
Programming and Reasoning

with Guarded Recursion for Coinductive Types

Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars Birkedal

Department of Computer Science, Aarhus University, Denmark
{ranald.clouston,abizjak,hbugge,birkedal}@cs.au.dk

Abstract. We present the guarded lambda-calculus, an extension of
the simply typed lambda-calculus with guarded recursive and coinduc-
tive types. The use of guarded recursive types ensures the productivity
of well-typed programs. Guarded recursive types may be transformed
into coinductive types by a type-former inspired by modal logic and
Atkey-McBride clock quantification, allowing the typing of acausal func-
tions. We give a call-by-name operational semantics for the calculus, and
define adequate denotational semantics in the topos of trees. The ade-
quacy proof entails that the evaluation of a program always terminates.
We demonstrate the expressiveness of the calculus by showing the de-
finability of solutions to Rutten’s behavioural differential equations. We
introduce a program logic with Löb induction for reasoning about the
contextual equivalence of programs.

1 Introduction

The problem of ensuring that functions on coinductive types are well-defined has
prompted a wide variety of work into productivity checking, and rule formats for
coalgebra. Guarded recursion [11] guarantees productivity and unique solutions
by requiring that recursive calls be nested under a constructor, such as cons
(written ::) for streams. This can sometimes be established by a simple syntactic
check, as for the stream toggle and binary stream function interleave below:

toggle = 1 :: 0 :: toggle
interleave (x :: xs) ys = x :: interleave ys xs

Such syntactic checks, however, are often too blunt and exclude many valid
definitions. For example the regular paperfolding sequence, the sequence of left
and right turns (encoded as 1 and 0) generated by repeatedly folding a piece of
paper in half, can be defined via the function interleave as follows [12]:

paperfolds = interleave toggle paperfolds

This definition is productive, but the putative definition below, which also applies
interleave to two streams and so apparently is just as well-typed, is not:

paperfolds’ = interleave paperfolds’ toggle

c© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 407–421, 2015.
DOI: 10.1007/978-3-662-46678-0_26

408 R. Clouston et al.

This equation is satisfied by any stream whose tail is the regular paperfolding
sequence, so lacks a unique solution. Unfortunately the syntactic productivity
checker of the proof assistant Coq [13] will reject both definitions.

A more flexible approach, first suggested by Nakano [19], is to guarantee
productivity via types. A new modality, for which we follow Appel et al. [3] by
writing � and using the name ‘later’, allows us to distinguish between data we
have access to now, and data which we have only later. This � must be used
to guard self-reference in type definitions, so for example guarded streams of
natural numbers are defined by the guarded recursive equation

Strg � N×�Strg

asserting that stream heads are available now, but tails only later. The type of
interleave will be Strg → �Strg → Strg, capturing the fact the (head of the) first
argument is needed immediately, but the second argument is needed only later.
In term definitions the types of self-references will then be guarded by � also.
For example interleave paperfolds′ toggle becomes ill-formed, as the paperfolds′

self-reference has type �Strg, rather than Strg, but interleave toggle paperfolds
will be well-formed.

Adding � alone to the simply typed λ-calculus enforces a discipline more rigid
than productivity. For example the obviously productive stream function

every2nd (x :: x’ :: xs) = x :: every2nd xs

cannot be typed because it violates causality [15]: elements of the result stream
depend on deeper elements of the argument stream. In some settings, such as
reactive programming, this is a desirable property, but for productivity guaran-
tees alone it is too restrictive. We need the ability to remove � in a controlled
way. This is provided by the clock quantifiers of Atkey and McBride [4], which
assert that all data is available now. This does not trivialise the guardedness
requirements because there are side-conditions controlling when clock quanti-
fiers may be introduced. Moreover clock quantifiers transform guarded recursive
types into first-class coinductive types, with guarded recursion defining the rule
format for their manipulation.

Our presentation departs from Atkey and McBride’s [4] by regarding the ‘ev-
erything now’ operator as a unary type-former, written � and called ‘constant’,
rather than a quantifier. Observing that the types �A → A and �A → ��A
are always inhabited allows us to see the type-former, via the Curry-Howard iso-
morphism, as an S4 modality, and hence base our operational semantics on the
established typed calculi for intuitionistic S4 (IS4) of Bierman and de Paiva [5].
This is sufficient to capture all examples in the literature, which use only one
clock; for examples that require multiple clocks we suggest extending our calculus
to a multimodal logic.

In this paper we present the guarded λ-calculus, gλ, extending the simply typed
λ-calculus with coinductive and guarded recursive types. We define call-by-name
operational semantics, which blocks non-termination via recursive definitions

Guarded Recursion for Coinductive Types 409

unfolding indefinitely. We define adequate denotational semantics in the topos
of trees [6] and as a consequence prove normalisation. We introduce a program
logic Lgλ for reasoning about the denotations of gλ-programs; given adequacy
this permits proofs about the operational behaviour of terms. The logic is based
on the internal logic of the topos of trees, with modalities �,� on predicates,
and Löb induction for reasoning about functions on both guarded recursive and
coinductive types. We demonstrate the expressiveness of the calculus by showing
the definability of solutions to Rutten’s behavioural differential equations [21],
and show that Lgλ can be used to reason about them, as an alternative to
standard bisimulation-based arguments.

