978-3-662-46681-0_48

Symbolic Quantitative Robustness Analysis of Timed Automata 485

on δ (Problem 2). We insist on the importance of both problems: while the
first one decides the robustness of the model, the second one quantifies it by
actually giving a bound under which the model is correct. This would allow one
for instance to choose an appropriate hardware to implement the model [15,1].

Background. The formulation of Problem 1 has been studied starting with
[24,14] for safety properties, and extended to LTL and richer specifications, e.g.
[9,10] using region-based techniques which cannot be applied efficiently. A sym-
bolic zone-based algorithm was given in [13] for flat timed automata, that is,
without nested cycles by applying acceleration on its cycles. Problem 2 has been
answered in [20] for flat timed automata, where the given algorithm computes
the largest upper bound on δ satisfying the specification. The flatness is a rather
restrictive hypothesis since, for instance, it is easily violated when the system
is obtained by composition of timed automata that contain cycles. Recently, a
zone-based algorithm and a tool to solve Problem 1 for general timed automata
was given [21]; but the algorithm does not compute any bound on δ. The latter
algorithm is based, roughly, on extending the standard forward exploration of
the state space augmented with the acceleration of all cycles encountered during
the search, with some tricks to optimize the computations. In [22], refinements
between interfaces are studied in a game-based framework including syntactic
enlargement to account for imprecisions. In [25,26] the authors use the fact that
replacing all guards by closed ones allow one to verify finite paths (and the case
of a periodic external synchronization) but this does not help in the analysis of
the accumulation of imprecisions, nor can it allow one to compute a bound on δ.

Results. In this paper, we present a symbolic procedure to simultaneously solve
Problems 1 and 2 for general timed automata; if the given model is robust, a safe
upper bound on δ (which may not be the largest one) is output. The procedure
is a semi-algorithm since we do not know whether it terminates although it did
terminate on most of our experiments. It consists in a state-space exploration
with an efficient parametric data structure which treats the enlargement δ as
an unknown parameter, combined with an acceleration procedure for some of
the cycles. We do not systematically accelerate cycles, but rather adopt a “lazy”
approach: during the exploration, when the accumulated imprecisions go beyond
a threshold, we accelerate some cycles that may be responsible for this accumu-
lation. This greatly reduces the computation overhead compared to a systematic
acceleration. We also adapt several abstraction operations such as LU abstrac-
tion [5], and closure inclusion [19] to the parametric setting to reduce the state
space. We ran experiments to evaluate the performance of our procedure. Com-
pared to [21], ours terminated faster in most cases, and sometimes with several
orders of magnitude. To truly evaluate the gain of a parametric analysis, we also
compared with a binary search on the values of δ using an exact model checker.
Our procedure was often faster except against a low precision binary search (i.e.
with few iterations). Section 6 contains a more detailed discussion.

486 O. Sankur

2 Definitions

Given a finite set of clock C, we call valuations the elements of RC
≥0. For R ⊆ C

and a valuation v, v[R ← 0] is the valuation defined by v[R ← 0](x) = v(x) for
x ∈ C\R and v[R ← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation v, v+d
is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend these operations to
sets of valuations in the obvious way. We write 0 for the valuation that assigns 0
to every clock. An atomic guard is a formula of the form k ≤ x or x ≤ l where
x, y ∈ C, k, l ∈ Q. A guard is a conjunction of atomic guards. A valuation v
satisfies a guard g, denoted v |= g, if all atomic guards are satisfied when each
x ∈ C is replaced by v(x). We write ΦC for the set of guards built on C.

A timed automaton A is a tuple (L, Inv, �0, C, E), where L is a finite set of
locations, Inv : L → ΦC the invariants, C is a finite set of clocks, E ⊆ L × ΦC ×
2C×L is a set of edges, and �0 ∈ L is the initial location. An edge e = (�, g, R, �′)

is also written as �
g,R−−→ �′. For any location �, let E(�) denote the set of edges

leaving �. Following the literature on robustness in timed automata (e.g. [24,14])
we only consider timed automata with closed and rectangular guards (that is,
we do not allow constraints of the form x − y ≤ k). We also assume that all
invariants contain an upper bound for all clocks.

A run of A is a sequence q1e1q2e2 . . . qn where qi ∈ L × R
C
≥0, and writing

qi = (�, v), we have v ∈ Inv(�), and either ei ∈ R>0, in which case qi+1 = (�, v+ei),
or ei = (�, g, R, �′) ∈ E, in which case v |= g and qi+1 = (�′, v[R ← 0]). We
say that the run r is along e1e2 . . . en−1. A path is a sequence of edges whose
endpoint locations are equal. Given a path ρ = e1e2 . . . en−1 and states q, q′, we
write q

ρ−→ q′ if there is a run from q to q′ along e1e2 . . . en−1. We write q ⇒ q′

if there is a path ρ with q
ρ−→ q′. We also note q

ρ+

−−→ q′ if there is a run from q
to q′ along an arbitrary (positive) number of repetitions of ρ. A cycle of a timed
automaton is a path that ends in the location it starts. As in [24,14], we assume
that all cycles of considered timed automata reset all clocks at least once. Such
cycles are called progress cycles.

Regions. The first decidability results on timed automata relied on a finite par-
tition of the state space to so called regions, which can be defined using simple
constraints on clocks [2]. We say that 1

η is the granularity of a timed automa-

ton A, if η is the smallest integer such that all constants of A are multiples of 1
η .

We generalize the definition of regions to arbitrary granularities. Let us denote
Nη = 1

ηN. Consider a timed automaton A, with granularity 1
η , and consider a

bound function α : C → Nη mapping each clock to a bound. An α, η-region is
defined by choosing

– for each clock x ∈ C, a constraint among {x = k | k ∈ Nη, k ≤ α(x)} ∪ {k −
1
η < x < k | k ∈ Nη,

1
η ≤ k ≤ α(x)} ∪ {x > α(x)}.

– for each pair x, y ∈ C for which we chose the constraints k − 1
η < x < k,

and l − 1
η < y < l, choose one constraint among frac(x) < frac(y), frac(x) =

frac(y), or frac(x) > frac(y), where frac(·) denotes the fractional part.

Symbolic Quantitative Robustness Analysis of Timed Automata 487

It can be shown that α, η-regions finitely partition the state space R
C . For η =

1, this is the usual definition of regions. Given timed automata with rational
constants, one often rescales the constants to work with integers. In the context of
enlargement, however, it will be more convenient to work directly with rationals.

Difference-Bound Matrices. Because the number of regions is exponential in the
input size, the region-based algorithms are not practical. Symbolic algorithms
were rather given as an efficient solution based on zones which are convex subsets
of the state space definable by clock constraints. Formally, a zone Z is a convex
subset of RC definable by a conjunction of constraints of the form x ≤ k, l ≤ x,
and x − y ≤ m where x, y ∈ C, k, l ∈ Q≥0 and m ∈ Q. Note that because
all guards of the timed automata we consider are closed, all zones that appear
during a state-space exploration are closed. Hence, we do not need to distinguish
strict and non-strict inequalities as done for general timed automata.

We recall a few basic operations defined on zones. Let Post≥0(Z) denote the
zone describing the time-successors of Z, i.e., Post≥0(Z) = {v ∈ R

C
≥0 | ∃t ≥

0, v−t ∈ Z}; and similarly Pre≥0(Z) = {v ∈ R
C
≥0 | ∃t ≥ 0, v+t ∈ Z}. Given R ⊆

C, we let ResetR(Z) be the zone {v ∈ R
C
≥0 | ∃v′ ∈ Z, v = v′[R ← 0]}, and

FreeR(Z) = {v ∈ R
C
≥0 | ∃v′ ∈ Z, v′ = v[R ← 0]}. Intersection is denoted

Z∩Z ′. Zones can be represented by difference-bound matrices (DBM) which are
|C0| × |C0|-matrices with values in Q [16]. Let us define C0 = C ∪ {0}, where 0 is
seen as a clock whose value is always 0. Intuitively, each component (x, y) ∈ C2

0

of a DBM stores a bound on the difference x − y. For any DBM M , let �M�
denote the zone it defines. DBMs admit reduced forms (a.k.a. normal form), and
successor computation can be done efficiently (in O(|C|3)). We refer the reader
to [7] for details. All of the above operations can be computed with DBMs.
By a slight abuse of notation, we will use the same operations for DBMs as for
zones, for instance, we will write M ′ = Post≥0(M) where M and M ′ are reduced
DBMs such that �M ′� = Post≥0�M�. We define an extended zone as a pair (�, Z)
where � is a location and Z a zone. Given an edge e = (�, g, R, �′), and an
extended zone (�, Z), we define Poste

(
(�, Z)

)
= Inv(�′) ∩ Post≥0(g ∩ ResetR(Z)),

and Pree
(
(�, Z)

)
= Pre≥0(g ∩ FreeR(Inv(�

′) ∩ Z)). For a path ρ = e1e2 . . . en, we
define Postρ and Preρ by iteratively applying Postei and Preei respectively.

Enlargement. We model timing imprecisions in timed automata by the enlarge-
ments of the guards and invariants of by rational values ν > 0. The enlargement
of an atomic guard k ≤ x (resp. x ≤ l) is denoted (k ≤ x)ν = k − ν ≤ x (resp.
(x ≤ l)ν = x ≤ l + ν). The enlargement of a guard g, denoted (g)ν is obtained
by enlarging all its conjuncts. We denote by Aν the timed automaton obtained
from A by enlarging all its guards and invariants by ν.

If ν is known, one could analyze Aν with known techniques, since this is still a
timed automaton (with a possibly different granularity). Here, we are rather in-
teresting in a parametric analysis. We thus consider a symbolic parameter δ. The
parametric enlargement of a guard g, denoted (g)δ is defined by replacing ν by
the symbol δ in the above definition. We will always denote rational enlargement

488 O. Sankur

�1

x, y ≤ 1

�2

x, y ≤ 1

err

x = 1, x := 0

e1 x = 1, x := 0

e3

y = 1, y := 0

e2

Fig. 1. A timed automaton representing the two processes P1 and P2 instantiated with
period p = 1, and a buffer size of 1. The guard under the locations are the invariants.
The edge e1 represents the arrival of a token in the buffer (period of 1) while e2
represents process P2 reading a token from the buffer. The error state is reached via e3 if
two tokens are pushed to the buffer without any read in between. Without enlargement,
any reachable state at location �2 satisfies x = 0 ∧ y = 1, so the error state is not
reachable. Under enlargement by ν = 1

10
, after the first transition, location �2 is reached

by the set of states 1−ν ≤ y ≤ 1+ν∧0 ≤ x ≤ 2ν due to the enlargement of the guards
and invariants. A simple calculation shows that the set of reachable states at location �2
after k cycles is 1− (2k+1)ν ≤ y ≤ 1+ν∧0 ≤ x ≤ 2kν ∧1− (2k+1)ν ≤ y−x ≤ 1+ν.
Thus, for k = 5, we get y ≤ 1 + ν ∧ x ≤ 1 ∧ −ν ≤ y − x ≤ 1 + ν, and x = 1 ∧ y = 1 is
in this set, from which the error state is reachable.

values by ν, and the parameter symbol by δ. Similarly, parametrically enlarged
timed automata are denoted Aδ. For ν > 0, the instantiation of a parametrically
enlarged guard (g)δ by ν is denoted (g)δ[δ ← ν] which is (g)ν .

Accumulation of Imprecisions. In some timed automata even the smallest en-
largement can lead to drastically different behaviors due to the accumulation of
the imprecisions over long runs [24]. As an example, consider the following simple
problem. Two processes P1, P2 execute on different machines and communicate
via a finite buffer. Every p time units, Process P1 finishes a computation and
pushes a token to the buffer; while P2 reads a token from the buffer with the
same period. We assume P2 has an offset of p. The buffer will clearly not overflow
in this system. However, assuming the slightest delay in the execution of P2, or
the slightest decrease in the execution time of P1 leads to a buffer overflow since
the delays will accumulate indefinitely. Figure 1 represents this system.

3 Accelerating Cycles

The original robust reachability algorithm of [24,14] consists in an exploration
of the region graph, augmented with the addition of the images of all cycles
neighboring reachable states. The idea is that when the guards are enlarged,
these neighboring cycles become reachable, and they precisely capture all states
that become reachable in the timed automaton for all values of δ. Thus, this
algorithm computes the set ∩ν>0Reach(Aν), where Reach(Aν) denotes the states
that are reachable in Aν . A symbolic algorithm for this problem was given in [13]
for flat timed automata, i.e. without nested cycles, and later improved in [20].

In this section, we summarize some of these results from [24,14,13,20] that we
use in the rest of the paper. Let us fix a timed automaton (L, Inv, �0, C, E), and

Symbolic Quantitative Robustness Analysis of Timed Automata 489

a cycle ρ. The following lemma shows the effect of repeating cycles in enlarged
timed automata, formalizing our observations on Fig. 1.

Lemma 1 ([20]). Consider any extended zone (�, Z), and a progress cycle ρ
of A that starts in �. If Pre∗ρ(�)∩Z = ∅, then starting from any state of Pre∗ρ(�)∩
Z, for any ν > 0, all states of Post∗(ρ)ν (�) are reachable in Aν , by repeating ρ.

As an example, consider Fig. 1. For the cycle ρ = e2e1 that starts at �2, we
have Pre∗ρ(�) = x, y ≤ 1∧ x− y ≤ 0, and Post∗(ρ)ν (�) = x, y ≤ 1 + ν ∧ x− y ≤ 0.
Since the point (0, 1) is reachable and belongs to Pre∗ρ, all states of Post

∗
(ρ)ν (�)

are reachable, and in particular (1, 1) from which the error state is reachable.
It is known that the above lemma does not hold for non-progress cycles; nev-

ertheless, it was shown that in this case, Post∗(ρ)ν (�) is an over-approximation of
the states reachable by repeating ρ under enlargement [11]. Thus, the algorithm
of [24,14] may have false negatives (may answer “not robust” even though it is)
but not false positives on timed automata with arbitrary cycles.

Conversely, it has been shown that any state that belongs to ∩ν>0Reach(Aν)
is reachable along an alternation of exact runs and repetitions of enlarged cycles.

Lemma 2 ([14]). Assume that q −→ q′ in Aν for all ν > 0. There exists a path
π0ρ0π1ρ0 . . . πn of A and states q = q0, q

′
0, q1, q

′
1, . . . , qn = q′, such that for all 0 ≤

i ≤ n− 1, and any ν > 0, qi
πi−→ q′i, q

′
i ∈ Pre∗ρi

(�), and qi+1 ∈ Post∗(ρi)ν (�).

Notice that the sequence of states q0, q
′
0, . . . is independent of ν > 0 in the above

lemma, and that the enlargement is only used in Post∗((ρ)i)ν (�).
The algorithms of [13,20] consist in a usual forward exploration on zones

augmented with the application of Lemma 1, by enumerating all cycles in a flat
timed automaton. This cannot be extended to general timed automata since the
cycles that appear in Lemma 2 are not necessarily simple. This has been a major
obstacle against general robust safety algorithms for timed automata.

4 Infinitesimally Enlarged DBMs

We define infinitesimally enlarged DBMs (IEDBM), a parameterized extension of
DBMs, which we will use to explore the state space of enlarged timed automata.
These were first defined in [14] to be used solely as a proof technique. Here, we
extend this data structure with additional properties and explicit computations
of the bounds on parameter δ, and show how it can be used to efficiently explore
the state space.

We fix a clock set C0 including the 0 clock. An infinitesimally enlarged DBM
(IEDBM) is a pair (M,P)〈0,δ0〉 where M is a DBM and P is a |C0| × |C0| matrix
over N, called the enlargement matrix. The value δ0 ∈ (0,∞) is an upper bound
on the unknown parameter δ. Intuitively, an IEDBM (M,P)〈0,δ0〉 represents the
set of DBMs M+νP where ν ∈ [0, δ0). Figure 2 shows an example. We often see,
abusively, an IEDBM as a matrix over pairs (m, p) ∈ Z×N. The component (x, y)
is denoted by (M,P)〈0,δ0〉[x, y]. For simplicity, we always consider the half-open
intervals of the form [0, δ0) even though ν can be chosen equal to δ0 in some cases.
This is not a loss of generality since we are interested in the small values of ν.

490 O. Sankur

⎛

⎝

0 x y

0 0 1 1
x 3 0 2
y 2 1 0

⎞

⎠+ δ

⎛

⎝
0 0 1
2 0 3
3 3 0

⎞

⎠

y

x

Fig. 2. An IEDBM (above) repre-
senting the parametric set 1 ≤ x ≤
3 + 2δ ∧ 1− δ ≤ y ≤ 2 + 3δ. The set
is represented (below) for δ = 0.15.

IEDBMs will allow us to reason on the
parametric state space of enlarged timed au-
tomata “for small values of δ”, which means
that our computations on the data structure
will hold for all ν ∈ [0, δ0), where δ0 >
0 is bound that is possibly updated to a
smaller value after each operation. For in-
stance, given sets Z1 = 1 ≤ x ≤ 2 + 3ν
and Z2 = x ≤ 3, for unknown δ, and as-
sume we want to compute their intersection.
We will write Z1 ∩ Z2 = 1 ≤ x ≤ 2 + 3δ
and chose δ0 ≤ 1

3 . To make these simplifica-
tions, we need to compare pairs of IEDBM
components in a similar spirit. For instance,
to make the above simplification, we write
(2, 3)〈0, 13 〉 ≤ (3, 0)〈0, 13 〉, which means that

2 + 3ν ≤ 3 for all ν ∈ [0, 13). We formal-
ize this in the next subsection. To ease reading, we may omit δ0 from IEDBMs
if it is clear from the context.

4.1 Operations on IEDBMs

We are now going to formalize the simplifications and the operations done on
IEDBMs. In order to use our data structure for parametric exploration, we need
to define basic operations on timed automata. Similar to DBMs, IEDBMs have
reduced forms. To define the reduction operations, we define the + and min
operations.

We define the sum as (m, p)〈0,δ0〉+(n, q)〈0,δ1〉 = (m+n, p+ q)〈0,min(δ0,δ1)〉. As
an example of this operation, assume that we have the constraints x−y ≤ 2+3δ,
and y ≤ 1+ δ with the respective upper bounds δ0 and δ1. Then, by summation,
we may deduce x ≤ 3 + 4δ with the upper bound δ2 = min(δ0, δ1).

Lemma 3. Given (m1, p1)〈0,δ1〉, (m2, p2)〈0,δ2〉, one can compute i ∈ {1, 2}, and
δ3 such that ∀ν ∈ [0, δ3), mi + νpi = min(m1 + νp1,m2 + νp2). We denote this
by (mi, pi)〈0,δ3〉 = min((m1, p1)〈0,δ1〉, (m2, p2)〈0,δ2〉).

We write (m1, p1)〈0,δ1〉 ≤ (m2, p2)〈0,δ2〉 iff min
(
(m1, p1)〈0,δ1〉, (m2, p2)〈0,δ2〉

)
=

(m1, p1)〈0,δ3〉 for some δ3; and (m1, p1)〈0,δ1〉 < (m2, p2)〈0,δ2〉 if m1 = m2∨p1 = p2.
Intuitively, just like in regular DBMs, we will use the minimum operation to

compute conjunctions of constraints. For instance, we already saw above that
x ≤ 2+3ν∧x ≤ 3 is simplified to x ≤ 2+3ν given ν ∈ [0, 13). This will be written
min

(
(2, 3)〈0,∞〉, (3, 0)〈0,∞〉) = (2, 3) 1

3
. It should be clear that for any Boolean

combination Φ of inequalities written between elements of the form (m, p)〈0,δ1〉,
one can compute, by Lemma 3, a bound δ0 such that either Φ[δ ← ν] holds for
all ν ∈ [0, δ0), or ¬Φ[δ ← ν] holds for all ν ∈ [0, δ0).

Symbolic Quantitative Robustness Analysis of Timed Automata 491

If different upper bounds on δ are given for two elements to be compared, then
we first update the bounds to the minimum of the two bounds. More generally,
we assume that all components of an IEDBM have the same bound δ0.

We say that an IEDBM (M,P)〈0,δ0〉 is reduced if for all x, y, z ∈ C0,
(M,P)〈0,δ0〉[x, y] ≤ (M,P)〈0,δ0〉[x, z]+(M,P)〈0,δ0〉[z, y]. IEDBMs can be reduced
by the usual Floyd-Warshall algorithm, using the above min and + operations:

Lemma 4. Any IEDBM (M,P)〈0,δ0〉 can be reduced in time O(|C0|3). Moreover,
if (M,P)〈0,δ0〉 is reduced, then for all ν ∈ [0, δ0), M + νP is a reduced DBM.

When we consider the complexity of minimization as in Lemma 3, we assume that
operations on rationals are elementary operations (i.e. they can be performed
in constant time). For a more precise analysis, one can incorporate the cost of
these computations; for instance, the reduction operation in the previous lemma
makes O(|C0|3) minimization operations, so as many operations on rationals.

We define the parametric inclusion by (M,P)〈0,δ1〉 � (N,Q)〈0,δ2〉 if, and only
if for all x, y ∈ C, (M,P)[x, y] ≤ (N,Q)[x, y].

Lemma 5. One can compute, given (N1, Q1)〈0,δ1〉, (N2, Q2)〈0,δ2〉, and R ⊆ C,
and in time O(|C|3),
– a reduced IEDBM (M,P)〈0,δ0〉, written (N1, Q1)〈0,δ1〉 � (N2, Q2)〈0,δ2〉, such

that M + νP = (N1 + νQ1) ∩ (N2 + νQ2) for all ν ∈ [0, δ0),
– a reduced IEDBM (M,P)〈0,δ0〉, written PResetR

(
(N1, Q1)〈0,δ1〉

)
, such that

M + νP = ResetR
(
N1 + νQ1

)
for all ν ∈ [0, δ0),

– a reduced IEDBM (M,P)〈0,δ0〉, written PPost≥0

(
(N1, Q1)〈0,δ2〉

)
, such that

M + νP = Post≥0

(
N1 + νQ1

)
for all ν ∈ [0, δ0).

We are going to define the parametric post operation along an edge e. By a
slight abuse of notation, we will see any (non-enlarged) guard g as the IEDBM
(g,0)〈0,∞〉. When we consider the enlargement (g)δ of a guard, this will also
refer to the corresponding IEDBM with δ0 = ∞. By combining these operations,
for a given edge e, we define PPoste

(
(M,P)〈0,δ0〉

)
= PPost≥0

(
PResetR

(
g �

(M,P)〈0,δ0〉
))
, where g is the guard of e, and R its reset set. By Lemma 5 this

corresponds to Poste
(
M + δP) for sufficiently small δ.

We refer to pairs of locations and IEDBMs as symbolic states. We extend
the parametric post operator to symbolic states by PPoste

(
(�, Z)

)
= (�′, Z ′)

where e = (�, g, R, �′), and Z ′ = PPoste
(
Z).

Lemma 6. For any sequence of edges e1 . . . en, and symbolic state (�, Z), if
PPost(e1)δ(e2)δ...(en−1)δ ((�, Z)) = (�′, Z ′), and (�′, Z ′) = ∅, then there exists δ0 >
0 such that for all ν ∈ [0, δ0), and state q′ ∈ (�′, Z ′)[δ ← ν], there exist q ∈
(�, Z)[δ ← ν] such that (�1, q)

(e1)ν ...(en−1)ν−−−−−−−−−−→ (�n, q
′).

Let the width of (M,P)〈0,δ0〉 be defined as width(M,P) = maxx,y∈C0 Px,y.

4.2 Parametric Abstractions

We will first recall some abstractions applied on zones in a non-parametric set-
ting, then generalize them to symbolic states described by IEDBMs.

492 O. Sankur

Closures and LU-abstraction. Let α : C → N be a bound function, and η a
granularity. The α, η-closure of a zone Z is the union of the α, η-regions which
intersects it. It is known that when α denotes the maximal constants to which
each clock is compared in a timed automaton A, and η the granularity of A, a
forward exploration based on α, η-closures is sound and complete [8]. However
because closures are not convex, other abstractions have been in use in practical
tools; one of them is LU-abstraction, where the idea is to relax some of the
facets of a zone taking into consideration the maximal constants that appear in
the guards of the timed automaton. We will recall the formal definition of LU-
abstraction by adapting it to DBMs with only non-strict inequalities by a slight
change. The correctness of the abstraction is preserved (proved in Lemma 7).

For a timed automaton A with granularity η, we define the two bound func-
tions L,U : C → Nη, called the LU-bounds where L(x) (resp. U(x)) is the largest
constant c such that the constraint x ≥ c (resp. x ≤ c) appears in some guard or
invariant. Given LU-bounds L,U , for any DBM M , we define M ′ = Extra+LU (M)
as follows.

M ′
x,y =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if Mx,y > L(x), or −M0,x > L(x)
∞ if −M0,y > U(y), x = 0
−U(y)− 1 if −M0,y > U(y), x = 0
Mx,y otherwise.

(1)

We recall the correctness of LU-abstractions and closures for reachability
properties. Given LU-bounds L,U we write α = max(L,U) for the function
α(x) = max(L(x), U(x)) for all x ∈ C.

Lemma 7. For any timed automaton A with granularity η, its LU-bounds L,U ,
and any path e1e2 . . . en and extended zone (�, Z), define q0 = q′0 = q′′0 = (�, Z),
and let for 0 ≤ i < n, qi+1 = Postei(qi), q

′
i+1 = Extra+LU (Postei(q

′
i)), and q′′i+1 =

Closureα,η(Extra
+
LU (q

′′
i)). Then, qn = ∅ ⇔ q′n = ∅ ⇔ q′′n = ∅.

One can thus explore the state space of a timed automaton while systematically
applying LU-abstraction at each step. In practice, one does not apply closures
since they do not yield convex sets. Nevertheless, a O(|C|2)-time algorithm was
given in [19] to decide whether M ⊆ Closureα(N). Thus, when the regular inclu-
sion test is replaced with the latter one, the exploration becomes equivalent to
an exploration using closures [19,8].

Parametric Closures and LU-abstraction. We would like to use these abstrac-
tions in our parametric setting. We will show how these sets can be computed
parametrically using IEDBMs. Observe that when we consider parametrically
enlarged timed automata, the LU-bounds also depend on δ. Let us denote the
parametric LU-bounds by Lδ(x) (resp. Uδ(x)) which is the maximum parametric
constant, in the sense of Lemma 3, which appears in the guards of Aδ as a lower
bound (resp. upper bound) on x. We define the parametric LU-abstraction, for
any IEDBM (M,P)〈0,δ0〉 by (M ′, P ′)〈0,δ1〉 = PExtra+LδUδ

((M,P)〈0,δ0〉) obtained

Symbolic Quantitative Robustness Analysis of Timed Automata 493

by applying (1) where M is replaced by (M,P), L and U by Lδ and Uδ re-
spectively. The new upper bound δ1 is computed so that all comparisons in (1)
hold.

Lemma 8. Consider any enlarged timed automaton Aδ and its parametric LU-
bounds Lδ, Uδ. For any (M,P)〈0,δ0〉, if we write (M ′, P ′)〈0,δ1〉 =

PExtra+LδUδ
((M,P)〈0,δ0〉), then for all ν ∈ [0, δ1), M

′+νP ′ = Extra+LU (M +νP).

Thus, LU-abstractions of enlarged zones have uniform representations for small δ.
For an enlarged timed automaton Aδ we define αδ = max(Lδ, Uδ). For ν > 0,

we will denote by αν the function obtained from αδ by instantiating δ to ν. By a
slight abuse of notation, we define the αν-closure of a zone as its (αν , η)-closure
where η is the granularity of Aν . Here A will be clear from the context, so there
will be no ambiguity. We now adapt the inclusion algorithm of [19] to IEDBMs.

Lemma 9. Given IEDBMs Z = (M,P)〈0,δ0〉 and Z ′ = (N,Q)〈0,δ0〉, we have
∀δ0 > 0, ∃ν ∈ [0, δ0),M + νP ⊆ Closureαν (N + νQ), iff, writing Z ′ = N + νQ,
there exist x, y ∈ C such that

1.
(
Z ′

x,0 < Zx,0 and Z ′
x,0 ≤ αδ(x)

)
, or

(
Z ′

0,x < Z0,x and Z0,x + αδ(x) ≥ 0
)
,

2. or Z0,x + αδ(x) ≥ 0, and Z ′
y,x < Zy,x, and Z ′

y,x ≤ αδ(y) + Z0,x.

Moreover, if this condition doesn’t hold, then one can compute δ1 under which
we do have the inclusion M + νP ⊆ Closureαν (N + νQ).

Notation 10 . We denote the successor operation followed by LU-abstraction as
ExPost(·) = Extra+LU (Post(·)). For the parametric version, we denote PExPost(·)
= PExtra+LδUδ

(PPost(·)), where the bounds Lδ, Uδ are implicit. We furthermore
denote by �c the parametric inclusion check defined by Lemma 9.

We implicitly assume that when a parametric inclusion check �c is performed,
the upper bound δ0 is globally updated to the new bound δ1 given by Lemma 9.

4.3 Parametric Cycle Acceleration

In [20] a parametric data structure based on the parameterized DBMs of [3] was
used to represent the state space under all values of δ rather than for small
values. The corresponding algorithms are based on linear arithmetics of reals.
This results in a more complicated data structure which is also more general.
IEDBMs simplify this representation by storing the state space only for small
values of δ, that is δ ∈ [0, δ0). To compute cycle accelerations, we recall a result
of [20] which bounds the number of iterations to compute pre and post fixpoints
of a given cycle.

Lemma 11 ([20]). Let N = |C|2. For any cycle ρ, if PPost∗(ρ)δ (�) = ∅ then

PPost∗(ρ)δ (�) = PPostN(ρ)δ (�), and if PPre∗ρ(�) = ∅ then PPre∗ρ(�) = PreNρ (�).

494 O. Sankur

Data: Timed automaton A = (L, Inv, �0, C, E), and target location �T .
1 Wait := {(�0, Z0)〈∞〉}, Passed := ∅, (�0, Z0).K := K0;
2 while Wait �= ∅ do
3 (�, Z) := pop(Wait), Add (�,Z) to Passed;
4 if � = �T then return Unsafe;
5 if width(Z) > (�, Z).K then
6 Let π denote the prefix that ends in (�,Z), along edges e1e2 . . . e|π|−1;
7 foreach cycle ρ = eiei+1 . . . ej do
8 if PPre∗ρ(�) ∩ πi �= ∅ and ∀q ∈ Passed, PPost∗(ρ)δ (�) �
c q then

9 Add PPost∗(ρ)δ (�) as a successor to πj , and to Wait;

10 end

11 end
12 if no fixpoint was added then (�, Z).K = (�, Z).K +K0 ;

13 foreach e ∈ E(�) s.t. ∀q ∈ Passed, PExPosteδ ((�,Z)) �
c q do
14 (�′, Z′) := PExPosteδ ((�, Z);
15 Add (�′, Z′) to Wait;
16 (�′, Z′).parent := (�, Z);
17 (�′, Z′).K := (�, Z).K;

18 end

19 end
20 return Safe;
Algorithm 1. Symbolic robust safety semi-algorithm. Here (�0, Z0) is the initial

state symbolic state, and K0 is a positive constant. We have two containers Wait

and Passed storing symbolic states. The search tree is formed by assigning to each

visited state (�, Z) a parent denoted (�,Z).parent (Line 16). We also associate to

each symbolic state a bound K on width, denoted (�, Z).K.

5 Symbolic Robust Safety

Our semi-algorithm consists of a zone-based exploration with IEDBMs using the
parametric LU-abstraction and the inclusion algorithm �c of Lemma 9. It is easy
to see that an exploration based on IEDBMs may not terminate in general (see
e.g. Fig. 1). Nevertheless, we apply acceleration on well chosen cycles while it
is exploring the state space, and it terminated in most of our experiments. To
choose the cycles to accelerate, we adopt a lazy approach: we fix a bound K,
and run the forward search using IEDBMs until the target is reached or some
symbolic state has width greater than K. In the latter case, we examine the
prefix of the current state, and accelerate its cycles by Lemma 1. If no new
state is obtained, then we increment the bound K for the current branch and
continue the exploration. We thus interpret a large width as the accumulation
of imprecisions due to cycles. No cycle may be responsible for a large width, in
which case we increase the width threshold and continue the exploration.

We establish the correctness of our semi-algorithm in the following lemma.
When it answers Unsafe, it has found a path that ends in the target state, and
the proof shows that such a run exists in all Aν for ν > 0. If it answers Safe,
then it has terminated without visiting the target state. If δ0 denotes the upper

Symbolic Quantitative Robustness Analysis of Timed Automata 495

bound on δ after termination, the proof shows that for all ν ∈ [0, δ0), an exact
exploration applied on Aν would visit the same symbolic states as our algorithm
when the IEDBMs are instantiated with δ ← ν. In other words, the exploration
search tree uniformly represents all the search trees that would be generated by
an exact algorithm applied on Aν for ν ∈ [0, δ0).

Lemma 12 (Correctness). For any timed automaton A and location �T , if
Algorithm 1 answers Unsafe then for all ν > 0, �T is reachable in Aν from the
initial state. If it answers Safe, then if δ0 denotes the upper bound on δ after
termination, then for all ν ∈ [0, δ0), Aν does not visit �T .

6 Experimental Evaluation

In this section, we evaluate the performance of our semi-algorithm on sev-
eral benchmarks from the literature; most of which are available from
www.uppaal.org, and have been considered in [21], with the exception of
the scheduling tests (Sched *) which were constructed from the experiments
of [17]. We implemented Alg. 1 in OCaml in a tool called Symrob (symbolic
robustness, available from www.ulb.ac.be/di/verif/sankur). We consider two
other competing algorithms: the first one is the recently published tool Verifix [21]
which solves the infinitesimal robust safety problem but does not output any
bound on δ. The second algorithm is our implementation of a binary search on the
values of δ which iteratively calls an exact model checker until a given precision
is reached.

The exact model checking algorithm is a forward exploration with DBMs
using LU extrapolation and the inclusion test of [19] implemented in Symrob.
We do not use advanced tricks such as symmetry reduction, federations of zones,
and clock decision diagrams; see e.g. [4]. The reason is that our goal here is
to compare algorithms rather than software tools. These optimizations could
be added to the exact model checker but also to our robust model checker (by
adapting to IEDBMs), but we leave this for future work.

In Table 1, the number of visited symbolic states (as IEDBMs for Symrob

and as DBMs for Verifix) and the running times are given. On most bench-
marks Symrob terminated faster and visited less states. We also note that Symrob
actually computed the largest δ below which safety holds for the benchmarks
CSMA/CD and Fischer. One can indeed check that syntactically enlarging the
guards by 1/3 (resp. 1/2) makes the respective classes of benchmarks unsafe (Re-
call that the upper bound δ0 is always strict in IEDBMs). On one benchmark,
Verifix wrongly classified the model as non-robust, which could be due to a
bug or to the presence of non-progress cycles in the model (see [11]).

Table 2 shows the performance of the binary search for varying precision
ε ∈ { 1

10 ,
1
20 ,

1
40}. With precision 1

10 , the binary search was sometimes faster than
Symrob (e.g. on CSMA/CD), and sometimes slower (e.g. Fischer); moreover,
the computed value of δ was underestimated in some cases (e.g. CSMA/CD
and Fischer benchmarks). With precision 1

20 , more precision was obtained on δ
but at a cost of an execution time that is often worse than that of Symrob

www.uppaal.org
www.ulb.ac.be/di/verif/sankur

496 O. Sankur

Table 1. Comparison between Symrob (breadth-first search, instantiated with K0 =
10) and Verifix [21]. The running time of the exact model checking implemented in
Symrob is given for reference in the column “Exact” (the specification was satisfied
without enlargement in all models). Note that the visited number of states is not
always proportional to the running time due to additional operations performed for
acceleration in both cases. The experiments were performed on an Intel Xeon 2.67
GHz machine.

Benchmark Robust – δ Visited States Time

Symrob Verifix Symrob Verifix Symrob Verifix Exact

CSMA/CD 9 Yes – 1/3 Yes 147,739 1,064,811 61s 294s 42s

CSMA/CD 10 Yes – 1/3 Yes 398,354 846,098 202s 276s 87s

CSMA/CD 11 Yes – 1/3 Yes 1,041,883 2,780,493 12m 26m 5m

Fischer 7 Yes – 1/2 Yes 35,029 81,600 11s 12s 6s

Fischer 8 Yes – 1/2 Yes 150,651 348,370 45s 240s 24s

Fischer 9 Yes – 1/2 Yes 627,199 1,447,313 4m 160m 2m20s

MutEx 3 Yes – 1000/11 Yes 37,369 984,305 3s 131s 3s

MutEx 4 No No 195,709 146,893 16s 41s 4s

MutEx 4 fixed Yes – 1/7 – 5,125,927 – 38m >24h 7m

Lip Sync – No – 29,647,533 >24h 14h 5s

Sched A Yes – 1/4 No* 9,217 16,995 11s 248s 2s

Sched B No – 50,383 – 105s >24h 40s

Sched C No No 5,075 5,356 3s 29s 2s

Sched D No No 15,075 928 2s 0.5s 0.5s

Sched E No No 31,566 317 5s 0.5s 0.5s

Table 2. Performance of binary search where the initial enlargement is 8, and the
required precision ε is either 1/10, 1/20 or 1/40. Note that when the model is not
robust, the binary search is inconclusive. Nonetheless, in these cases, we do know that
the model is unsafe for the smallest δ for which we model-checked the model. In these
experiments the choice of the initial condition (here, δ = 8) wasn’t significant since the
first iterations always took negligeable time compared to the case δ < 1.

Benchmark Robust – δ Visited States Time

ε = 1/10 ε = 1/20 ε = 1/10 ε = 1/20 ε = 1/10 ε = 1/20 ε = 1/40

CSMA/CD 9 Yes – 1/4 Yes – 5/16 151,366 301,754 43s 85s 123s

CSMA/CD 10 Yes – 1/4 Yes – 5/16 399,359 797,914 142s 290s 428s

CSMA/CD 11 Yes – 1/4 Yes – 5/16 1,043,098 2,085,224 8m20s 17m 26m

Fischer 7 Yes – 3/8 Yes – 7/16 75,983 111,012 15s 21s 31s

Fischer 8 Yes – 3/8 Yes – 7/16 311,512 462,163 53s 80s 129s

Fischer 9 Yes – 3/8 Yes – 7/16 1,271,193 1,898,392 5m 7m30s 12m

MutEx 3 Yes – 8 Yes – 8 37,369 37,369 2s 2s 2s

MutEx 4 Inconclusive 1,369,963 1,565,572 1m5s 1m15s 1m30s

MutEx 4 fix’d Yes – 5/8 Yes – 9/16 6,394,419 9,864,904 9m30s 17m 25m

Lip Sync Inconclusive – – >24h >24h >24h

Sched A Yes – 7/16 Yes – 15/32 27,820 37,101 6s 9s 11s

Sched B Inconclusive 109,478 336,394 35s 140s 20m

Sched C Inconclusive 10,813 36,646 2s 6s 56s

Sched D Inconclusive 27,312 182,676 2s 9s 60s

Sched E Inconclusive 98,168 358,027 6s 17s 95s

Symbolic Quantitative Robustness Analysis of Timed Automata 497

and systematically more states to visit. Increasing the precision to 1
40 leads to

even longer execution times. On non-robust models, a low precision analysis is
often fast, but since the result is inconclusive, one rather increases the precision,
leading to high execution times. The binary search can be made complete by
choosing the precision exponentially small [11] but this is too costly in practice.

7 Conclusion

We presented a symbolic procedure to solve the quantitative robust safety prob-
lem for timed automata based on infinitesimally enlarged DBMs. A good per-
formance is obtained thanks to the abstraction operators we lifted to the para-
metric setting, and to the lazy approach used to accelerate cycles. Although no
termination guarantee is given, we were able to treat several case studies from
the literature, demonstrating the feasability of robustness verification, and the
running time was often comparable to that of exact model checking. Our exper-
iments show that binary search is often fast if run with low precision; however,
as precision is increased the gain of a parametric analysis becomes clear. Thus,
both approaches might be considered depending on the given model.

An improvement over binary search for a problem of refinement in timed
games is reported in [23]; this might be extended to our problem as well. Both
our tool and Verifix fail when a large number of cycles needs to be accelerated,
and this is difficult to predict. An improvement could be obtained by combining
our lazy acceleration technique using the combined computation of the cycles
of [21]. An extension to LTL objectives could be possible using [9].

References

1. Altisen, K., Tripakis, S.: Implementation of timed automata: An issue of semantics
or modeling? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 273–288. Springer, Heidelberg (2005)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for parametric rea-
soning about counter and clock systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 419–434. Springer, Heidelberg (2000)

4. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.:
Uppaal implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT
2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)

5. Behrmann, G., Bouyer, P., Larsen, K.G., Pelanek, R.: Lower and upper bounds
in zone-based abstractions of timed automata. Int. J. Softw. Tools Technol.
Transf. 8(3), 204–215 (2006)

6. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST 2006, pp. 125–126 (2006)

7. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS,
vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

498 O. Sankur

8. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in
System Design 24(3), 281–320 (2004)

9. Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of linear-time prop-
erties in timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)

10. Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via
channel machines. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp.
157–171. Springer, Heidelberg (2008)

11. Bouyer, P., Markey, N., Sankur, O.: Robust model-checking of timed automata via
pumping in channel machines. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS
2011. LNCS, vol. 6919, pp. 97–112. Springer, Heidelberg (2011)

12. Bozga, M., Graf, S., Mounier, L.: If-2.0: A validation environment for component-
based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 343–348. Springer, Heidelberg (2002)

13. Daws, C., Kordy, P.: Symbolic robustness analysis of timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 143–155. Springer,
Heidelberg (2006)

14. DeWulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata.
Formal Methods in System Design 33(1-3), 45–84 (2008)

15. De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models
to timed implementations. Formal Aspects of Computing 17(3), 319–341 (2005)

16. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

17. Geeraerts, G., Goossens, J., Lindström, M.: Multiprocessor schedulability of
arbitrary-deadline sporadic tasks: Complexity and antichain algorithm. Real-Time
Systems. The International Journal of Time-Critical Computing Systems 48(2)
(2013)

18. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler,
O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)

19. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approxi-
mations for efficient analysis of timed automata. In: FSTTCS 2011, pp. 78–89 (2011)

20. Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed au-
tomata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 229–244.
Springer, Heidelberg (2011)

21. Kordy, P., Langerak, R., Mauw, S., Polderman, J.W.: A symbolic algorithm for the
analysis of robust timed automata. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.)
FM 2014. LNCS, vol. 8442, pp. 351–366. Springer, Heidelberg (2014)

22. Larsen, K.G., Legay, A., Traonouez, L.-M., W ↪asowski, A.: Robust specification
of real time components. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011.
LNCS, vol. 6919, pp. 129–144. Springer, Heidelberg (2011)

23. Legay, A., Traonouez, L.-M.: pyEcdar: Towards open source implementation for
timed systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172,
pp. 460–463. Springer, Heidelberg (2013)

24. Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Sys-
tems 10(1-2), 87–113 (2000)

25. Swaminathan, M., Franzle, M.: A symbolic decision procedure for robust safety of
timed systems. In: TIME 2007, pp. 192–192 (2007)

26. Swaminathan, M., Fränzle, M., Katoen, J.-P.: The surprising robustness of (closed)
timed automata against clock-drift. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong,
L. (eds.) IFIP TCS 2008. IFIP, vol. 273, pp. 537–553. Springer, Heidelberg (2008)

Program Synthesis

Pattern-Based Refinement of Assume-Guarantee

Specifications in Reactive Synthesis�

Rajeev Alur, Salar Moarref, and Ufuk Topcu

University of Pennsylvania, Philadelphia, USA
{alur,moarref,utopcu}@seas.upenn.edu

Abstract. We consider the problem of compositional refinement of com-
ponents’ specifications in the context of compositional reactive synthe-
sis. Our solution is based on automatic refinement of assumptions and
guarantees expressed in linear temporal logic (LTL). We show how be-
haviors of the environment and the system can be inferred from counter-
strategies and strategies, respectively, as formulas in special forms called
patterns. Instantiations of patterns are LTL formulas which hold over all
runs of such strategies, and are used to refine the specification by adding
new input assumptions or output guarantees. We propose three different
approaches for compositional refinement of specifications, based on how
much information is shared between the components, and demonstrate
and compare the methods empirically.

1 Introduction

Given a specification in a formal language such as linear temporal logic (LTL),
reactive synthesis problem is to find a finite-state system that satisfies the spec-
ification, no matter how its environment behaves. The synthesis problem can be
viewed as a game between two players: the system and its environment. The sys-
tem attempts to satisfy the specification, while its environment tries to violate
it. The specification is realizable, if there is a system that can satisfy it. Other-
wise, a counter-strategy can be computed for the environment which describes
the way it can behave so that no system can satisfy the specification.

The reactive synthesis problem is known to be intractable for general LTL
specifications [1]. However, there are fragments of LTL, such as Generalized
Reactivity(1) (GR(1)), for which the realizability and synthesis problems can
be solved in polynomial time in the number of states of the reactive system
[2]. Yet scalability is a big challenge as increasing the number of formulas in a
specification may cause an exponential blowup in the size of its state space [2].
Compositional synthesis techniques can potentially address this issue by solving
the synthesis problem for smaller components and merging the results such that
the composition satisfies the specification. The challenge is then to find proper
decompositions and assumptions-guarantees such that each component is realiz-
able, its expectations of its environment can be discharged on the environment

� This research was partially supported by NSF Expedition in Computing project
ExCAPE (grant CCF 1138996) and AFOSR (grant number FA9550-12-1-0302).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 501–516, 2015.
DOI: 10.1007/978-3-662-46681-0_49

502 R. Alur, S. Moarref, and U. Topcu

and other components, and circular reasoning is avoided, so that the local con-
trollers can be implemented simultaneously and their composition satisfies the
original specification [3].

We study the problem of compositional refinement of components’ specifica-
tions in the context of compositional reactive synthesis. We consider the special
case in which the system consists of two components C1 and C2 and that a global
specification is given which is realizable and decomposed into two local specifi-
cations, corresponding to C1 and C2, respectively. Furthermore, we assume that
there is a serial interconnection between the components [3], i.e., only the output
variables of C2 depend on those of C1. We are interested in computing refine-
ments such that the refined local specifications are both realizable and when
implemented, the resulting system satisfies the global specification.

Our solution is based on automated refinement of assumptions and guarantees
expressed in LTL. In [4] we showed how an unrealizable specification can be
refined by adding assumptions on its environment. The core of the method is the
synthesis of a set of LTL formulas of special form, called patterns, which hold over
all runs of an abstraction of the counter-strategy computed for the unrealizable
specification. If the local specification for a component C2 is unrealizable, we
refine its environment assumptions, while ensuring that the other component C1

can indeed guarantee those assumptions. To this end, it is sometimes necessary
to refine C1’s specification by adding guarantees to it. We extend the methods
in [4] to be able to refine guarantees as well as assumptions.

The main contributions of the paper are as follow. We extend our work in
[4] in several aspects. We improve the scalability of the methods proposed in
[4] by showing how a more compact abstraction can be constructed for counter-
strategies and strategies. We extend the forms of patterns that can be synthe-
sized, and show how a similar technique for refining unrealizable specifications
can be used to refine the requirements of the system. We propose three differ-
ent approaches that can be used to refine the specifications of the components
in the context of compositional synthesis. Intuitively, these approaches differ in
how much information about one component is shared with the other one. We
show that providing more knowledge of one component’s behavior for the other
component can make it significantly easier to refine the local specifications, with
the expense of increasing the coupling between the components. We illustrate
and compare the methods with examples and a case study.

Related Work. The problem of refining the environment assumptions is also
considered in [5,6]. Synthesizing distributed systems from global specification is
a hard problem [7]. However, distributed controller synthesis algorithms exists
for special architectures [8]. Assume-guarantee synthesis problem is considered
in [9] and solved by computing secure-equilibrium strategies. We use a different
approach for refining the specifications which is based on strategies and counter-
strategies.

Pattern-Based Refinement of Assume-Guarantee Specifications 503

2 Preliminaries

Let P be the set of atomic propositions (Boolean variables) partitioned into input
I and output O propositions. Linear temporal logic (LTL) is a formal specifi-
cation language with two types of operators: logical connectives (¬ (negation),
∨ (disjunction), ∧ (conjunction), and → (implication)) and temporal operators
(e.g., © (next), � (eventually), and � (always)). An LTL formula is interpreted
over infinite words w ∈ (2P)ω. The language of an LTL formula φ, denoted by
L(φ), is the set of infinite words that satisfy φ, i.e., L(φ) =

{
w ∈ (2P)ω | w |= φ

}
.

We assume some familiarity of the reader with LTL. In this paper, We consider
GR(1) specifications which are of the form φ = φe → φs, where φα for α ∈ {e, s}
can be written as a conjunction of the following parts:

– φα
i : A Boolean formula over I if α = e and over I∪O otherwise, characterizing

the initial state.
– φα

g : A formula of the form
∧

i��Bi characterizing fairness/liveness, where
each Bi is a Boolean formula over I ∪O.

– φα
t : An LTL formula of the form

∧
i�ψi characterizing safety and transition

relations, where ψi is a Boolean formula over expressions v and ©v′ where
v ∈ I ∪O and, v′ ∈ I if α = e and v′ ∈ I ∪O if α = s.

Intuitively, φe indicates the assumptions on the environment and φs characterizes
the requirements of the system. Any correct implementation that satisfies the
specification guarantees to satisfy φs, provided that the environment satisfies φe.

A labeled transition system (LTS) is a tuple T = 〈Q,Q0, δ,L〉 where Q is a
finite set of states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q × Q is a transition
relation, and L : Q → φ is a labeling function which maps each state to a
propositional formula φ =

∧
i lpi expressed as a conjunction of literals lpi over

propositions pi ∈ P . The projection of a label φ with respect to a set of variables
U ⊆ P is defined as the propositional formula φ↓U where any literal �pi over
pi ∈ P\U in φ is replaced by True, i.e., φ↓U only contains the variables from U .
A run of an LTS is an infinite sequence of states σ = q0q1q2... where q0 ∈ Q0

and for any i ≥ 0, qi ∈ Q and (qi, qi+1) ∈ δ. The language of an LTS T is defined
as the set L(T) = {w ∈ Qω | w is a run of T }, i.e., the set of (infinite) words
generated by the runs of T .

A Moore transducer is a tuple M = (S, s0, I,O, δ, γ), where S is a set of
states, s0 ∈ S is an initial state, I = 2I is the input alphabet, O = 2O is the
output alphabet, δ : S × I → S is a transition function and γ : S → O is
a state output function. A Mealy transducer is similar, except that the state
output function is γ : S × I → O. For an infinite word w ∈ Iω , a run of
M is an infinite sequence σ ∈ Sω such that σ0 = s0 and for all i ≥ 0 we
have σi+1 = δ(σi, ωi). The run σ on input word w produces an infinite word
M(w) ∈ (2P)ω such that M(w)i = γ(σi) ∪ wi for all i ≥ 0. The language of M
is the set L(M) = {M(w) | w ∈ Iω} of infinite words generated by runs of M .

An LTL formula φ is satisfiable if there exists an infinite word w ∈ (2P)ω such
that w |= φ. A Moore (Mealy) transducer M satisfies an LTL formula φ, written
as M |= φ, if L(M) ⊆ L(φ). An LTL formula φ is Moore (Mealy) realizable

504 R. Alur, S. Moarref, and U. Topcu

if there exists a Moore (Mealy, respectively) transducer M such that M |= φ.
The realizability problem asks whether there exists such a transducer for a given
φ. Given an LTL formula φ over P and a partitioning of P into I and O, the
synthesis problem is to find a Mealy transducer M with input alphabet I = 2I

and output alphabet O = 2O that satisfies φ. A counter-strategy for the synthesis
problem is a strategy for the environment that can falsify the specification, no
matter how the system plays. Formally, a counter-strategy can be represented by
a Moore transducer Mc = (S′, s′0, I ′,O′, δ′, γ′) that satisfies ¬φ, where I ′ = O
and O′ = I are the input and output alphabet for Mc which are generated by
the system and the environment, respectively.

For a specification φ = φe → φs, we define an assumption refinement ψe =∧
i ψei as a conjunction of a set of environment assumptions such that (φe∧ψe) →

φs is realizable. Similarly, ψs =
∧

i ψsi is a guarantee refinement if φe → (φs∧ψs)
is realizable. An assumption refinement ψe is consistent with φ if φe ∧ ψe is
satisfiable. Note that an inconsistent refinement φe ∧ ψe = False, leads to an
specification which is trivially realizable, but neither interesting nor useful.

3 Overview

Assume a global LTL specification is given which is realizable. Furthermore, as-
sume the system consists of a set of components, and that a decomposition of
the global specification into a set of local ones is given, where each local speci-
fication corresponds to a system component. The decomposition may result in
components whose local specifications are unrealizable, e.g., due to the lack of
adequate assumptions on their environment. The general question is how to re-
fine the local specifications such that the refined specifications are all realizable,
and when implemented together, the resulting system satisfies the global speci-
fication. In this paper we consider a special case of this problem. We assume the
system consists of two components C1 and C2, where there is a serial intercon-
nection between the components [3]. Intuitively, it means that the dependency
between the output variables of the components is acyclic, as shown in Fig. 2.
Let I be the set of input variables controlled by the environment and O be the
set of output variables controlled by the system, partitioned into O1 and O2,
the set of output variables controlled by C1 and C2, respectively. Formally, we
define the problem as follows.

Problem Statement. Consider a realizable global specification φ = φe → φs.
We assume φ is decomposed into two local specifications φ1 = φe1 → φs1 and
φ2 = φe2 → φs2 such that φe → (φe1 ∧φe2) and (φs1 ∧φs2) → φs. We assume φe,
φs, φe1 , φs1 , φe2 , and φs2 are GR(1) formulas which contain variables only from
the sets I, I ∪O, I, I ∪O1, I ∪O1, and I ∪O, respectively. We would like to find
refinements ψ and ψ′ such that the refined specifications φref

1 = φe1 → (φs1 ∧ψ′)
and φref

2 = (φe2 ∧ ψ) → φs2 are both realizable and ψ′ → ψ is valid.

From Proposition 2 in [3] it follows that if such refinements exist, then the
resulting system from implementing the refined specifications satisfies the global

Pattern-Based Refinement of Assume-Guarantee Specifications 505

specification φ. We use this fact to establish the correctness of the decompo-
sition and refinements in our proposed solutions. As φ is realizable, and C1 is
independent from C2, it follows that φ1 (in case it is not realizable) can become
realizable by adding assumptions on its environment. Especially, providing all
the environment assumptions of the global specification for C1 is enough to make
its specification realizable. However, it might not be the case for φ2. In the rest
of the paper, we assume that φ1 is realizable, while φ2 is not. We investigate how
the strategy and counter-strategy computed for C1 and C2, respectively, can be
used to find suitable refinements for the local specifications.

Our solution is based on an automated refinement of assumptions and guaran-
tees expressed in LTL. In [4], we showed how an unrealizable specification can be
refined by adding assumptions on the environment. The refinement is synthesized
step by step guided by counter-strategies. When the specification is unrealizable,
a counter-strategy is computed and a set of formulas of the forms ��ψ, �ψ,
and �(ψ ∧ ©ψ′), which hold over all runs of the counter-strategy, is inferred.
Intuitively, these formulas describe potentially “bad” behaviors of the environ-
ment that may cause unrealizability. Their complements form the set of candi-
date assumptions, and adding any of them as an assumption to the specification
will prevent the environment from behaving according to the counter-strategy
(without violating its assumptions). We say the counter-strategy is ruled out
from the environment’s possible behaviors. Counter-strategy-guided refinement
algorithm in [4] iteratively chooses and adds a candidate assumption to the spec-
ification, and the process is repeated until the specification becomes realizable,
or the search cannot find a refinement within the specified search depth. The
user is asked to specify a subset of variables to be used in synthesizing candidate
assumptions. This subset may reflect the designer’s intuition on the source of
unrealizability and help search for finding a proper refinement.

In this paper, we extend the algorithms in [4] to refine the guarantees of a
specification. When the specification is realizable, a winning strategy can be
computed for the system. We can use patterns to infer the behaviors of the
strategies as LTL formulas. Formulas of the form ��ψ, �ψ, and �(ψ → ©ψ′)
can be used to infer implicit guarantees provided by the given strategy, i.e., they
can be added to the original specification as guarantees, and the same strategy
satisfies the new specification as well as the original one. These formulas can
be seen as additional guarantees a component can provide in the context of
compositional synthesis. Formulas of the form ��ψ, �ψ, and �(ψ ∧©ψ′) can
be used to restrict the system by adding their complements to the specifications
as guarantees. As a result, the current strategy is ruled out from system’s possible
strategies and hence, the new specification, if still realizable, will have a different
strategy which satisfies the original specification, and also provides additional
guarantees. Algorithm 1 shows how a set of additional guarantees P is computed
for the specification φ and subset of variables U . For the computed strategy
Ms, the procedure Infer-GR(1)-Formulas synthesizes formulas of the forms
��ψ,�ψ, and �(ψ → ©ψ′) which hold over all runs of the strategy. Similarly,
the procedure Infer-Complement-GR(1)-Formulas synthesizes formulas of

506 R. Alur, S. Moarref, and U. Topcu

Algorithm 1. FindGuarantees

Input: φ = φe → φs: a realizable specification, U : subset of variables
Output: P : A set of formulas ψ such that φe → (φs ∧ ψ) is realizable

1 Ms = ComputeStrategy(φ1);
2 P := Infer-GR(1)-Formulas(Ms, U);
3 P ′ := Infer-Complement-GR(1)-Formulas(Ms, U);
4 foreach ψ ∈ P ′ do
5 if (φe → (φs ∧ ¬ψ)) is realizable then
6 P = P ∪ ¬ψ ;

7 return P ;

1 2 3 4

5 6 7 8

Fig. 1. Room in Ex. 1 Fig. 2. Serial interconnection

1 2 3 5

6 7 8 10

11 12 13 14 15

16 18 19 20

21 23 24 25

Fig. 3. Grid-world for the
case study

the form ��ψ,�ψ, and �(ψ∧©ψ′). These procedures are explained in Sect. 4.
In what follows, we will use grid-world examples commonly used in robot motion
planning case studies to illustrate the concepts and techniques [10].

Example 1. Assume there are two robots, R1 and R2, in a room divided into
eight cells as shown in Fig. 1. Both robots must infinitely often visit the goal cell
4. Besides, they cannot be in the same cell simultaneously (no collision). Finally,
at any time step, each robot can either stay put or move to one of its neighbor
cells. In the sequel, assume i ranges over {1, 2}. We denote the location of robot
Ri with LocRi , and cells by their numbers. Initially LocR1 = 1 and LocR2 = 8.

The global specification is realizable. Note that in this example, all the vari-
ables are controlled and there is no external environment. Assume that the spec-
ification is decomposed into φ1 and φ2, where φi = φei → φsi is the local speci-
fication for Ri. Assume φe1 = True, and φs1 only includes the initial location of
R1, its transition rules, and its goal to infinitely often visit cell 4. φs2 includes
the initial location of R2, its transition rules, its objective to infinitely often visit
cell 4, while avoiding collision with R1. Here R1 serves as the environment for
R2 which can play adversarially. φe2 only includes the initial location of R1.

Inferring Formulas: φ1 is realizable. A winning strategy MS1 for R1 is to
move to cell 2 from the initial location, then to cell 3, and then to move back
and forth between cells 4 and 3 forever. The following are examples of formulas
inferred from this strategy: eventually always: ��(LocR1 ∈ {3, 4}), eventually:
�(LocR1 = 3), eventually next: �(LocR1 = 3∧©LocR1 = 4), always eventually:
��(LocR1 = 3), always: �(LocR1 ∈ {1, 2, 3, 4}), and always next: �(LocR1 =
2 → ©LocR1 = 3).

Pattern-Based Refinement of Assume-Guarantee Specifications 507

Refining Assumptions: Note that φ2 includes no assumption on R1 other
than its initial location. Specifically, φ2 does not restrict the way R1 can move.
The specification φ2 is unrealizable. A counter-strategy for R1 is to move from
cell 1 to the goal cell 4, and stay there forever, preventing R2 from fulfilling
its requirements. Using the method of [4] for refining the assumptions on the
environment, we find the refinements ψ1 = ��(LocR1 �= 4), ψ2 = �(LocR1 �= 4),
and ψ3 = �(LocR1 = 4 → ©LocR1 �= 4). Intuitively, these refinements suggest
that R1 is not present in cell 4 at some point during the execution. Adding any
of these formulas to the assumptions of φ2 makes it realizable.

Refining Guarantees: Formula ϕ = ��(LocR1 ∈ {3, 4}) is satisfied by MS1 ,
meaning that R1 eventually reaches and stays at the cells 3 and 4 forever. An
example of a guarantee refinement is to add the guarantee ¬ϕ to φ1. A winning
strategy for the new specification is to move back and forth in the first row
between initial and goal cells. That is, R1 has the infinite run (1, 2, 3, 4, 3, 2)ω.

We use these techniques to refine the interface specifications. We propose
three different approaches for finding suitable refinements, based on how much
information about the strategy of the realizable component is allowed to be
shared with the unrealizable component. The first approach has no knowledge
of the strategy chosen by C1, and tries to find a refinement by analyzing counter-
strategies. The second approach iteratively extracts some information from the
strategies computed for φ1, and uses them to refine the specifications. The third
approach encodes the strategy as a conjunction of LTL formulas, and provides
it as a set of assumptions for C2, allowing it to have a full knowledge of the
strategy. These approaches are explained in detail in Sect. 5.

Compositional Refinement: Assume MS1 is the computed strategy for R1.
The first approach, computes a refinement for the unrealizable specification, then
checks if the other component can guarantee it. For example, ψ3 is a candidate
refinement for φ2. φ1 can be refined by ψ3 added to its guarantees. The strategy
MS1 still satisfies the new specification, and refined specifications are both re-
alizable. Thus, the first approach returns ψ3 as a possible refinement. Using the
second approach, formula ψ4 = ��(LocR1 = 3) is inferred from MS1 . Refining
both specifications with ψ4 leads to two realizable specifications, hence ψ4 is
returned as a refinement. The third approach encodes MS1 as conjunction of

transition formulas ψ5 =
∧3

i=1 �(LocR1 = i → ©LocR1 = i + 1) ∧ �(LocR1 =
4 → ©LocR1 = 3). Refining assumptions of φ2 with ψ5 makes it realizable.

4 Inferring Behaviors as LTL Formulas

In this section we show how certain types of LTL formulas which hold over all
runs of a counter-strategy or strategy can be synthesized. The user chooses the
subset of variables U to be used in synthesizing the formulas. These formulas
are computed as follows: First an LTS T is obtained from the given Moore
(Mealy) transducer M which represents the counterstrategy (strategy, respec-
tively). Next, using the set U , an abstraction T a of T is constructed which is

508 R. Alur, S. Moarref, and U. Topcu

q0start q1 q2 q3

Fig. 4. An LTS T

qa0startstart qa1 qa2

Fig. 5. Abstract LTS T a of T

also an LTS. A set of patterns which hold over all runs of T a is then synthesized.
The instantiations of these patterns form the set of formulas which hold over all
runs of the input transducer. Next we explain these steps in more detail.

4.1 Constructing the Abstract LTS

We briefly show how an abstraction of a given strategy or counter-strategy is
obtained as an LTS. Given a Moore (Mealy) transducer M, first an LTS T =
(Q, {q0} , δT ,L) is obtained which keeps the structure of M while removing its
input and output details. The states of T are labeled in a way that is consistent
with the input/output valuations of M. Next, using a user-specified subset of
variables U ⊆ I ∪ O, an abstraction T a = (Qa, Qa

0 , δT a ,La) of T is computed
based on the state labels L. There is a surjective function F : Q → Qa which
maps each state of T to a unique state of T a. Intuitively, the abstraction T a

has a unique state for each maximal subset of states of T which have the same
projected labels with respect to U , and if there is a transition between two states
of T , there will be a transition between their mapped states in T a. It can be
shown that T a simulates T . Therefore, any formula ϕ which is satisfied by T a

is also satisfied by T .

Remark 1. Patterns can be synthesized from either T or T a. It is sometimes
necessary to use T a due to the high complexity of the algorithms for computing
certain types of patterns (e.g., eventually patterns), as T a may have significantly
less number of states compared to T which improves the scalability of the meth-
ods. However, abstraction may introduce additional non-determinism into the
model, leading to refinements which are more “conservative.” Besides, some of
the formulas which are satisfied by T , cannot be computed from T a. It is up to
the user to choose techniques which serve her purposes better.

4.2 Synthesizing Patterns

Next we discuss how patterns of certain types can be synthesized from the given
LTS T . A pattern ψP is an LTL formula which is satisfied over all runs of T , i.e.,
T |= ψP . We are interested in patterns of the forms ��ψP , �ψP , �(ψP ∧©ψ′

P),
��ψP , �ψP , and �(ψP → ©ψ′

P), where ψP and ψ′
P are propositional formulas

expressed as a disjunction of subset of states of T . Patterns are synthesized
using graph search algorithms which search for special configurations. For an
LTS T = (Q,Q0, δ,L), a configuration C ⊆ Q is a subset of states of T . A
configurationC is a ��-configuration where ��∈ {�,��,�,��} if T |=��

∨
q∈C q.

For example, C is an ��-configuration if any run of T always eventually visits

Pattern-Based Refinement of Assume-Guarantee Specifications 509

a state from C. A ��-configuration C is minimal, if there is no configuration
C′ ⊂ C which is an ��-configuration, i.e., removing any state from C leads to a
configuration which is not a ��-configuration anymore. Minimal ��-configurations
are interesting since they lead to the strongest patterns of ��-form [4]. Algorithms
for computing ��ψP , �ψP , and �(ψP ∧ ©ψ′

P) patterns can be found in [4].
Here we give algorithms for computing patterns of the forms in GR(1).

��ψP Patterns: The following theorem establishes the complexity of com-
puting all minimal always eventually patterns over a given LTS.

Theorem 1. Computing all minimal ��-configurations is NP-hard.1

Consequently, computing all minimal (always) eventually patterns is infeasible
in practice even for medium sized specifications. We propose an alternative al-
gorithm which computes some of the always eventually patterns.2 Although the
algorithm has an exponential upper-bound, it is simpler and terminates faster in
our experiments, as it avoids enumerating all configurations. It starts with the
configuration {q0}, and at each step computes the next configuration, i.e., the
set of states that the runs of T can reach at the next step from the current con-
figuration. A sequence C0, C1, ..., Cj of configurations is discovered during the
search, where C0 = {q0} and j ≥ 0. The procedure terminates when a configura-
tion Ci is reached which is already visited, i.e., there exists 0 ≤ j < i such that
Cj = Ci. There is a cycle between Cj and Ci−1 and thus, all the configurations
in the cycle will always eventually be visited over all runs of T .

�ψP Pattern: For a given LTS T , a safety pattern of the form �ψ is synthe-
sized where ψ is simply the disjunction of all the states in T , i.e., ψ =

∨
q∈Q q.

It is easy to see that removing any state from ψ leads to a formula which is not
satisfied by T anymore. The synthesis procedure is of complexity O(|Q|).

�(ψP → ©ψ′
P) Patterns: For a given LTS T , a set of transition patterns of

the form �(ψ → ©ψ′) is synthesized. Each ψ consists of a single state q ∈ Q,
for which the ψ′ is disjunction of its successors, i.e. ψ′ =

∨
q′∈Next(q) q

′ where
Next(q) = {q′ ∈ Q | δ(q) = q′}. Intuitively, each transition pattern states that
always when a state is visited, its successors will be visited at the next step. The
synthesis procedure is of complexity O(|Q| + |δ|).

4.3 Instantiating the Patterns

To obtain LTL formulas over a specified subset U of variables from patterns, we
replace the states in patterns by their projected labels. For example, from an
eventually pattern �ψP = �(

∨
q∈QψP

q) where QψP ⊆ Q is a configuration for

T = (Q, {q0} , δ,L), we obtain the formula ψ = �(
∨

q∈QψP
L(q)↓U).

Example 2. Let Σ = {a, b, c} be the set of variables. Consider the LTS T shown
in Fig. 4, where L(q0) = ¬a∧¬b∧¬c, L(q1) = ¬a∧ b∧¬c, L(q2) = a∧¬b∧¬c,
L(q3) = ¬a ∧ b ∧ ¬c. Let U = {a, b} be the set of variables specified by the

1 Computing all minimal eventually patterns is also NP-hard
2 We use a similar algorithm for computing some of the eventually patterns.

510 R. Alur, S. Moarref, and U. Topcu

designer to be used in all forms of formulas. Figure 5 shows T a which is an
abstraction of T with respect to U , where the mapping function F is defined
such that F−1(qa0) = {q0}, F−1(qa1) = {q1, q3}, and F−1(qa2) = {q2}, and the
labels are defined as L(qa0) = ¬a ∧ ¬b, L(qa1) = ¬a ∧ b, and L(qa2) = a ∧ ¬b. A
set of patterns are synthesized using the input LTS. For example, ψP = �(qa1)
is an eventually pattern where T a |= ψP , meaning that eventually over all runs
of the T a the state qa1 is visited. An LTL formula is obtained using the patterns,
labels and specified subset of variables. For example, ψ = �(¬a ∧ b) is obtained
from the pattern ψP , where the states qa1 is replaced by its label. Note that
the formula ψ′ = �((¬a ∧ b) ∧©(a ∧ ¬b)) can be synthesized from the pattern
ψ′
P = �(q1∧©q2) from T , however, T a does not satisfy ψ′. A more conservative

formula �((¬a ∧ b) ∧©((a ∧¬b) ∨ (¬a ∧ ¬b)) is obtained using the abstraction.

5 Compositional Refinement

We propose three approaches for compositional refinement of the specifications
φ1 and φ2 in the problem stated in Sect. 3. These approaches differ mainly in how
much information about the strategy of the realizable component is shared with
the unrealizable component. All three approaches use bounded search to compute
the refinements. The search depth (number of times the refinement procedure can
be called recursively) is specified by the user. Note that the proposed approaches
are not complete, i.e., failure to compute a refinement does not mean that there
is no refinement.

Approach 1 (“No Knowledge of the Strategy of C1”): One way to synthe-
size the refinements ψ and ψ′ is to compute a refinement ψ′ for the unrealizable
specification φ2 using the counter-strategy-guided refinement method in [4]. The
specification φ2 is refined by adding assumptions on its environment that rule
out all the counter-strategies for φ2, as explained in Sect. 3, and the refined
specification φref

2 = (φe1 ∧ψ′) → φs1 is realizable. We add ψ = ψ′ to guarantees

of φ1 and check if φref
1 is realizable. If φref

1 is not realizable, another assump-
tion refinement for φ2 must be computed, and the process is repeated for the
new refinement. Note that if adding ψ to the guarantees of φ1 does not make it
realizable, there is no ψ′′ such that ψ′′ → ψ, and adding ψ′′ keeps φ1 realizable.
Therefore, a new refinement must be computed.

An advantage of this approach is that the assumption refinement ψ′ for φ2

is computed independently using the weakest assumptions that rule out the
counter-strategies. Thus, ψ′ can be used even if C1 is replaced by another com-
ponent C′

1 with different specification, as long as C′
1 can still guarantee ψ′.

Approach 2 (“Partial Knowledge of the Strategy of C1”): For a given
counter-strategy, there may exist many different candidate assumptions that can
be used to refine the specification. Checking the satisfiability and realizability of
the resulting refined specification is an expensive process, so it is more desirable
to remove the candidates that are not promising. For example, a counter-strategy
might represent a problem which cannot happen due to the strategy chosen by

Pattern-Based Refinement of Assume-Guarantee Specifications 511

the other component. Roughly speaking, the more one component knows about
the other one’s implementation, the less number of scenarios it needs to con-
sider and react to. The second approach shares information about the strategy
synthesized for C1 with C2 as follows. It computes a set P of candidate LTL
formulas which can be used to refine guarantees of φ1. Then at each iteration,
a formula ψ ∈ P is chosen, and it is checked if the counter-strategy for φ2 sat-
isfies ¬ψ (similar to assumption mining in [5]). If it does and ψ is consistent
with φ2, it is checked if ψ is an assumption refinement for φ2, in which case
ψ can be used to refine the guarantees (assumptions) of φ1 (φ2 , respectively),
and ψ is returned as a suggested refinement. Otherwise, the local specifications
are refined by ψ and the process is repeated with the new specifications. In this
approach, some information about C1’s behavior is shared as LTL formulas ex-
tracted from the C1’s strategy. Only those formulas which completely rule out
the counter-strategy are kept, hence reducing the number of candidate refine-
ments, and keeping the more promising ones, while sharing as much information
as needed from one component to the other one.

Approach 3 (“Full Knowledge of the Strategy of C1”) It might be pre-
ferred to refine the specification by adding formulas that are already satisfied by
the current implementation of the realizable component in order not to change
the underlying implementation. For example, assume a strategy MS is already
computed and implemented for φ1, and the designer prefers to find a refinement
ψ that is satisfied by MS. Yet in some cases, the existing strategy for C1 must be
changed, otherwise C2 will not be able to fulfill its requirements. In this setting,
the guarantees of C1 can be refined to find a different winning strategy for it.
The third approach is based on this idea. It shares the full knowledge of strategy
computed for C1 with C2 by encoding the strategy as an LTL formula and pro-
viding it as an assumption for φ2. Knowing exactly how C1 plays might make it
much easier for C2 to synthesize a strategy for itself, if one exists. Furthermore,
a counter-strategy produced in this case indicates that it is impossible for C2 to
fulfill its goals if C1 sticks to its current strategy. Therefore, both specifications
are refined and a new strategy is computed for the realizable component.

Algorithm 2 summarizes the third approach. Once a strategy is computed
for the realizable specification, its corresponding LTS T = (Q, {q0} , δ,L) is ob-
tained, and encoded as a conjunction of transition formulas as follows. We define
a set of new propositions Z =

{
z0, z1, · · · , z�log|Q|�

}
which encode the states Q

of T . Intuitively, these propositions represent the memory of the strategy in
generated transition formulas, and are considered as environment variables in
the refined specification φ′

2. For ease of notation, let |Z|i indicate the truth as-
signment to the propositions in Z which represents the state qi ∈ Q. We encode
T with the conjunctive formula ψ = (|Z|0 ∧ L(q0) ∧

∧
qi∈Q �((|Z|i ∧ L(qi)) →

©(
∨

qj∈Next(qi)
|Z|j ∧ L(qj)), where Next(qi) is the set of states in T with a

transition from qi to them. We refer to ψ as full encoding of T . Intuitively, ψ
states that always when the strategy is in state qi ∈ Q with truth assignment to
the variables given as L(qi), then at next step it will be in one of the adjacent
states qj ∈ Next(qi) with truth assignment L(qj) to the variables, and initially it

512 R. Alur, S. Moarref, and U. Topcu

is in state q0. The procedure Encode-LTS in Alg. 2 takes an LTS and returns
a conjunctive LTL formula representing it.

The unrealizable specification φ2 is then refined by adding the encoding of the
strategy as assumptions to it. If the refined specification φ′

2 is realizable, there
exists a strategy for C2, assuming the strategy chosen for C1, and the encoding
is returned as a possible refinement. Otherwise, the produced counter-strategy
CS ′ shows how the strategy for C1 can prevent C2 from realizing its specifica-
tion. Hence, the specification of both components need to be refined. Procedure
findCandidateAssumptions computes a set P of candidate assumptions that
can rule out CS ′, and at each iteration, one candidate is chosen and tested by
both specifications for satisfiability and realizability. If any of these candidate
formulas can make both specifications realizable, it is returned as a refinement.
Otherwise, the process is repeated with only those candidates that are consis-
tent with φ2, and keep φ1 realizable. As a result, the set of candidate formulas
is pruned and the process is repeated with the more promising formulas. If no
refinement is found within the specified search depth, False is returned.

Remark 2. Introducing new propositions representing the memory of the strat-
egy S1 computed for φ1 leads to assumptions that provide C2 with full knowledge
of how C1 reacts to its environment. Therefore, if the new specification refined
by these assumptions is not realizable, the counter-strategy would be an exam-
ple of how S1 might prevent φ2 from being realizable, giving the designer the
certainty that a different strategy must be computed for C1, or in other words
both specifications must be refined. However, if introducing new propositions
is undesirable, an abstract encoding of the strategy (without memory variables)
can be obtained by returning conjunction of all transition formulas �(ψ → ©ψ′)
computed over the strategy. The user can specify the set of variables in which
she is interested. This encoding represents an abstraction of the strategy that
might be non-deterministic, i.e., for the given truth assignment to environment
variables, there might be more than one truth assignment to outputs of C1 that
are consistent with the encoding. Such relaxed encoding can be viewed as sharing
partial information about the strategy of C1 with C2.

As an example, consider the LTS T in Fig. 4 which can be encoded as (q0 ∧
¬a ∧ ¬b ∧ ¬c) ∧ �((q0 ∧ ¬a ∧ ¬b ∧ ¬c) → ©(q1 ∧ ¬a ∧ b ∧ ¬c)) ∧ · · · ∧ �((q3 ∧
¬a∧ b∧¬c) → ©(q0∧¬a∧¬b∧¬c)). An abstract encoding without introducing
new variables and considering only a and b results in formula �((¬a ∧ ¬b) →
©(¬a∧ b))∧�((¬a ∧ b) → ©((¬a ∧¬b)∨ (a∧¬b))∧�((a ∧¬b) → ©(¬a∧ b)).

6 Case Study

We now demonstrate the techniques on a robot motion planning case study. We
use RATSY [11] for computing counter-strategies, JTLV [12] for synthesizing
strategies, and Cadence SMV model checker [13] for model checking. The exper-
iments are performed on a Intel core i7 3.40 GHz machine with 16GB memory.

Pattern-Based Refinement of Assume-Guarantee Specifications 513

Algorithm 2. CompositonalRefinement3

Input: φ1 = φe1 → φs1 : a realizable specification, φ2 = φe2 → φs2 : an
unrealizable specification, α: search depth, U : subset of variables

Output: ψ such that φe1 → (φs2 ∧ ψ) and (φe2 ∧ ψ) → φs2 are realizable
1 if α < 0 then
2 return False;

3 Let S be the strategy for φ1;
4 ψ := Encode-LTS(S);
5 φ′

2 := (ψ ∧ φe2) → φs2 ;
6 if φ′

2 is realizable then
7 return ψ;
8 else
9 Let CS ′ be a counter-strategy for φ′

2;
10 P := findCandidateAssumptions(CS ′, U);
11 foreach ϕ ∈ P do
12 Let φ′′

2 be (ϕ ∧ φe2) → φs2 ;
13 Let φ′′

1 be φe1 → (φs1 ∧ ϕ);
14 if φ′′

1 is realizable and φ′′
2 is satisfiable then

15 if φ′′
2 is realizable then

16 return ϕ;
17 else
18 ψ := compositionalRefinement3(φ′′

1 , φ
′′
2 , α− 1, U);

19 if ψ �= False then
20 return ψ ∧ ϕ;

21 return False;

Consider the robot motion planning example over the discrete workspace
shown in Fig. 3. Assume there are two robots R1 and R2 initially in cells 1
and 25, respectively. Robots can move to one of their neighbor cells at each step.
There are two rooms in bottom-left and the upper-right corners of the workspace
protected by two doors D1 (cell 10) and D2 (cell 16). The robots can enter or
exit a room through its door and only if it is open. The objective of R1 (R2)
is to infinitely often visit the cell 5 (21, respectively). The global specification
requires each robot to infinitely often visit their goal cells, while avoiding colli-
sion with each other, walls and the closed doors, i.e., the robots cannot occupy
the same location simultanously, or switch locations in two following time steps,
they cannot move to cells {4, 9, 17, 22} (walls), and they cannot move to cells
10 or 16 if the corresponding door is closed. The doors are controlled by the
environment and we assume that each door is always eventually open.

The global specification is realizable. We decompose the specification as fol-
lows. A local specification φ1 = φe1 → φs1 for R1 where φe1 is the environment
assumption on the doors and φs1 is a conjunction of R1’s guarantees which con-
sist of its initial location, its transition rules, avoiding collision with walls and
closed doors, and its goal to visit cell 5 infinitely often. A local specification
φ2 = φe2 → φs2 for R2 where φe2 includes assumptions on the doors, R1’s initial

514 R. Alur, S. Moarref, and U. Topcu

location, goal, and its transition rules, and φs2 consists of R2’s initial location, its
transition rules, avoiding collision with R1, walls and closed doors while fulfilling
its goal. The specification φ1 is realizable, but φ2 is not. We use the algorithms
outlined in Sect. 5 to find refinements for both components. We slightly modified
the algorithms to find all refinements within the specified search depth. We use
the variables corresponding to the location of R1 for computing the abstraction
and generating the candidate formulas. Furthermore, since the counter-strategies
are large, computing all eventually and always eventually patterns is not feasible
(may take years), and hence we only synthesize some of them.

