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Abstract. Hierarchical probabilistic automata (HPA) are probabilistic automata
whose states are partitioned into levels such that for any state and input symbol, at
most one transition with non-zero probability goes to a state at the same level, and
all others go to states at a higher level. We present expressiveness and decidability
results for 1-level HPAs that work on both finite and infinite length input strings;
in a 1-level HPA states are divided into only two levels (0 and 1). Our first result
shows that 1-level HPAs, with acceptance threshold 1/2 (both in the finite and
infinite word cases), can recognize non-regular languages. This result is surpris-
ing in the light of the following two facts. First, all earlier proofs demonstrating
the recognition of non-regular languages by probabilistic automata employ either
more complex automata or irrational acceptance thresholds or HPAs with more
than two levels. Second, it has been previously shown that simple probabilistic
automata (SPA), which are 1-level HPAs whose accepting states are all at level
0, recognize only regular languages. We show that even though 1-level HPAs
with threshold 1/2 are very expressive (in that they recognize non-regular lan-
guages), the non-emptiness and non-universality problems are both decidable in
EXPTIME. To the best our knowledge, this is the first such decidability result
for any subclass of probabilistic automata that accept non-regular languages. We
prove that these decision problems are also PSPACE-hard. Next, we present a
new sufficient condition when 1-level HPAs recognize regular languages (in both
the finite and infinite cases). Finally, we show that the emptiness and universality
problems for this special class of HPAs is PSPACE-complete.

1 Introduction

Probabilistic automata (PA) [13,12,1,10] are finite state machines that have probabilistic
transitions on input symbols. Such machines can either recognize a language of finite
words (probabilistic finite automata PFA [13,12]) or a language of infinite words (prob-
abilistic Büchi/Rabin/Muller automata [1,10,6]) depending on the notion of accepting
run; on finite input words, an accepting run is one that reaches a final state, while on
an infinite input, an accepting run is one whose set of states visited infinitely often sat-
isfy a Büchi, Rabin, or Muller acceptance condition. The set of accepting runs in all
these cases can be shown to be measurable and the probability of this set is taken to be
probability of accepting the input word. Given an acceptance threshold x, the language
L>x(A) (L≥x(A)) of a PA A is the set of all inputs whose acceptance probability is
> x (≥ x). In this paper the threshold x is always a rational number in (0, 1).
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Hierarchical probabilistic automata (HPA) are a syntactic subclass of probabilistic
automata that are computationally more tractable for extremal thresholds [5] — prob-
lems of emptiness and universality which are undecidable for PAs on infinite words
with threshold 0 become decidable for HPAs. Over finite words, the problem of decid-
ing whether the infimum of acceptance probabilities is 0 also becomes decidable for
HPAs [8], even though it is undecidable for general PAs [9]. Intuitively, a HPA is a PA
whose states are stratified into (totally) ordered levels with the property that from any
state q, and input a, the machine can transition with non-zero probability to at most one
state in the same level as q, and all other probabilistic successors belong to a higher
level. Such automata arise naturally as models of client-server systems. Consider such
a system where clients can request services of multiple servers that can fail (catastroph-
ically) with some probability. The state of the automaton models the global state of
all the servers and inputs to the machine correspond to requests from the client to the
servers. The levels of the automaton correspond to the number of failed servers, with
the lowest level modeling no failures. Since failed servers can’t come back, the tran-
sitions in such a system satisfy the hierarchical nature. While HPAs are tractable with
extremal thresholds, the emptiness and universality problems are undecidable for HPA
with threshold 1

2 [4]. In fact, solving these decision problems for 6-level HPAs is un-
decidable [4]. In this paper, we investigate how the landscape changes when we restrict
our attention to 1-level HPAs.

1-level HPAs (henceforth simply called HPAs) are machines whose states are parti-
tioned into two levels (0 and 1), with initial state in level 0, and transitions satisfying
the hierarchical structure. These automata model client-server systems where only one
server failure is allowed. Despite their extremely simple structure, we show that (1-
level) HPAs turn out to be surprisingly powerful — they can recognize non-regular
languages over finite and infinite words (even with threshold 1

2 ). This result is sig-
nificant because all earlier constructions of PFAs [12,13] and probabilistic Büchi au-
tomata [10,2] recognizing non-regular languages use either more complex automata
or irrational acceptance thresholds or HPAs with more than two levels. Moreover, this
result is also unexpected because it was previously shown that simple probabilistic au-
tomata only recognize regular languages [4,5]. The only difference between (1-level)
HPAs and simple probabilistic automata is that all accepting states of a simple proba-
bilistic automaton are required to be in level 0 (same level as the initial state).

Next, we consider the canonical decision problems of emptiness and universality for
(1-level) HPAs with threshold x. Decision problems for PAs with non-extremal thresh-
olds are often computationally harder than similar questions when the threshold is ex-
tremal (either 0 or 1), and the problems are always undecidable [7,5,2,12]. Even though
1-level HPAs are expressive, we show that both emptiness and universality problems for
1-level HPAs are decidable in EXPTIME and are PSPACE-hard. As far as we know,
this is the first decidability result for any subclass of PAs with non-extremal thresholds
that can recognize non-regular languages. Our decision procedure relies on observing
that when the language of a HPA A is non-empty (or non-universal), then there is an
input whose length is exponentially bounded in the size of the HPA that witnesses this
fact.
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Finally, we introduce a special subclass of (1-level) HPAs called integer HPAs. In-
teger HPA are HPAs where from any level 0 state q, on any input a, the probability of
transitioning to a level 1 state is an integer multiple of the probability of the (unique)
transition to a level 0 state on a from q. With this restriction, we can show that integer
HPA with threshold x only recognize regular languages (over finite and infinite words).
For integer HPAs, we show that the canonical decision decision problems of emptiness
and universality are PSPACE-complete.

