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Abstract. We show that finite A-bisimulations (closely related to bisim-
ulations up to context) are sound and complete for finitely generated
A-bialgebras for distributive laws A of a monad T on Set over an end-
ofunctor F' on Set, such that F preserves weak pullbacks and finitely
generated T-algebras are closed under taking kernel pairs. This result
is used to infer the decidability of weighted language equivalence when
the underlying semiring is a subsemiring of an effectively presentable
Noetherian semiring. These results are closely connected to [EMIO] and
[BMS13], concerned with respectively the decidability and axiomatiza-
tion of weighted language equivalence w.r.t. Noetherian semirings.

1 Introduction

The notion of bisimulation, originating from the world of process algebra, plays
an important role in the field of universal coalgebra: a survey of important
results can be found, for example, in [Rut00]. Bisimulation up to techniques,
generalizing ordinary bisimulations, have been first considered coalgebraically in
[Len99]; later, extensions were given in, for example [PS11], [RBR13], [Poul3],
and [RBB'13]. The soundness of various notions of coalgebraic bisimulation up
to has been extensively studied; in [BP13], moreover, a completeness result for
finite bisimulations up to context (in the setting of NFAs) is presented, together
with an efficient algorithm for deciding equivalence. As far as the author is aware,
this is so far the only result of this type present in the literature.

Structures that have both an algebraic and coalgebraic structure can often be
described as A-bialgebras using distributive laws. Introductions to this framework
can be found in e.g. [Bar04], [Jac06], and [Klill]. This framework has been
used to formulate the generalized powerset construction, considered in [SBBR10],
[JSS12], and [SBBR13], providing a category-theoretical generalization of the
classical powerset construction.

Weighted automata, introduced in [Sch61], have been extensively studied:
surveys can be found in e.g. [Eil76] or [BR11]. An important notion here is that
of a simulation between automata, which can be used to prove equivalence of
weighted automata, studied in for example [BLS06] and [EM10]. In [EM10], it
is shown that weighted language equivalence is decidable over semirings that
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are Noetherian and effectively presentable, using the notions of simulation and
proper semirings. In the Appendix of this paper, we show how these notions
relate to the results in this paper, and how some of the results from [EMlO] can
be derived from the main result in this paper.

Co- and bialgebraic treatments to weighted automata, instantiating the frame-
work of A-bialgebras, are found in e.g. [BBB'12], [BMS13], and [JSS12]. In
[BMS13], an (abstract) sound and complete axiomatization is presented for mon-
ads and endofunctors satisfying the same conditions as those required for Propo-
sition 7, and subsequently instantiated to a concrete axiomatization for weighted
languages over Noetherian semirings. The methods used differ substantially from
those used in this paper, but the obtained results are closely related.

After presenting the required preliminaries from the existing literature, in
this paper we show that finite A\-bisimulations are, in certain cases, complete
already (A-bisimulations in general are complete whenever the behaviour func-
tor preserves weak pullbacks). From this we derive the decidability of weighted
language equivalence over subsemirings of semirings that are Noetherian and ef-
fectively presentable. Finally, in an appendix we discuss the relationship between
some parts of the coalgebraic and classical, respectively, approaches to weighted
automata.

Hence, one of the aims of this paper can be stated as bringing closer together,
on a general level, the classical and coalgebraic approaches to weighted automata,
and, in particular, relating the results from [BMS13] to those from [EM10].

2 Preliminaries

We will, in this section, present the preliminary material required for presenting
the main result in the next section. We assume familiar the basic notions of
category theory (which can be found in e.g. [Awo10] or [MacT71]), as well as the
notions of monoids, semirings, and (left and right) semimodules over a semiring
(which can be found in e.g. [BR11]). All of the material presented in this section
can be found in existing literature.

Given a category C and a monad T on C, CT denotes the category of
Eilenberg-Moore algebras for T. We moreover adopt the convention of using
the term S-module to refer to left S-semimodules.