We have implemented the gλ-calculus in Agda, a process we found helpful
when fine-tuning the design of our calculus. The implementation, with many
examples, is available at http://cs.au.dk/~hbugge/gl-agda.zip.

2 Guarded λ-calculus

This section presents the guarded λ-calculus, written gλ, its call-by-name oper-
ational semantics, and its types, then gives some examples.

Definition 2.1. gλ-terms are given by the grammar

t ::= x | 〈〉 | zero | succ t | 〈t, t〉 | πdt | λx.t | tt | fold t | unfold t
| next t | prev σ.t | boxσ.t | unbox t | t� t

where d ∈ {1, 2}, x is a variable and σ = [x1 ← t1, . . . , xn ← tn], usually
abbreviated [�x ← �t], is a list of variables paired with terms.

prev[�x ← �t].t and box[�x ← �t].t bind all variables of �x in t, but not in �t. We
write prev ι.t for prev[�x ← �x].t where �x is a list of all free variables of t. If
furthermore t is closed we simply write prev t. We will similarly write box ι.t and
box t. We adopt the convention that prev and box have highest precedence.

We may extend gλ with sums; for space reasons these appear only in the
extended version of this paper [9].

Definition 2.2. The reduction rules on closed gλ-terms are

πd〈t1, t2〉 �→ td (d ∈ {1, 2})
(λx.t1)t2 �→ t1[t2/x]

unfold fold t �→ t

prev[�x ← �t].t �→ prev t[�t/�x] (�x non-empty)
prev next t �→ t

unbox(box[�x ← �t].t) �→ t[�t/�x]
next t1 � next t2 �→ next(t1t2)

The rules above look like standard β-reduction, removing ‘roundabouts’ of
introduction then elimination, with the exception of those regarding prev and
next. An apparently more conventional β-rule for these term-formers would be

prev[�x ← �t].(next t) �→ t[�t/�x]

http://cs.au.dk/~hbugge/gl-agda.zip

410 R. Clouston et al.

but where �x is non-empty this would require us to reduce an open term to derive
next t. We take the view that reduction of open terms is undesirable within a
call-by-name discipline, so first apply the substitution without eliminating prev.

The final rule is not a true β-rule, as � is neither introduction nor elimi-
nation, but is necessary to enable function application under a next and hence
allow, for example, manipulation of the tail of a stream. It corresponds to the
‘homomorphism’ equality for applicative functors [16].

We next impose our call-by-name strategy on these reductions.

Definition 2.3. Values are terms of the form

〈〉 | succn zero | 〈t, t〉 | λx.t | fold t | boxσ.t | next t

where succn is a list of zero or more succ operators, and t is any term.

Definition 2.4. Evaluation contexts are defined by the grammar

E ::= · | succE | πdE | Et | unfoldE | prevE | unboxE | E � t | v � E

If we regard � as a variant of function application, it is surprising in a call-by-
name setting to reduce on both its sides. However both sides must be reduced
until they have main connective next before the reduction rule for � may be
applied. Thus the order of reductions of gλ-terms cannot be identified with the
call-by-name reductions of the corresponding λ-calculus term with the novel
connectives erased.

Definition 2.5. Call-by-name reduction has format E[t] �→ E[u], where t �→ u
is a reduction rule. From now the symbol �→ will be reserved to refer to call-by-
name reduction. We use � for the reflexive transitive closure of �→.

Lemma 2.6. The call-by-name reduction relation �→ is deterministic.

Definition 2.7. gλ-types are defined inductively by the rules of Fig. 1. ∇ is a
finite set of type variables. A variable α is guarded in a type A if all occurrences
of α are beneath an occurrence of � in the syntax tree. We adopt the convention
that unary type-formers bind closer than binary type-formers.

∇, α � α ∇ � 1 ∇ � N

∇ � A1 ∇ � A2

∇ � A1 ×A2

∇ � A1 ∇ � A2

∇ � A1 → A2

∇, α � A

∇ � μα.A
α guarded inA

∇ � A

∇ � �A

· � A

∇ � �A

Fig. 1. Type formation for the gλ-calculus

Guarded Recursion for Coinductive Types 411

Note the side condition on the μ type-former, and the prohibition on �A for
open A, which can also be understood as a prohibition on applying μα to any α
with � above it. The intuition for these restrictions is that unique fixed points
exist only where the variable is displaced in time by a �, but � cancels out this
displacement by giving ‘everything now’.

Definition 2.8. The typing judgments are given in Fig. 2. There d ∈ {1, 2},
and the typing contexts Γ are finite sets of pairs x : A where x is a variable and
A a closed type. Closed types are constant if all occurrences of � are beneath an
occurrence of � in their syntax tree.