The rest of the paper is organized as follows. Section 2 has basic definitions, and
introduces HPAs along with some useful propositions. The results characterizing the
expressiveness and decidability of HPAs are presented in Section 3. The results on
integer HPAs are presented in Section 4. Section 5 contains concluding remarks.

2 Preliminaries

We assume that the reader is familiar with finite state automata, regular languages,
Büchi automata, Muller automata and ω-regular languages. The set of natural numbers
will be denoted by N, the closed unit interval by [0, 1] and the open unit interval by
(0, 1). The power-set of a set X will be denoted by 2X .

Sequences. Given a finite set S, |S| denotes the cardinality of S. Given a sequence
(finite or infinite) κ = s0s1 . . . over S, |κ| will denote the length of the sequence (for
infinite sequence |κ| will be ω), and κ[i] will denote the ith element si of the sequence.
As usual S∗ will denote the set of all finite sequences/strings/words over S, S+ will de-
note the set of all finite non-empty sequences/strings/words over S and Sω will denote
the set of all infinite sequences/strings/words over S. We will use u, v, w to range over
elements of S∗, α, β, γ to range over infinite words over Sω.

Given κ ∈ S∗ ∪ Sω, natural numbers i, j ≤ |κ|, κ[i : j] is the finite sequence
si . . . sj and κ[i : ∞] is the infinite sequence sisi+1 . . ., where sk = κ[k]. The set of
finite prefixes of κ is the set Pref (κ) = {κ[0 : j] | j ∈ N, j ≤ |κ|}. Given u ∈ S∗ and
κ ∈ S∗ ∪Sω, uκ is the sequence obtained by concatenating the two sequences in order.
Given L1 ⊆ Σ∗ and L2 ⊆ S∗ ∪Σω, the set L1L2 is defined to be {uκ | u ∈ L1 and κ ∈
L2}. Given u ∈ S+, the word uω is the unique infinite sequence formed by repeating
u infinitely often. An infinite word α ∈ Sω is said to be ultimately periodic if there are
finite words u ∈ S∗ and v ∈ S+ such that α = uvω. For an infinite word α ∈ Sω, we
write inf(α) = {s ∈ S | s = α[i] for infinitely many i}.

Languages. Given a finite alphabet Σ, a language L of finite words is a subset of Σ∗.
A language L of infinite words over a finite alphabet Σ is a subset of Σω. We restrict
only to finite alphabets.

Probabilistic Automaton (PA). Informally, a PA is like a finite-state deterministic
automaton except that the transition function from a state on a given input is described
as a probability distribution which determines the probability of the next state.

Definition 1. A finite state probabilistic automata (PA) over a finite alphabet Σ is a
tuple A = (Q, qs, δ,Acc) where Q is a finite set of states, qs ∈ Q is the initial state,
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δ : Q × Σ × Q → [0, 1] is the transition relation such that for all q ∈ Q and a ∈ Σ,
δ(q, a, q′) is a rational number and

∑
q′∈Q δ(q, a, q′) = 1, and Acc is an acceptance

condition.

Notation: The transition function δ of PA A on input a can be seen as a square matrix
δa of order |Q| with the rows labeled by “current” state, columns labeled by “next state”
and the entry δa(q, q

′) equal to δ(q, a, q′). Given a word u = a0a1 . . . an ∈ Σ+, δu is
the matrix product δa0δa1 . . . δan . For an empty word ε ∈ Σ∗ we take δε to be the
identity matrix. Finally for any Q0 ⊆ Q, we say that δu(q,Q0) =

∑
q′∈Q0

δu(q, q
′).

Given a state q ∈ Q and a word u ∈ Σ+, post(q, u) = {q′ | δu(q, q′) > 0}. For a set
C ⊆ Q, post(C, u) = ∪q∈C post(q, u).

Intuitively, the PA starts in the initial state qs and if after reading a0, a1 . . . , ai results
in state q, then it moves to state q′ with probability δai+1(q, q

′) on symbol ai+1. A run of
the PA A starting in a state q ∈ Q on an input κ ∈ Σ∗∪Σω is a sequence ρ ∈ Q∗∪Qω

such that |ρ| = 1 + |κ|, ρ[0] = q and for each i ≥ 0, δκ[i](ρ[i], ρ[i+ 1]) > 0.
Given a word κ ∈ Σ∗∪Σω, the PA A can be thought of as a (possibly infinite-state)

(sub)-Markov chain. The set of states of this (sub)-Markov Chain is the set {(q, v) | q ∈
Q, v ∈ Pref (κ)} and the probability of transitioning from (q, v) to (q′, u) is δa(q, q′)
if u = va for some a ∈ Σ and 0 otherwise. This gives rise to the standard σ-algebra
on Qω defined using cylinders and the standard probability measure on (sub)-Markov
chains [14,11]. We shall henceforth denote the σ-algebra as FA,κ and the probability
measure as μA,κ.

Acceptance Conditions and PA Languages. The language of a PA A = (Q, qs, δ,Acc)
over an alphabet Σ is defined with respect to the acceptance conditionAcc and a thresh-
old x ∈ [0, 1]. We consider three kinds of acceptance conditions.