Using the first approach along with abstraction, three refinements are found
in 173 minutes which are conjunctions of safety and transition formulas. One of
the computed refinements is ψ1 = �(LocR1 = 7 → ©(LocR1 �∈ {7, 8, 12})) ∧
�(LocR1 = 13 → ©(LocR1 �∈ {12, 14})) ∧ �(LocR1 = 11 → ©(LocR1 �=
16)) ∧ �(LocR1 = 2 → ©(LocR1 �= 7)) ∧ �(LocR1 �∈ {2, 12}). Intuitively, ψ1

assumes some restrictions on how R1 behaves, in which case a strategy for R2

can be computed. Indeed, R1 has a strategy that can guarantee ψ1. Without
using abstraction, four refinements are found within search depth 1 in 17 min-
utes. A suggested refinement is �(LocR1 �∈ {7, 12, 16}), i.e., if R1 avoids cells
{7, 12, 16}, a strategy for R2 can be computed. Using abstraction reduces the
number of states of the counter-strategy from 576 to 12 states, however, not all
the formulas that are satisfied by the counter-strategy, can be computed over
its abstraction, as mentioned in Remark 1. Note that computing all the refine-
ments within search depth 3 without using abstraction takes almost 5 times more
time compared to when abstraction is used. Using the second approach (with
and without abstraction) the refinement ψ2 = �(LocR1 = 10 → LocR1 = 5) is
found by infering fromulas from the strategy computed for R1. Using abstraction
slightly improves the process. Finally, using the third approach, providing either
the full encoding or the abstract encoding of the strategy computed for φ1 as
assumptions for φ2, makes the specification realizable. Therefore, no counter-
strategy is produced, as knowing how R1 behaves enables R2 to find a strategy
for itself.

Table 1 shows the experimental results for the case study. The columns specify
the approach, whether abstraction is used or not, the total time for the experi-
ment in minutes, number of strategies (counter-strategies) and number of states
of the largest strategy (counter-strategy, respectively), the depth of the search,

Table 1. Evaluation of approaches on robot motion planning case study

Appr. abstraction time (min) #S max |Q|S #CS max |Q|CS depth #ref. #candid.

1 yes 173.05 - - 17 12 3 3 104

1 no 17.18 - - 1 576 1 4 22

1 no 869.84 - - 270 644 3 589 7911

2 yes 69.21 1 8 18 576 1 2 19

2 no 73.78 1 22 19 576 1 2 24

3 yes 0.01 1 8 0 0 1 1 0

3 no 0.02 1 22 0 0 1 1 0

Pattern-Based Refinement of Assume-Guarantee Specifications 515

number of refinements found, and number of candidate formulas generated dur-
ing the search. As it can be seen from the table, knowing more about the strategy
chosen for the realizable specification can significantly reduce the time needed
to find suitable refinement (from hours for the first approach to seconds for the
third approach). However, the improvement in time comes with the cost of in-
troducing more coupling between the components, i.e., the strategy computed
for C2 can become too dependent on the strategy chosen for C1.

7 Conclusion and Future Work

We showed how automated refinement of specifications can be used to refine
the specifications of the components in the context of compositional synthesis.
We proposed three different approaches for compositional refinement of specifica-
tions. The choice of the appropriate approach depends on the size of the problem
(e.g., number of states in strategies and counter-strategies) and the level of ac-
ceptable coupling between components. Supplying more information about the
strategies of the components with realizable local specifications to unrealizable
specification under refinement, reduces the number of scenarios the game solver
needs to consider, and facilitates the synthesis procedure, while increasing the
coupling between components. Overall, patterns provide a tool for the designer
to refine and complete temporal logic specifications. In future we plan to extend
the methods to more general architectures.

References

1. Rosner, R.: Modular synthesis of reactive systems. Ann Arbor 1050, 41346–48106
(1991)

2. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive
(1) designs. Journal of Computer and System Sciences 78(3), 911–938 (2012)

3. Ozay, N., Topcu, U., Murray, R.: Distributed power allocation for vehicle manage-
ment systems. In: CDC-ECC, pp. 4841–4848 (2011)

4. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1)
temporal logic specifications. In: FMCAD, pp. 31–44 (2013)

5. Li, W., Dworkin, L., Seshia, S.: Mining assumptions for synthesis. In: MEM-
OCODE, pp. 43–50 (2011)

6. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 147–161. Springer, Heidelberg (2008)

7. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FoCS, pp. 746–757 (1990)

8. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS, pp. 321–330.
IEEE (2005)

9. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007)

10. LaValle, S.M.: Planning algorithms. Cambridge University Press (2006)

516 R. Alur, S. Moarref, and U. Topcu

11. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: RATSY – A new requirements analysis tool with syn-
thesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
425–429. Springer, Heidelberg (2010)

12. Pnueli, A., Sa’ar, Y., Zuck, L.D.: jtlv: A framework for developing verification
algorithms. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 171–174. Springer, Heidelberg (2010)

13. McMillan, K.: Cadence SMV, http://www.kenmcmil.com/smv.html

http://www.kenmcmil.com/smv.html

Assume-Guarantee Synthesis for Concurrent Reactive
Programs with Partial Information�

Roderick Bloem1, Krishnendu Chatterjee2, Swen Jacobs1,3, and Robert Könighofer1

1 IAIK, Graz University of Technology, Austria
2 IST Austria, Institute of Science and Technology, Austria
3 Reactive Systems Group, Saarland University, Germany

Abstract. Synthesis of program parts is particularly useful for concurrent sys-
tems. However, most approaches do not support common design tasks, like mod-
ifying a single process without having to re-synthesize or verify the whole system.
Assume-guarantee synthesis (AGS) provides robustness against modifications of
system parts, but thus far has been limited to the perfect information setting. This
means that local variables cannot be hidden from other processes, which renders
synthesis results cumbersome or even impossible to realize. We resolve this short-
coming by defining AGS under partial information. We analyze the complexity
and decidability in different settings, showing that the problem has a high worst-
case complexity and is undecidable in many interesting cases. Based on these
observations, we present a pragmatic algorithm based on bounded synthesis, and
demonstrate its practical applicability on several examples.

1 Introduction

Concurrent programs are notoriously hard to get right, due to unexpected behavior
emerging from the interaction of different processes. At the same time, concurrency
aspects such as mutual exclusion or deadlock freedom are easy to express declara-
tively. This makes concurrent programs an ideal subject for automatic synthesis. Due
to the prohibitive complexity of synthesis tasks [33,34,17], the automated construc-
tion of entire programs from high-level specifications such as LTL is often unrealistic.
More practical approaches are based on partially implemented programs that should
be completed or refined automatically [17,16,39], or program repair, where suitable re-
placements need to be synthesized for faulty program parts [25]. This paper focuses on
such applications, where parts of the system are already given.

When several processes need to be synthesized or refined simultaneously, a funda-
mental question arises: What are the assumptions about the behavior of other processes
on which a particular process should rely? The classical synthesis approaches assume
either completely adversarial or cooperative behavior, which leads to problems in both

� This work was supported by the Austrian Science Fund (FWF) through the research network
RiSE (S11406-N23, S11407-N23) and grant nr. P23499-N23, by the European Commission
through an ERC Start grant (279307: Graph Games) and project STANCE (317753), as well as
by the German Research Foundation (DFG) through SFB/TR 14 AVACS and project ASDPS
(JA 2357/2-1).

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 517–532, 2015.
DOI: 10.1007/978-3-662-46681-0_50

518 R. Bloem et al.

cases: adversarial components may result in unrealizability of the system, while coop-
erative components may rely on a specific form of cooperation, and therefore are not
robust against even small changes in a single process. Assume-Guarantee Synthesis
(AGS) [9] uses a more reasonable assumption: processes are adversarial, but will not
violate their own specification to obstruct others. Therefore, a system constructed by
AGS will still satisfy its overall specification if we replace or refine one of the pro-
cesses, as long as the new process satisfies its local specification. Furthermore, AGS
leads to the desired solutions in cases where the classical notions (of cooperative or
completely adversarial processes) do not, for example in the synthesis of mutual exclu-
sion protocols [9] or fair-exchange protocols for digital contract signing [13].

A drawback of existing algorithms for AGS [9,13] is that they only work in a perfect
information setting. This means that each component can access and use the values of
all variables of the other processes. This is a major restriction, as most concurrent im-
plementations rely on variables that are local to one process, and should not be changed
or observed by the other process. While classical notions of synthesis have been con-
sidered in such partial information settings before [28,17], we provide the first solution
for AGS with partial information.

Contributions. In this work, we extend assume-guarantee synthesis to the synthesis of
processes with partial information. In particular:

i) We analyze the complexity and decidability of AGS by reductions to games with
three players. We distinguish synthesis problems based on informedness (perfect
or partial) and resources (bounded or unbounded memory) of processes, and on
specifications from different fragments of linear-time temporal logic (LTL).

ii) In light of the high complexity of many AGS problems, we propose a pragmatic
approach, based on partially implemented programs and synthesis with bounded
resources. We extend the bounded synthesis approach [18] to enable synthesis from
partially defined, non-deterministic programs, and to the AGS setting.

iii) We provide the first implementation of AGS, integrated into a programming model
that allows for a combined imperative-declarative programming style with fine-
grained, user-provided restrictions on the exchange of information between pro-
cesses. To obtain efficient and simple code, our prototype also supports optimization
of the synthesized program with respect to some basic user-defined metrics.

iv) We demonstrate the value of our approach on a number of small programs and pro-
tocols, including Peterson’s mutual exclusion protocol, a double buffering
protocol, and synthesis of atomic sections in a concurrent device driver. We also
demonstrate how the robustness of AGS solutions allows us to refine parts of the
synthesized program without starting synthesis from scratch.

2 Motivating Example

We illustrate our approach using the running example of [9], a version of Peterson’s
mutual exclusion protocol.

Sketch. We use the term sketch for concurrent reactive programs with non-deterministic
choices. Listing 1 shows a sketch for Peterson’s protocol with processes P1 and P2.

Assume-Guarantee Synthesis for Concurrent Reactive Programs 519

Listing 1. Sketch of Peterson’s mutual exclusion protocol. F=false, T=true.

0 t u r n := F ; f l a g 1 := F ; f l a g 2 := F ;
1 c r 1 := F ; w a i t 1 := F ;
2 do { / / P r o c e s s P1 :
3 f l a g 1 :=T ;
4 t u r n :=T ;
5 whi le (?1,1) {} / / w a i t
6 c r 1 :=T ;
7 c r 1 := F ; f l a g 1 := F ; w a i t 1 :=T ;
8 whi le (?1,2) {} / / l o c a l work
9 w a i t 1 := F ;

10 } whi le (T)

21 c r 2 := F ; w a i t 2 := F ;
22 do { / / P r o c e s s P2 :
23 f l a g 2 :=T ;
24 t u r n := F ;
25 whi le (?2,1) {} / / w a i t
26 c r 2 :=T ; / / r e a d :=?2,3
27 c r 2 := F ; f l a g 2 := F ; w a i t 2 :=T ;
28 whi le (?2,2) {} / / l o c a l work
29 w a i t 2 := F ;
30 } whi le (T)

Variable flagi indicates that Pi wants to enter the critical section, and cri that Pi

is in the critical section. The first while-loop waits for permission to enter the crit-
ical section, the second loop models some local computation. Question marks denote
non-deterministic choices, and we want to synthesize expressions that replace question
marks such that P1 and P2 never visit the critical section simultaneously.

Specification. The desired properties of both processes are that (1) whenever a process
wants to enter the critical section, it will eventually enter it (starvation freedom), and (2)
the two processes are never in the critical section simultaneously (mutual exclusion). In
LTL1, the specification is Φi = G(¬cr1∨¬cr2)∧G(flagi → Fcri), for i ∈ {1, 2}.

Failure of Classical Approaches. There are essentially two options for applying stan-
dard synthesis techniques. First, we may assume that both processes are cooperative,
and synthesize all ?i,j simultaneously. However, the resulting implementation of P2

may only work for the computed implementation of P1, i.e., changing P1 may break
P2. For instance, the solution ?1,1 = turn & flag2, ?2,1 = !turn and ?i,2 = F sat-
isfies the specification, but changing ?1,2 in P1 to T will make P2 starve. Note that this
is not just a hypothetical case; we got exactly this solution in our experiments. As a
second option, we may assume that the processes are adversarial, i.e., P2 must work for
any P1 and vice versa. However, under this assumption, the problem is unrealizable [9].

Success of Assume-Guarantee Synthesis (AGS) [9]. AGS fixes this dilemma by re-
quiring that P2 must work for any realization of P1 that satisfies its local specification
(and vice versa). An AGS solution for Listing 1 is ?1,1 = turn & flag2, ?2,1 =
!turn & flag2 and ?i,2 = F for i ∈ {1, 2}.

Added Advantage of AGS. If one process in an AGS solution is changed or extended,
but still satisfies its original specification, then the other, unchanged process is guaran-
teed to remain correct as well. We illustrate this feature by extendingP2 with a new vari-
able named read. It is updated in a yet unknown way (expressed by ?2,3) whenever P2

enters the critical section in line 26 of Listing 1. Assume that we want to implement ?2,3

such that read is true and false infinitely often. We take the solution from the previous
paragraph and synthesize ?2,3 such that P2 satisfies Φ2 ∧ (GF¬read) ∧ (GFread),
where Φ2 is the original specification of P2. The fact that the modified process still

1 In case the reader is not familiar with LTL: G is a temporal operator meaning “in all time
steps”; likewise F means “at some point in the future”.

520 R. Bloem et al.

Listing 2. Result for Listing 1: turn is replaced by memory m in a clever way.

0 f l a g 1 := F ; f l a g 2 := F ; m:=F ;
1 c r 1 := F ; w a i t 1 := F ;
2 do { / / P r o c e s s P1 :
3 f l a g 1 :=T ;
4 whi le (!m) {} / / w a i t
5 c r 1 :=T ;
6 c r 1 := F ; f l a g 1 := F ; w a i t 1 :=T ;
7 whi le (i n p u t 1 ()) / / work
8 m:=F ;
9 w a i t 1 := F ; m:=F;

10 } whi le (T)

21 c r 2 := F ; w a i t 2 := F ;
22 do { / / P r o c e s s P2 :
23 f l a g 2 :=T ;
24 whi le (m) {} / / w a i t
25 c r 2 :=T ;
26 c r 2 := F ; f l a g 2 := F ; w a i t 2 :=T ;
27 whi le (i n p u t 2 ()) / / work
28 m:=T;
29 w a i t 2 := F ; m:=T;
30 } whi le (T)

satisfies Φ2 implies that P1 will still satisfy its original specification. We also notice
that modular refinement saves overall synthesis time: our tool takes 19 + 55 = 74 sec-
onds to first synthesize the basic AGS solution for both processes and then refine P2 in
a second step to get the expected solution with ?2,3 = ¬read, while direct synthesis
of the refined specification for both processes requires 263 seconds.

Drawbacks of the Existing AGS Framework [9]. While AGS provides important
improvements over classical approaches, it may still produce solutions like ?1,1 =
turn ∧ ¬wait2 and ?2,1 = ¬turn ∧ ¬wait1. However, wait2 is intended to
be a local variable of P2, and thus invisible for P1. Solutions may also utilize modeling
artifacts such as program counters, because AGS has no way to restrict the information
visible to other processes. As a workaround, the existing approach [9] allows the user
to define candidate implementations for each ?, and let the synthesis algorithm select
one of the candidates. However, when implemented this way, a significant part of the
problem needs to be solved by the user.

AGS with Partial Information. Our approach resolves this shortcoming by allowing
the declaration of local variables. The user can write f1,1(turn,flag2) instead of
?1,1 to express that the solution may only depend on turn and flag2. Including
more variables of P1 does not make sense for this example, because their value is fixed
at the call site. When setting ?2,1 = f1,2(turn,flag1) (and ?i,2 = fi,2()), we get the
solution proposed by Peterson: ?1,1 = turn ∧ flag2 and ?2,1 = ¬turn ∧ flag1
(and ?i,2 = F). This is the only AGS solution with these dependency constraints.

AGS with Additional Memory and Optimization. Our approach can also introduce
additional memory in form of new variables. As with existing variables, the user can
specify which question mark may depend on the memory variables, and also which
variables may be used to update the memory. For our example, this feature can be used
to synthesize the entire synchronization from scratch, without using turn, flag1,
and flag2. Suppose we remove turn, allow some memory m instead, and impose
the following restrictions: ?1,1= f1,1(flag2,m), ?2,1= f2,1(flag1,m), ?i,2 is an
uncontrollable input (to avoid overly simplistic solutions), and m can only be updated
depending on the program counter and the old memory content. Our approach also
supports cost functions over the result, and optimizes solutions iteratively. For our ex-
ample, the user can assign costs for each memory update in order to obtain a simple
solution with few memory updates. In this setup, our approach produces the solution

Assume-Guarantee Synthesis for Concurrent Reactive Programs 521

presented in Listing 2. It is surprisingly simple: It requires only one bit of memory m,
ignores both flags (although we did not force it to), and updates m only twice2. Our
proof-of-concept implementation took only 74 seconds to find this solution.

3 Definitions

In this section we first define processes, refinement, schedulers, and specifications. Then
we consider different versions of the co-synthesis problem, depending on informedness
(partial or perfect), cooperation (cooperative, competitive, assume-guarantee), and re-
sources (bounded or unbounded) of the players.

Variables, Valuations, Traces. Let X be a finite set of binary variables. A valuation
on X is a function v : X → B that assigns to each variable x ∈ X a value v(x) ∈
B. We write B

X for the set of valuations on X , and u ◦ v for the concatenation of
valuations u ∈ B

X and v ∈ B
X′

to a valuation in B
X∪X′

. A trace on X is an infinite
sequence (v0, v1, . . .) of valuations on X . Given a valuation v ∈ B

X and a subset
X ′ ⊆ X of the variables, define v�X′ as the restriction of v to X ′. Similarly, for a trace
π = (v0, v1, . . .) on X , write π�X′ = (v0�X′ , v1�X′ , . . .) for the restriction of π to the
variables X ′. The restriction operator extends naturally to sets of valuations and traces.

Processes and Refinement. We consider non-deterministic processes, where the non-
determinism is modeled by variables that are not under the control of the process. We
call these variables input, but they may also be internal variables with non-deterministic
updates. For i ∈ {1, 2}, a process Pi = (Xi, Oi, Yi, τi) consists of finite sets

– Xi of modifiable state variables,
– Oi ⊆ X3−i of observable (but not modifiable) state variables,
– Yi of input variables,

and a transition function τi : B
Xi ×B

Oi ×B
Yi → B

Xi . The transition function maps a
current valuation of state and input variables to the next valuation for the state variables.
We write X = X1 ∪ X2 for the set of state variables of both processes, and similarly
Y = Y1 ∪ Y2 for the input variables. Note that some variables may be shared by both
processes. Variables that are not shared between processes will be called local variables.

We obtain a refinement of a process by resolving some of the non-determinism in-
troduced by input variables, and possibly extending the sets of local state variables.
Formally, let Ci ⊆ Yi be a set of controllable variables, let Y ′

i = Yi \ Ci, and let
X ′

i ⊇ Xi be an extended (finite) set of state variables, with X ′
1 ∩ X ′

2 = X1 ∩ X2.
Then a refinement of process Pi = (Xi, Oi, Yi, τi) with respect to Ci is a process
P ′
i = (X ′

i, Oi, Y
′
i , τ

′
i) with a transition function τ ′i : BX′

i × B
Oi × B

Y ′
i → B

X′
i such

that for all x ∈ B
X′

i , o ∈ B
Oi , y ∈ B

Y ′
i there exists c ∈ B

Ci with

τ ′i(x, o, y)�Xi = τi(x�Xi , o, y ◦ c).

We write P ′
i � Pi to denote that P ′

i is a refinement of Pi.

2 The memory m is updated whenever an input is read in line 7 or 27; we copied the update into
both branches to increase readability.

522 R. Bloem et al.

Important Modeling Aspects. Local variables are used to model partial information:
all decisions of a process need to be independent of the variables that are local to the
other process. Furthermore, variables in X ′

i \Xi are used to model additional memory
that a process can use to store observed information. We say a refinement is memoryless
if X ′

i = Xi, and it is b-bounded if |X ′
i \Xi | ≤ b.

Schedulers, Executions. A scheduler for processes P1 and P2 chooses at each compu-
tation step whetherP1 or P2 can take a step to update its variables. Let X1,X2 be the sets
of all variables (state, memory, input) of P1 and P2, respectively, and let X = X1 ∪X2.
Let furthermore V = B

X be the set of global valuations. Then, the scheduler is a func-
tion sched : V ∗ → {1, 2} that maps a finite sequence of global valuations to a process
index i ∈ {1, 2}. Scheduler sched is fair if for all traces (v0, v1, . . .) ∈ V ω it assigns
infinitely many turns to both P1 and P2, i.e., there are infinitely many j ≥ 0 such that
sched(v0, . . . , vj) = 1, and infinitely many k ≥ 0 such that sched(v0, . . . , vk) = 2.

Given two processes P1, P2, a scheduler sched, and a start valuation v0, the set of
possible executions of the parallel composition P1 ‖ P2 ‖ sched is

�P1 ‖ P2 ‖ sched, v0� =

⎧
⎨

⎩
(v0, v1, . . .) ∈ V ω

∣
∣
∣
∣
∣
∣

∀j ≥ 0. sched(v0, v1, . . . , vj) = i
and vj+1�(X\Xi) = vj�(X\Xi)

and vj+1�Xi\Yi
∈ τi(vj�Xi)

⎫
⎬

⎭
.

That is, at every turn the scheduler decides which of the processes makes a transition,
and the state and memory variables are updated according to the transition function of
that process. Note that during turns of process Pi, the values of local variables of the
other process (in X \ Xi) remain unchanged.

Safety, GR(1), LTL. A specification Φ is a set of traces on X ∪ Y . We consider ω-
regular specifications, in particular the following fragments of LTL:3

– safety properties are of the form GB, where B is a Boolean formula over variables
in X ∪ Y , defining a subset of valuations that are safe.

– GR(1) properties are of the form
(∧

i GFLi
e

)
→

(∧
j GFLj

s

)
, where the Li

e and

Lj
s are Boolean formulas over X ∪ Y .

– LTL properties are given as arbitrary LTL formulas over X ∪ Y . They are a subset
of the ω-regular properties.

Co-Synthesis. In all co-synthesis problems, the input to the problem is given as: two
processes P1, P2 with Pi = (Xi, Oi, Yi, τi), two sets C1, C2 of controllable variables
with Ci ⊆ Yi, two specifications Φ1, Φ2, and a start valuation v0 ∈ B

X∪Y , where
Y = Y1 ∪ Y2.

Cooperative co-synthesis. The cooperative co-synthesis problem is to find out whether
there exist two processes P ′

1 � P1 and P ′
2 � P2, and a valuation v′0 with v′0�X∪Y = v0,

such that for all fair schedulers sched we have

�P ′
1 ‖ P ′

2 ‖ sched, v′0��X∪Y ⊆ Φ1 ∧ Φ2.

3 For a definition of syntax and semantics of LTL, see e.g. [15].

Assume-Guarantee Synthesis for Concurrent Reactive Programs 523

Competitive co-synthesis. The competitive co-synthesis problem is to determine whether
there exist two processes P ′

1 � P1 and P ′
2 � P2, and a valuation v′0 with v′0�X∪Y = v0,

such that for all fair schedulers sched we have

(i) �P ′
1 ‖ P2 ‖ sched, v′0��X∪Y ⊆ Φ1, and

(ii) �P1 ‖ P ′
2 ‖ sched, v′0��X∪Y ⊆ Φ2.

Assume-guarantee Synthesis. The assume-guarantee synthesis (AGS) problem is to de-
termine whether there exist two processes P ′

1 � P1 and P ′
2 � P2, and a valuation v′0

with v′0�X∪Y = v0, such that for all fair schedulers sched we have

(i) �P ′
1 ‖ P2 ‖ sched, v′0��X∪Y ⊆ Φ2 → Φ1,

(ii) �P1 ‖ P ′
2 ‖ sched, v′0��X∪Y ⊆ Φ1 → Φ2, and

(iii) �P ′
1 ‖ P ′

2 ‖ sched, v′0��X∪Y ⊆ Φ1 ∧ Φ2.

We refer the reader to [9] for more intuition and a detailed discussion of AGS.

Informedness and Boundedness. A synthesis problem is under perfect information if
Xi ∪ Oi = X for i ∈ {1, 2}, and Y1 = Y2. That is, both processes have knowledge
about all variables in the system. Otherwise, it is under partial information. A syn-
thesis problem is memoryless (or b-bounded) if we additionally require that P ′

1, P
′
2 are

memoryless (or b-bounded) refinements of P1, P2.

Optimization Criteria. Let P be the set of all processes. A cost function is a function
cost : P × P → N that assigns a cost to a tuple of processes. By requiring that the
cost of solutions is minimal or below a certain threshold, we will use cost functions to
optimize synthesis results.

Note on Robustness against Modifications. Suppose P ′
1, P

′
2 are the result of AGS on

a given input, including specifications Φ1, Φ2. By the properties of AGS, this solution
is robust against replacing one of the processes, say P2, with a different solution: if a
replacement P ′′

2 of P ′
2 satisfies Φ2, then the overall system will still be correct. If we

furthermore ensure that conditions (ii) and (iii) of AGS are satisfied by P ′
1 and P ′′

2 , then
this pair is again an AGS solution, i.e., we can go on and refine another process.

Co-synthesis of more than 2 Processes. The definitions above naturally extend to pro-
grams with more than 2 concurrent processes, cp. [13] for AGS with 3 processes.

4 Complexity and Decidability of AGS

We give an an overview of the complexity of AGS. The complexity results are with
respect to the size of the input, where the input consists of the given non-deterministic
state transition system and the specification formula (i.e., the size of the input is the size
of the explicit state transition system and the length of the formula).

Theorem 1. The complexity of AGS is given in the following table:
Bounded Memory Unbounded Memory

Perfect Inf. Partial Inf. Perfect Inf. Partial Inf.
Safety P NP-C P Undec
GR(1) NP-C NP-C P Undec
LTL PSPACE-C PSPACE-C 2EXP-C Undec

524 R. Bloem et al.

Note that the complexity classes for memoryless AGS are the same as for AGS with
bounded memory — the case of bounded memory reduces to the memoryless case, by
considering a game that is larger by a constant factor: the given bound.

Also note that if we consider the results in the order given by the columns of the
table, they form a non-monotonic pattern: (1) For safety objectives the complexity in-
creases and then decreases (from PTIME to NP-complete to PTIME again); (2) for
GR(1) objectives it remains NP-complete and finally decreases to PTIME; and (3) for
LTL it remains PSPACE-complete and then increases to 2 EXPTIME-complete.

In the following, we give proof ideas for these complexity results. For formal defini-
tions of three-player games, we refer the reader to [9].

Proof Ideas

First Column: Bounded Memory, Perfect Information

Safety: It was shown in [9] that AGS solutions can be obtained from the solutions of
games with secure equilibria. It follows from the results of [10] that for games with
safety objectives, the solution for secure equilibria reduces to solving games with safety
and reachability objectives for which memoryless strategies suffice (i.e., memoryless
strategies are as powerful as arbitrary strategies for safety objectives). It also follows
from [10] that for safety objectives, games with secure equilibria can be solved in poly-
nomial time.

GR(1): It follows from the results of [20] that even in a graph (not a game) the question
whether there exists a memoryless strategy to visit two distinct states infinitely often
is NP-hard (a reduction from directed subgraph homeomorphism). Since visiting two
distinct states infinitely often is a conjunction of two Büchi objectives, which is a special
case of GR(1) objectives, the lower bound follows. For the NP upper bound, the witness
memoryless strategy can be guessed, and once a memoryless strategy is fixed, we have a
graph, and the polynomial-time verification procedure is the polynomial-time algorithm
for model checking graphs with GR(1) objectives [32].

LTL: In the special case of a game graph where every player-1 state has exactly one
outgoing edge, the memoryless AGS problem is an LTL model checking problem, and
thus the lower bound of LTL model checking [15] implies PSPACE-hardness. For the
upper bound, we guess a memoryless strategy (as for GR(1)), and the verification prob-
lem is an LTL model checking question. Since LTL model checking is in PSPACE [15]
and NPSPACE=PSPACE (by Savitch’s theorem) [37,30], we obtain the desired result.

Second Column: Bounded Memory, Partial Information

Safety: The lower bound result was established in [12]. For the upper bound, again the
witness is a memoryless strategy. Given the fixed strategy, we have a graph problem
with safety and reachability objectives that can be solved in polynomial time (for the
polynomial-time verification).

GR(1): The lower bound follows from the perfect-information case; for the upper bound,
we can again guess and check a memoryless strategy.

LTL: Similar to the perfect information case, given above.

Assume-Guarantee Synthesis for Concurrent Reactive Programs 525

Third Column: Unbounded Memory, Perfect Information

Safety: As mentioned before, for AGS under perfect information and safety objectives,
the memoryless and the general problem coincide, implying this result.

GR(1): It follows from results of [9,10] that solving AGS for perfect-information games
requires solving games with implication conditions. Since games with implication of
GR(1) objectives can be solved in polynomial time [21], the result follows.

LTL: The lower bound follows from standard LTL synthesis [33]. For the upper bound,
AGS for perfect-information games requires solving implication games, and games with
implication of LTL objectives can be solved in 2EXPTIME [33]. The desired result
follows.

Fourth Column: Unbounded Memory, Partial Information
It was shown in [31] that three-player partial-observation games are undecidable, and it
was also shown that the undecidability result holds for safety objectives too [11].

5 Algorithms for AGS

Given the undecidability of AGS in general, and its high complexity for most other
cases, we propose a pragmatic approach that divides the general synthesis problem into
a sequence of synthesis problems with a bounded amount of memory, and encodes the
resulting problems into SMT formulas. Our encoding is inspired by the Bounded Syn-
thesis approach [18], but supports synthesis from non-deterministic program sketches,
as well as AGS problems. By iteratively deciding whether there exists an implemen-
tation for an increasing bound on the number of memory variables, we obtain a semi-
decision procedure for AGS with partial information.

We first define the procedure for cooperative co-synthesis problems, and then show
how to extend it to AGS problems.

5.1 SMT-Based Co-synthesis from Program Sketches

Consider a cooperative co-synthesis problem with inputs P1 and P2, defined as Pi =
(Xi, Oi, Yi, τi), two sets C1, C2 of controllable variables with Ci ⊆ Yi, a specification
Φ1 ∧ Φ2, and a start valuation v0 ∈ B

X∪Y , where Y = Y1 ∪ Y2.
In the following, we describe a set of SMT constraints such that a model represents

refinements P ′
1 � P1, P

′
2 � P2 such that for all fair schedulers sched, we have �P ′

1 ‖
P ′
2 ‖ sched, v0� ⊆ Φ1 ∧ Φ2. Assume we are given a bound b ∈ N, and let Z1, Z2 be

disjoint sets of additional memory variables with |Zi | = b for i ∈ {1, 2}.

Constraints on given Transition Functions. In the expected way, the transition func-
tions τ1 and τ2 are declared as functions τi : BXi × B

Oi × B
Yi → B

Xi , and directly
encoded into SMT constraints by stating τi(x, o, y) = x′ for every x ∈ B

Xi , o ∈
B
Oi , y ∈ B

Yi , according to the given transition functions τ1, τ2.

Constraints for Interleaving Semantics, Fair Scheduling. To obtain an encoding for
interleaving semantics, we add a scheduling variable s to both sets of inputs Y1 and
Y2, and require that (i) τ1(x, o, y) = x whenever y(s) = false, and (ii) τ2(x, o, y) =

526 R. Bloem et al.

x whenever y(s) = true. Fairness of the scheduler can then be encoded as the LTL
formula GF s ∧ GF¬s, abbreviated fair in the following.

Constraints on Resulting Strategy. Let X ′
i = Xi ∪ Zi be the extended state set,

and Y ′
i = Yi \ Ci the set of input variables of process P ′

i , reduced by its controllable
variables. Then the resulting strategy of P ′

i is represented by functions μi : B
X′

i ×
B
Oi ×B

Y ′
i → B

Zi to update the memory variables, and fi : B
X′

i ×B
Oi ×B

Y ′
i → B

Ci

to resolve the non-determinism for controllable variables. Functions fi and μi for i ∈
{1, 2} are constrained indirectly using constraints on an auxiliary annotation function
that will ensure that the resulting strategy satisfies the specification Φ = (fair → Φ1 ∧
Φ2). To obtain these constraints, first transform Φ into a universal co-Büchi automaton
UΦ = (Q, q0, Δ, F), where

– Q is a set of states and q0 ∈ Q is the initial state,
– Δ ⊆ Q×Q is a set of transitions, labeled with valuations v ∈ B

X1∪X2∪Y1∪Y2 , and
– F ⊆ Q is a set of rejecting states.

The automaton is such that it rejects a trace if it violates Φ, i.e., if rejecting states are vis-
ited infinitely often. Accordingly, it accepts a concurrent program (P1 ‖ P2 ‖ sched, v0)
if no trace in �P1 ‖ P2 ‖ sched, v0� violates Φ. See [18] for more background.

Let X ′ = X ′
1 ∪ X ′

2. We constrain functions fi and μi with respect to an additional
annotation function λ : Q×B

X′ → N∪{⊥}. In the following, let τ ′i(x◦z, o, y) denote
the combined update function for the original state variables and additional memory
variables, explicitly written as

τi(x ◦ z, o, y ◦ fi(x, z, o, y)) ◦ μi(x ◦ z, o, y).

Similar to the original bounded synthesis encoding [18], we require that

λ(q0, v0�X′) ∈ N.

If (1) (q, (x1, x2)) is a composed state with λ(q, (x1, x2)) ∈ N, (2) y1 ∈ B
Y1 , y2 ∈ B

Y1

are inputs and q′ ∈ Q is a state of the automaton such that there is a transition (q, q′) ∈
Δ that is labeled with (y1, y2), and (3) q′ is a non-rejecting state of UΦ, then we require

λ(q′, (τ ′1(x1, o1, y1), τ
′
2(x2, o2, y2))) ≥ λ(q, (x1, x2)),

where values of o1, o2 are determined by values of x2 and x1, respectively (and the
subset of states of one process which is observable by the other process).
Finally, if conditions (1) and (2) above hold, and q′ is rejecting in UΦ, we require

λ(q′, (τ ′1(x1, o1, y1), τ
′
2(x2, o2, y2))) > λ(q, (x1, x2)).

Intuitively, these constraints ensure that in no execution starting from (q0, v0), the au-
tomaton will visit rejecting states infinitely often. Finkbeiner and Schewe [18] have
shown that these constraints are satisfiable if and only if there exist implementations
of P1, P2 with state variables X1, X2 that satisfy Φ. With our additional constraints on
the original τ1, τ2 and the integration of the fi and μi as new uninterpreted functions,
they are satisfiable if there exist b-bounded refinements of P1, P2 (based on C1, C2) that

Assume-Guarantee Synthesis for Concurrent Reactive Programs 527

satisfy Φ. An SMT solver can then be used to find interpretations of the fi and μi, as
well as the auxiliary annotation functions that witness correctness of the refinement.

Correctness. The proposed algorithm for bounded synthesis from program sketches is
correct and will eventually find a solution if it exists:

Proposition 1. Any model of the SMT constraints will represent a refinement of the
program sketches such that their composition satisfies the specification.

Proposition 2. There exists a model of the SMT constraints if there exist b-bounded
refinements P ′

1 � P1, P
′
2 � P2 that satisfy the specification.

Proof ideas for correctness can be found in an extended version [3] of this paper.

Optimization of Solutions. Let cost : P × P → N be a user-defined cost function.
We can synthesize an implementation P ′

1, P
′
2 ∈ P with maximal cost c by adding the

constraint cost(P ′
1, P

′
2) ≤ c (and a definition of the cost function), and we can optimize

the solution by searching for implementations with incrementally smaller cost. For in-
stance, a cost function could count the number of memory updates in order to optimize
solutions for simplicity.

5.2 SMT-Based AGS

Based on the encoding from Section 5.1, this section presents an extension that solves
the AGS problem. Recall that the inputs to AGS are two program sketches P1, P2 with
Pi = (Xi, Oi, Yi, τi), two sets C1, C2 of controllable variables with Ci ⊆ Yi, two
specifications Φ1, Φ2, and a start valuation v0 ∈ B

X∪Y , where Y = Y1 ∪ Y2. The goal
is to obtain refinements P ′

1 � P1 and P ′
2 � P2 such that:

(i) �P ′
1 ‖ P2 ‖ sched, v0� ⊆ (fair ∧ Φ2 → Φ1)

(ii) �P1 ‖ P ′
2 ‖ sched, v0� ⊆ (fair ∧ Φ1 → Φ2)

(iii) �P ′
1 ‖ P ′

2 ‖ sched, v0� ⊆ (fair → Φ1 ∧ Φ2).

Using the approach presented above, we can encode each of the three items into a sep-
arate set of SMT constraints, using the same function symbols and variable identifiers
in all three problems. In more detail, this means that we

1. encode (i), where we ask for a model of f1 and μ1 such that P ′
1 with τ ′1 and P2 with

the given τ2 satisfy the first property,
2. encode (ii), where we ask for a model of f2 and μ2 such that P1 with the given τ1

and P ′
2 with τ ′2 satisfy the second property, and

3. encode (iii), where we ask for models of fi and μi for i ∈ {1, 2} such that P ′
1 and

P ′
2 with τ ′1 and τ ′2 satisfy the third property.

Then, a solution for the conjunction of all of these constraints must be such that the
resulting refinements of P1 and P2 satisfy all three properties simultaneously, and are
thus a solution to the AGS problem. Moreover, a solution to the SMT problem exists if
and only if there exists a solution to the AGS problem.

528 R. Bloem et al.

5.3 Extensions

While not covered by the definition of AGS in Section 3, we can easily extend our
algorithm to the following cases:

1. If we allow the sets Z1, Z2 to be non-disjoint, then the synthesis algorithm can
refine processes also by adding shared variables.

2. Also, our algorithms can easily be adapted to AGS with more than 2 processes, as
defined in [13].

6 Experiments

We implemented4 our approach as an extension to BoSY, the bounded synthesis back-
end of the parameterized synthesis tool PARTY [26]. The user defines the sketch in
SMT-LIB format with a special naming scheme. The specification is given in LTL. The
amount of memory is defined using an integer constant M , which is increased until a
solution is found. To optimize solutions, the user can assert that some arbitrarily com-
puted cost must be lower than some constant Opt. Our tool will find the minimal value
of Opt such that the problem is still realizable. Our tool can also run cooperative co-
synthesis and verify existing solutions. Due to space constraints, we can only sketch
our experiments here. Details can be found in the extended version [3] of this paper.

For a simple peer-to-peer file sharing protocol [19], we synthesize conditions that
define when a process uploads or downloads data. The specification requires that all
processes download infinitely often, but a process can only download if the other one
uploads. Without AGS, we obtain a brittle solution: if one process is changed to up-
load and download simultaneously, the other process will starve, i.e., will not download
any more. The reason is that cooperative co-synthesis can produce solutions where the
correctness of one process relies on a concrete realization of the other processes. With
AGS, this problem does not exist. Synthesis takes only one second for this example.

Our next experiment is performed on a double buffering protocol, taken from [40].
There are two buffers. While one is read by P1, the other one is written by P2. Then, the
buffers are swapped. We synthesize waiting conditions such that the two processes can
never access the same buffer location simultaneously. The example is parameterized by
the size N of the buffers. Table 1 lists the synthesis times for increasing N . We use

Table 1. Synthesis times [sec] for increasing N .

N 1 2 3 4 5 6 7 8 15
AGS 1 5 5 54 51 49 47 1097 877
non-AGS 1 4 4 38 35 32 31 636 447

bitvectors to encode the array in-
dices, and observe that the computa-
tion time mostly depends on the bit-
width. This explains the jumps when-
everN reaches the next power of two.
Cooperative co-synthesis is only slightly faster than AGS on this example.

Finally, we use our tool to synthesize atomic sections in a simplified version of
the i2c Linux kernel driver in order to fix a real bug5. This example has been taken

4 Available at http://www.iaik.tugraz.at/content/research/
design verification/others

5 See http://kernel.opensuse.org/cgit/kernel/commit/
?id=7a7d6d9c5fcd4b674da38e814cfc0724c67731b2

http://www.iaik.tugraz.at/content/research/design_verification/others
http://www.iaik.tugraz.at/content/research/design_verification/others
http://kernel.opensuse.org/cgit/kernel/commit/?id=7a7d6d9c5fcd4b674da38e814cfc0724c67731b2
http://kernel.opensuse.org/cgit/kernel/commit/?id=7a7d6d9c5fcd4b674da38e814cfc0724c67731b2

Assume-Guarantee Synthesis for Concurrent Reactive Programs 529

from [6]. We synthesize two functions f1 and f2 that map the program counter value of
the respective process to true or false. The value true means that the process cannot be
interrupted at this point in the program, i.e., the two adjacent instructions are executed
atomically. We also assign costs to active atomic sections, and let our tool minimize the
total costs. A meaningful solution with minimal costs is computed in 54 seconds.

7 Related Work

Reactive Synthesis. Automatic synthesis of reactive programs from formal specifica-
tions, as defined by Church [14], is usually reduced either to games on finite graphs [5],
or to the emptiness problem of automata over infinite trees [35]. Pnueli and Rosner [33]
proposed synthesis from LTL specifications, and showed its 2EXPTIME complexity
based on a doubly exponential translation of the specification into a tree automaton. We
use extensions of the game-based approach (see below) to obtain new complexity re-
sults for AGS, while our implementation uses an encoding based on tree automata [18]
that avoids one exponential blowup compared to the standard approaches [27].

We consider the synthesis of concurrent or distributed reactive systems with partial
information, which has been shown to be undecidable in general [34], even for sim-
ple safety fragments of temporal logics [38]. Several approaches for distributed syn-
thesis have been proposed, either by restricting the specifications to be local to each
process [28], by restricting the communication graph to pipelines and similar struc-
tures [17], or by falling back to semi-decision procedures that will eventually find an
implementation if one exists, but in general cannot detect unrealizability of a specifica-
tion [18]. Our synthesis approach is based on the latter, and extends it with synthesis
from program sketches [39], as well as the assume-guarantee paradigm [9].

Graph Games. Graph games provide a mathematical foundation to study reactive syn-
thesis problems [14,5,22]. For the traditional perfect-information setting, the complex-
ity of solving games has been deeply studied; e.g., for reachability and safety objectives
the problem is PTIME-complete [23,1]; for GR(1) the problem can be solved in polyno-
mial time [32]; and for LTL the problem is 2EXPTIME-complete [33]. For two player
partial-information games with reachability objectives, EXPTIME-completeness was
established in [36], and symbolic algorithms and strategy construction procedures were
studied in [8,2]. However, in the setting of multi-player partial-observation games, the
problem is undecidable even for three players [31] and for safety objectives as well [11].
While most of the previous work considers only the general problem and its complex-
ity, the complexity distinction we study for memoryless strategies, and the practical
SMT-based approach to solve these games has not been studied before.

Equilibria Notions in Games. In the setting of two-player games for reactive syn-
thesis, the goals of the two players are complementary (i.e., games are zero-sum). For
multi-player games there are various notions of equilibria studied for graph games,
such as Nash equilibria [29] for graph games that inspired notions of rational syn-
thesis [19]; refinements of Nash equilibria such as secure equilibria [10] that inspired
assume-guarantee synthesis (AGS) [9], and doomsday equilibria [7]. An alternative to
Nash equilibria and its refinements are approaches based on iterated admissibility [4].

530 R. Bloem et al.

Among the various equilibria and synthesis notions, the most relevant one for reactive
synthesis is AGS, which is applicable for synthesis of mutual-exclusion protocols [9] as
well as for security protocols [13]. The previous work on AGS is severely restricted by
perfect information, whereas we consider the problem under the more general frame-
work of partial information, the need of which was already advocated in applications
in [24].

8 Conclusion

Assume-Guarantee Synthesis (AGS) is particularly suitable for concurrent reactive sys-
tems, because none of the synthesized processes relies on the concrete realization of
the others. This feature makes a synthesized solution robust against changes in single
processes. A major limitation of previous work on AGS was that it assumed perfect
information about all processes, which implies that synthesized implementations may
use local variables of other processes. In this paper, we resolved this shortcoming by
(1) defining AGS in a partial information setting, (2) proving new complexity results
for various sub-classes of the problem, (3) presenting a pragmatic synthesis algorithm
based on the existing notion of bounded synthesis to solve the problem, (4) providing
the first implementation of AGS, which also supports the optimization of solutions with
respect to user-defined cost functions, and (5) demonstrating its usefulness by resolv-
ing sketches of several concurrent protocols. We believe our contributions can form an
important step towards a mixed imperative/declarative programming paradigm for con-
current programs, where the user writes sequential code and the concurrency aspects
are taken care of automatically.

In the future, we plan to work on issues such as scalability and usability of our
prototype, explore applications for security protocols as mentioned in [24], and research
restricted cases where the AGS problem with partial information is decidable.

References

1. Beeri, C.: On the membership problem for functional and multivalued dependencies in rela-
tional databases. ACM Trans. on Database Systems 5, 241–259 (1980)

2. Berwanger, D., Chatterjee, K., De Wulf, M., Doyen, L., Henzinger, T.A.: Strategy construc-
tion for parity games with imperfect information. I& C 208(10), 1206–1220 (2010)

3. Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-guarantee synthesis for con-
current reactive programs with partial information. CoRR, abs/1411.4604 (2014)

4. Brenguier, R., Raskin, J.F., Sassolas, M.: The complexity of admissibility in omega-regular
games. In: CSL-LICS, ACM (2014)

5. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans-
actions of the AMS 138, 295–311 (1969)

6. Černý, P., Henzinger, T.A., Radhakrishna, A., Ryzhyk, L., Tarrach, T.: Efficient synthesis
for concurrency by semantics-preserving transformations. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 951–967. Springer, Heidelberg (2013)

7. Chatterjee, K., Doyen, L., Filiot, E., Raskin, J.-F.: Doomsday equilibria for omega-regular
games. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 78–97.
Springer, Heidelberg (2014)

Assume-Guarantee Synthesis for Concurrent Reactive Programs 531

8. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular
games of incomplete information. In: Logical Methods in Computer Science, vol. 3(3:4)
(2007)

9. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg (2007)

10. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theor. Com-
put. Sci. 365(1-2), 67–82 (2006)

11. Chatterjee, K., Henzinger, T.A., Otop, J., Pavlogiannis, A.: Distributed synthesis for LTL
fragments. In: FMCAD, pp. 18–25. IEEE (2013)

12. Chatterjee, K., Kößler, A., Schmid, U.: Automated analysis of real-time scheduling using
graph games. In: HSCC, pp. 163–172. ACM (2013)

13. Chatterjee, K., Raman, V.: Assume-guarantee synthesis for digital contract signing. Formal
Asp. Comput. 26(4), 825–859 (2014)

14. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress
of Mathematicians, pp. 23–35 (1962)

15. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)
16. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI

2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012)
17. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS, IEEE (2005)
18. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5-6), 519–539 (2013)
19. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R.

(eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)
20. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem.

Theor. Comput. Sci, 111–121 (1980)
21. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,

vol. 2500. Springer, Heidelberg (2002)
22. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC, pp. 60–65. ACM (1982)
23. Immerman, N.: Number of quantifiers is better than number of tape cells. J. Comput. Syst.

Sci. 22, 384–406 (1981)
24. Jamroga, W., Mauw, S., Melissen, M.: Fairness in non-repudiation protocols. In: Meadows,

C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 122–139. Springer, Heidel-
berg (2012)

25. Jobstmann, B., Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults. J. Comput.
Syst. Sci. 78(2), 441–460 (2012)

26. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token rings. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933. Springer, Heidel-
berg (2013)

27. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS (2005)
28. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local specifications.

In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp.
396–407. Springer, Heidelberg (2001)

29. Nash, J.F.: Equilibrium points in n-person games. Proceedings of the National Academny of
Sciences USA 36, 48–49 (1950)

30. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
31. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: FOCS. IEEE (1979)
32. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A.,

Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2006)

33. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL (1989)
34. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: FOCS, pp.

746–757. IEEE (1990)

532 R. Bloem et al.

35. Rabin, M.O.: Automata on Infinite Objects and Churchs Problem. American Mathematical
Society (1972)

36. Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. Syst.
Sci. 29(2), 274–301 (1984)

37. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities.
JCSS 4(2), 177–192 (1970)

38. Schewe, S.: Distributed synthesis is simply undecidable. IPL 114(4), 203–207 (2014)
39. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013)
40. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchronization. In:

POPL, pp. 327–338. ACM (2010)

Shield Synthesis:
Runtime Enforcement for Reactive Systems�

Roderick Bloem1, Bettina Könighofer1, Robert Könighofer1, and Chao Wang2

1 IAIK, Graz University of Technology, Austria
2 Department of ECE, Virginia Tech, Blacksburg, VA 24061, USA

Abstract. Scalability issues may prevent users from verifying critical proper-
ties of a complex hardware design. In this situation, we propose to synthesize a
“safety shield” that is attached to the design to enforce the properties at run time.
Shield synthesis can succeed where model checking and reactive synthesis fail,
because it only considers a small set of critical properties, as opposed to the com-
plex design, or the complete specification in the case of reactive synthesis. The
shield continuously monitors the input/output of the design and corrects its erro-
neous output only if necessary, and as little as possible, so other non-critical prop-
erties are likely to be retained. Although runtime enforcement has been studied
in other domains such as action systems, reactive systems pose unique challenges
where the shield must act without delay. We thus present the first shield synthesis
solution for reactive hardware systems and report our experimental results.

1 Introduction

Model checking [10,18] can formally verify that a design satisfies a temporal logic
specification. Yet, due to scalability problems, it may be infeasible to prove all critical
properties of a complex design. Reactive synthesis [17,4] is even more ambitious since
it aims to generate a provably correct design from a given specification. In addition
to scalability problems, reactive synthesis has the drawback of requiring a complete
specification, which describes every aspect of the desired design. However, writing a
complete specification can sometimes be as hard as implementing the design itself.

We propose shield synthesis as a way to complement model checking and reactive
synthesis. Our goal is to enforce a small set of critical properties at runtime even if these
properties may occasionally be violated by the design. Imagine a complex design and
a set of properties that cannot be proved due to scalability issues or other reasons (e.g.,
third-party IP cores). In this setting, we are in good faith that the properties hold but we
need to have certainty. We would like to automatically construct a component, called
the shield, and attach it to the design as illustrated in Fig. 1. The shield monitors the
input/output of the design and corrects the erroneous output values instantaneously, but
only if necessary and as little as possible.

� This work was supported in part by the Austrian Science Fund (FWF) through the research
network RiSE (S11406-N23) and by the European Commission through project STANCE
(317753). Chao Wang was supported by the National Science Foundation grant CNS-1128903.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 533–548, 2015.
DOI: 10.1007/978-3-662-46681-0_51

534 R. Bloem et al.

Fig. 1. Attaching a safety shield

The shield ensures both correctness and
minimum interference. By correctness, we
mean that the properties must be satisfied by
the combined system, even if they are occa-
sionally violated by the design. By minimum
interference, we mean that the output of the
shield deviates from the output of the design
only if necessary, and the deviation is kept minimum. The latter requirement is impor-
tant because we want the design to retain other (non-critical) behaviors that are not
captured by the given set of properties. We argue that shield synthesis can succeed even
if model checking and reactive synthesis fail due to scalability issues, because it has to
enforce only a small set of critical properties, regardless of the implementation details
of a complex design.

This paper makes two contributions. First, we define a general framework for solv-
ing the shield synthesis problem for reactive hardware systems. Second, we propose
a new synthesis method, which automatically constructs a shield from a set of safety
properties. To minimize deviations of the shield from the original design, we propose a
new notion called k-stabilization: When the design arrives at a state where a property
violation becomes unavoidable for some possible future inputs, the shield is allowed to
deviate for at most k consecutive steps. If a second violation happens during the k-step
recovery phase, the shield enters a fail-safe mode where it only enforces correctness,
but no longer minimizes the deviation. We show that the k-stabilizing shield synthesis
problem can be reduced to safety games [15]. Following this approach, we present a
proof-of-concept implementation and give the first experimental results.

Our work on shield synthesis can complement model checking by enforcing any
property that cannot be formally proved on a complex design. There can be more appli-
cations. For example, we may not trust third-party IP components in our system, but in
this case, model checking cannot be used because we do not have the source code. Nev-
ertheless, a shield can enforce critical interface assumptions of these IP components at
run time. Shields may also be used to simplify certification. Instead of certifying a com-
plex design against critical requirements, we can synthesize a shield to enforce them,
regardless of the behavior of the design. Then, we only need to certify this shield, or
the synthesis procedure, against the critical requirements. Finally, shield synthesis is a
promising new direction for synthesis in general, because it has the strengths of reactive
synthesis while avoiding its weaknesses — the set of critical properties can be small and
relatively easy to specify — which implies scalability and usability.

Related Work. Shield synthesis is different from recent works on reactive synthesis
[17,4,12], which revisited Church’s problem [9,8,19] on constructing correct systems
from logical specifications. Although there are some works on runtime enforcement of
properties in other domains [20,14,13], they are based on assumptions that do not work
for reactive hardware systems. Specifically, Schneider [20] proposed a method that sim-
ply halts a program in case of a violation. Ligatti et al. [14] used edit automata to sup-
press or insert actions, and Falcone et al. [13] proposed to buffer actions and dump them
once the execution is shown to be safe. None of these approaches is appropriate for re-
active systems where the shield must act upon erroneous outputs on-the-fly, i.e., without

Shield Synthesis: Runtime Enforcement for Reactive Systems 535

delay and without knowing what future inputs/outputs are. In particular, our shield cannot
insert or delete time steps, and cannot halt in the case of a violation.

Methodologically, our new synthesis algorithm builds upon the existing work on
synthesis of robust systems [3], which aims to generate a complete design that satisfies
as many properties of a specification as possible if assumptions are violated. However,
our goal is to synthesize a shield component S, which can be attached to any design
D, to ensure that the combined system (S ◦D) satisfies a given set of critical proper-
ties. Our method aims at minimizing the ratio between shield deviations and property
violations by the design, but achieves it by solving pure safety games. Furthermore, the
synthesis method in [3] uses heuristics and user input to decide from which state to
continue monitoring the environmental behavior, whereas we use a subset construction
to capture all possibilities to avoid unjust verdicts by the shield. We use the notion of
k-stabilization to quantify the shield deviation from the design, which has similarities
to Ehlers and Topcu’s notion of k-resilience in robust synthesis [12] for GR(1) specifi-
cations [4]. However, the context of our work is different, and our k-stabilization limits
the length of the recovery period instead of tolerating bursts of up to k glitches.

Outline. The remainder of this paper is organized as follows. We illustrate the technical
challenges and our solutions in Section 2 using an example. Then, we establish notation
in Section 3. We formalize the problem in a general framework for shield synthesis in
Section 4, and present our new method in Section 5. We present our experimental results
in Section 6 and, finally, give our conclusions in Section 7.

2 Motivation

In this section, we illustrate the challenges associated with shield synthesis and then
briefly explain our solution using an example. We start with a traffic light controller
that handles a single crossing between a highway and a farm road. There are red (r) or
green (g) lights for both roads. An input signal, denoted p ∈ {0, 1}, indicates whether
an emergency vehicle is approaching. The controller takes p as input and returns h,f as
output. Here, h ∈ {r, g} and f ∈ {r, g} are the lights for highway and farm road, respec-
tively. Although the traffic light controller interface is simple, the actual implementation
can be complex. For example, the controller may have to be synchronized with other
traffic lights, and it can have input sensors for cars, buttons for pedestrians, and sophis-
ticated algorithms to optimize traffic throughput and latency based on all sensors, the
time of the day, and even the weather. As a result, the actual design may become too
complex to be formally verified. Nevertheless, we want to ensure that a handful of safety
critical properties are satisfied with certainty. Below are three example properties:

1. The output gg — meaning that both roads have green lights — is never allowed.
2. If an emergency vehicle is approaching (p = 1), the output must be rr.
3. The output cannot change from gr to rg, or vice versa, without passing rr.

We want to synthesize a safety shield that can be attached to any implementation of this
traffic light controller, to enforce these properties at run time.

In a first exercise, we only consider enforcing Properties 1 and 2. These are simple
invariance properties without any temporal aspects. Such properties can be represented

536 R. Bloem et al.

by a truth table as shown in Fig. 2 (left). We use 0 to encode r, and 1 to encode g.
Forbidden behavior is marked in bold red. The shield must ensure both correctness
and minimum interference. That is, it should only change the output for red entries.

p h f h’ f’
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 1 1 0 0

⇒

h′ = ¬p ∧ h
f′ = ¬p ∧ ¬h ∧ f

f

h

p h’

f’

Fig. 2. Enforcing Properties 1 and 2

In particular, it should not ignore the
design and hard-wire the output to rr.
When p = 1 but the output is not rr,
the shield must correct the output to
rr. When p = 0 but the output is gg,
the shield must turn the original out-
put gg into either rg, gr, or rr. As-
sume that gr is chosen. As illustrated
in Fig. 2 (right), we can construct the
transition functions h′ = ¬p ∧ h and
f ′ = ¬p ∧ ¬h ∧ f , as well as the shield circuit accordingly.

Next, we consider enforcing Properties 1–3 together. Property 3 brings in a temporal
aspect, so a simple truth table does not suffice any more. Instead, we express the prop-
erties by an automaton, which is shown in Fig. 3. Edges are labeled by values of phf,
where p ∈ {0, 1} is the controller’s input and h, f are outputs for highway and farm road.

H B F

0gr -rr 0rg
-rr

0gr -rr

0rg

Fig. 3. Traffic light specification

There are three non-error states: H denotes
the state where highway has the green light,
F denotes the state where farm road has the
green light, and B denotes the state where
both have red lights. There is also an error
state, which is not shown. Missing edges lead
to this error state, denoting forbidden situa-
tions, e.g., 1gr is not allowed in state H. Although the automaton still is not a complete
specification, the corresponding shield can prevent catastrophic failures. By automati-
cally generating a small shield as shown in Fig. 1, our approach has the advantage of
combining the functionality and performance of the aggressively optimized implemen-
tation with guaranteed safety.

While the shield for Property 1 and 2 could be realized by purely combinational
logic, this is not possible for the specification in Fig. 3. The reason is the temporal
aspect brought in by Property 3. For example, if we are in state F and observe 0gg,
which is not allowed, the shield has to make a correction in the output signals to avoid
the violation. There are two options: changing the output from gg to either rg or rr.
However, this fix may result in the next state being either B or F. The question is,
without knowing what the future inputs/outputs are, how do we decide from which state
the shield should continue to monitor the behavior of the design in order to best detect
and correct future violations? If the shield makes a wrong guess now, it may lead to a
suboptimal implementation that causes unnecessarily large deviation in the future.

To solve this problem, we adopt the most conservative approach. That is, we assume
that the design D meant to give one of the allowed outputs, so either rr or rg. Thus, our
shield continues to monitor the design from both F and B. Technically, this is achieved
by a form of subset construction (see Sec. 5.2), which tracks all possibilities for now,
and then gradually refines its knowledge with future observations. For example, if the

Shield Synthesis: Runtime Enforcement for Reactive Systems 537

next observation is 0gr, we assume that the design D meant rr earlier, and so it must be
in B and traverse to H. If it were in F, we could only have explained 0gr by assuming
a second violation, which is less optimistic than we would like to be. In this work, we
assume that a second violation occurs only if an observation is inconsistent with all
states that it could possibly be in. For example, if the next observation is not 0gr but
1rg, which is neither allowed in F nor in B, we know that a second violation occurs. Yet,
after observing 1rg, we can be sure that we have reached the state B, because starting
from both F and B, with input p = 1, the only allowed output is rr, and the next state is
always B. In this sense, our construction implements an “innocent until proved guilty”
philosophy, which is key to satisfy the minimum interference requirement.

To bound the deviation of the shield when a property violation becomes unavoidable,
we require the shield to deviate for at most k consecutive steps after the initial violation.
We shall formalize this notion of k-stabilization in subsequent sections and present our
synthesis algorithm. For the safety specification in Fig. 3, our method would reduce
the shield synthesis problem into a set of safety games, which are then solved using
standard techniques (cf. [15]). We shall present the synthesis results in Section 6.

3 Preliminaries

We denote the Boolean domain by B = {true, false}, denote the set of natural numbers
by N, and abbreviate N ∪ {∞} by N

∞. We consider a reactive system with a finite
set I = {i1, . . . , im} of Boolean inputs and a finite set O = {o1, . . . , on} of Boolean
outputs. The input alphabet is ΣI = 2I , the output alphabet is ΣO = 2O, and Σ =
ΣI ×ΣO. The set of finite (infinite) words over Σ is denoted by Σ∗ (Σω), and Σ∗,ω =
Σ∗ ∪Σω. We will also refer to words as (execution) traces. We write |σ| for the length
of a trace σ ∈ Σ∗,ω. For σI = x0x1 . . . ∈ Σω

I and σO = y0y1 . . . ∈ Σω
O, we write

σI ||σO for the composition (x0, y0)(x1, y1) . . . ∈ Σω. A set L ⊆ Σω of infinite words
is called a language. We denote the set of all languages as L = 2Σ

ω

.

Reactive Systems. A reactive system D = (Q, q0, ΣI , ΣO, δ, λ) is a Mealy machine,
where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × ΣI → Q is a
complete transition function, and λ : Q × ΣI → ΣO is a complete output function.
Given the input trace σI = x0x1 . . . ∈ Σω

I , the system D produces the output trace
σO = D(σI) = λ(q0, x0)λ(q1, x1) . . . ∈ Σω

O, where qi+1 = δ(qi, xi) for all i ≥ 0. The
set of words produced by D is denoted L(D) = {σI ||σO ∈ Σω | D(σI) = σO}. We
also refer to a reactive system D as a (hardware) design.

Let D = (Q, q0, ΣI , ΣO, δ, λ) and D′ = (Q′, q′0, Σ,ΣO, δ
′, λ′) be reactive systems.

Their serial composition is constructed by feeding the input and output of D to D′

as input. We use D ◦ D′ to denote such a composition (Q̂, q̂0, ΣI , ΣO, δ̂, λ̂), where
Q̂ = Q × Q′, q̂0 = (q0, q

′
0), δ̂((q, q

′), σI) = (δ(q, σI), δ
′(q′, (σI , λ(q, σI)))), and

λ̂((q, q′), σI) = λ′(q′, (σI , λ(q, σI))).

Specifications. A specification ϕ defines a set L(ϕ) ⊆ Σω of allowed traces. A spec-
ification ϕ is realizable if there exists a design D that realizes it. D realizes ϕ, written
D |= ϕ, iff L(D) ⊆ L(ϕ). We assume that ϕ is a (potentially incomplete) set of
properties {ϕ1, . . . , ϕl} such that L(ϕ) =

⋂
i L(ϕi), and a design satisfies ϕ iff it sat-

isfies all its properties. In this work, we are concerned with a safety specification ϕs,

538 R. Bloem et al.

which is represented by an automaton ϕs = (Q, q0, Σ, δ, F), where Σ = ΣI ∪ ΣO,
δ : Q × Σ → Q, and F ⊆ Q is a set of safe states. The run induced by trace
σ = σ0σ1 . . . ∈ Σω is the state sequence q = q0q1 . . . such that qi+1 = δ(qi, σi).
Trace σ (of a design D) satisfies ϕs if the induced run visits only the safe states, i.e.,
∀i ≥ 0 . qi ∈ F . The language L(ϕs) is the set of all traces satisfying ϕs.

Games. A (2-player, alternating) game is a tuple G = (G, g0, ΣI , ΣO, δ,win), where
G is a finite set of game states, g0 ∈ G is the initial state, δ : G × ΣI × ΣO → G is
a complete transition function, and win : Gω → B is a winning condition. The game is
played by two players: the system and the environment. In every state g ∈ G (starting
with g0), the environment first chooses an input letter σI ∈ ΣI , and then the system
chooses some output letter σO ∈ ΣO. This defines the next state g′ = δ(g, σI , σO), and
so on. The resulting (infinite) sequence g = g0g1 . . . of game states is called a play. A
play is won by the system iff win(g) is true.

A safety game defines win via a set F g ⊆ G of safe states: win(g0g1 . . .) is true iff
∀i ≥ 0 . gi ∈ F g , i.e., if only safe states are visited. A (memoryless) strategy for the
system is a function ρ : G×ΣI → ΣO. A strategy is winning for the system if all plays
g that can be constructed when defining the outputs using the strategy satisfy win(g).
The winning region is the set of states from which a winning strategy exists. We will
use safety games to synthesize a shield, which implements the winning strategy in a
new reactive system S = (G, q0, ΣI , ΣO, δ

′, ρ) with δ′(g, σI) = δ(g, σI , ρ(g, σI)).

4 The Shield Synthesis Framework

We define a general framework for shield synthesis in this section before presenting a
concrete realization of this framework in the next section.

Definition 1 (Shield). Let D = (Q, q0, ΣI , ΣO, δ, λ) be a design, ϕ be a set of prop-
erties, and ϕv ⊆ ϕ be a valid subset such that D |= ϕv . A reactive system S =
(Q′, q′0, Σ,ΣO, δ

′, λ′) is a shield of D with respect to (ϕ \ ϕv) iff (D ◦ S) |= ϕ.

Here, the design is known to satisfy ϕv ⊆ ϕ. Furthermore, we are in good faith that D
also satisfies ϕ \ ϕv , but it is not guaranteed. We synthesize S, which reads the input
and output of D while correcting its erroneous output as illustrated in Fig. 1.

Definition 2 (Generic Shield). Given a set ϕ = ϕv ∪ (ϕ\ϕv) of properties. A reactive
system S is a generic shield iff it is a shield of any design D such that D |= ϕv .

A generic shield must work for any design D |= ϕv . Hence, the shield synthesis proce-
dure does not need to consider the design implementation. This is a realistic assumption
in many applications, e.g., when the design D comes from the third party. Synthesis of a
generic shield also has a scalability advantage since the design D, even if available, can
be too complex to analyze, whereas ϕ often contains only a small set of critical proper-
ties. Finally, a generic shield is more robust against design changes, making it attractive
for safety certification. In this work, we focus on the synthesis of generic shields.

Although the shield is defined with respect to ϕ (more specifically, ϕ \ϕv), we must
refrain from ignoring the design completely while feeding the output with a replacement

Shield Synthesis: Runtime Enforcement for Reactive Systems 539

circuit. This is not desirable because the original design may satisfy additional (non-
critical) properties that are not specified in ϕ but should be retained as much as possible.
In general, we want the shield to deviate from the design only if necessary, and as little
as possible. For example, if D does not violate ϕ, the shield S should keep the output
of D intact. This rationale is captured by our next definitions.

Definition 3 (Output Trace Distance Function). An output trace distance function
(OTDF) is a function dσ : Σ∗,ω

O ×Σ∗,ω
O → N

∞ such that

1. dσ(σO, σO
′) = 0 when σO = σO

′;
2. dσ(σOσO, σO

′σO
′) = dσ(σO, σO

′) when σO = σO
′, and

3. dσ(σOσO, σO
′σO

′) > dσ(σO, σO
′) when σO �= σO

′.

An OTDF measures the difference between two output sequences (of the design D
and the shield S). The definition requires monotonicity with respect to prefixes: when
comparing trace prefixes with increasing length, the distance can only become larger.

Definition 4 (Language Distance Function). A language distance function (LDF) is
a function dL : L ×Σω → N

∞ such that ∀L ∈ L, σ ∈ Σω . σ ∈ L → dL(L, σ) = 0.

An LDF measures the severity of specification violations by the design by mapping a
language (of ϕ) and a trace (of D) to a number. Given a trace σ ∈ Σω, its distance to
L(ϕ) is 0 if σ satisfies ϕ. Greater distances indicate more severe specification violations.
An OTDF can (but does not have to) be defined via an LDF by taking the minimum
output distance between σ = (σI ||σO) and any trace in the language L:

dL(L, σI ||σO) =

{
min

σI ||σO
′∈L

dσ(σO
′, σO) if ∃σO

′ ∈ Σω
O . (σI ||σO

′) ∈ L

0 otherwise.

The input trace is ignored in dσ because the design D can only influence the output. If
no alternative output trace makes the word part of the language, the distance is set to 0 to
express that it cannot be the design’s fault. If L is defined by a realizable specification
ϕ, this cannot happen anyway, since ∀σI ∈ Σω

I . ∃σO ∈ Σω
O .(σI ||σO) ∈ L(ϕ) is a

necessary condition for the realizability of ϕ.

Definition 5 (Optimal Generic Shield). Let ϕ be a specification, ϕv ⊆ ϕ be the valid
subset, dσ be an OTDF, and dL be an LDF. A reactive system S is an optimal generic
shield if and only if for all σI ∈Σω

I and σO∈Σω
O ,

(σI ||σO)∈L(ϕv) →
(
dL

(
L(ϕ), σI ||S(σI ||σO)

)
= 0 ∧ (1)

dσ(σO,S(σI ||σO)) ≤ dL(L(ϕ), σI ||σO)
)
. (2)

The implication means that we only consider traces that satisfy ϕv since D |= ϕv is
assumed. This can be exploited by synthesis algorithms to find a more succinct shield.
Part (1) of the implied formula ensures correctness: D ◦ S must satisfy ϕ.1 Part (2)
ensures minimum interference: “small” violations result in “small” deviations. Def. 5 is
designed to be flexible: Different notions of minimum interference can be realized with
appropriate definitions of dσ and dL. One realization will be presented in Section 5.

1 Applying dL instead of “⊆ L(ϕ)” adds flexibility: the user can define dL in such a way that
dL(L, σ) = 0 even if σ �∈ L to allow such traces as well.

540 R. Bloem et al.

Proposition 1. An optimal generic shield S cannot deviate from the design’s output
before a specification violation by the design D is unavoidable.

Proof. If there has been a deviation dσ(σO,S(σI ||σO)) �= 0 on the finite input prefix
σ, but this prefix can be extended into an infinite trace σ′ such that dL(L(ϕ), σ′) = 0,
meaning that a violation is avoidable, then Part (2) of Def. 5 is violated because of the
(prefix-)monotonicity of dσ (the deviation can only increase when the trace is extended),
and the fact that dσ ≤ dL is false if dσ �= 0.

5 Our Shield Synthesis Method

In this section, we present a concrete realization of the shield synthesis framework by
defining OTDF and LDF in a practical way. We call the resulting shield a k-stabilizing
generic shield. While our framework works for arbitrary specifications, our realization
assumes safety specifications.

5.1 k-Stabilizing Generic Shields

A k-stabilizing generic shield is an optimal generic shield according to Def. 5, together
with the following restrictions. When a property violation by the design D becomes un-
avoidable (in the worst case over future inputs), the shield S is allowed to deviate from
the design’s outputs for at most k consecutive time steps, including the current step.
Only after these k steps, the next violation is tolerated. This is based on the assumption
that specification violations are rare events. If a second violation happens within the
k-step recovery period, the shield enters a fail-safe mode, where it enforces the critical
properties, but stops minimizing the deviations. More formally, a k-stabilizing generic
shield requires the following configuration of the OTDF and LDF functions:

1. The LDF dL(L(ϕ), σ) is defined as follows: Given a trace σ ∈ Σω, its distance to
L(ϕ) is 0 initially, and increased to ∞ when the shield enters the fail-safe mode.

2. The OTDF function dσ(σO, σO
′) returns 0 initially, and is set to ∞ if σOi �= σO

′
i

outside of a k-step recovery period.

To indicate whether the shield is in the fail-safe mode or a recovery period, we add a
counter c ∈ {0, . . . , k}. Initially, c is 0. Whenever there is a property violation by the
design, c is set to k in the next step. In each of the subsequent steps, c decrements until it
reaches 0 again. The shield can deviate if the next state has c > 0. If a second violation
happens when c > 1, then the shield enters the fail-safe mode. A 1-stabilizing shield
can only deviate in the time step of the violation, and can never enter the fail-safe mode.

5.2 Synthesizing k-Stabilizing Generic Shields

The flow of our synthesis procedure is illustrated in Fig. 4. Let ϕ = {ϕ1, . . . , ϕl} be
the critical safety specification, where each ϕi is represented as an automaton ϕi =
(Qi, q0,i, Σ, δi, Fi). The synchronous product of these automata is again a safety au-
tomaton. We use three product automata: Q = (Q, q0, Σ, δ, F) is the product of all

Shield Synthesis: Runtime Enforcement for Reactive Systems 541

Fig. 4. Outline of our k-stabilizing generic shield synthesis procedure

r0 r1 rx

o = i

o �= i

¬i
i

true

Fig. 5. The safety automaton R

t0 t1

σO = σO
′

σO �= σO
′

σO �= σO
′σO = σO

′

Fig. 6. The deviation monitor T

properties in ϕ; V = (V, v0, Σ, δv, F v) is the product of properties in ϕv ⊆ ϕ; and
R = (R, r0, Σ, δr, F r) is the product of properties in ϕ \ ϕv . Starting from these au-
tomata, our shield synthesis procedure consists of five steps.

Step 1. Constructing the Violation Monitor U: From R, which represents ϕ \ϕv, we
build U = (U, u0, Σ, δu) to monitor property violations by the design. The goal is to
identify the latest point in time from which a specification violation can still be corrected
with a deviation by the shield. This constitutes the start of the recovery period.

The first phase of this construction (Step 1-a) is to consider the automaton R =
(R, r0, Σ, δr, F r) as a safety game and compute its winning region W r ⊆ F r. The
meaning of W r is such that every reactive system D |= (ϕ \ ϕv) must produce outputs
in such a way that the next state of R stays in W r. Only when the next state of R would
be outside of W r, our shield will be allowed to interfere.

Example 1. Consider the safety automaton R in Fig. 5, where i is an input, o is an
output, and rx is unsafe. The winning region is W = {r0} because from r1 the input i
controls whether rx is visited. The shield must be allowed to deviate from the original
transition r0 → r1 if o �= i. In r1 it is too late because visiting an unsafe state cannot
be avoided any more, given that the shield can modify the value of o but not i.

The second phase (Step 1-b) is to expand the state space from R to 2R via a subset
construction. The rationale behind it is as follows. If the design makes a mistake (i.e.,
picks outputs such that R enters a state r �∈ W r from which the specification cannot
be enforced), we have to “guess” what the design actually meant to do in order to find
a state from which we can continue monitoring its behavior. We follow a generous
approach in order not to treat the design unfairly: we consider all output letters that
would have avoided falling out of W r, and continue monitoring the design behavior
from all the corresponding successor states in parallel. Thus, U is essentially a subset
construction of R, where a state u ∈ U of U represents a set of states in R.

542 R. Bloem et al.

The third phase (Step 1-c) is to expand the state space of U by adding a counter c ∈
{0, . . . , k} as described in the previous subsection, and adding a special fail-safe state
uE . The final violation monitor is U = (U, u0, Σ, δu), where U = (2R×{0, . . . , k})∪
uE is the set of states, u0 = ({r0}, 0) is the initial state, Σ is the set of input letters,
and δu is the next-state function, which obeys the following rules:

1. δu(uE , σ) = uE (meaning that uE is a trap state),
2. δu((u, c), σ) = uE if c > 1 and ∀r ∈ u : δr(r, σ) �∈ W r,
3. δu((u, c), (σI , σO)) = ({r′∈W r | ∃r ∈ u, σO

′ ∈ ΣO . δr(r, (σI , σO
′)) = r′}, k)

if c ≤ 1 and ∀r ∈ u . δr(r, (σI , σO)) �∈ W r, and
4. δu((u, c), σ)=({r′∈W r|∃r∈u . δr(r, σ) = r′}, dec(c)) if ∃r∈u . δr(r, σ)∈W r ,

where dec(0) = 0 and dec(c) = c− 1 if c > 0.

Our construction sets c = k whenever the design leaves the winning region, and not
when it enters an unsafe state. Hence, the shield S can take remedial action as soon as
the “the crime is committed”, before the damage is detected, which would have been
too late to correct the erroneous outputs of the design.

Example 2. We illustrate the construction of U using the specification from Fig. 3,

1g- 1rg -rr 0gg 0gr 0rg
H B� B� B HB� H HB�
B B� B� B HFB� H F
F B� B� B FB� FB� F
HB B� B� B HFB� H F
FB B� B� B HFB� H F
HFB B� B� B HFB� H F

Fig. 7. δu for the spec from Fig. 3

which is a safety automaton if we make all miss-
ing edges point to an (additional) unsafe state.
The winning region consists of all safe states,
i.e., W r = {H,B, F}. The resulting viola-
tion monitor is U = ({H,B, F,HB, FB,HFB}×
{0, . . . , k} ∪ uE , (H, 0), Σ, δu), where δu is il-
lustrated in Fig. 7 as a table (the graph would be
messy), which lists the next state for all possible
present states as well as inputs and outputs by
the design. Lightning bolts denote specification
violations. The update of the counter c, which is not included in Fig. 7, is as follows:
whenever the design commits a violation (indicated by lightning) and c ≤ 1, then c is
set to k. If c > 1 at the violation, the next state is uE . Otherwise, c is decremented.

Step 2. Constructing the Validity Monitor V ′: From V = (V, v0, Σ, δv, F v), which
represents ϕv , we build an automaton V ′ to monitor the validity of ϕv by solving a
safety game on V and computing the winning region W v ⊆ F v. We will use W v

to increase the freedom for the shield: since we assume that D |= ϕv, we are only
interested in the cases where V never leaves W v. If it does, our shield is allowed to
behave arbitrarily from that point on. We extend the state space from V to V ′ by adding
a bit to memorize if we have left the winning region W v . Hence, the validity monitor
is defined as V ′ = (V ′, v′0, Σ, δv ′, F v ′), where V ′ = B × V is the set of states, v′0 =
{false, v0} is the initial state, δv ′((b, v), σ) = (b′, δv(v, σ)), where b′ = true if b = true
or δv(v, σ) �∈ W v, and b′ = false otherwise, and F v ′ = {(b, v) ∈ V ′ | b = false}.

Step 3. Constructing the Deviation Monitor T : We build T = (T, t0, ΣO×ΣO, δ
t) to

monitor the deviation of the shield’s output from the design’s output. Here, T = {t0, t1}
and δt(t, (σO , σO

′)) = t0 iff σO = σO
′. That is, T will be in t1 if there was a deviation

in the last time step, and in t0 otherwise. This deviation monitor is shown in Fig. 6.

Shield Synthesis: Runtime Enforcement for Reactive Systems 543

Step 4. Constructing the Safety Game G: Given the monitors U ,V ′, T and the au-
tomaton Q, which represents ϕ, we construct a safety game G = (G, g0, ΣI ×ΣO, ΣO,
δg, F g), which is the synchronous product of U , T , V ′ and Q, such that G = U × T ×
V ′ ×Q is the state space, g0 = (u0, t0, v

′
0, q0) is the initial state, ΣI ×ΣO is the input

of the shield, ΣO is the output of the shield, δg is the next-state function, and F g is the
set of safe states, such that δg

(
(u, t, v′, q), (σI , σO), σO

′) =
(
δu(u, (σI , σO)), δ

t(t, (σO, σO
′)), δv ′(v′, (σI , σO)), δ

q(q, (σI , σO
′))

)
,

and F g = {(u, t, v′, q) ∈ G | v′ �∈ F v ′ ∨ ((q ∈ F q) ∧ (u = (w, 0) → t = t0))}.
In the definition of F g , the term v′ �∈ F v ′ reflects our assumption that D |= ϕv . If

this assumption is violated, then v′ �∈ F v ′ will hold forever, and our shield is allowed to
behave arbitrarily. This is exploited by our synthesis algorithm to find a more succinct
shield by treating such states as don’t cares. If v′ ∈ F v ′, we require that q ∈ F q , i.e.,
it is a safe state in Q, which ensures that the shield output will satisfy ϕ. The last term
ensures that the shield can only deviate in the k-step recovery period, i.e., while c �= 0
in U . If the design makes a second mistake within this period, U enters uE and arbitrary
deviations are allowed. Yet, the shield will still enforceϕ in this mode (unless D �|= ϕv).

Step 5. Solving the Safety Game: We use standard algorithms for safety games (cf.
e.g. [15]) to compute a winning strategy ρ for G. Then, we implement this strategy in a
new reactive system S = (G, g0, Σ,ΣO, δ, ρ) with δ(g, σ) = δg(g, σ, ρ(g, σ)). S is the
k-stabilizing generic shield. If no winning strategy exists, we increase k and try again.
In our experiments, we start with k = 1 and then increase k by 1 at a time.

Theorem 1. Let ϕ = {ϕ1, . . . , ϕl} be a set of critical safety properties ϕi = (Qi, q0i,
Σ, δi, Fi), and let ϕv ⊆ ϕ be a subset of valid properties. Let |V | =

∏
ϕi∈ϕv |Qi| be

the cardinality of the product of the state spaces of all properties of ϕv. Similarly, let
|R| =

∏
ϕi �∈ϕv |Qi|. A k-stabilizing generic shield with respect to ϕ \ ϕv and ϕv can

be synthesized in O(k2 · 22|R| · |V |4 · |R|2) time (if one exists).

Proof. Safety games can be solved in O(x + y) time [15], where x is the number of
states and y is the number of edges in the game graph. Our safety game G has at most
x = ((k + 1) · 2|R| + 1) · (2 · |V |) · 2 · (|R| · |V |) states, so at most y = x2 edges.