Γ, x : A � x : A Γ � 〈〉 : 1 Γ � zero : N

Γ � t : N

Γ � succ t : N

Γ � t1 : A Γ � t2 : B

Γ � 〈t1, t2〉 : A×B

Γ � t : A1 ×A2

Γ � πdt : Ad

Γ, x : A � t : B

Γ � λx.t : A → B

Γ � t1 : A → B Γ � t2 : A

Γ � t1t2 : B

Γ � t : A[μα.A/α]

Γ � fold t : μα.A

Γ � t : μα.A

Γ � unfold t : A[μα.A/α]

Γ � t : A

Γ � next t : �A

x1 : A1, . . . , xn : An � t : �A
Γ � t1 : A1 · · · Γ � tn : An

Γ � prev[x1 ← t1, . . . , xn ← tn].t : A
A1, . . . , An constant

x1 : A1, . . . , xn : An � t : A
Γ � t1 : A1 · · · Γ � tn : An

Γ � box[x1 ← t1, . . . , xn ← tn].t : �A
A1, . . . , An constant

Γ � t : �A

Γ � unbox t : A

Γ � t1 : �(A → B) Γ � t2 : �A

Γ � t1 � t2 : �B

Fig. 2. Typing rules for the gλ-calculus

The constant types exist ‘all at once’, due to the absence of � or presence
of �; this condition corresponds to the freeness of the clock variable in Atkey
and McBride [4] (recalling that we use only one clock in this work). Its use as
a side-condition to �-introduction in Fig. 2 recalls (but is more general than)
the ‘essentially modal’ condition for natural deduction for IS4 of Prawitz [20].
The term calculus for IS4 of Bierman and de Paiva [5], on which this calculus
is most closely based, uses the still more restrictive requirement that � be the
main connective. This would preclude some functions that seem desirable, such
as the isomorphism λn. box ι.n : N → �N.

412 R. Clouston et al.

In examples prev usually appears in its syntactic sugar forms

x1 : A1, . . . , xn : An 	 t : �A

Γ, x1 : A1, . . . , xn : An 	 prev ι.t : A
A1, . . . , An constant

	 t : �A

Γ 	 prev t : A

and similarly for box; the more general form is nonetheless necessary because
(prev ι.t)[�u/�x] = prev[�x ← �u].t. Getting substitution right in this setting is
somewhat delicate. For example our reduction rule prev[�x ← �t].t �→ prev t[�t/�x]
breaches subject reduction on open terms (but not for closed terms). See Bier-
man and de Paiva [5] for more discussion of substitution with respect to IS4.

Lemma 2.9 (Subject Reduction). 	 t : A and t � u implies 	 u : A.

Example 2.10. (i) The type of guarded recursive streams of natural numbers,
Strg, is defined as μα.N×�α. These provide the setting for all examples be-
low, but other definable types include infinite binary trees, as μα.N×�α×
�α, and potentially infinite lists, as μα.1+(N×�α).

(ii) We define guarded versions of the standard stream functions cons (written
infix as ::), head, and tail as obvious:

:: � λn.λs. fold〈n, s〉 : N → �Strg → Strg

hdg � λs.π1 unfold s : Str
g → N tlg � λs.π2 unfold s :: Str

g → �Strg

then use the � term-former for observations deeper into the stream:

2ndg � λs.(next hdg)� (tlg s) : Strg → �N

3rdg � λs.(next 2ndg)� (tlg s) : Strg → ��N · · ·
(iii) Following Abel and Vezzosi [2, Sec. 3.4] we may define a fixed point com-

binator fix with type (�A → A) → A for any A. We use this to define
a stream by iteration of a function: iterate takes as arguments a natural
number and a function, but the function is not used until the ‘next’ step of
computation, so we may reflect this with our typing:

iterate � λf. fixλg.λn.n :: (g � (f � nextn)) : �(N → N) → N → Strg

We may hence define the guarded stream of natural numbers

nats � iterate (nextλn. succn) zero .

(iv) With interleave, following our discussion in the introduction, we again may
reflect in our type that one of our arguments is not required until the next
step, defining the term interleave as:

fixλg.λs.λt.(hdg s) :: (g � t� next(tlg s)) : Strg → �Strg → Strg

This typing decision is essential to define the paper folding stream:

toggle � fixλs.(succ zero) :: (next(zero ::s))

paperfolds � fixλs. interleave toggle s

Guarded Recursion for Coinductive Types 413

Note that the unproductive definition with interleave s toggle cannot be
made to type check: informally, s : �Strg cannot be converted into a Strg

by prev, as it is in the scope of a variable s whose type Strg is not constant.
To see a less articifial non-example, try to define a filter function on streams
which eliminates elements that fail some boolean test.

(v) μ-types are in fact unique fixed points, so carry both final coalgebra and
initial algebra structure. To see the latter, observe that we can define

foldr � fixλgλf.λs.f〈hdg s, g � next f � tlg s〉 : ((N×�A) → A) → Strg → A

and hence for example mapg h : Strg → Strg is foldr λx.(hπ1x) :: (π2x).
(vi) The� type-former lifts guarded recursive streams to coinductive streams, as

we will make precise in Ex. 3.4. Let Str � �Strg. We define hd : Str → N and
tl : Str → Str by hd = λs. hdg(unbox s) and tl = λs. box ι. prev ι. tlg(unbox s),
and hence define observations deep into streams whose results bear no trace
of�, for example 2nd � λs. hd(tl s) : Str → N.
In general boxed functions lift to functions on boxed types by

lim � λf.λx. box ι.(unbox f)(unboxx) : �(A → B) → �A → �B

(vii) The more sophisticated acausal function every2nd : Str → Strg is

fixλg.λs.(hd s) :: (g � (next(tl(tl s)))).