Finite acceptance: When defining languages over finite words, the acceptance con-
dition Acc is given in terms of a finite set Qf ⊆ Q. In this case we call the PA A, a
probabilistic finite automaton (PFA). Given a finite acceptance condition Qf ⊆ Q and
a finite word u ∈ Σ∗, a run ρ of A on u is said to be accepting if the last state of ρ is
in Qf . The set of accepting runs on u ∈ Σ∗ is measurable [14] and we shall denote its
measure by μacc,f

A, u . Note that μacc,f
A, u = δu(qs, Qf). Given a rational threshold x ∈ [0, 1]

and � ∈ {≥, >}, the language of finite words Lf�x(A) = {u ∈ Σ∗ | μacc,f
A, u � x} is the

set of finite words accepted by A with probability �x.
Büchi acceptance: Büchi acceptance condition defines languages over infinite words.

For Büchi acceptance, the acceptance condition Acc is given in terms of a finite set
Qf ⊆ Q. In this case, we call the PA A, a probabilistic Büchi automaton (PBA). Given
a Büchi acceptance condition Qf , a run ρ of A on an infinite word α ∈ Σω is said to
be accepting if inf(ρ) ∩ Qf 
= ∅. The set of accepting runs on α ∈ Σω is once again
measurable [14] and we shall denote its measure by μacc,b

A, α . Given a rational threshold
x ∈ [0, 1] and � ∈ {≥, >}, the language of infinite words Lb�x(A) = {α ∈ Σω |
μacc,b
A, α � x} is the set of infinite words accepted by PBA A with probability �x.

Muller acceptance: For Muller acceptance, the acceptance condition Acc is given in
terms of a finite set F ⊆ 2Q. In this case, we call the PA A, a probabilistic Muller
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automaton (PMA). Given a Muller acceptance condition F ⊆ 2Q, a run ρ of A on
an infinite word α ∈ A is said to be accepting if inf(ρ) ∈ F. Once again, the set of
accepting runs are measurable [14]. Given a word α, the measure of the set of accepting
runs is denoted by μacc,m

A, α . Given a a threshold x ∈ [0, 1] and � ∈ {≥, >}, the language
of infinite words Lm�x(A) = {α ∈ Σω |μacc,m

A, α �x} is the set of infinite words accepted
by PMA A with probability �x.

2.1 Hierarchical Probabilistic Automata

Intuitively, a hierarchical probabilistic automaton is a PA such that the set of its states
can be stratified into (totally) ordered levels. From a state q, for each letter a, the ma-
chine can transition with non-zero probability to at most one state in the same level as q,
and all other probabilistic successors belong to a higher level. We define such automata
for the special case when the states are partitioned into two levels (level 0 and level 1).

Definition 2. A 1-level hierarchical probabilistic automaton HPA is a probabilistic au-
tomaton A = (Q, qs, δ,Acc) over alphabet Σ such that Q can be partitioned into two
sets Q0 and Q1 with the following properties.

– qs ∈ Q0,
– For every q ∈ Q0 and a ∈ Σ, |post(q, a) ∩Q0| ≤ 1
– For every q ∈ Q1 and a ∈ Σ, post(q, a) ⊆ Q1 and |post(q, a)| = 1.

Given a 1-level HPA A, we will denote the level 0 and level 1 states by the sets Q0 and
Q1 respectively.

Example 1. Consider the PAs Aint, A 1
3

, and ARabin shown in Figs. 1, 2, and 3 re-
spectively. All three automata have the same set of states ({qs, qacc, qrej}), same ini-
tial state (qs), same alphabet ({0,1}), the same acceptance condition (Qf = {qacc} if
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finite/Büchi, and F = {{qacc}} if Muller) and the same transition structure. The only
difference is in the probability of transitions out of qs. All three of these automata are (1-
level) HPAs; we can take Q0 = {qs}, and Q1 = {qacc, qrej}. Though all three are very
similar automata, we will show that Aint and ARabin are symptomatic of automata that
accept only regular languages (with rational thresholds), while the other (A 1

3
) accepts

non-regular languages (with rational thresholds). The automata ARabin was originally
presented in [13] and it is known to accept a non-regular language with an irrational
threshold [13,3]. Similarly it can be shown that Aint also accepts a non-regular language
with an irrational threshold.

Notation: For the rest of the paper, by a HPA we shall mean 1-level HPA, unless oth-
erwise stated.

Let us fix a HPA A = (Q, qs, δ,Acc) over alphabet Σ with Q0 and Q1 being the level 0
and level 1 states. Observe that given any state q ∈ Q0 and any word κ ∈ Σ∗ ∪Σω, A
has at most one run ρ on α where all states in ρ belong to Q0. We now present a couple
of useful definitions. A set W ⊆ Q is said to be a witness set if W has at most one level
0 state, i.e., |W ∩Q0| ≤ 1. Observe that for any word u ∈ Σ∗, post(qs, u) is a witness
set, i.e., |post(qs, u)∩Q0| ≤ 1. We will say a word κ ∈ Σ∗∪Σω (depending on whether
A is an automaton on finite or infinite words) is definitely accepted from witness set W
iff for every q ∈ W with q ∈ Qi (for i ∈ {0, 1}) there is an accepting run ρ on κ starting
from q such that for every j, ρ[j] ∈ Qi and δκ[j](ρ[j], ρ[j + 1]) = 1. In other words, κ
is definitely accepted from witness set W if and only if κ is accepted from every state
q in W by a run where you stay in the same level as q, and all transitions in the run are
taken with probability 1. Observe that the set of all words definitely accepted from a
witness set W is regular.