Variations. The assumption that no second violation occurs within the recovery period
increases the chances that a k-stabilizing shield exists. However, it can also be dropped
with a slight modification of U in Step 1: if a violation is committed and c > 1, we set c
to k instead of visiting uE . This ensures that synthesized shields will handle violations
within a recovery period normally. The assumption that the design meant to give one of
the allowed outputs if a violation occurs can also be relaxed. Instead of continuing to
monitor the behavior from the allowed next states, we can just continue from the set of
all states, i.e., traverse to state (R, k) in U . The assumption that D |= ϕv , i.e., the design
satisfies some properties, is also optional. By removing V and V ′, the construction can
be simplified at the cost of less implementation freedom for the shield.

By solving a Büchi game (which is potentially more expensive) instead of a safety
game, we can also eliminate the need to increase k iteratively until a solution is found.
This is outlined in the appendix of an extended version [5] of this paper.

544 R. Bloem et al.

6 Experiments

We have implemented the k-stabilizing shield synthesis procedure in a proof-of-concept
tool. Our tool takes as input a set of safety properties, defined as automata in a simple
textual representation. The product of these automata, as well as the subset construction
in Step 1 of our procedure is done on an explicit representation. The remaining steps
are performed symbolically using Binary Decision Diagrams (BDDs). Synthesis starts
with k = 1 and increments k in case of unrealizability until a user-defined bound is
hit. Our tool is written in Python and uses CUDD [1] as the BDD library. Our tool can
output shields in Verilog and SMV. It can also use the model checker VIS [6] to verify
that the synthesized shield is correct.

We have conducted three sets of experiments, where the benchmarks are (1) selected
properties for a traffic light controller from the VIS [6] manual, (2) selected properties
for an ARM AMBA bus arbiter [4], and (3) selected properties from LTL specifica-
tion patterns [11]. None of these examples makes use of ϕv, i.e., ϕv is always empty.
The source code of our proof-of-concept synthesis tool as well as the input files and
instructions to reproduce our experiments are available for download2.

Traffic Light Controller Example. We used the safety specification in Fig. 3 as input,

X Y Z

0gr -rr

else →rr

0rg-rr

else →rr

0gr -rr

else →rr

0rg

Fig. 8. Traffic light shield

for which our tool generated a 1-stabilizing
shield within a fraction of a second. The shield
has 6 latches and 95 (2-input) multiplexers,
which is then reduced by ABC [7] to 5 latches
and 41 (2-input) AIG gates. However, most of
the states are either unreachable or equivalent.
The behavior of the shield is illustrated in Fig. 8.
Edges are labeled with the inputs of the shield.
Red dashed edges denote situations where the output of the shield is different from its
inputs. The modified output is written after the arrow. For all non-dashed edges, the
input is just copied to the output. Clearly, the states X, Y, and Z correspond to H, B, and
F in Fig. 3.

We also tested the synthesized shield using the traffic light controller of [16], which
also appeared in the user manual of VIS [6]. This controller has one input (car) from
a car sensor on the farm road, and uses a timer to control the length of the different
phases. We set the “short” timer period to one tick and the “long” period to two ticks.

S0
gr

S1
gr

S2
gr

S3
rr S4

rr S5
rg

S6
rg

S7
rg

S8
rr

S9
rr

¬car

car
¬car

car ¬car

car¬car

Fig. 9. Traffic light implementation

The resulting behavior without
preemption is visualized in Fig. 9,
where nodes are labeled with
names and outputs, and edges are
labeled with conditions on the in-
puts. The red dashed arrow repre-
sents a subtle bug we introduced:
if the last car on the farm road ex-
its the crossing at a rare point in time, then the controller switches from rg to gr without
passing rr. This bug only shows up in very special situations, so it can go unnoticed

2
http://www.iaik.tugraz.at/content/research/design_verification/others/

 http://www.iaik.tugraz.at/content/research/design_verification/others/

Shield Synthesis: Runtime Enforcement for Reactive Systems 545

S0

S4

S3 S2 S1

Sx

¬(B ∧ s)

B ∧ s ∧ ¬R

B ∧ s ∧ R

¬s ∧
R

¬s ∧ ¬R
s

¬s ∧ R
¬s ∧ ¬R

s

¬s ∧ R
¬s ∧ ¬R

s

¬s ∧ R

¬s ∧ ¬R
s

true

Fig. 10. Guarantee 3 from [4]

Step 3 4 5 6 7 8 9 10 11 12
State in Fig. 10 S0 S4 S3 S2 S1 S0 S0 S0 S0 . . .
State in Design S0 S3 S2 S1 S0 S3 S2 S1 S0 . . .
B 1 1 1 1 1 1 1 1 1 . . .
R 0 1 1 1 1 1 1 1 1 . . .
s from Design 1 0 0 0 1� 0 0 0 0 . . .
s from Shield 1 0 0 0 0 0 0 0 0 . . .

Fig. 11. Shield execution results

easily. Preemption is implemented by modifying both directions to r without changing
the state if p = 1. We introduced another bug here as well: only the highway is switched
to r if p = 1, whereas the farm road is not. This bug can easily go unnoticed as well,
because the farm road is mostly red anyway. The following trace illustrates how the
synthesized shield handles these errors:

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
State in Fig. 3 (safety spec.) H H B H B B F F F,B H H B B B B . . .
State in Fig. 9 (buggy design) S0 S1 S2 S3 S4 S5 S6 S0 S1 S2 S3 S4 S5 S8 S9 . . .
State in Fig. 8 (shield) X X Y X Y Y Z Z Y X X Y Y Y Y . . .
Input (p,car) 00 11 01 01 01 01 00 00 00 01 01 00 10 00 00 . . .
Design output gr rr gr rr rr rg rg gr� gr gr rr rr rg� rr rr . . .
Shield output gr rr gr rr rr rg rg rr gr gr rr rr rr rr rr . . .

The first bug strikes at Step 7. The shield corrects it with output rr. A 2-stabilizing shield
could also have chosen rg, but this would have made a second deviation necessary in
the next step. Our shield is 1-stabilizing, i.e., it deviates only at the step of the violation.
After this correction, the shield continues monitoring the design from both state F and
state B of Fig. 3, as explained earlier, to detect future errors. Yet, this uncertainty is
resolved in the next step. The second bug in Step 12 is simpler: outputting rr is the only
way to correct it, and the next state in Fig. 3 must be B.

When only considering the properties 1 and 2 from Section 2, the synthesized shield
has no latches and three AIG gates after optimization with ABC [7].

ARM AMBA Bus Arbiter Example. We used properties of an ARM AMBA bus ar-
biter [4] as input to our shield synthesis tool. Due to page limit, we only present the
result on one example property, and then present the performance results for other prop-
erties. The property that we enforced was Guarantee 3 from the specification of [4],
which says that if a length-four locked burst access starts, no other access can start un-
til the end of this burst. The safety automaton is shown in Fig. 10, where B, s and R
are short for hmastlock ∧ HBURST=BURST4, start, and HREADY, respectively.
Lower case signal names are outputs, and upper-cases are inputs of the arbiter. Sx is
unsafe. S0 is the idle state waiting for a burst to start (B ∧ s). The burst is over if input
R has been true 4 times. State Si, where i = 1, 2, 3, 4, means that R must be true for i
more times. The counting includes the time step where the burst starts, i.e., where S0 is
left. Outside of S0, s is required to be false.

546 R. Bloem et al.

Our tool generated a 1-stabilizing shield within a fraction of a second. The shield has
8 latches and 142 (2-input) multiplexers, which is then reduced by ABC [7] to 4 latches
and 77 AIG gates. We verified it against an arbiter implementation for 2 bus masters,
where we introduced the following bug: the design does not check R when the burst
starts, but behaves as if R was true. This corresponds to removing the transition from
S0 to S4 in Fig. 10, and going to S3 instead. An execution trace is shown in Fig. 11.
The first burst starts with s = true in Step 3. R is false, so the design counts wrongly.
The erroneous output shows up in Step 7, where the design starts the next burst, which
is forbidden, and thus blocked by the shield. The design now thinks that it has started
a burst, so it keeps s = false until R is true 4 times. Actually, this burst start has been
blocked by the shield, so the shield waits in S0. Only after the suppressed burst is over,
the components are in sync again, and the next burst can start normally.

Table 1. Performance for AMBA [4]
Property |Q| |I| |O| k Time [sec]
G1 3 1 1 1 0.1
G1+2 5 3 3 1 0.1
G1+2+3 12 3 3 1 0.1
G1+2+4 8 3 6 2 7.8
G1+3+4 15 3 5 2 65
G2+3+4 17 3 6 ? >3600
G1+2+3+5 18 3 4 2 242
G1+2+4+5 12 3 7 ? >3600
G1+3+4+5 23 3 6 ? >3600

To evaluate the performance of our tool,
we ran a stress test with increasingly larger
sets of safety properties for the ARM AMBA
bus arbiter in [4]. Table 1 summarizes the re-
sults. The columns list the number of states,
inputs, and outputs, the minimum k for
which a k-stabilizing shield exists, and the
synthesis time in seconds. All experiments
were performed on a machine with an In-
tel i5-3320M CPU@2.6 GHz, 8 GB RAM,
and a 64-bit Linux. Time-outs (G2+3+4,
G1+2+4+5 and G1+3+4+5) occurred only when the number of states and input/out-
put signals grew large. However, this should not be a concern in practice because the
set of critical properties of a system is usually much smaller, e.g., often consisting of
invariance properties with a single state.

Table 2. Synthesis results for the LTL patterns [11]
Nr. Property b |Q| Time #Lat- #AIG-

[sec] ches Gates
1 G¬p - 2 0.01 0 0
2 F r → (¬p U r) - 4 0.34 2 6
3 G(q → G(¬p)) - 3 0.34 2 6
4 G((q ∧ ¬r ∧ F r) → (¬p U r)) - 4 0.34 1 9
5 G(q ∧ ¬r → (¬pW r)) - 3 0.01 2 14
6 F p 0 3 0.34 1 1
6 F p 256 259 33 18 134
7 ¬rW (p ∧ ¬r) - 3 0.05 3 11
8 G(¬q) ∨ F(q ∧ F p) 0 3 0.04 3 11
8 G(¬q) ∨ F(q ∧ F p) 4 7 0.04 6 79
8 G(¬q) ∨ F(q ∧ F p) 16 19 0.03 10 162
8 G(¬q) ∨ F(q ∧ F p) 64 67 0.37 14 349
8 G(¬q) ∨ F(q ∧ F p) 256 259 34 18 890
9 G(q ∧ ¬r → (¬r W (p ∧ ¬r))) - 3 0.05 2 12
10 G(q ∧ ¬r → (¬r U (p ∧ ¬r))) 12 14 5.4 14 2901
10 G(q ∧ ¬r → (¬r U (p ∧ ¬r))) 14 16 38 15 6020
10 G(q ∧ ¬r → (¬r U (p ∧ ¬r))) 16 18 377 18 13140

LTL Specification Patterns.
Dwyer et al. [11] studied the
frequently used LTL speci-
fication patterns in verifica-
tion. As an exercise, we ap-
plied our tool to the first 10
properties from their list [2]
and summarized the results in
Table 2. For a property con-
taining liveness aspects (e.g.,
something must happen even-
tually), we imposed a bound
on the reaction time to obtain
the safety (bounded-liveness)
property. The bound on the
reaction time is shown in Col-
umn 3. The last four columns
list the number of states in the

Shield Synthesis: Runtime Enforcement for Reactive Systems 547

safety specification, the synthesis time in seconds, and the shield size (latches and AIG
gates). Overall, our method runs sufficiently fast on all properties and the resulting
shield size is small. We also investigated how the synthesis time increased with an in-
creasingly larger bound b. For Property 8 and Property 6, the run time and shield size
remained small even for large automata. For Property 10, the run time and shield size
grew faster, indicating room for further improvement. As a proof-of-concept imple-
mentation, our tool has not yet been optimized specifically for speed or shield size – we
leave such optimizations for future work.

7 Conclusions

We have formally defined the shield synthesis problem for reactive systems and pre-
sented a general framework for solving the problem. We have also implemented a new
synthesis procedure that solves a concrete instance of this problem, namely the synthe-
sis of k-stabilizing generic shields. We have evaluated our new method on two hardware
benchmarks and a set of LTL specification patterns. We believe that our work points to
an exciting new direction for applying synthesis, because the set of critical properties
of a complex system tends to be small and relatively easy to specify, thereby making
shield synthesis scalable and usable. Many interesting extensions and variants remain
to be explored, both theoretically and experimentally, in the future.

References

1. CUDD: CU Decision Diagram Package, ftp://vlsi.colorado.edu/pub/
2. LTL Specification Patterns, http://patterns.projects.cis.ksu.edu/

documentation/patterns/ltl.shtml
3. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T., Hofferek, G., Jobstmann, B.,

Könighofer, B., Könighofer, R.: Synthesizing robust systems. Acta Inf. 51, 193–220 (2014)
4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) de-

signs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)
5. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: Runtime enforce-

ment for reactive systems. CoRR, abs/1501.02573 02573 (2015)
6. Brayton, R.K., et al.: VIS: A system for verification and synthesis. In: Alur, R., Henzinger,

T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)
7. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification tool. In:

Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 24–40. Springer,
Heidelberg (2010)

8. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans.
Amer. Math. Soc. 138, 367–378 (1969)

9. Church, A.: Logic, arithmetic, and automata. Int. Congr. Math, 23–35 (1962,1963)
10. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using

branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1982)

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: ICSE, pp. 411–420. ACM (1999)

12. Ehlers, R., Topcu, U.: Resilience to intermittent assumption violations in reactive synthesis.
In: HSCC, pp. 203–212. ACM (2014)

ftp://vlsi.colorado.edu/pub/
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

548 R. Bloem et al.

13. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at runtime?
STTT 14(3), 349–382 (2012)

14. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans.
Inf. Syst. Secur. 12(3) (2009)

15. Mazala, R.: 2 infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics,
and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg (2002)

16. Mead, C., Conway, L.: Introduction to VLSI systems. Addison-Wesley (1980)
17. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM

(1989)
18. Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In:

Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, Springer,
Heidelberg (1982)

19. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. In: Regional Conference
Series in Mathematics, American Mathematical Society (1972)

20. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3, 30–50 (2000)

Program and Runtime Verification

Verifying Concurrent Programs

by Memory Unwinding�

Ermenegildo Tomasco1, Omar Inverso1, Bernd Fischer2, Salvatore La Torre3,
and Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, UK
2 Division of Computer Science, Stellenbosch University, South Africa

3 Università degli Studi di Salerno, Italy

Abstract. We describe a new sequentialization-based approach to the
symbolic verification of multithreaded programs with shared memory and
dynamic thread creation. Its main novelty is the idea of memory unwind-
ing (MU), i.e., a sequence of write operations into the shared memory. For
the verification, we nondeterministically guess an MU and then simulate
the behavior of the program according to any scheduling that respects
it. This approach is complementary to other sequentializations and ex-
plores an orthogonal dimension, i.e., the number of write operations. It
also simplifies the implementation of several important optimizations, in
particular the targeted exposure of individual writes. We implemented
this approach as a code-to-code transformation from multithreaded into
nondeterministic sequential programs, which allows the reuse of sequen-
tial verification tools. Experiments show that our approach is effective:
it found all errors in the concurrency category of SV-COMP15.

1 Introduction

Concurrent programming is becoming more important as concurrent computer
architectures such as multi-core processors are becoming more common. How-
ever, the automated verification of concurrent programs remains a difficult prob-
lem. The main cause of the difficulties is the large number of possible ways in
which the different elements of a concurrent program can interact with each
other, e.g., the number of different interleavings of a program’s threads. In prac-
tice, however, we fortunately do not need to consider all possible interactions.
For example, it is well known that many concurrency errors manifest themselves
already after only a few context switches [20]; this observation gives rise to a
variety of context-bounded analysis methods [16,19,13,5,8,6,9,11].

Recent empirical studies have pointed out other common features for con-
currency errors, but these have not yet been exploited for practical verification
algorithms. In particular, Lu et al. [17] observed that “almost all [. . .] concur-
rency bugs are guaranteed to manifest if certain partial order among no more
than 4 memory accesses is enforced.”

� Partially supported by EPSRC grant no. EP/M008991/1, INDAM-GNCS 2014 grant
and MIUR-FARB 2012-2014 grants.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 551–565, 2015.
DOI: 10.1007/978-3-662-46681-0_52

552 E. Tomasco et al.

In this paper we follow up on their observation that only a few memory ac-
cesses are relevant, and propose a corresponding new approach to the automated
verification of concurrent programs, more specifically multithreaded programs
with shared memory. Our approach simulates the executions of a multithreaded
program but bounds the total number of write operations into the shared mem-
ory that can be read by threads other than the one performing the writing. It
is related to context-bounded analyses [19,16,13] but the bounding parameter is
different, which allows an orthogonal exploration of the search space.

The central concept in our approach is called memory unwinding (MU). This
is a an explicit representation of the write operations as a sequence that contains
for each write the writing thread, the variable or lock, and the written value. Our
approach can then be seen as an eager sequentialization of the original concurrent
program over the unwound memory. We first guess an MU and then simulate
all program runs that are compatible with this guess. For the simulation, each
thread is translated into a simulation function where write and read accesses over
the shared memory are replaced by operations over the unwound memory. The
simulation functions are executed sequentially; each thread creation is translated
into a call to the corresponding simulation function. All context switches are
implicitly simulated through the MU.

The approach allows us to vary which write operations are represented and
thus exposed to the other threads. This leads to different strategies with differ-
ent performance characteristics. In a fine-grained MU every write operation is
represented explicitly and individually while coarse-grained MUs only represent
a subset of the writes, but group together multiple writes. In an intra-thread MU
the writes in one group are all executed by one thread; the writes not represented
can thus be seen as having been superseded by subsequent writes in the same
context. In an inter-thread MU the writes in one group can come from different
threads, thus summarizing the effect of multiple context switches.

We have implemented in our MU-CSeq tool these strategies as code-to-code
transformations for ANSI-C programs that use the POSIX threads API. We have
evaluated MU-CSeq over the SV-COMP15 [3] concurrency benchmarks. It has
found all errors and shown itself to be competitive with state-of-the-art tools for
concurrent programs, in particular CBMC [7] and Lazy-CSeq [12].

In summary, in this paper we make the following main contributions:

– We describe in Section 3 a new sequentialization-based symbolic verification
approach for multithreaded programs with shared memory based on the
novel idea of memory unwinding.

– We describe in Section 4 different strategies to implement our approach as
code-to-code translations that can be used with arbitrary sequential verifi-
cation backends.

– We evaluate in Section 5 these implementations over the SV-COMP15 bench-
mark suite; the results are in line with those of the current best tools for
concurrency handling.

In addition, we formalize in Section 2 the language we use to illustrate our
approach, while we discuss related work in Section 6 and conclude in Section 7.

Verifying Concurrent Programs by Memory Unwinding 553

2 Concurrent Programs

We use a simple imperative language for multithreaded programs to illustrate our
approach. It features shared variables, dynamic thread creation, and thread join
and mutex locking and unlocking for thread synchronization. We adopt a C-like
syntax, which is given in Fig. 1; here, terminal symbols are set in typewriter font,
and 〈n t〉∗ denotes a possibly empty list of non-terminals n that are separated
by terminals t. We further denote with x a local variable, y a shared variable,
m a mutex, t a thread variable and p a procedure name.

P ::= (dec;)∗ (type p (〈dec,〉∗){(dec;)∗stm})∗

dec ::= type z
type ::= bool | int | void
stm ::= seq | conc | {(stm;)∗}
seq ::= assume(b) | assert(b) | x := e | p(〈e,〉∗) | return e

| if(b) then stm else stm | while(b) do stm
conc ::= x := y | y := x | t := create p(〈e,〉∗) | join t

| lock m | unlock m | atomic stm

Fig. 1. Syntax of concurrent programs

A concurrent program
consists of a list of shared
variable declarations, fol-
lowed by a list of pro-
cedures. Each procedure
has a list of typed param-
eters, and its body has a
declaration of local vari-
ables followed by a state-
ment. A statement is either a sequential or concurrent statement, or a sequence
of statements enclosed in braces. A sequential statement can be an assume-
or assert-statement, an assignment, a procedure call with a call-by-value pa-
rameter passing semantics a return-statement, a conditional statement, or a
while-loop. All variables involved in a sequential statement must be local. Note
that we leave expressions e and Boolean expressions b undefined; we assume the
usual constants and operations. We also use ∗ to denote the nondeterministic
choice of any possible value of the corresponding type. A concurrent statement
can be a concurrent assignment, a thread creation, a thread join, a mutex lock or
unlock operation, or an atomic block. A concurrent assignment assigns a shared
(resp. local) variable to a local (resp. shared) one. A thread creation statement
t := create p(e1, . . . , en) creates a new thread by calling the starting procedure
p with the expressions e1, . . . , en as arguments and assigning the thread identifier
to t. A thread join statement join t pauses the current thread until the thread
identified by t terminates. Lock and unlock statements respectively acquire and
release a mutex. If the mutex is already acquired, the lock operation is blocking
for the thread, i.e., the thread waits until the mutex is released. Context switches
to other threads are disallowed when a thread’s control flow is within an atomic
statement or block.

We assume that a valid program P satisfies the usual well-formedness and
type-correctness conditions. We also assume that P contains a procedure main,
which is the starting procedure of the only thread that exists in the beginning.
We call this the main thread. To simplify the translation, we assume that there
are no calls to main in P and that no other thread can be created that uses main
as starting procedure.

The semantics is the obvious one: a configuration is a tuple of configurations
of each thread that has been created and has not yet terminated, along with a
valuation of the shared variables. A thread configuration consists of a stack which

554 E. Tomasco et al.

stores the history of positions at which calls were made, along with valuations for
local variables, and the top of the stack contains the local and global valuations,
and a pointer to the current statement being executed.

The behavioral semantics of a program P is obtained by interleaving the
behaviors of its threads. At the beginning of any computation only the main
thread is available. At any point of a computation, only one of the available
threads is active. A step is either the execution of a step of the active thread
or a context-switch that replaces the active thread with one of the available
threads that thus becomes the active thread at the next step. A thread may
become temporarily unavailable if it is waiting to acquire a mutex or waiting to
join another thread. A thread will no longer be available when its execution is
terminated, i.e., there are no more steps that it can take.

Fibonacci-example. Fig. 2(a) shows a multithreaded implementation of a nonde-
terministic Fibonacci-function. This example from the SV-COMP15 benchmark
suite uses two threads f1 and f2 to repeatedly increment the shared variables i
and j by j and i, respectively. With a round-robin schedule with context switches
after each assignment the variables i and j take on the consecutive values from
the Fibonacci-series, and the program terminates with i = fib(11) = 89 and
j = fib(12) = 144 if this interleaving starts with f1. Any other schedule will lead
to smaller values for i or j.

The main function first creates the two threads f1 and f2, then uses two join
statements to ensure that both threads run to completion, and finally checks the
outcome of the choosen interleaving. Note that each of the assignments contains
three sequence points; our core language makes these explicit and thus “i = i+j;”
becomes “x = i; y = j; z = i+ j; i = z;” for local variables x, y, and z.

3 Sequentialization by Memory Unwinding

In this section we first give a general overview of the main concepts of our
approach, namely the memory unwinding and the simulation of the read and
write operations, before we describe the sequentialization translation. We use
the Fibonacci-example above to illustrate the concepts. We describe different
implementation alternatives for the concepts in Section 4.

High-level description. Our approach is based on a code-to-code translation of
any concurrent program P into a corresponding sequential program Pn,τ that
captures all the executions of P involving at most n write operations in the
shared memory and τ threads. We show that an assertion fails for such an
execution of P if and only if a corresponding assertion fails in Pn,τ .

A core concept in this translation is the memory unwinding. An n-memory
unwinding M of P is a sequence of writes w1 . . . wn of P ’s shared variables;
each wi is a triple (ti , vari , vali) where ti is the identifier of the thread that has
performed the write operation, vari is the name of the written variable and vali
is the new value of vari . A position in an n-memory unwinding M is an index
in the interval [1, n]. An execution of P conforms to a memory unwinding M if
the sequence of its writes in the shared memory exactly matches M . Fig. 2(c)

Verifying Concurrent Programs by Memory Unwinding 555

int i = 1, j = 1;

void f1() {
i = i + j;
i = i + j;
i = i + j;
i = i + j;
i = i + j;

}

void f2() {
j = j + i;
j = j + i;
j = j + i;
j = j + i;
j = j + i;

}

void main() {
thread t1, t2;
create(t1, f1);
create(t2, f2);
join t1;
join t2;
assert(j < 21);

}

(a)

int i = 1, j = 1;
int ct; bool error= F ; uint[3] th pos;

void f1n,τ () {
write(ct, 〈i〉, read(ct, 〈i〉)+read(ct, 〈j〉));
write(ct, 〈i〉, read(ct, 〈i〉)+read(ct, 〈j〉));
write(ct, 〈i〉, read(ct, 〈i〉)+read(ct, 〈j〉));
write(ct, 〈i〉, read(ct, 〈i〉)+read(ct, 〈j〉));
write(ct, 〈i〉, read(ct, 〈i〉)+read(ct, 〈j〉));

}

void f2n,τ () {
write(ct, 〈j〉, read(ct, 〈j〉)+read(ct, 〈i〉));
write(ct, 〈j〉, read(ct, 〈j〉)+read(ct, 〈i〉));
write(ct, 〈j〉, read(ct, 〈j〉)+read(ct, 〈i〉));
write(ct, 〈j〉, read(ct, 〈j〉)+read(ct, 〈i〉));
write(ct, 〈j〉, read(ct, 〈j〉)+read(ct, 〈i〉));

}

void mainn,τ () {
thread t1, t2; uint tmp;
CREATE(t1, f1n,τ);
CREATE(t2, f2n,τ);
mem join(ct, t1); CHECK RETURN
mem join(ct, t2); CHECK RETURN
CHECK RETURN;
if(j >= 21) then

{ error := TRUE; return 0}
}

void main(void) {. . .}

(b)

pos thr var val
1 2 i 2
2 2 i 3
3 2 i 4
4 2 i 5
5 3 j 5
6 3 j 10
7 3 j 15
8 2 i 15
9 3 j 30

10 3 j 45

(c)

pos thr map
1 2 {(i, 4)}
2 2 {(i, 5)}
3 3 {(j, 10)}
4 3 {(j, 15)}
5 2 {(i, 15)}
6 3 {(j, 45)}

(d)

pos thr map
1 {2} {(i, 4)}
2 {2, 3} {(i, 5), (j, 10)}
3 {3} {(j, 15)}
4 {2, 3} {(i, 15), (j, 45)}

(e)

Fig. 2. Multithreaded Fibonacci: (a) code for 5 iterations, (b) translated code, and
sample memory unwindings: (c) fine grained, (d) intra-thread and (e) inter-thread

gives a 10-memory unwinding. The following is an execution of the multithreaded
program given in Fig. 2(a) that conforms to it (we omit the main thread): the first
three assignments of f1, followed by a read of i by f2, then the fourth assignment
of f1, the completion of the first two assignments of f2, the read of j by f1, the
third assignment of f2, the last assignment of f1 and the remaining assignments
of f2. Note that a memory unwinding can be unfeasible for a program, in the
sense that no execution of the program conforms to it. Conversely, multiple
executions can also conform to one memory unwinding, although this is not the
case for the Fibonacci-example.

We use a memory unwinding M to explore the runs of P that conform to it by
running each thread t separately.The idea is to use theMUfor the concurrent state-
ments (which involve the shared memory) and execute the sequential statements
directly. In particular, when we execute awrite of t in the sharedmemory, we check
that it matches the next write of t inM . However, a read of t in the sharedmemory
is more involved, since the sequence of reads is not explicitly stored in the MU.We
therefore need to nondeterministically guess the position in theMU fromwhich we
read. Admissible values are all the positions that are in the range from the current
position (determinedbyprevious operations on the sharedmemory) to the position

556 E. Tomasco et al.

of t’s next write inM . The nondeterministic guess ensures that we are accounting
for all possible interleavings of thread executions that conform to the MU.

For example, consider again the 10-memory unwinding of Fig. 2(c). The exe-
cution of f1 is simulated over this as follows. The first four writes are matched
with the first four positions of the MU; moreover, the related reads are posi-
tioned at the current index since they are each followed by the write which is
at the next position in the MU. The fifth write is matched with position 8. The
corresponding read operations can be assigned nondeterministically to any po-
sition from 4 to 7. However, in order to match the value 15 with the write, the
read of j must be positioned at 6. Note that the read of i can be positioned
anywhere in this range since it was written last time at position 4.

We stress that when simulating one thread we assume that the writes executed
by the other threads, and stored in the memory unwinding, indeed all occur
and, moreover, in the ordering shown in M . Thus, for the correctness of the
simulation, for each thread t we must ensure not only that each of its writes
involving the shared variables conforms to the write sequence in M , but also
that all the writes claimed in the MU are actually executed. Further, t should
not contribute to the computation before the statement that creates it has been
simulated. This can be easily enforced by making the starting position of the
child thread to coincide with the current position in M of the parent thread
when its creation is simulated.

Construction of Pn,τ . The program Pn,τ first guesses an n-memory unwinding
M and then simulates a run of P that conforms to M . The simulation starts
from the main thread (which is the only active thread when P starts) and then
calls the other threads one by one, as soon as their thread creation statements
are reached. Thus, the execution of the parent thread is suspended and then
resumed after that the simulation of the child thread has completed. Essentially,
dynamic thread creation in P is modeled by function calls in Pn,τ .

Pn,τ is formed by a main, and a new procedure pn,τ for each procedure p
of P . It uses some additional global variables: error is initialized to false and
stores whether an assertion failure in P has occurred; ct stores the identifier of
the current thread; the array th pos stores the current position in the memory
unwinding for each thread.

void main(void) {
mem init(V,n, τ);
ct := mem thread create(0);
mainn,τ(x1, . . . , xk);
mem thread terminate(ct);
mem allthreads executed();
assert(error �= 1) }

Fig. 3. Pn,τ : main()

The main procedure of Pn,τ is given in Fig. 3.
First, we call mem init(V, n, τ) that guesses an n-
memory unwinding with V variables and τ threads,
and then mem thread create(0) that registers the
main thread and returns its id. Note that we en-
code each of P ’s shared variables y with a different
integer 〈〈y〉〉 in the interval [1, V] and each thread
with a different integer in [1, τ]; once τ threads are
created mem thread create returns −1 (an invalid id) that causes the thread
not to be simulated. The parameter passed to mem thread create is the id of
the thread that is invoking the thread creation. For the creation of the main
thread we thus pass 0 to denote that this is the first created thread.

Verifying Concurrent Programs by Memory Unwinding 557

1. [type p (par∗){dec∗ stm}] ::= type pn,τ (par∗){dec∗; uint tmp; [stm]}
2. [{(stm;)∗}] ::= {([stm];)∗}

Sequential statements:
3. [assume(b)] ::= CHECK RETURN; assume(b)
4. [assert(b)] ::= CHECK RETURN; if(¬b) then { error:= TRUE; return 0}
5. [p(e1, . . . , en)] ::= pn,τ (e1, . . . , en); CHECK RETURN
6. [return e] ::= return e
7. [x := e] ::= x := e
8. [x := p(e1, . . . , en)] ::= x := pn,τ (e1, . . . , en); CHECK RETURN
9. [while(b) do stm] ::= while(b) do {CHECK RETURN; [stm]}
10. [if (b) then stm else stm] ::= if (b) then [stm] else [stm]

Concurrent statements: (x is local, y is shared, ct contains the current tread id)
11. [y := x] ::= write(ct, 〈〈y〉〉, x); CHECK RETURN
12. [x := y] ::= x :=read(ct, 〈〈y〉〉); CHECK RETURN
13. [t := create p(e1, . . . , en)] ::= tmp := ct; t := mem thread create(ct);

if(t �= −1) then {
ct := t; pn,τ (e1, . . . , en);
mem thread terminate(t); };

ct := tmp;
14. [join t] ::= mem join(ct, t); CHECK RETURN
15. [lock v] ::= var lock(ct, 〈〈v〉〉); CHECK RETURN

[unlock v] ::= var unlock(ct, 〈〈v〉〉); CHECK RETURN
16. [atomic stm] ::= call mem lock(ct); CHECK RETURN;

[stm]; mem unlock(ct); CHECK RETURN

Fig. 4. Rewriting rules

The call to mainn,τ starts the simulation of the main thread. Then, we check
that all the write operations guessed for the main thread have been executed (by
mem thread terminate), and all the threads involved in the guessed writes have
indeed been simulated (by mem allthreads executed). If either one of the above
checks fails, the simulation is infeasible and thus aborted. The global variable
error is used to check whether an assertion has been violated. It is set to TRUE

in the simulation of the threads of P whenever an assertion gets violated and is
never reset.

Each pn,τ is obtained from p according to the transformation function [·]
defined inductively over the program syntax by the rules given in Fig. 4. For
example, Fig. 2(b) gives the transformations for the functions of the Fibonacci
program from Fig. 2(a). There we use the macro CREATE as a shorthand for
the code given in the translation rules for the create statement. Also, we have
omitted the declaration of tmp in the functions f1n,τ and f2n,τ since it is not
used there, and reported the translation of the assignments in a compact form.

The transformation adds a local variable tmp that is used to store the current
thread id when a newly created thread is simulated. The sequential statements
are left unchanged except for the injection of the macro CHECK RETURN that is
defined as “if(is th terminated()) then return0;”, where is th terminated

is a function that checks if the simulation of the current thread is terminated.
The macro is injected after each function call, as a first statement of a loop, and
before any assume- and assert-statement; in this way, when the simulation of
the current thread has finished or is aborted, we resume the simulation of the
parent thread.

558 E. Tomasco et al.

The concurrent statements are transformed as follows. A write of v into a
shared variable x in thread t is simulated by a call to write that checks that the
next write operation of t in the guessed MU (starting from the current position)
writes x and that the guessed value coincides with v. Otherwise, the simulation
of all threads must be aborted as the current execution does not conform to the
MU. If t has already terminated its writes in the MU, we return immediately;
otherwise we update t’s current position to the index of its next write operation.
A read of a shared variable x in thread t is simulated by a call to read. The
read value is determined by nondeterministically guessing a position i between
the current position for ct and the position prior to the next write operation of
t in the memory unwinding. Thus, we return the value of the write operation
involving x that is at the largest position j ≤ i and then update the stored
position of t to i.

As above, we use mem thread create and mem thread terminate for the
translation of thread creations but we check whether the thread creation was
successful before calling the simulation function. Also, we save the current thread
id in a temporary variable during the execution of the newly created thread.

The remaining concurrent statements are simulated by corresponding func-
tions. A call mem join(ct, t) returns if and only if the simulation of t is termi-
nated at the current position of thread ct in the memory unwinding. Otherwise,
the simulation of ct is aborted. A call mem lock(ct) gives exclusive usage of
the shared memory to thread ct. If the memory is already locked, the whole
simulation is aborted. The unlocking is done by calling mem unlock. Similarly,
var lock and var unlock respectively lock and unlock an individual variable.
Note that for join, lock, and unlock operations we choose to abort also compu-
tations that are still feasible, i.e., the lock could still be acquired later or we can
wait for another thread to terminate. This is indeed correct for our purposes, in
the sense that we are not missing bugs for this. In fact, we can capture those
computations by scheduling the request to acquire the lock or to join exactly at
the time when this will be possible, and by maintaining the rest of the compu-
tation unchanged. Due to space limitations we do not discuss the simulation of
the locking mechanism in any detail, and omit it from the code fragments shown
in the following section.

The correctness of our construction is quite straightforward to demonstrate.
For soundness, assume any execution of P that does at most n writes in the
shared memory, creates at most τ threads, and violates an assertion statement.
We guess the exact sequence of writes in the MU, and simulate for each thread
exactly the same steps as in P . This will allow us to execute all the writes for
each thread and eventually reach the if-statement corresponding to the violated
assertion of P . This will be properly propagated back to the main procedure
of Pn,τ ; and since all threads have done all their writes, all the invocations of
mem thread terminate will successfully return and thus the only assertion of
Pn,τ will fail. For completeness, assume that there is an execution ρ of Pn,τ

that violates the assertion in its main. This means that, along ρ we guess an
n-memory unwinding M and simulate step by step a run ρ′ of P that conforms

Verifying Concurrent Programs by Memory Unwinding 559

to M and reaches an assertion failure. In fact, when on ρ we set error to TRUE,
ρ′ reaches the corresponding if-statement that violates an assertion of P . Before
reaching the assertion in the main of Pn,τ , we have already checked that all the
invocations of mem thread terminate in each thread and the only invocation
of mem allthreads executed in the main thread have successfully returned;
therefore all the writes of M have been simulated. Therefore, we get:

Theorem 1. A concurrent program P violates an assertion in at least one of
its executions with at most n writes in the shared memory and τ thread creations
if and only if Pn,τ violates its only assertion.

4 Memory Unwinding Implementations

In this section, we discuss different implementation strategies of the memory un-
winding approach that are characterized by orthogonal choices. The first choice
we make is either to store in the MU all the writes of the shared variables in
a run (fine-grained MU) or to expose only some of them (coarse-grained MU).
In either case, depending on how we store the values of the variables that are
not written at a position of the MU, we have two implementation alternatives
that we call read-explicit (where all the shared variables are duplicated to each
position, not only those that are changed in the writes) and read-implicit (where
only the modified variables are duplicated at each position).

In a coarse-grained MU we store at each position a partial mapping from the
shared variables to values, with the meaning that the variables in the domain
of the mapping are modified from the previous position and the value given
by the mapping is their value at this position. A variable that is modified at
position i+1 could also be modified between positions i and i+1 by other writes
that are not exposed in the MU. We distinguish the implementations according
to whether only one (intra-thread coarse-grained MU) or multiple (inter-thread
coarse-grained MU) threads are entitled to modify the variables.

4.1 Fine-Grained Memory Unwinding

In this approach all writes are stored individually in the MU as described in
Section 3. We use three arrays such that for each position i: thread[i] stores the
thread id, var[i] stores the variable name, and value[i] stores the value of the i-
th write. For an efficient implementation of the functions used in the translation
described in Section 3, we use additional data such as variable last wr pos

that stores the index of the last write performed in the simulation and table
th nxt wr[t, i] that for each thread t and position i stores the position of the
next write of t after i in the MU.

We describe the read-explicit and the read-implicit schemes only for this ap-
proach. It is not hard to extend them to the coarse-grained MU approach (dis-
cussed later) and thus we will omit this here.

Read-explicit scheme. We use a matrix mem to store for each variable v and each
position i of the MU the value of v at i. mem is logically characterized as follows:
for every memory position i ∈ [1, n] and variable index v ∈ [1, V], mem[i][v] is the

560 E. Tomasco et al.

valuation of variable v after the i-th write operation (assuming the values of arrays
thread, var, and value). At memory position 1, all variables in [1, V] \ {v} with
v = var[1] have their initial value, i.e., 0, and mem[1][v] coincides with value[1]. For
all the other memory positions, mem has the same valuation for all variables as in
the previous position except for the one written at that position.

int read(uint t, uint v) {
if (is th terminated()) then return 0;
th pos[t]=Jump(t);
return (mem[th pos[t]][var name]); }

Fig. 5. Function read (explicit-read
schema)

In Fig. 5, we give an implementation
of read for the read-explicit scheme. For
the current thread t, Jump guesses a po-
sition jump in the MU from the current
position to the next write of t in the MU.
If the simulation of t is deemed termi-
nated, then consistently the read is not
performed and the control returns (we recall that since we have injected the
macro CHECK RETURN at the end of each function call, all the calls to functions of
t in the stack will immediately return and the simulation of t will actually end).
Otherwise, the current position of t is updated to this value, and the valuation
of the variable at position jump obtained from mem is retuned.

int read(uint t, uint v) {
uint pos = th pos[t];
uint jump = *;
if (is th terminated()) then return 0;
if (var fst wr[v]==0) then return 0;
assume((jump <= last wr pos)
&& (jump < th nxt wr[t][pos]));

assume(var[jump] == var name);
if (jump < pos) then

assume(var nxt wr[jump] > pos);
else { if (jump < var fst wr[v]) then

return 0;
th pos[t]=jump; }

return (value[jump]); }

Fig. 6. Function read (implicit-read
schema)

Read-implicit scheme. Here, instead of
replicating the valuations of the shared
variables at each memory position, on
reading a variable we get its value from
the last relevant write. For this, we use
two arrays var nxt wr and var fst wr

s.t.: for each i ∈ [1, n], var nxt wr[i] is
the smallest memory position j > i s.t.
var[j] = var[i] and for each variable v,
var fst wr[v] is the position of its first
write in the MU.

In Fig. 6, we give an implementa-
tion of function read in the read-implicit
scheme. The first if-statement (corresponding to the CHECK RETURNmacro) takes
care of thread termination as usual. The following if-statement handles the case
when variable v is never written in the MU, and thus its value is always the ini-
tial one, i.e., 0. The first assume-statement constraints jump to a range of valid
values similarly to as function Jump does in the previous scheme. Additionally,
the second assume-statement requires that the guessed index indeed coincides
with a write of variable v. Now, if jump is less than the thread’s current position
pos , we finally ensure that jump coincides with the last write operation involving
v up to pos ; otherwise we update the thread’s current position to jump. In either
case, the returned value is that at position jump unless jump precedes the index
of the first write of v in the MU, and in this case the initial value is returned.

Mixing implicit and explicit read operations. We have also implemented a third
schema that mixes the ideas of the above two. It uses an explicit representa-
tion for scalar variables and an implicit representation for arrays, in order to
balance the translation’s memory overhead against the complexity of the se-
quentialized program.

Verifying Concurrent Programs by Memory Unwinding 561

4.2 Coarse-Grained Memory Unwinding

The main idea of this approach is to expose only some of the writes of an
MU. This has two main consequences in terms of explored runs of the original
multithreaded program. On the one side, we restrict the number of possible runs
that can match an MU. In fact, the unexposed writes cannot be read externally,
and thus some possible interleavings of the threads are ruled out. On the other
side, we can handle larger number of writes by nondeterministically deeming few
of them as interesting for the other threads.

Intra-thread coarse-grained MU. We store a sequence of clusters of writes where
each cluster is formed by a thread that is entitled to write and a partial mapping
from the shared variables to values. The intended meaning is as follows. Consider
the simulation of a thread t at a position i. If i is a position where t does not write
into the shared memory, we are only allowed to read from the shared memory,
and we reason similarly as to the approach given in the previous section. If i is
a position of t (i.e., t is entitled to write into the shared memory), we ensure
that all the writes in the shared memory only involve the variables that are
annotated in the cluster at i and that all the writes in the cluster are matched
before advancing to the next position in the simulation (some writes on the same
variables can be processed before matching the value assigned in the cluster).

As an example, consider the intra-thread MU from Fig. 2(d). It is matched
by the same execution as the MU from Fig. 2(c). Note that in this execution,
the writes at the positions 1, 2, 5 and 9 are not used by the other thread and
thus this is consistent with hiding them.

Inter-thread coarse-grained MU. The notion of cluster is extended with multiple
threads assigned to each position. The idea is that all such writing threads at i can
cooperate to match the writes exposed in the cluster. Thus, the unexposed writes
are not local to a thread as in the alternative scheme but they can be exposed
to the other writing threads. For this, in our implementation, we use for each
position i in the sequence of clusters an additional copy of the shared variables
that are modified at i (i.e., that are in the domain of the partial mapping at
i). In the simulation of each writing thread at position i we treat them as local
variables (thus we do not use the read and write functions, but we just use the
name of the variable and the assignment). The intra-thread MU version of the
MUs from Fig. 2(c) and (d) is given in Fig. 2(e).

5 Implementation and Evaluation

Implementation and Architecture. We have implemented in MU-CSeq (v0.3,
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html) the different variants
of the MU schema discussed in Section 4 as a code-to-code transformation for
sequentially-consistent concurrent C programs with POSIX threads (pthreads).
The output of MU-CSeq can, in principle, be processed by any analysis tool for
sequential programs, but we primarily target BMC tools, in particular CBMC [7].
However, since the schema is very generic and the instrumentation for the dif-
ferent backends only differs in a few lines, backend integration is straightforward

562 E. Tomasco et al.

Table 1. Performance comparison among different tools on the unsafe instances of the
SV-COMP15 Concurrency category

CBMC 4.9 LR-CSeq 0.5a Lazy-CSeq 0.5 MU-CSeq 0.3
sub-category files l.o.c. pass fail time pass fail time pass fail time pass fail time
pthread 14 4381 12 2 33.4 6 8 76.5 11 3 134.2 14 0 19.9
pthread-atomic 2 202 2 0 0.3 2 0 3.0 2 0 6.1 2 0 2.0
pthread-ext 8 763 6 2 153.3 1 7 119.6 8 0 16.6 8 0 2.4
pthread-lit 3 117 2 1 166.8 2 1 166.9 3 0 7.0 3 0 2.7
pthread-wmm-mix 466 146448 466 0 57.2 466 0 8.9 466 0 6.3 466 0 21.8
pthread-wmm-podwr 16 4240 16 0 10.6 16 0 4.2 16 0 6.0 16 0 12.3
pthread-wmm-rfi 76 20981 76 0 9.3 76 0 4.1 76 0 6.2 76 0 12.7
pthread-wmm-safe 184 57391 184 0 27.3 184 0 6.6 184 0 6.2 184 0 18.6
pthread-wmm-thin 12 4008 12 0 9.6 12 0 6.2 12 0 6.1 12 0 29.3

and not fundamentally limited to any underlying technology. A wrapper script
bundles up the translation and the call to the backend for the actual analysis.

MU-CSeq is implemented as a chain of modules within the CSeq frame-
work [9,10]. The sequentialized program is obtained from the original program
through transformations, which (i) insert boilerplate code for simulating the
pthreads API; (ii) automatically generate control code for the bounded mem-
ory unwinding layer parameterized on n and τ ; (iii) map the statements that
in the original program correspond to read and write operations on shared vari-
ables to corresponding operations on the memory unwinding; (iv) insert code
for the simulation of the pthreads API, concurrency simulation, and finalize
the translation by adding backend-specific instrumentation.

Experiments. We have evaluated MU-CSeq with CBMC (v4.9) as a backend
on the benchmark set from the Concurrency category of the TACAS Software
Verification Competition (SV-COMP15) [3]. These are widespread benchmarks,
and many state-of-the-art analysis tools have been trained on them; in addition,
they offer a good coverage of the core features of the C programming language
as well as of the basic concurrency mechanisms.

Since we use a BMC tool as a backend, and BMC can in general not prove
correctness, but can only certify that an error is not reachable within the given
bounds, we only evaluate our approach on the unsafe files. Our prototype does
not fully support dynamic memory allocation of shared memory, so five of the
test cases are excluded here. We thus use 781 of the 993 files in the whole
benchmark set, with a total of approx. 240,000 lines of code.

We have performed the experiments on an otherwise idle machine with a
Xeon W3520 2.6GHz processor and 12GB of memory, running a Linux operating
system with 64-bit kernel 3.0.6. We set a 10GB memory limit and a 500s timeout
for the analysis of each test case.

The experiments are summarized in Table 1. Each row corresponds to a
sub-category of the SV-COMP15 benchmarks, where we report the number of
files and the total number of lines of code. The table reports the evaluation of
CBMC [7], LR-CSeq [9], Lazy-CSeq [12,11], and MU-CSeq on these benchmarks.
For each tool and sub-category we consider the best parameters (i.e., minimal
loop unrolling, number of rounds, etc.). Furthermore, we indicate with pass the
number of correctly found bugs, with miss the number of unsuccessful analyses

Verifying Concurrent Programs by Memory Unwinding 563

including tool crashes, backend crashes, memory limit hits, and timeouts, and
with time the average time in seconds to find the bug.

The table shows that MU-CSeq is competitive with other tools based on BMC,
and in particular it is able to find all bugs. However, as in other bounded methods
the choice of the bounds (i.e., size of the unwinding and number of simulated
threads) also influences MU-CSeq’s performance. Here we have simply increased
the unwinding bounds until we found all bugs. In the first four sub-categories,
a 24-memory unwinding is sufficient; with this, the explicit-read fine-grained
implementation has the best performance. For the remaining sub-categories an
MU with at least 90 writes is required; here the performance of the fine-grained
implementation degrades, and the inter-thread coarse-grained variant performs
best. A more refined strategy selection is left for future work.

The MU-Cseq source code, static Linux binaries and benchmarks are available
at http://users.ecs.soton.ac.uk/gp4/cseq/CSeq-MU-TACAS.tar.gz.

6 Related Work

The idea of sequentialization was originally proposed by Qadeer and Wu [20] but
became popular with the first scheme for an arbitrary but bounded number of con-
text switches given by Lal and Reps [16] (LR). This has been implemented and
modified by several authors, e.g., in CSeq [9,10], and in STORM that also han-
dles dynamic memory allocation [14]. Poirot [18,8] and Corral [15] are successors
of STORM. Rek implements a sequentialization targeted to real-time systems [6].

The basic idea of the LR schemas is to simulate in the sequential program all
round-robin schedules of the threads in the concurrent program, in such a way
that (i) each thread is run to completion, and (ii) each simulated round works on
its own copy of the shared global memory. The initial values of all memory copies
are nondeterministically guessed in the beginning (eager exploration), while the
context switch points are guessed during the simulation of each thread. At the
end a checker prunes away all infeasible runs where the initial values guessed for
one round do not match the values computed at the end of the previous round.
This requires a second set of memory copies.

Similarly to LR, sequentialization by memory unwinding runs each thread
only once and simulates it to completion; however, there are several differences.
First, the threads are not scheduled in a fixed ordering and in rounds. Instead,
any scheduling that matches the memory unwinding is taken into account, in-
cluding schedules with unboundedly many context switches (although one can
show that a subset of them using a bounded number of context-switches suffices
to expose the same bugs). Second, the consistency check to prune away unfeasi-
ble computations is interleaved with the simulation, thus many unfeasible runs
can be found earlier and not only at the end of the simulation. This can im-
prove the performance, in particular for BMC backends. Third, it is possible to
show that the assertion violations that can be exposed by our sequentialization
is equivalent to those that can be exposed with LR, with different parameter
values though. For example, for our intra-thread MU implementation, the exec-
tutions that can be captured up to a size n in the memory unwinding can also be

564 E. Tomasco et al.

captured by LR with at most 2n−1 rounds, and vice-versa all the computations
of LR up to k context-switches (note that k = r n− 1 where n is the number of
threads and r is the number of rounds) can be captured with at most k clusters.

MU can also be seen as a hybrid eager/lazy technique. It guesses the thread
interactions at the beginning of the simulation, like the eager techniques in the
Lal/Reps mould. However, it prunes away unfeasible computations incremen-
tally, like Lazy-CSeq [12,11], but it calls the thread simulation function only
once and runs it to completion, rather then repeatedly traversing it. Unlike the
original lazy techniques [13], it also does not need to recompute the values of
the local variables.

A parameter related to the memory unwinding bound has been considered
in [4] for message passing programs where the bounded analysis is done on the
number of “process communication cycles”.

7 Conclusions and Future Work

We have presented a new approach to verify concurrent programs based on
bounding the number of the shared-memory writes that are exposed in the inter-
action between threads. At its core it is a new eager sequentialization algorithm
that uses the notion of memory unwinding, i.e., the sequence of the exposed
writes, to synchronize the separate simulation of singular threads.

We have designed different strategies and implemented them as code-to-code
transformations for ANSI-C programs that use the Pthreads API; our implemen-
tations support the full language, but the handling of dynamic memory allocation
is still limited. We have evaluated them over the SV-COMP15 [3] concurrency
benchmarks, finding all the errors and achieving performance on par with those
of the current best BMC tools with built-in concurrency handling as well as
other sequentializations.

We have found that in general our fine-grained MU implementations work
well for most problem categories, thus confirming the good results we achieved
last year with MU-CSeq [21], which is based on an initial version of the work
presented here. However, for the problems in the weak memory model category
the size of the fine-grained unwindings becomes too big; here, coarse-grained
MUs work better.

The main future direction of this research is to extend our approach to weak
memory models implemented in modern architectures (see for example [2,1]), and
to other communication primitives such as MPI. For MPI programs, our memory
unwinding approach can be rephrased for the sequence of send operations in a
computation.

References

1. Alglave, J., Kroening, D., Tautschnig, M.: Partial Orders for Efficient Bounded
Model Checking of Concurrent Software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

2. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011)

Verifying Concurrent Programs by Memory Unwinding 565

3. Beyer, D.: SV-COMP home page, http://sv-comp.sosy-lab.org/
4. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.

In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 451–465.
Springer, Heidelberg (2012)

5. Bouajjani, A., Emmi, M., Parlato, G.: On Sequentializing Concurrent Programs. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 129–145. Springer, Heidelberg
(2011)

6. Chaki, S., Gurfinkel, A., Strichman, O.: Time-bounded analysis of real-time sys-
tems. In: FMCAD, pp. 72–80 (2011)

7. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

8. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. POPL, 411–422
(2011)

9. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Concurrency Pre-Processor for Se-
quential C Verification Tools. In: ASE, pp. 710-713 (2013)

10. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Sequentialization Tool for C (Com-
petition Contribution). In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 616–618. Springer, Heidelberg (2013)

11. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Heidelberg
(2014)

12. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A
Lazy Sequentialization Tool for C - (Competition Contribution). In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 398–401. Springer,
Heidelberg (2014)

13. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009)

14. Lahiri, S.K., Qadeer, S., Rakamaric, Z.: Static and precise detection of concurrency
errors in systems code using SMT solvers. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 509–524. Springer, Heidelberg (2009)

15. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443.
Springer, Heidelberg (2012)

16. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to se-
quential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

17. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: A comprehensive study
on real world concurrency bug characteristics. SIGOPS Oper. Syst. Rev. 42(2),
329–339 (2008)

18. Qadeer, S.: Poirot - a concurrency sleuth. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, p. 15. Springer, Heidelberg (2011)

19. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

20. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI, pp. 14–24 (2004)
21. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq: Sequen-

tialization of C Programs by Shared Memory Unwindings - (Competition Con-
tribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413,
pp. 402–404. Springer, Heidelberg (2014)

http://sv-comp.sosy-lab.org/

AutoProof: Auto-Active Functional
Verification of Object-Oriented Programs

Julian Tschannen, Carlo A. Furia, Martin Nordio, and Nadia Polikarpova

Chair of Software Engineering, Department of Computer Science, ETH Zurich, Switzerland
{firstname,lastname}@inf.ethz.ch

Abstract. Auto-active verifiers provide a level of automation intermediate be-
tween fully automatic and interactive: users supply code with annotations as in-
put while benefiting from a high level of automation in the back-end. This paper
presents AutoProof, a state-of-the-art auto-active verifier for object-oriented se-
quential programs with complex functional specifications. AutoProof fully sup-
ports advanced object-oriented features and a powerful methodology for framing
and class invariants, which make it applicable in practice to idiomatic object-
oriented patterns. The paper focuses on describing AutoProof’s interface, de-
sign, and implementation features, and demonstrates AutoProof’s performance
on a rich collection of benchmark problems. The results attest AutoProof’s com-
petitiveness among tools in its league on cutting-edge functional verification of
object-oriented programs.

1 Auto-Active Functional Verification of Object-Oriented
Programs

Program verification techniques differ wildly in their degree of automation and, cor-
respondingly, in the kinds of properties they target. One class of approaches—which
includes techniques such as abstract interpretation and model checking—is fully au-
tomatic or “push button”, the only required input being a program to be verified; to
achieve complete automation, these approaches tend to be limited to verifying simple
or implicit properties such as absence of invalid pointer dereference. At the other end
of the spectrum are interactive approaches to verification—which include tools such as
KeY [3]—where the user is ultimately responsible for providing input to the prover on
demand, whenever it needs guidance through a successful correctness proof; in princi-
ple, this makes it possible to verify arbitrarily complex properties, but it is approachable
only by highly-trained verification experts.

In more recent years a new class of approaches have emerged that try to achieve
an intermediate degree of automation in the continuum that goes from automatic to
interactive—hence their designation [22] as the portmanteau auto-active1. Auto-active
tools need no user input during verification, which proceeds autonomously until it suc-
ceeds or fails; however, the user is still expected to provide guidance indirectly through
annotations (such as loop invariants) in the input program. The auto-active approach has
the potential to better support incrementality: proving simple properties would require

1 Although inter-matic would be as good a name.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 566–580, 2015.
DOI: 10.1007/978-3-662-46681-0_53

AutoProof: Auto-Active Functional Verification of Object-Oriented Programs 567

little annotations and of the simple kinds that novice users may be able to provide;
proving complex properties would still be possible by sustaining a heavy annotation
burden.

This paper describes AutoProof, an auto-active verifier for functional properties of
(sequential) object-oriented programs. In its latest development state, AutoProof offers
a unique combination of features that make it a powerful tool in its category and a
significant contribution to the state of the art. AutoProof targets a real complex object-
oriented programming language (Eiffel)—as opposed to more abstract languages de-
signed specifically for verification. It supports most language constructs, as well as a
full-fledged verification methodology for heap-manipulating programs based on a flex-
ible annotation protocol, sufficient to completely verify a variety of programs that are
representative of object-oriented idioms as used in practice. AutoProof was developed
with extensibility in mind: its annotation library can be augmented with new abstract
models, and its implementation can accommodate changes in the input language. While
Eiffel has a much smaller user base than other object-oriented languages such as C++,
Java, and C#, the principles behind AutoProof are largely language independent; hence,
they are relevant to a potentially large number of researchers and users—for whom this
paper is written.

The verification challenges we use to evaluate AutoProof (Sect. 5) are emerging as
the gold standard [17] to demonstrate the capabilities of program provers for functional
correctness which, unlike fully automatic tools, use different formats and conventions
for input annotations and support specifications of disparate expressiveness, and hence
cannot directly be compared on standard benchmark implementations.

Previous work of ours, summarized in Sect. 2.2, described the individual techniques
available in AutoProof. This paper focuses on presenting AutoProof’s functionalities
(Sect. 3), on describing significant aspects of its design and implementation (Sect. 4),
and on outlining the results of experiments with realistic case studies, with the goal
of showing that AutoProof’s features and performance demonstrate its competitiveness
among other tools in its league—auto-active verifiers for object-oriented programs.

AutoProof is available as part of the open-source Eiffel Verification Environment
(EVE) as well as online in your browser; the page

http://se.inf.ethz.ch/research/autoproof/

contains source and binary distributions, detailed usage instructions, a user manual, an
interactive tutorial, and the benchmarks solutions discussed in Sect. 5.

2 Related Work

2.1 Program Verifiers

In reviewing related work, we focus on the tools that are closer to AutoProof in terms
of features, and design principles and goals. Only few of them are, like AutoProof,
auto-active, work on real object-oriented programming languages, and support the ver-
ification of general functional properties. Krakatoa [10] belongs to this category, as
it works on Java programs annotated with a variant of JML (the Java Modeling Lan-
guage [18]). Since it lacks a full-fledged methodology for class invariants and framing,

http://se.inf.ethz.ch/research/autoproof/

568 J. Tschannen et al.

using Krakatoa to verify object-oriented idiomatic patterns—such as those we discuss in
Sect. 5.1—would be quite impractical; in fact, the reference examples distributed with
Krakatoa target the verification of algorithmic problems where object-oriented features
are immaterial. Similar observations apply to the few other auto-active tools working on
Java and JML, such as ESC/Java2 [5] or the more recent OpenJML [25,7]. Even when
ESC/Java2 was used on industrial-strength case studies (such as the KOA e-voting sys-
tem [16]), the emphasis was on modeling and correct-by-construction development,
and verification was normally applied only to limited parts of the systems. By contrast,
the Spec# system [1] was the forerunner in a new research direction, also followed
by AutoProof, that focuses on the complex problems raised by object-oriented struc-
tures with sharing, object hierarchies, and collaborative patterns. Spec# works on an
annotation-based dialect of the C# language and supports an ownership model which is
suitable for hierarchical object structures, as well as visibility-based invariants to spec-
ify more complex object relations. Collaborative object structures as implemented in
practice (Sect. 5.1) require, however, more flexible methodologies [27] not currently
available in Spec#. Tools, such as VeriFast [15], based on separation logic provide pow-
erful methodologies through abstractions different than class invariants, which may lead
to a lower level of automation than tools such as AutoProof and a generally higher an-
notation overhead—ultimately targeting highly trained users.

The experience with the Spec# project suggested that targeting a real object-oriented
programming language introduces numerous complications and may divert the focus
away from fundamental problems in tool-supported verification. The Dafny program
verifier [21] was developed based on this lesson: it supports a simple language ex-
pressly designed for verification, which eschews most complications of real object-
oriented programming languages (such as inheritance and a complex memory model).
Other auto-active verifiers target programming language paradigms other than object
orientation. Leon [30] and Why3 [11], for example, work on functional programming
languages—respectively, a subset of Scala and a dialect of ML; VCC [6] works on C
programs and supports object invariants but with an emphasis on memory safety of
low-level concurrent code.

AutoProof lies between automatic and interactive tools in the wide spectrum of ver-
ification tools. The CodeContract checker (formerly known as Clousot [24]) is a pow-
erful static analyzer for .NET languages that belongs to the former category (and hence
it is limited to properties expressible in its abstract domains). The KeY system [3] for
Java belongs to the latter category: while it supports SMT solvers as back-ends to auto-
matically discharge some verification conditions, its full-fledged usage requires explicit
user interactions to guide the prover through the verification process.

2.2 Our Previous Work on AutoProof

In previous work, we formalized some critical object-oriented features as they are avail-
able in Eiffel, notably function objects (called “agents” in Eiffel) and inheritance and
polymorphism [33]. An important aspects for usability is reducing annotation over-
head; to this end, we introduced heuristics known as “two-step verification” [34] and
demonstrated them on algorithmic challenges [31]. We recently presented the theory
behind AutoProof’s invariant methodology [27], which includes full support for class

AutoProof: Auto-Active Functional Verification of Object-Oriented Programs 569

invariants, framing, and ghost code. The current paper discusses how these features
are available in AutoProof, with a focus on advanced object-oriented verification chal-
lenges.

3 Using AutoProof

AutoProof is a static verifier for Eiffel programs which interacts with users according
to the auto-active paradigm [22]: verification attempts are completely automated (“push
button”), but users are expected in general to provide additional information in the form
of annotations (loop invariants, intermediate assertions, etc.) for verification to succeed.

AutoProof targets the verification of functional correctness. Given a collection of
Eiffel classes, it tries to establish that: routines satisfy their pre/post and frame speci-
fications and maintain class invariants; routine calls take place in states satisfying the
callee’s precondition; loops and recursive calls terminate; integer variables do not over-
flow; there are no dereferences of Void (null) objects.

AutoProof’s techniques are sound2: successful verification entails that the input pro-
gram is correct with respect to its given specification. Since it deals with expressive
specifications, AutoProof is necessarily incomplete: failed verification may indicate
functional errors but also shortcomings of the heuristics of the underlying theorem
prover (which uses such heuristics to reason in practice about highly-complex and un-
decidable logic fragments).

Dealing with inconclusive error reports in incomplete tools is a practical hurdle to us-
ability that can spoil user experience—especially for novices. To improve user feedback
in case of failed verification attempts, AutoProof implements a collection of heuristics
known as “two-step verification” [34]. When they are enabled, each failed verification
attempt is transparently followed by a second step that is in general unsound (as it uses
under-approximations such as loop unrolling) but helps discern whether failed verifi-
cation is due to real errors or just to insufficiently detailed annotations. Users see the
combined output from the two steps in the form of suggestions to improve the program
and its annotations. For example, if verification of a loop fails in the first step but suc-
ceeds with finite loop unrolling, the suggestion is that there are no obvious errors in the
loop but the loop invariant should be strengthened to make it inductive.

3.1 User Interface (UI)

AutoProof offers its core functionalities both through a command line interface (CLI)
and a library (API). End users normally interact with AutoProof through one of two
graphical interfaces (GUI): a web-based GUI is available at http://cloudstudio.

ethz.ch/comcom/#AutoProof; and AutoProof is fully integrated in EVE, the open-
source research branch of the EiffelStudio development environment. The following
presentation focuses on AutoProof in EVE, but most features are available in every UI.

Users launch AutoProof on the current project, or on specific classes or members
thereof. Verification proceeds in the background until it terminates, is stopped, or times

2 As usual, modulo bugs in the implementation.

http://cloudstudio.ethz.ch/comcom/#AutoProof
http://cloudstudio.ethz.ch/comcom/#AutoProof

570 J. Tschannen et al.

Fig. 1. The AutoProof output panel showing verification results in EVE

out. Results are displayed in a panel such as in Fig. 1: each entry corresponds to a rou-
tine of some class and is colored to summarize verification outcome. Green entries are
successfully verified; red entries have failed verification; and yellow entries denote in-
valid input, which cannot be translated and verified (for example, impure functions with
side effects used as specification elements determine invalid input). Red entries can be
expanded into more detailed error messages or suggestions to fix them (when enabled,
two-step verification helps provide more precise suggestions). For example, the failed
verification entry for a routine may detail that its loop invariant may not be maintained,
or that it may not terminate; and suggest that the loop invariant be strengthened, or a
suitable variant be provided.

AutoProof’s UI is deliberately kept simple with few options and sensible defaults.
For advanced users, fine-grained control over AutoProof’s behavior is still possible
through program annotations, which we outline in the next section.

3.2 Input Language Support

AutoProof supports most of the Eiffel language as used in practice, obviously including
Eiffel’s native notation for contracts (specification elements) such as pre- and post-
conditions, class invariants, loop invariants and variants, and inlined assertions such as
check (assert in other languages). Object-oriented features—classes and types, mul-
tiple inheritance, polymorphism—are fully supported [33], and so are imperative and
procedural constructs.

Partially Supported and Unsupported Features. A few language features that Auto-
Proof does not currently fully support have a semantics that violates well-formedness
conditions required for verification: AutoProof doesn’t support specification expres-
sions with side effects (for example, a precondition that creates an object). It also
doesn’t support the semantics of once routines (similar to static in Java and C#),
which would require global reasoning thus breaking modularity.

Other partially supported features originate in the distinction between machine and
mathematical representation of types. Among primitive types, machine INTEGERs are
fully supported (including overflows); floating-point REALs are modeled as infinite-
precision mathematical reals; strings are not supported but for single-character oper-
ations. Array and list library containers with simplified interfaces are supported out
of the box. Other container types require custom specification; we recently developed a
fully verified full-fledged data structure library including sets, hash tables, and trees [9].

AutoProof: Auto-Active Functional Verification of Object-Oriented Programs 571

Agents (function objects) are partially supported, with some restrictions in their specifi-
cations [33]. The semantics of native external routines is reduced to their specification.
We designed [33] a translation for exceptions based on the latest draft of the Eiffel lan-
guage standard, but AutoProof doesn’t support it yet since the Eiffel compiler still only
implements the obsolete syntax for exceptions (and exceptions have very limited usage
in Eiffel anyway).

Annotations for Verification. Supporting effective auto-active verification requires
much more than translating the input language and specification into verification condi-
tions. AutoProof supports semantic collaboration, a full-fledged framing methodology
we designed to reason about class invariants of structures made of collaborating objects,
integrated with a standard ownership model; both are described in detail in our previous
work [27]. AutoProof’s verification methodology relies on annotations that are not part
of the Eiffel language. Annotations in assertions or other specification elements use pre-
defined dummy features with empty implementation. Annotations of this kind include
modify and read clauses (specifying objects whose state may be modified or read by a
routine’s body). For instance, a clause modify (set) in a routine’s precondition denotes
that executing the routine may modify objects in set.

Annotations that apply to whole classes or features are expressed by means of Eiffel’s
note clauses, which attach additional information that is ignored by the Eiffel compiler
but is processed by AutoProof. Annotations of this kind include defining class members
as ghost (only used in specifications), procedures as lemmas (outlining a proof using as-
sertions and ghost-state manipulation), and which members of a class define its abstract
model (to be referred to in interface specifications). For example note status: ghost
tags as ghost the member it is attached to.

A distinctive trait of semantic collaboration, as available to AutoProof users, is the
combination of flexible expressive annotations with useful defaults. Flexible annota-
tions offer fine-grained control over the visibility of specification elements (for ex-
ample, invariant clauses can be referenced individually); defaults reduce the amount
of required manual annotations in many practical cases. The combination of the two
is instrumental in making AutoProof usable on complex examples of realistic object-
oriented programs.

Verifier’s Options. AutoProof verification options are also expressed by means of note
clauses: users can disable generating boilerplate implicit contracts, skip verification of a
specific class, disable termination checking (only verify partial correctness), and define
a custom mapping of a class’s type to a Boogie theory file. See AutoProof’s manual for
a complete list of features, options, and examples of usage.

Specification Library. To support writing complex specifications, AutoProof provides
a library—called MML for Mathematical Model Library—of pre-defined abstract types.
These includes mathematical structures such as sets, relations, sequences, bags (mul-
tisets), and maps. The MML annotation style follows the model-based paradigm [26],
which helps write abstract and concise, yet expressive, specifications. MML’s features
are fully integrated in AutoProof by means of effective mappings to Boogie background
theories. A distinctive advantage of providing mathematical types as an annotated li-
brary is that MML is extensible: users can easily provide additional abstractions by

572 J. Tschannen et al.

writing annotated Eiffel classes and by linking them to background theories using cus-
tom note annotations—in the very same way existing MML classes are defined. This
is not possible in most other auto-active verifiers, where mathematical types for speci-
fication are built into the language syntax.

binary_search (a: ARRAY [INTEGER]; value: INTEGER): INTEGER
require sorted: is_sorted (a.sequence)
local low, up, middle: INTEGER
do

from low := 1; up := a.count + 1
invariant

low_and_up_range: 1≤ low and low≤ up and up≤ a.count + 1
result_range: Result = 0 or 1≤ Result and Result≤ a.count
not_left: across 1 |..| (low−1) as i all a.sequence[i] <value end
not_right: across up |..| a.count as i all value <a.sequence[i] end
found: Result >0 implies a.sequence[Result] = value

until low ≥ up or Result >0
loop

middle := low + ((up − low) // 2)
if a[middle] <value then low := middle + 1
elseif a[middle] >value then up := middle
else Result := middle end

variant (a.count − Result) + (up − low) end
ensure

present: a.sequence.has (value) = (Result >0)
not_present: not a.sequence.has (value) = (Result = 0)
found_if_present: Result >0 implies a.sequence[Result] = value

end

Fig. 2. Binary search implementation verified by AutoProof

Input Language Syntax. Fig. 2 shows an example of annotated input: an implementa-
tion of binary search (problem BINS in Tab. 1) that AutoProof can verify. From top to
bottom, the routine binary_search includes signature, precondition (require), local
variable declarations, body consisting of an initialization (from) followed by a loop that
executes until its exit condition becomes true, and postcondition (ensure). The loop’s
annotations include loop invariant and variant. Each specification element consists
of clauses, one per line, with a tag (such as sorted for the lone precondition clause)
for identification in error reports. Quantified expressions in contracts use the across

syntax, which corresponds to (bounded) first-order universal (across ... all) and ex-
istential (across ... some) quantification. For example, loop invariant clause not_left

corresponds to ∀i : 1 ≤ i < low =⇒ a.sequence[i] < value.

4 How AutoProof Works: Architecture and Implementation

As it is customary in deductive verification, AutoProof translates input programs into
verification conditions (VCs): logic formulas whose validity entails correctness of the
input programs. Following the approach pioneered by Spec# [1] and since adopted by
numerous other tools, AutoProof does not generate VCs directly but translates Eiffel
programs into Boogie programs [20] and calls the Boogie tool to generate VCs from
the latter. Boogie is a simple procedural language tailored for verification, as well as
a verification tool that takes programs written in the Boogie language, generates VCs
for them, feeds the VCs to an SMT solver (Z3 by default), and interprets the solver’s

AutoProof: Auto-Active Functional Verification of Object-Oriented Programs 573

output in terms of elements of the input Boogie program. Using Boogie decouples VC
generation from processing the source language (Eiffel, in AutoProof’s case) and takes
advantage of Boogie’s efficient VC generation capabilities.

annotated
Eiffel program

Boogie-like
AST

Boogie
program

Verification
Conditions

Boogie SMT
solver

Fig. 3. Workflow of AutoProof with Boogie back-end

As outlined in Fig. 3, AutoProof implements the translation from Eiffel to Boogie in
two stages. In the first stage, it processes an input Eiffel program and translates it into a
Boogie-like abstract syntax tree (AST); in the second stage, AutoProof transcribes the
AST into a textual Boogie program.

The rest of this section focuses on describing how AutoProof’s architecture (Sect. 4.1)
and implementation features (Sect. 4.2) make for a flexible and customizable translation
process. An extended version of this paper [35] also outlines the mapping from Eiffel to
Boogie. We focus on discussing the challenges tackled when developing AutoProof and
the advantages of our implemented solutions.

4.1 Extensible Architecture

Top-level API. Class AUTOPROOF is the main entry point of AutoProof’s API. It offers
features to submit Eiffel code, and to start and stop the verification process. Objects
of class RESULT store the outcome of a verification session, which can be queried by
calling routines of the class. One can also register an Eiffel agent (function object) with
an AUTOPROOF object; the outcome RESULT object is passed to the agent for processing
as soon as it is available. This pattern is customary in reactive applications such as
AutoProof’s GUI in EVE.

Translation to Boogie. An abstract syntax tree (AST) expresses the same semantics
as Eiffel source code but using elements reflecting Boogie’s constructs. Type relations
such as inheritance are explicitly represented (based on type checking) using axiomatic
constraints, so that ASTs contain all the information necessary for verification. The
transcription of the AST into a concrete Boogie program is implemented by a visitor of
the AST. Modifying AutoProof in response to changes in Boogie’s syntax would only
require to modify the visitor.

Extension Points. AutoProof’s architecture incorporates extension points where it is
possible to programmatically modify and extend AutoProof’s behavior to implement
different verification processes. Each extension point maintains a number of handlers
that take care of aspects of the translation from Eiffel to the Boogie-like AST. Multiple
handlers are composed according to the chain of responsibility pattern; this means that
a handler may only implement the translation of one specific source language element,
while delegating to the default AutoProof handlers in all other cases. A new translation
feature can thus be added by writing a handler and registering it at an extension point.
Extension points target three program elements of different generality.

574 J. Tschannen et al.

Across extension points handle the translation of Eiffel across expressions, which cor-
respond to quantified expressions. Handlers can define a semantics of quantification
over arbitrary data structures and domains. (AutoProof uses this extension point to
translate quantifications over arrays and lists.)

Call extension points handle the translation of Eiffel calls, both in executable code
and specifications. Handlers can define translations specific to certain data types.
(AutoProof uses this extension point to translate functions on integers and dummy
features for specification.)

Expression extension points handle the translation of expressions. Handlers can define
translations of practically every Eiffel expression into a Boogie-like AST represen-
tation. This extension point subsumes the other two, which offer a simpler interface
sufficient when only specific language elements require a different translation.

The flexibility provided for by extension points is particular to AutoProof: the architec-
ture of other similar tools (Spec#, Dafny, and OpenJML) does not seem to offer compa-
rable architectural features for straightforward extensibility in the object-oriented style.

4.2 Implementation Features

AutoProof’s implementation consists of about 25’000 lines of Eiffel code in 160 classes.

Modular Translation. AutoProof performs modular reasoning: the effects of a call to
p within routine r’s body are limited to what is declared in p’s specification (its pre-
and postcondition and frame) irrespective of p’s body (which is only used to verify p’s
correctness). To achieve modularity incrementally, AutoProof maintains a translation
pool of references to Eiffel elements (essentially, routines and their specifications). Ini-
tially, it populates the pool with references to the routines of the classes specified as
input to be verified. Then, it proceeds as follows: (1) select an element el from the pool
that hasn’t been translated yet; (2) translate el into Boogie-like AST and mark el as
translated; (3) if el refers to (i.e., calls) any element p not in the pool, add a reference
to p’s specification to the pool; (4) if all elements in the pool are marked as translated
stop, otherwise repeat (1). This process populates the pool with the transitive closure
of the “calls” relation, whose second elements in relationship pairs are specifications,
starting from the input elements to be verified.

Traceability of Results. The auto-active paradigm is based on interacting with users at
the high level of the source language; in case of failed verification, reports must refer to
the input Eiffel program rather than to the lower level (Boogie code). To this end, Au-
toProof follows the standard approach of adding structured comments to various parts
of the Boogie code—most importantly to every assertion that undergoes verification:
postconditions; preconditions of called routine at call sites; loop invariants; and other
intermediate asserts. Comments may include information about the type of condition
that is checked (postcondition, loop termination, etc.), the tag identifying the clause (in
Eiffel, users can name each assertion clause for identification), a line number in the
Eiffel program, the called routine’s name (at call sites), and whether an assertion was
generated by applying a default schema that users have the option to disable (such as
in the case of default class invariant annotations [27]). For each assertion that fails ver-
ification, AutoProof reads the information in the corresponding comment and makes it

AutoProof: Auto-Active Functional Verification of Object-Oriented Programs 575

available in a RESULT object to the agents registered through the API to receive veri-
fication outcomes about some or all input elements. RESULT objects also include infor-
mation about verification times. This publish/subscribe scheme provides fine-grained
control on how results are displayed.

Bulk vs. Forked Feedback. AutoProof provides feedback to users in one of two modes.
In bulk mode all input is translated into a single Boogie file; results are fed back to
users when verification of the whole input has completed. Using AutoProof in bulk
mode minimizes translation and Boogie invocation overhead but provides feedback
synchronously, only when the whole batch has been processed. In contrast, AutoProof’s
forked mode offers asynchronous feedback: each input routine (and implicit proof obli-
gations such as for class invariant admissibility checking) is translated into its own self-
contained Boogie file; parallel instances of Boogie run on each file and results are fed
back to users asynchronously as soon as any Boogie process terminates. AutoProof’s
UIs use the simpler bulk mode by default, but offer an option to switch to the forked
mode when responsiveness and a fast turnaround are deemed important.

5 Benchmarks and Evaluation

We give capsule descriptions of benchmark problems that we verified using the latest
version of AutoProof; the complete solutions are available at http://se.inf.ethz.

ch/research/autoproof/repo through AutoProof’s web interface.

5.1 Benchmarks Description

Our selection of problems is largely based on the verification challenges put forward
during several scientific forums, namely the SAVCBS workshops [28], and various ver-
ification competitions [17,4,12,14] and benchmarks [36]. These challenges have re-
cently emerged as the customary yardstick against which to measure progress and open
challenges in verification of full functional correctness.

Tab. 1 presents a short description of verified problems. For complete descriptions
see the references (and [27] for our solutions to problems 11–17). The table is parti-
tioned in three groups: the first group (1–10) includes mainly algorithmic problems; the
second group (11–17) includes object-oriented design challenges that require complex
invariant and framing methodologies; the third group (18–27) targets data-structure re-
lated problems that combine algorithmic and invariant-based reasoning. The second and
third group include cutting-edge challenges of reasoning about functional properties of
objects in the heap; for example, PIP describes a data structure whose node invariants
depend on objects not accessible in the physical heap.

5.2 Verified Solutions with AutoProof

Tab. 2 displays data about the verified solutions to the problems of Sect. 5.1; for each
problem: the number of Eiffel classes (#C) and routines (#R), the latter split into ghost
functions and lemma procedures and concrete (non-ghost) routines; the lines of exe-
cutable Eiffel CODE and of Eiffel SPECIFICATION (a total of T specification lines, split
into preconditions P , postconditions Q, frame specifications F , loop invariants L and

http://se.inf.ethz.ch/research/autoproof/repo
http://se.inf.ethz.ch/research/autoproof/repo

576 J. Tschannen et al.

Table 1. Descriptions of benchmark problems
NAME DESCRIPTION FROM

1 Arithmetic (ARITH) Build arithmetic operations based on the increment operation. [36]
2 Binary search (BINS) Binary search on a sorted array (iterative and recursive version). [36]
3 Sum & max (S&M) Sum and maximum of an integer array. [17]
4 Search a list (SEARCH) Find the index of the first zero element in a linked list of integers. [17]
5 Two-way max (2-MAX) Find the maximum element in an array by searching at both ends. [4]
6 Two-way sort (2-SORT) Sort a Boolean array in linear time using swaps at both ends. [12]
7 Dutch flag (DUTCH) Partition an array in three different regions (specific and general verions). [8]
8 LCP (LCP) Longest common prefix starting at given positions x and y in an array. [14]
9 Rotation (ROT) Circularly shift a list by k positions (multiple algorithms). [13]

10 Sorting (SORT) Sorting of integer arrays (multiple algorithms).
11 Iterator (ITER) Multiple iterators over a collection are invalidated when the content changes. [28, ’06]
12 Subject/observer (S/O) Design pattern: multiple observers cache the content of a subject object. [28, ’07]
13 Composite (CMP) Design pattern: a tree with consistency between parent and children nodes. [28, ’08]
14 Master clock (MC) A number of slave clocks are loosely synchronized to a master. [2]
15 Marriage (MAR) Person and spouse objects with co-dependent invariants. [23]
16 Doubly-linked list (DLL) Linked list whose nodes have links to left and right neighbors. [23]
17 PIP (PIP) Graph structure with cycles where each node links to at most one parent. [29]
18 Closures (CLOSE) Various applications of function objects. [19]
19 Strategy (STRAT) Design pattern: a program’s behavior is selected at runtime. [19]
20 Command (CMD) Design pattern: encapsulate complete information to execute a command. [19]
21 Map ADT (MAP) Generic map ADT with layered data. [36]
22 Linked queue (QUEUE) Queue implemented using a linked list. [36]
23 Tree maximum (TMAX) Find the maximum value in nodes of a binary tree. [4]
24 Ring buffer (BUFF) A bounded queue implemented using a circular array. [12]
25 Hash set (HSET) A hash set with mutable elements.
26 Board game 1 (GAME1) A simple board game application: players throw dice and move on a board.
27 Board game 2 (GAME2) A more complex board game application: different board-square types.

variants V , auxiliary annotations including ghost code A, and class invariants C); the
S/C specification to code ratio (measured in tokens)3; the lines of BOOGIE input (where
tr is the problem-specific translation code and bg are the included background theory
necessary for verification); the overall verification time (in bulk mode). AutoProof ran
on a single core of a Windows 7 machine with a 3.5 GHz Intel i7-core CPU and 16 GB
of memory, using Boogie v. 2.2.30705.1126 and Z3 v. 4.3.2 as backends.