Note that it must take a coinductive stream Str as argument. The function
with coinductive result type is then λs. box ι. every2nd s : Str → Str.

3 Denotational Semantics and Normalisation

This section gives denotational semantics for gλ-types and terms, as objects
and arrows in the topos of trees [6], the presheaf category over the first infinite
ordinal ω (we give a concrete definition below). These semantics are shown to
be sound and, by a logical relations argument, adequate with respect to the
operational semantics. Normalisation follows as a corollary of this argument.
Note that for space reasons many proofs, and some lemmas, appear only in the
extended version of this paper [9].

Definition 3.1. The topos of trees S has, as objects X, families of sets X1, X2,
. . . indexed by the positive integers, equipped with families of restriction functions
rXi : Xi+1 → Xi indexed similarly. Arrows f : X → Y are families of functions
fi : Xi → Yi indexed similarly obeying the naturality condition fi◦rXi = rYi ◦fi+1.

S is a cartesian closed category with products defined pointwise. Its expo-
nential AB has, as its component sets (AB)i, the set of i-tuples (f1 : A1 →
B1, . . . , fi : Ai → Bi) obeying the naturality condition, and projections as re-
striction functions.

414 R. Clouston et al.

Definition 3.2. – The category of sets Set is a full subcategory of S via the
functor Δ : Set → S with (ΔZ)i = Z, rΔZ

i = idZ , and (Δf)i = f . Objects
in this subcategory are called constant objects. In particular the terminal
object 1 of S is Δ{∗} and the natural numbers object is ΔN;

– Δ is left adjoint to homS(1, –); write � for Δ ◦ homS(1, -) : S → S. unbox :
� →̇ idS is the counit of the resulting comonad. Concretely unboxi(x) = xi,
i.e. the i’th component of x : 1 → X applied to ∗;

– � : S → S is defined by (�X)1 = {∗} and (�X)i+1 = Xi, with r�X
1 defined

uniquely and r�X
i+1 = rXi . Its action on arrows f : X → Y is (�f)1 = id{∗}

and (�f)i+1 = fi. The natural transformation next : idS →̇ � has next1
unique and nexti+1 = rXi for any X.

Definition 3.3. We interpet types in context ∇ 	 A, where ∇ contains n free
variables, as functors �∇ 	 A� : (Sop×S)n → S, usually written �A�. This mixed
variance definition is necessary as variables may appear negatively or positively.

– �∇, α 	 α� is the projection of the objects or arrows corresponding to positive

occurrences of α, e.g. �α�(�W ,X, Y) = Y ;
– �1� and �N� are the constant functors Δ{∗} and ΔN respectively;

– �A1 ×A2�(�W) = �A1�(�W)× �A2�(�W) and likewise for S-arrows;
– �A1 → A2�(�W) = �A2�(�W)�A2�(�W ′) where �W ′ is �W with odd and even ele-

ments switched to reflect change in polarity, i.e. (X1, Y1, . . .)
′ = (Y1, X1, . . .);

– ��A�, ��A� are defined by composition with the functors �,� (Def. 3.2).

– �μα.A�(�W) = Fix(F), where F : (Sop × S) → S is the functor given by

F (X,Y) = �A�(�W ,X, Y) and Fix(F) is the unique (up to isomorphism) X
such that F (X,X) ∼= X. The existence of such X relies on F being a suitably
locally contractive functor, which follows by Birkedal et al [6, Sec. 4.5] and
the fact that � is only ever applied to closed types. This restriction on � is
necessary because the functor � is not strong.

Example 3.4. �Strg�i = N
i, with projections as restriction functions, so is an

object of approximations of streams – first the head, then the first two elements,
and so forth. �Str�i = N

ω at all levels, so is the constant object of streams. More
generally, any polynomial functor F on Set can be assigned a gλ-type AF with
a free type variable α that occurs guarded. The denotation of �μα.AF is the
constant object of the carrier of the final coalgebra for F [18, Thm. 2].

Lemma 3.5. The interpretation of a recursive type is isomorphic to the inter-
pretation of its unfolding: �μα.A�(�W) ∼= �A[μα.A/α]�(�W).

Lemma 3.6. Closed constant types denote constant objects in S.
Note that the converse does not apply; for example ��1� is a constant object.

Definition 3.7. We interpret typing contexts Γ = x1 : A1, . . . , xn : An as
S-objects �Γ � � �A1� × · · · × �An� and hence interpret typed terms-in-context
Γ 	 t : A as S-arrows �Γ 	 t : A� : �Γ � → �A� (usually written �t�) as follows.