Some of the results in this paper require the axiom of choice (which can be
formulated categorically by stating that (in Set) every epi splits, i.e. has a right
inverse): these results are labelled with the marker (AC).

2.1 Algebras and Congruences

In this subsection, we present the notions of a finitely generated algebra and of a
kernel pair, on a relatively concrete level, sufficient for obtaining the main results
later in the paper.! Next, we give the definition of a congruence, and present a

! These are related to finitely presentable algebras, which are extensively studied in
[AR94]: however, for the results in this paper, this notion is not needed.
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result on the existence of coequalizers in Set”, required for our main result in
the next section.

In the (concrete) case where T is a monad on Set, a T-algebra (X, ax) is
called finitely generated® whenever there is a finite set Y together with a function
1:Y — X such that the unique T-algebra morphism i* : (T'(Y), uy) — (X, ax)
extending 7 is a regular epimorphism.? The condition of the epi i* being regular
directly implies that the mapping U(i*) : T(Y) — X obtained by applying the
forgetful functor is an epi in Set, that is, a surjective function. We can moreover,
without problems, assume that ¢ itself is an injective function, i.e. a mono, and
hence that Y can be regarded as a subset of X.

Given a morphism f : X — Y in a category with pullbacks, the kernel pair
is the pullback of f with itself. Because the forgetful functor U : Set? — Set
creates all limits, the carrier of a kernel pair in Set” can be described as the set

{(x,y) ‘ r,y € UX A Uf(.’L‘) = Uf(y)}

and moreover, its algebra structure is compatible with the product algebra X x
X, i.e. the kernel pair is a subalgebra of X x X.

Given an endofunctor 7' on Set, and algebras (X, ax) and (Y, ay) for this
functor, a congruence between these algebras is a relation R C X x Y such that
there is a unique T-algebra structure agr on R making the following diagram
commute:

T T
TX <V TR "3 TY
ax R Qy
A\ A\ A\
x<" g ™.Fy

We furthermore will need the following result establishing the existence of
coequalizers in Set”:

Proposition 1. (AC) For any monad T on Set, coequalizers exist in Set” and
are preserved by the forgetful functor.

Proof. Established in the proof of [BW06, Proposition 9.3.4]. O

2.2 Universal Coalgebra

We will, in this section, consider some elementary and required results from the
theory of universal coalgebra. For a more comprehensive reference to the theory,
where the results below can also be found, we refer to [Rut00].

Given an endofunctor F' on a category C, a F-coalgebra consists of an object
X in C, together with a mapping 6 : X — TX. Given two F-coalgebras (X, ~)

2 This is known to correspond to the more general categorical definition of a
finitely generated algebra; see e.g. the remark on http://ncatlab.org/nlab/show/
finitely+generated+object under ‘Definition in concrete categories’.

3 An morphism is a regular epimorphism iff it is the coequalizer of a parallel pair of
morphisms, see e.g. [Bor94|
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and (Y] 0), a morphism between these coalgebras consists of a morphism f : X —
Y such that the following diagram commutes:

X f»Y
y 1)
\ Ff A\
FX °» FY

F-coalgebras and their morphisms form a category, and a terminal object in
this category is called a final coalgebra. Given a F-coalgebra (X,dx), we let
[—]x denote the unique mapping into the final coalgebra whenever F' has a final
coalgebra.

Given two F-coalgebras (X,dx) and (Y,dy), a F-bisimulation between X
and Y is a relation R C X x Y such that there is some (not necessarily unique)
F-coalgebra structure g on R making the following diagram commute:

x-"" r ™,y
Ox OR Oy
A\ A\ A\
Fx I pr ™ py

In general, a largest bisimulation between two F-coalgebras always exists,
and is denoted by ~x y. (We omit the subscripts when no confusion can arise.)
Elements z € X and y € Y are called bisimilar whenever x ~xy y, and
behaviourally equivalent whenever there is some F-coalgebra morphism f such
that f(xz) = f(y). Whenever a final F-coalgebra exists, the latter condition is
equivalent to [z]x = [y]y.