Proposition 1. For any HPA A and witness set W , the language

LW = {κ | κ is definitely accepted by A from W}
is regular.

Observe that LW = ∩q∈W L{q} and L∅ (as defined above) is the set of all strings. Thus,
the emptiness of LW can be checked in PSPACE.

Proposition 2. For any HPA A and witness set W , the problem of checking the empti-
ness of LW (as defined in Proposition 1) is in PSPACE.

For a set C ⊆ Q1, a threshold x ∈ (0, 1), and a word u ∈ Σ∗, we will find it useful
to define the following quantity val(C, x, u) given as follows. If δu(qs, Q0) 
= 0 then

val(C, x, u) =
x− δu(qs, C)

δu(qs, Q0)
.

On the other hand, if δu(qs, Q0) = 0 then

val(C, x, u) =

⎧
⎨

⎩

+∞ if δu(qs, C) < x
0 if δu(qs, C) = x
−∞ if δu(qs, C) > x

.
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The quantity val(C, x, u) measures the fraction of δu(qs, Q0) that still needs to move
to C such that the probability of reaching C exceeds the threshold x. This intuition
is captured by the following proposition whose proof follows immediately from the
definition of val(C, x, u).

Proposition 3. Consider a HPA A with threshold x, and words u, v ∈ Σ∗. Let C,D ⊆
Q1 such that post(C, v) = D. The following properties hold.

– If val(C, x, u) < 0 then δuv(qs, D) > x.
– If val(C, x, u) = 0 then δu(qs, C) = x.

Witness sets and the value function play an important role in deciding whether a
word κ is accepted by a HPA. In particular, κ is accepted iff κ can be divided into
strings u, κ′ such that A reaches a witness set W with “sufficient probability” on u, and
κ′ is definitely accepted from W . We state this intuition precisely next.

Proposition 4. For a HPA A, threshold x ∈ [0, 1], and word κ, κ ∈ La>x(A) (where
a ∈ {f, b,m}) if and only if there is a witness set W , u ∈ Σ∗ and κ′ ∈ Σ∗ ∪Σω such
that κ = uκ′, κ′ is definitely accepted by A from W , and one of the following holds.

– Either W ⊆ Q1 and val(W,x, u) < 0, or
– W ∩Q0 
= ∅ and 0 ≤ val(W ∩Q1, x, u) < 1.

3 Expressiveness and Decidability

One-level HPAs have a very simple transition structure. In spite of this, we will show
that HPA can recognize non-regular languages (Section 3.1). Even though it has been
shown before that PFAs [12,13] and PBAs [10,2] recognize non-regular languages, all
the examples before, use either more complex automata or irrational acceptance thresh-
olds or HPAs with more than two levels. We shall then show that even though HPAs can
recognize non-regular languages, nevertheless the emptiness and universality problems
of HPAs are decidable (Section 3.2).

3.1 Non-regular Languages Expressed by 1-level HPA

We will now show that HPA can recognize non-regular languages, under both finite
acceptance and Büchi acceptance conditions. We consider a special type of HPA which
we shall call simple absorbing HPA (SAHPA).

Definition 3. Let A = (Q, qs, δ,Acc) be a HPA over an alphabet Σ with Q0 and Q1

as the sets of states at level 0 and 1 respectively. A is said to be a simple absorbing
HPA (SAHPA) if

– Q0 = {qs}, Q1 = {qacc, qrej}.
– The states qacc, qrej are absorbing, i.e., for each a ∈ Σ, δa(qacc, qacc) = 1 and

δa(qrej, qrej) = 1.
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For an κ ∈ Σ∗ ∪ Σω, GoodRuns(κ) is the set of runs ρ of A on κ such there is an
i ≥ 0 with ρ(j) = qacc for all i ≤ j ≤ |κ|. A word α ∈ Σω is said to be always alive
for A if for each i > 0, δα[0:i](qs, qs) > 0.

Example 2. All three automata Aint, A 1
3

and ARabin (Example 1) shown in Figs. 1, 2,
and 3 are simple absorbing HPAs.

The following lemma states some important properties satisfied by SAHPA.

Lemma 1. Let A = (Q, qs, δ,Acc) be a SAHPA over an alphabet Σ with Q0 and Q1

as the sets of states at level 0 and 1 respectively. For any always alive α ∈ Σω,

1. if α is ultimately periodic and μA,α(GoodRuns(α)) = x then the set
{val({qacc}, x, α[0 : i]) | i ∈ N, i ≥ 0} is a finite set,

2. if limi→∞ δα[0:i](qs, qs) = 0 and x ∈ (0, 1) then μA,α(GoodRuns(α)) = x ⇔
∀i ≥ 0, val({qacc}, x, α[0 : i]) ∈ [0, 1].

Now, we shall show that SAHPA can recognize non-regular languages. We start by
recalling a result originally proved in [13]. Let Σ = {0,1}. Any word κ ∈ Σ∗ ∪Σω

can be thought of as the binary representation of a number in the unit interval [0, 1] by
placing a decimal in front of it. Formally,

Definition 4. Let Σ = {0,1}. The map Σ∗∪Σω → [0, 1] is the unique map such that
bin(ε) = 0 and bin(aκ1) =

ā
2 + 1

2bin(κ1), where ā = 0 if a = 0 and 1 otherwise.

Note that bin(α) is irrational iff α is an infinite word which is not ultimately periodic.
The following is shown in [13].

Theorem 1. Σ = {0,1} and α ∈ Σω be a word which is not ultimately periodic.
Given � ∈ {>,≥},

– {u ∈ Σ∗ | bin(u)� bin(α)} is not regular.
– {γ ∈ Σω | bin(γ)� bin(α)} is not ω-regular.