Guarded Recursion for Coinductive Types 415

�x� is the projection �Γ � × �A� → �A�. �zero� and �succ t� are as obvious.
Term-formers for products and function spaces are interpreted via the cartesian
closed structure of S. Exponentials are not pointwise, so we give explicitly:

– �λx.t�i(γ)j maps a �→ �Γ, x : A 	 t : B�j(γ�j, a), where γ�j is the result of
applying restriction functions to γ ∈ �Γ �i to get an element of �Γ �j;

– �t1t2�i(γ) = (�t1�i(γ)i) ◦ �t2�i(γ);

�fold t� and �unfold t� are defined via composition with the isomorphisms of Lem.
3.5. �next t� and �unbox t� are defined by composition with the natural transfor-
mations introduced in Def. 3.2. The final three cases are

– �prev[x1 ← t1, . . .].t�i(γ) � �t�i+1(�t1�i(γ), . . .), where �t1�i(γ) ∈ �A1�i is
also in �A1�i+1 by Lem. 3.6;

– �box[x1 ← t1, . . .].t�i(γ)j = �t�j(�t1�i(γ), . . .), again using Lem. 3.6;

– �t1 � t2�1 is defined uniquely; �t1 � t2�i+1(γ) � (�t1�i+1(γ)i) ◦ �t2�i+1(γ).

Lemma 3.8. Given typed terms in context x1 : A1, . . . , xm : Am 	 t : A and
Γ 	 tk : Ak for 1 ≤ k ≤ m, �t[�t/�x]�i(γ) = �t�i(�t1�i(γ), . . . , �tm�i(γ)).

Theorem 3.9 (Soundness). If t � u then �t� = �u�.

We now define a logical relation between our denotational semantics and
terms, from which both normalisation and adequacy will follow. Doing this
inductively proves rather delicate, because induction on size will not support
reasoning about our values, as fold refers to a larger type in its premise. This
motivates a notion of unguarded size under which A[μα.A/α] is ‘smaller’ than
μα.A. But under this metric �A is smaller than A, so next now poses a problem.
But the meaning of �A at index i+ 1 is determined by A at index i, and so, as
in Birkedal et al [7], our relation will also induct on index. This in turn creates
problems with box, whose meaning refers to all indexes simultaneously, motivat-
ing a notion of box depth, allowing us finally to attain well-defined induction.

Definition 3.10. The unguarded size us of an open type follows the obvious
definition for type size, except that us(�A) = 0.

The box depth bd of an open type is

– bd(A) = 0 for A ∈ {α,0,1,N};
– bd(A×B) = min(bd(A), bd(B)), and similarly for bd(A → B);
– bd(μα.A) = bd(A), and similarly for bd(�A);
– bd(�A) = bd(A) + 1.

Lemma 3.11. (i) α guarded in A implies us(A[B/α]) ≤ us(A).
(ii) bd(B) ≤ bd(A) implies bd(A[B/α]) ≤ bd(A)

Definition 3.12. The family of relations RA
i , indexed by closed types A and

positive integers i, relates elements of the semantics a ∈ �A�i and closed typed
terms t : A and is defined as

416 R. Clouston et al.

– ∗R1
i t iff t � 〈〉;

– nRN
i t iff t � succn zero;

– (a1, a2)R
A1×A2

i t iff t � 〈t1, t2〉 and adR
Ad

i td for d ∈ {1, 2};
– fRA→B

i t iff t � λx.s and for all j ≤ i, aRA
j u implies fj(a)R

B
j s[u/x];

– aRμα.A
i t iff t � foldu and hi(a)R

A[μα.A/α]
i u, where h is the “unfold” iso-

morphism for the recursive type (ref. Lem. 3.5);
– aR�A

i t iff t � nextu and, where i > 1, aRA
i−1u.

– aR�A
i t iff t � boxu and for all j, ajR

A
j u;

This is well-defined by induction on the lexicographic ordering on box depth, then
index, then unguarded size. First the � case strictly decreases box depth, and no
other case increases it (ref. Lem. 3.11.(ii) for μ-types). Second the � case strictly
decreases index, and no other case increases it (disregarding �). Finally all other
cases strictly decrease unguarded size, as seen via Lem. 3.11.(i) for μ-types.

Lemma 3.13 (Fundamental Lemma). Take Γ = (x1 : A1, . . . , xm : Am),
Γ 	 t : A, and 	 tk : Ak for 1 ≤ k ≤ m. Then for all i, if akR

Ak

i tk for all k,
then

�Γ 	 t : A�i(�a)R
A
i t[�t/�x].

Theorem 3.14 (Adequacy and Normalisation).

(i) For all closed terms 	 t : A it holds that �t�iR
A
i t;

(ii) �	 t : N�i = n implies t � succn zero;
(iii) All closed typed terms evaluate to a value.

Proof. (i) specialises Lem. 3.13 to closed types. (ii), (iii) hold by (i) and inspec-
tion of Def. 3.12.

Definition 3.15. Typed contexts with typed holes are defined as obvious. Two
terms Γ 	 t : A,Γ 	 u : A are contextually equivalent, written t �ctx u, if for all
closing contexts C of type N, the terms C[t] and C[u] reduce to the same value.

Corollary 3.16. �t� = �u� implies t �ctx u.

Proof. �C[t]� = �C[u]� by compositionality of the denotational semantics . Then
by Thm. 3.14.(ii) they reduce to the same value.