In general, if two elements © € X and y € Y in F-coalgebras (X,dx) and
(Y, dy) are bisimilar, it follows that z and y are behaviourally equivalent (one
may refer to this condition as the soundness of bisimulation). Under the condi-
tion that the functor F preserves weak pullbacks (a weak pullback is defined in
the same way as a pullback, but without the uniqueness condition), the converse
(which may be called the completeness of bisimulation) also holds.

2.3 A-bialgebras

In this section, we will present, on an abstract level, the relevant material from
the theory of A-bialgebras, and the closely related generalized powerset construc-
tion. Comprehensive introductions to the material presented here can be found
in e.g. [Bar04], [Jac06], [Kli11], [SBBR10], and [JSS12]. We will be concerned,
in particular, with A-bialgebras for a distributive law of a monad (T, u,n) over
an endofunctor F', without assuming any additional structure (e.g. that of a
copointed functor or comonad) on the behaviour functor F'.

Given a monad (7, u,n7) and an endofunctor F' on any category C, a distribu-
tive law of the monad T over F is a natural transformation

AN TF = FT
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such that the two diagrams of natural transformations

nk wF
F=—TF TTF TF
x ﬂ)\ and T)\ﬂ ﬂ)\
N AT Fu
FT TFT —— FIT —— FT

commute.

Furthermore, given a distributive law A : TF = FT, A-bialgebra (X, a,~)
consists of a coalgebra (X, ) for the functor F together with an algebra (X, «)
for the monad T, such that the diagram

« Y
TX - X - F'X
i
T~ Fa
v Ax
TFX - FTX

commutes. Morphisms of A-algebras are mappings that simultaneously are F-
coalgebra morphisms and T-algebra morphisms.
The two following, elementary, lemmata can be found in e.g. [Bar04]:

Lemma 2. Given a distributive law X\ of a monad (T, u,n) over an endofunctor
F and a FT-coalgebra (X,0), (TX, pux,0) is a A-bialgebra, with ¢ given as:

6 =FuxoAprx oT6.
Proof. This is the first part of [Bar04, Lemma 4.3.3]. O

Lemma 3. Given a distributive law A of a monad (T, u,n) over an endofunctor
F, a A-bialgebra (Q, «,7y) and an FT-coalgebra (X,0), if f: X — Q makes the
diagram

X / - Q
4 gl
A\ F * A\
FTX AN FQ

commute (where f*: TX — @ is obtained by applying the forgetful functor to
the unique T-algebra morphism from (TX, ux) to (Q,«) extending f), then f*
is a morphism of A-bialgebras between (T X, ux,0) and (Q,a, 7).

Proof. See e.g. [Bar04, Lemma 4.3.4]. O

Given two A-bialgebras (X, ax, dx) and (Y, ay, dy ), a A-bisimulation between
X and Y is arelation R C X xY such that there is some (not necessarily unique)
FT-coalgebra structure on R making the following diagram commute:
x«" r ™.y
dx OR oy

\4 F’/Tl* v F’/TQ* \4
FX < FTR - 'Y
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The following proposition establishes the soundness of A-bisimulations:
Proposition 4. Given two A-bialgebras (X, ax,dx) and (Y,ay,0y), every A-
bisimulation R C X XY is contained in a bisimulation S (for the functor F).
Proof. See [Bar04, Corollary 4.3.5]. |

Moreover, the greatest bisimulation on two A-bialgebras (X, ax,dx) and
(Y, ay, dy) is a congruence:

Proposition 5. Given two A-bialgebras (X, ax,dx) and (Y,ay,dy), the rela-
tion ~xy is a congruence, and its algebra structure is an Eilenberg-Moore alge-
bra.