Given that we target full functional verification, our specification to code ratios are
small to moderate, which demonstrates that AutoProof’s notation and methodology sup-
port concise and effective annotations for verification. Verification times also tend to be
moderate, which demonstrates that AutoProof’s translation to Boogie is effective.

To get an idea of the kinds of annotations required, we computed the ratio A/T of
auxiliary to total annotations. On average, 2.8 out of 10 lines of specification are auxil-
iary annotations; the distribution is quite symmetric around its mean; auxiliary annota-
tions are less than 58% of the specification lines in all problems. Auxiliary annotations
tend to be lower level, since they outline intermediate proof goals which are somewhat
specific to the way in which the proof is carried out. Thus, the observed range of A/T
ratios seems to confirm how AutoProof supports incrementality: complex proofs are
possible but require more, lower level annotations.

5.3 Open Challenges

The collection of benchmark problems discussed in the previous sections shows, by and
large, that AutoProof is a state-of-the-art auto-active tool for the functional verifica-

3 In accordance with common practices in verification competitions, we count tokens for the S/C
ratio; but we provide other measures in lines, which are more naturally understandable.

AutoProof: Auto-Active Functional Verification of Object-Oriented Programs 577

Table 2. Verification of benchmark problems with AutoProof

NAME #C #R CODE SPECIFICATION S/C BOOGIE TIME [s]
co gh T P Q F L V A C tr bg

1 ARITH 1 6 0 99 44 11 12 0 12 9 0 0 0.4 927 579 3.1
2 BINS 1 4 1 62 48 11 12 0 6 3 16 0 1.6 965 1355 3.7
3 S&M 1 1 0 23 12 3 2 1 4 0 2 0 1.0 638 1355 3.9
4 SEARCH 2 5 1 57 62 2 12 2 6 2 27 11 2.3 931 1355 4.1
5 2-MAX 1 1 0 23 12 2 4 0 4 2 0 0 2.3 583 1355 3.0
6 2-SORT 1 2 0 35 28 5 7 2 6 2 6 0 1.8 683 1355 3.2
7 DUTCH 1 4 1 72 75 13 22 4 21 0 15 0 2.6 1447 1355 4.1
8 LCP 2 2 0 40 28 4 7 0 6 2 9 0 1.0 1359 1355 4.2
9 ROT 1 3 3 51 74 14 10 3 17 2 28 0 2.6 1138 1355 4.1

10 SORT 1 9 6 177 219 31 38 9 56 5 80 0 2.6 2302 1355 5.8
11 ITER 3 8 0 88 69 15 26 6 0 0 11 11 1.4 1461 1355 8.9
12 S/O 3 6 0 71 56 10 14 4 3 0 15 10 1.4 1156 1355 4.4
13 CMP 2 5 3 54 125 19 18 5 0 2 72 9 4.3 1327 1355 7.5
14 MC 3 7 0 63 61 9 14 5 0 0 26 7 1.8 956 579 3.7
15 MAR 2 5 0 45 50 12 11 3 0 0 19 5 2.3 755 579 3.3
16 DLL 2 8 0 69 76 12 14 4 0 0 39 7 2.0 891 579 4.4
17 PIP 2 5 1 54 111 23 18 6 0 1 56 7 3.9 988 1355 5.8
18 CLOSE 9 18 0 145 106 40 31 8 0 0 22 5 0.8 2418 688 5.7
19 STRAT 4 4 0 43 5 0 4 0 0 0 1 0 0.2 868 579 3.3
20 CMD 6 8 0 77 32 4 14 2 0 0 10 5 0.7 1334 579 3.3
21 MAP 1 8 0 78 67 6 29 2 6 4 15 5 2.3 1259 1355 4.1
22 QUEUE 4 13 1 121 101 11 26 1 0 0 48 15 1.5 2360 1355 7.4
23 TMAX 1 3 0 31 43 3 12 2 0 2 19 5 2.1 460 1355 3.2
24 BUFF 1 9 0 66 54 8 19 4 0 0 12 11 1.1 1256 1355 4.4
25 HSET 5 14 5 146 341 45 39 10 20 2 197 28 3.7 3546 1355 13.7
26 GAME1 4 8 0 165 93 16 13 4 31 3 10 16 1.2 4044 1355 26.6
27 GAME2 8 18 0 307 173 25 27 11 48 3 29 30 1.4 7037 1355 54.2

total 72 184 22 2262 2165 354 455 98 246 44 784 184 1.9 43089 1355 203.8

tion of object-oriented programs. To our knowledge, no other auto-active verifier fully
supports the complex reasoning about class invariants that is crucial to verify object-
oriented pattern implementation such as S/O and PIP. It is important to remark that we’re
describing practical capabilities of tools: other auto-active verifiers may support logics
sufficiently rich to express the semantics of object-oriented benchmarks, but this is a far
cry from automated verification that is approachable idiomatically at the level of a real
object-oriented language. Also, AutoProof’s performance is incomparable against that
of interactive tools, which may still offer some automation but always have the option
of falling back to asking users when verification gets stuck.

The flip side of AutoProof’s focus on supporting a real object-oriented language
is that it may not be the most powerful tool to verify purely algorithmic problems.
The benchmarks have shown that AutoProof still works quite well in that domain, and
there are no intrinsic limitations that prevent from applying it to the most complex
examples. However, algorithmic verification is often best approached at a level that
abstracts from implementation details (such as pointers and objects) and can freely
use high-level constructs such as infinite maps and nondeterminism. Verifiers such as
Dafny [21] and Why3 [11], whose input languages have been explicitly designed to
match such abstraction level, are thus best suited for algorithmic verification, which is
instead not the primary focus of AutoProof.

Another aspect of the complexity vs. expressivity trade-off emerges when verifying
realistic data structure implementations (or, more generally, object-oriented code as it is
written in real-life projects). Tools such as Dafny offer a bare-bones framing methodol-
ogy that is simple to learn (and to teach) and potentially very expressive; but it becomes

578 J. Tschannen et al.

unwieldy to reason about complicated implementations, which require to deal with an
abundance of special cases by specifying each of them at a low level of detail—and
annotational complexity easily leads to unfeasible verification. AutoProof’s methodol-
ogy is richer, which implies a steeper learning curve but also a variety of constructs
and defaults that can significantly reduce the annotational overhead and whose custom
Boogie translation offers competitive performance in many practical cases.

Given AutoProof’s goal of targeting a real programming language, there are few
domain-specific features of the Eiffel language that are not fully supported but are used
in practice in a variety of programs: reasoning in AutoProof about strings and floating-
point numbers is limited by the imprecision of the verification models of such features.
For instance (see Sect. 3.2), floating point numbers are translated as infinite-precision
reals; precise reasoning requires manually specifying properties of floating point op-
erations. Another domain deliberately excluded from AutoProof so far is concurrent
programming. As a long term plan, we envision extending AutoProof to cover these
domains to the extent possible: precise functional verification of such features is still
largely an open challenge for automated verification tools.

A related goal of AutoProof’s research is verifying a fully-specified realistic data
structure library—the first such verification carried out entirely with an auto-active tool.
This effort—one of the original driving forces behind designing AutoProof’s features—
has been recently completed with the verification of the EiffelBase2 container library [9].

6 Discussion

How do AutoProof’s techniques and implementation generalize to other domains? While
Eiffel has its own peculiarities, it is clear that AutoProof’s techniques are applicable with
little changes to other mainstream object-oriented languages such as Java and C#; and
that AutoProof’s architecture uses patterns that lead to proper designs in other object-
oriented languages too.

A practically important issue is the input language, namely how to reconcile the
conflicting requirements of supporting Eiffel as completely as possible and of having
a convenient notation for expressing annotations necessary for auto-active verification.
While Eiffel natively supports fundamental specification elements (pre- and postcondi-
tions and invariants), we had to introduce ad hoc notations, using naming conventions
and dummy features, to express modifies clauses, ghost code, and other verification-
specific directives in a way that is backward compatible with Eiffel syntax. We con-
sidered different implementation strategies, such as using a pre-processor or extending
Eiffel’s parser, but we concluded that being able to reuse standard Eiffel tools without
modifying them is a better option in terms of reusability and compatibility (as the lan-
guage and its tools may evolve), albeit it sacrifices a bit of notational simplicity. This
trade-off is reasonable whenever the goal is verifying programs in a real language used
in practice; verifiers focused on algorithmic challenges would normally prefer ad hoc
notations with an abstraction level germane to the tackled problems.

In future work, AutoProof’s architecture could integrate translations to back-end ver-
ifiers other than Boogie. To this end, we could leverage verification systems such as
Why3 [11], which generates verification conditions and discharges them using a variety
of SMT solvers or other provers.

AutoProof: Auto-Active Functional Verification of Object-Oriented Programs 579

Supporting back-ends with different characteristics is one of the many aspects that
affect the flexibility of AutoProof and similar tools. Another crucial aspect is the quality
of feedback in case of failed verification attempts, when users have to change the in-
put to fix errors and inconsistencies, work around limitations of the back-end, or both.
As mentioned in Sect. 3, AutoProof incorporates heuristics that improve feedback. An-
other component of the EVE environment combines AutoProof with automatic random
testing and integrates the results of applying both [32]. As future work we plan to fur-
ther experiment with integrating the feedback of diverse code analysis tools (AutoProof
being one of them) to improve usability of verification.

References
1. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specifica-

tion and verification: the Spec# experience. Commun. ACM 54(6), 81–91 (2011), http://
specsharp.codeplex.com/

2. Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over shared state.
In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 54–84. Springer, Heidelberg (2004)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Bormer, T., et al.: The COST IC0701 verification competition 2011. In: Beckert, B., Damiani,
F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 3–21. Springer, Heidelberg (2012),
http://foveoos2011.cost-ic0701.org/verification-competition

5. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced specification
and verification with JML and eSC/Java2. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363. Springer, Heidelberg
(2006), http://kindsoftware.com/products/opensource/ESCJava2/

6. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: a practical system for verifying concurrent C. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer,
Heidelberg (2009), http://vcc.codeplex.com/

7. Cok, D.: The OpenJML toolset. In: NASA Formal Methods, vol. 6617 (2011)
8. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
9. EiffelBase2: A fully verified container library (2015), https://github.com/

nadia-polikarpova/eiffelbase2
10. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program

verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177.
Springer, Heidelberg (2007), http://krakatoa.lri.fr/

11. Filliâtre, J.-C., Paskevich, A.: Why3 – where programs meet provers. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013),
http://why3.lri.fr/

12. Filliâtre, J.-C., Paskevich, A., Stump, A.: The 2nd verified software competition: Experi-
ence report. In: COMPARE. CEUR Workshop Proceedings, vol. 873, CEUR-WS.org (2012),
https://sites.google.com/site/vstte2012/compet

13. Furia, C.A.: Rotation of sequences: Algorithms and proofs (June 2014), http://arxiv.org/
abs/1406.5453

14. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis verification competition (2012),
http://verifythis2012.cost-ic0701.org

15. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier. In: Ueda,
K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg (2010), http://
people.cs.kuleuven.be/~bart.jacobs/verifast/

16. Kiniry, J.R., Morkan, A.E., Cochran, D., Fairmichael, F., Chalin, P., Oostdijk, M., Hubbers,
E.: The KOA remote voting system: A summary of work to date. In: Montanari, U., Sannella,
D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 244–262. Springer, Heidelberg (2007)

http://specsharp.codeplex.com/
http://specsharp.codeplex.com/
http://foveoos2011.cost-ic0701.org/verification-competition
http://kindsoftware.com/products/opensource/ESCJava2/
http://vcc.codeplex.com/
https://github.com/nadia-polikarpova/eiffelbase2
https://github.com/nadia-polikarpova/eiffelbase2
http://krakatoa.lri.fr/
http://why3.lri.fr/
https://sites.google.com/site/vstte2012/compet
http://arxiv.org/abs/1406.5453
http://arxiv.org/abs/1406.5453
http://verifythis2012.cost-ic0701.org
http://people.cs.kuleuven.be/~bart.jacobs/verifast/
http://people.cs.kuleuven.be/~bart.jacobs/verifast/

580 J. Tschannen et al.

17. Klebanov, V., et al.: The 1st verified software competition: Experience report. In: Butler, M.,
Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 154–168. Springer, Heidelberg (2011),
https://sites.google.com/a/vscomp.org/main/

18. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML ac-
commodates both runtime assertion checking and formal verification. Sci. Comput. Pro-
gram. 55(1-3), 185–208 (2005)

19. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-
quential object-oriented programs. Formal Aspects of Computing 19(2), 159–189 (2007)

20. Leino, K.R.M.: This is boogie 2. Technical report, Microsoft Research (June 2008), http://
research.microsoft.com/apps/pubs/default.aspx?id=147643

21. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer, Heidel-
berg (2010), http://research.microsoft.com/en-us/projects/dafny/

22. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Work-
shop (November 2010), http://fm.csl.sri.com/UV10/

23. Leino, K.R. M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

24. Logozzo, F.: Our experience with the CodeContracts static checker. In: Joshi, R., Müller,
P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 241–242. Springer, Heidelberg
(2012), http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx

25. The OpenJML toolset (2013), http://openjml.org/
26. Polikarpova, N., Furia, C.A., Meyer, B.: Specifying reusable components. In: Leavens, G.T.,

O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 127–141. Springer,
Heidelberg (2010)

27. Polikarpova, N., Tschannen, J., Furia, C.A., Meyer, B.: Flexible invariants through semantic
collaboration. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
514–530. Springer, Heidelberg (2014)

28. SAVCBS workshop series (2010), http://www.eecs.ucf.edu/~leavens/SAVCBS/
29. Summers, J., Drossopoulou, S., Müller, P.: The need for flexible object invariants. In:

IWACO, pp. 1–9. ACM (2009)
30. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In: Yahav, E.

(ed.) Static Analysis. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg (2011), http://
leon.epfl.ch/

31. Tschannen, J., Furia, C.A., Nordio, M.: AutoProof meets some verification challenges. Inter-
national Journal on Software Tools for Technology Transfer, 1–11 (February 2014)

32. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Usable verification of object-oriented
programs by combining static and dynamic techniques. In: Barthe, G., Pardo, A., Schneider,
G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 382–398. Springer, Heidelberg (2011)

33. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Automatic verification of advanced
object-oriented features: The AutoProof approach. In: Meyer, B., Nordio, M. (eds.) LASER
2011. LNCS, vol. 7682, pp. 133–155. Springer, Heidelberg (2012)

34. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Program checking with less hassle. In:
Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 149–169. Springer,
Heidelberg (2014)

35. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: Auto-active functional
verification of object-oriented programs (2015), http://arxiv.org/abs/1501.03063

36. Weide, B.W., Sitaraman, M., Harton, H.K., Adcock, B., Bucci, P., Bronish, D., Heym, W.D.,
Kirschenbaum, J., Frazier, D.: Incremental benchmarks for software verification tools and
techniques. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 84–98.
Springer, Heidelberg (2008)

https://sites.google.com/a/vscomp.org/main/
http://research.microsoft.com/apps/pubs/default.aspx?id=147643
http://research.microsoft.com/apps/pubs/default.aspx?id=147643
http://research.microsoft.com/en-us/projects/dafny/
http://fm.csl.sri.com/UV10/
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://openjml.org/
http://www.eecs.ucf.edu/~leavens/SAVCBS/
http://leon.epfl.ch/
http://leon.epfl.ch/
http://arxiv.org/abs/1501.03063

An LTL Proof System for Runtime Verification

Clare Cini and Adrian Francalanza

Computer Science, ICT, University of Malta, Malta
{clare.cini.08,adrian.francalanza}@um.edu.mt

Abstract. We propose a local proof system for LTL formalising de-
ductions within the constraints of Runtime Verification (RV), and show
how such a system can be used as a basis for the construction of online
runtime monitors. Novel soundness and completeness results are proven
for this system. We also prove decidability and incrementality proper-
ties for a monitoring algorithm constructed from it. Finally, we relate its
expressivity to existing symbolic analysis techniques used in RV.

1 Introduction

Runtime verification (RV) is a lightweight verification technique that checks
whether the current execution of a system under scrutiny satisfies or violates
a given correctness property. It has its origins in model checking, as a more
scalable (yet still formal) approach to program verification where state explosion
problems (which are part and parcel of model checking) are mitigated [LS09].
Linear Temporal Logic, (LTL) [Pnu77] is prevalently used for formal expositions
of RV [Gei01, SRA04, BLS07, BLS10, BLS11, BF12], because it has a pleasingly
straightforward definition over strings, denoting execution traces.

Proof systems [Bus98, TS00] embody mechanical syntactic deductions similar
to those made by monitors in RV. We propose a proof system for LTL attuned
to the constraints of an RV setting, and show how it can be used as a basis for
monitor construction. Although deductive systems for LTL exist, e.g., [MP91,
KI11, BL08] they are geared towards reasoning about the full statespace of a
system. By contrast, our proof system is local [SW91] focussing on checking
whether a specific point lies within a property set, instead of interpreting a
formula wrt. a set of points; this mirrors closely the runtime analysis in RV.

RV settings pose further constraints on our symbolic analysis. In online set-
tings, deductions are often performed on the partial traces generated thus far,
while the program is still executing. This has two important consequences: (a)
conclusive deductions must be consistent with any extension leading to a com-
plete trace (b) in order to keep RV overheads low, inconclusive deductions must
reusable, and contribute to deductions of subsequent extensions i.e., the analy-
sis must be incremental. In addition, monitors for partial traces typically rea-
son about trace satisfactions, but also trace violations [BLS11, BLS10] so as
to determine good/bad prefixes [KYV01]. Accordingly, proof system deductions
should reason directly about both satisfactions and violations. Moreover, timely
detections often require synchronous monitor instrumentation where monitored

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 581–595, 2015.
DOI: 10.1007/978-3-662-46681-0_54

582 C. Cini and A. Francalanza

system execute in lock-step with the respective monitor, producing a trace event
and waiting for the monitor to terminate its (incremental) analysis before execut-
ing further. Thus, in order for such an instrumentation to be safe, it is important
to ensure that incremental deductions are decidable.

We formally compare our system with other LTL symbolic techniques used in
RV. In particular we consider Geilen’s work [Gei01], based on informative pre-
fixes [KYV01], as well as Sen et al.’s work [SRA04] which is based on derivatives
[HR01]. Apart from enabling a better understanding of each approach, facilitat-
ing comparisons between seemingly different formalisations, this study enables
cross fertilisation of techniques from one formalisation to the other.

The paper is structured as follows. After introducing the logic, §2, we present
our proof system in §3. §4 presents the associated monitor algorithm. §5 details
formal comparisons with other symbolic analyses and §6 concludes.

2 The Logic: An LTL Primer

Syntax. Fig. 1 defines the core syntax of LTL as used in [BLS11, EFH+03],
parameterised by a set of predicates p ∈ Pred. It consists of two base cases,
i.e., the true formula, tt, and a predicate formula, p, standard negation and
conjunction constructors, ¬ψ and ψ1 ∧ψ2, and the characteristic next and until
formulas, Xψ and ψ1 U ψ2 resp. Other studies of LTL (e.g., [Gei01, BL08])
prefer to work with formulas in negation normal form (nnf), where negations
are pushed to the leaves of a formula. To accommodate this, we also consider an
extended LTL syntax in Fig. 1, that also includes base formulas for falsity, ff,
and constructors such as disjunctions, ϕ1 ∨ ϕ2, and release formulas, ϕ1 R ϕ2.
Our extended syntax also employs an extended predicate notation that includes
co-predicates, i.e., for any predicate1 p = S ⊆ Σ, its co-predicate, denoted as p,
represents its dual and is defined as Σ \S. This allows us to eliminate negations
from normalised formulas; because of this we sometimes refer to an nnf formula
as negation-free. Fig. 1 also defines a translation function, 〈−〉 :: LTL → eLtl

from formulas of the core LTL to a negation-free formula in the extended syntax.

Model. The logic semantics is also given in Fig. 1. It assumes an alphabet, Σ
(with element variables σ), over which predicates are defined, p :: Σ → Bool.
As in other RV studies [Gei01, SRA04, BLS11], the logic is defined over infinite
strings, s ∈ Σω; finite strings over the same alphabet are denoted by the variable
t ∈ Σ∗. A string with element σ at its head is denoted as σs (resp. σt). For
indexes i, j ∈ Nat, si denotes the ith element in the string (starting from index
0) and [s]i denotes the suffix of s starting at index i; note that for any s, [s]0 = s.
Infinite strings with a regular (finite) pattern t are sometimes denoted as t∗,
whereas the shorthand t . . . represents infinite strings with a (finite) prefix t.

Semantics. The denotational semantic function �−� :: eLtl → P(Σω) is de-
fined by induction over the structure of LTL formulas; in Fig. 1 we define the

1 Predicates are sometimes denoted as sets over Σ.

An LTL Proof System for Runtime Verification 583

Core LTL Syntax

ψ ∈ LTL ::= tt | p | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψ1 U ψ2

Extended LTL Syntax

ϕ ∈ eLtl ::= tt | p | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2 | Xϕ | ¬ϕ
| ff | p | ϕ1 ∨ ϕ2 | ϕ1 R ϕ2

Formula Translation (Normalisation)

〈tt〉 def
= tt 〈¬tt〉 def

= ff 〈p〉 def
= p 〈¬p〉 def

= p

〈Xψ〉 def
= X〈ψ〉 〈¬Xψ〉 def

= X〈¬ψ〉 〈¬¬ψ〉 def
= 〈ψ〉

〈ψ1 ∧ ψ2〉 def
= 〈ψ1〉 ∧ 〈ψ2〉 〈¬(ψ1 ∧ ψ2

)〉 def
= 〈¬ψ1〉 ∨ 〈¬ψ2〉

〈ψ1 U ψ2〉 def
= 〈ψ1〉 U 〈ψ2〉 〈¬(ψ1 U ψ2

)〉 def
= 〈¬ψ1〉 R 〈¬ψ2〉

Semantics

�tt�
def
= Σω �ff�

def
= ∅

�p�
def
= {s | p(s0)} �p�

def
= {s | not p(s0)}

�ϕ1 ∧ ϕ2�
def
= �ϕ1� ∩ �ϕ1� �ϕ1 ∨ ϕ2�

def
= �ϕ1� ∪ �ϕ1�

�Xψ�
def
=

{
s | [s]1 ∈ �ψ�

}
�¬ϕ�

def
=

(
Σω

) \ �ϕ�

�ϕ1 U ϕ2�
def
=

{
s | ∃j such that [s]j ∈ �ϕ2� and (i < j implies [s]i ∈ �ϕ1�)

}

�ϕ1 R ϕ2�
def
=

{
s | ∀j we have

(
[s]j ∈ �ϕ2� or (∃i < j such that [s]i ∈ �ϕ1�)

)}

Fig. 1. Linear Temporal Logic Syntax and Semantics

semantics for the extended LTL syntax (of which the core syntax is a subset).
Most cases are standard. For instance, �tt� (resp. �ff�) returns the universal
(resp. empty) set of strings, �¬ϕ� returns the dual of �ϕ�, whereas �ϕ1 ∧ ϕ2�
(resp. �ϕ1 ∨ ϕ2�) denotes the intersection (resp. union) of the meaning of its
subformulas, �ϕ1� and �ϕ2�. The meaning of �p� (resp. �p�) contains all strings
whose first element satisfies the predicate p (resp. p). The temporal formulas
are more involving. The denotation of �Xϕ� contains all strings whose immedi-
ate suffix (i.e., at index 1) is included in �ψ�. Until formulas �ϕ1 U ϕ2� contain all
strings that contain a suffix (at some index j) satisfying �ψ2�, and all the suffixes
preceding j satisfy �ψ1�. Finally, release formulas, ϕ1 R ϕ2 contain strings whose
suffixes always satisfy ϕ2, as well as strings that contain a suffix satisfying both
ϕ1 and ϕ2 and all the preceding suffixes satisfying ϕ2.

The denotational semantics allows us to observe the duality between the for-
mulas tt, ϕ1 ∧ ϕ2 and ψ1 U ψ2, and their counterparts ff, ϕ1 ∨ ϕ2 and ψ1 R ψ2.
It also helps us understand the mechanics of the translation function, push-
ing negation to the leaves of a formula using negation propagation identities
(e.g., DeMorgan’s law), converting constructors to their dual constructor; at the
leaves the function then performs direct translations from tt and p to ff and p

584 C. Cini and A. Francalanza

resp. The semantics also allows us to prove Prop. 1, justifying the use of a corre-
sponding negation-free formula instead of a core LTL formula, in order to reason
exclusively in terms of positive interpretations. It states that (i) the translation
function is total (otherwise the equality cannot be determined) but also that (ii)
the translated formula preserves the semantic meaning of the original formula.

Proposition 1. For any ψ ∈ LTL, �ψ� = �〈ψ〉�

Example 1. The behaviour of a traffic-light system may be described by observ-
ing its states consisting of green, g, orange, o, and red, r. Complete executions
may thus be represented as traces (strings) over the alphabetΣ = {g, o, r}. Pred-
icate definitions may be defined as sets over this alphabet Σ e.g., st = {o, r} is
true for stopping actions o and r; singleton-set predicates are denoted by single-
letter names e.g., g = {g}. We can specify the following properties:

– (¬r) ∧ Xr describes a trace where the system is not in a red state initially,
but turns red at the next instant. e.g., gr . . . or or . . .;

– g U o describes traces that eventually switch to the orange state from a
green state e.g., go . . . or gggo . . .;

– G st, i.e., always st, which is shorthand for ¬(tt U ¬st), describes traces that
contain only stopping states, e.g., strings of the form (or)∗ or r∗.

To determine whether r∗ ∈ �G st�, we can use �¬(tt U ¬st)� for which we
would need to calculate �tt U ¬st� and then take its dual. Alternatively, we
can calculate the denotation of 〈¬(tt U ¬st)〉, which translates to ff R st, and
check inclusion wrt. the translated negation-free formula, safe in the knowledge
that �¬(tt U ¬st)� = �ff R st�. Using similar reasoning, to determine whether
r . . . 	∈ �(¬r) ∧ Xr�, we can check whether r . . . ∈ �r ∨ Xr� holds. �

3 An Online Monitoring Proof System

Online2 runtime verification of LTL properties consist in determining whether
the current execution satisfies (or violates) a property from the trace generated
thus far. We present a local proof system [SW91, BS92] that characterises such
runtime analysis, and allows us to determine whether any (complete) trace ts
with finite prefix t is included in (or excluded from) �ϕ�. The proof system is
defined as the least relation satisfying the rules in Fig. 2. These rules employ
two, mutually dependent, judgements: the sequent t
+ ϕ denotes a satisfaction
judgement, whereas t
− ψ denotes a violation judgement; note the polarity
differentiating the two judgements, i.e., + and −.

Fig. 2 includes three satisfaction axioms (pTru, pPrd and pCoP) and three
violation axioms (nFls, nPrd and nCoP); the system is parametric wrt. the
pre-computation of predicates and co-predicates, p and p. The conjunction and
disjunction rules, pAnd, pOr1 and pOr2 (resp. nAnd1, nAnd2 and nOr) de-
compose the composite formula of the judgement for their premises. The negation

2 By contrast, offline monitoring typically works on complete execution traces. [RH05]

An LTL Proof System for Runtime Verification 585

Satisfaction Rules

pTru

t �+ tt
pPrd

p(σ)

σt �+ p
pCoP

p(σ)

σt �+ p
pNeg

t �− ϕ

t �+ ¬ϕ

pAnd
t �+ ϕ1 t �+ ϕ2

t �+ ϕ1 ∧ ϕ2
pNxt

t �+ ϕ

σt �+ Xϕ

pOr1
t �+ ϕ1

t �+ ϕ1 ∨ ϕ2
pOr2

t �+ ϕ2

t �+ ϕ1 ∨ ϕ2

pUnt1
t �+ ϕ2

t �+ ϕ1 U ϕ2
pUnt2

σt �+ ϕ1 t �+ ϕ1 U ϕ2

σt �+ ϕ1 U ϕ2

pRel1
t �+ ϕ1 t �+ ϕ2

t �+ ϕ1 R ϕ2
pRel2

σt �+ ϕ2 t �+ ϕ1 R ϕ2

σt �+ ϕ1 R ϕ2

Violation Rules

nFls

t �− ff
nPrd

p(σ)

σt �− p
nCoP

p(σ)

σt �− p
nNeg

t �+ ϕ

t �− ¬ϕ

nOr
t �− ϕ1 t �− ϕ2

t �− ϕ1 ∨ ϕ2
nNxt

t �− ψ

σt �− Xψ

nAnd1
t �− ϕ1

t �− ϕ1 ∧ ϕ2
nAnd2

t �− ϕ2

t �− ϕ1 ∧ ϕ2

nUnt1
t �− ϕ1 t �− ϕ2

t �− ϕ1 U ϕ2
nUnt2

σt �− ϕ2 t �− ϕ1 U ϕ2

σt �− ϕ1 U ϕ2

nRel1
t �− ϕ2

t �− ϕ1 R ϕ2
nRel2

σt �− ϕ1 t �− ϕ1 R ϕ2

σt �− ϕ1 R ϕ2

Fig. 2. Satisfaction and Violation Proof Rules

rules pNeg and nNeg also decompose the formula, but switch the modality of
the sequents for their premises, transitioning from one judgement form to the
other. Specifically, in the case of pNeg, the satisfaction sequent t
+ ¬ϕ is
defined in terms of the violation sequent t
− ϕ (and dually for nNeg).

The rules for the temporal formulas may decompose judgement formulas, e.g.,
pUnt1, pRel1, nUnt1, nRel1, but may also analyse suffixes of the trace in
incremental fashion. For instance, in order to prove σt
+ Xϕ, rule pNxt requires
the satisfaction judgement to hold for the immediate suffix t and the subformula
ϕ, i.e., t
+ ϕ. Similarly, to prove the satisfaction sequent σt
+ ϕ1 U ϕ2, rule
pUnt2 requires a satisfaction proof of the current trace σt and the subformula
ϕ1, as well as a satisfaction proof of the immediate suffix t wrt. ϕ1 U ϕ2. Since
this suffix premise is wrt. to the same composite formula ϕ1 U ϕ2, it may well be
the case that pUnt2 is applied again for suffix t. In fact, satisfaction proofs for
until formulas are characterised by a series of pUnt2 applications, followed by
an application of rule pUnt1 (the satisfaction proofs for ϕ1 R ϕ2 and violation

586 C. Cini and A. Francalanza

proofs for ϕ1 U ϕ2 and ϕ1 R ϕ2 follow an analogous structure). This incremental
analysis structure mirrors that of RV algorithms for LTL [Gei01, SRA04, BLS11]
and contrasts with the descriptive nature of the resp. semantic definition for
ϕ1 U ϕ2 (Fig. 1) (which merely stipulates the existence of some index j at which
point ϕ2 holds without stating how to find this index).

We note the inherent symmetry between the satisfaction and violation rules,
internalising the negation-propagation mechanism of the normalisation function
〈−〉 of §2 through rules pNeg and nNeg. For instance, there are no satisfaction
(resp. violation) proof rules for the formula ff (resp. tt). The resp. predicate ax-
ioms for satisfactions and violations are dual to one another, as are the rules

for conjunctions and disjunctions. More precisely, following 〈¬
(
ψ1 ∧ ψ2

)
〉 def

=
〈¬ψ1〉 ∨ 〈¬ψ2〉 from Fig. 1, the violation rules for conjunctions (nAnd1 and
nAnd2) have the same structure as the satisfaction rules for the resp. disjunc-
tions (pOr1 and pOr2). The symmetric structure carries over to the temporal
proof rules as well, e.g., violation rules nUnt1 and nUnt2 have an analogous
structure to that of rules pRel1 and pRel2.

Example 2. Recall property g U o from Ex. 1. We can construct the satisfaction
proof for trace go and the violation proof for trace gr below:

g(g)
pPrd

go �+ g

o(o)
pPrd

o �+ o
pUnt1

o �+ g U o
pUnt2

go �+ g U o

o(g)
nPrd

gr �− o

g(r)
nPrd

r �− g

o(r)
nPrd

r �− o
nUnt1

r �+ g U o
nUnt2

gr �− g U o

Crucially, however, we are unable to construct any proof for the trace gg. For
instance, attempting to construct a satisfaction proof fails because we hit the
end-of-trace, ε, before completing the proof tree. Intuitively, we do not have
enough information from the trace generated thus far to conclude that the com-
plete trace satisfies the property. For instance, the next state may be o, in which
case we can infer satisfaction for ggo, or it can be r, in which case we infer a
violation for ggr; if it is g, we postpone any conclusive judgement once again.

g(g)
pPrd

gg �+ g

g(g)
pPrd

g �+ g
??

ε �+ g U o
pUnt2

g �+ g U o
pUnt2

gg �+ g U o �

Properties. Our proof system is sound, in the following sense.

Theorem 1 (Soundness). For arbitrary t, ϕ:

(t
+ ϕ implies ∀s. ts ∈ �ϕ�) and (t
− ϕ implies ∀s. ts 	∈ �ϕ�)

Proof. By rule induction on t
+ ϕ and t
− ϕ. �

Example 3. The satisfaction and violation proofs of Ex. 2 suffice to prove gos ∈
�g U o� and grs 	∈ �g U o� for any (infinite) suffix s. Moreover, to determine
whether r . . . 	∈ �(¬r) ∧ Xr� from Ex. 1, it suffices to consider the prefix r and

An LTL Proof System for Runtime Verification 587

either construct a violation proof directly, or else normalise the negation of the
formula, 〈¬((¬r) ∧ Xr)〉 = r ∨ Xr and construct a satisfaction proof:

r(r)
pPre

r �+ r
pNeg

r �− ¬r
nAnd1

r �− (¬r) ∧ Xr

r(r)
pPre

r �+ r
pOr1

r �+ r ∨ Xr �
Remark 1. The apparent redundancy (Ex. 3) allows us to use the proof system as
a unifying framework that embeds other approaches (cf. §5), which may handle
negation directly [SRA04], or work exclusively with formulas in nnf [Gei01].

Our proof system handles empty strings ε, as these arise naturally from the
incremental analysis of finite traces discussed above.

Example 4. We can prove oo . . . ∈ �XX tt� from the prefix oo, by constructing
the proof tree below; the leaf node relies on being able to deduce ε
+ tt:

pTru

ε �+ tt
pNxt

o �+ X tt
pNxt

oo �+ XX tt �
Theorem 2 (Incompleteness). For arbitrary t, ϕ:

(∀s. ts ∈ �ϕ� does not imply t
+ ϕ) and (∀s. ts 	∈ �ϕ� does not imply t
− ϕ)

Proof. By counter example. For the positive case, consider t = ε. We have
∀s. ts ∈ �X tt� but t 	
+ X tt, ∀s. ts ∈ �p∨ p̄� but t 	
+ p∨ p̄, and ∀s. ts ∈ �ff R tt�
but t 	
+ ff R tt. Curiously, whenever p(σ) holds for all σ ∈ Σ, we also have
∀s. ts ∈ �p� but t 	
+ p. Analogous examples can be drawn up for the negative
case. �

We can however prove completeness for a syntactic subset of the logic, limiting
ourselves to discriminating predicates3, i.e., predicates p where ∃σ1, σ2 ∈ Σ such
that σ1 	= σ2, p(σ1) and ¬p(σ2). We define the following syntactic subset:

φ ∈ pLtl ::= tt | ff | p | p̄ | φ1 ∧ φ2 | φ1 U φ2 | ¬γ
γ ∈ nLtl ::= tt | ff | p | p̄ | γ1 ∨ γ2 | γ1 R γ2 | ¬φ

Theorem 3 (Partial Completeness). For arbitrary t, φ, γ:

(∀s. ts ∈ �φ� implies t
+ φ) and (∀s. ts 	∈ �γ� implies t
− γ)

Proof. By induction on the structure of φ and γ. �

4 An Automation

An automated proof search using the rules in Fig. 2 can be syntax directed by the
formula (and the polarity) since, for most formulas, there is only one applicable
rule. Moreover, the exception cases have at most two applicable rules.

3 This does not decrease expressivity, since tt and ff can be used for the other cases.
Note also that the co-predicate of a discrimination predicate is also discriminating.

588 C. Cini and A. Francalanza

exp(d)
def
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{� �} if � � ∈ d

{} if d = {}
d if c ∈ d implies sat(c)

exp(
⋃

c∈d expC(c)) otherwise

expC(c)
def
=

⊕
o∈c expO(o)

expO(o)
def
=

{
{c | r ∈ rls(ϕ, q), c = prm(r, t, ϕ)} if o = (t, ϕ)q

{� ε, ϕ�q �} if o = ε, ϕ�q

Fig. 3. A breadth-first incremental search algorithm

Notation. In what follows, (t, ϕ)+ and resp. (t, ϕ)− denote the resp. outstand-
ing proof obligations t
+ ϕ and t
− ϕ. Since our algorithm works on partial
traces, �ε, ϕ�+ and �ε, ϕ�− are used to denote saturated proof obligations, where
the string ε does not yield enough information to complete the proof search (e.g.,
ε
+ g U o in Ex. 2). A conjunction set � o1, . . . , on � denotes a conjunction of
proof obligations; metavariables oi range over obligations of the form (t, ϕ)q or
�t, ϕ�q for q ∈ {+,−}. A disjunction set {c1, . . . , cn}, where ci range over con-
junction sets, denotes a disjunction of conjunction sets.4 We employ a merge
operation over disjunction sets, ⊕, defined below:

d⊕ d′ def
= {c ∪ c′ | c ∈ d, c′ ∈ d′}

The disjunction set {� �} acts as the identity, , i.e., {� �} ⊕ d = d⊕ {� �} = d,
whereas the disjunction set {} annihilates such sets, i.e., {} ⊕ d = d⊕ {} = {}.

Algorithm. A breadth-first proof search algorithm is described in Fig. 3. Dis-
junction sets encode the alternative proof derivations that may lead to a com-
pleted proof-tree (resulting from multiple proof rules that can be applied at
certain stages of the search), and conjunction sets represent the outstanding
obligations within each potential derivation. Thus, a disjunction set with an ele-
ment � �, denotes a successful search, whereas an empty disjunction set {} repre-
sents a failed search. Another terminating condition for the search algorithm of
Fig. 3 is when a disjunction set contains only saturated conjunction sets: these
containing only saturated obligations of the form �ε, ϕ�q (the predicate sat(c)
denotes this).

To verify whether the judgement t
q ϕ holds, we initiate the function exp(−)
with the disjunction set {� (t, ϕ)q �}. If none of the terminating conditions in
Fig. 3 are met, exp(−) expands each conjunction set using expC(−), and re-
curses. Conjunction set expansion consists in expanding and merging every proof
obligation using expO(−) and ⊕. Obligation expansion returns a disjunction
set, where each conjunction set denotes the proof obligations resulting from the
premises of the rules applied. It uses two auxilliary functions:

4 For clarity, conjunction set notation, �− �, differs from that of disjunction sets, {−}.

An LTL Proof System for Runtime Verification 589

– rls(ϕ, q) returns a set of rule names r from Fig. 2 that can be applied to obli-
gations with the formula ϕ and polarity qualifier q (e.g., rls(ϕ1 U ϕ2,+) =
{pUnt1, pUnt2} and rls(Xϕ,−) = {nNxt}).

– prm(r, t, ϕ) returns a conjunction set with the premises of rule r instantiated
to the conclusion with string t and formula ϕ (e.g., prm(pUnt2, go, g U o) =
� (go, g)+, (o, g U o)+ � and prm(pTru, go, tt) = � �). Importantly:

(i) For cases such as prm(pUnt2, ε, g U o) the function returns � �ε, g U o�+ �
since the string ε prohibits the function from generating all the premises
for the rule (one premise requires the string to be of length ≥ 1).

(ii) The function is undefined when rule conditions are not satisfied (e.g.,
prm(pPrd, g, o) is undefined since o(g) does not hold).

Example 5. Recall the inconclusive judgement gg
+ g U o from Ex. 2.

exp({� (gg, gU o)+ �}) = exp({� (gg, o)+ �, � (gg, g)+, (g, gU o)+ �})
= exp({} ∪ ({� �} ⊕ {� (g, o)+ �, � (g, g)+, (ε, gU o)+ �})
= exp({� (g, o)+�, � (g, g)+, (ε, gU o)+ �}) = {� �ε, gU o�+ �} �

Properties. An execution of exp({� (t, ϕ)q �}) may yield either of three verdicts.
Apart from success, {� �}, meaning that a full proof tree was derived, the algo-
rithm partitions negative results as either a definite fail, {}, or an inconclusive
verdict, consisting of a saturate disjunction set d (where c ∈ d implies sat(c)).

Saturated disjunction sets make the algorithm incremental, in the following
sense. When a further suffix t′ is learnt to a judgement t
q ϕ with an inconclusive
verdict, we can reuse the saturated disjunction set returned for t
q ϕ, instead
of processing tt′
q ϕ from scratch. This is done by converting each obligation
of the form �ε, ϕ�q in each saturated conjunction set to the active obligation
(t′, ϕ)q using an auxilliary “append” function app(−).

Example 6. To determine whether ggo
+ g U o holds, we can take the in-
conclusive outcome of exp({� (gg,g U o)+ �}) from Ex. 5, convert the saturated
obligations using suffix o, app({� ε, g U o�+ �}, o) = {� (o, g U o)+ �}, and calculate
from that point onwards, exp({� (o, gU o)+ �}) = {� �}. �

Theorem 4 (Incrementality). sat(exp({� (t1, ϕ)q �})) implies

exp({� (t1t2, ϕ)q �}) = exp(app(exp({� (t1, ϕ)q �}), t2))

Proof. By induction on t2. �

The algorithm of Fig. 3 is also decidable for the proof rules of Fig. 2. Intuitively,
the main reason for this is because the proof system is cut-free, where rule
premises are either defined in terms of string suffixes or subformula. Formally,
we define a rank function | − | mapping proof obligations to pairs of naturals,

for which we assume a lexicographical ordering (n1,m1) ≥ (n2,m2)
def
= n1 ≥

n2 ∨ (n1 = n2 ∧ m1 ≥ m2) and the obvious function max(−) returning the

590 C. Cini and A. Francalanza

greatest element from a set of such pairs. Apart from |t|, we also assume |ϕ|
returning the maximal depth of the formula (e.g., |p U ¬(p̄∨p)| = 3 and |p̄| = 0).

|(t, ϕ)q| def
= (|t|, |ϕ|) |�t, ϕ�q| def

= (0, 0) |c| def
= max({|o| | o ∈ c} ∪ {(0, 0)})

|d| def
= if � � ∈ d then (0, 0) else max({|c| | c ∈ d} ∪ {(0, 0)})

Above, the rank function maps saturated obligations to the bottom element
(0, 0). We overload the function to conjunction sets, where we add (0, 0) to the
max(−) calculation to cater for the case where c is empty. Following a similar
pattern, we also extend the rank function to disjunction sets, but equate all sets
with an empty conjunction set to the bottom element (0, 0); this mirrors the
termination condition of the algorithm in Fig. 3 which terminates the search as
soon as the shortest proof tree is detected.

Theorem 5 (Decidability). exp({� (t, ϕ)q �}) always terminates.

Proof. Follows from the fact that when |d| = (0, 0), exp(d) terminates immedi-
ately, and when |d| 	= (0, 0), we have |d| > |

⋃
c∈d expC(c)|. �

Runtime Monitoring. We can obtain a setup akin to the three-valued mon-
itors of [BLS11] with outcome Y, denoting satisfaction, outcome N, denoting
violation, and outcome ?, denoting an inconclusive outcome. Following [BLS11],
given a finite trace t and a property ϕ, we attempt to construct a deduction
for both the satisfaction, t
+ ϕ and violation, t
− ϕ, by concurrently running
exp({� (t, ϕ)+ �}) and exp({� (t, ϕ)− �}) with the following possible outcomes:

1. We are able to construct a proof for t
+ ψ, corresponding to Y.
2. We are able to construct a proof for t
− ψ, corresponding to N.
3. We are unable to construct proofs for either case, corresponding to ?.

Remark 2. The fourth possible outcome, i.e., constructing a proof for both t
+
3 ψ

and t
−
3 ψ, is ruled out by soundness (Thm. 1), which implicitly guarantees that

our analysis is consistent (since the semantics is defined in terms of sets).

Like in most online RV setups, Thm. 4 allows for incremental monitor, as
soon as individual trace elements are received. Moreover, Thm. 5 allows for
a safe synchronous instrumentation, where the monitor and system execute in
lock-step (i.e., the system is paused after producing each monitored event so as to
allow the monitor to carry out its analysis and perform timely detections). Since
the monitoring analysis always terminates, the monitored system is guaranteed
to be able to progress normally under a synchronous instrumentation.

5 Alternative RV Symbolic Techniques for LTL

We relate our deductive system to two prominent, but substantially distinct,
symbolic techniques for LTL in the context of RV, namely [Gei01] and [SRA04].

An LTL Proof System for Runtime Verification 591

5.1 Informative Prefixes

Intuitively, an informative prefix for a formula explains why a trace satisfies
that formula [KYV01]. In [Gei01], trace satisfactions are monitored wrt. LTL

formulas in nnf, by checking whether a trace contains an informative prefix.

Example 7. Recall g U o (Ex. 1). Prefix go is informative because (i) although
the head, g, does not satisfy g U o in a definite manner, it allows the possibility
of its suffix to satisfy the formula conclusively (g(g) holds); (ii) the immediate
suffix, o, satisfies g U o conclusively (o(o) holds). In [Gei01], both go and o
are deemed to be locally-informative wrt. g U o but go generates satisfaction
obligations for the immediate suffix (temporal informative successor). �

The algorithm in [Gei01] formalises the notion of locally informative by con-
verting formulas to their informative normal forms. Moreover, temporal infor-
mative successors are formalised through the function next(−), returning a set
of formulas from a given formula and a trace element. For instance, in Ex. 7
next(g, g U o) = {g U o} whereas next(o, g U o) = {}. These functions are then
used to construct automata that check for these properties over string prefixes.

gTru

linf(t, tt, ∅) gPre1

p(σ)

linf(σt, p, ∅) gPre2

p̄(σ)

linf(σt, p̄, ∅)

gOr1

linf(t, ϕ1,m)

linf(t, ϕ1 ∨ ϕ2,m)
gOr2

linf(t, ϕ2,m)

linf(t, ϕ1 ∨ ϕ2,m)

gAnd

linf(t, ϕ1,m1) linf(t, ϕ2,m2)

linf(t, ϕ1 ∧ ϕ2,m1 ∪m2)
gNxt

linf(t,Xϕ, {ϕ})

gUnt1

linf(t, ϕ2,m)

linf(t, ϕ1 U ϕ2,m)
gUnt2

linf(t, ϕ1,m)

linf(t, ϕ1 U ϕ2,m ∪ {ϕ1 U ϕ2})

gRel1

linf(t, ϕ1,m1) linf(t, ϕ2,m2)

linf(t, ϕ1 R ϕ2,m1 ∪m2)
gRel2

linf(t, ϕ2,m)

linf(t, ϕ1 R ϕ2,m ∪ {ϕ1 R ϕ2})
In this section, we express the locally-informative predicate and the associated

temporal informative successors as the single judgement linf(t, ϕ,m), defined as
the least relation satisfying the rules above. It states that t is locally informative
for ϕ with obligations m ∈ P(eLtl) for the succeeding suffix. For example, for a
formula Xϕ, any string t is locally informative, but requires the immediate suffix
to satisfy ϕ (see gNxt); in the case of ϕ1 U ϕ2, if t is locally informative for
ψ1 with suffix obligations m, then t is also locally informative for ϕ1 U ϕ2 with
obligations m ∪ {ϕ1 U ϕ2} (see gUnt2). Informative prefixes are formalised as
the predicate inf(t, ϕ) below. Note that recursion in inf(t, ϕ) is employed on a
substring of t and terminates when m = ∅.

inf(t, ϕ)
def
= ∃m.

(
linf(t, ϕ,m) and

(
ϕ′ ∈ m implies (inf([t]1, ϕ′))

))

Example 8. We can deduce that inf(go, g U o) because linf(go, g U o, {g U o})
and then that linf(o, g U o, ∅). �

592 C. Cini and A. Francalanza

We can formally show a correspondence between informative prefixes and our
monitoring proof systems.

Theorem 6. For all ϕ in nnf, inf(t, ϕ) iff t
+ ϕ

Proof. By structural induction on t, then by rule induction on linf(t, ϕ,m) for
the only-if case. By rule induction for the if case. �

In the only-if direction, Thm. 6 ensures that our system is as expressive as
[Gei01]. In the if direction, Thm. 6 shows that every derivation in our proof
system corresponds to an informative prefix as defined in [KYV01]5. This re-
inforces existing justifications as to why our system is unable to symbolically
process certain prefix and formula pairs.

Example 9. The proof system of §3 is unable to deduce ε
+ Xtt (cf. proof for
Thm. 2) even though, on a semantic level, this holds for any string continuation
because ε in not an informative prefix of Xtt. �

Thm. 6 has another important implication. One justification of informative
prefixes is that any bad/good prefixes detected can be accompanied by an expla-
nation [BLS11]. However, whereas in [Gei01] this explanation is given in terms
of the algorithm implementation, delineating the proof system from its imple-
menting monitor (as in our case) allows for better separation of concerns, by
giving the explanation as a derivation6 in terms of the proof rules of Fig. 2.

5.2 Derivatives

In a derivatives approach [HR01, SRA04], LTL formulas are interpreted as func-
tions that take a state i.e., an element of the alphabet Σ, and return another
LTL formula. The returned formula is then applied again to the next state in
the trace, until either one of the canonical formulas tt or ff are reached; the trace
analysis stops at canonical formulas, since tt (resp. ff) are idempotent, returning
tt (resp. ff), irrespective of the state applied to. In [SRA04], coinductive deduc-
tive techniques are used on derivatives to establish LTL formula equivalences,
which are then used to obtain optimal monitors for good/bad prefixes.

Example 10. Recall ε 	
+ Xtt from Ex. 9. In [SRA04], they establish that formu-
las tt and Xtt are equivalent wrt. good prefixes, tt ≡G Xtt, which allows them to
reason symbolically about ε and Xtt in terms of ε and tt instead. �

Formally, a derivative is a rewriting operator { } :: aLtl × Σ −→ aLtl

(adapted from [SRA04]) defined on the structure of the formula as follows:

5 As a corollary, we also establish a correspondence between t �− ϕ and inf(t,¬ϕ) as
used in [Gei01] for bad prefixes.

6 The algorithm in §4 can be easily extended so as to record the rules used.

An LTL Proof System for Runtime Verification 593

tt{σ} def
= tt ff{σ} def

= ff

p{σ} def
= if p(σ) then tt else ff

(¬ψ){σ} def
= (tt⊕ ψ){σ} ψ1 ⊕ ψ2{σ} def

= ψ1{σ} ⊕ ψ2{σ}
ψ1 ∧ ψ2{σ} def

= ψ1{σ} ∧ ψ2{σ} ψ1 ∨ ψ2{σ} def
= ψ1{σ} ∨ ψ2{σ}

Xψ{σ} def
= ψ

ψ1 U ψ2{σ} def
= ψ2{σ} ∨ (ψ1{σ} ∧ ψ1Uψ2)

Above, we position rewriting definitions for core LTL formulas of Fig. 1 on
the left; formula rewriting however also uses an extended set of formulas that
include falsity, ff, disjunction, ψ1 ∨ ψ2, and exclusive-or, ψ1 ⊕ ψ2. The derivatives
algorithm also works up to formula normalisations using the following equalities:

tt ∧ ψ ≡ ψ ff ∧ ψ ≡ ff ff ∨ ψ ≡ ψ tt ∨ ψ ≡ tt

ψ ∧ ψ ≡ ψ ψ ∨ ψ ≡ ψ ff ⊕ ψ ≡ ψ (ψ1 ∧ ψ2)⊕ ψ1 ⊕ ψ2 ≡ ψ1 ∨ ψ2

Thus, for any finite trace t of the form σ1σ2 . . . σn we say:

– t is a good prefix for ψ iff ((ψ{σ1}){σ2}){. . . σn} ≡ tt;
– t is a bad prefix for ψ iff ((ψ{σ1}){σ2}){. . . σn} ≡ ff.

Example 11. The partial trace go is a good prefix for gUo (Ex. 1) because:

(gUo{g}){o} def
= o{g} ∨

(
g{g} ∧ gUo

)
{o}

def
= ff ∨

(
g{g} ∧ gUo

)
{o} ≡

(
g{g} ∧ gUo

)
{o}

def
=

(
tt ∧ gUo

)
{o} ≡ gUo{o}

def
= o{o} ∨

(
g{o} ∧ gUo

) def
= tt ∨

(
g{o} ∧ gUo

)
≡ tt �

Good (resp. bad) prefixes, as defined in[SRA04], correspond to finite traces
with a satisfaction (resp. violation) proof in our system (§3), and vice-versa.

Theorem 7. For any finite trace t = σ1 . . . σn, and core LTL formula ψ:
(
(ψ{σ1}){. . . σn} ≡ tt iff t
+ ψ

)
and

(
(ψ{σ1}){. . . σn} ≡ ff iff t
− ψ

)

Proof. For the only-if case both statements are proved simultaneously by nu-
merical induction on n and then by structural induction on ψ. For the if case
both statements are proved simultaneously by rule induction. �

Apart from establishing a one-to-one correspondence between derivative pre-
fixes and proof deductions for core LTL formulas in our system, Thm. 7 (together
with Thm. 6) allows us to relate indirectly the informative prefixes of §5.1 to
derivative prefixes. Moreover, Thm. 7 identifies from where the additional expres-
sivity of the analysis in [SRA04] derives, namely through the deductive system
for formula equivalence wrt. good/bad prefixed,
 ψ1 ≡G ψ2 and
 ψ1 ≡B ψ2.
This opens up the possibility of merging the two approaches, perhaps by extend-
ing our deductive system with rules analogous to those show below:

pEq

t
+ ϕ1
 ϕ1 ≡G ϕ2

t
+ ϕ2
nEq

t
− ϕ1
 ϕ1 ≡B ϕ2

t
− ϕ2

594 C. Cini and A. Francalanza

6 Conclusion

We presented a proof system and the respective monitor generation for runtime-
verifying LTL properties. One novel aspect of our approach is that we tease apart
the specification of the symbolic analysis from its automation. This allows us to
localise correctness results e.g., soundness is determined for the proof system,
independent of the subsequent automation. The higher level of abstraction used
elucidates completeness studies, seldom tackled in other work in RV e.g., the
syntactic subclass identified for Thm. 3 appears to be new. This separation of
concerns also facilitates comparisons and cross-fertilisation with other symbolic
techniques (§ 5) and leads to modular organisations that are easier to maintain
e.g., more efficient monitor automation may be considered without changing the
proof rules. The concrete contributions are:

1. A sound, local LTL proof system inferring complete trace inclusion from finite
prefixes, Thm. 1, together with completeness results, Thm. 2 and Thm. 3.

2. A mechanisation of proof derivations for this system that is formally incre-
mental, Thm. 4, and decidable, Thm. 5.

3. An exposition of how the proof system can be used as a unifying framework
where to relate different runtime monitoring formalisms, Thm. 7 and Thm. 6.

Related Work. Apart from the deductive system for LTL formula equivalence
in [SRA04], there are other LTL proof systems [GPSS80, MP91, KI11, BL08].
Each differ substantially from ours. For instance, the model used in [GPSS80,
MP91] is different from ours, i.e., programs (sets of traces) instead of traces;
the work in [GPSS80, KI11] is concerned with developing tableau methods for
inferring the validity of a formula from a conjunction of formulas; [BL08] study
cut-free sequent systems; importantly, none of these proof systems are local.
In [MP91], they develop three tailored proof systems for separate classes of
properties, namely safety, response and reactivity properties; crucially however,
they do not consider aspects such as deductions from partial traces.

A substantial body of work studies alternative LTL semantics for partial
traces [EFH+03, BLS07, BLS11]; consult [BLS10] for a comprehensive survey.
Although complementary, the aim and methodology of this work is substantially
different from ours. In particular, we keep the LTL semantics constant, and
explore the soundness, completeness and expressivity aspects of our symbolic
analysis wrt. to this fixed semantics.

Future Work. It would be fruitful to relate other LTL symbolic analyses to
the ones discussed in §5. Our work may also be used as a point of departure
for developing proof systems for other interpretations of LTL. For instance, a
different LTL model to that of §2, consisting of both finite and infinite traces,
alters the negation propagation identities used for the translation function (e.g.,
¬Xψ ≡ X¬ψ does not hold) which, amongst other things, would require tweak-
ing to the proof rules. Similar issues arise in distributed LTL interpretations such
as [BF12] where instead of having one execution trace, we have a set of traces

An LTL Proof System for Runtime Verification 595

(one for each location). We also leave complexity analysis and the assessment of
the runtime overheads introduced by our setup as future work.

References

[BF12] Bauer, A., Falcone, Y.: Decentralised LTL Monitoring. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 85–100. Springer, Heidelberg (2012)

[BL08] Brunnler, K., Lange, M.: Cut-free sequent systems for temporal logic.
JLAP 76(2), 216–225 (2008)

[BLS07] Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly,
but how ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 126–138. Springer, Heidelberg (2007)

[BLS10] Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for run-
time verification. Logic and Comput. 20(3), 651–674 (2010)

[BLS11] Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and
TLTL. TOSEM 20(4), 14 (2011)

[BS92] Bradfield, J., Stirling, C.: Local model-checking for infinite state spaces.
TCS 96, 157–174 (1992)

[Bus98] Buss, S.R. (ed.): Handbook of Proof Theory. Elsevier (1998)
[EFH+03] Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A.,

Van Campenhout, D.: Reasoning with temporal logic on truncated paths.
In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
27–39. Springer, Heidelberg (2003)

[Gei01] Geilen, M.: On the construction of monitors for temporal logic properties.
ENTCS 55(2), 181–199 (2001)

[GPSS80] Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of
fairness. In: POPL, pp. 163–173. ACM, New York (1980)

[HR01] Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: ASE,
pp. 135–143. IEEE, Wash., DC (2001)

[KI11] Kojima, K., Igarashi, A.: Constructive linear-time temporal logic: Proof
systems and kripke semantics. Inf. Comput. 209(12), 1491–1503 (2011)

[KYV01] Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form.
Methods Syst. Des. 19(3), 291–314 (2001)

[LS09] Leucker, M., Schallhart, C.: A brief account of Runtime Verification.
JLAP 78(5), 293–303 (2009)

[MP91] Manna, Z., Pnueli, A.: Completing the Temporal Picture. Theoretical
Computer Science 83(1), 97–130 (1991)

[Pnu77] Pnueli, A.: The Temporal Logic of Programs. In: SFCS, pp. 46–57. IEEE,
Wash., DC (1977)

[RH05] Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verifica-
tion. Automated Software Engg. 12(2), 151–197 (2005)

[SRA04] Sen, K., Roşu, G., Agha, G.: Generating optimal linear temporal logic
monitors by coinduction. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS,
vol. 2896, pp. 260–275. Springer, Heidelberg (2003)

[SW91] Stirling, C., Walker, D.: Local model-checking in the modal mu-calculus.
TCS 89, 161–177 (1991)

[TS00] Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Uni-
versity Press (2000)

MARQ: Monitoring at Runtime with QEA

Giles Reger, Helena Cuenca Cruz, and David Rydeheard

University of Manchester, Manchester, UK

Abstract. Runtime monitoring is the process of checking whether an execution
trace of a running system satisfies a given specification. For this to be effective,
monitors which run trace-checking algorithms must be efficient so that they intro-
duce minimal computational overhead. We present the MARQ tool for monitoring
properties expressed as Quantified Event Automata. This formalism generalises
previous automata-based specification methods. MARQ extends the established
parametric trace slicing technique and incorporates existing techniques for in-
dexing and garbage collection as well as a new technique for optimising run-
time monitoring: structural specialisations where monitors are generated based
on structural characteristics of the monitored property. MARQ recently came top
in two tracks in the 1st international Runtime Verification competition, showing
that MARQ is one of the most efficient existing monitoring tools for both offline
monitoring of trace logs and online monitoring of running systems.

1 Introduction

Runtime monitoring [14,17] is the process of checking whether an execution trace pro-
duced by a running system satisfies a given specification. Here we present MARQ,
a new runtime monitoring tool that uses the QEA specification language. Over the
past few years a number of runtime monitoring approaches have been developed
[2,4,6,9,11,18,19] but there has been little comparison of the relative efficiency and ex-
pressiveness of runtime monitoring tools; mainly due to a lack of agreed benchmarks.
This prompted the recently held 1st international Runtime Verification competition [5],
where MARQ won the offline monitoring and online monitoring for Java tracks [1].
This paper makes use of specifications and benchmarks from this competition.

Runtime monitoring. Whilst techniques such as model checking are concerned with
checking correctness against all possible runs of a system, runtime monitoring considers
traces observed on individual runs of a system. Although incomplete, in the sense that
only observed runs are checked, this approach has the advantage that actual behaviour
is analysed. Scalability issues are then restricted to deciding which runs to analyse.

Typically runtime monitoring consists of three stages: firstly, a property denoting a
set of valid traces is specified in a formal language. Secondly, the system of interest is
instrumented to produce the required events recording information about the state of the
system. Thirdly, a monitor is generated from the specification, which processes the trace
to produce a verdict. This monitoring can occur offline on recorded executions or online
whilst the monitored system is running. The offline case means that any system that
produces logs can be monitored; whereas the online case requires specific mechanisms

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 596–610, 2015.
DOI: 10.1007/978-3-662-46681-0_55

MARQ: Monitoring at Runtime with QEA 597

for receiving events at runtime. The MARQ tool is suitable for offline monitoring and
online monitoring of Java programs using AspectJ for instrumentation.

In both online and offline monitoring, efficiency is a key concern; monitoring a sys-
tem online may introduce computational overheads and also interference with the moni-
tored system. The aim is to produce monitors that minimise these effects. One advantage
of online monitoring is that it can be included in production systems to guard against
incorrect behaviour and potentially take corrective action. However, this becomes im-
practical if the monitoring tool introduces excessive overhead.

To illustrate the runtime monitoring process, consider a system where different
services may be requested. A typical desired property is that every request should
receive a response; in first-order Linear Temporal Logic this might be specified as
∀s.�(request(s) → ♦response(s)). MARQ uses quantified event automata (QEA)
[4,21] to specify such properties as they admit an efficient monitoring algorithm via the
parametric trace slicing approach discussed later. Fig. 1 gives a QEA for this property:

1 2 3

∀s
request(s)

request(s)
response(s)

request(s)
response(s)

Fig. 1. A QEA describing a request-response property for services (see Sec. 2.1)

This uses an automaton to capture the allowed ordering of events and a quantifica-
tion ∀s to indicate the property should hold for all services s. The trace request(A).
request(B).response(A) violates the property as service B has no response. As ex-
plained in Sec. 2.1, this verdict is computed by slicing the trace for values A and B and
inspecting the subtraces separately.

This is an example of a parametric or first-order property as it deals with events
containing data. QEA allows data to be treated in both a quantified and a free way
(see Sec. 2). Runtime monitoring approaches for parametric properties tend to focus
either on efficiency or expressiveness. Those focussing on efficiency typically employ
the parametric trace slicing technique [8,23] illustrated above.

Contribution. As shown previously [4,21], QEA is more expressive than the underlying
languages of comparably efficient monitoring tools i.e. those that make us of parametric
trace slicing [2,8,18]. Therefore, MARQ can monitor properties that make use of these
additional features e.g. existential quantification and free variables. As well as addi-
tional expressiveness, the MARQ tool implements a range of optimisations for efficient
monitoring, including a novel technique which selects optimisations according to the
structure of the specified property.

Availability. MARQ is available from

https://github.com/selig/qea

This includes instructions on how to perform online and offline monitoring and a col-
lection of specifications used in the 1st international runtime verification competition.

https://github.com/selig/qea

598 G. Reger, H.C. Cruz, and D. Rydeheard

Structure. We first describe how MARQ can be used to specify properties (Sec. 2)
and perform monitoring (Sec. 3). This is followed by an overview of MARQ’s imple-
mentation (Sec. 4). Then we look at how changing the way a specification is written
can improve monitoring efficiency (Sec. 5). We finish by comparing MARQ with other
tools (Sec. 6) and giving conclusions (Sec. 7).

2 Writing Specifications in QEA

We consider the problem of using QEA to write parametric specifications for MARQ.
This presentation is example-led, omitting details which can be found in [4,21].

We are concerned with parametric properties in which events may carry data. A
parametric event is a pair of an event name and a list of data values, and a parametric
trace is a finite sequence of parametric events. A parametric property denotes a set
of parametric traces. Quantified event automata (QEA) determine such sets of traces -
those accepted by the automata.

A QEA is a list of quantified variables together with an event automata. An event au-
tomata is a finite state machine with transitions labelled with symbol parametric events,
where data values can be replaced by variables. Transitions may also include guards
and assignments over these variables.

2.1 The Slicing Approach

Let us revisit the QEA in Fig. 1. The event automaton consists of three states and five
transitions. The shaded states are final states. The square states are closed to failure i.e. if
no transition can be taken there is a transition to an implicit failure state; the alternative,
seen below, is to have a circular state that is closed to self i.e. if no transition can be
taken there is an implicit self-looping transition. The quantifier list ∀s means that the
property must hold for all values that s takes in the trace i.e. the values obtained when
matching the symbolic events in the specification with concrete events in the trace.

To decide the verdict given the trace

request(A).request(B).request(C).response(A).request(C).response(C)

we slice the trace based on the values that can match s, giving the slices

[s �→ A] �→ request(A).response(A)
[s �→ B] �→ request(B)
[s �→ C] �→ request(C).request(C).response(C)

Then we ask whether each slice is accepted by the event automaton instantiated with
the binding i.e. with s replaced by the appropriate value.The slice for [s �→ B] does not
reach a final state, therefore the whole trace is not accepted.

2.2 Two Different Kinds of Variables

In QEA variables can either be quantified or free. This is an important distinction and
we review the difference here. The variables of a QEA are those appearing in symbolic
events labelling transitions. For example, the QEA in Fig. 1 has the single variable s.

MARQ: Monitoring at Runtime with QEA 599

1 2 3 4 5

∀m ∀c ∀i
create(m, c) iterator(c, i) update(m) use(i)

1 2∀i
iterator(i, size)

next(i) size>0
size=size−1

Fig. 2. Two QEAs demonstrating QEA features. unsafemapiter (top) specifies how iterators over
collections created from maps should be used. safeiter (bottom) restricts the maximum number
of calls to next on an iterator.

Quantified variables. A QEA may have zero or more variables that are universally
or existentially quantified. Quantifications have their usual interpretation i.e. universal
means for all values in the domain where the domain is determined by the trace (see
above). A quantification may be associated with a guard (a predicate over previously
quantified variables), which excludes some bindings of quantified variables from con-
sideration. A quantification list may be negated, which inverts the verdict obtained.

As an example, the unsafemapiter property in Fig. 2 uses multiple quantified vari-
ables. The property is that an iterator over a collection created from a map cannot
be used after the map is updated. The style of specification here is to specify the
events that lead to failure i.e. for every map m, collection c and iterator i if we see
create(m, c).iterator(c, i). update(m).use(i) then the property has been violated.
Note that the circular states are closed to self (see above) so any additional events are
ignored.

Free variables. Any variables in a QEA that are not quantified are called free. Quan-
tified variables indicate that the automaton should be instantiated for each binding of
those variables; free variables are local to each of these instantiations and are rebound
as the trace is processed. The purpose of free variables is to store data that can be ac-
cessed by guards and assignments on transitions. Guards are predicates that restrict the
availability of transitions and assignments can modify the values given to free variables.

The safeiter property in Fig. 2 uses a free variable size to track the size of a collec-
tion being iterated over. The property is that the next method may only be called on an
Iterator object as many times as their are objects in the base collection. This is a gen-
eralisation of the standard HasNext property often used in runtime monitoring [2,18].
The value for size is bound on the iterator event and then checked and updated in a
loop on state 2; as this state is square if the guard is false there is an implicit failure.

2.3 Creating QEAs and Monitors in MARQ

To specify QEA as input to the MARQ system, we introduce a QEABuilder as il-
lustrated in Fig. 3. A builder object is used to add transitions and record information
about quantification and states. These are used to construct a QEA that is passed to the
MonitorFactory as discussed below.

Fig. 4 shows how QEABuilder can be used to construct the safeiter property QEA
seen in Fig. 2. First the builder object q is created. Then we declare the event names
and variables as integers; quantified variables are negative, free variables are positive.

600 G. Reger, H.C. Cruz, and D. Rydeheard

Fig. 3. Using the QEABuilder and MonitorFactory

QEABuilder q = new QEABuilder (” s a f e i t e r ”) ;

i n t ITERATOR = 1 ; i n t NEXT = 2 ;
f i n a l i n t i = −1; f i n a l i n t s i z e = 1 ;
q . a d d Q u a n t i f i c a t i o n (FORALL, i)

q . a d d T r a n s i t i o n (1 , ITERATOR , i , s i z e , 2) ;
q . a d d T r a n s i t i o n (2 ,NEXT, i , i s G r e a t e r T h a n C o n s t a n t (s i z e , 0) , dec remen t (s i z e) , 2) ;

q . a d d F i n a l S t a t e s (1 , 2) ; q . s e t S k i p S t a t e s (1) ;

QEA qea = q . make () ;

Fig. 4. Using QEABuilder to construct the safeiter QEA in Fig. 2

We then declare the universal quantification for i. The two transitions are added us-
ing addTransition. For the first transition we specify only the start state, event name,
parameters and end state. For the second transition we include the guard and assign-
ment. MARQ includes a library of guards and assignments. Additionally, it is possible
for the user to define a new guard or assignment by implementing a simple interface.
Currently MARQ supports the guards and assignments for dealing with equality and
integer arithmetic. The last stage of defining the QEA is to specify the final (accepting)
and the types of states, which can skip (circular) or next (square) as explained above.

Once we have constructed a QEA we can create a monitor object by a call to the
MonitorFactory. This will inspect the structure of the QEA and produce an opti-
mised monitor as described in Sec. 4.3. Optionally, we can also specify garbage and
restart modes on monitor creation.
M oni to r m o n i t o r = M o n i t o r F a c t o r y . c r e a t e (qea) ;
M oni to r m o n i t o r = M o n i t o r F a c t o r y . c r e a t e (qea , GarbageMode . LAZY, Res ta r tM ode .REMOVE) ;

Garbage mode determines how garbage objects should be treated. As explained in
Sec. 4.2 it is sometimes possible to remove bindings related to garbage objects in online
monitoring. The default is to not collect garbage as this allows us to use more stream-
lined data structures and is applicable to the offline case. Restart mode determines what
happens when an ultimate verdict is detected e.g. violation of a safety property. There
is the option to remove or rollback the status of the offending binding. Both achieve a
signal-and-continue approach used by other systems. The default is not to restart.

3 Running MARQ Online and Offline

Here we demonstrate how our tool can be used for offline and online monitoring. Fig. 5
illustrates the two different monitoring settings. In the first case, offline monitoring, a

MARQ: Monitoring at Runtime with QEA 601

Fig. 5. Two different monitoring modes

trace is given as a log file and processed by a translator and the monitor to produce
a verdict. In the second case, online monitoring, a program is instrumented to emit
events which are consumed by the monitor. The monitor then produces a verdict on
each event. In the following we discuss how MARQ can be used in both settings. For
complete examples of how to run MARQ in either mode see the website.

3.1 Offline Monitoring

Offline monitoring can be performed in five lines of code that will take a trace and
a translator to produce a verdict. MARQ can process traces in two different formats:
CSV and XML. Alternatively, a custom parser for a new format could call the monitor
directly as is done in online mode (see below).

The translator converts the string version of each event to the format used by the
monitor. The default translator maps a list of strings to successive integers. If a different
mapping is required, or it is necessary to ignore some parameters, a simple interface
can be implemented to achieve this.

To monitor a trace we simply create the component parts, construct an appropriate
FileMonitor (which reads in the trace) and call monitor() to produce a verdict.

S t r i n g t r a c e = ‘ ‘ t r a c e d i r / t r a c e . c s v ’ ’ ;
QEA qea = b u i l d e r . make () ; / / s e e S e c t i o n 2
O f f l i n e T r a n s l a t o r t r a n s l a t o r = new D e f a u l t T r a n s l a t o r (‘ ‘ i t e r a t o r ’ ’ , ‘ ‘ n e x t ’ ’) ;
CSVFileMonitor m = new CSVFileMonitor (t race name , qea , t r a n s l a t o r) ;
V e r d i c t v = m. m o n i t o r () ;

Calling getStatus() on the monitor after monitoring will print the final status of the
monitor, giving the configurations associated with each binding of quantified variables.

3.2 Online Monitoring

For online monitoring it is necessary to submit each event to the monitor at the time it is
generated by the running system. Here we show how this can be done using AspectJ
[16] where aspects define code that is to be weaved into the object at specified points.
Weaving can occur at compile or load time, both are useful for runtime monitoring.

Fig. 6 gives an example aspect to be used to monitor the safeiter property from
Fig. 2. Firstly we specify the event names, ensuring they are the same as those used in
the QEA definition. We then create the monitor as described in the previous section.
Two pointcuts are used to relate the events of the QEA to concrete Java calls. Note
how we call size on the base collection of the iterator call to provide this information in
the event. Finally, we check the verdict returned by each step call for failure. It should

602 G. Reger, H.C. Cruz, and D. Rydeheard

p u b l i c a s p e c t S a f e I t e r A s p e c t {

p r i v a t e i n t ITERATOR = 1 ; p r i v a t e i n t NEXT = 2 ;
p r i v a t e M oni to r m o n i t o r ;

S a f e I t e r A s p e c t (){
QEA qea = S a f e I t e r . g e t () ;
m o n i t o r = M o n i t o r F a c t o r y . c r e a t e (qea) ;

}

p o i n t c u t i t e r (C o l l e c t i o n c) : (c a l l (I t e r a t o r C o l l e c t i o n + . i t e r a t o r ()) && t a r g e t (c)) ;
p o i n t c u t n e x t (I t e r a t o r i) : (c a l l (∗ I t e r a t o r . n e x t ()) && t a r g e t (i)) ;

a f t e r (C o l l e c t i o n c) re turning (I t e r a t o r i) : i t e r (c) {
s ynchronized (m o n i t o r){ check (m o n i t o r . s t e p (ITERATOR , i , c . s i z e ())) ; }

}
before (I t e r a t o r i) : n e x t (i) {

s ynchronized (m o n i t o r){ check (m o n i t o r . s t e p (NEXT, i)) ; }
}

p r i v a t e vo id check (V e r d i c t v e r d i c t){
i f (v e r d i c t == V e r d i c t . FAILURE){ <r e p o r t e r r o r he re> }

}
}

Fig. 6. AspectJ for monitoring the safeiter property

be noted that MARQ is not thread-safe. We therefore synchronize on the monitor object
for each call as we might be monitoring a concurrent program. One abstract event in the
specification may relate to many different concrete events produced by the instrumen-
tation, and vice versa. For example, in the unsafemapiter property in Fig. 2 we would
relate the create event with the values and keySet methods from the Map interface.
In the withdrawal specification given later (Fig. 8) there are different abstract events
that would match with the same concrete event.

4 Efficient Monitoring

Details of the monitoring algorithm used in MARQ can be found in [21]. Here we
highlight the major optimisations that ensure efficiency.

4.1 Indexing

Monitoring requires information to be attached to bindings of quantified variables.
When an event occurs in the trace, we need to find the relevant bindings and update the
information attached to them. The collection of bindings generated by runtime mon-
itoring can be very large and so efficient techniques to identify relevant bindings are
necessary. These often involve indexing.

Purandare et al. [20] discuss three different kinds of indexing that use different parts
of a parametric event to lookup the monitor state relevant to that event. The first two
- value-based, using the values of an event, and state-based, using the states of the
underlying propositional monitor - are used by JavaMOP [18] and tracematches [2]
respectively. MARQ implements the third, symbol-based. When a binding is created it is
used to partially instantiate the alphabet of the automaton and each partially instantiated

MARQ: Monitoring at Runtime with QEA 603

event is added to a map associating it with the binding. An observed concrete event is
then matched against these partially instantiated events to locate the relevant bindings.

4.2 Garbage and Redundancy

Early work [3] showed that removing monitored objects that are no longer used in the
monitored system can prevent memory leaks and improve performance. For example, in
the case of the safeiter property, if the iterator object is garbage-collected the property
cannot be violated for that iterator and the binding can be deleted. This can have a
significant impact as millions of monitored short-lived objects can be generated in a
typical run of a monitored system.

This idea belongs to a collection of optimisations for redundancy elimination - infor-
mation about monitored objects can be safely omitted if it does not effect the outcome of
the monitoring process. MARQ supports garbage collection in the same way as [15] i.e.
when monitored objects are garbage collected it is checked whether the bindings they
participate in can be removed. MARQ also implements a form of redundancy elimi-
nation that generalises the concept of enable sets [18]. Based on the automaton it is
possible to conservatively precompute a reachability relationship that indicates whether
recording a new binding will make an observable difference. This relationship is used
to decide whether to create a new binding or not.

A further form of redundancy elimination is that of early detection of success or
failure by identifying whether a certain verdict is reachable [7]. MARQ will return
a verdict as soon as it is guaranteed that the verdict cannot change given any future
events. To enable this the true and false verdicts are split into weak and strong variants.

4.3 Structural Specialisations

Many common forms of specification use only a subset of available features i.e. con-
form to a particular structural restriction. Properties can be categorised according to
their structural characteristics and a custom monitor for each category can be built. At
first it might seem that the improvements will be insignificant. However, most monitor-
ing activities consist of the repeated execution of a small number of operations. There-
fore, when processing large event traces the small improvements accumulate, resulting
in a significant reduction in time overhead.

Specialisations. As detailed in [10], we implement a number of specialisations of the
monitoring algorithm that make assumptions about the structure of the monitored QEA.
The first assumption we make is about the number of quantified variables. If we
assume that a single quantified variable is used we can directly index on this value.
Currently specialisations are restricted to this setting.

The remaining specialisations simplify the monitoring algorithm by removing checks
and replacing complex data structures with simpler versions. The structural assumptions
are as follows:

– Use of free variables: if free variables are not used then the structures for storing
these, and support for guards and assignments, can be removed.

604 G. Reger, H.C. Cruz, and D. Rydeheard

1 2 3
∀r request(r)

deny(r)

grant(r)

cancel(r)

rescind(r)

Fig. 7. A QEA giving the lifecycle of a resource object

– Determinism/non-determinism: when the monitored QEA is deterministic we
only need to track a single state or configuration per binding.

– Fixed quantified variable: if the unique quantified variable (recall we only con-
sider one) always appears in a fixed position the matching process is simplified.

Whilst currently restricted to a single quantification, these specialisations cover a
large number of useful cases and commonly occurring specification patterns. Future
work will look at extending these to multiple quantifications.

Example. Let us illustrate this approach using the resourcelife property given as a
QEA in Fig. 7. This specifies the possible actions over a resource: it can be requested
and then either denied or granted, and when granted it can be rescinded before it is
cancelled. We randomly construct a valid trace of 1M events using 5k resources and
measure monitoring time for different monitor specialisations.

Monitoring this trace with the naive incremental monitoring algorithm described in
[4] takes 96k ms. By noticing that there is a single quantified variable and directly
indexing on this we can reduce this to 202 ms, which is 477 × faster. We expect this
large speedup as we have gone from a case without indexing to one using indexing.
Removing support for non-determinism we can reduce this further to 172 ms, 1.2 ×
faster than the previous monitor. Removing support for free variables reduces this to 106
ms, 1.6 × faster than the previous monitor. Overall we achieve a 913× speedup, and
ignoring the vast speedup from moving to indexing we still achieve a 1.9× speedup.

5 Writing Specifications for Efficient Monitoring

Many different QEAs can specify the same property. However, choosing the right spec-
ification can determine the efficiency of the monitoring process.