4 Logic for Guarded Lambda Calculus

This section presents our program logic Lgλ for the guarded λ-calculus. The
logic is an extension of the internal language of S [6,10]. Thus it extends multi-
sorted intuitionistic higher-order logic with two propositional modalities � and
�, pronounced later and always respectively. The term language of Lgλ includes
the terms of gλ, and the types of Lgλ include types definable in gλ. We write Ω
for the type of propositions, and also for the subobject classifier of S.

The rules for definitional equality extend the usual βη-laws for functions and
products with new equations for the new gλ constructs, listed in Fig. 3.

Guarded Recursion for Coinductive Types 417

Γ � t : A [μα.A/α]

Γ � unfold(fold t) = t

Γ � t : μα.A

Γ � fold(unfold t) = t

Γ � t1 : A → B Γ � t2 : A

Γ � next t1 � next t2 = next(t1t2)

Γ� � t : A Γ � �t : Γ�

Γ � prev[�x ← �t].(next t) = t
[
�t/�x

]
Γ� � t : �A Γ � �t : Γ�

Γ � next
(
prev[�x ← �t].t

)
= t

[
�t/�x

]

Γ� � t : A Γ � �t : Γ�

Γ � unbox(box[�x ← �t].t) = t
[
�t/�x

]
Γ� � t : �A Γ � �t : Γ�

Γ � box[�x ← �t]. unbox t = t
[
�t/�x

]

Fig. 3. Additional equations. The context Γ� is assumed constant.

Definition 4.1. A type X is total and inhabited if the formula Total (X) ≡
∀x : �X, ∃x′ : X,next(x′) =�X x is valid.

All of the gλ-types defined in Sec. 2 are total and inhabited (see the extended
version [9] for a proof using the semantics of the logic), but that is not the case
when we include sum types as the empty type is not inhabited.

Corresponding to the modalities � and � on types, we have modalities � and
� on formulas. The modality � is used to express that a formula holds only
“later”, that is, after a time step. It is given by a function symbol � : Ω → Ω.
The � modality is used to express that a formula holds for all time steps. Unlike
the � modality, � on formulas does not arise from a function on Ω [8]. As with
box, it is only well-behaved in constant contexts, so we will only allow � in such
contexts. The rules for � and � are listed in Fig. 4.

Γ | Ξ, (� φ ⇒ φ) � φ
Löb

Γ, x : X | ∃y : Y, � φ(x, y) � � (∃y : Y, φ(x, y))
∃ �

Γ, x : X | �(∀y : Y, φ(x, y)) � ∀y : Y, � φ(x, y)
∀ �

Γ | Ξ,φ � � φ

 ∈ {∧,∨,⇒}
Γ | �(φ
 ψ) �� � φ
 �ψ

Γ | ¬¬φ � ψ

Γ | φ � �ψ

Γ | φ � �ψ

Γ | ¬¬φ � ψ

Γ | φ � ψ

Γ | �φ � �ψ

Γ | �φ � φ Γ | �φ � ��φ ∀x, y : X. �(x =X y) ⇔ nextx =�X next y
eq�

next

Fig. 4. Rules for � and �. The judgement Γ | Ξ � φ expresses that in typing context
Γ , hypotheses in Ξ prove φ. The converse entailment in ∀ � and ∃ � rules holds if Y is
total and inhabited. In all rules involving the � the context Γ is assumed constant.

The � modality can in fact be defined in terms of lift : �Ω → Ω (called succ
by Birkedal et al [6]) as � = lift ◦ next. The lift function will be useful since it
allows us to define predicates over guarded types, such as predicates on Strg.

The semantics of the logic is given in S; terms are interpreted as morphisms
of S and formulas are interpreted via the subobject classifier. We do not present

418 R. Clouston et al.

the semantics here; except for the new terms of gλ, whose semantics are defined
in Sec. 3, the semantics are as in [6,8].

Later we will come to the problem of proving x =�A y from unboxx =A

unbox y, where x, y have type �A. This in general does not hold, but using the
semantics of Lgλ we can prove the proposition below.

Proposition 4.2. The formula �(unboxx =A unbox y) ⇒ x =�A y is valid.

There exists a fixed-point combinator of type (�A → A) → A for all types A
in the logic (not only those of in gλ) [6, Thm. 2.4]; we also write fix for it.

Proposition 4.3. For any term f : �A → A we have fix f =A f (next(fix f))
and, if u is any other term such that f(nextu) =A u, then u =A fix f .

In particular this can be used for recursive definitions of predicates. For instance
if P : N → Ω is a predicate on natural numbers we can define a predicate PStrg

on Strg expressing that P holds for all elements of the stream:

PStrg � fixλr.λxs.P (hdg xs) ∧ lift (r � (tlg xs)) : Strg → Ω.

The logic may be used to prove contextual equivalence of programs:

Theorem 4.4. Let t1 and t2 be two gλ terms of type A in context Γ . If the
sequent Γ | ∅ 	 t1 =A t2 is provable then t1 and t2 are contextually equivalent.

Proof. Recall that equality in the internal logic of a topos is just equality of
morphisms. Hence t1 and t2 denote same morphism from Γ to A. Adequacy
(Cor. 3.16) then implies that t1 and t2 are contextually equivalent.