Proof. See [Bar04, Corollary 3.4.22] and [Bar04, Corollary 3.4.23]. O

Any final F-coalgebra can be uniquely extended to a final A-bialgebra:

Proposition 6. Given a distributive law X\ : TF = FT for a functor F that
has a final coalgebra (£2,80), there is a unique A-bialgebra compatible with this
final coalgebra, which is a final A-bialgebra.

Proof. See [Bar04, Corollary 3.4.19] and the following remark. O

In this case, we can combine the extension from Lemma 2 with the unique
mapping into the final F-coalgebra, obtaining the diagram

x ™,orx g
1) 0 w
Yo, - v
FTX I

This construction, called the generalized powerset construction, is extensively
studied in [SBBR10], [SBBR13], and [JSS12].

We finish this section by noting that there is a close relationship between
the notion of a A-bisimulation, and that of a bisimulation up to context (see
e.g. [RBB'13] for a comprehensive treatment of this notion). Given two -
bialgebras (X, ax,0x) and (Y, ay,dy), a relation R C X x Y is called a bisim-
ulation up to context whenever there is some dr making the diagram

x-" r M,y
Ox OR Oy
M F7T1 M F7T2 M
FX <™ Fe(R) " "% FY

commute, where ¢(R) = (ax o Tmy,ay o Tme)(TR) C X x Y. We note that
there is a surjection e : TR — ¢(R), and thus, if dr is a witness to R being a
A-bisimulation, it directly follows that F'eodp is a bisimulation up to context. If
we assume the axiom of choice, the converse also holds: it now follows that there
is some f : c¢(R) — TR such that eo f = 1), and if dr witnesses that R is a
bisimulation up to context, then F f o dr witnesses that R is a A-bisimulation.
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2.4 Weighted Automata, Bialgebraically

We now briefly present the bialgebraic approach to weighted automata (over
arbitrary semirings S). More comprehensive treatments of this bialgebraic ap-
proach can be found in e.g. [BMS13], [BBB*12], and [JSS12].

Here the monad T is instantiated as Ling(—), where Ling(X) is the set

{f: X — S| f has finite support}

regarded as representing finite (left) S-linear combinations of elements of X, for
any semiring S, and the monadic structure can be specified by

nx(x)(y) = if z =y then 1 else 0

and

px(H@) =Y flg)-g(x).

g€supp(f)

The category of algebras for this monad is isomorphic to the category of S-
modules and (left) S-linear mappings.

Furthermore, the behaviour functor is instantiated as S x —4. A coalgebra for
this functor (or for the functor S x T(—)? where T is some monad) is usually
represented as a pair of mappings (0,6) : X — S x X4, with 6(x)(a) usually
represented as x, (or, in the case of a single alphabet symbol, z'), and called
the a-derivative of z, and with o(z) referred to as the output of x. This notation
allows us to conveniently represent these coalgebras as systems of behavioural
differential equations.

There exists a final coalgebra for this functor, with its carrier given by the set

S(A) = (4" S),

of formal power series in noncommuting variables, and the coalgebraic structure
given by, for any o € S{(A)), o(c) = o(1) (with 1 denoting the empty word), and
oa(w) = o(aw).

The distributive law

X :Ling(S x —=4) = 8 x Ling(—)*

can be given componentwise by

Ax <Z si(oi,di)> = (Z 804, Q> Zsidi(a)> .
i=1 i=1

=1

We call a A-bialgebra for this distributive law an S-linear automaton. The final
bialgebra for this distributive law can be given by adding a pointwise S-module
structure to S{(A)). We regard coalgebras for the functor S x Ling(—)# as S-
weighted automata, which can be extended into S-linear automata using Lemma
2. The formal power series accepted by a S-weighted automaton is then given by
the unique mapping of this S-linear automaton into the final S-linear automaton.
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The notion of A-bisimulation here instantiates to the notion of bisimulation
up to linear combinations. This condition can be concretely expressed as follows:
given S-linear automata (X,o0x,0x) and (Y, o0y,dy), a relation R C X x Y is
a bisimulation up to linear combinations whenever, for all (z,y) € R, ox(x) =
oy (y), and for every alphabet symbol a € A there is a n € N, together with
elements zg,..., -1 € X, v0,...,Yn—1 € Y, and scalars sg,...,8,_1 € S,
such that for each i < n, (z;,¥;) € R, and furthermore, z, = Y ., s;z; and
Yo = iy $iy;- The latter condition can conveniently be represented using the