The time complexity of MARQ’s monitoring algorithm is dependent on characteris-
tics of the trace (length, distribution of events) and of the specification (types of vari-
ables and transitions). One of the main factors is the number of quantified variables used
in the specification. If there are n quantified variables there are a maximum of

∏n
i di

bindings of quantified variables where di is the size of the domain of the ith quantified
variable; this is exponential in n. Redundancy elimination can reduce this dramatically,
but if it is possible to rewrite the specification to eliminate a quantified variable it can
dramatically improve the performance of monitoring.

Here we discuss optimisations that eliminate quantified variables. In the future we
plan to explore automatically simplifying a QEA to improve monitoring efficiency.

MARQ: Monitoring at Runtime with QEA 605

1 2 3

∀u∀t
withdraw(u, a, t) a≤10k

s:=a

withdraw(u, a, t2)
s+a≤10k
s+=a

withdraw(u, a, t2)
t2−t>28

1 2 3

¬∃u
withdraw(u, a, t)

withdraw(u, a, t) a≤10k
s:=a

withdraw(u, a, t2)
t2−t≤28 ∧ s+a≤10k

s+=a

withdraw(u, a, t2)
t2−t≤28 ∧ s+a>10k

Fig. 8. Two QEAs for the property that a user must withdraw less than $10k in a 28 day period

5.1 Introducing Non-determinism

Consider the withdrawal property that states that a user does not withdraw more than
$10k from an account in a 28 day period. Fig. 8 gives two equivalent QEAs for this
property. The first QEA quantifies over a user u and a time point t that reflects the
beginning of a 28-day period. The second QEA introduces non-determinism on the first
state to remove the quantification over t. Whenever a withdraw event occurs this non-
determinism records the start of a new 28-day period by making a transition to state 2
but also taking a transition to state 1, allowing another period to start on the next event.

To make the translation it was necessary to invert the automaton and extend the
guards on transitions out of state 2. Adding the negation means that the event automaton
now accepts incorrect, rather than correct traces. State 3 in the new QEA is the implicit
failure state from the first QEA - the guard t2 − t ≤ 28 ∧ s+ a > 10k is the negation
of the conjunction of guards labelling transitions out of state 2 in the old QEA. The
t2 − t ≤ 28 conjunct in the guard of the looping transition on state 2 ensures that we
discard the information for a time period when it exceeds 28 days; this is not necessary
for correctness but important for efficiency.

Even though support for non-determinism adds some overhead (see Sec. 4.3), this is
negligible in comparison to the savings made by removing bindings.

5.2 Introducing Counters

The next example we consider is the persistenthash property that states that the
hashCode of an object should remain the same whilst it is inside a structure that
uses hashing e.g. a HashMap or HashSet. Fig. 9 gives two equivalent QEAs for this
property. The first QEA quantifies over the structure. To remove this quantification, the
second QEA introduces a counter to track how many structures the object is inside.

5.3 Stripping Existential Quantification

Finally, we consider the publishers property that every publisher p that sends messages
to subscribers s gets at least one reply. Fig. 10 gives two equivalent QEAs for this
property. The second strips the tailing existential quantification, making the variable
s a free variable. This has the same effect as any subscriber that led to a trace being
accepted by the first QEA would cause the trace to be accepted by the second.

606 G. Reger, H.C. Cruz, and D. Rydeheard

1 2

∀s ∀o add(s, o)
h:=o.hashCode()

remove(s, o)h=o.hashCode()

observe(s, o)h=o.hashCode() ,

add(s, o)h=o.hashCode()

1 2

∀o add(o)
h:=o.hashCode();c:=1

remove(o)h=o.hashCode()∧c=0

observe(o)h=o.hashCode() ,

add(o)h=o.hashCode()
c:=c+1

,

remove(o)h=o.hashCode()∧c>0
c:=c−1

Fig. 9. Two equivalent QEAs for the persistence of hashes for objects in hashing structures

1 2 3

∀p∃s
send(p, s) reply(s, p)

1 2 3

∀p
send(p, s) reply(s, p)

Fig. 10. Two equivalent QEAs for the property that every publisher has a subscriber

5.4 Performance Improvements

We briefly demonstrate that these translations achieve a significant performance im-
provement. Table 5.4 shows that this translation can speed monitoring up by an order of
magnitude, demonstrating that the way in which a property is specified can have a dra-
matic impact on efficiency. It should be noted that the exponential dependence on the
number of quantified variables is common to all tools that use parametric trace slicing.

Table 1. Performance improvements for translated QEAs

Property Trace length Runtime (milliseconds) Speedup
Original Translated

withdrawal 150k 3,050 2,106 1.44
persistenthash 4M 12,267 864 14.12
publishers 200k 355 37 9.59

6 Comparative Evaluation

In this section we compare MARQ with other runtime monitoring tools. We make use
of benchmarks taken from the 1st international Runtime Verification competition [5].
We consider the performance of tools on selected benchmarks and reflect on the speci-
fication languages used by each tool. We also report the results of the competition [1].

6.1 Offline Monitoring

We evaluate MARQ for its use in offline monitoring i.e. the processing of recorded logs.
We consider four properties, two previously introduced, and the two given in Fig. 11.

MARQ: Monitoring at Runtime with QEA 607

Table 2. Selected timing results for offline monitoring (in seconds)

Property Trace length RiTHM2 MonPoly STePr MARQ Speedup
Min Avg.

maxchunk (Fig. 11) 1.4M 0.59 8.4 8.86 3.58 0.16 1.66
withdrawal (Fig. 8) 315k - 1.53 3.67 2.57 0.6 1.01
processes (Fig. 11) 823k 2.39 2.0 2.91 0.63 3.17 3.86
resourcelife (Fig. 7) 10M 5.18 3405 9.96 2.04 2.54 558.8

Competition score 236.91 293.54 220.40 339.15

1 2

∀c event(c, chunkSize) chunkSize>10000

event(c, chunkSize) chunkSize≤10000

1 2 3 4

∀p groupStart(t)

groupEnd(t2)
t2−t<480

phaseStart

init(p) run(p)

finish(p)

Fig. 11. Two QEAs used for evaluation. The first ensures that the chunk size eventually drops be-
low 10k. The second captures a complex property about processes running in groups and phases.

We compare against three other competing tools in the offline track of the com-
petition. MonPoly [6] monitors properties in Metric First-Order Temporal Logic and
is designed to search for violating instantiations of a property. STePr is based on the
LOLA language [11], which is a functional stream computation language. RiTHM2
[19] monitors properties in LTL and is designed with real-time systems in mind.

Table 2 gives the monitoring runtime with minimum and average speedup using
MARQ. Firstly, note that these benchmarks involve very large traces, in some cases with
millions of events. RiTHM2 cannot express the withdrawal property. MARQ always
performs better on average. In the case of maxchunk, which has a very simple structure,
the RiTHM2 tool performs the best. MonPoly struggled with the liveness elements of
the resourcelife property.

The first three properties in Table. 2 were supplied by the teams behind RiTHM2,
MonPoly and STePr respectively. We compare how these properties are specified in
their native language with how they are specified in QEA. However, note that QEA
graphical models must currently be represented using Java code as shown in Fig. 4.

In the RiTHM2 tool the maxchunk property is specified as

For all Connections, �((Connection.Chunksize > 10000) ⇒ ♦(Connection.Chunksize ≤ 10000))

which is very similar to the QEA specification given in Fig. 11. Response properties of
this kind are common specification patterns that most languages handle easily.

MonPoly specifies the withdrawal property as

ALWAYS FORALL s, u.
(s ← SUM a;u ONCE[0, 28] withdraw(u, a) AND tp(i)) IMPLIES s ≤ 10000

608 G. Reger, H.C. Cruz, and D. Rydeheard

which makes use of SUM and ONCE to capture the property concisely. The SUM ag-
gregate operator takes the sum of values for a for a given u over a specified period and
ONCE[0,28] defines the 28 day window. It should be noted that MonPoly cannot handle
true liveness, only finitely-bounded intervals. It deals with this by putting a very large
bound in the place to simulate infinity.

STePr specifies the processes property as

G(
groupStart ⇒ WY(¬groupStart WS groupEnd)

∧ groupEnd ⇒ Y(¬groupEnd S groupStart)
∧ phaseStart ⇒ ¬groupEnd S groupStart)
∧ phaseStart ⇒ ¬(init(x) ∨ run(x)) WS finish(x)
∧ run(x) ⇒ Y(¬run(x) S init(x))
∧ finish(x) ⇒ Y(¬finish(x) S run(x))
∧ init(x) ⇒ WY(¬(init(x) ∨ run(x)) WS finish(x))
∧ (¬groupStart WS groupEnd) ⇒ ¬finish(x) ∧ ¬init(x) ∧ ¬run(x)
∧ groupEnd ∧ (¬groupStart S (groupStart ∧ time = x)) ⇒ time − x < 480000

)

which is more complex than the QEA given in Fig. 11. MonPoly requires a similarly
complicated formalisation as both tools use temporal logic where each subproperty
must be specified separately; whereas QEA can capture the intuition of the property.

Table 2 also gives the scores from the competition (see http://rv2014.imag.
fr/monitoring-competition/results for a breakdown). This shows that
MARQ outperformed the other tools in this competition.

6.2 Online Monitoring

We consider MARQ’s use in online monitoring for Java. We report the competition
results and compare specification languages.

The other tools competing in this track of the competition were as follows. Larva
[9] monitors properties specified as Dynamic Automata with Timers and Events. Java-
MOP [18], like MARQ, is based on the parametric trace slicing approach. Both Larva
and JavaMOP automatically generate AspectJ code. JUnitRV [12] extends the JUnit
framework to perform monitoring where events are defined via a reflection library; they
also include the monitoring modulo theories approach [13].

Table 3. Breakdown of results in CSRV14 online Java track (higher is better)

Tool Correctness Overhead Memory Total
Larva 165 7.79 38.43 211.22
JUnitRV 200 49.15 31.67 280.82
JavaMOP 230 88.56 77.89 396.45
MARQ 230 84.5 82.01 396.51

Table 3 gives a breakdown of the results from the CSRV14 competition. The cor-
rectness score reflects the properties that each tool was able to capture. On these bench-
marks, Larva and JUnitRV struggled with expressiveness and running time (overhead).
The results for MARQ and JavaMOP are similar, with JavaMOP running slightly faster

http://rv2014.imag.fr/monitoring-competition/results
http://rv2014.imag.fr/monitoring-competition/results

MARQ: Monitoring at Runtime with QEA 609

and MARQ consuming slightly less memory. Although the scores put MARQ just ahead
of JavaMOP the authors would argue that, given the variability in results, this shows that
the tools are equally matched on the kinds of benchmarks used in the competition.

Both Larva and JavaMOP divide specifications into a part that defines events and
a part that declares a property over these events. For each tool events are specified as
AspectJ pointcuts. JUnitRV uses a reflection library to capture events.

Larva supports free variables in its language, making the specification of safeiter
very similar to that of QEA. However, it has limited support for multiple quantifica-
tions meaning that to capture the unsafemapiterator property Larva uses a free vari-
able to track the iterators created from each collection; although this could be seen
as an optimisation. JavaMOP provides multiple plugin languages for giving properties
over events. This means that the unsafemapiterator property can be specified using a
regular expression as follows:

ere : createColl updateMap* createIter useIter* updateMap updateMap* useIter

The JavaMOP language has no native support for free variables, requiring program-
ming in the AspectJ part of the language to capture properties such as safeiter and
persistenthash. Both Larva and JavaMOP lack a natural way to relate a concrete event
to multiple abstract events. JUnitRV can use at least future time LTL or explicit Mealy
Machines but a description of the language is not available to the authors.

7 Conclusion

We have introduced the MARQ tool for runtime monitoring with QEA. We have shown
how to use MARQ in both online and offline monitoring. Efficiency of the tool is dis-
cussed at length, both how to produce efficient QEA specification and how the tool
performs relative to others that are available.

MARQ is an ongoing project and there is much work to be done. Firstly, we need
to introduce an external language for specifying QEAs. Secondly, we aim to extend the
notion of structural specialisations: considering properties with multiple quantifications
and automatically translating properties to remove features where possible. It will be
possible to use MARQ to continue research in specification mining for QEA [22].

References

1. http://rv2014.imag.fr/monitoring-competition/results
2. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O., de Moor, O.,

Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with free variables to AspectJ.
SIGPLAN Not. 40, 345–364 (2005)

3. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors feasible. SIGPLAN
Not. 42(10), 589–608 (2007)

4. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified event automata:
Towards expressive and efficient runtime monitors. In: Giannakopoulou, D., Méry, D. (eds.)
FM 2012. LNCS, vol. 7436, pp. 68–84. Springer, Heidelberg (2012)

http://rv2014.imag.fr/monitoring-competition/results

610 G. Reger, H.C. Cruz, and D. Rydeheard

5. Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international competition on software for
runtime verification. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 1–9. Springer, Heidelberg (2014)

6. Basin, D.: Monpoly: Monitoring usage-control policies. In: Khurshid, S., Sen, K. (eds.) Run-
time Verification. LNCS, vol. 7186, pp. 360–364. Springer, Heidelberg (2012)

7. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is
ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 126–138. Springer,
Heidelberg (2007)

8. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Heidelberg (2009)

9. Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time java programs
(tool paper). In: Proceedings of the 2009 Seventh IEEE International Conference on Software
Engineering and Formal Methods, SEFM 2009, pp. 33–37. IEEE Computer Society, Wash-
ington, DC (2009)

10. Cruz, H.C.: Optimisation techniques for runtime verification. Master’s thesis, University of
Manchester (2014)

11. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B., Sipma, H.B.,
Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous systems. In: 2013 20th
International Symposium on Temporal Representation and Reasoning, pp. 166–174 (2005)

12. Decker, N., Leucker, M., Thoma, D.: Junitrv–adding runtime verification to junit. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NASA Formal Methods. LNCS, vol. 7871, pp. 459–464. Springer,
Heidelberg (2013)

13. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 341–356. Springer, Heidelberg
(2014)

14. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy, M., Peled, D.
(eds.) Summer School Marktoberdorf 2012 - Engineering Dependable Software Systems. IOS
Press (2013) (to appear)

15. Jin, D., Meredith, P.O., Griffith, D., Rosu, G.: Garbage collection for monitoring parametric
properties. SIGPLAN Not. 46(6), 415–424 (2011)

16. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of aspectj. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353.
Springer, Heidelberg (2001)

17. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of Logic and
Algebraic Programming 78(5), 293–303 (2008)

18. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the mop runtime veri-
fication framework. J. Software Tools for Technology Transfer, 1–41 (2011)

19. Navabpour, S., Joshi, Y., Wu, W., Berkovich, S., Medhat, R., Bonakdarpour, B., Fischmeis-
ter, S.: Rithm: A tool for enabling time-triggered runtime verification for c programs. In:
Proceedings of the, 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE,
pp. 603–606. ACM, New York (2013)

20. Purandare, R., Dwyer, M.B., Elbaum, S.: Monitoring finite state properties: Algorithmic
approaches and their relative strengths. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS,
vol. 7186, pp. 381–395. Springer, Heidelberg (2012)

21. Reger, G.: Automata Based Monitoring and Mining of Execution Traces. PhD thesis, Uni-
versity of Manchester (2014)

22. Reger, G., Barringer, H., Rydeheard, D.: A pattern-based approach to parametric specifica-
tion mining. In: Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering (November 2013) (to appear)

23. Roşu, G., Chen, F.: Semantics and algorithms for parametric monitoring. TACAS 2009 8(1),
1–47 (2012); Short version presented at TACAS 2009

Temporal Logic and Automata

Parallel Explicit Model Checking

for Generalized Büchi Automata

Etienne Renault1,2,3, Alexandre Duret-Lutz1,
Fabrice Kordon2,3, and Denis Poitrenaud3,4

1 LRDE, EPITA, Kremlin-Bicêtre, France
2 Sorbonne Universités, UPMC Univ. Paris 06, France

3 CNRS UMR 7606, LIP6, F-75005 Paris, France
4 Université Paris Descartes, Paris, France

Abstract. We present new parallel emptiness checks for LTL model
checking. Unlike existing parallel emptiness checks, these are based on
an SCC enumeration, support generalized Büchi acceptance, and require
no synchronization points nor repair procedures. A salient feature of
our algorithms is the use of a global union-find data structure in which
multiple threads share structural information about the automaton being
checked. Our prototype implementation has encouraging performances:
the new emptiness checks have better speedup than existing algorithms
in half of our experiments.

1 Introduction

The automata-theoretic approach to explicit LTL model checking explores the
product between two ω-automata: one automaton that represents the system,
and the other that represents the negation of the property to check on this
system. This product corresponds to the intersection between the executions of
the system and the behaviors disallowed by the property. The property is verified
if this product has no accepting executions (i.e., its language is empty).

Usually, the property is represented by a Büchi automaton (BA), and the sys-
tem by a Kripke structure. Here we represent the property with a more concise
Transition-based Generalized Büchi Automaton (TGBA), in which the Büchi
acceptance condition is generalized to use multiple acceptance conditions. Fur-
thermore, any BA can be represented by a TGBA without changing the tran-
sition structure: the TGBA-based emptiness checks we present are therefore
compatible with BAs.

A BA (or TGBA) has a non-empty language iff it contains an accepting cycle
reachable from the initial state (for model checking, this maps to a counterex-
ample). An emptiness check is an algorithm that searches for such a cycle.

Most sequential explicit emptiness checks are based on a Depth-First Search
(DFS) exploration of the automaton and can be classified in two families: those
based on an enumeration of Strongly Connected Components (SCC), and those
based on a Nested Depth First Search (NDFS) (see [26, 10, 24] for surveys).

Recently, parallel (or distributed) emptiness checks have been proposed [6, 2,
9, 7, 3, 4]: they are mainly based on a Breadth First Search (BFS) exploration

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 613–627, 2015.
DOI: 10.1007/978-3-662-46681-0_56

614 E. Renault et al.

which scales better than DFS [23]. Multicore adaptations of these algorithms
with lock-free data structure have been discussed, but not evaluated, by Barnat
et al. [5].

Recent publications show that NDFS-based algorithms combined with the
swarming technique [16] scale better in practice [13, 18, 17, 14]. As its name
implies, an NDFS algorithm uses two nested DFS: a first DFS explores a BA
to search for accepting states, and a second DFS is started (in post order) to
find cycles around these accepting states. In these parallel setups, each thread
performs the same search strategy (an NDFS) and differs only in the search order
(swarming). Because each thread shares some information about its own progress
in the NDFS, synchronization points (if a state is handled by multiple threads
in the nested DFS, its status is only updated after all threads have finished) or
recomputing procedures (to resolve conflicts a posteriori using yet another DFS)
are required. So far, attempts to design scalable parallel DFS-based emptiness
check that does not require such mechanisms have failed [14].

This paper proposes new parallel emptiness checks for TGBA built upon two
SCC-based strategies that do not require such synchronization points nor recom-
puting procedures. The reason no such mechanisms are necessary is that threads
only share structural information about the automaton of the form “states x and
y are in the same SCC” or “state x cannot be part of a counterexample”. Since
threads do not share any information about the progress of their search, we
can actually mix threads with different strategies in the same emptiness check.
Because the shared information can be used to partition the states of the au-
tomaton, it is stored in a global and lock-free union-find data structure.

Section 2 defines TGBAs and introduces our notations. Section 3 presents our
two SCC-based strategies. Finally, Section 4 compares emptiness checks based
on these new strategies against existing algorithms.

2 Preliminaries

A TGBA is a tuple A = 〈Q, q0, δ,F〉 where Q is a finite set of states, q0 is a
designated initial state, F is a finite set of acceptance marks, and δ ⊆ Q×2F×Q
is the (non-deterministic) transition relation where each transition is labelled by
a subset of acceptance marks. Let us note that in a real model checker, transitions
(or states) of the automata would be labeled by atomic propositions, but we omit
this information as it is not pertinent to emptiness check algorithms.

A path between two states q, q′ ∈ Q is a finite and non-empty sequence of
adjacent transitions ρ = (s1, α1, s2)(s2, α2, s3) . . . (sn, αn, sn+1) ∈ δ+ with s1 = q
and sn+1 = q′. We denote the existence of such a path by q � q′. When q = q′

the path is a cycle. This cycle is accepting iff
⋃

0<i≤n αi = F .
A non-empty set S ⊆ Q is a Strongly Connected Component (SCC) iff ∀s, s′ ∈

S, s �= s′ ⇒ s � s′ and S is maximal w.r.t. inclusion. If S is not maximal we
call it a partial SCC. An SCC is accepting iff it contains an accepting cycle. The
language of a TGBA A is non-empty iff there is a path from q0 to an accepting
SCC, i.e. the language of A is non-empty (L (A) �= ∅).

Parallel Explicit Model Checking for Generalized Büchi Automata 615

0 1 2 3 6 7

5 4

Fig. 1. LIVE states are numbered by their live number, dead states are stroke. Clouds
represents SCC as discovered so far. The current state of the DFS is 7, and the DFS
stack is represented by thick edges. All plain edges have already been explored while
dashed edges are yet to be explored. Closing edges have white triangular tips.

3 Generalized Parallel Emptiness Checks

In a previous work [24] we presented sequential emptiness checks for generalized
Büchi automata derived from the SCC enumeration algorithms of Tarjan [27]
and Dijkstra [11], and a third one using a union-find data-structure. This section
adapts these algorithms to a parallel setting.

The sequential versions of Tarjan-based and Dijkstra-based emptiness checks
both have very similar structures: they explore the automaton using a single
DFS to search for accepting SCCs and maintain a partition of the states into
three classes. States that have not already been visited are UNKNOWN; a state
is LIVE when it is part of an SCC that has not been fully explored (i.e., it is part
of an SCC that contains at least one state on the DFS stack); the other states are
called DEAD. A DEAD state cannot be part of an accepting SCC. Any LIVE
state can reach a state on the DFS stack, therefore a transition from the DFS
stack leading to a LIVE state is called a closing edge. Figure 1 illustrates some
of these concepts.

These two algorithms differ in the way they propagate information about
currently visited SCCs, and when they detect accepting SCCs. A Tarjan-based
emptiness check propagates information during backtrack, and may only find
accepting SCC when its root is popped. (The root of an SCC is the first state
encountered by the DFS when entering it.) A Dijkstra-based emptiness check
propagates information every time a closing edge is detected: when this happens,
a partial SCC made of all states on the cycle closed by the closing edge is
immediately formed. While we have shown these two emptiness checks to be
comparable [24], the Dijkstra-based algorithm reports counterexamples earlier:
as soon as all the transitions belonging to an accepting cycle have been seen.

A third algorithm was a variant of Dijkstra using a union-find data structure
to manage the membership of each state to its SCC. Note that this data structure
could be used as well for a Tarjan-based emptiness check.

616 E. Renault et al.

Algorithm 1: Main procedure

1 Shared Variables:

2 A: TGBA of 〈Q, q0, δ,F〉
3 stop: boolean

4 uf : union-find of 〈Q ∪ Dead , 2F 〉

5 Global Structures:

6 struct Step { src: Q, acc: 2F ,

7 pos : int , succ: 2δ }
8 struct Transition {src: Q, acc: 2F

9 dst : Q}
10 enum Strategy { Mixed, Tarjan,
11 Dijkstra}
12 enum Status { LIVE, DEAD,
13 UNKNOWN}
14 Local Variales:

15 dfs : stack of 〈Step〉
16 live: stack of 〈Q 〉
17 livenum: hashmap of 〈Q, int 〉
18 pstack : stack of 〈P 〉

19 main(str : Strategy)
20 stop ← ⊥
21 uf .make set(〈Dead , ∅ 〉)
22 if str �= Mixed
23 EC(str , 1) ‖ . . . ‖ EC(str , n)

24 else
25 str ← Dijkstra
26 EC(str , 1) ‖ . . . ‖ EC(str ,
n

2
�)

27 str ← Tarjan
28 EC(str , 1+
n

2
�) ‖ . . . ‖ EC(str , n)

29 Wait for all threads to finish

30 GET STATUS(q ∈ Q) → Status
31 if livenum.contains(q)
32 return LIVE

33 else if uf .contains(varq) ∧
34 uf .same set(q , Dead)
35 return DEAD

36 else
37 return UNKNOWN

38 EC(str : Strategy , tid : int)
39 seed(tid) // Random Number Gen.

40 PUSHstr(∅, q0)
41 while ¬ dfs.empty() ∧ ¬ stop
42 Step step ← dfs.top()
43 if step.succ �= ∅
44 Transition t ← randomly
45 pick one off from step.succ
46 switch GET STATUS(t .dst)
47 case DEAD
48 skip

49 case LIVE
50 UPDATEstr(t .acc, t .dst)

51 case UNKNOWN
52 PUSHstr(t .acc, t .dst)

53 else
54 POPstr(step)

55 stop ← �

Here, we parallelize the Tarjan-based and Dijkstra-based algorithms and use a
(lock-free) shared union-find data structure. We rely on the swarming technique:
each thread execute the same algorithm, but explores the automaton in a differ-
ent order [16]. Furthermore, threads will use the union-find to share information
about membership to SCCs, acceptance of these SCCs, and DEAD states. Note
that the shared information is stable: the fact that two states belong to the
same SCC, or that a state is DEAD will never change over the execution of the
algorithm. All threads may therefore reuse this information freely to accelerate
their exploration, and to find accepting cycles collaboratively.

Parallel Explicit Model Checking for Generalized Büchi Automata 617

3.1 Generic Canvas

Algorithm 1 presents the structure common to the Tarjan-based and Dijkstra-
based parallel emptiness checks.

All threads share the automaton A to explore, a stop variable used to stop
all threads as soon an accepting cycle is found or one thread detects that the
whole automaton has been visited, and the union-find data-structure [20]. The
union-find maintains the membership of each state to the various SCCs of
the automaton, or the set of DEAD states (a state is DEAD if it belongs to
the same class as the artificial Dead state). Furthermore this data structure has
been extended to store the acceptance marks occurring in an SCC.

The union-find structure partitions the set Q′ = Q ∪ {Dead} labeled with an
element of 2F and offers the following methods:

– make set(s ∈ Q′) creates a new class containing the state s if s is not
already in the union-find.

– contains(s ∈ Q′) checks whether s is already in the union-find.
– unite(s1 ∈ Q′, s2 ∈ Q′, acc ∈ 2F) merges the classes of s1 and s2, and adds

the acceptance marks acc to the resulting class. This method returns the set
of acceptance marks of resulting class. However, when the class constructed
by unite contains Dead , this method always returns ∅. An accepting cycle
can therefore be reported as soon as unite returns F .

– same set(s1 ∈ Q′, s2 ∈ Q′) checks whether two states are in the same class.

As suggested by Anderson and Woll [1], we implement a thread safe version
of this union-find structure using compare-and-swap since it relies on linked lists
and an hash table.

The original sequential algorithms maintain a stack of LIVE states in order
to mark all states of an explored SCC as DEAD. In our previous work [24], we
suggested to use a union-find data structure for this, allowing to mark all states
of an SCC as dead by doing a single unite with an artificial Dead state. However,
this notion of LIVE state (and closing edge detection) is obviously dependent on
the traversal order, and will therefore be different in each thread. Consequently,
each thread has to keep track locally of its own LIVE states. Thus, each thread
maintains the following local variables:

– The dfs stack stores elements of type Step composed of the current state
(src), the acceptance mark (acc) for the incoming transition (or ∅ for the
initial state), an identifier pos (whose use is different in Dijkstra and Tarjan)
and the set succ of unvisited successors of the src state.

– The live stack stores all the LIVE states that are not on the dfs stack (as
suggested by Nuutila and Soisalon-Soininen [19]).

– The hash map livenum associates each LIVE state to a (locally) unique
increasing identifier.

– pstack holds identifiers that are used differently in the emptiness checks of
this paper.

With these data structures, a thread can decide whether a state is LIVE,
DEAD, or UNKNOWN (i.e., new) by first checking livenum (a local structure),

618 E. Renault et al.

and then uf (a shared structure). This test is done by GET STATUS. Note that
a state marked LIVE locally may have already been marked DEAD by another
thread, thus leading to redundant work. However, avoiding this extra work would
require more queries to the shared uf .

The procedure EC shows the generic DFS that will be executed by all threads.
The order of the successors is chosen randomly in each thread, and the DFS
stops as soon as one thread sets the stop flag. GET STATUS is called on each
reached state to decide how it has to be handled: DEAD states are ignored,
UNKNOWN states are pushed on the dfs stack, and LIVE states correspond to
closing edges. This generic DFS is adapted to the Tarjan and Dijkstra strategies
by calling PUSHstr on new states, UPDATEstr on closing edges, and POPstr when
all the successors of a state have been visited by this thread.

Several parallel instances of this EC algorithm are instantiated by the main

procedure, possibly using different strategies. Each instance is parameterized by
a unique identifier tid and a Strategy selecting either Dijkstra or Tarjan. If main
is called with the Mixed strategy, it instantiates a mix of both emptiness-checks.
When one thread reports an accepting cycle or ends the exploration of the entire
automaton, it sets the stop variable, causing all threads to terminate. The main

procedure therefore only has to wait for all threads to terminate.

3.2 The Tarjan Strategy

Strategy 1 shows how the generic canvas is refined to implement the Tarjan strat-
egy. In this algorithm, each new LIVE state is numbered with the actual number
of LIVE states during the PUSHTarjan operation. Furthermore each state is associ-
ated to a lowlink, i.e., the smallest live number of any state known to be reachable
from this state. These lowlinks, whose purpose is to detect the root of each SCC,
are only maintained for the states on the dfs stack, and are stored on the pstack .

These lowlinks are updated either when a closing edge is detected in the
UPDATETarjan method (in this case the current state and the destination of
the closing edge are in the same SCC) or when a non-root state is popped in
POPTarjan (in this case the current state and its predecessor on the dfs stack are
in the same SCC). Every time a lowlink is updated, we therefore learn that two
states belong to the same SCC and can publish this fact to the shared uf tak-
ing into account any acceptance mark between those two states. If the uf detects
that the union of these acceptance marks with those already known for this SCC
is F , then the existence of an accepting cycle can be reported immediately.

POPTarjan has two behaviors depending on whether the state being popped is
a root or not. At this point, a state is a root if its lowlink is equal to its live
number. Non-root states are transferred from the dfs stack to the live stack.
When a root state is popped, we first publish that all the SCC associated to this
root is DEAD, and also locally we remove all these states from live and livenum
using the markdead function.

If there is no accepting cycle, the number of calls to unite performed in a
single thread by this strategy is always the number of transitions in each SCC

Parallel Explicit Model Checking for Generalized Büchi Automata 619

Strategy 1: Tarjan

struct P {p : int}

1 PUSHTarjan(acc ∈ 2F , q ∈ Q)

2 uf .make set(q)
3 p ← livenum.size()
4 livenum.insert(〈 q , p 〉)
5 pstack .push(〈 p 〉)
6 dfs .push(〈 q, acc, p, succ(q)〉)
7 UPDATETarjan(acc ∈ 2F , d ∈ Q)

8 pstack .top().p ←
9 min(pstack .top().p,

10 livenum.get(d))
11 a ← uf .unite(d , dfs.top().src ,
12 acc)
13 if a = F
14 stop ← �
15 report accepting cycle found

16 POPTarjan(s ∈ Step)
17 dfs .pop()
18 〈 ll 〉 ← pstack .pop()
19 if ll = s.pos
20 markdead(s)

21 else
22 pstack .top().p ←
23 min(pstack .top().p, ll)
24 a ← uf .unite(s.src ,
25 dfs.top().src , s.acc)
26 if a = F
27 stop ← �
28 report accepting cycle found

29 live.push(s.src)

Strategy 2: Dijkstra

struct P {p : int , acc : 2F}

1 PUSHDijkstra(acc ∈ 2F , q ∈ Q)

2 uf .make set(q)
3 p ← livenum.size()
4 livenum.insert(〈 q , p 〉)
5 pstack .push(〈dfs .size(), ∅ 〉)
6 dfs.push(〈 q, acc, p, succ(q)〉)
7 UPDATEDijkstra(acc ∈ 2F , d ∈ Q)

8 dpos ← livenum.get(d)
9 〈r ,a〉 ← pstack .top()

10 a ← a ∪ acc
11 while dpos < dfs[r].pos
12 〈r , la〉 ← pstack .pop()
13 a ← a ∪ dfs[r].acc ∪ la
14 a ← uf .unite(d , dfs [r].src, a)

15 pstack .top().acc ← a
16 if a = F
17 stop ← �
18 report accepting cycle found

19 POPDijkstra(s ∈ Step)
20 dfs.pop()
21 if pstack .top().p = dfs.size()
22 pstack .pop()
23 markdead(s)

24 else
25 live.push(s.src)

26 // Common to all strategies.

27 markdead(s ∈ Step)
28 uf .unite(s.src , Dead)
29 livenum.remove(s.src)
30 while livenum.size() > s.pos
31 q ← live.pop()
32 livenum.remove(q)

0 1 .. 0 m n

Fig. 2. Worst cases to detect accepting cycle using only one thread. The left automaton
is bad for Tarjan since the accepting cycle is always found only after popping state 1.
The right one disadvantages Dijkstra since the union of the states represented by dots
can be costly.

620 E. Renault et al.

(corresponding to the lowlink updates) plus the number of SCCs (corresponding
to the calls to markdead). The next strategy performs fewer calls to unite.

3.3 The Dijkstra Strategy

Strategy 2 shows how the generic canvas is refined to implement the Dijkstra
strategy. The way LIVE states are numbered and the way states are marked as
DEAD is identical to the previous strategy. The difference lies in the way SCC
information is encoded and updated.

This algorithm maintains pstack , a stack of potential roots, represented (1)
by their positions p in the dfs stack (so that we can later retrieve the incoming
acceptance marks and the live number of the potential roots), and (2) the union
acc of all the acceptance marks seen in the cycles visited around the potential
root.

Here pstack is updated only when a closing edge is detected, but not when
backtracking a non-root as done in Tarjan. When a closing edge is detected, the
live number dpos of its destination can be used to pop all the potential roots on
this cycle (those whose live number are greater than dpos), and merge the sets
of acceptance marks along the way: this happens in UPDATEDijkstra . Note that
the dfs stack has to be addressable like an array during this operation.

As it is presented, UPDATEDijkstra calls unite only when a potential root is dis-
covered not be a root (lines 10–14). In the particular case where a closing edge
does not invalidate any potential root, no unite operation is performed; still, the
acceptance marks on this closing edge are updated locally line 15. For instance in
Figure 1, when the closing edge (7, 4) is explored, the root of the right-most SCC
(containing state 7) will be popped (effectively merging the two right-most SCCs
in uf) but when the closing edge (7, 2) is later explored no pop will occur because
the two states now belong to the same SCC. This strategy therefore does not share
all its acceptance information with other threads. In this strategy, the acceptance
accumulated in pstack locally are enough to detect accepting cycles. However the
unite operation on line 14 will also return some acceptance marks discovered by
other threads around this state: this additional information is also accumulated in
pstack to speedup the detection of accepting cycles.

In this strategy, a given thread only calls unite to merge two disjoint sets
of states belonging to the same SCC. Thus, the total number of unite needed
to build an SCC of n states is necessarily equal to n − 1. This is better than
the Tarjan-based version, but it also means we share less information between
threads.

3.4 The Mixed Strategy

Figure 2 presents two situations on which Dijkstra and Tarjan strategies can
clearly be distinguished.

The left-hand side presents a bad case for the Tarjan strategy. Regardless of
the transition order chosen during the exploration, the presence of an accepting
cycle is only detected when state 1 is popped. This late detection can be costly
because it implies the exploration of the whole subgraph represented by a cloud.

Parallel Explicit Model Checking for Generalized Büchi Automata 621

The Dijkstra strategy will report the accepting cycle as soon as all the involved
transitions have been visited. So if the transition (1, 0) is visited before the
transition going to the cloud, the subgraph represented by this cloud will not be
visited since the counterexample will be detected before.

On the right-hand side of Fig. 2, the dotted transition represents a long path
of m transitions, without acceptance marks. On this automaton, both strategies
will report an accepting cycle when transition (n, 0) is visited. However, the two
strategies differ in their handling of transition (m, 0): when Dijkstra visits this
transition, it has to pop all the candidate roots 1 . . .m, calling unite m times;
Tarjan however only has to update the lowlink of m (calling unite once), and it
delays the update of the lowlinks of states 0 . . .m−1 to when these states would
be popped (which will never happen because an accepting cycle is reported).

In an attempt to get the best of both worlds, the strategy called “Mixed” in
Algo. 1 is a kind of collaborative portfolio approach: half of the available threads
run the Dijkstra strategy and the other half run the Tarjan strategy. These two
strategies canbe combined as desired since they share the samekind of information.

Discussion. All these strategies have one drawback since they use a local check
to detect whether a state is alive or not: if one thread marks an SCC as DEAD,
other threads already exploring the same SCC will not detect it and will continue
to perform unite operations. Checking whether a state is DEAD in the global
uf could be done for instance by changing the condition of line 43 of Algo. 1 into:
step.succ �= ∅ ∧ ¬uf .same set(step.src,Dead). However such a change would be
costly, as it would require as many accesses to the shared structure as there
are transitions in the automaton. To avoid these additional accesses to uf , we
propose to change the interface of unite so it returns an additional Boolean flag
indicating that one of the two states is already marked as DEAD in uf . Then
whenever unite is called and the extra bit is set, the algorithm can immediately
backtrack the dfs stack until it finds a state that is not marked as DEAD.

Moreover these strategies only report the existence of an accepting cycle but
do not extract it. When a thread detects an accepting cycle, it can stop the others
threads and can optionally launch a sequential counterexample computation [10].
Nonetheless, when performing a Dijkstra strategy the extraction can be limited
to the states that are already in the union-find. The search of the accepting
cycle can also be restricted to states whose projection are in the same SCC of
the property automaton.

3.5 Sketch of Proof

Due to lack of space, and since the Tarjan strategy is really close to the Dijkstra
strategy, we only give the scheme of a proof1 that the latter algorithm will
terminate and will report a counterexample if and only if there is an accepting
cycle in the automaton.

1 A complete proof can be found at:
http://www.lrde.epita.fr/~renault/publis/TACAS15.pdf

http://www.lrde.epita.fr/~renault/publis/TACAS15.pdf

622 E. Renault et al.

Theorem 1. For all automata A the emptiness check terminates.
Theorem 2. The emptiness check reports an accepting cycle iff L (A) �= ∅.

The theorem 1 is obvious since the emptiness check performs a DFS on a
finite graph. Theorem 2 ensues from the invariants below which use the following
notations. For any thread, n denotes the size of its pstack stack. For 0 ≤ i < n,
Si denotes the set of states in the same partial SCC represented by pstack [i]:

Si =

{
q ∈ livenum

∣∣∣∣∣
dfs[pstack [i].p].pos ≤ livenum[q]

livenum[q] ≤ dfs [pstack [i+ 1].p].pos

}
for i < n− 1

Sn−1 = {q ∈ livenum | dfs[pstack [n− 1].p].pos ≤ livenum[q]}
The following invariants hold for all lines of algorithm 1:
Invariant 1. pstack contains a subset of positions in dfs , in increasing order.
Invariant 2. For all 0 ≤ i < n − 1, there is a transition with the acceptance
marks dfs [pstack [i+ 1].p].acc between Si and Si+1.
Invariant 3. For all 0 ≤ i < n, the subgraph induced by Si is a partial SCC.
Invariant 4. If the class of a state inside the union-find is associated to acc �= ∅,
then the SCC containing this state has a cycle visiting acc. (Note: a state in the
same class as Dead is always associated to ∅.)
Invariant 5. The first thread marking a state as DEAD has seen the full SCC
containing this state.
Invariant 6. The set of DEAD states is a union a maximal SCC.
Invariant 7. If a state is DEAD it cannot be part of an accepting cycle.

These invariants establish both directions of Theorem 2: invariants 1–4 prove
that when the algorithm reports a counterexample there exists a cycle visiting all
acceptance marks; invariants 5–7 justify that when the algorithm exits without
reporting anything, then no state can be part of a counterexample.

4 Implementation and Benchmarks

Table 1 presents the models we use in our benchmark and gives the average
size of the synchronized products. The models are a subset of the BEEM bench-
mark [21], such that every type of model of the classification of Pelánek [22] is
represented, and all synchronized products have a high number of states, tran-
sitions, and SCC. Because there are too few LTL formulas supplied by BEEM,
we opted to generate random formulas to verify on each model. We computed a
total number of 3268 formulas.2

The presented algorithms deal with any kind of generalized Büchi automata,
but there exists specialized algorithms for subclasses of Büchi automata. For
instance the verification of a safety property reduces to a reachability test. Sim-
ilarly, persistent properties can be translated into automata where SCC can-
not mix accepting cycles with non-accepting cycles [8] and for which a simpler

2 For a description of our setup, including selected models, formulas, and detailed
results, see
http://www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.html

http://www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.html

Parallel Explicit Model Checking for Generalized Büchi Automata 623

Table 1. Statistics about synchronized products having an empty language (�) and
non-empty one (×)

Avg. States Avg. Trans. Avg. SCCs
Model (�) (×) (�) (×) (�) (×)

adding.4 5 637 711 7 720 939 10 725 851 14 341 202 5 635 309 7 716 385
bridge.3 1 702 938 3 114 566 4 740 247 8 615 971 1 701 048 3 106 797

brp.4 15 630 523 38 474 669 33 580 776 94 561 556 4 674 238 16 520 165
collision.4 30 384 332 101 596 324 82 372 580 349 949 837 347 535 22 677 968

cyclic-sched 724 400 1 364 512 6 274 289 12 368 800 453 547 711 794
elevator.4 2 371 413 3 270 061 7 001 559 9 817 617 1 327 005 1 502 808

elevator2.3 10 339 003 13 818 813 79 636 749 120 821 886 2 926 881 6 413 279
exit.3 3 664 436 8 617 173 11 995 418 29 408 340 3 659 550 8 609 674

leader-el.3 546 145 762 684 3 200 607 4 033 362 546 145 762 684
prod-cell.3 2 169 112 3 908 715 7 303 450 13 470 569 1 236 881 1 925 909

emptiness check exists. Our benchmark contains only non-persistent properties,
requiring a general emptiness check.

Among the 3268 formulas, 1706 result in products with the model having
an empty language (the emptiness check may terminate before exploring the
full product). All formulas were selected so that the sequential NDFS emptiness
check of Gaiser and Schwoon [15] would take between 15 seconds and 30 minutes
on an four Intel(R) Xeon(R) CPUX7460@ 2.66GHz with 128GB of RAM. This
24-core machine is also used for the following parallel experiments.

All the approaches mentioned in Section 3 have been implemented in Spot [12].
The union-find structure is lock-free and uses two common optimizations: “Im-
mediate Parent Check”, and “Path Compression” [20].

The seed used to choose a successor randomly depends on the thread identifier
tid passed to EC. Thus our strategies have the same exploration order when
executed sequentially; otherwise this order may be altered by information shared
by other threads.

Figure 3 presents the comparison of our prototype implementation in Spot
against the cndfs algorithm implemented in LTSmin and the owcty algorithm
implemented in DiVine 2.4. We selected owcty because it is reported to be the
most efficient parallel emptiness check based on a non-DFS exploration, while
cndfs is reported to be the most efficient based on a DFS [14].

We generate the corresponding system automata using the version of DiVinE
2.4 patched by the LTSmin team.3 For each emptiness check, we limit the ex-
ecution time to one hour: all the algorithms presented in this paper proceess
the 3268 synchronized products within this limit while owcty fails over 11 cases
and cndfs fails over 784 cases. DiVinE and LTSmin implement all sorts of op-
timizations (like state compression, caching of successors, dedicated memory
allocator...) while our implementation in Spot is still at a prototype stage. So in

3 http://fmt.cs.utwente.nl/tools/ltsmin/#divine

http://fmt.cs.utwente.nl/tools/ltsmin/#divine

624 E. Renault et al.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●
● ●

●
●

● ● ●

●
●

● ●
●

●
●

● ● ●

adding.4.dve bridge.3.dve

leader−election.3.dve exit.3.dve

collision.4.dve brp.4.dve

cyclic_scheduler.3.dve elevator2.3.dve

elevator.4.dve production−cell.3.dve

2

4

6

2.5

5.0

7.5

2.5

5.0

7.5

10.0

2.5

5.0

7.5

1.0

1.5

2.0

2.5

3.0

1

2

3

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

em
pt

y
pr

od
uc

ts

● ●
●

●

●

● ●
●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

adding.4.dve bridge.3.dve

leader−election.3.dve exit.3.dve

collision.4.dve brp.4.dve

cyclic_scheduler.3.dve elevator2.3.dve

elevator.4.dve production−cell.3.dve

0

25

50

75

0

30

60

90

120

0

10

20

30

40

0

25

50

75

100

125

0

5

10

15

1

2

3

2.5

5.0

7.5

10.0

1

2

3

4

1

2

3

4

5

2

4

6

8

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

no
n−

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot)

tarjan (spot)

mixed (spot)

owcty (divine)

cndfs (ltsmin)

Fig. 3. Speedup of emptiness checks over the benchmark4

absolute time, the sequential version of cndfs is around 3 time faster5 than our
prototype implementation which is competitive to DiVinE.

4 This figure can be zoomed in color in the electronic version.
5 Note that the time measured for cndfs does not includes the on-the-fly generation
of the product (it is precalculated because doing the on-the-fly product in LTSmin
exhibits a bug) while the time measured for the others includes the generation of
the product.

Parallel Explicit Model Checking for Generalized Büchi Automata 625

Since the implementations are different, we therefore compare the average
speedup of the parallel version of each algorithm against its sequential version.
The actual time can be found in the detailed results2.

The left-hand side of Figure 3 shows those speedups, averaged for each model,
for verified formulas (where the entire product has to be explored). First, it
appears that the Tarjan strategy’s speedup is always lower than those of Dijkstra
or Mixed for empty products. These low speedups can be explained by contention
on the shared union-find data structure during unite operations. In an SCC of
n states and m edges, a thread applying the Tarjan strategy performs m unite

calls while applying Dijkstra one needs only n− 1 unite invocations before they
both mark the whole SCC as DEAD with a unique unite call.

Second, for all strategies we can distinguish two groups of models. For adding.4,
bridge.3, exit.3, and leader-election.3, the speedups are quasi-linear. However for
the other six models, the speedups are much more modest: it seems that adding
new threads quickly yield no benefits. A look to absolute time (for the first group)
shows that the Dijkstra strategy is 25% faster than cndfs using 12 threads where
it was two time slower with only one thread.

A more detailed analysis reveals that products of the first group have many
small SCC (organized in a tree shape) while products of the second group have
a few big SCC. These big SCC have more closing edges: the union-find data
structure is stressed at every unite. This confirms what we observed for the
Tarjan strategy about the impact of unite operations.

The right-hand side of Figure 3 shows speedups for violated formulas. In
these cases, the speedup can exceed the number of threads since the different
threads explore the product in different orders, thus increasing the probability to
report an accepting cycle earlier. The three different strategies have comparable
speedup for all models, however their profiles differ from cndfs on some models:
they have better speedups on bridge.3, exit.3, and leader-election.3, but are worse
on collision.4, elevator.4 and production-cell.3. The Mixed strategy shows speedups
between those of Tarjan and Dijkstra strategies.

5 Conclusion

We have presented some first and new parallel emptiness checks based on an SCC
enumeration. Our approach departs from state-of-the-art emptiness checks since
it is neither BFS-based nor NDFS-based. Instead it parallelizes SCC-based empti-
ness checks that are built over a single DFS. Our approach supports generalized
Büchi acceptance, and requires no synchronization points nor repair procedures.
We therefore answer positively to the question raised by Evangelista et al. [14]:
“Is the design of a scalable linear-time algorithm without repair procedures or
synchronisation points feasible?”. Our prototype implementation has encouraging
performances: the new emptiness checks have better speedup than existing algo-
rithms in half of our experiments, making them suitable for portfolio approaches.

The core of our algorithms relies on a union-find (lock-free) data structure to
share structural information between multiple threads. The use of a union-find

626 E. Renault et al.

seems adapted to this problem, and yet it has never been used for parallel empti-
ness checks (and only recently for sequential emptiness checks [24]): we believe
that this first use might stimulate other researchers to derive new emptiness
checks or ideas from it.

In some future work, wewould like to investigate different variations of our algo-
rithms. For instance could the information shared in the union-find be used to bet-
ter direct the DFS performed by the Dijkstra or Tarjan strategies and help to bal-
ance the exploration of the automatonby the various threads?Wewould also like to
implementGabow’s algorithm that we presented in a sequential context [24] in this
same parallel setup. Changing the architecture, we would like to explore how the
union-find data structure could be adapted to develop asynchronous algorithms
where one thread could call unitewithout waiting for an answer. Another topic is
to explore the use of SCC strengths [25] to improve parallel emptiness checks.

References

1. Anderson, R.J., Woll, H.: Wait-free parallel algorithms for the union-find problem.
In: Proc. 23rd ACM Symposium on Theory of Computing, pp. 370–380 (1994)

2. Barnat, J., Brim, L., Chaloupka, J.: Parallel breadth-first search LTL model-
checking. In: ASE 2003, pp. 106–115. IEEE Computer Society (2003)

3. Barnat, J., Brim, L., Chaloupka, J.: From distributed memory cycle detection to
parallel LTL model checking. In: FMICS 2004, vol. 133. ENTCS, pp. 21–39 (2005)

4. Barnat, J., Brim, L., Ročkai, P.: A time-optimal on-the-fly parallel algorithm for
model checking of weak LTL properties. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, pp. 407–425. Springer, Heidelberg (2009)

5. Barnat, J., Brim, L., Ročkai, P.: Scalable shared memory LTL model checking.
STTT 12(2), 139–153 (2010)

6. Brim, L., Černá, I., Krčál, P., Pelánek, R.: Distributed LTL model checking based
on negative cycle detection. In: Hariharan, R., Mukund, M., Vinay, V. (eds.)
FSTTCS 2001. LNCS, vol. 2245, pp. 96–107. Springer, Heidelberg (2001)

7. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting predecessors are better than
back edges in distributed LTL model-checking. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)

8. Černá, I., Pelánek, R.: Relating hierarchy of temporal properties to model check-
ing. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 318–327.
Springer, Heidelberg (2003)

9. Černá, I., Pelánek, R.: Distributed explicit fair cycle detection (set based ap-
proach). In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648,
pp. 49–73. Springer, Heidelberg (2003)

10. Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly emptiness checks for
generalized Büchi automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp. 143–158. Springer, Heidelberg (2005)

11. Dijkstra, E.W.: EWD 376: Finding the maximum strong components in a directed
graph (May 1973), http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF

12. Duret-Lutz, A., Poitrenaud, D.: SPOT: an Extensible Model Checking Li-
brary using Transition-based Generalized Büchi Automata. In: MASCOTS 2004,
pp. 76–83. IEEE Computer Society Press (October 2004)

13. Evangelista, S., Petrucci, L., Youcef, S.: Parallel nested depth-first searches for LTL
model checking. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996,
pp. 381–396. Springer, Heidelberg (2011)

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF

Parallel Explicit Model Checking for Generalized Büchi Automata 627

14. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved multi-core
nested depth-first search. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012.
LNCS, vol. 7561, pp. 269–283. Springer, Heidelberg (2012)

15. Gaiser, A., Schwoon, S.: Comparison of algorithms for checking emptiness on Büchi
automata. In: MEMICS 2009. OASICS, vol. 13. Schloss Dagstuhl, Leibniz-Zentrum
fuer Informatik, Germany (2009)

16. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification techniques. IEEE Trans-
action on Software Engineering 37(6), 845–857 (2011)

17. Laarman, A., van de Pol, J.: Variations on multi-core nested depth-first search. In:
PDMC, pp. 13–28 (2011)

18. Laarman, A., Langerak, R., van de Pol, J., Weber, M., Wijs, A.: Multi-core
nested depth-first search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 321–335. Springer, Heidelberg (2011)

19. Nuutila, E., Soisalon-Soininen, E.: On finding the strongly connected components
in a directed graph. Information Processing Letters 49(1), 9–14 (1994)

20. Patwary, M.M.A., Blair, J.R.S., Manne, F.: Experiments on union-find algorithms
for the disjoint-set data structure. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049,
pp. 411–423. Springer, Heidelberg (2010)

21. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

22. Pelánek, R.: Properties of state spaces and their applications. International Journal
on Software Tools for Technology Transfer (STTT) 10, 443–454 (2008)

23. Reif, J.H.: Depth-first search is inherently sequential. Information Processing Let-
ters 20, 229–234 (1985)

24. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Three SCC-based empti-
ness checks for generalized Büchi automata. In: McMillan, K., Middeldorp, A.,
Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 668–682. Springer, Hei-
delberg (2013)

25. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Strength-based decom-
position of the property büchi automaton for faster model checking. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 580–593. Springer,
Heidelberg (2013)

26. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer,
Heidelberg (2005)

27. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

Limit Deterministic and Probabilistic Automata

for LTL\GU

Dileep Kini and Mahesh Viswanathan

Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract. LTL\GU is a fragment of linear temporal logic (LTL), where
negations appear only on propositions, and formulas are built using the
temporal operators X (next), F (eventually), G (always), and U (un-
til, with the restriction that no until operator occurs in the scope of an
always operator. Our main result is the construction of Limit Determin-
istic Büchi automata for this logic that are exponential in the size of the
formula. One consequence of our construction is a new, improved EX-
PTIME model checking algorithm (as opposed to the previously known
doubly exponential time) for Markov Decision Processes and LTL\GU
formulae. Another consequence is that it gives us a way to construct
exponential sized Probabilistic Büchi Automata for LTL\GU .

1 Introduction

Starting with the seminal work of Vardi, Wolper, and Sistla [17], there has been a
lot of interest in discovering efficient translations of Linear Temporal logic (LTL)
formulae into small automata (see [16,7,10,14,13,11,2,6] for example). The reason
for this is that logic to automata translations have a direct impact on algorithms
of verification and synthesis of systems [18]. When verifying systems, one is often
satisfied with constructing nondeterministic Büchi automata for LTL formulae.
However, for a couple of applications, general nondeterministic automata don’t
suffice — when synthesizing reactive modules for LTL specifications, determin-
istic automata are necessary, and when model checking Markov Decision Pro-
cesses with respect to almost sure satisfaction of LTL specifications, one needs
either deterministic or limit deterministic automata. As a consequence, a series
of papers recently present algorithms and tools for constructing deterministic
automata from LTL specifications [10,14,13,11,12,2,6]; though in the worst case
the size of the constructed automata are doubly exponential, these algorithms
have been shown to construct small automata for a number of examples. In this
paper, we investigate whether there are provable improvements in translating
fragments of LTL to limit deterministic automata, and explore whether these
can then be exploited to improve the asymptotic complexity of the MDP model
checking problem.

We consider the fragment LTL\GU , first introduced in [12]. In this logic,
formulae are built from propositions and their negations using conjunction, dis-
junction, and the temporal operators X (next), F (eventually), G (always), and

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 628–642, 2015.
DOI: 10.1007/978-3-662-46681-0_57

Limit Deterministic and Probabilistic Automata for LTL\GU 629

U (until), with the restriction that no U operator appears in the scope of a G
operator. Our main result is a translation of LTL\GU formulae into nondeter-
ministic Büchi automata of exponential size that is deterministic in the limit —
an automaton is deterministic in the limit (or limit deterministic) if the transi-
tions from any state that is reachable from an accepting state are deterministic.
This construction should be contrasted with the observation that any translation
from LTL\GU to deterministic automata must in the worst case result in au-
tomata that are doubly exponential in size [1]; in fact, this lower bound applies
to any fragment of LTL that has ∨, ∧, and F .

Our construction of limit deterministic automata for LTL\GU proceeds in
two steps. First we construct limit deterministic automata for LTL(F ,G) which
is the LTL fragment without until, i.e., with just the temporal operators next,
always, and eventually. Next, we observe that the automaton for ϕ ∈ LTL\GU
can be seen as the composition of two limit deterministic automata: one au-
tomata for the formula ψ, where all the until-free subformulae of ϕ are replaced
by propositions, and another automaton for the until-free subformulae of ϕ.
This composition is reminiscent of the master-slave composition in [6] and the
composition of temporal testers [15] but with some differences.

Our construction of exponentially sized limit deterministic automata for
LTL\GU has complexity theoretic consequences for model checking MDPs. Cour-
coubetis and Yannakakis [5] proved that the problem of model checking MDPs
against LTL is 2EXPTIME-complete. Our automata construction, coupled with
the algorithm outlined in [5], shows that model checking MDPs against LTL\GU
is in EXPTIME; we prove a matching lower bound in this paper as well. Thus,
for a large, expressively rich subclass of LTL specifications, our results provide
an exponential improvement to the complexity of model checking MDPs.

Another consequence of our main result is that it gives us a way to translate
LTL\GU formulae to exponential sized probabilistic Büchi automata (PBA) [3].
Probabilistic Büchi automata are like Büchi automata, except that they proba-
bilistically choose the next state on reading an input symbol. On input w, such
a machine can be seen as defining a probability measure on the space of all runs
on w. A PBA is said to accept a (infinite length) string w iff the set of all ac-
cepting runs (i.e., runs that visit some final state infinitely often) have measure
> 0. We use the observation that any assignment of non-zero probabilities to
the nondeterministic choices of a limit deterministic NBA, results in a PBA that
accepts the same language [3]. This result also generalizes some of the results
in [8] where exponential sized weak probabilistic monitors 1 are constructed for
the LTL fragment with just the temporal operators X and G.

The rest of the paper is organized as follows. In Section 2 we introduce the no-
tations and definitions we use in the paper. In Section 3 we present a translation
from LTL(F ,G) to limit deterministic NBAs. In Section 4 we give a composi-
tional style construction for formulae in LTL\GU by using the construction in

1 A weak finite state probabilistic monitor [4] is a PBA with the restriction that all
states except a unique reject state are final, and all transitions from the unique
rejecting state are self loops.

630 D. Kini and M. Viswanathan

the previous section. In Section 5 we reflect on the consequences of our results
and finally give concluding remarks in Section 6.

2 Preliminaries

First we introduce the notation we use throughout the paper. We use P to denote
the set of propositions. An assignment ν is a function mapping all propositions
to true or false. We use w to denote infinite words over a finite alphabet. We
use w[i] to denote the ith symbol in the sequence w, and use wi to denote the
suffix w[i]w[i + 1] . . . of w starting at i. We use [n] to denote all non-negative
integers less than n that is {0, 1, . . . , n−1}. We shall use Σ,Γ to denote finite
sets of symbols.

Definition 1 (Syntax). The formulae in the fragment LTL(F ,G) over P is
given by the following syntax

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ p ∈ P

and the formulae in the fragment LTL\GU are given by the syntax

ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ ϕ ∈ LTL(F ,G)

Let �ϕ and �ϕ denote the set of all F and G subformulae of ϕ respectively.
We drop the subscript whenever the formula ϕ is clear from the context. For
a temporal operator Op ∈ {G,F ,U } we use LTL(Op) to denote the fragment
consisting of formulae built using Op,X ,∨,∧, and ¬ with negation allowed to
appear only on propositions.

Definition 2 (Semantics). LTL formulae over a set P are interpreted over
words w in (2P)ω. The semantics of the logic are given by the following rules

w � p ⇐⇒ p ∈ w[0] w � Xϕ ⇐⇒ w1 � ϕ

w � ¬p ⇐⇒ p /∈ w[0] w � Fϕ ⇐⇒ ∃ i : wi � ϕ

w � ϕ ∧ ψ ⇐⇒ w � ϕ and w � ψ w � Gϕ ⇐⇒ ∀ i : wi � ϕ

w � ϕ ∨ ψ ⇐⇒ w � ϕ or w � ψ w � ϕUψ ⇐⇒ ∃ i : wi � ψ, and

∀ j < i : wj � ϕ

The semantics of ϕ, denoted by �ϕ�, is defined as the set
{
w ∈ (2P)ω | w � ϕ

}
.

Definition 3 (Büchi Automata). AnondeterministicBüchi automaton (NBA)
over input alphabet Σ is a tuple (Q, δ, I, F) where Q is a finite set of states; δ ⊆
Q×Σ×Q is a set of transitions; I ⊆ δ is a set of initial transitions 2 and F is a set
of final states. We say state q ∈ Q is initial if (q, σ, q′) ∈ I for some σ and q′.

2 We use initial transitions instead of states for notational convenience. It can be easily
converted into a state based definition.

Limit Deterministic and Probabilistic Automata for LTL\GU 631

A run of a NBA over a word w ∈ Σω is an infinite sequence of states q0q1q2 . . .
such that (q0, w[0], q1) ∈ I and ∀ i ≥ 0 (qi, w[i], qi+1) ∈ δ. A run is accepting if
qi ∈ F for infinitely many i.

The language accepted by an NBA A, denoted by L(A) is the set of all words
w ∈ Σω which have an accepting run on A.

Definition 4 (Limit Determinism). A NBA (Q, δ, I, F) over input alphabet
Σ is said to be limit deterministic if for every state q reachable from a final
state, it is the case that |δ(q, σ)| ≤ 1 for every σ ∈ Σ.

We make note of the fact that any limit deterministic NBA translation for
a fragment devoid of the X operator can be converted into translation for the
fragment with X by incurring a multiplicative factor blow-up that is exponential
in the number of nested X s in the formula. A proof sketch of this result can be
found in the companion technical report [9].

Proposition 5. Let LTL′ be some fragment of LTL. If for every ϕ ∈ LTL′\X
one can build a limit deterministic NBA Aϕ such that it recognizes �ϕ� and is
of size f(|ϕ|), then for every ϕ′ ∈ LTL′ one can build a limit deterministic NBA
A′

ϕ′ such that it recognizes �ϕ′� and has size O(2nf(|ϕ′|)) where n is the number
of nested Xs appearing in ϕ′.

The compositional construction for LTL\GU requires we deal with automata
with outputs. For this purpose we define Mealy automata with Büchi acceptance
which we use in Section 4.

Definition 6 (Mealy Automata). A nondeterministic Mealy machine with
Büchi acceptance (NBM) with input alphabet Σ and output alphabet Γ is a
tuple (Q, δ, I,M, F) where (Q, δ, I, F) is an NBA with input alphabet Σ and
M : Q×Σ → Γ is a partial function that is defined on all (q, σ) for which there
is a q′ such that (q, σ, q′) ∈ δ.

The relation accepted by an NBM is the set of all pairs (w, λ) ∈ Σω×Γω such
that w is accepted by the NBA (Q, δ, I, F) and λ is such that there is an accepting
run of w of the form q0q1q2 . . . where M(qi, w[i]) = λ[i] for all i.

In section 5 we describe our result regarding construction of probabilistic
Büchi automata, which we define next.

Definition 7 (Probabilistic Automata). A probabilistic Büchi automaton
(PBA) over input alphabet Σ is a tuple (Q,Δ, qs, F) where Q is a finite set of
states; Δ : Q×Σ×Q → [0, 1] specifies transition probabilities such that for every
q ∈ Q and σ ∈ Σ we have

∑
r∈Q Δ(q, σ, r) = 1; qs ∈ Q is an initial state; F ⊆ Q

is a set of final states.

Given a word w ∈ Σω a PBA M behaves as follows: it is initially at state
q0 = qs. After having seen the first i symbols w[0]w[1] . . . w[i−1] it is in state qi.
On seeing w[i] it chooses the next state qi+1 with probability Δ(qi, w[i], qi+1).
It continues this process to produce a run ρ ∈ Qω. A run ρ is accepting if some
final state appears infinitely often.

632 D. Kini and M. Viswanathan

A word w produces a Markov chain C obtained by unfolding the PBA M
along the symbols of w [3]. The probability measure induced by this Markov
chain on runs in Qω is used to define the acceptance probability of the word w
on M as

Pr(w) = Pr {ρ ∈ Qω | ρ is accepting for w over M}
The language accepted by a PBA over input Σ denoted by L>0(M) is the set

of all words w ∈ Σω with positive acceptance probability, i.e Pr(w) > 0.
We conclude this section by observing a result from [3] that enables translation

from limit deterministic automata to PBAs.

Lemma 8. [3] Given a limit deterministic NBA D = (Q, δ, I, F) there is a PBA
M with |Q|+ 1 states such that L(D) = L>0(M).

3 Automata for LTL(F ,G) Formulae

In this section, we present a construction of exponential sized limit deterministic
NBA for the fragment LTL(F ,G). Thanks to Proposition 5 we ignore the X
operator since we are aiming to construct exponential size automata.

The following proposition embodies the key idea behind our construction. A
proof is provided in the technical report [9].

Proposition 9. For any formula ϕ ∈ LTL over P , and any word w ∈ (2P)ω

exactly one of the following three holds

w � ¬Fϕ, w � (¬Gϕ ∧ Fϕ), w � Gϕ

Furthermore, if ϕ is of the form Fψ or Gψ then we can deduce if w � ϕ holds
from knowing which one of the above three holds.

The essence of our construction is in guessing which one of the three formu-
lae in Proposition 9 holds for F and G subformulae. We define a guess, to be
tripartition π = 〈πτ |πυ |πκ 〉 of �ϕ ∪�ϕ. Let Π denote the set of all tripar-
titions π of �ϕ ∪ �ϕ. If a subformula Fψ is present in πτ , our guess is that
¬Fψ(≡ ¬FFψ) holds for the input to be seen. If a subformula Gψ is in πτ , our
guess is that Gψ(≡ GGψ) holds for the input to be seen. Table 1 summarizes
how we interpret a tripartition as one of three guesses for F and G subformulae.

Table 1. Guess corresponding to a tripartition π

πτ πυ πκ

Fψ ¬Fψ Fψ ∧ ¬GFψ GFψ

Gψ Gψ ¬Gψ ∧ FGψ ¬FGψ

From the second part of Proposition 9 we know exactly which formulae in
�ϕ∪�ϕ are presently true according to π ∈ Π . This information along with the

Limit Deterministic and Probabilistic Automata for LTL\GU 633

knowledge of the truth of propositions at present allows us to evaluate the truth
of the formula ϕ according to π. We define what it means to evaluate a formula.

Definition 10 (Evaluation). For any formula ϕ ∈ LTL(F ,G) over P , a par-
tition π ∈ Π and assignment ν on P we inductively define a boolean function
[ϕ]πν , the evaluation of a formula ϕ, as follows:

[p]πν = ν(p) [ϕ ∧ ψ]πν = [ϕ]πν ∧ [ψ]πν [Gψ]πν = true iff Gψ ∈ πτ

[¬p]πν = ¬ν(p) [ϕ ∨ ψ]πν = [ϕ]πν ∨ [ψ]πν [Fψ]πν = true iff Fψ /∈ πτ

Next, we observe that if π is sound in the sense that every formula Gψ ∈ πτ

and Fψ /∈ πτ is true at present then ϕ evaluates to true with respect to π
indicates that ϕ is indeed true.

Proposition 11 (Soundness). For any formula ϕ ∈ LTL(F ,G), a guess π ∈
Π and word w ∈ Σω if the following implications hold

Gψ ∈ πτ =⇒ w � Gψ Fψ /∈ πτ =⇒ w � Fψ

for every Gψ, Fψ that is a subformula of ϕ then: [ϕ]πw[0] = true implies w � ϕ.

Proof. Induction on the structure of ϕ. ��

Similarly, if π is complete in the sense that every Gψ that is true is in πτ and
every Fψ that is true is not in πτ then ϕ is true implies it evaluates to true.

Proposition 12 (Completeness). For any formula ϕ ∈ LTL(F ,G), a guess
π ∈ Π and a word w ∈ Σω if the following implications holds

w � Gψ =⇒ Gψ ∈ πτ w � Fψ =⇒ Fψ /∈ πτ

for every Gψ, Fψ that is a subformula of ϕ then: w � ϕ implies [ϕ]πw[0] = true.

Proof. Induction on the structure of ϕ. ��

In our construction, every state of the automaton holds a tripartition that
corresponds to a guess. According to this guess some subformulae may hold
now, in the future, or never. Each initial transition is such that it enables the
main formula to be true. Each transition ensures the propagation of temporal
requirements to successive guesses. In an accepting run we ensure that each of
our guesses is sound.

Since our formulae are in negation normal form, it only makes sense to take
care of checking a guess (or a part of it) on a subformula ϕ if the guess claims ϕ
to be true at present or some point in the future. If a guess claims that ϕ does
not hold we don’t need to bother checking it, because even if it did it could not
make a superformula false that was otherwise true. For instance, if Fψ ∈ πτ we
don’t need to enforce that ¬Fψ holds, and if Fψ ∈ πυ we only need to ensure
Fψ holds but don’t need to enforce ¬GFψ. Similarly if Gψ ∈ πκ then we don’t

634 D. Kini and M. Viswanathan

need to check ¬FGψ, and if Gψ ∈ πυ then we only need to check FGψ but
not ¬FGψ.

Say Gψ ∈ πτ , it requires that Gψ holds now. This can be checked by ensuring
ψ holds now and Gψ holds at the next time step. We can check if ψ is true at
present by evaluating ψ with respect to our guess and the incoming input symbol.
We can ensure ψ holds at the next time step by propagating Gψ to the πτ in
the next guess. If Gψ ∈ πυ, we need to check that FGψ holds by having Gψ
either in πτ or πυ of the next guess. If Gψ is not moved to πτ but kept in πυ

forever then FGψ might not hold. We overcome this by imposing an acceptance
condition which requires the set πυ to eventually become empty.

For Fψ ∈ πυ we need to ensure Fψ holds. That is either ψ should hold now or
some point in the future. The former can be checked by evaluating ψ using the
current guess and the incoming input symbol. If it does not evaluate to true we
require Fψ to hold at the next time step, which can be ensured by having Fψ in
πυ in the next step. Like before, this creates a possibility for Fψ to be false if it
keeps getting delayed by its presence in πυ forever, but as mentioned above our
acceptance condition will be such that πυ is eventually empty. For Fψ ∈ πκ we
are claiming GFψ, this can be ensured by evaluating ψ with the respect to the
current guess and input symbol, and requiring the resulting valuation to be true
infinitely often. This can be achieved by fixing Fψ to be in πκ forever and using
an appropriate Büchi condition to verify that for Fψ in πκ, ψ holds infinitely
often.

Before we present the formal details of the construction we illustrate the above
ideas above using a simple example.

q0 : 〈 ϕ | F b | - 〉, 0

q1 : 〈 ϕ,F b | - | - 〉, 0

q2 : 〈 ϕ | - | F b 〉, 0

q3 : 〈 ϕ | - | F b 〉, 1

true

b

a

trueb

¬b

Fig. 1. The limit deterministic NBA for ϕ = G(a∨Fb) obtained using our construction.
Here states q0, q1, q2 are initial with each transition going out of them being an initial
transition. The final states q1, q2 are double bordered.

Example 13. Figure 1 shows the limit deterministic automaton constructed using
our translation for the formula ϕ = G(a ∨ Fb). Each state consists of a guess-
counter pair (π, n). A guess here is a tripartition π= 〈πτ |πυ |πκ 〉 of {ϕ,F b},
the set of all G,F subformulae of ϕ. A dash ‘-’ in the tripartition indicates that
the corresponding part is empty. For simplicity the transitions are annotated
by propositional formulae: a transition of the form (q, φ, q′) indicates there is a
transition from q to q′ on each assignment that makes φ true.

Limit Deterministic and Probabilistic Automata for LTL\GU 635

(Example contd.) A transition q
ν−→ q′ is initial when the main formula ϕ

evaluates to true on the guess in q and input ν, and the counter is 0 in q. The
formula ϕ being a G subformula evaluates to true iff ϕ ∈ πτ (see Definition 10).
Hence every initial state is required to have ϕ ∈ πτ , and in this case because
ϕ evaluates to true irrespective of the next input symbol every transition going
out of an initial state is an initial transition.

For each Gψ formula in πτ one needs to check Gψ holds for all accepting
runs starting from that state. This is ensured by proceeding from guess π1 to
π2 on input ν only if ψ evaluates to true on π1 and ν (ensuring ψ holds now),
and Gψ is present in π2 (propagating the temporal requirement Gψ to the next
state). In our example since ϕ ∈ πτ for every initial state it is also propagated to
every successive state, ensuring that ϕ ∈ πτ for all states as shown in Figure 1.
Therefore we have no freedom in the assignment of ϕ in our state space.

What remains is to assign the subformula Fb to one of the three partitions.
Consider q0 in which it is assigned to πυ. The automaton has to ensure Fb holds
for all accepting runs from q0. If b holds now then it can either move to q0 or
q1 depending upon whether it chooses to guess if Fb holds again at the next
time step. If b does not hold it has no choice but to remain in q0 waiting for b
to become true. The presence of F b ∈ πυ for q0 ensures (a ∨ Fb) evaluates to
true (independent of the input) thus the requirement of ϕ ∈ πτ mentioned above
is satisfied. Now consider q1, here we assume that F b is false (since Fb ∈ πτ)
and hence have to rely on a being true for (a ∨ Fb) to evaluate to true for the
requirement of ϕ ∈ πτ , giving rise to the transition (q1, a, q1). In q0 and q1 the
counter is not needed due to the fact that πκ is empty. State q1 is marked as
final because πυ is empty and the counter is 0. Now, consider q2 and q3 which
have the same guess with Fb ∈ πκ but different counters. Since Fb ∈ πκ the
formula (a ∨ Fb) evaluates to true irrespective of the input, thus satisfying the
requirement of ϕ ∈ πτ . For Fb ∈ πκ we need to ensure that GFb holds, this is
done by the Büchi condition which requires q2, a final state (where πυ is empty
and counter is 0), to be visited infinitely often thus making sure that b becomes
true infinitely often.

Next we provide the formal details of our construction for an arbitrary
LTL(F ,G) formula.

Definition 14 (Construction). Given a formula ϕ in LTL(F ,G) defined over
propositions P , let D(ϕ) be the NBA (Q, I, δ, F) over the alphabet 2P defined as
follows

– Q is the set Π × [z], consisting of guess-counter pairs where z = |�ϕ|+1
– δ is the set of all transitions

(π1,m)
ν−→ (π2, n)

such that
(A) for each Gψ ∈ πτ

1 , [ψ]π1
ν is true

(B) for each Fψ ∈ πυ
1 , [ψ]π1

ν is false implies Fψ ∈ πυ
2 .

636 D. Kini and M. Viswanathan

(C) πτ
1 ⊆ πτ

2 and πκ
1 = πκ

2

(D) n is updated as follows

n =

{
m, (|πυ

1 | > 0) ∨ (m > 0 ∧ ¬[ψm]π1
ν)

m+1 (mod k) otherwise

where k = |πκ ∩�ϕ|+1 and ψm be such that F(ψm) is the mth formula
in πκ ∩�ϕ

– I is the set of transitions of the form (π, 0)
ν−→ (π′, i) where [ϕ]πν is true

– F is the set of states (π, 0) where πυ is empty.

Next, we present the theorem that states the correctness of the above con-
struction.

Theorem 15. For any formula ϕ ∈ LTL(F ,G), the NBA D(ϕ) is a limit deter-
ministic automaton of size 2O(|ϕ|) such that L(D(ϕ)) = �ϕ�.

Proof. The number of states in D(ϕ) is bounded by 3|�∪�|×|�| and so clearly
the size of D(ϕ) is exponential in |ϕ|.

We can see that D(ϕ) is limit deterministic as follows: The final states are
of the form (π, 0) where πυ is empty. Note that according to condition (C), πυ

remains empty once it becomes empty, and πτ and πκ remain fixed. Hence the
guess π can never change after visiting a final state. And since the counter is
updated deterministically we have that any state reachable from a final state
chooses its next state deterministically.

The proof of the fact L(D(ϕ)) = �ϕ� is provided in the companion technical
report [9]. ��

4 Automata for LTL\GU Formulae

In this section, we present a construction of limit deterministic NBAs for the frag-
ment LTL\GU of exponential size. We follow a compositional approach where
we compose a master and a slave automata (terminology borrowed from [6]) to
obtain the required one. The master automaton assumes that the truth values of
the maximal until-free subformulae are known at each step and checks whether
the top-level until formula holds true. The master automaton works over an ex-
tended set of propositions where the new propositions are introduced in place
of the until-free subformulae. The slave automaton works over the original set
of propositions and outputs at each step the truth value of the subformulae ab-
stracted by the master in the form of the new propositions. The master and the
slave are then composed such that they work together to check the entire for-
mula. Once again we apply Proposition 5 to ignoreX operators when presenting
our construction.

We first clarify some notation we use in this section. For a finite set of formulae
Φ we use PΦ to denote a set of propositions pφ indexed by formulae φ ∈ Φ. We
will use ϕ/Φ to denote the formula obtained from ϕ by replacing subformulae of
ϕ appearing in Φ by their corresponding propositions in PΦ.

Limit Deterministic and Probabilistic Automata for LTL\GU 637

Definition 16 (Characteristic Relation). For a finite set of LTL formulae
Φ over propositions P we define its characteristic relation RΦ ⊆ (2P)ω × (2PΦ)ω

as follows:
(w, λ) ∈ RΦ iff λ[i] = {pϕ | ϕ ∈ Φ, wi � ϕ}

Given w1 ∈ 2P1 and w2 ∈ 2P2 define the join of w1 and w2 denoted by w1∪w2

as the word in (2P1∪P2)ω whose ith element (w1 ∪w2)[i] is w1[i]∪w2[i]. Given a
relation R ⊆ (2P1)ω × (2P2)ω define the language R◦ ⊆ (2P1∪P2)ω as the set of
words obtained by joining the pairs in R:

R◦ =
{
ρ ∈ (2P1∪P2)ω | ∃(w, λ) ∈ R, ρ = w ∪ λ

}

Later on in this section (Proposition 23) we show how to construct a NBM for
a set of LTL(F ,G) formula which accepts a relation that is not the characteristic
relation but is “subsumed” by the characteristic relation of the set. In that
direction we define what it means for a relation to be subsumed by another.

Definition 17 (Subsumption). For two relations R,S ⊆ (2P1)ω × (2P2)ω we
say that R is subsumed by S, denoted by R�S iff S ⊆ R and for every (w, λ) ∈ R
there exists (w, λ′) ∈ S such that ∀i λ[i] ⊆ λ′[i].

Next, we describe how to break an LTL\GU formula into an until factor
and an until-free factor which are going to be handled by the master and slave
automata respectively.

Definition 18 (Factorization). Given a formula ϕ ∈ LTL\GU over proposi-
tions P we identify the set of maximal subformulae of ϕ that do not contain U
as the until-free factor of ϕ denoted by Υ (ϕ).

Υ (Gϕ) = {Gϕ} Υ (Fϕ) = {Fϕ}

Υ (ϕ1 ∧/∨ ϕ2) =

{
{ϕ1 ∧/∨ ϕ2} if ϕ1 ∈ Υ (ϕ1) and ϕ2 ∈ Υ (ϕ2)

Υ (ϕ1) ∪ Υ (ϕ2) otherwise

Υ (ϕ1Uϕ2) = Υ (ϕ1) ∪ Υ (ϕ2) Υ (�) = � for literals �

For a formula ϕ ∈ LTL\GU we define its until factor as the formula ϕ/Υ (ϕ) ∈
LTL(U) simply written as χϕ.

The following proposition relates the semantics of an LTL\GU formula with
the semantics of its until and until-free factors.

Proposition 19. For any ϕ ∈ LTL\GU over propositions P and any relation
R ⊆ (2P)ω × (2PΥ (ϕ))ω such that R � RΥ (ϕ) we have

�ϕ� = (R◦ ∩ �χϕ�) �2P

Proof. We prove our statement by proving the following equivalence

w � ϕ ⇐⇒ (w ∪ λ(w)) � χϕ (1)

where λ(w) ∈ (2PΥ (ϕ))ω is the unique word such that (w, λ(w)) ∈ RΥ (ϕ). We do
so by performing induction on ϕ:

638 D. Kini and M. Viswanathan

i. ϕ ∈ Υ (ϕ): in which case χϕ = pϕ.

w � ϕ

⇐⇒ pϕ ∈ λ(w)[0] (definition of λ(w))

⇐⇒ (w ∪ λ(w)) � pϕ

ii. ϕ = (ϕ1 ∧/∨ ϕ2) /∈ Υ (ϕ1 ∧/∨ ϕ2): here χ
ϕ1∧/∨ϕ2

= χϕ1 ∧/∨ χϕ2

w � ϕ1 ∧/∨ ϕ2

⇐⇒ w � ϕ1 and/or w � ϕ2

⇐⇒ (w ∪ λ(w)) � χϕ1 and/or (w ∪ λ(w)) � χϕ2 (inductive hypothesis)

⇐⇒ (w ∪ λ(w)) � (χϕ1 ∧/∨ χϕ1) = χ
ϕ1∧/∨ϕ2

iii. ϕ = (ϕ1Uϕ2): here χϕ1Uϕ2 = χϕ1Uχϕ2

w � ϕ1Uϕ2

⇐⇒ ∃ i wi � ϕ2 and ∀ j<i wj � ϕ1

⇐⇒ ∃ i (wi ∪ λ(wi)) � χϕ2 and ∀ j<i (wj ∪ λ(wj)) � χϕ1

(inductive hypothesis)

⇐⇒ (w ∪ λ(w)) � χϕ1Uχϕ2 = χϕ1Uϕ2

Now we also have (w ∪ λ(w)) ∈ R◦ due to the fact that (w, λ(w)) ∈ RΥ (ϕ) and
RΥ (ϕ) ⊆ R. This along with (1) gives us �ϕ� ⊆ (R◦ ∩ �χϕ�) �2P .