We make some observations about the automaton A 1
3

shown in Fig. 2 in Lemma 2.

Lemma 2. Let A 1
3

be the SAHPA over the alphabetΣ = {0,1} defined in Example 1.
Let α ∈ Σω be such that α is not an ultimately periodic word. We have that for each
κ ∈ Σ∗ ∪Σω,

bin(κ) < bin(α) ⇔ μA,κ(GoodRuns(κ)) < μA,α(GoodRuns(α))

and
bin(κ) > bin(α) ⇔ μA,κ(GoodRuns(κ)) > μA,α(GoodRuns(α)).

We have:

Theorem 2. Consider the SAHPA A 1
3

over the alphabet Σ = {0,1} defined in Ex-
ample 1. Consider the finite acceptance condition and the Büchi acceptance condition
defined by setting Acc = {qacc}. Given � ∈ {>,≥}, we have that the language of
finite words Lf� 1

2
(A) is not regular and the language of infinite words Lb� 1

2
(A) is not

ω-regular.
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Proof. Given u ∈ Σ∗, we shall denote val({qacc}, 12 , u) by valu. We observe some
properties of the value valu.

Claim (A). For any u ∈ Σ∗,

– valu0 = 3
2valu and valu1 = 3valu − 2.

– If valu ∈ [0, 1] then it is of the form p
2i where p is an odd number and i − 1 is the

number of occurrences of 0 in u.
– valu /∈ {0, 1, 23}.

Proof. The first part of the claim follows from observing that δu0(qs, qs) = 2
3δu(qs, qs),

δu0(qs, qacc) = δu(qs, qacc), δu1(qs, qs) = 1
3δu(qs, qs) and that δu1(qs, qacc) =

δu(qs, qacc) + δu(qs, qs)
2
3 . The second part can be shown easily by an induction on the

length of u using the first part of the claim. (Observe that the base case is bin(ε) = 1
2 ).

The third part of the claim is an easy consequence of the second part. (End: Proof of
Claim (A)) ��
We now show that there is exactly one word β ∈ Σω such that μA,β(GoodRuns(β)) =
1
2 . As each α ∈ Σω is always alive and limi→∞ δα[0:i](qs, qs) = 0, it follows from
Lemma 1 and Claim (A) that it suffices to show that there is exactly one word β ∈ Σω

such that ∀i ≥ 0, valβ[0:i] ∈ (0, 1).
We prove this by constructing β, starting from the empty word and showing that

it can be extended one letter at a time in exactly one way. Clearly, thanks to Claim
(A), since val0 = 3

4 and val1 = − 1
2 , β[0] should be 0. Suppose we have constructed

β[0 : i]. Now, thanks to Claim (A) if 0 < valβ[0:i] <
2
3 then 0 < valβ[0:i]0 < 3

2
2
3 = 1

and valβ[0:i]1 < 3 2
3 − 2 < 0. If 2

3 < valβ[0:i] < 1 then valβ[0:i]0 > 3
2
2
3 = 1 and

0 = 3 2
3 − 2 < valβ[0:i]1 < 3.1 − 2 = 1. Thus if valβ[0:i] <

2
3 then β[i + 1] has to be

0, otherwise β[i + 1] has to be 1. Thus, we see that there is exactly one word β ∈ Σω

such that μA,β(GoodRuns(β)) = 1
2 . We shall now show that the values valβ[0:i] are

all distinct.

Claim (B). For each i, j such that i 
= j, valβ[0:i] 
= valβ[0:j].

Proof. Fix i, j. Without loss of generality, we can assume that j > i. Note that thanks
to Claim (A) that if there is an occurrence of 0 in β[i + 1 : j] then valβ[0:i] 
= valβ[0:j].
If there is no occurrence of 0 in β[i + 1 : j] then every letter of β[i + 1 : j] must be a
1. Thus, the result will follow if we can show that for each i+ 1 ≤ k < j, we have that
valβ[1:k]1 < valβ[1:k]. Using Claim (A), we have that

valβ[1:k]1 < valβ[1:k] ⇔ 3valβ[1:k] − 2 < valβ[1:k] ⇔ valβ[1:k] < 1.

Now valβ[1:k] < 1 by construction of β. The claim follows. (End: Proof of Claim (B))
��

Now, thanks to Lemma 1 and Claim (B), we have that β is not ultimately periodic.
The result follows from Lemma 2 and Theorem 1. ��
Remark 1. Note that since any Büchi acceptance condition can be converted into an
equivalent Muller acceptance condition, HPAs also recognize non-regular languages
under Muller acceptance conditions.
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3.2 Decision Problems for 1-level HPA

We now show that the problems of checking emptiness and universality for HPAs are
decidable, more specifically, they are in EXPTIME. We start by considering emptiness
for the language La>x(A) for a HPA A. In order to construct the decision procedure
for this language, we need to consider special kinds of witness sets. We will say that a
witness set W is good if the language LW defined in Proposition 1 is non-empty. We
have the following.

Proposition 5. Give a HPA A = (Q, qs, δ,Acc), threshold x ∈ [0, 1] and a ∈ {f, b,m},
the language La>x(A) 
= ∅ iff there is a word u ∈ Σ∗ and a good non-empty set H
such that δu(qs, H) > x.

The decision procedure for checking emptiness (or rather non-emptiness) will search
for a word u as in Proposition 5. The following lemma shows that, it is enough to search
for words of exponential length.