following notation:
n n
To =Y siwi YR D siyi=ta
i=1 i=1

3 Main Result

We now are able to state the main result, which can be seen as a completeness
result for finite A-bisimulations for distributive laws satisfying the required con-
ditions, similarly to how Proposition 4 can be seen as stating the soundness of
A-bisimulations in general.

We first note that, given a A-bialgebra (X, «,d), the bisimilarity relation ~
has both a F-coalgebra structure (by the definition of bisimulations), as well as
that of an algebra for the monad T' (by Proposition 5). Moreover, as a result of
Proposition 1, the set X/ ~ has the structure of an algebra for the monad T,
such that the function h : X — X/ ~ sending each x € X to its equivalence
class w.r.t. ~ is a T-algebra morphism.

Proposition 7. (AC) Assume:

1. T is a monad on Set such that finitely generated T -algebras are closed under
taking kernel pairs.

2. F is an endofunctor on Set that preserves weak pullbacks.

3. X is a distributive law TF = FT.

4. (X,ax,0x) is a finitely generated A-bialgebra.

Then, given two states x,y € X, © and y are behaviourally equivalent if and
only if there is a finite A\-bisimulation R C X x X with (z,y) € R.

Proof. If such a A-bisimulation R exists, it immediately follows that R is con-
tained in some bisimulation, and hence, that x and y are behaviourally equiva-
lent.

Conversely, assume that there are x,y € X that are behaviourally equivalent.
Because F preserves weak pullbacks, it directly follows that = ~ y. We now start
by taking the kernel pair of the morphism h : X — X/ ~. This kernel pair can
be given by the set

~={(z,9) | UR(z) = Uh(y)}
with an algebra structure a., : T'(~) —~ such that (~,a.) is a subalgebra of
the product algebra (X, ax) x (X, ax). Because (X, ax) is finitely generated,
it follows from the first assumption that (~, @) again is finitely generated.
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Simultaneously, ~ is the greatest bisimulation on X, i.e., there is some (not
necessarily unique) §. making the diagram

x-" o ™,y
(SX (SN (5X

\/ F \ F \/
FX < 'R~ TR FX

commute. (Note that, although ~ is both the carrier of an algebra for the monad
T and a F-coalgebra, we have not established that ~ is a A-bialgebra.)
Because ~ is finitely generated, there is some finite R C~ (let ¢ denote the
inclusion of R into ~) such that the extension i* : T(R) —~ is a regular epi-
morphism in Set”, and hence an epi in Set.
Because the epi ¢* splits by the axiom of choice, it has a right inverse j, and
we can now construct 0z as F'j o §. o7 to make the diagram

R -~
Sn 5
"R
FTR =V ¢ F(~)

commute. We can furthermore assume that (z,y) € R, simply by adding this
single element to the finite set of generators.
We can now conclude that the diagram

X T 01 R Mo 01 X

5X 5R 5X (1)
\ F - \/ F - \

px Flmed) prp Flmoit) oy

again commutes.