Next we observe that if λ1 ⊆ λ2 then w∪λ1 � χϕ implies w∪λ2 � χϕ because
the propositions in PΥ (ϕ) appear positively in χϕ. Consider w ∈ (R◦ ∩ �χϕ�) �2P ,
this implies there is a λ such that (w, λ) ∈ R and (w∪λ) � χϕ. Since R�RΥ (ϕ) we
have λ ⊆ λ(w) where (w, λ(w)) ∈ RΥ (ϕ) ⊆ R. Now from our first observation in
this paragraph we have that (w∪λ(w)) � χϕ, from which we can conclude w � ϕ
using (1). This proves the other side of the containment (R◦ ∩ �χϕ�) �2P⊆ �ϕ�.

��

Let P1 and P2 be disjoint set of propositions. Let Σ = 2P1 , Γ = 2P2 and by
abusing notation let Σ×Γ = 2P1∪P2 . Next we describe how to compose a master
NBA A over input Σ×Γ and a slave NBM B over input alphabet Σ and output
alphabet Γ to obtain an NBA A×B over input Σ.

Definition 20 (Composition). Consider a NBA A = (QA, δA, IA, FA) over
input alphabet Σ×Γ and a NBM B = (QB, δB, IB,MB, FB) over input alphabet Σ
and output alphabet Γ . We define a NBA (QA×QB, δA×B, IA×B, FA×FB) over
input Σ denoted by A×B where

δA×B((a1, b1), σ) = {(a2, b2) | q2 ∈ δB(q1, σ), a2 ∈ δA(a1, σ ∪MB(b1, σ))}

IA×B = {(a1, b1) ν−→ (a2, b2) | b1 ν−→ b2 ∈ IB, a1
ν∪MB(b1,ν)−−−−−−−−→ a2 ∈ IA}

Limit Deterministic and Probabilistic Automata for LTL\GU 639

The proposition below relates the languages accepted by a master and a slave
NBA to the language accepted by the product defined above. It requires the
master to have final states such that on entering a final state it can never leave
the set of final states. We shall refer to this property as absorbing final states.
We provide a complete proof of this result in the technical report [9].

Proposition 21. Given a NBA A with input alphabet Σ × Γ with absorbing
final states, and a NBA B with input alphabet Σ and output alphabet Γ we have

L(A× B) = (RB◦ ∩ L(A)) �Σ

The following proposition shows that the composition of a master and slave is
limit deterministic if both of them are limit deterministic. The proof is provided
in the technical report [9].

Proposition 22. Given a limit deterministic NBA A over input alphabet Σ×Γ ,
and a limit deterministic NBM B with input alphabet Σ and output alphabet Γ
it is the case that A× B is also limit deterministic.

The next proposition illustrates how to construct a Mealy machine which
recognizes a relation which is subsumed by the characteristic relation of an until-
free factor, thus constructing a slave automaton of exponential size.

Proposition 23. For any finite set Φ ⊂ LTL(F ,G) over propositions P there
is a NBM BΦ with input over 2P and output over 2PΦ such that RBΦ � RΦ, BΦ

is limit deterministic and of size O(2|Φ|).

Proof. Consider the construction of Theorem 15 with the following modifications
to construct BΦ:

– let Π be set of all three way partition of �Φ ∪�Φ instead of �ϕ ∪�ϕ

– every transition of the form (π, 0)
ν−→ (π′,m) is initial

– define MB((π, n), ν) as { pϕ ∈ PΦ | [ϕ]πν = true }

The proof of RBΦ � RΦ can be found in the technical report [9]. ��

Next we observe that master automaton can be constructed using a standard
approach of translating an alternating automaton for the until factor to an NBA.

Proposition 24. [18] For any formula ϕ ∈ LTL(U) there is a NBA Aϕ with a
single absorbing final state such that L(Aϕ) = �ϕ� and is of size O(2|ϕ|).

Proof. As observed in Lemma 2 in [8], the construction follows from Theorem 22
and Proposition 20 of [18]. ��

Finally we combine all the results in this section to show that the composition
of the master and slave for the until and the until free components is as desired.

640 D. Kini and M. Viswanathan

Theorem 25. For any formula ϕ ∈ LTL\GU the NBA Aχϕ
×BΥ (ϕ) recognizes

�ϕ�, is limit deterministic and is of size 2O(|ϕ|).

Proof. First we look at the language recognized by Aχϕ
×BΥ (ϕ):

L(Aχϕ
×BΥ (ϕ))

= (RBΥ (ϕ)

◦ ∩ L(Aχϕ
)) �2P (Proposition 21)

= (RBΥ (ϕ)

◦ ∩ �χϕ�) �2P (Proposition 24)

= �ϕ� (Proposition 19 & 23)

We have Aχϕ
×BΥ (ϕ) to be limit deterministic from Proposition 22. The au-

tomata Aχϕ
and BΥ (ϕ) are both exponential in the size of ϕ as seen in Proposi-

tions 24 & 23, and so the product is also of size 2O(|ϕ|). ��

5 Results and Applications

In this section, we summarize and reflect on some of the consequences of our
results related to PBAs and model checking concurrent probabilistic programs.

5.1 Model Checking MDPs

MDPs are the prevalent models for concurrent probabilistic programs. Concur-
rency is modeled as nondeterministic states, where the transitions are chosen by
a scheduler. We refer the reader to [5] for a complete definition of MDPs. The
model checking problem can be formulated as follows.

Definition 26. Given a MDP N and temporal logic formula ϕ, the model check-
ing problem is to decide if there exists a scheduler u such that PrN ,u(�ϕ�) > 0.

Our construction of limit deterministic automata for LTL\GU leads to an
improved EXPTIME model checking algorithm for MDPs and formulae in this
logic which is matched by an EXPTIME-hard lower bound.

Theorem 27. The model checking problem for MDPs and formulae in LTL\GU
is EXPTIME-complete.

Proof. Proposition 4.2.3 in [5] states one can decide the model checking problem
of MDPs and limit deterministic NBAs by taking a product of the two and doing
a linear time analysis of the resulting graph. Using this along with our result in
Theorem 25 we obtain the required upper bound. Proof of the lower bound can
be found in the technical report [9]. ��

We contrast this with the complexity of model checking MDPs and full LTL.

Proposition 28. [5] The model checking problem for MDPs and formulae in
LTL is 2EXPTIME-complete.

Limit Deterministic and Probabilistic Automata for LTL\GU 641

5.2 PBAs for LTL

First, we observe that our construction of limit deterministic NBAs gives us an
exponential upper-bound on the size of PBAs for LTL\GU .

Theorem 29. For any formula ϕ ∈ LTL\GU there is a PBA M such that
L>0(M) = �ϕ� and is of size 2O(|ϕ|).

Proof. Follows from Lemma 8 and Theorem 25. ��
Next, we note that this upper-bound is the best one can achieve.

Proposition 30. There exists a family of formulae ϕn ∈ LTL(G) of size n such
that any PBAs recognizing them have size at least 2n.

Proof. Consider the formula G(p ⇐⇒ X np). The language accepted by it is
the set {uω | u ∈ Σn} where Σ = {∅, {p}}. For each u ∈ Σn there needs to
be at least one state qu such that u can reach qu from the initial state with
non-zero probability and no other v ∈ Σn can reach qu from the initial state
with non-zero probability, because the word uvω should not be accepted with
positive probability whereas uω should be accepted. ��

Next, we note that constructing deterministic automata can result in a double
exponential blow-up.

Proposition 31. [1] There exists a family of of formulae ϕn ∈ LTL(F) such

that any deterministic automata that recognize them have size 22
Ω(n)

.

6 Conclusions

In this paper, we have presented a translation of formulae in LTL\GU to limit de-
terministic automata that are provably exponentially smaller than deterministic
automata for this logic. This yields a new, improved exponential time algorithm
for model checking MDPs and LTL\GU as compared to the previously known
double exponential time complexity for MDPs and full LTL. It also gives us a
way to build PBAs of exponential size for LTL\GU . Our automata in addition
to having better upper-bounds also have a well defined logical structure, which
makes it amenable to several optimizations.

There are few questions that are still left open. While we have shown how
to construct exponential sized probabilistic and limit deterministic automata for
LTL\GU , it still remains open whether we can construct equally small probabilis-
tic or limit deterministic automata for full LTL. In [8] we prove that translating
the safety fragment of LTL to weak probabilistic monitors (which are special
PBAs) can result in a double exponential blow-up. This might indicate that it
is unlikely one will be able to give exponential sized PBAs for full LTL. While
Proposition 28 excludes the possibility of constructing such automata in expo-
nential time, it does not rule out the existence of exponential sized automata for
full LTL which can potentially be built in double exponential time.

As a part of future work we intend to implement our construction and compare
it with results for deterministic automata, and also see if our new algorithm for
model checking yields better performance in practice.

642 D. Kini and M. Viswanathan

Acknowledgments. Dileep Kini was partially supported by NSF grant CNS-
1016791 and Mahesh Viswanathan by NSF grant CNS-1314485.

References
1. Alur, R., Torre, S.L.: Deterministic generators and games for ltl fragments. ACM

Trans. Comput. Logic 5(1), 1–25 (2004)
2. Babiak, T., Blahoudek, F., Křet́ınský,M., Strejček, J.: Effective translation of LTL to

deterministicRabinautomata:Beyondthe(F,G)-fragment. In:VanHung,D.,Ogawa,
M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg (2013)

3. Baier, C., Größer, M.: Recognizing omega-regular languages with probabilistic au-
tomata. In: LICS, pp. 137–146 (2005)

4. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity
of randomization in finite state monitors. J. ACM 56(5), 26:1–26:44 (2009)

5. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

6. Esparza, J., Křet́ınský, J.: From LTL to deterministic automata: A safraless com-
positional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 192–208. Springer, Heidelberg (2014)

7. Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

8. Kini, D., Viswanathan, M.: Probabilistic automata for safety LTL specifications.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 118–136.
Springer, Heidelberg (2014)

9. Kini, D., Viswanathan, M.: Probabilistic büchi automata for LTL\GU. Technical
Report University of Illinois at Urbana-Champaign (2015),
http://hdl.handle.net/2142/72686

10. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theoretical Computer Science 363(2), 182–195 (2006)

11. Křet́ınský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22.
Springer, Heidelberg (2012)

12. Křet́ınský, J., Garza, R.L.: Rabinizer 2: Small deterministic automata for LTL\
GU. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172,
pp. 446–450. Springer, Heidelberg (2013)

13. Morgenstern, A., Schneider, K.: From LTL to symbolically represented determinis-
tic automata. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 279–293. Springer, Heidelberg (2008)

14. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2006)

15. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: 25 Years of Model
Checking, pp. 172–195 (2008)

16. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

17. Vardi, M., Wolper, P., Sistla, A.P.: Reasoning about infinite computation paths.
In: FOCS (1983)

18. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

http://hdl.handle.net/2142/72686

Saturation-Based Incremental LTL Model

Checking with Inductive Proofs

Vince Molnár1, Dániel Darvas1, András Vörös1, and Tamás Bartha2

1 Budapest University of Technology and Economics, Hungary
2 Institute for Computer Science and Control, Hungarian Academy of Sciences

Abstract. Efficient symbolic and explicit model checking approaches
have been developed for the verification of linear time temporal proper-
ties. Nowadays, advances resulted in the combination of on-the-fly search
with symbolic encoding in a hybrid solution providing many results by
now. In this work, we propose a new hybrid approach that leverages the
so-called saturation algorithm both as an iteration strategy during the
state space generation and in a new incremental fixed-point computa-
tion algorithm to compute strongly connected components (SCCs). In
addition, our solution works on-the-fly during state space traversal and
exploits the decomposition of the model as an abstraction to inductively
prove the absence of SCCs with cheap explicit runs on the components.
When a proof cannot be shown, the incremental symbolic fixed-point al-
gorithm will find the SCC, if one exists. Evaluation on the models of the
Model Checking Contest shows that our approach outperforms similar
algorithms for concurrent systems.

1 Introduction

Linear temporal logic (LTL) specifications play an important role in the his-
tory of verification. Checking these properties is usually reduced to finding
strongly connected components (SCCs) by checking language emptiness of the
synchronous product of two Büchi automata: one characterizing the possible be-
haviors of the system and another accepting behaviors that violate the desired
property. Two main approaches emerged during the history of model check-
ing. Explicit methods process the state graph using proven graph algorithms.
Symbolic model checking was introduced to address the problem of state space
explosion. Symbolic approaches based on decision diagrams usually apply great-
est fixed point computations on the set of states to compute an SCC-hull [14].
These approaches typically scale well, and they have improved considerably due
to the extensive research in this area.

A considerable amount of effort was put in combining symbolic and explicit
techniques [1,10–13]. The motivation is usually to introduce one of the main ad-
vantages of explicit approaches into symbolic model checking: the ability to look
for SCCs on the fly, i. e., continuously during state space generation. Solutions
typically include abstracting the state space into sets of states such as in the

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 643–657, 2015.
DOI: 10.1007/978-3-662-46681-0_58

644 V. Molnár et al.

case of multiple state tableaux or symbolic observation graphs. Explicit checks
can then be run on the abstraction on the fly to look for potential SCCs.

The goal of this paper is to present a new hybrid LTL model checking algo-
rithm that 1) builds a symbolic state space representation, 2) looks for SCCs
on the fly, 3) incrementally processes the discovered parts of the state space and
4) uses explicit runs on multiple fine-grained abstractions to avoid unnecessary
computations. Although example models are given as Petri nets, the algorithm
can handle any discrete state model. The state space is encoded by decision
diagrams, built using saturation. On-the-fly detection of SCCs is achieved by
running searches over the discovered state space continuously during state space
generation. In order to reduce the overhead of these searches, we present a new
incremental fixed point algorithm that considers newly discovered parts of the
state space when computing the SCC-hull. While this approach specializes on
finding an SCC, a complementary algorithm maintains various abstractions of
the state space to perform explicit searches in order to inductively prove the
absence of SCCs.

The paper is structured as follows. Section 2 presents the background of this
work. An overview of the proposed algorithm is given in Section 3, then Section
4 and 5 introduces the main components in detail. The whole algorithm is as-
sembled in Section 6. A brief summary of related work is presented in Section
7, followed by an extensive evaluation of our approach and three other tools in
Section 8. Finally, Section 9 summarizes the contributions of the paper.

2 Saturation

Saturation is an iteration strategy specifically designed to work with decision
diagrams. It was originally used as a state space generation algorithm [5] to
answer reachability queries on concurrent systems, but applications in branching-
time model checking [17] and SCC computation [18] also proved to be successful.

Saturation works best if it can exploit the structure of high-level models.
Therefore, it defines the input model on a finer level of granularity, introducing
the concept of components and events into traditional discrete-state models.
Formally, the input model of the algorithm is in the form M = 〈S,Sinit, E ,N〉.
Provided that the model has K components, each with the set of possible local
states Sk, we call S = S1×· · ·×SK the set of possible global states. A single global
state s is then a K-tuple (s1, . . . , sK), where each sk ∈ Sk is a state variable
containing the local state of the kth component. The set of possible initial states
of the system is Sinit ⊆ S. Elements of set E are (asynchronous) events of
the model, usually corresponding to transitions of the high-level system model.
Events are used to decompose the next-state (or transition) relation N ⊆ S ×S
into separate (but not necessarily disjoint) next-state relations: N =

⋃
ε∈E Nε,

where Nε is the next state relation of event ε. We often use N as a function,
defining N (s) = {s′ | (s, s′) ∈ N} as the set of states that are reachable from
s in one step (and also N (S) as an extension to sets of states). The inverse of
a next state function is defined as N−1(s) = {s′ | (s′, s) ∈ N}. In this paper, a

Saturation-Based Incremental LTL Model Checking with Inductive Proofs 645

state space will be denoted by a pair (S,N), where states of S and transitions
of N are nodes and arcs of the state graph.

By introducing components and events, saturation can exploit the locality
property of concurrent systems. Locality is the empirical assumption that high-
level transitions of a concurrent model usually affect only a small number of
components. An event ε is independent from component k if 1) its firing does
not change the state of the component, and 2) its enabling does not depend on
the state of the component. If ε depends on component k, then k is called a
supporting component: k ∈ supp(ε).

In order to map the components to variables of the underlying decision di-
agram, an ordering has to be defined. Without loss of generality, assume that
every component is identified by its index in the ordering. Using these indices,
it is possible to group events by defining Top(ε) = k as the supporting com-
ponent of ε with the highest index. The set of every event with a Top value
of k is Ek = {ε ∈ E | Top(ε) = k}. For the sake of convenience, we use Nk to
represent the next state function of all such events, formally Nk =

⋃
ε∈Ek

Nε.
The notations N≤k =

⋃
i≤k Ni and N<k =

⋃
i<k Ni will also be used.

Symbolic encoding of the next state functions of events ε ∈ Ek relies on the
following observation: Nε((s1, . . . , sK)) and Nε((s1, . . . , sk)) × {(sk+1, . . . , sK)}
are equivalent (i. e., Nε does not change the local states of components above
k). From this fact, two important properties of saturation follows: 1) in the
encoding of Nε it is sufficient to encode the state changes of state variables
s1, . . . , sk, where k = Top(ε), as well as 2) it is possible to apply the individual
Nε functions in a finer granularity: Nε is not only applicable on a set of global
states, but also on sets of substates composed of state variables s1, . . . , sk.

In order to reason about sets of substates encoded by decision diagram nodes,
we will use the notations introduced in [4]. Let nk be a single node in a decision
diagram on the level representing the state variable of the kth component. Let
B(nk) represent the below substates encoded by nk. Below substates can be
regarded as the set of paths in the decision diagram that go from nk to the
terminal node 1. Throughout this paper, nk[i] will denote the child node of nk

on level k− 1 reachable through the arc corresponding to the local state i ∈ Sk.
With this notation, the set of substates B(nk) encoded by node nk is described
with the following recursive definition:

B(nk) =

{
{i | nk[i] = 1} if k = 1
⋃

i∈Sk
B(nk[i])× {i} otherwise.

A possible interpretation of the definition is that the set of substates encoded
by node nk is composed of different instantiations of the sets of substates encoded
by the children of nk.

The goal of saturation as a state space generation algorithm is to compute
the set of reachable states Srch = N ∗(Sinit) of model M , where N ∗ is the
transitive closure of the next-state relation. To do this, it exploits the structure
of decision diagrams and the aforementioned locality of concurrent systems by
dividing the global fixed-point computation into smaller parts, computing local

646 V. Molnár et al.

fixed-points with regard to a decision diagram node nk and its corresponding
next-state function Nk. A node nk is called saturated, if it is a terminal node,
or its child nodes are saturated and it represents a set of substates computed as
the fixed-point of the transitive closure of Nk, formally: B(nk) = N ∗

≤k(B(nk)).
This definition yields a recursive algorithm that saturates nodes of the decision
diagram in a bottom-up order, recursively saturating new nodes discovered when
applying a next-state function on higher levels of the decision diagram.

3 Overview of the Algorithm

The goal of this paper is to present a new model checking solution that is 1)
symbolic, 2) looks for SCCs on the fly during state space generation with an
incremental fixed-point algorithm, and 3) uses cheap explicit proofs to indicate
the absence of SCCs when possible. The basis of the presented complex algorithm
is saturation, which is highly efficient in the symbolic state space generation of
large concurrent systems.

On-the-fly operation is achieved by performing fixed-point computations when
a node becomes saturated. Processing saturated nodes has the advantage of han-
dling a set of (sub)states that is closed with regard to events independent from
higher levels. This means that the set will not change anymore during the ex-
ploration, i. e., each closed set has to be processed only once.

Even though a set with its related events will be processed only once, the
recursive definition of saturation will cause such sets to appear again as part of
larger sets encoded by the parent node in the decision diagram. The incremental
fixed-point algorithm presented in Section 4 avoids redundant computations by
restricting the search to SCCs containing at least one transition belonging to an
event not considered before, causing the computation to converge faster.

It has been shown many times that symbolic model checking approaches can
greatly benefit from explicit techniques [1, 10–13]. In this work, explicit checks
are applied in two ways. First, the saturation algorithm is enhanced with a sim-
ple modification that is able to collect individual states appearing more than
once during the exploration. As presented in Section 5.1, the absence of these
recurring states indicates that no SCCs can be found in the set of explored
states. Secondly, one of the main contributions of this paper is a cheap abstrac-
tion of the state space with regard to a single decision diagram node, on which
explicit SCC computation algorithms can be run with a negligible overhead. A
theorem presented in Section 5.2 gives an efficient method to inductively prove
the absence of SCCs in the state space explored so far. Both methods are used
to reduce the number of times a symbolic fixed-point computation is necessary,
often making the overhead of on-the-fly searches to almost disappear.

4 Incremental Symbolic Fixed-point Computation

This section presents a symbolic fixed-point computation algorithm to look for
SCCs incrementally in a growing state space. It can be regarded as a variation

Saturation-Based Incremental LTL Model Checking with Inductive Proofs 647

of traditional SCC-hull algorithms [14], but it is unique in the sense that it is
optimized to run multiple times, each time on a superset of the previous input.
SCC-hull algorithms usually start with a set of states and a transition relation
and iteratively try to discard states to reach a fixed-point. Compared to this
strategy, the main difference in our concept is that we specify transitions to
discard. The reason for this design lies in the iteration strategy of saturation,
but the algorithm itself is not restricted to any iteration strategy.

As noted in Section 2, the set of substates encoded by a node nk can be written
as B(nk) =

⋃
i∈Sk

B(nk[i]) × {i}, i. e., the union of the below substates of each
child node instantiated with the corresponding value of the kth state variable.
In case of a saturated node, each set in the union is closed with regard to the
next-state function N<k, so no new SCCs can be found in B(nk) using these
transitions only. However, the sets of substates are connected by transitions in
Nk that are not yet processed on B(nk). Figure 1 shows an example: black arcs
between sets of substates are transitions of Nk. Constraining the search for SCCs
to those that contain at least one transition from Nk can quickly discard parts
of the state space to make the fixed point computation converge faster.

The main function of the algorithm, DetectSCC, does not have to know about
saturation. It takes a set of states (S), a next-state relation (N), and a subset
of this relation (Nnew ⊆ N) as an input and returns a Boolean value indicating
if there exists an SCC consisting of states and transitions from S and N that
contains at least one transition from Nnew . The following observation provides
a way to use this function as an incremental SCC computation algorithm.

Observation 1. Consider a state space (S,N) containing an SCC and a subset
of transitions Nnew ⊆ N considered to contain new transitions. If S does not
contain any SCCs with only old transitions Nold = N \ Nnew , then the SCC
contains at least one transition from Nnew .

Let us assume that the function is called during state space exploration and
the input is the current set of (sub)states, the set of transitions fired so far, and
the set of transitions fired since the last time the algorithm was called. Then,
the observation guarantees that by the end of the state space generation, the
algorithm will have returned true at least once iff there exists an SCC in the
reachable state space (Srch ,Nfired). The case of calling the function in a recursive
setting is less obvious. To see that calling DetectSCC after a node is saturated
gives a complete algorithm, consider the previous discussion. When a node nk

on level k becomes saturated, the only transitions that were fired but have never
been input into the function yet are in Nk. This way, the correct inputs when
calling the function at that point are B(nk) as the set of states, N≤k as the
next-state relation and Nk as the subset of new transitions.

Algorithm 1 shows the pseudocode of DetectSCC. The function works by
discarding transitions from Nnew that cannot be closed with other transitions
through the states in S to form a loop. Transitions are not processed directly: the
set of their source states S− and target states S+ represent them in the fixed-
point computation. States of S− that are not reachable from S+ and states of
S+ that are not reachable from S− through transitions in Nnew are discarded

648 V. Molnár et al.

input : S ,N ,Nnew : set
// S: set of states,

// N ,Nnew: set of transitions

output : bool

1 S− ← N−1
new (S); S+ ← Nnew (S−);

2 if S+ = ∅ then return false
3 repeat
4 S− ← S− ∩N ∗(S+);
5 S+ ← S+ ∩ Nnew (S−);
6 until S+ and S− unchanged ;
7 return S− �= ∅ ∨ S+ �= ∅;

Algorithm 1. DetectSCC

B(nk) B(nk[0])

B(nk[3])
B(nk[1])

B(nk[2])

Fig. 1. Illustration of state space
(B(nk),N≤k)

iteratively in lines 4 and 5. Checking reachability is performed using saturation.
The iteration stops when no states can be discarded from the sets anymore, i. e.,
fixed point is reached. If S− and S+ are empty, then no appropriate SCC could
be found. Otherwise, the remaining states are part of an SCC containing at least
one transition from Nnew . Since the goal of this algorithm is to quickly decide if
an SCC exists in the input, it will not extract the SCC itself. However, remaining
states in S+ and S− can be used to aid the counterexample generation.

When looking for fair SCCs, i. e., SCCs containing at least one state from a
set of states F , the algorithm can be extended to involve F as the third set in
the loop. States of F are then discarded if they are not reachable from S+ and
states of S− are discarded if they are not reachable from F . When looking for
accepting SCCs during LTL model checking, F is the set of accepting states.

5 Explicit Proofs

After presenting an incremental way to detect the presence of strongly connected
components during state space generation, this section introduces methods to
prove the absence of SCCs without performing symbolic fixed point computa-
tions. These methods are used to decide if a symbolic check should be performed
when a node is saturated or it can be safely omitted.

When looking for accepting SCCs, checking the absence of accepting states
is a usual optimization in similar algorithms, for example in the abstraction
refinement approach presented in [16]. In this paper, we go two steps further.
Section 5.1 introduces the use of recurring states, while Section 5.2 presents a
new abstraction technique tailored to decision diagrams that allows the direct
use of explicit algorithms to reason about the presence or absence of SCCs.

5.1 Using Recurring States for Explicit Proofs

Recurring states are those that have already been discovered before reaching
them again during state space generation. In the context presented in Section

Saturation-Based Incremental LTL Model Checking with Inductive Proofs 649

4, they are defined as follows: R = Sold ∩ Nnew(Sold), where Sold is the set of
discovered states before applying Nnew for the first time. Explicit SCC compu-
tation algorithms such as [15] primarily look for recurring states during graph
traversal as they are suspects to constitute SCCs. Checking backward reacha-
bility from these states offers a simple algorithm to check the presence of an
SCC [8]. Symbolic algorithms, on the other hand, execute many steps together,
making the individual checking of the states inefficient. However, computing the
set of recurring states during state space traversal can still be used to reason
about SCCs.

Observation 2. Given an SCC composed of a set of states S and a next-state
relation N , any traversal will yield at least one recurring state.

According to the observation, recurring states offer a cheap way to distinguish
situations where there is no chance of finding an SCC – situations that often arise
during an on-the-fly algorithm. In addition, they can also be used to initialize
the fixed-point computation algorithm with S ..= R in Algorithm 1. This is
useful if recurring states are collected between two subsequent DetectSCC calls,
because 1) only transitions of Nnew can end in recurring states and 2) this
way, the function can also exploit Observation 2 and restrict the search for SCC
candidates containing new recurring states.

5.2 Introducing Inductive Explicit Checks

Hybrid model checking algorithms usually use symbolic encoding to process
huge state spaces, accompanied by clever abstraction techniques to produce an
abstract model on which explicit graph algorithms can be used. In this context,
the goal of abstraction is to reduce the size of a system’s state space while
preserving certain properties, such as the presence or absence of SCCs. In this
work, we also use abstractions to reason about SCCs. However, unlike in most
approaches in this domain, multiple abstract state graphs are used, ordered in
a hierarchy matching the structure of the underlying decision diagram to build
an inductive proof about strongly connected components of the state space.

In a symbolic setting, components of the model provide a convenient basis for
abstraction. In LTL model checking, it is usual to use the Büchi automaton or its
observable language to group states and build an abstraction from these aggre-
gates. The abstraction framework presented in [16] goes beyond using only one
kind of abstraction and explores strategies on a tableau of possible abstractions
based on one or more components.

In addition to selecting the basis, there are multiple ways to define an ab-
straction based on a component. To illustrate this, two simple abstractions are
presented before introducing a new approach of using the structure of a decision
diagram to define a more powerful abstraction.

Simple Abstractions. Using abstractions to answer binary decisions has two
potential goals. One can create an abstraction that can say a definite yes (these

650 V. Molnár et al.

are called must abstractions), or one that can say a definite no (these are may
abstractions). To construct an abstraction, the definition of an abstraction func-
tion is required for both the states and the transitions in the global state space.
Abstracting states is straightforward, as the set of local states Sk of compo-
nent k can be used directly.1 Regarding may and must abstractions, different
transformations have to be defined for the transitions of the state space.

Must abstraction of transitions N ∀
k ⊆ Sk × Sk for component k is defined as:

N ∀
k = {(sk, s′k)|∃ε ∈ E , supp(ε) = {k}, ∃(s, s′) = ((... , sk, ...), (... , s

′
k, ...)) ∈ Nε}.

May abstraction of transitions N∃
k ⊆ Sk × Sk for component k is defined as

N ∃
k = {(sk, s′k)|∃ε ∈ E , k ∈ supp(ε), ∃(s, s′) = ((... , sk, ...), (... , s

′
k, ...)) ∈ Nε}.

The must abstraction of transitions is defined to keep only those transitions
that correspond to events fully within the support of the chosen component.
May abstraction preserves every local transition, but omits the synchronization
constraints (i. e., assumes that if a transition is enabled in component k, it is
globally enabled).

Due to this construction, it is sometimes possible to reason about the presence
or absence of global SCCs. If there is an SCC in a single must abstraction,
it is the direct representation of one or more SCCs of the global state space.
Complementary, if there is no SCC in the may abstraction of any component,
then the global state space cannot contain any SCCs either.

These abstractions usually yield small state graphs that can be represented
explicitly. Running linear-time explicit algorithms on them gives a very cheap
opportunity to possibly prove or refute the presence of SCCs before symbolic
methods are used. Moreover, the definition of may and must abstractions implies
N ∀

k ⊆ N ∃
k , so running the SCC computation on a may abstraction and then

looking for a strongly connected subcomponent with transitions ofN ∀
k effectively

considers both cases at the same time.
As an example, observe Figure 2 that illustrates the Petri net model of a

producer-consumer system, also showing the explicit state graph. Transitions of
the system are shown on Figure 3(a), with connected arcs representing a single
transition affecting multiple components. In this case, every transition belongs to
a separate event (events are related to transitions of the Petri net). Events affect-
ing multiple components can be regarded as synchronization constraints between
local transitions. Abstractions can be acquired by removing synchronizations and
local transitions. Figure 3(b) and 3(c) depict the transitions transformed by must
and may abstractions. If the goal is to find an SCC containing the state where
only the places at the bottom of the Petri net are marked (depicted as a black
state on Figure 2(b)), none of the abstractions can give an exact answer.

Node-wise Abstraction. As the example suggests, the simple abstractions
presented so far may often be too general/specific, limiting their usefulness. Also,
as before, the iteration strategy of saturation can be exploited when designing a
special type of may abstraction that is stronger than its simple version. The goal

1 It is assumed that local states in Sk actually appear in at least one reachable global
state.

Saturation-Based Incremental LTL Model Checking with Inductive Proofs 651

producer buffer consumer

(a) Petri net

000
110

100

101

010

001
011 111

(b) State space

Fig. 2. Producer-consumer model with
non-deterministic buffer

0 1

0 1

0 1

(a) Original

0 1

0 1

0 1

(b) Must

0 1

0 1

0 1

(c) May

0 1

0 1

0 1

(d) Node-wise

Fig. 3. The effect of the abstractions to
the transitions

of the following construct is to match the order in which events are processed
during saturation, as well as the structure of the underlying decision diagram.

Definition (Node-wise abstraction). Node-wise abstraction of state space
(S,N) with regard to node nk is the pair A∃

nk
= (Snk

,N ∃
nk
), where Snk

=

{i | nk[i] �= 0}, i. e., the local states encoded by arcs of nk, and N ∃
nk

=
{(sk, s′k) | sk, s′k ∈ Snk

, ∃(s, s′) = ((... , sk, ...), (... , s
′
k, ...)) ∈ Nk}, i. e., the pro-

jections of events Ek to component k.

By the time a node is saturated, the construction of its node-wise abstraction
is permanently finished. This way, a single abstraction has to be analyzed only
once. In addition, the set of node-wise abstractions corresponding to nodes of
a sub-diagram rooted in nk contains enough information to have the power of
the simple may abstraction, that is, to clearly state if no SCC is present in the
substate space (B(nk),N≤k).

The following theorem gives the basis for an inductive method of using node-
wise abstractions to prove the absence of SCCs.

Theorem. Given a node-wise abstraction A∃
nk

with regard to a saturated node
nk, the substate space (B(nk),N≤k) does not contain any SCC if 1) neither of
the substate spaces (B(nk[si]),N<k) belonging to the children of nk 2) nor A∃

nk

contain an SCC.

The main idea of the proof is that node-wise abstraction represents the effects
of the events Ek exactly on the level of their Top value. At the time when a node
nk becomes saturated, the only transitions that can change the local states of
component k are in Nk. Node-wise abstractions contain the images of exactly

652 V. Molnár et al.

these transitions, thus they describe the possible transitions between sets of
substates encoded by the children of nk, as seen on Figure 1. This is why they
can be used to identify one-way walls that separate the possible spaces for SCCs.
Figure 1 can be seen as a node-wise abstraction if gray sets are considered as
states of A∃

nk
, with black arcs between them being transitions of N ∃

nk
.

Note that it is not specified how to ensure assumption 1 of the theorem.
Consequently even if the corresponding node-wise abstraction did contain an
SCC (which only implies the possible presence of a global SCC), the symbolic
fixed point computation algorithm of Section 4 can still be used to give a precise
proof. This way, the series of saturated nodes give a full inductive proof by the
end of the state space generation. In the previous example shown on Figure
3, node-wise abstraction can predict that SCC detection is unnecessary during
saturation until the top level is processed.

The computation of node-wise abstractions is simple and cheap. It can be
done on demand by projecting the next-state relation of corresponding events to
the Top component, or on-the-fly during saturation by adding vertices and arcs
each time a new local state is discovered or a new transition of the corresponding
events is fired, respectively. A simple must abstraction can also be examined as
part of computing SCCs of the node-wise abstraction by looking for a strongly
connected subcomponent whose transitions belong to events having only the
current component as a supporting one.

In addition to proving the absence of SCCs, the result of explicit computation
on the abstraction can also be used to aid the incremental fixed point computa-
tion algorithm in finding them. Arcs of the candidate SCCs found in the node-
wise abstraction correspond to a set of transitions in the state space (NSCC).
Since these are the only transitions in Nk that can be part of an SCC, calling
DetectSCC with Nnew = NSCC helps the function to converge even faster.

6 Constructing the Algorithm

After getting familiar with the building blocks in Sections 2–5, this section assem-
bles the main contribution of this work, the new saturation-based incremental
LTL model checking algorithm. The algorithm uses saturation for state space
generation. Recurring states are collected on the fly and vertices and arcs of
node-wise abstractions may also be added continuously. Whenever a node be-
comes saturated, the following steps are executed:

1. The sets of encoded states and transitions are checked (shall be non-empty).
2. The set of collected recurring states is checked (shall be non-empty).
3. An explicit SCC computation algorithm is run on the current node-wise

abstraction to obtain an SCC candidate (there shall be one).
4. Function DetectSCC is called with the set of recurring states and transitions

in the candidate SCC to compute an SCC-hull.

If either of checks 1–3 fails, or DetectSCC returns false, saturation continues.
If at any point DetectSCC returns true, the algorithm is stopped and the LTL

Saturation-Based Incremental LTL Model Checking with Inductive Proofs 653

input : sk : node // to saturate

output : node

1 n2k ← Nk as decision diagram;

2 tk ← new node; A∃
tk

← (Sk, ∅);
3 foreach i ∈ Sk : sk[i] �= 0 do
4 tk[i] ← Saturate(sk[i]);
5∗ rk ← new node; // recurring states

6 repeat
7 foreach i, i′ ∈ Sk : sk[i] �= 0∧n2k[i][i

′] �= 0 do
8∗ r′k−1 ← new node; // temp for next call

9 uk ← RelProd(tk[i], n2k[i][i
′], tk[i′], r′k−1);

10� if uk �= 0 then add arc (i, i′) to A∃
tk

;

11 tk[i
′] ← (tk[i

′] ∪ uk); // collect states

12∗ rk[i
′] ← (rk[i

′] ∪ r′k−1); // collect recurring

13 until tk unchanged;

14� NSCC ← TransitionsInSCC (A∃
tk
);

15◦ if DetectSCC(B(rk),N≤k,NSCC) then
16 terminate with counterexample;
17 return CheckUnique(tk);

Algorithm 2. Saturate

input : sk, n2k, ok : node

// sk: node to be saturated,

// n2k: next state node,

// ok: old node

in-out : rk : node

// rk: recurring states

output : node

1 if sk = 1 ∧ n2k = 1 then

2∗ if ok = 1 then

3 rk ← 1; // recurring state found

4 return 1;

5 tk ← new node;

6 foreach sk[i] �= 0 ∧ n2k[i][i
′] �= 0 do

7∗ r′k−1 ← new node;

8 tk[i
′] ← (tk[i

′] ∪
RelProd(sk[i], n2k[i][i

′], ok[i′], r′k−1);

9∗ rk[i
′] ← (rk[i

′] ∪ r′k−1);

10 tk ← Saturate(CheckUnique(tk));

11 return tk;

Algorithm 3. RelProd

formula is declared invalid in terms of the system. If saturation finishes and
DetectSCC never returns true, the formula is declared valid.

Algorithm 2 and 3 presents the complete algorithm. Lines different from the
original saturation algorithm are marked. Although it is crucial to implement,
caching is now omitted for the sake of simplicity. CheckUnique is used to avoid
the duplication of decision diagram nodes. If an equivalent node has already
been registered, it returns that node, otherwise registers the input. The deci-
sion diagram representation of a next-state function has 2k levels. Even levels
encode from states and odd levels encode to states. Custom functions are Transi-
tionsInSCC and DetectSCC. The former performs an explicit SCC computation
(e. g., [15]) on the abstraction and returns transitions of the state space corre-
sponding to abstract arcs in an SCC. The latter is presented in Algorithm 1.

Lines marked with ∗ belong to the computation of recurring states. To identify
recurring states, an additional node representing old states is passed to RelProd.
Reached states that are also in the set of old states are collected similarly to
the approach of constrained saturation [17]. Sign
 marks lines corresponding to
explicit search. The node-wise abstraction is built on-the-fly, then Transitions-
InSCC is used to extract candidate SCCs. Finally, on the line marked with ◦,
DetectSCC is called with the set of recurring states, N≤k, and transitions in the
candidate SCC to perform the incremental fixed-point computation.

7 Related Work

This section briefly summarizes different approaches to SCC computation, from
traditional SCC-hull algorithms to SAT-based solutions.

SCC-hull algorithms are usually variants of the algorithm of Emerson and
Lei [14]. They solve the SCC computation problem by computing a least fixed

654 V. Molnár et al.

point of the state space that is sure to contain at least one SCC. An SCC-hull is
a superset of states belonging to an SCC, thus it proves only the existence of an
SCC. The incremental SCC computation algorithm presented in Section 4 is also
based on the idea of SCC-hull computation. However, our method is tuned to
work on the fly, exploiting the results of previous runs to provide incrementality.

Saturation-based SCC computation has also been proposed. The algorithms
implemented in [18] are different from SCC-hull algorithms, because both the
algorithm of Xie and Beerel and the Transitive Closure method aim to compute
exactly those states that belong to an SCC. Because of the caching mechanism
of saturation, these algorithms can be very efficient to compute an exact coun-
terexample detected by our algorithm.

An extensive approach to using abstraction in SCC computation has been
proposed in [16]. By defining a lattice of abstractions based on one or more
components of the model, the paper presents strategies of using some of the ab-
stractions to discard uninteresting parts of the state space and search in relevant
components. While node-wise abstraction can be interpreted in that context, the
paper uses abstractions similar to the must abstraction presented in Section 5.2
and only accepting states are used to prove the lack of SCCs.

On-the-fly approaches to SCC computation and thus model checking also
exist [1, 11–13]. One particularly interesting solution is described in [10]. The
paper describes two types of abstractions used to achieve on-the-fly search, also
using saturation as a state space generation algorithm.

A different approach in SAT-based model checking is the recent approach
called IC3 [2]. By constructing a series of small intermediate lemmas, the k-
liveness algorithm [7] identifies one-way walls that separate the possible spaces
of SCCs. In this sense, the idea is similar to that of node-wise abstraction.

8 Evaluation

To demonstrate the efficiency of the presented new algorithm (referred to as
Hyb-MC), models of the Model Checking Contest2 have been used to compare
it to three competitive tools. NuSMV2 [6] is a BDD-based model checker imple-
menting traditional SCC-hull algorithms and is well-established in the industrial
and academical community. Its successor, nuXmv [3] implements a k-liveness al-
gorithm [7] based on IC3 for LTL model checking3. ITS-LTL is a powerful tool
based on saturation that implements various optimizations both for symbolic
encoding and on-the-fly SCC detection.

All four tools were run on 7 850 inputs: 27 scalable models of the Model Check-
ing Contest were used to obtain a total of 157 different instances, each checked
against 50 randomly generated LTL formulae produced by SPOT [9]. The mod-
els represent the behavior of mainly asynchronous, concurrent systems. Out of
the successfully checked cases, properties were fulfilled 2 811 times, while 3 565
cases gave negative results. In 1 474 cases, all the tools exceeded the time limit.

2 http://mcc.lip6.fr/
3 nuXmv was executed with flag “-check ltlspec klive”.

http://mcc.lip6.fr/

Saturation-Based Incremental LTL Model Checking with Inductive Proofs 655

n/a

102

100

10−2

n/a10210010−2

Hyb-MC (s, log)

S
S
G

(s
,
lo
g
)

10−1

101

n/a

102

100

10−2

n/a10210010−2

Hyb-MC (s, log)
IT

S
-L
T
L
(s
,
lo
g
)

10−1

101

n/a

102

100

10−2

n/a10210010−2

Hyb-MC (s, log)

N
u
S
M
V

(s
,
lo
g
)

10−1

101

n/a

102

100

10−2

n/a10210010−2

Hyb-MC (s, log)

n
u
X
m
v
(s
,
lo
g
)

10−1

101

Hyb-MC

ITS-LTL

NuSMV

nuXmv

#
M
ea
su
re
m
en
ts 2000

1500

1000

500

0

Invalid
Valid

ITS/Hyb-MC

102100

Tie
10410−210−4

Hyb-MC winsITS wins ITSHyb-MC

#
M
ea
su
re
m
en
ts

2000

1000

0

Invalid
Valid

nuXmv/Hyb-MC

102100

Tie
10410−210−4

Hyb-MC winsnuXmv wins nuXmvHyb-MC
n/a n/a

#
M
ea
su
re
m
en
ts

4000

3000

2000

1000

0

Invalid
Valid

NuSMV/Hyb-MC

102100

Tie
10410−210−4

Hyb-MC winsNuSMV wins NuSMVHyb-MC
n/a n/a

5000

timeout timeout

timeout timeout

timeouttimeout

103102100 10010−2 10−1

Time limit (s, log)

4000

2000

0

6000
#
C
o
m
p
le
te
d

n/a n/a

Fig. 4. Measurement results

Generated expressions contained a nearly equal number of safety and guarantee
properties, as well as obligation formulae and more complex properties.

Measurements were done on identical server machines with Intel Xeon pro-
cessors (4 cores, 2.2GHz) and 8 GB of RAM, with timeout set to 600 seconds.
The decision diagram based tools used the same variable ordering produced by
heuristics of the ITS toolset. Runtimes were measured internally by every tool,
usually including every step of the model checking process (in case of NuSMV
and nuXmv, internal transformation of the input was omitted from the result). A
prototype of Hyb-MC was implemented in .NET to conduct the measurements.

Results can be seen on Figure 4. On the scatterplots, each point represents a
single pair of model instance and property. The runtime of Hyb-MC is always on
the x-axis, while the runtimes of state space generation, ITS-LTL, NuSMV and
nuXmv are on the y-axis of the subfigures. A point above (below) the diagonal is
a measurement where Hyb-MC solved the problem faster (slower). The borders of
the diagrams represent the timeout of a measurement for one of the tools. As the
plots show, Hyb-MC usually finishes the verification faster than the state space
generation of the model, mainly because of on-the-fly operation and efficient
incremental operation. State space generation could be finished for some models
where model checking was unsuccessful, the overhead of model checking of these
complex properties could not be compensated by the incremental operation.
Comparing to the other model checking approaches, the vast majority of cases
show the competitiveness of our algorithm. The three histograms depict the

656 V. Molnár et al.

differences of runtimes: the bar in the middle shows cases where runtimes of the
tools were in the same order of magnitude, while every bar to the left or right
means an additional order of magnitude in the runtime of the corresponding tool
compared to the other. The last diagram shows the number of cases in which a
tool was able to finish the verification within the given time.

Analysis of collected data showed differences in the scalability of the algo-
rithms. While Hyb-MC and ITS-LTL is better in handling a huge number of
state variables, NuSMV and nuXmv performed much better on models with
state variables of large domains. Only nuXmv’s k-liveness algorithm proved to
be sensitive to different classes of properties, the other tools did not show sig-
nificant differences in the distribution of runtimes. During the measurements,
Hyb-MC spent only 17% of the time computing SCCs. Overall, 359 084 symbolic
fixed point computations were started, while abstraction and explicit algorithms
prevented 1.22 · 108 runs of symbolic SCC computation, 99.7% of all the cases.
89% of these cases were prevented by the absence of recurring states (as a first
check), while the remaining 11% were the cases where explicit runs on node-wise
abstractions managed to find even more evidence.4

9 Conclusion and Future Work

In this paper, a new algorithm has been presented for LTL model checking. The
described approach divides model checking into smaller tasks, and handles large
state spaces by performing efficient local computations on the components. The
absence of SCCs is proved with the help of a specialized abstraction function and
inductive reasoning, while existing SCCs are discovered by a new incremental
symbolic fixed point algorithm. These solutions constitute an efficient on-the-fly,
hybrid model checking approach that combines the advantages of explicit and
symbolic algorithms. Our solution uses saturation for state space traversal, which
makes it suitable for concurrent systems. Extensive measurements justified this
claim for the models of the Model Checking Contest.

The presented algorithm has a huge potential for future development. Follow-
ing the idea of driving the symbolic algorithm with explicit runs, a promising
direction is to combine partial order reduction with symbolic model checking.
In addition, we also plan to use advanced representations of the properties to
further improve the speed of model checking.

Acknowledgements. This work was partially supported by the ARTEMIS JU and
the Hungarian Research and Technological Innovation Fund in the frame of the R5-
COP project.

References

1. Biere, A., Zhu, Y., Clarke, E.: Multiple state and single state tableaux for combin-
ing local and global model checking. In: Olderog, E.-R., Steffen, B. (eds.) Correct
System Design. LNCS, vol. 1710, pp. 163–179. Springer, Heidelberg (1999)

4 For a detailed analysis of collected data, cf. http://inf.mit.bme.hu/en/tacas15.

http://inf.mit.bme.hu/en/tacas15

Saturation-Based Incremental LTL Model Checking with Inductive Proofs 657

2. Bradley, A.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg (2012)

3. Cavada, R., Cimatti, A., Dorigatti, M., Mariotti, A., Micheli, A., Mover, S., Grig-
gio, A., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. Tech. rep.,
Fondazione Bruno Kessler (2014)

4. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy
for symbolic state space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001.
LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)

5. Ciardo, G., Marmorstein, R., Siminiceanu, R.: The saturation algorithm for sym-
bolic state-space exploration. Int. J. on Softw. Tools for Technology Transfer 8(1),
4–25 (2006)

6. Cimatti, A., Clarke, E., Giunchiglia, E., et al.: NuSMV 2: An opensource tool for
symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 359–364. Springer, Heidelberg (2002)

7. Claessen, K., Sorensson, N.: A liveness checking algorithm that counts. In: Formal
Methods in Computer-Aided Design, 2012, pp. 52–59. IEEE (2012)

8. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algo-
rithms for the verification of temporal properties. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991)

9. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library us-
ing transition-based generalized Büchi automata. In: Proc. of the IEEE Int. Symp.
on Modeling, Analysis, and Simulation of Computer and Telecommunications Sys-
tems, pp. 76–83 (2004)

10. Duret-Lutz, A., Klai, K., Poitrenaud, D., Thierry-Mieg, Y.: Combining explicit and
symbolic approaches for better on-the-fly LTL model checking. arXiv:1106.5700
(cs) (2011)

11. Haddad, S., Ilié, J.M., Klai, K.: Design and evaluation of a symbolic and
abstraction-based model checker. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299,
pp. 196–210. Springer, Heidelberg (2004)

12. Klai, K., Poitrenaud, D.: MC-SOG: An LTL model checker based on symbolic
observation graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS,
vol. 5062, pp. 288–306. Springer, Heidelberg (2008)

13. Sebastiani, R., Tonetta, S., Vardi, M.: Symbolic systems, explicit properties: on
hybrid approaches for LTL symbolic model checking. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 350–363. Springer, Heidelberg (2005)

14. Somenzi, F., Ravi, K., Bloem, R.: Analysis of symbolic SCC hull algorithms. In:
Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 88–105.
Springer, Heidelberg (2002)

15. Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

16. Wang, C., Bloem, R., Hachtel, G.D., Ravi, K., Somenzi, F.: Compositional SCC
analysis for language emptiness. Form. Method. Syst. Des. 28(1), 5–36 (2006)

17. Zhao, Y., Ciardo, G.: Symbolic CTL model checking of asynchronous systems using
constrained saturation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 368–381. Springer, Heidelberg (2009)

18. Zhao, Y., Ciardo, G.: Symbolic computation of strongly connected components and
fair cycles using saturation. Innov. Syst. Softw. Eng. 7(2), 141–150 (2011)

Nested Antichains for WS1S

Tomáš Fiedor, Lukáš Holı́k, Ondřej Lengál, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. We propose a novel approach for coping with alternating quantifica-
tion as the main source of nonelementary complexity of deciding WS1S formu-
lae. Our approach is applicable within the state-of-the-art automata-based WS1S
decision procedure implemented, e.g. in MONA. The way in which the standard
decision procedure processes quantifiers involves determinization, with its worst
case exponential complexity, for every quantifier alternation in the prefix of a for-
mula. Our algorithm avoids building the deterministic automata—instead, it con-
structs only those of their states needed for (dis)proving validity of the formula. It
uses a symbolic representation of the states, which have a deeply nested structure
stemming from the repeated implicit subset construction, and prunes the search
space by a nested subsumption relation, a generalization of the one used by the
so-called antichain algorithms for handling nondeterministic automata. We have
obtained encouraging experimental results, in some cases outperforming MONA
by several orders of magnitude.

1 Introduction

Weak monadic second-order logic of one successor (WS1S) is a powerful, concise, and
decidable logic for describing regular properties of finite words. Despite its nonele-
mentary worst case complexity [1], it has been shown useful in numerous applications.
Most of the successful applications were due to the tool MONA [2], which implements
a finite automata-based decision procedure for WS1S and WS2S (a generalization of
WS1S to finite binary trees). The authors of MONA list a multitude of its diverse ap-
plications [3], ranging from software and hardware verification through controller syn-
thesis to computational linguistics, and further on. Among more recent applications,
verification of pointer programs and deciding related logics [4,5,6,7,8] can be men-
tioned, as well as synthesis from regular specifications [9]. MONA is still the standard
tool and the most common choice when it comes to deciding WS1S/WS2S. There are
other related automata-based tools that are more recent, such as jMosel [10] for a logic
M2L(Str), and other than automata-based approaches, such as [11]. They implement
optimizations that allow to outperform MONA on some benchmarks, however, none
provides an evidence of being consistently more efficient. Despite many optimizations
implemented in MONA and the other tools, the worst case complexity of the problem
sometimes strikes back. Authors of methods using the translation of their problem to
WS1S/WS2S are then forced to either find workarounds to circumvent the complexity
blowup, such as in [5], or, often restricting the input of their approach, give up translat-
ing to WS1S/WS2S altogether [12].

The decision procedure of MONA works with deterministic automata; it uses
determinization extensively and relies on minimization of deterministic automata to

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 658–674, 2015.
DOI: 10.1007/978-3-662-46681-0_59

Nested Antichains for WS1S 659

suppress the complexity blow-up. However, the worst case exponential complexity of
determinization often significantly harms the performance of the tool. Recent works
on efficient methods for handling nondeterministic automata suggest a way of allevi-
ating this problem, in particular works on efficient testing of language inclusion and
universality of finite automata [13,14,15] and size reduction [16,22] based on a simula-
tion relation. Handling nondeterministic automata using these methods, while avoiding
determinization, has been shown to provide great efficiency improvements in [24] (ab-
stract regular model checking) and also [23] (shape analysis). In this paper, we make
a major step towards building the entire decision procedure of WS1S on nondetermin-
istic automata using similar techniques. We propose a generalization of the antichain
algorithms of [13] that addresses the main bottleneck of the automata-based decision
procedure for WS1S, which is also the source of its nonelementary complexity: elimi-
nation of alternating quantifiers on the automata level.

More concretely, the automata-based decision procedure translates the input WS1S
formula into a finite word automaton such that its language represents exactly all mod-
els of the formula. The automaton is built in a bottom-up manner according to the
structure of the formula, starting with predefined atomic automata for literals and ap-
plying a corresponding automata operation for every logical connective and quantifier
(∧,∨,¬, ∃). The cause of the nonelementary complexity of the procedure can be ex-
plained on an example formula of the form ϕ′ = ∃Xm∀Xm−1 . . . ∀X2∃X1 : ϕ0.
The universal quantifiers are first replaced by negation and existential quantification,
which results in ϕ = ∃Xm¬∃Xm−1 . . .¬∃X2¬∃X1 : ϕ0. The algorithm then builds
a sequence of automata for the sub-formulae ϕ0, ϕ

�
0, . . . , ϕm−1, ϕ

�
m−1 of ϕ where for

0 ≤ i < m, ϕ�
i = ∃Xi+1 : ϕi, and ϕi+1 = ¬ϕ�

i . Every automaton in the sequence
is created from the previous one by applying the automata operations corresponding to
negation or elimination of the existential quantifier, the latter of which may introduce
nondeterminism. Negation applied on a nondeterministic automaton may then yield an
exponential blowup: given an automaton for ψ, the automaton for ¬ψ is constructed
by the classical automata-theoretic construction consisting of determinization by the
subset construction followed by swapping of the sets of final and non-final states. The
subset construction is exponential in the worst case. The worst case complexity of the
procedure run on ϕ is then a tower of exponentials with one level for every quantifier
alternation in ϕ; note that we cannot do much better—this non-elementary complexity
is an inherent property of the problem.

Our new algorithm for processing alternating quantifiers in the prefix of a formula
avoids the explicit determinization of automata in the classical procedure and signifi-
cantly reduces the state space explosion associated with it. It is based on a generalization
of the antichain principle used for deciding universality and language inclusion of fi-
nite automata [14,15]. It generalizes the antichain algorithms so that instead of being
used to process only one level of the chain of automata, it processes the whole chain
of quantifications with i alternations on-the-fly. This leads to working with automata
states that are sets of sets of sets . . . of states of the automaton representing ϕ0 of the
nesting depth i (this corresponds to i levels of subset construction being done on-the-
fly). The algorithm uses nested symbolic terms to represent sets of such automata states

660 T. Fiedor et al.

and a generalized version of antichain subsumption pruning which descends recursively
down the structure of the terms while pruning on all its levels.

Our nested antichain algorithm can be in its current form used only to process a quan-
tifier prefix of a formula, after which we return the answer to the validity query, but not
an automaton representing all models of the input formula. That is, we cannot use the
optimized algorithm for processing inner negations and alternating quantifiers which
are not a part of the quantifier prefix. However, despite this and the fact that our im-
plementation is far less mature than that of MONA, our experimental results still show
significant improvements over its performance, especially in terms of generated state
space. We consider this a strong indication that using techniques for nondeterministic
automata to decide WS1S (and WSkS) is highly promising. There are many more op-
portunities of improving the decision procedure based on nondeterministic automata,
by using techniques such as simulation relations or bisimulation up-to congruence [17],
and applying them to process not only the quantifier prefix, but all logical connectives
of a formula. We consider this paper to be the first step towards a decision procedure
for WS1S/WSkS with an entirely different scalability than the current state-of-the-art.

Plan of the paper. We define the logic WS1S in Section 2. In Sections 3 and 4, we
introduce finite word automata and describe the classical decision procedure for WS1S
based on finite word automata. In Section 5, we introduce our method for dealing with
alternating quantifiers. Finally, we give an experimental evaluation and conclude the
paper in Sections 6 and 7.

2 WS1S

In this section we introduce the weak monadic second-order logic of one successor
(WS1S). We introduce only its minimal syntax here, for the full standard syntax and
a more thorough introduction, see Section 3.3 in [18].

WS1S is a monadic second-order logic over the universe of discourseN0. This means
that the logic allows second-order variables, usually denoted using upper-case letters
X,Y, . . . , that range over finite subsets of N0, e.g. X = {0, 3, 42}. Atomic formulae are
of the form (i) X ⊆ Y , (ii) Sing(X), (iii) X = {0}, and (iv) X = Y +1, where X and
Y are variables. The atomic formulae are interpreted in turn as (i) standard set inclusion,
(ii) the singleton predicate, (iii) X is a singleton containing 0, and (iv) X = {x} and
Y = {y} are singletons and x is the successor of y, i.e. x = y + 1. Formulae are built
from the atomic formulae using the logical connectives ∧,∨,¬, and the quantifier ∃X
(for a second-order variable X).

Given a WS1S formula ϕ(X1, . . . , Xn) with free variables X1, . . . , Xn, the assign-
ment ρ = {X1 �→ S1, . . . , Xn �→ Sn}, where S1, . . . , Sn are finite subsets of N0,
satisfies ϕ, written as ρ |= ϕ, if the formula holds when every variable Xi is replaced
with its corresponding value Si = ρ(Xi). We say that ϕ is valid, denoted as |= ϕ, if it
is satisfied by all assignments of its free variables to finite subsets of N0. Observe the
limitation to finite subsets of N0 (related to the adjective weak in the name of the logic);
a WS1S formula can indeed only have finite models (although there may be infinitely
many of them).

Nested Antichains for WS1S 661

3 Preliminaries and Finite Automata

For a set D and a set S ⊆ 2D we use ↓S to denote the downward closure of S, i.e.
↓S = {R ⊆ D | ∃S ∈ S : R ⊆ S}, and ↑S to denote the upward closure of S,
i.e. ↑S = {R ⊆ D | ∃S ∈ S : R ⊇ S}. The set S is in both cases called the
set of generators of ↑S or ↓S respectively. A set S is downward closed if it equals
its downward closure, S = ↓S, and upward closed if it equals to its upward closure,
S = ↑S. The choice operator

∐
(sometimes called the unordered Cartesian product)

is an operator that, given a set of sets D = {D1, . . . , Dn}, returns the set of all sets
{d1, . . . , dn} obtained by taking one element di from every set Di. Formally,

∐
D =

{
{d1, . . . , dn} | (d1, . . . , dn) ∈

n∏

i=1

Di

}
(1)

where
∏

denotes the Cartesian product. Note that for a set D,
∐
{D} is the set of all

singleton subsets of D, i.e.
∐
{D} = {{d} | d ∈ D}. Further note that if any Di is the

empty set ∅, the result is
∐
D = ∅.

Let X be a set of variables. A symbol τ over X is a mapping of all variables in X to
either 0 or 1, e.g. τ = {X1 �→ 0, X2 �→ 1} for X = {X1, X2}. An alphabet over X
is the set of all symbols over X, denoted as ΣX. For any X (even empty), we use 0 to
denote the symbol which maps all variables from X to 0, 0 ∈ ΣX.

A (nondeterministic) finite (word) automaton (abbreviated as FA) over a set of vari-
ables X is a quadruple A = (Q,Δ, I, F) where Q is a finite set of states, I ⊆ Q is a set
of initial states, F ⊆ Q is a set of final states, and Δ is a set of transitions of the form
(p, τ, q) where p, q ∈ Q and τ ∈ ΣX. We use p

τ−→ q ∈ Δ to denote that (p, τ, q) ∈ Δ.
Note that for an FA A over X = ∅, A is a unary FA with the alphabet ΣX = {0}.

A run r of A over a word w = τ1τ2 . . . τn ∈ Σ∗
X

from the state p ∈ Q to the state
s ∈ Q is a sequence of states r = q0q1 . . . qn ∈ Q+ such that q0 = p, qn = s and
for all 1 ≤ i ≤ n there is a transition qi−1

τi−→ qi in Δ. If s ∈ F, we say that r is
an accepting run. We write p

w
=⇒ s to denote that there exists a run from the state

p to the state s over the word w. The language accepted by a state q is defined by
LA(q) = {w | q w

=⇒ qf , qf ∈ F}, while the language of a set of states S ⊆ Q is
defined as LA(S) =

⋃
q∈S LA(q). When it is clear which FA A we refer to, we only

write L(q) or L(S). The language of A is defined as L(A) = LA(I). We say that the
state q accepts w and that the automaton A accepts w to express that w ∈ LA(q) and
w ∈ L(A) respectively. We call a language L ⊆ Σ∗

X
universal iff L = Σ∗

X
.

For a set of states S ⊆ Q, we define post [Δ,τ](S) =
⋃

s∈S{t | s
τ−→ t ∈ Δ},

pre [Δ,τ](S) =
⋃

s∈S{t | t
τ−→ s ∈ Δ}, and cpre [Δ,τ](S) = {t | post [Δ,τ]({t}) ⊆ S}.

The complement of A is the automatonAC = (2Q, ΔC , {I}, ↓{Q \ F}) where ΔC ={
P

τ−→ post [Δ,τ](P)
∣
∣
∣ P ⊆ Q

}
; this corresponds to the standard procedure that first

determinizes A by the subset construction and then swaps its sets of final and non-final
states, and ↓{Q \ F} is the set of all subsets of Q that do not contain a final state of A.
The language of AC is the complement of the language of A, i.e. L(AC) = L(A).

For a set of variables X and a variable X , the projection of X from X, denoted as
πX, is the set X \ {X}. For a symbol τ , the projection of X from τ , denoted

662 T. Fiedor et al.

π[X](τ), is obtained from τ by restricting τ to the domain πX. For a transition
relation Δ, the projection of X from Δ, denoted as π[X](Δ), is the transition relation
{
p

π[X](τ)−−−−−→ q | p τ−→ q ∈ Δ
}

.

4 Deciding WS1S with Finite Automata

The classical decision procedure for WS1S [19] (as described in Section 3.3 of [18])
is based on a logic-automata connection and decides validity (satisfiability) of a WS1S
formula ϕ(X1, . . . , Xn) by constructing the FA Aϕ over {X1, . . . , Xn} which recog-
nizes encodings of exactly the models of ϕ. The automaton is built in a bottom-up
manner, according to the structure of ϕ, starting with predefined atomic automata for
literals and applying a corresponding automata operation for every logical connective
and quantifier (∧,∨,¬, ∃). Hence, for every sub-formula ψ of ϕ, the procedure will
compute the automaton Aψ such that L(Aψ) represents exactly all models of ψ, termi-
nating with the result Aϕ.

The alphabet of Aϕ consists of all symbols over the set X = {X1, . . . , Xn} of free
variables of ϕ (for a, b ∈ {0, 1} and X = {X1, X2}, we use X1 : a

X2 : b
to denote the

symbol {X1 �→ a,X2 �→ b}). A word w from the language of Aϕ is a sequence of
these symbols, e.g. X1 : ε

X2 : ε
, X1 : 011
X2 : 101

, or X1 : 01100
X2 : 10100

. We denote the i-th symbol of w as

w[i], for i ∈ N0. An assignment ρ : X → 2N0 mapping free variables X of ϕ to subsets
of N0 is encoded into a word wρ of symbols over X in the following way: wρ contains
1 in the j-th position of the row for Xi iff j ∈ Xi in ρ. Formally, for every i ∈ N0 and
Xj ∈ X, if i ∈ ρ(Xj), then wρ[i] maps Xj �→ 1. On the other hand, if i �∈ ρ(Xj), then
either wρ[i] maps Xj �→ 0, or the length of w is smaller than or equal to i. Notice that
there exist an infinite number of encodings of ρ. The shortest one is ws

ρ of the length
n + 1, where n is the largest number appearing in any of the sets that is assigned to
a variable of X in ρ, or −1 when all these sets are empty. The rest of the encodings are
all those corresponding to ws

ρ extended with an arbitrary number of 0 symbols appended

to its end. For example, X1 : 0
X2 : 1

, X1 : 00
X2 : 10

, X1 : 000
X2 : 100

, X1 : 000 . . . 0
X2 : 100 . . . 0

are all encodings of the

assignment ρ = {X1 �→ ∅, X2 �→ {0}}. For the soundness of the decision procedure, it
is important that Aϕ always accepts either all encodings of ρ or none of them.

The automata Aϕ∧ψ and Aϕ∨ψ are constructed from Aϕ and Aψ by standard
automata-theoretic union and intersection operations, preceded by the so-called cylin-
drification which unifies the alphabets of Aϕ and Aψ. Since these operations, as well as
the automata for the atomic formulae, are not the subject of the contribution proposed
in this paper, we refer the interested reader to [18] for details.

The part of the procedure which is central for this paper is processing negation and
existential quantification; we will therefore describe it in detail. The FA A¬ϕ is con-
structed as the complement of Aϕ. Then, all encodings of the assignments that were ac-
cepted by Aϕ are rejected by A¬ϕ and vice versa. The FA A∃X:ϕ is obtained from the
FA Aϕ = (Q,Δ, I, F) by first projecting X from the transition relation Δ, yielding the
FA A′

ϕ = (Q, π[X](Δ), I, F). However,A′
ϕ cannot be directly used as A∃X:ϕ. The rea-

son is that A′
ϕ may now be inconsistent in accepting some encodings of an assignment

Nested Antichains for WS1S 663

ρ while rejecting other encodings of ρ. For example, suppose that Aϕ accepts the words
X1 : 010
X2 : 001

, X1 : 0100
X2 : 0010

, X1 : 0100 . . . 0
X2 : 0010 . . . 0

and we are computing the FA for ∃X2 : ϕ. When we

remove X2 from all symbols, we obtain A′
ϕ that accepts the words X1 : 010 , X1 : 0100 ,

X1 : 0100 . . . 0 , but does not accept the word X1 : 01 that encodes the same assignment
(because X1 : 01

X2 : ??
�∈ L(Aϕ) for any values in the places of “?”s). As a remedy for this

situation, we need to modify A′
ϕ to also accept the rest of the encodings of ρ. This is

done by enlarging the set of final states of A′
ϕ to also contain all states that can reach

a final state of A′
ϕ by a sequence of 0 symbols. Formally,A∃X:ϕ = (Q, π[X](Δ), I, F �)

is obtained from A′
ϕ = (Q, π[X](Δ), I, F) by computing F � from F using the fixpoint

computation F � = μZ . F ∪ pre [π[X](Δ),0](Z). Intuitively, the least fixpoint denotes the
set of states backward-reachable from F following transitions of π[X](Δ) labelled by 0.

The procedure returns an automaton Aϕ that accepts exactly all encodings of the
models of ϕ. This means that the language of Aϕ is (i) universal iff ϕ is valid, (ii) non-
universal iff ϕ is invalid, (iii) empty iff ϕ is unsatisfiable, and (iv) non-empty iff ϕ is
satisfiable. Notice that in the particular case of ground formulae (i.e. formulae without
free variables), the language of Aϕ is either L(Aϕ) = {0}∗ in the case ϕ is valid, or
L(Aϕ) = ∅ in the case ϕ is invalid.

5 Nested Antichain-Based Approach for Alternating Quantifiers

We now present our approach for dealing with alternating quantifiers in WS1S formu-
lae. We consider a ground formula ϕ of the form

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)
︸ ︷︷ ︸

ϕ1

. .
.

︸ ︷︷ ︸
ϕm

(2)

where each Xi is a set of variables {Xa, . . . , Xb}, ∃Xi is an abbreviation for a non-
empty sequence ∃Xa . . .∃Xb of consecutive existential quantifications, and ϕ0 is an
arbitrary formula called the matrix of ϕ. Note that the problem of checking validity or
satisfiability of a formula with free variables can be easily reduced to this form.

The classical procedure presented in Section 4 computes a sequence of automata
Aϕ0 ,Aϕ�

0
, . . . ,Aϕ�

m−1
,Aϕm where for all 0 ≤ i ≤ m − 1, ϕ�

i = ∃Xi+1 : ϕi and

ϕi+1 = ¬ϕ�
i . The ϕi’s are the subformulae of ϕ shown in Equation 2. Since elimi-

nating existential quantification on the automata level introduces nondeterminism (due
to the projection on the transition relation), every Aϕ�

i
may be nondeterministic. The

computation of Aϕi+1 then involves subset construction and becomes exponential. The
worst case complexity of eliminating the prefix is therefore the tower of exponentials
of the height m. Even though the construction may be optimized, e.g. by minimizing
every Aϕi (which is implemented by MONA), the size of the generated automata can
quickly become intractable.

The main idea of our algorithm is inspired by the antichain algorithms [13] for testing
language universality of an automaton A. In a nutshell, testing universality of A is

664 T. Fiedor et al.

testing whether in the complement A of A (which is created by determinization via
subset construction, followed by swapping final and non-final states), an initial state
can reach a final state. The crucial idea of the antichain algorithms is based on the
following: (i) The search can be done on-the-fly while constructing A. (ii) The sets
of states that arise during the search are closed (upward or downward, depending on
the variant of the algorithm). (iii) The computation can be done symbolically on the
generators of these closed sets. It is enough to keep only the extreme generators of the
closed sets (maximal for downward, minimal for upward closed). The generators that
are not extreme (we say that they are subsumed) can be pruned away, which vastly
reduces the search space.

We notice that individual steps of the algorithm for constructing Aϕ are very similar
to testing universality. Automaton Aϕi arises by subset construction from Aϕ�

i−1
, and

to compute Aϕ�
i
, it is necessary to compute the set of final states F �

i . Those are states
backward reachable from the final states of Aϕi via a subset of transitions of Δi (those
labelled by symbols projected to 0 by πi+1). To compute F �

i , the antichain algorithms
could be actually taken off-the-shelf and run with Aϕ�

i−1
in the role of the input A and

Aϕ�
i

in the role of A. However, this approach has the following two problems. First,

antichain algorithms do not produce the automaton A (here Aϕ�
i
), but only a symbolic

representation of a set of (backward) reachable states (here of F �
i). Since Aϕ�

i
is the

input of the construction of Aϕi+1 , the construction of Aϕ could not continue. The
other problem is that the size of the input Aϕ�

i−1
of the antichain algorithm is only

limited by the tower of exponentials of the height i − 1, and this might be already far
out of reach.

The main contribution of our paper is an algorithm that alleviates the two problems
mentioned above. It is based on a novel way of performing not only one, but all the 2m
steps of the construction of Aϕ on-the-fly. It uses a nested symbolic representation of
sets of states and a form of nested subsumption pruning on all levels of their structure.
This is achieved by a substantial refinement of the basic ideas of antichain algorithms.

5.1 Structure of the Algorithm

Let us now start explaining our on-the-fly algorithm for handling quantifier alterna-
tion. Following the construction of automata in Section 4, the structure of the automata
from the previous section, Aϕ0 ,Aϕ�

0
, . . . ,Aϕ�

m−1
,Aϕm , can be described using the fol-

lowing recursive definition. We use πi(C) for any mathematical structure C to denote
projection of all variables in X1 ∪ · · · ∪ Xi from C.

Let Aϕ0 = (Q0, Δ0, I0, F0) be an FA over X. Then, for each 0 ≤ i < m, Aϕ�
i

and

Aϕi+1 are FAs over πi+1(X) that have from the construction the following structure:

Aϕ�
i
= (Qi, Δ

�
i , Ii, F

�
i) where Aϕi+1 = (Qi+1, Δi+1, Ii+1, Fi+1) where

Δ�
i =πi+1(Δi) and Δi+1 =

{

R
τ−→post[Δ�

i ,τ](R)
∣

∣

∣R∈Qi+1

}

,

F �
i =μZ . Fi∪pre[Δ�

i ,0](Z). Qi+1 =2Qi , Ii+1={Ii}, and Fi+1=↓{Qi\F �
i }.

Nested Antichains for WS1S 665

We recall that Aϕ�
i

directly corresponds to existential quantification (cf. Section 4), and
Aϕi+1 directly corresponds to the complement of Aϕ�

i
(cf. Section 3).

A crucial observation behind our approach is that, because ϕ is ground, Aϕ is an FA
over an empty set of variables, and, therefore, L(Aϕ) is either the empty set ∅ or the
set {0}∗. Therefore, we need to distinguish between these two cases only. To determine
which of them holds, we do not need to explicitly construct the automaton Aϕ. Instead,
it suffices to check whether Aϕ accepts the empty string ε. This is equivalent to checking
existence of a state that is at the same time final and initial, that is

|= ϕ iff Im ∩ Fm �= ∅. (3)

To compute Im from I0 is straightforward (it equals {{. . . {{I0}} . . .}} nested m-
times). In the rest of the section, we will describe how to compute Fm (its symbolic
representation), and how to test whether it intersects with Im.

The algorithm takes advantage of the fact that to represent final states, one can use
their complement, the set of non-final states. For 0 ≤ i ≤ m, we write Ni and N �

i

to denote the sets of non-final states Qi \ Fi of Ai and Qi \ F �
i of A�

i respectively.
The algorithm will then instead of computing the sequence of automata Aϕ0 , Aϕ�

0
, . . . ,

Aϕ�
m−1

, Aϕm compute the sequence F0, F
�
0 , N1, N

�
1 , . . . up to either Fm (if m is even)

or Nm (if m is odd), which suffices for testing the validity of ϕ. The algorithm starts
with F0 and uses the following recursive equations:

(i) Fi+1 = ↓{N �
i }, (ii) F �

i = μZ . Fi ∪ pre [Δ�
i ,0](Z),

(iii) Ni+1 = ↑
∐
{F �

i }, (iv) N �
i = νZ .Ni ∩ cpre [Δ�

i ,0](Z).
(4)

Intuitively, Equations (i) and (ii) are directly from the definition of Ai and A�
i . Equa-

tion (iii) is a dual of Equation (i): Ni+1 contains all subsets of Qi that contain at least
one state from F �

i . Finally, Equation (iv) is a dual of Equation (ii): in the k-th iteration
of the greatest fixpoint computation, the current set of states Z will contain all states
that cannot reach an Fi state over 0 within k steps. In the next iteration, only those states
of Z are kept such that all their 0-successors are in Z . Hence, the new value of Z is the
set of states that cannot reach Fi over 0 in k + 1 steps, and the computation stabilises
with the set of states that cannot reach Fi over 0 in any number of steps.

In the next two sections, we will show that both of the above fixpoint computations
can be carried out symbolically on representatives of upward/downward closed sets.
Particularly, in Sections 5.2 and 5.3, we show how the fixpoints from Equations (ii) and
(iv) can be computed symbolically, using subsets of Qi−1 as representatives (genera-
tors) of upward/downward closed subsets of Qi. Section 5.4 explains how the above
symbolic fixpoint computations can be carried out using nested terms of depth i as
a symbolic representation of computed states of Qi. Section 5.5 shows how to test
emptiness of Im ∩ Fm on the symbolic terms, and Section 5.6 describes the subsump-
tion relation used to minimize the symbolic term representation used within computa-
tions of Equations (ii) and (iv). Proofs of the lemmas and used equations can be found
in [25].

666 T. Fiedor et al.

5.2 Computing N �
i on Representatives of ↑∐R-sets

Computing N �
i at each odd level of the hierarchy of automata is done by computing the

greatest fixpoint of the function from Equation 4(iv):

fN�
i
(Z) = Ni ∩ cpre [Δ�

i ,0](Z). (5)

We will show that the whole fixpoint computation from Equation 4(iv) can be carried
out symbolically on the representatives of Z . We will explain that: (a) All intermediate
values of Z have the form ↑

∐
R, R ⊆ Qi, so the sets R can be used as their symbolic

representatives. (b) cpre and ∩ can be computed on such a representation efficiently.
Let us start with the computation of cpre [Δ�

i ,τ](Z) where τ ∈ πi+1(X), assuming
that Z is of the form ↑

∐
R, represented by R = {R1, . . . , Rn}. Observe that a set

of symbolic representatives R stands for the intersection of denotations of individual
representatives, that is

↑
∐
R =

⋂

Rj∈R
↑
∐
{Rj}. (6)

Z can thus be written as the cpre-image cpre [Δ�
i ,τ](

⋂
S) of the intersection of the ele-

ments of a set S having the form ↑
∐
{Rj}, Rj ∈ R. Further, because cpre distributes

over ∩, we can compute the cpre-image of an intersection by computing intersection of
the cpre-images, i.e.

cpre [Δ�
i ,τ](

⋂
S) =

⋂

S∈S
cpre [Δ�

i ,τ](S). (7)

By the definition of Δ�
i (where Δ�

i = πi+1(Δi)), cpre [Δ�
i ,τ](S) can be computed using

the transition relation Δi for the price of further refining the intersection. In particular,

cpre [Δ�
i ,τ](S) =

⋂

ω∈π−1
i+1(τ)

cpre [Δi,ω](S). (8)

Intuitively, cpre [Δ�
i ,τ](S) contains states from which every transition labelled by any

symbol that is projected to τ by πi+1 has its target in S. Using Equations 6, 7, and 8,
we can write cpre [Δ�

i ,τ](Z) as
⋂

S∈S,ω∈π−1
i+1(τ)

cpre [Δi,ω](S).

To compute the individual conjuncts cpre [Δi,ω](S), we take advantage of the fact
that every S is in the special form ↑

∐
{Rj}, and that Δi is, by its definition (deter-

minization via subset construction), monotone w.r.t. ⊇. That is, if P
ω−→ P ′ ∈ Δi for

some P, P ′ ∈ Qi, then for every R ⊇ P , there is R′ ⊇ P ′ s.t. R
ω−→ R′ ∈ Δi. Due

to monotonicity, the cpre [Δi,ω]-image of an upward closed set is also upward closed.
Moreover, we observe that it can be computed symbolically using pre on elements of
its generators. Particularly, for a set of singletons S = ↑

∐
{Rj}, we get the following

equation:
cpre [Δi,ω](↑

∐
{Rj}) = ↑

∐{
pre [Δ�

i−1,ω](Rj)
}
. (9)

Intuitively, the sets with post -images above a singleton set {p} ∈
{
{p} | p ∈ Rj

}
=

↑
∐
{Rj} are those that contain at least one state q ∈ Qi−1 such that q

ω−→ p ∈

Nested Antichains for WS1S 667

Δ�
i−1. Using Equation 9, the set cpre [Δ�

i ,τ](Z) can then be rewritten as the intersec-
tion

⋂
R∈R,ω∈π−1

i+1(τ)
↑
∐{

pre [Δ�
i−1,ω](Rj)

}
. By applying Equation 6, we get the final

formula for cpre [Δ�
i ,τ] shown in the lemma below.

Lemma 1. cpre [Δ�
i ,τ](↑

∐
R) = ↑

∐{
pre [Δ�

i−1,ω](Rj) | ω ∈ π−1
i+1(τ), Rj ∈ R

}
.

To compute fN�
i
(Z), it remains to intersect cpre [Δ�

i ,0](Z), computed using Lemma 1,

with Ni. By Equation 4(iii), Ni equals ↑
∐
{F �

i−1}, and, by Equation 6, the intersection
can be done symbolically as

fN�
i
(Z) = ↑

∐(
{F �

i−1} ∪
{
pre [Δ�

i−1,ω](Rj) | ω ∈ π−1
i+1(0), Rj ∈ R

})
. (10)

Finally, note that a symbolic application of fN�
i

to Z = ↑
∐
R represented as the set R

reduces to computing pre-images of the elements of R, which are then put next to each
other, together with F �

i−1. The computation starts from Ni = ↑
∐
{F �

i−1}, represented

by {F �
i−1}, and each of its steps, implemented by Equation 10, preserves the form of

sets ↑
∐
R, represented by R.

5.3 Computing F �
i on Representatives of ↓R-sets

Similarly as in the previous section, computation of F �
i at each even level of the au-

tomata hierarchy is done by computing the least fixpoint of the function

fF �
i
(Z) = Fi ∪ pre [Δ�

i ,0](Z). (11)

We will show that the whole fixpoint computation from Equation 4(ii) can be carried out
symbolically. We will explain the following: (a) All intermediate values of Z are of the
form ↓R, R ⊆ Qi, so the sets R can be used as their symbolic representatives. (b) pre
and ∪ can be computed efficiently on such a symbolic representation. The computation
is a simpler analogy of the one in Section 5.2.