Lemma 3. Let A = (Q, qs, δ,Acc) be an HPA with n states (i.e., |Q| = n) such that
all the transition probabilities of A have size at most r 1. Let x ∈ [0, 1] be a rational
threshold of size at most r. For any a ∈ {f, b,m}, La>x(A) 
= ∅ iff there is a finite word
u and a good non-empty set H , such that |u| ≤ 4rn8n and δu(qs, H) > x.

Proof. Observe that if there is a finite word u and a good non-empty set H such that
δu(qs, H) > x then by Proposition 5, La>x(A) 
= ∅. Thus, we only need to prove that
nonemptiness of La>x(A) guarantees the existence of u and H as in the lemma.

Let gwords = {(s,G) | G 
= ∅, G is good and δs(qs, G) > x}. By Proposition 5,
gwords is non-empty. Fix (s,G) ∈ gwords such that for every (s1, G1) ∈ gwords,
|s| ≤ |s1|, i.e., s is the shortest word appearing in a pair in gwords. Note if |s| ≤ 2n

then the lemma follows.
Let us consider the case when |s| > 2n. Let k1 = |s| − 1. Observe that by our

notation, s = s[0 : k1]. Now, for any 0 ≤ i ≤ k1, let Yi = post(qs, s[0 : i]) ∩ Q1

and Xi = {q ∈ Yi : post(q, s[i + 1 : k1]) ⊆ G}. Note that Xi ⊆ Yi and is good.
Since |s| > 2n and A has n states, there must be i, j with i < j ≤ k1 such Xi = Xj

and post(qs, s[0 : i]) ∩ Q0 = post(qs, s[0 : j]) ∩ Q0. If post(qs, s[0 : i]) ∩ Q0 = ∅
then it is easy to see that (s[0 : i]s[j + 1 : k1], G) ∈ gwords contradicting the fact that
s is the shortest such word. Hence, fix j to be the smallest integer such that for some
i < j, Xi = Xj and post(qs, s[0 : i]) ∩ Q0 = post(qs, s[0 : j]) ∩ Q0 
= ∅. Let q be
the unique state in post(qs, s[0 : i]) ∩Q0.

Let s[0 : i] = v, s[i + 1 : j] = w, s[j + 1 : k1] = t; thus, s = vwt. Now, let
z1 = δv(qs, Xi) and y1 = δv(qs, Q1). Similarly, let z2 = δw(q,Xj), y2 = δw(q,Q1)
and z3 = δt(q,G). Since Xi, Xj ⊆ Q1, z1 ≤ y1 and z2 ≤ y2. Also note that |w| > 0
by construction of j and that y2 = δw(q,Q1) > 0 (by the minimality of length of s).

For any integer � ≥ 0, let u� = vw� and s� = u�t. Note that u0 = v and s1 = s.
Let � > 0. We observe that

δs�(qs, G) = δu(�−1)
(qs, Xi) + (1− δu(�−1)

(qs, Q1)) · z2 + (1 − δu�
(qs, Q1)) · z3

1 We say a rational number s has size r iff there are integers m,n such that s = m
n

and the
binary representation of m and n has at most r-bits.
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and
δs(�−1)

(qs, G) = δu(�−1)
(qs, Xi) + (1 − δu(�−1)

(qs, Q1)) · z3. (1)

Therefore,

δs�(qs, G)− δs(�−1)
(qs, G) = (1− δu(�−1)

(qs, Q1)) · z2 −
(δu�

(qs, Q1)− δu(�−1)
(qs, Q1)) · z3.

In addition, δu�
(qs, Q1) = δu(�−1)

(qs, Q1) + (1 − δu(�−1)
(qs, Q1)) · y2 and hence

δu�
(qs, Q1)−δu(�−1)

(qs, Q1) = (1−δu(�−1)
(qs, Q1))·y2 Putting all the above together,

we get for all � > 0,

δs�(qs, G)− δs(�−1)
(qs, G) = (1 − δu(�−1)

(qs, Q1)) · (z2 − y2 · z3).

Since s = s1 is the shortest word in gwords and s0 = vt is a strictly smaller word
than s1, we must have that δs0(qs, G) ≤ x and hence δs1(qs, G) > δs0(qs, G). From
this and the above equality, we see that (1 − δu0(qs, Q1)) > 0 and that (z2 − y2 ·
z3) > 0. This also means that, for all � > 0, δs�(qs, G) ≥ δs(�−1)

(qs, G). Hence,
lim�→∞ δs�(qs, G) exists and is ≥ δs1(qs, G). Since s1 = s, we get that
lim�→∞ δs�(qs, G) > x.

Observe that δw(q,Q1) > 0. Hence, one can show that lim�→∞ (1−δu(�−1)
(qs, Q1))

= 0. This along with Equation (1) means that lim�→∞ δs�(qs, G) = lim�→∞ δu�
(qs, Xi).

The right hand side of this equation is seen to be z1+(1−y1) · z2y2
and since lim�→∞ δs�

(qs, G) > x, we get that z1 + (1 − y1) · z2
y2

> x. Observe that Xi is a good set. Let
m be the minimum � such that δu�

(qs, Xi) > x. Now, we show that the length of um is
bounded by 4rn8n and hence the lemma is satisfied by taking u to be um and H to be
Xi. Observe that

δu�
(qs, Xi) = z1 + (1− y1) · (1 − (1− y2)

�) · z2
y2

.

From this, we see that m is the minimum � such that

(1− y2)
� < 1 − (x− z1)y2

(1− y1)z2
.