As i* and m; are both T-algebra morphisms, it now also follows that 71 o ¢*
is an T-algebra morphism extending 7 o i. Because (T'R, ug) is a free algebra,
it now follows that m o ¢* = (71 0 i)* and mp 0 * = (w2 0 7)*. Making these
substitutions in Diagram (1), we can conclude that R is a A-bisimulation. O

Remark. If a final coalgebra for the functor F' exists, there exists a unique A-
bialgebra structure on this final coalgebra, and hence it is possible to replace
the morphism A used in the proof with the unique morphism [—] into the final
A-bialgebra, now yielding ~ as the kernel pair of the morphism [—]. The reliance
on the axiom of choice can then be relaxed to the condition that, for finite sets
X and arbitrary Y, every epi from T X to Y splits. In particular, this condition
is satisfied by the monad Ling(—), as Ling(X) is countable whenever X is finite.
As a consequence, in the next section, the decidability result can be established
without reliance on the axiom of choice.
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4 An Example

In this section, we will present an example illustrating how to prove the equiva-
lence of states in an automaton using finite A-bisimulation (or concretely, bisim-
ulation up to linear combinations). The example given is a direct adaptation of
one of the examples given in [BMS13].

Consider the following Q-weighted automaton (over a singleton alphabet)

1@31 =g j y
I O

which corresponds to the following system of behavioural differential equations:

oluy=2 dw=v-w ox)=2 a'=3z-3y+1iz
ov)=2 v =vw oly)=2 y =lz—y+iz
olw)=1 w=w o(z)=2 2=z

Next, consider the following relation:
3 3
R= {(U,.’II), (’U,Z), (;U — W, g — Qy)}
A proof that R is a bisimulation up to linear combinations is given by
= v+ (lv—w) TR Jz+ (5x—Sy) =2
vVV=v YR z=2
(bv—w) =lv—w YR 3z—3y= 32— 3y)

or alternatively by assigning the following weighted automaton structure to R:

o(u, z) =2 (Uaiﬂ)/:é(”a@*(;*wagx*gy)
o(v,z) =2 (v,2) = (v,2)
o(bo—w3e-3) =0 (bo—w de—39) = (bo—w, 3o — 3y)

5 Decidability of Weighted Language Equivalence

Following [EMlO], we call a semiring Noetherian whenever any submodule of
a finitely generated S-module is again finitely generated. Using the result from
Section 3, we can now directly derive a decidability result for equivalence of
(states in) weighted automata over Noetherian semirings. We start by noting
that, if S is a Noetherian semiring, and X is a finitely generated S-module, Y
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is an arbitrary S-module, and f : X — Y is a S-linear mapping, then the kernel
pair of f is a sub-S-module of the finitely generated S-module X x X, and hence
again finitely generated. Hence, the monad Ling(—) satisfies the first condition
of Proposition 7 whenever S is a Noetherian semiring.

We moreover call, following the definition in [EMlO], a semiring effectively
presentable, whenever its carrier can be represented as a recursive subset of N
such that the operations + and - are recursive functions. This condition by itself
is enough to establish the semidecidability of non-equivalence.

The results in this section are closely related to the decidability results from
[EMlO]. In the proof of semidecidability of equivalence, the crucial difference is
relying on Proposition 7 instead of on a concrete result establishing properness.

The semidecidability of non-behavioural equivalence holds in general for ef-
fectively presentable semirings:

Proposition 8. Given any effectively presentable semiring S, non-behavioural
equivalence of states in finitely generated S-linear automata is semidecidable.

Proof. (See also [EM10, Lemma 5.1].) If states 2,y in a finitely generated S-
linear automaton (X, o0,d) are not equivalent, there is some word w € A* such
that o(zy) # o(yw). We can enumerate all words w € A* and, because S is
effectively presentable, can check for each word whether o(x,,) = 0(y ). If z and
y are not equivalent, eventually some word w witnessing this will be found. O

Moreover, if S additionally is a subsemiring of a Noetherian semiring, we can
also derive semidecidability of behavioural equivalence (and hence, in combina-
tion with the preceding result, decidability) using Proposition 7.

Proposition 9. Given any semiring S that is a subsemiring of an effectively
presentable Noetherian semiring S’, behavioural equivalence of states in free
finitely generated S-linear automata is semidecidable.