We start with the computation of pre [Δ�
i ,τ](Z) where τ ∈ πi+1(X), assuming that Z

is of the form ↓R, represented by R = {R1, . . . , Rn}. A simple analogy to Equations 6
and 7 of Section 5.2 is that the union of downward closed sets is a downward closed
set generated by the union of their generators, i.e. ↓R =

⋃
Rj∈R ↓{Rj} and that pre

distributes over union, i.e. pre [Δ�
i ,τ](

⋃
R) =

⋃
Rj∈R pre [Δ�

i ,τ](↓{Rj}). An analogy of
Equation 8 holds too:

pre [Δ�
i ,τ](S) =

⋃

ω∈π−1
i+1(τ)

pre [Δi,ω](S). (12)

Intuitively, pre [Δ�
i ,τ](S) contains states from which at least one transition labelled by

any symbol that is projected to τ by πi+1 leaves with the target in S. Using Equation 12,
we can write pre [Δ�

i ,τ](Z) as
⋃

Rj∈R,ω∈π−1
i+1(τ)

pre [Δi,ω](↓{Rj}).
To compute the individual disjuncts pre [Δi,ω](↓{Rj}), we take advantage of the fact

that every ↓{Rj} is downward closed, and that Δi is, by definition (determinization by

668 T. Fiedor et al.

subset construction), monotone w.r.t. ⊆. That is, if P
ω−→ P ′ ∈ Δi for some P, P ′ ∈ Qi,

then for every R ⊆ P , there is R′ ⊆ P ′ s.t. R
ω−→ R′ ∈ Δi. Due to monotonicity, the

pre [Δi,ω]-image of a downward closed set is downward closed. Moreover, we observe
that it can be computed symbolically using cpre on elements of its generators. In par-
ticular, for a set ↓{Rj}, we get the following equation, which is a dual of Equation 9:

pre [Δi,ω](↓{Rj}) = ↓{cpre [Δ�
i−1,ω](Rj)}. (13)

Intuitively, the sets with the post -images below Rj are those which do not have an
outgoing transition leading outside Rj . The largest such set is cpre [Δ�

i−1,ω](Rj). Using
Equation 13, pre [Δ�

i ,τ](Z) can be rewritten as
⋃

Rj∈R,ω∈π−1
i+1(τ)

↓{cpre [Δ�
i−1,ω](Rj)},

which gives us the final formula for pre [Δ�
i ,τ] described in Lemma 2.

Lemma 2. pre [Δ�
i ,τ](↓R) = ↓{cpre [Δ�

i−1,ω](Rj) | ω ∈ π−1
i+1(τ), Rj ∈ R}.

To compute fF �
i
(Z), it remains to unite pre [Δ�

i ,0](Z), computed using Lemma 2, with

Fi. From Equation 4(i), Fi equals ↓{N �
i−1}, so the union can be done symbolically as

fF �
i
(Z) = ↓

(
{N �

i−1} ∪
{
cpre [Δ�

i−1,ω](Rj) | ω ∈ π−1
i+1(0), Rj ∈ R

})
. (14)

Therefore, a symbolic application of fF �
i

to Z = ↓R represented using the set R re-
duces to computing cpre-images of elements of R, which are put next to each other, to-
gether with N �

i−1. The computation starts from Fi = ↓{N �
i−1}, represented by {N �

i−1},
and each of its steps, implemented by Equation 14, preserves the form of sets ↓R,
represented by R.

5.4 Computation of F �
i and N �

i on Symbolic Terms

Sections 5.2 and 5.3 show how sets of states arising within the fixpoint computations
from Equations 4(ii) and 4(iv) can be represented symbolically using representatives
which are sets of states of the lower level. The sets of states of the lower level will be
again represented symbolically. When computing the fixpoint of level i, we will work
with nested symbolic representation of states of depth i. Particularly, sets of states of
Qk, 0 ≤ k ≤ i, are represented by terms of level k where a term of level 0 is a subset
of Q0, a term of level 2j + 1, j ≥ 0, is of the form ↑

∐
{t1, . . . , tn} where t1, . . . , tn

are terms of level 2j, and a term of level 2j, j > 0, is of the form ↓{t1, . . . , tn} where
t1, . . . , tn are terms of level 2j − 1.

The computation of cpre and fN�
2j+1

on a term of level 2j + 1 and computation of

pre and fF �
2j

on a term of level 2j then becomes a recursive procedure that descends via

the structure of the terms and produces again a term of level 2j + 1 or 2j respectively.
In the case of cpre and fN�

2j+1
called on a term of level 2j + 1, Lemma 1 reduces

the computation to a computation of pre on its sub-terms of level 2j, which is again
reduced by Lemma 2 to a computation of cpre on terms of level 2j− 1, and so on until
the bottom level where the algorithm computes pre on the terms of level 0 (subsets of
Q0). The case of pre and fF �

2j
called on a term of level 2j is symmetrical.

Nested Antichains for WS1S 669

Example. We will demonstrate the run of our algorithm on the following abstract ex-
ample. Consider a ground WS1S formula ϕ = ¬∃X3¬∃X2¬∃X1 : ϕ0 and an FA A0 =
(Q0, Δ0, I0 = {a}, F0 = {a, b}) that represents ϕ0. Recall that our method decides
validity of ϕ by computing symbolically the sequence of sets F �

0 , N1, N
�
1 , F2, F

�
2 , N3,

each of them represented using a symbolic term, and then checks if I3 ∩N3 �= ∅. In the
following paragraph, we will show how such a sequence is computed and interleave the
description with examples of possible intermediate results.

The fixpoint computation from Equation 4(ii) of the first set in the sequence, F �
0 , is

an explicit computation of the set of states backward-reachable from F0 via 0 transitions
of Δ�

0. It is done using Equation 11, yielding, e.g. the term

t[F �
0] = F �

0 = {a, b, c}.
The fixpoint computation of N �

1 from Equation 4(iv) is done symbolically. It starts from
N1 represented using Equation 4(iii) as the term t[N1] = ↑

∐{
{a, b, c}

}
, and each of

its iterations is carried out using Equation 10. Equation 10 transforms the problem of
computing cpre [Δ1,ω

′]-image of a term into a computation of a series of pre [Δ�
0,ω]-

images of its sub-terms, which is carried out using Equation 11 in the same way as
when computing t[F �

0], ending with, e.g. the term

t[N�
1] = ↑

∐{
{a, b, c}, {b, c}, {c, d}

}
.

The term representing F2 is then t[F2] = ↓{t[N�
1]}, due to Equation 4(i). The symbolic

fixpoint computation of F �
2 from Equation 4(ii) then starts from t[F2], in our example

t[F2] = ↓
{
↑
∐{

{a, b, c}, {b, c}, {c, d}
}}

.

Its steps are computed using Equation 14, which transforms the computation of the
image of pre [Δ�

2,ω
′′] into computations of a series of cpre [Δ�

1,ω
′]-images of sub-terms.

These are in turn transformed by Lemma 1 into computations of pre [Δ�
0,ω]-images of

sub-sub-terms, subsets of Q0, in our example yielding, e.g. the term

t[F �
2] = ↓

{
↑
∐{

{a, b, c}, {b, c}, {c, d}
}
, ↑

∐{
{b}, {d}

}
, ↑

∐{
{a}, {c, d}

}}
.

Using Equation 4(iv), the final term representing N3 is then

t[N3] = ↑
∐
{

↓
{
↑
∐{

{a, b, c}, {b, c}, {c, d}
}
, ↑

∐{
{b}, {d}

}
, ↑

∐{
{a}, {c, d}

}}
}

.

In the next section, we will describe how we check whether I3 ∩ F3 �= ∅ using the
computed term t[N3].

5.5 Testing Im ∩ Fm

?

�= ∅ on Symbolic Terms

Due to the special form of the set Im (every Ii, 1 ≤ i ≤ m, is the singleton {Ii−1}),
the test Im ∩ Fm �= ∅ can be done efficiently over the symbolic terms representing
Fm. Because Im = {Im−1} is a singleton set, testing Im ∩ Fm �= ∅ is equivalent to
testing Im−1 ∈ Fm. If m is odd, our approach computes the symbolic representation
of Nm instead of Fm. Obviously, since Nm is the complement of Fm, it holds that

670 T. Fiedor et al.

Im−1 ∈ Fm ⇐⇒ Im−1 �∈ Nm. Our way of testing Im−1 ∈ Ym on a symbolic
representation of the set Ym of level m is based on the following equations:

{x} ∈ ↓Y ⇐⇒ ∃Y ∈ Y : x ∈ Y (15)

{x} ∈ ↑
∐
Y ⇐⇒ ∀Y ∈ Y : x ∈ Y (16)

and for i = 0, I0 ∈ ↑
∐
Y ⇐⇒ ∀Y ∈ Y : I0 ∩ Y �= ∅. (17)

Given a symbolic term t[X] of level m representing a set X ⊆ Qm, testing emptiness
of Im ∩ Fm or Im ∩Nm can be done over t[X] by a recursive procedure that descends
along the structure of t[X] using Equations 15 and 16, essentially generating an AND-
OR tree, terminating the descent by the use of Equation 17.

Example. In the example of Section 5.4, we would test whether {{{{a}}}} ∩N3 = ∅
over t[N3]. This is equivalent to testing whether I2 = {{{a}}} ∈ N3. From Equation 16
we get that I2 ∈ N3 ⇐⇒ I1 = {{a}} ∈ F �

2 because F �
2 is the denotation of the only

sub-term t[F �
2] of t[N3]. Equation 15 implies that I1 = {{a}} ∈ F �

2 ⇐⇒ {a} ∈
N �

1 ∨ {a} ∈ ↑
∐{

{b}, {d}
}
∨ {a} ∈ ↑

∐{
{a}, {c, d}

}
. Each of the disjuncts could

then be further reduced by Equation 16 into a conjunction of membership queries on
the base level which would be solved by Equation 17. Since none of the disjuncts is
satisfied, we conclude that I1 �∈ F �

2 , so I2 �∈ N3, implying that I2 ∈ F3 and thus obtain
the result |= ϕ.

5.6 Subsumption of Symbolic Terms

Although the use of symbolic terms instead of an explicit enumeration of sets of states
itself considerably reduces the searched space, an even greater degree of reduction can
be obtained using subsumption inside the symbolic representatives to reduce their size,
similarly as in the antichain algorithms [14]. For any set of sets X containing a pair of
distinct elements Y, Z ∈ X s.t. Y ⊆ Z , it holds that

↓X = ↓(X \ Y) and ↑
∐
X = ↑

∐
(X \ Z). (18)

Therefore, if X is used to represent the set ↓X, the element Y is subsumed by Z and can
be removed from X without changing its denotation. Likewise, if X is used to represent
↑
∐
X, the element Z is subsumed by Y and can be removed from X without changing

its denotation. We can thus simplify any symbolic term by pruning out its sub-terms
that represent elements subsumed by elements represented by other sub-terms, without
changing the denotation of the term.

Computing subsumption on terms can be done using the following two equations:

↓X ⊆ ↓Y ⇐⇒ ∀X ∈ X∃Y ∈ Y : X ⊆ Y (19)

↑
∐
X ⊆ ↑

∐
Y ⇐⇒ ∀Y ∈ Y∃X ∈ X : X ⊆ Y. (20)

Using Equations 19 and 20, testing subsumption of terms of level i reduces to testing
subsumption of terms of level i − 1. The procedure for testing subsumption of two
terms descends along the structure of the term, using Equations 19 and 20 on levels
greater than 0, and on level 0, where terms are subsets of Q0, it tests subsumption by
set inclusion.

Nested Antichains for WS1S 671

Example. In the example from Section 5.4, we can use the inclusion {b, c} ⊆ {a, b, c}
and Equation 18 to reduce t[N�

1] = ↑
∐{

{a, b, c}, {b, c}, {c, d}
}

to the term

t[N1]
′ = ↑

∐{
{b, c}, {c, d}

}
.

Moreover, Equation 20 implies that ↑
∐{

{b, c}, {c, d}
}

is subsumed by the symbolic
term ↑

∐{
{b}, {d}

}
, and, therefore, we can reduce the term t[F �

2] to the term

t[F �
2]
′ = ↓

{
↑
∐{

{b}, {d}
}
, ↑

∐{
{a}, {c, d}

}}
.

6 Experimental Evaluation

We implemented a prototype of the presented approach in the tool dWiNA [20] and
evaluated it in a benchmark of both practical and generated examples. The tool uses the
frontend of MONA to parse input formulae and also for the construction of the base
automaton Aϕ0 , and further uses the MTBDD-based representation of FAs from the
libvata [21] library. The tool supports the following two modes of operation.

In mode I, we use MONA to generate the deterministic automaton Aϕ0 correspond-
ing to the matrix of the formula ϕ, translate it to libvata and run our algorithm for
handling the prefix of ϕ using libvata. In mode II, we first translate the formula ϕ
into the formula ϕ′ in prenex normal form (i.e. it consists of a quantifier prefix and
a quantifier-free matrix) where the occurence of negation in the matrix is limited to lit-
erals, and then construct the nondeterministic automatonAϕ0 directly using libvata.

Our experiments were performed on an Intel Core i7-4770@3.4 GHz processor with
32 GiB RAM. The practical formulae for our experiments that we report on here were
obtained from the shape analysis of [5] and evaluated using mode I of our tool; the
results are shown in Table 1 (see [20] for additional experimental results). We mea-
sure the time of runs of the tools for processing only the prefix of the formulae. We
can observe that w.r.t. the speed, we get comparable results; in some cases dWiNA
is slower than MONA, which we attribute to the fact that our prototype implementa-
tion is, when compared with MONA, quite immature. Regarding space, we compare
the sum of the number of states of all automata generated by MONA when process-
ing the prefix of ϕ with the number of symbolic terms generated by dWiNA for pro-
cessing the same. We can observe a significant reduction in the generated state space.

Table 1. Results for practical examples

Benchmark
Time [s] Space [states]

MONA dWiNA MONA dWiNA

reverse-before-loop 0.01 0.01 179 47
insert-in-loop 0.01 0.01 463 110
bubblesort-else 0.01 0.01 1 285 271
reverse-in-loop 0.02 0.02 1 311 274
bubblesort-if-else 0.02 0.23 4 260 1 040
bubblesort-if-if 0.12 1.14 8 390 2 065

We also tried to run dWiNA
on the modified formulae in
mode II but ran into the
problem that we were not
able to construct the non-
deterministic automaton for
the quantifier-free matrix ϕ0.
This was because after trans-
formation of ϕ into prenex
normal form, if ϕ0 contains
many conjunctions, the sizes of the automata generated using intersection grow too
large (one of the reasons for this is that libvata in its current version does not sup-
port efficient reduction of automata).

672 T. Fiedor et al.

Table 2. Results for generated formulae
Time [s] Space [states]

k MONA dWiNA MONA dWiNA

2 0.20 0.01 25 517 44
3 0.57 0.01 60 924 50
4 1.79 0.02 145 765 58
5 4.98 0.02 349 314 70
6 ∞ 0.47 ∞ 90

To better evaluate the scalability of our ap-
proach, we created several parameterized fami-
lies of WS1S formulae. We start with basic for-
mulae encoding interesting relations among sub-
sets of N0, such as existence of certain transitive
relations, singleton sets, or intervals (their full
definition can be found in [20]). From these we
algorithmically create families of formulae with
larger quantifier depth, regardless of the meaning of the created formulae (though their
semantics is still nontrivial). In Table 2, we give the results for one of the families where
the basic formula expresses existence of an ascending chain of n sets ordered w.r.t. ⊂.
The parameter k stands for the number of alternations in the prefix of the formulae:

∃Y : ¬∃X1¬ . . .¬∃Xk, . . . , Xn :
∧

1≤i<n

(
Xi ⊆ Y ∧Xi ⊂ Xi+1

)
⇒ Xi+1 ⊆ Y.

We ran the experiments in mode II of dWiNA (the experiment in mode I was not suc-
cessful due to a costly conversion of a large base automaton from MONA to libvata).

7 Conclusion and Future Work

We presented a new approach for dealing with alternating quantifications within the
automata-based decision procedure for WS1S. Our approach is based on a generaliza-
tion of the idea of the so-called antichain algorithm for testing universality or language
inclusion of finite automata. Our approach processes a prefix of the formula with an
arbitrary number of quantifier alternations on-the-fly using an efficient symbolic rep-
resentation of the state space, enhanced with subsumption pruning. Our experimental
results are encouraging (our tool often outperforms MONA) and show that the direc-
tion started in this paper—using modern techniques for nondeterministic automata in
the context of deciding WS1S formulae—is promising.

An interesting direction of further development seems to be lifting the symbolic
pre/cpre operators to a more general notion of terms that allow working with general
sub-formulae (that may include logical connectives and nested quantifiers). The algo-
rithm could then be run over arbitrary formulae, without the need of the transformation
into the prenex form. This would open a way of adopting optimizations used in other
tools as well as syntactical optimizations of the input formula such as anti-prenexing.
Another way of improvement is using simulation-based techniques to reduce the gen-
erated automata as well as to weaken the term-subsumption relation (an efficient algo-
rithm for computing simulation over BDD-represented automata is needed). We also
plan to extend the algorithms to WSkS and tree-automata, and perhaps even further to
more general inductive structures.

Acknowledgement. ThisworkwassupportedbytheCzechScienceFoundation(projects
14-11384Sand 202/13/37876P), the BUT FIT project FIT-S-14-2486, and the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.

Nested Antichains for WS1S 673

References

1. Meyer, A.R.: Weak monadic second order theory of successor is not elementary-recursive.
In: Proc. of Logic Colloquium—Symposium on Logic Held at Boston. LNCS, vol. 453.
Springer (1972)

2. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: new techniques for WS1S and WS2S. In:
Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 516–520. Springer, Heidelberg (1998)

3. Klarlund, N., Møller, A.: MONA Ver. 1.4 Manual. http://www.brics.dk/mona/
4. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and data.

In: Proc. of POPL 2011. ACM (2011)
5. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND. In:

Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 43–59. Springer, Heidelberg (2011)
6. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive

definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 21–38. Springer,
Heidelberg (2013)

7. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag
properties via user-defined predicates in separation logic. Science of Computer Programing
77(9) (2012)

8. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In:
Proc. of POPL 2008. ACM (2008)

9. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over unbounded
domains. In: Proc. of FMCAD 2010. IEEE (2010)

10. Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: A stand-alone tool and jABC plu-
gin for M2L(Str). In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 293–298. Springer,
Heidelberg (2006)

11. Ganzow, T., Kaiser, L.: New algorithm for weak monadic second-order logic on induc-
tive structures. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 366–380.
Springer, Heidelberg (2010)

12. Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative tree data
structures. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 476–491. Springer, Heidelberg (2011)

13. Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In: Esparza, J., Majumdar, R.
(eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010)

14. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algorithm for
checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

15. Abdulla, P.A., Chen, Y.-F., Holı́k, L., Mayr, R., Vojnar, T.: When simulation meets antichains
(on checking language inclusion of NFAs). In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010)

16. Bustan, D., Grumberg, O.: Simulation based minimization. In: McAllester, D. (ed.) CADE
2000. LNCS, vol. 1831, pp. 255–270. Springer, Heidelberg (2000)

17. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In:
Proc. of POPL 2013. ACM (2013)

18. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree Automata Techniques and Applications (2008)

19. Büchi, J.R.: Weak second-order arithmetic and finite automata. Technical report, The Uni-
versity of Michigan (1959, 2010), http://hdl.handle.net/2027.42/3930

20. Fiedor, T., Holı́k, L., Lengál, O., Vojnar, T.: dWiNA (2014).
http://www.fit.vutbr.cz/research/groups/verifit/tools/dWiNA/

http://www.brics.dk/mona/
http://hdl.handle.net/2027.42/3930
http://www.fit.vutbr.cz/research/groups/verifit/tools/dWiNA/

674 T. Fiedor et al.

21. Lengál, O., Šimáček, J., Vojnar, T.: VATA: A library for efficient manipulation of non-
deterministic tree automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 79–94. Springer, Heidelberg (2012)

22. Abdulla, P.A., Bouajjani, A., Holı́k, L., Kaati, L., Vojnar, T.: Computing simulations over tree
automata: Efficient techniques for reducing tree automata. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)

23. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata for verifi-
cation of heap manipulation. Formal Methods in System Design 41(1) (2012)

24. Bouajjani, A., Habermehl, P., Holı́k, L., Touili, T., Vojnar, T.: Antichain-based universality
and inclusion testing over nondeterministic finite tree automata. In: Ibarra, O.H., Ravikumar,
B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008)

25. Fiedor, T., Holı́k, L., Lengál, O., Vojnar, T.: Nested Antichains for WS1S. Technical report
FIT-TR-2014-06, http://www.fit.vutbr.cz/ ilengal/pub/FIT-TR-2014-
06.pdf

http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2014-06.pdf
http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2014-06.pdf

Model Checking

Sylvan: Multi-core Decision Diagrams

Tom van Dijk� and Jaco van de Pol

Formal Methods and Tools, University of Twente, The Netherlands
{dijkt,vdpol}@cs.utwente.nl

Abstract Decision diagrams such as binary decision diagrams and
multi-valued decision diagrams play an important role in various fields,
including symbolic model checking. An ongoing challenge is to develop
datastructures and algorithms for modern multi-core architectures. The
BDD package Sylvan provides one contribution by implementing parallel-
ized BDD operations and thus allowing sequential algorithms to exploit
the power of multi-core machines.

We present several extensions to Sylvan. We implement parallel oper-
ations on list decision diagrams, a variant of multi-valued decision dia-
grams that is useful for symbolic model checking. We also substitute
several core components of Sylvan by new designs, such as the work-
stealing framework, the unique table and the operation cache. Further-
more, we combine parallel operations with parallelization on a higher
level, by partitioning the transition relation. We show that this results
in an improved speedup using the model checking toolset LTSmin. We
also demonstrate that the parallelization of symbolic model checking for
explicit-state modeling languages with an on-the-fly next-state function,
as supported by LTSmin, scales well.

1 Introduction

A core problem in model checking is that space and time requirements increase
exponentially with the size of the models. One method to alleviate this problem
is symbolic model checking, where sets of states are stored in binary decision
diagrams (BDDs). Another method uses parallel computation, e.g., in computer
systems with multiple processors. In [9,11], we combined both approaches by
parallelizing BDD operations in the parallel BDD library Sylvan.

In the literature, there is some early work involving parallel BDD opera-
tions [18,27,23]. Alternative approaches for parallel symbolic reachability use
partitioning strategies [26,15]. Also saturation, an optimal iteration strategy,
was parallelized using Cilk [7,13]. More recently, a thesis on JINC [24] describes
a multi-threaded extension, but does not actually parallelize the BDD opera-
tions. Also, a recent BDD implementation in Java called BeeDeeDee [21] allows
execution of BDD operations from multiple threads, but does not parallelize the
BDD operations. See also [11] for an overview of earlier approaches to parallel-
izing symbolic model checking and/or binary decision diagrams.

� The first author is supported by the NWO project MaDriD, grant nr. 612.001.101.

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 677–691, 2015.
DOI: 10.1007/978-3-662-46681-0_60

678 T. van Dijk and J. van de Pol

In the current paper, we present several extensions to Sylvan, in particular
integration with the work-stealing framework Lace, an improved unique table,
and the implementation of operations on list decision diagrams (LDDs), a variant
of multi-valued decision diagrams (MDDs) useful in symbolic model checking.

We also investigate applying parallelism on a higher level than the BDD op-
erations. Since calculating the full transition relation is expensive in symbolic
model checking, our model checking toolset LTSmin [3,20,10,17] has the notion
of transition groups, which disjunctively partition the transition relations. We
exploit the fact that partitioned transition relations can be applied in parallel
and show that this strategy results in improved scalability.

In addition, LTSmin supports learning transition relations on-the-fly, which
enables the symbolic model checking of explicit-state models, such as Promela,
DVE and mCRL2 models. We implement a specialized operation collect, which
is a combination of enumerate and union, to perform parallel transition learning
and we show that this results in good parallel performance.

This paper is organized as follows. We review background knowledge about
BDDs, MDDs and LDDs in Section 2, as well as background information on sym-
bolic model checking and LTSmin. Section 3 discusses the design of our parallel
library Sylvan, with an emphasis on the new unique table and the implement-
ation of LDD operations. Section 4 introduces parallelism on the algorithmic
level in the model checking toolset LTSmin in order to run parallel symbolic
on-the-fly reachability. Section 5 shows the results of several experiments using
the BEEM database of explicit-state models to measure the effectiveness of our
approach. Finally, Section 6 summarizes our findings and reflections.

2 Preliminaries

2.1 Symbolic Reachability

In model checking, we create abstractions of complex systems to verify that
they function according to certain properties. Systems are modeled as a set of
possible states of the system and a set of transitions between these states. A
core component of model checking is state-space generation using a reachability
algorithm, to calculate all states reachable from the initial state of the system.

One major problem in model checking is the size of the transition system.
The memory required to store all explored states and transitions increases ex-
ponentially with the size of the models. One way to deal with this is symbolic
model checking [6], which represents states as sets rather than storing them
individually.

An efficient method to store sets of states uses Boolean functions S : BN → B.
Every state for which the function S is true is in the set. Boolean functions can
be stored efficiently using binary decision diagrams (BDDs). Similarly, states
can also be represented using functions S : NN → B, which can be stored using
multi-valued decision diagrams (MDDs) or list decision diagrams (LDDs).

Sylvan: Multi-core Decision Diagrams 679

2.2 Binary Decision Diagrams and Multi-valued Decision Diagrams

Binary decision diagrams (BDDs) were introduced by Akers [1] and developed
by Bryant [5].

Definition 1 (Binary decision diagram). An (ordered) BDD is a directed
acyclic graph with the following properties:

1. There is a single root node and two terminal nodes 0 and 1.
2. Each non-terminal node p has a variable label xi and two outgoing edges,

labeled 0 and 1; we write lvl(p) = i and p[v] = q, where v ∈ {0, 1}.
3. For each edge from node p to non-terminal node q, lvl(p) < lvl(q).
4. There are no duplicate nodes, i.e.,

∀p∀q · (lvl(p) = lvl(q) ∧ p[0] = q[0] ∧ p[1] = q[1]) → p = q.

Furthermore, either of two reductions ensures canonicity:

Definition 2 (Fully-reduced/Quasi-reduced BDD). Fully-reduced BDDs
forbid redundant nodes, i.e., nodes with p[0] = p[1]. Quasi-reduced BDDs keep
all redundant nodes, i.e., skipping levels is forbidden.

Multi-valued decision diagrams (MDDs, also called multi-way decision dia-
grams) are a generalization of BDDs to the integer domain [16].

Definition 3 (Multi-valued decision diagram). An (ordered) MDD is a
directed acyclic graph with the following properties:

1. There is a single root node and terminal nodes 0 and 1.
2. Each non-terminal node p has a variable label xi and ni outgoing edges,

labeled from 0 to ni − 1; we write lvl(p) = i and p[v] = q, where 0 ≤ v < ni.
3. For each edge from node p to non-terminal node q, lvl(p) < lvl(q).
4. There are no duplicate nodes, i.e.,

∀p∀q · (lvl(p) = lvl(q) ∧ ∀v · p[v] = q[v]) → p = q.

Similar to BDDs, fully-reduced and quasi-reduced MDDs can be defined:

Definition 4 (Fully-reduced/Quasi-reduced MDD). Fully-reduced MDDs
forbid redundant nodes, i.e., nodes where for all v, w, p[v] = p[w]. Quasi-reduced
MDDs keep all redundant nodes, i.e., skipping levels is forbidden.

See Fig. 1 for an example of an MDD representing a set.
In [8], Ciardo et al. mention advantages of quasi-reduced MDDs: edges that

skip levels are more difficult to manage and quasi-reduced MDDs are cheaper
than alternatives to keep saturation operations correct. In [2], Blom et al. prefer
quasi-reduced MDDs since the set of possible values at each level is dynamic and
extending the set of values requires an update of every diagram in a fully-reduced
setting, while having no impact in the quasi-reduced setting.

A typical method to store MDDs in memory is to store the variable label
xi plus an array holding all ni edges, e.g., in C: struct node { int lvl;

struct node* edges[0]; } as in [22]. New nodes are dynamically allocated

680 T. van Dijk and J. van de Pol

x0

x1x1 x1 x1

1

0
1 3 5 6

0 2
4

2 4 0 1
1

x0 : 0 1 3 5 6

x1 : 0 2 4 0 1

Fig. 1. Edge-labeled MDD hiding paths to 0 (left) and LDD (right) representing the set
{〈0, 0〉, 〈0, 2〉, 〈0, 4〉, 〈1, 0〉, 〈1, 2〉, 〈1, 4〉, 〈3, 2〉, 〈3, 4〉, 〈5, 0〉, 〈5, 1〉, 〈6, 1〉}. For simplicity,
we hide paths to 0 and 1; the p[xi > v] edge of the last node in each “linked list” goes
to 0, and every p[xi = v] edge on the last level goes to 1.

using malloc and a hash table ensures that no duplicate MDD nodes are cre-
ated. Alternatively, one could use a large int[] array to store all MDDs (each
MDD is represented by ni + 1 consecutive integers) and represent edges to an
MDD as the index of the first integer. In [8], the edges are stored in a separate
int[] array to allow the number of edges ni to vary.

2.3 List Decision Diagrams

Implementations of MDDs that use arrays to implement MDD nodes have two
disadvantages. (1) For sparse sets (where only a fraction of the possible values are
used) using arrays is a waste of memory. (2) MDD nodes typically have a variable
size, complicating memory management. An alternative method uses list decision
diagrams (LDDs), which can be understood as a linked-list representation of
quasi-reduced MDDs. LDDs were initially described in [2, Sect. 5].

Definition 5 (List decision diagram). A List decision diagram (LDD) is a
directed acyclic graph with the following properties:

1. There is a single root node and two terminal nodes 0 and 1.
2. Each non-terminal node p is labeled with a value v, denoted by val(p) = v,

and has two outgoing edges labeled = and > that point to nodes denoted by
p[xi = v] and p[xi > v].

3. For all non-terminal nodes p, p[xi = v] �= 0 and p[xi > v] �= 1.
4. For all non-terminal nodes p, val(p[xi > v]) > v.
5. There are no duplicate nodes.

An LDD can be constructed from a quasi-reduced MDD by dropping all edges
to 0 and creating an LDD node for each edge, using the edge label as the value
in the LDD node. In a quasi-reduced BDD/MDD, every path from the root to a
terminal encounters every variable (in the same order). Hence the variable label
xi follows implicitly from the depth of the node. We therefore do not store it in
the LDD nodes either. The root node is at level 0, non-terminal nodes following

Sylvan: Multi-core Decision Diagrams 681

1 def reachable(initial, trans, K):
2 states = {initial}
3 next = states

4 while next != ∅:
5 for k in (0..K-1):
6 learn(next, k)
7 successors[k] = relprod(next, trans[k])
8 successors[k] = minus(successors[k], states)
9 next = union(successors[0], ..., successors[K-1])

10 states = union(states, next)
11 return states

Fig. 2. Symbolic on-the-fly reachability algorithm with transition groups: compute the
set of all states reachable from the initial state. The transition relations are updated
on-the-fly (line 6) and the algorithm relies on BDD operations relprod (relational
product), minus (“diff”) and union (“or”). See Fig. 9 for learn.

>-edges have the same level and non-terminal nodes following =-edges have the
next level. See Fig. 1 for an example of an MDD and an LDD representing the
same set of integer pairs.

2.4 LTSmin and Partitioned Transition Relations

The model checking toolset LTSmin1 provides a language independent Parti-
tioned Next-State Interface (Pins), which connects various input languages to
model checking algorithms [3,20,10,17]. In Pins, states are vectors of N in-
teger values. Furthermore, transitions are distinguished in disjunctive transition
groups. The transition relation of each transition group is defined on a subset of
the entire state vector, enabling efficient encoding of transitions that only affect
a few integers of the state. For example, in a model of a software program, there
could be a separate transition group for every line of source code.

Every language module implements a NextState function, which computes
the successors of a state for each transition group. Algorithms in LTSmin thus
learn new transitions on-the-fly. The reachability algorithm for symbolic model
checking using BDD operations is given in Fig. 2.

3 Sylvan: Parallel BDD and LDD Operations

In [11], we implemented Sylvan2, a parallel BDD package, which parallelizes BDD
operations using lock-less data structures and work-stealing. Work-stealing [4] is
a task-based load balancing method that involves breaking down a calculation
into an (implicit) tree of (small) tasks. Independent subtasks are stored in queues
and idle processors steal tasks from the queues of busy processors. Most BDD
operations in Sylvan are implemented as recursive tasks, where operations are

1 Available from https://github.com/utwente-fmt/ltsmin (open source).
2 Available from https://github.com/utwente-fmt/sylvan (open source).

https://github.com/utwente-fmt/ltsmin
https://github.com/utwente-fmt/sylvan

682 T. van Dijk and J. van de Pol

1 def ite(A,B,C):
2 if A = 1: return B
3 if A = 0: return C
4 result = cache_lookup(A,B,C)
5 if result = None:
6 x = min(var(A), var(B), var(C))
7 do in parallel:
8 Rlow = ite(low(A, x), low(B, x), low(C, x))
9 Rhigh = ite(high(A, x), high(B, x), high(C, x))

10 result = uniqueBDDnode(x, Rlow, Rhigh)
11 cache_store(A,B,C,result)
12 return result

Fig. 3. The ite algorithm calculating (A → B)∧(A → C) is used to implement binary
operations like and, or. The recursive calls to ite are executed in parallel. BDDs are
automatically fully-reduced by the uniqueBDDnode method using a hash table.

1 def uniqueBDDnode(var, edgelow, edgehigh):
2 if edgelow = edgehigh: return edgelow
3 node = {var, edgelow, edgehigh}
4 try:
5 return nodestable.insert-or-find(node)
6 catch TableFull:
7 garbagecollect()
8 return nodestable.insert-or-find(node)

Fig. 4. The uniqueBDDnode method creates a BDD node using the hash table insert

method (Fig. 6) to ensure that there are no duplicate nodes. Line 2 ensures that there
are no redundant nodes.

performed on the two subtasks in parallel, and the final result is computed using
a hash table. See Fig. 3 for the ite algorithm. Other algorithms such as relational
product and existential quantification are implemented similarly. To ensure that
the results of BDD operations are canonical, reduced BDDs, they use a method
uniqueBDDnode that employs a hash table as in Fig. 4.

We substituted the work-stealing framework Wool [14], that we used in the
original version of Sylvan, by Lace [12], which we developed based on some ideas
to minimize interactions between different workers and with memory. Lace is
based around a novel work-stealing queue, which is described in detail in [12].

The parallel efficiency of a task-based parallelized algorithm depends in part
on the contents of each task. If parallelized tasks mainly perform processor cal-
culations and depend on many subtasks in a predictable or regular fashion, then
they result in good speedups. However, if the number of subtasks is small and
the subtasks are relatively shallow, i.e., the “task tree” has a low depth, then
parallelization is more difficult. BDD tasks typically “spawn” only one or two
subtasks for parallel execution, depending on the operation and the input BDDs.

BDD operations are also memory-intensive, since they consist mainly of oper-
ations on two data structures: a unique table that stores the unique BDD nodes
and an operation cache that stores the results of BDD operations. The unique
table is a hash table with support for garbage collection. The operation cache is a

Sylvan: Multi-core Decision Diagrams 683

D H hash index in data array data

D H hash index in data array data

D H hash index in data array data

1 1 18 44 (bits)

8 bytes N bytes

.

0:

1:

2:

Hash array: Data array:

Fig. 5. Layout of the new lock-less hash table using a separate hash array h and data
array d. h[n].D controls whether d[n] is used; h[n].H controls whether h[n] is used, i.e.,
the hash and index values correspond with an existing entry in the hash table. Every
modification of h[n] must be performed using a compare and swap operation.

simplified hash table that overwrites on collision. Hence the design of concurrent
scalable hash tables is crucial for a scalable BDD implementation.

3.1 Lock-Less Hash Table

In parallel programs, memory accesses are typically protected against race con-
ditions using locking techniques. Locking severely cripples parallel performance,
therefore Sylvan implements lock-less data structures that rely on the atomic
compare and swap (cas) memory operation and short-lived local cas-locks to
ensure parallel correctness as well as scalable performance.

Compared to [11], we implemented a new hash table based on the lock-less
hash table presented in [19]. The new hash table consists of a hash array and
a data array, as in Fig. 5. The data array simply stores fixed-sized data, such
as BDD nodes and LDD nodes. We preallocate this data array to avoid losing
scalability due to complex memory allocation management systems. Data can
be stored at any position in the data array, and this position is recorded in the
index field of the hash array. The advantage of storing data at any position is
that this allows rehashing all BDD nodes without changing their position in the
data array, which is important for efficient garbage collection.

The state of the buckets is manipulated using straight-forward cas-operations.
Inserting data consists of three steps: searching whether the data is already in
the table, claiming a bucket in the data array to store the data, and inserting
the hash in the hash array. See Fig. 6.

First, the algorithm obtains a hash value of the data and a probe sequence
similar to [19], which makes optimal use of memory management in modern
systems. See further [19] for more details. The algorithm checks whether one of
the hash buckets in the probe sequence already contains an entry with the same
hash and with matching data in the data array. If so, it terminates.

If an empty hash bucket is reached, it searches for an empty data bucket
(where D=0 in the hash array) and uses cas to set D=1, then writes the data.
The position in the data array can be any position. In practice, we record the

684 T. van Dijk and J. van de Pol

1 def insert-or-find(data):
2 h = calculate_hash(data)
3 ps = probe_sequence(data):
4 while ps != empty:
5 s, ps = head(ps), tail(ps)
6 V = hasharr[s]
7 if V.H = 0: goto EmptyBucketFound
8 if V.hash = h && dataarr[V.index] = data: return V.index
9 raise TableFull # abort: table full!

11 label EmptyBucketFound:
12 for d in (0..N): # note: traverse in smart order
13 W = hasharr[d]
14 if W.D=0:
15 if cas(hasharr[d],W,W[D=1]):
16 dataarr[idx]=data
17 goto EmptyDataSlotFound

19 label EmptyDataSlotFound:
20 while ps != empty: # note: continue same probe sequence
21 V = hasharr[s]
22 if V.H=0:
23 if cas(hasharr[s],V,V[H=1,hash=h,index=d]): return d
24 else:
25 if V.H = h && dataarr[V.index] = data:
26 W = hasharr[d]
27 while !cas(hasharr[d],W,W[D=0]): W = hasharr[d]
28 return V.index
29 s, ps = head(ps), tail(ps)
30 W = hasharr[d]
31 while !cas(hasharr[d],W,W[D=0]): W = hasharr[d]
32 raise TableFull # abort: table full!

Fig. 6. Algorithm for parallel insert of the lock-less hash table

empty data bucket of the previous insert call in a thread-specific variable, and
continue from there. Initial values for this thread-specific variable are chosen
such that all threads start at a different position in the data array.

After adding the entry in the data array, the algorithm continues with the
probe sequence, starting where it found the empty hash bucket in the first step,
to search either a matching hash with matching data (written by a concurrent
thread), or an empty hash bucket. In the first case, the algorithm releases the
data bucket by setting D=0 using cas. In the second case, it uses cas to set the
values H, hash and index at once.

3.2 Sylvan API

Sylvan is released under the Apache 2.0 License, which means that anyone can
freely use it and extend it. It comes with an example of a simple BDD-based
reachability algorithm, which demonstrates how to use Sylvan to “automatically”
parallelize sequential algorithms.

To use Sylvan, simply include sylvan.h or lddmc.h and initialize Lace and
Sylvan. There is an API that exposes familiar BDD algorithms, such as ite,

Sylvan: Multi-core Decision Diagrams 685

F R V D

4 44 32 44

16 bytes

Fig. 7. Layout of an LDD node in memory. The F field is reserved for flags, such as
“marked”, and to indicate possible special node types. The R field contains the index of
the LDD node p[xi > v] and the D field contains the index of the LDD node p[xi = v]
in the LDD node table. The V field contains the 32-bit v value.

exists, constrain, compose, satcount and relprod, a specialized relational
product for paired (xi, x

′
i) variables. There is also functionality for drawing DOT

graphs and writing/loading BDDs to/from disk. It is easy to add new algorithms
by studying the implementation of current algorithms.

Sylvan is distributed with the work-stealing framework Lace. Lace can be in-
tegrated in other projects for out-of-the-box task-based parallelism. There are
additional methods to integrate Lace worker threads with existing parallel ap-
proaches. Furthermore, we developed bindings for Java JNI3 and Adam Walker
developed bindings for Haskell4, allowing parallelization of algorithms developed
in those languages. Extending Sylvan with other types of decision diagrams re-
quires copying files sylvan.h and sylvan.c and modifying the new files for the
different algorithms, similar to what we did with LDDs.

3.3 LDDs in Sylvan

We extended Sylvan with an implementation of LDDs and various LDD al-
gorithms. To represent LDD nodes in memory we use the layout described in
Fig. 7. The size of each LDD node is 16 bytes and we allocate 32 bits to hold
value v, i.e., the integer values of the state vector in Pins. In our design, 44 bits
are reserved to store edges, which is sufficient for up to 244 LDD nodes, i.e., 256
terabytes of just LDD nodes.

We implemented various LDD operations that are required for model checking
in LTSmin, especially union, intersection, minus, project (existential quan-
tification), enumerate and relprod (relational product). These operations are
all recursive and hence trivial to parallelize using the work-stealing framework
Lace and the datastructures earlier developed for the BDD operations.

4 Parallelism in LTSmin

4.1 Parallel Symbolic Reachability

Even with parallel operations, parallel scalability of model checking in LTSmin
is limited, especially in smaller models, when the size of “work units” (between

3 Available from https://github.com/utwente-fmt/jsylvan
4 Available from https://github.com/adamwalker/sylvan-haskell

https://github.com/utwente-fmt/jsylvan
https://github.com/adamwalker/sylvan-haskell

686 T. van Dijk and J. van de Pol

∪
∪

∪

successors group 1

successors group 2

successors group 3

successors group 4

relprod T1

relprod T2

relprod T3

relprod T4

states

states

states

states

all successors

Fig. 8. Schematic overview of parallel symbolic reachability. Note that the relprod

and ∪ operations are also parallel operations internally.

1 def learn(states, i):
2 shorts = project(states, vars[i])
3 shorts = minus(shorts, visited[i])
4 visited[i] = union(visited[i], shorts)

5 enumerate(shorts, NextStateWrapper[i])

Fig. 9. On-the-fly learning in LTSmin; enumerate calls NextStateWrapper[i] for
each “short” state, which adds new transitions to trans[i].

1 def learn_par(states, i):
2 shorts = project(states, vars[i])
3 shorts = minus(shorts, visited[i])
4 visited[i] = union(visited[i], shorts)

5 temp = collect(shorts, NextStateWrapperPar[i])
6 trans[i] = union(trans[i], temp)

Fig. 10. Parallel On-the-Fly Learning in LTSmin. The collect method combines
enumerate and union.

sequential points) is small and when the amount of parallelism in the work units
is insufficient. Experiments in [11] demonstrate this limitation.

This is expected: if a parallel program consists of many small operations
between sequential points, then we expect limited parallel scalability. If there
are relatively few independent tasks in the “task tree” of a computation, then
we also expect limited parallel scalability.

Since LTSmin partitions the transition relation in transition groups (see
Section 2.4), many small BDD operations are executed in sequence, for each
transition group. We propose to calculate these operations in parallel and merge
their results pairwise, as in Fig. 8. In Fig. 2, this corresponds to executing
lines 7 and 8 in parallel. This strategy decreases the number of sequential points
and thus increases the size of “work units”. It also increases the amount of
parallelism in the “task tree”. We therefore expect improved parallel scalability.

4.2 Parallel On-the-Fly Learning

As described in Section 2.4, algorithms in LTSmin learn new transitions on-the-
fly, using a NextState function. The implementation of the learn algorithm
used in Fig. 2, is given in Fig. 9. In LTSmin, the transition relation of each
transition group is only defined on a subset of the variables in the state vector.
First the set of states is “projected” (using existential quantification) such that

Sylvan: Multi-core Decision Diagrams 687

1 def collect(states, callback, vec={}):
2 if states = 1: return callback(vec)

3 if states = 0: return ∅
4 do in parallel:
5 R0 = collect(follow-0(states), callback, vec+{0})
6 R1 = collect(follow-1(states), callback, vec+{1})
7 return union(R0, R1)

Fig. 11. The parallel collect algorithm (BDD version) combining enumerate and
union. The callback is called for every state and the returned set is pairwise merged.

it is defined only on the variables relevant in transition group i. The visited

set is used to remove all “short states” that were seen before. The enumerate

method enumerates all states described by the BDD or LDD, i.e., all vari-
able assignments that result in 1. For each state, it calls the supplied callback
NextStateWrapper[i]. This method performs a union with trans[i] and
every single discovered transition one by one. Note that this is not thread-safe.

Similar to calculating the relational product for every transition group in
parallel, we can perform on-the-fly transition learning for every transition group
in parallel. However, there are more opportunities for parallelism.

In Fig. 9, the project (existential quantification), minus (“diff”) and union

(“or”) operations are already parallelized. The enumerate method is trivial to
parallelize, but the callback wrappper is not thread-safe. We substituted this
implementation by a new design that uses a method collect. See Fig. 10. The
NextStateWrapperPar callback in Fig. 10 adds all transitions for a state
to a small temporary decision diagram and returns this decision diagram to the
caller. The method collect (Fig. 11) performs enumeration in parallel (lines 4–
6), and performs a union on the results of the two subtasks.

This method works in LTSmin for all language modules that are thread-safe,
and has been tested for mCRL2 and DVE models.

5 Experimental Evaluation

In the current section, we evaluate the presented LDD extension of Sylvan, and
the application of parallelization to LTSmin. As in [11], we base our experi-
mental evaluation mostly on the BEEM model database [25], but in contrast
to [11], we use the entire BEEM model database rather than a selection of mod-
els. We perform these experiments on a 48-core machine, consisting of 4 AMD
OpteronTM 6168 processors with 12 cores each and 128 GB of internal memory.

5.1 Fully Parallel On-the-Fly Symbolic Model Checking

We perform symbolic reachability using the LTSmin toolset using the following
command: dve2lts-sym --order=<order> --vset=lddmc -rgs <model>.dve.

We also select as size of the unique table 230 buckets and as size of the op-
eration cache also 230 buckets. Using parameter --order we either select the

688 T. van Dijk and J. van de Pol

Experiment T1 T16 T24 T32 T48 Speedup T48/T1

blocks.4 (par) 629.54 41.61 29.26 23.04 16.58 38.0

blocks.4 (bfs) 630.04 45.88 33.24 27.01 21.69 29.0

telephony.8 (par) 843.70 58.17 41.17 32.76 24.68 34.2

telephony.8 (bfs) 843.06 66.28 47.91 39.17 31.10 27.1

lifts.8 (par) 377.52 25.92 18.68 15.18 12.03 31.4

lifts.8 (bfs) 377.36 36.61 30.06 27.68 26.11 14.5

firewire tree.1 (par) 16.40 1.09 0.97 0.94 0.99 16.5

firewire tree.1 (bfs) 16.43 11.24 11.12 11.36 11.35 1.4

Sum of all par-prev 20756 1851 1552 1403 1298 16.0

Sum of all bfs-prev 20745 3902 3667 3625 3737 5.6

Fig. 12. Results of running symbolic reachability on 269 models of the BEEM database.
Each value Tn is the result of at least 3 measurements and is in seconds.

0
4
8

12
16
20
24
28
32
36
40

16 128 1024
Time with 1 worker (seconds)

S
p
ee
d
u
p
w
it
h
4
8
w
o
rk
er
s

0
4
8

12
16
20
24
28
32
36
40

16 128 1024
Time with 1 worker (seconds)

S
p
ee
d
u
p
w
it
h
4
8
w
o
rk
er
s

Fig. 13. Results of all models in the BEEM database that did not time out, with fully
parallel learning and parallel transition groups (par-prev) on the left, and only parallel
BDD operations (bfs-prev) on the right

par-prev variation or the bfs-prev variation. The bfs-prev variation does not
have parallelism in LTSmin, but it uses the parallelized LDD operations, in-
cluding collect. This means that there is parallel learning, but only for one
transition group at a time. In the par-prev variation, learning and calculating
the successors are performed for all transition groups in parallel.

We measure the time spent to execute symbolic reachability, excluding time
spent initializing LTSmin. We use a timeout of 1200 seconds. Of all models
in the BEEM database, only 7 timed out: collision.6, driving phils.3,
driving phils.5, elevator.5, frogs.4, hanoi.3, and public subscribe.5.
We present here the results for the remaining 269 models. Each benchmark is
performed at least 3 times.

See Fig. 12 for the results of this benchmark. Model blocks.4 results in the
highest speedup with par-prev, which is 38.0x. We also highlight the model

Sylvan: Multi-core Decision Diagrams 689

2

16

128

1024

2 16 128 1024
BDD T48 (seconds)

L
D
D

T
4
8
(s
ec
o
n
d
s)

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
BDD Speedup (48)

L
D
D

S
p
ee
d
u
p
(4
8
)

Fig. 14. Results of all models that did not time out for both BDDs and LDDs, com-
paring time with 48 workers (left) and obtained speedups (right)

lifts.8 which has a speedup of 14.5x with bfs-prev and more than twice as
high with par-prev. Fig. 13 shows that “larger” models are associated with a
better parallel performance.

Fig. 13 also shows that adding parallellism on the algorithmic level benefits
the parallel performance of many models. One of the largest improvements was
obtained with the firewire tree.1 model, which went from 1.4x to 16.5x. We
conclude that the bottleneck was the lack of parallelism.

In addition, Fig. 12 shows that the overheadbetween the “sequential”bfs-prev
and “parallel” par-prev versions is negligible. Taking the time spent for the entire
benchmark set,we see that the speedupof the entire benchmark is 16.0x for the fully
parallelized version. For allmodels, the speedup improveswith par-prev. The only
exception is peg solitaire.1, for which T48 = 2.38 with par-prev, and T48 =
2.35 with bfs-prev, which is within measurement error.

5.2 BDDs and LDDs

We now compare the performance of our multi-core BDD and LDD variants. We
do this for the par-prev algorithm. Fig. 14 shows that the majority of models,
especially larger models, are performed up to several orders of magnitude faster
using LDDs. The most extreme example is model frogs.3, which has for BDDs
T1 = 989.40, T48 = 1005.96 and for LDDs T1 = 61.01, T48 = 9.36. Some models
are missing that timed out for BDDs but did not time out for LDDs, for example
model blocks.4.

6 Conclusions

In the current paper we presented several modifications to Sylvan, such as a new
hash table implementation for Sylvan and the replacement of the work-stealing
framework by Lace. We also discussed how we extended Sylvan to implement
parallel LDD operations and the specialized BDD/LDD method collect that

690 T. van Dijk and J. van de Pol

parallelizes on-the-fly transition learning. We measured the performance of this
implementation using symbolic reachability in LTSmin applied to models from
the BEEM model benchmark database. This resulted in a speedup of up to
38.0x when also applying parallelism on the algorithmic level in LTSmin, or
up to 29.0x when just using parallelized operations in an otherwise sequential
symbolic reachability algorithm.

BDDs and other decision diagrams are also important in other domains. We
conclude that sequential algorithms benefit from “automatic” parallelization us-
ing parallel BDD and LDD operations in Sylvan. We also conclude that addi-
tional parallelism at the algorithmic level results in significant improvements.

Our parallel BDD package is open-source and publicly available online and
is easy to integrate with existing software, also using Java JNI bindings and
Haskell bindings.

References

1. Akers, S.: Binary Decision Diagrams. IEEE Trans. Computers C-27(6), 509–516
(1978)

2. Blom, S., van de Pol, J.: Symbolic Reachability for Process Algebras with Recursive
Data Types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC
2008. LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008)

3. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010)

4. Blumofe, R.D.: Scheduling multithreaded computations by work stealing. In:
FOCS, pp. 356–368. IEEE Computer Society (1994)

5. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers C-35(8), 677–691 (1986)

6. Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L.: Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 13(4), 401–424 (1994)

7. Chung, M.Y., Ciardo, G.: Saturation NOW. In: QEST, pp. 272–281. IEEE Com-
puter Society (2004)

8. Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: Saturation Unbound. In:
Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393.
Springer, Heidelberg (2003)

9. van Dijk, T.: The Parallelization of Binary Decision Diagram operations for model
checking. Master’s thesis, University of Twente, Dept. of C.S (April 2012)

10. van Dijk, T., Laarman, A.W., van de Pol, J.C.: Multi-core and/or Symbolic Model
Checking. ECEASST 53 (2012)

11. van Dijk, T., Laarman, A.W., van de Pol, J.C.: Multi-Core BDD Operations for
Symbolic Reachability. In: 11th International Workshop on Parallel and Distrib-
uted Methods in verification. ENTCS. Elsevier (2012)

12. van Dijk, T., van de Pol, J.C.: Lace: non-blocking split deque for work-stealing.
In: Lopes, L., et al. (eds.) Euro-Par 2014, Part II. LNCS, vol. 8806, pp. 206–217.
Springer, Heidelberg (2014)

13. Ezekiel, J., Lüttgen, G., Ciardo, G.: Parallelising symbolic state-space generators.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 268–280.
Springer, Heidelberg (2007)

Sylvan: Multi-core Decision Diagrams 691

14. Faxén, K.F.: Efficient work stealing for fine grained parallelism. In: 39th Interna-
tional Conference on Parallel Processing (ICPP), pp. 313–322. IEEE Computer
Society, Los Alamitos (2010)

15. Grumberg, O., Heyman, T., Schuster, A.: A work-efficient distributed algorithm
for reachability analysis. Formal Methods in System Design 29(2), 157–175 (2006)

16. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-vincentelli, A.L.: Multi-valued de-
cision diagrams: theory and applications. Multiple-Valued Logic 4(1), 9–62 (1998)

17. Kant, G., Laarman, A.W., Meijer, J., van de Pol, J.C., Blom, S., van Dijk, T.:
LTSmin: High-Performance Language-Independent Model Checking. In: TACAS
2015 (2015)

18. Kimura, S., Igaki, T., Haneda, H.: Parallel Binary Decision Diagram Manipula-
tion. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Science E75-A(10), 1255–1262 (1992)

19. Laarman, A.W., van de Pol, J.C., Weber, M.: Boosting multi-core reachability per-
formance with shared hash tables. In: Formal Methods in Computer-Aided Design,
pp. 247–255. IEEE (October 2010)

20. Laarman, A.W., van de Pol, J.C., Weber, M.: Multi-Core LTSmin: Marrying Mod-
ularity and Scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R.
(eds.) NFM 2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011)

21. Lovato, A., Macedonio, D., Spoto, F.: A Thread-Safe Library for Binary Decision
Diagrams. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702,
pp. 35–49. Springer, Heidelberg (2014)

22. Miller, D.M., Drechsler, R.: On the Construction of Multiple-Valued Decision Dia-
grams. In: 32nd IEEE International Symposium on Multiple-Valued Logic (ISMVL
2002), pp. 245–253. IEEE Computer Society (2002)

23. Milvang-Jensen, K., Hu, A.J.: BDDNOW: A parallel BDD package. In:
Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522,
pp. 501–507. Springer, Heidelberg (1998)

24. Ossowski, J.: JINC – A Multi-Threaded Library for Higher-Order Weighted
Decision Diagram Manipulation. Ph.D. thesis, Rheinischen Friedrich-Wilhelms-
Universität Bonn (October 2010)

25. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

26. Sahoo, D., Jain, J., Iyer, S.K., Dill, D.L., Emerson, E.A.: Multi-threaded reach-
ability. In: Proceedings of the 42nd Annual Design Automation Conference, DAC
2005, pp. 467–470. ACM, New York (2005)

27. Stornetta, T., Brewer, F.: Implementation of an efficient parallel BDD package.
In: Proceedings of the 33rd Annual Design Automation Conference, DAC 1996,
pp. 641–644. ACM, New York (1996)

LTSmin: High-Performance

Language-Independent Model Checking

Gijs Kant1,�, Alfons Laarman1,2,§, Jeroen Meijer1, Jaco van de Pol1

Stefan Blom1,‡, and Tom van Dijk1,‖

1 Formal Methods and Tools, University of Twente, The Netherlands
2 Formal Methods in Systems Engineering, Vienna University of Technology, Austria

Abstract. In recent years, the LTSminmodel checker has been extended
with support for several new modelling languages, including probabilis-
tic (Mapa) and timed systems (Uppaal). Also, connecting additional
language front-ends or ad-hoc state-space generators to LTSmin was sim-
plified using custom C-code. From symbolic and distributed reachability
analysis and minimisation, LTSmin’s functionality has developed into a
model checker withmulti-core algorithms for on-the-flyLTL checkingwith
partial-order reduction, andmulti-core symbolic checking for themodal μ-
calculus, based on the multi-core decision diagram package Sylvan.

In LTSmin, the modelling languages and the model checking algo-
rithms are connected through a Partitioned Next-State Interface (Pins),
that allows to abstract away from language details in the implementation
of the analysis algorithms and on-the-fly optimisations. In the current pa-
per, we present an overview of the toolset and its recent changes, and we
demonstrate its performance and versatility in two case studies.

1 Introduction

The LTSmin model checker has a modular architecture which allows a number
of modelling language front-ends to be connected to various analysis algorithms,
through a common interface. It provides both symbolic and explicit-state analysis
algorithms for many different languages, enabling multiple ways to attack verifica-
tion problems. This connecting interface is called Partitioned Next-State Interface
(Pins), the basis of which consists of a state-vector definition, an initial state, a par-
titioned successor function (NextState), and labelling functions.Pins defines an
implicit state space, abstracting away from modelling language details.

The main difference with other language interfaces, such as the Open/Cæsar

interface [21] of CADP [22] and theCESMI interface ofDiVinE [3], is the structure
that Pins exposes by exporting dependencies between the partitioned successor

� Supported by the NWO under grant 612.000.937 (VOCHS).
§ Supported by the Austrian National Research Network S11403-N23 (RiSE) of the
Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund
(WWTF) grant VRG11-005.

‡ Partially funded by NWO under grant 612.063.817 (SYRUP).
‖ Supported by the NWO under grant 612.001.001 (MaDriD).

© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 692–707, 2015.
DOI: 10.1007/978-3-662-46681-0_61

LTSmin: High-Performance Language-Independent Model Checking 693

Language frontends

Pins2Pins wrappers

Algorithmic backends (analysis tools)

Uppaal

opaal*

Mapa

mapa*

Dve

dve*

Promela

prom*

mCRL2

lps*

Pbes

pbes*

ETF
etf*

C-code
pins*

Pins

POR
--por

LTL
--ltl

μ-calculus
--mucalc

Regroup
-r

Caching
-c

Pins

multi-core
*2lts-mc

distributed
*2lts-dist

symbolic
*2lts-sym

JTorx

*2torx

CADP
*-open

︸ ︷︷ ︸
explicit-state

︸ ︷︷ ︸
symbolic

︸ ︷︷ ︸
external-tool connectors

Fig. 1. LTSmin’s Pins architecture

function and the variables in the state vector in the form of dependency matrices.
Our approach is also dissimilar fromNuSMV’s [9], where the transition relation is
specifieddirectly, imposing restrictions on the language. In the past,we have shown
that thesedependencies enable symbolic reachabilityusingBDDs/MDDswithmul-
tiple orders of magnitude performance improvement [7,8] as well as (explicit-state)
distributed reachability with state compression [6].

Recently, we extended Pins with separate read and write dependency matrices,
special state labels for guards, and guard/transitiondependencymatrices. This ex-
tended interface, which we call Pins+, enables further performance improvements
for the symbolic tools [40] and on-the-fly partial-order reduction (POR) [32] for the
explicit-state tools. Pins+ will be presented in Section 2.

LTSmin offers extensive analysis of implicit state spaces through Pins: reacha-
bility analysis, including deadlock detection, action detection and invariant/asser-
tion checking, but since recently also verification of Linear Time (LTL) and modal
μ-calculus properties. The toolset and its architecture have been previously pre-
sented in, e.g., [7], [5] and [8]. This article covers the changes since then. An up-to-
date overviewofLTSmin is in Figure 1; this paper focuses on the pink (dark) boxes.
The toolset is open source.1

The languages supportedbyLTSminare listed inTable 1, includingnewly added
support for probabilistic (Mapa) and timed systems (Uppaal) and for boolean
equation systems with data types (Pbes). New is also the possibility to add a new
language front-end by providing a dynamically loaded .so-library implementing
the Pins interface. These additions will be presented in Section 3.

Table 1. Languages supported by LTSmin

Uppaal Timed automata.
Mapa Process algebra for Markov automata from the Scoop tool.
Dve The modelling language of the DiVinE model checker.
Promela The modelling language of the Spin model checker.
mCRL2 Process algebra.
Pbes Parameterised Boolean Equation Systems.
Etf Built-in symbolic format.

1 Source code available at: https://github.com/utwente-fmt/ltsmin

https://github.com/utwente-fmt/ltsmin

694 G. Kant et al.

In the explicit-state tools, new multi-core algorithms provide scalable LTL
checkingwith PORand state compression. The symbolic tools have been extended
with the multi-core decision diagram (DD) packages Sylvan and LDDmc, en-
abling multi-core symbolic analysis algorithms by parallelising their DD opera-
tions. A symbolic parity game solver has been added, enabling multi-core symbolic
μ-calculus checking. These additions will be described in Section 4 and 5.

2 ThePins-Architecture ofLTSmin

The starting point of our approach is a generalised implicitmodel of systems, called
the Partioned Next-State Interface (Pins). An overview of Pins functions is in
Table 2. The functions InitialState,NextState and StateLabel are manda-
tory, as well as the state vector length N , the number of transition groupsK, and
the names and types of labels, slots and actions. Together, these give rise to a tran-
sition system, see Section 2.1.

On top of this basic Pins interface, we distinguish several axes of extensions,
A1 till A∞, which together form the extended Pins+ interface. These extensions
allow to expose enough structure, in the form of information about dependency re-
lations, to enable high-performance algorithms. The first axis of such information
is provided by the functions labelled A1: the read and write dependency matrices
(see [40]). LTSmin’s POR layer (see Section 4.3) requires guards, exported as spe-
cial state labels, and the GuardMatrix, StateLabelM and DoNotAccord

dependency matrices – the functions labelled A2. The definitions of the dependen-
cies and guards are given in Section 2.2.

The simulation relation over states provided by the CoveredBy function, la-
belled A3, allows powerful subsumption abstraction [14] in our algorithms. Timed
language formalisms allow such abstractions as described in Section 3.2. In the fu-
ture, a symmetry-reduction layer, a la [17], could implementCoveredBy.

Other namedmatrices, canbe added to the genericGetMatrix function,which
we label A∞. This is used to increase POR’s precision and facilitate statistical sys-
tems such as withMapa (see Section 3.1).

We writeMatrix(x) as shorthand for {y | (x, y) ∈ Matrix}.

Table 2. Functions in Pins+ are divided along multiple axes

Level Function Type Description

B0 InitialState SP Initial state.
B0 NextStatei SP → ℘(A × SP) Successors and action label for group i.
B0 StateLabel SP × L → N State label.

A1 ReadMatrix B
K×N Read dependency matrix (Definition 2).

A1 WriteMatrix B
K×N Write dependency matrix (Definition 3).

A2 GuardMatrix B
K×G Guard/transition group matrix (Definition 5).

A2 StateLabelM B
G×N State label dependency matrix (Definition 4).

A2 DoNotAccord B
K×K Matrix for non-commutativity of groups [32].

A3 CoveredBy SP × SP → B State covering function.

A∞ GetMatrixName B
X×Y Predefined X × Y matrix named Name.

LTSmin: High-Performance Language-Independent Model Checking 695

2.1 Partitioned Transition Systems

In Pins, states are vectors ofN values. We write 〈s1, . . . , sN 〉, for vector variables,
or simply s for the state vector. Each position j in the vector (1 ≤ j ≤ N) is called
a slot and has a unique identifier and a type, which are used in the language front-
ends to specify conditions andupdates.TheNextState function,which computes
the successors of a state, is partitioned inK disjunctive transition groups, such that
NextState(s) =

⋃
1≤i≤K NextStatei(s). We have action labels a ∈ A and a

set ofM state labelsL. Amodel, available throughPins, gives rise to aPartitioned
Transition System (PTS).

Definition 1. A PTS is a structure P =
〈
SP ,→P , s0, L

〉
, where

– SP = S1 × · · · × SN is the set of states s ∈ SP , which are vectors of N values,
– →P =

⋃K
i=1 →i is the labelled transition relation, which is a union of the K

transition groups→i ⊆ SP ×A× SP (for 1 ≤ i ≤ K),
– s0 =

〈
s01, . . . , s

0
N

〉
∈ SP is the initial state, and

– L : SP × L → N is a state labelling function.

We write s
a−→i t when (s, a, t) ∈ →i for 1 ≤ i ≤ K, and s

a−→P t when (s, a, t) ∈
→P . Considering L as binary state labels, L(s) denotes the set of labels that hold in
state s, i.e. we define L(s) := {� | L(s, �) �= 0}.

When theLTL layer is used, the outputPTS is interpreted as aBüchi automaton,
where accepting states are marked using a special state label. When using the μ-
calculus layer or thePbes front-end, the outputPTS is interpreted as a parity game,
where two state labels encode the player and the priority. When using the Mapa

front-end, the output is aMarkov automaton, where transitions are decoratedwith
labels, representing hyperedges with rates. For all these interpretations, the same
Pins interface is used.

2.2 Dependencies and Guards

The partitioning of the state vector into slots and of the transition relations into
transition groups, enables to specify the dependencies between the two, i.e., which
transition groups touch which slots of the vector.

Previously, we used a single notion of dependency; now we distinguish read,
write and label dependencies [32, 40]. The read and write dependencies allow to
project state vectors to relevant slots only, improving performance of both caching,
state compression and the symbolic tools. Label dependencies enable POR. The
following definitions apply to each PTS P =

〈
SP ,→P , s0, L

〉
.

Definition 2 (Read independence). Transition group i is read-independent
from state slot j, if for all s, t ∈ SP with s →i t, we have:

∀rj∃r′j ∈ Sj : 〈s1, . . . , rj , . . . , sN 〉 →i

〈
t1, . . . , r

′
j , . . . , tN

〉
∧ r′j ∈ {rj , tj} ,

i.e., whatever value rj we plug in, the transition is still possible, the values tk (k �= j)
do not depend on the value of rj , and the value of state slot j is either copied (r

′
j = rj)

or overwritten (r′j = tj).

696 G. Kant et al.

Definition 3 (Write independence). Transition group i is write-independent
from state slot j, if:

∀s, t ∈ SP : 〈s1, . . . , sj , . . . , sN 〉 →i 〈t1, . . . , tj , . . . , tN 〉 ⇒ (sj = tj) ,

i.e., state slot j is never modified in transition group i.

Definition 4 (Label independence). Label l ∈ L is independent from state slot
j, if:

∀s ∈ SP , tj ∈ Sj : L(〈s1, . . . , sj , . . . , sN〉 , l) = L(〈s1, . . . , tj, . . . , sN 〉 , l) .

Definition 5 (Guards). Transition guards are represented as a subset of labels
G ⊆ L. With each transition group we associate a set of guards. The guards associ-
ated with group i, denoted G(i), are evaluated conjunctively, i.e., transition group i
is only enabled in state s if all guards g ∈ G(i) hold: if s →i t then G(i) ⊆ L(s).

We have provided semantic requirements for read, write and label independence
relations. The language front-end must provide these dependency matrices. It can
approximate dependencies using static analysis, for instance by checking occur-
rence of variables in expressions. Note that it is always safe to assume that group-
s/labels do depend on a state slot.

3 Language Front-Ends

LTSmin already supported the languages mCRL2 [11], DiVinE [3], and Spin’s
Promela [26] (through SpinS [4]). Since recently, alsoMapa,Uppaal andPbes

are available, as well as the ability to load a model from a binary .so-file, all of
which will be discussed in the current section.

3.1 MAPA:Markov Automata Process Algebra

For verification of quantitative aspects of systems, we supportMapa:Markov Au-
tomata Process Algebra. MA’s are automata with non-deterministic choice, proba-
bilistic choice and stochastic rates, generalising LTS, PA, MDP and CTMC. The
Scoop tool [43] offers state-space generation forMapa specifications, applying sev-
eral reduction techniques. It is part of theMaMa toolchain [25] for the quantitative
analysis of Markov automata. LTSmin has been extended with aMapa language
module based on Scoop, allowing for high-performance state space generation for
Mapa specifications. This language module uses Pins+ A∞ to add an inhibit ma-
trix and a confluence matrix. The maximum progress assumption in the semantics
of Markov automata forbids taking stochastic rate transitions when some action-
labelled transition is enabled. This has been implemented using a inhibit matrix :
when the higher priority transition is enabled, other transitions are inhibited. The
distributed and symbolic tools of LTSmin have been extended to handle inhibit
matrices forMapa. The distributed tool also includes confluence reduction.

LTSmin: High-Performance Language-Independent Model Checking 697

3.2 Uppaal: Timed Automata

The langague frontend for Uppaal timed automata is based on Opaal [12]. The
C-code generated byOpaal implements thePins+A3 interface. Timed automata
require symbolic states to handle time, for which Opaal relies on the difference
bounds matrices from the DBM-library. This is supported by Pins, by dedicating
two reserved state slots for a pointer to a symbolic time abstraction.

Subsumption abstraction can prune large parts of the PTS on-the-fly. LTSmin

checks if two states subsume each other (s t) via the CoveredBy-relation
in Pins+, which is implemented by a call to the DBM-library. The reduced state
space only consists of -maximal states. Since is a simulation relation [14], the
reducedPTS is a valid abstraction of the originalPTS.The reachability algorithms
in the multi-core tool perform this abstraction (opaal2lts-mc -u2). To maintain
-maximal states, the pointers to the DBMs are stored in a separate locklessmulti-
map [12].

A new LTL model checking algorithm with subsumption [36] is also supported,
by extending the multi-core cndfs algorithm (see Section 5.1).

3.3 PBES: Parameterized Boolean Equation Systems

Parameterised Boolean Equation Systems (Pbess) extend Boolean equations
with nested fixed points and data parameters [24, 39]. Several verification tasks
are mapped to Pbess by the mCRL2 and CADP toolsets, such as model check-
ing modal μ-calculus properties and equivalence checking. ThemCRL2 toolset of-
fers various tools for manipulating and solvingPbess.LTSmin now provides high-
performance generation of parity games fromPbess [29], by viewing them asPTSs
with special labels for players and priorities. The Pbes language module is avail-
able via the pbes2lts-* tools. The generated parity games can be solved by the
means described in Section 5.

3.4 C-Code via the Dlopen Interface

The UNIX/POSIX dlopen-interface allows to specify a model or a language directly
in C. We show an example of how this can be done for the Sokoban game board in
Figure 2. The goal of sokoban is for the player (@) to move all boxes ($)

#####

#.$@#
#####

Fig. 2.
Example
board

in the room to destination locations (.)without hittingwalls (#). This
behaviour is implemented in the functionnext state inListing 1. For
each place in the board, we reserve one slot in the state vector. We
add a state label goal, to distinguish states where the game is fin-
ished. Finally, an initial state function is defined, and functions
returning dependencymatrices. These need to be set using the GBset*
functions in Listing 2. Setting the name of the plugin is also required.
sokoboard.c is then compiled as shared library:
gcc -shared -o sokoboard.so dlopen-impl.o sokoboard.o.
To analyse the reachability of the goal label, call, e.g., the multi-core tool:
pins2lts-mc sokoboard.so --invariant="!goal" --trace=solution.gcf.

698 G. Kant et al.

Listing 1. sokoboard.c

void next_state(int group, int* src,
void (*callback)(int* dst, int action))

{ int dst[3]; int action;
memcpy(dst, src, 3);
if (group == 0
&& src[1] == EMPTY && src[2] == MAN)

{ dst[1] = MAN; dst[2] = EMPTY;
action = WALK_LEFT;
callback(dst, action);

}
else if (group == 1
&& src[1] == MAN && src[2] == EMPTY)

{ dst[1] = EMPTY; dst[2] = MAN;
action = WALK_RIGHT;
callback(dst, action);

}
else if (group == 2 && src[0] == EMPTY
&& src[1] == BOX && src[2] == MAN)

{ dst[0] = BOX; dst[1] = MAN;
dst[2] = EMPTY; action = PUSH_LEFT;
callback(dst, action);

}
}

int state_label(int* src, int label)
{return label == LABEL_GOAL && src[0] == BOX;}

int* initial_state()
{ return {EMPTY, BOX, MAN}; }

int* read_matrix()
{ return {{0,1,1}, {0,1,1}, {1,1,1}}; }

int* write_matrix()
{ return {{0,1,1}, {0,1,1}, {1,1,1}}; }

int* label_matrix()
{ return {{1,0,0}}; }

Listing 2. dlopen-impl.c

#include <ltsmin/pins.h>
#include <ltsmin/dlopen-api.h>
#include <sokoboard.h>
char pins_plugin_name[] = "sokoban";
void pins_model_init(model_t m)
{ GBsetInitialState(m, initial_state());
GBsetNextStateLong(m, next_state);
GBsetStateLabelLong(m, state_label);
GBsetDMInfoRead(m, read_matrix());
GBsetDMInfoMustWrite(m, write_matrix());
GBsetStateLabelInfo(m, label_matrix());

}

4 Intermediate Layers

Between language front-ends and the model checking back-ends, pins2pins-
wrappers provide performance optimisations, state space reductions, and support
for verification of LTL and μ-calculus properties. The caching layer reduces the
number of next-state calls to the language module by storing the projected results
of previous calls. The regrouping layer provides variable reordering, useful for the
symbolic analysis tool, and reduces overhead by merging transition groups. The
current section describes recent innovations in the intermediate layers, which are
all language-independent and agnostic of the underlyingmodel checking algorithm.

4.1 The LTL Layer

LTSmin supports Linear Time Logic (LTL) formulae defined by the grammar:

λ ::= true | false | v==n | !λ | []λ | <>λ | Xλ | λ&&λ | λ||λ | λ->λ | λ<->λ | λUλ | λRλ
The negated formula is translated to a Büchi automaton using ltl2ba [23]. The
product of the PTS and the Büchi automaton is computed on-the-fly, i.e., the layer
does not perform reachability in advance. Instead, it wraps the NextState func-
tion of a languagemodule in its ownNextState function, which synchronises the
translated Büchi automaton on the state labels or slot values of successor states
(the expression v == n can refer to a label or a slot named v). The synchronised
successors are then passed to the analysis algorithm. A label added by the layer
allows the algorithm to distinguish Büchi accepting states. On-the-fly accepting
cycle detection algorithms are described in Section 5.1.

LTSmin: High-Performance Language-Independent Model Checking 699

4.2 The µ-calculus Layer

The modal μ-calculus layer supports formulae defined by the grammar:

ϕ ::= true | false | {v = e} | !{v = e} | ϕ && ϕ | ϕ || ϕ | Z | σZ . ϕ | [α]ϕ | <α>ϕ ,

where v is a state variable, e is a value, σ ∈ {mu, nu} is a minimal (mu) or maximal
(nu) fixpoint operator, and α is an action label.

The μ-calculusPins2Pins layer reads a modal μ-calculus propertyϕ from a file,
provided using the --mucalc option, and generates a parity game, which is the
product P × ϕ of the formula and a system P that is explored through Pins. Like
theBüchi automaton, this game is generated on-the-fly.The explicit-state tools can
write the parity game to a filewhich can be converted to a format that is readable by
the tools pgsolver [20] and pbespgsolve (frommCRL2). The symbolic tools can
write the game to a file, which can be solved by the new LTSmin tool spgsolver.
The symbolic tools also have an alternative implementation for μ-calculus model
checking (available through the --mu option), which is a fixpoint algorithmapplied
to the system after reachability. This implementation also supports CTL* through
the translation in [13] (the --ctl-star option).

4.3 The Partial-Order Reduction Layer

Partial-Order Reduction (POR, [30, 44]) greatly reduces a PTS by pruning irrele-
vant interleavings.LTSmin implementsPORasan intermediate layer (cf.Figure 1).
ThisPOR layer (--por)wraps the next-state function of any languagemodule, and
provides a reduced state space to any analysis tool by replacing it with an on-the-fly
reduction function: PorState(s) ⊆ NextState(s).

We rephrased the stubborn set method [44] in terms of guards [32] to achieve
language independence. For any state, a set of (enabled or disabled) stubborn tran-
sitions is computed, and PorState(s) corresponds to the enabled stubborn tran-
sitions. The stubborn set should (1) contain at least one enabled transition if one
exists; (2) contain all non-commuting transitions for the enabled selected transi-
tions; and (3) contain a necessary-enabling set of transitions for the disabled se-
lected transitions.

To compute stubborn sets,LTSmin needs structural model information via the
Pins+ A2 interface. For effective POR, we extended Pins transitions with guards
(Definition 5). In particular, a languagemodulemust declarewhen transitions com-
mute, and the dependencies of guards (Definition 4). The former is declared with
theDoNotAccord : BK×K-matrix. It should satisfy:

Definition 6 (Do-not-accord). Transition groups i and j are according, if

∀s, si, sj ∈ s : s →i si ∧ s →j sj ⇒ ∃t ∈ s : si →j t ∧ sj →i t

Otherwise, they must be declared conflicting in the DoNotAccordmatrix.

Next, the POR layer derives an enabling relation from the provided depen-
dency information. A transition i can only enable guard g, if i writes to a vari-
able that g depends on: EnableMatrix

K×G ≡ {(i, g) | WriteMatrix(i) ∩

700 G. Kant et al.

StateLabelM(g) �= ∅}. A set of necessary-enabling transitions for a disabled
transition j can then be found by selecting one disabled guard g of j and taking
all transitions that may enable g: EnableMatrix(g).

Optionally, these notions can be further refined by the language module for
more reduction, by providing additionalPins+A∞ matrices. For example, the lan-
guagemodule can compute a detailedEnableMatrix by static analysis on assign-
ment expressions and guards, or a DisableMatrix and a co-enabled-matrix

on guards to leverage the power of necessary disabling sets [32].
LTSmin contains heuristics to compute small stubborn sets efficiently. The user

can select a fast heuristic search (--por=heur) or the subset-minimal deletion al-
gorithm (--por=del). POR preserves at least all deadlock states. The multi-core
algorithms inLTSmin preserves all liveness properties, but this requires additional
interaction with the LTL layer (to know the visible state properties) and the anal-
ysis algorithm (to avoid the so-called ignoring problem, see Section 5.1).

The POR layer is incompatible with the symbolic analysis tool, since after
partial-order reduction all locality and dependence information is lost. The dis-
tributed analysis tool currently only supports POR for deadlock detection.

5 Algorithmic Back-Ends

LTSmin has distributed [6],multi-core [12,19,35,37], and symbolic [16] back-ends.
Furthermore, connectors to the model-based testing tool JTorx, are available as
the*2torx tools, and to theCADPtoolset, through theOpen/Cæsar interface, as
the *-open tools. Since its early origins,LTSminhas a sequential (ltsmin-reduce)
and a distributed (ltsmin-reduce-dist) reduction tool. Both provide strong and
branching bisimulationminimisation, while the sequential tool also supports diver-
gence sensitivity, cycle elimination and minimisation modulo lumping. In the cur-
rent section, we highlight the multi-core algorithms for explicit-state and symbolic
model checking, and the symbolic parity game solver.

5.1 Multi-core Reachability, POR and LTL Checking

Since [37], LTSmin’s multi-core tools were extended beyond reachability analysis,
while improving state compression.

At the basis of our multi-core algorithms is still a lockless hash or tree table
(--state=table/tree) for shared state storage coupled with a dynamic load bal-
ancer [33, 34]. However, state compression has been enhanced by extending the
treewith a concurrentCleary compacthash table [10,45] (--state=cleary-tree),
regularly yielding compressed sizes of 4 bytes per state [35, Tab. 11.4] without com-
promising completeness. Incremental tree compression [35, Sec. 3.3.4] uses the
WriteMatrix from Pins+ to limit the number of hash computations, ensuring
scalability and performance similar to that of plain hash tables [34].

LTSmin’s state storage provides ample flexibility for different search orders, en-
abling LTL verification by traditional linear-time algorithms, in particular nested

LTSmin: High-Performance Language-Independent Model Checking 701

depth-first search (NDFS). The cndfs algorithm (--strategy=cndfs) runs mul-
tiple semi-independent DFS searches which are carefully synchronised in the back-
track [19]. dfsfifo (--strategy=dfsfifo) combines this with breadth-first search
to find livelocks, an important subet of LTL [31]. The latter algorithm avoids the
ignoring problem in POR [18], but the combination of POR and full LTL was until
recently not possible in multi-core LTSmin.

The ignoring problem occurs when POR consistently prunes the same relevant
action infinitely often [18]. It can be solved by fully exploring one state s along each
cycle in the PTS (PorState(s) := NextState(s)). The problem of detecting cy-
cles while constructing the PTS on-the-fly is usually solved with DFS [18], which
is hard to parallelise [2]. Exploiting the DFS-based parallel algorithms, this prob-
lem is efficiently solved with a new parallel cycle proviso [38] (--proviso=cndfs).
Cycles are exchanged with the POR layer via Pins.

We have shown before [4,31] that our multi-core reachability approach exhibits
almost ideal scalability up to 48 cores, even for very fastNextState implementa-
tions, like SpinS. cndfs outperforms [4, 19] other algorithms for multi-core LTL
model checking [1, 27]. For further information on multi-core algorithms and data
structures, see [35].