That is, m is the minimum � such that � > log(n1)
log(n2)

, where

n1 = (1−y1)z2
(1−y1)z2−(x−z1)y2

and n2 = 1
(1−y2)

.

Now, observe that the probability of a run ρ of A starting from any state, on an input
string of length at most 2n is a product of 2n fractions of the form m1

m2
where mi, for

i = 1, 2, is an integer bounded by 2r. Hence the probability of such a run is itself a
fraction whose numerator and denominator are bounded by 2r2

n

. Second, in an HPA
with n states, on any input of length k, there are at most kn different runs; this is because
once the run reaches a state in Q1 the future is deterministic, and for any prefix, there
is at most one run in a state in Q0. Hence, δv(qs, Q1) is the sum of at most n2n such
fractions. Therefore, y1 is a fraction whose numerator and denominator are integers
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bounded by 2rn4
n

. By a similar argument, we see that z1, y2, z2 are also fractions whose
numerators and denominators are similarly bounded. Now, it should be easy to see that
n1 is bounded by 24rn4

n

and hence m ≤ 4rn4n. Now, the length of um = |vw| +
(m− 1)|w| which is easily seen to be bounded m2n since |vw| and |w| are bounded by
2n. Hence um ≤ 4rn8n. ��

Now, we have the following theorem.

Theorem 3. Given a HPA A = (Q, qs, δ,Acc), a rational threshold x ∈ [0, 1] and
a ∈ {f, b,m}, the problem of determining if La>x(A) = ∅ is in EXPTIME.

Proof. It suffices to show that the problem of determining if La>x(A) 
= ∅ is in EXP-
TIME. Let X be the collection of all witness sets U such that U ∩Q0 
= ∅ and U ∩Q1

is a good set; for a witness set U ∈ X , we will denote by qU the unique state in U ∩Q0.
Let Y be the collection of good witness sets. For U ∈ X and natural number i > 0, let

Prob(U, i) = max{δu(qU ,W ) | u ∈ Σ∗, W ∈ Y, post(U ∩Q1, u) ⊆ W, |u| ≤ i}.

In the above definition, we take the maximum of the empty set to be 0. Let k be
the bound given by Lemma 3 for the length of the word u. Lemma 3 implies that
La>x(A) 
= ∅ iff Prob({qs}, k) > x. This observation yields a simple algorithm to
check non-emptiness: compute Prob({qs}, k) and check if it is greater than x.

Prob(·, ·) can be computed by an iterative dynamic programming algorithm as fol-
lows.

Prob(U, 1) = max{δa(qU ,W ) | a ∈ Σ, W ∈ Y, post(U ∩Q1, a) ⊆ W }
Prob(U, i+ 1) = max ({Prob(U, i)}⋃

{δa(qU , qV )Prob(V, i) + δa(qU , V ∩Q1) | a ∈ Σ, V ∈ X ,
post(U ∩Q1, a) ⊆ V }) .

Let us analyze the algorithm computing Prob(·, ·). Let us assume that A has n states,
and that δa(p, q) is of size at most r for any a ∈ Σ and p, q ∈ Q. Thus, X and Y
have cardinality at most 2n, and by Proposition 2, the sets X and Y can be computed in
EXPTIME (in fact, even in PSPACE). In addition, because |X |, |Y| ≤ 2n, the max-
imum in the above equations for computing Prob is over at most O(2n) terms. Thus,
we would get an exponential time bound provided the arithmetic operations needed to
compute Prob can also be carried out in exponential time. This requires us to bound the
size of the numbers involved in computing Prob(U, i). Observe that for any witness set
W and q ∈ Q, δa(q,W ) is the sum of at most n rational numbers and so has size at
most r+ n. Hence, we can inductively show that the size of Prob(U, i) (for any U ) is a
rational number of size at most 2i(r + n). Since i ≤ k and k is at most exponential in
n (by Lemma 3), the dynamic programming algorithm is in EXPTIME. ��

The emptiness problem for the languages La≥x(A) can be shown to be decidable
using similar methods.

Theorem 4. Given a HPA A, a rational threshold x ∈ [0, 1] and a ∈ {f, b,m}, the
problem of determining if La≥x(A) = ∅ is in EXPTIME.
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Now, we give the following lower bound results for checking non-emptiness of the
languages La�x(A) 
= ∅ for � ∈ {>,≥}.
Theorem 5. Given a HPA A, a ∈ {f, b,m}, � ∈ {>,≥}, the problem of determining
if La�x(A) 
= ∅ is PSPACE-hard.

Theorem 3 and Theorem 4 yield that checking non-universality is also decidable.

Theorem 6. Given a HPA A, a ∈ {f, b,m}, � ∈ {>,≥}, the problem of checking
universality of the language La�x(A) is in EXPTIME and is PSPACE-hard.

4 Integer HPAs

In the previous section we saw that even though (1-level) HPAs have a very simple
transition structure, their ability to toss coins allows them to recognize non-regular lan-
guages. In this section, we will show that if we restrict the numbers that appear as
transition probabilities in the automaton, then the HPA can only recognize regular lan-
guages (see Theorem 7). We will also show that the problems of checking emptiness
and universality of this class of HPAs are PSPACE-complete (see Theorem 8). We will
call this restricted class of HPAs, integer HPAs.

Definition 5. An integer HPA is a (1-level) HPA A = (Q, qs, δ,Acc) over alphabet Σ
with Q0 and Q1 being the level 0 and level 1 states, respectively, such that for every
q ∈ Q0 and a ∈ Σ, if post(q, a) ∩ Q0 is non-empty and equal to {q′}, then for every
q′′ ∈ Q1, δa(q, q′′) is an integer multiple of δa(q, q′).