Proof. We start by noting that we can see any free finitely generated S-linear
automaton as a free finitely generated S’-linear automaton (X, o, ). Because S’
is effectively presentable, it is countable, and the set of tuples

(R € P,(Ling(X) x Ling(X)),dr : R — S x Ling(R))

again is countable, giving an enumeration of its elements.

For each element of this set, we can check whether (z,y) € R and whether
(R, 6r) makes Diagram (1) commute. If [z]x = [y]x, a suitable candidate will
eventually be found as a result of Proposition 7, so the process will terminate.

]

Corollary 10. Given any semiring S that is a subsemiring of an effectively pre-
sentable Noetherian semiring S’, behavioural equivalence of states in free finitely
generated S-linear automata is decidable.
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6 Further Directions

The results in this paper give rise to several possible directions for future work.
One possibility is looking for extensions of the main result to distributive laws
of a monad over a functor with additional structure, e.g. that of a copointed
functor or a comonad.

As a final observation, we note that it is also possible to use the main result to
conclude that certain monads do not have the property that finitely generated al-
gebras are closed under taking kernel pairs. A first example follows the approach
in [EMlO], where it is shown that the tropical semiring T is not Noetherian:
likewise, we can show that finitely generated algebras for the monad Lint(—)
are not closed under taking kernel pairs, as this would imply decidability and it
is known that equivalence of T-weighted automata is not decidable.

A second example of such a negative result can be given by the monad
Pu((— + A)*): because the context-free languages can be characterized using
a distributive law of this monad over the functor 2 x — ([BHKR13], [WBR13]),
and because equivalence of context-free languages is not decidable, it follows that
algebras for the monad P, ((— + A)*) are not closed under taking kernel pairs.
(This result can be contrasted to the results in [Cau90] and [CHS95], which es-
tablish the decidability of bisimilarity for context-free processes. However, note
that bisimulation over determinized systems is equal to language equivalence,
which corresponds to the process-algebraic notion of trace equivalence.) A more
detailed study of this type of results is left as future work.
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A Simulations and Bialgebra Homomorphisms

This appendix is meant to elucidate the relation between the notion of a sim-
ulation*, which has been an important tool in the classical theory of weighted
automata for proving the equivalence between automata, and the bialgebraic
notion of a homomorphism between S-linear automata, which plays a similar
role in the co- and bialgebraic approach.

To make the correspondence between the two approaches somewhat more
straightforward, we give a presentation of classical weighted automata that is
symmetric to the traditional one: i.e. in terms of left-linear mappings and matrix
multiplication on the left, rather than in terms of right-linear mappings.

A.1 Weighted Automata

In the classical presentation, a (finite) weighted automaton of dimension n > 1
over a finite alphabet A and a semiring S is a triple A = (a, Myea, ) where

— a € S™%! is a vector of length n, the initial vector;

— foreverya € A, M, € S™*" is the transition matrix for the alphabet symbol
a; and

— B € S™" is a vector of length n, the final vector.

The correspondence with the coalgebraic view on automata is now given as
follows: we note that we can view every n x m matrix as a left-linear mapping®
Ling(n) — Ling(n) (corresponding to the extension 5(—,@)), uniquely deter-
mined by a function n — Ling(n) (corresponding to d(—,a)), and the final
vector can be seen as a left-linear mapping from the left S-module Ling(n) to S
itself, seen as a left S-module, again uniquely determined by a function n — S.