Example 4.5. We list some properties provable using the logic. Except for the
first property all proof details are in the extended version [9].

(i) For any f : A → B and g : B → C we have

(mapg f) ◦ (mapg g) =Strg→Strg mapg(f ◦ g).
Unfolding the definition of mapg from Ex. 2.10(vi) and using β-rules and
Prop. 4.3 we havemapg f xs = f (hdg xs)::(next(mapg f)�(tlg xs)). Equality
of functions is extensional so we have to prove

Φ � ∀xs : Strg,mapg f (mapg g xs) =Strg mapg(f ◦ g)xs.
The proof is by Löb induction, so we assume �Φ and take xs : Strg. Using
the above property of mapg we unfold mapg f (mapg g xs) to

f (g (hdg xs)) :: (next(mapg f)� ((next(mapg g))� tlg xs))

and we unfold mapg(f ◦g)xs to f (g (hdg xs)) :: (next(mapg(f ◦ g))� tlg xs).
Since Strg is a total type there is a xs′ : Strg such that nextxs′ = tlg xs.
Using this and the rule for � we have

next(mapg f)� ((next(mapg g))� tlg xs) =�Strg next(mapg f(mapg g xs′))

and next(mapg(f ◦ g)) � tlg xs =�Strg next(mapg(f ◦ g)xs′). From the in-
duction hypothesis �Φ we have �(mapg(f ◦ g)xs′ =Strg mapg f (mapg g xs′))
and so rule eq�

next concludes the proof.

Guarded Recursion for Coinductive Types 419

(ii) We can also reason about acausal functions. For any n : N, f : N → N,

every2nd(box ι. iterate (next f)n) =Strg iterate (next f
2)n,

where f2 is λm.f (f m). The proof again uses Löb induction.
(iii) Since our logic is higher-order we can state and prove very general proper-

ties, for instance the following general property of map

∀P,Q : (N → Ω), ∀f : N → N, (∀x : N, P (x) ⇒ Q(f(x)))

⇒ ∀xs : Strg, PStrg(xs) ⇒ QStrg(mapg f xs).

The proof illustrates the use of the property lift ◦ next = �.
(iv) Given a closed term (we can generalise to terms in constant contexts) f of

type A → B we have box f of type �(A → B). Define L(f) = lim(box f)
of type �A → �B. For any closed term f : A → B and x : �A we can
then prove unbox(L(f)x) =B f (unboxx). Then using Prop. 4.2 we can, for
instance, prove L(f ◦ g) = L(f) ◦ L(g).
For functions of arity k we define Lk using L, and analogous properties
hold, e.g. we have unbox(L2(f)x y) = f (unboxx) (unbox y), which allows
us to transfer equalities proved for functions on guarded types to functions
on �’d types; see Sec. 5 for an example.

5 Behavioural Differential Equations in gλ

In this section we demonstrate the expressivity of our approach by showing how
to construct solutions to behavioural differential equations [21] in gλ, and how
to reason about such functions in Lgλ, rather than with bisimulation as is more
traditional. These ideas are best explained via a simple example.

Supposing addition + : N → N → N is given, then pointwise addition of
streams, plus, can be defined by the following behavioural differential equation

hd(plus σ1 σ2) = hdσ1 + hdσ2 tl(plusσ1 σ2) = plus(tl σ1) (tl σ2).

To define the solution to this behavioural differential equation in gλ, we first
translate it to a function on guarded streams plusg : Strg → Strg → Strg, as

plusg � fixλf.λs1.λs2.(hd
g s1 + hdg s2) :: (f � (tlg s1)� (tlg s2))

then define plus : Str → Str → Str by plus = L2(plus
g). By Prop. 4.3 we have

plusg = λs1.λs2.(hd
g s1 + hdg s2) :: ((next plus

g)� (tlg s1)� (tlg s2)). (1)

This definition of plus satisfies the specification given by the behavioural dif-
ferential equation above. Let σ1, σ2 : Str and recall that hd = hdg ◦λs. unbox s.
Then use Ex. 4.5.(iv) and equality (1) to get hd(plusσ1σ2) = hdσ1 + hdσ2.

For tl we proceed similarly, also using that tlg(unboxσ) = next(unbox(tl σ))
which can be proved using the β-rule for box and the η-rule for next.

420 R. Clouston et al.

Since plusg is defined via guarded recursion we can reason about it with Löb
induction, for example to prove that it is commutative. Ex. 4.5.(iv) and Prop. 4.2
then immediately give that plus on coinductive streams Str is commutative.

Once we have defined plusg we can use it when defining other functions on
streams, for instance stream multiplication ⊗ which is specified by equations

hd(σ1 ⊗ σ2) = (hdσ1) · (hdσ2) tl(σ1 ⊗ σ2) = (ρ(hdσ1)⊗ (tl σ2))⊕ ((tl σ1)⊗ σ2)

where ρ(n) is a stream with head n and tail a stream of zeros, and · is multipli-
cation of natural numbers, and using ⊕ as infix notation for plus. We can define
⊗g : Strg → Strg → Strg by ⊗g �

fixλf.λs1.λs2. ((hd
g s1) · (hdg s2)) ::

(next plusg �(f � next ιg(hdg s1)� tlg s2)� (f � tlg s1 � next s2))

then define ⊗ = L2 (⊗g). It can be shown that the function ⊗ so defined satisfies
the two defining equations above. Note that the guarded plusg is used to define
⊗g, so our approach is modular in the sense of [17].