5.2 Multi-core Decision Diagrams

The symbolic back-end of LTSmin has been improved in several ways. First, it
has been extended with the multi-core decision diagram packages Sylvan and
LDDmc [16] (--vset=sylvan/lddmc). Second, two parallel reachability algo-
rithms have been added, based on the task-based parallelism frameworkLace [15,
16].Third, the distinction between read and write dependencies inPins+ improves
the symbolic algorithms by reducing the size of transitions relations [40].

5.3 Symbolic Parity Game Solving

We implementedZielonka’s recursive algorithm [46] using decisiondiagrams,which
is available in the symbolic tools (--pg-solve) or stand-alone in spgsolver. The
tool solves symbolic parity games, generated by the symbolic tool, and returns
whether the game has a winning strategy for player 0. When the game has been
generated using the μ-calculus layer, this answer corresponds to whether P |= ϕ.

6 Case Studies

The following two case studies demonstrate the use of having both explicit-state
and symbolic approaches to attack problems. The second case also demonstrates
the power of μ-calculus model checking for solving games.2

2 Installation instructions and case-study data:
https://github.com/utwente-fmt/ltsmin-tacas2015. We used LTSmin v2.1 on
AMD Opterons with Ubuntu 14.04.

https://github.com/utwente-fmt/ltsmin-tacas2015

702 G. Kant et al.

6.1 Attacking the RERSChallenge

LTSmin participated in the RERS [28, 42] challenges of 2012, 2013 [41] and 2014,
winning several first prizes. The flexibility of LTSmin allowed us to address the
RERS challenge problems from different angles.We will discuss three ways to con-
nectLTSmin to the challenge problems.We also demonstrate howLTSmin’s back-
end tools check for assertion errors and temporal properties.

Each RERS problem consists of a large C-program, encoding a system of Event-
Condition-Action rules. The program operates in an infinite loop modifying the
global state. In each iteration, the programgets an input froma small alphabet and
checks for assertion errors. If the condition of one of the rules is met, it generates
an output symbol and changes the state for the next iteration.

Linking LTSmin to RERS Programs. In the first approach, a RERS C-program
is translated to a modelling language that is already supported by LTSmin. We
took this approach in 2012, by translating RERS programs to Promela and to
mCRL2. The translations are rather straightforward, since the ECA-rules can be
readily reverse-engineered from the C-programs.

A fundamentally different approach is to create a new language module for (a
subclass of) C-programs. This was our approach in 2013 and 2014. In 2013, we just
wrapped the body of the main-loop into a single, monolithic next-state function,
compiled in a separate binary (.so file). This is a robust solution, since the original
code is run during model checking.

This monolithic approach worked fine for multi-core model checking. However,
it leads to a lack of “locality”: there is only one transition, which reads andwrites all
state variables. In order to apply symbolic model checking, our 2014 approach was
to adapt the C-languagemodule, by providing a separate transition group for each
ECA rule, checking its conditions and applying the state change. Edge labels are
added, to indicate the input and output values and the assertion violations. In this
partitionedview, every transitiongrouponly touches a couple of variables, enabling
symbolicmodel checking.WithSylvan linked toLTSmin, RERS2014was the first
large case to which we applied multi-core symbolic model checking.

Using LTSmin to Check Properties. We show here how LTSmin can be used to
check properties of Problem2.c from theRERS challenge 2014.The originalC-code
is optimized and transformed as indicated above.We assume that the transformed
code is compiled and available in a shared object Problem.so.

In the following dialogue, we request the symbolic model checker to find all ac-
tions with prefix error. Flag --no-exit avoids that LTSmin exits after finding
the first error.We also request to store concrete error traces in a subdirectory and
print one of them in human readable format. LTSmin quickly finds 23 errors.

> pins2lts-sym Problem.so --action=error --trace=Error/ --no-exit

pins2lts-sym: writing to file: Error/error_6.gcf

pins2lts-sym: writing to file: Error/error_8.gcf

^C

> ltsmin-printtrace Error/error_6.gcf | grep action | cut -f3 -d=

"input_3" "output_20" ... "input_3" "output_26" "error_6"

LTSmin: High-Performance Language-Independent Model Checking 703

Actually, the state space of this example is very big and LTSmin keeps search-
ing for more errors. In order to do an exhaustive search, we throw more power, by
using the parallel BFS strategy and Sylvan’s (enlarged) multi-core multi-way de-
cision diagrams [16]. We also request static variable reordering, to keep the MDDs
small.With --when,we request timing information. The following experiments are
run on a 48-core machine with 132 GBRAM. The parallel symbolic model checker
of LTSmin computes the full state space within 2 minutes. All 1.75 billion states,
divided over 480 BFS levels, are stored in about 1 million MDD nodes.

> pins2lts-sym Problem.so --order=par-prev --regroup=gs --when \

--vset=lddmc --lddmc-tablesize=30 --lddmc-cachesize=28

pins2lts-sym: Using 48 CPUs

pins2lts-sym, 28.076: level 90 is finished

pins2lts-sym, 113.768: level 480 is finished

pins2lts-sym: ... 1750528171 (~1.75e+09) states, 1158486 BDD nodes

Alternatively, wemay decide to switch to the explicit-statemulti-core reachabil-
ity engine [33]. We request a strict breadth-first strategy, to facilitate comparison
with the symbolic run. To squeeze the maximum out of our machine, we combine
recursive tree compression [34] with Cleary’s compact hashing [10, 45]. Within a
minute we learn that there are no new errors up to depth 90.LTSmin is able to tra-
verse the full state space exhaustivelywithin 5minutes, generating over 1.75 billion
states and 2.4 billion transitions.

> pins2lts-mc Problem.so --strategy=sbfs --state=cleary-tree --when

pins2lts-mc(23/48), 46.067: ~90 levels ~125829120 states ~191380560 trans

pins2lts-mc(0/48), 296.759: Explored 1750528171 states 2445589869 trans

The explicit multi-core tool can also check LTL properties, using multi-core
NDFS (cndfs, [19]). The LTL formula refers to integer variables in the original
C-program a94 and a95.With --ltl-semantics=ltsminwe insist on checking in-
finite paths only, i.e., we don’t consider traces that end in an assertion error. The
violated trace can be printed as above, and will end in a lasso.

> pins2lts-mc Problem.so --ltl=’a94==9 U a95==12’ \

--strategy=cndfs --ltl-semantics=ltsmin --trace=Error/ltl.gcf

pins2lts-mc(0/48): Accepting cycle FOUND at depth 11!

pins2lts-mc(3/48): Writing trace to ltl.gcf

6.2 Solving Connect Four

We explore the Connect Four game, originally played on a 7×6 board between two
players:yellow and red, which is available in the examples directory ofmCRL2. For
the first run, we reduced the board size to 5×4, for which the model has 7,039,582
states.

704 G. Kant et al.

rrrrrrrrrrrrrrrrrrrr+
rrrrrrrrrrrrrrrrrrrr+
+----+----+----+----+
--+----+----+----+--+
-+----+----+----+---+
----+----+----+----++
---+----+----+----+-+
+----+----+----+----+
--+----+----+----+--+
-+----+----+----+---+
----+----+----+----++
---+----+----+----+-+

(a) Monolithic.
+----+----+----+----+
--+----+----+----+--+
-+----+----+----+---+
----+----+----+----++
---+----+----+----+-+
rrrr-----------------
---r---r---r---r-----
r-----r-----r-----r--
r----r----r----r-----
----------rrrr-------
-----rrrr------------
-rrrr----------------
----r---r---r---r----
-r-----r-----r-----r-
--r----r----r----r---
-r----r----r----r----
---------------rrrr--
-----------rrrr------
------rrrr-----------
----r----r----r----r-
---r----r----r----r--
----------------rrrr-

(b) Separated

Fig. 3. Matrix

The matrix is in Fig. 3a. LTS generation using lps2lts

(mCRL2) takes 157 seconds and 540 MB. Using 64 cores,
multi-core LTSmin takes 68 seconds and 63 MB. But sym-
bolic LTSmin needs 80 seconds.

This is causedby themonolithic summands in the specifica-
tion (the dense rows in Figure 3a), representing the winning
condition.We split the condition in separate parts and let the
game continue after a winning move has been done. The ma-
trix of the problem becomes more sparse, see Figure 3b. Note
that the four r’s in a row correspond to the four winning tiles.
The symbolic tool now generates a different state space of the
same game (5,464,758 states) in one second. mCRL2 takes
167 seconds for this version. The exploration time ofLTSmin

for a 6×5 board is 2.6 seconds, for 9.78× 109 states in 41,239
MDD nodes.

Next, we generate a PBES with mCRL2, to encode the μ-
calculus property (in file yellow wins.mcl) that player Yel-
low has a winning strategy, and solve it with LTSmin:

mu X . [Wins(Red)]false && <Move>(<Wins(Yellow)>true || [Move]X)

> lps2pbes -s -f yellow_wins.mcl four5x4.lps four5x4.pbes

> pbes2lts-sym --mcrl2=-rjitty --regroup=gs --pg-solve \

--vset=lddmc --order=par-prev four5x4.pbes

For the 5×4-board mCRL2 takes 199 seconds, but the symbolic tool of LTSmin

8 seconds, to compute that the starting player has no winning strategy.

7 Discussion

There are several toolsets that take a similar approach, supporting a generic inter-
face, or offer similar, multi-core or symbolic, analysis algorithms. The table below
provides a brief qualitative comparison of the available types of algorithms and the
supported logics. The last column indicates whether multiple input languages are
supported, and if so, through which interface.

The Pins interface is the main differentiator of LTSmin. It is sufficiently gen-
eral to support a wide range of modelling languages. At the same time, the depen-
dencymatrices provide sufficient structuralmodel information to exploit locality in

Toolset m
ul
ti-
co
re

di
st
rib
ut
ed

sy
m
bo
lic

μ-
ca
lcu

lu
s

LT
L

PO
R

co
nfl
ue
nc
e

Language

LTSmin yes yes yes yes yes yes yes any (Pins)
mCRL2 [11] no no no yes no no yes fixed

CADP [22] no yes no yes* no no yes any (Open/C)
DiVinE [3] yes yes no no yes yes no any (CESMI)
Spin yes yes no no yes yes no fixed

NuSMV [9] no no yes no yes no no fixed

* CADP supports μ-calculus formulae up to alternation depth 2.

LTSmin: High-Performance Language-Independent Model Checking 705

the analysis algorithms. As a consequence, LTSmin is the only language-agnostic
model checker that supports on-the-fly symbolic verification and full LTL model
checking with POR. Due to the modular architecture, the user can freely choose a
verification strategy depending on the problem at hand.

References

1. Barnat, J., Brim, L., Ročkai, P.: A Time-Optimal On-the-Fly Parallel Algorithm for
Model Checking of Weak LTL Properties. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, pp. 407–425. Springer, Heidelberg (2009)

2. Barnat, J., Brim, L., Ročkai, P.: Parallel Partial Order Reduction with Topological
Sort Proviso. In: SEFM 2010, pp. 222–231. IEEE (2010)

3. Barnat, J., et al.: DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded
C & C++ Programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 863–868. Springer, Heidelberg (2013)

4. van der Berg, F.I., Laarman, A.W.: SpinS: Extending LTSmin with Promela through
SpinJa. In: PDMC 2012. ENTCS, vol. 296, pp. 95–105 (2013)

5. Blom, S.C.C., van de Pol, J.C., Weber, M.: Bridging the Gap between Enumerative
and Symbolic Model Checkers. University of Twente (2009)

6. Blom, S., Lisser, B., van de Pol, J., Weber, M.: A Database Approach to Distributed
State-Space Generation. Journal of Logic and Computation 21(1), 45–62 (2009)

7. Blom, S., van de Pol, J.: Symbolic Reachability for Process Algebras with Recursive
Data Types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008)

8. Blom, S.C.C., van dePol, J.C.,Weber,M.: LTSmin:Distributed andSymbolicReach-
ability. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
354–359. Springer, Heidelberg (2010)

9. Cimatti, A., et al.: NuSMV Version 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–
364. Springer, Heidelberg (2002)

10. Cleary, J.G.: Compact Hash Tables Using Bidirectional Linear Probing. IEEE Trans-
actions on Computers C-33(9), 828–834 (1984)

11. Cranen, S., others: An Overview of the mCRL2 Toolset and Its Recent Advances.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013)

12. Dalsgaard, A.E., others: Multi-core Reachability for Timed Automata. In: Jur-
dziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 91–106.
Springer, Heidelberg (2012)

13. Dam, M.: Translating CTL* into the modal μ-calculus. Report ECS-LFCS-90-123,
LFCS, University of Edinburgh (1990)

14. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using ab-
stractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329. Springer,
Heidelberg (1998)

15. van Dijk, T., van de Pol, J.C.: Lace: non-blocking split deque for work-stealing. In:
Lopes, L., et al. (eds.) Euro-Par 2014, Part II. LNCS, vol. 8806, pp. 206–217. Springer,
Heidelberg (2014)

16. van Dijk, T., van de Pol, J.C.: Sylvan: Multi-core Decision Diagrams. In: TACAS
2015. Springer (2015)

706 G. Kant et al.

17. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg (2005)

18. Evangelista, S., Pajault, C.: Solving the Ignoring Problem for Partial Order Reduc-
tion. STTT 12, 155–170 (2010)

19. Evangelista, S., et al.: Improved Multi-core Nested Depth-First Search. In:
Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 269–283.
Springer, Heidelberg (2012)

20. Friedmann, O., Lange, M.: PGSolver (2008),
https://github.com/tcsprojects/pgsolver

21. Garavel, H.: OPEN/CÆSAR: An open software architecture for verification, simu-
lation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.
Springer, Heidelberg (1998)

22. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the con-
struction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

23. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Hei-
delberg (2001)

24. Groote, J.F.,Willemse, T.A.C.: Model-checking processes with data. Science of Com-
puter Programming 56(3), 251–273 (2005)

25. Guck, D., et al.: Analysis of Timed and Long-Run Objectives for Markov Automata.
Logical Methods in Computer Science 10(3) (2014)

26. Holzmann, G.J.: The model checker SPIN. IEEE TSE 23, 279–295 (1997)
27. Holzmann, G.J.: Parallelizing the SPIN Model Checker. In: Donaldson, A., Parker,

D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012)
28. Howar, F., et al.: Rigorous examination of reactive systems. STTT 16(5) (2014)
29. Kant, G., van de Pol, J.: Generating and Solving Symbolic Parity Games. In:

GRAPHITE 2014. EPTCS, vol. 159, pp. 2–14 (2014)
30. Katz, S., Peled, D.: An efficient verification method for parallel and distributed pro-

grams. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency. LNCS,
vol. 354, pp. 489–507. Springer, Heidelberg (1989)

31. Laarman, A., Faragó, D.: Improved On-The-Fly Livelock Detection. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 32–47. Springer, Hei-
delberg (2013)

32. Laarman, A., Pater, E., van de Pol, J.C., Hansen, H.: Guard-based partial-order re-
duction. STTT (2014)

33. Laarman, A., van de Pol, J., Weber, M.: Boosting Multi-Core Reachability Perfor-
mance with Shared Hash Tables. In: FMCAD 2010, pp. 247–255. IEEE (2010)

34. Laarman, A., van de Pol, J., Weber, M.: Parallel Recursive State Compression for
Free. In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823,
pp. 38–56. Springer, Heidelberg (2011)

35. Laarman, A.: Scalable Multi-Core Model Checking. Ph.D. thesis, University of
Twente (2014)

36. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core Emptiness Checking of Timed Büchi Automata Using Inclusion Abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer,
Heidelberg (2013)

37. Laarman, A., van de Pol, J., Weber, M.: Multi-Core LTSmin: Marrying Modularity
and Scalability. In: Bobaru, M., Havelund,K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011)

https://github.com/tcsprojects/pgsolver

LTSmin: High-Performance Language-Independent Model Checking 707

38. Laarman, A.,Wijs, A.: Partial-OrderReduction forMulti-Core LTLModelChecking.
In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 267–283. Springer, Heidelberg
(2014)

39. Mateescu, R.: Local Model-Checking of an Alternation-Free Value-BasedModal Mu-
Calculus. In: VMCAI 1998 (1998)

40. Meijer, J.J.G.,Kant,G., van dePol, J.C.,Blom, S.C.C.:Read,Write andCopyDepen-
dencies for SymbolicModel Checking. In:Yahav,E. (ed.) HVC2014. LNCS, vol. 8855,
pp. 204–219. Springer, Heidelberg (2014)

41. van de Pol, J., Ruys, T.C., te Brinke, S.: Thoughtful brute-force attack of the RERS
2012 and 2013 Challenges. STTT 16(5), 481–491 (2014)

42. RERS – Rigorous Examination of Reactive Systems, http://rers-challenge.org/
43. Timmer, M.: Efficient modelling, generation and analysis ofMarkov automata. Ph.D.

thesis, University of Twente (2013)
44. Valmari, A.: Eliminating Redundant Interleavings During Concurrent Program Ver-

ification. In: Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366, pp.
89–103. Springer, Heidelberg (1989)

45. van der Vegt, S., Laarman, A.W.: A parallel compact hash table. In: Kotásek, Z.,
Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS,
vol. 7119, pp. 191–204. Springer, Heidelberg (2012)

46. Zielonka, W.: Infinite Games on Finitely Coloured Graphs with Applications to Au-
tomata on Infinite Trees. Theoretical Computer Science 200(1–2), 135–183 (1998)

http://rers-challenge.org/

Using a Formal Model to Improve Verification

of a Cache-Coherent System-on-Chip

Abderahman Kriouile1,2,3,4 and Wendelin Serwe2,3,4

1 STMicroelectronics, 12, rue Jules Horowitz, BP 217, 38019 Grenoble, France
2 Inria, Grenoble, France

3 Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
4 CNRS, LIG, F-38000 Grenoble, France

Abstract. In this paper we report about a case study on the func-
tional verification of a System-on-Chip (SoC) with a formal system-level
model. Our approach improves industrial simulation-based verification
techniques in two aspects. First, we suggest to use the formal model to
assess the sanity of an interface verification unit. Second, we present a
two-step approach to generate clever semi-directed test cases from tem-
poral logic properties: model-based testing tools of the CADP toolbox
generate system-level abstract test cases, which are then refined with a
commercial Coverage-Directed Test Generation tool into interface-level
concrete test cases that can be executed at RTL level. Applied to an
AMBA 4 ACE-based cache-coherent SoC, we found that our approach
helps in the transition from interface-level to system-level verification,
facilitates the validation of system-level properties, and enables early
detection of bugs in both the SoC and the commercial test-bench.

1 Introduction

Due to increasing design complexity, functional verification continues to be one of
the most expensive and time-consuming steps in a typical System-on-Chip (SoC)
design flow. In practice, most widely used techniques are based on extensive sim-
ulation due to the related flexibility. However, the success of simulation-based
verification, both in terms of total effort spent and final verification coverage
achieved, depends heavily on the quality of the tests executed during simula-
tion. Generating tests to achieve high coverage for complex designs has always
been a challenging problem. In general, more constrained and less random tests
reduce the overall validation effort, because the same verification coverage can
be achieved with fewer and shorter tests [19]. We distinguish in this paper three
types of test generation techniques with decreasing degree of randomness: fully
random, constrained-random [26], and fully specified tests, hereafter called di-
rected tests, i.e., without randomization.

Fully random tests are the easiest to automate, but require long simulation
runs to obtain a reasonable coverage. In many situations, directed tests are the
only tests that can thoroughly verify corner cases and important features of a
design [2,15]. However, because directed tests are mostly written manually, it

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 708–722, 2015.
DOI: 10.1007/978-3-662-46681-0_62

Using a Formal Model to Improve Verification 709

is impractical to generate a comprehensive set of directed tests to achieve a
coverage goal [19]. Automatic test generation using model checking is one of
the most promising approaches for directed test generation. However, for large
designs model checking rapidly faces state explosion, when considering hardware
protocols in all their details.

Constrained-random testing uses constraint solvers to select tests satisfying
a specified set of constraints; non-specified details are then filled in by random-
ization. The automation of the feedback from coverage analysis to constrained-
random test generation led to coverage-directed test generation (CDTG) [22],
which dynamically analyzes coverage results and automatically adapts the ran-
domized test generation process to improve the coverage. CDTG is guided by
different coverage metrics, such as state coverage and transition coverage [2] and
shows various degrees of success [11]. For instance, it succeeds to achieve coverage
goals for interface hardware protocols, but reaches its limits for complex system-
level protocols, such as system-level cache coherency. Achieving good coverage
for these recent protocols is a new challenge in the development of industrial
test benches and calls for more directed and less random tests.

This paper is about the application of formal methods to improve the func-
tional verification of a heterogeneous cache-coherent SoC for a commercial set-
top-box supporting multiple Ultra HD flows on a single chip currently under
development at STMicroelectronics. We use an extension of a previously devel-
oped system-level formal model of a cache-coherent SoC [16] and take advantage
of equivalence checking, model checking, and test generation facilities offered by
the CADP toolbox1 [8].

The two principal contributions of this paper are the following.

1. A way to assess the sanity of an industrial interface verification unit (ivunit),
consisting of a set of behaviors to cover. In our study, we focus on the complex
behaviors expressed by so-called checks of a commercial ivunit.

2. A two-step approach to use model-based testing to generate clever semi-
directed system level test cases from temporal logic properties. We use CADP
to generate directed “abstract” system-level test cases, which are then refined
with commercial CDTG tool into interface-level “concrete” test cases that
can be executed at RTL level. Those tests concern system-level properties
in the sense that several interfaces are activated. We propose the notion of
a system verification unit (svunit) to measure the coverage and verdicts of
system-level properties.

The rest of the paper is organized as follows: Section 2 presents related work.
Section 3 recalls the main aspects of the considered SoC and its formal model [16].
Section 4 presents contribution 1 by describing the validation of an industrial
ivunit using equivalence checking. Section 5 details contribution 2 by proposing
our test generation methodology based on counterexamples generated by model
checking. Section 6 presents experimental results and the industrial impact of
our work. Finally, Section 7 concludes the paper.

1 http://cadp.inria.fr/

http://cadp.inria.fr/

710 A. Kriouile and W. Serwe

2 Related Work

For instance, the specification-based test generation technique [21] uses a formal
model to generate directed tests. Solutions based on model checking techniques
are promising for functional verification and test generation for reasonably com-
plex systems [10]. However, it is unrealistic to assume that a complete detailed
model of a large SoC is tractable by a model checker. We address this issue by re-
lying on a system-level model, abstracting from all irrelevant details. In this way,
we succeed to model a complex industrial SoC and to extract relevant scenarios
by model checking. The above approaches transform counterexamples produced
by the model checker into test cases. In our approach, we use the counterexam-
ples to produce smaller interesting configurations of the model that still do not
satisfy a given property. We generate test cases from these smaller models, thus
avoiding combinatorial explosion in many cases.

In the literature, it has already been proposed to mix model-based techniques
and coverage-directed techniques. Coverage-directed techniques were used in
property learning [4] (“reuse learned knowledge from one core to another”),
which we do not use, and that relies on SAT-based BMC (whereas CADP im-
plements totally different verification techniques). Some of those techniques [21]
focus on homogeneous multicore architectures (exploiting symmetry between
processors to reduce verification complexity), and only suggest how this could
be extended to heterogeneous architectures (by grouping IPs into homogeneous
groups to be studied separately). On the contrary, our approach was designed for
heterogeneous SoCs and makes no symmetry assumption. Also, most of those
techniques [4,5,21] remain at system level (SystemC-TLM level), whereas our
approach starts from system level and goes down to RTL level.

Over the last two decades, the CADP toolbox has been used for verifying
numerous complex hardware designs, including Bull supercomputers, STMicro-
electronics multiprocessor architectures, Networks-on-Chip (CEA/Leti and Uni-
versity of Utah), and various asynchronous circuits. In this paper, we present an
application of the latest languages and tools of CADP. Using the new genera-
tion formal language LNT [3] to describe the system and also the test purposes
greatly facilitates the testing of complex behaviors. Similarly, the MCL lan-
guage [17] provides a convenient way to express complex data-based temporal
properties. We use a new prototype tool to generate tests on the fly. Finally,
instead of a homogeneous system as in [9,14], we study the less symmetric and
thus more complex case of an heterogeneous SoC.

3 Formal Model of an AMBA 4 ACE Based SoC

The recent AMBA 4 ACE (AXI Coherency Extension) protocol [1,23], proposed
by ARM, extends the AMBA 3 AXI protocol in order to support system-level
cache coherency in SoCs. AXI defines communication at interface-level between
a pair of master/slave ports, which are connected by several read and write
channels (AR, R, AW, W, B). AXI defines two transactions Read and Write, each of

Using a Formal Model to Improve Verification 711

which consists of several transfers; each transfer is executed on an AXI channel.
Thanks to the encapsulation mechanisms of AXI, a transfer on a channel can be
considered to be atomic at higher levels.

ACE introduces system-level requirements on transaction ordering, adds co-
herency channels (AC, CR, CD), enriches existing channels with new coherency
parameters (i.e., PassDirty, IsShared), and defines cache line states and several
transactions (i.e., coherent transactions, cache maintenance transactions, mem-
ory update transactions, etc.). ACE introduces heterogeneity by defining two
types of coherent masters: those with a cache are called ACE masters, and those
without caches are called ACE-Lite masters. The latter can access data in the
caches of the former, avoiding access to memory, which improves performance.

Example 1. The ReadOnce transaction is a coherent transaction (used in partic-
ular by an ACE-Lite master), which obtains the current contents of a memory
line without keeping a copy into the cache. If an ACE-Lite master sends a Read-
Once transfer on the AR channel. The CCI then sends snoop requests to all ACE
masters on the AC channels. Each ACE master answers on the CR channel with
a Boolean indicating whether the data is in its cache, and a Boolean indicating
if the master passes the responsibility of writing back the data in the memory
(PassDirty). If the data is available, the ACE master sends also a data transfer
on the CD channel. If none of the master has the data available, it is taken from
the main memory. The CCI forwards the data to the ACE-Lite master using the
R channel, to complete the transaction. If one of the ACE masters passed the
responsibility to write back the data, the CCI must initiate a memory update,
because an ACE-Lite master cannot take this responsibility.

We use an extension of a previously developed formal model [16] (about 3400
lines of LNT code) of an ACE-based SoC2, consisting of a cache-coherent in-
terconnect (CCI) connected to a non-cache-coherent Network-on-Chip (NoC).
Figure 1 shows the overall architecture of the model in the configuration used
in the present paper. Following the ARM R© big.LITTLETM solution [20], the
two ACE masters are one big (powerful) and one little (lower-power) processor,
enabling to dynamically adapt to changing computation load. The ACE-Lite
master is a Graphical Processing Unit (GPU) that can access the caches of both
processors. All three masters access the main memory through a non-cache-
coherent NoC. The ACE protocol supports the coherency of data among the
processors. Our formal model focuses on the cache-coherent part of the SoC.

The ACE specification contains some global requirements. Indeed, the ACE
protocol does not guarantee system level cache coherency, but just provides sup-
port for it. Coherency has to be ensured by proprietary additional mechanisms
on each implementation of a CCI. We model these global requirements in a
constraint-oriented style by adding observer processes that prohibit incorrect
executions. By omitting those observers, we obtain an unconstrained model, for
which the global requirements are not necessarily satisfied.

2 A large Petri net derived from our LNT model is available as Model Checking Contest
2014 benchmark (http://mcc.lip6.fr/pdf/ARMCacheCoherence-form.pdf).

712 A. Kriouile and W. Serwe

AR R AW W CR CDAC AR R AW W CR CDAC

ACE master 1 (big)
Line_1_1 Line_1_2 Line_2_1 Line_2_2

AR R AW WB B B

ACE port 1 ACE−Lite portACE port 2

AXI port

AR R AW W B

(cache−coherent interconnect)

AXI slave
(non−cache−coherent NoC/memory)

0

CCI

1 32ACE master 2 (LITTLE)

(GPU)
ACE−Lite master

Fig. 1. Model architecture

A crucial feature of our formal model is that it is parametrized, in particular
by the set of forbidden ACE transactions, the number of ACE masters, ACE-Lite
masters, and cache lines per ACE master. Among the three masters, at most two
initiate transactions at the same time. We will vary essentially one parameter,
which is the set of forbidden ACE transactions; we refer to an instance of the
model as Model(F), where F is the set of forbidden ACE transactions; thus,
Model(∅) corresponds to the complete, unconstrained model.

4 Sanity of a Formal Check List

Industrial CDTG test benches are based on a so-called verification plan, i.e.,
a list of all behaviors to be covered by tests on the Design Under Verification
(DUV). The coverage of the verification plan is collected to measure test pro-
gression.3 In our work, we focus on the formal checks, which are grouped in
so-called interface verification units (ivunit). Each check is an event sequence,
e.g., expressed in Property Specification Language (PSL) [12]. Covering a check
consists in activating the check and finishing correctly the specified sequence.
Activating a check means to detect the first event of the sequence. It is a failure
if a check is activated and not correctly finished.

In this section, we report about the use of our formal model to validate a
commercial ivunit. To this end, we encode each check of the ivunit as a Labeled
Transition System (LTS) (by means of an LNT model) and use equivalence
checking techniques (hiding, minimization, and comparison operations on LTSs).

In fact, the ivunit considers only a single interface (i.e., a single master/slave
pair), whereas the formal model describes the complete SoC. To obtain the LTS
of the interface between ACE master 1 (big) and the CCI (upper left part of
Fig. 1), we hide in the LTS of the whole system all labels except those of the

3 There are two types of behaviors in a verification plan: simple behaviors, called cover
points and complex behaviors, called (formal) checks.

Using a Formal Model to Improve Verification 713

selected interface and then minimize the resulting LTS according to divergence-
sensitive branching bisimulation (divbranching) [25], which preserves the branch-
ing structure and livelocks (cycles of internal τ -transitions). Applying those steps
reduces the LTS as generated from the model (498,197 states, 1,343,799 transi-
tions) by two orders of magnitude (3,653 states, 8,924 transitions). We store the
reduced LTS in a file named interface.bcg, where the extension .bcg stands for
Binary Coded Graph, the compact binary format used to store LTSs in CADP.

We continue our study by identifying a subset of nine industrial checks (called
C1 ... C9), which have a level of abstraction corresponding to our formal model.
Then we verify that each check is an overapproximation of the model behavior.
Last, we study if the list of checks covers all behaviors of the model.

4.1 Local Sanity of Each Check

We aim at verifying that each check is well specified. Because each check uses
only a subset of interface channels, we generate a corresponding sub-interface
by hiding all channels except those occurring in the check, and apply again
divbranching reduction.

Example 2. Check C1 requires that the current read request address should not
overlap with any of the outstanding write requests. C1 uses only three channels:
address read (AR), address write (AW), and write response (B). Thus we obtain
the corresponding sub-interface LTS (105 states, 474 transitions).

We verify that each sub-interface LTS is included in the corresponding check
LTS modulo the preorder of the divbranching bisimulation. We conclude that
the check is a correct overapproximation of the behavior of the subset of ACE
channels.

4.2 Global Sanity of the List of Checks

To verify that the list of checks covers all the behaviors of the interface model, we
compare the parallel composition of all the nine checks with the interface LTS.
We use smart reduction [6] to automatically optimize the order of composing
and minimizing the checks in the parallel composition: the complete composition
process takes approximately five minutes. We express the parallel composition
in SVL with an LNT-style parallel composition operation: each check is required
to synchronize on all the gates (channels) it uses; synchronization is n-ary, i.e.,
all checks that have a given channel (e.g., AR) in their synchronization set (on
the left of ->) synchronize on the channel (e.g., C1, C2, C3, C5 all together
synchronize on AR).

"all_checks.bcg" = smart divbranching reduction of

par AR, AW, B -> "C1.lnt"

|| AR, AW, R, B -> "C2.lnt"

|| AR, R -> "C3.lnt"

|| AW, B -> "C4.lnt"

714 A. Kriouile and W. Serwe

|| AR, AW, R, B -> "C5.lnt"

|| AW, B, CD -> "C6.lnt"

|| AC, CD -> "C7.lnt"

|| AC, CR -> "C8.lnt"

|| R -> "C9.lnt"

end par;

We compare the interface LTS and the checks LTS all checks.bcg (11,773
states, 8,171,497 transitions) to verify if the interface LTS is included in the LTS
all checks.bcgmodulo the preorder corresponding to the divbranching bisimu-
lation. This verification fails, i.e., we detect a missing check ; the counterexample
(provided by CADP) shows a W label following an AW label.

According to the ACE specification, there must be the same number of W’s
and AW’s. We express this constraint by a new check (C10), avoiding the use
of counters, using asynchronous parallel composition (AW || W). Adding C10 to
the parallel composition of the checks, yields a new LTS all checks bis.bcg

(38,793 states, 27,200,587 transitions).
We compare all checks bis.bcg and interface.bcg and observe now that

interface.bcg is included in all checks bis.bcg for divbranching bisimula-
tion. Hence, the check list is now complete with respect to our formal model.
Although the missing check could also be found manually by inspecting the list
of channels in the checks (all channels but W are present), our approach has the
additional benefits of illustrating the missing behavior and enabling to formally,
and semi-automatically, establish the completeness of the check list.

5 From Temporal Logic Properties to Clever Test Cases

An interesting idea for the generation of directed tests is to focus on and derive
tests from potential faults of the DUV [18]. For system-level protocols, in order to
obtain a description of potential faults corresponding to the global requirements
of the SoC, we suggest to use system-level properties together with a model
containing faults. In our case, we use the unconstrained model (see Sec. 3).
Applying the theory of conformance testing [24], we generate abstract test cases,
which then have to be translated to the input language of a commercial CDTG
solver to randomly complete interface-level details and finally to run the tests
on the RTL test bench.

Because we found the generation of abstract test cases directly from the com-
plete model to be impractical, we suggest to use information contained in coun-
terexamples to select interesting configurations of the formal model, which still
contain violations of the global requirements, and to extract abstract test cases
from the selected configurations. Figure 2 gives an overview of our test generation
flow.

5.1 System-Level Properties

We express properties in the Model Checking Language (MCL) [17], an extension
of the modal μ-calculus with high-level operators to improve expressiveness and

Using a Formal Model to Improve Verification 715

interesting

test generation

test purposes

CDTG solver

abstract

RTL tests

configurations

concrete

test cases
formal
model

system
properties

function CIC
unconstrained

model

model checking

counter−
examples

Fig. 2. Model-Based Test Generation flow

conciseness of formulæ. The main ingredients of MCL used in this paper are
action patterns extracting data values from LTS transition labels, and modalities
on transition sequences described by extended regular expressions. MCL formulæ
are verified on the fly using the EVALUATOR 4.0 model checker of CADP.

Among the properties we considered4, only the following two do not hold for
the unconstrained model.

Data Integrity. The following property [16, ϕ5], enforces correct order of write
operations to the shared memory:

[true * .

{W !"WRITEBACK" ?m:Nat ?l:Nat ?d:Nat}. (* memory update *)

(not {W !"WRITEBACK" !0 !l !d !m})*.

{W !"WRITEBACK" !0 !l !d !m}. (* update written *)

((not {AC ... !m ?any of Nat !l}) and

(not {W ?any of String !0 !l ?any of Nat ...}))*.

{W ?any of String !0 !l ?h:Nat ... where h<>d} (* different update *)

] false

The second line of this property matches an action corresponding to a rendezvous
on gate W with four offers: the transaction (“WRITEBACK”, i.e. a memory update),
the initiating master (the id of which is stored in variable m), the memory line
(the address of which is stored in variable l), and the data to be written (which
is stored in variable d). When this update is effectively written to memory (2nd
action on gate W), with as second offer the port number 0, i.e., the memory, the
property forbids (last action on gate W) a data h different from d to be written
to the same memory line l without previously receiving a snoop request (gate
AC) concerning line l.

4 We considered several properties, such as: absence of deadlocks, absence of livelocks,
complete execution of read and write transactions, data integrity, and coherency of
ACE-states and parameters of ACE transactions. All these properties are satisfied
by our constrained model.

716 A. Kriouile and W. Serwe

function CIC (ϕ: Property, F : Set of Transaction): Set of (Set of Transaction) is
if Model(F) |= ϕ then

return ∅
else

let Δ be a minimal-depth counterexample ;
result := ∅ ;
for each transaction T occuring in Δ do

result := result ∪ CIC (ϕ, F ∪ {T})
end for ;
if result = ∅ then result := { F } end if ;
return result

end if
end function

Fig. 3. Function CIC to compute a set of interesting configurations containing faults

Unique Dirty Coherency. To verify the coherency of the ACE states of all the
caches of the system, we translated the state-based properties to action-based
properties, using information about the ACE state added to transactions issued
by cache lines. The following property [16, ϕ3] requires that if a cache line is in
the state ACE UD (the cache line is unique and modified), then as long as the line
does not change its status, all other cache lines containing the same memory line
must be in the state ACE I (the cache line is invalid)5:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_UD"} .

(not ({?Ch:String ?op:String !m1 !l ?s:String

where ace_state(s) and (s<>"ACE_UD")}))* .

{?Ch:String ?op:String ?m2:Nat !l ?s:String

where (m2<>m1) and ace_state(s) and (s<>"ACE_I")}

] false

5.2 Computation of Interesting Configurations Containing Faults

Counterexamples of a desired property provide interesting scenarios to test cor-
ner cases. To improve test coverage, it is interesting to have as many different
counterexamples as possible. However, on-the-fly model checking provides at
most one counterexample for each property ϕ and configuration of the model,
because the model checker stops as soon as it detects a violation of the property.
Therefore, we take advantage of the parametrization of our formal model, by
varying the set F of forbidden ACE transactions, to compute with the recursive
function CIC (compute interesting configurations) shown in Fig. 3 a comprehen-
sive set of interesting configurations of the Model(F) containing faults.

Initially, all fifteen ACE transactions are allowed, i.e., we call CIC(ϕ,∅).
Function CIC proceeds as follows. First, we configure the model to exclude the

5 ace state(s) is a macro predicate that holds iff the string s is an ACE state.

Using a Formal Model to Improve Verification 717

transactions in F , and model check property ϕ. If ϕ is not satisfied, the model
checker produces a counterexample Δ. We use the breadth-first search algorithm
of EVALUATOR 4.0 to produce a counterexample of minimal depth, and avoid
spurious actions in the counterexample. For each transaction T occurring in Δ,
we call CIC recursively, deactivating T in addition to F . Function CIC termi-
nates, because the parameter F has an upper bound (the set of all transactions)
and it strictly increases for each recursive call.

The set of interesting configurations {Model(F1),...,Model(Fn)} corre-
sponding to the set {F1, ...,Fn} computed by CIC has the following property:
a configuration Model(F ′) does not satisfy the property ϕ if and only if F ′ is
smaller than or equal to at least one combination Fi.

We applied CIC to the two properties that were invalid on the unconstrained
model (see Sec. 5.1). Altogether, Data Integrity yields 21 interesting configura-
tions (14 from an architecture with two ACE masters initiating transactions, and
7 from an architecture with one ACE-Lite master and one ACE master initiating
transactions) and Unique Dirty Coherency yields 18 interesting configurations
from an architecture with two ACE masters initiating transactions (with only
one ACE master, i.e., a single cache, Unique Dirty Coherency holds trivially).

5.3 Abstract Test Generation

We aim at generating as many tests as possible leading to invalidation of the
property for each interesting configuration. We call those tests negative tests,
because if a test succeeds, we detect a failure of the system; but if the system is
correct, all tests will fail.

Our test generation approach is based on the theory of conformance test-
ing [24], i.e., we compute from a specification of a system and a so-called test
purpose [13] a set of abstract test cases. Intuitively, a test purpose is a means to
characterize those states (called ACCEPT states) of the specification that should
be reached during test execution. To prune the search space for test cases, the
test purpose can also contain so-called REFUSE states: if such a state is reached
while testing the DUV, the test is stopped and declared inconclusive. Techni-
cally, a test purpose is provided as an LTS, e.g., an LNT model. Thus we express
the negation of each property as a test purpose in LNT.

Example 3. The LNT code for the test purpose corresponding to the Unique
Dirty Coherency is shown in Fig. 4. After an outgoing action (gates AR, AW, and
W) from an ACE master m1 with a cache state ACE UD (Unique Dirty), it monitors
all outgoing actions of all ACE masters. If a different ACE master m2 has an
ACE UD state we ACCEPT the test (a coherency error has been detected). If m1

performs another action with a state other than ACE UD, we REFUSE the test (the
test is inconclusive).

We use two newly developed prototype tools for test generation. A first tool
takes as input a model and a test purpose (both in LNT), and produces a Com-
plete Test Graph (CTG), i.e., an intermediate LTS containing all information to

718 A. Kriouile and W. Serwe

process main [AR, AW, CR, ACCEPT, REFUSE: any] is

var m1, m2: INDEX_MASTER, s: ACE_state_t in

select

AR (?any, ?m1, 1, ACE_UD)

[] AW (?any, ?m1, 1, ACE_UD)

[] CR (?any, ?any, ?m1, 1, ?any, ?any, ACE_UD)

end select; -- cache line of m1 has unique dirty status

select

select

AR (?any, ?m2, 1, ACE_UD) where (m2<>m1)

[] AW (?any, ?m2, 1, ACE_UD) where (m2<>m1)

[] CR (?any, ?any, ?m2, 1, ?any, ?any, ACE_UD) where (m2<>m1)

end select;

ACCEPT -- cache lines of both cpus have unique dirty status

[] select

AR (?any, m1, 1, ?s) where (s<>ACE_UD)

[] AW (?any, m1, 1, ?s) where (s<>ACE_UD)

[] CR (?any, ?any, m1, 1, ?any, ?any, ?s) where (s<>ACE_UD)

end select;

REFUSE -- cache line of m1 no longer has unique dirty status

end select

end var end process

Fig. 4. Unique Dirty Coherency test purpose described in LNT

extract (all) abstract test cases. We use a second tool to extract a set of abstract
test cases from the CTG. These test cases are abstract in the sense that they are
system-level automata generated from the model. Thus, those abstract test cases
have to be translated to the input language of the commercial coverage-based
solver to randomly complete the interface-level details and to run the tests on
the RTL test bench.

By extracting all test cases from each CTG and running each test case on
the industrial test bench, we obtain a locally intensive test around corner cases
specified by the global system-level properties.

Table 1 summarizes the results of our generation of abstract test cases for
a test purpose encoding the negation of a property ϕ. The first two columns
describe the property and the architecture. Columns 3 to 5 report the size of the
global CTG (produced from the unconstrained model) and the time to extract
test cases. The remaining columns give information about our approach based
on individual CTGs (produced from the interesting configurations): column 6
presents the number of CTGs, each of which is extracted from an interesting
configuration, columns 7 to 10 report the size of the largest and the smallest
CTG, and the last column gives the time to extract test cases from all the
individual CTGs. We see that the approach based on individual CTGs is much
more efficient than the extraction of test cases directly from the global CTG,
for which the extraction of test cases does not finish in half a year. Also our

Using a Formal Model to Improve Verification 719

Table 1. Experimental test case extraction results

global CTG extr. nb. of largest CTG smallest CTG extr.
prop. masters

states trans. time CTGs states trans. states trans. time

ϕ3 2ACE 6,402 14,323 >1/2 y 18 903 1,957 274 543 �7h

ϕ5
2ACE 23,032 48,543 >1/2 y 14 462 888 59 107 <1h

1ACE/1Lite 2,815 7,071 >1/2 y 7 193 394 59 107 <1h

approach reduces the size of the largest CTG by a factor of 7 for ϕ3 (Unique Dirty
Coherency), a factor of 14 for ϕ5 (Data Integrity) in the case of the architecture
with one ACE master and one ACE-Lite master initiating transactions, and a
factor of 49 for for ϕ5 in the case of the architecture with two ACE masters.

6 Industrial Results and Impact

Our formal model is used inside STMicroelectronics as a reference in discussions
with verification engineers and interconnect architects. It helps to understand
the new aspects introduced by ACE and to define the verification strategy. In
this context, the OCIS interactive step-by-step simulator with backtracking of
CADP is found useful for exhibiting execution scenarios of interest.

We also used OCIS to extract the list of possible transaction initiations for
each correct initial state of the system. A correct initial state of the system
is a correct combination of initial ACE states of the caches. For example, if a
memory line exists initially in two different caches, the state of these caches
cannot be ACE UD for both caches. So doing, we produce in less than one day
296 simple protocol tests, each of which consists of one single ACE transaction,
from request to response, including all triggered snoop requests, if any.

Using some of the counterexamples generated during the computation of the
interesting configurations (cf. Sec. 5.2), we produced also ten complex protocol
tests containing concurrency between different ACE transactions.

6.1 Making the Test Bench Ready for System-Level Verification

The original test libraries developed by the verification engineers are interface
tests. With a not so good coverage of system, new tests describing system sce-
narios are necessary. Because, system requirements cannot be verified on a single
ivunit separately, we complete the verification infrastructure and introduce the
notion of a system verification unit (svunit) connected to all ivunits, enabling
to combine behaviors of different interfaces in order to validate system-level re-
quirements. For the considered SoC, we defined an svunit consisting of 56 PSL
sequences, 56 PSL basic cover points, and 36 PSL checks. This enables to verify
on the RTL test bench that each coherent transaction produces the correspond-
ing snoop transactions, and that each snoop transaction eventually receives a
response from the snooped master.

720 A. Kriouile and W. Serwe

Further modifications of the test bench are required to enable the execution
of the concrete test cases derived from our abstract test cases. In particular, it is
necessary to control the order of events. First, we added more synchronizations
between different Verification Intellectual Property (VIP) events to enforce the
desired order of the events. Second, we added speed-up randomization: by default
the speed of a master for each of its channels is completely random. To express
that a master is faster than another one or to enforce an order between two
concurrent actions of a same master, we specify speed-up ranges (e.g., fast, slow,
or very slow). So doing, the speed-up remains random, but in a limited range,
ensuring the desired order.

6.2 Industrial Results

During the implementation of our abstract test cases on top of commercial VIPs,
we detected ten bugs in those VIPs. This enabled the CAD supplier to correct
the bugs before the use of these VIPs became critical in the development path
of STMicroelectronics.

Because the VIPs and the coverage lists are provided by the same CAD sup-
plier, some verification gaps may not be detected. In fact, the same misinter-
pretation of the ACE specification may find its way into both the VIPs and the
coverage lists. Working with a different approach led us to validate the industrial
checks (provided in the ivunits), and thanks to our directed tests we detected
unverified behaviors.

In October 2014, STMicroelectronics architects detected a limitation in the
IP implementation of the CCI. This limitation manifests in a subset of the coun-
terexamples for the data integrity property we verified 20 months before. Pre-
cisely, when the CCI initiates a memory update (e.g., see Example 1), some
parameters of this update are set to fixed values possibly loosing some impor-
tant information, and disturbing the ACE-Lite flow in the non-coherent part
of the SoC. This limitation corresponds to a gap that we have detected on the
commercial VIPs one year before, when we started experimenting with the trans-
lation of abstract to concrete test cases. Our method for computing interesting
faulty configurations (see Sec. 5.2) enabled us to provide all the scenarios trig-
gering this limitation. In addition, we wrote new PSL checks to detect those
corner cases. We should notice that our 306 extracted tests trigger those checks
16 times, whereas the other tests of the STMicroelectronics test library never
trigger these checks.

Our generated tests have direct impact on the development flow of an indus-
trial SoC of STMicroelectronics. We observe that the coverage of the verification
plan increased significantly6 and that the coverage of the svunit part of the verifi-
cation plan is complete (100%), i.e., all the aspects corresponding to system-level
behaviors are tested.
6 The coverage of the verification plan increased from 30% to 68%. Notice that 100%
coverage is not achievable for the considered SoC, because the verification plan,
as defined by the VIPs, includes some features of ACE (e.g., distributed virtual
memory), which are handled by the VIPs, but are not used by the considered SoC.

Using a Formal Model to Improve Verification 721

7 Conclusion

We used a system-level formal model of an SoC to improve functional verification
in several aspects. First, we studied the sanity of a list of industrial formal checks.
We also verified principal system properties with an explicit-state model checker.
Using models containing faults, we computed a comprehensive set of interesting
configurations, which are then used to generate negative abstract tests. Those
tests were translated into RTL level through a coverage-directed test generation
platform, thus intensively test the system around corner cases.

Our approach capitalizes on existing environments while solving their limi-
tations for system-level protocols. This had an impact on an industrial SoC in
production: It helped to improve the test bench and to increase test coverage.
In addition, our approach contributed to the maturation of commercial VIPs.

Currently, we work on automating manual parts of our approach, in particular
the translation of abstract test cases to the inputs of a CDTG solver. Given
the success of our approach, it seems interesting to apply this approach to the
system-level protocols in the next generation of SoCs.

Concerning reusability, our approach to assess the sanity of a check list against
a formal model is akin to crosschecking, a technique widely used in the hardware
community to improve confidence on the verification components. To apply our
test generation approach, the formal model must be configurable, so as to violate
a property. These preconditions seem acceptable, as we found modifying parts of
the model (e.g., some data types) feasible using simple scripts, and the literature
presents several techniques to automate the production of faulty models.

Acknowledgements. We are grateful to H. Garavel and R. Mateescu (Inria),
G. Barthes and M. Zendri (STMicroelectronics) for their contributions and valu-
able remarks. We would also like to thank C. Chevallaz and G. Faux (STMi-
croelectronics) for helpful discussions, and the anonymous reviewers for their
suggestions that contributed to improve the paper.

References

1. ARM. AMBA AXI and ACE Protocol Specification. version ARM IHI 0022E
(February 2013),
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022e

2. Benjamin, M., Geist, D., Hartman, A., Mas, G., Smeets, R.: A Study in Coverage-
Driven Test Generation. In: Design Automation Conference, pp. 970–975. IEEE
(1999)

3. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference manual of the LNT to LOTOS trans-
lator (version 6.1). INRIA/VASY – INRIA/CONVECS (December 2014)

4. Chen, M., Mishra, P.: Property learning techniques for efficient generation of di-
rected tests. IEEE Transactions on Computers 60(6), 852–864 (2011)

5. Chen, M., Qin, X., Koo, H.-M., Mishra, P.: System-Level Validation: High-Level
Modeling and Directed Test Generation Techniques. Springer (2013)

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022e

722 A. Kriouile and W. Serwe

6. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011)

7. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) System Engineering and Automa-
tion. IFIP, vol. 69, pp. 377–392. Springer, Boston (2001)

8. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT 15(2), 89–107 (2013)

9. Garavel, H., Viho, C., Zendri, M.: System design of a CC-NUMA multiproces-
sor architecture using formal specification, model-checking, co-simulation, and test
generation. STTT 3(3), 314–331 (2001)

10. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from re-
quirements specifications. Software Engineering Notes 24, 146–162 (1999)

11. Guzey, O., Wang, L.-C.: Coverage-directed test generation through automatic con-
straint extraction. In: High Level Design Validation and Test Workshop, pp. 151–
158. IEEE (2007)

12. IEEE standard for property Specification language (PSL). IEEE Std 1850-2010, pp.
i–188 (2010), http://standards.ieee.org/findstds/standard/1850-2010.html

13. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. STTT 7(4), 297–315
(2005)

14. Kahlouche, H., Viho, C., Zendri, M.: An industrial experiment in automatic gen-
eration of executable test suites for a cache coherency protocol. In: Petrenko, A.,
Yevtushenko, N. (eds.) Testing of Communicating Systems. IFIP, vol. 3, pp. 211–
226. Springer, Boston (1998)

15. Koo, H.-M., Mishra, P., Bhadra, J., Abadir, M.: Directed micro-architectural test
generation for an industrial processor: A case study. In: Microprocessor Test and
Verification, pp. 33–36. IEEE (2006)

16. Kriouile, A., Serwe, W.: Formal Analysis of the ACE Specification for Cache Co-
herent Systems-on-Chip. In: Pecheur, C., Dierkes, M. (eds.) FMICS 2013. LNCS,
vol. 8187, pp. 108–122. Springer, Heidelberg (2013)

17. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

18. Mathaikutty, D.A., Shukla, S.K., Kodakara, S.V., Lilja, D., Dingankar, A.: Design
fault directed test generation for microprocessor validation. In: DATE, pp. 1–6.
IEEE (2007)

19. Mishra, P., Chen, M.: Efficient techniques for directed test generation using incre-
mental satisfiability. In: VLSI Design, pp. 65–70. IEEE (2009)

20. Greenhalgh, A.P.: Big. LITTLE Processing with ARM CortexTM -A15 & Cortex-
A7 (2011)

21. Qin, X., Mishra, P.: Efficient directed test generation for validation of multicore
architectures. In: Quality Electronic Design, pp. 276–283. IEEE (2011)

22. Shen, H., Wei, W., Chen, Y., Chen, B., Guo, Q.: Coverage directed test generation:
Godson experience. In: Asian Test Symposium, pp. 321–326. IEEE (2008)

23. Stevens, A.: Introduction to AMBA 4 ACE. ARM whitepaper (June 2011)
24. Tretmans, J.: A formal approach to conformance testing. Twente University Press

(1992)
25. Van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-

tion semantics. Journal of the ACM 43(3), 555–600 (1996)
26. Yuan, J., Pixley, C., Aziz, A., Albin, K.: A framework for constrained functional

verification. In: Computer Aided Design, pp. 142–145. IEEE (2003)

http://standards.ieee.org/findstds/standard/1850-2010.html

Author Index

Abate, Alessandro 272
Abdulla, Parosh Aziz 353
Abdullah, Jakaria 3
Aguirre, Nazareno 188
Albert, Elvira 85
Alur, Rajeev 501
Armando, Alessandro 225
Aronis, Stavros 353
Aschermann, Cornelius 417
Atig, Mohamed Faouzi 353

Bardin, Sébastien 212
Barrett, Clark 420
Bartha, Tamás 643
Basset, Nicolas 256
Beyer, Dirk 401
Bjørner, Nikolaj 194
Bloem, Roderick 517, 533
Blom, Stefan 692
Bocci, Gianluca 225
Bransen, Jeroen 289
Brázdil, Tomáš 181

Carter, Montgomery 451
Cassez, Franck 439
Castro, Pablo F. 188
Chaki, Sagar 241
Chakraborty, Supratik 304
Chatterjee, Krishnendu 181, 517
Chen, Wei 200
Chen, Yu-Fang 131, 426
Chiarelli, Giantonio 225
Chistikov, Dmitry 320
Cimatti, Alessandro 52
Cini, Clare 581
Claessen, Koen 289
Clarke, Edmund 200
Cook, Byron 384
Correas Fernández, Jesús 85
Costa, Gabriele 225
Cuenca Cruz, Helena 596

Dangl, Matthias 423
Darvas, Dániel 643

David, Alexandre 206
De Maglie, Gabriele 225
Demasi, Ramiro 188
de Niz, Dionisio 241
Dietsch, Daniel 455, 458
Dijkstra, Atze 289
Dimitrova, Rayna 320
Djoudi, Adel 212
Duggirala, Parasara Sridhar 68
Duret-Lutz, Alexandre 613

Emmi, Michael 451
Esmaeil Zadeh Soudjani, Sadegh 272

Fiedor, Tomáš 658
Fischer, Bernd 436, 461, 551
Fleckenstein, Lars 194
Fleury, Emmanuel 218
Forejt, Vojtěch 181
Francalanza, Adrian 581
Fremont, Daniel J. 304
Frohn, Florian 417
Furia, Carlo A. 566

Gao, Sicun 200
Gardner, Ryan 21
Gevaerts, Caspar 272
Ghorbal, Khalil 21
Giacobbe, Mirco 469
Giesl, Jürgen 417
Gonzalez-de-Aledo, Pablo 429
Griggio, Alberto 52
Guan, Nan 3
Guet, Călin C. 469
Gupta, Ashutosh 469
Gurfinkel, Arie 447

Hansen, Jeffery P. 241
Haran, Arvind 451
He, Xudong 116
Heizmann, Matthias 455
Hensel, Jera 417
Henzinger, Thomas A. 469
Hoĺık, Lukáš 432, 658

724 Author Index

Hong, Chih-Duo 131
Hruška, Martin 432
Hsieh, Chiao 426

Immler, Fabian 37
Inverso, Omar 436, 551

Jacobs, Swen 517
Jeannin, Jean-Baptiste 21
Jensen, Peter Gjøl 206
Jonsson, Bengt 353

Kahsai, Temesghen 447
Kant, Gijs 692
Khedker, Uday P. 101
Khlaaf, Heidy 384
Kini, Dileep 628
Klein, Mark 241
Kong, Soonho 200
Könighofer, Bettina 533
Könighofer, Robert 517, 533
Kordon, Fabrice 613
Kouskoulas, Yanni 21
Kriouile, Abderahman 708
Kučera, Antońın 181
Kumar, Shrawan 101
Kwiatkowska, Marta 256

Laarman, Alfons 692
Lal, Akash 451
Larsen, Kim Guldstrand 206
La Torre, Salvatore 436, 461, 551
Leike, Jan 455
Lengál, Ondřej 432, 658
Leonardsson, Carl 353
Liu, Su 116
Löwe, Stefan 423
Ly, Olivier 218

Maibaum, Thomas S.E. 188
Majumdar, Rupak 320
Mammoliti, Rocco 225
Matsuoka, Takashi 439
Meel, Kuldeep S. 304
Meijer, Jeroen 692
Merlo, Alessio 225
Mikučionis, Marius 206
Mitra, Sayan 68
Moarref, Salar 501
Mohamed, Mostafa Mahmoud 458

Molnár, Vince 643
Mover, Sergio 52
Muller, Petr 443
Musa, Betim 455

Namjoshi, Kedar S. 164
Navas, Jorge A. 447
Nguyen, Truc L. 461
Nordio, Martin 566
Nutz, Alexander 458

Paixão, Tiago 469
Parlato, Gennaro 436, 461, 551
Peringer, Petr 443
Petrov, Tatjana 469
Phan, Anh-Dung 194
Pierzchalski, Edward 439
Piterman, Nir 384
Platzer, André 21
Podelski, Andreas 455, 458
Point, Gérald 218
Poitrenaud, Denis 613
Polikarpova, Nadia 566
Potok, Matthew 68

Qadeer, Shaz 451

Rakamarić, Zvonimir 451
Reger, Giles 596
Renault, Etienne 613
Ricci, Nicolás 188
Rogalewicz, Adam 432
Román-Dı́ez, Guillermo 85
Rydeheard, David 596

Sagonas, Konstantinos 353
Sanchez, Pablo 429
Sankur, Ocan 484
Sanyal, Amitabha 101
Schmidt, Aurora 21
Sebastiani, Roberto 335
Serwe, Wendelin 708
Seshia, Sanjit A. 304
Šimáček, Jǐŕı 432
Sinha, Nishant 131
Smyth, Nathan 439
Stigge, Martin 3
Ströder, Thomas 417
Sun, Zhuo 116

Author Index 725

Taankvist, Jakob Haahr 206
Tang, Yue 3
Terauchi, Tachio 149
Thierry-Mieg, Yann 231
Tomasco, Ermenegildo 436, 551
Tonetta, Stefano 52
Topcu, Ufuk 256, 501
Trefler, Richard J. 164
Trentin, Patrick 335
Tsai, Ming-Hsien 426
Tschannen, Julian 566

Unno, Hiroshi 149
Urban, Caterina 464

van Binsbergen, L. Thomas 289
van de Pol, Jaco 677, 692
van Dijk, Tom 677, 692
Vardi, Moshe Y. 304

Vincent, Aymeric 218
Viswanathan, Mahesh 68, 628
Vojnar, Tomáš 432, 443, 658
Vörös, András 643

Wang, Bow-Yaw 131, 426
Wang, Chao 533
Wang, Farn 426
Wang, Wei 420
Wendler, Philipp 423
Wijs, Anton 368
Wiltsche, Clemens 256
Wrage, Lutz 241

Yi, Wang 3

Zawadzki, Erik 21
Zeng, Reng 116

	Foreword
	Preface
	Organization
	Contents
	Invited Talk
	Scalable Timing Analysis with Refinement
	1Introduction
	2Behaviors, Abstractions and Refinement
	2.1Abstraction Tree
	2.2Refinement-Based Analysis
	2.3Early Termination

	3Rate-Adaptive Tasks
	3.1Rate-Adaptive Task Model
	3.2Analysis of Worst-Case Response Times

	4Graph-Based Real-Time Tasks
	4.1The DRT Task Model
	4.2Analysis of Worst-Case Response Time

	5Digraph Tasks with Synchronization
	5.1DRT with Synchronization
	5.2Analysis of Worst-Case Response Time

	6Experiments
	7Tool

	Hybrid Systems
	A Formally Verified Hybrid System for the Next-Generation Airborne Collision Avoidance System
	1Introduction
	2Overview of the ACAS X Modelling Approach
	3Safe Region for an Immediate Pilot Response
	4Safe Region for a Delayed Pilot Response
	5Reduction from 3D Dynamics to 2D Dynamics
	6Initial Examination of the Safety of ACAS X
	7Related Work
	8Conclusion and Future Work

	Verified Reachability Analysis of Continuous Systems
	1Introduction
	1.1Related Work: ODEs and ITPs

	2Main Ideas
	3Verification
	3.1Reachability in Continuous Systems
	3.2Rigorous Numerics: Affine Arithmetic
	3.3Guaranteed Runge-Kutta Methods
	3.4Splitting
	3.5Reduction of Reachable Sets
	3.6Summarization of Intersections
	3.7Reachability Analysis

	4Implementation
	5Experiments
	6Conclusion

	HyComp: An SMT-Based Model Checker for Hybrid Systems
	1Introduction
	2Modeling Language
	3Description of Tool Functionalities
	3.1Encodings
	3.2Verification
	3.3 Parameter Synthesis

	4Tool Architecture and Implementation Details
	4.1Architecture
	4.2Implementation Details

	5Experimental Evaluation
	5.1Timed Automata
	5.2Linear Hybrid Automata

	6Conclusion

	C2E2: A Verification Tool for Stateflow Models
	1Introduction
	1.1Related Work

	2Hybrid Models and Safety Verification
	3Verifying Hybrid Systems from Simulations
	3.1Building Blocks
	3.2Verification Algorithm

	4C2E2: Internals and User Experience
	4.1Architecture of C2E2
	4.2Models, Properties, and Annotations
	4.3User Experience
	4.4 Stateflow Model Semantics
	4.5Experiments

	5Conclusions and Future Work

	Program Analysis
	Non-cumulative Resource Analysis
	1Introduction
	2The Notion of Peak Cost
	2.1 The Language
	2.2Definition of Peak Cost

	3Simultaneous Resource Analysis
	4Non-cumulative Resource Analysis
	4.1Program-Point Resource Analysis
	4.2Inference of Peak Cost

	5Extensions of the Basic Framework
	5.1Context-Sensitivity
	5.2Handling Transient Resource Allocations
	5.3Handling Different Resources Simultaneously

	6Experimental Evaluation
	7Conclusions and Related Work

	Value Slice: A New Slicing Concept for Scalable Property Checking
	1Introduction
	2Background
	2.1Program States and Traces
	2.2Data and Control Dependence
	2.3Subprogram and Backward Slice

	3Value Slice
	3.1Value-Impacting Statements
	3.2Relating Value-Impacting Statements to Data and Control Dependences

	4Value Slice Computation
	5Implementation and Measurements
	6Related Work
	7Conclusion

	A Method for Improving the Precision and Coverage of Atomicity Violation Predictions
	1Introduction
	2Preliminaries
	3AVFilter: Performing Post-prediction Static Analysis
	3.1Data Constraints Causing False Predictions
	3.2Problem Formulation
	3.3Our Method
	3.4Comparison with Precise Coverage and the Coverage of Under-Approximate Methods

	4Experiments and Evaluation
	5Related Works
	6Conclusion

	Commutativity of Reducers
	1Introduction
	2Preliminaries
	2.1Facts about Symmetric Groups

	3Integer Reducers
	4Undecidability of Commutativity for Integer Reducers
	4.1Single-Pass Reducers over Fixed-Length Inputs
	4.2From m-Commutativity to Program Analysis

	5Bounded Integer Reducers
	6Deciding Commutativity of Bounded Integer Reducers
	7Experiments
	8Conclusions

	Verification and Abstraction
	Inferring Simple Solutions to Recursion-Free Horn Clauses via Sampling
	1Introduction
	2Preliminaries
	3The Top-Level Procedure
	3.1The Sub-Algorithm Asamp
	3.2The Sub-Algorithm Ahj
	3.3The Sub-Algorithm Aatom

	4Implementation and Experiments
	5Conclusion

	Analysis of Dynamic Process Networks
	1Introduction
	2Dynamic Networks and Compositional Reasoning
	2.1Networks, Assignment, and States
	2.2Semantics: Static and Dynamic
	2.3Inductive and Compositional Invariants

	3Symmetry Reduction
	3.1Fixed Networks
	3.2Parameterized and Dynamic Network Families

	4Applications
	4.1Dynamic Dining Philosophers Protocol
	4.2Analyzing the AODV Protocol

	5Related Work and Conclusions

	Tool Demonstrations
	MultiGain: A Controller Synthesis Tool for MDPs with Multiple Mean-Payoff Objectives
	1Introduction
	2Definitions
	3Algorithms and Implementation
	4Experimental Results: Case Studies

	syntMaskFT: A Tool for Synthesizing Masking Fault-Tolerant Programs from Deontic Specifications
	1Introduction
	2dCTL
	3Masking Fault-Tolerance
	4The Tool syntMaskFT
	5Implementation and Evaluation

	Z - An Optimizing SMT Solver
	An Invitation to Z
	1.1Optimization Commands
	1.2Combining Objectives
	1.3Programming Optimization
	1.4MILP, MaxSAT, CP and SMT
	1.5Resources

	2Architecture
	3Internals
	4A Use for Z
	4.1Experience

	dReach: -Reachability Analysis for Hybrid Systems
	1Introduction
	2System Description
	3Logical Encoding of Reachability
	4Using dReach
	4.1Input Format
	4.2Command Line Options

	Uppaal Stratego
	1 Introduction
	2 Games, Automata and Properties
	3 Strategies
	4 Query Language

	BINSEC: Binary Code Analysis with Low-Level Regions
	1Introduction
	2Intermediate Representation: Extended DBA
	3Platform Overview
	3.1Front-End
	3.2Simplifications
	3.3Memory Model and Simulation
	3.4Static Analysis Interface

	4Experiments
	5Future Work

	Insight: An Open Binary Analysis Framework
	1 Introduction
	2 The Insight Library
	2.1 Insight's Microcode
	2.2 Microcode Providers and Handling
	2.3 Simulation on Domains

	3 CFGRecovery
	4 Insight's Interactive Inspector (iii)
	5 Future Directions

	SAM: The Static Analysis Module of the MAVERIC Mobile App Security Verification Platform
	1 Introduction
	2 MAVERIC and SAM
	3 Static Analysis Techniques
	4 MAVERIC Web Application
	5 Conclusion

	Symbolic Model-Checking Using ITS-Tools
	1 Introduction
	2 Guarded Action Language
	3 Third-Party Support
	4 Symbolic Kernel
	5 Model-Checking
	6 Case Studies and Experiments
	7 Conclusion

	Stochastic Models
	Semantic Importance Sampling for Statistical Model Checking
	1 Introduction
	2 Related Work
	3 Background
	4 Semantic Importance Sampling
	4.1 The SIS Algorithm
	4.2 Optimized AIF Generation
	4.3 Statistical Model Checking

	5 Osmosis
	6 Results
	7 Conclusion

	Strategy Synthesis for Stochastic Games with Multiple Long-Run Objectives
	1 Introduction
	2 Preliminaries
	3 Strategy Synthesis for Average Rewards
	3.1 Expected Energy Objectives
	3.2 Strategy Construction
	3.3 Strategy Synthesis Algorithm

	4 Compositional Synthesis
	5 A Case Study: Aircraft Power Distribution
	5.1 Model
	5.2 Specifications and Results

	6 Conclusion

	FAUST2: Formal Abstractions of Uncountable-STate STochastic Processes
	1 Models: Discrete-Time Markov Processes
	2 Formal Finite-State Abstractions of dtMP Models
	3 Formula-Dependent Abstractions for Verification
	4 Accessing and Testing FAUST2
	5 Case Study
	6 Summary of the Commands in the Graphical User Interface
	7 Extensions and Outlook

	SAT and SMT
	Linearly Ordered Attribute Grammar Scheduling Using SAT-Solving
	1 Introduction
	1.1 Summary
	1.2 Overview

	2 Attribute Grammars
	3 Linearly Ordered Attribute Grammars
	4 Translation into SAT
	4.1 Chordal Graphs
	4.2 Chordal Graph Construction
	4.3 Finding the Schedule
	4.4 Shared Edges

	5 Empirical Results
	5.1 Chordal Graph Heuristics

	6 Optimisations
	6.1 Interacting with the Solver
	6.2 Minimising Visits
	6.3 Eager Attributes

	7 Discussion and Conclusion

	On Parallel Scalable Uniform SAT Witness Generation,
	1 Introduction
	2 Notation and Preliminaries
	3 Related Work
	4 A Parallel SAT Sampler
	5 Analysis
	6 Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion

	Approximate Counting in SMT and Value Estimation for Probabilistic Programs
	1 Introduction
	2 The #SMT Problem
	3 Proof Techniques
	3.1 Approximate Discrete Model Counting
	3.2 Approximate Continuous Model Counting

	4 Value Estimation for Probabilistic Programs
	4.1 The Value Estimation Problem
	4.2 Evaluation

	5 Concluding Remarks

	Pushing the Envelope of Optimization Modulo Theories with Linear-Arithmetic Cost Functions
	1 Introduction
	2 Background
	2.1 Satisfiability Modulo Theories
	2.2 Optimization Modulo Theories

	3 Pushing the Envelope of OMT
	3.1 From OMT(LRA) to OMT(LRIA)
	3.2 Multiple-objective OMT
	3.3 Incremental OMT

	4 Experimental Evaluation
	4.1 Evaluation of OMT(LRIA) Procedures
	4.2 Evaluation of Incremental and Multiple-objective OMT

	Partial Order Reduction, Bisimulationand Fairness
	Stateless Model Checking for TSO and PSO
	1 Introduction
	2 Overview of Main Concepts
	3 Formalization
	4 Implementation
	5 Experimental Results
	6 Related Work
	7 Concluding Remarks

	GPU Accelerated Strong and Branching Bisimilarity Checking
	1 Introduction
	2 Preliminaries
	3 GPU Basics
	4 Many-Core Bisimilarity Checking
	5 Experimental Results
	6 Related Work
	7 Conclusions

	Fairness for Infinite-State Systems
	1Introduction
	2Preliminaries
	3Fair-CTL Model Checking
	3.1Illustrative Example
	3.2Prefixes of Infinite Paths
	3.3Fair-CTL Model Checking

	4Fair-ACTL Model Checking
	5Example
	6Experiments
	7Discussion

	Competition on Software Verification
	Software Verification and Verifiable Witnesses
	1 Introduction
	2 Procedure
	3 Definitions, Formats, and Rules
	4 Results and Discussion
	5 Conclusion

	AProVE: Termination and Memory Safetyof C Programs
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Setup and Configuration

	Cascade
	1 Verification Approach
	2 System Architecture
	3 Strength and Weaknesses of the Approach
	4 Tool Setup and Configuration

	CPAchecker with Support for Recursive Programs and Floating-Point Arithmetic
	1 Software Architecture
	2 Verification Approach
	3 Strengths and Weaknesses
	4 Setup and Configuration
	5 Project and Contributors

	CPAREC: Verifying Recursive Programs via Source-to-Source Program Transformation
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Setup and Configuration
	5 Software Project and Contributors

	FramewORk for Embedded System verificaTion
	1 Overview
	2 Architecture
	3 Strenghts and Weaknesses
	4 Tool Setup
	5 Software Project

	Forester: Shape Analysis Using Tree Automata
	1 Verification Approach
	2 Tool Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Conclusion

	MU-CSeq 0.3: Sequentialization by Read-Implicit and Coarse-Grained Memory Unwindings
	1 Introduction
	2 Verification Approach
	3 Architecture, Tool Setup, and Configuration

	Perentie: Modular Trace Refinement and Selective Value Tracking
	1 Overview
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Set Up and Configuration
	5 Software Project and Contributors

	Predator Hunting Party (Competition Contribution)
	1 The Underlying Verification Approach
	2 From Predator to Predator Hunting Party
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors

	SeaHorn: A Framework for Verifying C Programs (Competition Contribution)
	1 Verification Approach
	2 Software Architecture
	3 Strength and Weaknesses
	4 Tool Setup

	SMACK+Corral: A Modular Verifier
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses of the Approach
	4 Tool Setup and Configuration
	5 Software Project and Contributors

	Ultimate Automizer with Array Interpolation
	1 Verification Approach
	2 Strength and Weaknesses
	3 Software Project
	4 Tool Setup and Configuration

	 ULTIMATE KOJAK with Memory Safety Checks
	1 Verification Approach
	2 Software Architecture
	3 Discussion – Strengths and Weaknesses
	4 Tool Setup and Configuration

	Unbounded Lazy-CSeq: A Lazy Sequentialization Tool for C Programs with Unbounded Context Switches
	1 Introduction
	2 Verification Approach
	3 Architecture, Implementation, and Availability

	FuncTion: An Abstract Domain Functor for Termination
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors

	Parameter Synthesis
	Model Checking Gene Regulatory Networks
	1 Introduction
	1.1 Motivating Example

	2 Preliminaries
	2.1 GRN Space
	2.2 GRN-individual
	2.3 Temporal Properties

	3 Algorithm for Parameter Synthesis
	3.1 Constraint Generation via Model Checking

	4 Computing Robustness
	4.1 Evaluating Robustness

	5 Experimental Results
	5.1 Implementation
	5.2 Performance Evaluation

	6 Conclusion and Discussion

	Symbolic Quantitative Robustness Analysis of Timed Automata
	1 Introduction
	2 Definitions
	3 Accelerating Cycles
	4 Infinitesimally Enlarged DBMs
	4.1 Operations on IEDBMs
	4.2 Parametric Abstractions
	4.3 Parametric Cycle Acceleration

	5 Symbolic Robust Safety
	6 Experimental Evaluation
	7 Conclusion

	Program Synthesis
	Pattern-Based Refinement of Assume-Guarantee Specifications in Reactive Synthesis
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Inferring Behaviors as LTL Formulas
	4.1 Constructing the Abstract LTS
	4.2 Synthesizing Patterns
	4.3 Instantiating the Patterns

	5 Compositional Refinement
	6 Case Study
	7 Conclusion and Future Work

	Assume-Guarantee Synthesis for Concurrent Reactive Programs with Partial Information
	1 Introduction
	2 Motivating Example
	3 Definitions
	4 Complexity and Decidability of AGS
	5 Algorithms for AGS
	5.1 SMT-Based Co-synthesis from Program Sketches
	5.2 SMT-Based AGS
	5.3 Extensions

	6 Experiments
	7 Related Work
	8 Conclusion

	Shield Synthesis:
	1 Introduction
	2 Motivation
	3 Preliminaries
	4 The Shield Synthesis Framework
	5 Our Shield Synthesis Method
	5.1 k-Stabilizing Generic Shields
	5.2 Synthesizing k-Stabilizing Generic Shields

	6 Experiments
	7 Conclusions

	Program and Runtime Verification
	Verifying Concurrent Programsby Memory Unwinding
	1Introduction
	2Concurrent Programs
	3Sequentialization by Memory Unwinding
	4Memory Unwinding Implementations
	4.1Fine-Grained Memory Unwinding
	4.2Coarse-Grained Memory Unwinding

	5Implementation and Evaluation
	6Related Work
	7Conclusions and Future Work

	AutoProof: Auto-Active Functional Verification of Object-Oriented Programs
	1Auto-Active Functional Verification of Object-Oriented Programs
	2Related Work
	2.1Program Verifiers
	2.2Our Previous Work on AutoProof

	3Using AutoProof
	3.1User Interface (UI)
	3.2Input Language Support

	4How AutoProof Works: Architecture and Implementation
	4.1Extensible Architecture
	4.2Implementation Features

	5Benchmarks and Evaluation
	5.1Benchmarks Description
	5.2Verified Solutions with AutoProof
	5.3Open Challenges

	6Discussion

	An LTL Proof System for Runtime Verification
	1 Introduction
	2 The Logic: An LTL Primer
	3 An Online Monitoring Proof System
	4 An Automation
	5 Alternative RV Symbolic Techniques for LTL
	5.1 Informative Prefixes
	5.2 Derivatives

	6 Conclusion

	MarQ: Monitoring at Runtime with QEA
	1 Introduction
	2 Writing Specifications in QEA
	2.1 The Slicing Approach
	2.2 Two Different Kinds of Variables
	2.3 Creating QEAs and Monitors in MarQ

	3 Running MarQ Online and Offline
	3.1 Offline Monitoring
	3.2 Online Monitoring

	4 Efficient Monitoring
	4.1 Indexing
	4.2 Garbage and Redundancy
	4.3 Structural Specialisations

	5 Writing Specifications for Efficient Monitoring
	5.1 Introducing Non-determinism
	5.2 Introducing Counters
	5.3 Stripping Existential Quantification
	5.4 Performance Improvements

	6 Comparative Evaluation
	6.1 Offline Monitoring
	6.2 Online Monitoring

	7 Conclusion

	Temporal Logic and Automata
	Parallel Explicit Model Checking for Generalized Büchi Automata
	1 Introduction
	2 Preliminaries
	3 Generalized Parallel Emptiness Checks
	3.1 Generic Canvas
	3.2 The Tarjan Strategy
	3.3 The Dijkstra Strategy
	3.4 The Mixed Strategy
	3.5 Sketch of Proof

	4 Implementation and Benchmarks
	5 Conclusion

	Limit Deterministic and Probabilistic Automata for LTLGU
	1 Introduction
	2 Preliminaries
	3 Automata for LTL(F,G) Formulae
	4 Automata for LTLGU Formulae
	5 Results and Applications
	5.1 Model Checking MDPs
	5.2 PBAs for LTL

	6 Conclusions

	Saturation-Based Incremental LTL Model Checking with Inductive Proofs
	1 Introduction
	2 Saturation
	3 Overview of the Algorithm
	4 Incremental Symbolic Fixed-point Computation
	5 Explicit Proofs
	5.1 Using Recurring States for Explicit Proofs
	5.2 Introducing Inductive Explicit Checks

	6 Constructing the Algorithm
	7 Related Work
	8 Evaluation
	9 Conclusion and Future Work

	Nested Antichains for WS1S
	1 Introduction
	2 WS1S
	3 Preliminaries and Finite Automata
	4 Deciding WS1S with Finite Automata
	5 Nested Antichain-Based Approach for Alternating Quantifiers
	5.1 Structure of the Algorithm
	5.2 Computing Ni on Representatives of "3222378 R-sets
	5.3 Computing Fi on Representatives of "3223379 R-sets
	5.4 Computation of Fi and Ni on Symbolic Terms
	5.5 Testing Im Fm =? on Symbolic Terms
	5.6 Subsumption of Symbolic Terms

	6 Experimental Evaluation
	7 Conclusion and Future Work

	Model Checking
	Sylvan: Multi-core Decision Diagrams
	1 Introduction
	2 Preliminaries
	2.1 Symbolic Reachability
	2.2 Binary Decision Diagrams and Multi-valued Decision Diagrams
	2.3 List Decision Diagrams
	2.4 LTSmin and Partitioned Transition Relations

	3 Sylvan: Parallel BDD and LDD Operations
	3.1 Lock-Less Hash Table
	3.2 Sylvan API
	3.3 LDDs in Sylvan

	4 Parallelism in LTSmin
	4.1 Parallel Symbolic Reachability
	4.2 Parallel On-the-Fly Learning

	5 Experimental Evaluation
	5.1 Fully Parallel On-the-Fly Symbolic Model Checking
	5.2 BDDs and LDDs

	6 Conclusions

	LTSmin: High-Performance Language-Independent Model Checking
	1 Introduction
	2 The Pins-Architecture of LTSmin
	2.1 Partitioned Transition Systems
	2.2 Dependencies and Guards

	3 Language Front-Ends
	3.1 MAPA: Markov Automata Process Algebra
	3.2 Uppaal: Timed Automata
	3.3 PBES: Parameterized Boolean Equation Systems
	3.4 C-Code via the Dlopen Interface

	4 Intermediate Layers
	4.1 The LTL Layer
	4.2 The mu-calculus Layer
	4.3 The Partial-Order Reduction Layer

	5 Algorithmic Back-Ends
	5.1 Multi-core Reachability, POR and LTL Checking
	5.2 Multi-core Decision Diagrams
	5.3 Symbolic Parity Game Solving

	6 Case Studies
	6.1 Attacking the RERS Challenge
	6.2 Solving Connect Four

	7 Discussion

	Using a Formal Model to Improve Verification of a Cache-Coherent System-on-Chip
	1 Introduction
	2 Related Work
	3 Formal Model of an AMBA 4 ACE Based SoC
	4 Sanity of a Formal Check List
	4.1 Local Sanity of Each Check
	4.2 Global Sanity of the List of Checks

	5 From Temporal Logic Properties to Clever Test Cases
	5.1 System-Level Properties
	5.2 Computation of Interesting Configurations Containing Faults
	5.3 Abstract Test Generation

	6 Industrial Results and Impact
	6.1 Making the Test Bench Ready for System-Level Verification
	6.2 Industrial Results

	7 Conclusion

	Author Index