Example 3. Consider automata Aint, A 1
3

, and ARabin from Example 1 that are shown
in Figs. 1, 2, and 3. Observe that Aint and ARabin are integer automata. On the other
hand, A 1

3
, which was shown to accept non-regular languages in Section 3.1, is not

an integer automaton. The reason is because of the transition from qs on symbol 0;
δ0(qs, qrej) =

1
3 is not an integer multiple of δ0(qs, qs) = 2

3 .

The main result of this section is that for any integer HPA A, and rational x, the
language La>x(A) is regular (for a ∈ {f, b,m}). The proof of this result will rest on
observations made in Proposition 4 that states that a word κ is accepted exactly when a
prefix of κ reaches a witness set with sufficient probability, and the rest of the word κ
is definitely accepted from the witness set. Proposition 1 states that the words definitely
accepted from any witness set is regular. Thus, the crux of the proof will be to show that
there is a way to maintain the val(·, x, ·) function for each witness set using only finite
memory. This observation will rest on a few special properties of integer HPAs.

Proposition 6. Let A be an integer HPA over alphabet Σ with level 0 and level 1 sets
Q0 and Q1, C ⊆ Q1, and x be a rational number c

d . For any u ∈ Σ∗, if val(C, x, u) ∈
[0, 1] then there is e ∈ {0, 1, 2, . . . d} such that val(C, x, u) = e

d .

The above proposition makes a very important observation — the set of relevant
values that the function val can take are finite. Proposition 3 in Section 2.1 essentially
says that when the function val takes on values either below 0 or above 1, either all
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extensions of the current input will have sufficient probability among witness sets in
Q1 or no extension will have sufficient probability. Thus, when measuring the quantity
val what matters is only whether it is strictly less than 0, strictly greater than 1 or its
exact value when it is in [0, 1]. Proposition 6 above, guarantees that val is finite when
it lies within [0, 1]. This allows us to keep track of val using finite memory. This is
captured in the following Lemma.

Lemma 4. Consider an integer HPA A over alphabetΣ with Q0 and Q1 as level 0 and
level 1 states. Let x = c

d be a rational threshold. For an arbitrary C ⊆ Q1, q ∈ Q0,
and e ∈ {0, 1, . . . d}, the following six languages

L(q,C,e) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = {q} and val(C, x, u) ≤ e
d}

L(q,C,−) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = {q} and val(C, x, u) < 0}
L(q,C,+) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = {q} and val(C, x, u) > 1}
L(∗,C,e) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = ∅ and val(C, x, u) ≤ e

d}
L(∗,C,−) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = ∅ and val(C, x, u) < 0}
L(∗,C,+) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = ∅ and val(C, x, u) > 1}

are all regular.

We are ready to present the main result of this section.

Theorem 7. For any integer HPA A, rational threshold x ∈ [0, 1], the languages
La>x(A) and La≥x(A) are regular (where a ∈ {f, b,m}).

Proof. From Proposition 4, we can conclude that

La>x(A) =

⎛

⎝
⋃

C⊆Q1, q∈Q0∪{∗}
L(q,C,−)LC

⎞

⎠ ∪
⎛

⎝
⋃

C⊆Q1, q∈Q0,e∈[0,1)

L(q,C,e)LC∪{q}

⎞

⎠

where LW is the set of words definitely accepted from witness set W , as defined in
Proposition 1. From Proposition 1 and Lemma 4, we can conclude that each of the
languages on the right hand side is regular, and therefore, La>x(A) is regular. The
proof of regularity of La≥x(A) is omitted for lack of space reasons. ��

The following theorem shows that the problems of checking emptiness and univer-
sality are PSPACE-complete for integer HPAs, thus giving a tight upper bound.

Theorem 8. Given an integer HPA A, a ∈ {f, b,m}, � ∈ {>,≥}, the problem of
determining if La�x(A) = ∅ is PSPACE-complete. Similarly, the problem of checking
universality is also PSPACE-complete.

5 Conclusions

We investigated the expressiveness of (1-level) HPAs with non-extremal thresholds and
showed, in spite of their very simple transition structure, they can recognize non-regular
languages. Nevertheless, the canonical decision problems of emptiness and universality
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for HPAs turn out to be decidable in EXPTIME and are PSPACE-hard. Imposing a
very simple restriction on the transition probabilities result in automata that we call
integer HPAs which recognize only regular languages. For integer HPAs, the canonical
decision problems turn out to be PSPACE-complete.

There are a few problems left open by our investigations. The first one is of course the
gap in the complexity of deciding emptiness and universality for these problems. Our
investigations in this paper were motivated by understanding the relationship between
the number of levels in HPAs and the tractability of the model. The results in [4] suggest
that problems become hard for 6-level HPAs and non-extremal thresholds. Our results
here suggest that 1-level HPAs (with non-extremal thresholds) are tractable. Exactly
where the boundary between decidability and undecidability lies is still open. Finally,
as argued in the Introduction, HPAs arise naturally as models of client-server systems,
and it would useful to apply the theoretical results here to such models.
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2. Baier, C., Größer, M., Bertrand, N.: Probabilistic ω-automata. Journal of the ACM 59(1),
1–52 (2012)

3. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity of random-
ization in finite state monitors. Journal of the ACM 56(5) (2009)

4. Chadha, R., Sistla, A.P., Viswanathan, M.: Probabilistic Büchi automata with non-extremal
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