The example above generalises, as we can show that any solution to a be-
havioural differential equation in Set can be obtained via guarded recursion
together with Lk. The formal statement is somewhat technical and can be found
in the extended version [9].

6 Discussion

Following Nakano [19], the�modality has been used as type-former for a number
of λ-calculi for guarded recursion. Nakano’s calculus and some successors [15,22,2]
permit only causal functions. The closest such work to ours is that of Abel and
Vezzosi [2], but due to a lack of destructor for� their (strong) normalisation result
relies on a somewhat artificial operational semantics where the number of nexts
that can be reduced under is bounded by some fixed natural number.

Atkey and McBride’s extension of such calculi to acausal functions [4] forms
the basis of this paper. We build on their work by (aside from various minor
changes such as eliminating the need to work modulo first-class type isomor-
phisms) introducing normalising operational semantics, an adequacy proof with
respect to the topos of trees, and a program logic.

An alterative approach to type-based productivity guarantees are sized types,
introduced by Hughes et al [14] and now extensively developed, for example
integrated into a variant of System Fω [1]. Our approach offers some advantages,
such as adequate denotational semantics, and a notion of program proof without
appeal to dependent types, but extensions with realistic language features (e.g.
following Møgelberg [18]) clearly need to be investigated.

Acknowledgements. We gratefully acknowledge our discussions with Andreas
Abel, Tadeusz Litak, Stefan Milius, Rasmus Møgelberg, Filip Sieczkowski, and
Andrea Vezzosi, and the comments of the reviewers. This research was sup-
ported in part by the ModuRes Sapere Aude Advanced Grant from The Danish

Guarded Recursion for Coinductive Types 421

Council for Independent Research for the Natural Sciences (FNU). Aleš Bizjak
is supported in part by a Microsoft Research PhD grant.

References

1. Abel, A., Pientka, B.: Wellfounded recursion with copatterns: A unified approach
to termination and productivity. In: ICFP, pp. 185–196 (2013)

2. Abel, A., Vezzosi, A.: A formalized proof of strong normalization for guarded re-
cursive types. In: APLAS, pp. 140–158 (2014)

3. Appel, A.W., Melliès, P.A., Richards, C.D., Vouillon, J.: A very modal model of a
modern, major, general type system. In: POPL, pp. 109–122 (2007)

4. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
ICFP, pp. 197–208 (2013)

5. Bierman, G.M., de Paiva, V.C.: On an intuitionistic modal logic. Studia Log-
ica 65(3), 383–416 (2000)

6. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in
synthetic guarded domain theory: step-indexing in the topos of trees. LMCS 8(4)
(2012)

7. Birkedal, L., Schwinghammer, J., Støvring, K.: A metric model of lambda calculus
with guarded recursion. In: FICS, pp. 19–25 (2010)

8. Bizjak, A., Birkedal, L., Miculan, M.: A model of countable nondeterminism in
guarded type theory. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560,
pp. 108–123. Springer, Heidelberg (2014)

9. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: Programming and reason-
ing with guarded recursion for coinductive types. arXiv:1501.02925 (2015)

10. Clouston, R., Goré, R.: Sequent calculus in the topos of trees. In: Pitts, A. (ed.)
FoSSaCS 2015. LNCS, vol. 9034, pp. 133–147. Springer, Heidelberg (2015)

11. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

12. Endrullis, J., Grabmayer, C., Hendriks, D.: Mix-automatic sequences. In: Fields
Workshop on Combinatorics on Words, contributed talk (2013)

13. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Smith, J.,
Dybjer, P., Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995)

14. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: POPL, pp. 410–423 (1996)

15. Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In:
LICS, pp. 257–266 (2011)

16. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gramming 18(1), 1–13 (2008)

17. Milius, S., Moss, L.S., Schwencke, D.: Abstract GSOS rules and a modular treat-
ment of recursive definitions. LMCS 9(3) (2013)

18. Møgelberg, R.E.: A type theory for productive coprogramming via guarded recur-
sion. In: CSL-LICS (2014)

19. Nakano, H.: A modality for recursion. In: LICS, pp. 255–266 (2000)
20. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover Publ. (1965)
21. Rutten, J.J.M.M.: Behavioural differential equations: A coinductive calculus of

streams, automata, and power series. Theor. Comput. Sci. 308(1-3), 1–53 (2003)
22. Severi, P.G., de Vries, F.J.J.: Pure type systems with corecursion on streams: from

finite to infinitary normalisation. In: ICFP, pp. 141–152 (2012)

	Programming and Reasoning
with Guarded Recursion for Coinductive Types

	1 Introduction
	2 Guardedλ-calculus
	3 Denotational Semantics and Normalisation
	4 Logic for Guarded Lambda Calculus
	5 Behavioural Differential Equations in
	6 Discussion
	References