4 Unrelated to simulations as defined in process algebra.
® Note that Ling(n) can simply be seen as S™ here.
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Ignoring the initial vector «, a traditional weighted automaton can then be
seen as a coalgebra as follows:

(8, M)

Ling(n) > S x Ling(n)*

The initial vector «, furthermore, simply is an element of Ling(n), and taking
the word derivative of a to a word w = a; . .. a, corresponds to the sequence of
matrix multiplications

M,, ...Mg o

Finally, the formal power series £L(A) accepted by a weighted automaton A =
(o, Mue 4, B) can be specified by

LAY a1 ...ar) =M, ... My, &

and by the above construction, it is seen to be equal to the power series [au,],
where [—] is the usual notion of final coalgebra semantics for the functor S x —4,

with respect to the coalgebra (Ling(n), 8, M).

A.2 Simulations and Homomorphisms

Given two weighted automata A = (a, M, 3) (of dimension m) and B = (v, N, §)
(of dimension n), a matrix Z € S™*™ is called a simulation from A to B when-
ever the following equations hold (in the case of the second equation, for all
ac A):

Zoa=r ZMy, = N.Z B8=4672

This definition corresponds to the one given in [EMlO], with the modification
that Z now represents a left-linear mapping, rather than a right-linear mapping.

A basic fact about simulations is that a simulation between weighted au-
tomata A = (a, M, 3) and B = (v, N, d) in all cases implies equivalence of the
weighted languages accepted by these automata, i.e. L(A) = L(B). We will now
turn to the connection between this notion of a simulation, and the notion of a
homomorphism of coalgebras, from which this equivalence directly follows.

As S™*™ matrices are in bijective correspondence with left-linear mappings
from Ling(m) to Ling(n), it directly follows that the second and third condition
are equivalent to the condition that the following diagram commutes:

zZ
Ling(m) » Ling(n)
(6, M) e
ls x Z
S x Ling(m)* §X2L 5 x Ling(n)*

Hence, for finite weighted automata (X, 0x,dx) and (Y, 0oy, dy ), the classical
notion of a simulation between these automata corresponds to the coalgebraic
notion of a homomorphism & from the extended automaton (Ling(X),0ox,dx)
to the extended automaton (Ling(Y),dy,dy ), together with two elements 2 €
Ling(X) and y € Ling(Y") such that h(z) = y.
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A.3 Proper Semirings

In [EMlO], a semiring S is called proper whenever, if two automata A = («, M, 3)
and B = (v, N,d) are equivalent, i.e. L(A) = L(B), there is a finite sequence
of automata Aq,..., A, for some k with A; = A and A = B, such that for
each ¢ with 1 <4 < k there either is a simulation from A; to A;;1 or there is a
simulation from A;11 to A;.

Using the results from Section 3, we can now directly conclude that every
Noetherian semiring is proper, as follows: assume we have two S-weighted au-
tomata (X, o0x,0x) and (Y, o0y, dy) and elements = € Ling(X) and y € Ling(Y)
such that [z]x = [y]y w.r.t. the linear extensions of these automata.

We can first construct a weighted automaton (X +Y,0x1y,dx+y) , and it is
easy to see that this gives homomorphisms

Ling(x1) : Ling(X) — Ling(X +Y)
Ling(k2) : Ling(Y) — Ling(X +Y)

where k1 : X — X +Y and k2 : Y — X + Y denote the injections of the
coproduct. Instantiating Ling(X + Y") for X in Diagram (1) and Proposition 7,
we can now conclude that there are homomorphisms

(m 04)" : Ling(R) — Ling (X +Y)
(m204)" : Ling(R) — Ling (X +Y)

and that (k1(z), k2(y)) € R.

It now follows that this gives a chain of simulations of automata, as a result of
(a) Ling (k1) mapping x to k1 (z); (b) (m 0¢)* mapping (k1 (), k2(y)) to k1(x);
(¢) (w2 0 4)* mapping (k1(z), k2(y)) to ka(y); and (d) Ling(ke) mapping y to
K2 (y)-

Hence, we can now conclude that S satisfies the conditions of being proper.
This fact is also observed in [EMlO], using a somewhat different argument, using
the properties of Noetherian semirings, rather than the property of monads
where kernel pairs of finitely generated objects are finitely generated again.
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